
60483100
CONTRpL DATA
CORPORATION

/#%

FORTRAN VERSION 5
COMMON LIBRARY
MATHEMATICAL ROUTINES
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS/BE 1
SCOPE 2

REVISION RECORD
REVISION DESCRIPTION

A Original release.

(07-17-79)

B Tu incorporate miscellaneous technical and non-technical changes.

(08-30-79)

Publ icat ion No.
60483100

REVISION LETTERS I, O. Q AND X ARE NOT USED

©COPYRIGHT CONTROL DATA CORPORATION 1979
All Rights Reserved

Printed in the United States of America

/*̂ %v

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina
tion rather than content has changed.

J S N

Page

Cover
Title Page
ii thru vi
vii
viii
1-1
1-2
1-3
2-1 thru 2-78
A-l thru A-5
B-l
C-l thru C-l 6
D- l
E-l
Index-1
Index-2
Comment Sheet
Mailer
Back Cover

Revision

B
A
A
B
A
A
A
A
A
A
A
A
A
A
A

Page Revision Page Revision

60483100 B iii/iv •

0 ^ .

o

0 ^

0 ^

^ %

1

/fs*H PREFACE

£$!\
This manual describes the mathematical routines of the
FORTRAN Version 5 Common Library which is part of
FORTRAN 5.

It is assumed that the reader is familiar with FORTRAN 5
and understands basic numerical techniques.

FORTRAN 5 and the math routines operate under the
following operating systems:

N O S V e r s i o n 1 f o r t h e C O N T R O L D A T A ®
CYBER 170 Series; CYBER 70 Models 71, 72, 73, 74;
and 6000 Series Computer Systems

NOS/BE Version 1 for the CDC® CYBER 170 Series;
CYBER 70 Models 71, 72, 73, 74; and 6000 Series
Computer Systems

S C O P E Ve r s i o n 2 f o r t h e C D C C Y B E R 1 7 0
Model 176; CYBER 70 Model 76; and 7600 Computer
Systems

Other related publications are listed below.

Publication

FORTRAN Version 5 Reference Manual

COMPASS Version 3 Reference Manual

Publication Number

60481300

60492800

CDC manuals can be ordered f rom Contro l Data Corporat ion,
Literature and Distribution Services, 308 North Dale Street, St. Paul,
Minnesota 55103.

/f"SV

Th is p roduc t i s i n tended fo r use on l y as
descr ibed in th i s document . Con t ro l Da ta
cannot be responsible for the proper functioning
of undescribed features or parameters.

/fpSs

/ f ^v
60483100 B v/vi

CONTENTS

/fS^

1 . I N T R O D U C T I O N

Number Types
Routines and Calls
Routine Error
Error Plots

How To Read A Plot

2. ROUTINE DESCRIPTIONS

ACOSIN.
ALOG
ATA N
ATANH.
ATAN2
CABS
CCOS
CEXP
CEXP.
CLOG
CLOG=
COS.SIN
CSIN
CSNCS.
CSQRT
CSQRT=
DASNCS.
DATAN
DATAN.
DATAN2
DATAN2.
DATCOM.
DCOS
DCOSH
DEULER.
DEXP
DEXP.
DHYP.
DLOG
DLOG.
DLOG10
DMOD
DMOD=
DSIN
DSINH
DSNCOS.
DSQRT

1-1 D TA N
DTANH

1-1 DTANH.
1-1 DTOD*
1-1 DTOD.
1-2 DTOI*
1-3 DTOI.

DTOX*
2-1 DTOX.

DTOZ*
2-1 DTOZ.
2-6 ERF.
2-8 EXP
2-8 HYP.
2-8 HYPERB.
2-14 ITOD*
2-14 ITOD.
2-15 ITOJ*
2-15 ITOJ.
2-16 ITOX*
2-16 ITOX.
2-16 ITOZ*
2-17 ITOZ.
2-17 RANF
2-18 RANSET
2-18 SINCOS.
2-19 SINCSD.
2-19 SQRT
2-22 SQRT.
2-22 SYS=AID
2-24 SYS=1ST
2-24 TA N
2-25 TAN.
2-25 TAND.
2-25 TANH
2-26 T A N K
2-26 XTOD*
2-27 XTOD.
2-30 XTOI*
2-33 XTOI.
2-33 XTOY*
2-33 XTOY.
2-35 XTOZ*
2-35 XTOZ.
2-35 ZTOI*
2-35 ZTOL
2-35

2-40
2-43
2-43
2-45
2-45
2-46
2-46
2-47
2-47
2-47
2-48
2-48
2-49
2-49
2-53
2-56
2-56
2-56
2-58
2-58
2-59
2-59
2-59
2-60
2-60
2-60
2-61
2-66
2-66
2-66
2-69
2-69
2-69
2-71
2-71
2-71
2-73
2-73
2-76
2-76
2-76
2-77
2-77
2-77
2-78
2-78

APPENDIXES

A. SUMMARY OF ROUTINES

B. ERROR RECOVERY

C. TIMING OF ROUTINES

A - l D . G L O S S A R Y

B - l E . R E F E R E N C E S

C - l

D - l

E - l

INDEX

60483100 A

2-1 Algorithm Error of ACOSIN.
2-2 Mean Relative Error of ACOSIN. for Arcsin
2-3 Mean Relative Error of ACOSIN. for Arccos
2-4 Algorithm Error of ALOG
2-5 Mean Relative Error of ALOG

(arithmetic scale)
2-6 Mean Relative Error of ALOG

(logarithmic scale)
2-7 Relative Error of ATAN
2-8 Mean Relative Error of ATANH.
2-9 Mean Relative Error of DACOS
2-10 Mean Relative Error of DASIN
2-11 Mean Relative Error of DATAN.
2-12 Mean Relative Error of DEXP.
2-13 Algorithm Error of DEXP.
2-14 Mean Relative Error of DCOSH
2-15 Mean Relative Error of DSINH
2-16 Algorithm Error of DLOG.
2-17 Algorithm Error of DSNCOS. for Sine
2-18 Algorithm Error of DSNCOS. for Cosine
2-19 Mean Relative Error of DSQRT

FIGURES

2-3 2-20
2-4
2-5 2-21
2-7

2-22
2-9 2-23

2-24
2-10 2-25
2-11 2-26
2-13 2-27
2-20 2-28
2-21 2-29
2-23 2-30
2-28 2-31
2-29 2-32
2-31 2-33
2-32 2-34
2-34 2-35
2-37 2-36
2-38 2-37
2-39 2-38

Mean Relative Error of DTAN.
(arithmetic scale)

Mean Relative Error of DTAN.
(logarithmic scale)

Mean Relative Error of DTANH.
Mean Relative Error of ERF.
Mean Relative Error of ERFC.
Algorithm Error of EXP.
Relative Error of HYP. for Sinh
Relative Error of HYP. for Cosh
Error of HYPERB. for Sinh
Algorithm Error of SINCOS. for Sine
Algorithm Error of SINCOS. for Cosine
Mean Relative Error of SIND
Mean Relative Error of COSD
Mean Relative Error of SQRT
Relative Error of SQRT
Mean Relative Error of TAN
Mean Relative Error of TAND.
Error of TANK for Tanh
Mean Relative Error of TANK

2-41

2-42
2-44
2-50
2-51
2-52
2-54
2-55
2-57
2-62
2-63
2-64
2-65
2-67
2-68
2-70
2-72
2-74
2-75

TABLES

1-1 Number Forms
2-1 Symbol Definitions
2-2 Relative Error of ACOSIN.
2-3 Relative Error of ALOG
2-4 Relative Error of ATAN
2-5 Error of ATANH.
2-6 Relative Error of ATAN2
2-7 Relative Error of CABS.
2-8 Relative Error of CEXP.
2-9 Relative Error of CLOG=
2-10 Relative Error of CSNCS.
2-11 Relative Error of CSQRT=
2-12 Maximum Relative Error of DASNCS.

1-2 2-13
2-1 2-14
2-2 2-15
2-6 2-16
2-8 2-17
2-12 2-18
2-14 2-19
2-14 2-20
2-15 2-21
2-16 2-22
2-18 2-23
2-19 A- l
2-19 C-l

Relative Error of DATAN.
Relative Error of DATAN2.
Relative Error of DEXP.
Relative Error of DHYP.
Relative Error of DTANH.
Forms Used in ERF. (y=ABS(x))
Maximum Error of ERF.
Relative Error of EXP
Absolute and Relative Error of SINCOS.
Maximum Relative Error of TAN.
Maximum Relative Error of TANK
Math Routines
Timing of Routines

2-22
2-24
2-27
2-30
2-45
2-48
2-49
2-53
2-61
2-71
2-73
A- l
C-l

ytfKalaV

/ * S ^ \

60483100 A

INTRODUCTION

z^Bv

The FORTRAN Common Library Mathematical Routines
(math library) compute frequently occuring math func
t ions, such as sine, cosine, and tangent. They are
referenced by the funct ion names descr ibed in the
FORTRAN 5 Reference Manual. The math library rou-

I tines can also be accessed from COMPASS programs.

In addi t ion to comput ing commonly occurr ing math
functions, the library includes routines that perform input
and output operations. However, calls to these routines
are compiler-generated rather than user-generated, and
are not described in this manual. Standard mathematical
symbols are used throughout this manual, except for
multiplication, which is denoted by an asterisk.

NUMBER TYPES
The math routines perform computations on four number
types: integer, single-precision floating-point, double-
precision floating point, and complex floating-point. For
each number type, there is a set of valid forms, each
representing a point on the real number line or in the
complex plane. In addition, there is a set of semivalid
forms. None of these represent numbers, but give some
indication of the erroneous computation that produced
them. All other bit configurations in words thought to
contain numbers of one of these types is called invalid.

The valid, semivalid, and invalid forms of each number
type are described in table 1-1.

Two rules govern the use of these number forms in
computation:

1. Unless documented otherwise, if a valid form of a
number type is used in a computation, a valid form of
the same type will result.

2 . Unless documented otherwise, i f a semival id or
invalid number is used in a computation, the result is
undefined.

An exception to rule 1 is if the answer computed is
greater or less than the range of va lues for va l id
numbers. Also, if a mathematically invalid operation is
attempted, rule 1 does not apply.

If an invalid result is returned from a math routine, the
program may cont inue wi thout issuing a d iagnost ic
message. The program may a lso terminate wi th or
without a diagnostic, or continue for a short period and
then terminate. Results of erroneous computations can
vary from run to run.

In some cases, certain types of checking are performed.
Also semivalid results can be produced by some routines
to indicate an error has occurred.

two types of calling procedures that can be used: calls by
name and calls by value.

When a routine is called by name, a parameter list is
formed in memory and the first-word-address of this list
is stored in register Al before the routine is invoked.

When a routine is called by value, the arguments are
entered directly into registers XI through X5 before the
routine is invoked. The first word of the first argument is
entered into register XI, the first word of the second
argument is entered into X3, and the first word of the
third argument is entered into X5. If an argument is
double-precision or complex and requires two words, the
second word is entered into the next register (i.e., X2 or
X4). The first word of a complex argument is the real
part, and the first word of a double-precision argument
contains the high-order bits.

For both calls by name and calls by value, the result of
the computation is returned in registers X6 and X7.
One-word results are returned in X6, and the second word
of a two-word result is returned in X7.

ROUTINE ERROR
Error is defined as the computed value of a function minus
the true value.

A certain amount of error occurs during the computation
of the math library functions, and is composed of two
par ts : a lgor i thm error and machine round-off er ror.
Algorithm error is caused by inaccuracies inherent in the
mathematical process used to compute the result. It
includes error in coefficients used in the algorithm.

Machine round-off error is caused by the finite nature of
the computer. Because a finite number of bits can be
represented in each word of memory, some precision is
lost.

A curve representing the algorithm error is usually smooth
with discontinuit ies at breaks in the range reduction
technique. The error in the coefficients that are involved
in range reduct ion can also occur. Usual ly, a good
algorithm which uses good coefficients will not have an
error greater than one-half in the last bit of the result.

Round-off error is difficult to predict or graph. A graph
o f round -o f f e r ro r i s ex t reme ly d i scon t i nuous , bu t
maximum and minimum error over small intervals can be
shown.

Relative error is the error divided by the true value. The
magnitude of relative error can be analyzed in two ways:
by using the following formula:

relative error (routine value -
exact value)/exact value

ROUTINES AND CALLS or by figuring out how many bits the routine differs from
the exact value. The latter is called bit error.

The FORTRAN math functions are predefined routines
that can be called from a FORTRAN program. There are

The first way is used for single-precision algorithms
accurate to less than 2E-15, and round-off errors less than

60483100 B 1-1

TABLE 1-1. NUMBER FORMS

Number
Type

Number
Form Description

Integer Valid The one-word right-justified one's-complement binary representation
of all integers from -2^8 + 1 to 2^8 - 1. Zero can be repre
sented as positive zero (all zero bits), or negative zero (all one
bits).

Semivalid None.
Invalid Any bit configuration in which the top 12 bits are not the same.

Single-precision
floating-point

Valid The normalized one-word forms of the internal floating-point
representations. Zero can be represented as positive or negative
zero.

Semivalid The four forms known as positive infinite, negative infinite, posi
tive indefinite, and negative indefinite.

Invalid Any nonzero and nonsemivalid bit configuration where bits 47 and 59
are the same.

Double-precision
floating-point

Valid The forms of the internal double-precision floating-point represen
tations where the first word is normalized and the second word has
an exponent that is 48 smaller than the first word or zero. The
signs of both words must be the same except when the lower part is
zero. Zero can be represented as positive or negative zero.

Semivalid The forms where the first word is a single-precision semivalid
form. The second word can be anything.

Invalid Double-precision representations which have sign disagreementbetween the two words, or the first word is an invalid single-
precision form, and the second word contains an exponent that is 48smaller than the first word or zero.

Complex
floating-point

Valid All two-word forms where each form is a valid single-precision
number.

Semivalid All two-word forms where one word is a semivalid single-precision
number, and the other is a valid or semivalid single-precision num
ber.

Invalid All two-word forms where one word is an invalid single-precision
number.

— — - — . — — _ _ _ — — — — — — — _ ^ ^ ^ ^ _ ^ _ _ _ ^ ^ _ ^ _ _ _ _ _ ^ ^ _ ^ _

• ^ ^ K

A > ^) J \

r ^ ^ \

10E-15. Changing the last bit in a single-precision number
produces a relative change of between 3.5E-15 for a large
mantissa, and 7.1E-15 for a small but normalized mantissa.

The second method of analyzing relative error is by
examining the routine's bit error. To determine how many
b i ts o f f a rou t ine i s , the func t ion i s eva lua ted in
double-precision and rounded to single-precision. Then,
assuming the exponents are the same, the mantissas are
subtracted and the integer difference is the bit error.

ERROR PLOTS
In the descriptions of some of the math routines described
in this manual, error plots are provided. A typical plot
covers a one-argument single-precision function over a
range of argument values. These are plotted linearly or
logarithmically with the ordinate ranging from -11E-15 to
11E-15 and represent re lat ive error. The saw-tooth

curves represent places at which relative error is -3/2,
-1/2,1/2, and 3/2 the bit error. Discontinuit ies occur
where the routine produces a result that is a power of 2.
The argument values given are found empirically, so only
an appropriate number of digits is printed.

Any point that is between the -1/2 and 1/2 saw tooth
curves represents a case of the routine being as accurate
as possible; anything between 1/2 and 3/2 is 1 bit high.

An algorithm error curve ranges through the middle of the
plot. It shows the relative error of the algorithm over the
given argument range. Its discontinuities are usually due
to the range reduction part of the algorithm. For this
curve, the algorithm error is (alg - exact)/exact where alg
is a routine rewritten to use double-precision operators
and single-precision coefficients. Therefore, a polynomial
can't quite equal a transcendental function and pi/2 can't
be represented exactly. The coordinates of the highest
point are indicated next to it.

<^\

1-2 60483100 A

^ps\

The overall error is bounded empirically by two jagged
curves with arrowheads on them. The number of different
arguments fed to the function is given on the plot; each
corresponding point is either at the tip of one of the
arrowheads or strictly between the pair of curves. It is
likely, that there are points which do not lie between the
two curves. However, the curves are c lose to t rue
least-upper-bound and greatest-lower-bound curves.

The arguments are chosen randomly. After starting with
the smallest argument, each argument is the previous
argument plus RANF(0)*k, where k is a constant. On a
logarithmic scale this algorithm is modified to get an even
distribution on the resulting plot.

Ordinary numbers, such as rational numbers and multiples
of log 2 or pi, probably are not sampled.

There are usually about 250 points, or arrowheads, on each
of the bounding curves. Given arrowheads x and y, the
last two on the list, point z (formed by an argument and
the relative error of the routine for that value) is added to
the arrowhead list if xyz forms a convex curve or the
absc issa o f x and z are too far apar t . Otherwise,
arrowhead y is deleted from the list and the test for
inclusion is retried. Points going beyond 11E-15 are
fo rced to the boundary. The la rges t re la t i ve e r ro r
encountered is labeled with i ts coordinates. Various
stat is t ics are pr in ted concern ing the d is t r ibut ion of
points. Included in these statistics is the percentage of
points per segment of width 1E-15, that lie in the interval
between -10E-15 and 10E-15. Points that are greater than
10E-15 are included in the segment between 10E-15 and
11E-15. Points that are less than -10E-15 are included in
the segment between -10E-15 and -11E-15. Bit errors are
simi lar ly handled, wi th anyth ing above 3 being put
with 3. Empty segments are not listed. The "MEAN R.E."

is the mean of all ordinates. The "RMS R.F." is the
standard deviation of relative error:

SQRT ((sum of RE2)/number of points) - MEAN
R.E.)2

HOW TO READ A PLOT

Here are some cause and effect statements; by taking the
inverse of the statement, one has a way to look at a plot
and deduce what the algorithm is doing.

1. If f(x) = 2n * (x+g(x)) where g(x) is small compared
to x and rounded addition is used, then the bounding
curves roughly parallel the algorithm error and are as
far apart as the inner saw-tooth curves. Unrounded
addition transposes the curves by 1/2 bit.

2. If f (x) = c+g(x) then the bounds are transposed by the
error in c.

3. If f(x) = c*g(x) then the distance between the bounds
for f (x) are usually wider than for g(x); in particular
f(x) probably has bounds at least 2 bits apart.

4. If f(x) = g(x) + (h(x)+d(x)) where g, h, or d can be
constant and one of the addi t ions produces an
unnormalized result, then the bound curves can be
translated and/or spread farther apart than for a
nearby area where the addi t ion happens to be
normalized.

5. If f (x) is broken into numerous subintervals (e.g., 16),
then the a lgor i thm error curve is dominated by
discontinuous lumps in the constants used for table
lookup.

JSP**

60483100 A 1-3

ROUTINE DESCRIPTIONS

Each of the math routines is described in detail on the
following pages. The descriptions include the purpose of
each rou t ine , poss ib le en t ry po in ts , the FORTRAN
function names that reference each routine, the formulas
used to compute the result, and an error analysis.

Entry points into the routines are places in the routine at
which execution can begin. Some routines can evaluate
more than one function, and can have separate entry
points for each. Also, some routines call others in order
to compute a portion of the function.

In the error analysis for some of the rout ines, the
abbreviation u 1 p is used. This means unit in the last
p lace . A l so , fou r symbo ls a re used th roughou t to
represent four bit configurations. These are summarized
in table 2-1.

ACOSIN.
ACOSIN. is an external function which accepts calls from
FORTRAN code. It computes the inverse sine and inverse
cosine functions (FORTRAN function names ASIN and
ACOS). It accepts a floating-point argument and returns
a floating-point result.

Calls by name are computed at entry points ASIN and
ACOS, and calls by value are computed at entry points
ASIN. and ACOS..

METHOD

The input range is the collection of all valid floating-point
quantities in the interval (-1. ,1.). Arguments outside this
range initiate error processing.

Formulas used in the routine are:

arcsin(x) = -arcsin(-x)
arcos(x) = pi-arcos(-x)

0 $ s a r c s i n (l) = p i / 2
£ a r c o s (l) = 0

arcsin(x) = pi/2-arcos (x)
arcos(x) = arcos(l-g(x,n))/2n

/£p*\r w h e r e :

x < - . 5
x < - . 5

. 5 < x < . l
. 5 < x < l .

where:

w = (x^-c)*z+k
z = (x^+r) x^+i

The constants used are:

r = 3.17317007853713
e = 1.16039462973902
m = 50.3190559607983
c = -2.36958885561288
i = 8.22646797079917
j = -35.6294815974555
k = 37.4592309257582
a = 349.319357025144
s = .746926199335419 * 10"5

The approximation of arcsin (-.5,.5) is an economized
approx imat ion obta ined by vary ing r,e ,m, . . . ,s . The
argument x is supplied to ACOS. or ASIN. in XI, and the
result is returned in X6.

a. If ACOS. entry, go to step g.

b. If |xl > .5, go to step h.

n = 0 (Loop counter).
q = x
y = x*4
u = 0
u = pi/2

if ASIN. entry.
if ACOS. entry.

z = (y+r) *y+i
w = (y-c)*z+k
p = q+s*q*y* ((w+z-j) *w+a+m/ (e-y))
p = u-p
X6 = p/2n

g (x,0) = 1-x
g (x,n+l) = 4g(x,n) - 2g (x,n)2.
a r c o s (x) = p i / 2 - a r c s i n (x) - . 5 < x < . 5
arcsin (x) = x+x^*s* ((w+z-j) *w+a+m/ (e-x^)) -.5 < x <.5

d.

e. If ASIN. entry, go to step k.

f. If x is in (-.5,1.), return.
X6 = 2*u-(X6)
Return.

g. If |x| < .5, go to step c.

h. If x = +1,-1 or x is invalid, go to step i.
n = 0 (Loop counter),
y = l-|xl, and normalize y .

i . h = 4*y-2*y2
n = n+1
If 2*y < 2-sqrt (3) = .267949192431, y = h and go to
step i.

TABLE 2-1. SYMBOL DEFINITIONS

Symbol Bit Configuration Meaning

P0S.INF.
POS.INDEF.
NEG.INF.
NEG.INDEF.

37770000000000000000g
17770000000000000000Q
400000000000000000008
60000000000000000000g

Posi t ive Infini te
Positive Indefinite
Negative Infinite
Negative Indefinite

z^fiSX

60483100 A 2-1

q = 1-h, and normalize q.
y = q2
u = pi/2
Go to step d.

k. X6 = u-(X6), and normalize X6.
Affix sign of x to X6.
Return.

1. If x = +1. or -1. , go to step m.
X6 = pi/2 if x = 1.
X6 = -pi/2 if x = -1.
If ASIN. entry, return.
X6 = 0 if x = 1.
X6 = pi if x = -1.
Return.

m. Plug ACOS. entry point with ASIN. entry point, if
ASIN. entry.
Initiate error processing.
Return through ACOS. entry point.

ERROR ANALYSIS

The maximum absolute value of relative error of the
approximation above of arcsin over (-5, .5) is 1.996*10"-*-5.
A graph of the relative error of this approximation is
given in figure 2-1. Upper bounds on the absolute value of
relative error due to machine error have been established
in the following cases:

arcsin on (-.5, .5)
arcos on (- 5, .5)

arcsin on (-1. ,1.)
arcos on (-1. ,1.)

9.232 * IO"15
1.673 * IO"14
4.050 * IO"14
1.618 * IO"13

The corresponding upper bounds on the absolute value of
relative error in the routine are:

arcsin on (-.5, .5)
arcos on (-.5, .5)
arcsin on (-1. ,1.)
arcos on (-1.,1.)

1.123 * IO"14
1.873 * 10~14
4.250 * IO"14
1.638 * 10-13

For groups of 1000 arguments chosen randomly from given
intervals, stat ist ics on relat ive error were observed.
These are summarized in table 2-2.

Algor i thm Error
For computation of arcsin (x), where x is in the interval
(-.5, .5), the error curve is given in figure 2-2. The curve

shows the error between 0 and .5 only, since i t is
symmetrical about 0.

The curve is not balanced around the axis because the
Chebyshev coefficient for x was thrown away, and 1.0 was
used instead.

For computation of arcsin (x) outside of the interval
(-.5, .5) and arcos (x), a range reduction is performed
which produces no algorithm error. At the end of the
computation, a multiple of pi is involved, so the curves
are offset by an amount dependent on the error in pi. The
error for arcos is shown in figure 2-3.

There are breaks in the algorithm error curve at plus and
minus .5, and when one-half the square root of three is
.866025, .9665926, .991445, .997859, and so on.

Total Error

For the arcsin (x), where x is in the interval (-.5, .5), the
routine is: x + x3 * (...). The total error is dominated
by the final addition, so the error curve closely follows
the algorithm error curve plus or minus one-half bit.

for x in the interval (.5, .866) the algorithm is:

y = 1 - x
z = (1 - 4 * y) + 2 * y2
arcsin (x) = pi/2 + (pi/2 - (z + z3* (.. .)))/2

where y is in the interval (.5, .134), and z is in (-.5, .5).

No precis ion is lost comput ing y, and l i t t le is lost
computing z. Some accuracy is lost computing the final
part. The big jump in the error graph is when x is in the
interval (.5, .540302). This occurs when pi/2 - (z + ...) is
greater than 2. This peak shows up at other places, such
as in the arcsin computation when x is in the interval
(.866, .878). It also occurs in the arcos computation just
below each peak in the bit error curve.

The arcos computation, except near 1.0, is predominated
by pi/2. In particular, for x in (-1., .5), pi/2 is added
twice, first rounded then unrounded, in order to give a
near-perfect distribution. Near x=1.0, so much folding
occurs that a large error is built up before evaluating the
po l ynom ia l . The g raph g i ves an i nd i ca t i on o f t he
infrequency of error but does not show a worst case
(15E-15 relative error has been experienced).

The mean relative error for ASIN and ACOS is graphed in
figures 2-2 and 2-3.

•C-^^^L

<^^\

/ * * ^ V

. r ^ ^ K

' ^ ^ S

TABLE 2-2. RELATIVE ERROR OF ACOSIN.

Entry
Point

Interval 's
Lower
Bound

Interval 's
Upper
Bound

Mean Standard
Deviation Minimum Maximum

ACOS.

ASIN.

- . 5
-1.
.5

- . 5
-1.
.5

.5
-.5
1.

.5
- . 5
1.

-9.435E-16
-4.331E-16
-5.098E-16

8.401E-16
6.209E-16
7.311E-16

1.547E-15
1.746E-15
1.843E-15

1.666E-15
3.268E-15
3.307E-15

-5.781E-15
-4.520E-15
-7.150E-15

-5.328E-15
-7.061E-15
-7.160E-15

3.856E-15
4.546E-15
9.559E-15

4.916E-15
1.489E-14
1.554E-14

/ * ^ f \

60483100 A 2-2

0^\

/p^S

^ ^ ^ 0 0

1-z
111
S
O
OC<

CO
d

2

CMd

C N (N

T o \
• - r -
X X
O L O
C M x -

CM
X -1

O

X
© LO

O*

IO

i—
1o
X

L O

i

CM

TO*—
X
p
1—
1

N M
r - » -1 1

O O
X — X —

X X
I O ©
* "■ C M
1 1

LOo -«r

CM
d1

•*
d1

^ ^ ^ C O^ ^ d
1

eo1

Figure 2-1. Algorithm Error of ACOSIN.

60483100 A 2-3

(<*"̂ j§k

ROUTINC .07. TRUE VALUE ROUTINE .LT. TRUE VALUE
2 3 3 9 0A i i i , t

AS IN

■-̂%

/*&*>&.

2 HI 0*4 I NIOM
2 H i

euwT
69.3X

I LOU

a.2a

Figure 2-2. Mean Relative Error of ACOSIN. for Arcsin

2-4 60483100 A

ROUTINE .OT. TRUE VALUE ROUTINE .LT. TRUE VALUE RCOS

/fp^\

I HIM
1 . 3 Z

CXKT

83 .6-c*
I LOU

IS -1V

Figure 2-3. Mean Relative Error of ACOSIN. for Arccos

60483100 A 2-5

/S%.

EFFECT OF ARGUMENT ERROR
If a small error, e', occurs in the argument x, the error in
the result is given approximately by e'/U-x2)^ for ASIN
and by -e'/U-x2)-5 for ACOS.

ALOG
ALOG is an external function which accepts calls from
FORTRAN code. It computes the natural and common
logarithm functions (FORTRAN function names ALOG and
ALOG10). I t accepts a float ing-point argument and
returns a floating-point result.

Calls by name are computed at entry points ALOG and
ALOG10, and calls by value are computed at entry-points
ALOG. and ALOG10..

METHOD
The input range to this routine is the collection of all
defini te in-range non-negat ive nonzero float ing-point
quantities. Upon entry, the argument x is put in the form
x = y * 2n, where n is an integer, and 1. < y < 2. Then
log x is evaluated by:

log x = log y + 3/4*n + (log 2 - 3/4) *n

To compute log y, the interval (1. ,2.) is divided up into
the sub intervals:

(1., 1.107238769531),
(1.107238769531, 1.357238769531),
(1.607238769531, 1.857238769531),
(1.357238769531, 1.607238769531), and
(1.857238769531, 2.).

Center points 1., 1.225803196513098, 1.475803239208091,
1.735100002271352, 2. are chosen within these intervals.
If y is in subinterval (a, b) with center point c, log y is
computed by:

log y = log c + log ((l+t)/(l-t))
where t = (y - c)/(y + c)

log ((1 + t)/(l - t)) is then computed by:

log ((l+t)/(l-t)) = 2.*t+c (3)*t3+c (5)*t5+c (7)*t?+c (9)*t9.

The coefficients c(3), c(5), c(7) and c(9) are chosen by
truncating the Taylor series for log ((l+t)/(l-t)) after the
11th term, and taking a Chebyshev economization to a 9th
degree polynomial over the largest interval symmetric
about the origin which is applicable. The constants are:

c (3) = .666666666666105
c (5) = .4000000018947
c (7) = .2857120487
c (9) = .22330022

If the argument x is invalid, an error message is issued
through SYSAID= , and POS.INDEF. is returned.

ERROR ANALYSIS
The error analysis for ALOG is given. Bounds on machine
error are the same for ALOG and ALOG10, while the
graph of the algorithm error for ALOG10 can be obtained
from the graph for ALOG by multiplying by log (e) 10.
The maximum absolute value of the relative error in the
algorithm over the interval (1., 2.) is 1.698 * IO-16, for
entry points ALOG and ALOG.. The maximum absolute
value error in the algorithm over the interval (1., 2.) is
1.667 * 10*7. a graph of the error in the algorithm over
(1., 2.) is given in figure 2-4. An upper bound has been
established for the absolute value of the error in the
routine due to machine error at 5.045 * 10~1^ * u, where
u is the greatest integral power of 2. not exceeding the
result. Hence an upper bound on the absolute value of the
relative error in the routine is 5.062 * 10~1^.

For groups of 10 000 arguments chosen randomly from
given intervals at the entry points listed, statistics on
relative error were observed. These are summarized in
table 2-3.

Algor i thm Error

R a n g e r e d u c t i o n fi r s t f o l d s a r g u m e n t s i n t o
(. 9 2 8 6 1 9 4 , 1 . 8 5 7 2 3 9) ; t h e u n f o l d i n g i n v o l v e s a n
approximate constant involving log 2; hence, the error
graph shows discrete lumps at 2n *1.857239 in the
algorithm error plot. Further range reduction into the
subintervals described above involves the use of log c.
T h e v a l u e s o f c w e r e c h o s e n s o t h a t t h e 4 8 - b i t
representation of log c would be correct to at least 59
bits. Hence, no noticeable error is caused by reducing
i n t o t h e s u b i n t e r v a l s . W i t h i n e a c h s u b i n t e r v a l a
polynomial is used; the polynomial is accurate enough to
show essentially no error except near 1.107239.

Total Error

The final computation is log x = ((((a+t)+t)+p)+b)+b
where:

a = log 2 - 3/4) * n ,
p = c(3)* t3... , and
b = (3/4 * n + log c)/2

TABLE 2-3. RELATIVE ERROR OF ALOG

Entry
Point

Interval Mean Standard
Deviation Minimum Maximum

From To
ALOG.

AL0G10.

1.
.5
.5
.0001
10-290

1.
.5
.5
.0001
10-290

2.
2.
1.

1032*

2.
2.
1.
1000.
10322

1.743E-16
2.325E-16
4.101E-17
4.522E-16
1.228E-15

-2.726E-15
-2.689E-15
-2.826E-15
-1.795E-15
-2.015E-15

2.286E-15
2.279E-15
2.488E-15
2.223E-15
1.439E-15

2.723E-15
2.770E-15
2.897E-15
2.526E-15
2.178E-15

-9.040E-15
-1.058E-14
-9.450E-15
-5.562E-15
-1.616E-15

-1.447E-14
-1.346E-14
-1.546E-14
-9.208E-15
-7.389E-15

6.194E-15
8.665E-15
8.637E-15
5.234E-15
4.001E-15

4.640E-15
6.506E-15
9.353E-15
5.058E-15
3.453E-15

60483100 A 2-6

/^^T\

/ "S\

0i$S

CM

O)

1-z
IUS3(9ec
<

co.

r>»

CO

to

•»

CO

Oj

6
HOHH3

Figure 2-4. Algorithm Error of ALOG

60483100 A 2-7

In general p<t<a<b except that a and/or b could be
zero. The order was chosen in order to minimize error
accumulation; b is added in twice in order to cut down on
er ror and e l iminate normal iza t ion . Because o f th is
adding, the error graph jumps around at odd times and by
fairly small amounts. (A jump probably corresponds to a,
t, or one subexpression moving across a power of two.)
No te t he va lue o f b i s exac t . When x i s ou ts ide
(.9286194,1.857239), a and b are nonzero and b dominates
log x; hence, the error bounds are 1 bit apart. When x is
in (.9286194,1.107239), log x collapses to 2t+p. But
t = (y-c)/(y+c) where y-c is exact, y+c may lose half a bit,
and the quotient involves further error. So those combine
with the addition in 2t+p to make the total error. When x
is in (1 .107239 ,1 .857239) , l og x = ((2 t+p)+p w i th
b = (log c)/2; t and b may be of opposite sign. Figure 2-5
and 2-6 show the mean relative error of ALOG.

EFFECT OF ARGUMENT ERROR

If a small error e1 occurs in the argument x, the error in
the result is given approximately by e'/x.

