
CONTROL DATA®
3100/3150/3170
3200/3300/3500
COMPUTER SYSTEMS

MSOS VERSION 5
OPERATING SYSTEM
REFERENCE MANUAL

CONTROL DATA
CORPORATION

CONTROL DATA®
3100/3150/3170
3200/3300/3500
COMPUTER SYSTEMS

MSOS VERSION 5
OPERATING SYSTEM
REFERENCE MANUAL

CONTROL DATA
CORPORATION

REVISION
A

2-74

B

8-74

C

1-75

Publication No.
60410600

© 1974. 1975

REVISION RECORD
DESCRIPTION

Manual released.

Manual revised to correct miscellaneous errors and omissions.

Manual revised to incorporate changes for 580 printer and class-R mass storage interchange-

ability. plus miscellaneous corrections and additions. This revision applies to Version 5. 1.

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue
Arden Hills. Minnesota 55112

by Control Data Corporation
or use Comment Sheet in the back of
this manual. Printed in the United States of America

PREFACE

This manual describes the use of MSOS Version 5. In general, the manual is oriented
toward the COMPASS assembly language user. However, the first five sections apply
equally to ALGOL, COMPASS, COBOL, and FORTRAN users. These sections describe
the methods of allocating and using files, and the use of the system job control state­
ments. In addition, section 7 describes the use of overlays in FORTRAN and COMPASS
programs, and section 22 describes auxiliary libraries that can be used with ALGOL,
COMPASS, COBOL, and FOHTRAN programs.

In addition to this manual, the user will need a copy of the MSOS Version 5 Diagnostic
Handbook to interpret the system diagnostic messages and an MSOS Version 5 Operator's
Guide. The following is a list of the manuals available for MSOS Version 5 and its
product set:

Control Data Publications

Operating System V5

MSOS Reference Manual

MSOS Operator's Guide

MSOS Diagnostic Handbook

MSOS Installation Handbook

Product Set

MSOS ANSI COBOL

MSOS MS COBOL

MSOS COSY

MSOS SORT MERGE (TAPE SORT, MS SORT)

MSOS SAINT

MSOS ADAPT

MASTER/MSOS ANSI FORTHAN

MASTER/MSOS MS FORTRAN

MASTER/MSOS ALGOL

MASTER/MSOS COMPASS

MASTER/MSOS LISA

MASTER/MSOS PERT TIME

MASTER/MSOS PERT COST

Pub. No.

60410600

60410700

60410900

60410800

60417900

60191100

60207300

60281500

60213700

60173400

60281400

60057600

60371800

60236800

60236900

60131100

60132500

The MSOS V5 operating system is intended to be used only as described in this manual.
Control Data cannot be responsible for the proper functioning of any features or para- I
meters that are not described or not used as described in this manual.

60410600 B iii

SECTION 1

SECTION 2

SECTION 3

SECTION 4

60410600 C

CONTENTS

INTRODUCTION
Mass Storage Operating System
Hardware Descriptions
MSOS Variants

Standard MSOS
Memory Protection Variant
Extende d Core Variant

Batch Jobs
Priority Programs
Job Accounting
Operator Control of Job Processing

I/O EQUIPMENT ASSIGNMENT
Unit Record Devices
Mass Storage Files
Logical Unit and File Number Assignment
System Unit Protection
System I/O File Spooling
Submitting Batch Jobs from Mass Storage
Reassignment of System Scratch Files

MASS STORAGE FILE MANAGEMENT
OCAREM
Entering a Mass Storage eevice
A llocating a File
Selecting a File Block Size
Opening a File
Closing a File
Expanding a File
Modifying a File
Releasing a File
Class-H Devices

MSOS CONTROL STATEMENTS
Control Statements
Job Processing Statements

SEQUENCE
JOB
PRIORITY
CTL
CTO
PAUS
TRAIN
LOAD
ABSTSK
Binary IDC Card
RUN
Library Program N arne

1-1
1-1
1-2
1-2
1-2
1-4
1-4
1-5
1-5
1-5
1-6

2-1
2-1
2-1
2-2
2-3
2-3
2-4
2-4

3-1
3-1
3-1
3-1
3-2
3-2
3-3
3-3
3-4
3-4
3-5

4-1
4-1
4-1
4-1
4-2
4-4
4-4
4-5
4-5
4-5
4-6
4-6
4-7
4-7
4-7

I

v

SECTION 5

SECTION 6

vi

AUX
END-of-File
EOJ
ENDSCOPE
ENDREEL

I/O Unit Control Statements
EQUIP
REWIND
UNLOAD
FMT

Mass Storage File Control Statements
RAT
RRAT
FET
ALLOCATE
OPEN
EXPAND
MODIFY
CLOSE
RELEASE
RONL

Utility Functions
XFER Statement
DUMP Statement
Tape Utilities

Tape Control Functions
Copy Function
Verify Function

Mass Storage Utilities
Purge Function
Enter Function
Delete Function
Dump Function
Load Function
List MSD Function
List FLD Function
Map Function

SAMPLE JOB DECKS
Batch Jobs
Initializing Priority Programs
Utility Functions

RELOCATABLE BINARY OBJECT DECKS
Binary Decks
Relocatable Binary Control Cards
IDC Card
RIF Card
EPT Card
XNL Card
BDT Card
LRL Card
TRA Card
Job Sequence Card
FLIP Card
LED Card
EXS Card
ELD Card

4-8
4-9
4-10
4-11
4-11
4-11
4-11
4-13
4-13
4-14
4-15
4-15
4-16
4-16
4-18
4-19
4-20
4-20
4-21
4-21
4-22
4-22.1
4-23
4-23
4-24
4-25
4-25
~-27
4-29
4-30
4-31
4-31
4-31
4-33
4-33
4-34
4-34

5-1
5-1
5-5
5-6

6-1
6-1
6-1
6-3
6-5
6-7
6-9
6-11
6-13
6-14
6-15
6-15
6-16
6-18
6-19

60410600 C

SECTION 7

SECTION 8

SECTION 9

SECTION 10

60410600 C

SNAP Card
OCC Card

Changing the Contents of a Program Address
Defining a Program Extension Area
Changing the Contents of the Data Area

OVERLAYS
Description
Overlay Elements

MAIN
Overlays
Segments

Overlay Programs
Symbolic Address References
Data Blocks
Common Blocks
Binary Overlay Header Cards

MAIN Card
OVERLAY Card
SEGMENT Card

Sample Overlay Program
Library File Overlays
Segment and Overlay File Headers
Overlay Mapping

MEMORY ORGANIZATION AND PROTECTION
Memory Organization

Executive Resident
Variable Resident and Common
Priority Program Area
Batch Program Area
Autoload/Autodump Area

Memory Limit Table
Memory Protection

Standard MSOS
Standard Memory Protection
Dynamic Memory Protection
Memory Protection Increments

Core Memory Utilization
Autoloading
Job Processing
Program Loading
Program Termination

Executive Tables
Register File Usage

RELOCATABLE LOADER
Description
Loading the Loader
Loading Programs
Loader Map

ABSOLUTE LOADER
LDABSV50 - Load Absolute Task

6-20
6-22
6-24
6-26
6-27

7-1
7-1
7-1
7-1
7-1
7-1
7-3
7-4
7-4
7-4
7-5
7-5
7-6
7-6
7-7
7-8
7-10
7-11

8-1
8-1
8-1
8-2
8-3
8-5
8-5
8-5
8-7
8-7
8-7
8-9
8-9
8-9
8-9
8-10
8-10
8-12
8-12
8-12

9-1
9-1
9-1
9-2
9-4

10-1
10-2 I

vii

SECTION 11

SECTION 12

SECTION 13

SECTION 14

viii

INPUT /OUTPUT CONTROL (CIO)
Description .
Read/Write Function
Mass Storage Locate Function
Unit Record Device Control Functions
Unit Record Device Format Functions
Unit Status Request
I/O Reject Processing

RAARV50
RAAR

I/O Error Recovery
SCARV50
SCAR
Read/Write With Error Recovery

Ascertaining Equipment Type
CIO Macro Calls
CIO Macro Expansions

SPECIAL FORMS CONTROL
Description
Special Card Forms
Special Printer Forms

MASS STORAGE FILE CONTROL MACROS (OCAREM)
File Control Macros
FILEID Macro
ALLOCATE Macro
OPEN Macro
CLOSE Macro
RELEASE Macro
EXPAND Macro
MODIFY Macro
Macro Expansions

LOGICAL MSIO (L-MSIO)
Description
FILE Requirements and Initialization
Logical Records
Record Blocks

Mass Storage Blocking
Nonmass Storage Blocking

File Access
Sequential Access
Random Access

File Security
Buffering
Labels

Standard Labeling
Nonstandard Labeling
Omitted Labeling
Multireel Files
Multifile Reels

User Label Processing Routines
Header Label Processing
Trailer Label Processing

11-1
11-1
11-2
11-5
11-6
11-8
11-12
11-14
11-16
11-17
11-18
11-19
11-20
11-21
11-21
11-22
11-27

12 -1
12 -1
12-1
12-3

13 -1
13 -1
13-1
13 -2
13-4
13 -6
13-8
13-9
13-10
13-12

14-1
14-1
14-1
14-2
14-2
14-2
14-3
14-3
14-4
14-4
14-4
14-4
14-5
14-6
14-6
14-6
14-6
14-6
14-7
14-7
14-8

60410600 B

SECTION 15

SECTION 16

SECTION 17

SECTION 18

60410600 C

LOGICAL MSIO ROUTINES
Description
File Description Macros

FILEDESC Macro
LABELING Macro
VARIABLE Macro
STOPOPEN Macro
RERUN Macro

Open and Close Routines
o PENF Routine
Opening Files on Unit Record Devices
Opening Files on Mass Storage
CLOSEF Routine
Closing Files or Unit Record Devices
Closing Mass Storage Files

Logical Read/Write Routines
GET Routine
PUT Routine
LOCATE Routine
RELSE Routine
REA DF Routine
WRITEF Routine
PA USEF Routine

Restart Function
CHECKPOINT Routine
Restarting a Program

STANDARD JOB OUTPUT AND SYSTEM JOB ACCOUNTING
Standard List Output
Job Sequence Numbers
Elapse d Time Accounting
Special User Accounting Routines
System Accounts Table
Date and Time Utilities

ABNORMAL PROGRAM TERMINATION AND PROGRAM DUMPS
Abnormal Program Termination
Program Dumps

PROGDUMP
FORTDUMP
PROGDUMP and FORTDUMP Examples

INTERRUPT CONTROL (CIC)
Interrupt Processing
Real-Time Interrupts
Clock Interrupts
Input /Output Interrupts
Manual Interrupts
Internal Fault Interrupts

Arithmetic Fault
Divide Fault
Exponent Over /Under Fault
BCD Fault

Internal Fault Processing
Illegal Write Interrupts
Executive Interrupts

15-1
15-1
15-1
15-1
15-3
15-4
15-5
15-6
15-7
15-7
15-7
15-9
15-11
15-12
15-12
15-13
15-13
15-14
15-16
15-17
15-17
15-19
15-20
15-21
15-21
15-21

16-1
16-1
16-1
16-2
16-2
16-2
16-3 I

17-1
17-1
17-1
17-1
17-2
17-3

18-1
18-1
18-6
18-8
18-9
18-9
18-10
18-10
18-10
18-11
18-11
18-11
18-12
18-13

ix

SECTION 19

SECTION 20

SECTION 21

SECTION 22

x

Trapped Instruction Interrupts
User Interrupt Routines
DINT. and EINT. Routines
Use of DINT and EINT Instructions
Illegal Interrupts

PRIORITY PROGRAMS
Description
Loading Priority Programs
Terminating Priority Programs

Operator Termination
Self Termination
System Termination

Loading New Priority Programs
RLSMV50 (Release Memory) Routine
Using System Input, List Output, and Punch Units
Special Coding Requirements for Priority Programs

SYSTEM FILE SPOOLING (APC)
Description
APC Options
A llocating Spooling Files
Loading APC
Spooling File Protection
System Unit Assignments

ALTERNATE PROCESSOR (AP)
Description
A P File Format
Submitting Batch Jobs from Priority Programs

Job Submission Routine
Initialization/ Completion Routine

APCT Table
Mass Storage Control Table (MCT)
User Spooling Routines
A P File Processing Routines

APBLKV50
APDBKV50
APRDV50
APWRV50
APINCV50
APSPCV50

AP Edit Routines

AUXILIARY LIBRARY GENERATION
Description
A UX Library Generation

PRELIB Statement
FILE Statement
UNIT Statement

Subprogram Calling Symbols
Programs on Auxiliary Libraries

18-14
18-15
18-15
18-16
18-16

19-1
19-1
19-1
19-3
19-3
19-4
19-4
19-4
19-4
19-5
19-6

20-1
20-1
20-1
20-3
20-4
20-4
20-5

21-1
21-1
21-1
21-2
21-3
21-4
21-6
21-7
21-10
21-10
21-14
21-14
21-14
21-15
21-15
21-16
21-16

22-1
22-1
22-2
22-2
22-2
22-2
22-4
22-5

60410600 B

SECTION 23 SYSTEM I/O ERROR RECOVERY ALGORITHM
Description
Magnetic Tape Error Recovery

Noise Records
Block Checksum
Read Error Recovery
Write Error Recovery

Mass Storage Error Recovery
Card Reader Error Recovery
Card Punch Error Recovery
Print Error Recovery

APPENDIX A BCD/CHARACTER CODES

APPENDIX B PRINT CONTROL CHARACTERS

APPENDIX C HARDWARE CODES

APPENDIX D ILLEGAL COMPASS INSTRUCTIONS

APPENDIX E L-MSIO RECORD FORMATS

APPENDIX F SYSTEM TABLES

APPENDIX G FILE LABELS

APPENDIX H SYSTEM FILES

APPENDIX

APPENDIX

1-1
1-2
4-1
4-2
6-1
7-1
7-2
8-1
8-2
13-1
17-1
19-1
20-1
21-1
21-2

60410600 A

I OCR I/O CODES

J OCTAL TO DECIlVIAL CONVERSIONS

FIGURES

Typical 3200 Computer Equipment Configuration
MSOS Variants
MSUTIL File Dump Format
Sample Device Map
Sample SNA P Dump
Overlay and Segment Organization Block Diagram
Sample Overlay Map
Standard Memory Protection
Loading Relocatable Binary Programs
FET Table
Sample Program A bort Dump
Priority Program, Initialization and Execution
System File Spooling
List Output Spooling
Sample User Spooling Program Using the Alternate Processor

23-1
23-1
23-1
23-2
23-2
23-2
23-4
23-5
23-5
23-5
23-6

A-I

B-1

C-l

D-l

E-l

F-1

G-l

H-1

1-1

J-1

1-3
1-4
4-32
4-35
6-22
7-2
7-12
8-8
8-11

13-1
17-2
19-2
20-1
21-9
21-11

xi

I

2-1
4-1
8-1
8-2
11-1
11-2
11-3
11-3. 1
11-4
12-1
18-1
18-2
18--3
20-1
21-1

xii

TABLES

System File Number Assignments
Mass Storage Device Characteristics
Variable EXEC Job Control Functions
Memory Limit Tables
CIa Function Codes
Format Codes for Unit Record Devices
Unit Status Codes Returned by CIO
Bits Updated by Dynamic Status Checks
I/O Reject and Error Codes in Register A
Forms Control Reply Codes
Interrupt and Program Priority Levels
Central Interrupt Control
Executive Routines Callable by Batch and Priority Programs
A PC Options and Features
Mass Storage Control

2-5
4-18
8-2
8-6

11-7
11-9
11-10
11-13
11-15
12-2
18-2
18-7
18-13
20-2
21-7

60410600 C

INTRODUCTION 1

MASS STORAGE OPERATING SYSTEM

The Mass Storage Operating System (MSOS) loads and executes programs on CDC
lower 3000 series computer systems. The major functions provided by the operating
system are as follows:

• System control with control statements from console typewriter, the system
input unit (card reader), magnetic tape, or a mass storage file.

• Program loader which loads relocatable binary object programs from the card
reader, tape files, mass storage files, or the system library.

• Absolute loader which loads absolutized object programs from mass storage
files.

• FORTRAN, ALGOL, and COBOL compilers, and a COMPASS assembler pro­
gram.

• Use of independent auxiliary libraries which can be generated, used, and re­
leased without affecting the system library or the system EXEC operation.

• Use of priority programs (user supplied) which reside in core and are periodi­
cally initiated by preselected interrupts.

• Overlay functions for very large programs.

• Memory protection which prevents untested programs from writing in resident
executive core area or core areas reserved for other programs.

• Priority interrupt processing routines which initiate priority and real-time
programs, sense I/O completions and system faults, and allow limited multi­
programming.

• I/O processing routines to simplify driving the system's I/O units.

• Automatic output record blocking and automatic input record deblocking during
I/O operations.

• Automatic system I/O error recovery.

• BCD to ASCII code conversion for ASCII I/O devices.

• Utility and XFER routines for copying, transferring, and listing of tape,
mass storage, and card files.

• Mass storage spooling of batch job input files, list output files, and punch
output files.

• Test patterns for special forms alignment on the printer.

60410600 A 1-1

HARDWARE DESCRIPTION

Version 5 of MSOS runs on any of the following CDC computers.

3100 Computer System
3150 Computer System
3170 Computer System

3200 Computer System
3300 Computer System
3500 Computer System

The following are the hardware requirements for using MSOS on any of these systems.

1 Central processor (CPU module)

16K Core memory t
1 Control console and operator's console typewriter

2 I/O data channels

1 Card reader (system input unit)

1 Card punch (system punch unit) tt
I 1 Line printer (system list output unit)t t t

2 Mass storage units (library files and system scratch files)

2 Magnetic tape drives (recommended)

Figure 1-1 is a diagram of a typical 3200 computer system that uses MSOS.

All CDC lower 3000 series computer systems have fully buffered data transfer between
core memory and I/O devices. Under program direction, the CPU selects an I/O unit
by connecting to its data channel and controller. Then the CPU sends an I/O function
code to the data channel and controller. The channel and controller perform the I/O
(read or write a block of data) leaving the CPU free to process other data or initiate
an I/O function on another channel. When the I/O function at a unit is completed, the
controller returns an end-of-operation interrupt to signal completion of the I/O.

MSOS VARIANTS

I MSOS is available in three variants: standard, memory protection, and dynamic
memory protection.

STANDARD MSOS

The standard variant of MSOS contains no memory protection for the resident executive
routines and res ident priority programs. Only the autoload/ autodump routines are
protected. Caution should be used when running untested programs during normal job
processing periods since the untested programs may destroy the resident executive or
resident priority programs. The standard variant is available with 16K or 32K of
memory and may be used for both batch and priority programs.

t Allows limited batch or priority programming. 32K normally required for both batch
and priority programming.

tt Recommended, but not essential for system operation. The system punch unit can
be assigned to a tape unit or not used for a punchless system.

ttt A tape drive may be substituted for this function.

1-2 60410600 B

0':)

o
~
......
o
0':)

o
o
td

......
I

VJ

3204 PROCESSOR
(CPU)

L-.--. __ __.----l CONNECT AND
-+ FUNCllON CO~ES=-t
+- EQUIPMENT

~~----_ STATUS

KEY

_DATA
--- CONTROL

LEGEND

(
405CARD L­
READER ~

(
415 CARD '--­
PUNCH ~

CH = CHANNEL NO
UN = UNIT NO.
EQ = EQUIPMENT NO.

NOTES

CONSOLE
TYPEWRITER

3447 CARD
READER
CONTROLLER

3446 CARD
PUNCH
CONTROLLER

EQ 1

EQ 2

CH 1

3206
COMMUNICAT,ION
CHANNEL

L.e
L-..,

EQ3

3234 DISK
STORAGE
CONTROLLER

CD EXTENDED CORE VARIANT OF MSOS
MAY USE 48K OR 64K OF MEMORY.

12'DUAL INPUT CON"!'ROLLERS ALLOW
\!;I A PROGRAM TO ACCESS A TAPE

OR D,ISK ON CHANNEL 2,IF OTHER
CHANNELS ARE BUSY. BOTH
ACCESSES MUST USE THE SAME
EQUIPMENT NUMBER. ~

,.

.........
4 TO 8854
DISK DRIVES

UN 0 UN 7

TWO ,3203 STORAGE MODULES 17\1
(32K OF MEMORY) \.!)

-'-u CH 2 1 CH3

®

3206
COMMUNICA liON
CHANNEL

3423

3206
COMMUNICATION
CHANNEL

®
MAGNET,IC TAPE
CONTROLLER

EQ 1

EQ 3 EQO~ ____ ~ ____ ~

UN 0

-1:0
••• • ••
4 TO 8607
TAPE DRIVES

UN 7

Figure 1-1. Typical 3200 Computer Equipment Configuration

3256
LINE PRINTER
CONTROLLER

I

I

MEMORY PROTECTION VARIANT t

The memory protect variant of MSOS prevents batch and priority level 3 and 4 programs
from writing in the areas reserved for the system executive and priority level 1 and 2
programs. This allows untested batch and priority level 3 and 4 programs to be run
without danger of destroying the operating system resident or priority level 1 and 2
programs.

Memory protect is provided by memory bounds switches~ or optionally by memory
bounds registers for dynamic memory protection. The memory protection switches are
set by the operator. MSOS sends a: messag-e to the operator when, system conditions
requir~ changing the switches. The new switch settings are included in the message.

The dynamic memory protect option uses bounds registers to perform the function of
the memory protect switches. t t MSOS automatically sets and clears the flip-flops,
thereby relieving the operator of the task of setting memory protect switches. The
bounds registers restrict batch and priority level 3 and 4 programs to their assigned
program area. In addition to protecting the operating system and priority level 1 and
2 programs, dynamic protection protects resident batch and priority 3 and 4 programs
from each other. The dynamic memory protect variant of MSOS is available with
32K, 48K, or 65K of memory.

EXTENDED CORE VARIANT

The extended core version of MSOS (refer to Figure 1-2) allows the use of more
memory for larger batch and priority programs. This variant of MSOS is available
with 48K or 65K of memory and uses standard or dynamic memory protect.

3 2K r - - - - - - - - - - - - "1
I I
I Batch and priority I

programs I

16K Batch
programs

OPERATING
SYSTEM

I

Standard and 32K memory
protection variants

Indicates optional core

32K ;-------------l r-------------~2K
I I I I

: Priority Programs ~ I Batch Programs I
I I I I

16K Priority Programs

OPERATING
SYSTEM

Batch Programs 16K

OPERATING
SYSTEM LINK t t t

Bank 0 Bank 1
Extended core variant

Figure 1-2. MSOS Variants

tMemory protection does not restrict the higher level (level 1 and 2) priority pro­
grams from writing anywhere in core.

t t Available only with 3100, 3150, and 3200 computer systems.
t t tLess than 64 words.

1-4 60410600 B

BATCH JOBS

MSOS processes batch jobs sequentially from the system input unit, normally a card
reader. The operator may assign and reassign the system input unit to any available
card reader or magnetic tape unit. In addition, priority programs may submit a batch
job from mass storage files.

The operator places batch job decks (job stacks) in the system card reader and MSOS
sequentially reads and executes the jobs. Unless a batch job is terminated by the
operator, each batch job is processed and completed before the next batch job is started.

When priority programs are present in core, they periodically interrupt the execution
of batch programs, do the priority processing, and then return control to the batch
program at the point of interruption. If a batch job is submitted by a priority program'l
the batch job is initiated immediately after the interrupted batch job has finished
processing. After the priority submitted batch job has finished, batch-program input
reverts to the system input unit.

PRIORITY PROGRAMS

Priority programs reside in core and are brought into execution by either a system or
an external interrupt. Priority programs normally remain in core after completion of
their interrupt processing and are reexecuted each time the system interrupt occurs.
Each time a priority program completes processing, control returns to the interrupted
program at the point it was interrupted.

Priority programs may be terminated (released from core) by the operator or by self
termination. Self termination occurs only if a self termination routine was coded into
the program to terminate the program after a certain number of executions, after a
certain time interval passed, or when certain system or programming conditions exist.

Priority programs must be assigned a priority level (1 through 4) when they are loaded.
A higher level priority program interrupts all lower level priority and batch programs.
The highest priority level (priority 1) is designed for use in real-time applications.

JOB ACCOUNTING

An accounting routine in MSOS accumulates the elapsed time for each job and prints
the elapsed time at the console typewriter and at the system output unit with the job's
list output.

A system accounts table is maintained which batch programs may reference for the
date, time, job time, print line limits, cards punched limits, library editions in use,
etc.

A provision for adding a system accounts file is included for those sites that choose to
add their own special accounting routines and a system accounting file.

60410600 B 1-5

I

I

OPERATOR CONTROL OF JOB PROCESSING

The operator can control job processing in the following w~ys.

1. Use the SELECT JUMP 6 switch to stop processing between batch jobs after the
next end-of-job card is read. t This allows the operator to switch the system
input unit, punch output unit, or list output unit to a different unit (that is,
from card punch to a tape drive, etc.). At this time, the operator may also
type control statements for job sequencing and I/O equipment control and
mount tapes or disk packs if required.

2. Use the SELECT JUMP 5 switch to stop processing immediately after starting
the next batch job (that is" immediately after the next JOB card is read). This
allows the operator to inspect the JOB card, enter job control statements such
as special equipment assignments with EQUIP cards, and to terminate or
initiate the job. t t

3. Press the MANUAL INTERRUPT switch to interrupt the program in execution.
This allows the operator to terminate any program in core (batch or priority),
or to use the typewriter to send commands or data to any program iIi core that
contains an operator, message processor routine.

4. Use a SEQUENCE statement to search the input unit for a particular SEQUENCE
card. This would be useful in cases where SEQUENCE cards were used to
index job stacks on magnetic tapes.

I
t The SELEC T JUMP 6 switch cannot be used while the system is running under

control of APC (section 20).
t t The SELECT JUMP 5 switch cannot be used to change JOB statements while the

system is running under control of A PC.

1-6 60410600 B

I/O EQUIPMENT ASSIGNMENT 2

UNIT RECORD DEVICES

Unit record devices consist of all I/O units except mass storage units (that is, disk
packs, disk files, and drums). Under MSOS, the user must use an EQUIP statement
to assign a logical file number to each unit record device he intends to use. The file
numbers are used in the program to designate units for I/O.

The file number may be any number between 1 and 53. It may be assigned to a specific
type of hardware (any available unit of the type specified), or to a specific unit by
physical location (that is, by channel, unit, and equipment number).

Example:

$EQUIP 21 CIE2U4

$EQUIP 20 = MT

C = channel number, E = equipment number
U = unit number

MT is code for a tape drive

The above example assigns file number 21 to the I/O unit at channel 1, equipment 2,
unit 4. It also assigns file number 20 to a tape drive. Any tape drive that has not
been assigned may be assigned as number 20 by MSOS. These file numbers remain
assigned until the job they were assigned in is completed. All file numbers are auto­
matically released at the end of a job. Refer to section 4 for a detailed description
of the EQUIP statement.

Once assigned, the file numbers are used to designate units for I/O functions within a
program. For example, to write on the tape unit that was assigned file number 20,
the following statements could be used.

COMPASS RTJ CIO (refer to section 11 for description of CIO)

COBOL

FORTRAN

02 20, 0

SELECT PAY-FILE ASSIGN TO TAPE 20
OPEN I/O PAY-FILE
WRITE PAY-FILE FROM NAME

DIMENSION A(9260), B(4)
WRITE (20) A, B

The file number assignments are automatically cleared at the end of each job; they must
be reassigned at the beginning of the next job.

MASS STORAGE FILES

Mass storage files are files on disk packs, disk files, and drums. FORTRAN and
COMPASS users must use logical fUe numbers to reference exiting mass storage files
for I/O, the same as for unit record devices. New mass storage files must be allo­
cated before they can be used for I/O (refer to section 3).

To assign a logical file number, the user must use a FET statement to identify the file
(by owner name, file name, and block size), and an OPEN statement to assign a file
number (1 through 53) to the file.

60410600 B 2-1

Example:

$FET, OWNER, FILENAME, 512

$OPEN,22

512 indicates 512-character blocks

This example opens a file called FILENAME which is owned by OWNER. The OPEN
statement assigns number 22 to the file. This number is used to reference the file for
110 in a program. The following examples are program statements that write on file
number 22.

COMPASS RTJ CIO (refer to section 11 for description of CIO)

FORTRAN

02 22,0

DIMENSION A(100), B(40)
WRITE (22) A, B

If a mass storage file is on a disk pack (device) that is not mounted when the file is
opened, MSOS stops job processing and requests the operator to mount the device.
When the device is mounted, job processing resumes.

COBOL users cannot open mass storage files outside of the COBOL program. Existing
mass storage files must be opened in the COBOL program. New files must be allocated
outside the COBOL program before they can be opened in the COBOL program.

Example:

SELECT PAY-FILE ASSIGN TO DISK

OPEN I/O PAY-FILE

WRITE PAY-FILE FROM NANE

The file identification must be supplied for each file that is opened in the LABEL RE­
CORD VALUE statement of the file description (FD) entry.

Example:

FD PAY-FILE

LABEL RECORD IS STANDARD
VALUE OF;

ID IS FILENAME
OWNER IS OWNERNAM
ACCESS- PRIVACY IS PRIV

The FILENAME, OWNERNAME, and PRIV codes are assigned with the $FET card when
the file is initially allocated.

LOGICAL UNIT AND FILE NUMBER ASSIGNMENT

MSOS uses file numbers for its system files and units. The MSOS system file numbers
are reserved and cannot be assigned by the user. However, some system files may
be referenced for input or output in user programs. Table 2-1 lists the system file
numbers and the file numbers that the user can assign and use.

2-2 60410600 B

SYSTEM UNIT PROTECTION

MSOS contains a subroutine (PROTECT) which monitors all I/O functions on system
files 58 through 63. This subroutine protects the system files from I/O functions
which would interfere with normal job processing of these files.

Input (file 60) - The following I/O functions are prohibited on file 60. If attempted,
PROTECT rejects them with an error code.

1. If file 60 is a tape instead of a card reader, PROTECT rejects I/O functions
that: write on the tape, position the tape forward, position the tape backwards
beyond the limits of the job file being read, rewind the tape, unload the tape,
or change the read/ record density.

2. After an end-of-file condition is sensed, PROTECT allows only the following
I/O functions:

If Previous If N ext Function Is:

Function Was: Read Read Backward Backspace

Read Reject Accept Accept

Read Backward Accept Reject Accept

Backspace Accept Reject Reject

Output (files 61 and 62) - I/O functions on tape units are rejected if they reposition the
file over a previous job output, write over or erase any previous j0b outputs, or ad­
vance the file beyond the position that the current output is being written on. The
following functions are always rejected: REWIND, UNLOAD, READ BACKWARD, WRITE
EOFmark, and change of recording density. BACKSPACE is rejected unless the pre­
vious function was a WRITE or an ERASE.

CTO and CFO (files 58 and 59) - PROTECT allows only a read function on file 58 and
only a write function on file 59.

Library (file 63) - PROTECT allows only a read and locate function on file 63.

SYSTEM I/O FILE SPOOLING (APC)

MSOS has an automatic peripheral control routine (A PC) that buffers (spools) the system
input, list output, and punch output on mass storage files before processing them.
Spooling I/O files provides more efficient I/o and thereby increases the system through­
put.

A PC operates as a priority program that can be set up for initiation by operator
commands.

60410600 B 2-3

l\:)

I
Hl>o

0')

o
~
~

o
0')

o
o
n

TABLE 2-1. SYSTEM FILE NUMBER ASSIGNMENTS

Number

1-52

53

54 t

55 t

Description

User files. Assignments are made in batch jobs or
during initial loading of priority programs. File as­
signments are automatically released at the end of
each batch job or priority program.

Used by L-MSIO for an overlay file. The overlay file
is allocated at install time and opened by L-MSIO as
required.

Hollerith scratch file. Used by MSOS to store
Hollerith code which is to be passed to a language
processor (that is, assemblers, compilers, etc.).
May also be used for batch program scratch. Block
size is 512 characters per block.

Intermediate scratch file. Used to store first pass
output from assemblers and compilers, and used by
the loader to assemble absolutized code before load­
ing in core. Is also used by the recovery dump
routine to temporarily store the contents of memory
in which RDUMP will be overlayed. May also be
used for batch program scratch. Block size is 512
characters per block.

56 t Load and go scratch file (LGO). Used by MSOS to
store relocatable binary output code from assemblers
and compilers. May also be used by batch programs.
Block size is 960 characters.

57 t Reserved for system account file. Assignment of this
file and its block size is a system installation option.
If this number is assigned, this file must be processed
with a user supplied accounting routine which must
reside in the variable resident area of core when it
executes.

tNumber of blocks assigned to these files is an installation option.

Batch Program Usage

May be assigned and
used for unit record
devices or mass stor­
age files.

Priority Program Use

Logical units can be II
referenced for I/O if
they are EQUIPPED
before the priority pro­
gram is initialized.
Mass storage files can
be opened for use before
or after the program is
initialized.

Can be assigned only if I Same as 1-52.
ANSI COBOL, MS
COBOL, LISA, or L-
MSIO (macros) are not
used.

Use as mass storage
scratch files. The
files are opened by
the system. The user
needs only to refer­
ence the file numbers
to read or write on
them.

The block pointers are
reset to 0 at the end of
a job (after an EOJ
card).

Optional. Used to
record system account­
ing information ac­
cording to site require­
ments.

Cannot be referenced
in a priority program.

0)

o
~
o
0)

o
o

::t>

t\j

I
C,TI

Number

58

59

60t t

61

62 t t

63-68

TABLE 2-1. SYSTEM FILE NUMBER ASSIGNMENTS (Cont'd)

Description

CFO (computer from operator) unit. Input from
console typewriter. Referencing file 58 causes the
TY PE LOA D indicator to light at the console type­
writer. Maximum block size is 80 BCD characters.

CTO (computer to operator) unit. Output to con­
sole typewriter. Maximum block size is 80 BCD
characters.

Standard system input unit. This file may be either
a tape unit or a card reader. Programs reading
from this unit should be coded to read from either
type of unit. Block size is 80 BCD characters (160
octal characters).

Standard system output (list) unit. This file may be
either a line printer or a tape unit. Programs should
be coded to write on either type of unit. Maximum
block size is 136 BCD characters.

Standard system punch unit. This file may be either
a card punch or a magnetic tape. Programs with
punched output should be coded to write on either type
of unit. Maximum block size is 80 BCD characters
(160 octal characters).

System mass storage files:

63 Library file 66
64 MSD file 67
65 IDF file 68

Label file
ABS file
Library directory file

Batch Program Usage

Read messages from
operator.

Send messages to
operator.

Read new batch jobs J

priority programs J

and input data.

Print a job's output. t

Punch output cards.

Cannot directly refer­
ence any file or unit
number above 63.

Priority Program Use

Read messages from
operator.

