') CDCNET Base System Software

Systems Programmer’s Reference Manual, Volume 1

Hi 60462410 (G2 CONTROL DATA

CDCNET Base System Software

Systems Programmer’s Reference Manual, Volume 1

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60462410

Manual History

This manual is revision A, printed in September 1986. It documents CDCNET Software
applicable to NOS and NOS/VE environments.

©1986 by Control Data Corporation.
All rights reserved.
Printed in the United States of America.

2 Base System Software Revision A

Contents

About This Manual . ., ., 5
Audience 5
Organization 5
Related Manuals 7
Additional Related Publications . . . 8
Ordering Manuals 8
Submitting Comments 8

Introduction 11

System Initialization 2-1
The Initial Loader 2-1
Program Naming Conventions 2-3

The Executive 3-1

General Concepts Relating to the
Executive 3-1

Task Management 3-4
Memory Management 3-5
Message Management 3-8
Queue Management 3-10
Timer Management. 3-11
Statistics Management 4-1

Statistics Management
Relationships. 4-2

Procedures and Functions 4-2
Status Management 5-1
Hardware Device Status Tables. . 5-1
States and Statuses 5-2

Acquisition and Release of a
Hardware Device. 5-5

Accessing and Updating the
Hardware Device Status Tables . 5-5

Tree (Table) Management 6-1
Online Loader 7-1
Module Loader 7-1
Module Deloader 7-1
Translation to Modules 7-1

Revision A

Procedures and Functions 7-2
Failure Management 8-1
Failure Management Concepts 8-1
Structure of the Failure
Management Software. 8-3
Logging of Failure Information . . 8-9
The Device Manager (DVM) 9-1
Device Control Services 9-1
Status Request Services 9-1
Data Transfer Services 9-2
Diagnostic Services 9-2
DVM Order of Events 9-3
DVM Major Data Structures 9-4
DVM Command Packets and
Status ITMs 9-7
Procedures and Functions . 10-1
Conventions 10-1
Logical Groups 10-1
Appendixes
Glossary A-1
Data Structures B-1
Buffers B-1
DVM Command Packets and
Status ITMs B-3
Executive Error Table B-7
MPB RAM Definition B-9
Queue Control Block B-10
System Configuration Table . . . B-11
Task Control Block B-13
Constants and Common Types C-1
Common Types C-1
Procedure Types D-1
Vector Table Usage E-1
Intertask Message Workcode
Definitions F-1
DI Reset Codes G-1
Index Index-1
Contents 3

Figures

3-1 Descriptor and Data Buffers . . .
4-1 CDCNET Statistics Manager

8-1 General Failure Management
Model

8-2 MPB Subsystem Failure
Management Model.

8-3 CIM Subsystem Failure
Management Model.

4 Base System Software

8-4 ESCI Subsystem Failure

Management Model.

8-5 MCI Subsystem Failure

Management Model.
9-1 DVM Relationships
9-2 Device Control Block . . .
9-3 Device Identifier

Revision A

About This Manual

The CDCNET Systems Programmer’s Reference Manual describes the CDC® Control
Data Distributed Communications Network (CDCNET) software. The CDCNET software
enables you to write new terminal interface programs (TIP) and gateway software to
support terminals, networks and devices not currently supported by Control Data.

3

Audience

The Systems Programmer’s Reference Manual is intended for anyone who will develop
or integrate new software that is compatible with CDCNET. An understanding of the
software described in this manual can be useful to programmers who intend to write
new terminal interface programs or gateways for CDCNET. This includes writing of
new applications, TIPs for terminals not already supported by CDCNET, and gateways
to networks using protocols foreign to CDCNET. The reader is assumed to be familiar
with CDCNET network operations.

Organization

This manual is one of a three-volume Systems Programmer’s Reference Manual set that
describes the CDCNET software. The following subsection contains brief descriptions of
the other manuals in the set and a more detailed description of this manual.

Systems Programmer’s Reference Manual Set

The three-volume manual set includes the following manuals.

® Volume 1: Base System Software

¢ Volume 2: Network Management Entities and Layer Interfaces
® Volume 3: Network Protocols

Base System Software, volume 1, describes the CDCNET Device Interface (DI) startup
and system management software: its base system software. The volume begins with an
overview of each base system software component, and continues with details of the
procedures and functions provided by these software components for general use.

Network MEs and Layer Interfaces, volume 2, describes each of the network
management entities (MEs) and layer interfaces for CDCNET. The volume also
describes the interfaces to non-CDCNET systems. These interfaces include interfaces to
NOS hosts and X.25 Packet level networks. The information described in this volume is
essential for programmers who intend to write gateway software that will reside in
CDCNET.

Network Protocols, volume 3, defines CDCNET network protocols. The use of protocols
enforces consistent communication between software entities and the transitions that
result. The description of each protocol follows a rigid documentation guideline, called
the Finite State Machine (FSM). The information described in this volume will be
useful to programmers implementing Control Data Network Architecture (CDNA) on a
foreign host or network.

Revision A About This Manual 5

Volume 1: Base System Software

This manual begins with a general introduction of the role CDCNETS’s base system
software plays within the network architecture. This software is then described in
detail. Base system software procedures and functions that can be called are then
presented in alphabetical order with the information needed to call them. Other
relevent information is presented in the appendices, including the common types used
in making procedure calls.

Chapter 1 introduces the role of CDCNET's base system software within the network
architecture.

Chapter 2 describes the process of initializing a CDCNET system.

Chapter 3 describes the general concepts and software management areas controlled by
the executive software.

Chapter 4 describes the software providing statistics management services.
Chapter 5 describes the software providing status management services.
Chapter 6 describes the software providing table management services.
Chapter 7 describes the software providing the online loader.

Chapter 8 describes the software providing failure management.

Chapter 9 describes the Device Manager, which provides the interface between CDNA’s
physical and link layers.

Chapter 10 describes the common routines of the base system software that provide the
services described in the previous chapters.

Appendix A provides a glossary of CDCNET terms and acronyms.
Appendix B provides definitions of descriptor and data buffers.

Appendix C provides an alphabetical list of CYBIL-defined common types discussed in
this manual.

6 Base System Software Revision A

Related Manuals

Background (access as needed):

Conceptual
Overview
Manual

60461540

Network
Operations
Manual

60461520

Software development manuals:

CDCNET Systems Programmer’s Reference Manual

80462410

Vol. 2
Network MEs
and Layer
Interfaces

60462420

Software tools manuals:

CDCNET
CYBIL
Reference

60462400

Revision A

CDCNET
MC68000
Cross~
Assembler

60462700

Vol. 3
Network
Protocols

60462430

CDCNET
MC68000
Utilities

60462500

About This Manual 7

Additional Related Publications

The following manuals are referenced in this document. These manuals should be used :
when more extensive information about the topics covered herein is required.

Manual Title Publication
Number

CDCNET Network Analysis Manual 60461590

CDCNET Troubleshooting Guide 60462630

Ordering Manuals
Control Data manuals are available through Control Data Sales offices or through:

Control Data Corporation

Literature Distribution Services

308 North Dale Street

St. Paul, Minnesota 55103
Submitting Comments

Control Data welcomes your comments about this manual. Your comments may include
your opinion of the usefulness of this manual, your suggestions for specific
improvements, and the reporting of any errors you have found.

You can submit your comments on the comment sheet on the last page of this manual.
If the manual has no comment sheet, mail your comments on another sheet of paper
to:

Control Data Corporation

Technology and Publications Division, ARH219

- 4201 Lexington Avenue North
St. Paul, Minnesota 55126-6198

You can also submit your comments through SOLVER, an online facility for reporting
problems. To submit a documentation comment through SOLVER, do the following:

1. Select Report a new problem or change in existing PSR from the main SOLVER menu,
2. Respond to the prompts for site-specific information.

3. Select Write a comment about a manual from the new menu.

4. Respond to the prompts. -

Please indicate whether you would like a written response.

8 Base System Software Revision A

Introduction

Introduction 1

CDCNET Device Interfaces (DIs) manage the exchange of information between network
interfaces. Information being moved from point A to point B on the network must be
packaged and repackaged on its way. The data doesn’t simply move horizontally across
the network on the same level at which it came in. It must also move down through
the network layers to the physical layer and back up again; otherwise, it cannot
traverse the network.

Moving information both horizontally and vertically through the network requires the
specialized services of CDCNET management entities (MEs) and layer software. These
services, in turn, must rely on base system software to provide the necessary
environment for their activities. Base system software creates and maintains the
system environment in a CDCNET DI. Without it, the system’s MEs and layer software
could not function.

Base system software creates an operational environment in a DI by taking advantage
of the distributed processing design of CDCNET. Working on a buddy system, DI
software requesting help to initialize gets that help from an already operational DI.
Software that is loaded in this way continues the initialization process from within the
initializing DI. Initialization is complete when the DI is up and running normally.

While a DI is operating normally, its base system software maintains the system
environment for the MEs and layer software to use. Maintaining this environment
means providing the following services:

® Integer- and string-keyed table management

® Allocation and de-allocation of system resources
® Online loading

® Device status table management

® External device interrupt management

® (Comprehensive failure management

® Collection and reporting of statistics

The primary purpose of this manual is to provide enough information to enable you to
use common base system software routines in your TIPs, gateways, or other
CDCNET-compatible software. These routines are detailed in chapter 10. Between here
and chapter 10, you will read about the special concepts and activities of CDCNET
base system software components. This information is provided in the context of what
these components can do for you in your own programming.

Revision A Introduction 1-1

System Initialization 2

The Initial Loader

...................................... 2-1
Loading the Software Modules 2-2
Initializing the Executive 2-2
Startup of the System Ancestor. 2-2

Program Naming Conventions

System Initialization 2

The initialization process defines how the software is initially loaded and started in a
CDCNET system. This process is designed to accommodate a first-time load as well as
the needs of restoring a failed system to its operational state. CDCNET system
initialization is a distributed process that requires the services of another, operational
system. The initialization process consists of the following steps:

e After DI power is turned on or the DI is reset, the hardware quicklook diagnostics
are run. If the diagnostics complete successfully, control is transferred to the
DI-resident Main Bootstrap Controller. .

® The Main Bootstrap Controller selects a board across which to attempt a bootstrap
and moves board-specific ROM code from that board into system main memory
(SMM) to begin the bootstrap process.

® The Dl-resident Initialization Bootstrap is then called to assist in loading across the
selected board. This subroutine requests help in loading from an operational DI or
host system. If a Terminal DI (TDI) is initializing, it looks to a Mainframe DI
(MDI) for help. If an MDI or Mainframe Terminal Interface (MTI) is initializing, it
looks to the host.

The operational system determines if memory is to be dumped from the initializing
system, based on information contained in the help request. If a dump is required,
it is written to a file on the host before the loading is attempted. The boot file is
then loaded into the initializing DI.

® Once the boot file has been loaded into DI memory, the Initialization Bootstrap
transfers control to the transfer address provided by the board-specific routine. This
corresponds to the Initial Loader, which is the first section of the boot image; it
arrives prelinked and ready for execution.

The Initial Loader (described in more detail later) allocates memory and links the
remaining software modules in the boot image. It then initializes the Executive and
starts the System Ancestor as a task.

® The System Ancestor, in turn, starts the basic set of tasks common to all DI
variants, plus the software required to drive the network interface that was used in
the initial load. When the System Ancestor completes its initialization function, the’
minimum set of system tasks required to support the DI environment has been
started.

® Among the tasks started by the System Ancestor is the Configuration Procurer. The
Configuration Procurer oversees the starting and execution of configuraton
commands that are specific to the DI being initialized.

The Initial Loader

The Initial Loader is the first section of the boot file to be loaded into the DI during
initialization. It is loaded as a prelinked, absolute record that is ready for execution.
The Initial Loader is immediately followed in the boot image by the other DI software
modules.

The Initial Loader loads the software modules from the boot image into the memory
space of the DI hardware configuration (making the necessary linkages) and initiates
software execution. Initiating software execution requires initialization of the Executive
and startup of the System Ancestor task.

Revision A System Initialization 2-1

Program Naming Conventions

Program Naming Conventions

There are three hardware boards that serve as storage locations for programs that will
run on the MPB processor: the MPB itself, the Private Memory Module (PMM), and
the System Main Memory (SMM). The following naming convention is used to ensure
proper software module loading in the available hardware configuration.

program_name_MPB Preferred residence is in MPB memory.
program_name_PMM Preferred residence is in PMM memory.

Allocation of MPB, PMM, and SMM is hierarchical in that order. If there is not
enough PMM, for example, a program with a PMM suffix will be placed in the SMM.
If a program does not have a recognizable suffix to its name, the loader assumes that
the program is to be stored in the SMM.

NOTE

Because the modules are examined and loaded sequentially from the boot image,
modules that have a critical need for residence in the limited space of the MPB or the
PMM should be placed early in the boot file so that they will be loaded early. For
example, the Executive (EXEC_MPB) is the first record in the boot image after the
Initial Loader.

Revision A System Initialization 2-3

The Executive 3

General Concepts Relating to the Executive 3-1
Interrupt Service Routines o 0. 3-1
Tasks o e e e e e e e e e 3-1
Parent Tasks e e e 3-2
Task Control Block 3-2
Message QUEUES v v ittt e e e 3-2
Task Attribute Flags 3-3

Task Management o v ittt e e e 3-4

Memory Management e e 3-5
Data and Descriptor Buffers 0. 3-5
Buffer and Memory States e 3-6
Priorities and Thresholds, 3-6
Procedures and Functions o o oo 3-7

Message Management e e e 3-8

Queue Management e e 3-10

Timer Management 3-11

The Executive 3

The Executive offers procedures that let users share the system’s available processing -
and memory resources efficiently. It is the kernel of the DI software.

This chapter presents some general concepts that apply to the Executive and goes on to
give brief descriptions of the five specialized services that the Executive provides to its
users. They are:

® Task Management

® Memory Management
® Message Management
® Queue Management

® Timer Management

General Concepts Relating to the Executive

Interrupt Service Routines

To achieve needed flexibility, the Executive distinguishes between two types of
processing requests: Interrupt Service Routines and tasks.

Interrupt Service Routines execute in response to the demands of external interfaces
that the system does not itself control, such as intelligent peripheral (IP)
communications and Mainframe Channel Interface (MCI) /O completion. These requests
execute in supervisor state, the higher of two privilege states of CPU operation.

Interrupt Service Routines communicate with other code using intertask messages
(ITMs). ITMs are specific in their form and content and are identified by number. They
are sent to the normal or express queue of the destination task.

The Executive uses firewalls to facilitate its error management for Interrupt Service
Routines. Firewalls are special structures in execution stacks that allow code to return
to a known checkpoint on demand. They are constructed within Interrupt Service
Routines by means of supervisor calls that save the stack address, registers, and
hardware status. By using firewalls, failures within Interrupt Service Routines are less
serious; the system stack is recovered and the associated routine is notified of the
error.

Tasks

System tasks perform the system’s ordinary network layer and management functions.
Tasks execute in the user state, the lower of two privilege states of CPU operation.
Because task code responds in a less reactive fashion than Interrupt Service Routines,
it may be dispatched and execute at different priority levels within the user state,
depending on realtime response requirements.

The Executive schedules task execution according to the task’s priority level and
preemptibility.

Revision A The Executive 3-1

General Concepts Relating to the Executive

Each task has a unique User Stack for keeping track of variables, parameters, and
registers during the chaining of calls required in its execution. The stack maintains
information specific to the task to which it belongs. Unused stack length may be
checked using the UNUSED_STACK_ function described in chapter 10.

In addition to making direct calls for services, tasks may communicate with one
another using ITMs.

Parent Tasks

Task recovery is enhanced by the concept of parent tasks, in which one task oversees
the execution of another. A parent task oversees execution of its child task by servicing
any ITMs from the Executive regarding Interrupt Service Routines and by executing
recovery mechanisms in response to these messages.

Task Control Block

The Executive may redirect CPU processing from one task to another at any point
during a task’s execution. When this occurs, the context of the executing task must be
saved until the Executive can schedule completion of that task. The Executive saves a
task’s context in a task control block (TCB).

The TCB is addressed by its task_ptr (or taskid), which is created when the task is
started. The TCB maintains the task state and includes, among other things:

Stack length and pointers

Parent/child task pointers

Task state and transition counters

Queue Control Blocks (QCBs)

Register save area

Task status register and program counter

Refer to the data structures in appendix B of this manual for the CYBIL definition of
the TCB structure. '

Message Queues

Each task has both a normal and an express message queue. A separate QCB is
maintained in the TCB for each of these queues. Messages sent to a task’s normal
message queue are generally concerned with intertask services. Messages sent to the
express message queue are generally concerned with task error notifications.

Each message queue is emptied in first-in, first-out (FIFO) order. The express queue
takes priority; it is emptied first.

3-2 Base System Software Revision A

General Concepts Relating to the Executive

Task Attribute Flag’s

Two attribute flags are associated with each task and maintained in the task’s TCB.
They are:

Preemptible/Not Preemptible

This flag indicates if the task may be preempted by the scheduling of higher
priority tasks. If processing has begun on a task that is not preemptible, exception
processing must return to that task even if higher priority work is subsequently
scheduled (unless the task is aborted or an immediate control task is scheduled).

If a preemptible task is preempted, the Executive reschedules that task’s processing
after the higher priority task completes.
Immediate Control

This flag overrides the preemptible/not preemptible flag. If a task is an immediate
control task, then the Executive schedules its requests immediately, regardless of
the preemptibility of the previously executing task. Only recovery tasks are
immediate control tasks.

NOTE

This feature is not presently implemented. The immediate control flag will be
passed, but it has no effect on task scheduling.

Revision A The Executive 3-3

Task Management

Task Management

The Executive provides a flexible task management environment as one of its
specialized services. Tasks may start, stop, or delay their own or another task’s
processing. They may also change their own priority, preemptibility, and state or those
of other tasks.

Besides passing work, tasks need to control access to shared resources (tables, for
example). The standard method of controlling shared access is a semaphore that
indicates whether a resource is in use. The Executive provides a semaphore service
(SIGNAL(n)ACQUIRE(n)).

Following are brief descriptions of the Executive’s task management procedures.
Complete documentation of these procedures can be found in chapter 10 of this manual.

Procedure Description

ABORT_TASK Aborts the execution of a task

DELAY_PROCESSING Temporarily delays task processing

NEW_INTERRUPT Announces an interrupt service routine

NEW_PRIORITY Changes a task’s priority

NOPREMPT Supresses task preemption

OKPREMPT Restores task preemption

RESTORE_TASK Restores task from a suspended state

SIGNAL(n)/ACQUIRE(n) Tests for, and sets, semaphores

START_SYSTEM_TASK Starts a task with the system ancestor as its
parent

START_TASK Starts task at procedure entry point

STOP_TASK Stops task execution

SUSPEND Suspends task execution

WAIT Puts task in a wait state

WAKE_UP Wakes a waiting task

YIELD Yields control of the CPU

3-4 Base System Software Revision A

Memory Management

Memory Management

The Executive manages the allocation of a configurable amount of system memory for
use by tasks. During times of memory congestion, the Executive is still able to service
critical memory requests by accessing other memory known to be free at the time of
the request. This section describes some of the basic memory management concepts
associated with these services.

Data and Descriptor Buffers

The Executive allocates memory efficiently by distinguishing between data and
descriptor buffers (also referred to as long and short buffers, respectively). CYBIL
definitions for buffers are given in appendix B of this manual.

Data buffers hold user data. Associated with data buffers are descriptor buffers, which
keep track of data buffer specifics such as chaining, usage counts, data offsets, data
counts, and pointers. A configurable percentage of data and descriptor buffers is
allocated for management by the Executive when the system is initialized. The
relationship between descriptor and data buffers is illustrated in figure 3-1.

Descriptor Buffer

'_ next__descriptor — = next descriptor
M Descriptor
E r—{ next__message Data Buffer Buffer
S
S the__data »{data__usage
A Data
G offset »ldata__text Buffer
E
1

Lo next descriptor
|_ Descriptor
M Buffer
E
S
S Data
A Buffer
G
E
2

> next message

Figure 3-1. Descriptor and Data Buffers

Revision A The Executive 3-5

Memory Management

Buffer and Memory States

Four states are defined to indicate the relative availability of buffers and memory in
the DI. They are hierarchical in this order: good, fair, poor and congested.

The boundaries between these states are set during configuration and may be changed
using network operations commands. Each boundary is expressed as a percentage of the
total resource currently available. For example, the boundary between fair and poor
might be 20% of memory; if only 15% of memory is currently available, the memory
state is said to be poor.

Priorities and Thresholds

The input parameter threshold indicates the priority level for data buffer and memory
extent requests. Descriptor buffer requests do not require a priority; they are always
accepted.

Four data buffer request priorities are defined:

Critical For requesting buffers for use in sending operator alarms and
commands or completing any actions initiated to solve memory
congestion problems. Critical requests are accepted in all buffer states.

High For requesting buffers for use in receiving incoming data, sending a
command response, or completing any error processing and recovery.
High priority data buffers requests are accepted even if the buffer
state is congested.

Medium For requesting buffers for use in sending Routing protocol data units
(PDUs) or error-related log messages. Medium priority data buffer
requests are not accepted if the buffer state is congested.

Low For requesting buffers for use in sending nonerror related log
messages, such as statistics log messages. Low priority data buffer
requests are not accepted if the buffer state is poor or congested.

Only two memory extent request priorities are defined:

Critical Critical requests are accepted in all memory states.
Normal Normal memory extent requests are not accepted if memory state is
congested.

3-6 Base System Software Revision A

Procedures and Functions

Memory Management

Following are brief descriptions of the Executive’s memory management procedures.
Complete documentation of these procedures can be found in chapter 10 of this manual.

Procedure

Description

CLEAR_ALLOCATE

CLEAR_MEMORY
CLEAR_WRITE_PROTECT
GET_MEMORY
GET_MPB_EXTENT
GET_PMM_EXTENT

MODIFY_WRITE_PROTECT_
BYTE ~

MODIFY_WRITE_PROTECT_
LONG_WORD

MODIFY_WRITE_PROTECT_
SHORT_WORD

SET_BUFFER_CHAIN_ OWNER

SET_MEMORY_OWNER
SET_WRITE_PROTECT

Revision A

Allocates space from free global memory and
clears it

Clears specified memory

Clears write protect flag

Gets global memory extents
Gets MPB RAM memory extents
Gets private memory extents

Modifies write-protected MPB byte
Modifies write-protected MPB long word
Modifies write-protected MPB short word

Sets owner identification for buffer chain
Sets owner identification for memory location

Sets the write protect flag

The Executive 3-7

Message Management

Message Management

In addition to the memory management services just described, the Executive also
provides routines that perform data manipulation of messages. Following are brief
descriptions of these routines. Complete documentation of these procedures can be found

in chapter 10 of this manual.

Procedure Description

APPEND Appends a trailer to a message
ASSEMBLE Assembles message fragments
BROADCAST Prepares a message for broadcast

BUILD_HEADER_IN_PLACE

COPY

FG_TRIM
FIRST_BYTE_ADDRESS
FRAGMENT
GEN_DATA_FIELD

GEN_TEMPLATE_ID
GET_DATA_FIELD

GET_FIRST_BYTE
GET_LAST_BYTE
GET_LONG_BUFFERS
GET_MESSAGE_LENGTH
GET_SHORT_BUFFERS
GET_SIZE_N_ADDR
M_RELEASE

PCOPY

PREFIX
RELEASE_MESSAGE
STRIP

3-8 Base System Software

Builds a message header

Copies a message to another buffer chain
Trims bytes from the end of message
Returns message first byte address
Extracts message fragment

Generates a data field in Management Data
Unit (MDU) format

Builds template identifier fields into buffers

Extracts data fields from MDU formatted
message

Returns first byte of message

Returns last byte of message

Gets one or more data buffers

Returns byte length of message

Gets one or more descriptor buffers
Gets size and address of memory extent
Decrements message usage count

Copies message to new buffer chain, releasing
old buffers

Adds header to front of a message
Releases data buffer chains

Removes header from front of a message

Revision A

Procedure

Message Management

Description

STRIP_IN_PLACE

SUBFIELD
TRANSLATE_MESSAGE
TRIM

Revision A

Removes header from front of a message,
without changing message address

Gets multiple-byte header fields
Translates between character sets

Trims bytes from end of descriptor buffer

The Executive 3-9

Queue Management

Queue Management

As described earlier, there are two QCBs maintained in each task’s TCB. They are the
Express Message QCB and the Normal Message QCB. These exist for the lifetime of
the task.

The Express Message QCB is used to inform a task of the successful or unsuccessful
completion of a service request, or to notify it of some error condition it must service.
The Express Message QCB is always inspected first.

The Normal Message QCB is used for any other ITMs. It is inspected only after the
express queue has been serviced.

A QCB contains all the information needed to add new elements to the queue and to
access and remove current queue elements. It holds a counter indicating the number of
messages currently on the queue and a counter that tallies the total number of
elements ever added to the queue. Each QCB contains pointers to both the first and
last elements currently on the queue.

Following are brief descriptions of the Executive’s queue management procedures.
Complete documentation of these procedures can be found in chapter 10 of this manual.

Procedure Description

GET_EXPRESS Gets ITM from express queue

GET_MSG Gets ITM from the express or normal queue (express queue
first)

MESSAGE_DEQUEUE Extracts a message from the specified task-level queue
MESSAGE_ENQUEUE Places a message in the specified task-level queue
SEND_EXPRESS Sends ITM to the express queue of the specified task
SEND_NORMAL Sends ITM to the normal queue of the specified task

8-10 Base System Software Revision A

Timer Management

Timer Management

The Executive provides timer management services to its users. Included in these
services are three ways for a task to request nonimmediate procedure execution: at a
given time, after an interval, or periodically. If specified, parameters may be passed to
the task at execution time in non-immediate requests.

Following are brief descriptions of the Executive’s timer management procedures.
Complete documentation of these procedures can be found in chapter 10 of this manual.

Procedure Description

CALL_AFTER_INTERVAL Procedure is called after specified time interval

CALL_AT_TIME Procedure is called at specified time
CALL_PERIODIC Procedure is called periodically
CANCEL_TIMER A previously requested timing request is cancelled

CHANGE_TIMER_OWNER Changes allocating task identifier for timing procedure

DELAY_PROCESSING Delays processing for a finite period of time
PMP_GET_DATE Returns current date in specified format
PMP_GET_TIME Returns current time in specified format
READ_BCD_CLOCK Reads the real-time clock in BCD format
READ_CLOCK Reads the binary clock to millisecond accuracy
SET_BCD_CLOCK Sets the real-time clock
TIME Converts time intervals (including time-of-day) to
milliseconds

Revision A The Executive 3-11

Statistics Manggement

Statistics Management Relationships

Procedures and Functions

...........................

.................................

Statistics Managément 4

Part of CDCNET’s base system software provides for the collection and reporting of
system statistics. In general, software components concerned with collecting statistics
open Service Access Points (SAPs) to the CDCNET Statistics Manager (CSM). These
SAPs point to a linked list of one or more statistics data structures (SDSs), which are
used for the collection and reporting of statistics. The SDSs are specified by the
software component when opening a statistics SAP,

CSM acts as the bridge between commands that request statistics collection and the
software that will actually collect the statistics. CSM sets a flag in the SDS that tells
the collecting software component whether or not to collect statistics. The software
component may ignore the flag and always collect statistics if more resources are
required to check this flag than to collect the statistics.

Two statistics buffers are supplied by the software component. While one is used for
statistics collection, the other is being reported.

Statistics SAP entries can be located using element type (network solution,
communication line, or software component) and element names supplied by the
command processors. Each SDS header is defined by a statistics group type. The
statistics group types are:

summary normal process statistics
expanded statistics beyond normal processing
debug statistics for debugging

CSM manages statistics reporting by calling software component-supplied procedures
that: 1) generate the log message containing collected statistics and 2) call the Log
Support Application to issue the log message. CSM calls these procedures whenever
statistics are to be reported.

The services performed by CSM are summarized in figure 4-1.

SAP Management

Statistics SAPs can be opened and closed and SAP entries found. In general the
SAP management service helps create a dynamic association between command
processors and statistics collecting software components.

Statistics Collection

The CSM may enable or disable collection of statistics while specifying a collection
interval. CSM users may issue commands to control the collection of statistics
without having direct contact with the particular software components that do the
collecting, or being aware of the associated data structures.

Statistics Reporting

Statistics are reported periodically according to time intervals specified by CSM
commands. They are also reported when the corresponding statistics are started or
stopped, or when the statistics SAP is closed. Report procedures supplied by the
statistics collecting software components are called to generate and issue the log
messages containing the statistics.

Revision A Statistics Management 4-1

Statistics Management Relationships

Statistics Management Relationships

Figure 4-1 illustrates the central role that CSM plays in the management of CDCNET

statistics.

DISPLAY SOFTWARE REPORT
PROCEDURE COMPONENTS PROCEDURE
f J
SDS SDS SDS
\J
DISPLAY CDCNET STATISTICS LOG
MESSAGE MANAGER (CSM) MESSAGE
A A r y
NAME/
TYPE

A

CSM COMMAND
PROCESSORS

TIMER TASK

LOG SUPPORT

APPLICATION (LSA)

Figure 4-1. CDCNET Statistics Manager

Procedures and Functions

Following are brief descriptions of the statistics management procedures and functions.
Complete documentation of these procedures can be found in chapter 10 of this manual.

Procedure

Description

OPEN_STATISTICS_SAP

CLOSE_STATISTICS_SAP

FORCE_STATISTICS_REPORTING

BUILD_STATISTICS _MSG_

HEADER

INITIALIZE _STATISTICS_RECORD

4-2 Base System Software

Opens a new statistics SAP

Closes a previously opened statistics SAP

procedure

Initializes statistics message header

statistics collection

Forces call of the specified statistics function

Initializes MDU-formatted records used in

Revision A

Status Management 5

Hardware Device Status Tables 5-1
States and Statuses L L e e e e e e e e e 5-2
State of a Hardware Device i i i i e e 5-2
Initializing the State of Hardware Devices 5-2
Status of Hardware Devices e 5-2
Status of LIMs and Ports i i i i i e e e e e e e 5-4
State Transitions o e e e e e e 5-4
Acquisition and Release of a Hardware Device 0 5-5

Accessing and Updating the Hardware Device Status Tables

Status Management 5

This chapter describes CDCNET ‘status management software. It identifies system
device status tables, describes the various states and statuses of CDCNET hardware
devices and the transitions between them, and discusses the storage and retrieval of
state and status information.

Hardware Device Status Tables
Each CDCNET system contains the following device status tables.

Major Card Status Table (MCST)

Line Interface Module (LIM) Status Table (LST)
Port Status Table (PST)

SMM Bank Status Table (SBST)

PMM Bank Status Table (PBST)

The MCST is a static table and contains an entry for each of the eight slots in a DI
that are reserved for the major boards. Each entry contains information about the type
of board installed, its state, status, and other relevant information. MCST entries of
board type CIM contain a pointer to the LST. Similarly, entries for board types SMM
and PMM contain pointers to the SBSTs and PBSTs, respectively.

The LST is also a static table. It contains an entry for each of the eight slots reserved
for the LIM boards. Each entry contains information about the type of LIM (for
example, RS449), its state, status and a pointer to the PST.

A separate PST exists for each LIM that is physically present in the DI. Each PST
contains up to four entries for the ports on the associated LIM, and each entry
contains information about the state and status of the associated port.

Each SBST or PBST contains information about the state and status of the memory
banks on the associated SMM or PMM board.

All hardware device status tables are created by the Initial Loader prior to starting the
System Ancestor as the initial task in the DI. The board map table created by the
on-board diagnostics is used to determine which devices are physically present in the
DI and identifies their initial states. For a formal description of the board map table,
refer to the CDCNET Network Analysis Manual.

Revision A Status Management 5-1

States and Statuses

States and Statuses

This section describes the possible values for the state and status of each of the
hardware elements in a CDCNET system. It also describes how these values get
updated and identifies the valid state transitions.

State of a Hardware Device

At any point in time, the state of a hardware device that is physically present in a
CDCNET system can be ON, OFF or DOWN.

The ON state implies that the device is either fully operational or operating in a
degraded mode. The ON state further implies that the device is available for use by
the system.

The OFF state indicates that the device is not available to the system or diagnostics.
A device may be placed in the OFF state to prohibit its further use. The logical
equivalent of this state is that the device is not present in the system.

The DOWN state indicates that a device is only available for use by the diagnostic
software, and therefore is not available for normal system use.

Initializing the State of Hardware Devices

When a CDCNET system is loaded, the following process is used to initialize the state
of hardware devices. .

The on-board diagnostics always build a table called the card map table. This table
contains, among other things, the result of the execution of the on-board diagnostics on
each device as well as the setting (ON or OFF) of the offline switch on each device.
Status software uses this information to initialize the states of different devices.

The state of a device is set to OFF if the offline switch is ON. If the offline switch is
OFF and the on-board diagnostics have executed successfully on a device, its state is
set to ON. If the offline switch is OFF and the on-board diagnostics have not run
successfully on a device, then the device state is set to DOWN.

Status of Hardware Devices

A status will be associated with each device at all times. Following is the list of device
status values.

not_configured
configured
enabled

active

5-2 Base System Software Revision A

States and Statuses

Below is a table describing the processes and rules used to change the status of the
main board devices.

Board Type Status or Status Transition -

MPB Always configured.

SMM If ON, always configured.
If OFF, then not_configured.

PMM If ON, always configured.
If DOWN or OFF, then not_configured.

ESCI Initially, not_configured.
After a trunk or interface is defined (using the DEFINE command),
then configured. After an associated CANCEL command, then not_
configured.
After successful START_TRUNK command, then active. After an
associated STOP_TRUNK command, then configured.

MCI Initially, not_configured.
After a trunk or interface is defined (using the DEFINE command),
then configured. After an associated CANCEL command, then not_
configured. ’
After a START._TRUNK command, then enabled.
If the channel interface is brought up successfully, then active;
otherwise it remains enabled.
The status of an MCI card will be changed from active or enabled to
configured as a result of successful execution of an associated
STOP_TRUNK command.

CIM Initially, not_configured.
If any connected LIM is configured, then configured.
After DEFINE_CIM_INTERFACE, then configured.
NOTE
The status of a CIM, ESCI, MCI, LIM or a port is active if it is in
the DOWN state and is currently being tested by online diagnostics.

Revision A Status Management 5-3

States and Statuses

Status of LIMs and Ports

After initialization, the status of any LIM or port is not_configured. However, after a
line or a trunk is defined for a port, the status of the port becomes configured. The
status of a LIM changes to configured if any one of its ports has a configured status.
The enabled status does not apply to LIMs.

The status of a port is changed to not_configured when the line or trunk defined to
use it is cancelled. LIM status is changed from configured to not_configured after
all ports connected to it become not_configured.

Port status is changed from configured to enabled when the START command
executes successfully. Status will change from enabled to active when the port’s line
or trunk becomes active. Port status is changed from active or enabled to configured
when a STOP command is executed successfully.

In the case of an HDLC or X.25 trunk, the term active indicates successful completion
of the protocol handshake with the Layer 2 peer. In the case of an asynchronous line,
the term active implies connection with a user of the line.

State Transitions

The following table indicates the possible state transitions and how they occur.

From To Process

ON OFF This state transition is made using an operator command called
CHANGE_ELEMENT_STATE. It is allowed only if the element is
not system critical and is not in active use. The MPB, SMM and
PMM are system critical devices. An element is considered active if
its status is enabled or active.

ON DOWN The process and rules that apply to the transition from ON to OFF
also apply to the transition from ON to DOWN.

OFF ON This state transition is only made using an operator command. It is
recommended that the state first be changed to DOWN, followed by
an online diagnostics test to make sure that the device can be used
by the system.

OFF DOWN This state transition is only made using an operator command.

