CYBIL for NOS/VE

Language Definiiion

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60464113

Manual History

Revision System Version PSR Level Date

1.0.2 - February 1984
B 1.1.1 613 July 1984
C 1.1.2 630 March 1985
D 1.1.3 644 October 1985
E 1.2.1 664 September 1986
F 1.2.2 678 April 1987

This manual is Revision F, printed in April 1987. It reflects NOS/VE
Version 1.2.2 at PSR level 678.

New features:

® The Common CYBIL Input/Output procedures (Part II of this
manual)

® Two new appendixes: Appendix G briefly describes how to use
NOS/VE commands and utilities, and how to get online
information; Appendix L explains how to access the online
examples.

Other changes:

® Chapter 9 is now a brief, step-by-step introduction to using the
Debug utility. The detailed descriptions of the subcommands and
functions of the Debug Utility have been moved to the Debug

L1s wmbho. 2NA00O1A9
Usage mauual yuuu\,auuu NIUIMUel ouxooalv.

Miscellaneous technical corrections and clarifications have been
incorporated, together with editorial changes. This edition obsoletes all
previous editions.

©1984, 1985, 1986, 1987 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 CYBIL Language Definition Revision F
w ' 01/22/87 19:58:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 l 60464113 F I REVISION RECORD | DRAFT COPY

Contents

About This Manual 5
Audience 5
CYBIL Manual Set 5
Organization of This

Manual 6
Conventions 6
Submitting Comments . .. 7

Part 1. The CYBIL Language

Introduetion 11
Program Structure 2-1
Elements Within a
Program. 2-1
Structure of a Program 2-10

Constant, Variable, Type,
and Section

Declarations 3-1
Constant Declaration . . . 3-1
Variable Declaration . . . 3-3
Type Declaration 3-18
Section Declaration . . . 3-20

Types. 4-1
Using Types 4-2
Equivalent Types 4-3
Basic Types 4-4
Structured Types 4-20
Storage Types 4-44
Adaptable Types 4-48

Expressions and

Statements 5-1
Expressions 5-1

Revision F

Statements 5-15
Functions 8-1
Standard Functions 6-2

User-Defined Functions 6-15
System-Dependent

Functions 6-24
Procedures 7-1
Standard Procedures . . . 7-2

User-Defined Procedures 7-10

System-Dependent
Procedures 7-20

Compiling and
Formatting Source
Code. 81

Compiling Source Code . 8-1
Formatting Source Code 8-26

Using the Debug Utility . 9-1

Introduction to Debug . . 9-1
Getting Started 9-
How to Get Help 9-
Example 9-

Part II. Common CYBIL
Input/Output

How to Use Common

CYBILVO 10-1
Introduction 10-1
Using CYBIL I/0

Procedures 10-

Calling a CYBIL I/O
Procedure. 10-
Contents 3

System Naming

Convention 10-
Procedure Call

Description Format . . . 10-
Features Unique to

NOS/VE. 10-

Opening, Closing, and

Structuring Files . . , . 11-1
CYP$SOPEN_FILE 11-
CYP$CLOSE_FILE ... 11-
Positioning Files 11-
Creating File Structure . 11-
CYP$SOPERATING_

SYSTEM 11-

Reading and Writing

Files. 12-1
Binary Files. 12-
Record Files 12-

Text and Display Files . 12-

Page-Overflow Processing
for Display Files. 12-

NOS/VE-Specific
Procedures for CYBIL

vo............. 13-1

CYP$GET_FILE _

IDENTIFIER 13-
CYPSGET_BINARY_

FILE_POINTER. 13-
CYP$OPEN_BINARY_

FILE. 13-
CYP$OPEN_RECORD

FILE. 13-
CYP$OPEN_TEXT_

FILE. 13-
CYP$OPEN _DISPLAY_

FILE. 13-

4 CYBIL Language Definition

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/26 22.17.32 | B0464113 F | CONTENTS | DRAFT COPY

Glossary A-1
Related Manuals B-1
Ordering Printed
Manuals. B-1
Accessing Online
Manuals. B-2
Character Set C-1
Reserved Words D-1

Data Representation in

Memory. E-1
CYBIL Data Types E-3
Examples E-16

The CYBIL Run-Time

Environment. F-1

Stack Frame Mechanism F-1
Register Assignments . F-12
How Parameters are

Passed. F-14
External References . . F-17
Variable Allocation . . . F-17

Using NOS/VE

Commands G-1
NOS/VE Command
Utilities. G-1
NOS/VE Files G-7
Obtaining Online
Assistance. G-1
Programming
Recommendations. H-1
Increasing Source Code
Efficiency H-1
Revision F

Improving Compilation Messages for CYBIL I/O0 | K-1
and Loading Time . H-7
Accessing Online
Differences Between Manuals. L-1
CYBIL and Pasecal I-1
Index. Index-1
Constants and Data
Types for CYBIL I/O. . . J-1
Figures
2-1. Scope of Variables 9-2. Example of an
Within a Block Structure 2-11 E?(AMPLE_CYB Source
9-1. Debug Screen 9. Listing. 9-
10-1. Example of a CYBIL
rocCall 10-
Tables
3-1. Attributes and 10-1. File Attributes for
Initialization. 3-16 New Files: Binary and
5-1. Multiplication Record 10-
Operators 53 10-2. File Attributes for
5-2. Sign Operators 5-4 New Files: Text and
.. Display. 10-
5-3. Addition Operators . . . 5-5 19-1. Results of
. -1. Results o
5-4. Relatm.nal Operators . 5-10 CYP$POSITION _
5-5. Operations That RECORD_FILE. 12-
5‘;”?)“% St?ts' AR 513 B.1. Related Manuals B-2
-6. Operations Tha))
Produce Boolean Results. 5-14 (E: i gSSIIRCharacttert.Set . C-2
. -1. Data Representation in
8-1. Listing Toggles 8-21 Memory, . p E-2
8-2. Run-Time Checking
Toggles. 8-22

Revision F

Contents 5

About This Manual

This manual describes CONTROL DATA® CYBIL and CYBIL
system-resident procedures. CYBIL is the implementation language of
CDC® Network Operating System/Virtual Environment (NOS/VE).

NOS/VE provides a program interface consisting of a large number of
CYBIL procedures. Each CYBIL procedure supplies a specific system
service to CYBIL programs. Descriptions of the CYBIL procedures are
topically divided and appear in several manuals, of which this manual
is one.

This manual defines the CYBIL language in detail and describes the
CYBIL Input/Output procedures for reading and writing files and for
other I/O-related functions on CYBIL programs.

Audience

This manual is written for CYBIL programmers. It assumes that you
understand NOS/VE and System Command Language (SCL) concepts
as presented in the SCL System Interface and SCL Language
Definition manuals.

Revision F About This Manual 7

The CYBIL Manual Set

This manual is part of a set of manuals describing CYBIL.
Descriptions of all manuals in the CYBIL manual set follow:

CYBIL Language Definition

Defines the CYBIL language in detail and describes the CYBIL
Input/Output procedures for reading and writing files and for other
I/O-related functions on CYBIL programs.

CYBIL System Interface

Describes the CYBIL procedures that pertain to command language
services and processing, program services and management, task
and job management services, condition processing, message
generation, interstate communication, limits, and statistics.

CYBIL File Management

Describes the CYBIL procedures that assign files to device classes,
specify attributes for files, and perform file opening, closing, and

copying.

CYBIL Sequential and Byte-Addressable Files

Describes segment and record access, and input/ouput operations to
sequential and byte-addressable files.

CYBIL Keyed-File and Sort/Merge Interfaces

Describes the following:

¢ The interface to NOS/VE keyed-files (files having the

A A5 + £31 - Py
indexed- scqucntml ana airecv-acless iuie Grganiaauluua;

® The interface to NOS/VE Sort/Merge, which is used to sort
records or merge files of sorted records.

Organization of This Manual
This manual is in two parts:

® Part I, which describes the CYBIL language, is organized by topic,
based on elements of the language. The first chapter introduces
the basic elements of the language and refers to the chapter in
which each element is described.

® Part II explains how to use CYBIL /O procedures and describes
each procedure.

8 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | PREFACE | DRAET COPY

Conventions

The following conventions are used in this manual:

boldface

{fname}

UPPERCASE

numbers

return

shift

vertical bar

Revision F

In a command or function format, names and

s . 3 137, +
required parameters are in beldface type.

Optional parameters are shown in italics and
are enclosed by braces. If the parameter is
optional and can be repeated any number of
times, it is also followed by several periods:

{namej...

Braces also indicate that the enclosed
parameters and reserved words are used
together. For example:

{offset MOD base}

is considered a single paramete

=

Except for the braces and periods indicating
repetition, all other symbols shown in the format
must be included in the coding. ‘

Uppercase is used for names of commands,
functions, and parameters (and their
abbreviations). Uppercase is also used for names
of variables, files, system constants, and
terminal keys and function keys when they
occur in text.

All numbers are decimal unless otherwise noted.

Represents the message transmission key on
your terminal. Depending on the terminal, this
key may be the RETURN, NEXT, CR,
CARRIAGE RETURN, NEW LINE, SEND, or
ETX key.

Represents the shift key on your terminal.

A technical change is indicated by a vertical bar
next to the change.

About This Manual 9

examples Examples are in lowercase unless uppercase
characters are required for accuracy. Interactive
terminal session examples are shown in a type
font that resembles computer output.

blue Within interactive terminal sessions, user input
is printed in blue; system output is printed in
black.

Submitting Comments

There is a comment sheet at the back of this manual. You can use it
to give us your opinion of the manual’s usability, to suggest specific
improvements, and to report errors. Mail your comments to:

Control Data Corporation

Technology and Publications Division ARH219
4201 North Lexington Avenue

St. Paul, Minnesota 55126-6198

Please indicate whether you would like a response.

If you have access to SOLVER, the Control Data online facility for
reporting problems, you can use it to submit comments about the
manual. When entering your comments, use CIL as the product
identifier. Include the name and publication number of the manual.

10 CYBIL Language Definition Revision F
L l 01/22/87 19:59:24 | 02/13/87 08:46:31 | 87/03/25 22.17.32 |50464113 F | PREFACE | DRAFT COPY

In Case of Trouble

Control Data’s Central Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help not
provided in the documentation, or find the product does not perform

A crirmrmr L

analyst will work with you.
From the USA and Canada: {(800)-343-9903
From other countries: 612-851-4131

If you have questions about the packaging and/or distribution of a
printed manual, write to:

Control Data Corporation
Literature and Distribution Services

308 North Dale Street
St. Paul, Minnesota 55101

ts @

Or call (612) 292-2101. If you are a Control Data employee, call (612)

AN 1NN
Lda~aivy.

Revision F About This Manual 11

Part 1. The CYBIL Language

Introduction 1-1
Program Structure 2-1
Constant, Variable, Type, and Section Declarations 3-1
Types o e 4-1
Expressions and Statements, 5-1
Functions 6-1
Procedures 7-1
Compiling and Formatting Source Code 8-1
Using the Debug Utility 9-1

W |01/22/87 19:59: 24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | INTRODUCTION | DRAFT COPY

Introduction 1

This chapter introduces the basic elements of a CYBIL program and
refers you to the chapter in which each is further described.

Declarations e 1-1

Statements L 1-3

Introduction 1

A CYBIL program consists of two kinds of elements: declarations and
statements. Declarations describe the data to be used in the program.
Statements describe the actions to be performed on the data.

Declarations and statements are made up of predefined reserved words
and user-defined names and values. The way you form these elements
is described in chapter 2, as is the general structure for designing a
CYBIL program.

Declarations

Data can be either constant or variable. You can use the constant
value itself or give it a name using the constant declaration (CONST).
Variables are named, initialized, and given certain characteristics with
the variable declaration (VAR).

One of the characteristics of a variable is its type, such as integer or
character. You can use CYBIL’s predefined (standard) types or define
your own types.

To define a new type or redefine an existing type with a new name,
use the type declaration (TYPE). Once you have defined a type,
CYBIL will treat it as a standard data type; If you specify your new
type name as a valid type in a variable declaration, CYBIL will
perform standard type checking on it. You can also declare where you
want certain variables to reside by defining an area called a section,
which can be a read-only section or a read/write section. This is done
with the SECTION declaration. All of these data-related declarations
are described in chapter 3.

Many standard types are available, among which integers,
floating-point numbers, characters, and boolean values. In addition,
you can use combinations of the standard types to define your own
data types, for example, a record that contains several fields. The next
paragraphs summarize the types that are predefined by CYBIL. They
are described in detail in chapter 4.

Revision F Introduction 1-1

Declarations

The standard types can be grouped into three categories: basic,
structured, and storage.

The basic types are:

® Scalar, which are typess that have a specific order. They include
integer, character, boolean, ordinal (in which you define the
elements and their order), and subrange (which can be specified for
any of the scalar types by giving a lower and upper bound).

® Floating-point (real).
® (Cell, which represents the smallest addressable unit of memory.

® Pointer, which points to a variable, allowing you to access the
variable by location rather than by name.

With these basic types you can construct the structured types: strings,
arrays, records, and sets.

® Siring is a sequence of characters. You can reference a portion of
a string (called a substring) or a single character within a string.

® Array is a structure that contains components all of the same
type. The components of an array have a specific order and each
one can be referenced individually.

® Record is a structure that contains a fixed number of fields, which
may be of different types. Each field has a unique name within
the record and can be referenced individually. You can also declare
a variant record that has several possible variations (variants).
The current value of a field common to all variants, or the latest
assignment to a specific variant field determines which of the
variants should be used for each execution.

R - DU NV SRR | TR N S [S (SRS S, [R TY_ 187
€L 1S a SufuClure voat Comuains eielients Ol a singie Lype. uniike
an array, elements in a set have no order and individual elements

cannot be referenced. A set can be operated on only as a whole.

Storage types are structures to which variables can be added,
referenced, and deleted under explicit program control using a set of
storage management statements. The two storage types are sequence
and heap.

1-2 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | INTRODUCTION | DRAFT COPY

Statements

All of the types mentioned above are considered fixed types; that is,
there is a definite size associated with each one when it is declared. If
you want to delay specifying a size until execution time, you can
declare it as an adaptable type. Then, sometime during execution, you
assign a fixed size or value to the type. A string, array, record,

sequence, or heap can be adaptable,

All of these types are described in chapter 4.

Statements

Statements define the actions to be performed on the data you have
defined. There are four kinds of statements:

® The assignment statements change the value of a variable.

® Structured statemenis contain and control the execution of a list of
statements: The BEGIN statement unconditionally executes a
statement list. The WHILE, FOR, and REPEAT statements control
repetitive executions of a statement list.

® Control statements control the flow of execution. The IF and CASE
statements execute one of a set of statement lists based on the
evaluation of a given expression or the value of a specific variable.
CYCLE, EXIT, and RETURN statements stop execution of a
statement list and transfer control to another place in the
program.

® Siorage management statements allocate, access, and release
variables in sequences (using the RESET and NEXT statements),
heaps (using the RESET, ALLOCATE, and FREE statements), and
the run-time stack (using the PUSH statement).

All of the preceding statements are described in detail in chapter 5,
along with the operands and operators that can be used in expressions
within statements and declarations.

Statements can appear within a program (as described in chapter 2), a
function, or a procedure.

Revision F Introduction 1-3

CYBIL I/O Procedures

A function is a list of statements, optionally preceded by a list of
declarations. It is known by a unique name and can be called by that
name from elsewhere in the program. A function performs some
calculation and returns a value that takes the place of the function
reference. There are many standard functions defined in CYBIL and
you can also create your own. Standard functions and rules for
forming your own functions are described in chapter 6.

A procedure, like a function, is a list of statements, optionally
preceded by a list of declarations. It also is known by a unique name
and can be called by that name from elsewhere in the program. A
procedure performs specific operations and may or may not return
values to existing variables. You can use the standard procedures or
define your own. Chapter 7 describes the standard procedures and
rules for forming your own procedures.

Chapter 8 describes how to compile and format CYBIL source code.
The CYBIL command and directives embedded in the source code
specify how compilation should be performed. The CYBIL command
calls the CYBIL compiler, tells it which files to use for input and
output, and specifies what kind of listing you want. The text-embedded
compilation directives specify listing options, run-time options, the
layout of the source text, and which portions of the source text to
compile.

The FORMAT_CYBIL_SOURCE command and other text-embedded
directives specify how formatting should be performed. For example,
they indicate the margins and line width, tab settings, and indentation
to be used in the program listing.

In summary, chapters 2 through 7 describe the elements within a
CYBIL program. Chapter 8 describes the commands and directives
that control how the program is compiled and formatted.

CYBIL 1I/0O Procedures

Procedures that perform input to and output from CYBIL programs
are described in this manual in Part II, Common CYBIL Input/Output.
Other procedures that perform input and output on CYBIL programs
are described in the CYBIL File Management manual, the CYBIL
Sequential and Byte-Addressable Files manual, and the CYBIL
Keyed-File and Sort/Merge Interfaces manual.

1-4 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | INTRODUCTION | DRAFT COPY

Program Structure 2

This chapter describes how to form the individual elements used
within a program and how to structure the program itself.

Eiements Within a Program 2-1
Valid Characters 2-1
CYBIL-Defined Elements 2-1
User-Defined Elements 2-3

Names e 2-3
Constants 2-5
Constant Expressions 2-7
Syntax e 2-8
Spaces 2-8
Comments 2-8
Punctuation. 2-9
Spacing 2-9

Structure of a Program 2-10
Module Structure L 2-10
Scope e 2-10
Module Declaration 2-13

Program Declaration 2-15

1\

Program Structure

This chapter describes how to form the individual elements used
within a program and how to structure the program itself.

Elements Within a Program

This section describes valid characters, CYBIL-defined elements,
user-defined elements, and syntax.

Valid Characters

The characters that can be used within a program are those in the
ASCII character set that have graphic representations (that is, can be
printed). This character set is included in appendix C. It contains
uppercase and lowercase letters. In names that you define, you can

use unnercase and lowarcase letters interchangeablv, For sxamnle, the
use uppercase and lowercase letiers interchangeaply. Mor sxamplie, the

name LOOP_COUNT is equivalent to the name loop_count.

CYBIL-Defined Elements

CYBIL has predefined meanings for many words and symbols. You
cannot redefine or use these words and symbols for other purposes.

A complete list of CYBIL reserved words is given in appendix D. In
the formats for declarations, type specifications, and statements shown
in this manual, reserved words are shown in uppercase letters.

Revision F Program Structure 2-1

Elements Within a Program

The following list includes the reserved symbols and a brief
description of the purpose of each. They are discussed in more detail
throughout this manual.

Symbeol Purpose

+, =, ¥, /, =, Operators used in expressions. They are discussed in
<, <=, chapter 5.

>, >=, <>,

=, ()

; Separates individual declarations and statements.
Used in declarations as described in chapter 3.
, Separates repeated parameters or other elements.

Indicates a reference to a field within a record as
described in chapter 4.

Indicates a subrange as described in chapter 4.

Indicates a pointer reference as described in chapter
4.

Delimits a string.

[1] Encloses array subscripts, indefinite value
constructors, and set value constructors as described
in chapter 4.

{} Delimits comments. (Within the formats shown in

this manual, they are also used io enclose optional
parameters.)

7?7 or 7? Indicates compile-time statements and directives as
described in chapter 8.

2.2 CYBIL Language Definition Revision F
L | 01/22/87 19:58:24 I 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | PROGRAM STRUCTURE | DRAFT COPY

Elements Within a Program

User-Defined Eiements

This section describes names, constants, and constant expressions.

Names

You define the names for elements, such as constants, variables,
types, procedures, and so on, that you use within a program. A name:

Can be from 1 to 31 characters in length

Can consist of letters, digits, and the special characters # (number
sign), @ (commercial at sign), _ (underline), and $ (dollar sign) 1

Must begin with a letter (there is an exception te this rule for
system-defined functions and procedures that begin with the # or $
character)

Cannot be a reserved word (a complete list of CYBIL reserved

wprmede G ofeoa fo o 1i TH
WOIas 1S givel i appendix uj

In the formats included in this manual, names that you supply are
shown in lowercase letters. Within a program, however, there is no
distinction between uppercase and lowercase letters. The name my_
file is identical to the name My_File.

1. NOS/VE often uses $ in its predefined names. To keep from matching a
system-reserved name, avoid using $ in the names you define.

Revision F Program Structure 2-3

Elements Within a Program

There is considerable flexibility in forming names, so you should make
them as descriptive as possible to promote readability and
maintainability of the program. For example, LAST_FILE_
ACCESSED is more obvious than LASTFIL.

Examples:

Valid Names Invalid Names
SUM ARRAY
REGISTER#3 FILES&POSITIONS
POINTER_TABLE 2ND

The valid names need no explanation. Among the invalid names,
ARRAY cannot be used because it is a reserved word;
FILES&POSITIONS contains an invalid character (the ampersand);
and 2ND does not begin with a letter.

2-4 CYBIL Language Definition Revision F
L | 01/22/87 19:59:24 | 02/13/87 09:46:31 ' 87/03/26 22.17.32 | 60464113 F | PROGRAM STRUCTURE | DRAFT COPY

Elements Within & Program

A constant is a fixed value. It is known at compilation time and does
not change throughout the execution of a program. It can be an
integer, character, boolean, ordinal, floating-point number, pointer, or
string.

Integer constants can be binary, octal, decimal, or hexadecimal. The
base is specified by enclosing the radix in parentheses following the
integer, as follows:

integer (radix)

Examples are 1011(2) and 19A(16). If the radix is omitted, the integer
is assumed to be decimal. Integer constants must start with a digit;
therefore, 0 must precede any hexadecimal constant that would
otherwise begin with a letter, for example, 0FF(16). Negative integer
constants must be preceded by a minus sign. Positive integer
constants can be preceded by a plus sign but need not be.

Integer constants range in value from —(263-1) to 263-1; that is,
-TFFFFFFFFFFFFFFF hexadecimal through 7FFFFFFFFFFFFFFE

hexadecimal. o

A character constant can be any single character in the ASCII
character set. The character is enclosed in apostrophes in the
following form:

"character’

Examples are A’ and ’?. The apostrophe character itself is specified
by a pair of apostrophes.

A boolean constant can be either TRUE or FALSE, each having its
usual meaning.

An ordinal constant is an element of an ordinal type that you have
defined. As a defined element of an ordinal type, it is referred to as
an ordinal name. For further information, refer to Ordinal under
Scalar Types in chapter 4.

Floating-point (real) constants can be written in either decimal
notation or scientific notation. A real number written in decimal
notation contains a decimal point and at least one digit on each side,
for example, 5.123 or -72.18. If the number is positive, the sign is
optional; if negative, the sign is required.

Revision F Program Structure 2-5

Elements Within a Program

A real number written in scientific notation is represented by a
number (the coefficient), which is multiplied by a power of 10 (the
exponent) in the form:

coefficientEexponent
The prefix E is read as "times 10 to the power of." For example,
5.1E6

is 5.1 times 10 to the power of 6, or 5,100,000. The decimal point in
the coefficient is optional. A decimal point cannot appear in the
exponent; it must be a whole number. If the coefficient or exponent is
positive, the sign is optional; if negative, the sign is required.

The pointer constant is NIL. It indicates an unassigned pointer. For
CYBIL on NOS/VE, a pointer is represented partially by an address
called the process virtual address (PVA). The PVA is represented as a
packed record consisting of three fields: the ring number, segment
number, and byte offset. To indicate the NIL pointer constant
internally, CYBIL sets these three fields to OF hexadecimal, OFFF
hexadecimal, and 80000000 hexadecimal, respectively. NIL can be
assigned to a pointer of any type.

String constants consist of one or more characters enclosed in
apostrophes in the form:

’string’
An example is 'USER1234’, a string of eight characters. An apostrophe
in a string constant is specified by a pair of apostrophes, for example,
"DON"T”,

String constants can be concatenated by using the reserved word CAT,
as in: :

’characters_1’ CAT ’characters_2’

The result is the string ’characters_1characters_2’. The CAT
operation cannot be used with string variables.

2-6 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/26 22.17.32 | 60464113 F | PROGRAM STRUCTURE ' DRAFT COPY :

Elements Within a Program

A string constant can be empty, that is, a null string; for exampie,
CONST str = *;

declares the string constant STR to be a null string. As a result of
this declaration, the length of STR is set to zero.

You cannot reference parts (substrings) of string constants.

Consiant Expressions

Expressions are combinations of operands and operators that are
evaluated to find scalar or string type values. In a constant
expression, the operands must be constants, names of constants (that
you declare using the constant declaration described in chapter 3), or
other constant expressions within parentheses. Computation is done at
compilation time and the resulting value used in the same way a
constant is used.

The general rules for forming and evaluating expressions are
described under Expressions in chapter 5. These rules apply to
consiant expressions with the foliowing exceptions:

® Constant expressions must be simple expressions; terms involving
relational operators must be delimited with parentheses.

® The only functions allowed as factors in constant expressions are
the $INTEGER, $CHAR, SUCC, and PRED functions with constant
expressions as arguments.

® Substring references are not allowed.

Revision F Program Structure 2-7

Elements Within a Program

Syntax

The exact syntax of the language is shown in the formats of
individual declarations and statements described in the remainder of
this manual. The following paragraphs discuss general syntax rules.

Spaces
Spaces can be used freely in programs with the following exceptions:

® Names and reserved words cannot contain embedded spaces.
Normally, constants cannot contain spaces either, but a character
constant or string constant can.

® A name, reserved word, or constant cannot be split over two lines;
it must appear completely on one line.

® Names, reserved words, and constants must be separated from
each other by at least one space, or by one of the other delimiters
such as a parenthesis or comma.

For further information, refer to Spacing later in this chapter.

Comments

Comments can be used in a program anywhere that spaces can be
used (except in string constants). They are printed in the source
listing but otherwise are ignored by the compiler.

A comment is enclosed in left and right braces. It can contain any
character except the right brace. To extend a comment over several
lines, repeat the left brace at the beginning of each line. If the right
brace is omitted at the end of the comment, the compiler ends it
automatically at the end of the line.

Example:

{this comment
{appears on
{several lines.}

Within this manual, the formats for declarations, type specifications,
and statements use braces tc indicate an optional parameter.

2-8 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | PROGRAM STRUCTURE | DRAFT COPY

Elements Within a Program

A semicolon separates individual declarations and statements. It must
be included at the end of almost every declaration and statement. The
single exception is MODEND which can, but need not, end with a
semicolon if it is the last occurrence of MODEND in a compilation.
Punctuation for specific declarations and statements is shown in the
formats in the following chapters.

Two consecutive semicolons indicate an empty statement, which the
compiler ignores. Spacing between the semicolons in this case is
unimportant.

Spacing

Declarations and statements can start in any column. In this manual,
indentations are used in examples to improve readability. It is
recommended that similar conventions be used in your programs to
aid in debugging and documentation for yourseif and other users. The
CYBIL source code formatter, described in chapter 8, can help you do
this by accepting source code you supply as input and formatting it
for consistency and readability.

The LEFT and RIGHT directives, described in chapter 8, can be used
at compilation time to specify the left and right margins of the source
text. All source text outside of those margins is then ignored. A
warning diagnostic is issued for every line that exceeds the specified
right margin.

A name, reserved word, or constant cannot be split over two lines;
each must appear completely on one line.

Revision F Program Structure 2-9

Structure of a Program

Structure of a Program

This section describes the module structure, scope, module declaration,
and program declaration.

Module Structure

The basic unit that can be compiled is a module and, optionally,
compilation time statements and directives. A module can, but need
not, contain a program. Use this general structure for a module:

MODULE module_name;
declarations
PROGRAM program_name;
declarations
statements
PROCEND program_name;
MODEND module_name;

Declarations can be constant, type, variable, section, function, and
procedure declarations. A module can contain any number and
combination of declarations, but it can contain only one program. The
program contains the code (that is, the statements) that are actually
executed. The required module and program declarations are described
later in this chapter.

The structure within a module determines the scope of the elements
you declare within it.

Scope

The scope of an element you declare, such as a variable, function, or
procedure, is the area of code where you can refer to the element and
it will be recognized. Scope is determined by the way the program

and procedures are positioned in a module and where the elements
are declared.

In terms of scope, the programs, procedures, and functions are often
referred to as blocks (that is, blocks of code). If an element is
declared within a block, its scope is only that block (unless it is
externally declared as described later in this section). Outside the
block, the element is unknown and references to it are not valid. A
variable declared within a block is said to be local to the block and is
called a local variable.

2-10 CYBIL Language Definition Revision F
w] 01/22/87 19:59:24 ' 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F l PROGRAM STRUCTURE | DRAFT COPY

Structure of a Program

An element deciared at the module ievei {that is, one that is not
declared within a program, procedure, or function) has a scope of the
entire module. It can be referred to anywhere within the module. A
variable declared at the module level is said to be global and is called
a global variable.

A block can contain one or more subordinate blocks. A variable
declared in an outer block can always be referenced in a subordinate
block. However, if a subordinate block declares an element of the
same name, the new declaration applies while inside that block.
Figure 2-1 illustrates these rules.

BLOCK 1
A DECLARATION «—— Variable A can be referred to anywhere
in block 1, including blocks 2, 3, and 4.
BLOCK 2
B DECLARATION «4—— Variable B can be referred to only in
biock 2.
BLOCK 3
C DECLARATION «4—— Variables C and D can be referred to
D DECLARATION anywhere in blocks 3 and 4.
BLOCK 4
D DECLARATION <«—— However, biock 4 again deciares a
variable named D. This second
declaration identifies a different
variable D and is in effect within
block 4 only. Outside of block 4,
yet within block 3, the original
declaration for D applies.
VARIAB: 86/07/10

Figure 2-1. Scope of Variables Within a Block Structure

Storage space is allocated for a variable when the block in which it is
declared is entered. Space is released when an exit is made from the
block. Because space is allocated and released automatically, these
variables are called automatic variables. This method of allocation
becomes more complex when a procedure, for example, calls itself.
Space for the same variable must be allocated each time the
procedure is called and entered, yet each of these spaces must be kept
separate to maintain the integrity of the variable throughout each
execution of the procedure. More discussion about this recursive
process appears later in this section.

Revision F Program Structure 2-11

Structure of a Program

You can specify that storage for a variable remains intact throughout
execution by including the STATIC attribute when you declare the
variable. A variable declared in this way is called a static variable.

A global variable is always static. Because it is declared at the
outermost level of a module (consider the module to be a block),
storage for a global variable is allocated throughout execution of the
module (or block). For further information on automatic and static
variables, refer to Variable Declaration in chapter 3.

Storage is allocated dynamically when the number of times a variable
will occur is unknown. This happens in two cases, the first of which
is in recursive procedures or functions when the number of recursive
calls is unknown. In this case, a mechanism called a stack frame is
used to hold the automatic variables. Stack frames are allocated
automatically and you need not understand them to use recursive
procedures and functions. However, a more complete description is
given in appendix F, The CYBIL Run-Time Environment.

The second case of dynamic storage allocation is in the use of the
special storage types heaps and sequences (described in chapter 4) and
the run-time stack (described in chapter 5). Heaps and sequences
represent structures to which you can add and delete variables under
program control. To allocate space in a heap, you use the ALLOCATE
statement; in a sequence, you use the NEXT statement. The run-time
stack is a structure to which you can add but not explicitly delete
variables. To allocate space on the run-time stack, you use the PUSH
statement. Space is released when the procedure containing the PUSH
statement completes. All three statements are described in chapter 5
under Storage Management Statements. :

The one exception to the preceding scope rules is an element declared
with the XDCL (externally declared) attribute. This attribute means
the element is declared in one module but can be referred to in
another. In this case, the loader handles the links between modules.

For further information on the XDCL attribute, refer to chapter 3.

2-12 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/08/25 22.17.32 | 60464113 F | PROGRAM STRUCTURE | DRAFT COPY

|
\
\
|
|
|
|
\
\
\
\
\
\
|
|
l
l
|
I
|
|

Module Declaration

Moduie Declaration

The module declaration marks the beginning of a module. MODEND
marks the end of a module. A module can contain at most one

program declaration and any combination of type, constant, variable,
section, function, and procedure declarations, If two or more modules

are compiled and linked together for execution, there can be only one
program declaration in all the linked modules.

Use this format for a module declaration:
MODULE name;?2

name

The name of the module.

Use this format for MODEND:

we

MODEND { name }

name

The name of the module. This parameter is optional. If used,
the name must be the same as that specified in the module
declaration.

When compiling more than one module, a semicolon is required after
each occurrence of MODEND except the last one (there it is not
required, but is recommended).

2. Some variations of CYBIL available on other operating systems allow an additional
option, the alias name, in a module declaration. If it is included in a CYBIL program
run on NOS/VE, this parameter is ignored.

Revision F Program Structure 2-13

Module Declaration

Examples:

The following example shows a module named ONE that contains
various declarations and a program named MAIN.

MODULE one;
declarations
PROGRAM main;

declarations

statements
PROCEND main;
MODEND one;

The following example shows a compilation consisting of three
modules named ONE, TWO, and THREE. All three modules can be
compiled and the resulting object modules linked together to form a
single object module that can then be executed. For readability, the
module names are included in all occurrences of MODEND.

MODULE one;

declarations/statements
MODEND one;
MODULE two;

declarat idns/stat ements
MODEND two;
MODULE three;

declarations/statements

2-14 CYBIL Language Definition Revision F
W l 01/22/87 19:59: 24 | 02/13/87 09:46:31 | 87/03/256 22.17.82 | 60464113 F ' PROGRAM STRUCTURE | DRAFT COPY

Program Declaration

Program Deciaration

The program declaration marks the beginning of a program. The end
of a program is marked by a PROCEND statement. A program can
contain any combination of type, constant, variable, section, function,
and procedure declarations, and any statements. If two or more

modules are compiled and linked together for execution, there can be
only one program declaration in the linked modules.

Use this format for a program declaration:
PROGRAM name {(formal_parameters)} ;3

name

The name of the program.

formal_ parameters

One or more optional parameters included if the program is to
be called by the operating system. They can be in the form

VAR name {,namej... : type
S mrmnn Jmraaal o Farzanl
(T ARRITLT [iiAREIeE e, . thle...
and/or

name {,namej... : type
{,name {,name}... : type}...

where name is the name of the parameter and type is the
type of the parameter, that is, a predefined type (described in
chapter 4) or a user-defined type (described in chapter 3).

The first form is called a reference parameter; its value can be
changed during execution of the program. The second form is
called a value parameter; its value cannot be changed by the
program. Both kinds of parameters can appear in the formal
parameter list; if so, they must be separated by semicolons (for
example, L[INTEGER; VAR A:CHAR).

3. Some variations of CYBIL available on other operating systems allow an additional
option, the alias name, in a program declaration. If it is included in a CYBIL program
run on NOS/VE, this parameter is ignored.

Revision F Program Structure 2-15

Program Declaration

The optional formal parameter list is included if a CYBIL program is
to be called by the operating system. It allows the system to pass
values (for example, a string that represents a command) to a CYBIL
program. For further information on passing parameters, refer to the
CYBIL System Interface manual.

Use this format for PROCEND:
PROCEND { name };

name

The name of the program. This parameter is optional. If used,
the name must be the same as that specified in the program
declaration.

Example:

The following example shows a program named MAIN that contains
various declarations, including a procedure named SUB_1:

PROGRAM main;
declarations
PROCEDURE sub_1;

declarations
statements
PROCEND sub_1;

statements {The program starts execution here.}
PROCEND main;

2-16 CYBIL Language Definition Revision F
L | 01/22/87 19:58:24 I 02/13/87 09:46:31 | 87/03/26 22.17.32 | 60464113 F | PROGRAM STRUCTURE | DRAFT COPY

Constant, Variabie, Type, and Section
Declarations 3

This chapter describes how you declare constant and variable data

tvnee and naw data tvnes It aleo daseribas how vou gneecifv a
types anc new qata types. I alse qescribes how you sheclly a

particular section in which to group data.

Constant Declaration 31
Variable Declaration 3-3
Attributes Lo 3-6
Access 3-6
Scope 3-8
Storage 39
Initialization 3-14
Type Declaration 3-18

Section Declaration 3-20

Constant, Variable, Type, and Section
Declarations 3

This chapter describes the constant declaration, which defines a name
for a value that never changes; the variable declaration, which defines
a name for a value that can change; and the type declaration, which
defines a new type of data and gives a name to that type. In addition,
it also describes the section declaration, which groups variables that
share common access characteristics.

Constant Declaration

A constant, as described in chapter 2, is a fixed value that is known
at compile time and doesn’t change during execution. A constant
declaration allows you to associate a name with a value and use that
name instead of the actual constant value. This provides greater

oe L .
readability because the name can be descriptive of the constant.

Constant declarations also provide greater maintainability because the
constant value need only be changed in one place, the constant
deciaration, not every piace it is used in the code.

Use this format for a constant declaration:
CONST name = value {,name = value}..;

name

The name associated with the constant value.

value

The constant value. It can be an integer, character, boolean,
ordinal, floating-point, pointer, string, or constant expression.
Rules for forming these values are given under Constants and
under Constant Expressions in chapter 2.

You can write several constant declarations, each declaring a single
constant, or a single declaration declaring several constants where
each name = value combination is separated by a comma.

Type is not specified in a constant declaration. The type of the
constant is the same as the type of the value assigned to it.

If used, an expression is evaluated during compilation. The expression
itself can contain other constants.

Revision F Declarations 3-1

Constant Declaration

Examples:

Rather than repeat the value of pi throughout a program, you can use
a constant declaration to assign a descriptive name (in this case, PI)
to the value and use that name in subsequent expressions and
operations. The constant declaration is:

CONST
pi = 3.1415927;

The following example shows a constant declaration containing several
different types:

CONST
first = 1,
ltast = 80,

hex = 0a8(16),

bit_pattern = 10110101(2),
fp_number = 1.2e3,
stop_character = “.”,
continue = TRUE,

message = ‘end of line’,
last_pointer = NIL,

length = last - first,
result = (1 * 2) DIV 3;

Each constant has the same type as the value assigned to it. For
example, FIRST and LAST are integer types, as is LENGTH, which is
the result of an expression containing integers. Notice that the value
of HEX begins with a 0 because integers must begin with a digit.

3-2 CYBIL Language Definition Revision F
W ' 01/22/87 19:59:24 | 02/13/87 09:46:31 l 87/03/25 22.17.32 ' 60484113 F | CVTS DECLARATIONS | DRAFT COPY

Variable Declaration

Variable Deciaration

A variable is an element within a program whose value can change
during execution. The name of the variable stays the same; it is only
the value contained in the variable that changes. To use a variable,

D I]

you must declare it.
Use this format for a variable declaration:
VAR name {,namej... : {[aiiribuies]} type {:= initiai_vaiue}
{,;name {,name}... :{[attributes]} type {:= initial_value}}..;
name

The name of the variable. Specifying more than one name
- indicates that all of the named variables will have the
characteristics that follow (attributes, type, and initial_value).

attributes

One or more of the following attributes. If you specify more
than one, separate them with commas.

READ

Access attribute specifying that the variable is a read-only
variable; the compiler checks to ensure that the value of
the variable is not changed. If you specify READ, you must
also specify an initial value.

XDCL
Scope attribute specifying that the variable is declared in
this module but can be referenced from another module.

XREF

Scope attribute specifying that the variable is declared in
another module but can be referenced from this module.

1. Some variations of CYBIL available on other operating systems allow an additional
option, the alias name, in a variable declaration. If it is inciuded in a CYBIL program
run on NOS/VE, this parameter is ignored.

Revision F Declarations 3-3

Variable Declaration

#GATE2

This attribute is undefined for variable declarations.
However, if you specify #GATE, you must also specify the
XDCL attribute.

STATIC

Storage attribute specifying that storage space for the
variable is allocated at load time and remains when control
exits from the block. Static storage is assumed when any
attributes are specified.

section_name

Storage attribute specifying the name of the user-defined
section in which the variable resides. A variable in a
section that is defined as read-only is protected by
hardware, as opposed to software. The section name and its
read/write attributes must be declared using the section
declaration (discussed later in this chapter).

Attributes are described in more detail later in this chapter.

The attributes parameter is optional. If it is omitted, CYBIL
assumes the variable can be read and written; can be
referenced only within the block where it is created; and,
unless it is declared at the outermost level of a module, is
automatic (that is, storage for the variable is allocated only
during execution of the block in which the variable is
declared).

type

Data type defining the values that the variable can have. Only
values within this data type are allowed. Types are described
in chapter 4.

ey 29ralaean

Initial value assigned to the variable. Specify a constant
expression, an indefinite value constructor (described under
Initialization later in this chapter), or a pointer to a global
procedure. Only a static variable can be assigned an initial
value. Initialization is discussed later in this chapter.

This parameter is optional. If it is omitted, the variable is
undefined and filled with the loader’s preset value.

2. This attribute is not supported on variations of CYBIL available on other operating

systems.

3-4 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 I 02/13/87 09:46:31 | 87/03/26 22.17.32 | 60464113 F | CVTS DECLARATIONS | DRAET COPY

|
|
|
|
\
\
|
\
|
|
|
I
|
|
|
|
|
|
I
|
l
|
|
|
|
|
|
|
|
I
I
{
[
!
[
[
|

Variable Declaration

1

L1 P L, PP R PU, P eradle 1l X7,
mly le].d.UlU It:wl‘euu:u 1 1USt D€ Qeciarea wiun une V

a prograr
declaration. A variable can be d ared only once at each block level
although it can be redefined in another block or in a contained
(nested) block.

The type assigned fo a variable defines the range of values it can
take on and also the operations, functions, and procedures that can
use it. CYBIL checks to ensure that the operations performed on
variables are compatible with their types.

Examples:

The following declarations define a variable named SCORES that can
be any integer number, a variable named STATUS that can be either
of the boolean values FALSE or TRUE, and two variables named
ALPHA1 and ALPHAZ2 that can be characters:

VAR
scores: integer;

us: boolean;

alphal: char;

VAR
alpha2: char;

The declarations for the two character type variables, ALPHA1 and
ALPHA2, could be combined as follows:

VAR
alphal,
alpha2: char;

To combine all of the variables in one declaration, you could use:

VAR
scores: integer,
status: boolean,
alphait,
alpha2: char;

Revision F Declarations 3-5

Attributes

Attributes
Attributes control three characteristics of a variable:

Attribute Characteristic

Access Whether the variable can be both read and written

Scope Where within the program the variable can be
referenced

Storage When and where the variable is stored

Access

The access attribute that you can specify is READ. A variable
declared with the READ attribute can only be read. It must be
initialized in the declaration and cannot be assigned another value
later. It is called a read-only variable. If the READ attribute is
omitted, CYBIL assumes the variable can be both read and written
(changed).

The READ attribute is enforced by software; that is, the compiler
checks to ensure that the value of a variable does not change. The
READ attribute alone does not mean that the variable is actually in a
read-only section.3 To do that, you must specify the name of a
read-only section as declared in a section declaration (described later
in this chapter).

A variable with the READ attribute specified is assumed to be static.
(For further information on static variables, refer to Storage later in
this chapter.) You can use a read-only variable as an actual
parameter in a procedure call only if the corresponding formal
parameter is a value parameter; that is, a read-only variable can be

passed to a procedure only if the procedure makes no attempt to
assign a value to it. (Procedure parameiers are described in chapter

7)

3. A read-only section is a hardware feature. Data that resides in a physical area of
the machine designated as a read-only section is protected by hardware, not by
software. This feature is described in further detail in volume II of the virtual state
hardware reference manual.

3-6 CYBIL Language Definition Revision F
W | 01/22/87 19:59: 24 l 02/13/87 08:46:31 I 87/03/25 22.17.32 I 60464113 F | CVTS DECLARATIONS I DRAFT COPY

\
\
1
!
I
|
|
I
I
|
I
|
|
|
|
!
|
|

Attributes

T . s , n
A read-only variable is similar to a constant, but can’t always b

in the same places. For example, the initial value that you can assign
to a variable (as described earlier in this chapter) must be a constant
expression, an indefinite value constructor, or a pointer to a global
procedure. In this case, even though a read-only variable has a
constant value, you cannot use it in place of a constant expression.
Also, as mentioned in chapter 2, you cannot reference a substring of a
constant. You can, however, reference a substring of a variable and,
thus, a read-only variable. There are other differences similar to
these. The descriptions in this manual state explicitly whether
constants and/or variables can be used.

Examples:

In this example the variable DEBUG is a read-only variable set to
the constant value of TRUE. NUMBER can be read and written.

VAR
debug: [READ] boolean := TRUE,
number: integer:

The following example illustrates a difference between constants and
read-only variables. To declare a string type, you must specify the

length of the string in parentheses following its name. As defined in
chapter 4, the length must be a positive, integer constant expression.

CONST
string_size_1 = 5;

VAR
string_size_2: [READ] integer := 5,
stringi: string (string_size_1),
string2: string (string_size_2);

The declaration of STRING1 is valid; the length of the string is 5,
which is the value of the constant STRING_SIZE_1. However,
STRING?2 is invalid; even though STRING_SIZE_2 does not change
in value, it is still a variable and cannot be used in place of a
constant expression.

Revision F Declarations 3-7

Attributes

Scope

The scope attributes define the part or parts of a module to which a
variable declaration applies. If you don’t include any scope attributes
in the declaration, the scope of a variable is the block in which it is
declared. A variable declared in an outermost block applies to that
block and all the blocks it contains. However, a variable declared
even at the outermost level of a module cannot be used outside of
that module. Use the scope attributes, XDCL and XREF, to extend the
scope of a variable so that it can be shared among modules.

To use the same variable in different modules, you must specify the
XDCL and XREF attributes. The XDCL attribute indicates that the
variable being declared can be referenced from other modules. The
XREF attribute indicates that the variable is declared in another
module. When the loader loads modules, it resolves variable
declarations so that each XDCL variable is allocated static storage
and the XREF variable shares the same space. This is known as
satisfying externals. The loader issues an error if an XREF variable
does not have a corresponding XDCL variable. In one compilation unit
or group of units that will be combined for execution, a specific
variable can have only one declaration that contains the XDCL
attribute.

Declarations for a shared variable must match except for
initialization. A variable declared with the XDCL attribute can be
initialized and have different values assigned during program
execution. A variable declared with the XREF attribute cannot be
initialized but can be assigned values.

If you declare any attributes, the variable is assumed to be static in
storage. If you don’t declare any attributes, the variable is assumed to
be automatic, unless you declare it at the outermost level of the
module. (A variable declared at the outermost level is always static.)

3-8 CYBIL Language Definition Revision F

w | 01/22/87 19:69:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60484113 F | CVTS DECLARATIONS | DRAFT COPY

Attributes

Exampie:

Assume the following two modules have been compiled. When the
loader loads the resulting object modules and satisfies externals, it
allocates storage to FLAG, an XDCL variable, and initializes it to
FALSE. When the loader finds the XREF variable FLAG in module
TWO, it assigns the same storage. Thus, references to FLAG from
either module refer to the same storage location.

#MODULE one;

VAR
flag: [XDCL] boolean := FALSE;

MODEND one;
MODULE two;

VAR

—~— r - 5
flag: [RREF] boolean;

MODEND two;

Storage

The storage attributes determine when storage is allocated and where
storage is allocated.

When Storage is Allocated

There are two methods of allocating storage for variables: automatic
and static. For an automatic variable, storage is allocated when the
block containing the variable’s declaration begins execution. Storage is
released when execution of the block ends. If the block is entered
again, storage is allocated again, and so on. When storage is released,
the value of the variable is lost.

For a static variable, storage is allocated (and initialized, if that
parameter is included) only once, at load time. Storage remains
allocated throughout execution of the module. However, even though
storage remains allocated, a static variable still follows normal scope
rules. It can be accessed only within the block in which it is declared.
A reference to a static variable from an outer block is an error even
though storage for the static variable is still allocated.

Revision F Declarations 3-9

Attributes

The ability to declare a static variable is important, for example, in
the case where an XDCL variable is referenced by a procedure before
the procedure that declares the variable is executed. Because an
XDCL variable is static (refer to Scope earlier in this chapter for
further information), it is allocated space and is initialized
immediately at load time; therefore, it is available to be referenced
before execution of the procedure that actually declares it as XDCL.

A variable can be declared static with the STATIC attribute. It is
assumed to be static if it is in the outermost level of a module or if
it has any other attributes declared. In all other cases, CYBIL
assumes the variable is automatic. Only a static variable can be
initialized.

The period between the time storage for a variable is allocated and
the time that storage is released is called the lifetime of the variable.
It is defined in terms of modules and blocks. The lifetime of an
automatic variable is the execution of the block in which it is
declared. The lifetime of a static variable is the execution of the
entire module. An attempt to reference a variable beyond its lifetime
causes an error and unpredictable results.

The lifetime of a formal parameter in a procedure is the lifetime of
the procedure in which it is a part. Storage space for the parameter is
allocated when the procedure is called and released when the
procedure finishes executing.

The lifetime of a pointer must be less than or equal to the lifetime of
the data to which it is pointing.

The lifetime of a variable that is allocated using the storage
management statements (described in chapter 5) is the time between
the allocation of storage and the release of storage. A variable
allocated by an automatic pointer (using the ALLOCATE statement)

must be nv‘nhrﬂﬂv fraad (11c1nn the FREFR ctotoamant) hafare tha hlasls

adlaTL Caplaivana) aiTTw ANMAsdE VAAT A& AWadad DUGULLLACILLY) MULUA U WL vauua

is left, or the space will not be released by the program. When the
block is left, the pointer no longer exists and, therefore, the variable
cannot be referenced. If the block is entered again, the previous
pointer and the variable referenced by the pointer cannot be
reclaimed. Therefore, it is recommended that you free such variables
before leaving the block.

3-10 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | CVTS DECLARATIONS | DRAFT COPY

Attributes

Example:

In this example, the variables COUNTER and FLAG will exist during
execution of the entire module; however, they can be accessed only
within program MAIN.

PROGRAM main;

VAR
counter: [STATIC] integer := 0O,
flag: [STATIC] boolean;

PROCEND main;

Where Storage is Allocated

You can optionally specify that storage for a variable be allocated in
a particular section. A section is a storage area that can hold
variables sharing common access attributes, such as read-only
variables or read/write variables. You can define the section and its
access attributes yourself using the section declaration (discussed later
in this chapter).

Revision F Declarations 3-11

Attributes

If you define a section with the section READ attribute, you define a
read-only section in the hardware.4 Any variable declared with that
section’s name as an attribute will reside in that read-only section.
When you specify the name of a read-only section in a variable
declaration, you must also include the variable access attribute READ.

In addition to any sections you define, CYBIL has several predefined
sections. You cannot assign a variable to one of these sections
explicitly, in the sense that you could include the section name as an
attribute in your variable declarations. Instead, the variable is
assigned to one of these predefined sections implicitly, based on its
other attributes and characteristics. For example, all static variables
that are not assigned to a user-defined section are automatically
assigned to a section named $STATIC. The following are the CYBIL
section names and their contents.

Section Description

$BINDING The binding section that contains the links
to external procedures and the data of the
module.

CYB$DEFAULT_HEAP The CYBIL default heap.

$LITERAL Constants.

$PARAMETER A subset of the $STACK section that
contains parameter list variables.

$REGISTER Variables that exist only in hardware
registers.

$STACK Automatic variabiles

$STATIC Static variables that are not already

assigned to a user-defined section.

4. A read-only section is a hardware feature. Data that resides in a physical area of
the machine designated as a read-only section is protected by hardware, not by
software. This feature is described in further detail in volume II of the virtual state
hardware reference manual.

3-12 CYBIL Language Definition Revision F
L ' 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | CVTS DECLARATIONS | DRAFT COPY

Attributes

Y R, ran ol o 2o
llle D\J.Ll UDJBLL uuue lVld.IlngLLleth llldlludl g yeEDd 1 l'tl 1€l 11 UI uu:tuuu

on sections regarding the object module format expected as input by
the loader and the object library generator.

Example:

This example defines a read-only section named NUMBERS. The
variable INPUT_NUMBER is a read-only variable that also resides in
the section NUMBERS. In the variable declaration, the READ
attribute causes the compiler to check that the variable is not written;
the read-only section name, NUMBERS, causes the hardware to
ensure that the variable is not written.

SECTION
numbers: READ;

VAR
input_number: [READ, numbers] integer := 100;

Revision F Declarations 3-13

Initialization

Initialization

You can assign an initial value to a variable only if it is a static
variable. The value can be a constant expression, an indefinite value
constructor (described next), or a pointer to a global procedure. The
value must be of the proper type and in the proper range. If you don’t
specify an initial value, the value of the variable is undefined.

An indefinite value constructor is essentially a list of values. It is
used to assign values to the structured types: sets, arrays, and
records. It allows you to specify several values rather than just one.
Values listed in a value constructor are assigned in order (except for
sets, which have no order). The types of the values must match the
types of the components in the structure to which they are being
assigned. An indefinite value constructor has the form

[value {,valuej...]
where value can be one of the following:
® A constant expression

® Another value constructor (that is, another list)

3-14 CYBIL Language Definition Revision F

Initialization

® The phrase

REP number OF value

which indicates the specified value is repeated the specified
number of times

® The asterisk character (*), which indicates the element in the
corresponding position is uninitialized

The REP phrase can be used only in arrays. The asterisk can be used
only in arrays and records. For further information, refer to the
descriptions of arrays and records in chapter 4.

If you assign an initial value to a string variable and the variable is
longer than the initial value, spaces are added on the right of the
initial value to fill the field. If the initial value is longer than the
variable, the initial value is truncated on the right to fit the variable.

In a variant record, fields are initialized in order until a special
variable called the tag field name is initialized. The tag field name is
then used to determine the variant for the remaining field or fields in

the record, and they are likewise initialized in order.

Depending on the attributes defined in the variable declaration,
initialization is required, prohibited, or optional. Table 3-1 shows the

initialization possible for various attributes.

Revision F Declarations 3-15

Initialization

Table 3-1. Attributes and Initialization

Attributes Specified! Initialization
None Optional if static variable; prohibited if
automatic variable.

READ Required.

READ,STATIC Required.

READ,XDCL Required.

READ,STATIC,XDCL Required.

READ,section_name Required.

READ,XDCL,section_name Required.

XREF Prohibited.

XREF,READ Prohibited.

XREF,STATIC Prohibited.

XREF,READ,STATIC Prohibited.

STATIC Optional.

XDCL Optional.

XDCL,STATIC Optional.

section_name Optional.

section_name, XDCL Optional.

1. The static attribute is assumed if any attribuies are specified.

3-16 CYBIL Language Definition Revision F
w | 01/22/87 19:59:24 I 02/13/87 09:46:31 | 87/03/25 22.17.32 l 60464113 F l CVTS DECLARATIONS | DRAFT COPY

Initialization

Exampie:

The variables declared in this example are inside program MAIN.
Therefore, they are automatic unless they are declared with an
attribute. TOTAL is automatic and as such cannot be initialized.
COUNT is declared static and can be initialized. ALPHA and BETA
are also static and can be initialized because they have other
attributes declared.

PROGRAM main;

VAR
total: integer,
count: [STATIC] integer := 0,
alpha,
beta: [XDCL, READ] char := ‘p’;

PROCEND main;

Revision F Declarations 3-17

Type Declaration

Type Declaration

The standard data types that are defined in CYBIL are described in
chapter 4. Any of these can be declared as a valid type within a
variable declaration. The type declaration allows you to define a new
data type and give it a name, or redefine an existing type with a new
name. Then that name can be used as a valid type within a variable
declaration.

Use this format for a type declaration:
TYPE name = type {,name = type}..;

name

Name to be given to the new type.

type

Any of the standard types defined by CYBIL or another
user-defined type.

Once you define a type, you can use it to define yet another type.
Thus, you can build a very complex type that can be referred to by a
single name.

The type declaration is evaluated at compilation time. It does not
occupy storage space during execution.

3-18 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46: 31 | 87/03/25 22.17.32 ' 60464113 F | CVTS DECLARATIONS | DRAFT COPY

Type Declaration

Examples:

In this example, INT is defined as a type consisting of all the
integers; it is just a shortened name for a standard type. LETTERS is
defined as a type consisting of the characters ’a’ through ’Z’ only; this
is a selective subset of the standard type characters. DEVICES is an
ordinal type that in turn is used to define EQ_TABLE, a type
consisting of an array of 10 elements. Any element in the type EQ_
TABLE can have one of the ordinal values specified in DEVICES,

TYPE
int = integer,
letters = ‘a” .. “z2°,
devices = (1p512, dk844, dk885, nt679),
eq_table = array [1 .. 101 of devices;
VAR
i: int,

P R

alpha: letters,
table_1: eqg_table,
status_table: array [1 .. 3] of eqg_table;

All of the variables in the preceding example could have been
declared using variable declarations only, as in:

VAR
i: integer,
alpha: a” .. 27,
table_1: array [1 .. 10] of (1p512, dk844, dk885, nt679),
status_table: array [1 .. 3] of array [1 .. 10] of
(1p512, dk844, dk885, nt679);

However, it becomes cumbersome to declare a complex structure using
only standard types. Defining your own types lets you avoid needless
repetition and the increased possibility of errors. In addition, it makes
code easier to maintain; to add a new device in the first example, you
only need to add it in the type declaration, not in every variable
declaration that contains devices.

Revision F Declarations 3-19

Section Declaration

Section Declaration

A section is an optional working storage area that contains variables
with common access attributes. You can define a section and its
associated attributes with the section declaration. Including the section
name in a variable declaration causes the variable to reside in that
section.

Use this format for a section declaration:

SECTION name {,namej... : attribute
{,name {,namej... : attribute}..;

name

Name of the section.

attribute
The keyword READ or WRITE.

|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
i
i
I
|
1
I
i
I
I
|
|
I
1
:
]
A section defined with the READ attribute is considered a read-only !
section.® A variable declared with that section’s name will reside in i
read-only memory. In this case, the variable access attribute READ |
must also be included in the variable declaration. The section name !
causes hardware protection; the READ attribute causes compiler :
checking. !
|

1

1

I

I

I

|

1

1

1

1

i

i

I

|

|

|

i

|

|

|

|

1

i

i

I

|

I

I

[

I

|

I

I

I

1

|

A section defined with the WRITE attribute contains variables that
can be both read and written.

The initialization of variables declared with a section name depends
on their attributes, as shown in table 3-1. Variables declared with a
section name are static.

The names and contents of predefined CYBIL sections are given
earlier in this section under Where Storage is Allocated. The SCL
Object Code Management manual gives further information on sections
regarding the object module format expected as input by the loader
and the object library generator.

5. A read-only section is a hardware feature. Data that resides in a physical area of
the machine designated as a read-only section is protected by hardware, not by
software. This feature is described in further detail in volume II of the virtual state
hardware reference manual.

3-20 CYBIL Language Definition Revision F
W I 01/22/87 19:59:24 | 02/13/87 09:46:31 l 87/03/25 22.17.32 | 60464113 F | CVTS DECLARATIONS] DRAFT COPY |

Section Declaration

Example:

Two sections are defined in this example: LETTERS is a read-only
section and NUMBERS is a read/write section. The variable
CONTROL_LETTER is a read-only variable that resides in LETTERS.
The READ attribute is required because of the read-only section
name. UPDATE_NUMBER is a variable that can be read or written,
and resides in the section NUMBERS. In this example, it is also
declared as an XDCL variable but this is not required.

SECTION
letters: READ,
numbers: WRITE;

VAR

control_letter: [READ, letters] char := “p’,
update_number: [XDCL, numbers] integer;

Revision F Declarations 3-21

Types 4

This chapter describes the standard types predefined by CYBIL.

Using Types i e e 4-2
Equivalent Types 4-3
Basic Types 4-4
Scalar Types 4-4
Imteger 4-5
Character e 4-6
Boolean 4-7
Ordinal e 4-8
Subrangeo 4-10
Floating-Point Type 4-12
Real o 4-12

Cell Type 4-12
Pointer Types L 4-12
Pointer to Cell 4-18

Ralativa Paintar 4-19
REIATIVE FOINIEY | . L L L L L o s e e e e e e e e e e e e e i

Structured Types 4-20
Stringso 4-20
Substrings 4-21
Assigning and Comparing String Elements 4-24
Arrays e e 4-25
Initializing Elements 4-26
Referencing Elements 4-27
Records 4-29
Invariant Records 4-30
Variant Records 4-33
Initializing Elements 4-38
Referencing Elements 4-39
Alignment0 0. 4-40
Sets e e e 4-41
Initializing and Assigning Elements 4-42
Storage Types e 4-44
Sequences e e 4-44
Heaps e, 4-46
Adaptable Types 4-48
Adaptable Strings, 4-49
Adaptable Arrays L Lo 4-49

Adaptable Records 4-51

Adaptable Sequences 4-53
Adaptable Heaps 4-53

|
\
\
\
\
|
\
\
|
|
|
l
|
|
|
I
l
|
|
|
|
|
1
|
|
|
|
|
|
|
1
!
|
[
1

W | 01/22/87 19:59:24 | 02/13/87 08:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

Types 4

There are many standard types defined within CYBIL. A variable can
be assigned to (that is, be made an element of) any of these types.
The type defines characteristics of the variable and what operations
can be performed using the variable. In general, operations involving
nonequivalent types are not allowed; one type cannot be used where
another type is expected. Exceptions are noted in the descriptions of
types that follow.

In this chapter, types are grouped into three major categories: basic,
structured, and storage types.

Basic types are the most elementary. They can stand alone but are
also used to build the more complex structures. The basic types are:

® Scalar types (integer, character, boolean, ordinal, and subrange)
® Floating-point types (real)

® (Cell types

¢ Pointer types

Structured types are made from combinations of the basic types. The
structured types are:

® Strings
® Arrays
® Records
® Sets

Storage types hold groups of components of various types. The storage
types are:

e Teaps
¢ Sequences

Most types, when they are declared, have a fixed size. Strings, arrays,
records, sequences, and heaps can also be declared with an adaptable
size that is not fixed until execution. For this reason, they are
sometimes called adaptable types. Adaptable strings, arrays, records,
sequences, and heaps are discussed at the end of this chapter.

Revision F Types 4-1

Using Types

Using Types

Types are used as parameters in two kinds of declarations: the
variable declaration (to associate a type with a variable name) and
the type declaration (to associate a type with a new type name). Both
declarations are described in detail in chapter 3, but their basic
formats are:

VAR name : { [attributes] } type { := initial_value } ;
TYPE name = type;

The description of each type shown in this chapter includes the
keyword and any additional information necessary to specify that type
as a parameter. The keywords replace the generic word type in the
variable and type declarations. For example, you would use the
keyword INTEGER to specify an integer type. The variable declaration
would be:

VAR name : { [attributes] } INTEGER { := initial_value };
The type declaration would be:
TYPE name = INTEGER;

4-2 CYBIL Language Definition Revision F
w I 01/22/87 19:53:24 l 02/13/87 09:486: 31 | 87/03/25 22.17.32 | 60464113 F | TYPES |DRAFT copy

Equivalent Types

Equivaient Types

As mentioned earlier in this chapter, operations involving
nonequivalent types are not allowed. Two types can be equivalent,
though, even if they don’t appear to be identical. For example, two

QYYraro Aarm “‘I
arrays can have different expressions defining their sizes, but the

expressions may yield the same value. Rules for determmlng whether
types are equivalent are given in the following descriptions of the

types.

Adaptable types and bound variant record types (described under
Records later in this chapter) actually define classes of related types
that vary by a characteristic, such as size. Adaptable type variables,
bound variant record type variables, and pointers to both types are
fixed explicitly at execution time. These types are said to be
potentially equivalent to any of the types to which they can adapt.
That is, during compilation, references to adaptable types and bound
variant record types are allowed wherever there is a reference to one
of the types to which they can adapt. However, further type checking
is done during execution when each type is fixed (assigned to a
specific type). It is the current type of an adaptable or bound variant
record type that determines what operations are valid for it at any
given time.

Revision F Types 4-3

Basic Types

Basic Types

The following describes the basic types.

Scalar Types

All scalar types have an order; that is, for every element of a scalar
type you can find its predecessor and successor.

Scalar types are made up of five types:
® Integer

® (Character

® Boolean

® Ordinal

® Subrange

4-4 CYBIL Language Definition Revision F

Integer

Use the keyword INTEGER to specify an integer type.

Integers range in value from -(283-1) to 263-1; that is,
-TFFFFFFFFFFFFFFF hexadecimal through 7TFFFFFFFFFFFFFFF
hexadecimal. In general, the subrange type shouid be used rather than
the integer type. This allows the compiler to perform more rigorous
type checking and may reduce the amount of storage needed to hold
the value.

The operations permitted on integers are assignment, addition,
subtraction, multiplication, division (both quotient and remainder), all
relational operations, and set membership. Refer to Operators in
chapter 5 for further information on operations.

The functions $INTEGER and $REAL, described in chapter 6, convert
between integer type and real type. The $CHAR function, also
described in chapter 6, converts an integer value from 0 to 255 to a
character according to its position in the ASCII collating sequence.

Example:

This example shows the definition of a new type named INT, which
consists of elements of the type integer. The variable declaration
declares variable I to be of type INT, which is the integer type just
declared. Also declared as a variable is NUMBERS, which is explicitly
of integer type. Because NUMBERS is static, it can be initialized.

TYPE
int = integer;

VAR

i: int,
numbers: [STATIC] integer := 100;

Revision F Types 4-5

Character

Character
Use the keyword CHAR to specify a character type.

An element of the character type can be any of the characters in the
ASCII character set included in appendix C. It is always a single
character; more than one character is considered a string. (A string is
one of the structured types discussed later in this chapter. A string of
length 1 can sometimes be used as a character. Refer to Substrings
later in this chapter.)

The operations permitted on characters are assignment, all relational
operations, and set membership. A character can be assigned and
compared to a string of length 1. Refer to Operators in chapter 5 for
further information on operations and to Strings later in this chapter
for further information on string assignment.

The $INTEGER function described in chapter 6 converts a character
value to an integer value based on its position in the ASCII collating
sequence. The $CHAR function, also described in chapter 6, converts
an integer value between 0 and 255 to a character in the ASCII
collating sequence.

Example:

This example shows the definition of a new type named LETTERS,
which consists of elements of the type character. The variable
declaration declares variable ALPHA to be of type LETTERS, which is
the character type; it is static and initialized to the character ’j’. The
variable IDS is explicitly declared to be of type character.

TYbE

letters = char;

VAR
alpha: [STATIC] letters := “j”,
ids: char;

4-6 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

Boolean

Boolean

Use the keyword BOOLEAN to specify a boolean type.

An element of the boolean type can have one of two values: FALSE or
TRUE. As with other scalar types, boolean values are ordered. Their
order is FALSE, TRUE. FALSE is always less than TRUE.

You get a boolean value by performing a relational operation on two
objects of the same type. You can perform some, but not necessarily
all, relational operations on every type except the following:

® Arrays or structures that contain an array as a component or field
® Variant records

¢ Sequences

® Heaps

® Records that contain a field of one of the preceding types

The operations permitied on booiean values are assignment, all
relational operations, set membership, and boolean sum, product,
difference, exclusive OR, and negation. Refer to Operators in chapter 5
for further information on operations.

The $INTEGER function described in chapter 6 converts a boolean
value to an integer value. 0 is returned for FALSE; 1 is returned for
TRUE.

Example:

This example shows the definition of a new type named STATUS,
which consists of the boolean values FALSE and TRUE. The variable
declaration declares variable CONTINUE to be of type STATUS; that
is, it can be either FALSE or TRUE. The variable DEBUG is
explicitly declared to be boolean and, because it is a read-only
variable and therefore static, it can be initialized.

TYPE
status = boolean;

VAR

continue: status,
debug: [READ] boolean := TRUE;

Revision F Types 4-7

Ordinal

Ordinal

The ordinal type differs from the other scalar types in that you define
the elements within the type and their order. The term ordinal refers
to the list of elements you define; the term ordinal name refers to an
individual element within the ordinal.

Use this format to specify an ordinal:
(name, name {,name...})

name

Name of an element within the ordinal. There must be at least
two ordinal names. The maximum number of names in a single
ordinal list is 16,384.

The order is given in ascending order from left to right.

Each ordinal name can be used in only one ordinal type. If you use a
name in more than one ordinal, a compilation error occurs.

Ordinals are used to improve the readability and maintainability of
programs. They allow you to use meaningful names within a program
rather than, for example, map the names to a set of integers that are
then used in the program to represent the names.

The operations permitted on ordinals are assignment, all relational
operations, and set membership.

Two ordinal types are equivalent if they are defined in terms of the
same ordinal type names.

. The $INTEGER function described in chapter 6 converts an ordinal
value (that is, a name) to an integer value based on its position
within the defined ordinal. The first ordinal name has an integer
value of 0, the second name an integer value of 1, and so on.

4-8 CYBIL Language Definition Revision F

W | 01/22/87 19:59: 24 | 02/13/87 09:48:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

In this example, the type declaration defines an ordinal type named
COLORS, which consists of the elements RED, GREEN, and BLUE.
The variable PRIMARY_COLORS is of COLORS type and therefore
has the same elements. The variable WORK_DAYS explicitly declares
the ordinal consisting of elements MONDAY through FRIDAY.

TYPE
coilors = (red, green, biue);

VAR
primary_colors: coilors,
work_days: (monday, tuesday, wednesday, thursday,
friday);

In the ordinal type COLORS, the following relationships hold:
RED < GREEN
RED < BLUE
GREEN < BLUE

You can find the predecessor and successor of every element of an
ordinal. You can also map each element onto an integer using the
$INTEGER function (described in chapter 6). For example,
SINTEGER(RED) = 0; this is the first element of the ordinal.

The type declaration

TYPE
primary_colors = (red, green, blue),
hot_colors = (red, orange, yellow);

is in error because the name RED appears in two ordinal definitions.

Revision F Types 4-9

Subrange

Subrange

A subrange is not a new type but a specified range of values within
an existing scalar type. A variable defined by a subrange can take on

only the values between and including the specified lower and upper
bounds.

Use this format to specify a subrange:
lowerbound . . upperbound

lowerbound

Scalar expression specifying the lower bound of the subrange.

upperbound
Scalar expression specifying the upper bound of the subrange.

The lower bound must be less than or equal to the upper bound. Both
bounds must be of the same scalar type.

The type of a subrange is the type of its lower and upper bounds. If a
subrange completely encompasses its own type, it is said to be an
improper subrange type. For example, the subrange

FALSE .. TRUE

is of type boolean and also contains every element of type boolean. It
is equivalent to specifying the type itself. An improper subrange type
is always equivalent to its own type.

Two subranges are equivalent if they have the same lower and upper
bounds.

4-10 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:45:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

Subrange

Subranges aiiow for additionai error checking. Compiiation options are
available that cause the compiler to check assignments during
program execution and issue an error if it finds a variable not within
range. (Range checking is available as an option on the compiler call
command and as a compiler directive. They are both described in

n
nhnn{-nr g \ In "A'lltlsn Subraﬂg"s quuiuv’c Agadab,uunr Selause a

subrange defmes the valid range of values for a variable, it is more
meaningful to you for documentation and maintenance.

The operations permitted on a subrange are the same as those
permitted on its type (the type of its lower and upper bound). -

Example:

This example shows the definition of a new type named LETTERS,
which consists of the characters ’a’ through 'z’ only. It also defines an
ordinal named COLORS, consisting of the colors listed. The variable
declaration declares variable SCORES to consist of the numbers 0

through 100. The lower and upper bounds are of integer type, so the

subrange is also an integer type. STATUS is a subrange of boolean
values, which could have been declared simply as BOOLEAN. HOT_
COLORS is a subrange of the ordinai type COLORS. It consists of the
colors RED, ORANGE, and YELLOW.

TYPE

letters = 7a” .. “z°,
colors = (red, orange, vellow, white, green, blue);

VAR
scores: 0 .. 100,
status: FALSE .. TRUE,
hot_colors: red .. yellow;

Revision F Types 4-11

Floating-Point Type

Floating-Point Type

The floating-point type defines real numbers.

Real
Use the keyword REAL to specify a real type.

Real numbers range in value from 4.8 * 10**(-1234) to 5.2 *
10*%*(1232).

The operations permitted on real types are assignment, addition,
subtraction, multiplication, division, and all relational operations.

The functions $INTEGER and $REAL, described in chapter 6, convert
between integer type and real type.

Cell Type

The cell type represents the smallest storage location that is directly
addressable by a pointer. On NOS/VE, a cell is an 8-bit byte within a
64-bit memory word.

Use the keyword CELL to specify a cell type.

Operations permitted on a cell type are assignment and comparison
for equality and inequality.

Pointer Types

A pointer represenis the iocation of a vaiue rather than the vaiue
itself. When you reference a pointer, you indirectly reference the
object to which it is pointing.

Use this format to specify a pointer type:
~ type

type

Type to which the pointer can point. It can be any defined
type. With the exception of a pointer to cell type (discussed
later in this chapter), the pointer can peint only to ohjects of
the type specified.

4-12 CYBIL Language Definition . Revision F

[
I
i
I
I
1
I
I
I
I
[
I
1
1
1
i
I
I
|
i
i
I
I
1
|
i
|
]
]
!
]
]
I
I
I
I
I
|
1
!
i
1
!
|
i
1
1
|
I
I
I
I
i
I
I
1
I
i
l
|
i
I
|
i
I
|
I
|
I
|
|
|
i
i
I
|
|
|
|
!
|

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/26 22.17.32 | 60464113 F | TYPES | DRAFT COPY :

Pointer

For example,

VAR
integer_pointer: ~“integer;

defines a pointer named INTEGER_POINTER that .can point only to
integers.

any

INTEGER_POINTER— integer

INTEG: 86/02/24
Use this format to specify the object of a pointer (that is, what the
pointer points to):

~

pointer _name

pointer_name

The name you gave the pointer in the variable declaration.

This preceding notation is called a pointer reference; it refers to the
object to which pointer_name points. It can also be referred to as a
dereference. For example,

integer_pointer”

identifies a location in memory; it is the location to which
INTEGER_POINTER points.

INTEGER_POINTER ~

any

POINT: 86/02/24
You can initialize or assign a value to the object of a pointer as you
would any other variable; that is:

pointer _name “~ := value;

Revision F Types 4-13

Pointer

This assigns the specified value to the object that the pointer points
to. For example,

integer_pointer® := 5;

assigns the integer value 5 to the location that INTEGER_POINTER
points to:

INTEGER_POINTER *

INTEGER_POINTER ———» 5

INTEGS: 86/02/24
You can assign the object of a pointer to a variable in the same way:

variable := pointer_name *;

This takes the value of what pointer_name points to and assigns it to
the variable. For example,

i := integer_pointer~;

assigns to I the contents of what INTEGER_POINTER points to, that
is, 5.

If a pointer reference is to another pointer type variable, meaning
that the pointer points fo a pointer that in turn points to a variable,
you can specify the variable in the format:

pointer_name **
For example, the declarations

TYPE
integer_pointer = “integer;

VAR
pointer_2: “integer_pointer;

can be pictured as follows:

POINTER_2 ~ POINTER_2~"
a pointer any
POINTER_2 —® |NTEGER_POINTER integer
POINT2: 86/02/24
4-14 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 08:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

Pointer

POINTER_Z points to a pointer of type INTEGER_POINTER.
INTEGER_POINTER points to integers. A reference to POINTER_2 *
refers to the location of the pointer that in turn points to an integer.
A reference to POINTER_2 ** refers to the location of the integer.

N 11] 1
peinter can be assigned any of the following val

[
»

The pointer constant NIL. NIL is the value of a pointer variable
without an object; the variable is not currently assigned to any
location. It can be assigned to or compared with any pointer of
any type.

® The pointer symbol " followed by a variable of the type to which
the pointer can point. If the variable is a formal value parameter,
the pointer cannot be used to modify the variable.

® A pointer variable, which can be a component of a structured type
as well as a valid parameter in a function.

® A function that returns a pointer as a value (such as the #LOC,
#PTR, #REL, and #SEQ functions described in chapter 6).

Revision F Types 4-15

Pointer

Pointers allow you to manipulate storage dynamically. Using pointers,
you can create and destroy variables while a program is executing.
Memory is allocated when the variable is created and released when
it is destroyed. Pointers also allow you to reference the variables
without giving each a unique name.

Static pointers cannot point to value parameters or stack variables. !
Stack pointers cannot point to value parameters or higher level stack
variables. The lifetime of the pointer must be greater than or equal to
the lifetime of the data. Parameter list pointers cannot point to value
parameters or stack variables at the same or a higher level.

Permissible operations on pointers are assignment and comparison for
equality and inequality.

Pointers to adaptable types (adaptable strings, arrays, records,
sequences, and heaps) provide the only method for accessing objects of
these types other than through formal parameters of a procedure.
Specifically, pointers to adaptable types and pointers to bound variant
records are used to access adaptable variables and bound variant
records whose types have been fixed by an ALLOCATE, PUSH, or
NEXT statement (described in chapter 5).

Pointers are equivalent if they are defined in terms of equivalent
types. A pointer to a fixed type (as opposed to an adaptable type) can
be assigned and compared to a pointer to an adaptable type or bound
variant record if the adaptable type is potentially equivalent to the
fixed type. (Refer to Equivalent Types earlier in this chapter for
further information on potentially equivalent types.)

1. For further information on the run-time stack, refer to appendix F, The CYBIL
Run-Time Environment.

4-16 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 |87/D3/25 22.17.32 I 60464113 F | TYPES l DRAFT COPY

Example:

Pointer

The following example shows the declaration and manipulation of two
pointer type variables. Comments appear to the right.

TYPE

pir = Tinteger
VAR

i,

k:integer,

p1: ptr,

p2: “p1,

k]
Ui,

b2: boolean;

ALLOCATE p1;

ALLOCATE p2;

p1® := 10;
pz® := pt;
j o= p17;
k := p2°°;
bl := j = k;
Revision F

P1 can contain pointers to integers.

P2 can contain pointers to P1 (that is,
pointers that point to pointers to integers). -
It could have been written as P2: **
INTEGER.

Allocates space for an integer (because that
is what P1 points to) and sets P1 to point
to that space. ‘

Allocates space for a pointer that points to
an integer and sets P2 to point to that
pointer.

The space pointed to by P1 is set to 10.

The space pointed to by P2 is set to the
value of the pointer P1.

d is set to what P1 points to: the integer
10.

K is set to the object of the pointer that
P2 points to. (Think of P2 *" as "P2 points
fo a pointer; that pointer points to an
object." You are assigning that object to
K.) P2 points to P1, which points to the
integer 10.

J and K are both 10. B1 is TRUE.

Types 4-17

Pointer to Cell

b2 := p1° = p2°°; P1 points to an integer. P2 points to the
pointer (P1) that points to the same
integer. Their values are the same and B2

is TRUE.
p1 := NIL; P1 no longer points to anything.
k := p17; The statement is in error because P1 does

not point to anything.

IF p2 = NIL THEN A valid statement. K is not incremented
k := k + 1; because P2 still points to P1.

IFEND;

pl = (i +j + 2 * k); An invalid statement. The location of an

expression cannot be found.

Pointer to Cell
A pointer to cell type can take on values of any type.

Use this format to declare a pointer to a cell:
~CELL

A variable declared simply as a pointer type variable can take on as
values only pointers to a single type, which is specified in the

pointer’s declaration. A variable declared as a pointer to cell variable
has no such restrictions. It can take on values of any type. Also, any
fixed or bound variant pointer variable can assume a value of pointer

+n anll
w LTI,

Permissible operations on a pointer to a cell are assignment and
comparison for equality and inequality. In addition, a pointer to a cell
can be assigned to any pointer to a fixed or bound variant type. But
the pointer to the fixed or bound variant type cannot have as its
value a pointer to a variable that is not a cell type or, furthermore,
whose type is not equivalent to the type to which the target of the
assignment points. A pointer to a cell can be the target of assignment
of any pointer to a fixed or bound variant type.

4-18 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY |

Relative Pointer

Relative Pointer

Relative pointer types represent relative locations of components
within an object with respect to the beginning of the object.

Use this format to specify a relative pointer:
REL { (pareni_name) } “component_type

pareni_name

Name of the variable that contains the components being
designated by relative pointers. Specify a string, array, record,
heap, or sequence type (either fixed or adaptable). If it is
omitted, the default heap is used.

component_type

Type of the component to which the relative pointer will point.

Relative pointers are generated using the standard function #REL
(described in chapter 6). A relative pointer cannot be used to access
data directly. Instead, the relative pointer must be converted to a
direct pointer using the standard function #PTR (also described in
chapter 6). The direct pointer can then be used to access the data.