Send messages to
operator.

These files cannot be
referenced in priori·ty
programs. However J

the file numbers can
be us ed to open per­
manent files (user units)
the same as file num­
bers 1 thr ough 53.

Cannot directly refer­
ence any file or unit
number above 62.

t Print control character plus 135 data characters. Refer to appendix B for a list of print control characters.
t tOnly word I/O can be used on these units.

SUBMITTING BATCH JOBS FROM MASS STORAGE

MSOS has an alternate processor routine (A P) which accepts batch jobs submitted for
execution from mass storage files. The batch jobs are coded for the standard system
input unit but submitted to AP for execution from mass storage files by a priority
program. Batch jobs submitted by priority programs are given priority in the order
of processing over batch jobs submitted from the standard system input unit.

REASSIGNMENT OF SYSTEM SCRATCH FILES

For special jobs, one or more of the system scratch files (files 54, 55, and 56) may
be closed and reassigned to a larger and permanent mass storage file. At the end
of the job, the system automatically reopens the files, as originally allocated and as­
signed, for the next job. Note that the system uses file 55 extensively during job
loading and termination. User information written on file 55 is not saved after the job.

2-6 60410600 A

MASS STORAGE FILE MANAGEMENT 3

OCAREM

Mass storage files are managed by OCAREM. OCAREM is a set of mass storage file
control routines that are used to allocate, open, close, expand, modify, and release
mass storage files. OCAREM does not read or write on a file. All read ing and
writing must be done internally within a user's program. In COMPASS programs,
reads and writes may be done with CIO statements. (Refer to section 11 or L- MSIO
statements in sections 14 and 15.) In FORTRAN and COBOL programs, reads and
writes must be done with I/O statements in the program.

The OCAREM routines are part of the system executive. These rou tines can be called
and used in a job with MSOS control cards. In addition, COMPASS users may call and
use these routines by using mass storage file control macros (refer to section 13)
within a COMPASS program.

ENTERING A MASS STORAGE DEVICE

Before a mass storage file or disk pack (device) can be used, it must be entered in the
system MSIO files with an ENTER statement. This is normally an operator function and
the procedure is described in the MSOS Operator's Manual. The ENTER statement is
described in section 4 as one of the mass storage utility routines.

MSOS uses the information on the ENTER statement to write a device label on track 0
of the device, and write an MSD label in the mass storage device label file (MSD file,
refer to appendix H). A track map is part of the MSD label. The map contains a
record of each track on the device. The map indicates which tracks are available
for new files or expanding old files, and which tracks are reserved for existing files.

ALLOCATING A FILE

Before doing I/O on a new mass storage device, the user must allocate space for a file
on the device. A file need only be allocated once. After allocation, the file needs
only to be opened before using it and closed when it is not in use.

Allocating a file reserves space on a mass storage device for the file· and creates a I
label which defines the file. The file label contains a file name, an owner's name ..
an edition number, privacy codes, the files block size and length, its starting address
(that is, device number and first sector address), etc. OCAREM writes all file labels
on a label file (LABELFILE, appendix H). Then OCAREM references the file label
every time a file is opened for input or output.

60410600 C 3-1

I

I

FET and ALLOCATE statements are used to allocate a file. These statements are
described in section 4. The information in these statements is used to construct the
file label. The label entries defined in these cards are initially built by OCAREM
and updated each time the file is used.

Exa"mple:

$FET. OWNER. FILENAME. 512
$ALLOCATE. B10

In the previous example. the FET statement specifies the owner. the file name. and
the block size t to be used. The ALLOCATE card specifies that 10 blocks are to be
reserved for the file. This is the minimum number of parameters that can be used.
MSOS assigns values for the remaining parameters (privacy codes. edition number.
etc). These parameters and their default values are described in section 4.

SELECTING A FILE BLOCK SIZE

When selecting the block size for a file. the size should be equal to or an even mul­
tiple of the sector size of the device being used. Since OCAREM starts each new
block at the beginning of a new sector. failure to equate sector size with block size
results in wasted mass storage space.

Examples: t t

1. A block size of 512 characters fills two sectors on an 853 device. If the
first block of a file starts at sector 00, the second block starts at sector
02. The same block size on an 841 device fills only 512 of the 640 char­
acters in each sector resulting in 128 characters of wasted space in each
sector.

2. A block size of 640 characters fills 2. 5 sectors on an 853 device. If the
first block of a file starts on sector 00, the second block starts at sector
03. Half of the space on every third sector is wasted.

OPENING A FILE

After a file is allocated. it must be opened before using it. Since only a limited num­
ber of files can be open at the same time. t t t files should be closed when they are not
in use. All files opened in a job will automatically be closed when the job terminates.

A FET and an OPEN statement may be used to open a file. The OPEN statement
assigns the file number used to reference the file for I/O. The FET statement is
used to locate the file label in the label file. These statements are described in
section 4.

The modification privacy parameter on the FET statement may be omitted. and any non­
zero numeric value may be used as the block size parameter. These parameters are
not checked by OCAREM when opening a file.

t In number of characters.
t tRefer to Table 4-1 for device sector sizes.

t t t The number of files that can be open concurrently is determined by the size of the FDT
table which is an installation assembly option. Each mass storage file that is open has
an entry in the FDT table that uses 8 + (three times the number of segments) words.

3-2

A nonmass storage file (that is. unit record device entered with an EQUIP statement)
requires 9 words.

60410600 C

When an OPEN statement is read, OCAREM checks the file label and the labels of all
mounted devices to ensure the file is on-line. If the device that contains the file is
not mounted, OCAREM sends a message to the operator requesting the device be mounted.
Then OCAREM waits until the operator mounts the device before continuing the job.
If the file is segmented across more than one device, OCAREM requests the operator
to mount each device containing a segment of the file.

When the device containing the file is mounted, OCAREM enters the file label in a
file description table (FDT) and assigns the file number given on the OPEN statement
to the table. Then, when 110 requests are made on the file, OCAREM uses the file
number to locate the file label in the FDT table.

Example:

$FET, OWNER,FILENAME, 512, ED, ACCS
$OPEN,21

These statements open edition ED of the FILENAME file and assign logical number 21
to the file. ACCS is the privacy code needed to open the file, and the block size is
512 characters.

CLOSING A FILE

A CLOSE statement applies to mass storage and unit record device file numbers. It
closes the file specified on the CLOSE statement. Closing a file clears that file entry
in the file ordinal table. For mass storage files, closing updates the file label in the
LABELFILE with the number of blocks written, last date accessed, etc. After a file
is closed, it cannot be used for 110 until it is reopened or reequipped. The file
number may be reassigned to another mass storage file or a unit rccord device. The
CLOSE statement is described in section 4.

Example:

$CLOSE,21

This CLOSE statement closes file number 21.

,EXPANDING A FILE

A FET statement and an EXPAND statement may be used to expand a file. Expanding
a file increases the number of tracks assigned to the file. The file may be expanded
to additional devices. The EXPAND statement is described in section 4.

The EXPAND statement causes OCAREM to update the MSD file to reflect the additional
space reserved for the file, and to update the label in the LABELFILE with the location
and number of the new tracks.

The file must be closed before it can be expanded and the FET statement must contain
an access and a modification privacy code.

Example:

$EXPAND, B100

This EXPAND card adds 100 blocks of new space to the file defined by the preceding
FET card.

60410600 C 3-3

I

MODIFYING A FILE

A FET statement and a MODIFY statement may be used to change the owner name,
file name, block size, edition number, privacy codes, expiration date, and protection
(that is, read only or read and write) in a file label.

The expiration date and protection may be changed with a MODIFY statement. For
other changes, a FET statement with new values must be input following the MODIFY
statement.

The MODIFY statement is described in section 4. A file must be closed before it can
be modified and the FET statement must contain the files modification privacy code.

Example:

$MODIFY, I, 760704

This MODIFY card changes the protection to input only and changes the file expiration
date to July 4th, 1976.

Example:

$MODIFY" , N
$FET, BLT, HAM, 512,AB, ACE, DUCE

These cards replace the old FET used to identify the file for modification with a new
FET statement. All new FET parameters replace the old FET parameters in the file
label in the LABELFILE.

RELEASING A FILE

A FET statement and a RELEASE statement may be used to release part or all of the
mass storage space reserved for a file. All released space will be made available for
new files or for expansion of existing files. The RELEASE statement is described in
section 4.

Releasing all of a file removes the file label from the LABELFILE, and releases all
space that was reserved for the file in the device label (MSD file). Since the file label
was deleted, the file can no longer be referenced for any purpose, and all space re­
served for the file is set as available in the mass storage device label (MSD).

Releasing part of a file releases a specified number of tracks starting with the highest
track number allocated for the file and working downward. The number of tracks to be
released is specified on the RELEASE card.

If a file has been loaded with data and the amount 0 f unused space is unknown, all
unused space may be released by specifying UNUSED on the RELEASE statement. All
tracks which have not been written on are removed from the LABELFILE and set as
available in the MSD file. If the file has not been written on, all blocks are released
except the first track (or block if a block is larger).

A file must be closed before it can be released and the modification privacy code
must be included on the FET statement.

3-4 60410600 A

Examples:

$RELEASE, ALL

$RELEASE,10

$RELEASE, UNUSED

CLASS-R DEVICES

All of a file

The upper ten tracks of a file

All the unused tracks of a file

Class-R devices and the files written on them can be moved to and used with any MSOS or
MASTER system containing class-R code. Nonclass-R devices and their files can be used
only at the system which the device was initially entered in. The operator selects a de­
vice's class (R or non-R) with the R parameter when he enters the device in a system with
the ENTER statement.

MSOS writes an RLABEL on class-R device when the device is entered in the system. The
RLABEL contains space for file labels and the device's MSD information.

When the user allocates a new file on a class- R device, OCAREM writes the new file's
label in both the system's LABEL file and in the device's RLABEL. MSOS uses the sys­
tern's LABEL file for mass storage file references and file modifications. However, MSOS
always updates the RLABEL entries so that they are always current with their corresponding
entries in the MSD and LABEL files.

When a class-R device is taken off-line, OCAREM removes the device's labels from the
system's MSD and LABEL files; and when a class-R device is brought on-line, OCAREM
copies the information from the device's HLABEL into the system's MSD and LABEL files.
As a result, class-R devices with files from other systems can be brought on-line and used
the same as a ciass-R device that was initially entered in the system. However, the system
has no record of files on class - R devic es that. are off-line. A job aborts if an a ttempt is
made to open a file residing on a class-R device that is off-line.

Labels for nonclass- R devices and files are permanently retained in the system's LABEL
and MSD files (that is, until the file or device is released). When the user opens a nonclass­
R file which is on an off-line device, OCAREM locates the number of the device containing
the file from the LABEL and MSD files and requests the operator to mount the device be­
fore continuing with the job.

60410600 C 3-5

MSOS CONTROL STATEMENTS 4

CONTROL STATEMENTS

The control statements described in this section may be input to MSOS as punched
cards from the card reader, typed by the operator at the console typewriter, or read
as card images from tape or mass storage files. t These control stateme nts allow the
user to load and execute programs, select I/O units for I/O functions, allocate and
use mass storage files, call programs from the system library, and send messages
to the system operator. In addition, a series of I/O utility routines and error de­
tection and correction functions may be selected with these control statements.

Each control statement contains an MSOS control character (either ~ or $ may be used
interchangeably) in column 1 and a control name starting in column 2. Following the
control name, a parameter string occurs on most cards. The parameters are sepa­
rated from the control name and from each other by commas.

When a parameter is omitted, the system substitutes a default value. The trailing
comma must be retained for omitted parameters, and the comma is omitted after the
last parameter on the statement.

Example:

$NAME, P1, P2, , , P5, P6

P Parameter

In the above example, parameters P3 and P4 were omitted (defaulted). If the complete
parameter string is eight parameters long, parameters P7 and P8 are also defaulted.
All blanks in the parameter string are ignored by the system.

All control statements will be printed on the jobs output listing.

JOB PROCESSING STATEMENTS

Job processing statements are control statements used to initiate and terminate a job,
communicate with the operator, and load and execute user programs.

SEQUENCE

The SEQUENCE statement is an optional job or job stack identification statement that
precedes JOB statement. At any time, the operator may request MSOS to skip to a
specific sequence statement in a job stack and start processing the jobs that follow it.
If the input unit is a card reader, MSOS will skip to the SEQUENCE card and process
jobs until the input hopper is empty. If the input unit is a magnetic tape drive, MSOS
searches tape for the SEQUENCE statement and then processes jobs in the job stack until
an ENDSCOPE or ENDREEL statement is sensed.

SEQUENCE,j

j Anyone to three digit decimal number (0-999)

The j parameter is required.

t A PC or A P must be used when submitting control statements from mass storage
(refer to sections 20 and 21).

60410600 A 4-1

I

The SEQUENCE statements need not occur in sequential order. For example, the
SEQUENCE statements for a job stack on tape to be run at ten 0' clock (SEQUENCE, 10)
could precede the SEQUENCE statement for a five 0 'clock job stack {SEQUENCE, 5).

When a SEQUENCE statement is read, MSOS spaces the output unit one page, copies
the SEQUENCE card on the output unit, and writes the j parameter in the system ac­
counts table (refer to section 16).

JOB

The JOB statement must be the first statement in each batch job. Before starting a
new job, MSOS ejects a page on the output unit t and prints the new JOB statement.
MSOS also prints the information from the JOB statement and a system generated se­
quence number at the console typewriter. If a SEQUENCE statement was used, MSOS
replaces the word JOB with the three-digit sequence statement at the typewriter.

$JOB, c, i,t, nl, nc, comments b

c Job account number. One to eight alphanumeric characters.

i Job name. Any number of alphanumeric characters may be used.
Only the first four characters of the i parameter are used. They are
written in the accounts file, listed with the job accounting output, and
punched with the jobs punch card output.

t The maximum job run time in minutes. Time may range from 1 to
999. t If omitted, a default value that was set in the system at installa­
tion time is used. If the job running time exceeds t, the job is aborted.

The t parameter applies only to elapsed clock time and operator inter­
vention time. It does not apply to time used by priority programs.

nl Maximum number of lines that can be printed on the output file. If
omitted, the default value set in the system at installation time is used.
If the number of lines to be printed on the system output unit exceeds
nl, the job aborts. t t

nc, Maximum number of cards that can be punched by the job. It omitted,
the default value set at installation time is used. If the number of cards
to be punched exceeds nc, the job aborts. t t

comments Comments field follows after the nc parameter. Blank separators between the
two fields are not necessary, since nc is followed by a comma.

b Hollerith/ ASCII parameter. Selects Hollerith or ASCII to BC D conversion
for card reader, card punch, and system output printer. The b parameter
occupies columns 78" 79, and 80.

t If a SEQUENCE statement was used, MSOS ejects the page for the SEQUENCE card,
but not for the JOB card.

t t A value of * specifies unlimited number.

4-2 60410600 C

Column

78

79

80

Value

A

H

Omitted

A

H

Omitted

A

H

Omitted

Description

Selects ASCII to BCD conversion of card reader
input. t
Selects Hollerith to BCD conversion at the card
reader input.

Uses the conversion selected at system installation
time.

Selects printed output in ASCII characters (BCD
to ASCII conversion) tt
Selects printed output in Hollerith- characters (BCD
to Hollerith conversion)

Uses conversion type selected at system installation
time.

Selects ASCII punched card output (BCD to ASCII
conversion) t t t
Selects Hollerith punched card output (BCD to
Hollerith conversion).

Uses conversion type selected at system installation
time.

The job statement will be printed on the standard OUT unit with the following additional
information. .

1. Job sequence number

2. MSOS version number

3. Library edition number

4. Date

5. Job initiation time

Example:

$JOB, 54ANJ60, TYPE, 21, 950,1260

t 3447-2 controller permits 405 card reader to read cards punched in ASCII or
Hollerith and convert them to internal BCD. If A parameter is specified without
the 3447-2 available, the cards are read as Hollerith.

t t A 512 line printer with an ASCII subset train must be used if the A parameter
is selected (refer to TRAIN statement).

t t t 3446-2 card punch controller is required to accept internal BCD and convert to
ASCII or Hollerith punch codes. If the A parameter is specified without the
3446-2 available, the cards are punched with Hollerith code.

60410600 A 4-3

PRIORITY

The PRIORITY statement is used in place of the JOB statement for priority programs.

$ PRIORITY. P

p Priority level of the program to be loaded. The value of p may be
Pl. P2. P3, or P4. This parameter .is required.

Only programs in relocatable binary format may be input following the PRIORITY
statement. Source language programs cannot be input or compiled following a PRIORITY
statement.

The priority program must contain one or more of the following statement groups.

1. LOAD and RUN if priority program is on a tape or mass storage file.

2. Binary IDC card and a RUN card if the priority program is to be input as
binary deck from the card reader.

3. Library program call statement if the priority program is to be input from
the library.

4. An ABSTSK statement if the priority program is on a mass storage file and
in absolutized format.

The priority program may contain any of the following statements.

1. EQUIP

2. DUMP

3. Any mass storage file control cards

Before a priority program is loaded. a message is sent to inform the operator of the
program priority level. Since only one priority program of each level can be in core
at the same time. the operator must terminate any priority program with the same
priority level before MSOS will load a new priority program.

Example:

PRIORITY. P3

eTl

The CTL statement prints messages on the jobs output listing.

$CTL, message.

The message consists of a series of 1 to 75 alphanumeric characters starting in
column 6 of the statement. MSOS inserts a blank space in the first column of the
printer and then prints the message.

Example:

$CTL, PLEASE SAVE TillS OUTPUT FOR JOES FILES

4-4 60410600 A

eTO

The CTO statement sends messages to the operator at the console typewriter.

$CTO, comments to operator

The comments consist of a series of 1 to 68 alphanumeric characters (including
spaces) starting in column 6. MSOS does a carriage return at the typewriter
before typing the message. MSOS also prints the message on the output unit.

Example:

$CTO, PLEASE MOUNT JOES TAPE ON CHI EQUIP2 UNIT3

PAUS

The PAUS statement stops all processing of the job and sends a message... I
READY? ••• to the operator. Processing continues when the operator presses FINISH.
The PA US statement can be used only with batch jobs. It causes a control statement
error diagnostic if used in a priority program. All comments on the PADS card are
typed after the PAUS READY message to the operator.

$ PA US, comments

TRAIN

The TRAIN statement sends a message to the operator requesting a specific print train
to be mounted on the 512 or 580 line printer. MSOS waits for the print train to be mounted I
before continuing with the job.

$TRAIN, n, lu

n Train number. Values are 1 through 4.

1 595-1 (501 compatible train)
2 595-2 (AN compatible train)
3 595-3 (HN compatible train)
4 595-4 (ASCII subset train)
Other Illegal, causes a diagnostic

lu Logical unit number of the 512 or 580 line printer (refer to EQUIP card). I
Values are 1 through 53 or 61. Default value is unit 61.

Example:

$TRAIN, 1,32

60410600 C 4-5

I

I

LOAD

The LOAD statement loads relocatable binary programs into core memory and links
all subprograms together so they are ready for execution. t The relocatable binary
programs may be loaded as card decks at the system card reader, or from a tape or
mass storage file.

$LOAD, fl, f2, f3, M or $LOAD, M

f Mass storage or tape file containing the relocatable binary
program. One to three files may be specified. The values for each
may range from 1 through 53 or 56 (load and go scratch file). If no
files are specified, the loader assumes all decks to be loaded are on
the system input unit following the LOA D statement. The trailing
commas are omitted for all f parameters not included.

M Request for memory map. M is used to request a memory map on
the standard output unit. If the parameter is omitted, no map is pro­
duced. M may appear anywhere in the parameter list.

Examples:

$LOAD

$LOAD,21

$LOAD, 21, M, 22

The mass storage files specified on the LOAD statement must be opened and the file
block size must be 960 characters per block. Tape files must be in card image for­
mat with 160 characters per block. All files are automatically positioned to the first
block by the loader.

The loader absolutizes and links all subprograms from file fl, f2, f3, and from any
decks following the LOAD statement on the input unit. Only one LOAD statement can
be used per task. Each file is loaded until an EOF is read.

The absolutized program produced by the loader is assembled on scratch file 55 be­
fore loading into core. If a MAIN (overlay) card is placed in front of a relocatable
binary deck, the loader assembles the absolutized program on the file number specified
on the overlay statement. In this manner, absolutized code is saved on a permanent
file for quick loading with the ABSTSK statement.

ABSTSK

The ABSTSK statement loads absolutized binary programs into core from a mass
storage file and starts execution of the program.

$ABSTSK, f, pI, ..• , Pn

f Mass storage file number containing the absolutized program.

Parameters to be passed to the program. Values depend upon the
program. Parameters are optional.

The ABSTSK statement loads absolutized binary programs from file f into core. The
memory locations used by the absolutized program must be available or the job aborts
with a diagnostic.

tRefer to section 6 for a description of the relocatable binary format.

4-6 60410600 C

When MSOS enters the program, register A, Q, and Bl contain the following informa­
tion.

Description Register

Register A,
bits 16-00

First character address of the $ABSTASK statement in core.tl

. Register A,
bits 23-17

Register Q,
bits 14-00

Register B1

BINARY IDC CARD

Relative position of first character of first parameter on the
card. The control character ~ or $ is position 1.

Second transfer address from TRA cards (if more than one
entry is used).

Mode of program.

1 Batch
2 Priority 4
3 Priority 3
5 Priority 2
6 Priority 1

Relocatable binary subprogram decks are loaded from the system input unit without a
LOAD statement. Whenever MSOS reads a binary card or card image on the system
input unit, it assumes the binary card is the first card (refer to IDC card in section 6)
in a subprogram deck. MSOS calls the loader which loads and links the subprograms
the same as if a $LOAD card were used with no f parameter specified.

RUN

The RUN statement starts execution of the program which has been loaded with a LOAD
statement or a binary IDC card.

$RUN

Data cards or statements may follow the RUN statement at the system input unit.

LIBRARY PROGRAM NAME

The library program name statement loads programs from the system library or an
A UX library. A RUN statement is not used with the library program name statement;
execution is automatic. Data cards or statements may follow the library program name
statement on the system input unit.

$name, parameters

name

parameters

A library program name (main entry point symbol)

Parameter string to be passed to the program

tOn 65K memory systems, the address will be a bank 0 address.

60410600 B 4-7

I

I

Examples:

$FORTRAN,I,L

This statement calls MS FORTRAN into execution from the library. The I parameter
indicates the FORTRAN input source statements follow on the system input unit. The
L parameter specifies list output on the system list output unit.

$COMPASS, 1=21, X=56

This card calls COMPASS into execution from the library. The I parameter indicates
that COMPASS input source statements are on file 21 and COMPASS executable output
is written on file 56, the load and go file.

Use of the standard MSOS library programs and their control parameters is described
in the applicable program reference manual.

When a program is called off a system or A UX library with a program name statement,
the loader enters the following information in the A, B1, and Q registers and then enters
the program at the main transfer address (from TRA card).

AUX

Register

A

A

A

B1

Q

Bits

14-00

16-15

23-17

2-0

14-0

Contents

First word address of a block in core containing a
copy (BCD) of the library program name statement
used to load the program. In extended core sys­
terrs, the address is a bank 0 address.
Zero

Position of first character of the parameter string
(relative to 1 which is 7/9 or $) on the library
program name statement. Zero if there were no
parameters in the statement.

Mode of the program

1 Batch
2 Priority 4
3 Priority 3
5 Priority 2
6 Priority 1

Second transfer address from the TRA card.
Zero if there was no second transfer address.

The A UX statement specifies that an auxiliary library is to be searched for library
programs and routines before referencing the main system library. The system li­
brary is searched for all programs and routines not found on the auxiliary library or
libraries.

4-8

$AUX, f1, f2, f3

f File number of a ~ass storage file containing the auxiliary library or
directory. One to three files (different auxiliary libraries) can be
specified on each A UX card.

60410600 B

The A UX statement may be used with the following loader statements.

IDe card Library routines referenced in the binary decks will be searched
for on the auxiliary library first.

LOAD statement Library routines referenced in binary decks will be searched for
on the auxiliary library first.

Library program The auxiliary library will be searched for the program first.
name statement

The A UX statement remains in effect throughout the job, or until another A UX state­
ment is read. All subsequent A UX statements replace previous A UX statements. An
A UX statement with omitted f parameters will clear the previous A UX statement.

When more than one auxiliary library is specified, they are searched in the order listed
on the AUX card (that is, f1 is searched first, then f2, etc.).

All files specified on the AUX statement must be opened with an OPEN statement be­
fore the A UX statement will be accepted.

Examples:

$AUX,21

$A UX, 21, 22, 23

$AUX

END.Of.fILE

The end of file statement (EOF) is a A~ punch in columns 1 and 2 of a card, or a ~~
card image on a tape or mass storage file. MSOS will not read past an EOF card on
the input unit until the preceding task has been executed. t If an abort condition occurs,
MSOS aborts only the task in execution (that is, all control statements and programs up
to the EOF statement). Then MSOS reads and executes the remaining tasks in the job.
An EOF statement clears all interrupts selected by programs in the task and is required
at the end of each job.

Columns 3 through 80 are ignored by MSOS. The end of file card spaces the printed
output to the top of the next page.

MSOS. assumes the card following an EOF card is the first card of the next task in the
same job, unless one of the following cards is read next.

EOJ Indicates the end of a job and initiates end-of-job processing. it

t A task is a group of MSOS control cards and/ or user programs followed by an .EOF
statement. Several tasks may be grouped into a single job to provide common ac­
counting, or a job may consist of only one task.

t t Refer to EOJ card for a description of end- of- job processing.

60410600 B 4-9

I

EOJ

JOB statement When following an EOF card, a job card indicates the end
of the current batch job and the start of a new batch job.
The JOB card initiates end-of-job processing (the same as
an EOJ statement) only when it follows an EOF statement.

SEQUENCE statement Indicates the end of the current batch job and the start of
a new batch job stack. The SEQUENCE statement initiates
end-of-job processing (the same as an EOJ statement) only
when it follows an EOF statement.

PRIORITY statement Indicates the end of the current job and the start of a
priority program. The PRIORITY statement initiates end-of­
job processing (the same as an EOJ statement) only when
it follows an EOF statement.

ENDSCOPE statement Indicates the end of a batch job stack. The ENDSCOPE
statement initiates end-of-job processing the same as an
EOJ statement.

ENDREEL statement When the INPUT unit is magnetic tape, the ENDREEL
statement indicates the end of the tape reel. When following
an EOF statement, the ENDREEL statement initiates end-of­
job processing, the same as an EOJ statement.

The EOJ statement indicates the end of a batch or priority job. It must be preceded
by an end-of-file statement.

$EOJ

When an EOJ statement is read or an end-of-job condition is sensed (refer to end-of­
file statement) MSOS performs the following end-of-job processing.

1. Prints the jobs output and the jobs accounting information on the standard
sy stem output unit.

2. Releases all equipment assigned with an EQUIP statement, and closes all mass
storage files opened in the job.

3. Resets block pointers for scratch files (files 54, 55, and 56) to block 1. If the
preceding job closed one or more of the scratch files for possible reassignment,
MSOS releases all system scratch files and reopens them as originally allocated
and assigned.

4. Initiates any batch job that has been submitted from a priority program.

5.. Senses SELECTIVE JUMP 6 switch. If the switch is set, MSOS requests
operator to reassign the system input, output, or punch units before initiating
the next batch job from the input unit. The operator may assign new units,
continue with the same units, or type control statements.

6. Initiates the next batch job from the input unit.

4-10 60410600 A

ENDSCOPE

The ENDSCOPE statement indicates the end of a batch job or batch job stack. It initiates
end-of-job processing, the same as an EOJ statement. In batch jobs, the ENDSCOPE
statement stops all job processing and gives control to the operator so the operator can
switch any of the standard system units (input, list output, or punch output) to a different
unit. The operator must restart batch job processing. In batch jobs submitted from a
priority program, ENDSCOPE is treated as an EOJ statement. Normal batch processing
continues.

$ENDSCOPE, a

a Action to be taken for all standard system units that are on magnetic
tape. This parameter is ignored for all standard system units not
on magnetic tape.

R Write end-of-file marks and rewind the tape units.
N Write end- of- file marks, but do not reposition the tape units.

Omitted Write end of file marks and unload the tape units.

ENDREEL

When the system input unit is a magnetic tape, the ENDREEL statement indicates the
end of the tape reel. The EN DREEL statement stops the processing and unloads the
reel. The operator must mount a new tape before processing resumes.

$ENDREEL

ENDREEL may be used only for batch jobs and must occur between jobs. If it is
not preceded by an EOJ statement, the ENDREEL statement causes end-of-job processing
to occur.

I/O UNIT CONTROL STATEMENTS

I/O unit control statements assign file numbers to I/O units, rewind and unload tape
drives, and specify the type of I/O error recovery to be used with a specific I/O unit.
In addition to the following statements, the CLOSE statement described with the mass
storage file control statements may be use d to release unit file number assignments.

EQUIP

Each I/O unit (except mass storage devices) to be used in a job must be assigned a
file number in order to reference the unit for I/O functions in a program. MSOS
clears all user file assignments after each EOJ statement.

x

60410600 C

A two-digit file number assigned by the user for reference purposes.
The numbers may range from 01 through 53. The file number can­
not have the same value as any other file number assigned or used
in the s arne job.

4-11

u

4-12

Definition of the I/O unit to which the file number is being assigned.
The I/O unit may be defined in one of four ways.

1. By hardware type. u is equated to one of the hardware types
as follows:

MT Magnetic tape drive
CR Card reader
PR Line printer
CP Card punch
TP Paper tape punch
TR Paper tape reader
DS Display station
TY Typewriter
TS Typewriter station
PL Plotter
OR Optical character reader
SL Satellite controller
SP Seismic processor

Example:

--,06=MT,--

In the example, file number 06 is assigned to any available
unassigned tape drive.

2. By physical equipment location. u is equated to a specific I/O unit
by channel, equipment, and unit number. The format is CnEnUnn

Example:

--, 07=COEIU03,--

In the example, file number 7 is assigned to unit number 3
on equipment number 1 and channel O.

If the unit number is omitted, the logical unit number is
assigned to any available unit attached to the specified
channel and equipment.

Example:

08=C lE2, --

3. By both hardware type and equipment location.

Example:

--, 09=TRC2E3,--

In the example, file number 9 is assigned to the paper tape
reader that is attached to equipment number 3 and channel
2.

When specifying both hardware type and equipment location,
the equipment number and/or unit number may optionally be
omitted.

Examples:

--, 10=MTC3, --, II=MTC4El,--

In the examples, file number 10 is assigned to any available
tape drive connected to channel 3 and file number 11 is as­
signed to any available tape drive connected to channel 4,
equipment number 1.

60410600 A

4. By equating one file number to another file number that was
previously defined (assigned to a hardware unit).

Example:

12 = 11

In the example, file number 12 is equated to the same I/O
unit that file number 11 is currently assigned to. Then,
either 11 or 12 may be used to reference the unit for I/O.

Any user or scratch file (files 01 through 53) can be equated to any other program file
(files 01 through 53). Also, a user file can be equated to the standard input, list out­
put, punch output, CTO, or CFO files (that is, 21=60). However, the system files
cannot be equated or reassigned with an equip statement. Only the operator can re­
assign system units.

The following is an example of an EQUIP statement that assigns file numbers 06 through
12. Note that spaces may be used to separate the u parameter definitions.

Example:

$EQUIP, 06=MT, 07=COEIU3, 08=CIE2, 09=MTC3E3U4, 10=TPC3,II=TRC3El, 12=11

REWIND

The REWIND statement rewinds magnetic tapes and positions mass storage files to
block 1.

$REWIND,u 1,u2'··· ,un

u File number of a tape or mass storage file. The values for u may
range from 1 through 56.

The file number is ignored if any of the file numbers are unassigned, or the file is not on
mass storage or tape. No diagnostic is printed on the output unit.

Example:

$REWIND, 01, 03, 27,53

UNLOAD

The UNLOAD statement unloads magnetic tape reels.

u Number of the file to be unloaded. The value may range from 01
through 53.

If any file number is unassigned or not a tape unit, the number is ignored. No diag­
nostic is printed.

Example:

$UNLOAD, 02, 04,28,52

60410600 B 4-13

FMT

The format statement (FMT). specifies the type of error recovery to be used on tape
and mass storage files if the system error recovery routines are used. t

The FMT statement may be used in both batch and priority programs. Additional
FMT statements may be added to a job to reset error recovery for different programs
in the same job.

1. For tape files:

$FMT, u, t 1, t 2 , ...

u Tape file number

t Type of recovery to be selected. One or more of the following
values may be used:

SNR Four-character system noise records (SNRs) are written
to bracket bad spots on tape. The SNRs .are discarded
on reads. The noise threshold for input files is 18
frames (characters) for a data block. Seventeen or less:
characters are rejected as noise. Eighteen or more
characters are accepted as a data block.

NSNR SNRs are not used to bracket bad spots on a tape. The
noise record size is 17 characters (same as for SNR).

NSN=n n is the maximum number of characters that are discarded
as noise on an input file. N+l characters are accepted as a
valid data block. Maximum number of noise characters is
63 decimal. Setting n larger than 63 defaults to 63. If the
NSN option is selected, SNRs are not used to bracket bad
spots on the tape.

R 1 Opposite-direction READ recovery is suppressed.

R2 The data from opposite direction read recovery is
returned to the user when the parity is correct.

R3 The data from an opposite direction READ during read
recovery is returned whenever parity is correct and the
record read is equal to or less than the size specified
on the read request. That is, the data is returned if
it is certain that truncation has not occurred.

The t parameters may appear in any order. If conflicting para­
meters are used, the last parameter in the series takes
precedence.

If an FMT statement is not used, the default values will be SNR and R3 for each tape
drive. The default values may be changed by an assembly option when the system is
installed.

Example:

$FMT, 21, NSNR, R2, R3

tRefer to section 23 for a description of noise records and other system I/O error
recovery methods.

4-14 60410600 C

2. For mass storage files:

$FMT, msopt

MS 1 Do a write check (read back and compare) whenever SCARV 50
or SCAR is called for write error recovery or whenever write
with error recovery (CIO function code 42) is used to write a
block.

MS2 Suppress the write check when SCARV50 or SCAR is called and
when write with error recovery is used.

The FMT statement applies only to user mass storage files opened in the same job.
The MS 1 option is always in effect for files 54 through 68. Default is MS 1.

Increased job throughput can be obtained when the MS2 option is used in conjunction
with A PC. The MS2 option also provides a significant decrease in the time required
for MS SORT jobs.

Example:

$FMT,MS2

MASS STORAGE FILE CONTROL STATEMENTS

The mass storage file control statements call OCAREM routines into core to define,
open, and close mass storage files. Control statements may also call OCAREM
routines to expand, redefine, and release mass storage files. In addition, the REWIND
statement may be used to reset the block pointer, for opened mass storage files, to
block 1. All reading and writing on mass storage files must be done within the user's
program, or with the mass storage utility routines.

