CDCNET
Network Management Entities and Laver Interfaces

Systems Programmer’s Reference Manual Volume 2

0462420 (G2 CONTROL DATA

CDCNET Network Management Entities

and Layer Interfaces

Systems Programmer’s Reference Manual, Volume 2

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60462420

Manual History

This manual is revision A, printed in September 1986. It documents CDCNET Software
applicable to NOS and NOS/VE environments.

©1986 by Control Data Corporation.
All rights- reserved.
Printed in the United States of America.

2 Network Management Entities and Layer Interfaces Revision A

Contents

About This Manual

Audience
Organization

Systems Programmer’s Reference
Manual Set.

Volume 2, Network Management
Entities and Layer Interfaces. . .

Conventions
Related Manuals
Additonal Related Manuals
Ordering Manuals
Submitting Comments

.............

.......

Part 1. Introduction to CDCNET

Overview of CDCNET Software

CDCNET Software

Software Described in This
Manual

Software Described in Other
Manuals.

CDCNET Software and CYBER
Hosts

Introduction to CDCNET
Concepts

Layer Principles
Services
Service Primitives
Protocols
Service Access Point (SAP) . .

Connections
Network Solution
Catenet
Multicast Address
Protocol Data Unit

..........

...............

Locally Connected Network
Solution.

Remotely Connected Network
Solution.

Identifiers

Revision A

10

11
13
13
14
14

Part II. Network Management

Entities
Initialization ME 3-1
Independent Initialization ME . . . 3-1
Dependent Initialization ME . .. 3-1
Initialization ME and the DI
Load Process 3-3
Routing ME 4-1
Routing Tables 4-3
Directory ME 5-1
Overview 5-1
Services Required. 5-11
Services Provided 5-12
Constants and Common Types 5-33
File Access ME 6-1
Independent File Access ME . .. 6-1
Dependent File Access ME 6-2
CDCNET Files - 64
File Access Users 8-5
File Access User Interface 6-5
Services Required. 6-7
Services Provided 6-8
Constants and Common Types 6-24
Command ME 7-1
QOverview 7-1
Services Required 7-9
Services Provided 7-10
Constants and Common Types 7-31
Log ME 8-1
Independent Log ME 8-1
Dependent Log ME 8-2
Log Messages 8-4
Network Operator Interface 8-5
User Interfaces to Dependent Log
ME 8-6
Services Required 8-7
Services Provided 8-8

Contents 3

Constants and Common Types

Alarm ME

Independent Alarm ME
Dependent Alarm ME
Network Operator Interface . .

User Interfaces to Dependent
Alarm ME

Services Required
Services Provided

...............

......

Echo ME

..............

Overview
Services Required.
Services Provided
Constants and Common Types

Error ME

..............

Overview
Services Required.
Services Provided
Constants and Common Types

Clock ME

Independent Clock ME
Dependent Clock ME

Part II1. Network Layer
Interfaces

Session Layer

Overview
Services Required
Services Provided
Constants and Common Types

Transport Layer

Generic Transport Layer

Overview
Services Required
Services Provided
Constants and Common Types

4 Network Management Entities and Layer Interfaces

8-11

9-1

9-1
9-2
9-4

9-4
9-5
9-5

10-1

10-1
10-4
10-4
10-4

11-1

11-1
11-4
11-5
11-7

12-1

12-1
12-2

13-1
13-1
13-3
13-4
13-36

14-1

14-1
14-5

14-6.
. 14-32

Xerox Transport Layer 15-1
Overview 15-1
Services Required 15-4
Services Provided 15-5
Constants and Common Types 15-17

Network Layer

Internet Layer 16-1
Overview 16-1
Services Required 16-4
Services Provided 16-5
Constants and Common Types . 16-12

Intranet Layer 17-1
Overview 17-1
Services Required 17-6
Services Provided 17-7
Constants and Common Types . 17-14

Data Link Layer

Mainframe Channel Interface

Stream Service Routine 18-1
Overview 18-1
Services Required 18-4
Services Provided 18-5
Constants and Common Types 18-9

Ethernet Serial Channel

Interface Stream Service

Routine 19-1
Qverview 19-1
Services Required 19-4
Services Provided 19-5
Constants and Common Types 19-8

High-Level Data Link Channel

Stream Service Routine 20-1
Overview 20-1
Services Required 20-4
Services Provided 20-5
Constants and Common Types 20-8

Part IV. Interfaces to Non-CDNA

Systems

Revision A

Interface to NOS Hosts Constants and Common Types . 22-27
Block Protocol Interface X.25 Interface
Program (BIP). 21-1
Overview 21-1 X.25 Packet Level 23-1
Serv%ces Requ.ired 21-2 Overview . . . o o oo 23-1
Services Provided 21-3 Services Required 23-3
Constants and Common Types . 21-32 Services Provided 23-4
Constants and Common Types . 23-46
Service Module (SVM) 22-1 .
Overview 22-1 Appendixes
Connections and Connection
Establishment 22-2 GloSSary A-1
SVM Services 22-2
Services Required. 22-3
k d Record B-1
Services Provided 22-4 Network Address Record
Figures
1-1 CDCNET Software 1-2 8-1 Log ME in a NOS
1-2 CDCNET Software in a NOS Environment. 8-2
Environment. 1-4 8-2 Log ME in a NOS/VE
1-3 CDCNET Software in a Environment. 8-3
NOS/VE Environment 1-5 8-3 Log ME Interfaces 8-5
2-1 Concept of a Layer 2-1 9-1 Alarm ME in a NOS
2_2 Logical Connections 2_2 Enﬂronment 9"2
2-3 Types of Primitives 2-3 g‘é Alarm ME in a NOS/VE 9.3
2-4 Example of Relay and Hop . . . 2-5 9 3n:11ronmiz{né I) rf """"" 9-4
3-1 Initialization ME in a NOS -5 Alarm nterfaces -
Environment. 3-2 10-1 Echo ME Functions 10-2
3-2 Initialization ME in a NOS/VE 10-2 Echo, Error, and Internet
Environment. o o\ 3.9 Layer Relationship. 10-3
4-1 Routing ME in a NOS 11-1 Error ME in a NOS
Environment. 4-1 Environment. 11-2
4-2 Routing ME in a NOS/VE 11-2 Error ME in a NOS/VE
Environment. 4-2 Environment. 11-3
5-1 Directory in a NOS 12-1 91°<=k ME in a NOS
Environment. 5-2 Environment. 12-2
5-2 Directory ME in a NOS/VE 12-2 Clock ME in a NOS/VE
Environment. 5-3 Environment. 12-3
6-1 File Access ME in a NOS 13-i OSI and CDNA Layers
Environment. 6-2 13-1 Session Layer Functional
6-2 File Access ME in a NOS/VE Relationship. 13-2
Environment. 6-3 14-1 Generic Transport Layer
6-3 File Access ME Interfaces 6-6 Interfaces 14-3
7-1 Command ME in a NOS 15-1 Xerox Transport Layer
Environment. 7-3 Interfaces 15-1
7.2 Command ME in a NOS/VE 16-1 Internet Layer Interfaces . . . 16-5
Environment. 7-4 17-1 Intranet Layer Overview . . . 17-2
7-3 Command ME Procedures . .. 7-10
Revision A Contents 5

17-2 Intranet Layer, NIB, LIB

Relationship. -4
18-i Data Link Layer Overview
18-1 MCI SSR Interfaces 18-2
19-1 ESCI SSR Interfaces 19-2
20-1 HDLC SSR Interfaces 20-2

21-i NOS Host Interface Software

21-ii CDCNET MDI/NOS Host
Relationship

21-1 NOS Host Interface Software 21-2

23-1 X.25 Interface between
CDCNET and a Foreign Host

23-ii X.25 Interface between
CDCNET Systems

23-1 X.25 Packet Functional

Relationship. 23-2
Tables
5-1 Directory Address Record . . . 5-14 16-2 Open SAP Output Record
5-2 Directory Entry Record 5-18 (OPEN_SAP_OUTPUT_
ireciory Bniry Besor PARAMETERS). 16-7
5-3 Translation Indication Control
Block Record 5.22 16-3 Data Request Record
5-4 Wildcard Characters 5-25 lngg‘:N?gthQ—g)' PR 16-8
. -4 Data Indication Recor
geg "é‘:tlte T!I'ralfnslato:. Control Record 5-28 (INTERNET_IND_IF). 16-9
- atus Information . ..
23-1 Statistics Record (PL..
7‘2‘;;“*?“;'1:}%?- R 711 "QTATISTICS_REO). 23-18
-2 Riva uated hxpression Vaiue 23-2 Statistics Record (PL_
(CLT$VALUE). 712 STATISTICS_REC). 23-27
16-1 Open SAP Input Record 23-3 Accounting Record (PL._
(OPEN_SAP_INPUT. ACCOUNTING_REC) 23-32
PARAMETERS). 16-6 =Rl s
6 Network Management Entities and Layer Interfaces Revision A

About This Manual

The CDCNET Systems Programmer’s Reference Manual describes the CONTROL
DATA® Distributed Communications Network (CDCNET) software. The CDCNET
software enables you to write gateway software to support terminals, networks, and
devices not currently supported by Control Data.

Audience

The Systems Programmer’s Reference Manual is intended for anyone who will develop
or integrate new software that must be compatible with CDCNET. This includes
writing of new applications, TIPS for terminals not already supported by CDCNET, and
gateways to networks using protocols foreign to CDCNET. The manual assumes the
reader is familiar with CDCNET network operations.

The manual assumes the reader is familiar with and understands:
® CDCNET Network Operations
e CYBIL Programming Language

e CDCNET Systems Programmers Reference Manual, Volume 1, Base System
Software

e NOS

e NOS/VE

® SO Open Systems Interconnectibn (OSI) Model
® X.25 CCITT Recommendation 1980, 1984

Organization
This manual is one of a three-volume Systems Programmer’s Reference Manual set that

describes the CDCNET software. The following subsection contains brief descriptions of
the other manuals in the set followed by a more detailed description of this manual.

Revision A About This Manual 7

Systems Programmer’s Reference Manual Set
The three-volume manual set includes the following manuals.

® Volume 1, Base System Software

® Volume 2, Network Management Entities and Layer Interfaces

e Volume 3, Network Protocols

Base System Software, volume 1, describes the CDCNET DI startup and system
management software: its base system software. The volume begins with an overview of
each base system software component, and continues with details of the procedures and
functions provided by these software components for general use.

Refer to volume 1 for additional information about procedures, intertask messages,
procedures to send ITMs, BUF_PTR parameters, and BUF_PTR fields that appear
frequently in the text of volume 2.

Volume 2, this volume, describes each of the network management entities (MEs) and
layer interfaces for CDCNET. The volume also describes the interfaces to non-CDCNET
systems. These interfaces include interfaces to NOS hosts and X.25 Packet Level
networks. The information described in this volume is essential for programmers who
intend to write gateway software that will reside in CDCNET.

Network Protocols, volume 3, defines CDCNET network protocols. The use of protocols
enforces consistent communication between software entities and the transitions that
result. The description of each protocol follows a rigid documentation guideline, called
the Finite State Machine (FSM). The information described in this volume will be
useful to programmers implementing Control Data Network Architecture (CDNA) on a
foreign host or network.

The gateway programs you write will reside either in the DI or in a system foreign to
CDCNET. The location of your gateway programs determines which volumes of the
Systems Programmer’s Reference Manual set will be of most help to you.

e If you are writing gateways that will be resident in the Device Interface (DI), you
should understand the information in volume 1 and volume 2 of the manual set.
You may want to review volume 3.

e If you are writing gateways that will be resident in a system foreign to CDCNET,
you should understand the information in volume 3.

8 Network Management Entities and Layer Interfaces Revision A

Volume 2, Network Management Entities and Layer
Interfaces

Volume 2, which describes the network management entities and layer interfaces, has
the following organization.

Part I introduces CDCNET.

® Chapter 1 provides an overview of the CDCNET software, especially the
organization of the software.

® Chapter 2 introduces concepts important to the understanding of CDCNET software.

Part II defines and describes the external interfaces to the network MEs, those
software components controlling management of the communication between networks.

® Chapter 3 describes the Initialization ME, the software that is responsible for
dumping and loading DI.

® Chapter 4 describes the Routing ME, the software that creates, updates, and
manages the internal tables used to route information within the network.

® Chapter 5 describes the external interfaces to the Directory ME, the software that
maintains the titles and addresses which identify the individual software
components in a CDCNET network.

® Chapter 6 describes the external interfaces to the File Access ME, the software that
accesses and manipulates permanent files residing on host computers configured
within a CDCNET network.

® Chapter 7 describes the external interfaces to the Command ME, the software that
enables network operators to issue various commands to control, monitor, and
maintain CDCNET networks.

¢ Chapter 8 describes the external interfaces to the Log ME, the software that
records log messages issued by all CDCNET software components.

® Chapter 9 describes the external interfaces to the Alarm ME, the software that
displays alarm messages received from all CDCNET software components.

® Chapter 10 describes the external interfaces to the Echo ME, the software that
verifies a particular system in the catenet is operational by returmng a message to
the user in the system from which the message was received.

® Chapter 11 describes the external interfaces to the Error ME, the software that
generates an Internet error report (IER) for a message in error and sends the IER
to the message source. If it is not appropriate to send an error report back to the
message source, the Error ME logs the error message.

® Chapter 12 describes the Clock ME, the software component that manages and
synchronizes a real-time clock and calendar for every CDCNET DI

Part III defines and describes the external interfaces to the CDCNET implementation
of the OSI network layer interfaces: Session layer, Network layer, and Data Link
Layer. The network layer interfaces are those software components that enable
applications software, end users, terminals/workstations, and host computers to
exchange information through a compatible set of protocols and interfaces.

Revision A About This Manual 9

Chapter 13 describes the external interfaces to the Session layer. The Session layer
software component enables applications such as gateway programs and TIPs to
synchronize their dialogue and manage their data exchange.

Chapter 14 describes the external interfaces to Generic Transport. The Generic
Transport portion of the Transport layer delivers data to the correct destination
without error and in correct sequence.

Chapter 15 describes the external interfaces to Xerox Transport. The Xerox
Transport portion of the Transport Layer software component is CDCNETs
implementation of the Xerox sequence packet protocol, that performs error control
and flow control for point-to-point data transmissions.

Chapter 16 describes the external interfaces to the Internet layer. The CDCNET
implementation of the Internet layer software compenent uses the Xerox Internet
protocol to relay data between two or more systems.

Chapter 17 describes the external interfaces to the Intranet layer. The Intranet
layer software component provides the interface between specific network solutions
on a particular CDCNET network.

Chapter 18 describes the external interfaces to the mainframe channel interface
(MCI) stream service routine (SSR). The MCI SSR software component enables the
user to transfer data between a DI and either a NOS or NOS/VE host.

Chapter 19 describes the external interfaces to the Ethernet Serial Channel
Interface (ESCI) SSR. The ESCI SSR software component enables the user to
transfer data between a DI and an Ethernet network.

Chapter 20 describes the external interfaces to the high-speed data link channel
(HDLC) SSR. The HDLC SSR software component enables the user to transfer data
between DIs interconnected by either point-to-point synchronous HDLC lines or
general-purpose X.25 virtual circuits.

Part IV defines and describes the user interfaces to non-CDCNET systems or networks
attached to the CDCNET network. The non-CDCNET systems currently supported
include those systems operating under NOS. The non-CDCNET networks currently
supported include X.25 Packet Level public data networks (PDNs).

Chapter 21 describes the external interfaces to the Block Interface Program (BIP),

the software component that enables data transfer between a NOS host and a
CDCNET DI

Chapter 22 describes the external interfaces to the Service Module (SVM), the
software component that offers connection management services between a NOS host
and a CDCNET DL

Chapter 23 describes the external interfaces to the X.25 Packet Level. This software
component enables CDCNET to access X.25 Public Data Networks or Packet Data
Trunks.

Appendix A provides a glossary of CDCNET terms and acronyms used in this volume.

Appendix B provides a description of the network address record.

10 Network Management Entities and Layer Interfaces Revision A

Conventions

The manual has the following conventions:

® Bold text is used to identify the fields within a record or parameters within a

procedure.

® A type font that resembles computer output is used to identify CYBIL data
structures and procedures within the text.

® Uppercase letters identify CYBIL types within text.

® Refer to CDCNET Volume 1, Base System Software, for additional information

about the intertask message and BUF_PTR format and use.

Related Manuals

Background (access as needed):

Software development manuals:

60462410

Software tools manuals:

CDCNET CDCNET
CYBIL MC68000
Reference Cross-
Assembler
60462400 60462740
Revision A

CDCNET
MC68000
Utilities

About This Manual 11

Additional Related Manuals

Additional related manuals include the following:

- Publication
Manual Title . Number
CDCNET CYBIL Reference Manual 60462400
CDCNET M68000 Utilities 60462500
CDCNET MC68000 Cross-Assembler Reference Manual 60462700
CYBIL for NOS/VE System Interface 60464115

Ordering Manuals
Control Data manuals are available through Control Data Sales Offices or through:

Control Data Corporation
Literature Distribution Services
308 North Dale Street

St. Paul, Minnesota 55103

12 Network Management Entities and Layer Interfaces Revision A

Submitting Comments

Control Data welcomes your comments about this manual. Your comments may include
your opinion of the usefulness of this manual, your suggestions for specific
improvements, and the reporting of any errors you have found.

You can submit your comments on the coment sheet on the last page of this manual. If
the manual has no comment sheet, mail your comments on another sheet of paper to:

Control Data Corporation
Technology and Publications Division
4201 Lexington Avenue North

St. Paul, Minnesota 55126-6198

You can also submit your comments through SOLVER. SOLVER is an online facility
for reporting problems. To submit a documentation comment through SOLVER, do the
following:

1. Select Report a new problem or change in existing PSR from the main SOLVER menu.
2. Respond to the prompts for site-specific information.

3. Select Write a comment about a manual from the new menu.

4. Respond to the prompts.

Please indicate whether or not you would like a written response.

Revision A About This Manual 13

Overview of CDCNET Software 1

CDCNET Software v o i e e e e e e e e e e e e e e e e e e 1-1
Base System Software e 1-1
Network Management Entities (ME) 1-1
Layer Software i i i e e e e e e 1-2
Interface Software i e e e e e e e e e e e e 1-2

Software Described in This Manual 1-3

Software Described in Other Manuals 1-3

CDCNET Software and CYBER Hosts

Overview of CDCNET Software 1

This chapter discusses:

® (CDCNET software.

® The differences between CDCNET software running in the Network Operating
System (NOS) environment and the Network Operating System/Virtual Environment
(NOS/VE) environment.

® The software described in this manual and the information needed to write gateway
programs.

CDCNET Software

The Control Data Distributed Communications Network (CDCNET) is a distributed data
communications network that implements the Control Data Network Architecture
(CDNA). CDNA is a layered architecture based on the International Standards
Organization’s (ISO) Open Systems Interconnection (OSI) model. The CDCNET hardware
is collectively known as the device interface (DI). The software that runs on the DI is
collectively known as the Distributed Communications Network Software (DCNS).

The DCNS software that resides in the DIs can be divided into the following four
groups (see figure 1-1):

® Base System Software
® Network Management Entities (ME)
® Layer Software

® Interface Software

Base System Software

This group contains the software components which are responsible for establishing and
maintaining an operational environment for the networking software.

This group of software is resident in every DI and is described in the CDCNET
Systems Programmer’s Reference Manual, Volume 1.

Network Management Entities (ME)

This group contains the software components which are responsible for control and
management of the network. Some MEs have both independent and dependent
components. All DIs include a complete set of dependent MEs. In a NOS environment,
MDIs and MTIs contain independent MEs. In a NOS/VE environment, the independent
MEs reside in the host.

Only dependent MEs offer direct interfaces to other software components. All external
interfaces to dependent MEs are described in this manual. Some MEs (for example, the
Routing ME, the Initialization ME, and the Clock ME) have no user interfaces, and so
are not described in detail in this manual. Also, detailed information on the
independent MEs, which do not have any user interfaces, will not be provided in this
manual.

Revision A Overview of CDCNET Software 1-1

CDCNET Software

Layer Software

This group contains the software components that implement the CDNA layer
functions. DI layer software enables application software, end users, and host computers
to exchange information.

All external interfaces to CDNA layers are described in this manual.

Interface Software

Interface software refers to any set of software which help non-CDCNET systems,
networks, and terminals interface to CDCNET. This group contains the software
components which are responsible for interfacing NOS host systems, X.25 networks,
and batch and interactive terminals to CDCNET.

Interfaces to NOS hosts and X.25 networks are described in this manual. Batch
interfaces to CDCNET are described in the CDCNET Batch Device Usage manual and
interactive terminal interfaces to CDCNET are described in the CDCNET Terminal
Interface Usage manual.

Higher Layer Software

Middle Layer Software

Lower Layer Software

Figure 1-1. CDCNET Software

1-2 Network Management Entities and Layer Interfaces Revision A

Software Described in This Manual

Software Described in This Manual
This manual describes the following software components:

® Layer software

Provides communication between systems, terminals, applications, and end users
connected to CDCNET

® Management Entities
Software that helps manage a network

® Interface software
Helps CDCNET systems connect to non-CDCNET systems.

This information is provided to enable you to develop your own gateway programs in
the DI
Software Described in Other Manuals

Besides this manual, you should read CDCNET Systems Programmer’s Reference
Manual, Volume 1, for information on the base system software.

For background information on protocols, read CDCNET Systems Programmer’s
Reference Manual, Volume 3.

Revision A Overview of CDCNET Software 1-3

CDCNET Software and CYBER Hosts

CDCNET Software and CYBER Hosts

To establish a network using CDCNET, at least one CYBER host computer system

must reside in a network. This host system can be either one of the following:

e CYBER 170/180 computer system running NOS

e CYBER 180 computer system running NOS/VE

Depending on which CYBER hosts operate in a network, CDCNET software either
resides entirely within the DIs or is dispersed between CYBER hosts and DIs. Figure
1-2 illustrates the CDCNET software that resides in each DI variant and the CYBER
host in the NOS environment. Figure 1-3 illustrates the CDCNET software that resides
in each DI and the CYBER host in a NOS/VE environment.

MDI Management Entities MDI NOS HOST
Rputing NP/IVT GW
CE"O'::‘”V SESSION 170 NAM APPLICATIONS
Error TRANSPORT m.fg' NAM
Dependent and independent File Access| INTERNET SOFT-
independent Initialization INTRANET WARE
Dependent and Independent Command
Dependent and independent Log ESCI SSR__|MCI SSR
Dependent and Independent Alarm ESCI MCH
#Dependent and independent Clock Driver Driver
I/ -
4
TO! TDI Management Entities
TERMINAL Routing
SUPPORT Directory
SOFTWARE Echo
Error
SESSION Dependent File Access
TRANSPORT | async/| Dependent Command
INTERNET | BATCH | Dependent Log
INTRANET TIP Dependent Alarm
#Dependent &
ESCI SSR Independent Clock
L__| ESCI CiMm
Driver Driver
| l | | l ND! Management Entities NDI
4 gt-’:g't'gw XE:ZS INTERNET
ir PACKET
(Y | S [
rror
TERMINALS/ Dependent File Access |HDC SSR| ESCI SSR
WORKSTATIONS Dependent Command |CIM ESCI
Dependent Log ‘| Driver Driver
Dependent Alarm
#The Independent Clock ME can #Dependent &
reside in any one D! in the Catenet Independent Clock
X.25

Figure 1-2. CDCNET Software in a NOS Environment

1-4 Network Management Entities and Layer

Interfaces

Revision A

CDCNET Software and CYBER Hosts

MD! Management Entities MDI NOS/VE HOST NAM/VE Management Entities
Routing . INTERNET Routing
Directory Directory
INTRANET NAM/VE
Echo Error
Error ESCI SSR |MC! SSR APPLICATIONS independent File Access
Dependent File Access |ESCI MCI SESSION independent Initialization
Dependent Initialization | Driver Driver TRANSPORT independent Command
Dependent Command INTERNET Independent Log
Dependent Log Independent Alarm
Dependent Alarm INTRANET | sindependent Clock
#Dependent & Peripheral
Independent Clock Processor
[
r[s
7
TDI TD! Management Entities
TERMINAL Routing
SUPPORT Directory
SOFTWARE Echo
Error
SESSION Depengent File Access
Dependent Initialization
TRANSPORT | ASYNC/ Dependent Command
INTERNET BATCH Dependent Log
INTRANET TiP Dependent Alarm
ESCI SSR # Dependent &
__[Esci oM Independent Clock
Driver Driver
NDI Management Entities NDI
Pouting X.25 | INTERNET
irectory PACKET
TS Echo LEVEL | NTRANET
rror
TERMINALS/ Dependent File Access HDLC SSR|ESCI SSR
WORKSTATIONS Dependent Initialization |CIM ESCI s
Dependent Command |Driver Driver
The Independent Clock ME can reside Dependent Log
in one DI in the Catenet or the NOS/VE Dependent Alarm
Host. # Dependent &
Independent Clock
X.25

Figure 1-3. CDCNET Software in a NOS/VE Environment

Revision A Overview of CDCNET Software 1-5

Introduction to CDCNET Concepts | 2

Layer Principles e 2-1
CIVICES & . . v .t e 2-2
Service Primitives e e e e e e e e e e e e e 2-2
Protocols e 2-3
Service Access Point (SAP) e e e e e 2-3
Connections 0 i e e e e e e e e R 2-4
Network Solution e e e e e e e e e e e 2-4
Catenett e 2-4
Multicast Address e e e e e e e e e e e e e e e e e 2-4
Protocol Data Unit i e e e e e e e e 2-4
Relay o . e e 2-4
Hop . . . e e e e e e 2-5
Locally Connected Network Solution 2-5
Remotely Connected Network Selution 2-5
Identifiers e e e e e e e e e e e e e e e e 2-5
1 1173 - 2-6
Addresses e e e e e e e e e e e e e e e e e 2-6
Network Address 0 o e e e e e e e 2-6
Network Identifier e e 2-6
System Identifier 2-7

SAP Identifier e e e e e e e e e e e oL 247
Transport Address« . .o e e e e e e 2-7

Connection Endpoint Identifier (CEPID) 2-7

Introduction to CDCNET Concepts 2

This chapter describes the CDCNET concepts that are used throughout the manual. An
understanding of these concepts will help you use the information in the manual more
effectively.

Layer Principles

As shown in figure 2-1, each layer can be viewed individually as an (N) layer having
an (N+1) layer as an upper boundary and an (N-1) layer as the lower boundary. The
(N) layer receives services from the (N-1) layer and provides services to the (N+1)
layer. The lower boundary of the physical layer is with the physical media rather than
an (N-1) layer and the upper boundary of the application layer is with the application
process rather than an (N+1) layer.

Each layer refers to a collection of related network procesing functions that comprise
one level of a hierarchy of functions. A function or a group of functions within a layer
is referred to as an entity.

SYSTEM A SYSTEM B
(N+1) layer (N+1) layer
upper boundary
service reduests service requests
i J
(N) layer peer protocol layer N)
layer etity |~ T T TTTTTTTTTTTTT entity layer

lower boundary
(N~ 1) layer . (N-1) layer

service requests service requests
\ A |

Figure 2-1. Concept of a Layer

Revision A Introduction to CDCNET Concepts 2-1

Services

Services

Information between layer entities is exchanged through the use of the (N-1) layer,
which provides the logical connection path between (N) layer entities. In turn, each
layer uses the services of the next lower layer, which are cumulatively reflected as the
(N-1) services. The logical connection path represented by the dotted line in figure 2-2
is known as an (N-1) connection and provides the means for two (N) entities to
communicate.

- {N) Entity (N) Entity
{N) layer {N) layer
(N=-1)layer (N=- 1)layer

(N-1) Connection

Figure 2-2. Logical Connections

Service Primitives

Interactions between entities in adjacent layers are conducted through interfaces called
service primitives. See figure 2-3. The following are the different types of service
primitives:

Request This primitive allows the (N+1) layer to activate a particular
service.
Indication This primitive allows the (N) layer to indicate to the N+1)

layer that the request to activate a particular service was
received from an (N) layer in another system.

Response This primitive allows the (N+1) layer to reply to an indication
service request.

Confirm This primitive allows the (N) layer to inform the (N+1) layer
that the requested service has completed.

Each of these services can have a number of associated parameters that give specific
information for a particular service. For example, a connection service request can
contain the destination address and the data received from the next higher layer.

In this manual, service primitives are referred to specifically by name, or collectively
as interfaces.

2.2 Network Management Entities and Layer Interfaces Revision A

Protocols

A
{N+ 1) layer (N+1) layer
1 request 2 indication
'
(N) layer peer protocol layer N)
layer entity |~ T T TTTTTTTTTTTTT entity layer
4
(N+1) layer (N+1) layer
4 confirm 3 response
Y
\) layer peer protocol layer (N)
layer entity |- T TTTTTTTTTTTTT entity layer
1]

Figure 2-3. Types of Primitives

Protocols

Entities in the same layer communicate with each other using peer protocols that
convey the necessary control information to support their communications. An
understanding of these protocols is useful to programmers implementing Control Data
Network Architecture (CDNA) on a foreign host or network. The CDCNET Systems
Programmer’s Reference Manual, Volume 3, gives detailed information on the protocols.

Service Access Point (SAP) |

Entities of adjacent layers interconnect through layer service access points (SAPs). A
SAP can be viewed as a port through which the (N) entity and (N+1) entity
communicate with each other. The (N +1) entity is identified to peer (N+1) entities by
the (N) SAP it uses. The other (N+1) entities know the (N) SAP by an (N) SAP
identifier. More information on SAP identifiers is given under Identifiers later in this
chapter.

Revision A Introduction to CDCNET Concepts 2-3

Connections

Connections

Connections are established between peer entities. The end of a connection at a SAP is
termed a connection endpoint. More than one connection endpoint can exist at a SAP.
Each connection endpoint is given a connection endpoint identifier (CEPID) and is used
to distinguish between different connection endpoints at a SAP. The scope of a specific
CEPID is limited to a single specific SAP.

Network Solution

The term network solution is used to represent a combination of a physical medium
and layers 1, 2, and 3A software which together interconnect two or more CDCNET
DIs.

Catenet

A catenet is a group of connected CDCNET network solutions. This term is often used
when referring to all the DIs and network solutions in a site’s network.

Multicast Address

A set of systems which are connected to the same network solution can be grouped
together and identified through a single address called the multicast address. CDCNET
supports a special multicast address of 090025FFFFFF(16). This special address can
also be considered a broadcast address, meaning it can be used to address all CDCNET
systems. Multicast addresses will be supported in a future release.

Protocol Data Unit

A protocol data unit (PDU) is data that is transmitted as a unit, between peer entities.

Relay

A relay is a process where a CDCNET system receives a data unit from a locally
connected network solution and transmits it to another locally connected network
solution.

This concept is futher explained with the help of an illustration and an example. In
figure 2-4, there are three CDCNET systems, labeled A, B, and C, and two network
solutions, numbered 1 and 2. System A is connected to network solution 1, system C is
connected to network solution 2 and system B is connected to both networks 1 and 2.
If system A wants to send a data unit to system C, it sends it to system B on network
solution 1. System B receives the data on network solution 1 and determines that it is
destined for system C. System B then transmits the data unit on network solution 2
and system C receives it on network solution 2. The function performed by system B,
in this example, is called a relay.

2.4 Network Management Entities and Layer Interfaces Revision A

Hop

A
/ 1 Y
/ 7
B
/ 2 Y,
/ 7
Cc

Figure 2-4. Example of Relay and Hop

Hop

The term hop is associated with the term relay. In the above example, system C is one
hop away from system A. A hop count is maintained in the Internet header of each
data unit and is incremented by the Internet layer each time a hop is made. If the hop
counts exceed 16, the data unit is discarded. This is done to prevent the unlikely event
of a data unit from wandering through the network forever. See chapter 16 in this
manual for more information.

Directly Connected Network Solution

A network solution is said to be directly connected to a system if that system can
directly transfer data to that network solution. In figure 2-4, network solution 1 is
directly connected to systems A and B and network solution 2 is locally connected to
systems C and B.

Remotely Connected Network Solution

A network solution is said to be remotely connected to a system if that system is not
directly connected to that network solution, but a path to it exists. The system can
then transmit data on the path to that network solution over one or more hops.

Identifiers

Identifiers, as the name implies, are used to properly identify systems, networks, and
software components. The following identifiers are provided:

® Titles
® Addresses

® CEPIDs

Revision A Introduction to CDCNET Concepts 2-5

I1dentifiers

Titles

A title is a string of 1 through 255 ASCII characters. Software components that offer

services (also referred to as servers) register titles with the Directory ME to announce
location and availability of a service. Clients translate titles to determine the server’s
- availability and location.

The primary use of titles is to establish connections to the servers and services without
actually knowing where they are located. Since knowledge of a physical address is not
essential for establishing connections, addresses can be changed without changing a
title. This feature gives the flexibility of reconfiguring servers anywhere in the catenet.

The telephone network is a good example to illustrate the relationship between titles
and addresses. Just as you would use a telephone directory to find a person’s telephone
number, you would use the Directory ME’s services to translate CDCNET titles to
CDCNET addresses. See chapter 5 in this manual for more information on titles and
addresses.

Addresses

CDCNET addresses are physical addresses that define the actual location of software
components. All software components that offer network services are identified by the
network address.

The addressing system in CDCNET is hierarchical and has some similarities to the
telephone system. In the telephone system, regions in the country are assigned a
number of area codes which in turn are subdivided into exchanges. Within each
exchange, the subscribers are assigned a four-digit telephone number. Applying this
analogy to CDCNET, the catenet represents the country and the networks within the
catenet represent the area codes. Each system is the equivalent of an exchange, and
finally each application in a DI corresponds to a telephone subscriber.

There are, however, some differences between the two addressing systems. Each
CDCNET system address must be unique within the catenet, but the corresponding
element in the telephone industry, the exchange number, does not have to be unique
across the whole country. Another difference is that a CDCNET system could be
physically part of more than one network, thereby acquiring more than one network
address, while a telephone exchange could not be part of more than one area code.

Network Address

The network address consists of the following three components:
® Network identifier

® System identifier

® SAP identifier

Network Identifier

The network identifier specifies the network on which the system is located. Each
network solution within a catenet is assigned a unique 32-bit network identifier.

The network identifier is used primarily to route data between two CDCNET networks,
just as area codes are used by the telephone system to route connections.

2.6 Network Management Entities and Layer Interfaces - Revision A

Identifiers

Control Data does not manage the network identifiers, but it manages system
identifiers (described in the following paragraph). A site can conveniently select its own
network identifiers, keeping in mind the fact that if the site plans to connect another
CDNA catenet directly without a gateway, the network identifier must be unique to
ensure effective routing.

System Identifier

The system identifier specifies a particular system on a network. Each DI is assigned a
unique 48-bit identification number from a pool of numbers allocated to Control Data
Corporation by the Xerox Corporation. This number is written into a battery-backed
RAM and is used throughout the catenet as the system identifier for that DI. Each
system is assigned a system identifier. When a DI is connected to more than one
physical network, the system identifier remains the same on each network; only the
network identifiers are different for each network.

SAP Identifier

The SAP identifier is a 16-bit number that uniquely identifies a software component’s
service access point in a specified DI. The SAP identifier is the address of the Internet
layer’s (3B) SAP in the specified system. Some SAP identifiers are dedicated, in other
words, permanently assigned to frequently used software components such as
management entities. Others are nondedicated, in other words, dynamically assigned
when they are needed.

Each system contains an Internet routing table to locate paths to a destination system.
The network identifier-system identifier part of the network address is used to
determine the route to the destination system. Once the destination system is reached,
the SAP identifier is used to locate the destination 3B SAP.

Transport Address

The transport address identifies the transport SAP providing services to a particular
user. CDCNET transport addresses are network addresses with the SAP identifier
portion identifying the transport SAP of the transport user being addressed.

Connection Endpoint Identifier (CEPID)

See Connections, earlier in this chapter, for information on CEPIDs.

Revision A Introduction to CDCNET Concepts 2-7

(Continued)

These MEs reside in CDCNET DIs and CDNA-compatible hosts along with other
CDCNET software. The Initialization ME, Command ME, Log ME, Alarm ME, Clock
ME, and File Access ME are divided into the following two parts:

® Independent functions
® Dependent functions

The Dependent MEs rely upon the Independent MEs. The management entities are
divided into these two parts because it is often unnecessary and sometimes impossible
to have each DI support an entire set of the required functions. For example, a
subfunction of file access is concerned with direct or indirect access to some sort of
mass storage. Not all CDNA systems have access to mass storage and therefore will
not be able to support this subfunction.

The Dependent MEs are implemented in every DI, while the Independent MEs are
implemented only in certain Dls.

The chapters in this part of the manual discuss:

® External interfaces to all Dependent MEs except Routing ME, Initialization ME, and
Clock ME. Details on these three MEs are not provided because they do not have
any external program interfaces.

® Brief overviews on all Independent MEs. Details on Independent MEs are not
provided because they do not have external program interfaces.

® The location and functions of the MEs in NOS and NOS/VE environments.

oMo

00

© o

.

Network Management Entities

Part II describes the network management entities (ME). This group contains the
following software components, which are responsible for performing tasks related to
the operation and management of the network:

e Initialization ME Performs two major functions whenever a CDCNET DI is
powered on or its reset switch is activated:

- Broadcasts a software load request through a network.

- The Dependent Initialization sends the reset code to the
Independent Intialization ME which, in turn, uses the
reset code and the information in the exception file to
determine if a dump is neccessary.

® Routing ME Creates, updates, and manages the internal tables that the
Internet layer uses to route data from a source to a particular
destination. It determines the most cost-effective path available
between these locations.

® Directory ME Maintains a directory of titles and associated addresses which
are used to keep track of the CDCNET software components
which reside in the network. This directory is maintained so
that requests for particular software functions or network
services can be directed to the software that can satisfy the
request.

® File Access ME Enables DIs and CDNA-compatible hosts to access and
manipulate files stored on other systems residing in a CDCNET
network.

® Command ME Lets network operators monitor, control, and maintain CDCNET
networks by issuing commands from either operator consoles or
interactive terminals.

® Log ME Records log messages received from CDCNET software
components on a log file that resides on a host computer
system.

® Alarm ME Delivers alarm messages that are received from CDCNET

software components to be displayed at the consoles/terminals
maintained by network operators, or written to a host-resident
file.

¢ Echo ME Receives messages through CDCNET and returns them to its
source; used to test if a particular DI can be reached from a
particular source.

® Error ME Alerts the Internet layer users when data transmitted through
the Internet layer does not successfully reach its destination.

® (Clock ME Synchronizes the DI system clocks within the catenet.

(Continued on other side)

Initialization ME 3

Independent Initialization ME
Dependent Initialization ME

Initialization ME and the DI Load Process

Initialization ME 3

This chapter gives an overview of the Initialization Management Entity (ME). The
Initialization ME does not offer interfaces that are accessible to an external user such
as a gateway program. This chapter, therefore, does not contain any information on
external interfaces.

Initialization ME is responsible for loading and dumping DlIs. It is divided into the
following two software components:

® Independent Initialization ME

® Dependent Initialization ME

Independent Initialization ME

In a NOS environment, each Mainframe Device Interface (MDI) or Mainframe Terminal
Interface (MTI) that is loaded and operational contains a copy of the Independent
Initialization ME which is used to load and dump other DIs. The DI that is being
loaded is referred to as the remote system; the DI performing the load is referred to as
the local system.

