60474500

@ CONTROL DATA
CORPORATION

NETWORK PRODUCTS
COMMUNICATIONS CONTROL PROGRAM

VERSION 3
SYSTEM PROGRAMMERS
REFERENCE MANUAL

cpc® COMPUTER SYSTEMS
255X SERIES
NETWORK PROCESSOR UNIT
HOST OPERATING SYSTEM

NOS 1

REVISION RECORD
REVISION* DESCRIPTION

A Initial Release. CCP Version 5, PSR Level 504

Publication No.

Address comments concerning this
60474500

manual to:

CONTROL DATA CORPORATION

*Revision letters I, O, Q and X are not used. Publications and Graphics Division
P.O. Box 4380-P

Anaheim, CA 92803
© 1979

by Control Data Corporation or use Comment Sheet in the back of

)) . this manual,
Printed in the United States of America

ii

LIST OF EFFECTIVE PAGES

“

New features, as well as changes, deletions, and additions to information in
this manual, are indicated by bars in the margins or by a dot near the page
number if the entire page is affected. A bar by the page number indicates
pagination rather than content has changed.

Page Rev Page Rev Page Rev

Cover
Evaluation Sheet
Title Page

ii thru xiii
thru 1-18
thru 2-13
thru 3-8
thru 4-30
thru 5-26
thru 6-54
thru 7-26
thru 8-15
thru 9-24
-1 thru 10-17
-1 thru 11-23
-1 thru 12-16
thru A-13
thru B-6
thru C-34
thru D-8

|
[Nl S Py e

B O 00U WN
N O |

HEO"‘:H:;-}UOU?
T) S ey

thru F-2
thru G-37
thru H-92
thru I-13
Index~1 thru
Index-19
Comment Sheet
Mailer
Back Cover

P> PRI DDDD DD YD |

60474500 A iii/iv

PREFACE

—

This manual describes those externals of the Communications Control Program
(CCP), Version 3.1, necessary to aid a systems programmer in making minor
modifications to standard CCP software. The manual also provides a
sufficient basis to understand those standard programs which interface to
any new terminal interface program (TIP) that the user writes for a
nonstandard terminal. CCP is used with the CDC® 255x Series Network
Processor Unit (NPU).

This manual is intended for the user who is familiar with CCP basic
functions and the role of CCP in network processing; these functions are
described in the CCP 3 Reference Manual. The user should be experience with
the PASCAL programming language and the CYBER CROSS support system

software. The user should also be familiar with the state programming
language.

CONVENTIONS USED

Throughout this manual, the following conventions are used in the
presentation of statement formats, operator type-ins, and diagnostic
messages:

ALN Uppercase letters indicate words, acronymns, or mnemonics either
required by the network software as input to it or produced as
output,

aln Lowercase letters identify variables for which values are
supplied by the NAM or terminal user, or by the network software
as output.

ooo Ellipsis indicates that the omitted entities repeat the form and
function of the entity last given.

Square brackets enclose entities that are optional; if omission
of any entity causes the use of a default entity, the default is
underline.

Braces enclose entities from which one must be chosen.
These delimiters indicate elements of the virtual terminal
format.

Unless otherwise specified, all references to numbers are to decimal

values; all references to bytes are to 8-bit bytes; and all
references to characters are to 8-bit ASCII-coded characters.

60474500 A v

RELATED MANUALS

The publications listed below contain additional information on both the
hardware and software elements of the 255x Series Network Processor Unit and

the CCP and related software.

These publications can be ordered from

Control Data Literature and Distribution Services, 304 North Dale Street,

St.

vi

Paul, MN 55103.

Publication Title

Network Products
Communciations Control Program
Version 3

Reference Manual

CYBER CROSS System Version 1
PASCAL Reference Manual

CYBER CROSS System Version 1
Macro Assembler Reference Manual

CYBER CROSS System Version 1
Micro Assembler Reference Manaul

CYBER CROSS System Version 1
Link Editor and Library Maintenance Programs
Reference Manual

Network Products
UPDATE Reference Manual

State Programming
Reference Manual

Macro Assembler Reference Manual
Mass Storage Operating System
NOS Version 1

Installation Handbook

Publication Number

60471400

96836100

96836500

96836400

60471200

60342500

60472200

60435700

This product is intended for use only as described in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or

parameters.

60474500 A

CONTENTS

—

1. OVERVIEW

CCP Design
Priority Processing at
the Interfaces
OPS-Level Processing
Downline Message Processing
Upline Message Processing
CCP Features
CCP Modular Structure
CCP Programming Methods
Block Protocol
Block Routing
Point of Interface
Programs
Direct and Worklist Calls
Direct Calls on Firmware
Level
Special Call to Multiplex
Subsystem
Special Call to Firmware
Interface
Communications Using PASCAL
Globals (Tables)
Line Interface Handling
CCP Programming Languages

2. INITIALIZING AND
CONFIGURING THE NPU

Initializing the NPU
Phase 1 Initialization
Phase 2 Initialization
Pinit
Load and Dump NPU
Configuring the NPU
Changing/Deleting Logical
Connections
Link Configuration
Configure Logical Link SM
Logical Link Status SM
Enable Trunk SM
Line Configuration
Configure Line SM
Configured Line Deletion
Terminal Configuration
Configure Terminal SM
TCB Reconfiguration
TCB Deletion

60474500 A

I [}
NOOWOUTULIUL& W

|

il lre

0
[

Mzon)w:wro
BB NN

NN

1
(el i L
N OIS0 u;

NN
I

3. FAILURE, RECOVERY,
AND DIAGNOSTICS

Host Failure

Host Recovery

NPU Failure

NPU Recovervy

Halt Codes and Dump
Interpretation

Logical Link Suspension

Logical Link Recovery

Trunk Failure

Trunk Recovery

Line Failure

Line Recovery

Terminal Failure

Terminal Recovery

Inline Diagnostic Aids
Alarm Messages
CE Error Messages
Statistics Messages

4. BASE SYSTEM SOFTWARE

System Monitor
Buffer Handling
Obtaining a Single Buffer
Releasing a Buffer
Releasing a Single Buffer
Releasing Several Buffers
Testing Buffer Availability
Buffer Copying
Other Buffer Handling
Routines
Timing Services
Direct Calls
Worklist Services
Making a Worklist Entry
Extracting a Worklist Entry
Basic Interrupt Processing
Macrointerrupts
Interrupt Priority
User Interface
Microinterrupts
PASCAL Globals
Standard Subroutines
Calling Macroassembly
Language Programs from
PASCAL Programs

|
—

U

| I T R B I |
NN BWWWWW NN

WWWwWwWwWwWwwuwwwww wWwww w
1

>
|
=

[
! |

T

1
N O WO NN AN

vii

Defeating Type-Checking
in PASCAL Procedure
Calls

Handling Routines

PBFMAD

PBFMAH

PBMAX

PBMEMBER

PBMIN

PBTOAD

PBTOAH

Maintaining Paging Register

PBSTPMODE
PBPSWITCH
PBRDPGE
PBPUTPAGE
PBGETPAGE
PB18ADD
PB18BITS
PB18COMP
Block Functions
PBCLR
PBCOMP
Set/Clear Protect Bits
PBSETPROT
PBCLRPOT
Miscellaneous Subroutines
PBFILEl
PBHALT
PBILL
PBLOAD
Program Execution Timers
Console Support
General Peripheral
Processing
Console Support Services
Console Worklist Entry
Console Control Messages

5. MULTIPLEX SUBSYSTEM

Hardware Components
Multiplex Loop Interface
Adapter
Loop Multiplexers

Communications Line Adapters

System and User Interfaces
System Interfaces
Multiplex Level 1
(Firmware)

Multiplex Level 2 (PMWOLP)

OPS Level
User Interfaces
Command Driver Interface
Common Multiplex
Subroutines for TIPs

viii

4-19
4-19
4-20
4-20
4-20
4-20
4-21
4-21
4-22
4-22

wn
[}
— [N

1
Wwwww

6. NETWORK COMMUNICATIONS

SOFTWARE 6~-1
Major Functions 6-1
Block Protocol 6-1

Block Format 6-2
Address 6-2
Service Channel 6-6
Block Types 6-6
BLK Block 6-6
MSG Block 6-6
Back Block 6-6
CMD Block 6-7
BRK Block 6-7
STP Block 6-7
Start Block 6-7
RST Block 6-8
Init Block 6-8
Bad Blocks Detected by NPU 6-8
ACTL Block 6-8
Data Block Clarifier 6-9
Routing 6-11
Directories 6-12
Destination Node
Directory 6-12
Source Node Directory 6-12
Connection Number
Directory 6-12
Routing Process 6-12
Altering Directories 6-15
Service Messages 6-15
Task Selection in the
Service Module 6-16
Initial Service Message
Processing 6-17
Validating and Timing Out
Service Messages 6~-17
Generating and Dispatching 6-17
Configuring, Enabling,
Disabling, Deleting
Control Blocks 6-19
Generating and Sending
Status Service Messages 6-19
Logical Link Status
Request Service
Message 6-19
Trunk Status Request
Service Message 6-19
Line Status Request
Service Message 6-20
Line Count Request
Service Message 6-21
Terminal Status Request
Service Message 6-21
Generating and Sending
Statistics Service
Messages 6-21
60474500 A

Generatina and Sending
Broadcast SMs
Processing Overlay Programs
and Overlav Data
Processina Force Load
Command
CE Error and Alarm Messages
Common TIP Subroutines
Point-of-Interface
Routines
PBPIPOI and PBIIPOI
PBIOPOI - Internal
Output POI
PBPROPOI - Preoutput POI
PBPOPOI - Postoutput POI
Standard TIP Subroutines
Output Queueing -~ PBQ1BLK
and PBOBLKS
Upline Break - PTBREAK
Downline Break
Stop Transmission to a
Terminal - PTSTOP
Interface to Text
Processing Firmware -
PTTPINF
Finding Number of
Characters to be
Processed - PTCTCHR
Saving and Restoring
LCBs - PTSVxXLCB and
PTRTxLCB
Common Return Control
Routine -~ PTRETOPS
Common TIP Regulation -
PTREGIL
Saving and Restoring
Registers
PBBEXIT - Save Rl and R2
PBAEXIT - Restore Rl
and R2
Virtual Terminal Transform
Batch Virtual Terminal
Batch Virtual Terminal
Characteristics
BVT Block Protocol Usage
Interactive Virtual
Terminal
Interactive Virtual Ter-
minal Characteristics
IVT Block Handling at
Host Interface
IVT Block Protocol Usage
IVT Block Handling
for Communications
Supervisor
Commands for Changing
Terminal Parameters

60474500 A

6-23
6-23

6-23
6-24
6-24
6-24

6-24
6-28
6-28

6-28

6-28

7. HOST INTERFACE PROGRAM

Transaction Protocol
Transfer Functions
Directives Used
Transfer Initiation
Transfer Timing
Error Processing

Host/NPU Work Formats

Coupler Interface Hardware
Programming

Coupler Reagister Use

Programming the Coupler By
Use of Function Codes
Host Function Commands
NPU Function Commands

HIP Functions
Single Word Transfers

(Control)
Multiple Character Data
Transfer (Block Transfer)

Contention for Coupler Use

Reqgulation of Coupler Use
Host Failure and Recovery

Error Checking and Timeouts

Host/NPU Interface Sequences

Buffer Format

HIP States

8. LINK INTERFACE PACKAGE
MODULE

Trunk Protocol

Checks and Retransmissions
Cyclic Redundancy Check

Transmit Functions
Unnumbered Frame
Supervisory Frame
Information Frame

Receive Functions

Trunk Enabling and Disabling

Trunk Failure/Recovery

9. ASYNCHRONOUS (ASYNC) TIP

Hardware Considerations
Major Functions
Host Interface
Command Blocks
Terminal Confiquration
User Interface
User Control Messages
Terminal Class Command
Page Width Command
Page Length Command

~
i
=

NN NN
I
N NN

8-1

8-1
8-11
8-11
8-11

8-12
8-12

\D\D\OKD\.OK.?\O\D\O\O X}
AN UNUTE B WWN [

ix

Check Parity Command

Cancel Character Command

Backspace Character
Command

Abort Output Line Command

User Break 1 Character
Command

User Break 2 Character
Command

Control Character Command

CR Idle Count Command
I,F Idle Count Command
Special Edit

Transparent Text Delimiter

Command

Select Input Device
Command

Select Output Device
Command

Character Set Detect
Echoplex Mode Command
Operator Message Command
Page Wait Command
Access Control Keys
Terminal On/Off and
Break Control
User Input Message Format
User Output Message Format
Data Transforms
Parity Options
Character Mode Input
Processing
Logical Lines
Physical Lines
Block Mode Support
Type Ahead Mode
Keyboard Input
Paper Tape Character
Mode Input
Transparent Mode Input
Processing for Kevboard
and Paper Tape
Character Mode Output
Processing
Logical Line Aborting
Printer Output
CRT Output
Paper Tape Output
Transparent Mode Output
Processing for Printer,
CRT, and Paper Tape
Logical Line Aborting
Error Handling
Regulation
Autorecognition

O 0
1
~N o

O O
|
~N

o]
[
~

O WO WO YWY
I
0 O 0 0 ~J

[Xe]
1 |
e

O
!
\

9-10
9-10
9-10
9-10
9-10
9-11

9-11
9-11
9-12
9-15
9-15

9-15
9-15
9-16
9-17
9-17
9-17

9-19

9-20

9-20
9-21
9-21
9-21
9-21

9-22
9-22
9-22
9-22
9-23

10. MODE 4 TIP 10-1
Hardware Considerations 10-1
Major Functions 10-1
Data Format for Mode 4 10-2
Host Interface 10-2
Terminal Configuration 10-5
IVT Interface 10-5
Card Reader Interface 10-6
Printer Interface 10-6
Data Transforms 10-6
Downline IVT Transforms 10-7
Upline IVT Transforms 10-9
Autopoint Mode 10-9
Transparent Mode 10-9
User Break 1/Break 2 10-10
Page Wait 10-10
Page Size 10-10
Code Conversion 10-10
Cursor Control 10-10
Message Type Indicators 10-11
E Codes 10-11
Upline and Downline BVT
Transforms 10-11
Error Handling 10-14
Short-Term Error
Processing 10-14
Long-Term Error Processing 10-15
Duplicate Write Errors 10-~15
Load Requlation 10-16
Autorecognition 10-16
Unsupported Mode 4 Protocol
Features 10-17
11. HASP TIP 11-1
Hardware Considerations 11-1
Major Functions 11-2
HASP Protocol 11-3
Terminal Operational
Procedure 11-5
Multileaving Block
Descriptions 11-6
Control Blocks 11-6
Acknowledge Block 11-7
Negative Acknowledge
Block 11-7
Enquiry Block 11-7
Idle Block 11-7
Control Bytes for Data
Blocks 11-7
Block Control Byte 11-8
Function Control Sequence 11-8
Record Control Byte 11-10
60474500 A

String Control Byte

Data Block Description

Operator Console Blocks
End-of~File Blocks
FCS Change Blocks

User Interface

Workstation Startup and
Termination

Work Initialization

Communications Line
Initialization

Sign-on Block

Sign-off Block

Host Interface
Code Conversion

HASP/BVT Format Conversion
Compressed Data (Upline)
Compressed Data

(Downline)
EOI/EOR Codes
Uncompressed Data
Forms Control Codes
Punch Banner Cards
HASP/IVT Format Conversion

Error Handling

CRC-16 Error

Illegal Block Make-up
Error

Unknown Response Error

Timeout Error

Block Control Byte Error

Regulation and Flow Control

Qw>

0O

Upline Regulation

Glossary

CCP Mnemonics

Service and Command
Message Summary

Block Protocol Summary

Sample Main Memory Map
for NPU

60474500 A

11-11 Downline Data Flow Control 11-22
11-12 HASP Postprint 11-22
11-12
11-13
11-13 12. STATE PROGRAMS 12-1
11-13
Execution of State Programs 12-1
11-14 Classes 12-2
11-14 Components of a State
Program 12-4
11-14 Functions 12-4
11-15 Input State Programs 12-4
11-15 Firmware Interface to
11-15 Input Data Processor 12-5
11-16 Modem State Program
11-17 Interface to Input
11-17 Data Processor 12-5
Text Processing State
11-17 Program Interface to
11-17 Input Data Processor 12-6
11-18 Text Processing State
11-18 Programs 12-6
11-18 Firmware Interface to
11-18 Output Data Processor . 12-7
11-19 Modem State Programs 12-8
11-20 Firmware Interface to
Modem State Programs 12-9
11-20 Multiplex Level Status
11-20 Handler Interface to
11-20 Modem State Programs 12-9
11-21 Input State Program
11-22 Interface to Modem
11-22 State Programs 12-10
Macroinstructions 12-10
APPENDIXES
A-1 F CCP Naming Conventions F-1
B-1 G Standard TIP and SVM
Trees G-1
c-1 H Principal Data Structures H-1
D-1 I On-line Debugging Aids I-1
E-1
INDEX
xi

Role of NPU in a Network

Priority and Nonpriority
Tasks in CCP

Downline Message
Processing

Upline Message
Processing

NPU Configuration
Seqgquence

Configuring Logical
Links Flowchart

Line/Terminal
Configuration Flowchart

Format of Alarm, CFE
Error, and Statistics
Messages

OPS Monitor Table Format

Ruffers Formats and
Stampina

Worklist Organization

Basic Elements of the
Multiplex Subsystem

TIP and LIP/Multiplex
Worklist Communications

Command Packet General
Format

Control Command Format

Enable Line Command
Format

Input Command Format

Input After Output
Command Format

Terminate Input Command
Format

Terminate Output
Command Format

PTLINIT Relationships
with Major CCP Modules

Sample Block Data Paths
between NPU and Host

Block Header Format

Block Header Format for
Delivery Assurance

Data Block Clarifier
for CCP

Routinag Directories
Format

Simplified Routing
Flowchart for PBSWITCH

xii

5-5

5-9
5-11

FIGURES

Service Message

General Format 6-18
Flowcharts for

Important Common

TIP Subroutines 6-25
Structure of a TCB

Queue 6-27
Use of the BVT Block

Syntax Table 6-38
Sample CYBER Job Stream

Card Inputs for BVT

Data Handling 6-40
Format for Terminal

Class, Page Width,

Page Length Messages 6-50
Coupler I/0 Transactions 7-3

I/0 Transaction

Contention at the

Coupler 7-5
OPS and Interrupt Levels

for the HIP 7-6
Coupler Register 7-9
Host Interface Protocol

Sequence, Host Side 7-20
Host Interface Protocol

Sequence, NPU Side 7-22
Simplified Trunk

Operation 8-2
Frame and Subblock Format 8-4
Sample Frame Formation 8-6
Sample Upline Message

Transmission Over a

Network Link 8-8
Sample Downline Message

Transmission Over a

Network Link 8-9
Frame Construction

Flowchart 8-10
LIDLE or LINIT Frame

Format 8-15
Mode 4 Protocol Message

Formats 10-3
Typical HASP

Multileaving Data

Transmission Block 11-9
Sign-on Block Format 11-15
Format of Block Control

Byte Error Block 11-21
Locating a State

Process 12-3

60474500 A

>
[
N =

O
|
U W

CCP Modules

Support Programs for
TIPs

Principal Data
Structures

In-Line Diagnostic
Service Messages

OPS Monitor Table

Interrupt State
Definitions

Interrupt Assignments

Standard Subroutines

NPU Console Control
Commands

Multiplex 2 Level
Worklists

TIP/LIP OPS Level
Worklists

Optional Modem/Circuit
Functions

PTCLAS Worklist
Analysis and Action

PTLINIT State
Transition Table

Block Types

BVT Block Syntax

Formscontrol Values
for BVT Blocks

Format Effectors

IVT Block Syntax

Terminal Parameters as

Used by Standard TIPs
Coupler Status Register

Bit Assignments

Orderword Register Code

60474500 A

TABLES

10-5
10-6

10-7
11-1

11-2

NPU Status Word Codes
Address Register Code
PPU Function Commands
NPU Function Commands
HIP States and
Transitions

Comparison of Local and
L.ocal/Remote Networks
CMD Blocks for Async TIP
Transforms for Embedded

FEs
Preprint and Postprint
FEs for Asvnc TIP
Parity Handling
Autorecognition in
Asvnc TIP
Mode 4 Nomenclature
CMD Blocks for Mode 4
Protocol
Downline IVT
for Mode 4
Downline IVT FE
Transforms
E~-Codes
Downline BVT
for 200 UT Printer
Upline BVT Transforms
HASP Protocol Mnemonic
Definitions

HASP Significant EBCDIC

Characters
Downline IVT FEs for

HASP Terminals
State Program

Macroinstructions

Transforms

Transforms

7-13
7-14
7-15

11-19

12-11

xiii

OVERVIEW]

This section describes Communications Control Program (CCP) on a conceptual
level. The description gives the programmer an overview of how CCP
functions in a Network Processor Unit (NPU). For a more complete
description of how CCP functions in a network, refer to the CCP 3 Reference
Manual.

CCP provides the software necessary to process data (messages) through the
network communications portion of a Control Data network. The network
communication functions that are moved from the host (a CYBER 70/170) to the
NPU allow an application program in the host to process data as if program
was connected to a virtual terminal that was connected directly to a host
port. Since virtual terminals must be either batch or interactive, host
processing becomes almost independent of terminal type.

The network communications tasks that have been moved into the NPU are of
four types:

° Multiplexing data to and from the terminals

) Demultiplexing data and storing it in buffers for buffered high-speed
transfers to and from the host

° Converting all terminal protocols into either an interactive virtual
terminal protocol or into a batch virtual terminal protocol

e Regulation of the volume of message traffic handled

CCP is divided into several major subsections to handle these tasks. See
figure 1-1.

e Base modules to provide NPU control and general services to other
major subsections

® Network communications subsystem modules (internal processor and
service module) to provide routing and network configuration services

® A host interface (HIP and coupler) subsection

) Terminal interface (TIP or LIP) subsections for each major class of
terminal, including an interface to a remote NPU and the interface
from a remote NPU to a local NPU. (A local NPU is coupled directly -
by hardware - to the host. Any NPU lacking this coupler is a remote
NPU.) Terminal interfaces are handled by a TIP; NPU to NPU
interfaces are handled by a LIP at each end of the interface.

) A multiplex subsystem that provides the hardware and software

interface between the NPU and the various types of terminals (it also
provides the interface between local and remote NPUs)

60474500 A 1-1

LOCAL NPU
C
0
U INTERNAL ,
HOST |— P HiP - PRO- TIP }— TERMINAL
cs E CESSOR ms| -
NS Uuuv
R LBl e .
TS
—nr v TERMINAL
PS
LT
EE
XM
—1 LIP
REMOTE NPU
CS — COMMUNICATIONS INTERNAL LIP |—
SUPERVISOR ZE%OR 33
NS — NETWORK LB
SUPERVISOR TS
SVM — SERVICE TP v TERMINAL
MODULE @ PS
LT| ® o
4.NODE NETWORK Eel ® .
[] ®
NS = 0 XM
cs =1 L TIP |— TERMINAL
LOCAL NPU = X
REMOTE NPU = Y

M-375

Figure 1-1. Role of NPU in a Network

60474500 A

CCP passes ASCII messages to and from the host in interactive virtual
terminal (IVT) or batch virtual terminal (BVT) format. CCP passes messages
to and from the terminals in a code and format appropriate to the terminal.
Downline messages (output from the host) are switched to the proper terminal
and translated from ASCII IVT/BVT to terminal format and code. Upline
messages are normally received from the terminals, converted to IVT/BVT
ASCII, and passed to the host.

NOTE

A transparent mode is available. In this case, the message
remains in the terminals code and format throughout the
network.

CCP DESIGN

CCP can be classified as a responsive (driven) system rather than an active
system. The external stimuli that drive the system come (1) from the host
in the form of downline messages and commands and (2) from the terminals in
the form of upline messages. At the two principal interfaces (HIP or LIP on
the upline side; multiplex subsystem on the downline side), hardware and
formware do much of the preparation for a message or command transfer.

PRIORITY PROCESSING AT THE INTERFACES

At the interfaces, CCP is largely interrupt-driven and operates at priority
levels. Interrupts are processed immediately unless a higher priority task
is already being performed. The interrupt can be processed completely at
that time. However, many tasks take so much time that it is preferrable to
defer part of the task processing until later. This is done by generating a
worklist that defines the parameters for the task and then queuing that
worklist (task request) to the module that must process it. The multiplex
subsystem works this way and has its own worklist processor to schedule the
appropriate modules at a priority level.

The principal priority tasks in order of decreasing importance are as
follows:

Memory errors

Multiplex loop errors

Host coupler events

Real-time clock count

Output data demands (multiplex subsystem)

Input data frame received (multiplex subsystem)

The output of the priority level is either a message that the NPU can route
to the specified destination, or a command for the NPU which CCP interprets
to change its own processing mode.

Some major modules operate largely on the priority level (the multiplex
subsystem, for example); others have portions that operate on a priority
level while the remainder of their processing is on a nonpriority (OPS)
level (HIP, TIPs, for example). A few of the major modules do almost all of
their processing on the OPS level (internal processor and service module).

60474500 A 1-3

OPS-LEVEL PROCESSING

When no priority tasks are pending, CCP processes OPS-level tasks. There is
an OPS Monitor which assigns tasks by scanning all the nonpriority
worklists. These worklists are queued to one or another of the major system
modules. Each of these major modules (such as a TIP, LIP, HIP, internal
processor, or the service module) has its own internal worklist scanner that
determines the exact task to be performed on the basis of a workcode in the
worklist.

OPS~level worklists can originate either from a priority task or from
another nonpriority task. For example, a downline message from the host is
first handled on a priority basis as the HIP and the coupler set up to
receive the message and actually input the message into the assigned buffers
in the NPU. When the message (or part of a message called a block) has been
completely received, CCP is ready to process it. This block is passed on a
nonpriority basis to the internal processor with a worklist. The internal
processor routes the block to the proper TIP with a worklist. The TIP
passes the message (still at OPS-~level) to the multiplex subsystem. The
multiplex subsystem sets up the transfer on the OPS level and then outputs
the message to the terminal, one character at a time, on a priority basis.

Figure 1-2 shows the processing levels for most of the major modules.

MULTIPLEX
HIP SUBSYSTEM TIPS
REAL-
PRIORITY COUPLER 1/0 PROCES- | STATE
TIME CLOCK | |NTERRUPT |SING (WORK-| PROGRAMS
HANDLING | LISTS) (ASYNC 1/0)
nmeo | | T 1 T
(DELAYED CONTROL SUBSYSTEM CONTROL
NONPRIORITY OR CONTROL
(OPS LEVEL) PERIODIC)
OPS MONITOR INTERNAL SERVICE
BASE MODULES PROCESSOR MODULE

Figure 1-2.

M-379

Priority and Nonpriority Tasks in CCP

60474500 A

DOWNLINE MESSAGE PROCESSING

Downline messages originate serially from the host in blocks. A block is a
full message or one part of a message treated as a unit. The block is
passed to the NPU via the host interface program (HIP), which is responsible
for all transfers across the coupler. See fiqure 1-3. The HIP passes the
block to an internal processor, which examines the block header to gain
information about the terminal receiving the message. Each category of
terminal is serviced by one of the terminal interface programs (TIPs). The
internal processor passes the message to the appropriate TIP. The TIP
processes the message (translates it to terminal code and format) and passes
the message to the command driver in the multiplex subsystem. Before this,
the TIP reguests the multiplex subsystem to prepare the NPU-to-terminal line
for a transmission.

At the multiplex subsystem, the output message block is multiplexed (along
with other message blocks in the process of being transmitted to the
terminals) and sent to the terminal one character at a time. Actual timing
of the character transmission depends on an output data demand (ODD) signal
sent by the communications line adapter (CLA) to the NPU. An output
processor in the multiplex subsystem handles this activity. The host is
informed of message transmission progress twice: first, when the block is
completely accepted by the NPU, and again after the block is completely
transmitted to the terminal.

UPLINE MESSAGE PROCESSING

Upline messages (input to the host) originate at the terminals and are sent
one character at a time to the input loop of the multiplex subsystem. An
input processor picks up all characters and stores them in a temporary
buffer called the circular input buffer. The TIPs are responsible for
furnishing the multiplex subsystem a set of programs which are used to
demultiplex the data into line-oriented input buffers, Code and format
conversions are performed along with the demultiplexing. Since block size
is a CCP/host build-time parameter, any message that exceeds the maximum
block size is divided into blocks. Each block is then treated as a separate
message unit by CCP. The message is converted from terminal code and format
to ASCII IVT/BVT. (A transparent mode is also available for upline
messages, but it is restricted to interactive terminals.) After a complete
block has been assembled, the multiplex subsystem notifies the appropriate
TIP, which finishes processing the message. Then the TIP passes the message
block to the HIP, which in turn passes the block to the host. Terminals are
notified of processing progress according to the demands of the terminal
protocol. Figqure 1-4 shows simplified upline message processing.

CCP FEATURES

CCP provides several message processing features:
® IVT/BVT relieves host application programs of needing to handle

terminal protocols. The TIPs convert messages to/from ASCII IVT/BVT
for the host.

60474500 A 1-5

TERMINAL

M-376

HOST c MESSAGE
] |o HOST MESSAGE TRANSLATION el
I PPU U .| ROUTING .| AND CONTROL| .
P INTERFACE (INTERNAL 1 (TERMINAL »| MULTIPLEX
- - L PACKAGE suB-
E PROCESSOR) INTERFACE SYSTEM)
R PACKAGE)
TIP
4
MLIA
TIP OUTPUT
MULTIPLEX
LooP
r ————— b
NETWORK PROCESSOR UNIT
TERMINAL | e 0 @
Figure 1-3. Downline Message Processing
1-6 60474500 A

TERMINAL

TERMINAL

60474500 A

~——=- —-
! mLIA ' I

CIRCULAR! | I
: s’ FiNeuT - 'h»

-7 | -
I IBUFFER [T --+ »| INTERNAL
et I T it VML R L »| PROCESSOR
| il e aug
1 >
LINE-ORIENTED
INPUT v
BUFFERS
HIP
NETWORK PROCESSOR UNIT
v
COUPLER
y
1 T
I PPU i
| I |
HOST

Figure 1-4.