RAT

The RA T statement is the first of a series of three statements used to allocate or expand
a mass storage file. The RA T statement is an optional statement that specifies nonclass- R
mass storage device or devices on which the file is to be allocated or expanded. A device
need not be on-line to allocate or expand a file on it.

If the RAT statement is omitted, OCAREM allocates or expands the file on any nonclass-R
device or devices that are mounted (on-line) when the job is in execution. OCAREM searches
the on-line devices for the smallest available space that the file fits in. t If none of the
on-line devices have a block of space large enough for the file, OCAREM may segment the
file across more than one device.

dt The mass storage drive hardware type. It may be any of the following. t t
853,854,813,841,863

dn The device number specified when the device was entered in the sys tern
MSD file (refer to description of ENTER card). The values may range
from 1 to 362144 (decimal). If a class-R device is specified, the device
number is ignored with no diagnostic.

t If two or more devices are equal, the device is selected according to the order the de­
vices were entered in the system with an ENTER statement (that is, first entered, first
selected).

t tAn 814 is considered the same as two 813 units.

60410600 C 4-15

If two or more devices are specified on the RA T statement, the file is allocated or expanded
on the first device that contains a block of space large enough for the file. If none of the de­
vices have sufficient space, the file may be segmented across two or more of the devices
specified on the RAT statement.

The parameters on the RA T statement remain in effect until they are cleared. A new RA T
statement or an EOJ statement clears the previous RA T statement. Therefore, if more than
one file is to be allocated or expanded on the same device or devices, only one RA T state­
ment is required. If the files are to be allocated on different devices, a new RA T statement
must precede the ALLOCA TE statement. A RA T statement without parameters clears the
previous RA T statement without assigning new devices (that is, any nonclass-R device which
is on-line may be used).

Example:

$RAT, 853/21, 853/22 $RA T, 854/23

RRAT

The RRA T statement is the same as the RA T statement except that RRA T specifies only
class-R devices for file allocation or expansion. Any nonclass-R devices specified on a
RRA T statement is ignored by the system. The class-R requirement for file allocation and
expansion remains in effect until a RA T statement is used. Allocation or expansion across
class-R and nonclass-R devices is not possible.

Files cannot be expanded or allocated on a class-R device unless the device is on-line.

A RRAT statement with no parameters specifies file allocation or expansion on any class-R
device or devices currently on-line. A RRA T statement with parameter limits the alloca­
tion or expansion to devices that are on-line and that are specified on the RRA T statement.

Example:

$RRA T, 853/23, 853/24

FET

The FET statement defines file block size, privacy codes, and identification.

$FET, owner, name, blksize, ed, acpr, mdpr

owner

name

blksize

ed

acpr

mdpr

File owner's name. One to eight alphanumeric characters
(require d).

File name. One to thirty alphanumeric characters (required).

File block size in characters. One to six decimal digits. Block
size may range from 1 to 131071 characters (required).

File edition number. Must be two alphanumeric characters or
one numeric character; default is 00 (optional).

Access privacy code. One to four alphanumeric characters;
default is four blanks (optional).

Modification privacy code. One to four alphanumeric characters;
default is four blanks (optional).

The FET statement is used with other mass storage control statements to perform the
following functions.

4-16 60410600 C

RAT

FET

ALLOCATE

FET

OPEN

RAT

FET

EXPAND

FET

MODIFY

FET

FET

RELEASE

A llocate space for a file. RAT statement is optional.

Open a file for input or output. The mdpr parameter may be omitted on
the FET statement. Any nonzero numeric character may be used for
block size.

Expand the size of an existing file. The RAT card is optional. Any
nonzero numeric character may be used for block size on the FET
card.

Modify the file label. The second FET card is optional. If used, it
must contain all parameters (changed and unchanged) and follow the
MODIFY card. Any nonzero numeric character may be used for
block size on the first FET card.

To release all or part of the space allocated for a file. The block size
on the FET card can be any nonzero numeric character.

The FET parameters remain in effect for all mass storage file control statements that
follow it until:

1. OCAREM reads a new FET statement for a different file

2. A MODIFY statement followed by a new FET statement is encountered

3. MSOS reads an end-of-file statement

If only one mass storage file is used in a job, only one FET statement would be needed
for all file control functions.

The block size parameter is checked by OCAREM only when allocating a file or when
a file is modified with a new FET statement. When allocating a file, the block size
should be selected in accordance with the device sector size (r"efer to Table 4-1).

60410600 C 4-17

I

I

TABLE 4-1. MASS STORAGE DEVICE CHARACTERISTICS

Characters Words Sectors Sectors Words Tracks Sectors
Per Per Per Per Per Per Per

Device Sector Sector Track Device Track Device Cylinder

853 256 64 16 16,000 1024 1000 160

854 256 64 16 32,480 1024 2030 160

841 640 160 14 56,840 2240 4060 280

813 256 64 32 524,288 2048 16,384 4096

814 256 64 32 1,048,576 2048 32,768 4096

863 256 64 16 16,384 1024 1024 0

ALLOCATE

The ALLOCATE statement reserves (allocates) mass stol~age space for the file des­
cribed in the FET statement that preceded the ALLOCATE statement. On new devices,
OCAREM allocates space for files upwards from the lowest available track, until the
device is full. On other devices, OCAREM searches the available space map in the
MSD file for the smallest contiguous area that the file fits into.

Only the devices listed on the RA T statement are considered for the file. If a RAT
statement is not included, only those devices currently mounted (on-line) are con­
sidered. If a large enough space cannot be located in one of the devices, the file is
segmented. The largest space available is selected for the first segment. Then a
search is made for an area large enough for the remainder of the file.

OCAREM allocates all segments of a segmented file on one device whenever possible,
and divides a file into as few segments as possible.

$ALLOCATE, ntrks, exp, , seg, dt t

ntrks Number of tracks or blocks to be allocated. The B prefix indicates
blocks. No prefix indicates tracks. The value may range from 1
to 8388607. (required.)

exp File expiration date. Value is in the form

yymmdd

where yy Year
mm Month
dd Day

If exp is omitted, OCAREM inserts the current date for the expiration
date.

seg Segmentation parameter. Use either NOSEG or omit the parameter.

dt

NOSEG No segmentation. The file must reside on one contiguous
area in mass storage. The job aborts if a large enough
area cannot be located on one of the devices.

Omitted The file may be segmented on one or more devices.

Type of mass storage device the file is to be allocated on. If a RAT
statement is used, the dt on this card must be included and must
match the dt on the RAT statement. If a RAT statement is not used
and dt is omitted, OCAREM uses the device type defined in the first
MST entry.

t The mode parameter is no longer applicable and is not checked. An S or a double
comma may be used between exp and seg.

4-18 60410600 C

OCAREM allocates space by tracks. When the space is specified in blocks, OCAREM
allocates the number of tracks required to hold the number of blocks specified on the
ALLOCATE statement. Depending lJpon block size and number of blocks, extra space
may be allocated. This space can be written on without expanding the file.

Examples:

$ALLOCATE,24

$ALLOCATE, 60",,853

$ALLOCATE, B1598, 991231, ,NOSEG, 841

The file size limits are as follows:

Max block size

Max number of blocks per file

Max number of sectors per block

Max number of tracks per file

Max number of devices for segmented files

Max number of segments per file

OPEN

131,071 characters

8,388,607 blocks

4,095 sectors

8,388, 607 tracks

8 devices

64 segments t

The OPEN statement assigns a number to a mass storage file. The file number is
used to identify the file for input or output within a user program. A mass storage
file cannot be referenced for input or output until it is opened.

$OPEN, fo, use

fo File number assigned for the file by the user. The number may range
from 1 to 53 (decimal).

use File protection parameter.

I

Omitted or other

Read only file

Read/write file

When a file is initially allocated, its protection is set at read/write. Either value of
the use parameter may be used when opening the file. The MODIFY statement may be
used to protect a file by setting its usage to read only. In such cases, the I value
must always be used on the OPEN statement. Any other value causes the job to abort.

If the I parameter is used, the file may also be opened for input at the same time by
other batch or priority programs which are in core (that is, the file can be shared).
If the I parameter is not used, only one program at a time can open and use the file.

Any attempt to write on a file that has been opened as a read only file causes the job
to abort.

The OPEN statement must be preceded by an FET statement to identify the file to be
opened.

Examples:

$OPEN, 24, I
$OPEN,21

t An installation option.

60410600 A

May be less on some systems.

4-19

EXPAND

The EXPAND statement may be used to expand the amount of mass storage space as­
signed to an existing file. A file must be closed to expand it.

$EXPAND, n, seg

n Number of tracks or blocks to be added to the file. The value may
range from 1 to 262142 (decimaI). If B precedes the n value, n is
the number of blocks to be added.

seg Segmentation parameter.

NOSEG No segmentation. The new block of mass storage
resides on one continuous area in mass storage.
If contiguous unallocated space is unavailable,
the new space is added as a single segment.

Omitted or other Segmentation allowed. The new space may be
added in segments and may be on other devices.

The EXPAND statement must be preceded by a FET statement to identify the file being
expanded. The FET statement may optionq,lly be preceded by a RA T statement to
specify which devices the file may be expanded on.

OCAREM expands mass storage files by tracks. If blocks are specified, OCAREM ex­
pands the file by the number of tracks required to hold the specified number of blocks.
Depending upon the block size and number of blocks, extra space may be added to the
file that is used without another file expansion.

Examples:

$EXPAND,839

$EXPAND, 8, NOSEG

$EXPAND, BBO, NOSEG

MODIFY

The MODIFY statement may be used to change file protection, block size, or its
identification and privacy codes. The MODIFY statement must be preceded by a FET
statement to identify the file being modified, and the file must be closed before it can
be modifie d.

$MODIFY, prot, exp, newfet

prot Protection code that restricts file usage.

I Read only file
o Read and wrile file
Omitted No change

exp New file expiration date in the form yymmdd

yy Year
mm Month
dd Day

(Optional. Default is no change.)

4-20 60410600 A

newfet

Examples:

New FET statement. Any character indicates that a new FET state­
ment follows the MODIFY statement. All of the parameters on the
new FET may be changed.

Omitting the newfet parameter indicates no new FET statement follows
the MO DIFY stateme nt. : ! CAUTION :

•••••••••••••••••••
If file blocksize is expanded beyond the mass
storage devices sector boundary, data is lost.
In addition, the buffer sizes must be expanded
in programs currently using the file.

$MODIFY, I
$MODIFY", F

CLOSE

The CLOSE statement closes a file or releases a unit record device. The file num­
ber is available for other assignments in the same job. The CLOSE statement also
updates the block count (highest block written) in the file label (refer to appendix G).

$CLOSE, fo

fo File number

All user files and unit record assignments are automatically closed when an EOJ
statement is read, and all mass storage file labels are updated in the LABELFILE.

Example:

$CLOSE,21

RELEASE

The RELEASE statement releases all or some of the mass storage space assigned to
a file with the ALLOCATE statement. The space is made available for assignment
to other files. A file must be closed before it can be released.

$RELEASE, amount

amount Amount of the allocated space to be released. The values are as
follows:

60410600 A

ALL

UNUSED

nnnn

Other

Release all space and all records of the file.

Release all tracks that have not been used. If no tracks
have been used, all but the first track are released.

A decimal number indicating the number of tracks to be
released. Only the highest unused tracks are released.
If the number is preceded by a B, nnnn is the number of
blocks released.

Illegal

4-21

The RELEASE statement must be preceded by a FET statement to identify the file that
is to have space released.

Examples:

$RELEASE~ ALL
$RELEASE~ UNUSED
$RELEASE~ 27
$RELEASE~ B5

RONL

The label file has no entries for files on class-R devices that are not on-line. The
RONL card should be used to ensure that the required class-R devices are on-line be­
fore opening any file that is written on a class- R device. The RONL task checks to
see if the specified class- R device is on-line. If the device is on-line~ RONL allows
the job to continue. If the device is not on-line~ RONL sends a request to the operator
to mount the device and waits until the operator responds. If operator response indi­
cates that mounting is not possible~ the job is aborted.

($RONL~ dt/ dn/ dt/ dn~ •••

dt Device type that the file was allocated on:

853
854
841

dn Device number written on the device label when the device was
entered.

When a file is segmented over more than one class- R device~ each device must be on­
line. Class-R files cannot be partially opened.

4-22 60410600 C

UTILITY FUNCTION

MSOS has the following utility routines that may be used to control I/O equipment
and mass storage devices, and to transfer data between I/O units.

XFER and DUM P Statements

UTILITY Routines

MSUTIL Routines

The XFER statement transfers binary decks from the system input unit (card reader
or tape) to a mass storage or tape file. The DUMP statement dumps core whenever
a job aborts itself or is aborted by MSOS.

The UTILITY routines are intended for use mainly with magnetic tape units. These
routines perform the following functions.

Rewind a tape

Unload a tape

Space forward

Space backward

Erase

Write EOF mark

Check tape density

Verify a new tape

Copy from one tape to another tape

Copy from card reader to tape

List a tape

List a card deck (from card reader)

Punch a card deck (from card reader or tape)

The mass storage utility routines perform the following mass storage functions.

Release expired files

Dump for backup

Dump and reload to reorganize space on a disk

Enter a new mass storage device in the system

Release a mass storage device

List a file label from the LABELFILE

List a device label from the MSD Label File

60410600 C 4-22. 1 I

XFER STATEMENT

An XFER statement will transfer relocatable binary decks and cards from the system
input file to a tape or mass storage file, or to the card punch. If a mass storage
file is used, the file must be allocated with a block size of 960 characters and opened
before using XFER. Output tapes will be blocked at 160 characters. XFER can be
used only with batch jobs, and will transfer only binary decks (except for file 62).

$XFER, lu

lu File number. May be 1 through 53, 56, and 62.

XFER transfers relocatable binary cards following the XFER card into file lu. When
an end-of-file statement or the next MSOS control statement is read (7/9 or $ in
column 1), XFER writes an end-of-file mark (EOF) on file lu and backspaces over the
EOF mark. t If lu is not a tape, punch, or mass storage file, the job aborts.

Example:

$XFER,21

The XFER statement may also be used to transfer binary and Hollerith cards to the
system punch file (file 62). When file 62 is specified, XFER transfers all cards
(MSOS control cards, source decks, binary cards, etc.) until XFER reads an end- of­
file- card. If file 62 is a tape file, XFER writes an EOF on the file and backspaces,
the same as for all other files.

DUMP STATEMENT

The DUMP statement causes a memory dump to be taken if a job containing the dump
statement aborts. The DUMP statement must follow the JOB statement.

$DUMP,FD

FD Full dump parameter. Dump the aborted program and the operating
system.

Omitted Take a partial dump. Dump only the aborted program.

The FD parameter applies only to batch jobs. It is ignored if the DUMP card is
inserted in a priority program. The following information is provided in the dump.

1. Full dump, batch program t t

• All registers

• A 11 register file s

• All memory locations from address zero to the priority program area

tOn mass storage, XFER writes the EOF mark on a new block. The block pointer
is left positioned at the beginning of the block containing the EOF mark.

t tIn batch programs run with the extended core variant of MSOS, the loader converts return­
jump instructions that reference executive routines to HLT instructions that reference the
routines (refer to executive interrupts in section 18). These HLT instructions appear in
the core dump in place of the jump instructions.

60410600 A 4-23

2. Partial dump, batch program t

• All registers

• A 11 register files

• All memory locations from the beginning of the common area to the
priority program area

3. Priority program dump

• All registers

• All register files

• All memory locations between the priority program's upper and lower
limits

If the operator terminates a program at the control console, he may select no dump,
a partial dump, or a full dump.

TAPE UTILITY ROUTINES

The tape utility routines must be called with a $UTILITY statement. After UTILITY
has been called, individual utility functions may be selected by name with control card
statements or operator statements at the console typewriter.

MSOS control statements ($ or 7/9 in column 1) and binary decks cannot be intermixed
with utility statements. Utility must be terminated with an END card before any new
MSOS control cards or binary decks can be input to MSOS.

$UTILITY, u, m

function, parameters

function, parameters

END

u

m

function

Control unit. File number of the input unit containing utility func­
tion statements. The unit can be the card reader, a tape unit, or
the operator's console typewriter. Default value is unit 60
(standard system input file) if the statement is from card or tape.
Default is 58 if the statement is from the console typewriter.

If the console typewriter is selected, the input functions and END
statement must be typed by the operator. The format of the type­
writer input is described in the operator's guide.

Message unit. File number that the output messages are printed
on. Only logical units 59 (CTO) or 61 (system output unit) may be
selected. Default is 59 if the statement was typed at the console
typewriter; otherwise, default is 61.

Name of function to be performed.

tIn batch programs run with the extended core variant of MSOS, the loader converts
return jump instructions that reference executive routines to HLT instructions that
reference the routines (refer to executive interrupts in section 18). These HLT
instructions appear in the core dump in place of the jump instructions.

4-24 60410600 A

TAPE CONTROL FUNCTIONS

The following utility functions apply to tape drives only.

Function, parameters

REWIND, u l ' .•• , un

UNLOAD, ul' ..• , un

FORWSPCE,u

FORWSPCE, u, n

BACKSPCE,u

BACKSPCE, u, n

SKFF,u

SKFF, u, n

SKFB,u

SKFB, u, n

WREOF, u 1' u 2' ••• ' un

ERASE, u

ERASE, u, n

CHKDNS, U

SETDNS, u, d

COpy FUNCTION

Description

Rewind file u 1 ••• un to loadpoint

Rewind and unlo ad file u 1 .•. un

Space one block forward on file u

Space n blocks forward on logical file U

Backspace one block on file u

Backspace n blocks on file u

Skip forward past one end- of-file mark on file u

Skip forward past n end- of-file marks on file u

Skip backward past one end-of-file mark on file u

Skip backward past n end-of-file marks on file u

Write an end-of-file mark on files u1 .•• un t
Erase bad spot (6 inches of tape) on file u

Erase n times in a row on file u

Check the density of file U and print one of the following
statements at the message unit:

Statement 7-track drive 9-track drive

IUTIL 010 LOW
IUTIL 010 MEDIUM
IUTIL 010 mGH

Sets the density on file u

.Q..
L
M
H

7 -track density

200 bpi
556 bpi
800 bpi

200 bpi
556 bpi
800 bpi

800 cpi
800 cpi

1600 cpi

9 -track density

800 cpi
800 cpi

1600 cpi

I

The copy function copies files or file blocks from an input tape or card reader onto an
output tape, printer, or card punch. In addition, the input data may be listed on a printer. I

COPY, u1' u 2 ' u3' r, op, ••• , op

File number of the input unit. May be a tape file or a card reader.
This parameter is required.

File number of the output unit. May be a tape file, printer, or card
punch. No carriage control characters are provided for the printer
and the data is unformatted (carriage control and data is printed
exactly the way it is read from the tape or card reader). If only a
listing is needed, this parameter is omitted. However, its trailing
comma is required. This parameter is required if u 3 is not supplied.

tAn end-of-file mark is a 17, ([character) bracketed with interrecord gaps.

60410600 B 4-25

I

I

I

r

op

File number of the list unit. May be a tape file or a printer.
Printer carriage control characters are added before printing or writing
and the data is formatted for easy reading. If no listing is needed, this
parameter may be omitted. However, its trailing comma is required if
other parameters follow.

The number of blocks or files to ,be read from the input unit. If an
F is affixed to the r, r indicates the number of files to be read. If
the F is omitted, r indicates the number of blocks to be read. R is
a one- to four-digit decimal number. Default is one file if the parameter
is omitted.

Optional parameter string. These parameters and their trailing com­
mas are optional and may be punched in any order. When one is
omitted, both the parameter and its trailing comma must be omitted.
The parameters are as follows:

C Specifies I/O is in character mode at tape files u1 and u 2 •
Omitted specifies I/O is normal word mode at tape files

N

H or 0

M

u 1 and u2. The C is ignored for 9-track tape units, card
readers, printers, and card punches.

Allows writing on u2 beyond the end-of -tape mark. If
omitted, the COpy function will terminate upon detection
of an end-of-tape condition at u2.

H specifies u3 output is formatted as Hollerith code.
o specifies u3 output formatted as octal code. Omitting
this parameter specifies the records on u3 will be for­
matted the same as the data read from the input file u 1•

Select BCD read mode for input file u 1. Omitted specifies
binary mode. The M value is required only for 9-track
tape drives that use code conversion. For 7-track tapes,
the correct mode is automatically selected by the soft-
ware.

On the list file u3' BCD (or Hollerith) characters are printed 119 characters per line.
Octal digits are printed as 8 words (64 digits) per line with an octal word count at
the beginning of each line. An end-of-file mark is not written on the list file after
the last record on file is listed. Each line printed on u3 is preceded by the record
(block) number and length.

If the list file is a tape drive, carriage control characters are added as part of the
input written on the tape. An end-of-tape mark on the list unit terminates the copy
function.

The block size copied from the input unit may vary from block to block. However,
the maximum size of a block is limited by the amount of core available for use by
the copy function. Before reading the first block, the copy function prints the maxi­
mum block size that can be read.

I UTIL 100 MAX REC SIZE n B

n Maximum block size in words (octal)

4-26 60410600 B

If a block exceeds the maximum size during copying, the following occurs.

1. The oversize block is copied with the excess characters truncated.

2. An informative diagnostic is printed on the message file.

3. Copying will continue normally.

After each file is copied and when the copy function terminates, the number of blocks or
files copied are written on the message unit as follows:

I UTIL 110 n BIN RECORDS COPIED

or

I UTIL 110 n BCD RECORDS COPIED

n Number of blocks copied (decimal)

Examples:

1. Copy 96 blocks from unit 1 to unit 2 with no list output.

CO PY , 1, 2, , 96

or

COPY, 1,2,0,96

2. List 9 files on unit 3.

COPY,1,,3,9F

or

COPY, 1,0,3, 9F

3. Copy 1 file from unit 1. Use character I/O and list the file in octal format.

COPY, 1, 2, 3, 1 F , C, 0

VERIFY FUNCTION

The verify function compares the data on two tapes or a tape and card reader. All
no compare blocks are written on a third unit which may be a tape or printer.

r

op

60410600 C

The file numbers of the units containing the data to be compared.
May be tape or card reader. These parameters are required.

The file on which are differences are listed. May be any tape or
printer. If omitted, there is no difference listed. I
The number of blocks or files to be compared. If an F is affixed
to the r, r indicates the number of files to be read. If F is
omitted, r indicates the number of blocks to be read. R is a one­
to four-digit decimal number which must be greater than zero.
This parameter is required.

Optional parameter string. These parameters and their trailing
commas are optional and may be in any order. When omitted,
both the parameters and the trailing comma are omitted.

C Character I/O for files u1 and u2. Selects word I/O if omitted.
Ignored for 9-track tapes, card readers, card punches, and
printers.

4-27

R Selects reverse reads (in word mode) at files u1 and u 2
for the comparis on. The loadpoint is counted as a file
mark. Omitted selects forward reads.

M Selects BCD mode for files u1 and u 2 . Omitted selects
binary mode. The M value is required only for 9-track
tape drives that use code conversion. For 7-track tapes,
the correct mode is automatically selected by the software.

During processing, a descriptive diagnostic is written on file u3 (message unit) if any
of the following comparison errors occur.

Error

Recording mode comparison

Word or character compare error

Block length compare error

Message

I UTIL 102 MODE ERROR RECORD n

I UTIL 103 CONTENT ERROR RECORD n
WORDx

I UTIL 104 LENGTH ERROR RECORD n

n Block number (decimal)
x Word number (octal)

Only the first six compare error messages per block are printed on OUT. Then
verification of the next block starts. This process continues until all blocks are verified.

When the verify function terminates, or after each file is verified, the number of blocks
verified is printed on the message file.

If an end-of-file is encountered on file u 1 or u 2 , the following is sent to the message
unit.

I UTIL 105 EOF ABSENT u RECORD n

u u 1 or u2
n Block number

Processing continues as if it were a matching end-of-file. If an end-of-file is en­
countered on both units, the end-of-file message and the block count are sent to the
message file and to u3.

An end-of-tape condition on file u3 causes termination of the list, but the verification
continues. An end-of-file mark is written on the file only if the list is terminated by
an end-of-tape condition.

Variable block sizes will be compared by the verify function. However, the maximum
block size that can be compared is limited by the amount of core that is available for
the verify function to use.

At the beginning of each verify run, the verify function prints the maximum block size
that can be compared on the message file.

I UTIL 100 MAX REC SIZEn

n Maximum block size in number of words (octal).

4-28 60410600 A

If the block size is exceeded, the block is truncated and the truncated portion is
not verified. An informative diagnostic is printed and normal processing continues.

Examples:

1. To compare a file on unit 1 with the file on unit 2 and list the file on the
system output file.

VERIFY, 1,2, 61, IF

2. To compare the first five blocks of a file on unit 27 with the first five blocks
on unit 36, and with no list output:

VERIFY, 2 7, 36, , 5

MASS STORAGE UTILITIES

The mass storage utility routines must be called with an MSUTIL statement. After
MSUTIL has been called, individual utility functions may be selected by name with
control card statements or with operator statements at the console typewriter.

MSOS control statements ($ or ~ in column 1) and binary decks cannot be intermixed
with utility statements. MSUTIL must be terminated with an END, SCOPE, or STOP
statement before any new MSOS control statements or binary decks can be input to
MSOS.

$MSUTIL, u

function, parameters

function, parameters

END

u Control unit. File number of input file for utility function statements.
The unit may be a card reader, a tape file, or the operator's con­
sole typewriter. Default value is file 60 (standard system input file)
if the statement was read from file 60, and 58 if the statement was
typed at the console typewriter.

If the console typewriter is selected as the control unit, the function
and end statements must be typed by the operator. The format of
the typewritten input is described in the operator's manual.

function Name of function to be performed.

60410600 B 4-29

PURGE FUNCTION

The purge statement scans the file label directory and releases all user files that have
reached their expiration date or a specified edition of a system library.

PURGE, ed, code

ed

code

Edition number. All system or auxiliary library files having edition
number ed are released. If this parameter is omitted, all user files
with an expiration date that is one day past the curre nt date are re­
leased.

Combined MSOS system access and privacy code that was set at system
installation time. The access code must appear first and the two codes
must not be separated by a space or comma.

Example:

PURGE, A2, MSOSPRIV

PURGE, ,ACE/DUCE

ENTER FUNCTION

The enter statement enters a new device in the system by writing a mass storage device
label in the MSD file, a device label on track 0 for the device (refer to section 3), and an
R-Iabel on class-R devices. t This makes the device available for use by the system.

To enter a device nonclass-R:

ENTER, , dt/ dn, , , , Ita, hta, exid

To enter a device as class-R:

ENTER, R, dt/ dn, Ira, ntr, pass-code, Ita, hta, exid

dt Device type. It may be any of the following hardware type numbers.

813
814
841
853
854
863

dn Device number may be any decimal identification number between 1 and 262143
that the user wishes to assign and which is unique to this device.

Ira First track number reserved for the R-Iabel on class-R devices. A 1- to 5-
digit decimal number. Must be equal to or greater than the Ita parameter. tt

ntr Number of tracks to be reserved for the R-Iabel on class-R devices.ttA 1- to
3-digit decimal number with range of 1 to 511. The number of tracks needed
for the R-Iabel can be calculated as follows:

Device

841 ntr = (3+2NF) +- 14
853 ntr = (2+4NF) +- 16
854 ntr = (3+4NF) +- 16
813 ntr = (12+4NF) +32
863 ntr = (2+4NF) + 16

NF is the maximum number of files to be allocated on the device.

t R-label may be placed any where on the device above track zero.
ttlra + ntr < hta +1.

4-30 60410600 C

pass-code A 1- to 8- character alphanumeric security code which is written'into the de­
vice label on class-R devices. t Blanks are written for the default case.

lta Lowest track address that may be assigned to user file. Default is track 1.

hta Highest track address that may be assigned to a user file. If omitted, the
default value is the last track on the device. Refer to the description of the
allocate card for a list of the number of tracks on the different device types.

exid A 1- to 6 -character alphanumeric external identification code. The code
is written on the outside of the pack for identification. If the code is o­
mitted in the statement, the operator is requested to supply a code at the
console typewriter.

Examples:

ENTER, R,841 /32, 1, 3" 1" RIVETS
ENTER" 841/33""" FILE6
ENTER" 841/34

When MSUTIL reads an ENTER statement, it searches for a device without a label that is on
the type of drive specified on the ENTER statement. MSUTIL asks operator permission to
enter the first such device found. Searching continues if the operator rejects the first request.

If a device cannot be located, the operator is requested to specify the drive that contains the
device to be entered or to mount a new device.

DELETE FUNCTION

The delete function removes the device label from the mass storage device label file
(MSD file). The device is no longer accessible by MSOS.

DELETE, dn/ dt

dn/dt The device number and device type used to enter the device.

All files on a device must be released before a device can be deleted. The files on
the device that need to be saved can be dumped, released, reallocated, and loaded on
a different device.

DUMP FUNCTION

The dump statement dumps a mass storage file onto a tape. This function may be
used for backup purposes, or when used in conjunction with the load function, to re­
organize space on a device so that all available space is in one contiguous area. A
file must be opened before it can be dumped. The dump function dumps all segments
of a segmented file.

DUMP, lu, fo

lu Tape file that the mass storage file is to be dumped on.

fo File number of the file to be dumped.

The file label from the LABELFILE (appendix G) is dumped on unit lu as part of
the tape header label. The format of the header and trailer labels are shown in
Figure 5-2. This format is compatible with the MASTER operating system. A file
dumped by MSUTIL dump function can be loaded with a MASTER >:<FMU LOAD card.

Example:

__ DgMP,20,21

t Pass code is for compatibility with MASTER systems. It is not referenced by MSOS. I
60410600 C 4-31

WORD I

WORD 2

WORD 3

WORD 240

WORD 241

WORD 242

WORD 243

WORD 244

WORD I

HEADER LABEL

F R

FILE ___ -------J

LABEL

NO. OF 2048 WORD
BLOCKS IN DUMPED FILE

TOTAL NUMBER OF RECORDS
IN DUMPED FILE

NO. OF RECORDS PER
DUMP BLOCK
RECORD LENGTH (WORDS)

DATA BLOCK 1

Each data block is 2048 words long.
The number of records per block is
dependent upon the device type as
follows:

Device
WORD 2408 '---________

853
854
863
813
814
841

Records /Block

2

WORD I

WORD 2048

WORD I
WORD 2
WORD 3
WORD 4
WORD 5
WORD 6

WORD 20

DATE BLOCK N

TRAILER LABEL
EOF MARK

E 0 F
II II II
M A S
E R II
U M P
F I L
1\ 1\ 1\
II I...---

1l1~1
EOF MARK

II
II
T
D
1'1
E
1\

A

2
2
1
1
1/2

When the DUMP file is written, the
trailer label is written and the tape
is backspace d past the first EOF.
Thus, if another DUMP r€quest is
made, that file is written over the
trailer. In this way, a string of
dumped files are written with one
trailer.

Figure 4-1. MSUTIL File Dump Format

4-32 60410600 A

LOAD FUNCTION

The load statement loads files from tapes that were written in the MSUTIL dump for­
mat. The dump may have been taken by either the MSOS or the MASTER t operating
system.

LOAD, lu, fa

lu File that the dump tape is mounted on.

fa File number of an open mass storage file into which the dump is loaded.

The load function searches the tape for a file with a header label that matches the file
label for file fa. The load function then loads the file from file lu into the mass
storage file area allocated for file fa.

To allocate a new file, the old file must be released and a FET, ALLOCATE, and OPEN
statement used before reloading the dumped file. The following descriptions for the new
file (file fa) must match those on the tape file header label.

Name

Owner

Edition

Device type

Access privacy code

Modification privacy code

The block size must be the same as in the original mass storage file, and the number
of blocks allocated must be equal to or greater than the number of blocks written on
the old file or an error message occurs.

The sequence for reorganizing files on a device is as follows.

1. Open all of the files on the device.

2. Dump all files.

3. Release all dumped files.

4. Re-RAT, re-FET, re-ALLOCATE, and re-OPEN each of the files.

5. Load each of the files.

Example:

LOAD,20,21

LIST MSD FUNCTION

'The LIST MSD statement lists all or part of the entries in the mass storage device
label file.

LIST, lu, MSD, dt / dn
or

LIST, lu, MSD

lu Logical unit for the list output.

dt/dn Device type and device number to have its label listed. If dt/dn is omitted,
the labels for all devices in the system are listed.

tWith an >:~FMU Dump Card.

60410600 A
4-33

A storage map is also provided with each label. The storage map is a list of each as­
signed and unassigned (available) track on the device.

LIST FLO FUNCTION

The LIST FLD statement lists all or part of the entries in the mass storage LABELFILE
in the order that they appear on the file.

LIST, lu, FLD, dt/dn
or

LIST, lu, FLD, owner, name. edition
or

LIST, lu. FLD. owner
or

LIST. Iu. FLD

lu File number for the list output.

dt/ dn Device type and number. If this parameter is used. the labels of all
files and file segments on the device are listed.

owner The file owner name. t
name The file name. t
edition The edition number of the file.

If a file name. owner. and edition number is specified. only the label for that file is
listed. If the file name and edition are omitted. labels for all files with the specified
owner name are listed. If owner. name. edition. and dt/dn parameters are omitted.
the entire label file is listed. The access and privacy codes are omitted from the file
I abe I listings.

MAP FUNCTION

The MA P statement provides a map of the track usage of a specified mass storage
device.

MA p. I u. dt / dn

lu Logical unit (or file) the map is listed on.

dt Mass storage device type.

dn Mas s storage device number.

The map consists of a listing of the file label directory (IDFILE) entries for each
file on the device. The file label entries are sorted by track numbers.

Example:

MA p. 61, 854/803

t Refer to FET card for description of owner and name.

4-34 60410600 A

0')

0
~
r-o
0
0')

0
0

n

~
I

CAl
CJ1

.)HNER FILe. NAM..:.

