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PREFACE

This manual describes the mathematical routines of the NOS/BE Version 1 for the CDC® CYBER 170 Series;
FORTRAN Version 5 Common Library which is part of CYBER 70 Models 71, 72, 73, 74; and 6000 Series
FORTRAN 5, Computer Systems
It is assumed that the reader is familiar with FORTRAN 5
and understands basic numerical techniques. SCOPE Version 2 for the CDC CYBER 170
Model 176; CYBER 70 Model 76; and 7600 Computer
FORTRAN 5 and the math routines operate under the Systems
following operating systems:
NOS Versionl for the CONTROL DATA® Other related publications are listed below.
CYBER 170 Series; CYBER 70 Moadels 71, 72, 73, 74;
and 6000 Series Computer Systems
Publication Publication Number
FORTRAN Version 5 Reference Manual 60481300
COMPASS Version 3 Reference Manual 60492800

CDC manuals can be ordered from Control Data Corporation,
Literature and Distribution Services, 308 North Dale Street, St. Paul,
Minnesota 55103.

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper functioning
of undescribed features or parameters.
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INTRODUCTION

The FORTRAN Common Library Mathematical Routines
(math library) compute frequently occuring math func-
tions, such as sine, cosine, and tangent. They are
referenced by the function names described in the
FORTRAN 5 Reference Manual. The math library rou-
tines can also be accessed from COMPASS programs.

In addition to computing commonly occurring math
functions, the library includes routines that perform input
and output operations. However, calls to these routines
are compiler-generated rather than user-generated, and
are not described in this manual. Standard mathematical
symbols are used throughout this manual, except for
multiplication, which is denoted by an asterisk.

NUMBER TYPES

The math routines perform computations on four number
types: integer, single-precision floating-point, double-
precision floating point, and complex floating-point. For
each number type, there is a set of valid forms, each
representing a point on the real number line or in the
complex plane. In addition, there is a set of semivalid
forms. None of these represent numbers, but give some
indication of the erroneous computation that produced
them. All other bit configurations in words thought to
contain numbers of one of these types is called invalid.

The valid, semivalid, and invalid forms of each number
type are described in table 1-1.

Two rules govern the use of these number forms in
computation:

1. Unless documented otherwise, if a valid form of a
number type is used in a computation, a valid form of
the same type will result.

2. Unless documented otherwise, if a semivalid or
invalid number is used in a computation, the result is
unde fined.

An exception to rulel is if the answer computed is
greater or less than the range of values for valid
numbers. Also, if a mathematically invalid operation is
attempted, rule 1 does not apply.

If an invalid result is returned from a math routine, the
program may continue without issuing a diagnostic
message. The program may also terminate with or
without a diagnostic, or continue for a short period and
then terminate. Results of erroneous computations can
vary from run to run.

In some cases, certain types of checking are performed.
Also semivalid results can be produced by some routines
to indicate an error has occurred.

ROUTINES AND CALLS

The FORTRAN math functions are predefined routines
that can be called from a FORTRAN program. There are
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two types of calling procedures that can be used: calls by
name and calls by value.

When a routine is called by name, a parameter list is
formed in memory and the first-word-address of this list
is stored in register Al before the routine is invoked.

When a routine is called by value, the arguments are
entered directly into registers X1 through X5 before the
routine is invoked. The first word of the first argument is
entered into register X1, the first word of the second
argument is entered into X3, and the first word of the
third argument is entered into X5. If an argument is
double-precision or complex and requires two words, the
second word is entered into the next register (i.e., X2 or
X4). The first word of a complex argument is the real
part, and the first word of a double-precision argument
contains the high-order bits.

For both calls by name and calls by value, the result of
the computation is returned in registers X6 and X7.
One-word results are returned in X6, and the second word
of a two-word result is returned in X7.

ROUTINE ERROR

Error is defined as the computed value of a function minus
the true value.

A certain amount of error occurs during the computation
of the math library functions, and is composed of two
parts: algorithm error and machine round-off error.
Algorithm error is caused by inaccuracies inherent in the
mathematical process used to compute the result. It
includes error in coefficients used in the algorithm.

Machine round-off error is caused by the finite nature of
the computer. Because a finite number of bits can be
represented in each word of memory, some precision is
lost.

A curve representing the algorithm error is usually smooth
with discontinuities at breaks in the range reduction
technique. The error in the coefficients that are involved
in range reduction can also occur. Usually, a good
algorithm which uses good coefficients will not have an
error greater than one-half in the last bit of the result.

Round-off error is difficult to predict or graph. A graph
of round-off error is extremely discontinuous, but
maximum and minimum error over small intervals can be
shown,

Relative error is the error divided by the true value. The
magnitude of relative error can be analyzed in two ways:
by using the following formula:

(routine value -
exact value)/exact value

relative error =

or by figuring out how many bits the routine differs from
the exact value. The latter is called bit error.

The first way is used for single-precision algorithms
accurate to less than 2E-15, and round-off errors less than

1-1



TABLE 1-1. NUMBER FCORMS
Number Number R
Type Form Description
Integer Valid The one-word right-justified one's-complement binary representation
of all integers from -248 + 1 to 248 - 1. Zero can be repre-
sented as positive zero (all zero bits), or negative zero (all one
bits).

Semivalid None.

Invalid Any bit configuration in which the top 12 bits are not the same.

Single-precision Valid The normalized one-word forms of the internal floating-point
floating-point representations. Zero can be represented as positive or negative
zero.

Semivalid The four forms known as positive infinite, negative infinite, posi-
tive indefinite, and negative indefinite.

Invalid Any nonzero and nonsemivalid bit configuration where bits 47 and 59
are the same,

Double-precision Valid The forms of the internal double-precision floating-point represen-

floating-point tations where the first word is normalized and the second word has
an exponent that is 48 smaller than the first word or zero. The
signs of both words must be the same except when the lower part is
zero. Zero can be represented as positive or negative zero.

Semivalid The forms where the first word is a single-precision semivalid
form. The second word can be anything.

Invalid Double-precision representations which have sign disagreement
between the two words, or the first word is an invalid single-
precision form, and the second word contains an exponent that is 48
smaller than the first word or zero.

Complex Valid A1l two-word forms where each form is a valid single-precision
floating-point number.

Semivalid A1l two-word forms where one word is a semivalid single-precision
number, and the other is a valid or semivalid single-precision num-
ber.

Invalid A1l two-word forms where one word is an invalid single-precision
number,

10E-15. Changing the last bit in a single-precision number
produces a relative change of between 3.5E-15 for a large
mantissa, and 7.1E-15 for a small but normalized mantissa.

The second method of analyzing relative error is by
examining the routine's bit error. To determine how many
bits off a routine is, the function is evaluated in
double-precision and rounded to single-precision. Then,
assuming the exponents are the same, the mantissas are
subtracted and the integer difference is the bit error,

ERROR PLOTS

In the descriptions of some of the math routines described
in this manual, error plots are provided. A typical plot
covers a one-argument single-precision function over a
range of argument values. These are plotted linearly or
logarithmically with the ordinate ranging from -11E-15 to
11E-15 and represent relative error. The saw-toath

1-2

curves represent places at which relative error is -3/2,
-1/2,1/2, and 3/2 the bit error. Discontinuities occur
where the routine produces a result that is a power of 2.
The argument values given are found empirically, so only
an appropriate number of digits is printed.

Any point that is between the -1/2 and 1/2 saw tooth
curves represents a case of the routine being as accurate
as possible; anything between 1/2 and 3/2 is 1 bit high.

An algorithm error curve ranges through the middle of the
plat. It shows the relative error of the algorithm over the
given argument range. Its discontinuities are usually due
to the range reduction part of the algorithm. For this
curve, the algorithm error is (alg - exact)/exact where alg
is a routine rewritten to use double-precision operators
and single-precision coefficients. Therefore, a polynomial
can't quite equal a transcendental function and pi/2 can't
be represented exactly. The coordinates of the highest
point are indicated next to it.

60483100 A
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The overall error is bounded empirically by two jagged
curves with arrowheads on them. The number of different
arguments fed to the function is given on the plot; each
corresponding point is either at the tip of one of the
arrowheads or strictly between the pair of curves. It is
likely, that there are points which da not lie between the
two curves. However, the curves are close to true
least-upper-bound and greatest-lower-bound curves.

The arguments are chosen randomly. After starting with
the smallest argument, each argument is the previous
argument plus RANF(0)*k, where k is a constant. On a
logarithmic scale this algorithm is modified to get an even
distribution on the resulting plot.

Ordinary numbers, such as ratiocnal numbers and multiples
of log 2 or pi, probably are not sampled.

There are usually about 250 points, or arrowheads, on each
of the bounding curves. Given arrowheads x and y, the
last two on the list, point z (formed by an argument and
the relative error of the routine for that value) is added to
the arrowhead list if xyz forms a convex curve or the
abscissa of x and z are too far apart. Otherwise,
arrowhead y is deleted from the list and the test for
inclusion is retried. Points going beyond 1lE-15 are
forced to the boundary. The largest relative error
encountered is labeled with its coordinates. Various
statistics are printed concerning the distribution of
points. Included in these statistics is the percentage of
points per segment of width 1E-15, that lie in the interval
between -10E-15 and 10E-15. Points that are greater than
10E-15 are included in the segment between 10E-15 and
11E-15. Points that are less than -10E-15 are included in
the segment between -10E-15 and -11£-15. Bit errors are
similarly handled, with anything above 3 being put
with 3. Empty segments are not listed. The "MEAN R.E."

60483100 A

is the mean of all ordinates. The "RMS R.F." is the
standard deviation of relative error:

SQRTZ((sum of REZ2)/number of points) - MEAN
R.E.)

HOW TO READ A PLOT

Here are some cause and effect statements; by taking the
inverse of the statement, one has a way to look at a plot
and deduce what the algorithm is doing.

1. If f(x) = 2" * (x+g(x)) where g(x) is small compared
to x and rounded addition is used, then the bounding
curves roughly parallel the algorithm error and are as
far apart as the inner saw-tooth curves. Unrounded
addition transposes the curves by 1/2 bit.

2. If f(x) = c+g(x) then the bounds are transposed by the
error in c.

3. If f(x) = c*g(x) then the distance between the bounds
for f(x) are usually wider than for g(x); in particular
f(x) probably has bounds at least 2 bits apart.

4. If f(x) = g(x)+(h(x)+d(x)) where g, h, or d can be
constant and one of the additions produces an
unnormalized result, then the bound curves can be
translated andf/or spread farther apart than for a
nearby area where the addition happens to be
normalized.

5. If f(x) is broken into numerous subintervals (e.q., 16),
then the algorithm error curve is dominated by
discontinuous lumps in the constants used for table
lookup.

1-3






ROUTINE DESCRIPTIONS 2

Each of the math routines is- described in detail on the
following pages. The descriptions include the purpose of
each routine, possible entry points, the FORTRAN
function names that reference each routine, the formulas
used to compute the result, and an error analysis.

Entry points into the routines are places in the routine at
which execution can begin. Some routines can evaluate
mare than one function, and can have separate entry
points for each. Also, some routines call others in order
to compute a portion of the function.

In the error analysis for some of the routines, the
abbreviation ulp is used. This means unit in the last
place. Also, four symbols are used throughout to
represent four bit configurations. These are summarized
in table 2-1.

ACOSIN.

ACOSIN. is an external function which accepts calls from
FORTRAN code. It computes the inverse sine and inverse
cosine functions (FORTRAN function names ASIN and
ACQOS). It accepts a floating-point argument and returns
a floating-point result.

Calls by name are computed at entry points ASIN and

ACOS, and calls by value are computed at entry points
ASIN, and ACOS. .

METHOD

The input range is the collection of all valid floating-point
quantities in the interval (-1.,1.). Arguments outside this
range initiate error processing.

Formulas used in the routine ares

where:

w = (x2-0) *z+k
z = (x2+r) x2+i

The constants used are:

3.17317007853713
1.16039462973902
50.3190559607983
-2.36958885561288
B.22646797079917
-35.6294815974555

= 37.4592309257582

= 349,319357025144

= .746926199335419 * 10-3

{ I A I L B 1}

r
e
m
c
i

J
k
a
s

The approximation of aresin (-.5,.5) is an economized
approximation obtained by varying r,e,m,...,s. The
argument x is supplied to ACOS. or ASIN. in X1, and the
result is returned in X6.

a. If ACOS. entry, go to step g.

b. If |x{ >.5, go to step h.

c. n=0 (Loop counter).
q=x
y = x2
u=0 if ASIN. entry.
u = pif2 if ACOS. entry.
do z = (y+r) *y+i
w = (y-c) *z+k
p = g+s*g*y* ((w+z-j) *w+a+rm/ (e-y))
p =up
X6 = p/2n

e. If ASIN, entry, go to step k.

f. If x is in(-.5,1.), return,

arcsin(x) = -arcsin(-x) x <-.5 X6 = 2*¥u-(X6)
arcos (x) = pi-arcos (-x) x < -5 Return.
arcsin(1) = pi/2
arcos(1) =0 g. [If|x] < .5, go tostep c.
arcsin(x) = pi/2-arcos(x) S5 <x<.1
arcos(x) = arcos(1-g(x,n) )/2" 5 <x<l h. If x = +1,-1 or x is invalid, go to step i.
n =0 (Loop counter).
where: y = 1-|x|, and normalize y .
g(x,0) = 1-x i ho=gxy2xy2
q(x,n+1) = 4g(x,n) - 2g (x,n)z. n =n+l
arcos(x) = pi/2 - arcsin{x) -5<x<.5 If 2%y < 2-sqrt(3) = .267949192431, y = h and go to
arcsin(x) = x+x>%s* ((w+z-j ) *w+a+m/ (e-x2)) -.5<x <.5 step i.
TABLE 2-1. SYMBOL DEFINITIONS
Symbol Bit Configuration Meaning

POS. INF. 37770000000()000000008 Positive Infinite

POS. INDEF. 177700000000000000008 Positive Indefinite

NEG. INF. 40000000000000000000 Negative Infinite

NEG. INDEF. 600000000000000000008 Negative Indefinite

60483100 A
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J» g = 1-h, and normalize q.
= q2
Yy=q
u = pif2
Go to step d.

k. X6 = u-(X6), and normalize X6.
Affix sign of x to Xé.
Return.

l. If x =+l. or -1., go to step m.
X6 =pif2ifx=1.
X6 = -pif2 if x = -1.
If ASIN. entry, return.

X6=0if x =1,
X6 = piif x = -1,
Return.

m. Plug ACOS. entry point with ASIN. entry point, if
ASIN. entry.
Initiate error processing.
Return through ACOS. entry point.

ERROR ANALYSIS

The maximum absolute value of relative error of the
approximation above of arcsin over (-5,.5) is 1.996*10-15,
A graph of the relative error of this approximation is
given in figure 2-1. Upper bounds on the absolute value of
relative error due to machine error have been established
in the following cases:

9.232 » 10-15
1.673 = 10-14
4,050 * 10-14
1.618 * 10-13

arcsin on (-.5,.5) -
arcos on (- 5,.5) -
arcsin on (-1.,1.) -
arcos on (-1.,1.) -

The corresponding upper bounds aon the absolute value of
relative error in the routine are:

1.123 * 10-14
1.873 * 10-14
4,250 * 10-14
1.638 * 10-13

arcsin on (-.5,.5) -
arcos on (-.5,.5) -
arcsin on (-1.,1.) -
arcos on (-1.,1.) -

For groups of 1000 arguments chosen randomly from given
intervals, statistics on relative error were observed.
These are summarized in table 2-2.

Algorithm Error

For computation of arcsin (x), where x is in the interval
(-.5,.5), the error curve is given in figure 2-2. The curve

shows the error between 0 and .5 only, since it is
symmetrical about 0.

The curve is not balanced around the axis because the
Chebyshev coefficient for x was thrown away, and 1.0 was
used instead.

For computation of arcsin (x) outside of the interval
(-.5,.5) and arcos (x), a range reduction is performed
which produces no algorithm error. At the end of the
computation, a multiple of pi is involved, so the curves
are offset by an amount dependent on the error in pi. The
error for arcos is shown in figure 2-3.,

There are breaks in the algorithm error curve at plus and
minus .5, and when one-half the square root of three is
866025, 9665926, .991445, .997859, and so on.

Total Error

For the arcsin (x), where x is in the interval (-.5,.5), the
routine is: x + x3 * (,..). The total error is dominated
by the final addition, so the error curve closely follows
the algorithm error curve plus or minus one-half bit.

for x in the interval (.5, .866) the algorithm is:

y=1-x
z=(1-4%y)+2%y2
arcsin(x) = pif2 + (pi/2 - (z + 23* (...)))/2

where y is in the interval (.5,.134), and z is in (-.5,.5).

No precision is lost computing y, and little is lost
computing z. Some accuracy is lost computing the final
part. The big jump in the error graph is when x is in the
interval (.5,.540302). This occurs when pif2 - (z +...) is
greater than 2. This peak shows up at other places, such
as in the arcsin computation when x is in the interval
(.866,.878). It also occurs in the arcos computation just
below each peak in the bit error curve.

The arcos computation, except near 1.0, is predominated
by pi/2. In particular, for x in (-1.,.5), pi/2 is added
twice, first rounded then unrounded, in order to give a
near-perfect distribution. Near x=1.0, so much folding
occurs that a large error is built up befaore evaluating the
polynomial. The graph gives an indication of the
infrequency of error but does not show a waorst case
(15E-15 relative error has been experienced).

The mean relative error for ASIN and ACOS is graphed in
figures 2-2 and 2-3.

TABLE 2-2. RELATIVE ERROR OF ACOSIN.

Interval's Interval's

En@ry Lower Upper Mean Staqdaqd Minimum Maximum

oint Bound Bound Deviation
ACOS. -.5 .5 -9.435E-16 1.547€-15 -5.781E-15 3.856E-15
-1. -.5 -4,331E-16 1.746E-15 -4,520€-15 4,546E-15
.5 1. -5.098E-16 1.843E-15 -7.150€-15 9.559E-15
ASIN. -.5 .5 8.401E-16 1.666E-15 -5.328E-15 4.,916E-15
-1. -.5 6.209E-16 3.268E-15 -7.061E-15 1.489€-14
5 1. 7.311E-16 3.307E-15 -7.160E-15 1.554€-14
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EFFECT OF ARGUMENT ERROR

If a small error, €', occcurs in the argument Xi the error in
the result is gi en approximately by e'/(1-x2):> for ASIN
and by -e'/(1-xZ)*> for ACOS.

ALOG

ALOG is an external function which accepts calls from
FORTRAN code. It computes the natural and common
logarithm functions (FORTRAN function names ALOG and
ALOGI10). It accepts a floating-point argument and
returns a floating-point result.

Calls by name are computed at entry points ALOG and
ALOGI0, and calls by value are computed at entry-points
ALOG. and ALOGI0..

METHOD

The input range to this routine is the collectiocn of all
definite in-range non-negative nonzero floating-point
quantities. Upon entry, the argument x is put in the form
x =y * 20, where n is an integer, and 1.<y<2. Then
log x is evaluated by:

log x = log y + 3/4*n + (log 2 - 3/4) *n

To compute log y, the interval (1.,2.) is divided up into
the subintervals:

(1., 1.107238769531),
(1.107238769531, 1.357238769531),
(1.607238769531, 1.857238769531),
(1357238769531, 1.607238769531), and
(1.857238769531, 2.).

Center points 1., 1.225803196513098, 1.475803239208091,
1.735100002271352, 2. are chosen within these intervals.
If y is in subinterval (a,b) with center point c, logy is
computed by:

log y = log ¢ + log ((1+t)/(1-t))

where t =(y -c)/(y +¢)

log ((1 + t)/(1 - t)) is then computed by:

log ( (1+£)/(1-t) ) = 2.%t+c (3)*t3+c (5)*t+c (7)*t7+c (9)*t9.
The coefficients c(3), c(5), ¢(7) and c(9) are chosen by
truncating the Taylor series for log ((1+t)/(1-t)) after the
11th term, and taking a Chebyshev economization to a 9th

degree polynomial over the largest interval symmetric
about the crigin which is applicable. The constants are:

c (3) = .666666666666105
¢ (5) = .4000000018947
c(7) = .2857120487

c(9) = .22330022

If the argument x is invalid, an error message is issued
through SYSAID=, and POS.INDEF. is returned.

ERROR ANALYSIS

The error analysis for ALOG is given. Bounds on machine
error are the same for ALOG and ALLOGILO0, while the
graph of the algorithm error for ALOGI0 can be obtained
from the graph for ALOG by multiplying by log {e) 10.
The maximum absolute value of the relative error in the
algorithm over the interval (l.,2.) is 1.698 * 10-16, for
entry points ALOG and ALOG.. The maximum absolute
value error_in the algorithm over the interval (1.,2.) is
1.667 * 1017, A graph of the error in the algorithm over
(1.,2.) is given in figure 2-4. An upper bound has been
established for the absolute value of the error in the
routine due to machine error at 5.045 * 10-14 * u, where
u is the greatest integral power of 2. not exceeding the
result. Hence an upper bound on the absolute value of the
relative error in the routine is 5.062 * 10-14,

For groups of 10000 arguments chosen randomly from
given intervals at the entry points listed, statistics on
relative error were cobserved. These are summarized in
table 2-3.

Algorithm Error

Range reduction first folds arguments into
(.9286194,1.857239); the unfolding involves an
approximate constant involving log 2; hence, the error
graph shows discrete lumps at 2N *1.857239 in the
algorithm error plot. Further range reduction into the
subintervals described above invelves the use of log c.
The values of c¢ were chosen so that the 4B8-bit
representation of log ¢ would be correct to at least 59
bits. Hence, no noticeable error is caused by reducing
into the subintervals. Within each subinterval a
polynomial is used; the polynomial is accurate enough to
show essentially no error except near 1.107239,

Total Error

The final
where:

computation is log x = ((({a+t) +t) +p) +b) +b

a=log2-3f4)*n,
p=c(3)*t’..,and
b = (3/4 * n + log c)/2

TABLE 2-3. RELATIVE ERROR OF ALOG
Entry Interval Standard .. .
. Mean s oes Minimum Maximum
Point From To Deviation
ALOG. 1. 2. 1.743E-16 2.286E-15 -9.040E-15 6.194F-15
.5 2. 2.325E-16 2.279E-15 -1.058E-14 8.665E-15
.5 1. 4.101E-17 2.488E-15 -9.450E-15 8.637E-15
.0001 1009 4,522E-16 2.223E-15 -5.562E-15 5.234E-15
10-290 10322 1.228E-15 1.439E-15 -1.616E-15 4.001E-15
ALOG10. 1. 2. -2.726E-15 2.723E-15 -1.447€-14 4.640E-15
.5 2. -2.689E-15 2.770E-15 -1.346€-14 6.506E-15
.5 1. -2.826E-15 2.897E-15 -1.546E-14 9.353E-15
.0001 1000 -1.795E-15 2.526E-15 -9,208E-15 5.058E-15
10-299 10322 -2.015E-15 2.178E-15 -7.389E-15 3.453E-15
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In general p<t<a<b except that a and/or b could be
zero. The order was chosen in order to minimize error
accumulation; b is added in twice in order to cut down on
error and eliminate normalization. Because of this
adding, the error graph jumps around at odd times and by
fairly small amounts. (A jump probably corresponds to a,
t, or one subexpression moving across a power of two.)
Note the value of b is exact. When x is outside
(.9286194,1.857239), a and b are nonzero and b dominates
log x; hence, the error bounds are 1 bit apart. When x is
in (.9286194,1.107239), log x collapses to 2t+p. But
t = (y-c)/(y+c) where y-c is exact, y+c may lose half a bit,
and the quotient involves further error. So those combine
with the addition in 2t+p to make the total error. When x
is in  (1.107239,1.857239), log x = ((2t+p)+p  with
b = (log ¢)/2; t and b may be of opposite sign. Figure 2-5
and 2-6 show the mean relative error of ALOG.

EFFECT OF ARGUMENT ERROR

If a small error €' occurs in the argument x, the error in
the result is given approximately by e'/x.

ATAN

ATAN is an external function which accepts calls from
FORTRAN code. It computes the inverse tangent
function (FORTRAN function name ATAN). It accepts a
floating-point argument and returns a floating-point result.

Calls by name are computed at entry point ATAN, and
calls by value are computed at entry point ATAN.

METHOD'

The input range to this routine is the collection of all
definite in-range normalized floating-point quantities.
The cutput range of this routine is included in the set of
th})se floating-point quantities lying between -pi/2 and
pi/2.

The argument x is then transformed into an argument y in
the interval (0, 1/16) by the range reduction formulas:

arctan (u) = -arctan (-u), u negative
arctan (u) = pif4 + (pi/4 - arctan(1/u)), u >1
arctan (u) = arctan (k/16) + arctan((u - k/16)/(1 + u*k/16))

where 0<u<1, and k is the greatest integer not
exceeding 16%u.

Finally arctan(y) (for y in (0,1/16)) is computed by the
polynomial approximation:

arctan(y) = y +a(1)*y3 + a(2)*y5 + a(3)*y7 + a(4)*y’

where:

a(l) = -.33333333333312845
a(2) = .1999999958014464
a(3) = -.1428541305087450
a(4) = .1102281616126149

The coefficients of this polynomial are those of the
minimax polynomial approximation of degree 3 to the
function f over (D, 1/4) where t (u2 = (arctan(u) - u)/u3).

ERROR ANALYSIS

A graph of the relative error of approximation of the
algorithm over (0,1/16) is shown in figure 2-7. The
maximum absolute value of this relative error is
3.201 * 10-16, An upper bound on the absolute value of
relative error due to machine error has been established
at 4.761 * 10-13. Hence, an upper bound on the relative
error in the routine is 4.764 * 10-13,

For 1000 arguments chosen randomly from the given
intervals, statistics on relative error were observed.
These are given in table 2-4.

EFFECT OF ARGUMENT ERROR

If a small error e occurs in the argument, the error in the
result y is given approximately by e/(1 * y2),

ATANH.

ATANH. is an external function which accepts calls from
FORTRAN code. It computes the inverse hyperbolic
tangent function (FORTRAN function name ATANH). It
accepts a floating-point argument and returns a
floating-point result.

Calls by name are computed at entry point ATANH, and
calls by value are computed at entry point ATANH. .

METHOD

The input range is the collection of all definite, in-range
floating-point quantities in the interval (-1.0,+1.0).

The range is reduced to (0,1) using the identity
atanh (-x)=-atanh(x). From the definition atanh(x)=
(eX-e~X)/(eX+e~X) one gets atanh (x)=0.5*In ( (1+x)/(1-x)).

Using the property In(a*b) = In(a*b) = In(a) + In(b), the
argument range of the log can be reduced to {.75,1.5) by
extracting the appropriate multiple of In(2):

TABLE 2-4. RELATIVE ERROR OF ATAN

Interval Standard s R
P—— = Mean Deviation Minimum Maximum
-1. 1. -1.589E-17 2.216E-15 -6.823E-15 5.539E-15
-10. 10. -2.348E-17 1.940E-15 -6.637E-15 7.505E-15

t  Algorithm and constants Copyright 1970 by Krzysztof Frankowski, Computer Information and Control Science, University
of Minnesota, 55455. Coding is by Larry Liddiard, University of Minnesota.
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atanh (x) = 0.5 * n* In(2) + 0.5 * In (2 * (1+x)/(1-x))

Writing the argument of log in the form (1+y)/(1-y), and
substituting atanh (y) yields:

270 (1 +x)-(1 - %)
atanh (x) = 0.5 * n * In(2) + atanh

277% (1 + x)+(1 - x)
This reduces the range to (-0.2,+0.2).

