O

1
July 23, 1984

AN 325

Advanced Communications Systems Development

Coding Conventions

July 23, 1984

This document describes the conventions and procedures to be used
by programmers in the development and maintensance of Distributed

Communications Network
imrptementation ftanguagee.

Software

(OCNS)

in

the CYBIL

o S0 *0 o0 o8 09 »o

1
ACSD Coc¢ing Conventions .
July 23, 1684

Table of Contents

1.0 INTRODUCTIUN e ® ® @ o e ° o e ¢ & ° ° o ¢ s O o o o 1'1
1.1 PURPOSE o o o« o« ® 6 o &6 ®© ®© & o o e ° ° ° o o o o 1-1
1.2 REFERENCE DOCUnENTS o o e ® @6 © @ & » & o o & o o o 1-1
1.3 CUNFQR"ANCE AND ENFURCEHENT e o e o o & o ¢ & o o s o _1‘2
2.0 DUCUHENTATIGN e ®© @ o @6 e e ® o 8 o o © o o o ¢ O 9 o 2-1
2.1 PURPOSE o o ¢ ¢ ¢ ¢ ¢ @¢ ¢« ¢ o o ¢ o @ o o ¢ o o o o o 2‘1
2.2 GENERAL REQUIREMENTS o o o o o @ o o ¢ o ¢ o o o o o 2-1
2¢3 PROLOGUE DOCUMENTATICN o ¢ ¢ ¢ @ o o o o o o o o o o 2-1
2.3.1 MODULE PROLUGUES e ®© e @ & e o o o o o o o o o o 2=2
2¢3e2 PRDGPA",PRGCEDURE,FUNCTIUN PROLCGUES e e o o o o 2-3
2¢302.1 PURPOSE @ ¢ ¢ ©¢ ¢ o ¢ ¢ ¢ o ¢ © o o o o o o o 2=-3
2‘30202 OESCRIPTION ® ® ®© @ » @& o & ® o o ¢ o o & o o 2-‘
2.302q3 CALL FORMAT ¢ ¢ ¢ ¢ ¢ o ® @ 5 o 0 o o o o o o 2=6
2.3.204 CO"”AND FORMAT e ®€ ® e o © o o o o o & o o o 2‘5
2.302.5 ENTRY CONDITIUNS @ @ ® o o 8. O e & & o & o o 2’5
2e¢3¢246 EXIT CUNDITIUNS e o @ 8 ®© o ¢ o @ » © o o o o 2=6
2¢3e2.7 ERROR CONDITIONS e ® e & o ¢ o o & & o o o o 2=6
234248 INTERTASK MESSAGE INPUT e« @ ¢ ¢ ¢ @ o o o o o 2=6
2030209 INTERTASK ”ESSAGE DUTPUT ¢ ® o ¢ o © o o o o 2‘7'
203.2.10 GLOBAL DATA REFERENCED o« ¢ @« ¢ o ¢ ¢ ¢ o o = 2=7
203‘2.11 GLUBAL DATA "ODIFIED e ®© @ o e e o 8 o o o o 2-7
20302012 NOTES AND CQUTIUNS o'c 9, @ © e . © o o o o o o 2-7
2.3.3 DECLARATION (CONST, TYPE AND VAR) PROLOGUES o« « o 2-8
2.4 CCDE LEVEL COCUMENTATION o o o ¢ ¢ ¢ ¢ ¢ @ o o o o o 2=9
3.0 NAMING CUNVENTIONS e & @ ® & e & ° ® o o o o e o o 3-1
3.1 GENERAL e e o © o & ¢ ¢ o ©° O O e o L] 3'1
3.2 DECK NAMING CQNVENTIUNS e © ® 6 o o o & & o & o o o o 3-3
4,0 CaDE LAYOUT e ®© @6 @ @ & © @ o o ¢ ° O & O ¢ o o O o o 4-~1
401 LAYDUV CUNTROL ® ® e o o °o @ & o o o & o ° @ & ©o o o 4-1
4.1el PAGE EJECTS e ® © ®© e ® e o e © & & ° o o " s o o 4=1
401.2 TITLES e 6 © o e o6 e © & ® ® & & & o ©o o ° o o o 4=1
4.103 LISTING DIRECT!VES e ® e o e ° o o ¢ s @& o© & 9 o 4-2
4,2 MODULE LAYOUT o @ o ¢ ©¢ ¢ ¢ @« ¢ o @ @ 9 @ o o o & o o 4-3
4,3 PROGRAM/PROCEDOURE/FUNCTICN LAYOQUT o o ¢ ¢ o @ o o o o 4-3
4.6 COMMON DECK LAYOUT e @ ®© ® e e o & % e o s © o O ¢ o 4=9%5
4,1 "B" - BINDER DIRECTIVES o o o ¢ ¢« ¢ o o o o ¢ o o 4=-6
hebo2 "C" - COMMON DECK CALLS ¢ ¢ @ ¢ ¢ ¢ ¢ ¢ o o o o o 4~¢
4e643 "D™ « CONSTANT AND TYPE DECLARATIONS e o © o o o 4=-7
bebot G - GROUP CD"HON DECK CALLS e o o @ o o o o o o 4'7
beobe5 "H" = DOCUMENTATIUN HEADER e ® 6 ° o o © o O o o 4-8
bebeb ™I™ - CYBIL INLINE PROCEDURE e ®© °o o o o o o o o 4-8
Gebe7 "L" - LINKER DIRECTIVES e o o o ¢ o o & 0 o s o 4=9
bebo8 T - TYPE IDENYIpIEPS e o o o & o o & & oo ° o o 4-9
4e46o9 "X® = CYBIL XREF CECLARATION o ¢ ¢ o ¢ ¢ o o o o 4=-9

5.0 CODING ® © ®© o ©® o & o & e o & & o o e o 5=1
501 INTERFACES e ® e 8 o6 e e e e & e * % & & o ° © o o o 5’1

O

‘C

ACSD Coding Conventions

5.2 PR

5¢2¢1 PURPCSE « o o o o o o o
5,202 LENGTH o o &

5.2.3 CNOMPLEXITY

3 DATA DECLARATIONS

4 ¢L0OC FUNCTION o «
5 CASF STATEMENTS .
6 EXPRESSIONS « o o

N

o ¢ o 6 o @
o 6 o 0 o o
e o 0 o ¢ o
o ¢ 6 o o
e o o o & o

CODE REACABILITY . .
FORMAT QF STATEMENTS
DECLARATIONS o o o &
BLANK LINES o« o o o o

(o0 ¢ S e o 3
e o o o
w N O
e & o o
¢ o o 0o

Appendix A

L]

L * L] L] L] [] L] L] L]

Al.0 CODING EXAMPLES o
Al,1 PROCEDUPES ¢ o o o o
Al.2 "C™ TYPE COMMON DECK
A1.,3 0" TYPE COMMON DECK
Al.4 "H™ TYPE COMMON DECK
Al.5 "X™ TYPE COMMON DECK

® o o o & o
e o o 0 & O
® & 6 o ¢ o

Appendix B

[] [] L] L J L] [] ® L] [] L]
Bl.0 ABBREVIATICONS AND ACRONYMS

Appendix C

Cl.0 ERRCOR MESSAGE GUIDELINES .

OGRAMS /PRCCEDURES/FUNCTIONS

[e & o o

e & o & &

® 6 o & & o & o

o o o o e &6 o 06 0 o * O

e 6 o O 0 o

e & ¢ o 0o & o o

e & o6 &6 & & o o

o & o & o o

2
July 23, 1984

5-1
5-1
5=2
5=2
5-2
5-2
5=3
5-3

e & & &6 &6 & o o
e & o 6 o & o O

-1
6-1
6-2
6-3

e o o o
o o o o
e o o o

A=1

[]
]
L]

Al-1
Al-1
Al-4
Al-4
A1-5
A1-5

e ¢ o o & O
e o o & & o
e o o o & O

e o o B=-1
e o o Bl‘l

e o o Cl-1

1-1
ACSD Coding Conventions !
Apell 20, 1984

1.0 INTROOUCTION

N
o

1.0 INIRODUCTIION

1.1 BURPASE

This document describes the conventions and procedures to be used
by programmers in the development and maintensnce of Distributed
Communications Network Software (DCNS) in the CYsIL
implementation language.

There are @ variety of routines mundane aspects associated with
writing programse A set of coding conventions remove from the
programmer trivial decisions relating to module formats name
generations etce thereby leaving more time to concentrate on the
important matters.

During the 1lifetime- of°' a large software products the aversge-
developer will caoame in contact with a large number of progranss
written by and wmaintained by many other prograamerse. A
consistent set of coding conventions helps the programmer ™“feel :)
at home® with s new program and therefore is able to begin doing. . ~
useful work soonere.

The implementation of these conventions will iIncrease the
efficiency of program developments improve the reliability and
maintainablliity of the program and aid Iin the trsining of persons
who wil} be maintasining or using the programe

1.2 REEERENCE_DOCUNENIS

Programmers using this convention should slso be familisr with
the CYBIL Implepentation _Dependent Hapndhagk (DCS #ARH3078)e This
convention used the “CYBIL Program Library Conventions®™ and the
»CYBIL Coding Conventions"” sections from the CYBIL Handbook ss
guidelinese The following sections from the Handbook are slso of
particular interest?

e "CYBIL=-CM/IM Type and Varlable Mspping®™ - describes the
MC 68000 dats formats for each of the supported CYBIL data typese.

e "CYBIL=-CM/IM Run Time Environment®™ - describes the run tinse
environment? memorys parsmeter passings varisblesy hesp
managements etc. AN,

L

O

1-2

ACSD Coding Conventlions

Aprll 20, 1984

1.0 INTRODUCTION
1«2 REFERENCE DOCUMENTS

« "Procedure Interface Conventions®™ - describes conventions thst
should generally be used by designers of procedurs! interfacese.
The conventions in this section should be followed by programmers
using the ACSD Coding Conventlione

« "Efflcienclies (General and CM)® - |ists a group of prograaming
tips to help the wuser better wutilize the CYBIL development
environment,. It will be added to as additional tips become
knowne

e "Implementation Limitations (General sasnd CM)® =~ describes
implementation (Imitationse.

The ERS__for _the CYBIL Egecmatter ¥1.0 (OCS #ARH2619) is snother
document that programmers using this convention should be

familiar withe This document describes CYBFORM, the utility used
to format CYBIL source code to maximize readabillity.

CYBFORM is the major softwsre tool for enforcing ACSOD coding’
conventionse All programs MUST be run through the formatter. If
additional code is added after this processy it is required to be
in the ssme format or the program must be run through CYBFORM
agsine .The formatter should be responsible for?

- g8l indentation
- capitalizing keywords
. - inserting the proper number of blank llines
- supporting 95 character saqurce lLineg— """
- repeating the tsbel at the end of & structured block
- etce .

1.3 CONEQRMANCE AND_ENEQRCEMENI

The spirit of the conventions as well as the specifics should bde
adhered to. The enforcement of these conventions and the
acceptance of "reasonable deviastions™ are the responsidbility of
the code reviewers, Programs which do not conform to these
conventions will be returned to the progrsmmer for correction.

It parts of the convention are found to be unworkable or if some
issyues are found not to be covereds this document should be
updated.

ACSO Coding Conventions L
Aprit 20, 1984

2,0 DOCUMENTATION T

2.0 DOCUMENIATION

2.1 RURPOSE

The primary purpose of documentstion is to help someone other
than the original developer understand what the code is doing.

2.2 GENERAL_BEQUIRENENIS

Comments uithin CYsIL code should provide paonrcedundant
information describing why or what a series of CYBIL statements
are doinge

All documentation snd comment lines should contain complete
English sentences with correct punctuatione. Exceptions are
allowed in embedded comments, titles snd dats declaration stand- .
slone comments (such as "Work codes for intertask messages.™). /*ib
N

Documentation should avoid the use of personal pronouns (hes shes
hims hers etcede

when feasibles comments should be kept genersi enough so that
they wiit not become outdated by detailed changes to the code.
¥here values are defined by constants (CONST), the name rather
than the value should be referenced in the docusentation.

The sbbrevistions for technicsl terms which are to be used In
documentation are listed In Appendix A, A module whose-
documentation makes extensive use of terms not in this fist may
define a list of sbbreviations and include It in the module level
documentatione All other technlcal words and phrases nust bde
completely spelled oute Routine names and mnemonic names of
tables and harduare components are not considered abbrevistionse.

2.3 PROLOGUE_DOCUMENIAILON
The 1information contained In s prologue should be at the level
indicated by the complexity of the code which it is documenting.