RTS-MSIC lABi~FILE
RTS-MSIC luFIL::
FTS-MSIC 'SCFIL~
M50S L-M~IO
KTS-MSlt RESFILf
i<TS-I1SIC IiESFILt.
R1S-MSlt L180IKFILr
RTS-MSIl U 6F ILl:.
MSOS . FIL:::j '.
~SOS FILt::55
HSO'S FILE~ ;J

, ~TS-MSH A6SFILE:
RTS-MSIL r\cSFIL£
RTS-MSIC LleFiL~
RTS-MSlt LleQIKFIL~
H50S til-XL! B
RTS-MS Ie 116SFILf
RTS-MSIC f'': SF iLl::.
RTS-MSI(LIBFILE.
RTS-MSIt LiBOIRFI~~
.. FREE \I

OWNER
FILE NAME
FREE
ED
C-DATE
E-DATE
L-DATE
USE-CT
F-SIZE
B-SIZE

EO C':OAT:. E-DATE L-CA.TE USE-CT F-SIZE e~SIZE BLK-CT SEG-CT SEG OT ON LTL SL

01) " a- 86-07- 38 II. D-
00 II 3- 86-07- 38 II 0-
00 II 0- 86-07-38 01-11-74
aa 0.8-01-73 99-99-99 06-15-74
SS 06-21-'It 139-99-99 07-15-74
5S il6-21-1,+ ~9-99-99 0 7 -15-74
S5 06-21-14 139-99-S9 07-15-14
5S O€l-21-74 9g-99- 99 07-15-1"
00 04-17-74 99-99- 99 OO-16-7ft
00 0l.!-25-7lt 99-99-99 05-16-74
00 04-17-74 04-17-74 06-1E-74
SX 07-15-74 99-99-99.01- j5'-7ft
SX 07-15-71t 99-99- 99 07-15-74
sx 07-15-71t ~9-C;9-99 07-35-74
SX 07-16-7/t <;9-99- 99 07- i5-7 4
(to 07-15- 7 1t 99-93.-93 07'-15-74
EX 07-15-74 99-99-99 07-15-74
EX 07-15-7,+ 99-99-99 07-15-74
EX 07-15-14- <;9-99-99 07-i5-74
EX 07-15- 7 1t 99-99- 9'3 0.-15-74

Name of the file owner
Name of the file.
Unused tracks.
The file edition.
The file creation date.
The file expiration date.
The last date the file was used.
The number of times the file was used.
The file size in tracks, including all segments
The block size used in the file.

O
0
0

1574
3
3
3
3
5
3
4
1
1
1
1
2
~
~
2
2

BLK-CT

SEG-CT
SEG

DT
DN
LTL

SL

GO
6
7

15
9

27
1

86
200
4S0
1.0 0
154

9
274

It
58
28
10
87

1

Figure 4-2. Sample Device Map

392
~'80

4
1280

4
4

500
960
512
512
960

4
It

900
500
960

4 ..
960
500

24 1 1 854 8541 2
2 1 1 85,. 8541 62
5 1 1 854 651+1 6IJ
0 1 1 854 8541 75

138 1 1 854 8541 90
429 1 1 8Sft l5 Ll 99

3 1 1 854 e51+1 126
3144 1 1 854 f541 127

0 1 1 854 8541 213
0 1 1 85ft 1541 413
0 1 1 854 8541 863

2 .. 63 1 1 85,. e5,.1 963
137 I 1 851t 8541 1117

1095 1 1 854 85L1 1126
30 1 1 854 8541 1400""

no 1 1 85,. 8541 1\04
,. .. 3 1 1 8514 85U 1,.62
149 S 1 854 8541 1"90
345 1. 1 854 e541 1500

3 1 1 85ft 6541 1587
esu 1588

The block count. The highest block number
written.

EO
6
7

15
9

27
1

86
200
I4!O
toO
1514

9
274

4
58
28
10
e7

1
""2

The number of segments the file is divided into.
Which segment this entry is for. Each file
segment has a separate entry.
The type of device the files are on.
The number of the device containing these files.
The track number that the file, or the segment
of the file, starts on.
The number of tracks or segments in the file. I

SAMPLE JOB DECKS 5

BATCH JOBS

The following are examples of MSOS control statements used to compile, load, and
execute batch programs.

1. Assemble a COMPASS program, punch a binary program deck (object program),
and print a COMPASS output listing at the system list output unit.

$JOB, ACT 1, ASSEMBLE, 10

$COMPASS, P, L
(COMPASS subprogram deck 1)

.
(COMPASS subprogram deck n)

FINIS

77
88

$EOJ

Job name is assemble; ACT 1 is account
number, 10 is time limit

Library program name card calls the
COMPASS assembler from the library to
assemble the program and punch a binary
output deck. t

End -of -COMPASS program decks.

End-of -file card.

End-of -job, print job accounting informa­
tion.

2. Execute the object binary program deck produced by the COMPASS assembly
in example 1. Open a mass storage input file and an output file for the job.

$JOB,ACTl,SCHEDULES,10

$DUMP

$FET, SUE, UPDATES, 640, 1, PRVI

$OPEN, 10, I

Job name is schedules.

Dump program if job aborts.

Job input file.

Open the input file.

$FET, BEVERLY, SCHEDULES, 640, Job output file.
2, PRV2, MPV2

$EXPAND,100 Expand and open the output file.

$OPEN,11 COMPASS program deck from the assemble
(Binary deck with IDC header card) job.

$RUN Execute program.

$FET , BEVERLY, SCHEDULES, 640
2, PRV2, MPV2

$CLOSE,11

$RELEASE, UNUSED

77
88

$EOJ

Close schedule file.

Release unused tracks on output file.

t Refer to the COMPASS Reference Manual for a description of the COMPASS card.

60410600 B 5-1

I

I

3. Compile an ANSI COBOL program. write object code on a mass storage file.
and print a COBOL output listing a1. the system output unit.

$JOB.ACTl, TIME-CARD-PROCESSOR. 1

$RAT, 841/20, 841/21

$FET, LINDA, TIME-CARDS, 960. 1,
PRV3,MPV4

$A LLOCATE, 10, 741231, , ,841

$OPEN,12

$UCBL. L, X= 12

(COBOL program decks)

FINIS

77
88

$EOJ

Select devices for output file.

Defines an LGO output file. LGO file
block size musf always be 960 char­
acters.

Allocate output file.

Open output file.

Library program name card writes
object code on file 12. t

End of COBOL program.

4. Execute the COBOL program compiled in example 3, using the output file pre­
pared by the COMPASS program in example 2 as the input file. Write output
on a tape file.

$JOB. ACT 1, NEW -SCHEDULES

$FET. BEVERLY, SCHEDULES, 640,2,
PRV2, MPV2

$OPEN, 13, I

$FET, LINDA, TIME-CARDS, 960, 1,
PRV3,MPV4

$OPEN,14

$EQUIP,20=MT

$LOAD,14

$RUN

77
88

$EOJ

Define output file from schedules job
as the input file.

Use the output file from the time card
processor job as the COBOL object
program file.

Define unit 20 as a magnetic tape.

Load COBOL program.

Execute COBOL program.

t Refer to the ANSI COBOL Reference Manual for a description of the UCBL state.ment.

5-2 60410600 A

5. Compile and execute an ANSI FORTRAN program. Prepare a punched output
deck of the object program. Use an auxiliary library for object-time routines
and use tape units for input data and the output file.

$JOB,ACT 1, F21-PROJECT

$CTO,MOUNT F21-INPUT TAPE ON
DRIVE 3

$EQUIP, 20=MTC1E1U03" 21=MT

$UFORTRAN" X, L, P
(FORTRAN program deck)

FINIS

$FET, MSOS, A UXLIB, 960, 1, UF

$OPEN" 10

$AUX,10

$LOAD,56

$RUN

$UNLOAD,21

$PAUS, MARK TAPE F21 AND STORE

$UNLOAD,20

77
88

$EOJ

$JOB •••

20 =input file; 21 =output file.

Write object code on load-and-go file
(file 56)" and punch ~ binary object
program deck. t

Define auxiliary library file.

Open auxiliary library file.

Load obj ect code in core.

Execute object code.

Unload output tape.

Pause so operator can remove the F21 I
tape.

Unload input tape.

Next batch job.

6. Compile an ANSI FORTRAN program. Absolutize the object code and place the
absolutized code on a mass storage file for quick loading by ABSTSK. Do not
execute the job at this time.

$JOB, ACT1" ACRONYM-GENERATOR, 10

$RAT" 841/21

$FET" NANCY, ACRONYMS, 640, AX,
PRV6,MPV6

$ALLOCATE, B40" 741231", NOSEG, 841

$OPEN" 22

$XFER,56

M22

Select a device for the absolutized
FORTRAN object code file.

Define an output file for absolutize d
FORTRAN object code.

Open file for absolutized binary object
code.

File 56 is load and .go scratch. XFER
transfers only binary cards.

MAIN overlay header card. ttl

tRefer to the ANSI FORTRAN Reference Manual for a description of the UFORTRAN
statement.

t t The MAIN overlay header card specifies on which file the loader will assemble the
absolutized program before loading the program in core. If the MAIN card is omitted,
the loader uses scratch file 55. Refer to section 7 for a description of the MAIN
overlay card.

60410600 B 5-3

I

I

I

5-4

$UFORTRAN,X,L

(FORTR.AN program deck)

$LOAD,56,M

77
88

$EOJ

X parameter writes binary output on
fUe 56.

Acronym generator program

Dummy load to assembly absolutized
code on file 22 in accordance with the
MAIN card.

7. 'Prepare an absolutized binary program from a relocatable binary program deck and
place the absolutized program on a mass storage file for quick loading by ABSTSK.

$JOB,ACT 1,QUICK-UPDATE,10

$FET, PUBS, UPDATE, 640, 01, PRV7,
PRV7

$ALLOCATE,BI0, 741231, ,NOSEG, 841

$OPEN,25

$LOAD

M25

(Binary deck with IDC header card)

77
88

$EOJ

8. Execute an absolutized program file.

$JOB,ACTl, LOCATE-MANUAL, 20

$FET, TONI, PUB-NUMBERS, 640,
APV9, MPV9

$OPEN,26

$ABSTSK, 26, PI, ... , PN

(data cards)

77
88

$EOJ

A llocate and open a file for the
absolutized program.

Dummy load to assemble absolutized
code on a file.

MAIN overlay header card specifies
file 25 for absolutized object code.

Program deck

Open file containing absolutized program.

Load absolutized code from file 26.
PI through PN are parameters passed
to the program.

Optional

60410600 B

INITIALIZING PRIORITY PROGRAM.S

The following are examples of jobs which load and initialize priority programs in core.
Refer to section 15 for additional description of priority program loading.

1. Assemble a COMPASS program and load it as a priority 2 program.

$JOB, ACT1, BUZZWORD-DECODER, 10

$FET, JOY, DECODER, 960, A Y, PRV8,
MPV8

$ALLOCATE,B10, 760604, , NOSEG

$OPEN,23

$COMPASS, X=23, L, R

(COMPASS deck)

$CLOSE,23

$RELEASE, UNUSED

77
88

$EOJ

$ PRIORITY, P2

$FET,JOY, DECODER, 960,AY, PRV8

$OPEN,26

$LOAD,26

$RUN

77
88

$EOJ

960 -character block required for LGO
files.

X parameter puts LGO output on file 23.

Load priority program.

Initialize priority program.

2. Load a priority program from a relocatable binary deck.

$ PRIORITY, P4
(binary deck)

$RUN

77
88

$EOJ

60410600 B

Relocatable binary deck with IDC header

l Program deck

5-5

I

I

UTILITY FUNCTIONS

The following are examples of using the MSOS storage utility functions to copy, print,
dump, and load files.

5-6

1. Print a tape file.

$JOB, ACT3, PRINT

$CTO,MOUNT LIST-A TAPE ON DRIVE 3

$EQUIP, 6=MTC1E 6U3

$UTILITY

COpy, 6, , 61, 1F

END

77
88

$EOJ

File 61 is system output file.

2. Copy a card deck onto a mass storage file and print a second card deck which
follows the first deck.

$JOB, ACTS, COpy -REPRINTS

$RAT.841/20

$FET. PAT, REPRINTS, 960,Rl,APV2,
MPV2

$ALLOCATE, 100, 760704, NOSEG. 841

$OPEN,44

$XFER,44

(Reprints deck)

$CLOSE,44

$RELEASE. UNUSED

77
88

$UTILITY

COpy. 60, ,61, IF

(List deck)

77
88

END

77
88

$EOJ

Specify a mass storage device for the
file.

Open reprints file.

Release all space not written on in the
reprints fUe.

Task separator, optional.

Second group of tasks in the job.

EOF indicates end of the file being copied

60410600 B

3. Punch a tape file.

$JOB, ACT3, PUNCH

$CTO,MOUNT PERS-23 TAPE ON DRIVE 3

$EQUIP, 21=MTC2E 7U3

$UTILITY

COPY, 21, 62, ,1F

END

77
88

$EOJ

62 System punch unit.

4. Copy a tape with 25 files and verify the results.

$JOB,ACT3, COPYFILES

$CTO,MOUNT FILES-A TAPE ON TAPE
DRIVE 1.

$PAUS

$EQUIP, 01= MTCOE1U1, 02=MT

$UTILITY

COpy, 1,2" 25F

VERIFY 1,2,61, 25F, B

UNLOAD, 1,2

END

77
88

$EOJ

60410600 B

01 Tape with files; 02 new tape. I

Copy from tape 1 to tape 2.

Compare tapes 1 and 2 in back­
wards mode. Write compare
errors on file 61.

5-7

I

I

I

5-8

5. Dump and reload three mass storage files on the same device in order to re­
claim unused (released) tracks between files and make all files contiguous.

$JOB.ACT3. REALLOCATE

$FET,HARRY.BLONDS.640.6.Al.Al Define first file on the device.

$OPEN.I

$FET .. HARRY, BRUNETTES. 640.3. B. B Define second file on the device.

$OPEN.2

$FET,HARRY.RED-HEADS.640.1.C.C Define third fUe on the device.

$OPEN.3

$EQUIP, 10:;:MTCIEIU 3

$MSUTIL

DUMP, 10,1

DUMP, 10 .. 2

DUMPII IO .. 3

END

$CLOSE,l.

$CLOSE,2

$CLOSE,3

$FET. HARRY .. BLONDS. 640, 6,Al .. Al

$RELEASE.ALL

$FET, HARRY. BRUNETTES. 640 .. 3, B .. B

$RELEASE,ALL

$FET. HARRY .. RED- HEADS. 640 .. 1. C. C

$RELEASE .. ALL

$REWIND,IO

$RAT J 841/20

$FET. HARRY. BLONDS, 640, B.AI.Al

$ALLOCATE.200. 760704,. NOSEG .. 841

$OPEN.4

$FET 1I HARRY, BRUNETTES. 640,3. B. B

$ALLQCATE. 75.760704 ... NOSEG. 841

$OPEN,5

$FET, HARRY,RED ... HEADS. 640. I,C .. C

$ALLOCATE. 25, 760704, .. NOSEG, 841

$OPEN.6
$MSUTIL

LOAD. 10.4

LOAD. 10.5

LOAD.lO,6

END

77
88

$EOJ

Dump tape.

Dump redheads.

Rewind dump tape ~

Select same device for new files.

Reallocate blonds.

60410600 B

RELOCATABLE BINARY PROGRAM DECKS 6

BINARY DECKS

The compilers and assemblers used with MSOS produce assembled output (object code)
in relocatable binary format. The relocatable binary output may be directed to the
card punch to produce punched card output, or the output may be written on a mass
storage file or a tape file.

The relocatable binary output for each program consists of a separate deck for each
subprogram in the program. Each deck is headed by an IDC (identification) card and
ended with the TRA (transfer address) card. Each deck may contain symbolic reference
to addresses in other subprograms and to library routines. The library routines are
loaded and linked when the program is loaded for execution.

To execute a program, the relocatable binary output deck must be input to the reloca­
table loader (refer to section 9). The relocatable loader converts the relocatable ad­
dresses to absolute binary addresses, and loads the program and all referenced library
routines in core for execution. The LOAD card calls the loader which loads the pro­
gram decks following the LOAD card, or loads programs from a file specified on the
LOAD card.

RELOCATABLE BINARY CARDS

There are three types of relocatable binary card images.

1. Cards produced by the assembler or compiler

2. Optional cards that are punched and inserted in the deck by the operator

3. Overlay cards used as headers when overlay and overlay segments are used
in a program

The following is a summary of the binary cards produced by the assemblers and com­
pilers.

IDC card

RIF card

EPT card

60410600 A

Program identification card produced by the compiler or as sembler.
It must be the first card in each subprogram deck. The only
exception is the overlay cards used with program overlays.

Relocatable information card. Contains 32 relocatable binary
instruction or data words per card.

Entry point card. Contains symbolic entry point names that may
be use d as entry points in the subprogram by the other subprograms.
Each name is followed by its relocatable address. Library sub­
programs and routines are called with the entry point name used
on the first EPT card in the deck.

6-1

XNL

BDT card

LRL card

TRA card

External name and linkage card. Lists external symbolic addresses
referenced within the subprogram. These addresses may be entry
points in other subprograms or in library routines.

Blocked data table card. Contains name and length of each labeled
data block field used in the program. Produced only for ANSI
COBOL or ANSI FORTRAN programs. Labeled data blocks are
illegal in all but these programs.

Local reference list card. When a program references a sym­
bolic address before the address is defined, the compiler or as­
sembler produces an LRL card for the symbolic address. The
LRL card contains the relocatable address that defines the sym­
bolic address.

Transfer address card. Indicates the end of a subprogram deck.
Must be the last card in each deck. If the subprogram contains
the program's main or secondary entry point, the symbolic entry
point name appears on the TRA card.

The following cards are punched for output deck identification purposes. The identifica­
tion information is punched in large legible block letters across the center of the card.

Job sequence
card

Flip card

Job sequence number. Last card punched in a job output deck.
Contains the sequence number of the job that punched the deck so
that the job's list and punch output can be matched. This card is
offset and can be used as an end-of-file card.

First two cards punched in an MS FORTRAN binary output deck.
First flip card contains the subprogram name and the second file
card contains the compilation date and the library edition number.
This card is ignored by the relocatable loader.

The following is a summary of the binary cards that may be punched and added to
a subprogram deck by the operator.

LED card

EXS card

ELD card

SNAP card

OCC card

6-2

Loader equipment declaration card. Assigns a logical I/O unit to
a specific hardware unit (by channel, unit, equipment number) or
to a specific hardware type (by hardware type number). The
special I/O unit assignment applies only for the program being
loaded.

External symbol card. Declares additional symbolic addresses or
library routines as external to the subprogram, or equates several
external symbols to the same entry point in another subprogram.

End load card. Indicates the end of the deck being loaded from the
card reader. Does not indicate end-of-job or end"'Of-file. Follows
a TRA card. Can be used only when a program calls the loader
to load a binary deck from the card reader.

Snap dump card. Produces dumps of user specified memory
locations while the program is in execution.·

Octal correction card. May be used to change the contents of any of the
memory address es in the program while the program is being loaded.
The change applies only to the current load. Provides a quick program
fix without recompiling the source deck.

60410600 A

The following binary cards are used in overlay programs. These cards are the headers
for the main, overlay, and segmented sections of the overlay subprograms. They pre­
cede the IDe card in each subprogram. The overlay cards are described in detail in
section 7.

Main card

Overlay card

Segment card

IDC CARD

Indicates that the subprogram following this card is the main pro­
gram.

Indicates that the subprogram following this card is an overlay
section of the main program.

Indicates that the subprogram following this card is a segment of
an overlay of the main program.

The IDe card is the subprogram identification card. It must be the first card in the
subprogram deck, with the exception of overlay cards (refer to section 7). In addition
to the subprogram name, the IDe card specifies the subprogram length, the data area
length, and the common area length. In a deck containing more than one subprogram,
the first data area size specified on an IDe card is the maximum size that can be used
in any of the remaining subprograms.

In addition to supplying the subprogram name and core requirements, the IDe card
causes MSOS to call the relocatable loader which absolutizes the relocatable addresses
and loads the subprogram following it for execution.

c C L D L o 0 > N)

H 0 E A E
)

PROGRAM
W

E NAME
M N T N NOT

DATE I(0

AND T

C M G A G USED EDITION
f--

A
K 0 T T

~ S N H H I f-- II
U

~ C
M

J
)

3 5 9 II 13 15 51 54

60410600 A 6-3

Field

W

C

A

columns 3 and 4

Significance

Six-bif field that. contains 418 (octa!). Identifies the card
as an IDC card.

Three-bit field that contains an octal 5 or 7. A 7 indicates
loader should not make a checksum test using columns 3
or 4. A 5 indicates the loader would make a checksum
test using columns 3 and 4.

15-bit field that contains the subprogram length in words.
The most significant digit (msd) is in column 1.

24-bit sum of columns 1, 2, and 5 through 80. An end
around carry is used if overflow occurs.

columns 5 through 8 Subprogram name. 1 to 8 internal BCD chara:cters left
justified. If the name has fewer than 8 characters, octal
60's complete the field.

columns 9 and 10 Number of storage locations reserved for common memory;
must be unpunched in priority program.

columns 11 and 12 Number of storage locations reserved for data.

columns 13 and 14· A one or a zero (punch or no punch) in the top row of both
columns indicates starting address of common memory.

o Starting address of common memory not adjusted.

1 Starting address of common memory adjusted to follow
MSIO overlays.

columns 15 through 50 Not used.

columns 51 through 54 Date and edition (optional) mmddyyed (refer to ACCOUNTS
Table, section 16.

columns 55 through 80 Not used.

Example:

~ 'I
},rr--

0 0 0 0 0 I I 0 0 0 I
('(

----~ C S M Y > (I r--

I 6 H 0 I 0 2 0 0 0 I 7 I
E

----~ C) ,......

I 2 K 0 0 0 0 0 0 I, I 0 0 I
I--~ S A M 6 >) (~ r--

5 3
U

0 0 0 0 0 0 <\ 0 6 0 I ;~~ M \\
3 5 7 9 " 13 15 51 54 80

The subprogram SAMMYS is 106238 words long; common memory is 1008 words long and
data is 2008 words long. The common memory starting address is adjusted. The date is
8/16/70 and edition number is 99.

6-4 60410600 A

RIF CARD

The RIF card contains up to 32 24-bit relocatable binary instruction or data words, and
a 4-bit relocation character for each word. The relocation character specifies how its
corresponding word is to be relocated. These cards may appear in any order in the
subprogram deck.

Field

W

c

A

W

~

A

~

C

columns 3 and 4

PD

60410600 A

c p

H 0
I--

E

C

K

S

U

M

5

4 1
I B

)

) L ~

1
)
I

R E L K WO
N 1

~
) \

16

Significance

Six-bit field that identifies the card as an RIF card and
specifies the number of instruction or data words on the
card. May range from 1 to 40.

Three-bit field that contains an octal 5 or 7. A 7 indi­
cates the loader should not make a checksum test using
columns 3 and 4. A 5 indicates the loader should make
a checksum test using columns 3 and 4.

15-bit field containing the relocatable address of the first
instruction or data word on the card. The address of the
second word is a +1, the third word is a +2, etc. The
msd is a column 1.

When the subprogram is relocated, the relocation address
is supplied by the loader and added to this address.

24-bit sum of columns 1, 2, and 5 through 80. An end­
around carry is used if overflow occurs.

Four-bit field which specifies whether field A contains a
program address or a data address. A 2 indicates a
program address, a 3 indicates a labeled data address,
and a 4 indicates a data address.

6-5

I

I

6-6

Field

REL

BLKN

columns 17 through 80

Significance

Contains one four-bit relocation character for each instruc­
tion or data word on the card. Modification of each word if:
in accordance with its relocation character as follows:

Relocation
Character

1000

0000

xOOl

x010

x011

x100

xl01

xll0

Significance

Indicates that data block increment (or data
block decrement) is to be changed by the fwa
(or complement fwa) of a new block.

Unused; constitutes an error.

No modification (absolute address).

Instruction; increment relocation address
with bits 14 through 00 of the word.

Common block; increment relocation address
with bits 14 through 00 of the word.

Data block; increment relocation address
with bits 14 through 00 of the word.

Instruction; decreme nt relocation address
with bits 14 through 00 of the word.

Common block; decrement relocation ad­
dress with bits 14 through 00 of the word.

xlii Data block; decrement relocated address
with bits 14 through 00 of the word.

In each word that x=O, the modified 15-bit relocated word
address replaces the old address in bits 14 through 00.
In each word that x=l, the modified 17-bit character ad­
dress replaces the old address in bits 16 through 00.

Contains block number for relocation of labeled data.

Up to 32 storage words. The address portion of the
first word (bits 14 through 00) is modified according to
the first relocation character in the relocation field; the
address field of the second word is modified according
to the second relocation characters, etc.

60410600 B

Example:

,/' p ..{L

\1
0 0 ~ I 7 0 0 4 0 4 0

n D I n::a ~ - % T z'"
4 3 ~ 0 J ·6 4 7 3 I 0 0 2 0

~ 0 I >=~ (I)
~ - c

~ -8- ~-4
K "'-

\
0 0

~
...;;.. i~ 7 7 0 0 0 0 0 3

I--r-- ~
5 0 0;: 7 5 0 0 0 I 0 3

0 ..
I 3 5 17 25 80

L--~\~ ______ ~, ______ -JI\~ ________ ~~ ________ ~I
--,,-- - y - y
UNUSED STORAGE WORD UNUSED STORAGE WORD

RELOCATION INFORMATION INFORMATION AREA

Relocatable
Address Relocation Character

00300 0001

00301 0010

00302 0011

00303 1100

If the loader relocates the subprogram so that:

Program starts at 60000

DATA starts at 57400

COMMON starts at 4000

The results after relocation are:

Address

60300

60301

60302

60303

EPT CARD

Word

14777775

03060100

40014002

42276033

Relocatable Word

14777775

03000100

40000001

42000033

The EPT cards list the symbolic names of the entry points in the subprogram. Each
entry point is followed by its relocatable address. Other subprograms must use one
of these addresses to enter the subprogram. These cards may appear anywhere in the
subprogram deck, but must be in correct sequence.

60410600 A 6-7

When a subprogram (or routine) resides on the system library or an A UX library, one
EPT card must be located between the IDC card and the first RIF card. This EPT
card contains the primary entry points that are the names used to call the subprogram
from the library. A subprogram cannot be called from the library unless it has a pri­
mary entry point. All other entry points are secondary entry points and can be refer­
enced only after the subprogram is loaded.

6-8

Field

W

C

A

W

I""'-

A

I--

C

columns 3 and 4

C

H

E

C

K

5

U

M

3

columns 5 through 80

5

(
)

ENTRY POINT

5 AND NAME

RELOC ATABLE

SSES ADORE

~

Significance

80

Six-bit field that contains an octal 42. Identifies the
card as an EPT card.

Three -bit field that contains an octal 5 or 7. A 7 in­
dicates the loader should not make a checksum te st using
column 3 or 4. A 5 indicates the loader should make a
checksum test using columns 3 and 4.

15-bit field that contains the card sequence number. The
field contains a zero for first card, a one for second card,
etc. Column 1 is the most significant digit of the number.
Cards must be in correct sequence, but do not have to be
next to each other. The cards may be anywhere between
the IDC and TRA card.

24-bit sum of columns 1, 2, and 5 through 80. An end­
around carry is used if overflow occurs.

Variable length fields, each containing an entry point
name in BCD and its address. An entry point name
may be 1 to 8 alphanumeric characters, when it is fewer
than 8 characters. 728 terminates the field.

The address field for each entry point name begins after
the last character of the name or after 728 and is 18
bits long.

60410600 A

The address, with any leading zeros, occupies the -least significant 15 bits of the field.
Bits 18 through 16 are always zero, because entry points cannot be character address.
An entry point name and address field cannot be continued from one card to another.

Example:

~ 0 c
I--- H
2 0 E

C
I-- I-- K
0 0 S

I-- I-- U

5 0 M

Entry Point N arne

ALPHA21

BETA

GAMMARAY

ZED

XNL CARD

A P A I

L H 2]

0 :3
I--- E
7 4

0
I-- B T
0

Address

70034

60162

55473

57675

0 6 5 /
A - - A M R Y - (6 2 4

\

0 0 7
] ~ G M A A I--~

I 5 :3

The XNL card lists external entry points in other subprograms or library routines
that are referenced in the subprogram.

c
W

H

E

~
C

K
A

S
..-

U
C

M

3

60410600 A

5

" ~
c

EX TERNAL
AMES N

•

(

(
80

6-9

Field

w

c

A

columns 3 and 4

columns 5 through 80

Significance

Six-bit field that contains an octal 43. Identifies the
card as an XNL 'card.

Three -bit field that contains an octal 5 or 7. A 7 in­
dicates the loader should not make a checksum test
using columns 3 and 4. A 5 indicates the loader should
make a checksum test using columns 3 and 4.

15-bit field that contains the card sequence number. The
field contains a zero for the first card, a one for the
second card, etc. Column 1 contains the most significant
digit of the number. The cards must be in sequential
order in the subprogram deck but may be spread anywhere
between the IDC and the TRA card.

24-bit sum of columns 1, 2, and 5 through 80. An end­
around carry is used if overflow occurs.

Variable length fields, each containing an external name
and the last address in the subprogram at which the ex­
ternal name is referenced. An external name may be one
to eight alphanumeric characters; when it has fewer than
eight characters, it is terminated by a 72

8
•

The address field for each external name begins after
the last character of the name or after 728 and is 18
bits long. The address, with any leading zeros, occupies
the low order 15 bits of the field. The most significant
three bits are zero for the word address and nonzero for
a character address.

If the symbol is declared external, but is not referenced in the subprogram, the ad­
dress on the XNL card is 777778 .

The address given on the XNL card may specify another location in the same subpro­
gram where reference is made to the external name. A series of reference addresses
is called an external string. The low order 15 bits of the last entry in the string con-
tain 777778 , External strings may run in any order through the subprogram.

All external references are to subprogram relocatable word addresses. However, the
external reference may be made by either a word- or character-type instruction. Entries
in a string may be from both word-type instructions and character-type instructions.

XNL cards may occupy any position between the IDe card and the TRA card in a pro­
gram deck. An exception is, when the binary deck is loaded from the system or
auxiliary library file, the XNL card must follow the first EPT card. An external string
may refer to previously encountered external symbols only after the relocatable infor­
mation has been loaded for them.

6-10 60410600 A

Example:

/
I 4 0 C

~ ~ H p 0 D M o 0 0 I ,
3 0 E)

j c

l
~ -- K

0 0 S

- - U R G U P 0 3 0 M
5 0

3 8 80

The external name PROGDUMP was last referenced in the subprogram at relocatable
address 000300.

BOT CARD

The blocked data table (BDT) card contains the name and length of any labeled data
block fields used by the subprograms. The labeled data areas are legal only for sub­
programs written in ANSI FORTRAN or ANSI COBOL. A maximum of 63 labeled data
areas may be used per subprogram and ANSI FORTRAN allows a maximum of 14 BDT
cards per subprogram. The BDT cards must be in sequential order. However, they
may be spread out between the IDC and TRA card.

C

W
H
E

C -
K

A
S -
u

C
M

I 3 5

60410600 A

l)
(
)

BLOC
AND

?

~
~
<

K NAMES
LENGTHS

)
I

ISO

6-11

Field

w

C

A

columns 3 and 4

columns 5 through 80

Significance

Six-bit field that contains an octal 47. Identifies the
card as a BDT card.

Three-bit field that contains an octal 5 or 7. A 7 in­
dicates the loader should not make a checksum test
using columns 3 and 4. A 5 indicates the loader should
make a checksum test using columns 3 and 4.

15-bit field that contains the card sequence number.
The field contains a one for the first card, a two for the
second card, etc. Column 1 contains the most signifi­
cant digit in the number.

24-bit checksum of columns 1, 2, and 5 through
80. An end-around carry is used if overflow occurs.

Variable length fields, each field containing a block name
in BCD, and the corresponding block length in characters.
Block names and block lengths (octal) for any single
block can not be continued from one card to another.
Block mime 1- to 8-alphanumeric characters. If the
name has fewer than 8 characters, a 728 terminates the
field. Block length 18-bit positions, right justified, and
begins after the last character of the name or a 72 8 •

Each individual block name is assigned a number sequentially starting with 1.

Example:

C
4 0 4

H
B 0 K J f--

E
7 0 0

C

0 0
K

0 0
5

L C A
U

5 2 0 0
M

3 5

Sequence number 2

6-12

First data block

Second data block

BLOCKA

BLOCKB

B 0

L C

2

K J f-- Il Il fl

0
14

0 0

B Il Il 4 ~

0 0 l

40008 characters

2000 8 characters

)
fl fl fl

)
.J

)
fl fl fl

c

80

60410600 A

LRL CARD

The LRL card is produced only by single pass assemblers and compilers. The card
is produced when the program references a symbolic address before the address occurs.
The LRL card contains the relocatable address that defines the symbol, the last
relocatable address that used (referenced) the symbol, and the number of times the
symbolic address was referenced.

Field

W

c

A

f"""

w

-
A

-
e

columns 3 and 4

R

RAC

u

CIA

N

60410600 A

e
H

E

e
K

S

U
M

3

•) ,
R U U UNU SED

- I
I-- ~

RAe CIA N {
5 7 9 II 15 I 80

Significance

Six-bit field that contains an octal 45. Identifies the
card as an LRL card.

Three-bit field that contains an octal 5 or 7. A 7 in­
dicates the loader should not make a checksum test using
columns 3 and 4. A 5 indicates that the loader make a
checksum test using columns 3 and 4.

15-bit field that indicates whether the address specified
in the RAC field is a word or character address.

A zero for word address
A f. zero for character address

24-bit sum of columns 1, 2, and 5 through 80.
An end -around carry is used if overflow occurs.

Seven-bit field that is unused (zero filled).

17-bit field that contains the relocatable address
that defines the symbol. Column 5 contains bits 12
through 16 and column 6 contains bits 00 through 11.
If the address is a word address, bits 16 and 15 in
rows 8 and 9 are zero -filled.

Nine -bit fields that are unused (zero -filled).

15-bit field that contains the relocatable address of the
last reference to the symbol. Column 7 contains bits 12
through 14. and column 8 contains bits 00 through 11.

15-bit field that contains an octal digit indicating the
number of times the symbol was referenced. Column 10
contains bits 00 through 11 and column 9 contains bits 12
through 15.

6-13

TRA CARD

The transfer address (TRA) card indicates the end of a subprogram or library routine.
It must be the last card in each subprogram deck. If a subprogram contains the pro­
gram's entry point, the entry (transfer) p·oint symbol appears on the subprogram
TRA card.

MSOS uses the transfer point symbol to initially enter all programs. If a second
transfer point is used, it appears in the Q register when the program is entered. The
user may then elect to reenter the program at the secondary entry point via a jump
instruction or to start execution at the main entry point.

Only two transfer point addresses can be used in a program. If one transfer point
address is used, the loader assigns it as the main entry point to the program. If two
transfer point addresses are used, the LOADER assigns the first transfer point en­
countered as the secondary transfer point and the last transfer point encountered as the
main transfer point. t The loader terminates loading a library routine when it reads
the routine's TRA card.

Field

W

c

A

W

~

A

-
C

columns 3 and 4

C

H

E

C

K

S

U

M

3

columns 5 through 12

columns 13 through 80

E N T P 0 I N T
1
))

5

)
j

UN USED

I
13 80

Significance

Six-bit field that contains an octal 44. Identifies the card
as a TRA card.

Three -bit field that contains an octal 5 or 7. A 7 indicates
the loader should not make a checksum test using columns 3
and 4. A 5 indicates the loader should make a checksum test
using columns 3 and 4.