ATAN
ATAN is an external function which accepts calls from
FORTRAN code . I t compu tes t he i nve rse t angen t
function (FORTRAN function name ATAN). It accepts a
floating-point argument and returns a floating-point result.

Calls by name are computed at entry point ATAN, and
calls by value are computed at entry point ATAN.

where:

a(l) = -.33333333333312845
a(2) = .1999999958014464
a (3) = -.1428541305087450
a (4) = .1102281616126149

The coefficients of this polynomial are those of the
minimax polynomial approximation of degree 3 to the
function f over (0,1/4) where t(u2 = (arctan(u) - u)/u3).

ERROR ANALYSIS
A graph of the relative error of approximation of the
algor i thm over (0,1/16) is shown in figure 2-7. The
m a x i m u m a b s o l u t e v a l u e o f t h i s r e l a t i v e e r r o r i s
3.201 * 10~16. /\n Upper bound on the absolute value of
relative error due to machine error has been established
at 4.761 * IO"*3. Hence, an upper bound on the relative
error in the routine is 4.764 * 10 ^3.

For 1000 arguments chosen randomly from the given
intervals, stat ist ics on relat ive error were observed.
These are given in table 2-4.

EFFECT OF ARGUMENT ERROR
If a small error e occurs in the argument, the error in the
result y is given approximately by e/(l * y2).

y*31$*x

J * ^ < \

ATANH.

METHODt
The input range to this routine is the collection of all
definite in-range normalized float ing-point quanti t ies.
The output range of this routine is included in the set of
those floating-point quantities lying between -pi/2 and
pi/2.

ATANH. is an external function which accepts calls from
FORTRAN code. I t computes the inverse hyperbol ic
tangent function (FORTRAN function name ATANH). It
a c c e p t s a fl o a t i n g - p o i n t a r g u m e n t a n d r e t u r n s a
floating-point result.

Calls by name are computed at entry point ATANH, and
calls by value are computed at entry point ATANH..

The argument x is then transformed into an argument y in
the interval (0,1/16) by the range reduction formulas:

arctan (u) = -arctan (-u), u negative
arctan (u) = pi/4 + (pi/4 - arctan (1/u)), u > 1
arctan (u) = arctan (k/16) + arctan ((u - k/16)/(l + u*k/16))

w h e r e 0 < u 5 : l , a n d k i s t h e g r e a t e s t i n t e g e r n o t
exceeding 16*u.

Finally arctan (y) (for y in (0,1/16)) is computed by the
polynomial approximation:

arctan (y) = y + a(l)*y3 + a(2)*y5 + a(3)*y7 + a(4)*y9

METHOD

The input range is the collection of all definite, in-range
floating-point quantities in the interval (-1.0,+1.0).

The range i s r educed t o (0 ,1) us i ng t he i den t i t y
atanh (-x)=-atanh (x) . From the defini t ion atanh(x)=
(ex-e-x)/(ex+e-x) one gets atanh (x)=0.5*ln ((l+x)/(l-x)).

Using the property ln(a*b) = ln(a*b) = In (a) + ln(b), the
argument range of the log can be reduced to (.75,1.5) by
extracting the appropriate multiple of In (2):

A ® ^ \

TABLE 2-4. RELATIVE ERROR OF ATAN
Interval Mean Standard

Deviation Minimum Maximum
From To
-1.

-10.
1.

10.
-1.589E-17
-2.348E-17

2.216E-15
1.940E-15

-6.823E-15
-6.637E-15

5.539E-15
7.505E-15

. ^ ^ L

Algorithm and constants Copyright 1970 by Krzysztof Frankowski, Computer Information and Control Science, University
of Minnesota, 55455. Coding is by Larry Liddiard, University of Minnesota.

60483100 A 2-8

ROUTINE .OT. TRUE VALUE

■ 1 »
ROUTINE .LT. TRUE VALUE• # ■ ! * » «

* A A A A

RLOG

/|PN

/ f ^ S

* nm
• it IS-6X

fMCT
69 .2X 2 4 . 4 2

t LCM
. I X

Figure 2-5. Mean Relative Error of ALOG (arithmetic scale)

60483100 A 2-9

ROUTINt .OT. TRUE VALUE ROUTINE .LT. TRUE VALUE RLOG

• m ** 2 * * T

>*^\

Figure 2-6. Mean Relative Error of ALOG (logarithmic scale)

2-10 60483100 A

/^*\

r

/"fp8\

/spN

0^S

.09
ARGUMENT

00
q

o

CO
q

i nq

q

eo
q

CM
q

q

C O c o
X - X -1 1o o

X — X —

X X
I f) or i c

CO
X —1

Or -
X
i n
CN

COx -1ofl-
X
oo

CO

o
X
14)

IO
1at "
X
a*-

^ C O

1o
X
i n
o

CD

o
X -

X
i n

i
U0UU3 3AI1VH3U

Figure 2-7. Relative Error of ATAN

60483100 A 2-11

/SfsK

atanh (x) = 0.5 * n* In (2) + 0.5 * ln(2"n) * (l+x)/(l-x))

Writing the argument of log in the form (l+y)/(l-y), and
substituting atanh (y) yields:

atanh (x) = 0.5 * n * In (2) + atanh
2-n*(l + x)-(l-x)

2-n*(l + x)+(l-x)

This reduces the range to (-0.2,+0.2).

The value of n such that 2"n*(l+x)/(l-x) is in (.75,1.5) is
the same as that such that 2"n* (l+x)/(0.75* (1-x)) is in
(1,2). If we write 0.75* (1-x) as a*2+m, a in (1,2), then
2(-n-m)» (i+x)/a must be in (1,2). If (1+x) >a then -n-m=0
and n=-m. If (1+x) < a then -n-m=l and n=l-m.

The function atanh (z) on (-0.2+0.2) is approximated by
z+z3*p/q where p and q are 4th order even polynomials.
The coefficients of p and q were derived from the (7th
order odd)/(4th order even) minimax (relat ive error)
rational form on (-0.2,+0.2) for atanh (z).

ERROR ANALYSIS

For abs(x)<0.2, n equals zero, the form z+...+ is used,
and the error stays within the expected bound of 4.8E-15.

For abs(x)>0.5, the term n*(ln(2)/2) dominates. This
term is computed as n* (ln (2) /2- .125) -n* .125-n* .125
because the rounding error in representing ln(2)/2 is large;
the above form makes the rounding error relatively small.
Since n*.125 is exact and the dominating form, the two
additions in (other) +n*.125+n*.125 dominate the error and
the expected relative error of 8.3E-15 is the maximum
observed error in this region.

For 0 .2 <abs(x)< 0 .5 , n equa ls one and the term
z=(0.5* (l+x) - (l -x)) / (0 .5* (l+x)+(l -x)) may be re la t ive ly
large. For abs(x)<0.25, the subtraction l-x=0.5-x+0.5
loses two bi ts of the or iginal argument. Also, z is
negative in this range and some cancellation occurs in the
final combination of terms, costing about one ulp. The
actual upper bound in the region 0.2< abs(x)<0.25 is
19.4E-15, which is the overall upper bound.

The errors are summarized in table 2-5.

Figure 2-8 shows the mean relative error for ATANH..

EFFECT OF ARGUMENT ERROR

For small errors in the argument x, the amplification of
absolute error is l/(l-x^) and that of relative error is

TABLE 2-5. ERROR OF ATANH.

Source of Error Error*1015

Rational form 2.2
Coefficient rounding 0.1

Round-off 17.1

Upper bound 19.4

Maximum observed 12.3

x/((l -x2)*atanh(x)) . Th is increases f rom 1 at 0 and
becomes arbitrarily large near 1.0. If x is known to more
than single-precision, the following FORTRAN code may
be used to get a better result near 1.0:

DOUBLE X

(compute X)
SNGLX=X
SHSNGLX=X-SNGLX
Y=ATANH (SNGLX) +SHSNGLX/((1+SNGLX) *SNGL (1-X)))

T h i s m e t h o d i s a c c u r a t e t o s i n g l e - p r e c i s i o n f o r
abs(x)< l - (lE-8) and less accurate above th is po int ,
although still better than ATANH(SNGL(X)).

ATAN2
ATAN2 is an external function which accepts calls from
FORTRAN code . I t compu tes t he i nve r se t angen t
func t ion o f the ra t io o f two arguments (FORTRAN
funct ion name ATAN2). I t accepts two float ing-point
arguments and returns a floating-point result.

Calls by name are computed at entry point ATAN2, and
calls by value are computed at entry point ATAN2..

METHODt
The input range to this routine is the collection of all
pairs (x,y) of definite in-range normalized floating-point
quantities such that (x,y) * (0,0).

The function ATAN2 (x,y) is defined to be the angle (lying
in (-pi,pi)) subtended at the origin by the point (y,x) and
the first coordinate axis.

The argument (x,y) is reduced to the first quadrant by the
range reductions:

ATAN2 (x,y) = -ATAN2 (-x,y), x< n
ATAN2(x,y) = pi - ATAN2(x,-y), x >0, y< 0

The argument (x,y) is then reduced to the sector:

(u , v) : u > 0 & v < u & v > 0

by the range reduction:

ATAN2 (x,y) = pi/2 - ATAN2 (y,x), x >0 or y >0

Then ATAN2 (x,y) is evaluated as arctan (y/x), using the
algorithm described in the method section of the ATAN
description.

ERROR ANALYSIS

See the error analysis of ATAN for properties of the
algorithm used in computing arctan (y/x). 2 000 000 pairs
of arguments (x,y) were randomly generated belonging to
sets ((u,v): |u|, |v| < 10k), where k =-100, -99, ...,
100. The maximum absolute value of the relative error in
the routine for these arguments was observed to be
9.339 * 10"15 for these random arguments.

For 1000 arguments chosen randomly from given intervals,
statistics on relative error were observed. These are
summarized in table 2-6.

/**%

<<S(^v

/"=<%

**<%.

Algorithm and constants Copyright 1970 by Krzyztof Frankowski, Computer Information and Control Science, University
of Minnesota, 55455. Coding is by Larry Liddiard, University of Minnesota.

60483100 A 2-12
/&$$\

/ ^ \

ROUTINE -OT. TRUE VALUE ROUTINE -LT. TRUE VRLUE flTflNH

/gS\

J"JP*\

— x a x a t M o K r . K i o
3 3 3 9 3 3 • i l * t i i i i i i

« b > o c o 1 0 r t o ' t o i t i T i s n ' i n i T i e n t i t a . o ,

•3«l*>
• 07.

•Vnt■ Ti
• lei*

31-67.
£MCT

62.67. 4 .67
- 2 u r

• S7.
i t n f
.OZ

jg i f ev

Figure 2-8. Mean Relative Error of /VTANH.

60483100 A 2-13

TABLE 2-6. RELATIVE ERROR OF ATAN2

Interval of x Interval of y Mean Standard
Deviation Minimum Maximum

From To From To

-1.
-100.

1.
100.

-1.
-100.

1.
100.

-3.182E-16
-2.429E-16

2.501E-15
2.512E-15

-1.001E-14
-1.012E-14

8.161E-15
8.374E-15

EFFECT OF ARGUMENT ERROR

I f s m a l l e r r o r s e (x) a n d e (y) o c c u r i n x a n d y,
respectively, the error in the result is given approximately
by (y*e(x) - x*e(y))/(x2 + y2).

CABS.
CABS, is an external function which accepts calls from
FORTRAN code. It computes the complex absolute value
function (FORTRAN function name CABS). It accepts a
complex argument and returns a floating-point result.

Calls by name are computed at entry point CABS, and
calls by value are computed at entry point CABS..

METHOD

The input range is the collection of all valid complex
quan t i t i es whose abso lu te va lue does no t exceed
1.265*10322.

Let x + i*y be the argument. The algorithm used is:

a. u = max(|x|,|y|).
v = min(lx|,lyl).

b. If u or v fails a test for infinite or indefinite, go to
step f.

If u is zero, return zero to the calling program.

c. r = u/v
w = 1 + r2
t = (33/32 +3/8) (w-33/32)

= 3/8 (r2 + 87/32)

(where t is the initial linear approximation to (1+r2)'-')

d. Heron's rule is applied in three stages.
t(l) = l/2(t + w/t)
t(2) = l/2(t(l) + w/t(l))
t(3) = l/2(t(2) + w/t(2))

e. Return with u*t(3) to the calling program if it is not
infinite.

f. Call routine SYS=1ST to initiate error processing.

g. Return to the calling program, unless a nonstandard
or fatal error recovery has been chosen for this
routine.

Note that a number of valid arguments are netted in
step b, but these are returned to normal execution after
further testing.

Formulas used are:

lx + i*yl =SQRT(x + i*y)
= max(|x|,|y|)*(l + r2)'5,

where r = min(|x|,|y|)/max(|x|,|y|).

See the timing information in appendix C for further
details.

ERROR ANALYSIS
T h e m a x i m u m a b s o l u t e v a l u e o f t h e e r r o r i n
approximating t(3) = SQRT(l+r2) using:

t = 33/32 + 3/8 (1+r2 - 33/32)
t(l) = l/2(t + (l + r2)/t)
t(2) = l/2(t(l) + (l + r2)/t(l))
t(3) = l/2(t(2) + (l + r2)/t(2))

is 1.5306*10-16, assumed when r=0. Hence an upper bound
on the absolute value of error in the algorithm is:

1.5306 * IO"16 * max(|x|,|y|)

where x+iy is the argument. An upper bound on the
absolute value of error in the routine due to machine
r o u n d - o f f h a s b e e n e s t a b l i s h e d a t 8 . 5 1 2 * 1 0 - 1 *
* max (|x | , | y I) . There fore , an upper bound on the
a b s o l u t e v a l u e o f e r r o r i n t h e r o u t i n e i s
8.527*10"14 * max(|x|,|y|), and an upper bound on the
absolute value of relative error is 8.527*10-1*.

For 10 000 arguments chosen randomly from the interval
(-1 . ,1 .) * (-1 . ,1 .) , s ta t i s t i cs on re la t i ve er ror were
observed. These are summarized in table 2-7.

TABLE 2-7. RELATIVE ERROR OF CABS.

Mean Standard
Deviation Minimum Maximum

-2.295E-15 2.658E-15 -1.093E-14 5.967E-15

EFFECT OF ARGUMENT ERROR

If a small error e(z) = e(x)+i*e(y) occurs in the argument
z = x + i * y, t h e e r r o r i n t h e r e s u l t u i s g i v e n b y
e (u) = (xe (x)+ye (y))/u.

ccos
CCOS is an external function which accepts calls from
FORTRAN code. It computes the complex cosine function
(FORTRAN function name CCOS). It accepts a complex
argument and returns a complex result.

Calls by name are computed at entry point CCOS.

METHOD
If u and v are real numbers, then:

cos(u + i * v) = cos(u) * cosh(v) - sin(u) * sinh(v) * i

,«"=<^s\

/ "^S.

2-14 60483100 A

^ * K

0 ^ \

The argument is checked upon entry. The argument is
invalid if the real part or the imaginary part is infinite or
indefinite, if the real part or the imaginary part is so
large that precision will be lost during the computation, or
if floating-point overflow occurs during the computation.
If the argument is invalid, POS.INDEF. + i*POS.INDEF. is
returned, and a diagnostic message is issued. If the
argument is val id, COS.SIN is cal led at entry point
COS.SIN for computation of the cosine and sine of the
real part of the argument. HYPERB. is called at entry
point HYPERB. for computation of the hyperbolic cosine
and sine of the imaginary part of the argument. The
result is calculated according to the formula above and is
returned to the calling program.

ERROR ANALYSIS
The algorithm used in CCOS is the same as that used at
e n t r y p o i n t C C O S . i n r o u t i n e C S N C S . . S e e t h e
description of CSNCS. for the error analysis.

EFFECT OF ARGUMENT ERROR

If a small argument error appears, then the error in the
result is given approximately by multiplying the argument
e r ro r by the nega t i ve o f the comp lex s ine o f the
argument. Hence, if a small error occurs in the complex
argument and the error has absolute value e', then the
abso lu te va lue o f the er ro r in the resu l t i s g iven
approximately by e' * (sin(u)* + sinh(v)2)!", where u+i*v
is the complex argument.

CEXP
CEXP is an external function which accepts calls from
FORTRAN code. It computes the complex exponential
function (FORTRAN function name CEXP). It accepts a
complex argument and returns a complex result.

Calls by name are computed at entry point CEXP.

METHOD

If u and v are real, then:

exp (u + i * v) = exp (u) * cos (v) + i * exp (u) * sin (v)

The argument is checked upon entry. It is invalid if: the
rea l pa r t u o r t he imag ina ry pa r t v i s i n fin i t e o r
indefinite, u is greater than 741.67 in absolute value, v is
so large as to lose accuracy during the calculation (i.e., v
exceeds p i*2*^ in absolute va lue) , or float ing-point
overflow occurs during the calculation. If the argument is
invalid, POS.INDEF. + i*POS.INDEF. is returned, and a
diagnostic message is issued. If the argument is valid, the
result is returned to the calling program.

ERROR ANALYSIS
The algorithm used in CEXP is the same as that used in
CEXP.. See the descr ip t ion of CEXP. for the error
analysis.

EFFECT OF ARGUMENT ERROR
If a small error e' occurs in the argument u + i*v, the
e r r o r i n t h e r e s u l t i s g i v e n a p p r o x i m a t e l y b y
e' * exp(u + i*v). Hence, the absolute value of the error
in the result wil l be approximately e' *exp(u). If the
error in the argument is significant, the error in the result
should be determined by substitution of possible argument
values in the function.

CEXP.
CEXP. is an external function that accepts calls from
FORTRAN code. It computes the complex exponential
function (FORTRAN function name CEXP). It accepts a
complex argument and returns a complex result.

Calls by value are computed at entry point CEXP..

METHOD
The input range is the collection of all definite in-range
complex quantities z = x + i*y where lyl does not exceed
pj*2*6 and |x| (joes not exceed 741.67.

The formula used for computation is:

exp(z) = exp(x+i*y) = exp(x) * cos(y) + i * exp(x) * sin(y)

where x and y are not floating-point quantities.

COS.SIN is called for computation of cos(y) and sin(y),
and EXP. is called at entry point EXP. for computation of
exp(x). The result is computed according to the formula
and is returned to the calling program.

ERROR ANALYSIS
See the descr ipt ions of COS.SIN and HYPERB. for
details. If z = x + i*y is the argument, then the modulus
o f t h e e r r o r i n t h e r o u t i n e d o e s n o t e x c e e d
1.378 * IO"13 + 1.378 * 10-13 * exp(|x|). If the real
part of the argument is large, the error in the routine will
be significant.

For 10 000 arguments chosen randomly from a given
interval, statistics on relative error of the components of
the results were observed. These are summarized in
table 2-8.

TABLE 2-8. RELATIVE ERROR OF CEXP.

/fB&\
Interval x Interval y Register Mean Standard

Deviation Minimum Maximum
From To From To
-1.

-670.

1.

670.

-1.

-2.210E14

1.

2.2106E14

X6
X7
X6
X7

-3.440E-15
-5.831E-15
-8.962E-15
-1.071E-14

3.784E-15
8.853E-15
4.669E-14
7.948E-14

-1.428E-14
-4.165E-14
-3.176E-12
-4.977E-12

1.227E-14
1.242E-14
2.235E-14
3.723E-14

60483100 A 2-15

0*8\

EFFECT OF ARGUMENT ERROR

If a small error e(z) occurs in the argument z, the error in
the result w is given approximately by w*e (z).

CLOG
CLOG is an external function which accepts calls from
FORTRAN code. I t computes the complex logari thm
function (FORTRAN function name CLOG). It accepts a
complex argument and returns a complex result.

Calls by name are computed at entry point CLOG..

METHOD
The argument is checked upon entry. The argument is
invalid if the real or complex part is infinite or indefinite,
or if both the real part and the complex part are zero. If
the argument is invalid, a diagnostic message is written
and POS.INDEF. + i*POS.INDEF. is returned (where
i2 = -1). Otherwise, CLOG= is called at entry point
CLOG, for computation of the complex logarithm. The
result is returned to the calling program.

where |z| is the modulus of z. The absolute value of z is
eva lua ted by rou t ine CABS. , and the logar i thm is
evaluated by ALOG.. The function arg(z) is evaluated by
routine ATAN2.; arg(z) always lies in the interval (-pi, pi)
when |z| is nonzero, definite and in-range. The result is
returned to the calling program in the register pair X6-X7.

ERROR ANALYSIS
Tests on a sample of 100 000 random numbers distributed
over the complex plane, wi th distr ibut ion being the
product of two Cauchy d is t r ibut ions of zero mean,
returned a maximum absolute value for the relative error
of 8.579 * 10-13.

For 10 000 arguments chosen randomly from the interval
(-1. ,1.)*((-1. ,1.), the components of the results gave
statistics on relative error. These are summarized in
table 2-9.

EFFECT OF ARGUMENT ERROR
If a small error e(z) occurs in the argument z, the error in
the result is given approximately by e(z)/z.

/<*SV

ERROR ANALYSIS
See the description of CLOG=.

EFFECT OF ARGUMENT ERROR

If a small error e* occurs in the argument z, the error in
the result is given approximately by e'/z. The modulus of
this will give approximately the modulus of the error.

CLOG=
CLOG= is an external function which accepts calls from
FORTRAN code and f rom CLOG. I t computes the
complex logarithm function (FORTRAN function name
CLOG). It accepts a complex argument and returns a
complex result.

Calls by value are computed at entry point CLOG.

METHOD
The input range to this routine is the collection of all
definite in-range complex quantities which are nonzero,
and whose absolute values do not exceed the largest
floating-point number that can be represented in the
machine.

The formula used to compute the complex logarithm is:

log z = log(|z|) + i * arg(z),

COS.SIN
COS.SIN is an auxiliary routine which accepts calls from
other math routines. It simultaneously computes the sine
and cosine of an argument. It accepts a floating-point
argument and returns two floating-point results. The
entry point is COS.SIN.

METHOD
The argument is reduced to the interval (-pi/4, pi/4).
Polynomials p(x) and q(x) of degrees 11 and 12 are used
to compute sin(x) and cos(x) over that interval. First, the
argument x is mult ipl ied by 2/pi. Then, the nearest
integer n to 2/pi * x is computed by adding 2/pi * x to
200000000000000000008 in double-precision. The upper
and lower halves of the result are added using a rounded
floating-point addition, and n is normalized. If the shift
count in this normalization is zero (i.e., if x exceeds
pi * 246 in absolute value), then POS.INDEF. is returned.
Otherwise, y = x * pi/2 is computed in double-precision as
the reduced argument for input to p(y) and q(y). Then
sin(x) and cos(x) are computed from these as indicated by
the value mod(n,4). The value of y is in the interval
(-pi/4, pi/4).

The polynomials p (x) and q (x) are:

p (x) = s(0) x + s(l) x3 + s(2) x5 + s(3) x7 + s(4) x9 + s (5) x11

q (x) = c(0) + c(l)x2 + c(2)x* + c(3)x6 + c(4)x8 + c(5)xl° + c(6)xi2

TABLE 2-9. RELATIVE ERROR OF CL0G=

Register Mean Standard
Deviation Minimum Maximum

X6
X7

-7.120E-14
-2.200E-16

4.603E-12
2.489E-15

-4.435E-10
-1.114E-14

4.213E-11
8.085E-15

<"*"̂ \

2-16 60483100 A

where the coefficients are: CSIN
s (0) = .999999999999972
s(l) = -.166666666665404
s(2) = .833333331696029 * IO"2
s(3) = -.19842607353790 * IO"3
s(4) = .275548564509884 * 10~5
s(5) = -.247320720952463 * IO"7
c(0) = .999999999999996
c (1) = -.499999999999991
c(2) = .0416666666664705
c (3) = -.138888888888159 * IO"2
c (4) = .248015784673257 * IO'4
c (5) = -.275552187277097 * IO16
c (6) = .206291063476645 * IO"8

T h e c o e f fi c i e n t s w e r e o b t a i n e d a s f o l l o w s . T h e
polynomials of degrees 15 and 14 were obtained by
truncating the MacLaurin series for sin(x) and cos(x) were
telescoped to form the polynomials p (x) and q (x) of
degrees 11 and 12. The telescoping is done by removing
the leading term of the polynomial. This is accomplished
by subtract ing an appropriate mult iple of T(n)(a(X -
x ((0))) of the same degree n; 2/a is the length of the
interval of approximation, and x(0) is its center.

The Chebyshev polynomial of degree n, T(n)(x), is defined
by T (n) (x) = cos (n * arccos (x)). The absolute value of x
is no greater than one and satisfies the recurrence
relation:

T(0)(x) = l
T(l)(x) = x
T(n + l)(x) = 2xT(n)(x)

where n >1.

T (n - l) (x)

For n>l, T(n)(x) is the unique polynomial 2(n-l) * xn +
... of degree n whose maximum absolute value over the
interval (-1,1) is minimal. This maximum absolute value
is one.

The formulas used for the range reduction are:

s in (x) = (- l)ns in (y)
cos(x) = (-l)ncosM

if x = y + n pi, n an integer;
sin(x) = cos(x - pi/2)
cos(x) = -sin(x - pi/2)

i f pi /4<x< pi /2.

The input range is the collection of definite in-range
floating-point quantities whose absolute values do not
exceed pi * 2^6.

ERROR ANALYSIS
The maximum absolute error in the approximation of
sin(x) by p(x) in the interval (-pi/4, pi/4) is .1893 * 10"14.
The maximum absolute error in the approximation of
cos(x) by q(x) is .3687 * IO"14.

Upper bounds on the machine round-off and truncation
error over the
established for p(x)
1.401 * 10"14. Therefore, the maximum absolute error in
c o m p u t i n g s i n e i n t h e i n t e r v a l (- p i / 4 , p i / 4) i s
9.416 * 10*15, an(j }n computing cosine is 1.770 * 10"14.

input range (-pi/4, pi/4) have been
!x) at 7.523 * 10"15, and for q (x) at

#pv
EFFECT OF ARGUMENT ERROR
Not applicable, since this routine is not called directly by
the user's program.

CSIN is an external function which accepts calls from
FORTRAN code. It computes the complex sine function
(FORTRAN function name CSIN). It accepts a complex
argument and returns a complex result.

Calls by name are computed at entry point CSIN.

METHOD
If x and y are real, then:

sin(x + i * y) = sin(x) * cosh(y) + i * cos(x) * sinh(y)

Upon entry, the argument is checked. It is invalid if the
r e a l p a r t x o r t h e i m a g i n a r y p a r t y i s i n fi n i t e o r
indefinite, if x or y is so large as to cause loss of precision
in the calculation, or if floating-point overflow occurs
during the calculat ion. I f the argument is inval id, a
d iagnos t i c message i s i ssued , and POS. INDEF. +
i*POS.INDEF. is returned. If the argument is valid, the
result of the computat ion is returned to the cal l ing
program.

ERROR ANALYSIS

The algorithm used in CSIN is the same as that used at
entry point CSIN. of routine CSNCS.. See the description
of CSNCS. for the error analysis.

EFFECT OF ARGUMENT ERROR
If a small argument error appears, then the error in the
result is given approximately by multiplying the argument
error by the complex cosine of the argument. Hence, if a
small error occurs in the complex argument and the error
has absolute value e', then the absolute value of the error
in the result is given approximately by:

e' * (cos(x)2) + (sinh(y)2)!/2

where x + i*y is the complex argument. If the argument
error is significant, the error in the result should be found
by substitution of the possible argument values in the
function.

CSNCS.
CSNCS. is an external function which accepts calls from
FORTRAN code. I t computes the complex sine and
complex cosine functions (FORTRAN function names
CSIN and CCOS). It accepts a complex argument and
returns a complex result.

Calls by value are computed at entry points CSIN. and
CCOS..

METHOD
The input range is the collection of all definite in-range
complex quantities z = x + i * y where lyl does not
exceed 741.67 and Ixl does not exceed pi * 2 .

The formula used at entry point CSIN. is:

sin(x + i * y) = sin(x) * cosh(y) + i * + cos(x) * sinh(y)

The formula used at entry point CCOS. is:

60483100 A 2-17

cos (z) = cos (x + i * y) = cos (x) * cosh (y) - i * sin (x) * sinh (y)

where x and y are floating-point numbers. COS.SIN is
called to compute the sine and cosine of x, and HYPERB.
is called to compute the hyperbolic sine and cosine of y.
The result is returned to the calling program with the real
part in register X6, and the imaginary part in register X7.

ERROR ANALYSIS
See the description of HYPERB. and COS.SIN for details.
If z = x + i * y is the argument, then the modulus of the
error in the routine does not exceed:

1.276 * 10-13 + 1.297 * IO-I3 * exp(lyl)

for CSIN.; and:

1.241 * IO-I3 + 1.241 * IO-I3 * exp(lyl)

for CCOS. For 10 000 arguments chosen randomly from
the interval (-1. ,1.) * (-1. ,1.), statistics on relative error
were observed for the complex sine and complex cosine
methods. These are summarized in table 2-10.

EFFECT OF ARGUMENT ERROR
If a smal l error e(z) = e(x) + i*e(y) occurs in the
argument z = x + i*y, the error in the result is given
approximately by -sin(z)*e(z) for CSIN., and cos(z)*e(z)
for CCOS.

CSQRT
CSQRT is an external function which accepts calls from
FORTRAN code. It computes the complex square root
function which maps to the right half of the complex
plane (FORTRAN function name CSQRT). It accepts a
complex argument and returns a complex result.

Calls by name are computed at entry point CSQRT.

METHOD
For the algorithm, see the description of CSQRT=. Upon
entry, the complex argument is checked. The argument is
i nva l i d i f i t s r ea l o r imag ina ry pa r t i s i n fin i t e o r
indefinite, or if floating-point overflow occurs during the
calculat ion. I f the argument is inval id, a diagnost ic
message is issued, and POS.INDEF. + i*POS.INDEF. is
returned. If the argument is valid, CSQRT= is called at
entry point CSQRT. for the computation. The result is
returned to the calling program. For the purposes of this
computation, values returned by the routine will lie in the
right half of the complex plane.

ERROR ANALYSIS

See the description of CSQRT=.

EFFECT OF ARGUMENT ERROR
If a small error e' occurs in the argument z, the error in
the result w is given approximately by e'/(2*w). The
modulus of this will give an approximate modulus of the
error.

CSQRT=
CSQRT= is an external routine which accepts calls from
FORTRAN code. It computes the complex square root
function (FORTRAN function name CSQRT). It accepts a
complex argument and returns a complex result.

Calls by value are computed at entry point CSQRT..

METHOD

The input range to this routine is the collection of all
defini te in-range nonzero complex quant i t ies. I f the
argument is zero, zero is returned.

if z = x + i*y is the argument, the result is given by
w = u + i*v where u and v are determined as follows:

<-*̂ \

a = (x2 + y2)!/2
b = ((a+ x)/2)l/2
c = y/(2 * b)

I f x > 0 , t h e n u = b a n d v = c . I f x < 0 , t h e n
u = c * sign(y) and v = b * sign(y). The result from this
routine always lies in the first or fourth quadrant of the
complex plane, and complex quantities lying on the axis of
negative reals are taken by the routine to the axis of the
positive imaginaries.

ERROR ANALYSIS

The routine was tested with a sample of 100 000 random
numbers distributed over the complex plane with the
d i s t r i b u t i o n b e i n g t h e p r o d u c t o f t w o C a u c h y
distributions. The maximum observed modulus of relative
error was 1.595 * 10"14.

For 10 000 arguments chosen randomly from a given
interval, statistics on relative error of the components of
the results were observed. These are summarized in
table 2-11.

/<^v

/ ^ X

TABLE 2-10. RELATIVE ERROR OF CSNCS.

Entry
Point Register Mean Standard

Deviation Minimum Maximum

CSIN.

CCOS.

X6
X7

X6
X7

-5.592E-15
-4.970E-15

-3.501E-15
-7.313E-15

8.653E-15
5.877E-15

3.827E-15
9.884E-15

-4.030E-14
-3.165E-14

-1.413E-14
-5.059E-14

1.228E-14
1.550E-14

1.182E-14
1.771E-14

2-18 60483100 A
,/K^S

<gp\ TABLE 2-11. RELATIVE ERROR OF CSQRT=

Interval x Interval y Register Mean Standard
Deviation Minimum Maximum

From To From To

-100.

-10.100

100.

10.100

-100.

-10.100

100.

10.100

X6
X7
X6
X7

-4.790E-16
-4.320E-16
-4.053E-19
-4.098E-16

2.652E-15
2.655E-15
2.632E-15
2.637E-15

-9.774E-15
-9.726E-15
-1.012E-14
-9.520E-15

1.107E-14
1.032E-14
1.036E-14
1.096E-14

EFFECT OF ARGUMENT ERROR

If a smal l error e(z) = e(x) + i *e(y) occurs in the
argument, the error in the result w = u + i*v is given
approximately by e (z)/(2*w) = (e (x) + i*e (y))/2 (u + i*v).

DASNCS.
DASNCS. is an external function which accepts calls from
FORTRAN code. It computes the inverse sine and cosine
f u n c t i o n s (F O RT R A N f u n c t i o n n a m e s D A S I N a n d
DACOS). It accepts a double-precision argument and
returns a double-precision result.

Calls by name are computed at entry points DASIN and
DACOS, and calls by value are computed at entry points
DASIN. and DACOS..

ERROR ANALYSIS

Table 2-12 summarizes the maximum relative errors of
DASNCS..

The regions of worst error are (.09375, .1446) for DASIN
and (.9895,-9966) for DACOS. In these regions the final
addition is of quantities of almost equal magnitude and
opposite sign, and cancellation of about one bit occurs,
the wors t case be ing .1451- .0629. fo r DASIN, the
polynomial range was extended to cover the region
(.0821, .09375) , where the worst er ror occurs. For
DACOS, the extension is not used, so that the maximum
relative error for either routine occurs in the region
(.9956, .9966) in DACOS. For 10 000 points randomly
distributed in this region, the maximum observed relative
error in DACOS was 12.5E-29.

0$>\

METHOD

T h e i n p u t r a n g e i s t h e c o l l e c t i o n o f a l l v a l i d
double-precision quantit ies in the interval (-1.0,+1.0).
Arguments outside this range initiate error processing.