Relative pointers have three major differences from the other pointers -
discussed in this chapter:

® Relative pointers may need less space than other pointers.

® A linked list or array of relative pointers (or some similar
organization) within a parent type variable is still correct if the
entire variable is assigned to another variable of the same parent

type.

® Relative pointers are independent of the base address of the parent
type variable.

Operations permitted on a relative pointer are assignment, comparison
for equality and inequality, and the #PTR function. Relative pointers
can be assigned and compared if they are of equivalent relative
pointer types. Relative pointer types are equivalent if they are defined
in terms of equivalent parent types and equivalent component types.

Revision F Types 4-19

Structured Types

Structured Types

Structured types are combinations of the basic types already described
in this chapter (integer, character, boolean, ordinal, subrange, real,
cell, and pointer). Even the structured types discussed here can be
combined with each other but they are still essentially groups of the
basic types. The structured types described in this section are:

® Strings
® Arrays
® Records

® Sets

Strings

A string is one or more characters that can be identified and
referenced as a whole by one name.

Use this format to specify a string type:
STRING (length)
length

A positive integer constant expression from 1 to 65,535.

If you specify an initial value in the variable declaration for a string,
it can be:

® A string constant
® The name of a string constant declared with a constant declaration
® A constant expression (as described in chapter 2)

A string cannot be packed. Z Two string types are equivalent if they
have the same length.

2. Packing is a characteristic of arrays and records. When an array or record is
declared as being packed, its components are mapped in storage to conserve storage
space; otherwise, components are mapped to optimize access time.

4-20 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

Strings

The operations permitited on siring types are assignment and
comparison (all six relational! operations). For further information,
refer to Assigning and Comparing String Elements later in this
chapter.

Subsirings
You can reference a part of a string (called a substring) or a single
character of a string.

Use this format to reference a substring or single character:
name (position {, length})

name
Name of the string.

position
Position within the string of the first character of the
substring. (The position of the first character of the string is

alwave 1) Qnen;fn a nnoitiva iy fncrer avnraccinn lace than nr
LLITQAFIS &) WPOUL & PUSLILL T LIWRTL VAPICODIUI 1000 viiaii UL

equal to the length of the string plus one; that is,

1 = position < string length + 1
If you specify string length plus one, the substring is an empty
string.

length

Number of characters in the substring. Specify a nonnegative
integer expression or * (the asterisk character). If you specify
* the substring consists of the character specified by the
position parameter and all characters following it in the string.
If you specify 0, the substring is an empty string. Omission
causes 1 to be used.

Revision F Types 4-21

Strings

A substring reference in the form
name(position)

is a substring of length 1, a single character. In this form, it can be
used anywhere a character expression is allowed. It can be:

® (Compared with a character
® Tested for membership in a set of characters

® Used as the initial and/or final value in a FOR statement that is
controlled by a character variable

® TUsed as a value in a CASE statement

® Used as an argument in the standard functions $INTEGER, SUCC
and PRED

2

® Assigned to a character variable

® Used as an actual parameter to a formal parameter of type
character

® Used as an index value corresponding to a character type index in
an array

A string constant, even if it is declared with a name in a constant
(CONST) declaration, is not a variable. Therefore, substrings cannot
be referenced in a string constant.

4-22 CYBIL Language Definition Revision F
L | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 |60464113 F ! TYPES lDRAFT coryY

Strings

Exampies:
If a string variable LETTERS is declared and initialized as follows

VAR
letters: [STATIC] string (6) := ‘abcdef”;

the following substring references are valid:

Substring Comments

LETTERS(1) Refers to ’a’.

LETTERS(6) Refers to ’f".

LETTERS(1,6) Refers to the entire string.
LETTERS(1,*) Refers to the entire string.
LETTERS(2,5) Refers to ’bedef”.
LETTERS(2,¥) Refers to ’bedef”.
LETTERS(2,0) Refers to an empty string ’ .
LETTERS(7,*) Refers to an empty string ’ ’.

LETTERS(0), LETTERS(8), and LETTERS(8,0) are iliegal.
If a pointer variable is declared and initialized as follows

VAR
string_ptr: [STATIC] “string (6) := “letters;

then STRING_PTR points to the string LETTERS and the pointer
variable STRING_PTR" can be used to make substring references
similar to the variable LETTERS.

Substring Comments
STRING_PTR"(1) Refers ts ’a’.

STRING_PTR"(6) Refers to ’f".
STRING_PTR"(1,6) Refers to the entire string.
STRING_PTR"(2,*) Refers to ’bcdef’.
STRING_PTR"(2,0) Refers to an empty string ’ .

Revision F Types 4-23

Strings

Assigning and Comparing String Elements

You can assign or compare a character, substring, or string to a
substring, string variable, or character variable. A character is treated
as a string of length 1. You must specify the substring reference
when assigning a character variable to a string.

If you assign a value that is longer than the substring or variable to
which it is being assigned, the value is truncated on the right. If you
assign a value that is shorter, spaces are added on the right to fill
the field. This method is also used for comparing strings of different
lengths.

If you assign a substring to a substring of the same variable, the
fields cannot overlap or the results are undefined.

The concatenation operation CAT cannot be used with string variables.
Example:
Assume the string variable DAY is declared and initialized as follows:

VAR
day: [STATIC] string (6) := ‘monday’;

The following assignments can be made:

short
empty :

day (1, 3);
day (1, 0);

SHORT is assigned the string ‘mon’. EMPTY is assigned a null string.

4-24 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F I TYPES l DRAFT COPY

Arrays

Arrays
An array in CYBIL is a collection of data of the same type. You can

access an array as a whole, using a single name, or you can access
its elements individually.

Use this format to specify an array type:
{PACKED} ARRAY [subscript_bounds] OF type

PACKED

Optional packing parameter. When it is specified, the elements
of the array are mapped in storage in a manner that conserves
storage space, possibly at the expense of access time. If it is
omitted, the array is unpacked; that is, the elements are
mapped in storage to optimize access time rather than to
conserve space. (The array itself is always mapped into an
addressable memory location; that is, it starts on a word
boundary or, in the case of a packed array in a record, on a
byte boundary.) For further information on how data is stored
in memory, refer to appendix E, Data Representation in
Memory.

If the array contains structured types (such as records), the
elements of that type (the fields in the records) are not
automatically packed. The structured type itself must be
declared packed.

subscript_bounds

Specifies the size of the array and what values you can use to
refer to individual elements. Bounds can be any scalar type or
subrange of a scalar type, and is often a subrange of integers.

type

Type of the elements within the array. The type can be any
defined type, including another array, except an adaptable type
(that is, an adaptable string, array, or record). All elements
must be of the same type.

Revision F Types 4-25

Arrays

Elements of a packed array cannot be passed as reference (that is,
VAR) parameters in programs, functions, or procedures.

Two array types are equivalent if they have the same packing
attribute, equivalent subscript bounds, and equivalent component

types.

The only operation permitted on an array type is assignment.

Initializing Elements

An array can be initialized using an indefinite value constructor. An
indefinite value constuctor is a list of values assigned in order to the
elements of an array. The first value in the list is assigned to the
first element, and so on. The number of values in the value
constructor must be the same as the number of elements in the array.
The type of the values must match the type of the elements in the
array. An indefinite value constructor has the form

[value {,value}...]
where value can be one of the following:
® A constant expression
® Another value constructor (that is, another list)
® The phrase

REP number OF value

which indicates the specified value is repeated the specified
number of times

® The asterisk character (*), which indicates the element in the
corresponding position is uninitialized

An indefinite value constructor can be used only for initialization; it
cannot be used to assign values during program execution. Individual
elements can be assigned during execution using the assignment
statement (described in chapter 5). '

4-26 CYBIL Language Definition Revision F
L | 01/22/87 19:59:24 | 02/13/87 08:46:31 | 87/03/25 22.17.32 |60464113 F | TYPES lDRAFT coey

Arrays

The array name alone refers to the entire structure.
Use this format to refer to an individual element of an array:
array _nameisubscripi]

subscript

A scalar expression within the range and of the type specified
in the subscript_bounds field of the array declaration. This
subscript specifies a particular element.

Examples:

This example shows the definition of a type named POS_TABLE,
which is an array of 10 elements that can take on the values defined
in POSITION. The variable declaration declares variable NUMBERS
to be an array of five elements initialized to the values 1, 2, 3. 4, and
5 where 1 is the value of the first element, and so on. LETTERS is
an array of 26 elements that can be any characters. BIG_TABLE is a

™ + £ 1N al nta
100-element array, of which each element is an array of 10 elements.

TYPE

position = (boi, asis, eoi),

pos_table = array [1 .. 10] of position;
VAR

i: [STATIC] integer := 5,

numbers: [STATIC] array [1 .. 5] of integer := [1, 2, 3, 4, 51,.
letters: array [“a’ .. “2’] of char,

big_table: array [1 .. 100] of pos_table;

The declaration of BIG_TABLE is equivalent to:

VAR
big_table: array [1 .. 100] of array [1 .. 10] of position;

Revision F Types 4-27

Arrays

You can reference individual elements using the following statements.

numbers [i] Refers to the fifth element of the
array NUMBERS (similar to
NUMBERS [5]).

letters [’b’] := ’B"; Sets the second element of the array
LETTERS to the uppercase character
B.

big_table [13] [10] := asis; Sets the tenth element of the

thirteenth array to ASIS.

The following example shows the declaration and initialization of a
two-dimensional array named DATA_TABLE. All the components of
the third element of the array (which is an array itself) are set to 0.
Notice that the third element of the last array, DATA_TABLE [4][3],
is uninitialized.

TYPE
innerarray = array [1 .. 5] of integer,
twodim = array [1 .. 4] of innerarray;

VAR
data_table: [STATIC] twodim := [[5, - 10, 2, 6, 3],
[4, 11, 19, - 3, 61,
[REP 5 of 01,
{3, -9, =, 4, 1511;

The following example demonstrates how a string can be passed to an

arrntr Af alharoatana.
GLL{.IJ Vi ViIIQRL ALVLVCI D.

VAR
output_line: string (80),
output_array: array [1..80] of char,
i: integer;

FOR i := 1 to 80 DO
output_array [i] := output_line (i);
FOREND ;

4-28 CYBIL Language Definition Revision F

|
|
\
|
\
\
\
1
|
|
|
I
|
|
|
|
|
|
|
|
1
|
|
1
|
|
|
|
|
|
|
1
!
|
i
i
|
1
|
[
[
|
|
[
1
i
|
1
|
I
I
1
|
|
I
!
I
i
t
1
|
|
!
W | 01/22/87 19:59:2¢ | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY |

Records

Records

Records are collections of data that can be of different types. You can
access a record as a whole using a single name, or you can access
elements individually.

A record has a fixed number of components, usually called fields, each
with its own unique name. Different fields are used to indicate
different data types or purposes.

There are two types of records: invariant records and variant records.
Invariant records consist of fields that don’t change in size or type.
Variant records can contain fields that vary depending on the value of
a key variable. Formats used for specifying both kinds of records are
given later in this chapter.

Operations permitted on record types are assignment and, for
invariant records only, comparison for equality and inequality. The
invariant records being compared cannot contain arrays as fields.

Revision F Types 4-29

Records

Invariant Records

An invariant record consists of fields that do not vary in size or type
once they have been declared. They are called fixed or invariant
fields.

Use this format to specify an invariant record:

{PACKED} RECORD
field _name : {ALIGNED {[offset MOD base]}} type
{,field_name : {ALIGNED {[offset MOD base]}} type}...
RECEND

PACKED

Optional packing parameter. When it is specified, the fields of
a record are mapped in storage in a manner that conserves
storage space, possibly at the expense of access time. If it is
omitted, the record is unpacked; that is, the fields are mapped
in storage to optimize access time rather than to conserve
space. For further information on how data is stored in
memory, refer to appendix E, Data Representation in Memory.

If one of the fields is a structured type (such as another
record), the elements of that type are not packed automatically.
The structured type itself must be declared packed.

field _name

Name identifjring a particular field. The name must be unique
within the record. Outside of the record declaration, it can be
redefined.

A TIYAT

T I
ALATINLL

Optional alignment parameter. If specified, it can appear alone
or with an offset, in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is
directly addressable. This means the field begins on an
addressable boundary to facilitate rapid access to the field. This
may negate some of the effect of packing the record. For
further information, refer to Alignment later in this chapter.

430 CYBIL Language Definition Revision F |

W | 01/22/87 19:59:24 | 02/13/87 09:46:3 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY :

Records

offset MOD base

Optional offset to be used in conjunction with the ALIGNED
parameter. This offset causes the field to be mapped to a
particular hardware address relative to the specified base and
offset. Specify a particular word or byte within a word. Base is
evaiuated first to find the word boundary; offset is then
evaluated to determine the number of bytes offset within that
word. Filler is created if necessary to ensure that the field
begins on the specified word or byte.

offset

Byte offset within the word specified by base. Specify an
integer constant less than base.

base
Word boundary. Specify an integer constant that is divisible
by 8. For automatic variables, the base can only be 8.

type
Any defined type, including another record, other than an
adaptable type.

Elements of a packed record cannot be passed as reference (that is,
VAR) parameters in programs, functions, or procedures unless they are
aligned.

The only operations possible on whole invariant records are
assignment and comparison. A record can be assigned to another
record if they are both of the same type. A record can also be
compared to another record for equality or inequality if they are both
of the same type. Invariant record types are the same if they have
the same packing attributes, the same number of fields, and
corresponding fields have the same field names, same alignment
attribute, and equivalent types.

Revision F Types 4-31

Records

Example:

This example shows the definition of two new types, both records. The
record named DATE has three fields that can hold, respectively, DAY,
MONTH, and YEAR. The record named RECEIPTS appears to contain
two fields, NAME and PAYMENT; but PAYMENT is itself a record
consisting of the three fields in DATE, just described. Initialization of
fields within records is discussed under Initializing Elements later in
this chapter.

TYPE

date = record
day: 1 .. 31,
month: string (4),
year: 1900 .. 2100,

recend,

receipts = record
name: string (40),
payment : date,

recend;

4-32 CYBIL Language Definition Revision F
W | 01/22/87 19:58:24 | 02/13/87 09:46: 31 |87/03/25 22.17.32 I 60464113 F | TYPES]DRAFT copy

Records

A variant record contains fields that may vary in size, type, or
number depending on the value of an optional tag field. These
different fields are called variant fields or variants.

Use this format to specify a variant record:

{PACKED} {BOUND} RECORD
{fixed_field_name : {ALIGNED {[offset MOD base]}} type}..3
CASE ({itag_field_name : } tag_field _type OF
= tag_field _value =
variant_field
{= tag_field_value =
variant_field}...
CASEND
RECEND

PACKED

Optional packing parameter. When it is specified, the fields of
a record are mapped in storage in a manner that conserves
storage space, possibly at the expense of access time. If it is
omitted, the record is unpacked; that is, the fields are mapped
in storage to optimize access time rather than to conserve
space. For further information on how data is stored in
memory, refer to appendix E, Data Representation in Memory.

If a field is a structured type (such as another record), the
elements of that type are not packed automatically. The
structured type itself must be declared packed.

BOUND

Optional parameter indicating that this is a bound variant
record. If specified, the tag_field_name parameter is required.
Additional information on bound variant records follows the
parameter descriptions.

3. When you specify more than one fized field, you must separate them with commas.

Revision F Types 4-33

Records

fixed_field _name

Name of a fixed field (one that does not vary in size), as
described under Invariant Records earlier in this chapter. The
name must be unique within the record. Outside of the record
declaration, it can be redefined. There can be zero or more
fixed fields.

ALIGNED

Optional alignment parameter; the same as that for an
invariant record. If specified, it can appear alone or with an
offset in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is
directly addressable. This means the field begins on an
addressable boundary to facilitate rapid access to the field. This
may negate some of the effect of packing the record. For
further information, refer to Alignment later in this chapter.

offset MOD base

Optional offset to be used in conjunction with the ALIGNED
parameter, the same as that for an invariant record. This offset
causes the field to be mapped to a particular hardware address
relative to the specified base and offset. Specify a particular
word or byte within a word. Base is evaluated first to find the
word boundary; offset is then evaluated to determine the
number of bytes offset within that word. Filler is created if
necessary to ensure that the field begins on the specified word
or byte.

offset
Byte offset within the word specified by base. Specify an

integer constant less than base.
base

Word boundary. Specify an integer constant that is divisible
by 8. For automatic variables, the base can only be 8.

type
Any defined type, including another record, other than an
adaptable type.

4-34 CYBIL Language Definition Revision F

W | 01/22/87 19:58:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

Records

FOUPII -y P
g __jietu 7

Optional parameter specifying the name of the variable that
determines the variant. The current value of this variable
determines which of the variant fields that follow will actually
be used. If it is omitted, the variant that had the last
assignment made to one of its fields is used. This parameter is
required if the record is a bound variant record (BOUND is
specified). Additional information is given following the
parameter descriptions.

ifie

tag _field _type

Any scalar type. This type defines the values that the tag_
field _value can have.

tag_field _value

Constant scalar expression or subrange. Specify one of the
possible values that can be assigned to the variable specified

her tag_ﬁeld_nnmn T+ mnet ha af th o and within tha

4
UJ AAQLALAC . AV AAUDUV T UL Al &J & CAAANA YY A ULdLLL VAL
range specified by tag_field_type. Specifying a subrange has
the same effect as listing each value separately.

variant _field

Zero or more fixed fields of the same form as that shown in
the second line of this format. This field exists only if the
current value of tag_field_name is the same as that in the
tag_field_value associated with the variant._field. The last
field can be a variant itself.

The variant fields must follow all invariant (fixed) fields in the
record. The field following the reserved word CASE is called the tag__
field_name. The tag_field_name can take on different values during
execution. When its value matches one of the values specified in a
tag_field_value, the variants associated with that tag_field__value
are used. Variants themselves consist of zero or more fixed fields
optionally followed by another variant. If the last field is itself a
variant, it can have another CASE clause, tag_field _name, and so on.

The tag_field_name is an optional field. When it is omitted, no
storage is assigned for the tag field. If the record has no tag field,
you choose a variant by making an assignment to a subfield within a
variant. The variant containing that subfield becomes the currently
active variant. In a variant record without a tag field, all fields in a
new active variant become undefined except the subfield that was just
assigned. An attempt to access a variant field that is not currently
active produces undefined results.

Revision F Types 4-35

Records

Space for a variant record is allocated using the largest possible
variant.

Variant record types are equivalent if they have the same packing
attribute, their fixed fields are equivalent (as defined for invariant
record types), they have the same tag field names, their tag field
types are equivalent, their tag field values are the same, and their
corresponding variant fields are equivalent.

A bound variant record is specified by including the BOUND
parameter; the tag_field_name is also required. A bound variant
record type can be used only to define pointers for bound variant
record types (that is, bound variant pointers). A variable of this type
is always allocated in a sequence or heap, or in the run-time stack
managed by the system.

When allocating a bound variant record, you must specify the tag
field values that select the variation of the record. Only the specified
space is allocated. The ALLOCATE statement in this case returns a
bound variant pointer.

If a formal parameter of a procedure is a variant record type, the
actual parameter cannot be a bound variant record type.

A record cannot be assigned to a variable that is a bound variant
record type.

Bound variant record types are equivalent if they are defined in terms
of equivalent, unbound records. A bound variant record type is never
equivalent to a variant record type.

4-36 CYBIL Language Definition Revision F
L | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES |DRAFT copy

Records

This example defines a type named SHAPE, which becomes the type
of the tag field, in this case a variable named S. When S is equal to
TRIANGLE, the record containing fields SIZE, INCLINATION,

ANGLE1, and ANGLE2 is used as if it were the only record

available. When the value of S changes, the record variant being used
also changes.

TYPE

shape
angle

- 180 .. 180,

figure = record

X,
Y,

area: real,
case s: shape of

triangle =
size: real,
inclination,
angleil,

angie2: angle,
rectangle =
side1l,

side2: integer,
skew,

angle3: angile,
circle =
diameter: integer,

casend,
recend;

Revision F

(triangle, rectangle, circle),

Types 4-37

Records

Initializing Elements

A record can be initialized using an indefinite value constructor. An
indefinite value constructor is a list of values assigned in order to the
fields of a record. The first value in the list is assigned to the first
field, or first element in a field, and so on. The type of the values
must match the type of the elements in the field. An indefinite value
constructor has the form

[value {,value}...]
where value can be one of the following:
® A constant expression
® Another value constructor (that is, another list)

® The asterisk character (¥), which indicates the element in the
corresponding position is uninitialized

An indefinite value constructor can be used only for initialization; it
cannot be used to assign values during program execution. Individual
fields can be assigned during execution using the assignment
statement (described in chapter 5).

Example:

The variable BIRTH_DAY, in this example, is a record with the
fields described in the record type named DATE. It is initialized using
an indefinite value constructor to the 24th day of August, 1950.

TYPE
date = record
day: 1 .. 31,
month: string
year: 1500 ..
recend;

4
i

(4),
Nnann
£ 1VV,

VAR
birth_day: [STATIC] date := [24, ‘aug’, 1950];

4-38 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

Records

The record name alone refers to the entire structure.
Use this format to access a field in a record:
record _name.field _name {.sub_field_namej...

record _name

Name of the record as declared in the variable declaration.

field _name

Name of the field to be accessed. If the field is an array, a
reference to an individual element can also be included using
the form:

field _name[subscript]

field_name

sub

Optional field name. Use this parameter if the field previously
specified is itself a structured type, for example, another
record. If the contained field is an array, you can include a
reference to an individual element in the format:

sub_ field_name[subscript]
Example:

The variable PROFILE is a record with the fields described in the
.record type STATS. In this example, PROFILE is initialized with the
values in the indefinite value constructor in the variable declaration.

TYPE
stats = record
age: 6 .. 66,
married: boolean,
date: record
day: 1 .. 31,
month: 1 .. 12,
year: 80 .. 90,
recend,
recend;

VAR
profile: [STATIC] stats := [23, FALSE, [3, 5, 82]11;

Revision F Types 4-39

Records

The following references can be made to fields:

Field Content
profile.age 23
profile.married FALSE
profile.date.day 3

profile.date.month 5

profile.date.year 82

Alignment

Unpacked records and their fields are always aligned (that is, directly
addressable). Even if it is packed, a record is always aligned (that is,
the first field is directly addressable) unless it is an unaligned field
within another packed structure. Fields in a packed record, however,
are not aligned unless the ALIGNED attribute is explicitly included.
Aligning the first field of a record aligns the entire record.

Unpacked records and their fields, because they are aligned, can
always be passed as reference (that is, VAR) parameters in programs,
functions, and procedures. Packed records must be aligned to be valid
as reference parameters. Packed, unaligned records cannot be used.

4-40 CYBIL Language Definition ' Revision F
W | 01/22/87 19:59:24 | 02/13/87 08:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

Sets

Sets

A set is a collection of elements that, unlike arrays and records, is
always operated on as a single unit. Individual elements are never
referenced.

Use this format to specify a set type:
SET OF scalar_type

scalar_type

Type of all the elements that will be within the set. Specify a
scalar type or a subrange of a scalar type. The maximum
number of elements in a set is 32,767.

All members of a set must be of the same type. Members within a set
have no specific order; that is, order has no effect in any of the
operations performed on sets.

Set types are equivalent if their elements have equivalent types.

Operations allowed on seis are assignment, iniersection, union,
difference, symmetric difference, negation, inclusion, identity, and
membership. Refer to Operators in chapter 5 for further information
on set operations. The SUCC and PRED functions are not defined for

set types.

The difference (=) or symmetric difference (XOR) of two identical sets
is the empty set. The empty set is contained in any set. For a given
set, the complement of the empty set, [], is the full set.

Revision F Types 4-41

Sets

Initializing and Assigning Elements

Values can be assigned to a set using an indefinite value constructor
or a set value constructor. An indefinite value constructor can be used
only for initialization; a set value constructor can be used for both
initialization and assignment during program execution.

An indefinite value constructor is a list of values assigned to the set.
The type of the values must match the type of the set.

Use this format to specify an indefinite value constructor:
[value {,value}..]

value
Constant expression or another indefinite value constructor
(that is, another list).

A set value constructor constructs a set through explicit assignment.
Use this format to specify a set value constructor:

$name [{ value {,valuej...}]

name

Name of the set type. The dollar sign ($) must precede the
name to indicate a set value constructor.

value

Expression of the same type as that specified for the set. When
used in initialization, only constants or constant expressions are
valid. The empty set can be specified by [1.

A set value constructor can be used wherever an expression can be
used.

4-42 CYBIL Language Definition Revision F

W | 01/22/87 19:68:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

|
|
|
\
\
\
|
\
\
\
\
|
i
\
\
\
\
\
\
\
|
|
{
\
|
|
|
l
1
|
I
|
|
i
|
|
|
|
|
|
|
I
1
i
1
1

Sets

Exampile:

This example shows the declaration of a variable named ODD, which
is a type of a set of integers from 0 to 10. It is initialized with an
indefinite value constructor assigning the integers 1, 3, and 5 to the
set. The variable VOWELS is a set that can contain any of the letters
'a’ through °z’. It is assigned the letters ’a’, ’¢’, ', '0’ and v’ using a
set value constructor. It constructs a set of type C, which contains the
specified letters; then that set is assigned to the set VOWELS. The
variables LIST_1 and LIST_2 are sets that can contain any
characters. LIST 1 is assigned, using a set value constructor, the
letters 'x’, ’y’, and 'z’. LIST_2 is assigned the complement of %, 'y,
and ’z’, that is, a set consisting of every character except the letters
%', 'y, and 'z’

TYPE
a

set of 0 .. 10,
set of 7a” .. “z°,

[.

i = set of char;

[¢]
n

(2]

VAR
odd: [STATIC] a := [1, 3, 51,
vowels: c,
list_1,
list_2: ch;

vowels :
list_1 :
list_2 :

$c [Ial' lel' l.il, Iol, luI];
$ch ["x7, "y", “2°1;
- $ch ["x", 7y, "27];

1

Revision F Types 4-43

Storage Types

Storage Types

Storage types represent structures to which variables can be added,
deleted, and referenced under program control. (The statements used
to access the storage types are described under Storage Management
Statements in chapter 5.) There are two storage types:

® Sequences

® Heaps

Sequences

A sequence type is a storage structure whose components are
referenced sequentially using pointers. It can be pictured as follows:

Pointer to the first component
SEQNCE: 86/08/08
These pointers are constructed using the RESET and NEXT
statements (described in chapter 5). The RESET statement moves the
pointer to the beginning of the sequence or to a specific variable
within the sequence. The NEXT statement moves the pointer to the
next available space.

4-44 CYBIL Language Definition Revision F

|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
i
|
|
|
|
!
W |01/22/87 19:59:24 | 02/13/87 09:48:31 | 87/03/26 22.17.32 | 60464113 F lTYPES | DRAFT COPY :

Sequences

Use this format to specify a sequence type:
SEQ ({REP number OF} type {{REP number OF} type}..)

number

il

parameter specifying the number of repetitions of the specified
type.

Pogitive integer constant exnression, This is an ontional
Posifive integer constant expression, 1his 1s an opf1

type

Fixed type that can be a user-defined type name; one of the
predefined types integer, character, boolean, real, or cell; or a
structured type using the preceding types.

You can repeat the phrase REP number OF type as many times as
desired. It specifies that storage must be available to hold the
indicated number of occurrences of the named types simultaneously.
The types that are actually stored in a sequence do not have to be
the same as the types specified in the declaration, but adequate space
must have been allocated to hold those types in the declaration. In
other words, if a sequence is declared with several repetitions of
integer type, the space to hold these integers has to be available, but
it might actually hold strings or boolean values.

Sequence types are equivalent if they have the same number of REP
phrases and corresponding phrases are equivalent. Two REP phrases
are equivalent if they have the same number of repetitions of
equivalent types.

Assignment to another sequence is the only operation permitted on
sequences.

Revision F Types 4-45

Heaps

Heaps

A heap type is a storage structure whose components are referenced
using pointers but, unlike a sequence, they are not allocated and
referenced sequentially. A heap can be pictured as follows:

Pointer to a
component

HEAP: 86/08/08

The components of a heap are allocated explicitly using the
ALLOCATE statement, which also constructs pointers that you can
use to reference the components. The components of a heap are
released using the FREE and RESET statements (described in chapter
5).

4-46 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

Heaps

Use this format to specify a heap type:
HEAP ({REP number OF} type {,{REP number OF} typej...)

number

accinn Thia 15 an n-nf--n\“o]
Dne1+1 ‘7ﬂ 1“+nﬂn‘. nen-stant exgry-’e ARSLL. - adaid (=22 U Vasiiil

parameter specxfymg the number of repetitions of the specified
type.

type

Fixed type that can be a user-defined type name; one of the

predefined types integer, character, boolean, real, or cell; or a
structured type using the preceding types.

You can repeat the phrase REP number OF type as many times as
desired. It specifies that storage must be available to hold the
indicated number of occurrences of the named types simultaneously.
The types that are actually stored in a heap do not have to be the
same as the types specified in the declaration, but adequate space
must have been allocated to hold those types in the declaration. In
other words, if a heap is declared with several repetitions of integer
type, the space to hold these integers has to be available, but it might
actually hold strings or boolean values.

Heap types are equivalent if they have the same number of REP
phrases and corresponding phrases are equivalent. Two REP phrases
are equivalent if they have the same number of repetitions of
equivalent types.

The default heap can be managed with the ALLOCATE and FREE
statements in the same way as a user-defined heap. For further
information, refer to the descriptions of these statements in chapter 5.

Revision F Types 4-47

Adaptable Types

Adaptable Types

An adaptable type has indefinite size or bounds; it adapts to data of
the same type but of different sizes and bounds. The types described
thus far in this chapter are fixed types. An adaptable type differs
from a fixed type in that the storage required for a fixed type is
constant and can be determined before execution. Storage for an
adaptable type is determined during program execution.

An adaptable type can be a string, array, record, sequence, or heap
and can define formal parameters in a procedure and adaptable
pointers. Pointers are the mechanism used for referencing adaptable
variables.

The size of an adaptable type must be set during execution. This can
be done in one of three ways:

® If the adaptable type is a formal parameter to a procedure or
function, the size is set by the actual parameters when the
procedure or function is called. You can determine the length of an
actual parameter string using the STRLENGTH function, and the
bounds of an actual parameter array using the UPPERBOUND
and LOWERBOUND functions. (For further information, refer to
the description of the appropriate function in chapter 6.)

® If the adaptable pointer type is on the left side of an assignment
statement, the size is set by the assignment operation. It can be
assigned any pointer whose current type is one of the types that
the adaptable type can take on.

® An adaptable type can also be set explicitly using the storage
management statements (described in chapter 5).

An adaptable type is declared with an asterisk taking the place of the

m ae) hla danl +in
size or bounds normally found in the type or variable declaration.

4-48 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | TYPES | DRAFT COPY

Adaptable Strings

Adaptable Sirings
Use this format to specify an adaptable string:
STRING (* {<= length})

length

Optional parameter specifying the maximum length of the
adaptable string. If it is omitted, 65,535 characters is assumed.

If the string exceeds the maximum allowable length, an error occurs.

Two adaptable string types are always equivalent.

Adaptable Arrays

Use this format to specify an adaptable array:

e awy roee

{PACKED} ARRAY [flower_bound ..} *] OF type

PACKED

Optional packing parameter. When it is specified, the elements
of the array are mapped in storage in a manner that conserves
storage space, possibly at the expense of access time. If it is
omitted, the array is unpacked; that is, the elements are
mapped in storage to optimize access time rather than to
conserve space. (The array itself is always mapped into an
addressable memory location.) For further information on how
data is stored in memory, refer to appendix E, Data
Representation in Memory.

If the array contains structured types (such as records), the
elements of that type (the fields in the records) are not
automatically packed. The structured type itself must be
declared packed.

Revision F Types 4-49

Adaptable Arrays

lower_ bound

Constant integer expression that specifies the lower bound of
the adaptable array. This parameter is optional, but its use is
encouraged. Omission of this parameter (only the * appears)
indicates it is an adaptable bound of type integer.

type

Type of the elements within the array. The type can be any
defined type other then adaptable (that is, an adaptable string,
array, record, sequence, or heap). All elements must be of the
same type.

Only one dimension can be adaptable in an array and that dimension
must be outermost (first one in the declaration).

Adaptable arrays adapt to a specific range of subscripts. An adaptable
array can adapt to any array with the same packing attribute,
equivalent subscript bounds, and equivalent component types. If a
lower bound is specified in the adaptable array declaration, both
arrays must also have the same lower bound.

Adaptable array types are equivalent if they have the same packing
attributes and equivalent component types, and if their corresponding
array and component subscript bounds are equivalent. Two subscript
bounds that contain asterisks only are always equivalent. Two
subscript bounds that contain identical lower bounds are equivalent.

4-50 CYBIL Language Definition Revision F
w I 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 I 60464113 F I TYPES IDRAFT copY

Adaptable Records

Adaptabie Records

An adaptable record contains zero or more fixed fields followed by one
adaptable field that is of an adaptable type.

Use this format to specify an adaptable record:

{PACKED} RECORD
{fixed_field_name : {ALIGNED {[offset MOD base]}} type}..*
adaptable_field _name : {ALIGNED {[offset MOD base]}}
adaptable_type
RECEND

PACKED

Optional packing parameter. When it is specified, the fields of
a record are mapped in storage in a manner that conserves
storage space, possibly at the expense of access time. If it is
omitted, the record is unpacked; that is, the fields are mapped
in storage to opiimize access time rather than to conserve
space. For further information on how data is stored in
memory, refer to appendix E, Data Representation in Memory.

If a field is a structured type (such as another record), the
elements of that type are not packed automatically. The
structured type itself must be declared packed.

fixed_field_name
Name identifying a particular fixed field. The name must be
unique within the record.
ALIGNED
Optional alignment parameter. If it is specified, it can appear
alone, or with an offset in the form:

ALIGNED [offset MOD base]

When 2 field is aligned, it is mapped in storage so that it is
directly addressable. This means the field begins on an
addressable boundary to facilitate rapid access to the field. This
may negate some of the effect of packing the record. For
further information, refer to Alignment earlier in this chapter.

4. If you specify more than one fizxed (nonadaptable) field, you must separate them
with commas.

Revision F Types 4-51

Adaptable Records

[offset MOD base]

Optional offset to be used in conjunction with the ALIGNED
parameter. This offset causes the field to be mapped to a
particular hardware address relative to the specified base and
offset. Filler is created if necessary to ensure that the field
begins on the specified addressable unit.

offset

An integer constant. Offset must be less than base.

base

An integer constant that must be divisible by 8. For
automatic variables, the base can only be 8.

type

Any defined type, including another record, other than an
adaptable type.

adaptable_field _name

Name identifying the adaptable field.

adaptable_type
An adaptable type.

An adaptable record can adapt to any record whose types are the
same except for the last field. That last field must be one to which
the adaptable field can adapt.

Two adaptable record types are equivalent if they have the same
alriam ddamibhaa b

+1. T venemnment dln mmen s wecwael . L L£T_13_
PacLing aviricuies, wie sSamie diigliieni, wie Same NUMmoEr Ol 11€ias,

and corresponding fields with identical names and equivalent types.

4-52 CYBIL Language Definition Revision F
W | 01/22/87 19:58:24 | 02/13/87 09:46: 31 | 87/03/25 22.17.32 |60464113 F I TYPES | DRAFT COPY

Adaptable Sequences

Adaptable Sequences
Use this format to specify an adaptable sequence:
SEQ (*)

An adaptable sequence can adapt to a sequence of any size. Two
adaptable sequence types are always equivalent.

Adaptable Heaps
Use this format to specify an adaptable heap:
HEAP (¥

An adaptable heap can adapt to a heap of any size. Two adaptable
heap types are always equivalent.

Revision F Types 4-53

Expressions and Statements 5

This chapter describes expressions and statements that can be used
within a CYBIL program, procedure, or function.

Expressions. 5-1
Operands 5-1
Operators 0 i i e e e 5-1

Negation Operator 5-2
Multiplication Operators 5-2
Sign Operators 5-4
Addition Operators 5-5
Relational Operators 5-7
Set Operators 5-12

Statements 5-15
Assignment Statement L L. 5-15
Structured Statements 5-18

BEGIN Statement 5-19
FOR Statement 5-20
REPEAT Statement 5-23
WHILE Statement 5-24
Control Statements 5-26
IF Statement 5-27
CASE Statement 5-29
CYCLE Statement 5-31
EXIT Statement 5-33
RETURN Statement 5-34
Storage Management Statements 5-35
RESET Statement 5-39
NEXT Statement 5-41
ALLOCATE Statement 5-42
FREE Statement 5-44

PUSH Statement 5-45

Expressions and Statements 5

Expressions

Expressions are made up of operands and operators. Operators act on
operands to produce new values. (Constant expressions are evaluated
to provide values for constants. Refer also to Constant Expressions in
chapter 2.)

In general, operations involving nonequivalent types are not aliowed;
one type cannot be used where another type is expected. Exceptions
are noted in the following descriptions.

Operands

Operands hold or

epresent the values to be used during evaluation of
an expression. An operand can be a variable, constant, name of a
constant, set value constructor, function reference (either standard
function or user-defined funciion), poinier io a procedure name, poinier
to a variable, or another expression enclosed in parentheses.

The value of a variable being used as an operand is the last value
assigned to it. A constant name is replaced by the constant value
associated with it in the constant declaration.

A function reference causes the function to be executed; the value
returned by the function takes the place of the function reference in
the expression.

Operators

Operators cause an action to be performed on one operand or a pair of
operands. Many of the operators can be used only on basic types; they
will be noted in their individual descriptions. Some operators can be
used on sets. Although they are discussed in the individual
descriptions that follow, for a more detailed description also refer to
Set Operators later in this chapter.

An operation on a variable or component of a variable that has an
undefined value will produce an undefined result.

Revision F Expressions and Statements 5-1

Operators

There are five kinds of operators, many of which are identified by
reserved symbols. They are listed next in the order in which they are
evaluated, from highest to lowest precedence.

® Negation operator (NOT)
® Multiplication operators (* , DIV, / , MOD, and AND)
® Sign operators (+ and -)

® Addition operators (+ , - , OR, and XOR)

< =

® Relational operators (< , > ,>=,=,<>,and IN)

In relational operators that consist of two symbols (that is, <=, >=
and <>), do not separate the symbols with a space or any other
character; the symbols must appear together.

2

When an expression contains two or more operators of the same
precedence, operations are performed from left to right. The only way
to explicitly change the order of evaluation is to use parentheses.
Parentheses specify that the expression inside them should be
evaluated first.

Negation Operator
The negation operator, NOT, applies only to boolean operands.
NOT TRUE equals FALSE. NOT FALSE equals TRUE.

Multiplication Operators

The multiplication operators perform multiplication and set
intersection (*), integer quotient division (DIV), real quotient division
(), remainder division (MOD), and the logical AND operation (AND).
Table 5-1 shows the multiplication operators, the permissible types of
their operands, and the type of result they produce.

5-2 CYBIL Language Definition Revision F

|
|
|
|
|
\
\
|
|
|
|
4
1
1
|
l
|
|
|
1
|
|
|
!
|
i
1
!
|
|
r
1
!
|
|
|
|
|
|
|
|
|
|
!
|
i
[
I
!
!
|
|
|
|
I
|
[
|
[
!
[
[
I
i
I
I
I
I
I
I
i
[
|
1
1
I
|
i
|
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT | DRAFT copy !

i

P

Multipiication Operators

Operators

Type of Type of
Operator Operation Operand Result
* Multiplication Integer or subrange of Integer
integer
Real Real
* Set intersection Set of a scalar type Set of the
same type
DIV Integer quotient! Integer or subrange of Integer
integer
/ Real quotient Real Real
MOD Remainder? Integer or subrange of Integer
integer
AND Logical AND? Boolean Boolean

1. Integer quotient refers to the whole number that results from a
division operation; the remainder is ignored. A more formal definition
is: for positive integers a, b, and n, a DIV b = n where n is the
largest integer so that b * n <= a.

For one or two negative integers,

(-a2) DIVDb = (a) DIV (-b) = - (a DIV b) and
(-a) DIV (-b) = a DIV b

2. Remainder refers to the remainder of a division operation. A more
formal definition is:

aMODb =a-(@DIVb)*b
3. The logical AND operation is evaluated as follows:

TRUE AND FALSE = FALSE
TRUE AND TRUE = TRUE

FALSE AND FALSE = FALSE
FALSE AND TRUE = FALSE

When the first operand is FALSE, the second operand is never
evaluated.

Revision F Expressions and Statements 5-3

Operators

Sign Operators

The sign operators perform the identity operation (+) and sign
inversion and set complement operation (-). Table 5-2 shows the sign
operators, the permissible types of their operands, and the type of
result they produce.

Table 5-2. Sign Operators

:

\

\

\

|

1

I

|

I

Type of Type of |

Operator Operation Operand Result |
|

+ Identity (indicates Integer Integer |
a positive |
operand) :
|

Real Real |

|

- Sign inversion Integer Integer |
(indicates a |
negative operand) . :
1

Real Real ‘

[

- - Set complement Set of a scalar type Set of the :
same type |

1

|

1

i

i

I

[

1

|

!

]

!

i

I

|

|

|

i

i

|

|

|

|

I

i

I

I

I

I

I

1

1

|

5-4 CYBIL Language Definition Revision F :

| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/08/25 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT | DRAFT COPY:

The addition operators perform addition and set union (+),

Operators

subtraction, boolean difference, and set difference (=), the logical OR
operation (OR), and the exclusive OR operation (XOR). Table 5-3
shows the addition operators, the permissible types of their operands,

and the type of result they produce.

Table 5-3. Addition Operators

Type of Type of
Operator Operation Operand Result
+ Addition Integer or subrange of Integer
integer
Real Real
+ Set union Set of a scalar type Set of the
same type
- Subtraction Integer or subrange of Integer
integer
Real Real
- Boolean Boolean Boolean
difference!
- Set difference Set of a scalar type Set of the
same type
1. The boolean difference operation is evaluated as follows:
TRUE - TRUE = FALSE
TRUE - FALSE = TRUE
FALSE - TRUE = FALSE
FALSE - FALSE = FALSE
(Continued)

Revision F Expressions and Statements 5-5

Operators

Table 5-3. Addition Operators (Continued)

Type of Type of
Operator Operation Operand Result
OR Logical OR? Boolean Boolean
XOR Exclusive OR3 Boolean Boolean
XOR Symmetric Set of a scalar type Set of the
difference same type

2. The logical OR operation is evaluated as follows:

TRUE OR TRUE = TRUE
TRUE OR FALSE = TRUE
FALSE OR TRUE = TRUE
FALSE OR FALSE = FALSE

When the first operand is TRUE, the second operand is never
evaluated.

3. The exclusive OR operation is evaluated as follows:

TRUE XOR TRUE = FALSE
TRUE XOR FALSE = TRUE
FALSE XOR TRUE = TRUE
FALSE XOR FALSE = FALSE

5-6 CYBIL Language Definition Revision F
| 01/22/87 19:58:24 ' 02/13/87 09:486:31 | 87/03/25 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT | DRAFT COPY

Operators

j o PN P LpRipe B o NP S
neiauuviial vpcrarwusd

The relational operators (<, <=, >, >=, =, <>, and IN) test
whether the following given conditions are true or false: less than
(<), less than or equal to or subset of a set (< =), greater than (>),
greater than or equal to or a superset of a set (> =), equal to or set
identity (=), not equal to or set inequality (<>), and set membership
(IN).

Because relational operators are valid on so many different types,
some special points about each type are noted next. Following these
comments, table 5-4 lists the relational operators and the permissible
types of their operands; they always produce a boolean type result.

Comparison of Scalar Types

The comparison operators (< , <=, >, >= , = , and <>) are
allowed only between operands of the same scalar type or between a

-

substring of length 1 and a character.

For integer type operands, the relationships all have their usual
meaning.

For character type operands, each character is essentially mapped to
its corresponding integer value according to the ASCII collating
sequence. (This is the same operation performed by the $INTEGER
function described in chapter 6.) The operands and relational operators
are then evaluated using the characters’ integer values.

For boolean type operands, FALSE is always con51dered to be less
than TRUE.

For ordinal type operands, operands are equal only if they are the
same value; otherwise, they are not equal. For the other relational
operators, each ordinal is essentially mapped to the corresponding
integer value of its position in the ordinal list where it is defined.
(This is the same operation performed by the $INTEGER function
described in chapter 6.) The operands and relational operators are
then evaluated using the ordinals’ integer values. For an example,
refer to the discussion of ordinal types under Scalar Types in chapter
4,

Operands that are a subrange of a scalar type can be compared with
operands of the same type, including another subrange of the same

type.

Revision F Expressions and Statements 5-7

Operators

Comparison of Floating-Point Types

All of the comparison operators are valid between operands of the real
type.

Comparison of Pointer Types

Two pointers can be compared if they are pointers to equivalent or
potentially equivalent types. (For further information on equivalent
types, refer to Equivalent Types in chapter 4.) For potentially
equivalent types, one or both of the pointers can be pointers to
adaptable or bound variant types. The current type of such a pointer
must be equivalent to the type of the pointer with which it is being
compared; if it is not, the operation is undefined.

Pointers can be compared for equality and inequality only. Two
pointers are equal if they designate the same variable or if they both
have the value NIL. A pointer of any type can be compared with the
value NIL. Two pointers to a procedure are equal if they designate
the same declaration of a procedure.

Comparison of Relative Pointers

Two relative pointers can be compared only if they are of equivalent
types. Two relative pointers are equal if they can be converted to
equal pointers using the #PTR function (described in chapter 6).

5-8 CYBIL Language Definition Revision F |
| 01/22/87 19:59:24] 02/13/87 09:46:31 [87/03/25 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT I DRAFT COPY:

Operators

Comparison of Siring Types

All of the comparison operators are valid between operands that are
strings. If the lengths of the two string operands are unequal, spaces
are added to the right of the shorter string to fill the field.

Strings are compared character by character from left to right; that
is, each character from one string is compared with the character in
the corresponding position of the second string. Each character is
compared using the same method as for operands of character type,
the integer value of the character, when mapped to the ASCII
collating sequence, is used.

Comparison of Sets and Set Membership

Comparison operators have slightly different meanings for sets than
for other types. The only comparison operators valid for sets are: =
(identical to), <> (different from), <= (the left operand is contained
in the right operand), and > = (the left operand contains the right
operand). These operators are valid between two sets of the same
type. Their exact meanings are detailed later in this chapter under
Set Operators.

The other relational operator for sets is IN. A specified operand is IN
a set if that operand is a member of the sét. The set must be of the
same type or a subrange of the same type as the operand. The
operand can be a subrange of the type of the set.

Comparison of Other Types

Invariant records can be compared for equality and inequality only.
Two equivalent records are equal if their corresponding fields are
equal.

The following types cannot be compared:

® Arrays or structures that contain an array as a component or field
® Variant records

® Sequences

® Heaps

® Records that contain a field of one of the preceding types

However, pointers to these types can be compared.

Revision F Expressions and Statements 5-9

Operators

Table 5-4.

Relational Operators

Type of Left

Type of Right

Operator Operation Operand Operand
< Less than Any scalar type The same scalar
type
Real Real
<= Less than or A string A string of the
equal to same length
> Greater than A string of A character
length 1!
>= Greater than or
equal to
= Equal to A character A string of
length 11
<> Not equal to
IN Set membership Any scalar type A set of the
same type
Real A set of real
type
A string of A set of
length 11 character type

1. The string of length 1 has the form

STRING(position)

where the length is implied. The form

STRING(position,1)

is not valid in this case.

5-10 CYBIL Language Definition

| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.82 | 60464113 F | EXPRESSIONS AND STATEMENT | DRAFT COPY

(Continued)

Revision F

Operators

Table 5-4. Relational Operators (Continued)
Type of Left Type of Right
Operator Operation Operand Operand
= Equality (also A set of any A set of the
called identity) scalar type same iype
<> Inequality A set of real A set of real
type type
<= Is contained in
>= Contains
= Equality A nonvariant The same type
<> Inequality record type
containing no
arrays
Any pointer type The same type or
or the value NIL the value NIL
Revision F Expressions and Statements 5-11

Operators

Set Operators

The set operators have already been mentioned briefly in the
preceding sections on multiplication, sign, addition, and relational
operators. This section discusses all of them and explains how they
are used with sets.

The set operators perform assignment, union (+), intersection (*),
difference (~), symmetric difference (XOR), negation (=), identity or
equality (=), inequality (<>), inclusion (< =), containment (> =),
and membership (IN).

Assignment is discussed under Sets in chapter 4. The next five
operations (union, intersection, difference, symmetric difference, and
negation) all produce results that are sets (they are described in table
5-5). The remaining operations (identity, inequality, inclusion,
containment, and membership) produce boolean results (they are
described in table 5-6).

The relational operations described in table 5-6 occur only after any
operations described in table 5-5 have been performed.

5-12 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 I 02/13/87 09:46:31 I 87/03/25 22.17.32] 60464113 F l EXPRESSIONS AND STATEMENT I DRAFT COPYI

o

Operators

perations That Produce Seis

Operation

Resulting Set

Union

Difference

Intersection

Negation
(complement)

Symmetric
difference

All members of both sets. The result
of A + B is all elements of sets A
angd B.

Members in the lefthand set that are
not in the righthand set. The result
of A — B is the elements of A that
are not in B. This operation differs
from negation in that two operands
are present.

Members that are in both sets. The
result of A * B is all elements that
are in both A and B.

Members of the set’s type that are
not in the set. The result of —A is
all elements of A’s type that are not
in A. This operation differs from the
difference operation in that only one
operand is present.

Members of either but not both sets.
The result of A XOR B is all
elements in A or B that are not
common to both A and B.

Revision F

Expressions and Statements 5-13

Operators

Table 5-6. Operations That Produce Boolean Results

Operator Operation Resulting Value
= Equality TRUE if every member of one set is
(identity) present in the other set and vice

- versa. A = B is TRUE if every
element of A is in B and every
element of B is in A. It is also
TRUE if A and B are both empty
sets. In any other case, it is FALSE.

<> Inequality TRUE if not every member of one
set is a member of the other set.
A <> Bis TRUE if A = B is
FALSE.

<= Inclusion TRUE if every member of the
lefthand set is also a member of the
righthand set. A <= B is TRUE if
every element of A is in B. It is also
TRUE if A is an empty set. In all
other cases, it is FALSE.

>= Containment TRUE if every member of the
righthand set is also a member of
the lefthand set. A >= B is TRUE
if every element of B is in A (that
is, B <= A).

IN Membership = TRUE if the scalar is of the same
type as the type of the set, and ig
an element within the set. This
operation differs somewhat from the
others in that it can specify a value
or a variable as an operand, rather
than a set. It has the form

scalar IN set

where scalar can be a value
(including a subrange) or a variable.
A IN B is TRUE if A is the same
type as the set B and A is an
element of B.

5-14 CYBIL Language Definition Revision F
| 01/22/87 19:59: 24 | 02/13/87 09:46:31 l 87/03/25 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT | DRAFT COPY

Statements

Statements

Statements specify actions to be performed. Unlike declarations,
statements can be executed. They can appear only in a program,
procedure, or function.

A statement list is an ordered sequence of statements. In a statement
list, a statement is separated from the one following it by a

semicolon. Two consecutive semicolons indicate an empty statement,
which means no action.

Statements can be divided into four types depending on their purpose
or nature:

® Assignment
® Structured
e Control

® Storage management

Assignment Statement
The assignment statement assigns a value to a variable.
Use this format for the assignment statement:

name := expression;

name

Name of a variable previously declared.

expression

An expression that meets the requirements stated earlier in
this chapter. Any constant or variable contained in the
expression must be defined and have a value assigned.

This statement is similar to the initialization part of the VAR
declaration where you can assign an initial value to a variable. (For
further information on initialization, refer to Variable Declaration in
chapter 3.) The assignment statement allows you to change that value
at any point in the program. The expression is evaluated and the
result becomes the current value of the named variable.

Revision F Expressions and Statements 5-15

Assignment

The variable cannot be:
® A read-only variable

® A formal value parameter of the procedure that contains the
assignment statement

® A bound variant record

® The tag field name of a bound variant record
® A heap

® An array or record that contains a heap

The ‘type of the expression must be equivalent to the type of the
variable, with the exceptions discussed next. Both types can be
subranges of equivalent types.

A character, string, or substring variable can be assigned the value of
a character expression, a string, or a substring. If you assign a value
that is shorter than the variable or substring to which it is being
assigned, spaces are added to the right of the shorter string to fill the
field. If you assign a value that is longer than the variable or
substring, the value is truncated on the right. Assigning strings or
substrings that overlap is not a valid operation, for example,
STRING_1 := STRING_1(3,7); results are unpredictable.

If the variable is a pointer, its scope must be less than or equal to
the scope of the data to which it is pointing. For example, a static
pointer variable should not point to an automatic variable local to a
procedure. When the procedure is left, the pointer variable will be
pointing at undefined data.

5-16 CYBIL Language Definition Revision F
/ | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60484113 F | EXPRESSIONS AND STATEMENT | DRAFT COPY

Assignment

A pointer to a bound variant record can be assigned a pointer to a
variant record that is not bound and is otherwise equivalent.

An adaptable pointer can be assigned either a pointer to a type to
which it can adapt, or an adaptable pointer that has been adapted to
one of those types. Both the type of the expression and its value are
assigned, thus setting the current type of the adaptable pointer.

Any fixed pointer except a pointer to sequence can be assigned a
pointer to cell. After the assignment, the #LOC function (described in
chapter 6) performed on the fixed pointer would return the same
value as the pointer to cell.

A pointer to cell can be assigned any pointer type. The value assigned
is a pointer to the first cell allocated for the variable to which the
pointer being assigned points.

When assigning pointers, remember that the object of a pointer has a
different lifetime than the pointer variable. Automatic variables are
released when the block in which they are declared has been
executed. Allocated variables no longer exist when they are explicitly
released with the FREE statement. An atitempt to reference a variable
beyond its lifetime causes an error and unpredictable results to occur.

A variant record can be assigned a bound variant record of types that
are otherwise equivalent.

The colon () and equals sign (=) symbols together are called the
assignment operator. When used as the assignment operator, there can
be no spaces or comments between the two symbols.

Revision F Expressions and Statements 5-17

Structured Statements

Structured Statements

A structured statement contains one or more statements that are
called, collectively, a statement list. The structured statement
determines when the statement list it contains will be executed.

There are four structured statements:

Statement Description

BEGIN Provides a logical grouping of statements that
performs a specific function.

FOR Executes a list of statements while a variable is
incremented or decremented from an initial value to a
final value.

REPEAT Executes a list of statements until a specified
condition is true. The test is made after each
execution of the statements.

WHILE Executes a list of statements while a specified
condition is true. The test is made before each
execution of the statements.

The IF and CASE control statements (described later in this chapter)
also contain statement lists. The structured statements, the IF
statement, and the CASE statement can be nested within each other
up to 63 levels. The FOR statement can be nested 15 levels.

5-18 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 l 02/13/87 09:46:31 | 87/03/25 22.17.32 ’ 60464113 F | EXPRESSIONS AND STATEMENT | DRAFT COPY

BEGIN

The BEGIN statement executes a single statement list once; there is
no repetition. This statement logically groups statements that perform
a particular function and improves readability.

Use this format for the BEGIN statement:

{/label/}
BEGIN

statement list;
END {/label/} ;

label

Name that identifies the BEGIN statement and the statement
list contained in it. Use of labels is optional. If you use a label
before BEGIN, it is recommended that you use one after END,
but it is not required. If you use labels in both places, they
must match. The label name must be unique within the block
in which you use it.

statement lisi

One or more statements.

Declarations are not allowed with the BEGIN statement. Execution of
the BEGIN statement ends when either the last statement in the list
is executed or control is explicitly transferred from within the list.

Revision F Expressions and Statements 5-19

FOR

FOR Statement

The FOR statement executes a statement list repeatedly while a
special variable ranges from an initial value to a final value. There
are two formats for the FOR statement: one that increments the
variable and one that decrements the variable.

Use this format to increment the variable:

/label/}

FOR name := initial_value TO final_value DO
statement list;

FOREND {/label/} ;

Use this format to decrement the variable:

{llabel/}

FOR name := initial _value DOWNTO final _value DO
statement list;

FOREND {/labell} ;

label

Name that identifies the FOR statement and the statement list
contained in it. Use of labels is optional. If you use a label
before FOR, it is recommended that you use one after
FOREND, but it is not required. If you use labels in both
places, they must match. The label name must be unique
within the block in which you use it.

|

\

|

\

|

\

\

\

\

|

l

l

I

|

|

1

1

!

i

|

|

|

|

|

|

|

?

name :
Name of the variable that controls the number of repetitions of '
the statement list. This variable keeps track of the number of |
iterations performed or the current position within the range of !
values. |
[

initial _ value |
I

|

1

|

|

I

i

i

|

I

|

I

I

f

1

|

|

|

!

i

Scalar expression specifying the initial value assigned to the
variable.

5-20 CYBIL Language Definition Revision F
l 01/22/87 19:59:24 | 02/13/87 09:48:31 | 87/03/25 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT ‘ DRAFT CDPY:

Scalar expression specifying the final value to be assigned to
the variable if the statement ends normally. If the statement
ends abnormally or as the result of an EXIT statement, this
may not be the actual final value.

statement list
One or more statements.

The variable, initial value, and final value must be of equivalent
scalar types or subranges of equivalent types. The variable cannot be
assigned a value within the statement list, or be passed as a reference
parameter to a procedure called within the statement list. Either
condition causes a fatal compilation error. The variable cannot be an
unaligned component of a packed structure.

When CYBIL encounters a FOR statement that increments (one
containing the TO clause), it evaluates the initial value and final
value. If the initial value is greater than the final value, the FOR
statement ends and execution continues with the statement following
FOREND; the statement list is not executed. If the initial value is
less than or equal to the final value, the initial value is assigned to
the control variable and the statement list is executed. Then, the
control variable is incremented by one value and, for each increment,
the statement list is executed. This sequence of actions continues
through the final value. For example, the statement

FOR i = 1 TO 5 DO
FOREND ;

causes the statement list to be executed five times, that is, while I
takes on values from 1 to 5. Then the FOR statement ends. Execution
continues at the statement following FOREND with the variable I
having a value of 5.

Revision F Expressions and Statements 5-21

FOR

When CYBIL encounters a FOR statement that decrements (one
containing the DOWNTO clause), it performs a similar process. If the
initial value is less than the final value, the FOR statement ends and
execution continues with the statement following FOREND. If the
initial value is greater than or equal to the final value, the initial
value is assigned to the control variable and the statement list is
executed. The control variable is decremented by one value and, for
each decrement, the statement list is executed. When the control
variable reaches the final value and the statement list is executed the
last time, the FOR statement ends.

The initial value and final value expressions are evaluated once, when
the statement is entered; the values are then held in temporary
locations. Thus, subsequent assignments to initial value and final
value have no effect on the execution of the FOR statement.

When a FOR statement completes normally, the value of the control
variable is that of the final value specified in the statement. This may
not be the case if the statement ends abnormally or ends as a result
of an EXIT statement.

FOR statements can be nested in up to 15 levels.
Example:

Integer values are often used in FOR statements, but any scalar type
can be used. The following example executes a statement list while
the value of a character variable is incremented.

FOR control := “a’ TO “z’ DO
FOREND;

Each time the statement list is performed, the value of CONTROL
increases by one value, following the normal sequence of alphabetic
characters from ’a’ to ’z’; that is, after the statement list is executed
once, the value of CONTROL changes to 'b’, and so on until the
statement list has been executed 26 times.

5-22 CYBIL Language Definition Revision F
‘ 01/22/87 19:58:24 l 02/13/87 09:46:31 | 87/03/26 22.17.32 l 60464113 F l EXPRESSIONS AND STATEMENT | DRAFT COPY

REPEAT

I{DPL" AT Oéndasan nead
ML LUAL JSWWlCneii

The REPEAT statement executes a statement list repeatedly until a
specific condition is true.

Use this format for the REPEAT statement:

{llabel/}

REPEAT
statement list;

UNTIL expression;

label

Name that identifies the REPEAT statement and the statement
list contained in it. Use of the label before REPEAT is
optional; a label is not permitted after UNTIL. The label name
must be unique within the block in which it is used.

statement list

One or more statements.

expression

A boolean type expression.

The statement list is always executed at least once. After the last
statement in the list, the expression is evaluated. Every time the
expression is FALSE, the statement list is executed again. When the
expression is TRUE, the REPEAT statement ends and execution
continues with the statement following the UNTIL clause.

The statement list can contain nested REPEAT statements.
Example:

In this example, the statement list (mod operation and assignments) is
executed once. If J is not equal to zero, it is executed again and
continues until J is equal to zero.

REPEAT
k := 1 MOD j;
i=3;
Jj = Kk;
UNTIL j = 0;

Revision F Expressions and Statements 5-23

WHILE

WHILE Statement

The WHILE statement executes a statement list repeatedly while a
specific condition is true.

Use this format for the WHILE statement:

{llabel/}

WHILE expression DO
statement list;

WHILEND {/label/} ;

label |

Name that identifies the WHILE statement and the statement |
list contained in it. Use of labels is optional. If you use a label
before WHILE, it is recommended that you use one after
WHILEND, but it is not required. If you use labels in both
places, they must match. The label name must be unique
within the block in which you use it.

expression

A boolean type expression.

statement list

One or more statements.

If the boolean expression is evaluated as TRUE, the statement list is
executed. After the last statement in the list, the expression is again
evaluated. Every time the expression is TRUE, the statement list is
executed. When the expression is FALSE, the WHILE statement ends
and execution continues with the statement following WHILEND. If
the expression is FALSE in the initial evaluation, the statement list is
never executed.

5-24 CYBIL Language Definition Revision F

|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
l
:
!
|
|
|
|
|
!
|
|
|
|
|
x
|
!
|
i
[
|
|
|
I
|
I
i
I
|
I
I
I
I
1
|
1
|
| 01/22/87 19:58: 24 | 02/13/87 08:46:31 | 87/03/25 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT] DRAFT copy !

WHILE

Example:

In this example, the expression TABLE[I] <> 0 is evaluated; an
element of the array TABLE is compared to 0. While the expression

is true (the element is not 0), I is incremented. This causes the next
element of the array to be checked. When the nvnrnemnn is Fnlqa the

statement list is not executed. Execution continues with the statement
following WHILEND. I is the position of an element in the array that
is 0.

/check_for_zero/
WHILE table [i] <> 0 DO
i=9+ 1
WHILEND /check_for_zero/;

The preceding example assumes, of course, that the array contains an
element with the value 0. If not, the WHILE statement list executes

in an infinite loop. In either the WHILE expression or the statement
list, there must be a check. One solution is to set a variable,

TABLE_MAX, to the maximum number of elements in the array and
check it before executing the statement list, as in:

WHILE (i < table_max) AND (table [i] <> 0) DO

Now both expressions must be true before the statement list is
executed. If either is false, execution continues following WHILEND.

Revision F Expressions and Statements 5-25

Control Statements

Control Statements

A control statement can change the flow of execution of a program by
transferring control from one place in the program to another.

There are five control statements:

Statement Description

IF Executes one statement list if a given condition is
true; ends the statement or executes another statement
list if the condition is false.

CASE Executes one statement list out of a set of statement
lists, depending on the value of a given expression.

CYCLE Causes the remaining statements in a repetitive
statement (FOR, REPEAT, or WHILE) to be skipped
and the next iteration of the statement to occur.

EXIT Unconditionally stops execution within a procedure,
function, or a structured statement (BEGIN, REPEAT
WHILE, and FOR).

b

RETURN Returns control from a procedure or function to the
point at which it was called.

The structured statements (described earlier in this chapter) contain
statement lists like the IF and CASE statements. The structured
statements, the IF statement, and the CASE statement can be nested
within each other up to 63 levels.

Procedure and function calls also transfer control of an executing
program. Functions are discussed in chapter 6 and procedures are
discussed in chapter 7.

5-26 CYBIL Language Definition Revision F
l 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/28 22.17.32 | 80464113 F | EXPRESSIONS AND STATEMENT ’ DRAFT COPY

IF

IF Statement
The IF statement executes or skips a statement list, depending on
whether a given condition is true or false.

Use this format for the IF statement:

IF expression THEN
statement list;
{ELSEIF expression THEN
statement list;}...
{ELSE
statement list;}
IFEND;

expression

A boolean expression.

~

One or more statements.

The ELSEIF and ELSE clauses are optional. The ELSEIF clause
contains another test condition that is evaluated only if the preceding
condition (expression) is false. The ELSE clause provides a statement
list that is executed unconditionally when the preceding expression is
talse.

When an expression is evaluated as true, the statement list following
the reserved word THEN is executed. When the list is completed,
execution continues with the first statement following IFEND. If the
expression is false, execution continues with the next clause or
reserved word in the IF statement format (that is, ELSEIF, ELSE, or
IFEND).

Revision F Expressions and Statements 5-27

IF

If the next reserved word in the IF statement format is IFEND,
execution continues with the first statement following it.

If the next reserved word is ELSEIF, the expression contained in that
clause is evaluated; if true, the statement list that follows is executed.
Otherwise, execution continues with the next reserved word in the IF
statement format.

If the next reserved word is ELSE, the statement list that follows is
always executed. You get to this point only if the preceding
expression(s) is false.

Additional IF statements can be contained (nested) in any of the
statement lists. A consistent style of indentation or spacing, such as
that provided by the CYBIL source code formatter, greatly improves
the readability of such statements. (The source code formatter is
described in chapter 8.)

If the ELSE clause is included in a nested IF statement, the clause
applies to the most recent IF statement.

Examples:
In this example, Y is assigned to X only if X is less than Y.
IF x < y THEN
X =Y
IFEND;

In the next example, Z is always assigned one of the values 1, 2, 3,
or 4 depending on the value of X.

IF x <= 5 THEN

2z := 1;
ELSEIF x > 30 THEN
z := 2;
ELSEIF x = 15 THEN
2z := 3;
ELSE
2 := 4;
IFEND;
5-28 CYBIL Language Definition Revision F

l 01/22/87 19:59:24 | 02/13/87 09:46:31 l 87/08/25 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT | DRAFT COPY

CASE
CASE Statement

The CASE statement executes one statement list out of a set of lists,
based on the value of a given expression.

Use this format for the CASE statement:

CASE expression OF
= value {value}... =
statement list;

{= value {,value}... =
statement list;}...
{ELSE statement list;}

CASEND;

expression

A scalar expression. The expression must be of the same type
as the value or values that follow.

value

One or more constant scalar expressions or a subrange of
constant scalar expressions. A subrange indicates that all of the
values included in the subrange are acceptable values. If you
specify two or more values, separate them with commas. The
values must be of the same type as the expression. Values can
be in any order, not strictly sequential. Values must be unique
within the CASE statement.

statement list

One or more statements.

You define a set of possible values that a variable or expression can
have. With one or more of the values you associate a statement list
using the format:

= value =
statement list;

When the CASE statement is executed, the expression is evaluated
and the statement list associated with the current value of the
expression is executed. If the current value is not found among those
in the CASE statement, execution continues with the ELSE clause. If
ELSE is omitted and the value is not found in the CASE statement,
the program is in error. After any one of the statement lists is
executed, execution continues with the statement following CASEND.

Revision F Expressions and Statements 5-29

CASE

Examples:

In this example, I is a variable that is expected to take on one of the
values -5 through 20. If its value is -5, -4, -3, -2, -1, or O, the first
statement list (X := X) is executed and control goes to the statement
following CASEND. If the value of I is 1, the second statement list is
executed, and so on.

CASE i OF
= -5, -4, -3, -2, -1, 0 =

X 1= X;
=1 =

X =X+ 1;
=92 =

X := x + 2;
=8 =

X =X + 3;
= 4 =

X := X + 4;
=5..20 =

X = X +5;
CASEND;

In the next example, OPERATOR is a variable that is expected to
take on values of PLUS, MINUS, or TIMES. Depending on the current
value of OPERATOR, the associated statement is executed.

CASE operator OF

= plus =

X := X tvy;
= minus =

X := X - Y;
= times =

X := X *y;
ELSE

x := 0;

y := 0;

CASEND; |
|
|
|
\
\
\
\
\
\
|
\
|

5-30 CYBIL Language Definition Revision F |

| 01722/87 19:59:24 | 02/13/87 09:46:31 | 87/03/26 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT | DRAFT COPY:

CYCLE

NYUTNT I Q
vivuo O

tatement

The CYCLE statement can be included in the statement list of a
repetitive statement (FOR, REPEAT, or WHILE) and causes any
statements following it to be skipped and the next iteration of the
repetitive statement to occur.

Use this format for the CYCLE statement:
CYCLE /label/;

label

Name that identifies the repetitive statement in which the
CYCLE statement is contained.

The CYCLE statement is usually used in conjunction with an IF
statement, as in:

Nabel/
repetitive statement
IF expression THEN

AYVATE oLkl
v ivid jiaioey,

IFEND;
remainder of statement list;
end of repetitive statement;

The IF statement tests for a condition that, if true, causes the CYCLE
statement to be executed. Then the remaining statements of the
repetitive statement are skipped and execution continues with
whatever would normally follow the statement list, either another
cycle of the repetitive statement or the next statement following the
end of the repetitive statement. If the condition in the IF statement is
false, the remaining statements in the repetitive statement are
executed.

If it is not contained in a repetitive statement, the CYCLE statement
is diagnosed as a compilation error.

Revision F Expressions and Statements 5-31

CYCLE

Example:

This example finds the smallest element of an array TABLE. On the
first execution, X (the first element of the array) is assumed to be
smallest. If X is smaller than succeeding elements of the array, the
CYCLE statement is executed; the remainder of the statements are
then skipped, and the next iteration of the FOR statement occurs. If
an element smaller than X is found, the CYCLE statement is ignored
and the rest of the statement list is processed; X is replaced by the
smaller element. If N has not yet been reached, the FOR statement
continues. When N is reached, X will contain the smallest element of
the array.

x := table [1];

/find_smallest/
FOR k := 2 TO n DO
IF x < table [k] THEN
CYCLE /find_smallest/;
IFEND;
X := table [k];
FOREND /find_smallest/;

5-32 CYBIL Language Definition Revision F
! | 01/22/87 19:59:24 | 02/13/87 09:46: 31 | 87/03/25 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT | DRAFT COPY

EXIT

The EXIT statement causes an unconditional exit from a procedure,
function, or a structured statement (BEGIN, FOR, REPEAT, and
WHILE).

Use this format for the EXIT statement:
EXIT name;

name

Name that identifies the procedure, function, or statement. For
a procedure or function, it is the procedure or function name.
For a structured statement, it is the statement label; in this
case the format is:

EXIT Aabel/;

When the EXIT statement is encountered, execution of the named
procedure, function, or statement is automatically stopped and
execution resumes with the statement that would follow normal
Aanmnlatinm Far a neanadiirae nar franatinn i+ 1a tha atatamant that urnnld
VUAKLFXCUX\I&A. AUl & P;uwcum\a Ui A“LA\«DIUAA, AV AD WEAT Dmidc‘uel‘u viddiv WU AMAU
normally follow the procedure or function call. For a structured
statement, it is the statement following the end of -.the structured

statement (END, FOREND, UNTIL expression, and WHILEND).

The EXIT statement must be within the scope of the procedure,
function, or statement it names. Otherwise, it has no meaning and is
diagnosed as a compilation error.

With a single EXIT statement, you can exit several levels of
procedures, functions, or statements; they need not be exited
separately. (This is sometimes referred to as a nonlocal exit.) If the
EXIT statement is executed in a nested recursive procedure or
function, it is the most recent invocation of the procedure or function
and any intervening procedures or functions that are exited.

Revision F Expressions and Statements 5-33

RETURN

Example:

The following example declares an array of user names, then sets the |
variable KEY to one of the names. The statement list in the FOR |
statement labeled FIND_KEY searches the array for the key name. |
When it is found, the EXIT statement is executed and the FOR |
statement ends. Execution continues at the statement following the

end of the FOR statement which is the end of the procedure.

PROCEDURE exit_example;

VAR
i: integer,
key: string(7),
names: [READ] array [1 .. 4] of string(7) :=[“jaqp8402-,
jxd1432°, ‘efd3204’, ‘led4411’];

key := ‘efd3204’;

/find_key/
FOR i := LOWERBOUND (names) TO UPPERBOUND (names) DO
IF key = names[i] THEN
EXIT /find_key/;
IFEND;
FOREND/find_key/;
PROCEND exit_example;

RETURN Statement -

nnnnnnnnnnn

that called it.
Use this format for the RETURN statement:
RETURN;

If it is omitted at the end of a procedure or function, the RETURN
statement is assumed.

5-34 CYBIL Language Definition Revision F

|
|
\
|
\
\
|
|
|
i
1
|
I
|
I
]
1
[
|
|
|
|
1
]
1
|
|
|
|
|
|
|
1
|
|
N |
The RETURN statement completes the execution of a procedure or |
I
I
|
1
{
|
|
|
|
|
I
I
i
i
f
|
|
|
i
I
1
I
i
I
]
i
li
|
I
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.82 | 60464113 F | EXPRESSIONS AND STATEMENT] DRAFT copy !

!

Storage Management Statements

Storage Management Statements

Storage management statements allow you to manipulate components
of sequence and heap types, and put variables in the run-time stack.

There are five storage management statements:

Statement Description

RESET Resets the pointer in a sequence or releases all the
variables in a user-defined heap.

NEXT Creates or accesses the next element of a sequence
given a starting element.

ALLOCATE Allocates storage for a variable in a heap.

FREE Releases a variable from a heap.

PUSH Allocates storage for a variable in the run-time
stack

Sequences use the RESET and NEXT statements. Heaps use the
RESET, ALLOCATE, and FREE statements. The run-time stack uses
the PUSH statement. (Refer to Storage Types in chapter 4 for further
information on sequences and heaps.) The NEXT and ALLOCATE
statements can also be used to allocate space in a segment access file.
Accessing a file as a memory segment is deseribed in the CYBIL
Sequential and Byte-Addressable Files manual. That manual also
compares use of the default heap and run-time stack with use of a
segment access file for data storage.

Revision F Expressions and Statements 5-35

Storage Management Statements

In the NEXT, ALLOCATE, and PUSH statements, you must specify a
pointer to the variable to be manipulated so that sufficient space can
be allocated for that type. This pointer can be a pointer to a fixed
type, a pointer to an adaptable type, or a pointer to a bound variant
record type. Space is then allocated for a variable of the type to
which the pointer can point. This pointer is also used to access the
variable. When space is allocated, CYBIL returns the address of the
variable to the pointer. Therefore, to reference a variable in a
sequence, heap, or the run-time stack, you indicate the object of the
pointer in this form: pointer name *

If you specify a fixed type pointer, the statement uses a variable of
the type designated by that pointer variable. If you specify an
adaptable type pointer or bound variant record type pointer, you must
also indicate the size of the adaptable type or the tag field of the
variant record to be used. This causes a fixed type to be set and the
adaptable or bound variant record pointer designates a variable of
that fixed type. That particular fixed type is designated until it is
reset by a subsequent assignment or another storage management
statement.

5-36 CYBIL Language Definition Revision F
| 01/22/87 19:69:24 l 02/13/87 09:46:31 | 87/03/25 22.17.32 ' 60464113 F l EXPRESSIONS AND STATEMENT | DRAFT COPY

Storage Management Statements

2o AL
Ze U1

g
]
o
=]
=
El
é [l
5 &
5 g
o ®
g uwt
Q
]
02,
¢
:1
3
o
[+
1723
@
o+
= n
(]
oy
]
8
[+]
e

pointer : [size fixer]

pointer

Name of an adaptable pointer variable or a bound variant
record pointer variable.

size fixer

Fixed amount of space required for the variable designated by
pointer. You set the size of the adaptable type the same way
you specify the size of the corresponding unadaptable (fixed)
type. For example, in a variable or type declaration, you
specify the size of a fixed array with subscript bounds, usually
a subrange of "scalar expression..scalar expression". You set
the size of an adaptable array here using the same form.
Summarized next are the forms used to set the size of all
possible adaptable types. For more detailed information, refer

to the descriptions of the corresponding fixed types in chapter
4

Pointer Type Form Used to Set Size

Adaptable array scalar expression .. scalar expression

Adaptable string A positive integer expression specifying the
length of the string

Adaptable heap [{REP positive integer expression OF} fixed
type name {,{REP positive integer expression
OF} fixed type name}..]

Adaptable [{REP positive initeger expression OF} fixed
sequence type name {,{REP positive integer expression
OF} fixed type namej..]

Adaptable record One of the forms used for an adaptable
array, string, heap, or sequence

Bound variant A scalar expression or one or more constant
record scalar expressions followed by an optional
scalar expression

Revision F Expressions and Statements 5-37

Storage Management Statements

If an adaptable array had a lower bound specified in its original
declaration, the lower bound specified here must match that value.
For an adaptable record, the form used must be a value and type to
which the record can adapt. For a bound variant record, the order,
types, and values used must be valid for a variant of the record; all
but the last of the expressions must be constant.

Examples:

This example declares a type that is an adaptable array named
ADAPT_ARRAY. PTR is a pointer to that type. BUNCH is a heap
with space for 100 integers. The heap BUNCH is reset; that is, any
existing elements are released. Space is then allocated in the heap for
a variable of the type designated by PTR. That variable is of type
ADAPT_ARRAY (an array of integers) and it has fixed subscript
bounds of from 1 to 15. PTR now points to that array.

TYPE
adapt_array = array [1 .. * 1 of integer;

VAR
ptr: “adapt_array,
bunch: HEAP (REP 100 of integer);

RESET bunch;
ALLOCATE ptr: [1 .. 15] IN bunch;

The following example shows the setting of an adaptable sequence.
Notice that two sets of brackets are required in the PUSH statement.

VAR
ptr: “SEQ (*);

PUSH ptr: [[REP 10 OF integer, REP 22 OF charll;

5-38 CYBIL Language Definition Revision F

|
|
|
|
|
|
|
|
|
\
\
|
|
I
I
|
1
|
l
I
I
|
|
|
|
|
| 01/22/87 18:59:24 I 02/13/87 09:46:31 ’ 87/03/25 22.17.32 I 60464113 F l EXPRESSIONS AND STATEMENT I DRAFT COPY !

RESET

nlah rnls 2 B« W G
RESET Siatement

The RESET statement operates on both sequences and heaps. In a
sequence, it resets the pointer to the beginning of the sequence or to
a specific variable within the sequence. In a heap, it releases all the
variables in the heap.

The RESET statement must appear before the first NEXT statement
(for a sequence) or ALLOCATE statement (for a user-defined heap).
This ensures that the sequence is at the beginning or the heap is
empty. If you reserve space by using a NEXT or ALLOCATE
statement before the RESET statement, the program is in error.

RESET in a Sequence

This statement sets the current element being pointed to in a
sequence.

TTon 4Lis £ae-
UDE uilid 11Ul

RESET sequence_pointer { TO variable_pointer } ;

sequence_pointer

Name of a pointer to a sequence. This specifies the particular
sequence.

variable_pointer

Name of a pointer to a particular variable within the sequence.
If it is omitted, the pointer points to the first element of the
sequence.

Revision F Expressions and Statements 5-39

RESET

If you did not set the value of the variable_pointer with a NEXT
statement for the same sequence, an error will occur. An error will
also occur if the value of the variable_pointer is NIL.

The RESET statement must appear before the first occurrence of a
NEXT statement to reset the sequence to its beginning; otherwise, the
program is in error.

RESET in a Heap

This statement releases the variables currently in a heap.

Use this format for the RESET statement in a heap: |
RESET heap;

heap

Name of a heap type variable.
Space for the variables is released and their values become undefined.

Make sure that the RESET statement appears before the first
occurrence of an ALLOCATE statement for a user-defined heap so that
the heap is empty; otherwise, the program is in error.

5-40 CYBIL Language Definition Revision F

|
|
|
|
<
1
4
i
|
|
|
|
|
1
!
!
|
l
|
l
!
1
|
1
|
|
|
|
|
l
l
|
|
|
|
I
[
r
r
|
[
|
|
[
i
i
I
!
I
I
I
|
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT | DRAFT copy !

1

NEXT

R
INEuA

T Statementi

The NEXT statement sets the specified pointer to designate the
current element of the sequence and then makes the next element in
the sequence the current element. This moves the pointer along the
sequence, allowing you to assign values to and access elements.