15-bit field that is not used (unpunched).

24-bit checksum of columns of all cards in the sub­
program. There is no checksum for the TRA card alone.
An end-around carry is used if overflow occurs.

Symbolic program entry point name (punched in Hollerith).
Does not appear on all cards.

Unused and unpunched.

t The transfer point addresses may be on the same or different TRA cards.

6-14 60410600 A

JOB SEQUENCE CARD
The job sequence card is the last card punched in a job's punched card output. It is
an EOF card and is offset to indicate the end of the job output. An EOJ and the job
sequence number are punched in block letters across the middle of the card (refer to
job sequence numbers in section 16). The card may be used as an end- of -file card
when loading the deck, and may be turned end-around to separate the input decks.

row 11

row 0

rows 7

FLIP CARD

and

ROW II
ROW 0

8

ROW 7
ROW 8

,
~ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZlZZ~

111111 IIIII I IIIII 11111 11"'
I • I I I I I I II
: 1111. I • I I •• 1 11111
1 I 1 1 I 1.1 •
111111 III.' , .. I 1II1I 111111.11,.,1

'Ufffn VffUf'
IIIIL IIIIIII

617 74175

l's punched in columns 2 through 79

l's punched in columns 2 through 6 and 75 through 79

1 's punched in columns 1 through 6 and 75 through 80

I

The flip cards are the first two cards in subprogram decks produced by the MS FORTRAN
compiler. The first flip card contains the subprogram name punched in block letters,
and the second flip card contains the date of compilation -and the library edition number
punched in block letters. The block letters are inverted so that they are readable when
the card is flipped upside down. Flip cards are produced only for the punch output unit;
the cards do not appear at the list output unit. The loader ignores flip cards when
reading a binary input deck.

60410600 B

ALPHANUMERIC
10 FIELD

ROW 9

I 2 79 80

6-15

I

column 1

rows 8 and 12

ID field

column 80

Example:

Rowe

Contains an octal seven in the upper and lower three rows.

Contain binary l's punched in each column of the card.

Contains either an 8-character subprogram name punched in in­
verted block letters or an 8-digit date /edition number punched
in inverted block letters. The data/edition number is in the follow­
ing form.

mmddyyed

m Month
d Day
y Year
ed Library edition number

Upper three and lower three rows contain octal sevens. Rows 1
through 6 are part of the ID field.

I I I

I "1111111111111111"""'111111111111"""""" I
I L2-

11111 111 1, 1"1 "III II I .. , II III 11111
I I I ., I' I I, I I I I, I
1111 : .. 1

1
: II III: II : ,1,,1 : 1

1
,,1: lUi

, I I, I I I, I , I I I
I 1.1 1,,1 hili I " .. I I lUll

BACK SIDE UP
It

I ..-
ROW I 2 I Jzzrz:z.'ZX1.rz:z.rz:z.rz:z.rz:z.lZl.rrz:.'tlD.~~rz:n'ZX1.rD.'ZZZ.ZZ2II :

~,I~------------------------------------~~

ROW 12

FRONT SI DE UP

I 1"1 I1I1III ,II 'I I I' I
I I I I I I I II ,

I I I I I III I I I I_I, I I
_II, ,"I, I II , I I I I I' II 1111
I : I I I I I I III I I I II .. I
1111 III" 1111 'hi' I I 1,1 II • 11111

ROW 8

LED CARD
The loader equipment declaration (LED) card may be punched and inserted in a sub­
program deck by the user. The card is produced only by the ANSI COBOL compiler.

The LED card performs the same function as an EQUIP statement. It assigns logical
unit numbers to I/O equipment. If a logical unit has been assigned previously by an
EQUIP statement, the EQUIP statement takes precedence; the LED declaration is ignored.
A LED card may contain more than one hardware declaration.

The use of LED cards is an assembly option which may be selected or omitted when
the system is installed. If the option is omitted, LED cards are ignored by the loader.
Units with a dialable equipment number that are assigned by LED cards are logged on
eTO and the operator is asked: READY? .

Priority programs may not contain LED cards.

6-16 60410600 B

Field

W

u

C

w

C

columns 2 through 80

~

~

l
I/O EQUIPMENT SPECIFICATIONS ,

J
180

S ignific ance

Six-bit field that contains an octal 54. Identifies the
card as a LED card

Unused, unpunched.

Three-bit field that contains an octal 5.

uuhh
or

uuhheeuu

uu
hh
c

e

uu

Parameters appear in Hollerith code,
occupying 4 or 8 columns.

Logical unit.. 01 through 56.
Hardware type, 01 through 318 (appendix C).
Channel number,
o through 7.
Equipment,
o through 7
Unit designator,
00 through 778

Parameters may be
blank. If so MSOS
assigns an available
unit of the hardware
type specified. If one
parameter is present,
all must be present.

Declarations are separated by commas. Embedded blanks are ignored. Any number of
LED cards may appear in a program deck. If the logical unit indicated in a declaration
has been previously assigned to a physical unit, the declaration is ignored.

Example:

This card assigns logical unit 16 to the magnetic tape designed by the hardware code
COEOU06, and logical unit 21 to any available card punch.

1""5 I 6 0 o 0 0 6 2 04, J

4
I

J

5

60410600 A

(/
r-~--~ ~------------~

16 1 177 6-17 80

EXS CARD

The external symbol card (EXS) may be punched and inserted in a subprogram deck
by the user. This card is not produced by an assembler or compiler.

The EXS card declares external symbols not listed on an XNL card or equates one or
more external symbols to a single entry point. A common use is to load additional
library routines not referenced in the subprograms being loaded.

Field

W

u

C

W

r--

U

I---

C

columns 2 through 80

~

)

~
SYMBOLS

(
,
I
) ,
)

101 171 lao

Significance

Six-bit field that contains an octal 55. Identifier card
as an EXS card.

Three-bit field that is unused and unpunched.

Three -bit field that contains an octal 5.

Contain Hollerith characters. To declare symbols ex­
ternal, the form is:

external symbol, external symbol, ... , external symbol

To equate symbols to an entry point, the contents are:

external symbol, external symboL ... , external
symbol =entry point

When EXS declares SNA PSHOT external, a SNA P control card must provide linkage.
When EXS declares any other subroutines external, the source program must provide
linkage (jump instruction) to enter the subroutine.

If EXS is used to equate symbols to an entry point, only the progranl containing the
entry point is loaded. EXS declarations override later EPT declarations. If a sub­
sequent entry point name is identical to an external symbol in an EXS declaration, a
duplicate symbol error results.

6-18 60410600 A

Example:

....... SYM BOL

5
5

-

-
5

5 Y" 9: EN TRY 3
(

)
~
C

80

On this card, symbols SYMBOL 1 through SYMBOL9 are equated to ENTRY 3.

ELD CARD

The end-of -load (ELD) card may be punched and added to the end of a binary program
deck by the user. This card will not be produced by an assembler or compiler.

The ELD card terminates loading a binary card deck from the card reader and causes
control to revert back to the program. For example, this option permits a batch pro­
gram to call the loader to load a binary data deck from the card reader. Upon reading
the ELD card, the loader terminates reading and returns control to the program.

60410600 A

7
7

5

UNPUNCHED

9 70 80

6-19

SNAP CARD
A SNA P card may be used to obtain a periodic dump of a specified area of core while
a program is running. SNA P cards can be used only in conjunction with relocatable
binary program decks in batch programs. SNA P cards cannot be used with priority
programs. t

When loading a binary deck for execution, SNA P cards may be inserted in any of the
following positions in the job deck.

1. Behind the last TRA card in the program deck.

2. In front of an OVERLA Y card.

3. Behind an OCC card.

The SNA P card can be used behind a TRA card only when the binary deck is being
loaded from the card reader. A separate SNAP card must be used for each area of
core to be dumped.

When a SNA P card is read, MSOS replaces one of the binary instructions of the process
with a return jump to SNA P. The replaced instruction is saved for execution by the
SNA P routine.

When the jump to SNA P occurs, SNA P dumps the area of core specified by the SNA P
card. Then SNA P executes the saved instruction, and returns to the next instruction
in the program.

($SNA P, (subprog)n, fwa, lwa, mode, id

(subprog)n Location of the instruction to be replaced by a return jump to
SNAP. (subprog) is a one- to eight-BCD subprogram name and n
is a five -digit relocatable octal address. MSOS will modify this
address with the absolute address of the subprogram in order to
obtain the absolute address of the instruction to be replaced. The
parentheses must be used around the subprogram name.

Example:

• (PROGNAME) 1537,

fwa, lwa First and last word address of the area to be dumped by SNA P.
Only the locations between fwa and lwa will be dumpe d. fwa and
lwa will not be dumped.

The fwa and lwa parameters must be punched in
ing formats. Both must be in the s arne format.

one of the follow-

1. D / id/ address

D

id

address

Indicates the location to be dumped is in a
data block.
One- to eight-character data block name
used in the program.
A five-digit relocatable octal address in
the data area. MSOS will modify the
address with the absolute address of the
first word in the data area in order to
obtain the absolute address of the data area
to be dumped.

Example:

, D/DATA1/0053,

tThe SNAP function is an assembly option in the loader. In some systems, the SNAP function
may have been omitted at system installation time to save core.

6-20 60410600 A

mode

id

60410600 A

2. C address

C Indicates the area to be dumped is in a
common area.

address A five-digit relocatable octal address in the
data area. iVISOS will modify the address
with the absolute address of the first word
in the common area in order to obtain the
absolute address of the common area to be
dumped.

Example:

, C00053,

3. (subprog) address

(subprog) The name of the subprogram containing the
core area to be dumped. May be one- to
eight- BCD characters. The parentheses
must be around the subprogram n:;lme.

address A five-digit relocatable octal address with­
in the subprogram. MSOS will mo dify the
address with the absolute address of the
first word in the subprogram in order to
obtain the absolute address of the program
area to be dumped.

Example:

, (PROG6)00053,

Format the dump will be printed in. One of the following
values must be used.

o Print the dump in octal numbers and omit the register file
dump.

C Print the dump in BCD characters and omit the register file
dump.

F Print the dump in floating point numbers and omit the register
file dump.

R Include the register file dump. The R parameter may precede
or follow the 0, C, or F parameter.

Example:

RO
OR
o

Print octal with register file dump.
Print octal with register file dump.
Print octal without register file dump.

If any other values are used for mode, the SNA P dump will be
bypassed and an error message will be typed on the output unit.

One to four characters used to identify the dump. The id character
precedes each line of the dump as it is printed.

6-21

The following rules should be observed when using SNA P cards.

1. The location of the inserted return jump to snap must:

a. not be a location that is modified during program execution.

b. not be a location that is indirectly addressed.

c. not be part of a two or more word instruction (that is, searches, skips,
and BDP instructions).

d. not be modified by an OCC correction card.

2. To avoid excessive printouts, avoid using SNA PSHOT in a loop.

The format of a SNA P dump is shown in Figure 6-1.

Examples:

($SNA P, (PROG 1)00 123, (PROG 1)10236, (PROG 1)1 0237, C, STAT

($SNA P, (PROG 1)00124, cooaoo, C00777, C, RSLT

OCC CARD

The octal correction card (OCC) may be used to change the contents of any address in
a program while loading the program for execution. The OCC card is used in conjunc­
tion with relocatable binary batch program decks. The acc card cannot be used with
priority programs or source language decks. t

When loading a relocatable binary program for execution, OCC cards may be inserted
in any of the following positions of the job deck.

1. Behind the last TRA card in the program deck.

2. In front of an aVERLA Y card.

3. Behind a SNAP card.

The OCC card can be used behind a TRA card only when the binary deck is being
loaded from the card reader.

The acc card changes only the loaded program. The binary deck or file used to load
the program will not be changed. The OCC card may be used to make the following
changes to a program during loading.

1. Change the contents of any address in the program.

2. Define an extension to the program area in which additional instruction can be
added.

I 3. Change the contents of any address in a data area or block. t t
4. Change the contents of library routine (in core only) which was declared ex­

ternal in the program.

t The OCC function is an assembly option in the loader. In some systems, the OCC
function may have been omitted at system installation time in order to save core.

Itt The ace function cannot be used to make corections in a labeled data area defined. in an
ANSI FORTRAN or ANSI COBOL program, or the instructions which reference the labeled
data area.

6-22 60410600 B

O".l
o
~
I--'
o
O".l
o
o

~

m
I

I:\j

W

Location of
RTJ to SNAP

Contents of
register 00

Contents of
register 01 This row contains

contents of registers
10 through 17. insTtion / Contents of rerste" A. Q. and B1-B3

SNP1 LOC

HEGISTER FILE

00000
00010
00020
00030

000 40
0005 0
00060
00070

7775'+

00 5 1"0544
0411 0 544
1711'10377
71Q4&&74

11111111
0001775 1
OOOOO()Ou
0001'1000 2

CHARACTER MfMOQY

A 0000001'+

/
10404464
2&004464
00000364
7c032020

00000000
flOO17751
00000073
00000001

7751 0.\' 'l '\
First Number Contents Contents

Q

00732b4/'1
2633264 0
653"3057
65363067

00000000
00000001
00200000
00000000

AAAA

address
dumped

of words
dumped

of address
77757

of address
77760

00077751 81 77761

0012521;1'1 0004.41t.
0412S2~(I 04044444
000 711 1 ~ 07070707
000 711'" 07 010707

0000001'11\ 00000000
0000001\11 00023103
00000014 00000001
0000001'11 00000001

RBBB ccce

• ENO *

Ai'. 77764 H3

001?5250 070,70707
04125250 07010 707
00000014 000777 51
00000000 06077717

00000000 000 5 736 1
00000064 0006556 2
00000024 00011000
00000071 00000017

r
Last address
(77764) dumped

Contents of
register 07

17777

0707070 1
0107070 7
707001nO
041 70000

000562-.0
0000000 3
00007005
00000000

Contents of
register 77

In batch programs run with the extended core variant of MSOS, the loader converts jump instructions that
ref~rence executive subroutines to HLT instructions that reference the subroutines (refer to executive interrupts
in section 18).

Figure 6-1. Sample SNA P Dump

CHANGING THE CONTENTS OF A PROGRAM ADDRESS

The format of the OCC card used to change the contents of memory locations in a pro­
gram is as follows:

($OCC, (subprog)addr, oc, ..• , oc ($OCC, +, oc, ••. ,oc ($OCC, +n, oc, .•. ,oc

(subprog)addr

+

+n

oc

6-24

Address of the first word to be changed. MSOS advances the
address by one for each additional correction word on the card.

(subprog) is the name of the subprogram to be changed. The
parentheses must be used.

addr is the first address to be changed. If word addressing
is to be used, use a five-digit number. If character addressing
is to be used, use a six-digit number. MSOS adds addr to the
first word address of (subprog) to obtain the absolute address
of the word to be changed.

Continuation card with additional octal corrections. Corrections
will be continued at next sequential address.

Continuation card with additional octal corrections. The ad­
dress of the last correction on the previous card will increase
by na and be used as the address for the first correction word
on this card (that is, skip na addresses).

Octal correction word with relocation factor. Consists of a
new word which is an eight-digit octal number with a reloca­
tion suffix. The new word is right -justified. The leading
zeros may be omitted.

The relocation suffix modifies only the lower 15 or 17 bits of
the correction word. The values are as follows:

omitted

(subp)

(subp)C

D

DC

C

CC

No modification of the word.

Relocate the lower 15-bit address in the word
relative to the first word address of the sub­
program (subp). The parentheses must be
used around the subprogram name.

Same as (subp) except that character addressing
is used. The lower 17 bits are modified.

Relocate the lower 15-bit address in the word
relative to the first word address of the data
area assigned to (subprog).

Same as D, except that character addressing
is use d. The lower 1 7 bits are modified.

Relocate the lower 15-bit address in the word
relative to the first word address of the common
area assigned to (subprog).

Same as C, except that character addressing is
used. The lower 17 bits are modified.

Relocate the lower 15-bit address in the word
relative to the first word address of the last
(subp) name used on this card or on a preceding
o CC or SNA P card.

60410600 A

x

XC

Same as >:~, except that character addressing is
used. The lower 17 bits are modified.

Relocate the lower 15-bit address in the word
relative to the first word address of a pro­
gram extension area. An OCC card defining
the program extension area must pre cede this
relocation suffix.

Same as X, except that character addressing
is used. The lower 17 bits are modified.

Any number of correction words may be added to a program by using OCC, + cards.
To skip an address in a series of corrections, omit the octal correction word and re­
tain the trailing comma. The address counter will be advanced by the comma, but will
not change the contents of a location for which there is no correction word.

Examples:

($OCC, (PROGl)70, 15600100

This example writes 15600100 (INA by 100) in address PROG1+70. If subprogram
PROG1 starts at address 73355, 20000100 would be written in address 73445.

(sOCC, (PROGl), 20000100>:~

This example modifies the lower 15 bits of the octal correction word with the first word
address of PROGI and then stores the word in the first address of PROGl. If sub­
program PROGI starts at address 73355, 20073455 (LDA from 73455) will be written
in address 73355.

{$OCC, (SUB1)20, 00000036,,00036,,036,36

This example stores the octal value 00000036 into locations 20, 22, 24, and 25 of sub­
program SUBl. Because values are right-justified, all the octal corrections, 00000036,
036, etc., are stored as 00000036. If SUB 1 was loaded beginning at address 63652,
the results of this OCC are:

Address Contents

63672 00000036

63673 Unchanged

63674 00000036

63675 Unchanged

63636 00000036

63637 00000036

60410600 A 6-25

($OCC, (PROG1)70, 20000100(PROG2), 30000100D, ,40000100C

Enter octal correction 200xxxxx at address 00070 relative to subprogram PROGl. Re­
locate word address portion of this octal correction relative to subprogram PROG2.
Enter octal correction 300xxxxx at address 0,0071 relative to subprogram PROG1; relocate
word address portion of this correction relative to the data area. Enter 400xxxxx at
address 00073 relative to subprogram PROG1; relocate word address portion relative
to the common area. Absolute initial locations for PROGl. PROG2, data, and common
are:

PROG1

data

PROG2

common

45333

45534

45635

46036

The results of this oee are:

45423

45424

45425

45426

20045735

30045634

(unchanged)

40046136

DEFINING A PROGRAM EXTENSION AREA

The format of an oce card used to define an extension of the program area for addi­
tional instructions is as follows.

($Oee,Xn

n Length of program extension area. One to five octal di~its.

If length n exceeds available memory, the area is adjusted to the size of available
memory. A message is printed on OUT and the program executes if this is the only
error in the run. A memory overflow error occurs when the number of corrections
for loading exceeds the defined area. The job will abort.

Only one program area extension statement may be used. Any octal corrections appear­
ing on this statement will be ignored.

All subsequent oee, X statements will load octal instructions in the extended program
area. The format is as follows:

($oee, Xn, oc, ... ,oc

n Relative load address for first word to be stored in the extended program
area. First correction word on the card will be stored at first location
in extended program area plus the value of n.

oc Octal correction word and relocation suffix.

6-26 60410600 A

Example:

$OCC, X10, 2000062 0(SUB4), 40000621 *, 20000622(SUB5), 40000623 ':{

3. $OCC, +, 20000400(SUB2)40000401':{, 20000402(SUB3), 40000403':{

2. $OCC,X, 20000100(SUB1)40000101*, 20000102",{, 40000103':{

1. $OCC,X20

1. Assign a program extension area of 20 locations.

2. Load corrections into locations 0 through 3 of the program extension area.
Relocate word address portions of these corrections relative to subprogram
SUB1.

3. Load corrections into locations 4 through 7 of the program extension area.
Relocate word address portions Of the first two corrections, relative to SUB2.
Relocate word address portions of the second two corrections, relative to
SUB3.

4. Load corrections into locations 10 through 13 of the program extension area.
Relocate word address portions of the first two corrections, relative to SUB4.
Relocate word address portions of the second two corrections, relative to SUB5.

CHANGING THE CONTENTS OF THE DATA AREA

The format of the OCC card used to change the contents of the data area is as follows:

($OCC, Dk, oc, ••. ,oc

k Address (relative to first address in data area) of first correction.
If k is omitted, first correction word is written in first address
of data area. Otherwise, first correction word is written in first word
address plus k addresses.

oc Octal correction word and relocation suffix.

Example:

$OCC, +,73535353, 1060

$OCC, D, 4, 10, 14,20", 57632, 114567

60410600 A 6-27

Enter four octal values in successive data area locations starting with the first word.
Skip two addresses and enter four more values. If the data area begins at location
70000, the results of these cards are as follows: .

(70000) 00000004

(70001) 00000010

(70002) 00000014

(70003) 00000020

(70004) (unchanged)

(70005) (unchanged)

(70006) 00057632

(70007) 00114567

(70010) 73535353

(70011) 00001060

6-28 60410600 A

OVERLAYS 7

DESCRIPTION

A batch or priority program that is larger than available core may be divided into a
main program and overlay elements. The main program resides in core and the over­
lay elements reside on mass storage files. During execution of the program, the main
program calls and gives control to the overlay elements as they are needed.

OVERLAY ELEMENTS

In MSOS, overlay programs are divided into the following elements: MAIN, OVERLAY,
and SEGMENT. Each of these elements is written and compiled or assembled as in­
dividual subprograms, the same as any other large program. Then, the relocatable
binary decks are loaded as a single program. The only difference between entering an
overlay program and a regular program is that each element (one or more subprogram
decks) in an overlay program must be preceded by a binary overlay header card. The
overlay header card indicates an overlay program is being loaded and identifies each
element by type and with an identification number.

MAIN

Each overlay program must have only one MAIN element. MAIN resides in core and
calls in overlays as they are needed. When the relocatable loader loads the binary
deck of MAIN, it assigns an overlay area in core immediately below MAIN. Each
overlay will be loaded in this area when called from MAIN.

OVERLAYS

The overlay elements reside in absolute binary format or a mass storage file until
calle d by MAIN. Only one overlay can be in core at a time. Each new overlay is
loaded over the previous overlay in the MAIN overlay area. A program can have up
to 99 different overlays.

Overlays can call and use segments, the same as MAIN calls and uses overlays. The
loader assigns an area for segments in the. overlay area.

SEGMENTS

Segments reside in absolute binary format on a mass storage file, until called into core
by an overlay. Only one segment can be in core at a time. Each new segment is
loaded over the previous segment in the overlay segment area. Each overlay can have
up to 99 different segments.

Each segment is subordinate to and assigned to only one overlay. The same segment
cannot be used by more than one overlay. Segments are assigned to an overlay element
by loading the binary segment decks immediately following the binary deck of the over­
lay.

60410600 A 7-1

MAIN

OVERLAY AREA

, ' t
I----------------~ ~----------------~

OVERLAY I

SEGMENT AREA

r---_~f' ~ I SEGMENT I I SEGMENT 2

I J
I SEGMENT :3 I SEGMENT 4

OVERLAY 2
(NO SEGMENTS)

OVERLAY :3

SEGMENT AREA

I
I

ISEGMENT 2 I SEGMENT I

SAMPLE CORE CONFIGURATIONS

AVAILABLE
CORE

MAIN MAIN MAIN

OVERLAY I OVERLAY 2 OVERLAY :3
OVERLAY 1--____ ---1

AREA
SEGMENT I

Figure 7-1. Overlay and Segment Organization Block Diagram

7-2 60410600 A

OVERLAY PROGRAMS

Overlay programs' can be written in ANSI FORTRAN, MS FORTRAN, ANSI COBOL, and
COMPASS. For programs written in FORTRAN or COBOL, refer to the FORTRAN or
COBOL reference manual for instructions on preparing the overlay elements and for
calling the overlay elements into execution.

When writing overlay programs in COMPASS, each element must be written as one or
more separate subprograms. The overlay elements, both overlays and segments, are
then called into execution by doing a return jump to EXECOVR.

The procedure for using EXECOVR is as follows:

1. Declare EXECOVR as an external.

2. Enter a file number and an element identification number in register A.

fo

18/17 7/6

zeros ei

Register A

fo Mass storage file number that the element is stored on.
May be any decimal number from 1 through 55. The number
must be the same as that used on the binary overlay or seg-
ment header card that will be used to load the element I
(refer to OVERLAY card or SEGMENT card).

ei Element identification number. Must match the overlay or
segment identification number used on the binary overlay or
segment header card used to load this element. May be any
octal number from 1 through 143 8 •

3. Do a return jump to EXECOVR

EXECOVR will load and give control to the overlay or segment specified in
register A.

The following is an example of using EXECOVR to load and give control to overlays
and segments.

Example:

P EXT EXECOVR Declares EXECOVR as external.
P+1 LDA M Load A with file number and element identifi-

cation number.
P+2 RTJ EXECOVR Pass control to overlay 4 or segment 4.
P+3 next instruction Return from overlay or segment.

EXECOVR may be used only in the MAIN program and overlays. EXECOVR cannot be
used in segments.

60410600 B 7-3

SYMBOLIC ADDRESS REFERENCES

The MAIN element of an overlay program cannot reference symbolic addresses in any of
its overlays or overlay segments. MAIN can read symbolic addresses in resident
EXEC and tables.

Overlay elements cannot reference symbolic addresses 1n their segments or in any other
overlay. An overlay element can read and write in symbolic addresses in MAIN and
can read symbolic addresses in resident EXEC and tables.

Segments cannot reference symbolic addresses in any other segment or in overlay
elements other than their own. A segment can read and write in symbolic addresses
in its own overlay and in MAIN. A segment can also read symbolic addresses in
resident EXEC and tables.

DATA BLOCKS

Each element in an overlay program may define one data area (block). When an ele­
ment defines a data block, only the element and its subordinate elements may use the
block.

A data block defined in a subordinate element will be linked to (assigned in) the data
block defined in the higher level element. For example, if a data block is defined in
MAIN, all data areas defined in the overlays and overlay segments will be assigned in
the same data block defined in MAIN. If a data block was not defined in MAIN, each
overlay element may have its own individual data block. An overlay's data block can
be referenced only by the overlay itself and its segments.

If a data block is not defined in MAIN or in an overlay, each of the overlay'S segments
may have its own individual data block. A segment data block can be referenced only
by the segment that defined it.

Data can be pre-set in a data block only by the highest level element using the block.
The size of a data area defined in a subordinate element must not be larger than the
data block defined by the highest level element.

COMMON BLOCKS

Each element of a batch program may define a common block. The length of common
memory is the greatest length defined by an,Y program element in core unless some
element of the program is loaded into the common memory area. Priority programs
using overlays cannot define or use common memory.

An element of the program that does not require common memory need not define it.
It is possible that an overlay element that does not define common memory may be
loaded in an area of common memory used by some other element, as shown in the
following diagram.

7-4 60410600 A

Common is assigned
from resident up

PRIORITY

MAIN

COMMON
(defined only
by MAIN)

Resident

PRIORITY

MAIN

OVERLAY 3
(no common
defined)

Resident

Overlays are loaded
from MAIN down

BINARY OVERLAY HEADER CARDS

The relocatable binary subprogram decks of an overlay program are loaded with the
relocatable loader. The overlay program is loaded the same as any other program
except that each element (MAIN, OVERLAYS, and SEGMENTS) must be preceded by a
special binary header card. The overlay header cards are as follows:

MAIN card The subprograms between this card and the next overlay header
card comprise -the main element of-the program.

OVERLAY card The _ subpro&,rams betwe~n this card and the nex~ overlay or seg-I
m-ent header card comprIse an overlay for the maIn element.

SEGMENT card The subprograms between this card and the next overlay or
segment header card comprise a segment for the preceding overlay
deck.

When loading overlay programs, all segments of an overlay must follow their associated
overlay deck. An overlay can use only those segments inserted in the deck prior to the
next OVERLAY card.

MAIN CARD

The MAIN card must be the first card after the LOA D card in the binary program
deck when overlays are used.

w An octal 50 in the upper six rows of column 1 and a 7/9 punch (octal
5) in the lower three rows of column 1. Identifies the card as a
MAIN header card.

fo A two-digit decimal mass storage file number for main. The fo may
range from 01 through 55 in batch programs and 01 through 49 in
priority programs. No space is allowed between wand the fOe

60410600 C

lf the program is to be loaded and executed and there is no need to
save main on a file, fa may be omitted. When fo is omitted, main
is written in core for execution, but is not saved on a file.

7-5

A MAIN card may also be placed ahead of a relocatable binary subprogram deck to
save absolutized binary code on a permanent file for quicker loading with the ABSTSK
statement in future jobs. The loader assembles the absolute code on the file specified
by the MAIN card, rather than file 55, before loading the subprogram in core (refer to
Figure 8-2). The block size should be in accordance with the sector size of the device.

OVERLAY CARD

The OVERLA Y card indicates that the subprograms following it are an overlay. The
overlay consists of all subprograms between this OVERLAY header card and the next
binary header card or MSOS control card.

(wfo, id

w An octal 51 in the upper six rows of column 1 and a 7/9 punch (octal
5) in the lower three rows of column 1. Identifies the card as an
OVERLA Y header card.

fo A two-digit decimal mass storage file number for the overlay. The
fo may range from 01 through 55 in a batch program and from 01
through 49 in a priority program. The fo must be followed by a
comma. No space is allowed between the wand fOe

id A one-or two-digit decimal identification number for the overlay.
May J;"ange from 1 through 99 and must be unique for all overlays in
the program. No spaces are allowed between the comma and the id
number.

SEGMENT CARD

The SEGMENT card indicates that the subprograms following it are a se_gment of the
preceding overlay. The segment consists of all subprograms between this SEGMENT
header card and the next binary header card or MSOS control card.

(WfO, id

w

fo

id

7-6

An octal 52 in the upper six rows of column 1 and a 7/9 punch
(octal 5) in the lower three rows of column 1. Identifies the card
as a SEGMENT header card.

A two-digit decimal mass storage file number for the segment. The
fo may range from 1 through 55 in batch programs and from 1 through
49 in priority programs. The fo must be followed by a comma. The
fo parameter is punched in columns 2 and 3.

A one-or two-digit decimal identification number for the segment.
The id may range from 1 through 99 and must be unique for all seg­
ments of the preceding overlay. No spaces are allowed between the
comma and the id number.

60410600 A

SAMPLE OVERLAY PROGRAM

The following is an example of a job that will load and execute the binary subprogram
deck of a batch overlay program. All overlays and segments will be stored in file 2.
Each binary deck includes all cards for a complete subprogram (IDC through TRA).
Block size must be 512 characters if files 54 or 55 are used. Otherwise, block size
should be 'in accordance with the sector size of the device.

$JOB •..
$EQUIP •••
$RAT .•.
$FET •••
$ALLOCATE •••
$OPEN,2
$LOAD,M The M parameter will produce a memory map for each element

of the overlay program.
M55t
(first binary deck)

· {last binary deck)
002, 1 t t
(first binary deck)

· (last binary deck)
S02" 1 t t t
(first binary deck)

· (last binary deck)
S02,2

S02"n
(binary de cks)

002"n
(binary decks)
S02,1
(binary decks)
S02,n
(binary de cks)
$RUN
77
88

First overlay element header card

First segment for overlay 1

Second segment for overlay 1

Last segment for overlay 1

Last overlay segment for MAIN

First segment for overlay n

Last segment for overlay n

tM indicates a MAIN header card (octal 50 -and a 7/9 punch in column 1).
t to indicates an OVERLAY header card (octal 51 and 7/9 punch in column 1).

t t tS indicates SEGMENT header card (octal 52 and a 7/9 punch in column 1).

60410600 B 7-7

I

The following is an example of using overlays with a compile and run FORTRAN program.
A similar job could be used to assemble COMPASS programs with overlays. ALGOL
and COBOL have special control statements for segmenting compiled decks.

$.JOB, •••
$FET, owner, name, 960, •••

$ALLOCATE •••
$OPEN,10
$XFER,10
(M)
$FORTRAN, X= 10
(FORTRAN source statements)

FINIS
$XFER,10
(054, 1)
$FORTRAN ,X=10
(FORTRAN source statement)

FINIS
$XFER,10
(054,2)
$FORTRAN,X=10
(FORTRAN source statements)

FINIS
$LOAD,10
$RUN
(data cards)
77
88
$EOJ

Block size of 960 characters required for all
load and go (LGO) files.

XFER binary main card to LGO file.
Binary main header card.
Compile main and write on LGO file.

XFER binary overlay 1 card to LGO file.
Binary overlay 1 header card with fo=54.
Compile overlay 1 deck and write on LGO file.

Binary overlay 2 header card with fo=54.

Load main from LGO file.

In the preceding example, the overlay program will be saved on file 10 for future use.
Each time .. new data cards can be inserted for the program after the RUN statement.

LIBRARY FILE OVERLAYS

Overlayed programs may be written on the system library or a user auxiliary library.
I The following rules must be observed when placing an overlayed program on a library

file.

I

I

7-8

1. Only one subprogram deck (IDC through TRA) may follow a MAIN, OVERLAY, or
SEGMENT card. The TRA card must contain a transfer point address.

2. If an overlay element (MAIN, OVER LA Y, or SEGMENT) has more than one
subprogram, the additional subprograms must follow the TRA card in the last
overlay element (overlay or segment) on the file. They may be in any order
and their TRA cards may not contain a transfer point address.

60410600 B

The following is an example of an overlay program on an A UX library. Refer to
section 22 for a description of AUX Libraries.

$JOB, •••
$FET, JOB, AUX, 960
$ALLOCATE, 50, 991231
$OPEN,20
$PRELIB, ,AUX, '20,2
MAIN card
IDC
EPT
RIF

RIF
XNL
TRA (with transfer point address)
OVERLA Y card
IDC

TRA (with transfer point address)
SEGMENT card
IDC

TRA (with transfer point address)
SEGMENT (last element in overlay program)
IDC

TRA (with transfer point address)
IDC

I
I
I

Main Program

Overlay

First Overlay Segment

Second Overlay Segment

TRA
IDC

Additional subprograms that are part of the overlay elements., I
The subprograms may be in any order.

TRA

~ FILE

77
88
$EOJ

60410600 B

I

7-9

SEGMENT AND OVERLAY FILE HEADERS

Each overlay or segment file is preceded by a special five -word file header that
identifies the overlay or segment. This header is used by EXECOVR to locate and load

'the overlay or segment. The file header is not loaded into memory.

The format of the special file header for overlays and segments is as follows:

1

2

3

4

5

6

7

ovid
(bits 23-17)

segid
(bits 23-17)

fwa
(bits 14-0)

leng
(bits 14-0)

....
::':,

tra1
(bits 14-0)

tra2
(bits 14-0)

nhb
(bits 23-0)

program name
(two words)

7-10

o

15 bits

15 bits

15 bits

nhb

program

name Only in header

LMEMV50 15 bits
for main ele-
ment of the

common 15 hits program

OPTBOXS 15 hits

edition 12 hits

Overlay identification number (001 through 143 8). Octal
equivalent to decimal number used on header card for the
overlay binary input deck and same as element number used
in the EXECOVR call to load the overlay. OVID=OOO if the
file contains main.