The Independent Initialization ME in the local DI uses the services of the File Access
ME to read the boot file from the host. It then interfaces with the Dependent
Initialization ME in a remote system to load that system.

The Independent Initialization ME uses the services of the lower layers (layers 1
through 3A) to send data to and receive data from the remote DI.

In a NOS/VE environment, the Independent Initialization ME resides on the host itself.
In the initial releases, the NOS/VE host can load only directly connected systems;
therefore, MDIs and MTIs are used to load and dump other DIs. The process is similar
to the one just described for the NOS environment.

Dependent Initialization ME

Whenever a DI is reset, the DI issues a software load request to other DIs or hosts in
its predefined network solution. This request originates from a Dependent Initialization
ME. The Dependent Initialization ME resides in all CDCNET DIs and does the
following:

® Broadcasts a load request to other DIs/hosts.

® Sends the reset code to the Independent Initialization ME. The Independent
Initialization ME uses the reset code and the information in the exception file to
determine if a dump is neccessary.

Figures 3-1 and 3-2 illustrate Initialization ME in NOS and NOS/VE environments
respectively.

Revision A Initialization ME 3-1

Dependent Initialization ME

8__

BOOT FILE
DUMP FILE
EXCEPTION FILE

NOS HOST

NETFS

INDEPENDENT FILE
ACCESS ME

INDEPENDENT

J INITIALIZATION ME [\

(NETWORK FILE SERVER)

\
\ MDi{fully functionai DI)

LOAD HELP \
REQQEST // T \\
, / HELP OFFER \ -
/ \ /
/ \
DEPENDENT DEPENDENT

INITIALIZATION ME

TERMINALS

INITIALIZATION ME

NDI

Figure 3-1. Initialization ME in a NOS Environment

NOS/VE
HOST

Independent
Network Initializer
{independent
Initialization ME)

3

Dependent
Initialization ME

MDI

/
/

Figure 3-2.

Initialization ME in a NOS/VE Environment

3-2 Network Management Entities and Layer Interfaces

Revision A

Initialization ME and the DI Load Process

Initialization ME and the DI Load Process

Initialization ME plays a major role in the DI load process. The following is a
step-by-step description of the process used to load CDCNET software into a remote DL
It is described here to illustrate the roles of the Independent and Dependent
components of the Initialization ME.

1.

The first step in loading a remote DI involves configuring the network solution
connecting the local and remote DIs. The network solution is configured in the local
DI through a configuration command. The command initializes the lower layer
software and prepares the network solution for data transfer.

The Independent Initialization 'ME in the local DI then informs its lower layers that
it is willing to receive data from any connected network solution.

The information in the protocol header of the incoming data contains the
destination address and is used by the lower layers to route data addressed to the
Independent Initialization ME.

The Dependent Initialization ME sends a help request to the Independent
Initialization ME in the local system. The Independent Initialization ME uses the
information in the help request to determine if there is a need to dump the
memory of the remote DI.

The Independent Initialization ME receives the help request and checks the
exception file for any restrictions before sending a help offer. See the CDCNET
Configuration and Site Administration Guide for-information on the exception file.

If the Independent Initialization ME finds there are no restrictions to loading the
remote DI, it sends a help offer.

The Dependent Initialization ME in the remote DI receives the help offer and
determines if it wants to accept the offer. If it does, it sends a help accept to the
Independent Initialization ME.

When the Independent Initialization ME receives the help accept, it checks if a
decision to dump the remote DI was made (in step 3).

If the remote DI memory needs to be dumped, the Independent Initialization ME
uses the services of the File Access ME to create a new dump file on a network
host that is accessible to it. The Independent Initialization ME then asks the
remote DI to send the dumped data.

The Independent and Dependent Initialization MEs use the initialization protocol to
dump the memory of the remote DI

Once the dump is complete, or if the dump is not neccessary, the Initialization ME
uses the services of the File Access ME to find and read the appropriate boot file

on an accessible host. It then uses the services of the lower layers to transmit the
information to a remote DI.

Revision A Initialization ME 3-3

Initialization ME and the DI Load Process

See the CDCNET Systems Programmer’s Reference Manual, Volume 1 for details on
system initialization and overviews of the software components that execute
immediately after the DI is loaded.

In a NOS/VE environment, the Independent Initialization ME resides on the host. The
host in a NOS/VE environment can be viewed as the local DL

When the load request originates from a terminal DI (TDI) or network DI (NDI), the
load request eventually will be handled by another DI which must be fully loaded and
operational. This operational DI will contain an Independent Initialization ME. In turn,
this Independent ME subsequently uses host-based DI configuration files to select
CDCNET software that is appropriate for the requesting DI. Once the Independent
Initialization ME knows which CDCNET software to select, it reads this software from
host-resident files and relays the software to the original DI that requested the load.
The Dependent Initialization ME within the originating DI then loads the transmitted
CDCNET software into its memory.

When the load request originates from a mainframe DI (MDI), the load process is quite
similar except that the load request goes directly to a CYBER host. If this host is
compatible with CDNA (for example, NOS/VE systems), the host contains an
Independent Initialization ME that directly communicates with the host’s DI
configuration files.

3-4 Network Management Entities and Layer Interfaces Revision A

Routing ME

Routing Tables o o i i e

Routing ME | 4

This chapter gives an overview of the Routing ME.

The Routing ME does not offer any interfaces that are accessible to an external user
such as a gateway program. Therefore, no user procedures are described in this
manual.

The Routing ME is responsible for:

® (Creating, updating, and managing various internal tables that an Internet layer
uses to route information. These address tables are used by the Internet layer,
which is responsible for transmitting data.

® Opening and closing Internet SAPs. See chapter 16 for information on external
interfaces to the Internet layer.

® Sending and receiving Routing Information Data Units.

All CDCNET DIs and CDNA-compatible hosts contain the Routing ME. Figures 4-1 and
4-2 show where the Routing ME resides in NOS and NOS/VE environments.

NOS
HOST

A ROUTING ME A
/ | ROUTING TABLES | \

7 \
/ \
/ MDIY
/
/ \
/ \
/L NET #1 N\ NET #2
7 \
/ \
4 \ ‘
ROUTING ME |= ROUTING ME
ROUTING TABLES ROUTING TABLES
TOI NDI
TERMINALS

Figure 4-1. Routing ME in a NOS Environment

Revision A Routing ME 4-1

NOS/VE
HOST

ROUTING ME

ROUTING TABLES

A _ROUTING ME |
// ROUTING TABLES \\
/ \
// \
/ MDY\
/ \
/ \
/ \
/L NET #1 |
/
4
ROUTING ME | ~| ROUTING ME

ROUTING TABLES

TDI

TERMINALS

ROUTING TABLES

NDI

Figure 4-2. Routing ME in a NOS/VE Environment

42 Network Management Entities and Layer Interfaces

Revision A

Routing Tables

Routing Tables

As mentioned earlier, Routing ME creates and maintains routing tables that are used
by the Internet layer to route data through the network. Network routing involves
finding the most efficient path in the network between the source that transmits data
and the destination intended to receive it. See chapter 16 for details on the Internet
layer.

All DIs and hosts that implement CDNA contain routing tables. These tables are
generated when the DI or the host first comes up and contain the addresses of various
DIs, hosts, and network solutions. The following are the different kinds of information
provided by the various routing tables:

® Information on dedicated and dynamically assigned 3B SAPs. See chapters 2 and 16
in this manual for details on SAPs.

® Information on least cost paths.

® Information on least cost paths to accessible network solutions.
e Information on locally and remotely connected network solutions.
e Titles and addresses of local and remote networks/communities.

The routing tables maintained by any single DI or host describe only the addresses of
hosts, DIs and software components that reside on the directly connected network
solutions. To enable data to be exchanged outside the local area network, the Routing
ME in a particular DI or host periodically (every 30 seconds) broadcasts information
that identifies the specific network solution that comprises its local area network.
Other Routing MEs take this information and build it into their address tables.

Revision A Routing ME 4-3

Directory ME 5

OVEIVIBW . . . o o v e e e e e e e e e e e e e e e e e 5-1
Directory Services it e e e e 5-1
Registration Services e e 5-1
Translation Services i i i e e e e e e e e 5-2
Directory and Directory Entries 5-4
Directory Features e 5-5
Attributes L L e e e e e e e 5-5
Registration Attributes o oo 5-5
Translation Attributes e 5-6
Domain Access Control e 5-7
Translation Domain e 5-7
Search Domain i e e e e e 5-7
Domain Parameters e 5-8
Catenet e e e e e e e e e e e e e e 5-8

Local System e e 5-8
Community XX i it e e e e e e e e e 5-8
Directory Data Stores e e 5-9
Registration Data Store e 5-9
Translation Request Data Store 5-10
Translation Data Store e 5-10
Services Required e 5-11
Internet Layer e 5-11
Services Provided e e e e 5-12
Registration Services e 5-12
Registration Control Block 5-12
Registration Control Block Initialization 5-16
DIR_CREATE e e e e 5-18
DIR_CHANGE e e s e e e 5-19
DIR_DELETE e e e e e 5-20
Translation Services e e 5-21
Translation Control Block 5-21
Translation Control Block Initialization 5-26
DIR_TRANSLATE_AND_WAIT et 5-28
DIR_TRANSLATE e e e e s e 5-29
DIR_WAIT e e 5-30
DIR_ABORT e e 5-31
DIR_PURGE e e 5-32
Constants and Common Types i 5-33
Constants e e e e e 5-33

Common Types o i it e e e 5-35

Directory ME 5

This chapter discusses:

® An overview of the Directory ME.

® The services required by the Directory ME.
® The services provided by Directory ME.

® Constants and common types used in the Directory ME service requests.

Overview

The Directory Management Entity (ME) resides in every device interface (DI) and
NOS/VE host and is responsible for maintaining a distributed directory of titles and
associated addresses. The Directory ME is provided so that a user can translate or
locate the network address of a gateway or a software component. The address is
required to access the services of these software components. Every software component
that has services to offer registers its title and the network address at which it resides
with the Directory ME.

Directory Services
The Directory ME provides two kinds of services to software components:
® Registration services

& Translation services

Registration Services

The registration services allow each entity to register its title and the corresponding
address, thus announcing its availability, and the location and specific characteristics of
services it offers. Registration services include the following service requests:

® Registering a title, its corresponding address, and other optional information in the
directory.

¢ Changing information about a previously registered title.
® Deleting a title from the Directory.

Details on registration services are given in the Services Provided section of this
chapter.

Revision A Directory ME 5-1

Directory Services

Translation Services

The translation services enable the user to locate and receive the address of one or
more known titles. Translation services include the following service requests.

® Translating and waiting for a title.
e Translating one or more titles.

® Waiting for translation requests.

® Aborting translation requests.

e Purging translation entries.

Details on translation services are given in the Services Provided section of this
chapter.

Figures 5-1 and 5-2 show Directory ME in NOS and NOS/VE environments
respectively.

NOS NOS
HOST HOST
- DIRECTORY ME - DIRECTORY ME
TITLE/ADDRESS TABLE TITLE/ADDRESS TABLE
MDI II MDI
/ /
/ /
-
DIRECTORY ME

TITLE/ADDRESS TABLE

TERMINALS
CONNECT TO HOST A

Figure 5-1. Directory ME in a NOS Environment

5-2 Network Management Entities and Layer Interfaces Revision A

Directory Services

NOS/VE NOS/VE
HOST A HOST B
DIRECTORY ME DIRECTORY ME
TITLE/ADDRESS TABLE TITLE/ADDRESS TABLE
—— et DIRECTORY ME pa DIRECTORY ME
|l TITLE/ADDRESS TABLE TITLE/ADDRESS TABLE
|
l MD! MDi
|
|
|
|
¥
DIRECTORY ME

TITLE/ADDRESS TABLE

TDI

TERMINALS
CONNECT TO HOST A

Figure 5-2. Directory ME in a NOS/VE Environment

Revision A Directory Management Entity 5-3

Directory and Directory Entries

Directory and Directory Entries

The Directory ME maintains and uses a directory to provide the registration and
translation services. This directory consists of multiple directory entries. Each directory
entry consists of a registered title-address pair. A title-address pair contains the
following information:

¢ Title: any string of 1 to 255 ASCII characters (parity bit = 0). The use of a title
serves two purposes:

- It allows the user to identify the software component offering services by a
logical name.

- It allows the software component to move from one network location to another
without changing the process through which the users identify it.

® Address: a field of 16 bytes that contains a network or non-network address.
A network address consists of one of the following:

- Network identifier and system identifier.
- Network identifier and system identifier and 3B (Internet layer) SAP identifier.

- Network identifier and system identifier and 3B (Internet layer) SAP identifier
and Transport SAP identifier.

A non-network address consists of a 32-bit machine-address field used by
components within a system to exchange interface addresses. Non-network addresses
are significant only within a local system. Therefore, directory information relative
to non-network addresses is not distributed throughout the network.

® Directory Entry Identifier: Each directory entry also contains a directory entry
identifier that uniquely identifies when and where that entry was created. The
directory entry identifier is an 18-byte value containing the local network identifier
and/or system identifier and the date and time in the binary coded decimal format.

5-4 Network Management Entities and Layer Interfaces Revision A

Directory Features

Directory Features
The following features of Directory ME services are described here.
e Attributes

® Domain Access Control

Attributes

A directory entry may optionally contain fields called attributes, which further qualify
entries. There are two kinds of attributes:

® Registration attributes

® Translation attibutes

Registration Attributes

The following is a list of registration attributes:

PRIORITY This field indicates a priority relative to other entries with the
same title.
CLASS This field classifies the title as one of the following:

Internal to CDCNET and solely for the network management
use.

External to CDCNET and available to all network users.

SERVICE This optional field identifies protocols associated with the entry’s
address. This field specifies the set of CDNA end-to-end protocols
associated with a particular directory entry. This field can be
used to make sure that two users who may be communicating
with each other have compatible underlying services. A
title-matching criterion, specified by the user with the translation
request, allows the user to receive translations from only those
titles registered with the same directly accessible service.

USERINFO_PTR The user information field provides a mechanism for extra
information to be passed along to any user who requests a
translation for a particular title. Up to 32 bytes of information
can be passed through this parameter.

PASSWORD This field protects an entry from unauthorized changes and
deletion.

DISTRIBUTE_ This field indicates whether or not a particular entry should be

TITLE distributed gratuitously to Directory MEs in other sytems in a
specified domain (see the following description of translation
domain).

Revision A Directory Management Entity 5-5

Directory Features

Translation Attributes
The following is a list of translation attributes:

RECURRENT_ This field specifies the type of search to be performed by the

SEARCH Directory ME. A RECURRENT_SEARCH value set to FALSE
causes the Directory ME to actively request titles from all the
Directory MEs in other systems in the search domain (see
following description). A RECURRENT_SEARCH value set to
TRUE causes the Directory ME to wait for the titles to be
distributed periodically by the other Directory MEs. With a
recurrent search option, the user is automatically notified if a
new server is available and the search continues until it is
terminated by the user.

WILD_CARD This field supports a set of wildcard characters that can be used
to replace several strings of characters in a title. With the
wildcards, the user can quickly match a number of different but
related titles.

See Services Provided for more information on registration and translation attributes.

56 Network Management Entities and Layer Interfaces Revision A

Directory Features

Domain Access Control

The Directory ME user can optionally exercise control over domains in which a
registered title and its translation is meaningful. The following two options are
available:

¢ Translation domain

® Search Domain

Translation Domain

This parameter allows the registration services user to identify the CDCNET systems
that are to have knowledge of a particular entry. It specifies where in the network the
translation request can originate and be translated. A request to translate a particular
title is honored only if the request originates within the specified translation domain.
For example, a title registered with a translation domain of local system cannot be
obtained outside the local system. The default translation domain value is CATENET.

Search Domain

This parameter allows the translation services user to specify the domain(s) across
which a search for a title is to be made. A user can specify a subset of networks and
systems within the catenet to which the Directory ME should limit its title translation
search. A translation of a title cannot be obtained from outside its search domain.

Revision A Directory Management Entity 5-7

Directory Features

Domain Parameters

Special titles are used by Directory users when they want to specify a domain which
may be the catenet, the individual DI, or all systems belonging to a certain
community. When the Directory ME receives a request containing a domain identified
by one of the following titles, it searches its own directory for that title to determine
the address(es) of the system(s) in the specified domain. The following special titles are
used to specify domain parameters:

Catenet

This field specifies that the domain can extend anywhere in the network and
translation requests will be honored from any system in the catenet.

Local System

This field specifies that the domain is confined to the local system or an individual DI
and translation requests are honored only from the local system.

Community xx

This field specifies that the domain is confined to one or more communities.
Community titles are a subset of systems that are grouped together for specific
purposes. Xx is a community name of 1 through 31 characters. Communities are
registered as the result of configuration commands. A maximum of 16 community titles
can be specified. This parameter will be supported in a future release.

5-8 Network Management Entities and Layer Interfaces Revision A

Directory Data Stores

Directory Data Stores

Each Directory ME stores local data that contain title information useful to its local
system and the catenet. Each Directory ME maintains the following data stores:

® Registration Data Store
® Translation Request Data Store

® Translation Data Store

Registration Data Store

The registration data store is maintained by all Directory MEs. It contains directory
entries created by users who registered title information on the local system. Directory
entries are created when the user issues a DIR_CREATE request. (DIR_CREATE is
described in Services Provided, later in this chapter.)

Each directory entry in the registration data store contains the following values:

® Directory entry identifier

o Title
® Address

4
® Service

® Password

® User information (if supplied)
® Priority

® Translation domain

¢ Disribution option

o Title class

Revision A Directory Management Entity 5-9

Directory Data Stores

Translation Request Data Store

The translation request data store is maintained by all Directory MEs. It contains a
list of all translation requests that are currently being serviced.

Each entry in the translation request data store defines one translation request. Each
entry contains the following values:

e Translation request identifier

e Title (complete title or title containing wildcard character(s))
® Service (if supplied)

® Recurrent search option

® Search domain

e Title class

® Time limit

® Wildcard option

Translation Data Store

Directory MEs maintain a translation data store which contains a cache of translation
data units received from other Directory MEs.

Each entry in the translation data store represents one translation data unit and
contains the following values:

® The time the translation data unit was received

® Directory entry identifier

® Title
® Address
® Service

@ User information (if supplied)
® Priority
® Title class

® Community titles defined for the system where the title was registered (this feature
will be supported in a future release)

5-10 Network Management Entities and Layer Interfaces Revision A

Services Required

Services Required

The Directory ME in each DI communicates with remote Directory MEs when it
receives title translation requests with search domains outside the local system. It also
distributes registered titles to remote Directory MEs with a translation domain outside
the local system. For the Directory ME to provide these services to its own users it, in
turn, depends on the service of the following software component.

Internet Layer

To communicate with a remote Directory ME, the Directory ME in a local system uses
the Internet datagram and broadcast services. The Directory ME also uses the routing
module of the Internet layer that generates and broadcasts data units. It maintains
tables listing network addresses and corresponding hop counts in the catenet that a
Directory ME uses to communicate with a remote Directory ME. For more information,
see chapter 16 in this manual.

Revision A Directory Management Entity 5-11

Services Provided

Services Provided
This section describes the external services provided by the Directory ME to its users.

Directory ME users include the common deck DRXDIR in their calling modules. This
common deck contains all the externally referenced (XREF) Directory ME procedures.
The common deck DRXDIR contains calls to the common deck DRDDIR. DRDDIR
defines the data structures and the parameter type declarations used by the Directory
ME procedures.

The registration services of the Directory ME are described first, followed by the
translation services. Under each of these services, the major data structures such as
the registration control block and the translation control block, which are used in all
service requests, are described first. Constants and common types used by the Directory
ME and detailed explanations of returned status messages are listed at the end of the
chapter.

Registration Services

As mentioned earlier, registration services allow each software component to register
its title and the corresponding address, thus announcing its availability, and the
location and specific characteristics of services it offers. The following is a description
of the registration control block, a data structure which is used in every registration
service request.

Registration Control Block

The registration control block, DIR_RCB, is the main data structure used for
registration services. All registration service requests use the registration control block
and all parameters that are applicable to these requests are passed within this data
structure. The registration control block is a packed record defined with fields to
support input parameters. Following is a description of the registration control block.

TYPE

dir_rcb_rec = packed record
title_ptr: ALIGNED °string (* <= max_title_len),
community_ptr: ALIGNED “array [1 .. *] of string (max_community_len),
userinfo_ptr: ALIGNED “string (* <= max_userinfo_len),
password: integer,
address: dir_address_rec,
priority: 1 .. Off(16),
service: dir_service,
translation_domain: dir_domain,
distribute_title: boolean,
class: dir_class,

recend;

title_ptr: ALIGNED “string

The pointer to the title string. The title is a string of 1 through 255 ASCII (parity
bit = 0) characters. MAX_TITLE_LEN is 255 characters. This is the only required
field in the control block.

5-12 Network Management Entities and Layer Interfaces Revision A

Registration Services

community _ptr: ALIGNED “array

This field is used only if the TRANSLATION_DOMAIN field is set to LIST_OF
‘COMMUNITIES. A maximum of 16 community titles can be specified. The
community title is a string of 1 through 31 characters. This feature will be
supported in a future release.

" userinfo_ptr: ALIGNED “string

This field indicates if user information was supplied. A NIL value indicates no user
information was supplied. MAX_USERINFO_LEN is 32 characters.

password: integer

The password associated with a particular directory entry. The password must be
supplied with a change or delete request. If this value is not supplied, the password
is zero.

address: dir_address_rec

The address to be placed in the directory entry. The address is a variant record.
The default address type is SYSTEM_ADDR. If the network indentifier field is
zero, the network indentifier and system indentifier of the local system are stored
in the address field by Directory ME for the following three address types:
SYSTEM_ADDR, INTERNET_ADDR, and TRANSPORT_ADDR. For details, see
Constants and Common Types, later in this chapter.

Table 5-1 shows the directory address record.

Revision A Directory ME 5-13

Registration Services

Table 5-1. Directory Address Record

Field Content
address._type The key field identifying the address type (type DIR_ADDRESS_
TYPE).
system_addr

The record that contains the network indentifier, and system
indentifier (type SYSTEM_ADDRESS).

See appendix B for a description of this record.

internet_addr

The record that contains the network indentifier, the system
indentifier and the 3B SAP indentifier (type INTERNET._
ADDRESS).

See appendix B for a description of this record.

transport_addr
The transport address (type GT_SAP).

See chapter 14 in this manual for more information on the
transport address.

non_network_addr

The address used by components within a system to exchange
interface addresses. For example, an Ethernet device address or
an X.25 DTE address which are important to gateway programs
(SEQ (REP 7 of 0..0FFFF(16))). :

record_addr
A 32-bit pointer to a cell. This field is used only when the local
system is the specified domain (type "CELL).

proc._addr

A 32-bit pointer to a procedure. This field is used only when the
local system is the specified domain (type *PROCEDURE).

5.14 Network Management Entities and Layer Interfaces Revision A

Registration Services

priority: 1..0ff (16)

The number which specifies the relative priority of the entry when compared with
other directory entries with the same title. By convention, 1 is the highest priority.
Default value is 1.

service: dir_service

The field that identifies the protocol associated with the entry’s address. The
following values are defined:

DIR_UNKNOWN
DIR_XEROX_INTERNET
DIR_XEROX_TRANSPORT
DIR_GENERIC_TRANSPORT
DIR_SESSION
DIR_VIRTUAL_TERMINAL

DIR.. SERVIC;E_ CDC_LAST
DIR_SERVICE_CUSTOMER_FIRST
DIR_SERVICE_CUSTOMER_LAST

Service is defined as a subrange of integers between 0 and 255. If the value is zero,
this entry has a directly accessible service value of unknown. The default value is
DIR_UNKNOWN. For more information, see Constants and Common Types, later
in this chapter.

translation _domain: dir_domain

This field allows the user to identify the systems that are to have knowledge of its
existence. A request for translation of this title is honored only if the request
originates from the defined translation domain. Default translation domain value is
catenet.

distribute_title: boolean

This field specifies whether or not to gratuitously distribute the directory entry
throughout the translation domain. A gratuitous distribution immediately notifies a
user that had requested a recurrent search that this title has been registered, or
changed, or deleted. This field contains one of the following values.

TRUE The title is to be distributed after registration.

FALSE The title should not be distributed unless it is explicitly
requested. (This is the default value.)

Revision A Directory ME 5-15

Registration Services

class: dir_class

This field identifies the originator of the title that is being registered. The values
are: ’

CDNA_INTERNAL Indicates the title is internal to CDCNET and is
solely for the network management use. This is the
default value.

CDNA_EXTERNAL Indicates the title is external to CDCNET and is
available to all network users.

Registration Control Block Initialization

An inline procedure, DIR_RCB_INIT, is provided in the common deck DRXDIR to
initialize the control block to all default values.

Procedures for directory translation.

PROCEDURE [INLINE] dir_rcb_init
(VAR dir_rcb: dir_rcb_rec);
VAR rcb_templet: [XREF] dir_rcb_rec;
dir_rcb := rcb_templet;
PROCEND dir_rcb_init;

A template of the Registration Control Block is provided with the following default
values:

® Title: NIL

¢ Service: DIR_UNKNOWN

® Translation domain: CATENET

® Distribute title: FALSE

e Community pointer: NIL

® Address type: SYSTEM_ADDR

® Address: Local SYSTEM_ADDRESS
® Password: 0

e User information pointer: NIL

® Priority: 1

® (Class: CDNA_INTERNAL

5-16 Network Management Entities and Layer Interfaces Revision A

Registration Services

Before using the registration services, the user allocates space for the registration
control block. The user then initializes the registration control block using the above
inline procedure. After the registration control block is initialized, the user fills in the
required parameters. The title and address are the required parameters. The user can
also fill in optional parameters. The registration control block is then ready to create,
change, or delete directory entries.

The following example shows how a gateway program registers its title. In this
example, the gateway program has successfully opened a Session layer SAP and is
registering its address field, which is the service SAP identifier that was returned by
the Session layer. Note that the title is external and the gateway program uses the
Virtual Terminal Protocol.

VAR
gw_title: string (31),
dir_status: dir_status_codes,
dir_id: dir_id_rec,
dir_rcb: dir_rcb_rec,
ivtgw_user_info: [XDCL, STATIC] string (15) := ‘$NP_IVT_GATEWAY';

{The following statements set up the fields in the registration control block{

dir_rcb_init (dir_rcb);
dir_rcb.titie_ptr := “gw_titie;
dir_rcb.address.addr_type := transport_addr;
dir_rcb.address.transport := service_sapid;{returned by the Session layer
dir_rcb.class := cdna_external;
dir_rcb.service := dir_virtual_terminal;
dir_rcb.userinfo_ptr := “ivtgw_user_info;
dir_create (dir_rcb, dir_id, dir_status);
IF dir_status = dir_create_ok THEN

Title was registered.
ELSE

LOG that the title was not registered.
IFEND;

The following pages describe the registration service requests.

Revision A Directory Management Entity 5-17

DIR_CREATE

DIR_CREATE

This procedure creates a directory entry in the registration user data store.

Comdeck DRXDIR

Format DIR _CREATE (dir_rcb, dir_id, dir_status)

Input dir_rcb: dir_rcb_rec
The registration control block. See Registration Control Block, earlier in
this chapter, for details.

Output dir_id: dir_id_rec
The directory entry identifier which uniquely identifies the registration
request. This parameter is returned if the directory entry was successfully
created.
The fields and their contents for the directory entry record (DIR_ID_REC)
are shown in table 5-2:

Table 5-2. Directory Entry Record

Field Content

system The system address record (type SYSTEM_ADDRESS). See appendix B

for details.
decclock The date and time at which the entry was created (type BCD_TIME).

See the CDCNET Systems Programmer’s Reference Manual, Volume 1, for
a description of BCD_TIME.

dir_status: dir_status_codes

The status indication for the processed request. The following status
messages are returned for a DIR_CREATE request. For explanations, see
Constants and Common Types later in this chapter.

dir_create_ok
dir_no_room
dir_title_err
dir_address_err
dir_userinfo_err
dir_community_err
dir_domain_err
dir_dupticate

5-18 Network Management Entities and Layer Interfaces Revision A

DIR_CHANGE

DIR _CHANGE

This procedure changes a directory entry in the Registration User Data Store. The
title, password, and directory entry identifier must match an existing entry in the
Registration User Data Store. The user supplies a change set which specifies the
parameters that are to be affected.

Comdeck
Format

Input

Output

Revision A

DRXDIR
DIR _CHANGE (dir_rcb, dir_change_effectors, dir_id, dir_status)

~dir_rcb: dir_rcb_rec

The registration control block. See registration control block, described
earlier in this chapter, for details. The title and password must be supplied
to make a change.

dir_change _effectors: dir_change_set

This parameter specifies the values that are to be changed in the Directory
Entry. The user information and priority fields are the only values that
can be changed; all the other parameters in the registration control block
remain the same. The bit for the value that has to be changed must be set
by the user.

dir_id: dir_id_rec
The current identifier of the directory entry that is being changed. See
table 5-2 for a description of this record.

dir_status: dir_status_codes

The status indication for the processed request. The following status
messages are returned for a DIR_CHANGE request. For explanations, see
Contants and Common Types later in this chapter.

dir_change_ok
dir_no_room
dir_entry_not_found
dir_title_err
dir_userinfo_err

Directory Management Entity 5-19

DIR_DELETE

DIR_DELETE

This procedure deletes an existing directory entry in the registration user data store.
The title, password, and directory entry identifier must be supplied and must match an
existing registration user data store entry.

Comdeck DRXDIR
Format DIR_DELETE (dir_title_ptr, dir_password, dir_id, dir_status)
Input dir_title _ptr: “string (* <=max_title_len)

The pointer to the title that is to be deleted.

dir_password: integer

The password associated with the directory entry that is being deleted.
dir_id: dir_id_rec

The directory entry identifier record. See table 5-2 for details.

OQutput dir_status: dir_status_codes

The status indication for the processed request. The following status
messages are returned for a DIR_DELETE request. For explanations, see
Constants and Common Types later in this chapter.

dir_delete_ok
dir_entry_not_found
dir_title_err

5-20 Network Management Entities and Layer Interfaces Revision A

Translation Services

Translation Services

As mentioned earlier, translation services enable the user to locate and receive the
address of one or more known titles. The following is a description of the translation
control block, a data structure which is used in every translation service request.

Translation Control Block

The translation control block, DIR_TCB, is the main data structure used for
translation services. All translation service requests use the translation control block,
and all parameters that are applicable to these requests are passed within this data
structure. The translation control block is a packed record defined with fields to
support input parameters. Following is a description of the translation control block:

TYPE

dir_tcb_rec = packed record
title_ptr: ALIGNED “string (* <= max_title_len),
community_ptr: ALIGNED “dir_community_array
user_id: ALIGNED “cell,
translation_if: ALIGNED “procedure (dir_ticb: dir_ticb_rec;

VAR abort_translation_request: boolean),

time: integer,
service: dir_service,
search_domain: dir_domain,
recurrent_search: boolean,
class: dir_class,
wild_card: boolean,

recend;

title_ptr: ALIGNED “ string (* <= max_title_len)

A pointer to the directory title that is to be translated. The title is a string (up to
955 characters). A full title can be specified or wildcard characters can be used to
locate directory entries that are related in some way. For more information, see the
WILD_CARD field in table 5-4.

service: dir_service

This field must match the service attribute of the registered directory entry. See
DIR_SERVICE described earlier in this chapter.

community _ptr: ALIGNED * dir_community _array

This field is used only if the field SEARCH_DOMAIN is set to LIST_OF_
COMMUNITIES. The communities are searched in the order specified in the array.
search _domain: dir_domain

This field allows the user to identify the systems where the search for the title is
to be made. Default value is catenet. The Directory ME makes sure that a title
registered outside the search domain will not be returned as a translation
indication.

user_id: ALIGNED “cell

An identifier supplied by the user. This value is returned by the Directory ME in
the translation indication(s). The user identifies the translation request with
USER_ID.

Revision A) Directory Management Entity 5-21

Translation Services

translation _if: ALIGNED “procedure (dir_ticb: dir_ticb_rec; abort_
translation _request)

The pointer to a user procedure which will receive translation indications and
translation termination indications. This procedure is used only in the DIR_
TRANSLATE service request, which is described later in this chapter. The
Directory ME calls this procedure under the following circumstances:

® When a requested title has been found.

® When a translation request has been terminated because the search time has
expired.

® When there are no more titles in the directory at a particular time.
dir_tich: dir_ticb_rec

The translation indication control block record.

The fields and their contents for the translation indication control block record
(DIR_TICB_REC) are as shown in table 5-3:

Table 5-3. Translation Indication Control Block Record

Field Content

user_id The pointer that was supplied by the user with the translation
request (type “CELL).

response_.code The key field identifying the response code (DIR_RESPONSE_
CODE).
dir_ This indication informs the user that the address
indication for a title that was requested in the translation

request has been found. No duplicate indications
are sent to the user unless a change was made to
the title whose address is being translated.

dir__deletion This indication informs the user that the title has
been deleted. This indication is only returned
when the RECURRENT_SEARCH is set to
TRUE.

The following values apply to DIR_INDICATION
and DIR_DELETION:

title_ptr

The pointer to the title string (type ALIGNED
~STRING).

(Continued)

5-22 Network Management Entities and Layer Interfaces Revision A

Translation Services

Table 5-3. Translation Indication Control Block Record (Continued)

Field Content

dir
indication__
done

dir__srch_
time

userinfo_ ptr

Pointer to the user information string. A NIL
value indicates no user information was supplied
(type ALIGNED ~STRING).

dir_id

The directory entry identifier (type DIR_ID_
REC). See table 5-2 for details.

address

The address record (type DIR_ADDRESS_REC).
See table 5-1 for details.

service

An ordinal that identifies the protocol associated
with the directory entry. See DIR_SERVICE
described earlier in the registration control block
for more information (type DIR_SERVICE).

priority
The number which specifies the relative priority

of the directory entry when compared with other
directory entries (1..0ff (16)).

This indication is first delivered after all the
translation indications in the search domain have
been returned. Thereafter, this indication is sent
after a translation indication for an added,
changed, or deleted directory entry has been
delivered.

This indication is only returned when the
RECURRENT_SEARCH field is set to FALSE. It
indicates that the time has expired for this
request and terminates the translation request.

abort_translation _request: boolean

The request to abort a translation request, which is set by the user.

TRUE The translation request is to be aborted.
FALSE The translation request should continue.
Revision A Directory Management Entity 5-23

Translation Services

recurrent_search: boolean

This option specifies whether the Directory ME should actively request titles from
the Directory MEs in the search domain or wait for the titles to be distributed by
other Directory MEs. Titles requested by the RECURRENT_SEARCH option must
be registered with a TRUE value set in the DISTRIBUTE TITLE field.

TRUE " The request is terminated by the user. Time is ignored.

FALSE The request is terminated by the user or the time has expired.
(This is the default.)

time: integer

The time, stated in seconds, that can be spent searching for a title. Time is not
used if a recurrent search type is used. The minimum value is 0 seconds and the
maximum value is 1 hour. Default value is 12 seconds. Minimum value of 0
seconds is meaningful only if the search domain is specified as the local system.
Using the default time is recommended because in a future release the value will
be set based on the catenet topology.

class: dir_class

This value must match the registered directory entry. A CDNA external user
cannot translate CDNA internal titles. See DIR_CLASS, described earlier in the
overview of this chapter.

wild _ card: boolean

This field indicates if a complete title is specified or wildcards are specified in the
title.

TRUE Wildcards are used. See table 5-4 for a list of wildcard
characters.
FALSE Wildcards were not used. The title is matched

character-for-character.

5-24 Network Management Entities and Layer Interfaces Revision A

Translation Services

Table 5-4 shows the wildcard characters and their representation.

Table 5-4. Wildcard Characters

Wildcard Representation

? Represents any single character. Example:
Title Titles Titles not
Pattern Matched Matched
a%a aza az

ala abab

* Represents any string of characters of any length, including the
nullstring. A maximum of five * are allowed as wildcard characters in a
title. Example:

Title Titles Titles not
Pattern Matched Matched
az*az azaz az
azlaz azlz
azXXXaz azXXXazYYY

¢’ This matches the character within the quotation marks. Wildcard
characters appearing in quotation marks are not interpreted as wildcard
characters. Example:

Title Titles Titles not
Pattern Matched Matched
a* a*22 aBC

a*Z a¥z

a*

” This matches the quote character. If the registered title contains single
quotation marks as part of the title, two single quotation marks must be
used in the translation title name. Example:

Title Titles Titles not
Pattern Matched Matched
c" c’ c"
c c
{Continued)
Revision A Directory Management Entity 5-25

Translation Services

Table 5-4. Wildcard Characters (Continued)

Wildcard Representation

[..] This matches any single character in a group of characters or a subrange
that is specified within the brackets. The group of characters is specified

through one of the following:
A list [abc]

A range [a-2]

A combination of [a-zA-Z$#1-91]

the above two

Example:
Title Titles Titles not
Pattern Matched Matched
a[0123] a2 aA

a3 A$

Translation Control Block Initialization

An inline procedure, DIR_TCB_INIT, is provided to initialize the control block to all

defaults:

PROCEDURE [INLINE] dir_tcb_init
(VAR dir_tcb: dir_tcb_rec);
VAR
tcb_templet: [XREF] dir_tcb_rec;
dir_tcb := tcb_template; :
PROCEND dir_tcb_init;

A template of the translation control block is provided with the following default

values:

& Title: NIL

® Service: UNKNOWN

® Search domain: CATENET

e Community pointer: NIL

® User identifier: NIL

® Translation_if: NIL

e Time: DIR_DEFAULT_SEARCH_TIME

5.26 Network Management Entities and Layer Interfaces

Revision A

Translation Services

® Recurrent search: FALSE
® (Class: CDNA_INTERNAL
® Wildcard: FALSE

Before using the registration services, the user allocates space for the translation
control block. The user then initializes the translation control block using the above
inline procedure.

After the translation control block is initialized, the user fills in the required
parameters. The user can also fill in other optional parameters. The translation control
block is then ready to be used in the translation service requests.

The following example shows how a terminal support program translates a gateway
program’s title. In this example, the title being translated is external and uses the
Virtual Terminal Protocol.

VAR
service_name: string (31),
dir_tcb: dir_tcb_rec,
dir_ttcb: dir_ttcb_rec,
dir_status: dir_status_codes;

dir_tcb_init (dir_tcb);

dir_tcb.class := cdna_external;

dir_tcb.service:= dir_virtual_terminal

dir_tcb.title_ptr := “service_name;

dir_transiate_and_wait (dir_tcb, dir_ttchb, dir_status);

IF dir_status = dir_title_found THEN ’
{ Title found, make a call to the session call request procedure.
{ use dir_ttcb.address.transport as the DESTINATION_ADDRESS in the
{ session call request procedure.

IFEND;

ELSE
Title was not found in the Directory..
Return error.

IFEND;

The following pages describe the translation service requests.

Revision A Directory Management Entity 5-27

DIR_TRANSLATE_AND_WAIT

DIR _TRANSLATE_AND_WAIT

The procedure DIR_TRANSLATE_AND_WAIT is called by the users to make a single
title translation request. The user is suspended until the translation is returned or the
time has expired.