Use this format for the NEXT statement:
NEXT pointer { : [size fixer] } IN sequence_pointer;

pointer

Name of a pointer to a fixed type, an adaptable type, or a
bound variant record type. The type pointed to by the pointer
is the type of the variable in the sequence. These pointers are
described in detail under Storage Management Statements
earlier in this section.

gsize fixer
size fixer

Size of an adaptable type or tag field of a bound variant record
type. If it is omitted, the pointer must be a pointer to a fixed
type. The forms used to specify size are described in detail
under Storage Management Statements earlier in this section.

sequence_pointer

Name of a pointer to a sequence. This specifies the particular
sequence.

After a RESET statement, the current element is always the first
element of the sequence. A NEXT statement assigns to the specified
pointer the address of the current (first) element, and then makes the
next element (the second) the new current element. Thus, the order of
variables in a sequence is determined by the order in which the
NEXT statements are executed.

If the NEXT statement causes the new element to be outside the
bounds of the sequence, the pointer is set to NIL. Before attempting
to reference an element in a sequence, check for a NIL pointer value.
If you use a pointer variable with a value of NIL to access an
element, a run-time error will occur.

The type of pointer you specify when data is retrieved from the
sequence must be equivalent to the type you used when the same data
was stored in the sequence; otherwise, the program is in error.

Revision F Expressions and Statements 5-41

ALLOCATE

ALLOCATE Statement

The ALLOCATE statement allocates storage space for a variable of
the specified type in the specified heap and then sets the pointer to
point to that variable.

Use this format for the ALLOCATE statement:
ALLOCATE pointer { : [size fixer] } { IN heap };

pointer

Name of a pointer to a fixed type, adaptable type, or bound
variant record type. These pointers are described in detail
under Storage Management Statements earlier in this section.

size fixer

Size of an adaptable type or tag field of a bound variant record
type. If it is omitted, the pointer must be a pointer to a fixed
type. The forms used to specify size are described in detail
under Storage Management Statements earlier in this section.

heap
Name of a heap type variable. If it is omitted, the default heap
is assumed.

5-42 CYBIL Language Definition Revision F

| 01/22/87 18:59:24 | 02/13/87 09:46:31 | 87/08/25 22.17.32 | 60464113 F | EXPRESSIONS AND STATEMENT | DRAET COPY

ALLOCATE

If there is noi enough space for the variable to be allocated, the
pointer is set to NIL. Before attempting to reference a variable in a
heap, check for a NIL pointer value. If you use a pointer variable
with a value of NIL to access data, a run-time error will occur.

For a user-defined heap, you must include a RESET statement before
the first occurrence of an ALLOCATE statement to ensure that the
heap is empty; otherwise, the program is in error. (When you use the
default heap, however, the RESET statement is done automatically
and you should not specify it.)

The lifetime of a variable that is allocated using the storage
management statements is the time between the allocation of storage
(with the ALLOCATE statement) and the release of storage (with the
FREE statement). A variable allocated using an automatic pointer
must be explicitly freed (using the FREE statement) before the block
is left, or the space will not be released by the program. When the
block is left, the pointer no longer exists and, therefore, the variable
cannot be referenced. If the block is entered again, the previous
pointer and the variable referenced by the pointer cannot be
reclaimed. Therefore, it is recommended that you free such variables
before leaving the block.

Revision F Expressions and Statements 5-43

FREE

FREE Statement

The FREE statement releases the specified variable from the specified
heap.

Use this format for the FREE statement:
FREE pointer { IN heap };

pointer

Name of the pointer variable that designates the variable to be
released.

heap

Name of a heap type variable. If it is omitted, the default heap
is assumed.

The variable’s space in the heap is released and its value becomes
undefined. The pointer variable designating the released variable is
set to NIL. If you specify a variable that is not currently allocated in
the heap, the results are unpredictable.

Using a pointer variable with the value NIL to access data causes a
run-time error to occur. Releasing the NIL pointer is also an error.

5-44 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F I EXPRESSIONS AND STATEMENT | DRAFT COPY

PUSH

PI’?GU [R I N
UDIl ovarelieill

The PUSH statement allocates storage space on the run-time stack for
a variable of the specified type and then sets the pointer to point to
that variable.

Use this format for the PUSH statement:
PUSH pointer { : [size fixer] } ;

pointer

Name of a pointer to a fixed type, adaptable type, or bound
variant record type. These pointers are described in detail
under Storage Management Statements earlier in this section.

size fixer

Size of an adaptable type or tag field of a bound variant record
type. If it is omitted, the pointer must be a pointer to a fixed
type. The forms used to specify size are described in detail
under Storage Management Statements earlier in this section.

If there is not enough space for the variable to be allocated, the
pointer is set to NIL. The value of the variable that has just been
allocated is undefined until a subsequent assignment to the variable is
made.

You cannot release space on the run-time stack explicitly. It is
released automatically when the procedure containing the PUSH
statement completes. At that time, space for the variable is released
and its value becomes undefined.

Example:

This example shows the declaration of a pointer variable named
ARRAY_PTR that points to an adaptable array. The PUSH statement
allocates space in the run-time stack for a fixed array of from 1 to 20
elements. Elements of the array can be referenced by ARRAY_
PTR"il, where i is an integer from 1 to 20.

VAR
array_ptr: “array [1 .. *] of integer;
PUSH array_ptr: [1 .. 20];

Revision F Expressions and Statements 5-45

Functions o

This chapter describes the functions that are predefined in CYBIL and
explains how to define your own functions.

Standard Functions i i 6-2
$CHAR Function 6-2
SINTEGER Function 6-3
#LOC Function e 6-4
LOWERBOUND Function 6-4
LOWERVALUE Function 6-5
PRED Funetion 6-6
#PTR Function 6-7
$REAL Function e 6-8
#REL Function 6-8
#SEQ Function 6-9
#SIZE Function 6-10
STRLENGTH Function 8-11
SUCC Function i i .. 6-12
UPPERBOUND Function 6-13
UPPERVALUE Funection 6-14

User-Defined Functions 6-15
Function Declaration 6-15
Parameter List 6-18
Referencing a Function 6-20
Inline Funetions 6-22

System-Dependent Functions 6-24
#ADDRESS Function 6-25
#FREE_RUNNING_CLOCK Function 6-26
#OFFSET Function 6-27
#PREVIOUS_SAVE_AREA Function 6-28
#READ_REGISTER Function 6-30
#RING Function 6-31

#SEGMENT Function 6-32

Functions 6

A function is one or more statements that perform a specific action
and can be called by name from a statement elsewhere in a program.
A reference to a function causes actual parameters in the calling
statement to be substituted for the formal parameters in the function
declaration and then the function’s statements to be executed. Usually
the function computes a value and returns it to the portion of the
program that called it.

A function differs from a procedure in that the value returned for a
function replaces the actual function reference within the statement. A
function is a valid operand in an expression; the value returned by
the function replaces the reference and becomes the operand.

The value of a function is the last value assigned to it before the
function returns to the point where it was called. The reason for its

3 .os
return doesn’t matter; it could complete normally or abnormally. If the

function returns for any reason before a value is assigned to the
function name, results are undefined.

Functions can be recursive; that is, a function can call itself. In that
case, however, there must be some provision for ending the calls and
the code within the function must not modify itself. Appendix F, The
CYBIL Run-Time Environment, describes how recursive functions are
managed.

You can call standard functions that are already defined in the
CYBIL language, you can define your own functions, or you can call
functions designed specifically for use on NOS/VE. This chapter
describes all three.

Functions that start with $ are data conversion functions. Functions
that start with # are either system-dependent functions (that is,
unique to CYBIL on NOS/VE) or functions whose results are system
dependent. (For example, #SIZE is a standard function available on
all variations of CYBIL regardless of operating system; however, its
results vary depending on the system on which it is being used.)

Revision F Functions 6-1

Standard Functions

Standard Functions

The functions described here are standard CYBIL functions. They can
be used safely in variations of CYBIL available on other operating
systems. Under System-Dependent Functions, later in this chapter,
you'll find descriptions of functions unique to CYBIL on NOS/VE.

The functions are described in alphabetical order.

$CHAR Function

The $CHAR function returns the character whose ordinal number
within the ASCII collating sequence is that of a given expression.

Use this format for the $CHAR function call:
$CHAR(expression)

expression

An integer expression whose value can be from 0 to 255.

If you specify a value for the integer expression less than 0 or greater
than 255, an error occurs.

6-2 CYBIL Language Definition Revision F

1
1
l
I
|
|
I
!
!
|
I
|
|
i
i
|
1
|
|
|
|
|
|
I
|
[
|
1
1
1
[
[
|
|
1
i
i
1
I
1
1
1
1
!
1
i
!
|
|
|
I
t
1
|
|
|
l
!
t
f
|
|
|
|
I
i
!
|
|
|
1
|
I
|
I
1
|
|
|
!
!

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | FUNCTIONS | DRAFT COPY :

$INTEGER

SINTEGER Function

The $INTEGER function returns the integer value of a given
expression.

$INTEGER(expression)

expression

An expression of type integer, subrange of integer, boolean,
character, ordinal, or real.

Expression Value Returned

Integer The value of that expression is returned.

Boolean Zero is returned for a false expression and 1 is
returned for a true expression.

Character The ordinal number of the character in the ASCII
collating sequence is returned.

Ordinal The ordinal number associated with that ordinal value
is returned. The value returned for the first element
of an ordinal type is 0, the second element is 1, and
SO on.

Real The value of the expression is truncated to a whole
number. If the number is in the range defined for
integers, that number is returned; otherwise, an
out-of-range error occurs.

Revision F Functions 6-3

#LOC

#LOC Function

The #LOC function returns a pointer to the first cell allocated for a
given variable.

Use this format for the #LOC function call:
#LOC(name)

name

Name of a variable.

If the specified variable is a formal value parameter, the pointer
cannot be used to modify the variable.

LOWERBOQUND Function

The LOWERBOUND function returns the lower bound of an array’s
subscript bounds.

Use this format for the LOWERBOUND function call:

array

An array variable or the name of a fixed array type.

The type of the value returned is the same as the type of the array’s
subscript bounds.

Example:

Assuming the following declaration has been made

VAR
x: array [1 .. 100] of boolean,
y: array [‘a’ .. “t’] of integer;

the value of LOWERBOUND(X) is 1; the value of LOWERBOUND(Y)

L.

|
|
|
|
|
|
|
|
|
|
|
I
|
I
|
|
|
|
]
{
1
i
|
|
I
|
|
|
1
1
1
1
|
|
I
|
|
LOWERBOUND(array) i
1
1
1
]
I
]
]
I
1
|
|
|
|
|
|
|
|
i
|
i
I
|
is ’a’. :
i

1

I

I

I

]

I

I

|

1

I

1

!

!

6-4 CYBIL Language Definition Revision F

W | 01/22/87 19:88:24 | 02/13/87 09:46:31 | 87/08/25 22.17.32 | 60464113 F | FUNCTIONS | DRAET COPY :

LOWERVALUE

Fas s i

LOWERVALUE Funciion

The LOWERVALUE function returns the smallest possible value that
a given variable or type can have.

Use this format for the LOWERVALUE function call:
LOWERVALUE(mame)

name

A scalar variable or name of a scalar type.
The type of the value returned is the same as the given type.
Examples:
Assuming the following declaration has been made

VAR
dozen: 1 .. 12;

the value of LOWERVALUE(DOZEN) is 1.
After the declarations

TYPE
t = (first, second, third);

VAR
v: t;

the value of LOWERVALUE(V) is FIRST and the value of
LOWERVALUE(T) is FIRST.

Revision F Functions 6-5

PRED

PRED Function
The PRED function returns the predecessor of a given expression.
Use this format for the PRED function call:

PRED(expression)

expression

A scalar expression.

If the predecessor of the expression does not exist, the program is in
error.

Example:

The following example declares two variables, WARM and COLD, each
of which can take on ordinal values of the type SEASONS. The
variable WARM is assigned the value SPRING while the variable
COLD is assigned the value WINTER.

TYPE
seasons = (winter, spring, summer, fall);

VAR
warm: seasons,
cold: seasons;

warm := spring;
cold := PRED (warm);

6-6 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | FUNCTIONS | DRAFT COPY

#PTR

#PTR Function

The #PTR function returns a pointer that can be used to access the
object of a relative pointer.

#PTR(pointer _name {,parent_name})

pointer _name

Name of the relative pointer variable.

pareni_name

Name of the variable that contains the components being
designated by relative pointers. If omitted, the default heap is
used. The variable can be a string, array, record, heap, or
sequence type (either fixed or adaptable).

Relative pointers cannot be used to access data directly. The #PTR
function converts a relative pointer to a pointer in order to reference
the object of the relative pointer.

The type of the object pointed to by the returned pointer is the same

as the type of the object pointed to by the relative pointer. If the type
of the parent variable associated with the specified relative pointer is

not equivalent to the type of the specified parent variable, a compile-

time error occurs.

For further information on relative pointers, refer to Pointer Types in
chapter 4.

Revision F Functions 6-7

$REAL

$REAL Function

The $REAL function returns the real number equivalent of a given
integer expression.

Use this format for the $REAL function call:
$REAL(expression)

expression

An integer expression.

#REL Function

The #REL function returns a relative pointer.

Use this format for the #REL function call:
#REL(pointer _name {,pareni_name})

pointer_name

Name of the direct pointer variable.

pareni_name

Name of the variable that contains the components being
designated by relative pointers. If omitted, the default heap is
used. The variable can be a string, array, record, heap, or
sequence type (either fixed or adaptable).

The type of the relative pointer’s object is the same as the type of the
given direct pointer’s object. (This type was specified in the VAR
declaration of the relative pointer variable.) The parent type of the
relative pointer’s object is the same as the type of the specified parent
variable.

If the pointer specified in the function call does not designate an
‘element of the parent variable, the result is undefined.

Relative pointer values can be generated solely through this function.
For further information on relative pointers, refer to Pointer Types in
chapter 4.

6-8 CYBIL Language Definition Revision F
W | 01/22/87 19:50:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | FUNCTIONS | DRAFT COPY

#SEQ

#SEQ Funciion

The #SEQ function returns an adaptable pointer to a sequence
allocated for a given variable.

Use this format for the #SEQ function call:
#SEQ(name)

name

Name of a variable of any type.

The following relationships hold between the #LOC, #SEQ, and
#SIZE functions:

#LOC(#SEQ(name) *) = #LOC(name)
#SIZE(#SEQ(name) ") = #SIZE(name)

Revision F Functions 6-9

#SIZE

#SIZE Function

The #SIZE function returns the number of cells required to contain a
given variable or a variable of a specified type.

Use this format for the #SIZE function call;
#SIZE(name)

name

Name of a variable, fixed record type, bound variant record, or
an adaptable type.

If you specify the name of a bound variant record type, the variant
that requires the largest size is used. If you specify the name of an
adaptable type, you must also supply a size fixer for the type.

Example:

The following example declares a procedure, FIND_SIZE, that has as
its only parameter an adaptable array named A. An adaptable array
type named B is also declared inside the procedure. When the
procedure is called, the first #SIZE function determines the size of
array A, the fixed array that was passed to it from the caller. The
second #SIZE function determines the size of array B using a size
fixer (the subrange is 1 to 100).

PROCEDURE find_size (a: array [1 .. *] OF integer);
VAR
i: integer;

TYPE
b= array [1 .. *] of integer;

i .= #QIZE(2).
LI FSiitial

’

i := #SIZE(b: [1 .. 100]);
PROCEND find_size;

6-10 CYBIL Language Definition Revision F
w | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F l FUNCTIONS l DRAFT COPY

STRLENGTH

* Fi ot o3

STRLENGTH Function
The STRLENGTH function returns the length of a given string.
Use this format for the STRLENGTH function call:
STRLENGTH(string)
string
A string variable, name of a string type, or adaptable siring

reference.

For a fixed string, the allocated length is returned as an integer
subrange. For an adaptable string, the current length is returned.

Example:

The following example declares a procedure, FIND_LENGTH, that
has as its only parameter an adaptable string named S. When the
procedure is called, the STRLENGTH function determines the length
of the fixed string that was passed to it.

PROCEDURE find_length (s: string(*));
VAR i: integer;

i := STRLENGTH (s);

Revision F ' Functions 6-11

SuCC

SUCC Function

The SUCC function returns the successor of a given expression.
Use this format for the SUCC function call:
SUCC(expression)

expression

A scalar expression.

If the successor of the expression does not exist, the program is in
error.

Example:

The following example declares two variables, HOT and COOL, each
of which can take on ordinal values of the type SEASONS. The
variable HOT is assigned the value SUMMER while the variable
COOL is assigned the value FALL.

TYPE
seasons = (winter, spring, summer, fall);

VAR
hot: seasons,
cool: seasons;

hot := summer;
.cool := SUCC (hot);
6-12 CYBIL Language Definition Revision F

W | 01/22/87 19:58:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | FUNCTIONS | DRAFT COPY

UFPPERBOUND

UPPERBOUND Function

The UPPERBOUND function returns the upper bound of an array’s
subscript bounds.

Use this format for the UPPERBOUND function ecall:
UPPERBOUND(array)

array

An array variable or the name of a fixed array type.

The type of the value returned is the same as the type of the array’s
subscript bounds.

Examples:

Assuming the following declaration has been made

VAR
x: array [1 .. 100] of boolean,
v: array [7a3~7 ’+71 nf intonor-
V. array | .- 171 OF 1nteger;

the value of UPPERBOUND(X) is 100; the value of UPPERBOUND(Y)
is 't

In the following example, the value of UPPERBOUND(TABLE) is 50:

VAR
table: “array [1 .. *] of cell;

ALLOCATE table: [1 .. 501;

Revision F Functions 6-13

UPPERVALUE

UPPERVALUE Function

The UPPERVALUE function returns the largest possible value that a
given variable or type can have.

Use this format for the UPPERVALUE function call:
UPPERVALUE(mame)

name

A scalar variable or name of a scalar type.
The type of the value returned is the same as the given type.
Examples:
Assuming the following declaration has been made

VAR
dozen: 1 .. 12;

the value of UPPERVALUE(DOZEN) is 12.
After the declarations

TYPE
t = (first, second, third);

VAR
v: t;

the value of UPPERVALUE(V) is THIRD and the value of
UPPERVALUE(T) is THIRD.

6-14 CYBIL Language Definition Revision F
w | 01/22/87 19:59:24 I 02/13/87 09:46:31 l 87/03/25 22.17.32 | 60464113 F | FUNCTIONS ' DRAFT COPY

User-Defined Functions

User-Defined Functions

This section describes how you define your own functions.

Function Declaration
You define your own function with the function declaration.
Use this format to declare a function:

FUNCTION ({[attributes]} name {{(formal_parameters)} :

result_type;!
{declaration_list;}
statement _list;
FUNCEND f{name};

aittributes

A

One or more of the following attributes. If you specify more
than one, separate them with commas.
XREF
The function has been compiled in a different module. In
this case, the function declaration can contain the name and
formal parameters, but no declaration list or statement list.
In the other module, the function must have been declared
with the XDCL attribute and an identical parameter list. If

omitted, the function must be defined within the module
where it is called.

XDCL

The function can be called from outside of the module in
which it is located. This attribute can be included only in a
function declared at the outermost level of a module; it
cannot be contained in a program, procedure, or another
function. Other modules that call this function must contain
the same function declaration with the XREF attribute
specified.

1. Some variations of CYBIL available on other operating systems allow an additional
option, the alias name, in a function declaration. If included in a CYBIL program run
on NOS/VE, this parameter is ignored.

Revision F Functions 6-15

Function Declaration

INLINE

Instead of calling the function, the compiler inserts the
actual function statements at the point in the code where
the function call is made. Additional information on inline
functions is given later in this section.

#GATE?

The function can be called by a function call from a higher
ring level if the call is issued from within the call bracket
of the gated function.d If you specify #GATE, you must also
specify the XDCL attribute.

If you don't specify any attributes, the function is assumed to
be in the same module in which it is called.

name

Name of the function. The function name is optional following
FUNCEND.

formal_parameters
One or more parameters in the form:

VAR name {,namej... : type
{,name {,namej... : type}...

and/or:

name {,namej... : type
{,name {,name}... : type}...

The first form is called a reference parameter; the second form
is called a value parameter. There is essentially no difference
between them in the context of a function. However, procedures
(and programs) do treat them differently. Both kinds of
parameters can appear in the formal parameter list; if so, they
are separated by semicolons (for example, [L[INTEGER; VAR
A:CHAR). Reference and vaiue parameters are discussed in
more detail later in this chapter under Parameter List.

The maximum number of parameters that can be passed to an
externally referenced (XREF) function is 126.

2. This attribute is not supported on variations of CYBIL available on other operating
systems.

3. A ring level is a hardware feature. Rings provide hardware protection in that an
unauthorized program cannot access anything at a lower ring level. For further
information on rings, refer to the SCL Object Code Management manual.

6-16 CYBIL Language Definition Revision F
w | 01/22/87 19:59:24] 02/13/87 09:46: 31 | 87/03/25 22.17.32 | 60464113 F | FUNCTIONS |DRAFT

coPy

Function Declaration

JURPR VI R,
resuls _Lvype

The type of the result to be returned. Specify any fixed scalar,
floating-point, pointer, or cell type.

declaration_list
Zero or more declarations.

statement _list

One or more statements.

In an assignment statement within a function, the lefthand side of the
statement (the variable to receive the value) cannot be:

® A nonlocal variable.

® A formal parameter of the function.
® The object of a pointer variable.
User-defined functions cannot contain:

® Procedure call statements that call user-defined procedures or
NOS/VE procedures.

® Parameters of type pointer to procedure.

e ALLOCATE, FREE, PUSH, or NEXT statements that have
parameters that are not local variables.

Revision F Functions 6-17

Parameter List

Parameter List

A parameter list is an optional list of variable declarations that
appears in the first statement of the function declaration. In the
function declaration format shown earlier, they are shown as formal_
parameters. Declarations for formal parameters must appear in that
first statement; they cannot appear in the declaration list in the body
of the function.

A parameter list allows you to pass values from the calling program
to the function. When a call is made to a function, parameters called
actual parameters are included with the function name. The values of
those actual parameters replace the formal parameters in the
parameter list. Wherever the formal parameters exist in the
statements within the function, the values of the corresponding actual
parameters are substituted. For every formal parameter in a function
declaration, there must be a corresponding actual parameter in the
function call.

There are two kinds of parameters: reference parameters and value
parameters. A reference parameter has the form:

VAR name { ,name}... : type
{,name {,;namej... : type}...

A value parameter has the form:

name {,namej... : type
{,name {,;namej... : type}...

6-18 CYBIL Language Definition Revision F

W | 01/22/87 19:59: 24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | FUNCTIONS | DRAET COPY

Parameter List

In procedures, reference parameters and value parameters cause
different actions to be taken; in functions, however, both kinds of
parameters have the same effect. (In a procedure, the value of a
reference parameter can change during execution of the procedure; a
value parameter cannot change.) In a function, neither reference
parameters nor value parameters can change in value. A formal
reference parameter can be any fixed or adaptable type. A formal
value parameter can be any fixed or adaptable type, except a heap or
an array or record that contains a heap.

Reference parameters and value parameters can be specified in many
combinations. When both kinds of parameters appear together, they
must be separated by semicolons. Parameters of the same type can
also be separated by semicolons instead of commas, but in this case,
VAR must appear with each reference parameter. All of the following
parameter lists are valid.

® VAR i, j: integer; a, b: char;

® VAR i: integer; VAR j: integer; a: char; b: char;
e
® VAR i: integer, j: real; a: char, b: boolean;

In each of the preceding examples, I and J are reference parameters;
A and B are value parameters.

Revision F Functions 6-19

Referencing a Function

Referencing a Function

The call to the function is usually contained in an expression. The
call consists of the function name (as given in the function
declaration) and any parameters to be passed to the function in the
following format:

name ({actual _parameters})

name

Name of the function.

actual__parameters

Zero or more expressions or variables to be substituted for
formal parameters defined in the function declaration. If you
specify two or more, separate them with commas. They are
substituted one-for-one based on their position within the list;
that is, the first actual parameter replaces the first formal
parameter, the second actual parameter replaces the second
formal parameter, and so on. For every formal parameter in a
function declaration, there must be a corresponding actual
parameter in the function call.

If you did not specify any formal parameters in the function
declaration, you can’t include any actual parameters in the
function call. However, you must enter left and right
parentheses to indicate the absence of parameters. In this case,
the call is:

name()

The function can be anywhere that a variable of the same type could
be. The value returned by a function is the last value assigned to it.
If control is returned to the calling point before an assignment is

mada reculte ara 11nprer]in+oh]

AAAUTy ATDAWY G U Rdivuaric,

The only types that can be returned as values of functions are the
basic types: scalar, floating point, pointer, and cell.

6-20 CYBIL Language Definition Revision F

W | 01/22/87 19:69:24 | 02/13/87 03:46:31 | 87/03/25 22.17.32 | 60464113 F | FUNCTIONS | DRAFT COPY

|
|
\
|
\
\
\
\
\
1
I
l
|
|
|
|
I
i
|
!
|
1

Referencing a Function

The following function finds the smaller of two integer values
represented by formal value parameters A and B. The smaller value
is assigned to MIN, the name of the function, and that integer value
is returned.

FUNCTION min (a,
b: integer): integer;
IF a > b THEN

min := b;
ELSE

min := a;
IFEND;

FUNCEND min;
This function could be called using the following reference:
smalier := min (first, second);

The value of the variable FIRST is substituted for the formal
parameter A; the value of SECOND is substituted for B. The value
returned, the smaller value, replaces the entire function reference; the
variable SMALLER is assigned the smaller value.

Revision F Functions 6-21

Inline Functions

Inline Functions

An inline function is one for which the compiler inserts the actual
statements that are within the function at the point in the code where
the function call was made. An inline function must be declared with
the INLINE attribute. (Procedures can also be declared to be inline.)

Type, constant, and variable declarations that are local to an inline
function or procedure are appended to the declarations of the function
or procedure that called it. However, these types, constants, and
variables can be referenced only within the body of the inline function
or procedure; all the usual naming rules and scope rules still apply.
(Local variable declarations in an inline function or procedure become
part of the stack frame of the calling procedure.)

A variable declared within an inline function or procedure cannot be
declared with the STATIC or XDCL attribute. Another function or
procedure can be declared within an inline function or procedure only
if it is declared with the XREF (externally declared) attribute; an
inline function or procedure cannot contain any other function or
procedure declarations.

Formal parameters in an inline function or procedure are treated as
local variable declarations. When an inline function or procedure is
called, the actual parameters are assigned to the corresponding formal
parameters’ local variables. Reference parameters are accessed by
assigning a pointer to the actual parameter to the formal parameter’s
local variable.

When the actual parameter for a value parameter is an adaptable
type or a substring, the parameter is treated as a read-only reference
parameter (that is, a local copy of the parameter is not created). This
is necessary to allow the type to be set at execution time. For
adaptable array and adaptable record value parameters, the actual
paramever must be byte-aligned.

6-22 CYBIL Language Definition Revision F
L I 01/22/87 19:59:24 l 02/13/87 03:46: 31 l87/03/25 22.171.32 | 60464113 F I FUNCTIONS |DRAFT copy

Inline Functions

An inline function or procedure can call any other function or
procedure, including other inline functions and procedures, up to five
levels. However, recursive calls to an inline function or procedure,
either directly or indirectly, are not allowed. More than five nested
calls and recursive calls are considered compile-time errors and end
inline substitution.

Space that is allocated by a PUSH statement in an inline function or
procedure is not released until the calling (not the inline) function or
procedure completes.

The result of a reference to an inline function becomes part of the
caller’s stack frame. When an inline function is called more than once
within a statement, the results of each reference are separate even
though they share the same name.

The name of an inline function or procedure cannot be used in a
pointer reference.

If a source listing is produced during compilation, the statements of
the inline function or procedure are not listed at the point where the

erall aceiire
gall aeours,

You can use the Debug Utility with inline functions and procedures.
Debug treats an inline procedure call as a series of statements on the
same line as the procedure call itself. It treats an inline function call
as a series of statements on the same line as the end of the phrase
that contained the reference to the inline function. Debug may not be
able to access local variables declared in an inline function or
procedure directly because the substitution process could create
duplicate variable names (for example, if the names have already been
used in the calling function or procedure). In that case, the Debug
Utility always gives precedence to the variable names used in the
calling procedure. For further information on the Debug Utility, refer
to chapter 9.

Revision F Functions 6-23

System-Dependent Functions

System-Dependent Functions

The functions described here can be used with CYBIL only on
NOS/VE. As you review this section, keep in mind that programs
using these functions cannot be transported to other operating systems
and run on variations of CYBIL.

To use these functions properly and efficiently, you should be familiar
with basic hardware concepts of your computer system. This
information can be found in volume II of the virtual state hardware
reference manual.

The functions are described in alphabetical order.

6-24 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 I 02/13/87 09:486:31 | 87/03/25 22.17.32 | 60464113 F | FUNCTIONS IDRAFT copy

#ADDRESS

#ADDRESS Function
The #ADDRESS function accepts a ring number, segment number,
and byte offset and returns a value that is of type pointer to cell.
Use this format for the #ADDRESS function call:
#ADDRESS(ring, segment, offset)
ring
Ring number, ranging from 1 to 15.

segment
Segment number, ranging from 0 to 4,095.

offset

Byte offset, ranging from —-80000000 hexadecimal to 7FFFFFFF
hexadecimal.

Example:

The following example uses the #ADDRESS function to set the
variable PTR1 to a pointer to cell formed using a ring number of 11,
a segment number of 10, and a byte offset of OFFFF hexadecimal.

VAR
i,
i,
k: integer,
ptri: “cell;

io= 11;

j = 10;

k := OFFfFf(16);

ptr1 := #address (i, j, k);

Revision F Functions 6-25

#FREE_RUNNING_CLOCK

#FREE _RUNNING _CLOCK Function

The #FREE_RUNNING_CLOCK function returns the value of the
free running microsecond clock.

Use this format for the #FREE_RUNNING_CLOCK function eall:
#FREE _RUNNING _ CLOCK(port)

port

An integer expression whose value is 0 or 1. It specifies the
memory port to be used for reading the clock.

The integer value returned is that of the free running clock that is
maintained within the memory connected to the specified processor
memory port.

For further information on the free running microsecond clock and
memory ports, refer to volume II of the virtual state hardware
reference manual.

Example:

The following example sets the integer variable I to the value of the
free running microsecond clock in the memory connected to processor
memory port 0.

VAR
i: integer;
i := #free_running_clock (0);
6-26 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 [02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | FUNCTIONS | DRAET COPY

#OFFSET

g

#OFFSET Function

The #OFFSET function accepts a pointer and returns the integer
value of the signed offset (byte number) contained in the pointer.

Use this format for the #OFFSET function call:
#OFFSET(pointer)

pointer
Name of a pointer expression.
A pointer consists in part of the process virtual address (PVA) of the

first byte of the object to which it is pointing. An element of the PVA
is the byte number. This byte number is the signed offset returned.

For further information on PVAs, refer to volume II of the virtual
state hardware reference manual.

Example:
The following example finds the byte offset in the pointer PTR1
VAR
ptr1: “cell,

byte_offset: - 80000000(18) .. 7fffffff(16);

byte_o-Ffset := $offset (ptri);
If PTR1 was formed using the following #ADDRESS function,
ptr1 := #address (11, 10, Offff(16));

the value of BYTE_OFFSET would be OFFFF hexadecimal.

Revision F Functions 6-27

#PREVIOUS_SAVE_AREA

#PREVIOUS _SAVE _AREA Function

The #PREVIOUS_SAVE_AREA function returns a pointer to the first
cell of the previous save area.

Use this format for the #PREVIOUS_SAVE_AREA function call:
#PREVIOUS_SAVE_AREA ()

A procedure uses an area called a stack frame to store its automatic
variables. If another procedure is called, hardware saves certain
registers of the calling procedure and puts them in a stack frame save
area. These registers contain the information required for the calling
procedure to resume normal execution when control is returned by the
called procedure. :

If procedure calls are nested, each subsequent call creates its own
stack frame save area and the last save area becomes the previous
save area. Pointers are kept to link the previous save areas so that as
procedures complete and return, the system works back through the
previous save areas using the information contained in them to
resume each procedure.

The formats of the stack frame save area and previous save area are

shown in the CYBIL System Interface manual. For further information
on the stack frame save area and previous save area, refer to volume

II of the virtual state hardware reference manual.

6-28 CYBIL Language Definition Revision F

W | 01/22/87 19:69:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | FUNCTIONS | DRAFT COPY

\
\
\
\
\
1
\
\
|
\
|
\
1

#PREVIOUS_SAVE_AREA

Exampie:

The following example sets the pointer variable PSA_PTR to point to
the first cell of the previous save area. The #CALLER_ID procedure
then returns information about the caller of the last function. That
information is returned in the record CALLER_RECORD. In this
example, CALLER_RECORD is equivalent to the object of pointer
PSA_PTR (that is, CALLER_RECORD = PSA_PTR").

TYPE
id_rec = record
id: 0 .. OffFFFFFF(16),
recend;

VAR
psa_ptr: “id_rec,
caller_record: id_rec;
psa_ptr := #previous_save_area ();
#caller_id (caller_record);

Revision F Functions 6-29

#READ_REGISTER

#READ _REGISTER Function

The #READ_REGISTER function performs actions equivalent to the
copy from state register (CPYSX) hardware instruction. It allows a
program to read the contents of a process or processor register.

Use this format for the #READ_REGISTER function call:
#READ _REGISTER(register_id)

register_id

An integer expression from 0 to 255 that identifies the number
of the register to be read. Register numbers are given in
volume II of the virtual state hardware reference manual.

An integer value is returned.

The #WRITE_REGISTER procedure described in chapter 7 allows a
program to change the contents of a process or processor register.

For further information on process and processor registers, and the
CPYSX instruction, refer to volume II of the virtual state hardware
reference manual.

Example:

The following example sets the integer variable J to the value of
register E5, the Debug mask register.

VAR
j: integer;

j := #read_register (0e5(16));

6-30 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | FUNCTIONS | DRAFT COPY

#RING

BT

#RING Function

The #RING function accepts a pointer and returns the integer value
of the ring number contained in the pointer.

Use this format for the #RING funection ecall:
#RING(pointer)

pointer

Name of a pointer expression.
Example:
The following example finds the ring number in the pointer PTR1.

VAR
ptr1: “cell,
ring_number: integer;
ring_n-umber := #ring (ptri1);
If PTR1 was formed using the following #ADDRESS function,

ptr1 := #address (11, 10, Offff(16));

the value of RING_NUMBER would be 11.

Revision F Functions 6-31

#SEGMENT

#SEGMENT Function

The #SEGMENT function accepts a pointer and returns the integer
value of the segment number contained in the pointer.

Use this format for the #SEGMENT function call:
#SEGMENT(pointer)

pointer
Name of a pointer expression.

Example:
The following example finds the segment number in the pointer PTRI.

VAR
ptr1: “cell,
segment_number: integer;
segment_number := #segment (ptr1);
If PTR1 was formed using the following #ADDRESS function,

ptr1 := #address (11, 10, Offff(16));

the value of SEGMENT_NUMBER would be 10.

6-32 CYBIL Language Definition Revision F

|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
I
f
|
|
I
|
I
|
|
|
1
i
1
1
i
|
|
!
i
[
f
|
|
i
1
|
1
[
1
i
i
i
i
1
[
!
|
I
|
|
1
1
!
|
1
1
|
1
1
I
|
|
I
|
I
I
1
|
I
|
|
I
I
!
I

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/26 22.17.32 | 60464113 F | FUNCTIONS | DRAET COPY X

Procedures 7
This chapter describes the procedures that are predefined in CYBIL
and explains how you can define your own procedures.
Standard Procedures 7-2
STRINGREP Procedure 7-2
Integer Element 7-4
Character Element 7-5
Boolean Element 7-5
Ordinal Element 7-6
Subrange Element 7-6
Floating-Point Element 7-6
Pointer Element 7-9
String Element 7-9
User-Defined Procedures 7-10
Procedure Declaration, 7-10
Parameter List 7-13
Calling a Procedure 7-15
iniine Procedures 7-18
System-Dependent Procedures 7-20
#CALLER_ID Procedure e e e e e e e e e 7-20
#COMPARE_SWAP Procedure 7-22
#CONVERT_POINTER_TO_PROCEDURE Procedure 7-25
#HASH_SVA Procedure 7-26
#KEYPOINT Procedure 7-27
#PURGE_BUFFER Procedure 7-28
#SCAN Procedure 7-30
#SPOIL Procedure, 7-32
#TRANSLATE Procedure 7-34
#UNCHECKED_CONVERSION Procedure 7-35

Procedures 7

A procedure is one or more statements that perform a specific action
and can be called by a single statement. A procedure allows you to
associate a name with the statement list so that by specifying the
name itself as if it were a statement, you cause the list to be
executed. Declarations can be included and take effect when the
procedure is called. A procedure call can optionally cause actual
parameters included in the call to be substituted for the formal
parameters in the procedure declaration before the procedure’s
statements are executed.

A procedure differs from a function in that:
® A procedure can, but does not always, return a value.

® The call to a procedure is the procedure’s name itself; a function
call by contrast must be part of an expression in a statement.

® There can be no value assigned to the procedure name as there is
to a function name.

Procedures can be recursive; that is, a procedure can call itself. In
that case, the code within the procedure must not modify itself.
Appendix F, The CYBIL Run-Time Environment, describes how
recursive procedures are managed.

You can call standard procedures that are already defined in the
CYBIL language, you can define your own procedures, or you can call
procedures designed specifically for use on NOS/VE. This chapter
describes all three.

Revision F Procedures 7-1

Standard Procedures

Standard Procedures

The STRINGREP procedure described here is a standard CYBIL
procedure. It can be used safely in variations of CYBIL available on
other operating systems. The last section in this chapter,
System-Dependent Procedures, describes procedures that may not be

available on other operating systems or that are unique to CYBIL on
NOS/VE.

STRINGREP Procedure

The STRINGREP procedure converts one or more elements to a string
of characters, then returns that string and the length of the string.

Use this format for the STRINGREP procedure call:
STRINGREP(string _name, length, element {,element..);

string _name

Name of a string type variable. (You can specify it as a
substring.) The result is returned here. It will contain the
character representations of the named element(s).

length
Name of an integer variable. The procedure will set its value
to the length in characters of the resulting string variable,

string_name. It will be less than or equal to the declared
length of the string variable.

element

Name of the element to be converted. The element can be a
scalar, floating-point, pointer, or string type. Formats for
specifying particular types and rules for conversion of those
types are discussed in more detail later in this chapter.

7-2 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | PROCEDURES | DRAFT COPY |

STRINGREP

The named elements are converied to strings of characters. Those
strings are then concatenated and returned left-justified in the named
string variable. The length of the string variable is also returned. If
the result of concatenating the string representations is longer than
the length of the string variable, the representation of the last

element is a string of asterisk characters; the length that will be

returned is the length of the string variable.

Each individual element is converted and placed in a temporary field
before concatenation with other elements. The length of the temporary
field can be specified as part of the element parameter that is
described in the following sections. Generally, numeric values are
written right-justified in the temporary field with spaces added on the
left to fill the field, if necessary. String or character values are
written left-justified in the temporary field with spaces added on the
right to fill the field, if necessary. For both numeric and alphabetic
values, the field is filled with asterisk characters if it is too short to
hold the resulting value. The value of the field length, when specified,
must be greater than or equal to zero; otherwise, an error occurs.

The following paragraphs describe how the STRINGREP procedure
converts specific types and how they appear in the temporary fields.

Revision F Procedures 7-3

STRINGREP

Integer Element
Use this format to specify an integer element:
expression { : length } { : #radix) }

expression

An integer expression to be converted.

length

A positive integer expression specifying the length of the
temporary field. The length must be greater than or equal to 2.
If it is omitted, the temporary field is the size required to hold
the integer value and the leading sign character.

radix

Radix of expression. Possible values are 2, 8, 10, and 16. If it
is omitted, 10 is assumed.

The value of the integer expression is converted into a string
representation in the desired radix. The resulting string representation
is right-justified in the temporary field. If the expression is positive, a
space precedes the leftmost significant digit. If the integer expression
is negative, a minus sign precedes the leftmost significant digit. The
leading space or hyphen must be considered a part of the length.
Thus, the length must be greater than or equal to 2 in order to hold
the sign character and at least one digit.

If you specify a field length larger than necessary, spaces are added
on the left to fill the field. If you specify a field length that is not
long enough to contain all digits and the sign character, the fieid is
filled with a string of asterisk characters. If you specify a field length
less than or equal to zero, an error occurs.

7-4 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46: 31 I 87/03/25 22.17.32 ! 60464113 F | PROCEDURES ’ DRAFT COPY

STRINGREP

Use this format to specify a character element:
expression { : length }

expression

A character expression to be converted.

length

A positive integer expression specifying the length of the
temporary field. If it is omitted, a length of 1 is assumed.

A single character is left-justified in the temporary field. If you
specify a field length larger than necessary, spaces are added on the
right to fill the field. Including a radix for a character element causes
a compilation error.

Boolean Element
Use this format to specify a boolean element.:
expression { : length }

expression
A boolean expression to be converted.

length

A positive integer expression specifying the length of the
temporary field. If it is omitted, a length of 5 is assumed.

Either of the 5-character strings * TRUE’ or 'FALSE’ is left-justified in
the temporary field. If you specify a field length larger than
necessary, spaces are added on the right to fill the field. If you
specify a field length that is not long enough to contain all five
characters, the temporary field is filled with asterisk characters.
Likewise, if the expression you supply is neither TRUE nor FALSE,
the temporary field is filled with asterisk characters. Including a radix
for a boolean element causes a compilation error to occur.

Revision F Procedures 7-5

STRINGREP

Ordinal Element

The integer value of an ordinal expression is handled the same way
as an integer element. Refer to the discussion under Integer Element
earlier in this chapter.

Subrange Element

A subrange element is handled the same way as the element of which
it is a subrange.

Floating-Point Element
Use this format to specify a floating-point element:
expression { : length { : fraction } }

expression

A real expression to be converted. If the value is INFINITE or
INDEFINITE, an error occurs.

length

A positive integer expression specifying the length of the
temporary field. If it is omitted, the temporary field is the size
required to hold the real value and the necessary leading
character.

fraction

Positive integer expression specifying the number of fractional
digits to be included in a fixed-point format. Specify a value
less than or equal to "length - 2". If it is omitted, conversion
to floating-point format is assumed.
A floating-point expression can be converted into either a fixed-point
format or a floating-point format depending on the fraction parameter.
If it is included, the expression is converted to fixed-point format; if it
is omitted, the expression is converted to floating-point format.

7-6 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 I 87/03/25 22.17.32 I 60464113 F 'PROCEDURES | DRAFT COPY

STRINGREP

expression {: length{: fraction}}

causes the specified expression to be converted to a string in
fixed-point format. The string will have the specified length with the
specified number of fractional digits to the right of the decimal place.
The expression is rounded off so that the specified number of
fractional digits are present. If no positive digit appears to the left of
the decimal point, a 0 (zero) is inserted.

When figuring the length required to hold the expression, the compiler
counts all digits to the left of the decimal point (it also counts O if it
appears alone), the decimal point, and the specified number of
fractional digits that appear to the right of the decimal point. If the
expression is negative, an extra space is required for the minus sign.
If you specify a field length larger than necessary, spaces are added
on the left to fill the field. If you specify a field length that is not
long enough to contain all digits, the sign character, and the decimal

4+ £ + 1 1 +
peint, the fisld iz filled with 2 string of asterisk characters.

Examples:

Value of Format of

Expression E Element Resulting String
1.23456 E:6:2 ’1.23°

~1.23456 E:6:3 . 1-1.235¢

0 E:5:2 7 0.00°

Revision F Procedures 7-7

STRINGREP

Floating-Point Format
The form
expression {: length}

causes the specified expression to be converted to a string in
floating-point format.

The length of the temporary field is determined somewhat differently
from the other elements. The system defines a maximum number of
digits that can be contained in the mantissa of a real number and the
number of digits that can be in the exponent.

When the compiler figures the number of digits that will be in the
mantissa, it first determines the number of spaces that must be
present in the string. It allows for the number of digits in the
exponent and four additional spaces: one for the sign of the expression
(a space if positive, — if negative), one for the decimal point in the
mantissa, one for the exponent character (E), and one for the sign of
the exponent (4 or -). The total number of required spaces is
subtracted from the specified field length. The compiler then compares
the result (field length minus required spaces) and the maximum
number of digits allowed in the mantissa, and takes the smaller of
the two. That number is used as the number of digits in the mantissa
when the compiler rounds the floating-point expression.

If a field length larger than necessary is specified, spaces are added
on the left to fill the field. If the fixed size of the exponent is larger
than necessary, zeroes are added on the left to fill the field. If the
number that results from the subtraction of required spaces from the
field Iength is less than 1, the field is filled with a string of asterisk
characters.

Examples:

Value of Format of

Expression E Element Resulting String

123.456 E:10 © 1.23E+002”

-123.456 E1l ‘-1.235E+002°

7-8 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | PROCEDURES | DRAFT COPY

- STRINGREP

Use this format to specify a pointer element:
pointer { : length } { : #radix) }
pointer

A pointer reference to be converted.

length
A positive integer expression specifying the length of the

temporary field. If you omit the field length, the temporary
field is the size required to contain the pointer value.

radix
Radix of the pointer value. Possible values are 2, 8, 10, and
16. For NOS/VE, the default radix is 16.

The value of the pointer expression is converted into a string
representation in the specified radix. It is right-justified in the
temporary field. If you specify a field length larger than necessary,
spaces are added on the left to fill the field. If you specify a field
length that is not long enough to contain all the digits, the field is
filled with a string of asterisk characters.

String Element
Use this format to specify a string element:
expression { : length }

expression

A string variable, string constant, or substring to be converted.

length

A positive integer expression specifying the length of the
temporary field. If it is omitted, the field is the size required
to contain the string expression.

A string expression is left-justified in the temporary field. If you
specify a field length larger than necessary, spaces are added on the
right to fill the field. If you specify a field length that is shorter than
the length of the string, the temporary field is filled with a string of
asterisk characters.

Revision F Procedures 7-9

User-Defined Procedures

User-Defined Procedures

This section describes how you define your own procedures.

Procedure Declaration
You define your own procedure with the procedure declaration.
Use this format to declare a procedure:

PROCEDURE ({[attributes]} name {(formal_parameters)}!
{declaration_list;}
{statement_ list;}

PROCEND {name} ;

attributes

Specify one or more of the following attributes. If you specify
more than one attribute, separate them with commas.

XREF

The procedure has been compiled in a different module. In
this case, the procedure declaration can contain the name
and formal parameters, but no declaration list or statement
list. In the other module, the procedure must have been
declared with the XDCL attribute and an identical
parameter list. If it is omitted, the procedure must be
defined within the module where it is called.

XDCL

bmida +la ~Adealn
The p""""’“'"" can be called from gutside the module in

which it is located. This attribute can be included only in a
procedure declared at the outermost level of a module; it
cannot be contained in a program, function, or another
procedure. Other modules that call this procedure must
contain the same procedure declaration with the XREF
attribute specified.

1. Some variations of CYBIL available on other operating systems allow an additional
option, the alias name, in a procedure declaration. If it is included in a CYBIL
program run on NOS/VE, this parameter is ignored.

7-10 CYBIL Language Definition Revision F
L] | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | PROCEDURES] DRAFT COPY

\
|
\
|
\
\
\
|
l
l
|
|
|
|
l
I
|
I
|
|
|
|
|
|
|
[
1
|
[
1

User-Defined Procedures

g o

INLINE
Instead of calling the procedure, the compiler inserts the
actual procedure statements at the point in the code where
the procedure call is made. Additional information on inline
procedures is given later in this section.

#GATE?

The procedure can be called by a procedure at a higher
ring level if the call is issued from within the call bracket
of the gated procedure.® If you specify #GATE, you must
also specify the XDCL attribute.

If you don’t specify any attributes, the procedure is assumed to
be in the same module in which it is called.

name

Name of the procedure. The procedure name is optional
following PROCEND.

formal__parameters

One ar mora naramaters in tha form:
or are na erg 1n the Iorr

One or more parame) the f
VAR name {,namej... : type
{,name {,namej... : typej...

and/or:

name { namej... : type
{,name {,namej... : typej...

2. This attribute is not supported on variations of CYBIL available on other operating
systems.

3. A ring level is a hardware feature. Rings provide hardware protection in that an
unauthorized program cannot access anything at a lower ring level. For further
information on rings, refer to the SCL Object Code Management manual.

Revision F Procedures 7-11

User-Defined Procedures

The first form is called a reference parameter; its value can be
changed during execution of the procedure. The second form is
called a value parameter; its value cannot be changed by the
procedure. Both kinds of parameters can appear in the formal
parameter list; if so, separate them with semicolons (for
example, LINTEGER; VAR A:CHAR). Reference and value
parameters are discussed in more detail later in this chapter
under Parameter List.

The maximum number of parameters that can be passed to an
externally referenced (XREF) procedure is 127.
declaration__list

Zero or more declarations.

statement__list

Zero or more statements.

The maximum number of user-defined procedures allowed in a single
compilation unit is 999. Procedures can be nested up to 50 levels.

7-12 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | PROCEDURES | DRAFT COPY

User-Defined Procedures

Parameter List

A parameter list is an optional list of variable declarations that
appears in the first statement of the procedure declaration. In the
procedure declaration format shown earlier, they are shown as
formal__parameters. Declarations for formal parameters must appear in

that first statement; they cannot appear in the declaration list in the
body of the procedure.

A parameter list allows you to pass values from the calling program
to the procedure. When a call is made to a procedure, parameters
called actual parameters are included with the procedure name. The
values of those actual parameters replace the formal parameters in
the parameter list. Wherever the formal parameters exist in the
statements within the procedure, the values of the corresponding
actual parameters are substituted. For every formal parameter in a
procedure declaration, there must be a corresponding actual parameter
in the procedure call.

There are two kinds of parameters: reference parameters and value
parameters. A reference parameter has the form:

VAR name { name}... : type
{,name {,namej... : type}...

When a reference parameter is used, the formal parameter represents
the corresponding actual parameter throughout execution of the
procedure. Thus, an assignment to a formal parameter changes the
variable that was passed as the corresponding actual parameter. An
actual parameter corresponding to a formal reference parameter must
be addressable. A formal reference parameter can be any fixed or
adaptable type. If the formal parameter is a fixed type, the actual
parameter must be a variable or substring of an equivalent type. If
the formal parameter is an adaptable type, the actual parameter must
be a variable or substring whose type is potentially equivalent. (For
further information on potentially equivalent types, refer to Equivalent
Types in chapter 4.)

A value parameter has the form:

name {,namej... : type
{,name {,namej... : typej...

Revision F Procedures 7-13

User-Defined Procedures

When a value parameter is used, the formal parameter takes on the
value of the corresponding actual parameter. However, the procedure
cannot change a value parameter by assigning a value to it or using
it as an actual reference parameter to another procedure or function.
A formal value parameter can be any fixed or adaptable type except a
type that cannot have a value assigned, that is, a heap, or an array
or record that contains a heap. If the formal parameter is a fixed
type, the actual parameter can be any expression that could be
assigned to a variable of that type. Strings must be of equal length. If
the formal parameter is an adaptable type, the current type of the
actual parameter must be one to which the formal parameter can
adapt. If the formal parameter is an adaptable pointer, the actual
parameter can be any pointer expression that could be assigned to the
formal parameter. Both the value and the current type of the actual
parameter are assigned to the formal parameter.

Reference parameters and value parameters can be specified in many
combinations. When both kinds of parameters appear together, they
must be separated by semicolons. Parameters of the same type can
also be separated by semicolons instead of commas, but in this case,
VAR must appear with each reference parameter. All of the following
parameter lists are valid:

® VAR i, j: integer; a, b: char;

® VAR i: integer; VAR j: integer; a: char; b: char;
® a: char; VAR i, j: integer; b: char;

® VAR i: integer, j: real; a: char, b: boolean;

In each of the preceding exampies, I and J are reference parameters;
A and B are value parameters.

7-14 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 08:48:31 | 87/08/25 22.17.32 | 60464113 F | PROCEDURES | DRAFT COPY

User-Defined Procedures

Calling a Procedure

A call to a procedure consists of the procedure name (as given in the
procedure declaration) and any parametfers to be passed to the
procedure in the following format:

name {(actual_parameters)} ;

name

Name of the procedure or a pointer to a procedure.

actual__parameters

One or more expressions or variables to be substituted for
formal parameters defined in the procedure declaration. If you
specify two or more, separate them with commas. They are
substituted one-for-one based on their position within the list;
that is, the first actual parameter replaces the first formal
parameter, the second actual parameter replaces the second
formal parameter, and so on. For every formal parameter in a
procedure declaration, there must be a corresponding actual

naramater in the nracadure eall
parameier 1n Lae progecure call.

A procedure is a type, like the types described in chapter 4. Procedure
types are used for declaration of pointers to procedures; there are no
procedure variables.

The lifetime of a formal parameter is the lifetime of the procedure in
which it is a part. Storage space for the parameter is allocated when
the procedure is entered and released when the procedure is left.

The lifetime of a variable that is allocated using the storage
management statements (described in chapter 5) is the time between
the allocation of storage (with the ALLOCATE statement) and the
release of storage (with the FREE statement).

Two procedure types are equivalent if corresponding parameter
segments have the same number of formal parameters, the same
methods of passing parameters (reference or value), and equivalent
types.

Revision F Procedures 7-15

User-Defined Procedures

Example:

This example calculates the greatest common divisor X of M and N.
M and N are passed as value parameters; that is, their values are
used but M and N themselves are not changed. X, Y, and Z are
reference parameters (preceded by the VAR keyword). Their original
values are not used in this procedure; they are assigned new values
in the procedure that destroy their previous values.

PROCEDURE gcd (m,
n: integer;
VAR Xx,
Y,
z: integer);
{Extended Euclid’s Ailgorithm}
VAR
al,

7-16 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 ! 60464113 F |PROCEDURES | DRAFT COPY

User-Defined Procedures

{at *m+ b1 *n=4d, a2 *m+ b2 *n = c}
{gcd (c,d) = ged (m,n)}

q := ¢ DIV d;

r c MOD d;

a2 := a2 - aq* ai;
b2 :=b2 - g * b1;

o
Y
n
[V]
= N

-
[[]
o
—_

b1 := b2;
. b2 :=r;
WHILEND;
X = C;
y := a2;
z := b2;
{x =gcd (m,n), y *m+ 2 *n =gcd (mn)}
PROCEND gcd;

Revision F Procedures 7-17

Inline Procedures

Inline Procedures

An inline procedure is one for which the compiler inserts the actual
statements that are within the procedure at the point in the code
where the procedure call was made. An inline procedure must be
declared with the INLINE attribute. (Functions can also be declared
to be inline.)

Type, constant, and variable declarations that are local to an inline
function or procedure are appended to the declarations of the function
or procedure that called it. However, these types, constants, and
variables can be referenced only within the body of the inline function
or procedure; all the usual naming rules and scope rules still apply.
(Local variable declarations in an inline function or procedure become
part of the stack frame of the calling procedure.)

A variable declared within an inline function or procedure cannot be
declared with the STATIC or XDCL attribute. Another function or
procedure can be declared within an inline function or procedure only
if it is declared with the XREF (externally declared) attribute; an
inline function or procedure cannot contain any other function or
procedure declarations.

Formal parameters in an inline function or procedure are treated as
local variable declarations. When an inline function or procedure is
called, the actual parameters are assigned to the corresponding formal
parameter’s local variables. Reference parameters are accessed by
assigning a pointer to the actual parameter to the formal parameter’s
local variable.

When the actual parameter for a value parameter is an adaptable
type or a substring, the parameter is treated as a read-only reference
parameter (that is, a local copy of the parameter is not created). This
is necessary to allow the type to be set at execution time. For
adaptable array and adapiable record value parameters, the actual
parameter must be byte-aligned.

An inline function or procedure can call any other function or
procedure, including other inline functions and procedures, up to five
levels. However, recursive calls to an inline function or procedure,
either directly or indirectly, are not allowed. More than five nested
calls and recursive calls are considered compile-time errors and end
iniine substitution.

7-18 CYBIL Language Definition Revision F

W | 01/22/87 18:59:24 | 02/13/87 09:46:31 | 87/08/25 22.17.32 | 60464113 F | PROCEDURES | DRAFT COPY

Inline Procedures

Space that is allocated by a PUSH statement in an inline function or
procedure is not released until the calling (not the inline) function or
procedure completes.

The result of a reference to an inline function becomes part of the
caller’s stack frame. When an inline function is called more than once
within a statement, the results of each reference are separate even
though they share the same name.

The name of an inline function or procedure cannot be used in a
pointer reference.

If a source listing is produced during compilation, the statements of
the inline function or procedure are not listed at the point where the
call occurs.

You can use the Debug Utility with inline functions and procedures.
Debug treats an inline procedure call as a series of statements on the
same line as the procedure call itself. It treats an inline function call
as a series of statements on the same line as the end of the phrase
that contained the reference to the inline function. Debug may not be
able to access local variables declared in an inline function or
procedure directly because the substitution process could create
duplicate variable names (for example, if the names have already been
used in the calling function or procedure). In that case, the Debug
Utility always gives precedence to the variable names used in the
calling procedure. For further information on the Debug Utility, refer
to chapter 9.

Revision F Procedures 7-19

System-Dependent Procedures

System-Dependent Procedures

Of the procedures described here, some can be used only with
NOS/VE; others may be available in variations of CYBIL on other
operating systems, but they are not guaranteed to be. Keep in mind
that programs using these procedures may not be transportable to
other systems.

To use these procedures properly and efficiently, you should be
familiar with basic hardware concepts of your computer system. This
information can be found in volume II of the virtual state hardware
reference manual.

The functions are described in alphabetical order.

#CALLER _ID Procedure

The #CALLER_ID procedure returns the identification (caller id) of
the caller of a function or procedure. This procedure can be used only
with NOS/VE.

Use this format for the #CALLER_ID procedure call:
#CALLER _ID(id _record);

id _record

Name of the record that will contain the caller id information.
It must be four bytes long.

The caller id is a record that contains the key/lock fields, ring
number, and segmeni number of the calier. (This information is found
in the left half of the P register.) When a function or procedure is
called, the caller id is placed in the leftmost 32 bits of the X0
register as a result of a call relative (CALLREL) or call indirect
(CALLSEG) hardware instruction. The #CALLER_ID procedure
accesses X0 while this information is there.

7-20 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 I 02/13/87 09:48:31 | 87/03/26 22.17.32 | 60464113 F | PROCEDURES IDRAFT CoPY

e
)
H
J
)
)
)
!
)
i
}
)
e
¥
-

No special scope atiributes (XDCL or XREF) are required in tl
calling function or procedure to use this procedure.

For further information on the cailer id record and the CALLREL and
CALLSEG instructions, refer to volume II of the virtual state
hardware reference manual.

Example:

The following example sets the pointer variable PSA_PTR to point to
the first cell of the previous save area. The #CALLER_ID procedure
then returns information about the caller of the last function. That
information is returned in the record CALLER_RECORD. In this
example, CALLER_RECORD is equivalent to the object of pointer
PSA_PTR (that is, CALLER_RECORD = PSA_PTR").

TYPE
id_rec = record
id: 0 .. Offffffff(16),
recend;

\AD
vius

psa_ptr: “id_rec,
caller_record: id_rec;

o~
S’

psa_ptr := #previous_save_area
#caller_id (caller_record);

Revision F Procedures 7-21

#COMPARE_SWAP

#COMPARE _SWAP Procedure

The #COMPARE_SWAP procedure performs actions equivalent to the
compare swap (CMPXA) hardware instruction. It compares the
contents of a variable with an expression. If the variable is unlocked
and equal to the expression, the variable is swapped with a new
expression. This procedure can be used only with NOS/VE.

Use this format for the #COMPARE_SWAP procedure call:

#COMPARE _SWAP(lock _variable, initial _expression,
new_expression, actual_variable, result_variable);

lock _variable

Name of the variable on which the compare swap operation is
to be performed. This variable must be aligned on a word
boundary.

initial _expression

Expression that is compared to the lock variable. They must be
equal for the swap operation to occur.

new_expression

Expression that specifies the value to be stored in the lock
variable if the swap is successful (that is, the contents of lock_
variable equals initial_expression). The expression must be
greater than zero and less than 232-1,

actual _variable

Name of the variable into which the initial contents of the lock
variable is returned. If the lock variable is locked, this field is
not changed.

7-22 CYBIL Language Definition Revision F
L | 01/22/87 19:59: 24 | 02/13/87 09:48:31 | 87/03/25 22.17.32 | 60464113 F | PROCEDURES I DRAFT COPY

#COMPARE_SWAP
resuii_variabie
Name of the variable into which the result of the compare

swap instruction is returned. Specify a subrange from 0 to 2
where each value has the following significance:

n
i

Swap operation was successful.

1
Swap operation failed because the initial expression was not
equal to the contents of the lock variable.

2
Swap operation failed because the lock variable was locked.

The types of the lock variable, initial expression, new expression, and
actual variable must be equivalent and have a size of eight bytes.

The lock variable is said to be locked if the leftmost 32 bits are ones.
If it is locked, no action occurs. If it is unlocked, the contents of the
lock variabie is assigned to the actual variable. Then the lock variabie
is compared to an initial expression. If they are equal, a new
expression is assigned to the lock variable. Otherwise, no swap occurs.

This procedure essentially performs the following statements:

IF (left half of lock_variable) = Offffffff(16) THEN

result_variable := 2;
ELSE

actual_variable := lock_variable;

IF lock_variable = initial_expression THEN
lock__variable := new__expression;
result_variable := 0;

ELSE
result_variable := 1;

IFEND;

IFEND;

Revision F Procedures 7-23

#COMPARE_SWAP

These statements are executed by the hardware as a noninterruptable
sequence. Access to the lock_variable from other sources, such as
another processor or peripheral processor (PP), is prevented while
these statements are being executed.

For further information on the CMPXA instruction, refer to volume II
of the virtual state hardware reference manual.

Example:

The following example compares the variable LOCK with INITIAL. If
LOCK is unlocked and equal to INITIAL, the value of LOCK is
replaced by the value of variable NEW. In this example, LOCK is
unlocked and equal to INITIAL. Therefore, following completion of the
procedure, LOCK is equal to NEW which is 10. The variable RESULT
is O indicating that the swap was successful.

VAR
tock,
initial,
new,
actual: integer,
result: 0 .. 2;

lock := 5;
initial := 5;
new := 10;

#compare_swap (lock, initial, new, actual, result);

7-24 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 ' 02/13/87 09:46: 31 | 87/03/25 22.17.32 | 60464113 F | PROCEDURES ' DRAFT COPY ‘

#CONVERT_POINTER_TO_PROCEDURE

LM RTLY

mrn
#FUUNYLIL

The #CONVERT_POINTER_TO_PROCEDURE procedure converts a
variable of the type pointer to procedure that has no parameters to a
variable of the type pointer to procedure that can have parameters.
This procedure may not be available on variations of CYBIL that
execute on other operating systems.

Use this format for the #CONVERT_POINTER_TO_PROCEDURE
procedure call:

#CONVERT_POINTER _TO_PROCEDURE(pointer _1,
pointer_2);

pointer_1

Name of a pointer to procedure variable with no parameters.

pointer_2

Name of a pointer to procedure variable with an arbitrary
parameter list.

Example:

The following example converts the variable PTR_TO_PROCI1, a
pointer to a procedure that has no parameters, to the variable PTR_
TO_PROC2, a pointer to a procedure that does have parameters.

VAR
ptr_to_proci1: “procedure,
ptr_to_proc2: “procedure (argil: integer,
arg?: real);

ptr_to_proc1 := “proct;
#convert_pointer_to_procedure (ptr_to_proc1, ptr_to_proc2);

Revision F Procedures 7-25

#HASH_SVA

#HASH _SVA Procedure

The #HASH_SVA procedure performs actions equivalent to the load
page table index (LPAGE) hardware instruction. This instruction
searches the system page table (SPT) for a given system virtual
address (SVA). This procedure can be used only with NOS/VE.

Use this format for the #HASH_SVA procedure call:
#HASH _SVA(sva_variable, index, count, result_variable);

sva_variable

Name of the variable that contains the SVA for which the
instruction will search.

index

Name of an integer variable that will contain a word index
into the SPT. If the SVA is found, this index points to the SPT
entry for the SVA. If the SVA is not found, it points to the last
entry searched.

count

Name of an integer variable that will contain the number of
SPT entries searched.

result_variable

Name of a boolean variable that is set to TRUE if the SVA is
found.

The procedure returns either an index within the table if the SVA is
found, or an index of the last entry searched if the SVA is not found.
It also returns the number of entries searched and a boolean value
indicating whether the entry was found.

For further information on the SVA, addressing, and the LPAGE
instruction, refer to volume II of the virtual state hardware reference
manual.

7-26 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | PROCEDURES | DRAFT COPY

#KEYPOINT

#KEYPOINT Procedure
The #KEYPOINT procedure generates an inline keypoint hardware
instruction based on parameters supplied in the call. It allows

performance monitoring of programs using keypoint instructions as
trap interrupts. This procedure can be used only with NOS/VE,

Use this format for the #KEYPOINT procedure call:
#KEYPOINT(class, data, identifier);

class

A constant integer expession from 0 to 15 that specifies the
keypoint class. This value is placed in the j field of the
hardware instruction.

data

A constant or variable expression from 0 to OFFFFFFFF
hexadecimal that specifies optional data to be collected with the
keypoint. If you specify the constant 0, a 0 is placed in the k
field of the hardware instruction. If you don’t specify 0, the
value is placed in an X register and that register is placed in
the k field of the hardware instruction.

identifier

A constant expression from 0 to OFFFF hexadecimal that
specifies a keypoint identifier. It is placed in the Q field of the
hardware instruction. V

For further information on the KEYPOINT instruction, refer to
volume II of the virtual state hardware reference manual.

Revision F Procedures 7-27

#PURGE_BUFFER

#PURGE _BUFFER Procedure

The #PURGE_BUFFER procedure performs actions equivalent to the
purge hardware instruction. It purges the contents of cache or the
map buffer. This procedure can be used only with NOS/VE. However,
not all computer systems that support NOS/VE have cache and map
buffers. If executed on a model without cache or map buffers, no
action occurs.

Use this format for the #PURGE_BUFFER procedure call:
#PURGE _BUFFER(option _value, address);

option _value
A constant integer expression from 0 to 15 that specifies one of
the following purge options:
0
Purge all entries in cache that are included in the 512-byte
block defined by the system virtual address (SVA) in Xj.
1
Purge all entries in cache that are included in the active
segment identifier (ASID) defined by the SVA in Xj.
2
Purge all entries in cache.

3

Purge all entries in cache that are included in the 512-byte

block defined by the process virtual address (PVA) in Xj.
47

Purge all entries in cache that are included in the segment
number defined by the PVA in Xj.
8

Purge all entries in the map (page table map if entries are
kept in separate maps) relating to the page table entry
defined by the SVA in Xj.

7-28 CYBIL Language Definition Revision F
w | 01/22/87 19:59:24 I 02/13/87 09:48:31 | 87/03/25 22.17.32 l 60464113 F [PROCEDURES | DRAFT COPY

#PURGE_BUFFER

N

b

Purge all entries in the map (page table map if entries are
kept in separate maps) relating to the page table entries
that are included in the segment defined by the SVA in Xj.

Purge all entries in the map (page table map if entries are
kept in separate maps) relating to the page table entry
defined by the PVA in Xj.

11 or B(16)

Purge all entries in the map (both the page table and
segment map) relating to the segment table entry defined
by the PVA in Xj, and to all page table entries included
within that segment.

12-15 or C(16)-F(16)
Purge ali entries in the map.

address

Name of a 6-byte variable that specifies the PVA or SVA of the
data to be purged.

For further information on addressing, cache and map buffers, and the
purge instruction, refer to volume II of the virtual state hardware

reference

Example:

manual.

The following example purges all entries in cache that are in the
block defined by the PVA in pointer variable PTR1.

VAR
i: integer,
ptri: “cell;
ntr1 := i

#purge_buffer (3, ptri1);

Revision F

Procedures 7-29

#SCAN

#SCAN Procedure

The #SCAN procedure scans a string from left to right until one of a
specified set of characters is found or the entire string has been
searched. This procedure may not be available on variations of CYBIL
that execute on other operating systems.

Use this format for the #SCAN procedure call:
#SCAN(scan _variable, string, index, result_variable);

scan _variable

Name of the variable that indicates the character values for
which the string is scanned. The variable must be 256 bits
long. Each bit of the variable represents the character in the
corresponding position of the ASCII character set. If a bit is
set, the corresponding character is one for which the procedure
scans.

string
String or substring to be scanned.

index

Name of an integer variable. If a character is found during
scanning, the index of that character is returned in this
variable. The index of a character is that character’s position
in the string; for example, the index value of the first
character is 1. If no matching values are found, the variable
contains the string length plus one.

resuii_variabie
Name of a boolean variable that is set to TRUE if the scan
finds one of the selected characters.

The procedure looks for any one character from a set of characters
specified in a 256-bit variable. Bits are set in the variable to
correspond to the characters in the same positions in the ASCII
character set collating sequence. A set bit indicates that the procedure
scans the string for the corresponding character. The procedure stops
if it finds one of the characters specified. It returns the position of the
character that caused termination and the boolean variable that
indicates whether a character was found.

7-30 CYBIL Language Definition Revision F

W | 01/22/87 18:69: 24 | 02/13/87 08:46:31 | 87/03/25 22.17.82 I 60464113 F | PROCEDURES | DRAFT COPY

#SCAN

| 7 S, P
Lixalipic.

The following example searches the string variable SOURCE_STRING
for the asterisk character (¥). First, the character to be searched for
(the asterisk) must be specified in the array variable SELECT. To do
this, all 256 elements of SELECT are set to 0. Then the $INTEGER
function is used to determine the position of the asterisk character in
the ASCII character set collating sequence. The value returned in I is
42 (because the asterisk is in the forty-second position in the collating
sequence). The forty-second position in the array SELECT is then set
to 1. Assuming SOURCE_STRING contains an asterisk as the
fifty-fourth character of the string, the value returned in INDEX is 54
and the value returned in RESULT is TRUE.

VAR
source_string: string (100),
seiect: packed array [0 .. 265] of O .. 1,
ir

index: integer,

resulit: boolean;

FOR 1 := 0 TO 255 DO

select [i] := O;
FOREND;
i := $INTEGER (’"*’);
select [i] := 1;

#scan (select, source_string, index, result);

Revision F Procedures 7-31

#SPOIL

#SPOIL Procedure

The #SPOIL procedure causes the compiler to inhibit optimization of
the specified variables the next time they are referenced and instead
load their values from memory. Subsequent references to the variables
are again subject to optimization. This procedure may not be available
on variations of CYBIL that execute on other operating systems.

Use this format for the #SPOIL procedure call:
#SPOIL(name {, name}..);

name

Name of one or more variables for which optimization should
be inhibited. You can specify a maximum of 127 variable
names.

When the CYBIL compiler generates optimized object code, variables
may be moved or otherwise treated differently than if the code was
not optimized. For example, local variables are stored in registers and
carried there throughout execution rather than always being
referenced from memory. Specifying a variable in the #SPOIL
procedure call causes its value to be loaded from memory (rather than
taken from a register) the first time it occurs in code after the
#SPOIL procedure call. Following that reference, however, the
compiler resumes optimizing of the variable. Inhibiting code
optimization is sometimes necessary to control asynchronous uses of
CYBIL variables. (For further information on optimization, refer to
the description of the CYBIL command’s OPTIMIZATION _LEVEL
parameter in chapter 8.)

The CYBIL compiler interprets this procedure as it would an external
procedure and treats each actual parameter specified as if it were
associated with a reference (VAR) formal parameter. However, the
compiler does not generate any code when the procedure is referenced.

7-32 CYBIL Language Definition Revision F
W | 01/22/87 19:58:24] 02/13/87 09:46: 31 | 87/03/25 22.17.32 |60484113 F I PROCEDURES | DRAFT COPY

#SPOIL

Example:

The following example inhibits code optimizing for a variable,
HEADER", to ensure that it contains an accurate status value before
a channel is unlocked. HEADER" is a record variable that contains
status and request codes. The WHILE statement loop checks the
STATUS field of HEADER", waiting for a change to occur on a disk
which is being updated asynchronously. After the change on the disk
occurs, a user-defined procedure UNLOCK_CHANNEL ig called and
the specified channel is unlocked. If the #SPOIL procedure was not
included in the WHILE statement list and the code was optimized, the
code that loads HEADER".STATUS would be moved out of the WHILE
loop and, because the disk is updated asynchronously, the value of the
STATUS field would never change.

IF header”.request_code IN disk_access_set THEN
WHILE header” .status = dsc$dft_no_response DO
#SPOIL (header”);
WHILEND;
unlock_channel (idle_channel);
IFEND;

Revision F Procedures 7-33

#TRANSLATE

#TRANSLATE Procedure

The #TRANSLATE procedure translates each character in a source
field according to a translation table, and transfers the result to a
destination field. This procedure may not be available on variations of
CYBIL that execute on other operating systems.

Use this format for the #TRANSLATE procedure call:
#TRANSLATE(table, source, destination);
table

Name of a string variable whose length is 256 characters. This
variable defines the translation table.

source
String to be translated.

destination

Name of a string variable into which the translated string is
transferred.

Translation of the string occurs from left to right with each source
byte used as an index into the translation table. Translated bytes
from the table are stored in the destination field.

If the length of the source field is less than the length of the
destination field, translated spaces fill the destination field. If the
source field is larger than the destination field, the rightmost
characters of the source field are truncated.

Example:

The following example translates a string named SOURCE_STRING
according to an externally referenced translation table named
TRANS1_TABLE. The resulting string is placed in DEST_STRING.

VAR
transi_table: [XREF] string (256),
source_string: string (100),
dest_string: string (100);

source_string (1, 10) := “ten chars.’;
#translate (transi_table, source_string, dest_string);

7-34 CYBIL Language Definition Revision F

W | 01/22/87 18:59:24 | 02/13/87 09:46:31 | 87/08/26 22.17.32 | 60464113 F | PROCEDURES | DRAFT COPY ‘

#UNCHECKED_CONVERSION

- o - - —_— —_—

#UNCHECKED_CONVERSION Procedure

The #UNCHECKED_CONVERSION procedure copies directly from a
source field to a destination field. This procedure may not be available
on variations of CYBIL that execute on other operating systems.

Use this format for the #UNCHECKED_CONVERSION procedure
call:

#UNCHECKED _CONVERSION(source, destination);

source

Name of a variable from which the copy is made.

destination
Name of a variable to which the copy is made.

The source and destination fields must have the same length in bits.
Neither the source nor the destination field can be a pointer or
contain a pointer. If either the source or destination field is the object
of a pointer reference (pointer”), the pointer cannot be a pointer to a
procedure.

Revision F Procedures 7-35

#UNCHECKED_CONVERSION

The destination field must satisfy the same restrictions as the target
of an assignment statement. This means that the destination field
cannot be:

® A read-only variable

® A formal value parameter of the procedure that calls the
#UNCHECKED_CONVERSION procedure

® A bound variant record

® The tag field name of a bound variant record
® A heap

® An array or record that contains a heap
Example:

The following example copies the contents of a 5-character string
named SOURCE to a 5-element array named DESTINATION. After
the operation, the contents of both variables are identical.

VAR
source: string (5),
destination: packed array [1 .. 5] of char;

#unchecked_conversion (source, destination);

7-36 CYBIL Language Definition Revision F
W I 01/22/87 19:59:24 I 02/13/87 08:46:31 | 87/03/26 22.17.32 I 60464113 F I PROCEDURES l DRAFT COPY

#WRITE_REGISTER

#WRITE _REGISTER Procedure

The #WRITE_REGISTER procedure performs actions equivalent to
the copy to state register (CPYXS) hardware instruction. It allows a
program to change the contents of a process or processor register.

. :
Thig procedure can be used only with NOS/VE.

Use this format for the #WRITE_REGISTER procedure call:
#WRITE _REGISTER(register_id, data);

register _id

An integer expression from 0 to 255 that identifies the number
of the register to be written. Register numbers are given in
volume II of the virtual state hardware reference manual.

data
Integer expression that contains the data to be written to the
register.

The #READ_REGISTER function described in chapter 6 allows a
program to read the contents of a process or processor register.

Writing to certain registers requires special privileges. For further
information on process and processor registers, and the CPYXS
instruction, refer to volume II of the virtual state hardware reference
manual.

Example:

The following example changes the contents of register E5, the Debug
mask register, to 1F hexadecimal.

VAR
i: integer;

i := 01f(16);
#write_register (0e5(16), i);

Revision F Procedures 7-37

Compiling and Formatting Source Code 8

This chapter describes how to compile and format CYBIL source code.

Compiling Source Code 8-1
CYBIL Command 8-2
Compilation Declarations and Statements 8-8

Compile-Time Variables. 8-8
Compile-Time Expressions 8-9
Compile-Time Assignment Statement 8-9
Compile-Time IF Statement 8-10
Compile-Time Directives 8-12
COMMENT Directive 8-14
COMPILE Directive814
EJECT Directive 8-15
LEFT Directive 8-15
LIBRARY Directive 8-16
NEWTITLE Directive 8-17
NOCOMPILE Directive 8-18
OLDTITLE Directive 8-18
POP Directive 8-19
PUSH Directive 8-20
RESET Directive. 8-22
RIGHT Directive 8-23
SET Directive 8-24
SKIP Directive 8-24
SPACING Directive 8-25
TITLE Directive 8-25

Formatting Source Code 8-26
FORMAT_CYBIL_SOURCE Command 8-29
Formatting Directives 8-32

FMT Directive 8-33
LEFT Directive 8-36

RIGHT Directive i i i . 8-37

Compiling and Formatting Source Code 8

This chapter describes how to compile and format CYBIL source code.
You compile source code using the CYBIL command and compile-time
declarations, statements, and directives that yvou insert at the
appropriate place in the code. You format source code using the
FORMAT_CYBIL_SOURCE command and formatting directives
likewise inserted in the code. (These directives in the code are called
text-embedded directives.)

The CYBIL command and the FORMAT_CYBIL_SOURCE command
are standard system commands. They use the same syntax and
language elements for parameters that are described in the SCL
Language Definition manual.

Compiling Source Code

The CYBIL command compiles one or more modules of CYBIL source
code. Compilation statements and directives are used to construct the
unit to be compiled and to control that process. If the CYBIL
command and a directive specify conflicting options, the directive
encountered most recently is used. The CYBIL command, statements,
and directives are described later in this section.

The maximum number of lines allowed in a single compilation unit is
65,535 if no run-time checking is performed. If run-time checking is
selected, the maximum number of lines allowed is 32,767. In one
compilation unit, there can be up to 16,383 unique names and up to
999 user-defined procedures. At most, 2,000 error messages can be
generated for any one module within a compilation unit.

For further information on program execution, refer to the SCL Object
Code Management manual.

Revision F Compiling and Formatting 8-1

CYBIL Command

CYBIL Command

Purpose Calls the compiler, specifies the files to be used for input
and output, and indicates the type of output to be
produced.

Format CYBIL

INPUT =file

LIST =file

BINARY =file

LIST_OPTIONS =list of keyword
DEBUG_AIDS =list of keyword
ERROR_LEVEL =keyword
OPTIMIZATION _LEVEL =keyword
PAD =integer

RUNTIME _CHECKS =list of keyword
STATUS =status variable

Parameters INPUT or I

The file that contains the source text to be read. You can
specify a file position as part of the file name. Source
input ends when an end-of-partition or an
end-of-information is encountered on the source input file.
If it is omitted, $INPUT is assumed.

LIST or L

The file on which the compilation listing is to be written.
You can specify a file position as part of the file name. If
you specify $NULL, all compile-time output is discarded.

If it is omitted, $LIST is assumed.

BINARY or B or BINARY_OBJECT or BO

The file on which object code is to be written. You can
specify a file position as part of the file name. If you
specify $NULL, the compiler performs a syntactic and
semantic scan of the program but does not generate object
code. If it is omitted, $LOCAL.LGO is assumed.