Segment identification number (001 through 143 8). Octal
equivalent to decimal number used on header card for the
segment binary input deck and same as element number
used in EXECOVR call to load the segment. segid=OOO if
the file contains an overlay or main.

Absolute address for loading the first word of the overlay
or segment in core.

Length of the overlay or segment in words (octal). Does
not include the header. Does include the last word that
is an end-of-file symbol. The end-of-file symbol is not
loaded in core (that is, leng-1 words are loaded) •

Primary transfer address for return to MAIN or the overlay
(that is, last encountered transfer symbol on a TRA card).

Secondary transfer address for return to MAIN or the over­
lay (that is, next to last transfer symbol on a TRA card).

N ext block number in the file that contains an overlay or
segment file header (octal).

Eight-character program name from IDC card.

60410600 B

bank
(bits 23-18)

LMEMV50
(bits 14-0)

mode
(bits 23-18)

common
(bits 14-0)

OPTBOXS
(bits 14-0)

edition
(bits 11-0)

OVERLAY MAPPING

Memory bank that this program is loaded in; 00 for
a 16 or 32K system, 01 or 00 for a 48K or 64K system.

The lowest absolute address that the program can use
(from memory limit table).

The mode of program execution (octal).

01 Batch
02 Priority 4
03 Priority 3
05 Priority 2
06 Priority 1

Highest address assigned to common.

The address of OPTBOXS if the program is using software
simulators for BCD or floating point hardware.

Edition of the library that was used to link this program
(two BCD characters).

When an overlay program is loaded with an M parameter on the LOAD card, a loading
map for each overlay and segment is printed on the standard output unit. No map
will be produced if an M does not appear on the LOAD card.

The overlay map contains the following information for each overlay and segment.

1. First word address of each subprogram in the overlay or segment.

2. All entry points defined within the overlay or segment.

3. Overlay or segment extension, if any, to contain corrections.

Triple spacing separates the load map for each overlay or segment. The following heading I
appears on the first line of each overlay map.

e .fo, n OVLAY ovn SEG segn

e Type of overlay element

M main
o overlay
S segment

FILE fn

fo Number of the file that the element is stored on.

n

ovn

Overlay or segment identification number. Omitted for the main element.

Overlay number

segn

fn

60410600 C

Segment number

File number

Example:

055,2

7-11

I

I

M 40 OVLAY 0 SEG 00

SUBP
63635 RAAR 63715 EXECOVR

ENTR
63715 EXECOVR 12464 FDPBOXS

MAINTEST 77514 RAAR
LDTA

NONE
COMM

NONE
DATA

NONE
PEXT

NONE

040. 10

SUBP
53742 OVERLAY

ENTER
53742 OVERLA Y

LDTA
NONE

COMM
NONE

DATA
NONE

PEXT
NONE

S 40.30

SUBP
47750 SEGMENT

ENTR
47750 SEGMENT

LDTA
NONE

COMM
NONE

DATA
NONE

PEXT
NONE

OVLAY 10

OVLAY 10

SEG 00

SEG 30

FILE 40

64104 MAIN

64104 MAIN

FILE 40

FILE 40

Subprogram names and first word addresses.
Entry points in the element.

63635 RAAR

SUBP
ENTR
LDTA
COMM
DATA
PEXT

Name and first word address of a labeled data area.
First word address of common area.
First word address of data area.
First word address of a program extension area.

Figure 7-2. Sample Overlay Map

7-12 60410600 C

MEMORY ORGANIZATION AND PROTECTION

MEMORY ORGANIZATION

MSOS divides memory into five areas.

1. Executive resident

2. Variable resident

3. Batch program

4. Priority program

5. Autoload/ autodump

77777

STANDARD MSOS

16 or 32Kt

Auto Load/ Dump

Priority and
Batch Programs

Variable
Resident

Executive

EXTENDED CORE MSOS

16 or 32K

Auto Load/ Dump

Priority
Programs
Only

Executive

77777
16 or 32K

Batch
Programs
Only

Variable
Resident

8

00000 Resident Resident 000(10 EXEC2 (linkage)tJ

Bank 0 Bank 1

EXECUTIVE RESIDENT

The executive resident section of memory contains all the MSOS operating system routines
that must remain permanently in core.

00000

System Control Routines
and Tables

Standard
Error
Recovery for I/O

I/O Drivers

Central Input Output
Control (CIO)

Central Interrupt
Control (CIC)

Executive
Resident

System

16K Standard
32K Standard
32K Memory Pro­
tection

Extende d Core

Approximate
EXEC Size

12, 1008 locations
15,2008 locations
17, 0008 locations

17, 0008 locations

tWith 16K, use is restricted to either batch or priority programs.
t t Less than 64 words.

60410600 C 8-1

I

I

VARIABLE RESIDENT AND COMMON

The variable resident area is used for nonresident executive overlay routines that are
read into core to perform special job control functions.

Variable
EXEC Area t

PROGRAM
AREA

Segment 2 Segment 3
Segment 1 Segment 1
JOBCTL 11 JOBCTL21 JOBCTL22 JOBCTL23
OVERLAY 1
JOBCTLI0

MAIN
JOBCTL
Executive
Resident

OVERLAY 2
JOBCTL20

TABLE 8-1. VARIABLE EXEC JOB CONTROL FUNCTIONS

Section

JOBCTL

JOBCTLI0

JOBCTLl1

JOBCTL20

JOBCTL21

JOBCTL22

JOBCTL23

JOBCTL24 ;

Control Statements Processed

JOB, SEQUENCE, PRIORITY, ENDREEL, EOJ, ENDSCOPE, LOAD,
RUN, end-of-file, Library Pros. Name, DUMP, PAUS, CTO, CTL

EQUIP, AUX, FMT, DUMP, UNLOAD, XFER, REWIND, ABSTSK

TRAIN, operator control, AUT, MST

RAT, FET, RRAT

OPEN, CLOSE

ALLOCATE, EXPAND

RELEASE, MODIFY

RONL

The variable resident area is occupied by INITIAL at autoload time, and by the loader
when relocatable binary program decks are being loaded for execution. The loader
is loaded upward starting at the beginning of the executive resident area.

When a batch program with a common area is loaded, the loader assigns the common
in the variable resident area. The loader assigns common upward from the executive
resident area and loads the batch program downward from the priority program area.
The batch program may be loaded downward into the variable resident area. t t

tApproximately 11,6008 memory locations.
t tIn the extended core variant, common is assigned upward from EXEC2 in bank 1.

8-2 60410600 C

PRIORITY PROGRAM AREA

The use of priority programs is described in section 19. Priority programs are loaded
downward from the autoload/ auto dump area toward the variable resident area. They
cannot extend into the variable resident area or use common. The remaining area
between the priority programs and variable resident is available for batch programs.
In the extended core version of MSOS, priority' programs can reside only in bank O.

Auto Load/Dump

Priority 1 Pro"gram

Priority 4 Program

1
I- ______ ~a!~l! ___ --

l
Unused

Batch Common

Resident
Area I
Variable

Only one program of each priority level may be in core at the same time. In standard
MSOS without memory protection and in MSOS with programmable memory protection,
the priority programs can be loaded in any order. In MSOS with standard memory
prot'ection (memory" protect switches), priority 1 and 2, programs must be loaded first
in apy order. Then priority 3 and 4 programs can be loaded in any order below the
priority 1 and 2 programs. A priority 1 or 2 program cannot be loaded after a pri­
ority 3 o~ .4 program has been loaded. "

When a priority program terminates (refer to termination of priority programs in
section 16), its block of memory will be returned to the system for batch use only
if it was located in the lowest memory block assigned to priority programs. Otherwise,
the memory block will bec'ome dormant or unusable.

Dormant memory blocks are recovered by terminating all priority and batch programs
below the dormant memory block, and then reloading them.

60410600 A 8-3

co
I
~

0)

o
~
.....
o
0)

o
o

:J>

Example 1: Standard MSOS or MSOS with programmable memory protection

A utoload/ Dump Autoload/ Dump Autoload/Dump

Priority 3 Priority 3 . Priority 3 .
Priority 1 Dormant Dormant

Priority 4 Terminate d priority , Priority 4 Loade d new priority
~

Priority 4

Priority 2
1 and 2 programs Batch 1 and 2 programs

Priority 2

Batch Priority 1

Batch
~F'J\ ~ - ~~

Example 2: MSOS with standard memory protection.

Autoload/ Dump Autoload/ Dump A utoload/ Dump

Priority 1 Priority 1 Priority 1

Priority 2 Dormant Dormant

Priority 3 Terminate d priority- Priority 3 Load new priority
,.

Priority 3

Priority 4 2 and 4 programs 4 program t Priority 4

Batch Batch Batch

~ ---~ ~

t The priority 2 program cannot be reloaded unless priority 3 and 4 programs are terminated and reloaded.

BATCH PROGRAM AREA

All memory locations between the priority programs and executive resident areas are
available for batch programs. Common will be shared by all subprograms using it.
Common will be assigned upward from the executive resident area. The size of the
common will be the greatest length defined in any of the subprograms.

Only one subprogram may define a preset data area. All other subprograms in the
program may reference and use the data area. t All batch programs" subprograms, and
data blocks are loaded downward from the highest addresses in available core.

In the extended core variant of MSOS" bank 1 is reserved for batch programs only.
The loader assigns batch common upward from EXEC2 and loads the batch program
downward from the highest address in bank 1. Calls to executive subroutines (Table
18-2) can be made only with an RT J instruction which contains the symbolic address
of the routine. All other methods will connect to an address in bank 1 rather than
the subroutine in bank 0 (refer to executive interrupts" section 18).

During execution of batch programs" the variable resident area in bank 0 is available
for I/O buffers. Special CIa I/O calls may be made to use this area for I/O buffers
(refer to read and write functions in section 11).

Priority Programs

Subprogram 1

Subprogram
Data Block

Subprogram 2

Unused
- - Core ---

t Common

AUTO LOAD / AUTODUMP AREA

}

Batch
Program

Variable
Resident
Area

The autoload/ auto dump area contains short routines which load and initiate the autoload
and autodump programs from mass storage. The autoload/autodump programs are
permanently stored in the upper 408 address of memory. t t

MEMORY LIMIT TABLE
M 80S has two eight-word tables which are used to control core memory assignment
and usage. The format is given in Table 8-2. The user references this table from a
program written in COMPASS by declaring UMEMV50 and LMEMV50 as externals and
reading the contents of the symbolic address into register A or Q. These values are
used to determine the memory limits assigned to the program by the loader.

tLabeled data areas may be used only in programs written in ANSI COBOL or ANSI
FORTRAN.

t tStarts at address 37737 (16K memory) or 77737 (32K memory). For 3100 and 3150
systems without enhanced block control, autoload/ auto dump area starts at address
37637 (16K memory) or 77637 (32K memory).

60410600 A 8-5

00
I

0')

0')

o
~
.......
o
0')

o
o

td

TABLE 8-2. MEMORY LIMIT TABLES

Upper Memory Limit Lower Memory Limit

Location I Contents (bits 14 through 00) Contents (bits 14 through 00)

UMEMV50 I Upper address protection switch LMEMV50 Lower address protection switch settings
settings (switches 0 through 5). t (switches 9 through 14). t

UMEMV50+1 I Highest address in core used by LMEMV50+1 Lowest address in core used by the batch
the batch program. program • .t t

UMEMV50+2 I Highest address of the priority LMEMV50+2 Lowest address of the priority 4 program in
4 program in core. Undefined if core. Undefined if no priority 4 program is
no priority 4 program is in core. in core.

UMEMV50+3 I Highest address of the priority 3 LMEMV50+3 Lowest address of the priority 3 program ·in
program in core. Undefined if no core. Undefined if no priority 3 program is
priority 3 program is in core. in core.

UMEMV50+4 Highest address assigned to batch LMEMV50+4 Lowest address assigned to batch common.
common.

UMEMV50+5 I Highest address of the priority LMEMV50+5 Lowest address of the priority 2 program in
2 program in core. Undefined if core. Undefined if no priority 2 program is
no priority 2 program is in core in core.

UMEMV50+6 I Highest address of the priority 1

II
LMEMV50+6

I
Lowest address of the priority 1 program in : I

program in core. Undefined if no core. Undefined if no priority 1 program is
priority 1 program is in core. in core.

tUndefined for dynamic memory protection or standard MSOS without memory protection.
t t Does not include batch program common area.

MEMORY PROTE-CTION
There are three variants of MSOS with respect to memory protection.

1. Standar d MSC'S (no memory prote ction)

2. MOOS with standard memory protection (address protection switches)

3. MSOS with dynamic memory protection (memory bounds registers)

In all three variants, the autoload / dump are a is permanently prote cte d from all levels
of programs (EXEC, priority 1 and 2, etc.) by a special wired protection circuit.
Any program or task that attempts to write in the autoload/ dump area will be terminated.

STANDARD MSOS

Standard MSOS operates in the nonexecutive mode. In the nonexecutive mode .. all
memory protection is disabled and any program can write anywhere in memory. Only
the autoload/ dump area is protected.

All user programs should be thoroughly tested before being used during normal system
operation. A program error could write 'over and affect the performance of the system
executive and other programs in core.

In the standard version of MSOS, priority 1 through 4 programs may be loaded in any
order and they can reside in any order in the priority program area.

STANDARD MEMORY PROTECTION

The standard memory protection variant of MSOS uses address protection switches to
protect the areas of memory occupied by the resident executive, priority 1 and ,pri­
ority 2 programs. If a batch, priority 3 or priority 4 program attempts to write in
one of the protected areas, the write is inhibited. An illegal write interrupt is gen­
erated, and the violating program is. normally aborted (refer to illegal write interrupts
in section 18). In the extended core variant of MSOS, only memory bank 0 is protected
with the address switches.

The address protection switches, located on the power control panel, must be set by
the operator each time MSOS is autoloaded or whenever a priority 1 or priority 2
program is loaded or terminated. MSOS supplies the switch settings at the console
typewriter whenever the switches need to be set or changed.

The memory protection switches set an upper unprotected bounds limit and a lower
unprotected bounds limit. Batch and priority 3 and 4 programs cannot be loaded in
nor can they write in any memory area above the upper bounds limit or below the lower
bounds limit.

Since priority 1 and 2 programs run in the monitor state of executive mode with all
memory protection disabled, these programs should be thoroughly tested before being
run during normal system operation.

60410600 A 8-7

STANDARD MEMORY PROTECTION

77777
AUTOLOAD/DUM P PROTECTED MEMORY AUTOLOAD/DUM P

PRIORITY I AND
,------

PRIORITY 2 PROGRAMS -------
/

I
UPPER BOUNDARY

PRIORITY 3,
PRIORITY 4, AND UNPROTECTED MEMORY ADDRESSES

BATCH PROGRAMS

BATCH PROGRAM,
COMMON, OR
VARIABLE RESIDENT LOWER BOUNDARY

EXECUTIVE

00000 RESIDENT PROTECTED MEMORY

WITH PRIORITY I AND 2
PROGRAMS IN CORE (ANY
PROGRAM IN EXECUTION)

DYNAMIC MEMORY PROTECTION

77777

PROTECTED
MEMORY

UPPER BOUNDARY

LOWER BOUNDARY
PROTECTED

MEMORY

00000

AUTOLOAD/AUTODUMP

PRIORITY 3 PROGRAM

PRIORITY 4 PROGRAM
iLii. M' "nIb:'J'{, 1/ "]'L

PRIORITY I PROGRAM

BATCH PROGRAM

~ /""T"J" /'"T7 ~ r7".L77'_~
IV'" ~/77777/7/77Y ~ ~

BATCH COM MON

EXECUTIVE RESIDENT

BATCH PROGRAM (WI TH
COMMON) IN EXECUTION

PROTECTED
MEMORY

U PPER BOUNDARY

LO WER BOUNDARY

PROTECTED

MEMORY

PRIORITY 3,
PRIORITY 4, AND

BATCH PROGRAMS

BATCH PROGRAM,
COMMON, OR
VARIABLE RESIDENT

EXECUTIVE
RESIDENT

WITHOUT PRIORITY I OR 2
PROGRAMS IN CORE (ANY
PROGRAM IN EXECUTION)

AUTOLOAD/AUTODUMP

PRIORITY 3 PROGRAM

PRIORITY 4 PROGRAM
JJ

PRIORITY I PROGRAM

BATCH PROGRAM

'" ~

Irr7TTrr/r7Y"~N

BATCH COMMON

EXECUTIVE RESIDENT

PRIORITY 4 PROGRAM
IN EXECUTION

'~~

~

Figure 8-1. Standard Memory Protection

8-8 60410600 A

DYNAMIC MEMORY PROTECTION t

The dynamic memory protection variant of MSOS uses an address protection register
to indicate the upper and lower unprotected memory bounds. MSOS automatically
re sets the bounds limits each time a new batch or priority 3 or priority 4 program is
initiated. The new bounds are set in accordance with the programs assigned memory
area in the memory limits table. In this system, all programs in core (EXEC,
priority 1 through 4. and batch) are protected when a batch or a priority 3 or 4 pro­
gram is in execution.

Priority 1 and 2 programs run in the monitor state the same as in standard memory
protection. Memory protection is disabled when these programs are in execution.
Since they can write any place in memory, these programs should be thoroughly tested
before being run during normal system operation.

Priority 1 through 4 programs may be loaded in any order and can reside in any order
in the priority program area.

MEMORY PROTECTION INCREMENTS

Standard and dynamic memory protection provide memory protection in increments of
10008 (512 decimal) words. This requirement causes the loader to adjust each program
memory limits (in the memory limits table) so that they occur at an address evenly
divisible by 10008. Therefore, to prevent wasting core, programs are written to fit
in an area of memory that is an even multiple of 10008• For example, a program
using 1005

8
instructions will be assigned 2000 8 words of memory. This wastes 773 8 words of memory, unless the extra memory could be used as a scratch area or as a

double buffer area to increase program efficiency. The 512 word memory increments
do not apply to standard MSOS without memory protection.

CORE MEMORY UTILIZATION

There are five main phases in processing programs with MSOS.

1. Autoloading MSOS

2. Job control (processing MSOS control statement)

3. Loading batch or priority programs

4. Executing a batch program

5. Terminating a batch program

Each of these phases uses a different core memory configuration.

AUTOLOADING

When the operator presses the AUTOLOAD button, a forced jump is made to the auto­
load routine in upper core. The autoload routine loads the autoload program from mass
storage, which in turn loads the executive resident and INITIAL from the RESFILE.

tAvailable only on 3100, 3150, and 3200 computer systems.

60410600 A 8-9

INITIAL is loaded in the variable resident area of core. INITIAL assigns standard
systems units, opens system files, initializes system .tables, ~t?., .and returns ?on­
trol to resident exec for processing jobs. INITIAL wlll also lnltiahze the 512 hne
printer, the MMTC image memories., and. set up the linkage necessary to load software
simulation routines if BCD ~nd floatlng pOlnt hardware are not present.

77777
Autoload/ Autodump

Unused

}
Variable

INITIAL Resident
Area

00000 Resident
Executive

JOB PROCESSING

Between jobs and during the initial phase of each job, the system €ontrol routines in
executive resident load the variable resident routines into the variable resident area
as they are needed. These routines process MSOS control statements input from the
system input unit or from the console typewriter.

A utoload/ Dump

Priority Programs

Unused

Variable Resident
Routines

Resident Executive

PROGRAM LOADING

When a control statement requests MSOS to load a user program, MSOS loads the re­
locatable loader into the variable resident area and uses all unused batch space for a
symbol table area and a loading and linking area. One by one, the relocatable binary
subprogram and referenced library routines are read into the loading and linking- area.
Here, all addresses are absolutized. If the loading and linking area fills, the absolutized
subprograms are written on mas s storage to make room for additional subprograms and
library routines.

When all subprograms are absolutized, the programs on mass storage are reloaded.
Then. if a $RUN card is included in the deck, the program will be executed. Loading
is downward from the lowest priority or batch program in core.

When a RUN statement or card is processed, MSOS enters the program at the
point specified by the primary transfer symbol on the program TRA card.

8-10 60410600 A

en
o
t+::­
f-4
o
en
o
o

:J>

co
I

f-4
f-4

OR

AUTOLOAD/DUM P

AUTOLOAD/DUMP I PRIORITY
. PROGRAMS

I
® -FILE 55

PRIORITY PROGRAMS II SUBPROGRAM
RELOCATABLE ® o j SUBPROGRAM I BINARY

SUB-PROGRAMS LOADING AND DATA

LINKING AREA SUBPROGRAM 2
ABSOLUTIZED
SUBPROGRAMS I UNUSED

SYMBOL TABLE ASSIGNED
COMMON

CD EXEC RESIDENT
LOADER FROM .. LOADER
ABS FILE

EXEC RESI DENT

Figure 8-2. Loading Relocatable Binary Programs

BATCH PRO'3RAM
PROCESSINu AREA

}
VARIABLE
EXEC AREA

I

PROGRAM TERMINATION PHASE

If an abnormal termination occurs and a DUMP card was included in the job deck,
EXEC control routines load the recovery dump routine (RDUMP) into the lower portion
of the variable resident area. All data in the area that RDUMP is loaded into is
saved on mass storage. Normal program termination or abnormal termination without
a DUMP card causes the system to revert to the job processing phase in order to
process the next job and operator statements. In this case. no dump is taken for an
abnormal termination. Only diagnostic error messages are printed. Refer to section
17 for abnormal program termination methods.

~ -
PROGRAM AREA

COMMON

J.-_...;..;~;.;;.8..;;;.~.;.;..~..;;..p ___ .. { - - - - - - - - - } ~~~~ON
FROM ABS
FI LE EXECUTIVE

MASS
STORAGE

EXECUTIVE TABLES

RESIDENT

MASS
STORAGE
FILE 55

Batch and priority programs may read from. but not write in. executive- tables such
as the memory limits and accounts tables. Executive tables are summarized in
appendix F. In 16/32K MSOS systems. the tables may be read with load A or Q in­
structions using the symbolic table address and indexing.

In the 48/64K extended core variant of MSOS, batch programs reside in memory
bank 1 and the tables are in memory bank O. Therefore. a batch program must exe­
cute an ROS instruction before reading a table entry from bank 0. and the batch program
must execute an RIS instruction before storing the table entry in bank 1. The ROS
instructions cause all operand references to be made in bank 0 and the RIS instruction
causes all operand references to be made in bank 1.

Example:

8-12

EXT UMEMV50

ENI 4, 1
ROS
LDA UMEMV50. 1

RIS
STA mCOMMON

Enters index 1 with 4
Selects bank 0 (operand state)
Reads highest common address from UMEMV50+4
(memory limits table) in bank 0
Selects bank 1 (program state)
Writes highest common address at mCOMMON in bank 1

60410600 C

Batch programs that do not use RIS and ROS instructions when referencing executive
tables are not run in an extended core system. However, batch programs that do not
use RIS and ROS instructions when referencing executive tables are run in both the
regular 16/32K system and in the 48/64K extended core system.

Indirect addressing cannot be used to reference executive tables in bank. O. Indirect
addressing always references the same memory bank. the program is in for new ad­
dresses, regardless of the use of ROS and RIS instructions. For example, after
executing an ROS instruction in a batch program in bank 1, an LDA, I 53214 instruction
reads the new address from location 53214 in bank 1, and then loads register A from
bank. 0 using the new address.

REGISTER FILE USAGE
Register file registers 00 through 378 are reserved for operating system use. Batch
and priority programs can read these registers, but they must not write in them.
These registers are protected in the memory protect and extended core variants bf
MSOS. Writing in them causes an illegal write interrupt.

Registers 40 through 778 are reserved for batch program use. Priority programs can
read these registers, but they should not write in them.

The loader uses registers 50, 51, 52, and 54 and does not restore them before exiting I
to the caller. Batch programs that use the register file must save the contents of the
registers being used before calling the loader, and restore the registers upon return
from the loader.

60410600 B 8-13

RELOCAT ABLE LOADER 9

DESCRIPTION

The MSOS loader loads relocatable binary decks
into core memory in preparation for execution. t
functions.

produced by compilers and assemblers
The loader performs the following

1. Accepts relocatable binary input decks from the card reader, mass
storage files, or tape files.

2. Links independently compiled subprograms that reference each other
through external symbolic entry point names (that is, with XNL and
EPT cards).

3. Loads library routines that are called for in a subprogram or library
routine and links them to the subprogram or" routine that called them.

4.· Prepares absolutized overlays and writes them on a file from which they
can be called by the main section of the program.

5. Loads and links BCD hardware simulation and floating point hardware
simulation (FDP) routines when the hardware is not present and BCD
or floating point instructions are used.

6. Prints a loader map of the memory area allocated to the program and
any overlays that are used.

7. Returns the main and second program entry addresses to the program
that called the loader.

NOTE

The loader does not load r/o drivers
from the library. All r/o drivers to
be used must have been part of executive
resident when the system was installed.

When linking subprograms, the loader assumes that all external reference symbols
from XNL and EXS cards that were not matched with an entry point on an EPT card
are entry point symbols for library subprograms or routines. The loader searches
the library directory for the symbols and loads and links the subprograms from the
library. If a symbol is not located in the library directory, an undefined symbol
error occurs.

LOADING THE LOADER

The relocatable loader may be loaded and called into execution by any of the following
methods.

1. By use of a LOAD or library program name statement on the system
input unit.

t The relocatable binary cards are described in section 6.

60410600 A 9-1

I

2. By use of the IDC card in a relocatable binary deck.

3. By the operator typing a library program name or LOAD statement
at the console typewriter.

4. By calling RDCKFl to load the-loader in a COMPASS batch program.

Methods 1 through 4 load the loader from the ABS file, and then initiate the loading
function. If the loader is loaded within a batch program (method 5), a jump must be
made to the loader entry point (LOADER) to initiate the loading function.

RDCKF 1 is a routine in executive resident that loads absolutized programs from the
ABS file on mass storage. t The contents of the A, Q, and B3 registers must be set
as follows before using RDCKFI to load the loader. Then a return jump may' be taken
to RDCKFI.

(A) register

(Q) register

(B3) register

LOAD

ER.6.6

777778

The contents of A and Q specify the name of the subprogram to be loaded, and the
contents of B3 specify how many words are to be loaded from the ABS file. Setting
B3 equal to 77777 specifies all of the subprogram.

RDCKF 1 loads the loader into as signed batch common in the variable executive area.
However, RDCKF 1 does not load the loader if batch subprograms extend into the area
of variable resident that is needed by the loader. RDCKF 1 returns with a zero in
register A if it cannot load the loader.

LOADING PROGRAMS

Once loaded, the loader loads subprograms downward in core, starting at the end of
the batch program. The loader loads subprograms into the variable resident area up
to the resident executive area (that is, the loader overlays itself). Before entering
the loader, the loaders function must be specified by an entry in the A and Q registers.
Then the loader may be entered by a return jump to LOADER.

tRefer to section 10 for a description of RDCKFI.

9-2 60410600 B

Contents of A and Q

A = zero
Q = zero

A = zero
Q = 0,f1,f2,f3

f1 through f3 are
file numbers. The
file numbers must
be converted to
octal and entered
in bits 17-00 of
register Q.
f1 bits 17-12
f2 bits 11- 06
f3 bits 00- 05

AQ = cccccccc
CCCCCCCC 1S a 1 to
8 character BCD
library entry point
name. The entry
point name must
be left-justified
in the A and Q
registers with
blank fill. The
left most charac­
ter must be an
alphabetic charac­
ter.

Function

Loads from the system input
unit.

Loads from files fl through
f3.

Loads the named library rou­
tine from the library or auxi­
liary library.

Results

1. Loads and links relocatable
binary subprogram decks
from the system input unit
until an ELD card or an
end-of-file is detected.

2. Loads and links library
routines that are referenced
in the subprograms.

1.

2.

1.

Loads and links relocatable
subprograms and routines
from files fl, f2, and f3.
File f1 is read first, then
f2, and then f3. A file
number of 00 is skipped.

Loads and links library
routines that are referenced
in the subprograms.

Loader loads the named Ii­
brary program and all other
library programs referenced
by it.

Upon return from the loader, bits 14 through 00 of the A register contain the transfer point
address of the program that was loaded. Bits 14 through 00 of the Q register contain either
a second transfer point address for the program or zero, and bits 23 through 18 of the Q
register contain the number of errors that occurred, if any. The contents of the index reg­
isters are undefined.

Example:
LDAQ
ENI
RTJ
AZJ, EQ
LDAQ
RTJ
AZJ, EQ
SWA
SHAQ
SHQ
ANA
AZJ, NE
RTJ

=2HLOADER
-0, 3
RDCKF1
ERR
=2HUPDATE
LOADER
ERR
TAG
6
18
77B
ERR

TAG
ERR Error processing routine

60410600 B

Set Be to 77777
Load the loader
Check for error

Load UPDATE
Check for no transfer address
Save transfer address
Shift error bits from Q to A
Reposition secondary transfer address
Check for error bi ts
Jump to ERR if loader error
Enter UPDA TE

9-3

I

I

I

I

When a batch program is loaded, the first unused address below the batch program is
stored in memory location LDMEMV50. If the loader is called in a batch program,
it starts loading subprograms or routines downward starting at the address contained
in location LDMEMV50. The loader also updates LDMEMV50 so that at the completion
of loading, LDMEMV50 contains the first unused address below the last subprogram or
routine that was loaded.

The contents of LDMEMV50 can be read and modified in a batch program before calling
the loader. This allows loading new subprograms or routines over old subprograms and
routines currently in core.

LDMEMV50 can be read with LDA and LDQ instructions. The following set of instruc­
tions can be used to change the address in LDMEMV50.

ENA
ENQ
RTJ

LDMEMV50
new address
RSTOREQ

The following points must be noted when using the loader in COMPASS programs.

1. The loader is not reenterant. It cannot be called twice in the same program
unless each subsequent call is preceded by a call to RDCKFI to reload the
loader.

2. The loader is loaded over the batch common area.

3. Binary input programs on mass storage files must be in 240-word blocks
(six binary cards per block). On tape files they must be in 40-word binary
blocks.

4. On mass storage, a card image with 17000000 in the first word position (~ punch
in column 1) is interpreted as an end of file mark and terminates loading from
the file.

5. The loader cannot be called by COMPASS in a priority program.

6. The loader uses file registers 50, 51, 52, and 54, and does not restore their
initial contents before returning to the users program.

LOADER MAP

The loader produces a map of the memory area assigned to each program it loads. A
printout of the map will occur if the M parameter is included on the LOAD card or in a
call to an assembler or compiler. The map beadings are as follows:

9-4

Heading

SUBP
ENTR
LDTA
COMM
DATA
PEXT

Description

Subprogram names and first word addresses
Entry points in the subprogram
Name and first word address of a labeled data area
First word address of common area
First word address of data area
First word address of a program extension area

60410600 B

Example:

SUBP
77514 RAAR 77574 EXECOVR 77-772 MAINTEST

ENTR
14040 BCDBOXS 77574 EXECOVR 14040 FDPBOXS
77772 MAINTEST 77514 RAAR

LDTA
NONE

COMM
NONE

DATA
77'763 NONE

PEXT
NONE

In the SUBP and ENTR maps. the absolute address precedes the subprogram name.
The word NONE is printed when no information accompanies a heading. Each map I
starts on a new page.

60410600 B 9-5

ABSOLUTE LOADER 10

The absolute loader (RDCKF1) loads absolutized subprograms and routines from the ABS
file into core. t The procedure for using RDCKFl in COMPASS programs is as follows:

1. Declare RDCKF 1 as an external.

2. Load registers A and Q with the name of the routine (in BCD) to be loaded.
The name must be left-justified and blank-filled to the right.

3. Enter the number of words to be loaded in register B3. Use 77777 if the
whole routine is to be loaded.

4. Do a return jump to RDCKF 1.

5. On return. check contents of register A. If A is zero. RDCKF 1 could not
load the requested routine due to unavailable core or inability to locate the
routine in the ABS file. If A is not zero. A contains the first word address
of the routine that was loaded.

6. If parameters are used by the subprogram or routine. enter parameters or
values in the A and Q registers.

7. Do a return jump to the primary entry point of the loaded routine. For the
LOADER and other routines that have SEPOINT S in the library, the symbolic
entry point may be declared external and used for the entry. For routines
without SEPOINT entries in the library, the user must use an absolute entry
point address (that is, usually the first word address plus a known constant).

NOTE

In the extended core variant of MSOS,
batch programs cannot use an absolute
address to enter ABS file routines that
load in memory bank O. An address in
bank 1 will be referenced rather than
the bank 0 address.

If RDCKF1 cannot load the specified subprogram or routine from the ABS file,
RDCKF 1 calls ABNORMAL and terminates the job. The only exception is if the
requested routine could not be found in the ABS file (invalid name in the A and Q
registers). In this case, RDCKF 1 returns to the requesting program with zero in
register A.

t The ABS file contains absolutized library routines. Special user subprograms and
routines may also be added to the ABS file at system installation time. The ABS
file holds up to 71 absolutized subprograms or routines. The ABS file is described
in the MSOS V 5 Installation Handbook. To load absolutized user subprograms from
other mass storage files, use the ABSTSK card (refer to section 4).

60410600 A 10-1

LDABSVSO - LOAD ABSOLUTE TASKS

LDABSV50 is called by COMPASS to load and execute absolute tasks from a file. This
routine may be used only for batch mode. The I/o must be idle since there is no return
to the user from this call; the loaded task terminates the job. The calling sequence for
LDABSV50 is:

EXT LDABSV50

HT J LDABSV50

The user must load the task name in AQ (AQ contents are left-justified and O-filled) and
the file number in Bl. The absolute file that LDABSV50 loads must be the MAIN task of
an overlay program. The new task must be set up as an overlay program. The new task
can share common with the old task.

10-2 60410600 C

INPUT OUTPUT CONTROL (CIO) 11

DESCRIPTION

Central input/ output (CIO) provides MSOS COMPASS users with a standard method for
reading, writing, and controlling the system I/O equipment. With the memory protection
or extended core variants of MSOS, CIO must be used for 110 functions in batch and
priority 3 and 4 programs. Any attempt to use COMPASS 110 instructions in these
programs generates an executive interrupt that aborts the job.

In standard MSOS (no memory protection) and in priority 1 and 2 programs, the user
has the option of using CIO or COMPASS 110 instructions. When doing IIO on units
defined to the system and entered in the AUT table, the user should not use COMPASS
instructions. If COMPASS I/O instructions are used on units defined in the system,
they must be used with the utmost caution. COMPASS 110 instructions could conflict
with those issued by CIO for the same unit and cause an irrecoverable error in both
programs.

A return jump to CIO is the standard method of using CIO. The return jump calling
sequence will generally take the following form.

P

P+1

P+2

P+3

P+n

f

u

raddr

RTJ CIa

f U,i

jump raddr

A dditional parameters depending upon the
function that was selected.