The value of n such that 2% (1+x)/(1-x) is in (.75,1.5) is
the same as that such that 2-M*(1+x)/(0.75%(1-x)) is in
(](,2). If we write 0.75%(1-x) as a*2+m, a in (1,2), then
2(-n-m)* (14x)/a must be in (1,2). If (1+x) >a then ~-n-m=0
and n=-m. If (1+x)< a then -n-m=1 and n=1-m.

The_ function atanh(z) on (-0.2+0.2) is approximated by
z+z3*p/q where p and q are 4th order even polynomials.
The coefficients of p and q were derived from the (7th
order odd)/(4th order even) minimax (relative error)
rational form on (-0.2,+0.2) for atanh(z).

ERROR ANALYSIS

For abs(x) <0.2, n equals zero, the form z+...+ is used,
and the error stays within the expected bound of 4.8E-15.

For abs(x)=>0.5, the term n*(In(2)/2) dominates. This
term is computed as n*(In(2)/2-.125)-n*.125-n*,125
because the rounding error in representing In(2)/2 is large;
the above form makes the rounding error relatively small.
Since n*.125 is exact and the dominating form, the two
additions in (other) +n*.125+n*.125 dominate the error and
the expected relative error of 8.3E-15 is the maximum
observed error in this region.

For 0.2<abs(x)<0.5, n equals one and the term
2=(0.5% (14+x) - (1-x) )/(0.5* (L+x) +(1-x) ) may be relatively
large. For abs(x) <0.25, the subtraction 1-x=0.5-x+0.5
loses two bits of the original argument. Also, z is
negative in this range and some cancellation cccurs in the
final combination of terms, costing about one ulp. The
actual upper bound in the region 0.2 < abs(x) <0.25 is
19.4E-15, which is the overall upper bound.

The errors are summarized in table 2-5.

Figure 2-8 shows the mean relative error for ATANH. .

EFFECT OF ARGUMENT ERROR

For small errors in the argument x, the amplification of
absolute error is 1/(1-xZ) and that of relative error is

TABLE 2-5. ERROR OF ATANH.

Source of Error Error*1015
Rational form 2.2
Coefficient rounding 0.1
Round-of f 17.1
Upper bound 19.4
Maximum observed 12.3

x/((1-x2) *atanh(x)). This increases from 1 at 0 and
becomes arbitrarily large near 1.0. If x is known to mare
than single-precision, the following FORTRAN code may
be used to get a better result near 1.0

DOUBLE X

(compute X)
SNGLX=X
SHSNGLX=X-SNGLX
Y=ATANH (SNGLX) +SHSNGLX/( {1+SNGLX) *SNGL (1-X) ) )

This method is accurate to single-precision for
abs(x) <1-(lE-8) and less accurate above this point,
although still better than ATANH(SNGL (X) ).

ATAN2

ATAN2 is an external function which accepts calls from
FORTRAN code. It computes the inverse tangent
function of the ratio of two arguments (FORTRAN
function name ATANZ2). It accepts two floating-point
arguments and returns a floating-point result.

Calls by name are computed at entry point ATAN2, and
calls by value are computed at entry point ATAN2. .

METHOD*

The input range to this routine is the collection of all
pairs (x,y) of definite in-range normalized floating-point
quantities such that (x,y) # (0,0).

The function ATAN2(x,y) is defined to be the angle (lying
in (-pi,pi)) subtended at the origin by the point (y,x) and
the first coordinate axis.

The argument (x,y) is reduced to the first quadrant by the
range reductions:

ATAN2 (x,y) = ~ATANZ (-x,y), x< n
ATAN2 (x,y) = pi - ATAN2 (x,-y), x >0, y< 0

The argument (x,y) is then reduced to the sector:
WV):u>0&v<u&v=>0

by the range reduction:

ATAN2 (x,y) = pi/2 - ATAN2(y,x), x 20 or y 20

Then ATANZ(x,y) is evaluated as arctan(y/x), using the
algorithm described in the method section of the ATAN
descripticn.

ERROR ANALYSIS

See the error analysis of ATAN for properties of the
algorithm used in computing arctan(y/x). 2000000 pairs
of arguments (x,y) were randomly generated belonging to
sets ((uv): ul, [vj<10K), where k = -100, -99, ...,
100. The maximum absolute value of the relative error in
the routine for these arguments was observed to be
9.339 * 1015 for these random arguments.

For 1000 arguments chosen randomly from given intervals,
statistics on relative error were observed. These are
summarized in table 2-6.

t  Algorithm and constants Copyright 1970 by Krzyztof Frankowski, Computer Information and Control Science, University
of Minnesota, 55455. Coding is by Larry Liddiard, University of Minnesota.
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TABLE 2-6. RELATIVE ERROR OF ATAN?2
Interval of x Interval of y Standard - .
Mean e Minimum Maximum
From To From To Deviation
-1. 1. -1. 1. -3.182E-16 2.501E-15 -1.001e-14 8.161E-15
-100. 100. -100. 100. -2.429E-16 2.512E-15 -1.012€-14 8.374E-15

EFFECT OF ARGUMENT ERROR

If small errors e(x) and e(y) occur in x and vy,
respectively, the error _in the result is given approximately
by (y*e (x) - x*e(y))/(xZ + y2).

CABS.

CABS. is an external function which accepts calls from
FORTRAN code. It computes the complex absolute value
function (FORTRAN function name CABS). It accepts a
complex argument and returns a floating-point resuit.

Calls by name are computed at entry point CABS, and
calls by value are computed at entry point CABS..

METHOD

The input range is the collection of all valid complex
quantitieswhose absolute value does not exceed
1.265*10322,

Let x + i*y be the argument. The algorithm used is:

a. u=max{Ixl,lyl).
v = min(lxl,lyl).

b. If u or v fails a test for infinite or indefinite, go to
step f.

If u is zero, return zero to the calling program.

r =ufv

w=1+ 1‘2

t =(33/32 + 3/8)(w - 33/32)
=3/8(r2 + 87/32)

C.

(where t is the initial linear approximation to (1+r2)-%)

d. Heron's rule is applied in three stages.
t(1) =1/2(t + w/t)
t(2) =1/2(e (1) + w/t (1))
t(3) = 1/2(t(2) + w/t(2))

e. Return with u*t(3) to the calling program if it is not
infinite.

f. Call routine SYS5=1ST to initiate error processing.

g. Return to the calling program, unless a nonstandard
or fatal error recovery has been chosen for this
routine.

Note that a number of valid arguments are netted in

step b, but these are returned to normal execution after

further testing.

Formulas used are:

Ix+i*yl =SQART(x +1i *y)
= max (ixl,ly)) *(1 + r2)-3,

2-14

where r = min{(|x|,}y|)/max (|x,tyl).

See the timing information in appendix C far further
details.

ERROR ANALYSIS

The maximum absolute value of the error in
approximating t (3) = SQRT (1+r2) using:

t = 33/32 + 3/8 (1+r2 - 33/32)
£(1) = 1/2(t + (1 + r2)/t)
£(2) = 1/2 (£ (1) + (1 + r2)/t (1))
t(3) = 1/2 (£ (2) + (1 + r2)/e(2))

is 1.5306*10-16, assumed when r=0. Hence an upper bound
on the absolute value of error in the algorithm is:

1.5306 * 10-16 * max (|x(,lyl)

where x+iy is the argument. An upper bound on the
absolute value of error in the routine due to machine
round-off has been established at 8,512%10-14
* max (Ixl,lyl). Therefore, an upper bbund on the
absolute value of error in the routine is
8.527%10-14 * max (Ix|,Iyl), and an upper bound on the
absolute value of relative error is 8.527*10-14,

For 10000 arguments chosen randomly from the interval

(-1.,1.)*%(-1.,1,), statistics on relative error were
abserved. These are summarized in table 2-7.

TABLE 2-7. RELATIVE ERROR OF CABS.

Standard s s .
Mean Deviation Minimum Maximum
-2.295€-15 | 2.658E-15 | -1.093E-14 | 5.967E-15

EFFECT OF ARGUMENT ERROR
If a small error e(z) = e (x) +i*e (y) occurs in the argument

z = x+i*y, the error in the result u is given by
e(u) = (xe (x)+ye (y))u.

CCOS

CCOS is an external function which accepts calls from
FORTRAN code. It computes the complex cosine function
(FORTRAN functicn name CCOS). It accepts a complex
argument and returns a complex result.

Calls by name are computed at entry point CCOS.

METHOD

If u and v are real numbers, then:

cos(u + i * v) = cos(u) * cosh (v) - sin{u) * sinh(v) * i
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The argument is checked upon entry. The argument is
invalid if the real part or the imaginary part is infinite or
indefinite, if the real part or the imaginary part is so
large that precision will be lost during the computation, or
if floating-point overflow occurs during the computation.
If the argument is invalid, POS.INDEF. + i*POS.INDEF. is
returned, and a diagnostic message is issued. If the
argument is valid, COS.SIN is called at entry point
COS.SIN for computation of the cosine and sine of the
real part of the argument. HYPERB. is called at entry
point HYPERB. for computation of the hyperbolic cosine
and sine of the imaginary part of the argument. The
result is calculated according to the formula above and is
returned to the calling program.

ERROR ANALYSIS

The algorithm used in CCOS is the same as that used at
entry point CCOS. in routine CSNCS.. See the
description of CSNCS. for the error analysis.

EFFECT OF ARGUMENT ERROR

If a small argument error appears, then the error in the
result is given approximately by multiplying the argument
error by the negative of the complex sine of the
argument. Hence, if a small error occurs in the complex
argument and the error has absolute value e', then the
absolute value of the error in the sult is given
approximately by e' * (sin(w? + sinh(W2)1/Z] where u+i*v
is the complex argument.

CEXP

CEXP is an external function which accepts calls from
FORTRAN code. It computes the complex exponential
function (FORTRAN function name CEXP). It accepts a
complex argument and returns a complex result.

Calls by name are computed at entry point CEXP,

METHOD

If u and v are real, then:
exp(u+i*v)=exp(u)*cos(v) +i*exp(u)*sin(v)

The argument is checked upon entry. It is invalid if: the
real part u or the imaginary part v is infinite or
indefinite, u is greater than 741.67 in absolute value, v is
so large as to lose accuracy during the calculation (i.e., v
exceeds pi“‘Z“6 in absolute value), or floating-point
overflow occurs during the calculation. If the argument is
invalid, POS.INDEF. + i*POS.INDEF. is returned, and a
diagnostic message is issued. If the argument is valid, the
result is returned to the calling program.

ERROR ANALYSIS

The algorithm used in CEXP is the same as that used in
CEXP.. See the description of CEXP. for the error
analysis.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument u + i*v, the
error in the result is given approximately by
e' * exp(u + i*v)., Hence, the absolute value of the error
in the result will be approximately e' *exp(u). If the
error in the argument is significant, the error in the result
should be determined by substitution of possible argument
values in the function.

CEXP.

CEXP. is an external function that accepts calls from
FORTRAN code. It computes the complex exponential
function (FORTRAN function name CEXP). It accepts a
complex argument and returns a complex result.

Calls by value are computed at entry point CEXP. .

METHOD

The input range is the collection of all definite in-range
comglex quantities z = x + i*y where |yl does not exceed
pi*2%6 and |x| does not exceed 741.67.

The formula used for computation is:
exp (z) = exp (x+i*y) = exp (x) * cos(y) + i * exp(x) * sin(y)
where x and y are not floating-point quantities.

COS.SIN is called for computation of cos(y) and sin(y),
and EXP. is called at entry point EXP. for computation of
exp(x). The result is computed according to the formula
and is returned to the calling program.

ERROR ANALYSIS

See the descriptions of COS.SIN and HYPERB. for
details. If z = x + i*y is the argument, then the modulus
of the error in the _routine does not exceed
1.378 * 10-13 + 1.378 * 10-13 * exp(xI). If the real
part of the argument is large, the error in the routine will
be significant.

For 10000 arguments chosen randomly from a given
interval, statistics on relative error of the components of
the results were observed. These are summarized in
table 2-8.

TABLE 2-8. RELATIVE ERROR OF CEXP.

Interval x Interval y Reqi Standard < X
gister Mean A Minimum Maximum

From To From To Deviation

-1. 1. -1. 1. X6 -3.440E-15 3.784E-15 -1.428E-14 1.227€-14
X7 -5.831E-15 8.853E-15 -4,.165E-14 1.242E-14

-670. | 670. -2.210E14 2.2106E14 X6 -8.962E-15 4,669E-14 -3.176E-12 2.235e-14
X7 -1.071E-14 7.948E-14 -4.977€-12 3.723E-14
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EFFECT OF ARGUMENT ERROR

1f a small error e(z) occurs in the argument z, the error in
the result w is given approximately by w¥e ().

CLOG

CLOG is an external function which accepts calls from
FORTRAN code. It computes the complex logarithm
function (FORTRAN function name CLOG). It accepts a
complex argument and returns a complex result.

Calls by name are computed at entry point CLOG..

METHOD

The argument is checked upon entry. The argument is
invalid if the real or complex part is infinite or indefinite,
or if both the real part and the complex part are zero. If
the argument is invalid, a diagnostic message is written
and POS.INDEF. + i*POS.INDEF, is returned (where
i2 = -1). Otherwise, CLOG= is called at entry point
CLOG. for computation of the complex logarithm. The
result is returned to the calling program.

ERROR ANALYSIS
See the description of CLOG-=.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument z, the error in
the result is given approximately by e'/z. The modulus of
this will give approximately the modulus of the error.

CLOG=

CLOG= is an external function which accepts calls from
FORTRAN code and from CLOG. It computes the
complex logarithm function (FORTRAN function name
CLOG). It accepts a complex argument and returns a
complex result.

Calls by value are computed at entry point CLOG.

METHOD

The input range to this routine is the collection of all
definite in-range complex quantities which are nonzero,
and whose absolute values do not exceed the largest
floating-point number that can be represented in the
machine.

The formula used to compute the complex logarithm is:

log z = log(izl) + i * arg(2),

where |z| is the modulus of z. The absolute value of z is
evaluated by routine CABS., and the logarithm is
evaluated by ALOG.. The function arg(z) is evaluated by
routine ATAN2.; arg(z) always lies in the interval (-pi, pi)
when |z| is nonzero, definite and in-range. The result is
returned to the calling program in the register pair X6-X7.

ERROR ANALYSIS

Tests on a sample of 100000 random numbers distributed
over the complex plane, with distribution being the
product of two Cauchy distributions of zero mean,
returned a maximum absolute value for the relative error
of 8.579 * 10-13,

For 10000 arguments chosen randomly from the interval
(-1.,1.)*({-1.,1.), the components of the results gave
statistics on relative error. These are summarized in
table 2-9.

EFFECT OF ARGUMENT ERROR

If a small error e(z) occurs in the argument z, the error in
the result is given approximately by e (z)/z.

COS.SIN

COS.SIN is an auxiliary routine which accepts calls from
other math routines. It simultaneously computes the sine
and cosine of an argument. It accepts a floating-point
arqument and returns two floating-point results. The
entry point is COS.SIN,

METHOD

The argument is reduced to the interval (-pi/4,pi/4).
Polynomials p (x) and q(x) of degrees 11 and 12 are used
to compute sin(x) and cos(x) over that interval. First, the
argument x is multiplied by 2/pi. Then, the nearest
integer n to 2/pi * x is computed by adding 2/pi * x to
20000000000000000000g in double-precision. The upper
and lower halves of the result are added using a rounded
floating-point addition, and n is normalized. If the shift
count in this normalization is zero (i.e., if x exceeds
pi*2 6 in absolute value), then POS.INDEF. is returned.
Otherwise, y = x * pi/2 is computed in double-precision as
the reduced argument for input to p(y) and q(y). Then
sin(x) and cos(x) are computed from these as indicated by
the value mod{(n,4). The value of y is in the interval
(-pifs, pifa).

The polynomials p (x) and q{x) are:
p(x):s([l)x+s(1)x3 +5(2)x2+s(3)x7 +s(8)x? +s(5)x11
q(x) =c(0) + c(1)x2 + c(2)x? + c(3)x6 + c(t)x8 + c(5)x10 + c(6)x12

TABLE 2-9. RELATIVE ERROR OF CLOG=
Register Mean S:S?gggn Minimum Max imum
X6 -7.120e-14 4,603E-12 -4.435E-10 4.213e-11
X7 -2.200E-16 2.489E-15 -1.114E-14 8.085E-15
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where the coefficients are:

s(0) = .999999999999972

8(1) = -.166666666665404

s(2) = .833333331696029 * 10-2

s(3) = -.19842607353790 * 10-3

s(4) = .275548564509884 * 10~>

s(5) = -.247320720952463 * 10~/
c (0) = .999999999999996

e (1) = -.499999999999991

¢ (2) = 0616666666664705

¢ (3) = -.138888888888159 * 10-2
c (4) = .248015784673257 * 104

¢ (5) = -.275552187277097 * 1016

c (6) = .206291063476645 * 10-8

The coefficients were obtained as follows. The
polynomials of degrees 15 and 14 were obtained by
truncating the MacLaurin series for sin(x) and cos(x) were
telescoped to form the polynomials p(x) and q(x) of
degrees 11 and 12. The telescoping is done by remaving
the leading term of the polynomial. This is accomplished
by subtracting an appropriate multiple of T(n)(a(X -
x((0))) of the same degree n; 2/a is the length of the
interval of approximation, and x(0) is its center.

The Chebyshev polynomial of degree n, T(n)(x), is defined
by T(n)(x) = cos(n * arccos(x)). The absolute value of x
is no greater than one and satisfies the recurrence
relation:

T(0)(x) =1
T = x
T+ 1)) =2xT{) () - T(n - 1)(x)

where n >1.

For n>1, T(n)(x) is the unique polynomial 2(n-1) * x" +
... of degree n whose maximum absclute value over the
interval (-1,1) is minimal. This maximum absolute value
is one.

The formulas used for the range reduction are:

sin(x) = (-1)n sin(y)
cos(x) = (-1)n cos(y)

if x =y + n pi, n an integer;
sin{x) = cos(x - pi/2)
cos(x) = -sin(x - pi/2)

if pifa < x< pi/2.

The input range is the collection of definite in-range
floating-point quantities whose absolute values do not
exceed pi * 290,

ERROR ANALYSIS

The maximum absolute error in the approximation of
sin(x) by p(x) in the interval (-pi/4, pi/s) is .1893 * 10-14,
The maximum absolute error in the approximation of
cos(x) by q(x) is .3687 * 10-14,

Upper bounds on the machine round-off and truncation
error over the input range (-pi/4,pi/4) have been
established for p(x) at 7.523 * 10-15, and for q(x) at
1.401 * 10-14, Therefore, the maximum absolute error in
computing __sine in the interval (-pi/4,pi/4) s
9.416 * 10-15, and in computing cosine is 1.770 * 10-14,

EFFECT OF ARGUMENT ERROR

Not applicable, since this routine is not called directly by
the user's program.
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CSIN

CSIN is an external function which accepts calls from
FORTRAN code. It computes the complex sine function
(FORTRAN function name CSIN). It accepts a complex
argument and returns a complex result.

Calls by name are computed at entry point CSIN.

METHOD )

If x and y are real, then:
sin(x + i ¥ y) = sin{x) * cosh (y) + i * cos(x) * sinh(y)

Upon entry, the argument is checked. It is invalid if the
real part x or the imaginary part y is infinite or
indefinite, if x or y is so large as to cause loss of precision
in the caleculation, or if floating-point overflow occurs
during the calculation. If the argument is invalid, a
diagnostic message is issued, and POS.INDEF. +
i*POS.INDEF. is returned. If the argument is valid, the
result of the computation is returned to the calling
program.

ERROR ANALYSIS

The algorithm used in CSIN is the same as that used at
entry point CSIN. of routine CSNCS.. See the description
of CSNCS. for the error analysis.

EFFECT OF ARGUMENT ERROR

If a small argument error appears, then the error in the
result is given approximately by multiplying the argument
error by the complex cosine of the argument. Hence, if a
small error occurs in the complex argument and the error
has absolute value e', then the absolute value of the error
in the result is given approximately by:

e' * (cos (x)2) + (sinh (y)2)1/2
where x + i*y is the complex argument. If the argument
error is significant, the error in the result should be found

by substitution of the possible argument values in the
function.

CSNCS.

CSNCS. is an external function which accepts calls from
FORTRAN code. It computes the complex sine and
complex cosine functions (FORTRAN function names
CSIN and CCOS). It accepts a complex argument and
returns a complex result.

Calls by value are computed at entry points CSIN. and
CCos..

METHOD

The input range is the collection of all definite in-range
complex quantities z = x + i * y where Igl does not
exceed 741.67 and Ix| does not exceed pi * 246,

The formula used at entry point CSIN, is:

sin{x + i * y) = sin(x) * cosh(y) + i * + cos(x) * sinh(y)

The formula used at entry point CCOS. is:

2-17



cos(z) =cos(x +i * y) = cos (x) * cosh(y) - i * sin(x) * sinh(y)

where x and y are floating-point numbers. COS.SIN is
called to compute the sine and cosine of x, and HYPERB.
is called to compute the hyperbolic sine and cosine of y.
The result is returned to the calling program with the real
part in register X6, and the imaginary part in register X7.

ERROR ANALYSIS

See the description of HYPERB. and COS.SIN for details.
If z=x+i*y is the argument, then the modulus of the
error in the routine does not exceed:

1.276 * 10°13 + 1.297 * 10-13 * exp (1yl)
for CSIN. ; and:
1.241 * 10713 4+ 1.241 * 10-13 * exp (1y )

for CCOS. For 10000 arguments chosen randomly from
the interval (-1.,1.) * (-1.,1.), statistics on relative error
were cbserved for the complex sine and complex cosine
methods. These are summarized in table 2-10.

EFFECT OF ARGUMENT ERROR

If a small error e(z) = e(x) + i*e(y) occurs in the
argument z = x + i*y, the error in the result is given
approximately by -sin(z)*e(z) for CSIN., and cos(z) *e(z)
for CCOS.

CSQRT

CSQRT is an external function which accepts calls from
FORTRAN code. It computes the complex square root
function which maps to the right half of the complex
plane (FORTRAN function name CSQRT). It accepts a
complex argument and returns a complex result.

Calls by name are computed at entry point CSQRT.

METHOD

For the algorithm, see the description of CSQRT=. Upon
entry, the complex argument is checked. The argument is
invalid if its real or imaginary part is infinite or
indefinite, or if floating-point overflow occurs during the
calculation. If the argument is invalid, a diagnostic
message is issued, and POS.INDEF. + i*POS.INDEF, is
returned. If the argument is valid, CSQRT= is called at
entry point CSQRT. for the computation. The result is
returned to the calling program. For the purposes of this
computation, values returned by the routine will lie in the
right half of the complex plane.

ERROR ANALYSIS
See the description of CSQRT=.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument z, the error in
the result w is given approximately by e'/(2*w). The
modulus of this will give an approximate modulus of the
error.

CSQRT=

CSQRT= is an external routine which accepts calls from
FORTRAN code. It computes the complex square root
function (FORTRAN function name CSQRT). It accepts a
complex argument and returns a complex result.

Calls by value are computed at entry point CSQRT. .

METHOD

The input range to this routine is the collection of all
definite in-range nonzero complex quantities. If the
argument is zero, zera is returned.

if z =x +i*y is the argument, the result is given by
w = u + i*v where u and v are determined as follows:

(x2 + y2)1/2
((a+ x )/2)1/2
y/(2 * b)

If x20, then u=b and v=ec. If x<0, then
u=c *sign(y) and v = b * sign(y). The result from this
routine always lies in the first or fourth quadrant of the
complex plane, and complex quantities lying on the axis of
negative reals are taken by the routine to the axis of the
positive imaginaries.

a=
b=
c=

ERROR ANALYSIS

The routine was tested with a sample of 100000 random
numbers distributed over the complex plane with the
distribution being the product of two Cauchy
distributions. The maximum observed modulus of relative
error was 1,595 * 10-14,

For 10000 arguments chosen randomly from a given
interval, statistics on relative error of the components of
the results were observed. These are summarized in
table 2-11.

TABLE 2-10. RELATIVE ERROR OF CSNCS.

ng:{ Register Mean g:e?gg‘;gn Minimum Maximum
CSIN. X6 ~5.592E-15 8.653E-15 -4.030E-14 1.228€E-14
X7 -4.970€E-15 5.877E-15 -3.165E-14 1.550E-14
ccos. X6 -3.501€E-15 3.827E-15 -1.413e-14 1.182E-14
X7 -7.313E-15 9.884E-15 -5.059E-14 1.771€-14
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TABLE 2-11. RELATIVE ERROR OF CSQRT=

7YY D) D

If a small error e(z) = e(x) + i*e(y) occurs in the
argument, the error in the result w =u + i*v is given
approximately by e (2)/(2*w) = (e(x) + i*e (y) )2 (u + i*v).

DASNCS.

DASNCS. is an external function which accepts calls from
FORTRAN code. It computes the inverse sine and cosine
functions (FORTRAN function names DASIN and
DACOQOS). It accepts a double-precision argument and
returns a double-precision result.

Calls by name are computed at entry points DASIN and
DACOS, and calls by value are computed at entry points
DASIN. and DACOS. .

METHOD

The input range is the collection of all valid
double-precision quantities in the interval (-1.0,+1.0)
Arguments outside this range initiate error processing.

The following identities are used to move the interval of
approximation to (0,SQRT (.5) ):

arcsin (-x) = -aresin(x)

arccos(x) = pi/2-arcsin(x)

arcsin(x) =arccos(sqrt (1 - x2)) x>0
arccos(x) = arcsin{sqrt (1 - x2)) x >0

The reduced value is called y. If y <.09375, no further
reduction is performed. If not, the closest entry to y in a

Interval x Interval y Reqi Standard L .
gister Mean o Minimum Maximum
6@“ From To From To Deviation
-100. 100. -100. 100. X6 -4,790€E-16 2.652E-15 -9.774E-15 1.107€-14
X7 -4.320E-16 2.655€-15 -9.726E-15 1.032E-14
6‘"\ -10.100 | 10,100 | -10.100 | 10,100 X6 -4.053€-19 | 2.6326-15 | -1.012€-14 | 1.036E-14
: X7 -4.098E-16 2.637E-15 -9.520E-15 1.096E-14
CW\ EFFECT OF ARGUMENT ERROR ERROR ANALYSIS

Table 2-12 summarizes the maximum relative errors of
DASNCS. .

The regions of worst error are (.09375,.1446) for DASIN
and (,9895,.9966) for DACOS. In these regions the final
addition is of quantities of almost equal magnitude and
opposite sign, and cancellation of about one bit occurs,
the worst case being .1451-.0629. for DASIN, the
polynomial range was extended to cover the region
(.0821,.09375), where the worst error occurs. For
DACOS, the extension is not used, so that the maximum
relative error for either routine occurs in the region
(.9956,.9966) in DACOS. For 10000 points randomly
distributed in this region, the maximum observed relative
error in DACOS was 12.5E-29.

The mean relative errors for DACOS and DASIN are given
in figures 2-9 and 2-10.