DOWN OFF This state transition is only made using an operator command. It is
not allowed if the device status is active. In the DOWN state,
active status indicates that an online diagnostic test is being run on
the device.

DOWN ON This state transition is made using an operator command or by
online diagnostics after successful testing. The operator command
can make this transition while device status is not active.

5-4 Base System Software Revision A

Acquisition and Release of a Hardware Device

Acquisition and Release of a Hardware Device

The following routines are provided for request and release of hardware devices.
Complete documentation of these procedures can be found in chapter 10 of this manual.

Procedure Description
GET_CARD_TYPE_AND_ Gets the board type and address for the
ADDRESS specified device

RELEASE_HARDWARE_DEVICE Releases a previously configured hardware
device

REQUEST_DIAGNOSTIC_ENTRY Gets the address of the system status table
entry for the specified device

REQUEST_HARDWARE_DEVICE Configures the specified hardware device

Accessing and Updating the Hardware Device Status
Tables

Any software component can copy entries from hardware device status tables using the
procedure GET_STATUS_RECORD. The owner of a hardware device can update or
re-write an entry in the hardware device status tables using PUT_STATUS_RECORD.

Following is a complete list and brief descriptions of the status management
procedures. Complete documentation of these procedures can be found in chapter 10 of
this manual.

Procedure Description

CLOSE_STATUS_SAP Closes previously opened status SAP

GET_NEXT_STATUS_SAP Retrieves address of software component status
table

GET_STATUS_RECORD Retrieves status record for specified device

GET_STATUS_SAP Retrieves address of software component status
table

OPEN_STATUS_SAP Registers the address of a software component

status table
PUT_STATUS_RECORD Updates the status record for the named device

Revision A Status Management 5-5

Tree (Table) Management

6

Tree (Table) Management

Several of the layer and management entities in a DI logically connect a user and
either a correspondent or a service using random access tables that are organized and
accessed according to a balanced, binary tree solution. This solution provides relatively
fast access to any table entry. And because new tables are allocated dynamically,
memory is only used for tables allocated.

To create a tree structure, the user must initialize the tree root. The root is a
separate, user-created table that records the number of tables in the tree, validation
information, and the address of the tree’s first node. Tables are accessed by specifying
a pointer to the root of the tree being referenced.

A key is used to reference each tree node and its associated table. It is either a 32-bit
integer or an adaptable string, depending on the type of tree structure created. Keys

are used in tree searches.

Following are brief descriptions of the tree management procedures. Complete
documentation of these procedures can be found in chapter 10 of this manual.

Procedure Description

FIND Returns the table in a tree associated with the
specified integer key \

FIND_FIRST Returns the first table and key that satisfy an

FIND_FREE_NODE
FIND_NEXT

FIRST_NODE

GROW

INIT_ROOT

PICK

SFIND

SFIND__FIRST
SFIND_NEXT
SFIND_WILD_CARDS

SGROW
SPICK
VISIT_ALL_NODES

Revision A

input parameter
Finds the first available node

Returns the next table and key that satisfy an
input parameter

Allocates space for the first node of a tree
Adds a new table to a tree

Initializes the root of a tree

Removes a structure from the specified tree
Like FIND, for string keyed trees

Like FIND_FIRST, for string keyed trees
Like FIND_NEXT, for string keyed trees

Locates wild card matches in a tree, for string
keyed trees

Like GROW, for string keyed trees
Like PICK, for string keyed trees

Steps through a tree structure, making
successive calls to a user supplied routine for
each node found

Tree (Table) Management 6-1

Online Loader 7

Module Loader o e e e e e e e e e e e e e e e e e 7-1
Module Deloader i i e e e e e e e e e e 7-1
Translation to Modules

Procedures and Functions e e e e e e e e e e 7-2

Online Loader 7

The Online Loader provides a method for dynamic loading and deloading of software
modules within an operational system. The Online Loader provides the following
services, described separately below:

® Module Loader
® Module Deloader
® Translation to Modules

Module Loader

The Module Loader service of the Online Loader loads modules by entry point name
and module name. The load process consists of reading the object module file,
allocating memory for the module sections, moving code and data into the sections,
linking external references, and incrementing module use count.

The Module Loader is a separate module in the standard system and may be present
or absent independently of other system features.

Module Deloader

The Module Deloader service deloads unused modules. The deloading process consists of
deallocating the memory used for the module sections and removing entry point names
from the internal loader tables.

The Online Loader’s interlock feature prevents the deloading of modules while they are
still in use. The module use count indicates the number of tasks or other processes
that require a given module. Only when the module use count has gone to zero may
the module be removed from the system.

The Module Deloader is a separate module in the standard system and may be present
or absent independently of other system features.
Translation to Modules

The Translation to Modules feature provides the entry point name and module name
translation to already loaded modules or modules to be loaded. It also provides
translations to support the checksum of all loaded modules, validate the program
counter, and return transfer addresses.

Revision A Online Loader 7-1

Procedures and Functions

Procedures and Functions

Following are brief descriptions of the Online Loader interface procedures and
functions. Complete documentation of these procedures can be found in chapter 10 of

this manual.

Procedure

Description

CHECKSUM_NEXT_MODULE

DECREMENT_MODULE_USE_COUNT

INCREMENT_MODULE_USE_COUNT

LOAD_ABS_MODULE_AND_DELAY

LOAD_ABS_MODULE_AND_PROCEED

LOAD_CMD_PROCESSOR_AND_DELAY

LOAD_CMD_PROCESSOR_AND_

PROCEED

LOAD_ENTRY_POINT_AND_DELAY

LOAD_ENTRY__POINT_AND_PROCEED

START_NAMED_TASK_AND_DELAY

START _NAMED_TASK_AND_PROCEED

VALIDATE_SECTION_ADDRESS

7-2 Base System Software

Runs a checksum of the sections of the
next module

Decrements the use count of a loaded
module

Increments the use count of a loaded
module

Loads an absolute module (if not
already loaded) while the caller waits

Loads an absolute module (if not
already loaded); the caller does not
wait

Loads a command processor module (if
not already loaded) while the caller
waits

Loads a command processor module (if
not already loaded); the caller does not
wait

Loads the module associated with a
given entry point (if not already
loaded) while the caller waits

Loads the module associated with a
given entry point (if not already
loaded); the caller does not wait

Loads module associated with a given
entry point (if not already loaded) and
starts it as a task while the caller
waits

Loads module associated with a given
entry point (if not already loaded) and
starts it as a task; the caller does not
wait

Translates a given address into a
module name and section address

Revision A

Failure Management 8

Failure Management Concepts, ... 8-1
Hard and Soft Errors 8-1
Unclassified Events and Failures 8-1
Failure Management Functions 8-2

Structure of the Failure Management Software 8-3
General Model for Failure Management 8-3
MPB Subsystem 8-4
CIM Subsystem 8-5
ESCI Subsystem 8-6
MCI Subsystem 8-8

Logging of Failure Information 8-9
Logging of Hard Failures 8-9

Logging of Soft Failures

Failure Management 8

This chapter describes the CDCNET hardware failure management philosophy and its
present implementation. The present implementation is not a completed example of the
more highly developed philosophy, but is straightforward and in accord with that
philosophy.

Hardware failures include the failures of the hardware elements in a DI and the media
connected to a DI, as well as the failures caused by illegal use of the DI hardware by
software (for example, use of an illegal instruction).

The software that supports failure management in a CDCNET system is referred to
collectively as the failure management software. This software has the following
objectives.

® It supports the detection and reporting of all hardware failures. The failure report
identifies the field replaceable unit (FRU) or units responsible for the failure.

® It provides a method of failure recovery.

@ It monitors the behavior of hardware elements and reports behavior that is out of
the expected norm.

This chapter continues with a description of failure management concepts, presents a
general model of CDCNET failure management, covers the four failure management
subsystems in a CDCNET system, and describes the logging of CDCNET failures.

Failure Management Concepts

Hard and Soft Errors

Hardware failures can be classified as hard or soft. A failure is said to be hard if the
damage done by it cannot be undone. One example of this is a read parity error. In
this case, the information being read has been permanently corrupted.

A failure is said to be soft if the damage done by it can be undone through a recovery
process in hardware or software. One example of a soft failure is a single bit error,
which is corrected automatically in hardware. Another example of a soft failure is a
Cyclic Redundancy Check (CRC) error in an High-Level Data Link Control (HDLC)
frame. This error is recovered from when software retransmits the HDLC frame.

Unclassified Events and Failures

CDCNET failure management software also reacts to certain events or failures that are
not classified as hard or soft. Unclassified events include the warnings generated by
hardware to inform software that the DI battery is getting weak or that the
temperature in the DI is getting too high.

Unclassified failures include abnormal operation of the data carrier and data set ready
signals on a line connected to a LIM through a modem. Such failures can occur due to
noise on the transmission line or during the normal disconnect sequence on some lines.
These failures are similar to soft failures because one can correct for them by retrying
the operation in which the failure is detected. These failures may also be ignored '
unless they reach a preset threshhold.

Revision A Failure Management 8-1

Failure Management Concepts

Failure Management Functions

Failure management software has three important functions: detection, reporting, and
recovery.

Failure Detection

Most failures are detected by hardware. If hardware detects a failure, it notifies
software about it by writing the failure information into a status register and
optionally generating an error interrupt (for example, a bus error interrupt). The
CDCNET failure management software supports failure detection by providing the
interrupt handlers to process the various error interrupts and by periodically
monitoring the hardware status registers, a change in whose contents is not always
accompanied by an interrupt.

Failure Reporting

Reporting of failures includes extracting the failure information from the hardware
status registers and saving it in memory; it also includes notifying the software
that executes on the failed element about the failure and logging the failure
information in the CDCNET log file with a log message.

If the failure causes a reset, however, then users of the failed element will not be
notified of the failure.
Failure Recovery

In the recovery phase, CDCNET software determines whether the failed element can
be used again and, if so, through what level of recovery. Necessary hardware and
software is re-initialized and users of the failed element are notified of its renewed
availability.

8-2 Base System Software Revision A

Structure of the Failure Management Software

Structure of the Failure Management Software

Hardware failures in a CDCNET system are managed on a subsystem basis. Each
subsystem processes failures on one or more specific boards (for example, the MCI
board) and the media connected to it. CDCNET failure management software defines
four subsystems: MPB, CIM, ESCI and MCI. In addition to these subsystems, the
failure management software includes some common code which is used by all
subsystems. There is a general model for CDCNET failure management on which each
subsystem is based. This general model is described below, followed by descriptions of
the individual subsystems.

General Model for Failure Management

Figure 8-1 shows the model used as the basis for failure management in each
subsystem. The generalized model requires the following functions to be present in each
subsystem.

® Fault handlers
® A subsystem failure table
® A subsystem failure management task

In addition, this model requires a common service to maintain statistics about different
failures and recoveries.

SUBSYSTEM HARD | .. | SUBSYSTEM SUBSYSTEM SOFT
FAILURE EXCEPTION FAILURE FAILURE EXCEPTION
HANDLER TABLE HANDLER
IT™
\
SUBSYSTEM
FAILURE ™ SUBSYSTEM IT™
MANAGEMENT ["l 7 USER
TASK
direct callr
FAILURE FAILURE
direct
c::ar”ec direct call STATISTICS r:frciite& STATISTICS
SERVICE TABLE
Y
COMMON SERVICE SOFTWARE TO
TO WRITE write EXISLLE;‘Q read & [CREATE AND VALIDATE
FAILURE DATA IN AT [Twrite |SYSTEM FAILURE TABLE
SYSTEM FAILURE TABLE AND TO LOG DATA

Figure 8-1. General Failure Management Model

Revision A Failure Management 8-3

Structure of the Failure Management Software

MPB Subsystem

The MPB subsystem manages failures on the MPB, SMM and PMM boards. It is also
responsible for the management of failures caused by illegal use of hardware by
software executing on the MPB board. In addition, it processes environmental warnings

such as high temperature and low AC (power) warnings.

MPB software components are expected (but not required) to provide a recovery
procedure to be invoked if a failure is detected while the software component is
executing. The System Ancestor will invoke a default failure recovery procedure where
necessary if one is not provided.

The following software components provide the failure management functions in the

MPB subsystem.

MPB bus error handler

SMM error interrupt handler
MPB spurious interrupt handler
MPB level seven interrupt handler
68000 address error handler
68000 exception handler

System Ancestor
System Audit

Executive Error Table

Figure 8-2 shows the different software components in the MPB failure management
subsystem and their relationships with each other and with the common failure

management software.

call

¢ SYSTEM AUDIT
* MPB BUS ERROR *SMM SINGLE BIT
HANDLER EXECUTIVE ERROR HANDLER
e MPB LEVEL SEVEN wnte |~ ERROR write |4 SPURIOUS INTERRUPT
INTERRUPT HANDLER TABLE HANDLERS
e SMM DOUBLE BIT *MPB 68000
ERROR HANDLER EXCEPTION HANDLERS
™ v
‘ Y
. recovery procedure of the task
AEESETS-EI%R direct call level software component
executing at the time of failure
direct direct direct call
call
\
recovery procedure of F FAILURE
the interrupt level ST:-IFLILSJ%ECS e read & STATISTICS
software component SERVICE write TABLE
executing at the time
of failure
COMMON SERVICE SOFTWARE TO
TO WRITE write_ ?Zﬂ%“g read &|CREATE AND VALIDATE
FAILURE DATA IN TABLE write |SYSTEM FAILURE TABLE
SYSTEM FAILURE TABLE AND TO LOG DATA

Figure 8-2. MPB Subsystem Failure Management Model

8-4 Base System Software

Revision A

CIM Subsystem

Structure of the Failure Management Software

The CIM subsystem manages failures on the CIM and LIM boards as well as on the
LIM ports and the communication lines connected to the LIMs. It is also responsible
for the management of failures caused by illegal use of hardware by software executing

on the CIM board.

The following software components provide the failure management functions in the

CIM subsystem.

CIM bus error handler

CIM spurious interrupt handler
CIM 68000 address error handler
CIM 68000 exception handler

CIM monitor

CIM modem signal monitor
DVM interrupt routines

DVM task
CIM failure table

Figure 8-3 shows the different software components in the CIM failure management

subsystem and their relationships with each other and with the common failure

management software.

e CIM BUS ERROR , CIM * CIM MODEM SIGNAL
HANDLER write | o URe MONITOR AND 1/0
« CIM 68000 TABLE PROCESSORS
EXCEPTION HANDLER SPURIOUS INTERRUPT
) HANDLERS
interrupt failure inform. status packet interrupt
1] \
DVM - INTERRUPT read & pvcB DVM - INTERRUPT
PROCESSOR write TABLE PROCESSOR
IT™ IT™M | 1™
Y ‘ A
DVM FAILURE ™ LINE
MANAGEMENT USER
TASK TASK
direct Ldirect call direct call [
call
FAILURE FAILURE
STATISTICS [«~—22d & o grATISTICS
SERVICE TABLE
Y
COMMON SERVICE SOFTWARE TO
TO WRITE write EXEL%"Q read & [CREATE AND VALIDATE
FAILURE DATA IN TABLE write” |SYSTEM FAILURE TABLE
SYSTEM FAILURE TABLE AND TO LOG DATA

Figure 8-3. CIM Subsystem Failure Management Model

Revision A

Failure Management 8-5

Structure of the Failure Management Software

ESCI Subsystem

The ESCI subsystem manages failures on the ESCI board and any failures of the
tranceiver connected to the Ethernet. It also manages failures caused by illegal use of
hardware by software executing on the ESCI board. Failure management in the ESCI
subsystem is identical to failure management in the CIM subsystem, except in two
regards.

The ESCI subsystem includes one additional exception handler called the ESCI M68000
Level Six Interrupt Handler. The reason for this is that the ESCI board has two
processors; namely, the M68000 and the Ethernet controller. Only one of these
processors can access the internal system bus (ISB) at any point in time. The failures
that are normally reported by the bus error are reported by the ESCI bus error
interrupt if the ISB was being accessed by the M68000 on the ESCI board. On the
other hand, these failures are reported by the Level Six Interrupt Handler on the
M68000 processor if they occur while the ethernet controller was accessing the ISB.
Functionally, the ESCI bus error handler and the Level Six Interrupt Handler are
identical.

The second difference between the CIM and ESCI subsystems is that unlike CIM there
is only one user of the ESCI, namely, the ESCI SSR. It is important to note that DVM
serves as the failure management task for CIM and ESCI by performing a significant
number of failure management functions for these subsystems. DVM does not
differentiate between CIM and ESCI in any way.

The following software components provide the failure management functions in the
ESCI subsystem.

ESCI bus error handler

ESCI 68000 level six interrupt handler
ESCI spurious interrupt handler

ESCI 68000 address error handler
ESCI 68000 exception handler

ESCI firmware

DVM interrupt processor

DVM failure management task

8-6 Base System Software Revision A

Structure of the Failure Management Software

ESCI failure table

Figure 8-4 shows the different software components in the ESCI subsystem and their
relationships with each other and with the common failure management software.

« ESCI BUS ERROR
HANDLER ESC * ESCI FIRMWARE
» ESCI 68000 LEVEL 6| write E
INTERRUPT HANDLER TABLE * SPURIOUS INTERRUPT
* ESCI 68000 L HANDLER
EXCEPTION HANDLER
4
interrupt failure inform. status packet interrupt
‘ . —] ‘———E——
DVM - INTERRUPT read & | pvce DVM - INTERRUPT
PROCESSOR [write’| TABLE PROCESSOR
IT™ IT™ G
3 Y 3
DVM FAILURE ™ ESCI
MANAGEMENT - SSR
TASK TASK
direct direct cal direct call
call
FAILURE FAILURE
STATISTICS [+ 8298 o sTATISTICS
SERVICE TABLE
A
COMMON SERVICE SOFTWARE TO
TO WRITE write EXEL%"Q read &|CREATE AND VALIDATE
FAILURE DATA IN TABLE write |SYSTEM FAILURE TABLE
SYSTEM FAILURE TABLE AND TO LOG DATA

Figure 8-4. ESCI Subsystem Failure Management Model

Revision A Failure Management 8-7

Structure of the Failure Management Software

MCI Subsystem

The MCI subsystem manages failures on the MCI board and the channel interface

connected to it.

The following software components provide the failure management functions in the

MCI sybsystem.

MCI driver error interrupt handler

MCI SSR

Figure 8-5 shows the different software components in the MCI subsystem and their
relationships with each other and with the common failure management software.

MC! ERROR
INTERRUPT HANDLER
™ i ™ MC! DRIVER
A
MCI SSR direct call MCI SSR USERS
direct | direct call
call
FAILURE read & fAILURfé .
STATISTICS [*—o STATISTI
SERVICE TABLE
\ 4
MO STVEE |, [SvoTe | roo & e B e e
FAILURE DATA IN TABLE write |SYSTEM FAILURE TABLE
SYSTEM FAILURE TABLE AND TO LOG DATA

Figure 8-5. MCI Subsystem Failure Management Model

8-8 Base System Software

Revision A

Logging of Failure Information

Logging of Failure Information

It is important that all failure information be logged. However, there are two
important considerations in defining a process to log failure information.

The first concern is about the ability of CDCNET software to generate and transmit a
log message after having encountered a failure. The failure may have corrupted key
data structures or program space, thus inhibiting the logging process. The second
concern is about generating too many log messages. For example, certain failures are
expected to occur and it does not make sense to log each occurrence of such failures.

Unfortunately, hard failures—which generally need to be logged—can potentially inhibit
their own logging. On the other hand, soft failures can generally be logged, but don’t
always need to be. The following two sections address the logging of hard and soft
failures and describes how CDCNET software takes care of the two concerns just
mentioned.

Logging of Hard Failures

CDCNET software attempts to log each occurrence of a hard failure. If failure recovery
does not require resetting the DI, the appropriate subsystem failure management task
generates a log message to report the failure. This log message identifies the specific
failure and includes all relevant failure information, such as the contents of the
corresponding hardware status registers.

If failure recovery requires resetting the DI, no attempt is made to generate a log
message prior to reset. In this case the failure information is saved both in the
subsystem failure table and the system failure table. Then, if the system is successfully
reloaded and restarted, both the system and subsystem initialization software extract
the failure information from the failure tables and report it with a log message.

The key to this process is that the subsystem failure tables not get destroyed during
the DI reload. These tables, with the exception of the Executive (MPB) Error Table,
are not protected in a power-on reset and so are initialized to a clear state.

It is also important that the failure information in the subsystem failure tables not be
written over until it has been logged.

WARNING

One implication of this is that if a second failure occurs before information about the
first failure has been logged, then the information about the second failure is not saved
and may never get logged.

Revision A Failure Management 8-9

Logging of Failure Information

Logging of Soft Failures

The concern with soft failures is to control the number of times they get logged. This
is done by defining a threshold for each soft failure and logging the failure only if this
threshold is exceeded. CDCNET failure management software defines two logging
thresholds, absolute and timed.

If an absolute threshold is used, all occurrences of a failure are counted and a log
message is generated when the total count of failures exceeds a fixed number. This
fixed number is known as the absolute threshold. The count of failures is initialized to
zero every time a log message is generated to report the failure.

If a timed threshold is used, the number of failures over a fixed interval is counted. If
this count exceeds a specified number within the specified interval, the failure is
logged. In this case, the number of failures, together with the fixed time interval,
define the timed threshold.

8-10 Base System Software Revision A

The Device Manager (DVM) 9

Device Control Services. 9-1
Status Request Services 9-1
Data Transfer Services 9-2
Diagnostic Services 9-2
DVM Order of Events 9-3
DVM Major Data Structures 9-4

Device Control Block (DVCB) 9-4

Device Identifier (DVMID). 9-6

The Device Manager (DVM) 9

The Device Manager (DVM) is a set of routines responsible for the interface between
CDNA'’s physical and link layers (layers 1 and 2, respectively). By controlling access to
the "intelligent" peripheral boards (IPs), the DVM provides its users with a single,
common mechanism for reaching the physical I/O layer, and ensures that no two users
will be assigned to the same port. DVM’s users include stream service routines (SSRs)
and TIPs.

This chapter describes each of the general services provided by the DVM, details the
order of events in its operation, and describes its major data structures. Each of the
DVM procedures mentioned here is fully documented in chapter 10 of this manual.

Device Control Services

These services coordinate the allocation, initialization, and release of control blocks for
IPs and their individual ports. They also control the loading of controlware to the
boards. Device control procedures are:

Procedure Description
START_DEVICE_SERVICE Starts DVM services for the specified device
STOP_DEVICE_SERVICE Stops execution of a peripheral device service
START_PORT_SERVICE Establishes service for a specific port
STOP_PORT_SERVICE Stops service for a given port
RESTART_PORT_SERVICE Restarts service for a specific port
CHANGE_DVM_TASK_ID Chinges ownership of a specific port to a new
tas

Status Request Services

These services provide the status of specific hardware to the user. Status request
procedures are: ‘

Procedure Description

GET_CIM_NUMBER Determines a CIM slot number from the
user-supplied LIM and PORT number

DEVICE_STARTED Determines whether or not the peripheral board
has been started

DUMP_IP_MEMORY Dumps the peripheral board’s local RAM

GET_CIM_BOOT_SOURCE Returns the LIM and port number over which

the DI was booted

Revision A The Device Manager (DVM) 9-1

Data Transfer Services

Data Transfer Services

Data transfer services provide DVM users a means of passing commands to the
intelligent peripheral boards. The procedure is called QUEUE_IP_COMMAND.

Diagnostic Services

These services allow MPB-resident diagnostic code to alter the peripheral board
environment and to run on-line diagnostic tests. Diagnostic code can also return the
peripheral board to its previous environment.

DVM’s diagnostic services procedures are:

Procedure

Description

SEND_CRO_TO_IP
READ_SRO_FROM_IP
QUEUE_IP_COMMAND

CHKSUM_IP_COMMAND_
PACKET
CHANGE_DVM_INTERRUPT

RESTORE_DVM_INTERRUPT

NOTE

Sends command register 0 to an IP
Reads status register 0 from an IP
Queues a command to an IP

Performs a checksum operation on a restart
packet to be sent to an IP

Changes the interrupt procedure used to handle
interrupts from an IP

Restores the original interrupt routine used
before the CHANGE _DVM_INTERRUPT
procedure executed

DVM diagnostic services procedures are not intended for general use.

9-2 Base System Software

Revision A

DVM Order of Events

DVM Order of Events

DVM users can make direct calls to DVM that will execute from within the caller’s
stack and under control of the caller’s task. DVM queues commands to the IP for
processing and supplies information to its users by an ITM. These ITMs are
asynchronous with respect to calls made by the user to DVM. The process is illustrated
in figure 9-1 and described below.

¢ DVM communicates with a peripheral board using a commonly referenced area of
SMM memory, the Device Control Block (DVCB). The DVCB is allocated by DVM
and its address is made known to the IP as part of the peripheral board load
process. When a user issues a command to an IP through DVM, the command
packet is sent to the command queue area of the DVCB. It is up to the peripheral
board, then, to check the DVCB to determine if there are any outstanding
commands to be processed.

® When the peripheral board completes processing of the command, it will build a
response and enqueue that response to the status queue area of the DVCB. Then
the peripheral board issues an interrupt to the DVM. DVM will process the status
queue and return the appropriate status to the caller using an ITM.

® If the IP receives data from an active port, it will package that data into a status
packet and enqueue the packet to the status area of the DVCB. The IP will then
issue an interrupt to the DVM. DVM processes this status packet by building an
ITM and routing it to the appropriate user.

MAIN PROCESSOR BOARD (MPB)

Intelligent Peripheral
DVM users (Cim, ESCI, MCD)
——direct call—
Tips (commands)
polled
|~ return DVM Physical
™ Handler
- —— interrupts
SSRs (status)

A Y

Device Control
Block (DVCB)

System Main Memory (SMM)

Figure 9-1. DVM Relationships

Revision A The Device Manager (DVM) 9-3

DVM Major Data Structures

DVM Major Data Structures

Device Control Block (DVCB)

The DVCB is a data structure that retains information about an interface’s IPs. Each
peripheral has its own DVCB in SMM. DVM uses DVCBs to control access between
tasks residing on the MPB and tasks residing on the peripheral boards.

The structure of the DVCB is illustrated in figure 9-2.

DEVICE CONTROL BLOCK (DVCB)

Name

ICB base

command stat pointer

rsy loaded

buffer pool

rsvd buffer pool

1/0 buffers

max buffer count

current buffer level

schedule loop counter

p count

timer loop counter

build buffer counter

first dymid pointer

B

—*1 DVMID

sds parameters

failure managerment table

iIcb tmage type

emd__q__first

cmd__q__in

cmd__q__out

cmd__q__last

DVMID

BT

Queued Commands

stat__q__ first

stat__q__in

stat__q__out

stat__q__last

Queued status

status #1

lm

continuation of
status and command area

Figure 9-2.

9-4 Base System Software

Device Control Block

Revision A

DVM Major Data Structures

The DVCB contains:

® The addresses of the mapped control and status registers of the associated
peripheral.

® A pair of addresses of empty buffer chains to be used by the peripheral as needed
to receive data.

® A set of addresses and indexes that control the sequences of status and command
queues.

® The address of the first device identifier (referred to as DVMID) that may be
assigned to the DVCB.

The DVM maintains an array of DVCB addresses to access the peripherals.

Revision A The Device Manager (DVM) 9-5

DVM Major Data Structures

Device Identifier (DVMID)

The DVID structure contains information about a specific port controlled by the IP and
also information required by DVM to communicate with the corresponding TIP or SSR.

The structure of a DVID is illustrated in figure 9-3.

DEVICE MANAGEMENT ID (DVMID) !

LCB pointer

ssr task id
dvcb pointer
itm express mask
LIM number LIM port
next dvm id pointer

(next DVMID or NIL)
DVMID

LCB pointer

ssr task id

dvcb pointer

itm express mask

LIM number LIM port
next dvm id pointer :

(next DVMID or NIL)

Figure 9-3. Device Identifier
The DVID contains:

® The TASKID of the user to which all status responses are to be routed for this
port.

® Address of the owning DVCB.

® A mask specifying which status responses are to be routed using the express
message queue and which are to be routed using the normal message queue.

® The physical LIM and PORT numbers assigned to this DVMID (for CIM only).
® The address of the next DVID linked to the DVCB.

9-6 Base System Software Revision A

DVM Command Packets and Status ITMs

DVM Command Packets and Status ITMs

DVM uses two circular queues to support interfaces to the IPs. The command queue is
used to pass information from the DVM user to the IP. The status queue is used to
pass status packets from the IP back to the DVM user. The IP interrupts the MPB to
inform DVM that a status packet should be returned to the DVM user.

Command packets are passed from DVM users to the IPs through the DVM QUEUE_
IP_COMMAND procedure. The IPs use DVM services to return status packets to their
users; these are in the form of ITMs. The formats of the command packets and the
status ITMs for CIM and ESCI are defined in appendix B.

Revision A The Device Manager (DVM) 9-7

Procedures and Functions 10

Conventions i e e e e e e e e e e e e e e 10-1
Logical Groups o . i i e 10-2
ABORT_SYSTEM i ittt e e et et e e e e e e e e 10-6
ABORT _TASK . . . i e e e e e e 10-7
ABS, MAX, MIN e e 10-8
APPEND e e 10-9
ASSEMBLE e e e e e e e e e 10-10
BROADCAST e e e e e 10-11
BUILD_HEADER_IN_PLACE e e e 10-12
BUILD_STATISTICS_MSG_HDR 10-13
CALL_AFTER_INTERVAL, FG_AFTER_INTERVAL 10-14
CALL_AT_TIME, FG_AT_TIME i 10-15
CALL_PERIODIC, FG_PERIODIC, 10-16
CANCEL_TIMER, FG_CANCEL_TIMER 10-17
CHANGE_DVM_INTERRUPT i 10-18
CHANGE_DVM_TASK_ID i 10-19
CHANGE_TIMER_OWNER o i 10-20
CHECKSUM_NEXT_MODULE 10-21
CHKSUM_IP_CMD_PKT ittt i 10-22
CLEAR_ALLOCATE e e e e e e 10-23
CLEAR_MEMORY e 10-24
CLEAR_WRITE_PROTECT ittt e it e it 10-25
CLOSE_STATISTICS_SAP e i 10-26
CLOSE_STATUS_SAP et it e 10-27
CONVERT_INTEGER_TO_POINTER 10-28
CONVERT_POINTER_TO_INTEGER 10-29
COPY . . e e e e 10-30
DEAD_STOP e I 10-31
DECREMENT_MODULE_USE_COUNT 10-32
DELAY_PROCESSING it it ittt i 10-33
DEVICE_STARTED it ittt e i 10-34
DI_DEBUGt e e e e e e 10-35
DI_DEBUGL_INIT e e e e e 10-36
DUMP_CLOSE e e e 10-37
DUMP_IP_MEMORY e 10-38
DUMP_WRITE e e e e 10-39
FG_TRIM e e e e e 10-40
FIELD_SIZE e e e e e 10-41
FIND . . . o e e e e e 10-42
FIND_FIRST e e e e e e e e e e e e 10-43
FIND_FREE_NODE it 10-44
FIND _NEXT i e i e e e e e e e e e e e e e 10-45
FIRST_BYTE_ADDRESS e e 10-46
FIRST_NODE e e e e e e e e e e e 10-47
FORCE_STATISTICS_REPORTING 10-48
FRAGMENT e e e e e e e 10-49
GEN_DATA_FIELD e e e et e e e 10-50
GEN_TEMPLATE_ID e e e 10-51
GET_CARD_TYPE_AND_ADDRESS 10-52
GET_CIM_BOOT_SOURCE e 10-53
GET_CIM_NUMBER et se e 10-54
GET_DATA_FIELD e e e e e e e 10-55

GET_EXPRESS, MAYBE_EXPRESS 10-56

GET_FIRST_BYTE e 10-57

GET_LAST_BYTE e 10-58
GET_LONG_BUFFERS, FG_LONG_BUFFERS, MAYBE_LONG_BUFFERS 10-59
GET_MEMORY, FG_MEMORY, MAYBE_MEMORY 10-60
GET_MESSAGE_LENGTH e 10-61
GET_MPB_EXTENT, FG_MPB_EXTENT, MAYBE_MPB_EXTENT 10-62
GET_MSG, MAYBE_MSG 10-63
GET_NEXT_STATUS_SAP e 10-64

GET_PMM_EXTENT, FG_PMM_EXTENT, MAYBE_PMM_EXTENT 10-65
GET_SHORT_BUFFERS, FG_SHORT_BUFFERS, MAYBE_SHORT_

BUFFERS. e 10-66
GET_SIZE_N_ADDR e 10-67
GET_STATUS_RECORD 10-68
GET_STATUS_SAP e e i s 10-69
GROW . . e 10-70
I_COMPARE e 10-71
I_COMPARE_COLLATED i i 10-72
I_SCAN . . e 10-73
I_TRANSLATE e 10-74
INCREMENT_MODULE_USE_COUNT 10-75
INIT_ROOT s s e e 10-76
INITIALIZE_STATISTIC_RECORD 10-77
LOAD_ABS_MODULE_AND_DELAY 10-78
LOAD_ABS_MODULE_AND_PROCEED 10-79
LOAD_CMD_PROCESSOR_AND_DELAY 10-80
LOAD_CMD_PROCESSOR_AND_PROCEED 10-81
LOAD_ENTRY_POINT_AND_DELAY 10-82
LOAD_ENTRY_POINT_AND_PROCEED 10-83
M_RELEASE e 10-84
MAYBE_TASK e 10-85
MDU_TO_ASCII e e e e s e 10-86
MESSAGE_DEQUEUE 10-87
MESSAGE_ENQUEUE e e 10-88
MODIFY_WRITE_PROTECT_BYTE 10-89
MODIFY_WRITE_PROTECT _LONG_WORD 10-90
MODIFY_WRITE_PROTECT_SHORT_WORD 10-91
NAME_MATCH e e e e e 10-92
NEW_INTERRUPT o . 10-93
NEW_PRIORITY e 10-94
NOPREMPT e 10-95
OKPREMPT 10-96
OPEN_STATISTICS_SAP o . 10-97
OPEN_STATUS_SAP e e e 10-98
PCOPY . . . e e 10-99
PICK . . . 10-100
PMP_GET_DATE i e 10-101
PMP_GET_TIME e 10-102
PREFIX e 10-103
PUT_STATUS_RECORD 10-104
QUEUE_IP_COMMAND e e 10-105
READ_BCD_CLOCK e 10-106
READ_CLOCK e 10-107
READ_SRO_FROM_IP i 10-108
RELEASE_HARDWARE_DEVICE 10-109
RELEASE_MESSAGE, FG_RELEASE_MESSAGE 10-110
REQUEST_DIAGNOSTIC_ENTRY 10-111

REQUEST_HARDWARE_DEVICE 10-112

RESET_DI e e e e 10-113

RESET_RECOVERY_PROCEDURE 10-114
RESTART_PORT_SERVICE 10-115
RESTORE_DVM_INTERRUPT, 10-116
RESTORE_TASK i e 10-117
SEND_CRO_TO_IP e e 10-118
SEND_EXPRESS, FG_TO_EXPRESS 10-119
SEND_NORMAL, FG_TO_NORMAL 10-120
SET_BCD_CLOCK i e 10-121
SET_BUFFER_CHAIN_OWNER 10-122
SET_MEMORY_OWNER o i 10-123
SET_RECOVERY_PROCEDURE e e 10-124
SET_WRITE_PROTECT 10-125
SFIND . . e e 10-126
SFIND_FIRST e 10-127
SFIND_NEXT it e e 10-128
SFIND_WILD_CARDS e 10-129
SGROW e 10-130
SIGNALM)YACQUIRE() o oo 10-131
SPICK e 10-132
START_DEVICE_SERVICE, 10-133
START_NAMED_TASK_AND_DELAY 10-134
START_NAMED_TASK_AND_PROCEED 10-135
START_PORT_SERVICE 10-136
START_SYSTEM_TASK i 10-137
START_TASK e e e 10-138
STOP_DEVICE_SERVICE, 10-139
STOP_PORT_SERVICE 10-140
STOP_TASK e 10-141
STRIP e e 10-142
STRIP_IN_PLACE i i 10-143
SUBFIELD e e e e 10-144
SUSPEND: P 10-145
TIME . . e e e e 10-146
TRANSLATE_MESSAGE 10-147
TRIM . . . e e 10-148
UNUSED_STACK. i e e e i 10-149
VALIDATE_SECTION_ADDRESS 10-150
VISIT_ALL_NODES e 10-151
WAIT . e e 10-152
WAKE_UP, FG_.WAKE_UP. 10-153

YIELD e e e e e e 10-154

Procedures and Functions 10

This chapter documents the common routines provided by CDCNET’s base system
software. These procedures and functions may be called on to perform the basic
services described in the early chapters of this manual.