The following identities are used to move the interval of
approximation to (0,SQRT (.5)):

arcsin (-x) = -arcsin (x)
arccos (x) = pi/2-arcsin (x)
arcsin (x) = arccos (sqrt (1 - x2))
arccos (x) = arcsin (sqrt (1 - x2))

x > 0
x > 0

The reduced value is called y. If y < .09375, no further
reduction is performed. If not, the closest entry to y in a
table of values (z,arcsin(z),sqrt(l-z2),z=.14, .39, .52, .64)
is found, and the formula:

arcsin (x) = arcsin (z) + arcsin (w)

where w = x * sqrt(l-z2) - z * sqrt(l - x2) is used. The
value of w is in (-.0792,+.0848)

The arcsin of the reduced argument is then found using a
15th order odd polynomial with quotient:

x + x3(c(3) + x2(c(5) + x2(c(7) + x2(c(ll) + x2(c(13) +
x2(c(15) + a/(b-x2)))))))

where a l l constants and ar i thmet ic before c(l l) are
double-precision and the rest is single-precision. The
addition of c(ll) has the form single+single=double. The
polynomial is der ived from a minimax rat ional form
(denominator is (b-x2)) for which the critical points have
been perturbed slightly to make c(ll) fit in one word.

To this value, arcsin (z) is added from a table if the last
reduction above was done and the sum is conditionally
negated. Then 0, -pi/2, +pi/2, or pi is added to complete
the unfolding.

The mean relative errors for DACOS and DASIN are given
in figures 2-9 and 2-10.

EFFECT OF ARGUMENT ERROR

If a small error eps occurs in the argument x, the
resulting^ errors in DASIN and DACOS are approximately
eps/U-x2)^ and -eps/(l-x2)"^. The amplification of the
relative error is approximately x/(f (x)*(l-x2)*^ where
f(x) is DASIN or DACOS. The error is attenuated for
DASIN of abs(x)<0.75 and for DACOS of x>-.44, but
can become serious for DASIN near -1 or +1 and DACOS
near -1. If the argument is generated as 1-y or y-1 then
the identities:

asin (x) = acos (sqrt (1 - x2))
acos (x) = asin (sqrt (1 - x2))
asin(-x) = -asin(x)
acos (-x) = pi + asin (x)

can be used to get the full significance of y. When
compu t ing (1 -x2) one shou ld use a fo rm such as
(l-x2)=(l-x2)*(l-x)=y*(2-y).

DATAN
DATAN is an external function which accepts calls from
F O RT R A N c o d e . I t c o m p u t e s t h e i n v e r s e t a n g e n t

TABLE 2-12. MAXIMUM RELATIVE ERROR OF DASNCS.

DASIN DACOS

Minimax rational form error
Algorithm error
(double precision coefficients)
Maximum error observed

.082E-29

.76E-29
10.5E-29

•082E-29

.48E-29
12.5E-29

60483100 A 2-19

/"•^isv

ROUTINE .OT. TRUE VALUE

I f f ? ?

j i n n

ROUTINE -LT. TRUE VRLUE
8 s a s £i 4 i i i- - r

DflCOS

! S— .-< o

J * t ^ \

T ^ \

/ "S!K

>&* f ^ t \

/*5i§v

.OX
«*■* *Sllf rittf .llltf CXHCr -ItU -ZIW -3CIP -IV
. 0 7 . . 3 7 . 1 . 9 7 2 3 . S Z S S . 3 7 . 1 3 . 6 7 . 3 . 3 X 1 - 2 7 . . 3 * 2

-IHP
• 1Z .OX

Figure 2-9. Mean Relative Error of DACOS
y&ffitfj^v

2-20 60483100 A

ROUTINE -OT. TRUE VRLUE ROUTINE .LT. TRUE VRLUE DASIN
/ f ^ \

r

m i n

• t w / ' S u t f * 4 t u - t n r . t n r . l u t f O B C T - l a r - t n r - s o u - t n r - S u i t - S m r - T t r
. 0 7 . . I X - 4 X 2 - 3 7 . 8 . 7 3 * 2 5 . * 7 . 3 6 . 6 x 1 8 . 2 X 6 . 4 X 1 . 6 * - 3 X . 1 7 . - O X . O X

Figure 2-10. Mean Relative Error of DASIN

60483100 A 2-21

function (FORTRAN function name DATAN). It accepts a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DATAN.

METHOD

T h e i n p u t r a n g e i s i n t h e c o l l e c t i o n o f a l l v a l i d
double-precision quanti t ies. Other arguments ini t iate
e r r o r p r o c e s s i n g f r o m D ATA N . . U p o n e n t r y, t h e
argument is loaded into registers XI and X2, and routine
DATAN. is entered for all remaining computations. See
this routine's method description for further details.

Register pair X5-X3 = absolute value of argument.
Register pair X4-X1 = 1.
B3 = -0.
B7 = 1.

Jump to routine DATCOM. at entry point DATCOM.
to complete processing.

Pick up parameter for error processor. Call error
processor, supplying given argument and parameters.

If error processor returns control, return pi/2, with
the sign that is stored in B4. The value pi/2 is picked
up by doubling an entry in a table starting at entry
point ATN. in routine DATCOM.

/ * ^ i \

ERROR ANALYSIS
See the error analysis of DATAN..

EFFECT OF ARGUMENT ERROR
See the argument error description of routine DATAN..

DATAN.
DATAN. is an external function which accepts calls from
FORTRAN code . I t compu tes t he i nve rse t angen t
function (FORTRAN function name DATAN). It accepts a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry point DATAN..

METHOD

T h e i n p u t r a n g e i s t h e c o l l e c t i o n o f a i l v a l i d
double-precision quantities.

Computation is performed mainly in routine DATCOM.,
and the constants used are listed there.

a. Transfer return address from entry point word into B6.

b. Test first word of argument for infinite or indefinite.
If either, go to step i.

c. B3 = 0. (B3 holds a mask MI.)
B7 = 0. (B7 holds closest multiple of pi/2 to absolute
value of result.)

d. B4 = sign mask for argument. (B4 holds MS, a mask
for result's sign.)

e. Register pair X7-X3 absolute value of argument.

f. If absolute value of argument < 1., jump to routine
D AT C O M . a t e n t r y p o i n t D T N . t o c o m p l e t e
processing.

ERROR ANALYSIS
10 000 random arguments were generated in the interval
(1/200. ,200.). In this sample, the maximum absolute value
o f r e l a t i v e e r r o r i s 7 . 1 8 3 * 1 0 " 2 ^ . G r o u p s o f 4 0
double-precision arguments were chosen randomly in given
intervals, and statistics on relative error were observed.
These are summarized in table 2-13.

The maximum absolute value of relative error in the
a l g o r i t h m i s 1 . 6 2 2 E - 2 9 , a n d t h i s o c c u r s a t
1.069781471095183.

Algor i thm Error

Up to the point 1/16, the plot shows the error in the
economized polynomial; it is not centered because the
first coefficient was forced to be 1. The interval between
(2n-l)/16 and (2n+l)/16 is repeated twice (once reflected),
but the waviness is damped because of adding tan"* (n/8).
Above 1.0, the subranges are delimited by 16/(2n-l).

Total Error

Most of the errors can be traced back to errors in
double-precision addition. Note that the lower parts of
the constants for pi and some of the atan(n/8)*s are
negative. While it allows the constant to be precise to an
extra bi t or two, the unpredictable s ign affects the
addition process.

Figure 2-11 shows the mean relative error for DATAN..

EFFECT OF ARGUMENT ERROR

If a small error e occurs in the argument x, the error in
the result is given by e/(l+x2).

DATAN2
DATAN2 is an external function which accepts calls from
FORTRAN code . I t compu tes t he i nve rse t angen t

y S | v

/*^*\

/ ^ S

TABLE 2-13. RELATIVE ERROR OF DATAN.

Interval 's
Lower
Bound

Interval 's
Upper
Bound

Mean Standard
Deviation Minimum Maximum

-8.
.01

8.
10.

-1.995E-30
-1.505E-30

1.109E-29
1.124E-29

-2.063E-29
-2.907E-29

3.208E-29
2.745E-29

2-22 60483100 A

ROUTINE .GT. TRUE VRLUE ROUTINE -IT. TRUE VRLUE DflTflN

/fs*\

/$S?\

. 4 m * . J u u « 2 u i r . l l i t r £ X B C T l u u - 2 u l t - X a u -
. 0 - / . . I V . 1 . 2 X 1 8 . T / . 6 5 - 6 / 1 3 - 4 X 1 - Q y . - 0 > . .0"/.

Figure 2-11. Mean Relative Error of DATAN.

60483100 A 2-23

func t ion o f the ra t io o f two arguments (FORTRAN
function name DATAN2). It accepts two double-precision
arguments and returns a double-precision result.

Calls by name are computed at entry point DATAN2.

METHOD

The input range is the collection of all pairs of valid
double-precision quantit ies which are not both zero.
Other arguments wi l l in i t ia te error processing f rom
DATAN2.. Upon entry, the arguments are loaded into
registers XI, X2, X3, and X4; routine DATAN2. is entered
for all remaining computation. See this routine's method
description for further details.

ERROR ANALYSIS
See the error analysis of routine DATAN2..

h. Jump to routine DATCOM. at entry point DATCOM.
to complete processing.

i. Supply message "ARGUMENT VECTOR 0,0".

j. Pick up parameters for error processor. Call error
processor, supplying given arguments and parameters.

k. If control returns from the error processor, return
POS.INDEF. to the calling program.

ERROR ANALYSIS
A group of 40 random double-precision arguments was
chosen in (.01,10.) x (.01,10.), and statistics on relative
error were observed. These are summarized in table 2-14.

The maximum absolute value of relative error in the
algorithm is 1.622E-29.

EFFECT OF ARGUMENT ERROR
See the argument error description of routine DATAN2..

DATAN2.
DATAN2. is an external function which accepts calls from
FORTRAN code . I t compu tes t he i nve rse t angen t
function of the ratio between two arguments (FORTRAN
function name DATAN2). It accepts two double-precision
arguments and returns a double-precision result.

Calls by value are computed at entry point DATAN2..

METHOD
The input domain is the collection of all pairs of valid
double-precision quantities which are not both zero.

Computation is performed mainly in routine DATCOM.,
and the constants used are listed there.

a. Test first words of both arguments to see if either is
infinite or indefinite. If so, go to step j.

b. Normalize first words of both arguments.

c. If first words of both arguments are zero, go to step i.

d. B4 = sign mask of first word of first argument.
B3 = complement of sign mask of first word of
second argument.
B6 = return address in calling routine.
B7 = 1.

e . R e g i s t e r p a i r X 5 - X 3 = a b s o l u t e v a l u e o f fi r s t
argument.
Register pair X4-X1 - absolute value of second
argument.

f. If X5 > X4, jump to routine DATCOM. at entry point
DATCOM. to complete processing.

g. X5 < -> X4
X 3 < - > X 1
Complement contents of B3.
B7 = 0, if first word of second argument is positive.
B7 = 2, if first word of second argument is negative.

EFFECT OF ARGUMENT ERROR
If small errors e' and e" occur in the arguments x and y,
respectively, the error in the result is given approximately
by:

(x * e" - y * e')/(x2 + y2)

DATCOM.
DATCOM. is an auxiliary routine which accepts calls from
DATAN. and DATAN2.. It performs computations that
are common between these two routines.

The entry points for the routine are DATCOM., DTN.,
and ATN..

METHOD
On entry, at both entry points DATCOM. and DTN.:

B3 = mask MI.
B4 = mask MS = sign of final result.
B6 = return address after processing is complete.
B7 = closest multiple of pi/2 to absolute value of result.

In addition, at entry point DATCOM.,

Register pair X4-X1 = DU.
Register pair X5-X3 = DV.

and at entry point DTN.,

Register pair X7-X3 = DU.

Ent ry po in t ATN. i s the s ta r t o f an 18-word tab le
containing tan~l(n/8) (0 < n < 8) in double-precision.
Entry point DATCOM. corresponds to step a., and entry
point DTN. corresponds to step b.. Constants used in the
algorithm are:

TABLE 2-14. RELATIVE ERROR OF DATAN2.

/**^sS\

y3£t!*\

/ ^ * \

Mean Standard
Deviation Minimum Maximum

-2.649E-30 2.161E-29 -6.188E-29 3.115E-29

2-24 60483100 A

0 ^

j P s

d3 -.333 333 333 333 333 333 333 333 285 915
d5 .199 999 999 999 999 999 999 673 046 526
d7 -.142 857 142 857 142 856 280 180 055 289
d9 .111 111 111 111 109 972 932 035 508 119
ell = -.090 909 090 908 247 503
cl3 =.001 351 201 845 778 152
a = -.085 666 743 757 593 089
b =-1.133 579 709 202 919 6

where d3, d5, d7, d9 are double-precision constants, ell,
c l3 , a , b are s ing le-prec is ion constants . Ar i thmet ic
operations with d subscripts are done in double-precision,
those with u subscripts are done in single-precision.
Boolean operations have B subscripts.

a . DQ = DU/DV in doub le -p rec i s i on . Ca r r y DQ in
register pair X7-X3.

b. (DQ = DA-DU at DTN.) (Note that 0 < DQ < 1.)

c. n = nearest multiple of 1/8 to DQ * DL = 0.

d. If n = 0, go to step f.

e. DA = (DQ-N/8)/(l + N/8 * DA), computed in double-
precision.

f. If (DA)(u)=0, go to step h.
XX =(DAXu)*(u)(DA)(u)
X = XX-5 (DAXu) (((DA) (u) *(1) (DA)(u))/((DA)) (u)

+(r)(DAXu)))

g. DC = XX *(d) (d3 +(d) XX *(d) (d5 +(d) XX *(d) (d7 +(d)
XX *(d) (d9 +(d) XX *(d) (dll +(d) XX *(u) (cl3 +(u)
a / (b - (u) X X)))))))

h. v = (DAXu) +(d) DC *(d) ((DA)(u) -(d) (DA)(u) *(i) (DA)(u)/
((DAXu) +(r) (DAXu))) w v +(d) ((DA)(1) - X*((DA)(1) +
(DAXu) * (DA)(u)/((DAXu) +(r) (DA)(u)))

i. b = (B7 * pi/2) - (B) B3 (upper and lower)

c = b + (d) tan_i(n/8). tan-1(n/8) is obtained as a
double-precision quantity from the look-up table.

j . c = b

p = (c+ (d)w) - (B) (B3 - ()B4)
Register pair X6-X7 .P, cleaned up.
Return to address B6 by direct jump.

ERROR ANALYSIS
Coefficients d3, d5, d7, d9, ell, cl3, a, b were obtained
by making the expression using these coefficients a
m i n i m a x a p p r o x i m a t i o n t o i n v e r s e t a n g e n t o v e r
(-1/16,1/16), within the class of expressions obtained by
varying these coefficients. (See descriptions of routines
DATAN. and DATAN2. for error analyses.)

EFFECT OF ARGUMENT ERROR
See descriptions of routines DATAN. and DATAN2. for
effect of argument error.

Calls by name are computed at entry point DCOS.

METHOD

See the description of DSNCOS. for the algorithm used in
the computation. The argument is checked upon entry. It
is invalid if infinite, indefinite, or so large as to lose
prec is ion dur ing the calcu lat ion. I f the argument is
invalid, POS.INDEF. is returned, and a diagnostic message
is issued. If the argument is valid, DSNCOS. is called at
entry point DCOS. for the computation. The result is
returned to the calling program.

ERROR ANALYSIS

See the description of DSNCOS..

EFFECT OF ARGUMENT ERROR

See the description of DSNCOS..

DCOSH
DCOSH is an external function which accepts calls from
FORTRAN code. I t computes the hyperbol ic cos ine
function (FORTRAN function name DCOSH). It accepts a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DCOSH.

METHOD
T h e i n p u t d o m a i n i s t h e c o l l e c t i o n o f a l l v a l i d
double-precision quantities whose absolute value is less
than 1071*log(2). Arguments not in the domain initiate
er ror process ing in rout ine DHYP. . Upon ent ry the
argument is loaded into register pair X1-X2 before routine
DHYP. is called. (See the description of routine DHYP.
for further details.)

ERROR ANALYSIS
See the error analysis of routine DHYP..

EFFECT OF ARGUMENT ERROR

See the argument error description of DHYP..

DEULER.
DEULER. is an auxiliary routine which accepts calls from
DEXP., DHYP., and DTANH. It performs computations
that are common among these routines.

The entry point for the routine is DEULER..

DCOS
DCOS is an external function which accepts calls from
F O RT R A N c o d e . I t c o m p u t e s t h e c o s i n e f u n c t i o n
(F O R T R A N f u n c t i o n n a m e D C O S) . I t a c c e p t s a
double-precision argument and returns a double-precision
result.

METHOD

Constants used in the routine are:

l./log(2)
log (2) (in double-precision)
d3 = .166 666 666 666 666 666 666 666 666 709

>jP?v

60483100 A 2-25

d5 = .833 333 333 333 333 333 333 331 234 953E-2
d7 = .198 412 698 412 698 412 700 466 386 658E-3
d9 = .275 573 192 239 858 897 408 325 908 796E-5
pc = -.474 970 880 178 988E-10
pa = .566 228 284 957 811E-7
pb = 272.110 632 903 710
ell = .250 521 083 854 439E-7

The algorithm is:

a. n = nearest integer to x/log 2.
y = x - n * log (2)
(Then y is in (-1/2 * log(2), 1/2 * log(2))).

b. a = ((yXu) * (u) (yXu))-5 = (yXu) (-(yXu) * (1)
q (yXu)* (u) (yXu)

c. p = q * (dXd3 + (d)q * (d)(d5 + (d)q * (d)(d7 + (d)q * (d)
(d9 + (d)q * (dXcll + (d)q * (d)(pa/(pb - q) + pc))))))

d. s = (yXu) + (dXyXu)*(d)p

e. (compute hm = SQRT (l+s^))
hi = 3*q+((sXu))2 in single-precision.
hi = hi + hi
h k = 2 * (l . + h l)
hi = ((yXu) * (uXyXu) - hj)/hk - hi
hm = hj + (uXhk - (u) hi) * (uXhi/hk)

(hm now carries cosh-1.0 in single-precision)

f. DS = s + (dX ((yXD + (rXyXD * (u) hm) + (r)
((sXD + (r)((y) 8u) * (D(pXu) + (r) (y)(u) * (r)(p)(l))))
(DS now contains sinh (y) in double-precision)

g. DC = hm + (d) (DS*DS-2*hm-hm*hm)/(2 (l.+hm))
evaluated in double-precision

h. DX = DS + DC

i. Clean up DS, DC, g with

Register pair X6-X7 = DS.
Register pair X0-X1 = DC.
Register pair X4-X5 = DX.

j. Direct jump to B4.

ERROR ANALYSIS

Not applicable.

EFFECT OF ARGUMENT ERROR

Not applicable.

DEXP
DEXP is an external function which accepts calls from
FORTRAN code. It computes the exponential function
(F O R T R A N f u n c t i o n n a m e D E X P) . I t a c c e p t s a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DEXP.

METHOD

T h e i n p u t d o m a i n i s t h e c o l l e c t i o n o f a l l v a l i d
double-precision quantities lying in the interval:

(-975*log(2),1070*log(2)), (i.e., (-675.84,741.67))

Arguments outside this range initiate error processing
from DEXP.. Upon entry, this argument is loaded into
register pair X1-X2, and routine DEXP. is entered for the
remaining computation. (See the description of routine
DEXP. for further details.)

ERROR ANALYSIS
See the description of DEXP..

EFFECT OF ARGUMENT ERROR
See the description of DEXP..

DEXP.
DEXP. is an external function which accepts calls from
FORTRAN code. It computes the exponential function
(F O R T R A N f u n c t i o n n a m e D E X P) . I t a c c e p t s a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry point DEXP..

METHOD
T h e i n p u t d o m a i n i s t h e c o l l e c t i o n o f a l l v a l i d
d o u b l e - p r e c i s i o n q u a n t i t i e s l y i n g i n t h e i n t e r v a l
(-975*log (2),1070*log (2).

The argument reduction performed in routine DEULER. is:

x = < argument >
y =x-n* log(2)

where y= < reduced argument > is in (-1/2 log 2, 1/2
log 2) and n is an integer.

M o s t o f t h e c o m p u t a t i o n i s p e r f o r m e d i n r o u t i n e
DEULER., and the constants used are listed there.

On input, the argument is in register pair X1-X2, and on
output, the result is in register pair X6-X7.

a. x = < argument > . Save x. If
Kx)(u)l >17315640000Q00000000B, go to step g.

b. Jump to routine DEULER. at entry point DEULER..
Register B4 = address for step c, X7 = upper part of
x, X6 = lower part of x, X5 = packed sign mask of x.

On return from DEULER., B3 = n, X4 = (DX) (u),
X5 = (DX) (1), X0 = DC) (u), XI = (DC) (1), X6 =
(DC)(u), X7 = (DS)(1). Here, n = nearest multiple of
log 2 to x, y = x-n*log(2), and DS*sinh(y), DC*
c o s h (y) - l , a n d D X * e x p (y) - l , a r e a l l i n d o u b l e -
precision.

c. w = 1.0 + (d)(DC + (d)DS). Unpack w, increase expo
nents by n, and repack into register pair X6-X7.

d. If upper word's exponent overflows, go to step g.

e. If lower word's exponent underflows, go to step i.

f. Return, with result in register pair X6-X7.

g. Set parameters, load original argument, and call error
processor.

h. If error processor returns control, return.

v'Sx

./"3K

/>^*\

r r ^ ^ \1

/ f ^ 3 j \

2-26 60483100 A

^>%\

/*fpN

i. Set parameters, load original argument, and call error
processor.

j. If error processor returns control, return 0. in X6 and
X7.

ERROR ANALYSIS

10 000 random arguments were generated in the interval
(-1/2 log 2, 3/2 log 2), and the resulting graph of relative
error versus argument is shown in figure 2-12. In this
interval, the largest absolute value of relative error is
3.858E-29. Groups of 100 double-precision arguments
were chosen randomly in given intervals, and statistics on
relative error were observed. These are summarized in
table 2-15.

The approximation is described in the section on error
a n a l y s i s o f r o u t i n e D E U L E R . . I t i s a m i n i m a x
approximation within the class obtained by varying the
coefficients.

Algor i thm Error

T h e c u r v e f o r t h e a l g o r i t h m e r r o r i s b a r e l y
distinguishable. It peaks at odd multiples of log 2/2 with
a value of about .04E-29. The a lgor i thm error has
essentially no effect on the total error.

Total Error

Except for adjusting the exponent, the final computation
in DEXP is 1.0+s, where |s|<.3536. This addition is easy
to do exactly when s is small and positive. (See the plot
just above 0 and log 2.) For s negative, the sum is less
than 1 (i.e., it crosses a band boundary, and it becomes
difficult to produce an exact result. The plot is exact or
one bit low). When s < .25 (e.g., .35 < x < .45), it becomes
even more difficult to prevent bits from dropping off in
the low precision word when lower sums overflow.

Figure 2-13 shows the relative error in the algorithm used
to approximate exp.

EFFECT OF ARGUMENT ERROR
If a small error e' occurs in the argument the error in the
result y is given approximately by y*e'.

DHYP.
DHYP. is an external function which accepts calls from
FORTRAN code. It computes the hyperbolic sine and
cosine functions (FORTRAN function names DSINH and
DCOSH). It accepts a double-precision argument and
returns a double-precision result.

Calls by value are computed at entry points DSINH. and
DCOSH..

METHOD

T h e i n p u t d o m a i n i s t h e
double-precision quanti t ies
(-1071*log (2),1071*log (2)).

collection
l y i n g i n

o f a l l v a l i d
t h e i n t e r v a l

M o s t o f t h e c o m p u t a t i o n i s p e r f o r m e d i n r o u t i n e
DEULER., and the constants used are listed there. The
argument reduction performed in routine DEULER. is:

x = <argument>
y = <reduced argument>
y = x-n*log(2)

where n is an integer, and y is in the interval (-l/2*log (2),
l/2*log(2)). The recombination formula is:

c o s h (y + n * l o g 2) .
= (cosh(y)+sinh(y))2(n-D + (cosh (y) - sinh (y)) 2^n-^

s i n h (y + n * l o g 2) . .
= (cosh(y)+sinh(y))2(n-1) - (cosh (y)-sinh (y))2^n-^

At entry points DSINH. and DCOSH., the argument is in
register pair X1-X2, and on exit, register pair X6-X7 holds
the result. DSINH. corresponds to entry at step a., and
DCOSH. corresponds to entry at step m.

a. a = < argument >= X1-X2.
b = a Store b in X7-X6.
85 = sign of a.

b. B5 = packed zero.
B4 = address of step g.
Bl = 1.

c. If (b) (u)< xmax (u), jump to routine DEULER. at
entry point DEULER.. I f (b)(u) >xmax(u), go to
step e. xmax is 1071*log(2).

d. If (b) (1) < xmax (1), jump to routine DEULER. at entry
point DEULER..

e. XI-X2 = a
Set up parameters for error processor cal l with
message "ARGUMENT TOO LARGE". If call was to
entry point DCOSH., transfer contents of DCOSH. to
DSINH..

f. Call error processor.
I f (a)(u) is indefinite, return through entry point
DSINH. with X6-X7 = POS.INDEF. Otherwise, return
through DSINH. with X6-X7 = POS.INF. or NEG.INF.,
the sign determined by B5.

g. Return from DEULER. with parameters:

B 3 = n
X4-X5 = DX
X0-X1 = DC
X6-X7 = DS

where, if y = 1-n log (2),
DX = exp(y)-l
DC = cosh(y)-l
DS = sinh(y)

TABLE 2-15. RELATIVE ERROR OF DEXP.

Interval 's
Lower
Bound

Interval 's
Upper
Bound

Mean Standard
Deviation Minimum Maximum

-2.
-600.

2.
700.

3.461E-31
-8.631E-31

8.256E-30
7.310E-30

-2.632E-29
-1.818E-29

2.086E-29
1.446E-29

60483100 A 2-27

MUTINE .QJ. TRUE VRLUE R8UTINE .LT—JRUE VRLUE DEXP

.■̂ k̂

X 5 | ^

^ ~ * r — t s s T f * 1. 1 s i. • < a x t . v o « +« r t u s O I

♦2uif »lutf EXACT -tu.r
• IX 9.6*/. "J6.1X 12-9)!

Figure 2-12. Mean Relative Error of DEXP.

2-28 60483100 A
^ ^ 5 s

RELATIVE ERROR

0^\

-0.4

Figure 2-13. Algorithm Error of DEXP.

60483100 A 2-29

If n = 0, go to step 1.
If n ^/HJi ao to step k.
u = 2(n~*-'(DC+DS) in double-precision.
v = 2("n"l' (DC+DS) in double-precision.
w = 2vn_l) + u in double-precision.
if n>24, go the step h.
w = w ± (2(n-D + v)(l) in double-precision.
determined by B5.

The sign is

h. w = w — (2'n"-*-' + v) (u) in double-precision.
is determined by B5.

The sign

X6-X7 = w with the sign being the same as that of B5.

Return through entry point used to call routine.

w = (l.+DC+DS) * 2(n-!)
Go to step 1.

If DSINH. entry, return through DSINH.. (Note that
X6-X7 = DS)
X6-X7 = 1. + DC in double-precision.
Return through DCOSH.

m. a = X1-S2 = < argument >
b = a Store b in X7-X6.
B5 = 1
Go to step b.

Total Error

DCOSH

The total error curves should be symmetric about x=0.
The pattern shown should repeat until 47.5*log 2 (about
33.) at which point it will start looking like the DSINH and
DCOSH curves. Between 0 and log 2/2 (.3466), DCOSH is
computed as 1+c where 0< c<.75*SQRT(2)-l=.06066.
This is done accurately, but the addition sometimes drops
a bit in the low word. Above log 2/2, the formula ends
with a lot of addit ion and subtraction. For example,
DCOSH (1.7443)= (4+1/16) -4*.3+small amount, where the
.3 is about what the sinh polynomial produced. Notice
that the subtraction crosses a band and the exponent on
4*.3 is only one less than the result; these facts make it
difficult to keep from dropping bits.

DSINH

Up to log 2/2, the error is predominated by the final add
in the sinh polynomial. Just above log 2/2 the error is
especially large because of cancellation. Near log 2/2,
DSINH is calculated using (l - l /4)-s+l/4*s where s is
greater than 2~2 and the result is less than 2~1. The parts
of the curve in the two ranges (.35,16.) and (16. ,33.), have
different shapes because of the shortcut taken in the
latter range. The spl i t is at 23.5*log 2. Above 33.0
(47.5*log 2), the error curve is the same as for DEXP.

/ S \

y ^ ! s

ERROR ANALYSIS

10 000 random arguments were generated in the interval
(-1/2 log 2,32 log 2) for DSINH and DCOSH, and the
resulting graphs of relative error versus argument are
shown in figures 2-14 and 2-15. In these samples, the
maximum absolute values of relative error were 8.026E-29
for DSINH, and 4.405E-29 for DCOSH. Statistics on
relat ive error were observed in random samples of
arguments in given intervals. These are summarized in
table 2-16.

Algori thm Error
DCOSH

T h e c u r v e f o r t h e a l g o r i t h m e r r o r i s b a r e l y
distinguishable. It peaks at odd multiples of log 2/2 with
a value of about .04E-29. The algor i thm error has
essentially no effect on the total error.

DSINH

The peaks are at odd multiples of log 2/2 below 33.. At
47.5*log 2, the algorithm error has a sudden peak because
at th is po in t the a lgor i thm swi tches to DSINH (x)
=exp(x)/2. This point was chosen because 2^-1) can be
done correctly using an IX instruction to add n to the top
of 0.5. (48 would produce an indefinite).

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument x, the error in
sinh(x) is approximately cosh(x)*e', and the error in
cosh(x) is approximately sinh(x)*e'.

DLOG
DLOG is an external function which accepts calls from
FORTRAN code. I t computes the natura l logar i thm
function (FORTRAN function name DLOG). It accepts a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DLOG.

METHOD

The algorithm used is given in the description of DLOG..
Upon entry, the argument is checked. The argument is
invalid if it is infinite or indefinite, or is not greater than
zero. If the argument is infinite, indefinite, or negative,
POS. INDEF. i s re tu rned . I f t he a rgumen t i s ze ro ,
NEG.INF. is returned. In any case, if the argument is
invalid, a diagnostic message is issued. If the argument is
valid, DLOG. is called at entry point DLOG. for the
computa t ion . The resu l t i s re tu rned to the ca l l i ng
program.

y*^H

TABLE 2-16. RELATIVE ERROR OF DHYP.

Entry
Point

Interval 's
Lower
Bound

Interval 's
Upper
Bound

Mean Standard
Deviation Minimum Maximum

DSINH.

DCOSH.

-2.
-600.
-2.
-600.

2.
700.
2.
700.

8.516E-31
-3.274E-31
-2.055E-30
-1.096E-30

1.086E-29
7.907E-30
1.217E-29
9.645E-30

-2.738E-29
-2.645E-29
-3.071E-29
-2.733E-29

3.238E-29
1.651E-29
3.706E-29
1.904E-29

0^m^\

y ^ v

2-30 60483100 A
/•^wiV

ROUTINE .GT. TRUE VRLUE
e s s a

ROUTINE .LT. TRUE VRLUE DCOSH
9 ? ? ?

/ $ ^ V

* 3 u l f . 2 u . r . I u l j . E X R L T - l u t r - Z m r
- S Z 3 . * X 1 1 . 4 7 . 6 4 . 6 Z 1 9 . 2 X 1 . 9 - / .

-3u.r
.1'/

Figure 2-14. Mean Relative Error of DCOSH

60483100 A 2-31

ROUTINE .GT. TRUE VRLUE ROUTINE -IT. TRUE VRLUE DSINH

r i r . r r i i n t t r - iT t * l t t —

♦2lnr - lu.r CXALT lur -1VJ
1 -OX 15.OX 63.7X 13.OX L9X

■JW.P
.2X

• 4 U . f
• IX

-Baif
• OX

yfi t f ^ iX

/Gt&BZS

yC55|s

Figure 2-15. Mean Relative Error of DSINH

2-32 60483100 A

/^es&y

ig*a<\

/Sp&y

ERROR ANALYSIS

See the description of DLOG..

EFFECT OF ARGUMENT ERROR

See the description of DLOG..

DLOG.
DLOG. is an external function which accepts calls by
FORTRAN code and by the DLOG and DLOG10 routines.
It computes the natural and common logarithm functions
(FORTRAN funct ion names DLOG and DLOG10) . I t
accepts a double-precis ion argument and returns a
double-precision result.

Calls by value are computed at entry points DLOG. and
DLOG10..

ERROR ANALYSIS
T h e m a x i m u m a b s o l u t e v a l u e o f t h e e r r o r o f
approximation of the algorithm to log x is 1.555 * 10"2^
over the interval (2~1'2, 2^-"). A graph of the error in the
algorithm versus argument is given in figure 2-16. An
upper bound on the absolute value of the machine
round-off and truncation error (for arguments lying in
(2- l /2 j2 l /2)) has been establ ished at 5.146 * IO"28.
Hence the absolute value of the error in the routine over
t h e i n t e r v a l (2 - 1 ' 2 , 2 1 ' 2) i s n o t g r e a t e r t h a n
5.302 * IO"28. The maximum absolute value of the
relative machine truncation and round-off error has been
established at 1.486 * IO"2?. Hence an upper bound on
the absolute value of the relative error in the routine over
the interval (2"1/2, 2*/2) is 1.713 * IO'27.

EFFECT OF ARGUMENT ERROR
If a small error e1 occurs in the argument x, the error in
the result is given approximately by e'/x.

/P^\

/*$ \̂

METHOD
The input range is the collection of all definite in-range
double-precision quantities which are greater than zero.

Upon en t r y, t he a rgumen t x i s pu t i n t o t he f o rm
x = 2k * w, where k is an integer, and 2"1'2 < w < 2-"-/2.
Then log x is computed from:

log x = k * log 2 + log w

k * log 2 is computed in double-precision, while log w is
evaluated as follows. A polynomial approximation u is
first evaluated in single-precision using:

u = c(l) * t + c(3) * t3 + c(5) * t5 + c(7) * t7,
t = (w - 1)/(1 + w)

where the coefficients c(l), c(3), c(5) and c(7) are:

c(1) = 1.999999993734000
c(3) = 0.666669486638944
c(5) = 0.399657811051126
c(7) = 0.301005922238712

This approximates log with a relative error of absolute
value at most 3.133 * 10"B over (2"1/2, 2"1/2). Newton's
rule for finding roots is then applied in two stages to the
function exp(x) - w to yield the final approximation to
log w. The two stages are algebraically combined to yield
the final approximation v:

v = u-(l-x* exp (- u))
- (1 - x * exp (- u - (1 - x * exp (- u)))).