EFFECT OF ARGUMENT ERROR

If a small error eps occurs in the argument x, the
resultin% errors in DASIN_and DACQOS are approximately
eps/(L-x2)> and -eps/(1-x2)->. The amplification of the
relative error is approximately x/(f(x)*(1-x2)-> where
f(x) is DASIN or DACOS. The error is attenuated for
DASIN of abs(x) <0.75 and for DACOS of x >-.44, but
can become serious for DASIN near -1 or +1 and DACQOS
near -1. If the argument is generated as 1-y or y-1 then
the identities:

table of values (z,arcsin{(z),sqrt(1-z2),2=.14,.39,.52,.64) asin(x) = acos(sqrt 1 - x2))
is found, and the formula: acos(x) = asin(sqrt (1 - x2))
asin(-x) = -asin(x)

arcsin (x) = aresin(z) + arcsin (w)

where w = x * sqrt (1-z2) - z * sqrt {1 - x2) is used. The
value of w is in (-.0792,+.0848)

The arcsin of the reduced argument is then found using a
15th order odd polynomial with quotient:

x + 333 + x2e5) + x2c(7) + x2c11) + xXc(13) +
x2(c(15) + a/(b-x2)))))))

where all constants and arithmetic before c(l1) are
double-precision and the rest is single-precision. The
addition of c(11) has the form single+single=double. The
polynomial is derived from a minimax rational form
(denominator is (b-x2)) for which the critical points have
been perturbed slightly to make c(11) fit in one word.

To this value, arcsin{z) is added from a table if the last
reduction above was done and the sum is conditionally
negated. Then 0, -pi/2, +pi/2, or pi is added to complete
the unfolding.

60483100 A

acos {-x) = pi + asin(x)
can be used to get the full significance of y. When

computing (1-x2) one should use a form such as
(1-x2)=(1-x2)*(1-x)=y*(2-y).

DATAN

DATAN is an external function which accepts calls from
FORTRAN code. It computes the inverse tangent

TABLE 2-12. MAXIMUM RELATIVE ERROR OF DASNCS.

DASIN DACOS

Minimax rational form error .082E-29 | .082E-29
Algorithm error
(double precision coefficients) | .76E-29 | .48E-29

Maximum error observed 10.5E-29] 12.5€E-29
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function (FORTRAN function name DATAN). It accepts a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DATAN.

METHOD

The input range is in the collection of all valid
double-precision quantities. Other arguments initiate
error processing from DATAN.. Upon entry. the

argument is loaded into registers X1 and X2, and routine
DATAN. is entered for all remaining computations. See
this routine's method description for further details.

ERROR ANALYSIS
See the error analysis of DATAN. .

EFFECT OF ARGUMENT ERROR

See the argument error description of routine DATAN. .

DATAN.

DATAN. is an external function which accepts calls from
FORTRAN code. It computes the inverse tangent
function (FORTRAN function name DATAN). It accepts a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry point DATAN..

METHOD

The input range is the
double-precision quantities.

collection of all valid

Computation is performed mainly in routine DATCOM.,
and the constants used are listed there.
a. Transfer return address from entry point word into Bé.

b. Test first word of argument for infinite or indefinite.
If either, go to step i.

c. B3 =0. (B3 holds a mask ML)
B7 = 0. (B7 holds closest multiple of pi/2 to absolute
value of resuit.)

d. B4 = sign mask for argument. (B4 holds MS, a mask
for result's sign.)
e. Register pair X7-X3 absolute value of argument.

f. If absolute value of argument <1., jump to routine

g. Register pair X5-X3
Register pair X4-X1
B3 = -0.
B7 = 1.

absolute value of argument.
1.

Hon

h. Jump to routine DATCOM. at entry point DATCOM.
to complete processing.

i. Pick up parameter for error processor. Call error
processor, supplying given argument and parameters.

j» If error processor returns control, return pi/2, with
the sign that is stored in B4. The value pi/2 is picked
up by doubling an entry in a table starting at entry
point ATN. in routine DATCOM,

ERROR ANALYSIS

10000 random arguments were generated in the interval
(1/200.,200.). In this sample, the maximum absolute value
of relative error is 7.183%10-29. Groups of 40
double-precision arguments were chosen randomly in given
intervals, and statistics on relative error were chserved.
These are summarized in table 2-13.

The maximum absolute value of relative error in the
algorithm is  1.622E-29, and this occurs at
1.069781471095183.

Algorithm Error

Up to the point 1/16, the plot shows the error in the
economized polynomial; it is not centered because the
first coefficient was forced to be 1. The interval between
(2n-1)/16 and (2n+1)/16 is repeated twice (once reflected),
but the waviness is damped because of adding tan-1 (n/8).
Above 1.0, the subranges are delimited by 16/(2n-1).

Total Error

Most of the errors can be traced back to errors in
double-precision addition. Note that the lower parts of
the constants for pi and some of the atan(n/8)*s are
negative. While it allows the constant to be precise to an
extra bit or two, the unpredictable sign affects the
addition process.

Figure 2-11 shows the mean relative error for DATAN. .

EFFECT OF ARGUMENT ERROR

If a small error e occurs in the argument x, the error in
the result is given by e/(1+x2).

DATAN2

DATCOM. at entry point DTN. to complete DATAN2 is an external function which accepts calls from
processing. FORTRAN code. It computes the inverse tangent
TABLE 2-13. RELATIVE ERROR OF DATAN.
Interval's Interval's
Lower . Upper Mean stqggggn Minimum Max imum
Bound Bound
-8. 8. -1.995€-30 1.109E-29 -2.063E-29 3.208E-29
.01 10. -1.505E-30 1.124€-29 -2.907E-29 2.745E-29
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function of the ratio of two arguments (FORTRAN
function name DATAN2). It accepts two double-precision
arguments and returns a double-precision result.

Calls by name are computed at entry point DATANZ,

METHOD

The input range is the collection of all pairs of valid
double-precision quantities which are not both =zero.
Other arguments will initiate error processing from
DATAN2.. Upon entry, the arguments are loaded into
registers X1, X2, X3, and X4; routine DATAN2, is entered
for all remaining computation. See this routine's method
description for further details.

ERROR ANALYSIS

See the error analysis of routine DATANZ2. .,

EFFECT OF ARGUMENT ERROR

See the argument error description of routine DATAN2. .

DATAN2.

DATANZ2. is an external function which accepts calls from
FORTRAN code. It computes the inverse tangent
function of the ratio between two arguments (FORTRAN
function name DATAN2). It accepts two double-precision
arguments and returns a double-precision result.

Calls by value are computed at entry point DATAN2. .

METHOD

The input domain is the collection of all pairs of valid
double-precision quantities which are not both zero.

Computation is performed mainly in routine DATCOM.,
and the constants used are listed there.

a. Test first words of both arguments to see if either is
infinite or indefinite. If so, go to step j.

b. Normalize first words of both arguments.
c. If first words of both arguments are zero, go to step i.
d. B4 = sign mask of first word of first argument.

B3 = complement of sign mask of first word of

second argument.
B6 = return address in calling routine.

B7 = 1.

e. Register pair X5-X3 = absolute value of first
argument.
Register pair X4-X1 - absolute value of second
argument.

f. If X5>X4, jump to routine DATCOM. at entry point
DATCOM. to complete processing.

g X5<->X4
X3<L->X1
Complement contents of B3,
B7 = 0, if first word of second argument is positive.
B7 = 2, if first word of second argument is negative.

2-24

h. Jump to routine DATCOM. at entry point DATCOM.
to complete processing.

i.  Supply message "ARGUMENT VECTOR 0,0".

j- Pick up parameters for error processor. Call error
processor, supplying given arguments and parameters.

k. If control returns from the error processor, return
POS.INDEF. to the calling program.

ERROR ANALYSIS
A group of 40 random double-precision arguments was

chosen in (.01,10.) x (.01,10.), and statistics on relative
error were abserved. These are summarized in table 2-14.

The maximum absolute value of relative error in the
algorithm is 1.622€-29,

EFFECT OF ARGUMENT ERROR

If small errors e' and e" occur in the arguments x and y,
respectively, the error in the result is given approximately
by:

(x *e" -y * e)/(x2 + y2)

DATCOM.

DATCOM. is an auxiliary routine which accepts calls from
DATAN. and DATAN2.. It performs computations that
are common between these two routines.

The entry points for the routine are DATCOM., DTN.,
and ATN..

METHOD
On entry, at both entry points DATCOM. and DTN, :

B3 = mask ML

B4 = mask MS = sign of final result.

Bé = return address after processing is complete.

B7 = closest multiple of pi/2 to absolute value of result.

In addition, at entry point DATCOM., ,

Register pair X4-X1 = DU.
Register pair X5-X3 = DV.

and at entry point DTN, ,

Register pair X7-X3 = DU.

Entry point ATN. is the start of an 18-word table
containing  tan-1(n/8) 0<n<8) in double-precision.
Entry point DATCOM. corresponds to step a., and entry

point DTN. corresponds to step b.. Constants used in the
algorithm are:

TABLE 2-14. RELATIVE ERROR OF DATANZ.

Mean Szqu:?gn Minimum Maximum
-2.649E-30 | 2.161E-29 | -6.188E-29 | 3.115E-29
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d3  -.333 333 333 333 333 333 333 333 285 915
dS  .199 999 999 999 999 999 999 673 046 526

d7  -.142 857 142 857 142 856 280 180 055 289
d9 .111 111111 111 109 972 932 035 508 119

cll =-.090 909 090 908 247 503

cl3 =.001 351 201 845 778 152

a =-.085 666743 757 593 089

b =-1.133 579 709 202 919 6

where d3, d5, d7, d9 are double-precision constants, cll,
cl3, a, b are single-precision constants. Arithmetic
operations with d subscripts are done in double-precision,
those with u subscripts are done in single-precision.
Boolean operations have B subscripts.

a. DQ =DU/DV in double-precision. Carry DQ in
register pair X7-X3.

b. (D@ = DA-DU at DTN.) (Note that 0<DPQ<1.)
c. n = nearest multiple of 1/8 to DQ * DL = 0.
d. Ifn=0,gotostep f.

e. DA = (DQR-N/8)/(1 + N/8 * DA), computed in double-
precision.

f. If {DAXu)=0, go to step h.
XX = (DAXu) *(u) (DAXW
X = XX-2 (DAXu)(((DA){u)*1) (DAXuU))/((DA))(u)
+r) (DAXW)))

g. DC = XX *(d)(d3 +(d) XX *(d) (d5 +(d) XX *(d) (d7 +(d)
XX *(d) (d9 +{d) XX *(d) (d11 +(d) XX *(u) (c13 +(u)
a/(b -(u) XX))))))

h. v = (DAXu) (d) DC *(d) ( (DAXu) -(d) (DAXu) *(i) (DAXu)/
((DAYW) +(r) (DAXW) )Y w v Hd) ((DAXD) - X*((DAXD +
(DAXu) * (DAXW)/( (DAXu) +(r) (DAXU)))

i. b = (B7*pi/2)-(B) B3 (upper and lower)

j» ¢ =b+(d) tan~}(n/8). tan-1(n/8) is obtained as a
double-precision quantity from the look-up table.

k. p=(c+(dw)-(B)(B3-()B4)
Register pair X6-X7 .P, cleaned up.
Return to address Bé by direct jump.

ERROR ANALYSIS

Coefficients d3, d5, d7, d9, cll, cl3, a, b were abtained
by making the expression using these coefficients a
minimax  approximation to inverse tangent over
(-1/16,1/16), within the class of expressions obtained by
varying these coefficients. (See descriptions of routines
DATAN. and DATAN2. for error analyses.)

EFFECT OF ARGUMENT ERROR

See descriptions of routines DATAN. and DATAN2. for
effect of argument error.

DCOS

DCOS is an external function which accepts calls from
FORTRAN code. It computes the cosine function
(FORTRAN function name DCOS). It accepts a
double-precision argument and returns a double-precision
result.

60483100 A

Calls by name are computed at entry point DCOS.

METHOD

See the description of DSNCOS. for the algorithm used in
the computation. The argument is checked upon entry. It
is invalid if infinite, indefinite, or so large as to lose
precision during the calculation. If the argument is
invalid, POS.INDEF. is returned, and a diagnostic message
is issued. If the argument is valid, DSNCOS. is called at
entry point DCOS. for the computation. The result is
returned to the calling program.

ERROR ANALYSIS
See the description of DSNCOS. .

EFFECT OF ARGUMENT ERROR
See the description of DSNCOQOS. .

DCOSH

DCOSH is an external function which accepts calls from
FORTRAN code. It computes the hyperbolic cosine
function (FORTRAN function name DCOSH). It accepts a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DCOSH.

METHOD

The input domain is the collection of all valid
double-precision quantities whose absolute value is less
than 1071*log(2). Arguments not in the domain initiate
error processing in routine DHYP.. Upon entry the
argument is loaded into register pair X1-X2 before routine
DHYP. is called. (See the description of routine DHYP.
for further details.)

ERROR ANALYSIS

See the error analysis of routine DHYP..

EFFECT OF ARGUMENT ERROR

See the argument error description of DHYP. .

DEULER.

DEULER, is an auxiliary routine which accepts calls from
DEXP., DHYP., and DTANH. It performs computations
that are common among these routines.

The entry point for the routine is DEULER. .

METHOD

Constants used in the routine are:
1./log{2)

tog(2) (in double-precision)
d3 = .166 666 666 666 666 666 666 666 666 709
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d5 = .833 333 333 333 333 333 333 331 234 953E-2
d7 =.198 412 698 412 698 412 700 466 386 658E-3
d9 =.275 573 192 239 858 897 408 325 908 796E-5
pc = -.474 970 880 178 988E-10

pa = .566 228 284 957 811E-7
pb = 272.110 632 903 710
cll = .250 521 083 854 439E-7

The algorithm is:

a. n = nearest integer to x/log 2.
y = x-n *log(2)
(Then y is in (-1/2 * log(2), 1/2 * log(2)) ).

b. a = ((yXu)*(u) (yXu) ) = (yXu) (-yXu) * (1)
q  (yXu)* (u)(yXu)

. p = q*(dXd3 +(d)q * (d)(d5 +{(d)q * (d)(d7 +(d)q * (d)
(d9 +(d)q * (d)Xcll + (d)q * (dXpa/pb-q) +pc))))))

d. s = (yXu) +{dXyXu) * (d)p

e. (compute hm=SQRT (1+s2))
hi = 3*q+((sXu) ) in single-precision.
hi = hi+hi
hk = 2*(l.+hl)
hl = ((yXu) * (uXyXu) - hj)/hk - hi
hm = hj +(u)hk - (u) hD) * (u)(hi/kk)
(hm now carries cosh-1.0 in single-precision)

DS = s+ {d) ( (yXD) + (rXyX1) * (u) hm) + (r)
( (XD +(cX (y) 8u) * (D)(pXu) + (r) (yXuw) * (2)pXD )))

(DS now contains sinh (y) in double-precision)

0

-
:

g. DC = hm +(d) (D5*DS-2*hm-hm*hm)/(2 (1.+hm) )
evaluated in double-precision

h. DX =DS+DC

—

Clean up DS, DC, g with

Register pair X6-X7 = DS.
Register pair X0-X1 = DC.
Register pair X4-X5 = DX.

j»  Direct jump to B4.

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR
Not applicable.

DEXP

DEXP is an external function which accepts calls from
FORTRAN code. It computes the exponential function
(FORTRAN function name DEXP). It accepts a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DEXP.

METHOD

The input domain is the collection of all valid
double-precision quantities lying in the interval:

(-975*10g(2),1070*10g (2) ), (i.e., (~675.84,741.67))

2-26

Arguments outside this range initiate error processing
from DEXP.. Upon entry, this argument is loaded into
register pair X1-X2, and routine DEXP. is entered for the
remaining computation. (See the description of routine
DEXP. for further details.)

ERROR ANALYSIS
See the description of DEXP. .

EFFECT OF ARGUMENT ERROR
See the description of DEXP..

DEXP.

DEXP. is an external function which accepts calls from
FORTRAN code. It computes the exponential function
(FORTRAN function name DEXP). It accepts a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry point DEXP, .

METHOD

The input domain is the collection of all valid
double-precision  quantities lying in the interval
(-975*1og (2),1070*l0g (2).

The argument reduction performed in routine DEULER. is:

x = <argument >
y =x-n*log(2)

where y = <reduced argument>is in (-1/2 log 2, 1/2
log 2) and n is an integer.

Most of the computation is performed in routine
DEULER., and the constants used are listed there.

On input, the argument is in register pair X1-X2, and on
output, the result is in register pair X6-X7.

a. x = <argument>. Save x. If
I(x) (W)l 2 173156400000000000008, go to step g.

b. Jump to routine DEULER. at entry point DEULER..
Register B4 = address for step ¢, X7 = upper part of
%, X6 = lower part of x, X5 = packed sign mask of x.
On return from DEULER., B3 =n, X4 =(DX)(u),
X5 = (DX){I)) X0 =DC)(u), Xl =(DC)(), X6 =
(DC)(u), X7 = (DS)(1). Here, n = nearest multiple of
log2 to x, y=x-n*log(2), and DS*sinh(y), DC*
cosh(y)-1l, and DX*exp(y)-l, are all in double-
precision.

c. w=10+(d)(DC+(d)DS). Unpack w, increase expo-
nents by n, and repack into register pair X6-X7.

d. If upper word's exponent overflows, go to step g.
e. If lower word's exponent underflows, go to step i.
f. Return, with result in register pair X6-X7.

g. Set parameters, load original argument, and call error
processor.

h. If error processor returns control, return.
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i. Set parameters, load original argument, and call error
processor.

jo If error processor returns control, return 0. in X6 and
X7.

ERROR ANALYSIS

10000 random arguments were generated in the interval
(-1/2 log 2, 3/2 log 2), and the resulting graph of relative
error versus argument is shown in figure 2-12. In this
interval, the largest absolute value of relative error is
3.858E-29. Groups of 100 double-precision arguments
were chosen randomly in given intervals, and statistics on
relative error were observed. These are summarized in
table 2-15.

The approximation is described in the section on error
analysis of routine DEULER.. It is a minimax
approximation within the class obtained by varying the
coefficients.

Algorithm Error

The curve for the algorithm error is barely
distinguishable. It peaks at odd multiples of log 2/2 with
a value of about .04E-29. The algorithm error has
essentially no effect on the total error.

Total Error

Except for adjusting the exponent, the final computation
in DEXP is 1.0+s, where |s]| <.3536. This addition is easy
to do exactly when s is small and positive. (See the plot
just above 0 and log 2.) For s negative, the sum is less
than 1 (i.e., it crosses a band boundary, and it becomes
difficult to produce an exact result. The plot is exact or
one bit low). When s<.25 (e.q., .35 < x < .45), it becomes
even more difficult to prevent bits from dropping off in
the low precision word when lower sums overflow.

Figure 2-13 shows the relative error in the algorithm used
to approximate exp.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument the error in the
result y is given approximately by y*e'.

DHYP.

DHYP. is an external function which accepts calls from
FORTRAN code. It computes the hyperbolic sine and
cosine functions (FORTRAN function names DSINH and
DCOSH). It accepts a double-precision argument and
returns a double-precision result.

Calls by value are computed at entry points DSINH. and
DCOSH. .

METHOD

The input domain is the collection of all valid
double-precision  quantities lying in the interval
(-1071*log(2),1071*log (2) ).

Most of the computation is performed in routine
DEULER., and the constants used are listed there. The
arqument reduction performed in routine DEULER, is:

x = <argument>
y = <reduced argument>
y = x-n*log(2)

where n is an integer, and y is in the interval (-1/2*log(2),
1/2*log(2)). The recombination formula is:

cosh (y+n*log 2)

= (cosh(y)+sinh(y)) 2(n-1) 4+ (cosh (y) - sinh(y)) 2(-n-1)
sinh (y+n*log 2)

= (cosh (y)+sinh(y)) 2(n-1) _ (cosh (y) - sinh(y)) 2(-n-1)

At entry points DSINH. and DCOSH., the argument is in
register pair X1-X2, and on exit, register pair X6-X7 holds
the result. DSINH. corresponds to entry at step a., and
DCOSH. corresponds to entry at step m.

a. a = <argument>= X1-X2.
b = a Store bin X7-Xé.
B5 = sign of a.

b. B5 = packed zero.
B4 = address of step g.
Bl = 1.

c. If (b)(u)<xmax(u), jump to routine DEULER. at
entry point DEULER.. If (b)(u) >xmax(u), go to
step e. xmax is 1071*log(2).

d. If (b) (D) <xmax(l), jump to routine DEULER. at entry
point DEULER. . :

e. X1-X2 =a
Set up parameters for error processor call with
message "ARGUMENT TOO LARGE". If call was to
entry point DCOSH., transfer contents of DCOSH. to
DSINH. .

f. Call error processor.
If (a)(u) is indefinite, return through entry point
DSINH. with X6-X7 = POS.INDEF. Otherwise, return
through DSINH. with X6-X7 = POS.INF. or NEG.INF.,
the sign determined by BS5.

g. Return from DEULER. with parameters:

B3 =n

X4-X5 = DX
X0-X1 = DC
X6-X7 = DS

where, if y = 1-n log(2),

DX = exp(y)-1

DC = cosh(y)-1

DS = sinh(y)

TABLE 2-15. RELATIVE ERROR OF DEXP.

Interval's Interval's
Lower Upper Mean S;S?g:?gn Minimum Maximum
Bound Bound
-2. 2. 3.461E-31 8.256E-30 -2.632E-29 2.086£-29
-600. 700. -8.631€-31 7.310€-30 -1.818E-29 1.446E-29
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If n = 0, go to step L.

If n> 48 )go to step k.

u = 2(""'1 (DC+DS) in double-precision.

v = 2(-n-1)(DC+DS) in double-precision.

w = 2n-1) 4 u in double-precision.

if n2> 24, go the step h.

w=w * (21 4+ \)() in double-precision. The sign is
determined by B5.

he w=w> @D 4 V) in double-precision. The sign
is determined by B5.

i.  X6-X7 = w with the sign being the same as that of B5.
j» Return through entry point used to call routine.

k. w = (1.+DC+DS) * 2(n-1)
Go to step 1.

I, If DSINH. entry, return through DSINH.. (Note that
X6-X7 = DS)
X6-X7 = 1. + DC in double-precision.
Return through DCOSH.

m. a = X1-52 = <argument >
b a Store b in X7-X6.
BS =1
Go to step b.

inn

ERROR ANALYSIS

10000 random arguments were generated in the interval
(-1/2 log 2,32 log 2) for DSINH and DCOSH, and the
resulting graphs of relative error versus argument are
shown in figures 2-14 and 2-15. In these samples, the
maximum absolute values of relative error were 8.026E-29
for DSINH, and 4.405E-29 for DCOSH. Statistics on
relative error were observed in random samples of
arguments in given intervals. These are summarized in
table 2-16.

Algorithm Error
DCOSH

The curve for the algorithm error is barely
distinguishable. It peaks at odd multiples of log 2/2 with
a value of about .04E-29. The algorithm error has
essentially no effect on the total error.

DSINH

The peaks are at odd multiples of log 2/2 below 33.. At
47.5*%log 2, the algorithm error has a sudden peak because
at this point the algorithm switches t SINH (x)
=exp(x)/2. This point was chosen because 2\N-1) can be
done correctly using an IX instruction to add n to the top
of 0.5. (48 would produce an indefinite).

Total Error
DCOSH

The total error curves should be symmetric about x=0.
The pattern shown should repeat until 47.5%log 2 (about
33.) at which point it will start looking like the DSINH and
DCOSH curves. Between 0 and log 2/2 (.3466), DCOSH is
computed as l+c where 0<X¢<.75*SQRT (2)-1=.06066.
This is done accurately, but the addition sometimes drops
a bit in the low word. Above log 2/2, the formula ends
with a lot of addition and subtraction. For example,
DCOSH(1.7443) = (4+1/16) - 4* . 3+small amount, where the
.3 is about what the sinh polynomial produced. Notice
that the subtraction crosses a band and the exponent on
4*.3 is only one less than the result; these facts make it
difficult to keep from dropping bits.

DSINH

Up to log 2/2, the error is predominated by the final add
in the sinh polynomial. Just above log 2/2 the error is
especially large because of cancellation. Near log 2/2,
DSINH is calculated using (1-1/4)-s+1/4%*s where s is
greater than 2-2 and the result is less than 2-1. The parts
of the curve in the two ranges (.35,16.) and (16.,33.), have
different shapes because of the shortcut taken in the
latter range. The split is at 23.5*%log 2. Above 33.0
(47.5*log 2), the error curve is the same as for DEXP.

EFFECT OF ARGUMENT ERROR

If a small error €' occurs in the argument x, the error in
sinh(x) is approximately cosh(x)*e', and the error in
cosh(x) is approximately sinh (x)*e".

DLOG

DLOG is an external function which accepts calls from
FORTRAN code. It computes the natural logarithm
function (FORTRAN function name DLOG). It accepts a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DLOG.

METHOD

The algorithm used is given in the description of DLOG..
Upon entry, the argument is checked. The argument is
invalid if it is infinite or indefinite, or is not greater than
zero. If the argument is infinite, indefinite, or negative,
POS.INDEF. is returned. If the argument is zero,
NEG.INF. is returned. In any case, if the argument is
invalid, a diagnostic message is issued. If the argument is
valid, DLOG, is called at entry point DLOG. for the
computation. The result is returned to the calling
program.

TABLE 2-16. RELATIVE ERROR OF DHYP.

Interval's Interval's
E"Fr{ Lower Upper S;g?::?gn Minimum Max imum
otn Bound Bound
DSINH. -2. 2. 8.516E~-31 1.086E-29 -2.738E-29 3.238E-29
-600. 700. -3.274E-31 7.907E-30 -2.645E-29 1.651E-29
DCOSH. -2. 2. -2.055E-30 1.217€-29 -3.071E-29 3.706E-29
-600. 700. -1.096E-30 9.645E-30 -2.733E-29 1.904E-29
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ERROR ANALYSIS
See the description of DLOG. .

EFFECT OF ARGUMENT ERROR
See the description of DLOG. .

DLOG.

DLOG. is an external function which accepts calls by
FORTRAN code and by the DLOG and DLOGI0 routines.
It computes the natural and common logarithm functions
(FORTRAN function names DLOG and DLOGL0). It
accepts a double-precision argument and returns a
double-precision result.

Calls by value are computed at entry points DLOG. and
DLOGI0..

METHOD

The input range is the collection of all definite in-range
double-precision quantities which are greater than zero.

Upon entry, the argument x is put into the form
x = 2K * w, where k is an integer, and 2-1/2 < < 2112,
Then log x is computed from:

logx =k *log2 + logw

k * log 2 is computed in double-precision, while log w is
evaluated as follows. A polynomial approximation u is
first evaluated in single-precision using:

u=c*t+c@*t3+cG)* 2+ c(7) *t/,
t=(w-0/QA+w)

where the coefficients c (1), ¢(3), c(5) and c(7) are:

c (1) = 1.999999993734000
c(3) = 0.666669486638944
c(5) = 0.399657811051126
c(7) = 0.301005922238712

value at most 3.133 * 10-B over (2-1/2,2-1/2), Newton's
rule for finding roots is then applied in two stages to the
function exp(x) - w to yield the final approximation to
log w. The two stages are algebraically combined to yield
the final approximation v: :

This approximates log with a relativ7 erro; of absolute
2, 2)

v=u-(l-x*exp(-u))
-(l-x*exp (~u-(1-x*exp(-u)))X

Writing z = 1 - x * exp(-u), z is much less than i, and v is
computed using:

v=u-2z() -z -(zW)2*(5+zW)/3)

where z = z(u+z(l). This formula is obtained by
neglecting terms which are not significant for
double-precision; exp (-u) is evaluated in double-precision
by the polynomial of degree 17 which is described in
DEXP.. If entry was made at DLOG10., after
k * log 2 + logw has been evaluated, the result is
multiplied by log(10) * e in double-precision. The result
is returned to the calling program.