Upline Message Processing

M-377

Block protocol relieves the NPU and the host of upline message length
restrictions. Any size input message is accepted; when the normal
maximum number of input characters has been received (2048 bytes
including NPU-added header bytes), the block is declared full. It is
processed for shipment to the host and another block is started.
Blocks are designed so that the only block or the last block of a
message is clearly designated (MSG type block).

The multiplex subsystem provides hardware and software which makes
the terminal hardware characteristics invisible to the TIPs. The TIP
needs to know only the terminal type.

The NPU regulates its input (rejects incoming messages) under one of
several conditions - The entire NPU is short of assignable space
{buffers) for message processing - An individual TIP is using too
many buffers at any one time - An accept input/accept output flag is
being set by the NPU or by the host - Message priority is lower than
the current logical link regulation level.

In this way, the NPU rejects messages directed to it when those
messages might cause peak loading problems severe enough to stop the
NPU.

Priorities exist so that time-critical tasks can interrupt non-time
dependent tasks. The time-critical tasks are concerned with either
the multiplex subsystem (input and output processing at the lines to
the terminals plus various errors that occur during this processing)
or the NPU console. Since the console is rarely used, these latter
interrupts have minimal system impact. The lowest priority is not
interrupt-driven. It is called the operations (OPS) level. Most
processing occurs on the OPS level.

Programs are written in PASCAL or using state programming
instructions. (A few frequently used routines are written in
macroassembly language.) There is no correlation between language
used and operating priority. PASCAL was chosen for its simplicity of
use and because it is an effective language for manipulating table
entries. Much of the CCP processing depends on information saved in
tables. The OPS level of any program (TIP or otherwise) uses PASCAL
code.

For some purposes, it is more effective to write code on the firmware
level (also called multiplex-level processing). State programming
instructions are used for this. Such programs demulti-plex data and
translate code and format. Every TIP has at least two firmware level
programs: a downline text processing program and an upline input
state program,

The HIP does not use firmware programs directly; the LIP does not
have a text processing program. However, several of the general
support programs that are written in macroassembly language contain
portions that are written in firmware. These programs should not be
altered by any user.

Three methods of communication between modules are provided: direct

calls, queued calls (using worklists), and setting global variables
in tables, which are then accessed by other programs.

60474500 A

) A special program (LIP) handles communications between a local and a
remote NPU. The remote NPU handles most functions that a local NPU
handles in a system without a remote NPU. Downline blocks in the
local NPU are sent to the remote NPU by means of a special protocol
(CDCCP). The remote LIP reconverts the blocks to normal format and
passes them to the internal processor for normal routing and
processing by the TIPs, etc. The upline blocks are prepared in the
remote NPU as if for the HIP. Then the blocks are reformatted in
CDCCP protocol and sent to the local NPU. The LIP in the local NPU
reconstitutes the blocks and passes them to the HIP.

CCP MODULAR STRUCTURE

CCP can be considered as a group of generalized modules that provide
saervices for the TIPs, which interface the terminal protocol to the host
(block) protocol. Terminal-oriented programs are called Terminal Interface
Packages (TIPs). The modularization of CCP is shown in tables 1-1 and 1-2.

Most of CCP is always resident in the NPU., It is downline loaded from the
host. After loading is complete, there is additional communication between
host and CCP to configure all the tables which hold line-and
terminal-oriented information. A few programs use an overlay area (appendix
E).

® On-line diagnostics, a series of closed loop tests available only if
the user has purchased a network software maintenance contract.

° Control for loading a remote NPU (if any exists) if this is the local
NPU.

CCP PROGRAMMING METHODS

CCP provides the interface for the network between terminal protocols and
the host (block) protocol. It also provides multiplexing to match the
high-speed block transfers at the host interface with the low-speed
character-by-character transfers at the line interfaces to the terminals.

BLOCK PROTOCOL
Block protocol defines three principal types of block:

] BLK and MSG blocks carry data. No block can have more than 1048
bytes. The host is responsible for block size downline; the TIPS
(input state programs) are responsible for block size upline. MSG
blocks carry a full message or the end of a message. BLK blocks
carry all segments of a message except the last or only segment.

) CMD blocks carry commands and status. The service module (SVM)
handles generalized commands. Some commands can also be directed to
and from TIPs; these do not use SVM,

° All other blocks carry communications protocol information such as
acknowledgements, breaks, and restarts.

60474500 A 1-9

TABLE 1-1. CCP MODULES

Module

Major Function

Normal Calls

Terminal-Oriented

Mode 4 TIP Handles synchronous Mode 4A/4C
terminals PT4...
ASYNC TIP Handles asynchronous terminals PT...
using teletypewriter protocols AP...
AF...
HASP TIP Handles synchronous HASP work- {HS...
stations HASP...
Link Interface Handles link protocol between various
Program (LIP) local and remote NPUs (NPU-to-
NPU link is treated as a line
by the multiplex subsystem)
Host-Oriented
Host Interface Handles block protocol between PTHIP...
Program (HIP) host and NPU; transfers use
the host coupler
General Support
Base system Includes a monitor, timing, PB...
standard subroutines, NPU
console services, and task
calls (worklists)
Multiplex Part of the base system; PM...
subsystem contains command driver, and
input/output multiplex loops.
(The multiplex subsystem con-
sists of hardware, software,
and firmware.)
Network Message routing, service {PN...
communications messages, and common TIP PT...
subroutines including POIs
1-10 60474500 A

TABLE 1-2. SUPPORT PROGRAMS FOR TIPS

Programs Location+ Comments

HOST INTERFACE

Host Interface Program
(HIP) In local NPU only

LINK INTERFACE

Link Interface Program In both local and
(LIP) remote NPUs

GENERAL SUPPORT

Operating system B (Includes program execu-
tion, space allocation,
and interrupt handling)

Worklist handling B Interprogram task re-
quests

Timing services B

Standard subroutines B

Internal processor

maintenance B Building directories

Command driver M

Output processor M

Input processor M

Other multiplex

subsystem routines M

Message routing N

Service module, SVM B Handles most commands
between host and NPU

TIP support N Includes point of inter-
face (POI) programs,
block handlers, regula-
tion, and IVT command
processor

Inline diagnostics N

NPU console services B

Initialization programs Released when initializa-

tion is complete

+B Base system
M Multiplex subsystem
N Network communications

60474500 A 1-11

A special class of block (ACTL) is defined for data assurance over trunks
(links). It is used only by the LIP.

Each block header has information relating to routing: source/destination
modes (SN and DN), which are related to the host and NPU, and a connection
number (CN), which is related (through directories) to lines and terminals.

An internal processor handles downline routing by use of the directories.
Upline, the originating terminal is known. Using this information, the
multiplex subsystem can provide the SN/DN/CN information. Only the
destination code information is used during upline routing, indicating that
the data is to be shipped to the host.

All host/NPU transfers are controlled on the NPU side by the HIP. The HIP
operates at OPS-level and does not process blocks except to the extent that
it assures that a complete block is sent or received. The HIP can reject a
request to send an input block unless enough buffers can be assigned to
receive the entire block at the time the transfer is requested. No effort
is made to rereceive or retransmit portions of a block

The service module (SVM) handles most commands between host and NPU. For
service messages, the connection number (CN) is zero. For downline
commands, the SVM processes the command (such as entering fields in a
terminal related table) and returns an acknowledgement service message to
the host. In processing a service message, SVM can call on a TIP or on one
or more other support routines.

A few commands (such as starting or stopping message transmission on a line)
are sent directly between the host and the appropriate TIP. In this case,
CN is not =zero.

BLOCK ROUTING

Downline block switching is done by the internal processor. Almost all
blocks pass to the receiving program (TIP, LIP, or SVM) using a worklist
entry. Invalid blocks are discarded. Upline blocks are routed by the
internal processor to the host (directly or through the local NPU) or, in
rare cases, to the NPU console.

POINT OF INTERFACE (POl}) PROGRAMS

From the standpoint of the TIPs, there are certain protocol requirements
that each TIP fulfills both upline and downline. Common POI programs are
provided for these tasks.

° PBIOPOI - internal output POI. Downline block switching is handled
by the PBIOPOI. This POI generates the proper type of reply block
(acknowledgement, break, initiate, etc.) or queues the block to the
TIP or SVM for further processing.

[PBPOPOI - postoutput POI. This downline POI generates an
acknowledgement to the host indicating that the block has been
transmitted to the terminal. It also gathers statistics for the
transfer.

1-12 60474500 A

) PBPIPOI - postinput POI together with PBIIPOI internal input POI.
These POIs handle the upline block and switch it to the host.

e PBPROPOI - preoutput POI. This POI sets up table information for
downline transfers.

DIRECT AND WORKLIST CALLS

Direct calls can be made from any PASCAL program to any other. At the
OPS-level, direct calls are freely made between routines of the same kind
(such as SVM routines or TIP routines for the same TIP). Calls are also
made freely from the SVM, a TIP, the LIP, and the HIP to support routines
(base and network types.

Direct calls pass task-oriented information in either of two ways:

) Information can be stored in one or more fields of PASCAL tables
(data structures). The called program is expected to find the table
and the field.

o A small parameter list accompanies the call. This type of list is
ordinarily restricted to a few pointers and/or numbers. 1In this
manual this type of call is depicted as

MNCALL parm 1,...parmn

MNCALL is at least the first six characters of the entry point name.
Param l...parmn are the associated parameters. Parameters can be
omitted, but the delimiting commas cannot (exception: terminating
comma(s)) .

Calls between types of routines (such as a call from a TIP to the SVM or the
reverse, or a block switching call) are usually made with worklists. A
worklist is a packet of information about the requested task. Worklists are
gueued on a first-in-first-out basis to those few modules designated to
receive them. Those modules are the following:

TIPs

HIP

LIP

SWM

Internal processor

Timing processor

Multiplex loop interface adapter interrupt processor
NPU console handler

All of the named modules execute at the OPS-level. Worklists are also
queued for certain priority routines in the multiplex subsystem (multiplex
level). A worklist is considered to be an event that requires the CCP to
take appropriate action.

The monitor scans the list of OPS-level programs to find the next event
(task) which must be processed. It then passes control to that module
together with the worklist. The worklist contains a workcode that most
receiving modules (such as a TIP) use as the index to an internal switch
determining the module entry point appropriate to the reaquested task.

60474500 A 1-13

The multiplex subsystem has its own worklist processor which runs at
multiplex level (priority 3). The worklist processor handles the following
functions:

Communications line adapter status

Output buffer transmitted

Buffer threshold reached in multiplex subsystem
Unsolicited input or output on a line

Bad communications line adapter address

Illegal frame format

Timeout of output data demand (ODD)

Termination of input

CE error message generation

Hardware errors

Calling the TIP at OPS level for further processing

The event workcodes in the worklist define the internal switching for the
multiplex worklist processor.

DIRECT CALLS ON FIRMWARE LEVEL

Input state programs and text processing programs can branch during
processing. The branching calls are embedded in the code. Whenever state
programs are suspended for any reason (such as finishing processing on the
current input character and having to release control until the next input
character is available for processing), the state programs save a pointer to
the next entry point in a global table (NAPORT, MLCB, or TPCB: these are
defined later). When firmware processing resumes, the appropriate table is
checked for the pointers to the firmware entry point. Since the table is an
OPS-level data structure, the pointers can be readily used by software on
any priority level, as well as by firmware.

SPECIAL CALL TO MULTIPLEX SUBSYSTEM

TIPs or SVM call the multiplex subsystem directly to save processing time.
This call to the command driver (PBCOIN) has a special parameter list called
a command packet which holds information used by the multiplex subsystem to
set up the table controlling this message transfer (MLCB). During the
transfer, additional information is added to the MLCB, and all programs
concerned with the transfer (whether software or firmware) refer to the MLCB
for transfer control information. The MLCB for the transfer is released
when the transfer is completed.

SPECIAL CALL TO FIRMWARE INTERFACE

A support routine (PTTPINF) is called directly by the OPS~level TIP when
firmware-level text processing is to be done. All text processing for a
block occurs in a single pass, although PTTPINF returns to OPS-level (within
itself) frequently so that interrupts can be processed. (While processing
on the firmware level, interrupts are inhibited.) For text processing, the
OPS-level TIP defines a table to control the transfer (TPCB) and fills all
the necessary fields before calling PTTPINF. The firmware accesses TPCB for
control information and adds status information used by the OPS-level TIP
after PTTPINF returns control to the TIP. The TPCB is discarded by the
OPS-level TIP when it passes the block to the next program (command driver
downline, HIP upline).

1-14 60474500 A

NOTE

Space is reserved in the TPCB for the contents of the first
16 microprocessor file 1 registers. This provides 16 full
words for communication in addition to the words already
defined in the TPCB.

COMMUNICATIONS USING PASCAL GLOBALS (TABLES)

Several instances of communications between modules and between different
levels of programs (OPS-level/firmware level) have already been cited:
worklists, MLCBs, TPCBs. Use of PASCAL globals (tables) is a way of passing
information between programs or saving information for later use. CCP
defines several major data structures as shown in table 1-3. Some of these
are defined temporarily, to be used only for one task (such as sending a
message block to a terminal) or for one sequence of tasks (such as defining
terminal information from the time when the line is enabled until the line
is disabled). Few structures are defined permanently. Even permanent
structures may need to be reconfigured each time the NPU is downloaded from
the host.

All principal data structures are defined in appendix H.

LINE INTERFACE HANDLING
Much of the line interface is the responsibility of the multiplex subsystem.
Important aspects of message transfer are as follows:

° Setting up the communication line adapter (CLA) for the transfer is
accomplished by a command originating in the host and passed to the
command driver via the TIP that controls this type of terminal
(line). The whole process can be started by a sign-on from the
terminal. Low-speed lines can use autorecognition features (part of
the TIP code) to establish line speed and code type.

° Polling synchronous lines for the next input character is initiated
by the command to start polling which originates in the host. The
TIP, however, determines the exact moment of sending each successive
polling message. The line polling message is passed to the terminal
via the multiplex subsystem. It is a timed output so that failure to
supply another input character in the specified period is treated as
a hardware error. Unsolicited input characters are also treated as
hardware errors.

° The NPU may reject input when the entire NPU is running out of
buffers.

) Output data is sent to the multiplex subsystem as a block of data in
terminal format and code. The output processor sends each character
in response to an output data demand (ODD) interrupt from the CLA.
This is a timed operation. If the ODD request does not appear in one
second, this is treated as a hardware error.

° The multiplex subsystem has limited error recovery logic. If the
attempt to send or receive a character fails n times, the line is
declared down and the TIP and SVM are called to take the appropriate
internal action and to notify the host of the line failure.

60474500 A 1-15

TABLE 1-3. PRINCIPAL DATA STRUCTURES

Structure

Major Functions

Principal
Users

Block format

Service message
formats

Console request
packet

System buffers
and buffer
control block
(BCB)

Worklists,
worklist
control block
(WLCB)

Timing tables

Logical link
control block
(LLCB)

Line control
block (LCB)

Terminal
control block
(TCB)

Command packet
(NKINCOM)

Port table
(NAPORT)

1-16

Provides vehicle for NPU-to-host
communications

Part of block format; passes commands,
status, and statistics between NPU and
host

Controls transfer to and from NPU
console

Controls space for processing. BCBs
locate assignable buffers in each of
four pools of assignable buffers.
Nominal buffer sizes are 8, 16, 32,
and 64 words (2 bytes per word)

Make major task request calls from
module to module. WLCB locates work-
lists queued to a single module

Provide periodic and delaved calls;
some timing is embedded in LCBs

Directory information for the link
(trunk) and regulation level for the
trunk; one static block per link

Line-related information, timing,
pointers to TIPs and terminal-related
structures (TCBs); statistics informa-
tion for the line; one static block
per line

Terminal-related information, includ-
ing terminal and device type, cluster
and terminal addresses, statistics,
pointers, and flags for data in the
current transfer. Dynamically
assigned when terminal is configured;
released when line disabled or termi-
nal deleted

Controls information for a multiplex
subsystem I/0O; builds the MLCB

Current line (port) status; pointers
to MLCB and state programs controlling
a transfer at the multiplex port; one
static entry per line

All modules

SVM, all
modules

Base
modules

Base modules;
all modules
use buffers

Base modules;
all modules
that call
other modules

Base modules;
TIPs, SVM

Routing mod-
ules; SVM,
LIP

SVM, timing
module, TIPs,
LIP, HIP,
multiplex
subsystem

SVM, TIPs,
LIP, HIP,
multiplex
subsystem

Sent from TIP
to multiplex
subsystem

Multiplex
subsystem

60474500 A

TABIE 1-3.

PRINCTPAIL DATA STRUCTURES (Contd)

Structure

Maicr Functicrs

Prircipal
Users

ultiplex line
control block
{MI.CB)

Text processing
control block
(TPCB)

TIP type table

LLine table

Modem/CLA
tables

Terminal/device
type tables

Ccrtrcls infeormatior for 2 messace
transfer to and from a terminal major
device used by OPS level and firmware
level (input state programs) to
exchange information; dynamically
assigned for a single block transfer
(downline) or message transfer (upline)

Controls irformaticn for converting
ccde and format (dewnline or second
pass upline) of deta blocks; dynami-
cally assigned for a single block

TIP related addresses
Defines principal characteristics of
a line

Defines modem and communications line
adapter physical characteristics

Defines physical characteristics of
terminals and devices at a terminal

Multiplex
s'1ibsystem

Resrorcible
TIP

SVM, base
modules

Multiplex
subsystem

Multiplex
subsystem

Multiplex
subsystem

The ganeratlon of the ODD and polling messages, and the use of worklists for
calls is sometimes referred to as an event driven processing system.

Physical positioning of CLAs in
preferential processing scheme.
is on the multiplex locp at any
multiplexer has first chance to
loop multiplexer is in the next

cage (the last slot is not used).

the loop multiplexer card cage c¢enerates a
Since only one line frame (input or output)
one time, the CLA farthest from the lcop
use the loop. As viewed from the frort, the
to last slot on the right-hand side of the
The CLA which has first chance to use the

loop is in the leftmost slot, and is the half of the CLA card associated

with the switches for the top half of the card.

If this NPU's version of

CCP contains a LIP, the port servicing the LIP is usually placed in this
preferred position since the LIP is the highest speed line in the NPU.

CCP PROGRAMMING LANGUAGES

cCommonly used base programs, especially those with firmware portions, are

written in macroassembly language for speed of execution.
Such programs are listed in an assembly listing.

chould not be altered.

0474500 A

These programs

OPS-level support programs, r.ost priority level multiplex subsystem
programs, and the OPS level of cach TIP are written in PASCAL language.
Alterinag these programs can require altering the data structures (tables)
which these proqrams use to store and pass programming control information.
These programs are listed in an MPEDIT Listing and are esvecially usable in
a PASCAL EDIT XREF listing.

NOTE

These programs can escape directly to firmware preocessing
using the PASCAL INST instruction together with the firmware
address of the firmware proaram.

The firmware parts of the TIP are called input state programs or text
processing state programs. The multiplex subsystem has special firmware
programs called the mocdem state programs. These are used to pro~ess
CLA-generated status. If this status word occurs, it is usually in the same
frame as an input ressage character.

These programs are written usinag a predefined set of macroassemblv languaqe
macrcinstructions called state instructions and are called in one of thrree
ways:

® A direct cell from the OPS-level TIP to PTTPINF for a text processing
program.

o An event-driven cell, triggered by the placement of data in the
circular input bhuffer, to the modem state programs.

) A call from 2 modem state program to an input state program.

The firmware programs communicate with the multiplex subsystem by releasing
control (inouvt state programs or medem state programs) and by storing
information in Aata structures. Worklist calls can be made to the OPS-level
and multiplex-level multiplex subsvstem programs, or the OPS-level or
multiplex-level TIP. (Multiplex-level calls to the TIP are ordinarily
immediately converted to OPS-level calls to the same TIP.)

Text processing programs communicate with the calling TIP by releasing

control and by storing information in the TPCB. Worklist entries to the
OPS-level TIP can be made also.

1-18 60474500 A

INITALIZING AND CONFIGURING THE NPU 2

This section describes the loading, initializing, and configuring of the NPU.

Before the CCP can be loaded into the NPU, the host must prepare the load
file. Two cases of load file preparation in the host must be considered.
The normal case assumes released installation tapes and the associated
installation materials. Use the techniques described in the NOS
Installation Handbook (see preface) to generate a CCP load file and to
update a load file using corrective code release (CCR) tapes.

The special case occurs when the user initiates his own changes to CCP,
This case assumes the use of a system configure file (SCF) or the
equivalent. New modules sometimes have to be generated and prepared as
change tapes. In all cases, changes may need to be made to the SCF itself
and to the CCP tables. Table changes are normally entered by MPEDIT
statements. Such changes should be made only by qualified analysts.
Consult the CDC publication index for TIP Writer's Guide bulletins.

Assuming a load file is ready, a three-step process is used to make the NPU
into a fully operational network node:

) Dumping the contents of the failed NPU to the host. This is an
optional procedure but is normally used. If the user has purchased
network maintenance from CDC, a host application program (Network
Dump Analyzer, used through Interactive Facility (IAF)) is available
for a quick analysis of the dump. Refer to the CCP 3 Reference
Manual for standard dump formats. If the user has not purchased this
maintenance, he should devise his own programs to make the dumps
readily available for later analysis.

° Loading the NPU from the host. A special overlay loading capability
is available for the dump/load process.

) Configuring the NPU by specifying the network logical link, line, and
terminal connections for this NPU.

INITIALIZING THE NPU

Initialization takes place in two phases: the first to load and initialize
the micromemory, the second to load and initialize the macromemory.

PHASE | INITIALIZATION
BEGINA starts initialization after the following occurs:
The macromemory is downline loaded with the phase I load file

[]
° The host sends the start signal
@ The processor starts execution at location 00007g (routine BEGINA).

60474500 A 2-1

BEGINA first executes PIRAM to load the firmware microcode into the
micromemory. Then BEGINA calls PIEX to send a coupler idle status to the
host. CCP loops while waiting for the phase II load file.

PHASE Ii INITIALIZATION

The system initialization routine (PINIT) receives control after the
following occurs:

) The phase II load file is downline loaded into the NPU.
) The host sends a start signal.

° The NPU starts execution at memory location 00003¢g (a jump to
routine BEGINX). BEGINX loads deneral-purpose registers 1 and 3 with
parameters for dynamic stack management (used during initialization
of recursive routines). Register 1 contains the dynamic stack last
word address; register 3 contains the dynamic stack first word
address. -

® BEGINX executes the PASCAL routine MAINS. This routine disables
interrupts, loads the interrupt mask, and calls PINIT.

Pinit

PINIT controls the remaining macromemory initialization. The routine resets
the deadman timer for host transfers, sets the page registers, and zeroes
page mode. It then calls each of the other initialization routines. Before
each routine is called, a specified bit is set in the initialization status
word. This word can be checked for debugging purposes if the initialization
procedures fail (see CCP Reference Manual). The routines are called in the
sequence given in the following paragraphs.

PIPROTECT

PIPROTECT sets memory protect bits. Before setting or clearing these bits,
PIPROTECT calls PISIZCORE to determine the last addressable memory location
and the last word of the buffer area. The protect bits are cleared from
every buffer word and set for all other words. Use of the protect system
prevents DMA devices from writing into any area but buffers. The protect
system can also be used with the Test Utility Program (TUP) for debugging
purposes. See appendix I.

PIBUF1

PIBUFl starts buffer initialization. PIWINIT is called to determine DN
limits, and to allocate the first node in the DN table to the NPU's local
node. The IDLNK and IDTBL tables are allocated and initialized, as is the
ORG DN table. An entry to TUP is allowed if the TUP option has been
selected.

PIGETABLE calls PILCBS to create port and circular input buffer tables. The
PIGETABLE determines the pointers to the timer, port, LCB, and subLCB

tables. SubLCBs for the MLIA, console and coupler are initialized, and the
first LCB is also initialized. The address variables for these subLCBs are
then filled. ‘

2-2 60474500 A {

PIBUFl sets the address limits of the buffer area and calls PIFR1l to
initialize the file 1 (firmware) registers. A 256 word array is used.
Dynamic values are assigned FFFFjg. Any nonused registers are set to
zero. PBEF transfers the array contents into the file 1 registers. Next,
some file 2 registers are loaded using assembly language (INST) commands.

Finally, PIBUFl initializes the buffer maintenance control block. For each
buffer size, the pool boundary is forced to an even boundary, each word in
the buffer area is cleared, each buffer is released to the pool, and the
normal buffer threshold is set.

PIWLINIT

PIWLINIT initiates worklists. Each active worklist is allocated one
worklist-sized buffer. The put and get pointers are set. Zero-sized
worklists are assumed to be inactive, and a default size of three is used,
but no buffer is assigned.

PIINIT

PIINIT sets the NPU console to write mcde so that the CCP banner message can
be displayed. PIINIT also sets up the branch-to-low-core halt routine.

This routine consists of 14 no-op instructions followed by a jump to

PBHALT. The routine starts at memory location 000014. Next, PIINIT sets
the time of day clock to the operator-assigned value (month, day, hour,
minute, second).

PIAPPS

PIAPPS initializes any trunks in the system, using the LIP. The banner
message is sent to the NPU console.

PIMLIA

PIMLIA initializes the MLIA and the CLAs. The routine checks for duplicate
CLA addresses. If any are found, PBHALT is called. The svstem is also
halted if the MLIA cannot be initialized correctly.

PILININIT

PILININIT sets up the multiplexer and coupler timinag services by adding the
MLIA and coupler subLCBs to the list of active LCBs. The data buffer size
is set up for the coupler. The deadman timer is reset.

PIBUF2

PIBUF2 clears and releases the last of the data buffers. The real-time
clock is started, the NPU initialized message is sent to the host,
interrupts are enabled, and the deadman timer is reset. PIBUF2 passes
control to PBMON (the OPS monitor routine) to start normal operation of CCP.

60474500 A 2-3

LOAD AND DUMP NPU

A detailed description of loading and dumping an NPU, whether local or
remote unit, is given in the CCP 3 Reference Manual.

CONFIGURING THE NPU
After loading and initializing the NPU, the host configures it by
establishing all logical links and logical connections for that NPU. This
is done in the following sequence:

° Logical links (LL) are configured by building the LLCB.

) Trunks are configured by building the LCBs assigned to the lines
treated as trunks.,

° Lines are configured by building the line LCBs.

) Terminals are configured by building the TCBs.
See appendix H for the definition of the data structures known as LLCB, LCB,
and TCB. Format for the service messages to configure the LLCB, LCB, and
TCB are given in appendix C.

Figure 2-1 shows the sequence of configuring the NPU and the service
messages and blocks used for the operation.

HOST NPU
Configure logical link 1 (SM) -
- Logical link 1 configured (reply SM)
Configure logical link 2 (SM) —-
-« Logical link 2 configured (reply SM)
Configure line (SM) | REPEAT FOR
EACH LINE IN
< Line enabled (reply SM) THE SYSTEM
Configure TCB (SM) > REPEAT
FOR EACH
- TCB configured (reply SM) TERMINAL
IN THE
<« INIT (block) SYSTEM
INIT (block) >

Figure 2-1. NPU Configuration Sequence

2-4 60474500 A

A logical connection is the association of two stations made by the
assignment of a network logical address. The network logical address is a
set of three numbers: two node IDs followed by a connection number. (Refer
to Block Protocol portion of section 6). The two node IDs represent the
nodes at which each station interfaces to the network. The order in which
they appear in the network logical address specifies the direction of the
connection (the destination node appearing first, then the source node).

The connection number specifies a full-duplex logical channel connecting the
stations. Connection number zero is reserved as a permanent service channel
for service messages.

NOTE

The network supervisor (NS) and the communications supervisor
(CS) mentioned in this section are host programs. These
programs are described in the CCP 3 Reference Manual (see
preface).

The network supervisor in the host is informed of an NPU entering this
active state by arrival of an NPU initialized service message (SM)
(restoring a failed NPU) or by the arrival of the first trunk status
response SM (indicating the trunk is operational). The latter occurs when
an operational NPU rejoins the network.

CHANGING/DELETING LOGICAL CONNECTIONS

A change to a logical connection may be required when a TCB is already
configured. This is accomplished with a reconfigure TCB SM (appendix C).
The communications supervisor in the host does not change the connection
number but sents the reconfigure TCB SM to reinitialize the block protocol
on the logical connections.

A logical connection sails when an element (line, logical 1link, or
application) required to support it fails or is disabled by a NOP or LOP
command. (NOP is the network operator, LOP is the local operator). The NPU
is informed of the termination of the logical connection either explicitly
by a reconfigure TCB SM changing the connection number to zero or implicitly
by deleting the TCB or the LCB on the logical link configuration. Neither
changing nor deleting connections is a normal part of the initial NPU
configuration process.

LINK CONFIGURATION

Two types of logical link configurations are possible in CCP:

) A link from host coupler to local NPU
) A link from local NPU to remote NPU

The functional steps in configuring a logical link are shown in figure 2-2.
The link configuration process starts when one of the following occurs:

® The NPU sends an NPU initialized SM. This is the normal
configuration situation when the NPU is successfully loaded.

60474500 A 2-5

START

HOST/REMOTE NPU

HOST/LOCAL NPU LINK THROUGH LOCAL NPU
TYPE
NS + BOTH NODES ? NS + BOTH NODES ¥
CONFIGURE CONFIGURE
LOGICAL LOGICAL
LINK SM LINK SM

CONFIGURE
NODES LINK SM
CONFIGURED ERROR CONFIGURED
> RESPONSE
NS -» LOCAL NPU NS + REMOTE NPU
VIA LINK VIA LINK
LOGICAL LINK LOGICAL LINK
STATUS SM STATUS SM
l LOCAL NPU -+ NS LOCAL/REMOTE NPUs i
LOGICAL LINK ! CLEAR/RESET
STATUS SM EXCHANGE
OPERATIONAL
RESPONSE
LOCAL NPU + NS

LOGICAL LINK !