Conventions

Descriptions of the procedures and functions adhere to the following conventions:

® The procedure or function name appears at the top of the page in full capital
letters.

® A short description of the purpose of the procedure or function follows. This tells
you how the procedure is used, not how it is processed.

® The name of the common deck (comdeck) where the XREF procedure is to be found
is given next. This must be specified in the procedure’s deck reference, as in the
following example (using comdeck CMXSISA):

(*calle CMXSISA)
® The format of the call to the procedure is given, including any formal parameters.
® Input parameters are described.
® Qutput parameters are described.

¢ Finally, any special remarks concerning the procedure or function are made,
including cautions or warnings.

Revision A Procedures and Functions 10-1

Logical Groups

Logical Groups

For easy reference, the procedures and functions have been grouped below by software
component.

DI Debugger Interface

DI_DEBUG
DI_DEBUG_INIT

DVM Interface

CHANGE_DVM_INTERRUPT
CHANGE_DVM_TASK_ID
CHKSUM_IP_COMMAND_PACKET
DEVICE_STARTED
DUMP_IP_MEMORY
GET_CIM_BOOT_SOURCE
GET_CIM_NUMBER
QUEUE_IP_COMMAND
READ_SRO_FROM_IP
RESTART_PORT_SERVICE
RESTORE_DVM_INTERRUPT
SEND_CRO_TO_IP
START_DEVICE_SERVICE
START_PORT_SERVICE
STOP_DEVICE_SERVICE
STOP_PORT_SERVICE

General Purpose

ABORT_SYSTEM

ABS, MAX, MIN
CONVERT_INTEGER_TO_POINTER
CONVERT_POINTER_TO_INTEGER
DEAD_STOP

FIELD_SIZE

I_COMPARE
I_COMPARE_COLLATED

I_SCAN

I_TRANSLATE

MDU_TO_ASCII

NAME_MATCH

UNUSED_STACK _

10-2 Base System Software Revision A

Logical Groups

Hardware Device Interfaces

GET_CARD_TYPE_AND_ADDRESS
RELEASE_HARDWARE_DEVICE
REQUEST_DIAGNOSTIC_ENTRY
REQUEST_HARDWARE_DEVICE

Memory Interfaces

CLEAR_ALLOCATE

CLEAR_MEMORY
CLEAR_WRITE__PROTECT

GET_MEMORY

GET_MPB_EXTENT

GET_PMM_EXTENT
MODIFY_WRITE_PROTECT_BYTE
MODIFY_WRITE_PROTECT_LONG_WORD
MODIFY_WRITE_PROTECT_SHORT_WORD
SET_BUFFER_CHAIN_OWNER
SET_MEMORY_OWNER
SET_WRITE_PROTECT

Message Management

APPEND

ASSEMBLE

BROADCAST
BUILD_HEADER_IN_PLACE
COPY

FG_TRIM
FIRST_BYTE_ADDRESS
FRAGMENT
GEN_DATA_FIELD
GEN_TEMPLATE_ID
GET_DATA_FIELD
GET_FIRST_BYTE
GET_LAST_BYTE
GET_LONG_BUFFERS
GET_MESSAGE_LENGTH
GET_SHORT_BUFFERS
GET_SIZE_N_ADDR
MESSAGE_DEQUEUE
MESSAGE_ENQUEUE
M_RELEASE

PCOPY

PREFIX
RELEASE_MESSAGE
STRIP
STRIP_IN_PLACE
SUBFIELD
TRANSLATE_MESSAGE
TRIM

Revision A Procedures and Functions 10-3

Logical Groups

Online Loader Interface

CHECKSUM_NEXT_MODULE
DECREMENT_MODULE_USE_COUNT
INCREMENT_MODULE_USE_COUNT
LOAD_ABS_MODULE_AND_DELAY
LOAD_ABS_MODULE_AND_PROCEED
LOAD_CMD_PROCESSOR_AND_DELAY
LOAD_CMD_PROCESSOR_AND_PROCEED
LOAD_ENTRY_POINT_AND_DELAY
LOAD_ENTRY_POINT_AND_PROCEED
START_NAMED_TASK_AND_DELAY
START_NAMED_TASK_AND_PROCEED
VALIDATE _SECTION_ADDRESS

Queue Management

MESSAGE_DEQUEUE
MESSAGE_ENQUEUE

Statistics Management

OPEN_STATISTICS_SAP
CLOSE_STATISTICS_SAP
FORCE_STATISTICS _REPORTING
BUILD_STATISTICS_MSG_HEADER
INITIALIZE _STATISTICS_RECORD

Status Management

CLOSE_STATUS_SAP
GET_NEXT_STATUS_SAP
GET_STATUS_RECORD
GET_STATUS_SAP
OPEN_STATUS_SAP
PUT_STATUS_RECORD

System Ancestor Interface

DUMP_CLOSE

DUMP_WRITE

RESET__DI
RESET_RECOVERY_PROCEDURE
SET_RECOVERY_PROCEDURE
START_DUMP
START_SYSTEM_TASK

10-4 Base System Software Revision A

Logical Groups

Task Management

ABORT_TASK
DELAY_PROCESSING
GET_EXPRESS
GET_MSG
MAYBE_TASK
NEW_INTERRUPT
NEW _PRIORITY
NOPREMPT
OKPREMPT
RESTORE_TASK
SEND_EXPRESS
SEND_NORMAL
SIGNAL(n)/ACQUIRE(n)
START_TASK
STOP_TASK
SUSPEND

WAIT

WAKE_UP

YIELD

Timer Services

CALL_AFTER_INTERVAL
CALL_AT_TIME
CALL_PERIODIC
CANCEL_TIMER
CHANGE_TIMER_OWNER
PMP_GET_DATE
PMP_GET_TIME
READ_BCD_CLOCK
READ_CLOCK
SET_BCD_CLOCK

TIME

Tree (Table) Management

FIND

FIND_FIRST
FIND_FREE_NODE
FIND_NEXT
FIRST_NODE
GROW

INIT_ROOT

PICK

SFIND
SFIND_FIRST
SFIND_NEXT
SFIND_WILD_CARDS
SGROW

SPICK
VISIT_ALL_NODES

Base system software procedures and functions are described in alphabetical order on
the remaining pages of this chapter.

Revision A Procedures and Functions 10-5

ABORT_SYSTEM

ABORT_SYSTEM

This procedure brings the system to a halt and displays the specified message text at
the MPB-connected terminal (if present).

Comdeck CSXABRT
Format ABORT_SYSTEM (halt_code, message_ptr)

Input halt_code: integer

This parameter indicates what brought the system down. If halt_code is a
valid reset (see common deck SIDRC), then a call is made to RESET_DIL
Otherwise, a call is made to DEAD_STOP, where a default halt_code is
used.

message _ptr: “string (* <= dbc$single_line)

This parameter is a pointer to an adaptable string containing message text
about why the abort was necessary.

Output None.

10-6 Base System Software Revision A

ABORT_TASK

ABORT _TASK

This procedure signals that a task is undergoing a software failure, and that recovery
is required. The indicated task is checked to see if it has a parent task. If it does not,
it is stopped with STOP_TASK and the entire system is brought to a halt. If the
indicated task does have a parent task, the task is suspended and the parent task is
notified with an ITM.

ABORT_TASK is intended to be a response to an illogical software condition, invoking
action from the parent to recover or restart the aborted task.

Comdeck CMXMTSK
Format ABORT_TASK (abort_code, task_id, status)

Input abort_code: integer
This parameter indicates the reason the caller wants the task aborted.

task _id: task_ptr
This parameter indicates the address of the task to be aborted.

Output status: boolean

This parameter indicates whether or not the task was aborted.

Revision A Procedures and Functions 10-7

ABS, MAX, MIN

ABS, MAX, MIN

These numeric functions are quite predictable. They perform the following operations:

ABS Returns the absolute value of an integer.
MAX Returns the greater of two integer values.
MIN Returns the lesser of two integer values.

Comdeck CMXPMMA

Format value:= ABS (a)
value:= MAX (a, b)
value:= MIN (a, b)
Input a: integer

This parameter may be any integer value.
b: integer
This parameter may be any integer value.

Output value: integer

This parameter returns the result of the numeric operation being
performed.

10-8 Base System Software Revision A

APPEND

APPEND

This procedure appends a trailer to a message. The message is checked for use by
multiple data streams. If any portion is multiply used, that portion is logically copied.

Comdeck

Format

Input

Output

Remarks

Revision A

CMXPAPP

APPEND (size_of_trailer, addr_of_trailer, message_pointer,
threshold, allocation_type, result_status)

size _of_trailer: non_empty_message_size

This parameter indicates the length of the trailer in bytes. The allowable
range is 1 through 65535 bytes.

addr_of_trailer: ~cell

This parameter indicates the address of the trailer.

message _pointer: buf_ptr

This parameter indicates the address of the message to which the trailer
will be appended.

threshold: threshold _size

This parameter indicates the threshold for buffer acquisition.

allocation _type: pref_type

This parameter indicates how the call is to be performed. See the
description of pref_type (under BUFFER in appendix B) for options.
message__pointer: buf_ptr

This parameter returns the address of the message to which the trailer has
been appended. This is different from input only if a new data buffer must
be allocated to contain a longer message.

result_status: boolean

This parameter indicates whether or not the trailer was appended to the
message.

In case of a logical copy operation, the message_pointer returned may be
different than the message_pointer supplied.

Procedures and Functions 10-9

ASSEMBLE

ASSEMBLE

This procedure assembles two message fragments into a single message by attaching
the second fragment to the end of the first.

Comdeck CMXPASS
Format ASSEMBLE (fragment_1, fragment_2, threshold)

Input fragment_1: buf_ptr
This parameter indicates the address of the first message fragment.

fragment_2: buf_ptr

This parameter indicates the address of the second message fragment.

threshold: threshold _size

This parameter indicates the threshold for buffer acquisition.

Output fragment_1: buf_ptr

This parameter returns the address of the first fragment, which contains
the assembled message on output. If any of fragment_1 is multiply used,
the portion so used is logically copied and the output parameter will differ
from input.

10-10 Base System Software Revision A

BROADCAST

BROADCAST

This procedure prepares a message for multiple use. This is accomplished by updating
the user count of the first descriptor of the message to show the increased number of
data streams that must logically release the message before it may be physically
released.

Comdeck CMIPBRO
Format BROADCAST (message, number_of_new_data_streams)

Input message: buf_ptr
This parameter indicates the address of the message to be broadcast.

number_of_new_data_streams: 1 .. 32767

This parameter indicates the number of data streams to be added to the
user count of the message being prepared for broadecast.

This parameter value is incremented by 1 when the user wants to keep a
copy of the message. The call to BROADCAST is often made with the
count equal to one since BROADCAST simply adds to the logical number
of copies of a message already in place.

Output None.

Revision A Procedures and Functions 10-11

BUILD_HEADER_IN_PLACE

BUILD _HEADER_IN_PLACE

This procedure gets a buffer or descriptor as needed, creates space in the message to
hold the specified header, and returns both the new message address and the address
of the header structure. The current first buffer is used if the header will fit and starts
on an even byte.

Comdeck

Format

Input

Output

Remarks

CMXPBLD
BUILD_HEADER _IN_PLACE (length, addr, message, threshold,

allocation _type, success)

length: non_empty_buffer

This parameter indicates the number of bytes reserved for the header.
Allowable range is 1 .. 1024.

addr: “cell

This parameter indicates the pointer to the address of the header.

message: buf_ptr
This parameter indicates the address of a pointer to the message.

threshold: threshold _size
This parameter indicates the buffer allocation threshold.

allocation _type: pref_type

This parameter indicates how the call is to be performed. See the
description of pref_type (under BUFFER in appendix B) for options.
addr: “cell

This parameter returns the pointer to the address of the header. This will
differ from input only if a new buffer has been allocated. A new buffer is
allocated if the header does not fit into the original buffer.

message: buf_ptr

This parameter returns the address of a pointer to the message. This will
differ from input only if a new buffer has been allocated. A new buffer is
allocated if the new message will not fit into the original buffer.
success: boolean

This parameter indicates whether or not the operation was successful.

The size of a header that is allocated may not exceed the size of the data
space of a data buffer; larger headers must be generated using PREFIX.

10-12 Base System Software Revision A

BUILD_STATISTICS_MSG_HDR

BUILD _STATISTICS _MSG _HDR

This procedure initializes and puts TIME and REASON fields into a log message.

Comdeck

Format

Input

Output

Revision A

SMXSAPM

BUILD _STATISTICS_MSG _HDR (sds_header_ptr, time, reason,
statistics _log_ msg)

sds_header_ptr: “sds_header

This parameter indicates the pointer to a chain of one or more sds_
headers.

time: report_time_type

This parameter indicates the TIME field to be used in the header being
built.

reason: statistics_reason_type

This parameter indicates the REASON field to be used in the header being
built.

statistics _log_msg: buf_ptr

This parameter returns the address of the generated statistics log message.
If NIL, invalid calling parameters were specified.

Procedures and Functions 10-13

CALL_AFTER_INTERVAL, FG_AFTER_INTERVAL

CALL_AFTER_INTERVAL, FG_AFTER_INTERVAL

An ITM is enqueued to the timer task requesting the execution of a subroutine after a
specified time interval has elapsed. These calls have the following effects:

CALL_AFTER_INTERVAL Enqueues timer request.

FG_AFTER_INTERVAL For interrupt routines only; enqueues timer
request.
Comdeck CMXMTIM
Format CALL_AFTER_INTERVAL (interval, parameter, timer_routine,

Input

Output

timer _request_identifier)

FG_AFTER_INTERVAL (interval, parameter, timer_routine, timer_
request_identifier)

interval: milliseconds

This parameter indicates the number of milliseconds in the interval before
the subroutine is executed. Milliseconds can be calculated by calling the
TIME procedure.

parameter: “cell

This parameter indicates the address of the user-defined parameters for the

-procedure to be executed.

timer _routine: “procedure (parameter: “cell)

This parameter indicates the subroutine to be executed.

timer _request_identifier: ~timer

This parameter returns the timer entry address if the procedure executed
successfully.

10-14 Base System Software Revision A

CALL_AT_TIME, FG_AT_TIME

CALL_AT_TIME, FG_AT_TIME

An ITM is enqueued to the timer task requesting the execution of a subroutine at a
given time. These calls have the following effects:

CALL_AT_TIME Enqueues timer request.
FG_AT_TIME For interrupt routines only; enqueues timer
request.
Comdeck CMXMTIM
Format CALL_AT_TIME (time_of_day, parameter, timer_routine, timer_

Input

Output

Remarks

Revision A

request_identifier)

FG_AT_TIME (time_of_day, parameter, timer_routine, timer_
request_identifier)

time_of_iiay: milliseconds

This parameter indicates the execution time in milliseconds, with midnight
equal to zero.

parameter: “cell

This parameter indicates the address of the user-defined parameters for the
procedure to be executed.

timer _routine: “procedure (parameter: “cell)

This parameter indicates the subroutine to be executed.

timer _request_identifier: “timer

This parameter returns the timer entry address if the procedure executed
successfully.

If the requested time has passed (for example, it is now 12:05 a.m. and an
execution time of midnight is requested), the request is understood to
expire on the next day. See also: CANCEL_TIMER Request.

Procedures and Functions 10-15

CALL_PERIODIC, FG_PERIODIC

CALL_PERIODIC, FG_PERIODIC

An ITM is enqueued to the timer task requesting periodic activation of a subroutine
until the request is cancelled or until the requesting taskid is no longer valid. Requests
from interrupt routines must actually be cancelled.

These calls have the following effects:

CALL_PERIODIC Enqueues timer request.
FG_PERIODIC For interrupt routines only; enqueues timer
request.
Comdeck CMXMTIM
Format CALL_PERIODIC (first_expiration, interval, parameter, timer _

Input

Output

Remarks

routine, timer_request_identifier)

FG_PERIODIC (first_expiration, interval, parameter, timer_routine,
timer _request_identifier)

first_expiration: milliseconds

This parameter indicates the starting time in milliseconds for the first call
to be made. A value of NIL implies the current time.

interval: milliseconds

This parameter indicates the number of milliseconds in the interval
between subroutine executions.

parameter: “cell

This parameter indicates the address of the user-defined parameters for the
procedure to be executed.

timer _routine: “procedure (parameter: “cell)

This parameter indicates the subroutine to be executed.

timer _request_identifier: “timer

This parameter returns the timer entry. address if the procedure executed
successfully.

If the requested time has passed (for example, it is now 12:05 a.m. and an
execution time of midnight is requested), the request is understood to
expire on the next day. See also: CANCEL_TIMER request.

10-16 Base System Software Revision A

CANCEL_TIMER, FG_CANCEL_TIMER

CANCEL_TIMER, FG_CANCEL_TIMER

A previously requested timing function (CALL_AFTER_INTERVAL, CALL_AT_TIME
or CALL_PERIODIC) is cancelled. These calls have the following effects:

CANCEL_TIMER Timer request is cancelled.
FG_CANCEL_TIMER For interrupt routines only; timer request is
cancelled.
Comdeck CMXMTIM
Format CANCEL_TIMER (timer_id, parameter, status)
FG_CANCEL_TIMER (timer_id, parameter, status)
Input timer_id: “timer
This parameter indicates the timer entry associated with the timing
procedure to be cancelled. The timer_id must be the value returned by the
timing function call. If an invalid value is specified, the DI will be reset. If
NIL, FALSE will be returned in status.
Output timer_id: NIL

Revision A

The timer_id is returned as NIL so that it will not be used again.

parameter: “cell

This parameter returns the address of the user-defined parameters for the
procedure whose timing function is being cancelled.

status: boolean

This parameter indicates whether or not the timer was cancelled
successfully.

Procedures and Functions 10-17

CHANGE_DVM_INTERRUPT

CHANGE _DVM_INTERRUPT

DVM Diagnostic Services use this procedure to change the interrupt procedure used to
handle interrupts from a peripheral.

Comdeck DMXDIAG
Format CHANGE _DVM_INTERRUPT (new_proc, ip_number, owner, status)

Input new__proc

This parameter indicates the address of the new interrupt procedure.

ip_number: 0..upper_ip_num

This parameter indicates the slot number of the IP.

Output owner: task_ptr
This parameter returns the address of the original DVM user.

status: 0..0ffff(16)

This parameter returns the status of CHANGE_DVM_INTERRUPT. The
status codes are:

0: command accepted

1: invalid IP slot number

2: IP board is active

4: bus error received on ICB access

10-18 Base System Software Revision A

CHANGE_DVM_TASK_ID

CHANGE _DVM _TASK_ID

This procedure is used to change the ownership of a specific port to that of a new task
by giving control of the specified DVMID to a new DVM user.

Comdeck DMXXPS
Format CHANGE _DVM_TASK_ID (dvm_id, new_task_id, status)

Input dvm_id: “cell

This parameter indicates the address of the specified port control block
(DVMID).

new _task _id: task _ptr

This parameter indicates the address of the task that is the new owner of
the specified port.

Output status: boolean

This parameter indicates whether or not ownership has been successfully
changed.

Revision A Procedures and Functions 10-19

CHANGE_TIMER_OWNER

CHANGE _TIMER _OWNER

The requested timing function will have its allocating task id changed to the indicated
task. If the indicated task equals NIL, the currently running task will be used as the
new allocating task for the indicated timer.

Comdeck
Format

Input

Output

CMXMTIM
CHANGE _TIMER_OWNER (timer_id, task_id, status)

timer_id: ~“timer

This parameter indicates the timer entry associated with the timing
procedure whose ownership is to be transferred.

task _id: task_ptr

This parameter indicates the new allocating task for the indicated timing
procedure.

status: boolean

This parameter indicates whether or not the procedure executed properly.
A false status is returned if the timer_id or the task_id is invalid.

10-20 Base System Software Revision A

CHECKSUM_NEXT_MODULE

CHECKSUM _NEXT_MODULE

Successively validates the section checksums of the next module. The procedure
executes as follows:

® The load_identifier parameter is initially passed in as NIL in order to start with
the first module.

® The checksums for sections of the current module are successively calculated. These
checksums are compared with the sums in the module header. If they are equal,
then checksum_valid is set to TRUE; otherwise, it is returned FALSE.

® When the last module has been checksummed, the parameter next_module_found is
returned with a value of FALSE. The module use count of the previous module is
decremented and the current module is incremented.

Comdeck

Format

Input

Output

Revision A

DLXCKNM

CHECKSUM _NEXT_MODULE (load_identifier, next_module_found,
checksum _ valid)

load _identifier: dlt$load _id _ptr

This parameter indicates a record that specifies the module characteristics.
It is initially set to NIL.

load _identifier: dlt$load _id _ptr

This parameter is used to pass to the CHECKSUM_NEXT._MODULE call
while looping.

next_module_found: boolean

This parameter returns TRUE until the end of the module header linked
list is found. The parameter then returns FALSE.

checksum _valid: boolean

This parameter indicates whether the section checksum returned is equal
to the section checksum from the time of initial load.

Procedures and Functions 10-21

CHKSUM_IP_CMD_PKT

CHKSUM_IP_CMD _PKT

DVM diagnostic services use this procedure to perform a checksum operation on a
restart packet to be sent to a peripheral board.

Comdeck DMXDIAG
Format CHKSUM_IP_CMD_PKT (packet_ptr)

Input packet_ptr: “ip_cmd _pkt_type

This parameter indicates the address of the packet that is to have a
checksum operation performed on it.

Output None.

10-22 Base System Software Revision A

CLEAR_ALLOCATE

CLEAR_ALLOCATE

This procedure allocates memory from the. system heap and clears it to zero. If the
memory cannot be allocated at the time of the call, the caller will yield the CPU until
the memory request can be satisfied.

Comdeck
Format

Input

Output

Remarks

Revision A

CMXCLAL
address:= CLEAR_ALLOCATE (memory_bytes)

memory _bytes: 1 .. 32766 .
This parameter indicates the number of bytes to be allocated.

address: “cell
This parameter returns the address of the memory allocated.

The allocated memory will always be an even number of bytes and start at
an even byte boundary.

Use of this procedure is not recommended. Instead, the recommended
technique is to allocate the record with the CYBIL allocate statement and
then initialize the record by copying a pre-initialized static template.

Procedures and Functions 10-23

CLEAR_MEMORY

CLEAR _MEMORY

This procedure clears a specified number of memory bytes.

Comdeck CMXCLAL

Format CLEAR_MEMORY (even_start_address, memory_bytes)

Input even _start_address: “cell

This parameter indicates the starting address of memory to be cleared. It
is assumed to be an even byte address.

memory _bytes: 0 .. 32766

This parameter indicates the length of memory to be cleared. It is assumed
to be an even number of bytes.

Output None.

10-24 Base System Software Revision A

CLEAR_WRITE_PROTECT

CLEAR _WRITE _PROTECT

This procedure clears the write protect flag.

The write protect feature prevents user tasks from writing into MPB RAM. This adds a
hardware level of security to prevent loss of the system_id and other configuration
information. CLEAR_WRITE_PROTECT is called by a non-preemptible command
processor task in order to change the configurable information. SET_WRITE_
PROTECT is always called to reenable the hardware protection.

Comdeck CMICWP

Format CLEAR_WRITE_PROTECT
Input None.

Output None.

Remarks The proper use of this routine is in conjunction with SET_WRITE_
PROTECT. The order of use should be:

1. CLEAR_WRITE_PROTECT,

2. modify the normally write-protected area of memory, and

3. SET_WRITE_PROTECT.

Revision A Procedures and Functions 10-25

CLOSE_STATISTICS_SAP

CLOSE _STATISTICS _SAP
This procedure allows a software component to close a previously opened statistics SAP.

Comdeck SMXSAPM

Format CLOSE_STATISTICS _SAP (sap_id, element_type, element_name,
status)
Input sap _id: 0..0ffff(16)

This parameter identifies the statistics SAP to be closed.

element_type: statistics_type
This parameter indicates the element type for which a statistics SAP is to
be closed.
element_name: string (* <= 31)
This parameter indicates the name of the element for which a statistics
SAP is to be closed.
Output status: close_statistics _status
This parameter returns the call status.

10-26 Base System Software Revision A

CLOSE_STATUS_SAP

CLOSE _STATUS_SAP

This procedure allows software components to close previously opened status SAPs.

Comdeck
Format

Input

Output

Remarks

Revision A

SDXSSAR
CLOSE _STATUS_SAP (sap_number)

sap_number: software_sap_range

This parameter uniquely identifies the previously opened SAP that is to be
closed. The sap_number must be the sap_number returned on the open_
status__sap call.

None.

The procedure NOPREMPT is called upon entering CLOSE_STATUS_SAP
to suppress task preemption. CLOSE_STATUS_SAP is exited in a
non-preemptable state; the caller must make a call to the procedure
OKPREMPT if preemptability is desired.

Global data modified:

software_status_sap_table.

Procedures and Functions 10-27

CONVERT_INTEGER_TO_POINTER

CONVERT_INTEGER _TO_POINTER

Converts an integer to a pointer for users who need to do pointer arithmetic.
Comdeck CMIPCIP

Format address := CONVERT_INTEGER_TO_POINTER (value)

Input value: integer

This parameter indicates the integer to be converted.

Output address: “cell

This parameter returns the integer in pointer format.

Remarks Use of this procedure should probably be restricted to hardware interface
routines.

10-28 Base System Software Revision A

CONVERT_POINTER_TO_INTEGER

CONVERT_POINTER _TO_INTEGER

Converts a pointer to an integer for users who need to do pointer arithmetic.
Comdeck CMIPCPI

Format number := CONVERT_POINTER_TO_INTEGER (value)

Input value: “cell
This parameter indicates the address to be converted.

Output number: integer

This parameter returns the integer value of the converted address.

Remarks Use of this procedure should probably be restricted to hardware interface
routines.

Revision A Procedures and Functions 10-29

COPY

COoPY

This procedure copies a message to another buffer chain. The message is logically
copied to new buffers, and the old set of buffers is released.

Comdeck
Format

Input

Output

Remarks

CMXPCPY
COPY (message, threshold)

message: buf_ptr
This parameter indicates the message to be copied.

threshold: threshold _size

This parameter indicates the threshold for buffer acquisition.

message: buf_ptr
This parameter returns the new buffer address of the copied message.

The message parameter must be a valid buffer chain address.

10-30 Base System Software Revision A

DEAD_STOP

DEAD_STOP
This procedure calls RESET_DI with a reset code of software_dead_stop.
Comdeck CMXPDED

Format DEAD_STOP (halt_code)

Input halt_code: 0 .. 0ff(16)
This parameter is required at compile-time, but is currently not used at
run-time.

Output None.

Revision A Procedures and Functions 10-31

DECREMENT_MODULE_USE_COUNT

DECREMENT _MODULE _USE _COUNT

The module use count of the indicated entry point is decremented. If the count becomes
zero, then the module is made available for deload. If the counter becomes negative,
the system is reset and reloaded by DEAD_STOP. If the given entry point name is all
blanks, then the module use count of the running task is decremented. This procedure
is used when the module use count was previously incremented and procedure STOP_
TASK will not be called to decrement the counter.

Comdeck DLXDMUC

Format DECREMENT_MODULE_USE_COUNT (entry_point_name, entry_
point _found)
Input entry_point_name: pmt$program_name

This parameter indicates the entry point of the module whose use count is
to be decremented.

Output entry _point_found: boolean

This parameter returns an indication of whether the entry point was
located.

10-32 Base System Software Revision A

DELAY_PROCESSING

DELAY _PROCESSING

This routine may be called to delay processing for a finite period of time, as in a
timeout mechanism. A normal return occurs when processing is resumed.

Comdeck
Format

Input

Output

Remarks

Revision A

CMXPDLY
DELAY_PROCESSING (hours, minutes, seconds, milliseconds)
hours: 0 .. 24

This parameter indicates the number of hours in the delay.

minutes: 0 .. 59
This parameter indicates the number of minutes in the delay.

seconds: 0 .. 59
This parameter indicates the number of seconds in the delay.

milliseconds: 0 .. 999
This parameter indicates the number of milliseconds in the delay.

None.

The Executive CALL_AFTER_INTERVAL service is used to restart the
task. The Executive guarantees that the requestor will wait at least as
long as requested, but does not guarantee a maximum period. Thus,
DELAY_PROCESSING (0,0,0,200) will delay at least 200 milliseconds, but
may delay longer, even up to several seconds in a very busy system.

Procedures and Functions 10-33

DEVICE_STARTED

DEVICE _STARTED

This routine checks whether or not the peripheral board exists and has been started.

Comdeck DMXXDS

Format DEVICE _STARTED (ip_number)
Input ip_number: 0 .. upper_ip_num

This parameter indicates the slot number of the peripheral board.

Output status: boolean

This parameter returns a boolean value of TRUE if the peripheral board
has been started. FALSE is returned if the peripheral board does not exist
or has not been started.

10-34 Base System Software Revision A

DI_DEBUG

DI_DEBUG
This procedure calls the DI Debugger from within a user program.

If the DI Debugger program has already been initialized by a DI_DEBUG request, it
will retain its current trap state, enter its main input loop, and wait for Debugger
commands to be entered through the DI console.

Comdeck CMXDBUG
Format DI_DEBUG
Input None.

Output None.

Revision A Procedures and Functions 10-35

DI_DEBUG_INIT

DI_DEBUG_INIT

This procedure initializes the DI Debugger program to console break mode only. While
the Debugger is in this mode, all of the available Debugger program error stops are
enabled the first time a user presses the BREAK key (or enters a break 2 sequence)
from the DI console. If the Debugger program has already been initialized, this request
is ignored and the Debugger program is left in its current state.

Comdeck CMXDBUG
Format DI_DEBUG_INIT
Input None.

Output None.

10-36 Base System Software Revision A

DUMP_CLOSE

DUMP _CLOSE

This procedure indicates to the dump task that the transfer of dump information is
complete.

Comdeck CMXSISA
Format DUMP_CLOSE (sa_dump _identifier)

Input sa_dump _identifier: “cell
This parameter indicates the address of the dump control block.

Output None.

Remarks If the sa_dump_identifier is not valid, no message will be sent and
control returns to the caller.

Revision A Procedures and Functions 10-37

DUMP_IP_MEMORY

DUMP_IP_MEMORY

This procedure dumps the peripheral board’s local RAM. This is done when either DVM
or the peripheral’s local RAM returns an error status when executing QUEUE _IP_
COMMAND. Failure management software then issues the DUMP_IP_MEMORY
procedure to DVM.

Comdeck DMXDIP
Format DUMP_IP_MEMORY (dip_parm_ptr, image_location, status)

Input dip _parm_ptr: dip_parm_ptr_type

This parameter indicates the address of the command parameter packet.
This record specifies the number of the peripheral, the address of the
dump, and the length of the dump.

Output image_location: “~cell

This parameter returns the address of the image location where the
dumped RAM is stored. This is located in SMM.

status: 0..0ffff(16)

This parameter returns the status of DUMP_IP_MEMORY. The status
codes are:

: command executed.

: invalid card slot specified.

: start device service not issued for specified peripheral board.
: unable to procure memory for dump.

: peripheral board not responding to the dump command.

BWN = O

10-38 Base System Software Revision A

DUMP_WRITE

DUMP _WRITE

This procedure appends a header and dump information to the dump buffer chain
associated with the dump identifier. If the total number of bytes in the buffer chain is
above the maximum allowed in a dump buffer chain, then message(s) will be sent to
the dump task identifying buffers to be immediately written to the dump file. This is
used to capture any pertinent data during a recovery.

Comdeck

Format

Input

Output

Remarks

Revision A

CMXSISA

DUMP_WRITE (sa_dump_identifier, dump_address, dump_byte_
count, threshold)

sa_dump_identifier: “cell
This parameter indicates the address of the dump control block.

dump _address: “cell
This parameter indicates the address of the information to be dumped.

dump _byte _count: satdmax_dump _size

This parameter indicates the number of bytes to dump; rounded up to an
even number of bytes.

threshold: threshold _size
This parameter indicates the threshold to be used in obtaining buffers.

None.

If the sa_dump_identifier is not valid, then the dump information will be
discarded and control returns to the caller (the routine will abort).

Procedures and Functions 10-39

FG_TRIM

FG_TRIM

This procedure trims the specified number of bytes from the end of the data descriptor.
If a buffer is completely used up, it is released from memory. If the entire message is

less than the requested size, the caller is informed that there are not enough bytes to

satisfy the request.

Comdeck
Format

Input

Qutput

CMXPFGT
FG_TRIM (size, address, message)

size: non_empty_message_size

This parameter indicates the number of bytes needed.

address: “cell

This parameter indicates where to position the bytes that are retrieved.

message: buf_ptr

This parameter indicates the destination address for any diagnostic
message generated from the call.

message: buf_ptr

This parameter returns the address of any diagnostic message generated
from the call.

10-40 Base System Software Revision A

FIELD_SIZE

FIELD _SIZE

This function converts a multiple of any of the Management Data Unit (MDU) field
types to its length in bytes.

Comdeck MEXGDF
Format count := FIELD_SIZE (length, field _type)

Input length: 1 .. mdu_field _size
This parameter indicates how many units of field_type there are in the
MDU.
field _type: mdu _field _type
This parameter indicates the MDU field type.

Output count: 0 .. mdu_field _size

This parameter returns zero if an unsupported field type was specified;
else, number of bytes.

Revision A Procedures and Functions 10-41

FIND

FIND

This procedure finds and returns the table in a tree that is associated with the
specified integer key. The table is returned interlocked, (that is, task pre-emption from
interrupt levels is disabled).

Comdeck
Format

Input

Output

CMXPFIN
address:= FIND (head, key)

head: “root
This parameter indicates the root of the tree structure to be searched.

key: integer
This parameter indicates the key to be searched for.

address: “cell

This parameter returns the address of the table located by the FIND
operation. If the key is not found, the return is NIL.

10-42 Base System Software Revision A

FIND_FIRST

FIND _FIRST

This procedure searches the specified integer tree structure in left-node-right order for
a node that contains a key greater than the input parameter, key. For each node that
satisfies this condition, FIND_FIRST calls the user-supplied procedure (unless
parameter qual is NIL). The search continues until the user-supplied procedure returns
a value of TRUE (refer to appendix D). See also FIND_NEXT, SFIND_FIRST, and
SFIND_NEXT.

This procedure is identical to FIND_NEXT.

Comdeck
Format

Input

Output

Revision A

CMXPFNF
table = FIND_FIRST (head, qual, param, key)

head: “root

This parameter indicates the address of the head root of the tree structure
to be searched.

key: integer

This parameter indicates the key associated with the node from which the
search is to begin.

qual: “procedure

This parameter indicates the address of the procedure that will be called at
each node. Refer to appendix D.

param: “cell

This parameter indicates the parameter to pass to qual.

key: integer

This parameter returns the key associated with the first table to satisfy
the specified parameter, param.

table: ~cell

This parameter returns the address of the first table to satisfy the
specified parameter, param.