Comdeck DRXDIR
Format DIR _TRANSLATE _AND_WAIT (dir_tcb, dir_ttcb, dir_status)
Input dir_teb: dir_tcb_rec
The directory translation request control block. See directory translation
request control block, described earlier in this chapter, for details.
Output dir_ttcb: dir_ttcb_rec
The title translation control block.
The fields and their contents for the title translation control record (DIR_
TTCB_REC) are as shown in table 5-5.
Table 5-5. Title Translation Control Record
Field Content
dir_id The directory entry identifier (type DIR_ID_REC). See table 5-2 for
details.
address The directory address record (type DIR_ADDRESS_REC). See table 5-1
for details.
userinfo The user-supplied information (type STRING (MAX_USERINFO_LEN)).
priority The current priority of this title (1..0FF (16)).
service The directly accessible service associated with this title (type DIR_

SERVICE).

dir _status: dir_status_codes

This is the status indication for the processed request. The following status
messages are returned for a DIR_TRANSLATE_AND_WAIT request. For
explanations, see Constants and Common Types later in this chapter.

dir_title_found
dir_time_expired
dir_no_room
dir_title_err
dir_community_err

5.28 Network Management Entities and Layer Interfaces Revision A

DIR_TRANSLATE

DIR_TRANSLATE
The DIR_TRANSLATE procedure translates titles.

Comdeck
Format

Input

Output

Remarks

Revision A

DRXDIR
DIR _TRANSLATE (dir_tcb, dir_trid, dir_status)

dir_tcb: dir_tcb_rec

The directory translation request control block record. See the directory
translation request control block, described earlier in this chapter, for
details.

dir_trid: dir_trid _rec

The translation request identifier which uniquely identifies the translation
request. It is returned when the translation request is confirmed.

dir_status: dir_status_codes

This is the status indication for the processed request. The following status
messages are returned for a DIR_TRANSLATE request. For explanations,
see Constants and Common Types later in this chapter.

dir_translate_ok
dir_titie_err
dir_address_err
dir_domain_err
dir_community_err

The task issuing the DIR_TRANSLATE request is resumed immediately
after the DIR_TRANSLATE call is made. This allows the task to continue
processing while the title is being translated. After the processing is
complete, if the task needs to be blocked, a DIR_WAIT procedure can be
issued with the DIR_TRID supplied to identify the DIR_TRANSLATE call.

Directory Management Entity 5-29

DIR_WAIT

DIR_WAIT

The DIR_WAIT procedure allows the user to wait for a translation request to
complete. The Directory ME does not return control to the user until the translation
request is aborted by the user through the TRANSLATION_IF procedure or the time
has expired. This assures the user that before control is returned, at least one
translation has taken place or the search time has elasped.

Comdeck DRXDIR
Format DIR_WAIT (dir_trid)

Input dir_trid: dir_trid _rec

The translation request identifier. This parameter was returned by the
DIR_TRANSLATE procedure when the translation request was confirmed.

Output None.

5.30 Network Management Entities and Layer Interfaces Revision A

DIR_ABORT

DIR _ABORT

The DIR_ABORT procedure aborts an outstanding directory translation request. This
procedure scans the translation request data store to locate the outstanding translation

request.

Comdeck
Format

Input

Output

Revision A

DRXDIR
DIR _ABORT (dir_trid, dir_status)

dir_trid: dir_trid _rec

The translation request identifier. This parameter was returned by the
DIR_TRANSLATE procedure when the translation request was made.
dir_status: dir_status_codes

This is the status indication for the processed request. The following status
messages are returned for a DIR_ABORT request. For explanations, see
Constants and Common Types later in this chapter.

dir_abort_ok
dir_abort_err

CAUTION

The DIR_ABORT procedure should not be called from within the
TRANSLATION_.IF procedure.

Directory Management Entity 5-31

DIR_PURGE

DIR_PURGE

The DIR_PURGE procedure purges an existing translation data store entry. This
procedure locates the translation data entry with the same title and directory entry
identifier, and deletes the entry. The user calls this procedure when a connection
attempt to an address fails.

Comdeck
Format

Input

Output

DRXDIR
DIR_PURGE (dir_title_ptr, dir_id, dir _status)

dir _title _ptr: ,

Pointer to the title for the directory entry. This title is returned with the
translation indication.

dir_id: dir_id_rec

The directory entry identifier. This parameter is returned with the
translation indication. See table 5-2 for details.

dir_status: dir_status_codes

This is the status indication for the processed request. The following status
messages are returned for a DIR_PURGE request. For explanations, see
Constants and Common Types later in this chapter.

dir_purge_ok
dir_entry_not_found

NOTE

This procedure does not delete the registered title.

5.32 Network Management Entities and Layer Interfaces Revision A

Constants and Common Types

Constants and Common Types

The common deck DRRDIR defines Directory ME type declarations and the parameters.
Following is a description of constants and common types required by the registration
and translation services.

Constants
Constants for directory-accessible service

dir_unknown = 0,
dir_xerox_internet = 1
dir_xerox_transport =
dir_generic_transport
dir_session = 4,
dir_virtuali_terminal = 5,
dir_service_cdc_last = 127,
dir_service_customer_first = 128,
dir_service_customer_last = 255

3,

n N -

Constants for directory routines

max_community_len = 31,
max_community_tities = 16,
max_titlie_len = 255,
max_userinfo_len = 32

Constants for translation search times

dir_default_search_time = 12,
dir_min_search_time = 0,
dir_max_search_time = 3600

Directory return codes

dir_create_ok
dir_change_ok
dir_delete_ok
dir_translate_ok
dir_abort_ok = 5,
dir_purge_ok = 6,
dir_no_room = 7,
dir_entry_not_found = 8,
dir_duplicate = 9,
dir_abort_err = 10,
dir_titlie_err = 11,
dir_address_err = 12,
dir_userinfo_err = 13,
dir_community_err = 14,
dir_domain_err = 15,
dir_translation_if_err = 16,
dir_title_found = 17,
dir_time_expired = 18

1'
2,
3

no"

47

dir _ create_ok
The title has been added to the directory.

Revision A Directory Management Entity 5-33

Constants

dir _change_ok .
The title has been changed in the directory.

dir _delete_ok
The title has been deleted from the directory.

dir_translate_ok
The translation request has been confirmed.

dir_abort_ok
The translation request has been terminated.

dir_purge_ok
The translation data store entry has been purged.

dir_no_room

Currently there are no resources to allocate memory for directory entry.

dir_entry_not_found
The directory entry could not be found.

dir_duplicate

There is already an entry with same title, address, and service attribute in the
directory.

dir_abort_err

The translation request could not be found.

dir_title _err
The title length is not 1 through 255 characters.

dir__address_err

The address record is invalid.

dir_userinfo_err

The length of the user information string exceeds the allowable length (MAX_
USERINFO_LEN).

dir _community _err

The number of communities specified is greater than the allowed value MAX_
COMMUNITY_TITLES).

dir_domain _err

This is currently not used.

dir_translation _if _err

The address of the user procedure was not supplied for a DIR_TRANSLATE
request.

dir_title _found
A title translation was returned for a DIR_TRANSLATE_AND_WAIT request.

5.34 Network Management Entities and Layer Interfaces Revision A

Common Types

dir_time_expired
No title was found before the time expired for a DIR_TRANSLATE_AND_WAIT
request.

Common Types

dir_address_rec = record
case addr_type: dir_address_type of
= system_addr =
system: system_address,
= internet_addr =
internet: internet_address,
= transport_addr =
transport: gt_sap,
= npon_network_addr =
addr_data: SEQ (REP 7 of 0 .. Offff(16)),
= precord_addr =
record_ptr: “cell,
= proc_addr =
proc_ptr: “procedure,
casend
recend

dir_address_type = (system_addr, internet_addr, transport_addr,
non_network_addr, record_addr, proc_addr)
dir_status_codes = dir_create_ok .. dir_time_expired
dir_change_set = set of (userinfo_change, priority_change)
dir_class = (cdna_internal, cdna_external)
dir_id_rec = record
system: system_address,
decclock: bcd_time,
recend
dir_domain = (local_system, list_of_communities, catenet)
dir_service = dir_unknown .. dir_service_customer_last

dir_status_codes = dir_create_ok .. dir_time_expired

dir_trid_rec = “cell

Revision A) Directory Management Entity 5-35

File Access ME 6

Independent File Access ME oo e e 6-1
Dependent File Access ME i 6-2
CDCNET Files o i i i e e e e e e e e e e e e s e e e e 6-4
File Access Uséts 6-5
File Access User Interface i i i i i i 6-5
Services Required e 6-7
Generic Transport v o it e e e e e e e e e e 6-7
Log ME e e 6-7
Directory ME e e e e e 6-7
Services Provided e e e e e e e e e 6-8
FILE_ACCESS Procedure ¢ v v v ittt it et et e 6-8
File Control Block« . . o o e e 6-9
CREATE _FILE o i e e e e e e e e s e e 6-14
OPEN_FILE et e e e e e e 6-15
DELETE_FILE e e e e e e e e e e e e e e 6-16
READ_FILE e e e e e e e e e e 6-17
WRITE _FILE e e e e e e 6-18
SEEK_FILE e e e e e e e 6-19
CLOSE_FILE e e e e e e e e e e e e e 6-20
GET_DATA_LINE e e e e e e 6-21
GET_COMMAND_LINE et et e e e e e 6-22
Constants and Common Types o v v it i ittt 6-24
ConStANES it e e e e e e e e e e e e e e e e e e 6-24

Common TYPes v v ot e e 6-25

File Access ME 6

The File Access Management Entity (ME) helps various network software components
access information held in permanent files. All permanent files used by CDCNET
software reside on host computers. These files serve as information databases and help
the network manage functions such as loading, dumping, and configuring the DI

File Access ME consists of the following two components:
® Independent File Access ME
® Dependent File Access ME

Independent File Access ME

The Independent File Access ME receives file access PDUs from Dependent File Access
ME. The Independent File Access ME resides only in DIs with access to secondary
storage. Only Mainframe Device Interfaces (MDIs) and Mainframe/Terminal Device
Interfaces (MTIs) that are connected to hosts running NOS (Network Operating System)
are capable of being configured with an Independent File Access ME. In a NOS/VE
environment (see figure 6-2), Independent File Access ME resides on the host itself.

In a NOS environment (see figure 6-1), the Independent File Access ME connects
CDCNET to a file server application on the host computer. The file server application
is responsible for receiving file access requests from the Independent File Access ME
and transforming them into a format acceptable to the the Network Operating System
(NOS). 1t is also responsible for sending the processed requests back to the Independent
File Access ME. All file access requests are multiplexed into one Network Products
connection. This connection is initiated by the Independent File Access ME during
initialization and remains active during the life of the Independent File Access ME.
For more information on Network Products, see the NOS 2 Network Definition
Language Reference Manual.

Since the Independent File Access ME has no external interfaces, it will not be further
described in this manual.

Revision A File Access ME 6-1

Dependent File Access ME

Dependent File Access ME

The Dependent File Access ME resides in every DI in the catenet. To software
components within a DI, the Dependent File Access ME appears to be providing access
to local secondary storage. File access users directly interface with the Dependent File
Access ME. To provide file access services, the Dependent File Access ME supports a
protocol with an Independent File Access ME.

Details on Dependent File Access ME services are given in the Services Provided

section.
File Types:
$BOOT NOS
$EXCEPTION HOST
$DUMP

SLIBRARY NETFS {NETWORK FILE SERVER)
SCONFIGURATION T

SOPERATOR__PROCEDURE \i

$TERMINAL__PROCEDURE INDEPENDENT

$USER__PROCEDURE AAFILE ACCESS ME N

/
/ |Y DEPENDENT \
/ | sLE ACcESS ME | \ MP!

// \\\
/ \
/ \
// \\
4 L / \
/ \
4 N
DEPENDENT DEPENDENT
FILE ACCESS ME FILE ACCESS ME
TDI NDI
TERMINALS

Figure 6-1. File Access ME in a NOS Environment

6-2 Network Management Entities and Layer Interfaces Revision A

Dependent File Access ME

File Types:
$BOOT NOS/VE
SEXCEPTION HOST
SDUMP
SLIBRARY ‘
SCONFIGURATION NE(TN 5&% &CECN?S
SOPERATOR__PROCEDURE
$TERMINAL__PROCEDURE | FILE ACCESS ME)
SUSER__PROCEDURE FE \\
// \\
/ \
/ \
/ \
/ DEPENDENT \

FILE ACCESS ME

///
/]

DEPENDENT
FILE ACCESS ME

[”

\

DEPENDENT
FILE ACCESS ME

TERMINALS

NDI

Revision A

Figure 6-2.

File Access ME in a NOS/VE Environment

File Access ME 6-3

CDCNET Files

CDCNET Files

CDCNET files are classified by the function they support. For example, configuration
files support system configuration, and dump files support the dumping of a system.
Each file type has a title which is maintained in the network directory along with the
network address of the Independent File Access ME that supports the file type. During
initialization and configuration, the Independent File Access ME registers one title for
each file type it is configured to support.

The File Access ME does not restrict the number of files that can be supported or the
distribution of file types across the host computers. Any host computer can be
configured to support any subset of the file types that are currently defined. When an
MDI is configured, it must have access to an Independent File Access ME which
supports file types that are identical to the file types in its host. The following is a list
of titles and file names currently supported by File Access ME:

Titles File Names

$EXCEPTION EXCEPTION_LIST

$BOOT BOOT#vvvv_nnnn

$DUMP DUMP#FULL_ ssssssssssss..yymmddhhmmss

DUMP#PART _ssssssssssss..yymmddhhmmss

$LIBRARY MODULE#vvvv_m
ENTRY#vvvv_e

$CONFIGURATION CONFIGURATION #ssssssssssss-

$OPERATOR._ OPERATOR_PROCEDURE#p

PROCEDURE

$TERMINAL_. TERMINAL_PROCEDURE#p

PROCEDURE

$USER_ USER_PROCEDURE#p

PROCEDURE
\AAA A four-character hexadecimal software version number.
nnnn The character string ESCI, HDLC, or MCL
SSSSSSSSSSSS A 12-hexadecimal-character system identifier.
yymmddhhmmss Date-time.
m A 1- through 31-character module name.
e A 1- through 31-character entry point name.
P A 1- through 31-character procedure name.

8-4 Network Management Entities and Layer Interfaces Revision A

File Access Users

File Access Users

File access users are software components that need access to permanent files.
Following is a list of users and the file access services they use.

® The Configuration File Procurer reads configuration files.

® The Initialization ME writes dump files and reads the exception and boot files.
® The System Ancestor writes dump files.

® The Online Loader reads library files.

® The Terminal Procedure File Service module reads the terminal definition procedure
and terminal user procedure files.

File Access User Interface

As shown in figure 6-3, users interface with the Dependent File Access ME through a
direct call to the FILE_ACCESS procedure with a single parameter which points to a
file control block. The file control block is the main data structure through which users
interface to the Dependent File Access ME. All parameters that are applicable to the
service requests are passed within the file control block.

The initial requests that users make are to create, open, or delete a file. For initial
requests, the title of a file type and a network file name are included in the file
control block. The Dependent File Access ME uses this file type and, by calling the
Directory ME’s translation request procedure, obtains the network address of an
Independent File Access ME which supports the requested file type. The Dependent File
Access ME then establishes a Generic Transport connection to the Independent File
Access ME. After the initial request, the file can be accessed by a file operation
service request using the same file control block.

Files can be accessed in either blocked I/0 mode or nonblocked I/0 mode. In blocked
I/O mode, the user sends the request to the FILE_ACCESS procedure but return from
this routine is blocked until the request is completed. In the nonblocked I/O mode, the
user sends the request to the FILE_ACCESS procedure and specifies within the file
control block the address of a procedure to be called when the request has completed.

Revision A File Access ME 6-5

File Access User Interface

Dependent File Access ME

User Interfaces

File Access
FILE_ACCESS Protocol Data
Units
i
From To
other software Independent
components File Access ME

Figure 6-3. File Access ME Interfaces

6-6 Network Management Entities and Layer Interfaces

Revision A

Services Required

Services Required

For the Dependent File Access ME to provide users access to the permanent files
located in the host computer system, it depends on the services of other software
components. This section briefly describes the services of each of these software
components.

Generic Transport

Generic Transport transfers File Access ME PDUs between the Dependent File Access
ME and the Independent File Access ME. See chapter 14 in this manual for details on
Generic Transport.

Log ME

The Dependent Log ME or the Log Support Application (LSA) is used by the
Dependent File Access ME to log messages that contain File Access ME protocol
errors. See chapter 8 in this manual for details on Log ME.

Directory ME

Directory ME provides the Dependent File Access ME with title registration and
translation services. The Dependent File Access ME requests a title translation when a
file access user makes an initial request. The title translation gives the Dependent File
Access ME the transport address of the Independent File Access ME that supports that
particular title. The Dependent File Access ME requests Generic Transport title
translation to find the address of the GT_OPEN_SAP procedure. See chapter 5 in this
manual for more information on Directory ME services.

Revision A File Access ME 6-7

Services Provided

Services Provided

This section descibes the external services provided by the Dependent File Access ME
to the file access user. The Dependent File Access ME provides file accessing services
for a specific file by accessing the appropriate Independent File Access ME. The
Independent File Access ME then accesses the requested file from the host computer’s
disk subsystem.

FILE _ACCESS Procedure

Users interface with the Dependent File Access ME through direct calls to the FILE_.
ACCESS procedure with a single parameter which points to a file control block. The
file control block is the interface between the users and the Dependent File Access ME.
It is a record in the user’s memory and is defined with fields to support parameters for
all requests and responses. File access users include the common deck CMXFAME in
their calling modules. Common deck CMXFAME contains the following procedure
declaration:

PROCEDURE [XREF] file_access (user_fcb: “file_control);

The common deck CMXFAME contains calls to the common deck CMDFAME.
CMDFAME contains the file control block and all the type definitions.

In the following section, the file control block is described first, followed by the various
service requests and the above mentioned common procedures. In the service request
descriptions, only the fields in the file control block applicable to that request are
listed. The constants and common types are described at the end of the chapter.

The Dependent File Access ME provides two types of services to users in its local
system:

® File specification services (later referred to as initial requests) are the initial
services that the File Access ME can perform for its users. File specification
services include the following service requests:
- Creating a file (CREATE_FILE)
- Opening 4 file (OPEN_FILE)
- Deleting a file (DELETE_FILE)

e File operation services can only be used after a file specification service has been
used. File operation services include the following requests:

- Reading a file (READ_FILE)

- Writing on a file (WRITE_FILE)

- Repositioning within an open file (SEEK_FILE)
- Closing a file (CLOSE_FILE)

The Dependent File Access ME also provides specific file access services for ASCII text
files. Two common procedures, GET_DATA_LINE and GET_COMMAND_LINE, allow
users to read a text file one line at a time. These procedures are described later in
this chapter.

6-8 Network Management Entities and Layer Interfaces Revision A

File Control Block

File Control Block

The file control block is the main data structure through which users interface to the
Dependent File Access ME. All parameters that are applicable to the service requests
are passed within the file control block. Users call the FILE_ACCESS procedure with
the address of a file control block. Following is a CYBIL description of the file control
block:

TYPE
file_control = record
request_code: file_requests,

response_procedure: “procedure (a: “file_control),
fchb: “cell,
access_complete: boolean,
response_code: file_responses,
reject_code: file_reject,
title_name: “file_access_title,
file_name: “file_access_name,
access_mode: file_access_mode,
access_type: file_access_type,
read_length: read_length,
data_buffer: buf_ptr,
origin: file_origin,
offset: file_offset,
user_id: “cell,
quality: service_guality,
current_position: file_position,
file_length: file_size,
line_number: 1ine_number,
file_server: gt_sap,

recend;

request__code: file_requests
This field must contain one of the following values:

CREATE_FILE
OPEN_FILE
DELETE_FILE
READ_FILE
WRITE_FILE
SEEK_FILE

CLOSE_FILE

The user specifies one of these values in the file control block for a file access
procedure call.

Revision A File Access ME 6-9

File Control Block

response _procedure: “procedure (a: ~file _control)

The pointer to the procedure to be called when returning the file access response. If
control is set to a NIL value, return is blocked until the request is complete. See
blocked /O and nonblocked I/O modes described earlier in this chapter under File
Access User Interface.

fcb: ~cell

A pointer to the internal file control block which is used only by the Dependent
File Access ME. This field is returned by the Dependent File Access ME as a
response to an initial request. It must be included by the user in all subsequent
calls to the File Access ME because it is the only link to the File Access ME’s
internal file control block.

CAUTION

This field is the only link to the internal file control block. Any changes made to
this field may yield unpredictable results.

access _complete: boolean

This field is used in the nonblocked mode and is returned by the Dependent File
Access ME to indicate access was completed. This field contains one of the following
values:

TRUE Access was completed.
FALSE Access was not completed.

response_code: file_responses
This field returns a response to a service request and contains one of the following
values:

REQUEST_CONFIRMED

REQUEST_REJECTED

reject _code: file _reject

An error indication from the Dependent File Access ME. It gives the reason for the
unsuccessful completion of a file request. This is valid only if the RESPONSE_
CODE field returns a REQUEST_REJECTED value. Error messages are listed with
each service request. Explanations are given in Constants and Common Types, later
in this chapter.

title_name: ~file_access_title

A required field in the file control block. The title is a string of 1 through 31
characters.

file_name: ~file_access_name

A required field in the file control block. The file name is a string of 1 through 63
characters.

6-10 Network Management Entities and Layer Interfaces Revision A

File Control Block

access_mode: file_access_mode

This field is required for a CREATE_FILE or OPEN_FILE request and contains
one of the following values:

READ_WRITE
WRITE_ONLY
READ_ONLY

access _type: file_access_type 4
This field is required for a CREATE_FILE or OPEN_FILE request and can be
specified to be of the following types:

SEQUENTIAL

RANDOM_ACCESS

read _length: read _length
This field is required for a READ_FILE request. It specifies the number of bytes to
be read from an open file.
data_buffer: buf_ptr
This field is required for a WRITE_FILE request. It is a pointer to a record called
DATA_DESCRIPTOR.
origin: file_origin
This field is required for a SEEK_FILE request. It can be specified to be one of
the following fields:

BEGINNING_OF_FILE

CURRENT_POSITION

END_OF_FILE

offset: file_offset

This field is required for a SEEK_FILE request. It is a number that is added to
the position specified by the origin field; the resulting value is a new position
within the file.

user_id: “cell

An optional field. It is a pointer to a user-defined record.

quality: service_quality
An optional field which is reserved for future use.

current_position: file_position

This field is returned by the Dependent File Access ME and indicates the current
byte position. This pesition, however, may not be accurate for sequential files
because host record formats may not map directly to byte-addressable files.

Revision A File Access ME 6-11

File Control Block

CAUTION

This field is used by the File Access ME for internal checking. Any changes made
to this field may yield unpredictable results.

file _length: file_size

This field indicates the length of the file in bytes. This length, however, may not be
accurate for the sequential files because host record formats may not map directly
to byte-addressable files.

CAUTION

Any changes made to this field may yield unpredictable results.

line_number: line_number

The line number that is updated by the procedures GET_COMMAND_LINE and
GET_DATA_LINE. It is initialized to 0 on an OPEN_FILE or CREATE_FILE
request.

file_server: gt_sap
Indicates the Independent File Access ME’s Transport address.

612 Network Management Entities and Layer Interfaces Revision A

File Control Block

The following example shows how the Configuration Procurer uses the services of the
File Access ME to open a file.

/open_configuration_file/
WHILE (NOT file_open) AND (retry_count > 0) DO
retry_count := retry_count - 1

config_file.request_code := open_file;

clp_convert_to_rjstring (mpb_ram_ptr~.system_id.upper, 16, FALSE,
zero_fill, config_file_name (15, 4),

convert_status);

clp_convert_to_rjstring (mpb_ram_ptr".system_id.lower, 16, FALSE,
zero_fill, config_file_name (19, 8),
convert_status);

config_file.file_name := “config_file_name;

config_file.title_name := “config_titie;

config_file.access_mode := read_only;

config_file.line_number := 0;

config_file.response_procedure := NIL;

file_access (“config_file);

{ Check open status.
IF config_file.response_code = request_confirmed THEN
file_open := TRUE;

ELSE
enfg_log_msg (cfp_file_open_error);
wait_state := TRUE;
delay_processing (0, open_delay, 0, 0);
wait_state := FALSE;

{ If the operator has entered a BYPASS_CONFIGURATION command, do not try to
get the configuration file again.

IF bypass_config_flag THEN
cnfg_log_msg (cfp_bypass_config);
config_status := config_ok;
RETURN;

IFEND;
IFEND; { Check open status.

WHILEND /open_configuration_file/;

The following pages describe the file access service requests.

Revision A File Access ME 6-13

CREATE_FILE

CREATE _FILE

This request creates a file. A request code of CREATE_FILE in the file control block
for a file access procedure call initiates this request. If a file of the same name exists
and can be modified by the user, it is truncated to zero length. If there is no duplicate

file, a new file of zero length is created.

Input The user sets up the following fields as input in the file control block:

request_code: file_requests

This field contains the following value:
CREATE_FILE
response_procedure: “procedure
title_name: ~file_access_title
file_name: “file_access_name
access_mode: file_access_mode

access_type: file_access_type

Output The Dependent File Access ME returns the following fields in the file

control block:
feb: “cell

access _complete: boolean

response_code: file_responses

reject_code: file_reject
file _length: file_size

file _server: gt_sap

Following is a list of reject codesvapplicable to this request. For

explanations, see Constants and Common Types later in this chapter.

unspecified_error
security_error
insufficient_space
i_o_error
bad_file_name

6-14 Network Management Entities and Layer Interfaces

Revision A

OPEN_FILE

OPEN _FILE

This request opens a file that has already been created. A request code of OPEN_FILE
in the file control block for a file access procedure call initiates this request. The user
needs to open a file before accessing it. The file opens if a file of the specified name
exists and the requested access mode is allowed.

Input The user sets up the following fields as input in the file control block.

request_code: file_requests
This field contains the following value:

OPEN_FILE
response_code: file_responses
title_name: ~file_access_title
file_name: “file_access_name
access_mode: file_access_mode
access_type: file_access_type

Output The Dependent File Access ME returns the following fields in the file
control block:

fcb: ~cell

access _complete: boolean
response_code: file_responses
reject_code: file _reject

file _length: file_size
file_server: gt_sap

Following is a list of reject codes applicable to this request. For
explanations, see Constants and Common Types later in this chapter.

unspecified_error
security_error
i_o_error
file_does_not_exist
bad_file_name

Revision A File Access ME 6-15

DELETE_FILE

DELETE _FILE

This request is used to delete a file that is no longer required. A request code of
DELETE_FILE in the file control block for a file access procedure call initiates this
request.

Input The user sets up the following fields as input in the file control block.

request_code: file_requests
This field contains the following value:

DELETE_FILE
response _procedure: “procedure
title_name: ~file_access_type
file_name: “file_access_name

Output The Dependent File Access ME returns the following fields in the file
control block:

access _complete: boolean
response _code: file_responses
reject_code: file_reject

Following is a list of reject codes applicable to this request. For
explanations, see Constants and Common Types later in this chapter.

unspecified_error
security_error
i_o_error
file_does_not_exist
bad_f1ile_name

6-16 Network Management Entities and Layer Interfaces Revision A

READ_FILE

READ_FILE

This request is used to read data from an open file. A request code of READ_FILE in
the file control block for a file access procedure call initiates this request.

Input The user sets up the following fields as input in the file control block.

request_code: file_requests
This field contains the following value:

READ_FILE
response _procedure: "procedur"e
read _length: read __length

Output The Dependent File Access ME returns the following fields in the file
control block:

access__complete: boolean
response_ code: file _responses
reject _code: file_reject

data_ buffer: buf_ptr
current_position: file_position

Following is a list of reject codes applicable to this request. For
explanations, see the Constants and Common Types section later in this
chapter.

unspecified_error
i_o_error
beyond_end_of_file
fcb_active
unknown_fcb
bad_byte_count
security_error

Revision A File Access ME 6-17

WRITE_FILE

WRITE _FILE

This request is used to write data to an open file. A request code of WRITE_FILE in
the file control block for a file access procedure call initiates this request.

Input The user sets up the following fields as input in the file control block.

request_code: file _requests
This field contains the following value:

WRITE_FILE
response_procedure: “procedure
data_buffer: buf_ptr

Output The Dependent File Access ME returns the following fields in the file
control block:

access _complete: boolean
response_ code: file _responses
reject_code: file_reject
current_position: file_position

Following is a list of reject codes applicable to this request. For
explanations, see Constants and Common Types later in this chapter.

unspecified_error
i_o_error
insufficient_space
unknown_fcb
fch_active
security_error
bad_byte_count

6-18 Network Management Entities and Layer Interfaces Revision A

SEEK_FILE

SEEK_FILE

This request is used to change the current position within an open file. It is allowed
only on random files. A request code of SEEK_FILE in the file control block for a file
access procedure call initiates this request.

Input The user sets up the following fields as input in the file control block.

request_code: file_requests
This field contains the following value:

SEEK_FILE
response__procedure: “procedure
origin: file_origin
offset: file_offset

Output The Dependent File Access ME returns the following fields in the file
control block:

access _complete: boolean
response_code: file _responses
reject_ code: file_reject

Following is a list of reject codes applicable to this request. For
explanations, see Constants and Common Types later in this chapter.

no_seek_on sequential_file
fcb_active

unknown_fch
invalid_file_position
iliformatted_request

Revision A File Access ME 6-19

CLOSE_FILE

CLOSE _FILE

This request is used to close a previously opened or created file. A request code of
CLOSE_FILE in the file control block for a file access procedure call initiates this
request.

Input The user sets up the following fields as input in the file control block.

request_code: file_requests
This field contains the following value:

CLOSE_FILE
response_procedure: “procedure

Output The Dependent File Access ME returns the following fields in the file
control block:

access__complete: boolean
response_code: file_responses
reject_code: file _reject

Following is a list of reject codes applicable to this request. For
explanations, see Constants and Common Types later in this chapter.

unspecified_error
i_o_error
fcb_active
unknown_fcb

6-20 Network Management Entities and Layer Interfaces Revision A

GET_DATA_LINE

GET_DATA_LINE

The GET_DATA_LINE procedure allows the user to read a text file line by line. The
data lines are passed to the caller one at a time with trailing spaces removed. A data
line is a string of ASCII characters terminated by the unit separator [1F(16)]. The unit
separator or end of file terminates a line regardless of where it was encountered. To
use this procedure, a user first initializes the user file control block (USER_FCB) by
calling the file access procedure with an OPEN_FILE request.

Comdeck
Format

Input

Output

Revision A

CMXGDL
GET_DATA _LINE (user_fcb, line, read _status)

user_fch: ~file_control

This parameter is a pointer to the file control block. For explanations, see
File Control Block earlier in this chapter.

line: ost$string

This type is described in chapter 7 of this manual.

read _status: read _file_status

This is the status indication of the processed request. The following status
messages are returned for this procedure. For explanations, see Constants
and Common Types later in this chapter.

read_ok
read_eof
line_too_long
access_error

File Access ME 6-21

GET_COMMAND_LINE

GET_COMMAND _LINE

The GET_COMMAND_LINE procedure allows the user to read a file of System
Command Language (SCL) commands, one command at a time. Physical lines are read
until an entire command line is put together.

Format
Comdeck

Input

Output

Remarks

GET_COMMAND_LINE (user_fcb, command, read_status)
CMXGCL

user_fcb: ~file _conirol

This parameter is a pointer to the file control block. For explanations, see
File Control Block, earlier in this chapter.

command: ost$string

This type is described in chapter 7 of this manual.

read _status: read _file _status

This is the status indication of the processed request. The following status
messages are returned for this procedure. For explanations, see Constants
and Common Types later in this chapter.

read_ok
read_eof
tine_too_long
access_error

Before this procedure passes a command line back to the user, it makes
the following changes (if necessary):

® Compresses multiple blanks down to a single blank if they are not
within a string.

® Replaces comments with a single blank if the comments are not within
a string.

® Removes leading and trailing blanks and blank lines.

® Processes ellipsis (..) at the end of a line. It eliminates the ellipsis and
appends the next line.

® Maintains a running line number counter. (The counter is set to zero
by Dependent File Access ME when the file is opened.)

Because of this editing, the line number returned refers to the first physical line read
as part of the command, excluding the blank/comment lines. A physical line is ASCII
characters terminated by the unit separator [1F(16)]. To use this procedure, a user
initializes the user file control block (USER_FCB) by calling the FILE_ACCESS
procedure with an OPEN_FILE request.

6-22 Network Management Entities and Layer Interfaces Revision A

GET_COMMAND_LINE

The following example shows how a software component, the Configuration Procurer,
uses the GET_COMMAND_LINE procedure. For information on the Configuration
Procurer, see the CDCNET Systems Programmer’s Reference Manual, Volume 1.

config_file_ptr := “config_file;
command_file_status := read_ok;

/process_conf iguration_commands/
WHILE command_file_status <> read_eof DO
get_command_line (config_file_ptr,
command, command_file_status);
command_line_number := config_file_ptr~.1ine_number;

{ Check command file status.
IF command_file_status = read_ok THEN
clp_process_command (command, command_status);

IF command_status.normal THEN
enfg_log.msg (cfp_normal_cmd_response);

ELSE
cnfg_log_msg (cfp_abnormal_cmd_response);
IFEND;

ELSEIF command_file_status = line_too_long THEN
cnfg_log_msg (cfp_ill_formed_text_line);

ELSEIF command_file_status = access_error THEN
reset_di (configuration_file_read_error);

ELSE
; { end of file.

IFEND; { Check command file status.

WHILEND;

Revision A . File Access ME 6-23

Constants and Common Types

Constants and Common Types
The common deck CMDFAME defines File Access ME type declarations and

parameters. Following is a description of constants and common types required by the

file access service procedures

Constants
boot_title = ‘$BOOT’
cnfg_title = “$CONFIGURATION’

dump_title = “$DUMP’

except_title =/$EXCEPTION’

lib_title = $LIBRARY’
op_proc_title=" $OPERATOR_PROCEDURE ”
term_proc_t it1e=’$TERMINAL_PROCEDURE’
user_proc_title =°$USER_PROCEDURE’

max_byte_file_size = Q7FFFFEFF(16)

max_file_name_len = 63
max_titie_name_len = 31

6-24 Network Management Entities and Layer Interfaces

Revision A

Common Types

file_access_mode

file_access_name

Common Types

(read_write, write_only, read_only)

string (* <= max_file_name_len)

file_access_title = string (* <= max_title_name_ien)

file_access_type = (sequential, random)

fite_offset = integer .

file_origin = (beginning_of_file, current_position, end_of_file)

file_position = 0 .. max_byte_file_size

file_reject = (
unspecified_error,
security_error,
insufficient_space,
i_o_error,
file_does_not_exist,
invalid_file_position,
file_service_unavailable,
protocoli_error,
unexpected_file_close,
no_seek_on_seqguential_file,
bad_byte_count,
bad_file_name,
beyond_end_of_file,
fcb_active,
illformatted_request,
purge_busy,
unknown_fcb,
usage_confiict,
read_ok,

read_eof,
1ine_too_long,
access_error

unspecified_error

security_error

insufficient_space

i_o_error

file_does_not_exist

Revision A

A protocol error has occurred between an Independent
File Access ME and the file server application.

The security has been violated. The file server
application is not authorized to open a file in the
requested access mode, or to write on a read only file.

There is no room to define or write a new file. The
file space allocated to the file server application has
been exhausted.

An unrecoverable I/O error has occurred. The file
server application is unable to complete an I/O access.

The requested file does not exist.

File Access ME 6-25

Common Types

invalid_file_position

file_service_unavailable

protocol_error

unexpected_file_close

no_seek_on_sequential_file

bad_byte_count

bad_file_name

beyond_end_of _file

fcb_active

j1lformatted_reqguest
purge_busy
unknown_fcb

usage_conflict

Attempting to position the file beyond the EOI or
before the BOI position.

The file type has not been registered or the file type
is not available.

The protocol between Dependent File Access ME and
Independent File Access ME has been violated.

The file connection between Dependent File Access
ME and Independent File Access ME has been broken.

A seek request cannot be processed on a file that is
specified to be of sequential access type.

The file length for a read or write request is specified
to be zero.

The file name has illegal characters or has too many
characters.

Aln attempt to read has gone beyond the end-of-file.

The file control block specified in the service request
is already active.

The request code is invalid.
The file server application is unable to purge the file.
The field FCB in the file control block is invalid.

The file is being used in a different mode by another
entity.

file_responses = (request_confirmed, request_rejected)

file_requests= (create_file, open_file, delete_file, close_file, write_file,
read_file, seek_file)

file_size = 0 ..

line_number = 0 ..

OffFff(16)

max_byte_file_size

read_file_status = (read_ok, read_eof, line_too_iong, access_error)

read_length = 1 ..

service_guality = 0 ..

6-26 Network Management Entities and Layer Interfaces

OFFFF(16)

Revision A

Command ME | 7

OVEIVIEW . . . v v v o e 7-1
Components of the Command ME 7-1
Independent Command MEo 7-2
Dependent Command ME 7-2
Dependent Command ME Services T-5
Dependent Command ME User Interfaces 7-5
Command Processors v o v v i it e e e e e e e 7-6
Parameter Value Table (PVT) i 7-6
CLP_SCAN_PARAMETER_LIST Procedure 7-6
Parameter Descriptor Table (PDT) 7-7
Command Responses o i ittt i i e e e 1-7
Message Templates i i e e 7-7
Types of Commandst 7-8
Services Required e 7-9
Internet Layer (3B) e e 7-9
Generic Transport Layer (4) i 7-9
Online Loader i i e e e e e 7-9
System AnCestor e e e e e 7-9
Dependent Log ME (LSA) it 7-9
Statistics Manager e e e e e 7-9
Status Manager e e e e e e 7-9
Services Provided e e e 7-10
CLP_PROCESS_COMMAND et e e e e 7-15
GET_SOURCE_ADDRESS e e e e e 7-16
CLP_SCAN_PARAMETER_LIST it 7-17
CLP_PARSE_COMMAND i i e 7-18
CLP_PARSE_TERMINATE ittt e 7-19
CLP_GET_PARAM_LIST it 7-20
CLP_GET_PARAMETER it i e e 7-21
CLP_GET_SET_COUNT et e e e e e e e e 7-22
CLP_GET_VALUE it it i e e e 7-23
CLP_GET_VALUE_COUNT. e e e e e 7-24
CLP_TEST_PARAMETER it e e 7-25
CLP_TEST_RANGE ittt it e e e e e 7-26
CLP_CONVERT_INTEGER_TO_STRING, 7-27
CLP_CONVERT_STRING_TO_INTEGER 7-28
CLP_CONVERT_TO_RJSTRING i, 7-29
CLP_TRIMMED_STRING_SIZE i ittt 7-30
Constants and Common Types i i i ittt 7-31
Constants e e e e e e e e e e e e e e 7-31

Common Types o i it e e e e 7-31

Command ME | 7

This chapter describes the Command ME. Command ME is the command management
software that allows operational control to be distributed throughout the network.

This chapter discusses:

An overview of the Command ME
The services required by Command ME
The services provided by Command ME

Constants and common types

Overview

This section describes the following:

®

Independent and Dependent Command ME.

The Dependent Command ME services.

User interfaces to Command ME.

Command processors which are used by the Command ME.

The parameter value table which is used by command processors.

The CLP_SCAN_PARAMETER_LIST procedure which is used by command
processors to parse parameter strings.

The parameter descriptor table which is used by the CLP_SCAN_PARAMETER_
LIST procedure.

Command responses sent by command processors.

The message templates which are used by command processors to format command
responses.

The type of commands processed by the Command ME.