STATUS SM —

OPERATIONAL

RESPONSE

y
EXIT
T ERROR RESPONSE NOT SHOWN
Mm-378

Figure 2-2. Configuring Logical Links Flowchart

60474500 A

° The NPU sends a trunk status operational SM. This occurs as the
result of an operator-entered command.

° The network operator generates an enable trunk SM by reenabling the
logical link at the host control console.

Configure Logical Link SM

NS responds to any of these situations by sending a configure logical link
SM to both ends of the logical link. Message parameters include IDI1 and
ID2, the nodes comprising the link. ID1 is the source node for the link and
ID2 is the destination node. The association between node IDs and the
coupler is predefined. The SM has a destination node corresponding to the
primary node ID of the NPU supporting the link.

The destination noce (CS in the host) establishes the data structure
necessary to support the host end of the link. The destination node in the
NPU also establishes the data structure necessary to support the link.

NOTE

Service messages to a remote node are sent over a trunk.

Once reconstituted in the remote node, such messages are
treated the same way as messaqges received over the coupler in
a local NPU.

When the link is established, a normal response SM informs NS that the link
is operational. If an error occurs, the reason code in the error response
message specifies the cause of the failure to confiqure the link.

Logical Link Status SM

NS in the host sends a logical link status SM over the newly configured
link. The response SM always originates in the local NPU. Determination of
response type (normal or error) is made directly within the NPU if this is a
host/local NPU link, or indirectly by the clear/reset protocol over the
trunk if this is a host/remote NPU link. Regulation level for the trunk in
the SM reply is defined in the CCP 3 Reference Manual. An unsolicited
logical link SM reply message is sent to CS when the NPU needs to change the
regulation level on the trunk.

Enable Trunk SM
The enable trunk SM has two possible origins:

°® Usual origin - NS in the host is notified by the unsolicited trunk
status SM response that trunk protocol is established.

) Diagnostics origin - NS in the host is notified that the operator at
the network console has entered a command to reenable a trunk
previously disabled for diagnostic tests.

Parameters are the port connecting the local to the remote NPU and the host
ordinal.

60474500 A 2-7

When the SM is processed, the local NPU initializes the communications line
adapter and conditions the modem for line operation. The normal response
includes information about communications line adapters and modem operation
and identifies the node of the remote NPU, which returns to on-line
condition.

LINE CONFIGURATION

Following logical link configuration, NS/CS in the host sends SMs to the
terminal NPU to configure the lines between the NPU and terminals. These
configure line SMs are handled by the service module in the receiving NPU.
Format of the SM is the same as for the confiqure trunk SM.

Line configuration requires sending the following line control block (LCB)
information to the NPU in the FN/FV pairs:

® Port ID for the line
® Host identifier

° Line type - includes type of duplex, communications line adapter,
modem, carrier, and circuit; answering and turnaround mode; and type
of transmission (svnchronous, asynchronous, or CDCCP) .

) Terminal type (TIP or sub-TIP required to process the terminal's
data, device type, and terminal class).

) Data necessary to fill the selected fields of the LCB.

Processing of each line is governed by LCB fields. Format of the LCB is
shown in appendix H.

A simplified flowchart for line confiquration is shown in figure 2-3.
Terminal configuration consists of configuring the terminal control block
(TCB). TCB configuration is shown on the same diagram to emphasize the fact
that a network cannot use the terminal until both the terminal's associated
LCB and TCB are configured. After configuration, the following events occur:

° The host identifies the terminal and ascertains that it either uses
an IBT or a BVT transform. The host also finds the proper regqulation
level to use.

° CCp identifies the protocol necessary for the data transfers and
assigns a proper TIP to handle that protocol.

° The hardware in the communications line adapter and modem are
prepared for data transfers.

A terminal NPU is any NPU which has a terminal attached to its I/O ports.
A terminal NPU that is a local NPU can also be linked to a remote NPU.

2-8 60474500 A

Figure 2-3.

60474500 A

ENTRY l
NPU SENDS LINE
STATUS SM TO
v HOST LINE
NS SENDS INOPERATIVE
CONFIG LINE
SM TO NPU
TED STATUS
\ MESSAGE
NO
OPERATIONAL DN \
DISCONNECT DELETE
v
DISCONNECT DELETE
LINE SM LINE SM
/ TO NPU TO NPU
CONDITION
MODEM FOR
OPERATION A 4
NPU = HOST
LINE DELETED
SM
MODEM \
STATUS
OK
> EXIT
SWITCH
ON LINE
TYPE
?
SWITCHED, DEDICATED, SWITCHED,
W/0 AUTO- WITH AUTO- WITH AUTO-
DEDICATED, RECOGNITION RECOGNITION RECOGNITION
wio auTo > >
RECOGNITION
¥ NPU > CS NPU + CS ¥ NPU - CS ¥ NPU +> CS
SEND LINE SEND LINE LINE ENABLE
25’1‘;{_;”\133 ENABLE SM ENABLE SM SM WITH
b WAIT FOR AUTORECOG- WAIT FOR
LINE OPERATIVE RING NITION IN RING
PROCESS
\ 4 y
RING IN
-
(DIAL IN) 820(\:'&!?,“8
OCCURS
A \4 \
NPU SENDS
UNSOLICITED PERFORM PERFORM
LINE STATUS AUTO- AUTO
SM TO HOST. RECOGNITION RECOGNITION
LINE OP
M-380

Line/Terminal Confiquration Flowchart (Page 1 of 2)

CS -+ NPU

CONFIGURE
TCB SM

i NPU -+ HOST

TCB
CONFIGURED
M

y

TERMINAL
REMAINS
CONFIGURED

LINE/MODEM
FAILURE

CHANGE
OF STATUS
?

HOST
INTERVENES
HOST + NPU

DELETE TCB
M
NPU -+ HOST
i NPU - HOST UNSOLICITED
LINE STATUS sm
TCB DELETED LINE INOP-
SMm ERATIVE

M-381

Figure 2-3. Line/Terminal Configquration Flowchart (Page 2 of 2)

2-10 60474500 A

After line is configured, it is automatically enabled by the service
module. This allows the line to be monitored. Normal response is made
using the enable line SM response message. When the line is reported
operational, TCBs are configured. CS starts the line configuration process
whenever an NPU is loaded and all links are configured; or a network
operator enters a command generating a specific supervisory message in the
host.

Configure Line SM

For each line to be configured, CS sends a configure line SM to the NPU
connected to that terminal. All confiqure SMs contain a control block
descriptor string (FN/FV). There is one such descriptor string for each
type of configurable block in the NPU. The descriptor string equates a
field number to a field position within the control block, and allows the
associated field value to be entered into that field. Additionally, an
optional action can be defined for the field number. The action allows such
operations as validating the field value, assigning chains to other
structures, and other actions appropriate to the newly entered field.

After performing the configuration defined by the control block descriptor
string together with any defined actions, the service module attempts to
enable the newly configured line. At the completion of the enable process,
the line enabled response SM is returned.

The response message contains a reason code. If the response is normal, the
code specifies either that the line is enabled and operational, or that the
line is enabled but must wait for ring indicator/autorecognition results.

If the response is an error type, the reason code specifies the type of
error.

The four normal types of response messages correspond to the four major line
types:

Dedicated line, no autorecognition
Switched line, no autorecognition
Dedicated line, autorecognition
Switched line, autorecognition

The response to configuration of a dedicated line is line enabled (1) if the
modem of a dedicated line indicates data set ready, and (2) if (for a
constant carrier) both clear to send and data carrier detect are on.
Otherwise, line inoperative is reported.

Line operational is reported if autorecognition is not specified. A
30-second timer is started if autorecognition is specified. If no response
is obtained within the 30 seconds the TIP responds with line not
operational; the host then disconnects the line at the earliest
opportunity., If a response is obtained, line operational is reported
containing the results of autorecognition.

The response to configuration of a switched line is line enabled if a ring
indicator is present. This normal response is generated immediately. Line
enabled with no ring indicator is generated immediately if no ring indicator
is present. This is followed by a line operational SM when a dial-in

60474500 A 2-11

connection occurs. At this time, ring indicator is signalled and the NPU
returns a data terminal ready to answer the call. If, when ring indicator
is signalled, the host or logical link is not available, the NPU ignores the
dial-in.

Autorecognition for switched lines is the same as for dedicated lines.

CONFIGURED LINE DELETION

The delete line SM changes the LCB status to not configured. CCP also
deletes all TCBs for the line. The delete line SM is also treated as a
positive response to an unsolicited line inoperative SM.

TERMINAL CONFIGURATION

When the line is operational, the host configures terminals for the line by
issuing one or more configure terminal service messages. CCP responds to
the configure terminal SM by generating the TCB. The amount of information
in a TCB varies as a function of terminal or TIP type.

A TCB is built only when a line is enabled and operational. The block
remains in existence until a delete terminal SM, a disconnected SM, or
delete line SM is processed.

Terminals are identified in service messages by specifying the line, the
hardware address, device type, terminal class, and host ordinal. Cluster
and terminal address ranges are as follows (in hexadecimal):

Cluster Address Terminal Address
Mode 4A 70-7F 60
Mode 4C 70-7F 61-6F
ASYNC 0 0
HASP 0 1-7

The hardware address varies with the protocol being used by the terminal.
Mode 4A can have one or more cluster controllers on a line but only a single
console terminal on the cluster. Mode 4C can have one or more cluster
controllers per line and one or more console terminals per cluster. The
ASYNC TIP does not support any terminal addressing capability. The HASP TIP
uses the terminal address as the stream number and does not use the cluster
address. For HASP, the device type is combined with the terminal address to
form the hardware identifier. Card readers and line printers use the full
range of stream numbers, but plotters share the range with card punches.

A single line can have numerous terminals and therefore numerous TCBs. Each
terminal has its own TCB and each TCB is usually established at the close of
the initialization process.

Each terminal is configured with a host ordinal. The terminal host ordinal
consists of a 4-bit integer value (0 through 15) and a toggle bit (24).

The integer value is validated each time a service message is received for
the terminal and is included in each service message sent to CS referencing
the terminal. The toggle bit is validated each time a reconfigure TCB SM is
received and must oppose the setting currently held in the TCB. The setting
in the TCB is then reversed. This prevents inadvertent reinitialization of
the block protocol on a logical connection in the event that a prior
reconfigure TCB response SM was lost.

2-12 60474500 A

Configure Terminal SM

The configure terminal SM requires the service module to configure the TCB.
Message parameters include terminal address, cluster address, device type,
and the FN/FV pairs such as were defined for the configure line SM. The FV
values are used in the specified fields of the TCB.

The service message is sent to the NPU by CS in the host either as the
result of a line operational SM received and processed by CS, or as the
result of an operator command to configure the terminal when the line has
previously been reported as operational. As in the line configuration
message, the FN/FV pair designates the field number and the value to be used
in the field, and has an optional action associated with entering the field
in the TCB. The SVM sets the fields in the TCB as directed.

A response SM is sent to CS indicating whether the fields were set or not.

TCB Reconfiguration

Terminals are reconfigured to establish or delete a logical connection
number in an existing TCB, or to reinitialize the block protocol on an
existing logical connection. This occurs when CS detects a need to
establish or change a connection or modify other values in the TCB.

The format of the reconfigure terminal SM is the same as that given for the
configure terminal SM except that the subfunction code (SFC) differs. The
resulting operation in the NPU is the same except that the TCB should
already exist. The TCB is modified as specified in the SM. The optional
action is usually inhibited by the reconfigure TCB operation. The response
formats are the same as those for the configure terminal SM.

The reconfigure terminal SM provides a general mechanism for CS to control
terminals. Any action required coincident with the field change is also
provided by the reconfiquration mechanism. If the toggle bit setting in the
host ordinal byte does not change, an error response is generated. If the
connection number is not zero, the block protocol is initialized or
reinitialized on the connection.

TCB DELETION

When the operator requests that a terminal be deleted from the network, CS
sends a delete terminal SM to delete the TCB and to clean up all table and
data space associated with the TCB. CCP removes the connection from the
logical connection directory. The service module responds to CS with a TCB
deleted SM. CS is responsible for correctly deleting both ends of a
connection.

Format of the delete terminal SM is the same as the configure terminal SM
except the SFC code differs and there are no FN/FV pairs in the message.
Normal response format is similar to that of the configure terminal SM

response.

60474500 A 2-13

FAILURE, RECOVERY, AND DIAGNOSTICS

Failure and recovery of CCP depends on a number of factors:

® Host Failure -~ If a host fails, the NPU and its software stop message
processing.

° NPU Failure - If an NPU fails, it must be reloaded and reinitiated
from the host. Off-line diagnostic tests are useful during this
period to help identify the cause of failure.

® Logical Link Failure - Host failure was mentioned above. Link CDCCP
protocol failure leads to higher and higher levels of regulation
until message traffic ceases on the link.

® Line Failure - Lines are disconnected and terminal control blocks
associated with the lines are deleted.

° Terminal Failure - Terminal status is reported and message is
discarded.

To aid recovery and to assure dependable network operations involving the
CCP, three sets of diagnostic programs are available:

) In-line Diagnostics - These include CE error and alarm messages,
statistics messages, halt code messages that specify the reason for
an NPU failure, and off-line dumps.

® Optional on-line Diagnostics - These allow checking of circuits tso
terminals. These aids are available only if a network maintenance
contract is purchased.

) Off-line Diagnostics - These hardware tests for NPU circuits are
described in detail in the Network Processor Unit Hardware
Maintenance Manual.

HOST FAILURE

If the NPU fails to receive a coupler interrupt within 10 seconds, the NPU
assumes a host failure and declares the host is unavailable (see HIP

description, section 7). Host unavailability is communicated to the other
end of all logical links (local or remote) by means of a disable trunk
service message (SM). (However, the remote NPU does not allow its last

trunk to be disabled - see section 8, LIP). The NPU also sends an
informative SM to all connected interactive terminals.

HOST RECOVERY

After host recovery, the host assures that logical links are reinitialized
and new connections are made.

60474500 A 3-1

The host recovers the existing configuration status by means of a status
request SM to the NPU.

NOTE
'All SMs are shown in appendix C of this manual.

The network repeats unsolicited line status changes that are not executed in
the NPU. Most SMs sent to the network have a possibility of being rejected;
in many cases the rejection code allows the network supervisor (NS)/
communications supervisor (CS) to determine the state of the line, device,
or terminal that could not be configured.

NPU FAILURE

The host might not be aware of this condition, depending on its own state
and availability of network paths. However, the peripheral processor unit
(PPU) of the host has a 1l0-second deadman timer. If the PPU connected to a
local NPU fails to receive an anticipated input or an idle response during
this period, a timeout occurs. The host declares the NPU dead, and the NPU
dump-and-load (or load only) operation is entered to start NPU recovery.
Failure of a remote NPU is detected locally as a failure of the remote NPU
to send data or idle blocks during a period longer than the timeout period.
The local NPU informs NS of the inoperative local/remote trunk with an
unsolicited trunk status SM, causing the host to dump and load the remote
NPU through one of the local NPUs. See section 8 for a full description of
the trunk protocol for detecting the failure and soliciting the loading of
the remote NPU.

NPU RECOVERY

The host dumps (optional) and reloads an NPU after receiving a request for
load. Stimulus for reloading comes from either the host PPU driver or the
NPU bootstrap program. The reasons for requesting a load are as follows:

® Software failure caused PPU hardware deadman timer to expire.
) Hardware failure caused PPU deadman timer to expire.

) Trunk protocol failed between local and remote NPUs.

° Operator initiated a software halt, forcing reloading.

) Operator pressed MASTER CLEAR pushbutton on the NPU maintenance
panel, causing a reload request.

The host does not request a dump after the second or subsequent reload
attempt. After n successive attempts to load, the loading operation is
aborted. The NPU is thereafter ignored until manually reactivated. After
the NPU is successfully loaded and initialized, NS sets up all logical links
for that NPU that the present state of the network allows. The methods of
loading and initializing local and remote NPUs are described in the CCP 3.1
Reference Manual. NS reports the presence of each logical link that is to
be established to CS. CS examines its configuration tables for elements
that have been affected by the change in status. CS configures and enables

3-2 60474500 A

lines supported by the NPU. For any line reported as operational, an
examination of the confiquration table reveals those terminals that can be
connected. For ecach such terminal, both terminal and host support tables
are configured and thercby connected.

HALT CODES AND DUMP INTERPRETATION

Unless NPU stoppage resulted from host failure or was initiated by operator
action, some fault in the NPU caused the failure. If a dump is a normal
part of the reloading cycle (and the network is normally set up that way), a
dump is sent to the host. The CCP 3 Reference Manual describes the
mechanics of transmitting the dump. Appendix B of that manual (Diagnostics)
describes dump format and its interprctation with or without the use of halt
codes.

LOGICAL LINK SUSPENSION

A logical link suspension is detected either by the local NPU determining
that the channels to the host have been inactive or by an NPU detecting that
the CDCCP protocol on the trunk supporting the logical link has failed. 1In
the first case, the presumed host failure is communicated to the distant and
local ends of all logical links. When a loss of ability to communicate is
detected at the end of a logical link, all sources of data connected to that
logical link are prohibited from accepting new data. If the host is the
data source, a logical link regulation SM informs the host of the suspension
of each logical link. Interactive terminals with connections on the logical
link are informed of the suspension by an input stopped message.

LOGICAL LINK RECOVERY

A logical link either recovers spontaneously (e.g., return to service on a
failed channel) or is reinitialized by host (NS) action. 1In the case of
spontaneous recovery, the logical link protocol allows restart without loss
of data. Otherwise, all logical connections are re-made and the terminal
session restarts. Logical link recovery is described in detail in the CCP 3
Reference Manual.

TRUNK FAILURE

A failure of a trunk is detected by failure of the protocol as described in
the LIP description (section 8). At this time, data in queue for the trunk
is discarded. A trunk failure causes the NPU to report the failure of the

logical link supported by the trunk. An unsolicited trunk status reply SM

reports the failure.

TRUNK RECOVERY

Recovery of a trunk is detected by the trunk protocol using the LINIT
elements of the trunk protocol (see sections 6 and 8). The logical link
protocol determines when the trunk is used for data other than SMs to/from
NS. Regulation of traffic on the trunk is discussed in detail in the CCP 3
Reference Manual.

60474500 A 3-3

LINE FAILURE

Line failure is detected by abnormal modem status or by line protocol
failure. The change of status is reported to CS with an unsolicited line
status reply SM. CS deletes all terminal control blocks (TCBs) supported by
the line using the disconnect line SM. :

LINE RECOVERY

A line cannot recover from a failure spontaneously. CS, which cwns the
lines, must first process the unsolicited status reply (line inoperative) SM
by deleting the supported TCBs. CS then disables and reenableg the line,
using the appropriate SM. At this time, the TIP commences to check for a
change. When the line status changes to operational, this is reported to CS
with an unsolicited line status reply SM (line operational). When CS
receives a message indicating that line status has changed to operational,
CS attempts to configure the supported terminals.

TERMINAL FAILURE

Where the protocol is capable of determining terminal status, the protocol
maintains records of such status. Terminal failure status is reported to CS
for network management purposes. An unsolicited terminal status reply
(terminal inoperative) SM reports the failure. The correspondent to which
the terminal is logically connected is informed of the failure by the stop.
element of the block protocol (STP). This is discussed in section 6 (block
types), Undeliverable traffic is discarded. The logical connection is not
broken on terminal failure.

TERMINAL RECOVERY

When terminal failure is detected, possible terminal recovery is monitored.
Typically, this is performed by a periodic status or diagnostic poll from
the NPU to the terminal. Terminal recovery status is reported to CS with an
unsolicited terminal status replay SM.

INLINE DIAGNOSTIC AIDS

Four types of inline diagnostic aids are provided with CCP:

° Alarm messages sent to the Network Operator (NOP). These messages
alert the NOP that numerous hardware errors have occurred and that
the engineering file in the host should be examined to find the NPU
error history.

NOTE

If the user has purchased a network maintenance contract from
CDC, the Hardware Performance Analyzer (HPA) in the host is
the most convenient means of obtaining the contents of the
engineering file. Otherwise, the user must devise his own
method of analyzing the host engineering file.

3-4 60474500 A

) CE error SMs - These messages, which report individual hardware
errors, are sent to the host engineering file. Such messages should
be examined periodically.

) Statistics SMs - These messages are generated periodically for each
NPU, line, and terminal. Statistics SMs are also generated when
frequent errors cause the error counters for the device (statistic
block counters) to overflow. All statistics SMs are sent to the host
engineering file. These messages should be processed and displayed
periodically.

® Halt messages, dumps, and dump interpretation - When the NPU stops,
halt messages are sent to the NPU console. The message contains a
code indicating the cause of the halt (a halt message indicates the
NPU came to a soft stop; in a hard stop situation, the message cannot
be generated) and the program in control when the halt command was
generated. Dumps are part of the initialization process and are
discussed in detail in appendix B of the CCP 3 Reference Manual.
Note that the halt message is delivered using PBQUICKIO; the message
does not use a SM.

Format of the SMs used to generate alarm, CE error, and statistics messages
are given in appendix C. The basic formet of all three SMs is shown in
figure 3-1.

1 2 3 4 5 6 7
Data (one or
DN SN CN BT PFC SFC more bytes)
DN - Destination node
SN - Source node, the originating NPU
CN - Connection number, 00 = services messages
BT - Block type, 04 = CMD (see section 6)
PFC - Primary function code

OA - CE Error or Alarm
07 - Statistics

SFC - Secondary function code
00 7 S8 srror nessae) vitn prc = oa
00 - NPU statistics)
01 - Trunk/line statistics with PFC = 07
02 - Terminal statistics ’

DATA see table 3-1.

Figure 3-1. Format of Alarm, CE Error, and Statistics Messages

60474500 A 3-5

TABLE 3-1.

INLINE DIAGNOSTIC SERVICE MESSAGES

Message PFC SFC Data Bytes
CE Error oA 00 First: Error Code (EC)T
Subsequent: data (if any) - up to 27 bytes
Alarm oA 01 Message text
NPU 07 00 Error words 1 thru 11; 2 bytes per word+
Statistics
Trunk/Line 07 01 First: P - port from local NPU
Statistics Second: 00 to line/trunk
Third: 00 - host ordinal
Fourth: LRN -~ link remote node
Subsequent: explanation words 1 thru 4;
2 bytes per wordt
Terminal 07 02 First two bytes: P/00 as for trunk/line
Statistics statistics
Fourth: CA - cluster address see appendix C
Fifth: TA - terminal address for values
Sixth: DT - device type
Seventh: CN - connection number
Subsequent: explanation words 1-3;
2 bytes per word’
.f.

Refer to appendix B of CCP 3 Reference Manual for details.

ALARM MESSAGES

\

For each alarm sent, a previous series of messages (CE errors) has
generated entries in the host engineering file for this device. These
messages are used to determine the cause of the failure and to perform
maintenance to correct the failure. See CE error codes portion of appendix
B of the CCP 3 Reference Manual.

At the network operator's console, the alarm SM appears as follows:

FROM NPU xx/RESIDENT... (text)

60474500 A

Currently, three alarm SM texts can be generated (text is the 50 characters
allowed for the SM text):

MAINTENANCE ALARM PORT xx (0 xx FFjg)
MAINTENANCE ALARM MLIA
MAINTENANCE ALARM COUPLER

Within an NPU, a group of counters is maintained in the statistics block for
each hardware device. Each time a CE error SM is sent, its associated
statistics counter is incremented. Periodically, each counter is compared
to a threshold value. Whenever a threshold value is exceeded, an alarm SM
is sent to the NOP. If a threshold is not exceeded at the periodic check
time, the counter resets to zero. Threshold value is a CCP build-time
variable. The suggested period is 15 minutes. To prevent multiple alarm

messages for the same condition, the following alarm SM restrictions are
provided:

) Lines and trunks - Only one alarm is sent after the line is enabled.
A subsequent disable/enable sequence allows another alarm to be sent.

) Coupler - Only one alarm SM can be sent per NPU load.

° MLIA - Only one alarm SM can be sent per NPU load.

CE ERROR MESSAGES

This category of diagnostic service message reports the occurrence of
hardware-related abnormalities. This includes all NPU-related hardware
(coupler, MLIA, loop multiplexers, CLAs), and (indirectly) all connected
hardware: modems, lines, and terminals. The creation of the service
message is separate from and in addition to the statistics accumulated in
the NPU and periodically dumped to the host.

To prevent swamping the NPU or host with error messages when an oscillatory
condition arises, an error counter is incremented with each error message
generated. When the counter reaches the limit specified at build time, the
event is discarded rather than recorded. The counter is periodically reset
to zero. This period is another system build-time parameter.

Six types of CE error messages are used. The types and text portion of the
messages are in appendix B of the CCP 3 Reference Manual.

STATISTICS MESSAGES

Three forms of statistics messages are used: NPU statistics, line
statistics, and terminal statistics. Each type is sent upline to the host
engineering file. The host does not reply to statistics messages.

Statistics data is placed in the statistics block for the appropriate device
(NPU, line, or terminal) by a call to PNSGATH. The call comes from either a
TIP (via the postinput or postoutput POI) or from a LIP. The HIP places
statistics information in the NPU statistics block directly. The statistics
information for NPU and terminals is kept in the TCB for the terminal (NPU

60474500 A 3-7

has its own TCB). Statistics information for lines is kept in the LCB for
the line.

One stimulus for a statistics report is a request form the time module
PBTIMAL. The period for this timeout is a system build-time parameter.
PNSGATH handles the periodic request. Two other stimuli cause PNDSTATS to
generate the message: one stimulus arises when any one of the counters that
keep the statistics overflow. In that case, the message for the NPU, line,
or terminal is immediately generated. The other stimulus arises when a line
disconnect SM, a delete line SM, or delete terminal SM is received by the
NPU. The affected line and/or terminal statistics blocks are dumped and the
appropriate statistics SM is sent before the normal response SM is sent.
When any statistics messace is sent upline, the statistics counters in that
statistics block of the TCB or LCB are cleared.

The search by PNSGATH for periodic statistics is conducted as follows: The
search cycle begins at the permanently assigned TCB for the NPU. The
statistics from this TCB are dumped if any are available. The next search
is set to begin at the first active LCB. If no NPU statistics are
available, the current search moves to the first active LCB. These
statistics are dumped, if available. The next search is set to begin at the
first TCB attached to this LCB. If the LCB has no statistics available, the
search moves to the first TCB. 1Its statistics are dumped, if available.

The next search is set to begin at the next TCB for this line. This
continues until all the TCBs for the first active line are checked. Then,
the second active line and all its TCBs are checked. This continues until
all TCBs and all active lines are checked. The next cycle again starts with
the NPU TCB.

3-8 60474500 A

BASE SYSTEM SOFTWARE

The support software can be divided into three categories: the base system,
the multiplex subsystem (technically a part of the base system), and the
network communications software. This section describes the support

software for the base system only. The HIP and the LIP can be considered as
support programs for the TIPs.

The functional grouping of support tasks is as follows:

° Base system - Operating system functions (program execution, buffer
(space) allocation, interrupt handling), timing support, data
structures support. NPU console handling is also described in this
grouping.

° Multiplex subsystem - drivers for the multiplexer I/O lines.

° Network communications software - message routing, command
interpretation (the service module), common TIP support routines
(including statistics gathering, CE error messages to the host, and
reqgulation assistance).

The major base subsystem components are the following:

Monitor, also called OPS monitor

Space (buffer) allocation

Timing services

Direct program calls

Indirect (worklist-driven) program calls
Interrupt handling

Directory maintenance

Global structures

Standard code and arithmetic support routines

SYSTEM MONITOR

The NPU is a multiple-interrupt-level processor. Interrupts are serviced in
a priority scheme in which all lower priority interrupts are disabled during
execution of a program that is operating at a higher priority level. When
no interrupt is being processed, the NPU runs at its lowest priority, known
as the operations (OPS) monitor level. (Refer to interrupt lines/priorities
in appendix H.)

NOTE
This priority is not to be confused with the regulation level
priority for trunks (discussed in the CCP 3 Reference Manual)

nor with the host interface priorities (discussed as a part
of the HIP).

60474500 A 4-1

The system monitor (PBMON) controls allocation of time to programs running
at the OPS level. The monitor gives control to a program by scanning the
table by worklist control block (WLCB) that defines the OPS level programs
that can be called with a worklist. Control is released to the first
program encountered with a queued worklist waiting to be serviced.

Scanning starts at entry 8 of the table (table 4-1) and continues until the
first program is encountered with a worklist attached (figure 4-1). The
monitor then determines whether the program can be called with more than one
worklist (N >1). Worklist control block BYLISTCB contains parameter
BYMAXCNT that defines the number of worklist entries to be processed by the
OPS-level program in one pass. If N is greater than 1, the program is given
control successively until either all the worklists for that program are
serviced or until the maximum number of consecutive executions for that
program has been reached. If N is 1, the scan pointer moves to the next
entry each time the program is executed, even though there may be more
worklists attached to this program's quene.

The scan pointer automatically recycles to the BOCHWL entry when BODUMMY is
reached. If new worklist-driven OPS-level programs are added to the list,
they precede BODUMMY. A worklist must be established to drive the new
program.

Each time a program completes, PBMON initializes a timer (BTTIMER). This
timer is advanced and checked by the interrupt level timer routine (PBTIMER)
at specific system-defined intervals. If the timer expires, it indicates
that an OpS-level program has been abnormally delayed. PBMON execution then
terminates and a call to PBHALT is made. This is called an OPS timeout
condition.