8-2 CYBIL Language Definition Revision F
w | 01/22/87 19:59:24 | 02/13/87 09:48:31 | 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

Revision F

CYBIL Command

NONE, no list options are selected. If it is omitted, option
S (list the source input file) is assumed.

A
s

Produces an attribute list of source input block
structure and relative stack. The attribute listing is
produced following the source listing on the file
specified by the LIST parameter or, if you omit the
LIST parameter, on file $LIST.

F

- Produces a full listing. In effect, this option selects
options A, S, and R.

0

Lists compiler-generated object code. When selected,
this listing includes an assembly-like listing of the
generated object code. This option has no effect if the
BINARY_OBJECT parameter is set to $SNULL.

R

Produces a symbolic cross-reference listing showing the
location of a program entity definition and its use
within a program.

RA
Produces a symbolic cross-reference listing of all
program entities whether referenced or not.

S
Lists the source input file.

X

Used in conjunction with the compile-time directive
LISTEXT so that listings can be externally controlled
using the CYBIL command. The LISTEXT toggle must
be ON. For further information, refer to the SET,
PUSH, POP, and RESET directives later in this
chapter.

Compiling and Formatting 8-3

CYBIL Command

DEBUG_AIDS or DA
A combination of the following debug options. If it is
omitted, NONE (no debug options) is assumed.

ALL

Selects debug options DS and DT.

DS

Compiles all debugging statements. A debugging
statement is a statement in the source text that is
ignored unless this option is specified. These
statements are enclosed by the compile-time directives
COMPILE and NOCOMPILE (described later in this
chapter).

DT

Generates debug tables (that is, the symbol table and
line table) as part of the object code. These tables are
used by the Debug Utility.

NONE

No debug options are selected.

ERROR_LEVEL or EL

One of the following error list options. If it is omitted, W
(list warning and fatal diagnostics) is assumed.

F

Lists fatal diagnostics. If it is selected, only fatal
diagnostics are listed.

w
Lists warning (informative) diagnostics as well as fatal
diagnostics.

8-4 CYBIL Language Definition Revision F :

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

Revision F

CYBIL Command

OPT

One of the following optimization options. If it is omitted,
LOW is assumed.

code contains a separate packet of instructions for each
executable source statement; it carries no variable
values across statement boundaries in registers, and it
notifies Debug each time the beginning of a statement
or procedure is reached.

LOW
Provides for keeping constant values in registers.

HIGH

Provides for keeping local variables in registers,
passing parameters to local procedures in registers,
and eliminating redundant memory references, common
subexpressions, and jumps to jumps. When this option
is selected, the RUNTIME_CHECKS parameter cannot
be specified.

PAD
The number of no-op (no operation) instructions generated
between instructions that perform operations. If it is

omitted, zero is assumed; no-op instructions are not
generated.

Compiling and Formatting 8-5

CYBIL Command

RUNTIME _CHECKS or RC

A combination of the following run-time checking options.
This parameter cannot be specified when
OPTIMIZATION _LEVEL=HIGH is also specified. If it is
omitted, NONE (no run-time checks) is assumed.

ALL
Selects run-time checking options N, R, and S.

N

Produces compiler-generated code that checks for a
NIL value when a reference is made to the object of a
pointer.

NONE
No run-time checks are produced.

R

Produces compiler-generated code to check ranges. |
Range checking code is generated for assignment to
integer subranges, ordinal subranges, and character
variables. All CASE statements are checked to ensure
that the selection expression corresponds to one of the
variant values specified if no ELSE clause is provided.
All references to substrings are verified. If you specify
an offset (variable pointer) on a RESET statement, it
is checked to ensure that it is valid for the specified
sequence,

S

Produces compiler-generated code to test the
subscripting of arrays.

!
\
\
\
\
\
\
\
1
i
l
|
I
|
1
i
!
|
|
|
|
|
1
|
|
|
!
|
|
|
|
|
I
1
1
1
[
I
|
I
|
1
1

8-6 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 089:46:31 | 87/03/25 22.17.32 I 60464113 F | SOURCE CODE | DRAFT COPY '

Remarks

Examples

Revision F

CYBIL Command

STAMITTO

DLIALUD

An optional SCL status variable in which the completion
status of the command is returned. If it is specified, the
compiler returns a status to this variable indicating
whether any fatal errors were found during the
compilation that was just compieted. You can test this
status variable and take special action if fatal compilation
errors occurred. If it is omitted and the status returned
from the compiler is abnormal, SCL terminates the
current command sequence.

If the compiler command specifies an option that differs
from a directive, the latest occurrence of either the
command or the directive takes precedence.

This command reads source code from a file named
COMPILE, writes the compilation listing on file LIST, and
writes the object code on file BIN1. The listing includes
source code, compiler-generated object code, and a
symbolic cross-reference listing.

cybil i=compile 1=1ist b=bin1 lo=(o,r)

Compiling and Formatting 8-7

Compilation Declarations and Statements

Compilation Declarations and Statements

Many program elements defined in CYBIL have counterparts that can
be used to control the compilation process. They include variable
declarations, expressions, and the assignment and IF statements. The
IF statement is used to specify certain areas of code to be compiled.
The IF statement requires the use of expressions, which in turn
require variables. Assignment statements are used to change the value
of variables and, thus, expressions.

Compile-Time Variables
Only boolean type variables can be declared.

Use this format to specify a boolean type compile-time variable:

? VAR name {,namej... : BOOLEAN := expression
{, name {,;name}... : BOOLEAN := expression}... %

name

Name of the compile-time variable. This name must be unique
among all other names in the program.

expression

A compile-time expression that specifies the initial value of the
variable.

A compile-time declaration must appear before any compile-time
variables are used. The scope of such a variable extends from the
point at which it is declared to the end of the module. Compile-time
variables can be used only in compile-time expressions and
compile-time assignment statements. The maximum number of
compile-time variables that can be used in a compilation unit is 1,023.

8-8 CYBIL Language Definition Revision F |
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

Compilation Declarations and Statements

Compile-time expressions are composed of operands and operators like
CYBIL-defined expressions. An operand can be:

® Either of the constants TRUE or FALSE
® A compile-time variable
® Another compile-time expression

The operators are NOT, AND, OR, and XOR. Their order of
evaluation from highest to lowest is:

e NOT
e AND
® OR and XOR

These operators have their usual meanings, as described under
Operators in chapter 5.

Compile-Time Assignment Statement

A compile-time assignment statement assigns a value to a
compile-time variable.

Use this format for the compile-time assignment statement:
? name := expression 7;

name

Name of a compile-time variable.

expression

A compile-time expression.

Revision F Compiling and Formatting 8-9

Compilation Declarations and Statements

Compile-Time IF Statement

The compile-time IF statement compiles or skips a certain area of
code depending on whether a given expression is true or false.

Use this format for the compile-time IF statement:

? IF expression THEN
code
{ ? ELSE
code }

? IFEND

expression

A boolean compile-time expression.

code
An area of CYBIL code or text.

When the expression is evaluated as true, the code following the
reserved word THEN is compiled. When compilation of that code is
completed, compilation continues with the first statement following
IFEND. When the expression is false, compilation continues following
the ELSE phrase, if it is included, or following IFEND.

The ELSE clause is optional. If it is included, the ELSE clause
designates an area of code that is compiled when the preceding
expression is false.

8-10 CYBIL Language Definition Revision F
W | 01/22/87 19:59: 24 | 02/13/87 09:48: 31 I 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

Compilation Declarations and Statements

Exampie:

The following example shows the declaration of a compile-time
variable named SMALL_SIZE that is initialized to the value TRUE.
A line of CYBIL code declaring an array named TABLE is compiled.
Then a compile-time IF statement checks the value of SMALL_SIZE.
If it is TRUE, the line of CYBIL code that calls a procedure named
BUBBLESORT is compiled in the program. If it is FALSE, the code
that calls procedure QUICKSORT is compiled instead. Because
SMALL_SIZE was initialized to TRUE, the call to BUBBLESORT is
included in the compiled program.

?VAR
small_size: boolean := TRUE?;

VAR
table: array [1 .. 50] of integer;

?IF smali_size = TRUE THEN
bubblesort (tabie);
?ELSE

guicksort (table};
?

IFEND

Revision F Compiling and Formatting 8-11

Compile-Time Directives

Compile-Time Directives

Compile-time directives allow you to perform many activities during
compilation. They can be grouped into five major categories:

® Toggle control (the SET, PUSH, POP, and RESET directives)

® Layout control (the LEFT, RIGHT, EJECT, SPACING, SKIP,
NEWTITLE, TITLE, and OLDTITLE directives)

® Maintenance control (the COMPILE and NOCOMPILE directives)
® Object code comment control (the COMMENT directive)
® Object library control (the LIBRARY directive)

You can turn on or off various listing options and run-time options
using the SET and PUSH directives. The SET directive specifies new
settings that replace the current settings. The PUSH directive, on the
other hand, causes the current settings to be saved before initiating
the new settings. In that case, the POP directive can be used to
restore the last settings that were saved by the PUSH directive. The
RESET directive restores the original settings and discards any
settings that were saved.

The LEFT and RIGHT directives specify the margins of the source
text to be read. Any text to the left of the left margin or the right of
the right margin is ignored. The remaining layout control directives
format the listing that results from compilation. The EJECT directive
advances the paper to the top of the next page. The SPACING
directive specifies single, double, or triple spacing between lines of the
listing. The SKIP directive skips a specified number of iines. The
TITLE, NEWTITLE, and OLDTITLE directives indicate titles that are
printed on every page of the listing.

8-12 CYBIL Language Definition Revision F

W | 01/22/87 19:58:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

|
|
\
\
\
|
\
!
\
\
\
\
1
|
|
|
|
|
|
|
|
|
|
!
|
|
I
|
l

Compile-Time Directives

The COMPILE and NOCOMPILE directives specify areas of code
which should or should not be compiled.

The COMMENT directive inserts a comment in the object module that
is generated during compilation.

The LIBRARY directive associates one or more object libraries with
the object module so that the loader can satisfy external references
from those libraries.

You can specify one or more directives with the format:
?? directive {,directive}... ??

directive
One of the directives discussed in the remainder of this
chapter.

Directives must be bounded by a pair of consecutive question marks.
These delimiters are not shown in the following formats for individual
directives, but they are required around one or more directives.

If a directive conflicts with an option specified on the CYBIL
command, the most recent directive takes precedence.

Revision F Compiling and Formatting 8-13

Compile-Time Directives

COMMENT Directive

The COMMENT directive causes the compiler to include the given
character string in the commentary portion of the object module
generated by the compilation process.

Use this format for the COMMENT directive:
COMMENT := ’character_string’

character _string

A character string of up to 40 characters that specifies a
compile-time comment.

This directive allows you to include comments in object modules so
that the comments appear in the load maps. Any number of comments
can be included, but only the last comment encountered appears.

Example:

?? COMMENT := ‘Copyright 1985 by Control Data Corporation’ ??

COMPILE Directive

The COMPILE directive causes compilation to occur, or to resume
after the occurrence of a NOCOMPILE directive.

Use this format for the COMPILE directive:
COMPILE

if you dun’i use either the COMPILE or NOCOMPILE directive, the
COMPILE directive is assumed; source code is compiled.
When the CYBIL command includes the DEBUG_AIDS parameter

with DS specified, debugging statements enclosed by the NOCOMPILE
and COMPILE directives are compiled.

8-14 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | SCURCE CODE | DRAFT COPY

Compile-Time Directives

EJECT Directive

The EJECT directive causes the paper to be advanced to the top of
the next page.

Use this format for the EJECT directive:
EJECT

LEFT Directive

The LEFT directive specifies the column number of the left margin of
the source text.

Use this format for the LEFT directive:
LEFT := integer

integer

An integer value that represents the column number of the left
margin. The left margin must be greater than zero.

All source text left of the left margin is ignored. If you don’t use the
LEFT directive, the left margin is assumed to begin in column 1.

The LEFT directive can also be used as a formatting directive. If it is
encountered after a FORMAT_CYBIL_SOURCE command is issued,

the formatter starts all of its formatted output at the left margin
specified on the LEFT directive.

The RIGHT directive, described later in this section, specifies the
column number of the right margin.

Example:

This example sets the left margin at column 1 and the right margin
at column 110.

?? LEFT := 1, RIGHT := 110 ?7?

Revision F Compiling and Formatting 8-15

Compile-Time Directives

LIBRARY Directive

The LIBRARY directive allows you to specify an object library from
which external references in the compilation unit can be satisfied.

Use this format for the LIBRARY directive:
LIBRARY := library_name
library _name

A string constant that specifies the name of the library. This
string must be a valid NOS/VE file name (although the
compiler does not check for its validity). In addition, the string
cannot contain the CAT (concatenation) operation or the
$CHAR function.

As a result of this directive, the compiler includes the specified
library name in the library record of the object module that is
produced during compilation.! This allows externally referenced
declarations to be linked with the appropriate object library. Even if
the same library name is found in more than one directive, the
library is entered in the library record of the object module only once.

Example:

This example will cause the loader to search the object library MY_
CYB_LIBRARY to satisfy external references in the compilation unit.

?? LIBRARY := “MY_CYB_LIBRARY” ?7

1. For further information about the library record and the format of the object module,
refer to the SCL Object Code Management manual.

8-16 CYBIL Language Definition Revision F
L] | 01/22/87 18:59: 24 | 02/13/87 09:48:31 | 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

Compile-Time Directives

The NEWTITLE directive specifies a new, additional title to be used
on a page while saving the current title.

Use this format for the NEWTITLE directive:
NEWTITLE := ’character_string’

character _string

A character string specifying the title to be used. A single
quote mark is indicated by two consecutive quote marks
enclosed by quote marks [that is, ™].

The current title is saved and the given character string becomes the
current title. A standard page header is always the first title printed
on a page, followed by user-defined titles in the order in which they
were saved. This means that titles are saved and restored in a last

in-first out nrr]nr]‘\nf thav are nrintad in a firet in_firet nut "'dez

AImLIDSY VWL VIECI BT, QAT PLALIVCU did 41i 0V AEETALL DL VUL

There is always a single empty line between the standard page header
and any user-defined titles. There is always at least one empty line

PR

between the lasi titie and the iext.

The maximum number of titles that can be specified is 10. Any
attempts to add more titles is ignored.

Titling does not take effect until the top of the next printed page.

Revision F Compiling and Formatting 8-17

Compile-Time Directives

NOCOMPILE Directive

The NOCOMPILE directive causes compilation to stop until the
occurrence of a COMPILE directive or the end of the module.

Use this format for the NOCOMPILE directive:
NOCOMPILE

NOCOMPILE continues listing source code and text according to the
listing toggles and layout directives, interpreting and obeying
directives, but source code is not compiled until a COMPILE directive
is encountered or a MODEND statement is encountered.

When the CYBIL command includes the DEBUG_AIDS parameter
with DS specified, debugging statements enclosed by the NOCOMPILE
and COMPILE directives are compiled.

OLDTITLE Directive

The OLDTITLE directive restores the last user-defined title that was
saved, making it the current title.

Use this format for the OLDTITLE directive:
OLDTITLE

If there is no saved title, no action occurs.

8-18 CYBIL Language Definition Revision F
W | 01/22/87 18:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

Compile-Time Directives

The POP directive restores the last toggle settings that were saved by
the PUSH directive.

Use this format for the POP directive:

POP

If no record was kept (such as when a SET directive is performed),
the initial settings are restored.

Example:

This example shows a PUSH directive that temporarily turns off
listing. The POP directive restores listing.

?? PUSH (LIST := OFF) ??

7?7 POP 77

Revision F Compiling and Formatting 8-19

Compile-Time Directives

PUSH Directive

The PUSH directive specifies the setting of one or more toggles like
the SET directive, but before the settings are put into effect, a record
of the current state of all toggles is saved for later use.

Use this format for the PUSH directive:
PUSH (toggle _name := condition {toggle_name := condition}..)

toggle _name

Name of the toggle being set. Listing toggles are described in
table 8-1. Run-time checking toggles are described in table 8-2.
The names of toggles can be used freely outside of directives.

condition

ON or OFF. If a toggle is ON, the activity associated with it is
performed during compilation; if it is OFF, the activity is not
performed.

Settings in the PUSH list are performed in the same manner as a
SET list. If the directive list contains more than one setting for a
single toggle, the rightmost setting in the list is used.

The POP directive, described earlier in this chapter, restores the
original toggle settings in a last in-first out manner (that is, the last
record to be saved is the first to be restored). A maximum of 25
toggle control directives can be stacked in a compilation unit.

Example:

This example turns off listing temporarily, that is, until the POP
directive is encountered.

22 PUSH (LIST -= OFF) 77

?? POP ??

8-20 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

Compile-Time Directives

L1 o 1 I____.21L __ - tadd
avle O-1 UCSCIIUCS LIIC 1IdLLILE
Table 8-1. Listing Toggles

Initial
Toggle Value Description

LIST ON Determines whether other listing toggles
are read. When ON, a source listing is
produced and the other listing toggies are
used to control other aspects of listing.
When OFF, no listing is produced; the
other listing toggles are ignored.

LISTOBJ OFF Controls the listing of generated object
code. When ON, object code is inferspersed
with source code following the
corresponding source code line.

LISTCTS OFF Controls the listing of the listing toggle
directives and layout directives.

LISTEXT OFF When ON, the listing of source statements
is controlled by a parameter (LIST_
OPTIONS=X) on the CYBIL compiler
command.

LISTALL Not This option represents all of the listing
applicable toggles. When ON, all other listing toggles
are ON; when OFF, all other listing
toggles are OFF.

Revision F Compiling and Formatting 8-21

Compile-Time Directives

Table 8-2 describes the run-time checking toggles and gives their
initial settings. These initial settings apply only if the corresponding
options were selected on the RUNTIME_CHECKS parameter of the
CYBIL command.

Table 8-2. Run-Time Checking Toggles

Initial

Toggle Value Description

CHKRNG ON Controls the generation of object code that
performs range checking of scalar subrange
assignments and CASE statement
variables.

CHKSUB ON Controls the generation of object code that
checks array subscripts (indexes) and
substring selections to verify that they are
valid.

CHKNIL OFF Controls the generation of object code that
checks for a NIL value when a reference is
made to the object of a pointer.

CHKALL Not This option represents all run-time

applicable checking toggles. When ON, all other
run-time checking toggles are ON; when
OFF, all other run-time checking toggles
are OFF.

RESET Directive
The RESET directive restores the initial toggle settings.
TTan +hia

RESET

When the RESET directive is performed, any record of previous
settings is destroyed.

8-22 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

Compile-Time Directives

Fah & { LR Ly
RIGHT Direciive

The RIGHT directive specifies the column number of the right margin
of the source text.

Use this format for the RIGHT directive:
RIGHT := integer
integer
An integer value that represents the column number of the
right margin. The right margin must be greater than or equal

to the left margin plus 10, and less than or equal to 110; that
is:

left margin + 10 = right margin = 110

All source text right of the right margin is ignored. If nonblank
characters appear in the source text after the right margin, the
compiler places a vertical line in the source listing immediately
following the right margin. This indicates that the compiler stopped

A emenden e

If you don’t use the RIGHT directive, the right margin is assumed to
be column 79.

The RIGHT directive can also be used as a formatting directive. If it
is encountered after a FORMAT_CYBIL_SOURCE command is issued,
the formatter ends its formatted output at the right margin specified
on the RIGHT directive.

The LEFT directive, described earlier in this section, specifies the
column number of the left margin.

Example:

This example sets the left margin at column 1 and the right margin
at column 110.

?? LEFT := 1, RIGHT := 110 ??

Revision F Compiling and Formatting 8-23

Compile-Time Directives

SET Directive
The SET directive specifies the setting of one or more toggles.
Use this format for the SET directive:
SET (toggle_name := condition {,toggle_name := condition}...)

toggle _name

Name of the toggle being set. Listing toggles are described in
table 8-1. Run-time checking toggles are described in table 8-2.
The names of toggles can be used freely outside of directives.

condition

ON or OFF. If a toggle is ON, the activity associated with it is
performed during compilation; if it is OFF, the activity is not
performed.

All settings specified in the SET directive are done at the same time.
If the directive list contains more than one setting for a single toggle,
the rightmost setting in the list is used.

SKIP Directive

The SKIP directive specifies that a given number of lines is to be
skipped.

Use this format for the SKIP directive:
SKIP := lines
lines

Integer value specifying the number of lines to skip. Specify a
value greater than or equal to 1.

If you specify more lines than the number of lines on the page, or if
you specify a value for lines that would cause the paper to skip past
the bottom of the current page, the paper is advanced to the top of
the next page.

8-24 CYBIL Language Definition Revision F
W] 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

Compile-Time Directives

The SPACING directive specifies the number of blank lines between
individual lines of the listing.

Use this format for the SPACING directive:
SPACING := spacing

spacing
One of the values 1, 2, or 3 specifying single, double, and
triple spacing, respectively.

An undefined value has no effect on spacing, but an error message is
issued.

If you don’t use the SPACING directive, single spacing (no intervening
blank lines) is assumed.

TITLE Directive
-~ mTmT P § IS D PR By S R

ML MIMT T 2 L3 ol Ll ccoennd coon A2 T 2241, oo2el 2l
LI A0l UIIECLVE TEPIdled LT CULITiib UdCIi-UCiiliCU uibiC Wil uic

given character string.
Use this format for the TITLE directive:
TITLE := ’character_string’

character _string

A character string specifying the title to be used. A single
quote mark is indicated by two consecutive quote marks
enclosed by quote marks [that is, "]

If there is-no user-defined title currently, the character string becomes
the current title.

A standard page header is always the first title printed on a page.
There is always a single empty line between the standard page header
and any user-defined titles. There is always at least one empty line
between the last title and the text.

Titling does not take effect until the top of the next printed page.

Revision F Compiling and Formatting 8-25

Formatting Source Code

Formatting Source Code

Formatting CYBIL source code is useful because it improves the code’s
consistency, readability, and maintainability. The CYBIL source code
formatter arranges source code using its own rules and, optionally,
rules that you set for it. You can specify these optional formatting
rules either as parameters on the FORMAT_CYBIL_SOURCE
command or as directives embedded in the code itself.

With the FORMAT_CYBIL_SOURCE command, you can choose:
® Whether comments are set off by blank lines

® Whether the statements EXIT, CYCLE, and RETURN are specially
marked to indicate a change in the flow of the program

® Whether successive spaces are compressed or left as is
® The line width of the formatted output line

® The key character that indicates Source Code Utility directives
which should not be formatted

With the text-embedded directives FMT, LEFT, and RIGHT, you can
choose:

® Whether or not the lines that follow the directive should be
formatted or left as is

® Whether successive spaces are compressed or left as is
® Tab settings for specific characters
® The number of spaces to indent when indentation is called for

+ ~ b f3an L. a4 2L
® The left and right margins of the formatted output (in effect, the

initial left margin and the line width)

8-26 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 l 87/03/25 22.17.32 | 60464113 F | SOURCE CODE I DRAFT COPY

Formatting Source Code

The option to compress space characters and the line width of the
output line can be specified on both the command and the directives.
If conflicting options are found, the most recent directive always takes

precedence over the command.

Formatting directives are processed only after the FORMAT_CYBIL_
SOURCE command is issued; otherwise, they are ignored. (The LEFT
and RIGHT directives, however, can also be used as compilation
directives. Refer to the individual descriptions of these directives for
further information.) The command and direciives are described later
in this section.

The source code to be formatted does not have to be a complete
compilation unit, but it should be syntactically correct. Each line can
be a maximum of 256 characters. Multiple partitions on the source
file are formatted.

Error messages are written to an error file. You can specify this file
with the ERROR parameter on the FORMAT_CYRBIL_SOURCE
command. If you omit it, errors are written on the local file
$ERRORS. An error does not cause formatting to stop; the entire

s L ., |
S0UrcCe ilie is aiways processeaq.

Revision F Compiling and Formatting 8-27

Formatting Source Code

Example:

The following example shows CYBIL source code as a user may have
entered it and how it would look after formatting.

/copy_file $user.unformatted_program

procedure exit_example;

var i:integer, key:string(7),

names:[read] array [1..4] of string(7):=["jqp8402°, jxd1432",
‘efd3204°, 1ed4411”1;

key:="efd3204";

/find_key/

for 1i:=lowerbound(names) to upperbound(names) do
if key=names[i] then exit /find_key/;

ifend;

forend/find_key/;

procend exit_example;

/format_cybii_source i=$user.unformatted_program ..
. ./o=$user .formatted_program

/copy_file $user.formatted_program

PROCEDURE exit_example;

VAR
i: integer,
key: string (7),
names: [READ] array [1 .. 4] of string (7) :=
[”jgp8402”,” jxd1432°, efd3204’, 1ed4411”];

/find_key/
FOR i := LOWERBOUND (names) TO UPPERBOUND (names) DO
IF key = names [i] THEN
EXIT /find_key/;
IFEND;
FOREND/find_key/;
PROCEND exit_example;
/

8-28 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

|
|
\
|
|
|
\
i
\
\
\
\
\
{
|
|
l
|
i
|
|
|
|
I
l
i
|
|
l
I
|
l
|
|
1
|
|
|
|
|
|
|
[
|
!
!
|
|
|
!
|
!
[
|
|
1

FORMAT_CYBIL_SOURCE

FORMAT_CYBIL_SOURCE Command
Purpose Formats CYBIL source code for consistency and greater
readability.
Format FORMAT_CYBIL_SOURCE or
FORCS
INPUT =file

OUTPUT =file

ERROR =file

FORMAT_OPTIONS =list of keyword
LINE _WIDTH =integer

KEY =character

STATUS =status variable

Parameters INPUT or I

The file from which the CYBIL source code is read. The
file path specified for the input file cannot be the same as
the file path specified for the output file. If you don’t
specify a file position in the file reference, this file is
rewound before formatting. If it is omitted, $INPUT is
assumed.

OUTPUT or O

The file on which the formatted CYRIL source code is
written. The file path specified for the output file cannot
be the same as the file path specified for the input file. If
you don’t specify a file position in the file reference, this
file is rewound before being written. If it is omitted,
$OUTPUT is assumed.

ERROR or E

The file on which error messages are written. If it is
omitted, $SERRORS is assumed.

Revision F Compiling and Formatting 8-29

FORMAT_CYBIL_SOURCE

FORMAT_OPTIONS or FO

One or more of the following format options. If it is
omitted, NONE (no format options are selected) is
assumed.

ALL Selects all the format options (CB, ME,
and NC).

COMMENT_. Specifies that a comment block is preceded

BLOCK or and followed by a blank line. A comment

CB block is considered to be one or more lines
of comments. If a blank line already
exists, none is added. Also, no blank lines
are inserted within a comment block.

" MARK_ Marks exit statements (that is, EXIT,
EXIT or ME CYCLE, and RETURN) by adding the
comment
{omemn>

after the statement. This indicates that a
change in the program’s flow of control
occurs here.

If the comment delimiter (the left brace)
is already in the statement, the statement
is not changed.

NO_ Selects no compression of successive space
COMPRESS characters. The same number of space
or NC characters in the input file are written to

the output file. This option is overridden if
the formatter finds an FMT directive in
the source code with the COMPRESS

s man ndmen o 4 4o MNT TTeaTooo
yaLamcucl DCLU WU WUN. UILICDD Uhllﬁl Wlbﬁ

specified, spaces are compressed.

NONE No format options are selected.

8-30 CYBIL Language Definition Revision F
W I 01/22/87 19:58:24 | 02/13/87 09:46:31] 87/03/25 22.17.32 | 60464113 F | SOURCE CODE | DRAFT COPY

Remarks

Examples

Revision F

FORMAT_CYBIL_SOURCE

LINE_WIDTH or LW

The line width of the formatted output. You can specify
an integer from 11 to 110. Specifying a line width sets
the left margin to column 1 and the right margin to the
value of the line width. If it is omitted, a right margin of
73 is assumed.

This setting is overridden if the formatter finds the LEFT
and RIGHT layout control directives in the source code.

KEY or K

The key character that indicates embedded Source Code
Utility directives. Statements that begin with the key
character in column 1 are not formatted. If it is omitted,
the asterisk character is assumed.

STATUS
An optional SCL status variable in which the completion

status of the command is returned.

The file paths specified for the input and output files
cannot be the same. For example, INPUT=PROC1 and
OUTPUT=PROC1 are not valid; INPUT=$LOCAL.PROC1
and OUTPUT=$USER.PROC1, however, are valid.

This command formats the CYBIL source program

contained on file INITIAL and writes it to file
$USER.FINAL.

format-_cybil_source initial $user.final

Compiling and Formatting 8-31

Formatting Directives

Formatting Directives

You can insert directives in the source code itself that direct how
formatting is done. These directives are the formatting directive FMT
and the layout control directives LEFT and RIGHT. The FMT
directive determines what formatting is done. The layout control
directives set the margins for the formatted output.

You can specify one or more directives with the following format:
?? directive {, directive}... 7?
directive

One of the formatting directives FMT, LEFT, or RIGHT as
described in the remainder of this section.

If an option specified on a directive differs from one selected on the
FORMAT_CYBIL_SOURCE command, the most recent directive takes
precedence.

8-32 CYBIL Language Definition Revision F
L l 01/22/87 19:58:24 | 02/13/87 09:46:31 l 87/03/25 22.17.32 | 60464113 F | SOURCE CODE , DRAFT COPY

FMT

The FMT directive controls formatting options such as when to format
lines, whether muitiple spaces are compressed, where tabs should be
set for certain characters, and how to indent block-type statements.
The options specified on the directive take effect starting with the
next source code statement that is processed. They remain in effect
until the entire file is formatted or another directive is encountered.

Use this format for the FMT directive:

FMT (FORMAT := keyword,
COMPRESS := keyword,
TAB := ’tab_character’, integer {, integer}...,
CLEARTAB := ’tab_character’, integer {, integer}...,
INDENT := integer)

FORMAT

Specifies whether formatting is to take place. ON indicates that
all source code lines, beginning with the line following this
directive, are formatted. OFF indicates that all lines, beginning
with the line following this directive, are not formatted. if it is
omitted, ON (lines are formatted) is assumed.

COMPRESS

Specifies whether successive space characters are compressed to
a single space. ON indicates that multiple space characters
appearing together in the original code are compressed to one
space character in the formatted code. OFF indicates that
successive space characters are transferred to the formatted file
unchanged. If it is omitted, ON (successive spaces are
compressed) is assumed.

Revision F Compiling and Formatting 8-33

FMT

TAB

Tab settings that are used for the indicated characters. Use the
following format to specify this parameter:

’tab_character’, integer {, integer }...

The tab_character is from 1 to 8 characters. When the
formatter recognizes that character or set of characters, it
moves to the next available tab column as specified by the
integers. For example, if the following TAB parameter was
specified

?? fmt (tab:= “{’, 5, 20) ??

and the formatter encountered a left brace in the first four
columns of the source code, it would move the brace and the
text following it to start at the fifth column. If the brace was
found past the fifth column of the source code, it and the
following text would be moved to start at the next tab position,
column 20. If the specified character or characters are found
past the last tab position that was specified, no text is moved;
the characters stay in the same position.

The tab_character must be a valid CYBIL symbol (for
example, { or :=). If a tab_character is specified, at least one
integer setting must also be specified; no settings are assumed.
The tabbing specified takes effect with the next line processed,
not the line containing the TAB directive.

If it is omitted, no tab settings are used.

8-34 CYBIL Language Definition Revision F

\
\
|
\
l
|
|
|
|
W | 01/22/87 19:59:24 l 02/13/87 09:46:31 | 87/038/256 22.17.32 160464113 F | SOURCE CODE | DRAFT COPY :

FMT

CLEARTAB

Tab settings that are deleted for the indicated tab_character.
Use the following format to specify this parameter:

’tab_character’, integer {, integer }...
The tab_character is from 1 to 8 characters. This directive
deletes the tab settings specified for the indicated tab_
character. For example, if the following CLEARTAB parameter
was specified following the sample TAB parameter shown
earlier,

?? fmt (cleartab:= "{", 5) ??

the formatter would no longer move to the fifth column when
it encountered a left brace. Instead it would use the remaining
tab setting (as set by the TAB parameter described earlier) and
move to the twentieth column.

LFraais L&l T WSt iil L Ui uilsT 2 il T uiiGuv &a

tab settings should be deleted for the specified tab character.

ALL can be used in place of the integers to indicate that all

The tabbing specified takes effect with the next line processed,
not the line containing the CLEARTAB directive.

INDENT

Number of columns to indent when a block-type statement is
found. (These statements are BEGIN, FOR, REPEAT, WHILE,
IF, and CASE; they are described in chapter 5.) This value is
specified as an integer from 0 to 20. If it is omitted, two
spaces is assumed. This indentation value does not apply to
lines that are continued; continued lines are indented six
spaces.

Example:

The following FMT directive causes formatting to be done without
compressing successive space characters and setting tab positions at
columns 1, 10, and 40 for the left brace character:

?? fmt (format:=on, compress:= off, tab:="{’,1, 10, 40) ??

Revision F Compiling and Formatting 8-35

LEFT

LEFT Directive

The LEFT directive specifies the left margin used for the formatted
output. In effect, this directive determines the base left margin from
which all positioning and indenting take place. The source being used
from the input file is not affected by this directive; only the output is
affected.

Use this format for the LEFT directive:
LEFT := integer
integer

The column number of the left margin. The left margin must
be greater than zero.

If you don’t use the LEFT directive, the left margin of the formatted
output is assumed to be column 1.

The LEFT directive can also be used during compilation (that is,
following the CYBIL command) to indicate that all source text left of
the left margin is ignored.

Example:

The following example sets the left margin of the formatted output at
column 10 and the right margin at column 100. This means that the
positioning and indenting of lines is based on an initial left margin of
10; for example, an indentation of 2 spaces moves the line to column
12. The maximum line width allowed in the formatted output using
this example would he 90 characters.

?? left := 10 right := 99 7?7

8-36 CYBIL Language Definition Revision F
W | 01/22/87 18:53:24 l 02/13/87 09:46:31 | 87/08/25 22.17.32 |60464!13 F | SOURCE CODE |DRAFT coPyY

RIGHT

The RIGHT directive specifies the right margin used for the formatted
output. In effect, this directive determines the line width used by the
formatter. The source being used from the input file is not affected by
this directive; only the output is affected.

Use this format for the RIGHT directive:
RIGHT := integer
integer

The column number of the right margin. The right margin
must be greater than or equal to the left margin plus 10, and
less than or equal to 110, that is:

left margin + 10 = right margin = 100

The line width of the formatied output can also be set on the
FORMAT_CYBIL_SOURCE command. If so, the RIGHT directive
overrides that value when it is encountered. If neither the FORMAT_
CYBIL_SOURCE command nor the RIGHT directive specify line
width, the right margin is assumed to be column 79.

The RIGHT directive can also be used during compilation (that is,
following the CYBIL command) to indicate that all source text right of
the right margin is ignored.

Example:

The following example sets the left margin of the formatted output at
column 10 and the right margin at column 100. This means that the
positioning and indenting of lines is based on an initial left margin of
10; for example, an indentation of 2 spaces moves the line to column
12. The maximum line width allowed in the formatted output using
this example would be 90 characters.

?? left := 10 right := 99 ??

Revision F Compiling and Formatting 8-37

Using the Debug Utility 9
Introduction to Debug L 0. S-1
Getting Started Lo 9-2
Howto Get Help 9-4
Example e 9-5
Preparing to Debug 9-9
Displaying Screen Mode Commands 9-10
Setting Breaks, 9-11
Debugging Testl 9-13
Debugging Test2, 9-16

Debugging Test3 oo 9-19

Using the Debug Utility 9

Introduction to Debug

-~

Debug is an SCL command utility that lets you debug a program
during execution. Using Debug, you can stop execution at selected
points, display the values of selected variables, and resume execution.

Debug requires no modification of your source code and no knowledge
of assembly language. You can reference variables by their symbolic
names rather than their addresses in memory. Furthermore, you do
not need to interpret memory dumps or use a load map.

Debug can be used in line mode or screen mode. You can use Debug
to perform machine-level debugging as well as symbolic debugging.
This discussion focuses on using screen mode Debug for symbolic
debugging. For information about line mode Debug, machine-level
debugging, and other Debug features, see the Debug Usage manual.

Screen mode Debug gives you all of the Debug features with the ease
of a full screen interface. You can execute Debug functions by
pressing function keys rather than typing commands. Online HELP
enables you to learn screen mode Debug as you use it.

Using the Debug utility in screen mode, you can:

® View your source code as it executes (an arrow points to the next
line to be executed).

® (Change the values of program variables while execution is
suspended.

® (Change the location where execution of your program resumes.

® View module components of your program.

Revision F Using the Debug Utility 9-1

Getting Started

Getting Started

Using Debug in screen mode requires that your terminal support full
screen operation. If your terminal is not set up for full screen
operation, see the SCL System Interface manual for terminal
definitions that support the full screen interface.

To execute your CYBIL program with Debug and use the symbolic
debugging capability, you must compile the program with the
OPTIMIZATION _LEVEL (OL) and DEBUG_AIDS (DA) parameters
specified. Furthermore, to use Debug in screen mode, you must enter
the command:

CHANGE _INTERACTION_STYLE STYLE=SCREEN

For example, to prepare the source program TEST_CYB contained in
permanent file $USER.TEST _CYB for use with Debug, enter the
following commands:

/change_interaction_style style=screen
/cybil input=$user.test_cyb binary=igo ..
../optimization_level=debug debug_aids=all

or abbreviated,

/chais s=s
/cybil i=$user.test_cyb b=1go ol=debug da=all

To execute TEST_CYB with screen mode Debug, enter the following
command:

/execute_task Tiie=igo debug_mode=on
or abbreviated,
/exet f=1go dm=on

On a Zenith Z19 or Heathkit H19 terminal the TEST_CYB source
module is displayed as follows. (On other terminals, the screen format
may vary slightly.)

9-2 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | USING DEBUG | DRAFT COPY

Getting Started

Displaying Routines

SOURCE LIST OF module_main;
0 1 MODULE moduie_main
0 2
0 3 PROCEDURE {ZREF] p {operandi,
0 4 operand2: integer;
0 5 VAR result: integer;

2 0 6 VAR status: boolean);

0 7
[t} 8 PROGRAM main;
0 9
0 10 VAR
4 11 i,
4 12 J,
4 13 k: [STATIC] integer,
4 14 X,
4 15 v,
4 18 z: ineger, "’ :
4 17 b: boolean i

E ouTPUT :

; -- Welcome to Full Screen Debugging i

. Press HELP for assistance [

| |

! | [I lLocatel ! | IDeBrk| | Deas | | ZmOut| | Keys | !

XY | 21 | £3|HSpeed] 4! | $5|SetBrk| #61 Quit | £7| Trace| 8| P

| |

Figure 9-1. Debug Screen

1 Home line The line on which you enter Debug
commands and SCL commands.

2 Response line The line on which short responses and
advisory messages from Debug are
displayed.

8 Source window The area in which the program you are
debugging is displayed.

4 Output window The area in which the output generated by

your program (or output delivered by
Debug) is displayed.

5 Row of function key The Debug functions assigned to function
assignments keys. Also, you can enter Debug commands
on the home line.

Revision F Using the Debug Utility 9-3

How to Get Help

How to Get Help

There are two ways to get help information while using the Debug
utility in screen mode:

1. The HELP key.

Pressing the HELP key displays the help window. The help
window overlays a portion of your screen and prompts you to enter
the item for which you need help. If you press a function key, a
short description of the function you select is displayed in the help
window. To exit HELP, press RETURN. Upon exiting HELP, your
screen is restored to its original contents.

. 2. The EXPLAIN command.

You can request help by entering the explain command on the
HOME line. This command is used to read an online manual while
you are debugging your program. To leave the online manual,
press QUIT. When you leave the online manual, the screen is
restored to its contents before you called EXPLAIN. For example,
if you need information about Debug capabilities, press the HOME
key and type the following EXPLAIN command on the HOME line:

explain s="capabilities’ m=debug

This command takes you to the Debug online manual for an
explanation of Debug capabilities. To return to screen mode Debug,
press QUIT. See the SCL System Interface manual for more
information about EXPLAIN.

9-4 CYBIL Language Definition Revision F
W | 01/22/87 19:58:24] 02/13/87 09:46:31 | 87/03/25 22.17.32 [60464113 F | USING DEBUG | DRAFT COPY

Example

Example

This example demonstrates some commonly used Debug functions. It is
represented as a series of steps. To get the most benefit from this
example, you should create the sample program, EXAMPLE_CYB,

i i h ot
illustrated in figure 9-2 then perform each step.

EXAMPLE_CYB is divided into the following test cases:

TEST1 A loop that increments a counter and then calis a procedure
to square and display the count. TEST1 demonstrates the
use of the CHAVAL, GOTO, HSPEED, SEEVAL, STEP1 and
STEPN functions.

TEST2 A loop that builds a 6-row table of 3-character strings. Input
to the table is an 18-character list for the months JAN
through JUN. TEST2 moves three characters at a time from
the character list to the table, and displays each entry.
TEST2 shows how to step through loops, use line mode

Debug commands in screen mode Debug, and how to scroll
through Debug and program output data.

TEST3 A division test that results in a divide fault. TEST3
demonstrates how Debug handles execution errors.

In each test case, the application of some Debug functions is

demonstrated. After you work this example, you can begin to debug
your CYBIL programs using screen mode Debug.

Revision F Using the Debug Utility 9-5

Example

MODULE example_cyb;
{ Copy 1/0 procedures. }
TYPE

column = array [1..3] of string(3),
twodim_array = array [1..6] of column;

CONST

maximum_record_length = 40;

VAR

{ Declare program variables. }

divisor : real := 0.0,

dividend : real = 100.0,

quotient : real,

cntr : integer,

result : integer,

month : twodim_array,

month_list : string (18) := “JANFEBMARAPRMAYJUN’,
month_row : integer := 0,

length : integer = 10,

i : integer,

{ Declare variables for 1/0. }

1fn : amt$local_file_name,

o : amt$file_identifier,

s : ost$status,

f : amt$file_byte_address,

newline : string (90),

mi : string (7) := ’ times *,

m2 : string (8) =’ =7,

m3 : string (16) := ° The month is: -,
ma : string (19) := - The quotient is: -;

Figure 9-2. Example of an EXAMPLE _CYB Source Listing
(Continued)

9-6 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | USING DEBUG | DRAFT COPY

Example

(Coniinued)

PROGRAM main;
{ These calls specify file attributes and open files. }

1fn := “$0UTPUT’;
amp$open (1fn, amc$record, NIL, o, s);

{ TEST1: Add to counter and call procedure SQUARE to square }
{ and display count. }

FOR cntr := 1 TO 10 DO
square (cntr,result);
stringrep(newline, length,’ ‘,cntr:3,m1,cntr:3,
m2,result:4);
amp$put_next (o, “newline,maximum_record_length, |

£).
VeDJ,

FOREND:

{ TEST2: Create single column table for each month. }
WHILE month_row < 6 DO

FOR i := 1 TO 3 DO
month[month_row][i] := month_list
(month_row*3+1,3);
FOREND ;

stringrep(newline, length,” “,m3,month[month_rowl
[i]1:8);

amp$put_next (o, “newline,maximum_record_length,f,s);

month_row := month_row + 1;

WHILEND;

Figure 9-2. Example of an EXAMPLE _CYB Source Listing
(Continued)

Revision F Using the Debug Utility 9-7

Example

(Continued)

{ TEST3: Create divide fault. }

guotient := dividend / divisor;
stringrep(newiine, length,’ “,m4:19,quotient:6:1);
amp$put_next (o, "newline,maximum_record_length,f,s);

PROCEND main;
{ Procedure for squaring numbers. }
PROCEDURE [XDCL] square (

a : integer;
VAR b : integer;

b :=a * a;

PROCEND square;

MODEND example_cyb;

Figure 9-2. Example of an EXAMPLE _CYB Source Listing

9-8 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | USING DEBUG | DRAFT COPY

Preparing to Debug

Preparing to Debug

After you create EXAMPLE__CYB, you must prepare it for use with
screen mode Debug. This requires preparing the screen mode
environment and compiling EXAMPLE_CYB for use with Debug. You

nan than avnt\ia{-o 14- 111‘\(]111' anrann mnﬂn nn‘“in- sontral nn this ac
LQRii UiiTil TATUKLIC iu AUTL OViTTI: IIUURT ME Viui Ui, Viiin T

follows:

1. EXAMPLE_CYB calls several file interface procedures that must
be expanded through commands provided in the Source Code
Utility (SCU) before the source code can be compiled. To do this,
enter the following commands:

/create_source_library

/scu_create_deck deck=example_cyb modification=m1

. ./source=$user .examplie_cyb

/scu_expand_deck deck=example_cyb ..
../alternate_base=$system.cybil.osf$program_interface ..
. ./compiie=juser.compiie

or abbreviated,

/cresi

/scu_cred d=example_cyb m=m1 s=$user .example_cyb
/scu_expd d=example_cyb ..

. ./ab=$system.cybii.osf$program_interface

. ./c=$user .compile

2. Prepare for screen mode debugging and compile EXAMPLE_CYB
now contained in permanent file $USER.COMPILE for use with
Debug by entering the following commands:

/change_interaction_style style=screen
/cybil input=$user .compile binary=1go ..
../optimization_level=debug debug_aids=all

or abbreviated,

/chais s=s
/cybil i=$user.compile b=1go ol=debug da=all

Revision F Using the Debug Utility 9-9

Preparing to Debug

3. Execute under control of Debug by entering the following
command:

/execute_task file=1go debug_mode=on
or abbreviated,
/exet f=1go dm=on

The EXAMPLE_CYB source module is displayed in the source
window. Debug functions are displayed at the the bottom of the
screen.

Displaying Screen Mode Commands

The functions below are used to display helpful 1nformat10n about the
Debugging environment:

HELP Displays the help window. Press a function key and a short
explanation of the function’s use appears in the Help window.

ZMIN Used to display the source listing in the source window.

Now perform the following steps to become familiar with the Debug
functions:

1. Press the HELP key. The help window is displayed.

2. Press each function key corresponding to the functions displayed at
the bottom of the screen. As you press each function key, a short
explanation of the purpose of each function is displayed in the

Haln windnw
ALTLP WALAAUYY .

3. Press RETURN. This exits HELP and the help window is removed.

FZRATRT

Press ihe ZMIN function } key. The Iouowmg message is dispiayed
in the upper right hand corner of the screen:

:':n

Enter compiler input file for EXAMPLE_CYB

9-10 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.82 | 60464113 F | USING DEBUG | DRAFT COPY

Preparing to Debug

Enter the source fiile name:

[

$user .compile

The EXAMPLE_CYB source listing is displayed in the source
window. Also, some new functions are displayed at the bottom of
the screen.

8. Press the HELP key. The help window is displayed again.

7. Press each function key corresponding to the new functions
displayed at the bottom of the screen. As you press each function
key, a short explanation of the purpose of each new function is

~ displayed in the help window.

8. Press RETURN. Exit HELP.

Setting Breaks

It is often helpful to suspend program execution when debugging a
program. The Debug device for suspending execution of a program is

used to illustrate setting breaks.

Function Result

BKW Serolls backward to the previous screen of text.
FWD Scrolls forward to the next screen of text.

LOCATE Prompts you to type in text, then searches the source
listing for matching text. If a match is found, the cursor
is moved to the line containing the matching text.

SETBRK Sets an execution break-on the line containing the cursor.
The line is highlighted to show that it contains a break.
Execution is suspended before the line containing the
break is executed. Execution resumes with the first
statement on the line containing the break.

Revision F Using the Debug Utility 9-11

Preparing to Debug

Perform the following steps to place three execution breaks in
EXAMPLE_CYB:

1. Press the LOCATE function key. At the top right hand corner of
the screen, you are prompted for the text to be located.

2. Enter the following text exactly as it appears in EXAMPLE_CYB:

WHILE

The cursor is moved to the line:

WHILE month_row < 6 DO

Press the SETBRK function key. A break is set and the line
containing the cursor is highlighted to show that it contains an
execution break.

Use the down-arrow key to move the cursor to the line:

month_row := month_row + 1;

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE_CYB source listing is
displayed. Use the down-arrow key to position the cursor on that
line.

Press the SETBRK function key. The line is highlighted to show
that it contains an execution break.

Press the FWD function key. The next screen of the EXAMPLE _
CYB source listing is displayed in the source window.

Use the down-arrow key to move the cursor to the line:
guotient := dividend / divisor;

8. Press the SETBRK function key. The line is highlighted to show
that it contains an execution break.

9. Press the BKW key two times. The first screen of the
EXAMPLE_CYB source listing is displayed in the source window.

9-12 CYBIL Language Definition Revision F |
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | USING DEBUG | DRAFT COPY |

Debugging Testl

Debugging Tesil

Using Debug, you can execute a program one statement or several
statements at a time. Also, you can examine a variable’s contents,
change its contents, and execute code containing the variable several
times. These capabilities are demonstrated in this sample session

using the following functions:

CHAVAL Prompts you to enter a variable name and the value
you want it to contain, then changes the variable’s
contents to the new value.

GOTO Moves the execution pointer to the line that contains
the cursor. Execution resumes with the first statement
on this line.

HSPEED Executes a program until a break is encountered or the-
program ends.

SEEVAL Prompts you to enter a variable name, then displays
the value of the variable in the output window.

STEP1 Executes a program one statement at a time.

STEPN Executes N statements of a program, where N is an
integer.

Perform the following steps to demonstrate the use of the CHAVAL,
GOTO, HSPEED, SEEVAL, STEP1, STEPN:

1. Press the STEP1 function key. The statement:

1fn := “$OUTPUT”;

is executed; the execution arrow now points to the statement:

amps$open(1fn,amc$record,NIL,0,S);

2. Press the STEP1 function key again. The amp$open procedure is
executed; moving the execution arrow to the first executable line
in TEST1:

FOR cntr := 1 TO 10 DO

Revision F Using the Debug Utility 9-13

Debugging Testl

3. Press the STEP1 function key seven times. An iteration of FOR
loop is executed one statement at a time. The output from the
iteration is displayed in the output window.

4. Press the SEEVAL function key. A prompt to enter a variable
name is printed in the upper right hand corner of the screen.
Enter the name:

cntr
The value of CNTR is displayed in the output window:
cntr = 2
Thus, you can use SEEVAL to examine the contents of a variable.

5. Press the CHAVAL function key. A prompt for a variable name
and its new value is displayed in the upper right hand corner of
the screen; enter:

cntr=8
The value of CNTR is changed to 8.

6. Press the SEEVAL function key. When you are prompted for a
variable name, enfer:

cntr
The following message is displayed in the output window:
cntr = 8

Thus, the change of value for CNTR is verified.

9-14 CYBIL Language Definition Revision F
L | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32] 60464113 F] USING DEBUG] DRAFT COPY

1.

10.

11.

Revision F

Debugging Testl

OUTITITYRT

Press the STEPN function key. In the upper right hand corner of
the screen, you are prompted for the number of lines to execute;
enter:

6

STEPN executes 6 lines. The output from this loop iteration is
displayed in the output window.

Press the SEEVAL function key. When you are prompted for a
variable name, enter:

cntr
The value of COUNTER is displayed in the output window:
cntr = 3

Only the value of CNTR passed to the SQUARE call was changed.
The value of a FOR loop control variable cannot be changed once

the loop has been entered. Therefore, the value of CNTR used by

this FOR loop remains unchanged.

Use the up-arrow key to move the cursor to the line:
FOR cntr := 1 TO 10 DO

Press the GOTO function key. The execution arrow moves to the
line containing the cursor; execution resumes at this line.

Press the HSPEED function key. Execution resumes from the FOR
statement. Since the FOR loop is executed anew, CNTR is
initialized to 1. Execution of EXAMPLE_CYB continues until an
execution break is encountered.

Using the Debug Utility 9-15

Debugging Test2

Debugging Test2

After program execution is resumed in step 12 of TESTI1, execution
stops at the break set on the first statement in TEST2. The following
functions are used in TEST2 to illustrate more Debug capabilities:

BEKW Serolls backward to the previous screen of text.

CHAVAL Prompts you to enter a variable name and the value
you want it to contain, then changes the variable’s
contents to the new value.

DELBRK Deletes execution breaks.
FWD Scrolls forward to the next screen of text.

HSPEED Executes a program until a break is encountered or the
program ends.

SEEVAL Prompts you to enter a variable name, then displays
the value of the variable in the output window.

This section also uses the following features:

HOME Press the HOME key to move the cursor to the HOME
line. line mode Debug commands can be entered on the
HOME line for execution in screen mode Debug.

DISPLAY_ A line mode Debug command that displays the values
PROGRAM- of program variables.
— VALUE

9-16 CYBIL Language Definition Revision F
W | 01/22/87 18:58: 24 | 02/13/87 09:46:31 | 87/08/25 22.17.32 | 60464113 F |US]NG DEBUG] DRAFT COPY

Debugging Test2

Perform the foliowing sieps to learn how to execuie ioops one
iteration at a time, execute line mode Debug commands, and scroll
output data when using Debug:

1. Press the HSPEED function key. Execution stops at the break set
on the last line of the WHILE loop; cutput from the loop is
displayed in the output window.

2. Press the HSPEED function key again. One iteration of the
WHILE loop is executed; execution stops at the break set in the
WHILE loop again. Each time HSPEED is used, an iteration of
the loop is performed. By using strategically placed execution
breaks, as in this example, a loop can be executed one iteration at
a time.

3. Press the HSPEED function key. One more loop iteration is
performed.

4. Press the SEEVAL function key. When vou are prompted, enter:
month_row
The following message is displayed in the ounput window:
month_row = 2
5. Press the CHAVAL function key. When you are prompted, enter:
month_row=4
6. Press the SEEVAL function key. When you are prompted, enter:
month_row
The following message is displayed in the output window:
month_row = 4

Thus, the change to MONTH_ROW is verified.

Revision F Using the Debug Utility 9-17

Debugging Test2

7.

10.

11.
12.

13.

14.

Press the HSPEED function key. One iteration of the WHILE loop
is executed.

Press the SEEVAL function key. When you are prompted, enter:
month_row

the following message is then displayed in the output window:
month_row = 5

The value given to MONTH_ROW in step 5 is used by the
WHILE loop.

Press the HOME key. The cursor moves to the HOME line.
Enter the line mode Debug command:
display_program_value name=$all

The values of all variables declared in EXAMPLE_CYB are
displayed in the output window. Thus, line mode Debug commands
can be used in screen mode Debug by entering them on the
HOME line. For more information about using line mode Debug
commands see the Debug Usage Manual.

Press the DELBRK key. The execution break is deleted.

Press the down-arrow key until the cursor is inside of the output
window.

Press the BKW key. The data in the output window scrolls

you can use the BKW and FWD keys to scroll backward and
forward through the data in the window.

Press the HSPEED function key. The execution of EXAMPLE_
CYB resumes, stopping at the next break. The execution arrow
points to the first statement in TESTS3.

9-18 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | USING DEBUG | DRAFT COPY

\
|
\
\
|
|
i
l
I
|
l
|
I
|
|
l
]
1
|
|
|
|
I
|
|
1
I
i
[
1

Debugging Test3

Debugging Test3

After resuming execution of EXAMPLE_CYB in step 14 of section
TEST2, execution stops at the begining of TEST3. In TEST3, Debug is
presented with an execution error. The following functions are used in

- -
'1ﬂﬂl] ll’?kn“ (=% 21
this sample session to demonstrate how Debug can be used when an

execution error is encountered:

CHAVAL Prompts you to enter a variable name and the value
you want it to contain, then changes the variable’s
contents to the new value.

GOTO Moves the execution pointer to the line that contains
the cursor. Execution resumes with the first statement
on this line.

SEEVAL Prompts you to enter a variable name, then displays
the value of the variable in the output window.

STEP1 Executes a program one statement at a time.

QUIT Used to leave Debug.

Perform the following steps to finish the example:

1. Press the STEP1 function key. Execution halts, and the following
message flashes in the top right hand corner of the screen:

divide_fault

2. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

divisor
The following message is displayed in the output window:
divisor = 0.

A division by zero caused the execution error.

Revision F Using the Debug Utility 9-19

Debugging Test3

3. Press the CHAVAL function key. When you are prompted, enter:
divisor=1.0
The value of DIVISOR is changed to 1.
4. Press the SEEVAL function key. When you are prompted, enter:
divisor
The following text is displayed in the output window:
divisor=1.00000000000000E+0000
The change to DIVISOR is verified.

5. Press the GOTO function key. The execution arrow points to the
DIVISION statement, so program execution resumes with this
statement.

6. Press the STEP1 function key. The DIVISION statement is
executed. Therefore, the GOTO and CHAVAL functions can be used
in concert to recover from execution errors. However, to correct
execution errors permanently, you must exit Debug, edit the
program, and recompile it.

Press the STEP1 function key two more times. The result of the
DIVISION statement is displayed in the output window.

Press the STEP1 function key. EXAMPLE_CYB ends and the
following message is.displayed in the output window:

DEBUG: The status at termination was: NORMAL.
9. Press the QUIT function key. Exit Debug.

Now that you have concluded this example, you should be able to
begin using screen mode Debug to debug your CYBIL programs. For
more information about screen mode Debug and line mode Debug
commands, see the Debug Usage manual.

9-20 CYBIL Language Definition Revision F
w I 01/22/87 19:89:24 l 02/13/87 09:46:31] 87/03/25 22.17.32 | 60464113 F | USING DEBUG | DRAFT COPY

Debugging Test3

Part II. Common CYBIL Input/Output

How to Use Common CYBILIVO 10-1
Opening, Closing, and Structuring Files 11-1
Reading and Writing Files iZ-i

NOS/VE-Specific Procedures and Functions for CYBIL /O 13-1

Debugging Test3

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 [87/03/25 22.17.32 | 60464113 F | HOW TO USE CYBIL 1/0 | DRAFT COPY

How to Use Common CYBIL 1/0 10
This chapter explains how to use CYBIL I/O and describes the
features and limitations that are unique to the NOS/VE
implementation of CYBIL I/O.
Introduction 10-
Using CYBIL I/O Procedures 10-
Copying Procedure Declaration Decks 10-
Expanding a Source Program 10-
Calling a CYBIL I/O Procedure 10-
Parameter List e e e e e e 10-
Extracting CYBIL Procedure Decks 10-
Parameter Types., 10-
VAR Parameters, 10-
Checking the Completion Status 10-
Status Condition Codes 10-
System Naming Convention 10-
Procedure Call Description Format 10-
Parameter Description Format 10-
Features Unique to NOS/VE 10-
Copying Procedure Declaration Decks in Bulk 10-
File Names 10-
Position of File When Opened . .-. 10-
Position of File When Closed 10-
File Attributes 10-

File Structure e 10-

7T

[
-

How to Use Common CYBIL 1/0

Introduction

The Common CYBIL Inpui/Outpui procedures {referred ic as CYBIL
1/0) allow a CYBIL program to use the input/output capabilities of
NOS/VE, principally for reading and writing files. CYBIL I/O is not
designed specifically for NOS/VE, but is standardized for use on
several operating systems (NOS/VE, NOS, NOS/BE, VSOS, EOS, and
APOLLO Aegis I/O systems).If CYBIL I/O were implemented on these
systems, CYBIL programs that use CYBIL I/O procedures could
execute on any of these operating systems with little or no
modification. Currently, however, CYBIL I/O is only available for
NOS/VE.

NOTE

Display screen interfaces and the more sophisticated input/output
capabilities of NOS/VE are beyond the scope of Common CYBIL I/0.
For these, refer to the CYBIL File Management manual, the CYBIL
Sequential and Byte-Addressable Files manual, and the CYBIL
Keyed-File and Sort/Merge Interfaces manual.

CYBIL I/O procedures may be used for either disk or terminal
input/output, and with either disk or tape files.!

The CYBIL I/O procedures and data types are stored in the NOS/VE
program interface; they can be used in a CYBIL program but are not
part of the CYBIL language as such. In brief, the components are the
following:

® CYBIL procedures and functions, both standard and
NOS/VE-dependent.

® (CYBIL constants, variables, and data-types used within the
procedures and functions.

1. When using CYBIL I/O with tape files, note the following: tape marks cannot be
read or written, and tape files cannot be read in reverse.

Revision F How to Use Common CYBIL /O 10-1

Introduction

® Exception conditions issued by CYBIL I/O.

These components employ the basic elements of the CYBIL language
described in Part I of this manual: constants, variables, types,
functions, and procedures. For a description of the general format of
these CYBIL elements, refer to Part I of this manual. Part II, CYBIL
Input/Output, describes the specific components of CYBIL I/O and
explains how to use them in CYBIL programs.

Part II is made up of the following chapters:

® Chapter 10, How to Use Common CYBIL I/O, explains how to use
CYBIL /O procedures in a CYBIL program and describes the
features and limitations that are unique to the NOS/VE
implementation of CYBIL I/O.

¢ Chapter 11, Opening, Closing, and Structuring Files, which
describes the procedures for performing these activities.

® Chapter 12, Reading and Writing Files, describes each of the
procedures for reading and writing files with CYBIL I/O, and
contains examples of CYBIL programs using CYBIL I/O.

® Chapter 13, NOS/VE-Specific Procedures and Functions for CYBIL
I/O, describes the procedures and functions that can only be used
with the NOS/VE implementation of CYBIL I/O.

® Appendix J lists the constants and data types used by CYBIL I/O,
. and Appendix K lists the CYBIL I/O error messages.

10-2 CYBIL Language Definition Revision F
w l 01/22/87 19:59:24 | 02/13/87 09:486:31 | 87/03/25 22.17.32 | 80464113 F | HOW TO USE CYBIL 1/0] DRAFT COPY

Using CYBIL 1I/0 Procedures

Fah 4 N M

Using CYBIL I/O Procedures

Each CYBIL I/O procedure resides as an externally referenced (XREF)
declaration in a deck on the following source library file:

$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE

The XREF procedure declarations for the keyed-file calls described in
the CYBIL Keyed-File and Sort/Merge Interfaces manual are stored as
decks in the source library file
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE.

To use a CYBIL I/O procedure, you must include the following
statements in your CYBIL source program:2

e A Source Code Utility (SCU) *COPYC directive for copying the
XREF declaration from the source library
$SYSTEM.CYBIL.OSF$PROGRAM _INTERFACE.

® Statements that declare, allocate, and initialize actual parameter
variables as needed.

® The procedure call statement.

® An IF statement that checks the procedure completion status
returned in the procedure’s status variable.

Figure 10-1 lists a source program that illustrates the use of these
CYBIL I/O procedures.

2. In the rest of this chapter, the term procedure is used in the broader sense of a
subroutine or set of instructions which can be executed by a single statement. It
therefore refers to both procedures and functions as described in Part L.

Revision F How to Use Common CYBIL /O 10-3

Using CYBIL I/O Procedures

MODULE example1l;
{ Directive to copy the XREF procedure declaration.}
*copyc cyp$get_next_record

{ This procedure reads the next record from a file }
{ that was opened as a record file and returns a status }

{ record to the calier.}

PROCEDURE get_next_record
(record_file: cyt$file;
pointer_to_target: "SEQ (*);

VAR number_of_cells_read: integer;
VAR status: ost$status);

{ Procedure call statement }

CYP$GET_NEXT_RECORD (record_file, pointer_to_target,
number_of_cells_read, status);

{ Status record check. }
IF NOT status.NORMAL THEN

RETURN;
IFEND;

PROCEND get_next_record:
MODEND examplel;

e e ____ TN ¥ TN
Il re 1v-i. Lxd

The following paragraphs describe in greater detail the SCU directives
and CYBIL statements required for using CYBIL I/O procedures.

10-4 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 08:46:31 ' 87/03/25 22.17.32 | 60464113 F | HOW TO USE CYBIL 1/0 l DRAFT COPY

Using CYBIL /O Procedures

Copying Procedure Declaration Decks

To use a CYBIL I/O procedure in a CYBIL module, you must include
in the module an SCU *COPYC directive to copy the procedure’s
CYBIL XREF declaration from the source library file
$SYSTEM.CYBIL.OSF$PROGRAM _INTERFACE.

The deck containing the procedure declaration has the same name as
the procedure. For example, the CYPSGET_NEXT_RECORD
procedure is declared in a deck named CYP$GET_NEXT_RECORD.

The *COPYC directives begin in column one and specify the name of
the deck to be copied. In figure 10-1, they follow the MODULE
statement.

Regardiess of how many times a procedure is called, you need only
one *COPYC directive per procedure. (For more information about the
*COPYC directive, see the SCL Source Code Management manual.)

Procedure declaration decks list the parameters and their valid CYBIL
types, which must be listed on a call to a CYBIL I/O procedure. When

a CYBIL program is being compiled, the parameters on the call to the
procedure are verified with the parameters and parameter types listed
in the procedure’s XREF declaration. If they do not match, the
program compilation fails, After the module in figure 10-1 is expanded
and compiled, the XREF procedure declaration is included in the
source listing.

For an example of a procedure declaration deck, refer to Extracting
CYBIL Procedure Decks later in this chapter.

In chapters 11, 12, and 13, the parameters and each parameter’s
required type are listed in the individual description for each CYBIL
I/O procedure. In addition, the parameter types for all CYBIL I/O
procedures are listed alphabetically in Appendix J of this manual.

Expanding a Source Program

Before you can compile a source program containing one or more
CYBIL I/O XREF procedures, you must first expand your source
program. (Expanding a program generates the source code to be
compiled.) You can use the SOURCE_CODE_UTILITY (SCU)
subcommands to do this, or you can use the SCL command EXPAND_
SOURCE_FILE.

Revision F How to Use Common CYBIL I/O 10-5

Using CYBIL I/O Procedures

The following SCL statements illustrate the way to use the SCL
EXPAND_SOURCE_FILE command to expand a source program.

/expand_source_file, file=my_program ..
../alternate_base=($system.cybil.osf$program_interface, ..
../$system.common.psf$external_interface_source)

The command writes the expanded text on the default file, COMPILE.
You then compile the expanded program text with the following:

/cybil input=compile list=1listing list_options=(r, a)

The EXPAND_SOURCE_FILE example, above, shows the steps
required fo expand the CYBIL source program contained in figure
10-1. Spelled out, the steps consist of the following:

® Specify the name of the file to be expanded on the FILE
parameter.

® Specify the $SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE file on
the ALTERNATE_BASE parameter. This file contains the XREF
procedure decks for all CYBIL I/O procedures. If the CYBIL
program uses one of the keyed-file procedures, the file
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE
must also be specified on the ALTERNATE_BASE parameter. The
file is then expanded, and the XREF decks named on *COPYC
directives in the CYBIL module are copied into the expanded
source program. By default, the name of this expanded source
program is COMPILE.

® (Call the CYBIL compiler to compile the source program on file
COMFPILE, and write a source listing on file LISTING. The list
options available on the CYBIL statement are described in Part 1
of this manual.

10-6 CYBIL Language Definition Revision F

W | 01/22/87 18:59:24 l 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | HOW TO USE CYBIL 1/0 | DRAFT COPY

Calling a CYBIL I/O Procedure

A call to a CYBIL I/O procedure has the same format as any CYBIL
procedure call:

nrocedure_name (parameter_list);

For more information on CYBIL procedure calls, see Part I of this

manual

1439 1-5 W

Parameter List

The parameter list provides the procedure with input values and the
locations at which it is to store output values. You can specify an
input value as the value itself or as a variable containing the value.

NOTE

All parameters on a procedure call are required. You must specify a

value or variable for each parameter in the parameter list.

CYBIL performs type checking on the variables and values specified
in the parameter list. It compares the parameters on the procedure
call with the parameter types listed in the XREF procedure
declaration. Therefore, to make a successful call to a CYBIL /O
procedure, the parameters on the procedure call must conform to the
parameter types specified in the procedure declaration deck.

Type checking and the valid parameter types for CYBIL programs are
discussed in Part I of this manual.

Extracting CYBIL Procedure Decks

As mentioned earlier, the procedure declaration decks for all CYBIL
I/0 procedures are contained in the
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE library file. You can
display a particular deck in this file for your own information by
using the SCU subcommand EXTRACT_DECK, which extracts a deck
and writes it to a file. The contents of each deck are identical to the
parameters and types listed in each procedure call description in this
manual.

The following example shows how to extract the CYP$SGET_NEXT_
RECORD procedure declaration deck and display it at your terminal.
By default, the extracted deck is written to file SOURCE.

Revision F How to Use Common CYBIL I/O 10-7

Calling a CYBIL I/O Procedure

/source_code_utility
sc/extract_deck deck=cyp$get_next_record ..
sc../ab=$system.cybil.osf$program_interface
sc/edit_file source

PROCEDURE [XREF] cyp$get_next_record
(record_fite: cyt$file;
pointer_to_target: “SEQ (*);
VAR number_of_cells_read: integer;
VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc CYTS$FILE

*copyc OST$STATUS

*copyc CYE$EXCEPTION_CONDITIONS
?? POP 7?7

sc/aquit

Parameter Types

As indicated by the procedure declaration deck displayed above, a call
to the CYPSGET_NEXT_RECORD procedure must specify four
parameters in its parameter list.

® The first parameter must specify a file identifier of type
CYTS$FILE.

® The second must specify a pointer of type “SEQ.
® The third must specify a variable of type integer.
® The fourth must specify a variable of type OST$STATUS.

VAR Parameters

The procedure call descriptions in this manual and the XREF
procedure declaration decks both contain parameters that have a VAR
listed with the parameter. The VAR indicates that the parameter is
treated as an output parameter by the procedure; that is, a value is
returned to the parameter by the procedure.

For example, the VAR listed with each procedure’s status parameter
indicates that the procedure returns a value to the status parameter.

10-8 CYBIL Language Definition Revision F
w] 01/22/87 19:59:24 l 02/13/87 09:45:31 | 87/03/25 22.17.32 | 60464113 F l HOW TO USE CYBIL 1/0 | DRAFT COPY

Calling a CYBIL I/O Procedure

in the procedure declaration deck, the VAR precedes the parameter
name.

VAR status: ost$status;

In the procedure call descriptions in this manual, the VAR is listed
with the parameter’s type.

status: VAR of ost$status;

For more information on declaring and assigning values to variables,
see Part I of this manual.

Checking the Completion Status

The last parameter on a CYBIL I/O procedure call must be a status
variable (type OST$STATUS). Unlike the status parameter on SCL
commands, the status parameter on these CYBIL calls is required, not
optional. When the procedure completes, NOS/VE returns the
completion status of the procedure in the specified status variable.

The program should check the completion status returned immediately
after the procedure call. If the NORMAL field of the status variable is
TRUE, the procedure completed normally. If the NORMAL field is
FALSE, the procedure compieted abnormaliy.

For example, the following program fragment uses a status variable
named STATUS. Immediately after the CYP$GET_NEXT_RECORD
call, an IF statement checks the value of the boolean field of the
status record (STATUS.NORMAL). If its value is FALSE (NOT
STATUS.NORMAL), the procedure terminates.

cyps$get_next_record (record_file, pointer_to_target,
number_of_cells_read, status);

IF NOT status.NORMAL THEN
RETURN;

IFEND;

Status Condition Codes

When the procedure terminates abnormally, NOS/VE returns
additional information about the condition that occurred. The following
fields of the record return this information when the NORMAL field
is FALSE:

Revision F How to Use Common CYBIL /O 10-9

Calling a CYBIL 1I/0 Procedure

condition
Exception condition code that uniquely identifies the condition
(integer of type OST$STATUS_CONDITION_CODE). Each code
can be referenced by its constant identifier as listed in the
NOS/VE Diagnostic Messages manual.
text
String record (type OST$STRING) containing additional information
about the condition. The record has the following two fields:

size

Actual string length in characters (0 through 256).

value

Text string (256 characters).
NOTE

The text field does not contain the error message. It contains items of
information that are inserted in the error message template if the
message is formatted using this status variable.

If the NORMAL field of the status record is FALSE, the program
determines its subsequent processing. For example, it might check for
a specific condition in the CONDITION field or determine the severity
level of the condition with an OSP$GET_STATUS_SEVERITY
procedure call. (The CYBIL System Interface manual contains the
description of OSP$GET_STATUS_SEVERITY and other condition
processing calls.)

10-10 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | HOW TO USE CYBIL 1/0 | DRAFT COPY

System Naming Convention

System Naming Convention

All identifiers defined by the NOS/VE program interface use the
system naming convention. The system naming convention requires
that all system-defined CYBIL identifiers have the following format:

idx$name

Field Description

id Two characters identifying the product that uses the
identifier. The following are the product identifiers referenced
in this manual:
Product
Identifier Product Function
AM Access method.
CY CYBIL Input/Output.
FSs File system.
0S Operating system.

X Character indicating the CYBIL element type identified.
x Description
c Constant.
d Deck.
e Error condition.
P Procedure.
t Type.

Field Description

$ The $ character indicates that Control Data defined the
identifier.

name A string of characters describing the purpose of the element

Revision F

represented by the identifier.

How to Use Common CYBIL /O 10-11

Procedure Call Description Format

For example, the identifier CYP$GET_NEXT_RECORD follows the
system’s naming convention. Its product identifier is CY, for CYBIL
Input/Output. The P following the product identifier indicates that it
is a procedure name. The string GET_NEXT_RECORD describes the
purpose of the procedure.

Procedure Call Description Format

Chapters 10 and 11 of this manual describe the CYBIL I/0
procedures. Each description uses the following format and
subheadings:

Purpose Brief statement of the procedure function.

Format Procedure call format showing the parameter positional
order followed by individual parameter descriptions.

Parameters Descriptions of the parameters in the preceding format,
including the parameter’s valid CYBIL type.

Conditions List of condition identifiers returned by the procedure.
The list is not complete; only the conditions that are
likely to be of interest to the procedure user are listed.

Remarks If present, additional information about procedure
processing.

Parameter Description Format

Within a procedure description, each parameter description states the
parameter’s function, its values, and its valid CYBIL type. Appendix I
of this manual contains an alphabetical listing of all parameter types
for the CYBIL I/O procedures described in this manual.

If the parameter type is a set of system-defined identifiers, the
parameter description lists all possible identifiers in the set and their
meanings.

If the variable type is a record, the parameter description describes
each field in the record. It states the field’s name, its function, and its

type.

10-12 CYBIL Language Definition Revision F
W [01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | HOW TO USE CYBIL I/0 | DRAFT COPY

Features Unique to NOS/VE

Features Unique to NOS/VE

The remainder of this chapter describes the features and limitations of
CYBIL I/O on NOS/VE.

Copying Procedure Deciaration Decks in Buik

There are two ways to declare CYBIL I/O procedures in a CYBIL
program. One way, already described, is t¢ include the name of the
procedure on the *COPYC directive, such as *COPYC GET_NEXT_
RECORD. With this method, there must be a *COPYC directive for
each procedure used in the program. But another way, also using the
*COPYC directive, is to declare the name of a deck which in turn
declares all the CYBIL I/O procedures for a certain type of file, such
as record files. Instead of 2 *COPYC directive for each of the record
file procedures, one *COPYC directive would declare all of the record

file procedures. The names of these general declaration decks and the
'nrnm:ﬂnrnc thev declare are listad below.

LLeLRRICs WAL Kkolidlic alc lsiTw

In order to declare these: Use this deck name:
CYBIL I/O types CYT$CYBIL_INPUT_OUTPUT
All procedures applicable to CYD$BINARY_FILE

binary files

All procedures applicable to CYD$RECORD_FILE
record files

All procedures applicable to text CYD$TEXT_FILE
files

All procedures applicable to CYD$DISPLAY_FILE
display files

For example, if a CYBIL program includes the following in its source
code,

*COPYC CYD$BINARY_FILE
all the procedure declaration decks for the binary-file procedures

described in chapters 12 and 13 are automatically copied into the
source program during program expansion.

Revision F How to Use Common CYBIL I/O 10-13

Features Unique to NOS/VE

NOTE

This method of declaring the binary-file procedures is efficient only if
most or all of those procedures will actually be used by the program.
If only a few are needed, it is better to declare them individually,
because the CYD$BINARY_FILE declaration performs a tremendous
amount of copying and would result in the needless use of system
resources.

File Names

File names specified on the CYBIL I/O procedures which open files
(such as CYP$OPEN_FILE) must conform to the naming conventions
for NOS/VE, and are interpreted as file references. Within NOS/VE,
file references include the path, cycle, and position of the file.

Position of File When Opened

You can specify the position at which a file is opened in one of
several ways: (listed in order of precedence)

® With the open_position record on the FILE_SPECIFICATIONS
parameter of CYPSOPEN_FILE (described in chapter 11).

® In the file reference (that is, on the file name) passed to
CYP$OPEN_FILE.

® With the SCL command SET_FILE_ATTRIBUTES.

The order of precedence is as follows:

1. If the open_position record on the FILE_SPECIFICATIONS
parameter specifies a file position, that position is used when the
file is opened.

. If the open_position record does not specify a file position, then
the file position included in the file reference on CYP$OPEN_
FILE is used.

3. If the file reference does not include a file position, then the
position specified on the SET_FILE_ATTRIBUTES command (if
specified for this instance of attachment) is used.

4. If a file position has not been specified by the SET_FILE_
ATTRIBUTES command for this instance of attachment, then the
file’s open position is beginning-of-information.

10-14 CYBIL Language Definition Revision F
w] 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | B0464113 F | HOW TO USE CYBIL 1/0 | DRAFT COPY

Features Unique to NOS/VE

mm
1 L

If you want the file opened at beginning-of-information, and if the file
was not explicitly attached (with the ATTACH_FILE command), then
it is not necessary to specify any file position at all:
beginning-of-information is automatically used when the file is opened
with CYPSOPEN_FILE. If the file was explicitly attached, but no file
position has been specified for this instance of attachment, it is
likewise not necessary to specify any file position:
beginning-of-information is automatically used.

For a description of the CYP$OPEN_FILE procedure and the open_
position record of the FILE_SPECIFICATIONS parameter, refer to
chapter 11.

Position of File When Closed

With the FILE_POSITION parameter of CYPSCLOSE_FILE
(described in chapter 11), the caller can specify where a file is
positioned before it is closed. This position is retained after the file is

closed only if all of the following are true:

® The file has been explicitly attached (with the ATTACH_FILE
command).

® The close_file_disposition record specified on the FILE_
SPECIFICATIONS parameter of CYP$OPEN_FILE is
CYCS$RETAIN_FILE.

¢ Subsequent instances of open within the job specify an open_
position of CYC$ASIS.

The open_position and close_file_disposition records are explained in
chapter 11, under File Specification Records.

File Attributes

Because CYBIL I/O provides standard input/output interfaces for
several operating systems, no provision is made to directly set or
interrogate NOS/VE file attributes, except as described below.3

CYBIL I/O follows a simple set of rules for file attributes.

3. At present, CYBIL I/O has only been implemented for NOS/VE.

Revision F How to Use Common CYBIL I/O 10-15

Features Unique to NOS/VE

® If the file has never been opened, the file is a new file and CYBIL
I/O defines file attributes as listed in tables 10-1 and 10-2. If the
FILE__SPECIFICATIONS parameter of the CYP$OPEN_FILE call
contains a value from which the attribute may be set, that value
is used.

® If the file has been previously opened, CYBIL I/O considers the
file an old file and does not modify or define any file attributes.

10-16 CYBIL Language Definition Revision F
W | 01/22/87 19:50:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 l 60464113 F | HOW TO USE CYBIL 1/0 | DRAFT COPY

Features Unique to NOS/VE

Tabie 16-1. File Atiributes for New Files: Binary and Record

File _ Attribute Binary Files Record Files

file contents CYCSUNKNOWN _ CYC$SUNKNOWN_
CONTENTS CONTENTS

file structure CYCSUNKNOWN _ CYC3UNKNOWN_
STRUCTURE STRUCTURE

file processor CYC$UNKNOWN _ CYC$UNKNOWN_
PROCESSOR PROCESSOR

page format! CYC$BURSTABLE _ CYC$BURSTABLE _
FORM FORM

page length! 60 lines 60 lines

page width!

132 columns

132 columns

1. The attribute values for page format, page length, and page width
are for NOS/VE files.

Table 10-2. File Attributes for New Files: Text and Display

File_ Attribute Text Files Display Files

file contents CYC$LEGIBLE CYCSLIST

file structure CYCSUNKNOWN _ CYCSUNKNOWN _
STRUCTURE STRUCTURE

file processor CYC$UNKNOWN _ CYC$UNKNOWN_
PROCESSOR PROCESSOR

page format! CYC$CONTINUOUS_. CYC$BURSTABLE_
FORM FORM

page length! 60 lines 60 lines

page widthi

132 columns

132 columns

1. The attribute values for page format, page length, and page width
are for NOS/VE files.

You can define the page_length, page_width, page_format, file_
contents, and file_processor attributes for new files on the FILE_
SPECIFICATIONS parameter of the CYP$OPEN_FILE procedure,
which is described in chapter 11.