Procedures and Functions 10-43

FIND_FREE_NODE

FIND _FREE _NODE

This procedure finds the first key that is greater than the specified key and that is not
associated with a table. The search is performed by comparing the key value passed in
the call to the key.numeric value in the current node.

Comdeck CMXPFFN
Format FIND_FREE_NODE (head, key)

Input head: “root

This parameter indicates the root of the tree to be searched.

key: integer

This parameter indicates the key used for comparison in the search.
Output key: integer

This parameter returns the first key value that is greater than the input
key and that is not associated with a table.

10-44 Base System Software Revision A

FIND_NEXT

FIND _NEXT

This procedure searches the specified integer tree structure in left-node-right order for
a node that contains a key greater than the input parameter, key. For each node that
satisfies this condition, FIND_NEXT calls the user-supplied procedure (unless
parameter qual is NIL). The search continues until the user-supplied procedure returns
a value of TRUE (refer to appendix D). See also FIND_FIRST, SFIND_FIRST, and
SFIND_NEXT.

This procedure is identical to FIND_FIRST.

Comdeck
Format

Input

Output

Revision A

CMXPFNF
table = FIND_NEXT (head, qual, param, key)

head: “root

This parameter indicates the address of the root of the tree structure to be
searched.

key: integer

This parameter indicates the key associated with the node from which the
search is to begin.

qual: “procedure

This parameter indicates the address of the procedure that will be called at
each node. Refer to appendix D.

param: “cell

This parameter indicates the parameter to pass to qual.

key: integer

This parameter returns the key associated with the first table to satisfy
the specified parameter, param.

table: ~cell

This parameter returns the address of the first table to satisfy the
specified parameter, param.

Procedures and Functions 10-45

FIRST_BYTE_ADDRESS

FIRST_BYTE _ADDRESS

This procedure returns the address of the first byte of a message. It is intended for
fast access by protocols that regularly make use of the first byte.

Comdeck CMXPFBA
Format byte_address:= FIRST_BYTE_ADDRESS (message)

Input message: buf_ptr

This parameter indicates the message whose first byte address is sought.

Output byte_address: “string (1)

This parameter returns the first byte address of the specified message.

10-46 Base System Software Revision A

FIRST_NODE

FIRST _NODE

This procedure allocates space for the first node of a tree structure. Associated values
are placed in the first node and the head node is linked to the first node.

Comdeck
Format

Input

Output

Revision A

CMXPNEW
FIRST_NODE (head, key, table, size)

head: “root
This parameter indicates the root of the tree structure.

key: key_record

This parameter indicates the key to be associated with the first node, for
searching operations. .

table: “node_control

This parameter indicates the address of the table to be associated with the
first node.

size: integer
This parameter indicates the size in bytes of the specified table.

None.

Procedures and Functions 10-47

FORCE_STATISTICS_REPORTING

FORCE _STATISTICS _REPORTING

This procedure forces the specified statistics function procedure to be called to issue a
log message.

Comdeck SMXSAPM

Format FORCE _STATISTICS _REPORTING (sap_id, select_sds_hdr_ptr,
param, status)

Input sap_id: 0..0ffff(16)
This parameter identifies the statistics SAP.

select_sds_hdr_ptr: “sds_header
This parameter indicates the SDS header to be used for logging.

param: “cell

This parameter indicates the parameter for the statistics function
procedure.

Output status: force_stat_reporting _status
This parameter returns an indication of the call status.

10-48 Base System Software Revision A

FRAGMENT

FRAGMENT

This procedure extracts a message fragment from the specified message.

Comdeck
Format

Input

Output

Revision A

CMXPFRA
FRAGMENT (size, remainder_ptr, fragment_ptr, threshold)

size: non_empty_message _size

This parameter indicates the byte length of the message fragment to be
extracted.

remainder _ptr: buf_ptr

This parameter indicates the address of the source message buffer.

fragment_ptr: buf_ptr

This parameter indicates the address of the buffer to which the fragment is
to be moved.

threshold: threshold _size

This parameter indicates the threshold for buffer acquisition.

remainder _ptr: buf_ptr

This parameter returns the address of the remaining portion of the source
message buffer. This parameter will be set to NIL if the length of the size
parameter is greater than the length of the source message buffer.

fragment _ptr: buf_ptr
This parameter returns the address of the message fragment buffer.

Procedures and Functions 10-49

GEN_DATA_FIELD

GEN_DATA_FIELD

This procedure generates a data field in MDU format.

Comdeck
Format

Input

Output

MEXGDF
GEN_DATA_FIELD (msgbuf, field _cell, length, type)

msgbuf: buf_ptr
This parameter points to the buffer containing the data field(s).

field _cell: ~cell
This parameter indicates the data field.

length: 1..mdu_field _size
This parameter indicates the data field length.

type: mdu _field _type

This parameter indicates a data field type of MDU. Refer to Volume 3 of
the Systems Programmer’s Reference Manual for a complete description of
MDU types.

msgbuf: buf_ptr

This parameter returns a pointer to the buffer containing the MDU data
field(s).

10-50 Base System Software Revision A

GEN_TEMPLATE_ID

GEN_TEMPLATE _ID

This procedure puts template identifier fields into buffers for generation of log
messages or command responses. Refer to the Command ME chapter of Volume 2 of
the Systems Programmer’s Reference Manual for information on log message and
command response templates.

Comdeck CSXGTI
Format GEN_TEMPLATE _ID (msgbuf, template_id)

Input msgbuf: buf_ptr
This parameter points to the buffer that contains the log message or
command response data fields.
template _id: template_id_type
This parameter indicates the log message or command response template
number.

Output msgbuf: buf_ptr
This parameter returns the buffer containing data field(s).

Revision A Procedures and Functions 10-51

GET_CARD_TYPE_AND_ADDRESS

GET_CARD_TYPE _AND_ADDRESS

This procedure gets the card type and card address for the device name specified.
Comdeck SDXGCTA

Format GET_CARD_TYPE_AND_ADDRESS (device_name, device_record,
device_available)

Input device _name: string (*)
This parameter indicates the hardware device name whose card type and
address is desired.

Output device_record: card_info_record
This parameter returns the card type and card address for the device name
specified.
device_available: boolean

If an invalid device name has been specified or if the associated board type
is not physically available in the System Status Table, then this parameter
returns FALSE; TRUE otherwise.

10-52 Base System Software Revision A

GET_CIM_BOOT_SOURCE

GET_CIM_BOOT_SOURCE

- This procedure returns the LIM and port number over which a DI was booted. The
user must know the slot number of the peripheral board over which the boot was

loaded.
Comdeck

Format

Input

Output

Revision A

DMXXPS

GET_CIM_BOOT_SOURCE (ip_number, cim_number, port_number,
status)

ip_number: O..upper_ip_num

This parameter indicates the slot number of the peripheral board over
which the DI was booted.

cim_number: 0..upper_cim_num

This parameter returns the number of the CIM board for the specified
DVMID.

port_number: 0..upper_port_num

This parameter indicates the number of the port over which the DI was
booted.

status: 0..0ffff(16)

This parameter returns the status of GET_CIM_BOOT_SOURCE. The
status codes are:

command executed.

invalid board slot supplied.

start device service not issued for specified peripheral board.
unable to retrieve boot source.

peripheral board not responding to request.

L =

Procedures and Functions 10-53

GET_CIM_NUMBER

GET_CIM_NUMBER

This DVM routine is used to determine the CIM slot number from the user supplied
LIM and port numbers.

Comdeck DMXXPS
Format cim_number:= GET_CIM_NUMBER (lim_number, port_number)

Input lim _number: 0..upper_lim_num
This parameter indicates the slot number of the LIM board.

port_number: 0..upper_port_num

This parameter indicates the port number on the LIM board.

Output cim_number: 0..upper_ip_num

This parameter returns the CIM slot number for the specified LIM and
port numbers. Range is 1..7. A return of 0 signifies an invalid LIM or port
number.

10-54 Base System Software Revision A

GET_DATA_FIELD

GET_DATA _FIELD

This common procedure extracts data fields from MDU formatted messages and returns
them in an internal format. Since a data field may consist of several subfields, the
data is previewed to determine how much memory is needed. Then the fields are
stripped until the field-complete flag is seen.

Comdeck
Format

Input

Output

Remarks

Revision A

MEXGDF
GET_DATA _FIELD (msgbuf, field _cell, len, type)

msgbuf: buf_ptr
This parameter points to a buffer containing the data unit.

msgbuf: buf_ptr

This parameter returns the updated pointer to buffer containing the data
unit.

field _cell: ~cell

This parameter returns the address of the data field. It will be equal to
NIL if no more data is available or if any errors are encountered in the
data fields.

len: 0 .. mdu_field _size
This parameter returns the data field length.

type: mdu _field _type
This parameter returns the data field type.

NOTE

The caller is responsible for freeing the retrieved memory extent.

Procedures and Functions 10-55

GET_EXPRESS, MAYBE_EXPRESS

GET _EXPRESS, MAYBE _EXPRESS

These procedures get ITMs from the express queue. If a message is found on the
express queue, it is copied to the addressed space and removed from the ITM queue.
The normal queue is not inspected.

These calls have the following effects:

GET_EXPRESS Control returns after a message has been made available
to the caller.

MAYBE_EXPRESS A meséage is obtained, or a failure is returned.
Comdeck CMXMTSK

Format GET _EXPRESS (intertask _message, task _sending _message)
MAYBE _EXPRESS (intertask _message, task _sending_message)

Input None.

Output intertask _message: “cell

This parameter returns the address of the dequeued ITM.

task _sending_message: task_ptr
This parameter returns the task_id of the task that sent the ITM.

10-56 Base System Software Revision A

GET_FIRST_BYTE

GET_FIRST_BYTE

This function returns the first valid byte of text from the specified message in the form
of a character. It provides fast access to protocols that regularly make use of the first
byte.

Comdeck CMXPGFB
Format byte:= GET_FIRST_BYTE (message)

Input message: buf_ptr
This parameter indicates the message whose first byte of text is to be
returned.

Output byte: char

This parameter returns the first byte of the specified message.

Revision A Procedures and Functions 10-57

GET_LAST_BYTE

GET_LAST_BYTE

This function returns the last valid byte of text from the specified message in the form
of a character.

Comdeck
Format

Input

Output

Remarks

CMIGLB
byte:= GET_LAST_BYTE (message)

message: buf_ptr

This parameter indicates the first descriptor of the message whose last
byte of text is to be returned.

byte: char
This parameter indicates the last byte of the specified message.

It is assumed that the last buffer in the chain will not be empty.

10-58 Base System Software Revision A

GET_LONG_BUFFERS, FG_LONG_BUFFERS, MAYBE_LONG_BUFFERS

GET_LONG_BUFFERS, FG_LONG_BUFFERS, MAYBE _LONG _
BUFFERS

These procedures get one or more data buffers, with the following variations:
GET_LONG_BUFFERS The buffers are obtained.

FG_LONG_BUFFERS For interrupt routine use only; the buffers are
obtained or a failure is returned.

MAYBE_LONG_BUFFERS The buffers are obtained or a failure is returned.
Comdeck CMXPGBF

Format GET_LONG_BUFFERS (count, buffer _address, threshold)
FG_LONG_BUFFERS (count, buffer_address, threshold)
MAYBE _LONG_BUFFERS (count, buffer _address, threshold)

Input count: buffer_request_limit
This parameter indicates the number of buffers being requested.

threshold: threshold _size
This parameter indicates the threshold for obtaining buffers.

Output buffer _address: buf_ptr
This parameter returns the address of the buffer chain obtained.

Revision A Procedures and Functions 10-59

GET_MEMORY, FG_MEMORY, MAYBE_MEMORY

GET_MEMORY, FG_MEMORY, MAYBE _MEMORY

These procedures get global memory extents, with the following effects:

GET_MEMORY The memory extent is obtained.

FG_MEMORY For interrupt routine use only; the memory extent
is obtained or a failure is returned.

MAYBE_MEMORY The memory extent is obtained or a failure is
returned.

Comdeck CMXPGGX

Format GET_MEMORY (extent_returned, extént__size)
FG_MEMORY (extent_returned, extent_size)
MAYBE_MEMORY (extent_returned, extent_size)

Input extent_size: executive_extent

This parameter indicates the size of the memory extent to be obtained.

Output extent _returned: “cell

This parameter returns the address of the memory extent obtained.

10-60 Base System Software Revision A

GET_MESSAGE_LENGTH

GET _MESSAGE _LENGTH

This function returns the byte length of the specified message.
Comdeck CMXPGML

Format size:= GET_MESSAGE _LENGTH (message)

Input message: buf_ptr
This parameter indicates the address of the message to be measured.

Output size: message_size
This parameter returns the length in bytes of the message specified.

Remarks If the address of the message is NIL, then the output parameter returns a
value of zero.

Revision A Procedures and Functions 10-61

GET_MPB_EXTENT, FG_MPB_EXTENT, MAYBE_MPB_EXTENT

GET_MPB_EXTENT, FG_MPB_EXTENT, MAYBE_MPB _
EXTENT

These procedures get MPB RAM memory extents with the following effects:

GET_MPB_EXTENT The memory extent is obtained

FG_MPB_EXTENT For interrupt routine use only; the memory extent
is obtained or a failure is returned.

MAYBE_MPB_EXTENT The memory extent is obtained or a failure is
returned.

Comdeck CMXPGMP

Format GET_MPB_EXTENT (extent_returned, extent_size)
FG_MPB_EXTENT (extent_returned, extent_size)
MAYBE _MPB_EXTENT (extent_returned, extent_size)

Input extent_size: executive_extent
This parameter indicates the size of the MPB extent to be obtained.

Output extent_returned: “cell
This parameter returns the address of the MPB extent obtained.

10-62 Base System Software Revision A

GET_MSG, MAYBE_MSG

GET _MSG, MAYBE _MSG

These procedures get ITMs from the normal or express queues. If a message is found
on either the normal or express queue, it is copied to the addressed space, and
removed from the ITM queue. The express queue has priority. These calls have the
following effects:

GET_MSG Control returns after a message has been made available
to the caller.

MAYBE_MSG A message is obtained, or a failure is returned.
Comdeck CMXMTSK

Format GET_MSG (intertask _message, sender)

MAYBE _MSG (intertask _message, sender)
Input None.
Output intertask _message: “cell

This parameter returns the address of the dequeued ITM.

sender: task _ptr
This parameter returns the task_id of the task that sent the ITM.

Revision A Procedures and Functions 10-63

GET_NEXT_STATUS_SAP

GET_NEXT_STATUS_SAP

Provides a command processor the ability to retrieve the addresses of its associated
software components’ status tables when multiple copies are executing at the same

time.

Comdeck

Format

Input

Output

Remarks

SDXSSAR

GET_NEXT_STATUS_SAP (name, last_sap _table_ptr, next_sap_
table_ptr, task _id, successful, response)

name: string (* <= 31)

This parameter indicates the name of the software component of interest.

last _sap _table_ptr: ~cell

This parameter indicates the address of the status table of the previously
obtained SAP. This parameter should be set to the returned value of the
parameter next_sap_table_ptr from the previous call when GET_NEXT_
STATUS_SAP is being used recursively.

If no previous SAP was obtained, this parameter should be set to NIL.

next_sap_table_ptr: “cell

This parameter returns the address of the software components status table
of the next registered SAP in the table.

If the specified value of last_sap_table_ptr is NIL, then next_sap_table_
ptr will contain the address of the first associated status SAP for the
named software component.

If the next_sap_table_ptr is returned NIL, then the software component
has not opened a status SAP or it has no status to report. Or, if the
procedure is being used recursively, NIL will be returned when all the
associated SAPs have been retrieved.

task _id: task _ptr

This parameter returns the task_id of the software component that opened
the software status SAP.

successful: boolean

This parameter returns TRUE if the last_sap_ table_ptr was found;
FALSE otherwise.

response: buf_ptr

This parameter contains a response to be sent to the. origin of the

command if its value is not NIL.

The procedure NOPREMPT is called when entering GET_NEXT_
STATUS_SAP to suppress task preemption; GET_NEXT_STATUS_SAP is
exited in a non-preemptible state. You must make a call to the procedure
OKPREMPT if preemptibility is so desired.

10-64 Base System Software Revision A

GET_PMM_EXTENT, FG_PMM_EXTENT, MAYBE_PMM_EXTENT

GET_PMM_EXTENT, FG_PMM_EXTENT, MAYBE _PMM _
EXTENT

These procedures obtain private memory extents, with the following effects:

GET_PMM_EXTENT The memory extent is obtained

FG_PMM_EXTENT For interrupt routine use only; the memory extent
is obtained or a failure is returned.

MAYBE_PMM_EXTENT The memory extent is obtained or a failure is
returned.

Comdeck CMXPGPM

Format GET_PMM _EXTENT (extent_returned, extent_size)
FG_PMM_EXTENT (extent_returned, extent_size)
MAYBE _PMM _EXTENT (extent_returned, extent_size)

Input extent_size: executive_extent
This parameter indicates the size of the private memory extent to be .
obtained.

Output extent_returned: “cell

This parameter returns the address of the private memory extent obtained.

Revision A Procedures and Functions 10-65

GET_SHORT_BUFFERS, FG_SHORT_BUFFERS, MAYBE_SHORT_BUFFERS

GET_SHORT _BUFFERS, FG_SHORT_BUFFERS, MAYBE _
SHORT _BUFFERS

These procedures get one or more descriptor buffers, with the following effects:
GET_SHORT_BUFFERS The buffers are obtained.

FG_SHORT_BUFFERS For interrupt routine use only; the buffers are
obtained or a failure is returned.

MAYBE_SHORT_BUFFERS The buffers are obtained or a failure is returned.
Comdeck CMXPGDB

Format GET_SHORT_BUFFERS (count, buffer _address, threshold)
FG_SHORT_BUFFERS (count, buffer_address, threshold)
MAYBE_SHORT_BUFFERS (count, buffer _address, threshold)

Input count: buffer_request_limit

This parameter indicates the number of buffers to be obtained.

threshold: threshold _size
This parameter indicates the threshold for obtaining buffers.

Output buffer _address: buf_ptr

This parameter returns the address of buffer chain obtained.

10-66 Base System Software Revision A

GET_SIZE_N_ADDR

GET _SIZE _N_ADDR

This procedure gets the size and address of the memory extent for the specified section.
The size and address are determined from the indicated start section address.

Comdeck
Format

Input

Output

Remarks

Revision A

SIXGSIZ
GET_SIZE _N_ADDR (section_address, section _size)

section _address: “cell
This parameter indicates the section of interest.

section _address: “cell

This parameter returns the address of the section whose size is being
returned.

section _size: 1llt$section_length
This parameter returns the size of the specified section.

NOTE

Output parameter section_address will be 6 bytes less than input
parameter section_address.

Procedures and Functions 10-67

GET_STATUS_RECORD

GET_STATUS_RECORD

This procedure retrieves a status record for the device name specified.

If an invalid device name is specified or the associated board type is not physically
available in the associated System Status Table, then a status indication is returned
that indicates that the device named is not available in the DI.

Comdeck SDXGPSR

Format GET_STATUS_RECORD (device_name, device_status_record,
device_available)

Input device_name: string (maximum _device_name _size)
This parameter identifies the hardware device name whose status record is
desired.

Output device_status_record: component_status_ type

This parameter returns the status record for the device name specified.

device_available: boolean
If the device named is in the DI, TRUE is returned; FALSE otherwise.

10-68 Base System Software Revision A

GET_STATUS_SAP

GET_STATUS_SAP

The purpose .of this procedure is to provide a command processor the ability to retrieve
the address of its associated software component status table.

Comdeck
Format

Input

Output

Remarks

Revision A

SDXSSAR
GET_STATUS_SAP (name, sap_table_ptr, task_id, response)

name: string (* <= 31)
This parameter indicates the name of the software component of interest.

sap _table_ptr: “cell

This parameter returns the address of the software components status
table.

If the sap_table_ptr is returned NIL, then either the software component
has not opened a status SAP or it has no status to report.

task _id: task__ptr

This parameter returns the task_id of the software component who opened
the software status SAP.

response: buf_ptr

This parameter returns a response to be sent to the origin of the command
if its value is not NIL.

The procedure NOPREMPT is called when entering get_status_sap to
suppress task preemption. GET_STATUS_SAP is exited in a
non-preemptible state and will require the caller to make a call to the
procedure OKPREMPT if preemptibility is so desired.

Procedures and Functions 10-69

GROW

GROW

This procedure adds a new table to a tree structure.
Comdeck CMXPGRO

Format address:= GROW (head, key, table, size)

Input head: “root

This parameter indicates the root of the tree.

key: integer

This parameter indicates the key to be used for searching operations.

table: “cell
This parameter indicates the table to be added to the tree.

size: integer

This parameter indicates the table size.

Output address: ~ cell

If an association already exists between the specified key and the table
structure, the table is returned and no update is performed. Otherwise, the
association is created and NIL is returned.

Remarks The procedure NOPREMPT is called upon entering GROW to suppress task
preemption. GROW is exited in a non-preemptible state and will require
the caller to make a call to the procedure OKPREMPT if preemptibility is
so desired.

10-70 Base System Software Revision A

I1_COMPARE

I_COMPARE

This function compares the lengths of two strings.
Comdeck INXCMP

Format result:= I_COMPARE (stringl, string2)

Input stringl: string (*)
This parameter indicates the first of two strings specified for comparison.
Length may be up to 256 characters.
string?2: string (¥)
This parameter indicates the seconci of two strings specified for comparison.
Length may be up to 256 characters.
Output result: -1..1
If stringl < string2, the return is -1.
If stringl = string2, the return is 0.
If stringl > string2, the return is 1.

Revision A Procedures and Functions 10-71

1_COMPARE_COLLATED

I_COMPARE _COLLATED

This function translates characters in two strings according to a translation table, and
compares the strings.

Comdeck INXCMPC
Format result:= I_COMPARE_COLLATED (stringl, string2, table)

Input stringl: string (*)
This parameter indicates the first of two strings specified for comparison.
Length may be up to 256 characters.
string2: string (*)
This parameter indicates the second of two strings specified for comparison.
Length may be up to 256 characters.
table: string (256)
This parameter indicates the translation table.

Output result: -1..1
If stringl < string2, the return is -1.
If stringl = string2, the return is 0.
If stringl > string2, the return is 1.

10-72 Base System Software Revision A

I_SCAN

I_SCAN

This procedure scans a string from left to right until one of a specified set of
characters is found, or until the entire string has been searched.

Comdeck INXSCAN
Format I_SCAN (select, string, index, found _char)

Input select: “packed array [char] OF boolean
This parameter indicates the address of the set of elements that the string
is to be searched for.
string: string (*)
This parameter indicates the string to be searched.

Output index: integer
This parameter returns the location from the left-most character of the
string of the character that was found.

found _char: boolean

This parameter returns an indication of whether or not any of the specified
characters has been found.

Revision A Procedures and Functions 10-73

I_TRANSLATE

I_TRANSLATE

This procedure translates each character in a source field according to a translation
table, and transfers the result to a destination field.

Comdeck INXTRAN
Format I_TRANSLATE (table, source, destination)

Input table: string (256)
This parameter specifies the translation table.

source: string (*)
This parameter indicates the string to be translated. Length may be up to
256 characters.
destination: string (*)
This parameter indicates the destination of the string to be translated.
Length may be up to 256 characters.

Output destination: string (*)
This parameter returns the destination of the translated string. Length
may be up to 256 characters.

Remarks If the length of the source field is less than the length of the destination
field, translated blanks fill the destination field. If the source field is
larger than the destination field, the right-most characters of the source
field are truncated in the destination field.

10-74 Base System Software Revision A

INCREMENT_MODULE_USE_COUNT

INCREMENT_MODULE _USE_COUNT

This procedure increments the module use count of a loaded module, thus preventing
module deloading. This procedure is only used when START_NAMED_TASK, LOAD_
ENTRY_POINT or LOAD_ABSOLUTE_MODULE have not been used to prevent

module deloading.
Comdeck ILXIMUC

Format INCREMENT _MODULE _USE_COUNT (entry_point_name, entry_
point_found)

Input entry_point_name: pmt$§program_name
This parameter indicates the entry point of the module whose use count is
to be incremented. If the specified entry point name is all blanks, then the
module use count of the currently running task is incremented.

Output entry_point_found: boolean

This parameter returns an indication of whether or not the module was
found.

Revision A Procedures and Functions 10-75

INIT_ROOT

INIT_ROOT

This procedure initializes the root of a tree. This includes setting up initial values for
interlocks and node addresses, as well as setting up the (up to) four character ASCII
name of the table stored in each node.

Comdeck CMIPINT
Format INIT_ROOT (root, type_node, name)

Input root: “root
This parameter indicates the root of the tree structure that is to be
initialized.
type_node: key_type
This parameter indicates the key type to be used in referencing the tree
structure’s nodes.
name: string (4)
This parameter indicates the ASCII name of the table to be stored in each
node.

Output None.

10-76 Base System Software Revision A

INITIALIZE_STATISTIC_RECORD

INITIALIZE _STATISTIC _RECORD

This procedure will initialize MDU formatted records used in statistics collection.

Comdeck

Format

Input

Output

Revision A

SMXSAPM

INITIALIZE _STATISTIC_RECORD (number_of_records, number_
of _data_bytes, record _starting _ptr)

number _of _records: 1..0ff(16)
This parameter indicates the number of records to initialize.

number_of _data_bytes: number_of__data_byte_types

This parameter indicates the need for a two-, four- or eight-byte statistic
record.

record _starting _ptr: ~cell
This parameter is a pointer to the starting record.

record _starting _ptr: “cell
This parameter returns a pointer to the next record.

Procedures and Functions 10-77

LOAD_ABS_MODULE_AND_DELAY

LOAD_ABS_MODULE _AND_DELAY

This procedure loads an absolute module if it is not currently loaded. If the module is
already loaded, information is returned pertaining to the module. The caller waits
while loading occurs.

Comdeck

Format

Input

Output

Remarks

DLXLAMD

LOAD_ABS_MODULE_AND_DELAY (module_name, smm_address,
load _address, transfer _address, byte_size, absolute_module_found,
error _response)

module_name: pmt$program_name

This parameter indicates the module to be loaded. Maximum length of
string is 31 characters.

smm _address: “cell

This parameter returns the starting address of the module in SMM.

load _address: d1t$68000_address
This parameter returns the address where the module has been loaded.

transfer _address: d1t$68000_address

This parameter returns the address at which module execution begins.
Range is 0 .. 7{Ifffff(16).

byte_size: dlt$section_length
This parameter returns the size of the module in bytes.

absolute _module_found: boolean
This parameter indicates whether or not the module was found.

error_response: clt$status
Any error message from the Online Loader is returned by this parameter.

The module use count is incremented to prevent module deloading.

If the pai'ameter absolute_module_found is returned FALSE, it is the
user’s responsibility to release the buffer chain returned in error_
response.condition.

10-78 Base System Software Revision A

LOAD_ABS_MODULE_AND_PROCEED

LOAD _ABS_MODULE_AND _PROCEED

This procedure returns information pertaining to a named module if it is already
loaded. If it is not loaded, the procedure sends an ITM to the Online Loader to load
the module. The calling procedure continues to operate while the Online Loader is
processing the request. .

Comdeck

Format

Input

Output

Remarks

Revision A

DLXLAMP

LOAD_ABS_MODULE_AND_PROCEED (module_name, reply_
procedure, request_id)

module_name: pmt§program_name

This parameter indicates the module to be loaded. Maximum length of
string is 31 characters.

reply _procedure: “procedure

This parameter indicates the address of a procedure that returns
information about the module to the original calling procedure. Refer to
appendix D.

request_id: ~cell

This parameter indicates the address of an identifier. If the calling
procedure is making more than one request for the module, this identifies
the request.

None.
The module use count is incremented to prevent module deloading.

This procedure makes use of a reply procedure to capture returned
information while processing continues.

If the parameter absolute_module_found is returned FALSE to the reply
procedure, it is the user’s responsibility to release the buffer chain
returned in error_response.condition.

Procedures and Functions 10-79

LOAD_CMD_PROCESSOR_AND_DELAY

LOAD_CMD_PROCESSOR_AND_DELAY

Given a command processor name, this procedure loads a module if it is not currently
loaded. The task attribute block is found and validated (defaults are used on error),
and entry point information is returned. The caller waits while loading occurs.

Comdeck

Format

Input

Output

Remarks

DLXLCPD

LOAD _CMD_PROCESSOR_AND_DELAY (entry_point_name,
entry_point_found, entry_address, task _info, error_response,
module_ ptr)

entry_point_name: pmt$program_name

This parameter specifies the name of the entry point of the module to be
loaded. .

entry _point_found: boolean

This parameter indicates whether the specified entry point was found.

entry _address: “dlt$entry_description
This parameter returns the address of the loaded module entry point.

task _info: task_attributes

This parameter returns the stack size, priority, task preemptibility, and an
indication of whether or not the task is immediate control. Refer to
appendix C.

error_response: clt$status

This parameter returns any error message generated by the Online Loader.

module_ptr: dlt$load _id _ptr
This parameter returns the address of the loaded module.

The module_use_count is incremented to prevent module deloading.

If the parameter entry_point_found returns FALSE, it is the user’s
responsibility to release the buffer chain returned in error_
response.condition.

10-80 Base System Software Revision A

LOAD_CMD_PROCESSOR_AND_PROCEED

LOAD _CMD_PROCESSOR_AND_PROCEED

Given a command processor name, this procedure loads a module if it is not currently
loaded. The task attribute block is found and validated (defaults are used on error),
and entry point information is returned. The calling procedure continues to operate
while the Online Loader is processing the request.

Comdeck

Format

Input

Output

Remarks

Revision A

DLXLCPP

LOAD_CMD_PROCESSOR_AND_PROCEED (entry_point_name,
reply _procedure, request_id)

entry_point_name: pmt$program _name

This parameter indicates the entry point of the module to be loaded.
Maximum length is 31 characters.

reply _procedure: “procedure

This parameter indicates the address of a procedure that returns
information about the module to the original calling procedure. Refer to
appendix D.

request_id: ~cell

This parameter indicates the address of an identifier. If the calling
procedure is making more than one request for the module, this identifies
the request.

None.
The module_use_count is incremented to prevent module deloading.

This procedure makes use of a reply procedure to capture returned
information while processing continues.

If the parameter entry_point_found returns FALSE to the reply procedure,
it is the user’s responsibility to release the buffer chain returned in error_
resonse.condition.

Procedures and Functions 10-81

LOAD_ENTRY_POINT_AND_DELAY

LOAD_ENTRY_POINT_AND_DELAY

Given an entry point name, this procedure loads the associated module unless it is
currently loaded. If the load fails, an error message is returned in the parameter
error_response. The task attribute block is found and validated (defaults are used on
error). Entry point information is returned. The caller waits while loading occurs.

Comdeck DLXLEPD
Format LOAD_ENTRY_POINT_AND_DELAY (entry_point_name, entry_

point_found, entry_address, task _info, error_response, module _ptr)
Input entry_point_name: pmt$program _name
This parameter indicates the entry point of the module to be loaded.
Maximum length is 31 characters.
Output entry _point_found: boolean
This parameter returns an indication of whether the specified entry point
was found.
entry_address: “dlt$entry _description
This parameter returns the address of the loaded module entry point.

task _info: task _attributes

This parameter returns the stack size, priority, task preemptibility, and an
indication of whether or not the task is immediate control. Refer to
appendix C.

error _response: clt$status

This parameter returns any error message generated by the Online Loader.

module _ptr: dlt$load _id _ptr
This parameter returns the address of the loaded module.

Remarks The module_use_count is incremented to prevent module deloading.

If the parameter entry_point_found is returned FALSE, it is the USER’S
responsibility to release the buffer chain returned in error_
response.condition.

10-82 Base System Software Revision A

LOAD_ENTRY_POINT_AND_PROCEED

LOAD_ENTRY_POINT_AND_PROCEED

Given an entry point name, this procedure loads the associated module unless it is
currently loaded. If the load fails, an error message is returned in the parameter
error_response. The task attribute block is found and validated (defaults are used on
error). Entry point information is returned. The calling procedure continues to operate
while the Online Loader is processing the request.

Comdeck

Format

Input

Output

Remarks

Revision A

DLXLEPP

LOAD_ENTRY_POINT_AND_PROCEED (entry_point_name, reply_
procedure, request_id)

entry_point_name: pmt$program_name
This parameter indicates the entry point of the module to be loaded.
Maximum length is 31 characters.

reply _procedure: “procedure

This parameter indicates the address of a procedure that returns
information about the module to the original calling procedure. Refer to
appendix D.

request_id: “cell

This parameter indicates the address of an identifier. If the calling
procedure is making more than one request for the module, this identifies
the request.

None.
The module_use_count is incremented to prevent module deloading.

This procedure makes use of a reply procedure to capture returned
information while processing continues.

If the parameter entry_point_found is returned FALSE to the reply
procedure, it is the user’s responsibility to release the buffer chain
returned in error_response.condition.

Procedures and Functions 10-83

M_RELEASE

M_RELEASE

This procedure executes the specified number of message release operations.

Comdeck
Format

Input

Output

Remarks

CMIPMLR
M_RELEASE (message, count)

message: buf_ptr

This parameter indicates the address of the descriptor buffer containing the
address of the message whose usage count is to be decremented.

count: 1 .. 32767

This parameter indicates the number of usage counts to be subracted from
the message.

message: buf_ptr

This parameter returns the address of the descriptor buffer containing the

address of the message whose usage count has been decremented.

This procedure has the same effect as multiple release_message requests.

10-84 Base System Software Revision A

MAYBE_TASK

MAYBE _TASK

This procedure will start a task at the specified entry point and establish a parent task
to child task relationship. A task that starts another task using this call becomes the
parent task; the new task is referred to as the child task. The Executive sends
messages to parent tasks regarding errant child tasks. The Executive, in this case,
returns control whether or not the task was started.

Comdeck
Format

Input

Output

Remarks

Revision A

CMXMTSK
MAYBE_TASK (module_ptr, task _attributes, start_at, task)

module _ptr: dit$load_id _ptr

This parameter indicates a pointer to the task’s module header information.

task _attributes: task _attributes

This parameter indicates a record specifying stack size, priority, and
whether or not the task is preemtable.

start_at: “procedure

This parameter indicates the address of the entry point to the task
procedure.

task: task_ptr

If the task started, the task ID is returned. NIL is returned if the
procedure fails.

NOTE

START _NAMED_TASK_AND_DELAY is the recommended procedure to
call for starting a task.

Procedures and Functions 10-85

MDU_TO_ASCII

MDU_TO_ASCII
Converts MDU syntax to ASCII.

This routine converts a buffer with management data syntax to a buffer containing an
ASCII string. No extra data is added. That is, no extraneous -CR- or -LF- ’s are added
to the converted data. If they are desired they must already be in the buffer to be
converted. Note that data is appended to the receiving buffer. If there is none, set the
buffer pointer to NIL first.

The various field types are converted as follows:

binary string: ASCII 0’s and 1's

binary octet: converted to hexadecimal ASCII digits
character octets: none (already is ASCII)

binary integer: converted to decimal ASCII digits

binary unsigned integer: converted to decimal ASCII digits
bed: converted to decimal ASCII digits

format: converted to -LF- / -CR- sequence

Comdeck MEXM2A
Format MDU_TO_ASCII (mdubuf, msgbuf)

Input mdubuf: buf_ptr

This parameter indicates the address of the buffer containing the data to
be converted to ASCII format.

msgbuf: buf_ptr
This parameter specifies the buffer to receive the ASCIH data.

Output mdubuf: buf_ptr

This parameter returns the address of the buffer containing the original
data.

msgbuf: buf_ptr
ASCII data is appended to this buffer.