Writing z = 1 - x * exp (-u), z is much less than i, and v is
computed using:

v = u - z (u) - z (1) - (z (u))2 * (.5 + z (u)/3)

whe re z = z (u)+z (l) . Th i s f o rmu la i s ob ta i ned by
n e g l e c t i n g t e r m s w h i c h a r e n o t s i g n i fi c a n t f o r
double-precision; exp (-u) is evaluated in double-precision
by the polynomial of degree 17 which is described in
D E X P. . I f e n t r y w a s m a d e a t D L O G 1 0 . , a f t e r
k * log 2 + log w has been evaluated, the result is
multiplied by log (10) * e in double-precision. The result
is returned to the calling program.

DLOG 10
DLOG10 is an external function which accepts calls from
FORTRAN code. I t computes the common logari thm
function (FORTRAN function name DLOG10). It accepts
a double-prec is ion argument and returns a double-
precision result.

Calls by name are computed at entry point DLOG10.

METHOD

Upon entry, the argument is checked. It is invalid if it is
infinite or indefinite, or if it is not greater than zero. If
t h e a r g u m e n t i s i n fi n i t e , i n d e fi n i t e , o r n e g a t i v e ,
POS.INDEF. is returned. If the argument is invalid, a
diagnostic message is issued. If the argument is valid,
D L O G . i s c a l l e d a t e n t r y p o i n t D L O G 1 0 . f o r t h e
computa t ion . The resu l t i s re tu rned to the ca l l i ng
program.

ERROR ANALYSIS

See the description of DLOG..

EFFECT OF ARGUMENT ERROR

See the description of DLOG..

DMOD
DMOD is an external function which accepts calls from
FORTRAN code. It computes the modulus of an argument
relative to a second argument (FORTRAN function name
DMOD). It accepts two double-precision arguments and
returns a double-precision result.

Calls by name are computed at entry point DMOD.

METHOD
The argument range is all valid double-precision pairs (x,y)
such at (x/y) < 2^6 and y=0. After argument checking,

60483100 A 2-33

/ j ^ N

y < ^ \

y*Ga^!\

/f^fiSV

Figure 2-16. Algorithm Error of DLOG.

2-34 60483100 A

DMOD. is called to compute the result. The comparison
(x /y) :2^6 i s done by compar ing exponen ts and , i f
necessary, coefficients.

D S N C O S . i s c a l l e d a t e n t r y p o i n t D S I N . f o r t h e
computa t ion . The resu l t i s re tu rned to the ca l l i ng
program.

ERROR ANALYSIS
Not applicable.

ERROR ANALYSIS

See the description of DSNCOS.

EFFECT OF ARGUMENT ERROR
Not applicable.

EFFECT OF ARGUMENT ERROR
See the description of DSNCOS..

DMOD=
DMOD= is an external function which accepts calls from
FORTRAN code . I t compu tes the rema inder o f an
argument relat ive to a second argument (FORTRAN
function name DMOD). It accepts two double-precision
arguments and returns a double-precision result.

Calls by value are computed at entry point DMOD..

DSINH
DSINH is an external function which accepts calls from
FORTRAN code. It computes the hyperbolic sine function
(F O R T R A N f u n c t i o n n a m e D S I N H) . I t a c c e p t s a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DSINH.

METHOD

The argument range is all valid double-precision pairs
(x /y) such tha t (x /y)<21070 and y^O. The func t ion
computed by DMOD (x,y) is:

x-(x/y)*y

where parentheses denote truncation. The value of x is
repeatedly reduced by 45-bit approximations to (x/y) until
the reduced value lies in the range (0,sign (y,x)). Since
the result does not exceed 96 bits, the intermediate value
of x does not exceed 98 bits and the reduction is done in
triple precision. The result is always exact.

METHOD

T h e i n p u t r a n g e i s t h e c o l l e c t i o n o f a l l v a l i d
double-precision quantities whose absolute value is less
than 1071*log(2). Arguments outside this range initiate
error processing in rout ine DHYP.. Upon entry, the
argument is loaded into register pair XI-X2 and routine
DHYP. is called to complete the processing. See the
description of routine DHYP. for further details.

ERROR ANALYSIS

See the description of routine DHYP..

/f*SS

ERROR ANALYSIS
Not applicable. The only double-precision operations
concerned in a determination of error are multiplication
and subtraction.

EFFECT OF ARGUMENT ERROR
Not applicable.

DSIN
DSIN is an external function which accepts calls from
F O R T R A N c o d e . I t c o m p u t e s t h e s i n e f u n c t i o n
(F O R T R A N f u n c t i o n n a m e D S I N) . I t a c c e p t s a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DSIN.

METHOD
The argument is checked upon entry. It is invalid if it is
infinite or indefinite or is so large as to lose accuracy
dur ing the computat ion. I f the argument is inval id,
POS.INDEF. is returned and a diagnostic message is
issued. An argument will lose accuracy if it exceeds
pi * 2^ in absolute value. If the argument is valid,

EFFECT OF ARGUMENT ERROR
See the description of routine DHYP..

DSNCOS.
DSNCOS. is an external function which accepts calls from
FORTRAN code and by the DSIN and DCOS routines. It
computes the trigonometric sine and cosine functions
(FORTRAN function names DSIN and DCOS). It accepts a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry points DSIN. and
DCOS..

METHOD

The input range is the collection of all definite in-range
double-precision quantities which are less than pi*2^° in
absolute value. Upon entry, the argument x is made
positive and is multiplied by 2/pi in double-precision, and
the nearest integer n to x * 2/pi is computed. At this
stage, x*2/pi is checked to see that it does not exceed
2^7. If it does, POS.INDEF. is returned in X6 and a zero
in X7. Otherwise, y = x - n * p i /2 is computed in
double-precision as the reduced argument, y l ies in
(-pi/4,pi/4). The value of mod(n,4), the entry point called,
and the original sign of x determine whether a sine

/ ^ S

60483100 A 2-35

J^$$\

polynomial approximation p(x) or a cosine polynomial
approximation q(x) is to be used. A flag is set to indicate
the sign of the final result.

The sine polynomial approximation is:

,5 u. Qf"7V7p(x) = a(l)x + a(3)x3 + a(5)x-
a(13)x13 + a(15)x15 +

a(7)x7 + a(9)x9 + a(ll)xn +
a(17)x!7 + a(19)xl9 + a(21)x2l

and the cosine polynomial approximation is:

a(x) = b(0) + b(2)x2 + b(4)x4 + b(6)x6 + b(8)xB + b(10)x10 +
b(12)x12 + b(14)xl* + b(16)x16 + b(18)x18 + b(20)x20

for x in the interval (-pi/4, pi/4).

The coefficients are:

a (l)
a (3)
a (5)
a (7)
a (9)
a (11)
a (13)
a (15)
a (17)
a (19)
a (21)

b(0)
b(2)
b(4)
b(6)
b(8)
b(10)
b(12)
b(14)
b(16)
b(18)
b(20)

.99999999999999999999999999999
-.16666666666666666666666666652
.83333333333333333333333270957 * 10"2
-.19841269841269841269829134478 * 10"3
.27557319223985890639440684401 * IO"5
-.2505210838544171011380764735 * 10"7
.16059043836817941727119406461 * IO"9
-.76471637307988608475534874891 * IO"12
.281145706930018 * 10"14
-.822042461317923 * IO"17
.194362013130224 * IO"19

.99999999999999999999999999999
-.49999999999999999999999999919
.41666666666666666666666613902
-.13888888888888888888875543628 * IO"2
.24801587301587301569992273730 * IO"4
-.27557319223985877555866995711 * IO"6
.20876756987861921489874746135 * IO"8
-.11470745595858431549595076575 * IO"10
.47794769682239311593310626721 * IO"13
-.156187668345316 * 10~15
.408023947777860 * IO"18

DSQRT
DSQRT is an external function which accepts calls from
FORTRAN code. It computes the square root function
(F O R T R A N f u n c t i o n n a m e D S Q R T) . I t a c c e p t s a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DSQRT.

METHOD

The argument is checked upon entry. It is invalid if it is
infinite, indefinite or negative. If the argument is invalid,
POS.INDEF. is returned, and a diagnostic message is
issued. Otherwise, DSQRT. is cal led at entry point
DSQRT. for the computation. The result is returned to
the calling program.

ERROR ANALYSIS
See the description of DSQRT.
mean relative error for DSQRT..

Figure 2-19 shows the

EFFECT OF ARGUMENT ERROR

See the description of DSQRT..

HI DSQRT.

DSQRT. is an external routine which accepts calls from
FORTRAN code. It computes the square root function
(F O RT R A N f u n c t i o n n a m e D S Q RT) . I t a c c e p t s a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry point DSQRT..

These polynomials are evaluated from right to left in
double-precision using an in-stack loop. The sign flag is
used to give the result the correct sign before return to
the calling program.

ERROR ANALYSIS

Graphs of the errors in approximating sin(x) and cos(x) by
p(x) and q(x) over the interval (-pi/4,pi/4) are given in
figures 2-17 and 2-18.

T h e m a x i m u m a b s o l u t e v a l u e o f t h e e r r o r o f
approx imat ion o f p (x) to s in (x) over (-p i /4 ,p i /4) i s
.2570 * 10"28, and of q (x) to cos(x) is .3786 * IO"28.
Upper bounds on the machine round-off and truncation
error
1.743 * IU-" and tor qi
upper bound for the absolute value of error on this
r o u t i n e ' s c o m p u t a t i o n o f s i n e o v e r (- p i / 4 , p i / 4) i s
1.769 * IO"27 and of cosine is 1.402 * 10"27.

over (-pi/4,pi/4) have been established for p(x) at
* IO"27 and for q (x) at 1.364 * IO"27. Hence an

EFFECT OF ARGUMENT ERROR
If a small error e' occurs in the argument x, the resulting
error in sin is given approximately by e' * cos(x). The
r e s u l t i n g e r r o r i n c o s i s g i v e n a p p r o x i m a t e l y b y
-e' * sin(x). I f the error e' becomes significant, the
addition formulas for sin and cos should be used to
compute the error in the result.

METHOD
The argument range is the set of all valid double-precision
numbers which are positive or zero. The identity:

sqrt (y * 2<2 * n>) = sqrt (y) * 2n

is used to reduce the input range to the interval (.5, 2.0).
An initial approximation to sqrt(y) is computed using
(31/64) * y + (31/64). This is accurate to five bits.

One Heron's iteration is performed, which produces 11 bits
of precision and a positive error. The error is centered,
giving 12 bits of precision. Two more Heron's iterations
are used to produce a single-precision result. This result
is converted to double-precision using one Newton's
iteration:

xO = (31/64)* y + (31/64)
xl = .5 * (xO + y/xO)
xl' = xl - xl * 2"12
x2 = .5 * (xl' + y/xl')
x3 = .5 * (x2 + y/x2)
upper = pack (exponent, x3)
lower + (y * 2<2 * n) - upper2)/(2 upper)

The 2n scaling is performed by computing the final upper
exponent and explicitly packing it, ignoring the exponent
o f x 3 . T h e y - x 2 ^ c o m p u t a t i o n i s p e r f o r m e d i n
double-precision, giving a one-word result since the upper
portions nearly cancel.

>^3>\

>*^&X

2-36 60483100 A

0^\
x -

00d

1-z
UlS3OCC<

cod

d

\ d
OJCM
1o
X

©1

CO
CMIo

X
o
toI

CM
Io
X
o
oiI

o > \C M \
I \o \
x \
q \
i a

cnCM
1Or -
X
q
+

o>
CM1o

X -

X
o
oi+

eo- CM
1o
X
o
+

CM
o
X
o
*

aeoococ
UJ
UJ1-3-1o
g<

CM1

x t
dI

qdI

a
oI

?

Figure 2-17. Algorithm Error of DSNCOS. for Sine

60483100 A 2-37

>dS^v

ABSOLUTE ERROR ARGUMENT
-0.8 -0.6 -0.4 -0.2

0.5 x 10~29

0.2 0.4 0 . 6 0 . 8

1.0 xlO-29

1.5 xlO-29

2.0 x 10-29

2.5 x 10~29

3.0 x 10~29

3.5 x 10~29\

4.0 x 10~29

4.S x 10~29

5.0 x 10-29

*rt^K

/*^\

^ ^ § \

.̂ %̂\

fC&Ob.

Figure 2-18. Algorithm Error of DSNCOS. for Cosine 0 ^ ^ ! \

2-38 60483100 A

r * " ^ ^ \

TRUE VRLUE

5 f
ROUTINE .LT.

?
TRUE VALUE
5 5 5

DSQRT
5 5 5 S

0^\

-OX

to m o
09

in
o

J* ■ Xto o -r
t o o »

to
o

>4O
ta -1.0 13.37.

-l.S I O

■ in/ exitci - i u /
IB. 27. 56.07. 23.8X

Figure 2-19. Mean Relative Error of DSQRT

60483100 A 2-39

ERROR ANALYSIS Since:

The algorithm error is at most 2.05E-31, and is always
p o s i t i v e . T h e r o u n d - o f f e r r o r i n c o m p u t i n g t h e
single-precision approximation of x is exactly 1/2 u 1 p.
The maximum is 7.55E-15.

Including algorithm error, x can have just over 1/2 u 1 p
error. Since x is an approximation of the single-precision
part only, the total error in x2 can exceed 2 ulp when
y > x 2 .

Then y - x2 may contain 50 significant bits. The error
range for y - x2 is (-1.78E-15,3.55E-15), and the error
range for (y - x2)/(2 * x) is (-8.88E-5, 3.55E-15). Relative
to x, this error is (-6.71E-29, 2.68E-29).

In order to experience this error, the error in x must be at
least 7.11E-15 so that the resulting error after the last
Heron iteration is in the interval (-4.18E-29,5.55E-29).
The maximum observed error for 100 000 points randomly
chosen in the interval (1,4) was 3.19E-29. The maximum
observed error for 200 000 points randomly chosen from
the interval (1,1.5) was 3.89E-29.

DTAN.
DTAN. is an external routine which accepts calls from
FORTRAN code . I t computes the tangen t func t ion
(F O R T R A N f u n c t i o n n a m e D TA N) . I t a c c e p t s a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry point DTAN..

METHOD

The input range is the set of all valid double-precision
quantities in the range (-2^9, 2^9). Arguments outside this
range initiate error processing. The constants used to
compute the function are listed in the description of
routine DTAN. The argument reduction performed is:

(i) A p i / 2 r e d u c t i o n i s fi r s t p e r f o r m e d . I f t h e
argument is outside the interval (-pi/4, pi/4), a
signed integer multiple n of pi/2 is computed
such that, after adding it to the argument, the
result z falls in the interval (-pi/4, pi/4).

(i i) A 1 / 8 r e d u c t i o n i s p e r f o r m e d . A s i g n e d
i n t e g e r m , w h i c h i s a m u l t i p l e o f 1 / 8 , i s
subtracted from' z such that the result is in the
interval (-1/16,1/16). A small number E(m) is
also subtracted from z. The value of E(m) is
constant such that the tangent of m/8 + E(m)
can be represented to double-precision accuracy
in a single-precision word. The lower word is
zero. Therefore, the or ig inal argument y is
reduced to x as follows:

x = y - (n * pi/2) - (m/8 + E (m))

The following quantities are computed from the reduced
argument x , and the range reduc t ion va lues . The
functions U and L represent "upper of" and "lower of"
functions.

TAN(x) = TAN (SQRT (x2))
= TAN (SQRT (U(U(x)2 + L(U(x)2) + 2L(x)U(x)))
= TAN (SQRT (B + A))
= TAN (SQRT (B) + A/2B)
= TAN (SQRT (B) + R)

Then S = SQRT(B) = Xu - L(U(x)2)/2U(x)

The value of the original argument y is:

TAN(y) = TAN(x + n * pi/2 + m/8 + E(m))

The effect of the n * pi/2 term on the final result is:

TAN (y) = TAN (x + m/8 + E (m)) if n is even

TAN (y) = 1/TAN (x + m/8 + E (m)) if n is odd

Applying the tangent addition formula:

TAN(x + m/8 + E(m)) = TAN(S + R + (m/8 + E(m)))

TAN(S) + TAN(R) + T - TAN(S) * TAN(R) * T
" 1 - TAN(S) * TAN(R) - TAN(R) * T - T * TAN(S)

TAN(S) + R + T - TAN(S) * R * T

T = TAN (m/8 + E(m))
R = L(U(x)2)/2U(x) + L(x)
A = L(U(x)2) + 2L(x)U(x)
B =U(U(x)2)

(table look-up)

1 - TAN(S) * R - R * T - T * TAN(S)

The computation of TAN(S) uses the general polynomial
form:

x + x3/3 + x5 * 2/315 ...

After applying Chebyshev to the coefficients, the form is:

TAN(S) = S + S * (((1)S2 + C(2)S* + C(3)S* + C(4)S8 +
(a/(B-S2))Sl°)

where a = .0218 ... and b = 2.467 ...

The quotient is inverted if n is odd.

ERROR ANALYSIS
For each of the intervals (-pi/4, pi/2) and (.01,2pi),
100 000 random arguments were generated. The resulting
graphs of relative error versus argument are shown in
figures 2-20 and 2-21. The first graph has a linear scale,
and the second has a logarithmic scale. The worst value
for re la t ive er ror was 1 .6145E-28 a t .065205. The
percentage and mean for the second graph are biased
since more points fall within the function's best range.

Algor i thm Error
The algorithm error has a negligible effect on the total
error. The worst relative error of the algorithm curve is
1.032E-29 at .06853. The discontinuities in the curve are
a result of breaks in the range reduction with constants
which cannot be represented exactly.

As figure 2-20 shows, there is a large peak in the relative
error graph at 1/16. The same peak occurs at any
multiple of pi/2 plus or minus 1/16. This is caused by the
polynomial term in the quotient. Although the numerator
and denominator of the quotient can be single-precision

^Cs^y

,*<^5\

X&g^v

2-40 60483100 A

'-**̂ \

J$*N

0^.
ROUTINE .ST. TRUE VRLUE

? ? ? ? ?
ROUTINE -LT. TRUE VRLUE DTRN

? ? ?

/"S^v

— o — o

C M C M

. f a i r - t n r ' t u t * . t i t u . X i x r r i a v . t m r t t l t t t - i m r - J o t f - 1 * r - i n t r - S o u 1 - * * » - t o u r - • u i ' - • * > *
. 0 7 . . 0 7 . . O X . 2 7 . . 9 7 . 3 . 9 7 . I S . 1 7 . 4 S . 2 7 . 2 6 . 8 1 5 . 4 7 . 1 . 4 7 . . 3 7 . . 1 7 . - 0 7 . . 0 7 . - 0 7 . . 0 7 .

Figure 2-20. Mean Relative Error of DTAN. (arithmetic scale)

60483100 A 2-41

ROUTINE .OT. TRUE VRLUE ROUTINE .LT. TRUE VALUE

! !
1 0 I D- ■ * » F . » « D ■ I ■ ■

u i m « «

DTAN

<<i?8y

./*Ss*v

•Tuif
.07.

•«tiu>

.07
' S U V

.07.
• 4 u i r « 3 u i / . J u l * ' - i m j t x s c r - m u > - 2 w f - 3 m r - 4 u r
.27. 1.07. 4.57. 1B.S7. 38.3K 27.37. 1.17. 1.87. .47.

Smf -toii> -7uip ■8ULT -SlILf
• 17. .07. .07 ■ 07. .07.

Figure 2-21. Mean Relative Error of DTAN. (logarithmic scale)

• ^

2-42 60483100 A
*&°!$\

i * $ ^ \

0JBfe\

quant i t ies , the resu l t shou ld be doub le-prec is ion .
Ac tua l l y, i t i s computed in s ing le -prec is ion . I f the
a l g o r i t h m e r r o r i s c o m p u t e d w i t h t h a t d i v i s i o n i n
single-precision, the worst relative error is 3E-29.

There is a negligible error introduced by the pi/2 range
reduction except for points close to nonzero multiples of
p i /2 . Near p i /2 the p i /2 reduct ion re la t ive er ror i s
bounded by 2^n " 155) where n is the number of bits of
precision to which the argument represents pi /2. At
larger multiples of pi/2, similar problems occur.

Total Error

The total error curve is symmetric about all multiples of
pi/2, except for variations caused by the range reduction
error. For the range (0, pi /2), most of the error is
attributed to forming the final quotient, except for the
area around 1/16. In the interval (0,1/16) the error is
smaller than in the interval (1/16, pi/2). This is because
the denominator is 1 - e, where 1/e is less than 2^2. In
the actual representation, the upper word is an exact 1
and the lower word is small and negative.

The divisions performed in double-precision introduce no
error. Because this number is accurate, there is a better
area in the range (pi/4 - 1/16, pi/4 + 1/16).

EFFECT OF ARGUMENT ERROR
If a small error e occurs in the argument x, the error in
the result is e + e * tan2(x).

DTANH
DTANH is an external routine which accepts calls from
FORTRAN code. I t computes the hyperbol ic tangent
function (FORTRAN function name DTANH). It accepts a
double-precision argument and returns a double-precision
result.

Calls by name are computed at entry point DTANH.

METHOD

T h e i n p u t d o m a i n i s t h e c o l l e c t i o n o f a l l v a l i d
doub le -p rec is ion quant i t ies . Arguments ou ts ide the
domain ini t iate error processing in rout ine DTANH..
Upon entry, the argument is loaded into register pair
X1-X2, and routine DTANH. is entered to complete the
computation. See the description of routine DTANH. for
further details.

ERROR ANALYSIS

See the description of routine DTANH.

EFFECT OF ARGUMENT ERROR
See the description of routine DTANH.

DTANH.
DTANH. is an external function which accepts calls from
FORTRAN code. I t computes the hyperbol ic tangent

function (FORTRAN function name DTANH). It accepts a
double-precision argument and returns a double-precision
result.

Calls by value are computed at entry point DTANH..

METHOD
T h e i n p u t d o m a i n i s t h e c o l l e c t i o n o f a l l v a l i d
doub le -p rec is ion quan t i t i es . Arguments ou ts ide the
domain which are indefinite init iate error processing.
M o s t o f t h e c o m p u t a t i o n i s p e r f o r m e d i n r o u t i n e
DEULER., and the constants used are listed there. The
argument reduction performed is:

(i) for argument in (-47*log 2,47*log 2) but not in
(-l/*log 2,l/2*log 2):

x = < argument >
y = < reduced argument >
y = 2x - n * log 2

where n is an integer, and y is in (-l/*log 2,l/2*log 2)
tanh(x) = u/v where

u = 1 - 2"n - 2"n * (DC-DS)
v = 1 - 2"n + 2"n * (DC-DS)

(ii) for argument in (-l/2*log 2,l2*log 2):
x = < argument >
y = < reduced argument >
y = x

tanh (x) = DS/(2*+DC)

(iii) for argument outside (-47*log 2,47*log 2):
x = < argument >
y = < reduced argument >

tanh (x) = 1 - 2 ((1+DC-DS) * 2"n - ((1+DC-DS) * 2"n)2)

In (i), (ii), and (iii), DC=cosh(y)-l and DS=sinh(y).

On entry to DTANH., reg is ter pa i r XI -X2 holds the
argument, and on exit, register pair X6-X7 holds the
result.

a. a = X1-X2 = < argument >.
X7-X6 = b = |a|.
B5 = sign mask of a.
X5 - packed zero.
Bl = 1.
B4 = address of step e.
If exponent of first word of a is less than -49, jump to
routine DEULER. at entry point DEULER..
X7 = X7 * 2.
X6 = X6 * 2.
B4 = address of step c.
If exponent of first word of a is less than -42, jump to
routine DEULER. at entry point DEULER..

b. X6-X7 = ± 1. with sign obtained from B5.
If a is definite, return.
Set parameters for a call to error processor.
Call error processor.
If control returns from error processor, return.

c. On return from DEULER.:
B3 = n = integer offset in argument reduction,

X7-X6 = n*log 2 + y
X4-X5 = DX
X0-X1 = DC
X6-X7 = DS

/*f^\
60483100 A 2-43

ROUTINE .CT. TRUE VRLUE

? s s S f
ROUTINE .LT. TRUE VRLUE

C C C S ?
DTRNH
s s ?

-̂ ^̂ \

• ^

r * ^ S

»«ia.r
.OX

>4u.r
-1/.

« 3 U L f • t l i l . t M u u 1 l * B C l - I m p - 2 U . P

. 8 7 . 6 . 3 X 2 S . 3 Z 4 S - 1 X 1 9 . T t 3 - 2 7 .
• l U LT

• 3X
■4tnr
• OX

-6l iLT
.07.

Figure 2-22. Mean Relative Error of DTANH.

2-44 60483100 A

where: EFFECT OF ARGUMENT ERROR

0O$>\

DX = exp (y)-l
DC = cosh (y)-l
DS = sinh (y)

If n 47, go to step f.
u = l.-2-n - 2-" (DC-DS)
v = l.+2"n + 2-n (DC-DS)

d. w = u/v, in double-precis ion.
Go to step g.

e. u = DS
v = l.+DC, in double-precision.
Go to step d.

f. w = 1. - 2 * ((1 *+DC-DS) * 2"n - ((1. +DC-DS) * 2"n)2)
(evaluated in double-precision, although only the
second word of 1. is affected.)

g. Clean up w, affix sign in B5 and leave in register pair
X6-X7.

Return.

ERROR ANALYSIS
10 000 random arguments were generated in the interval:

(-l/2*log 2,3/2*log 2),

and the resulting graph of relative error versus argument
is shown in figure 2-20. In this sample, the maximum
absolute value of the relative error is 8.581E-29. Random
samples of 100 arguments were generated in given
intervals, and statistics on relative error were observed.
These are given in table 2-17.

Algor i thm Error

The algorithm error is insignificant. It is predominated by
the error in the sinh expression in DEULER., but by
various folding actions, the error is reduced even further.

Total Error

The error plot should be symmetric about the origin. In
the range (0, .5) the error is dominated by the code to
perform s/(l+c); the errors in s and in adding 1+c are
secondary. Just above .5, several factors conspire to
create errors: an addition of numbers of opposite sign in
the numerator, an addition in the denominator, and a
division. The errors in evaluating sinh are insignificant in
comparison. Up to 16.5, the result is slightly less than 1.0
and the error is almost totally due to imprecise division of
slightly imprecise arguments. From 16.5 to 64.0 (2^), the
result is perfect. Above 64.0 (not shown), the error will
taper off to zero because the answer will be 1.0 while the
true value is closer to 1.0 than l-2"9°.

If a small error e' occurs in the argument x, the error in
the result is given approximately by e' * sechnx).

DTOD*
DTOD* is an exponent ia t ion rou t ine wh ich accepts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
performs exponentiation for FORTRAN statements that
ra ise double-precis ion quant i t ies to double-precis ion
exponents. It accepts two double-precision arguments and
returns a double-precision result.

Calls by name are computed at entry point DTOD$.

METHOD
The result is calculated by:

result = exp (exponent * log (base))

Upon entry, the argument set is checked. It is invalid if
either argument is infinite or indefinite, if the base is
negative, if the base is zero and the exponent is not
greater than zero, or if floating-point overflow occurs
during the computation. If the argument set is invalid,
POS.INDEF. is returned, and a diagnostic message is
issued. Otherwise, DTOD* computes the result according
to the equation. The result is returned to the calling
program.

ERROR ANALYSIS
The algorithm used in routine DTOD* is the same as that
used in routine DTOD., the call-by-value counterpart.
See the description of DTOD. for the error analysis.

EFFECT OF ARGUMENT ERROR
If a small error e' occurs in the base b and a small
error e" occurs in the exponent p, the error in the result
is given approximately by:

bP * (p/b*e' + log (b)*e").

The absolute error is approximately the absolute value of
th is expression. I f the errors in the arguments are
significant, the error in the result should be found by
subst i tut ion of the possib le argument values in the
expression bP.

DTOD.
DTOD. is an exponent ia t ion rou t ine wh ich accepts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
performs exponentiation for FORTRAN statements that

/^sse^

TABLE 2-17. RELATIVE ERROR OF DTANH.

Interval 's
Lower
Bound

Interval 's
Upper
Bound

Mean Standard
Deviation Minimum Maximum

-2.
-30.

2.
30.

3.011E-30
1.640E-30

1.7353-29
9.7603-30

-6.675E-29
-3.692E-29

7.436E-29
2.544E-29

60483100 A 2-45

raise double-precision quantities to double-precision expo
nents. It accepts two double-precision arguments and
returns a double-precision result.

Calls by value are computed at entry point DTOD..

EFFECT OF ARGUMENT ERROR
If a small error e1 occurs in the base b, the error in the
result will be given approximately by n * b'n~l' * e1,
where n is the exponent given to the routine.

METHOD
The input range is the collection of all argument sets (b,p)
for which b and p are definite in-range double-precision
quantities, and b is positive. If b is zero, then p is greater
than zero, and bP is in-range.

The formula used is:

bP = exp(p * logb)

where b > 0. Upon entry, DLOG. computes log b, and
DEXP. computes exp(p*logb). The result is returned to
the calling program.

ERROR ANALYSIS
10 000 pairs of double-precision random numbers were
generated, with distribution being the product of uniform
distributions over (.5,1.5) and (-10,10). The error in the
routine's computation of bP was determined for each of
these pairs. The maximum absolute value of the relative
e r ro r i n th i s rou t i ne fo r t hese .10 000 pa i r s was
2.977 * 10"25.

EFFECT OF ARGUMENT ERROR

If a small error e(b) occurs in the base b and a small error
e(p) occurs in the exponent p, the error in the result r is
given approximately by:

r * (logb * e(p) + p * e(b)/b)

DTOI*
DTOI* i s an exponent ia t ion rou t ine wh ich accep ts
comp i l e r - gene ra ted ca l l s f r om FORTRAN code . I t
performs exponentiation for FORTRAN statements that
raise double-precision quantit ies to fixed-point expo
nents. It accepts a double-precision argument and a
fixed-point argument, and returns a double-precision
result.

Calls by name are computed at entry point DTOI$.

METHOD

The argument set is checked upon entry. It is invalid if
either argument is infinite or indefinite, or if the base is
zero and the exponent is not greater than zero. If the
argument set is invalid, a diagnostic message is issued,
and POS.INDEF. is returned. Otherwise, DTOI. is called
at entry point DTOI. for the computation. The result is
returned to the calling program.

ERROR ANALYSIS
Not applicable.

DTOI.
DTOI . i s an exponen t ia t i on rou t ine wh ich accep ts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
performs exponentiation for FORTRAN statements that
raise double-precision quantities to fixed-point exponents.

Calls by value are computed at entry point DTOI..

METHOD

A b represents the base and a p represents the exponent.
If p is non-negative and has the binary representation
000.. .0i (n) i (n-1). ..i(l)i(0) where each i(j)(0< j<n) is 0
or 1, then:

p = i (0)*2° + i (l)*2i +... i (n)*2n

and n = (log(2)p) = greatest integer not exceeding log(2)p.
Then

bP = Prod((b2)J:0<j<n& i(j) = 1).

The numbers b = b2 , b2, b*4,..., b2 are generated by
successive squarings, and the coefficients i(0),... ,i(n)
are obtained as the sign bits of successive circular right
shifts of p within the computer. A running product is
formed during the computation, so that smaller powers of
b and earlier coefficients i(j) may be discarded. Thus, the
computation becomes an iteration of the algorithm:

bP = 1 if p = 0.
bP = (b2)P'2 if p > 0 and p is even.
bP = b * (b2)(P"1)/2 if p > 0 and p is odd.

Upon entry, if the exponent p is negative, p is replaced by
-p and b is replaced by 1/b; b is double-precision. For
b = x (u)*x (I), 1/b = (1/b) (u)*(l/b) (1) is given in terms of
x (u) and x (1) by the following formulas, where n is the
normalization operation. The subscript 1 on one of the
operations indicates that the coefficient of the result is
taken from the lower 48 bits of the 96 bit result register,
and the exponent is 48 less than the single-precision
coefficient's exponent. The formulas are:

(1/b) (u) = n (i/x u) + (((n (i-(l-(l/x (u))*x (u))
+ (1 - (1) (1/x (u)*x (u)) - (1/x (u)*(l) x (u))
-(l/x(u)*x(l)/x(u)))
+ (1/x (u) + (1) (((n (l-(l/x (u)) * x *u)
+ (1-(1) (1/x (u))*x (u))) - (1/x (u))*(1) x (u)
- (l / x (u)) * x (l)) / x (u))

(l/b)(l) = n(...) + (l)(...)

In the routine, double-precision quantities x = x(u)*x(l)
and y = y(u)*y(l) are multiplied according to:

x*y = (x*y)(u)*y(l))

where:

(x*y) (u) = (((x (u)*y (1)) + (x (l)*y (u)))
+ (x(u)*(l)y(u))) + (x(u)*y(u))

>^ \̂

,*^^S\

2-46 60483100 A

and DTOX.

/*$<3"\

/p5\

/fPN

(x*y) (1) = (((x (u)*y (1)) + (x (l)*y (u)))
+ (x(u)*(l)y(u))) + (l)(x(u)*y(u))

The input range is the collection of pairs of arguments
(b, p) for which p>0 if b is zero, all quantit ies are
definite and in-range, and the result is in-range.

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the base b, then the error in
the result is given approximately by p * b'P"*' * e', where
p is the exponent. If the error e' is significant, the
absolute error in the result is bounded above by:

p *max(lbl,lb + e'l^P"1) * e' .

DTOX*
DTOX* is an exponent ia t ion rout ine which accepts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
performs exponentiation for FORTRAN statements which
r a i s e d o u b l e - p r e c i s i o n q u a n t i t i e s t o fl o a t i n g - p o i n t
exponents. It accepts a double-precision argument and a
floating-point argument, and returns a double-precision
result.

Calls by name are computed at entry point DTOX$.

METHOD
The argument set is checked upon entry. It is invalid if
either argument is infinite or indefinite, if the base is
zero and the exponent is not greater than zero, if the base
is negat ive, or i f ar i thmet ic overflow occurs dur ing
computation. The result is calculated using:

baseexPonent = exp (exponent * log (base))

If the argument set is invalid, POS.INDEF. is returned and
a diagnostic message is issued. If the argument set is
valid, the computed result is returned to the call ing
program.