Defined formats exist for the informstion provided in prologue
documentation. The general format Is as followuss

ACSDO Codlno Conventions

2=-2
Aprit 20, 1984

2.0 DOCUMENTATION

‘z:) 2.3 PROLOGUE DOCUMENTATION

- An uppercase keyword sppears in colusn 3 followed by a ":%.

- Text begins on the next line indented two spaces from the
keywords and mey continue (at the same level of indentation) for
as many lines ss necessarye.

- Blank comment lines may be used to separate paragraphs, but the
indentstion ltevel should be naintained.

« Nhere 1ists of varisbles, parameterss acronyms or abbreviations
and 8 description of each are useds the description continuation
lines (if necessary) are indented & columns from the keyworde

- Each keyword snd the associated text must be separsted from the
next keyword by s blank comment finee.

The keywords that aspply to esch of the prologue documentation
types are defined in the following sectionse. ’

2¢3+.1 MODULE PROLOGUES

PURPQOSE?
A short description of what the module doese. This should
contain the purpose of the module and the reasons for
grouping the declarations In the modules rather than
desceibing the purpose of each proceduree

{
{
({
{
{
{
€ DESIGNS ,

{ A one or two parsgraph overview description of the design
{ of the modulees This should describe how the module works
£ in genersl tersge Usage of specific variable or procedure
2 4 names s discouraged.

{

14

<

{

{

{

{

{

GLOSSARY? .)
A list of scronyss and abbreviations used in this module
(which are not defined in the appendix to this convention)
and their meaninge This section may be omitted If no new
acronyms or sbbreviations are used in this module.

Copyright Control Data Corporations 1984,

ACSD Caoding Conventlons

2-3

Apeitl 20, 1984

2.0 DOCUMENTATION
2+3¢2 PROGRAM/PROCEDURE /FUNCTION PROLOGUES

2¢3¢2 PROGRAN/PROCEDURE/FUNCTION PROLOGUES

For programs,; procedures and functionsy, the first 1{ine of the
prologue block must contain the routine type followed by the
routine name!

{ PROGRAM program_nase or

{ PROCEDURE procedure_name or

{ FUNCTION function_nanme

This line is followed by s blank comment 1ine and then the 1ist
of keywords and the associated text sppropriate for the routine,

The keywords which msy be used are {isted below. Any keywords
which are not spplicable sre to be omitteds The keywords which

sre ysed should sppear in the order Iin which they are descrlbeq

belowe

PURPOSE

DESCRIPTION

CALL FORNMAY

COMMAND FORMAT

ENTRY CONDITIONS

EXIT CONDITIONS

ERROR CONDITIONS
INTERTASK MESSAGE INPUY
INTERTASK MESSAGE OUTPUT
GLOBAL DATA REFERENCED
GLOBAL DATA MODIFIED
NOTES AND CAUTIONS

This format 1s used for XREF/XDCL procedure snd function header
common decksy for Inline procedure common deckss and for
procedures and functions within s module.

2.3.2.1 PURROSE

This section contgins @ short description of the process the
procedure or function performs (rather than the method wused),
This section is requlired,

Example?

{ PURPOSE:)
{ Perform a physics! copy of @ message to a new buffer chaine.

2
o

(:) 2.0 DOCUMENTATICN

2=4
ACSD Coding Conventlions '
Aprll 20, 1984

2¢%¢2.2 DESCRIPTION

2.3.2.2 DESCRIPIION

This section contains 8 one or two parsgrsph description of . how
the procedure workse Normally this section should be includeds
sl though for some short routines the PURPOSE section mwsy be
sufficient,

Exsmples

{ DESCRIPTIONS :

< A message is physically copied to new buffersy and the ofld
{ set of buffers Is released. Data is compact Iin the new

1 8 bufferss the first (n=1) buffers are full, and the last one
< has all of its empty space In the trailing portion of the

{ buffere

2.302.3 wm‘l

This section is required for common intine and externally
callable routinese A line showing the caliing formst followed by
a description of each of the psrameters should be included.

{ CALL FORNMAT:

(*caltic clxges)

CLP_GET_SET_COUNT (PARAMETER_NANME» PVTs VALUE_SET_COUNT,
STATUS)

PARAMETER_NAME: (Input) This parameter specifies the name
of the parameter for which the value set count is to
be returnede Any one of the names for the parameter
may be specified.

PYT: Cinput) This parsmeter specifies the Psrameter Vatlue
Tabtle for the psarameter tiste.

VALUE_SET_COUNTS (output) The number of value sets given
for the specified parameter is returned iIn this
parametere.

STATUS: (output) The §tatus of the request Is returned in
this paraneter,

Y Yt Yo e Yo te te Lo ke Yo e Xe Ko Xe Lo Xa)

ACSD Coding Conventiens

2-3
April 20, 1984

DOCUMENTATICN
o2& COMMAND FORMAT

2.3.2.4 CONMAND EQRMATL

This section Is required for command processorse It is wused to
describe the command (rsther than the CALL FORMAT section used to
describe the procedure interface), The first line of text should
contalin the singular form of the command namey, plural form or
alternate spelling of the command name (if any), and the
abbreviation in the following formats

£ COMMAND NAME or PLURAL COMMAND NAME (ABBREVIATION)

Following this lines each of the parameters should de described.
The parameter name and siternate forms of the name should be
specified followed by the allowable values for the psrameter and
e description of the pasrsmeter. The description should include
the default value for the parameter (if anyd.

Examples

€ COMMAND FORMATS
SET_TIME (SETT)

HOUR (HOURS of H): 0..23 This psrameter specifies the
hour to set In the system clocke

MINUTE (MINUTES orf M): 0..59 This parameter speciflies
the minutes to set in the system clocke

SECOND (SECONDS or S)2 0.¢%59 This parameter specifies
the seconds to set in the system clocke

e X N N Yo Yo Koo Lo Kon]

2.3.2.5 ENIRY_CONRIIIONS

This section describes any conditions which must be set before
the routine is calledes 1Information concerning parsmeters mey be
speciflied {If the comments on the program/procedure/function
declaration sre not sufficient. Entry conditions slseo Iinclude
such things as the logical status of connectionsy filesy buffers,
etce : .

Examples
{ ENTRY CONDITIONS:

{ The user_fcd record must be initlialized via an open_file
{ request to the flle_access procedure.

7™

s

"N

./

\O 303

ACSD Coding Conventions

2=6

Aprit 20, 1984

DOCUMENTATION
2.6 EXIT CONDITIONS

[]

2¢3.2.6 EXITI_CONOITIONS

This section describes sny conditions which exist on s normal
return from the rouytines which the caller should be aware of. A
description of the return variable for functions (and procedures)
may be specified if the comment on the function (or procedure)
declaration is not sufficiente Exit conditions also include such
things as the logical status of connectionss files, buffers, etce

Examples

{ EXIT CONDITIONS:

4 If the speciflied key is found in the tree, the assoclated

{ data entry is returned, otherwise the procedure return value
{ will be NIL,

2¢3.2.7 ERROR_CONQIIIONS

This section describes any error conditions which exist on
return from the routines which the caller shoulid be aware ofe.
Special processing done or parameter values .returned ‘asre
described, Error conditions meay siso include such things as the
logical status of connectionss filess buffers, etce.

Examples

{ ERROR CONDITIONS:
{ The value of parameters line_number and command will be
{ undefined if an sccess error occurs when resding the fille.

243.2.8 INIERIASK_MESSAGE_INPUI

This section contains a list of Intertask messages recelved by
this procedure. The intertask message workcode should be listed,
folloued by o description of the message.

Examples

€ INTERTASK MESSAGE INPUT:

exec_tskfsiil = This iIntertask message Indicates thst s task
has falled due to s bus error or an address errore.

sa_start_task_for_user - This intertask message requests that
g tssk be started for a user task such that System
Ancestor is the parent.

™~ ™

2=7
ACSD Coding Conventlions '
April 20, 1984

2.0 DOCUMENTATICN' Ly
2.3.2.9 INTERTASK MESSAGE QUTPUT - k@)

2.3.2.9 INIERTASK_MESSAGE.QUIRUL

This section contains s list of intertask messages sent by this
procedure. The intertask message workcode should be listeds
foltowed by 8 description of the message.

Examples

£ INTERTASK MESSAGE QUTPUT:

L ¢ mci_regulation_change = This intertask message Is used to tell
{ the SSR that s new regulstion level Is now to be put into
{ effect.

2¢03.2.10 GLOBAL _QAIA_REEERENCED
This section contains s list of the global dats referenced.

Examples

{ GLOBAL DATA REFERENCED: : . v
L sys_cnfge.running ,/:Ts
€ sys_cnfgebincliock x@)

2.3,2.11 GLOBAL _DATA_MQOIELED

fhls section contains a list of the global data modified and 2
description of the modification.

Exsmples

€ GLOBAL DATA MODIFIEDS
< command_source ~ the address of the user that issued the
1 4 coamand s savede

203.2012 NOIES_AND_CAULIONS

This section documents designy, {implementation and generasl
information which may be useful to other snalystss especlially any
uncommons unusuals or obscure techniques used by the coder. Also
include warnings about problems that might be encountered during
modification of this routine.

Vd

C:
)2
\

ACSD Coding Conventions

2-8
Aprlil 20, 1984

DOCUMENTATION
«2412 NOTES AND CAUTIONS

Exampled

{ NOTES AND CAUTIONS:

This is a highly time consuming operations requiring at
least 3-%5 microseconds per byte copieds It is recommended
that the caller either run at a relatively low task
prioritys or yleld control sometime after the routine
returns to avold time slice overrun, and to permit other
processes to be actlive.

(Y YeYeXata)

2.3+3 DECLARATION (CONST, TYPE AND VAR) PROLOGUES

Prologues for groups of declarations contaln the keyword
*"DESCRIPTION"™ . The keyword is folliowed by one or more
paragraphs describing what the relationship between the
declarations 1Is (what they are fors how they are used and/or why
they are grouped together).. i

This format is used for constsnt and type .declsration common
deckss header decks for XREF varisble declaration common deckss
and may slso precede blocks of relsted module level declarations,
Common decks siways contain s one line description and s blank
comment lines which precedes the prologue. For examples

€ CMDTTRE = Tree Management Definitionse.
{

ACSD Coding Conventions

2=9
Aprit 20, 1984

- , 4{"\
2,0 DOCUMENTATION \{J
2.3.3 DECLARATION (CONSTy TYPE AND VAR) PROLOGUES :

The prologue for declarations within a module should contain o
simitar short description line before the DESCRIPTION keyword snd

texte.
title.

The declarations may be preceded by s page eject and a
For example:d

7?2 NEMTITLE t= *'Directory M= Dats Stores?, EJECT ??
{ Directory M=E Dsts Storese.

€

{
{
{
{
<
{
{
{
{
{
<
{
€
{
<
{

DESCRIPTIONS

The following declarations define the dats stores maintained
by the Directory M-E. These are the Registered Data Store
(RDS)» the Transiation Data Store (TDS)s and the Transliation
Request Dasts Store (TRDS),

The RDS contains all the currentily registered titlese.
These titles were created by a primitive, -

The TDS contains a list of the most recent translations
recelived from other systemse The least recently used entry
is deletedes A threshold number of entries are heid Iin this
system. :

The TRDS contains all the currently sctive t}anslatlon
requestse,

2.4 CODE_LEVEL _DOCUMENTAIION

Source

code Is the ultimste documentation of any programe

Therefores in al) ACSD programming, a consistent emphasis should
be placed on producing lucidy readable and seif-docurenting code.

Comments in the source code should only provide information not
readily sppsrent from reading the code. It descriptive
procedures parameter and variable names are useds, the nuaber of
intine comments should be minimsal,

In

addition to prologue documentations there are two types of

code tevel commentst embedded and stand alone comments.

Embedded comments appear on the same line following a8 declaration

or

executable statement. The comment need not be s complete

sentences This type of comment should not be continued onto
another tine, If the intended comment Is too long to fit on the
single tines It should be {inserted ss a stand alone comment
preceding the area of code to which it appliess Emdbedded

which are not discernsble from CYBIL declarstions.

comments should be used to convey software or system attributes {jﬁ

O
g

v
A

o

2-10

ACSD Coding Conventions

Aprit 20, 1984

y 2.0 COCUMENTATION
| 7 2.4 CODE LEVEL DOCUMENTATION

O

Stand slone comments are blocks of text appearing inline with
code, 8s opposed to within the prologue blocks previously
defineds All stand stone comments are preceded and followed by
one blank line. The comments are complete English sentences with
correct punctustion.