10-86 Base System Software Revision A

MESSAGE_DEQUEUE

MESSAGE _DEQUEUE

This procedure extracts a message from the specified task-level message queue.

Comdeck
Format

Input

Output

Remarks

Revision A

CMXPQUE
MESSAGE_DEQUEUE (queue, message, time_interval)

queue: qcb_ptr
This parameter identifies the queue to be dequeued from.

message: buf_pitr
This parameter indicates the address for the dequeued message.

message: buf_ptr
This parameter returns the address of the dequeued message.
time _interval: integer

This parameter returns the amount of time, in milliseconds (accurate to
100 milliseconds) that the message remained in the queue.

This is a special high speed dequeuing routine specifically for the use of
protocol drivers and interlayer interfaces where data traffic is queued.

Procedures and Functions 10-87

MESSAGE_ENQUEUE

MESSAGE _ENQUEUE

This procedure places a message in the specified task-level message queue.

Comdeck
Format

Input

Output

Remarks

CMXPQUE
MESSAGE_ENQUEUE (queue, message)

queue: qcb_ptr

This parameter indicates the address of the Queue Control Block of the
queue to be enqueued.

message: buf_ptr

This parameter indicates the message to be enqueued.

None.

This is a special high-speed enqueuing routine specifically for the use of
protocol drivers and inter-layer interfaces where data traffic is queued.

10-88 Base System Software Revision A

MODIFY_WRITE_PROTECT_BYTE

MODIFY _WRITE_PROTECT _BYTE

This procedure modifies a byte in MPB write-protected RAM. After the field is updated,
MPB RAM write-protect is again set.

Comdeck CMXMWPB
Format MODIFY_WRITE _PROTECT_BYTE (“byte, new_value)

Input “byte: “cell

This parameter indicates the pointer to the write-protected byte to be
changed.

new_value: 0 .. 0ff(16)
This parameter indicates the new value for the specified byte.

Output None.

Remarks This routine will only work on bytes.

Revision A Procedures and Functions 10-89

MODIFY_WRITE_PROTECT_LONG_WORD

MODIFY _WRITE _PROTECT_LONG _WORD

This procedure modifies a long word in MPB write-protected RAM. After the field is
updated, MPB RAM write-protect is again set.

Comdeck CMXMWPL

Format MODIFY _WRITE _ PROTECT _LONG_WORD (“long_word, new_
value)
Input ~long_word: “cell

This parameter indicates the pointer to the write-protected long word to be
changed.

new _value: integer

This parameter indicates the new value for the specified long word.
Output None.

Remarks This routine will only work on long words.

10-90 Base System Software Revision A

MODIFY_WRITE_PROTECT_SHORT_WORD

MODIFY _WRITE _PROTECT _SHORT_WORD

This procedure modifies a short word in MPB write-protected RAM. After the field is
updated, MPB RAM write-protect is again set.

Comdeck CMXMWPS

Format MODIFY _WRITE_PROTECT_SHORT_WORD (“short_word, new _
value)

Input ~short_word: “cell

This parameter indicates the pointer to the write-protected short word to
be changed.

new _value: 0 .. Offff(16) .
This parameter indicates the new value for the specified short word.

Output None.

Remarks This routine will only work on short words.

Revision A Procedures and Functions 10-91

NAME_MATCH

NAME _MATCH

This function compares a name string with a model. The name string may contain wild
card attributes. If the two strings conform (match), the function returns a TRUE value;
otherwise, it returns FALSE.

The following characters have special meaning. These characters may be used in the
name string as wild card entries.

[..1]

a-z

-~

Comdeck
Format

Input

Output

Remarks

Any single character among those in brackets.

Within a bracketed group, a range of characters is represented with a
dash (-). For example, "a - z", where "a" and "z" are any two characters
for which the expression a <= z or a >= z is accepted.

Any character string including the NULL string.
Any single character.

If the model contains any special characters, those special characters (*,
[, must be surrounded with single quotes. If the model contains a
single quote, 2 single quotes must be in the name. Example: the name
string A’*B matches the model string A*B, and the name string A”B
matches the model string A’B.

CSXPNAM

result := NAME_MATCH (name, model)

name: string(*)

This parameter indicates the name to be compared.

model: string(*)

This parameter indicates the model to compare against.

result: boolean

This parameter returns an indication of whether or not the named string
matched the model.

If a ’? special character is followed by an ’* special character (i.e: 7*) the
* special character is considered the NULL string.

Special characters are not recgonized within a bracketed group.

10-92 Base System Software Revision A

NEW_INTERRUPT

NEW _INTERRUPT

This procedure will program the specified vector with the address of a new interrupt
service routine. When this service is used, the caller becomes the parent task to the
interrupt routine, which is referred to as the child task. The Executive will send the
parent messages with workcodes in the range 0..15 regarding errant children. Refer to
the appendix F for explanation of these values.

Comdeck
Format

Input

Output

Revision A

CMXMTSK
NEW_INTERRUPT (vector, server, task_id)
vector: 2 .. 255

This parameter specifies the vector number that will point to the new
interrupt service routine. Appendix E lists the interrupt vector numbers.
server: “procedure

This parameter indicates the address of the procedure that will process the
interrupt vector.

task _id: task_ptr

This parameter returns the address of the task servicing the interrupt
service routine. If the interrupt_routine parameter contains an invalid
address, either an address error interrupt or a bus error is issued.

Procedures and Functions 10-93

NEW_PRIORITY

NEW_PRIORITY

This procedure changes a task’s priority to the requested level.
Comdeck CMXMTSK

Format NEW_PRIORITY (requested _priority, task, status)

Input requested _priority: priorities
This parameter indicates the task’s new priority.

task: task_ptr

This parameter indicates the task whose priority is to be changed.

Output status: boolean

This parameter returns an indication of whether or not the procedure was

successful.

10-94 Base System Software

Revision A

NOPREMPT

NOPREMPT

This procedure suppresses the task preemption capability.
Comdeck CMXPPRM

Format NOPREMPT

Input None.

Output None.

Revision A Procedures and Functions 10-95

OKPREMPT

OKPREMPT

This procedure restores the task preemption capability.
Comdeck CMXPPRM

Format OKPREMPT

Input None.

Output None.

10-96 Base System Software Revision A

OPEN_STATISTICS_SAP

OPEN _STATISTICS _SAP

This procedure allows a software component that is collecting statistics to make itself
known to the CDCNET Statistics Manager (CSM). The combination of element_type
and element_name defines a SAP entry. Each sds_header specifies a different group.

Comdeck SMXSAPM

Format OPEN_STATISTICS _SAP (element_type, element_name, sds_
header__ptr, report_interval, sap_id, status)

Input element_type: statistics _type
This parameter indicates the element type for which statistics are to be
gathered.
element_name: string (* <= 31)
This parameter indicates the name of the element for which statistics are
to be gathered.
sds_header_ptr: “sds_header
This parameter indicates the pointer to a chain of one or more sds_
headers.
report_interval: 1..60 * 60 * 24
This parameter indicates the interval for statistical reporting period. The
maximum interval allowed is 24 hours.

Output sap _id: 0..0ffff(16)
This parameter identifies the opened SAP.

status: open _statistics _status
This parameter returns the call status.

Revision A Procedures and Functions 10-97

OPEN_STATUS_SAP

OPEN_STATUS_SAP

This procedure allows a software component to register the address of its status table
by opening a software status SAP. A software component may call the OPEN_
STATUS_SAP routine after it is initialized and is capable of reporting status.

Comdeck

Format

Input

Output

Remarks

SDXSSAR

OPEN_STATUS_SAP (name, task_id, sap_table_ptr, sap_number,
status)

name: string (* <= 31)

This parameter indicates the module name of the software component for
which a SAP is to be opened.

task _id: tésk_ptr

This parameter identifies the task_id of the software component who will
open the software status SAP.

sap _table_ptr: ~cell

This parameter identifies the address of the software components status
table.

sap _number: software_sap_range

This parameter uniquely identifies the status SAP opened. The sap_
number must be used when later closing a status SAP.

status: access_status_type

This parameter indicates if the SAP requested was opened. If the SAP was
not opened, try again, but be warned that memory is low.

The procedure NOPREMPT is called when entering OPEN_STATUS_SAP
to suppress task preemption. OPEN_STATUS_SAP is exited in a
non-preemptable state and will require the caller to make a call to the
procedure OKPREMPT if preemptability is so desired.

Global data modified:

software_status_sap__table

10-98 Base System Software Revision A

PCOPY

PCOPY

This procedure physically copies a message to a new buffer chain, and releases the old
set of buffers. Data is compact in the new buffers; the first (n-1) buffers are full, and
the last one has all of its empty space in the trailing portion of the buffer.

Comdeck
Format

Input

Output

Remarks

Revision A

CMXPCPY
PCOPY (message, threshold, success)

message: buf_ptr
This parameter indicates the address of the message to be copied.

threshold: threshold _size
This parameter indicates the priority for obtaining buffers.

message: buf_ptr
This parameter returns the address of the copied message.

success: boolean

This parameter is TRUE if a new buffer chain was successfully obtained
and FALSE if a new buffer chain is not currently available.

This time-consuming operation requires at least 3-5 microseconds per byte
copied. It is recommended that the caller either run at a relatively low
task priority, or yield control sometime after the routine returns to avoid
time slice overrun, and to permit other processes to be active.

Procedures and Functions 10-99

PICK

PICK

This procedure removes a structure from the specified tree, according to the key
provided, and returns the associated data entry, or NIL (if no matching entry is found).

Comdeck CMXPPIC
Format address := PICK (head, key)

Input head: “root
This parameter indicates the root of the tree to be picked from.
key: integer
This parameter indicates the key of the node to be picked from the tree.

Output address: “cell

This parameter returns the address of the structure associated with the
key.

10-100 Base System Software Revision A

PMP _GET_DATE

PMP_GET_DATE

This procedure returns the current date in the specified format.

Comdeck
Format

Input

Output

Revision A

PMXGDAT

PMP_GET_DATE (format, date, date_str_len)

format: ost$date_formats

This parameter specifies the format in which the date will be returned.

Valid specifications are:

Specify Format Example
osc$month_date month DD, YYYY June 21, 1986
osc$mdy__date MM/DD/YY 06/21/86
osc$iso_date YYYY-MM-DD 1986-21-06
osc$ordinal _date YYYYDDD 1986172
osc$dmy_date DD/MM/YY 21/06/86
osc$default_date Installation

specified.

date: ost$date
This parameter returns the current date.

date_str_len: 1 .. 18

This parameter returns the length of the date parameter.

Procedures and Functions 10-101

PMP_GET_TIME

PMP _GET_TIME

The procedure returns the current time of day in the specified format.
Comdeck PMXGTIM

Format PMP_GET_TIME (format, time, time_str_len)

Input format: ost$time_formats

This parameter specifies the format in which the time will be returned.
Valid specifications are:

Specify Format Example
oscdampm__time HH:MM AM or PM 1:15 PM
osc$hms__time HH:MM:SS 13:15:21
osc$millisecond _ HH:MM:SS:MMM 13:15:21:453
time
osc$default_ time Installation
specified.
Output time_str: ost$time

This parameter returns the current time.

time_str_len: 1 .. 12
This parameter returns the length of the time_str parameter.

10-102 Base System Software Revision A

PREFIX

PREFIX

This procedure adds a header to the front of a message. The header is back filled to
facilitate insertion of the next header (to be prefixed) in the same buffer.

Comdeck
Format

Input

Output

Remarks

Revision A

CMXPPRE
PREFIX (size, address, message, threshold, allocation _type, success)

size: non_empty_message_size
This parameter indicates the size of the header to be prefixed.

address: “cell
This parameter indicates the address of the header to be prefixed.

message: buf_ptr
This parameter indicates the message to which the header will be prefixed.

threshold: threshold _size
This parameter specifies the buffer threshold to use.

allocation _type: pref_type

This parameter indicates how the buffer allocations are to be performed
internally by PREFIX. See the description of pref_type in appendix C.

message: buf_ptr
This parameter returns the message to which the header has been prefixed.

success: boolean
This parameter indicates whether the call was successful.

If a conditional request is made (i.e. preference type = conditional) and
that buffer request is not satisfied, then a failure status is returned.

Procedures and Functions 10-103

PUT_STATUS_RECORD

PUT_STATUS_RECORD

This procedure updates the status record for the device name specified.

Comdeck
Format

Input

Output

Remarks

SDXGPSR
PUT_STATUS_RECORD (device_status_record, owner_key, status)

device_status_record: component_status_type

This parameter indicates the status record to be updated. Just the status
field will be updated via this routine.

owner_kéy: ~cell

This parameter indicates the address of the configuration table that was
provided on the REQUEST_HARDWARE_DEVICE call.

status: boolean

If the status record was updated, TRUE is returned; FALSE otherwise.

Global data modified:

major__card_status__table
lim_status_table
port_status._ table(s)
smm__bank_ status_ table(s)
pmm_bank_status_table

10-104 Base System Software Revision A

QUEUE_IP_COMMAND

QUEUE _IP_COMMAND

This DVM procedure is used by a stream service routine or TIP to queue commands to
the DVCB.

Comdeck DMXQS
Format QUEUE_IP_COMMAND (dvm_id, ip_cmd_ptr, status)

Input dvm_id: “cell
This parameter indicates the address of the DVMID.

ip_cemd_ptr: “cim_cmd _pkt_rec_type
This parameter indicates the address of the command packet being queued.

Output status: 0..0ffff(16)

This parameter returns the status of the QUEUE_IP_COMMAND call.
The status codes are:

0: command accepted.
1: invalid DVMID supplied.
2: no command queue entries available (after retrying for 0.5 seconds).

Revision A Procedures and Functions 10-105

READ_BCD_CLOCK

READ_BCD_CLOCK

This procedure reads the realtime clock.
Comdeck CMXMTIM

Format READ_BCD_CLOCK (the_time)
Input None.

Output the_time: “bed _time

This parameter returns the time in BCD format, as read from the realtime

clock.

10-106 Base System Software

Revision A

READ_CLOCK

READ _CLOCK

This procedure reads the binary clock to millisecond accuracy.
Comdeck CMXMTIM

Format READ_CLOCK (the_time)

Input None.

Output the_time: integer
This parameter returns the time, as read from the binary clock.

Revision A Procedures and Functions 10-107

READ_SRO_FROM_IP

READ_SRO_FROM_IP

DVM diagnostic services use this procedure to read a status register from an IP.
Comdeck DMXDIAG

Format READ_SRO_FROM_IP (sr, ip_number, reg_number, status)

Input ip _number: 0..7

This parameter indicates the slot number of the IP.

reg_number: 0..3

This parameter indicates the status register number.

Output sr: diag_ip_sr_type
This parameter returns a packed record containing the register value.

status: 0..0ffff(16)

This parameter returns the status of READ_SRO_FROM_IP. The status
codes are:

command accepted.

invalid IP slot number.

IP board is active.

invalid command register number.
bus error received during ICB access.

L R S

10-108 Base System Software Revision A

RELEASE_HARDWARE_DEVICE

RELEASE_HARDWARE _DEVICE

This procedure allows the owner of a previously configured hardware device to release,
or free, the device. It requires its caller to provide the owner’s key as an input
parameter. ’

The table address in the associated System Status Table (SST) is set to NIL and the
hardware device status is set to not_configured if the following conditions are met:

A valid device name is specified

The associated board type is physically available in the slot specified by the device
name

The state of the device is not OFF
Its status is configured and

The owner key matches the configuration address specified on the request.

Comdeck SDXAHWD

Format RELEASE_HARDWARE_DEVICE (device_name, owner_key, status)

Input device_name: string (maximum_device_name_size)

This parameter indicates the name of the hardware device to be released.

owner _key: “cell

This parameter indicates the address of the owner’s configuration table
specified on the REQUEST_HARDWARE_DEVICE call.

Output status: access_device_status_type

This parameter indicates whether the device was successfully released.

Remarks Global data modified:

major__card_status_table
port_status_ table(s)

Revision A Procedures and Functions 10-109

RELEASE_MESSAGE, FG_RELEASE_MESSAGE

RELEASE _MESSAGE, FG_RELEASE _MESSAGE
These procedures release chains of data buffers, with the following effects:
RELEASE_MESSAGE The buffer(s) are released.

FG_RELEASE_MESSAGE For interrupt routine use only; the buffer(s) are
released.

Comdeck CMXPRLB

Format RELEASE_MESSAGE (message)
FG_RELEASE_MESSAGE (message)

Input message: buf_ptr
This parameter indicates the address of the message to be released.

Output message: buf_ptr
This parameter returns NIL.

10-110 Base System Software Revision A

REQUEST_DIAGNOSTIC_ENTRY

REQUEST _DIAGNOSTIC _ENTRY

This procedure obtains the address of the SST entry for the specified device. If a valid
device name is specified and the associated board type is physically available, then the
address of the associated SST is returned.

Comdeck DGXAHWD

Format REQUEST_DIAGNOSTIC_ENTRY (device_name, kind _of_status_
table, system_status_table_ptr, status)

Input device_name: string (maximum _device_name_size)
This parameter indicates the name of the hardware device whose SST
entry is being requested.

Output kind _of _status_table: system_status_table_type
This parameter returns the type of SST the system_status_table_ptr
points to.
system _status _table_ptr: “cell
This parameter returns the address of the SST associated with the
specified device.
status: boolean

This parameter indicates if the address of the named device’s status table
was returned (TRUE); FALSE if the named device is not available in the
DI.

Revision A Procedures and Functions 10-111

REQUEST_HARDWARE_DEVICE

REQUEST_HARDWARE _DEVICE

This procedure configures the specified hardware device. The parameters for the request
routine identify the device being requested and provide an owner’s key to be associated
with the device while it is owned by the caller.

If the. following conditions are met, then the caller’s configuration table address is
placed in the associated SST and the device status is set to configured:

A valid device name is specified

The associated board type is physically available in the slot specified by the device
name

The state of the device is ON
Device status is initially not_configured
Comdeck SDXAHWD

Format REQUEST_HARDWARE_DEVICE (device_name, port_owner, cnfg_
table_ ptr, status)

Input device_name: string (maximum _device_name_size)
This parameter indicates the name of the hardware device to be configured.

port_owner: port_owner_type

This parameter indicates the port owner type. This parameter is only
required when a port is requested; if a device other than a port is
requested, this parameter can be ignored.

cnfg _table_ptr: ~cell
This parameter indicates the address of the caller’s configuration table.

Output _status: access_device_status_type

This parameter indicates if the device was successfully configured. If the
device was not configured, this parameter identifies the reason why.

Remarks Global data modified:

major__card_status_table
port_status_table(s)

10-112 Base System Software Revision A

RESET_DI

RESET _DI
This procedure resets the DI.
Comdeck CMXRDI

Format RESET_DI (software_reset_code)

Input software _reset_code: integer
This parameter indicates the software error that forced the reset. Refer to
appendix G.

Output None.

Revision A Procedures and Functions 10-113

RESET_RECOVERY_PROCEDURE

RESET_RECOVERY_PROCEDURE

This procedure removes the specified recovery procedure from the recovery stack. It is
used at the exit of any procedure that calls SET_RECOVERY_PROCEDURE.

Comdeck CMISISA
Format RESET_RECOVERY_PROCEDURE (procedure_address)

Input procedure_address: “procedure
This parameter indicates the pointer to the local recovery procedure.

Output None.

10-114 Base System Software Revision A

RESTART_PORT_SERVICE

RESTART_PORT_SERVICE

DVM users use this procedure to restart service for a particular port after reload of a
peripheral board.

Comdeck DMXXPS
Format RESTART_PORT_SERVICE (sps_parm_ptr, dvm_id, status)

Input sps_parm_ptr: “sps_parm_type

This parameter indicates the address of the START_PORT_SERVICE
parameter block.

dvm_id: “cell
This parameter indicates the address of the specified DVMID.

Output status: 0..0ffff(16)

This parameter returns the status of RESTART _PORT_SERVICE. The
status codes are:

: command accepted.

: invalid peripheral board slot specified.

: device service not started for specified peripheral board.
service already started for requested port.

invalid DVMID supplied.

board reload is in progress.

S ol =2

Revision A Procedures and Functions 10-115

RESTORE_DVM_INTERRUPT

RESTORE _DVM_INTERRUPT

DVM diagnostic services use this procedure to change the new interrupt routine to the
original interrupt routine specified before CHANGE_DVM_INTERRUPT executed.

Comdeck DMXDIAG
Format RESTORE_DVM_INTERRUPT (ip_number, status)

Input ip _number: 0..upper_ip_num
This parameter indicates the slot number of the IP.

Output status: 0..0ffff(16)

This parameter returns the status of RESTORE_DVM_INTERRUPT. The
status codes are:

0: command accepted.
1: invalid peripheral slot number.

10-116 Base System Software Revision A

RESTORE_TASK

RESTORE _TASK

This procedure restores a task from a suspended state that it entered either with
SUSPEND or ABORT_TASK.

Comdeck CMXMTSK
Format RESTORE _TASK (task _id, status)

Input task _id: task _ptr
This parameter indicates the address of the task to be restored.

Output status: boolean
This parameter indicates whether the task was restored.

Revision A Procedures and Functions 10-117

SEND_CRO_TO_IP

SEND_CRO_TO_IP

DVM Diagnostic Services use. this procedure to send a command register to a
peripheral. It will not execute when START_DEVICE_SERVICE is active for the
peripheral board.

Comdeck DMXDIAG
Format SEND_CRO_TO_IP (cr, ip_number, reg_number, status)

Input cr: diag_ip_cr_type
This parameter specifies a packed record containing the command register.

ip _number: 0..7
This parameter indicates the slot number of the peripheral board.

reg_number: 0..3 This parameter indicates the command register number.

Output status: 0..0ffff(16)

This parameter returns the status of SEND_CRO_TO_IP. The status codes
are:

command accepted.

invalid peripheral board slot number.
peripheral board is active.

invalid command register number.
bus error received during ICB access.

Gl

10-118 Base System Software Revision A

SEND_EXPRESS, FG_TO_EXPRESS

SEND _EXPRESS, FG_TO _EXPRESS

These procedures send ITMs to express queues in first-in, first-out (FIFO) order. If the
task is waiting for a message on this queue, the message is copied directly to the
waiting task’s data space. These calls have the following effects:

SEND_EXPRESS Message is sent to target task.

FG_TO_EXPRESS For interrupt routine use only; message is sent to
target task.

Comdeck CMXMTSK

Format SEND_EXPRESS (size, message, target, status)
FG_TO_EXPRESS (size, message, target, status)

Input size: 1 .. 32767
This parameter indicates the size of the message to be sent.

message: “cell
This parameter indicates the address of the ITM to be sent.

target: task _ptr
This parameter indicates the address of the task to which the ITM is to be
sent.

Output status: boolean

This parameter returns TRUE if the ITM was sent; FALSE if the target
task address was invalid.

Revision A Procedures and Functions 10-119

SEND_NORMAL, FG_TO_NORMAL

SEND _NORMAL, FG_TO_NORMAL

These procedures send ITMs to normal queues. If the task is waiting for a message on
this queue, the message is copied directly to the waiting task’s data space. These calls
have the following effects:

SEND_NORMAL Message is sent to target task.
FG_TO_NORMAL For interrupt routine use only; message is sent to
target task.
Comdeck CMXMTSK
Format SEND_NORMAL (size, message, target, status)
FG_TO_NORMAL (size, message, target, status)
Input size: 1 .. 32767
This parameter indicates the size of the message to be sent.
message: “cell
This parameter indicates the address of the ITM to be sent.
target: task _ptr
This parameter indicates the address of the task to which the ITM is to be
sent.
Output status: boolean

This parameter returns TRUE if the ITM was sent; FALSE if the target
task address was invalid.

10-120 Base System Software Revision A

SET_BCD_CLOCK

SET _BCD_CLOCK

This procedure sets the realtime clock to the specified time.
Comdeck CMXMTIM

Format SET_BCD_CLOCK (the_time)

Input the_time: “bed _time
This parameter indicates the time of day in BCD format.

Output None.

Revision A Procedures and Functions 10-121

SET_BUFFER_CHAIN_OWNER

SET_BUFFER _CHAIN_OWNER

This procedure places an owner identification into the executive allocation field of each
descriptor and data buffer in the buffer chain. This is provided so memory and buffer
audit may be accomplished meaningfully.

Comdeck CSXSBCO
Format SET_BUFFER_CHAIN_OWNER (buffer_address, owner_id)

Input buffer_address: buf_ptr
This parameter indicates the buffer chain whose ownership is to be set.

owner_id: memory_owner_type

This parameter indicates the buffer chain owner.

Output None.

10-122 Base System Software Revision A

SET_MEMORY_OWNER

SET_MEMORY_OWNER

This procedure sets an owner identification into the -allocator id field of the header of
the specified memory location.

Comdeck CSXSMO
Format SET_MEMORY_OWNER (memory_address, owner_id)

Input memory_address: “cell

This parameter indicates the memory location whose ownership is to be
set.

owner _id: memory_owner_type
This parameter indicates the memory location owner.

Output None.

Revision A Procedures and Functions 10-123

SET_RECOVERY_PROCEDURE

SET_RECOVERY_PROCEDURE

This procedure pushes the specified recovery block onto the recovery stack of the
calling task.

Comdeck CMISISA

Format SET_RECOVERY_PROCEDURE (recovery_block, procedure _
address)

Input recovery _block: sat$recovery_block
This parameter indicates the empty recovery block to be pushed onto the
task’s recovery stack.
procedure_address: “procedure

This parameter indicates the caller’s recovery routine.

Output recovery _block: sat$recovery_block

This parameter returns the initialized recovery block that has been pushed
onto the task’s recovery stack.

10-124 Base System Software Revision A

SET_WRITE_PROTECT

SET _WRITE _PROTECT

This procedure sets the write protect flag. The proper use of this routine is in
conjunction with CLEAR_WRITE_PROTECT. Refer to CLEAR_WRITE_PROTECT for

more information.

Comdeck CMISWP

Format SET_WRITE_PROTECT
Input None.
Output None.

Revision A Procedures and Functions 10-125

SFIND

SFIND

This procedure finds and returns the table in a tree structure that is associated with
the specified ASCII key.

Comdeck
Format

Input

Output

Remarks

CMXPFIN
address := SFIND (head, key)

head: “root

This parameter indicates the root address of the tree table access structure
to be searched.

key: “string (*)

This parameter indicates the key to be searched for.

address: ~ cell

This parameter returns the address of the table associated with the
provided key. If no such table is found, NIL is returned.

See GROW.

10-126 Base System Software Revision A

SFIND_FIRST

SFIND _FIRST

This procedure visits each node of the specified string keyed tree structure in
left-node-right order and calls the user-supplied procedure. The search continues until
the user-supplied procedure returns a value of TRUE in the field, bool. See also
SFIND_NEXT, FIND_FIRST, and FIND_NEXT.

Comdeck
Format

Input

Output

Revision A

CMXPFNF
table = SFIND_FIRST (head, key, qual, param)

head: “root

This parameter indicates the address of the head root of the tree structure
to be searched.

qual: “procedure

This parameter indicates the address of the test function to be called. If
NIL, then SFIND_FIRST will return the smallest key in the tree
structure. Refer to appendix D.

param: “cell

This parameter indicates the parameter to pass to qual.

key: “string (*)

This parameter returns the smallest key, associated with a table entry,
that satisfies the procedure qual.

table: ~cell

This parameter returns the entry in the tree associated with the first key
that has satisfied the procedure qual.

Procedures and Functions 10-127

SFIND_NEXT

SFIND _NEXT

This procedure searches the specified string tree structure in left-node-right order for a
node that contains a key greater than the input parameter, key. For each node that
satisfies this condition, SFIND_NEXT calls the user-supplied procedure. The search
continues until the user-supplied procedure returns a value of TRUE in the field, bool.
See also SFIND_FIRST, FIND_FIRST, and FIND_NEXT.

Comdeck CMXPFNX
Format table = SFIND_NEXT (head, key, qual, param)

Input head: “root
This parameter indicates the root of the tree structure to be searched.

key: “string (*)
This parameter indicates the key to be searched for.

qual: “procedure

This parameter indicates the address of the test function to be called. If
NIL, then SFIND_FIRST will return the key that is the next largest
compared with the input parameter key. Refer to appendix D.

param: “cell

This parameter indicates the parameter to pass to qual.

Output key: “string (*)
This parameter returns the first key that satisfies the procedure qual.

table: ~cell

This parameter returns the entry in the tree associated with the first key
that has satisfied the procedure.

10-128 Base System Software Revision A

SFIND_WILD_CARDS

SFIND _WILD _CARDS

This procedure locates wild card matches in string-keyed tree structures and terminates
when all nodes have been processed or when the user supplied routine returns a value
of TRUE in the quit_processing parameter.

Comdeck CSXPFWC
Format SFIND_WILD_CARDS (head, key, process_match, params)

Input head: “root
This parameter indicates the pointer to root of the tree.

key: “string (* <= max_name_size)
This parameter indicates the pointer to wild card key.

process _match: “procedure
This parameter indicates the supplied routine. Refer to appendix D.

params: “cell
This parameter indicates the pointer to parameter list.

Output None.

Revision A Procedures and Functions 10-129

SGROW

SGROW

This procedure adds a new table to the specified string-keyed tree structure. If an
association already exists between the provided key and a table structure, the
associated table is returned and no update is performed. Otherwise, the association is
created, and NIL is returned.

Comdeck CMXPGRO
Format address := SGROW (head, key, table, size)

Input head: “root
This parameter indicates the root of the tree to be added on to.
key: ~“string (*)

This parameter indicates the key to be associated with the new table for
searching operations.

table: ~cell
This parameter indicates the table to be added to the tree.

size: integer
This parameter indicates the size of the table to be added, in bytes.

Output address: ~cell

This parameter returns the location of the table in the tree table access
structure.

Remarks See GROW.

10-130 Base System Software Revision A

SIGNAL(nYACQUIRE(n)

SIGNAL(n)/ACQUIRE(n)

These inline procedures test for, and set, semaphores, permitting multiple processor
acquisition of data structures in a controlled manner. Multiple semaphores can be
acquired at once; however, if the Executive fails to acquire one or more of the
semaphores, then none of the semaphores are acquired.

Resources must be acquired in this manner, but may be released simply by storing a
zero in the address specified on the ACQUIRE/SIGNAL call. The executive clears the
entire byte when it releases the resources.

These calls have the following effects:

SIGNAL(n) The resources are acquired, or a failure is returned.
ACQUIRE(n) Control returns when the resource list is entirely
acquired.

Comdeck CMXMTSK

Format SIGNAL(n) (address(n), status)
ACQUIRE(n) (address(n), status)
where n is an integer in the range 1..4.
Input address(n): “cell
This parameter indicates the address to be tested for semaphore, or set.

Output status: boolean

This parameter returns an indication of whether the call completed
successfully.

Remarks If an ACQUIRE(n) request is used by a non-preemptible task and the
resource is not available, the entire system is halted.

Revision A Procedures and Functions 10-131

SPICK

SPICK

This procedure removes a structure from the specified string-keyed tree and returns the
associated data entry, or NIL.

Comdeck CMXPPIC
Format address:= SPICK (head, key)

Input head: “root

This parameter indicates the root of the source tree.

key: “string (*)

This parameter indicates the key associated with the structure to be picked
from the tree. :

Output address: “cell

This parameter returns the table associated with the specified key in the
specified tree structure.

10-132 Base System Software Revision A

START_DEVICE_SERVICE

START _DEVICE _SERVICE

This procedure initializes a peripheral board. The CIM Monitor Command Processor
allocates and initializes a DVCB specific to the peripheral, and boots the peripheral
into operation.

Comdeck DMXXDS
Format START_DEVICE_SERVICE (sds_parm_ptr, status)

Input sds_parm _ptr: “sds_parm_type

This parameter indicates the address of the START _DEVICE_SERVICE
parameter block. This record specifies the peripheral board slot number,
number of parts, number of buffers, status and command queue sizes, and
address and length of the module to be loaded.

Output status: 0..0ffff(16)

This parameter returns the status of START _DEVICE_SERVICE call. The
status codes are:

command accepted.

invalid peripheral board slot was specified.

service has already been started for the specified peripheral.
no SMM memory is available for the DVCB.

peripheral is not available, or is busy.

unable to notify peripheral of DVCB location.

unable to move code block for peripheral.

unable to cause peripheral to execute.

IR AN R ol Ly

Revision A Procedures and Functions 10-133

START_NAMED_TASK_AND_DELAY

START _NAMED_TASK_AND_DELAY

Given an entry point name, this procedure starts the appropriate task, loading the
module(s) first, if necessary. The caller waits while the request is processed.

Comdeck DLXSNTK

Format START_NAMED_TASK_AND_DELAY (entry_point_name, task_
started, task_id, error_response)

Input entry_point_name: pmt$program_name
This parameter indicates the entry point name of the task to be started.

Output task _started: boolean

This parameter returns an indication of whether the task was started.

task _id: task_ptr
This parameter returns the task id of the started task.

error _response: clt$status

This parameter returns any error messages generated by the Online
Loader.

Remarks The module use count is incremented to prevent module deloading.

If the parameter task_started is returned FALSE, it is the user’s
responsibility to release the buffer chain returned in error_
response.condition.

10-134 Base System Software Revision A

START_NAMED_TASK_AND_PROCEED

START _NAMED _TASK_AND_PROCEED

Given an entry point name, this procedure starts the appropriate task, loading the
module(s) first, if necessary. The calling task is allowed to continue work during
loading.

Comdeck DLXSNTK

Format START_NAMED_TASK_AND_PROCEED (entry_point_name,
reply _procedure, request_id)

Input entry_point_name: pmt$program_name
This parameter indicates the entry point name of the task to be started.

reply _procedure: “procedure

This parameter indicates the address of a procedure that returns
information about the module to the original calling procedure. Refer to
appendix D.

request_id: “cell

This parameter indicates the address of an identifier. If the calling
procedure is making more than one request for the module, this identifies
the request.

Output None.
Remarks The module use count is incremented to prevent module deloading.

This procedure makes use of a reply procedure to capture returned
information while processing continues.

If the parameter task_started is returned FALSE, it is the user’s
responsibility to release the buffer chain returned in error_
response.condition.

Revision A Procedures and Functions 10-135

START_PORT_SERVICE

START_PORT_SERVICE

This DVM procedure establishes service to a particular port. It allocates and initializes
the port control block (DVMID) specific to the LIM port.

Comdeck
Format

Input

Output

DMXXPS
START_PORT_SERVICE (sps_parm_ptr, dvm_id, status)

sps_parm_ptr: “sps_parm_type

This parameter indicates the address of the START_PORT_SERVICE
parameter block. This record specifies the LIM port number, slot number of
the board, and the address of the DVM user.

dvm_id: “cell
This parameter returns the address of the DVMID specific to the LIM port.

status: 0..0ffff(16)

This parameter returns the status of START _PORT_SERVICE. The status
codes are:

: command accepted.

invalid peripheral board slot number specified.
device service not started for specified peripheral.
service already started for specified port.

no SMM memory available for DVMID block.
invalid DVMID supplied (DVM software problem).

SAN A o4

10-136 Base System Software Revision A

START_SYSTEM_TASK

START _SYSTEM _TASK

This procedure starts a task with the system ancestor as its parent. A reply procedure
is used to communicate with the caller.

Comdeck CMXSISA

Format START_SYSTEM _TASK (transfer_address, priority, stack_size,
reply _procedure, request_id)

Input transfer address: “procedure
This parameter indicates the task entry point of the task to be started.
priority: priorities
This parameter indicates task priority of the task to be started.

stack _size: stack_size
This parameter indicates the stack size of the system task to be started.

reply _procedure: “procedure

This parameter provides procedure linkage. Refer to appendix D.
request_id: “cell

This parameter indicates the user request identifier to link request and

response.
Output None.
Remarks The supplied reply procedure should have minimal functionality since it

executes under the system ancestor task.