ERROR ANALYSIS
The algorithm used in DTOX* is the same as that used in
DTOX.. See the description of routine DTOX..

EFFECT OF ARGUMENT ERROR
If a small error e' occurs in the base b and a small
error e" occurs in the exponent p, the error in the result
is given approximately by:

bP * (p/b * e' + log (b) * e")

The absolute error is approximately the absolute value of
this expression. I f the errors in the arguments are
significant, the error in the result should be found by
subst i tut ion of the possible argument values in the
expression bP.

DTOX. i s an exponent ia t ion rou t ine wh ich accepts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
performs exponentiation for FORTRAN statements which
raise double-precision bases to floating-point exponents.
I t a c c e p t s a d o u b l e - p r e c i s i o n a r g u m e n t a n d a
floating-point argument, and returns a double-precision
result.

Calls by value are computed at entry point DTOX..

METHOD

The input range is the collection of argument sets (b,p) for
which b is a definite in-range double-precision quantity, p
is a definite in-range floating-point quantity, and b is
positive. If b is zero, then p is greater than zero, and bP
is in-range.

The formula used is:

bP = exp (p * log b)

where b>0. Upon entry, DLOG. is called to compute
log b, and p * log b is computed in double-precision.
DEXP. is called to compute exp(p * log b), and the result
is returned to the calling program.

ERROR ANALYSIS
10 000 pairs (b,p) of random numbers were generated
where b is double-precision and p is single-precision. The
distribution was the product of uniform distributions in
(.5,1.5) and (0,1). The maximum absolute value of the
r e l a t i v e e r r o r i n t h e r o u t i n e f o r t h e s e p a i r s w a s
6.405 * IO"29.

EFFECT OF ARGUMENT ERROR

If a small error e(b) occurs in the base b and a small error
e(p) occurs in the exponent p, the error in the result r is
given approximately by:

r * (e (p) * log b + p * e (b)/b)

DTOZ*
DTOZ* is an exponent ia t ion rou t ine wh ich accepts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
performs exponentiation for FORTRAN statements which
raise double-precision quantities to complex exponents. It
accepts a double-precision argument and a complex
argument, and returns a complex result.

Calls by name are computed at entry point DTOZ$.

METHOD
If the base is real and the exponent is complex, then:

baseexponent = x + i*Y,

where:

X=exp(re(exponent)*log(base))*cos(im(exponent)*log(base))
Y=exp(re(exponent)*log(base))*sin(im(exponent)*log(base))

60483100 A 2-47

Upon entry the double-precision base is rounded to
s ing le-prec is ion, and the resu l t ing argument set is
checked. The argument set is invalid if: either number is
infinite or indefinite, the base is zero and the real part of
the exponent is not posi t ive, the base is negat ive,
ar i thmet ic overflow occurs dur ing any stage of the
computation, or precision is lost because the argument is
too large. If the argument set is invalid, a diagnostic
message is issued and POS.INDEF. is returned. Otherwise,
the result of the computation is returned to the calling
program.

ERROR ANALYSIS
The algorithm used in DTOZ* is the same as that used in
DTOZ.. See the description of DTOZ..

EFFECT OF ARGUMENT ERROR

If e* and e" are small errors in the base b and exponent z,
respect ive ly, then the corresponding error in bz is
approximately ((z/b) * e' + e" * log (b)) * bz. The abso
lute error will be approximately the absolute value of
this. If e' or e" becomes significant, the error in the
result should be calculated by substitution of the possible
values of the arguments in the expression bz.

DTOZ.
DTOZ. i s an exponent ia t ion rou t ine wh ich accepts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
performs exponentiation for FORTRAN statements which
raise double-precision quantities to complex exponents. It
accepts a double-precision argument and a complex
argument, and returns a complex result.

Calls by value are computed at entry point DTOZ..

METHOD

The input range is the collection of argument sets (b,z)
where b is a definite in-range double-precision quantity, z
is a definite in-range complex quantity, b is greater than
zero, and bz and b2 are in-range.

The formula used is:

b(u+i*v) = exp (u*logb) * cos(v*log b)
+ i * exp (u*log b) * sin (v*log b)

w h e r e b > 0 . U p o n e n t r y , t h e l o w e r h a l f o f t h e
double-precision base b is discarded, and ALOG. is called
to compute log b. EXP. is called to compute exp (u*log b),
and COS.SIN is cal led to compute cos(v* logb) and
sin(v*logb), where u + i * v is the exponent. The result
is computed from the formula, and is returned to the
calling program.

ERROR ANALYSIS

10 000 pairs (b,z), where b is double-precision and z is
complex, were generated with distr ibution being the
produc t o f un i fo rm d is t r ibu t ions over the in te rva ls
(.5,1.5), (-10,10), and (-2.pi, 2.pi). The maximum modulus
of the relative error in the routine was found to be
5.605 * 10~14.

EFFECT OF ARGUMENT ERROR
If a small error e(b) occurs in the base b and a small error
e(z) occurs in the exponent z, the error in the result w is
given approximately by:

w * (e (z) * log b + z * e (b)/b)

ERF.
ERF. is an external function which accepts calls from
FORTRAN code. It computes the error function and the
complementary error function (FORTRAN function names
ERF and ERFC). It accepts a floating-point argument and
returns a floating-point result.

Calls by name are computed at entry points ERF and
ERFC, and calls by value are computed at entry points
ERF. and ERFC..

METHODt
T h e i n p u t r a n g e i s t h e c o l l e c t i o n o f a l l d e fi n i t e
floating-point quantit ies (including out-of-range values
INF) except the range (25.92277515027854,+INF) for
ERFC, which underflows.

The rou t i ne ca l cu la tes the sma l l e r o f e r f (abs (x)) ,
erfc (abs (x)), and uses the identities:

erf(-x)=-erf(x)
er f (x)=l -er fc(x)

to compute the final value, which is the sum of a signed
function and a constant.

The forms used are given in table 2-18.

where the constants .477 and 25.9 are inverse erf (0.5)
and inverse e r fc U"9?- ') , wh ich a re approx imate ly
0.47693627620447 and 25.92277515027854.

The function pi is a (5th order odd)/(8th order even)
ra t iona l fo rm. The func t ions p2 , p3 a re exp (-x2) *
(rational form), where p2 is (7th order)/(8th order) and p3
is (4th order)/(5th order). Since exp(-x2) is ill-conditioned
for la rge x , exp(-x2) is ca lcu la ted by exp(u+eps)=
exp (u)+eps*exp (u), where u=-x2 upper and eps=-x2 lower.

ERROR ANALYSIS

The large error in p2 and p3 is due to the large size of the
rational forms and the additional error in expC-x2). The
polynomials in p2 and p3 are stable, but not as accurate as

TABLE 2-18. FORMS USED IN ERF . (y=ABS(x))

Range ERF ERFC

(-INF.-5.625) -1.0 +2.0
(-5.625,-.477) -1.0+p2(y) +2.0-p2(y)
(-.477,0) -p i (y) +1.0+pl(y)
(0.+.477) +pi(y) +1.0-pl(y)
(.477,5.625) +1.0-p2(y) P2(y)
(5.625,8.0) +1.0 P2(y)
(8.0,25.9) +1.0 under flow

+INF +1.0 +0.0

. . * ^ a V

*^S\

t The coefficients for p2 and p3 are from Hart, Cheney, Lawson, et al., Computer Approximations.

2-48 60483100 A

^ ^ S \

J$0B&\

most exponent ia l - type approx imat ions, wh ich, when
evaluated using Horner's rule, add the smallest terms
first. Invert ing x and reversing coefficients does not
improve accuracy because of the error involved in division.

The maximum error in the approximations pi, p2, p3,
scaled by 10^^, is given in table 2-19.

In regions where a constant is added, that constant
dominates and the error is less than that shown.

Figures 2-23 and 2-24 show the mean relative errors for
ERF. and ERFC..

EFFECT OF ARGUMENT ERROR
For small errors in the argument x, the amplification of
absolute error is (2/sqrt (pi))*exp (-x2) and that of relative
error is (2/sqrt (pi))*x*exp (-x2)/f (x) where f is erf or
e r f c . T h e r e l a t i v e e r r o r i s a t t e n u a t e d f o r E R F
everywhere and for ERFC when x< 0.53. For x> 0.53 the
relative error for ERFC is amplified by approximately 2x.

If the value of x is known to more than single-precision,
the following FORTRAN code may be used to compute an
accurate value of ERFC when x is large:

DOUBLE X
DATA SQRTPI / < 2/sqrt (pi) > /

(compute X)
SNGLX=SNGL(X)
SHSNGLX=SNGL (X-SNGL (X))
Y=ERFC (SNGLX)+SHSNGLX+SQRTPI*EXP (-SNGLX**2)

(Yis ERFC(X))

EXP
EXP is an external function which accepts calls from
FORTRAN code. It computes the exponential function
(F O R T R A N f u n c t i o n n a m e E X P) . I t a c c e p t s a
floating-point argument and returns a floating-point result.

Calls by name are computed at entry point EXP, and calls
by value are computed at entry point EXP..

METHOD*

The input range to this routine is the collection of all
definite in-range floating-point quantit ies lying in the
interval (-675.84,741.67). Upon entry, the argument x is

TABLE 2-19. MAXIMUM ERROR OF ERF.

Source Of Error Pi P2 P3
Rational form
Coefficient rounding
Round-off
Upper bound
Maximum observed

1.1
0.5
14.7
16.3
12.8

4.9
0.8
110
116
27.9

1.7
1.4
68
71
28.3

u + 2*

multiplied by 16./log(e)2. in double-precision, and the
integral (n) and fractional (u) parts computed. The range
reduction formula used here is:

exp (x) = 2^/log 2)= (2l/16))(16*x/log 2)
=(2l/16)n*(2l/16)n

If n = 16 * q + r where q and r are integers such that
0 < r < 16, exp (x) is finally given by:

exp (x) = 2°. * (21/16)1" * (2l/16)u
and a will be added to the exponent of the result. Then
(2l/16)r is obtained from a look-up table, and (21'16)" is
obtained from the following approximation:

(2l/16)n=

u*(p(00) + p(01)*u2)

(q (00) + u2) - u * (p (00) + p (01) * u2)

where the constants are given by:

q(00) = 20.8137711965230361973 * 256
p(00) = 7.2135034108448192083 * 16
p(01) = .057761135831801928 / 16

ERROR ANALYSIS
T h e m a x i m u m a b s o l u t e v a l u e o f t h e e r r o r o f
approximation of the algorithm is 5.000 * 10-1? over the
interval (-(log2)/16,(log2)/16). A graph of the error of
approximation in the algorithm is given in figure 2-23. An
upper bound for the absolute value of the error due to
machine round-off is 1.868 * IO"** over the interval
((-log 2)/16,(log 2)/16). Hence an upper bound on the
absolute value of the error in the routine over this
interval is 1.873 * lO"-^. A bound on the routine's error
for any given argument x can be obtained by employing
the multiplication formula for exp:

exp (x + y) = exp (x) * exp (y)

The maximum absolute value of the relative error of
approximation of the algorithm over (-log2/16, log2/16) is
4.838 * 10~17. An upper bound on the absolute value of
the relative error due to machine round-off and truncation
is 6.890 * IO"15 over ((-log 2)/16,(log 2)/16). So an upper
bound on the absolute value of the relative error is
6.938 * 10"15 over the interval ((-log 2)/16,(log 2)/16).

For 10 000 arguments chosen randomly f rom given
intervals, stat ist ics on relat ive error were observed.
These are given in table 2-20.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument, the error in the
result y is given approximately by y * e'.

HYP.
HYP. is an external function which accepts calls from
FORTRAN code. It computes the hyperbolic sine and
cosine functions (FORTRAN function names SINH and

This approximation is described in Hart, Cheney, Lawson, et al., Computer Approximations, (New York) 1968, John Wiley
and Sons, pp. 96-104.

60483100 A 2-49

ROUTINC .ST. TRUE VftLUC •OUTIMC .LT. TRUE VALUE ERF

, A f ^ \

/? *#$$.

j&m%K

• OX
• l M f >

1 . 4 Z 1 7 . U
IMCT

6 0 . I X
•uu>

20.7X .tiX
- M U >

.ox

Figure 2-23. Mean Relative Error of ERF.

2-50 60483100 A

ROUTINE .ST. TRUE VRLUE ROUT IKE .LT. TRUE VRLUE ERFC

/fSv

/JsSs

• OX .ox •ax
- I t v . f u r - i n t r R M T - I t w - I N * - l a *
1 . 4 X 4 . 8 X 1 4 . 4 7 . 4 4 . S X 2 4 . S X 7 . 4 X 1 - S X

-4«t»
. 4 X .OX .ox

Figure 2-24. Mean Relative Error of ERFC.

60483100 A 2-51

ut
S3O
OC

m°-

«Mq

o

I*. I X ^ r * r«.r*» r- I** _̂ x—
T 1 1 X -1 ^ ^ 1
o o o o X - ^ ^ ^ • » - 1~ x—*" X - X— X - ^ ^ ^ X
X X X X ^ T + ^ °o
ed (O

K
O
OCoc
UI

1*

/^^\

'*"^?\

Figure 2-25. Algorithm Error of EXP.

2-52 60483100 A

TABLE 2-20. RELATIVE ERROR OF EXP

0^\

/^$m\

Interval Mean Standard
Deviation Minimum Maximum

From To
-673.
-1.

741.
1.

-3.012E-16
-3.100E-16

2.181E-15
2.223E-15

-6.887E-15
-6.769E-15

5.193E-15
5.028E-15

jgafev

COSH). It accepts a floating-point argument and returns
a floating-point result.

Calls by name are computed at entry points SINH and
COSH, and calls by value are computed at entry points
SINH. and COSH..

METHOD
The input range is the collection of all definite in-range,
floating-point quantities lying within the interval:

(-1071*log(2),1071*log(2)) = (-742.3606303797,742.3606303
797)

The formulas used to compute sinh(x) and cos(x) are:

x = n*loq2 + a, la I < l/2*log 2,
cosh(x) = 2vn"i) * cosh (a) + 2(n-D * cosh (a) + 2<n-l) *

sinh (a) - 2 * sinh (a)
sinh (x) = 2(n-D * sinh (a) + 2Cn-D * sinh (a) + 2<n-D *

cosh (a) -2<n-l)*cosh(a)
cosh (a) = 1 + d (a)
sinh (a) = a+a3*(s (3)+a2*(s (5)+b/(a-a2)))

d (a) = a2*(l/2+a2*(c (4)+a2*(cT6)+a2*(c (8)+a2)*c (10))))

where:

s(3) = .16666666666693558
s(5) = -.005972995665652368

b = 1.031539921161
a = 72.10374670722

c(4"5 = .041666666666488081
c(6) = .0013888888952318045
c(8) = 89.75473897315022

c(10) = 2.763250805803 * IO"?

In the fo l lowing descr ip t ion o f the a lgor i thm used,
XI = x = argument on entry; entry is at SINH. or COSH.;
and on exit, X6 = result.

a. If Ixl >1071*log(2), go to step j.

b. u = x .
v = +0 if x > 0.

-0 if x < 0.

d. n = (u/log 2+.5) = nearest integer to u/log 2.
w = u - n*log 2, where the right-hand expression is
evaluated in double-precision.

e. s = w+w^(s (3)+w2(s (5)+b/(a-w2))).
d = w2(l/2+w2(c(4)+w2(c(6)+w2(c(8)+w2)*c(10)))).
a = (l+d-s)*2(n-D.
b = d+s.

f. If COSH, entry, go to step h.

g. c = (1/4 + (1/4+b))*2(n-D + &(r\-3) + (2(n-3) . a)).
X6 = c with the sign stored in v.
Go to step i.

h. c = (l+b)*2(n-D + a.
X6 = c.

i . R e t u r n .

j. If infinite or indefinite argument, go to step 1.

k. Normalize argument,
u =1x1.
v = +0 if x > 0.

-0 if x < 0.
If lxl< 1071*log2, go to step d.

1. Initiate error processing.

m. X6 = POS.INDEF. if x is indefinite.
POS.INF. if x is infinite or too big, and positive,

or COSH.
N E G . I N F. i f x i s i n fi n i t e o r t o o b i g , a n d

negative,
and SINH.

n. Go to step i.

ERROR ANALYSIS

The maximum absolute value of relative error in the
a p p r o x i m a t i o n o f s i n h o v e r (- l o g 2 / 2 , l o g 2 / 2) i s
1.282 * 10-15, ancj 0f cosn over (_log 2/2, log 2/2) is
2.421 * 10-16. Computed upper bounds on the absolute
value of relat ive error due to machine error in the
computation of sinh is 2.392 * IO-14 and of cosh is
1.024 * 10~14. Hence, upper bounds on the absolute value
of relative error in the routine is 2.520 * 10_1^ for sinh,
and 1.048 * 10-1^ for cosh. Graphs of the relative errors
in the algorithms used to approximate sinh and cosh over
(-log 2/2, log 2/2) are given in figures 2-26 and 2-27.

EFFECT OF ARGUMENT ERROR
If a small error u occurs in the argument x, the resulting
error in sinh(x) is given approximately by cosh(x)*u, and
the resulting error in cosh(x) is given approximately by
s inh(x)*u . I f the er ror u is not smal l , the add i t ion
formulas for sinh and cosh should be used to find the
resulting error:

sinh(x+u) = sinh(x)cosh(u)+cosh(x)sinh(u)
cosh(x+u) = cosh(x)cosh(u)+sinh(x)sinh(u)

HYPERB.
HYPERB. is an auxiliary routine which accepts calls from
CCOS, CSIN , and CSNCS. . I t pe r fo rms inc iden ta l
computation of the hyperbolic sine and cosine functions.
It accepts a floating-point argument and returns two
floating-point results.

Calls by value are computed at entry point HYPERB..

60483100 A ;-S3

RELATIVE ERROR

-8.0 x 10~16

Figure 2-26. Relative Error of HYP. for Sinh

2-54 604tJ3100 A

0^\ RELATIVE ERROR ARGUMENT

0&\

0^\

- O A - 0 . 3 - 0 . 2 - 0 . 1 0 0 1 0 . 2 0 . 3 0 . 4

-2.0 x 10~17

-4.0 x 10-17

-6.0 x 10~17

-8.0 x 10~17

-1.0 x 10~16

-1.2 x 10~16

-1.4 x 10~16

-1.6 x 10-16

/
-1.8 x IO-16

-2.0 x IO-16

Figure 2-27. Relative Error of HYP. for Cosh

60483100 A 2-55

/p^v

METHOD ERROR ANALYSIS
The input range is the collection of all definite in-range
fl o a t i n g - p o i n t q u a n t i t i e s w h i c h l i e i n t h e i n t e r v a l
(-741.67, 741.67). The hyperbolic cosine is computed by:

cosh (x) = .5 * (exp (x) + exp (-x))

If lx|> .22, the hyperbolic sinh is computed by:

sinh (x) = .5 * (exp (x) - exp (-x))

For Ixl < .22, the MacLaurin series for sinh is truncated
after the term x^/9! and the resulting polynomial is taken
as approximation:

sinh (x) x + x3/3! + x5/5! + x7/7! + x9/9!

ERROR ANALYSIS
T h e m a x i m u m a b s o l u t e v a l u e o f t h e e r r o r o f
approximation for cosh(x) is 5.000 * 10~17 and for sinh(x)
is 1.464 * 10_15, over the interval (-log 2, log 2). See the
description of EXP. for details concerning the error of
approximation to exp. An upper bound for the error due
to machine round-off and truncation during computation
of the MacLaurin polynomial is 8.198 * 10"1°. A graph of
the error of approximation in the polynomial for sinh is
given in figure 2-28. An upper bound for the routine's
error in the computation of cosh(x) is 7.184 * 10"1^, and
in the computation of sinh(x) is 7.148 * 10~1* over
(-log 2, log 2).

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument x, the resulting
error in cosh(x) is given approximately by sinh(x)*e', and
the resulting error in sinh(x) is given approximately by
cosh (x)*e'.

ITOD*
ITOD* i s an exponent ia t ion rou t ine wh ich accep ts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
per forms exponent ia t ion for s tatements which ra ise
fixed-point quantities to double-precision exponents. It
accepts a fixed-point argument and a double-precision
argument, and returns a double-precision result.

Calls by name are computed at entry point ITOD$.

METHOD

The formula used to perform the exponentiation is:

baseexPoner,t = exp (exponent * log (base)).

Upon entry, the fixed-point argument is converted to
double-prec is ion and the resul t ing argument set is
checked. The argument set is invalid if: the base is zero
and the exponent is not greater than zero, the base is
negative, either argument is infinite or indefinite, or
floating overflow occurs during the computation. If the
base is zero and the exponent is negative, NEG.INF. is
re turned. I f the argument set is o therwise inva l id ,
POS.INDEF. is returned. In all cases, if the argument set
is invalid, a diagnostic message is issued. If the argument
set is valid, the result is computed and returned to the
calling program.

The algorithm used in ITOD* is the same as that used in
ITOD.. See the description of routine ITOD..

EFFECT OF ARGUMENT ERROR
If a small error occurs in the double-precision exponent,
the result ing error in the result is approximated by
multiplying the argument error by the result, and then by
the natural logarithm of the base. Thus, if the result is
large, the effect of an argument error will be large. If
the error in the argument becomes significant, the error
in the result should not be calculated by this rule, but
should be calculated from the function values.

ITOD.
ITOD. i s an exponen t ia t i on rou t ine wh ich accep ts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
per forms exponent ia t ion for s tatements which ra ise
fixed-point quantities to double-precision exponents. It
accepts a fixed-point argument and a double-precision
argument, and returns a double-precision result.

Calls by value are computed at entry point ITOD..

METHOD

The input range is the collection of all argument sets (b,p)
where b is a definite in-range fixed-point quantity, p is a
definite in-range double-precision quantity, b is greater
than zero, and bP is in-range. Upon entry, b is normalized
and converted to double-precision.

The formula used to compute the result is:

bP = exp (p * log b)

DLOG. is cal led to compute log b, then p*log b is
compu ted i n doub le -p rec i s i on . DEXP. i s ca l l ed t o
compute exp(p*logb), and the result is returned to the
calling program.

ERROR ANALYSIS
10 000 random argument sets (b,p) were generated, with
distr ibut ion being the product of a discrete uni form
distribution over the integers 1,2,... ,9, and a uniform
distribution over (-1,1). The relative error in the routine
was computed for each of the argument sets. The
maximum absolute value of the relative error in the
routine was 2.466 * IO-28.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the exponent, the error in the
result r is given approximately by r*e'*log b, where b is
the base.

ITOJ*
ITOJ* i s an exponen t i a t i on rou t i ne wh ich accep ts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
per forms exponent ia t ion for s tatements which ra ise
fixed-point quantities to fixed-point exponents. It accepts
two fixed-point arguments and returns a fixed-point result.

2-56 60483100 A

j*|SN

0®*\

0^\

i -z
UlS
aoc
<

IO

o

IOo

I O I O

T o T o
X — ^

X X
q t oC i r t

I O
To

X
q

IO

o
X
COd

IO
To

X
IOd1

I O

To
X
q
T

I O t o

T q T o
X X

I O O
7 7

I O
©f

©
r

IO

f

CM
C M 1 »\

IO
CMr

Figure 2-28. Error of HYPERB. for Sinh

60483100 A 2-57

Calls by name are computed at entry point ITOJ$.

METHOD

A b represents the base and a p represents the exponent.
I f p has binary representat ion 000. . . .000 i (n) i (n- l)
.. .i (i)i (0) where each i (j) (0 < j < n) is 0 or 1, then:

p = i (0)*2° = i (1)*2X +...+ i (n) * 2n
n = (log(2)p) = greatest integer not exceeding log(2)p.

Then:

bP = Prod (b2 : 0 < j < n and i (j) = 1).
n i 9 / . m (l o g (2) p)T h e n u m b e r s 1 = b ° , b = b 1 , b 2 , b V. . , b ^ a r e

generated during the computation by successive squarings,
and the coefficients i(0),.... ,i(n) are generated by sign
tests of successive right shifts of p within the computer.
A running product is formed during the computation, so
t h a t s m a l l e r p o w e r s o f b c a n b e d i s c a r d e d . T h e
computation then becomes an iteration of the algorithm:

bP = b if p = 1
= (b*b)(p/2) if p is even
= (b*b)C (p-D/2>b if b is odd.

Upon entry, the base is converted to floating-point, and
the result of the computation will be later converted to
fixed-point for return. The argument set is invalid if the
base is zero and the exponent is zero or negative, or if
integer overflow occurs during the computation. If the
argument set is invalid, zero is returned and a diagnostic
message is issued. If the base is nonzero and the exponent
is negative, 1, -1, or 0 will be returned as the base. The
result of the computat ion is returned to the cal l ing
program.

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR
Not applicable.

ITOJ.
ITOJ . i s an exponen t i a t i on rou t i ne wh i ch accep ts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
performs exponentiation for FORTRAN statements which
raise fixed-point quantities to fixed-point exponents. It
a c c e p t s t w o fi x e d - p o i n t a r g u m e n t s a n d r e t u r n s a
fixed-point result.

Calls by value are computed at entry point ITOJ..

METHOD
T h e a r g u m e n t s a r e c h e c k e d t o d e t e r m i n e i f t h e
exponentiation conforms to a special case. If it does, the
proper value is immediately returned, or if the special
case is an error condition, an error message is issued. The
special cases are:

0n = error
0J = error if J < 0

-0l = +0
lJ = l

-1J = +1 or -1 (J even or odd)
In = l
IJ = 0 if J<0
I2 = 1*1
IJ = error if I > 2 and J > 64
IJ = error if I>2i6 and J>3

If the exponentiation does not fit any special case, the
following algorithm is used:

Variable b represents the base and p represents the
exponent . I f p is non-negat ive and has the b inary
representation 000.. .00i(n)i(n-l).. .i(i)i(0), where each
i (j) (0 < j < n) is 0 or 1, then:

p = i (0)*2° = i (l)*2l + i (2)*22 + + i (n)*2"

While p is even evaluate:

b = b2, p = p/2

r =b.

While p>l evaluate:

r = r2,
if p is odd then r = r * b,
p = p/2

Now r contains the result. Floating-point is used for r so
that the remain ing overflows could be detected by
examining the final exponent.

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR

Not applicable.

ITOX*
ITOX* i s an exponen t ia t i on rou t ine wh ich accep ts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
per forms exponent ia t ion for s tatements which ra ise
fixed-point quant i t ies to float ing-point exponents . I t
accepts a fixed-point argument and a float ing-point
argument, and returns a floating-point result.

Calls by name are computed at entry point ITOX$.

METHOD

Upon entry, the base is converted to floating-point, and
the argument set is checked. The argument set is invalid
if: either argument is infinite or indefinite, the base is
negative, the base is zero and the exponent is not greater
t han ze ro , o r floa t i ng ove rflow occu rs du r i ng t he
calculation. If the base is zero and the exponent is
negative, or i f floating overflow occurs, POS.INF. is
re turned. I f the argument set is o therwise inva l id ,
POS.INDEF. is returned. In any case, if the argument set
is invalid, an appropriate diagnostic message is issued. If
the argument set is valid, the result is returned to the
calling program.

y5^\

>*^^v

<^ \̂

2-58 60483100 A

/ip^V

0̂ **.

ERROR ANALYSIS

The algorithm used in ITOX* is the same as that used in
ITOX.. See the description of ITOX..

EFFECT OF ARGUMENT ERROR

If a small error occurs in the floating-point exponent, the
error in the result is approximated by multiplying the
argument error by the result and then by the natural
logarithm of the base. Thus, if the result is large, the
effect of an error in the exponent is large.

ITOX.
ITOX. i s an exponen t ia t i on rou t i ne wh ich accep ts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
performs exponentiation for FORTRAN statements which
raise fixed-point quantities to floating-point exponents. It
accepts a fixed-point argument and a float ing-point
argument, and returns a floating-point result.

Calls by value are computed at entry point ITOX..

METHOD

The input range is the collection of all argument sets (n,x)
such that n is a fixed-point quantity, x is a definite
in-range floating-point quantity, x is positive and nonzero
whenever n is zero, and nx is in-range.

The formula used is:

nx = exp (x * log n)

where n > 1.

Upon entry, n is packed and normalized. Zero is returned
i f the base is zero. Otherwise, ALOG. is cal led to
c o m p u t e l o g n , a n d E X P. i s c a l l e d t o c o m p u t e
exp(x * logn). the resul t is returned to the cal l ing
program.

ERROR ANALYSIS

500 000 pairs (n,x) of random numbers were generated.
The distribution was the product of a discrete form of the
r igh t ha l f o f a Cauchy d is t r ibu t ion , and a Cauchy
distribution. nx was computed for each of these pairs,
first using the routine, and then using the double-precision
routine. The maximum absolute value of the relative
error in the routine was 3.929 * 10"12 for the 500 000
pairs.

EFFECT OF ARGUMENT ERROR

If a small error e1 occurs in the exponent x, the error in
the result r is given approximately by r * e' * log n,
where n is the base.

ITOZ*
ITOZ* i s an exponen t ia t i on rou t ine wh ich accep ts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
pe r fo rms exponen t i a t i on fo r s ta temen ts t ha t ra i se
fixed-point quantities to complex exponents. It accepts a
fixed-point argument and a complex argument , and
returns a complex result.

Calls by name are computed at entry point ITOZ$.

METHOD

If n is a positive integer, and x and y are real, then:

n(* + i*y) = exp (x*log (n))*cos (y*log (n))
+ i*exp (x*log (n))*sin (y*log (n))

Upon entry, the argument set is checked. It is invalid if:
the first argument is negative or zero, either argument is
i nfin i t e o r i ndefin i t e , floa t i ng -po in t ove rflow occu rs
during the calculation, or x*log r is greater than 741.67.
If the argument set is invalid, a diagnostic message is
issued and POS.INDEF. is returned. Otherwise, the
computation proceeds and the result is returned to the
calling program.

ERROR ANALYSIS

The algorithm used in ITOZ* is the same as that used in
ITOZ.. See the description of ITOZ..

EFFECT OF ARGUMENT ERROR

If a small error occurs in the argument, the error in the
result is approximated by the product of the argument
error, the result, and the natural logarithm of the base.
The absolute value of the error in the result is given
approx imate ly by the product o f the cor responding
absolute values. If the argument error is significant, the
error in the result should be found from substitution of the
possible argument values in the function.

ITOZ.
ITOZ. is an exponentiation routine which accepts calls
from compiler-generated calls from FORTRAN code. It
per forms exponent ia t ion for s ta tements which ra ise
fixed-point quantities to complex exponents. It accepts a
fixed-poin t argument and a complex argument , and
returns a complex result.

Calls by value are computed at entry point ITOZ..

METHOD

The input range is the collection of all argument sets (n,z)
compr is ing a fixed-po in t quant i t y n and a complex
quantity z; z is definite and in-range, and if n is zero, z is
a positive nonzero real. Also, im(z) * log n must not
exceed pi*2^6, where n>0 and im(z) is the imaginary
part of z, and the real number nre(z' must be in-range.

Upon entry, the fixed-point argument is packed and
normalized, and routine XTOZ. is called at entry XTOZ.
to compute the result. The result is returned to the
calling program.

ERROR ANALYSIS

300 000 pairs (n,z) of random numbers were generated
with distribution being the product of a discrete form of
the right half of a Cauchy distribution, and the product of
two Cauchy distributions. For each of these pairs, nz was
compu ted , fi r s t us ing t he rou t i ne , and then us ing
double-precision operations. The maximum absolute value
of the relative error in the routine was 3.054 * 10*10 for
these pairs.

60483100 A 2-59

EFFECT OF ARGUMENT ERROR

If a small error e(z) = e(x) + i*e(y) occurs in the
exponent z, the error in the result w is given
approximately by w * log n * e(z).

RANF
RANF is an external function which accepts calls from
F O R T R A N c o d e . I t c o m p u t e s r a n d o m n u m b e r s
(FORTRAN function name RANF). It accepts a dummy
argument and returns a floating-point result.

Calls by name are computed at entry points RANF and
RANGET.

METHOD
RANF uses the mu l t i p l i ca t i ve congruen t ia l me thod
modulo 2^8. The formula is:

x (n+1) = a * x (n) (mod 2^B)

The l ibrary holds a random seed, RANDOM., and a
multiplier, RANMLT.. The random seed can be changed
to any value prior to calling RANF by use of the routine
RANSET. Upon entry at RANF, the random seed is
multiplied by RANMLT. to generate a 96 bit product, and
the lower 48 bits become the new random seed. The seed
is used to genera te subsequen t random numbers .
RANDOM, has a default initial value of 1717 1274 3214
7741 3155B (241^63 mod 247). This new random seed is
normalized and returned as the random number.

The multiplier, RANMLT., is constant, and has a value of
2000 1207 2642 7173 0565B. This multiplier passes the
Coveyou-MacPherson test and other statistical tests for
randomness, including the auto-correlat ion test wi th
lag < 100 and the pair triplet test.t

If RANF is called by name at entry point RANGET, the
current seed of the random number generator is returned
in the variable whose address is in XI.

ERROR ANALYSIS

Not applicable.

EFFECT OF ARGUMENT ERROR

Not applicable.

RANSET
RANSET is a subrout ine which accepts ca l ls f rom
FORTRAN code. It resets the seed of the random number
generator (FORTRAN subrout ine name RANSET). I t
a c c e p t s a fl o a t i n g - p o i n t a r g u m e n t a n d r e t u r n s a
floating-point result.

Calls by name are computed at entry point RANSET.

METHOD
The call supplied the address of a new seed value in XI. If
the new seed is 0 . , the new seed va lue is made
17171274321477413155s, which is .17099839404402317200.
Otherwise, the coefficient of the new seed is made odd if
necessary by adding Is, and the exponent of the new seed
value is set equal to 1717s, which is -48.

ERROR ANALYSIS

Not applicable.

EFFECT OF ARGUMENT ERROR

Not applicable.

SINCOS.
SINCOS. is an external function which accepts calls from
FORTRAN code. It computes the trigonometric sine and
cosine functions (FORTRAN function names SIN and
COS). It accepts a floating-point argument and returns a
floating-point result.

Calls by name are computed at entry points SIN and COS,
and calls by value are computed at entry points SIN. and
COS..

METHODtt
The input range to this routine is the collection of all
defini te in-range normal ized float ing-point quant i t ies
whose absolute values do not exceed pi * 2^^.