Components of the Command ME

Command ME consists of the following two components:

Independent Command ME
Dependent Command ME

Revision A Command ME 7-1

Components of the Command ME

Independent Command ME

The Independent Command ME provides a command interface to network operators. Its
main responsibility is to route operator commands to the systems in the catenet where
the commands are to be executed. It sends commands to specific systems using
Transport layer services or broadcasts commands using the Internet layer services. The
Independent Command ME is also responsible for communicating the command
responses from the Dependent Command ME back to the operators. (Broadcast
commands are supported in a future release).

In the CDCNET NOS environment, the Independent Command ME is implemented as
the Operator Support Application (OSA) and also functions as the Independent Alarm
ME. Since it depends on a host server application, the Independent Command ME in a
NOS environment resides only in a mainframe device interface (MDI) or a mainframe
terminal interface (MTI). Figure 7-1 illustrates the Independent Command ME in an
NOS environment.

In the NOS/VE environment shown in figure 7-2, the Independent Command ME is
implemented solely by the Network Operator Utility which resides on the NOS/VE
host.

When an Independent Command ME receives an operator command, it parses the
command to determine the requested service. If the operator’s command is a request to
send a command to a particular DI, the command is further parsed to determine the
specified destination. If the specified destination is in the operator’s domain of control
(domain of control is supported in a future release), the Independent Command ME
sends the command to the Dependent Command ME in the specified system. Figure 7-1
illustrates this process.

Since the Independent Command ME has no external program interfaces, it will not be
further described in this manual. For more information on network operations and
command references, see the CDCNET Network Operations manual.

Dependent Command ME

Every DI in the catenet contains a Dependent Command ME which is responsible for
the command execution process within that system. The function of processing a
particular command within a DI is divided between the Dependent Command ME and
the command processor associated with that command. This chapter describes in detail
the features and services of the Dependent Command ME. It also describes the parsing
procedures used by the Dependent Command ME and the command processors.

7.2 Network Management Entities and Layer Interfaces Revision A

Components of the Command ME

MDI
NQOS HOST
= Operator Support Application
- {ind. Command, Alarm ME's)
NETOU
Network Operator
Utility
TRANSPORT | |
INTERNET | |
interactive
Terminal
or Command—»
HOST - Response, Alarm
CONSOLE
OPERATOR
Broadcast
Send
ol r
Log
Command Dependent : Alarm
_— t
Processor : Cox&ngand Asg;‘l'i)::ft:on I Source
| | TRANSPORT |
] INTERNET !
Command—» Alarm—=
-+—Response

Figure 7-1. Command ME in a NOS Environment

Revision A Command ME 7-3

Components of the Command ME

" NQS/VE . HOST
NETOU - Network Operator Utility
(ind. Command Alarm MEs)
| | TRaNSPORT
INTERNET

Interactive

Terminal | command

or
Host «+———Response, Alarm
Console

OPERATOR

Broadcast

Send
Eo]]
Dependent Log
gf;'c':;‘"f —— Command Support fr sNaf‘ﬂ"
S0 ME Application ource
| | rRaNSPORT |
| INTERNET |
Command— Alarm—>
-w—Response

Figure 7-2. Command ME in a NOS/VE Environment

7-4 Network Management Entities and Layer Interfaces

Revision A

Dependent Command ME Services

Dependent Command ME Services

The Dependent Command ME provides the following services that are required by all
command processors:

® Loading and executing command processors based on requests from the Independent
Command ME or another software entity.

e Providing command parsing services to the command processors.

® Providing the means for returning command responses to the Independent Command
ME which, in turn, routes the responses back to the originators of the command
request.

Dependent Command ME User Interfaces
The Dependent Command ME receives commands through the following interfaces:

e From an Independent Command ME on a transport connection, using Transport
layer’s services.

¢ From an Independent Command ME as a datagram or a broadcast datagram, using
Internet layer’s services.

® From another software component within its own system, using a direct call
interface.

As shown in figures 7-1 and 7-2, command data units are always sent by the
Independent Command ME using either the Transport or the Internet layer services.
Which layer is used depends on how the CDCNET operator sends the command. A
SEND_COMMAND, which sends the network command to a specific DI, uses a
transport connection. A BROADCAST_COMMAND, which broadcasts the network
command to the DIs in the specified community, uses the Internet layer’s services. The
Dependent Command ME has dedicated Transport layer and Internet layer SAPs
through which command data units can be received from the Independent Command
ME. For more information on sending commands, see the CDCNET Network Operations
Manual.

When a Dependent Command ME receives a command, it parses the command name
and requests the Online Loader to load the specified command processor. The
Dependent Command ME also verifies that the command is within the operator’s
command privileges. Command privileges are supported in a future release.

Revision A Command ME 7-5

Command Processors

Command Processors

One command processor exists for each command recognized by the system. If an
abbreviation for a command is supported, a separate entry point is also defined for it.
The abbreviated command entry point, in turn, directly calls the complete command
name’s entry point. To locate the command processor’s entry point address, the
characters CMD_ are prefixed by the Dependent Command ME to the command name.
For example, the command DISPLAY_NETWORK_STATUS (which displays the status
of network solutions connected to the DI), is processed by a command processor with
the entry point name of CMD_NETWORK_STATUS.

Every command that is processed by the Dependent Command ME starts as a new
task. The task starts once the command processor module is loaded. A command
processor task is started with the task attributes defined either by the command
processor itself or by a default set of attributes. A command processor defines its task
attributes by specifying an externally declared (XDCL) data item of type, TASK_
ATTRIBUTE for both the complete and abbreviated command entry point name. The
name of the TASK_ATTRIBUTE is the same as the complete or abbreviated name of
the entry point except it has a suffix, _TA. Through the task attributes, a command
processor can specify the stack size, assign priority, and state if the task is to be
preempted.

All network commands are limited to 24 characters, since the prefix CMD_. and the
suffix _TA are used to locate the command processors’ entry point address and task
attributes, respectively. Command ME truncates the name of the command to 24
characters before calling the loader to locate the required names.

The command processor is invoked through a direct call by the Command ME, which
also supplies the command processor with a parameter list and a status variable. The
command processor uses the parameter list as input information and the status
variable as output, to return the command’s completion status. The command processor
is responsible for parsing the supplied parameters and returning a response to the
Dependent Command ME through the status variable. To process the parameter list
that accompanies the command, the command processor calls the CLP_SCAN_
PARAMETER_LIST procedure which scans the passed parameter list according to the
System Command Language (SCL) parameter syntax rules. To scan the parameter list,
the CLP_SCAN_PARAMETER_LIST procedure requires a parameter descriptor table
that defines the valid parameters for the parameter list. The CLP_SCAN_
PARAMETER_LIST procedure and the parameter descriptor table are discussed later
in this section.

Parameter Value Table (PVT)

Most command parsing procedures use a parameter value table (PVT) in addition to a
command parameter list as input information. The PVT is built by the CLP_SCAN_
PARAMETER_LIST procedure, which is described later in this section. The PVT
contains an array of parameter name descriptors that are derived from the parameter
descriptor table, which is also described later in this section.

CLP_SCAN_PARAMETER _LIST Procedure

Command processors call the CLP_SCAN_PARAMETER_LIST procedure to parse the
command parameter string according to SCL parameter syntax rules, and then call the
various parameter access procedures to get the actual parameter values. This procedure
builds the PVT. The CLP_SCAN_PARAMETER_LIST procedure and the various

7-6 Network Management Entities and Layer Interfaces Revision A

Parameter Descriptor Table (PDT)

parameter access procedures, and the string conversion procedures are described in the
Services Provided section of this chapter. The procedures that generate response
messages are described in the CDCNET Systems Programmer’s Reference Manual,
Volume 1.

Parameter Descriptor Table (PDT)

To parse a parameter string, the CLP_SCAN_PARAMETER_LIST procedure requires
the parameter list that was passed to the command processor and the PDT. A PDT
lists all valid parameter names and a parameter descriptor for each valid parameter.
While scanning the parameter list, if the CLP_SCAN_PARAMETER_LIST procedure
finds a parameter name which is not defined in the PDT or a parameter specification
not allowed by the corresponding parameter descriptor, it returns a standard SCL
syntax error in its status variable. The command processor passes the syntax error to
the user that entered the command through the status variable passed to the command
processor.

Command Responses

Each command processor returns exactly one command response per command request.
A command response indicates whether a command was successfully or unsucessfully
processed. The command processor passes the response to the Dependent Command ME,
and the Dependent Command ME returns the response to the Independent Command
ME through the same service (Transport, Internet, or direct call interface) through
which the command was received.

The command response consists of a record of type CLT$STATUS which contains a
response identifier, a response message data unit, and a status indicator. The status
indicator is a boolean value which is set by the command processor to a value of
FALSE for an error response and to a value of TRUE for a nonerror response. The
Command ME forms a command response protocol data unit by prefixing a header with
the response identifier and other information to the command response. All command
processors should return response messages to indicate the command processing status.
If no response is returned by the command processors, the Dependent Command ME
supplies a response indicating that a message was not supplied.

Message Templates

Message templates are used to format command responses and alarm messages that are
displayed to the network operator. They are also used to format log messages in
reports generated by the Network Performance Analyzer (NPA). Message templates
contain constant or fixed-type information that does not change from one instance of a
message to the another. Variable information is combined with an appropriate ‘message
template to form a display for an end user. For more information on alarms, see
chapter 7 in this manual. The CDCNET Network Performance Analyzer Manual has
detailed information on network performance reports.

Revision A Command ME 7-7

Types of Commands

Types of Commands
The following commands are processed by the Command ME:
Configuration commands

Configuration commands contain information to configure or reconfigure a DL
Configuration commands include the following:

e Commands to reconfigure lines, boards, devices, network solutions, and DIs
e Commands to reset systems and effect their reload
e Commands to add or delete community titles

Status commands

Status commands check the current state of element(s) of a system. The status
of the physical elements like the communication links, modems, cluster
controllers, terminals, channels, and the status of logical elements such as
programs, entities, end-users, connections, and SAPs are accessible through the
status commands.

Statistics commands

Statistics commands access statistical information maintained for the software
components in the DI. The following are the different types of statistical
information maintained for physical and logical elements:

¢ Start and termination time
& Execution time
® CPU overhead information
e Data rates
¢ Error rates

Log commands

Log commands are used to activate or deactivate the logging of statistical and/or
status information. Log commands also identify which log data units are sent as
alarms.

For more information on these commands, see the CDCNET Network Operations
Manual.

7.8 Network Management Entities and Layer Interfaces Revision A

Services Required

Services Required

The Dependent Command ME relies on the services of other entities to provide services
to its own users. This section briefly describes the services of each of these entities.

Internet Layer (3B)

The services of the Internet layer are used to receive and send datagrams carrying
commands and command responses. Command ME uses the OPEN_INTERNET_SAP to
register its well known SAP with Internet. See chapter 16 in this manual for more
information.

Generic Transport Layer (4)

The services of Generic Transport are used to send and receive data carrying command
responses and commands repectively. See chapter 14 in this manual for more
information.

Online Loader

The services of the Online Loader are used to obtain the entry point for a command
processor and, if neccessary, to load the command processor module. See Software Load
Process in the CDCNET Systems Programmer’s Reference Manual, Volume 1, for more
information.

System Ancestor

The services of the System Ancestor are used to initiate the execution of command
processor tasks. Command ME is responsible for registering a recovery procedure for
each command processor task. The recovery procedure is executed by the System
Ancestor when the command processor task aborts. The recovery procedure forces the
Command ME to send a response back to the command originator indicating that the
command aborted. See Software Load Process in the CDCNET Systems Programmer’s
Reference Manual, Volume 1, for more information.

Dependent Log ME (LSA)

The services of the Log ME, also known as the Log Support Appplication, are used to
log command responses for transport connections that are no longer connected. These
services are also used to log other unusual events. See the CDCNET Diagnostics
Messages manual for log messages issued by the Command ME.

Statistics Manager
The services of the Statistics Manager are used to open a Command ME statistics SAP

and to report Command ME statistics. See the CDCNET Systems Programmer’s
Reference Manual, Volume 1 for more information.

Status Manager
The services of the Status Manager are used to open a Command ME software status

SAP. See the CDCNET Systems Programmer’s Reference Manual, Volume 1 for more
information.

Revision A Command ME 7-8

Services Provided

Services Provided

This section describes the services provided by
users. Figure 7-3 illustrates all the procedures

the Dependent Command ME to its
used by Command ME and the

command processors, and groups them according to the various functions they perform.
The following pages describe all the procedures illustrated in this figure, except the
response message procedures, which are described in the CDCNET Systems

Programmer’s Reference Manual, Volume 1.

COMMAND ME

COMMAND ME INTERFACE
PROCEDURES

~«——CLP__PROCESS__COMMAND
«——— GET_SOURCE__ADDRESS

Command
Processors

RESPONSE MESSAGE PROCEDURES

] l________l

PARSING SERVICE PROCEDURES

Common Procedures
1. GEN_DATA_FIELD
2. GET__DATA_FIELD
3. GEN_TEMPLATE_ID

Management Data Unit (MDU)
Formatting Procedures

1. FIELD__SIZE

2. MDU_ASCHi

3. MDU_TO_ASCII

Command String Parsing Procedures
1.
2.
3.

Parameter Access Procedures

NOOPWN =

String Conversion Procedures
1.
2,
3.
4.

CLP__SCAN_PARAMETER_LIST(Required
CLP_PARSE_COMMAND
CLP__PARSE_TERMINATE

CLP__GET_PARAM_LIST
CLP__GET_PARAMETER
CLP_GET_SET_COUNT
CLP__GET_VALUE
CLP_GET_VALUE_COUNT
CLP__TEST_PARAMETER
CLP_TEST_RANGE

CLP_CONVERT_INTEGER_TO_STRING
CLP_CONVERT_STRING__TO__INTEGER
CLP_CONVERT_TO_RJSTRING
CLP_TRIMMED_STRING_SIZE

Figure 7-3.

7-10 Network Management Entities and Layer Interfaces

Command ME Procedures

Revision A

Services Provided

The following two parameters are described in detail here because they are common to
many procedures described later in this section:

CLT$STATUS Returns both success and error responses to commands. See table
7-1.

CLT$VALUE Gives information on parameter values as entered by the operator.
See table 7-2.

Table 7-1. Status Information (CLT$STATUS)
Field Content

normal The key field that indicates the completion status of a procedure
(type BOOLEAN). This parameter contains the following values.

TRUE The procedure completed normally.
FALSE The procedure completed abnormally.

response_ id The response identifier. Each command response can be referenced
by its response identifier as listed in the CDCNET Diagnostics
Messages manual. (type MIN_RESPONSE_MESSAGE_ID .. MAX_
RESPONSE..MESSAGE_ID)

condition A pointer to the message buffer which contains the command
response text (type BUF_PTR).

Revision A Command ME 7-11

Services Provided

Table 7-2. Evaluated Expression Value (CLT$VALUE)

Field

Content

descriptor

kind

str

name

The name of the value kind returned (type STRING).

The kind of value returned (type CLCSUNKNOWN_VALUE ..
CLC$CCODE_VALUE of).

CLCSUNKNOWN_VALUE
An unknown value kind.

CLC$STRING_VALUE

The string value. The STR field contains a pointer to the string
record.

CLC$NAME_VALUE
The name. The NAME field contains the name record.

CLC$INTEGER_VALUE
The integer value. The INT field contains the integer record.

CLC$BOOLEAN_VALUE
The boolean value. The BOOL field contains the boolean record.

CLC$CCODE_VALUE

The CCODE value. The CCCODE field contains the character
code value.

Pointer to a string record (OST$STRING). This field is generated
only if the kind field is set to CLC$STRING_VALUE.

Field Content

size Actual string length (OST$STRING_SIZE, 0 through

OSC$MAX_STRING_SIZE).

value String (256 characters).

Name record (CLTSNAME). This field is generated only if the KIND
field is set to CLCSNAME_VALUE.

Field Content

size ° The actual name length (1 through OST$MAX_NAME_
SIZE).

value The name (31 characters).

(Continued)

7.12 Network Management Entities and Layer Interfaces Revision A

Table 7-2.

Services Provided

Evaluated Expression Value (CLT$VALUE) (Continued)

Field

Content

int

bool

ccode

Integer record (CLT$INTEGER). This field is generated only if the
KIND field is set to CLCSINTEGER_VALUE.

Field Content

value Integer value (integer).
radix Radix used (2 through 16).
radix_ specified Indicates whether a radix was specified.

TRUE
Radix specified.

FALSE
Radix omitted.

The boolean record (CLT$BOOLEAN). This field is generated only if
the KIND field is set to CLC$BOOLEAN_VALUE.

Field Content

value A boolean value (boolean).

kind This indicates the keyword used to specify value
(CLT$BOOLEAN _KINDS).

CLC$TRUE_FALSE_BOOLEAN
Value TRUE or FALSE.

CLC$YES_NO_BOOLEAN
Value YES or NO.

CLC$ON_OFF_BOOLEAN
Value ON or OFF.

The character code record (CLT$CCODE). This field is generated
only if the kind field is set to CLC$CCODE_VALUE.

Field Content

value A single octet (0..0FF(16)) value, which represents a
keyboard character code.

kind This indicates how the character code parameter was
entered.

CLC$CCODE_NAME
The character code was entered as a name. Example, STX, BEL.

CLC$CCODE_STRING

The character code was entered as a single character string.
Example, 'A’, 'V

Revision A

(Continued)

Command ME 7-13

Services Provided

Table 7-2. Evaluated Expression Value (CLT$VALUE) (Continued)

Field Content
CLC$CCODE_INTEGER

The character code was entered as a number. Example, 01E(16), 30,

CLC$CCODE_CONTROL

The character code was entered using the " notation to represent the
CTRL key. For example, “A is the code for the CTRL-A character

str The actual name or string entered for the parameter. This is present
only when the KIND field is CLC$CCODE_NAME or
CLC$CCODE_STRING.

The following pages describe the Dependent Command ME procedures and the parsing
service procedures.

7-14 Network Management Entities and Layer Interfaces Revision A

CLP_PROCESS_COMMAND

CLP_PROCESS _COMMAND

This procedure is used for processing commands that are to be executed in the same
system as the command originator. As described earlier, the Dependent Command ME
can receive commands through direct calls from other software modules within its own
system. In other words, this procedure processes commands that are received by the
Dependent Command ME through an interface other than an operator interface.

Comdeck CLXPCM
Format CLP_PROCESS_COMMAND (str, status)

Input str: ost$string
The command string to be processed.

Output status: clt$status
The status record. See table 7-1 for details.

Remarks This procedure accepts a command character string and converts it into the
management data unit syntax. The command is then sent to the Dependent
Command ME through an intertask message. A command response status
variable consisting of a buffer containing the command response data unit,
the command response identifier, and the response status flag is returned.
In this procedure, control is not returned to the user until a response is
returned by the Dependent Command ME. This procedure executes under
the user's task and any invalid intertask messages sent to this task while
waiting for the command response are lost.

Revision A Command ME 7-15

GET_SOURCE_ADDRESS

GET_SOURCE _ADDRESS

This procedure is used by a command processor to get the address of the command
originator from the Dependent Command ME.

Comdeck MEXGSA
Format GET_SOURCE_ADDRESS (task, source)

Input task: task _ptr
The task identifier of a command processor task. If the user supplies a
NIL value for this parameter, the task identifier of the task currently
executing is used.

Output source: generic_sap

The network address of the Independent Command ME which sent the
command. See appendix B for a description of the network address.

7-16 Network Management Entities and Layer Interfaces Revision A

CLP_SCAN_PARAMETER_LIST

CLP_SCAN_PARAMETER _LIST

This procedure is used by all command processors for parsing the commands. It scans
the parameter list for a command under control of a PDT and parses the parameter
list according to the parameter definitions within the specified PDT. It checks to make
sure all parameter names within the parameter list are defined in the PDT and that
each parameter value is valid for its parameter. If it finds an invalid parameter name
or parameter value, it returns an error response in the status variable.

Comdeck CLXSPL
Format CLP_SCAN_PARAMETER_LIST (parameter_list, pdt, pvt, status)

Input parameter_list: ost$string
This parameter specifies the parameter list to be scanned.

pdt: clt$parameter _descriptor_table
The parameter descriptor table.

Output pvt: clt§parameter _value_table
The parameter value table.

status: clt$status
The status record. See table 7-1 for more information on this record.

Revision A Command ME 7-17

CLP_PARSE_COMMAND

CLP_PARSE_COMMAND

This procedure is used by any software which processes SCL formatted commands to
identify a specified command.

Comdeck CLXPCOM

Format CLP_PARSE_COMMAND (command, name_index, name_size, name,
separator, parameter_list, empty _command, status)
Input command: string (*)

The command to be parsed.

Output name_index: ost$string_index
The position within the command string where the command name begins.
This remains undefined if EMPTY_COMMAND parameter (described later
in this section) is TRUE.
name_size: ost$string_size

The number of characters in the command or the size of the command
name. This remains undefined if EMPTY_COMMAND parameter (described
later in this section) is TRUE.

name: clt$name

The name of the command (in uppercase letters) that is returned. This
remains undefined if EMPTY_COMMAND parameter (described later in
this section) is TRUE.

separator: clt$lexical kinds

The separator between the command name and the parameters for the
command. This remains undefined if EMPTY_COMMAND parameter
(described later in this section) is TRUE. Possible values are:

CLC$SPACE_TOKEN
CLC$COMMA _TOKEN
CLC$EOL_TOKEN

parameter _list: ost$string

A list of the command’s parameters. This remains undefined if EMPTY .
COMMAND parameter (described later in this section) is TRUE.

empty _command: boolean

This specifies whether the command is empty; that is, it consists of only
spaces and/or comments.

TRUE Command is empty.
FALSE Command is not empty.

status: clt$status

The status record. See table 7-1 for more information on this record.

7.18 Network Management Entities and Layer Interfaces Revision A

CLP_PARSE_TERMINATE

CLP_PARSE_TERMINATE

This procedure is used by any software component that directly processes SCL
formatted commands. After processing the command, this procedure can be called to
free the memory that was allocated to the parameter value table during the parsing of
the command. A module which directly processes a command must provide a parameter
value table to be used by command string parsing procedures such as the CLP_
SCAN_PARAMETER_LIST.

Comdeck CLXPTRM
Format _ CLP_PARSE_TERMINATE (pvt, status)

Input pvt: clt$parameter _value_table

The parameter value table which contains pointers to all the memory areas
that were allocated during the parsing of the command.

Output status: clt$status
The status record. See table 7-1 for more information on this record.

Revision A Command ME 7-19

CLP_GET_PARAM_LIST

CLP_GET_PARAM_LIST

This procedure returns the entire command parameter list, in its uninterpreted form,
as a string. If no parameters are given, a null string is returned. The parameter list
used is the list scanned by a prior CLP_SCAN_PARAMETER_LIST call.

Comdeck CLXGPL
Format CLP_GET_PARAM_LIST (parameter_list, pvt, status)

Input pvt: clt§parameter_value_table

The parameter value table which was returned by the CLP_SCAN_
PARAMETER_LIST procedure.

Output parameter _list: ost$string
The parameter list record.

status: clt$status
The status record. See table 7-1 for more information on this record.

7.20 Network Management Entities and Layer Interfaces Revision A

CLP_GET_PARAMETER

CLP_GET_PARAMETER

This procedure returns the entire value list for a specified parameter. The parameter
list used is the parameter list scanned by a prior CLP_SCAN_PARAMETER_LIST

call.
Comdeck CLXGPAR
Format CLP_GET_PARAMETER (parameter_name, pvt, value_list, status)

Input parameter _name: string (*)
One of the parameter names for the specified parameter.

pvt: clt$parameter_value_table

The parameter value table which was returned by the CLP_SCAN_
PARAMETER_LIST procedure.

value _list: ost$string
The parameter’s value list record.

status: clt$status
The status record. See table 7-1 for more information on this record.

Revision A Command ME 7-21

CLP_GET_SET_COUNT

CLP_GET_SET_COUNT

This procedure determines the number of value sets supplied for a particular
parameter. If the parameter was not supplied, a value set count of zero is returned. A
value set is a set of values enclosed in parentheses specified for a parameter. The
parameter list used is the parameter list scanned by a prior CLP_SCAN_
PARAMETER_LIST call.

Comdeck CLXGSC

Format CLP_GET_SET_COUNT (parameter_name, pvt, value_set_count,
status)
Input parameter _name: string (*)

One of the parameter names for the specified parameter.

pvt: clt§parameter_value_table

The parameter value table which was returned by the CLP._SCAN_
PARAMETERL_LIST procedure.

Output value_set_count: 0 .. cle$max_value_sets
The number of value sets given for the parameter.

status: clt$status
The status record. See table 7-1 for more information on this record.

7-22 Network Management Entities and Layer Interfaces Revision A

CLP_GET_VALUE

CLP_GET_VALUE

This procedure returns a parameter value that was given, in the parameter list. The
parameter list used is the list scanned by a prior CLP_SCAN_PARAMETER_LIST

call.

Comdeck

Format

Input

Output

Remarks

Revision A

CLXGVAL
CLP_GET_VALUE (parameter_name, pvt, value_set_number,

value_number, low_or_high, value, status)
parameter _name: string (*)
One of the parameter names for the specified parameter.

pvt: clt$parameter _value_table

The parameter value table which was returned by the CLP_SCAN_
PARAMETER_LIST procedure.

value_set_number: 1 .. clc$max_value_sets

The value set number indicating which value set of the PARAMETER_
NAME is being referenced. (The number of value sets for the
PARAMETER_NAME is returned using the CLP_GET_SET_COUNT
procedure.)

value_number: 1 .. clc$max_values_per_set

The value number indicating which value of the VALUE_SET_NUMBER
is being referenced. (The number of values in the VALUE_SET parameter
is returned using the CLP_GET._VALUE_COUNT procedure.)

low_or_high: clt$low_or_high

Indicates whether the upper or lower bound of the range is returned.
CLC$LOW Return the lower bound.
CLC$HIGH Return the upper bound.

value:clt$value
The parameter value. See table 7-2 for more information on this record.

status: clt$status
The status record. See table 7-1 for more information on this record.

If the parameter list of the command did not specify a value for the
parameter specified on the CLP_GET_VALUE call, CLP_GET_VALUE
returns value kind CLCSUNKNOWN_VALUE in the value record
returned.

Command ME 17-23

CLP_GET_VALUE_COUNT

CLP_GET_VALUE_COUNT

This procedure returns the number of values specified in a value set.

Comdeck CLXGVC

Format CLP_GET_VALUE_COUNT (parameter_name, pvi, value _set_

number, value_count, status)
Input parameter _name: string (*)
One of the parameter names for the specified parameter.

pvt: clt$parameter _value_table

The parameter value table which was returned by the CLP_SCAN_
PARAMETER_LIST procedure.

value_set_number: 1 .. clcmax_value_sets

The value set number.

Output value_count: 0 .. clc§max_values_per_set

This specifies the number of values given in the specified value set for the
specified parameter.

status: clt$status
The status record. See table 7-1 for more information on this record.

7-24 Network Management Entities and Layer Interfaces Revision A

CLP_TEST_PARAMETER

CLP _TEST_PARAMETER

This procedure tests whether a parameter list contains a value for a specified
parameter. The parameter list used is the parameter list scanned by a prior CLP_
SCAN_PARAMETER_LIST call.

Comdeck CLXTPAR

Format CLP_TEST_PARAMETER (parameter_name, pvt, parameter _
specified, status)

Input parameter _name: string (*)
One of the parameter names for the specified parameter.

pvt: clt$parameter_value_table

The parameter value table which was returned by the CLP_SCAN_
PARAMETER_LIST procedure.

Output parameter _specified: boolean
Indicates whether the parameter is specified.

TRUE Parameter is specified.
FALSE Parameter is omitted.

status: clt$status
The status record. See table 7-1 for more information on this record.

Revision A Command ME 7-25

CLP_TEST_RANGE

CLP_TEST_RANGE

This procedure determines whether a particular value for a particular parameter was
specified as a range. The parameter list used is the parameter list scanned by a prior
CLP_SCAN_PARAMETER_LIST call.

Comdeck

Format

Input

Output

CLXTRNG

CLP_TEST_RANGE (parameter_name, pvt, value_set_number,
value_number, range_specified, status)

parameter_name: string (*)
One of the parameter names for the specified parameter.

pvt: clt$parameter_value_table

The parameter value table which was returned by the CLP_SCAN_
PARAMETER_LIST procedure.

value_set_number: 1 .. clc$max_value_sets
The value set number.

value_number: 1 .. clc$max_values_per_set
The value number.

range_specified: boolean
This parameter indicates whether the value is a range.

TRUE The value is specified as a range.
FALSE The value is not specified as a range.

status: clt$status
The status record. See table 7-1 for more information on this record.

7.26 Network Management Entities and Layer Interfaces Revision A

CLP_CONVERT_INTEGER_TO_STRING

CLP_CONVERT _INTEGER _TO _STRING

This procedure converts an integer to its string representation in the specified radix.

Comdeck

Format

Input

Output

Remarks

Revision A

CLXCI28

CLP_CONVERT_INTEGER _TO_STRING (int, radix, include_radix_
specifier, str, status)

int: integer
The integer value that is to be converted.

radix: 2 .. 16
The radix in which the integer’s value is to be represented (2 through 16).

include_radix _specifier: boolean

This parameter indicates whether a trailing radix enclosed in parentheses
is included.

TRUE The radix is included.
FALSE The radix is omitted.

str: ost$string
The string record.

status: clt$status
The status record. See table 7-1 for more information on this record.

® If requested, a trailing radix enclosed in parentheses is included in the
string.

¢ If the integer is negative, a minus sign is included as the leftmost
character in the string.

® If the specified radix is greater than 10 and the leftmost digit of the
result is greater than 9, a leading 0 digit is added. For example, if the
integer value is 240 (decimal), the radix is 16, and the allocated string
is three characters, the string representation is OFO0.

Command ME 7-27

CLP_CONVERT_STRING_TO_INTEGER

CLP_CONVERT_STRING_TO _INTEGER

This procedure converts the string representation of an integer to the integer value.
The string representation can include a leading sign and a trailing radix enclosed in
parentheses.

Comdeck CLXCS21
Format CLP_CONVERT_STRING_TO _INTEGER (str, int, status)

Input str: string (*)
The string to be converted.

Output int: clt$integer

This specifies the converted integer value along with the radix in which
the integer was represented.

Field Content

value The integer value (type integer).

radix The representation radix (2 through 16).

radix_ This indicates whether a radix was specified in the string
specified (type boolean).

TRUE The radix was specified.
FALSE The radix was omitted.

status: clt$status
The status record. See table 7-1 for more information on this record.

7.28 Network Management Entities and Layer Interfaces Revision A

CLP_CONVERT_TO_RJSTRING

CLP_CONVERT_TO _RJSTRING

This procedure converts an integer to its right-justified string representation in the
specified radix.

Comdeck

Format

Input

Output

Remarks

Revision A

CLXCIRS

CLP_CONVERT_TO_RJSTRING (int, radix, include_:radix_speciﬁer,
fill _character, str, status)

int: integer

The integer value that is to be converted.

radix: 2 .. 16
The radix in which the integer’s value is to be represented (2 through 16).

include_radix_specifier: boolean
This parameter indicates whether a trailing radix enclosed in parentheses
is included.

TRUE The radix is included.

FALSE The radix is omitted.

fill_ character: char
The character used to fill in the unused portions of the returned string.

str: string (*)
The converted string which is right justified.

status: clt$status
The status record. See table 7-1 for more information on this record.

® If requested, a trailing radix enclosed in parentheses is included in the
string.

® If the integer is negative, a minus sign is included in the string. Its
position within the string depends on the fill character used. If the fill
character is a space, the minus sign is positioned immediately before
the first digit. If the fill character is not a space, the minus sign is the
leftmost character in the string.

® If the specified radix is greater than 10 and the leftmost digit of the
result is greater than 9, a leading 0 digit is added if space for the digit
is available in the allocated string. For example, if the integer value is
240 (decimal), the radix specified is 16, and the string allocated is
three characters, the string representation is OFO.

Command ME 7-29

CLP_TRIMMED_STRING_SIZE

CLP _TRIMMED _STRING _SIZE

This function determines the size of a string after the trailing space characters are
removed.

Comdeck CLXTSS
Format trimmed _string _size:= CLP_TRIMMED_STRING_SIZE (str)

Input " str: string (*)
The string for which the trimmed size is returned.

Output trimmed _string _size: ost$string _size
The variable to which the size of the string is returned.

7.30 Network Management Entities and Layer Interfaces Revision A

Constants and Common Types

Constants and Common Types

This section lists all the constants and type declarations used by the procedures
described in this chapter. Each type or constant is preceded by the name of the
common deck in which it is defined.

Constants

Common Deck CLDPMAX

cics$max_keyword_values = 255
clc$max_parameters = 255
clcsmax_parameter_names = 255
clc$max_parameter_values = 255
clcsmax_values_per_set = 255
clcsmax_value_sets = 255

Common Deck OSDNAME

osc$max_name_size = 31,
osc$null_name = * ;

Common Deck CLDSTAT

oscé$status_parameter_delimiter = CHR (31)

Common Types

Common Deck CLDBOOL

clt$boolean = record
value: boolean,
kind: clt$boolean_kinds,
recend ’

cit$boolean_kinds = (clcs$true_false_boolean, clc$yes_no_boolean,
clc$on_off_boolean)

Common Deck CLDCCOD

clts$ccode = record
value: 0 .. Off(16)
kind: clit$ccode_kinds
str: string(3)

recend

clt$ccode_kinds = (clc$ccode_name, clcsccode_string, cic$ccode_integer,
clcs$ccode_control)

Common Deck CLDPVT

cltshow_parameter_given = (clc$omitted_parameter, clc$defaulted_parameter,
cicsactual_parameter)

Revision A Command ME

7-31

Constants and Common Types

Common Deck CLDINT

clt$integer = record
value: integer,
radix: 2 .. 16,
radix_specified: boolean,
recend

Common deck CLDLEX

clt$iexical_kinds = (clc$unknown_token, clcgspace_token, clicseol_token,
clc$dot_token, clcssemicolon_token, clc$colon_token, clc$iparen_token,
clcgibracket_token, clc$lbrace_token, clcs$rparen_token,
clcsrbracket_token, clc$rbrace_token, cicsuparrow_token,
clcgrslant_token, clcgguery_token, clcscomma_token, clcsellipsis_token,
clcsexp_token, clcsadd_token, clcsub_token, clc$muit_token,
cicsdiv_token, clic$cat_token, clcsgt_token, clcsge_token, ciclt_token,
cics$le_token, clcs$eg_token, clcne_token, clcstring_token,
cic$name_token, clc$integer_token, clc$ccode_token)

Common Deck CLDPMAX

clt$iow_or_high = (cic$low, clcshigh)

Common Deck CLDNAME

cit$name = record
size: ost$name_size,
value: ost$name,
recend

Common Deck CLDPDT

clt$parameter_descriptor = record
required_or_optional: clt$required_or_optional,
min_vatlue_sets: 1 .. clc$max_value_sets,
max_value_sets: 1 .. cic$max_value_sets,
min_values_per_set: 1 .. clc$max_values_per_set,
max_values_per_set: 1 .. clc$max_values_per_set,
value_range_allowed: (cic$value_range_not_allowed,

clcsvalue_range_allowed),

value_kind_specifier: clt$value_kind_specifier,

recend

clt$parameter_descriptor_t ab le = record

names: -array [1 .. *] of clt$parameter_name_descriptor,
parameters: “array [1 .. *] of clt$parameter_descriptor,
recend

clt$parameter_name_descriptor = record
name: osts$name,)
number: 1 .. clc$max_parameters,
recend

7-32 Network Management Entities and Layer Interfaces Revision A

Constants and Common Types

Common Deck CLDPVT

clt$parameter_value_table = record
case built: boolean of
= TRUE =
parameter_list: “string (=),
names: “clt$pvt_names,
parameters: “clt$pvt_parameters,
values_area: “clt$pvt_values_area,
values: “clt$pvt_values,
casend,
recend

Common Deck CLDPVT

clt$pvt_name = clt$parameter_name_descriptor,
cit$pvt_names = array [1 .. *] of clt$pvt_name

clt$pvt_parameter = record
how_given: clt$how_parameter_given,
case value_set_count: 0 .. clc$max_value_sets of
= 1 .. clc$max_value_sets =
first_value_index: 1 .. cic$max_parameter_values,
last_value_index: 1 .. clcs$max_parameter_values,
value_list_index: ost$string_index,
value_list_size: ost$string_size,
name_index: 0 .. clic$max_parameter_names,
casend,
recend

cit$pvt_parameters = array [1 .. *] of clt$pvt_parameter

clt$pvt_value = record
value_set_number: 1 .. clc$max_value_sets,
value_number: 1 .. clics$max_values_per_set,
low_or_high: clt$low_or_high,
value: clitsvalue,

recend

clt$pvt_values = array [1 .. *] of clt$pvt_value

clt$pvt_values_area = SEQ (*)

Common Deck CLDSTAT

cltsstatus = record
normal: boolean,
response_id: min_response_message_id .. max_response_message_id,
condition: buf_ptr, { management data unit syntax }

recend

Revision A

Command ME

7-33

Constants and Common Types

Common Deck CLDVAL

clt$vailue = record
descriptor: string (osc$max_name_size),
case kind: clcsunknown_value .. clc$ccode_value of
= clcsunknown_value =
= cicgstring_value =
str: “ost$string,
= glcghame_value =
name: clt$name,
= clcsinteger_value =
int: cltginteger,
= clcsboolean_value =
bool: clt$boolean,
= clcs$ccode_value =
ccode: clt$ccode,
casend,
recend

Common Deck CLDVLK

cltgvalue_kinds = (clcsunknown_value, cicsname_value, clc$integer_value,
clcsboolean_value, clc$any_value, clcsccode_vaiue)

Common Deck OSDSTRD
osc$max_string_size = 256
osts$string = record
size: ost$string_size,
value: string (oscsmax_string_size),
recend

ostgstring_index = 1 .. osc$max_string_size + 1

ost$string_size = 0 .. osc$max_string_size
oscgmax_stiring_size = 256

Common Deck OSDNAME

ostgname = string (osc$max_name_size)

ost$name_size = 1 .. osc$max_name_size

7.34 Network Management Entities and Layer Interfaces Revision A

Log ME 8

Independent Log ME 8-1
Dependent Log ME 8-2
Log MeSSages . . . o v v v v vt it e e e e e e e e e e e e 8-4
Network Operator Interface 8-5
User Interfaces to Dependent Log ME 8-6
Services Required L e 8-7
Generic Transport o .t e i e e e e e e e e e e e e e 8-7
Directory ME 8-7
Statistics Manager e e 8-7
Services Provided e e e e e e 8-8
LOG_MESSAGE_ENABLED Function 8-9
LOG_REQUEST Procedure e e e e e e e e e 8-10
Constants and Common TYPes ¢« c v et v vttt vt i 8-11
Constants e 8-11

Common TYPES o v v vt et e e e e e e e e 8-11

Log ME | 8

The CDCNET Log Management Entity (ME) is responsible for recording log messages
received from all CDCNET software components. Log messages are used to determine
the performance of the network. These messages are written on a log file that resides
in a host computer system. Any message can be sent as a log message and/or as an
alarm. See chapter 9 for information on Alarm ME.