START_NAMED_TASK_AND_DELAY is the recommended procedure to
call for starting a task. It will look up the entry point and call START_
SYSTEM_TASK, which in turn calls MAYBE_TASK.

Revision A Procedures and Functions 10-137

START_TASK

START _TASK

This procedure starts a task at a procedure entry point. A task that starts another
task using this call is referred to as a parent task; the new task is referred to as the
child task. The Executive will send the parent messages with workcodes in the range
0..15 regarding errant child tasks. Refer to appendix F for explanations of these values.

Comdeck CMXMTSK
Format START_TASK (module_ptr, task _attr, lex_level _zero_xdcl, task)

Input module_ptr: dlt$load _id _ptr
This parameter indicates the pointer to be placed into the TCB for the
task.
task _attr: task _attributes
This parameter indicates the pointer to the task attributes of the task to
be started.
lex_level _zero_xdcl: “procedure
This parameter indicates the address of the entry point to the task
procedure.

Output task: task _ptr
This parameter returns the task id of the started task.

Remarks
NOTE

START_NAMED_TASK_AND_DELAY is the recommended procedure to
call for starting a task. It will look up the entry point and call START_
SYSTEM_TASK, which in turn calls MAYBE_TASK.

10-138 Base System Software Revision A

STOP_DEVICE_SERVICE

STOP_DEVICE _SERVICE

This DVM procedure stops execution of a particular intelligent peripheral. The CIM
Monitor Command Processor disables the line to the peripheral and then deallocates
(releases) the DVCB specific to the peripheral.

Comdeck DMXXDS
Format STOP_DEVICE _SERVICE (qds_parm_ptr, status)

Input qds_parm_ptr: “qds_parm_type

This parameter indicates the address of the QUIT_DEVICE_SERVICE
parameter block. This record specifies the slot number assigned to the
particular peripheral board.

Output status: 0 .. Offff(16)

This parameter returns the status of STOP_DEVICE_SERVICE. The
status codes are:

0: command accepted.
1. invalid peripheral board slot number has been specified.
2: service has not been started for the specified peripheral board.

Revision A Procedures and Functions 10-139

STOP_PORT_SERVICE

STOP _PORT_SERVICE

This procedure stops service for a particular port used by stream service routines or
TIPs. It deallocates the port control block (DVMID) specific to the LIM port.

Comdeck DMXXPS
Format STOP_PORT _SERVICE (qps_parm_ptr, status)

Input gps_parm_ptr: qps_parm_type
This parameter indicates the address of the DVMID specific to the LIM
port.

Output status: 0..0ffff(16)

This parameter returns the status of STOP_PORT_SERVICE. The status
codes are:

0: command accepted.
1: invalid DVMID supplied.

10-140 Base System Software Revision A

STOP_TASK

STOP _TASK

This procedure stops a task and permanently removes it from the system.
Comdeck CMXMTSK

Format STOP _TASK (task, status)

Input task: task _ptr
This parameter indicates the task to be stopped.

Output status: boolean
This parameter returns an indication of whether the call was successful.

Remarks The module use count for the specified task is decremented.

Revision A Procedures and Functions 10-141

STRIP

STRIP

This procedure removes a header from the front of the specified message.

STRIP differs from STRIP_IN_PLACE in that the passed user space is always used
and no attempt is made to not move the stripped header space (in other words, data is
always moved). STRIP_IN_PLACE calls STRIP if data movement is required.

Comdeck CMXPSTR
Format STRIP (hdr_size, address, msg, threshold)

Input hdr_size: non_empty_message_size
This parameter indicates the size of the header to be stripped.

address: “cell

This parameter indicates the location for movement of stripped space.

msg: buf_ptr
This parameter indicates the message whose header is to be stripped.

threshold: threshold _size
This parameter specifies the threshold for buffer acquisition.

Output msg: buf_ptr
This parameter returns the message whose header has been stripped.

10-142 Base System Software Revision A

STRIP_IN_PLACE

STRIP _IN_PLACE

This procedure returns the header address (without moving it, if possible) and logically
removes the header from the message. If the header is contained in one buffer, is not
multiply used, and begins on an even byte boundary, the header address is returned
and the offset is changed to remove the header. Otherwise, STRIP is called to move
the header to the user’s area.

Comdeck
Format

Input

Output

Revision A

CMXPSIP
STRIP_IN_PLACE (hdr_size, address, table, message, threshold)

hdr_size: non_empty_message_size
This parameter indicates the size of the header to be stripped.

address: “cell

This parameter indicates the location for movement of stripped space if
STRIP must be called.

message: buf_ptr
This parameter indicates the message whose header is to be stripped.

threshold: threshold _size
This parameter specifies the threshold for buffer acquisition.

table: ~cell

This parameter returns a pointer to the stripped data, on an even byte
boundary.

message: buf_ptr
This parameter points to the message whose header has been stripped.

Procedures and Functions 10-143

SUBFIELD

SUBFIELD

This procedure obtains multiple-byte header field(s) and copies them to the specified
text area.

Comdeck CMXPSUB
Format SUBFIELD (displacement, length, text, message)

Input displacement: message_size

This parameter indicates an offset within the message from which to begin
copying data.

length: non_empty_message_size

This parameter indicates the number of bytes in the subfield.

text: “cell

This parameter indicates the address that the subfield is copied to.

message: buf_ptr

This parameter indicates the address of the message to copy from.

Output length: non_empty_message_size

This parameter returns the number of bytes in subfield.

Remarks The message parameter may not be equal to NIL. It must be a valid
descriptor buffer address.

10-144 Base System Software Revision A

SUSPEND

SUSPEND

This procedure suspends a task without notifying the parent task. SUSPEND is similar
to ABORT_TASK, and is restored with the same call, but is intended for use by
another task that wishes to take matters into its own hands.

Comdeck CMXMTSK
Format SUSPEND (task, status)

Input task: task _ptr
This parameter indicates the task to be suspended.

Output status: boolean
This parameter indicates whether the call was successful.

Revision A Procedures and Functions 10-145

TIME

TIME

This procedure converts time_of_day or intervals to milliseconds. For example, the
time 1:53:22 PM is input as (13,53,22); an interval of 10 seconds is input as (0,0,10).

Comdeck CMXMTIM
Format mil _time := TIME (hour, minute, second)

Input hour: 0 .. 24
This parameter indicates the time-of-day or interval hours.

minute: 0 .. 59
This parameter indicates the time-of-day or interval minutes.

second: 0 .. 59
" This parameter indicates the time-of-day or interval seconds.

Output mil _time: milliseconds

This parameter returns the time-of-day or interval expressed in
milliseconds since midnight.

Remarks Midnight is input either as (0,0,0) or (24,0,0).

10-146 Base System Software Revision A

TRANSLATE_MESSAGE

TRANSLATE _MESSAGE

This procedure is used for character set translation, such as EBCDIC to ASCII, or
ASCII to Baudot. The translation table provides a mapping of the ’from’ character set
to the ’'to’ character set.

Comdeck
Format

Input

Output

Remarks

Revision A

CMXPTRA
TRANSLATE _MESSAGE (message, table, threshold)

message: buf_ptr

This parameter indicates the message to be translated.
table: string (256)

This parameter indicates the translation table.

threshold: threshold _size
This parameter indicates the buffer allocation threshold.

message: buf_ptr
This parameter returns the translated message.

The addresses for message and table must be valid. The table parameter
will normally specify a read-only static data structure.

This is a highly time consuming operation, requiring a minimum of 5

microseconds per character translated. It is recommended that the caller
yield control sometime after returning to avoid time slice overrun.

Procedures and Functions 10-147

TRIM

TRIM

This procedure trims the specified number of bytes from the end of the message. Any
buffers emptied as a result are returned to the free buffer pool. If the entire message
is less than the requested size, the caller is informed that there are not enough bytes
to satisfy the request and DEAD_STOP is called.

Comdeck CMXPTRI
Format TRIM (size, address, message, threshold)

Input size: non_empty_message_size

This parameter indicates the number of bytes needed. If size is NULL,
nothing is done and the return is immediate.

address: “cell
This parameter specifies where to position the bytes that are retrieved.

message: buf_ptr
This parameter indicates the message to be trimmed.

threshold: threshold _size
This parameter specifies the threshold for buffer acquisition.

Output message: buf_ptr
This parameter returns the first data descriptor.

10-148 Base System Software Revision A

UNUSED _

UNUSED_STACK _

STACK _

This function returns the number of reserved user stack bytes that have not ‘been used
since the specified task was first started.

Comdeck
Format

Input

Output

Revision A

CMXMTSK
size:= UNUSED_STACK_ (task_id)

task _id: task _ptr
This parameter indicates the task whose user stack area is to be checked.

size: integer

The return indicates the number of reserved user stack bytes that have not
been used since the specified task was first started.

Zero is returned if the amount of unused space has not changed since the
last check was made. This response can be used to detect a new minimum
stack area. The minimum unused stack space is maintained in the task
control block (TCB) at TCBSPACE.

A negative response is returned for any of the following conditions:
® The indicated stack has overflowed its reserved stack area.
® The task_id is not a valid task pointer.

® The task_id is NIL and there is no running task.

A negative response indicates an illogical software condition that requires
action from the caller to recover or abort the task. The TASK_
OVERFLOWED field in the system configuration table will contain a
pointer to the task that returned the negative response.

Procedures and Functions 10-149

VALIDATE_SECTION_ADDRESS

VALIDATE _SECTION _ADDRESS

This procedure translates a given address into a module name and a section address
with offset. If the specified range is not found, or the address is invalid for the MPB,
the output parameter valid_section is set to FALSE.

Comdeck DLXVSA
Format VALIDATE_SECTION _ADDRESS (address, valid —section, module _

name, section_address, offset)
Input address: “cell
This parameter indicates the address to be translated.

Output valid _section: boolean)
This parameter returns an indication of whether the address to be
translated is valid for the MPB.
module_name: pmt$program_name
This parameter returns the associated module name of the user-specified
address.
section _address: ~dlt$section
This parameter returns the associated section address of the user-specified
address.
offset: llt$section _offset

This parameter returns the associated offset-within-section of the
user-specified address.

10-150 Base System Software Revision A

VISIT_ALL_NODES

VISIT _ALL_NODES

This procedure steps through a tree one node at a time, allowing the caller to process
information at each node using a user supplied routine.

The user supplied routine has three parameters: a pointer to the first associated table,
a pointer to cell (user parameters to be passed through to the process routine), and a
boolean value. Stepping through the tree will continue until all elements in the tree
have been exhausted or the boolean value returned in the user supplied routine is

"FALSE.
Comdeck
Format

Input

Output

Remarks

Revision A

CMXPVAL
VISIT_ALL_NODES (ptr, process, param)

ptr: “node
This parameter indicates the pointer to current node.

process: “procedure
This parameter indicates the user provided procedure. Refer to appendix D.

param: “cell
This parameter indicates the pointer to user parameters.

None.

WARNING

User should not modify a tree structure while VISIT_ALL_NODES is
executing.

Procedures and Functions 10-151

WAIT

WAIT

This procedure puts the executing task to sleep until a WAKEUP is received for the
task. This is similar to SEND_MESSAGE, where the message content is void. It could
be used where a task wishes to wait for an interrupt routine or other task
accomplishes something before looking at its ITM queues again.

Comdeck CMXMTSK

Format WAIT
Input None.
Output None.

10-152 Base System Software Revision A

WAKE_UP, FG_WAKE_UP

WAKE _UP, FG_WAKE _UP

This procedure wakes up a waiting task. If the task has executed a WAIT call, it is
scheduled. If not, a flag is set indicating that the next WAIT call is to be treated as a
YIELD.

These calls have the following effects:

WAKE_UP The task is awakened.

FG_WAKE_UP For interrupt routine use only; the task is awakened.
Comdeck CMXMTSK

Format WAKE_UP (task, status)
FG_WAKE_UP (task, status)

Input task: task _ptr
This parameter indicates the task to be awakened.

Output status: boolean
This parameter returns an indication of whether the call was successful.

Revision A Procedures and Functions 10-153

YIELD

YIELD

This procedure yields control of the CPU by allowing tasks on the same or higher
priority to execute first; the task that yields is placed at the end of the queue for tasks
executing at its priority. This is useful for giving up control of the CPU to other tasks.

Comdeck CMXMTSK

Format YIELD
Input None.
Output None.

10-154 Base System Software Revision A

Appendixes

GlOSSATY e e e e e e e e e e e e A-1
Data Structures e e e e e B-1
Constants and Common Types« . i ittt i C1
Procedure Types e e e e e e e e e e e e e D-1
Vector Table Usage [E-1
Intertask Message Workcode Definitions e e e e e e e e e F-1

DI Reset Codes 0 o v i e e e e e e e e e G-1

Glossary A

B

Base System Software

CDCNET software that works to initialize the device interface and maintain it during
operation. Base System Software also provides a set of common routines for use by
other CDCNET software.

Boot File

A file that contains the basic set of software that is loaded into a device when the
device interface requests to be loaded. A boot file brings a device interface up to a
basic operational state. Further definition of the device interface’s functions is provided
by its system configuration file.

Bootstrap

A technique or device designed to bring itself into a desired state by means of its own
action. For example, a machine routine whose first few instructions are sufficient to
bring the rest of itself into the computer from an input device.

Buffer

One of two structures for the storage of data in device interface memory. Refer to Data
Buffer and Descriptor Buffer.

Cc

CDCNET
Refer to Control Data Distributed Communications Network.

.CDCNET Statistics Manager (CSM)

The CDCNET Statistics Manager provides a bridge between commands that request
statistics collection and the software that actually collects the statistics.

CDNA
Refer to Control Data Network Architecture.

CIM
Refer to Communications Interface Module.

Communications Interface Module (CIM)

The logic board within a CDCNET device interface that controls transmissions between
the Line Interface Module (LIM) bus and the internal system bus (ISB).

Configuration Procurer

Software that obtains and submits for execution the device interface configuration file
commands to the Command ME. This is done at system startup.

Revision A Glossary A-1

Control Data Distributed Communications Network (CDCNET) Device Control Block (DVCB)

Control Data Distributed Communications Network (CDCNET)

1. The collection of compatible hardware and software products offered by Control Data
Corporation to interconnect computer resources into distributed communications
networks.

2. A network that is interconnected by Control Data Network Architecture
(CDNA)-compatible hardware and software products.

Control Data Network Architecture (CDNA)

The network architecture designed by Control Data Corporation. CDNA follows the
lower layer recommendations of the International Standards Organization’s (ISO) Open
System Interconnection (OSI) reference model.

CRC
Refer to Cyclic Redundancy Check.

CSM
Refer to CDCNET Statistics Manager.

CYBIL

Primary implementation language for NOS/VE computer systems and CDCNET
software.

Cyclic Redundancy Check (CRC)
A check code transmitted with blocks of data. This code is used by several protocols.

D

Data Buffer °

A structure for storing user data in device interface memory; contrast with descriptor
buffer. A pointer is associated with the first character of data in the buffer. Data
buffer length is configurable.

Data Communications Equipment (DCE)

The hardware that links data terminating equipment (DTE) to communications media.
Data communications equipment is normally a modem or modem equivalent (data set).

Data Terminating Equipment (DTE)

Data communications equipment that allows human interaction with the databases and
operations of a network.

DCE

Refer to Data Communications Equipment.

Descriptor Buffer
A data structure used for chaining data buffers.

Device Control Block (DVCB)

The Device Control Block is a data structure that retains information about a device
interface’s intelligent peripheral (IP) boards. Each IP has its own DVCB.

A-2 Base System Software Revision A

Device Identifier (DVMID) First-In/First-Out (FIFO)

Device Identifier (DVMID)

A data structure that contains information specific to a port being controlled by an
intelligent peripheral (IP) board.

Device Interface (DI)

The communications processor that Control Data offers as its CDCNET hardware
product. Also called a CDCNET device interface.

Device Manager (DVM)

A set of routines responsible for the interface between CDNA’s physical and link layers
(layers 1 and 2, respectively).

DI
Refer to Device Interface.

DTE
Refer to Data Terminating Equipment.

DVCB
Refer to Device Control Block.

DVM
Refer to Device Manager.

DVMID
Refer to Device Identifier.

E

Ethernet

A baseband local area network protocol developed by the XEROX Corporation.
CDCNET supports an Ethernet-compatible network.

Executive

A realtime monitor for the device interface which acts as the center of its software
operating system. The Executive implements a set of procedures that enable users to
efficiently share the system’s available processing power and memory resources. It also
provides some performance information about its own operation and that of its users.

F

Field Replaceable Unit (FRU)

Any hardware component that is designed for easy replacement on the customer site,
such as a device interface logic board.

FIFO
Refer to First-In/First-Out.

First-In/First-Out (FIFO)

This term applies to data processing services in which requests are serviced in the
same order they are received.

Revision A Glossary A-3

FRU IT™M

FRU
Refer to Field Replaceable Unit.

G

Gateway
A software interface between systems with different architectures and protocols.

H

HDLC
Refer to High-Level Data Link Control.

High-Level Data Link Control (HDLC)

The International Standards Organization’s (ISO) bit-oriented protocol for the data link
layer of the Open Systems Interconnection (OSI) reference model.

Host

Refer to Host Computer.

Host Computer

A mainframe computer system, connected to a communications network, that provides
primary services such as data base access, user application execution, or program
compilation. For CDCNET, a host computer provides network support functions,
including maintenance of device interface load files.

I

Internal System Bus (ISB)

The circuitry within a CDCNET device interface that relays signals between the logic
boards of the device interface.

Interrupt Service Routine
Code within the Executive which services hardware interrupt requests.

Intertask Message (ITM)

A means of scheduling work for device interface software routines that relies on a
queueing service. There are two types of ITM: normal and express.

ISB
Refer to Internal System Bus.

ITM
Refer to Intertask Message.

A-4 Base System Software Revision A

LIM Online Loader

L

LIM
Refer to Line Interface Module.

LIM Status Table (LST)

A data structure that maintains information about any LIM boards installed in the
eight LIM slots of a DL

Line Interface Module (LIM)

A smaller logic board within a CDCNET device interface that enables the device
interface to be attached to terminal, workstation, and unit record equipment lines.

LST
Refer to LIM Status Table.

M

Main Processor Board (MPB)

The logic board within a CDCNET device interface that provides the primary
processing power for the device interface.

Major Card Status Table (MCST)

A data structure that maintains information regarding any logic boards that have been
installed in the eight major board slots of the DI.

Management Data Unit (MDU)

A generic data structure used within protocol data units for the expression of variable
data types.

MCST
Refer to Major Card Status Table.

MDU
Refer to Management Data Unit.

MPB
Refer to Main Processor Board.

(0]

Online Loader

A CDCNET service that loads software into device interfaces when the software is
needed while the network is operational, as opposed to initial loader, which loads
software into device interfaces only when they are started up (initialized).

Revision A Glossary A-5

Packet Protocol Data Unit (PDU)

P

Packet

A group of binary digits, including data and control elements, switched and transmitted
as a data unit by communications networks. The packet’s data, control signals, and
error-control information are arranged in a specific format. Different types of networks
use different sizes of packets.

Parent Task

A parent task is a task that calls another task and supplies a recovery procedure for
the same. If the called task fails, the parent task is notified.

PBST

Refer to PMM Bank Status Table.

PMM
Refer to Private Memory Module.

PMM Bank Status Table (PBST)

A data structure that maintains information regarding the memory banks of the
Private Memory Module.

Port Status Table (PST)

A data structure that maintains information regarding the ports serviced by a Line
Interface Module (LIM). There is one PST for each LIM that is physically present in a
DL

Private Memory Module (PMM)

An optional device interface board with 128K bytes of static RAM dedicated to the
Main Processor Board (MPB) for code execution.

Programming System Report (PSR)

An official report to CDC of a problem with CDC software. A PSR can be sent to CDC
either in hard-copy form or by using the online SOLVER program.

Protocol

A set of conventions that must be followed to achieve complete communications
between the computer-related resources in a network. A protocol can reflect the
following:

1. A set of predefined coding sequences, such as the control byte envelopes added to
(or removed from) data exchanged with a terminal.

2. A set of data addressing and division methods, such as the block mechanism used
between a network application program and Network Access Method.

3. A set of procedures that control communications, such as the supervisory message
sequences used between a network application program and Network Access.
Method.

Protocol Data Unit (PDU)

A data unit that is used to communicate information between peer entities.

A-6 Base System Software Revision A

—

PSR Stream Service Routine (SSR)

PSR
See Programming System Report.

PST
Refer to Port Status Table.

S

SAP
Refer to Service Access Point.

SBST
Refer to SMM Bank Status Table.

SDS
Refer to Statistics Data Structure.

Service Access Point (SAP)

An exchange point between the services of two adjacent Control Data Network
Architecture (CDNA) layers.

SMM
Refer to System Main Memory.

SMM Bank Status Table

A data structure that maintains information regarding the memory banks of the
System Main Memory (SMM) board.

SOLVER

An online utility maintained by CDC that contains a database of reported software
problems and solutions. SOLVER can be used for writing a PSR to report a problem
with software.

SSR

Refer to Stream Service Routine.

Stack

An area in memory used as temporary storage for chaining calls during task or
interrupt service routine execution. Task calls are chained on a user stack. Interrupt
service routine calls are chained on a supervisor stack.

Statistics Data Structure (SDS)

A data structure that is used for the collection and reporting of DI software component
statistics.

Stream Service Routine (SSR)

Software that implements Control Data’s Network Architecture layer 2 (the data link
layer). A stream service routine enables communication over a specific type of network
solution.

Revision A Glossary A-7

Supervisor State X.25

Supervisor State

The higher of two privilege levels of CPU operation in a CDCNET DI. Supervisor state
is used to process Interrupt Service Routines. Contrast with User State.

System Main Memory (SMM)

A device interface board with 1024K byte increments of dynamic RAM accessible by all
interfaces and the resident Main Processor Board (MPB).

T

Task

Any code set within the Executive that is not an Interrupt Service Routine. Each task
has a unique stack, intertask message queue, and priority.

Task Control Block (TCB)

The task control block is a data structure that maintains the context of a task while it
is executing.

TCB
Refer to Task Control Block.

Terminal Interface Program (TIP)

CDCNET software that resides in terminal device interfaces and enables
terminals/workstations that employ specific terminal protocols (such as asyn HASP,
IBM 2780/3780, and IBM 3270) to communicate in CDCNET networks.

TIP

Refer to Terminal Interface Program.

U

User State

The lower of two privilege levels of CPU operation in a CDCNET DI. User state is
used to process tasks. Contrast with Supervisor State.

X

X.25

The Consultative Committee of International Telephone and Telegraph (CCITT)
standard for the interface between data terminal equipment and data communications
equipment in an X.25 packet switching network.

A-8 Base System Software Revision A

Data Structures B

Buffers

Following are the definitions of descriptor and data buffers (also known as small and
large buffers, respectively). Descriptor buffers are linked by the next_descriptor field
and chains of buffers are linked by the next_message field.

Comdeck CMDTBUF
Format VAR name: BUF_PTR

CYBIL definition:

CONST
max_buffer_size = 2304,
max_chars_in_buffer = max_buffer_size - 2,
critical_priority = O,
default_sbufflen = 32,
default_lbufflen = 144,
high_priority = 1,
max_sbufflen = 64,
max_lbufflen = max_buffer_size,
medwum_priority = 2,

min_sbufflen = 32,
min_lbufflen = 64,
low_priority = 3,

memory_overhead = 6,
1buff _overhead = memory_overhead+2,
self = 1; { added to destination_count for broadcast, etc.

TYPE
non_empty_message_size = 1 .. 65535,
message_size = 0 .. 65535,
chars_in_buffer = 0 .. max_chars_in_buffer,
non_empty_buffer = 1 .. max_chars_in_buffer,
pref_type = (absolute@, conditional@®, yield®); { See NOTE, below

TYPE

data_descriptor = record { Descriptor Buffer Definition
next_descriptor: “data_descriptor, { next buffer in msg
next_message: “data_descriptor, { next msg in queue
the_data: “data_space_record, { the actual stored data
decstamp: integer, { millisecond time stamp
offset: non_empty_buffer, { distance from the_data to ist byte
count_buffer: chars_in_buffer, { # bytes data 1n puffer
count_message' message_size, { # bytes data n message (1st buffer only)
usage_descriptor: 0 .. 32767, { usage count of descriptor
user_data: data_descriptor_user_data_type, { user defined data

recend,

data_space_record = record { Data Buffer Definition
data_usage: 0 .. 32767, {usage count for data space
data_text: ARRAY [1..max_chars_in_buffer+1] OF CELL,

recend,

buffer_request_lwmit = 1 .. 999,

executive_extent = 1 .. 32767, { size of executive extent
buf _ptr = “data_descriptor;

Revision A Data Structures B-1

Buffers

The following are definitions of user defined data kept n the
data_descriptor record. These fields are normally unused since
the common subroutines request sbufflen (32) bytes for the
data_descriptor record.

e e

TYPE
data_descriptor_user_data_type = record
case nteger of :

= 1 = { XEROX TRANSPORT
sequence: 0 .. Offff(16),

2 = { TDSM (text_processor)
text_process_1: “ceil,
text_process_2: “cell,

= 3 = { TDSM (output_queue)
marked_output: boolean,

casend,
recend;

Remarks Be aware of what the common subroutines do with buffers; for example,
buffers may be released when STRIP is called.

NOTE

There are three options defined by the type pref_type. These options are
used in calls to APPEND, PREFIX, and BUILD_HEADER_IN_PLACE.
Internally the options have the following meanings when the routine
obtains data buffers.

absolute@ Uses the sure interface; always returns a successful
status.
conditional@ Uses the maybe interface; returns the request status

from the Executive to the user.

yield@ Uses the maybe interface; if successful, returns that
status to the user. If not, yields and repeats the
process.

B-2 Base System Software Revision A

DVM Command Packets and Status ITMs

DVM Command Packets and Status ITMs

Following are the CYBIL definitions for device manager (DVM) command packets and
status intertask messages (ITMs). Refer to chapter 9 for a description of DVM and the
services it provides.

{ }

{ CIM COMMAND PACKET RECORD }
{ }
TYPE
cm_cmd_pkt_rec_type = record
code: cc_cmd_range,
dvm_id: “cell

case nteger of

100 = { force packet size }
body: array [4 .. 8] of 0 .. Offff(16),

cc_hb =
hb_status: cim_flag_set_type,

= cc_configure_line,
cc_reconf igure_line =
config_info_ptr: “cim_config_rec_type,

cc_start_nput =

input_flags:

nput_setup_state:

= cc_start_output =

output _f 1ags:

cwm_flag_set_type,
integer,

cim_f lag_set_type,

output_setup_state: integer,

output_buf _ptr:

“data_descriptor,

"

cc_terminate_10 =
terminate_flags: cm_flag_set_type,

= cc_def ine_user_area =
user_data_ptr: “cwm_user_data_rec_type,

"

cc_execute_state =
state_flags: cwm_flag_set_type,
execute_setup_state: integer,

= cc_line_setup =

1im_num: 0 .. upper_lim_num,
lim_port: 0 .. upper_port_num,
casend,
recend;

Revision A Data Structures B-3

DVM Command Packets and Status ITMs

{ }
{ CIM STATUS RESPONSE & ITM RECORD }
{ }
TYPE
cim_status_rec_type = record
dvm_1d: “cell,

case nteger of

= 0 = { force packet size) .
stat_pkt_size: array [4 .. 8] of 0 .. Offff(16),

= sc_card_ok =
hb_status: cwm_f lag_set_type,

sc_line_conf igured,
sc_line_reconfigured =

conf ig_status: boolean,
config_info_ptr: “cwm_config_rec_type,

sc_lne_deleted =
xflags: cim_flag_set_type,

sc_liwne_enabled =
enable_f lags: cwm_flag_set_type,

= sc_line_disabled =
yflags: cim_flag_set_type,

= sc_input_received =
nput_flags: cim_flag_set_type,
nput _buf _ptr: “data_descriptor,

sc_output_sent =
output_flags: cim_flag_set_type,
output_buf_ptr: “data_descriptor,

sc_1o_terminated =
terminate_flags: cm_flag_set_type,

= sc_user_area_def ined =
user_area_flags: cim_flag_set_type,
user_data_ptr: “cim_user_data_rec_type,

= sc_state_executed =
zflags: cm_flag_set_type,

= sc_line_disconnect =
disconnect_flags: cim_flag_set_type,

casend, .
recend;
TYPE
cim_stat_itm_rec_type = record
status: sc_status_range,
info: cim_status_rec_type,
RECEND;

B-4 Base System Software Revision A

DVM Command Packets and Status ITMs

{== = }
{ DATA TYPE TO DEFINE CMD PKTS TO ESCI VIA DWM }
{ }
TYPE
uint18 = 0 .. Offff(16),
fesci_cmd_pkt_type = record case boolean of
=true=
fesc1_cmd_code_type: uint1s,
dvm_1d: “celtl,
case 0 .. 255 of
= ce_strtup =
config_tbl_ptr_type: “1i_esci_lib_type,
= cc_xmit =
xmt_buffer: buf_ptr,
casend,
=false=
cwm_cmd: cim_cmd_pkt_rec_type,
casend recend;
{ }
{ DATA TYPES TO DEFINE ESCI INTERTASK MESSAGE)
{ }

TYPE
esci_state_type = (1dle, operational, suspended);

TYPE
esci_status_type = (stat_null, stat_up, stat_dwn,
stat_sus, stat_failed);

TYPE
esci_inttsk_msg_type= record
message_type: uinti6,

case 0 .. 65535 of
=Q =
byte: PACKED ARRAY [0..126] of char,

= esci_startup_cmd, esci_shutdown_cmd, esci_suspend_cmd,
esci_resume_cmd, esci_statistics_cmd, esci_wakeup_cmd=
esci_lib_ptr: “esci_lib_type, .

= esci_nures_res, esci_rcv_res, esci_xmit_res, esci_stistc_res,
esci_switches_res, esci_tdr_res, esci_diag_res, esci_nop_res,
esc1_dump_res, esci_xsub_res =
dvm_id: “cell,

case 0 . 65535 of

= esci_nures_res =
esci_status: esci_status_type,
reason: reason_code_set,

= esci_rcv_res =
rev_status_info: packed record
CASE boolean OF
= TRUE =
rcv_status_bits: rcv_status_bits_set,
= FALSE =
chk_586: packed record
frm_stat: 0..0f(16),
frm_err: 0..3f(16),
recend,
CASEND,
recend,
revd_buffer: ALIGNED buf_ptr,

Revision A Data Structures B-5

DVM Command Packets and Status ITMs

= esci_xmit_res =
xmt_status_info: packed record
bc.mc_frame: boolean,
rsv_stat_1: boolean,
frame_transmitted: boolean,
abort_requested: boolean,

rsv_stat_2: boolean,
no_carrier_sensed: boolean,
lost_cts: boolean,
memory_underrun: boolean,

deferred: boolean,
heart_beat: boolean,
too_many_collisions: boolean,
rsv_stat_3: boolean,

number_of _collisions: 0 .. 15,
recend,
xmted_buffer: ALIGNED buf _ptr,

esci_stistc_res =
not_used_stats: uinti6,
cre_errors: uwintig,
aln_errors: uinti16,
rsc_errors: uintig,
ovr_errors: uintig,

esci_switches_res =

sense_switches: set of (esci_switch_1, esci_switch_2,
esci_switch_3, esci_switch_4, esci_switch_5, esci_switch_6,
esci_switch_7, esci_switch_8, esci_switch_rsv_1,
esci_switch_rsv_2, esci_switch_rsv_3, esci_switch_rsv_4,
esci_switch_rsv_5, esci_switch_rsv_6, esci_switch_rsv_7,
esci_switch_rsv_8),

n

esci_tdr_res =

tdr_result: record
1ink_ok: boolean,
1ink_not_ok. boolean,
1ink_open: boolean,
tink_short: booiean,
tdr_resv_1: boolean,
tdr_time: 0 .. 7ff(16),

recend,

esci_chag_res =

diagnose_result. record
diagnose_resv_1: 2 .. Offff(16),
diagnose_result: boolean,

recend,

esci_dump_res =
dump_status: uintig,
dump_buffer: “ceill,

esci_xsub_res =
subroutine_info: “cell, .
casend,
casend,
recend,

B-6 Base System Software Revision A

Executive Error Table

Executive Error Table

The Executive Error Table is initialized by the system Executive and is located in
MPB RAM.

Comdeck CMCERTB

CYBIL definition.

CONST
number _of _error_buffers = 3; { Number of error buffers, minus one

TYPE
executive_error_table = record
stop_supervisor_stack_pointer: “cell, { supervisor stack pointer if exec
{ stop
last_error_address: “error_buffer,
lock_last_error: 0 .. Offff(16), { last_error_address being updated
address_error_being_processed: 0 .. Offff(16),
number_of _spurious_interrupts: 0 .. Offff(16),
smm_error_count: array[0 .. 71 of 0 . 16),
total_error_count: 0 .. Offff(16),
system_ancestor_tcb: task_ptr,
debug_address_called_on_error: “cell,
error_buffers: array[0 .. number_of _error_buffers 1 of error_buffer,
recend;

TYPE .
error_buffer = record
execut ve_error_code: ex_error_codes,
tock_error_buffer: 0 .. Offff(16), { non-zero k error buffer
binclock _at_time_of _error: integer,
d0_thru_d7: array[0 .. 7] of integer,
a0_thru_a6: array[0 .. 6] of integer,
status_register: 0 .. Offff(16),
supervisor_stack_pointer: “cell,
user_stack_pointer: “cell,
program_counter: “cell,
tcb_for_running_task: task_ptr,
module_name: pmt$program_name,
module_offset: 0 .. Offff(16),
error_during_firewall: 0 .. Offff(16), { 1f non-zerro then error during
{ firewall
firewall_procedure_address: “cell,
mpb_status_register: mpb_status_word,
case ex_error_codes of
= pbus_error_1, address_error_i =
first_failure_capture_address: “cell,
bus_exception_status: 0 .. Offff(16),
access_address: “cell,
instruction_register: 0 .. Offff(16),
smm_single_bit_error_i, smm_double_bit_error_i =
smm_card_slot: 0 .. 7,
smm_error_log: 0 .. OFfff(16),

casend
recend;
TYPE
ex_error_codes = (unused._0,
unused_1,
bus_error_i,

address_error_i,
illegal_instruction_i,
zero_divide_i,
chk_iwnstruction_i,
trapv_instruction_i,
privilege_violation_1,
trace_interrupt_i,
line_1010_wnterrupt_1,
Twme_1111_nterrupt_1,
smm_single_bit_error_1,
smm_cdouble_bit_error_1,
task_runs_too_long_1);

VAR
exec_error_table: [XREF] executive_error_table;

Revision A Data Structures B-7

Executive Error Table

{

{ MPB status register from address 6100(16) in mpb ram

{

TYPE type_of_memory = (pmm_bus, 1tb_bus, mpb_random, no_bus);

TYPE type_of_10 = (no_10, read_i0, write_io, intack_10);

CONST
mpb_status_byte = 6100(16);

TYPE

mpb_status_word = packed record
access_code: type_of _memory,
access_type: type_of_10,
dtack_time_out: boolean,
bus_lock_time_out: booiean,
parity_error: boolean,
write_protect: boolean,
dead_man_tme_out: boolean,
bit_not_used: boolean,
manual_reset: boolean,
external_clear: booiean,
a_c_low. boolean,
temperature_shutdown: boolean,
temperature_warning: boolean,
battery_low: bootean, >
recend,;

B-8 Base System Software

Revision A

MPB RAM Definition

MPB RAM Definition

MPB RAM resides at a fixed address within DI memory.