60483100 A

ERROR ANALYSIS

The maximum absolute value of the error of
approximation of the algorithm to log x is 1.555 * 10-29
over the interval (2-1/2, 21/2), A graph of the error in the
algorithm versus argument is given in figure 2-16. An
upper bound on the absolute value of the machine
round-off and truncation error (for arguments lying in
(2-1/2,21/2)) has been established at 5.146 * 10-28,
Hence the absolute value qgf the error in the routine over
the interval (2-1/2)21/2) js not greater than
5.302 * 10-28, The maximum absolute value of the
relative machine truncation_and round-off error has been
established at 1.486 * 1027, Hence an upper bound on
the absolute valye of the relative error_in the routine over
the interval (2-1/2, 21/2) is 1.713 » 10-27,

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument x, the error in
the result is given approximately by e'/x.

DLOG10

DLOGI10 is an external function which accepts calls from
FORTRAN code. It computes the common logarithm
function (FORTRAN function name DLOGI10). It accepts
a double-precision argument and returns a double-
precision result.

Calls by name are computed at entry point DLOGI0.

METHOD

Upon entry, the argument is checked. It is invalid if it is
infinite or indefinite, or if it is not greater than zero. If
the argument is infinite, indefinite, or negative,
POS.INDEF. is returned. If the argument is invalid, a
diagnostic message is issued. If the argument is valid,
DLOG. is called at entry point DLOG10. for the
computation. The result is returned to the calling
program.

ERROR ANALYSIS
See the description of DLOG. .

EFFECT OF ARGUMENT ERROR
See the description of DLOG. .

DMOD

DMOD is an external function which accepts calls from
FORTRAN code. It computes the modulus of an argument
relative to a second argument (FORTRAN function name
DMOD)., It accepts two double-precision arguments and
returns a double-precision result.

Calls by name are computed at entry point DMOD.

METHOD

The argument range is all valid double-precision pairs (x,y)
such at (x/y)<276 and y=0. After argument checking,
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DMOD, is called to compute the result. The comparison
(></y)=296 is done by comparing exponents and, if
necessary, coefficients.

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR
Not applicable.

DMOD=

DMOD= is an external function which accepts calls from
FORTRAN code. It computes the remainder of an
arqument relative to a second argument (FORTRAN
function name DMOD). It accepts two double-precision
arguments and returns a double-precision result.

Calls by value are computed at entry point DMQOD. .

METHOD

The argument range is all _valid double-precision pairs
(x/y) such that (x/y)<21070 and y#0. The function
computed by DMOD (x,y) is:

x-{x/y)*y

where parentheses denote truncation. The value of x is
repeatedly reduced by 45-bit approximations to (x/y) until
the reduced value lies in the range (0,sign(y,x)). Since
the result does not exceed 96 bits, the intermediate value
of x does not exceed 98 bits and the reducticn is done in
triple precision. The result is always exact.

ERROR ANALYSIS

Not applicable. The only double-precision operations
concerned in a determination of error are multiplication
and subtraction.

EFFECT OF ARGUMENT ERROR
Not applicable.

DSIN

DSIN is an external function which accepts calls from
FORTRAN code. It computes the sine function
(FORTRAN function name DSIN). It accepts a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry paint DSIN.

METHOD

The argument is checked upon entry. It is invalid if it is
infinite or indefinite or is so large as to lose accuracy
during the computation. If the argument is invalid,
POS.INDEF. is returned and a diagnostic message is

issued. An argument will lose accuracy if it exceeds
pi * 2 in absolute value. If the argument is valid,
60483100 A

DSNCOS. is called at entry point DSIN. for the
computation. The result is returned to the calling
program.

ERROR ANALYSIS
See the description of DSNCOS. .

EFFECT OF ARGUMENT ERROR
See the description of DSNCOS. .

DSINH

DSINH is an external function which accepts calls from
FORTRAN code. It computes the hyperbolic sine function
(FORTRAN function name DSINH). It accepts a
doublle-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DSINH.

METHOD

The input range is the collection of all valid
double-precision quantities whose absolute value is less
than 1071*log(2). Arguments outside this range initiate
error processing in routine DHYP.. Upon entry, the
argument is loaded into register pair X1-X2 and routine
DHYP. is called to complete the processing. See the
description of routine DHYP. for further details.

ERROR ANALYSIS

See the description of routine DHYP. .

EFFECT OF ARGUMENT ERROR
See the description of routine DHYP. .

DSNCOS.

DSNCOS. is an external function which accepts calls from
FORTRAN code and by the DSIN and DCOS routines. It
computes the trigonometric sine and cosine functions
(FORTRAN function names DSIN and DCOS). It accepts a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry points DSIN. and
DCOS. .

METHOD

The input range is the collection of all definite in-range
double-precision quantities which are less than pi*“Z‘*6 in
absolute value. Upon entry, the argument x is made
positive and is multiplied by 2/pi in double-precision, and
the nearest integer n to x * 2/pi is computed. At this
sta796, x*2/pi is checked to see that it does not exceed
247, I it does, POS.INDEF. is returned in X6 and a zero
in X7. Otherwise, y =x -n ¥ pif/2 is computed in
double-precision as the reduced argument, y lies in
(-pi/4,pi/4). The value of mod(n,4), the entry point called,
and the original sign of x determine whether a sine
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polynomial approximation p(x) or a cosine polynomial
approximation q(x) is to be used. A flag is set to indicate
the sign of the final result.

The sine polynomial approximation is:

p(x) = a(1)x +a(3)x> + a(5)x? + a(7)x7 + a(9)x? + a(11)x11 +
a(13)x13 + a(lS)xs-g +a(17)x17 + a(19)x19 + a(21)x21

and the cosine polynomial approximation is:

a(x) = b(0) + b(2)x2 + b{&)x* + b(6)x6 + b(8)x8 + b(10)x10 +
b(12)x12 + b(la)xi“ +b(16)x16 + b(18)x18 + b(20)x20

for x in the interval (-pi/4, pi/4).

The coefficients are:

a(l) = .99999999999999999999999999999

a(3) = -.16666666666666666666666666652

a(5) =.83333333333333333333333270957 * 10-2

a(7) = -.19841269841269841269829134478 * 10-3
a(9) =.27557319223985890639440684401 * 10-°

a{ll) = -.2505210838544171011380764735 * 10~/

a(13) = ,16059043836817941727119406461 * 10-9
a(15) = -.76471637307988608475534874891 * 10-12
a(l7) = .281145706930018 * 10-14

a(19) = -.822042461317923 * 10-17

a(21) = .194362013130224 * 10-19

b(0) = .99999999999999999999999999999

b(2) = -.49999999999999999999999999919

b(4) = .41666666666666666666666613902

b(6) = -.138888888868888888888875543628 * 10-2
b(8) = .24801587301587301569992273730 * 10-4
b(10) = -.27557319223985877555866995711 * 10-6

b(12) = .20876756987861921489874746135 * 10-8
b(14) = -.11470745595858431549595076575 * 10-10
b(16) = .47794769682239311593310626721 * 10-13
b(18) = -.156187668345316 * 10-15

b(20) = .408023947777860 * 10-18

These polynomials are evaluated from right to left in
double-precision using an in-stack loop. The sign flag is
used to give the result the correct sign before return to
the calling program.

ERROR ANALYSIS

Graphs of the errors in approximating sin(x) and cos(x) by
p(x) and q(x) over the interval (-pi/4,pi/4) are given in
figures 2-17 and 2-18.

The maximum absolute value of the error of
approximation of p(x) to sin(x) over (-pif4,pi/s) is
.2570 * 10-28, and of q(x) to cos(x) is .3786 * 10-28,
Upper bounds on the machine round-off and truncation
error over (;pi/&,pi/lt) have been established for p(x) at
1.743 * 10-27 and for q(x) at 1.364 * 10-27. Hence an
upper bound for the absolute value of error on this
routine's computation of sine over _ (-pi/4,pi/4) s
1.769 * 10-27 and of cosine is 1.402 * 10-27,

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument x, the resulting
error in sin is given approximately by e' * cos(x). The
resulting error in cos is given approximately by
-e' * gin(x). If the error ¢ becomes significant, the
addition formulas for sin and cos should be used to
compute the error in the result.
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DSQRT

DSQRT is an external function which accepts calls from
FORTRAN code. It computes the square root function
(FORTRAN function name DSQRT). It accepts a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DSQRT.

METHOD

The argument is checked upon entry. It is invalid if it is
infinite, indefinite or negative. If the argument is invalid,
POS.INDEF. is returned, and a diagnostic message is
issued. Otherwise, DSQRT. is called at entry point
DSQRT. for the computation. The result is returned to
the calling program.

ERROR ANALYSIS

See the description of DSQRT.. Figure 2-19 shows the
mean relative error for DSQRT..

EFFECT OF ARGUMENT ERROR
See the description of DSQRT. .

Hl DSQRT.

DSQRT. is an external routine which accepts calls from
FORTRAN code. It computes the square root function
(FORTRAN function name DSQRT). It accepts a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry point DSQRT. .

METHOD

The argument range is the set of all valid double-precision
numbers which are positive or zero. The identity:

sqrt (y * 202 *n)y o sqrt (y) * 2P

is used to reduce the input range to the interval (.5, 2.0).
An initial approximation to sqrt(y) is computed using
(31/64) * y + (31/64). This is accurate to five bits.

One Heron's iteration is performed, which produces 11 bits
of precision and a positive error. The error is centered,
giving 12 bits of precision. Two more Heron's iterations
are used to produce a single-precision result. This result
is converted to double-precision using one Newton's
iteration:

xD =(31/64) * y + (31/64)

x1 =.5%*(x0 + y/x0)

x1'=x1 - x1 * 2-12

X2 =.5%*(x1'+ y/x1")

X3 =.5 % (x2(+ y/x2) )

upper = pack (gxponent, x3

lov%er +(y* 2(ez n) - upper2)/(2 * upper)

The 2N scaling is performed by computing the final upper
exponent and explicitéy packing it, ignoring the exponent
of x3. The vy -x% computation is performed in
double-precision, giving a one-word result since the upper
portions nearly cancel.

60483100 A
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ABSOLUTE ERROR ARGUMENT
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ERROR ANALYSIS

The algorithm error is at most 2.05E-31, and is always
positive. The round-off error in computing the
single-precision approximation of x is exactly 1/2 ulp.
The maximum is 7.55E-15.

Including algorithm error, x can have just over 1/2 ulp
error. Since x is an approximation of the single-precision
part 2only, the total error in x2 can exceed 2 ulp when
y > x4,

Then y - x2 mag contain 50 significant bits. The error
range for y - x# is (-1.78E-15, 3.55E-15), and the error
range for (y - x2)/(2 * x) is (-8.88E-5, 3.55E-15). Relative
to x, this error is (-6.71E-29, 2.68E-29).

In order to experience this error, the error in x must be at
least 7.11E-15 so that the resulting error after the last
Heron iteration is in the interval (-4.1BE-29, 5.55E-29).
The maximum observed error for 100000 points randomly
chosen in the interval (1, 4) was 3.19E-29. The maximum
observed error for 200000 points randomly chosen from
the interval (1, 1.5) was 3.89E-29.

DTAN.

DTAN. is an external routine which accepts calls from
FORTRAN code. It computes the tangent function
(FORTRAN function name DTAN). It accepts a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry point DTAN..

METHOD

The input range is the set of all valid double-precision
quantities in the range (-249, 249), Arguments outside this
range initiate error processing. The constants used to
compute the function are listed in the description of
routine DTAN. The argument reduction performed is:

(» A pi/2 reduction is first performed. If the
argument is outside the interval (-pi/4,pi/4), a
signed integer multiple n of pi/2 is computed
such that, after adding it to the argument, the
result z falls in the interval (-pi/4, pi/4).

(ii) A 1/8 reductien is performed. A signed
integer m, which is a multiple of 1/8, is
subtracted from z such that the result is in the
interval (-1/16,1/16). A small number E(m) is
also subtracted from z. The value of E(m) is
constant such that the tangent of m/8 + E(m)
can be represented to double-precision accuracy
in a single-precision word. The lower word is
zero. Therefore, the original argument y is
reduced to x as follows:

x =y -(n*pif2) - (m/8 + E(m))

The following quantities are computed from the reduced
argument x, and the range reduction values. The
functions U and L represent "upper of" and "lower of"
functions.

T = TAN(m/8 + E(m))

R = L{U®)2)/2U(x) + L (%)
A = LUGZ) + 2L GOU (%)
B =U(U(x?)

(table look-up)

2-40

Since:
TAN(x) = TAN(SQRT (x2))
= TAN(SART (U U(x)2Z + LU()2) + 2L (U (x)))
= TAN(SGRT (B + A))
= TAN(SQRT (B) + A/2B)
= TAN(SQRT(B) + R)
Then S = SQRT (B) = X, - L (U(x)2)/2U(x)
The value of the original argument y is:
TAN(y) = TAN(x + n * pi/2 + m/8 + E{m))
The effect of the n * pi/2 term on the final result is:
TAN(y) = TAN(x + m/8 + E{m))  if n is even
TAN(y) = 1/TAN(x + m/8 + E{m)) if nis odd
Applying the tangent addition formula:
TAN(x + m/8 + E(m)) = TAN(S + R +{m/8 + E(m)))

TAN(S) + TAN(R) + T - TAN(S) * TAN(R) * T
T 1-TAN(S) * TAN(R) - TAN(R) * T- T * TAN(S)

TAN(S) + R+ T-TAN(S) * R * T
T1-TAN(S)*R -R* T-T * TAN(S)

The computation of TAN(S) uses the general polynomial
form:

X +x3/3+x7%2/315...
After applying Chebyshev to the coefficients, the form is:

TAN(S) = 5.+ S * (((1)SZ + C(2)5% + C(3)S6 + C(4)sB +
(a/(B - 52))510)

where a=.0218 .., and b = 2,467 ...

The quotient is inverted if n is odd.

ERROR ANALYSIS

For each of the intervals (-pi/4,pi/2) and (.01, 2pi),
100000 random arguments were generated. The resulting
graphs of relative error versus argument are shown in
figures 2-20 and 2-21. The first graph has a linear scale,
and the second has a logarithmic scale. The worst value
for relative error was 1.6145E-28 at .065205. The
percentage and mean for the second graph are biased
since more points fall within the function's best range.

Algorithm Error

The algorithm error has a negligible effect on the total
error. The worst relative error of the algorithm curve is
1.032E-29 at .06853. The discontinuities in the curve are
a result of breaks in the range reduction with constants
which cannot be represented exactly.

As figure 2-20 shows, there is a large peak in the relative
error graph at 1/16. The same peak occurs at any
multiple of pi/2 plus or minus 1/16. This is caused by the
polynomial term in the quotient. Although the numerator
and denominator of the quotient can be single-precision
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quantities, the result should be double-precisicn.
Actually, it is computed in single-precision. If the
algorithm error is computed with that division in
single-precision, the worst relative error is 3E-29.

There is a negligible error introduced by the pi/2 range
reduction except for points close to nonzero multiples of
pi/2. Near pif2 the pi/2 reduction relative error is
bounded by 2(n - 155) where n is the number of bits of
precision to which the argument represents pi/2. At
larger multiples of pi/2, similar problems occur.

Total Error

The total error curve is symmetric about all multiples of
pi/2, except for variations caused by the range reduction
error. For the range (0,pi/2), most of the error is
attributed to forming the final quotient, except for the
area around 1/16. In the interval (0, 1/16) the error is
smaller than in the interval (1/16,pi/2). This is because
the denominator is 1 - e, where l/e is less than 222, In
the actual representation, the upper word is an exact 1
and the lower word is small and negative.

The divisions performed in double-precision introduce no
error. Because this number is accurate, there is a better
area in the range (pi/4 - 1/16, pi/4 + 1/16).

EFFECT OF ARGUMENT ERROR

If a small error e occurs in the argument x, the error in
the result is e + e * tanZ(x).

DTANH

DTANH is an external routine which accepts calls from
FORTRAN code. It computes the hyperbolic tangent
function (FORTRAN function name DTANH). It accepts a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DTANH.

METHOD

The input domain is the collection of all valid
double-precision quantities. = Arguments outside the
domain initiate error processing in routine DTANH..
Upon entry, the argument is loaded into register pair
X1-X2, and routine DTANH. is entered to complete the
computation. See the description of routine DTANH. for
further details.

ERROR ANALYSIS

See the description of routine DTANH. .

EFFECT OF ARGUMENT ERROR
See the description of routine DTANH. .

DTANH.

DTANH. is an external function which accepts calls from
FORTRAN code. It computes the hyperbolic tangent

60483100 A

function (FORTRAN function name DTANH). It accepts a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry point DTANH, .

METHOD

The input domain is the collection of all valid
double-precision quantities. Arguments outside the
domain which are indefinite initiate error processing.
Most of the computation is performed in routine
DEULER., and the constants used are listed there. The
argument reduction performed is:

(i) for argument in (-47*log 2,47*log 2) but not in
(-1/*log 2,1/2*laqg 2):

x = <argument >
y = <reduced argument >
y =2x = n * log2

where n is an integer, and y is in (-1/*log 2,1/2*log 2)
tanh(x) = u/v where
u=1-20.2n=*(DC-DS)
v=1-2"N4 20 % (DC-DS)

(ii) for argument in (-1/2*log 2,12*l0g 2):
x = <argument >
y = <reduced argument >

y = x

tanh (x) = DS/(2*+DC)

(iii) for argument outside (-47*log 2,47*lag 2):
x = < argument >
y = <reduced argument >

tanh (x) =1 - 2 ((1+DC-DS) * 2-N - ((1+DC-DS) * 2-M2)

In (i), (ii), and (iii), DC=cosh (y)-1 and DS=sinh {y).

On entry to DTANH., register pair X1-X2 holds the
argument, and on exit, register pair X6-X7 holds the
result.

a. a=Xl-X2 = < argument >.
X7-X6 = b = |al.
B5 = sign mask of a.
X5 = packed zero.
Bl =1.
B4 = address of step e.
If exponent of first word of a is less than -49, jump to
routine DEULER. at entry point DEULER. .
X7 = X7 * 2.
X6 = X6 * 2.
B4 = address of step c.
If exponent of first word of a is less than -42, jump to
routine DEULER. at entry point DEULER. .

b. X6-X7 = * 1. with sign obtained from BS5.
If a is definite, return,
Set parameters for a call to error processor.
Call error processor.
If control returns from error processor, return.

c. On return from DEULER. :
B3 = n = integer offset in argument reduction,
X7-X6 = n*log2 +y

X4-X5 = DX
XD-X1 = DC
X6-X7 = DS
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where:

DX = exp {y)-1
DC = cosh (y)-1
DS = sinh (y)

If n 47, go to step f.
u = 1.-2-N - 2-N (DC-DS)
v = 1L.+2-N + 2-N (DC-DS)

d. w = u/v, in double-precision.
Go to step g.

e. u=DS
v = 1.+DC, in double-precision.
Go to step d.

f.  w = 1 -2%((1%+DC-DS) * 2" - ((L.+DC-DS) * 2-M)2)
(evaluated in double-precision, although only the
second word of 1. is affected.)

g. Clean up w, affix sign in B5 and leave in register pair
X6-X17.
Return.

ERROR ANALYSIS

10 000 random arguments were generated in the interval:
(-1/2*10g 2,3/2*l0g 2),

and the resulting graph of relative error versus argument
is shown in figure 2-20. In this sample, the maximum
absolute value of the relative error is 8.581E-29. Random
samples of 100 arguments were generated in given
intervals, and statistics on relative error were observed.
These are given in table 2-17.

Algorithm Error

The algorithm error is insignificant. It is predominated by
the error in the sinh expression in DEULER., but by
various folding actions, the error is reduced even further.

Total Error

The error plot should be symmetric about the origin. In
the range (0,.5) the error is dominated by the code to
perform s/(1+c); the errors in s and in adding l+c are
secondary. Just above .5, several factors conspire to
create errors: an addition of numbers of opposite sign in
the numerator, an addition in the denominator, and a
division. The errors in evaluating sinh are insignificant in
comparison. Up to 16.5, the result is slightly less than 1.0
and the error is almost totally due to imprecise division of
slightly imprecise arguments. From 16.5 to 64.0 (26), the
result is perfect. Above 64.0 (not shown), the error will
taper off to zero because the answer will be 1.0 while the
true value is closer to 1.0 than 1-2-96,

TABLE 2-17. RELATIVE

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument ? the error in
the result is given approximately by e' * sech?(x).

DTOD*

DTOD* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for FORTRAN statements that
raise double-precision quantities to double-precision
exponents. It accepts two double-precision arguments and
returns a double-precision result.

Calls by name are computed at entry point DTOD$.

METHOD

The result is calculated by:
result = exp (exponent * log(base))

Upon entry, the argument set is checked. It is invalid if
either argument is infinite or indefinite, if the base is
negative, if the base is zero and the exponent is not
greater than zero, or if floating-point overflow occurs
during the computation. If the argument set is invalid,
POS.INDEF. is returned, and a diagnostic message is
issued. Otherwise, DTOD* computes the result according
to the equation. The result is returned to the calling
program.

ERROR ANALYSIS

The algorithm used in routine DTOD* is the same as that
used in routine DTOD., the call-by-value counterpart.
See the description of DTOD. for the error analysis.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the base b and a small
error e" occurs in the exponent p, the error in the result
is given approximately by:

bP * (p/b*e' + log(b)*e").

The absolute error is approximately the absolute value of
this expression. If the errors in the arguments are
significant, the error in the result should be found by
substitution of the possible argument values in the
expression bP.

DTOD.

DTOD. is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for FORTRAN statements that

ERROR OF DTANH.

Interval's Interval's
Lower Upper Mean g:s?g::gn Minimum Maximum
Bound Bound
-2. 2. 3.011E-30 1.7353-29 -6.675E-29 7.436E-29
-30. 30. 1.640E-30 9.7603-30 -3.692E-29 2.544E-29
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raise double-precision quantities to double-precision expo-
nents. It accepts two double-precision arguments and
returns a double-precision result.

Calls by value are computed at entry point DTOD. .

METHOD

The input range is the collection of all argument sets (b,p)
for which b and p are definite in-range double-precision
quantities, and b is positive. If b is zero, then p is greater
than zero, and bP is in-range.

The formula used is:
bP = exp(p * logb}

where b>0. Upon entry, DLOG. computes log b, and
DEXP. computes exp (p*logb). The result is returned to
the calling program.

ERROR ANALYSIS

10000 pairs of double-precision random numbers were
generated, with distribution being the product of uniform
distributions over (.5,1.5) and (-10,10). The error in the
routine's computation of bP was determined for each of
these pairs. The maximum absolute value of the relative
error in this routine for these 10000 pairs was
2,977 * 10-25

EFFECT OF ARGUMENT ERROR

If a small error e{b) occurs in the base b and a small error
e(p) aceurs in the exponent p, the error in the result r is
given approximately by:

r * (logb * e(p) + p * e(b)/b)

pToI*

DTOI* is an exponentiation routine which accepts
compiler-generated ‘calls from FORTRAN code. It
performs exponentiation for FORTRAN statements that
raise double-precision quantities to fixed-point expo-
nents. It accepts a double-precision argument and a
fixed-point argument, and returns a double-precision
result.

Calls by name are computed at entry point DTOI$.

METHOD

The argument set is checked upon entry. It is invalid if
either argument is infinite or indefinite, or if the base is
zero and the exponent is not greater than zero. If the
argument set is invalid, a diagnostic message is issued,
and POS.INDEF. is returned. Otherwise, DTOI is called
at entry point DTOL for the computation. The result is
returned to the calling program.

ERROR ANALYSIS
Not applicable.
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EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the base b, the error in the
result will be given approximately by n * b(n-1) % ¢,
where n is the exponent given to the routine.

DTOL.

DTOIL. is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for FORTRAN statements that
raise double-precision quantities to fixed-point exponents.

Calls by value are computed at entry point DTOL .

METHOD

Ab represents the base and a p represents the exponent.
If p is non-negative and has the binary representatlon
000. . .0i (n) i(n-1)...i(1)i(0) where each i(j){0<j<n) is 0
or 1, then:

p=i(0)*20 + i(1)*2L 4., i(n)*20

and n = (log(2)p) = greatest integer not exceeding log{2)p.
Then

bP = Prod ((62)i:0<j< n & i(j) = 1).

The numbers b = b2 , b2, b4,..., b2 are generated by
successive squarings, and the coefficients i(0),...,i{n)
are obtained as the sign bits of successive circular right
shifts of p within the computer. A running product is
formed during the computation, so that smaller powers of
b and earlier coefficients i(j) may be discarded. Thus, the
computation becomes an iteration of the algorithm:

bP = 1if p = 0.
bP = (bZ)P Z(f p>0and p is even.
bP = b * (b2)P-1)/2 if p > 0 and p is odd.

Upon entry, if the exponent p is negative, p is replaced by
-p and b is replaced by 1/b; b is double-precision. For
b = x(W*x (), 1/b = (1/b)(u)*(1/b)(l) is given in terms of
x{u) and x(l) by the following formulas, where n is the
normalization operation. The subscript 1 on one of the
operations indicates that the coefficient of the result is
taken from the lower 48 bits of the 96 bit result register,
and the exponent is 48 less than the single-precision
coefficient's exponent. The formulas are:

(1/b) (w) = n{i/x u) + (((n (-(1-(1/x (u) Y*x (u})
+(1 - (1) (1/x (u)*x (u) ) - (1/x (u)*(D) x (u))
- (L/x (uyex (D/x (W))
+(/x W) + ) (M L-(1/x (u) ) * x *u)
+(1-(D) (1/x () 7*x (1) ) ) - (1/x (u) }*(1) x (u)
- (1/% (u) *x (1) )/x (W)
amy=nt.)+M¢..)

In the routine, double-precision quantities x = x (u)*x (1)
and y = y (u)*y (1) are multiplied according to:

x*y = (x*y) (u)*y (1))
where:

(x*y) (u) = (({(x (u)*y (D) + (x (D*y (u)))
+ (x (u)*() y (u))) + (x (Wry (u))
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and

(x*y) (D) = (((x (W*y (D) + (x(D*y (W)))
+ (x (W*(D) y(W)) + (D) (x (u)*y ()

The input range is the collection of pairs of arguments
(byp) for which p2>0 if b is zero, all quantities are
definite and in-range, and the result is in-range.

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the base b, then the error in
the result is given approximately by p ¥ b\P-1) * ¢!, where
p is the exponent. If the error e' is significant, the
absolute error in the result is bounded above by:

p *max(lbl,Ib + e')XP-1) * e,

DTOX*

DTOX* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for FORTRAN statements which
raise  double-precision quantities to floating-point
exponents. It accepts a double-precision argument and a
floating-point argument, and returns a double-precision
result.

Calls by name are computed at entry point DTOX$.

METHOD

The argument set is checked upon entry. It is invalid if
either argument is infinite or indefinite, if the base is
zero and the exponent is not greater than zero, if the base
is negative, or if arithmetic overflow occurs during
computation. The result is calculated using:

base®XPanent - exp (exponent * log(base) )

If the argument set is invalid, POS.INDEF. is returned and
a diagnostic message is issued. If the argument set is
valid, the computed result is returned to the calling

program.

ERROR ANALYSIS

The algorithm used in DTOX* is the same as that used in
DTOX.. See the description of routine DTOX. .

EFFECT OF ARGUMENT ERROR

If a small error e occurs in the base b and a small
error e" occurs in the exponent p, the error in the result
is given approximately by:

bP * (p/b * e' + log(b) * e")

The absolute error is approximately the absolute value of
this expression. If the errors in the arguments are
significant, the error in the result should be found by
substitution of the possible argument values in the
expression bP.
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DTOX.