3-1
ACSO Coding Conventions ‘ '

Apritl 20, 1984
3,0 NAMING CONVENTIONS ' ,{;)

3.0 NAMING _CONVYENIIONS
3.1 GENERAL

The key to making programs readsble Is the usage of meaningful,
noncryptic English names for all CYBIL constructse Avold the use
of special characters ("$®, *3%, and "#") in (ocsl names since
these characters may have - special meaning for global systes
naming conventionse.

Names should be chosen for how they will read in the code body of
a routines not how they look in the data declaration. This Is

especlially true of variables and fleld names In TYPE
declsrations.

For example?

TYPE
program_descriptor = record

load_mapt load_msp_optionss. /ﬂx\
recends !
losd_map_options = record ‘
flilte_names flle_names
optionst (atisnothing),
recend}
VAR
my_programt program_descriptors
[X N)
my_programe.iosd_map.flite_name = 'LOADMAPY;
Procedure snd functions names should describe the process the
procedure performse
CYBIL statement tabels are often needed In order to perform EXIT
or CYCLE commandse. Sometimesy structursily unnecessary labels
can be powerful documentary sids and their use |Is encoursged.
Ladbel names should always describe the function being performed
by the structured statement to which they refer.

3-2

ACSD Coding Conventlons :
Apr it 20y 1984

(i} 3,0 NAMING CONVENTIONS
| 3.1 GENERAL

For examples

/search_symbol_table/ tinstead of)

/1abell/
Boolean names should always describe the TRUE conditione.
For examplet

IF fite_lis_open THEN (instesd of)

IF flle_switch THEN

A

ACSD Codi

3-3

ng Conventions
Aprit 20, 1984

3,0 NAMIN
3,2 DECK

6 CONVENTIONS
NAMING CONVENTIONS

3.2 DECK_MAMING CONYENIIONS

Deck n

gotx
99

t
xx

Allows

]
DN —"E~ I NOO®»

" Decks
unit).

Each
name)d.,
which

T et

ames have the following format:
xxx = where

s two chagacter group name.
= one cheracter Indicating deck typeo
xx = one to four character name/mnemonic for uniqueness
within the groupe.

ble codes for the deck type sre as followss

MC68000 Assembler code

Binder directives (common deck)

Common deck cajls (common deck)

CYBIL Constant and type declarations (common deck)
Installation procedure directives (common deck)
Documentation header (common deck)

CYBIL inline procedure (common deck)

Linker Directives (common deck)

CYBIL code module

Type identifiers (common deck)

CYBIL XREF declaration (common deck)

Cyber 170 test stubs

Cyber 180 test stubds

of type M must consist of exactly one module (compilation

grouyp has a history deck named gg (nhére ®gg” s the group
This deck contains a history of sl decks iIn the group
were added to the PL, deleted from the PL or modified.

, o
7 b f e
Voo 5o
T

i
A

;M/>

4=1

ACSD Cading Conventicns

July 23, 1984

4.0 CCDE LAYOUT

4.0 CODE_LAYCUL

The following sections define the code fayout for modules,
programss procedures, functions and common deckse

In generals declarations should be listed alphabetically within
each declaration grouping (CONST, TYPE and VAR), Where a lagical
order is more meaningfuls then that grouping may te used and
comment should describe what the logical grouping ise.

A togical order would be appropriate for related dectlarations

such as the type and variable declarations for a tabley oOF @
major type and it's subordinate types,

4.1 LAYOUI_CONTRQL
4e1s1 PAGE EJECTS

Page ejects inserted in appropriate places can make source
listings more readabtle, All programs, procedures, functions and
other ltarge ftems should be preceded with EJECT callse

4ele2 TITLES

Tittes are required for each modules programy procedurey function
and common decke. In addition, their use throughout the module is
recommended to indicate such things as global variables and
functional groupings of procedurese.

For examples the Following title directives may be some of those
used for a module?

272 TITLE := 'COCNET: Directory Management Entity' 2?

772 NEWTITLE := 'Directory M=fF Data Stores's EJECT 22
?2? OLDTITLE ??

7?7 NEWTITLE ¢= 'PROGRAM dir_init?s EJECT 22

2? OLODTITLE 7?7

27 NEWTITLE t= tDirectory Registration Procecdures' 2?

27 NEWTITLE :s 'PRNCEDURFE [#GATE,XDCL) dir_change's EJECT 2?
?2? OLOTITLE ??

ACSD Coding Conventions

4=2

July 23, 1984

4.0 CCOE tLAYOQUT
64142 TITLES

U

?2? NEWTITLE 3= 'PROCEDURE
?? QLOTITLE ?2?
?7? NEWTITLE t= 'PROCEDURE
?2? OLDOTITLE 27
?7? NEWTITLE t= 'PROCEDURE
?? OLDTITLE ??
?? OLOTITLE ??

2?7 NEWTITLE ¢= 'Dijrectory
22 NEWTITLE 2= 'PROCEOURE
27 OLOTITLE ??
27 NEWTITLE 2= 'PROCEDURE
?? OLOTITLE ??
77 NEWTITLE := 'PROCEDURE
2?2 NDLOTITLE 27
2?2 OLDTITLE ?2?

C#GATE,XDCL) dir_create's EJECT ?2.
[#GATE,XDCL) dir_deletety, EJECT 2?7
CINLINEY dir_rcb_init?y, EJECT 2?

Transtation Procedures? 2?
C#GATESXDCLY dir_abort?, EJECT 22

CINLINE] dir_tcb_init?s EJECT 22
[#GATE,XDCL] dir_transliate?y, EJECT 2?2

Mote that the use of NEWTITLE and OLDTITLE allows "stacked"’

listing titles to exist,

4e1¢3 LISTING DIRECTIVES

The LISTEXT tisting toggle must be used to control the listing of
common decks. The calling deck may use the "?? PUSH (LISTEXT :=
ON) 22 7 2? POP 27" directives around some or all common decks
to allow the Visting to be controlted by the "LO" list option on
the CYBIL compiler commande. The Modules Procedure and Common
deck layout sections describe the directives to use and where

they are to be located iIn

the decksSe.

'C

ACSC

Cocding Conventions

4-3

July 23, 1984

4.0 C
4,2 M

CCE LAYQUT
COULE LAYOUT

4

Th

The LISTEXT toggle is generally used to control

co
mo

4.3 PPOGRAM/PROCEQURE/EUNCILCN LAYQUI

A1l CYBIL routines (including nested
page and start with
eject)
routine
"EUNCTION"), attributes (if any) and

a
(w
sp

2 MODULE_LAYQUI

e code layout for a module is as follows?

ggMxxxXx
*jifcall,BUILDyggTxxxx

7? TITLE 3= 'CNCNET: module purpose' 2?

MODULE <module_named;

{ Module proliogue

{ .

.

.

{ (continue modutle prologue)

77 LEFT 2= 1, RIGHT = G5 2?2

2? PUSH (LISTEXT := ON) 2?2

<global *calls of common decks>

2?2 POP 2?7

?
7?7 FMT (FORMAT := 0ONy KEYW := UPPER, IDENT 2= LOWER) ??

<glotal TYPEy, CONST and VAR declarations>

<program/procedure/function dectarations>

MODEND <module_named;

mmon deckss however,
dule may always be listed.

fisting of calted

common decks of major importance to the
For example:

¢global *calls of common decks of major importanced

?? PUSH (LISTEXT := QON) 2?2

<global *calls of rest of commacn decks>

2?2 pPOP 2?

new listing
hich includes the
ecifies the

page
type of

procedures) should begin on
a prologues A NEWTITLE iine
grecedes the prologue and
("PRCGRAM®, T"PRCCEDURE™ or
the routine name,

An JLOTITLE follows the PROCEND or FUNCEND statement.

o0 20 96 00 of 2C 00 20 9o

f=4
ACSD Coding Conventions S
July 23, 1684

4.0 CODE LAYOUT o U
4.3 PROGRAM/PRCCECURE/FUNCTION LAYQUT

In declarations of parameter Ltists, always separate formal
parameters by coding each parameter on a separate line. The
program/procedure/function declaration may include comments
following each parameter stating whether it is input (I)y, output
(C)» or both (I/0)s, followed by a description of the parametere.

Always declare ail input parameters before all output parameters
unless there is an octvious symmetry that would be disturbed.

The routine layout is as follows?
2?7 NEWTITLE t= 'PROCEDURE [attributes) proc_name's EJECT 22
{ Proceduyre prologue
.
<.
PRNCEDURE proc_name (
par_1: type; { I: description of parameter 1
VAR par_2: type; { I1/C: description of parameter 2 N

VAR par_n: type); { 0O: descripticon of last parameter

L
2?7 PUSH (LISTEXT := QON) 2?2 { optionral) H
<¢*calls of common decksd> H
2?2 POP 27 ({ optionat) H

<TYPE, CONST and VAR declarationsd>

<nested procedure/function declarations>
2?2 SKIP 2= & 2?7 or ?2? EJECT ?2?
<body of the code>)

PRCCEND proc_name;
?2? OLOTITLE 2?

For programss the word PROGRAM is substituted for PRCCEDURE and
for functionss the words FUNCTION and FUNCEND are substituted for
PROCEDURE and PROCEND respectively.

For procedures which have a return value and for functions, the @:ﬁ

4=5

ACSD Coding Conventions

July 23, 1984

4,0 CCOE LAYOUT
4,3 PROGRAM/PROCEDURE/FUNCTION LAYCUT

return value is also described?

e L)
VAR par_nt type) { Ot description of last parameter
return_par: type; { description of return parameter

The "2? PUSH (LISTEXT = ON) 22 / 2?2 PCP 27% directives may
be used around some or all of the common deck callse.

4.6 COMMON DECK_LAYOQUI

Common decks containing source code contain a3 one line
description of the decks profogue documentations the source code,
and a *callec to all common decks necessary to compile the source
code in isolation (assume a CYBIL module only calls this comron

deck). Directives toc PUSH/PCP the LISTEXT toggle must be used to

centrol the tistings LISTEXT is used to ensure that the one tine
deck description Is listeds and may be used to control listing of
the calted common decks (listing is controlled by the "L0O"™ gption
on the CYRIL compiler command).

The format for source code common decks is as follows?

- oo 0 &

ACSD Coding Conventions

July 23, 1984

4=8

4.C CCOE LAYOUT
4,4 CNMMON DECK LAYCUT

gotxxxx

COMMON

2?2 NEWTITLE 2= 'ggtxxxx = short description' 22
?2? PUSH (LISTEXT 3= QFF) ??

{ ggotxxxx = short description (single line),

2? POP 2?2

{

rologue documentation

¢r
<.
€.
{.
{1t

continuatlion of prologue)
< body of common deck >
2? PUSH (LISTEXT 3= ON) 2?2 (optionsl)
*cajjic comdeckl { common decks necessary to compiile)
*callc comdeck?2
*callc comdeckn
2?2 PCP 77 { optional)
2?2 OLOTITLE ?2?
An EJECT may be used with the NEWTITLE directive, for example:
?? NEWTITLE t= tggtxxxx = short description?, EJECT 2?

Note that page width should not be set in common decks.

The format of other common decks is shown with the description of

the common deck content in the follawing sections.
44,1 "B"™ — PINDER DIRECTIVES

The ™binder dijrectives” common decks contain Binder directives
for the source OPL decks which reference ite This deck 1|is wused
for the build process and is described in more detall in the
Installation Process IDSe.

4e6e2 "C™ = CCMMON DECK CALLS

The "common cdeck calis® common decks are used to provide 8
convenient way to call several common decks which are closely
retated with 8 single calls, Trese common decks do not cali other
C type deckss and should not significantly overlap in content.

-0 e oo oa

" 00 S® 00 GO o OO 56 o

I

Pagi \\‘
| ;}
i

0

\

ACSD Coeding Conventlions

4=7

July 23, 1984

-r-:.,?\
C <
beb

CCDE LAYCUT :
2 "C" - COMMON DECK CALLS

The format for these decks is as follows?

ggCxxxx

COMMON

27 NEWTITLE 3= vggCxxxx = short descriptlion®s EJECT 22

{ DESCRIPTIONS

{ A description of the how the catied common decks relate,
{ ese (continue description as necessary)e.