BUFFER HANDLING

This function allocates any of the four types of buffers (each type has its
own free buffer pool) and returns buffers to the appropriate free buffer
pool when users are finished with the buffers. As an option, the function
also stamps buffers to keep a record of the buffer's usage and the address
of the program requesting the buffer.

Standard buffers are also assigned for the following:

Data buffer for special TIP application
Integer overlay

Buffer chaining overlay

Terminal control blocks (TCBs)

Physical I/0 request packets

Active ASYNC LCB list

Statistics (NPU, line, or terminal)
Type 1 table entries

Type 4 table entries

Timeout buffers

Diagnostic control block (DCB)
Multiplex line control block (MLCB) and text processing control block
(TPCB)

Special application flags

pooooOoOOONOSNOOS

Figure 4-2 indicates the types of buffers assigned. Each buffer type has
its own field definitions. The figure also shows the stamping techniques.

4-2 60474500 A

TABLE 4-1. OPS MONITOR TABLE
WLG
Eg:?%:s Engy Program Enbtlsies pfiéiim (f’qé?g)
BYWLCB BOFSWL 1
2 These entries not
3 serviced by moni-
4 tor. Reserved
5 for generating
6 worklists
7
...to here BOCHWL 8 Console PBCONSOLE 2
BOINWL 9 Internal processing PBINTPROC 2
BOMLWL 10 MLIA interrupt
handler 10 PBMLIAOPS 5
Current ——| BOSMWL 11 Service module
| (SVM) 2 PNSMWL 4
pointer | BOTIWL 12 Timing services 1 PBTIMAL 1
position | BOTYWD 13 TIP debug 1 PBTIPDBG 6
* BOLIWL 14 Line initializer 1 PTLINIT 3
BODGWL 15 (On-1line
diagnostics) 0 | ==-—--- -
BOCOWL 16 HIP 1 PTHIPOPS 3
BOHLDC 17 LIP 1 PLTKOPS 3
BOM4WL 18 Mode 4 TIP 1 PTMDATIP 3
BOASYNC 19 ASYNC TIP 1 PTASNOPS 3
BOHASP 20 HASP TIP 1 PTHSOPSTIP 3
Monitor BO27WL 21 Reserved 0 | =-==--- -
pointer BOHHWL 22 Reserved 0 | ====-- -
recycles... | BODUMMY 23 Dummy for console;
\& recycles to entry 8 0 | =-=-=---- -
4-3

60474500 A

Word

15 14 8 7 0
* BYCNT (count)
Put Pointer
Get Pointer
BYWLINDEX BYINC
First entry index Not used
Not used
*% BYMAXCNT BYPAGE
BYPRADDR
* Multi-WLCB flag
** BYWLREQ, worklist required flag
BYCNT - number of entries in the worklist queue
BYMAXCNT - number of entries to process in one pass
BYPAGE -~ program page address
PYPRADDR - program address
BYWLINDEX - WLCB index
Figure 4-1. OPS Monitor Table Format
60474500 A

0 LCD FCD 0 LCD FCD 0 LCD FCD
FLAGS FLAGS FLAGS
Usable
buffer
words
m-1 CHAIN CHAIN REVERSE m-1 NIL
m-1 CHAIN FWD
Buffer of size m
LCD - last character
displacement
FCD - first character Buffer before assignment, Buffer after assignment.
displacement Chains of free buffers No chain, but word m-1
FLAGS - end indications, both forward and reverse reserved for chaining
transparent
text, queuing,
etc.
Buffer Stamping area¥*
15 1 0
0 Address of requestor \
1 Address of buffer F
Pointer Most recent
to next 150 buffers
entry —» assigned or
released
98)Last buffer
99 ‘entry Y, F

* Circular buffer, two words/entry

F status flag
0 = put
1 = get

Figure 4-2.

60474500 A

Buffer Formats and Stamping

Buffer splitting continues until enough buffers of the size needed are made
available from progressively larger buffer pools or until all possible
buffer splits have been made from all larger buffer pools and not enough
buffers are available.

When testing buffer availability against a specified threshold number,
buffer maintenance attempts to adjust distribution of buffer sizes by using
buffer mating or buffer splitting to replenish buffer pools that are below
the threshold level. 1If buffer cannot be made available, the buffer
requester is notified that the requested operation cannot occur for lack of
buffers. Buffer mating is the converse of buffer splitting.

Buffers are potentially available in six sizes: 4, 8, 16, 32, 64, and 128
words. At installation time, the user chooses any four contiguous sizes;
for instance, 8, 16, 32, and 64 words.

In the standard system, buffers are assigned in following sizes, for the
uses indicated:

. 8 words - timing

® 16 words - MLCB and WLCB
® 32 words - TCB and TPCB
® 64 words - data

Buffers are assigned from a buffer pool of the appropriate size and are
assigned one at a time; buffers can be released singly or in a chain of
buffers. Buffers are released to the buffer pool from which they were
originally drawn.

Buffer stamping is available as a build-time option. 1If this option is
selected, a buffer stamping area is reserved to save diagnostic information
on the assignment and release of buffers. The circular stamping buffer, 100
words long, can save information on the most recent 50 buffer assignments/
releases. Each two-word entry consists of the address of the routine that
requested the assignment/release, and the address of the buffer. A flag in
each entry indicates whether the buffer is currently assigned or in a free
buffer pool. 1Information concerning the use and location of the buffer
stamp area and the pointer to the next entry to be used is found in appendix
H, the buffer subsection.

OBTAINING A SINGLE BUFFER
The calling sequence to obtain a single buffer of a specified size is
PBGET1BF (parm)

Parm is the address of the pointer to the buffer control block. PBGET1BF is
a PASCAL function and returns the value of BOBUFPTR that points to the base
address of the buffer obtained. PBGETIBF also uses the buffer control block
for the specified size buffer. The chain word and flag word of the newly
assigned buffer is cleared and the LCD/FCD are set to their initial values.

Interrupts are inhibited during execution. A system halt occurs if the
buffer pool is down to the last buffer and there are no buffers in
larger-sized pools available to be split. A halt occurs if the next buffer
has a bad chain address.

4-6 60474500 A

RELEASING A BUFFER

The following calling sequences are used, respectively, to release a single
buffer or a specified size to release one or more buffers of a specified
size, or to release a chain of buffers. After checking for no buffers, the
system returns the released buffer to the free pool of other same-sized
buffers. The buffer handler also ensures that the address is a valid buffer
address and determines if the buffer has already been released to the free
buffer pool. Contents of released buffers are not altered except for chain
words.

Releasing a Single Buffer
The calling sequence to release a single buffer is
PBREL1BF (parml, parm2)

Parml is a pointer to any address within any word of the buffer to be
released and parml is the address of the pointer to the buffer control
block. Parml is a PASCAL VAR parameter that is altered by the procedure so
that, upon completion, parml contains the chain value of the last buffer
released.

Releasing Several Buffers

Two methods are available to do this. The first method requires a pointer
to the first buffer in the chain to be released. The second method will not
return an error indication if the buffer address is zero. In both cases,
the release mechanism is actually performed by firmware. The two methods
are called by PBRELCHAIN (parml, parm2) and PBRELZRO (parml, parm2).

In both cases, parml designates a pointer to the first buffer in the chain
to be released and parm2 designates (indirectly) the address of the buffer

pool to which the buffers will be returned. If parml for PBRELZRO is zero,
no action is taken.

TESTING BUFFER AVAILABILITY
The calling sequence to test buffer availability is

PBBFAVAIL (parml, parm2, parm3)
PARM1 specifies the number of buffers required, parm2 pointer specifies the
buffer control block required, and parm3 specifies the total free space
threshold. PBBFAVAIL is a PASCAL function; it returns a true value if the

test indicates that sufficient buffers are available. This calling sequence
can be used at any interrupt level.

BUFFER COPYING

The BBCOPYBFRS routine allows copying data from a chain of any type of
buffers to a chain of data buffers. The call is

PBCOPYBFRS (parm rcd).

60474500 A 4-7

The parameter record (parm rcd) requires the following:

The number of source buffers to copy
Source buffer size

Data buffer size

A release flag

The source chain can be released after the copying operation.

OTHER BUFFER HANDLING ROUTINES

PBDLTXT deletes data from a buffer by advancing the first character
displacement (FCD) pointer in the buffer header. See figure 4-2. PBSTRIP
returns the empty buffers to the free buffer pool of the appropriate size.

TIMING SERVICES

Timing services provide the means for running those programs or functions
which are executed periodically or following a specific lapse of time.
Seven timing services are available:

° A firmware program handles the 3.33 ms microinterrupt to provide a
100-ms timing interval. This real-time clock interrupt is handled by
PBTIMER. PBCLKINIT restarts the real-time clock following the
interrupt.

) Every 100 ms, PBTIMER calls PBTOSRCH to search the chain of
time-lapsed buffer entries. These entries are assigned as needed in
response to calls from any module. If an entry's time period
elapses, and if the release flag for that entry is set, the entry is
deleted from the chain. 1In all cases, a worklist call is made to the
program which requested the delayed call. Timing services uses
PBTOQUE to add entries to this chain of delayed calls.

° Every 500 ms, PBTIMER checks the deadman timer. The timer is reset
and the timer monitor routine is executed. If the deadman timer
expires, the monitor has spent too much time in one OPS-level
program. The NPU stops.

) Every 100 ms, PTMSCAN (a part of the ASYNC TIP) scans the list of
active line control blocks (LCBs) for asynchronous terminals. If a
character is received, the timeout is set for the next character. 1If
no character has been received during the 100-ms period, a timeout is
declared, the LCB is removed from the list of active LCBs, and the
ASYNC TIP is notified by means of a worklist.

) Every second, a timing routine checks all active output lines to find
whether an output data demand (ODD) interrupt has been generated for
the next character to output. If one second has passed with no new
ODD interrupt, the multiplex subsystem worklist processor is called
to declare a hardware failure for the 1line.

o A time-of-day routine, PBTIMEOFDAY, is called every second. The time

of day is incremented and, if necessary, recycled to the start of day
time (00 hour, 00 minute, 00 second).

4-8 60474500 A

) Every 500 ms, PBLCBTMSCAN scans all active lines for periodic
requests. If a line's period for a specific request has elapsed, the
appropriate TIP is called, using a worklist entry. Input or output
is terminated for the line if this is requested. 1Inactive LCBs are
unchained from the set of active LCBs. Timer services provides the
means for chaining LCBs to this list of LCBs that require periodic
action.

DIRECT CALLS

Most OPS-level programs call other programs directly for performing minor
tasks. A few major task calls use indirect (worklist) calls. For direct
calls, the last program in the calling chain is usually PBCALL. It is used
for direct calls among OPS-level programs, for transferring between programs
on different pages, for timed or periodic calls, for service message
switching, for overlay execution, and by PBMON when that program places a
program into execution.

PBCALL calls a procedure from PASCAL by address, rather than by name.
Unlike other procedure calls, PBCALL can pass a variable number of
parameters, corresponding to the number of parameters expected by the
calling procedure. Example:

type pgms = (pgml...pgmn);

var table: array {pgms{ of integer:
index: pgms;

addr ({programl{ , table {pgml});

addr ({programn} , table {pgmn{);

{set up index}
PBCALL (table {index}); {call program, no parameters}
The PBCALL calling sequence is
PBCALL (addr, parml,...parmn)

addr is the address of the program to be called and parml through parmn are
optional and are parameters passed to the called program as shown:

procedure PBCALL;
begin
(store return address in called procedures entry point)
(jump to procedure)
end;
Other switching programs of importance are as follows:
® PBPAGE (parml) switches control directly from one OPS-level program

to another. Parml is a worklist index to OPS PROGRAMS SET INTO AN
INTERMEDIATE ARRAY.

60474500 A 4-9

® PBXFER (parml, parm2) transfers control to a program that may be on
another page of main memory. Parml is the called program's address
and parm2 is the dynamic page register base address. Both are global
variables.

® PBTIMAL (parm) controls all time-dependent OPS-level programs. Parm
is the array of time dependent programs (CBTIMTBL) .

WORKLIST SERVICES

Worklists provide a convenient method to handle communications between
software modules that do not use direct calls. Figure 4-3 depicts the
worklist organization. The list services function manipulates worklists
with variable entry sizes. Functions provided by list services include the
following:

° Make (PUT) worklist entries from any priority level (including OPS
level).

e Make OPS-level worklist entries by terminal type.
° Extract (GET) an entry from a list.

Characteristics of lists managed by list services are as follows:
° First in, first out.

°® Entries may be from one to six words in length, but all entries in a
particular list must be the same length.

° Lists are maintained in dynamically assigned space.

® There is no maximum on the number of entries in a list or on the
number of lists serviced.

Contention between priority interrupt levels is resolved by defining an
intermediate worklist array (BWWLENTRY) with 6-word entries for each
possible system interrupt level. Worklist entry parameters are assembled
and extracted in the intermediate worklist area corresponding to their
interrupt level. (A user can design his own programs to perform this
function, however.)

A worklist entry is passed to PBLSPUT and data is normally obtained from
PBLSGET through a global array named BWWLENTRY. Each element of the array
has a variant record structure consisting of one case for each logical entry
structure. When each new worklist-driven program is created, the format of
the new worklist is added as another case to the PASCAL-type definition
BOWKLSTS. Thus, each worklist has unique fields and names.

There are 17 elements to the array BWWLENTRY, one for each priority
interrupt level. To access the proper interrupt level, the global variable
LEVELNO is used. For example, to access a field of a particular worklist
entry at the proper interrupt level, the following expression is used:

BWWLENTRY [LEVELNO]. FIELDNAME

4-10 60474500 A

BYLISTCB

F BYCNT
BYPUT
BYGET
BYFEINC BYINC
BYFEINC
Entry
Next entry Entry
to GET
Next entry
to PUT
FWD CHAIN FWD CHAIN FWD CHAIN
F - Not used
BYCNT - Entry count
BYINC - Entry size (uniform in any one worklist)
BYFEINC - Displacement in buffer to first entry

60474500 A

Figure 4-3. Worklist Organization

The fields of the worklist entry are accessed to store information before
calling PBLSPUT or to obtain information after calling PBLSGET. For
programs that always run at a specific interrupt (e.g., OPS, CPL, and RTC),
constants can be used to increase efficiency.

If a program using PBLSPUT or PBLSGET calls a program also using PBLSPUT or
PBLSGET, information in the worklist entry BWWLENTRY might be changed upon
return. In such cases, one of the following techniques must be used to
ensure proper data integrity:

° Put all information in the worklist entry and call PBLSPUT before
calling the second program.

) Call PBLSGET and access all pertinent information from the worklist
entry before calling the second program.

) Save and restore the worklist entry from BWWLENTRY.

MAKING A WORKLIST ENTRY

PBLSPUT puts an entry into a worklist from any interrupt priority level.
The calling sequence is

PBLSPUT (parml, parm2)

Parml is the address of the worklist entry and parm2 is the address of the
proper worklist control block.

PBPUTYP makes a worklist entry after calculating the worklist index from the
line number. Firmware makes the actual worklist entry. Format of the call
is

PBPUTYP (parm)

Parm is the entry to be made, either in an intermediate array or in a local
save area.

NOTE
The second word of the entry is always a line number.

Two other important worklist entry builders are actually a part of network
supervision,

® PBTWLE parm - This makes a worklist entry for the specified terminal
control block (TCB). The parm is the work code. The entry made
contains the line number and the TCB pointer. PBPUTYP moves the
entry from the intermediate array to the worklist.

) PBSWLE - This makes a worklist entry for SWITCH, the procedure used
for switching. PBSWLE puts the pointer to the block to be switched
in a worklist entry for PRINTPRC. That routine calls SWITCH.
PBLSPUT moves the entry from the intermediate array to PBINTPRC's
worklist.

4-12 60474500 A

EXTRACTING A WORKLIST ENTRY

The PBLSGFT routine moves entries from a worklist to an intermediate array
(BWWLENTRY). The routine is available at all priority interrupt levels. A
special firmware sequence speeds up execution and eliminates contention
between software and firmware. Format of the call is

PBLSGET (parml, parm2)

Parml is the address of the worklist ertry and parm2 is the address of the
worklist control block. If the list is not empty, the next entry is moved
into the specified worklist area.

BASIC INTERRUPT PROCESSING

The two types of interrupts that are processed are the macrointerrupts and
the microinterrupts.

MACROINTERRUPTS

The interrupt mask register is set by an interregister command and the
interrupt system is activated bv the erable interrupt command. Upon
recognizing an interrupt, the hardware automatically stores the appropriate
program return address in a storage location reserved for the activated
interrupt state. This ensures that the software returns to the interrupted
program after interrupt processing.

With the return address stored, the hardware deactivates the interrupt
system and transfers tcontrol to an interrupt handler program that begins at
the address specified for that interrupt state. The program thus entered
stores all registers (including the interrupt mask register and overflow) in
addresses reserved for the interrupt state. The interrupt mask register is
then loaded with a mask to be used while in this interrupt state, with a one
in the bit position indicating interrupt lines with higher priority than the
interript state being processed. The program then saves the current
software prioritv level, sets the new software level, activates the
interrupt system, and processes the interrupt.

During such interrupt processing, an interrupt line with higher priority may
interrupt. However, such interrupts also cause storage of return address
links to permit sequential interrupt processing according to priority level
with eventual return through the return addresses to the mainstream computer
program.,

When processing is completed at that level, the computer exits from an
interrupt state by inhibiting interrupts, restoring registers to their
pre-interrupt states, and executing the exit interrupt state command (EXI).
This command retrieves the return address stored when the interrupt state
was entered. Control is transferred to the return address and the interrupt
system is again activated.

60474500 A 4-13

Interrupt Priority

Interrupt priority is under control of the computer program. Priority is
established by an interrupt mask for each interrupt state that enables all
higher priority interrupts and disables all lower priority interrupts. When
an interrupt state is entered, the mask for that state is placed in the mask
register. Bit 0 of the mask register corresponds to interrupt state 00, bit
1 corresponds to interrupt state 01, etc. A bit that is set means that the
corresponding interrupt state has a higher priority than the interrupt state
to which the mask belongs. Thus, there can be as many as 17 levels of
priority.

NOTE

Priority of any interrupt state can be changed during program
execution.

Standard subroutines are provided for servicing the interrupt mask. These
subroutines are as follows:

Set Interrupt Mask

Reload Interrupt Mask

Perform a logical AND with the mask
Perform a logical OR with the mask

PBSMASK - SET INTERRUPT MASK

This routine loads a specified interrupt mask value into the M register to
become the new interrupt mask. The calling sequence is

PBSMASK (parm)
Parm is a value parameter specifying the new interrupt mask value to be
loaded into the M register. The resultant mask becomes the new mask value
in the M register.

PBAMASK -~ AND INTERRUPT MASK (AND PBLMASK)

PBAMASK, in conjunction with PBLMASK, is used to selectively disable and
enable one or more software interrupt levels. The calling sequence is

PBAMASK (parm)
Parm is a value parameter specifying the value to be logically ANDed with
the current interrupt mask.
PBOMASK - OR INTERRUPT MASK
PBOMASK employs a logical OR function to combine a given interrupt mask with
the current mask in the M register, the result becoming the new interrupt
mask value in the M register. The calling sequence is

PBOMASK (parm)

Parm is a value parameter specifying the mask value to OR with the current
interrupt mask.

4-14 60474500 A

User Interface

Because each interrupt handler is an independent program, there are no
specific user interfaces. However, pertinent information is necessary to
enable modification of, and additions to, the interrupt handlers.

An array contains interrupt masks for the 16 interrupt states. To access a
particular interrupt mask, use the interrupt state number as an index.
LEVELNO is the global variable where the current software priority level is
saved.

Table 4-2 lists the 16 interrupt states, gives the value for the delta field
for its exit instruction, the storage location for its return address, and
the location of the first instruction of the interrupt handler program.
Current interrupt assignments and their associated software priority are
listed in table 4-3. The seventeenth state (no interrupt line associated)
is the OPS level.

TABLE 4-2. INTERRUPT STATE DEFINITIONS (PBINTRAPS)

Interrupt Eiignlngigc_ ngaﬁiiﬂrgf Firgzc?zéggugiion
State Field Value Address of Interrupt

Handler Program
00 00 0100 0101
01 04 0104 0105
02 08 0108 0109
03 oc olocC 010D
04 10 0110 0111
05 ' 14 0114 0115
06 18 0118 0119
07 1c 0l1cC 011D
08 20 0120 0121
09 24 0124 0125
10 28 0128 0129
11 2C 0l2C 012D
12 30 0130 0131
13 34 0134 0135
14 38 0138 0139
15 3C 013C 013D

60474500 A 4-15

TABLE 4-3. INTERRUPT ASSIGNMENTS
\

In;?;;uPt g?fg??i; Interrupt Description H;ggier

0 Pl Memory parity, program protect,
power failure, software breakpoint PBLNOO

1 P6 NPU consale PBLNO1
2 P2 Multiplex loop error (MLIA) PBLNO2
3 P3 Multiplex subsystem - Level 2 PBLNO3
4
5 p7 Coupler 2 PBLNOS
6 p7 Coupler 1 PBLNOG6
7 P8 Spare
8 P9 Real-time clock | PBLNOS
10 P11l Spare
11 P12 Spare
12 P13 ODD input parallel PBLNOC
13 P14 Input line frame received (MLIA) PBLNOD
15 -— Macro breakpoint PBLNOF

MICROINTERRUPTS

Three microinterrupts are also serviced.

The output data processor processes the output data demand (ODD)
interrupt that each communications line adapter generates to indicate
that it is ready to output another character. The output data
processor (part of the multiplex subsystem) gets the next character
from the appropriate line-oriented output buffer and puts the
character on the output loop. The requesting communications line
adapter picks the character from the loop and transmits it.

The input data processor processes the interrupt produced when the
entry of either a data character or communications line adapter
status into the circular input buffer is completed. The input data
processor (also part of the multiplex subsystem) gets the next
character from the appropriate line-oriented output buffer and puts
the character on the output loop. The requesting communications line
adapter picks the character from the loop and transmits it.

60474500 A

) The input data processor processes the interrupt producued when the
entry of either a data character or communicatons line adapter status
into the circular input buffer is completed. The input data
processor (also part of the multiplex subsystem) uses the designated
input state program to demultiplex the character into the appropriate
line-oriented input buffer.

° The timing services firmware processes the 3.3-millisecond clock
interrupt, which is used as the time base for all timed NPU functions.

PASCAL GLOBALS

CCP provides a number of PASCAL globals, frequently in the form of fields
embedded in tables. Appendix J shows the tabular form of the principal data
structures and describes the fields. A complete listing of the CCP PASCAL
globals is in an MPEDIT listing.

STANDARD SUBROUTINES

Standard subroutines are a miscellaneous group of support routines which
perform the following tasks.

Convert and handle numbers

Maintain paging registers

Perform block functions

Set or clear protect bit

Perform miscellaneous other tasks

Table 4-4 lists these standard subroutines. Some of these frequently used
routines are written in macroassembly language rather than in PASCAL.
CALLING MACROASSEMBLY LANGUAGE PROGRAMS FROM PASCAL PROGRAMS

A procedure call to a macroassembly source code program from a PASCAL-coded

program is the same as a call to any other PASCAL program. The same calling
sequence code is generated, that is:

RTJ program
ADC parml
ADC parmn

A macroassembly program handles parameters as PASCAL parameters. To treat a
parameter as a value parameter, the user loads the contents of the parameter
and stores it locally and then passes the address of the store location to
the called program. To treat a parameter as a variable parameter, the user
loads the address of the parameter and uses this as a pointer. Packed
record parameters that are fields less than full word length are unpacked
into a temporary word and the address of the temporary word is passed to the
called program.

60474500 A 4-17

TABLE 4-4. STANDARD SUBROUTINES
Subroutine o Type
Name Description Type** | Lanquaae* Checking
Defeated
PBCLR Clear block of main memory NI PP Yes
PBCLRPROT Clear protect bit NI MA Yes
PBCOMP Compare two blocks NI MA Yes
PBFILEl Load/display file 1 0 MA Yes
PBFMAD Convert from ASCII to binarvy R PF No
PBFMAH Convert from ASCII to birary R PF Nc
PBGETPAGEX Reads page register from
specified bank NI MA Yes
PBHALT System halt NI PP Yes
PBILL Illegal call - passes to TIP
for CCP variants NI PP Yes
PBLOAD Load a canned message R PP Yes
PBMAX Get max of 2 numbers NI PF No
PBMEMBER Test ASCII set membership NI PF No
PBMIN Get min of 2 numbers _ NI PF No
PBPSWITCH Loads page registers 30 and 31 NI MA Yes
PBPUTPAGE Writes page registers to either
bank NI MA Yes
PBRDPAGE Reads dynamic page register NI MA Yes
PBSETPROT Set protect bit (o] MA Yes
PBSTPMODE Sets page mode NI MA Yes
PBTOAD Convert to ASCII decimal R PP No
PBTOAH Convert to ASCII hexadecimal R PP No
PB18ADD Adds to 18-bit address (paginag) R PP No
PB18BITS 18-bit address functions (paging) R PP No
PB18COMP Compares two 18-bit addresses
(paging) R PP No
TOTIME Programs execution timer R PP No
TOSTART Starts program execution timer R PP No
TOSTOP Stops program execution timer R PP No
**NI = Noninterruptable *pp = PASCALL procedure
O = OPS level only PF = PASCAL function
R = re-entrant MA = Macroassembler
4-18 60474500 A

A functional call to a macroassembly program differs in that a PASCAL
forward reference describing the calling sequence must appear before all
function calls in the source code so that type-checking on the function
return value can be performed.

Defeating Type-Checking in PASCAL Procedure Calls

The PASCAL compiler is & one-pass compiler. When it encounters a procedure
call in source code, it may or may not have processed the calling sequence
of the called program. If the calling sequence has been processed, all
parameters of the user's procedure are error checked. The type of each
parameter corresponds to the type specified in the calling sequence and the
number of parameters must be the same. No expressions and no fields of less
than a word in length in a packed record can be variable parameters.

If the calling sequence of a program has not been processed when a call to
it is encountered, the PASCAL compiler generates a subroutine jump to an
external symbol. The standard calling sequence is then generated; however,
no error checking is done on the parameters. This situation defeats
type-checking in the procedure call.

If used carefully, defeating type-checking can be a useful technique. For
example, arrays with the same element types but of different lengths are
treated as different types by PASCAL. Therefore, any program needing
variable length array input as a variable parameter must defeat
type-checking. Ramifications of defeating type-checking are as follows:

) All calls from PASCAL programs to macroassembly procedures
automatically defeat type-checking unless defined as FORWARD.

® PASCAL and macroassembly functions cannot defeat typechecking.

HANDLING ROUTINES

Seven handling routines for number conversion are listed below and described
in the following paragraphs,

) PBFMAD - converts from ASCII decimal to binary
® PBFMAH -~ converts ASCII hexadecimal to binary
o PBMAX - finds larger of two numbers

® PBMEMBER - tests number to find whether it is a member of the user
defined subset of ASCII code

° PBMIN - finds smaller of two numbers
e PBTOAD - converts binary to ASCII decimal

) PBTOAH - converts binary to ASCII hexadecimal

60474500 A 4-19

PBFMAD — Converts from ASCIl Decimal to Binary

PBFMAD converts up to five ASCII decimal characters in a buffer into binary
number contained in one 16-bit word. The calling sequence is

PBFMAD (parml, parm2, parm3).

Parml is integer type; the converted word is returned in parml. Parm2 is a
pointer specifying the buffer address where the decimal digits to be
converted are located. Parm3 is an integer variable specifying the index
where the first decimal digit to be converted is located within the buffer.

PBFMAD is a Boolean function. If PBFMAD is true, the conversion was
successful; otherwise, there was either bad data or a bad index.

PBFMAH — Converts from ASCIlI Hexadecimal to Binary

PBFMAH converts up to four ASCII hexadecimal characters in a buffer to a
binary number stored in one 16-bit word. The calling sequence is

PBFMAH (parml, parm2, parm3).

Parml is a variable parameter of type BOOVERLAY; the converted word is
returned in parml. Parm2 is a pointer to the buffer address where the
hexadecimal characters to be converted are located. Parm3 is an integer
parameter specifying the index where the first hexadecimal character to be
converted is located within the buffer.

Like PBFMAD, PBFMAH is a Boolean function. If true, PBFMAH indicates the
conversion was successful. Otherwise, there was either bad data or a bad
start/stop index.

PBMAX — Funds the Larger of Two Numbers

PBMAX is a function that returns the larger (maximum) of two given numbers.
The calling sequence is

PBMAX (parml, parm2).

Parml and parm2 are integers to be compared. The larger of parml and parm2
is returned by PBMAX.

PBMEMBER — Tests ASCIl Set Membership

PBMEMBER determines whether or not a given ASCII character is a member of a
user-defined set of ASCII characters. PBMEMBER overcomes the 255X PASCAL
restriction of having one-word, l6-element sets by accessing an array of
one-word sets. A character is broken up for testing by the following format:

7 6 4 3 0

Index into Element number
array of sets in set

4-20 60474500 A

In an array of type JSACIISET, 128 bits are reserved (one for each possible
ASCII character), where JSASCIISET = array (0..7) of SETWORD. Characters
are located in the set by bit number; for instance, a blank (2031¢) is bit
number 20316. Bits of the JSASCIISET array are numbered as follows:

Word 0 | Word 1 | Word 2 | Word 3 | Word 4 | Word 5 | Word 6 | Word 7|
F 0 1F 10 2F 20 3F 30 4F 40 G5F 50 6F 60 7F 70

Bit Numbers (hexadecimal)

Therefore, the value initialization for testing hexadecimal characters is

var JSHEXSET: JSACIISET;

value JSHEXSET = (0, 0, 0, 3Fi16.
———
digits 0-9

7E1¢6, 0, 0, 0);

characters A-F

The calling sequence is

PBMEMBER (parml, parm2).
PARM1 is a value parameter of type BOOVERLAY containing the character to
test. Parm2 is a variable parameter of type JSASCIISET and is the set to

test parml for membership. PBMEMBER is a Boolean function; it returns a
true value if the character is in the set and a false value otherwise.