DTOX. is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for FORTRAN statements which
raise double-precision bases to floating-point exponents.
It accepts a double-precision argument and a
floaﬁing-point argument, and returns a double-precision
result.

Calls by value are computed at entry point DTOX. .

METHOD

The input range is the collection of argument sets (b,p) for
which b is a definite in-range double-precision quantity, p
is a definite in-range floating-point quantity, and b is
positive. If b is zero, then p is greater than zero, and bP
is in-range.

The formula used is:

bP = exp (p * log b)

where b>0. Upon entry, DLOG. is called to compute
logb, and p * logb is computed in double-precision.

DEXP. is called to compute exp(p * log b), and the result
is returned to the calling program.

ERROR ANALYSIS

10000 pairs (b,p) of random numbers were generated
where b is double-precision and p is single-precision. The
distribution was the product of uniform distributions in
(.5,1.5) and (0,1). The maximum absolute value of the
relative error in the routine for these pairs was
6.405 * 10-29,

EFFECT OF ARGUMENT ERROR

If a small error e(b) occurs in the base b and a small error
e(p) occurs in the exponent p, the error in the result r is
given approximately by:

r*(e(p)*logb+p *e(b)b)

DTOZ*

DTOZ* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for FORTRAN statements which
raise double-precision quantities to complex exponents. It
accepts a double-precision argument and a complex
argument, and returns a complex result.

Calls by name are computed at entry point DTOZ$.

METHOD

If the base is real and the exponent is complex, then:
basee€Xponent = X 4 j*Y,
where:

X=exp(re(exponent)*log(base) )*cos(im(exponent)*log(base) )
Y=exp(re(exponent)*log(base) )*sin(im(exponent)*log(base) )
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Upon entry the double-precision base is rounded to
single-precision, and the resulting argument set s
checked. The argument set is invalid if: either number is
infinite or indefinite, the base is zero and the real part of
the exponent is not positive, the base is negative,
arithmetic overflow occurs during any stage of the
computation, or precision is lost because the argument is
too large. If the argument set is invalid, a diagnostic
message is issued and POS.INDEF. is returned. Otherwise,
the result of the computation is returned to the calling
program.

ERROR ANALYSIS

The algorithm used in DTOZ* is the same as that used in
DTOZ.. See the description of DTOZ. .

EFFECT OF ARGUMENT ERROR

If e and e" are small errors in the base b and exponent z,
respectively, then the corresponding error in bZ is
approximately ((z/b) * €' + e" * log (b))} * bZ. The abso-
lute error will be approximately the absolute value of
this. If e' or e" becomes significant, the error in the
result should be calculated by substitution of the possible
values of the arguments in the expression bZ.

DTOZ.

DTOZ. is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for FORTRAN statements which
raise double-precision quantities to complex exponents. It
accepts a double-precision argument and a complex
argument, and returns a complex result.

Calls by value are computed at entry point DTOZ, .

METHOD

The input range is the collection of argument sets (b,2)
where b is a definite in-range double-precision quantity, z
is a definite in-range complex quantity, b is greater than
zero, and bZ and b4 are in-range.

The formula used is:

b{u+i*Vv) = exp (u*logb) * cos(v*log b)
+ i * exp (u*logb) * sin(v*logb)

where b>0. Upon entry, the lower half of the
double-precision base b is discarded, and ALOG. is called
to compute log b. EXP. is called to compute exp (u*logb),
and COS.SIN is called to compute cos{v¥logb) and
sin(v*logb), where u + 1 * v is the exponent. The result
is computed from the formula, and is returned to the
calling program.

ERROR ANALYSIS

10000 pairs (b,z), where b is double-precision and z is
complex, were generated with distribution being the
product of uniform distributions over the intervals
(.5,1.5), (-10,10), and (-2.pi, 2.pi). The maximum modulus
of the relative error in the routine was found to be
5.605 * 10-14,

EFFECT OF ARGUMENT ERROR

If a small error e(b) occurs in the base b and a small error
e(z) occurs in the exponent z, the error in the result w is
given approximately by:

w * (e(z) * logb + z * e (b)/b)

ERF.

ERF. is an external function which accepts calls from
FORTRAN code. It computes the error function and the
complementary error function (FORTRAN function names
ERF and ERFC). It accepts a floating-point argument and
returns a floating-point result.

Calls by name are computed at entry points ERF and
ERFC, and calls by value are computed at entry points
ERF. and ERFC..

METHOD*

The input range is the collection of all definite
floating-point quantities (including out-of-range values
INF) except the range (25.92277515027854,+INF) for
ERFC, which underflows.

The routine calculates the smaller of erf(abs(x)),
erfc (abs(x) ), and uses the identities:

erf (-x)=-erf (x)

erf(x)=1-erfc (x)

to compute the final value, which is the sum of a signed
function and a constant.

The forms used are given in table 2-18.

where the constants .477 and 25.9 are inverse erf(0.5)
and inverse erfc{2-973), which are approximately
0.47693627620447 and 25.92277515027854.

The function pl is a (5th order odd)/(Bth order even)
rational form. The functions p2, p3 are exp (-x2) *
(rational form), where p2 is (7th order)/(8th order) and p3
is (4th order)/(5th order). Since exp{-x4) is ill-conditioned
for large x, exp(-x2) is calculated by exp(u+eps)=
exp (u)+eps*exp (u), where u=-x2 upper and eps=-xZ lower.

ERROR ANALYSIS
The large error in p2 and p3 is due to the large size of the

rational forms and the additional error in exp ¢-x2). The
polynomials in p2 and p3 are stable, but not as accurate as

TABLE 2-18. FORMS USED IN ERF. (y=ABS(x))

t  The coefficients for p2 and p3 are from Hart, Cheney, Lawson, et al., Computer Approximations.
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Range ERF ERFC
(-INF,-5.625) -1.0 +2.0
(-5.625,-.477) -1.0+p2(y) +2.0-p2(y)
(-.477,0) -pl(y) +1.0+pl(y)
(0,+.477) +pl(y) +1.0-pl{y)
(.477,5.625) +1.0-p2(y) p2(y)
(5.625,8.0) +1.0 p2(y)
(8.0,25.9) +1.0 under flow

+INF +1.0 +0.0
60483100 A
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most  exponential-type approximations, which, when
evaluated using Horner's rule, add the smallest terms
first. Inverting x and reversing coefficients does not
improve accuracy because of the error involved in division.

The maximum error in the approximations pl, p2, p3,
scaled by 1015, is given in table 2-19.

In regions where a constant is added, that constant
dominates and the error is less than that shown.

Figures 2-23 and 2-24 show the mean relative errors for
ERF. and ERFC..

EFFECT OF ARGUMENT ERROR

For small errors in the argument x, the amplification of
absolute error is (2/sqrt (pi) )*exp (-xé) and that of relative
error is (2/sqrt (pi) Y*x¥*exp (-x2)/f(x) where f is erf or
erfc. The relative error is attenuated for ERF
everywhere and for ERFC when x< 0.53. For x> 0.53 the
relative error for ERFC is amplified by approximately 2x.

If the value of x is known to more than single-precision,
the following FORTRAN code may be used to compute an
accurate value of ERFC when x is large:

DOUBLE X
DATA SQRTPI / < 2/sqrt (pi) > /

.

(compute X)

SNGLX=SNGL (X)

SHSNGL X=SNGL (X-SNGL (X))

Y =ERFC (SNGLX)+SHSNGLX+SQRTPI*EXP (-SNGLX **2)

(Y is ERFC(X))

EXP

EXP is an external function which accepts calls from
FORTRAN code. It computes the exponential function
(FORTRAN function name EXP). It accepts a
floating-point argument and returns a floating-point result.

Calls by name are computed at entry point EXP, and calls
by value are computed at entry point EXP. .

METHOD'

The input range to this routine is the collection of all
definite in-range floating-point quantities lying in the
interval (-675.84,741.67). Upon entry, the argument x is

TABLE 2-19. MAXIMUM ERROR OF ERF.

Source Of Error pl p2 p3
Rational form 1.1 4.9 1.7
Coefficient rounding 0.5 0.8 1.4
Round-off 14.7 110 68
Upper bound 16.3 116 71
Maximum observed 12.8 27.9 28.3

multiplied by 16./log(e)2. in double-precision, and the
integral (n) and fractional (u) parts computed. The range
reduction formula used here is:

= 2(x/log 2)
exp (x) - (221/16))(16*x/log 2)
= (21/16)nx(21/16yn

If n=16*q+r where q and r are integers such that
0<r<16, exp(x) is finally given by:

exp(x) = 29 * (21/16)r » (21/16)u

and % will be added to the exponent of the result, Then
(21/18)r s obtained from a look-up table, and (21/16)u is
obtained from the following approximation:
(21/16yn-

u * (p(00) + p(01) * u2)
u+2%

(a(00) + u?) - u * (p(0) + p(01) * u2)
where the constants are given by:

q(00) = 20.8137711965230361973 * 256
p (0D) = 7.2135034108448192083 * 16
p(01) = .057761135831801928 / 16

ERROR ANALYSIS

The maximum absolute value of the _error of
approximation of the algorithm is 5.000 * 10-17 over the
interval (-(log2)/16,(10g2)/16). A graph of the error of
approximation in the algorithm is given in figure 2-23. An
upper bound for the absolute value of the error due to
machine round-off is 1.868 * 10-14 over the interval
((-log 2)/16,(log 2)/16). Hence an upper bound on the
absolute value of the error in the routine over this
interval is 1.873 * 10-14, A bound on the routine's error
for any given argument x can be obtained by employing
the multiplication formula for exp:

exp(x + y) = exp (x) * exp(y)

The maximum absolute value of the relative error of
approximation of the algorithm over (-log2/16, log2/16) is
4.838 * 10-17, An upper bound on the absolute value of
the relative error due to machine round-off and truncation
is 6.890 * 10-15 over ((-log2)/16,(log2)/16). So an upper
bound on the absolute value of the relative error is
6.938 * 10-15 over the interval ((-log 2)/16,(log 2)/16).

For 10000 arguments chosen randomly from given
intervals, statistics on relative error were observed.
These are given in table 2-20.

EFFECT OF ARGUMENT ERROR

If a small error ' occurs in the argument, the error in the
result y is given approximately by y * e'.

HYP.

HYP. is an external function which accepts calls from
FORTRAN code. It computes the hyperbolic sine and
cosine functions (FORTRAN function names SINH and

t  This approximation is described in Hart, Cheney, Lawson, et al.,, Computer Approximations, (New York) 1968, John Wiley

and Sons, pp. 96-104.
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TABLE 2-20. RELATIVE ERROR OF EXP

Interval Standard L. .
Mean g Minimum Maximum
From To Deviation
-673. 741. -3.012E-16 2.181E-15 -6.887E-15 5.193E-15
-1. 1. -3.100€-16 2.223E-15 -6.769E-15 5.028E-15
COSH). It accepts a floating-point argument and returns h c = (1+by*2n-1) 4 o
a floating-point result. X6 = c.
Calls by name are computed at entry points SINH and i.  Return,

COSH, and calls by value are computed at entry points
SINH. and COSH. .

METHOD

The input range is the collection of all definite in-range,
floating-point quantities lying within the interval:

(-1071*10g(2),1071*log (2)) = (-742.3606303797,742.3606303
797)

The formulas used to compute sinh (x) and cos(x) are:

X = n*loi;)Z +a lal < 1/2*10 2,
cosh(x) = 2n-I) * cosh (a) + 2(n- 1) * cosh (a) + 2(n-1) «
tnh a) - 2 * sinh(
sinh (x) = 2(n-1) * ginh (a) + 2(n-1) * sinh (a) + 2(n-1) *
cosh(a) - 2(n-1) % cosh (a)
cosh(a) =1 + d(a)
sinh (a) = a+a3*(s (3)+a2*(s (5)+b/(a-a2)))
d(a) = a2*(1/2+a*(c (4)+a2*{c (6)+aZ*(c (8)+al)*c (10))))

where:

s(3) = .16666666666693558
s(5) = -.005972995665652368
b = 1.031539921161
a = 72.10374670722
c(4) = .041666666666488081
c(6) = .0013888888952318045
c(8) = 89.75473897315022
c(10) = 2.763250805803 * 10-7

In the following description of the algorithm used,
X1 = x = argument on entry; entry is at SINH. or COSH. ;
and on exit, X6 = result.

a. If Ix| 21071*log(2), go to step j.
b. u= x.

v =+0if x2>0.
-0if x<0.

d. n =(u/log2+.5) = nearest integer to u/log 2.
w = u - n*log2, where the right-hand expression is
evaluated in double-precision.

w+w3(s( % +w2(s (5)+b/(a-w2) )).
w (l/2+w (¢ S4)+w2(c (6)+w{c (8)+w2)*c (10)))).
(1+d-s)*2 n-1

d+s.

wouonn

oo oo

f. If COSH. entry, go to step h.
g ¢ =(1/4+ (1/a+b) )*2(n-1) 4 (2(n-3) 4 (2(n-3) _ a)),

X6 = c with the sign stored in v.
Go to step i.

60483100 A

jo If infinite or indefinite argument, go to step 1.

k. Normalize argument.
u =Ixl.
v =+0ifx>0.
-0if x<0.
If 1x1 < 1071*log 2, go to step d.

. Initiate error processing.

m. X6 = POS.INDEF. if x is indefinite.
POS.INF. if x is infinite or too big, and positive,
or COSH.
NEG.INF. if x is infinite or too big, and
negative,
and SINH.

n. Go to step i.

ERROR ANALYSIS

The maximum absolute value of relative error in the
approximation of sinh  over (-log2/2,l0g2/2) s
1.282 * 10-15, and of cosh aver (- 1092/2 log2/2) is
2.421 * 10-16, Computed upper bounds on the absolute
value of relative error due to machine error in the
computation of sinh is 2.392 * 10-14 and of cosh is
1.024 * 10-14, Hence, upper bounds on the absolute value
of relative error in the routine is 2.520 * 10-14 for sinh,
and 1.048 * 10-14 for cosh. Graphs of the relative errors
in the algorithms used to approximate sinh and cosh over
(-log 2/2, 10g 2/2) are given in figures 2-26 and 2-27.

EFFECT OF ARGUMENT ERROR

If a small error u occurs in the argument x, the resulting
error in sinh(x) is glven approximately by cash (x)*u, and
the resulting error in cosh(x) is given approximately by
sinh(x)*u. If the error u is not small, the addition
formulas for sinh and cosh should be used to find the
resulting error:

sinh (x+u) = sinh (x)cosh (u)+cosh (x)sinh (u)
cosh (x+u) = cosh (x)cosh (u)+sinh (x)sinh (u)

HYPERB.

HYPERB. is an auxiliary routine which accepts calls from
CCOS, CSIN, and CSNCS.. It performs incidental
computation of the hyperbolic sine and cosine functions.
It accepts a floating-point argument and returns two
floating-point results.

Calls by value are computed at entry point HYPERB. .
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METHOD

The. input range is the collection of all definite in-range
floating-point quantities which lie in the interval
(-741.67, 741.67). The hyperbolic cosine is computed by:

cosh(x) =.5 * (exp (x) + exp (-x))
If Ix] 2 .22, the hyperbalic sinh is computed by:
sinh (x) = .5 * (exp (x) - exp (-x))

For ixl<.22, the MaclLaurin series for sinh is truncated
after the term x”/9! and the resulting polynomial is taken
as approximation:

sinh () x + x3/31 + x2/51 + x7 71 + x2 /91

ERROR ANALYSIS

The maximum absolute value of _the error of
approximation_for cosh(x) is 5.000 * 10~17 and for sinh(x)
is 1.464 * 10-15, over the interval (-log2,log2). See the
description of EXP. for details concerning the error of
approximation to exp. An upper bound for the error due
to machine round-off and truncation during computation
of the Maclaurin polynomial is 8.198 * 10-16, A graph of
the error of approximation in the polynomial for sinh is
given in figure 2-28. An upper bound for the routine's
error in the computation of cosh(x) is 7.184 * 10-14, and
in the computation of sinh(x) is 7.148 * 10-14 over
(-log 2, lag 2).

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument x, the resulting
error in cosh(x) is given approximately by sinh(x)*e', and
the resulting error in sinh(x) is given approximately by
cosh (x)*e"

ITOD*

ITOD* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
fixed-point quantities to double-precision exponents. It
accepts a fixed-point argument and a double-precision
argument, and returns a double-precision result.

Calls by name are computed at entry point ITODS$.

METHOD
The formula used to perform the exponentiation is:
base€Xponent - exp (exponent * log (base) ).

Upon entry, the fixed-point argument is converted to
double-precision and the resulting argument set is
checked. The argument set is invalid if: the base is zero
and the exponent is not greater than zero, the base is
negative, either argument is infinite or indefinite, or
floating overflow occurs during the computation. If the
base is zero and the exponent is negative, NEG.INF. is
returned. If the argument set is otherwise invalid,
POS.INDEF. is returned. In all cases, if the argument set
is invalid, a diagnostic message is issued. If the argument
set is valid, the result is computed and returned to the
calling program.
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ERROR ANALYSIS

The algorithm used in I[TOD* is the same as that used in
ITOD.. See the description of routine ITOD. .

EFFECT OF ARGUMENT ERROR

If a small error occurs in the double-precision exponent,
the resulting error in the result is approximated by
multiplying the argument error by the result, and then by
the natural logarithm of the base. Thus, if the result is
large, the effect of an argument error will be large. If
the error in the argument becomes significant, the error
in the result should not be calculated by this rule, but
should be calculated from the function values.

ITOD.

ITOD. is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
fixed-point quantities to double-precision exponents. It
accepts a fixed-point argument and a double-precision
argument, and returns a double-precision result.

Calls by value are computed at entry point ITOD. .

METHOD

The input range is the collection of all argument sets (b,p)
where b is a definite in-range fixed-point quantity, p is a
definite in-range double-precision quantity, b is greater
than zero, and bP is in-range. Upon entry, b is normalized
and converted to double-precision.

The formula used to compute the result is:
bP = exp{p * log b}

DLOG. is called to compute logb, then p*logb is
computed in double-precision. DEXP. is called to
compute exp(p*logb), and the result is returned to the
calling program.

ERROR ANALYSIS

10000 random argument sets (b,p) were generated, with
distribution being the product of a discrete uniform
distribution over the integers 1,2,...,9, and a uniform
distribution over (-1,1). The relative error in the routine
was computed for each of the argument sets. The
maximum absolute value of the relative error in the
routine was 2.466 * 10-28,

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the exponent, the error in the
result r is given approximately by r*e'*logb, where b is
the base.

ITOJ*

ITOJ* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
fixed-point quantities to fixed-point exponents. It accepts
two fixed-point arguments and returns a fixed-point result.
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Calls by name are computed at entry point 1TOJ$.

METHOD

A b represents the base and a p represents the exponent.
If p has binary representation 000....000i(n)i(n-1)
««.i(i(0) where each i1()(0<j<n) is 0 or 1, then:

p=i(0y*20 =iQ)*2l 4. 4 i(n) > 2N
n = (log(2)p) = greatest integer not exceeding log (2)p.

Then:
bP =Prod (b2 :0<j<nandi(j)=1)

log (2

The numbers 1 = b0, b =bl, b2, b4,... ,b(Z)( 9(2p) are
generated during the computation by successive squarings,
and the coefficients i(0),....,i{n) are generated by sign
tests of successive right shifts of p within the computer.
A running product is formed during the computation, so
that smaller powers of b can be discarded. The
computation then becomes an iteration of the algorithm:

bP=bifp=1
= (b*b)(P/Z) ifzg is even
= (b*b)((P-1)/2)*b if b is odd.

Upon entry, the base is converted to floating-point, and
the result of the computation will be later converted to
fixed-point for return. The argument set is invalid if the
base is zero and the exponent is zero or negative, or if
integer overflow occurs during the computation. If the
argument set is invalid, zero is returned and a diagnostic
message is issued. If the base is nonzero and the exponent
is negative, 1, -1, or 0 will be returned as the base. The
result of the computation is returned to the calling
program.

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR
Not applicable.

ITOJ.

ITOJ. is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for FORTRAN statements which
raise fixed-point quantities to fixed-point exponents. It
accepts two fixed-point arguments and returns a
fixed-point result.

Calls by value are computed at entry point ITOJ. .

METHOD

The arguments are checked to determine if the
exponentiation conforms to a special case. If it does, the
proper value is immediately returned, or if the special
case is an error condition, an error message is issued. The
special cases are:

00 = error
0J = error if 2<0

2-58

-01 = +0

1J=1 R
-1d = +1 or -1 (J even or odd)

0=-1

H=0if J<0

12 = 1%

19 = error if 1>2 and 3> 64
19 = error if 122216 and 32>3

If the exponentiation does not fit any special case, the
following algorithm is used:

Variable b represents the base and p represents the
exponent. If p is non-negative and has the binary
representation 000...00i{n)i(n-1)...i(i)i(0), where each
i(pO<Lj<n) is0or 1, then:

p=i(0*20 = i(1)*2) + i (2)*22 +, ...+ i(n)*20

While p is even evaluate:

b = b2, pP=p/2

r =b.

While p > 1 evaluate:

I‘=l"2,
if pisoddthenr =r *b,
p=p/2

Now r contains the result. Floating-point is used for r so
that the remaining overflows could be detected by
examining the final exponent.

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR
Not applicable.

ITOX*

ITOX* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
fixed-point quantities to floating-point exponents. It
accepts a fixed-point argument and a floating-point
argument, and returns a floating-paint result.

Calls by name are computed at entry point ITOX$.

METHOD

Upon entry, the base is converted to floating-point, and
the argument set is checked. The argument set is invalid
if: either argument is infinite or indefinite, the base is
negative, the base is zero and the exponent is not greater
than zero, or floating overflow occurs during the
calculation. If the base is zero and the exponent is
negative, or if floating overflow occurs, POS.INF. is
returned. If the argument set is otherwise invalid,
POS.INDEF. is returned. In any case, if the argument set
is invalid, an appropriate diagnostic message is issued. If
the argument set is valid, the result is returned to the
calling program.
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ERROR ANALYSIS

The algorithm used in ITOX* is the same as that used in
ITOX.. See the description of ITOX..

EFFECT OF ARGUMENT ERROR

If a small error occurs in the floating-point exponent, the
error in the result is approximated by multiplying the
argument error by the result and then by the natural
logarithm of the base. Thus, if the result is large, the
effect of an error in the exponent is large.

ITOX.

ITOX. is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for FORTRAN statements which
raise fixed-point quantities to floating-point exponents. It
accepts a fixed-point argument and a floating-point
argument, and returns a floating-point result.

Calls by value are computed at entry point ITOX. .

METHOD

The input range is the collection of all argument sets (n,x)
such that n is a fixed-point quantity, x is a definite
in-range floating-point quantity, x is positive and nonzero
whenever n is zero, and nX is in-range.

The formula used is:
nX = exp (x * logn)

where n > 1.

Upan entry, n is packed and normalized. Zero is returned
if the base is zero. Otherwise, ALOG. is called to
compute logn, and EXP. is called to compute
exp(x * logn). the result is returned to the calling
program.

ERROR ANALYSIS

500000 pairs (n,x) of random numbers were generated.
The distribution was the product of a discrete form of the
right half of a Cauchy distribution, and a Cauchy
distribution. nX was computed for each of these pairs,
first using the routine, and then using the double-precision
routine. The maximum absolute value of the relative
error in the routine was 3.929 * 10-14 for the 500000
pairs.

EFFECT OF ARGUMENT ERROR

If a small error €' occurs in the exponent x, the error in
the result r is given approximately by r * e' * log n,
where n is the base.

ITOZ*

ITOZ* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements that raise
fixed-point quantities to complex expcnents. It accepts a
fixed-point argument and a complex argument, and
returns a complex result.

60483100 A

Calls by name are computed at entry point ITOZ$.

METHOD
If n is a positive integer, and x and y are real, then:

n(x + i*y) = exp (x*log (n) Y*cos (y*log(n))
+ i*exp (x*log (n) )*sin (y*log (n))

Upon entry, the argument set is checked. It is invalid if:
the first argument is negative or zero, either argument is
infinite or indefinite, floating-point overflow occurs
during the calculation, or x*log r is greater than 741.67.
If the argument set is invalid, a diagnostic message is
issued and POS.INDEF. is returned. Otherwise, the
computation proceeds and the result is returned to the
calling program.

ERROR ANALYSIS

The algorithm used in ITOZ* is the same as that used in
ITOZ.. See the description of ITOZ..

EFFECT OF ARGUMENT ERROR

If a small error occurs in the argument, the error in the
result is approximated by the product of the argument
error, the result, and the natural logarithm of the base.
The absolute value of the error in the result is given
approximately by the product of the corresponding
absolute values. If the argument error is significant, the
error in the result should be found from substitution of the
possible argument values in the function.

ITOZ.

ITOZ. is an exponentiation routine which accepts calls
from compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
fixed-point quantities to complex exponents. It accepts a
fixed-point argument and a complex argument, and
returns a complex result.

Calls by value are computed at entry point ITOZ..

METHOD

The input range is the colliection of all argument sets (n,z)
comprising a fixed-point quantity n and a complex
quantity z; z is definite and in-range, and if n is zero, z is
a positive nonzero real. Also, im(z) * log n must not
exceed pi*246, where n>0 and im(z) is the imaginary
part of z, and the real number n"€!2/ must be in-range.

Upon entry, the fixed-point argument is packed and
normalized, and routine XTOZ. is called at entry XTOZ.
to compute the result. The result is returned to the
calling program.

ERROR ANALYSIS

300000 pairs (n,z) of random numbers were generated
with distribution being the product of a discrete form of
the right half of a Cauchy distribution, and the product of
two Cauchy distributions. For each of these pairs, nZ was
computed, first using the routine, and then using
double-precision operations. The maximum absolute value
of the relative error in the routine was 3.054 * 10-10 for
these pairs.
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EFFECT OF ARGUMENT ERROR

If a small error e(z) = e(x) + i*e(y) occurs in the
exponent z, the error in the resultw is given
approximately by w * log n * e(2).

RANF

RANF is an external function which accepts calls from
FORTRAN  code. It computes random numbers
(FORTRAN function name RANF). It accepts a dummy
argument and returns a floating-point resuit.

Calls by name are computed at entry points RANF and
RANGET.

METHOD

RANF uses the multiplicative congruential method
modulo 248, The formula is:

x (n+1) = & * x (n) (mod 248)

The library holds a random seed, RANDOM., and a
multiplier, RANMLT.. The random seed can be changed
to any value prior to calling RANF by use of the routine
RANSET. Upon entry at RANF, the random seed is
multiplied by RANMLT. to generate a 96 bit product, and
the lower 48 bits become the new random seed. The seed
is used to generate subsequent random numbers.
RANDOM, has a default initial value of 1717 1274 3214
7741 3155B (241463 mod 247). This new random seed is
normalized and returned as the random number.

The multiplier, RANMLT., is constant, and has a value of
2000 1207 2642 7173 0565B8. This multiplier passes the
Coveyou-MacPherson test and other statistical tests for
randomness, including the auto-correlation test with
lag < 100 and the pair triplet test.t

If RANF is called by name at entry point RANGET, the

current seed of the random number generator is returned
in the variable whose address is in X1.

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR
Not applicable.

RANSET

RANSET is a subroutine which accepts calls from
FORTRAN code. It resets the seed of the random number
generator (FORTRAN subroutine name RANSET). It
accepts a floating-point argument and returns a
floating-point result.

Calls by name are computed at entry point RANSET.

+ D. E. Knuth, The Art of Computer Programming, Vol. 2.