Revision F

How to Use Common CYBIL I/0 10-17

Features Unique to NOS/VE

In addition, file attributes may be defined via SCL commands or
CYBIL procedures prior to calling CYP$OPEN_FILE. In this case,
CYBIL I/O considers the file an old file and does not define or modify
any of the permanent attributes.

File Structure

Four kinds of files can be used with CYBIL I/O: binary, record, text,
and display. All of these files have a beginning-of-information and an
end-of-information. On NOS/VE, files can be further subdivided into
partitions and records. (Binary files can only be subdivided into
partitions.)

Level Description

Partition A partition begins either at the
beginning-of-information or after the
end-of-partition of the previous partition.

Record A record begins at the beginning-of-information,
after an end-of-partition, or after the
end-of-record of a preceding record.

NOTE

Partitions should only be used when necessary: in certain reading,
writing, and positioning operations, an end-of-partition can be
mistaken for an end-of-information.

Although the end-of-information can only be implicitly created (the
end-of-information follows the last item written on a file), it can be
explicitly detected with the CYP$CURRENT_FILE_POSITION
procedure, described in chapter 11.

For more information on the structure of each of the four types of
files, refer to chapters 11 and 12.

10-18 CYBIL Language Definition Revision F
L | 01/22/87 18:58:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 I 60464113 F l HOW TO USE CYBIL 1/0 | DRAFT COPY

¥

Opening, Ciosing, and Structuring Files i1

This chapter describes the procedures for opening, closing, and

structuring files.

introduction

CYPSOPEN_FILE 11-
File Specification Records 11-

CYPSCLOSE_FILE i 11-

Positioning Files
CYP$POSITION _FILE_AT_BEGINNING. 11-
CYP$POSITION_FILE_AT_END 11-
CYP$CURRENT_FILE_POSITION 11-
CYPSLENGTH_OF_FILE 11-

Creating File Structure 11-
CYPSWRITE_END_OF_RECORD 11-
CYPEWRITE_END_OQOF_PARTITION | 11-

CYP$OPERATING_SYSTEM 11-

-
-t

Opening, Closing, and Structuring Files

Revision F Opening, Closing, and Structuring Files 11-1

Introduction

Introduction

This chapter describes the procedures for opening and closing files,
positioning files, and for creating file structure. The procedures in this
chapter may be used with any of the four types of files supported by
CYBIL I/O:

Binary A binary file is treated as a stream of cells. Any
further structure in the file is provided by the
program that creates it. The file can be accessed
either sequentially or randomly. Random access is
made possible by file keys that mark cell addresses.
(FILE_KEY is a parameter on the binary file
procedures described in chapter 12.) The file can be
positioned to beginning-of-information or
end-of-information, or to any file key.

Record A record file is a sequence of logical records. A
record can be read or written as a complete unit or
in pieces (as "partial” reads or writes). A record file
can only be accessed sequentially. It can be
positioned to beginning-of-information,
end-of-information, or forward or backward a
specified number of records or partitions.

Text A text file is essentially a file of records. Each
record is treated as a line of characters, and each
end-of-record as an end-of-line. A text file can only
be accessed sequentially. It may be positioned to
beginning-of-information or end-of-information, and
A mrrbmard bawd 31a mow bha Fobhbhad dn o peea I8
@il UuLpuLr wal 111T vall UT avucu w a bycbuu‘:u

column or skipped a specified number of lines.

Display A display file is a write-only text file, for printing,
displaying at a terminal, or sending to any device
that uses format control characters. Format control
operations are possible, such as limiting the number
of printed lines on a page, positioning the next line
at a specified line number, or overprinting a line.
There are also several ways of handling
page-overflow.

These four types of files are described in greater detail in chapter 12,
along with the CYBIL I/O procedures for reading and writing files.

The CYBIL I/0 procedures and functions are not defined in the

11-2 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | OPENING AND CLOSING FILES | DRAFT COPY

Introduction

CYBIL language itself, they are part of the NOS/VE program
interface. For instance, to use a CYBIL I/O procedure, a CYBIL
program must include a ¥COPYC directive for the procedure
declaration deck containing that procedure. For more information on
referencing procedure declaration decks and on expanding CYBIL

source programs, refer to chapter 10, How to Use CYRBIL /O,

The procedures and functions described in this chapter are the
following:

CYP$OPEN_FILE
Opens a file.

CYP$CLOSE_FILE

Closes a file.
CYP$POSITION _FILE _AT_BEGINNING
Positions a file to its beginning-of-information.
CYP$POSITION _FILE_AT_END

Positions a fiie to its end-of-information.
CYP$CURRENT_FILE_POSITION

Returns the current position of a file.

CYP$LENGTH_OF_FILE
Returns the length of a file.

CYPSWRITE_END_OF_RECORD
Writes an end-of-record on a record file.

CYP$WRITE _END_OF_PARTITION
Writes an end-of-partition on a file.

CYP$OPERATING_SYSTEM

Returns a value that identifies the operating system on which a
program is running.

Revision F Opening, Closing, and Structuring Files 11-3

CYP$OPEN_FILE

CYPSOPEN _FILE
Purpose Opens a file.
Format
status)
Parameters file_name: cyt$file_name;

CYP$OPEN _FILE (file_name, file_specifications, file,

The name of the file to be opened. On NOS/VE, a file
name may be up to 512 characters in length, and may be

a file reference.

file_specifications: cyt$file_specifications;

Pointer to an array of case-variant records. The array
must be initialized before the parameter can be passed.
The values specified in the records determine how the file

is to be used.

Any record left unspecified will default to the value in
the list below. If a NIL value is specified, all of the

records take the default values.

file _specification record Default
close_file_disposition CYC$DEFAULT_FILE _
DISPOSITION

file_access
file_character_set

=1 . PR, Y N
iile__eXistence

file_kind

new_page_ procedure

page_format

open_position

page_length

page_width

11-4 CYBIL Language Definition

CYC$READ_WRITE
CYCS$ACSII

OAXTAGRTITIVIT AT AT T
CIUVPINLDVW_ _Un_uJULy__

FILE
CYC$SRECORD_FILE

CYC$OMIT_PAGE_
PROCEDURE

CYC$BURSTABLE _
FORM

CYC$DEFAULT_OPEN_
POSITION

system dependent

system dependent

Revision F

| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | OPENING AND CLOSING FILES I DRAFT COPY

Conditions

Revision F

CYP$OPEN_FILE

file_contents CYCSUNKNOWN_
CONTENTS

file_processor CYCSUNKNOWN _
PROCESSOR

Following the description of CYP$OPEN_FILE is more
information about the file specification records, the values
that may be specified, and their defaults. For examples
demonstrating the use of this parameter and the
CYPS$OPEN_FILE procedure in CYBIL programs, refer to
the program examples in chapter 12

file: VAR of cyt$file;
Returns a pointer that must be used on all other calls to

the file specified by the FILE_NAME parameter. This
pointer is an identifier defined when the file is opened
with this procedure. Until the file is closed (with the
CYP$CLOSE_FILE procedure), all references to the file
must include this identifier. In other words, this identifier
remains defined until it is passed to the CYP$CLOSE _
FILE procedure. (This particular instance of the file being
opened, with this identifier, is called the "instance of
open" for the file.)

Attempting to call a CYBIL I/O procedure with an altered
or undefined pointer will have unpredictable results.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

cye$file__already_ exists
cye$file_not_found
cye$incorrect_open_request
cye$no_memory__to_open_file

Opening, Closing, and Structuring Files 11-5

CYP$OPEN_FILE

Remarks ® The length of the file name and the characters
included in the file name must conform to the
requirements of the operating system; otherwise, the
open will be aborted and abnormal status will be
returned.

® The values entered for the FILE_SPECIFICATIONS
records determine how the file is to be opened, how it
is to be operated upon, and what is to be done with
the file after it is closed. For more information on how
the FILE_ _SPECIFICATIONS records are built, refer to
the discussion of file specifications in this chapter, and
to Appendix L

® If the capabilities of the FSPSOPEN_FILE procedure
are needed in opening the file, refer to chapter 13 for
a CYBIL I/O file-opening procedure that passes values
directly to FSPSOPEN_FILE. (The FSP$OPEN_FILE
procedure is described in the CYBIL File Management
manual.)

11-6 CYBIL Language Definition Revision F

|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
v
| 01/22/87 19:59:24 l 02/13/87 09:48:31 | 87/03/25 22.17.32] 60464113 F | OPENING AND CLOSING FILES | DRAFT COPY '

File Specification Records

Fiie Specification Records

The file specification records are used by the CYP$OPEN_FILE
procedure to determine how the file is to be opened, how it is to be
operated upon, and what is to be done with it when it is closed. Each

ig :nnﬁﬁ"AA asg a value in a record in an initialized array; the array ig

then named on the FILE_SPECIFICATIONS parameter in the call to
CYP$OPEN_FILE.

The example programs in chapter 12 show how file specifications are
established in CYBIL programs. Additional information about file
specifications is in the description of the CYPSOPEN_FILE procedure
earlier in this chapter, and in Appendix J, which lists all the CYBIL
I/O constants and types.

The following are the file specification records established when a file
is opened, and the values allowed for each.

close_file_disposition

Determines whether or not a file is detached (or deleted) after it is
closed (type CYT$CLOSE_FILE_DISPOSITION).

The following values are available:

Disposition Resuit

CYC$UNLOAD_FILE or An explicit detach is performed
CYC$RETURN_FILE or when the file is closed, provided
CYC$DETACH_FILE it has no other instances of

open outstanding in the job.

CYC$RETAIN _FILE If the file was explicitly
attached prior to open, the file
remains attached.

CYC$DELETE_FILE If the file is local, it is
detached; if permanent, it is
deleted.

CYC$DEFAULT_FILE _ If the file was implicitly

DISPOSITION attached by CYP$SOPEN_FILE

and the file has no other
instances of open outstanding in
the job, the file is detached
when it is closed.

Revision F Opening, Closing, and Structuring Files 11-7

File Specification Records

The default value is CYC$DEFAULT_CLOSE_DISPOSITION.

file_access

Specifies the modes of access permitted on the file’s data (type
CYT$FILE _ACCESS).

When the file is opened, the file_access record serves to validate all
read/write requests to the file for the instance of open. The attempt to
write to a file opened for read or to read from a file opened for write
will be blocked and abnormal status will be returned. Enter one of
the following values:

CYCS$READ
Read-only access.

CYC$WRITE
Write-only access.

CYC$READ_WRITE
Read or write access.

The default value is CYC$READ_WRITE.

NOTE

New files must be opened with CYC$WRITE or CYC$READ_WRITE.
If a file is opened as a new file (CYC$NEW_FILE on the file_
existence record) with CYC$READ, the attempt to open the file will

L2 D e o 1 o 211 L. o]
ildli anu avllurilldl Stdiud will pe revuriied.

file__existence

Specifies whether the file is created when it is opened (type
CYTS$FILE_EXISTENCE). Enter one of the following values:

11-8 CYBIL Language Definition Revision F
| 01/22/87 19:59:24] 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | OPENING AND CLOSING FILES]| DRAFT COPY

File Specification Records

[g PRy I } Acrvieadd aes
voliidLaIiL esvripuun

CYC$OLD_FILE The file already exists, otherwise the file open
procedure returns abnormal status.

CYCSNEW_FILE The file is new and is created by this instance
of open. CYP$OPEN_FILE returns abnormal
status if this value is specified and the file
already exists.

CYCSNEW_OR_ If the file does not exist it will be created.
OLD_FILE

The default value is CYC$NEW_OR_OLD_FILE.

file_ kind

Specifies the file types, and thus limits the kinds of CYBIL I/O
procedures that may be addressed to a file (type CYTSFILE_KIND).
The file types are the following:

CYCS$BINARY
CYC$RECORD
CYCS$TEXT
CYC$DISPLAY

The default value is CYC$RECORD_FILE. These four kinds of files
are described at the beginning of this chapter and in chapter 12.

For example, if a file is opened as a text file, the attempt to use any
record, binary, or display file procedure calls is prohibited and the
status variable returned indicates CYESINCORRECT_OPERATION.

file_character _set

Specifies the character set for text and display files (type CYT$FILE__
CHARACTER_SET).

The only character set supported by NOS/VE is CYC$ASCII (8-bit
ASCII code), which is the default value.

Revision F Opening, Closing, and Structuring Files 11-9

File Specification Records

NOTE

The file_character_set is used only by text and display-type files. If
this record is defined for binary or record files, it is ignored.

file_contents

Describes the contents of a file (type CYT$FILE_CONTENTS). The
use of this value is system dependent.

The following are the available values:
CYC$ASCII_LOG
CYC$BINARY
CYC$BINARY_LOG
CYC$DATA
CYCS$FILE_BACKUP
CYCS$LEGIBLE
CYCSLEGIBLE _DATA
CYCSLEGIBLE_LIBRARY
CYC$LEGIBLE _UNKNOWN
CYCS$LIST
CYCS$LIST_UNKNOWN
CYC$OBJECT
CYC$OBJECT_DATA
CYC$OBJECT_LIBRARY
CYC$SCREEN
CYC$SCREEN_FORM
CYC$UNKNOWN_CONTENTS
The default value is CYCSUNKNOWN_CONTENTS.

11-10 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 l 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | OPENING AND CLOSING FILES | DRAFT COPY

File Specification Records

Describes the file processor (type CYT$FILE_PROCESSOR). The use
of this value is system-dependent.

The following are the available values:
CYC$ADA
CYCSAPL
CYC$ASSEMBLER
CYC$BASIC
CYC$C
CYC$COBOL
CYC$CYBIL
CYC$DEBUGGER
CYC$FORTRAN
CYCS$LISP
CYC$PASCAL
CYCS$PLI
CYC$PPU_ASSEMBLER
CYC$PROLOG
CYC$SCL
CYC$SCU
CYC$UNKNOWN_PROCESSOR
CYC$VX
The default value is CYCSUNKNOWN _PROCESSOR.

Revision F Opening, Closing, and Structuring Files 11-11

File Specification Records

new_ page__procedure

Specifies how page-overflow conditions are handled for display-type
files (type CYT$NEW_PAGE_PROCEDURE). This specification builds
a record of type CYT$PAGE _PROCEDURE_KIND. For the tag field
of the record, specify CYC$USER_SPECIFIED_PROCEDURE,
CYC$STANDARD_PROCEDURE, or CYC$OMIT_PAGE _
PROCEDURE, described below.

CYC$USER_SPECIFIED_PROCEDURE

Whenever a page overflow condition occurs, CYBIL /O
automatically calls the procedure specified by the user_procedure
field. The user_procedure field (type CYT$USER_PAGE _
PROCEDURE) is a pointer to the user’s page-overflow procedure.
It passes three parameters to that procedure: -

display_file: cyt$file

File ID established when the display file was opened.

next_page_number: integer
Page number of the overflow page.

status: ost$status
Status variable in which the status value is returned.

CYC$STANDARD_PROCEDURE

Whenever a page overflow condition occurs, CYBIL I/O
automatically initiates a display-page eject and produces a standard
title-line followed by one blank line. The title field of the new_

page_procedure record specifies a siring of characters that CYBIL
I/O will include in the standard title line. (For a description of the
standard title line, refer to Page-Overflow Processing for Display
Files in chapter 12.)

CYC$OMIT_PAGE_PROCEDURE

Causes a display-page eject.
The default value is CYC$OMIT_PAGE_PROCEDURE.
NOTE

New_page_procedure is used only by display files. If this record is
defined for any other type of file, it is ignored.

11-12 CYBIL Language Definition Revision F
| 01/22/87 19:58:24 I 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F l OPENING AND CLOSING FILES | DRAFT COPY

File Specification Records

page_ format
Specifies the presence and frequency of titling in a display file with
file contents of CYC$LIST or CYCS$LIST_UNKNOWN (type
CYT$PAGE_FORMAT). (Titling is determined by the new__page_
procedure record, explained above.)

The following values are available:

Constant Resulting Page Format
CYC$BURSTABLE _ Titling and display-page eject occur at
FORM the frequency defined by the page length

of the file. This is the recommended
value for files that are to be listed on a
forms printer with a page eject required
for each page.

CYC$NON_ Titling is separated from other data by a

BURSTABLE_FORM triple space rather than by forcing a
display-page eject as in
CYC$BURSTABLE_FORM. A
display-page eject and titling also occur
at the frequency defined by the page

length of the file.

CYC$CONTINUOUS_ Titling appears once at the beginning of
FORM the file followed by triple spacing.

CYC$UNTITLED_FORM No titling and no display-pége-eject occur
anywhere in the file.

NOTE

Page_format is used only by display files. If this record is defined for
any other type of file, it is ignored.

open__position

Designates where the file should be initially positioned when it is
opened (type CYT$OPEN_ CLOSE_POSITION). For an explanation of
how this record relates to other means of specifying file position when
the file is opened, refer to Position of File When Opened, in chapter
10.

The following values are available:

Revision F Opening, Closing, and Structuring Files 11-13

File Specification Records

CYC$BEGINNING

The file is opened at beginning-of-information. (CYC$BEGINNING
takes precedence over any other file position specification, such as
file position specified in the file reference.)

CYCSEND

The file is opened at end-of-information. (CYC$END takes
precedence over any other file position specification, such as file
position specified in the file reference.)

CYC$ASIS

If the file has been explicitly attached, and if CYCSRETAIN_FILE
was the close_file_disposition when the file was previously closed
within this instance of attachment, the file is positioned to
whatever was specified as the file position when it was closed. If
the file was not explicitly attached, or if its close_file_disposition
record when closed was not CYC$RETAIN_FILE, the file is
opened at its beginning-of-information.

CYC$DEFAULT_OPEN _POSITION

If the open position was specified in the file reference, or was
specified on the SCL command SET_FILE_ATTRIBUTES,
CYP$OPEN_FILE uses that position when opening the file. If a
file is opened with no file position specified at all, its open
position is beginning-of-information.

The default value is CYC$DEFAULT_OPEN_POSITION.

If you want the file opened at beginning-of-information, and if the file
it is not necessary to specify any file position at all:
beginning-of-information is automatically used when the file is opened
with CYP$SOPEN_FILE. If the file is explicitly attached, but no file
position has been specified for this instance of attachment, it is
likewise not necessary to specify any file position:
beginning-of-information is automatically used.

NOTE

The FILE_POSITION parameter on the CYP$CLOSE_FILE procedure
is also of type CYT$OPEN_CLOSE_POSITION. Under certain
circumstances, this parameter determines the file’s position at its
close. For more information on this parameter, refer to the description
of the CYP$CLOSE_FILE procedure later in this chapter.

|
11-14 CYBIL Language Definition Revision F |

| 01/722/87 19:59:24 l 02/13/87 09:46:31 | 87/08/25 22.17.32 | 60464113 F | OPENING AND CLOSING FILES | DRAFT COPY

File Specification Records

page_lengin

Specifies the number of lines on a page for display-type files (type
CYT$PAGE_LENGTH). The page length may be 1 to 439,804,651,103
lines. The constant CYC$PAGE_LIMIT specifies the maximum.

The default is a system-dependent value (60 lines on NOS/VE).
NOTE

Page_length is used only by display files. If this record is defined for
any other type of file, it is ignored.

page_ width

Specifies the maximum length of a text line for display or text files
(type CYT$PAGE_WIDTH). The length may be 1 to 65,535 characters.
The following values are available:

Constant Line Length in Characters
CYCSNARROW_PAGE_WIDTH 80
CYC$WIDE_PAGE_WIDTH 132
CYC$MAX_PAGE_WIDTH 65535

The default is a system-dependent value (CYC$WIDE_PAGE_WIDTH
on NOS/VE).

NOTE

Page_width is used only by display and text files. If this record is
defined for any other type of file, it is ignored.

Revision F Opening, Closing, and Structuring Files 11-15

CYP$CLOSE_FILE

CYP$CLOSE _FILE
Purpose Closes a file.
Format CYPSCLOSE _FILE (file, file_position, status)

Parameters file: cyt$file;
File identifier established when the file was opened.

file_position: cyt$open_ close_position;

This parameter specifies where the file is positioned
before it is closed, but only if the file was explicitly
attached (with the SCL command ATTACH_FILE) before
it was opened with CYP$OPEN_FILE. If the file was not
explicitly attached, this parameter is ignored.

Enter one of the following values:

CYC$BEGINNING

File is rewound to beginning-of-information and then
closed.

CYCS$SEND

File is positioned to end-of-information and then |
closed. |

CYCS$ASIS
File is closed without positioning.

CYC$DEFAULT_OPEN _POSITION |
Same as CYCS$ASIS.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect_input_request

11-16 CYBIL Language Definition Revision F
01/22/87 19:59: 24 | 02/13/87 08:46:31 I 87/03/25 22.17.32 | 60484113 F | OPENING AND CLOSING FILES l DRAFT COPY

Remarks

Revision F

[}

CYP$CLOSE_FILE

The close_{file_disposition record of the file
specifications that were established when the file was
opened will determine what happens to the file when
it is closed (whether it is retained, returned, unloaded,
or deleted). The close_file_disposition record is
explained earlier in this chapter under File

Specification Records.

The value of the FILE_POSITION parameter
determines the file’s position at its close only if the
file was explicitly attached before it was opened.
Furthermore, the value of this parameter is used only
if the value of the close_file_disposition record of the
file specifications was CYC$RETAIN_FILE, and if
subsequent instances of open within the job specify
CYCS$ASIS on the FILE_POSITION parameter at each
close.

No matter where file position is specified {(on the
open_position record of FILE_SPECIFICATIONS, in
the file referecne, on the SET_FILE_ATTRIBUTES
command, or on the FILE_POSITION parameter of
CYP$CLOSE_FILE), that specification does not
become a permanent attribute of the file. It is in effect
only during the instance of open or instance of
attachment.

Opening, Closing, and Structuring Files 11-17

Positioning Files

Positioning Files

This section describes the procedures for positioning files:
CYP$POSITION _FILE_AT_BEGINNING and CYP$POSITION_
FILE_AT_END. It also describes the functions for checking the
current position of the file, CYP$CURRENT_FILE_POSITION, and
for checking the file’s length, CYPSLENGTH_OF_FILE.

In addition, there are several ways of specifying where the file is to
be positioned when it is opened. These are described in chapter 10,
under Position of File at Open, and in this chapter under the
CYP$OPEN_FILE procedure.

11-18 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 I 02/13/87 09:46:31 ! 87/03/26 22.17.32 | 60464113 F I OPENING AND CLOSING FILES ' DRAFT COPY

CYP$POSITION_FILE_AT_BEGINNING

Purpose Positions a file at its beginning-of-information.
Format CYP$POSITION _FILE _AT_BEGINNING (file, status)

Parameters file: cyt$file;
File identifier established when the file was opened.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open

Remarks To use this procedure, the file must have been opened
with the CYP$OPEN_FILE procedure.

Revision F Opening, Closing, and Structuring Files 11-19

CYPS$POSITION_FILE_AT_END

CYPS$POSITION _FILE _AT_END
Purpose Positions a file at its end-of-information.
Format CYP$POSITION _FILE _AT_END (file, status)

Parameters file: cyt$file;
File identifier established when the file was opened.
status: VAR of ost$status;
Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect_input_request

Remarks To use this procedure, the file must have been opened
with the CYP$OPEN_FILE procedure.

11-20 CYBIL Language Definition Revision F
| 01/22/87 19:58:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | OPENING AND CLOSING FILES | DRAFT COPY

CYP$CURRENT_FILE_POSITION Function

Purpose Returns the current position of a file.

Format CYP$CURRENT_FILE _POSITION (file): cyt$current_
file_position;

Parameters file: cyt$file; _
File identifier established when the file was opened.
Remarks ® The following are the values that may be returned by
this function:
CYCS$BEGINNING_OF_INFORMATION
File is at beginning-of-information.

CYC$SMIDDLE_OF_RECORD
File is at middle-of-record.

CYC$END_OF_RECORD

File is at end-cf-record.

AARLTUL

CYC$END_OF_PARTITION
File is at end-of-partition.

CYC$END_OF_INFORMATION
File is at end-of-information.

¢ Following any type of read or positioning operation,
this function returns the current file position.
Following most types of write operations, this function
will return CYC$END_OF_INFORMATION. If the
previous operation was a write to a binary file, this
function returns CYCSMIDDLE_OF_RECORD unless
the write extended the length of the file, in which
case the function returns CYCSEND_OF_
INFORMATION.

® This function returns CYC$MIDDLE_OF_RECORD
following a read from a binary file unless the
NUMBER_OF_CELLS_READ parameter on the
CYP$GET_NEXT_BINARY or CYP$GET _KEYED__
BINARY procedure returned a value of 0 (zero). In

Revision F Opening, Closing, and Structuring Files 11-21

CYP$CURRENT_FILE_POSITION Function

this case, CYPSCURRENT_FILE_POSITION would
return CYC$END_OF_PARTITION or CYC$END_
OF_INFORMATION to indicate which file boundary
condition was encountered.

11-22 CYBIL Language Definition Revision F |

|
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32] 60464113 F | OPENING AND CLOSING FILES) DRAFT COPY ‘

CYPSLENGTH_OF_FILE Function

CYPSLENGTH _OF_FILE Function

Purpose Returns the length of a file. (The length is the number of
cells in the file.)

ormat CYPSLENGTH _OF_FILE (file): integer:

Format file: cyt$file;
File identifier established when the file was opened.

Revision F Opening, Closing, and Structuring Files 11-23

Creating File Structure

Creating File Structure

On NOS/VE, CYBIL I/O supports two levels of file-subdivision: records
and partitions.

This section describes the CYP$WRITE _END_OF_RECORD
procedure for creating end-of-records, and the CYP$WRITE _END_
OF_PARTITION procedure for creating an end-of-partition.

In addition to CYP$WRITE_END_OF_RECORD, there are other
procedures which create end-of-records. These procedures (which are
described in chapter 12) are the following:

® CYP$SWRITE_END_OF_LINE.
® CYP$PUT_NEXT_RECORD and CYP$PUT_NEXT_LINE.

¢ CYP$PUT_PARTIAL_RECORD with its LAST_PART_OF_
RECORD parameter set to TRUE.

CYP$PUT_PARTIAL_LINE with its LAST_PART_OF_LINE
parameter set to TRUE.

Although the end-of-information can only be implicitly created (it
follows the last item physically written on a file), it can be explicitly
detected with the CYP$CURRENT_FILE_POSITION function.

11-24 CYBIL Language Definition Revision F
| 01/22/87 19:58:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F l OPENING AND CLOSING FILES | DRAFT COPY

e
=
R)
i.
';:I
o
'—I

Conditions

Remarks

Revision F

CYP$WRITE_END_OF_RECORD

TE_END_OF_RECORD

Writes an end-of-record to a record file.

CYP$SWRITE _END_OF_RECORD (record _file, status)
record _file: cyt$file;

File identifier established when the file was opened.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

cye$file_not_open
cye$incorrect_output_request
cye$incorrect_operation

® [f the last write to the file was partial, that record is
completed; otherwise, an empty record results.

® Attempting to use this procedure on a file not opened
as a record-type file will return CYESINCORRECT_
OPERATION in the status variable.

® Attempting to use this procedure on a file not opened
with either write access or read write access will
return CYESINCORRECT_OUTPUT_REQUEST in the
status variable.

Opening, Closing, and Structuring Files 11-25

CYPSWRITE_END_OF_PARTITION

CYPSWRITE _END _OF_PARTITION
Purpose Writes an end-of-partition in a file.
Format CYPSWRITE _END_OF_PARTITION (file, status)

Parameters file: cyt$file;
File identifier established when the file was opened.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

.Conditions cyeS$file__not_open
cye$incorrect_output_request

Remarks ® If the last write to the specified file was a partial
write (by means of the CYP$PUT_PARTIAL_RECORD
or CYP$PUT_PARTIAL_LINE procedure), the record
or line is terminated before the end-of-partition is
written.

® Attempting to use this procedure with a file not
opened with either write access or read write access
will return CYC$INCORRECT_OUTPUT_REQUEST
in the status variable.

11-26 CYBIL Language Definition Revision F
l 01/22/87 19:59:24 I 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | OPENING AND CLOSING FILES | DRAFT COPY

CYP$SOPERATING_SYSTEM Function

T

CYPSOPERATING _SYSTEM

STEM Funciion
Purpose Returns a value that identifies the operating system on
which a program is running.

Format CYP$OPERATING _SYSTEM: cyt$system_ type;

Remarks ® This function allows a program to handle any
operating-system dependencies by first checking the
identity of the operating system. (At present, the value
of this function is somewhat limited, since CYBIL 1I/O
has only been implemented for NOS/VE.)

® On NOS/VE, this function returns the value
CYC$NOSVE.

Revision F Opening, Closing, and Structuring Files 11-27

Reading and Writing Files 12

This chapter describes the CYBIL I/O procedures and functions for
reading and writing files.

Binary Files e 12-
Binary File Structure 12-
CYP$GET_NEXT_BINARY 12-
CYP$GET_KEYED_BINARY 12-
CYPSPUT_NEXT_BINARY. 12-
CYPSPUT_KEYED_BINARY 12-
Positioning Binary Files 12-

CYP$POSITION_BINARY_AT_KEY
CYP$BINARY_FILE_KEY 12-
Program Examples Using Binary Files 12-

Record Files

mpmened T3 1~ CQéone mdomann
Record Pile Structure o

CYP$GET_NEXT_RECORD
CYP$GET_PARTIAL_RECORD
CYPSPUT_NEXT_RECORD
CYP$PUT_PARTIAL_RECORD
Positioning Record Files

CYPS$POSITION_RECORD_FILE
Program Examples Using Record Files

Text and Display Files
Text File Structure0 oL
Display File Structure oL,
CYP$GET_NEXT_LINE
CYP$GET_PARTIAL_LINE.
CYP$PUT_NEXT_LINE
CYP$PUT_PARTIAL_LINE
CYP$WRITE_END_OF_LINE
CYP$FLUSH_LINE
CYPSTAB_FILE
CYP$SKIP_LINES
CYP$FILE_CONNECTED_TO_TERMINAL
CYP$CURRENT_COLUMN
CYPSPAGE_WIDTH
Program Examples Using Text and Display Files

Page-Overflow Processing for Display Files
CYP$START_NEW_DISPLAY_PAGE
CYP$POSITION_DISPLAY_PAGE
CYP$DISPLAY_STANDARD_TITLE

CYP$DISPLAY_PAGE_EJECT 12-

CYP$DISPLAY_PAGE_LENGTH 12-
CYP$CURRENT_DISPLAY_LINE 12-
CYP$CURRENT_PAGE_NUMBER 12-
Program Example Using Terminal YO 12-

|
\
\
\
\
\
\
\
|
\
\
|
|

| 01/22/87 19:58:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY |

Reading and Writing Files 12

This chapter describes the CYBIL I/O procedures and functions for
reading and writing files. These procedures are designed to work in
CYBIL programs run on other operating systems, such as NOS,
without modifications.!

The procedures specifically designed only for use on CYBIL for
NOS/VE are described in chapter 13. These procedures have features
and limitations unique to NOS/VE, and are not intended to work in
CYBIL programs run on other systems.

As explained in chapter 10, CYBIL I/O procedures and functions are
not defined in the CYBIL language itself; they are part of the
NOS/VE program interface. For more information on referencing
procedure declaration decks and on expanding CYBIL source programs,
refer to chapter 10, How to Use Common CYBIL I/0.

Each of the procedures in this chapter can only be used with one of
the four file-types: binary, record, text, or display. (Some of the
procedures can be used with both text and display files.) For each
file-type there is a section in this chapter describing the procedures
and functions which pertain only to that type. In addition, each
file-type has certain characteristics and limitations of its own. These
are also discussed in the section on that file-type.

1. At present, CYBIL I/O is only available on NOS/VE.

Revision F Reading and Writing Files 12-1

Binary Files

Binary Files

The procedures and functions described in this section are for use
with binary files only.

To read or write a file using CYBIL I/O, the CYBIL type of the
parameter specifying the data to be read or written must match the
CYBIL type of the program variable containing the data to be read or
written. Moreover, the CYBIL I/O binary file procedures require that
the data be specified as a pointer to a CYBIL sequence. Programs
using the binary file procedures must therefore specify the data as a
variable of type pointer to CYBIL sequence. This pointer is usually
defined by using the CYBIL #SEQ function.

For example, given the following CYBIL variable declarations:

VAR
data_item_1: my_data_type,
data_item_2: “my_data_type,
data_item_3: “array [1 .. 50] of my_data_type;

pointers to CYBIL sequences may be defined as follows:

#SEQ (data_item_1)
#SEQ (data_item_2")
#SEQ (data_item_3")
#SEQ (data_item_3"~ [5])

There are examples of the #SEQ function under Program Examples
Using Binary Files later in this chapter.

Binary File Structure

CYBIL I/O imposes no structure on the data in a binary file.
Therefore, any structure to be found in a binary file must be provided
for and interpreted by the user program. For instance, the task that
writes data on a binary-type file is responsible for determining how
the data is to be read. It should write data-organization indicators as
needed. As a result, a program that reads the binary file data must
use the data conventions imposed by the program that wrote the data.

CYBIL I/O treats the data in a binary file as a sequence of cells.
Calls to the binary read and write procedures result in a mapping of
cells between the file and the CYBIL program variable.

12-2 CYBIL Language Definition Revision F

| 01/22/87 19:58:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

Binary Files

Binary files may be subdivided into partitions but not into records.

Binary files may be read and written in either a random or sequential
manner. Random access of binary files is possible via the FILE_KEY
parameter on the binary file procedures described in this section. The
file key may be viewed as an offset pointer that marks cell addresses
within a binary file. The file keys identify the number of the cell
within the file at which the data transfer begins.

NOTE

CYBIL I/O does not maintain a directory of file keys for binary files.
It is the user’s responsibility to create and maintain any directories
that may be required.

When a binary file is opened, the file key is undefined. To access the
file using the CYP$PUT_KEYED_BINARY and CYP$GET_KEYED_
BINARY procedures, the file key must first be set to the current
(open) position of the file. You can use the CYP$GET_NEXT_
BINARY procedure or the CYP$BINARY_FILE_KEY function to get

tha addwace Af tha atvvrant Ffila nnait
AL T

H a T Th { Y nt i ¥ SITINN
waAT A WO Ui waiT VAL L Caivu 44AT PURBiLviVii.

The sequential access procedures transfer data to or from the
"address" or file key at which the file is currently positioned. As with
record files, the data read or written is transferred as a block of cells
that are mapped to the CYBIL data structure being read or written.

Binary files may be positioned to the beginning-of-information,
end-of-information, or to any file key within the file. Because binary
files can be accessed randomly, positioning a binary file at the
beginning-of-information and writing to the file does not necessarily
mean that existing data (which follows the data being written) will be
lost. (The opposite is true of record files, which are described later in
this chapter).

Revision F Reading and Writing Files 12-3

Binary Files

The following procedures and functions may be used with binary files
only. These procedures and functions are described in greater detail
on the following pages.

CYP$GET_NEXT_BINARY
Reads data from a binary file.

CYP$GET_KEYED_BINARY
Reads data from a binary file.

CYP$PUT_NEXT_BINARY
Writes data to a binary file.

CYP$PUT_KEYED_BINARY
Writes data to a binary file.

CYP$POSITION _BINARY_AT_KEY
Positions a binary file to a specified file cell address.

CYP$BINARY_FILE_KEY

Returns the file cell address at which a binary file is currently
positioned.

12-4 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 l 60464113 F | READING AND WRITING FILES | DRAFT COPY !

Parameters

Conditions

Remarks

Revision F

CYP$GET_NEXT_BINARY

Reads data from a binary file.

CYPS$GET_NEXT_BINARY (binary_file, pointer_to_

target, file_key, number_of_cells_read, status)

binary_file: cyt$file;
File identifier established when the file was opened.

pointer_to_target: "SEQ (*);
The data structure into which data is to be read.

file_key: VAR of integer;

Returns the file cell address from which the read began.

number_of _cells_read: VAR of integer;

Raotiyrneg tha mavmhar af Anlle anti1ally wand Mha vnlans
ASVUrNS e NUmMOoer §I feiis afiuaily read. inae vaiue

returned is normally the size of the data structure
referenced by the POINTER_TO_TARGET parameter.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

cye$file_not_open
cye$incorrect__input_request
cye$incorrect__operation

® The data is read from the current position of the file.

® If end-of-partition or end-of-information is detected
during a read, the NUMBER_OF_CELLS_READ
parameter returns only the cells read before the
end-of-partition or end-of-information was detected.

® Attempting to use this procedure on a file not opened
as a binary-type file will return CYE$INCORRECT_
OPERATION in the status variable.

® Attempting to use this procedure on a file opened for

write access will return CYESINCORRECT_INPUT_
REQUEST in the status variable.

Reading and Writing Files 12-5

CYP$GET_KEYED_BINARY

CYPSGET_KEYED _BINARY
Purpose Reads data from a binary file.

Format CYPSGET_KEYED _BINARY (binary_file, pointer_
to_target, file_key, number_of_cells_read, status)

Parameters binary_file: cyt$file;
File identifier established when the file was opened.

pointer _to_target: "SEQ (*);
The data structure into which data is to be read.

file_key: integer;
The file cell address at which the read is to begin.

number _of_cells_read: VAR of integer;

Returns the number of cells actually read. The value
returned is normally the size of the data structure
referenced by the POINTER_TO_TARGET parameter.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not__open
cye$incorrect__input_request
cye$incorrect_operation
cye$key__past_eoi

Remarks

A s fnamnmn ndd e Antandd
® If end-of-partition or end-sf-information is detected

during a read, the NUMBER_OF_CELLS_READ
parameter returns only the cells read before the
end-of-partition or end-of-information was detected.

® If the FILE_KEY parameter specifies a cell beyond
the end-of-information, no data is read, CYP$GET_
KEYED_BINARY will return CYE$KEY_PAST_EOI
in the status variable, and the position of the file
remains unchanged.

12-6 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

Revision F

CYP$GET_KEYED_BINARY

Attempting to use this procedure on a file not opened
as a binary-type file will return CYESINCORRECT_.
OPERATION in the status variable.

Attempting to use this procedure on a file opened for

write access will return CYES$INCORRECT_INPUT_
REQUEST in the status variable.

Reading and Writing Files 12-7

CYP$PUT_NEXT_BINARY

CYPSPUT_NEXT_BINARY
Purpose Writes data to a binary file.

Format CYP$SPUT_NEXT_BINARY (binary_file, pointer_to_
source, file_key, status)

Parameters binary_file: cyt$file;
File identifier established when the file was opened.

pointer _to_source: “"SEQ (*);
The data to be written.

file_key: VAR of integer;
Returns the file cell address at which the write started.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file__not_open
cye$incorrect__output_request
cye$incorrect_operation

Remarks ® The data is written to the current position of the file.

® The end-of-information for a binary file follows the
last physical cell written to the file. Thus, the file can
be written, repositioned backwards, and written again
without affecting the end-of-information.

® The size of the data block written to a binary file is
determined by the POINTER_TO_SOURCE

parameter. CYBIL I/0O does not perform any hlocking
of data. Thus, writing varying length blocks of data at
random file addresses can cause previously written

data blocks to be partially or fully overwritten.

® Attempting to use this procedure on a file not opened
as a binary-type file will return CYE$INCORRECT_
OPERATION in the status variable.

® Attempting to use this procedure on a file not opened
for write access or read write access will return
CYES$INCORRECT_OUTPUT_REQUEST in the status
variable.

12-8 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/256 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

CYP$PUT_KEYED_BINARY

Parameters

N

. L
NSGIdRLAVAULLD

Revision F

Writes data to a binary file.

CYP$PUT_KEYED_BINARY (binary_file, pointer_
to_source, file_key, status)

binary_file: cyt$file;
File identifier established when the file was opened.

pointer _to_source: “SEQ (*);
The data to be written.

file _key: integer;

The file cell address at which the write is to begin.

status: VAR of ost$status;

Status variable in which the completion 1
returned.

cye$file_not_open
cye$incorrect_output_request

cye$incorrect_ operation

® The size of the data block written to a binary file is
determined by the POINTER_TO_SOURCE
parameter. CYBIL I/O does not perform any blocking
of data. Thus, writing varying length blocks of data at
random file addresses can cause previously written
data blocks to be partially or fully overwritten.

® Attempting to use this procedure on a file not opened
as a binary-type file will return CYES$INCORRECT_
OPERATION in the status variable.

e Attempting to use this procedure on a file not opened
for write access or read write access will return
CYESINCORRECT_OUTPUT_REQUEST in the status
variable.

Reading and Writing Files 12-9

Binary File Positioning

Binary File Positioning

Binary files can be positioned to beginning or end-of-information (with
the CYP$POSITION_FILE_AT_BEGINNING and CYP$POSITION _
FILE_AT_END procedures described in chapter 11). They can also be
positioned to any random file address within the bounds of the file.
This is done with CYP$POSITION_BINARY_AT_KEY and
CYP$BINARY_FILE_KEY, which are described on the following
pages.

12-10 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

CYP$POSITION_BINARY_AT KEY

Purpose Positions a binary file to a specified file cell address.

Format CYP$POSITION_BINARY_AT_KEY (binary_file,
file _key, status)

Parameters binary_file: cyt$file;

File identifier established when the file was opened.

file _key: integer;
The file cell address to which the file is to be positioned.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file__not_open
cye$incorrect_operation
cye$key_past_eoi

Remarks ® If the FILE_KEY parameter specifies a cell beyond
the end-of-information, CYP$GET_KEYED_BINARY
will return CYE$KEY_PAST_EOI in the status
variable and the position of the file remains
unchanged.

® Attempting to use this procedure on a file not opened
as a binary-type file will return CYE$INCORRECT_
OPERATION in the status variable.

Revision F Reading and Writing Files 12-11

CYP$BINARY_FILE_KEY Function

CYP$BINARY_FILE _KEY Function

Purpose Returns the file cell address at which a binary file is
currently positioned.

Format CYPS$BINARY_FILE_KEY (binary_file): integer;

Parameters binary_file: cyt$file;
File identifier established when the file was opened.

Remarks ® If this function is immediately preceeded by a get or
put procedure call, the value returned points to the
last cell transferred + 1. If this call is immediately
preceeded by a CYP$POSITION_BINARY_AT_KEY
call, the value returned is the file cell address to
which the file was positioned.

® Attempting to use this function on a file not opened as
a binary-type file will return a meaningless result.

12-12 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 I 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

Program Examples Using Binary Files

Program Examples Using Binary Files

This section contains CYBIL programs which employ binary file
procedures.

-
=2
®
177
[
"3
~
=&
X
"
7]
]
3
4
N3
-]
2.
=
3
A}
o
v]
@
n
wm
[=]
3
j=n
5
[
]
|—-I
W
n
-
>
e
]
0
-+

v n tne
example a hbrary of text modules is reated from xt file. The
modules on the source (text) file are represented as a list of lines
whose first line contains the module name only. The meodule is
terminated by an end-of-block, end-of-partition, or an
end-of-information.

The second example extracts one of the modules from this library and
copies it to a file whose name is that of the module.

Example 1: Create Text Library

MODULE create_text_library;

*copyc cypsopen_file

*copyc cyp$get_next_binary

*copyc cypsgeti_nexi_iine

*copyc cyp$write_end of_partition
*copyc cyp$current_file_position
*copyc cyp$put_next_binary

*copyc cyp$ciose_file

*copyc cyps$position file_at_beginning
*copyc cyp$put_keyed_binary

TYPE
directory_descriptor = record
key: integer,
length: integer,
recend,

directory_entry = record
name: string (7),
length: integer,
key: integer,

recend;

CONST
source_name = ‘“SOURCE’,
1ib_name = “LIBRARY’,
directory_name = “SCRATCH’;

Revision F ‘ Reading and Writing Files 12-13

Program Examples Using Binary Files

PROGRAM create;

VAR

source_file_specs: [STATIC] array [1 .. 4] of
cyt$file_specification := [[cyc$file_access,
cyc$read]. [cyc$file_kind, cyc$text filel,
[cyc$file_existence, cyc$oid filel,
[cyc$open_position, cyc$beginningl],

directory_file_specs: [STATIC] array [1 .. 3] of
cyt$fite_specification := [[cyc$file kind,
cycs$binary_filel, [cyc$open position,
cycs$beginningl, [cyc$close file disposition,
cycsreturn_filell, ‘

library_file_specs: [STATIC] array [1 .. 3] of
cyt$file_specification := [[cyc$file access,
cycswrite], [cyc$file_kind, cyc$binary filel,
[cycsopen _position, cyc$beginningl],

source_file: cyts$file,

library file: cyt$file,

directory_file: cyt$file,

directory: directory_descriptor,

current_module: directory_entry,

line: string (256),

line_length: integer,

module_index: integer,

first key: integer,

dummy_key: integer,

cells_read: integer,

read_status: ost$status,

write status: ost$status,
ctatuec: acttetatuc

SLEluS ., USlesixius,

PROCEDURE copy_a_module (VAR module status: ost$status);

VAR
copy_status: ost$status,
get_status: ost$status,
put_status: ost$status;

PROCEDURE copy_the_module text (VAR local_status:
ost$status);

12-14 CYBIL Language Definition Revision F
’ 01/22/87 19:59:24 I 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

Program Exzamples Using Binary Files

VAR
get_status: ost$status,
put_status: ostgstatus;

1nra
:00a:

/copy_text_loop/
WHILE TRUE DO
cyp$get_next_line (source file, line, line_length,
get_status);
IF NOT get_status.normail THEN
EXIT /copy_text_loop/;
IFEND;

CASE cyps$current_file_position (source_file) OF
= cyc$end of_information, cyc$end of_partition,
cycs$end_of_block =
ELSE
current_module.length := current_module.length + 1;
cvp$put_next_binary (1ibrary_file., #SEQ (line_length},
dummy_key, put_status);
IF put_status.normal THEN
cyp$put_next_binary (library_file, #SEQ (1line (1,
line_length)). dummy_key, put_status);
IFEND;
IF NOT put_status.normal THEN
EXIT /copy_text_loop/;
IFEND;
CASEND;
WHILEND /copy_text loop/;

local_status.normal := get_status.normal AND
put_status.normal;

PROCEND copy_the module_text;

/copy_module_loop/
WHILE TRUE DO
cyp$get _next_line (source_file, line, line_length,
get_status);
IF NOT get_status.normal THEN
EXIT /copy _module_loop/;
IFEND;

Revision F Reading and Writing Files 12-15

Program Examples Using Binary Files

CASE cypscurrent_file_position (source file) OF
= cyc$end of_information, cyc$end_of partition,
cyc$end of _block = EXIT /copy_moduie_loop/;

ELSE
directory.length := directory.length + 1;
current_module.name := line (1, line_length);
current_module. length := 1;

cyp$put_next_binary (library file,
#SEQ (current_module.name), current_module.key,
put_status);

IF NOT put_status.normal THEN
EXIT /copy _module_loop/;

IFEND;

copy_the moduie_text (copy status);

IF NOT copy_status.normal THEN
EXIT /copy module_loop/;

IFEND;

cyp$put_next_binary (directory file,

#SEQ (current_moduie), dummy key, put status);
IF NOT put_status.normal THEN

EXIT /copy_module_loop/;

IFEND;
CASEND;
WHILEND /copy module_loop/;
module_status.normal := copy_status.normal AND

put_status.normal AND get_status.normal;
PROCEND copy_a_module;

PROCEDURE copy_directory_to_library (VAR local_status:
ost$status);

VAR
module_index: integer,
read status: ostgstatus,
write_status: ost$status;

dummy_key, cells_read, read status);
IF read_status.normal THEN
cyps$put_next_binary (library_file, #SEQ (current_moduie),
directory.key, write_status);
IF write_status.normal THEN

|
|
|
|
|
\
|
\
\
\
|
\
\
1
l
i
I
|
I
|
|
1
[
f
cyp$get_next_binary (directory_file, #SEQ (current_module), :
|
!
|
|
|
|
|
|
|
|
12-16 CYBIL Language Definition Revision F :
[

f

Program Examples Using Binary Files

/read_loop/

FOR moduie_index := 2 TO directory.length DO

cyps$get_next_binary (directory file,
#SEQ (current_module), dummy key, cells_read,
read_status);
IF NOT read_status.normal THEN
EXIT /read_loop/;
IFEND;
cyp$put_next_binary (library_file,
#SEQ (current_module), dummy key, write_status);
IF NOT write_status.normal THEN
EXIT /read_loop/;
IFEND;

FOREND /read loop/;

IF read_status.normal AND write_status.normal THEN
cyp$put_keyed binary (1ibrary file, #SEQ (directory),
first _key, write_status);

IFEND;

IFEND;
IFEND;

local_status.normal := read status.normal AND
write_status.normal;

PROCEND copy_directory_to_library;

cypsopen_file (source_name, “source file_specs, source file,
status);
IF status.normal THEN
cyps$open_file (directory name, “directory file_specs,
directory file, status);
IF status.normal THEN
cypsopen_file (1ib_name, “library_file_specs,
library_file, status);
IFEND;
IFEND;

IF status.normal THEN
/main_program/
BEGIN

{*}
{ reserve space for a directory

Revision F Reading and Writing Files 12-17

Program Examples Using Binary Files

{*}
directory.length := 0;
cyp$put_next_binary (library file, #SEQ (directory),
first_key, write_status);
IF write_status.normal THEN
copy_a_module (read status);
cyp$close_file (source file, cyc$end, status);
IF ((read_status.normal) AND (directory.length > 0))
THEN
cyp$position_file_at_beginning (directory file,
status);
IF NOT status.normal THEN
EXIT /main_program/;
IFEND;

copy_directory to_library (status);

IFEND;
IFEND;

END /main_program/;
IFEND;
cyp$close_file (directory file, cyc$asis, status);
cyp$close_file (library_file, cyc$beginning, status);

PROCEND create;

MODEND create_text_library;

12-18 CYBIL Language Definition Revision F

\
\
\
\
\
\
\
|
|
i
|
i
I
|
|
|
|
|
|
I
|
|
|

01/22/87 19:69:24 | 02/13/87 09:46:31 | 87/08/25 22.17.82 | 60464113 F | READING AND WRITING FILES | DRAET COPY |

Program Exzamples Using Binary Files

Example Z: Extract From Text Library

This example extracts one of the modules from the library created in
the first example and copies it to a file whose name is that of the

module.

MODULE

*copyc
*copyc
*copyc
*copyc
*copyc
*copyc
*copyc
*copyc

TYPE

extract_from_text_tibrary;

cyp$open_file

cyp$ciose file
cyp$get_next_binary
cyp$get_keyed binary
cyp$position_binary at_key
cyp$put_keyed_binary
cyp$put_next_line
cyp$current_file_position

directory_descriptor = record
key: integer,

length: integer,

recend,

directory_entry = record
name: string (7),

length: integer,

key: integer,
recend;

CONST

lib_name = “LIBRARY’;

CONST

name_of_module = “TEXTMOD”;

PROGRAM extract;

VAR
library_file_specs: [STATIC] array [1 .. 4] of

cyt$file_specification := [[cyc$file kind,
cyc$binary_filel, [cyc$open_position, cyc$beginningl],
[cyc$file_existence, cyc$old_filel, [cyc$file_access,
cyc$read]],

output_file _specs: [STATIC] array [1 .. 3] of

Revision F

cyt$file_specification := [[cyc$file_access, cycwritel,

Reading and Writing Files 12-19

Program Examples Using Binary Files

[cyc$file kind, cyc$text_filel, [cyc$open position,
cyc$beginningll,
library file: cyt$file,
out_file: cyt$file,
directory: directory_descriptor,
current_module: directory_entry,
line: string (256),
Tine_length: integer,
module_found: boolean,
dummy _key: integer,
cells_read: integer,
status: ost$status;

PROCEDURE search_for_module (library_directory:
directory_descriptor;
VAR module_is_in_directory: boolean;
VAR search _status: ost$status);

VAR
module_index: integer;

module_is_in_directory := FALSE;
search_status.normal := TRUE;

cyp$position_binary _at_key (library file,
library_directory.key, search_status);
IF NOT search_status.normal THEN
RETURN; {—- >
IFEND;

|
|
|
I
|
I
I
i
I
I
I
I
|
|
i
|
|
|
1
|
/search_directory/ :
FOR module_index := 1 TO library directory.length DO |
cyp$get_next_binary (library_file, #SEQ (current module), |
dummy_key, cells_read, search_status); I
IF NOT search status.normal THEN
RETURN; {----- >
IFEND; |
IF current_module.name = name_of_module THEN !
module_is_in_directory := TRUE; |
EXIT /search_directory/;
IFEND; i
FOREND /search_directory/;
1
i
I
|
]
I
i
|
1

PROCEND search_for_module;

12.20 CYBIL Language Definition Revision F
01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY |

Program Exzamples Using Binary Files

PROCEDURE copy_the_module_text (VAR copy status: ost$status);

/module_loop/
WHILE current_module.length > 1 DO

cvngast next hinarv (l1ihrarv file. #SFO (1ine lonath)
cypsgetr next Dinary (1iprary Tile, #£5EQ 111ne _lengin},

dummy_key, cells_read, copy_status);

IF NOT copy_status.normal THEN
EXIT /modute_loop/;

IFEND;

cyp$get_next_binary (library_file, #SEQ (line (1,
line_length)), dummy key, cells_read, copy status);

IF NOT copy_status.normal THEN
EXIT /module_loop/;

IFEND;

cyp$put_next_line (out_file, line (1, line_length),
copy_status};

IF NOT copy_status.normal THEN
EXIT /module_loop/;

IFEND;

current_module.length := current_module.lenath - 1:

WHILEND /module_loop/;
PROCEND copy_the_module_text;

cypsopen_file (1ib_name, ~1ibrary_file_specs, library file,
status);

IF NOT status.normal THEN
RETURN; {----- >

IFEND;]

cyp$get_next_binary (1ibrary file, #SEQ (directory),
dummy_key, cells_read, status);

IF NOT status.normal THEN

RETURN; {-————- >

IFEND;

IF directory.length = 0 THEN
RETURN; {-———- >

IFEND;

search_for_module (directory, module_found, status);

IF status.normal AND module_found THEN
cyps$open_file (name_of module, “output_file_specs,
out_file, status);
IF NOT status.normal THEN
RETURN; {----- >
IFEND;

Revision F Reading and Writing Files 12-21

Program Examples Using Binary Files

cyp$get_keyed binary (library file,
#SEQ (current_moduie.name), current_module.key,
celis_read, status);
IF NOT status.normal THEN
RETURN; {----- >
IFEND;
cyp$put_next_line (out_file, current module.name, status);
IF NOT status.normal THEN
RETURN; {--—- >
IFEND;

copy_the module_text (status);
IFEND;
cypsclose_file (library file, cyc$beginning, status);
IF NOT status.normal THEN
RETURN; {---——- >
IFEND;

cyp$ciose_file (out_file, cyc$beginning, status);
IF NOT status.normal THEN
RETURN; {-—-- >
IFEND;
PROCEND extract;

MODEND extract_from_text_library;

12-22 CYBIL Language Definition Revision F

Record Files

Record Files

The procedures and functions described in this section are for use
with record files only. To use other types of files with CYBIL I/0,
refer to the appropriate section of this chapter.

The data transfer procedures for record files (like any
programmer-defined procedures in CYBIL) must have parameters of a
specific CYBIL type. To transfer data to or from a record file, the
CYBIL type of the parameter that specifies the data to be read or
written must match the CYBIL type of the program variable that
contains the data to be read or written. The CYBIL /O procedures
that read and write on record files require that the data be specified
as a pointer to a CYBIL sequence. Programs using the record file
procedures must therefore specify the data as a variable of type
pointer to CYBIL sequence. This pointer is usually defined by using
the CYBIL #SEQ function.

VAR
data_item_1: my_data_type,
data_item_2: “my_data_type,
data_item_3: “array [1 .. 50] of my_data_type;

the pointers to CYBIL sequences may be defined as foliows:

#SEQ (data_item_1)
#SEQ (data_item_27)
#SEQ (data_item_3")
#SEQ (data_item_3" [51)

For examples using the CYBIL #SEQ function to pass data to or from
the record-file read/write procedures, refer to Program Examples Using
Record Files later in this chapter.

Data is read from or written to record type files as full or partial
records. These records are not to be confused with the CYBIL record

type.

Record File Structure

In record files, data exists as a sequence of logical records each of
which is terminated with an end-of-record. CYBIL I/O allows the
reading and writing of both full and partial records. That is, a record
may be transferred as the result of a single read or write operation,

Revision F Reading and Writing Files 12-23

Record File Structure

or a record may be transferred as the result of several partial read or
write operations. Record file reads and writes map the data to a
CYBIL data structure. For example, a CYBIL array may be written
as a record or partial record. The address and size of the data
structure are passed to CYBIL I/O as a CYBIL sequence pointer.
CYBIL I/O uses this information to write a record that exactly
corresponds byte for byte with the way the data is stored in the
CYBIL data structure.

CYBIL I/O supports only sequential access of record files. Data
appears on such files in the order in which it was written, and can
only be read in the same order.

Record files may be positioned to the beginning-of-information or
end-of-information. In addition, record files may be positioned forward
or backward a user-specified number of records or partitions.
Positioning a record file backwards and then writing to the file means
that any data following the data just written to the file is lost.

The end-of-information always immediately follows the last data
written to the file.

12.24 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/08/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

Record File Structure

The following procedures and functions may be used with record files
only. These procedures and functions are described in greater detail
on the following pages.

CYP3SGET_NEXT_RECORD
Reads the next
CYP$SGET_PARTIAL_RECORD

Reads a portion of a record from a record file.

CYP$PUT_NEXT_RECORD
Writes a record on a record file.

CYP$PUT_PARTIAL_RECORD
Writes a partial record on a record file.

CYP$POSITION _RECORD_FILE
Allows a record file to be repositioned.

Revision F Reading and Writing Files 12-25

CYP$GET_NEXT_RECORD

CYPSGET_NEXT_RECORD
Purpose Reads the next record from a record file.

Format CYPS$GET_NEXT_RECORD (record _file, pointer_to_
target, number _of_cells_read, status)

Parameters record_file: cyt$file;
File identifier established when the file was opened.

pointer _to_target: “SEQ (*);
The data structure into which data is to be read.

number_of_cells_read: VAR of integer;
Returns the number of cells actually read.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file__not_open
cye$incorrect_input_request
cye$incorrect_operation

Remarks ® If the current file position is not at the beginning of a
record, the file is positioned forward to the beginning
of the next record or partition before the read begins.

® CYBIL I/O reads data from the file until it encounters
the end-of-record or the end of the data structure

specificd by the POINTER_TO_TARGET parameter.

The NUMBER_OF_CELLS_READ parameter will
return the number of data cells actually read into the
data structure specified by POINTER_TO_TARGET.

® If the read terminates because the end-of-record was |
encountered, the CYPSCURRENT_FILE__POSITION ‘
function will return CYC$END_OF_RECORD. If the |
read terminates because CYBIL I/O encountered the |
end of the POINTER_TO_TARGET data structure, the l‘
CYP$CURRENT_FILE_POSTIION function will return |
CYC$MIDDLE_OF_RECORD. To read the remainder |
of the record, the program must issue CYP$GET_

12-26 CYBIL Language Definition Revision F
| 01/22/87 19:59: 24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 I 60464113 F | READING AND WRITING FILES | DRAFT COPY :

CYP$GET_NEXT_RECORD

DADRMIAT DTANDR AU DRMNATTRRTNM
AL D.ﬁlUUI\U Ld.ub U.llb.ll bIlB UIFPUUINNEINL

FILE_POSITION function returns a value of
CYC$END_OF_RECORD. (The CYP$CURRENT_
FILE_POSITION function is described in chapter 11.)

® If an end-of-partition is encountered, no data is read,
the NUMBER_OF_CELLS_READ parameter returns
a value of 0 (zero), and the CYPSCURRENT_FILE__
POSITION function will return a value of CYCSEND_
OF_PARTITION.

® If an end-of-information is encountered, no data is
read, the NUMBER_OF_CELLS_READ parameter
returns a value of 0 (zero), and the CYP$CURRENT_
FILE_POSITION function will return a value of
CYC$END_OF_INFORMATION.

® Attempting to use this procedure on a file not opened
as a record file will return FV‘F“RIN(‘ORR_F(‘T_

ITCURIC 11 2311 1o40L LOERD G SFE) DY

OPERATION in the status variable.

Adtnvrmrbineg +n +hia Andssva An o Fila Ananad fase
ﬂUuCAALyDJ.AAS U uDC UAA&D x}l‘ibcuuAU vii G LLKU UPCALU\A LUA.

write access will return CYESINCORRECT_INPUT._.
REQUEST in the status variable.

»

Revision F Reading and Writing Files 12-27

CYP$GET_PARTIAL_RECORD

CYP$SGET_PARTIAL_RECORD
Purpose Reads a portion of a record from a record file.

Format CYP$GET_PARTIAL_RECORD (record_file, pointer _
to_target, number_of_cells_read, last_part_of_
record, status)

Parameters record _file: cyt$file;

File identifier established when the file was opened.

pointer _to_target: "SEQ (*);
Specifies the data structure into which data is to be read.

number_of_cells_read: VAR of integer;
Returns the number of cells actually read.

last_part_of_record: VAR of boolean;

Returns a value of TRUE if the end-of-record was |
encountered, and a value of FALSE otherwise.

|
status: VAR of ost$status; 1
\

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect_input_request
cye$incorrect_operation

|
l
!
I
|
|
|
Remarks ® Reading begins at the current position of the file and |
continues until the end-of-record or the end of the data |

structure specified by POINTER_TO_TARGET is |

encountered. The NUMBER_OF_CELLS_READ |

parameter will return the number of data cells |

actually read into the data structure specified by |
POINTER_TO_TARGET. |

|

|

|

I

|

|

1

® If the read terminates because the end of the record
was encountered, the CYP$CURRENT_FILE_
POSITION function will return CYC$END_OF_
RECORD. If the read terminates because the end of
the POINTER_TO_TARGET data structure was
encountered, the CYPSCURRENT_FILE_POSITION
function will return CYC$MIDDLE_OF_RECORD. To

12-28 CYBIL Language Definition Revision F

01/22/87 19:50:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY |

Revision F

(]

CYP$GET_PARTIAL_RECORD

read the remainder of the record, the program must
issue CYP$GET_PARTIAL_RECORD calls until the
CYP$CURRENT_FILE_POSITION function returns a
value of CYC$3END_OF_RECORD.

If the end-of-partition is encountered, no data is read,
the NUMBER OF_CELLS_READ parameter returns
a value of 0 (zero), and the CYP$CURRENT_FILE_
POSITION function will return a value of CYC$END_
OF_PARTITION.

If the end-of-information is encountered, no data is
read, the NUMBER_OF_CELLS_READ parameter
returns a value of 0 (zero), and the CYP$CURRENT_
FILE_POSITION function will return a value of
CYCS$END_OF_INFORMATION.

Attempting to use this procedure on a file not opened
ac a ranard fila will wotyirn OOVE I\ CODDECT

S €& LAUTVUL U 141T Viii LCUULLL \V 4 day

OPERATION in the status variable.

Attempting to use this procedure on a file opened for
write access will return CYESINCORRECT_INPUT_
REQUEST in the status variable.

Reading and Writing Files 12-29

CYP$PUT_NEXT_RECORD

CYP$PUT_NEXT_RECORD
Purpose Writes a record on a record file.

Format CYPSPUT_NEXT_RECORD (record _file, pointer_to_
source, status)

Parameters record_file: cyt$file;
File identifier established when the file was opened.

pointer _to_source: “SEQ (*);

The data to be written. The data is written as a complete
record. If the last write to the file was made with
CYP$PUT_PARTIAL_RECORD, that record is completed
before the data specified by this parameter is written as a
new complete record.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect__output_request
cye$incorrect_operation

Remarks ® The end-of-information on a record file immediately
follows the data last written. Thus, if you write to a
record file, and then position the file to its beginning
(or perform a backward record skip) and again write
to the file, data will be lost.

® Attempting to use this procedure on a file not opened
as a record file will return CYESINCORRECT_
OPERATION in the status variable.

® Attempting to use this procedure on a file not opened
with either write access or read write access will
return CYE$INCORRECT_OUTPUT_REQUEST in the
status variable.

12-30 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:486:31 ’ 87/03/25 22.17.32 | B0464113 F | READING AND WRITING FILES I DRAFT COPY

»

CYP$PUT_PARTIAL_RECORD

a a w

CYPSPUT_PARTIAL_RECORD

Parameters

Conditions

Remarks

Revision F

Writes a partial record on a record file.

CYP$PUT_PARTIAL_RECORD (record_file, pointer_
to_source, last_part_of_record, status)

record _file: cyt$file;
File identifier established when the file was opened.

pointer _to_source: "SEQ (*);
Specifies the data to be written.

last_part_of_record: boolean;

Specifies whether or not more data can be appended to
the current record. If this parameter is TRUE, the data
specified by the POINTER_TO_SOURCE parameter is
written to the file and the record is terminated. The next
full or partial write to the file will begin a new record.

If this parameter is FALSE, the data specified by the
POINTER_TO_SOURCE parameter is written to the file
but the record is not terminated. Additional data can be
appended to the record if the next write to the file is
done by the CYP$PUT_PARTIAL_RECORD procedure.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

cye$file_not_open
cye$incorrect_output_request
cye$incorrect__operation

® The end-of-information on a record file immediately
follows the data last written. Thus, if you write to a
record file, and then position the file to its beginning
(or perform a backward record skip) and again write
to the file, data will be lost.

® Attempting to use this procedure on a file not opened

as a record file will return CYESINCORRECT_
OPERATION in the status variable.

Reading and Writing Files 12-31

CYP$PUT_PARTIAL_RECORD

® Attempting to use this procedure on a file not opened
with either write access or read write access will
return CYE$INCORRECT_OUTPUT_REQUEST in the
status variable.

12-32 CYBIL Language Definition Revision F
01/22/87 19:53:24 l 02/13/87 09:46:31 | 87/03/26 22.17.32 l 60464113 F | READING AND WRITING FILES | DRAFT COPY

\
\
\
\
i
l
|
|
X
I
|
I
|
|
1
|
|
|
|
i
|
I
|
!
[
|
|
[
1
i
i
|
I
f
I
|
I
1
1
1
|
!
i

Record File Positioning

LR}

Record File P 0s1t10n1ng

On NOS/VE, record files can be subdivided into records or partitions.
They can be positioned to either beginning or end-of-information (with
the CYP$POSITION _FILE_AT _BEGINNING and CYP$POSITION_

™ITI AT TI'NN Ay Ananwilhad - 11y D s
Haiah_ e suiNis DrOCEGUres; 4esirioes in g.napyer idij. & ﬁszuanmg may

only be performed on record files that were opened for read or read
write access.

Record files can also be positioned forward or backward one or more
records or partitions with the CYP$POSITION_RECORD_FILE
procedure, described on the following pages.

Revision F Reading and Writing Files 12-33

CYP$POSITION_RECORD_FILE

CYPS$POSITION _RECORD_FILE
Purpose Repositions a record file.

Format CYP$POSITION _RECORD_FILE (record _file, |
direction, count, unit, status) |

Parameters record _file: cyt$file;
File identifier established when the file was opened.

direction: cyt$skip_direction;

Specifies forward or backward positioning. Enter one of
the following values:

CYC$FORWARD
CYC$BACKWARD

count: integer;

The number of units the file is to be positioned.

unit: cyt$skip_ unit;

How the file is to be repositioned (by records or
partitions). Enter one of the following values:

CYC$RECORD
CYCS$PARTITION
status: VAR of ost$status;

a dn welhia P N P L Iy T
Status variable in which the co TIPIeTioN Stavus 18
returned.

Conditions cye$file_not_open
cye$incorrect _input_request
cye$incorrect_operation
cye$incorrect _skip_count
cye$premature_end_of _operation

Remarks ® Attempting to use this procedure on a file not opened
as a record file will return CYESINCORRECT_
OPERATION in the status variable.

® Attempting to use this procedure on a file opened for

write access will return CYE$INCORRECT_INPUT_
REQUEST in the status variable.

12.34 CYBIL Language Definition Revision F

CYPSPOSITION_RECORD_FILE

The position of the file after a positioning operation
depends on the positioning unit (records or partitions),
the initial file position, the number of units positioned,
and the positioning direction. Table 12-1 lists
positioning results assuming that no boundary

T
condition is detected before the

exhausted.

343 "t
post u}f';rﬂxts counst ..a

Table 12-1.

Results of CYPS$POSITI

ON_

RECORD _FILE

File position
before the
operation

Positioning
operation

Result

Positioning by
records:

cyc$beginning_of__

information,
end_of_record,
end_ of__partition,

end_of

information

middle_of _record

middle__of __record

End of record N

End of record N

Positioning by
partitions:

beginning_of _
information,
end_of_
information

Revision F

Position forward or
backward zero
records.

Position forward
zero records.

Position backward
zero records.

Position forward
one or more (M)
records.

Position backward
one or more (M).
records.

Position forward or
backward zero
partitions.

No movement; the file
remains the same as
before the pesitioning
operation.

The file is positioned to
the end of the current
record.

The file is positioned to
the end of the preceeding
record.

The file is positioned to
the end of record N + M.

The file is positioned to
the end of record N -

No movement; the file
remains positioned the
same as before the
positioning operation.

Reading and Writing Files 12-35

CYP$POSITION_RECORD_FILE

middle_of_record, Position forward The file is positioned to
end_of_record, zero partitions. the beginning of the next
end_of__partition partition.

middle_of_record, Position backward The file is positioned to

end_of_record, zero partitions. the beginning of the

end_ of _partition current partition.
middle_of_record, Position forward The file is positioned to
end_of_record, one or more (M) the beginning of partition
end_of_partition partitions. (current + M +1).

middle_of_record, Position backward The file is positioned to
end_of__record, one or more (M) the beginning of partition
end_of_partition partitions. (current - M).

In Table 12-1 it is assumed that no boundary conditions
are encountered during the positioning operation. If
CYP$POSITION_RECORD_FILE encounters a boundary
condition before the count is exhausted, the positioning
operation stops at the boundary and CYE$PREMATURE _
END_OF_OPERATION will be returned in the status
variable.

The following are the boundary conditions:

® A position forward by records encounters an
end-of-partition or end-of-information.

® A position forward by partitions encounters
end-of-information.

® A position backwards by records encounters an
end-of-partition or beginning-of-information.

® A position backwards by partitions encounters
beginning-of-information.

12-36 CYBIL Language Definition Revision F
] 01/22/87 19:58:24 l 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

Program Example Using Record Files

Program Exampie Using Record Fiies

The following example illustrates the use of record file procedures.
The input file is assumed to contain several kinds of logical records.
An id-record identifies the record following it as either an employee
record or a vendor record. A vendor record is followed by one or more
product records. This program produces a list of vendor names and
the names of the products supplied by each vendor.

Example 1: Extract Information From Records

MODULE 1ist_vendor_and products;

*copyc cyp$open_file
*copyc cyp$ciose file
*copyc cyp$get_next_record
*copyc cyp$put_next_line
*copyc cyp$put_partial_line

Knmmitn Aumdnanitian nansand £31a
COPYC CypeplosSition_record_riie

*copyc cyp$tab_file
*copyc cyp$current_file_position

PROGRAM 1ist_vendor_and _products;

CONST
in_name = ‘EMPDB’,
out_name = ‘EMPLIST’;

TYPE
full_name = record
first: string (10),
initial: char,
last: string (15),
recend,

employee_entry = record
number: 0 .. 998888,
| name: full_name,
! department_number: 0 .. 9999,
department_name: string (20),
recend,

vendor_entry = record

|
|
|
|
[number: 0 .. 99999999,
| name: string (30),
|
|
|
|

Revision F Reading and Writing Files 12-37

Program Example Using Record Files

street_address: string (30),

city_state: string (30),

zip_code: 0 .. 99999,

number_of_products: integer,
recend,

product_entry = record
name: string (20),
product_number: string (10),
recend,

entry_id = (employee_id, vendor_id);

VAR
in_file: cyt$file,
» out_file: cyt$file,
in_file_specs: cyt$file_specifications,
out_file_specs: cyt$file specifications,
celis_read: integer,
vendor: vendor_entry,
product: product_entry,
record_id: entry_id,
i: integer,
status: ost$status;

PUSH in_file_specs: [1 .. 4];

in_file_specs” [1].selector := cyc$file kind;
in_file_specs™ [1].file_kind := cyc$record file;
in_file_specs” [2].selector := cyc$file access;
in_file_specs™ [2].file_access := cyc$read;

in_file specs”™ [3l.selector := cyc$file existence;
in_file_specs” [3].file_existence := cyc$old file;
in_file_specs” [4].selector := cyc$open_position;

in_file_specs™ [4].open_position := cyc$beginning;

PUSH out_file_specs: [1 .. 3];

out_file_specs™ [1].selector := cyc$file kind;
out_file_specs”™ [1].file_kind := cyc$text_file;
out_file_specs” [2].selector cyc$file_access;
out_file_specs™ [2].file_access := cyc$write;
out_file_specs” [8].selector := cyc$open_position;
out_file_specs” [3].open position := cvc$beginning;

cyp$open_file (in_name, in_file specs, in_file, status);

12.38 CYBIL Language Definition Revision F
I 01/22/87 19:59:24 | 02/13/87 09:46:31 I 87/03/26 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

Program Example Using Record Files

IF NOT status.normai THEN
RETURN; {-~--- >
IFEND;
cypsopen_file (out_name, out_file_specs, out_file, status);
IF NOT status.normal THEN
RETURN; {---——- >

IFEND;

/main_loop/
WHILE status.normal DO
cyp$get_next_record (in_file, #SEQ (record_id),
cells read, status);
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
CASE cyps$current_file_position (in_file) OF
= cyc$end of_partition, cyc$end of_block =
CYCLE /main_loop/;
= cyc$end_of_information =
EXIT /main_loop/;
= cyc$middle of record =
cyp$put_next_line (out_file, ‘ERROR reading input file’,
status);
EXIT /main_loop/;
= cyc$end_of_record =
CASE record_id OF
= employee_id =
cyp$position_record_file (in_file, cyc$forward, 1,
cyc$record, status);
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
= vendor_id =
cyp$get _next record (in_file, #SEQ (vendor),
cells read, status);
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
IF cyps$current_file position (in_file) =
cycs$end_of_record THEN
cyp$put_next_iine {(out_file, vendor.name,
status);
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;

Revision F ' Reading and Writing Files 12-39

Program Example Using Record Files

FOR i := 1 TO vendor.number_of products DO
cyps$get_next_record (in_file, #SEQ (product),
cells_read, status);
IF cyps$current_file position (in_file) <>
cyc$end_of_record THEN
cyp$put_next_line (out_file, “ERROR reading
input file”, status);
EXIT /main_loop/;
ELSEIF (NOT status.normal) OR (cells read <>
#SIZE (product)) THEN
EXIT /main_loop/;
IFEND;
cyp$tab file (out_file, 10, status);
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
cyp$put_partial_line (out_file, product.name,
TRUE, status);
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
FOREND ;
ELSE
cyp$put_next_line (out_file, ‘ERROR reading input
file’, status);
EXIT /main_loop/;
IFEND;
CASEND;
CASEND;

WHTILEMN /main 1
e e LR

cyps$close_file (in_file, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {----- >
IFEND;
cyp$close_file (out_file, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {——- >
IFEND;

PROCEND 1ist_vendor_and_products;

MODEND 1ist_vendor_and products;

12-40 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAET COPY

Reading and Writing Text and Display Files

Reading and Writing Text and Display Files

The procedures and functions described in this section are for use
with text and display-type files only (they apply to both).

Data is transferred to and from text files and A1en1nv files as lines or

ey -2 & 2L0°

partial lines. Internally, these lines are represented as CYBIL strmgs
of characters. Externally (on the file), lines may be represented in
8-bit ASCIL

The external character set is specified on the FILE_SPECIFICATIONS
parameter of the CYP$OPEN_FILE procedure when the file is
opened. Data transfers on text or display files may involve a
translation between character sets (unlike binary and record file
transfers, in which the file data is not modified).

The maximum line-length written to text or display files, and the
page size for display files, are speciﬁed with the FILE_

SDIMATIAT AmTﬁ}YS P W S p gy f\PE TTT T memmmm docann
O LAVl AV L IJAN paialilcici Uil uL.lt: \/11' S AP ¥ Vi V] pxuu—:uurc.

Text File Structure

A text file, which is a variation of a record file, is assumed to contain
character data. Since character data is generally conceived of as lines,
text-file records are treated as lines and the end-of-record for text files
as end-of-line.

The basic entity on a text file is a line which can be transferred to or
from the file in whole or in part. In addition, it is possible to tab to a
specified column in an output line and skip a specified number of ’
lines. Text files may be positioned to the beginning-of-information or

to the end-of-information.

Data is passed to and from the text file procedures as CYBIL strings
rather than as CYBIL sequence pointers. Like record files, text files
can only be accessed sequentially.

Display File Structure

A display file is a special form of write-only text file. Display files
should be used when the file is to be printed, or routed to any device
which uses format control characters. Format control characters are
automatically prefixed to each line written to display-type files.

Revision F Reading and Writing Files 12-41

Display File Structure

Display files have additional facilities for vertical format control
(described on the following pages). It is possible to limit the number
of printed lines on a page, insert a given number of empty lines,
overprint lines, or position the next line at a specified line number or
at the top of the next display page. Several functions are provided to
interrogate certain items of display page information for display files.

Display files may only be written. If it is necessary to read a file
which was written as a display file, the file should be accessed as a
text file.

With each display file, you may associate a procedure to be called
when a page overflow condition occurs for that file. The procedure
may be one of your own or a special internal CYBIL I/O procedure
that produces a standard title line. (A page-overflow procedure of your
own is specified on the FILE_SPECIFICATIONS parameter of
CYP$OPEN_FILE. For more information on page-overflow handling,
refer to Page-Overflow Processing for Display Files later in this.
chapter.)

12-42 CYBIL Language Definition Revision F
| 01/22/87 19:59: 24 | 02/13/87 08:46:31 | 87/03/26 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

Display File Structure

The following procedures and functions may be used with text and
display files only. These procedures and functions are described in
greater detail on the following pages.

CYP$GET_NEXT_LINE

DRaoandg tha mavw
CaAUD Wil T

CYP$GET_PARTIAL_LINE

Reads a character string from a text or display file.

CYP$PUT_NEXT_LINE
Writes a string of characters to a text or display file.

CYP$PUT_PARTIAL_LINE
Writes a string of characters to a text or display file.

CYP$WRITE_END_OF_LINE

.xr

Writes an end-of-line to a text or display file.
CYP$FLUSH_LINE
Flushes the line buffer for a text or display file.

CYP$TAB_FILE

Positions a text or display file to a specified column or position
within a line.

CYP$SKIP_LINES

Writes -one or more blank lines to a text or display file.

CYPS$SFILE_CONNECTED_TO_TERMINAL

Determines whether or not a text or display file is connected to a
terminal.

CYP$CURRENT_COLUMN

Returns the current column within the current line of a text or
display file.

CYP$PAGE_WIDTH
Returns the page width associated with a text or display file.

Revision F Reading and Writing Files 12-43

CYP$GET_NEXT_LINE

CYP$GET_NEXT_LINE
Purpose Reads the next complete line from a text or display file.

Format CYP$GET_NEXT_LINE (file, line, number_of_
characters_read, status)

Parameters file: cyt$file;
File identifier established when the file was opened.

line: VAR of string (* <= cyc$max_page_width);

The CYBIL string into which the line was read. If the
line from the file is too long to fit into this string, the
line is truncated by skipping to the end of the line after
the transfer is complete. '

number_of_characters_read: VAR of integer;

Returns the number of characters transferred into the
string specified by the LINE parameter.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect_input_request
cye$incorrect _operation

Remarks ® If the previous transfer was partial, a skip to the end
of that line is performed prior to this read.