*calitc comdeckl
*callc comdeck2
*

*callic comdeckn
4,663 "D™ - CONSTANT AND TYPF DECLARATICNS

The "constant and type declarations™ common deck contains CYBIL
CONST and TYPE declarationsy followed by a *callc tc all of the
declaration common decks recessary to compile this common deck in
isolation. VAR declarations are also alloweds but in most cases
should appear in a source coce module ("M" type decks) rather
than in this type of common decke. This type of deck is used by
modules dealing with the same types of datas The description in
the prologue should explain the relationship between the
declarations (ies what are they fory, how are they useds and/or
why are they grouped together 2).

wp" type decks follow the format for source éode decks described
previously.

boeboh "G" - GROUP CCOMMON DECK CALLS

The "group common deck calls™ common decks are used to provide a
convenient way to cal) several closely related common decks in
angther_aroup with a single calle These common decks do not call
other G type decksy and should not significantly overlap in
contente The G type decks are the same as C type decksy except
that they are allowed to call common decks in another group
(ie®es» an upper layer sharing an interface with a lower layer)
without making the interface availatle to everyone via globtal
(group CM) common deckse. The format for these decks {is as
follows:

ACSC Coding Canventions

4-8

4.0 CODF LAYOUT
Gbobel "GW = GROUP COMMON DECK CALLS

agGxxxx

COMMCN

27 NEWTITLE s 'ggGxxxx = short description's EJECT 2?

{ DESCRIPTION:

{ A description of the how the called common decks relate,
{ eee (continue description as necessaryle.

*callc comdeckl (common decks in another group)
*callc comdeck?2

[]
*callc comdeckn

bekoS "H™ - DOCUMENTATION HEADER

A "documentation header™ common deck is used for procecuresy’

functions and variables referenced via an XDCL/XREF interface.
It contains a prologue blcocck as described earlier (section
2¢3e2)e This common deck must be called from the module which
contains the XOCL defintion and from the XREF common decke No
listing control directives are to appear in this common decke

goHxXxxXx

COMMON

{ XDCL/XREF prologue blocke

{ oo (continuation of prologue block)

4.4,6 "I™ - CYBIL INLINE PROCEDURE

The ™"CYBIL 1intine procedure™ common decks contain procedure
declarations which may be expanded inline as part of the «calling
modules rather than being caliled through an XOCL/XREF interface.
Internal intine procedures may occasionally be the most practical
way to impliement a "module”™ (in the Structured Cesign sense) due
to performance and/or scope considerations, A procedure
implemented in this fashion must not be dependent on the static
chain (lees it must be completely self contained).

win type decks follow the format for source code decks described
previousliye.

July 23, 1984

A~

///

~

N

4=9
ACSD Coding Conventicns ;
July 23, 1984

4,0 CQDE LAYOUT
4,4,7 "L"™ - LINKER DIRECTIVES

bobo7 "L"™ - LINKER DIRECTIVES

The "linker directives™ common decks contain Linker directives
for the source OPL decks which reference ite This deck Is used
for the bulld process and is described in more detail in the
Installation Process IDS.

4,4,8 "T"™ - TYPE IDENTIFIERS

The "type identifiers™ common decks contain type fdentifiers and
calls to B and L type common decks. This deck is used for the
build process and is described in more detall in the Instalistion
Process IDS.

4.4,9 "X" - CYBIL XREF DECLARATICN

The XREF dectaration comrmon deck contains a. CyBIL XREF
dectaration followed by a *calic to all of the decks necessary to
corpile this dectaration in isolation (assume a CYBIL module only
calls one XREF declaration common deck)e This type of deck Is
used by modules accessing procedures, functions or variables
defined (with the XDCL attribute) In another module.

X type decks follow the format'for source code decks described
previously.

The prologue documentation s replacéd by a catll to a
documentation header decks le,

{
*call ggHxxxx

- 0 o0 oo 6

5-1

ACSD Coding Conventions

Aprit 20, 1984

5.0 CODING

5.0 CODING

when codings aluays consider the Iimplications of debuggings
modification and maintenance} structure code to make these tasks
easiere

Se1 INIEREACES

In genersls Interfaces between modules should be procedures or
functionsy not XOCL/XREF varisblese. The use of explicit
parameters is more itluminating than references to global dats
structurese.

The conventions to be used for procedure and function interfaces

are defined in the CYBIL Impiementation Depgendent Haodhook.

The DCNS Common Subroutines are to be used instead of
seif-tallored system Iinterface routines (lie. .buffer coamon
routines should be called rather than direct manipulation of
buffer descriptor and dats flelds), Alsoy when s procedure or
function is defined with the XDCL attributes s common deck
containing the XREF declarastion for the routine must be defined
and astl caliing routines must reference this common deck. This

will nininlize the exposure to system speclfic coding

dependencless elininate redundant work and increase
maintainsbliiity.

Declarstions which define s specific lnttrfice (le. layer 3A to

tsyer 38) should be grouped into a common decks thus providing s
cleary concise interface description.

5.2 PROGRAMS/PROCEQURESLEUNCILIONS
5¢2¢1 PURPOSE

Procedures and functions should be used for two purposes?
- To provide common subroutines within s module.

- To structure the programs thereby making the function of the
program obvious at a high tevel,

O

=)

5=2
ACSD Coding Conventions ‘
April 20, 1984

5.0 CODING
5¢2¢2 LENGTH

Se2¢2 LENGTH

In most casess the Iength of s routine should be kept down to'ono
or two pegese Anything 1longer becomes difficult to reasd,
understand and therefore msintain,

Se2¢3 COMPLEXITY

The more complex s routine Iss the more tiable it is to be a
source of errors and difficult to implement, modify and malintsine
Cyclomatic complexity is a concept which has gained some
scceptance within Control Dsts Corporatione ACSD defines the
cyclomatic complexity of a module as the sum of “IF", “WHILE",
="EO0R™ and "REPEAT™ statements ¢ 1. For s more detailed analysis
of the computation of complexitys see "Structured Testing™ by
Thomas Je McCabe. i

In the interest of limiting the complexity of routines and
therefore 1increasing readabitity and. maintalnsbilitys the
foltowing general rule should be followed?

A routine should not have a cyclomatic complexity of more than
tuentye.

5.3 DAYA_DRECLARAIIONS

A declarstion should always be declared at the Inner-most
procedure level possibdble,

Avolid the use of type INTEGER; few varfables require subranges

thst lsrgee QOrdinal and subrange types of the appropriate slze
provide better variable range checking and documentstione.

5S¢4 $LOC_EUNCIION

Avold use of the #L0OC function, Code should not be memory
focation dependent.

S5=3
ACSD Cading Conventions

April 20, 1984

5.0 CODING ‘ s @

5.5 CASE STATEMENTS

505 CASE_SIAIENMENIS

Cover all end cases with ELSE being used to cover “unplisnned®
cases, If the ELSE clause In the CASE statement is missings the
CYBIL compliler will not generate limit checks for CASE entries
outside the range of the speciflied CASE lasbel.

5.6 EXPRESSIONS

In compound arithmeticy conditional or relational expressionss
parenthesis should be used to denote precedence. Do not depend
on the language operator precedence rulese.

Compound boolean expressions should be constructed such that
evaluation of the expression terminates as quickly as possible
for the typics! case. '

Use boolean expressions instesd of IF statements to conditionsiity
set a value to TRUE or FALSE. . DY

equality t= (a=b)3 (instead of)

IF a = b THEN
equality s TRUES
ELSE
equality ts FALSE}
IFENDS

ACSD Coding Conventions

6=1
Aprit 20, 1984

(3) 6.0 CODE READABILITY

|

0

6.0 CODE READAAILIIY

CYBFORM takes ciro of most of the formatting necessary to
maximize code readablilitys The following sections describe some
other techniques for incressing code resdabiiity. .

6.1 EQRMAT OFE_SIAIEMENIS

Structured statement pairs (BEGIN/ENDs FOR/FOREND, WHILE/WHILEND)
and IF/IFEND pairs are hard to match when separated by more than
10 tines of codes or when they sre nested.

For structured statements, lsbels are sllowed snd should be used
in these cases to sssist in matching the psirs (as well as for
documentation purposes). ’

For examples

/search_symbol_table/
FOR 1 3= 1 to 10 do

FOREND /search_symboil_table/;

For IF/IFEND pairss comments Iimitating labels may be used. In
this case, there should be no blank line following the initial
comment (normallyy a blank 1ine should be on either side of
stand alone comment)e. :

For exsmples

{ Check command fite statuse
IF command_file_status = success THEN

IFEND; (Check command file status.

Compound conditionals in an IFy FOR or WHILE ststement must be
separated at the OR/AND if the entire statement does not fit on a
single (inee At the programmer's options the statement may also
be separsted at each OR/AND regardliess of line length to make the
code more resdable.

6=2
ACSD Coding Conventions o
Aprit 20, 1984

6,0 CODE READABILITY ' ()
6.1 FORMAT OF STATEMENTS -

For example?

IF ((cond_s) AND (cond_b)) (IF ((cond_a) (
OR (cond_c) THEN AND (cond_bd)) (
. (or) OR (cond_c) THEN
[] []
L] *
IFENDS .
IFEND3

6.2 DECLARATIONS

where a declaration contains s list of items it may be helpful to
tist each element on a separate line. Defining ordinalss sets or
presetting elements of an array are examplese. Comments can be
used to force splitting the declaration (when the code is run
theough CYBFORM), '

With descriptive names, a comment with text mey not be necessary
and blank comments may be used. - . /w]h

For Example:?

TYPE

citsScharscter_class s ((
clcsspace_character,
clicscomment_detlimiter_characters {
clesstring_delimiter_charactery {
clcsdiglit_charactersy (
clcsalpha_character, {
clcstoken_charscters (
clcsSdigraph_token_character, {
clcsother_character (
)3 :

A}

ACSD Coding Conventions

6-3

April 20, 1984

(i} 6.0 CODE READABILITY
)

6.2 DECLARATIONS

Where readability would be greatly enhanced by alignment of

and/or

start in the

22 FNT (FORMAT ts QOFF) 7?7

code

commentss the CYBFORM FMT pragmat may be used to turn off
formatting for a specific block of code.

The code aust stitl

appropriate columny and formatting must be turned
back on st the end of the block of code.

€ Mainframe Channel Interface Intertask Message Workcodes.

CONST

mcli_startup
mci_output_complete
mcli_input_recelved
mecli_dats_svailable
mci_error_encountered
mci_shutdoun
meli_statistics
mci_report_statistics
mci_regulation_change
mci_timer_expiration
mci_log_message

77 FMT (FORMAY 3= ON) 27

6.3 BLANK_LINES

A blank line should precede snd follow sl stand alone
{ines should be used
readabltiity.

Additional
to enhance

blank
code

0501(16)>»
0502(16)»
0503(16),
0504(16),
0505(16),
0506(16)»
0507(16)»
0508(16))»
0509(16),
0502(16),
050b(16)3

cansistently within s module,

It Is

e alalalalalalalalalal

8lank

helpful to Insert blank lines after each RETURNy

Specific MCI card

PP has successful read

PP has successful write

Dsta is availilsble for transfer
An error was found on a write
End processing)

Sender requests statistics
Announce statistics response
New regulation level In effect
Response timer has explired
Message Is to be logged

comments.

at the coder's discretion
fines should be used
CYCLE or

EXIT statement to indicate a bresk In the program flowe

Al-1
ACSC Coding Conventions .
July 23, 1984

Al.0 CCOING EXAMPLES

J

-~

A1.0 COCING_EXAEBLES

Al.1 PROCEQURES
H
27 NEWTITLE 3= 'Bypass Configuration Command Processors® 2?
27 NEWTITLE := 'PROCEDURE [XDCLs #GATE] cmd_bypass_ conflguratlon', EJECT ?27?

PROCEDURE cmd_bypass_configuration

PURPOSE:
Pprocess the bypass_configuration command.

DESCRIPTIONS
The global variable bypass_config_fltag is set to indicate to
the Configuration Procurer that an operator wishes to enter
the configuration manually.