The Log ME consists of two components:
® Independent Log ME
® Dependent Log ME

Independent Log ME

The Independent Log ME receives log data units from a Dependent Log ME and writes
them on a log file that is stored on the host computer system. At least one DI or a
NOS/VE host in a catenet is required to have an Independent Log ME. The
Independent Log ME resides only in systems with access to permanent storage. Only
Mainframe Device Interfaces (MDI) and Mainframe Terminal Interfaces (MTI) that are
connected to hosts running NOS (Network Operating System) are capable of being
configured with an Independent Log ME. In a NOS environment (see figure 8-1), the
Independent Log ME is implemented by a software component that resides in an
MDI/MTI connected to a mainframe running NOS. In a NOS/VE environment, the
Independent Log ME resides on the host itself (see figure 8-2). The Independent Log
ME forwards the log data units to a host program called the Network Log Server
(NETLS), which is responsible for physically writing the log messages (log data units)
to mass storage.)

This chapter does not further describe the Independent Log ME, because there are no

interfaces to the Independent Log ME that are accessible to an external user, such as
a gateway program.

Revision A Log ME 8-1

Dependent Log ME

Dependent Log ME

The Dependent Log ME generates log data units for its local users. Log data units are
transmitted to one or more Independent Log MEs, to be written to a log file. The
Dependent Log ME and the Dependent Alarm ME are implemented together in a
software component called the Log Support Application.

NOS
HOST
LOG NETLS (NETWO
FILE RK LOG SERVER)
'Y
I
INDEPENDENT
A4 LOG ME \\MD'
/ DEPENDENT \
/ LOG ME \
/, \\
// \\
/ \
/ / /\\
/ / 7 \
/ \
DEPENDENT DEPENDENT
LOG ME TDI LOG ME ND!

TERMINALS

Figure 8-1. Log ME in a NOS Environment

82 Network Management Entities and Layer Interfaces Revision A

Dependent Log ME

NOS/VE
HOST
- INDEPENDENT
LOG ME
f)
/ |
/ | \
{ \
/ \
/ DEPENDENT \
/ LOG ME \\
/ \
/ MDI \
/ \
// L /\\

/7 \
¥ N\
DEPENDENT DEPENDENT

LOG ME oI LOG ME
TERMINALS

NDI

Revision A

Figure 8-2. Log ME in a NOS/VE Environment

Log ME 8-3

Log Messages

Log Messages

Log messages provide valuable network performance information. Software components
in a DI collect information about themselves and this information is used for the
following tasks:

¢ Account for resource usage

e Determine how system resources are being used

® Provide performance and throughput information for site management
e Identify actual and potential software and hardware failures

e Determine if the network is running properly

¢ Identify potential bottlenecks

e Report the current hardware/software configuration

e Provide input for designing future enhancements to CDCNET

If a site needs information to perform the above mentioned tasks, it can, through
configuration commands, have that information generated and reported in the form of
log messages. These log messages are then stored on a log file in the host computer
system for later analysis with a tool called the Network Performance Analyzer (NPA).
For more information on the Network Performance Analyzer, see the CDCNET
Network Performance Analyzer Manual. Logging configuration commands are given in
the CDCNET Network Configuration and Site Administration Guide.

A log message is identified by a log message identifier and is made up of the following
two parts:

® A fixed part
® A variable part

The fixed part of the message is constant and does not change from one instance of the
log message to another and is defined by one or more message templates which reside
in the host computer system. A message template is a string of text characters and
control sequences. The control sequences specify the actions required to combine the
text with the variable part of the message to produce a displayable message.

The variable part of the message is provided by the user who is generating the log
message. The user provides the variable part of the log message along with the
template identifiers that identify the message templates to be used for each message.
The template identifiers and variable part of the message are provided in the
management data unit (MDU) format. The procedure GEN_TEMPLATE_ID is used to
generate MDUs containing the template identifiers and the GEN_DATA_FIELD
procedure is used to generate MDUs containing the variable part. Both these
procedures are described in the CDCNET Systems Programmer’s Reference Manual,
Volume 1.

The Dependent Log ME takes the information provided by the user and adds headers
with the appropriate system information (date, time, system address, and system name).
If the message is selected to be logged, the Dependent Log ME sends the message to

8-4 Network Management Entities and Layer Interfaces Revision A

Network Operator Interface

the Independent Log ME, which writes the message onto a log file. In a NOS
environment, the NETLS helps the Independent Log ME to write the message to a log
file.

The NPA uses the template identifier provided by the user to get the appropriate
message template, and combines it with the variable part provided by the user to make
a complete log message.

Network Operator Interface

The network operator interface, shown in figure 8-3 as the command processor
interface, provides the network operator with the capability to control the logging
environment. Commands to define the logging environment can be placed either in the
configuration file or entered through an operator interface while the network is
running. These commands allow the site to specify which of the CDCNET-defined
messages are to be written to a log file and which messages are to be sent as alarms.

Each site has the capability to define or group together subsets of DIs within the
catenet and have all systems within this subset send their log messages to a common
log file. This subset is referrred to as a log group. Each DI is configured with the
name(s) of the log groups it belongs to, along with the message numbers of the log
messages it is to log. For the initial releases, only one log group called CATENET is
supported. CATENET includes all the DIs in the catenet.

For more information on configuration commands, see the CDCNET Configuration and
Site Administration Guide. Information on the network operator interface is provided in
the CDCNET Network Operations Manual.

Dependent Log ME or the Command
Log Support Application Processors
User Interfaces Log Data Unit
LOG_REQUEST Generation/
LOG:MESSAGE___ Transmission
ENABLED
1
From To
other Software Independent
Components Log ME

Figure 8-3. Log ME Interfaces

Revision A Log ME 8-5

User Interfaces to Dependent Log ME

User Interfaces to Dependent Log ME

As shown in figure 8-3, there are two common interfaces to the Dependent Log ME
which are used by all CDCNET software components:

LOG. This interface allows a user to determine if a specific log message is
MESSAGE _ selected to be logged and/or sent as an alarm. The user provides the
ENABLED log identifier and a boolean flag is returned indicating whether or

not the message is enabled. The value is normally set to TRUE if
the message is enabled or to FALSE if the message is disabled.
However, if memory or buffer space in the system is low, the flag
may be set to FALSE even if the message is enabled. The decision
is based on the state of the memory and buffer space, and the log
message priority. With a FALSE value, the user should generate a
message, thus conserving system resources.

LOG. This interface allows the user to send a message that has been

REQUEST selected to be logged to an Independent Log ME. It is also used to
send messages selected as alarms to an Independent Alarm ME. The
user provides a buffer containing the template identifiers, the
variable parts of the message, and the log identifier. The user does
not know if the message is to be logged and/or sent as an alarm.
The Log Support Application determines where the message is to be
sent, based on operator commands, and forwards it to the
appropriate destination(s).

The CYBIL definitions of these interfaces are given in the Services Provided section,
later in this chapter.

8.6 Network Management Entities and Layer Interfaces Revision A

Services Required

Services Required

For the Dependent Log ME to provide services to its own users it, in turn, depends on
the services of other software components. Brief descriptions of the services of each of
these software components follow.

Generic Transport

Generic Transport services provide the transport connections needed to transmit the log
data units to the appropriate Independent Log ME(s). See chapter 14 in this manual for
details.

Directory ME

Directory ME is used by both the Independent and Dependent Log MEs. Both
Independent and Dependent Log MEs use the Directory ME’s translation services to
locate the address of the local Generic Transport so that they can open a Generic
Transport SAP and communicate with each other. The Independent Log ME also
registers its title with the Directory ME so that the Dependent Log ME can locate its
address. The Dependent Log ME uses the Directory ME’s title translation services to
obtain the Independent Log ME’s address. See chapter 5 in this manual for more
information.

Statistics Manager

The Dependent Log ME uses the services of the Statistics Manager to generate
statistics such as the number of log messages generated from a specific system, the
number of discarded log messages, and so on.

The Dependent Log ME opens a statistics SAP, collects the statistics, and provides a
procedure which is used by the Statistics Manager to report statistics. See the
CDCNET Systems Programmer’s Reference Manual, Volume 1, for more information on
the Statistics Manager.

Revision A Log ME 8-7

Services Provided

Services Provided

This section defines the external services provided by the Dependent Log ME to its
users. It describes the service requests exchanged between the user and the Log ME.
Constants and common types are given at the end of this chapter.

Before generating a log message, the LOG_MESSAGE_ENABLED function is used to
determine if the message has been selected for logging and/or as an alarm for the local
system. If it is selected, the user generates the log message, and the LOG_REQUEST
procedure is used to send the message to be written on a log file and/or delivered to
the network operator as an alarm.

Users include the common deck LSXLOGR in their calling modules. This deck contains

all the externally referenced (XREF) declarations for the Dependent Log/Alarm ME
interfaces. The following pages describe these two interfaces.

8-8 Network Management Entities and Layer Interfaces Revision A

LOG_MESSAGE_ENABLED Function

LOG_MESSAGE _ENABLED Function

The LOG_MESSAGE_ENABLED function is used by all the software components in a
local CDCNET system to determine if a log message is enabled (defined as a log
message and/or an alarm) and is to be generated.

CDCNET configuration and network operation commands define which messages are to
be logged and which messages are to be sent to the network operator as an alarm.

Comdeck

Format

Input

QCutput

Revision A

LSXLOGR

message _enabled: = LOG_MESSAGE_ENABLED (log_message_id,
priority)
log_message_id: log_msg_id _type

A unique 16-bit integer which identifies each log message in a CDCNET
system.

priority: log_ priority
This parameter indicates the priority of the log message and will be
supported in a future release.

log _message _enabled: boolean

This parameter indicates whether or not the message is to be generated. If
the log message is enabled (defined as a log message and/or as an alarm),
this function returns a TRUE value and the user generates the associated
log message and calls the LOG_REQUEST procedure to send the message.

If this function returns a FALSE value, the log message is not enabled and
the user does not generate the log message. However, if memory or buffer
space in the system is low, a FALSE value will be returned even if the
message is enabled. With a FALSE value, the log message is not to be
generated and system resources are conserved. This parameter contains one
of the following values: .

TRUE Message is to be generated.

FALSE Message is not to be generated.

Log ME 8-9

LOG_REQUEST Procedure

LOG_REQUEST Procedure

The LOG_REQUEST procedure is used by all software components in the local
CDCNET system to send a log message to the Log Support Application. CDCNET
network operator commands define which messages are to be logged and which
messages are to be sent to the network operator as alarms. The Log Support
Application (Dependent Log/Alarm ME) determines if the log message is currently
defined as a log message and/or as an alarm, and forwards the message to the
appropriate destination.

Comdeck LSXLOGR
Format LOG_REQUEST (log_message_id, log_message)

Input log _message_id: log_msg_id _type

A unique 16-bit integer which identifies each log message in a CDCNET
system.

log _message: buf_ptr

A pointer to the buffer containing the template identifiers and the variable
parts of the log message in MDU format. Each message is made up of a
fixed text and a variable text. Message templates define the fixed text and
the actions required to combine the text with the variable parts of the
message, thereby producing a displayable message. (The procedure GEN_
TEMPLATE_ID is used to generate MDUs containing the template
identifiers, and the GEN_DATA_FIELD procedure is used to generate
MDUs containing the variable parts. Both these procedures are described
in the CDCNET Systems Programmer’s Reference Manual, Volume 1.)

If the message contains no variable parts, the buffer must not be left
empty; it must contain one or more template identifiers defining the fixed
part of the message.

810 Network Management Entities and Layer Interfaces Revision A

Constants and Common Types

Constants and Common Types

This section lists the constants and common types used in the Log ME’s service
requests. These data types are defined in the common decks CMEECCR and LSDALDS.

Constants

Common deck CMEECCR

0
32999

min_log_message_id
max_log_message_id

Common Types

Common deck CMEECCR

log_msg_1id_type = min_log_message_id ..
max_log_message_id

Common deck LSDALDS

log_priority = (log_critical, log_high, log_medium, log_low)

Revision A Log ME 8-11

Alarm ME 9

Independent Alarm ME e 9-1
Dependent Alarm ME e 9-2
Network Operator Interface 9-4
User Interfaces to Dependent Alarm ME 9-4
Services Required e 9-5
Generic Transportttt e e e 9-5
Directory ME e 9-5
Statistics Manager T 9-5

Services Provided L e e e e e e e e e e e e e e e e e 9-5

Alarm ME | 9

The CDCNET Alarm Management Entity (ME) is responsible for displaying alarms
received from all CDCNET software components. Alarms are basically log messages
that are displayed at the NOS host console (NAM K-Display) or at the operator’s
remote terminal, and/or written to a mass storage file. Any message can be sent as
either a log message and/or as an alarm. Alarms are used to alert the operator to any
problems in the network. This chapter gives a brief overview of the Alarm ME. For
complete information on Log and Alarm MEs, see chapter 8 in this manual.

The Alarm ME consists of two components:
¢ Independent Alarm ME
¢ Dependent Alarm ME

Independent Alarm ME

The Independent Alarm ME resides only in systems with access to mass storage,
because the message templates needed to produce a displayable message reside on a
mass storage device. Only Mainframe Device Interfaces (MDI) and Mainframe Terminal
Interfaces (MTI) that are connected to hosts running NOS (Network Operating System)
are capable of being configured with an Independent Alarm ME. In the NOS/VE
environment (Network Operating System/ Virtual Environment), Independent Alarm ME
resides on the host itself as part of a host program called the Network Operator
Utility (NETOU) (see figure 9-2). At least one CDCNET system in a catenet is
required to have an Independent Alarm ME.

In a NOS environment (see figure 9-1), the Independent Alarm and Independent
Command MEs are implemented together in a software component known as the
Operator Support Application (OSA). OSA resides in an MDI/MTI connected to a
mainframe running NOS. The Independent Alarm ME forwards the alarm data units
the NETOU. NETOU is responsible for combining message templates (which reside on
the host) with the variable information (provided by the software component generating
the message) to form an alarm. The alarm is forwarded to each operator whose domain
includes the system from which the alarm originated.

This chapter does not further describe the Independent Alarm ME, because there are
no program interfaces to the Independent Alarm ME that are accessible to a gateway
program,

Revision A Alarm ME 9-1

Dependent Alarm ME

Dependent Alarm ME

The Dependent Alarm ME generates alarm data units for its local users. Alarm data
units are transmitted to one or more Independent Alarm MEs to be displayed at an
operator’s console. The Dependent Log ME and the Dependent Alarm ME are
implemented together in a software component called the Log Support Application.

NOS
HOST
TEMPLATE NETOU 1 K-DISPLAY CONSOLE OR
FILE | INTERACTIVE TERMINAL
INDEPENDENT MDI
/,4 A_ALARM ME N
/ ¥ DEPENDENT \
/ ALARM ME \
,/ \\
/ \
/ \
/ \
/ I A
// / / \\
£ X\
DEPENDENT DEPENDENT
ALARM ME ALARM ME
TD! NDI
TERMINALS

Figure 9-1. Alarm ME in a NOS Environment

9-2 Network Management Entities and Layer Interfaces Revision A

Dependent Alarm ME

NOS/VE
HOST
TEMPLATE (INDEPENDENT
FILE 8— . ‘NETOU ALARM ME)
\
// A \\
/ DEPENDENT \
/ ALARM ME \
/ \
/ MDI \
/ \
// \\
¥ 3y
DEPENDENT DEPENDENT
ALARM ME ALARM ME
DI ND!
TERMINALS

Revision A

Figure 9-2. Alarm ME in a NOS/VE Environment

Alarm ME 9-3

Network Operator Interface

Network Operator Interface

The network operator interface, shown in figure 9-3 as the command processor
interface, provides the network operator with the capability to control the alarm
environment. Commands to define the alarm environment can be placed either in the
configuration file or entered through an operator interface while the network is
running. These commands allow each site to specify which of the CDCNET-defined
messages are to be written to a log file and which messages are to be sent as alarms.

For more information on configuration commands, see the CDCNET Configuration and
Site Administration Guide. Information on network operator interface is provided in the
CDCNET Network Operations Manual.

Dependent Alarm ME or ‘ Command
the Log Support Application Processors

User Interfaces

LOG_REQUEST
LOG_MESSAGE__

Alarm Data Unit |
Generation/
Transmission

ENABLED
Y
From To
other software independent
components Alarm ME

Figure 9-3. Alarm ME Interfaces

User Interfaces to Dependent Alarm ME

As shown in figure 9-3, there are two common interfaces to the Dependent Alarm and
Log ME which are used by all CDCNET software components. Configuration commands
determine if a message is to be enabled as an alarm and/or log message. Whether it is
an alarm or log message is transparent to the Log and Alarm ME users. See chapter 8
in this manual for details on these interfaces and their CYBIL definitions.

9.4 Network Management Entities and Layer Interfaces Revision A

Services Required

Services Required

For the Dependent Alarm ME to provide services to its own users it, in turn, depends
on the services of other software components. Brief descriptions of the services of each
of these software components follow.

Generic Transport

Generic Transport services provide the transport connections needed to transmit the
alarm data units to the appropriate Independent Alarm ME(s). See chapter 14 in this
manual for details.

Directory ME

Directory ME is used by both the Independent and Dependent Alarm MEs. Both
Independent and Dependent Alarm MEs use the Directory ME’s translation services to
locate the address of the local Generic Transport so that they can open a Generic
Transport SAP and communicate with each other. The Independent Alarm ME also
registers its title with the Directory ME so that the Dependent Alarm ME can locate
its address. The Dependent Alarm ME uses the Directory ME’s title translation
services to obtain the Independent Alarm ME’s address. See chapter 5 in this manual
for more information.

Statistics Manager

The Dependent Alarm ME uses the services of the Statistics Manager to generate
statistics such as the number of alarm messages generated from a specific system, the
number of discarded alarms, and so on.

The Dependent Alarm ME opens a statistics SAP, collects the statistics, and provides a
procedure which is used by the Statistics Manager to report statistics. See the
CDCNET Systems Programmer’s Reference Manual, Volume 1, for more information on
the Statistics Manager.

Services Provided
The external services provided by the Dependent Alarm ME to its users are the same

as those provided by the Dependent Log ME. See Services Provided in chapter 8 of this
manual for a description of these services.

Revision A Alarm ME 9-8

Echo ME | 10

OVEIVIEW . . o v o e v e 10-1
Services Required 10-4
Internet Layer e e 10-4
Error ME e e e e e e e e e 10-4
Services Provided e 10-4
Constants and Common Types o i ittt 10-4
Constants P 10-4

Common Types

Echo ME 10

This chapter discusses:

® An overview of Echo ME
® The services required by Echo ME
e The services provided by Echo ME

© (Constants and common types used in Echo ME service requests

Overview

The Echo Management Entity (ME) is a software component that exists at a dedicated
Internet SAP (3B SAP) in all DIs. See chapter 16 in this manual for more information
on Internet layer.

It is used primarily by Internet users to do the following:

e Verify that a particular system in the catenet is operational and that a data path
to it exists.

® Send a message to a particular system and have it returned.

All interfaces to Echo ME are through the Internet layer. Service requests from its
users are sent through the Internet datagram request procedure with an echo operation
field prefixed to the text portion of the message.

When the Echo ME receives an Internet Protocol Data Unit (3B PDU) from the
Internet layer, it does the following:

® Verifies that the packet type is echo and that the value in the echo operation field
is set to ECHO_REQUEST.

® Changes the value in the operation field to ECHO_REPLY.
¢ Sends the PDU back to the message source.

If an echo request message is checksummed, the echo reply packet is also
checksummed. If a message transfer is successful and Echo ME is able to reply, the
user receives the same datagram that it sent, with the echo operation field toggled to
ECHO_REPLY.

If there are any problems in making the echo request, the Echo ME forwards the PDU
to the Error ME in an error message request. The software component that originated
the echo packet is sent an Internet Error Report indicating the type of error that
occurred. See chapter 11 in this manual for more information on Error ME.

Revision A Echo ME 10-1

Overview

Echo ME’s services can be used in the following ways:

® To verify that a particular DI system exists and is operational, and that a data
path to it can be established. This can be tested by sending an echo request packet
to that system and then waiting for a reply.

e To indicate that if there was a garbled message in an echo reply packet, that the
message was transferred incorrectly somewhere along the path as the Echo ME does
not alter the messages that it sends back.

¢ To determine the number of DI systems on a network solution by broadcasting an
echo request packet on that network solution and then counting the echo replies.

Figure 10-1 illustrates the Echo ME Functions. Figure 10-2 illustrates the functional
relationship of Echo ME with the Internet layer and Error ME.

NOS OR NOS/VE
HOST

]

)J ECHO ME N MDI

/ \
/ \
/ \
// \\
// \\
/ \
/, \\
/ NETWORK #1 -\ , NETWORK #2 /
/ 7N s 7/
4 N
ECHO ME ECHO ME
TDI NDI

TERMINAL

Figure 10-1. Echo ME Functions

10-2 Network Management Entities and Layer Interfaces Revision A

Overview

Internet Layer

Y
3B PDU received by Echo ME

Error
A ME]
Is it a Ech K 2 LNo
s it a Echo packet type? Error request
message
| Yes? received
s Echo operation field set |No from
to ECHO__REQUEST users
g Yes? l

3B PDU is returned to source Is it a checksum error? Yes | Lo

with echo operation field set Is there an error on IER? Mé’
to ECHO_REPLY Is the message multicast?

y No

IER sent back to
message source

Figure 10-2. Echo, Error, and Internet Layer Relationship

Revision A Echo ME 10-3

Services Required

Services Required
For the Echo ME to provide services to its own users it, in turn, depends on the

services of other software components. Brief descriptions of each of these software
components follow. '

Internet Layer
The Echo ME uses the services of the Internet layer to deliver the echo packet and

return it to its source. See chapter 16 in this manual for information on the Internet
layer interfaces.

Error ME

Echo ME uses the services of Error ME when there are errors in an echo request
packet it has received.

Services Provided

The Echo ME services are accessed through the Internet Layer. The user sends an
ECHO_REQUEST packet to the dedicated Echo ME SAP. See chapter 16 in this
manual for details.

Constants and Common Types

This section lists the constants and common types used in the Echo ME service
requests. These data types are defined in the Internet layer’s common decks. See
Constants and Common Types in chapter 16 for complete information.

Constants
echo_me_sapid = 2
jer_not_echo_packet = 1001(16)

jer_not_echo_req = 1002(16)

xerox_echo_packet = 2

Common Types

echo_operation = (echo_null, echo_request, echo_repl y)

10-4 Network Management Entities and Layer Interfaces Revision A

Error ME 11

OVEIVIEW o ot e e e e e e e e e e e e e e e e e e 11-1
Services Required e 11-4
Internet Layer e e 11-4
Log ME e 11-4
Services Provided e 11-5
MSG_TO_ERRORME e st e e 11-6
Constants and Common Types e 11-7
Constants e e e e e e e e e e e 11-7

Common Types i ittt e e 11-7

Error ME 11

This chapter discusses:

® An overview of the Error Management Entity (ME)
¢ The services required by the Error ME

® The services provided by the Error ME

¢ Constants and common types used in Error ME service requests

Overview

The Error ME is a software component that exists in all DIs and NOS/VE hosts. It is
provided to help its users report errors that have been detected. The Error ME services
are primarily used by the Internet layer and its users.

Error ME creates Internet Error Reports (IERs) and sends them to the software
component that initiated the message in error. In some cases, Error ME logs the IERs
to a log file. The IER is an Internet Protocol Data Unit (3B PDU). The standard 3B
header is followed by error data (ERROR_ME_DATA) and the first 42 bytes of the 3B
PDU which caused the error.

The Error ME receives 3B PDUs that are in error from its users (primarily the
Internet layer), through an intertask message interface. The task ID of the Error ME
is globally known. The 3B PDUs are sent with an error number, error parameter, and
the 3B SAP ID of the software component that detected the error. When Error ME
receives a 3B PDU, it builds an IER and sends the IER back to the originator of the
message. The address of the originator is contained in the 3B PDU that was sent to
the Error ME. For more information on the format of the 3B PDU, see the CDCNET
Systems Programmer’s Reference Manual, Volume 3.

Figure 11-1 shows Error ME in a NOS environment. Figure 11-2 shows Error ME in a
NOS/VE environment.

Revision A Error ME 11-1

Overview

11-2 Network Management Entities and Layer Interfaces

NOS
HOST
LOG
FILES 8— NETLS {NETWORK LOG SERVER)
4 ERROR ME
" INTERNET «-DETECTS ERRORS
MDI
; NETWORK #1 l / , NETWORK #2 /
a 7 /*r 7
4 ERROR ME ERROR ME 4
DG~ INTERNET INTERNET _'_|=-DCTECTS
TDI ND!
TERMINAL
Figure 11-1. Error ME in a NOS Environment
L]
Revision A

Overview

LOG
FILES

NOS/VE
HOST

ERROR ME

INTERNET

)

ERROR ME

INTERNET

+—~DETECTS ERRORS

MDI

., NETWORK #1 |

/

/o [7
ERROR _ME ERROR ME }
perects DETECTS
ERRORS —™] INTERNET INTERNET " |=pocdns
™I NDI
TERMINAL

// /__NETWORK #2

Figure 11-2. Error ME in a NOS/VE Environment

Following are the instances in which the IER is written to a log file.

Checksum errors

Multicast messages

IER errors

Revision A

When a checksum error occurs, the IERs are logged because the
integrity of the Internet header is in doubt and the message
source address in the header may be incorrect.

When an error occurs on a multicast message, the IERs are
logged because one multicast may result in several data

indications.

When the source of the IER is Error ME itself, errors are
logged instead of being sent to the message source.

Error ME 11-3

Services Required

Services Required

For the Error ME to provide services to its own users it, in turn, depends on the
services of the other software components. Brief descriptions of the services of each of
these software components follow.

Internet Layer
The Error ME uses the services of the Internet layer to send the IERs back to the

message source. See chapter 16 in this manual for more information on the Internet
layer.

Log ME

The services of the Log ME are used to log certain IERs that cannot be returned to
the message source. See chapter 8 in this manual for more information on the Log ME.

11-4 Network Management Entities and Layer Interfaces Revision A

Services Provided

Services Provided

This section describes the external services provided by the Error ME to its users. It
describes the service requests exchanged between the Error ME and its users.

As mentioned earlier, Error ME services are used by the Internet layer and its users.
Service requests to Error ME from these users are sent through an intertask message
(ITM) called MSG_TO_ERRORME. The task identifier of the Error ME is globally
known. Following is the Error ME task identifier:

errorme_taskid: (XREF) task_ptr;

The Error ME receives the MSG_TO_ERRORME ITM with the error code, error
parameter, and the 3B PDU in error. The Error ME then generates an IER and sends
it back to the originator of the message, using Internet layer’s services. The address of
the software component that generated the bad PDU is determined from the 3B PDU
header.

The IER contains at least 42 bytes of the 3B PDU that caused the error. If the error
is a checksum error, an IER error, or the message is multicast, the IER is logged into
a log file.

Following is the description of the ITM sent by Error ME users. See chapter 16 in this
manual for details on Internet layer interfaces.

Revision A Error ME 11-§

MSG_TO_ERRORME

'MSG_TO_ERRORME
This ITM allows users to request Error ME to generate IERs.
Comdeck B3SDMEME

Format MSG_TO_ERRORME
workcode: 0 .. Offff(16)
multicast: boolean
error _number: 0 .. Offff(16)
error_parameter: 0 .. Offff(16)
pdu_3b: buf_ptr

Input The user sets up the following fields as input in the MSG_TO_ERRORME
record:

workcode: 0 .. Offff(16)

The ITM workcode. The following is the only valid workcode currently
defined:

ERR_ME_INTERNET_ERROR
Any other value specified in this field will result in an error.

multicast: boolean
This field contains the following values:

TRUE This is a multicast message.
FALSE This is not a multicast message.

error _number: 0 .. Offff(16)

This field identifies the type of error. These numbers are assigned by
the Internet layer. A complete list of currently defined error numbers is
given under Constants and Common Types in chapter 16.

error _parameter: 0 .. Offff (16)

This field is used to further qualify an error number. It is used for
certain kinds of errors. If a specific error parameter does not exist,
then this field should be set to zero.

pdu_3b: buf_ptr
The pointer to the 3B PDU that was in error.

11-6 Network Management Entities and Layer Interfaces Revision A

Constants and Common Types

Constants and Common Types

This section lists the constants and common types used in the Error ME service
requests. These data types are defined in the Internet layer’s common decks. See
Constants and Common Types in chapter 16 for complete information.

Constants

error_me_sapid = 3
ier3bpdu_size = 42

xerox_error_packet = 3
Common Types

error_me_data = record
error_number: internet_error_codes,
error_parameter: 0 .. Offff(16),
recend

Revision A Error ME 11-7

Clock ME

Independent Clock ME
Dependent Clock ME

...................................

....................................

Clock ME 12

This chapter gives an overview of the Clock ME.

Each CDCNET DI has a real-time clock and calendar on its main processor board. The
Clock ME is responsible for managing and synchronizing the clocks in the DIs with the
network. Clocks in the DI need to be synchronized because dates and time are
important factors in the operation of the network.

Dates and time are reported by each CDCNET system in command responses, in log
messages, and in alarms. In addition, some software components use a time stamp field
in their protocol data units (PDU). For the time stamps to be meaningful across
systems, the clocks have to be synchronized to the same time base.

There is one and only one master clock in every catenet. This master clock is defined
through configuration commands and is used to synchronize all the clocks in the
catenet.

The Clock ME is divided into the following two software components:
® Independent Clock ME
® Dependent Clock ME

Neither the Independent nor the Dependent Clock ME has external interfaces that a
user, such as a gateway program, can use. Therefore, detailed information on this
software component will not be provided in this manual. See the CDCNET Operations
Manual for more information on the network commands used to manage the DI clocks.

Independent Clock ME

The Independent Clock ME contains the master clock and is responsible for
synchronizing the clocks in all the systems within the catenet. The Independent Clock
ME can reside in any DI or NOS/VE host. In a NOS environment, a site can identify,
through configuration commands, which DI will be responsible for synchronizing the
network’s clocks. In a NOS/VE environment, the START_UP file identifies the host
that is responsible for synchronizing the network’s clocks. (See NOS/VE Interface
Manual for more information on the START_UP file.) The Independent Clock ME
responds to requests from the Dependent Clock MEs by providing the date and time
from the master clock.

Revision A Clock ME 12-1

Dependent Clock ME

Dependent Clock ME

The Dependent Clock ME resides in every DI and is responsible for setting its system
clock with the date and time provided by the Independent Clock ME.

When a DI is reset or when a network operator issues an appropriate CDCNET
network command to ensure that all clocks in the network are synchronized, the
Dependent Clock ME always requests the current date and time from the Independent
Clock ME. The Independent Clock ME responds by transmitting an updated time to the
Dependent Clock ME and the Dependent Clock ME adjusts the DI's real-time clock and

calendar accordingly.

Figures 12-1 and 12-2 show the interrelationship between Independent and Dependent

Clock MEs in NOS and NOS/VE environments respectively.

NOS
HOST
DEPENDENT
A cLock ME MOI
,I
7/
/
/
/
7/
/
I/
/ ,_ NETWORK #1 / ; ___NETWORK #2
/ 7/ 7
I

INDEPENDENT DEPENDENT

A CLOCK ME CLOCK ME

Y DEPENDENT NDI

CLOCK ME TDI
Figure 12-1. Clock ME in a NOS Environment

12-2 Network Management Entities and Layer Interfaces

Revision A

Dependent Clock ME

NOS/VE
HOST

INDEPENDENT

CLOCK ME

DEPENDENT
CLOCK ME

/
/ NETWORK #1

/

/
4

DEPENDENT
CLOCK ME

TDI

\

\

A NETWORK #2
7 \ /L

N
DEPENDENT
CLOCK ME
MD!

Revision A

Figure 12-2. Clock ME in a NOS/VE Environment

Clock ME 12-3

©O0

(Continued)
0S| Model CDNA
LAYER NAME LAYER NAME
7 Application Layer
7
& CDNA Higher Layers
6
6 Presentation Layer
5 Session Layer 5 ‘Session Layer

Transport Layer
4 Transport Layer 4 ® Generic Transport
* Xerox Transport

38 Internet Layer
3 Network Layer -
3A ‘Intranet Layer
Data Link Layer
2 Data Link Layer 2 :g‘s%' 3338';
» HOLC SSR
1 Physical Layer 1 Physical Layer

Note: Shaded areas indicate layers
described in this manual.

OSI and CDNA Layers

(o N

Network Layer Interfaces

© QO

Part III describes the CDCNET layer software. The layer software provides the
functions needed to support communication between computer systems, terminals,
applications, and end users connected to CDCNET. This software is based on the
Control Data Network Architecture (CDNA). The following layers are described in this
manual and shown in the figure on the other side of this divider.

Session layer
(Layer 5)

Transport layer
(Layer 4)

K*\

S
Network layer
(Layer 3)

N
Data Link layer
(Layer 2)

Ve ~

RN

This layer enables systems in the network to
maintain an orderly dialogue.

This layer matches the OSI model layer 4.
Together, the following two software components assure
end-to-end, transparent data transfer between two users.

® Generic Transport layer

® Xerox Transport layer

CDNA divides the OSI's layer 3 into two sublayers:
® Internet layer (3B)

® Intranet layer (3A)

The Internet layer is responsible for relaying data from its
source to its destination regardless of the number of network
solutions between them.

The Intranet layer is responsible for routing and relaying
information within a specific network.

This layer ensures error-free transfer of data. It is
identical to OSI model layer 2, and is composed of the
following three software components:

® Mainframe Channel Interface (MCI) Stream Service
Routines (SSR)

® Ethernet Channel Interface (ESCI) SSR
® High-Speed Data Link Channel (HDLC) SSR

(Continued on other side)

Session Layer 13

OVEIVIEW . . o o v v e i e e e e e e e e e e e e e e e e e e e 13-1
Services Required 13-3
Directory ME e 13-3
Transport Interface 13-3
Dependent Log ME 13-3
Statistics Manager o it e e e e e e e e e e e 13-3
Executive Interface e e e 13-3
Services Provided e e e e e 13-4
Layer Management Services 13-4
SL_LAYER_MANAGEMENT Procedure 13-4
Layer Management Request Record 13-5
Layer Management Service Requests 13-6
SL_OPEN _SAP e e e e e 13-7
SL_CLOSE_SAP it e e e e e e e 13-8
SL_CALL_REQUEST e e e 13-9
Connection Management Serviceso oL 13-10
SL_CONNECTION_MANAGEMENT Procedure 13-10
Connection Management Request Record 13-10
Connection Management Service Requests 13-12
SL_CALL_RESPONSE i ittt e e e e e e e e 13-13
SL_CLEAR_REQUEST e 13-14
SL_DATA_REQUEST it 13-16
SL_INTERRUPT_REQUEST 13-17
SL_SYNCH_REQUEST it ittt 13-18
SL_SYNCH_RESPONSE ittt e e e e 13-19
SL_FLOW_CONTROL_REQUEST 13-20
User Layer Management Services 13-21
SL_USER_LAYER_MGMT Procedure 13-21
User Layer Management Indication Record 13-21
User Layer Management Requests 13-22
SL_SAP_CLOSED i e e e e e e 13-23
SL_CALL_INDICATION ottt e et et e e e e 13-24
User Connection Management Services 13-25
SL_USER_CONNECTION_MGMT Procedure 13-25
User Connection Management Indication Record 13-25
User Connection Management Indications 13-27
SL_CALL_CONFIRM ittt i e e e 13-28
SL_CLEAR_INDICATION it it e e e e 13-29
SL_DATA_INDICATION e 13-30
SL_INTERRUPT_INDICATION e 13-31
SL_SYNCH_INDICATION e e e e e e e e e 13-32
SL_SYNCH_CONFIRMttt 13-33
SL_FLOW_CONTROL_INDICATION 13-34
SL_EXPEDITED_FLOW_CONTROL_INDIC 13-35
Constants and Common Types i i ittt v i et e 13-36
Constants o e e e e e e e e e e e e e e e e e 13-36

Common TYPes v ittt e e e e e 13-37

Session Layer 13

This chapter discusses:

® An overview of the session layer (layer 5).
® The services required by the Session layer.
® The services provided by the Session layer.

e (Constants and common types used in the Session layer’s service requests.

Overview

The Session layer is a higher-layer software component that provides the means for
applications such as gateway programs and terminal interface programs (TIPs) to
organize and synchronize their dialogue and manage their data exchange. This ensures
that users on one system are able to communicate with users on another system. The
Session Layer does the following:

e Supports synchronization of connections. This allows its users to control the
discarding of either transmit or receive data or both.

e Supports flow control which is implemented by Xerox Transport. The Session layer
directly maps its own flow control service to Generic Transport’s flow control
service. See chapters 14 and 15 in this manual for more information.

A session connection is a virtual communication channel that temporarily connects two
users so that they can exchange data. To implement the transfer of data between two
users, the session connection is mapped into and uses a transport connection. The
session connection is created when the user opens a Session layer service access point
(SAP) and requests a connection. The user that initiated the connection designates the
destination through a transport address.

The types of services provided by the Session layer are:
® Layer management services.

¢ Connection management services.

& User layer management services.

® User connection management services.

Layer management services and connection management services (Session layer
services) are available to applications that reside in the higher layers. These
applications may include gateway programs and TIPs. The Session layer could reside in
a Mainframe Device Interface (MDI), a Mainframe Terminal Interface (MTI), a Network
Device Interface (NDI), or a Terminal Device Interface (TDI).

Revision A Session Layer 13-1

Overview

Session layer services are provided by two procedure calls. One procedure call is used
for layer management services and the other for connection management services. Each
of these procedures is called with one parameter. The parameter is a variant record
which contains a workcode and parameters which are dependent on this workcode. The
workcode represents the service being requested or the response to an indication sent
out earlier by the Session layer. The parameters can be either input or output
parameters. A return status code parameter conveys the success or failure of the
request being processed.

The layer management procedure is an externally referenced (XREF) procedure. The
connection management procedure’s entry point is returned to the user after the
Session layer SAP is opened. See Services Provided, later in this chapter, for details.

User layer management services and user, connection management services
(user-provided services) are also provided by two procedure calls that are called by the
Session layer to send indications or confirmations.

Each of these procedures is also called with one parameter -- a variant record which
contains a workcode and parameters that are workcode-dependent. The workcode
represents the service indications received from the Session layer or confirmations of
processed requests. The parameters can be either input or output parameters.

The user initiates communication with the Session layer. This is done by calling the
layer management procedure with an SL_OPEN_SAP request, and establishing a
connection. The Session layer returns the entry point address of the connection
management procedure which the user calls to regulate the dialogue with its peer.
Figure 13-1 illustrates the functional relationship between the Session layer and its
user.

SL__USER__ SL__USER_CONNECTION__
LAYER__MANAGEMENT MANAGEMENT
requests indications requests indications
1 | Y |
SL__CONNECTION__
SL__LAYER__MANAGMENT MANAGEMENT
Generic Transport Layer

Figure 13-1. Session Layer Functional Relationship

13-2 Network Management Entities and Layer Interfaces Revision A

‘Services Required

Services Required

For the Session layer to provide services to its own users it, in turn, depends on the
services of other software components. Brief descriptions of the services of each of these
software components follow.

Directory ME

The Directory ME’s translation, and wait service is used by the Session layer to
translate Generic Transports title to obtain the Generic open SAP entry point address.
See chapter 5 in this manual for details.

Transport Interface

Multiple Generic Transport SAPs are opened and used by the Session layer to provide
reliable and sequenced data transfer for all its users. One Generic Transport SAP is
opened for each Session layer SAP opened by a user. Chapter 14 in this manual
provides the details.

Dependent Log ME

The Dependent Log ME (Log Support Application) is used to log abnormal Session
layer events. See chapters 8 and 9 in this manual for details.