PBMIN — Funds the Smaller of Two Numbers

PBMIN is a function that returns the smaller (minimum) of two given
numbers. The calling segquence is

PBMIN (parml, parm2).

Parml and parm2 are integer value parameters. The smaller number of parml
and parm2 is returned by PBMIN.

PBTOAD — Converts Binary to ASCIl Decimal
PBTOAD converts a binary number contained in one 16-bit word to as many as

five ASCII decimal characters. Leading zeros are suppressed. The converted
digits are stored in a specified position in a buffer, followed by a blank.

The calling sequence is

PBTOAD (parml, parm2, parm3, parm4).

60474500 A

Parml is an integer containing the word to be converted; parm2 is a pointer
to the buffer that stores the converted ASCII digits. Parm3 and parm4 are
integers specifying the start and stop indices for storing the converted
ASCII digits in the buffer. The JMCNVTO (convert to ASCII) system table is
used by this routine.

PBTOAH — Converts Binary to ASCIlI Hexadecimal

PBTOAH converts a binary number contained in one 16-bit word into four ASCII
hexadecimal characters. The converted characters are stored in a specified
position in a buffer, followed by a blank. The calling sequence is

PBTOAH (parml, parm2, parm3, parmé)
Parml is a hexadecimal value and contains the word to be converted. Parm2
is a pointer to the buffer that stores the converted hexadecimal
characters. Parm3 and parm4 are integers specifying the start and stop

indices for storing the characters in the buffer. The SMCNVTO (convert to
ASCII) system table is used by this routine.

MAINTAINING PAGING REGISTERS

Five subroutines maintain the paging address system for an NPU with more
than 65K words of main memory. (The maximum allowable address is 3FFFFjg
and requires 18 bits.) Three other subroutines allow arithmetic and
functional operations on 18-bit paging type addresses.

PBSTPMODE — Sets Paging Mode
PBSTPMODE sets the page mode for one of the three possible types of
operation: no paging, paging with bank 0 page registers, or paging with
bank 1 page registers. Calling sequence is
PBSTPMODE (parm)

Parm is the input index:

0 - use page mode 0; bank 0 registers

1 - use page mode 1l; bank 1 registers

2 - absolute; no paging
PBPSWITCH — Performs Page Switching

PBPSWITCH loads the two dynamic page registers (30 and 31) using the input
specified page register base value. Calling sequence is

PBPSWITCH (parm)
Parm is the page register base value for the program to be executed

(programs must execute within a single 2K-word page). Output of the
subroutine is that the dynamic paging registers are ready for use.

4-22 60474500 A

PBRDPGE — Reads Dynamic Page Register

PBRDPGE reads the contents of the dynamic page register (30) and returns the
base address in the register to the requestor. Calling sequence is

PBRDPGE

There are no input parameters.

PBPUTPAGE — Write Specified Page Register

PBPUTPAGE loads a specified page register (number and bank) with a specified
value. Calling sequence is

PBPUTPAGE (parml, parm2)

Parml conteins the page number; a bank flag uses the leftmost bit (flag = 0
indicates bank 0; flag = 1 indicates bank 1). Parm2 is the 9-bit value to
be loaded in the designated register. Upon return, the specified page
register is loaded.

PBGETPAGE — Reads Specified Page Register

PBGETPAGE reads th contents of the specified page reglster and returns them
to the user. Calling sequence is

PBGETPAGE (parml, parm2)
Parml designates the number of the register and uses the leftmost bit as a

bank flag (flag = 0 indicates bank 0; flag = 1 indicates bank 1). Parm2 is
the location used to return the page register contents to the caller.

PB18ADD — Add Bit Addresses

PB18ADD adds two 18-bit addresses toaether. Format of an 18-bit address is
as follows:

Word 1 2
lower 16 bits

15

upper 2 bits
The calling sequence is
PB18ADD (parml, parm2)

Parml and parm2 are the two addresses to be added in BO18RITS format.
Output is the single 18-bit address.

60474500 A 4-23

PB18BITS — 18-Bit Address Functions

PB18BITS performs one of five possible functions:

Stores a number into an 18-bit address

Reads the specified 18-bit address

Clears the protect bit in an 18-bit address
Sets the protect bit in an 18-bit address
Forms an 18-bit address from a 17-bit address

The calling sequence is
PB18BITS (parml, parm2, parm3)
Parml is an 18-bit address, parm2 is the read/store word address and parm3

specifies the function to be performed. The output is a properly performed
function.

PB18COMP — Compares Two 18-Bit Addresses

PB18COMP makes a comparison between two 18-bit addresses. The calling
sequence is

PB18COMP (parml, parm2, parm3)
Parml is the A address, and parm3 is the B address. Parm2 specifies the
type of comparison: A COMP B, where COMP is one of =, #, ’ , Or

14
The output is a Boclean function: true if A COMP Bl; false if any
other condition exists.

BLOCK FUNCTIONS
Two standard block function subroutines are provided: PBCLR clears the
contents of a block, and PBCOMP compares the contents of two blocks.

PBCLR — Clears a Block of Main Memory

This subroutine is used to clear any block-sized area in mair memory.
Calling sequence is

PBCLR (parml, parm2)
Parml is the starting address of the bleck to be cleared; parm2 is the

number of consecutive words to be zeroced. Output is a cleared block of
memory.

PBCOMP — Compares Two Equal Length Blocks

After block comparison, a Boolean answer (1 represents true, 1, false) is
returned to the caller. The calling sequence is

PBCOMP (parml, parm2, parm3)

4-24 60474500 A

Parml and parm2 are the starting address of the two blocks to be compared;
parm3 is the number of words compared in each block. Output is the BRoolean
true-false function, which depends on whether the blocks had identical
contents.

SET/CLEAR PROTECT BITS
The protect bit is bit 17 of the main memory word. It cannot be used for
data, but it can be used to deny unprotected programs access to the word.

The bit (as well as the parity bit) is dropped by most interregister
transfers.

PBSETPROT — Set Protect Bit
PBSETPROT sets the protect bit at a specified address. Calling sequence is

PBSETPROT (parm)

Parm is the address of the protect bit to be set.

PBCLRPOT — Clear Protect Bit

PBCLRPOT clears the protect bit at the specified address. Calling sequence
is

PBCLRPOT (parm)

Parm is the address at which the protect bit is to be cleared.

MISCELLANEOUS SUBROUTINES
PBFILE1 — Load/Display File 1

PBFILE]l consists of two routines: DPBEF (load file 1) and PBDF (display file
1). Both programs execute specified firmware sequences to perform the load
or display operations. Because of formware timing constraints, a maximum of
12 transfers per call can be specified during on-line operation. During
off-line operation, as many as 256 transfers can be specified.

PBEF transfers the contents of memory to file 1 starting at a specified
register. Calling sequence is

PBEF (parml, parm2)
Parml is a value paramter formatted as follows:

15 7 0
Number of words to load First File 1 register to load

To load all 256 registers, set parml to 0. Parm2 is a value parameter
specifying the address of the first memory location to transfer.

60474500 A 4-25

PBDF transfers the contents of file 1, starting at reaister n, to memory.
Calling sequence is

PBDF (parml, parm2)
Parml is a value parameter formatted as follows:

15 7 0

First File 1 register
to transfer

Number of words to move

To display all 256 reqisters, set parml to 0. Parm2 is a value parameter
specifying the memory address to receive the first register transfer.
PBHALT — Stops the NPU

PBHALT stops the system after a serious error has occurred. The following
information is saved, starting in consecutive words at address 3034.

) Return address of program calling PBHALT, or a value relating to a
halt code

+
® Halt code (indicates a reason for the halt)
) Software registers
Calling sequence is

PBHALT (parm)

Parm is an integer value parameter specifying the halt code. The halt
message printed at the local console is

*HALT XXXXX YYVY
XXXXX is the return address of the program calling PBHALT and yyyy is the
hexadecimal halt code or a value relating to the halt code.
PBILL — lllegal Calls

This subroutine is used to stop the NPU when calls are made to TIPs that are
not a part of the CCP system. Calling sequence is

PBILL

PBILL calls PBHALT with the halt code for an illegal TIP call.

PBLOAD — Load a User-Defined Message

The PBLOAD module loads a user-defined message into a buffer starting at the
designated character position. The calling sequence is

PBLOAD (parml, parm2, parm3, parmé)

26 60474500 A

'S
I

Parml points to the location where the user-defined message is to be loaded
and parm2 specifies the text of the message to be loaded. Parm3 specifies
the starting position in the buffer of the first character in the message
and parm4 specifies the position of the last data character in the message
after it is loaded in the buffer. Parm4 overrides the message length.
Example:

VAR Buffer: BOBUFPTR: (assume a 32-word buffer)
MSG : JOML1O:
Value MSG = (% 0123456789] =);

PBLOAD (BUFFER, MSG, J1FRSTCHAR, J1LST32);
NOTE

All user-defined messages must have a right bracket () as
the end of message delimiter unless parm3 minus parm4 is less
than the message length.

PROGRAM EXECUTION TIMERS

Three subroutines (TOTIME, TOSTART and TOSTOP) provide execution timing
andlysis for programs. TOSTART sets a status mode (flag bit 206) which can
be used by an external hardware instrument to start a timer. TOSTOP resets
the status bit. TOTIME measures the elapsed time. Output is the total
execution time as measured by an exterral hardware instrument.

CONSOLE SUPPORT

This group of modules provides the terminal interface package (TIP) for the
NPU console. Conscle devices communicate with the NPU via the A/Q register
interface, rather than through the multiplex subsystem interface. Two
categories of subroutines are discussed in the following paragraphs.

[) General peripheral processing: these modules assign device, start,
read, and write,

) Console processing: this set of routines forms the console TIP.

GENERAL PERIPHERAL PROCESSING

These subroutines provide for general peripheral functions.

° Starting I/0 and (if necessary) assigning a device. Two routines
perform these services: PBIOSER and PBSTARTIO.

PBIOSERV reformats the logical request packet (LRP) from the user
into a physical request packet (PRP). A device code is assigned and
the subroutine tests whether there are too many messages awaiting
delivery. If so, the new message is discarded. Then PBSTARTIO is
called.

60474500 A 4-27

PBSTARTIO either starts the I/0, using the LRP packet from PBIOSERV,
or it queues the logical request packet to the appropriate driver,
using a worklist entry. If immediate I/0 is requested but cannot be
accomplished, the request is rejected. This subroutine sets up the
device controller table parameters and issues the I/0 start command.
The individual driver interrupt handler then takes control.

° Testing whether device is ready, PBTCSTIORDY. Input to this routine
is the device number. If the device status indicates it is ready for
I/0, a ready indication is returned to the caller.

® Off-line quick output, PBQUICKIO. This permits one buffer (a short
message) to be output while the NPU is in off-line mode (such as
initialization breakpoint or during halt operations). As input, the
caller specifies the device to be used and the location of the
message to be sent.

) Timeout: PBIOTMP and PBTMEOUT are discussed in this section with
other timing services.

° Ready and write a character to a peripheral device. PBWRITE and
PBREAD handle the single character transfers. Characters passing
over the A/Q channel are in unpacked format, right justified in the A
register. (Q register usually carries peripheral addressing
information.)

PBWRITE writes data or director functions to a local peripheral device. The
subroutine uses the macroassembler routine PBPUTCHAR, to write the
character. Attempts are made to write until a retry threshold is reached.
At that time, the attempts cease and the reject error is counted by the
reject counter. This can cause a peripheral device timeout. In any event,
Q and A values are saved for debugging.

PBREAD reads data or status from a peripheral device. The routine uses the
macroassembler routine, PTGETCHAR, to read the character until a retry
threshold is reached. At that time, the attempts cease and a reject error
is added to the count in reject counter. This can cause a peripheral device
timeout. In any event, Q0 and A values are saved for debugging.

e Common driver completion PBDRCOMPL. This routine uses a completion
code in the logical request packet. It requires device
identification and a physical request packet address as input.
Completion actions can include one or more of the following:

- Releasing message output buffers

- Changing I/O request flags

- Starting another message transfer

- Releasing current messages physical request packet

CONSOLE SUPPORT SERVICES

For certain applications, a local console is used as a communications
supervisory position. Two console functions can be selectively activated or
deactivated by the console operator (or at build time). These functions are
orderwire and diagnostics. When one or both of these functions are
transferred to a remote console, the corresponding functions must be
deactivated at the local console,

4-28 60474500 A

The orderwire function is employed for both input and output traffic
messages. The diagnostic function is used for input of diagnostic commands
and output of hardware diagnostic messages.

CONSOLE WORKLIST ENTRY

A type BOCHWL worklist entry is made by the internal process output
procedure for every message placed in an empty console queue. Such entry
contains the console TCB address.

CONSOLE CONTROL MESSAGES

All console control messages begin with a slash (/) and end with an
end-of-transmission code, control D (this consists of pressing the CONTROL
and D keys simultaneously). Table 4-5 contains console control messages and
the results of each.

Several routines consititute or support the console TIP.

) PBDISPLAY queues a message of 300 characters or less for output on
the local console. The input parameter is the location of the
message to display. This routine is a part of the base and is not
technically a part of the console TIP. The routine could be used to
support other devices.

NOTE
Every canned message must have a right bracket ().
Canned messages use 32-word buffers.
PBDISPLAY uses the PBLOA and PBIOSERV subroutines to load a canned message
and to provide I/O services. PBDISPLAY also uses system structure JCOPSLRP
(OPS-level console legical request packet).
) PBOFMT formats the output for the console. Characters are converted
to hexadecimal and stored in a new buffer chain.

TABLE 4-5. NPU CONSOLE CONTROL COMMANDS

Command Function
/SUP Puts console in supervisory mode
/ORD Puts console in orderwire (diagnostic) mode
/OVL Puts NPU in overlay mode
/REQ Message interrupted by manual interrupt is requeued to console
/CAN Message interrupted by manual interrupt is cancelled
/MTQ Flushes console queue
égT} Controls routing of service messages (input, output, and
LOC locally generated messages)
MSNOP Generates message to NOP

60474500 A 4-29

® PBTTYSETMODE switches the console (keyboard/display or
teletypewriter) between read and write modes. If the console is in
TUP mode a TUP message flag is set. If the output interrupt flag is
already set, the subroutine restarts the message output. Otherwise,
the message is sent to the console primary output device. A 5-minute
timeout period is set when entering read mode.

® PBTTYINT is the interrupt handler for the console. Interrupts clear
the I/0 timer. Action depends on the interrupt type, such as one of
the following:

Type Action
spurious count as spurious interrupt
alarm clear console
manual change mode
data (read) read character
data (write) write character
other clear interrupt

This interrupt handler is composed of several local subroutines.

) PBSUPMSG decodes and executes supervisory (/SUP) input messages from
the NPU console. The subroutine routes to the NPU console input
service messages (SMs), output SMs, locally generated SMs, and
messages that are directed to the network operator (NOP). An error
message is generated if the messages cannot be routed.

) PBIFMT formats input messages from the console. Supervisory messages
(/SUP) are specially flagged. Messages are converted from
hexadecimal and the buffer headers are prepared. conversion takes
place in a new chain of buffers. This subroutine uses other local
internal subroutines. Otherwise the output is a message in normal
network block protocol. If this is a /SUP message, the action
directed by the /SUP message has been performed.

° PBQCONSOLE sets a format flag for the console format (message
heading) and then calls PBQIBLK to queue the message to the console
TCB. This routine is called from PBSWITCH which detects that the
message is to be sent to the console, rather than upline to the host,
or that the message is to be sent both upline and to the console.

4-30 60474500 A

MULTIPLEX SUBSYSTEM ' 5

B .

The multiplex subsystem contains the hardware, microprograms, and software
elements necessary to provide data and control paths for information
interchange between the various protocol handlers (TIPs and LIP) and all
communications lines. Design of the subsystem is based on the multiplex
loop concept, which is a demand-driven system for gathering input data and
status from the communications lines, and distributing output data and
control information to the communications lines. All of this is done on a
real-time basis. Figure 5-1 shows the basic elements of the multiplex
subsystem.

A major purpose of the multiplex subsystem is to transfer the task of
processing lines according to physical characteristics from the TIPs to the
multiplex subsystem programs. The TIPS need only command the multiplex
subsystem according to the logical characteristics of a line; the physical
characteristics are handled by the multiplex subsystem and are transparent
to the TIPs.

Line-oriented input and output buffers provide temporary storage for data.
The input data is placed in the circular input buffer (CIB) from which it is
later extracted (demultiplexed), transformed to IVT/BVT ASCII format by the
appropriate TIP and moved into a line-oriented input buffer. The part of
the TIP that does this (called input state programs) is controlled by the
multiplex subsystem. The OPS-level TIP informs the command driver where the
programs are located; the multiplex subsystem's input processor controls
execution of the input state programs. For trunks, the frames are removed
from the block formatted data, and the blocks are reconstituted.

Output data is picked by the output processor from an output data buffer.
The address of this buffer and other transfer information is supplied by the
OPS-level TIP to the command driver. Data is in terminal format or (for LIP
frames only) in downline frame format.

The multiplex subsystem is event-driven by interrupts: an output data
demand (ODD) for the next character of output data, or the input line frame
received interrupt which indicates that data (and possibly CLA status) is
contained in the CIB ready for demultiplexing.

The interrupts are handled with global information stored in various

tables. The subsystem processes data on a character-by-character basis
while user programs (TIPs) process data on a message or block basis.
Circuit, modem, and subsystem status is detected and transferred to the TIPs
using OPS-level worklist calls. Control information is received from the
TIPs in the form of a call to the command driver with an attached command
packet. This command packet is used to set up the multiplex LCB (MLCB),
which is the principal table used to control the transfer.

HARDWARE COMPONENTS

The multiplex subsystem includes the multiplex loop interface adapter
(MLIA), loop multiplexers, and communications line adapters (CLAs).

60474500 A 5~-1

wo3sdsqns x9TdTI3ITNW dY3} JO sjuswald Ootsed °*[-§ 2iInb1g

wiw WVHOOUd JOVAYILNI MNNIT — din
WYHOOHd 3IVIHILNI TVNIWHIL — dIL
¥31dvav 3NIT SNOLLVIINNWWOD — V10

60474500 A

- W3LSASENS XIVWdILINW \m
7 1l _
(> V12)
[—> SH344N9 AHOWIW
L : 1
L d 43IX3d) H0SS3204d
° —ILINW viva 1Ndino
d001 GNV ‘HOSS320Hd o
<«—{ v10 ViVa 1NdNI ‘H3IAING YO
GNVIANOD S3AN1INI al
SHNNYL ° (VITW) |
HO SaNI o S4001 d3ldvav JHYMLLOS
SNOILVYD XINdILINN 30V4H3LINI o
- ANV SKVYHO
INNWWOD L 4001)
v X3dILTINW —OYdOHIIN °
<« 11 W3LSASENS
- X3dILTINW
p. 43IX3d
=iLNN
b doon
[]
4
! HOSS3204Hd SNOILLVIINNWWOD
4
d001 LNd1No e
d0O7T 1NdNI

5-2

MULTIPLEX LOOP INTERFACE ADAPTER

The MLIA provides hardware interface between the multiplex input/output
loops and the multiplex subsystem software. The major functions are as
follows:

) Management of the I/O loops

° Input data buffering - compensates for the difference in rate at
which characters are removed from the input loops and the rate at
which they are stored in the main memory

® Output data demand (ODD) detection and buffering
) Multiplex loop error detection

® Generation of interrupts for the multiplex subsystem microprograms
and software for functions such as:

~— Output data demand received
~ Line frame received
- Loop error conditions

LOOP MULTIPLEXERS

Each loop multiplexer provides an interface between a group of as many as 32
CLAs and the demand-driven multiplex loop. Its primary function is to
receive parallel data from the CLAs and present it to the serial input loop
in the loop cell format. Conversely, it assembles serial data in the loop
cell format from the output loop and presents it to the CLAs in parallel
form.

COMMUNICATIONS LINE ADAPTERS (CLA)

The CLAs provide the interface between the loop multiplexers and the
communications lines. The primary functions of the CLAs are to assemble
serial data from the communications line into parallel data and present this
data to the loop multiplexer or, conversely, to disassemble parallel data
from the loop multiplexer and present it in serial form to the
communications line. The CLA operating characteristics can be altered under
program control for such functions as signal rate, character length, parity,
and stop bit duration.

SYSTEM AND USER INTERFACES

The system and user interfaces are described in detail in the following
paragraphs to promote a better understanding of the internal multiplex
subsystem interfaces.

SYSTEM INTERFACES

A TIP or a LIP is a multilevel program that executes at three processing
levels:

60474500 A 5-3

° Multiplex level 1 (firmware or microcode level)
® Multiplex level 2 (macrocode level)

° OPS level (processing to satisfy network protocol such as service
message handling and timing)

Control passes to the TIP or multiplex control OPS level by use of worklist
entries. Direct calls are used for the other two levels. The TIP or LIP
must handle the worklist entry according to the program's current processing
state. State programs operate on firmware levels. State instructions
provide a type of reentrant processing where the states are related to entry
points, which are in turn related to the various stages of processing a
message. Each TIP or LIP decision logic that switches processing to the
entry point determined by a combination of the worklist and the program
state.

Figure 5-2 shows the multiplex level 2 worklist codes and the programs
responsible for handling and generating these codes. Table 5-1 summarizes
workcode functions for level 2 and table 5-2 describes the workcode
functions for OPS level.

Multiplex Level 1 (Firmware)

This level of interface program processing handles all incoming characters
and status. Worklist entries generated by the input state programs are
directed to either multiplex level 2 or to OPS level for processing. For
preliminary handling of CLA status, states 0, 1, 2, and 3 are reserved to
handle special status, as follows:

° 0 is reserved for CLA status such as parity errors and data transfer
overruns.

) 1 is reserved for DCD dropped.
° 2 is used when a TIP uses too many system buffers.
° 3 is used when buffer threshold is reached.

CLA status is analyzed by Modem State Programs and status that indicates a
hard error is sent to level 2. For a two-wire line the transition of data
carrier detect signal can be used as a logical end of text (ETX); that is,
instead of generating a good block worklist entry, the input states wait for
data carrier not detected to generate a good block received. This
eliminates an extra worklist entry. The good block that is received is
issued to OPS level for processing. For more information, refer to section
12 and the State Programming Reference Manual (see preface).

Multiplex Level 2 (PMWOLP) -

This processing runs at the multiplex interrupt level. It is entered by
means of worklist entries received from the modem state programs, the
multiplex subsystem firmware, and the command driver. Processing at this
level is primarily of an error nature. Each interface program provides code
to process the workcodes at this level (MNOBT, MMCHOUT, MMFES, MMBREAR) plus
any of its own that are generated in level 1. For synchronous TIPs and
LIPs, no processing is required since the MMOBT entry is optional.

5-4 60474500 A

SUOTIEDTUNUWWOD ISTTHIOM XSTAIITNW JIT pue JIL °2-§ 2inbig

98E-W _ —
dI/dlL +— 15 40M TVNOILIO
_ dIV/dlL 4155 u0M TVNOILO _
=\ | |
HIAIUG _ ¥3IAING 1AJNT 3IVNINGIL _
anwo
awo »
_ 1N4INO 3LVNIWGIL _ 3
- - v
UX34—g5ggg 35— d10MNd < | EGFFITT] v
- }
— <
_ X3 4—gouug 30 ¢TOMWd [Hovoww W
< - 4 I
_ dI/diL 410MWd ~Taow !
diL AJLLON ,
- 410MWd
L, HHIAHVHOV
B01OHWSOV _ _ _ X
I G3LVNIWEIL W
I _ 1NdNI — ONINIAW
L » —_
301AH3S VWSOV _ z<w\.__u QAOWILWW
——
SO1WSOV _ mh%%\“_.‘“_ﬂu» _ NISNNWW
v
—p <
NIWSOV awo wouw3 35 J'OMWd K Taosnnww
_ AVl I AW SIIWIW FHNITAWN _
-
$S3004d d01s0v _ | SWVHDOUd
TYNHILNI -« -«— <
11x3 e SV101d +— dTOMWd Yy 5mn 31VIS
1noanoov _ _ W3Iaow
S30IAY3S _ 1IX3 < J10MINd < SWVHD0Hd
—p
oNWIL [Inoswiiov _ s¥344ng Q3Isv3lay _105ms_s_ 31V1IS
di/diL
~ EEMMOV == L MOV _ 013 ‘32079 avs o019 oooo_
(d1L) (30020HIVI) (IHVMWYIL)
13A31 SO | Z 13A31 XNW | L 93A31 xow

5-5

60474500 A

TABLE 5-1.

MULTIPLEX LEVEL 2 WORKLISTS

Workcode

Wor kcode to TIP/LIP Functions

MMCLAS - CLA status error, implies line error to et

MMUNSOD - Unsolicited output, implies hard error to
PMWOLP, which disables the line

MMUNSIN - Unsolicited input, implies hard line error to
PMWOLP, which disables the line

MMTIMODD - ODD timeout, implies hard line error to PMWOLP,
which disables the line

MMTIMRE - Modem response timeout, implies hard line error
to PMWOLP, which disables the line

MMOBT MMOBT Output block transmitted

MMBUTCH MMBUTCH Multiplex subsystem buffer threshold reached;
buffers released

MMCHOUT MMCHOUT 100~ms timeout

MMCAOR - CLA address out of range - not seen by IP

MMIFFO - Illegal lineframe format - not seen by IP

NMINEND AOHARDERR Input buffer terminated, response to PMWOLP
command for hard errors

MMFES - Framing error status, TIP causes command driver
to send delimiter to line (asynchronous lines)

MMBREAK - User break, TIP is called (asynchronous line)

+IP = appropriate interface program:

TIP or LIP

60474500 A

TABLE 5-2. TIP/LIP OPS LEVEL WORKLISTS

Workcode to TIP/LIP Description
AOWK1 Good block received from IP input states
AQWKn Other workcodes from IP input states
AOHARDERR Hard error detected from IP at level 2
AQTIMEOUT Line timeout from timing services
AOQUEOQOUT Output buffer queued to IP's TCB
AOSMEN Line enabled from service module
AOSMTCB TCB configured from service module
AQSMDA Disable line command from service module
AOSMDLTCB Delete TCB command from service module
AOSMRCTCB Reconfiqures TCB command from service module

INPUT STATE PROGRAM WORKLISTS

Input state program worklists from firmware level are passed directly to the
TIP or LIP at OPS level.

The primary workcode generated is the CLA status workcode. After the modem
state programs have analyzed the CLA status for soft errors (data carrier
detect dropped and others) and determined that this is not a soft error, the
input processor modem state program generates a CLA status worklist to this
processing level. The CLA status handler (PTCLAS) analyzes the status and
generates the appropriate CE error code. If a hard error is detected on the
line, PMWOLP terminates input and output over the line. Aall multiplex level
worklists for the line are discarded until a response from the terminate
input logic is received. At that time the TIP is sent an OPS-level

AOHARDERR worklist.

MULTIPLEX SUBSYSTEM FIRMWARE WORKLIST ENTRIES

The multiplex subsystem firmware generates nine worklists to the interrupt
level. These can be divided into three categories:

e Hard errors for unsolicited input or output, and timeouts for output
data demand or modem response.

60474500 A 5-7

) System notices that the output buffer has been transmitted, the
buffer threshold has been reached so no more buffers can be assigned,
or 100 ms have elapsed since the last input character was received.

° Multiplex loop errors that the CLA address is out of range or an
illegal line frame format was detected.

COMMAND DRIVER WORKLIST ENTRIES

The command driver generates worklist entries at the request of the
interface program. Two optional entries are generated: input terminated
and output terminated.

OPS Level

The OPS level portion of the interface program handles all line or terminal
polling, output block preparation, input block processing, service module
interface for configuring lines and terminals, and line error handling.
Worklists are generated to the interface processor by four different
programs: 1) interrupt programs multiplex level 1 and 2; 2) timing
services; 3) internal process; and 4) service module.

® Multiplex level 1 worklist normally indicates a good block has been
received on input. The block is passed to the point of interface
(POI) program and the interface program resumes its processing at the
initial entry point or at the saved entry point where processing was
suspended.

® Multiplex level 2 worklist indicates a hard error has occurred on the
line. Normally a line nonoperational service message is sent to the
host. Service on that line is discontinued until the host takes
continuation action.

® Timing services worklist is generated whenever the line control block
timer expires (BZLTIMER). It can be used as a means of delaying
service on a line or indicating a line failure (failure to respond).

) Internal process worklist indicates that output is queued to the
terminal control block (TCB) for this interface program. This is a
worklist for interface programs that stop processing when there is
nothing to do; it must therefore be restarted when the next output
arrives.

° The service module (SVM) maintains the interface between the host and
the interface program. SVM worklists indicate to the interface
program those lines and terminals that are to be configured or are to
be deleted from service,

USER INTERFACES

User interfaces to the multiplex subsystem can be divided into three
categories:

o Command driver interface (PBCOIN and PMCDRV). These modules command
communications to the multiplex subsystem and control data flow to
and from the communications lines. These include setting up the
hardware to start or stop transmissions.

5-8 60474500 A

° Common multiplex subroutines for TIPs are provided. These
subroutines allow the multiplex subsystem to communicate input events
to the user.

) State programs. PMCDRV sets up the operation and calls PMCOIN to
escape to the firmware. On the firmware level, the input state

programs provide processing on a character-by-character basis. State
programs and their OPS-level interfaces are described in section 12.

Command Driver Interface
The command driver calling sequence from the OPS level is

PBCOIN (parm)

where parm is the command packet (NKINCOM). The command driver calling
sequence from level 2 is

PMCDRV (parm)
where parm = NKINCOM is the name of the command packet. The general format

of a command packet which is used for most commands (NKCMD type) is shown in
figure 5-3.