COMMAND FORMAT:
BYPASS_CONFIGURATION (8YPC)
7N
GLORAL DATA MOOIFIED?®
bypass_config_flag - set ta indicate that configuration file
processing should be bypassed,
command_source - the address of the user that Issued the
command is saved
4?Qh

PROCEDURE (XDCLy #GATE] cmd_bypass_ conflguration ((
parameter_Jlists ostSstring,
VAR pvt: cltsparameter_value_table;
VAR response_codes condition_code:
VAR responset cltsstatus);

:
i\ ,/§
NS E
F:

P e N N T N T N o B T e W Yoo W B W W W W |

7?2 PUSH (LISTEXT := (ON) 22
*callc metmdu

*callec mexgsa
2?2 _020P 2?2

oo wa

VAR
error_msg: [STATIC) string (39) := {
'No parameters expected after command.' CAT
mecsend_of_1ine,
tasks task_ptr;

2?2 EJECT ?2? q:)

Al-2
ACSD Coding Conventions
July 23, 1984

Al.0 CNDING EXAMPLES
. . Al.1 PPOCECURES

{ Begin CMD_BYPASS_CONFIGURATION.

response.condition := NIL;
{ Check for parameters. No parameters are allowed,

IF parameter_list.size <> 0O THEN
response_code := par_err_ccode;
response.normal = FALSE;
gen_data_field (response.conditions “error_msgs #SIZE
(error_msg)s char_octet);
RETURNS

IFENDS

task = NIL3 indicate current task_ptr to be used
get_source_address (command_source, task);
bypass_config_flag t= TRUE;

response_code 3= ok_ccode;
response.normal := TRUE;

- PROCEND cmd_byrass_configuration;
' 2?2 OLDTITLE ??
29 NEWTITLE := 'YPROCEDURE [XDCL, #GATE] cmd_bypc's EJECT 22

{ PRCCEDURE cmd_bype

PURPQSE:
This is the command processor for the bypass_configuration
command allass bypce .

DESCRIPTION:
Cmd_bypass_configuration is called to process the commande.

COMMAND FCRMAT:
Refer to the bypass_configuration command description.

My ey ey Y

PRCCEDURE (XDCLs #GATE] cmd_bypc ((
parameter_list: ostsstrirgs;
VAR pvt: clitsparameter_value_table;
VAR response_code: condition_code;
. VAR responsel cltsstatus);
2?7 SKIP = & 22
{ Begin CMD_BYPC.

cmd_bypass_configuration (parameter_Iist, pvty
ﬁ(:m response_code, response);

ACSD Coding Conventions

July 23,

Al-3
1984

A1.0 COOING EXAMPLES
Al.1 PRCCEDURES

PRCCEND cmd_bypc;

?? OLOTITLE ??
?2? TLCTITLE 22

O

O

C

¢
o
?
{
{
{

*
®
*

ACSD Coding Conventions
July 23,

Al-6

1984

Al,0 CCCING EXAMPLES
Al.2 "C™ TYPE CCMMCN DECK

Al1.2 =CE2_IYRE_CQUUQN_DECK

MCTREE
OMMON
2 NEWTITLE t= 'CMCTREE - Tree Management Definitions', EJECT 2?
DESCRIPTINNS
CMCTREE contains calls to the common decks which contain
tree management definitions,

callc CMDTTRE
caltle CMXPEXC
callc CMXPFFN

*callec CMXPFIM
R

*callc CMXPFNF

*

callc CMXPFNC

callc CMXPFNX

*callc CMXPGRO
xcallec CMIPINT

*
?

c
C
?

{

?

{
{
{
{

calic CMXPPIC
? OLOTITLE ?2?

Al.3 202 _TYPE_COMMON_DECK

LOINT

OMMOCN

2 PUSH (LISTEXT = QOFF) 27

CLDINT - Convert String to Integer Result.
? POP 2?7

DESCRIPTION:
The TYPE declaration for the result of the CLP_CONVERT_
INTEGER_TO_STRING procedyre is defined.

TYPE
cltsinteger = record
value? integers
radixt 2 «¢ 16
radix_specified: boolean,
recend;

Al=-5
ACSD Coding Convertions .
July 23, 1984

Al.0 CODING EXAMPLES
Al.& "M4" TYPE CCMMON DECK

Ale.4 ZHZ _TYPE_COMBIN_QECK

CLHCS?21!
COMMCN
{ PROCEDURE clp_convert_string_to_integer ALIAS clpes2i
{
{ PURPQOSE:
{ This procedure converts the string representation of an integep
{ to an integer, The string representation may contain a leading
{ sign (+ or =) and/or a trailing radix enclosed in parentheses.
{
{ CALLING FORMAT:
{ (*callc clxcs2i)
{ CLP_CONVERT_STRING_TO_INTEGER (STRs INTs STATUS) or
{ CLPCS2I (STRy» INT, STATUS)
{
{ STR: (input) This parameter specifies the string to be converted.
{ INT: (output) This parameter specifies the converted integer
{ value along with the radjx in which the integer was
{ represented,
{ STATUS: (output) This parameter specifies the status of the
{ requeste.
Al.5 "X"_ IYPE_COMMON_QECK
cLxcs21!
CCMMON

272 NEWTITLE 2= 'CLXCS2I - Convert String to Integer®. ?2?
2?2 PUSH (LISTEXT := QFF) ??

{ CLXCS2I =~ Convert String to Integer,

2?2 POP 22

{

#call clhecs2i

PROCEDURE [XREF] clp_convert_string_to_integer ALIAS fcipcs2i? (€
str: string (*); { I: string to be converted
VAP Int: clitsinteger; { 0! converted integer vatue and radlix
VAR status: cltsstatus); € 02 reauest status

?? PUSH (LISTEXT := ON) ?2?
*callc cldint

*callc cldstat

2?2 PCP 27

?2? QLDTITLE ??

-l o9

Al=-6
ACSD Coding Conventions
April 20, 1984

(:) Al.6 2X= TYPE COMMON_DECK
\

cLxcsa:

COMMON .

27 NEWTITLE 3= *CLXCS21 = Convert String to Integer® 2?2
£ CLXCS2I = Convert String to Integer.

:? PUSH (LISTEXT 3= ON) 12?2

*call clhes2i

PROCEDURE [XREF) clp_convert_string_to_integer ALIAS teclpes2it ({
strs string (#); € It string to be converted
VAR ints: citsintegers { 0t converted integer value and radix
VAR status: citsstatus); { 03 request status

7? PUSH (LIST 1= QFF) 2?7
scallc cldint

scallc cldstat

2? POP 27

?2? PCOP 212

2?7 OLDTITLE 22

ACSO Coding Conventlons

81-1
April 20, 1984

B1.0 ABAREYIATIONS_AND_ACRQNYMS o O

Standard industry abbreviastions snd programming Ilsngusge nanes

ray__bhe__used

appendixe.

A=A
AP
BERP
BERR
BTF
BVT
co
CONA
COCNET
CEP
CEPID
CIls
CIn
CHM
cPoOU
ocs
0C1
DCNS
oI
DVM
ESCI
FRU
FTP
HDB
HOLC
HSB
HTSB
HUB
1C8
10U
10SS
IS8
IT8
ITF
IvY
LIN
MC1
Mol
M=-E
MPB8
NTI
NDI
NHP
POU

even though they are not included in the following

Appltication to Applicstion

Application Process

Background Processing

Bus Error

Batch Transfer Facllity

Batch Virtusl Terminal

Collision Detection

Control Dsta Network Architecture

Control Data Distributed Communications Network
Connection Endpoint

Connection Endpoint Identifier

Communications Interfsce Module Instruction Bfock
Communications Interface Module

Cache Memory Module

Channet! Protoccol Data Unit

Device Control Block

Data Concentrator Interface: .
Distributed Communications Network ‘Software /
Device Interface A
Device Msnager ’ :
Ethernet Serisl Channel Interface

Field Replsceabdle Unit

File Transfer Protocol

HDOLC Dounliine Interface Block

High Level Data Link Control

High Speed Bus

HOLC Trunk Identification Block

HOLC Upline Interfsce Block

Internal Control Bus

Interface Data Unit

Input/Output Subsystem

Internsl System Bus

Internal Trsasnsfer Bus

Intersctive Transfer Facility

Intersctive Virtual Terminal

Line Interface Module

Mainframe Channe! Interface

Mainfrase Device Interface

Management Entity

Msster Processor Board

Mainframe Terminel Interface

Network Device Interface

Network Host Products N
Protocol! Dats Unit (;)

0

KCSD Coding Conventions

PMM
SAP
SAPID
Sou
SHN
SSR
SVN
101
TWA
TWS
URD
URL
VTP

April 20y

Private Memory Module

‘Service Access Polint

Service Access Point Identifier
Service Data Unit

System Main Memory Module
Stresm Service Routine
Service Module

Termingl Device Interface
Tuo Vay Alternstive

Tuo Nay Simuitaneous

Unit Record Device

Unit Record Interface
Virtual Terminal Protocol

81-2

1984

ACSD Coding Conventions

Aprit 20, 1984
C1.0 ERROR _MESSAGE_GUIDELINES |

Error messages represent a very Important, though often
neglecteds Interface between software snd the user. Proper
attention to producing polites correct and clear error messages
can do 8 1lot towsrd iImproving the overall usabifity of the
systeme The following general principles are to be observed in
designing error messagese.

- Messages must be formattable for 72 character displsys,.

-~ The purpose Of an error message is to inform the user how to
correct a problem.

It helps to view error messages as promptss not "this Is what you
did wrong™ but "this is how to do it right.® Messages should be
phrased positivelye The words "ILLEGAL™, "INVALID®", and WSYNTAX®
are specifically not permitted in messages. Of courses there are
other ways to phrase unhelpful, negative messages; but these

three words are singled out for extinction for being SO

frequently seen In the company of usability offenders.
- A single message should diagnose a single errore.

For examples If the meaning of message s "more than seven
characters or lesding non=-slphsbetic character of null
identifier” It shoutd be three messages. Usuallys the code must
make three separate tests, so it Is essy to be precises An
exception is when s common deck returns an error status which
could have resuited from several different conditions,

- An error message Is friendly if It 1is business-like and
informative. .

Cutes funnys or fliippant messasges are to be aiolded, ss they
seldom dlagnose accurately and always wear quicklye Messages
should be directed at the process and not the persone.

- Messages must be wuritten plainiys using terms siready known to
the user.

Messages should use terms which are either self=-defining or
naturs) to the processe All words should be part of the externs!
user interfsces like "file name™ Instead of "LFN" (unless LFN is
an external parameter).

- Messsges must be written in English.
Messages should follow normal rules for English grammsr and

punctuastions although "pidgin English® (the omission of selected
subjectss verds or objects in the interest of brevity where the

c1-1

O
}1
\

e

Cl1-2

ACSD Coding Conventlions

Apritl 20, 1984

meaning is clear) is scceptables Use upper and lower csse as
they would normslly be used in the English langusge, Upper case
should be used to distinguish variable parts from normal English
nordse Ending punctuation should be usede It indicates to the
user that the message Is not continued on the next line and adds
to the readaditlity of the wmessage. Messages should not be
written In octals or In other forms of scientific notation. Note
that the asterisk is not an English punctuatore.

- Messages should be selif-contained.

If you need to tell a8 storys tell the whole storye Avoild
referencesy ss they are difficult to keep up—-to-date and are
often no more helpful then a good one—-1ine message would be.

- Error messages should point directly to the source of the
troublee

For examples "File not found.”™ Is better put as "File XYI not
founde®s "Expecting comms or period after ABC.™ 1Is much clearer
than "Syntax error.®e. 1In general, the technique of echoing back
part of the user input as part of the message is better then the
use of internal names or psrameter keywords which the wuser may’
not recognizee.

- Intersctive error messages should sppear as soon as possible
after an error is committed,

Each interactive Input should be completely snd fully vslidated
as soon as it Is recelvede In no event should a user be led dowun
the garden psth to enter a 1long series of (Input only to be
advised that it Is all wrong because the first part was wronge

- No messages at all should appesr for trivialy, correctable
errorss nor should they be errors. .

Errors such as missing or redundant terminstors should not be
errors at alle If s ressonsbie assumption can be made as to the
intent of an inputs it shoyld be acted upon as though It were
wyalid®e No error diagnostic should be produced for these casese
If it is not perfectly clear what assumption was madesy the
sssumption was probably not reasonable to begin withe.

- An error message nmust clesrly signal that an error has
occurrede.

An error messsge must not be phrssed In such s wsy as ¢to be
confused with s nmerely {nformstive messagee Alsoy, s message
should Indicate the gravity and extent of the errory, as when an
error in 8 tist inhibits processing of the remsinder of the list.

O

166
CYRER IMPLEMENTATION LANGUAGE
84/08/01
CYBIL Handbook REV: H

PROCEDURE _INIEREACE_CONVENIIQNS

INIRODUCIION

The purpose of this section is to describe the conventions that shouid
generally be used by designers of procedural interfaces.

BURPQOSE

The purpose of the following conventions is to achieve 2 software system
which exhibits the beneficisl characteristics of being understandable,
reliable, efficient, maintainables etce.

GENERAL_PHILQSPHY

o0 Setect simple stralightforward interfaces. Complex Interfacess those
whose description contain %and', 'or's and conditional clausesy impair
understanding of the function. If there |s not an evident choice between
a single complex interface and multiple simple interfaces, choose the
simple Interfacese.