Comdeck

Revision A

SIDRAM

CYBIL definition:

VAR

mpb_ram_ptr. [STATIC, READ] “mpb_ram := NIL, { “MPB_RAM from byte address 0

TYPE

mpb_ram = packed record { description of mpb ram starting from address 0
vector: array [1 .. 256] of “cell, { vector space
system_1d: system_1d_type, { unique identifier for this hardware box
system_id_checksum: 0 .. Offff(16), { system_1d checksum
table_format_version: 0 . OFffff(16), { version of this RAM table format
status: 0 .. OFf(16), { MPB status register low 4 bits (1f NMI occurs)
mpb_ram_zeroed: 0 .. Off(16), { MPB RAM zeroed flag
smm_size: integer, { # contiguous usable SMM bytes from 100,000(16)
boot_map_entry_address: “cell, { “map entry used as bootstrap card
auto_dump_table_address: “cell, { ~ Auto Dump Table
reset_status: 0 .. OFf(16), { reset status saved from most current reset
reset_code: 0 .. OFf(18), { reset code (from both software and hardware
sof tware_error_code: 0 .. Off(18), { software error code
hardware_reset_code: 0 .. OFf(18), { possible hardware cause for reset
version: 0 .. DFFFF(16), { version within last accepted help offer
network_1d: nteger, { network 1d within last accepted help offer
help_system_id: system_id_type, { system 1d withwin last accepted help
auto_dump_subrout ine_address: “cell, { ~ Auto Dump Table generator
auto_dump_subrout ine_length. 0 .. Offff(16), { length in 16-bi1t words
auto_dump_subrout ine_checksum: 0 .. Offff(16), { 16-b1t ones comp lement
map_table: ALIGNED array [1 .. 72] of integer, { card map table
reserved_4_bytes. integer, { reserved for future use
mpb_error_routine_pointer: “cell, { starting address of MPB error routine
mpb_error_routine_length: 0 .. OffFF (16), { length n 16-b1t words
pmm_error_routine_pointer: “cell, { starting address of error routine
pmm_error_routine_length: 0O .. OFFFF(16), { length 1n 16-bi1t words
smm_error_rout ine_pointer: “cell, { starting address of error routine
smm_error_routine_length: € .. Offff(16), { length n 16-p words
expected_smm_interrupt_flag: “cell, { expected SMM 1interrupt flag pointer
ept_address: ALIGNED “cell, { starting address of the entry point table
loaded_mocule_iist: “11t$mocule_header, { pownter to 1st entry
unsatisfied_externals: “cell, { = unsatisfied externals table
desbuf len. nteger, { length of descriptor buffers
datbuf len: ALIGNED integer, { length of data buffers
reserved_memory: ALIGNED 0 .. 32767, { reserved memory for critical use
initial_loader_checksum- ALIGNED 0 .. OfFFF(18), {
sys_cnfg_ptr: “cell, { address of executive configuration table
system_ancestor_task_1d: ALIGNED task_ptr, { “system ancestor tch
current_3b_ephemeral_sapid: ALIGNED sap_id.type, { next 3b SAP to assign

recend; -

CONST
sof tware_error_address = 41a(16); { “mpb_ram_ptr~.sof tware_error_code

Data Structures B-9

Queue Control Block

Queue Control Block

The queue control block (QCB) structure maintains an intertask message queue for use
by the task that owns it. It is defined by type qcb@.

Comdeck CMDTTSK
Format VAR name: qcb_ptr
CYBIL definition:

TYPE

qcb@ = record
length: 0 .. 32767, { current length of queue
count: 0 .. 32767, { number of enqueues that have happened to this QCB
gnext: buf_ptr,
qlast: buf_ptr,
qcharacters: integer, { number of characters in queue

recend;

TYPE
acb_ptr = “qcb@;

B-10 Base System Software Revision A

System Configuration Table

System Configuration Table

The System Configuration Table is a data structure that retains the status of essential
CDCNET system variables. It is in the form of a record with fields indicating such
things as the highest address in MPB RAM and the states of memory and buffers.

Comdeck CMCCNFG
Format VAR sys_cnfg: [xref] exec_config
CYBIL definition:

VAR
address. “exec_config,
table. exec_config;

TYPE
exec_config = record

maxprior: 0 .. 32767, { haghest valid priority -- lowest 15 zero
databac: 0 .. 32767, { data buffer available count
descbac: 0 .. 32767, { descriptor buffer available count
Ibufflen: nteger, { data space length n bytes
sbufflen: integer, { descriptor buffer length in bytes
stdstack: nteger, { standard stack allocation
running: task_ptr, { task_ptr of running task
curprior: priorities, { currently running priority
schprior: priorities, { highest scheduled priority
pmtok: boolean, { task preemption permission flag
vecslice. nteger, { interrupt vector for time slice interrupt
vecintvl: nteger, { interrupt vector for interval timer interrupt
vecclock: integer, { nterrupt vector for millisecond interrupt
mpbramtop: 1nteger, {numerically largest address n mpb ram
privatetop: integer, { numerically largest address 1n private memory
globfree: nteger, { numper of bytes of free global memory
locfree: integer, { number of bytes of free private memory
mpbfree: integer, { number of bytes of free mpb ram memory
globfrag. 0 . 32767, { number of extents of free global memory
locfrag: 0 .. 32767, { number of extents of free private memory
mpbfrag: 0 :. 32767, { number of extents of free mpb ram memory
deloadtyp: deload_flag, { type of memory to release flag for deload task
deloadtchb: task_ptr, { task_ptr of deload task
deloadmpb: O .. Offff(16), { deloadable bytes of mpb ram
deloadpmm: integer, { deloadable bytes of private memory
deloadsmm: nteger, { deloadable bytes of global memory
mpbthresh. 0 .. Offff(16), { dload threshold for mpb am
pmmthresh: integer, { deload threshold for private memory
smmthresh: nteger, { deload threshold for giobal memory
pmtreq: boolean, { task will yield on next trap 1 or trap 4 if set
retryflag: 0 .. 32767, { retry in progress flag
clocktyp: 0 .. t, { 0 = milisecond clock; 1 = real tmme ¢ ck
timertch: task_ptr, { task_ptr of time task
diagflag: diagset, { current debug support tools set
binclock: nteger, { .1 second accuracy binary time of day
decclock: bed_time, { .1 second accuracy bcd date/time
assumed_year: 0 .. 32767, {assumed year used by executive
firewall: integer, { address of interrupt firewall chain
prilist: array [priorities] of qco@, { ready lists for tasks scheduled at priorities
globmem: qcb@, { global memory extent 1ist
privmem: qcb@, { private memory extent 11st
mpbmem: gcb@, { mpb ram memory extent list
badextnt. qcb@, { bad extent list
ptlist: qcb@, { defined nterrupts list
1buffq: qocb@, { data buffer queue
sbuffq: qcb@, { descriptor buffer queue
data_buffer_count: 0 .. 32767, { number of data buffers
descriptor_buffer_count: 0 .. 32767, { number of descriptor buffers
expire_stp: 0 .. 32767, { expire state transition processor timer
stack_overf low_space: 1nteger, { size of stack overflow area allocated
task_overflowed: task_ptr, { task_ptr of task which has overflowed its stack
pc_chkinst_address- 1nteger, { PC where chk instruction executed
usp_chkinst_address: integer, { USP when chk instruction executed
mpb_light_state: 1ight_status, { status of mpb lights

Revision A Data Structures B-11

System Configuration Table

1dle_loop_count: integer, { executions of 1dle loop since last clear
reservetop: integer, { numerically largest address in reserve memory
rsvfree' integer, { number of bytes of reserve ram memory

rsvfrag: 0 .. 32767, { number of extents of reserve global memory
rsvmem: qcb@, { reserve ram memory extent 1ist

memory_state: memory_ state_type, {depends on amount of free memory
buffer_state: buffer_ state_type, {depends on amount of free memory
stp_timer: “timer, { timer 1d of state transition processor

cio_b: cio_port_b, { CIO port B bit settings

cio_c' ALIGNED cio_port.c, { CIO port C bit settings
supervisor_state_ok: 0 .. Offff(16), { 1t = OK, 0 = user task recend;

TYPE
priorities
stack_s1ze

0 .. max_priority,
min_stack._size .. max_stack_size;

CONST
max_priority =
min_stack_size
max_stack_s1ze

g,
2000(18);

n o~

TYPE
deload_flag = (lic$mpb, 11c$pmm, 1ic$smm);

B-12 Base System Software Revision A

Task Control Block |

The task control block (T'CB) structure describes task constants and types for use by
the Executive. It is defined by type taskid@.

Comdeck

Format

Revision A

CMDTTSK .

VAR

name: task _ptr

CYBIL definition:

TYPE
taskid@ = packed record { packed to force correct data mappings

next_task: task_ptr, { chain to next task_ptr

1d- integer, { = ‘!TCB’

stsiz: nteger, { size of current stack segment

chldg: task_ptr, { task_ptr of my next sibling

adult: task_ptr, { task_ptr of my parent

child: task_ptr, { task_ptr of my child

stack- integer, { address of my current stack segment
state_fill: 0 .. 31,

state: 0 .. 7, { my.current state

transition_fi111: 0 .. 15,

trans: 0 . 15, { transition that entered this state

tran: array [0 .. 15) of 0 .. 65535, { counts of transitions to date
slices. 0 . 65535, { count of time slice overruns to date
flag_f111_1: 0 .. 31,

Task Control Block

preempted: boolean, { task has been preempted; registers all saved (else only

{ AB and D7)
hold. boolean, { used by timer task to deflect requests nto Normal queue
wku: boolean, { wakeup pending 1f set
flag_fili_2: 0 . 255,
express: qcb@®, { inter-task message queue
normal. qcb@, { inter-task message queue

preempt_permit : 0 .. 32768, { zero = task not preemptible; else preemptible

cpriority: 0 .. 32768, { my nominal priority

priority. 0 .. 32768, { my actual priority

d_registers: array [0 . 7] of integer, { only register D7 normally valid
a_registers: array [0 .. 6] of “cell, { only register A6 normally valid
usp: “cell, { user stack pointer

sr: 0 .. Offff(16), { status register

pc: “cell, { program counter

tcbfrb: “sat$recovery_block, { pointer to task failure recovery block
tcb_epa: “cell, { task entry powint address

tch_space: integer, { amount of unused space n reserved stack area
tcbmhp: d1t$module_header_ptr, { pointer to module header

age: 0 .. OFfff(16), { age within dispatch gueue

recend;

TYPE
ta

sk_ptr = “task1i10@;

Data Structures B-13

Constants and Common Types C

Constants

Following is an alphabetical listing of the CYBIL constants used in the procedures and
functions defined in chapter 10.

dbc$sing_le_line =179 { characters
dic$default_priority = 0

dlc$max _section _checksum = Offff(16)

dlc$max _section _offset = T7ffffr(16)

dlc$max _section _ordinal = 0ffff(16)

dlc$maximum _68000 _address = 7ffffffi(16)

max_buf_level = 400
max_cmd _q_size = 200
max_number_ports = 32

max_ priority = 7

max_response_message_id = 65535

max_stack_size = 8192
max_stat_q_size = 200
maximum _device_name_size = 11

mdu _field _size = 32000

min _response_message_id = 33000
min _stack _size = 2048
osc$max_name_size = 31

rev_threshold = 0 { buffer and descriptor thresholds

svmm_thresh = 0 { SVM buffer threshold
upper_ip_num =17
upper _lim_num =17
upper _port_num = 3

Revision A Constants and Common Types C-1

Common Types

Common Types

Following is an alphabetical listing of the CYBIL types used in common by the
procedures and functions defined in chapter 10.

access_device_status_type =
(device_state__not_on,

device__state__off,
device__status__not_cnfg,
device_configured,
device__not_configurable,
device__unavailable,
device_released,
invalid_cnfg_table_address,
device_status_already_cnfg,
invalid_key)

access_status_type =
(sap_opened,
sap_not_ opened)

bed = 0. 9
bed _time = packed record
lyear: bed,
ryear: bed,
Imonth: bed,
rmonth: bed,
1day: bed,
rday: bed,
lhour: bed,
rhour: bed,

Iminute: bed,
rminute: bed,
Isecond: bed,

rsecond: bed,

deci: bed,

centi: bed,

milli: bed,
recend

buffer _request_limit = 1 ., 999

buffer_state_type =
(buffer_good,
buffer__fair,
buffer__poor,
buffer _congested)

C-2 Base System Software Revision A

Common Types

card_info_record = record
card_type: hardware_resource_type,
primary_address: integer,
secondary__address: integer,

recend

chars_in_buffer = 0 .. max_chars_in_ buffer

cim_config_rec_type = packed record

line__mode: 0..255,
char_length: 0..255,
stop_ bits: 0..255,
crc_type: 0..255,
crc_preset: 0..255,
modem_ mode: 0..255,
modem__type: 0..255,
not_used: . 0.0ffff(16), { place holder
input_baud_rate: 0..0ffff(16), { bps rate time const
output_baud_rate: 0..0ffff(16),
state_prg_indx: 0..255,
clock_mode: 0..255,
recend

cim_flag_set_type = set of 0..15
cim_user_data_mask_type = set of 0..cim_user_data_max
cim_user_data_max = 79

cim_user_data_rec_type = record
valid_data: cim_user_data_mask_ type,
data: cim_user_data_type,
recend

cim_user_data_type = packed arrary [0..cim_user_data_max] of 0..0ff(16)

close_statistics _status =
(statistics_sap__closed,
statistics._sap_entry_not_found,
mismatch__statistics_sap)

clt$status = record
normal: boolean,
response_id: min_response_message_id .. max_response_message_id,
condition: buf_ptr, { management data unit syntax
recend

Revision A Constants and Common Types C-3

Common Types

component_status_type = record
name: string (maximum_device_name_size), { Hardware physical device name

state: device_state_type, { device state
status: device_status_type, { device status
recend
device_state_type =
(device_on,
device_off,

device_down)

device_status_type =
(device _not_cnfg,
device_cnfg,
device_enabled,
device_active)

dg_data_buffer_priority = medium_priority { CIM online diagnostic
diagset = set of diagset@

diagset@ =

(unused_15, { unused flag position
unused_14, { unused flag position
unused_13, { unused flag position
unused_12, { unused flag position
unused_11, { unused flag position
unused_10, { unused flag position
unused_9, { unused flag position
unused_8, { unused flag position
diagwrap, { wrap-around journal buffer
diagpesr, { log PC and SR on precise CMCSTAT entry

diagipts, { log spurious interrupts

diagecle, { perform excess buffer collection
diagdups, { test for duplicate buffer release
diagbufs, { log memory allocation/release in journal
diagevnt, { log task event messages in journal

diagtask) { log task state changes in journal

dip_parm_type = record { Dump Intelligent Peripheral
ip_number: 0..upper_ip._num, { board slot number of device
dump_start: “cell, { local RAM address
dump_length: 0..0ffff(16) { size of RAM to dump

recend

display _procedure = "PROCEDURE
(sds_hdr_ptr: “sds_header;
time: report__time_ type;
VAR disp_msg: buf_ptr)

C-4 Base System Software Revision A

Common Types

dlc$default_immediate _control = FALSE
dic$default_preemptibility = FALSE
dic$max_section_length = dlc$max_ section_ offset
ditSampm _time = string (8)

dlt$checksum = 0 .. ilc$max_ section_checksum

dlt$date = packed record { Date request return value
fill: 0 ..1f(16),
case date _format: dlt$date_formats of
= dlc$month_date =
month: dlt$month_date, { month DD, YYYY
= dlc$mdy_date =
mdy: dlt$mdy_date, { MM/DD/YY
= dlc$iso_date =
iso: dlt$iso_date, { YYYY-MM-DD
= dlc$ordinal_date = :
ordinal: dlt$ordinal_date, { YYYYDDD
= dlc$dmy_date =
dmy: dlt$dmy_date { DD/MM/YY
casend,
recend

dit$date _formats =
(dlc$default__date,
dlc$month__ date,
dlc$mdy__date,
dlc$iso_date, i
dic$ordinal _date,
dlc$dmy__date)

dlit$dmy_date = string (8)

dit$entry _description = record
node: node_control,
name: pmt$program_name,
address: d1t$68000_address,
module_header_address: “dlt$module_header,
link_address: “dlt$entry_description,
declaration_matching_ required: boolean,
declaration_matching_value: string (8),
language: dlt$module_ generator,

recend

dit$hms_time = string (8)

dit$iso_date = string (10)

Revision A Constants and Common Types C-5

Common Types

dit$load _id _ptr = ilt$module_header_ptr
dit$maximum _modules = 0 .. dlc$max_section_ordinal
dit$mdy _date = string (8)

dlt$millisecond _time = string (12)

dlt$module_ attributes

dlt$module _generator =
(dic$algol,

dlc$apl,
dic$basic,
dlc$cobol,
dlc$assembler,
dlc$fortran,
dlc$object_library__generator,
dic$pascal,
dlc$cybil,
dlc$pl_i,
dle$unknown_generator,
dlc$the _c_language,
dlc$ada)

dlt$module__header = record

link_address: dit$module_header_ptr,

mod_head: dlt$module_identification,

allocated__sections: array [0..*] of dlt$section_identification,
recend

dit$module _header_ptr = "“dlt$module_header

dit$module _identification = record

name: pmt$program_name,

kind: dlt$module_kind,

time_created: dlt$time,

date_created: dlt$date,

attributes: dlt$module_attributes,
breakpoint_set: boolean,

retain: boolean,

member_of_internal _set: boolean,
use_count: dit$maximum_modules,
reference_list: “dlit$module_reference,
module_status: dlt$module_status,
entry_address: “dlt$entry_description,
greatest_section_ordinal: dlt$section_ordinal,
transfer__symbol_address: “dlt$entry_description,
recend

C-6 Base System Software

set of (dlc$nonbindable, dlc$nonexecutable)

Revision A

_

dit$module _kind =
(dlc$mi__virtual__state,
dlc$vector _virtual _state,
dlc$iou,
dlc$motorola_ 68000,
dlc$p_code,
dlc$motorola__68000_absolute)

dit$module_reference = record
link__address: “dlt$module_reference,
reference_link: “dlt$module_header,
recend

dit$module_status =
(dic$active,
dlc$deloaded,
dlc$load_in_ progress)

dit$month_date = string (18)
dlt$ordinal _date = string (7)
dit$section = array [1..*] of 0..255

dlt$section _access_attribute =
(dlc$read,

dlc$write,
dic$execute,
dlc$binding,
dlc$read_other,
dic$write__other,
dlc$execute_other,
dle$binding__other)

dit$section _access_attributes = set of dit$section_access_attribute

dlt$section _address_range = - (dlc$max_section_offset + 1) ..
dlc$max__section_ offset

dit$section _identification = record
checksum: dit$checksum,

length: dlt$section_length,
attributes: dlt$section_access_attributes,
case 1.2 OF

=1 =

address: ~dlt$68000_attributes,

module_kind: dlit$module__kind,
= 2 =

section._address: “dlt$section,

kind: dlt$section_kind.
casend,
recend

Common Types

Revision A Constants and Common Types C-7

Common Types

dlt$section _kind =
(dlc$code_section,

dlc$binding__section,
dlc$working_storage _section,
dic$common__block,
dic$extensible_working_storage,
dlc$extensible _common_block,
dlc$line_table_section)

dit$section_length = 0 .. dlc$max_section_length

dlt$section _offset = 0 .. dic$max_section_offset

dit$section _ordinal = 0 .. dle$max_section_ordinal

dit$time = packed record { Time request return value.
fill: 0 .. 3f(16),

case time_format: dlt$time_formats of
= dic$ampm_time =

ampm: dlt$ampm_time, { HH:MM AM or PM
= dlc$hms_time =
hms: dlt$hms_time, { HH:MM:SS
= dlc$millisecond__time =
millisecond: dlt$millisecond._time, { HH:MM:SS.MMM
casend,
recend
dlt$time _formats =

(dlc$default_time,
dlc$ampm__time,
dlc$hms__time,
dlc$millisecond_time)

d1t$68000_absolute = packed record
load_address: d1t$68000_address,
transfer_address: d1t$68000_address,
text: ALIGNED SEQ (*), { REP n OF byte
recend

d1t$68000_address = O .. dlc$maximum_68000_address
dm_input_buffers_priority = high_priority { DVM npriority
dm_ configuration _priority = medium_priority { DVM priority
executive_extent = 1 .. 32750

force_stat_reporting _status =

(statistics_report_issued,

statistics_sap_not_found,
sds_header__address_invalid)

C-8 Base System Software Revision A

P

hardware_resource_type =

(mpb,
cim,
esci,
reserved_3,
reserved._4,
reserved_5,
reserved_6,
pim,
pmm,
smm,
reserved__10,
reserved_11,
disc,
mci,
dei,
slot_empty,
lim,
port,
bank)

ip_cmd _pkt_type = packed record
case integer of
=0 =
command,
status: 0..255,
destination,
source: “cell,
length,
filler,
checksum: 0..65535,
=1 =
cmd_status: 0..65535,
destination_adr,
source._adr: integer,
= 92 =
cmd_wrd: array [0..6] of 65535,
casend,
recend

itm_exp_mask_type = set of sc..status_range
key_type = (numeric_key@, pointer_key@, string_key@)

key_record = record
case key_kind: key_type of
= numeric._key@ =
numeric: integer,
= pointer_key@ =
pointer: “cell,
= string_key@ =
string__type: “string (*),
casend
recend

Common Types

Revision A - Constants and Common Types C-9

Common Types

light_status = packed record

operational: 0 .. 3,
mpb_busy: boolean,
test__state: test_status,
failed_card: 0 .. 7,

recend

mdu_field _type =

(bin_str,
bin_octet,
char_octet,
bin_int,
bin__sint,
bed_char,
format)

memory _owner_type = 0
memory _state_type =
(memory_good,

memory_ fair,

memory_ poor,

memory_congested)

message_size = 0 .. 65535

milliseconds = integer

{ always zero for operational state
{ On for busy mpb

{ failed card slot number
unused_byte: 0 .. OFF(16), { force word align

.. 3fff(16)

mpb _status _word = packed record
access_code: type__of _memory,

access_type: type_of_io,
dtack__time_out: boolean,

bus_lock__time_out: boolean,

parity_error: boolean,
write__protect: boolean,

dead _man_ time_out: boolean,

bit_not__used: boolean,
manual__reset: boolean,
external__clear: boolean,
a_c_low: boolean,

temperature_shutdown: boolean,
temperature__warning: boolean,

battery_low: boolean,
recend

node = record

balance: condition_range, { balance factor for sub-tree
association: "node_control, { points to user data

key: key_record,

llink: "“node, { sub-tree links

rlink: “node,
recend

C-10 Base System Software

Revision A

P

node_control = record

Common Types

length: executive_extent, { length of the associated table
dump_id: string (4), { validity check, should contain user value

recend

non_empty_buffer = 1 .. max_chars_in_buffer

non_empty_message_size =

number_of _data_byte_types

(two_byte_statistic,
four _byte_statistic,
eight__byte__statistic)

open _statistics _status =
(statistics_sap_opened,

statistics_sap_entry_exists,

sds_header_not_included,

open_statis__sap_insuf_resrc)

ostampm _time = string (8)

ost$date = record

case date_format: ost$date_formats

= osc$month_date =
month: ost$month_date,
= osc$mdy_date =
mdy: ost$mdy_ date,
= osciso_date =
iso: ost$iso_date,
= osc$ordinal_date =
ordinal: ost$ordinal_date,
= osc$dmy_date =
dmy: ost$dmy_date
casend,
recend

ost$date _formats =
(osc$default_date,
osc$month_date,
osc$mdy__date,
osc$iso__date,
osc$ordinal__date,
osc$dmy__date)

ost$dmy_date = string (8)
ost$hms_time = string (8)

ost$iso_date = string (10)

Revision A

1 .. 65535

{ month DD, YYYY
{ MM/DD/YY

{ YYYY-MM-DD

{ YYYYDDD

{ DD/MM/YY

Constants and Common Types C-11

Common Types

ost$mdy_date = string (8)

ost$millisecond _time = string (12)

ost$month _date = string (18)

ost$name = string (osc$max_name_size)

ost$ordinal _date = string (7)

ost$time = record

case time_format: ost$time__formats of

= osc$ampm_time =
ampm: ost$ampm_time,
= osc$hms_time =
hms: ost$hms__time,
= osc$millisecond__time =

millisecond: ost$millisecond_time,

casend,
recend

ost$time_formats =
(osc$default_time,
osc$ampm_time,
osc$hms__time,
osc$millisecond__time)

pmt$program_name = ost$name

port_owner_type =
(device_available,
hdlc_owner,
x25__owner,
lem_owner)

pref_type =
(absolute@,
conditional@,
yield@)

priorities = 0 .. max_priority

qds_parm_type = record
ip_number: 0..upper_ip_num,

recend

qps_parm_type = record

dvmid_ptr: “cell,
recend

C-12 Base System Software

{ HH:MM AM or PM
{ HH:MM:SS

{ HH:MM:SS.MMM

{ stop (quit) port service
{ card slot number of device

{ stop (duit) port service
{ pointer to dvmid block

Revision A

—

Common Types

report_time_type = record

start: ost$hms_time, { HH:MM:SS }
ending: ost$hms_time, - { HH:MM:SS }
recend :

root = record

num_ tables: integer, { number of tables in tree
num_nodes: integer, { total number of nodes in the tree
dump_id: string (4), { validity check, should contain user value
type._node: key_type, { how is tree accessed
link: "“node,

recend

sap_id_type = 0 .. Offff(16)
satdmax_dump_size = 0 .. 4096

sat$recovery_block = record
procedure_address: “procedure, { pointer to code and static link address
sa_dump_identifier: "cell, = { sat$dump_identifier, ptr to dump control block
previous_link: “sat$recovery_block, { previous recovery block on stack

recend

sds_header = record
sds_bufl_ptr: “cell, { User défined collection buffers
sds_buf2_ptr: “cell,
group: statistics__group._type,
log_msg_number: 0 .. Offff(16),
log_template_id: template_id_type,
function_proc: statistics_function_ procedure,
display_proc: display_procedure,
next_header: "sds_header,
collecting: boolean, .{ Collecting statistics & next reporting
collecting_bufl: boolean, { TRUE =buffer] FALSE= buffer2

recend

sds_parm_type = record { Start Device Service
ip_number: 0..upper_ip_num, { card slot number of device
num__ports: 0..max_number_ports, { number of I/O ports on dvc
buf_lev: 1..max_buf_level, { number of buffers in pool
stat_q_ size: 16..max_stat_q_size, { size of status queue
cmd__q_size: 16..max_cmd_ q_size, { size of command queue
load__meodule_ptr: “cell, { ptr to first byte of load module
load_module_len: integer, { length of load module

recend

sps_parm_type = record { Start Port Service
ssr_tid: taskid, { task id of ssr
ip_number: 0..upper_ip_num, { board slot number of device
lim_num: 0..upper_lim_ num, { LIM number if board is a CIM
lim__port: 0..upper_port_num, { LIM port number
itm_exp_mask: itm_exp_mask_type, { mask for express intertask msg

recend

Revision A Constants and Common Types C-13

Common Types

software_sap _range = 1 . O0ffff(16)
stack _size = min_stack_size .. max_stack_size

statistics _function_codes =
(issue_report_and_ clear__buffers,
clear_buffers,
start_collecting,
stop._collecting,
select_bufferl,
select__buffer2)

statistics _function _procedure =
*PROCEDURE ({
sds_hdr_ptr: “sds_header;
function_ code: statistics_function_codes;
reason: statistics_reason._type;
time: report_time_type;
param: “cell;
VAR status: statistics_function__status)

statistics _function _status =
(stat_funct_success,
stat_funct__insuf_resources,
stat__funct_sw_err)

statistics _group _type =
(st_summary,
st_expanded,
st__debug)

statistics _priority = medium_priority { Statistics priority

statistics _reason _type =
(periodic__report,
start_reporting,
stop__reporting,
close_sap,
forced_report)

statistics _type =
(comm__line,
nw_solution,
sw..component)

system_id_type = record
upper: 0 .. Offff(16),
lower: integer,

recend

C-14 Base System Software

Revision A

P

Common Types

system _status_table_type =
(major_card_table_type,
lim_table_type,
port_table_type,
smm_bank_ table_type,
pmm_bank_ table_type)

task _attributes = record
stack__allocation: stack_size,
task_priority: priorities,
preemptable: boolean,
immediate_ control: boolean,
recend

template_id _type = cme$min_template_id .. cme$max_template_id

test_status =
(no_fault,
fault,
test_in_progress,
unused)

threshold_size = 0 .. 7

timer = record
next_one: “timer, { next timer in queue
length: 0 .. 32767, { length of what follows
code: 0 .. 15, { identifying code
tod: milliseconds, { time of day to pop
period: milliseconds, { period,if periodic timer
param: “cell, { parameter for subroutine
proc: “procedure, { address of subroutine
mark: integer, { = "TIM

recend

type_of_io =
(no_io,
read_io,
write_io,
intack_io)

type_of _memory =
(pmm__bus,
itb_bus,
mpb__random,
no_bus)

Revision A Constants and Commeon Types C-15

.

P

Procedure T@es D

Some of the procedures in chapter 10 have parameters that point to procedures. These
nested procedures are defined in this appendix, using the same format as the
procedures presented in chapter 10. Procedures from chapter 10 that contain nested
procedures are:

FIND_FIRST SFIND_NEXT

FIND_NEXT SFIND_WILD_CARDS
LOAD_ABS_MODULE_AND_PROCEED START_NAMED_TASK_AND_PROCEED
LOAD_CMD_PROCESSOR_AND_PROCEED START_SYSTEM_TASK
LOAD_ENTRY_POINT_AND_PROCEED VISIT_ALL_NODES

SFIND_FIRST
Below are nested procedure definitions:
From FIND_FIRST, FIND _NEXT, SFIND_FIRST and SFIND _NEXT:

Input ptr: “cell
Address of the table associated with the node being tested.

param: “cell
Address of the parameter being passed to this procedure.

Output bool: boolean
Indicates whether or not the table being tested satisfies the param

parameter.
From LOAD_ABS_MODULE_AND_PROCEED:

Input request_id: ~cell

Address of an identifier. If the calling procedure is making more than one
request for the module, this identifies the request.

absolute_module_found: boolean
Indicates whether or not the called module is found.

smm _address: “cell
Starting address of the module in SMM.

load _address: dIt$68000_address
Address where the module will be loaded.

transfer _address: d1t$68000_address
Address at which module execution begins.

byte_size: dlt$section_length
Size of the module in bytes.

error_response: clt$status

Any error messages from the Online Loader.

Output None.

Revision A Procedure Types D-1

From LOAD_CMD_PROCESSOR_AND_PROCEED and LOAD_ENTRY _
POINT_AND_PROCEED:

Input request_id: “cell

Address of an identifier. If the calling procedure is making more than one
request for the module, this identifies the request.

entry_point_found: boolean
Indicates whether or not the module entry point was found.

entry_address: “dlt$entry_description
Starting address of the module entry point.

task _info: task_attributes

A record specifying stack size, i)riority, and whether or not the task is
preemptible.

error_response: clt$status

Any error messages generated by the Online Loader.

module _ptr: dlt$load _id _ptr

Address of a record containing information about the module.

Output None.

From SFIND_WILD_CARDS:

Input table: ~cell
Pointer to user table.

params: “cell

Pointer to user parameters.

Output quit_ processing: boolean

Indicates whether wild card search is to be terminated.

D-2 Base System Software Revision A

From START_NAMED_TASK_AND_PROCEED:

Input request_id: ~cell

Address of an identifier. If the calling procedure is making more than one
request for the module, this identifies the request.

task _started: boolean
Indicates whether the task was started.

task _id: task_ptr
The task identifier of the started task.

error _response: clt$status
Any error messages generated by the Online Loader.

Output None.

From START_SYSTEM_TASK

Input request_id: ~cell

User request identifier to link request and response.

task _id: _ptr
Task identifier of task started.

Output None.

From VISIT_ALL_NODES:

Input p: “cell
Pointer to user table.

key: integer
Associated node key.

param: “cell
Pointer to user parameters.

Output more: boolean
If TRUE, continue search; if FALSE, terminate search.

Revision A ’ . Procedure Types D-3

Vector Table Usage E

The vector table is found in the first 400(16) bytes of DI memory. It is defined in
common deck CMDVECT. The vector table is used as follows during CDCNET
operation (refer to Motorola’s M68000 User’s Manual for more information).

Vector Use

0 Reset: Initial System Stack Pointer. Label RESETSP

1 Reset: Initial PC

2 Bus Error

3 Address Error

4 Illegal Instruction

5 Zero Division

6 Check Instruction

7 Trap V Instruction

8 Privilege Violation

9 Trace

10 Line 1010 Emulator. Unimplemented op code

11 Line 1111 Emulator. Unimplemented op code

12-23 Reserved for future enhancements by Motorola

24 Spurious. For when the interrupt cycle has been started but cleared before
completion :

25 Level 1 Interrupt Autovector. Reserved for possible use on the 68000
Extension Bus.)

26 Level 2 Interrupt Autovector. Real Time Clock Interrupt

27 Level 3 Interrupt Autovector. Software Timers and Clocks and Attention
Switch

28 Level 4 Interrupt Autovector. ISB Interrupts (scanned) 8 cards (Control Bus
Vector)

29 Level 5 Interrupt Autovector. Extension Bus

30 Level 6 Interrupt Autovector. SSC (Serial Port)

31 Level 7 Interrupt Autovector. Errors. Level 7 interrupts are non-maskable.
"ACLOW" will indicate potential power failure, cause status to be saved, and
then stop. "ERRORS" will include over-temperature condition.

32 TRAP 0 : fast_bg (also called maybe_bg) (background)

33 TRAP 1 : sure_bg

Revision A Vector Table Usage E-1

34
35

36

37
38
39
40
41
42
43

45

46

47
48-63
64

66

65, 67,
69, T1,
73, 715,
77, 79
68, 70,
72, 74,
76, 78
80-127

128-255

TRAP 2 :

fast_fg (foreground)

TRAP 3 : fire in. Saves registers. Controlled recovery point. If another
vector is invoked then TRAP 3 sets up firewall.

TRAP 4 : fire out. Resets firewall. If no task to preempt then it restores
registers and returns from exception.

TRAP 5 :
TRAP 6 :
TRAP 7 :
TRAP 8 :
TRAP 9 :
TRAP A .
TRAP B :
TRAP C :
TRAP D :
TRAP E :
TRAP F :

set_interval

set_slice

reserved for executive

used by MCI

reserved for I/O subsystem (for cards)
reserved for I/O subsystem "
reserved for I/O subsystem "
reserved for I/O subsystem "
used by DI Resident Debugger

reserved for I/O subsystem "

used by DVM

Reserved for future enhancements by Motorola

time slice

time interval

SCCVECT (used by DI Debugger) (SCC)

CIO User Interrupt Vectors

Expansion

Available for major boards. Eight vectors alloted for each of 16 possible
board slots.

E-2 Base System Software

Revision A

Intertask Message Workcode Definitions

Following are the workcodes for intertask messages, their respective values and
explanations.