Statistics Manager

The CDCNET Statistics Manager collects and reports statistics. The following Session
layer statistics are reported:

® The number of PDUs and characters received from the Transport layer.
® The number of PDUs and characters received from the Session layer user.

® The number of PDUs and characters transmitted by the peer or remote entity for
each SAP.

See the CDCNET Systems Programmer’s Reference Manual, Volume 1, for more
information on statistics management.

Executive Interface

The Session layer uses well-defined interfaces to the Executive. These interfaces are
described in the CDCNET Systems Programmer’s Reference Manual, Volume 1.

Revision A Session Layer 13-3

Services Provided

Services Provided

This section describes the external services provided by the Session layer to its users.
It describes the major data structures used and the service requests exchanged between
the Session layer and its users.

Layer Management Services

Layer management services perform the preliminary tasks of opening and closing a
Session layer SAP and establishing a connection.

SL_LAYER_MANAGEMENT Procedure

Users interface with the Session layer through direct calls to the SL_LAYER_
MANAGEMENT procedure. The calls are made with a single parameter which points
to a variant record that contains both a workcode and parameters which are dependent
on this workcode. Session layer users include the common deck SLXSESS in their
calling modules. The common deck SLXSESS contains the following procedure
declaration:

PROCEDURE [XREF] s1_layer_management (
VAR request: sl_layer_mgmt_request);

The common deck SLXSESS contains a call to common deck SLDLCMD. SLDLCMD
contains the layer management record, the connection management procedure, the
user’s layer management and connection management procedures, and all the type
definitions.

13-4 Network Management Entities and Layer Interfaces Revision A

Layer Management Services

Layer Management Request Record

The layer management request is the main data structure used by Session layer users
to open or close a Session layer SAP and to establish a connection.

This data structure is a variant record defined with fields to support both input and
output parameters. The workcode, service SAP identifier, and status fields are common
and are used in all layer management requests. A value specified in the workcode field
determines the other fields or service requests that are to be used in the layer
management request.

Following is a CYBIL description of the layer management request record.

TYPE

s1_layer_mgmt_request = record
workcode: sl_layer_mgmt_codes,
service_sapid: gt_sap,
status: sl_return_status,
case sl_layer_mgmt_codes of

= sl_open_sap =
open_sap@: record
user_sapid: “cell,
user_layer_mgmt_if: sl_user_layer_mgmt_call,
user_connection_mgmt_if: sl_user_connection_mgmt_call,
sl_connection_mgmt_if: sl_connection_management_call,
recend,

sl_close_sap = {No parameters

s

si_call_request =
call_request@: record

user_cepid: “cell,
service_cepid: “cell,
destination_address: gt_sap,
credit_window: 1 .. sl_max_credit,
call_block: buf_ptr,

recend,

casend,

recend;

Revision A Session Layer 13-5

Layer Management Services

Following are the common fields defined in the static portion of the layer management
request record:

workcode: sl_layer_mgmt_codes
This field must contain one of the following values:

SL_OPEN_SAP
SL_CLOSE.__SAP
SL_CALL_REQUEST

The user must supply one of these values to specify a service request when making a
layer management request. Details on these service requests are given later in this
section.

service_sapid: gt_sap

This is the Session layer’s SAP identifier. This parameter is returned to the user by
the Session layer as an output parameter in the SL_OPEN_SAP request. The user
specifies this identifier when making a CLOSE_SAP or a CALL_REQUEST
request.

status: sl_return_status

This is the status indication of a processed request returned by the Session layer.
Return codes are listed with each service request, later in this chapter. A complete
list of status messages with explanations is also given in Constants and Common
Types, later in this chapter.

Layer Management Service Requests

The following pages describe the various service requests offered to a Session layer
user. The user requests a service by specifying an appropriate value in the workcode
field of the layer management request record. The common fields described earlier are
listed again in the following descriptions of the service requests. The explanation of
each common field is not repeated unless there is some unique information for that
field in a particular service request.

13-6 Network Management Entities and Layer Interfaces Revision A

SL_OPEN_SAP

SL_OPEN_SAP

This request does the following:

e Allows the user to identify itself to the Session layer and to get the address of the
Session layer’s connection management procedure.

® QCets the addresses of the user’s layer management and connection management
procedures. These procedures are used by the Session layer to send indications and
confirmations to the user’s requests.

A value of SL_OPEN_SAP in the workcode field of the layer management request
record initiates this request.

Input The user sets up the following fields as input in the layer management
request record.
workcode: sl_layer _mgmt_codes

This field must contain the following value:
SL_OPEN_SAP

user_sapid: “cell
The user’s SAP identifier.

user_layer _mgmt_if: sl_user_layer_mgmt_call

This is the address of the user’s layer management interface. It is used
by the Session layer to send indications and confirmations to layer
management requests.

user_connection _mgmt_if: sl_user_connection _mgmt_call

This is the address of the user’s connection management interface. It is
used by the Session layer to send indications and confirmations to
connection management requests.

Output The Session layer returns the following fields as output in the layer
management request record:

service_sapid: gt_sap

sl_connection_mgmt_if: sl_connection _management_call

This is the address of the Session layer’s connection management
interface. The user sends all connection management requests and
responses to it.

status: sl_return_status

This is the status indication for the processed request. Following are
the status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

sl_no_errors
sl_open_sap_error
si_unknown_request _workcode
si_unable_to_initialize

Revision A Session Layer 13-7

SL_CLOSE_SAP

SL_CLOSE _SAP

This request allows the user to close a currently open Session layer SAP. All
established connections associated with this SAP are terminated without notifying the
user.

A value of SL_CLOSE_SAP in the workcode field of the layer management request
record initiates this request.

Input The user sets up the following fields as input in the layer management
request record:

workcode: sl_layer _mgmt_codes
This field must contain the following value:

SL_CLOSE_SAP
service _sapid: gt_sap
The Session layer’s SAP identifier that is being closed.

Output The user sets up the following field as output in the layer management
request record:
status: sl_return_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

si_no_errors
s1_invalid_service_sapid

13-8 Network Management Entities and Layer Interfaces Revision A

SL_CALL_REQUEST

SL_CALL_REQUEST

This request allows the Session layer user to:
® Establish a connection with a peer Session layer user.
® Specify or negotiate the manner and content of the established connection.

A value of SL_CALL_REQUEST in the workcode field of the layer management
request record initiates this request.

Input The user sets up the following fields as input in the layer management
request record:
workcode: sl_layer_mgmt_codes
This field must contain the following value:

SL_CALL_REQUEST
service_sapid: gt_sap

user _cepid: “cell
The user’s CEPID.

destination _address: gt_sap
The network address of the peer.

credit_window: 1.. sl_max_credit

The number of received Generic Transport credits. The allowed range is
1 through 8. See chapter 14 in this manual for details.

call _block: buf_ptr
A pointer to a buffer chain. This buffer chain contains accounting,
validation, and user data. The first two fields of the call block are

length fields for the accounting and validation data records. Each
length field is 16 bits long. The maximum user data size is 512 bytes.

Output The user sets up the following fields as output in the layer management
request record.

service _cepid: “cell

status: sl_return_status
This is the status indication for the processed request. Following are

status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

'si_no_errors
s1_invalid_service_sapid
s1_invalid_data_size
sl_transport_rejected_connect

CAUTION

The user should not send a CALL_BLOCK buffer that has multiple users
to the Session layer.

Revision A Session Layer 13-9

Connection Management Services

Connection Management Services

Connection management services manage the activity on connections. Connection
management services include:

® Monitoring the exchange of both normal and expedited data.
® Synchronizing and terminating Session layer connections.

¢ Handling flow control.

SL_CONNECTION _MANAGEMENT Procedure

Session layer connection management requests are made by calling the SL_
CONNECTION_MANAGEMENT procedure. The address of this procedure is passed to
the user as an output parameter in an SL_OPEN_SAP request. The connection
management request passed in the procedural call is defined below:

TYPE
s1_connect ion_management_call = “procedure (
VAR request: si_connection_mgmt _request);

Connection Management Request Record

The connection management request record is the data structure used by Session layer
users to manage their data exchange. This data structure is a variant record with
fields to support both input and output parameters. The workcode, service CEPID, and
status fields are common and are used in all connection management requests. A value
specified in the workcode field determines other fields or service requests that are to
be used in the connection management request.

13-10 Network Management Entities and Layer Interfaces Revision A

Connection Management Services

Following is a CYBIL description of the connection management request record.

TYPE

s1_connect ion_mgmt_request = record
workcode: sl_connection_mgmt_codes,
service_cepid: “cell,
status: sl_return_status,
case sl_connection_mgmt_codes of

= sl_call_response =
cali_response@: record
credit_window: 1 .. sl_max_credit,
call_block: buf_ptr,
recend,

= sl_clear_request =
clear_requeste: record
clear_block: buf_ptr,
session_statistics: buf_ptr,
recend,

= sl_data_request =
data_request@®: record
q_bit: boolean,
m_bit: boolean,
user_data: buf_ptr,
recend,

= si_interrupt_request =
interrupt_request®: record
data: buf_ptr,
recend,

= sl_synch_request =
synch_requeste: record
send_receive_indicator: discard_indicator_type,
data: buf_ptr,
recend,

sl_synch_response = {No parameters

°

s1_flow_control_request =
flow_control_reguest®: record
status: sl_flow_control_status,
recend,
casend,
recend;

Revision A

Session Layer 13-11

Connection Management Services

Following are the common fields defined in the static portion of the connection
management request record:

workcode: sl_connection_mgmt_codes
This field must contain one of the following values:

SL_CALL_RESPONSE
SL_CLEAR_REQUEST
SL_DATA_REQUEST
SL_INTERRUPT_REQUEST
SL_SYNCH_REQUEST
SL_SYNCH_RESPONSE
SL_FLOW_CONTROL_REQUEST

The user must supply one of these values to specify a service request when making a
connection management request. Details on these service requests are given later in
this section.

service _cepid: “cell
The Session layer’s CEPID.

status: sl_return_status

This is the status indication of a processed request returned by the Session layer.
Return codes are listed with each service request, later in this chapter. A complete
list of status messages with explanations is also given in Constants and Common
Types, later in this chapter.

Connection Management Service Requests

The following pages describe the various service requests offered to a Session layer
user. The user requests a service by specifying an appropriate value in the workcode
field of the connection management request record. The common fields described earlier
are listed again in the following descriptions of the service requests. The explanation to
each common field is not repeated unless there is some unique information for that
field in a particular service request.

13-12 Network Management Entities and Layer Interfaces Revision A

SL_CALL_RESPONSE

SL_CALL_RESPONSE

This request allows the user to notify the Session layer that it accepts the connection
request sent out by a peer entity.

A value of SL_CALL_RESPONSE in the workcode field of the connection management
request record initiates this request.

Input The user sets up the following fields as input in the connection
management request record:
workcode: sl_connection_mgmt_codes
This field must contain the following value:

SL_CALL_RESPONSE

service_cepid: “cell

credit_window: 1 .. sl_max_credit

The number of received Generic Transport credits. The allowed range is
1 through 8. See chapter 14 in this manual for explanations.

call_block: buf_ptr

A pointer to a buffer chain. This buffer chain contains accounting,
validation, and user data. The first two fields of the call block are
length fields for the accounting and validation data records. Each
length field is 16 bits long. The maximum user data size is 512 bytes.

Output The Session layer returns the following field as output in the connection
management request record:

status: sl_return_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

sl_invalid_data_size
si_no_errors
sl_invalid_for_state
si_invalid_service_cepid

Revision A Session Layer 13-13

SL_CLEAR_REQUEST

SL_CLEAR_REQUEST

This request enables the user to do one of the following:

® Refuse a connection that is being initiated by a peer.

e Terminate a previously established Session layer connection.

The Session layer returns to its user the statistics that it collected for that connection.
Statistics include:

e Connect time.
® Number of characters sent and received.
e Number of blocks sent and received.

A value of SL_CLEAR_REQUEST in the workcode field of the connection management
request record initiates this request.

Input The user sets up the following fields as input in the connection
management request record: ’
workcode: sl_connecﬁo;_mgmt_codes
This field must contain the following value:

SL_CLEAR_REQUEST
service_cepid: “cell

clear _block: buf_ptr

A pointer to a buffer chain. This buffer chain contains 0 through 512
bytes of user-dependent clearing information.

Output The Session layer returns the following fields as output in the connection
management request record:

session _statistics: buf_ptr

A pointer to a buffer chain. This buffer chain contains statistics that
the Session layer collected for that particular connection. Statistics
include connect time, number of characters sent and received, and
number of blocks sent and received.

status: sl_return_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

sl_invalid_data_size
sl_no_errors
si_invalid_for_state
sil_invalid_service_cepid

13-14 Network Management Entities and Layer Interfaces Revision A

Remarks

Revision A

SL_CLEAR_REQUEST

A 30-second timer is set by the Session layer when it receives an SL_
CLEAR_REQUEST. SL_CLEAR_REQUEST is sent as normal data to
ensure that the previous data sent has reached the peer. The peer Session
layer terminates the connection using the peer Generic Transport’s
disconnect service. Data that is being cleared can be potentially lost if the
Session layer’s timer expires before it receives a disconnect indication from
Generic Transport. If a GT_DISCONNECT_INDICATION is not received
from Generic Transport within 30 seconds, the Session layer issues a GT_
DISCONNECT_REQUEST to Generic Transport.

Session Layer 13-15

SL_DATA_REQUEST

SL_DATA_REQUEST

This request allows the Session layer user to exchange data with its peer on an
established connection.

A value of SL_DATA_REQUEST in the workcode field of the connection management
request record initiates this request.

Input The user sets up the following fields as input in the connection
management request record:

workcode: sl_connection_mgmt_codes
This field must contain the following value:

SL_DATA_REQUEST
service_cepid: “cell

q_bit: boolean
The data qualifier bit in the call request packet. This field contains one
of the following values:

TRUE The data packet contains control information about
the data stream that is to be interpreted by a
higher-level protocol.

FALSE The data packet contains unqualified information.

m _bit: boolean
The more data bit in the call request packet. This field contains one of
the following values:

TRUE More data follows this data packet.

FALSE This data packet completes a packet sequence.

user_data: buf_ptr
The data to be transmitted.
Output The Session layer returns the following field as output in the connection
management request record:
status: sl_return_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

sl_no_errors
si_invalid_for_state
si_invalid_service_cepid

13-16 Network Management Entities and Layer Interfaces Revision A

SL_INTERRUPT_REQUEST

SL_INTERRUPT_REQUEST

This request allows the Session layer users to bypass normal data on a connection.

There is no confirmation of delivery returned on this request; thus, more than one

interrupt may be outstanding at any time. The interrupt data is limited to 14 bytes
because Generic Transport has limitations on expedited data.

A value of SL_INTERRUPT_REQUEST in the Connection Management Request record
initiates this request.

Input The user sets up the following fields as input in the connection
management request record:
workcode: sl_connection_mgmt_codes
This field must contain the following value:

SL_INTERRUPT_REQUEST
service_cepid: “cell

data: buf_ptr

The expedited data to be transmitted. The value is limited to a range
of 1 through 14 bytes.

Output The Session layer returns the following field as output in the connection
management request record:

status: sl_return_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

si_invalid_data_size
si_no_errors
sl_invalid_for_state
sl_invalid_service_cepid

Revision A Session Layer 13-17

SL_SYNCH_REQUEST

SL_SYNCH_REQUEST
This request allows the Session layer user to synchronize a particular connection.

A value of SL_SYNCH_REQUEST in the workcode field of the connection
management request record initiates this request.

Input The user sets up the following fields as input in the connection
management request record:

workcode: sl_connection_mgmt_codes
This field must contain the following value:

SL_SYNCH_REQUEST
service _cepid: “cell

send _receive_indicator: discard _indicator_type

This field indicates the direction in which data is to be discarded. Send
and receive are directions relative to the user initiating the
synchronization request. This parameter contains one of the following
values:

DISCARD_RECEIVE Discard the data received.

DISCARD_SEND Discard the data sent.
DISCARD_SEND_ Discard data sent and received.
RECEIVE

data: buf_ptr

The user-dependent synchronization data (reason code). The value is
limited through a range of 1 through 14 bytes.

Output The Session layer returns the following field as output in the connection
management request record:

status: sl_return_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

sl_invalid_data_size
sl_no_errors
s1_invalid_for_state
si_invalid_service_cepid

Remarks The synchronization request always causes expedited data to be sent to the
peer Session layer along with a synchronization indication to the peer user.
Synchronization data is limited to 14 bytes because Generic Transport has
limitations on expedited data. Only one synchronization request can be
outstanding at any time. The user can, however, issue a data request while
waiting for a confirmation to the synchronization request.

13-18 Network Management Entities and Layer Interfaces Revision A

SL_SYNCH_RESPONSE

SL_SYNCH_RESPONSE

This request allows the user to inform the Session layer that it has processed a
DISCARD_SEND_RECEIVE or DISCARD_RECEIVE synchronization request initiated
by its peer. This request is in response to a synchronization indication with a
DISCARD_SEND_RECEIVE or a DISCARD_RECEIVE option. When received by the
peer, the request marks the end of the data to be discarded, thus completing the
synchronization process.

A value of SL_SYNCH_RESPONSE in the workcode field of the connection
management request record initiates this request.

Input The user sets up the following fields as input in the connection
management request record:

workcode: sl_connection _mgmt_codes
This field must contain the following value:

SL_SYNCH_RESPONSE
service_cepid: “cell

Output The Session layer returns the following field as output in the connection
management request record:

status: sl_return_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

si_no_errors
sl_invalid_for_state
sl_invalid_service_cepid

NOTE

This request should not be used in response to a sychronization indication
with a DISCARD_SEND option.

Revision A Session Layer 13-19

SL_FLOW_CONTROL_REQUEST

SL_FLOW_CONTROL_REQUEST
This request allows the Session layer user to request flow control of data.

The Session layer directly maps this service to Generic Transport’s flow control service,
which is responsible for stopping and starting the flow of data. See chapter 14 in this
manual for details.

A value of SL_FLOW_CONTROL_REQUEST in the workcode field of the connection
management request record initiates this request.

Input The user sets up the following fields as input in the connection
management request record:

workcode: sl_connection_mgmt_codes
This field must contain the following value:

SL_FLOW_CONTROL_REQUEST
service _cepid: “cell

status: sl_flow_control _status
This field indicates if the Transport layer should start sending data or
stop sending data. This field contains one of the following values:
SL_START_DATA
SL._STOP_DATA

Output The Session layer returns the following field as output in the connection
management request record:

status: sl_return_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

si_no_errors
si_invalid_for_state
si_invatid_service_cepid

13-20 Network Management Entities and Layer Interfaces Revision A

User Layer Management Services

User Layer Management Services

User layer management services are provided by the Session layer user. The Session
layer uses these services to inform its user that a Session SAP is closing and to
deliver call indications to the user.

SL_USER_LAYER _MGMT Procedure

The user layer management indications are sent by calling the SL_USER_LAYER_
MGMT procedure. The address of this procedure is passed as an input parameter in an
OPEN_SAP request. The layer management indication passed in the procedural call to
the user is defined below:

TYPE
sl_user_layer_mgmt_call = “procedure (
VAR indication: si_user_layer_mgmt_ind);

User Layer Management Indication Record

The SL_USER_LAYER_MGMT_IND is the data structure that is used by the Session
layer to indicate to its users that a Session SAP has closed, or to indicate that a peer
user wishes to establish a connection.

This data structure is a variant record with fields to support both input and output
parameters. The workcode and the service SAP identifier are common and are used in
all user layer management indications. A value specified by the Session layer in the
workcode determines the other fields or service indications that are to be used in the
user layer management indication record.

Following is a CYBIL description of the user layer management indication record:

TYPE

si_user_layer_mgmt_ind = record
workcode: sl_user_layer_mgmt_codes,
user_sapid: “cell,
case sl_user_layer_mgmt_codes of

si_sap_closed =
s {No parameters

= sli_call_indication =
call_indication@: record

service_cepid: “cell,
user_cepid: “cell,
peer_service_sapid: gt_sap,
call_block: buf_ptr,

recend,

casend,
recend;

Revision A Session Layer 13-21

User Layer Management Services

Following are the common fields defined in the static portion of the user layer
management indication record:

workcode: sl_user_layer_mgmt_codes

The workcode must contain one of the following values:

SL_SAP_CLOSED
SL_CALL_INDICATION

The Session layer must specify one of these values when sending an indication or
confirmation to a layer management request. Details on these indications are given
later in this section.

user _sapid: “cell
The user’s SAP identifier.

User Layer Management Requests

The following pages describe the various user indications sent to the Session layer. The
Session layer requests a service by specifying an appropriate value in the workcode
field of the user layer management indication record. The common fields described
earlier are listed again in the following descriptions of the indications. The explanation
to each common field is not repeated unless there is some unique information for that
field in a particular indication.

13-22 Network Management Entities and Layer Interfaces Revision A

SL_SAP_CLOSED

SL_SAP_CLOSED

This indication allows the Session layer to inform the user that its services are no
longer available and that all previously established connections have been terminated

for this SAP.

A value of SL_SAP_CLOSED in the workcode field of the user layer management
indication record initiates this request.

Input The Session layer sets up the following fields as input in the user layer
management indication record:

workcode: sl_user_layer _mgmt_codes
This field must contain the following value:

SL_SAP_CLOSED
user_sapid: “cell

Output None.

Revision A Session Layer 13-23

SL_CALL_INDICATION

SL_CALL_INDICATION

This indication allows the Session layer to inform the user that a peer Session layer
user wants to establish a connection.

A value of SL_CALL_INDICATION in the workcode field of the user layer
management indication record initiates this request.

Input The Session layer sets up the following fields as input in the user layer
management indication record:

workcode: sl_user_layer_mgmt_codes
This field must contain the following value:

SL_CALL_INDICATION
user _sapid: “cell

service _cepid: “cell

The Session layer’s CEPID.

peer_service_sapid: gt_sap

The transport address of the user initiating the connection.

call _block: buf_ptr

A pointer to a buffer chain. This buffer chain contains 4 through 512
bytes of user-dependent call information.

Output The user returns the following fields as output in the user layer
management indication record:

user _cepid: “cell
The user’s CEPID.

13-24 Network Management Entities and Layer Interfaces Revision A

User Connection Management Services

User Connection Management Services

The user connection management services are provided by the Session layer user. The
Session layer uses these services to notify the user that:

® A connection request has been accepted or rejected.
® To indicate there is data for the user from its peer.

® To indicate synchronization and flow control requests for a connection.

SL_USER_CONNECTION _MGMT Procedure

The user connection management indications are sent by calling the SL_USER_
CONNECTION _MGMT procedure. The address of this procedure is passed as an input
parameter in an SL_OPEN_SAP request. The connection management indication
passed in the procedural call to the user is defined below:

TYPE
si_user_connection_mgmt_call = “procedure (
VAR indication: sl_user_connection_mgmt_ind);

User Connection Management Indication Record

The SL_USER_CONNECTION_MGMT_IND is the data structure used by the Session
layer to send indications related to data exchange.

This data structure is a variant record with fields to support both input and output
parameters. The workcode and user CEPID parameters are common and are used in all
user connection management indications. A value specified in the workcode field
determines the other fields or indications that are to be used in the user connection
management indication record.

The following is a CYBIL description of the user connection management indication
record:

Revision A Session Layer 13-25

User Connection Management Services

TYPE

s1_user_connection_mgmt_ind = record
workcode: sl1_user_connection_mgmt_codes,
user_cepid: “cell,
case sl_user_connection_mgmt_codes of

= si_call_confirm =
call_confirm@: record
call_block: buf_ptr,
recend,

= sl_clear_indication =
clear_indication@: record
clear_origin: sl_clear_origin_types,
clear_block: buf_ptr,
session_statistics: buf_ptr,
recend,

= sl_data_indication =
data_indication@: record
q.bit: boolean,
m_bit: boolean,
user_data: buf_ptr,
recend,

= sl_interrupt_indication =
interrupt_indication@: record
data: buf_ptr,
recend,

= sl_synch_indication =
synch_indication@: record
send_receive_indicator: discard_indicator_type,
data: buf_ptr,
recend,

= sl_synch_confirm =
’ {No parameters

= s1_flow_control_indication =
fiow_control_indication@: record
status: sl_flow_control_status,
recend,

= sl_expedited_flow_control_indic=
expedited_flow_controi_indic®: record
status: sl_expedited_flow_control_stat,
recend,

casend,
recend;

13-26 Network Management Entities and Layer Interfaces

Revision A

User Connection Management Services

Following are the common fields defined in the static portion of the user connection
management indication record:

workcode: sl_user_connection_mgmt_ codes
The workcode must contain one of the following values:

SL_CALL_CONFIRM
SL_CLEAR_INDICATION
SL_DATA_INDICATION
SL_INTERRUPT_INDICATION
SL_SYNCH_INDICATION
SL_SYNCH_CONFIRM
SL_FLOW_CONTROL_INDICATION
SL_EXPEDITED_FLOW_CONTROL_INDIC

The Session layer must specify one of these values when sending a connection
management indication. Details on these values are given later in this section.

user_cepid: “cell
The user’s CEPID.

User Connection Management Indications

The following pages describe the various user indications offered to the Session layer.
The Session layer requests a service by specifying an appropriate value in the
workcode field of the user connection management indication record. The common fields
described earlier are listed again in the following descriptions of the indications. The
explanation to each common field is not repeated unless there is some unique
information for that field in a particular indication.

Revision A Session Layer 13-27

SL_CALL_CONFIRM

SL_CALL_CONFIRM

This indication allows the Session layer to inform the user that a peer Session layer

user accepts a connection initiated by the user.

A value of SL_CALL_CONFIRM in the workcode field of the user connection
management indication record initiates this request.

Input The Session layer sets up the following fields as input in the user
connection management indication record:

workcode: sl_user_connection_mgmt_codes
This field must contain the following value:

SL_CALL.CONFIRM
user_cepid: “cell

call _block: buf_ptr

A pointer to a buffer chain. This record contains 4 through 512 bytes of

user-dependent call-confirm information.

Output None.

13-28 Network Management Entities and Layer Interfaces

Revision A

SL_CLEAR_INDICATION

SL_CLEAR_INDICATION

This indication allows the Session layer to inform the user that a previously
established connection has been terminated or a connection request has been rejected
by a peer user.

A value of SL_CLEAR_INDICATION in the workcode field of the user connection
management indication record initiates this request.

Input The Session layer sets up the following fields as input in the user
connection management indication record:

workcode: sl_user_connection _mgmt_codes
" This field must contain the following value:

SL_CLEAR_INDICATION
user _cepid: “cell
clear_origin: sl_clear_origin_types

This field identifies the software component responsible for the
connection termination. It contains one of the following values:

SL_PEER_USER A clear request was initiated by the peer
Session layer user.

SL_TRANSPORT A transport connection was terminated.

SL_SESSION._ The connection was terminated by the
LAYER Session layer because of a protocol error.

clear_block: buf_ptr

A pointer to a buffer chain. This buffer chain contains information
generated by the peer user.

session _statistics: buf_ptr
The statistics collected for a particular connection.

Output None.

Remarks The Session layer returns to its users statistics that it collected for that
particular connection. Statistics include:

® (Connect time.
® Number of characters sent and received.

® Number of blocks sent and received.

Revision A Session Layer 13-29

SL_DATA_INDICATION

SL_DATA _INDICATION

This indication allows the Session layer to deliver to the user, on an established
connection, the data sent by its peer.

A value of SL_DATA_INDICATION in the workcode field of the user connection
management indication record initiates this request.

Input The Session layer sets up the following fields as input in the user
connection management indication record:

workcode: sl_user_connection_mgmt_codes
This field must contain the following value:

SL_DATA_INDICATION
user _cepid: “cell
q_bit: boolean

The data qualifier bit in the data request packet. This field contains
one of the following values:

TRUE The data packet contains control information about
the data stream that is to be interpreted by a
higher-level protocol.

FALSE The data packet contains unqualified information.

m_bit: boolean

The more data bit in the data request packet. This field contains one of
the following values:

TRUE More data follows this data packet.
FALSE This data packet completes a packet sequence.

user _data: buf_ptr
The received data that is to be delivered to the user.

Output None.

13-30 Network Management Entities and Layer Interfaces Revision A

SL_INTERRUPT_INDICATION

SL_INTERRUPT _INDICATION

This indication allows the Session layer to deliver to the user, on an established
connection, interrupt data sent by its peer. The interrupt may have bypassed normal
data on the connection as interrupts are not subject to flow control.

A value of SL_INTERRUPT_INDICATION in the workcode field of the user
connection management indication record initiates this request.

Input The Session layer sets up the following fields as input in the user
connection management indication record:

workcode: sl_user_connection_mgmt_codes
This field must contain the following value:

SL_INTERRUPT_INDICATION
user_cepid: “cell

data: buf_ptr

Pointer to a buffer chain containing 1 through 14 bytes of expedited
data.

Output None.

Revision A Session Layer 13-31

SL_SYNCH_INDICATION

SL_SYNCH _INDICATION

This indication allows the Session layer to inform the user that a peer user initiated a
request to synchronize a connection.

A value of SL_SYNCH_INDICATION in the workcode field of the user connection
management indication record initiates this request.

Input The Session layer sets up the following fields as input in the user
connection management indication record:

workcode: sl__user_connection_mgmt_codes
This field must contain the following value:

SL_SYNCH_INDICATION
user_cepid: “cell
send _receive_indicator: discard _indicator_type

This field indicates the direction in which data is to be discarded. Send
and receive are directions relative to the user initiating the
synchronization request. This field contains one of the following values:

DISCARD_RECEIVE Discard the data sent.

DISCARD_SEND Discard the data received.
DISCARD_SEND._. Discard data sent and received.
RECEIVE :

data: buf_ptr

The user-dependent synchronization data (reason code). The allowed
range is 1 through 14 bytes.

Output None.
NOTE

An SL_SYNCH_RESPONSE is required if the synchronization request is
DISCARD_RECEIVE or DISCARD_SEND_RECEIVE.

13-32 Network Management Entities and Layer Interfaces Revision A

SL_SYNCH_CONFIRM

SL_SYNCH_CONFIRM

This indication allows the Session layer to inform the user that the DISCARD_SEND_
RECEIVE or DISCARD_RECEIVE synchronization request that it initiated has been
completed.

A value of SL_SYNCH_CONFIRM in the workcode field of the user connection.
management indication record initiates this request.

Input The Session layer sets up the following fields as input in the user
connection management indication record:

workcode: sl_user_connection_mgmt_codes
This field must contain the following value:

SL_SYNCH._CONFIRM
user_cepid: “cell

Output None.

Revision A Session Layer 13-33

SL_FLOW_CONTROL_INDICATION

SL_FLOW_CONTROL_INDICATION

This indication allows the Session layer to inform the user that the Session layer has
requested flow control on the data that is being sent.

A value of SL_FLOW_CONTROL_INDICATION in the workcode field of the user
connection management indication record initiates this request.

Input The Session layer sets up the following fields as input in the user
connection management indication record:

workcode: sl_user_connection_mgmt_codes
This field must contain the following value:

SL_FLOW_CONTROL_INDICATION
user_cepid: “cell
status: sl_flow_control _status

This field indicates if the Transport layer should start or stop sending
data. This field contains one of the following values:

SL_START._DATA
SL_STOP_DATA

Output None.

13-3¢ Network Management Entities and Layer Interfaces Revision A

SL_EXPEDITED_FLOW_CONTROL_INDIC

SL_EXPEDITED _FLOW_CONTROL_INDIC

This indication allows the Session layer to notify the user that there has been a
change in the status of the underlying Transport layer’s expedited data path.

A value of SL_EXPEDITED_FLOW_CONTROL_INDIC in the workcode field of the
user connection management indication request record initiates this request.

Input The Session layer sets up the following fields as input in the user
connection management indication record:

workcode: sl_expedited _flow_control_indic
This field must contain the following value:

SL__EXPEDITED_FLOW_CONTROL_INDIC
user_cepid: “cell
status: sl_expedited _flow_control _stat

This field indicates the status of the Transport layer’s expedited data
path. This field contains one of the following values.

SL_EXPEDITED_START_DATA
SL_EXPEDITED_STOP_DATA

Output None.

Remarks The SL__INTERRUPT._REQUEST and the SL_SYNCH_REQUEST depend
on Transport layer’s expedited data service. Reacting to expedited data,
flow control indication is highly recommended.

Revision A Session Layer 13-35

Constants and Common Types

Constants and Common Types

This section lists the constants and common types used in the Session layer’s service
requests. It also lists and explains the status returned for the processed requests. These
data types are defined in the common deck SLDLCMD.

Constants

si_max_credit = 8

13-36 Network Management Entities and Layer Interfaces Revision A

Common Types

Common Types

discard_indicator_type = (
discard_send_receive,
discard_send,
discard_receive)

si_clear_origin_types = (
s1_peer_user,
sl_transport,
s1_session_layer)

s1_connect ion_mgmt_codes = (
si_call_response,
sl_clear_request,
s1_data_request,
si_interrupt_request,
s1_synch_request,
s1_synch_response,
si_flow_control_request)

s1_filow_control_status = (
sl_start_data,
s1_stop_data)

sl_expedited_flow_control_stat = (
sl_expedited_start_data,
s1_expedited_stop_data)

s1_layer_mgmt_codes
s1_open_sap,
sl_close_sap,
si_call_request)

sl_return_status = (
sl_no_errors,
s1_open_sap_error,
sl_invalid_service_sapid,
si_invalid_service_cepid,
sl_invalid_for_state,
s1_unknown_request_workcode,
si_transport_rejected_connect,
sl_invaltid_data_size,
sl_no_di_resources,
sl_unable_to_initialize

sl_no_errors The request was processed without any
errors.

s1_open_sap_error The Session layer was unable to open a
SAP.

Revision A Session Layer 13-37

Common Types

s1_invalid_service_sapid The Session layer at the destination does
not recognize the initiating Session layer’s
network address.

sl_invalid_service_cepid The Session layer at the destination does
not recognize the initiating Session layer’s
CEPID.

si_invalid_for_state The request is invalid for the state of this
connection.

s1_unknown_reguest_workcode The received workcode was not SL__

LAYER_MGMT.__CODES or SL_
CONNECTION _MGMT_CODES.

sl1_transport_rejected_connect Generic Transport rejected a CONNECT_
REQUEST.

si_invalid_data_size The size of the data in a request exceeds
the maximum specified for that request
type.

s1_no_di_resources There is insufficient memory for the

execution of this request.

sl_unable_to_initialize The Session layer’s initialization procedure
failed.

s1_user_connect ion_mgmt_codes = (
si_cali_confirm,
sl_clear_indication,
s1_data_indication,
si_interrupt_indication,
sl_synch_indication,
si1_synch_confirm,
si_flow_control_indication,
si_account ing_indication)

s1_user_layer_mgmt_codes = (

s1_sap_closed,
sl_call_indication)

13-38 Network Management Entities and Layer Interfaces Revision A

00

©0

C O

P

O

C o

Transport Layer

CDCNET's Transport layer (layer 4) matches the OSI model. It is implemented in
every system as two software components. Together, the following two software
components assure end-to-end, transparent data transfer between two users:

® Generic Transport layer

® Xerox Transport layer

Generic Transport Layer

The Generic Transport layer is provided to support the ISO class 4 Transport. All
CDCNET software requiring layer 4 services interface with the Generic Transport
layer. The Generic Transport layer uses the Xerox Transport layer to help provide
services to its users. Where there is no direct mapping between ISO services and Xerox
Transport layer services, the Generic Transport layer provides the functions needed to
support this mapping. Subsequent CDCNET releases may include support of standards
other than the Xerox Transport layer. The use of the Generic Transport layer will
reduce the need for Transport layer users to be concerned with the specifications of a
particular transport layer standard.

Xerox Transport Layer

The Xerox Transport layer is provided so that CDCNET can support higher layer
protocols like the Virtual Terminal Protocol (VTP). The Xerox Transport service is
supported by the Xerox Sequenced Packet Protocol. Implementation of the Xerox
Transport layer does not, however, preclude future applications from interfacing with
the Xerox standard directly.

The following two chapters describe the Generic Transport layer and the Xerox
Transport layer.

Generic Transport Layer 14

OVEIVIEW . o v o e 14-1
User and Server Interfaces i i i i e 14-2
Connection Establishment o o e 14-3
Fragmentation and Reassembly of Data 14-3
Flow Control . . . o o v ot e 14-4
Data Transmission Services o .« it i e e e 14-4

Normal Data Transmission« v i v i vt ot 14-4
Expedited Data Transmission 14-4
Priority e 144

Services Required 14-5
Directory ME e 14-5
Xerox Transport Layer e 14-5

Services Provided i e e e e e e e e e e e e e e 14-6
Layer Management Services 14-6

GT#LAYER_MGMT Procedure o o o v vt v vt oo v v oo oo e 14-6
Layer Management Request 14-7
Gl _OPEN _SAP it e e e e e e 14-9
GT_CLOSE _SAP i e e e e e e 14-10
GT_CONNECT_REQUEST o ittt e e 14-11
Connection Management Serviceso 14-12
GT#CONNECTION_MGMT Procedure« .o oo 14-13
Connection Management Request 14-13
GT_CONNECT_ACCEPT e e 14-15
GT_DATA_REQUEST ittt 14-16
GT_XDATA_REQUEST i 14-17
GT_DISCONNECT_REQUEST 14-18
GT_FLOW_CONTROL_REQUEST 14-19
GT_ABORT_REQUEST it e e 14-20
Indication Services v v v i i i e e e e e e e e e e e 14-21
Connect Indication e 14-21
GENERIC_CONNECT_IF et 14-22
Other Indications o v v it e e e e e e e 14-22
GENERIC_DATA _IF e e e e e e e e e e e s 14-23
CONNECT_CONFIRM e e e e e e e e e e 14-24
DISCONNECT_INDICATION i ettt i e e e e e e s 14-25
DATA_INDICATION . . . it e e e e e e e e e e 14-26
XDATA_INDICATION e e e e e e e e e 14-27
START_INDICATION e e et e e e 14-28
STOP_INDICATION e e e e e e e 14-29 |
START_XDATA_INDICATION i ... 14:30
STOP_XDATA_INDICATION o it e e e 14-31

Constants and Common Types o o oot i 14-32

CONSEANES . . & o e e e e e e e e e e e e e e e e e 14-32

Common TYPES v o ot e e e e e e e e 14-33

Generic Transport Layer 14

The Generic Transport layer portion of the Transport layer is a middle layer software
component that does the following:

® Provides end-to-end, transparent data transfer between two users. It provides
reliable data transfer from a source to a destination by establishing a logical
connection between the source and the destination.

® Breaks up normal data messages into segments that can be transmitted
individually.

® Reassembles these segments into the correct sequence upon reception.
Generic Transport layer services can be functionally divided into three groups:
® The layer management group
® The connection management group
® The indication group, consisting of two interfaces:

- GENERIC_CONNECT_IF

- GENERIC_DATA_IF
This chapter discusses:
® An overview of the Generic Transport Layer, which is part of the Transport layer.
® The services required by the Generic Transport layer.
® The services provided by the Generic Transport layer.

® Constants and common types used in the Generic Transport layer’s service requests.

Overview

This section describes:

® User and service interfaces.

® The connection establishment process.

® Fragmentation and reassembly of data (done by the Generic Transport layer).
® Flow control (supported by the Generic Transport layer).

® Data transmission services (provided by the Generic Transport layer).

® Priorities assigned to connections.

Revision A Generic Transport Layer 14-1

User and Service Interfaces

User and Service Interfaces

As shown in figure 14-1, the Generic Transport layer can be viewed as having three
sets of user interfaces and three sets of service interfaces.