Next instruction in the program (normal return address).

Function code (read, write, locate, rewind, backspace, etc.).

File number

Selects interrupt upon completion of I/O (optional).

Reject address. Address of first word of user supplied routine for
processing rejected CIa requests.

When entered, CIO reads the parameters (P+ 1 through P+n) and processes the call.
The I/O request is rejected and control is returned to address P+2 in the program if
an illegal function code was found, a wrong file number was used, the unit was not
ready, the restrictions on using the system files were violated, or the unit ~s busy.
If the function is legal and the 110 unit is ready, CIO initiates the I/O operation and
returns control to the program at address P+n.

If an interrupt on I/O completion was not selected in the CIa call, the user must check
the equipment status to determine when the I/O function has been completed. If an
interrupt is selected, the unit status is in the A and Q registers when control is
switche d to the interrupt processing routine. Refer to input / output interrupts in section
18 for a discussion on the use of interrupts with CIa.

CIa saves the contents of the B registers, but not the A and Q registers. The user must save
the contents of the A and Q registers before calling CIa.

60410600 A 11-1

I

I

READ/WRITE FUNCTION

The return jump sequence for a read or write function is as follows:

P

P+1

P+2

P+3

P+4

P+5

P+6

f

RTJ

f

jump

m, c

c

00

Clot
u,i

raddr

fwca

n

iaddr

Next instruction in program (normal return address). For mass
storage reads and writes, register A contains the number of the next
sequential block in the file.

One of the following read or write functions.

01 Read

02 Write

03 Read backward (tapes only)

11 Write end-of-file mark (only for tapes and punches)

17 Write check (mass storage only)

41 Read with error recovery

42 Write with error recovery

u File number (two decimal digits)

i Interrupt selection

raddr

m

o No interrupt selection

1 Interrupt on abnormal I/O termination

2,3 Interrupt on normal completion or abnormal termination

First word address of the reject processing routine. Register A con­
tains a reject code if control is returned to this address (refer to
reject processing). If register A equals zero, the unit is busy. Retry
the I/O at a later time.

Six-bit mode designator that specifies BCD or binary 1/ O. Also
indicates density for magnetic tapes. For all I/O except the incre­
mental plotter and magnetic tape unit, the following codes should be
used.

40 BCD mode

41 Binary mode

For magnetic tape units, one of the following codes should be used.

7-Track Drives 9-Track Drives

Code Mode Density Mode Density

40 BCD No change Convert No change
41 Binary No change Pack No change
50 BCD 200 bpi Convert 800 cpi
51 Binary 200 bpi Pack 800 cpi
60 BCD 556 bpi Convert 800 cpi
61 Binary 556 bpi Pack 800 cpi
70 BCD 800 bpi Convert 1600 cpi
71 Binary 800 bpi Pack 1600 cpi

t For paper tape, use PTIOV50.

11-2 60410600 C

, c

fwca

For incremental plotter, 40 specifies character mode and 41 specifies
word or disassembly mode.

Mode With Character I/O With Word I/O

40 All characters plotted

41 All characters plotted

Only bits 00 through 05 (lower
character) of each word is
plotted.

All characters in each word
are plotted.

Indicates whether fwca is a character address or a word address.

, C Character address. Character address is illegal for mass
storage, card punches, card readers, and reverse tape reads.

omitted Word address
First address of I/O buffer area. If mode designator (m) is followed
by a C, fwca is character address (bits 16 through 00). Otherwise, fwca
is word address (bits 14 through 00). fwca must be a symbolic address I
(that is, start with an alpha character).

c

n

iaddr

Example:

m,C
m

fwca
fwca

Character address
Word address

Indicates if data transfer is to be by character or words.

00 Word I/O
40 Character 1/ a (illegal for mass storage, card readers,

card punches, and reverse magnetic tape reads).

Number of words or characters to be input or output. One to six octal
characters. Normally equal to the block size of the file.

First word address of the interrupt routine. If an interrupt was not
selected, iaddr is not used. Address P+5 is the normal return address
instead of P+6.

The read or write function starts the read or write operation and then returns to the program.
The program must use either an interrupt selection or a status check to determine when the
I/O operation is completed. If interrupt on normal compl etion or abnormal termination is
selected, the unit status word must be checked in the interrupt processing routine to determine
whether normal completion or abnormal termination occurred. The unit status words are in
registers A and Q when the system enters the I/O interrupt processing routine.

The maximum buffer size that should be used for line printers is 136 characters. Each write
prints one line (135 characters plus one control character); the remaining characters in the
buffer are truncated. Refer to appendix B for print control characters.

The maximum buffer size for the console typewriter (CTO) is 80 BCD characters. Refer to
appendix A for typewriter character codes and functions.

The maximum buffer size that should be used for punching cards is 20 words for BCD
mode, and 40 words for binary mode. Each write punches only one card; the remaining
characters in the buffer are truncated.

The write-check function is used after a mass storage write function to ensure the
data is written correctly. The write-check function reads the last block written and
compares it with the contents of addresses fwca through fwca+n. If only one output
buffer is being used, it cannot be updated for the next write until CIa completes the
write-check function.

60410600 B 11-3

I

After a write- check function is initiated" CIa returns control to the program. When
CIa completes the write- check function" the user should check the unit status for a
write-check error before issuing the next I/O request on the unit. The user may
periodically check status or use an interrupt to determine when the write check has
completed.

The write with or read with error recovery function (f=41 or 42) does not return control
to the program until the 110 operation is completed. When a write function with error
recovery is selected for mass storage, a write check is also performed before returning
to the program. If an 1/0 error is encountered, the standard system error recovery
routines are used to recover from the error and complete the 110 operation.

The interrupt on I/O completion is illegal when the read with error recovery or write
with error recovery function is selected. Therefore, normal return (I/O completed)
will be at address P+5. If an irrecoverable error or a reject condition occurs, the
return is at address P+2 (reject return). Register A will contain an error code of 12
for an irrecoverable error (refer to Table 11-4). Refer to the paragraph on I/O error
recovery for programming alternatives when an irrecoverable I/O error occurs.

When a write function is used with a line printer, the first character in each line of
print is a control character that is not printed. Refer to appendix B for a list of .. these
characters and their functions.

In the extended core variant of MSOS, the bank 0 common area" which is memory lo­
cations between the lowest priority program and executive resident, may be used for
I/O buffers by batch programs residing in bank 1. To use bank 0 common" the following
CIa calling sequence must substitute for the previously described CIa calling sequence.

P RTJ CIa
P+1 VFD A 6/ f, A 3/ i" 06/0, A 2/2, A 7/ u
P+2 jump raddr
P+3 m,c fwca
P+4 C n
P+5 00 iaddr

The parameter values are the same as those used in the previous CIa calling sequence.
However, the fcwa is an address in bank 0 rather than bank 1.

When using I/O buffers in bank 0, RIS and ROS instructions must be used to bracket
the load and store instructions" the same as when referencing executive tables in bank 0
(refer to referencing executive tables in section 8). The available buffer area is
determined by referencing the memory limits table .

. 1
For function codes 01" 02, 17" 41, and 42 on mass storage on a normal return (P+5 if 1=0;
P+6 if 110)" the A register contains the next block number (NBN). For example" if a
request transmits data to or from blocks 1 and 2, on normal return A =3. On reject re­
turn" an error code appears in the A register.

11-4 60410600 B

MASS STORAGE LOCATE FUNCTION

On mass storage files, a locate function rnus.t be used to select the next block before a I
new record is read or written. A locate sets the block number pointer to the next
block or to any specified block number. Once a block is located, all I/O is
restricted to that block until another locate function is requested. The return jump
sequence for a locate function is as follows:

P

P+1

P+2

P+3

P+4

P+5

RTJ

15

jump

xy

00

CIa

u,i I
raddr

zeros

s

iaddr

P+6 Next instruction in the program (normal return address). Register A
contains the number of the block that was just located.

I
u File number (two decimal digits)

i Interrupt selection

jump

raddr

xy

s

iaddr

o No interrupt selected
1 Interrupt on abnormal termination
2,3 Interrupt on normal or abnormal I/O termination

UJP or RTJ instruction

First word address of a reject processing routine. Register A contains
a reject code when a return is made to P+2 (refer to r eject processing).

Two octal digits that specify optional read/write head movement and
select the next block for I/O.

x 0
x 1

x f 1,0
Y 0

Y 1

Y 2

Y 3

other

Position the read/write heads
Do not position the read/write heads, t and negate any interrupt
selected with the i parameter.
Illegal
Replace the cur rent block number with the s parameter (value
in address P+4).
Replace the current block number with the highest block num- I
ber written plus one.
Replace the current block number with the current block num­
ber plus the s parameter (value in address P+4)
Replace the next available block number with the s parameter
(value in address P+4). Does not change current block number.
Illegal

A 24-bit octal number used in conjunction with the y parameter
(described above).

First word address of the interrupt processing routine. The mass
storage status word is in registers A and Q when control is passed
to this address.

If an interrupt was not selected (with i in address P+2), iaddr is not
used. Address P+5 becomes the normal return address instead of P+6.

tIf the heads are not positioned by the locate function, the next read or write function
positions the heads over the track containing the current block.

60410600 B 11-5

I

I

The following is an example of using the locate and write-check functions to write blocks
of data on a mass storage file.

1. Open the file.

2. Locate to the next block to be written on.

3. Load the buffer area.

4. Issue a write request to CIa. On normal return, \ oontinue processing until
ready to use the buffer area again.

5. Check status to assure the write function completed. If the status check
indicates an I/O error, skip to step 8.

6. Issue a write -check function request to CIa. On normal return, check status
until the function completes. If the status check indicates an I/O error,
skip to step 8.

7. Repeat steps 2 through 6 to write the next block of data.

8. Make a call. to the system I/O error recovery routine (SCARV50).

9. If a normal return occurs (register A = zero), repeat steps 2 through 7 until
all data has been written.

10. If an abnormal return occurred (register A I zero), abort the job, try another
unit, or accept the error. Register A contains an error code indicating the
type of error.

Some users may elect to select interrupts on completion of I/O or write check func­
tions and do all or some of the above processing in the interrupt routine. Depenaing
upon the program application, interrupts normally provide faster I/O and more pro­
cessing time between I/O functions.

UNIT RECORD DEVICE CONTROL FUNCTIONS

The return jump sequence for unit record device control functions are as follows:

P

P+1

P+2

P+3

P+4

f

RTJ

f

jump

00

CIa

u,i

raddr

iaddr

N ext instruction in program (normal return address)

One of the following unit record control functions:

04
05
06
07
10
11
12

Rewind
Rewind and unloadt
Backspace
Skip one file mark forward
Skip one file mark backward
Eject page
Erase

u File nurpber (two decimal digits)

i Interrupt selection

o No interrupt selected
1 Interrupt on abnormal termination of the function
2,3 Interrupt on normal completion or abnormal termination of the

function

tFor 601 units, rewind and drop ready status.

11-6 60410600 B

m
o
~
i--'

o
m
o
o

n

i--'
i--'

I
-J

TABLE 11-1. CIa FUNCTION CODES

FUNCTION 601/603/ 604/607/ 657/659 415 Card
606 Tape 608 Tape Tape Punches
Drives Drives Drives

Read one record 01 01 01 --

Read one record -- 03 03 --
backward

Write one record 02 t t 02tt 02tt 02
punch
card

W rite end of file 11tt 11 t t 11 t t 11
punch
EOF card

Rewind to load 04 04 04 --
pointt t t t t
Rewind and 05 t 05 05 --
unload t t t t t

Backspace one 06 06 06 --
record t t t t

Skip one file mark 07 07 07 --
forward

Skip one file mark 10 10 10 --
backward

Erase six inches of 12 t t 12 t t 12tt --
tape (forward)

Read with error 41 41 41 --
recovery

Write with error 42 t t 42tt 42tt 42
recovery punch 1

card

Locate -- -- -- --
Write check -- -- -- --

tOn 601 tape drives, rewind and drop READY status (no unload>.
t tWrite ring must be on the tape reel to perform these functions.

405 Card 813/814/ 501/505/
Readers 841/853/ 512/3254/

854/863 580 Line
Mass Printers
Storage

01 01 --
Read 1
card

-- -- --
-- 02 02 t t t

Print
one line

-- -- II
eject page

-- -- --

-- -- --

-- -- --

-- -- --

-- -- --
-- -- --
41 41 --

read 1
card

-- 42 42
print 1
line

-- 15 --
-- 17 - -

t t t First character of line is carriage control character. Second character is first character printed.
t t t t Space forward one record if last function was 03 or FORMAT code 06 was selected.

Console
Typewriter

01

--
02

--

--

--
--

--

--
--

--

--

--
--

3691 Paper Tape Station

3293 Paper Paper 211 Display /
Plotter Tape Tape Entry

Reader Punch Station

-- 01 -- 01

-- -- -- --
02 -- 02 02

punch 1
record

-- -- 11 --

-- -- -- --

-- -- -- --

-- -- -- --
-- -- -- --

-- -- -- --
-- -- -- --

-- -- -- --

-- -- -- --

-- -- -- --
-- -- -- --

t t t t t End of operation interrupt is illegal with this function. Controller will be available for servicing other tape drives as soon as the unload function has been initiated.

II

raddr

iaddr

First word address of the reject processing routine. Register A
contains a reject code (refer to reject processing).

First word address of the interrupt routine. If an interrupt is not
selected with i in P+2, iaddr is not used and P+3 is the normal re­
turn address rather than P+4.

UNIT RECORD DEVICE FORMAT FUNCTIONS

The format function selects specific operating modes for a specific unit record device,
without doing any I/O. The return jump sequence for a format function is as follows:

I P RTJ ClOt

P+1

P+2

14

jump

u,v

raddr

P+3 Next instruction in program (normal return address)

u, v The file number and the function code. Use u, v for all but the 512
printer.

raddr

u File number
v Format function that is described in Table 11-2

For the 512 printer, use the following format.

06/14, A5/v, A13/u

u File number
v Format function that is described in Table 11-2

First word address of the reject processing routine.

The format function is not applicable to mass storage or the card reader.

I t For paper tape, use PTIOV50.

11-8 60410600 C

0}

o

*'"
o
0}

o
o
n

.....
J

CO

TABLE 11-2. FORMAT CODES FOR UNIT RECORD DEVICES

Format 601/603/606 604/607/608/657 659 512/580 501/505/3254 415
Code Tape Drives Tape Drives Tape Drive Printer Printers Card Punch

00 -- -- -- No operation Page eject No operation
(skip to level 8)

01 Select BCD mode Select BCD mode Select conversion Eject page (skip Skip to level 1 Punch in binary
(BCD) mode to level 1) mode

02 Select binary Select binary Select pack Skip to level 2 Skip to level 2 Punch in Hollerith/
mode mode (binary) mode punch ASCII mode

03 Select 200 bpi Select 200 bpi Select 800 cpi Skip to level 3 Skip to level 3 Select offset
density density density punch stacker t

04 Select 556 bpi Select 556 bpi Select 800 cpi Skip to level 4 Skip to level 4 Check read last
density density density punch card punched t t

05 -- Select 800 bpi Select 1600 cpi Skip to level 5 Skip to level 5 Clear punch
density density punch

06 -- Select reverse Select reverse Skip to level 6 Skip to level 6 No operation
read read punch

07 -- Select forward Select forward Skip to level 7 Skip to last line No operation
read read· punch (level 7)

10 -- -- -- Skip to level 8 -- --
punch

11 -- -- -- Skip to level 9 -- --
punch

12 -- -- -- Skip to level 10 -- --
punch

13 -- -- -- Skip to level 11 -- --
punch

14 -- -- -- Skip to last line -- --
(level 12)

15 -- -- -- Select extended -- --
character array

16 -- -- -- Clear extended -- --
character array

17 -- -- -- Enable load- -- --
image-memory

20 -- -- -- Release load- -- --
image -memory
enable

t Applicable only to next card to be punched. not card currently being punched.
t tOnly when using a 3644 card punch controller. No operation for all other card punch controllers •

3691 Paper Tape
Read/Punch I

--

Select conversion mode

Select binary mode

Select BCD mode

Select ASCII mode

--

--

--

--

--

--

--

--

--
J

,

--

--

--

.....

.....
I
o

~

o
;t:>.
o
en
o
o

n

TABLE 11-3. UNIT STATUS CODES RETURNED BY CIa

Hardware Status Word Bits

Type 15 14 13 12 11 10 09

601/603/606 Channel parity Mode selection Tape parity End of opera-
Tape drives error: -- -- -- l=binary error: tion: ~
604/607/608/ l=yes Reverse motion Type of drive: O=BCD (conver- 1=error 1=y s

O=no sion mode on O=no error O=no 657/659 Tape selected: -- 1 =9 track 659 drives). drives l=yes 0=7-track
O=no

512/580 Line Channel parity Lines/inch mode: Auto eject mode: 6 to 8 lines/inch All output buffer Print error: ® End of opera-
printer error: 1 =8 lines / inch l=set ~witching CD characters are on 1 =yes tion:

l=yes 0=6 lines/inch O=not set osition 4 print train: o =no l=yes
O=no l=yes l=no O=no

O=no O=yes

501 line printer -- -- -- --
Optical character Channel parity -- Scan mode: Mirror at speci- -- Line locate End of opera-
reader error: 0=scan3 fied coordinates: error: tion:

l=yes 1=scan2 1 =positioned 1=error l=yes
O=no o =not positioned O=no error O=no

3691 Paper tape Unconvertable Last function Code type is Mode is: Parity error
station ASCII character was: 1 =8 level ASCII 1 =binary (used only with

was read: l=a read 0=6 level flexo- O=code conver- ASCII code):
l=yes O=not a read writer sion l=error
O=no (Refer to bit 12) O=no error

405 Card reader Parity channel -- Mode selection: Compare or~- Last card read End of opera-
error: 1=binary read error: 6 was a binary tion:

1=yes O=BCD to Hol- 1=yes card: r;J -- 1=yes
O=no lerith/ ASCII O=no 1=ye O=no

O=no

415 Card punch Current card is: Next card selec- -- Binary punch Read compare
1=offset ted for offset: mode selected: error:
O=not offset 1=yes 1=yes 1=yes

O=no O=no O=no

3293 Plotter Channel parity -- -- -- Assembly mode -- End of opera-
error: selected: tion:

1=yes l=yes 1=yes
O=no O=no O=no

Console type- -- -- -- -- -- Repeat key
writer pressed:

l=yes
O=no

813/853/854/841 Channel parity Read sum check End of opera-
Mass storage error: error: tion:
(disk) 1=yes -- -- -- -- O=no 1=yes

O=no 1=yes O=no

863 Mass storage Read parity
(drum) error:

-- -- -- -- O=no
1=yes

211 Display/entry Channel parity Poller error: Alert interrupt:
station error: O=no O=not active 1=yes -- -- -- --

O=no 1=yes 1=active

Spec ial Notes

1. End of operation status bit is cleared when a new operation is started.
2. Hardware failure.
3. Feed failure, output stacker full, or card jam.
4. Form is positioned so switching from 6 to 8 (or 8 to 6) lines per inch will not cause overprinting.
5. Non-printable character was output to printer.
6. Second read did not match first read, or read before card was in read "tation did not sense all one's.
7. 7, 9 punch in column one.

General Note

Ind icates unused and undefined.

08

Lost data ®
l=yes
O=no

Post print page
eject selected

I

l=yes
O=no I

Lost data:
l=yes
O=no

--

Reade~:ralfunc-
tion: 3

1=yes
O=no

Card feed
failure:

l=yes
O=no

--

--

Lost data or 841
operation error:

O=no
1=yes

--

End of operation
interrupt:

O=not active
1=active

m
o
fl:::.
f-"

o
m
o
r

n

f-"
f-" ,
f-"
~

TABLE 11-3. UNIT STATUS CODES RETURNED BY CIa (Cont'd)

Hardware
Type 07 06 05 04 03 02

601/ 603/606 -- Density: End of tape Tape at load EOF mark read Write enable
Tape drives 1=556 cpi mark sensed: point: or written: set: ~

0=200 cpi 1=yes 1=yes 1=yes 1=se

604/607/608/ Density: 0=200 bpi (not for 659s) O=no O=no O=no O=cleared

657/659 Tape 1 = 556 bpi (not for 659s)
drives 2=800 bpi (cpi for 659s)

3=1600 cpi (for 659s only)

512/580 Line Post print skip Buffer memory Paper fault (out Form positioned Form positioned Image buffer in-
printer last line selected busy: of paper or paper at level 9: on last line of put enabled:

1=yes 1=yes jam) 1=yes page: 1=yes
O=no O=no 1 =fault O=no l=yes O=no

O=no fault O=no

501 Line printer -- -- --
Optical character Mode is: Mirror is far Mirror in far Buffer memory Mirror position
reader O=alphanumeric 2=numeric forward position: reverse pOSition: full: error:

1 =alphabetic 3 =mark sense 1=yes 1=yes 1 =full 1=error
O=no O=no O=not full O=no error

3691 Paper t:ape -- -- Tape supply -- End of file mark --
station 1=low read:

O=not low l=yes
O=no

405 Card reader -- End of file switch Input hopper -- End of file card --
set: ® empty: read: @

1=yes 1=yes 1=yes
O=no O=no O=no

415 Card punch -- -- -- -- -- --
3293 Plotter -- -- Manual stop -- -- --

switch pressed:
1=yes
O=no

Console -- -- -- -- -- --

typewriter

813/853/854/841 Write lockout, Write check no -- -- -- - -
Mass storage defective track compare error
(disk) or address error O=no error

O=no 1=compare
1=yes error

863 Mass stor- End of device -- -- -- --
age (drum) O=no

1=yes

211 Display / Re ady and not Station interrupt: Alert request: Poll message Print request: Send request:
entry station busy interrupt: O=not active O=no error: O=no O=no

O=not active 1 =active 1=yes O=no 1=yes 1=yes
1 =active l=yes

~ --- -- -- -- - --_ .. _-- -----------

Special Notes

8. Cleared if write ring is not mounted or tape is unloaded.
9. Input hopper empty and END OF FILE switch depressed.

10. 7. 8 punch in column one.

General Note

Indicates unused and undefined.

01 00

Unit busy: Unit ready:
1 ~busy 1=ready
O=not busy O=not ready

Unit busy: Unit ready:
1=busy 1=ready I
O=not busy O=not ready

Unit busy: Unit ready:
1=busy 1=ready
O=not busy O=not ready

Unit busy: Unit ready:
1=busy 1 =ready
O=not busy O=not ready

Unit busy: Unit ready:
1=busy 1=ready
O=not busy O=not ready

Unit busy: Unit ready:
1=busy 1=ready
O=not busy O=not ready

Unit busy: Unit ready:
l=busy 1=ready
O=not busy O=not ready

I

I

I

UNIT STATUS REQUEST

A status request provides a means of checking the current condition of any I/O unit con­
nected to the system. A request for status of a unit is made before, during, or after
an I/O or control operation. When the request is made, CIa returns a status code to
the program in registers A and Q.

CIa obtains the status from each 1/ a unit at the completion (normal and abnormal) of
each I/O and control function. CIa edits the status and saves the edited status words
in the unit's FDT table entry. (Refer to appendix F.) The status words in the FDT
table are returned to the program when a static status request is made. When a
dynamic status request is made, CIa connects to the unit and updates the status words
in the FDT before returning them to the program.

The return jump sequence to request a unit status check is as follows:

P
P+1
P+2

RTJ ClOt
13 u, d
Next instruction in the program.

u File number (two decimal digits)

d Type of status requested:

o Static status requested
1 Dynamic status requested

Type of Status Unit Busy

Static Status The status words in the
FDT table are returned
in registers A and Q.

Dynamic Status t CIa updates the u param­
eter in the second status
word in the FDT table.
The updated status words
are returned in regis ters
A and Q.

t For paper type, use PTIOV50.

I/O or Control
Function Completed

The status words in the
FDT table are returned
in registers A and Q.

CIa connects to the unit,
obtains new status infor­
mation, and updates the
status words in the FDT.
Table 11-3. 1 lists the
status bits that are up­
dated. CIa returns the
updated status words in
registers A and Q.

tt Unit bus y applies to channel, equipment, or unit for dynamic status.

11-12 60410600 C

TABLE 11-3.1. BITS UPDATED BY DYNAMIC STATUS CHECKS

I/O Unit Updated Bits

Tape Drive U parameter in register Q and status bits OO~ 01~ 02~ 04
06~ and 07

Mass Storage U parameter in register Q and status bits 00 and 01

Unit

Line Printer U parameter in register Q and status bits 00, 01~ and 05

Card Reader U parameter in register Q and status bits 00 and 01

Card Punch U parameter in register Q and status bits OO~ 01~ 08. 09~

and 10

Paper Tape U parameter in register Q and all status bits
Reader / Punch

211 Display U parameter in register Q and all status bits

Unitt

Console U parameter in register Q and all status bits
Typewriter

Plotter U parameter in register Q and all status bits

Optual Character U parameter in register Q and all status bits
Reader

t A dynamic status request performed on a 211 display that is not busy may result in
the loss of poll message error or poll error status bits in the second status word
of the FDT table. Another unit may have connected to the controller or a channel
clear may have cleared these bits. The error condition cannot be resensed until
it reoccurs.

The format of the status words stored in the FDT and returned in registers A and Q

is as follows:

Status Word 1 1:312~ !lT6
1

b1! 1051 ~Ol (Register A)
If bcr

Register A

Status Word 2 I~l~ .rd~71 b11 I 1051 ~Ol
(Register Q) lc status

Register Q

d Condition of the unit either dynamic or static.

,-

1 Unit is static. The last I/O or control function has been completed;
unit is not busy.

o The unit is dynamic. An I/O or control function has been initiated
and has not been completed; unit is busy.

If Last function code issued to the unit other than status or format. If If is
zero, no operation has been started at the unit.

I

60410600 B 11-13 I

I
I

I

bcr Contents 'of the block control register for last read or last write function.
The buffer control register contains one plus the address of the last char­
acter that was referenced by an I/O operation. For reverse reads, bcr
is the last character address minus two.

u A vail ability of the unit.

o Unit is available and can be connected. This bit is cleared by the end
of operation interrupt which is independent of the ready and busy status
bits.

1 Unit is busy with an I/O or control function and cannot be connected
at this time.

lc Number of the last channel that was connected to unit. '

r Controller reserved .flag; applicable only to dual access mass storage
controller.

1 Controller is reserved by the other channel.

o Controller is not res erved by the other channel.

status A 16-bit status word that is dependent- on the hardware type. (Refer to
, Tabl e 11-3.)

To simplify checking status in either the interrupt routine or within the program, a
routine called SCARV50 has been provided. SCARV50 checks the I/O status and retains
'control until the 1/ a completed or an irrecoverable error occurred. t SCARV50 is
described in the error recovery paragraph in this section.

I/O REJECT PROCESSING

When a CIa request is rejected, one of the following conditions occurred.

1. Either unit or channel is busy.

2. Unit is not ready.

3. No write ring for write requests on magnetic tape units.

4. Illegal function request.

5. Hardware failure that prevents the unit from connecting or from accepting
the function code.

6. File is not defined in the system.

7. Illegal use of system files.

When CIa returns control to the program, register A contains a decimal error code
(Table 11-4) and register Q contains the second unit status word from CIa (refer to
unit status request).

tSCARV50 uses standard system error recovery methods to recover from all I/O errors
and complete the I/O function.

11-14 60410600 B

TABLE 11-4. I/O REJECT AND ERROR CODES IN REGISTER A

Error Code
Octal Type of Error

o A not ready or busy condition exists. Check status word in
register Q. On returns from RAARV50 or SCARV50, zero in­
dicates successful recovery.

1 Illegal value in a locate request. The y parameter was not a 0,
1, 2, or 3.

2 Block number selected in a locate request was less than one.

3 File limit was exceeded in a locate request.

4 Illegal x parameter in a locate request. The x parameter can
only be 0 or 1.

5 Attempted a read beyond the highest block written.

6 Exceeded mass storage file limits on a read, write, or write­
check function.

7 Write request made on a read-only mass storage file.

8 Illegal function code or a request for a zero-length data trans­
fer.

9 Illegal call to system files.

10 Irrecoverable hardware malfunction such as continuous connect
reject or select reject. Check status in register Q.

11 Undefined file number used.

12 Irrecoverable read or write error. Standard system error
recovery could not recover from the error.

13 Irrecoverable read error on magnetic tape due to request to
read request in the wrong mode (that is, binary or BCD).

14 A checksum error occurred while reading a file label in the
system mass storage label file.

15

17

18

19

20

21

24

25

60410600 B

Lost position during write recovery on magnetic tape. A re-
covery retry will probably cause loss of one or more blocks
of data.

Illegal I/O request on the library file (LIB).

Illegal I/O request on the system punch output unit.

Illegal I/O request on the system list output unit.

Illegal I/O request on the system input unit.

Illegal I/O request on the system console typewriter (eTO) unit.

Bad data on the block header (preamble) or record header for
a system input file block, when system input unit is a mass
storage file.

Out of data or out of space, when the system list output, punch
output, or input unit is on mass storage.

11-15

I

I

Rejects with a nonzero value in register A usually indicate a programming error or a
hardware error. Mass storage error codes 3, 5, or 6 can provide useful file status
information.

If a reject return occurs and register A contains zero, the second status word of the
I/O unit in register Q may be tested to determine the cause of the reject. If bit 23
(u parameter) in register Q is zero, the unit and channel are available and the unit
can be connected. However, the unit cannot accept control functions that normally
indicate the unit is not ready. If bit 00 in register Q is a zero, a message should
be sent to the operator requesting that the unit be readied. If bits 00 and 01 in reg­
ister Q are ones, the unit may still be busy with some previous operations even though
it has been released and can be connected. Examples would be postprint page motion
or magnetic tape units that are still rewinding to loadpoint.

If a reject occurred and bit 23 in register Q is one, the unit is busy with an 1/ a
function. The busy condition clears on completion of the function. The I/O request
should be reissued at a later time. Periodic static status checks may be used to de­
termine when the unit is ready.

If the user does not wish to write his own reject processing routines, he may use
RAARV50 or RAAR to recover from rejects. RAARV50 is reentrant; RAAR is not.
RAAR can be used only in batch programs.

RAARV50

RAARV50 is an I/O reject processing routine that can be used by both batch and priority
programs. If used, RAARV50 must be called from a reject processing routine that contains
a return jump (RTJ) to RAARV50. An unconditional jump (UJP) to an open-ended reject
routine must be coded in the reject address (P+2) of the CIa call.

With RAARV50, the user can select a return to the program when a not ready condition exists
or let RAARV50 retain control until the unit is ready. RAARV50 informs the operator of the
not ready condition and requests operator action before returning to the program. For all
other conditions, RAARV50 returns with a status code in register A.

With the call to RAARV50, the AQ register must contain the values that were returned
from CIO.

The return jump sequence for using RAARV50 is as follows:

11-16

R

R+l

R+2

RTJ

nr

RAARV50

P

Return from RAARV50

nr No return flag for a not ready or no write ring condition. nr must
be 01 or 00.

P

01 If a not ready or no write ring condition exists, RAARV50
requests the operator to ready the I/O unit and then returns
to the program at address R+2. Register A contains
a reject status code of -1 upon return.

00 If a not ready or no write ring condition exists, RAARV50
retains control until the condition is cleared or until an ir­
recoverable condition is detected. Then RAARV50 returns to
address R+2 with a reject status code in register A.

First word address of the CIO return jump sequence.

60410600 C

AU returns from RAARV50 are to address R+2. RAARV50 does not reissue I/O
requests or abort the job. This must be done in the program. In all cases. upon
return to R+2. register A contains a status code. The code is as follows:

Value in Register A

Zero

Negative one

All other values

Significance

Reject condition was cleared. I/O request should be
reissued.

RAARV50 sent a ready request to the operator and
immediately returned. Not ready or no write ring
condition occurre d and nr flag was set to 1.

Reject error codes given in Table 11-4.

The following is an example of RAARV50 processing for a not ready condition.

P

P+1

P+2

P+3

P+4

P+5

R

R+1

R+2

R+3

RTJ

01

UJP

40

00

CIa

20

R

Buffer address

512

Next program instruction

RTJ

01

AZJ.EQ

AZJ.LT

RAARV50

P

P

NR

R+4 Process reject condition

R+n UJP P+5

NR Set I/O repeat flag

NR+1

NR+2

RAAR

Select clock interrupt

UJP P+5

CIO call

Select read from file 20

Reject return. return from CIa

Normal CIO return

RAARV50 call

A =0. reissue I/O request

A =-1. delay reissue of I/O request

Return to program

Return to program

I

RAAR is a reject processing call used in earlier versions of MSOS. The RAAR call is
retained so that programs written for earlier versions of MSaS will run on the current
version. RAAR processes rejected CIa requests the same as RAARV50, except that no
return is made to the program until the busy or not ready condition is cleared. t I
All other rejects abort the job with an explanatory message on the console typewriter
and system output unit.

tNot ready includes no write ring on a magnetic tape drive.

60410600 B 11-17

RAAR is used by coding a return jump to RAAR in the reject address (P+2) of a CIa
call. RAAR returns to the program at address P. The following is an example of an
I/O read request using RAAR to process reject returns.

P RTJ

P+1 01

P+2 RTJ

CIO

20

RAAR

Read from file 20.

Reject address.

P+3 00

P+4 00

BUFFER

512

Store first word at address BUFFER.

Read 512 words.

P+5 Next instruction Normal return address.

I/O ERROR RECOVERY

After CIa initiates an 110 operation, it returns control to the program to allow additional
processing while the I/O function is being performed. Therefore, the user must always
use an interrupt or check status with a static request to determine if normal I/O com­
pletion without error occurred. t

If abnormal termination occurred, the user may attempt error recovery with his own
routine or with the standard system error recovery routines. If error recovery is not
attempted, or is not successful, the user has the following options.

1. Repeating the I/O on a different unit.

2. Continuing the program without doing the I/O.

3. Aborting the job.

4. Accepting the I/O with error.

If the user does not wish to write his own error recovery routines for unit record de­
vices, he may use one of the standard system recovery routines, SCARV50, SCAR, or
read/write with error recovery. These routines process the abnormal I/O termination.

If an abnormal I/O completion occurs, the recovery routine repeats the I/O function
several times in accordance with the standard system error recovery procedures (refer
to section 13). If the recovery routine is able to successfully complete the I/O function,
it returns control to the program the same as for a normal I/O completion. If the
recovery routine was unable to do the I/O function, it returns an error code to the
program indicating that an irrecoverable I/O error occurred. The user must then decide
whether or not to abort the job.

The standard recovery routines provide error recovery for the following devices and
functions.

1. All forward and backward reads from mass storage, magnetic tapes, and card
readers.

2. All writes on mass storage, magnetic tapes, printers, and card punches.

3. Write a file mark on tape.

4. Backspace a magnetic tape.

5. Check last card in card reader.

t An exception is a read or write with error recovery selected.