- A single interface encompassing pultiple intrinsic functions, uhlc(l
cannot be performed in conjunction with one another, unduly increases
validation overheade A simple interface for each intrinsic function
is preferred.

- If the intrinsic functions encompassed by a single interfsce reauire
different degrees of user privilege, each Intrinsic function should
be a single simple interface.

-~ The combination of aultiple iIntrinsic functions iInto e single
interface is practical when the functions can loglically be performed
in conjuction with one snother.

o Input parameters should be validated eartly in the processing when the
correlation between the potential error and the actusl parameter is
readily identifiable. This alds In ensuring that diagnostics sccurately
reflect the cause of the errore.

o Wherever feasibte, delegate the error prognosis to the requestor (l.e.»
return contro! to the requestor with accurate informstion when an error
is detected). »

o Refrain from exposing i{nternal structures or concepts vis externsgllized
interfaces. B8efore externalizing internal structures or concepts rate
the probability of change snd the wuser consequences (re-codes
re-compilationy etce.) if in fact the externalization changes.

)
J

- . . -

[S e iR NI A P Y e e e " - e - ——n ¥ - — - o A A D P T S Sa0 et ¥ ws alaww e =e -

167
CYRER IMPLEMENTATION LANGUAGE
84708701
Cyslt Handbook REV: H

INPUT PARAMETER CONVENTIONS

Input parameters In the following conventions are foflal parameters in
the Xref procedure declaration.

o Declare all input pasrameters to be <value params e

- If for asny reason Input parameters are declared ss <{reference
params>y the actual parsmeters must be moved to 1ocal sutomstic
variables prior to validity check and subsequent usage. Furthers 2all
input parameters decltared as <reference paramsY must be moved before
a0y validation or usage occurse

o All input parameters must be checked for validity with explicit language
statements prior to use. In fact all input parameters should be
validated before any parameter Is used.

o Input parameters which specify subfunction or function option should be
discrete parameters (l.ees should not be a fleld of 2 record),

PARAMETER TYPING = CYBIL USAGE

e

™ Parameter types are declared in terms of the CYBIL pre~defined types or
‘:!) type identifiers which resolve to the pre~defined types. J
o The first inctination should be to declare parameter types as type
identifiers, declaring their uitimate types with type declarationse.

- The tanguage and general ease of use dictates thst ordinaly arrays
and record parameter types be declared ss type identifierse.

- For parameter types other than pointer and celly, before selecting the
pre-defined types consider the foliowings 1) if the concept of the
parameter Is wused by more than one externsl iInterfaces use a type
identifier3 2) If the parameter type has any significant probability
of change, use a type identifiers snd 3) if the parameter identifier
cannot sccurately convey the purpose and intenty wuse 8 supportive
type identifier.

o Ordinat or boolean parameter types are preferred over integer or integer
subrange when declaring subfunction or option parameterses If the scope
of @8 boolean parameter type has any significant probabllity of exceeding
binarys that parameter type should be declared ss an ordinal type.

o Take advantage of the self documenting aspect of ordinals by using
descriptive ordinal type identifiers and ordinasl eonstant identifiers on
parameters.

‘:b o An ordinal type should be consistent within itselfy that isy there shoutld

e et b — S N o N e o D A P—— W S e AP ML o e NS Pt avomes - S - - - - — — b — -

168
CYBER IMPLEMENTATION LANGUAGE
9 84708701
CYBIL Handbook REVt H

be an evident relationship smong the ordinal type identifier and ti 4
ordinal constant identifierse. . '

o An ordinal type shoutld support only one concepte

o Before utilizing an ordinsl subrange in an interface, consider defining s
new ordins! types If an ordinal subrange Is the appropriate cholces
declare that subrange as a type identifier.

o Integer subrange is preferred over i{Integer when declaring numeric
parsmeterse Furthers the Integer subrange should be declared as a type
identifier and the bounds of the subrsnge should be specified with
descriptive constant (CONST) declarations., The low boundss It 2ero or
ones need not be specified with constant declarstions.

o Use al constant (CONST) decliaration to specify length of string type
parameterse. ’

o Set type provides a mechanism by which multiple subfunctions or options
may be discretely specified with a single parametere This use of set
type is preferred over the use of codes each of which specifies

v combination of subfunctions or options.

‘:) o Array type parameters will provide s convenients useful, efficlent
interface in the bounds of the convention obJjectives It the following
—

(: criteris is achieved I
, Eo)

- The function can be logically performed on multiple arguments of the
same type (array components) with one reauest; or the function can

logically generate muiltiplie values of the same type.ulth one request,

. = Esch array component can be acted upon (or generated) in absence of
ail other componentse

- The result of the function relative to one component has no effect
on the result of the function for any other component.

- The order of the components has no besring on the individual
results,

o Record type parameters provide s convenlent, useful interface Iin the
pounds of the convention objectives if the record can be thought of (in
the user's sense) as 8 -single wunified entity (i.e.» no field of the
record has particular significance in sbsence of sny other flietd)e If o
field does not meet this criteriss It should be s discrete parsmeter,

-~ A record parameter type will simplify interfaces and be convenient
when the record Is alsc s parameter of other externs! interface
procedures and does not reaquire user intistization or manipulation of

‘:’ contents - the user need only be concerned with the concept of the
parametery its structure and contents are transparente. :

- s -

e e e o —_ i of o e =i W a1 rmres AT G . G a8 e e e e e ecmm s e e o C el SR Rees emhomme S SRS LS oo o= e s ==

169
CYBER IMPLEMENTATION LANGUAGE

864708701
(iﬁ CYysltL Handbook REV: M .

-~ Each field shoutd have an evident consistent refationshipg with the
other flelds of the records Merely being parameters of a function
does not_establish the unified retationship.

- If 8 field by itsetif has particular significance, that field shoutld
be a discrete parameter. Fields which are subfunction or option
parameters to a function have such significance and should be
discrete parameters,

- A record type parameter should not contain fields which are
superfiuous to the execution of a function. Each field of an input
parameter record should be essential to the execution of the function
{i.2es each Pield should be s required srgument)e Each field of an
output parameter record should contain s value returned by the
functione.

- Record type parameters may contaln superfluous fields if the fietds
are present for symmetry with other functlons supporting the sane
concept. Use of this direction to Jjustify superfiuous tlelds
should be minimized - superfluous fields will impair wuser
understanding and result in excessive re-work st maintenance and
extenslion time. ’

- System asrchitecture wmay dictate that some seeningly superfluous

fields appear in a record to reserve space for datea used internally

i) by a function In support of other functions relating to the sar)
concept = this Is Justifiable. -

- A record type parameter should be solely an input parameter or soflely
an output psrameter (i.e.» a3 record should not contain some flelds
which sre input parameters and other fields which are output
psrameters).

o Input parsmeters should not be pointers (CYBIL pointer type) to internsl
objects - validation of the pointer obdject would be virtually lmpossible.

o Pointers to internal obJjects (output parameters of CYBIL pointer type)
must not be returned to the user = unnecessary exposure of Internal data
will result If such pointers are returned,

o Pointer type formal parsmeters should be declared only when the pointer
object of the actual parsmeter can take one of severs! types (l.e.» the
pointer object type 1is pgl known at compilie=times but s resolfved at
execution-time). The formal parsmeter pointer type should ultimately
resolve to "“cell?’, :

o Packed structuresy adaptabdle fypes; and bound varisnt records have sone
spplicability In external interfacess but thelr wuse should be the
exception rather than the norme. ’

- o -

— e el —— —— o - Ooa - —— e -

170
CYRER IMPLEMENTATION LANGUAGE

84/08/701
CYsIt Handbook REV: H
PROGRAM_LIBRARY CONVENTIIONS
DECK _NAMING COBVENTIQNS
Deck names have the following formats?
pPPC2221
where
PP = two charscter product identifier
C = one chsracter indicating deck class .
7222 = one to four character mnemonic for uniqueness within
product

Allowable codes for deck type are as follows?

CYBIL code module

CYBIL xref declaration {common deck)

CYBIL type and const declarations (common deck)
Documentation header (common deck)

CYBIL internatl in=tine procedure (common deck)

=T OX=E
[B B B

Note that decks of type M must consist of gxacily ape module (compitatior
unit)e. .

When converting to the source code utility (SCU) all XREF declarations,
documentation headers and module decks can be renamed. The new deck name
will have the same three character prefix but the sufflix (22127) can be the
futll namse (up to 28 characters) of the item contained in the decke.

comMMON_DECK_USAGE

Common decks are restricted to four classes of usagel

= XREF declarations to be wused by modules sccessing procedures or
variables defined in another modulee.

- TYPE and CONST declarations to be shared by modules desling with the
same data types or constants.

~ Documentation header text describing an interfaces A common deck of
this type myst be called from the module which contains the XDCL
definition of the interface being described,

- Procedure declisrations which may be expanded in-line as part of
calling modules; as opposed to being called through sn XCCL/XREF
interface. Internal in-1ine procedures may occasionally be the most

practical wsy to impliement a8 “module® {in the Structured Desigr |

i

)

i demt ek e e mwe Rl et e e e s s e b e e e e e ee etems e e — e o - - P s i N et e D " W o WV ® MtV et e s

1n
CYRER IMPLEMENTATION LANGUAGE

84/08/01
(:} CYBIL Handbook REV: H

sense) due to performance and/or scope considerations. All comme '
decks of this type are considered internsli interfasces snd must be
documented accordingly., A procedure impliemented in this fashion must
not be dependent on the static chainy leee It must be completely
selif-contalined.

COMMON_DECK_CONMIENI
DOCUMENTATION HEADER

Rrocedures

The procedure documentation header consists of CYSIL comments which
describe the procedures its calling sequence and parameters. The general
format for the procedure documentation header is as follows:

123456789012345.0¢
110}
riXs The purpose of this reaquest is to eee
3){ whatever this request does.

&)}
) XXPSREQUEST_NAME (FIRST_PARAMy e
6)¢ LAST_PARAM)
mno
%?F\ 8)C FIRST_PARAM: tinput) This parameter specifies <eo -
9L whatever this parameter specifies. €L)
10) (2 -
119C LAST_PARAM: (output) This parameter specifies eeo
12)¢ whatever this parameter specifies.
133 ¢}
wheres

tine 1t blank comment line)

tine 23 indent &3 describe the purpose of the request

tine 3: indent 2: for purpose continuations If necessary

tfine &3 blank comment (ine

fine 5t indent 8: request calling sequence; use all caplital letters;
parameter names must be the same and sust be In the same
order as in the XREFed procedure declaration

fine 62 indent 10 for parameter continustion If necessary

tine 7t blank comment line

tine 8t indent 1: describe first parameter; specify whether it Is
inputs input-outputs or output

fine 9: indent 83 for parameter description continuations If necessary

fine 10t blank comment line separates each parameter

line 133 blank comment line

Atsos when listing parameters one should strive to Hist st input
parameters first followed by input-output psrameters followed by attl output
‘:w parameters unless there is an obvious symmetry with other requests that

— s ——— e . —— — Vo Bt e -l - - 5 ——a— -

. 172
CYBER IMPLEMENTATION LANGUAGE

(:) ‘ 84/08/01
CYRIL Handbook REVS H

would be violatede The status parsmetery if present should always be the
last parameter on every request, ’ -

Data_Structures

Esch data structure will include a documentation header consisting of
CYBIL comments which describe what the structure is for and how it Is used.
The general format is as described for the ™purpose” section of the
procedure header.

XREF DECLARATION COMMON OECK

The XREF declsration common deck contsins a CYBIL XREF declaration
followed by a ®*callc to sll of the TYPE or CONST decisration common decks
{"D"™ decks) necessary to compile this decltaration in isolation (assume o
CYBIL module only calls one XREF declaration common deck)e.

It §s very important that all XREF declaration common decks perform
%calle’s (instead of *call) to necessary deckse This prevents duplicate
definitions of identifiers in the casllert's CYBIL module.

Q Example?)
- AMXREWD iﬂ)

COMMON

PROCEDURE [XREF) ampsSrewmind(fite_identifier:
amtsfite_identifier;
walittostsSwaits
VAR statustosts$status);

22 PUSH (LIST 2a 0OFF, LISTEXT:=0N) ?2?
scalic amdfid

#calic osdwnw

*csilc osdstat

?2? POP 2?2

TYPE /7 CONST DECLARATION COMMON DECK

The TYPE /7 CONST declisration comwmon deck contains CYBIL TYPE and/or
CONST declarations followed by s *callc to all of the declaration common
decks necessary to compile this comsmon deck in isolation.