METHOD

The call supplied the address of a new seed value in X1. If
the new seed is 0., the new seed value is made
17171274321477413155g, which is .17099839404402317200.
Otherwise, the coefficient of the new seed is made odd if
necessary by adding lg, and the exponent of the new seed
value is set equal to 1717g, which is -48,

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR
Not applicable.

SINCOS.

SINCOS. is an external function which accepts calls from
FORTRAN code. It computes the trigonometric sine and
cosine functions (FORTRAN function names SIN and
COS). It accepts a floating-point argument and returns a
floating-point result.

Calls by name are computed at entry points SIN and COS,
and calls by value are computed at entry points SIN. and
COos. .

METHODT¥

The input range to this routine is the collection of all
definite in-range normalized floating-point quantities
whose absolute values do not exceed pi ¥ 2965,

Upon entry, the range reduction:
y = 2/pi*x - n

is performed in double-precision, where x is the argument,
n is an integer, and y is in (-1/2,1/2). Depending upon the
sign of x and n{mod 4), the result may be complemented,
and a polynomial approximation (p(y) or q(y)) is chosen to
give the result. The polynomial approximations p(y) and
q(y) are:

p(y) = pif2*y - y3* (s (D)+s (1)*yZ+s (2)*yl+s (3)*yb+s (4)*yB)2
and 4

q(y) =1 - y2* (c (Q)+c (1)*y2+c (2)*yHc (3)*ybac (4)*y8)2
The coefficients are:

s(0) = 8.03718916976708 * 10-2

s(1) = -4.95774235001375 * 10-2
8(2) = 1.38346449783347 * 10-3

s(3) = -1.44725130681196 * 10-5
s(4) = 1.54733311005155 * 10-7

c(0) = 1.110720734539535

c(1) = 1.14191398434002 * 10-2

++ The algorithm and constants are copyright 1970 by Krzysztof Frankowski, Computer Information and Control Science,
University of Minnesota, 55455, and are employed under license. Coding is by Larry Liddiard, University of Minnesota.
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c(2) = -3.521949713998275 * 10-3
c (3) = 5.172606069276518 * 10-5
c(4) = -4.413282528387191 * 10-7

The polynromial approximations p(y) and q(y) are minimax
approximations to their corresponding functions over
(-pi/a, Pi/a).

ERROR ANALYSIS

A graph of the error of approximation in the algorithm for
sin(x) over (-pi/4pi/4) is given in figure 2-29 and for
cos(x) over (-pif4,pi/4) in figure 2-30. The maximum
absolute value of the error of approximation in the
algorithm for sin(x) over (;pi/lt, pi/4) is 5.670 * 10-16, and
for cos(x) is 2.972 * 10-15, Upper bounds for the error
due to machine error in the computation of sin(x) and
cos(x) were established at 2.898 * 10‘1", respectively.
Hence upper bounds on the error in the routine are
2.955 * 10-14 and 4.741 * 10-14 for sin(x) and cos(x),
respectively.

The maximum absolute value of the relative error of
approximation in the algorithm for sin(x) over (-Ei/a, pi/a)
is 4.098 * 10-14 and for cos(x) is 6.285 * 10-14, Upper
bounds for the absolute value of the relative error due to
machine error in the computation of sin(x) and cos(x)
were established at 8.049 * 10-16 and 4.204 * 10-15,
respectively. Hence upper bounds on the absolute value of
the relative error in the routine were established at
4.178 * 10-14 and 6.705 * 10-14 for sin(x) and cos(x),
respectively.

For 1000 arguments chosen randomly from given intervals
for the entry points shown, the associated statistics on
absolute or relative error are given in table 2-21.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument x, the error in
the result is given approximately by e' * cos(x) for sin(x),
and -e' * sin(x) for cos(x).

SINCSD.

SINCSD., is an external function which accepts calls from
FORTRAN code. It computes the sine and cosine
functions in degrees (FORTRAN function names SIND and
COSD). It accepts a floating-point argument and returns
a floating-point result.

Calls by name are computed at entry points SIND and
COSD, and calls by value are computed at entry points
SIND. and COSD. .

METHOD

The input range to this routine is the set of all
floating-point values in the interval (-248, +248),

Routine DEGCOM. is called to subtract the necessary
multiple of 90 from the argument to put the result in the
interval (-45,+45) and multiply the reduced value by
pi/180. The appropriate sign is copied to the value of the
appropriate function, sine or cosine, as determined by
these identities:

sin(X*3609) = sin(X)

sin(X*1809) = -sin(X)
sin(X+909) = cos{X)
sin(X-909) = -cos(X)
cos (X*3600) = cos(X)

cos (X*180°) = -cos(X)
cos (X+900) = -sin(X)
cos (X-900) =sin(X)

ERROR ANALYSIS

The reduction to (-45,+45) is exact; the constant pi/180
has relative error 1.37E-15, and muitiplication by this
constant has a relative error 5.33E-15, and a total errar of
6.7E-15, Since errors in the argqument of SIN and COS
contribute only pi/4 of their value to the result, the error
due to the reduction and conversion is at most 5.26E-15
plus the maximum error in SINCOS. over (-pif4, +pi4), or
7.31E-15, for a total error of 12.57E-15. The maximum
observed error for 100000 points in the interval (0, 360)
was 9.96E-15 for SIND and 9.95E-15 for COSD.

Figures 2-31 and 2-32 show the mean relative errors of
SIND and COSD.

EFFECT OF ARGUMENT ERROR

Errors in the argument X are amplified by X/tan(X) for
SIND and X*tan(X} for COSD. These functions have a
maximum value of pi/4 in the interval (-450, +450) but
have poles at even (SIND) or odd (COSD) multiples of 909,
and are large between multiples of 90° if X is large.
When X is double-precision the following code may be
used:

FUNCTION SINDD(X)
DOUBLE X
NINT (X)=X+SIGN (0.5, X)
K=0
GO TO1
ENTRY COSDD
K=l
1 N=NINT (SINGL (X)/90)

TABLE 2-21. ABSOLUTE AND RELATIVE ERROR OF SINCOS.

Entry Interval Standard - .
Point Error From To Deviation Minimum Max imum
cos. Relative -.7854 .7854 -5933E-17 1.596E-15 -7.346E-15 6.962E-15
Absolute -3.%416 3.{416 -7.524E-18 1.317€-15 -4.674E-15 4.809E-15
-1012 1012 8.138E-19 1.248E-15 | -5.443E-15 | 4.843E-15
SIN. Relative -.7854 .7854 3.035E-16 1.984E-15 -6.448E-15 6.739E-15
Absolete -3.% 16 3.1316 -2.504E-18 1.133E-15 -5.648E-15 5.174E-15
-10 10 -6.872E-18 1.254E-15 -4,187E-15 5.353E-15
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Figure 2-29. Algorithm Error of SINCOS. for Sine
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Figure 2-30. Algorithm Error of SINCOS. for Cosine
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Z=X-N*90

IF (K.NE.MOD (IABS (B),2)) GO TO 2
Y=SIND (Z)

GOTO3

Y=COSD ()

IF (K*2-1.EQ.MOD(N,2) )Y=-Y

IF (MOD (1ABS (N),4).GE.2)Y=-Y
SINDD=Y

RETURN

END

W N

SQRT
SQRT is an external function which accepts calls from
FORTRAN code. It computes the square root function

(FORTRAN function name SQRT). It accepts a real
argument and returns a real result.

Calls by name are computed at entry point SQRT.

METHODI0D

The argument is loaded into X1 and routine SQRT. is
called.

ERROR ANALYSIS SIS
See SART..

The mean relative error is shown in figure 2-33.

EFFECT OF ARGUMENT ERROR
See SGRT..

SQRT.

SQRT. is an external function which accepts calls from
FORTRAN code. It computes the square root function
(FORTRAN . function name SQRT). It accepts a real
argument and returns a real result.

Calls by value are computed at entry point SQRT..

METHOD

The argument range is the set of all pasitive or zero
floating-point numbers. The identity:

sqrt (y*2P)=sqrt (y)*2(P/2)

is used to reduce the range to (0.5,1) with p having an
integral value. An initial approximation is made using one
of eight linear approximations to the square root on this
interval, giving at least 12 bits of accuracy. Two Heron's
rule iteraticns are made to obtain 48 bits of precision.

If p is even, the normal Heron's rule is used:
compute x0, an approximation to x=sqrt (y)
x1=0.5* (x0+y/x0)

x2=0.5% (x1+y/x1)

If p is odd, scaling is done between steps to prevent
affecting the accuracy of the final result:

2-66

compute x0

x1 =0,5* (x0+y/x0)
x1'=x1*sqrt (2)

x2 =0.5*% (x1'+ (2*y)/x1")

which performs the multiplication by 21/2=sqrt (2).

The scaling by 2(P/2) ((u) denotes truncation) is done by
packing the appropriate exponent with the coefficient of
(2%X2). The square root of a number one ulp below an
even power of 2 is explicitly forced to one ulp below the
square root of that power of 2 to make packing work (e.g.,
sqrt (4-eps) would be 1.0 but is forced to 2-eps).

Scaling for the square root of 2 is adjusted slightly so that
the error is centered after this scaling, picking up one bit
of precision at that point.

ERROR ANALYSIS

The maximum error in the initial approximation is
.000218. Since the effect of a Heron's iteration is to
square and halve the relative error, the algorithm error is
7.08E-17.

Round-off error is insignificant until the last Heron's rule
step, which has the form x+y/x, where the quantities being
summed are almost equal. Since the error in Heron's rule
is always positive, x is too large, so y/x is too small (i.e.,
x>y/x). The error in the division is in the interval
(-7.1€-15,0). The error in the rounded addition is in the
interval (0, +3.55E-15), so the total round-off error is less
than 3.55E-15 in absolute value. Error in division is
halved because x is approximately y/x.

The upper bound on relative error is then 3.62E-15. The
maximum observed relative error for 100000 randomly
chosen points in the interval (0.5,2) was 3.59E-15.

Figure 2-34 shows the relative error of SQRT in the
interval (.5,1.).

EFFECT OF ARGUMENT ERROR

For small error in the argument y the amplification of
absolute error is 1/(2*sqrt (y)}) and that of relative error is
0.5.

SYS=AID

SYS=AID is an auxiliary routine. It provides a link
between the math library and the system error processor.
The entry point is SYSAID..

METHOD

Execution proceeds as follows:
a. Enter SYS=AID and save registers X3 and X4.

b. Read entry point SYSAID. and store it at entry point
SYS1ST..

¢c. Long jump to MORGUE. .

See the method description of SYS=1ST for further details.
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ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR
Not applicable.

SYS=1ST

SYS=1ST is an auxiliary routine. It provides a link
between the math library and the system error processor.
The entry points are SYS15T. and MORGUE. .

METHOD
Execution proceeds as follows at MORGUE., :

a. Enter SYS=1ST and save registers X1, X2, X6, A0, B5,
Bé6 and B7.

b. Read the return jump word used to enter the routine
which called SYS=1ST or SYS=AID. If this word has
the format:

+ RJ <entry point >
- VFD 30/1

then go to f. below.

c. Read the communication cell SYSAID.. Insert in its
lower 18 bits the address of the trace word in routine
SYS=1ST. Store the result in cell RJERR which will
be executed at step e.

d. Test the argument in the register indicated by the
contents of B2, Set X2 to the first word address of
an error message as follows:

Condition Message
Infinite "ARGUMENT INFINITE"
Indefinite "ARGUMENT INDEFINITE"

Other "ARGUMENT" < partial message
from address supplied in B2>

Set X1 to the error number, and AO to the first word
address of the parameter list for non-standard error
recovery.

e. Execute word RJIERR. This will link the routine to
the system error processor.

f. Restore registers X1, X2, A0, B5, B6, B7. Move the
contents of X6 into register X5.

g. Set X6 and X7 to +IND..

h. Return to the calling program.

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR
Not applicable.
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TAN

TAN is an external function which accepts calls from
FORTRAN code. It computes the trigonometric tangent
function (FORTRAN function name TAN). It accepts a
floating-point argument and returns a floating-point result.

Calls by name are computed at entry point TAN.

METHOD

The argument is loaded into X1 and routine TAN. is called.

ERROR ANALYSIS
See TAN..

EFFECT OF ARGUMENT ERROR
See TAN..

TAN.

TAN. is an external function which accepts calls from
FORTRAN cede. It computes the trigonometric tangent
function (FORTRAN function name TAN). It accepts a
floating-point argument and returns a floating-point result.

Calls by value are computed at entry point TAN..

METHOD

The input range is the collection of all definite, in-range
floating-point quantities in the interval (-247, w207,

The identities:

i) tan(x)=tan(x+k*pi/2), k is even
ii) tan(x)=-1.0/tan (tan (x+pi/2)

are used in the form:

iii) tan(x)=tan ({pi/2)*(x*2/pi+k) ), k is even
iv) tan(x)=-1.0/tan ((pi/2)*(x*2/pi+1))

to reduce the evaluation to the interval (-0.5,+0.5). An
approximation of tan((pi/2*y) is used. The reduction is
done by multiplying x by 2/pi, subtracting the nearest
integer, and rounding the result to single-precision.

The function tan{(pi/2)*y) is approximated with a rational
form (7th order odd)/(6th order even), which has minimax
relative error in the interval (-n.5,+0.5). The rational
form is normalized to make the last numerator coefficient
l+eps, where eps is chosen to minimize rounding error in
the leading coefficients.

Identity (iv) is used if the integer subtracted is odd. The

result is negated and inverted by dividing -Q/P instead of
P/Q. The mean relative error is graphed in figure 2-35.

ERROR ANALYSIS

The range reduction, the final add in each part of the
rational form, the final multiply in P, and the divide
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dominate the error. Each of these operations contributes
directly to the final error, and each is accurate to about
1/2 ulp. The maximum relative errors are given in
table 2-22.

TABLE 2-22. MAXIMUM RELATIVE ERROR OF TAN.

Source of Error Amount*1015
range reduction 3.6
rational form .02
coefficient rounding <.08
round-off 14.2
upper bound 18.0
maximum observed 14.5

EFFECT OF ARGUMENT ERROR

For small errors in the argument x, the amplification of
absolute error is secZ(x), and that of relative error is
x/(sin(x)*cos(x)), which is at least 2x and can be
arbitrarily large near a multiple of pi/2. If x is known to
more than double-precision, the tangent addition formula
can be used if x is less than 3E7:

DOUBLE X

(compute X)
T=TAN(SINGL (X))
S=SINGL (X-SNGL (X))
Y=T+5* (1+T**2)/(1-S*T)

Thus, S=TAN(S) if X <3E7. This approximation can give
less than single-precision when S*T is near 1.0. It is more
accurate than TAN(SNGL (X)) but less accurate than
SNGL (DTAN(X) ).

TAND.

TAND. is an external function which accepts calls from
FORTRAN code. It computes the trigonometric tangent
in degrees (FORTRAN function name TAND). It accepts a
floating-point argument and returns a floating-point result.

Calls by value name are computed at entry point TAND,
and calls by value are computed at entry point TAND. .

METHOD

The input range of TAND. is the set of floating-point
arguments in the interval (-248,4248) excluding odd
multiples of 90.

Routine DEGCOM, is called to subtract the necessary
multiple of 30 from the argument to put the result in
(-45, +45) and multiply the reduced value by pi/180.
Routine TAN. is called to compute the tangent, and the
result is negated and inverted if the multiple was odd,
using these identities:

tan (X*1809) = tan (X)
tan (X*900) = -1/tan (X)

60483100 A

ERROR ANALYSIS

The reduction to (-45,+45) is exact; the constant pi/180
has a relative error of 1.37E-15, and multiplication by this
constant has a relative error of 5.33E-15, so the total
error is 6.7E~-15. Since errors in the argument of TAN are
amplified at most by pi/2, the error due to reduction and
conversion is at most 10,52E-15. The error in the final
division is at most 7.11E-15, and the error in TAN. is at
most 14.54E-15, so an upper bound on error in TAND is
32.17E-15. The maximum observed error in 100 800 points
in the interval (0,360 was 17.72E-15.

Figure 2-36 shows the mean relative error.

EFFECT OF ARGUMENT ERROR

Errors in the argument X are amplified at most
X/(sin(X)*cos(X)). This function has a maximum of pi/2
within (-459, +450), but has poles at all multiples of 90°
except zero and is at least 2*X elsewhere. When X is
known to be double-precision and one of the above
problems exists, the following code may be used:

(compute X in double)

N=NINT (SNGL (X)/90)
Y=TAND (SNGL (X-N*90) )
IF (NOD{(N,2).EQ.0) GO TO 1
IF(Y.EQ.0) error
Y=-1.0/Y

1 CONTINUE

This always returns an accurate value since the range
reduction is exact; NINT(X) + IFIX{(X+SIGN(0.5,X)), the
nearest integer.

TANH

TANH is an external function which accepts calls from
FORTRAN code. It computes the hyperbolic tangent
function (FORTRAN function name TANH). It accepts a
floating-point argument and returns a floating-point result.

Calls by name are computed at entry point TANH.

METHOD

The argument is loaded into X1 and routine TANH. is
called.

ERROR ANALYSIS
See TANH. .

EFFECT OF ARGUMENT ERROR
See TANH. .

TANH.

TANH, is an external function which accepts calls from
FORTRAN code. It computes the hyperbolic tangent

function (FORTRAN functjon name TANH). It accepts a
floating-point argument and returns a floating-point resuit.
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METHOD

The input range is the collection of all definite
floating-point quantities in the range (NEG.INF.,
POS.INF.).

The identity tanh (-x)=-tanh(x) is used to reduce the range
to (0,POS.INF). For abs(x) 17.50, the best machine
representation of tanh(x) is sign(1.0,x), so the range is
further reduced to (0,17.50).

The identities:

tanh (x)=p (x)/a (x) approximately, on (0,0.55)
tanh (x)=1-2/(exp (2%¥x)+1)

exp (2*x)=(1+tanh (x) )/(1-tarh (x) )

exp (2%x)=2 n*exp (2*(x-n*In (2)/2))

may be combined to get:
tanh (x)=1-2*(q-p)/( (q-p)+2 n*(q+p))

where n is chosen to be nint(x*2/In(2)) and p and q are
evaluated on x-n*In(2)/2. This choice of n minimizes
abs (x-n*In (2)/2).

When x <0.55 the approximation P(x)/q(x) is used. Since
tanh{(x< 0.55) < 0.5, the form 1l-r would suffer from
cancellation in this range.

The approximation p/q is a minimax (relative error)
rational form (i.e., (5th order odd)/(6th order even)). The
coefficients are scaled so that (x*2/In(2)-n) may be used
instead of (x-n*In(2)/2), simplifying the range reducticn.
The coefficients are further scaled by an amount
sufficient to reduce truncation error in the leading
coefficients without otherwise affecting accuracy.

ERROR ANALYSIS

The algorithm error due to finite approximation and
coefficient truncatien is 1.7E-15. For abs(x) <0.55 the
form p(x)/q(x) is used. The final operations z=x*2/In(2)
and tanh (z*(pO+small) )/(q0+small) dominate the error.
The upper bound on the error here is 18.0E-15; the
maximum observed was 13.0E-15.

For abs(x) >1.25 the final subtraction, 1.0-small,
dominates and an upper bound on the error is 4.1E-15; the
maximum observed was 3.8E-15.

For 0.55< abs(x) <1.25 the final operation is 1-R where
R becomes smaller as x approaches 1.25. Thus, the worst
relative error is near 0.55, namely (contribution from R) +
(error in final sum), where R=2%(q-p)/((q-p) + 4*(q+p)). An
upper bound was 16.7E-15; the maximum observed was
10.0E-15. The maximum relative errors are given in
table 2-23.

TABLE 2-23. MAXIMUM RELATIVE ERROR OF TANH,

Source of Error Error*1015
rational form 0.5
coefficient rounding 1.2
round-off 16.5
upper bound 18.2
max imum observed 13.0
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Figure 2-37 shows the error in the polynomial
approximation of TANH over (-1.2,1.2) and figure 2-38
shows the mean relative error.

EFFECT OF ARGUMENT ERROR

For small errors in the argument x, the amplification of
the absolute error is l/coshz(x), and of relative error is
x/(sinh (x)*cosh(x)). Both have maximum values of 1.0 at
0 and approach 0 as x gets large.

XTOD*

XTOD* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for FORTRAN statements which
raise floating-point quantities to double-precision expo-
nents. It accepts a floating-point arqument and a
doublle-precision argument, and returns a double-precision
result.

Calls by name are computed at entry point XTOD$.

METHOD

The formula used is:
base®XPonent - exp (exponent * log (base) ).

Upon entry, the argument set is checked. It is invalid if:
either argument is infinite or indefinite, the base is
negative, the base is zero and the expanent is not greater
than zero, or floating-point overflow occurs during the
computation. If the argument set is invalid, a diagnostic
message is issued and POS.INDEF. is returned. If the
argument set is valid, the result is returned to the calling
program.

ERROR ANALYSIS

The algorithm used in XTOD* is the same as that used in
XTOD. . See the description of routine XTOD., .

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the base b and a small
error e" occurs in the exponent p, the error in the result
is given approximately by:

bP * (p/b * e' + log(b) * e")

The absolute error is approximately the absolute value of
this expression. If the errors in the argument are
significant, the error in the result should be found by
substitution of the possible argument values in the
expression bP,

XTOD.

XTOD. is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
floating-point quantities to double-precision exponents. It
accepts a floating-point argument and a double-precision
argument, and returns a double-precision result.

Calls by value are ’computed at entry point XTQD. .
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METHOD

The input range is the collection of argument sets (b,p),
where b is a definite in-range floating-point quantity, p is
a definite in-range double-precision quantity, b is greater
than zero, and bP = exp (p*logb), where b is cenverted to
double-precision upon entry, and all operations are carried
out in double-precision. The result is returned to the
calling program.

ERROR ANALYSIS

10000 argument sets (b,p) were randomly generated, with
distribution a product of uniform distribution in (.5,1.5)
and (-10,10). The relative error in the routine was
computed for each of the argument sets. The maximum
absolute value of the relative error was 1.163 * 10-25,

EFFECT OF ARGUMENT ERROR

If a small error e(b) occurs in the base b and a small error
e(p) occurs in the exponent p, the error in the result r is
given approximately by:

r *(e(p) * log b + p * e (b)/b).

XTOI*

XTOI* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
floating-point quentities to fixed-point expenents. It
accepts a floating-point argument and a fixed-point
argument, and returns a floating-point result.

Calls by name are computed at entry point XTOI$.

METHOD
The arguments are loaded and XTOL. is called.

ERROR ANALYSIS

Not applicable, since the only errors are round-off errors.
See the description of XTOL .

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the base p, the error in the
result is given approximately by:

blp-1) » p * e', where p is the exponent.

If the error in the base becomes significant, the error in
the result must be found from substitution of the possible
values of the base b into the expression bP.

XTOl.

XTOL is an exponentiation routine which accepts calls
from compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
floating-point quantities to fixed-point expcnents. It
accepts a floating-point argument and a fixed-point
argument, and returns a floating-point result.

Calls by value are computed at entry point XTOL .
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METHOD

The arguments are checked to see if the exponentiation
conforms to a special case. If it does, the proper value is
immediately returned, or if the special case is an error
condition, an error message is issued. The special cases
are:

x indefinite = error

x infinite = error

Qo = error

X0 =1.0

x1 =10/x-lif1<0

If the exponentiation is not a special case, one of two
methods is used to perform the exponentiation. Method 1
is a quick algorithm, and is usually used. Method 2 is used
when the number of bits in I plus the number of bits in X
is greater than 8.

Method 1

The binary representation of I is scanned starting with the
most significant bit. For each bit, the result, which was
initialized to X, is squared. If the next bit is one, the
result is also multiplied by X.

Method 2

Scaling is performed to make X be between .75 and 1.5,
and the exponent is saved. Ten bits of | are scanned as
described in Method 1. This procedure is repeated until I
is used up. If the exponent is not too large, the result is
returned.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the base b, then the error in
the result is given approximately by p * b p-1) » e', where
p is the exponent. If the error e' becomes significant, the
absolute error in the result is bounded by:

Ipl * max(lb, b+ e'l))(p']-) * |e'|

XTOY*

XTOY* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
floating-point quantities to floating-point exponents. It
accepts two floating-point arguments and returns a
floating-point result.

Calls by name are computed at entry point XTOY$.

METHOD

The formula is:
base®Xponent - exp (exponent*log (base) )

The argument set is checked upon entry. It is invalid if:
either base or exponent is infinite or indefinite, the base
is negative, the base is zero and the exponent is not
greater than zero, or floating-point overflow occurs
during the computation. If the argument set is invalid,
POS.INDEF. is returned and a diagnostic message is
issued. Otherwise, the result of the computation is
returned.
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ERROR ANALYSIS

The algorithm used in XTOY* is the same as that used in
XTOY.. See the description of routine XTOY..

EFFECT OF ARGUMENT ERROR

If a small error ' occurs in the base b and a small
error e" occurs in the exponent p, the error in the result
is given approximately by:

bP * (p/b * e' + log(b) * ")

The absolute error is approximately the absolute value of
this expression. If the errors in the arguments are
significant, the error in the result should be found by
substitution of the possible argument values in the
expression bP.

XTOY.

XTOY. is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs expanentiation for FORTRAN statements which
raise floating-point quantities to floating-point expo-
nents. It accepts two floating-point arguments, and
returns a floating-point result.

Calls by value are computed at entry point XTOY..

METHOD

"The input range is the collection of all argument sets (b,e)

for which: b and e are definite in-range floating-point
quantities, b is positive and nonzero, and b€ is in-range.

bP = exp (p * log b)
where b > 0.

Upon entry, ALOG. computes logb, and then EXP.
computes exp (p * log b). The result is returned.

ERROR ANALYSIS

500000 pairs (b,p) of random numbers were generated
with distribution being the product of the right half of a
Cauchy distribution, and a Cauchy distribution. bP was
computed for each of the pairs, first using the routine,
and then wusing the double-precision routine. The
maximum absolute value of the error in the routine was
4.583 * 10-12,

EFFECT OF ARGUMENT ERROR

If a small error e(b) occurs in the base b, and a small
error e(p) occurs in the exponent p, the error in the
result r is given approximately by:

r *(logb * eP + p * (e (b) )/b)

XTOZ*

XTOZ* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
floating-point quantities to complex exponents. It accepts
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a floating-point argument and a complex argument, and
returns a complex result.

Calls by name are computed at entry point XTOZ$.

METHOD

If the base b is real and the exponent z is x + i * y, where
x and y are real, then:

bZ=u+i*v
where:

u = exp(x * lag(b)) * cos(y * log (b))
v = exp(x * log(b)) * sin(y * log (b))

ALOG., EXP. and COS.SIN are called to evaluate these
expressions. The argument set is checked upon entry. It
is invalid if: either base or exponent is infinite or
indefinite, the base b is negative, the base is zero and the
real part of the exponent is greater than zera, y * log(b)
is so large that precision is lost in the computation, or
floating-point overflow occurs during the computation. If
the base b is zero, y is zero, and x is less than zero,
POS.INF. is returned. If the argument set is otherwise
invalid, POS.INDEF, is returned. In either case, a
diagnostic message is issued. If the argument set is valid,
ALOG., EXP. and COS.SIN are called during
computation. The result is returned to the -calling
program.

ERROR ANALYSIS

The algorithm used in XTOZ* is the same as that used in
XTOZ.. See the description of routine XTOZ. .