Upon entry, the range reduction:

y = 2/pi*x - n

is performed in double-precision, where x is the argument,
n is an integer, and y is in (-1/2,1/2). Depending upon the
sign of x and n(mod 4), the result may be complemented,
and a polynomial approximation (p(y) or q(y)) is chosen to
give the result. The polynomial approximations p(y) and
q(y) are:

p (y) = pi/2*y - y3* (s (0)+s (l)*y2+s (2)*y^+s (3)*y6+s (4)*y8)2

and

q (y) = 1 - y2* (c (0)+c (l)*y2+c (2)*y4+c (3)*y6+c (4)*y8)2
The coefficients are:

s(0) = 8.03718916976708 * IO"2
s(l) = -4.95774235001375 * IO"2
s(2) = 1.38346449783347 * IO"3
s(3) = -1.44725130681196 * 10"5
s(4) = 1.54733311005155 * IO"7
c(0) = 1.110720734539535
c(l) = 1.14191398434002 * IO"2

^*sw(X

^ ^ ? \

f D. E. Knuth, The Art of Computer Programming, Vol. 2.

f-f The algorithm and constants are copyright 1970 by Krzysztof Frankowski, Computer Information and Control Science,
University of Minnesota, 55455, and are employed under license. Coding is by Larry Liddiard, University of Minnesota.

2-60 60483100 A

J^* \

j0&\

c(2) = -3.521949713998275 * IO"3
c(3) = 5.172606069276518 * 10"5
c (4) = -4.413282528387191 * IO"7

The polynomial approximations p(y) and q(y) are minimax
approximations to their corresponding funct ions over
(-pi/4, pi/4).

ERROR ANALYSIS
A graph of the error of approximation in the algorithm for
sin(x) over (-pi/4 pi/4) is given in figure 2-29 and for
cos(x) over (-pi/4, pi/4) in figure 2-30. The maximum
absolute value of the error of approximat ion in the
algorithm for sin(x) over (-pi/4, pi/4) is 5.670 * 10"16, and
for cos(x) is 2.972 * 10"!^. Upper bounds for the error
due to machine error in the computation of sin(x) and
cos(x) were established at 2.898 * 10"!*, respectively.
Hence upper bounds on the error in the routine are
2.955 * IO-I* and 4#741 * 10-14 for sin(x) and cos(x)>
respectively.

The maximum absolute value of the relative error of
approximation in the algorithm for sin(x) over (-pi/4, pi/4)
is 4.098 * lO-l^ and for cos(x) is 6.285 * IO-I*. Upper
bounds for the absolute value of the relative error due to
machine error in the computation of sin(x) and cos(x)
were established at 8.049 * 10"16 and 4.204 * 10-15,
respectively. Hence upper bounds on the absolute value of
the relat ive error in the routine were established at
4.178 * 10-14 and 6.705 * in-14 for sjn(x) and Cos(x),
respectively.

For 1000 arguments chosen randomly from given intervals
for the entry points shown, the associated statistics on
absolute or relative error are given in table 2-21.

METHOD
T h e i n p u t r a n g e t o t h i s r o u t i n e i s t h e s e t o f a l l
floating-point values in the interval (-248, +248).

Routine DEGCOM. is called to subtract the necessary
multiple of 90 from the argument to put the result in the
interval (-45, +45) and multiply the reduced value by
pi/180. The appropriate sign is copied to the value of the
appropriate function, sine or cosine, as determined by
these identities:

sin(X±360°) = sin(X)
sin(X±180°) =-sin(X)
s in(X+90°) =cos(X)
s in (X -90°) = -cos (X)
cos(X±360°) =cos(X)
cos(X±180°) =-cos(X)
cos(X+90°) =-s in(X)
cos(X-90°) =s in(X)

ERROR ANALYSIS
The reduction to (-45,+45) is exact; the constant pi/180
has relative error 1.37E-15, and multiplication by this
constant has a relative error 5.33E-15, and a total error of
6.7E-15. Since errors in the argument of SIN and COS
contribute only pi/4 of their value to the result, the error
due to the reduction and conversion is at most 5.26E-15
plus the maximum error in SINCOS. over (-pi/4, +pi4), or
7.31E-15, for a total error of 12.57E-15. The maximum
observed error for 100 000 points in the interval (0, 360)
was 9.96E-15 for SIND and 9.95E-15 for COSD.

Figures 2-31 and 2-32 show the mean relative errors of
SIND and COSD.

0$2\

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the argument x, the error in
the result is given approximately by e' * cos(x) for sin(x),
and -e' * sin (x) for cos (x).

SINCSD.
SINCSD. is an external function which accepts calls from
FORTRAN code . I t computes the s ine and cos ine
functions in degrees (FORTRAN function names SIND and
COSD). It accepts a floating-point argument and returns
a floating-point result.

Calls by name are computed at entry points SIND and
COSD, and calls by value are computed at entry points
SIND. and COSD..

EFFECT OF ARGUMENT ERROR
Errors in the argument X are amplified by X/tan(X) for
SIND and X*tan(X) for COSD. These functions have a
maximum value of pi/4 in the interval (-45°, +45°) but
have poles at even (SIND) or odd (COSD) multiples of 90°,
and are large between multiples of 90° if X is large.
When X is double-precision the following code may be
used:

FUNCTION SINDD(X)
DOUBLE X
NINT (X)=X+SIGN (0.5,X)
K=0
G O T O l
ENTRY COSDD
K = l

1 N=NINT(SINGL(X)/90)

TABLE 2-21. ABSOLUTE AND RELATIVE ERROR OF SINCOS.

Entry
Point Error Interval Mean Standard

Deviation Minimum MaximumFrom To
COS.

SIN.

Relative
Absolute

Relative
Absolete

-.7854
-3.1416
-10l2

-.7854
-3.1416
-10l2

.7854
3.1416
10*2

.7854
3.1416
IO12

-5933E-17
-7.524E-18
8.138E-19

3.035E-16
-2.504E-18
-6.872E-18

1.596E-15
1.317E-15
1.248E-15

1.984E-15
1.133E-15
1.254E-15

-7.346E-15
-4.674E-15
-5.443E-15

-6.448E-15
-5.648E-15
-4.187E-15

6.962E-15
4.809E-15
4.843E-15

6.739E-15
5.174E-15
5.353E-15

60483100 A 2-61

ERROR

-0.8

y * 6 5 ^

> f ^ s

/SB*?*

-6.0 x 10-16

Figure 2-29. Algorithm Error of SINCOS. for Sine / ^ ^ V

2-62 60483100 A

ERROR

/fP^\

1.5 x10-15

1.0 x 10~15

-0.8 -0.6 - 0 . 4 / - 0 . 2 X ^

0.5 x 10"»15

0.2 \ 0.4 0.6

-0.5 xlO-15

ARGUMENT

1.0 x IO-15.

-1.5 x 10-15

-2.0 x 10~15

[1 -2.5 x IO-15

-3.0 x 10~15

-3.5 xlO-15

0.8

/ f ? ^ Figure 2-30. Algorithm Error of SINCOS. for Cosine

60483100 A 2-63

ROUTINE .OT. TRUE VALUE ROUTINE .LT. TRUE VBLUE SIND

2 o i S n " I o | ! n ' « ! i " n * - " ' _ K o N - . X M M t 0 » < » ^ l / > » - : U) K r - M l D ^ < (7 1

1.6%
• i«t»

18.97.

O l C M

EWt
70. OZ

I D I M

9.47.
- in t r

.17.

Figure 2-31. Mean Relative Error of SIND

2-64 60483100 A

0Br$\,
ROUTINE .OT. TRUE VRLUE ROUTINE .LT. TRUE VALUE COSD

z^ \

S 9 9 9 9
— O ~ M » o " ' o » " " n ^ * ' , (o , J , r . o ^ n i t t i x i r i t - r i i a i o x c n o

i n a x t n r - n

1 .4Z
«l«tr

16.SX
f M C I

71.3X
-tent

10.67.
-2mr
.17.

i * f^*V
Figure 2-32. Mean Relative Error of COSD

60483100 A 2-65

0^-

/ ^$*v

Z=X-N*90
IF (K.NE.MOD(IABS(B),2)) GO TO 2
Y=SIND(Z)
GO TO 3

2 Y=COSD(Z)
3 IF(K*2- l .EQ.MOD(N,2))Y=-Y

IF (MOD(IABS (N),4).GE.2)Y=-Y
SINDD=Y
RETURN
END

SQRT
SQRT is an external function which accepts calls from
FORTRAN code. It computes the square root function
(FORTRAN funct ion name SQRT). I t accepts a real
argument and returns a real result.

Calls by name are computed at entry point SQRT.

METHOD IOD

The argument is loaded into XI and routine SQRT. is
called.

ERROR ANALYSIS SIS

See SQRT..

The mean relative error is shown in figure 2-33.

EFFECT OF ARGUMENT ERROR

See SQRT..

SQRT.
SQRT. is an external function which accepts calls from
FORTRAN code. It computes the square root function
(FORTRAN funct ion name SQRT). I t accepts a real
argument and returns a real result.

Calls by value are computed at entry point SQRT..

METHOD
The argument range is the set of all positive or zero
floating-point numbers. The identity:

sqrt (y*2P)=sqrt (y)*2<P/2)

is used to reduce the range to (0.5,1) with p having an
integral value. An initial approximation is made using one
of eight linear approximations to the square root on this
interval, giving at least 12 bits of accuracy. Two Heron's
rule iterations are made to obtain 48 bits of precision.

If p is even, the normal Heron's rule is used:

compute xO, an approximation to x=sqrt(y)
xl=0.5*(xO+y/xO)
x2=0.5*(xl+y/xl)

If p is odd, scaling is done between steps to prevent
affecting the accuracy of the final result:

compute xO
xl =0.5* (xO+y/xO)
xl'=xl*sqrt (2)
x2=0.5*(xl'+(2*y)/xr)

which performs the multiplication by 2l'2=sqrt (2).

The scaling by 2^P'2) ((u) denotes truncation) is done by
packing the appropriate exponent with the coefficient of
(2*X2). The square root of a number one u 1 p below an
even power of 2 is explicitly forced to one u 1 p below the
square root of that power of 2 to make packing work (e.g.,
sqrt (4-eps) would be 1.0 but is forced to 2-eps).

Scaling for the square root of 2 is adjusted slightly so that
the error is centered after this scaling, picking up one bit
of precision at that point.

ERROR ANALYSIS
The max imum er ro r in the in i t ia l approx imat ion i s
.00021B. Since the effect of a Heron's iteration is to
square and halve the relative error, the algorithm error is
7.08E-17.

Round-off error is insignificant until the last Heron's rule
step, which has the form x+y/x, where the quantities being
summed are almost equal. Since the error in Heron's rule
is always positive, x is too large, so y/x is too small (i.e.,
x > y/x). The error in the division is in the interval
(-7.1E-15,0). The error in the rounded addition is in the
interval (0, +3.55E-15), so the total round-off error is less
than 3.55E-15 in absolute value. Error in division is
halved because x is approximately y/x.

The upper bound on relative error is then 3.62E-15. The
maximum observed relative error for 100 000 randomly
chosen points in the interval (0.5,2) was 3.59E-15.

Figure 2-34 shows the relative error of SQRT in the
interval (.5,1.).

EFFECT OF ARGUMENT ERROR
For small error in the argument y the amplification of
absolute error is l/(2*sqrt (y)) and that of relative error is
0.5.

SYS=AID
SYS=AID is an auxi l iary rout ine. I t provides a l ink
between the math library and the system error processor.
The entry point is SYSAID..

METHOD
Execution proceeds as follows:

a. Enter SYS=AID and save registers X3 and X4.

b. Read entry point SYSAID. and store it at entry point
SYS1ST..

c. Long jump to MORGUE..

See the method description of SYS=1ST for further details.

/*s^\

2-66 60483100 A

ROUTINE .OT. TRUE VRLUE ROUTINE .LT. TRUE VRLUE SQRT

0^\

j*JpB"\

CMC!
99.2X

Figure 2-33. Mean Relative Error of SQRT

60483100 A 2-67

/ * ^ ^ K

UOUU3 3AI1V13U S
I I

Figure 2-34. Relative Error of SQRT

2-68 60483100 A

ERROR ANALYSIS

Not applicable.

EFFECT OF ARGUMENT ERROR
Not applicable.

TAN
TAN is an external function which accepts calls from
FORTRAN code. It computes the trigonometric tangent
function (FORTRAN function name TAN). It accepts a
floating-point argument and returns a floating-point result.

Calls by name are computed at entry point TAN.

y ^ \

0^\

SYS=1ST
SYS=1ST is an auxi l iary rout ine. I t provides a l ink
between the math library and the system error processor.
The entry points are SYS1ST. and MORGUE..

METHOD
Execution proceeds as follows at MORGUE.:

a. Enter SYS=IST and save registers XI, X2, X6, AO, B5,
B6 and B7.

b. Read the return jump word used to enter the routine
which called SYS=1ST or SYS=AID. If this word has
the format:

+ RJ < en t r y po in t >
- VFD 30/1

then go to f. below.

c. Read the communication cell SYSAID.. Insert in its
lower 18 bits the address of the trace word in routine
SYS=1ST. Store the result in cell RJERR which will
be executed at step e.

d. Test the argument in the register indicated by the
contents of B2. Set X2 to the first word address of
an error message as follows:

Condition Message
I n fi n i t e " A R G U M E N T I N F I N I T E "
Indefinite "ARGUMENT INDEFINITE"
Other "ARGUMENT" < par t ia l message

from address supplied in B2>

Set XI to the error number, and AO to the first word
address of the parameter list for non-standard error
recovery.

e. Execute word RJERR. This will link the routine to
the system error processor.

f. Restore registers XI, X2, AO, B5, B6, B7. Move the
contents of X6 into register X5.

g. Set X6 and X7 to +IND..

h. Return to the calling program.

ERROR ANALYSIS

Not applicable.

EFFECT OF ARGUMENT ERROR

Not applicable.

METHOD
The argument is loaded into XI and routine TAN. is called.

ERROR ANALYSIS

See TAN..

EFFECT OF ARGUMENT ERROR
See TAN..

TAN.
TAN. is an external function which accepts calls from
FORTRAN code. It computes the trigonometric tangent
function (FORTRAN function name TAN). It accepts a
floating-point argument and returns a floating-point result.

Calls by value are computed at entry point TAN..

METHOD
The input range is the collection of all definite, in-range
floating-point quantities in the interval (-2^f +2^').

The identities:

i) tan (x)=tan (x+k*pi/2), k is even
ii) tan(x)=-1.0/tan(tan(x+pi/2)

are used in the form:

iii) tan (x)=tan ((pi/2)*(x*2/pi+k)), k is even
iv) tan (x)=-1.0/tan ((pi/2)*(x*2/pi+l))

to reduce the evaluation to the interval (-0.5, +0.5). An
approximation of tan((pi/2*y) is used. The reduction is
done by multiplying x by 2/pi, subtracting the nearest
integer, and rounding the result to single-precision.

The function tan ((pi/2)*y) is approximated with a rational
form (7th order odd)/(6th order even), which has minimax
relative error in the interval (-n.5, +0.5). The rational
form is normalized to make the last numerator coefficient
1+eps, where eps is chosen to minimize rounding error in
the leading coefficients.

Identity (iv) is used if the integer subtracted is odd. The
result is negated and inverted by dividing -Q/P instead of
P/Q. The mean relative error is graphed in figure 2-35.

ERROR ANALYSIS
The range reduction, the final add in each part of the
rational form, the final mult iply in P, and the divide

60483100 A 2-69

R O U T I N E . O T. T R U E V R L U E R O U T I N E . LT. T R U E V R L U E TfiN

,*C^SJX

/*SSv

*-fi3335v

/&$$\

/ ^ ® & \

•ox

- « n o * a t o— M a e

•uu> ♦l«# »l«» RKT -l*v -tmr -tmr - * * f
• ix 2.4X 21. OX 46.61 25.3X 2.SX . IX .ox

Figure 2-35. Mean Relative Error of TAN

2-70 60483100 A

dominate the error. Each of these operations contributes
directly to the final error, and each is accurate to about
1/2 u lp. The maximum re lat ive errors are g iven in
table 2-22.

/f^N

/$>K\

TABLE 2-22. MAXIMUM RELATIVE ERROR OF TAN.
Source of Error Amount*1015

range reduction 3.6
rational form .02
coefficient rounding <.08
round-off 14.2
upper bound 18.0
maximum observed 14.5

EFFECT OF ARGUMENT ERROR

For small errors in the argument x, the amplification of
absolute error is sec2(x), and that of relative error is
x/(sin (x)*cos (x)), which is at least 2x and can be
arbitrarily large near a multiple of pi/2. If x is known to
more than double-precision, the tangent addition formula
can be used if x is less than 3E7:

DOUBLE X

(compute X)

T=TAN(SINGL(X))

S=SINGL(X-SNGL(X))

Y=T+S* (1+T**2)/(1-S*T)

Thus, S=TAN(S) if X<3E7. This approximation can give
less than single-precision when S*T is near 1.0. It is more
accurate than TAN(SNGL(X)) but less accurate than
SNGL(DTAN(X)).

TAND.
TAND. is an external function which accepts calls from
FORTRAN code. It computes the trigonometric tangent
in degrees (FORTRAN function name TAND). It accepts a
floating-point argument and returns a floating-point result.

Calls by value name are computed at entry point TAND,
and calls by value are computed at entry point TAND..

ERROR ANALYSIS

The reduction to (-45, +45) is exact; the constant pi/180
has a relative error of 1.37E-15, and multiplication by this
constant has a relative error of 5.33E-15, so the total
error is 6.7E-15. Since errors in the argument of TAN are
amplified at most by pi/2, the error due to reduction and
conversion is at most 10.52E-15. The error in the final
division is at most 7.11E-15, and the error in TAN. is at
most 14.54E-15, so an upper bound on error in TAND is
32.17E-15. The maximum observed error in 100 000 points
in the interval (0,360 was 17.72E-15.

Figure 2-36 shows the mean relative error.

EFFECT OF ARGUMENT ERROR
E r r o r s i n t h e a r g u m e n t X a r e a m p l i fi e d a t m o s t
X/(sin(X)*cos(X)). This function has a maximum of pi/2
within (-45°, +45°), but has poles at all multiples of 90°
except zero and is at least 2*X elsewhere. When X is
known to be double-precis ion and one of the above
problems exists, the following code may be used:

(compute X in double)

N=NINT(SNGL(X)/90)
Y=T AND (SNGL (X-N*90))
IF (NOD(N,2).EQ.0) GO TO 1
IF (Y.EQ.0) error
Y=-1.0/Y

1 CONTINUE

This always returns an accurate value since the range
reduction is exact; NINT(X) + IFIX(X+SIGN(0.5,X)), the
nearest integer.

TANH
TANH is an external function which accepts calls from
FORTRAN code. I t computes the hyperbol ic tangent
function (FORTRAN function name TANH). It accepts a
floating-point argument and returns a floating-point result.

Calls by name are computed at entry point TANH.

METHOD

The argument is loaded into XI and routine TANH. is
called.

METHOD
The input range of TAND. is the set of floating-point
arguments in the interval (-2^8, +2^8) excluding odd
multiples of 90.

Routine DEGCOM. is called to subtract the necessary
multiple of 90 from the argument to put the result in
(-45, +45) and multiply the reduced value by pi/180.
Routine TAN. is called to compute the tangent, and the
result is negated and inverted if the multiple was odd,
using these identities:

tan (X±180°) = tan (X)

tan (X±90°) = -1/tan (X)

ERROR ANALYSIS
See TANH..

EFFECT OF ARGUMENT ERROR

See TANH..

TANH.
TANK is an external function which accepts calls from
FORTRAN code. I t computes the hyperbol ic tangent
function (FORTRAN function name TANH). It accepts a
floating-point argument and returns a floating-point result.

60483100 A 2-71

/*F^

y ^ ^ X

ROUTINE -OT. TRUE VRLUE ROUTINE .LT. TRUE VRLUE TflND
M C M

O t M

M M

.87.
«t«tr

S.77. 23.9X
CXKCI

42.4X
- U l f

23.67.
• i n t r

3.47. - IX

■x r t c o k e o

■ OX

t i H

<*^\

/=S1S

&&®Z\

t * & \

Figure 2-36. Mean Relative Error of TAND.

2-72 60483100 A
s ^ \

/<*^\

0^s

/"P'V

METHOD

T h e i n p u t r a n g e i s t h e c o l l e c t i o n o f a l l d e fi n i t e
fl o a t i n g - p o i n t q u a n t i t i e s i n t h e r a n g e (N E G . I N F. ,
POS.INF.).

The identity tanh (-x)=-tanh (x) is used to reduce the range
to (0,POS.INF). For abs(x) 17.50, the best machine
representation of tanh(x) is sign(1.0,x), so the range is
further reduced to (0,17.50).

The identities:

tanh (x)=p (x)/a (x) approximately, on (0,0.55)
tanh (x)=l-2/(exp (2*x)+l)

exp (2*x)=(l+tanh (x))/(l-tanh (x))
exp (2*x)=2 n*exp (2*(x-n*ln (2)/2))

may be combined to get:

tanh (x)=l-2*(q-p)/((q-p)+2 n*(q+p))

where n is chosen to be nint(x*2/ln(2)) and p and q are
evaluated on x-n*ln(2)/2. This choice of n minimizes
abs (x-n*ln (2)/2).

When x<0.55 the approximation P(x)/q(x) is used. Since
tanh (x< 0.55) < 0.5, the form 1-r would suffer from
cancellation in this range.

The approximation p/q is a minimax (relat ive error)
rational form (i.e., (5th order odd)/(6th order even)). The
coefficients are scaled so that (x*2/ln(2)-n) may be used
instead of (x-n*ln (2)/2), simplifying the range reduction.
The coe ffic ien ts a re f u r the r sca led by an amoun t
suffic ient to reduce t runcat ion er ror in the lead ing
coefficients without otherwise affecting accuracy.

ERROR ANALYSIS
The algori thm error due to finite approximation and
coefficient truncation is 1.7E-15. For abs(x)<0.55 the
form p(x)/q(x) is used. The final operations z=x*2/ln(2)
and tanh (z*(p0+small))/(q0+small) dominate the error.
The upper bound on the error here is 18.0E-15; the
maximum observed was 13.0E-15.

For abs (x) > 1.25 the final subtract ion, 1.0-smal l ,
dominates and an upper bound on the error is 4.1E-15; the
maximum observed was 3.8E-15.

For 0.55 < abs (x) < 1.25 the final operation is 1-R where
R becomes smaller as x approaches 1.25. Thus, the worst
relative error is near 0.55, namely (contribution from R) +
(error in final sum), where R=2*(q-p)/((q-p) + 4*(q+p)). An
upper bound was 16.7E-15; the maximum observed was
10.0E-15. The maximum relative errors are given in
table 2-23.

TABLE 2-23. MAXIMUM RELATIVE ERROR OF TANH.

Source of Error Error*1015
rational form
coefficient rounding
round-off
upper bound
maximum observed

0.5
1.2
16.5
18.2
13.0

F i g u r e 2 - 3 7 s h o w s t h e e r r o r i n t h e p o l y n o m i a l
approximation of TANH over (-1.2,1.2) and figure 2-38
shows the mean relative error.

EFFECT OF ARGUMENT ERROR

For small errors in the argument x, the amplification of
the absolute error is l/cosh2(x), and of relative error is
x/(sinh(x)*cosh(x)). Both have maximum values of 1.0 at
0 and approach 0 as x gets large.

XTOD*
XTOD* is an exponent ia t ion rout ine which accepts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
performs exponentiation for FORTRAN statements which
raise floating-point quantities to double-precision expo
nen ts . I t accep ts a floa t i ng -po in t a rgumen t and a
double-precision argument, and returns a double-precision
result.

Calls by name are computed at entry point XTOD$.

METHOD
The formula used is:

baseexponent = exp (exponent * log (base)).

Upon entry, the argument set is checked. It is invalid if:
ei ther argument is infinite or indefinite, the base is
negative, the base is zero and the exponent is not greater
than zero, or floating-point overflow occurs during the
computation. If the argument set is invalid, a diagnostic
message is issued and POS.INDEF. is returned. If the
argument set is valid, the result is returned to the calling
program.

ERROR ANALYSIS
The algorithm used in XTOD* is the same as that used in
XTOD.. See the description of routine XTOD..

EFFECT OF ARGUMENT ERROR
If a small error e' occurs in the base b and a small
error e" occurs in the exponent p, the error in the result
is given approximately by:

bP* (p /b *e ' + l og (b) *e ")

The absolute error is approximately the absolute value of
th is express ion . I f the e r ro rs in the a rgument a re
significant, the error in the result should be found by
subst i tut ion of the possib le argument values in the
expression bP.

XTOD.
XTOD. is an exponent ia t ion rou t ine wh ich accepts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
per forms exponent ia t ion for s ta tements which ra ise
floating-point quantities to double-precision exponents. It
accepts a floating-point argument and a double-precision
argument, and returns a double-precision result.

Calls by value are computed at entry point XTOD..

/$$&*\
60483100 A 2-73

X —

q
^ X —

I O
I Nd

tod

86

Ko
atcc
Ul

I O I Ox - x -1 1o o
X * X -

X X
© t o

i nr -1e
T -
Xe
CO

t o
T *1o

X
I O
pi

IO
X -1o

t~
Xo
*N

I OT"1o
X *

X
IO

t o
X -1o

f »
X
q

IO
X—1O

X —

X
I Od

toi

a*
IN

7

^ r o

toN
1

/^SK

<^S\

/ ^ s

Figure 2-37. Error of TANH. for Tanh

2-74 60483100 A

J # * * V

ROUTINE .OT. TRUE VRLUE ROUT IKE -LT. TRUE VALUE TRNH

/0^V

y ^ ^ \

0$®>\

■ox 1.4X 1 7 . O X
CUCT

64 .OX 16. SX •IX •ox

Figure 2-38. Mean Relative Error of TANH

ZfpN,

60483100 A 2-75

METHOD METHOD

The input range is the collection of argument sets (b,p),
where b is a definite in-range floating-point quantity, p is
a definite in-range double-precision quantity, b is greater
than zero, and bP = exp (p*log b), where b is converted to
double-precis ion upon entry, and all operations are carried
out in double-precision. The result is returned to the
calling program.

ERROR ANALYSIS
10 000 argument sets (b,p) were randomly generated, with
distribution a product of uniform distribution in (.5,1.5)
and (-10,10). The re lat ive error in the rout ine was
computed for each of the argument sets. The maximum
absolute value of the relative error was 1.163 * 10"".

EFFECT OF ARGUMENT ERROR

If a small error e (b) occurs in the base b and a small error
e(p) occurs in the exponent p, the error in the result r is
given approximately by:

The arguments are checked to see if the exponentiation
conforms to a special case. If it does, the proper value is
immediately returned, or if the special case is an error
condition, an error message is issued. The special cases
are:

x indefinite = error
x infinite = erroro° = error
XO = 1.0
xi = 1.0/X"1 if I<0

r * (e (p) * log b + p * e (b)/b).

If the exponentiation is not a special case, one of two
methods is used to perform the exponentiation. Method 1
is a quick algorithm, and is usually used. Method 2 is used
when the number of bits in I plus the number of bits in X
is greater than 8.

Method 1

The binary representation of I is scanned starting with the
most significant bit. For each bit, the result, which was
initialized to X, is squared. If the next bit is one, the
result is also multiplied by X.

/■Ŝv

XTOI*
XTOI* i s an exponen t ia t i on rou t ine wh ich accep ts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
per forms exponent ia t ion for s tatements which ra ise
float ing-point quant i t ies to fixed-point exponents . I t
accepts a float ing-point argument and a fixed-point
argument, and returns a floating-point result.

Calls by name are computed at entry point XTOI$.

METHOD
The arguments are loaded and XTOI. is called.

ERROR ANALYSIS
Not applicable, since the only errors are round-off errors.
See the description of XTOI..

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the base p, the error in the
result is given approximately by:

D(p-1) * p * e1, where p is the exponent.

If the error in the base becomes significant, the error in
the result must be found from substitution of the possible
values of the base b into the expression bP.

XTOI.
XTOI. is an exponentiation routine which accepts calls
from compiler-generated calls from FORTRAN code. It
per forms exponent iat ion for s tatements which ra ise
float ing-point quant i t ies to fixed-point exponents. I t
accepts a float ing-point argument and a fixed-point
argument, and returns a floating-point result.

Calls by value are computed at entry point XTOI..

Method 2

Scaling is performed to make X be between .75 and 1.5,
and the exponent is saved. Ten bits of I are scanned as
described in Method 1. This procedure is repeated until I
is used up. If the exponent is not too large, the result is
returned.

EFFECT OF ARGUMENT ERROR
If a small error e' occurs in the base b, then the error in
the result is given approximately by p * b'p-^ * e1, where
p is the exponent. If the error e' becomes significant, the
absolute error in the result is bounded by:

Ipl *max(lb , b + e'D^P-D* le'l

XTOY*
XTOY* is an exponent ia t ion rou t ine wh ich accepts
comp i l e r - gene ra ted ca l l s f r om FORTRAN code . I t
per forms exponent ia t ion for s tatements which ra ise
floating-point quantities to floating-point exponents. It
accepts two float ing-point arguments and returns a
floating-point result.

Calls by name are computed at entry point XTOY$.

METHOD
The formula is:

baseexPonent = exp (exponent*log (base))

The argument set is checked upon entry. It is invalid if:
either base or exponent is infinite or indefinite, the base
is negative, the base is zero and the exponent is not
greater than zero, or float ing-point overflow occurs
during the computation. If the argument set is invalid,
POS.INDEF. is returned and a diagnostic message is
issued. Otherwise, the resul t of the computat ion is
returned.

2-76 60483100 A

ERROR ANALYSIS
The algorithm used in XTOY* is the same as that used in
XTOY.. See the description of routine XTOY..

a floating-point argument and a complex argument, and
returns a complex result.

Calls by name are computed at entry point XTOZ$.

EFFECT OF ARGUMENT ERROR
If a small error e' occurs in the base b and a small
error e" occurs in the exponent p, the error in the result
is given approximately by:

bP * (p/b * e' + log (b) * e")

The absolute error is approximately the absolute value of
this expression. I f the errors in the arguments are
significant, the error in the result should be found by
subst i tut ion of the possib le argument values in the
expression bP.

XTOY.
XTOY. i s an exponent ia t ion rou t ine wh ich accepts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
performs exponentiation for FORTRAN statements which
raise float ing-point quant i t ies to float ing-point expo
nents. I t accepts two float ing-point arguments, and
returns a floating-point result.

Calls by value are computed at entry point XTOY..

METHOD
If the base b is real and the exponent z is x + i * y, where
x and y are real, then:

bz = u + i * v

where:

u = exp (x * log (b)) * cos (y * log (b))
v = exp (x * log (b)) * sin (y * log (b))

ALOG., EXP. and COS.SIN are called to evaluate these
expressions. The argument set is checked upon entry. It
is inva l id i f : e i ther base or exponent is infin i te or
indefinite, the base b is negative, the base is zero and the
real part of the exponent is greater than zero, y * log(b)
is so large that precision is lost in the computation, or
floating-point overflow occurs during the computation. If
the base b is zero, y is zero, and x is less than zero,
POS.INF. is returned. If the argument set is otherwise
inva l id , POS. INDEF. i s re tu rned. In e i ther case, a
diagnostic message is issued. If the argument set is valid,
A L O G . , E X P. a n d C O S . S I N a r e c a l l e d d u r i n g
computa t ion . The resu l t i s re tu rned to the ca l l i ng
program.

/0^\

METHOD
The input range is the collection of all argument sets (b,e)
for which: b and e are definite in-range floating-point
quantities, b is positive and nonzero, and be is in-range.

bP = exp (p * log b)

where b > 0.

Upon entry, ALOG. computes log b, and then EXP.
computes exp (p * log b). The result is returned.

ERROR ANALYSIS

500 000 pairs (b,p) of random numbers were generated
with distribution being the product of the right half of a
Cauchy distribution, and a Cauchy distribution. bP was
computed for each of the pairs, first using the routine,
and then us ing the doub le -p rec i s i on rou t i ne . The
maximum absolute value of the error in the routine was
4.583 * IO"12.

EFFECT OF ARGUMENT ERROR

If a small error e(b) occurs in the base b, and a small
error e(p) occurs in the exponent p, the error in the
result r is given approximately by:

r * (log b * eP + p * (e (b))/b)

ERROR ANALYSIS
The algorithm used in XTOZ* is the same as that used in
XTOZ.. See the description of routine XTOZ..

EFFECT OF ARGUMENT ERROR

If a small error e(b) occurs in the base b, and small errors
e(x) and e(y) occur in the real and imaginary parts, x and
y, respectively, of the exponent z, then the error e(r) in
the result is given approximately by:

e(r) = bz * log(b)*z*((e(x) + i*e(y))/z + e (b)/(b*log (b)))

The absolute error in the result is approximately the
absolute value of this expression. If the error in an
argument becomes significant, the error in the result
should be found from substitution of possible argument
values in the expression bz.

XTOZ.
XTOZ. i s an exponent ia t ion rou t ine wh ich accepts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
per forms exponent ia t ion for s ta tements which ra ise
floating-point quantities to complex exponents. It accepts
a floating-point argument and a complex argument, and
returns a complex result.

Calls by value are computed at entry point XTOZ..

XTOZ*
XTOZ* is an exponent ia t ion rou t ine wh ich accepts
c o m p i l e r - g e n e r a t e d c a l l s f r o m F O RT R A N c o d e . I t
per forms exponent ia t ion for s tatements which ra ise
floating-point quantities to complex exponents. It accepts

METHOD
The input range is the collection of all argument sets
(x,z) (= x, u + i*v)), such that: x is positive, if x is zero
then u = 0 and v is positive and nonzero, both x and z are
definite and in-range, and floating-point overflow does not

60483100 A 2-77

fifm^\

occu r du r ing the compu ta t i on o f xu (i . e . , | u * l og (x) l
< 741.67, and |v*log(x)| < pi*2^6).

The formula used is:

x(u+i*v) = e(u*log(x) * cos(v*log(x))
+ i * e(u*log (x) * sin (v*log (x))

Upon entry, the base is checked. If it is zero, zero is
immediately returned to the calling program. Otherwise,
ALOG. is called for computation of log x, and COS.SIN is
c a l l e d f o r c o m p u t a t i o n o f c o s (v * l o g (x)) a n d
sin(v*log(x)). Then EXP. is called for computation of
exp (u*log (x)). The result is calculated according to the
formula and is returned to the calling program.