® A line containing zero characters is returned as an
empty string (the NUMBER_OF_CHARACTERS_

mat Aty T+ £ YA 15 i+l
READ parameter returns a value of zers). A line with

no characters is one in which a carriage return was
entered in the first position of the line, or is any
empty line that was written via a call to
CYP$WRITE_END_OF_LINE.

® Attempting to use this procedure on a file not opened
as a text or display-type file will return
CYES$INCORRECT_OPERATION in the status
variable.

12-44 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

CYP$SGET_NEXT_LINE

Attempting to use this procedure on a file opened for
write access will return CYESINCORRECT_INPUT_
REQUEST in the status variable.

(1]

Revision F Reading and Writing Files 12-45

CYP$3GET_PARTIAL_LINE

CYP$SGET_PARTIAL _LINE
Purpose Reads a character string from a text or display file.

Format CYPSGET_PARTIAL_LINE f(file, partial _line,
number_of_characters_read, last_part_of_line,
status)

Parameters file: cyt$file;
File identifier established when the file was opened.
partial _line: VAR of string (* <= cyc$max_page_
width);
The CYBIL string into which the character string is read.

number_of _characters_read: VAR of integer;

Returns the number of characters transferred into the
string specified by the partial_line parameter.

last_part_of_line: VAR of boolean;

Returns a value of TRUE if the end of the line was
encountered, and a value of FALSE otherwise.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect__input_request
cye$incorrect_operation

Remarks

® A line containing zero characters is returned as an
empty string (the NUMBER_OF_CHARACTERS_
READ parameter returns a value of zero). A line with
no characters is one in which a carriage return was
entered in the first position of the line, or is any
empty line that was written via a call to
CYP$SWRITE_END_OF_LINE.

® Attempting to use this procedure on a file not opened
as a text or display-type file will return
CYES$INCORRECT_OPERATION in the status
variable.

12-46 CYBIL Language Definition Revision F
! 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES l DRAFT COPY

CYP$GET_PARTIAL_LINE

Attempting to use this procedure on a file opened for
write access will return CYE$INCORRECT_INPUT_
REQUEST in the status variable.

Revision F Reading and Writing Files 12-47

CYP$PUT_NEXT_LINE

CYP$PUT_NEXT_LINE
Purpose Writes a string of characters to a text or display file.
Format CYP$PUT_NEXT_LINE (file, line, status)

Parameters file: cyt$file;
File identifier established when the file was opened.

line: string (* <= cyc$max_page_width);

The string of characters to be written as a complete line.
If the last write to the file was a partial line, that line is
first completed, and then the characters specified by this

parameter are written.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect_output_request
cyeS$incorrect_operation

Remarks ® If the length of the character string exceeds the page
width, the line will be truncated.

® For a display file, format control characters are
automatically prefixed to the new line. (The format
control characters that are used depend on what kind
of write operation preceded this call to CYP$PUT_
NEXT_LINE.) In addition, if displaying the line
causes the display page length to be exceeded, the
page overflow mechanism is executed.

|

\

\

\

\

|

i

l

|

|

|

1

|

I

® Attempting to use this procedure on a file not opened :
as a text-type or display-type file will return |
CYESINCORRECT_OPERATION in the status |
variable. |
|

|

[

[

|

i

|

|

|

1

i

i

|

|

|

® Attempting to use this procedure on a file not opened
for write access or read write access will return
CYESINCORRECT_OUTPUT_REQUEST in the status
variable.

12-48 CYBIL Language Definition Revision F
01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAET COPY ;

CYP$SPUT_PARTIAL_LINE

-

Purpose Writes a string of characters to a text or display file.

Format CYP$PUT_PARTIAL_LINE (file, partial _line, last_
pari_of_line, status)

Parameters file: cyt$file;

File identifier established when the file was opened.

partial _line: string (¥* <= cyc$max_page_width);
The string of characters to be written.

last_part_of _line: boolean;

Whether or not more characters can be written to the
current line. If the LAST_PART_OF_LINE parameter is
TRUE, an end-of-line is appended to the current line after
the character string is written. If the LAST_PART_OF_
LINE parameter is FALSE, subsequent CYP$PUT_
PARTIAL_LINE calls may append data to the current

12 -
ikiic.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect__output__request
cye$incorrect__operation

Remarks

® For a display file, format control characters are
automatically prefixed to the beginning of each new
line. (The format control characters that are used
depend on what kind of write operation preceded this
call to CYP$PUT_PARTIAL_LINE.) In addition, if the
LAST_PART_OF_LINE parameter is TRUE and
displaying the current line causes the display page
length to be exceeded, the page overflow mechanism is
executed.

® If the length of the current line exceeds the page
width, the line will be truncated.

Revision F Reading and Writing Files 12-49

CYP$PUT_PARTIAL_LINE

® Attempting to use this procedure on a file not opened
as a text or display file will return
CYES$INCORRECT_OPERATION in the status
variable.

® Attempting to use this procedure on a file not opened
for write or read write access will return
CYES$INCORRECT_OUTPUT_REQUEST in the status
variable.

12-50 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

i
|
|
\
!
\
\
|
\
\
|
|
|
|
i
I
I
|
|
|
l
|
1
|
|
|

[

CYP$SWRITE_END_OF_LINE

Purpose Writes an end-of-line to a text or display file.
Format CYPSWRITE _END_OF_LINE (file, status)

Parameters file: cyt$file;
File identifier established when the file was opened.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect_outpui_request
cye$incorrect_operation

Remarks ® If the last write to the file was partial, that line is
completed; otherwise, an empty line results.

® Attempting to use this procedure on a file not opened
as a text or display file will return
CYESINCORRECT_OPERATION in the status
variable.

Attempting to use this procedure on a file not opened
for write or read write access will return
CYES$INCORRECT_OUTPUT_REQUEST in the status
variable.

Revision F Reading and Writing Files 12-51

CYP$FLUSH_LINE

CYP$FLUSH _LINE
Purpose Flushes the line buffer for a text or display file.
Format CYPSFLUSH _LINE (file, status)

Parameters file: cyt$file;
File identifier established when the file was opened.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect_output_request
cye$incorrect_operation

Remarks ® If the line buffer contains data, the line is terminated
and then written to the specified file. If the line buffer
contains no data, this procedure results in no
operation on the file.

® Attempting to use this procedure on a file not opened
as a text or display file will return
CYESINCORRECT_OPERATION in the status
variable.

® Attempting to use this procedure on a file not opened
for write or read write access will return
CYES$INCORRECT_OUTPUT_REQUEST in the status
variable.

12-52 CYBIL Language Definition Revision F
I 01/22/87 19:58:24] 02/13/87 09:46:31 | 87/03/26 22.17.32 | 60464113 F | READING AND WRITING FILES I DRAFT COPY

Format

Parameters

Conditions

Remarks

Revision F

CYP$STAB_FILE

Positions a text or display file to a specified column or
position within a line.

CYPS$TAB_FILE (file, tab_column, status)

file: cyt$file;
File identifier established when the file was opened.

tab_column: cyt$page_width;
The column to which the file should be positioned.

status: VAR of ost$status;
tatus variable in which the completion status is
returned.

cye$file_not_open
cye$incorrect_output_request
cye$incorrect_operation

¢ This procedure performs a write to the file.

¢ If the TAB_COLUMN parameter is less than or equal
to the file’s current column, this procedure does
nothing. Otherwise, sufficient space characters are
written to the file so that the next partial write to the
file will begin at the column specified by TAB_
COLUMN.

® If the TAB_COLUMN parameter is larger than the
page width of the device associated with the file, line
truncation will occur when the line is written.

® Attempting to use this procedure on a file not opened
as a text or display file will return

CYES$INCORRECT_OPERATION in the status
variable.

® Attempting to use this procedure on a file not opened
for write or read write access will return
CYES$INCORRECT_OUTPUT_REQUEST in the status
variable.

Reading and Writing Files 12-53

CYPS$SKIP_LINES

CYPS$SSKIP_LINES
Purpose Writes one or more blank lines to a text or display file.
Format CYPS$SKIP_LINES (file, number_of_lines, status)

Parameters file: cyt$file;
File identifier established when the file was opened.

number _of_lines: integer;

The number of blank lines to be written. If the last write
to the file was partial, that line is first completed and
then the number of blank lines specified by this
parameter are written to the file.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect_output_request
cye$incorrect_operation

Remarks e If the file was opened as a display file and the
NUMBER_OF_LINES parameter was specified as -1,
the next line written to the file will overwrite the
current line. In addition, if the NUMBER_OF_LINES
plus the current line number exceeds the display page
size, the page overflow mechanism will be executed.

® Attempting to use this procedure on
as a text or display file will return
CYES$INCORRECT_OPERATION in the status
variable.

la nat o
o U

a *+1
@ iz Vv

® Attempting to use this procedure on a file not opened
for write or read write access will return
CYES$INCORRECT_OUTPUT_REQUEST in the status
variable.

|
\
\
\
12-54 CYBIL Language Definition Revision F :
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

CYPSFILE_CONNECTED_TO_TERMINAL Function

CYPSFILE _CONNECTED _TO_TERMINAL Function
Purpose Determines whether or not a text or display file is

connected to a terminal.

Format CYPS$FILE _CONNECTED _TO_TERMINAL (file):
boolean;

Parameters file: cyt$file;
File identifier established when the file was opened.

Remarks ® Returns a value of TRUE if the file is connected to a
terminal. Otherwise, a value of FALSE is returned.

® This function may be used to determine whether the
calling program needs to limit line size or perform any
special data formatting for terminal files.

® Attempting to use this function on a fi

le not
a text or display file will return CYE$INCORRECT_
OPERATION in the status variable.

Revision F Reading and Writing Files 12-55

CYP$CURRENT_COLUMN Function

CYP$CURRENT_COLUMN Function

Purpose Returns the current column within the current line of a
text or display file.

Format CYP$CURRENT_COLUMN (file): cyt$page_width:

Parameters file: cyt$file;
File identifier established when the file was opened.

Remarks ® This function returns the column at which the next
read or write will begin.

® Attempting to use this function on a file not opened as
a text or display file will return an undefined result.

12-56 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

CYP$PAGE_WIDTH Function

Function

Purpose Returns the page width associated with a text or display
file.

Format CYPSPAGE _WIDTH (file): cyt$page_ width;

Parameters file: cyt$file;
File identifier established when the file was opened.

Remarks Attempting to use this function on a file not opened as a
text or display file will return an undefined result.

Revision F Reading and Writing Files 12-57

Program Examples Using Text and Display Files

Program Examples Using Text and Display Files

The following example illustrates the use of text file procedures for
copying one text file to another. Only data between selected columns
on the old file is written to the new file, and within those columns
trailing space characters are deleted.

Example 1: Copy Column Range of Text File

MODULE truncate;

*copyc cyp$open_file

*copyc cyp$close_file

*copyc cypiget_next_line

*copyc cyp$put_next_line

*copyc cyp$write end_of_line
*copyc cyp$write_end_of_block
*copyc cyp$write_end of_partition
*copyc cyp$current file position

PROGRAM truncate;

CONST
in_name = ‘0LD”,
out_name = ‘NEW’,
leftmost_column_# = 11,
rightmost_column_# = 72;

VAR
in_file: cyts$file,
out_file: cyts$file,
in_file_specs: cyt$file_specifications,
out_file_specs: cyt$file_specifications,
Tine_ptr: “string (* <= cyc$max_page width),
line_length: integer,
status: ost$status;

PUSH in_file_specs: [1 .. 4];

in_file_specs”™ [1].selector := cyc$file kind;
in_file_specs” [1].file kind := cyc$text _file;
in_file_specs™ [2].selector := cyc$file_access;
in_file_specs” [2].file_access := cyc$read;
in_file_specs” [3].selector := cyc$file existence;
in_file_specs” [3].file_existence := cyc$old file;
in_file_specs” [4].selector := cyc$open position;

12-58 CYBIL Language Definition Revision F
| 01/22/87 19:89:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

Program Examples Using Text and Display Files

in_fiie_specs” [4].open_position := cyc$beginning;

PUSH out_file specs: [1 .. 31;

out_file specs™ [1].selector := cyc$file_kind;
out_file specs”™ [1].file_kind := cyc$text_file;

out file specs”™ [2].selector := cyc$file access;
out_file_specs” [2].file_access := cyc$write;
out_file specs” [3].selector := cyc$open position;
out_file specs” [3].open_position := cyc$beginning;

ALLOCATE 1line_ptr: [rightmost_column_#];

cyp$open_file (in_name, in_file_specs, in_file, status);
IF NOT status.normal THEN
RETURN; {----- >
IFEND;
cypsopen_file (out_name, out file specs, out_file, status);
IF NOT status.normal THEN
RETURN; {----—- >
IFEND;

/main_loop/
WHILE status.normal DO
cyps$get_next_line (in_file, line_ptr~, line_length,
status);
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
CASE cypscurrent_file position (in_file) OF
= cyc$end of_partition =
cyp$write end of _partition (out_file, status)
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
= cyc$end_of_block =
cyp$write_end of_block (out_file, status);
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
= cyc$end_of_information =
EXIT /main_loop/;
ELSE
WHILE (1line_length > leftmost_column #) AND (line_ptr~
(1ine_length) = * “) DO
line_length := line_length - 1;

Revision F Reading and Writing Files 12-59

Program Examples Using Text and Display Files

WHILEND;
Tine_length := line_length - leftmost_column # + 1;
IF 1ine_iength > 0 THEN
cyp$put_next_line (out_file, line ptr~
(leftmost_column_#, line_length), status);
ELSE
cyp$write_end of_line (out_file, status);
IFEND;
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
CASEND;
WHILEND /main_loop/;

cypsclose_file (in_file, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {----- >
IFEND;
cyp$ciose_file {out_fiie, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {----- >
IFEND;

FREE 1line_ptr;
PROCEND truncate;

MODEND truncate;

12-60 CYBIL Language Definition Revision F

| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAET COPY

Program Examples Using Text and Display Files

The following example iliustrates the use of display and text file
procedures. Note the procedure for processing page-overflow. (The
display file procedures are described later in this chapter.)

Example 2: Display a Text File

MODULE

*copyc
*copyc
*copyc
*copyc
*copyc
*copyc
*copyc
*copyc
*copyc
*copyc
*copyc
*copyc
*copyc

CONST
in_

VAR

display_file_example;

cyp$open_file
cyps$ciose_fiie
cyp$current_file_position
cyps$current_display_line
cyp$get_partial_line
cyp$display_page_length
cyp$tab file
cyp$skip_lines
cyps$position_display_page
cyp$put_partial_line
cyp$write end_of_iine
cyp$display_page_eject
cyp$current_page_number

name = “TEXFILE’;

file_numb: integer := 1,
record_numb: integer := 1;

PROGRAM 1ist;

CONST
out_page width = 80,
out_page length = 50,

footing_line_number = out_page length - 2,
out_name = “OQUTPUT”";

VAR
in_file_specs: cyt$file_specifications,
out_file_specs: cyt$file_specifications,
in_file: cyt$file,
out_file: cyt$file,
line: string (80),
line_length: integer,

Revision F Reading and Writing Files

12-61

Program Exzamples Using Text and Display Files

eol: boolean,
status: ost$status;

PROCEDURE my_new_page_proc (print_file: cyt$fiie;
next_page number: integer;
VAR status: ost$status);

VAR
str_holder: string (10),
str_length: integer;

cyp$display_page_eject (print_file, status);
IF NOT status.normal THEN

RETURN; {----- >

IFEND;

cyp$put_partial_line (print_file, “LISTING OF “, FALSE,
status);

IF NOT status.normal THEN
RETURN; {-—--- >

IFEND;

cyp$put_partial_tine (print_file, in_name, FALSE, status);
IF NOT status.normal THEN
RETURN; {----- >
IFEND;
cyp$tab_file (print_file, 50, status);
IF NOT status.normal THEN
RETURN; {----- >
IFEND;
cyp$put_partial_tine (print_file, “FILE ‘, FALSE, status);
IF NOT status.normal THEN

neTImA . L
NLIUNIY, 1 -

IFEND;

STRINGREP (str_holder, str_length, file numb);

cyp$put_partial_line (print_file, str holder
(1, str_iength), FALSE, status);

IF NOT status.normal THEN

RETURN; {----- >

IFEND;

cyp$put_partial_line (print_file, RECORD “, FALSE, *,
status);

IF NOT status.normal THEN
RETURN; {----- >

IFEND;

STRINGREP (str_holder, str_length, record numb);
cyp$put_partial_line (print_file, str_holder

12-62 CYBIL Language Definition ' Revision F
[01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

Program Ezamples Using Text and Display Files

(1, str_iength), TRUE, status);
IF NOT status.normal THEN
RETURN; {----- >
IFEND;
cyp$skip_lines (print_file, 2, status);
IF NOT status.ncrmal THEN

RETURN; {----- >
IFEND;

PROCEND my_new_page_proc;

PROCEDURE print_page footer (print_file: cyt$file;
VAR status: ost$status);

VAR
str_holder: string (3),
str_length: integer,
page_number: integer;

cvp$put partial line (print _file, 7 7, TRUE, status);
IF NOT status.normal THEN
RETURN; {--—-—- >
IFEND;
page_number := cyp$current_page number (print_file);

cyp$tab_file {(print_file, 70, status);
IF NOT status.normal THEN
RETURN; {----- >
IFEND;
cyp$put_partial_line (print_file, “PAGE ‘, FALSE, status);
IF NOT status.normal THEN
RETURN; {----- >
IFEND;
STRINGREP (str_holder, str_length, page number);
cyp$put_partial_line (print_file, str_holder
(1, str_length), TRUE, status);
IF NOT status.normal THEN
RETURN; {----- >
IFEND;

PROCEND print_page footer;
PUSH in_file_specs: [1 .. 4];

in_file_specs” [1].selector := cyc$file kind;
in_file_specs™ [1].file_kind := cyc$text_file;

Revision F Reading and Writing Files 12-63

Program Examples Using Text and Display Files

in_file_specs™ [2].selector := cyc$file access;
in_file_specs™ [2].file_access := cyc$read;
in_file_specs™ [3].selector := cyc$file existence;
in_file_specs” [3].file_existence := cyc$old file;
in_file_specs” [4].selector := cyc$open position;
in_file_specs” [4].open_position := cyc$beginning;

PUSH out_file_specs: [1 .. 6];
out_file_specs™ [1].selector := cyc$file kind;
out_file specs™ [1].file_kind := cyc$display file;
out_file specs” [2].selector := cyc$file_access;
out_file specs™ [2].file_access := cyc$write;
out_file_specs” [3].selector := cyc$file_existence;
out_file_ specs™ [3].file_existence := cyc$new or _old file;
‘out_file_specs™ [4].selector := cyc$page width;
out_file specs” [4].page width := out_page width;
out_file_specs™ [5].selector := cyc$page length;
out_file_specs” [5].page_length := out_page length;
out_file specs™ [6].seiector := cyc$new page procedure;
out_file_specs™ [6].new_page procedure.kind :=
cyc$user_specified procedure;
out_file_specs” [6].new_page procedure.user_procedure :=
“my_new_page_proc;

cyp$open_file (in_name, in_file_specs, in file, status);
IF NOT status.normal THEN
RETURN; {--———- >
IFEND;
cypsopen_file (out_name, out_file specs, out file, status);
IF NOT status.normal THEN

DETIIOA . L~
NeTuniy; 1 -

IFEND;

WHILE TRUE DO

cyp$get_partial_line (in_file, 1ine, line_length, eol,
status);

IF NOT status.normal THEN
EXIT /main_loop/;

IFEND;

CASE cypgcurrent_file position (in_file) OF

= cyc$end of_information =

cyp$position_display_page (out_file, footing_line number,
status);

12.64 CYBIL Language Definition Revision F
01/22/87 19:59:24 | 02/13/87 08:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

|
|
|
|
\
\
|
|
4
I
|
I
l
|
|
1
i
|
|
|
]
|
|
|
|
|
|
I
|
[
/main_loop/ [
|
[
|
|
|
|
i
I
|
i
1
I
1
I
|
|
I
I
i
i
|
|
|

Program Examples Using Text and Display Files

IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
print_page footer (out file, status);
IF NOT status.normal THEN
EXIT /main_loop/:

IFEND;
EXIT /main_loop/;

= cyc$end_of _partition =
file_numb := file_numb + 1;

record_numb := 1;
cyp$position_display_page (out_file, footing_ line_number,
status);

IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
print_page footer (out file, status);
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;

= cyc$end of_block =

record_numb := record_numb + 1;
cyp$position_display page (out_file, footing 1ine_number,
status);

IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
print_page footer (out_file, status);
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;

ELSE
IF cyps$current_display_tine (out_file) =
footing_line_number THEN
print_page footer (out_file, status);
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
IFEND;
IF 1ine_length > 0 THEN
cyp$put_partial_line (out_file, line (1,
line_length), eol, status);

Revision F Reading and Writing Files 12-65

Program Examples Using Text and Display Files

ELSE
cyp$write_end of_line (out_file, status);
IFEND;
IF NOT status.normal THEN
EXIT /main_loop/;
IFEND;
CASEND;
WHILEND /main_loop/;

cyp$close_file (in_file, cyc$beginning, status);
IF NOT status.normal THEN
RETURN; {-—--- >
IFEND;
cyp$ciose_file (out_file, cycsasis, status);
IF NOT status.normal THEN
RETURN; {-——-- >
IFEND;

PROCEND iist;

MODEND display_file_exampie;

12-66 CYBIL Language Definition Revision F
| 01722/87 19:59:24 | 02/13/87 09:46:31 I 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES ' DRAFT COPY

Page-Overflow Processing for Display Files

Page-Overflow Processing for Display Files

The procedures and functions described in this section are for display
files only. For more information on the structure of display files, refer
to Display File Structure earlier in this chapter.

When the number of lines written to a display file exceeds the file’s
specified page length, the line count is reset to zero, the page
overflow mechanism is executed, and the line count begins again.

The page overflow mechanism is the sequence of events performed
whenever the display-page length is exceeded. These events are the
following:

® (CYBIL I/O checks whether you have specified your own
page-overflow procedure on the FILE_SPECIFICATIONS parameter
of CYPSOPEN_FILE. If you have, your page-overflow procedure is
called.

® In the absence of such a procedure, CYBIL I/O checks whether you
specified the use of standard page headers on the FILE_
SPECIFICATIONS parameter. If so, the header will be formatted
and displayed.

® If neither a user-specified page-overflow procedure nor the standard

header has been selected, a page eject is performed. (A format
control character of 1 is automatically specified.)

The sequence of events may be approximated as follows:
get next display line
IF (line_count + 1) > display page length THEN
line__count := 0
IF user-specified new_page_procedure THEN
call user-specified procedure
ELSEIF standard procedure selected THEN
perform display page eject
format and display standard header

skip 1 line

Revision F Reading and Writing Files 12-67

Page-Overflow Processing for Display Files

ELSE

perform display page eject

IFEND
IFEND

display the display line

Standard page headers are either narrow format or wide format. If the
page width established when the file was opened is greater than or
equal to 132, the wide format is selected; otherwise, the narrow
format is selected. (The page width is specified via the FILE_
SPECIFICATIONS parameter on CYP$OPEN_FILE.)

The standard page headers are formatted as follows:

Narrow format:

Line Columns

Description of Header

1 1-46 String contained in the title field of the new_
page__procedure record of the FILE_
SPECIFICATIONS parameter when the file was
opened.
48-55 Date in mm/dd/yy format.
62-72 'PAGE ’ and page number.
2 1-22 Operating system version.
48-59 Time in system default format, or if no default is
available, in hh:mm:ss format.
12-68 CYBIL Language Definition Revision F

| 01/22/87 19:59:24 | 02/13/87 08:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY |

Page-Overflow Processing for Display Files

Line Columns Description of Header
1 1-46 String contained in the title field of the new_
page_procedure record of the FILE_
SPECIFICATIONS parameter when the file was
opened.
48-69 Operating system version.
91-98 Date in mm/dd/yy format.
110-121 Time in system default format, or if no default is
available, in hh:mm:ss format.
123-132 'PAGE ’ and page number

All fields in the standard headers are displayed left-justified with
klnrﬂz fill tn tha rioht

AACGLLAL hads WU WL Ldgdlu.

Standard title lines can be produced from within user-specified new

P, ~L Ll D$T\T DT AV QMANTTMYADN

page prae-e—dures unuugu the use of the CYI WD ALRINIFEN RN
TITLE procedure, which is described in the next section.

Revision F

Reading and Writing Files 12-69

Page-Overflow Processing for Display Files

The following procedures and functions may be used with display files
only. These procedures and functions are described in greater detail
on the following pages.

CYP$START _NEW_DISPLAY_PAGE
Calls the CYBIL I/O page overflow mechanism.

CYP$POSITION _DISPLAY_PAGE
Positions a display file at a specified line.

CYP$DISPLAY_STANDARD_TITLE
Formats and writes a standard title line to a display file.

CYP$DISPLAY_PAGE_EJECT
Positions a display file to the top of the next page.

CYP$DISPLAY_PAGE_LENGTH
Returns the page length associated with a display file.

CYP$CURRENT_DISPLAY_LINE

Returns the number of the current line within the current page of
a display file.

CYP$CURRENT_PAGE_NUMBER
Returns the current page number of a display file.

12-70 CYBIL Language Definition Revision F
01/22/87 19:59:24 I 02/13/87 09:46:31 | 87/03/25 22.17.32 l 60464113 F | READING AND WRITING FILES I DRAFT COPY :

CYP$START_NEW_DISPLAY_PAGE

Purpose Calls the CYBIL I/O page overflow mechanism.

Format CYP$START_NEW_DISPLAY_PAGE (display_file,
status)

Parameters display_file: cyt$file;
File identifier established when the file was opened.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect_output_request
cye$incorrect_operation

Remarks & If the last write to the display file was a partial line
rather than a full line, that line is terminated and
then a new display page is started.

® Attempting to use this procedure on a file not opened
as a display file will return CYE$SINCORRECT_
OPERATION in the status variable.

® Attempting to use this procedure on a file not opened
for write or read write access will return
CYES$INCORRECT_OUTPUT_REQUEST in the status
variable.

Revision F Reading and Writing Files 12-71

CYP$POSITION_DISPLAY_PAGE

CYPS$POSITION _DISPLAY_PAGE
Purpose Positions a display file at a specified line.

Format CYP$SPOSITION _DISPLAY_PAGE (display_file, line_
number, status)

Parameters display _file: cyt$file;
File identifier established when the file was opened.

line_number: cyt$page_length;
The line at which the file is to be positioned.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file__not_open
cye$incorrect_output_request
cye$incorrect_operation

Remarks ® If the value of the LINE_NUMBER parameter is
greater than the current line number and less than or
equal to page size, the file is positioned to that line on
the current page. If LINE_NUMBER is less than or
equal to the current line number, the page overflow
mechanism is executed and the file is positioned at
LINE_NUMBER on the next page. If LINE_
NUMBER is greater than the page size, the page
overflow mechanism is executed and the file will be

mantdtaennd b bl b L ALl ol o
PUSLLIULITU ab LT WP Ul Ul HeXL pdge.

® If the last write to the display file was a partial write,
that line is terminated and then the display page is
positioned.

® Attempting to use this procedure on a file not opened
as a display file will return CYE$INCORRECT_
OPERATION in the status variable.

® Attempting to use this procedure on a file not opened
for write or read write access will return
CYES$INCORRECT_OPERATION in the status
variable.

12.72 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 089:46:31 | 87/03/25 22.17.32 I 60464113 F | READING AND WRITING FILES | DRAFT COPY

CYP$DISPLAY_STANDARD_TITLE

i = — e =

CYP$DISPLAY_STANDARD_TITLE

Parameters

Conditions

Remarks

Revision F

Formats and writes a standard title line to a display file.

CYPS$DISPLAY_STANDARD_TITLE (file, title, lines_
after_title, status)

file: cyt$file;

Pile identifier established when the file was opened.

title: string (* <= cyc$title_size);

The text that is to appear in columns 1 thru 46 in the
standard title.

lines_after _title: cyt$page_length;

The number of blank lines to appear between the
standard title and the next display line.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

cye$file_not_open
cye$incorrect_output_request
cye$incorrect_operation

® If the last write to the display file was a partial write,
that display line is terminated and then the standard
title is written.

® Attempting to use this procedure on a file not opened
as a display file will return CYE$INCORRECT_
OPERATION in the status variable.

® Attempting to use this procedure on a file not opened
for write or read write access will return
CYES$INCORRECT_OPERATION in the status
variable.

Reading and Writing Files 12-73

CYP$DISPLAY_PAGE_EJECT

CYP$DISPLAY_PAGE _EJECT
Purpose Positions a display file fo the top of the next page.
Format CYPS$DISPLAY_PAGE _EJECT (display _file, status)

Parameters display _file: cyt$file;
File identifier established when the file was opened.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open
cye$incorrect_output_request
cye$incorrect_operation

Remarks ® This procedure should only be called from a
user-specified page overflow procedure.

® If the last write to the display file was a partial write
that line is terminated and then a display page eject
is performed (with a format control character of 1 in
column 1).

3

® Attempting to use this procedure on a file not opened
as a display file will return CYE$INCORRECT_
OPERATION in the status variable.

® Attempting to use this procedure on a file not opened
for write or read write aceess will return
CYES$INCORRECT_OPERATION in the status
variable.

12-74 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/08/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

=r

CYP$DISPLAY_PAGE_LENGTH Function

=F

CYPSDISPLAY_PAGE _LENGTH Function

Parameters

Remarks

Revision F

Returns the page length associated with a display file.

CYPS$DISPLAY_PAGE_LENGTH (display_file):
cyt$page_length;

display _file: cyt$file;
File identifier established when the file was opened.

Attempting to use this function on a file not opened as a
display file will return an undefined result.

Reading and Writing Files 12-75

CYP$CURRENT_DISPLAY_LINE Function

CYPSCURRENT_DISPLAY_LINE Function

Purpose Returns the number of the current line within the current
page of a display file.

Format CYPS$CURRENT_DISPLAY_LINE (display_file):
cyt$page_length;

Parameters display _file: cyt$file;
File identifier established when the file was opened.

Remarks ® After any vertical spacing command (such as
CYP$SKIP_LINES, CYP$DISPLAY_PAGE_EJECT,
CYP$POSITION _DISPLAY_PAGE), the value returned
is the next line to be displayed. After a write
command (such as CYP$PUT_NEXT_LINE,
CYP$PUT_PARTIAL_LINE, CYP$WRITE_END_OF_
LINE), the value returned is the line just displayed.

® Attempting to use this function on a file not opened as
a display file will return an undefined result.

12-76 CYBIL Language Definition Revision F
| 01/22/87 19:59:24 l 02/13/87 09:46:31 I 87/03/25 22.17.32 ' 60464113 F | READING AND WRITING FILES | DRAFT COPY

Parameters

Remarks

Revision F

CYP$CURRENT_PAGE_NUMBER Function

AiBER Function
Returns the current page number of a display file.

CYP$CURRENT_PAGE_NUMBER (display _file):
integer;

display _ file: cyt$file;
File identifier established when the file was cpened.

Attempting to use this function on a file not opened as a
display file will return an undefined result.

Reading and Writing Files 12-77

Program Example Using Terminal /O

Program Example Using Terminal 1/0

The following example illustrates the use of display file procedures
employing terminal I/O.

Example 1:

*copyc osd$default_pragmats
MODULE catenate_string_to_fiie;

*copyc cyp$get_next_line

*copyc cyp$put_partial_tine
*copyc cyps$open_file

*copyc cyp$close_file

*copyc cyp$current_file_position
*copyc ost$status

PROGRAM catenate_string_to_file
(VAR status: ost$status);

CONST
input_file_name = “INPUT’,
output_file_name = “QUTPUT”,
prefix_string = “INPUT TEXT = ““-,
suffix_string = 7777,

|

|

|

|

|

\

|

\

\

\

\

|

|

VAR |

chars_read: integer, |

ignore_status: ost$status. |

input_tline: string (osc$max_string_size), |

input_file: cyt$file, :

input_file_specs: [static, read] array [1 .. 2] of

cyt$file_specification := [[cyc$file_kind, :

cyc$text_filel, [cyc$file_access, cyc$readll], |

output_file: cyt$file, :
output_file_specs: [static, read] array [1 .. 2] of

cyt$file_specification := [[cyc$file_kind, :

cyc$text_filel, [cyc$file_access, cycswritell; |

|

|

i

[

[

|

|

)

|

!

f

[

|

i

status.normal := true;

12-78 CYBIL Language Definition Revision F
01/22/87 19:59:24 l 02/13/87 09:46:31 | 87/03/25 22.17.82 | 60464113 F | READING AND WRITING FILES I DRAFT COPY

Program Example Using Terminal 1/0

cypsopen_file (input_file_name, “input_file_specs,
input_file, status);
IF status.normal THEN
cypsopen_file (output_file_name, “output_file_specs,
output_file, status);

TE etatnic nnnmal TLII:M
i OSITRLUS .U G

cyps$get_next_line (input_file, input_line, chars_read,
status);
IF status.normal THEN

/read_write/
WHILE (cyp$current_file_position (input_file) <>
cyc$end_of_information) do

cyp$put_partial_line (output_file, prefix_string,
false, status);

IF NOT status.normal THEN
EXIT /read_write/;

IFEND;

cypsput_partial_line (output_file, input_line (1,
chars_read), false, status):

IF NOT status.normal THEN
EXIT /read_write/;

IFEND;

cyp$put_partial_line (output_file, suffix_string,
true, status);

IF NOT status.normal THEN
EXIT /read_write/;

IFEND;

cyp$get_next_line (input_file, input_line,
chars_read, status);

IF NOT status.normal THEN
EXIT /read_write/;

IFEND;

WHILEND /read_write/;
IFEND;
IFEND;
IFEND;

Revision F Reading and Writing Files 12-79

Program Example Using Terminal /O

cypsclose_file (input_file, cyc$default_open_position,
ignore_status) ;

cypsclose_file (output_file, cyc$default_open_position,
ignore_status);

PROCEND catenate_string_to_file;
MODEND catenate_string_to_file;

12.80 CYBIL Language Definition Revision F
] 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | READING AND WRITING FILES | DRAFT COPY

NOS/VE-Specific Procedures and
Functions for CYBIL I/0 13

This chapter describes the procedures which are available only on the

NQOS/VE implementation of CYBIL /O,
CYP$GET_FILE_IDENTIFIER 11-
CYP$GET_BINARY_FILE_POINTER 11-
CYP$OPEN_BINARY_FILE 11-
CYP$OPEN_RECORD_FILE 11-
CYPS$OPEN_TEXT_FILE 11-

CYP$OPEN_DISPLAY_FILE 11-

NOS/VE-Specific Procedures and
Functions for CYBIL 1/0 13

Because they provide access to capabilities unique to NOS/VE, the

Aagnrihad in thic ah 4 ha 11gnd 1y urith

?rﬂﬁedures GEesCrised 1Inn TS \.u.agter are intendad & be usaed on:y wWitn
the NOS/VE implementation of CYBIL 1/O. Programs meant to be

portable between operating systems should minimize use of these

procedures. 1

The following are the NOS/VE-specific procedures, which are described
on the following pages:

CYP$GET_FILE_IDENTIFIER

CYP$GET_BINARY_FILE_POINTER
Returns a pointer to the segment pointer used by CYBIL I/O.

CYP3OPEN_RINARY_FILE

Utilizes the flexibility of the FSP$OPEN_FILE procedure when
opening binary files.

CYP$OPEN_RECORD_FILE

Utilizes the flexibility of the FSPSOPEN_FILE procedure when
opening record files.

CYP$SOPEN_TEXT_FILE

Utilizes the flexibility of the FSP$OPEN_FILE procedure when
opening text files.

CYP$SOPEN _DISPLAY_FILE

Utilizes the flexibility of the FSP$OPEN_FILE procedure when
opening display files.

1. Currently, CYBIL /O is only available for NOS/VE.

Revision F NOS/VE-Specific Procedures and Functions for CYBIL /O 13-1

CYPS$GET_FILE _IDENTIFIER

Purpose Returns a file’s identifier that can be used with the access
method (AM) procedures contained in the NOS/VE
program interface.

Format CYPS$GET_FILE _IDENTIFIER (file, file_identifier,
status)

Parameters file: cyt$file;
File identifier established when the file was opened.

file_identifier: VAR of amt$file_identifier;

The file access identifier that uniquely identifies and is
subsequently used to reference this instance of open.
status: ost$status;

Status variable in which the completion status is
returned.

Conditions cye$file_not_open

Remarks The file access identifier returned by this procedure may
be used on calls to access-method procedures such as
AMPS$FETCH which are specific to an instance of open.

13-2 CYBIL Language Definition Revision F
L l 01/22/87 19:59:24 | 02/13/87 09:46:31 I 87/03/25 22.17.32 | 60464113 F I NOS/VE SPECIFIC PROCS I DRAFT COPY

Format

Parameters

Conditions

Remarks

Revision F

Returns a pointer to the segment pointer used by CYBIL
I/0.

CYPSGET_BINARY_FILE _POINTER (file, binary_
file_pointer, status)

file: cyt$file;
File identifier established when the file was opened.

binary_file_pointer: VAR of “amt$segment_pointer;

status: VAR of ost$status;

Status variable in which the completion status is
returned.

cye$file_not_open
cye$incorrect_operation

® This procedure allows you to direct the reading or
writing of binary files when the CYP$PUT_NEXT_
BINARY and CYP$GET_NEXT_BINARY procedures
are not adequate. (For example, when pointer
information is to be stored as part of the data to be
written).

® Binary files are read and written using segment
access. The CYP$GET_BINARY_FILE_POINTER
procedure returns a pointer to the segment pointer
that CYBIL I/O uses. CYBIL I/O gets the segment
pointer as a sequence pointer (that is, the kind field of
the segment pointer record is AMC$SEQUENCE_
POINTER). The sequence pointer may be accessed by
referencing the sequence_pointer field of the segment
pointer. For example:

NEXT varizble_pointer IN segment_pointer®. sequence_pointer;

NOS/VE-Specific Procedures and Functions for CYBIL I/O 13-3

CYPSOPEN_BINARY_FILE

Purpose Utilizes the flexibility of the FSP$OPEN_FILE procedure
when opening binary files.

Format CYP$OPEN _BINARY_FILE (file_name, file_access,
file _attachment, default_creation _attribute,
mandated _creation _ attribute, attribute_validation,
attribute_override, file_control, status)

Parameters file_name: cyt$file_name;

Name of the file to be opened. On NOS/VE, a file name
may be up to 512 characters in length, and can be a file
reference.

file_access: cyt$file_access;

Permitted mode of access. The following values are
defined:

CYC$READ
Read access only.

CYC$WRITE
Write access only.

CYC$READ_WRITE
Read or write access.

file_attachment: “fst$attachment_options;

The attachment options in effect for the requested
instance of open.

t_creation _attribute: “{si$file_cycle_attributes;

A pointer to a record of file cycle attributes established
for a file that is initially opened or created by this call.

mandated _ creation _attribute: “fst$file_cycle_
attributes;

A pointer to a record of file cycle attributes established

|
|
|
\
\
\
\
|
|
I
I
|
I
1
I
1
1
|
|
|
|
1
|
|
1
]
|
|
|
|
|
|
|
[
|
|
[
t
|
i
i
i
{
|
|
1
1
i
. e aie . [
for a file that is initially opened or created by this call. ;
|
|
|
f
|
1
1
I
]

13-4 CYBIL Language Definition Revision F

W | 01/22/87 18:59:24 | 02/13/87 08:46:31 | 87/08/25 22.17.32 | 60464113 F | NOS/VE SPECIFIC PROCS | DRAET COPY :

J.L..SL-
wrip

—e 123 AL LB R PRIV RS S N

-V uuuuu 1supllie__Cycie__artiriputes,

A po nter to a record of required attribute values for the
file or file cycle.

attribute_override: “fst$file_cycle_attributes;

A pointer to a record of attribute values to be overridden
for this instance of open.

file_control: VAR of cyt$file;

Returns a file identifier that must be used on all other
calls to the file. This is a unique identifier used for the
file while it is open; any other references to this file must
include this identifier.

ttempting to call a CYBIL /O procedure with an
undefined or altered pointer will have unpredictable
results.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

Conditions cye$no_memory_to_open_file
cye$incorrect__open__request

Remarks ® The values specified for the FILE_ ATTACHMENT,
DEFAULT_CREATION_ATTRIBUTE, MANDATED_
CREATION_ATTRIBUTE, ATTRIBUTE_VALIDATION,
and ATTRIBUTE_OVERRIDE parameters are passed
directly to the FSPSOPEN_FILE procedure.The values
passed in these parameters are not validated or
checked in any way.

® For more information on the FSP$SOPEN_FILE
procedure and its parameters, refer to the CYBIL for
NOS/VE File Management manual.

Revision F NOS/VE-Specific Procedures and Functions for CYBIL /O 13-5

CYPSOPEN_RECORD_FILE

Purpose Utilizes the flexibility of the FSP$OPEN_FILE procedure
when opening record files.

Format CYPSOPEN_RECORD_FILE (file_name, file_access,
file_attachment, default_creation _attribute,
mandated _creation _attribute, attribute_validation,
attribute_override, file_control, status)

Parameters file_name: cyt$file_name;

Name of the file to be opened. On NOS/VE, a file name
may be up to 512 characters in length, and can be a file
reference.

file_access: cyt$file_access;

Permitted mode of access. The following values are
defined:

CYC$READ
Read access only.

CYC$SWRITE
Write access only.

CYC$READ_WRITE
Read or write access.

file _attachment: “fst$attachment_options;

The attachment options in effect for the requested
instance of open.

L1

Al -FL A ®N_ Yo
uciauiy__Cr

tion _aitribute: “fst$file_cycie_attributes;
A pointer to a record of file cycle attributes established
for a file that is initially opened or created by this call.

mandated _creation _attribute: “fst$file_cycle_
attributes;

A pointer to a record of file cycle attributes established
for a file that is initially opened or created by this call.

& L2220 LAlAV 2o LdQ4UA

13-6 CYBIL Language Definition Revision F
w l 01/22/87 19:59:24 I 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | NOS/VE SPECIFIC PROCS l DRAFT COPY

Conditions

Remarks

Revision F

attribute _validation: “fsi$file _cycle_atiributes;
A pointer to a record of required attribute values for the
file or file cycle.

attribute _override: “fst$file__cycle_attributes;

A pointer to a record of attribute values to be overridden
for this instance of open.

file_control: VAR of cyt$file;

Returns a file identifier that must be used on all other
calls to the file. This is a unique identifier used for the
file while it is open; any other references to this file must
include this identifier.

Attempting to call a CYBIL I/O procedure with an
undefined or altered pointer will have unpredictable
results.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

cye$no_memory_to_open_file
cye$incorrect_open_request

® The values specified for the FILE_ATTACHMENT,
DEFAULT_CREATION _ATTRIBUTE, MANDATED_
CREATION_ATTRIBUTE, ATTRIBUTE_VALIDATION,
and ATTRIBUTE_OVERRIDE parameters are passed
directly to the FSP$OPEN_FILE procedure. The
values passed in these parameters are not validated or
checked in any way.

® For more information on the FSP$OPEN_FILE
procedure and its parameters, refer to the CYBIL File
Management manual.

NOS/VE-Specific Procedures and Functions for CYBIL I/O 13-7

CYP$SOPEN _TEXT_FILE

Purpose Utilizes the flexibility of the FSP$OPEN _FILE procedure
when opening text files.

Format CYP$OPEN _TEXT_FILE (file_name, file_access,
file _attachment, default_creation _attribute,
mandated _ creation _ attribute, attribute_validation,
attribute _override, file_control, status)

Parameters file_name: cyt$file_name;

Name of the file to be opened. On NOS/VE, a file name
may be up to 512 characters in length, and can be a file
reference.

file_access: cyt$file_access;
Permitted mode of access. The following values are
defined:

CYC$READ

Read access only.

CYC$WRITE
Write access only.

CYCSREAD_WRITE

Read or write access.

file_attachment: “fst$attachment_options;
The attachment options in effect for the requested
instance of open.

Lo d o AL imoey

defauli_creation_atiribute: “fst$file_cycie_atiributes;

A pointer to a record of file cycle attributes established
for a file that is initially opened or created by this call.

mandated _creation _ attribute: “fst$file_cycle_
attributes;

A pointer to a record of file cycle attributes established
for a file that is initially opened or created by this call.

13-8 CYBIL Language Definition Revision F
L | 01/22/87 19:59:24 l 02/13/87 09:46:31] 87/03/25 22.17.32 | 60464113 F | NOS/VE SPECIFIC PROCS | DRAFT COPY

Conditions

Remarks

Revision F

attribute _validation: “fst$file_cycle_attributes;
A pointer to a record of required attribute values for the
file or file cycle.

attribute _override: “fst$file_cycle_attributes;
A pointer to a record of atiribute values to be overridden
for this instance of open.

file_control: VAR of cyt$file;

Returns a file identifier that must be used on all other
calls to the file. This is a unique identifier used for the
file while it is open; any other references to this file must
include this identifier.

Attempting to call a CYBIL I/O procedure with an
undefined or altered pointer will have unpredictable
results.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

cye$no_memory_to_open_file
cye$incorrect_open_request

® The values specified for the FILE_ ATTACHMENT,
DEFAULT_CREATION_ATTRIBUTE, MANDATED_
CREATION_ATTRIBUTE, ATTRIBUTE_VALIDATION,
and ATTRIBUTE_OVERRIDE parameters are passed
directly to the FSPSOPEN_FILE procedure.The values
passed in these parameters are not validated or
checked in any way.

® For more information on the FSP$OPEN_FILE
procedure and its parameters, refer to the CYBIL for
NOS/VE File Management manual.

NOS/VE-Specific Procedures and Functions for CYBIL /O 13-9

CYPSOPEN _DISPLAY_FILE

Purpose Utilizes the flexibility of the FSP$OPEN_FILE procedure
when opening display files.

Format CYP$OPEN _DISPLAY_FILE (file_name, file_access,
file _attachment, default_creation _attribute,
mandated _ creation _ attribute, attribute_validation,
attribute _override, file_control, status)

Parameters file_name: cyt$file_name;

Name of the file to be opened. On NOS/VE, a file name
may be up to 512 characters in length, and can be a file
reference.

file_access: cyt$file_access;
Permitted mode of access. The following values are
defined:

CYC$READ

Read access only.

CYC$WRITE
Write access only.

CYC$SREAD_WRITE
Read or write access.

file_attachment: "fst$attachment_options;

The attachment options in effect for the requested
instance of open.

Ly ddonll-—dn. AL ¥oa)
|V 1

st$lfile__cycle_atiributes;
A pointer to a record of file cycle attributes established
for a file that is initially opened or created by this call.

mandated _creation _attribute: “fst$file_cycle_
attributes;

A pointer to a record of file cycle attributes established
for a file that is initially opened or created by this call.

13-10 CYBIL Language Definition Revision F
L l 01/22/87 19:59:24 I 02/13/87 09:46:31 l 87/03/25 22.17.32 | 60464113 F I NOS/VE SPECIFIC PROCS] DRAFT COPY

Conditions

Remarks

Revision F

attribute_ validation: “fst$file_cycle_atiribuies;
A pointer to a record of required attribute values for the
file or file cycle.

attribute _override: “fst$file_cycle_attributes;
A pointer to a record of atiribute values to be overridden
for this instance of open.

file_eontrol: VAR of cyt$file;

Returns a file identifier that must be used on all other
calls to the file. This is a unique identifier used for the
file while it is open; any other references to this file must
include this identifier.

Attempting to call a CYBIL I/O ﬁrocedure with an
undefined or altered pointer will have unpredictable
results.

status: VAR of ost$status;

Status variable in which the completion status is
returned.

cye$no_memory_to_open_file
cye$incorrect_open_request

® The values specified for the FILE_ ATTACHMENT,
DEFAULT_CREATION _ATTRIBUTE, MANDATED_
CREATION_ATTRIBUTE, ATTRIBUTE_VALIDATION,
and ATTRIBUTE_.OVERRIDE parameters are passed
directly to the FSP$OPEN_FILE procedure. The
values passed in these parameters are not validated or
checked in any way.

® For more information on the FSP$OPEN_FILE
procedure and its parameters, refer to the CYBIL for
NOS/VE File Management manual.

NOS/VE-Specific Procedures and Functions for CYBIL I/0 13-11

Appendixes

Glossary e e A-i
Related Manuals B-1
Character Set C-1
Reserved Words D-1
Data Representation in Memory E-1
The CYBIL Run-Time Environment F-1
Programming Recommendations G-1

Differences Between CYBIL and Paseal H-1

Access Attribute ASID

Glossary A

A

Access Attribute

Characteristic of a variable that determines whether the variable can
be both read and written. Specifying the access attribute READ makes
the variable a read-only variable.

Active Call Chain

List of calls that led to the current procedure.

Active Segment Identifier (ASID)

A 16-bit field in the system virtual address (SVA) that uniquely
identifies an active segment in the system. The segment number in
the process virtual address (PVA), which is known locally to the

program, is converted to the active segment identifier, which is known
globally to the system. See also Process Virtual Address and System

Virtua! Address.

Alphabetic Character

One of the following letters:
A through Z

a through z
See also Character and Alphanumeric Character.

Alphanumeric Character

An alphabetic character or a digit. See also Character, Alphabetic
Character, and Digit.

ANSI
American National Standards Institute.

ASCII
American Standard Code for Information Interchange.

ASID
See Active Segment Identifier.

Revision F Glossary A-1

Assignment Statement Character

Assignment Statement

A statement that assigns a value to a variable.

B

Batch Debugging

Debugging when the user has no direct control of debugging during
program execution. Contrast with Interactive Debugging.

BDP

Business data processing.

Bit

A binary digit. A bit has a value of 0 or 1. See also Byte.

Boolean
A kind of value that is evaluated as TRUE or FALSE.

Break

The primary mechanism for Debug to gain control from an executing
program. A break specifies an event and an address range such that
when the event occurs within the address range, Debug takes control.

Byte
A group of contiguous bits. For NOS/VE, one byte is equal to 8 bits.
An ASCII character code uses the rightmost 7 bits of one byte.

Byte Offset

A number corresponding to the number of bytes beyond the beginning
of a line, procedure, module, or section.

C

Character

A letter, digit, space, or symbol that is represented by a code in one
or more of the standard character sets.

It is also referred to as a byte when used as a unit of measure to
specify block length, record length, and so forth.

A character can be a graphic character or a control character. A

graphic character is printable; a control character is nonprintable and
is used to control an input or output operation.

A-2 CYBIL Language Definition Revision F
G ' 01/22/87 19:59:24 | 02/13/87 09:46:31 I 87/03/25 22.17.32 | 60464113 F l GLOSSARY | DRAFT COPY

Character Constant Event

o ndme A L
Character Constant

A fixed value that represents a single character.

Comment

Any character or sequence of characters that is preceded by an
opening brace and terminated by a cilosing brace or an end of iine. A
comment is treated exactly as a space.

Compiiation Time
The time at which a source program is translated by the compiler to

an object program that can be loaded and executed. Contrast with
Execution Time.

Compiler

A processor that accepts source code as input and generates object
code as output.

n

A procedure called when an exception condition occurs. Condition
handler processing occurs after Debug processing if Debug mode is on.
The procedure is called only if it has been established as the condition
handler for the condition type and the condition occurs within its
scope.

D

Delimiter

The indicator that separates and organizes data.
Digit

One of the following characters:

01234567889

E

Entry Point

The point in a module at which execution of the module can begin.

Event

A condition, such as division by zero, that causes Debug to gain
control.

Revision F Glossary A-3

Ezecution Ring Interactive Debugging

Execution Ring

The level of hardware privilege assigned to a procedure while it is
executing.

Execution Time

The time at which a compiled source program is executed. Also known
as Run Time.

Expression

Notation that represents a value. A constant or variable appearing
alone, or combinations of constants, variables, and operators.

External Reference

A call to an entry point in another module.

F

Field

A subdivision of a record that is referenced by name. For example,
the field NORMAL in a record of type OST$STATUS called OLD_
STATUS is referenced as follows:

OLD_STATUS.NORMAL

Integer Constant
One or more digits and, for hexadecimal integer constantis, the
following characters:

ABCDEFabedef
A hexadecimal integer constant must begin with a digit. A preceding
sign and subsequent radix are optional. -
Interactive Debugging

Debugging when the user has direct control of the debugging process.
Contrast with Batch Debugging.

A-4 CYBIL Language Definition Revision F
G | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/256 22.17.32 | 60464113 F | GLOSSARY | DRAFT COPY

Load Module Name

L

Load Meodule

A module reformatted for code sharing and efficient loading. When the
user generates an object library, each object module in the module list
is reformatted and written as a load module on the object library.

M

Machine Addressing

Use of actual machine addresses. Contrast with Module Addressing
and Symbolic Addressing.

Machine-Level Debugging

Debugging using machine-level terms such as machine addresses. A
knowledge of machine architecture is required. Contrast with Symbolic
Debugging.

Module

A unit of text accepted as input by the loader, linker, or object
library generator. See also Object Module and Load Module.

Module Addressing

Use of addresses in terms of module and procedure names and an
offset. Contrast with Machine Addressing and Symbolic Addressing.

N

Name

Combination of from 1 through 31 characters chosen from the
following set:

® Alphabetic characters (A through Z and a through z).
® Digits (0 through 9).

¢ Special characters (#, @, $, and _).
The first character of a name cannot be a digit.

Revision F Glossary A-5

Object Code Range

0)

Object Code

Executable code produced by a compiler.

Object Module

A compiler-generated unit containing object code and instructions for
loading the object code. It is accepted as input by the system loader
and the Object Library Generator.

P

Page

An allocatable unit of real memory.

Pointer Variable
A CYBIL variable which contains the virtual address of a value.

PP

Peripheral processor.

Process Virtual Address (PVA)

The virtual address known locally by a program (or process). It is
converted to a system virtual address (SVA) that is known globally by
the system. It consists of a ring number, a segment number, and a
byte number. The segment number is used to form the active segment
identifier in the system virtual address. See also Active Segment
Identifier and System Virtual Address.

PVA

See Process Virtual Address.

R

Range

Value represented as two values separated by an ellipsis. The element
is associated with the values from the first value through the second
value. The first value must be less than or equal to the second value.
For example:

1.. 100

A-6 CYBIL Language Definition Revision F
G | 01/22/87 19:59:24 I 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F] GLOSSARY I DRAFT COPY

LV Axesso[p d uotsiAsy

"SSAIPPY [ENMIA WIISAS 99Q
VAS

'soydoajsode sarnoesuod omj Jurdroeds £q Surags
9y} ur pepnpour 9q ued sydoaisode uy ‘() seydorjsode Aq pejrwiIiep
sIgjoeIRYO JO 9duenbes y -onjea Surals e sjusserdsl JBYJ JUBISUOD Y

jueisus) SuLng

‘SITWIEP Aq pojeiedss sjUSWIa)B}S AICW 10 JUQ
ISTT jUsWalBIg

‘o[qe} o8ed welsAg

ILdS

1or1dwod & 03 jndur J0] USYILIM SJUSWIIBIS
3po) 0IN0Y

Py Vv

d 910w I0 dU(Q

"uo1j09304d SIBMPIEY PUB SSIN|LIJJE SWES 9y} Yjlm Sod
juswdog

"(SO[qBLIBA 9JLIM/pPEa IO SI[qBLIBA A[uo-peal ‘ajdurexa Ioj)
S9INQLI}IE SS90 UOWIWIOd YIIM SI[ELIBA SUIBIUO0D JBY} BoIB 95BI0IS Y

uonoeg

‘afenduer] purwWwo)) WeISAG
108

S

"SWIL], UOTINIIXY 99
aurLy, uny
‘8ury] UOIINOSX] OS[E 299G

's3ur1 1ay31y url Surindexa S)SB} AQ SSI0E PIZIIOYINBUN WO pejosjoxd
ST Al v juawidas 10 A1 2 uQAld uor12al0ad arempaey 10 10AarT

Sury

‘PA0M POAJIISOI B I0] 9SN I0 JUIUBSW mOU B SULP
jouued I19sn oy, -oSendue| B ur Sutueew peurjepeid ® SUIABY PIOM

NIN AL NAATASANT
LX) il ¢ §

el Rl et

VAS piopA poAlssey

Symbolic Addressing Variable Attribute

Symbolic Addressing

Use of addresses in source program terms such as program names and
line numbers. Contrast with Machine Addressing and Module
Addressing.

Symbolic Debugging

Debugging using source program terms such as line numbers and
program names. Contrast with Machine-Level Debugging.

System Virtual Address (SVA)

The virtual address known globally by the system. It is formed using
the process virtual address, which is known locally by a program. It
consists of an active segment identifier and a byte number. The
system virtual address is translated into the real memory address. See
also Active Segment Identifier and Process Virtual Address.

T

Traceback

A list of procedure names within a program, beginning with the
currently executing procedure, proceeding backward through the
sequence of called procedures, and ending with the main program.

v

Variable

Represents a data value.

Variable Attribute

A characteristic of a variable. See also Access- Attribute.

A-8 CYBIL Language Definition Revision F
G I 01/22/87 19:58:24 ' 02/13/87 09:46:31 ! 87/03/25 22.17.32 l 60464113 F | GLOSSARY IDRAFT copy

I-d S[enuep paiB[ey Jd uotsIA%y

‘renuew so[dwexy SUI[UO 9y} Ul pajussasdal SI [enuew ey} ‘I-g
3[qE} Ul UWRN[CX S[BRUBIY SUNUG S} UT PeIST] ST SWIJWVXE USUM

sa|duexa={enuew ute|[dxa/

:I9JuUs ‘[enuew SIY} $S990e 0F, [enuew sajdurexsy
SUI[UO 8y} UT OS[e }SIXe s[enuewr pajurad swos ur sejdwrexa oy,

J9S=1enuew ure|dxa/

:19JUS ‘[BNUBUWI SUI[UO 9JUSISJOY
FoIP TOS oY} 99s 0} ‘eidwexa 104 "(Se[3n} eur[uo ayj seorjddns

1-9 9[q®3) puswwod NIVIdXH Y} Uo 3[31} dur[uo 3yj Isjus pue
FA/SON 03 ut So[‘[enuew pojurid B JO UOISISA SUI[UO Y} SSIVIE O],

sfenuejy SuIu(Q SUISSIIY

"0012-262 (319) ([‘@ekojdwe eje([043u0) ' a1e nok JI "1013-363
(Z19) 11892 10 SSaIppe 2A0ge 3yj 01 9LIM ‘S[enuewl eje(J [0I3U0)
Suriapio Jnoge UOIJBULICIUL SI0W }28 01 I0 WLIO] JIPIO UB UIBIGO O],

€01GS BlosauUUIy ‘[ned IS

jeaqS Sre(YMON 80€

S9OIAISS UOTINQLIISI(] PUB 3INJBIAIIT
uorjeIodio]) BIR(] [0IIUCDH

:0] WLIOJ J9PJI0 UEB PUdS ‘[enueul BjB([0J3uU0)) pajutrid B I9pio o],

sfenuey pajuLid SuridpaQ

uredxa/

:19JU8 ‘[ENUBUI STY} SS900B O], '[ENUBW UOI}BULIOJUT

WoYSAG QUITUO YY) UI [enuew JA/SON UoEe I10J JoBIjSqe UB

pulj UEd NOA ‘S[ENUEBWI SUI[UO Y} PI[[BISUI SBY 99IS Jnok JI 'T-g 9[qel
Ul POISI[9JB S[ENUBW JIBMPIBY DPIJB[AI PuUB S[ENUBW HA/SON IV

d s[enuely pPINeRYy

Related Manuals

Table B-1. Related Manuals

Publication Online
Manual Title Number Manuals!

Site Manuals:

CYBER Initialization Package (CIP) 60457180
User’s Handbook

NOS/VE Accounting and Validation 60458910
Utilities for Dual State
Usage

NOS/VE Accounting Analysis System 60463923
Usage

Family Administration for NOS/VE 60464513
Usage

NOS/VE Operations 60463914
Usage

NOS/VE System Analyst Reference 60463915
Set

System Performance and Maintenance

Usage

NOS/VE System Analyst Reference 60463916
Set

Network Interface

Usage

NOS/VE System Analyst Reference 60463917
Set

LCN Configuration and Network

Management

Usage

CYBER 930 Computer System 60469560
Basic Operations
Usage

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-2 CYBIL Language Definition Revision F |
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | RELATED MANUALS | DRAFT COPY

g-d S[enuely peje[ey 4 uoisiasy

(panu_zguo;))

"9[0SU0Y wWdIsAs 9Yj je 9q pue ‘sesSe(ialid § Jull sABY ‘HA/TIVIN
J0J IOJRIISTUTWIPE 83U} 9q JSNW NoL ‘[enueu SIY} SS90 0], ‘g

‘renuew sa[durexsy SULUO
ayj ur are [enuew pajurid oyj ur sejdwexa ayj ISYIOYM SIJBIIPUL
pue [BnUBW Y] JO UOISIeA SUI[UO SY} JO S[}13 9y} SISI[UWN[0d STYJ, [

adesn)
yuswedeuryy apo) 199(qQ
€I¥¥9¥09 HA/SON 10F TTOS

adesn
JuUsWeZeUB] 9pP0) 92IN0S

SHTdNVXH E€1EY9Y09 HA/SON 10f TOS

adesn
910%9%09 HA/SON 107 UOTIULIS([BUTULI],

ades/feraoim],
SHTdNVXH G1079709 I03IPH S HA/SON

adesn
90BJISU] WAISAG

Y A XNAT INT rToey
ALAMDUN Y3 LD

edesn
uonurjeq odenduer]
SHTdINVXH €10%9%09 HA/SON 107 "1DS

[erzoinJ,
21079709 HA/SON 03 uorjonposjup
'sfenue TOS

o8es
NIV ZIIVIN ™ NIVINIVIN

adesn
¥19%9%09 TA/SON 0] sedesso]y JojeradQ

:(ponunIu0)) S[EnUEl IS

(STenuBly JaquinN apLy, [enuBpy
aurfuQ uonedIqNng

(penutzuop) spenuely peyeey ‘I-d

sfenuel peyBEy

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals!
SCL Manuals {Continued):
SCL for NOS/VE 60464018 SCL
Quick Reference
SCL for NOS/VE 60486412 AFM_T
Advanced File Management
Tutorial
SCL for NOS/VE 60486413 AFM
Advanced File Management
Usage
SCL for NOS/VE 60486419
Advanced File Management
Summary
EDIT_CATALOG EDIT_
Usage CATALOG
EDIT_CATALOG for NOS/VE 60487719
Summary
Screen Design Facility for NOS/VE 60488613 SDF
Usage
Screen Formatting for NOS/VE 60488813 EXAMPLES
Usage
Screen Formatting for NOS/VE SCREEN_
Quick Reference FORMATTING

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the

online Examples manual.

B-4 CYBIL Language Definition

(Continued)

Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/08/26 22.17.32 | 60464113 F | RELATED MANUALS | DRAET COPY

G- S[EnuBl paIB[ay Jq uotsiady

(pamuruop)

‘[enuewl so[dwIeXy SUI[UO
oy} ur ere [enuew pojurid 9y} ur sejdwrexs 9y} ISYloym SSJBIIPUIL
pu® [EnUBW 9Yj JO UOISISA SUI[UO 3y} JO 9[31} 9YjJ SISI[UWN{od SIYJ, ‘[

agdesn

uonjmura(sSenduery

SHTdNVXH €1653709 HA/SON 10} NVYLIOA
[eromg,

L~ NVYLIOA 61698709 HA/SON 10} NVULIOA

Srenue| NVUHLIOA

adesn
S90BLISIU] 93J9N/110S PUB O[I-POLeY]
SHTdNVXH LI1¥9%09 HA/SON 10} TIHAD

adesn
SO 9[qesseIppy-914g pue [BljUanbeg
SATdNVXH 9119709 JA/SON 10 TIHAD

a8esn
Juswadeur]y O[]

SHTdNVXH V1179909 HA/SON 103 TIFAD
adesn

20B[INU] WIISAQ

SHTdNVXH ST199709 HA/SON 101 TIHAD

adesny

SHTdNVXH uonjturye(] #8ensuer]
pue TIgAD E1T¥9%09 HA/SON 10 TIHAD

‘Spenue TIAD

(STenuely J3qUINN apLL [enuepy
suruQg uonedNqng

(pamunuo) spenmep

DAMRTANT *T-a aTae7T
CTTTTLIT QG B TRTRTWG

s[enuepy paye[oy

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals!

FORTRAN Mainuals (Continued):

FORTRAN Version 2 for NOS/VE 60487113 EXAMPLES
Language Definition
Usage

FORTRAN for NOS/VE 60485916
Topics for FORTRAN Programmers
Usage

FORTRAN for NOS/VE FORTRAN
Quick Reference

FORTRAN Version 2 for NOS/VE VFORTRAN
Quick Reference

FORTRAN for NOS/VE 60485919
Summary

COBOL Manuals:

COBOL for NOS/VE 60486012 COBOL_T
Tutorial

COBOL for NOS/VE 60486013 COBOL
Usage

COROQL for NOS/VE 60486019

Summary

1. This column lists the title of the online version of the manual and
indicaies wheiher the exampies in the prinied manual are in the
online Examples manual.

(Continued)

B-6 CYBIL Language Definition Revision F
W I 01/22/87 19:59:24 I 02/13/87 09:46:31 l 87/03/25 22.17.32 | 80464113 F | RELATED MANUALS | DRAFT COPY

L-d Srenuely pajersy v Jd UOISTARY

(panu1pu0))

‘[enuew so[dwexys auTfuo
ayj ur aie [enuew pajurid sy} ur sordwexe 9y} IAYAYM SOTBITPUL
puUEB [enuewW 3y} JO UOISISA SUI[UO dY} JO S[II} Sy SISI[uwn[od SIyJ, ‘T

20ueIeJey HIINY

00'104d 81L98¥09 HA/SON 1oy 3opoid
adesn

€1,98709 AA/SON Ioj 8010id

pie) Arpwwng

61968709 HA/SON 10f [BOSBd

odesn

TVOSvd €1948%09 HA/SON 10y [Bosed
agesn

€1298%09 HA/SON 10f dSI'T

pie) Arewwing

61€98%09 HA/SON 10F DISVI

adesn

oISvd €1€98¥%09 HA/SON 10f DISVI
adesn

uorjruysq edenduer

€I1868709 HA/SON 10} TdV

agdesn

SOTIIII] °ltd

y18498v09 HA/SON 10} TdV

ssenuey epduio)) J9qlQ

[Srenuspy JoquIny apLy, [enuepn
auruQ uonedTqng

S[ENUBy peje[ey

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals!

VX/VE Manuals:

VX/VE 60469980
An Introduction for UNIX Users
Tutorial/Usage

VX/VE 60469800
Support Tools Guide
Tutorial

VX/VE 60469790
Programmer Guide
Tutorial

VX/VE 60469780
User Guide
Tutorial

VX/VE 60469810
User Reference
Usage

VX/VE 60469820
Programmer Reference
Usage

VX/VE 60469770
Administrator Guide and Reference
Tutorial/Usage

C/VE for NOS/VE o
Quick Reference

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-8 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 l 87/03/25 22.17.32 | 60464113 F ' RELATED MANUALS l DRAFT COPY

6-d Srenusy pate[ey d uoTSTAY]

(panunuo))

‘renuew sejdwexy suruo
9y} ur aJe [enuew peojurad oyj ur sejdliexXe 8y} ISYjeyMm S9JBIIPUI
puUE [BNUBW 9Yj} JO UOISISA SUI[UO SY] JO S[}13 9Yyj SISI[UWN]0d SIY[J, ‘T

agdesn
UOTjRIJSIUTWPY BIR(
1068709 NA/INI

adesn

S9INpe20ld pueWWO)) pue

‘1oj1ap 1d0dey ‘Arendy I0] spuBwWIWIO))

81068709 NA/INI

adesn

$9INPed0ld PUBWIIO))

pue ‘1ej1ipp ja0dey ‘Arend)

£1068%09 NA/NI

spenuepy juewegdeuey Bl

adesn
apmy) siossadoadard
0ZRROFNY YA/IMA

agdesn
apmy) sofeyded OI0BN
01669709 XA/dMdA

ages
IpING SIAIBWIC] IXI],
00669¥09 XA/dMd

adesry/reriomy,
90ULJ9J9Y I9S[) PUB UOTIONPOJIUT

06869709 XA/AMA

adesn
0€869709 HA/SON 107 HA/D

i(penupuo)) sfenuey JA/XA

[STenusly J3quUINN 3L, [BNUEBy
auruQ) wuonedqnJg

(ponunuo)) stenuel PojRleY °I-g OlqEL

sfenuey pejerey

Related Manuals -

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals!

Data Management Manuals
(Continued):

IM/DM 60489015
Application Programming
Usage

IM/Quick for NOS/VE 60485712
Tutorial

IM/Quick for NOS/VE 60485714
Summary

IM/Quick for NOS/VE QUICK
Usage

IM/DM for NOS/VE IM_DM
Quick Reference

CDCNET Manuals:

CDCNET Commands 60000020
Quick Reference

CDCNET Product Descriptions 60460590
CDCNET Conceptual Overview 60461540
CDCNET Configuration and Site 60461550
Administration Guide

CDCNET Neiwork Operations 60461520
CDCNET Network Performance 60461510
Analyzer

CDCNET Network Analysis 60461590

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-10 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | RELATED MANUALS | DRAFT COPY

11-g S[enuepy pas[ey J UoISTASY

(ponujuop)

‘Tenuew sejdwexy ouljuo
ay} ur ere [enuew psjurid oY) ur se[dwIBxe oY} IaUjoym S8IBITPUI
puEe [ENUBW 9] JO UOISISA SUIUC SY} JO S[}I} oY} SISI[UWn{od Siyj, '

HOLVE epmy Iesfy
“ILANOAD £€98€9709 9019 Yyated LANDAD

9aJuaIgey oMY

SSHOOV HA/SON
TLANDAD 10} 90'ISU] [BUTWLIR], LHNOAD

. ades)
048€9709 f0BLIU] [BUTULIRY, JANDAO

0€8€9709 SS90y LHNDAD

$1090301J HIOMIIN
€ SWIN[OA
9ouaIaley

LA

SQOBJLI9IU] JoAer]

pue SeTIIuUy JUSWASBUBRIN HIOMISN

7 9WN[OA

QUBIIY

02%729%09 sJowweidord weysAg LANDAD

aiemj)jog weysfg aseq

[swnjoA

souaIsjey

01¥29%09 sJewme1solq wWeIsAg LANOAD

00v29¥v09 sousasyey IdAD LANDAD
00919%09 sedessoy onysoudeIq LANOAD

{(panunuo)) senusy LANDAD

Srenuey JaquIny apLl, TenuBpy
aumuQ uonedqnJg

S[enuBl P8Iy

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals!

Migration Manuals:

Migration from IBM to NOS/VE 60489507 MIGRATE _
Tutorial/Usage IBM
Migration from NOS to NOS/VE 60489503 MIGRATE _
Tutorial/Usage NOS
Migration from NOS to NOS/VE 60489504

Standalone

Tutorial/Usage

Migration from NOS/BE to NOS/VE 60489505 MIGRATE _
Tutorial/Usage NOSBE
Migration from NOS/BE to NOS/VE 60489506

Standalone

Tutorial/Usage

Migration from VAX/VMS to NOS/VE 60489508 MIGRATE _
Tutorial/Usage VAX

Miscellaneous Manuals:

Control Data CONNECT 60462560

User’s Guide

CYRBER Online Text for NOS/VE 80488403 CONTEXT
Usage

CONTEXT 60488419

Summary Card

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-12 CYBIL Language Definition Revision F
W | 01/22/87 18:59:24 I 02/13/87 09:46:31 | 87/03/25 22.17.32 ' 650464113 F ‘ RELATED MANUALS | DRAFT COPY

€I-d S[enusjy paje[ay J uomsiAey

(ponuzuo))

‘renuew sojdurexy auiuo

oy} ur are [enuew pajurid oy} ur sejdwexa Y} JSYJAYM SOJEBITPUL
pUE [BNUEBW SY} JO UOTSISA SUI[UC 8Yj} JO I3[31} dY} SISI[UWN[0d STYJ, I

LNUIN
“NOYIANH
HATSON

QITINYYTT
Sl iGrxy

JATTIIVIN

SHOVSSHIN

ongHaa

0LE9S709 K10300a1(q suorjedriddy

a8esn
02909709 K31[108,] ISOY oj0Wey

Arewrmng
HA/SON

61898%09 10y quawuoliauy Surmuwrerdord

adesn

HA/SON
1o} juawuogiauy Surmuweidoid

uorjeuLIofu] WaYSAS FA/SON

adesn
sardurexy FA/QON

\RLAS WIS L

agesn
HASMIVIN

pae) Arewwng
61579709 HAMTIVIN

adesn
£19%9%09 HA/SON 0] sedesse[y orysouder(]

90uaJIeley YOINY
JA/SON 103 3nqaq

adesn
£1Z88¥709 HA/SON I0j 3ngaQ

((penumuo))) S[enuUBy SNOSUB[[AISIIN

(STenuey
auruQ

JoqunN apLL [enuely
uonyeoTqng

S[EnuEl peje[ey

(ponunuo)) stenuel pareley °I-d S[qEL

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals!