Comdeck CMDITM

CYBIL definitions:

{
{ Executive Intertask Message Workcode Definitions
{

,exec_1ptfaill
,exec_1iptfail2
,exec_tskfail!
,exec_tskfai12
,exec_extent_gone
,exec_stoptask
,exec_aborttask
,exec_new_vector_owner
,exec_jour_msg
,exec_dest_failed

0000(16) { Bus/address error 1n interrupt
0001(16) { Other error n interrupt
0002(16) { Bus/address error in task
0003(18) { Other error in task

0004(18) { Memory extent vanished
0005(16) { Stop Task

0006(16) { Apbort Task

0007(16) { New vector owner

0008(16) { Journal message

0009(16) { Destination failed

LU [N | N | N Y [A T O N A

task
0010(16) { Call at time request for timer task
0011(18) { Periodic request after interval for
{ timer task

,exec_excess_slice 000a(16) { Excess Slice
,exec_error 000b(16) { MPB failure error for system_ancestor
,exec_end_of _day 000c(16) { End of day message to timer task
,exec_new_time 000d(18) { New time of day request for timer task
,exec_periodic_t imer 000e(16) { Periodic timer reguest for timer task
,exec_after_interval 000f(16) { After 1interval timer request for timer
{
{

,exec_at_tme
,exec_periodic_after

non

{
{ Command ME Intertask Message Workcode Def initions
{

0014(18) { Command Processor I/F task
0015(16) { Response to clp_process_command
0016(16) { Command from transport I/F
0017(16) { Command from internet I/F
0018(16) { Command processor abort
0019(16) { Command processor stopped
001A(18) { Command-ME processing error
001B(18) { Load command processor

,C_me_msgcode
,C_me_respcode
,C_me_xport_msg
,Cc_me_3b_msg
,Cc_me_cp_task_abort
,c_me_cp_task_stop
,C_me_command_err
,C_me_load_cmd

nonou o owonw Honon

{
{ Routing ME Intertask Message Workcode Definitions
{

,r_me_full_update_lcrds
,r._me_part_update_lcrds
,r_me_ridu_msg
,r_me_3a_nw_update

{
{ Error ME Intertask Message Workcode Definitions
{

0030(16) { Update Least Cost Routing Data Store
0031(16) { Partial update to LCRDS

0032(18) { Routing Information Data Unit message
0033(16) { Routing 3A Network Update message

,err_me_internet_error 0039(16) { Internet error message

{
{ Independent File Access ME
{

, ifa_wkcode 0040(16) { independent file access nitialization

Revision A Intertask Message Workcode Definitions

F-1

{

{ Console Driver Workcode Definitions

{

,consolestraffic
,consolesconf iguration
,console$write_complete
,consolesread_complete
,console$read_correct

0050(16) { Transmit message

0051(16) { Startup configuration

0052(16) { Completion of transmission seguence
0053(16) { Message has been received

0054(16) { Message received for editing

{

{ Online Loader Workcode Definitions

{

,d1c$1oad_abs_delay
,d1c$10ad_abs_proceed
,dic$load_entry_point_delay
,dic$1oad_entry_point_proceed
,dicsstart_task_delay
,dicsstart _task_proceed
,d1c$1oad_module_for_retain
,dic$ 1oad_cmd_proc_delay
,d1c$ 1oad_cnd_proc_proceed

(O U TR I TR 1}

0060(16) { Load absolute module
0061(16) {

0062(16) { Load relocatabie module
0063(16) {

0064(18) { Load relocatable module and
0065(18) { In1tialize as a task
0066(16) { Load module

0067(16) { Load a command_processor
0068(16)

{

{ DWM Intertask Message Command and Response Constants

{

,dvm_response_base
,dvm_11ne_configure_res
,dvm_11ne_reconf igure_res
,dvim_11ne_delete_res
,dvm_11ine_enable_res
,advim_tine_disable_res
,dvm_data_input_res
,dvm_data_output_res
,dvm_terminate_io_res
,dvm_1line_status_res
,dvm_trap_res
,dvm_t imer _expired
,dvm_11ne_suspended
,dvm_11ne_resumed

,dvim_line_terminated
,dvm_1p_dead

,avm_restart_ip
,avm_abort_ip
,dvm_unexpected_interrupt

L T T I T T T SO TR T T

0o

0100(16) { Offset for dvm responses

0101(18) { Lwne configured status

0102(16) { Line configuration response
0103(16) { Delete line response

0104(16) { Line enabled response

0105(16) { Line disabled response

0108(16) { Input response

0107(16) { Output response

0108(16) { Line termination response

0120(16) { Line status response

0121(16) { DVM trap occurred

0122(16) { DVM heart beat timer expired
0123(16) { DVM has suspended service to an IP
0124(16) { DVM has resumed previously suspended
{ service

{ Service to a 1line has been terminated
{ Intelligent peripheral has reported
{ dead

0127(16) { Reguest restart IP service

0128(16) { Request abort IP service

0129(16) { Unexpected interrupt

0125(16)
0126(16)

{

{ HOLC Intertask Message Command and Response Constants

{

,hd1c_command_base
,hdic_1nk_up_cmd
,hd1c_11nk_down_cmd
,hdlc_connect _cmd
,hdlc_1ink_idle_cmd
,hdlc_disconnect _cmd
,hdlc_low_buffer_cmd
,hdic_nrml_buffer_cmd
,hdlc_wake_up_cmd
,hdlc_status_cmd
,hdlc_conf igure_cmd
,hdlc_reconfigure_cmd
,hdic_start_stats_cmd
,hdlc_report_stats_cmd
,hdlc_stop_stats_cmd
,hdic_i_timeout_cmd
,hdlc_p_timeout_cmd
,hdic_e_timeout_cmd
,hdic_1oc_t meout_cmd
,hdlc_a_t imeout_cmd
,hdlc_ra_t imeout _cmd
,hdlc_rty_ex_cmd
,hdlc_ret_ex_cmd

F-2 Base System Software

LU A TR A I)

Wowowononon

0200(16) { HDLC ssr command base

0201(18) { Physical think imitialization

0202(16) { Physical link down

0203(16) { Logical 1ink nitialization

0204(16) { Logical 1ink 1dle

0205(16) { Logical 1ink disconnect

0206(16) { Buffer levels are low

0207(16) { Buffer levels are normal

0208(16) { NOP message to wake up SSR (used by 3A)
0208(16) { Provide sender with status information
0200(18) { Physical and logical 1ink configuration
0200(16) { Same as configure_cmd

020d(16) { Begin statistics collection

020e(18) { Report statistics

020f(16) { Discontinue statistics collection
0220(16) { I frame time out

0221(16) { P/F recovery attempt time out

0222(16) { Error recovery attempt time out
0223(186) { IP response time out

0224(16) { Activity time out

0225(16) { Inactivity time out

0226(16) { Retry count exceeded

0227(16) { Retransmit attempt count exceeded

Revision A

{
{ ESCI Intertask Message Command and Response Constants
{ -

,esc1_command_base 0300(16) { Command base for ESCI

,esci_startup_cmd = 0301(16)
,esc1_shutdown_cmd = 0302(16)
,esci_suspend_cmd = 0303(16)
,esci_resume_cmd = 0304(18)
,esci_statistics_cmd = 0305(16)
,esci_wakeup_cmd = 0306(16)
,esci_switches_cmd = 0307(16)
,esc1_tar_cmd = 0308(16)
,esc1_diag_cmd = 0309(16)
,esci_nop_cmd = 030a(16)
,esc1_dvmid_cmd = 030b(16)
,esc1_dump_cmd = 030c(16)
,esc1_xsub_cmd = 030d(16)
,esc1_nures_res = 0320(16)
,esci_rcv_res = 0321(18)
,esci_xmit_res = 0322(16)
,esci_stistc_res = 0323(16)
,esci_switches_res = 0324(16)
,esci_tdr_res = 0325(16)
,esc1_diag_res = 0326(16)
,esci_nop_res = 0327(16)
,68C1_dump_res = 0328(18)
,esci_xsub_res = 0329(16)

{
{ System Ancestor Intertask Message Workcode Def initions
{

,sa_start_task_for_user
,sa_reply
,Sa_dump_write
,Sa_dump_tmer
,sa.dump_close
,Sa_dump_restore
,sa_dump_only

0400(16) { Start a task on behalf of another task
0401(16) { Call start_system_task reply routine
0402(16) { Write data to dump f1le

0403(16) { Twme out dump processing

0404(16) { Close dump f1le

0405(168) { Start dump processing and restore task
0408(16) { Start dump processing (no restore)

Howowowonowon

{
{ System Audit Intertask Message Workcode Definitions
{

,sys_aud1rt_checksum
,Sys_audit_overf low
,8ys_audit_report_the_mpb_status

0450(16) { Checksun system memory
0451(16) { Check user stack pointer for overflow
0452(16) { Check battery and temperature

"o

{
{ Mainframe Channel Interface Intertask Message Workcode Definitions

0501(16) { Specific MCI card

0502(16) { PP has successful read
0503(16) { PP has successful write
0504(16) { Data 1s available for transfer
0505(16) { An error was found on a write
0506(16) { End processing

0507(16) { Sender requests statistics
0508(16) { Announce statistics response
0508(16) { New link status

050a(16) { Response timer has expired
0500(16) { Message 1s to be logged
050c(16) { Failure detected

050d(18) { Run diagnostics

,mci_startup
,mc1_output_complete
,mci_input_received
,MC1_data_available
,mci_error_encountered
,mci_shutdown
,mci_statistics
,mci_report_statistics
,mc1_link_status_change
,mc1_timer_expiration
.mci_log_message
.mc1_failure_detected
,mc1_run_diagnostics

R L | | S R R A I N T 1

{
{ Initralization ME Intertask Message Workcode Definitions
{

, 1me_pdu 0601(16) { 3A indication parameters
, ime_transient_timer_expired 0602(16) { Transient task timer expired
, ime_in1t 0603(16) { Transient task nitialization

0604(16) { Transient task’s last message
0805(16) { Request for ime_last_itm [xverify?x]
0606(16) { Main task timer expired

,me_last_itm
,me_request_empty_itm_qg
, 1me_inactve_timer_expired

nonononon o

Revision A - Intertask Message Workcode Definitions

{

{ XEROX Transport Intertask Message Workcode Definitions

(==

,xt_transmit
,xt_retransmit
,xt_expedited_retransmit
JXt_wnactiwvity
,xt_cid_tmer
,xt_wncoming_data_to_cep
,xt_wncoming_data_to_sap
,xt_local_disconnect
,xt_set_up_timer

wononouou

0700(16)
0701(16)
0702(16)
0703(16)
0704(16)
0705(16)
0706(16)
0707(16)
0708(16)

{ Transm1t delayed data
{ Retransmit normal data
{ Retransmit expedited data

{ Send a probe or kill the connection
{ Kill previously disconnected con’ctn
{ Process packet for a connection

{ Process packet for a sap

{ K111 connection due to local action

{ Set up connection timer

{

{ CDCNET Statistics Manager Message Workcode Def initions

{

,Csm_1ssue_statistics_req
,Csm_process_t imer_req

0800(16) { Request statistics to be reported
0801(16) { Process statistics twmer call

{
{ Operator Support Application

Intertask Message Workcode Def initions

{

,0sa_from_operator
,osa_from_transport
,osa_from_internet
,0sa_terminate_osa

,0sa_conf igure_osa
,0sa_cmd_response_t ime_expired
,08a_cmd_proc_cmd_indication
,08a_broc_response_t ime_expired
,0sa_alarm_data

,0sa_format _message

850(16)
851(16)
852(16)
853(16)
854(16)
855(16)
856(16)
857(16)
858(16)
858(16)

Command ndication from operator

Indication from transport
Indication from internet
K111 OSA

Command time limit expired

Command notice to OSA command processor
Broadcast command time 1imit expired
Alarm ndication from Dep Alarm ME

{
{
{
{
{ In1tialize 0SA
{
{
{
{

{ Formatting workcode

{= —

{ K Display Supervisor Intertask Message Workcode Definitions

,kd1sp_wkcode = 888(18) { Used to bring up k_drsplay_supervisor

, 1sa_log_request _workcode

, 1sa_log_connect_retry

, 1sa_alarm_connect _retry

, 1sa_log_directory_indicaton

, 1sa_alarm_directory_indication
, 1sa_log_transport_indication

, 1sa_alarm_transport_indication
,1sa_log_formatt ing_workcode

[T T T TR B TR 1)

{
{ SSR Intertask Message
{

,8Sr_in1t_ok_workcode
,SSr_in1t_error_workcode
,88r_1nit_start_port_service_err =
,8Sr_1nit_gueue_cim_command_err
,8sr_shutdown_error_workcode =
,88r_shutdown_ok _workcode
,88r_reset_timer_reg_workcode
,88r_timeout _workcode

F-4 Base System Software

800(18)
801(16)
902(16)
903(16)
904(16)
805(16)
806(16)
807(16)

980(16)
981(16)
982(16)

= 983(16)

884(16)
985(16)
986(18)
987(16)

{ Request for logging

{ Retry due to transport connect failure
Retry due to transport connect failure
Logging directory indication
Alarming directory indication
Logaing transport indication
Alarming transport indication

SSR
SSR
SSR
SSR
SSR
SSR
SSR
{ SSR

e e e T

initialization completed ok

iitialization error
start port service error
queue cim command error
shutdown error

shutdown ok workcode
reset request workcode
timed out workcode

Revision A

(_____
{ Configuration Status Reporter Intertask Message Workcode Definitions |

,CSr_report_time = 1050(16) { Rime to report configuration status

(—_——
{ Clock ME Intertask Message Workcode Def initions
{____

,ck_sync_clock
,ck_sync_complete
,Ck_stop_independent _clock
,ck_disconnect_connection
,ck_start_clock
,ck_clock_started
,ck_clock_stopped

1060(16) { Synchronize clock

1061(18) { Synchronization attempt compiete
1062(18) { Cancel independent clock on this system
1063(18) { Disconnect this connection

1064(18) { Start 1ndependent clock on this system
1065(16) { Independent clock started

1066(18) { Independent clock stopped

Revision A Intertask Message Workcode Definitions F-5

DI Reset Codes | G

Table G-1 lists all DI reset codes, in numerical ordgr. For more information on the DI
reset codes, refer to appendix B of the CDCNET Network Analysis manual.

Table G-1. DI Reset Codes

Major Code Code Component Generating

Category Name Number Reset Code

Hardware power__up_reset 00(16) MPB ROM
manual__reset 02(16) MPB ROM
halt_memory_fault 03(16) MPB ROM
dead_man_time_out 04(16) MPB ROM

Software load__software__too_big 10(16) Initialization Bootstrap
improper_first_module 11(16) Initialization Bootstrap
unsatisfied__external 12(16) Initial Loader
sysconfig__not_loaded 13(16) Initial Loader
post__load__routines_not__found 14(16) Initial Loader
reset_at_end_of _quiesce 15(16) Initialization Bootstrap
unrecognizable__object__text 16(16) Initial Loader
duplicate_entry_point 17(186) Initial Loader
task__error_no_recovery_proc 18(16) System Ancestor
task_.error_exceed_max_recovers 19(16) System Ancestor
task__error__unrecoverable 1A(16) System Ancestor
no__configuration_file__obtained 1B(16) Configuration Procurer
configuration__file__read_error 1C(16) Configuration Procurer
not__enough_memory_ for_buffers 1D(16) Loader
identification_record_expected 1E(16) Loader
unexpected_idr_encountered 1F(16) Loader
premature_eof _on__file 20(16) Loader
absolute__length_too_large 21(16) Loader
invalid_ object_text_ version 22(16) Loader
invalid_module_kind 23(16) Loader
invalid_module_ attribute 24(16) Loader
invalid_section_ordinal 25(16) Loader
duplicate__section 26(16) Loader
invalid__section_kind 27(16) Loader
invalid__allocation_alignment 28(16) Loader
invalid_ offset 29(16) Loader
storage__allocation_ failed 2A(16) Loader
undefined_section 2B(16) Loader
reference_outside__of _section 2C(16) Loader
invalid__address__kind 2D(16) Loader

invalid._number_ of _bytes_spanned 2E(16) Loader
transfer _sym_entry_pt_not_found 2F(16) Loader

parameter_ verification_error 30(16) Loader

loader__table_not_found 31(16) Loader

kill__system_ with_dump 32(16) KILL_SYSTEM
command

kill _system_without_dump 33(16) KILL_SYSTEM
command

(Continued)

Revision A DI Reset Codes G-1

Table G-1. DI Reset Codes (Continued)

Major Code Code Component Generating

Category Name Number Reset Code
stop_executive 34(16) Executive - S/W error
module_checksum_is_invalid 35(16) System Audits
software__dead__stop 36(16) Dead stop - S/W error
smm__double__bit_error 37(16) Executive - H/W error
ac_low_error 38(16) Executive - H/W error
temperature__shutdown__error 39(16) Executive - H/W error
reset_from_debugger 3A(16) Hardwired in Debugger
overflowed_stack 3B(16) Executive/System Audits
system_data_not_found 3C(16) Initial loader
boot_file_media_mismatch 3D(16) Boot startup code
cybil__detected_error 3E(16) CYBIL runtime routines

G-2 Base System Software Revision A

Index

Index

A

Accessing and updating the hardware
device status tables 5-5
Acquisition and release of a hardware
device 5-5
Asynchronous line 5-4
Attribute flag
Immediate control 3-3
Preemptible/not preemptible 3-3

B

Base system software 1-1; 4-1; 10-1
Binary tree solution 6-1
Board 2-1
Map table 2-1
Boot file 2-1,3
Boot image 2-1,3
Bootstrap 2-1
Buddy system 1-1
Buffer B-1
Chdin 2-2; 9-5
Data 3-5
Data count 3-5
Data offset 3-5
Descriptor 3-5
Pointer 3-5
Pool 2-2
Priority 3-5
State 3-6
Threshold 3-6
Usage count 3-5

C

Command packet 9-7
Command processor 4-1
Commands
CANCEL 5-3
CHANGE_ELEMENT _STATE 5-4
DEFINE 5-3
DEFINE_CIM_INTERFACE 5-3
START 5-4
START_TRUNK 5-3
STOP 5-4
STOP_TRUNK 5-3
Communication line 4-1; 8-5
Communications interface module 5-1
Configuration procurer 2-1
Control blocks 9-1
Controlware 9-1
CPU 3-1,2,4
CRC 8-1
CSM 4-1
CYBIL 3-2
Common types C-1
Constants C-1
Cyclic redundancy check 8-1

D

CDCNET Network Analysis Manual 5-1

CDCNET statistics manager 4-1
CDCNET Troubleshooting Guide 2-2
CDNA 9-1
Link layer 9-1
Physical layer 9-1
Channel interface 8-8
Checkpoint 3-1
Checksum 7-1
CIM 5-1,3; 8-5; 9-6,7
Bus error handler 8-5
Failure table 8-5
Modem signal monitor 8-5
Monitor 8-5
Spurious interrupt handler 8-5
68000 address error handler 8-5
68000 exception handler 8-5

Revision A

Device control block 9-3
Device identifier 9-5,6
Device interrupt management 1-1
DI 1-1; 2-1,2; 5-1
Reset 8-9
Reset codes G-1
DI debugger interface 10-1
Distributed processing 1-1
Dump 2-1,2
DVCB 9-3,4
DVM 8-6; 9-1
Command packets 9-7;, B-3
Data transfer services 9-2
Device control services 9-1
Diagnostic services 9-2
Failure management task 8-6
Interrupt processor 8-6
Interrupt routines 8-5
Major data structures 9-4
Order of events 9-3
Status ITMs 9-7; B-3
Status request services 9-1
Task 8-5
DVMID 9-5,6

Base System Software Index-1

Entry definition record ’

E

Entry definition record 2-2
Entry point 3-4; 7-1
Entry point table
Tree-structured 2-2
ESCI 5-3; 8-6; 9-7
Bus error handler 8-6
Firmware 8-6
Spurious interrupt handler 8-6
68000 address error handler 8-6
68000 exception handler 8-6
68000 level six interrupt handler 8-6
ESCI SSR 8-6
Ethernet 8-6
Controller 8-6
EXEC_MPB 2-3
Executive 2-1,2,3; 3-1,2,4,5,8,10,11
Executive error table 8-4,9; B-7

F

Failure
Detection 8-2
Logging 8-9,10
Logging thresholds 8-10
Recovery 8-1,2
Reporting 8-2

Failure management 1-1; 8-1
General model 8-3

Failure management software 8-1,2

Failure management subsystems
CIM 8-3,5
ESCI 8-3,6
Failure management task 8-3
Failure table 8-3
Fault handlers 8-3
MCI 8-3,8
MPB 8-3,4

Failures
Unclassified 8-1

Field replaceable unit 8-1

FIFO 3-2

Firewall 3-1

First in, first out 3-2

FRU 8-1

Functions
ABS, MAX, MIN 10-2,8
CONVERT_INTEGER_TO_
POINTER 10-2,28
CONVERT_POINTER_TO_
INTEGER 10-2,28
FIELD_SIZE 10-2,41
FIND 6-1; 10-5,42
FIRST_BYTE_ADDRESS 3-8; 10-3,46
GET_CIM_NUMBER 9-1; 10-2,54
GET_FIRST_BYTE 3-8; 10-3,57
GET_LAST_BYTE 3-8; 10-3,58

Index-2 Base System Software

LST

GET_MESSAGE_LENGTH 3-8;
10-3,61

I_COMPARE 10-2,71
I_COMPARE_COLLATED 10-2,72
NAME_MATCH 10-2,92
UNUSED_STACK_ 3-2; 10-2,149

G

Gateway 1-1
General concepts relating to the
Executive 3-1

H

Handshake 5-4
Hardware
Environmental warnings 8-4
Hard failures 8-1,9
Soft failures 8-1,9
Status register 8-2,9; 9-5
Timer 2-2
Hardware device interfaces 10-2
HDLC 5-4; 8-1
Help request 2-1
High-level data link control 8-1
Host system 2-1

/0 9-1

Identification record 2-2

Initial loader 2-1,2,3; 5-1

Initialization 1-1; 2-1; 8-9

Initialization bootstrap 2-1

Intelligent peripheral 3-1; 9-1,2

Internal system bus 8-6

Interrupt handlers 8-2

Interrupt service routine 3-1,2,4

Intertask message 3-1
Workcode definitions F-1

IP 3-1; 9-1,3,7

ISB 8-6

IT™M 3-1,2,10; 9-3

L

Layer software 1-1 .
LIM 8-1,5; 9-6

Ports 8-5
LIM status table 5-1
Line interface module 5-1
Log support application 4-1
LST 5-1

Revision A

Main bootstrap controller

M

Main bootstrap controller 2-1
Mainframe channel interface 3-1
Major card status table 5-1
Management entity 1-1; 6-1
MCI 3-1; 5-3; 8-3,8
Driver error interrupt handler 8-8
SSR 8-8
MCST 5-1
MDI 2-1
Memory
State 3-6
System 3-5
Memory extent 3-6
Memory interfaces 10-2
Memory management 3-1,5
Memory pool 2-2
Message management 3-1,8; 10-2
Modem 8-1
Module
deloader 7-1
loader 7-1
use count 7-1
MPB 2-3; 5-3,4; 8-4; 9-4,7
Bus error handler 8-4
Indicator lights 2-2
Level seven interrupt handler 8-4
Spurious interrupt handler 8-4
MPB RAM B-9

N

Network solution 4-1

0)

Offline switch 5-2
On-board diagnostics 5-1,2
Online diagnostics 5-3,4; 9-2
Online loader 7-1

Interlock feature 7-1
Online loader interface 10-3
Operator alarms 3-6

P

PBST 5-1

PDU 3-6

PMM 2-3; 5-3,4; 84

PMM bank status table 5-1
Port 9-1,6

Port status table 5-1

Revision A

Procedures

Procedure

Conventions 10-1
Logical groups 10-2

Procedure types D-1
Procedures

ABORT_SYSTEM 10-2,6
ABORT_TASK 3-4; 10-5,7
APPEND 3-8; 10-3,9

ASSEMBLE 3-8; 10-3,10
BROADCAST 3-8; 10-3,11
BUILD_HEADER_IN_PLACE 3-8;
10-3,12
BUILD_STATISTICS_MSG_
HEADER 4-2; 10-4,13
CALL_AFTER_INTERVAL 3-11;
10-5,14

CALL_AT_TIME 3-11; 10-5,15
CALL_PERIODIC 3-11; 10-5,16
CANCEL_TIMER 3-11; 10-5.17
CHANGE_DVM_INTERRUPT 9-2;
10-2,18
CHANGE_DVM_TASK_ID 9-1;
10-2,19
CHANGE_TIMER_OWNER 3-11;
10-5,20
CHECKSUM_NEXT_MODULE 7-2:
10-4,21
CHKSUM_IP_COMMAND_
PACKET 9-2; 10-2,22
CLEAR_ALLOCATE 3-7; 10-3,23
CLEAR_MEMORY 3-7; 10-3,24
CLEAR_WRITE_PROTECT 3-7:
10-3,25
CLOSE_STATISTICS_SAP 4-2;
10-4,26

CLOSE_STATUS_SAP 5-5; 10-4,27
COPY 3-8; 10-3,30

DEAD_STOP 10-2,31
DECREMENT_MODULE_USE_
COUNT 7-2; 10-4,32
DELAY_PROCESSING 3-4,11;
10-5,33

DEVICE_STARTED 9-1; 10-2,34
DI_DEBUG 10-2,35
DI_DEBUG_INIT 10-2,36
DUMP_CLOSE 2-2; 10-4,37
DUMP_IP_MEMORY 9-1; 10-2,38
DUMP_WRITE 2-2; 10-4,39
FG_AFTER_INTERVAL 10-14
FG_AT_TIME 10-15
FG_CANCEL_TIMER 10-17
FG_LONG_BUFFERS 10-59
FG_MEMORY 10-60
FG_MPB_EXTENT 10-62
FG_PERIODIC 10-16
FG_PMM_EXTENT 10-65
FG_RELEASE _MESSAGE 10-110
FG_SHORT_BUFFERS 10-66
FG_TO_EXPRESS 10-119
FG_TO_NORMAL 10-120
FG_TRIM 3-8; 10-3,40

Base System Software Index-3

FG_WAKE_UP 10-153
FIND_FIRST 6-1; 10-5,43
FIND_FREE_NODE 6-1; 10-5,44
FIND_NEXT 6-1; 10-5,45
FIRST_NODE 6-1; 10-5,47
FORCE_STSTISTICS_
REPORTING 4-2; 10-4,48
FRAGMENT 3-8; 10-3,49
GEN_DATA_FIELD 3-8; 10-3,50
GEN_TEMPLATE_ID 3-8; 10-3,51
GET_CARD_TYPE_AND_
ADDRESS 5-5; 10-3,52
GET_CIM_BOOT_SOURCE 9-1,
10-2,53

GET_DATA_FIELD 3-8; 10-3,55
GET_EXPRESS 3-10; 10-5,56
GET_LONG_BUFFERS 3-8; 10-3,59
GET_MEMORY 3-7; 10-3,60
GET_MPB_EXTENT 3-7; 10-3,62
GET_MSG 3-10; 10-5,63
GET_NEXT_STATUS_SAP 5-5;
10-4,64

GET_PMM_EXTENT 3-7; 10-3,65
GET_SHORT_BUFFERS 3-8; 10-3,66
GET_SIZE_N_ADDR 3-8; 10-3,67
GET_STATUS_RECORD 5-5; 10-4,68
GET_STATUS_SAP 5-5; 10-4,69
GROW 6-1; 10-5,70

I_SCAN 10-2,73

I_TRANSLATE 10-2,74
INCREMENT._MODULE_USE_
COUNT 7-2; 10-4,75
INIT_ROOT 6-1; 10-5,76
INITIALIZE _STATISTICS
RECORD 4-2; 10-4,77
LOAD_ABS_MODULE_AND_
DELAY 7-2; 10-4,78
LOAD_ABS_MODULE_AND_
PROCEED 7-2; 10-4,79
LOAD_CMD_PROCESSOR_AND_
DELAY 7-2; 10-4,80
LOAD_CMD_PROCESSOR_AND_
PROCEED 7-2; 10-4,81
LOAD_ENTRY_POIINT_AND_
PROCEED 7-2; 10-4,83
LOAD_ENTRY_POINT_AND_
DELAY 7-2; 10-4,82
M_RELEASE 3-8; 10-3,84
MAYBE_EXPRESS 10-56
MAYBE_LONG_BUFFERS 10-59
MAYBE_MEMORY 10-60
MAYBE_MPB_EXTENT 10-62
MAYBE_MSG 10-63
MAYBE_PMM_EXTENT 10-65
MAYBE_SHORT_BUFFERS 10-66
MAYBE_TASK 10-5,85
MDU_TO_ASCII 10-2,86
MESSAGE_DEQUEUE 3-10; 10-3,87
MESSAGE_ENQUEUE 3-10; 10-3,88
MODIFY_WRITE_PROTECT_
BYTE 3-7; 10-3,89

Index-4 Base System Software

PN

MODIFY_WRITE_PROTECT_LONG_.
WORD 3-7; 10-3,90
MODIFY_WRITE_PROTECT_ {
SHORT_WORD 3-7; 10-3,91
NEW_INTERRUPT 3-4; 10-5,93
NEW_PRIORITY 3-4; 10-5,94
NOPREMPT 3-4; 10-5,95
OKPREMPT 3-4; 10-5,96
OPEN_STATISTICS_SAP 4-2;
10-4,97

OPEN_STATUS_SAP 5-5; 10-4,98
PCOPY 3-8; 10-3,99

PICK 6-1; 10-5,100
PMP_GET_DATE 3-11; 10-5,101
PMP_GET_TIME 3-11; 10-5,102
PREFIX 3-8, 10-3,103
PUT_STATUS_RECORD 5-5;
10-4,104

QUEUE_IP_COMMAND 9-2;
10-2,105

READ_BCD_CLOCK 3-11; 10-5,106
READ_CLOCK 3-11; 10-5,107
READ_SRO_FROM_IP 9-2; 10-2,108
RELEASE_HARDWARE _

DEVICE 5-5; 10-3,109
RELEASE_MESSAGE 3-8; 10-3,110
REQUEST_DIAGNOSTIC_

ENTRY 5-5; 10-3,111
REQUEST_HARDWARE_

DEVICE 5-5; 10-3,112

RESET_DI 2-2; 10-4,113
RESET_RECOVERY _
PROCEDURE 2-2; 10-4,114
RESTART_PORT_SERVICE 9-1;
10-2,115
RESTORE_DVM_INTERRUPT 9-2;
10-2,116

RESTORE_TASK _3-4; 10-5,117
SEND_CRO_TO_IP 9-2; 10-2,118
SEND_EXPRESS 3-10; 10-5,119
SEND_NORMAL 3-10; 10-5,120
SET_BCD_CLOCK 3-11; 10-5,121
SET_BUFFER_CHAIN_OWNER 3-7;
10-3,122

SET_MEMORY_OWNER 3-7;
10-3,123
SET_RECOVERY_PROCEDURE 2-2;
10-4,124

SET_WRITE_PROTECT 3-7;
10-3,125

SFIND 6-1; 10-5,126

SFIND_FIRST 6-1; 10-5,127
SFIND_NEXT 6-1; 10-5,128
SFIND_WILD_CARDS 6-1; 10-5,129
SGROW 6-1; 10-5,130
SIGNAL(n)/ACQUIRE(m) 3-4; 10-5,131
SPICK 6-1; 10-5,132
START_DEVICE_SERVICE 9-1;
10-2,133
START_NAMED_TASK_AND_
DELAY 7-2; 10-4,134

Revision A

Procedures and functions

START_NAMED_TASK_AND_
PROCEED 7-2; 10-4,135
START_PORT_SERVICE 9-1;
10-2,136
START_SYSTEM_TASK 3-4;
10-4,137

START_TASK 2-2; 3-4; 10-5,138
STOP_DEVICE_SERVICE 9-1;
10-2,139

STOP_PORT_SERVICE 9-1; 10-2,140

STOP_TASK 3-4; 10-5,141
STRIP 3-8; 10-3,142
STRIP_IN_PLACE 3-9; 10-3,143
SUBFIELD 3-9; 10-3,144
SUSPEND 3-4; 10-5,145
TIME 3-11; 10-5,146
TRANSLATE_MESSAGE 3-9;
10-3,147
TRIM 3-9; 10-3,148
VALIDATE_SECTION_
ADDRESS 7-2; 10-4,150
VISIT_ALL_NODES 6-1; 10-5,151
WAIT 3-4; 10-5,152
WAKE_UP 3-4; 10-5,153
YIELD 3-4; 10-5,154

Procedures and functions 10-1

Program counter 7-1

Program naming convention 2-2,3

Protocol data unit 3-6

PST 5-1

Q

Task_ptr

S

QCB 3-2,10
Express message 3-10
Normal message 3-10
Queue
Command 9-5,7
Control block 3-2; B-10
Express message 3-1; 9-6
Management 3-1,10; 10-3
Normal message 3-1; 9-6
Status 9-5,7
Quicklook diagnostics 2-1

R

SAP 4-1; 5.5
Management 4-1
SBST 5-1
SDS 4-1
Semaphore 3-4
Service access point 4-1
Single bit error 8-1
SMM 2-1,3; 5-3,4; 8-4; 9-3,4
SMM bank status table 5-1
Software error code 2-2
SSR 9-1,6
Stack 3-1
System 3-1
User 3-2
State
Hardware device 5-2
Suspend 3-4
Transitions 5-2,4
Wait 3-4
Statistics 1-1
Collection 4-1
Group type 4-1
Reporting 4-1
Statistics data structure 4-1
Statistics management 4-1; 10-3
Status
Hardware device 5-2,4
Status management 5-1; 10-3
Status packet 9-7
Supervisor
Call 3-1
State 3-1
System ancestor 2-1,2; 3-4; 5-1; 8-4
System ancestor interface 10-3
System audit 8-4
System configuration table 2-2; B-11
System status table 5-5

T

Random access table 6-1
Read parity error 8-1
Realtime response 3-1
Recovery block 2-2
Recovery procedure 2-2
Recovery stack 2-2
Register 3-1,2

Save area 3-2
ROM code 2-1
RS449 5-1

Revision A

Table management
Device status 1-1
Integer-keyed 1-1
String-keyed 1-1
Task 3-1,2,3
Child 3-2
Control block 3-2,10; B-13
Parent 3-2
Preemption 3-1,4
Priority 3-1,4
Program counter 3-2
Recovery 3-3
State 3-4
Status register 3-1
Task management 3-1,4; 10-4
Task_ptr 3-2

Base System Software Index-5

Taskid

Taskid 3-2; 9-6
TCB 3-2,3
TDI 2-1
Timer management 3-1,11
Timer services 10-4
TIP 1-1; 9-1,6
Transfer address 2-1
Translation to modules 7-1
Tree
key 6-1
node 6-1
root 6-1
Tree (table) management 6-1; 10-4

Index-6 Base System Software

X.25

U
User state 3-1
VvV
Vector table 2-2; E-1
X
X.25 5-4

Revision A

Comments (continued from other side)

Please fold on dotted line;

seal edges with tape only. ‘ L .. FoL
FOLD_ . | B B | FOL
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
N
BUSINESS REPLY MAIL I
First-Class Mail Permit No. 8241 Minneapolis, MN R
]
POSTAGE WILL BE PAID BY ADDRESSEE
]
I
.
Technology & Publications Division I —
ARH219 I
4201 N. Lexington Avenue R —

Arden Hills, MN 55126-6198

Base System Software 60462410 A

We value your comments on this manual. While writing it, we made some assumptions about who would use
it and how it would be used. Your comments will help us improve this manual. Please take a few minutes
to reply.

Who are you? How do you use this manual?
O Manager 00 As an overview

O Systems analyst or programmer O To learn the product or system
O Applications programmer 0 For comprehensive reference

{71 Operator O For quick look-up

0 Other

What programming languages do you use?

How do you like this manual? Check those questions that apply.

Yes Somewhat No

O [m] 0O Is the manual easy to read (print size, page layout, and so on)?
Is it easy to understand?

Does it tell you what you need to know about the topic?

Is the order of topics logical?

Are there enough examples?
Are the examples helpful? (00 Too simple? 0O Too complex?)
Is the technical information accurate?

OoooQooao
Ooooo0oooao
o0oOo0oOoogaao

Can you easily find what you want?
m] m] O Do the illustrations help you?

Comments? If applicable, note page and paragraph. Use other side if needed.

Would you like a reply? [Yes [J No

From:
Name Company
Address Date

Phone

Please send program listing and output if applicable to your comment.

(G2 CONTROL DATA