ERROR ANALYSIS
400 000 pairs (x,z) of random numbers were generated
with distribution being the product of a right half of a
Cauchy distr ibution, and the product of two Cauchy
distributions. Then xz was computed for each of these
pairs, first using the routine, then using double-precision
operations. The maximum absolute value of the relative
error in the routine was 7.196 * 10"in.

EFFECT OF ARGUMENT ERROR
If a small error e(x) occurs in the base x, and a small
error e(z) (or e'(x)+i*e'(y)) occurs in the exponent z, the
error in the result w is given approximately by:

w * (log x * e (z) + z * e (x)/x)

ZTOI*
ZTOI* i s an exponen t ia t ion rou t ine wh ich accep ts
comp i l e r - gene ra ted ca l l s f r om FORTRAN code . I t
pe r fo rms exponen t i a t i on fo r s ta temen ts t ha t ra i se
complex quantities to fixed-point exponents. It accepts a
complex argument and a fixed-point argument , and
returns a complex result.

Calls by name are computed at entry point ZTOI$.

METHOD

See the description of ZTOI. for the algorithm. The
argument set is checked upon entry. It is invalid if:
either argument is infinite or indefinite, or the base is
zero and the exponent is not greater than zero. In these
cases, POS.INDEF. is returned and a diagnostic message is
issued. Otherwise, the resul t of the computat ion is
returned to the calling program.

ERROR ANALYSIS
Not applicable, since the only errors are round-off errors.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the base b, the error in the
result is given approximately by n * b^0"1' * e', where n is

the exponent. The absolute value of this expression is
approximately the absolute error. I f the error e ' is
significant, the error in the result should be found by
subst i tut ion of the possible argument values in the
expression bn.

ZTOI.
ZTOI . i s an exponen t ia t i on rou t ine wh ich accep ts
comp i l e r - gene ra ted ca l l s f r om FORTRAN code . I t
per forms exponent iat ion for s tatements which ra ise
complex quantities to fixed-point exponents. It accepts a
complex argument and a fixed-point argument , and
returns a complex result.

Calls by value are computed at entry point ZTOI..

METHOD
A b represents the base and p represents the exponent. If
p is non-negative and has the binary representation
000. . .0 i (n- l) . . . i (l) i (0) , where each i (j) (0<j<n) is 0 or
1, then:

p = i (0) * 2° + i(l) * 21 +.. .+i (n) * 2n

and n = (log(2)p) = greatest
log(2)p. Then:

i n tege r no t exceed ing

bP = Prod (b2 : 0 < j < n and i (j) = 1).

The numbers b = b2 , b2, b^ ..., b2 are generated by
successive squarings, and the coefficients i(0),..., i (n)
are obtained as sign bits of successive circular right shifts
of p within the computer. A running product is formed
during the computation, so that smaller powers of b may
be discarded. Thus, the computation becomes an iteration
of the algorithm:

bP = 1 if p=0
bP = (b2)(p/2) ifok = vd'^p'/-/ it p 0 and p is even
bP = b*(b2)< (P-D/2) is p 0 and p is odd

Upon entry, if the exponent p is negative, p is replaced by
-p and a sign flag is set. bP is computed according to this
algorithm, and if the sign flag was set, the result is
reciprocated before being returned to the calling program.

The input range is the collection of pairs of bases b and
exponents p such that b is nonzero if p is negative, both
arguments are definite and in-range, and the result is
in-range.

ERROR ANALYSIS
Not applicable.

EFFECT OF ARGUMENT ERROR

If a small error e' occurs in the complex base b, the error
in the result is given approximately by p * b(P~D * e'. If
e' is significant, the absolute value of the error in the
result is less than or equal to:

/*^?*\

/^IfV

lpl*(lb + b + e'l^P"1)* le'l
T ^ \

2-78 60483100 A

/$&v

SUMMARY OF ROUTINES

/*p\

The following tables summarize the major math functions
i n t h e m a t h l i b r a r y. T h e r o u t i n e s a r e l i s t e d i n
alphabetical order according to the math routine name.
For each routine, the follwing information is given.

FCL Routine Name

Entry Points

Type of Call

Checking

Argument Type

Result Type

Function Type

FCL
Routine

Name

ABS

ACOSIN.

AIMAG

AINT

ALOG

AMAX0

AMAX1

AMIN0

AMIN1

AMOD

AND

ATAN

T h e n a m e o f t h e F O R T R A N
Common Library math routine.

Possible points at which execution
of the routine may begin.

Specifies whether the routine is
called by name or by value.

Indicates if the arguments and/or
result is checked for errors.

The type o f numbers tha t a re
accepted by the routine.

The type o f numbers tha t a re
produced by the routine.

The c lass ifica t ion o f the math
routine.

FORTRAN Funct ion The FORTRAN symbol ic names
N a m e w h i c h c a u s e t h e F C L m a t h r o u

tine to be executed.

The codes used to indicate the argument type and result
type are:

FL F loa t i ng -po in t
F I F i x e d - p o i n t
D Doub le -p rec i s i on
C C o m p l e x
A A n y t y p e

The codes used to indicate the function type are:

E x t . E x t e r n a l l y c a l l a b l e F O R T R A N 5
routines

A u x . A u x i l i a r y r o u t i n e (n o t c a l l e d
directly by a FORTRAN function
call)

Expon. Exponent iat ion rout ine (compi ler-
g e n e r a t e d c a l l t o p e r f o r m
exponentiation)

S u b . S u b r o u t i n e

TABLE A-l. MATH ROUTINES

Entry
Point

ABS
IABS

ASIN
ACOS
ASIN.
ACOS.

AIMAG

AINT

ALOG
AL0G10
ALOG.
AL0G10.

AMAX0

AMAX1

AMIN0

AM INI

AMOD

AND

ATAN
ATAN.

Type
o f

CALL

Name

Name
Name
Value
Value

Name

Name

Name
Name
Value
Value

Name

Name

Name

Name

Name

Name

Name
Value

Checking

No

Yes
Yes
Yes
Yes

No

No

Yes
Yes
Yes
Yes

No

No

No

No

No

No

Yes
Yes

Argument
Type

FL

FL
FL
FL
FL

C

FL

FL
FL
FL
FL

(F I . F I , . . .)

(FL,FL,. . .)

(F I . F I , . . .)

(FL,FL,. . .)

(FL.FL)

(A,A, . . .)
FL
FL

Result
Type

FL

FL
FL
FL
FL

FL

FL

FL
FL
FL
FL

FL

FL

FL

FL

FL

A

FL
FL

Function
Type

FORTRAN
Function

Name
Ext. ABS

IABS
Ext.
Ext.
Ext.
Ext.

ACOS
ASIN

Ext. AIMAG
Ext. AINT
Ext.
Ext.
Ext.
Ext.

ALOG
AL0G10

Ext. AMAX0
Ext. AMAX1
Ext. AMIN0
Ext. AMIN1
Ext. AMOD
Ext. AND
Ext.
Ext.

ATAN

/$3fe\

60483100 A A-l

TABLE A-l. MATH ROUTINES (Continued)

FCL
Routine
Name

Entry
Point

Typeof
CALL

Checking Argument
Type

Result
Type

Function
Type

FORTRAN
Function

Name
ATANH. ATANH

ATANH.
Name
Value

Yes
Yes

FL
FL

FL
FL

Ext.
Ext.

ATANH

ATAN2 ATAN2
ATAN2.

Name
Value

Yes
Yes

(FL.FL)
<FL,FL)

FL
FL

Ext.
Ext.

ATAN2

CABS. CABS
CABS.

Name
Value

Yes
Yes

FL
FL

Ext.
Ext.

CCOS CCOS Name Yes Ext. CCOS
CEXP CEXP Name Yes Ext. CEXP
CEXP. CEXP. Value Yes Ext. CEXP
CLOG CLOG Name Yes Ext. CLOG
CLOG= CLOG. Value No Ext. CLOG
COMPL COMPL Name No Ext. COMPL
CONJG CONJG Name No Ext. CONJG
COS.SIN COS.SIN Value No FL (FL.FL) Aux.
COUNT COUNT Name No FI Ext.
CMPLX CMPLX Name No (FL.FL) Ext. CMPLX
CSIN CSIN Name Yes Ext. CSIN
CSNCS. CSIN.

CCOS.
Value
Value

Yes
Yes

Ext.
Ext.

CSIN
CCOS

CSQRT CSQRT Name Yes Ext. CSQRT
CSQRT= CSQRT. Value No Ext. CSQRT
DABS DABS Name No Ext. DABS
DASNCS. DASIN

DACOS
DASIN.
DACOS.

Name
Name
Value
Value

Yes
Yes
Yes
Yes

Ext.
Ext.
Ext.
Ext.

DASIN
DACOS

DATAN DATAN Name Yes Ext. DATAN
DATAN. DATAN. Value Yes Ext. DATAN
DATAN2 DATAN2 Name Yes (D,D) Ext. DATAN2
DATAN2. DATAN2. Value Yes (D,D) Ext. DATAN2
DATCOM. DATCOM.

DTN.
ATN.

Value
Value
Value

No
No
No

Aux.
Aux.
Aux.

DBLE DBLE Name No FL Ext. DBLE
DIM DIM Name No (FL,FL) FL Ext. DIM
DMAX1 DMAX1 Name No (D,D,...) Ext. DMAX1
DMIN1 DMIN1 Name No (D,D,...) Ext. DMIN1
DSIGN DSIGN Name No (D,D) Ext. DSIGN

A-2 60483100 A

TABLE A-l. MATH ROUTINES (Continued)
FCL

Routine
Name

EntryPoint
Typeof
CALL Checking Argument

Type
Result
Type

Function
Type

FORTRAN
Function

Name
DTAN. DTAN. Value Yes Ext. DTAN
DTANH DTANH Name Yes Ext. DTANH
DTANH. DTANH. Value Yes Ext. DTANH
DTOD* DTOD$ Name Yes (D,D) Expon.
DTOD. DTOD. Value No (D,0) Expon.
DTOI* DTOI$ Name Yes (D,FI) Expon.
DTOI. DTOI. Value No (D,FI) Expon.
DTOX* DTOX$ Name Yes (D.FL) Expon.
DTOX. DTOX. Value No (D,FL) Expon.
DTOZ* DTOZ$ Name Yes (D,C) Expon.
DTOZ. DTOZ. Value No (D,C) Expon.
ERF. ERF

ERFC
ERF.
ERFC.

Name
Name
Value
Value

Yes
Yes
Yes
Yes

FL
FL
FL
FL

FL
FL
FL
FL

Ext.
Ext.
Ext.
Ext.

ERF
ERFC

EXP EXP
EXP.

Name
Value

Yes
Yes

FL
FL

FL
FL

Ext.
Ext.

EXP

FLOAT FLOAT Name No FI FL Ext. FLOAT
HYP. SINH

COSH
SINH.
COSH.

Name
Name
Value
Value

Yes
Yes
Yes
Yes

FL
FL
FL
FL

FL
FL
FL
FL

Ext.
Ext.
Ext.
Ext.

SINH
COSH

HYPERB. HYPERB. Value No FL (FL.FL) Aux.
IDIM IDIM Name No (FI.FI) FI Ext. IDIM
INT INT

I DINT
IFIX

Name No FL FI Ext. INT
IDINT
IFIX

ISIGN ISIGN
SIGN

Name No (FI.FI) FI Ext. ISIGN
SIGN

DCOS DCOS Name Yes Ext. DCOS
DCOSH DCOSH Name Yes Ext. DCOSH
DEULER. DEULER. Value No Aux.
DEXP DEXP Name Yes Ext. DEXP
DEXP. DEXP. Value Yes Ext. DEXP
DHYP. DSINH.

DCOSH.
Value
Value

Yes
Yes

Ext.
Ext.

DSINH
DCOSH

DLOG DLOG Name Yes Ext. DLOG
DLOG. DLOG.

DL0G10.
Value
Value

No
No

Ext.
Ext.

DLOG
DL0G10

t The Compiler
types.

generates tlle call for F ORTRAN statements which perform exponentiation with certa in number

60483100 A A-3

TABLE A-l. MATH ROUTINES (Continued)

FCL
Routine
Name

EntryPoint
Type
of

CALL
Checking Argument

Type
Result
Type

Function
Type

FORTRAN
Function

Name
DL0G10 DLOGIO Name Yes Ext. DLOGIO
DMOD DMOD Name Yes (D,D) Ext. DMOD

DMOD= DMOD. Value No (D,D) Ext. DMOD
DSIN DSIN Name Yes Ext. DSIN
DSINH DSINH Name Yes Ext. DSINH
DSNCOS. DSIN.

DCOS.
Value
Value

No
No

Ext.
Ext.

DSIN
DCOS

DSQRT DSQRT Name Yes Ext. DSQRT
DSQRT. DSQRT. Value Yes Ext. DSQRT
DTAN DTAN Name Yes Ext. DTAN
ITOD* ITOD$ Name Yes (FI,D) Expon.
ITOD. ITOD. Value No (FI.D) Expon.
ITOJ* ITOJ$ Name Yes (FI.FI) FI Expon.
ITOJ. ITOJ. Value Yes (FI.FI) FI Expon.
ITOX* ITOX$ Name Yes (FI.FL) FL Expon.
ITOX. ITOX. Value No (FI.FL) FL Expon.
ITOZ* ITOZ$ Name Yes (FI.C) Expon.
ITOZ. ITOZ. Value No (FI.C) Expon.
LOCF LOCF Name No FI Ext. LOCF
MASK MASK Name Yes FI Ext MASK

MAX0 MAX0 Name No (FI.FI,.. .) FI Ext. MAX0
MAX1 MAX1 Name No (FL.FL,...) FI Ext. MAX1

MIN0 MIN0 Name No (FI.FI,.. .) FI Ext. MIN0
MINI MINI Name No (FL.FL,...) FI Ext. MINI
MOD MOD Name No (FI.FI) FI Ext. MOD
OR OR Name No (A,A,...) Ext. OR
RANF RANF

RANGET
Name No

No FL
FL Ext.

Sub.
RANF

RANSET RANSET Name No FL Sub. RANSET
REAL REAL

SNGL
Name No FL Ext. REAL

SNGL
SHIFT SHIFT Name No (A,FI) Ext. SHIFT
SINCOS. SIN

COS
SIN.
COS.

Name
Name
Value
Value

Yes
Yes
Yes
Yes

FL
FL
FL
FL

FL
FL
FL
FL

Ext.
Ext.
Ext.
Ext.

SIN
COS

t The Compile
types.

»r generates 1:he call for FORTRAN staterr ents which perform exponent!' ation with certain number

A-4 60483100 A

TABLE A-l. MATH ROUTINES (Continued)

0^\

/"S8"\

FCL
Routine
Name

EntryPoint
Typeof
CALL Checking Argument

Type
Result
Type

Function
Type

FORTRAN
Function

Name
SINCSD. SIND

COSD
SIND.
COSD.

Name
Name
Value
Value

Yes
Yes
Yes
Yes

FL
FL
FL
FL

FL
FL
FL
FL

Ext.
Ext.
Ext.
Ext.

SIND
COSD

SQRT SQRT Name Yes FL FL Ext. SQRT
SQRT. SQRT. Value Yes FL FL Ext. SQRT
SYS=AID SYSAID. Aux.
SYS=1ST SYS1ST.

MORGUE. Aux.
Aux.

TAN TAN Name Yes FL FL Ext. TAN
TAN. TAN. Value Yes FL FL Ext. TAN
TAND. TAND

TAND.
Name
Value

Yes
Yes

FL
FL

FL
FL

Ext.
Ext.

TAND

TANH TANH Name Yes FL FL Ext. TANH
TANH. TANH. Value Yes FL FL Ext. TANH
XOR
XTOD*

XOR
XTOD$

Name
Name

No
Yes (A,A,...)

(FL.D)
Ext.
Expon.

XOR
t

XTOD. XTOD. Value No (FL.D) Expon.
XTOI* XTOI$ Name Yes (FL.FI) FL Expon.
XTOI. XTOI. Value Yes (FL.FI) FL Expon.
XTOY* XTOY$ Name Yes (FL.FL) FL Expon.
XTOY. XTOY. Value No (FL.FL) FL Expon.
XTOZ* XTOZ$ Name Yes (FL.C) Expon.
XTOZ. XTOZ. Value No (FL.C) Expon.
ZTOI* ZTOI$ Name Yes (C.FI) Expon.
ZTOI. ZTOI. Value No (C , F I) j C Expon. t 1

t The Compile
types.

r generates t he call for FORTRAN stateirrents which perform exponenti ation with certain number

60483100 A A-5

0$&k

n -

'1

^

/ ^

^

ERROR RECOVERY

0 S \

/*f»P\

j $ ^ \

/gS9y

A l l FORTRAN common l i b ra ry rou t ines tha t check
arguments and issue error messages allow for standard and
n o n - s t a n d a r d e r r o r r e c o v e r y, a s d e s c r i b e d i n t h e
FORTRAN 5 Reference Manual. The structure of these
routines satisfies:

Word 1: VFD 42/, < routine's name > , 18/ < relative
position of entry point >

When executing under traceback mode, register AO holds
the field length when in the main program. Otherwise, it
has the first-word-address of the parameter list in the
previous call. In normal execution, each routine must
save the contents of AO before using this register, and
before calling any other routine. AO's contents must be
restored upon return to the calling routine.

The symbols SYSARG. and SYSERR. are two entry points
i n t he FORTRAN Common L ib ra ry u t i l i t y package
FORSYS.. A call at SYSARG. with a bad argument (i.e.,
negative, zero, infinite or indefinite) in XI returns with
X2 holding the address of the text of an appropriate error
message. A call to SYSERR. with an error number in XI
and the address of a diagnostic message in X2 prints the
diagnostic message and a traceback listing, provided that
the first two words of each routine are as above, the
return jump to SYSERR. is in the upper half of a word,
and the lower 18 bits contain a pointer from word 1 to the
return jump.

The sequence of events on executing math library routines
which issue diagnostic messages is:

(a.) Enter routine.

(b.) Check arguments. If valid, compute result and
return through entry point. (Some routines also
check the result before return.) If invalid, go
to (c).

(c.) Enter contents of register AO in TEMPAO. and
enter the first-word-address of the parameter
list (now in Al) into AO.

(d.) Call SYSARG. to obtain the address of an error
message in X2 i f the a rgument i s infin i te ,
indefinite, zero, or negative; in this case, go
to (f.).

(e.) Otherwise, enter the address of an appropriate
error message directly into register X2.

(f .) E n t e r t h e e r r o r n u m b e r i n t o X I . (S e e t h e
FORTRAN 5 Reference Manual.) (Step (f.) can
precede step (d.).)

(g.) Return to SYSERR. to ini t iate error act ions.
(Lower part of RJ word = t race pointer.) I f
non-standard error recovery is specified through
a previous call to SYSTEMC, transfer will return
to the supplied recovery routine. If standard
error was inhibited, the job aborts. Otherwise,
contro l wi l l return to the cal l ing rout ine, at
step (h.).

(h.) The appropriate indefinite or infinite quantity is
entered into X6, and the contents of AO are
restored from TEMPAO..

(i.) Return through the entry point.

A list of error numbers and diagnostic messages is given in
the FORTRAN 5 Reference Manual.

Some routines listed in appendix A now detect errors and
issue messages for all bad arguments passed to them.
These routines call routines SYS=AID or SYS=1ST at entry
po in ts SYSAID. or SYS1ST. , respect ive ly, fo r er ror
processing. The sequence of events on executing these
routines is:

(a.) Enter routine.

(b.) Check arguments. If valid, compute result and
return through entry point. (Some routines also
check the result before return.) If invalid, qo
to (c).

(c.) Set B2 with pointers indicating error number,
partial message, and register residence of bad
argument. The format is given in the method
descr ipt ion of rout ine SYS=1ST. The part ia l
message wi l l be ignored i f the argument is
infinite or indefinite.

(d.) Set up the arguments in registers XI, X2, X3 and
X4 (or just XI, X2 if one argument) according to
the rules in the Introduction.

(e .) Ca l l SYS1ST. o r SYSA ID . t o i n i t i a t e e r r o r
processing. SYSAID. must be chosen if there is
more than one argument. The return jump must
be in the upper 30 bits of a word. The next 12
bits are zero, and the next 18 bits must include a
pointer to a trace word, as described above.

(f.) Testing commences. A parameter list is built up
f r o m v a l u e s i n X I , X 2 , X 3 , X 4 t o a l l o w
non-s tandard e r ro r recovery. I f the rou t ine
calling the routine calling SYS=AID made this
call in the format:

+ RJ =X< rou t i ne >
- VFD 30/1

go to step g below. Otherwise, set AO to point
to the reconstructed parameter list. Set XI to
the error number, X2 to the first-word-address
of the constructed message, and execute the
communication cel l SYSAID., after traceback
linkage information has been inserted in its lower
18 bits.

(g.) Return POS.INDEF. in registers X6 and X7, and
restore registers AO, XI, X2 (and X3 and X4, if
entry was to SYS=AID).

60483100 A B-l

-)

^

0 ^

1

TIMING OF ROUTINES

1/^*?V

0S\.

The external and intrinsic math routines were timed. As
many arguments as possible were chosen to cover all the
possibilities for times for each routine.

CYBER 76 timing was done using the machine instruction
01610, which accesses a hardware clock. CYBER 72, 73,
and 74 timing was done by observing variations in speed of
two equivalent loops in central memory, one of which
called the routine being timed. These variations in speed
were obtained by using a system-maintained real-time
clock which was synchronized with a hardware clock on
one of the data channels. These times do not include
t ime for set t ing up arguments and parameter l is ts ;
they represent the time which elapses between the jump
to the routine and execution of the next instruction in
sequence.

The timing information is summarized in table C-l. The
times given are in minor cycles, or clock periods. On the
CYBER 72, 73, and 74, one minor cycle equals 100 nano
seconds. On the CYBER 76, one clock period equals
27.5 nanoseconds. On the CYBER 171, 172, and 173 one
minor cycle equals 50 nanoseconds.

On the CYBER 76, a return jump can be delayed if the
instruction stack control has requested one or more
instruction words that have not arrived at the instruction

stack. Therefore, CYBER 76 routine times depend upon
how the routine is called.

On the CYBER 72 and 73, a floating-point instruction
executes at least 48 minor cycles faster if one of the
operands is zero, infinite, or indefinite. I f , whi le an
algorithm is being executed, a routine happens to produce
an intermediate zero result, it will execute faster by at
l e a s t 4 8 m i n o r c y c l e s i f t h i s r e s u l t i s c o m b i n e d
arithmetically with anything else.

Some routines will call others; however, the times listed
in table C-l represent only the time spent at the specified
entry point in the routine. To find the total execution
time for a particular computation, first determine the
routine and entry point which is initially called. Then find
the time for that routine and entry point in table C-l. If
other routines are called, an ampersand will appear in the
table followed by an entry point name. Locate that entry
point in table C-l, and add that time to the total, and so
on.

The timings are for valid argument sets only. Use the
time for the first alternative which covers the argument
concerned. Times do not include the time spent in jumps
to other routines, but represent only the time actually
spent in a specific routine.

/$Kv

TABLE C-l. TIMING OF ROUTINES

Routine
Entry Points

Arguments
& Times at Entry Points (argument)

ABS
ABS (any valid)

ACOSIN.
ACOS (x)

x valid
& ACOS. (x)

ASIN (x)
x valid

& ASIN. (x)
ACOS. (x)

x valid and:
x = 0.
x = 1.
x = -1.
x in (-.5,.5)
x not in (-.5,.5), time
= a*b*n where n is
the loop count, as defined
in the ACOSIN. description,

a =
b =

x in (-1..-.5),
add to I x I time:

ASIN. (x)
x valid and:
x = 0.
x = 1.
x = -1.

Times for CYBER
1 7 3 7 2 7 3 7 4

100

812
306
307
950

823
292
293

79

56

59

1138
114

10

58

35

35

207
18

76

66

47

41

741 159 119
234 127 85
237 127 87
897 159 116

147
12

763 153 123
220 120 87
219 120 90

60483100 A C-l

0&K

, y ^ K

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments Times for CYBER
& Times at Entry Points (argument) 1 7 3 7 2 73 74 76

x in (-.5,.5) 958 904 152 126
1 x 1 in (.5,1.), time
= a*b*n, where n is
defined in the ACOSIN.
description.

a = 1170 226 168
b = 115 15 12

AIMAG
AIMAG (any valid) 101 81 54 62

AINT
AINT (any valid) 121 98 66 60

ALOG
AL0G10 (x) 67 42 46

& AL0G10. (x)
ALOG (x) 67 40 49

& ALOG. (x)
AL0G10. (x)

x infinite or indefinite 253 192 110
& SYSAID.

0. 266 199 120
& SYSAID.

x val id,x<0. 285 213 129
& SYSAID.

x valid, x = y*2n
n integral, l<y<2, and
Ky<1 .1072 860 892 179 129
1.1072<y<1.3572 860 892 176 129
1.3572<y<1.6072 861 891 177 128
1.6072<y<1.8572 860 892 179 129
1.8572<y<2 990 1012 212 141

ALOG. (x)
x infinite or indefinite 298 176 97

& SYSAID.
0. 311 183 112

& SYSAID.
x val id,x>0 330 192 117

& SYSAID.
x valid,x= y*2n n integral
l .<y<1.8572 941 814 197 119
1.8572<2 1072 933 218 143

AMAXO
AMAXO (x(l),..., x(n))

n=2 240 178 121 112
n=3 338 250 159 140
each add. 99 73 42 32

AMAX1
AMAX1 (x(l),..., x(n))

n=2 232 178 104 106
each add. 110 83 45 34

AMINO
AMINO ((x(l))

. . . . x (n)n=2 237 179 112 105
n=3 338 252 148 133
each add. 100 72 43 32

*&S\

/*^ \̂

/*^^\

.-^5*v

C-2 60483100 A

/<^S\

/$^*v TABLE'C-l. TIMING OF ROUTINES (Continued)

<gf^V

Routine
Entry Points

Arguments
& Times at Entry Points (argument)

Times for CYBER
1 7 3 7 2 7 3 7 4 7 6

AMINl
AMINl (x(l) , . . . , x(n))

n=2
n=3
n=4
each add.

2 2 7 1 7 9 1 0 8 1 0 5
3 3 3 2 5 2 1 6 3 1 4 2
4 3 6 3 2 8 1 8 9 1 7 2
1 0 5 7 8 4 4 3 4

AMOD
AMOD (x,y)

yto 2 4 8 2 0 7 1 1 1 1 3 3

AND
AND (x(l),..., x(n))

n=2
n=3
n=4
each add.

2 1 7 1 6 3 1 0 3 1 0 3
2 8 2 2 1 2 1 1 2 1 1 8
3 4 7 2 6 2 1 3 3 1 4 1
6 5 4 9 2 2 1 9

ATAN
ATAN (x)

& ATAN. (x)
ATAN. (x)

x valid 1 x Kl.
x valid 1 x I>1.

6 6 3 2 5 3

1 0 5 9 7 5 6 1 8 7 1 4 1
1 0 9 2 7 8 4 2 0 3 2 0 1

ATAN2
ATAN2 (y,x)

& ATAN2. (x)
ATAN2. (y,x)

(y,x) valid and ...
x=0,y#).
x#),y=0
1 x |>ly l>0
ly l>lx l>0

7 8 5 3 7 8

8 9 8 8 5 0 2 4 6 1 9 0
9 8 1 8 3 5 2 7 6 1 8 7

1 1 6 7 1 0 8 5 2 4 9 1 6 1
1 1 6 5 1 0 7 7 2 4 1 1 7 2

ATANH.
ATANH (x)

& ATANH. (x)
ATANH.(x)

x valid and:
x=0
.75<x<1.5
x>1.5

6 8 2 2 0 3
9 0 8 2 0 2

CABS.
CABS (z)

z valid
& CABS, (z)

CABS. (x+i*y)
x+i*y valid
and x=y=0.
x#). or ytO. ,
special case. (See
routine's description)
and otherwise valid

1 0 5 3 8 4 3

2 7 6 2 2 5 1 3 8 8 5

7 1 5 7 8 6 2 8 3 1 9 7
7 1 5 6 8 4 2 8 3 1 8 1

CCOS
CCOS (z)

z valid
& HYPERB. (im(z))
& COS.SIN (re(z))

lim(z) 1 > 741.67
& SYSERR.

5 4 6 4 3 6 1 8 0 1 1 9

4 6 8 3 4 8 3 6 3 1 3 1

60483100 A C-3

,*r£fl|x

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments
& Times at Entry Points (argument)

Times for CYBER
1 7 3 7 2 7 3 7 4 7 6

CEXP
CEXP (z)

|re(z) 1 >741.67
& SYSERR.

z valid
& EXP. (re(z)) & COS.SIN (im(z))

3 5 6 2 7 3 1 5 8 1 2 0

4 8 7 4 0 3 1 5 5 1 1 5

CEXP.
CEXP. (z)

z valid
& EXP. (re(z)) & COS.SIN (im(z))

2 6 2 2 2 5 7 4 6 0

CLOG
CLOG (z)

z=0.
& SYSARG=SYSERR.

z valid
& CLOG, (z)

2 9 1 2 1 3 1 1 8 7 6

1 6 3 1 3 1 1 0 2 6 9

CL0G=
CLOG, (z)

z valid
& ATAN2. {(im(z), re(z)))
& CABS, (z) & ALOG. (1 z I)

2 5 3 1 9 9 9 5 5 0

CMPLX
CMPLX (x.y)

x,y valid 1 2 6 1 0 3 6 4 8 4

COMPL
COMPL (x) 8 3 6 9 5 5 5 4

CONJG
CONJG (z)

z valid

COS. ~ see SINCOS.

COSH. - see HYP.

1 2 8 1 0 1 5 8 6 8

COS.SIN
COS.SIN (x)

1 x 1 > pi*246
1 x |sy(mod2pi) ,
0<y<2p i 0<y<p i / 4
p i / 4 < y < p i / 2
p i /2<y<3p i /4
3p i /4<y<p i
p i < y < 5 p i / 4
5pi /4<y<3pi /2
3p i /2<y<7p i /4
7p i /4<y<2pi

3 0 7 2 4 4 1 0 8 9 0

1 4 6 3 1 5 6 1 1 3 8 0 2 4 2 2 1 5
1 7 1 5 1 8 8 0 1 6 4 9 2 6 9 2 3 4
1 7 1 6 1 8 7 9 1 6 4 9 2 6 9 2 3 4
1 7 3 4 1 8 8 5 1 6 5 5 2 8 2 2 4 5

1 8 8 4 1 6 5 7 3 2 3 2 4 5
1 8 8 6 1 6 5 9 3 1 9 2 4 4
1 8 8 7 1 6 5 8 3 1 9 2 4 4

1 6 9 3 1 8 8 5 1 6 3 5 2 6 7 2 3 2

COUNT
COUNT (x) 1 4 8 1 3 3 4 9 6 2

CSIN
CSIN (z)

|re(z) I > pi*246
& COS.SIN (re(z))
& SYSERR.

lim(z) 1 > 741.67
&'COS.SIN (re(z))
& SYSERR.

3 8 6 2 9 5 1 6 2 1 2 1

4 7 0 3 6 2 2 2 1 1 3 6

■-̂ %v -

/^Sv

^ ^ \

y*^s

^^*x

C-4 60483100 A

^£$|\

TABLE C-l. TIMING OF ROUTINES (Continued)

0^\

j ^ t ^ a y

Routine
Entry Points

Arguments
& Times at Entry Points (argument)

Times for CYBER
1 7 3 7 2 7 3 7 4 7 6

z valid
& COS.SIN {re(z))
& HYPERB. (im(z))

5 5 1 4 3 6 1 8 1 1 2 3

CSNCS.
CCOS. (z)

z valid
& HYPERB. (im(z))
& COS.SIN (re(z)j

CSIN. (z)
z valid

& COS.SIN {re(z))
& HYPERB. (im(z)j

3 2 7 2 7 9 7 8 7 1

3 1 5 2 4 8 1 1 7 9

CSQRT
CSQRT (z)

z valid
& CSQRT. (z)

1 5 3 1 1 5 9 3 6 7

CSQRT=
CSQRT. (z)

z=0.
& CABS. (0.)
& SQRT. (0.)

z valid, zfO
& CABS, (z)
& SQRT. (1/2(1 zl * Ire(z)l))

2 8 7 2 1 9 1 0 3 5 8

4 7 7 3 7 6 2 6 5 9 0

DABS
DABS (x)

x valid 1 4 4 1 1 1 7 0 7 2

DASNCS.
DASIN

& DASIN.
DACOS

& DACOS.
DACOS.

0<x<.09375
.09375<x<.7071
.701<x<.9956
.9956<x< l

3 3 4 4 5 2 9
4 8 4 4 8 5 3
4 8 2 3 8 4 1
4 2 2 8 7 5 6

DASIN.
0<x<.09375
.09375<x<.7071
.701<x<.9956
.9956<x< l

3 2 6 0 4 9 2
4 7 5 6 8 1 4
4 7 7 9 8 2 0
4 1 9 7 7 3 6

DATAN
DATAN (x)

x valid
& DATAN. (x)

1 3 0 4 2 1 4 3

DATAN.
DATAN.

x valid, and:
Ixl < 1.

& DTN. (see routine description)
I x l > 1 .

& DATCOM. (see routine description)

1 4 4 7 4 4 0

3 2 0 1 3 4 7 3

DATAN2
DATAN2 (y,x)

y,x valid, and (y,x)j«(0,0)
& DATAN2. ((y,x))

1 2 4 4 6 6 6

60483100 A C-5

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments
& Times at Entry Points (argument)

Times for CYBER
1 7 3 7 2 7 3 7 4 7 6

DATAN2.
DATAN2. (y,x)

where both are valid, and
(y,x)j<(0,0), and:
l y l < I x l

& DATCOM. (see routine description)
lyl > Ix 1

& DATCOM. (see routine description)

2 7 6 1 4 4 6 5

2 8 3 1 7 5 7 1

DATCOM.
DATCOM. (y,x) (from DATAN2.)

argument set validated. If n
is nearest integer to
8*min(l x 1,1 y l)/max(l x 1,1 y 1),
then:
n=0
n/«0 and min(l x 1,1 y l)-n/8*max(l x 1,1 y 1)^0
otherwise

DTN.
y (from DATAN.), valid.
If n is nearest integer to
8*y, then:
n=0
n#) and (y - n/8)#)
otherwise

3 1 5 0 5 2 1 3 3 7
3 7 3 5 6 6 4 4 1 7
3 7 2 5 6 6 3 4 1 7

2 7 3 6 4 5 1 2 8 7
3 3 5 6 5 8 7 3 6 7
1 2 1 2 3 0 7 2 0 0

DBLE
DBLE (x)

x valid 9 8 7 8 5 2 5 4

DCOS
DCOS (x)

x valid
& DCOS. (x)

1 4 4 1 2 1 7 1 6 7

DCOSH
DCOSH (x)

x valid
& DCOSH. (x)

1 3 0 5 2 4 5

DEULER.
DEULER.