WORD 15 7 0
0 Command Parameter
1 Line Number
2 Parameters
3 Parameters
4 Parameters
5 Parameters
6 Parameters
7 Parameters

Figure 5-3. Command Packet General Format

60474500 A 5-9

The following commands are available to the user for controlling the flow of
data to and from the communications lines:

) NKCLRL - Clear line

® NKINIL - Initialize line

® NKCONTROL - Control line

° NKENBL - Enable line

® NKINPT - Input

° NKDOUT - Direct output

® NKINOUT - Input after output
) NKENDIN - Terminate input

° NKENDOUT - Terminate output

° NKDISL - Disable line

® NKTURN - Turn line around (not used)
) NKSPECIAL - Diagnostic interface

Individual subroutines handle the various requests. PMCOIN is the interface
between the command driver and the firmware. PMCOIN can be used by other
software users to clear a CLA. If it is so used, the it must be followed by
a clear line command. Inputs to PMCOIN are the two global variables NGA and
NGQ that hold command and port information for use in the A and Q registers
by the firmware.

CLEAR LINE COMMAND
The clear line command (NKCLRL) causes the subsystem to clear (reset) all

line-oriented software and hardware (CLA) functions associated with the line
specified by the line number. The command format is as follows:

WORD 15 7 0
0 NKCMD NKLTYP
1 NKLINO

NRCMD -~ Command code (NKCLRL)
NKLINO - Line number, identifies port and subport

NKLTYP - Line type; specifies line-type entry; defines physical
characteristics of port, modem, and circuit type

INITIALIZE LINE COMMAND

The initialize line command (NKINIL) establishes the line type of the
specified port and places the line in a mode in which the subsystem monitors
and processes modem and circuit related status. Other line-related
functions, such as processing of input and output characters, are inhibited
while the line is in the initialize mode. The command format is as follows:

WORD 15 7 0
0 NKCMD NKLTYP
1 NKLINO
NKCMD = Command code (NKINIL)

NKLINO -~ Line number
NKITYP - Line type; specifies line-~type table entry

5-10 60474500 A

CONTROL COMMAND

The control command (NKCONTROL) serves a twofold purpose. It can define the
character transmission characteristics of a given line according to the
transmission characteristics key (NKTCKY) for input/output signaling rate,
character length, parity type, stop bit duration, and sync character. The
command can also specify up to five modem/circuit control functions, such as
echo, break, terminal busy, or resync. Such control functions are specified
in the optional fields of the command packet.

Generally, the command is used to initialize or alter the character
transmission characteristics of the line or to generate circuit control
functions. This command must not be issued before the initialize command.
The control command format is as shown in figure 5-4, Optional
modem/circuit functions are defined in table 5-3.

ENABLE LINE COMMAND (NKENBL)

The enable line command directs the subsystem to activate, as a function of
line type, the necessary modem signals to allow the local modem to connect
to the specified communications line. The command also conditions the
subsystem to monitor and analyze any changes in the modem status for signals
indicating that a line connect occurred. Character processing functions are
inhibited during the time the line is in the enable mode. The format for
the enable line command is shown in figure 5-5,.

WORD 15 14 7 6 0

0 NKCMD NKTCKY

1 NKLINO

2 Fl NKFUN1 F2 NKFUN2

3 F3 NKFUN3 F4 NKFUN4

4 F5 NKFUN5 NKZERO
NKCMD - Command code (NKCONTROL)
NKTCKY - Optional character transmission key. If nonzero,

references the character transmission characteristics table.

NKLINO - Line number
Fl thru F5 - Optional modem/circuit function; if the associated flag
and NKFUN1 (NKSRF1 - NKSRF5) is set, the function is to be

thru NKFUN5 implemented.

1l = Function to be implemented
0 = Function disabled
NKZERO - Delimits end of options. NKZERO is placed in the byte

following the last requested modem/circuit function; five
functions can be specified.

Figure 5-4. Control Command Format

60474500 A 5-11

WORD

NKCMD

NKTCLS

NKLINO

NKUOPS

NKIFCD

NKBLKL

NKSCHR

15 14 11 7 0
NKCMD NKTCLS
NKLINO
Not used
NKUOPS NKIFCD
Fl NKBLKL
Not used
NKSCHR

Command code (NKENBL)
Terminal class
Line number

Eight user flags (NKUOPl - NKUOP8) can be accessed either
individually or as an 8-bit field

First character displacement (FCD) of first buffer of input
block; optional FCD or zero. If zero, use value from the
terminal characteristics table (NJTECT)

NKNOXL, the code translate flag

translate

1
0 do not translate

Block length; optional block length or zero. 1If zero, use value
from NJTECT

Special character (optional character or 0)

Figure 5-~5. Enable Line Command Format

60474500 A

TABLE 5-3. OPTIONAL MODEM/CIRCUIT FUNCTIONS
Function Function
Mnemonic Provided Description
NOISR status’t Input status request
NORTS RTS Request to send
NOSRTS SRTS Secondary request to send (Supervisory Channel)
NOOM oM Originate mode/auxiliary modem control
NOLM LM Local mode/auxiliary modem control
NOLT LT Local test
NODTR DTR Data terminal ready
NOTB TB Terminal busy (line busy out)
NORSYN RSYN Resynchronize
NONSYN NSYN New sync
NOBREAK BREAK Send break
NODLM DLM Data line monitor
NOECHO ECHO Echoplex mode
NOLBT LBT Loopback test
NO ION ION Input on
NOOON OON Output on
NOISON ISON Input supervision on
NOPON PON Parity on
NOPSET PSET Parity set (1 = even, 0 = odd)
NOCLLS CLLS Character length (LSB)
NOCLMS CLMS Character length (MSB)

Tpulsed functions, provide momentary signal and need not be reset

60474500 A

INPUT COMMAND (NKINPT)

The input command directs the multiplex subsystem to initiate the processing
of data on the specified input line (i.e., turn on the input side of the
communications line adapter. The processing functions provided by the
subsystem are determined by the input processing state program index.
Additional information is passed by a pointer table address for the input
processing states. If this option is not used, the information is taken
from the terminal characteristics table (NJTECT). Parity is stripped for
normal processing or passed for test purposes. Format of the input command
is shown in figure 5-6.

OUTPUT COMMAND (NKDOUT)

The output command permits output messages to be directed to a specified

output line. Line, modem, and control functions, as defined in the line

type tables, are generated by the subsystem as a function of the physical
line requirements.

Output continues until the character specified by the last character
displacement is transmitted. At that point, the subsystem chains to the
next output buffer, if the chain address in the buffer is nonzero. Output
stops if the chain address is zero or if the suppress chaining flag
(BFSUPCHAIN) is set in the flag word of the first output buffer.

The subsystem generates an optional worklist entry for the user program for
each data block output by the subsystem. If the buffer output is the last
data buffer of a transmission block and line turnaround is required, 1) the
subsystem generates the proper modem control signals to turn the line
around, 2) monitors modem status for line turnaround, and 3) notifies the
appropriate terminal dependent subroutine that the line is ready for input.
Modem signals and modem status analysis functions are specified by the line
type tables.

Either the terminate output or disable command can also be used to terminate
output processing functions on a specified line. Receipt of either command
causes the subsystem to immediately cease all processing functions
associated with the specified line.

The format of the output command is as follows:

WORD 15 7 0
0 NKCMD Not used
1 NKLINO
2 NKOBP
NKCMD -~ Command code (NKDOUT)

Line number
Output buffer pointer

NKLINO
NKOBP

5-14 60474500 A

WORD

NKCMD
NKLINO

NKUOPS

Fl

F2

NKISTAI

F3

F4
NKBLKL

NKISPTA

NKSCHR

NKCNT1

NKCXLTA

60474500 A

[

NKCMD Not used
NKLINO
Not used

NKUOPS F1l|F2 NKISTAI

F3 | F4 NKBLKL

NKISPTA

NKSCHR NKCNT1
NKCXLTA

Command code (NKINPT)

Line number

Eight user flags (NKUOPl - NKUOP8). NKUOP1l is bit 15 in the
MLCB user flag field,...NKUOP8 is bit 8 in that field. NKUOPS
is moved into MLCB if NKMVB is 1.

NKMVB, move block of user flags into MLCB

NKRPRT, strip parity flag

1
0

strip parity
do not strip parity

Input state program index
NKNOXL, code translate flag

1
2

translate
do not translate

NKSCENBL, change special character flag
Block length. 1If nonzero, this replaces CC2 in the MPCB.

Pointer to input state program pointer table address. Optional
address or zero. If zero, use NJTECT value.

Special character, moved to MLCB if NKSCENBL flag is set.

Character count, moved into the CCl field of the MLCB if the
value is nonzero.

Code translation table address. If nonzero, this replaces the
current code translation table address in MLCB.

Figure 5-6. Input Command Format

INPUT AFTER OUTPUT (NKINOUT)

This command permits interactive terminals (such as a display/keyboard
combination) to be immediately ready to receive input data in response to a
message displayed at the terminal. An index to the input state process
table indicates the treatment of the returned data. The format for this
command is shown in figure 5-7.

TERMINATE INPUT COMMAND (NKENDIN)

This command enables the TIP to direct the multiplex subsystem to
immediately stop input processing functions on the specified line. All
input characters and buffers are discarded. The TIP program can, by issuing
an input command, direct the subsystem to resume input on the line.
Transmission line characteristics are not altered by the terminate input
command and therefore the TIP need not generate a control command. The
format for the terminate input command is shown in figure 5-8.

After processing the terminate input command, the subsystem optionally
generates a worklist entry to the TIP as specified in the worklist and
wor kcode.

TERMINATE OUTPUT COMMAND (NKENDOUT)

This command enables the TIP to direct the multiplex subsystem to terminate
output processing functions on the specified line immediately. After
processing the terminate command, an optional worklist entry is generated to
the TIP, using the specified worklist and workcode. This command is used
when the TIP interrupts an outgoing message for a higher priority message,
or when an abnormal line condition occurs. The format of the terminate
output command is shown in figure 5-9.

DISABLE LINE COMMAND (NKDISL)

The disable line command directs the multiplex subsystem to terminate all
processing functions of the specified line. Modem control signals are
generated to inhibit further exchange between the local modem and the
communications line. The subsystem also releases all data structures
defining the character processing functions for the line. To reactivate, a
control, initialize, and enable command, followed by either an input or
output command, must be issued. The format for the disable line command is
as follows:

WORD 15 7 0
0 NKCMD Not used
1l NKLINO

NKCMD - Command code (NKDISL)
NKLINO - Line Number

5-16 60474500 A

WORD

NKCMD
NKLINO
NKOBP

NKUOPS

Fl

F2

NKBLKL

F3

NKISTAI

NKISPTA

NKSCHR

NKCNT1

NKCXLTA

60474500 A

15 14 13 11 7 6 5 0

NKCMD Not used
NKLINO
NKOBP

NKUOPS Fl|F2 NKISTAI

F3 NKBLKL

NKISPTA

NKSCHR NKCNT1
NKCXLTA

Command code (NKINOUT)

Line number

Output buffer pointer

Eight user flags (NKUOPl1 - NKUOP8). NKUOPl is bit 15 in the
MLCB user flag word; NKUOP8 is bit 8 in that word. NKUOPS is
moved into MLCB if NKMVB is 1.

NKMVB, move user flags to MLCB

NKRPRT, strip parity flag

1
0

strip parity
do not strip parity

Block length (CC2). Moved into MLCB if nonzero; replaces
current MLCB block length

NKSCENBL, special character flag. If set, move NKSCHR into the
MLCB

Input processing state index

Input processing state pointers table address (optional address
or 0; if 0, NJTECT value is used)

Special character, moved into MLCB if NKSCENBL flag is set

Character count (CCl). 1If nonzero, this replaces the current
character count in the MLCB

Code translation table address. If nonzero, this replaces the
current translation table address in MLCB

Figure 5-7. Input after Output Command Format

WORD

NKCMD

Fl

F2
NRKWLINDX
NKLINO
NKUSRBY

NKWKCOD

WORD

NKCMD

Fl

F2
NKWLINDX
NKLINO

NKUSRBY

NKWKCOD

15 7 6 5 0
NKCMD Fl| F2 NKWLINDX
NKLINO
NKUSRBY NKWKCOD

Command code (NKENDIN)

NKRELBFS, release buffer flag (release buffer if set)

NKWKFL, send worklist to user (if set)

Worklist index, used if NKWKFLG is set

Line number

User-supplied byte, returned in field MMWTCOUNT in worklist

User workcode in worklist (MMWKCOD)

Figure 5-8. Terminate Input Command Format

15 7 6 0
NKCMD Fl | F2 NKWLINDX
NKLINO
NKUSRBY NKWKCOD

Command code (NKENDOUT)

NKRELBFS, releases buffer when flag is set; these are buffers

specified in BZLBTOMUX

NKWKFLG, sends worklist to user when set

Worklist index; used if NKWKFLG is set

Line number

User-supplied byte to be returned in field MMWTCOUNT in

worklist

User workcode in worklist

(MMWKCO)

Figure 5-9. Terminate Output Command Format

60474500 A -

Common Multiplex Subroutines for TIPs

The multiplex subsystem provides a number of common subroutines for the
interface programs; these are as follows:

PMWOLP, the worklist processor on the multiplex level

PTCLAS, the CLA status analyzer

PTLINIT, the line initializer

PMT1SEC, the timing supplier for the output data demand (ODD) function

PMWOLP, MULTIPLEX WORKLIST PROCESSOR

PMWOLP processes each multiplex worklist by workcode type. Most workcodes
concern error processing. Workcodes that PMWOLP does not recognize are
passed directly to the responsible TIP at multiplex level 2.

If the workcode is a hard error, the line is cleared and input and output
are terminated. The terminate input command to the command driver causes
the driver to return a worklist to PMWOLP. All hard errors from the line
are discarded until the terminate input worklist is received. The input
terminated worklist is changed into a hard error worklist (AOHARDERR =
MMHARDERR) and the worklist is sent to the responsible tip at OPS level.

If the line is active, all errors, hard or soft, are reported to the CE
error file.

The multiplex level workcodes are summarized in table 5-1. The actions that
PMWOLP takes in response to the workcodes are as follows:

® MMCLAS - CLA Status. This workcode is generated for selected CLA
status words by one of the modem state programs (refer to section
12)., PMWOLP calls PTCLAS to analyze the status word. PTCLAS returns
information to PMWOLP in three ways: (1) The function is set true if
the worklist is to be sent to the TIP, (2) NRCODE is set to nonzero
if a CE error is to be reported, or (3) the workcode in the
intermediate array is changed to AOHARDERR (or MMHARDERR) if a hard
error is found.

) MMOBUX - Output buffer terminated. This is an optional worklist
generated by the multiplex firmware after the completion of an output
message. If the line is to be turned around, PBTOQUE is called to
provide a 200-ms delay. The worklist is passed to the TIP at level 2
either immediately (if the line does not require a turnaround delay)
or when the delay timeout period is completed.

® MMBUTCH - Multiplex buffer threshold reached. This worklist is
generated by the TIP's input state program 3 (see section 12) when
the multiplex firmware notifies that state program that the buffer
threshold has been reached. PMWOLP releases any input buffers and
stops processing.

® MMCAOR - CLA address out of range. The multiplex firmware reports
this error whenever the CLA address is out of range. The CLA is
cleared and the error is reported to the CE error file.

60474500 A 5-19

MMUNSOD - Unsolicited output data demand (ODD). The multiplex
firmware reports this error when an ODD is received on a line that is
not in output state. The error is reported to the CE error file and
a hard error is declared.

MMUNSIN - Unsolicited input. The multiplex firmware reports this
error in two cases: (1) a status character is received and input
status flag (ISON) is not set, or (2) a data character is received
and the input on (ION) flag is not set. 1In either case, the error is
reported to the CE error file and a hard error condition is declared.

MMIFFO - Input framing error. The multiplex firmware reports this
error when it cannot recognize the input frame. The error is
reported to the CE error file and no further action is taken.

MMTIMOD - Modem Timeout. PTCLAS reports this error after the
10-second timeout for dedicated lines has elapsed without a response
from the modem. The error is reported to the CE error file and a
hard error condition is declared.

MMINEND - Input terminated. PMWOLP generates this error worklist to
itself after the terminate input command is sent to the command
driver. The worklist informs PMWOLP that no more worklists will
follow. PMWOLP sends a hard error (AOHARDERR) worklist to the
OPS-level TIP.

MMTIMOD - ODD timeout. The multiplex subsystem timing routine
(PMT1SEC) generates this worklist when an active output line has not
requested a new character (ODD) within the allotted l-second period.
The error is reported to the CE error file and a hard error condition
is declared.

MMFES - Framing error for synchronous lines. PTCLAS generates this
error after examining the status word. The error is reported to the
CE error file and control is passed to the responsible TIP at
multiplex level 2. The TIP should send a command to the command
driver to clear this condition.

MMBREAK - User break on synchronous lines. PTCLAS generates this
condition after examining the status word. The user break indicates
that the user has requested output to be terminated. The condition
is reported to the CE error file and control is passed to the
responsible TIP at multiplex level 2.

PTCLAS, CLA STATUS ANALYZER

Analyzing CLA status is a joint task of the modem state programs and

PTCLAS.

All incoming two-word status entries (8 bits per word) are combined

into one 16-bit status word by the multiplex firmware. Control is passed to
the responsible modem state program for that line. The modem state program
checks for one of the necessary modem signals:

To initialize or enable the line
To give control to the TIP's appropriate input state program
To detect line error conditions

60474500 A

If the modem state program generates a worklist to PTCLAS, PMWOLP calls
PTCLAS to analyze the status word. The format of the worklist is as shown:

15 12 11 8 7 0
Line inop code Status indicator Wor kcode

Line number

Status word

T

The line inoperative code is supplied to PTCLAS for the TIP whenever a hard
error is detected. When PTCLAS detects a hard error, it changes the
workcode to MMHARDERR. The status condition indicator is set by the
originator to indicate the type of status that was detected. PTCLAS
analyzes the status word and takes one of the following actions:

) Causes control to be given to the line initializer (PTLINIT) or to a
TIP

) Causes PMWOLP to request a CE error file entry

) Starts the timeout period for a CLA status overflow condition or for
a modem signal loss condition (modem timeout)

See MMCLAS workcode in the PMWOLP subsection, above. Table 5-4 lists the
status condition indicators and the action that PTCLAS sets up for PMWOLP.

CLA Status Overflow Handling

Each time a status word is received, the firmware_increments a CLA status
word overflow counter in the port table (NAPORT). This overflow count is
cleared by any of the following conditions:

) Output buffer terminated (OBT) generated

° Terminate input buffer state instruction executed
e Terminate input command issued

° Terminate output command issued

When the counter overflows, the firmware builds a MOOVRT status worklist and
turns off input supervision for the CLA. When PTCLAS receives the first
status overflow entry, it starts a 1l0-second timeout period and sets flags
in the port table. When the 10 seconds expire, PTCLAS receives control with
a MOOVTO worklist from PBTOQUE. PTCLAS resets the overflow counter in the
port table, issues a command to turn on input supervision for the CLA, and
resets the wait bit. 1If the timeout occurs before another status overflow
is detected by the firmware, status processing continues normally. However,
if another overflow entry is received during the timeout period, PTCLAS
reports the status overflow to the TIP as a hard error. If at any time
there are not enough buffers available to start the timeout, PTCLAS reports
the status overflow to the TIP as a hard error.

60474500 A 5-21

TABLE 5-4.

PTCLAS WORKLIST ANALYSIS AND ACTION

Condition
Indicator Reported By Meaning Detected Action
MOCLAON (0)| Modem state | Line initialized | Any status Control to line
(MSTLNI) initializer
MORING (1)| Modem state | Ring indicator RI status Control to line
(MSTLNI) initializer
MOENBL (2)] Modem state | Line enabled DSR or DSR Control to line
(MSTENB) and DCD initializer
status
MOHERR (3)| Modem state | Hard error ILE, OLE, Control to TIP
(MSTCHK) INVALID RI, (supply INOP code
loss of DSRT and change work-
code)
MOSOER (4)| Modem state | Soft output NCNA statusT Control to TIP
(MSTOUT) error (change workcode)
MOSIER (5)| Modem state | Soft input error | DTO, FES, Control to TIP.
(MSTINP) loss of DCD (change workcode)
status T
MOSTRT (6)| Modem state | Start modem Loss of DCD Call PBTOQUE to
(MSTCHK) timeout on constant start 15-second
carrier line timeout
MOSTOP (7)] Modem state | Stop modem DCD status Cancel timeout
(MSTCHK) timeout during modem
timeout
MOOVRF (8)| Firmware CLA status Overflow of
overflow status
counter
MOOVTO (9)| PBTOQUE Status overflow 10-Second
(TIMEOUT) timeout timer expired
MOMRTO (A)| PBTOQUE Modem response 15-Second Refer to control
(TIMEOUT) timeout timer to TIP (change
expired wor kcode)
MOBREAK (B){ Modem state | Break condition FES with null | Control to TIP

(MSTINP)

character

{change workcode)

+C.E. error

messages generated on these conditions

5-22

60474500 A

Modem Response Timeout Handling

When DCD on constant carrier lines drops, a MOSTRT status worklist is
generated by the modem state program, and a bit is set in the MLCB
indicating that a modem timeout is in progress. When PTCLAS receives this
worklist, it causes a 10-second timeout entry to be generated. 1If the
timeout period elapses before DCD comes up, PTCLAS reports a hard error
(modem timeout) to the TIP. If, during the timeout period, the modem state
programs receive a status word with DCD set, a MOSTOP worklist is generated
for PTCLAS. When PTCLAS processes the worklist, it resets the timeout in
progress flags and cancels the timeout. If, at any time there are not
enough buffers to start the timeout, PTCLAS immediately reports the
condition to the TIP as a hard error.

PTLINIT, LINE INITIALIZER

PTLINIT initializes conditions on a line for input and output operations.
The program acts like a TIP and is composed of several subroutines, Figure
5-10 shows the relationship of PTLINIT with other multiplex modules, the
service module, timing services, and the TIPs.

Upon receiving control, the line initializer executes the
Clear-Initialize-Control sequence. As the initializer is state driven,
BZSTATE is set accordingly.

On a dedicated line, a check for CLA on is made before issuing the enable
line command. When the line is enabled, the initializer builds a line
operational worklist message for the service module and the associated TIP.

For enabling a switched line, three conditions must be met: (1) the ring
indicator (RI) must be detected, (2) the host must be up, and (3) buffers
must be available. If no RI is present a timer is started. A worklist
(line status nonoperational; no ring indicator) is issued if this timer
expires before an RI is detected. If buffers are not available or if the
host is down, another timer is started. If this timeout period expires,
program control is returned to the Clear-Initialize-Control sequence. 1If
the timeout period has not expired and RI is received in a status word,
PTLINIT again checks for buffer availability and whether host is up. With
an RI present, the host up, and buffers available, the enable line command
is issued. Line operational worklists are built for the service module and
for the associated TIP.

Error messages are generated under the following conditions:

) A timeout period has expired and a required status has not been
detected.

o The status indicates that the line is not operational.
PTLINIT is state driven with each state defined in table 5-5.

PTLMUX2, the multiplex level 2 program, merely passes control by generating
worklist entries to PTLINIT. This is reached through PBXFER.

After a line has been enabled, a l-second delay is made before notifying the
TIP. This allows time for line/modem transients to settle.

60474500 A 5-23

MULTIPLEX LEVEL

PMWOLP/
PTCLAS

PTLMUX2

MMHARDERR

MMCLAS

CLA
STATUS

OPS LEVEL

HARD
ERROR

\/—

CMD
DRIVER

LEGEND:

WORKCODE

WORKLIST

—

Figure 5-10.

CMD
PACKET

8zLCcB
LINE
CONTROL |«] SERVICE
BLOCK "\ MODULE
A
AOSMEN OR
AOSMDA
ENABLE OR
DISABLE LINE
LINE STATUS
= COLINOP
OR_COLNINOP
P{ PTLINIT | OPERATIONAL
OR NON-
OPERATIONAL
y
AOTIMEQUT
LINE
TIMED OUT

y

AOSMEN

LINE ENABLED

OR DISABLED

—

"

PTLINIT Relationships with Major CCP Modules

TIP
OR
LIP

M-382

60474500 A

60474500 A

TABLE 5-5. PTLINIT STATE TRANSITION TABLE
State
Event CLAON SWCK SWRING SWRDY CLARDY All States SWDLY
Status Ded: Buf Avail/ Buf Avail/ Set Up Timer=0
Enable Line. Host Up Host Up Timer for Autorecog.
State=CLARDY | Enable Line Enable Line l-second Send Line
Timer=30 State=SWRDY State=SWRDY Delay Enable-
seconds Timer=20 Timer=30 Nonop Msg., | ====- | = =====
seccnés seconds
SWs Other
State=SWCK Buf Not Buf Mot Send Line
Timer=1 Avail or Avail or Oper Msg.
second Host Down Eost Down Restore TIP Build WL
No Operation Start Timer, Type. for TIP
if timer is Type.
off
Timeout Clear Linc, Senc¢ Mo Ring Condition Disable Disable Send
Send Inop Message. Line. Line. Line. Enable WL
Message. State=SWRING State=CLAON Clear Line. Clear Line. to TIP.
State= Timer=1 Send Inop Send Inop ——— Restore
Inactive second Message. Message. TIP Type.
Timer=0 State= State=
Inactive Inactive
Timer=0 Timer=0
Haré | ===== | emme] emeee e] e State= State=
Error Inactive Inactive
Send Line Send Line
Inop Inop
Message Message
Enable | ---== | @ ———— | e | e | e Save/Set
Line TIP Type.
Condition
Line. ———
State=CLAON
Timer=1
second
Disable | ===== | —==e= | seeee | emeee] meeee Send Line Send Line
Line Disable Disable
Message. Message.
Clear Line. Clear
State= Line.
Inactive State=
Timer=0 Inactive
Timer=0
5-25

PMT1SEC, OUTPUT DATA DEMAND TIMING HANDLER

This program supplies the timing for the ODD function. 1If 1 second elapses
on an active output line without an ODD signal being received, PMT1SEC times
the line out. A hardware error is declared by generating a multiplex
worklist, which requests an interrupt to process the error.

5-26 60474500 A

NETWORK COMMUNICATIONS SOFTWARE

This section describes the block protocol and the functions of the network
communications software programs. The functions include some command
execution (when the service module executes the command), and common TIP
subroutines. The virtual terminal formats (IVT and BVT) are also discussed
in this section; the virtual terminal transforms are used as a part of the
multiplex level (state program) part of the TIPs.

MAJOR FUNCTIONS

The major functions performed by the network communications programs are the
following:

° Defines the types of blocks that are acceptable for data transfer,
internode and intranode.

® Routes the blocks. This includes checking the validity of incoming
blocks and attaching the blocks to an NPU program that will continue
processing the block, or reading the block to be queued to the next
using network node.

) Provides and processes a special type of block reserved for command,
status, and statistics information. All service messages use this
kind of block. The modules that process service messages are
collectively called service modules. CE error, statistics, and alarm
messages are special classes of service messages.

) Provides the ability to alter the interactive virtual terminal
formatting parameters.

) Provides standard TIP support programs. These include the
point-of-interface (POI) programs and other standard routines that
can be used by any TIP.

BLOCK PROTOCOL

Block protocol is used to communicate commands and information between the
NPU and the host. Blocks are composed of consecutive bytes. The shortest
block consists of only a header (four bytes); the longest block consists of
2047 bytes, including the four-byte header.

Block protocol assumes the logical connection between processes in the host
and the NPU is error free (a supportive, lower level protocol provides
delivery assurances between the processes). However, the logical connection
can be abnormally broken, either process can fail, or the processes can
become temporarily congested, leading to regulation of information transfer.

60474500 A 6-1

Failure of a process is usually reported by means of a service message.
Temporary bottlenecks at a destination process are usually a result of
inability to deliver data to an associated terminal or to the host. Block
handling provides a standard method for informing the transmitting process
of a temporary problem so that any subsequent data transfers on that
connection can be held in abeyance until the problem is corrected.

The paths between the two processes are fully symmetrical as shown in figure
6-1. Blocks belong to one of three categories:

° Forward supervision (FS) functions are performed by INIT and RST
blocks.

® Reverse supervision (RS) functions are performed by BACK, BRK, STRT,
and STP blocks.

® Forward data (FD) functions are performed by BLK, MSG, and CMD blocks.

BLOCK FORMAT

The first two bytes of any block are reserved for a link header (which is
used when sending/receiving data from a remote NPU). The next four bytes of
any block constitute the block header. Format of the block header is as
shown in figure 6-2.

The current release consists of nine principal block types plus an
additional assurance control block type used only for NPU to NPU
transmissions. Characteristics of each type are summarized in table 6-1.

The first three bytes of the block header provide a standard network
address. Byte 4 contains the block priority (P), block sequence number
(BSN), and block type (BT). The content of the remainder of the block, if
any, varies with the block type.

The priority of the block is only significant when the block is required to
traverse a network trunk. Priority provides for preferential treatment for
high-priority blocks when trunk queueing occurs. (Trunk queueing is a part
of priority assignment.) All blocks (regardless of type) containing the
same address must be assigned the same priority.

The BSN supplied in a downline block of type MSG, BLK, or CMD must be
returned in the BSN field of the upline BACK which acknowledges that block.
When a BRK or STP is sent, the BSN field must contain the BSN which was
contained in the last BACK sent for this connection. The BSN is always zero
on other upline and downline blocks.

Address

The address contains the node IDs for the source and destination of the
block plus a connection number.