EFFECT OF ARGUMENT ERROR

If a small error e(b) occurs in the base b, and small errors
e(x) and e(y) occur in the real and imaginary parts, x and
y, respectively, of the exponent z, then the error e(r) in
the result is given approximately by:

e(r) = bZ * log(b)*z*((e (x) + i*e (y))/z + e (b)/(b*log(b))})

The absolute error in the result is approximately the
absolute value of this expression. If the error in an
argument becomes significant, the error in the result
should be found from substitution of possible argument
values in the expression bZ,

/

XTOZ.

XTOZ. is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
floating-point quantities to complex exponents. It accepts
a floating-point argument and a complex argument, and
returns a complex result.

Calls by value are computed at entry point XTOZ. .

METHOD

The input range is the collection of all argument sets
(x,2) (= x, U + i*v)), such that: x is positive, if x is zero
then u = 0 and v is positive and nonzero, both x and z are
definite and in-range, and floating-point overflow dees not
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occur during the computation of xU (i.e.,Ju*log(x)!
< 741.67, and |v*¥log ()| < pi*246),

The formula used is:

x(u+i*v) = (u*log (x) * cos(v*log(x))
+ i * g(u*log(x) * sin(v*log (x))

Upon entry, the base is checked. If it is zero, zero is
immediately returned to the calling program. Otherwise,
ALOG. is called for computation of log x, and COS.SIN is
called for  computation of cos(v*log(x)) and
sin(v*log(x)). Then EXP. is called for computation of
exp (u*log(x)). The result is calculated according to the
formula and is returned to the calling program.

ERROR ANALYSIS

400000 pairs (x,z) of random numbers were generated
with distribution being the product of a right half of a
Cauchy distribution, and the product of two Cauchy
distributions. Then xZ was computed for each of these
pairs, first using the routine, then using double-precision
operations. The maximum absolute value of the relative
error in the routine was 7.196 * 10-10,

EFFECT OF ARGUMENT ERROR

If a small error e(x) occurs in the base x, and a small
error e(z) (or e'(x)+i*e'(y)) occurs in the expaonent z, the
error in the result w is given approximately by:

w*(logx*e(2)+z*e(x)/x)

Z101*

ZTOI* is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements that raise
complex quantities to fixed-point exponents. It accepts a
complex argument and a fixed-point argument, and
returns a complex result.

Calls by name are computed at entry point ZTOI$.

METHOD

See the description of ZTOL for the algorithm. The
argument set is checked upon entry. It is invalid if:
either argument is infinite or indefinite, or the base is
zero and the exponent is not greater than zero. In these
cases, POS.INDEF. is returned and a diagnostic message is
issued. Otherwise, the result of the computation is
retumed to the calling program.

ERROR ANALYSIS

Not applicable, since the only errors are round-off errors.
EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the base b,1 the error in the
result is given approximately by n * p(n-1) * e'y where n is
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the exponent. The absolute value of this expression is
approximately the absolute error. If the error e' is
significant, the error in the result should be found by
substitution of the possible argument values in the
expression bn.

ZTOl.

ZTOL is an exponentiation routine which accepts
compiler-generated calls from FORTRAN code. It
performs exponentiation for statements which raise
complex quantities to fixed-point exponents. It accepts a
complex argument and a fixed-point argument, and
returns a complex result.

Calls by value are computed at entry point ZTOL .

METHOD

A b represents the base and p represents the exponent. If
p is non-negative and has the binary representation
000. ..0i(n-1)...i(1)i{0), where each i()(0<j<n) is 0 or
1, then:

p=i(0)*20+i(Q)* 21 4., 4i(n) * 2N

and n = (log(2)p) = greatest integer not exceeding
log(2)p. Then:

bP =Prod (b2 :0<j<nandi(j) = 1)

The numbers b = b2 , b2, b4 ..., b2 are generated by
successive squarings, and the coefficients i(0),..., i(n)
are obtained as sign bits of successive circular right shifts
of p within the computer. A running product is formed
during the computation, so that smaller powers of b may
be discarded. Thus, the computation becomes an iteration
of the algorithm:

bP =1 if<p=0
bP = (b2)(p/2) ifs) 0 and p is even
bP = b*(b2X (P-1)/2) isp 0 and p is odd

Upon entry, if the exponent p is negative, p is replaced by
-p and a sign flag is set. bP is computed according to this
algorithm, and if the sign flag was set, the result is
reciprocated before being returned to the calling program.

The input range is the collection of pairs of bases b and
exponents p such that b is nonzero if p is negative, both
arguments are definite and in-range, and the result is
in-range. -

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the complex base b, the error
in the result is given approximately by p * b{P-1) * e\, [f
e' is significant, the absolute value of the error in the
result is less than or equal to:

Ipl* (b + b + e'1)P-1) * e
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SUMMARY OF ROUTINES

The following tables summarize the major math functions

in the math

library.

The routines are listed in

alphabetical order according to the math routine name.
For each routine, the follwing information is given.

FCL Routine Name

Entry Points

Type of Call

Checking

Argument Type

The name of the FORTRAN
Common Library math routine.

Possible points at which execution
of the routine may begin,

Specifies whether the routine is
called by name or by value.

Indicates if the arguments and/or
result is checked for errors.

The type of numbers that are
accepted by the routine.

FORTRAN Function
Name

The FORTRAN symbolic names
which cause the FCL math rou-
tine to be executed.

The codes used to indicate the argument type and result
type are:

FL  Floating-point
FI  Fixed-point

D Double-precision
C Complex

A Any type

The codes used to indicate the function type are:

Ext. Externally callable FORTRAN 5
routines
Aux. Auxiliary routine (not called

directly by a FORTRAN function
call)

Result Type The type of numbers that are Expon.  Exponentiation routine (compiler-
produced by the routine. generated call to perform
exponentiation)
Function Type The classification of the math Sub. Subroutine
routine.
TABLE A-1. MATH ROUTINES
FCL Type . FORTRAN
Routine ng;{ of Checking Ar_gl;_umgnt R$su;t FU?Ct;O" Function
Name CALL yp yp M Name
ABS ABS Name No FL FL Ext. ABS
IABS IABS
ACOSIN. ASIN Name Yes FL FL Ext. ACOS
ACOS Name Yes FL FL Ext. ASIN
ASIN, Value Yes FL FL Ext.
ACOS. Value Yes FL FL Ext.
AIMAG AIMAG Name No C FL Ext. AIMAG
AINT AINT Name No FL FL Ext. AINT
ALOG ALOG Name Yes FL FL Ext. ALOG
ALOG10 Name Yes FL FL Ext. ALOG10
ALOG. Value Yes FL FL Ext.
ALOG10. Value Yes FL FL Ext.
AMAXQ AMAX@ Name No (FI,FI,...) FL Ext. AMAX@
AMAXL AMAX1 Name No (FL,FL,...) FL Ext. AMAX1
AMING AMING Name No (FI,Ff,. .e) FL Ext. AMING
AMIN1 AMIN] Name No (FL,FL,...) FL Ext. AMIN1
AMOD AMOD Name No (FL,FL) FL Ext. AMOD
AND AND Name No (A,A,...) A Ext. AND
ATAN ATAN Name Yes FL FL Ext. ATAN
ATAN. Value Yes FL FL Ext.
60483100 A A-1



TABLE A-1. MATH ROUTINES (Continued)
Rogggne Egg:{ nge Checking Ar%;ggnt R$;glt Fu$§;;on ESﬁZi?gn
Name CALL Name
ATANH. ATANH Name Yes FL FL Ext. ATANH
ATANH. Value Yes FL FL Ext.
ATAN2 ATAN2 Name Yes (FL,FL) FL Ext. ATAN2
ATAN2, Value Yes (FL,FL) FL Ext.
CABS. CABS Name Yes C FL Ext.
CABS. Value Yes c FL Ext.
ccos ccos Name Yes c c Ext. ccos
CEXP CEXP Name Yes C c Ext. CEXP
CEXP. CEXP. Value Yes c C Ext. CEXP
CLOG CLOG Name Yes C c Ext. CLOG
cLoG= CLOG. Value No c c Ext. CLOG
CoMPL COMPL Name No A A Ext. COMPL
CONJG CONJG Name No c c Ext. ConJG
COS.SIN COS.SIN Value No FL (FL,FL) Aux. -
COUNT COUNT Name No A F1 Ext.
CMPLX CMPLX Name No (FL,FL) c Ext. CMPLX
CSIN CSIN Name Yes C c Ext. CSIN
CSNCS. CSIN. Value Yes c C Ext. CSIN
Ccos. Value Yes c c Ext. ccos
CSQRT CSQRT Name Yes c c Ext. CSQRT
CSQRT= CSQRT. Value No c c Ext. CSQRT
DABS DABS Name No D D Ext. DABS
DASNCS. DASIN Name Yes D D Ext. DASIN
DACOS Name Yes D D Ext. DACOS
DASIN. Value Yes D D Ext.
DACOS. Value Yes D D Ext.
DATAN DATAN Name Yes D D Ext. DATAN
DATAN. DATAN. Value Yes D D Ext. DATAN
DATAN2 DATAN2 Name Yes (D,D) D Ext. DATAN2
DATAN2. DATANZ. Vatue Yes (D,D) D Ext. DATAN2
DATCOM. DATCOM. Value No - - Aux. -
DTN. Value No - - Aux. -
ATN. Value No - - Aux. -
DBLE DBLE Name No FL D Ext. DBLE
DIM DIM Name No (FL,FL) FL Ext. DIM
DMAX1 DMAX1 Name No (D,D,...) D Ext. DMAX1
DMIN DMIN1 Name No (D,D,...) D Ext. DMINL
DSIGN DSIGN Name No (D,D) D Ext. DSIGN
A-2 60483100 A
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TABLE A-1. MATH ROUTINES (Continued)

FCL Type . FORTRAN
: Entry . Argument Result Function A
Routine : of Checking Function
Name Point CALL Type Type Type Name
DTAN. DTAN. Value Yes D D Ext. DTAN
DTANH DTANH Name Yes D D Ext. DTANH
DTANH. DTANH. Value Yes D D Ext. DTANH
DTCD* DTOD$ Name Yes (D,D) D Expon.
DTOD. DTOD. Value No (D,0) D Expon. t
DTOI* DTOIS Name Yes (D,FI) D Expon. +
DTOI. DTOI. Value No (D,FI) D Expon. t
DTOX* DTOX$ Name Yes (D,FL) D Expon. ¥
DTOX. DTOX. Value No (D,FL) D Expon. +
DTOZ* DT0Z$ Name Yes (D,C) C Expon. t
DTOZ. DT0Z. Value No (D,C) c Expon. ¥
ERF. ERF Name Yes FL FL Ext. ERF
ERFC Name Yes FL FL Ext. ERFC
ERF. Value Yes FL FL Ext.
ERFC. Value Yes FL FL Ext.
EXP EXP Name Yes FL FL Ext. EXP
EXP. Value Yes FL FL Ext.
FLOAT FLOAT Name No FI FL Ext. FLOAT
HYP. SINH Name Yes FL FL Ext. SINH
COSH Name Yes FL FL Ext. COSH
SINH. Value Yes FL FL Ext.
COSH. Value Yes FL FL Ext.
HYPERB. HYPERB. Value No FL (FL,FL) Aux. -
IDIM IDIM Name No (FI,FI) FI Ext. IDIM
INT INT Name No FL FI Ext. INT
IDINT IDINT
IFIX IFIX
ISIGN ISIGN Name No (FI,FI) FI Ext. ISIGN
SIGN SIGN
bcos DCoS Name Yes D D Ext. BCoS
DCOSH DCOSH Name Yes D D Ext. DCOSH
DEULER. DEULER. Value No Aux. -
DEXP DEXP Name Yes D D Ext. DEXP
DEXP. DEXP. Value Yes D D Ext. DEXP
DHYP. DSINH. Value Yes D D Ext. DSINH
DCOSH. Value Yes D D Ext. DCOSH
DLOG DLOG hame Yes D D Ext. DLOG
DLOG. DLOG. Value No D D Ext. DLOG
DLOG10. Value No D D Ext. DLOG10

T The Compiler generates the call for FORTRAN statements which perform exponentiation with certain number

types.
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TABLE A-1. MATH ROUTINES (Continued)

Roﬁggne ESEE{ Tﬂge Checking Ar%;g:nt R%;;;t Fu¥§;;on Egzzzﬁgn
Name CALL Name
DLOG10 DLOG10 Name Yes D D Ext. DLOG10
DMOD DMGD Name Yes (D,D) D Ext. DMOD
DMOD= DMOD. Value No (D,D) D Ext. DMOD
DSIN DSIN Name Yes D D Ext. DSIN
DSINH DSINH Name Yes D D Ext. DSINH
DSNCOS. DSIN. Value No D D Ext. DSIN

DCOS. Value No D D Ext. DCOS
DSQRT DSQRT Name Yes D D Ext. DSQRT
DSQRT. DSQRT. Value Yes D D Ext. DSQRT
DTAN DTAN Name Yes D D Ext. DTAN
1TOD* 1TOD$ Name Yes (F1,D) D Expon, t
1TOD. ITOD. Value No (FI,D) D Expon. +
ITOJ* 1T0J% Name Yes (FI,FI) FI Expon. t
1T0J. 1T0J. Value Yes (FI,FI) FI Expon. +
ITOX* ITOX$ Name Yes (FI,FL) FL Expon. +
ITOX. ITOX. Value No (FI,FL) FL Expon. ¥
IT0Z* 1T0Z$ Name Yes (FI,C) c Expon. +
1T0Z. 1T0Z. Value No (FI,C) c Expon.
LOCF LOCF Name No A FI Ext. LOCF
MASK MASK Name Yes FI A Ext MASK
MAX@ MAX@ Name No (FI,FI,...) FI Ext. MAXQ
MAX1 MAX1 Name No (FL,FL,... FI Ext. MAX1
MING MING Name No (FI,FI,...) FI Ext. MING
MIN1 MIN1 Name No (FL,FL,...) FI Ext. MIN1
MOD MOD Name No (FI,FI) FI Ext. MoD
OR OR Name No (AA,...) A Ext. OR
RANF RANF Name No A FL Ext. RANF

; RANGET No FL - Sub.

RANSET RANSET Name No FL - Sub. RANSET
REAL REAL Name No C FL Ext. REAL

SNGL SNGL
SHIFT SHIFT Name No (A,FI) A Ext. SHIFT
SINCOS. SIN Name Yes FL FL Ext. SIN

Cos Name Yes FL FL Ext. cos

SIN. Value Yes FL FL Ext.

cos. Value Yes FL FL Ext.

T The Compiler generates the call for FORTRAN statements which perform exponentiation with certain number

types.
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TABLE A-1. MATH ROUTINES (Continued)

rauine | Sy Checang | Argument | Resu Fusction | Function
Name CALL Name
SINCSD. SIND Name Yes FL FL Ext. SIND
COSD Name Yes FL FL Ext. CosD
SIND. Value Yes FL FL Ext.
WINIR Value Yes FL FL Ext.
SQRT SQRT Name Yes FL FL Ext. SQRT
SQRT. SQRT. Value Yes FL FL Ext. SQRT
SYS=AID SYSAID. Aux. -
SYS=1ST SYS1ST. Aux. -
MORGUE. Aux. -
TAN TAN Name Yes FL FL Ext. TAN
TAN. TAN. Value Yes FL FL Ext. TAN
TAND. TAND Name Yes FL FL Ext. TAND
TAND. Value Yes FL FL Ext.
TANH TANH Name Yes FL FL Ext. TANH
TANH, TANH. Value Yes FL FL Ext. TANH
XOR XOR Name No (AA,...) A Ext. XOR
XTOD* XTOD$ Name Yes (FL,D) D Expon. +
XTOD. XTOD. Value No (FL,D) D Expon. ¥
XTOI* XTOI$ Name Yes (FL,FI) FL Expon. t
XTOI. XTOI. Value Yes’ (FL,FI) FL Expon. 4
XTOY* XT0Y$ Name Yes (FL,FL) FL Expon. +
XTOY. XTOY. Value No (FL,FL) FL Expon. t
XTOZ* XT0Z$ Name Yes (FL,C) c Expon. T
XT0Z. XT0Z. Value No (FL,C) c Expon. ¥
ZTOI* ZTOI$ Name Yes (C,FI) C Expon. +
ZT0I. ZTOI. Value No (C,FI) c Expon. t
t Ihe Compiler generates the call for FORTRAN statements which perform exponentiation with certain number
ypes.
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ERROR RECOVERY

—“

All FORTRAN common library routines that check
arguments and issue error messages allow for standard and
non-standard error recovery, as described in the
FORTRAN 5 Reference Manual. The structure of these
routines satisfies:

Word 1: VFD 42/, < routine's name >, 18/ < relative
position of entry point >

When executing under traceback mode, register AD holds
the field length when in the main program. Otherwise, it
has the first-word-address of the parameter list in the
previous call. In normal execution, each routine must
save the contents of AO before using this register, and
before calling any other routine. AO's contents must be
restored upon return to the calling routine.

The symbols SYSARG. and SYSERR. are two entry points
in the FORTRAN Common Library utility package
FORSYS.. A call at SYSARG. with a bad argument (i.e.,
negative, zero, infinite or indefinite) in X1 returns with
X2 holding the address of the text of an appropriate error
message. A call to SYSERR. with an error number in X1
and the address of a diagnostic message in X2 prints the
diagnostic message and a traceback listing, provided that
the first two words of each routine are as above, the
return jump to SYSERR. is in the upper half of a word,
and the lower 18 bits contain a pointer from word 1 to the
return jump.

The sequence of events on executing math library routines
which issue diagnostic messages is:

(a.) Enter routine.

(b.) Check arguments. If valid, compute result and
return through entry point. (Some routines also
check the result before return.) If invalid, go
to (c.).

(c.) Enter contents of register AD in TEMPAO. and
enter the first-word-address of the parameter
list (now in Al) into AQ.

(d.) Call SYSARG, to obtain the address of an error
message in X2 if the argument is infinite,
indefinite, zero, or negative; in this case, go
to (f.).

(e.) Otherwise, enter the address of an appropriate
error message directly into register X2.

(f.) Enter the error number into X1. (See the
FORTRAN 5 Reference Manual.) (Step (f.) can
precede step (d.).)

(g.) Return to SYSERR. to initiate error actions.
(Lower part of RJ word = trace pointer.) If
non-standard error recovery is specified through
a previous call to SYSTEMC, transfer will return
to the supplied recovery routine. If standard
error was inhibited, the job aborts. Otherwise,
control will returmn to the calling routine, at
step (h.).

60483100 A

(h.) The appropriate indefinite or infinite quantity is
entered into X6, and the contents of AO0 are
restored from TEMPAQ..

(i.)  Return through the entry point.

A list of error numbers and diagnostic messages is given in
the FORTRAN 5 Reference Manual.

Some routines listed in appendix A now detect errors and
issue messages for all bad arguments passed to them.
These routines call routines SYS=AID or SYS=1ST at entry
points SYSAID. or SYS1ST., respectively, for error

processing. The sequence of events on executing these
routines is:

(a.) Enter routine.

(b.) Check arguments. If valid, compute result and
return through entry point. (Some routines also
che(ck) the result before return.) If invalid, go
to {c.).

(c.) Set B2 with pointers indicating error number,
partial message, and register residence of bad
argument. The format is given in the method
description of routine SYS=1ST. The partial
message will be ignored if the argument is
infinite or indefinite.

(d.) Set up the arguments in registers X1, X2, X3 and
X4 (or just X1, X2 if one argument) according to
the rules in the Introduction.

(e.) Call SYS1IST. or SYSAID. to initiate error
processing. SYSAID. must be chosen if there is
more than one argument. The return jump must
be in the upper 30 bits of a word. The next 12
bits are zero, and the next 18 bits must include a
pointer to a trace word, as described above.

(f.) Testing commences. A parameter list is built up
from values in X1, X2, X3, X4 to allow
non-standard error recovery. If the routine
calling the routine calling SYS=AID made this
call in the format:

+ RJ =X <routine>
- VFD 30/1

go to step g below. Otherwise, set A0 to point
to the reconstructed parameter list. Set X1 to
the error number, X2 to the first-word-address
of the constructed message, and execute the
communication cell SYSAID., after traceback
linkage information has been inserted in its lower
18 bits.

(g.) Return POS.INDEF. in registers X6 and X7, and
restore registers AD, X1, X2 (and X3 and X4, if
entry was to SYS=AID).



ccccCccceocccc



S T T N NS N

TIMING OF ROUTINES

The external and intrinsic math routines were timed. As
many arguments as possible were chosen to cover all the
possibilities for times for each routine.

CYBER 76 timing was done using the machine instruction
01610, which accesses a hardware clock. CYBER 72, 73,
and 74 timing was done by observing variations in speed of
two equivalent loops in central memory, one of which
called the routine being timed. These variations in speed
were obtained by using a system-maintained real-time
clock which was synchronized with a hardware clock on
one of the data channels. These times do not include
time for setting up arguments and parameter lists;
they represent the time which elapses between the jump
to the routine and execution of the next instruction in
sequence.

The timing information is summarized in table C-1. The
times given are in minor cycles, or clock periods. On the
CYBER 72, 73, and 74, one minor cycle equals 100 nano-
seconds. On the CYBER 76, one clock period equals
27.5 nanoseconds. On the CYBER 171, 172, and 173 one
minor cycle equals 50 nanoseconds.

On the CYBER 76, a return jump can be delayed if the
instruction stack control has requested one or more
instruction words that have not arrived at the instruction

S

stack. Therefore, CYBER 76 routine times depend upon
how the routine is callad.

On the CYBER 72 and 73, a floating-point instruction
executes at least 48 minor cycles faster if one of the
operands is zero, infinite, or indefinite. If, while an
algorithm is being executed, a routine happens to produce
an intermediate zero result, it will execute faster by at
least 48 minor cycles if this result is combined
arithmetically with anything else.

Some routines will call others; however, the times listed
in table C-1 represent only the time spent at the specified
entry point in the routine. To find the total execution
time for a particular computation, first determine the
routine and entry point which is initially called. Then find
the time for that routine and entry point in table C-1. If
other routines are called, an ampersand will appear in the
table followed by an entry point name. Locate that entry
point in table C-1, and add that time to the total, and so
on.

The timings are for valid argument sets only. Use the
time for the first alternative which covers the argument
concerned. Times do not include the time spent in jumps
to other routines, but represent only the time actually
spent in a specific routine.

TABLE C-1. TIMING OF ROUTINES
Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
ABS
ABS (any valid) 100 79 58 66
ACOSIN.
ACOS (x) 56 35 47
x valid
& ACOS. (x)
ASIN (x)
x valid 59 35 41
& ASIN. (x)
ACOS. (x)
x valid and:
x = 0. 812 741 159 119
x = 1. 306 234 127 85
x = -1, 307 237 127 87
x in (-.5,.5) 950 897 159 116
x not in (-.5,.5), time
= a*b*n where n is
the loop count, as defined
in the ACOSIN. description.
as= 1138 207 147
b = 114 18 12
x in (-1.,-.5),
add to I x | time: 10 5 4
ASIN. (x)
x valid and:
x = 0. 823 763 153 123
x =1, 292 220 120 87
x = -1, 293 219 120 90
60483100 A C-1l



TABLE C-1. TIMING OF ROUTINES (Continued)

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
x in (-.5,.5) 958 904 152 126
Ixlin (.5,1.), time
= a*b*n, where n is
defined in the ACOSIN.
description.
a-= 1170 226 168
b= 115 15 12
AIMAG
AIMAG (any valid) 101 81 54 62
INT
AINT (any valid) 121 98 66 60
06
ALOG10 (x) 67 42 46
& ALOG10. (x)
ALOG (x) 67 40 49
& ALCG. (x)
ALOG10. (x)
x infinite or indefinite 253 192 110
& SYSAID.
266 199 120
& SYSAID.
x valid,x<0. 285 213 129
& SYSAID.
x valid, x = y*2n
n integral, 1<y<2, and
1<y<1.1072 860 892 179 129
1.1072<y<1.3572 860 892 176 129
1.3572<y<1.6072 861 891 177 128
1.6072<y<1.8572 860 892 179 129
1.8572<5y<?2 990 1012 212 141
ALOG. (x)
x infinite or indefinite 298 176 97
& SYSAID.
311 183 112
& SYSAID.
x valid,x>0 330 192 117
& SYSAID.
x valid,x= y*2" n integral
1.<y<1.8572 941 814 197 119
1.8572<2 1072 933 218 143
AMAXO
AMAXO (x{1),..., x{n))
n=2 240 178 121 112
n=3 338 250 159 140
each add. 99 73 42 32
AMAX1
AMAXL (x(1),..., x{(n))
: n=2 232 178 104 106
each add. 110 83 45 34
AMINO
AMINO ((x(1))
eens X(n)
n=2 237 179 112 105
n=3 338 252 148 133
each add. 100 72 43 32
60483100 A
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TABLE'C-1. TIMING OF ROUTINES (Continued)

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
AMIN1
AMINI (x(1),..., x{(n))
n=2 227 179 108 105
n=3 333 252 163 142
n=4 436 328 189 172
each add. 105 78 44 34
AMOD
AMOD (x,y)
y#0 248 207 111 133
AND
AND (x(1),..., x(n))
n=2 217 163 103 103
n=3 282 212 112 118
n=4 347 262 133 141
each add. 65 49 22 19
ATAN
ATAN (x) 66 32 53
& ATAN. (x)
ATAN. (x)
x valid 1 x I<1, 1059 756 187 141
x valid I x I>1. 1092 784 203 201
ATAN2
ATAN2 (y,x) 78 53 78
& ATAN2. (x)
ATAN2. (y,x)
(y,x) valid and ...
x=0,y#0. 898 850 246 190
x#0,y=0 981 835 276 187
Ix1>ly >0 1167 1085 249 161
1y 121x120 1165 1077 241 172
ATANH.
ATANH (x)
& ATANH. (x)
ATANH. (x)
x valid and:
x=0 682 203
.75<x<1.5 908 202
x2>1.5
CABS.
CABS (z)
z valid 105 38 43
& CABS. (z)
CABS. (x+i*y)
x+i*y valid
and x=y=0. 276 225 138 85
x#0. or y#0. ,
special case. (See
routine's description) 715 786 283 197
and otherwise valid 715 684 283 181
ccos
CCOS (z)
z valid 546 436 180 119
& HYPERB. (im(z))
& COS.SIN (re(z))
lim(z) | > 741.67 468 348 363 131
& SYSERR.
60483100 A c-3



TABLE C-1. TIMING OF ROUTINES (Continued)

C-4

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
EXP
CEXP (2)
ire(z) | >741.67 356 273 158 120
& SYSERR.
z valid 487 403 155 115
& EXP. (re(z)) & COS.SIN (im(z))
CEXP.
CEXP. (z)
z valid 262 225 74 60
& EXP. (re(z)) & COS.SIN (im{z))
cLoG
CLOG (z)
z=0, 291 213 118 76
& SYSARG=SYSERR.
z valid 163 131 102 69
& CLOG. (2z)
CLOG=
CLOG. (2)
z valid 253 199 95 50
& ATAN2. ((im(z), re(z)))
& CABS. (z) & ALGG. (1z 1)
CMPLX
CMPLX (x,¥)
X,y valid 126 103 64 84
COMPL
COMPL (x) 83 69 55 54
CONJG
CONJG (2)
z valid 128 101 58 68
C0S. -- see SINCOS.
COSH. -- see HYP.
COS.SIN
COS.SIN (x)
x| > pix246 307 244 108 90
| x lsy(mod2pi) ,
0<y<2pi 0<y<Lpi/d 1463 1561 1380 242 215
pi/a<y<pi/2 1715 1880 1649 269 234
pi/2<y<3pi/4 1716 1879 1649 269 234
3pi/a<y<pi 1734 1885 1655 282 245
pi<y<Spi/4 1884 1657 323 245
Spi/d<y<3pi/2 1886 1659 319 244
3pi/2<y<7pi/a 1887 1658 319 244
7pi/a<y<2pi 1693 1885 1635 267 232
COUNT
COUNT (x) 148 133 49 62
CSIN
CSIN (2)
Ire(z) | > pi*246 386 295 162 121
& COS.SIN (re(z})
& SYSERR.
lim(z) | > 741.67 470 362 221 136
& C0S.SIN (re(z))
& SYSERR.
60483100 A
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TABLE C-1. TIMING OF ROUTINES (Continued)