(See description of routine DEULER.) 3 7 1 9 6 2 3 3 6 1

DEXP
DEXP (x)

x valid
& DEXP.(x)

1 1 7 4 5 4 9

DEXP.
DEXP. (x)

x valid and:
x<-643.240583559629247139191409:

& DEULER.
x otherwise:

& DEULER.

5 1 5 1 6 3 1 0 7

3 7 8 1 4 7 1 0 0

DHYP.
DCOSH. (x)

x valid and:
abs(x)> 42.360630379701426385855602079:

& DEULER.
abs(x)/log 2 > 48:

& DEULER.
abs(x)/log 2> 24:

& DEULER.

5 6 0 2 1 5 1 2 7

5 4 6 1 8 2 1 0 1

6 5 8 2 0 3 1 2 5

^ ^ < * V

/* t^K

/ * " ^S

/tf5iS\

i£2&®\

C-6 60483100 A

TABLE C-l. TIMING OF ROUTINES (Continued)

10$S\

Routine
Entry Points

Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76

x in [-1/2 log 2,1/2 log 2]: 233 136 86& DEULER.
x otherwise 719 229 132& DEULER.

DSINH. (x)
x valid and:
abs(x)> 42.360630379701426385855602079: 575 202 119& DEULER.
abs(x)/log 2 > 48: 515 160 93& DEULER.
abs(x)/log 2 > 24: 625 206 136& DEULER.
x in [-1/2 log 2,1/2 log 2J: 155 94 64& DEULER.
x otherwise 720 226 134& DEULER.

DIM
DIM (x,y)

x,y valid 191 150 84 96
DLOG.

DLOGIO. (x)
x=(2")*y
l / 2 < y < l / 2 - 5
1 /2 -5 <y< l

7104 7931 6946 1220 761
6962 7799 6802 1221 762DLOG. (x)

x = (2 n) * y c
l / 2 < y < l / 2 - 5 6797 7576 6631 1158 731
l / 2 - 5 < y < l 6636 7444 6487 1144 731

DLOG
DLOG (x)

x=0. 284 215 136 83& SYSARG. SYSERR.
x<0 332 251 142 105

& SYSARG. SYSERR.
\ val id 150 96 101 68

& DLOG. (x)

DLOGIO
DLOGIO (x)

x=0. 284 216 130 89
& SYSARG. SYSERR.

x, x<0 333 255 216 105
& SYSARG. SYSERR.

x valid 177 144 97 68
& 0LOG1O. (x)

DMAX1
DMAX1 (x(l),x(2)) 909 675 320 135

DMIN1
DMIN1 (x(l),x(2)) 863 644 310 134

DMOD
DMOD (x,y)

x valid, y=0 332 243 137 11
& SYSARG. SYSERR.

(x,y) valid 266 203 34 97
& DMOD. (x,y)

DM0D=
DMOD. (x,y)

x,y valid.y^O |x/y|>296 2007 582
1 x/y1< p48lx /y l<248

1426
841

431
281

60483100 A C-7

/SSK

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments Times for CYBER
& Times at Entry Points (argument) 173 72 73 74 76

DSIGN
DSIGN (x,y)

x,y any 205 157 81 101

DSIN
DSIN (x)

x valid 162 102 83 76
& DSIN. (x)

DSINH
DSINH (x)

x valid 124 52 43
& DSINH. (x)

DSNCOS.
DCOS. (x)

|x l>p i *294 605 501 181 129
x=y(mod2pi), 0<y<2pi
0 < y < p i / 4 , 4671 5129 4475 778 516
p i / 4 < y < p i / 2 , 5140 5703 4971 844 563
p i / 2 < y < 3 p i / 4 , 5140 5703 4971 846 563
3 p i / 4 < y < p i , 5059 5679 4904 851 558
p i < y < 5 p i / 4 , 5658 4923 920 558
5p i /4<y<3p i /2 , 5703 4980 908 563
3p i /2<y<7p i /4 5722 4971 909 563
7p i /4<y<2p i 5063 5677 4904 850 563

DSIN. (x)
| x l>p i *294 624 511 181 137
x=y(mod2pi), 0<y<2pi,
0 < y < p i / 4 , 4750 5093 4446 786 520
p i / 4 < y < p i / 2 , 5078 5695 4933 867 566
p i /2<y<3p i / 4 , 5083 5689 4904 864 571
3 p i / 4 < y < p i , 5139 5715 4971 856 575
p i < y < 5 p i / 4 , 5715 4980 924 571
5p i /4<y<3p i /2 , 5689 4933 934 566
3p i /2<y<7p i /4 5687 4904 935 566
7pi /4<y<2pi 5141 5718 4980 853 571

DSQRT
DSQRT (x)

x<0 . 282 234 125 85
& SYSARG. SYSERR.

x valid 140 107 93 60
& DSQRT. (x)

DSQRT.
DSQRT. (x)

x=0.
x=y*2n
n odd 745 228
n even 746 231

DTAN
DTAN

& DTAN.

DTAN.
DTAN.

x valid and:
x=0 2371 579
p i / 4 < x < p i / 4 3247 579
p i / 4 < x < 3 p i / 4 3663 639
3pi /4<x<5pi /4, e tc . 3474 633
5pi /4<x<7pi /4, e tc . 3666 638

C-8 60483100 A

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments
& Times at Entry Points (argument) Times for CYBER

1 7 3 7 2 7 3 7 4 7 6
DTANH

DTANH (x)
x valid

& DTANH. (x)
1 2 4 1 2 0 4 2

DTANH.
DTANH. (x)

x valid and:
1 x Kl/8:

& DEULER.(x)
Ix l>32:
If x (or 2x)=y+n*log(2), n>47:

& DEULER. (2x)
Otherwise:

& DEULER. (2x)

7 6 5 2 1 7 1 3 4

2 1 4 1 0 3 6 2
6 1 9 1 6 3 1 2 2

1 0 5 5 3 1 1 1 7 1
DTOD*

DTODS (x,y)
(0 . ,0 .)

& SYSERR.
(0,y), to y>0
(0,y), to y<0

& SYSERR.
x < 0

& SYSERR.
(x,y) valid

& DLOG. (x)
& DEXP. (y*log x)

4 4 1 3 4 1 1 9 2 1 5 8

3 5 2 3 8 7 1 5 3 2 0 8
4 3 9 3 4 0 1 9 5 1 5 2

4 1 0 3 1 8 1 6 9 1 3 0

8 6 3 7 4 0 2 3 6 1 3 8

DTOD.
DTOD. (x,y)

(0,y) , y>0
x>0, x,y valid

& DLOG. (x)
& DEXP. (y*log x)

1 1 4 6 3 6 6 6 2
5 1 7 4 6 6 1 1 3 7 9

DTOI*
DT0I$ (x,n)

(0..0)
& SYSERR.

(0 . ,n) ,n<0
& SYSERR.

(0 . ,n) ,n>0
x > 0

& DTOI. (x,n)

4 0 4 3 1 2 1 8 9 1 3 6

4 1 8 3 1 1 1 9 5 1 4 2

2 3 0 1 8 8 1 2 3 1 9 2
2 6 4 2 3 1 1 1 0 6 9

DTOI.
DTOI. (x,n)

if n<0, add, and replace
n with -n
(x,0)
(x , l)
(x,2)
i f n>2, t ime=t, a(l)+b(l)<
log(2)n<+<a(2)/+b(2)log(2)n
a (l)=
a(2)=
b(D =
b(2) =

4 6 7 4 1 5 1 1 4 7 3

8 3 6 5 5 1 5 1
3 6 4 3 0 1 1 2 6 9 0
6 7 2 5 7 5 1 9 0 1 2 8

3 8 0 3 1 6 2 2 7 . 9 9 4 . 3
6 9 . 3 1 4 . 5 1 1 1 . 6 1 0 5

2 9 2 . 2 5 7 . 3 8 . 8 2 4 . 2
5 3 0 4 8 9 4 1 . 9 3 3 . 6

DTOX*
DTOX$ (x,y)

(0.,0)
& SYSERR.

(0 . , y) , y<0
(0 . , y) . y<0

& SYSERR.

4 2 6 3 3 7 1 9 9 1 8 4

2 9 9 2 3 9 2 4 5 2 2 8
4 2 6 3 3 5 1 0 7 1 7 8

60483100 A C-9

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments
& Times at Entry Points (argument) 173

Times for CYBER
7 2 7 3 7 4 76

x < 0
& SYSERR.

(x,y) valid, x>0
& DLOG. (x)
& DEXP. (y*log 2]

383

708

299

606

176

236

145

158

DTOX.
DTOX. (x,y)

(0. ,y)
(x,y) valid

& DLOG. (x)
& DEXP. (y*log 2)

95
460

74
415

59
85

54
63

DTOZ*
DT07.$ (x,z)

(0 . ,0 .+ i .0 .)
& SYSERR.

x<0
& SYSERR.

(0 . ,z) , re (z)>0
& SYSERR,

(0.,z), re(z)<0 im(z)#)
&SYSERR.

(0.,z), re(z)<0 im(z)=0
& SYSERR.

(x,z) valid
& ALOG. (x)
& EXP. (re(z)*log x)
& COS.SIN (im(z)*log x)

403 311 189 148

342 263 168 117

277 211 102 136

432 312 221 136

432 312 223 136

762 636 231 90

DTOZ.
DTOZ. (x,z)

x=0.
x,z valid, x^O

& ALOG. (x)
& EXP. (re(z)*log x)
& COS.SIN (im(z)*log x)

103
480

81
426

63
149

59
85

ERF.

& ERF
ERF

ERFC
& ERFC

ERF. (x)
x<-5.625 or -inf
-5.625<x<-.477
-.477<x<0
x=0
0<x<.477
.477<x<5.625
x>5.625 or +inf

ERFC. (x)
x<-5.625 or -inf
-5.625<x<-.477
- .477<x<0
x=0
0<x<.477
.477<x<8
x>8
x infinite

526
3094
1172
904

1172
3090
527
588

3155
1234
965

1234
3154

189
489
234
230
235
495
185

213
518
255
252
253
513

EXP
EXP (x)

& EXP. (x)
EXP. (x)

x i nfin i te
& SYSAID.

3 4 5 7

2 6 8 1 4 0

38

89

C-10 60483100 A
i e 3 ^ " \

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments
& Times at Entry Points (argument)

Times for CYBER
1 7 3 7 2 7 3 7 4 7 6

x indefinite
& SYSAID.

x valid,x>741.67
& SYSAID.

x valid x>512.
x valid,x<-675.84

& SYSAID.
x valid,x<-512
x valid

2 0 1 1 0 3 5 8

3 0 4 1 5 5 9 7

9 3 2 8 6 4 1 8 4 1 3 0
2 9 8 1 5 7 1 1 9

9 3 1 8 6 5 1 8 2 1 4 0
8 4 3 8 0 4 1 4 5 1 1 2

FLOAT
FLOAT (x)

x valid 1 0 2 8 2 6 5 5 6
HYP.

COSH, (x)
x valid
lx Kl/2 log 2
x otherwise valid

SINH. (x)
x valid
1 x Kl/2 log 2
x otherwise valid

COSH (x)
x valid

SINH (x)
x valid

1 2 9 6 1 3 1 3 2 3 3 1 6 4
1 3 8 5 1 4 2 6 2 3 3 1 6 7

1 3 2 5 1 3 5 1 2 5 0 1 7 8
1 4 5 7 1 4 9 8 2 5 7 1 7 7

1 4 9 5 2 8 3 2 0 0

1 5 5 9 3 0 6 2 1 4
HYPERB.

HYPERB. (x)
x valid, I x K.22
x valid, 1 x l>.22

& EXP. (x)

1 6 4 9 1 7 7 2 1 5 4 0 3 4 7 2 6 5
3 9 8 3 1 1 1 3 6 9 5

IDIM
IDIM (x.y)

(x,y) valid 1 6 3 1 2 7 8 5 1 0 3

INT
IFIX (x)

x valid
INT
IDINT

1 0 1 8 1 5 9 5 6

ISIGN
ISIGN (x,y) 1 6 1 1 2 5 7 5 9 6

ITOD*
ITODS (n,x)

(0 . ,0 .)
& SYSERR.

(0 , x) , x<0
& SYSERR.

(0 , x) , x>0
n < 0

& SYSERR.
n>0, x*log n overflows

& SYSERR.
& DLOG. (n)

(n,x) valid, n>0
& DLOG. (n)
& DEXP. (x*log n)

3 6 5 3 3 7 1 6 4 1 3 2

5 8 2 4 8 3 1 6 6 1 2 3

4 9 6 4 5 1 1 0 9 1 7 3
3 2 2 1 5 3 1 2 8 9 2

6 9 5 5 8 4 2 3 8 9 1 4

5 9 8 6 1 3 2 6 4 1 2 5

60483100 A C - l l

j$S"fc\

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments Times for CYBER
& Times at Entry Points (argument) 1 7 3 7 2 73 74 76

ITOD.
ITOD. (n,x)

(0. ,x) 146 110 78 64
(n,x) valid, n>0 457 397 98 80

& DLOG. (n)
& DEXP. (x*log n)

ITOJ*
IT0J$ (m,n)

& ITOJ. (m,n)

ITOJ.
ITOJ. (m,n)

mn<248
(m,0),m valid 181 95
(m,l),m valid 218 131
(m,2),m valid 283 139
if n>2,m>l, look at n in binary:

for each 1 bit, add
for each 0 bit, add

ITOX*
IT0X$ (n,x)

(0,0.) 389 267 175 158
& SYSERR.

(0 ,x) ,x>0 352 313 114 208
(0 ,x) ,x<0 346 268 178 149

& SYSERR.
n<0 289 223 136 102

& SYSERR.
n>0, 1 x*lognl>741.67 459 354 246 122

& ALOG. (n)
& SYSERR.

(n,x) valid 315 237 245 95
& ALOG. (n)
& EXP. (x*log n)

ITOX.
ITOX. (n,x)

(0,x) 113 85 66 62
(n,x) valid n>0 215 185 64

& ALOG. (n)
(n,z) valid

& ALOG. (n) 113 85 175
& EXP. (x*log n)

ITOZ*
ITOZ$ (n,z)

(0,0.+10.) 376 291 165 129
& SYSERR.

(0,z), re(z) < 0,im(z)=0 395 287 199 120
& SYSERR.

(0 ,z) , re (z)>0 238 187 210 91
im(z)=0 (0,z),im(z)tf), 376 291 165 120

& SYSERR.
re(z)<0 (n ,z) ,n<0 316 241 144 104

& SYSERR.
(n,z) valid 632 515 211 139

& ALOG. (n)
& COS.SIN (im(z)*log n)
& EXP. (re(z)*log n)

ITOZ.
ITOX. (n,z) 84 42 24

& XTOZ. (n,z)

C-12 60483100 A

j«=S5\

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments Times for CYBER
& Times at Entry Points (argument) 1 7 3 7 2 73 74 76

LOCF
LOCF (x) 72 60 46 49

MAXO
MAXO (x(l),..., x(n))

n=2 222 168 105 113n=3 324 240 148 134n=4 422 314 191 166
each additional argument 100 73 43 31

MAX1
MAX1 (x(l)..., x(n))

n=2 249 187 111 111
n=3 357 270 157 141
n=4 467 355 202 175
each additional argument 110 83 45 34

MASK
MASK (n)

n>60 263 207 111 91
& SYSERR.

n<0 274 210 127 83
& SYSERR.

n valid 181 133 103 87
MINO

MINO (x(l),..., x(n))
n=2 228 169 105 102
n=3 328 241 148 130
n=4 429 312 191 162
each additional argument 100 72 43 28

MINI
MINI (x(l) , . . . , x(n))

n=2 242 182 110 107
n=3 347 259 155 137
n=4 454 337 199 171
each additional argument 105 11 44 38

MOD
MOD (x,y)

(x,y) valid 316 268 114 133
OR

O R (x (l) x (n))
n=2 209 161 103 88
n=3 274 210 124 106
n=4 335 258 145 130
each additional argument 63 48 21 20

RANF
RANF (anything) 189 165 63 80
RANGET (x) 96 79 67 66

x will be modified

RANSET
RANSET (x) 176 134 89 82

REAL
REAL (u)
SNGL (u) 83 69 55 54

u valid

SHIFT
SHIFT (u,n)

n valid 128 104 60 86

60483100 A C-13

rtSS&\

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments Times for CYBER
& Times at Entry Points (argument) 173 7 2 7 3 74 76

SINCOS.
SIN (x) 64 34 42

& SIN. (x)
COS (x) 64 34 42

& COS. (x)
SIN. (x)

x infinite or indefinite 169 115 75
& SYSAID.

x=0. 888 821 193 141
x valid, 1 x|>pi*24o 166 109 79

& SYSAID.
x valid, 1 xl<pi*24& 1283 1256 194 141

COS. (x)
x infinite or indefinite 169 115 75

& SYSAID.°- 831 757 188 165
x valid Ix Kpi*246
x valid Ix l>pi*246

1190 1230 188
220

178
165

& SYSAID.

SQRT
SQRT (x) 78 40 37

& SQRT. (x)
SQRT. (x)

x infinite, indefinite or negative 222 180 279
& SYSAID. (Append. B)

x valid,x#) 527 523 119 101
0. 244 393 196 97

SYS=AID
SYSAID.

(1 in lower half of RJ word) 359 133
& SYSERR.

(other than 1 in lower half of RJ word) 986 423 267
& SYSERR.

SYS=1ST
SYS1ST.

(1 in lower half
of RJ word 299 106

& SYSERR.
(other than 1 in
lower half of RJ word) 892 377 239

& SYSERR.

TAN
TAN (x)

x valid, not an odd multiple of pi/2 2 1 6 1 7 5 142 109
& TAN. (x)

TAN.
TAN. (x)x=0 „ 617 155

lx l<247, x=n(p i /2)*y, p i /4<x<pi /4
n=0 1065 156
n odd 1061 147
n even 1061 157

TANH
TANH (x)

x valid 9 8 7 5 65 58
& TANH. (x)

C-14 60483100 A

/S"P«S

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments
& Times at Entry Points (argument)

Times for CYBER
1 7 3 7 2 7 3 7 4 7 6

TANH.
TANH. (x)

x valid and:
|x K.55
.55<lx K17.1
ix |>17.1

8 1 2 1 5 3
9 7 0 2 1 0
3 8 8 1 2 6

XOR
XOR (x(l),..., x(n))

n=2
n=3
n=4
n=5
each additional argument

2 1 3 1 6 4 9 6 1 0 0
2 7 6 2 1 3 1 1 7 1 1 8
3 4 0 2 6 2 1 3 9 1 4 4
4 0 4 3 0 9 1 6 0 1 5 6
6 4 4 9 2 1 1 9

XTOD*
XT0D$ (x,y)

(0 . ,0 .)
& SYSERR.

(0.,x),x val id x>0
x < 0

&SYSERR.
(x,y)x<0, x valid

& SYSERR.
x,y valid,x<0, y*logx>741.67

& DLOG. (x)
& SYSERR.

y*logx< 741.67
& DLOG. (x)
& EXP. (y*log x)

4 4 5 3 4 1 1 9 7 1 4 7

4 7 6 3 8 9 1 5 8 2 0 4
4 5 4 3 4 3 1 9 9 1 4 7

4 0 3 3 0 4 1 6 7 1 3 2

7 5 3 6 0 6 2 8 0 1 8 8

6 8 4 5 5 8 2 3 9 1 4 9

XTOD.
XTOD. (x,y)

x=0.
(x,y) valid, x=0

& DLOG. (x)
& DEXP. (y*log x)

1 2 9 9 9 6 6 6 2
4 0 6 3 5 2 1 2 0 7 9

XTOI*
XT0I$ (x,n)

& XTOI. ((x,n))

XTOI.
XTOI. (x,n)

x valid n valid, n>0 when x=0
n=0
n<0,replace n by -n and
x by 1/x, add:
n=l
n=2
n=3
n=4

XTOY*
XT0Y$ (x,y)

(0 . .0 .)
& SYSERR.

(0. ,x) ,x val id ,x>0
(0.,x), x val id,x<0

& SYSERR.
x,y valid, x<0

& SYSERR.
x,y valid, x>0 valid, xj*0

& ALOG. (x)
& EXP. (y*log x)

2 8 3 1 7 9 1 8 6 1 5 5

3 9 6 3 3 0 9 2 1 9 8
3 6 8 2 8 4 1 8 9 1 5 5

3 0 9 2 4 3 1 5 7 1 1 4

3 9 9 3 1 5 2 0 1 1 4 1

60483100 A C-15

TABLE C-l. TIMING OF ROUTINES (Continued)

Routine
Entry Points

Arguments Times for CYBER
& Times at Entry Points (argument) 1 7 3 7 2 73 74 76

XTOY.
XTOY. (x,z)

(0,x) valid, x>0 80 62 58 53
(x,y) valid,x^O 174 150 45 53

& ALOG. (x)
8. EXP. (y*log x)

XTOZ*
XT0Z$ (x,z)

(0. ,z)
z val id,re(z)>0 401 341 135 178
z valid, re(z)<0 398 296 212 121

& SYSERR.
z valid,re(z)=0 355 294 180 121

& SYSERR.
x,z valid, x<0 312 240 156 104

& SYSERR.
x,z valid,
x>0 re(z)*log x>741.67 632 469 251 130

& ALOG. (x)
& SYSERR.

(x,z) valid, x^O 705 573 221 85
& ALOG. (x)
& COS.SIN (im(z)*log x)
& EXP. (re(z)*log x)

XTOZ.
XTOZ. (x,z)

(0 . ,z)
z valid, re(z)>0 82 341 58 55
(x,z) valid, x>0 476 422 94 91

& ALOG. (x)
& EXP. (re(z)*log x)
& COS.SIN (im(z)*log x)

ZTOI*
ZTOI$ (z,n)

(0 . .0 .) 379 303 189 140
& SYSERR.

(0,x) , x>0 232 178 137 111
(0 . , x) , x<0 369 287 182 61

& SYSERR.
z#), z,n valid 204 181 113 99

& ZTOI. (z,n)

ZTOI.
ZTOI. (z,n)

(z,n) valid n = 0 85 66 51 54
n=l 233 230 115 85
n=2 710 602 179 125
n=3 725 614 178 122
n=-l 656 571 151 118
n=-2 1036 899 215 156
n=-3 1101 955 214 160
If n<0, replace n by -n, and add
n odd 374 337 46 32
n even 327 291 36 32
If n>3, t=time a(l)+b(l)*log(2)n< + <
a(2)+b(2)*log(2))n, where
a(D= 477. 295. 142.5 86.9
b(l)= 233. 222. 36.8 55.0
a(2)= 162. 127. 87.9 74.5
b(2)= 390. 337. 62.3 28.1 >5^v

C-16 60483100 A

0^\
GLOSSARY

Argument Set

Auxiliary Routine

Bit Error

/ ^ ^ A l g o r i t h m E r r o r E r r o r c a u s e d b y t h e m a t h e m a t i c a l
formulas used in an FCL routine.

A r g u m e n t A v a r i a b l e o r c o n s t a n t t h a t i s
0 ^ p a s s e d t o a r o u t i n e a n d u s e d b y

t h a t r o u t i n e t o c o m p u t e a
function. The actual value of the
variable is passed when a routine is
called by value; the address of the
variable is passed when the routine
is called by name.

An ordered l is t of one or more
arguments.

A n F C L r o u t i n e w h i c h i s n o t
d i r e c t l y c a l l e d f r o m F O RT R A N
c o d e , b u t a s s i s t s i n t h e
c o m p u t a t i o n o f a m a t h l i b r a r y
function.

A way of analyzing the magnitude
of the relative error of a routine.
The number of last place positions
that the coefficient parts of the
t rue va lue and computed va lue
differ from each other.

C a l l b y N a m e A m e t h o d o f r e f e r e n c i n g a
subprogram in which the addresses
of the arguments are passed.

C a l l b y V a l u e A m e t h o d o f r e f e r e n c i n g a
subprogram in which the values of
t h e a r g u m e n t s a r e p a s s e d .
Mod ifica t i ons o f t he a rgumen ts
w i t h i n t h e s u b p r o g r a m a r e n o t
reflected in the calling program.

A v a r i a b l e o r c o n s t a n t t h a t i s
passed to a routine, but is not used
b y t h e r o u t i n e t o c o m p u t e a
function.

A statement within an FCL routine
a t w h i c h e x e c u t i o n c a n b e g i n .
There may be more than one entry
point into an FCL routine.

The computed value of a function
minus the true value.

A n F C L r o u t i n e w h i c h a c c e p t s
compi ler -generated cal ls f rom a
source program to perform expo
nentiation. These calls are gener
ated when a FORTRAN statement
involves exponentiation of certain
number types. Exponentiation rou
tines are not called directly using
FORTRAN function names.

E x t e r n a l R o u t i n e A p r e d e fi n e d s u b p r o g r a m t h a t
accepts calls from FORTRAN code

f ^ ^ t o c o m p u t e c e r t a i n m a t h e m a t i c a l1 f u n c t i o n s .

FORTRAN Function
Name

/g*fS\ Dummy Argument

Entry Point

Error

Exponentiation
Routine

Input Range

Invalid Form

NEG. INDEF.

NEG. INF.

Number Types

POS. INDEF.

POS. INF.

Relative Error

Round-off Error

Routine, FCL

Semivalid Form

Valid Form

A symbolic name which appears in a
FORTRAN program and causes a
math routine to be executed. See
the FORTRAN 5 Reference Manual
f o r a f u l l d e s c r i p t i o n o f t h e
a v a i l a b l e F O R T R A N f u n c t i o n
names.

A collection of argument sets for
wh ich a g iven FCL rou t ine w i l l
return a meaningful result.

A l l b i t c o n fi g u r a t i o n s i n w o r d s
thought to contain numbers which
do not represent valid or semivalid
forms for a particular number type.

An abbreviat ion for the constant
600000000000000000008. It repre
sents the negative indefinite semi-
valid form.

An abbreviat ion for the constant
400000000000000000008. Ifc repre-.
sents the negative infinite semi-
valid form.

A -c lassificat ion of the numbers
processed by the math routines.
The math routines perform compu
t a t i o n s o n f o u r n u m b e r t y p e s :
integer, s ingle-precision float ing

po in t , doub le -p rec i s ion floa t i ng
point, and complex floating-point.

An abbreviat ion for the constant
177700000000000000008- It repre
sents the positive indefinite semi-
valid form.

An abbreviat ion for the constant
377700000000000000008. It repre
sents the positive infinite semivalid
form.

The error of a function divided by
the true value.

Error caused by the finite nature of
the computer hardware.

A computer subprogram, written in
assembly language, which computes
common ly occur r ing math func
tions, and perform other tasks such
as input and output.

B i t c o n fi g u r a t i o n s t h a t d o n o t
represent numbers, but ind icate
what erroneous computation pro
duced it.

A b i t configurat ion which repre
sents a number on the real number
line or in the complex plane.

60483100 A D - l

~>~

0 ^

J0$\,
REFERENCES

/SfS^S A. Abramowitz and I. Stegun, Handbook of Mathematical
Functions, AMS 55.

Control Data Technical Report, Number 52.

J. Hart, E. Cheny et al, Computer Approximations, John
Wiley and Sons, 1968.

H a s t i n g s , A p p r o x i m a t i o n s f o r D i g i t a l C o m p u t e r s ,
Princeton University Press, 1955.

F. B. Hildebrand, Introduction to Numerical Analysis,
McGraw-Hill, 1956.

C. Lanczos, Applied Analysis, Prentice Hall.

H . J . M a e h l y , M e t h o d s f o r F i t t i n g R a t i o n a l
Approximations, Part I, (J. Assoc. Comp. Mach. 7, pp.
150-162) and Parts II and III (J. Assoc. Comp. Mach. 11,
pp. 257-277).

H. S. Wall, Analytic Theory of Continued Fractions, D.
Van Nostrand Co., Inc., 1948.

J. H. Wilkinson, Rounding Errors to Algebraic Processes,
Prentice-Hall, 1963.

D. E. Knuth, The Art of Computer Programming, Vol. 2.

60483100 A E - l

r y

^

r * *

/?%■

y
y

JP**\

INDEX

Absolute value function
complex 2-14

ACOSIN. 2-1, 2-2
Algorithm error 1-1, 1-2
ALOG 2-6
Argument

checking A- l
dummy D-l
set D- l

ATAN2 2-28
Auxiliary routine D-l

Bit error 1-1, 1-2

CABS 2-14
CCOS 2-14
CEXP 2-15
CEXP. 2-15
CLOG 2-16
CLOG= 2-16
Complex floating-point numbers
COS.SIN 2-16
Cosine function

complex 2-14,2-17,2-53

1-1

0̂ > hyperbolic 2-25, 2-27
inverse 2-1, 2-2, 2-19

CSIN 2-17
CSNCS. 2-17

0^\ CSQRT 2-18f CSQRT= 2-18

j DASNCS. 2-19
DATAN 2-19v. DATAN. 2-22
DATAN2 2-22
DATAN2. 2-24

iJpSV DATCOM. 2-24
DCOS 2-25
DCOSH 2-25,2-30
DEULER. 2-25

0S*\ DEXP 2-26
DEXP. 2-26
DHYP. 2-27
DLOG 2-30

0^\ DLOG. 2-33
DLOGIO 2-33
DMOD 2-33
DMOD= 2-35

/ i " P \ Double-precision floating-point numbers 1-1
DSIN 2-35
DSINH 2-30, 2-35
DSNCOS. 2-35

0$!r_ DSQRT 2-36
DSQRT. 2-36
DTAN 2-40
DTAN. 2-40

/§sSv DTANH 2-43
DTANH. 2-43
DTOD* 2-45
DTOD. 2-45

f0ffc\ DTOI* 2-46
V DTOI. 2-46

DTOX* 2-47
DTOX. 2-47

^ t , DTOZ* 2-47f DTOZ. 2-47

0 ^
60483100 A

Entry points 2-1, A-l, D-l
ERF. 2-48
Error

algorithm 1-1, 1-2
function 2-48
machine round-off 1-1, 1-2
plots 1-2
processor link 2-66, 2-69
recovery B-l
relative 1-1, 1-2

EXP 2-49
Exponential function 2-15, 2-49

complex 2-15
Exponentiation routines 2-45, 2-46, 2-47, 2-56, .2-58, 2-59,

2-73, 2-76

FORTRAN function names A-l

Glossary D-l

HYP. 2-49
HYPERB. 2-53

Input range D-l
Integer numbers
Introduction 1-1
Invalid form 1-1
ITOD* 2-56
ITOD. 2-56
ITOJ* 2-56
ITOJ. 2-58
ITOX* 2-58
ITOX. 2-59
ITOZ* 2-59
ITOZ. 2-59

Logarithm function
common 2-6, 2-33
complex 2-16
natural 2-6, 2-33

Machine round-off error 1-1
Modulus function 2-33, 2-35

Negative indefinite 1-1
Negative infinite 1-1
NEG.INDEF. 1-1
NEG. INF. 1-1
Number forms 1-1
Number types 1-1

Positive indefinite 1-1
Positive infinite 1-1
POS.INDEF. 1-1
POS.INF. 1-1

RANF 2-60
Random numbers 2-60
RANSET 2-60
References E-l
Relative error 1-1, 1-2
Routines and calls 1-1

Semivalid form 1-1
SINCOS. 2-60
SINCSD. 2-61

Index-1

x̂ %\

S i n e f u n c t i o n i n v e r s e h y p e r b o l i c 2 - 8
c o m p l e x 2 - 1 6 , 2 - 3 5 , 2 - 6 0 , 2 - 6 1 T A N H 2 - 7 1
h y p e r b o l i c 2 - 2 5 , 2 - 2 7 , 2 - 3 5 , 2 - 4 9 T A N H . 2 - 7 1
i n v e r s e 2 - 1 , 2 - 2 , 2 - 1 9 T i m i n g C - l

Single-precision floating-point numbers 1-1
S Q R T 2 - 6 6 V a l i d f o r m 2 - 7 3
SQRT. 2-66
S q u a r e r o o t f u n c t i o n X T O D * 2 - 7 3

c o m p l e x 2 - 1 8 , 2 - 3 6 , 2 - 6 6 X T O D . 2 - 7 3
S Y S = A I D 2 - 6 6 X T O I * 2 - 7 6
S Y S = 1 S T 2 - 6 9 X T O I . 2 - 7 6

XTOY* 2-76
T A N 2 - 6 9 X T O Y . 2 - 7 6
T A N . 2 - 6 9 X T O Z * 2 - 7 7 * * % ±
T A N D . 2 - 7 1 X T O Z . 2 - 7 7
Tangent function

h y p e r b o l i c 2 - 2 5 , 2 - 4 3 , 2 - 7 1 Z T O I * 2 - 7 8
i n v e r s e 2 - 8 , 2 - 2 2 , 2 - 2 4 Z T O L 2 - 7 8 ^

•<*^S

/^®$?\

/ r ^ ^ \

^^?\

I n d e x - 2 6 0 4 8 3 1 0 0 A

COMMENT SHEET
CONTRPL DATA
CORPORATION

r
00®&\

MANUAL TITLE: FORTRAN 5 Common Library Mathematical Routines
Reference Manual

P U B L I C A T I O N N O . : 6 0 4 8 3 1 0 0 R E V I S I O N : B

NAME:

COMPANY:

STREET ADDRESS:

CITY: .STATE: ZIP CODE:

0^\ This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

ig^S,

0SZ\

j*$*^V

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
PO10 ON DOTTED UNCS ANO STAPLE

TAPE TAPE

y ^ * ^ \

FOLD FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FIRST CLASS

BUSINESS REPLY MAIL
P E R M I T N O . 8 2 4 1 M I N N E A P O L I S , M I N N .

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
215 Moffett Park Drive
Sunnyvale, California 94086

FOLD FOLD

TAPE TAPE