Hardware Manuals:

CYBER Installation Package (CIP) 60457180
Handbook
CYBER 170 Computer Systems 60459960

Models 825, 835, and 855
General Description
Hardware Reference

CYBER 170 Computer Systems, 60458100
Models 815, 825, 835, 845, and 855

CYBER 180 Models 810, 830, 835,

840, 845, 850, 855, and 860

Codes Booklet

CYBER 170 Computer Systems, 60458110
Models 815, 825, 835, 845, and 855

CYBER 180 Models 810, 830, 835,

840, 845, 850, 855, and 860

Maintenance Register

Codes Booklet

Virtual State Volume II 60458890
Hardware Reference

7221-1 Intelligent Small 60461090
Magnetic Tape Subsystem

Reference

7021-31/32 Advanced Tape Subsystem 80449800
Reference

HPA/VE User’s Reference 60461930

Subsystem Reference

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

B-14 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/256 22.17.32 | 60464113 F | RELATED MANUALS | DRAFT COPY

1-D 19§ 1em08I8U)) d uomsiasy

"USIM NOA SB J9J0BIBYD Yove JOo uoljelaidiojul oy}

aULep 03 JI 9sN 03 99I] aIe NOL ‘I9A9MOY ‘Pasn Jou ST Iq JSOUIYS] Y}
yotym ut suorjedridde uy ‘siejdriByd [[HSV pIepuels oy} A[uo jdedde
suorjedridde eseyj ‘aiojeray], ‘sesodind [eroads 10} jIq STy} asn Kpeaufe
{syuswruoataus agendue| Jurwweidord oy} pue ‘ANMN HOIVIVI
TLIQd ey ‘Aymn FTIdTLIAH 9yl se yons) suorjedsrdde useios [[ng
-9, "JUSWIUOCIIAUS SUTHIOM JUSIINO INOA UL S[qB[IBAB ST JIq }SOWIS] 9y}
18U} UIR3I9D aq ‘SI9jdBJIRYD [[JSV-UOU [BUOTIIPPE SUIJOP 0} juBMm NOoA JI

‘SI930vIRYI QF] [BUOIJIPPE UB SUL[ap

0} pasn 3q Os[e UBD JIq }SOUIA] Y} HA/SON Ul ‘I9AGMOL] '0I18Z SAem[e
ST 719 1SOWY9] I0 YIu3e oyj ‘siejoeteyd J[DSV 10 "9314q yoea ur
peymsnf JyS1z o1 S1q L 9S8y, "934q 31q-8 UB U 8P02 J[OSV 319-L Yoee
sjuesardes JA/SON "(LLET-F'EX ISNV) 198 I9j0BIBYD [[JSV PIepuels
(ISNV) 9Injisu] spIepuelg [BUOIBN UBdLISWY oy} sitoddns HA/SON

(1-D °[qe} 09 I9Joa) 19s I9joeIRYD [[DSV 9y} SISI[xTpuadde STy,

0 198 J9j0RIRY))

Character Set

Table C-1. ASCII Character Set

Hexa-
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning
000 00 000 NUL Null
001 01 001 SOH Start of heading
002 02 002 STX Start of text
003 03 003 ETX End of text
004 04 004 EOT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell
008 08 010 BS Backspace
009 09 011 HT Horizontal tabulation
010 0A 012 LF Line feed
011 0B 013 VT Vertical tabulation
012 0C 014 FF Form feed
013 0D 015 CR Carriage return
014 0E 016 SO Shift out
015 OF 017 SI Shift in
016 10 020 DLE Data link escape
017 11 021 DC1 Device control 1
018 12 022 DC2 Device control 2
019 13 023 DC3 Device control 3
020 14 024 DC4 Device control 4
021 15 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle
023 17 027 ETB End of transmission block
024 18 030 CAN Cancel
025 19 031 EM End of medium
026 1A 032 SUB Substitute
027 1B 033 ESC Escape
028 1C 034 FS File separator
029 1D 035 GS Group separator
030 1E 036 RS Record separator
031 1F 037 us Unit separator
032 20 040 SpP Space
033 21 041 ! Ezclamation point
034 22 042 " Quotation marks
035 23 043 # Number sign
036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 & Ampersand
039 27 047 ’ Apostrophe
{Continued)
C-2 CYBIL Language Definition Revision F

C2A | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/256 22.17.32 | 60464113 F | CHARACTER SET | DRAFT COPY

€D 198 IepeiBy) d uosiagy

(panurjuo))

O 9sBoaaddn 0 LT1 4 6L0
N eseozaddny N 911 av 8.0
W oseosaddny n ST1 ay LLO
T eseoaaddp) 1 148! ov 9.0
Y aseozaddn p-1 g1t av L6
r eseozaddp) ¢ a8 v ¥L0
I eseosaddny 1 11t 34 €10
H 9seoraddn H 011 8y gLo
0 eseoraddn D Lot Ly 120
J eseoraddny d 901 9% 0L0
g oseoraddp) ! Q01 14 690
q oseosaddn a $01 44 890
0 eseazaddn 0 801 a4 L90
g eseozaddn) q 301 44 9290
Vv eseozaddn v 101 154 90
18 [BIOISWIUO) Q)] 00t oy 790
jyIew uomseond é LL0 i €90
By} 13181 < 940 ag 290
spenby = SL0 as 190
uey} ssor] > PL0 g 090
uo[0ITWag : €L0 g€ 690
uofo) : 2L0 Ve 860
SUIN 8 140 6% L5060
481y 8 0L0 8e 980
uaAsg L L90 Lg 950
xS 9 990 9¢ ¥$0
dAL] g 990 44 £90
moy 14 790 43 3s0
saay], g €90 gg 190
oM, 4 390 4 050
suQ 1 190 1€ 6%0
0197 0 090 0¢ 8%0
el / LSO s L¥0
porasg : 990 3c 970
uoyd£y - S50 az gv0
BWINO) ‘ pco 0% ¥v0
snid + €90 2t 0]
ISUANSY * g0 Ve &v0
stseqyuaied Sursorn (180 6Z 170
stsayjuared JumuadQ) 0S0 82 0%0
Suruesy 10 sureN oSruoOWaU apo) apo) apo)
a6 owgdeasy %0 [EWidsp [ewide(

-exay

(penuniuoQ) 33§ I9ORIEUD MOISY ‘'1-D AqEL

19g 19%0BIBYD

Character Set

Table C-1. ASCIH Character Set (Continued)

Hexa-
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning
080 50 120 4 Uppercase P
081 51 121 Q Uppercase Q
082 52 122 R Uppercase R
083 53 123 S Uppercase S
084 54 124 T Uppercase T
085 55 125 U Uppercase U
086 56 126 v Uppercase V
087 57 127 w Uppercase W
088 58 130 X Uppercase X
089 59 131 Y Uppercase Y
090 5A 132 Z Uppercase Z
091 5B 133 [Opening bracket
092 5C 134 \ Reverse slant
093 5D 135] Closing bracket
094 5E 136 - Circumflex
095 5F 137 _ Underline
096 60 140 b Grave accent
097 61 141 a Lowercase a
098 . 62 142 b Lowercase b
099 63 143 c Lowercase ¢
100 64 144 d Lowercase d
101 65 145 e Lowercase e
102 66 146 f Lowercase f
103 67 147 g Lowercase g
104 68 150 h Lowercase h
105 69 151 i Lowercase i
106 6A 152 j Lowercase j
107 6B 153 k Lowercase k
108 6C 154 1 Lowercase 1
109 6D 155 m Lowercase m
110 6E 156 n Lowercase n
111 6F 157 [Lowercase o
112 70 160 p Lowercase p
113 71 161 q Lowercase q
114 72 162 r Lowercase r
115 73 163 s Lowercase s
116 74 164 t Lowercase t
117 75 165 u Lowercase u
118 76 166 v Lowercase v
119 77 167 w Lowercase w

(Continued)

C-4 CYBIL Language Definition Revision F

C2A | 01/22/87 19:59: 24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | CHARACTER SET | DRAET COPY

gD S 18IRYD

d uoisiAey

19§ 10%0818YD

31818 TIa LLT VA L1
9PILL ~ 9LT dqL 981
8or1q SuIso[) { SLT az 931
auUI] [BOTISA ! VLT oL 4!
soraq SuruadQ } SLT dL €31
Z S9SBOIOMOT] z GLT VL& [44 4
£ ssmozemo £ LT 8l 1zZ1
X 3SBIAMO] X 0LT 8L 021
Sulueay 10 sweN STUOWAUR apo) apo) apo)
10 omdesny (PO [PWSP [ewIS(Q

-exaY
(panunuo)) 18§ JaavIen) IIDSV 1-D Aqe]

1-(Q SPiOM poAIasay

qY4NAIO0¥d ™ OL
THALNIOd T LHHANOD#
dVMS HYVdINOD#
Al gadTIvVO#
SSHYAAVv#
JHYX

1(0):¢

TOdX

HLIIM
ONHTIHM
HTIHM

VA
HNTVAYAddN
aNNOog¥ddd
TLLNI1

HdAL

HNYL

oL

HTLLL

NHHL

201018
HIDNATYHLS
dHIONTIYIS
ONIYLS
JLLVLS
DNIDVAS

dIdS

LIS

bas

NOLLOHS
LHOIY
NYNLEY
LHSHY
LVAIdHY

ddd

THA

d9003d
ANIOHH

TvVdy

aviayd

HSNd
NVEO0dd
aNHO04d
FENAE00dd
adgydad

d0d
aaMovd
ayo

40

NO
JTLILATO
440

J0

LON
HTIdINOJO0ON
TIN

LXUN
ATLILMAN
dT1NdON
ONHAONW
aon
HNTVAYEMO'T
ANNOFEIMOT
rdOLSIT
LXHLSI'T
SLOLSI'T
TIVLSI'T
LSI'T
AUvydrl
LAHT
JIDHLNI
HUNIINI

NI

ANHAI

AT

dViIH

Jq uotsiaey

NOILONNA
NUONNA
qHdd
ONHHOA
404

LINA
dS'TVA
LIXH

aNH
JTASTH
ISTH
LOWrd
OLNMOd
od

Ald
HTOAD
LSNOO
HTIdWNOD
LNHWINOD
4YHD
OVILIHO
4NS3MHD
ONYUMHO
TINMHD
TIVMHO
4VHO
TTHO

ILVO
aNISVO
dsvo
aNnnod
NVHT00d
NIDHL
AVYYV
aNVv
HLVOOTIV
TANDITY
SVITV

"JXoU PIISI] 9Ie TTIIAD Ul SPIOM POAISSAI Y,

SPIC M PSAJISIY

#FREE__ #PTR
RUNNING_ #PURGE _
CLOCK BUFFER
#GATE #READ_
#HASH_SVA REGISTER
#INLINE #REL
#KEYPOINT #RING
#LOC #SCAN
#OFFSET #SEGMENT
#PREVIOUS_ #SEQ
SAVE_AREA #SIZE

D-2 CYBIL Language Definition

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60484113 F | RESERVED WORDS | DRAET COPY

#SPOIL
#TRANSLATE
#UNCHECKED_
CONVERSION
#WRITE_REGISTER
$CHAR

SINTEGER

$REAL

Revision F

-4 uomsjuassaidey BB J uoistasy

“J1q S[qEB[IBAB 3ISIIJ Y} UT Pal0)s aq p[nom JI suesur jIq ‘834q

a[qe[IBAR 1SII] 9] UI paJols oq p[nom odA] Bjep 9y} sueawr 914q pIom
9y, eanjonajs pexoed o peyodedun ue jo jusuodured B SI I JI PoIOjs
ST od4} ejep payroads oy} MOy OJBIIPUI SUWN[OD 0M] SB[9Y], ‘AIoWew
ur pejussaidal aae sodA] BIEp JUSISIP MOY SezZLIBWWNS [-5 9[qB]

(1[99 & Y}im SNOWAUOUAS ST 934q 1IQ-8 UB) A[}09IIp passeippe
9Q ued spiom pue sejAq yjog ‘piom JIq-y9 B 0] S914q § pue 914q ®©
0] S31q § 9Ie JISYJ, JIq B ST JA/SON Ul AIOWSW JO JIun Isaj[ews ayJ,

‘ad£g pearnjonays 10 Jejurod xodwrod aiowr e ST 31 JI A[[eroadss

‘Bursn are nok od£} rernorjred oyj J0] UorydiIdSep 8y} peal os[e
PINoYs TioA ‘SOSEBO (SOWI 0] [[219P JUSIIGMS SoAlS [-F 9[qe; ySnoyiy
Juswusiie pue ‘Suruonyisod ‘Surgoed Ul SUOTIRLIBA UJIM POIOIS

ST p109a1 B moy 9exisny[l sojdwexe ‘A[feur] ‘odA} yoesa 10j uoalsd
aJe SUOTIAIIOSOp Po[IBISpP ‘9[qe] oY)} SUIMO[[04 ‘Sod£} BIjEp UOWIWIOD
‘erduuts oy} ‘eousiajed omb 10} ‘seziewwins -7 9[qe], "Arowaw

ur perojs age sedA} eiep TIGAD Yl MOy SoqrIdsep xrpuadde sty

AJoway ur uonejuassaadoy eleq

=

Table E-1. Data Representation in Memory

Unpacked Packed
Type Size Alignment Alignment
Integer 8 bytes Byte Byte
Character 1 byte Byte Bit
Boolean 1 bit Right-justified Bit
in a byte
Ordinal As needed for Right-justified Bit if = 57
components in a byte components;
byte if > 57
components
Subrange As needed for Right-justified Bit if = 57
components in a byte components;
byte if > 57
components
Real 8 bytes Byte Byte
Cell Byte Byte Byte
Fixed 6 bytes Byte Byte
pointer
Fixed 4 bytes Byte Byte
relative
pointer
String 1 byte for each Byte Byte
character
Array/ Depends on Byte Components
Record type of are unaligned
components
Set As needed for Right-justified Bit if = 57
components in a byte components;
byte if > 57
components
E-2 CYBIL Language Definition Revision F

¢- uoneuesaidsy ejeq J uorstasy

T
ST ANYL I0] pesn anfea ay} ‘0 ST FSTVJ I0J Pasn an[ea [BUISUL SY,

"pousife-jiq ST pue j1q | PeJedO[E

st od£1 ueorooq peyded y ‘poudi[e-914q SI pue 93Aq [pajedo[[e ST adA)
upa[00q poydedun ue ‘9InioNIis B UTYIM 'PIOM B Ul paymsni-yysL
pue pousli[e-934q ST I '934q [PIIBIO[[E SI S[qELIBA UBS[00(Y

uea[ooyg

"peudife-11q SI odA} IejoBaByd poyoed e ‘peudi[e-934q st 9dLy
JejoeIRy? peydedun UB ‘9INONIIS B UIYIA PIOM B JOo 914q jsowjysua
oy} uo pousr[e ST pue S}Iq § PoIeOO[[e SI [qBLIBA I9JIBIBYD Y

sIojoBIBY))

‘poypedun 10 payoed

ST 9INJoNI)S Y} I9YjeyM Jo ssa[paedel enij SI SIYj} ‘AIepunoq 3)4q ®
ue peuln® g1 einjonme v urglma jusucdmeos edfi-zefejur uy Arzpuncg
piom B uo pauli[e SI pue S}Iq $9 PIIBOO[[e SI S[qBLIBA Ia3ajul Uy

saagdaju]

"Arepunoq
914q ® uo paudi[e ST 9dA] 9y} suBeW PaUII[B-93AQq ‘OSIMONI] Arepunoq
piom B uo peusi[e sI od4} oyj sueew paulife-piom sseiyd a9y,

"(8INJONIIS I9UJOUR UTYJIM o

UBD 10) 9INJONI)S IOYJOUR UTYIIM J[OSIT ST yorym odAy jeyy jo jusuodurod
' 0] A[uo sorjdde uorjdriosep oyj ‘esmmaeyl -A[feoyroeds 1By} Sseje)s

11 ‘edf1 uaard ey Jo ofqeraea ® 01 sorjdde uondiidsep aul JT ‘o1dd B

uo paudi[e SI PI0Jel B UTY}IM ST pue adA] 198ejur Jo 9q 0} PaJe[I9P SI
18U} PIeI] B Ing "AIBpUNOq PIOM B UO Pouli[e S JeS9Jul UB SB PaJB[Iap

St jBy; 9[geliEA B ‘aTQIIEYa J0.F {eigTIiBA PICOSI T UIYIIM PISL 2 SB
:

S 2 L= TAT wYH | S Sad-2iudeni v ST LY
yons) aInjonijs B urgiim ;uauodmoo ® Jo adA3 oy} a0 (J[osy Aq spuejs
UYOoTyM) 9[qeLIBA PaJe[dep B Jo adA} sy} ST 91 Ieyjeym uo Surpuadap
JofIp Aew od4} oy} Jo juswuSI[e 9y} ‘Mo[[0] Jey} suorjdiIosep oy} uj

sadAJ, ere@ TIGAD

sad4y, ereQ TIIXD

CYBIL Data Types

Ordinals

An ordinal type is treated as a subrange type from 0 through the
total number of elements minus 1 (that is, 0..n-1 where n represents
the total number of elements in the ordinal). For further information,
refer to the description of subranges.

Subranges

A subrange variable is allocated 8 bytes if its lower bound is
negative. If its lower bound is 0 or positive, it is allocated from 1 to
8 bytes, depending on the value of the upper bound. It is byte-aligned
on the rightmost byte of a word.

Within a structure, an unpacked subrange type is allocated the same
as a subrange variable; however, it need not be aligned on the
rightmost byte of a word although it is byte-aligned.

A packed subrange type is allocated enough memory to hold the
subrange in bits. The exact length can be calculated using the
following formula. This formula assumes the range is given as A.B
(that is, A is the lower bound and B is the upper bound).

If A = 0, LENGTH = CEILING (LOG2 (B+1))

If A < 0, LENGTH = 1 + CEILING (LOG2 (MAX (ABS(A),
B+1)))

A packed subrange type is bit-aligned if it contains 57 or less
components; it is byte-aligned if it contains more than 57 components.

The maximum integer subrange is —7FFFFFFFFFFFFFFF
hexadecimal through 7FFFFFFFFFFFFFFF hexadecimal.

Reals
A real variable is allocated 64 bits and is word-aligned. Within a

structure, a real type is byte-aligned; this is true regardless of
whether the structure is packed or unpacked.

Cells

A cell type is allocated 1 byte and is byte-aligned.

E-4 CYBIL Language Definition Revision F
W] 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | B0464113 F | DATA REPRESENTATION | DRAFT COPY

¢- uonejussaidey BIBQ A uoIsIAey

‘Tewtoopexsy 00000008

0} requnu 914q 9Y) puUB ‘[BWIILPEXIY JJJ0 0} Jequnu juawrSas

9y} ‘[ewIdepexay JO 03 39S SI Jequnu Sull 9y} ‘SSAIPPE [enidia
sse001d € I0J JOI[JE® UMOYS JBULIO] PI02dI 9y} Sursn ‘Spiom I9yjo uf

[(91)00000008 “(9L)4440 ‘(91)40]1 =: SS3IWAAV IVALYIATSSIOOUd :TIN

'SMO[[0] SB pauyep ST juejsuod Iejutod TIN 9YL
juejsuo)) Jurod TIN

‘peyordun 10 poxded SI 9anjonays oy} toyjlaym Jjo ssajpredex

anaj ST sIy) ‘paudi[e-91£q st adf} 1oqurod B ‘9InjdNIIS B UIYIIA PIOm

e ur peymsnf-qyStr ST sejdq g ueyj ssof Jo sjqerrea tegurted y yef oy
uo poudije-piom ST S934q alow J0 § S9IdNo20 ey} o[qerrea Jsjurod

"VAd U3 smo[[o} A[ejerpewr 103dLI10sep Sy, ‘(1898

padrIosap) 199fgo argeadepe aul 107 107d1IdSAD B DUR YA J QU1 SUTRIU0D
az1s oqeidepe ue yjm 109(qo ue 0} 1sjurod Y UOIPRS SIY] UT 199B]
PoqLIdsep ST Y2Tym douanbas e 0} Isjurod e st uorydeoxe s[duis oy} ‘YAd
Y] A[UO SUIBIUOD JZIS PIXI] B YIIm 309[qe um 0} tojulod e ‘L[[Bldusy)

(91)d4d444444Z 7 (91)00000008- = HIDIINI™4VH

‘ST yey} ‘[ewoopexey JJJJJddL YSnoIy) [ewospexsy
00000008~ wol} a3ueiqns oy} se pauyep ST YIDALNI dTVH

‘ON3O3Y

(poults ‘s3Iq Zg) ‘WIDILNI JTVH UIGWNN~ILAG

(poudrsun ‘sjIq ZI) ‘S60v " O HIGWNN™LNIWI3S
(poudisun ‘s}iq §) ‘Si - O ‘YIGWONTONIY

QY¥023Y @3NIVd = SSIHAAY IVNLYIATSSIIOU

CAVTIY TOT g!‘."!MﬂYY!\Y DT QPIYr 2T 'nnrrgr!u,na A QADPMTD or 2pTmm fira TV gooImnp
yemaoy SuiMo[jo] ouj sey 3] poudi[s-o3iq sfemiv si 38Y; (VAJ) Sseippe
[enyaia ssedoxd 934q-g B ST 1ejurod Sy} Jo PIOIJ SSeappe ayJ, ‘0a[qo

9y} aqrIosep 03 pepesu ST jey} uonewiojur Aue snid ‘sjurod 91 YoTUYM

03 399(qo 9y} Jo 934q 9SI1J 9y} JO SSAIPPE 9y} Jo pesodwod st tojured

sI91uIod

sad£L e1eq TIHAD

CYBIL Data Types

Adaptable Pointers

The descriptors for adaptable objects of pointers are byte-aligned and
have the following formats for adaptable strings, arrays, sequences,
user heaps, and records.

® An adaptable string descriptor is a 2-byte field with the following
format:
ADAPTABLE STRING SIZE: 0 .. 85535

This field indicates the length of the string in bytes. The length
can be in the range of 0 through 65,535.

® An adaptable array descriptor is a 12-byte record with the
following format:

ARRAY_DESCRIPTOR = RECORD

ARRAY_SIZE: HALF_INTEGER, (in bits or bytes)
LOWER_BOUND: HALF_INTEGER,

ELEMENT_SIZE: HALF_INTEGER, (in bits or bytes)
RECEND;

When the array is unpacked, the ARRAY_SIZE and ELEMENT
SIZE fields are both in bytes. When the array is packed, they are
both in bits.

E-6 CYBIL Language Definition Revision F
L | 01/22/87 19:58:24 | 02/13/87 08:46:31 l 87/03/25 22.17.32 I 60464113 F | DATA REPRESENTATION I DRAFT COPY

- uonejuasaiday ®1B(Q A UosIasy

“(sed 4y
9[qeldepe 10] peqrIosep A[snorasad se) pI0dal oy} UTUYJIM PIoY
arqeydepe amy Jo 103driosep a1 st 10dirasap piodal ajgeidepe uy

's9)Aq Ul aInjonays ayj Jo YSus] WINWIXEW 8y} SIJBIIPUI P[EY SIY,
PYADIINITIIVH 3IZISdVIHTHISN™ ITavLidvay

‘yewrao] Surmof[of
8y) yIm pIey 914g-p B ST J0jdriosep deey Jesn o[qejdepe uy e

‘9ouanbas pexiy B 09 Isjurod B JI0J SB SWES Y3} ST JBULIOJ SIYJ,

‘gousnbaes

34} Ul UOIJBIO[d[qE[lBA® }X3U 3y} 0} J9SJj0 U ST PI3Y HTIVIIVAV
ayJ, -eouanbas ayj jo doj ayj 03 j8syo ue ST Py LINIT UL

‘ON3O
‘Y3IDILNITAIVH :37GVIIVAY
‘UIDIINITIIVH S LINWIT
£SS34AAVIVNLYIATSSIO0Ud : IONINDIS UILINIOM
Qy023¥ = Y¥3LNIOd 3ION3ND3S

JBULIO] SUIMO[[O] oY} YIIM pIodal
914g-¢1 ® ST J9jurod sI1 YIim 101draosep souenbes srqeidepe uy

»

sed4], ®8Q TIHAD

CYBIL Data Types

Pointers to Sequences

A pointer to a sequence is a 14-byte record with the following format:

SEQUENCE_POINTER = RECORD
POINTER_SEQUENCE: PROCESS_VIRTUAL_ADDRESS,
LIMIT: HALF_INTEGER,
AVAILABLE: HALF_INTEGER,

RECEND;

The LIMIT field is an offset to the top of the sequence. The
AVAILABLE field is an offset to the next available location in the
sequence.

This format is the same as for a pointer to an adaptable sequence.

Pointers to Bound Variant Records

A pointer to a bound variant record consists of a 6-byte PVA, followed
by a 4-byte size descriptor with the following format:

BOUND_VARIANT_RECORD_SIZE: HALF_INTEGER;

E-8 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.82 | 60464113 F | DATA REPRESENTATION | DRAFT COPY

§-q uonejuasaidey BIB(Q J uoistasy

*104I9
ue se 19jutod eanpecoad TIN ® ySnomyy [[e2 B so[puey jeyj sanpadord
AIeaql] SwWI}-UOIINISXe ue 03 sjurod J03drrdsep sunpadoxd rIIN 9Yj SI9Yym

*[1IN“¥OLdIN¥IS3d
T3UNAII0Ud T TINTOL HIINIOA] =° HIINIOd J0dd :¥3INIOd J0Hd 1IN

SMO[[0] SB paursp ST juejsuod Iajurod ampadoad

TIN 9YJ, 'syiom sAeme uostredwrod Jtojurod 1Y} SeInsue SIYJ,

‘pedIsur pesn st 1ojuiod einpadsoxd TTIN U} ‘9I0Jjo4oy} ‘PUE YUI[OTJEIS ©
axmbal jou S0P JMPOW B JO [9AS] JSOWLIIINO I} JB PAIR[I9p ainpadoid
V Yqur] oies ay3 st 1eurod sanpadoad 9y} Ul POl PuUOISS IYJ,

‘[ENUBWL 90USISJ9d SIBMPIBY 91BIS [BNjlA 9y} JO][SWN[OA

0} 1901 ‘uorioes 3urpulq oY) pue siajurod esey} JNOQe UOTJBULIOFUL
Jsyjang Jo4 -I1ojutod uorjoes 3urpurq B pue Jojurod aseq Spod B

'SP} 0Mm] JO SISISU0D J0jdiIosep STy, "uorjdes Suipulq oy} ur 1ojdriosap
sanpadoid sy} 03 I1sjurod e ST I9qurod aampedoid 9y} UL PISL} JSILY OY,

e EREE]
‘SS3uaaY T IVALYIATSSIIONd TINTHO INITIILVLS
SS34aavTIVALYIATSSIO0Nd :¥OLdI¥ISIA~IUNAII0Ud 0L ¥ILINIOd
Qy¥0234¥ = Y¥IINIOd J0ud

‘Jeuw1o]
Suimof[o] oy} YIIM pIodal 914q-g © ST aanpesoxd e 01 t9jured

sad4y, B1e(Q TIGXD

CYBIL Data Types

Relative Pointers
A relative pointer is a 4-byte field with the following format:

RELATIVE_ADDRESS = 0 .. OFFFFFFFF(16);

This field gives the byte offset of the object field from the start of the
parent variable. This relative address can be in the range of 0
through OFFFFFFFF hexadecimal.

A relative pointer is byte-aligned.

Adaptable Relative Pointers

A relative pointer to an adaptable type object is the 4-byte relative
address plus a descriptor for the adaptable object. This descriptor
immediately follows the relative address field. Descriptors for
adaptable relative pointer types have the same alignment and formats
as described previously under Adaptable Pointers.

Relative Pointers to Sequences

A relative pointer to a sequence is a 12-byte record with the following
format:

RELATIVE_POINTER_TO_SEQUENCE = RECORD
RELATIVE_POINTER: RELATIVE_ADDRESS,
LIMIT: HALF_INTEGER,

AVAILABLE: HALF_INTEGER,

RECEND;

This format is the same for both fixed and adaptable sequences.

Relative Pointers to Bound Variant Records

A relative pointer to a bound variant record is the 4-byte relative
address followed by a 4-byte size descriptor with the following format:

BOUND_VARIANT_RECORD_SIZE: HALF_INTEGER;

E-10 CYBIL Language Definition Revision F
W l 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | DATA REPRESENTATION | DRAFT COPY

I1-3 uonwjmesadey ejeq A uorstasy

uoTyBIR[IOp PI0DAI ayy

ur (eseq O 19SHO EANDITY) I19jewerted juswudi[e sy} ur payjreds
aseq 9yj} Jo opdrinur B ST Spaodalx peul[e jo ABIIB UB JO 9ZIS Y],

([ewrspexay JAAIAdAL ST 18Y3) juew3es
® JO 9Z[S 9Yj} SI ABIJB UE JO 9ZIS WNWIXBUW 9Y] ‘I9ASMOY ‘AIoursul

Jo Ajiiqeqrieae ayj Aq A[uo pajrwri] SI AelIe UB JO oZ[S 9y} ‘[BIsUa3d Ul

'$934q Jo Joqunu [erdojur ue s91dnodo |1 ‘paudie-914q

ST Aeaae ayj Jo odAy jueuodwrod ayj J 'S}Iq LG UeY) I83re| ST ABIIB 9Y)
]I 1o ‘Arepunoq 934q B UO }IBIS A[[BULIOU PINOM SjuswW[e jueuodurod sjt
Jo adAy ayy Jt Arepunoq 914q e uo paudife ST J[es)l Aelie ayJ, ‘poulie
10U 3JEB SJUSWIa[d SII Jng A[Je[IWIIS pojedo[[e ST odA} Aeire peyoed y

‘pouli[e SABm[B 9JB SJUSWIA[O SII PUB I[qBLIBA ABIIE UB
Se swesS sy} pajedo[[e st adL} Aeire poypedun ue ‘aInjonals B UIYIIM

Yo 8y3 uo

pouli[e-piom ST o[qeliBA ABiIe oy, "odA3 jueucdurod 38Y) 0} SUIPICIIE
JUsWIa[e YIBd I0J pajeoo[[e doeds yjm odL) jusuocdwod sAfeile

SUj JO SJUSWSe JO ISI[SnonSIjuod e Se pojeadl SI S[(BLIBA KBIIE UY

sAeaay

‘GEG‘GY SI SULIJS B UL POMO[[e SI9J0BIRYD JO JSQWUNU WNUWIXEUW Y,

‘posordun 16 pexoed SI 94NJONIS SYj JIsUjeym JO sssjpiedsd

anuj st sIy) ‘peusdife-914q ST ad4] 3ulIls B ‘9InjonJdis B UTYIIM

1814 9Yj uo

pausi[e-piom ST 91 ‘se34q g UBYY SSI] SI 91 J| "YJO] 9y} U0 poudi[e-piom
ST 91 ‘sajdq erow I0 § So1dnodo a[gerIea ayj JI ‘SuLIls Y} UI SI9IIBIBYD
ale oJoy} Se $914q JO JOqUINU SWBS 9y} P9IBIO[[e SI d[qelieA Bulns v

ssuLng

sed£], ereq TIXD

CYBIL Data Types

Records

A record variable is treated as a contiguous list of the record fields
and is allocated space according to the types of those individual fields.
If it occupies more than one word, it is word-aligned on the left in
the first word; a record that occupies less than one word is
word-aligned on the right.

An unpacked record type is allocated space the same as a record
variable and its fields are aligned. The record itself is aligned on the
boundary of the maximum alignment of any of its fields. For example,
if one field has an alignment of 0 MOD 8! and another field has an
alignment of 0 MOD 16, the alignment with the larger base (0 MOD
16) is applied to the entire record; it is aligned on an even word
boundary.

A packed record type is allocated similarly but its fields are not
aligned. Like an unpacked record type, the record itself is aligned on
the maximum alignment of its fields. However, if the record is more
than 57 bits, it must be byte-aligned at least.

The length of a packed record depends on the length and alignment of
its fields. The way a packed record is used (for example, as a record
variable by itself, as a field in a larger record, or as an element of an
array) does not affect how it is represented in memory. Thus, all
occurrences of a packed record have the same length and alignment
regardless of how it is used.

1. Record alignment parameters are described under Records in chapter 4.

E-12 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 08:46:31 | 87/03/26 22.17.32 | 60464113 F | DATA REPRESENTATION | DRAFT COPY

e1- uopejuesaidey w8 Jd uorsiAdy

‘pouLIepun SI SIIQ POSNUN 9Y] JO JUIIUOCD JYJ, “ISII] SOUWI0D ISAYIYM
‘PI} 1XOU 8} 03 10 AIepunoq 934q jxeu ayj 0} puedxe UBD SJUSWI[D
LG UBY} 3I0W SUTBJUOD JBY}]89S Y PI0IBI 9YJ JO P[OY pesn Jxsu

ayg o1 puedxe ued 91 JT L[uo Inqg ‘syiq LG 03 dn puedxe ueo sjuaUIa]d
LG uey} ss9] surejuod jeyy adL] jes Y 'syq gg 01 dn pusdxe ued sp[ey
ad£y e3ueiqns pue ‘[BUIPIO ‘UBS[00q ‘I8)0BIBY)) 'P[Y IX8U ayj 03 dn
a[qrssod se S3Iq AUBUL SB 9pPN[oUl 01 paSte[us 9q UBd p[ol d[qepuedxe
9y} ‘(pa0%9a1 Sy} JO pues 9Yj 03 I0) PJI0JAI 9Y) JO P[BI] Pesn IXou

oY} 0} puelxa jey) S}Iq pasnun Aq PaMo[[o] SI P[AY 9y} JT 1By} SueowW
STy, ‘pepuedxe oq ued Pl jBY} ‘Iojowered o9Jua9Jsl B 10 Jdjurod

B JO j09fqns ayj j0u ST P[aY 1By} pue od4) 18s 10 ‘aduriqns ‘[eUIpPIO
‘uee[00q ‘IejorIBYD B ST PJ0dal peydedun Jo pexded B Ul Py B JI

's914q Jo Jequinu [BISejur
ue s91dnodo 31 ‘peuldi[e-93Aq ST PIOJSI B J["WISY} U0 SUOIOLIJSOL
juewmusI[e oy} 03 109[qns ‘A[SAIINI9SUCD PIJBIO[[® I8 SP[SI] PIOII Y],

Pa0dad 9]} Ul SPIS} 9Uj [[B WOJ] 9SB(WNWIXBW 9} U0 So}E] pPa0Isd
Yl pGIISH‘B 0OS[e aJte sp[or} J9yjo JI ‘I9AOMOY “19j0wreIed i).lISIlIuBH’B
9y} ur pag;aads 9SEQ 94} U0 S8E] PJI0d3aI IJUI Y] ‘peuﬁge ST PI0939al
B JO PIe1] IS4 29U} J] "pojedo[[e BUISq pIos 33U} UIYIIM anjea }9sjjo
oyy £gsyyes op sydwieyge 81y TIGAD ‘(9Seq QOW 19SHO QHANDITY)

Jaamered ’“’IQI]’II‘IﬁTIP f—“l"‘l anv'nm') nIiNdal B UTITM nmn 7 TT

aTyllE=lbl Ul al il paiaas Ta

sadAy, vyeq TIXD

CYBIL Data Types

Sets

A set is represented by enough contiguous bits to hold the total
number of elements in the set’s type. The leftmost bit corresponds to
the first element of the set’s type, the next bit corresponds to the
second element, and so on.

A set variable is allocated a field of enough bytes to contain all the
set’s elements. If the field fits in a word, it is word-aligned on the
right; otherwise, it is word-aligned on the left.

Within a structure, an unpacked set type is allocated the same as a
set variable. The field allocated is byte-aligned.

A packed set type that contains more than 57 elements is treated as
an unpacked set type. A packed set type that contains 57 or less
elements is allocated a field with the number of bits (rather than
bytes) necessary to hold the elements of the set. This field is
bit-aligned.

When the field is allocated in bytes rather than bits, the field may be
larger than is necessary to hold the total number of elements in the
base type of the set. In this case, the elements are right-justified in
the field and unused bits to the left of the elements are set to 0.

The maximum number of elements allowed in a set is 32,767.

E-14 CYBIL Language Definition Revision F
W | 01/22/87 18:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | DATA REPRESENTATION ’ DRAFT COPY

gI-g uonejueseidey weq d uorsiaey

*ON3O3H
‘30vdS 1Yy3uvTvLiva
‘(91)d444444440° "0 $INIT QUYMHOL
‘{91)444444446°°0 DINIT QuvmMiOvE
(91)d444444440° "0 NI I3U47QUYMEOL
“(91)44444442°°0 *371S
‘(a3sn ‘IIvAY) 1SNLYLS™MI07d

qy0J3Y¥ d3NJIvd = dvaH
:jeurio} SUImo[[o} 8y} eaey yjoq desy jnejep 9yj3 pue deay J1asn Iy,

‘ueds yoea uo (1ajewrered JO Joquiny

dHAY 943 Aq peyeds SB) junod uojjaded (oee 10 ISPEsy 93AG-91

' ppe ‘uay], ‘sj[nsel oyj Surppe pue ueds yoes uo uorjouny HZIS#

ay3 Sursn £q paainbai e3e10)S JO JUNOWE [E€J0] Y} SUIULIIISP UBD NOX
‘ueds yoee Joj uorjeuwrioful Sur[joqjuod urelssd snid ‘desy oy} pade[oap
nok uaym perroads nod (2d4£) yoes JOo SSOUSIINII0 JO ISqUINU 9Y}) sueds
ay} proy 03 sdeds afe1o)s ySnoua pajedo[[e ST deay paIe[odp-Iosn y

sdeay

e EWEL |
‘30vdS :vIuv viva
Qay¥023y = 3IININD3S

‘Jewioj Sursmo[[0o} 9y} sey dusnbes y

TT™SAT = Errrmamey T Ao TTATA TIN IINTANIINT rrrey e arm Srrran Ay

D+lll§v.l U\1+ J)ul.lltlﬁ tluﬁ unua hlUDv wu uul..ivuhl.* Hblb# v\.l-) FAEDRE L3y
paimbaa aSe10js Jo JuUNOWE [BJ0} 9} SUIWLISISP UBD NOX ‘sdousnbes ayjy
paze[osp nok uoym peyroeds nok (9dA] Yoed JO SPOUSLINDIIO JO ISqUINU
ay}) sueds ayj pioy o3 92eds ofeio}s ySnous pejedo[[e SI sdusnbes y

saouanbag

sed£], 1R TIAD

Examples

Examples

The following examples show how a record would look in memory in
various formats: first unpacked, then packed, packed with some
positioning changes, and finally aligned. The memory shown here is in
8-byte words, but because bytes can be addressed individually, it’s
possible the record could start at any byte (if it is not aligned
otherwise).

The unpacked record is:

TYPE

table = record
name: string(7),
file: (bi, di, 1g, pr),
number_of_accesses: integer,
users: 0 .. 100,
ptr_iotype: “iotype,
b: bocilean,

recend;

This record would appear in memory as follows (slashes indicate
unused memory):

FILE
Byte 0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byteg
NAME 7/
Character] CharmerJ Character Churacterl Character l Character | Character //
NUMBER_OF _ACCESSES

| | | l

/lthﬁn . . P'I.R_'OTYPE /// =
7 D R M AR N B 7 L
NO1: 86/07/10
The packed record is:
TYPE
table = packed record
name: string(7),
file: (bi, di, 1g, pr),
number_of_accesses: integer,
users: 0 .. 100,
ptr_iotype: “iotype,
b: bootean,
recend;
E-16 CYBIL Language Definition Revision F

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | DATA REPRESENTATION | DRAET COPY

LT-H uomBlussaxdoy Bleq J uorsiasy

01710798 “EON

7 I I | | | g|syasn

/) 3dALOI YLd

| | | | |

$3SS300V” 40 HIEWNN ;
// jayeseyd Immqg l.mue.leln l:suuaqg 483082840 | 1e3dBIRYD l 4apoeseyd
INVYN

A

L 3A l gallg oGoIAg poIAg goilg zZalkg | alkg (a1Ag
ERIE!

((£10wowr pesnun
9JBOTPUI SOYSEB[S) SMO[[0] SB Arowew ul Jeadde pinom pIodal sIy],

{puadad
‘adAiol , :adKkjot~Jaid
‘uealooq :q
‘ool c° n isJdasn

‘Jabajul :S8SSaITET SO Jaqunu
‘(ud ‘6L “LP ‘LQ) 81t
‘(L)BuLdls :aweu
pJodad paxoed = 3|qe}
IdAL

:9oeds aYyj] Jo 9ST JUSIIIJe
ajow ayew 03 A[IY31[S POSUBIIBAI MOU ST ‘SMO[[O] SB ‘PI0J3I Y,

01/10/98 *CON

7 L

///A 8 | I 3au.o||‘uu | | %suasn

T T T]

' $3SS3I00V 40 HISWAN

/ / eeEy) | 1a19eieyD) | saroeseyd I;aumeqo I 1aseseyy I JaoRIey)
/ L3 AT R

ia1oeiRyD)

I(_ aMa‘ galg GaaAg p aiAg ¢ 91Ag z 914g | a14g 0 a1Ag
ERE]

((A1owewr pasnun
9JBIIPUL SOYSEB[S) SMO[[0] se Arowew ur Jeadde prnom piodar styg,

sopdmexy

Examples

The following record declares the pointer field to be aligned at byte
zero (the first byte) of a word:

TYPE
table = packed record
name: string(7),
file: (bi, di, ig, pr),
number_of_accesses: integer,

users: 0 .. 100,

b: bootlean,

ptr_iotype: ALIGNED [0 MOD 8] “iotype,
recend;

This record would appear in memory as follows (slashes indicate
unused memory):

FILE
Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 YByte 7

NAME Y
Character | Character | Character l Chavacterl Chataeterl Character | Character //

NUMBER_OF_ACCESSES

=5
| ' PTR_I;)TYPE | | ///A% /

INO4: 86/07/10

E-18 CYBIL Language Definition Revision F
L I 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | DATA REPRESENTATION ' DRAFT COPY

1-d jueuruosiAuy Swnl-uny TIGXO oYL Jd uoistaey

80/80/98 YIS

| @inpasosd { “'S3|qRIRA | ainpascid “'58|qRLBA | ainpasead us of pug
oy anewoine 0} anpwone 104 { |'saiqeuea onewoine
swey yaerg s,| eJnpevosg aweyy youlg s,| ainpadsesy swel Yoeig s,| ainpasoid
¢ s4npaaocid “'SR|EIBA
104 apewene
aweyy omg 5,2 ainpesciy
solo|dwod pajies st suibaq

Z osnpasolg Z anpasord | 84npadsosd

"pesea[al ST aanpadoad oY) 10J

awel] Yoels ay} ‘sejerdurod ampadsord 9} USYA\ UOTIBWIICIUT jusuriiad
I9Y}0 pue S9[qELIBA JIjeWlojne [BD0] Seanpadosd ayj proy o3 3oejs

9Yj} Ul PaIIBIO[[E ST SWRBI] HOBIS B PO[[BD BaIe U® ‘pa[[ed ST ainpsadoid
' owr} yoey -9j9[dwiod uayj pue pofjed ose weidord oy} UTYIm
seanpadoad se sjoeIiuod pur spuedxs FIBIS SUJ, "I UIIM DPIIBIIOSSE
3}oels € pofjed Arowew Jo eole ue sey weiSoxd Sunnosxs L1eaq

‘joBIS 9YJ SI SO[NJ 9say] SUIMO[[O] PeIBIO[[B @q 0] AIoWIawI

SMO[[E 1By} WSTUBYISW aYJ, "}l JSO[OUS j0U Op Jey} sainpsdcoid Jo
‘8anpadoad (Surso[ous) 1IN0 oy} JO SO[BLIBA Y} SSAIIE 03 I[qe °9q
jsnw aInpadoad JIsYjour 9pISUl SI By} aanpedord Aue ‘sopna adods ayj
AJs1yes 03 ‘uoyIppe uj ‘seanpadocid 9y} JO UOIINILXS JNOYySnoay) S[qeIIeA
9y} JO AjraSejur 9y} urejurew o} ojesedss jdey o jSnW I[YBLIBA

9WIBS 3] JO 90USIINII0 (DB 10 S[qBLIBA YOBO I0] Pajedo[[e adeds oy,

"K[pereedal por[eo

ST SUIINOJI IAISINIAI B JI SA[QBLIBA JWEBS oY) JO SOOUSILINOI0 [BISASS I0J
10 ‘SwWr) dWES 8y} JB S9INPeloid [BI9A9S WIOI] SO[qBLIBA IO0] PaJBIO[[E
aq pIno2 soeds ‘snyJ, ‘JIoSII [[B0 01 H20[q B SMO[[® TIgAD ‘eanpedoxd
I0 UOTJOUN] 9AISINOSI B JO 9SBO 9Y} Ul ‘pUB ISYJ0 UOBD UTYIIM

pajseu aq 01 SYI0[q SMO[[® TIGAD Ing 'Iesul] SABM[E SBM DPOIIXd

PUB PaIdjUd BIdM SYIO0[q YOTUm ur soudnbes oy Jr ojdwrs aq pnom
SIYJ, "¥90[q 2Y] WOI] IPeW SI JIX0 UB Uaym paseo[al ST aoeds ‘paiajus
ST PaJe[osp SI 9[qBLIBA B UOIUMm UT JI0[q 9Y]} Usym pajedo[[e SI soedg

WISTUBYII dwWea Ijoels
"UOTJBOO[[B J[(BLIBA PUEB ‘SIOUDISJAI

[euiajxa ‘pessed arv sisjewrered moy ‘uornoexa Surinp sjuswudisse
19]SI801 ‘WSTUBYIOW JWBI] FIBlsS oY) soqLIosep xrpuadde styyg,

g JUOWIUOJIIAUY SWLL-uny TIFAD YL

-

Stack Frame Mechanism

In addition, each time a new procedure is called, the environment of
the calling procedure is saved in a part of the stack frame called the
save area (or the stack frame save area). This save area contains all
the information necessary to resume execution of the calling procedure
when the called procedure completes.

Procedure 1 Procedure 2 Procedure 2
begins is called completes
Procsdure 2's \ Stack frame
automatic for
variables,... procedure 2
Save area
for
procedure 1 Stack frame
————————— for
Procedure 1's Stack frame Procedure 1's procedure 1 Procedure 1's Stack frame
automatic for sutomatic automatic for
variables,... procedure 1 variables,... variables,... procedure 1

STK2: 86/08/08

Various pointers in the stack frames link calling and called
procedures, enclosed and enclosing procedures, the current stack frame
and the next space available. (These pointers are controlled by the

system, not the program.)

The following example illustrates the process. Consider program A
which has two sets of nested procedures: B and C, and D.

Procedure A

Procedure B

Procedure C

Call to procedure D

Call to procedure C

Procedure D

Call to procedure B

PROC1: 86/07/10

F-2 CYBIL Language Definition Revision F
L I 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 l 60464113 F ’ RUN-TIME ENVIRONMENT | DRAFT COPY

g-d ‘uewmonATY dWl-uny TIGXD SYL Jd uostaey

11/20/98 830¥d

=TT
iouiod ease V 104 Swiedy yoeyg I Hul)
aaes snoiaaid 480 | %W8IS
10 Hulj d1weuiqg]
g 10j sweyy yo}§ |——————
dsa

aoeds 994} IxaN

g a4npasoud o} jjed

g 9anpsooad 10] polBeIDd

ST 9WeBI] YOBIS M3U B PUB 9WRJ] JOBIS S, Ul pOABS SI (U0 OS pue
SI91ST80d JO SJUIIU0D 9Y}) JUSUIUCIIAUS S, ‘Pa[[Bd SI g einpedoad Usym
01/20/98 *vo0ud

J9jutod awedy
joels juaing

v 410j sweuy yoelsg
Jayutod
2oeds siweuAq

aoeds 234y)}xapN

S}de)S Y 2.4npancid

‘(eWRy YoBIS JUSIIND Oy} JO

doj ayy) 3oels oy} ut 9deds sqelTRABR 1X9U oy} 0} sjurod (JS() Ioturod
aords oTwRUAD B puR swWRJ] Ie]s 9yj jo Suruurdeq ayj 03 sjurod
(ASD) owel] HoB}S JUSIND sYj pej[ed Jejurcd ¥ 'pejeeis st y weiSoad
Ul S9[qRLIBA OTWEBUAP 8y} I0] sweiJ }oe)s B ‘surdeq y weiSoxd uayp

‘sejeiduios sanpescid o

peses[al pue pa[[ed ST ainpedoad B Usym PoIBIO[[R ate (Sdanpadoad

9} UIYJIM SI[qBLIBA JTjeulojne [BJ0] oY}) So[qelieA JwWeui(‘wesdoid
ayj Jo puse 9yj [pun surewad pue werdoid oy} jo Juruurdeq oYy e
pejeOO[[e ST SO[qELIBA O13BlS oY} I0] AIOWRl uornoexe weidord Surinp
SOWIT] JUSISIIIP 1B Pa1BIo[[e oJB S2Jnpadod 9soyl I0] SIIBLIBA 9U],

L

3
€l
[}}

£l
4
-

WSTUBYIAY SWBl] JOBIG

Stack Frame Mechanism

A pointer called a static link (SL) is created that points back to the
stack frame for A. A static link always points to the stack frame of
the procedure containing the called procedure (and, in this case, A
contains B) if the called procedure is an internal procedure of the
calling procedure; otherwise, it is meaningless. The static link enables
the most recently called procedure to have access to the variables
already declared in the procedures that contain it.

A dynamic link pointer is also created that points to A’s stack frame.
This dynamic pointer is called the previous save area (PSA) pointer,
and it points to the area that was saved (that is, the environment) for
the previous procedure, A. This pointer allows the environment of the
preceding procedure (the calling procedure) to be restored when the
current procedure (the called procedure) completes.

The current stack frame pointer is updated automatically to the start
of the current stack frame (the stack frame for procedure B) and the
dynamic space pointer moves to the next available space in the stack.

The call to procedure C results in a similar structure. Again the
static and dynamic links point to the previous stack frames.

Call to procedure C

DSP
[————— Stack frame for C
| csF PSA
SL I oL (] z r3 -
i r'———— Stack 1rame 10 O
I
s {_ - PSA
| Stack frame for A
I
PROCC: 86/07/10
|
|
\
\
F-4 CYBIL Language Definition Revision F |
\
\

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60484113 F | RUN-TIME ENVIRONMENT | DRAFT COPY

g-d ‘uswUoIAUY dw-uny TIGAD oYL g uorstay

S1/80/98 u¥nd3d

~ 7
— awedy HOEYS }sag | 24npaooad 0} jjeds 3said
- |
| eweuy yoeys puossg I ainpasoid 0} jjes puoseg
.
— aweJ) joels paujl b ainpasoud o) |jed payl
*
i . -

e awed} oels |euiq — 24npasoad o) |jes |euiq

"pare[durod sanpadoad oyj 03 [[BI [BIJIUL SYJ [IJUN SNUIIUOI P[NOM STY],
"pPaI0)sel 9q pInom swety Surpedsdid 9Y} UL POABS JUSWIUOIIAUS oY} pue
yoels 9y} woa] Jeaddesip pnom swel] 3oeys s ‘pejedwod sanpedoid
9U) JO UOIJBIS)I UYoBe Se ‘usy], 'piemyjorq syul] ojeridordde oyl yym
‘aanpadoxd 9y} 0} [[BO YOBS I0] Pojeatd 9q P[NOM SWeJ] Hoels ojeredess
Y YI0m PINOM 2Inpadord SAISINJAI B MOy smoys o[dwrexs SryJ,

01/20/98 -0204d

[T
—] ¥ 10} swely joelg {
vSd _
-~ I
q 10§ swesy e} |————1
vsd | lis
| — ' I
5 10y swesy yoeyg b———_1J =1s
vSd 489 |
g o) swesy yoe)§ |]
dsda

g 24npesocad o} ||ed

meiBc1d 2un 10 roasY AsoigAngs

bttt L2 A S S St e

9y} ‘V ¥O0[q UI SO[¢BIIBA SS300B A[UC UBD]I ‘@I0Jaioy) ‘Y J20[q

ur A[uo ‘) 10 g SYIO[q Ul POUrRIU0d j0u SI (9anpsedoid asneoaq St
STYJ, "V I0] 9WRI] {oB)$S 9y} 0] }orq sjurod HUI[d13eIS 9} Ing ‘oweiy
yorss snoraead ayj o3 syurod [{1Is Hui[osTweudp oyj, e8ueyd siejurod
o] Jo s199[qo 9yl ‘g aanpsdoid sifeo) 9inpedold USYM ‘10AOMON

WISIUBYIS SWel] ¥oB8IS

Stack Frame Mechanism

The remainder of this section gives a more detailed description of the

format and contents of a stack frame.

The stack frame always consists of at least two parts: a fixed-size part
and a variable-size part. The fixed-size part contains all the data
whose size is known at compilation time and it includes the automatic
variables for the procedure. The variable-size part contains all the
adaptable structures whose sizes can be determined only at execution
time. In addition, when one procedure calls another, the environment
of the first is saved in its stack frame save area. For example, the

stack initially appears as follows.

Initial Stack

DSP

Adaptable Part

Stack Frame

Fixed—Size Part

CSF

for
First Procedure

STK3: 86/08/15

After a call is made to a second procedure, the stack contains two

frames as shown below.

Stack After a Call

DSP
Adaptable Part
Fixed—Size Part
CSF
Save Area
PSA———

Adaptable Part

Fixed—Size Part

STK4: 86/08/15

F-6 CYBIL Language Definition

W | 01/22/87 19:59:24 | 02/13/87 08:46:31 | 87/03/25 22.17.32 | 60464113 F | RUN-TIME ENVIRONMENT | DRAFT COPY

Second Procedure

Stack Frame
for
First Procedure

Revision F

4-d ueWNOIAUY SuIL-uny TIGXD oYL 4 uorstasy

“JX9Uu PISSMISIP ST SBaJe 3sdYj} JO Yoy
S1/8 CINDILS

(Lv)
480

Butjpuey uonpuod
104 paAlasay

(pepasu 4y
ealy 9Aeg }insay uorjoung

ealy Aejdsig

sejqeldea Jjewony
siojoweied snjeA—paxij JOYS
Med ozig paxiy

si1o)oweled snjea—paxiy
Buoj pue siojoweled snjea
ajqeydepe 0} si9luiog
agedsyiom pue sioldisasaqg

asedsyiom 1s1| Jojaweded

ealy MOjjIaAQ J9)si16ay

(aed azis_paxiy ay} ut
WwoOoJ4 ou St 949y} §1) Si9jdwW
Hed 2z1§-3IquEA —eJsed anjea—psaxiy buo| pue
siejsweled snjea sjqejdepy v

eaay ams? eoly aAeg aweld Hoels

f {

\ dsa

‘jeurio} SUIMO[[0] 9y} SBY OWRI] ¥oBIS YV

‘aanpadoad jueliInd oy} JoJ jou ‘pe[[ed ussq
2 ATUO S1STXD BOJR SARS SWIRII WIRIS AUl

WSIUBYISY SWBI] HIBIS

Stack Frame Mechanism

Stack Frame Save Area

The hardware call instruction saves a designated set of registers in
the save area, which can be thought of as the top of the rest of the
stack frame of the procedure that issued the call. The stack frame of
the called procedure is then built above the save area of the calling
procedure.

The save area can be broken down into two areas: the minimum save
area and the maximum save area.

Byte (hex) Wordidec)
0 P Register 0
- AO Register
gla'c'em"m 8 {Dynamic Space Pointer) 1
Area 10 Frame Description | A1 Register 2
(Current Stack Frame Pointer)
User Mask 1 A2 Register
18 {Previous Save Area Pointer] |3
A3 Register
20 (Binding Section Pointer) 4
A4 Register
28 {Argument Pointer) 5
Maximum
Save 30 A5 Register 6
Area
38 A6 Register 7
40 A7 Register 8
X % : ~
80{00————— 15| AF Register 16
88 X0 Register 17
T : ¥
100 XF Register 32
00 63

'STKSAV: 86/08/08

The minimum save area contains the P, A0, Al, and A2 registers, the
stack frame descriptor, and the user mask. The maximum save area
contains everything in the minimum save area plus, optionally,
registers A3 through AF and registers X0 through XF. The contents
of these registers is given later in this section. The CYBIL System
Interface manual contains additional information on the stack frame
save area.

F-8 CYBIL Language Definition Revision F
W] 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | RUN-TIME ENVIRONMENT | DRAFT COPY

6-d IuewUOIAUY owil-uny TIIXD °UL A uoistasy

80/80/98 -SIOYLS

(Asessaoau 1) Jajulod j}s1j juswnbay

bojosd
ay} Aq dn jeg - ainpasoid
(L—U) 94| JuouINd JO 4§D

aanpasoud
(Z-U) [2A9] JUaLINd §O 48D

L

L

ease Aejdsip .

s,@anpasold Buijjes
sy} wouy paidon ainpssoid

L |9A®] Jusund j0 4S9

ainpasold
0 [9A9] judaind jO0 4S9

‘Jeur1o] Surmor[o] 9y} sey eaie Aepdsip ayJ,

‘seaanpeooad 3urpadeld syj JO SS[QBLIBA S} SS929E 03

arnpedoad jusiind oyj3 10y arqrssod 91 oyew saojurod asoy], aanpoasosd
JUSLIND JY3} UTRIUOd JBY] SoINpsdosd oy} [[B JO SOWRI] Yoejs ayj

0} yovq saejured surejucs eete Aevidsip oy} ‘peucijusw A[snorasid sy

(eaqe Le[dsip ayj SuUIMO[[0] PoqIIISep OS[B) BJEp 2Inpadold pajIossy e
(#0[3q [rEjep
ul umoys sT eele Ae[dsip ayj) seunpedoid Surpsvsrd jo sojqeriea

9Uj SS800B 0] AIRSSA00U UOTBRULIONUT 9yj Sururejuod eaie Aejdsip v e

11X [BIO[UOU B SBY UOT}ouny
B UOUYM BOJB 9ABS }[NSSJ UOTJOUNJ dY} SB Pasn aq 0} PIOM ¥ e

SuI[puBY UOIIPU0D 10] POy PeZI[EIIUI ‘934q-g UV e

‘SUTBIUOD SWIBI] YoBJS oY) Jo jaed ozIS-pexyy oy,

Wed 9ZIS-PaXId

WSTUBYIA] oWel] JOvIS

Stack Frame Mechanism

Each display area entry is a 6-byte pointer (a current stack frame
pointer) that is right-justified in its display word. The total size of the
display for a specific procedure is based on that procedure’s nesting
level. The prolog! will save the static link (if it was passed in register
Ab) only if the procedure was nested. The proleg will also save the
parameter list pointer (if it was passed in register A4) only if the
procedure contains at least one locally defined procedure.

Automatic variables or value parameters may be declared so that all
bounds and size information is known at compilation time. In this
case, the fixed amount of storage that is required for the variable is
allocated from the fixed bound part of the automatic stack.

Adaptable parameters may be declared so that some bounds and size
information is not known at compilation time. In this case, a type
descriptor must be allocated for the type, containing the result of the
calculation of all variable bounds and a variable descriptor that can
locate the base address of the variable bound part of the automatic
stack. These descriptors are allocated in the fixed bound part of the
automatic stack. In addition, a workspace may be required in the
fixed-size part to hold intermediate results for execution-time
descriptor calculations.

1. A prolog is a set of one or more instructions that is ezecuted at the beginning of
every procedure and function to set up the registers properly for that procedure or
function.

F-10 CYBIL Language Definition Revision F
L I 01/22/87 19:59:24 I 02/13/87 09:46:31 | 87/03/25 22.17.32 |60464113 F | RUN-TIME ENVIRONMENT | DRAFT COPY

[1-d 7uewuonAuy dwiL-uny TIGAD oYL 4 uoisiavy

Jred 9z[S-poxXI] Y] Ul Paulejucd aJte

So[qelIBA 959U} 10} S107d1Iosep oy, oW} UOIje[iduwiod j8 pauruLIa}ep 8q
J0UUBY UOIJBULIOJUI 9ZIS PUB SpUnoq osoym sisjowesed anjea s[qeidepe
e 10 98BI0JS SUTBIUOD QWEBI] {OB}S 9y} Jo jaed azIs-s[qelIBA 3],

e 9ZIS-o[qBMEA

‘owr} UoIje[Iduiod 1B POUTWLI9Sp
9q ueo sdedsyIom SIY} JO 9ZIS S, "UOIINIAXe Jurmp psjdwestd
aIe 1By} SI9ISISA1 SIBMPIBY SUTBJUOD BAIE MO[JI9AC I93SISal 9y,

"UOT}09S STY} Ul I9je| UDALS

st szejewered Surssed uo woryeuriofut JoyjIng (£I1essedeu J1 103diiosep
e snid) siojurod 9£q-9 Aq pejusserder sae siejewrered Isyjo [V
onfeA ayj poy 03 peanbax se14q jo IoquInu JSS[[BWS Y} UL SN[BA SIL

u 35i] © d: "G”LSSGMW.; al. e vuibaau 335 SG" {“ o "3{133 I8 Ued;
q 351 °8y3 Ui pej ¥ 43 59344 8 0§ | 4

s§9] S1 Y3Suoe| Iejowresed [ewao] I pue an[ea Aq possed s1 tojewered
ay} J1 "19jurod B 10 9nfBA B JOUYJId SB 9SI[Jejowesed oy} ur pejussordes
ST 19joweted [enjoe Yory Bade 1iBd POXI] UMO SJI Ul pajedof[e aq

jsnut 3ST] I9jewrered oy} ‘seanpedoid Joyje s[[ro einpadoid jualInd oy}
II 'Baqe OZIS-POXY B UI P[OY oJdB S[[B0 aunpedoid 1ol $1S1] Jelewrered oyf,

WISIUBYIA[N SWBI] YOBIS

Register Assignments

Register Assignments

While a CYBIL program is executing, the following registers are

assigned:

Register

(Hexadecimal) Contents

A0 Dynamic space pointer (DSP)

Al Current stack frame pointer (CSF)
A2 Previous save area pointer (PSA)
A3 Binding section pointer (BSP)

A4 Argument list pointer (ALP)

A5 Static link (SL)

AA through AE and
X9 through XD

X0

XE
AF
XF

Parameters passed to internal procedures or
functions

Number of parameters passed (in bits 40
through 43)

Line number for range checking (LN)
Function result (if it is a simple pointer)

Functio_n result (if it is scalar)

area pointer, and static link are described earlier. The binding section
pointer indicates the binding section of the procedure that is currently
executing. The argument list pointer points to the parameter list
passed by the calling procedure.

F-12 CYBIL Language Definition Revision F
L] 01/22/87 19:58:24] 02/13/87 09:46:31 | 87/03/25 22.17.32 |60464113 F |RUN-TIME ENVIRONMENT | DRAFT COPY

1-d juewuONAUY swn -uny TIGAD oYL Jd uosiaey

"I9jeweled [BNJOE IS} SY)
sorjroeds ‘osBI SIY} Ul “ISI[I9joweled 9Y) JO JUSWS[O PUOISS Y], "ISI]
Iojoweied sy} JOo juswWee ISII] 9y} SB PayIIsn{-3Jo[pago3s ST 41 ‘sadL}

9S9YJ JO 9UO J0U ST J[NSdI UCIPUN] oY) J['0I9Z UJIM PI[[[J I8 SIIq
pesnun fuy "19Isi3ad JX oY} Ur JYSII 9y} uo paulI[e pauanjal st 11
‘s71q 79 01 [enbe 1o uey) sso] YjSus] Jo Ie[edS B ST J[NSSI UCTIOUNJ JYJ
J1 AV 191s1301 Ul YA ®B Se pauanjal ST anfea oayj ‘xejurod sidwrs e st
J[NsaI uorjouny 9Yyj JI ‘pautnias 3urdq anfea jo odALy ayj uo Surpuedsp
‘AI0WIOW JO SI91ST361 UL ST 2JUSI9lel UOIIOUN] B AQ PIUINIAI 1[NSad 9,

‘SOTIIUD 9SI[I9joweded [ewIoU

Y] YIIM Papn[our ST pepro] aq 03} 194 19jewrered oY) ‘siajeuwrered 1oyjo
Buissed asn ut Apead[e aie SI9)sIfed paambel oY) [[e JI "ISI[Iejewrered
[en3or 3y} Jo 338 9yj wogl Surlae)s pepeo] oIe siojowered ayj pue
‘Alearjosdser gY pue Yy Ujim Suriae)s pe[[lJ oI siaysidad 9y, ‘193st8al
B Ul 11J 7Y} sed43 o1seq JoYjo 9y} ssed 0] pasn oJe SI9)SISel X oY)
pue sisjutod ssed 01 pesn aie si9)stder y 9yl ‘(OIX ySnoayy gxX pue
AV ysnoiy) yy sisisidex ur pessed aie Ia)sided ¥ 10 Y UB UI 1] 1By}
s1ajowesed 9yj ‘(paae[oep 9InquIlIe THAX 10U JHUX 9Y) IoY}Ieu oaey
1eYJ 9SO} ‘ST JBY}) S90USI9JOl UOIjdUNJ pPue oInpadoad [BUISUL IO

"sesusisjed aanpedcad

J0J 9SO} SB aWBS 9Y) oI S90USI9JOI UOTIOUN] J0J SUOTJUSAUOD

J97s1801 9] ‘aI0J9J9U], "on[BA B SUIN}SI jey} 24npe9doid B se Jo
JYSnoyj aq UBd UOIOUN] YV "Gy 0} UOIJIPPE Ul SI9)SL3ad 89Sy} JO [[B 9sn
sernpedold [eUIOIU] FYV PUB ‘Y ‘TV SI9IsiSel asn seinpadoid [euIeIxXy

"2anpa20ad 9y} JO UOTINIOXS SULIMp San[eA JI9YJ0

peudisse aq few X ydnoayl gX pue ‘IvV ysnory} yv ‘gy siejsidey
‘A1snorasad UMOUS S9NTBA 9YU] UTBIU0D SABMIE ZY PUER ‘TV ‘0Y SI9ISISoy

SIuaWU3ISSY 19315139y

How Parameters are Passed

How Parameters are Passed

The following paragraphs describe how parameters are passed for
reference parameters and value parameters, and calls between
languages.

Reference Parameters
For reference parameters, a pointer to the actual data is generated

and the pointer is passed as the parameter. The parameter is
left-aligned on a word boundary.

Value Parameters

If the parameter length is less than or equal to a word, a copy of the
actual parameter is made in the parameter list. The parameter is
right-aligned, but on a word boundary.

If the value parameter is larger than one word in length, the
parameter list contains a pointer to the actual parameter or a copy of
the actual parameter (this pointer is left-aligned on a word boundary).

F-14 CYBIL Language Definition Revision F

¢l-d IuewuoNAUY ouwnl-uny TIGAD YL Jd uorsiaey

‘1182 2anpedoid 9Yj U0 PIJUAIIJRIIP
s1 1ojutod oy} pue Iajurod e SI O[qBLIBA O[JBWOINE Y], -

‘9[qerIeA Jrjewolne
3y} peurep jey) sinpsdoad oy} jo adoos oy} UTYyjim sanpadoad
poIseu B Ul PSUIPOW ST 9[BIIBA J[JBWIOINE S} pUE ‘d[qerIeA
dIjRWIoINE 9Y) paulfep 18y} 9inpadoxd oyj Jo odods 9y} umIIm

sanpescid pojseu © of pessed Suisq ST o[gBIIBA JIjBWOINE SYJ, -

‘quowale)s
[[e2 ainpsdold ay] Ul o[qRLIBA J[JBWOINE Y} JO SSaippe oy} ssed
0} pasn st uorpPUN] DOT# I0 [oquis | 9y} 10 ‘uorjouny HOT#
9y} 10 () [oquids 1ajurod oY) SUISN JUOW9JeR)S JUSWUIISSE

Ue Ul 3[qelIBA Dd[jEWOINE 3YjJ 0} pojeisuad st tajutod § -

‘eanpeooad 3uturfep oy} Jo adods 9y} UTYIIM [[BD
9unpevoad AUB Ul 90UaI9Jed A(pessed ST 9[qBLIBA JIjBWIOINE JY], -

'SUOTJTPU0? SUIMO[[O] 9Y} JO dUO I3pun
jdeoxe ‘1ejewrered anjea B se passed SI jeY} S[qeIIBA JIjRWIOINE
(piom suo ueyj Ie8ie| ‘ST jBY}) 981e[B JO 9pRW j0uU ST Ad00 ¥ ¢

ainpaooxd porred
oy3 ur pardod oq [[Im jBY} I9joweied e Jo spew jou ST £d0d ¥ o

J9jewreaed
anjea e se passed ST jBy} JuBISUOD 2518 ® JO apew jou ST Adod ¥ o

portoads anqriyie (QVHY U3 UM U0I10as Kiowawl
B Jo 11ed SB PIuLJep SI 1BU} 9[(BLIBA B JO 9PBW 10U SI Ad0d ¥ o

aanpoocoid ieyjoue 03 Isjewreied
onfea e se pessed s Jey) I9joWRIBd SN[EA B JO OPBW }0U SI Ad02 V o

‘(@anpadoxd 3ur[[ed ayj ur sidxjeweted onfea edie] Jurddoo 1oJ se[nd
9Uj 9IB 9S9Y]) SUOTIIPU0D SUIMO[[O] 9Y} Ispun JST[Iojowrered ayj ut jnd
ST Bjep oy} 0} Jejutod B ‘pee)SUl ‘pUB {OBJS SJS[[B2 oy} 03 pardoo jou sI

Iajewered snjea 9yl ‘19A9MOH "BIBD 9U1 Jo 9pewr ST Adod B ‘AjTeurion

pessed aJaB sidjeursied mopy

How Parameters are Passed

Value parameters in the prolog of the called procedure are copied if
the called or nested procedure generates a pointer to the value
parameter via the pointer symbol (*) or the #LOC function and one of
the following conditions is true:

® The pointer is passed as a parameter
® The pointer is not an automatic variable of the procedure
® The pointer is assigned to another pointer

® A pointer to the pointer is generated in an assignment statement
using the " symbol or the #LOC function

A

® A pointer to the pointer is passed in a procedure call using the
symbol or the #LOC function

® The pointer is dereferenced on the left side of an assignment
statement

® The pointer is dereferenced on a procedure call and the call is by
reference

® The value parameter is a sequence or structure that contains a
sequence, th/e pointer is generated to the sequence, a data item
pointer is generated into the sequence with a NEXT statement,
and the data item pointer escapes (that is, one of the items
previously listed occurs)

If the called procedure or a contained procedure generates a pointer to
the value parameter and the value of that pointer escapes or the
object of the pointer is altered, the called procedure’s prolog copies the
parameter to its stack frame. The prolog also generates a pointer to
the copied data and stores it in the called procedure’s stack.
Generation of the pointer to the parameter is performed because the

T e e o 1

~an11 - - L __ac__ o e 2 . aT 11 11
Calillig plrotcuule lay pE execuulng 1l da aulerent ring uadn iwne caiied
procedure.

Calls Beiween Languages

If a call could be made to another language and it has a system
format actual parameter list to be passed that contains only reference
parameters, the parameter list is immediately preceded by a word
whose value is the 64-bit integer zero. This word need not precede
any other system format actual parameter lists, only those for calls to
another language.

F-16 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | RUN-TIME ENVIRONMENT | DRAFT COPY

LT-d juewUONAUY SunL-uny TIGAD oYL Jd uoistaay

"pa0da1 ayj Jo Sp[el] I0 Aelie 9Yyj} Jo sjuswere Surpuodsericd
ayj Jo sad£] ay] Uo2IBW ISNW Passedde Blep ay} Jo sad£y ayj ‘yusuoduwrod
£q yueuodutod paAdlIlal ST 9ousnbes B ur paoerd piodar 1o feite ue JI

p10231 ayj) JO SP[8Y IO ABIIB Y} JO SJUSWIS[S U3JI0f
0S pue ‘pIIyj ‘puodes ayj} o} siajurod platk prnom sad£y jusuodurod
ajerrdoadde jo siejutod uo pewrioprad sjuswrs)els L[XHN Iuenbasqng e

pI0%9a1 8y3 JO p[o1} J0 Aelre
9] Jo juswis[e 1sa oyj 01 I9jutod B pIOIf p[nom ad4y jusuodurod
aeradoadde oyj 03 Jojurod B uo pouriolred juowale)s [XAN V e

:9NJ] 9 PINOM SIUSWIAIBIS SUIMO[[0] 8U] ‘DI0JAI

o feire oyj 0} }9sad sem aduonbes oy} pue souanbes e ur peserd
SBM pJd0d3ax 10 ABIIe UBR JT ‘SI jBY} {I9PJ0 [BINJBU I[OY] UT AJIOWSW
0} paddew ate spiodel pue sAerie payoedun Jo sjusuodwiod 9y,

"'PRAISSAI ST 90BdS OU ‘PadUaILIel
10U ST 9[qelIBA B J] "dUOp ST SuLIspaoal ou ‘wesr)s jndur ay)
Ul Inode A9y] UYOTYMm Ul I9pJ0 9] Ul PIJedo[[e SI Se|qeliea I0] 92edg

UOTJBIO[[Y S[qBLIEBA

"MOUY NOA $19] PUB SHOOYJ I9PEO[

9] ‘sewr} 9SOy} U9aMm)aq SFUBYD SOIBLISIUT oY} PUB SOWI} JUSISIIP

78 senpowt o[rdwod nof JI ey} sueewt STY], (191 'T1 ST 9P02 UOTIIPUOD
9y} pue HOLVINSIN ~NOILVUVTIOIA$ETT ST ISLIJUSPT UOLIIPU0d
9Uj}) SI01I9 UOTIBOJIIdA Isjowesed 9yj SurjuowInoop o5essoul 0119 UB
selBIsUSS JIopeo] aul ‘corde j0u op A9Ul JI 'o9l1Se SS[qeLIBA PoJUAISIel
pue peJe[oap Aj[eulejxe [[B 40 SodA} ejep oy} jBY} 2InNSue 0} sonjea
USBY 9s9Uj} SHOOUD JOPEO[9} ‘UOIINI9Xe ai10Jog 'ssed0id ayj ur pepn[oul
st {zejewrered [BULI0] yome jo odf} 9y} jO sweU oyy) 35T Iojewmrzred
ayj ‘seanpedoid 1o 3urd4) ejep SY) JO UOBR[NWNIIBR UB UC Poseq

ST Ysey SIUJ, "‘PoousIojod IO PoJB[29p A[[BUIajXd SI JBYj oJnpadoxd pue
d[qeraeA Uoma J10] pejndwod s ysey e ‘ssesoad uonje[rdwods a9y} Suning

S9OUQIOJOY [BUINXH

SeousIaey [BUINXF

1-H suonjepuswodsy Surwweidoi A UOISTA®Y

‘g =: [xapuL]x
‘K =: xapui
‘g =: K

‘49BBIUL 4O [96UBITR] ABJJE X
‘abuedTe : A ‘Xaput

HVA
‘OL°° 0 = @bues~e

3dAL

'sTy3 sejeaysny(l ofdwrexs SUIMo[[O] 9y, J[OSII

ad£1 sunjue oy} ueyy toyjea sad£y jo seSueaqns Suisn ‘os op 03
pejeiousd oq jsnul JBY) SPOd JO JUNOWE 9y} dzTWIurw 0} werdord
Ino& 3pod Ing Suryosyd s8uel jsenbaa o) ‘ar0fes9yy ‘siqetsaad St 9

‘pesoudelp 9q jou Lewl Sio1ie weldord sjewII}3a]
asnedaq papuswIUIoddl Jou $T wesdord inok SurdSngep eae

nok S[rym HNON 03 SMOHTHO ~HWILNNY Surjes ‘1aAsmoy “J[osit
weidord 9Inos 9y} Ul jj (JA0 =: DNUMHO)LES ii AISIIP oY)

Spnour 0 ‘puBWWOd TIFAD 8Y3 U0 HNON=SMOTHO ~HAWLLNNY
Aqroeds ‘Buryoeyd aduel Jjo uang of, ‘ofqrssod se yonwr se Suryoayo

aduerl proae 01 wesdoad 90IN0S INOA 9p0od 10 (SUTWINSUOI-IUIT)
ST pue a3BI0jS [BUOIIPPE Soimnbax 31) Suryoeyo s8uel [[e Jjo uIn], e

"KoULTITIJe 9poo 90anos Futaoadwi I0] suorysaSSns sae Surmol[oy 9y,

ASUQIoJr] 2P0 29anog Fuisearou]

-ooryead oy} ur sjuswwro) JurprwIqng

Japun UMOyS SSAIPPE 9y} 0] WAY} PUSS IO [BNUEBW 8y} JO 3oeq

3y} Ul 309Ys jusWWOd 9yj 3uIsn sn 0} wayj puss aseod ‘souewiofred
aaoadw JBY} PUNO} SABY NOA SPOYJSW JOYJ0 AIBYS 0 Y[p[nom nok j|

"9p02 Inok 10 AJLIB[D Oy} J99]je 10U Op

Koyj ueym A[uo pesn sq p[noys A9y} ‘suocrjepuswuwiod’dl SurmureiSoxd
Kue ym sy ewry 3urpeo] pue uorje[idwod saocidwi pue 9pod

20ano0s Ino£ Jo AJUSIOLJS S8UJ 9SBAIOUT UBD nok sAem sIsI] xtpuedde smyJ,

H SUONBRPUSWUIONIY Surmmwessosg

Increasing Source Code Efficiency

This example declares a subrange from 0 through 10 to be a type
named A_RANGE. The variables INDEX and Y are of type A_
RANGE, the subrange. Therefore, the assignment statement

index := vy;

is not checked for range violations even if range checking has been
requested. Likewise, the assignment statement

xlindex] := 3;

wy

is not checked. If, however, the variables INDEX and Y had been
declared integer or some other type besides a subrange, range
checking code would have been required.

® Turn off all checking options when you compile the code to
improve execution time.

® If you call a procedure repeatedly within a loop structure, call the
procedure once and put the loop tests inside the procedure to avoid
significant overhead.

® Observe that a procedure should reference only static variables,
arguments, and its own automatic variables to avoid overhead
associated with those references via the static link.

® If a comparison of two records occurs, organize the fields within
the records so that the fields most likely to differ appear first.

® Move a single structure of elements instead of many individual
elements. This may require arranging the elements specifically for
this purpose (for example, within a record).

® Reference a fixed-size structure rather than an adaptable structure,
because the adaptable structure has a descriptor field that must be

afore falzae vara $ivma
accessed first and therefore takes more time.

® Reference fields within a record, as it causes no extra execution
time.

® If you are repeatedly referencing a complex data structure (by
pointers or an indexing process), use a local pointer to access the
structure and replace the more complex references.

H-2 CYBIL Language Definition Revision F

¢-H Suonepuswwoddy Sunuweidoig Jd uoISIARY

"191SBJ Yonuwt ‘sI0Jaiay)
‘ST puB 9p02 BuI[Ul SB pajuewrajdwir ST JI SB ‘(Sjuswejels M Pue
ALVOOTIV 9y} SuluIquiod ueyj Jeyjel) juswejels HSNd oyl osn

“UDTJRULIOJUT SUTUTBYD UTBJUTBW 0] PIPPe OS[B ST Jopeey B ‘pPoIndoxa
ST 31 dWI} YoBd ‘Inq panoexs st juswatels FLVOOTIV oY} uaym
A[uo pajedo[[e ST 90rdG ‘PEOYIOA0 9SIB[B SOSNED YIIYyM ‘(JUSWISTER)S
AILVOOTIV oy} Suisn) desy e ur sad4y [[ews 3urjedo[[e proay

‘Sjucwetels YA PUB HIVOOTIV 9yl ueyl
I9)SBj 9J8 PUB 89P0 SUI[UI S pajuswaldw aJe YIIym (sdeey Jesn

pue seousnbes uo pesn) sjuswatels LASHY PU®B ILXAN Y} 9s)

"9WT) UOTINISXS PUE 83BI0JS JO SUWIID)
ul JUIIOLFe 210w aIe Aoy} se ‘sdeay ueyj Joyjed seduanbes esp

"SSOUQATIIRLS 1oy} Jo Japao ul ‘desy oy} pue ‘@dusnbes
ay3 ‘Aeare 9y} 'Bjep snosuedowIOy I0J SSINJONIS BIEP 9SAY} 9s[)

"11q Aq peusdie oI jey)} Joy}e80] SjUsWlR
9y} dnoid ‘sinjonajs peyoed B UTYIIM BIBP 9ZIUEBSI0 NOK USYM

'S9LIBPUNOQ S[GBSSIIppE

uo 91] jou Aewl 3Injonils poyded B Jo sjuswIale oY) asnedsq
sjusuodwod §,3aNn3onijs 8y} JUISS800E U PEOYISA0 19jBaId aq

AW 2I9Y} 3IBME 9q ‘ISAOMOY] -9InjonJ)s paeyoedun ue uey} 95BI0IS
ss9[seambal aunjoniys paydoed e ‘A[[eISULN) AW} SSIIOB UBY)
juejzodwir dzow ST 9oeds Suralesuod usym ainjonajs payoed e asn

"SP[ey [BNPIAIPUL 9y} UBY} ISYJel PI0IL
Jey} ulisse pue odA} PIOOSI SWES 9YjJ JO S[BIIBA PIZI[BIIIUL ‘OTJB}S
B QUIOp ‘OWIl} UOIINISXS B SJUBISUOD UM PI0IDI B AZI[BIJIUL NOL J]

"9WII} UOTINIJXS B
PEIYILA0 OU S8SNBD 1 SB ‘owr) 9[Idwiod Je SO[qElIEA JIJeIS ZI[BIIIU[

"9WIT) UOIINIDXS SO)Sem Jey)
uorgonagsut do-ou € ur jmsax ued yorym (Suryys [nu e 03 Surys [[nu

14
e Junaow ‘ardwrexs iop) Surns [nu v Jo asn sjenidorddeur proay

Aouetoryy 8po) ooumog Surseaiouy

Increasing Source Code Efficiency

® When specifying a pointer, use the pointer symbol * rather than
the #LOC function, to promote efficiency and maintainability.

® If the definition of a structure contains many flags or attributes,
consider the following when choosing between a boolean type and a
set type:

— If the record is unpacked, using the set type reduces the size of
the definition.

— Any subset of the attributes of a set can be tested immediately.

— If you are testing a single element, an unpacked boolean type
is more efficient than a set type.

® Use boolean expressions rather than conditional statements, as
they are more efficient. For example, the statement

equality := (a = b);
is more efficient than the IF statement

IF a = b THEN
eguality := TRUE;

ELSE
equality :

IFEND;

FALSE;

® When possible, use a CASE statement rather than a long, complex
IF sequence. This can be done when the value of a single variable
determines the sequence of action.

® Arrange compound boolean expressions so that the first condition
evaluated is the one most likely to end evaluation of the entire
expression. :

H-4 CYBIL Language Definition Revision F

¢-H Suonepuowwiodsy Surwrweidoig g uorstasy

‘doo] sy3 jo jno spoo
JUBLIBAUL 3A0WI J0U S0P I10J8I9U93 9pod ayj se ‘doo[ayj opIsno
doo[B UIyjIM pasn ST JBY} S[qBIIBA B 0] SSI00B [BIJIUI Y} OB\ e

‘PBAYISA0 SWIOS ISNEBD ‘3I0J3I9Y}
‘pue uordes 3uUIpulq Y} BIA SPBUW 9IB £9Y} SB UOIJOdS B UIYIIM pUB
eInqrIyie TOAX oY} UM PIJe[I9p SO[qELIBA 0] SOJUSISJOI PIOAY e

"y3Bus|
wnuwrxew 8y} yjim Ia[rduwoo ayj opraoad o3 aqqissod isaaioym
Jejowered yidue| oyj AJeds ‘SBurns siqeidepe ue Suisn USYM e

"PEAYIDA0
owos asned s3urso[d pue sSuruado Aressevouu() ‘pepasu IeSuo(
OU ST 71 USYM]I 9SO[D PUB Papaau SI J1 aI0jaq a[ly © uado jou o e

Juewudisse 3urrysqns 0 peredwiod JUSIIIJOUL ST JI PUB SUIINOI
AlBIqI] 9WIJ-UOTINISXS UB 0F [[BO B SB PIajusawe[dwil ST 3Inpadoid
dIYONIYIS U, d1qrssod Iaaazaym aumpssord JHYHNIYLS 2yl
uey} Jeyjel juswugrsse JurIIsqns osn ‘sSULIISNS 9JBUSIEBOUOD O], e

"U0TIONIISUL
SPIAIP B uBYj} I91SB] A[qBIOPISUCO ST UOIONIISUI JIYS V 'pajeIousasd
9q ued uorgonmisur Yrys v ‘edumriqns I1s8ajutr sangrsed ' uo

% Jo 1amod e Aq SuIprarp usypy ‘seduriqns tedejur sanisod suysq e

(Z pue X) so[qeLIBA Om} pu®B (Q]) JUBJSUOD U0 ATuo 3uisn
9poo 109[qo eanpoid usyj ‘QT JueISUOd 9y} 308 03 g . ¢ uOISsaIdxd
9y3 9jenyead pnom Id[dwiod a9y} ‘IeyjeSo} SIUBISUOI 3YJ UM

‘2 x K5 T %« G =X

SB U9JJLIMAI 9JoM UOISSaIdxs 9y} JI ‘19A9MO[] '(7 Pu® &) So[qeLIeA
OM] PUB (g PUB G) SJUBISUOD om) Suisn apod 309fqo seonpoid

‘222 s K g G==X

uorsseadx9 oy} ‘ejdwexo
104 19439307 UOISSOIdxXe UB UT [9A9] SWES U1 1B SIuBIsuod dnoirn

Koustorgy opo) 20mog Sursvaiouy

Increasing Source Code Efficiency

® Use the ANALYZE_PROGRAM_DYNAMICS command and the
Measure Program Execution Utility to study your program’s
efficiency with respect to execution time, page faults, and module
connectivity. Both are described in the SCL Object Code
Management manual.For more detailed data collection and
reporting, use the ACTIVATE _JOB_STATISTICS command or, if
you have the required permission, the ACTIVATE_SYSTEM_
STATISTICS command, and the Display Binary Log Utility (refer
to the System Performance and Maintenance manual).

® Bind programs to improve overall load and execution time. You
can bind programs with the ANALYZE_PROGRAM_DYNAMICS
command, the Measure Program Execution Utility, or either of the
Object Library Generator subcommands CREATE_MODULE or
BIND_MODULE. All of these commands and utilities are
described in the SCL Object Code Management manual.

® (Create a linked module for large programs with a great deal of
static data. For further information on linked modules, refer to the
SCL Object Code Management manual.

® Organize the frequently used variables first in large user stacks to
avoid reaching the threshold of the load and store instructions
(216), causing an extra instruction to be generated to handle the
offset.

® Check the default values for compilation options and use the
appropriate values. To improve performance, select optimization, if
possible. Unless you are debugging code, avoid selecting stylized
code for debugging and range checking; both generate extra code
and cause greater execution time.