6-2 60474500 A

NPU HOST

FS1 AND FD

\ §

XMTR RS 1 RCVR

PROCESS PROCESS

FS; AND FD,

' §

RCVR
RS2 XMTR
FS - FORWARD SUPERVISION (CONTROL/STATUS REQUESTS)
FD — FORWARD DATA (INFORMATION/COMMANDS}
RS — ACKNOWLEDGMENT AND ERROR INFORMATION

M-367

Figure 6-1. Sample Block Data Paths Between NPU and Host

60474500 A

Byte 1 2 3 4 5

T T
Link 7 16 413 O Remainder
Header DN SN CN P } BSN } BT of Block
L -----
Y
DN - Destination node Block Header
SN - Source node
CN -~ Connection number
P - Block priority for trunk usage
1 = high
0 = low

BSN - Block sequence number (range 0 - 7)

BT - Block type (defined in table 6-1)

Figure 6-2. Block Header Format

NODE

Each NPU has a unique node ID; each interface between a host and an NPU has
a unique node ID; the host has two unique node IDs. Node ID = 0 is reserved
for the Network Supervisor (NS) in the host. Node ID = 1 is reserved for
the Communications Supervisor (CS). The remaining node IDs (between 2 and
255) are build time parameters. For example, in a single-host, single-NPU
system, the host interface (coupler of the local NPU) might be node ID two,
and the terminal node (interface to the terminals) might be node ID three;
this pair of nodes forms a logical link. Thus, traffic going upline (from a
terminal to the host) has a destination node ID of two and a source node ID
of three. Traffic going downline from NS to the NPU has a destination node
ID of two and a source node ID of zero.

CONNECTION NUMBER

A logical connection is the association between a terminal control block
(TCB) in a NPU and an application process in the host, by which traffic is
communicated between the terminal (or a device at that terminal) and
applicable process. The TCB contains all status information relative to a
particular terminal (or terminal device) and the current transfer. The TCB
also contains a host-assigned connection number. The connection number is
one byte long, and has a range of values between 1 and 255. Every block
traveling downline to a terminal device or upline from a terminal device
bears the connection number of the associated TCB. Unique connection
numbers are assigned to all TCBs within a given NPU node, and are associated
with a particular host node, i.e., on a given logical link.

6-4 60474500 A

TABLE 6-1. BLOCK TYPES
Block Traffic
Mnemonic Name Type Type General Function
BLK Block 1 FD Any data block which is not
the EOM block of a multiblock
message
MSG Message 2 FD Data block which is the EOM
block of a multiblock message
or the only block of a message
BACK Block 3 RS Block acknowledgment for block
Acknowl- transmitted in opposite
edgment direction
CMD Command 4 FD Command
BRK Break 5 RS Indicates a discontinuity in
the data stream traveling in
the opposite direction
STP Stop 6 RS Forward data stream is
undeliverable and should be
stopped
STRT Start 7 RS Forward data stream can be
started
RST Reset 8 FS Transmitter has cleared
logical connection after
receiving a BRK or STRT
INIT Initiate 9 FS Initiate a logical connection
- - 10
. Not used
14
Subtype
ACTL Assurance 15 0 CLR -~ Local NPU clears remote
Control - NPU at initialization
used only in
local/remote 1l PRST - Remote NPU acknowledges
NPU communi- CLR
cations
2 REGL -~ Either end of link
changes regulation level
3 LINIT - Local NPU initializes
LINK
4 LIDLE - LIP at either end of
link is idle -~ LIDLE maintains
protocol when no data is being
transmitted

60474500 A

SERVICE CHANNEL

A block having a connection number of zero is called a service message, and
the logical connection over which it is communicated is called the service
channel. Unlike logical connections that can be dynamically created and
released, the service channel always exists. Service messages include
commands, requests for status, error information, statistics information, or
replies to one of these three message categories. The service channel can
also be used to send messages between terminals. Commands traveling via the
service channel establish logical connections and communicate control,
status, and error data. The complete summary of service messages is found
in appendix C.

BLOCK TYPES

The block types are described in detail below.

BLK Block

A BLK block is a data block containing a portion, but not the last segment
of a data message. All data blocks contain from 1 to 2043 bytes of data
immediately following the four-byte header. The content of the data field
is determined arbitrarily by the communicating processes.

MSG Block FD, BT = 2

A message is a self-contained unit of data communications. In half-duplex,
two-parity communications, the transmitter signals ready-to-receive by
sending end-of-message. Thus, a message is a data stream terminated with an
end-of-message indicator.

If a message is 2043 bytes or less in length, it can be transmitted within a
single MSG block. If a message is longer than 2043 bytes or if, as is
usual, the message is segmented by the terminal or because of a desire to
optimize NPU dynamic space, all segments but the last are transmitted within
BLK blocks. The last segment is transmitted within a MSG block.

Back Block

A BACK block is the acknowledgment of a received block. It is returned to
the transmitter by the receiver as BLK, MSG, and CMD blocks are processed to
allow the transmitter to adjust the rate of issuing data to the rate of
delivery to the receiver. The transmitter should not issue unacknowledged
blocks in excess of a network block limit (NBL) for each connection. The
BACK block that acknowledges a previously transmitted block allows the
transmitter to maintain an outstanding block count to ensure that the NBL is
not exceeded. NBL is established by the connection as a part of the
configuration process. Note that no data bytes are associated with a BACK
block.

PN

6-6 60474500 A §

CMD Block

A CMD block carries a network command. It allows connected processes to
communicate outside of the data stream but synchronous with that stream.

The command is received by the destination process in the same ordering
sequence to the data stream or other commands as existed at source. If CN
is 0, the command is a service message. The data bytes of the message are
highly structured. Rather than using BACK blocks as acknowledgment, service
messages use other service messages as acknowledgments. See appendix C.

BRK Block

The BRK block indicates a discontinuity (break) in the data stream and
travels in the opposite direction. The receiving process responds with an
RST to specify the point in the data stream where the BRK block occurred.
Block protocol does not retain blocks for retransmission. Instead, the
sender of the BRK block discards all blocks received before the RST block.

A further BRK or STP block must not be sent before the RST block is received.

A single data byte, the reason code (RC), follows the BRK block header and
specifies the reason for breaking the transmission. The RC byte is defined
as follows:

1 = User Break 1 received (typically means queue abort occurred)
2 = User Break 2 received (typically means job abort occurred)
3 = Output device not ready
4 = Illegal or invalidly formatted block received from host
STP Block

The STP (Stop) block is similar to the BRK block except that no RST block is
sent and no further blocks should be sent until a STRP block is received.

The STP block occurs when a process is unable to deliver data to the final
destination such as when a terminal is inoperative or not ready, or when a
line is inoperative. A reason code follows the header. This code is passed
to the connected process. The sender of the STP block discards all blocks
received before the next RST block received (normally caused by a STRT block
issued by the sender of the STP block). The RC byte is interpreted as
follows:

1
2
3

Terminal busy
Terminal failure
Batch interrupted by interactive input or output

Honou

Start Block

The STRT (Start) block is used after a STP block to allow resumption of data
flow to the destination sending the STRT block. The receiving process
responds with a RST block to invite the connected process to resume data
transmittal. No data bytes are associated with this block.

60474500 A 6-7

RST Block

The RST (reset) block is sent in response to either a BRK or STRT block. It
serves to delimit the data stream and indicate the point in the data stream
at which the BRK or STRT block occurred. From the time the BRK or STRT
block was sent until the receipt of the RST block, all unacknowledged blocks
and all new blocks are discarded. No data bytes are associated with this
block.

Init Block

The INIT (initiate) block delimits the new data boundaries when a connection
is first made. Newly established connections discard blocks from the
logical connection until the INIT protocol is completed. The second end of
the connection to be set up immediately sends an INIT block. Upon receipt
of the INIT block, the first end to be set up responds with an INIT block
and starts accepting blocks over the logical connection. Upon receipt of
the responding INIT block, the second end of the connection to be set up
also starts to accept blocks over the logical connection. No data bytes are
associated with this block.

Bad Blocks Detected by NPU

When NPU software detects a bad block (any block with block protocol fields
that contain unexpected or undefined information), the NPU discards the
block. If the block is bad for some other reason, a BRK block is sent to
the host. If the block is a BLK, CMD, or MSG, no BACK block is sent to the
host. For any other block type, no action solicited by the block is taken
and it is not acknowledged. The NPU statistics word for
block-discarded-to-bad-address is incremented. The header section of a bad
block is displayed at the NPU console.

ACTL Block (Assurance Control)

This protocol is not needed for NPU-to-host communications. It is used only
to protect data traveling between local and remote NPUs where the
possibility of line errors is relatively high.

SEGMENTATION OF BLOCKS

The block is the unit of data that is assured. Blocks are generated by the
source node, passed through the network and delivered to the destination
node in the order of their generation. One of two possible priorities must
be assigned to a block by the source node. Obviously, if ordering is to be
preserved, all blocks and all forward supervision block protocol elements on
a connection traveling in the same direction must be assigned the same
priority.

Block delivery across internodal physical links is performed in a manner
that approximates a preemptive resume priority queue dispatch discipline.
For this process, blocks transmitted in a link are segmented into subblocks
to ensure that an opportunity for preemption occurs at discrete maximum
intervals.

6-8 60474500 A

Segmentation is of functional concern only to the LIP although
implementation considerations dictate that HIP and TIPs and the receive side
of the LIP position the data in buffers in a manner that facilitates
subblocking. Block priority for blocks arriving from the host coupler is
established by the host before setting up the data transfer. The subblock
boundary criteria are discussed in the section describing LIPs.

LOGICAL LINK

A logical link is the logical entity that monitors the transfer of data
blocks and block protocol elements for all connections between two end
points in the network. Unless both ends of a logical link are configured
and operational, all such data is discarded and no connections are
permitted. When both ends of a host-to-local logical link are configured,
the host is notified with a logical link status operational SM immediately;
this logical link remains operational until deleted by the host. When both
ends of a host-to-remote logical link are configured, the host is notified
with a logical link operational SM from the local NPU as soon as a
clear/reset exchange occurs between the local and remote NPUs. This logical
link becomes inoperative upon a physical link failure, and the host is
notified with a logical link status inoperative SM from the local NPU. NS
must explicitly delete the logical link. This causes all associated
connections to be deleted and all data blocks and block protocol elements
for these connections to be discarded. No connections are permitted on the
logical 1link until a clear/reset sequence establishes an operational state
again.

The block header format for delivery assurance over the link is as shown in
figure 6-3.

SERVICE MESSAGE ASSURANCE ON TRUNKS

When a physical link fails, all blocks to be transmitted on the link are
discarded by the link protocol. Any service message that must be protected
across a link failure (namely, unsolicited line status SM) is retained by
the service module and repeated when the link again becomes operational.
While the physical 1link is inoperative and no alternate path is available,
new service messages are retained by the service module.

DATA BLOCK CLARIFIER, DBC

The first data byte of a message is often used as the data block clarifier.
In this use, the byte carries additional control information about the data,
which is used internally by the TIP. CCP uses two types of data block
clarifier as shown in figure 6-4.

For the downline DBC, all TIPs use format effectors. All TIPs check for
transparent data, but only Mode 4C and ASYNC terminals can use the
transparent (ASCII) output data.

For the upline DBC, transparent data can be used by the ASYNC TIP only; Mode
4 upline transparent data causes the TIP to lock the keyboard. Only the
ASYNC TIP uses the cancel character and parity error flags.

60474500 A 6-9

DN
SN
CN

TYPE

PRID
BT

Subtype

DN SN CN Type Subtype RL

Destination node
Source node
Connection number

Type of block. In this field, bit 7 is the PRID, bits 6 - ¢
are reserved for the block sequence number, and bits 3 - 0
designate the BT.

Priority designator; set for high-priority blocks
Block type. ACTL blocks also use subtype and RL.

CLR - Clear = 0. Sent by local end to remote end of a logical
link at initialization time; it is repeated until the PRST is
received; contains the logical link regulation level in second
byte of data field

PRST - Protocol Reset = 1. Sent by the remote end of a logical
link at initialization time after the receipt of a CLR. PRST
contains the logical link regulation level in second byte of
data field. Normal data blocks are transmitted following a
PRST. Local end accepts blocks after receipt of a PRST.

REGL - Regulation = 2. Sent by either end of logical link when
local regulation level changes; contains new logical link
regulation level in second byte of data field

LINIT - Link Initialization = 3. Sent by local end to
initialize the link (trunk); is repeated by local end until
remote end responds with LINIT. The Local end accepts blocks
following LINIT. Link initialization is done initially and
after a trunk failure. Remote end sends a LINIT only in
response to a received LINIT. RL field is not used.

LIDLE -~ Link Idle = 4. Sent by the LIP of both local and
remote ends periodically when no data is available to send to
the other end so the LIP is able to monitor both directions of
data flow for operational status. RL field is not used.

RL - Regulation load for trunk

Figure 6~3. Block Header Format for Delivery Assurance

60474500 A

Downline DBC

bits 7 4 3 2 1 0
not used
TIP using
bit 3 - Format effectors present, DBDLFE all
bit 2 - Transparent data, DBDLXPT all
bit 1 - Lace card bit, DBDLS5 HASP
bit 0 - Auto input data expected, DBDLAUTQ — all
Upline DBC
bits 7 2 1 0
not used
TIP using
bit 2 - Transparent data, DBUTXPT ASYNC, Mode 4
bit 1 - Cancel character, DBULCAN ASYNC
bit 0 - Parity error, DBULPERR ASYNC
Figure 6-4. Data Block Clarifier (DBC) for CCP
ROUTING

Routing of blocks is performed by the internal processor, usually called
through PBINTPRC. The internal processor call is made from the monitor with

a worklist entry.

PBINTPRC passes the block to be switched to PBSWITCH, the general systems
block switch. PBSWITCH uses the directories to pass the block to the
program that must continue processing the block.

Upline blocks that are completely processed are passed to the HIP for
transmission to the host. Downline blocks to be sent to terminals are
queued to the TCB that is associated with the terminal or device to receive

the message.

A second source of switching can use PNROUTE. Only the service module and
utilities use this switching method.

60474500 A 6-11

CCP provides routing of blocks between nodes and within the NPU node. For
example, in a simple system consisting of one host and one local NPU, the
node assignments might be as follows:

® For host: NS = node 0; CS = node 1
® For local NPU: coupler = node 2; terminals = node 3

DIRECTORIES

Each block of information (service messages are a special subclass of
blocks) has three address elements: The destination node (DN), the source
node (SN), and a connection number (CN). There are three directories, one
associated with each of the three address elements:

° Destination node directory
) Source node directory (LLCB for the link)
[Connection number directory

The three directories are collectively designated as the routing
directories. Formats of the three directories are shown in figure 6-5.

Destination Node Directory

The destination node directory contains an integer value associated with
each valid DN address (range is 0 to 255). For a local node (meaning within
the same physical node), the directory provides the address of the source
node directory associated with that logical node. For all external logical
nodes, the directory entry provides a logical link control block (LLCB)
address. A zero entry indicates a nonexistent node (an unassigned value of
DN) .

The destination node directory is a fixed length table with two words per
entry. The first word contains the index (by node number), and the second
word points to the appropriate LLCB,

Source Node Directory

The local logical node has a source node directory for each local node
address. Each SN directory is used to select the connection directory
associated with the pair of nodes indicated by DN and SN. Nonzero entries
point to the address of the connection directory.

Connection Number Directory

For each logical node there is a CN directory for all terminals with which
there is at least one connection defined. An entry in the CN directory
provides the address of a terminal control block (TCB). The directory is
indexed by CN and has a pointer to the TCB for that CN. The CN directory is
located in dynamic buffer space.

ROUTING PROCESS

The PBSWITCH module starts the search of the three directories to perform
either internode or intranode routine (see figure 6-6).

6-12 60474500 A

DNLOCDN 00

NS LLCB address for NS in host
01

CS LLCB address for CS in coupler > - upline
02

Addr of SN directory SN directory for coupler
03

Addr of SN directory SN directory for terminals - downline

LLCB chain for this DN

Ptr
SN = 0 set of LLCBs for
this DN and all SNs
that have links to this
. DN through this NPU.
Ptr to CN directory —
SN = 2
DN and CN directories
CN directory for this SN are type 1 tables.
01 |-
Ptr to TCB for CN = 1
02
Ptr to TCB for CN = 2
03
Ptr to TCB for CN = 3 TCB address

Note: Directories shown for a one NPU network

Figure 6-5. Routing Directories Formats

60474500 A 6-13

ENTER

<&

ADDRESS
OF SND t
?

SEARCH SND t

F
USING SN AS =~ ISJ,\]CB OoR
INDEX

ADDRESS

h 4
SEARCH
DND USING
DN AS INDEX
ENTRY YES
?
/,///’ y
NO NO DN
NODE DEFINED
¢
v
ERROR NOTIFY
SENDER THAT
BLOCK CAN'T BE
DELIVERED
\ 4
v EXIT
LOCATION INTERNODE
OF NODE
?
INTRA- LLC8
NODE ADDRESS
A 4
USE LLCB
TO DIRECT

MSG TO COUPLER
OR REMOTE NPU

SERVICE
MESSAGE
?

YES

y

EXIT

\ 4

NO

SEND BLOCK
TO SVM

USING A WLE

A 4

EXIT

ACTL BLOCK
PATH NOT SHOWN

Figure 6-6.

OF CND
?

SEARCH
CND USING
CN AS INDEX

ADDRESS

OF TCB
?

PBIOPOI

PASS BLOCK

TO PROCESS
ADDRESS
INDICATED IN TCB

EXIT

t LLCB FOR TERMINALS

DND — DESTINATION NODE DIRECTORY
SND —~ SOURCE NODE DIRECTORY

CND — CONNECTION NODE DIRECTORY
WLE — WORKLIST ENTRY

M-368

Simplified Routing Flowchart for PBSWITCH

60474500

Figure 6-6 indicates the steps of the routing search:

DN indexed the destination node directory to obtain an address. If the
address obtained is zero, the destination of the block is undefined and
PBSWITCH returns an indication to that effect.

If the destination is not a local logical node, the block is passed (as
appropriate) to the coupler for a host process or to the remote node. If
this is a locally directed service message, the message is passed to the
service module using a worklist entry.

If DN is a terminal node, the LLCB for that link is searched using SN. The
SN/DN LLCB has a pointer to the CN directory. This directory is similar to
the DN directory. It is indexed by CN and has a pointer to the CNs
associated TCB. Using the TCB address, PBSWITCH calls the internal output
POI (PBIOPOI) which queues the block to the TCB.

ALTERING DIRECTORIES

The modules PNDIRADD and PNDIRDLT add or delete entries to the directories.
PNDIRADD requires four input parameters:

) The first two are PASCAL values (ranges to 255) and represent DN and
SN values, respectively.

® The third is a PASCAL variable (range 0 to 255) and represents CN.

°® The fourth is a PASCAL variable of the buffer pointer type (range 2 -
65, 535) that points to a TCB for use in the appropriate directory.

The DN directory can have a new two-word entry. The CN directory can have
new entries and, if necessary, new chained segments. LLCBs (the SN
directory) are established when new links are defined. PNDIRDLT removes
entries from the DN and CN directories. Three input parameters are
necessary:

e The first is a PASCAL value between 0 and 255 and is the index to the
DN entry to be removed.

® The second is a PASCAL value between 0 and 255 and is index to the SN
entry to be removed.

® The third is a PASCAL variable in the range 0 to 255 and is index to
the CN entry to be removed.

If the entry removed in the CN directory is the last remaining entry of that
segment of the directory, that segment of the directory is released.
Rechaining of directory segments is performed as necessary.

SERVICE MESSAGES

Service messages (SM), the special group of control messages that carry
extended command, status, and statistics information between the host and
NPU nodes, are processed by the Service Module (SVM). The procedures that
make up the SVM are grouped into the following general categories:

o Internal SM processing

60474500 A 6-15

) Validating and timing out service messages

o Generating and dispatching service messages

° Configuring, enabling, disabling, and deleting control blocks. These
include control blocks for logical links (LLCB), lines (LCB), and
terminals (TCB).

) Generating and sending status SMs. These include logical link
(trunk), line, and terminal SMs.

° Generating and sending statistics SMs
° Generating and sending broadcast one and broadcast all SMs
) Processing overlay programs and overlay data

) Generating requests for loading an NPU in response to force load SM

TASK SELECTION IN THE SERVICE MODULE

Entry to the SVM is usually made in the form of a worklist. Note that SVM
is customarily one of the modules given control by the OPS-monitor with more
than one worklist.

Worklist entry switching (PNSMWL) has two levels: On the first level,
switching is performed according to workcode. The processed workcodes are:

COSMIN/COSMOUT - processes or sends most SMs

COSMDISP - sends a service message

COLINOP - makes a line operational

COLNDA - disables a line Usually done in COSMIN
CODLTCB - deletes a TCB

COOVLDATA - processes overlay data

As can be seen, substantially all the processing is done by the COSMIN and
COSMOUT codes. The second level of switching takes place in the routines
handling COSMIN and COSMOUT. (This is the PFC/SFC level of switching.) A
subcode (J4...) is used. Again, almost all processing occurs using one
value, the J4DISPATCH subcode.

Within this subcode, the PFC (D8...) and the SFC (D9...) of the SM are used
to find an entry in the DBHANDLER table (see appendix E).

The SVM trees (appendix I) show the routines responsible for each SM.
SVM also provides a few direct entries:

e The timed entry call (from PBTIMAL)

) The periodic statistics entry (from PBTIMAL)

) The SM generation, PNSMGEN, which can be used by the TIPs to send any
of the eight types of service messages which this routine generates.

6-16 . 60474500 A

INTERNAL SERVICE MESSAGE PROCESSING

Four types of functions are handled by these SVM modules:

Making worklist entries for SVM and awaiting availability of buffers
for SVM processing.

The interface to the OPS monitor so that the monitor can pass control
to SVM.

An indexing function that finds the proper point in SVM to resume
processing after a pause. The necessary marking information is
contained in the worklist entry.

The logic to process the line inoperative and line operative worklist
entries. The output is a line enable/disable SM or a status SM.

VALIDATING AND TIMING OUT SERVICE MESSAGES

The timeout group of modules times out SMs and responses to timeout SMs.

The validation group of modules assures that all SMs have:

A valid primary function code (PFC) and secondary function code (SFC).

The port identification number is within the range of ports assigned
to this NPU.

NOTE

The format for each type of service message is given
in appendix C.

The general format of an SM (appendix C) is shown in figure 6-7.

GENERATING AND DISPATCHING

The following functions are handled by this group of modules:

DN and SN of the SM are reversed for use in generating the reply SM.
Queues SM to the local NPU console.

Releases buffers used for SMs.

Generates a message from the operator at the NPU console to the
network operator (NOP). This process begins when the operator at the
NPU console places the console in supervisory mode and enters the
message text. There is no response to this type of service message.
Generates PFC and SFC for service messages.

Dispatches the SM to:

1. The HIP if DN designates the local coupler.

2. The LIP if DN designates the remote node.
3. SVM if DN designates an action to be performed in this NPU.

60474500 A 6-17

Byte

Link Header DN SN CN P/RES/BT PFC EB/RB/SFC Parameters

DN
SN

CN

RES

BT

PFC

EB
RB

SFC

Parameters

N~ -
N

block header

Destination node
Source node

Connection number is 00 for all service messages; the SM
channel is always assumed to be configqured.

Priority flag; upper bit of block header byte 4
Bits 6 and 5 of block header byte 4

Block type; 4 = command block; lower 4 bits of block header
byte 4

Primary function code

00-3F1 - reserved for network use

40-F15 - reserved for intrahost use (error for CCP to
receive these messages)

AQ-BF1g - reserved for expansion

C0-EO1¢ - reserved for network use

El-EF1g - reserved for installations
Error response SM; EB = 1 (bit 7 of the byte)
Normal response SM; EB = 1 (bit 6 of the byte)

Secondary function code; see appendix C (bits 5 through 0 of
the byte)

Defined in bytes. See appendix C.

Figure 6~7. Service Message General Format

60474500 A

CONFIGURING, ENABLING, DISABLING, DELETING CONTROL BLOCKS

This set of modules is used for initiation and changing control blocks for
logical links, lines, and terminals. The format and functional effect of
these messages are described in detail in the initialization section of the
CCP3 Reference Manual and in section 2 of this manual.

GENERATING AND SENDING STATUS SERVICE MESSAGES

This group of modules generates and sends the logical link, trunk, line and
terminal status messages. Included in these operations is the ability to
count configured NS links and configured CS lines. The status indicates
whether the line is operational.

Logical Link Status Request Service Message

This SM status request identifies the nodes comprising the SM link. If the
nodes are not specified, the message is treated as a request for the status
of all links connected through the NPU.

The response message has a reason code specifying whether the link is
operational, a regulation level for the link, and a flag to indicate an
unsolicited status reply. The reply also indicates the number of links
checked if the message requested information about all the links.

The error response contains only the reason code. Two types of errors are
recorded:

e A logical link is not configured.

) Another logical link status SM is already in progress, or the request
did not originate from NS in the host.

Trunk Status Request Service Message

This SM status request specifies the port used by the trunk. 1If the port is
not specified, the message is treated as a request for the status of all
trunks connected to the NPU. The reply message contains a reason code, such
as trunk operational, trunk inoperative, or no ring indicator (for dial-up
lines). The reply also contains the line type, configuration states, an
identifier for the remote node of the trunk, and the number of trunks
checked, if the request was for status on all trunks.

An error response is sent under the following conditions:

° There are no configured trunks or the line number specified is not a
trunk.

o Another trunk status SM is already in progress.

® An attempt is made to disable the last path from a remote NPU to NS.
Disabling the last trunk would permanently destroy the protocol to
the remote node affected when CS records are erroneous or incomplete
due to a host failure.

60474500 A 6-19

Line Status Request Service Message

This SM status request specifies the port used by the line. If the port is
not specified, the message is treated as a request for status of all lines
connected to the NPU. A response status SM is sent for each line configured
and owned by CS. The reply includes a response code (line operational, line
inoperative, or autorecognition/no ring indicator), line type, and
configuration state. If an error response is set, the reason code specifies
one of the following error states:

) A port is invalid or there is a bad host ordinal.
° Another line status request is in progress.

° An illegal configuration state exists (for a single-line response
message).

) No lines are configured (for an all-lines response message).

On a dial-up circuit, a line-enabled response is generated by the NPU
immediately following a configure line SM. When a user dials in, the modem
interface signals indicate an active line; the NPU then generates an
unsolicited line status operation SM, following autorecognition, if
applicable. Upon receiving the line status operational SM, the host
configures the terminals for the line by sending one or more configure
terminal SMs.

An unsolicited line status request SM is sent whenever the TIP senses
conditions that cause the line to be inoperative, including normal
disconnect on a dial-up line.

Line inoperative is reported when line or modem conditions cause the line to
become inoperative; it is not reported if the line is made inactive by
terminating its logical connections or by disabling the line.

The following modem signal conditions cause the line to be reported
inoperative. The timeouts involved ensure that a line is not declared
inoperative because of transient conditions that can be normally expected:

) Data Set Ready (DSR): If the data set ready signal drops at any
time, data transmit ready (DTR) is immediately turned off and line
inoperative is reported

° Clear to Send (CTS - 201 and 208 modem): If the clear to send signal
does not occur within one second of the rise of the ready to send
(RTS) signal; remain on for the duration of ready to send, and drop
within one second of the fall of ready to send. The data transmit
ready signal is then turned off, causing a switched line to
disconnect, and line inoperative is reported. Clear to send is not
monitored for the 103/113/202 modems.

® Data Carrier Detect (DCD - for full duplex constant carrier): Once a
line is operational, if the data carrier detect signal drops and
remains off for a period of 10 seconds, data transmit ready is turned
off, and line inoperative is reported. Abnormal operation of a data
carrier detect on a half duplex or on controlled carrier lines does
not influence line status.

6-20 60474500 A

{

TCBs are not automatically deleted when a line becomes inoperative. The
host must terminate each logical connection explicitly with a delete
terminal SM, or implicitly by sending a delete line SM or a disconnect line
SM.

The unsolicited SM also contains bytes defining the number of terminals, the
terminal type, the terminal address and the cluster address, the device
type, and line speed and code type. For autorecognition responses, the
terminal address and device type are repeated for each terminal that can be
detected by the TIP. The ASYNC TIP reports only one terminal address or
device type pair.

Line Count Request Service Message

The CS sends this message when it requires a count of the line which it
owns. This occurs following a host failure or when the NPU causes records
to be incomplete or erroneous. The reply message contains the requested
count.

Terminal Status Request Service Message

The CS sends this message when its records are incomplete due to a host
failure. Status can be requested for one or all terminals on a specified
line, the request specifying the line to be checked.

The response can be in answer to a request or it can be unsolicited, when
the NPU detects a terminal failure or a terminal recovery. Response
parameters are defined in appendix C.

When terminal failure is detected, the correspondent is informed via the
logical connection (if any) and the terminal status SM is sent. Terminal
failure does not change the state of the TCB with regard to the logical
connection, nor is the state of the line (as recorded in the LCB) modified.
Operator action is required to delete the terminal if desired.

If an error response is sent, the error is one of the following:

Invalid line number or bad HO

No terminals configured

Line inoperative or not enabled

Another terminal status request SM is in progress
LCB not configured

Generating and Sending Statistics Service Messages

Statistics SMs report on the NPU coupler, on lines, trunks and terminals.
The statistical data is derived from the appropriate statistics blocks for
the coupler, lines, and terminals respectively. The messages are generated
periodically or when the counter for the type of failure reaches its
overflow level. Statistics messages are also sent when a line is connected
or disabled or when a TCB is deleted. The various types of statistics SMs
are described in detail in appendix B.

60474500 A 6-21

Generating and Sending Broadcast SMs

The network operator (NOP) can send a message to one terminal or to all
terminals. These broadcast messages are carried in service messages. This
type of message identifies the cluster and terminal addresses, and the
device type of the receiving terminal. The network operator produces the
text. The procedures for entering this message from the NOP console are
given in the NOS Operator's Guide.