’

60483100 A

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
z valid 551 436 181 123
& COS.SIN (re(z)) ~
& HYPERB. (im(z))
CSNCS.
CC0S. (z)
z valid 327 279 78 71
& HYPERB. (im(z))
& COS.SIN (re(z))
CSIN. (z)
z valid 315 248 77 79
& COS.SIN (re(z))
& HYPERB. (im(z))
CSQRT
CSQRT (z)
z valid 153 115 93 67
& CSQRT. (z)
CSQRT=
CSQRT. (z)
z=0, 287 219 103 58
& CABS. (0.)
& SQRT. (0.)
z valid, z#0 477 376 265 90
& CABS. (z)
& SQRT. (1/2(1 z1 * ire(2)1))
DABS
DABS (x)
x valid 144 111 70 72
DASNCS.
DASIN
& DASIN.
DACOS
& DACOS.
DACOS.
0<x<.09375 3344 529
.09375< x<.7071 4844 853
L701< x< . 9956 4823 841
.9956<x<1 4228 756
DASIN.
0<x<.09375 3260 492
.09375<x<.7071 4756 814
.701< x <. 9956 4779 820
.9956<x< 1 4197 736
DATAN
DATAN (x)
x valid 130 42 143
& DATAN. (x)
DATAN.
DATAN.
x valid, and:
Ixl < 1. 144 74 40
& DTN, (see routine description)
x| >1. 320 134 73
& DATCOM. (see routine description)
DATAN2 3
DATAN2 (y,x)
y,x valid, and (y,x)#(0,0) 124 46 66
& DATAN2. ((y,x))




TABLE C-1. TIMING OF ROUTINES (Continued)

C-6

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
DATAN2.
DATAN2. (y,x)
where both are valid, and
(y,x)#(0,0), and:
Lyl <1x| 276 144 65
& DATCOM. (see routine description)
Iyl >1xl 283 175 71
& DATCOM. (see routine description)
DATCOM,
DATCOM. (y,x) (from DATANZ2. )
argument set validated. If n
is nearest integer to
g*xmin() x LIy )/max(I x 1,1y 1),
then:
n=0 3150 521 337
n#0 and min(l x 4,1 y 1)-n/8*max{l x I,| y 1)#0 3735 664 417
otherwise 3725 663 417
DTN.
y (from DATAN. ), valid.
If n is nearest integer to
8*y, then:
n=0 2736 451 287
n#0 and (y - n/8)#0 3356 587 367
otherwise 1212 307 200
DBLE
_DBLE (x)
x valid 98 78 52 54
BCOS
DCOS (x) _
x valid 144 121 71 67
& DCOS. (x)
DCOSH
BCOSH (x)
x valid 130 52 45
& DCOSH. (x)
DEULER.
DEULER.
(See description of routine DEULER. ) 3719 623 361
DEXP
DEXP (x)
x valid 117 45 49
& DEXP.(x)
DEXP.
DEXP. (x)
x valid and:
x<-643,240583559629247139191409: 515 163 107
& DEULER.
x otherwise: 378 147 100
" & DEULER. :
HYP.
DCOSH. (x)
x valid and:
abs(x)>42.360630379701426385855602079: 560 215 127
& DEULER.
abs(x)/1og 2 > 48: 546 182 101
& DEULER.
abs(x)/log 2 > 24: 658 203 125
& DEULER.
60483100 A
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TABLE C-1. TIMING OF ROUTINES (Continued)

60483100 A

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
x in [-1/2 log 2,1/2 log 2]: 233 136 86
& DEULER.
X otherwise 719 229 132
& DEULER.
DSINH. (x)
x valid and:
abs(x) >42.360630379701426385855602079: 575 202 119
& DEULER.
abs(x)/1og 2 > 48: 515 160 93
& DEULER.
abs(x)/log 2 > 24: 625 206 136
& DEULER.
x in [-1/2 log 2,1/2 log 21: 155 94 64
& DEULER.
x otherwise 720 226 134
& DEULER.
DIM
DIM (x,y) :
X,y valid 191 150 84 96
DLOG.
DLOG1O0. (x)
x=(2N)*y
1/2<y<1/2-5 7104 7931 6946 1220 761
1/2-—5 <y<l1 6962 7799 6802 1221 762
DLOG. (x)
x=(2N)*y
1/2<y<1/2-5 6797 7576 6631 1158 731
1/2'55 y<l1 6636 7444 6487 1144 731
pLea
DLOG (x)
x=0, 284 215 136 83
& SYSARG. SYSERR.
<0 332 251 142 105
& SYSARG. SYSERR.
x valid 150 96 101 68
& DLOG. (x)
DLOs10
DLOGLO (x)
x=0. 284 216 130 89
& SYSARG. SYSERR.
x, Xx<0 333 255 216 105
& SYSARG. SYSERR.
x valid 177 144 97 68
& DLOG10. (x)
DMAX1
DMAX1 (x(1),x(2)) 809 675 320 135
DMIN1
DMIN1 (x(1),x(2)) 863 644 310 134
DMOD
DMOD (x,y)
x valid, y=0 332 243 137 77
& SYSARG. SYSERR.
(x,y) valid 266 203 34 97
& DMOD. (x,y)
DMOD=
IHoD. (x.y) 96 007 582
X,y valid,y#0 Ix/y1>2 2
iyl S%ﬂg 2 1426 331
I x/¥I< 841 281




TABLE C-1. TIMING OF ROUTINES (Continued)

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 74 76
DSIGN
DSIGN (x,y)
X,y any 205 157 81 101
SIN
DSIN (x)
x valid 162 102 83 76
& DSIN. (x)
DSINH
DSINH (x)
x valid 124 52 43
& DSINH. (x)
DSNCOS.
DCOS. (x)
I x [>pi*294 605 501 181 129
xsy(mod2pi), 0<y<2pi
0<y<pi/4, 4671 5129 4475 778 516
pi/4<y<pi/2, 5140 5703 4971 844 563
pi/2<y<3pi/4, 5140 5703 4971 846 563
3pi/a<y<pi, 5059 5679 4904 851 558
pi<y<5pi/a, 5658 4923 920 558
5pi/asy<3pi/2, 5703 4980 908 563
3pi/2<y<7pi/4 5722 4971 %09 563
7pi/4<y<2pi 5063 5677 4904 850 563
DSIN. (x)
| x 1>pi*294 624 511 181 137
xsy(mod2pi), 0<y<2pi,
0<y<pi/4, 4750 5093 4446 786 520
pi/d<y<pi/2, 5078 5695 4933 867 566
pi/2<Ly<3pi/4, 5083 5689 4304 864 571
3pi/4<y<pi, 5139 5715 4971 856 575
pigy<5pi/4, 5715 4980 924 571
Spi/a<y<3pi/e, 5689 4933 934 566
3pi/2Ly<7pi/4 5687 4904 935 566
7pi/a<y<2pi 5141 5718 4980 853 571
DSQRT
DSQRT (x)
x<0. 282 234 125 85
& SYSARG. SYSERR.
x valid 140 107 93 60
& DSQRT. (x)
DSQRT.
DSQRT. (x)
x=0.
x=y*2h
n odd 745 228
n even 746 231
DTAN ’
TAN
& DTAN.
DTAN.
DTAN.
x valid and:
x=0 2371 579
pi/4<x<pi/a 3247 579
pi/a<x<3pi/4 3663 639
3pi/a<x<5pi/4, etc. 3474 633
5pi/4<x<7pi/4, etc. 3666 638
60483100 A
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TABLE C-1. TIMING OF ROUTINES (Continued)

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
DTANH
DTANH (x)
x valid 124 120 42
& DTANH. (x)
DTANH.
DTANH. (x)
x valid and: 765 217 134
I x1<1/8:
& DEULER.(x)
I x 1>32: 214 103 62
If x (or 2x)=y+n*log(2), n>47: 619 163 122
& DEULER. (2x)
Otherwise:
& DEULER. (2x) 1055 311 171
DTOD*
DTOD$ (x,y)
0.,0. 41 341 192 158
& SYSERR.
(0,y), to y>0 352 387 153 208
(0,y), to y<0 439 340 195 152
& SYSERR.
x<0 410 318 169 130
& SYSERR.
(x,y) valid 863 740 236 138
& DLOG. (x)
& DEXP. (y*log x)
DTOD.
DTOD. (x,y)
(o0, {, y>0 114 63 66 62
x>0, x,y valid 517 466 113 79
& DLOG. (x)
& DEXP. (y*log x)
DTOI*
DTOI$ (x,n)
0.,0 404 312 189 136
& SYSERR.
(0.,n),n<0 418 311 195 142
& SYSERR.
(0.,n),n>0 230 188 123 192
x>0 264 231 110 69
& DTOI. (x,n)
DTOI.
DTOI. (x,n)
if n<0, add, and replace 467 415 114 73
n with -n
(x,0) 83 65 51 51
(x,1) 364 301 126 90
(x,2) 672 575 190 128
if n>2,time=t, a(l)+b(1)<
lTog(2)n<+<a(2)/+b(2)1og(2)n
a(l)= 380 316 227.9 94.3
a(2)= 69.3 14.5 111.6 105
b(1l)= 292, 257. 38.8 24.2
b(2)= 530 489 41.9 33.6
DTOX*
DTOX$ (x,y)
0.,0 426 337 199 184
& SYSERR.
(0.,y),y<0 299 239 245 228
(0.,y).y<0 426 335 107 178
& SYSERR.
60483100 A




TABLE C-1. TIMING OF ROUTINES (Continued)

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
x<0 383 299 176 145
& SYSERR.
(x,y) valid, x>0 708 606 236 158
& DLOG. (x)
& DEXP. (y*log 2)
DTOX.
DTOX. (x,y)
(0.,y) 95 74 59 54
(x,y) valid 460 415 85 63
& DLOG. (x)
& DEXP. (y*log 2)
0z*
DT0Z$ (x,z)
(0.,0.+1.0.) 403 311 189 148
& SYSERR.
x<0 342 263 168 117
& SYSERR.
(0.,z), re(z)=>0 277 211 102 136
& SYSERR,
(0.,2), re(z)<0 im(z)#0 432 312 221 136
&SYSERR.
(0.,2), re(z) <0 im(z)=0 432 312 223 136
& SYSERR.
(x,z) valid 762 636 231 90
& ALOG. (x)
& EXP. (re(z)*log x)
& COS.SIN (im(z)*1og x)
DTOZ.
DT0Z. (x,2z)
x=0. 103 81 63 59
x,Z valid, x#0 480 426 149 85
& ALOG. (x)
& EXP. (re(z)*log x)
& COS.SIN (im(z)*leg x)
ERF.
ERF
& ERF
ERFC
& ERFC
ERF. (x)
x<-5.625 or -inf 526 189
-5.626<x<-.477 3094 489
-.477<x<0 1172 234
x=0 904 230
0< x<.477 1172 235
.477<x<5.625 3090 495
x>6.625 or +inf 527 185
ERFC. (x)
x<-5.,625 or -inf 588 213
-5.625< x<-.477 . 3155 518
-.477<x<0 1234 255
x=0 965 252
0<x<.477 1234 253
.477<x<8 3154 513
x>8
x infinite
EXP
EXP (x) 34 57 38
& EXP. (x)
EXP. (x)
x infinite 268 140 89
& SYSAID.
C-10 60483100 A
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TABLE C-1. TIMING OF ROUTINES (Continued)

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
x indefinite 201 103 58
& SYSAID.
x valid,x>741.67 304 155 97
& SYSAID.
x valid x>512, 932 864 184 130
x valid,x<-675.84 298 157 119
& SYSAID.
x valid,x <-512 931 865 182 140
x valid 843 804 145 112
FLOAT
FLOAT (x)
x valid 102 82 65 56
HYP.
COSH. (x)
x valid
Ix1<1/2 log 2 1296 1313 233 164
x otherwise valid 1385 1426 233 167
SINH. (x)
x valid
1 x1<1/2 log 2 1325 1351 250 178
x otherwise valid 1457 1498 257 177
COSH (x) :
x valid 1495 283 200
SINH (x)
x valid 1559 306 214
HYPERB.
HYPERB. (x)
x valid, | x 1<.22 1649 1772 1540 347 265
x valid, I x1>.22 398 311 136 95
& EXP. (x)
IDIM
IDIM (x,y)
(x,y) valid 163 127 85 103
INT
IFIX (x)
x valid 101 81 59 56
INT
IDINT
IGN
ISIGN (x,y) 161 125 75 96
I1TOD*
ITODS (n,x)
0.,0. 365 337 164 132
& SYSERR.
(0,x),x<0 582 483 166 123
& SYSERR.
(0,x),x>0 496 451 109 173
n<0 322 153 128 92
& SYSERR.
n>0, x*log n overflows 695 584 238 914
& SYSERR.
& DLOG. (n)
(n,x) valid, n>0 598 613 264 125
& DLOG. (n)
& DEXP. {x*1og n)
60483100 A C-11



TABLE C-1. TIMING OF ROUTINES (Continued)

C-12

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
D.
ITOD. (n,x)
(0.,x) 146 110 78 64
{n,x) valid, n>0 457 397 98 80
& DLOG. (n)
& DEXP. (x*log n)
1TOg*
IT0J$ (m,n)
& IT0J. (m,n)
ITOJ.
T0J. .n
! mt(1m< 2)38
(m,0),m valid 181 95
(m,1),m valid 218 131
(m,2),m valid 283 139
if n>2,m>1, look at n in binary:
for each 1 bit, add
for each 0 bit, add
1TOX*>
1T0X$ (n,x)
(0,0.) 389 267 175 158
& SYSERR.
(0,x),x>0 352 313 114 208
(0,x),x<0 346 268 178 149
& SYSERR.
n<o0 289 223 136 102
& SYSERR.
n>0, | x*lognl>741.67 459 354 246 122
& ALOG. (n)
& SYSERR.
(n,x) valid 315 237 245 95
& ALOG. (n)
& EXP. (x*1log n)
ITOX.
ITOX. (n,x)
(0,x) 113 85 66 62
(n,x) valid n>0 215 185 64
& ALOG. (n)
(n,z) valid
& ALOG. (n) 113 85 175
& EXP. (x*log n)
1TOZ*
170Z$ (n,z)
(0,0.+410.) 376 291 165 129
& SYSERR.
(0,2), re(z) < 0,im(z)=0 395 287 199 120
& SYSERR.
(0,z),re(z) >0 238 187 210 91
im(z)=0 (0,z),im({z)#0, 376 291 165 120
& SYSERR,
re(z)<0 (n,z),n<0 316 241 144 104
& SYSERR.
(n,z) valid 632 515 211 139
& ALCG. (n)
& COS.SIN (im{z)*1og n)
& EXP. (re(z)*log n)
170Z.
ITOX. (n,z) 84 42 24
& XT0Z. (n,2z)
60483100 A
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TABLE C-1. TIMING OF ROUTINES (Centinued)

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
CF
LOCF (x) 72 60 46 49
MAXO
MAXO (x(1),..., x(n))
n=2 222 168 105 113
n=3 324 240 148 134
n=4 422 314 191 166
each additional argument 100 73 43 31
MAX1
MAX1 (x(1)..., x(n))
n=2 249 187 111 111
n=3 357 270 157 141
n=4 467 355 202 175
each additional argument 110 83 45 34
MASK
MASK (n)
n>60 263 207 111 91
& SYSERR.
n<0 274 210 127 83
& SYSERR.
n valid 181 133 103 87
MINO
MINO (x(1),..., x(n))
n=2 228 169 105 102
n=3 328 241 148 130
n=4 429 312 191 162
each additional argument 100 72 43 28
MIN1
MIN1 (x(1),..., x(n))
n=2 242 182 110 107
n=3 347 259 155 137
n=4 454 337 199 171
each additional argument 105 77 44 38
MOD
MOD (x,y)
(x,y) valid 316 268 114 133
OR
R (x(1),..., x(n))
n=2 209 161 103 88
n=3 274 210 124 106
n=4 335 258 145 130
each additional argument 63 48 21 20
RANF
RANF (anything) 189 165 63 80
RANGET (x) 96 79 67 66
x will be modified
RANSET
RANSET (x) 176 134 89 82
REAL
REAL (u)
SNGL (u) 83 69 55 54
u valid
SHIFT
SHIFT (u,n)
n valid 128 104 60 86
60483100 A
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TABLE C-1. TIMING OF ROUTINES (Continued)

C-14

Routine
Entry Points
Arguments : Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
SINCOS.
SIN (x) 64 34 42
SIN. (x)
€0s (x) 64 34 42
€0S. (x)
SIN. (x)
x infinite or indefinite 169 115 75
& SYSAID.
x=0. 888 821 193 141
x valid, | x |>pix246 166 109 79
& SYSAID.
x valid, | x I<pi*246 1283 1256 194 141
€0S. (x)
x infinite or indefinite 169 115 75
& SYSAID.
0. 831 757 188 165
x valid | x ISpi*246 1190 1230 188 178
x valid | x I>pi*246 220 165
& SYSAID.
RT
SQRT (x) 78 40 37
& SQRT. (x)
SQRT. (x)
x infinite, indefinite or negative 222 180 279
& SYSAID. (Append. B)
x valid,x#0 527 523 119 101
0. 244 393 196 97
SYS=AID
SYSAID.
(1 in lower half of RJ word) 359 133
& SYSERR.
(other than 1 in lower half of RJ word) 986 423 267
& SYSERR.
SYS=1ST
SYS1ST.
(1 in lower half
of RJ word 299 106
& SYSERR.
(other than 1 in
lower half of RJ word) 892 377 239
& SYSERR.
TAN
TAN (x) ‘
x valid, not an odd multiple of pi/2 216 175 142 109
& TAN. (x)
TAN.
TAN. (x)
: x=0 617 155
1x1<2%7, x=n(pi/2)*y, pi/4<x<pi/4
n=0 1065 156
n odd 1061 147
n even 1061 157
TANH
TANH (x)
x valid 98 75 65 58
& TANH. (x)
60483100 A
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TABLE C-1. TIMING OF ROUTINES (Continued)

(@m\ Routine
Entry Points
Arguments Times for CYBER
(@m\ & Times at Entry Points (argument) 173 72 73 74 76
' TANH.
TANH. (x)
T x valid and:
f‘ﬁ 1x 1<.55 812 153
N .55<1 x IL17.1 970 210
1x1>17.1 388 126
(‘:’M XOR
XOR (x(1),..., x(n))
n=2 213 164 96 100
6@@ n=3 276 213 117 118
\ n=4 340 262 139 144
n=5 : 404 309 160 156
each additional argument 64 49 21 19
(ﬁm XT0D*
‘ XT0D$ (x,y)
0.,0. 445 341 197 147
™ & SYSERR.
i (0.,x),x valid x>0 476 389 158 204
x<0 454 343 199 147
&SYSERR.
(x,y})x<0, x valid 403 304 167 132
(@\ & SYSERR. -
X,y valid,x<0, y*logx>741.67 753 606 280 188
& DLOG. (x)
. & SYSERR.
ﬂ‘\ Y*logx<741.67 684 558 239 149
& DLOG. (x)
& EXP. (y*log x)
XTOD.
XTOD. (x,y)
x=0. 129 99 66 62
(x,y) valid, x=0 406 352 120 79
& DLOG. (x)
& DEXP. (y*log x)
fm XTOI*
L XTOI$ (x,n)
& XTOI. ((x,n))
F@‘ XTOI.
L XTOI. (x,n)
x valid n valid, n>0 when x=0
n=0
(‘mm n<0,replace n by -n and
3 x by 1/x, add:
n=1
n=2
(ﬁ\ n=3
n=4
XTOY*
e XT0Y$ (x,y)
(W\ (0.,0.) 283 179 186 155
& SYSERR.
(0.,x),x valid,x>0 396 330 92 198
(0.,x), x valid,x<0 368 284 189 155
(m & SYSERR.
x,y valid, x<0 309 243 157 114
. & SYSERR.
: x,y valid, x>0 valid, x#0 399 315 201 141
(‘@ & ALOG. (x)
) & EXP. (y*log x)
(@\ 60483100 A C-15



TABLE C-1. TIMING OF ROUTINES (Continued)

C-16

Routine
Entry Points
Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76
XTOY.
XTOY. (x,z)
(0,x) valid, x>0 80 62 58 53
(x,y) valid,x#0 174 150 45 53
& ALOG. (x)
& EXP. (y*log x)
XT0Z*
XT0Z$ (x,2)
(0.,2)
z valid,re(z)>0 401 341 135 178
z valid, re(z)<0 398 296 212 121
& SYSERR.
z valid,re(z)=0 355 294 180 121
& SYSERR.
X,z valid, x<0 312 240 156 104
& SYSERR.
x,2 valid,
x>0 re(z)*log x>741.67 632 469 251 130
& ALOG. (x)
& SYSERR.
(x,z) valid, x#0 705 573 221 85
& ALOG. (x)
& COS.SIN (im{z)*1og x)
& EXP. (re(z)*log x)
XT0Z.
XT0Z. (x,2)
(0.,2)
z valid, re(z)>0 82 341 58 55
(x,z) valid, x>0 476 422 94 91
& ALOG. (x)
& EXP. (re(z)*log x)
& COS.SIN (im(z)*1og x)
ZT0I*
Z701$ (z,n)
.»0. 379 303 189 140
& SYSERR.
(0,x), x>0 232 178 137 111
(0.,x),x<0 369 287 182 61
& SYSERR.
z#0, z,n valid 204 181 113 99
& ZT01. (z,n)
ZT01.
Z10I. (z,n)
(z,n) validn =0 85 66 51 54
n=1 233 230 115 85
n=2 710 602 179 125
n=3 725 614 178 122
=-1 656 571 151 118
n=-2 1036 899 215 156
n=-3 1101 955 214 160
If n<0, replace n by -n, and add
n odd 374 337 46 32
n even 327 291 36 32
If n>3, t=time a(1l)+b(1)*log(2)n<+<
a(2)+b(2)*10g(2))n, where
a(l)= 477. 295. 142.5 86.9
b(1)= 233, 222, 36.8 55.0
a(2)= l62. 127. 87.9 74.5
b(2)= 390. 337. 62.3 28.1
60483100 A
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GLOSSARY

Algarithm Error

Argument

Argument Set

Auxiliary Routine

8it Error

Call by Name

Call by Value

Dummy Argument

Entry Point

Error

Exponentiation
Routine

External Routine

60483100 A

Error caused by the mathematical
formulas used in an FCL routine.

A variable or constant that is
passed to a routine and used by
that routine to compute a
function. The actual value of the
variable is passed when a routine is
called by value; the address of the
variable is passed when the routine
is called by name.

An ordered list of one or maore
arguments.

An FCL routine which is not
directly called from FORTRAN
code, but assists in the
computation of a math library
function.

A way of analyzing the magnitude
of the relative error of a routine.
The number of last place positions
that the coefficient parts of the
true value and computed value
differ from each other.

A method of referencing a
subprogram in which the addresses
of the arguments are passed.

A method of referencing a
subprogram in which the values of
the arguments are passed.
Modifications of the arguments
within the subprogram are not
reflected in the calling program.

A variable or constant that is
passed to a routine, but is not used
by the routine to compute a
function.

A statement within an FCL routine
at which execution can begin.
There may be more than one entry
point into an FCL routine.

The computed value of a function
minus the true value.

An FCL routine which accepts
compiler-generated calls from a
source program to perform expo-
nentiation. These calls are gener-
ated when a FORTRAN statement
involves exponentiation of certain
number types. Exponentiation rou-
tines are not called directly using
FORTRAN function names.

A  predefined subprogram that
accepts calls from FORTRAN code
to compute certain mathematical
functions.

FORTRAN Function
Name

Input Range

Invalid Form

NEG. INDEF.

NEG. INF.

Number Types

POS. INDEF,

POS. INF.

Relative Error

Round-off Error

Routine, FCL

Semivalid Form

Valid Form

A symbolic n a m e which appears in a
FORTRAN program and causes a
math routine to be executed. See
the FORTRAN 5 Reference Manual
for a full description of the
available FORTRAN function
names.

A collection of argument sets for
which a given FCL routine will
return a meaningful result.

All bit configurations in words
thought to contain numbers which
do not represent valid or semivalid
forms for a particular number type.

An abbreviation for the constant
60000000000000000000g. It repre-
sents the negative indefinite semi-
valid form.

An abbreviation for the constant
40000000000000000000g. It repre-.
sents the negative infinite semi-
valid form.

A -classification of the numbers
processed by the math routines.
The math routines perform compu-
tations on four number types:
integer, single-precision floating-
point, double-precision floating-
point, and complex floating-point.

An abbreviation for the constant
17770000000000000000g. It repre-
sents the positive indefinite semi-
valid form.

An abbreviation for the constant
37770000000000000000g. It repre-
sents the positive infinite semivalid
form.

The error of a function divided by
the true value.

Error caused by the finite nature of
the computer hardware.

A computer subpregram, written in
assembly language, which computes
commonly occurring math func-
tions, and perform other tasks such
as input and output.

Bit configurations that do not
represent numbers, but indicate
what erroneous computation pro-
duced it.

A bit configuration which repre-
sents a number on the real number
line or in the complex plane.
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CSQRT 2-18
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DATAN 2-19
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DCOS 2-25
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DTOD. 2-45
DTOI* 2-46
DTOIL 2-46
DTOX* 2-47
DTOX. 2-47
DTOZ* 2-47
DTOZ. 2-47
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ERF. 2-48
Error
algorithm 1-1, 1-2
function 2-48
machine round-off 1-1, 1-2
plots 1-2
processor link 2-66, 2-69
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EXP 2-49
Exponential function 2-15, 2-49
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Negative infinite 1-1
NEG.INDEF. 1-1
NEG.INF. 1-1

Number forms 1-1
Number types 1-1

Positive indefinite 1-1
Positive infinite 1-1
POS.INDEF. 1-1
POS.INF. 1-1

RANF 2-60

Random numbers 2-60
RANSET 2-60
References E-1
Relative error 1-1, 1-2
Routines and calls 1-1

Semivalid form 1-1

SINCOS. 2-60
SINCSD. 2-61

Index-1



Sine function
complex 2-16, 2-35, 2-60, 2-61
hyperbolic 2-25, 2-27, 2-35, 2-49
inverse 2-1, 2-2, 2-19
Single-precision floating-point numbers 1-1
SART 2-66
SQRT, 2-66
Square root function
complex 2-18, 2-36, 2-66
SYS=AID 2-66
SYS=1ST 2-69

TAN 2-69

TAN. 2-69

TAND. 2-71

Tangent function
hyperbolic 2-25, 2-43, 2-71
inverse 2-8, 2-22, 2-24

Index-2

inverse hyperbolic 2-8
TANH 2-71
TANH. 2-71
Timing C-1

Valid form 2-73

XTCD* 2-73
XTOD. 2-73
XTOI* 2-76
XTOL 2-76
XTOY* 2-76
XTOY. 2-76
XTOZ* 2-77
XTOZ. 2-77

ZTOI* 2-78
ZTOL 2-78
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