User interface groups provide users with layer management and connection
management services such as:

¢ Opening SAPs

¢ Establishing connections

® Transferring data on established connections

e Breaking a connection when it is no longer required
® Passing indications and confirmations

Service interfaces are between the Generic Transport layer and the Xerox Transport
layer, and provide the means by which two transport layers communicate.

All the interfaces are invoked through procedure calls.

GENERIC_ Used for opening or closing the Generic Transport layer SAPs
LAYER_MGMT and for establishing a connection.

GENERIC_ Used for accepting connections, disengaging connections,
CONNECTION_ transferring data, and imposing flow control.

MGMT_CALL

The user supplies the addresses of two interfaces in an open SAP request which are
used by the Generic Transport layer to send indications and confirmations.

USER_CONNECT_ Used for sending connection-oriented indications and
MGMT_IF confirmations.

USER_LAYER_ Used for sending all other indications.
MGMT_IF

When the Generic Transport layer is loaded in a system, it registers its title with the
Directory ME. A user who wishes to communicate with the Generic Transport layer
asks for a directory translation. The user receives the address of the GT_LAYER_
MGMT_CALL procedure and sends a request to open a Generic Transport layer SAP.
Once a SAP is opened, a connection is requested. A SAP may accept many incoming
connections. Closing a connection does not affect the SAP associated with the
connection, but closing the SAP aborts all the active connections on the SAP that was
closed.

14-2 Network Management Entities and Layer Interfaces Revision A

Connection Establishment

User Layer
Layer Connection Indicati
Management Management g ication
Services Services ervices

—

Xerox Transport

Figure 14-1. Generic Transport Layer Interfaces

Connection Establishment

The connection establishment process starts when a user of the Generic Transport layer
initiates a connect request. The Generic Transport layer presents a connect indication
to the destination. The destination Generic Transport layer user decides whether or not
it can accept this connection. It informs the Generic Transport layer either through a
connect response if it can accept a connection, or through a disconnect request if it
cannot accept the connection. The Generic Transport layer then presents the results of
a connect request to the initiator, either through a connect confirm indication if the
connection is made, or through a disconnect indication if the connection is not made.

All transport layer activity can be described in terms of a single point-to-point
connection. Each transport connection physically consists of a single transport
connection management table, which contains all the information relevant to the
connection and which uniquely identifies the connection from all other connections in
the Generic Transport layer. The address of this table is referred to as the connection
endpoint identifier (CEPID). The CEPID on the user’s side is referred to as the USER_
CEPID and is used by the Generic Transport layer when sending indications and
confirmations. The CEPID on the Generic Transport layer’s side is referred to as
SERVICE_CEPID. The user provides SERVICE_CEPID in request and response
procedures.

Fragmentation and Reassembly of Data

A major responsibility of the Generic Transport layer is to provide fragmentation and
reassembly of normal data, because the Xerox Transport layer has an upper limit on
the maximum data unit size. The data received from the user is fragmented into a
chain of packets, each consisting of a certain number of bytes. (The number of bytes is
set by the Xerox Transport layer after it opens an Internet SAP. See chapter 15 in
this manual for details.) Similarly, data received from the peer is held by the Generic
Transport layer until all packets are received; the message is reassembled in the right
order and the packet is then sent to the user.

Revision A Generic Transport Layer 14-3

Flow Control

Flow Control

The Generic Transport layer is responsible for supporting flow control which is
implemented by the Xerox Transport layer. Flow control prevents the user from getting
flooded with data. The flow of data from a source is controlled on a packet basis. The
source may transmit packets up to and including a number specified by the destination.

Flow control is further described in chapter 15 of this manual.

Data Transmission Services
The Generic Transport layer provides two classes of data transmission services:
¢ Normal

® Expedited

Normal Data Transmission

Data packets using the normal transmission services may contain a range of zero bytes
to the maximum data length specified by the Generic Transport layer. These data
packets are delivered in first in first out (FIFO) sequence, and are subject to flow
control mechanisms that are enforced by the destination.

Expedited Data Transmission

Data packets that use the expedited transmission services may contain a maximum of
16 bytes of data per packet. Expedited data takes precedence over any normal data
transfer and is delivered immediately, regardless of the sequence number assigned to
the data packets. Expedited data transmission can be used to break user protocol
deadlocks and for getting around the flow control mechanism. However, if more than
eight packets reside in the data transmit and/or acknowledge queues of the Xerox
Transport layer, a stop indication is sent by the Xerox Transport layer to the Generic
Transport layer. Although the Xerox Transport layer may deliver duplicates of
expedited traffic, the Generic Transport layer does not deliver any duplicate data
packets.

Priority

In each system, connections can be assigned a high or low priority. Transport layer
uses the priority information to decide how it should provide indications to its users.
On high priority connections, the Generic Transport layer immediately processes and
delivers the indications while on low priority connections, the indications are sent at a
later time.

The formats and definitions of the service requests from users and the indications sent

by the Generic Transport layer are described in Services Provided, later in this
chapter.

144 Network Management Entities and Layer Interfaces Revision A

Services Required

Services Required

For the Generic Transport layer to provide services to its own users it, in turn,
depends on the services of other entities. This section briefly describes the services of
each of these entities.

Directory ME

When the Generic Transport layer is loaded in a system, it registers its title with the
Directory ME. A user who wishes to communicate with the Generic Transport layer
asks for a directory translation. The directory entry has the following values:

Title: GENERIC_TRANSPORT
Address: Local address of type, GT_LAYER_MGMT_CALL
Domain: Local System

Further details are provided in chapter 5 in this manual.

Xerox Transport Layer

The Xerox Transport layer is provided so that CDCNET can support higher layer
protocols like the Virtual Terminal Protocol (VTP). The Xerox Transport layer service
is supported by the features of the Xerox Sequenced Packet Protocol. The Xerox
Transport layer is responsible for informing the Generic Transport layer of the credit
allocation of the corresponding entity. Credit allocation is an indication of the receiver’s
ability to receive and handle a certain amount of data.

The Generic Transport layer uses the end-of-information (EOM) bit in the data sent to
it from the Xerox Transport layer to assemble one or more protocol data units (PDUs)
of an appropriate size into user’s service data units (SDUs).

The Generic Transport layer depends on the Xerox Transport layer to assign sequence
numbers to the packets that it fragments. The sequence numbers are used by the
destination system to assure FIFO delivery, to ignore duplicates, and to acknowledge
the PDUs received.

The Xerox Transport layer uses timers for the following purposes:
® To initiate retransmission of unacknowledged PDUs.

® To maintain the connection during the time when no user data is being
transmitted.

® To detect network failures or unilateral disconnections at the correspondent’s end.

See chapter 15 in this manual for details.

Revision A Generic Transport Layer 14-5

Services Provided

Services Provided

This section describes the external services provided by the Generic Transport layer to
its users. It describes the major data structures used and the service requests
exchanged between the Generic Transport layer and the user. The types of service
requests are:

e Layer Management Services

® Connection Management Services

¢ Indicator Services

Constants and common types and detailed explanations of returned status messages are

given in Constants and Common Types, later in this chapter.

Layer Management Services

Layer management services perform the preliminary tasks of opening and closing a
Generic Transport layer SAP and establishing a connection.

GT#LAYER _MGMT Procedure

Users interface with the Generic Transport layer through direct calls to the
GT#LAYER_MGMT procedure. The calls are made with a single parameter which
points to a variant record. The variant record contains a workcode and parameters that
are dependent on this workcode. The address of this procedure is obtained by the user
through a directory title translation. The following is a description of the layer
management request:

PROCEDURE
gt#layer_mgmt_request (
VAR request: gt_connection_mgmt_request);

The common deck TRDGT contains the layer management request record, the

connection management procedure, the indication interfaces, and all the type
definitions.

14-6 Network Management Entities and Layer Interfaces Revision A

Layer Management Services

Layer Management Request

The layer management request record is the main data structure used by the Generic
Transport layer’s users to open or close a Transport SAP and to establish a connection.

This data structure is a variant record defined with fields to support both input and
output parameters. The workcode, the Generic Transport layer service SAP identifier
and the status parameters are common and are used in all layer management requests.
A value specified in the workcode field determines other fields or service requests that
are to be used in the layer management request.

Following is a CYBIL description of the layer management request record.

TYPE
gt_layer_mgmt_request = record
workcode: gt_layer_mgmt_codes,
service_sapid : gt_sap,
status : gt_status,
case gt_layer_mgmt_codes of

= gt_open_sap =

open_sap@: record
user_sapid: “cell,
dedicated_sapid: sap_id_type,
user_layer_mgmt_if: generic_connect_if,
user_connect_mgmt_if: generic_data_if,
generic_connect_mgmt_if: gt_connection_mgmt_call,

recend,

= gt_connect_request

connect_request@: record
user_cepid: “cell,
destination: gt_sap,
credit_window: gt_credit_window_range,
connect _data: buf_ptr,
priority: generic_priority,
service_cepid: “cell,
recend,

= gt_close_sap = no parameters

casend,
recend;

Revision A Generic Transport Layer 14-7

Layer Management Services

Following are the common fields defined in the static portion of the layer management
request record:

workcode: gt_layer_mgmt_codes

This field must contain one of the following values:
GT_OPEN_SAP
GT_CLOSE_SAP
GT_CONNECT_REQUEST

The user must supply one of these values to specify a service request when making
a layer management request. Details on these service requests are given later in
this chapter.

service_sapid: gt_sap
This is the SAP identifier of the Generic Transport layer.

status: gt_status

This is the status indication of a processed request returned by the Generic
Transport layer. Return codes are listed with each service request later in this
chapter. A complete list of status messages with explanations is also given in
Constants and Common Types, later in this chapter.

The following pages describe the various service requests offered to a Generic
Transport layer user. The user requests a service by specifying an appropriate value in
the workcode field of the layer management request record. The common fields
described earlier are listed again in the following descriptions of the service requests.
The explanation to each common field is not repeated unless there is some unique
information for that field in a particular service request.

14-8 Network Management Entities and Layer Interfaces Revision A

GT_OPEN_SAP

GT_OPEN_SAP

This request allows the user to open a Generic Transport layer SAP. Through this
request, the Xerox Transport layer is notified to open an Internet SAP. During this
request, the user passes pointers to two procedures which the Generic Transport layer
uses to send confirmations and indications to requests.

A workcode of GT_OPEN_SAP in the layer management request record initiates this
request.

Input The user sets up the following fields as input in the layer management
request record:
workcode: gt_layer _mgmt_codes
This field must contain the following value:

GT_OPEN_SAP

user _sapid: “cell

The address of the user’s SAP identifier table, which is specified by the
Generic Transport layer when it returns an indication to this request.
dedicated _sapid: sap_id _type

The 3B SAP identifier. The value of this parameter is 0 if a
dynamically assigned SAP is opened. See chapter 16 in this manual for
details on dedicated and nondedicated SAPs.

user _layer mgmt_if: generic_connect_if

The address of the user’s layer management interface, which is used by
the Generic Transport layer to send connect indications.
user_connect_mgmt_if: generic_data_if

The address of the user’s connection management interface, which is
used by the Generic Transport layer to send all other indications.

Output The Generic Transport layer returns the following fields as output in the
layer management request record:
service_sapid: gt_sap
The address of the Generic Transport layer's SAP that was just opened.

generic _connect_mgmt_if: gt_connection_mgmt_call

The address of the Generic Transport layer’s connection management
interface to which the user will send all connection management
requests.

status: gt_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

gt _no_memory_for_sap
gt _sap_busy
gt_sap_open

Revision A Generic Transport Layer 14-9

GT_CLOSE_SAP

GT_CLOSE_SAP

This request allows the user to close a currently open SAP. All established tables and
connections associated with this SAP are terminated without notifying the user, and
incoming connect requests for this SAP are no longer accepted.

A workcode of GT_CLOSE_SAP in the layer management request record initiates this
request.

Input The user sets up the following fields as input in the layer management
request record:
workcode: gt_layer_mgmt_codes
This field must contain the following value:

GT_CLOSE_SAP

service_sapid: gt_sap
This is the address of the Generic Transport layer’s SAP that is to be
closed.

Output The Generic Transport layer returns the following field as output in the
layer management request record:
status: gt_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

gt_source_sap_not _found
gt_request_processed

14-10 Network Management Entities and Layer Interfaces Revision A

GT_CONNECT_REQUEST

GT_CONNECT_REQUEST

This request allows the Generic Transport layer user to establish a connection with a
peer Generic Transport layer user.

A workcode of GT_CONNECT_REQUEST in the layer management request record
initiates this request.

Input The user sets up the following fields as input in the layer management
request record:

workcode: gt_layer_mgmt_codes
This field must contain the following value:

GT_CONNECT_REQUEST
service_sapid: gt_sap

user_cepid: “cell

This is the address of the user’s connection table which the Generic
Transport layer uses when returning indications and confirmations
relevant to this connection.

destination: gt_sap

This is the SAP identifier of the destination Generic Transport layer to
which the connection is being requested.

credit_window: gt_credit_window_range

This field supports the flow control mechanism which is enforced by the
Xerox Transport layer. Maximum window size is 8 Xerox Transport
layer packets. For details on flow control, see chapter 15 in this
manual.

user _data: buf_ptr

A pointer to a record called DATA_DESCRIPTOR. This record contains
data that is passed on to the destination. Maximum connect data is 32
bytes.

priority: generic_priority

This field indicates the priority used to determine when an indication
should be provided to the user. This field contains one of the following

values:
LOW The indications are queued and sent later.
HIGH The indications are sent immediately.

Revision A Generic Transport Layer 14-11

Connection Management Services

Output The Generic Transport layer returns the following fields as output in the
layer management request record:
service_cepid: “cell
This is the address of the Generic Transport layer’s connection table.

status: gt_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

gt _message_exceeds_max_length
gt_source_sap_not_found
gt_request_processed
gt_credit_not_within_limits
gt _no_memory_for_connection

Connection Management Services

Connection management services manage the activity on connections. Connection
management services do the following:

® Accept connections.

¢ Disengage connections.

Transfer data.

Monitor flow control.

14-12 Network Management Entities and Layer Interfaces Revision A

Connection Management Services

GT#CONNECTION_MGMT Procedure

Generic Transport’s connection management requests are made by calling the
GT#CONNECTION_MGMT procedure. The address of this procedure is passed to the
user as an output parameter in an OPEN_SAP request. The connection management
request passed in the procedural call is defined below:

TYPE

gt#connection_mgmt_call = “procedure (
VAR request: gt_connection_mgmt_reguest);

Connection Management Request

The connection management request is the main data structure used by Generic
Transport layer users to manage their data exchange. This data structure is a variant
record with fields to support both input and output parameters. The workcode, the
address of the Generic Transport layer connection table (CEPID), and the status fields
are common and are used in all connection management requests. A value specified in
the workcode field determines the other fields or service requests that are to be used
in the connection management request.

Following is a CYBIL description of the connection management request record.

TYPE

gt_connect ion_mgmt _request = record
workcode: gt_connection_mgmt_codes,
service_cepid: “cell,
status: gt_status,
case gt_connect ion_mgmt_codes of

= gt_connect_accept =
connect_accept®: record
priority: generic_priority,
credit_window: gt_credit_window_range,
accept_data: buf_ptr,
recend,

= gt_data_request, gt_xdata_request, gt_disconnect_request=
user_data: buf_ptr,

= gt_filow_control_request =
flow_control_code : gt_flow_control_request_code,

= gt_abort_request =

casend,
recend;

Revision A Generic Transport Layer 14-13

Connection Management Services

Following are the common fields defined in the static portion of the connection
management request record:

workcode: gt_connection_mgmt_codes

This field must contain one of the following values:

GT_CONNECT_ACCEPT
GT_DATA_REQUEST
GT_XDATA_REQUEST
GT_DISCONNECT _REQUEST
GT_FLOW_CONTROL_REQUEST
GT_ABORT_REQUEST

The user must supply one of these values to specify a service request when making a
connection management request. Details on these service requests are given later in
this section.

service _cepid: “cell

The address of the Generic Transport layer’s connection table. This is the CEPID of
the Generic Transport layer to which the connection is being made.

status: gt_status

The status indication of a processed request returned by the Generic Transport
layer. Return codes are listed with each service request. A complete list of status
messages with explanations is also given in Constants and Common Types, later in
this chapter.

The following pages describe the various service requests offered to a Generic
Transport layer user. The user requests a service by specifying an appropriate value in
the workcode field of the connection management request record. The common fields
described earlier are listed again in the following descriptions of the service requests.
The explanation to each common field is not repeated unless there is some unique
information for that field in a particular service request.

14-14 Network Management Entities and Layer Interfaces Revision A

GT_CONNECT_ACCEPT

GT_CONNECT_ACCEPT

This request allows the user to notify the Generic Transport layer that it accepts the
connection request that was sent by its peer entity.

A workcode of GT_CONNECT_ACCEPT in the connection management request record
initiates this request.

Input The user sets up the following fields as input in the connection
management request record:
workcode: gt_connection_mgmt_codes
This field must contain the following value:

GT_CONNECT_ACCEPT
service _cepid: “cell

accept_data: buf_ptr

A pointer to a record called DATA_DESCRIPTOR. This record contains
data that is passed on to the destination. Maximum data passed in this
field is 32 bytes.

credit_window: gt_credit_window _range

This field supports flow control which is enforced by the Xerox
Transport layer. Maximum window size is 8 Xerox Transport layer
packets. For details on flow control, see chapter 15 in this manual.

priority: generic_priority
This field indicates the priority given to this connection.
Ouiput The Generic Transport layer returns the following field as output in the
connection management request record:

status: gt_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

gt_credit_not_within_limits
gt_message_exceeds_max_length
gt_invalid_state

gt_connect ion_not_found
gt_request_processed

Revision A Generic Transport Layer 14-15

GT_DATA_REQUEST

GT_DATA _REQUEST

This request allows the Generic Transport layer user to send data to its peer on an
established connection.

A workcode of GT_DATA_REQUEST in the connection management request record
initiates this request.

Input The user sets up the following fields as input in the connection
management request record:
workcode: gt_connection_mgmt_codes
This field must contain the following value:

GT_DATA_REQUEST
service_cepid: “cell

user _data: buf_ptr

A pointer to a buffer chain which contains data that is passed on to
the destination. A maximum of 1454 bytes of user data can be passed
through this field.

Output The Generic Transport layer returns the following field as output in the
connection management request record:

status: gt_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

gt_request_processed
gt_invalid_state
gt_connect ion_not _found

14-16 Network Management Entities and Layer Interfaces Revision A

GT_XDATA_REQUEST

GT_XDATA _REQUEST

This request allows the Generic Transport layer user to exchange expedited data with
its peer on an established connection. Expedited data consists of 1 through 16 bytes per
PDU, and is not subject to flow control. The data is delivered immediately regardless
of the sequence number assigned to the packet.

A workcode of GT_XDATA_REQUEST in the connection management request record
initiates this request.

Input The user sets up the following fields as input in the connection
management request record:

workcode: gt_connection _mgmt_codes
This field must contain the following value:

GT_XDATA_REQUEST
service_cepid: “cell

user_data: buf_ptr

A pointer to a buffer chain which contains data that is passed on to
the destination. A maximum of 16 bytes of user data can be sent
through this field.

Output The Generic Transport layer returns the following field as output in the
connection management request record:

status: gt_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

gt _request_processed
gt_invalid_state

gt_connect ion_not_found

ot _message_exceeds_max_length

Revision A Generic Transport Layer 14-17

GT_DISCONNECT_REQUEST

GT _DISCONNECT _REQUEST

This request allows the Generic Transport layer user to break a connection with a peer
Generic Transport layer user. A workcode of GT_DISCONNECT_REQUEST in the
connection management request record initiates this request.

Input The user sets up the following fields as input in the connection
management request record:
workcode: gt_connection_mgmt_codes
This field must contain the following value:

GT_DISCONNECT _REQUEST
service_cepid: “cell

user_data: buf_ptr

A pointer to a buffer chain which contains data that is passed on to
the destination. A maximum of 64 bytes of user data can be sent
through this field.

Output The Generic Transport layer returns the following field as output in the
connection management request record:

status: gt_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

gt_request_processed
gt _connect ion_not_found
gt_message_exceeds_max_length

Remarks The Generic Transport layer’s disengagement mechanism is an end-to-end

disconnect; the local end of the connection is dissolved unilaterally, and the
correspondent is notified.

14-18 Network Management Entities and Layer Interfaces Revision A

GT_FLOW_CONTROL_REQUEST

GT _FLOW_CONTROL_REQUEST

This request allows the user to indicate to the Generic Transport layer to either start
or stop sending data. Flow control consists of having the peer grant a credit allocation,
indicating the amount of data that it guarantees it will be able to receive.

A workcode of GT_FLOW_CONTROL_REQUEST in the connection management
request record initiates this request.

Input The user sets up the following fields as input in the connection
management request record:

workcode: gt_connection_mgmt_codes
This field must contain the following value:

GT_FLOW_CONTROL_REQUEST
service_cepid: “cell

flow _control _code: gt_flow_control_request_code
This field has two values:

GT_START_ Indicates to the Transport layer there is no

REQUEST congestion and it can start sending data.
GT..STOP_ Indicates congestion and requests the Transport
REQUEST layer to stop sending data.

Output The Generic Transport layer returns the following field as output in the

connection management request record:

status: gt_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

gt_request_processed
gt _connection_not_found

Revision A Generic Transport Layer 14-19

GT_ABORT_REQUEST

GT_ABORT_REQUEST

This request allows the Generic Transport layer user to abort a connection. An abort
service, unlike a disconnect service, brings a connection to an abrupt close. The local
end of the connection is dissolved. The peer or destination system is not informed of
the abort; instead, the Xerox Transport layer in the destination system discovers it
through the timing mechanism, and informs the Generic Transport layer through a
disconnect indication.

A workecode of GT_ABORT_REQUEST in the connection management request record
initiates this request.

Input The user sets up the following fields as input in the connection
management request record:

workcode: gt_connection _mgmt_codes
This field must contain the following value:

GT_ABORT_REQUEST
service _cepid: “cell

QOutput The Generic Transport layer returns the following field as output in the
connection management request record:
status: gt_status

This is the status indication for the processed request. Following are
status messages returned for this request. For explanations, see
Constants and Common Types later in this chapter.

gt_request_processed
gt _connect ion_not_found

14-20 Network Management Entities and Layer Interfaces Revision A

Indication Services

‘Indication Services

Indication services are used by the Generic Transport layer to inform the user that a
certain event has occurred. One procedure has been provided to handle only connect
related indications and another routine handles all other indications.

Connect Indication

A connect indication informs a Generic Transport layer user that a peer entity across
the network has issued a connect request. The user sends either a connect response if
the connection is acceptable, or a disconnect indication if the connection is
unacceptable. A special case exists where a user immediately detects that a connection
is not possible. In this case, a disconnect indication is sent by returning a NIL in the
CEPID value.

When a Generic Transport layer receives a connect response from a user, it sends a
connect confirm indication to the user that originally issued the connect request.

Revision A Generic Transport Layer 14-21

GENERIC_CONNECT_IF

GENERIC _CONNECT_IF

The Generic Transport layer presents the connect indications to its users by calling the
GENERIC_CONNECT_IF procedure. The address of this procedure is passed as an
output parameter in an OPEN_SAP request. The indication passed in the procedural
call to the user is defined below:

TYPE
generic_connect_if = “procedure (cepid: generic_cepid;
VAR sdu: buf_ptr;
source: gt_sap;
user_sap: usapid;
VAR cepid: ucepid);
cepid: generic_cepid

This is the CEPID of the Generic Transport layer that is initiating the connection.

sdu: buf_ptr

This parameter contains the address of the chain of buffers which contain the data
received in the GT_CONNECT_REQUEST from the peer user. A maximum of 32
bytes of data can be contained in these buffers.

|
source: gt_sap

This parameter indicates the SAP identifier of the Generic Transport layer.

user_sap: usapid
The SAP identifier of the user to which the connect indication is being sent.

cepid: ucepid
The CEPID of the user receiving the connect indication.

Other Indications

The following procedure is used for all indications and confirmations other than the
connect indication.

14-22 Network Management Entities and Layer Interfaces Revision A

GENERIC_DATA_IF

GENERIC_DATA_IF

The Generic Transport layer presents all indications except the connect indications to
its users by calling the GENERIC_DATA_IF procedure. The address of this procedure
is passed as an output parameter in an OPEN_SAP request. The indication passed in
the procedural call to the user is defined below:

TYPE
generic_data_if = “procedure (interface: indgeneric;
cepid: ucepid;
VAR sdu: buffer);

interface: indgeneric

This parameter indicates the type of indication that the Generic Transport layer is
sending to the user. The following is a list of values for this parameter:

CONNECT_CONFIRM
DISCONNECT_INDICATION
DATA_INDICATION
XDATA_INDICATION
START_INDICATION
STOP_INDICATION
START_XDATA_INDICATION
STOP_XDATA_INDICATION

cepid: ucepid

This parameter is the Generic Transport layer’s CEPID for the connection for which
an. indication is provided.

sdu: buf_ptr
This parameter refers to the chain of buffers.

The following pages describe the various indications that the Generic Tranport layer
sends to its users.

Revision A Generic Transport Layer 14-23

CONNECT_CONFIRM

CONNECT _CONFIRM

‘This indication allows the Generic Transport layer to inform its users that the
connection request it had sent out earlier was accepted by its peer.

A value of CONNECT_CONFIRM in the GENERIC_DATA_IF procedure initiates this
request.

Input The Generic Transport layer sets up the following parameters as input in
the GENERIC_DATA_IF procedure:

interface: indgeneric
This parameter must contain the following value:

CONNECT_CONFIRM
cepid: ucepid

sdu: buf_ptr

14-24 Network Management Entities and Layer Interfaces Revision A

DISCONNECT_INDICATION

DISCONNECT _INDICATION

This indication is used by the Generic Transport layer to inform its users about the
termination of a connection. This indication could be sent to inform a user that the
connection request it had sent out earlier was not accepted by its peer, or a peer user
terminated a connection after a data transfer, or a number of other reasons.

A value of DISCONNECT_INDICATION in the GENERIC_DATA_IF procedure
initiates this request.

Input The Generic Transport layer sets up the following parameters as input in
the GENERIC_DATA_IF procedure:

interface: indgeneric
This parameter must contain the following value:

DISCONNECT_INDICATION
cepid: ucepid

sdu: buf_ptr

Revision A Generic Transport Layer 14-25

DATA_INDICATION

DATA _INDICATION

This indication allows the Generic Transport layer to inform its users that there is
data for a user on a connection.

A value of DATA_INDICATION in the GENERIC_DATA_IF procedure initiates this
request.

Input The Generic Transport layer sets up the following parameters as input in
the GENERIC_DATA_IF procedure:

interface: indgeneric
This parameter must contain the following value:

DATA_INDICATION
cepid: ucepid

sdu: buf_ptr

14-26 Network Management Entities and Layer Interfaces Revision A

XDATA_INDICATION

XDATA _INDICATION

This indication allows the Generic Transport layer to inform its users that there is
expedited data for a user on a connection.

A value of XDATA_INDICATION in the GENERIC_DATA_IF procedure initiates this
request.

Input The Generic Transport layer sets up the following parameters as input in
the GENERIC_DATA_IF procedure:

interface: indgeneric
This parameter must contain the following value:

XDATA_INDICATION

cepid: ucepid

Revision A Generic Transport Layer 14-27

START_INDICATION

START _INDICATION

This indication allows the Generic Transport layer to inform its users that there is no
congestion on the connection and the user can start transmitting data again.

A value of START_INDICATION in the GENERIC_DATA_IF procedure initiates this
request.

Input The Generic Transport layer sets up the following parameters as input in
the GENERIC_DATA_IF procedure:

interface: indgeneric
This parameter must contain the following value:

START_INDICATION

cepid: ucepid

14-28 Network Management Entities and Layer Interfaces Revision A

STOP_INDICATION

STOP _INDICATION

This indication allows the Generic Transport layer to inform its users to stop sending
the data because the connection is congested and there is no credit allocated to
transmit. the data.

A value of STOP_INDICATION in the GENERIC_DATA_IF procedure initiates this
request.

Input The Generic Transport layer sets up the following parameters as input in
the GENERIC_DATA_IF procedure:

interface: indgeneric
This parameter must contain the following value:

STOP_INDICATION

cepid: ucepid

e

Revision A Generic Transport Layer 14-29

START_XDATA_INDICATION

START _XDATA _INDICATION

This indication allows the Generic Transport layer to inform its users that there is no
congestion on the connection and the user can start transmitting expedited data again.

A value of START_XDATA_INDICATION in the GENERIC_DATA_IF procedure
initiates this request.

Input The Generic Transport layer sets up the following parameters as input in
the GENERIC_DATA_IF procedure:

interface: indgeneric
This parameter must contain the following value:

START_XDATA_INDICATION

cepid: ucepid

14-3¢ Network Management Entities and Layer Interfaces Revision A

STOP_XDATA_INDICATION

. STOP _XDATA _INDICATION

This indication allows the Generic Transport layer to inform its users to stop sending
expedited data because the connection is congested and there is no credit allocated to

transmit the data.

A value of STOP_XDATA_INDICATION in the GENERIC_DATA_IF procedure
initiates this request.

Input The Generic Transport layer sets up the following parameters as input in
the GENERIC_DATA_IF procedure:

interface: indgeneric
This parameter must contain the following value:

STOP_XDATA_INDICATION

cepid: ucepid

Revision A Generic Transport Layer 14-31

Constants and Common Types

Constants and Common Types

This section lists the constants and common types used in the Generic Transport
layer’s service requests. It also lists and explains status messages returned for the
processed requests. These data types are defined in the common deck TRDGT.

Constants

gt_layer_mgmt_title = ‘generic_transport’
gt_max_credit_window = 8

14-32 Network Management Entities and Layer Interfaces Revision A

Common Types

generic_cepid = “cell
generic_priority = (iow, high)

gt_connect ion_mgmt_codes = (

Common Types

gt_connect_accept, gt_data_request, gt_xdata_request,

gt_disconnect_request,

gt_flow_control_request, gt_abort_reqguest)

gt_credit_window_range = 1 .. gt_max_credit_window

gt_flow_control_reguest_code = (gt_start_request, gt_stop_request)

gt_layer_mgmt_codes = { gt_open_sap, gt_close_sap, gt_connect_request)

gt_sap = internet_address

gt_status =
(gt_request_processed,
gt_credit_not_within_limits,
gt_source_sap_not_found,

gt_message_exceeds_max_length,

gt_invalid_state,
gt_sap_open,
gt_sap_busy,
gt_no_memory_for_sap,
gt_connection_not_found,
gt_no_memory_for_connection)
gt_request_processed
gt_credit_not_within_limits
gt _source_sap_not_found

gt_message_exceeds_max_length

gt_invalid_state
gt_sap_open

gt_sap_busy
gt_no_memory_for_sap
gt_connect ion_not_found

gt_no_memory_for_connect ion

Revision A

The request was processed without any errors.
The credit window is invalid.
The specified SAP does not exist.

The message exceeds the maximum length for
a particular type of request.

Transport is not in the expected state.

The request to open SAP was successful.

The specified SAP is already opened.

There is not enough memory for SAP table. .
The connection does not exist.

There is not enough memory for connection
table.

Generic Transport Layer 14-33

Common Types

indgeneric = (connect_indication, connect_confirm, disconnect_indication,
data_indication, xdata_indication, start_indication,
stop_indication)

“cell

ucepid

“cell

usapid

14-34 Network Management Entities and Layer Interfaces Revision A

Xerox Transport Layer 15

OVEIVIEW & o . o o e e e e e e e e e e e e e e e e e e 15-1
Xerox Transport Layer Services 15-1
User and Server Interfaces o i v i i 15-2
Connection Establishment e e e 15-2
Transport Connections e 15-2
Priority o e e e 15-3
Sequence Numbers e 15-3
Flow Control o i et e e e e e e e e e e e e e e 15-3
Credit Allocation« . o i i e e e c.. 15-3
Data Transmission Serviees oo 15-3

Normal Data Transmission o o it v e 15-3
Expedited Data Transmission 15-4

Services Required e 15-4
Internet Layer e e 15-4
Memory Management e 15-4

Services Provided e e e e e e e e e e 15-5
Layer Management Services 15-5

XEROX_OPEN_SAP e e e 15-6
XEROX_CLOSE_SAP e e 15-7
XEROX _CONNECT o o e e e e e e e e e e e e 15-8
Connection Management Services 15-10
XEROX _ACCEPT o e e e e e e e e e e 15-11
XEROX _DISCONNECT o et e e et e e e b e e e e e 15-12
XEROX _ABORT e e e e e e e e e e 15-13
XEROX _DATA e e e e e e e e e e 15-14
XEROX _XDATA . . o e e e e e e e e e e 15-15
XEROX_FLOW_CONTROL i e e 15-16
Indications Services e e e e e 15-17

Constants and Common Types o v i i ie e 15-17

Xerox Transport Layer 15

This chapter discusses:
® An overview of the Xerox Transport layer.
® The services required by the Xerox Transport layer.

® The services provided by the Xerox Transport layer.

Overview

The Xerox Transport layer is part of the Transport layer (layer 4) and is responsible,
along with the Generic Transport layer, for providing end-to-end, transparent data
transfer between two users.

The Xerox Transport layer offers the following services:

® It guarantees its users that the message from a source will be delivered to the
destination without any errors or duplications and in the same order as it was sent.

® It is responsible for end-to-end flow control.

The Xerox Transport layer is mostly used by the Generic Transport layer. The Generic
Transport layer and the Xerox Transport layer are defined in the same module and
share many procedures and type declarations. In the current release, no external
program interfaces to the Xerox Transport layer have been defined. All Transport layer
users interface through the Generic Transport layer.

Xerox Transport Layer Services

Xerox Transport layer services are functionally divided into three groups (figure 15-1):
® Layer management services

¢ Connection management services

® Indication Services

Generic Transport

= 11

Layer Connection o
Management Management 'gd'“.t'o"
Services Services ervices

——

Internet Layer

Figure 15-1. Xerox Transport Layer Interfaces

Revision A Xerox Transport Layer 15-1

User and Service Interfaces

User and Service Interfaces

As shown in figure 15-1, the Xerox Transport layer can be viewed as having three sets
of user interfaces and three sets of service interfaces.

User interface groups provide users with the layer management and connection
management services such as:

® Opening SAPs

e Establishing connections ,

® Transferring data on established connections

® Breaking a connection when it is no longer required
® Passing indications and confirmations.

Service interfaces are between the Internet 3B layer and the Xerox Transport layer,
and provide the means by which two Transport layers communicate.

Since the Generic Transport layer and the Xerox Transport layer are both defined in
the same module, the Generic Transport layer (the Xerox Transport layer’s user)
directly calls the Xerox Transport layer’s open SAP procedure. Once a SAP is opened,
a connection is requested. A SAP may accept many incoming connections. Closing a
connection does not affect the SAP associated with the connection, but closing the SAP

disconnects all the active connections on the SAP that was closed.

Connection Establishment

The connection establishment process starts when the Generic Transport layer initiates
a connect request. The Xerox Transport layer presenis a connect indication to the
destination system. The destination Xerox Transport layer user decides whether or not
it should accept this connection. It then informs the Xerox Transport layer through a
connect response if it can accept a connection, or through a disconnect request if it
cannot accept the connection. The Xerox Transport layer then presents the results of a
connect request to the initiator, either through a connect confirm if the connection is
made, or through a disconnect indication if the connection is not made.

Transport Connections

All transport layer activity can be described in terms of a single point-to-point
connection. Each connection physically consists of a single transport connection
management table, which contains all the information relevant to the connection and
which uniquely identifies the connection from all other connections in the Xerox
Transport layer. The address of this table is referred to as the connection endpoint
identifier (CEPID). The CEPID on the user’s side is referred to as the USER_CEPID
and is used by the Xerox Transport layer when sending indications and confirmations.
The CEPID on the Xerox Transport layer side is referred to as XEROX_CEPID. The
user provides XEROX_CEPID in request and response procedures.

Each end of the connection takes responsibility for detecting and amending the effects
of intermediate network failure and ensuring that a connection is not

152 Network Management Entities and Layer Interfaces Revision A

User and Service Interfaces

" broken by the loss of an intermediate system or any other network failure. Each end
also takes responsibility to protect itself against the failure of its correspondent, its
user, and itself. It makes sure that the loss of previous connections does not affect the
current connection.

Priority

In each system, connections can be assigned a high or low priority. The Transport
layer uses the priority information to decide how it should provide indications to its
users. On high priority connections, the Generic Transport layer immediately processes
and delivers the indications while on low priority connections, the indications are sent
at a later time.

Sequence Numbers

When a Xerox Transport layer receives data packets from the Generic Transport layer,
it assigns sequence numbers to these packets. These numbers are used by the
destination Xerox Transport layer to assure FIFO delivery, to detect and discard
duplicates, and to acknowledge received packets.

Flow Control

The Xerox Transport layer is also responsible for implementing flow control. Flow
control prevents the receiver from getting flooded with data. When a destination Xerox
Transport layer user experiences congestion, it requests, through the flow control
request procedure, that the Xerox Transport layer stop sending data.

Credit Allocation

Credit allocation is another method of controlling data flow. The destination Xerox
Transport layer indicates the number of packets it can handle through credit allocation
and credit windows. The Xerox Transport layer periodically updates its credit allocation
by indicating, in the header of a packet, the maximum sequence number it can handle
from its peer. Packets that exceed this number are discarded. The number by which
the Xerox Transport layer increments the allocation depends on credit windows and the
memory and buffer state of the system.

Data Transmission Services
The Xerox Transport layer provides two classes of data transmission services:
® Normal data transmission service

® Expedited data transmission service

Normal Data Transmission

Data packets that use the normal transmission services may contain a range from zero
bytes to the maximum data length specified by the Internet layer. These data packets
are delivered in FIFO sequence, and are subject to flow control mechanisms that are
enforced by the destination.

Revision A Xerox Transport Layer 15-3

Services Required

Expedited Data Transmission

Data packets that use the expedited transmission services may contain a maximum of
16 bytes of data per packet. Expedited data takes precedence over any normal data
transfer; it is delivered immediately, regardless of the sequence number assigned to the
data packets.

Services Required

For the Xerox Transport layer to provide services to its own users it, in turn, depends
on the services of the other software components. Brief descriptions of the services of
each of these software components follow. ’

Internet Layer
The following Internet layer interfaces are used by the Xerox Transport layer:

OPEN_INTERNET_SAP All outbound connection requests are always multiplexed
into the Internet SAP of the same number as the Xerox
Transport layer SAP. Incoming connections are received at
the multiplexed SAP, but are switched to the transient
Internet layer SAPs before an indication is sent to the
user. The transient SAP is opened by the Xerox Transport
layer and remains open for the lifetime of the connection.
The Internet layer is responsible for giving the Xerox
Transport layer information on the maximum length of
data that can be handled on all connections on the SAP
that has just been opened. If PACKET__DATA _LIMIT
exceeds the value that results from subtracting the length
of the transport header from the maximum length of data
returned by the Internet layer, then PACKET _DATA_
LIMIT is set to this value.

CLOSE_INTERNET_SAP This interface is used when an Internet layer SAP is no
longer required. Both transient and multiplexed SAPs are
closed. When a SAP is closed, all the active connections
within the SAP are also disconnected.

The Internet layer is also responsible for sending and receiving datagrams. See chapter
16 in this manual for further information on the Internet layer.