It is very important that the declaration common decks perform scallc's
tinstesd of *csll) to common deckse This prevents duplicate definitions of
identifiers in the catlier®s CYBIL module.

0 Examples . N
)

O

o et S Al o e S i @il e S et @ e s @O a0 e b oo e o

-

e e E———— ————— . & —— ———— "

t

173
CYBER IMPLEMENTATION LANGUAGE

84/08/01
CYBIL Handbook REV: H
AMDNAME
COMMON
TYPE

amtsiocal_file_name » ostSname;
scallc osdnanme

EXAMPLE DECK

In order to be certain that interfaces provided for the end=user or
other functional sreas are speciflied asccurately and consistentliys, each
contributor should produce an example compilation unit that includes
references to all type and procedure declarations he/she is responsible for
and an exsmple of the usage of each interface. By compiling all
declarationss the checking Ulogic of the compilers will ald sccurscy and
consistencys by trying examples of the Interface, the contributor will gain
a feeling for the efficacy of the interface. .

ot -l coat e - — R e - —-— ——— e — — s i —— b et

O

174

CYBER IMPLEMENTATICN LANGUAGE

84/08/01

CYRIL Handbook REV: H

CYBIL _CODING _CQNVENTIONS

This document specifies the CYBIL coding conventions suggested for the

CYBIL wuserse. There are several geners! aims of coding conventions which
undertie all of the specific proposals that follow?

1.

2e

3.

Se

6o

There are a variety of routine, mundane aspects associated with writing
programst a set of coding conventions remove from the programmer
trivial decisions relating to module formats name generation, etce
thereby leaving more time to concentrate on important matters.

The brlmatﬁ purpose of documentation and the resdability of source code
is to help someone other than the developer understand what |Is going
on. . .

During the (lifetime of s 1farge software product like an operating
system or a compilers the average developer will come in contact with a
large number of modules written by and wmaintained by many other
programmers, A consistent set of coding conventions helps the
programmer "feel at home®” with a new module and therefore is adble to
begin doing useful work soonere.

To as great gn extent ss reasonsbles all coding conventions should b 3
generated and reinforced by automated methods, .%75
Source code is the ultimate documentation of any programs particularly

s program written in 8 higher tevel language such as CYBIL, Therefores
in sll CYBIL programmings s consistent emphasis should be placed on
producing lucid, readable, self- documenting code.)

All commentary in the source code should be written so that fts a) onty
provides information not readily apparent from resding the code and b)
is of 8 sufficiently atgorithmic nature such that it rarely, If ever,
becomes obsolete ss changes are made to the code,

USAGE_DE_A_SOURCE CODE_ECRHAIIER

The major software tool for generating and enforcing CYBIL coding

conventions should be the source code formatter (CYBFORM),

USE_CE_CYBIL

O -

_Use block structure to articulate program structuret s declarstion
should slways be declared at the “lowest®™ level possible.

Do pgt use the static chsint in general a procedure should only
reference argumentss Its own sutomatic varlables and static varliablese -

o e min i b ——- A Fr % e m w e ST 4 mmm e e aen o S tam e e aace e e et s P P e - il * . G s o £ o e et s

O

CYBER IMPLEMENTATION LANGUAGE

175
84/08/01

CYBIL Handbook REV: H

In general, interfaces between modules should be procedures 0.
functionss not XDCL/XREF varjsblese.)

Always use lsbel names that describe the process being performed by the
structured statement to which the ltabel referse.

Always repeat the tabel in the terminating statement of 8 structured
statement (the formatter will do this)t e.ge?

/search_symbol_table/
for & t= 1 to 10 do

forend /search_symbol_table/s

In general avoid the use of type INTEGER} few variables require
subranges that large,

In declarations of procedure parameter listsy sinays sepearste each
formal parameter with a semicolon marking each with a8 VAR or "absence of
VAR™ as appropriate,

Always declare all input parameters before all output parameters unless
there Is an obvious symmetry that would be disturbed.

Cover 32ll end cases. CASE statements should cover all statements with

ELSE beling used to cover "unplanned™ csses. r"}

Procedures and functions should be used for two purposes: 1)

wgubroutines®s 2) to "structure®™ the program thereby making the function
of the program obvious at a high tevel,

Arguments to procedures should also be used for two purposes: 1)
wsubroutine parameters™, 2) ss docuymentstion which atlous the reader to
see all dats referenced by the procedure by flooking at the procedure
call stateament. In the flatter cases the formal and actual parameter
names should be the same.

Trailing comment delimiter of *)}' should be used whenever reasonsbles
feees use of EOL as 3 comment delimiter is discouraged.

In compound arithmetics conditional or relations!l expressions, use
parenthesis to denote precedence. Do not depend on the Ilsanguage
operator precedence rulese.

Avoid the #LOC function like the plague,

USE_QF_THE ENGLISH LANGUAGE

The key to making programs readable s the ussge of meaningfuls

non-cryptic English names for sl CYBIL constructs; specifically:

——-‘-——.__‘_“_‘ — _.—.-\--—-- T —————— - —— -—..*--_.“*-——— e ———— - - o

176
Creer IﬂPLEHENTATION LANGUAGE

84/08/01

cysrt Handbook REV: N A

e When Naming type identlflers and record fields, Pertlcularly fieltg
consider the way the Name ywigy look ipn the codes not the deelaratlon;
CeQe?

TYPE
prooren_descrlptor ® record
load_nep: load-nep,optlons:
recend,
load-nep-optlons ® record
file_name : rlle_name:
options (allonothlng),

. Procedure and function Names shoultd descripe the Process the Proceduyre

e Labeys shoutd alwaysg describe the function being Performed by the

ir flle_suitch then
CI&IL.HABIHQ-RQMEKIIQN

The Systen Naming Conventign for the user lnterfeces is deserlbed in the
System Interface Stendard {(srs), That ;g 8lso the Convention for ltinkage

System globay Names i) be generated 8ccording to tpre fo!!ou!ng

N il X .

Ry

Ty

e e e ot mat = e e e e b s me- s . e e s m— e e e L e e e e e e e e et e e e - —— - = e e =

177
CYRER IMPLEMENTATION LANGUAGE

84708701
@ CYBIL Handbook REV: H
PPCSXXXaeaeo
wheret
PP = Is 8 two character product lidentifier for the owner of this

name.

C s jdentifies the class of the name,

s = |s the special character 'S,

XXX = a meaningful English expression or sbbreviation that describes
or denotes the purpose of the ltem being nsmed.

Class of Names?

constant

exception condition name
file

module

procedure

section

type

varliable

MOOULE_AND_PROCEDURE DOCUMENIAIION

CANDETIMO

function within s module should be provided. The procedure documentatic:
is also encouraged for local procedures and functions as welle Care shoul
be taken to minimize commentary becoming outdated as changes are made to
the code.

‘;!) Standard documentation for each module and each XDClLed procedure or

MODULE <modutle identifierd;

{ PURPOSE:

{ This should contain the purpose of the module and the

{ reasons for grouping these declarations In the modute rather
{ than the purpose of each procedure.

{ DESIGN:

1 4 This should contain an overview of the module designs le.ee»
L 4 an outline of how It works in general terms. Usage of ’

{ specific variables or procedure names is discouraged in this
{ description.

¢procedure or function declarationd}

€ PURPQOSE:?

{ This should describe the process the procedure or
C function perforas rather than the method usede.

{’ NOTE:

{ This should contain information of interest to the
C user or maintalner,

'

L

e 77 . - -

e et o e mme e e e mt e .t . o omims e mm e e em e e s o = e et s Se s % e e 4 e Cee e eme Mmoo S SS S TS

178
CYBER IMPLEMENTATION LANGUAGE
84/08/01
CYBIL Handbook REV: H

TIILE_REAGHAIS | ’

Each module_should be titlied In the following way?

<major product identifierdC:<component identifierdeesd
<sp><sp>LLX0CL1I<procedure Identifier>i<section identifierd>

for examples
NOS ¢ task establisher
EXDCLY pmpSestablish_task

COMMENIING CONVENIIONS_AND_GUIQELINES

In generals, comments should be standalone blocks describing why or what
a series of CYBIL statements are doing. Care should be taken not to use
comments that witl become outdated by detalled changes to the code. The
basic concept behind comments should be to provide nonredundant
information. Comments should be preceded and followed by a blank line and
start In the first avaiiable source character on the line, Agsiny remember
that the purpose of comments is to help someone other than ¢the original
developer of the module understand what the module is doinge

@ PROCEDURE_AND_DATA_AIIRIBUIE_COMMENI CONVENIIONS B
Comments should also be wused to convey software or system attributes

which sre not discernable from CYBIL declarations. These comments should

be concise and abut CYBIL declaration constructs rather than being ¢

standalone blockse. : H

Q

179
CYBER IMPLEMENTATION LANGUAGE
84/08/01
CYBIL Handbook REVE: H

EEEICIENCIES

This section tists a group of programaming tips to heip the user make
better wutilization of the CYBIL development environment. AsS suchy It is
not an exhaustive tist and will be added to as additional hints become
knowne The CYBIL Project would appreciate any other iInformation which may
assist the usage of CYBIL, '

These ideas are guldelines, they should be followed only when clarity of
code Is pgt compromised.

SOURCE_LEVEL EEEICIENCIES
GENERAL

o There is s significant amount of overhead associated uwith any procedure
calle If a procedure Is being called in a fooping constructs it may pay
to call the procedure once and put the loaop tests inside the called
procedure,

0o References to variables via the static chain in nested procedures cause
an overhead associsted with that reference. In generatl, o procedure
should only reference static varlablies, arguments and its own autunatlé:’
varlables,

o A copy Is currently being made of sll valtue parameters. This
implementation Is subject to change.

o Assignment of records is done with one Ularge amoves while record
comparison Is done field by fielde Therefore, all other things bdeling
equals It is best for performance reasons, . to organize fields within
records uith the most likely non-conforming fields first.

0o Move structures rather than lots of elementary items. This ray requlre.
structuring the elements together especially for this purpose.

0 Reference to sdaptable structures ari slower than references to flixed
structures because the adaptable has s descriptor field which must be
accessed.

o References to flelds within a record require no execution penaltye.

0 Repeated references to complex data structured (via pointers or indexing
operations) can be made more efficient by pointing a locsl pointer at

‘ the structure and use it to replace the compiex references.

o Inappropriate use of the null string facility can be sn expensive NOOP,

o

C

o

180

CYBER IMPLEMENTATION LANGUAGE

84/08/01

CYBIL Handbook REV: H

Inttiatization of static variables incurs no run time overhead.

If a record is being initialized with constants at rdn time it is often
more efficlent ¢to define a statically initislized vaciable of the same
type and do record assignment.

A packed structure will generally require less space at the possible
cost of greater overhead associsted with access to its components. This
is because elements of packed structures sre not gusranteed to lie on
addressable memory unitse.

When organizing dats within a packed structure It 1Is more space
efficient to group bit alligned elements together.

The STRING data type is a more efficient declaration than a PACKED ARRAY
OF CHAR,

When considering alternative data structures for homogenous data the
user should first consider ARRAYs, then SEQuences and finally HEAPs.

When considering alternatives between the HEAP and SEQuence storage
typess the following should be considered. The HEAP Is the more
inefficient mechanism reaquiring the greatest overhead in terms of space
reauirements and the more execution overhead, SEQuences are the more
efficient in terms of both storage and execution overhead.

The NEXT and RESET statements ss used on seauences snd user heaps ‘rf

implemented as inline codes Whereas the implementation for ALLOCATE nn&*'

FREE is a procedure call to run time Jibrary routines.

Space in a heap is consumed only when an ALLOCATE statement Is executed,
In addition to the space ALLOCATEed by the CYBIL programy s header is
added to maintain certain chaining information. For this reasons
ALLOCATEing small types incurs a large percentage overhead.

Code for the PUSH statement {s generated (inline and, as suchs Is -

considerably faster than an ALLOCATE and FREE combination,

For efficliency and maintainability reasons the use of #L0C should be
svoided, '

When @8 definition contains s number of *flags? or attributes, the
following should be considered when chosing between BOOLEANS or a8 SET
types . :

o If the record Is not packed ¢the SET will redyce the size of the
definition

‘o Any sub-set of the attributes of a SET can bde tested st once.

o If a single element test is desired sn unpacked BOOLEAN is sllightiy
more efficlient than a SET.