A normal response uses a similar format to acknowledge that the broadcast
message was received and passed to the specified terminal. If the message
was not delivered, an error response is generated. The possible types of
errors are as follows:

Invalid line number, bad host ordinal or toggle bit
Invalid device type

Terminal or line not configured

Terminal or line inoperative

Host toggle bit error

A broadcast message can be sent to all interactive terminals connected to
the NPU. Only the text of the message and the ID of the nodes being used
are necessary in the request message. The network operator enters the
message at the host console using the procedure outlined in the NOS
Operator's Guide.

A normal response is sent when the message is queued to all the interactive
terminals connected to the destination NPU; otherwise an error response is
sent. Errors are reported in the following cases:

) no logical link established or this logical link is not established
° another broadcast SM is already in progress

PROCESSING OVERLAY PROGRAMS AND OVERLAY DATA

This group handles the overlay logic. Overlays are used for on-line
diagnostics in all NPUs, and are used in a local NPU to initialize a remote
neighbor NPU.

The same technique is used in either case, and is described in detail in the
CCP 3 Reference Manual.

PROCESSING FORCE LOAD COMMAND

The Network Operator has the ability to force an NPU to an inoperative
state, so that the NPU requests that it be reloaded.

Receipt of this force load SM causes the CCP to start the deadman timer.
When the timer expires, the NPU sends a load request SM to the host. There
is no response to the force load SM.

The technique for entering the force load command at the host console is
described in the NOS Operator's Guide.

The initialization process resulting is described in the CCP 3 Reference
Manual.

6-22 60474500 A

CE ERROR AND ALARM MESSAGES

CE error messages are special SMs that report hardware failures. These
messages include a one-byte CE error code, and can include additional data.
CE error messages are described in appendix B of the CCP Reference Manual.

Alarm messages are special SMs that report frequent errors occurring on a
given hardware device and are generated whenever the number of these errors
reach a threshold level. Alarm messages are described in detail in appendix
B of the CCP 3 Reference Manual.

COMMON TIP SUBROUTINES

These TIP subroutines belong to one of two classes: point-of-interface
(POI) routines, and other standard TIP support routines.

POINT-OF-INTERFACE ROUTINES
Five point-of-interface routines are included in the internal processor.

These routines handle many of the interfaces for the LIP and TIPs to begin
or to end processing of a message. The programs are as follows:

) PBPIPOI - Post input POI

® PBIIPOI - Internal input POI
® PBIOPOI - Internal output POI
e PBPROPOI -~ Pre output POI

[) PBPOPOI - Post output POI

PBPIPOI AND PBIIPOI

PBPIPOI, the post input POI, calls PNSGATH to gather the statistics for the
upline message transfer, and then calls PBIIPOI, the internal input POI, to
check if a proper connection for the data exists. If not, the buffers are
released; otherwise the header is added to the data (chained at the
beginning of the blocks, if necessary) and the data buffers are switched to
the next processing routine (presumably the HIP).

PBIOPOI — INTERNAL OUTPUT POI

This POI is called to process the output buffers according to block type.

It is called from the internal processor switch (PBSWITCH) to route downline
blocks to the TIPs. It is also called by the service module to switch
broadcast messages.

° BLK, MSG, and CMD blocks are queued to the appropriate TIP if the
accept output flag is set. Otherwise, the {chained) buffers are
rejected.

® BACK blocks indicate acceptance by the receiving node, so the number
of outstanding blocks is decremented and the acknowledged block is
released.

° BRK blocks sent upline from the TIP to the host indicate that a
transmission was interrupted. This indicates a non-recoverable
error. The host aborts the output transmission.

60474500 A 6-23

) INIT blocks cause the terminal operating and ready flags to be set.

[) RST blocks cause the accept output data flag to be set. Buffers for
the current transmission are released.

® STRT blocks sent upline to the host cause the accept input data flag
to be set and a RST block to be generated. The host can again send
messages downline to the device.

o STP blocks are sent upline by the TIP to indicate that the terminal
cannot be used now, but that the message might be transmitted later
(after the TIP sends a STRT block). This is used for recoverable
cases, such as a printer being currently marked down. STP blocks
clear the accept input flag, release the buffers for the current
transfer, and notify the TIP to stop processing.

See figure 6-8.

PBPROPOI — PREOUTPUT POI

This POI is used to get a block for output processing. This is done by
updating pointers in the output message buffer that is queued to the TIP.
The block serial number is extracted also.

PBPOPOI — Postoutput POl

This POI is called from the TIP's postoutput routine to generate the
statistics for the block (uising PNSGATH) and to send a BACK block unless
the block was internally generated. The POI then releases the buffers
holding the message that the TIP has now finished processing.

STANDARD TIP SUBROUTINES

OUTPUT QUEUEING — PBQ1BLK AND PBQBLKS

Output queues are associated with a specific TCB that contains a pointer to
the first block in the queue, specifically to the first buffer of that
block. Figure 6-9 illustrates the queue structure. The queue contains one
or more data blocks, each of which is composed of one or more buffers. The
buffers are linked in the order they are removed from the chain. The last
word of one buffer is the pointer to the next buffer. The last word of the
last buffer contains NIL.

Blocks are chained together using the QCHN word of the buffer header (word 3
of the data buffer header). New blocks are always chained to the previous
last block. The QCHN word of the newest block is always NIL.

The TCB output queue is built by two routines: PBQLBLK and PBQBLKS:

° PBQIBLK (parm) uses the parameter (block address) to clear the chain
word of the block to be queued, then PBQIBLK calls PBQBLKS.

) PBOBLKS (parm 1, parm 2) uses parm 1 to find the TCB output queue and
parm 2 to find the buffers to be added to the chain. If the TCB
queue is empty, a worklist entry is made to the TIP that controls the
TCB, so the TIP can process the queue.

6-24 60474500 A

- s

PTBACK ACKNOWLEDGE
SENDS

PTBREAK BRY BLOCK BLOCK

GENERATE
PURGE OUTPUT A BACK BLOCK
QUEUE
QQ -«— 0 }
AQ «— 0
SEND IT
\ 4

GENERATE UP-

<@
<
LINE ‘BREAK’ ¥
e EXIT

\ 4

RETURN SUSPENDS TRANS-
PTSTOP MISSION OVER
A LINE
4

GENERATES UPLINE BREAK IF DOWNLINE
MESSAGES OR COMMANDS CANNOT BE TRANS-
MITTED BECAUSE OF BLOCK FORMAT ERRORS SET STOP BLOCK

SENT FLAG

0

STARTS TRANS-
PTSTRT MISSION OVER
A LINE
AO =
NO ACCEPT
OUTPUT
SET AND
STARTED
FLAG
CLEAR AO
NO L
PURGE THE
OUTPUT QUEUE
YES *
GENERATE A GENERATE A
STRT BLOCK, STOP BLOCK,
INCLUDE A INCLUDE THE
REASON CODE REASON CODE
\ 4 y
SEND IT SEND IT
» <-
<
y \ 4
EXIT EXIT
M-369

Figure 6-8. Flowcharts for Important Common Tip Subroutines (sheet 1 of 2)

60474500 A 6-25

(z 3o g 3o9ys) saurjznoiqns dIl uouwo) juejiodwl I03J S3ILRYOMOTA

*g-9 aianbtg

60474500 A

ELEW
DY14 AININD 1N4LNO 00
OV 14 1Nd1NO L4300V ov NHNL3Y
OV 14 LNdNI 14300V v
- . i <
e 7'} A &)
11 AN3S anNv
32018 1INI
31vH3N3D
\
1353y 00 138
aNI 1dn 801 Ol
v 13s an3s %0018 3N3N0
A A
sy344ng
sH3jing 1 anas 32018
ELERENN 3Sv3I3y advosia
ON
A A
[4
CET 138 sy344n8 1353y
AHLN3I dOLS 1383y EEEt:! v a31VvID0SSY INITdN
IM DIV 31vH3IN3ID 3sv3i3y Isv3iay ETRZ ENED)
4 % 'y A A
v OV 135 ‘SOV14 HILINNOD %2018 v
HY3 1D v 138 Ov 138 dONI HV31D IN3W3HO3a HY31D
b A A J § A I 3
d1s 1HViS 13534 LING 2ove Nv3yg awd ‘OSW ‘318
e - LV Ll » -
3dAL %0018 123138

{10d4018d)
H3ITANVH %0078
INITNMOA 11VD

6-26

TERMINAL CONTROL BLOCK

= . X
® p BSQTYPE
® TRUE
$| BFLCD BFFCD BFLCD BFFCD BFLCD BFFCD
FLAGS FLAGS FLAGS
&C'L"QQTP%LNJCK —»> QCHN = PT 1 > QCHN = NiL
[® L []
x ® r 7 ° x o ° ¥

° ° ®
MESSAGE BUFFER
CHAIN IS POINTER TO NEXT NIL
COMPOSED BUFFER
OF TWO OR
MORE BUFFERS \ 4
CHAINED]
TOGETHER TO
FORM A
MESSAGE
BLOCK

! '

NIL

FIRST SEGMENT OUT Y

NIL

~
LAST SEGMENT IN

|
MESSAGE BLOCK CHAIN IS COMPOSED OF TWO OR MORE BLOCKS CHAINED TOGETHER
TO FORM A TERMINAL OUTPUT QUEUE.

M-374

Figure 6-9. Structure of a TCB Queue

60474500 A 6

UPLINE BREAK — PTBREAK

The common send break subroutine PTBREAK (figure 6-8) indicates a
discontinuity in the output stream. This routine purges the output queue
described above, sets AO to zero to prevent further queueing of output
information, and sends an upline BREAK block with a code indicating the
reason for the break.

DOWNLINE BREAK

The host commands the TIP to stop input by sending a downline stop message
(a type of CMD block). This block is acted upon, when received, without
being output queued. The TIP replies with an input stopped message (also a
type of CMD block). This message causes the accept input (AI) flag to be
set to zero. To restart input, the host sends a start input message (a type
of CMD block). This sets the AI flag to 1 and the TIP again accepts input
from the terminal.

STOP TRANSMISSION TO A TERMINAL — PTSTOP

A TIP calls PTSTOP with a stop reason code. PTSTOP clears the accept output
flag in the TCB and then calls PNDNABRT to clear the output queue for this
terminal. PTSTOP also generates a STP block and includes the reason code
for the stop. The internal processor sends the block to the host via the
HIP.

INTERFACE TO TEXT PROCESSING FIRMWARE — PTTPINF

A TIP calls this interface to firmware routine to execute the upline or

downline text processing state programs. Upline text processing is used
only by TIPs which require two-state input processing, such as the HASP

TIP. The call is

PTTPINF (parm)
where parm is the address of the TPCB.

Text processing occurs on the firmware level. Information exchange between
OPS-level and firmware level uses the 32-word text processing control block
(TPCB). Prior to the call to PTTPINF, the TIP sets all information
necessary to execute the transfer into the MLCB. When PTTPINF is put into
control, it transfers the second 16 words of the TPCB to the microprocessor
file 1 registers to speed processing. The text processing state programs
can save information for the OPS-level TIP either in the file 1 registers or
in any other MLCB field. After the text processor (using the terminal-
oriented text processing state programs) has converted the data, control
returns to PTTPINF which stores the current file 1 register values in words
16 - 31 of the TPCB. After escaping to firmware processing, TPPTINF
periodically returns to OPS level to process interrupts (interrupts are
inhibited while firmware is executing state programs). When the entire text
processing sequence is completed, TPPTINF returns control to the calling
TIP. If the text could not be converted, TPPTINF notifies the TIP of the
failure by using fields in the TPCB.

This module is technically a part of the base system but is discussed here
since it provides a service for the TIPs.

6-28 60474500 A

FINDING NUMBER OF CHARACTERS TO BE PROCESSED — PTCTCHR

PTCTCHR counts the number of characters in the buffer to be processed. This
count includes the complete chain of data buffers in the message. This
mocdule is also considered a part of the base system.

SAVING AND RESTORING LCBs — PTSVxLCB AND PTRTxLCB

Two sets of routines allow TIPs to mark transmissions that must be suspended
until further terminal or host action occurs. The suspension address in the
TIP controlling the transfer is saved in the ILCB, and upon the necessary
action being completed, control returns to the TIP at the specified point
and transmission processing continues.

° PTSVILCB or PTSV2LCB saves the TIP return address in the LCB and
saves a wait count prior to returning control to the monitor.
PTSVILCB is used for input; PTSV2LCB is used for output. The TIP
will later receive control by a worklist entry to continue processing
at saved address.

) PTRT1LCB or PTRT2LCB - The TIP for this suspended transmission
receives control as a result of a worklist entry to it. These
routines restore TIP processing at the address (next entry point)
saved by PTSVXLCB. PTRTILCB is used for input; PTRT2LCB is used for
output.

These modules are also considered a part of the base system.

COMMON RETURN CONTROL ROUTINE — PTRETOPS

PTRETOPS is called by a TIP in order to properly relinquish control to the
monitor (PBMON). This module is also considered a part of the base system.

COMMON TIP REGULATION — PTREGL

The common TIP regulation checking routine is called when the TIP is ready
to start processing the data (upline or downline). Even though some
processing of the data may already be completed (for instance, input state
processing being complete on upline data), CCP may need protection from an
additional request for space or processing resources,

At the TIP's request, PTREGL checks any one or any combination of the
following four regqulation conditions:

® The regulation level at this end of the logical link is higher than
the priority level of the block transmitted to this NPU.

) The allowable number of blocks that can be queued to this TCB (ABL)
is greater than the number of blocks already queued to this TCB for
processing (OBL).

® The accept input (AI) flag is not set in the TCB (upline data).

60474500 A 6-29

° The buffer availability level in this NPU is below the level set for
this type (low or high priority) of data blocks.

NOTE

This routine is not called by the multiplex subsystem
for upline data. Instead, upline data is accepted
from the input loop, stored in the CIB, and
demultiplexed into a line-oriented input buffer; then
the TIP is called. The TIP has the responsibility
for checking whether the message should be rejected
(regulation occurs). The mechanism for stopping
input at the external interface is also a TIP
responsibility. This is done by breaking the message
(input stopped or BRK block) and commanding the
multiplex command driver to turn off the CLA. Until
the CLA state is changed, the multiplex subsystem
must continue to accept input data.

The calling format is PTREGL (parml, parm2). Parm 1 is a pointer to the
buffer associated with the proposed input operation. Parm 2 is the type of
comparison to be made.

If the type of regulation checked does not currently exist, PTREGL passes a
no regulation flag to the caller,

PTREGL is also considered a part of the base system.

SAVING AND RESTORING REGISTERS

Two subroutines save and restore the R1 and R2 registers.

PBBEXIT — Save R1 and R2

PBBEXIT is used to save Rl and R2 before executing the GOTO (EXIT) when the
GOTO statement occurs within one or more executable WITH statements.

NOTE

A GOTO (EXIT) from within a noninterruptable program does not
perform an UNLOCK operation before exiting.

PBEXIT then restores Rl and R2.

PBAEXIT — Restore R1 and R2

PBAEXIT is used before a GOTO (EXIT) is executed from within one or more
executable WITH statements. PBBEXIT has previously saved Rl and R2 in a
specified area so that they may be used as base addresses of the structures

associated with the first two executable WITH statements. The calling
sequence is

PBAEXIT (parm)

where parm is the name of the two-word save area for Rl and R2.

6-30 60474500 A

VIRTUAL TERMINAL TRANSFORM

Virtual terminal format allows the host application programs to expect only
two types of input: ASCII input from a standardized interactive terminal
(IVT), or ASCII input from a standardized batch terminal (BVT).

Each TIP is responsible for converting from terminal code and format to and
from the ASCII virtual terminal formats. Downline, this is handled entirely
in text processing state programs (see section 12). If the TIP handles
several types of terminals, it must have state programs to handle the
conversions for each separate type of terminal.

Upline, TIPs can use either of two ways of converting data. Usually, input
state programs can be used to completely demultiplex data from the circular
input buffer, to convert format, and to translate code in a single operation
(one pass processing). In cases where the upline block of data from the
terminal may be composed of data from several terminal devices, this single
stage input state processing is impractical. Instead, the multiplex
subsystem first uses input state programs for this TIP to gather all the
data into an input block for the line. Then after the TIP is called at OPS
level, the TIP provides a separate set of upline text processing state
programs to finish demultiplexing the data into blocks for each device. At
the same time, the upline text processing state programs convert format to
BVT or IVT, and translate code to ASCII (two stage input character
processing; used by the HASP TIP).

IVT and BVT can be considered as a special subset of the normal host/NPU
block protocol.

BVT is handled entirely by the state programs within the TIPs, Most IVT
transforms are handled the same way; however, IVT parameters can be varied
within a narrow range. For this reason a common TIP routine, PTIVTCMD, is
provided to decode the operator (or host)-entered message that changes the
IVT parameters (PTIVTCMD calls PTIVTPRSR to parse the message containing the
new IVT parameters).

Since the techniques used to format for IVT and BVT differ, the two types of
terminals are discussed individually.

BATCH VIRTUAL TERMINAL (BVT)

Batch Virtual Terminal provides the standard interface which permits
application programs in the host to exchange information with remote batch
terminals without regard to specific terminal characteristics.

The additional block handling abilities needed for batch-type terminals are
as follows:

o Ability to transform data to and from BVT format

) Ability to handle block protocol for each type of 9 blocks that can
be passed over the host and local NPU interface

60474500 A 6-31

Batch Virtual Terminal Characteristics

The BVT is deemed to be a multi-device terminal operating remotely from the
host. The BVT is connected to the 255X by a synchronous medium using a
high-speed line. Although the protocol on the line may differ by equipment
type, the BVT is assumed to be a block oriented terminal.

A separate logical connection exists for each device supported. Device
types that may exist at the remote site include: card readers, printers,
plotters, and card punches. The BVT is defined to allow full use of the
features of Mode 4 terminals.

Features considered are: data compression, printer carriage control, code
conversion, transparent data mode control, and file structure. For downline
blocks, the host process ensures that downline network blocks do not exceed
the allowable device block size after processing by the TIP, and that output
print lines do not exceed the device printline width. Similarly, the host
process is responsible for compressing data. For downline data, only,
blank, zero, and duplicate character compression is permitted. Compression
duplicate characters other than blanks or zeros will cause a rejection in
the form of a BRK block, if such data is sent to a Mode 4 terminal - (HASP
workstations, however, accept duplicate character compression). The degree
of upline compression is determined by the terminal. Full compression is
assumed. At any multidevice terminal the interactive devices conform to IVT
and the batch devices to BVT.

BVT Block Protocol Usage

) BLK Blocks - BLK blocks transfer non-last blocks of input or output
messages. The size of the upline block is determined by the
terminal. It is a host responsibility to ensure that the size of the
downline block does not exceed the terminal buffer size, after the
protocol envelope has been added. The TIP attempts to deliver all
blocks to the terminal. The effect of delivering too large a block
differs according to terminal type.

® MSG Blocks - Message blocks transfer the last or only block of an
input or output message. An upline message block is generated
whenever an end-of-information (EOI) is encountered in the card
stream. The EOI is designated by the < END OF INFORMATION > sequence.
A downline MSG block designates the end of a host message.

NOTE

The < > symbols are used for delimiting elements of
the IVT/BVT format.

) BACK Blocks - A BACK block acknowledges delivery of BLK, MSG, or CMD
blocks, for purposes of flow control.

® BRK Block - A break block temporarily stops the data flow when an
operator action occurs (interactive devices have precedence over
batch devices) or when a printer-not-ready condition is detected.
The application program is responsible for restarting the flow. A
BRK block is sent upline when the TIP receives a block that does not
conform to BVT or IVT.

32 60474500 A

[=)]
1

) STP Block - A stop block stops the data flow when the end device
becomes inoperative or otherwise incapable of accepting more data.
The source process is required to protect all data which has not been
acknowledged by a BACK block and to prevent new data from being sent
to a device unable to accept it.

° STRT Block - A start block cancels the effect of the STP block. The
source process must respond with an RST block; then the source may
resume sending data.

° RST Block - A reset block indicates the point at which a BRK or STRT
block affected the message block stream. A destination process
issuing a BRK or STP block discards all unacknowledged blocks, as
well as all new BLK, MSG and CMD blocks, until an RST is received.
Additional BRK or STP blocks cannot be issued until the RST block for
the previous BRK or STP block is issued.

) CMD Block - A command block causes a change of mode in the other
process. A CMD block which is to affect data in the opposite
direction will not take effect until all data in the same direction
ahead of it has been processed. A CMD which is to affect data in the
same direction affects any data in the stream that follows the CMD
block.

Table 6-2 defines the MESSAGE contents of the blocks to the level needed for
BVT processing. Symbols used in the table are as follows:

) PARAM indicates a necessary parameter in the message block.

® PARAMa
* indicates one necessary parameter chosen
: from a list of possible parameters.
’ PARAMn
) {(PARAM)} . . « indicates that a parameter is necessary or i
permitted at a certain place in the message stream;

for instance a single MODECHANGE is allowed ahead
of a physical record in an UPLINEDATA message block.

Data control bytes have several parameter names: MODECHANGE,
COMPRESSEDDATA, etc. These control bytes have a common generic format:
FFnnjg where nn ranges between 00 and FF1g. These values are listed
together in a subtable.

A sample of the use of table 6-2 is shown in figure 6-10.

Table 6-3 defines the values for the parameter FORMSCONTROL which specifies
the print control action for the BVT.

Figure 6-11 shows job stream card examples for BVT data handling.

60474500 A 6-33

TABLE 6-2. BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE)

MESSAGE

CONTROL

DOWNLINE CONTROL

UPLINE CONTROL

NETWORK HDR

NETWORK ADDRESS

PRI

BSN

COMMAND
. STOP INPUT
START INPUT

INPUT STOPPED

REASON CODE

DATA MESSAGE

BLKBLOCK

MSGBLOCK

BLK
MSG

DBC

UPLINEDBC
DOWNLINEDBC

BANNERCARD

UPLINEDATA

6-34

CONTROL
DATA MESSAGE

- [DOWNLINE CONTROL]

UPLINE CONTROL

STOP INPUT
NETWORK HDR COMMAND [START INPUT]

NETWORK HDR COMMAND INPUT STOPPED REASON CODE

NETWORK ADDRESS PRI BSN

DN SN CN
[0 I 0 - low
JJ Priority {1 - high
0
% see block protocol
Block Sequence Number description at beginning
° of section 6
L7
4
PFC - Clj¢ SFC = 05
PFC = Clj¢ SFC = 06
PFC = Clj¢ SFC = 07
00 00 - Stop input response
0l 0l - Input device not ready
02 02 - Card slip error
03 03 - EO0l1 input

(BLKBLOCK) g~ MSGBLOCK

NETWORK HDR BLK DBC [UPLINEDATA A]

DOWNLINEDAT
NETWORK HDR MSG DBC UPLINEDATA
(ENDOF INFORMATION) DOWNLINEDATA
8%} See block protocol
UPLINEDBC
DOWNLINEDBC
00

SPARE SPARE SPARE NOTUSED NOTUSED NOTUSED
BANNERCARD NOTUSED

00 Don't punch banner card
01 Punch banner card

(MODECHANGE) (COMPRESSEDDATA)
NDOFMEDIA (ENDOFRECORDJ] g-n

60474500 A

TABLE 6-2. BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE) (Contd)

_ [UMODECHANGE) (FORMSCONTROL) (COMPRESSEDATA)
DOWNLINEDATA ~ 'ENDOFMEDIA (ENDOFRECORD)] g-p
A single MODECHANGE is allowed ahead of a physical
record. FORMSCONTROL is required ahead of each print
line. COMPRESSEDDATA may be elided, e.g., FORMSCONTROL
without print. ENDOFMEDIA is required at the end of each
physical record. ENDOFRECORD and ENDOFINFORMATION are
used to indicate logical record or file boundaries.
HEX Value Parameter Use
FFO00-FF09 MODECHANGE Data Modes
FFOA-FFOF ENDOF... Information Separators
FF10-FF2F COMPRESSEDBLANKS Compressed Blanks
FF30-FF3F COMPRESSEDZEROES Compressed Zeros
FF40-FF8F COMPRESSEDDATA Compressed Data
FF90 STRINGINDICATOR Uncompressed String
Terminated by FFjg
FF91-FFCF STRINGLENGTH Uncompressed String of
Length 1 through 63
FFDO-FFDF - Not Used
FFEO-FFFE FORMSCONTROL Forms Control
FFFF Data Character FF
_ [asc11-029
MODE CHANGE = [ASCII—OZG
ASCII-029 = FF003¢
ASCII-026 = FF0331¢

Each device type supported by the BVT is assigned a data mode (see device
type subtable, below) which, in most cases, is unchangeable. However,
downline data to a card punch may contain a MODE CHANGE requesting the TIP
to perform the appropriate code translation to generate the desired punched
cards. The mode selected stays in effect until the next MODE CHANGE or an
ENDOFINFORMATION, which causes the data mode to be returned to the default
for the device. For all other downline data and all upline data, MODE
CHANGE is ignored.

ASCII-029 indicates that the data should be interpreted as ASCII, but that

only the 64 character subset will appear. The data will be translated by
the TIP to produce 029 cards. Similarly, ASCII-026 will produce 026 cards.

60474500 A 6-35

TABLE 6-2. BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE) (Contd)

DEVICE DATA MODES SUBTABLE

Device Type Data Mode
Card Reader Data is always converted to the 64-character subset of

ASCII by the TIP based on the characteristics of the card
reader and/or from information punched on the job and
end-of-record cards in the input stream,

Line Printer Data is always sent to the TIP in the 64-character subset
of ASCII and is translated by the TIP to produce the
terminal's standard graphics.

Card Punch Data is always sent to the TIP in the 64-character subset
of ASCII and, by default, is translated by the TIP to
produce 029 cards. A MODE CHANGE can be used to request
that 029 or 026 be punched.

Plotter Data is always sent untranslated by the TIP to the plotter.
EO Forms control associated with each
El print line. See table 6-3 for defini-
. tion of values. Forms controls which
FORMSCONTROL = FF1¢ . are not supported by a specific device
. results in a single space. See
FD individual TIP actions for implementa-
| FE16 tion.
COMPRESSEDZEROES
COMPRESSEDBLANKS
COMPRESSEDDATA = |REPLICATIONCOUNT BYTE

STRINGLENGTH STRING
STRINGINDICATOR STRING
1-n words

327 321 - 2 zeroes compressed

33 3316 - 3 zeroes compressed
COMPRESSEDZEROES = FFjg .

3E

| 3F1g 3F16 - 15 zeroes compressed

[12] 216 - 2 blanks compressed

13 .
COMPRESSEDBLANKS = FFjg . .

2E .

| 2F1¢ 2F1¢ - 31 blanks compressed
BYTE (0..255)

= 00 through FF1g (8-bit byte)

6-36 60474500 A

TABLE 6-2.

REPLICATIONCOUNT

STRINGINDICATOR

STRING

STRINGLENGTH

BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE) (Contd)

FFi¢

FF903¢

BYTE

FF16

[42
43

8E
[8F16

Second byte represents the number of
times the byte following the count is to
be repeated. Value may range from 2
(42) 16 to 79 (8F)16. Upline

compression is determined by terminal;
full compression capability should be
assumed. Not used for downline blocks.

Used for upline only, this indicates that the
following byte string consists of uncompressed
data of indeterminate length. The string is
terminated by the first non-data FFjlg
encountered. Any data FFjg patterns must be
doubled by the TIP and the added FFjg must be
deleted by the host.

1-n

—

91
92

.

CE
[CF16

bytes - n is limited by the physical record

length of the terminal device.

This indicates that the following byte
string consists of uncompressed data of
length 1 (911¢) through 63 (CFig).

This method of representing uncompressed
data is always used downline but is used
upline only when a count is provided by
the terminal, such as HASP.

The following three elements allow file structure to be retained during

transfer.

ENDOFMEDIA

ENDOFRECORD

nn
ENDOFINFORMATION

60474500 A

FFOAl6

FFOBl6

- This represents the end of a physical record,
for instance: card, print line.

nn FFOA

- This represents the end of a
logical record and may occur at other
than block boundary.

logical record level number

FFOCFFOA

16

- This occurs only in a MSG block as the last
four characters in the block.

Use of BVT Block Syntax table:

because of card error, BVT block.

MESSAGE

UPLINE“®ONTROL = NETWORK HDR COMMA
NETWORK‘ﬁEE’//”:‘NETWORK
NETWORK“XDDRESS = DN SN

—

low priority assigned to batch terminals

/

PRI

BSN

INPUT STOPPED =

REASON" CODE

= _CONTROL

CONTROL“/”////:’UPLINE CONTROL

0 -

-~

ND
PRI

=

4 - CMD type of block

Cl -7

2

INPUT STOPPED

’//gg ~ Codes of destination source, and

connections are given earlier in
section 6

~

Example to generate an upline, input stopped

REASON CODE

16 ~_See appendix C for the primary and secondary
function code assignments

Formatting the syntax into a byte format:

byte word format (hex)
0000
Link Header | DN | sv [oN | pri/ | prc | src | Re 2§gi
=02 | =03 | =x BSN/ | =Cl1¢ | =07 | =02 c107
BT=04
0200
coupler node---l
terminal node
CN used in
directory search bit_ 7 6 4 0
P BSN BT
? = = CMD Block
=0
Figure 6-10. Use of the BVT Block Syntax Table
6-38 60474500 A

TABLE 6-3. FORMSCONTROL VALUES FOR BVT BLOCKS

FORMSCONTROL
(Hex) Action Before Printing Action After Printing
E0 (1) Space 1 No Space
E1l (1) Space 2 No Space
E2 (1) Space 3 No Space
E3 (1) Suppress Space No Space
E4 (1) Skip to Channel 1 (2) No Space
ES Skip to Channel 12 (3) No Space
E6 Skip to Channel 6 No Space
E7 Skip to Channel 5 No Space
E8 Skip to Channel 4 No Space
E9 Skip to Channel 3 No Space
EA Skip to Channel 2 No Space
EB Skip to Channel 11 No Space
EC Skip to Channel 7 No Space
ED Skip to Channel 8 No Space
EE Skip to Channel 9 No Space
EF Skip t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>