Memory Management

Memory Manager keeps the Xerox Transport layer informed of the status of the system
memory and the buffers. When the Xerox Tranport layer is informed that memory has
to be released, each connection is examined and a connection is chosen to be released
based on variables such as the state of the connection and the messages queued. See
the CDCNET Systems Programmer’s Reference Manual, Volume 1, for more details on
memory management.

15-4 Network Management Entities and Layer Interfaces Revision A

Services Provided

Services Provided

This section defines the external services provided by the Xerox Transport layer to its
users. It describes the major data structure used, and the service requests exchanged
between the user and the Xerox Transport layer.

The types of services provided are:
® Layer management services

® (Connection management services
® Indications services

Common types used by the Xerox Transport layer and detailed explanations of returned
status messages are given in chapter 14 of this manual.

Layer Management Services

Layer management services perform the following preliminary tasks:
® Opening a Xerox Transport layer SAP.

® Closing a Xerox Transport layer SAP.

® Requesting a connection to be opened.

The open SAP request creates a Transport layer SAP that is mapped into an Internet
layer SAP.

NOTE

In the current release, no externally defined interfaces to the Xerox Transport layer
have been defined. All Transport layer users have to go through the Generic Transport
layer.

The following pages describe the Xerox Transport layer management service requests.

Revision A Xerox Transport Layer 15-5

Services Provided

XEROX_OPEN_SAP

This request allows the user to open a Xerox Transport layer SAP and an Internet
layer 3B SAP. This request is directly passed on to the Internet layer. The Internet
layer address corresponding to the SAP that has just been opened is passed back to the
user. During this request, the user passes pointers to two procedures which the Xerox
Transport layer uses to send connect and data-related indications.

Comdeck

Format

Input

Output

TRMXPRT

XEROX_OPEN_SAP (usapid, connect, data, dedicated _sap _id, sap,
status)

usapid: usapid
The user’s SAP identifier.

connect: connect_if

The address of the user’s connect indication interface routine, which is
used by the Xerox Transport layer to send connect indications. For details,
see GENERIC_CONNECT_IF in chapter 14 of this manual.

data: data_if

The address of the user’s data indication interface routine, which is used
by the Xerox Transport layer to send data indications. For details, see
GENERIC_DATA_IF in chapter 14 of this manual.

dedicated _sap_id: sap_id _type

The identifier of the SAP that is being opened. If the SAP identifier is
well known, the dedicated SAP identifier is specified; otherwise, it is
specified to zero.

sap: xerox_sap

The Internet layer address. See appendix B in this manual for more
information.

status: gt_status

The status indication of the processed request, returned by the Xerox
Transport layer. Following are status messages applicable to this request.
For explanations, see Constants and Common Types in chapter 14 of this
manual.

gt _no_memory_for_sap
gt_sap_busy
gt_sap_open

156 Network Management Entities and Layer Interfaces Revision A

Services Provided

XEROX_CLOSE _SAP

This request allows the user to close a Xerox Transport layer SAP. All connections on
the SAP are closed and the SAP is released.

Comdeck TRMXPRT
Format XEROX_CLOSE_SAP (sap, status)

Input sap: xerox_sap
The address of the SAP that is to be closed.

Output status: gt_status

The status indication of the processed request, returned by the Xerox
Transport layer. Following are status messages applicable to this request.
For explanations, see Contants and Common Types in chapter 14 of this
manual.

gt_source_sap_not_found
gt_request_processed

Revision A ‘ Xerox Transport Layer 15-7

Services Provided

XEROX _CONNECT

This request allows the user to establish a connection with a peer. If data is included
in this request, that data is delivered with the connect indication to the destination

system.

Comdeck

Format

Input

TRMXPT

XEROX_CONNECT (user_cepid, message, data_stream _type, from _
sap, to_sap, priority, cepid, xdata_flow_control, credit_window,
status)

user _cepid: user_cepid

The user’s CEPID.

message: buf_ptr

Refers to the chain of buffers containing user data. A NIL value indicates
no data is included.

data_stream _type: xns$data_stream_type

This value is passed as a user field in the transport header. It is one byte
of information carried and delivered with the data and indicates to the
peer the type of data in the packet.

from _sap: xerox_sap

The transport SAP from which connection is being established.

to_sap: xerox_sap

The transport SAP to which connection is being made.

priority: xpriority

This parameter indicates the priority at which the incoming data is to be
processed.)

xdata_flow _control: boolean

This parameter indicates if flow control needs to be exercised. It contains
one of the following values:

TRUE Flow control is exercised.

FALSE Flow control is not exercised. An expedited data packet
may be sent when a preceding packet has not been
acknowledged. See XEROX_XDATA later in this chapter
for more information.

credit_window: gt_credit_window_range
This parameter indicates the credit window for the connection.

15-8 Network Management Entities and Layer Interfaces Revision A

Services Provided

Output cepid: xerox_cepid
The Xerox Transport layer CEPID.

status: gt_status

The status indication of the processed request, returned by the Xerox
Transport layer. Following are status messages applicable to this request.
For explanations, see Constants and Common Types in chapter 14 of this
manual.

gt _source_sap_not_found
gt_request_processed
gt_credit_not_within_limits
gt_no_memory_for_connection

Revision A Xerox Transport Layer 15-9

Services Provided

Connection Management Services

Connection management services manage the activity on connections.
Connection management services include:

® Accepting connections

e Disengaging connections

® Transferring data

® Monitoring flow control

The Xerox Transport layer uses the Generic Transport layer’s procedures. For details,
see GT#CONNECTION_MGMT_REQUEST in chapter 14 of this manual.

The following pages describe the Xerox Transport layer connection management service
requests.

15.10 Network Management Entities and Layer Interfaces Revision A

Services Provided

XEROX_ACCEPT

This request allows the user to notify the Xerox Transport layer that it accepts the
connection request that was sent by its peer.

Comdeck

Format

Input

Output

Revision A

TRMXPRT

XEROX_ACCEPT (cepid, user_cepid, priority, message, data_
stream _type, xdata_flow_control, credit_window, status)
cepid: xerox_cepid

The Xerox Transport layer CEPID.

user _cepid: ucepid

The user CEPID.

priority: xpriority

This parameter indicates the priority at which the incoming data is to be
processed.

message: buf_ptr

Refers to the chain of buffers containing data. A NIL value indicates no
data is included.

data_stream_type: xns$data_stream _type

This value is passed as a user field in the Transport layer header. It is
one byte of information carried and delivered with the data, and indicates
to the peer the type of data in the packet.

xdata_flow_control: boolean

This parameter indicates if flow control needs to be exercised. It contains
one of the following values:

TRUE Flow control must be exercised.

FALSE An expedited data packet may be sent when a preceding
packet has not been acknowledged. See XEROX_XDATA
later in this chapter for more information.

credit_window: gt_credit_window_range

This value, along with information on memory and buffer state of the
system, is used by the Xerox Transport layer to allocate credits to the
peer.

status: gt_status

The status indication of the processed request, returned by the Xerox
Transport layer. Following are status messages applicable to this request.
For explanations, see Constants and Common Types in chapter 14 of this
manual.

gt_invalid_state
gt_request_processed
gt_connect ion_not_found
gt_credit_not_within_limits

Xerox‘Transport Layer 15-11

Services Provided

XEROX _DISCONNECT

This request allows the user to break a connection with a peer. The peer is notified of
this request and the connection is closed. This is not a graceful close service; data may
be lost. The user can send up to 64 bytes of data with this request.

Comdeck TRMXPRT
Format XNS_DISCONNECT (cepid, message, status)

Input cepid: xerox_cepid
The Xerox Transport layer CEPID.

message: buf_ptr
This parameter contains the reason the connection was broken.

Output status: gt_status

This is the status indication of the processed request, returned by the
Xerox Transport layer. Following are status messages applicable to this
request. For explanations, see Constants and Common Types in chapter 14
of this manual.

gt _request_processed
gt_connect ion_not_found

15-12 Network Management Entities and Layer Interfaces Revision A

Services Provided

XEROX_ABORT

This request allows the user to break a connection with a peer. The peer is not
notified that the connection has been terminated. When the peer Transport entity
detects that no data has been received from its correspondent, it sends a disconnect
indication to its user.

Comdeck TRMXPRT
Format XEROX_ABORT (cepid, return_status)
Input cepid: xerox_cepid

The Xerox Transport layer CEPID.

Output status: gt_status

The status indication of the processed request returned by the Xerox
Transport layer. Following are status messages applicable to this request.
For explanations, see Constants and Common Types in chapter 14 of this
manual.

gt_request_processed
gt _connection_not_found

Revision A Xerox Transport Layer 15-13

Services Provided

XEROX_DATA

This request allows the Xerox Transport layer user to send data to its peer on an
established connection. Up to 1454 bytes can be transmitted through this request.

Comdeck TRMXPRT
Format XEROX _DATA (cepid, message_list, data_stream_type, eom, status)

Input cepid: xerox_cepid)
The Xerox Transport layer CEPID.

message _list: buf_ptr

Pointer to the chain of buffers containing data. Data in each chain can
range from 0 through 1454 bytes. A NIL value indicates empty buffers.
data_stream_type: xns$data_stream_type

This value is passed as a user field in the Transport header. It is one byte
of information carried and delivered with the data, and indicates to the
peer the type of data in the packet.

eom: boolean

This parameter indicates the end of data. The end of message flag is set to
one of the following values:

TRUE This is the last data packet.
FALSE More data packets follow this data packet.
Output status: gt_status

This is the status indication of the processed request returned by the
Xerox Transport layer. Following are status messages applicable to this
request. For explanations, see Constants and Common Types in chapter 14
of this manual.

gt_request_processed

gt_connect jon_not_found
gt_invalid_state

15-14 Network Management Entities and Layer Interfaces Revision A

Services Provided

XEROX_XDATA

This request allows the Xerox Transport layer user to send priority data to its peer on
an established connection. Up to 16 bytes can be transmitted through this request.

Expedited data takes precedence over any normal data transfer. Expedited data is
generally not subjected to flow control mechanisms; however, flow control can be
imposed by passing a parameter in a connect request (see XEROX_CONNECT earlier
in this chapter).

Comdeck

Format

Input

Output

Revision A

TRMXPRT

XEROX _XDATA (cepid, message_list, data_stream_type, eom,
status) '
cepid: xerox_cepid

The Xerox Transport layer CEPID.

message _list: buf_ptr

Pointer to the chain of buffers containing data. Data can range from 0
through 16 bytes. A NIL value indicates empty buffers.

data_stream _type: xns$data_stream_type

This value is passed as a user field in the transport header. It is one byte
of information carried and delivered with the data, and indicates to the
peer the type of data in the packet.

status: gt_status

This is the status indication of the processed request returned by the
Xerox Transport layer. Following are status messages applicable to this
request. For explanations, see Constants and Common Types in chapter 14
of this manual.

gt_request_processed
gt_connect ion_not_found
gt_invalid_state

Xerox Transport Layer 15-15

Services Provided

XEROX _FLOW_CONTROL

This request allows the user to indicate to the Xerox Transport layer to either start or
stop sending data.

Flow control consists of having the peer entity grant a credit allocation, indicating the
amount of data that it guarantees it will be able to receive.

Comdeck
Format

Input

Output

TRMXPRT
XEROX_FLOW_CONTROL (cepid, flow _control _code, status)

cepid: xerox_cepid
The Xerox Transport layer CEPID.

flow _control _code: gt_,ﬂow_control_request_code

This parameter indicates whether the user should start or stop sending
data. It contains one the following values:

GT_START_ Indicates to the Xerox Transport layer that there

REQUEST is no congestion and that it can start sending
data.

GT_STOP. Indicates congestion and requests that the Xerox

REQUEST Transport layer stop sending data.

status: gt_status

The status indication of the processed request returned by the Xerox
Transport layer. Following are status messages applicable to this request.
For explanations, see Constants and Common Types in chapter 14 of this
manual.

gt _request_processed
gt_connect ion_not _found

15-16 Network Management Entities and Layer Interfaces Revision A

Constants and Common Types

Indications Services

Indications services provide a means for the Xerox Transport layer to inform the user
that a certain event has occurred. The Xerox Transport layer uses the same indication
routines that are used by the Generic Transport layer. See chapter 14 in this manual
for details.

Constants and Common Types

Since the Generic Transport layer and the Xerox Transport layer are defined in the
same module, the Xerox Transport layer uses the same common types as the Generic
Transport layer. See chapter 14 for details.

Revision A Xerox Transport Layer 15-17

©O0

00

c O

f\
~ /

_

ol

Network Layer

Control Data Network Architecture (CDNA) has divided the OSI layer 3 (the Network
layer) into the following two sublayers:

® Internet layer (layer 3B)

® Intranet layer (layer 3A)

Internet Layer

The Internet layer (layer 3B) is responsible for sending datagrams from a source to a
destination. The datagrams may pass through several systems across various network
solutions.

Intranet Layer

The Intranet layer (layer 3A) is responsible for routing and relaying information within
a specific network.

The following two chapters describe the Internet (3B) and Intranet layers (3A).

Internet Layer 16

OVEIVIBW . & o v o e e e e e e e e e e e e e e e e e e 16-1
Services Required e 16-4
Executive Interface v o o i i i e e e e e e e e e 16-4
Error ME o e e e e e e e e e e e e e e e e 16-4
Intranet Layer (Layer 3A) ottt 16-4
Services Provided e e e e e e e 16-5
OPEN_INTERNET_SAP e e e e e e e e 16-6
Data Request Procedure o 16-8
Data Indication Procedure« o i e 16-9
CLOSE_INTERNET _SAP o e e e e e e e 16-11
Constants and Common Types o v v v v vt b b vttt 16-12
CONSLANES . &« v v v e 16-12

Common TYPES . . . o v v v e e e e e e e e e e 16-14

Internet Layer 16

This chapter discusses:

An overview of the Internet layer.
The services required by the Internet layer.
The services provided by the Internet layer.

Constants and common types used in the Internet layer.

Overview

The Internet layer is a middle layer software component. The Internet layer is used by
the Transport layer and network management entities. CDCNET’s Internet uses the
XEROX Internet Transport Protocol, to provide its services.

The Internet layer provides the following services:

Provides datagram services to a corresponding Internet layer

The Internet layer is responsible for delivering datagrams from a source to a
destination. It takes messages called packets from its users and delivers them to
a destination system.

If the destination is a remote system, Internet layers in intermediate systems
keep relaying the packet forward to the next system until it reaches the system
it is intended for.

Datagram services make every attempt to deliver a packet, but do not provide
any guarantees against these packets being lost, duplicated, or delivered out of
sequence. There is, therefore, a certain risk in allowing the MEs and
applications to interface directly to the Internet layer instead of the Transport
layer, which can guarantee end-to-end delivery.

Provides relaying and routing services

Delivering data and determining paths on which the data can be delivered are
important services of the Internet layer. In other words, the Internet layer is
responsible for routing data through the network. To perform the routing
functions, the Internet layer depends on the services of:

- The Intranet layer to transmit and receive data units from directly-connected
network solutions.

- The Routing ME to maintain the routing data stores.
The Internet layer can receive data units from two sources:
- From within the CDCNET system in which it resides.

- From outside the system across a directly-connected network solution.

Revision A Internet Layer 16-1

Overview

When an Internet layer user sends a request to the Internet layer to deliver a
data unit to another system, it includes the network address of the destination
system. The Internet layer routes the data units based on this destination
network address, which consists of a network identifier system identifier and 3B
SAP identifier. (See chapter 2 and appendix B in this manual for more
information on network address and SAPs.)

A data unit that originated from a remote system goes through the following
three routing steps before it reaches the destination for which it is intended.

Internetwork
Routing

_ Intranetwork
Routing

Intrasystem
Routing

This step ensures that the data unit reaches the network
solution whose network identifier is the same as that of the
destination system. This is done by delivering the data unit
to any system that is directly connected to the desired
network solution. The path to another network is a sequence
of links or connected networks, in which the first link in the
sequence connects to the source and the last link connects to
the destination.

The Internet layer selects the paths based on:
-~ The configuration of networks.

-~ The cost that is assigned to each path.

The Internet layer determines the next hop in the path to
the destination, based on the cost of each path. The cost of
each path is supplied to the Internet layer by the Routing
ME, and is determined by an algorithm that is based on line
speed and line congestion factors. See chapter 4 in this
manual for more information on Routing ME.

Each hop is a separate routing decision, and each time the
Internet layer relays data, it increments the hop count in
the Internet header of the data unit. If the resultant hop
count exceeds 16, the Internet layer discards the data unit
and informs the sender or the originator of the message.

In this step, the data unit is delivered to the appropriate
system on the destination network solution. The system
identifier in the destination address is used to locate the
desired system.

The data unit is finally delivered to the appropriate software
component. The 3B SAP identifier is used to accomplish this
routing.

16-2 Network Management Entities and Layer Interfaces Revision A

Overview

® Detects errors

The Internet layer detects errors and informs Error ME about them. See chapter
11 in this manual for the types of errors and other details on Error ME.

® Relieves users from needing to know the nature of subnetworks

The Internet layer provides its users with enhanced services that are based on
the services provided by the lower layers. Because of this support, its users can
continue with their activities without any knowledge of the characteristics or the
protocols of the lower layers.

® Supports multicast service

The Internet layer supports multicast service, a service through which a set of
systems with a multicast address can automatically have data delivered to them.
See chapter 1 in this manual for a definition of a multicast address.

Revision A : Internet Layer 16-3

Services Required

Services Required
For the Internet layer to provide services to its own users it, in turn, depends on the

services of the other software components. Brief descriptions of the services of each of
these software components follow.

Executive Interface
The Internet layer uses the interface to the Buffer Management service within the

Executive. Details on this interface are provided in the CDCNET Systems
Programmer’s Reference Manual, Volume 1.

Error ME
When an error is detected, the Internet layer sends the 3B PDU and error code to

Error ME through an intertask message (ITM). See chapter 11 in this manual for more
information.

Intranet Layer (Layer 3A)
The Internet layer communicates with the Intranet layer (3A) through two interfaces:

USER_DATA_ Used by the Intranet layer to indicate that data has arrived for the
IND_PROC Internet layer.

DATA_ Used by the Internet layer to send data to the Intranet layer.
REQUEST._.3A

See chapter 17 in this manual for details on the Intranet layer.

16-4 Network Management Entities and Layer Interfaces Revision A

Services Provided

Services Provided

This section describes the external interfaces provided by the Internet layer to its
users.

The Internet layer users include the common deck B3XREQI in their calling modules.
This common deck defines the externally referenced (XREF) declarations for the
Internet layer procedures.

Common deck B3XREQI contains calls to several common decks which define the types
and constants for these procedures and the different data structures through which
Internet layer requests are passed.

Common types used by the Internet layer and detailed explanations of returned status
messages are given under Constants and Common Types, later in this chapter.

The Internet layer’s services are provided through the following procedures:
¢ OPEN_INTERNET_SAP

® CLOSE_INTERNET_SAP

® Data Request Procedure

® Data Indication Procedure

Figure 16-1 illustrates these interfaces.

User Layer {eg. Xerox Transport)

B

[l

i

|

OPEN__ CLOSE__ Data Data
INTERNET_ INTERNET Request Indication
SAP SAP Procedure Procedure

|

|

intranet Layer

|

Revision A

Figure 16-1.

Internet Layer Interfaces

Internet Layer 16-5

Services Provided

OPEN_INTERNET _SAP

This request opens an Internet SAP. A dedicated or dynamic SAP can be opened. The
user identifies the SAP it wishes to open and supplies all the input parameters,
including the address of the procedure which receives indications from the Internet
layer. The Internet layer returns the open SAP identifier along with the address of the
procedure to which the user sends data requests.

Comdeck
Format

Input

Table 16-1.

B3XREQI
OPEN _INTERNET_SAP (input_param, output_param, return_code)

input_param: “open_sap_input_parameters
A record. Table 16-1 shows this record’s input parameters.

Open SAP Input Record (OPEN _SAP_INPUT_PARAMETERS)

Field

Content

sap_id

user_.id

destination

force_.close

The identifier of the SAP the user wishes to open. A zero value indicates
a dynamic SAP. (Type SAP_ID_TYPE.)

A pointer to a cell which contains the user identifier. The Internet layer
uses this when delivering data.

This pointer is passed again when the user wishes to close the SAP. The
user identifier must match the SAP identifier that was passed when the
SAP was opened. This prevents accidental closing of SAPs. (Type "CELL.)

A pointer to the procedure that receives indications from the Internet
layer. (Type DESTINATION_3B_SAP_IF) See Data Indication Procedure
and table 16-2 in this chapter for more information on this procedure.

A pointer to a procedure that is called by the Internet layer to close a
SAP. (Type FORCE_CLOSE_IF.) See Constants and Common Types later
in this chapter for more information on this procedure.

16-6 Network

Management Entities and Layer Interfaces Revision A

Services Provided

Output output_param: “open_sap_output_parameters

A record. Table 16-2 shows this record’s output parameters.

Table 16-2. Open SAP Output Record (OPEN_SAP_OUTPUT_PARAMETERS)

Field Content

local_internet_ This field is returned by the Internet layer and indicates the

address: network and system address and the SAP identifier of the local
system. (Type INTERNET_ADDRESS.) See appendix B for a
description of the Internet address record.

internet_request: A pointer to a procedure which is called by the user to request
datagram transmission. (Type INTERNET_REQUEST_ADDRESS.)
See Data Request Procedure and table 16-3 for more information.

maximum_. This field is returned by the Internet layer and indicates the

request..length

maximum number of bytes that can be transmitted (1 through the
value of MAX_DATA_LENGTH, 1466 bytes).

return_code: open_internet_sap_status

The status indication for the processed request. Following are the status
messages applicable to the OPEN_INTERNET_SAP request. For
explanations, see Constants and Common Types later in this chapter.

open_sap_successful
illegal_dedicated_sap
nil_parameter_pointer
no_dest inat ion_proc
sap_aliready_opened
no_sap_entries_available

Revision A

Internet Layer 16-7

Services Provided

Data Request Procedure

This procedure allows the user to request the Internet layer to transmit a data unit.
The address of this procedure is returned by the Internet layer when an OPEN_
INTERNET_SAP call is made. The parameters for the request are contained in a
record whose pointer is passed in the call. (See table 16-3.)

TYPE

internet_request_address = “procedure (
req_param: “internet_req.if;
VAR return_code: internet_return_codes),

Table 16-3. Data Request Record (INTERNET_REQ_IF)

Field

Content

source__address

destination_
address

packet_kind

checksum

data

This field indicates the address of the source or the sender of the
message. It includes the network, system, and SAP identifiers.
Default values can be supplied for the network and system
identifiers. These are listed in Constants and Common Types later
in this chapter. Default values specify a local system. See appendix
B for a description of the INTERNET_ADDRESS. (Type
INTERNET_ADDRESS.)

This field indicates the address of the destination system to which
the data has to be delivered. It includes the network, system, and
SAP identifiers. Default values can be supplied for the network and
system identifiers. These values are listed in Constants and
Common Types later in this chapter. Default values specify a local
system. See appendix B for a description of INTERNET_ADDRESS.
(Type INTERNET.__ADDRESS.)

This field indicates the protocol identifier to be used in the header
of the 3B PDU. It is supplied by the user that is sending the data,
and is delivered to the peer at the destination system. A list of
known values for packet types for Internet requests and indications
is given in Constants and Common Types later in this chapter.
(Type PACKET_TYPE))

This field indicates if checksum is specified. (Type BOOLEAN.)

TRUE The checksum of the message is calculated,
included in the header, and verified at the
destination.

FALSE Checksum not specified.

A pointer to the data that is being transmitted. The maximum data
length is 1466 bytes. (Type BUF_PTR))

16-8 Network Management Entities and Layer Interfaces Revision A

Services Provided

return_code: internet_return_codes

The status indication of a processed request returned by the the Internet layer.
Following are the status messages returned for the data request procedure
(INTERNET_REQ_IF). For explanations, see Constants and Common Types later in
this chapter.

internet_success
ineterror_nil_param
ineterror_sosap
ineterror_dssap
ineterror_data

Data Indication Procedure

This procedure allows the user to receive data indications. The address of this
procedure is specified by the user when an OPEN_INTERNET_SAP call is made. The
parameters for the procedure are contained in a record whose pointer is passed in the
call. All fields in this record, except the multicast field, are extracted from the Internet
PDU headers and passed on to the user. See table 16-4.

TYPE
destination_3b_sap_if = “procedure (
ind_params: “internet_ind_if),

Table 16-4. Data Indication Record (INTERNET _IND_IF)

Field Content
multicast The field that indicates if the data is to be multicast. (Type
BOOLEAN))

TRUE Data was received through a multicast service:

FALSE Data was received through a datagram service.

checksum This indicates if checksum is specified. (Type BOOLEAN.)

TRUE The checksum of the message is calculated,
included in the header, and verified at the
destination.

FALSE Checksum is not specified.

source__address This parameter indicates the address of the source or the sender of

the message. It includes the network, system, and SAP identifiers.
These are listed in Constants and Common Types later in this
chapter. (Type INTERNET_ADDRESS.) See appendix B for a
description of the INTERNET_ADDRESS.

destination_ This parameter indicates the address of the destination system to

address which the data has to be delivered. It includes the network, system,
and SAP identifiers. These values are listed in Constants and
Common Types later in this chapter. (Type INTERNET_
ADDRESS.) See appendix B for a description of INTERNET
ADDRESS.

(Continued)

Revision A Internet Layer 16-8

Data Indication Procedure

Table 16-4. Data Indication Record (INTERNET _IND _IF) (Continued)
Field Content

control This is a packed record. (CONTROL_BYTES.)
Field Content
hop_ This value indicates the number of intermediate systems
count the message would have to be relayed through before it
reaches the final destination. (0..OFF (16).)
packet_. This field indicates the protocol identifier to be used in
kind the header of the 3B PDU. It is supplied by the user

sending the data and is delivered to the user at the
destination system. A list of known values for packet
types for Internet requests and indications is given in
Constants and Common Types later in this chapter.
(Type PACKET_TYPE.) :

user _id Pointer to a cell containing the user identifier which was supplied
when the destination user’s SAP was opened. ("CELL.)

data Pointer to the data. The maximum data length is 1466 bytes. (Type
BUF_PTR.)

16-10 Network Management Entities and Layer Interfaces Revision A

Services Provided

CLOSE _INTERNET_SAP

This request allows an Internet layer user to close an Internet SAP.
Comdeck B3XREQI

Format CLOSE _INTERNET_SAP (sap_id, user_id, return_code)

Input sap_id: sap_id_type
Identifies the SAP that is to be closed.

user_id: “cell
The user identifier that was passed by the user when the SAP was opened.

Output return_code: close_internet_sap_status

The status indication for the processed request. Following are status
messages returned for the CLOSE_INTERNET_SAP procedure. For
explanations, see Constants and Common Types later in this chapter.

close_sap_successful
sap_already_closed
mismatch_userid

Revision A Internet Layer 16-11

Constants and Common Types

Constants and Common Types

This section lists all the constants and common types used by the procedures described
in this chapter. Each group of constants and common types is preceded by the name of

the common deck in which they are defined.

Constants

Common deck B3SDERRD

jer3bpdu_size = 42

Common deck B3DIERC

jer_unspecified_at_destination = 0,
jer_checksum_at_destination = 1,
jer_sap_closed = 2,
ier_resource_limit_at_dest = 3,
jer_unspecified_before_dest = 200(16),
jer_checksum_before_destination = 201(16),
fer_dest inat ion_unreachable = 202(16),
jer_hop_count = 203(16),
jer_packet_too_large = 204(18),
ier_not_echo_packet = 1001(16),
ier_not_echo_req = 1002(16)

Common deck B3DDFAU

max_data_length = 1466,
default_network_id = 0,
default_system_id_upper = 0,
default_system_id_iower = 0,
default_sap_id = 0

Common deck B3DDSAP
Interface via Transport (4) layer

directory_me_xp_sapid = 1020(10),
file_access_me_xp_sapid = 1021(i0),
command_me_xp_sapid = 1022(10),
dep_log_me_xp_sapid = 1023(10),
dep_alarm_me_xp_sapid = 1024(10),
ing_file_access_me_xp_sapid = 1025(10),
ind_command_me_xp_sapid = 1026(10),
ind_log_me_xp_sapid = 1027(10),
ind_alarm_me_xp_sapid =1028(10)

Ephemeral Internet SAPs

request_ephemeral_sap = 0(10),
lowest_ephemeral_sap = 3001(10),
highest_ephemeral_sap = Offff(16)

16-12 Network Management Entities and Layer Interfaces

Revision A

Interface via Internet (3B) layer

routing_me_sapid = 1(10),
echo_me_sapid = 2(10),
error_me_sapid = 3(10),
directory_me_sapid = 20(10),
file_access_me_sapid = 21(10),
command_me_sapid = 22(10),
dep_log_me_sapid = 23(10),
dep_alarm_me_sapid = 24(10),

ind_file_access_me_sapid = 25(10),

ind_command_me_sapid = 26(10),
ind_log_me_sapid = 27(10),
ind_atlarm_me_sapid = 28(10),

highest_dedicated_sap = 3000(10)

Common deck B3DPCKT

unknown_packet_type = 0,
xerox_routing_info_packet = 1,
xerox_echo_packet = 2,
xerox_error_packet = 3,
xerox_packet_exchange = 4,
xerox_sequenced_packet = 5,
experimental_packet = 16,
cdna_routing_info_packet = 17,
cdna_directory_packet = 18,
cdna_command_packet = 19,
cdna_log_packet = 20

Revision A

Constants and Common Types

Internet Layer 16-13

Constants and Common Types

Common Types

Common deck B3DCSAP

close_internet_sap_status =

close_sap_successful, The request to close SAP was
successful. .

sap_already_closed, The specified SAP is already
closed.

mismatch_userid) The USERID does not match the

SAP identifier that was passed
when the SAP was opened.

Common deck B3DCOBY

control_bytes = packed record
hop_count: 0 .. Off(16),
packet_kind: packet_type,
recend

Common deck B3DECHT

echo_operation = (echo_null, echo_request, echo_reply)

Common deck B3DERRD

error_me_data = record
error_number: internet_error_codes,
error_parameter: 0 .. OFfff(16),
recend

Common deck B3DFCIS

force_close_if = “procedure (
sap_id: sap_id_type;
user_id: “cell)

Common deck B3DERRD

internet_error_codes = 0 .. Offff{(16)

16-14 Network Management Entities and Layer Interfaces Revision A

Common deck B3DRTNT

internet_return_codes =
internet_success,

ineterror_nil_param,

ineterror_sosap,
ineterror_dssap,

ineterror_data)

Common deck B3DOSAP

open_internet_sap_status =
open_sap_successful,

illegal_dedicated_sap,

nil_parameter_pointer,

no_destination_proc,
sap_already_opened,

no_sap_entries_available,
sap_3b_insuf_resorc,

internet_down)

Common deck B3DPCKT

packet_type = 0 .. Off(16)

Revision A

Constants and Common Types

The request was processed
successfully.

A NIL value was passed for the
REQ_PARAM parameter on the
Data Request procedure.

The source SAP that was
specified is not in the SAP table.
The destination SAP that was
specified is not in the SAP range.
No data or data that exceeds the
maximum limit was passed
through this request.

The request to open the SAP was
successful.

The dedicated SAP is not in the
expected range.

A NIL value was passed for the
INPUT_PARAM or OUTPUT_
PARAM parameters on the
OPEN_INTERNET_SAP request.
Destination procedure was not
provided.

Attempting to open a dedicated
SAP that is already open.

All SAPs are currently allocated.
Insufficient memory to create a
SAP table entry.

Internet services are not
available.

Internet Layer 16-15

Intranet Layer 17

OVEIVIEW . . o o o e v e 17-1
User Interfaces to the Intranet Layer 17-1
Opening an Intranet Layer SAP 17-2
Sending Data e e e e e e 17-3
Receiving Datao 17-3
Network Status v v o e e e e e e e e e e e e e e e e e e 17-3
Intranet Headers o i i i i e e e e e e e e 17-4
Intranet Layer Data Structures oo 17-4

Network Information Block (NIB) oo 17-5
Link Information Block (LIB) oo 17-5

Services Required 17-6

Data Link Layer Interfaces o 17-6
SSR_DATA_REQUEST Procedure 17-6
SSR_DATA_INDICATION Proceduret 17-6
SSR_STATUS_INDICATION Procedureo 17-6

Services Provided e e e e 17-7

User Interface o i i o e e e e e e e e e e e e e 17-7
OPEN _3A _SAP e e e 17-8
CLOSE _3A_SAP e e e e 17-9
DATA_REQUEST_3A s 17-10

Indication Services i e e e e e e e e 17-11
Data Indication Procedure oo 17-12
Status Update Indication 17-13

Constants and Common Types 17-14
Constants e e e e e e e e e e e e e e e e e 17-14

Common TYPES o o v v vt e e e e e e e 17-15

Intranet Layer 17

This chapter discusses:

® An overview of the Intranet layer (layer 3A).
® The services required by the Intranet layer.
® The services provided by the Intranet layer.

® (Constants and common types used in the Intranet layer’s service requests.

Overview

The Intranet layer (3A) is a lower layer software component. It provides a generic
interface between the higher layer CDCNET software and the individual network
solutions’ software (layers 1 and 2). Layers above Intranet and various management
entities communicate with individual stream service routines (SSRs) through the
Intranet layer. SSRs are layer 2 software.

Intranet layer services can be functionally divided into three groups:
® SAP management services.
® Data transfer services.
® Status indication services.
The SAP management services include:
Opening an Intranet layer SAP.
Closing an Intranet layer SAP.
The data transfer services include:
Transferring data to and from network solutions.
The status indication services include:

Sending 3A status update indications

User Interfaces to the Intranet Layer

Figure 17-1 illustrates the interfaces between the Intranet layer and its users. It also
shows the interfaces between the Intranet layer and the lower layer which provides
services to the Intranet layer.

All interfaces are invoked through procedural calls. The formats and definitions of the
service requests from users and the indications sent by the Intranet layer are described
in Services Provided, later in this chapter.

Revision A Intranet Layer 17-1

Overview

HIGHER LAYER USER OF INTRANET LAYER
(Example Internet Layer)

DATAGRAM/
BROADCAST STfI‘\E‘I'gA‘:I,'TglGTE
INDICATION
OPEN CLOSE DATA
SAP SAP REQUEST
Indirect interface «— INTRANET
to 3A command (GENERIC) 3A

processors through SSR WAKEUP
Network Information INTERFACE
Blocks and Link
Information Blocks

SSR DATA SSR DATA SSR STATUS
REQUEST INDICATION INDICATION

f f I

STREAM SERVICE ROUTINE
{LOWER LAYER)

Figure 17-1. Intranet Layer Overview

Opening an Intranet Layer SAP

As mentioned earlier, users communicate with individual network solutions through the
Intranet layer. Before any data can be sent or received, the users must open an
Intranet SAP.

Each user opens its own SAP by calling the OPEN_3A_SAP procedure. In this
procedure, the user passes the following information:

The network identifier of the network solution on which the user wishes to send
and receive data. A value of zero for this field indicates that the user wants to
send or receive data on all network solutions.

The protocol type of the user. The Intranet layer needs the protocol type to identify
the user so that incoming messages can be routed to it.

The addresses of two procedures, DATA_IND_PROC and STATUS_IND_PROC,
which are used by the Intranet layer to send data and status indications.

The Intranet layer in turn, returns the following:

®

The addresses of twe procedures, CLOSE_3A_SAP and DATA_REQUEST_3A,
which are called by the user when it wishes to close the SAP and when it wishes
to send data, respectively.

The SAP identifier that uniquely identifies the user with the opened SAP.
Status indication of the OPEN_3A_SAP request.

17-2 Network Management Entities and Layer Interfaces Revision A

Overview

Sending Data

When the user has data to be sent downline, it calls the DATA_REQUEST_3A
procedure. In this procedure, the user specifies the following:

® The identifier of the network solution on which the data should be transmitted.
® The system identifier of the destination system.

® The user’s SAP identifier that was assigned by the Intranet layer when the Intranet
SAP was opened.

® Address of the buffers containing the user data.
Intranet then builds the 3A header and does the following:

® Places the associated header information for the type of network solution specified
in front of the data.

® Enqueues the datagram in the associated 3A queue.
® Changes the network status if the network gets congested.
® Informs all the users of any status changes.

® Sends an intertask message to the SSR if it is waiting for a message.
For more information on SSRs, see chapters 18, 19, and 20 in this manual. Also see

the SSR_SLEEPING field in the LIB which is described later in this section; the
LIB record is given in Constants and Common Types, later in this chapter.
Receiving Data

When a datagram is received on a network solution and is transmitted upline, the
Intranet layer does the following:

1. Strips off the 3A header.

2. Gets the protocol type that is specified in the header. The protocol type indicates
the user for whom the datagram is intended. (See Constants and Common Types
later in this chapter for more information on headers and protocol types.)

3. Retrieves the address of the DATA_IND_PROC (which was supplied by the user
when it opened the Intranet SAP) from the Intranet SAP table.

4. Sends the datagram upline.

Network Status

When the Intranet layer receives information on the status of a network solution, it
does the following:

o Updates the status fields in the network information and the link information
blocks for the associated network solution.

® Notifies all the users who have opened the Intranet SAPs to the specified network
solution through the STATUS_IND_PROC procedure, which was supplied by the
user when the SAP was opened.

Revision A Intranet Layer 17-3

Qverview

Intranet Headers

The Intranet header is identical to the IEEE 802.2 link layer header. The Intranet
layer uses this common header for all network solutions supported by CDCNET.

The information in the header is used to route the incoming data units to the
appropriate Intranet SAP. The contents of this header are based on the users of 3A in
the source and destination system.

The Intranet layer is responsible for adding and removing the 3A headers. Headers are
added by the GENERIC_3A_DATA procedure. An appropriate header type is selected
based on what is specified in the NETWORK_TYPE field in the network information
block (NIB). The header is removed before a data indication is sent to the Intranet
layer users.

For more information on SSRs, see chapters 18, 19, and 20 in this manual. Also see
Constants and Common Types in this chapter for CYBIL definitions of the headers and
header types.

Intranet Layer Data Structures

The Intranet layer maintains and uses two main data structures:
® The network information block (NIB).

® The link information block (LIB).

As seen in figure 17-2, NIB is the interface between the Intranet layer and its higher
layer users. LIB is the interface between the Intranet layer and the SSRs.

Following is a brief description of these data structures. The CYBIL record type
definitions for these data structures are given in Constants and Common Types, later
in this chapter.

3A USER
Network
information
Block
INTRANET LAYER (3A) l T
Link
information
Block
SSRs

Figure 17-2. Intranet Layer, NIB, LIB Relationship

17-4 Network Management Entities and Layer Interfaces Revision A

Overview

Network Information Block (NIB)

A NIB is a table that exists for each configured network solution. This table contains
network-related information such as:

® The network identifier.
® The cost of the network solution.

A NIB is created when a command to define a network is executed by the 3A
command processors. The command parameters can be used to provide the values of
different fields in the NIB. (For more information on network definition commands, see
CDCNET Network Configuration and Site Administration Guide).

All NIBs for a particular DI are linked together through a data structure called the
network solution list. This data structure helps Intranet and its command processors
search for a particular NIB. Each NIB is also linked together to its associated LIB.
(The LIB is described next.)

When a command to cancel a particular network is executed, the corresponding NIB
and the pointer to this NIB block from any associated LIB are deleted.

Link Information Block (LIB)

A LIB is a table that exists for each configured trunk. This table contains link-related
information needed to provide:

® The services and functions ass