181
CYBER IMPLEMENTATION LANGUAGE :
84/08/01
CYBIL Handbook REVs H
= o Usage of boolean expressions is more efficient than IF statements. Fo’,
examples uses)

equality 3= (asb);
Do not use?

IF asb THEN

equality t= TRUE}
ELSE

equality t= FALSE;
IFEND;

o Rather than coding fong 1IF sequences 8 CASE statenenf should be
considered when using a proper sefectore.

o Compound boolean expressions should be ordered such that the first
condition {is the one which hss the highest probabitity of terminating
the condition evaluation for the nominatl case.

o Compite time evatuation of expressions jnvolving constants eproduces
better object code if sil constants (at the ssme fevel) in the
expression are grouped together. For exsmples the expression?

X t= 5S¢V *C *23

@ will produce object code using two constants (5 and 2) and two nrlable.
(Y and C)e If the expression is rewrittens

X ta 5 %2 ¢ Y %C;

with the constants together, the compliler (at compilte time) will combine
the expression %5 & 2" into the constant 10" and produce ob ject code to
evaluate the expression using only one constant (the ten) and two
variasbies (Y and Cl.

o When doing divide by a power of two on a positive Integer sybrange 8
shift instruction can be generated. Becayse 8 shift instruction
instruction tends to be considerably faster than s divide instruction it
is a benefit to define positive integer subrangese.

o Range checking code requires asdditional storage space sand is time
consuminge One can eliminate sll genersted range checking code by
setting “CHK=0" on the call statement (or 22SET(CHKRNG:=0FF)?? n the
source program). Setting CHK=0 on the cafll statement, while debugging
programss {s not recommended since legitimate program ervrors may not bde

_ disgnosed. A better spproach Is to reauest range checking on the call
statement (or (In the source program) and then ainimtize, using good
programming practices the smount of checking code generated. Consider
the fotllowing progran segments

- e iy

! i —— e o B e D S — —a m——

182

CYBER IMPLEMENTATION LANGUAGE

cc

84/08/01
(:b CY8IL Handbook REV: H
TYPE
a s 0,0103
VAR

indexyy? a»
x3 array [a) of integer;

yt=s53.
indexssys
xCindex] ¢33

Since varisbles "index™ and "y" sre defined to be of ¢type "a™ (the
subrange 0..10) the assignment "index t1=y3® will not (and need not) be
checked for proper range even |{f range checking is requested.
Simitarly, the statement "xlindex] :=3;" will not (and need not) contain
range checking code. 1f varisbles "y" and "index™ were declared to bde
INTEGER (or some type other than the subrange 0eel0) range checking code
would be required.

Any timed execut}ons should be run safter the CYBIL code has been bulilt
with checking code turned off.

Certain conversion functions (l1eCesSINTEGERsSCHAR et C,) require no
execution time overhead,

The code genersted for STRINGREP is a call to 8 run time Ulibrary
routine, b

~.

A file should not be opened before It is needede. As soon as s file is
no fonger neededs, it should be closed. An overhead {Is involved in

opening €& closing filese Therefore, unnecessary opens € ctoses should’

be avoided,

EFFICIENCIES

Pointers to strings are inefficient because the string may, in general,
pbegin at any character boundary. These pointers may be created

explicitly by assignment statements or implicitly by supplying a string -

ss an actual parameter for a call by reference formal parameter. If
possibley align strings so that they begin on s word boundary.

Run time routines are called for the string operations of sssignment |- 9

comparison whent

1) Neilther string Is aligned ory

2) Lengths are known and unequal ory 4

3) Elther or both lengths are unknown at compile time.
Otherwise the faster Inline code is generated,

It is possible to modify the buffer size used by the CyYBIL 1/0 package-

£ - . - -
Py W p— N e W e * 4 b st - M G — 0 R ——— — o TS D s s wr w e mm e s

183
CYBER IMPLEMENTATION LANGUAGE)

: 84/08/01
(iE CYBIL Handbook REVS H

For an explanation see the ERS for CYBIL I/0 (ARH2739)e If there ar. '
very few accesses to a8 file, it may be best to select 2 small duffer,
since overal! fjeld length will be reduced, thereby Increasing total
system throughput by decreasing swap rates, allowing more Jobs to run
concurrently, etc.

CI/I1 EFFICIENCIES

o The asdaptablie string bound construct should be quoted whenever possible
to glve the compiler a clue as to the maximum length, This will often
result in more efficient code being generated for adaptable strings.

o References to XDCL variables and varlsbles declared within s SECTION
will be made via the binding section ands conseaquentiy, an overhead Is
assoclated wuith the first reference, ' .

-on o0 20 0 ee

o The code generator does not currently move invariant code out of foops.
Consequentlys access to variables through the bdinding sectlion within a
toop would be more efficient if the initisl access to the variable 1is
outside the toop,

o The reach of the load & store instructions on the Advanced System is
timited to 2¢*16., When using large varisbles the offset wsay become
greater than this threshold sand result in an extra instruction being

) generated to handle the large offset. This would Indicate organlzln€:3
the more frequently used variasbles first in very large user stackse. A

CM EFFICIENCIES

o Subranges should never be sny |srger than necessary. Hsving subranges
larger than necessary negates CYBIL's range checkings and generaily
causes less efficient codes In particulars definitions of symbols such
as int16 and uintles which defline 16-bit signed or 16-bit wunsigned-
integer subranges should be avoided. These tend to cause register
extend operations when used in arithmetic operationse For example, ifr 2
16-bit values are added, the values must be extended to 32 dits before
adding them in order to gusrsntee a correct result,

C® en O SO A en A on S0 ce mo

CP EFFICIENCIES

o The UCSD p-system does not have an exclusive or instruction. Thereforey
set references using the XOPF operator generates 8 lot of code.

o Using long Integer subranges results in less efficient code.

o The wmost commonly used varisbles should be entered first in the tist of

variables for 8 procedure, The first n variables {in s procedure are
‘:h sccessed by a1l byte instructions the others by 2 bytes. Consequently

e Ml et M o i Gk hde e ot o d2s e e o o e =m0 - — - - o - —— ——— —— - — . -

184
CYBER IMPLEMENTATION LANGUAGE

864/08/01
@ CYBIL Handbook REVE H
targe structures (i.e. arrays) should be the last var!ables in the

liste
o Using global varisbles in other modules should be avoided,

o Avold FOR statements in favor of WHILE or REPEAT. They are faster and
produce less code.

o Use base 0 for arrays rather than le Eege use WARRAY [0 .. n=-1 1"
instesd of ARRAY [1 «¢ n 1%,

COMPILATION EEEICIENCIES
I* compitlation time is a factor the following ltems could be considered
as they do affect the compifation rate.

o The generation of information to inteprface to the symbolic debuggers
slows the compilation processe.

o The generation of stylized code slows the compilation processe
0 The generation of range checking code slows the compilation processe.

‘:& o ‘The selection of listings slious the compilation processe. This includes™
, the source jistings the cross reference 1isting and the attribute ey

o Generating a source listing with the generated code fncluded is sfower
than If Just the source listing is being cbtalinede.

o Actuallys, for the normal CYBIL user very fittte can be done to improve
the compilation rate. However, rest assure that considerable effort has
heen expended to reduce the number of recompilations necessary to
produce 3 debugged program,)

4

PP SR - — s e e ! SN v e ——- - ———— S s S — —— —— —— - — . - — A A) e WD DT i e ALt D - it et e . o =

185
CYBER IMPLEMENTATION LANGUAGE
84708701
cYysitL Handbook REVE H

IMPLEMENTATION_LIRIIAIICNS

GENERAL -

"o Maximum number of lines In a single compilation unit is 65535,

o Maximum number of unique identifiers allowed in 8 single compilation
unit is 16383,

o Maximum number of procedures in a single compiliation unit is 969,
o Procedures can oniy be nested 255 levels deep,

o Maximum number of conmpile time varisbles wused in conditional
compilations Is limited to 1023,

o Maximum number of error messages printed per module is 2000.

¢ Maximum number of elements deflngd in a single ording! list is 1imjted

to 16384,
o Integer constants asre restricted to 48 bits on the C170.
CC_LIMITATIONS

o Case selector values limited to less than 2#%*17,

o Polinter fields within initialized packed records must be aligned for use
within C170 capsules or overlay capsulq:. ’ ’

o Packed arrays whose element size exceeds 2##17 bits gets s subscript
range errore '

CILIX LINIYATIONS

o Maximum number of lines in a single compilation unit is 32767 when ryn
time error checking is selected.

o Nesting level of structured statements Is limited to 63 levels deep,
o FOR statements can only be nested 15 levels deep.
o Procedures may only be nested 50 levels deep,

o Number of parameters passed to an xrefed procedure {s 127, while an
‘:» xrefed function is {imited to 126.

U

e e e e 6 b s e+ B 0 Ot O e - - o ¢ s | B v - e o - i o e St o S e el e S

O

186

CYBER IMPLEMENTATION LANGUAGE

84/08/01

CYBIL Handbook REV: H

The reach of Jump instructions is Iimited to 2%%16 so the size .

compilation units should be aporopriately controtlled,

o The stack slze of a single procedure is limited to 2**154bytes.

Long constants are not included in the debug symbol tables produced.

CM_LIMITAIIONS

o Maximum number of tines in a single compilation unit Is 32767 when run
time error checking is selected.
o Nesting level of structured statements is limited to 63 levels deep,
o FOR statements can only be nested 15 levels deep.
o Procedures may only be nested 50 levels deep.
o Number of parameters passed to an xrefed procedyre Is 127, while an
xrefed function Is limited to 126. :
0 The reach of Jjump instructions s limited to 2%%16 so the size of s
module should be appropriately controilled.
0 The stack frame size is limited to 2%#15 bytese.
CP_LIMITATIIONS
o In general the size of arrays and strings should be limited to less than
2%%15 bytes.
o Maximum number of procedures in s single module is limited to 254,
o The nailmun nesting tevel of procedures is 30.
© The use of long integer subranges Is not allowed in the following areas?
o Array subscripts,
o As the <first char> or as the (substring fength> on any string
reference;
0 As the selector on a case statement,
o As a actusl! parsmeter to a formal reference parameter of type
integer, . ' ,
0 As the control variadble, starting value or ending vatue of & FOR
statement.
o The result of a Stringrep operstion on s floating point number is

jimited to 6 digits,

h B B e D D e - B S —- BB g BE o =S an

D

4

CYBER IMPLEMENTATION LANGUAGE
@ CYBIL Handbook

€S5SS LIMITALIONS

o Array size dimited to 2%#%#32,

0,

s - e

187

84/08/01
REVS: H

>

o

' . -

le8

CYBER IMPLEMENTATION LANGUAGE

84/08/01

CYBIL Handbook REVs H
COMPILER_AND_SPECIEICAILON _DEVIATIIONS

This section is intended to provide sufficient detail ‘to be able to

understand those features where the compilter implementation 1asgs the
language specification.

GENERAL

CYRIL Implementation_=_0eylatians

o #SEQ function,

o Restricting pointers to not point to data with less scope.

o Inttialization of static pointers to NIL and zeroing the adaptable
descriptor fields is not done.

o #SI12E of sdaptable types.

o Run time checking on accessing flelds of variant records not supported.

o #Current_stack_fraze intrinsice.

o Support adaptable arrays of zero dimension,

o Double Precision Floating Point (LONGREAL).

0 RESET TO with 3 relative pointer.

o STRLENGTH of constant of constant lidentifier.

o Library pragmat,

0 Pre=defined identifiers are implemented as reserved words.

CC_DEVYIATIIONS

o0 Relstive Pointer Typese.

o Genera! Intrinsicse.

o Partial condition evaluation on OR operator not supported.

o Actual value parameters > 1 word must be addressable,

CIZLII_DEVIATIIQNS

CM_DEVYIAIIONS

o Large value parameters are never copied,

o If s non-local exit from 8 function is done, the function result value
is always undefined.

o Single Precision Floating Point (REAL).

CE_QEVIAIIONS

o Static initlaltization.

0 PUSH statement is not supported.

o Relative Pointerse.

e @ e el e M P G e Ve et - s - ——_—ae

— -

® e P O PO . SO on *S ea

-’

n e co S -

- ae

-n oo

P LN L

O

)
(]

- — e — .

CYBER IMPLEMENTATION LANGUAGE
CYBIL Handbook

General Intrinsicse.
Copies of adaptable value parameters are

CSZSS_CEYIAIIONS

o

€200 Intrinslicse.

————— s A ¢ o e SPVA s oo w -

189

84/08/01
REV: H

never madeos

“® co e w® e aen ww

O

U