H-6 CYBIL Language Definition Revision F
L ' 01/22/87 19:59:24 I 02/13/87 09:46:31 |87/D3/25 22.17.32 |60464113 F 'PROG. RECOMMENDATIONS IDRAFT copPy

L-H Ssuonspuswruioddy Jurmuwreidold 4 uotsiaay

‘Kressedau st Burddngep ssequn uorjeridumrod
Surinp pajos[es aq j0u prnoys Aay], ‘ssevcoxd Surpeo] 9yl mo[s A9y}
se (9[qe3 duI] pue 9[qe} [0qUIAS 9yl) So[qe} 3nge(] SUIL[eS PIOAY e

‘[enuew juswaSeur]y 9po) 193(q0 TOS
9Y} Ul PaqLIOSOp SIE SSI[IN PUE SPUBWIWIOD 359Y3 JO [[V “ATNAON

TANIF ° ITNAON ™ ILVAYD SPUBWWOIqNS Iojetausy) Aresqry

198[qQ 8y} Jo I8Yjre 10 ‘AJI[I}[) UOTINISXY WelSolg SINSEIJ SY)

‘puBwwod SOINVNAQ ~IWVIDOUd ~"HZATVNY 943 Yim swesdord
pulq ued Nox "W} SUIPEO] [[BI9A0 2AOIdW 0} sweiSold pulg e

auore 3urysi] 92Inos 9y} Surjerauss uey) Jayjed
9pod pajeiausd ayj sepnoul Iy} 3UrISI] 994nos B Surjesousr) -

(Bunyysty

apo2 109[qo 9y} pue ‘Sumsi] sInqrijie oYy ‘SurysI] 9oULIAIII-SSOID
oy ‘Suysy] 20unos ayj Surpnpur) s3umsy 3uroseg -
apo2 Juryoays-eduel 3urjerousy) -

9pod pazI[4ls 3urjeIausr)

A3{13N Snge(9Yj 40} se[ge; Sngep Surjeisusy) -

uOos TIFAD 9 U0

mrrr T nnvvfev Ffels

ATrrTa e -

‘ewr)
Surpeoy pue uorje[idwod Jutaciduwl Io] suorjseSSns aae SUIMO[[O] Y],

suir], surpeory pue uoneqdwo)) Jurroaduiy

aury, Surpeo pue uonendure) Surroaduy

1-I [e9S8d pus TIgX)) Usamlsg SIOUSIALI(] Jd uotstaey

"S9INIONIIS

yons jo pue 9y} [BUSIS 0} Pasn SIVTASP IOYJ0 10 (INF PIOMASY
[eosed oy3 edelder yorym ‘GNHSVO PU® ‘ANHJI ‘ANATIHM
‘ANTYO0d ‘ANHOFY ‘ANTO0Yd sieyrwrep Surdnoad ayy,

"adoos
SJ1 UIYJIM WOIJ po[[ed se.unpadold 0] puolxs jou seop J1 ‘sopadead
11 juewaje)s dnoid ayj st [eqe[dnoid e Jo edoos ayjJ, "aanpadsoad
Sutureuod 9yl Aq umouy seweu [[e Suowre onbrun aq 1snwW [age[

B I0] peymads sweu syJ, ‘Sjuswale)s TTDAD PUB LIXH oYl Ioye
paimbal sie s[eqe ‘yojew jsnur S[aqe| 9yj Ioj payroeds seweu

oy} ‘ONTTIHM/ATIHM Pue ‘ONFYOLHMOJ ‘ANI/NIDHY sdnoid
JuauIdels Y} JIIJB PUB 8J0Joq POSN UIYM ‘SjusweaIe)s qNHTIHM
pue ‘GNHYOJ ‘ANH 9y} Isye pue sjuswajess [VAJHY pue
‘ITIHM “90d ‘NIDHEJ 2y} a10jeq [euoijdo are s[aqe ‘s[aqe[dnoiy)

‘sdeay Josn pue s9duenbes sjgeidepe pue pexI]

"SJUUIIIEIS

Ha¥d PUE ‘LVOOTIV ‘LASHY ‘LXIN ‘HS(d 9y} pue ‘sdesy
Josn pue seousnbes Sursn soN[IOE] JuUsWASeUBW AJOWSUW PIJUBYUH
'$10JBUSISOpP UOIJBOO[[R

pue ‘s3urns siqejdepe ‘suorjounj punoq lsmol pue Joddn yim (Ajuo
9715 Wa)I PIXI] pue ad£} xepul Jlrownu Yjm) sAerre ajqeidepy
"BIBP O1jBIS JO UOTjBZI[BT}IU]

"UOTJBZI[BITUL 0] SI0JONIISUOD 9N[BA S}IUIIOPU]

"SuorssaIdxa jueisuo)

's3urnsqns Jejewered-eidurs pue uorunl YvHO$ 9l
usemlaq SUOIDIS0D PUB ‘SUOIOIL0O 9ZIS UM SSULIISqNs pue sSULng

‘syrun uoryerrdwod jrwrep 0 spiomkey INITOW Pue ITNAOW
"BJEp 10 NQLYIE DLIVIS °YL
“BIRP puUB ‘suorjounj ‘seinpedoid I0j seynqriye JHYX PUB TOAX

[B9sBd 10U INg TTIFX) Ul S[QBIIBAB I8 soinjea] SUIMO[[O] dUT,

"HA/SON I0] [BIsed pue TIgAD Usam}aq SOUSISLIP
oy s1s1] xTpusdde sryJ, ‘Tedsed 03 Jerrwis st ofenSuel TIGAD UL

[eosed pue TIgA) UIIM)IOYg SIOUIXIPI(T

¢ Use of equality (=) and inequality (<>) relationships on records.
® Subranges and the ELSE option as CASE statement selections.

® The CELL and pointer to cell types, and the #LOC and #SIZE
functions.

® Data mapping as described in appendix E, Data Representation in
Memory.

® The evaluation of condition terms proceeding from left to right and
ending when the value of the condition is determined.

® DPointer to procedure and pointer to function type.
® The relative pointer type.
® Special characters _, @, #, and $ permitted in names.

® Comments terminated by an end of line.

® DMultiple instances of CONST, TYPE, VAR, and procedure
declarations permitted in any order.

® The reserved word RETURN as a control statement.
¢ EXIT and CYCLE followed by a group label as control statements.

® (CASE statement selectors delimited on both sides by the equal
sign character (=) rather than only on the end by the colon
character (as in Pascal).

® (ontrol over data locality using the SECTION declaration.

adaa2od

™. J .Lz21: - 4
AWEdDLLICLEU dililL Ul
intrinsics.

[P D" .4

; using

[14]
a
=
[ed]
]
[]
Ll
a
C
a
-
&
e
o
st
et
o
a
-
-
-
ul
<
]
=
<
(=]
-
w

® The ELSEIF option associated with the IF statement.

® (Compilation time facilities.

® Hexadecimal, octal, and binary numeric constants.

® Detection of side effects from programmer-defined functions.

® The bound variant record type.

1I-2 CYBIL Language Definition Revision F
W | 01/22/87 19:58:24 | 02/13/87 09:46:31 l 87/03/25 22.17.32 | 60464113 F I DIFFERENCES | DRAFT COPY

g1 [BOSBJ PUB TTIGXD Us0MIdg SQOUIALI(T J uoIsIARYy

‘[uorjouny

(IDALNDINTVAYALIN oY) Suisn TIGXD UT }[nsol swres
9Y} 9AJ[YIE UBD NOA ‘I9AMOY] TUBISU0D INTXVIN Pourjepaid v o

‘NTILIMM PUB ‘HIIMM ‘MOVANN “‘AINLL
HINMAEY ‘LISHY ‘NIQVIEY ‘QvaY¥ ‘LAd MOVd ‘UBvd ‘MAN
‘OVSSAN ‘IIVH ‘LFD ‘AS0dSId ‘ALV(seinpederd ur-ying syl e

‘aNNoy¥ pue ‘JYDOTD ‘@UVI ‘NT0d ‘J40d ‘ddO ‘NVLOUIV
‘LHOS ‘NT ‘dXd ‘SO ‘NIS “UDS ‘Sgv suorpuny ur-y[ing a3y, e

'sed£) LHS AAMIVd e
{ [‘gxepur ‘Ixepul] AVYUVY
WLIO] 9] SMO[[e OS[e [BISed Seoloym
{ " JO [gXepul] AVHYV JO0 [1Xepul] AVYYV
U110} 8yj Ul A[UO PaIe[dep 9q 0} SABIIE PSUOISUIWIIPI}[NUX
SMmo[[e TIgAD SABIIE PIUOISUSWIPI}[NW JO SULIO] 9JBUISIY e

"HLONHT pue

Ty frraramrranmarrna Srrrracs
[geiiea "UCI3BUS}BIUSS SULISS

q

"SUOTSS9IdXe O[qBLIBA UI SIOJONIISUOD aN[BA 19 e
'suonesado JOVANN PUB IV e

Juewelels HIIM YL e

uswalels QL OD YL e

‘SUOIJBJIB[ISD [3QE] e

‘sejeorpaad pue ‘suorjouny O/ ‘°dA} HTIA oYL e
‘SUOTJRIB[I9P 2Inpa20id piemiod e

‘s19joweIed SB SUOIIOUN] PUEB SOINPId‘nid e
FIIGAD Ul pesn jou o1e Surmol[o] ayJ,

‘suorpuny pue seanpadoxd INTINI e

'ss9001d uorIRTIdWOY 3Y] [0IIU0D 0 SIAIIRIL] e

The implementation of the following items differs:
® The CASE statement syntax.

® Designation of the end of declarations and statements (use of a
semicolon rather than an end of line).

® Designation of comments.

® Externally referenced variables, functions, and procedures (use of
the XREF attribute rather than EXTERNAL).

® Names of certain functions (JCHAR instead of CHR, $INTEGER
instead of ORD, and STRLENGTH instead of MAXLENGTH).

® Reserved (predeclared) names as listed in appendix D, Reserved
Words. '

I-4 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | DIFFERENCES | DRAFT COPY

I-f O/I TIGAD 10} suoyeIR[a(odA[puB JuBISUO)

WY04~N33HIS.
N33HIS.
AY¥VHEITT123r490,
viva~103rgo.
123rdo.
NMONMNN™1SI.
1SI17.

NMONMNN~ 3181931,
AYYNEIT 3791937,
viva 3181031,

d uoIstAsy

WJ0J TUdDJUISFIAD
u33JdS$IAD
AJdeuyqi | ~1299fgo$aAo
el1ep12afqo$d4d
308[0qo$240
uMoudUNT1S 1L | $D4D
1S11$242
umoudun~a|qLba| $04A0
AdeygllTaiqLbal$242
elep~8iqLba| $94AD

3791931, aigLba{$ako
dMIdve™ 3114, dnxoeqTa| L 4$940
viva. 21Ep$0AD
901 AYVYNIG, 60| ~AJeutq$oko
AYVNIZ, AJeutqsoAo
901 1IJSV. 6O~ L LIOSB$IAD
XA, XA$IAD
NMONDINN ., JOSS320.4d UMOUNUN$OAD
nas. nas$oA2
10S., 19S$242
50704d., 60(1040$242
¥ITINISSY Ndd. Jo| quesse ndd$oAD
Id., 1 1d$2A0
IvISvd. | eased$oAD
dsSI, dst [$240
NVYLYH0d. UBJ1J03$IAD
4399ng3a. Jabbngep$24A2
TI8AD. | LA0$24AD
704909, 10002$2AD
2. 2$242
J1sve, J1seq$akd
Y3T9N3SSY ., Jo|quasse$aAd
Adv. |de$aAka
vav. BPR$OAD
S:}IIBZ}SIIOD

"9WBU ISYIIUapt Aq JopJdo [edrjeqeydie ur peysiy

QIT SUuOTMUIRToon TFY CTOWTTDTIY QY VFT NIGYING2n SaInnal0 Y!{ FAFY FTYECY ¥ 7%
bt i ahd & Attt &g Wy (U T S St b & 4 CYHInYEYDr YYywRipYYYe= U/l l1dny
oy} Aq pesn suorjere[osp adA} pue juelsuod ayj sIsi xrpuadde smyJ,

J0J suonjese[dd(q adA], pue jueisuo))

Types

cycs$unknown_contents | = “UNKNOWN ‘5
cyc$detach_file = cyc$return_file;

cycsmax_file_name_size = 512;

cycsmin_ecc = (($INTEGER(‘C”)*100(16))+$INTEGER("Y’))

*1000000(16) ;
cyc$max_ecc = cyc$min_ecc + 9999;

cycsmin_ecc_cybil_input_output cyc$min_ecc + 6200;
cyc$max_ecc_cybil_input_output

cyc$min_ecc_cybil_input_output + 99;

cyc$page_limit 439804651103;

i

cyc$title_size = 45;

cyc$wide_page_width = 132;

cycsnarrow_page_width = 80;
cyc$max_page_width = 65535;

Types

cyt$close_file_disposition = (cycsdelete_file, cycs$retain_file,
cycsreturn_file, cyc$unioad_file,
cycs$default_file_disposition);

cyt$current_file_position = (cyc$beginning_of_information,
cyc$middlie_of_record, cyc$end_of_record, cyc$end_of_block,
cycsend_of_partition, cyc$end_of_information);

cyt$file = "SEQ (*);

cyt$file_access = (cyc$read, cycswrite, cyc$read_write);

cyt$file_character_set = (cycsascii, cycgasciiBl12, cycasciifl2,
cyc$display_64, cyc$reserved_codel, cyc$reserved_code?);

cyt$file_contents = string (31);

cyt$file_existence = (cyc$new_file, cyc$olid_file,
cycsnew_or_old_file);

cyt$file_kind = (cycsbinary_file, cyc¢display_file,

J-2 CYBIL Language Definition Revision F
W I 01/22/87 19:59:24 l 02/13/87 09:46:31 | 87/03/25 22.17.832 | 60464113 F | CONSTANTS AND TYPES | DRAFT COPY

e-P O/ TIGAD 10] suoneaedaq adA], pue jueisuoc) 4 uoismey

sad4],

‘puadad
‘puased

G29ds~34N1NJ$IAI =

poads~aJan1ng$ako =

¢

£09dS™aJNINJ$IAD =

Zoads™aunini$okd =
= 129dST3J4N1Ny$o4A0 =
‘leuyog~abed$ 140 : lewdo4 abed
= JBWJOj 96Bd$IAD =
‘UipLm—abeds$1LD yiptm-abed
= YIpLMTabed$IAD =
‘ylbua| “ebed$1Ao :ylb6ua| “ebed
= ylbua|~36ed$240 =
‘aJnpadodsdTabed mauglAd :aunpadoudTabed mau
= 3J4NpaJoJd—3bed MaugoAd =
‘3}8sTJualorvJBYITS[1 J$14D :18STudloBJIRYO I LS
= 19STJU9]OBUBYD D[14$I4AD =
‘J0SS3204d7 9| L J$14D :J40OSS®204d™3| LS
= JOSS38204d 3|1 J$OAD =
‘SJUIU0ITII L3I SIUDIUODTA| LY
= SIUBIUCD™I| L J$IAD =
‘UOL}1SOdSLP™3[1478S012$14A2 :uOt}LSOdSIp~aso[d
= UOL}LSOOSLP™3[L479S0|2$4240 =
‘uot 1LsodTas0o|2”uado$1A2 :uoLlisodTuado
= UOit}1iSod~uadogols =
‘9oUl1SLX9TA[LJ$IAD BJUDISLXD D LY
= 3JUSISLXD D 1J$0AD =
‘SS820B7A| 1 4$1A0 :SS3JIBTI| L4
= SS8008™ 9| [43242 =
‘PULATSL1J$IAD puldT@lly
= PULY 21134242 =
JO JO108913S7UOL}eDLJ109dS™a| 1 4$3AD :JO1IB|DBS BSED
PJOJ3dJ = UOL1BILJLI3dS 3 LJ$IAD

(1g) BuLJlS = JOSSad0JUd™D[L J$IAD
‘(9ZLSTAaWRUTA L4 TXBWSIAD => 5) BULJLIS = BWRUTSLLI$IAD

{(311471X21$940 ‘D11 47DJI02BIEIKD

Types

cyt$file_specifications = “array [1 .. *] of
cyt$file_specification;

cyt$file_specification_selector = (cyc$file_kind,
cyc$file_access, cyc$file_existence, cyc$open_position,
cyc$close_file_disposition, cyc$file_contents,
cyc$file_processor, cyc$file_character_set,
cyc$new_page_procedure, cyc$page_length, cyc$page_width,
cyc$page_format),

cyt$new_page_procedure = record
case Kind: cyt$page_procedure_kind of
= cyc$user_specified_procedure =
user_procedure: cyt$user_page_procedure,
= cyc$standard_procedure =
title: string (cyc$titie_size),
= cycs$omit_page_procedure =
casend,
recend;

cyt$open_ciose_position = (cyc$beginning, cyc$end, cyc$asis,
cyc$default_open_position);

cyts$page_format = (cyc$continuous_form, cyc$burstable_form,
cycs$non_burstable_form, cyc$untitied_form);

cyt$page_length = 1 .. cyc$page_limit;
cyt$page_width = 1 .. cyc$max_page_width;

cyt$page_procedure_kind = (cyc$user_specified_procedure,
cyc$standard_procedure, cyc$omit_page_procedure);

cyt$skip_direction = (cyc$forward, cyc$backward);

cyt$skip_unit = (cycs$record, cyc$block, cyc$partition);

cyceos, cycaegis);

cyt$user_page_procedure = “procedure (display_file: cytgfile;
next_page_number: integer;
VAR status: ost$status);

J-4 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46:31 |87/03/25 22.17.32 | 60464113 F I CONSTANTS AND TYPES | DRAFT COPY |

|
\
\
\
|
|
|
I
I
|
|
i
[
!
|
|
1
|
|
cyt$system_type = (cyc$nosve, cycnos, cycnosbe, cyc$vsos,
f
!
|
|
i
i
|
f
|
|
I
1
[
i
I
I

g-p O/ TIGXD 0] suonerepa adAJ, pue jueIsuo)

sadAJ,

{pusssd
‘pussed

‘

= 3Nl
‘ButJ1S$1SO :1xa1
‘3p02TUOL 1 LPUOD™SN1B1S$1SO :UOL1LPUOD
= 254 =
JO uea|00(g :|BwWJOU BSED
QJOQBJ = SnlElSQlSD

............ 12U

4 uostasy

M O/ TIGRD 10j sadessapy

‘(309a100Ut ST, QVHUSIAD

ATIA"MENSORD. ‘erdwexe
10]) aanpasoad uedo ue 0} ueAld sem

sisjowreted JO UOIJBUIqUIOd PI[BAUI UY

ampadoxd FIIA~GVISIAD U3 03
pessed sem 1 UBYj} SSO] UWIN[Od—qB} VY

‘aanpasoad gHV4

TAVIdSIA T NOILISOd$dAD 243 03
pessed sem [ueyj} SSO] JeqWNU SUI[Y

ndno 10y A[uo peusdo sem jeyj o[
B WOJIJ peal 0] spew Sem jdwene uy

‘wegsAs Surjeredo

Y} JO SUOTIULAUO0Y SUIWEBU 9[If 9y}

0] WLIOJUOD J0U S0P JBYJ SWBU B M
o[y ® uado 03 epewr sem jdweye uy

‘UMOUY J0U ST 9WRU Oflf O],
'seanpadord uedo ay) Jo auo ueyj JIaylo
aanpecoad /I TIGAD B 01 passed sem
a[y$140 ad£) Jo o[qelIEA pAUOpUN UY

Jd uorstaey

QWIBUS[I}

dTId 404 LSANDIAY
NHdO LOHYYOONI

eureus(yy HTId YOdA
NINATOO 9VL LOFYYOOINI

SWBUS[L

dTId 404 NOILISOd
INIT AVTIdSId LOHYHOONI

owreua[ly

HT1Id 404 1SaNday
LOdNI LOHYYODNI

QUIBUS[IJ
‘AINVN A1 LOTYHOONI

NIdO LON dTId

‘mofre M
welsAs Suryerado oyl ueyj sisjoeIRYD swreua[y
SI0W SBY SWEBU Ay poyroads oy, ‘ONOT OOL IWVN dTId
Surueay agessopy
orerduag

a8essew ayj ur sieedde ofessowr oyj ueym oI dyeds B Jo SWEBU SY)
Aq peoeidal aq [[Im SWBUS[L ‘mo[oq peist] suoridridsep afessemr ayl Uy

"O/1 TIFAD 951 03 Moy ‘g I93deyd UT PAQLIOSIP ST S[qelieA STy} Aq
pauanjel pIoded SNJeIS Y} JO 2INONIYS oy, "I9jowered 9jqerieA Snjels
9y} Ul peudnjed ag [[IM UOIJIPUOD SNJBIS 9Yj ‘SOSLIB SUOTIIPUOD ISIY)
Jo 9u0 J] "I0I1I2 UB JO UOI}9919p W] 10 O/ TIGAD JO asn tedoadur ayy
I9yjre WOJJ }[NSAI ABW JBY) SOSBSSow SNIe)s 9] SOqLIISAP UOIOas SIYJ,

TIGXD I0] SoSessom

&

INVALID OPERATION
ATTEMPTED ON FILE
filename

INCORRECT OUTPUT

REQUEST FOR FILE
filename

INCORRECT SKIP COUNT
filename

KEY BEYOND E-O-I ON
FILE filename

PREMATURE END OF
OPERATION ON FILE
filename

NO MEMORY TO OPEN
FILE filename

COULD NOT FIND FILE

3 DR
111C1lalle

FILE filename ALREADY
EXISTS

K-2 CYBIL Language Definition

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/08/25 22.17.32 | 60464113 F | CYBIL 1/0 MESSAGES | DRAET COPY

An operation was attempted that does
not match the FILE_KIND specified
for the file on the call to the open file
procedure. (For example, a
CYP$GET_NEXT_BINARY may have
been attempted on a file opened as a
text file.)

An attempt was made to write to a
file that was opened only for input.

A skip count less than -1 was passed
to the CYP$SKIP_LINES procedure.

An attempt was made to perform a
binary file operation with a key that
was outside the bounds of the file (in
other words, the key did not specify a
random address that is in the file).

A boundary condition was encountered
during the CYP$POSITION_
RECORD_FILE procedure before the
count was exhausted.

There was insufficient space to
allocate the descriptor and/or buffer
for the file.

An attempt was made to open an old

L2 4l i OYUYDYY TION a £2T
111€ ulldal v IDIL VU CdIllOL 1L1d.

An attempt was made to open a new
file but a file with that name already
exists.

Revision F

1-x0puy uonmuye(odendue TIGXD

8L-6 3e9Jq
HONVOIJINDIS ~ OLLHNHLIYV
8L-6 Healq
MOTIHHAO ~ DLLHINHLIYY
g1-d4 (d1V)
Jaurod 3s1] JuswWINSay|
I-V ISNV
¢-¢ I0jerado (INV|
-V JIej0eIRYD JlIewNueyd[y
-V Iegomreyd onjeqeydly
Jojurod
18T juswInN3Iy 998 ‘d’IV{
LI‘T-4 9oeds jo uoreoo[[y!
‘ oy-¢ jewuiog |
z 8g-g ordurexy
¢y-q uonjuysqg
juswalels HILVOOTIV
18°0¥'78°08-7 I9joweed
91-q seordurexy
1-H AJowawr ur ByeR([
Juewu IV
I1S°07'7€°08-7 10jowered
dHINDITV
01-L
‘19 ‘g-¢ ‘CI'CI-g OweU SBI[VY
GI-8 @ArjoeIrp o8ed eourApy
8-V dloquiig
gV Snpop
G-V eulyde|y
01-6 3ngeQ
GI-6 Sse[npow punog
3urssaappy!
G%-9 uonpouny SSHYAAV#
g-¢ siojerado uoTIIPpPY|
g-g uoyeIedo UOHIPPY
91-% 03 siajuiog
8g-g ordwexy
€y jus[eamby
8y-¥ uonuyeq
sad£y orqeidepy|
LE-¢ 9ZIg
67-¥ JjeulIoyg
9-if I03drIdse(q
8% uonmuIag

Sutnys siqerdepy

J UOISIAGY

8g-¢ opdwexy
L~ I10ydridse(
£€6-¢ uonuyeq
aouanbaes a[qejdepy
01-d Iejutod 9anje[al s[qedepy
LE-G 9¥ZIg
16-¥ Jjeuroyg
L I03drIdse(
g uonmuysqg
pI10231 ajgedepy
9-H ‘L8 9718
01- oaneey |
9-d Juewrudny |
1equtod s[qesdepy
LE-G 97§ |
86§ Jewiog |
L 10ydirasaq
€6y uonIuieQq
deey ojqeidepy
9‘c-i] J10ydrrosep siqerdepy|
LE-G 95
677 JeuLIoy]
8¢-g ordurexy
9~ J0ydrIdse(
6v-F uonmuyeqg
Aeare s[qeidepy;
GI‘gl-L ompadolg |
0%'81-9 uopouny -
siejeweed [BNOVY
-y
‘gz-), JeTJIIuUapl JuUewW3os 9AIY
1-V UlBYD [[BO 8ATIVY
Z-9 S[enUBW SUIUO SUISSIIIY
g-¢ se; weadord B uaym
£-6 UOIINI9Xd
wexdord Sunn(
2%-6 10113
WIT}-UOTINISXS UR Iy
3nqeg 3ursseday
1-V ‘9-€ 9INQLIJIEB SS90V
¢-6 onquie T LHO9VY
g9-6 Aerdsig
6€-6 2duey)
sioqstdor ¢

i
|

Lg-¢ 9IZIg
€67 JeuLIOg A4
Xapuy
Heaaq FONVOIAINDIS DILINHLIEV samstdar v

Array

Array
Adaptable 4-49
Alignment E-2,11
Definition 4-25
Elements 4-27
Examples 4-27,28
Format 4-25
Initializing elements 4-26
LOWERBOUND function 6-4
Referencing elements 4-27
Size 4-25; E-2,11
Subscript bounds 4-25
Two-dimensional 4-28
UPPERBOUND function 6-13
ASCIT A-1
ASCII character set C-1
ASID, see Active segment
identifier
Assigning
Elements of a set 4-42
Pointers 4-13
Registers F-12
Strings 4-24
Assignment operator 5-17
Assignment, set 4-42
Assignment statement
Compile-time 8-9
Definition 5-15; A-2
Format 5-15
Attribute(s)
Access 3-6
Debug 9-3,5
Effect on initialization
by 3-16
Function 6-15
#GATE 3-4; 6-16; 7-11
List 8-3
Procedure 7-10
READ 3-3,6
Scope 3-8
Section name 3-4,11
STATIC 2-12; 3-4,10
Storage 3-9
XDCL 2-12; 3-3,8
XREF 3-3,8
Automatic variable 2-11; 3-9;
F-3

Index-2 CYBIL Language Definition

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | INDEX | DRAFT COPY

Byte offset

B

Basic types 4-4
Batch Debug
Definition A-2
Example 9-104
BDP A-2
BEGIN statement
Definition 5-19
Format 5-19
Binary object code, listing 8-3
Bind map 9-15
Binding programs G-6
$BINDING section 3-12
Binding section pointer
(BSP) E-9; F-12

Bit A-2
Blanks in syntax 2-8
Blocks 2-10
Boolean
Alignment E-2,3
Constant 2-5

Definition 4-7; A-2
Difference 5-5
Example 4-7
Format 4-7
Size E-2,3
Bound module addressing 9-15
BOUND parameter 4-33
Bound variant record
Definition 4-36
Equivalent 4-3
Pointer to E-8
Relative pointer to E-10
Tag field size 5-37
BRANCH break 9-78
Break report message 9-10
Breaks, Debug
Definition 9-9; A-2
Delete 9-42
Display 9-43
Set 9-77
BSP, see Binding section
pointer
Byte A-2
Byte-aligned E-3

Byte offset 2-6; 6-25,27; A-2

Revision F

¢-xapuy uonuye(q esendue] TIXD

1-¢ jewioy [SNOD

g-v uonruygsq

L1-6 3uiddngeq
do[puBy UOLIIPUO])
8-6 PI°Y NOLLIAONOD
8-6 3nga(‘9pod UOIIIPUO))
¥2-¥ ‘9-Z UOTIBU3BOUO)
ee‘0g-g 9oeds sseaduio))
81-% odA) jusuodwo)
»-¢ jes ‘quawmeldumo]
€1-¢ uonjeisdo juewaiduro)
1-8 9p02 saimnos Jurdwo)

gV uonruge(q

IT-% Sodueagns Jjo SUIYIRY)
Jerdwo)

8-8 SeIqelIBA

01-g Juswalels J]

6-8 suorssexdxy]

L'T-D Aoueroyyy

¢1-8 seandadiqg

6-8 Juswole]s JUIWUBISSY
awry-orrdwo))
¥1-8 9ATIORIP HTIdINOD
1-8 dun uorjefiduo)

gy eu],

8-8 SjuswaleIg
2-8 Supsry |
g-g SUOTIBIB[O9(]

-8 1B
uom,elrdumol
$2- sdurns Surredwo))
%g-., @anpeadoad |
dVMS ™ HIVdINOD#
-V ‘8- sjusmmo))
y1-8 [anoaaip LNHWNOD

$1°Z31-8 9ANORIIP
[013U02 JUBUWIWO))

0g-8 Fo0[q juswwo]) .

9-6 oI ANVININOD

9-3 JUSIILIFA0)

7Z2-6 19%00d ‘9po)

g-g ‘gg-L uonjeziurido Spo)
64 JI9jutod 9seq 9po)
ZZ-) uomonnsul yYXJWD
g-H uonouny yHO

%2-8 9188031 gNSMHD
7%-8 °18801 HNUIHD
22-8 2[8303 TINMHD
%%-8 918803 TIVIHD

4 uosIAey

1-¢ PIEA
£z-d @78
9-v JeuwIoyg
9- ordwexyg
gV ‘9% uonugeQq
€V ‘G-g jueIsuo)
1-y ouewnueydly |

-V oneqeydiy

§'z-d uewudiy
IajoRIRYD)
6€-6 purwWIOIqNS YYHD
g9 uonpuny YvHOS
7¢-6 puewwodqns AJVHD|
6€-6 puBwmOIqNs
HHISIDEY ~ HONVHO
$8-6 puBWUIOIqNS
HATVATINVEDOUd ~ HDNVHO:
0€-6 puBWUWIOOGNS

AYOWHN HONVHD
LZ-6 puBWIWIOIqNS
- IINVAHd T IHNVHD
0¢-6 purswmioqns WVHD
Lg-6 puswmooqns qQVHD
ZI% odAy
¥'5-d 9218
81-y 03 I3juUI0
g1y od4y jo jewiog |
GL'V uuqluyau
¥2-4 juswudyy
T-d IIGO'
27 9-2 IVD
62-¢ ANUSVD
64-¢ JewIog
0g-g sepduexy
6¢-g uonIuLIs(q
juswale)s HSVD
0g-2 uondnmsut HHSTIVD
0%-L uornjonaisut THYTIVO
G-, eanpadoig
0¢-9 uorpunyg
91-J sedendue] usemlsg
Surqed
0Z-L @dmpadsoxd QI YATIVO#
0z-L Dt Jorreny
G¥-6 3ngaQ ‘ureyod [[e)
8L-6 ¥eeaq TIVD
gz-), Suidind ‘eude)

1-0 108 IaomiIRy)
e

jBlI0l LSNOD

~

Suidmd ‘syor)

Constant

Constant

Boolean 2-5

Character 2-5
Declaration 3-1
Definition 2-5

Examples 3-2

Expression 2-7
Floating-point 2-5
Format 3-1

Integer 2-5

Ordinal 2-5

Pointer 2-6

Real 2-5

String 2-6
Control statements

CASE 5-29

CYCLE 5-31

EXIT 5-33

IF 5-27

Overview 5-26

RETURN 5-34
Conventions 6
#CONVERT_POINTER_TO_
PROCEDURE procedure 7-25
CPYSX instruction 6-30
CPYXS instruction 7-37
CSF, see Current stack frame
SCURRENT_LINE

function 9-90
$CURRENT_MODULE
function 9-90
$CURRENT_PROCEDURE
function 9-91
$CURRENT_PVA function 9-91
Current stack frame

(CSF) F-3,12
CYB$DEFAULT_HEAP
section 3-12
CYBIL and Pascal

differences H-1
CYBIL command
BINARY_OBJECT

parameter 8-2

BINARY parameter 8-2
DEBUG_AIDS parameter 8-4
ERROR_LEVEL

parameter 8-4

Example 8-7

Format 8-2

INPUT parameter 8-2

Index-4 CYBIL Language Definition

W] 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | INDEX | DRAFT COPY

DEBUG_OUTPUT attribute

LIST_OPTIONS
parameter 8-3
LIST parameter 8-2
OPTIMIZATION_LEVEL
parameter 7-32; 8-5; 9-16
OPTIMIZATION
parameter 8-5
PAD parameter 8-5
RUNTIME_CHECKS
parameter 8-6
STATUS parameter 8-7
CYBIL-defined elements 2-1
CYBIL formatter 8-26
CYBIL reserved words D-1
CYBIL syntax 2-8
CYCLE statement
Definition 5-31
Example 5-32
Format 5-31

D

Data
Alignment in memory E-1
Examples in memory E-16
Packed E-1
Representation in
memory E-1
Size requirements E-1
Types 4-1
Unpacked E-1
Data conversion functions 6-1
Debug compiler options 8-4,5
Debug functions
$CURRENT_LINE 9-90
$CURRENT_MODULE 9-90
SCURRENT_
PROCEDURE 9-91
$CURRENT_PVA 9-01
Overview 9-90
$PROGRAM_VALUE 9-92
DEBUG_INPUT attribute 9-3
DEBUG_MODE attribute 9-3
DEBUG_OQUTPUT

attribute 9-3,5

Revision F

g-xopuy uonmyaq ofenduey TIGLD

€V JIeyumrRQq
Z¥-6 syeaiq Sngaq 39je[e(
Z¥-6 puBmIWOdAqNS
AVHYE T ALATHd
¢y-6 puewwrooqns gTHA
0%-6 SYealq paidye(q
L3-6 38ngeq ‘symepq
gr-¢ desy jmnejeQq
€-¢ JIqEBLIEA
g1-¢ adLy,
0g-g uondeg
g1-z weadord
01-L 2Inpadoxd
I-1 Ma1AIBAQ
€1-2 °INpoNN
GI-9 uonounyg
1-¢ JjuEISUO)
8-g uonjeqidwo)
SUOIJRIB[OA(]
LI~ 10418
UOJBWSIW UOIJBIB[I9(]
G-g UOTBIOU [BWIOS(]
LN
8nga(ees ‘smeadoad 3urdsnga(g
G6-6 98]
; 98-6 opow dg
! 8-6 9[qeLIBA Snjelg
Gi6

Uoisses & Juijie;s§
61-6 3ury
G)-6 UOISSOS ' Jurwnsoy
01-6 S9sselppe weIisod]
1-6 MIIAIdAQ
8%°L-6 9y mdinQ
91-6 9pod peziundQ
L1-6 Surd3ngep IseInnN
12-6 JUeWUOIIAUS SULITI[nA
13-6 syeaiq opdnynpy
L1-6 Surssedoid jdnaisju]
829-6 o[y jnduy
A1jue
ajeredos 99s ‘suorjouny
G6-6 UOISSas
aArjoRIoqUI Jo o[dwexy
$QTI-§ UOTISSIs
Uyosjeq jo sidwexy
676 JUSIUOIIAUY
¥L-6 UoIsses B 3urpuy
0%-6 SY¥BAIq paxIaje(]
Lg-6 sHnerEq
I-6 SI9[puBY UCHITPUO])

Jjrarag

d uoisiAzy

8-6 9pP0d uoljIpuo])
Anua
ajetedes 995 ‘spurmIIO))
G¥-6 uteyo [[e)
LL'EY'TY'6-6 syeaag
01-6 oJessew j10dea Feaug
GI-6 So[npow punog
g‘e-6 seIMqULINY
77Z-6 JI10119
AWII-UOTINIAX2 UB IOYY
01-6 SuIssaippy
g-6 Jurssedoy

Ammn 8ngeQq
£%-6 Arewwung
LL6 INSLAS
LL6 dLHES
LL-6 HAOW dHILS LAS
LL6 JAVHId LIS
GL-6 NNY
vL6 1IN®
yL6 1INd
89-6 ASSIA
996 YSId
LG6 AdSId
89-6 HINVHA
TMOVIS TAVIdSIA
99-6 HHLSIODAY AVIdSIA
TINVYD0Yd TAVIdSId
296 AYONWHN —AV'IdSIA
676 LNHNNOYIANA
TONIDOHNGHAA TAVIdSId
S¥-6 TIVO AVIdSIA
€76 JAVHUL AVIdSIA
686 WNSIA
6¥-6 HASIA
gv-6 OSId
€¥-6 dSIid
g6 MVHYI dILATHA
o6 dT1Hd
6E-6 ¥VHD
¥6-6 AdVHD
6£-6 UHLSIDHY AODNVHO
¥6-6 HOTYA
TINVIDOUd THONVHD
086 AYOWHINW EDNVHD
1z26 IUINVAAAd IHDNVHD
08-6 WVHD
L2-6 AVHD

spurwwIodqNs Sngacy

spuBwwodqns Snqa(g

Dereference, pointer

Dereference, pointer 4-13
Descriptor for adaptable
object E-5,6
Diagnostics, listing 8-4
Digit A-3
Direct pointer

Converting from a relative

pointer 4-19
Directives

Compile-time 8-12
Formatting 8-32
Text-embedded 8-1
Directives, compile-time
COMMENT 8-14
Comment control 8-12,14
COMPILE 8-14
Definition 8-12
EJECT 8-15

General format 8-13
Layout control 8-12
LEFT 8-15

LIBRARY 8-16
Library control 8-12,16
Maintenance control 8-12
NEWTITLE 8-17
NOCOMPILE 8-18
Object library control 8-12,16
OLDTITLE 8-18

POP 8-19

PUSH 8-20

RESET 8-22

RIGHT 8-23

SET 8-24

SKIP 8-24

SPACING 8-25
TITLE 8-25

Toggle control 8-12
Directives, formatting
Definition 8-32

FMT 8-33

Genera! format 8-32
LEFT 8-36

RIGHT 8-37
DISB subcommand 9-43
DISC subcommand 9-45
DISDE subcommand 9-49
DISM subcommand 9-52
Display area F-9
DISPLAY_BREAK
subcommand 9-43

Index-6 CYBIL Language Definition

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/26 22.17.32 | 60464113 F | INDEX | DRAFT COPY

Equivalent types

DISPLAY_CALL
subcommand 9-45
Display Debug breaks 9-43
DISPLAY_DEBUGGING_
ENVIRONMENT
subcommand 9-49
DISPLAY_MEMORY
subcommand 9-52
DISPLAY_PROGRAM_VALUE
subcommand 9-57
DISPLAY_REGISTER
subcommand 9-65
DISPLAY_STACK_FRAME
subcommand 9-68
DISPV subcommand 9-57
DISR subcommand 9-65
DISSF subcommand 9-68
DIV operator 5-3
DIVIDE_FAULT break 9-78
Division operation
i Integer quotient 5-3
| Real quotient 5-3
Remainder 5-3
DSP, see Dynamic space
pointer
Dynamic link peointer F-4
Dynamic space pointer
' (DSP) F-3,12
Dynamic variable F-3

E

Efficiencies G-1
EJECT directive 8-15
Elements
CYBIL-defined 2-1
Scope of 2-10
Syntax of 2-8
User-defined 2-3
ELSE 5-27,29
ELSEIF 5-27
Empty statement 2-9; 5-15
END 5-19
Entry point A-3
Equal to operator 5-7,10
Equality, set 5-11,14
Equivalent types 4-3

Revision F

L-xepuy uonmuya(sfendue TIGLD

166 AUYNAAD0Ud
TINAYYN0S
. 066 ATNAOW LNIAYINDS |
06-6 ANI'TLNAYYNOS
29 YVHO$
0%-9 3ure) |
g%-9 SSHYAAV# |

suopoury |
peugap-.tasq 0SB 998s ‘suorOUN |
Pp-g reuwIog

¥P-g uonupgeq

juewese}s HHUA

92-9 o0

pIIOOGSOJD!:uI %umtm.z BS.IL;{[

9g-9 uoouny

MOOTO "HNINNNY ~ AT A#
18928 so[dwexy
28-8 seAmpdRII(g
9%'1-8 uorjdrrosa(q
6%-3 puswwWo)

9’p00 322IN0S .3(1{11’9(1110‘3_{

92-8 TIFAD ‘I1813BWIOg
62-3 PpUBWIWOD

HOYNOS T TIFAD " LVINYO4A
9 JBUWIO]
i GI-¢ °n[BA
! GI-z douaIdpey |
: Gl-g weaSoiq
€1°11-, eanpadoad
81°91-9 uompoung |
sIotowrered [BULIO.
02-¢ ANHYOd

03-¢ jewaoq

%3°'12-g serdwrexy

0¢-g uonjruie(q
JUeWaIeIs YOIl
€€-8 9AIYAITP LN

6L-6 Heaiq HONVOIJINDIS
TILNIOd ~HNILVOTA

6L-6 Yealq HILINIAHANI
TINIOd TONIIVOTA

31-¥ edAy

g-g 1JuBIsSuo)
quvnd-ﬁupvnt h ¢

8¥‘1-% sedAy pexig
60-1 oweJj
¥oeys Jo aed ozZIS-paxIdl
¢-H 9ZIS
Z-1 Juewusiy

oqurtod 2ATIRISI DAXT.T
bt et Dbl A4S Sl it s |

SUOKOUNJ PAULep-I18S[) OS[B 898 ‘Suonoun g

J uorstaey

GH QIS

Z-d yuswulny

1egutod pexi g

¥-V '68-¥ PP

- Sumsy ‘sonysouserp [ejeg
Lv HSTVA

G|

t

€-¢ 9Iqerrea |
pedousIajel A[[euteIXy

€-¢ 'gI-g 9lqelIeA
paie[dep A[[eUtoIXy
91-8 AJSIIEBS ‘SeouaJajel [BUIXH
LI-d S90ousJIeJel [BUINXT
-V 90UAIdJel [BUJISIXY

1-¢ saojeiadQ

1-¢ spueiedQ

¥V ‘1-¢ uonmugeq

L% 1uBIsuo)

6-3 owr-o[rdwo)
uorssordxyy
6L-6 Yealq |
MOTIHHAN LNINOd XU
6L-6 H®oIq
MOTAYITAO " LNINOLXH
9-g jusuodxy,
eI-d P[eY puedxy
0€-3 Ssjuswdle}s IIXH]
£6-¢ JjeulIog

yg-¢ odwexy

g€€-¢ uonmuyReg
jusuwrsle}s [IXH

3g-6 3u33nqep
‘10119 9WI}-UOTINIIXY
-y OWI} UOIINISXG
-y SULl UOTINO9XG
8L-6 ¥B31q NOLLNOAXH
1-8 UOIINO9XY
g-¢ uomneiado WN 2AISNIIXG
gy JueAay

¢%6_ °poo
19x20d Surssesoad 1041y
y-g suonydo zorrdwod 9ST] 041y
11 sedueiqns

Io ﬁm’vﬂmn 10117

seduelqns jo 3unyseyd 1011y

#GATE attribute

SCURRENT_PVA 9-91
Data conversion 6-1
Definition 6-1

Format 6-15

SINTEGER 6-3

#LOC 6-4
LOWERBOUND 6-4
LOWERVALUE 6-5
#OFFSET 6-27
Overview 1-3; 6-1
Parameters 6-15

PRED 6-6
$PROGRAM_VALUE 9-92
#PTR 6-7
#READ_REGISTER 6-30
$REAL 6-8

Recursive 2-11; 6-1; F-1,5
#REL 6-8

#RING 6-31
#SEGMENT 6-32

#SEQ 6-9

#SIZE 6-10

Standard 6-1,2
STRLENGTH 6-11
SUCC 6-12
System-dependent 6-1,24
UPPERBOUND 6-13
UPPERVALUE 6-14
User-defined 6-15

G

#GATE attribute 3-4; 6-16; 7-11
Global variable 2-11

Glossary A-1

Greater than operator 5-7,10
Greater than or equal to
operator 5-7,10

H

#HASH_SVA procedure 7-26
Heap

Adaptable 4-53

Alignment E-15

Allocation 2-12

Index-8 CYBIL Language Definition

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/08/25 22.17.32 | 60464113 F | INDEX | DRAET COPY

Integer

Default 3-12
Definition 4-46
Example 5-38
Format 4-47
Management 5-35
Size E-15

Identity operation 5-4
Identity, set 5-11,14
IF statement
Compile-time 8-10
Definition 5-27
Examples 5-28
Format 5-27
IFEND 5-27
Improper subrange type 4-10
IN operator 5-7,10,14
Indefinite value
constructor 3-14; 4-26,38,42
Inequality, set 5-11,14
Informative diagnostics,
listing 8-4
Inhibit code optimization 7-32
Initializing
Array elements 4-26
Effect of attribute on 3-16
Record 4-38
Set elements 4-42
Variable 3-4,14 -

INLINE atiribute 6-16;
(Inline functions 6-16,22
Inline procedures 7-11,18
Input
Compiler parameter 8-2
To programs 1-4
Input file, Debug 9-6,28
Input/output 5; 1-4
Integer
Alignment E-2,3
Constant 2-5; A-4
Definition 4-5
Example 4-5
Format 4-5
Quotient division 5-3
Range 4-5
Size E-2,3

1
11

Revision F

g-xapuy uoyruys(q adendue] TIGXD

81-8 H{TIdIWODOON
¥1-8 WTIdNOD

! GI-8 SOATIORIIp |
[OIIU0D SOUBUSIUTBIA]
G-y Sui33nqep [ead[-eunIBly

£1mn Sngeq

39s ‘Su3Sngep epos SUTYIBY|
G-V 3urssaippe SuryoBp|

| Iy

7-9 uonouny ANNOIUAMOT
9-g uonjerado yQ [edtdo]
€-g uorjersdo NV [ed130]
2%-L dlqetiea o0

0%-L SPI®Y ¥o0]

01-3 o[qelIBA [B20]

¢~ 9[qelIeA dIjeWOINE [BI07]
[8207]

79 UoLouny DOIF

L1-D 4ousrorge swry-peo,
9g-L xepur 9[qe} sded peor|
gV e[npow peoT,

gl-¢ uomoes TYYALITS

12-8 218301 pHOISI'T
12-¢ s°o18307 Sumsri

|

] 0I-F SpunOGIemoT]
|

|

%-8 JI9jeweied
¢-g suondg

01‘L-¢ 1o0jesado

SSATJIRITP [0IIUCD IDUBUIIUTBI

9Z-L UOHINUSUI FHVA'T
g-9 uorouny FATVAYAMOT

d uoSIA%Y

01‘,-¢ I0jeI9do UEY]) SSAT
9¢-8 Sumjewaog |
g1-8 awrj-aqidwo]y
9AT}OIIP Lg@{q,

$2-8 HILLL |

G928 DNIOVAS |
3-8 dINMS |

€58 LHDIY |
818 WTLLLATO
L1-8 HTLLLMIN
ST IddT |

g1-8 1OoWrd
ZI-8 SSAIJORJIP [0JJUOD JNOABT

91~ us®amj}aq s[[ed ‘sedenduer]
8-z x®jufs sdensduer
1€73°¢3°0%°61-g JuswolEIs |
‘1oqe1

T

!
1

L empasead INIOJATN#!
13-, uononaisur jurodLayyi
0%-L SPIeY Yooy/4e3]

|
|

1ry_
L6™

A

¢‘v-6 suorjedlyIoads [ea9] qcoﬂI

Jopidwos ‘Surysry

12-8 913303 L[XHAISIT

12-8 913303 SLOISIT

12-8 913303 TTVISIT

12-8 918303 ISIT

9-D 9o[npow payul]

-8 S9Iqe]3 sur]

0T-¢ 9dlgeLiBA B JO SWTIdIIT
91-8 PI02aI Kreaqry

91-8 2ADAIIP AYVUIIT
DT‘Z1-8 SAIIRIIP [043U0D ATRIqIT]
91-8 [013u0d Areiqry

01 Tenbe 10 ueul Ssor]

r

0g-¥ BUIOq

28 ordwexy

0¢-¥ uonueq
pPI0221 JUBLIBAUJ

6L-6 HeBa1q
VIVAd dad T dI'TvANI
€-G 19 ‘Uuor}d9sIelu]f
g1-¢ uonelado uorIdaSIAIUT
L1-6 3ngeQ
‘Burssesoad jdnazeuy
G6-6 ordurexy

¥-V uonmuiReq
3nge(g eaTjoRINU]
¢-9 uonouny YA T, NITQ

(e s iRy B ey

uotouny YADHALNIS

Manuals

Manuals

Online B-1

Ordering B-1

Related B-1
Manuals, related 5
Map buffer, purging 7-28
Margins, set 8-15,23,31,36,37
Maximum save area F-8
MAXINT H-3
MAXLENGTH function H-3
Memory
Alignment of data E-1
Cell E-1
Change contents during
debugging 9-30
Data in E-1
Display during

debugging 9-52
Examples of data in E-16
Packed data E-1
Size of data E-1
Unpacked data E-1
Minimum save area F-8
MOD operator 5-3
MODEND format 2-13
Module A-5

Addressing A-5

Declaration 2-13

Definition 2-10

Examples 2-14

Format 2-13

Level 2-11

Name 2-13

Structure 2-10
MODULE format 2-13
Multiple breaks 9-21
Multiplication operation 5-3
Multiplication operators 5-2
Multiring environment 9-21
Multitask debugging 9-17

N

OR operator

Nearly exhausted

resources 9-18
Negation operation 5-13
Negation operators 5-2
NEWTITLE directive 8-17
NEXT statement

Definition 5-41

Format 5-41
NIL pointer constant 2-6; 4-15;
E-5
No-op instructions 8-5
NOCOMPILE directive 8-18
Nonlocal exit 5-33
NORMAL field 9-8
Not equal to operator 5-7,10
NOT operator 5-2
Null string 2-7

(0]

Name

Definition A-5
Examples 2-3

Rules for forming 2-3

Index-10 CYBIL Language Definition

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | INDEX |DRAFT coPY

Object code

Definition A-6

Listing 8-3,21
Object library control
directive 8-12,16
Object module A-6
Object of a pointer 4-13
Offset, byte A-2
#OFFSET function 6-27
OLDTITLE directive 8-18
Online manuals B-1
Operands 5-1
Operators

Addition 5-5
Definition 5-1
Muitiplication 5-2
Negation 5-2

Order of evaluation 5-2
Relational 5-7

Set 5-12

Sign 5-4
Optimization compiler
options 8-5; 9-16
OPTIMIZATION _LEVEL
parameter 7-32; 8-5
Optimization of code 7-32; 8-5
Optimized code, debugging 9-16

OR operator 5-6

Revision F

T1-xopuy uonuys(y a8endue TIHXD

G1-L S8ure)d
02-L Al 9dTIVO# i
semmpacoad |
peuyep-18s[) OS[B 89S ‘SAINPaI0 |
3194 (VSd) !
Jojutod BOIER 9ABS SNOTAAL]]
8%-9 uonounjy (
V(E{HV_E[AVS_SHOIAE[HJ#§
R7-Q TBOIE SABS SNOIAdIJ!
Z1-¢ Ssuo[oes peuyepald
9-9 uoIssaidxs
UB JO J0SS829paid]

9-9 uonouny qHYd
9V dd
¢ seod£y jusreamnbe A[erjusiod
61-8 °ATIOBIIP dOd
gz-), oanpedoxd
UOISISAU0D 3INPad01d-0}-I3jUIod
- 81y uonmuyeq
Gg-9 uonouny SSHYAAV#
[[92 03 19juUIog
8- 9ouanbes of,
6-4 oanpedoad of,
8-1 PpJ029J jUBLIBA PUNOq O],
91§ onels
gg-H 9218
! L2-9 (Fdqunu
934q) jesgo peusig
: gg-9 Jusuwideg
“ 1g-9 38ury
1zg-g Jequnu juswdes uinjay
! 1€-9 Jequnu 3UlI UINISY
: 0T-H ‘61-7 °An®Y
€1-F 9ouaieIdy
8T1-¥ [[92 03 J9jurod
Lg-9 uonpuny [ASAAO#
e1-¥ 1900
G-d ‘ST-¥ TIN
¥-9 uonpuny jHOT#
glv Jeuliog
LTy opdwexy
eI 9ouaisjaIe(g
9-V ‘gI-¥ uonmuye(
9-g uEsueh
13-9 Jequnu 91Ag
€Iy SurulIssy
¢'z-d uswudIYy
91-% sed4y sqqesdepy
Jejurod
epg'\ ::v'\nd

THIC

seanpaooad pauljep-19S[) OS[E 998 ‘SeInpedseid

Jd uorsiay

12~} S3ulrI0juoul 9JUBWLIOLIS]

81-6 ¥®BOIq 9SNed
y1-g saejpwered Suissed
1-H SOOUdISIIp |
TIHAD Pue [BISEd
8°L-9 ‘6I-y OWEU juUaIed

L1-d sIoire
UOJBOIJIIoA I9JeWBIR]
gI-¢ UoI0es YHLANWVYVIS
#1-4 Suissed I9JoWEBIBJ
€1-L ‘81-9 ‘GI-g ISI] IsjewiBiERd
o[qes |
aded weysAg 99s ‘afqey 9deqi
gg-., dew o[qe} o3ed
GI-8 9AIIRIIP doueApR 98eJ
9-y 93e(|
g-@ J1ojowreted ito[rdwod 3urpped

£€°0¢-¥ sp1029y

gg-v sdeiry

16-F spaodoar sfqeidepy

6% sAeire o[qeidepy
0Z-% Jejewesed Surjoed

€8°0¢-¥ spiodvy

gZ-¥ sAeway

16-F spiodar ajqeydepy

6%+ sfeire ajquidepy

Iejewered qQHIOV
1-4 Alowewr

ur SJUAWA[PIYdeRJ
g9-¢ Aeydsiq

6€-6 e3uBy)
I9)st3al |

d

I-1 93enSuel JO MITAISAQ
-1 sweadoxd woay mding
83,6 Sngeq ‘ery jndinQ
L6 9 LNdLNO¢

v'eH 97IS

37 IBULIO]

g% sordwexy

8-y uonIuyeQq

G-z JumIsSUC)
¥'z-d Juewmusiy

[BUIPIO

1-g s[enusw 3ULILBPI))|

€H uenouny qUo

uonpuny qY0

PROCEND format

#COMPARE_SWAP 17-22
Definition 7-1
Format 7-10
#HASH_SVA 17-26
#KEYPOINT 7-27
Overview 1-3; 7-1
Parameters 7-10
#PURGE_BUFFER 7-28
Recursive 2-11; 7-1; F-1,5
#SCAN 7-30
#SPOIL 7-32
Standard 7-1,2
STRINGREP 7-2
System-dependent 7-1,20
#TRANSLATE 17-34
User-defined 7-10
#WRITE_REGISTER 7-37
PROCEND format 2-16
Process register
Read 6-30
Write 7-37
Process virtual address 2-6;
6-27; 9-91; A-6; E-5
Processor register
Read 6-30
Write 7-37
Program
Addresses in Debug 9-10
Declaration 2-15
Elements 2-1
Example 2-16
Execution 8-1
Format 2-15
input 1i-4
Name 2-15
Output 1-4
Structure 2-10
Syntax 2-8
Value, change 9-34
Value, display 9-57,92
PROGRAM format 2-15
Program level
specifications 9-4,5
$PROGRAM_VALUE
function 9-92
Programming
recommendations G-1
PSA, see Previous save area
pointer '
#PTR function 4-19; 6-7

Index-12 CYBIL Language Definition

$REAL function

Punctuation 2-9
Purge
Cache 7-28
Instruction 7-28
Map buffer 7-28
#PURGE_BUFFER
procedure 7-28
PUSH directive 8-20
PUSH statement
Definition 5-45
Example 5-38,45

Format 5-45
PVA, see Process virtual
address
Q

QUI subcommand 9-74
QUIT subcommand 9-74

R

Radix 2-5

Range A-6

Range checking
Compiler options 8-6
Toggles 8-22
READ attribute 3-3,6

READ break 9-79
READ_ NEXT INSTRUCTION

break 9-80

Read-only
Section 3-6,12,20
YWawianll. o 3 B <}

variaoieé o-o,0

#READ_REGISTER
function 6-30

Real

Alignment E-24
Constant 2-5
Definition 4-12
Format 4-12
Quotient division 5-3
Range 4-12; E-4
Size E-2,4

SREAL function 6-8

Revision F

g1-xopu] uonuya(sFensue TAXD

gp‘cg-g juswaSeuBM |
oS swrj-unyj
¢1-g UoIed0([y
¥oe)S amWIj-uny
aUII] UQIINJaXY 89S ‘awry uny
1-4 JUSWUOJIIAUS SWI}-Uny
7%-8 se[ddo],
9-g suonydo topidwoy
Buryoeyd swr-unyy
Gl-6 puswmoaqns NNY
9-7 JIsqunu 3ury]
[€-9 uonouny HNIY#
-y uomnoexe ‘Sury
1g-9 3urod
ul JequInu uanjey
0%-L ‘§%-9 JIequnp
L~V uonutye(q
61-6 8ngeQg
dury
LE-8 Surjjewniof
£g-3 dwn-o[dwo)y
9ATO_IP \[HOTY|
7€-g jEWIoy
: ¥e-¢ uonmugeq
juswele)s NUNLHAY
6¢-¢ oousnbes e 10] jeWIOY
, 07-¢ deoy B J0] jeWLIO]
8¢-g odwexy
6g-¢ uonIuye(q
juswelels [HSHY
3%-8 9ANDAIP LHSHY
1-d L~V ‘1-Z Spiom paAIss9y
%2-% S[OQUIAS PaAtassy
01-6 Sossaippe pojioday
€2-9 jewIoy
gz-¢ ordwexy
€6-¢ uonmuye(Qq
jusnielels \LVHdHY
92-% ‘GI-¢ 1BWLIO} JHY
¢-¢ uonerado
UOTSTATP JopUTBWOY
01-7 odouanbes
01 1oqurod eATIR[RY
01-§ PI0991 juBLIBA
punod 01 1s1urod aATIR[SY

JuawafeurwW YOBIS SWT-UNY

Jd uoIsIARy

0T-d 975 |
8-9 umjsy
8-9 uonouny THY# |
L-9 uompuny Yid#
61-% jewaoq
617 JIogurod pamq |
61-y uonjuygsq |
61-% J9gurod
10041p 07 3UT)I9AUO)
01-4 uewusiy
L-9 Jo j0efqo sseday
1yurod amqe[agi
1-g¢ siojerado [euOTIRIOY
I-9 ‘G s[enuew poje[ey
8-9 ‘61-y uowouUny THY#
LE-L PIIM
0€-9 pesy
g9-6 Aerdsiq
6€-6 Jo sjuajuod aduey)
Z1-d Sjyuswudissy
s1es18ey
gI-¢ uores YHISIDAYS
8Z‘I-8 9P0Y 904N0S JBULIOIOY
€I-6 SOSSeIppe peduslajey
g1-¥ Jeguted ‘sousiafey|
¢1-z weadoid
€1°gI-L 9anpadoid
7i-4 Buisseq
81°91-9 uorjouUny
siejowered 92UaI99Y!
S1-d ‘1L

‘1-9 {I1-g seanpedoad/suorjouny |

9AISINORY

¢'1d T°L 119 {11 uorsinooy
98-? JuBLIB A

gI'e-d 9718
68-F Sjuswold SurdUaIAIeY

0€-% JuBLIBAUL
8¢-F sjuawo[e SurzI[eryru]
£e‘0e-¥ rewaog
82-% SPIeIA
6£°88°L8ge-¥ sorduexy
63 uonugeQg
ag‘ee-¥ 1uBLIBA DUNOY
31'z-d
‘1g°0¥'¥E0gF Juswmuldny
I1g¥ olqeydepy
p.IOOGH
1-H Surmweidord
‘suogn,epuammoaag

Bururireidoad ‘SUOTIBPULTITOOY

Save area

S

Save area 6-28; F-2,8
Scalar types 4-4
#SCAN procedure 7-30
Scientific notation 2-5
SCL A-7

Scope attributes 3-8

SPACING directive

Intersection 5-3,13
Membership 5-7,10,14
Negation 5-13

Operators 5-12

Size E-14

Subset 5-7,11

Superset 5-7,11
Symmetric difference 5-13
Union 5-5,13

Scope of elements 2-10 SET_BREAK subcommand 9-77
Section SET directive 8-24

Attribute 3-4,11 SET_STEP_MODE

Declaration 3-20 subcommand 9-86

Definition 3-11,20; A-7 Set tabs 8-34,35

Example 3-21 Set type

Format 3-20

Name 3-4,11

Predefined names 3-12
SECTION format 3-20
Segment

Definition A-7

Number 6-25; 7-20

Return number in

pointer 6-32
#SEGMENT function 6-32
Segment number 2-6
Segment table map 7-29
Semicolon 2-9
#SEQ function 6-9
Sequence
Adaptable 4-53
Alignment E-15
Allocation 2-12
Definition 4-44
Format 4-45
Management 5-35
Pointer to E-8
Relative pointer to E-10
Return pointer to 6-9
#SEQ function 6-9
Size E-15
Set
Alignment E-14
Complement 5-4,13
Containment 5-14
Difference 5-5,13
Equality 5-11,14
Identity 5-7,11,14
Inclusion 5-14
Inequality 5-7,11,14

Index-14 CYBIL Language Definition

W | 01/22/87 19:59: 24 | 02/13/87 09:46:31 |87/03/25 22.17.32 | 60464113 F | INDEX | DRAFT COPY

Set value constructor

SETB subcommand 9-77
SETSM subcommand 9-86
Sign inversion 5-4

Sign operators 5-4

Size

Size fixer 5-37
#SIZE function 6-10
SKIP directive 8-24
SL, see Static link
Source

Source code

Source code debugging, see
Debug Utility

Space allocation F-1,1
Space compression 8-30,33
Spaces in syntax 2-8
Spacing 2-9

SPACING directive 8-25

Alignment E-2
Assigning elements 4-42
Definition 4-41

Example 4-43

Format 4-41

Initializing elements 4-42
Size E-2

Definition 4-42
Format 4-42

Data in memory E-1

Code A-7
Listing 8-3
Text input 8-2

Compiling 8-1
Efficiency G-1
Formatting 8-1,26

Revision F

g[-xopuy uonuye(95endueT TIHXD

81-¢ MaTAISAQ

02-¢ 404

61-¢ NIDJA4d

SJUSWIAYE)S PAINIONIIG,

11-9 uorjpuny HIONHTULS|

9-), judwole ajueiqng |

6-) usweld 3urng |

6-L jUSWS[d IAUIOJ

9-/, JUleWele [euIpiQ

$-), 1ULAWA[e J9391u]

Z-1 BULIO]

g-), uewele jurod-3uryeo]q

‘ g-, uonmuesqg

| G-l 7JUeWO[e IeyeIey) |

‘ G-}, JuswWs[e uwvajooyg

i aunpasoad JHUOHNILILS
‘ 13-% ‘L~ S3ulnsqng
| 119 uorpuny HIDNHATULS
| I1°-4 9zIS
I1-9 yduog
02-% JeULIOq
¥2'eg-v sordwexy
027 uonjruge(q
LV ‘9-g 3juejsuo)
9-g UOI}BUSIBIUO))
¥g-¢ Surredwo)
y2-y Surudssy

Arrarrrrr&o-a

1161 juswudiy
6% o1qerdepy
ﬁuugs'
¢l-g uonedo[y
79y sodL) o8eviog
6€-9 LISHY
¢¥-¢ HSNd |
GE-G MIIAISAQ
7-¢ LXHUN
: 799 dHYdA
8¢-G sordwexy
¢v-9 HLVOOTIV
SjueuIaIR)S
Juswedeusw 93vi0lg
6-¢ se9nqriie adeio)g
LIT-d ‘Z1-Z uorjBoo[[e adeimg
ag-g Snasg ‘epow daig
1€-§ PpUBWIWOD
HOENOS™ TIAD " IVINIOJ
8-6 3nge(Q
L8 PpuBwWwWOd TIFAD
18 [Ieo Jepidwo)
argeLIRA SMIEBIQ

SJUSWI}BIS PAINIINIIG

{
i
|

d uoisiaey

g-d ‘6-¢ ‘31-3 °IqElIEA dNjEIS
%1-¢ uomes DLIVISS

91-% sIejurod drjRIG|

Al T?'d ‘6-H (IS) Hur] d13RIG|
0T'%-¢ '21-3 9nquie C)ILVLSI

V6@ HTIHM
QI-¢ paInINIg

ge-¢ JueweSeUBW 95BI0IG ’
¥€-¢ NYNIAY |
6€-¢ LASHY
€¢-¢ IVHdHd |
Sv-¢ HSNd |
€1 MIIAIAQ |
I¥-¢ LXHUN |
LV 8IGT-¢ IS |
1873°¢2°02°61-¢ [99qe1 |
Lg-¢ dl ‘
¥7-¢ Hd9d
029 YOod (
€€-¢ LIXH
G1-G ‘6~z Aydwy
S1-§g uonjIuLe(q
16-¢ HTOAD ‘.
9¢-9 IOiSUOO 1
6¢-¢ HSVO
61-9¢ NIDH4d
GI-¢ JUOWUSISSY
Sr-¢ AILVOOTIV |
(s)yuswerels)
%1~ seinpadoad paepue;s|
Z'1-9 suorjounj pJaepueig
sweJj JoBIS PUB
JoB]S SWI}-UNY OS[B 935 ‘YorIg
ZI-¢ uo1Res JDVISS
QZ-9 ®BOIBR 9ABS SWERIJ JIBIS
89-6 Aepdsip ‘owrea] Hoelg
11'9-4 3aed szIs-s[qelIBA
8‘Z-Jd ®eIe 2AERgG
LG 7euwrog
g‘a-g 11ed ozIS-poxIg
%Z-d 9sn Jo ojdwrexyg
6-d ®oae Aedsig
1-4 uonduosag
8%-9 ‘g1-g owel] el
o[qe} aSed waysAg @9s ‘IdS
zg-1, amnpadsord TIQJIQ#

e LEVTCERITE

ampadoxd TIOdS#

Structured types

REPEAT 5-23

WHILE 5-24
Structured types 4-20
Subrange

Alignment E-24
Definition 4-10

Error checking 4-11
Example 4-11

Format 4-10

Size E-2,4
Subscript bounds 4-25
Subset of a set 5-7,11
Substring

Definition 4-21
Examples 4-23

Format 4-21

Of a string constant 2-7
" |Subtraction operation 5-5
SUCC function 6-12
Successor of an expression 6-12
Superset of a set 5-7,11
SVA, see System virtual
address
Symbol tables 8-4
Symbolic

Addressing A-8
Cross-reference listing 8-3
Debugging A-8
Symbols, reserved 2-2
Symmetric difference 5-6
Symmetric difference
operation 5-13
Syntax 2-8
System-dependent
Functions 6-1,24
Procedures 7-1,20
System page table 7-26
System virtual address 7-26;
A-8

T

Tab settings 8-34,35

Tag field

Definition 4-35

Size 5-37

Terminate break 9-18
Text-embedded directives 8-1

Index-16 CYBIL Language Definition

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 |60464113 F | INDEX |DRAFT copY

Types

TEXT field 9-8
TITLE directive 8-25
Titles 8-17,18,25
Toggle control directives
Definition 8-12
Listing toggles 8-21
POP 8-19

PUSH 8-20

RESET 8-22
Run-time checking
toggles 8-22

SET 8-24
Traceback A-8
#TRANSLATE procedure 7-34
Translation table 7-34
Trap interrupts 7-27
TRUE 4-7

Type

Declaration 3-18
Examples 3-19

Format 3-18
TYPE format 3-18
Types 4-1

Adaptable 4-48
Adaptable array 4-49
Adaptable heap 4-53
Adaptable record 4-51
Adaptable sequence 4-53
Adaptable string 4-49
Array 4-25

Basic 4-4

Boolean 4-7

Cell 4-12

Character 4-6
Equivalent 4-3

Fixed 4-1,48
Floating-point 4-12
Formats for using 4-2
Heap 4-46

Integer 4-5

Ordinal 4-8

Overview 1-1; 4-1
Pointer 4-12

Pointer to cell 4-18
Potentially equivalent 4-3
Real 4-12

Record 4-29

Relative pointer 4-19
Scalar 4-4

Sequence 4-44

Revision F

LI-Xopu] uoniuya(q sdendue TIGLD

¥¢-G IewIoyg
gg-g o[dwexy
$2-G uonuLeq
juswate)s TTHM
-g 8umysty ‘sorysouserp Sururep

|
|
i
i

M

ge-F JBWLIO]

Le¥ ordwexy

ge-f uonmuygeq
9g‘ge-¥ punog

PJI028I JUBLIBA

I1°9-d owesy

¥oe)s Jo jaed ozIS-9[qBLIBA

L1~ UOI}BI0[[R® S[QBLIBA
- sed4y,

¢-d ‘6-¢ ‘21-3 o1eIg
9‘¢-¢ Aquo-pesy

g-d OEQBIHOQHB [‘800"[
01-2 [eo0]

01-¢ QwWnaJIT

PI'p-¢ uorjRZI[ETIIU]
I1-2 [eqo[D

| ~ gg jewoy
LTST'IT'6°L°g-¢ sojdwrexy

: - orueuiq
8-V ‘g-g uonuyeq

g-g uog:;’e.m[aaq i

88 swr-o[rdwio) |

g-d ‘6 '11-g opewomy
8 V 9 e-¢ SG&HQIJ;&V

s[qerie AI
€-¢ JEeULIO} YVA|
¢1-z weadoig

€1°g1-L empadoig
yI-d 3usseqd
81°91-9 uonouny
siajewered anjeA
J07oNJ13sU0d Injea
9JTUIJOPU] 99§ ‘IOJONLIJSUOD SN[BA

A

¥1-d

‘e1°71-). sielewered anrea

juewelels TITHM

Jd uoisiasy

v1i-d
‘81°21-L siejowrered 90USISIIY
€1'01-, sIsjoweIR]
8I‘IT-L Suluy
01-L 7Jewiog
€1°11-2 siojewered [ewwIO]
9T'%1-L sejdwexy
§T-L 3ul[e)
01-4 sSoIngualy
GI‘ge1-) saojeweted [enjoy
s9Inpadold paurjep-I9s()
yi-d
‘81°91-9 stejewreted anfep
yi-d
‘Q1°91-9 stojowreted o9ouaIsiey
8I°GT-9 siajewreIRd
gg‘91-9 Buru]
G1-9 jewioyg
81‘91-9 SiojoweIed [BULIO]
12°61-9 seo[durexy
02-9 3ure)
¢1-9 seIngLmy
0Z‘81-9 sisjowrered [enjoy
SUOI}OUN] PauIJep-Ias()
£-7 SoweN
€% uonuyeqg
G-Z SIUBISUO)
L-% suorsseidxs jueisuo))
SUSWS[d pauLep-1as()|
P1-9 uorpuny HN'TVAYHddN
01-% spunoqiaddp
€1-9 uonouny gNNOdYdddN
€2-¢ 'TILNO
1-4 AJlowawr
ur sjuswa[e peyoedun
G- 1es ‘uorup)
¢£1-¢ uorjeIado uoru()
gg-}, eanpedoad

NOISYHANOD ~ AIMDHHONN#

n

01-% 9o3ueigng
02-v peanjonag
02-% 3utng
9y o8eimg
%% 19

ampasoad NOISHIANOD TIAMOAHONN#

WHILEND XREF attribute

WHILEND 5-24 X
Word-aligned E-3
'Words, reserved 2-1; A-7; D-1

WRITE break 9-80 X registers
#WRITE_REGISTER Change 9-39
| procedure 7-37 Display 9-65

XDCL attribute 2-12; 3-3,8
XOR operator 5-6
XREF attribute 3-3,8

Index-18 CYBIL Language Definition Revision F
W | 01/22/87 19:59:24 | 02/13/87 09:46: 31 |87/03/25 22.17.32 |60464113 F l INDEX |DRAFT cory

SILVLS TILINA
HHL NI
IV I
AYVSSHOIN
FDVISOd ON

|
@)

8619-9Z1SS NN ‘SIITH UIpay
enuaAy uolSurxery ‘N 110GV

6IcHYV

UOISIAL(] suoTedrqng » A3ojouyda],

VIVd TOYLNOD

FASSHAAAV A9 dIvd d9 TIIM FDVLSOd
| NI ‘stiodBouury T9Z8 ‘ON HWied [TBJ SSB[D-SIld

TIVIN. ATdHY SSUNISNd

______________ | ll “£[uo ode} yym seSpe [es

foul] pe1jop uo ploJ 8Ses[,

(9p1S 19430 WO} PINUIIU0D) SIUSTTON,

about who would use it and how it would be used. Your comments will help us
improve this manual. Please take a few minutes to reply.

CYBIL Language Definition 60464113 K

|We value your comments on this manual. While writing it, we made some assumptions

Who are you? How do you use this manual?
[0 Manager O As an overview

O Systems analyst or programmer O To learn the product or system
[0 Applications programmer O For comprehensive reference

[0 Operator O For quick look-up

O Other

What programming languages do you use?

How do you like this manual? Check those questions that apply.

Yes Somewhat No

0]

]

Do the illustrations help you?

Comments? If applicable, note page and paragraph. Use other side if needed.

m] m} O Is the manual easy to read (print size, page layout, and so on)?
m] (m| O Is it easy to understand?

m| [m] O Does it tell you what you need to know about the topic?

m]] O Is the order of topics logical?

O O O Are there enough examples?

O] O Are the examples helpful? (O Too simple? O Too complex?)
m] m] O Is the technical information accurate?

O] O Can you easily find what you want?

Would you like a reply? [Yes O No

From:
Name Company
Address Date

Phone

Please send program listing and output if applicable to your comment.

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/08/26 22.17.32 | 60464113 F | COMMENT SHEET | DRAET COPY

Pgeg e —
BEg R —
66-¢ * (eouembes e un) LASHY

| 0b-g " (desy e um) LASHY
fzg - e —
Qg e usnd
o e pa
JGg it a1
Bhg e —

| 0BG e I

1 88_9 \LIXH

| Lgg e TIOAD

‘ Gz_g HSVO

i 6IC e NI

| Gr-g - JusmuBssy

| g AIVOOTIV
§ X9pu] juswajels

Bep e WA gpp —

8I-¢ ddAL & 10)) ANHOOYUd

017 sSusaqng OiL FENAED0Ud

0z% =~ (Pexy) ONIMIS 231-% -~ Ioqurog,

6Yv - (olqesdepe) DNIWLS 8% o [EUTpIQ)

g e OLIVIS| £1g e TINAON

gy (poxy) IS, 1z ANIAON

S0 2 (1qerdepe) dES ¢y s HYADALNI

[y e 188 e T ——

0g¢ -~ NOLLOES gy - (e1qeydepe) JVAH

LY'e¥'9%¥ ‘g1 T ddy gr-9 NOLLONNM

STp e e ANTONILE

S (uerres) qHODTY 15 ISNOD

08-¥ (uenreaur) qyOQHY, 9F% 4VHO

1S - (eiqeydepe) qyOQHY| TF ggicr]

1 e avER B NVETOOS

o & A Wvepodad, Sg¥ (PoXT)) AVYHY

91-z (weadoxd ' 10)) ANHOOUd] 6%F ~ ° ° ° (e[qeidepe) AVHYY

Xopuj pIomAdy

Function Index

W | 01/22/87 19:59:24 | 02/13/87 09:46:31 | 87/03/25 22.17.32 | 60464113 F | INSIDE BACK COVER | DRAFT COPY

|
1
|
#ADDRESS 625 [#PTR............. 6-7
$CHAR 6-2 | #READ_REGISTER 6-30
#FREE_RUNNING_ SREAL 6-?
CLOCK. 626 WREL 6-
FUNCEND 6-15 #RING 6-3
FUNCTION 6-15 4SEGMENT 6-3
$INTEGER 6-3 #SEQ 6-
#LOCo 64 @#SIZE 6-1
LOWERBOUND 6-4 |STRLENGTH 6-11
LOWERVALUE 65 sucC............ 6-13
#OFFSET 6-27 [UPPERBOUND 6-lj
PRED 6-6 [UPPERVALUE. 6-1
#PREVIOUS_SAVE_ User-defined functions 6-1%
AREA 6-28
Procedure Index
#CALLER_ID 7-20
#COMPARE_SWAP 7-22
#CONVERT_POINTER _
TO_PROCEDURE 7-25
#HASH_SVA 7-26
#KEYPOINT 7-27
PROCEDURE 7-10
PROCEND 7-10
#PURGE_BUFFER 17-28
#SCAN 7-30
#SPOIL. 7-32
STRINGREP 7-2
#TRANSLATE 7-34
#UNCHECKED_
CONVERSION. 7-35
User-defined procedures 7-10
#WRITE_REGISTER . . . 7-37

KEATIV

TAYVNIEI T NOILISOd$d A

It e HNI'I_LLXHN—LEID&IAO]

L QT e XEVNIE |
-1 HILAIM THDVAEdAD ~LXAN"LAD$IAD
..'['["""""" WHLSAS _[.[........... AHVNIH i
~ DNI.LVH{E{dO$dAO| “AAATM " LADSIAD
4! 14 ~LXHAL~NEJO$d XD A ALJILLNAAI
gL qT1d | TETIATLED$dAD
; Tq¥00FY T NEdO$dAD, g VALNIOd ~ 1L
13 S HTId ™~ NIdO$dAD TAYVNIATLED$dAD
%L Ty ATl It 777 HILILT YVANVILS
AV’IdSI(I NAdO$dAD, TAV'IdSIA$dAD
gL A1 QT e HIONTT
’ TAYVNIE T NAJO$dAD THOVd TAVIdSIA$dAD
fIT T~ J0 ™ HIDNATS$dAD o 4 S LOHArd
a%-{{ """ ANTT HSOTASdAD THOVA TAVIASIA$dAD
f[[""" suoryedryIoadg o[-1t - _ t __ T HHIINNON
e SRR TVNINMEL N E[{)Vd "LNE‘{H}IHO&U&O
; ~OL™AALOANNOD o NOLLISOd
: “ATIALdAD H1Id ~INIYINO$dAD
ST e o S ANITAVIdSIA
~IVIIHVA~TADSIAD I f;&aﬁgﬁgj%o
TT e e - A
%II TAYILIVI T qugd{:‘l o TINAYINO$dAD
3 A S qao0dy al S S H'-II\ZI_HSO'IQ&L\O
TLXANTLIDS$IAD -1 AN~ TTIITAYVYNIISdAD
Xapu] aimpasoid O/I TIIAD
ges T 9ATIPIIP {'TLLL LI-8 = ° 9ATIRIIP H'TLILMAN
SZ‘S 9ATIOBIIP PNIOVLS 91-8 =~ 9AIRAIP AYVMIIT
pes 9ATIAITP JI3S 9gcT-8 * " " " ° 9ATI0RIIP TAM'T
f’Z‘S """ SATIORIIP LHS| gg-g " 9ATIORIIP LI
Le'egg "~ aA[oAIP LHOIY §z-8 ' ' ‘puBWWOd FOHNOS
?Z'S """ SATIORIIP [HSHY TTIFAD T LVINYO4d
02'8 """ 3ATIOSITP HSNd g1 "~ T SATIORITP \[LDHIH
51 - -~ SATIORIP dOd g8 - puBwiwios JigAD
EI'S 3ATIRITP {'TLLLATO ¥I-8 ° 7 7 7 2anpaap HTIdINOD!
" earRaIp HTIdJIWNOOON ¥1-8 7 eAmpaap INHIWIWOD

xopuj uonenduwo) pue FUIEUrIoy]

CYP$POSITION _
DISPLAY_PAGE

CYP$POSITION _FILE _
AT_BEGINNING.

CYP$POSITION _FILE _
AT_END.

CYP$POSITION _
RECORD_FILE.

CYP$PUT_KEYED_
BINARY.

CYP$PUT_NEXT_
BINARY.

CYP$PUT_NEXT_LINE . .

CYP$PUT_NEXT_
RECORD.

CYP$PUT_PARTIAL_
LINE.

CYP$SKIP_LINES

CYP$START_NEW_
DISPLAY_PAGE

CYP$TAB_FILE

CYP$WRITE_E
BLOCK

CYP$WRITE _END_OF_
LINE.

CYP$WRITE _END_OF_
PARTITION

CYP$WRITE_END_OF_

2
£
»)
5

RECORD.