11-18 60410600 A

The recovery routines provide error recovery only for the I/O units and functions listed
above. For other I/O units and functions, the recovery routines check for normal/
abnormal completion and return control to the program with error code.

SCARV50

SCARV50 calls the standard system error recovery routines to provide recovery for
mass storage and unit record device I/O errors (refer to section 17).

The call to SCARV50 is made at the point of normal return from a CIa call, or in an
I/O completion interrupt routine. If the call is made on normal return from the CIa
call, SCARV50 will retain control until the I/O is completed. Calling SCARV50 in
an interrupt routine allows extra processing time while the I/O is in process. SCARV50
is reentrant and may be used in both batch and priority programs.

Only one call to SCARV50 can be made for each I/O function performed. System error
recovery uses and updates the unit status word in the status table. For the second
call, the updated status word may not reflect the status of the unit when the error
occurred. The I/O function must be repeated before making a second call to SCARV50.

If SCARV50 is used for error recovery on magnetic tape files, it is important that
SCARV50 be called after every tape function except status, even if a normal completion I
occurs. SCARV50checks each read for a possible noise record (interrecord gap noise
read as a data block). In addition, SCARV50 saves a check sum value for the last good
block written. The check sum value is used to ensure correct repositioning if an error
occurs in the next I/O function. CIa does not perform these functions.

The return jump sequence for calling SCARV50 is as follows:

P

P+1

RTJ

nr

SCARV50

cio

P+2 Return to program.

nr Card reader compare error flag.

o If a card reader compare error occurred, request operator to
reload and reread the card. Repeat procedure until a successful
read or an irrecoverable error occurs.

1 If a card reader compare error occurred, request operator to
reload the card and ready the reader. Then return to the program.

cio First word address of the return jump sequence to CIO.

When SCARV50 returns control to the program, register A contains the following codes.

o

-1

other

Normal I/O completion or successful I/O error recovery. The second
CIa status word is in register Q. Continue with the program.

Card reader compare error occurred. SCARV50 returned control to the
program before rereading the card (nr parameter was set to 1). The
second CIO status word is in register Q.

Error code defined in Table 11-4. Second CIa status word is in register
Q.

If a -1 is returned in register A, the user must reissue the I/O r.equest later in the
program.

60410600 B 11-19

I

I
I

I

I

If the CIa return jump sequence was destroyed prior to entering SCARV50, a dummy
sequence ca't'i be reconstructed at a new address for SCARV50. SCARV50 only needs
the parameter values used in the original return jump sequence to CIa.

The following is an example of the use of SCARV50 to check for abnormal 1/0 termi­
nation.

P RTJ CIO CIO call.

P+1 01 20,1 Select interrupt on abnormal 110 completion.

P+2 UJP reject Reject return from CIa.

P+3 40 buff Store first word at address buff.

P+4 00 40 Read 40 words.

P+5 00 ERROR A ddress of interrupt processing routine for

P+6 Next program instruction
abnormal I 10 completion.

ERROR UJP ... 1 1/0 completion interrupt routine. .. , , ...

ERROR+1 RTJ SCARV50

ERROR+2 01 P Select return on card reader compare error;
P equals address of CIa call.

ERROR+3 AZJ,LT RDCOMP A is negative; compare error.

ERROR+4 AZJ,NE IOERROR A is not zero; irrecoverable 1/0 error.

ERROR+5 VJP ERROR Normal return.

SCAR

SCAR is the error recovery call used in earlier versions of MSOS. SCAR is retained so
that programs written for earlier versions of MSOS will run on the current version.
SCAR is not reentrant. However, SCAR may be used in both batch and priority pro-
grams. Each program level receives its own copy of SCAR.

SCAR works the same as SCARV50 except that SCAR does not return control to the
program during card reader not ready conditions and SCAR has two return addresses,
normal return and error return.

To use SCAR, enter the first word address of the CIO calling sequence (P) in register
A and then use the following return jump sequence to enter SCAR.

P UJP 77777

P+l ENA addr Enter address of CIa call in A.

P+2 RTJ SCAR Call to SCAR.

P+3 00 00

} P+4 00 00 Addresses P+3, P+4, and P+5 are not checked
by MSOS.

P+5 00 00

P+6 jump addr Irrecoverable error return. Registers p,.
and Q contains error codes.

P+7 UJP P Normal 1/0 completion or successful error
recovery return.

jump UJP or RTJ instruction.

addr A ddress of irrecoverable error processing routine.

11-20 60410600 B

When SCAR returns control to the program at address P+6, error codes are returned
in registers A and Q. The error code in register A is defined in Table 11-4. The
error code in register Q is the CIa status word (refer to Table 11-3).

If the CIa return jump sequence was destroyed prior to entering SCAR, a dummy se­
quence can be reconstructed at a new address for SCAR. SCAR only needs the param­
eter values used in the original return jump sequence to CIa.

READ/WRITE WITH ERROR RECOVERY

The read or write with error recovery function (function codes 41 and 42) can be used
in two ways.

1. Always used for reads and writes.

2. Used after an abnormal I/O termination on mass storage devices.

The simplest method for using standard system error recovery is to always use function
code 41 or 42 when reading or writing. However, this method is wasteful of processing
time because there is no return to the program from CIa until the I/O is completed.

If function code 01 or 02 is used, CIO returns control to the program and additional
processing time is available while the read or write is in process. However, the user
must use an interrupt or check the unit status later in the program to ensure that
normal I/O completion occurred.

Mass storage I/O may be repeated using read or write with error recovery if an
interrupt or status check indicates an abnormal I/O termination. The read or write
with error recovery can be initiated within the users program or within an interrupt
routine. A normal return from the read or write with error recovery can be followed
with the next I/O request. If a reject return occurs, the user must decide whether
or not to abort the job. Registers A and Q will contain an error code (refer to Table
11-4) •

Use of a read or write with error recovery after an error on I/O units other than mass
storage should be avoided. All other units must be repositioned before the I/O can be
repeated. Correct repositioning cannot be ensured unless SCARV50 is used for error
recovery.

ASCERTAINING EQUIPMENT TYPE

The user may determine the hardware type being used for any file number by using the
WHATKIND routine. WHATKIND may be called from a batch or priority program. The
procedure is as follows:

1. Enter the file or logical unit number right-justified in register A.

2. Do a return jump to WHATKIND.

P ENA lun Lun - file number.

P+1 RTJ WHATKIND

P+2 N ext instruction. Return from WHA TKIND.

60410600 B 11-21

WHATKIND passes the following information to the program in registers A and Q.

Register A

Register Q

aut ord

hh

a

fdt addr

hh

fdt addr

Ordinal of the entry for this unit in the AUT table; zero for
spooling and system input files on mass storage.

Hardware type code for unit record devices or the device type code
for a mass storage file. For system I/O spooling and system input
files on mass storage. the associated low speed hardware type is
given.

1 if the unit is ASCII.

o if the unit is not ASCII,

Address of the entry for this unit in the FDT table.

If register A contains all zeros. the file number is not assigned.

I CIO MACRO CALLS t
All CIO functions except reject and I/O error recovery can be called via COMPASS
macros instead of the return jump sequence to CIO. Normal return is to the instruction
immediately following the macro. In addition to the following macros. the CLOSE macro
(section 13) may be used to release unit record devices so they can be EQUIPED and used by
another program.

Read
LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

READS 1(1. r. fwa. n. i. ia. m. c~ ch)
I I
I 1

Write
LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 '20 141

WRITES:(1. r. fwa. n. i. ia. m. c~ ch)
I

I

I t CIa macros cannot be used for paper tape units.

11-22 60410600 C

Read
Backward

I

Rewind to
Load Point

1

Rewind and
Unload

Skip File Mark
Forward

Skip File Mark
Backward

I

i

LOCATION

8

LOCATION

8

LOCATION

8

LOCATION

1

LOCATION

1

Write End-of-File
Mark LOCATION

1

60410600 A

PPERATlON, MODIFIERS ADORESS FIELD COMMENTS

10 120 141

I I

READB 1(1. r. fwa. n. i,.ia. m, c~ ch)
I I
I 1
I I
1 I
1 I

IoPERATlON, MODIFIERS ADORES.S FIELD COMMENTS

10 120 141

1 I

REWINDI(l. r, i, ia) I
I I
1 I

joPERATION, MODIFIERS ADDRESS FIELD COMMENTS

10 120 141

UNLOAD 1(1, r, i, ia) 1
I 1
1 I

OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

8 10 !20 141

10. r. i. ia)
I

SEFF I
I I
1 I

OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

8 10 120 141

10. r. i. ia)
I

SEFB I
1 I
1 I

OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

8 10 120 141

10. r. i. ia)
T

WEOF I
I I
1 I

11-.23

ERASE
LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

1 8 10 120 . 141
I I

ERASE 1(1, r, i, ia) 1
1 1

I I I

STATUS
LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

1 8 10 120 141

10, d)
I

STATUS I
1 I
I I

FORMAT
LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

1 8 10 120 141
I I

FORMAT 1(1, r, c, dt) 1
1 I
I 1

BACKSPACE
lDCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 :41

BKSP 1(1, r. i. ia) I
I

I 1
I I
I I
1 1
I 1

LOCATE
LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

1 8 10 120 141

I (1, r, x, y, n, i, ia)
I

LOCATES I
I I
I I

WHATKIND
LOCATION OPERATION, MODIFIERS. ADDRESS FIELD COMMENTS

1 8 10 120 141

~HATKIND I (fo)
I

I
1 1

i I 1

11-24 60410600 A

Parameter

c

ch

d

dt

fo

fwa

i

ia

I

m

60410600 A

Description

For read and write functions.

C Character I/O; illegal for mas.s storage, card reader,
card punch, and reverse magnetic tape reads.

omitted Word I/O.

For format functions, c is the format code (refer to Table 11-2).

Specifies which memory bank an 110 buffer is in; used only for
batch programs in an extended core system.

0, 1 Bank 1

2 Bank 0

Omitted for priority programs and standard 16/32K systems.

Specifies dynamic or static status.

o Static status

1 Dynamic status

Indicates whether or not the device is a 512 line printer.

512

zero or
omitted

File number.

512 line printer

Not a 512 line printer

Address of first word or character in a buffer for reads or writes;
may be a character address.

Interrupt request.

No interrupt on completion.

Interrupt on abnormal te rmination.

o
1

2 Interrupt on normal completion or abnormal termination.

Interrupt address; address of interrupt processing routine for the
interrupt selected by the i parameter. This may be omitted if i
equals O.

File number.

Six-bit mode designator which specifies BCD or binary 1/0; also
indicates density for magnetic tapes. For all I/O except the
incremental plotter and magnetic tape unit, the following values
should be used.

40

41

BCD mode

Binary mode

11-25

n

r

x

y

11-26

For magnetic tape units, one of the following codes should be used.
Density

7-Track 9-Track 7-Track 9-Track
Code Mode Mode Drive Drive

40 BCD Convert No change No change
41 Binary Pack No change No change
50 BCD Convert 200 bpi 800 cpi
51 Binary Pack 200 bpi 800 cpi
60 BCD Convert 556 bpi 800 cpi
61 Binary Pack 556 bpi 800 cpi
70 BCD Conv:.ert 800 bpi 1600 cpi
71 Binary Pack 800 bpi 1600 cpi

For incremental plotter, 40 specifies character mode and 41
specifies word (disassembly) mode.

Mode With Character I/O With Word I/O

40 A 11 characters plotted. Only bits 00 through 5 (lower
character) of each word is plotte d.

41 All characters plotted. All characters in each word are
plotted.

For reads and writes, n is the number of words or characters
read or written.

For mass storage locate functions, n is an eight-digit octal num­
ber used in conjunction with the y parameter to select the next
block number.

Reject address. If * or RAAR is used for reject address, re­
jects are automatically processed by RAAR. An RT J to HAAR is
assembled in the macro.

If RAARV50 or a user's reject routine is to be used, a reject
address must be supplied, and a UJP to the reject address is
assembled in the macro.

One octal digit which specifies read/write head movement.

o
1

other

Position the read/write heads.

Do not position the read/write heads, and negate any
interrupt selected with the i parameter.

Illegal

One octal digit which selects the next block number.

o
1

2

3

other

Replace the current block number with the n parameter.

Replace the current block number with the current block
number plus one.

Replace the current block number with the current block
number plus the n parameter.

Replace the next available block number with the n param­
eter. No change is made to the current block number.

Illegal

60410600 A

CIO MACRO EXPANSIONS
The following job can be run to obtain a copy of the expansions for any of the preceding
macros.

$JOB, •••
$COMPASS, L

IDENT
LIBM
LIBM
LIBM
END
FINIS

77
88
$EOJ

60410600 B

EXPAND
READS, WRITES, READB, REWIND, UNLOAD
BKS P, SEFF , SEFB, WEOF , ERA SE. ST A TUS
FORMAT, LOCATES, WHATKIND

11-27

I

SPECIAL FORMS CONTROL 12

DESCRIPTION

In batch programs, mounting and aligning special forms can be controlled by calling
the special forms control routine, FORMSV50. The subroutine requests the operator
to mount a specific form on a printer, or to load special cards in the card punch.
Forms control can be used with APC but cannot be used in priority programs.

If the request was to mount a form in the printer, control is returned to the program
to print an alignment pattern. After each alignment pattern is printed, the operator
has the option of requesting an additional alignment pattern until the form is correctly
aligned.

Calls to the forms control routine can be made in COMPASS, COBOL, t and FORTRANt
programs. The COBOL and FORTRAN calls are described in the COBOL and FORTRAN
reference manuals.

SPECIAL CARD FORMS

The COMPASS calling sequence for the forms control routine to load special card
forms in the card punch is as follows:

P

P+1

RTJ

u

FORMSV50

loc1

P+2 10c2

P+3 next program instruction

loc1 0

loc2 name

loc1,2 Any symbolic word address.

u Logical unit number of a card punch. u must be 62 or be a
number that was previously equated to 62 with an EQUIP card.

name Four-character BCD name of the card forms to be loaded
in the punch. The name cannot be four blanks.

The contents of loc 1 is zero in the call to FORMSV50 for' card forms.
address P+3, loc1 contains one of the reply codes listed in Table 12-l.
should add a routine to test and process the reply codes.

On return to
The user

t Both ANSI and MS.

60410600 A 12-1

TABLE 12-1. FORMS CONTROL REPLY CODESt

Code Description

o

1

2

3

4

5

6

7

Operator response was negative.

a. For initial forms mounting call, 0 indicates operator cannot
or did not mount the form. A possible wrong form name
was used in the call.

b. For printer alignment calls, 0 indicates the form is not
aligned. The operator is requesting that another alignment
pattern be printed.

Operator response was positive.

a. For initial forms mounting call, 1 indicates the form has
been mounted or the cards loaded, and the operator is waiting
for the test pattern to be printed.-

b. For printer alignment calls, 1 indicates the form is aligned.
No more alignment patterns need to be printed.

Wrong value used in location loc 1. The value must be either 0 to
indicate an initial call.. or 1 to indicate an alignment call.

The u parameter is not defined in the system.

The u parameter is not a printer or a card punch.

The u parameter is not 61 or 62, or a unit number that has been
equated to 61 or 62.

a. An alignment call to forms control was not preceded by the
initial call to mount the forms.

b. The preceding initial call to forms control returned an error
and the call was not repeated correctly before making the
alignment call.

a. The u parameter in the initial call was not the same as in this
alignment call.

b. A second initial call occurred between the first initial call
and its alignment calls.

t The forms control reply codes are returned as an octal number in bits 02 through 00
in loc ation loc 1.

12-2 60410600 A

SPECIAL PRINTER FORMS

Two or more calls to FORMSV50 are required to mount and align special forms on the
printer. The first (initial) call is to request the operator to mount the form. and the
second and all subsequent calls are to supply alignment test patterns.

If a positive reply is returned after the initial call, a test pattern should be written
and then a second FORMSV50 call should be made. The second and all subsequent
calls request the operator to indicate if the form is or is not correctly aligned. If
the form is not correctly aligned, another test pattern is printed and another call to
FORMSV50 made. The calling sequence to FORMSV50 is as follows:

Location

p

P+1

P+2

P+3

TEST

TEST+n

ALIGN

ALIGN+l

ALIGN+2

ALIGN+3

locI

loc2

Instruction

RTJ FORMSV50

u locI

loc2

Return from initial call
to FORMSV50.

Call CIO to write a test
pattern on unit u.

RTJ FORMSV50

u locI

NOP

Return from alignment
call to FORMSV50.

o or 1

name

Initial call to FORMSV50.

Refer to Table 12-1 for reply codes.

Alignment call to FORMSV50.

Refer to Table 12-1 for reply codes.

locI must be zero for initial calls
and one for alignment calls.

loc 1. 2 Any symbolic word address.

u

name

Logical unit number of the printer. u must be
61 or be a number that was previously equated
to 61 with an EQUIP card.

Four-character BCD name of the form to be
mounted on the printer.

On return from the call to FORMSV50, locI contains one of the codes in Table 12-1.
The contents of locI must be checked and reset to 1 before each alignment call.

60410600 A

NOTE

The operator uses the manual interrupt to
reply to each request from FORMSV50.
If a manual interrupt was selected prior
to the FORMSV50 call. the interrupt must
be reselected. FORMSV50 does not restore
a manual interrupt which was previously set.

12-3

MASS STORAGE FILE CONTROL MACROS (OCAREM) 13

FILE CONTROL MACROS

Each mass storage file control function described in section 3 has a corresponding
COMPASS macro. These macros may be used within a COMPASS program instead of
the corresponding MSOS control statement which must either precede or follow a user
program.

FILEID MACRO

The FILEID macro performs the same function as the FET control statement. It
provides file identification for a user file by establishing a file environment table (FET)
in core.

loc

loc+1

loc+2

loc+9

loc+10

loc+11

loc+12

23

?,.

Reserved

/I6 111 00

OWN'ER.IE»

FILE NAME ..

I Edition No.

Access Security Code

Modification Security Code

I Block Size

Figure 13-1. FET Table

The FET may be referenced in a program by using the loc address from the FILEID
macro and LDA instructions.

60410600 A 13-1

I

LOCATION

1 8

loc

loc

owner

name

blksize

edition

accsec

modsec

OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

10 120 !41

! • I

FILEID : (owner, name, blksize, rdition, accsec, modsec)
I I

Symbolic location of the first word of the FET table. This loca­
tion is specified in the calling sequence for all pre-I/O /post-I/O
'macro functions except CLOSE.

Eight-character identification; if less than eight characters, the
field is blank-filled on the right.

30-character mass storage file name; if less than 30 characters,
the field is blank-filled on the right. Imbedded blanks in the name

. are not permitted.

Number of characters in each data block, not exceeding 131071 10•

Edition number, two alphanumeric characters or one decimal
digit; set to zero if omitted.

Four-character access security code; if omitted, the field is blank­
filled. If less than four characters, the field is blank-filled on
the right.

Four-character modification security code; blank-filled if omitted.
If less than four characters, the field is blank-filled on the right.

The macro fields are separated by commas and must not contain imbedded blanks. If
a field is omitted, its trailing comma must be supplied unless all fields to the right
are also omitted. The owner, name, and blksize parameters are mandatory; edition
number and security codes are optional.

ALLOCATE MACRO

The ALLOCATE macro reserves space for the file. It performs the same function
as the ALLOCATE control statement. The ALLOCATE macro adds, new entries in
the LABELFILE and IDFILE, and updates the MSD file.

13-2 60410600 B

LOCATION

1 8

1

I I

loc

n

exp

seg

dt

b

-------- - ----
OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

10 120 141

ALLOCAi1
t=

(loc" n" exp" " seg, dt, b)l
1

I

I

Core address for a 13-word FET that was created by the FILEID
macro. It contains the file identifiers. security codes" and num­
ber of characters in each data block.

Number of mass storage tracks or blocks to allocate for the file;
it is a positive integer not exceeding 262143.

Expiration date to be inserted in the file label. It is a six­
digit decimal integer in the form yymmdd. If omitted. the cur­
rent date is used.

NOSEG specifies contiguous allocation. Omitted or any other
value indicates the file may be segmented.

Specifies the type of mass storage device. Default is library device
type. Values may be 853. 854" 813" 841" or 863. An 814 is defined
as two 813s.

Specifies block or track allocation.

1

omitted or 0

Allocate n blocks

Allocate n tracks

If an error occurs. the return from the macro is to address m+1 p.nd register A con­
tains an error code in bits 00 through 11. Address m+1 should contain a jump in­
struction to an error processing routine.

m MACRO

m+1 Reject return

m+2 Normal return (next instruction)

Calling sequence to ALLOCATE:

P RTJ ALLOCATE

P+l VFD 061 dt" A2 /0" A 1 Iseg" A 15 Iloc

P+2 VFD Al/b.A5/1"A18/n

P+3 DEC exp

P+4 Reject return

P+5 Normal return

b" loc, nand exp Same as in the macro description.

seg

dt

60410600 B

Segme nt flag

o File may be segmented
1 File must be contiguous

6-bit code for device type

13-3

I
Error Codes

31

32

51

52

54

55

56

57

58

59

60

79

81

OPEN MACRO

RFLD full (class-R files only)

RFLD misalignment (class-R files only)

OCAREM is busy; previous function has not completed.

Calling sequence contains an illegal device type and/or recording
mode.

File size exceeds the maximum permitted by the installation.

File identifier, words 1 through 10 in the FET, already exists.

File label directory is full.

An illegal device number was used on the previous RA T card
(that is, device number not entered in system).

Not enough tracks are available.

Segment count exceeds the installation maximum.

Contiguous space requested but no contiguous block of n tracks
is available.

Illegal block size.

Illegal value for n parameter.

The OPEN macro performs the same functions as the OPEN control statement. It
uses the FET to locate the file label in LABELFILE, checks to ensure the required
mass storage devices are on-line, makes a file entry in the file ordinal table to assign
the file number, and generates a file description table (FDT).

LOCATION

1 8

loc

fo

use

OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

10

OPEN

120 !41
I I

: (loc, fo, use, alpha) I
I

1 I

Core address of a 13 -word FET containing file identifiers and
access security code. (Refer to FILEID macro.) t

Unique file number (0 through 62) which is used for subsequent
I/O requests to this file.

I specifies a read only file while it is open. Any other symbol
indicates file is available for reading and writing. If I value is
used, a file can be opened concurrently by other programs and
shared for input. If I is not used, the file cannot be concurrently
opened and shared by other programs.

tOnly the first 11 words of the FET are referenced when opening a file.

13-4 60410600 C

alpha Core address of a three-word parameter table (optional).

alpha

alpha+1

alpha+2
L

P
N

L

P

N

First character position in label (92 ~ L < 195) or I
(92 _~ L ~ 115 for class R) to be read.
Starting character address in core.
Number of characters to move (1 < N < 104) or (1 ~. N _~ 24
for class R). - 4 --.

If alpha is included. the file label is read. N characters are moved from the file label,
starting with character L. to core starting at character address P. If alpha is omi tted.
the file label is not read.

The alpha parameter is optional and may be omitted. If used, it specifies the location
of a three-word table that defines a record definition area In core. The characters
specifie d in the three -word table will be read from the file label (refer to appendix G)
and written in the record definition area for inspection and use within the program. The
data in the three-word table must be set before using the macro.

On a normal return to m+2. register A contains the octal number of tracks in the file.
If an error occurs. the return from the macro is to address m+1 and register A con­
tains an error code in bits 11 through 00. Address m+1 should contain a jump instruc­
tion to an error processing routine.

m Macro

m+1 Reject return

m+2 Normal return (next instruction)

Calling sequence to OPEN:

ENA alpha

P RTJ OPENB

P+1 VFD A 6 / f 0, A 1 / 0, A 1 / m, A 1 / use, A 15 /10 c

P+2 Reject return

P+3 Normal return

alPha}
fo

lac

Same as in macro description.

use Usage indicator

o Allows output to the file while it is open.
1 Does not allow output to the file while it is open.

m Store indicator

1 A register contains alpha.
o Alpha not present; no characters to move.

Normal return is to address P+3 with register A containing the octal number of tracks
in the file. Control is returned at P+2 with an error code in the A register if an error
occurred.

60410600 C 13-5

I
Error Codes

30 File inoperative (class-R files only)

51 OCAREM is busy; previous function has not completed.

53 L or N, illegal value. 92~L~195, or 1~N~104 is legal.

61 File identifier specified in the FET could not be located in the label
directory.

63 Access security code in the FET does not match the access security code
in the file label,

64 Specified file ordinal has already been assigned, or is an illegal value.

65 Resident tables are full. Too many files are open.

66 The file is already open for output.

67 Use indicates output but the read only flag is set in the file label.

68 Use indicates output but the file is already open.

69 The file cannot be placed on-line. Not enough drives are available.

CLOSE MACRO

The CLOSE macro performs the same function as the CLOSE control statement. For
mass storage files, it releases file entries in the FDT and file ordinal tables, and up­
dates the file label in the LABELFILE. The file cannot be used until it is reopened with
an 0 PEN macro or statement.

For unit record devices, the CLOSE statement releases a file entry from the FDT and­
file ordinal tables. The unit must be reequipped with an EQUIP statement before it
can be used again. The unit will be available for use by another program. The CLOSE
macro does not update or change tape labels. The alpha and t parameters are ignored.

1

LOCATION

13-6

8

fo

t

I

OPERATION, MODIFIERS, ADDRESS FIELD

10

CLOSE

120

I

I (fo, alpha, t)
1
I

File number

Label update flag

1

omitted or 0

COMMENTS

141

I
I
I

Update the label but leave the file open for
continued use in the job.
Update the label and close the file.

60410600 C

alpha Core address of a three-word parameter table (optional).

alpha

alpha+l

alpha+2

L

p ;] L

N

First character position in the file label. L may range
from 92 to 195 or 92 to 115 for class R.

P Starting character address in core.
I

N Number of characters to move. N may range from 1 to
104 or 1 to 24 for class R. I

If the alpha parameter is included. N characters are read from
core. starting at character address P. and written on the file
label. starting at character position L. The system always up­
dates the last access date. number of blocks written. etc.. when
a mass storage file is closed.

If an error occurs. the return from the macro is to address m+1 and register A
contains an error code in bits 11 through 00. Address m+1 should contain a jump
instruction to an error processing routine.

m Macro

m+l Reject return

m+2 Normal return (next instruction)

Calling sequence to CLOSE:

ENA alpha

P RTJ CLOSEB

P+l VFD A6/t. A 1/0. A l/m. A 10/0. A6/fo

P+2 Reject return

P+3 Normal return

Normal return is to P+3 with the last block number in octal written in register A and
the octal number of unused tracks in Q.

alpha. fo. t

m

Same as in macro description.

Store indicator

1 A register contains alpha.
o Alpha is not present; no characters to move.

Control is returned at P+2 with an error code in the A register if an error occurs.

Error Codes

51 OCAREM busy; previous function has not completed.

53 Illegal value for L or N.

71 The specified file number has not been assigned or an illegal value was used.

60410600 C 13-7

RELEASE MACRO
The RELEASE macro performs the same function as the RELEASE control statement.
It releases all or part of the space assigned to mass storage files with the ALLOCATE
statement. A mass storage file must be closed before it can be released.

LOCATION

1 8

loc

n

b

OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

10 120 141
I I

RELEASE I (loc, n, b) I
I I
I I

Core address of a 13-word FET containing file identifiers and
security codes (refer to FILEID macro). t

Decimal integer indicating the number of tracks or blocks of mass
storage to release. Values may be 1 to 262143" UNUSED or ALL.

Specifies block or track release. Optional.

1 Blocks
omitted or 0 Tracks

If an error occurs, the return from the macro is to address m+l and register A con­
tains an error code in bits 11 through 00. Address m+l should contain a jump instruc­
tion to an error processing routine.

m MACRO

m+l Reject return

m+2 Normal return (next instruction)

Calling sequence to

P RTJ

P+l VFD

P+2 VFD

P+3 Reject

P+4 Normal

band loc

c

RELEASE:

RELEASE

A9/0,A 15/loc

AI/b.A5/c,A18/n

return

retu-rn

Same as in the macro description.

Control value

o Release n tracks or- blocks.
1 Release the entire file. Ignore values for nand b.
2 Release the unused space. Ignore values for nand b.

n Number of tracks or blocks to release.

Control is returned at P+3 with an error code in the A register if an error occurs.

tOnly the first 12 words of the FET are referenced to release a file.

13-8 60410600 A

Error Codes

30

33
51

File inoperative (class-R files only)

All segments not on-line (class-R files only)

OCAREM busy; previous function has not completed.

61 File identifier specified in the FET cannot be located in the label directory.

62 The file is currently open.

63 One or both security codes in the FET do not match security code in the
file label.

70 Calling sequence contains an illegal control value.

81 Illegal value for the n parameter.

EXPAND MACRO

The EXPAND macro performs the same function as the EXPAND control statement. It
increases the number of tracks reserved for a file.

i LOCATION T OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS
-------- - ---------r,----s! 10 120 ~41

F-----=--=----------==F=f======~======-=-===-=-======t========.;======-=---=--==----=-=-....=::::=: .. -=....:......-::-:-::=-----===

loc

n

[EXPAND
I

(loc, n, seg, b)

Core address of a 13 -word FET containing file identifiers and
security codes (refer to FILEID macro). t
Number of new tracks or blocks to add to the existing file.

seg NOSEG specifies only one new segment, contiguous with the current
file when possible. Omitted or any other term indicates the new
area may consist of more than one segment.

b Specifies blocks or tracks to be added.

1 Expand by n blocks.
omitted or 0 Expand by n tracks.

If an error occurs, the return from the macro is to address m+1 and register A con­
tains an error code in bits 11 through 00. Address m+1 should contain a jump instruc­
tion to an error processing routine.

m MACRO

m+1 Reject return

m+2 Normal return (next instruction)

t Only the first 12 words of the FET are referenced when expanding a file.

60410600 C 13-9

I

I

I

Calling sequence to EXPAND:

P

P+1

P+2

P+3

P+4

RTJ

VFD

VFD

EXPAND

A9/seg,A15/loc

A1/b,A5/0,A18/n

Reject return

Normal return

loc, b,and n Same as in the macro description.

seg Segment flag

o Expansion may be segmented.
1 Expansion must be contiguous.

Control is returned at P+3 with an error code in the A register if an error occurred. File
cannot be expanded across different device classes (that is, Rand nonclass R).

Error Codes

30

34

File inoperative (class-R files only)

Class of file does not match class in RA T (class-R files only)

51 OCAREM busy; previous function has not completed.

54 File size (current size + n) would exceed the maximum permitted by the
ins tall a tion.

57 An illegal device number was used on a previous RA T card (that is, device
not entered in the system).

58 n additional tracks are not available.

59 Segment count exceeds installation maximum.

60 Contiguous space requested but no contiguous block of n tracks is available.

61 File identifier specified in the FET could not be located in the label direc-
tory.

62 The file is currently open.

63 One or both security codes in FET do not match security code in file label.

81 Illegal value for n.

MODIFY MACRO

The MODIFY macro performs the same function as the MODIFY control statement. It
allows the user to change the file label.

LOCATION

1 8

i I

loc

prot

OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

10 120 141

I I

MODIFY 1 (Ioc, prot, exp, newfet) I
I I
I I

Core address of a 13-word FET containing file identifiers and
security codes (refer to FILEID macro). t
Inserts a file protection indicator in a file label.

I Restrict file usage to input (read only) usage.
o Allows both input and output (read or write) usage.
Omitted No change in file's protection.

tOnly the first 12 words of the FET are referenced when expanding a file.

13-10 60410600 C

exp

newfet

Inserts new expiration date in file label. Exp is a six-digit decimal
integer in the form yymmdd. If omitted or zero, the expiration
date in the labe 1 is not change d.

Core address of a new FET (refer to FILEID macro). If zero or
omitted, newfet is ignored. Otherwise, contents of the new FET
are inserted in the file label.

If an error occurs, the return from the macro is to address m+l and register A con­
tains an error code in bits 11 through 00. Address m+l should contain a jump instruc­
tion to an error processing routine.

m MACRO

m+l Reject return

m+2 Normal return (next instruction)

Calling sequence to MODIFY:

P

P+l

P+2

P+3

RTJ

VFD

VFD

DEC

MODIFY

A9/0,AI5/loc

09/prot, A15/newfet

exp

P+4 Reject return

P+5 Normal return

prot New protection flags for file label.

001
011
000

File may be read or written.
File may not be written.
Does not change protection.

Control is returned at P+4 with an error code in the A register if an error occurs.

Error Codes

30 File inoperative (class-R files only)

51 Another nonresident MSIO function has not yet run to completion.

55 File identifier specified by the new FET (newfet) already exists in the label
directory.

61 File identifier specified in the FET cannot be located in the label directory.

62 File specified in the FET is currently open for processing.

63 Wrong access and/or modification code in the FET.

79 Block size specified in new FET is illegal.

60410600 C 13-11

I

MACRO EXPANSIONS

The following job may be run to obtain a list of OCAREM macro expansions.

$JOB •••
$COMPASS, L

IDENT
LIBM
LIBM
END
FINIS

77
88
$EOJ

EXPAND
FILEID,ALLOCATE,OPEN, CLOSE
RELEASE, EXPAND, MODIFY

The macro expansion is the code that replaces the macro call statement when the program
is assembled.

13-12 60410600 A

LOGICAL MSIO 14

DESCRIPTION

Logical MSIO (L-MSIO) is a set of I/O routines for reading and writing logical records.
L-MSIO provides the COMPASS user with a set of routines that perform the following
functions.

1. Automatic blocking and deblocking of logical records

2. Automatic file label processing

3. Automatic buffering

4. Random file access

5. Restart function

6. Multireel file and multifile reel handling functions

The L-MSIO file and record formats are compatible among COMPASS, ANSI COBOL,
MS COBOL, and LISA. The L-MSIO routines can be used with tape, mass storage,
and punched card files, and they can drive any device controllable by MSOS.

FILE REQUIREMENTS AND INITIALIZATION

All mass storage files to be referenced by L -MSIO must be initially allocated with the
ALLOCATE card or the ALLOCATE macro to build a file label. Similarly, all unit
record devices must be equipped by assigning a logical unit number, with an EQUIP
statement, before they can be referenced by L-MSIO.

Before a file can be referenced by L-MSIO, the file and record formats must be defined
with L-MSIO file description routines. These routines build a special 32-word file
environment table (FET) for the file (refer to appendix G for FET format). The L-MSIO
FET is different from the OCAREM FET built by the FET control statement or the
FILEID mac roo

The ANSI COBOL compiler generates and uses a modified version of the L-MSIO FET
which cannot be used by COMPASS, LISA, or MS COBOL subprograms or routines.
For example, if a COMPASS subprogram were entered from an ANSI COBOL program,
the COMPASS subprogram would have to build a new L-MSIO FET to use an ANSI
COBOL file. The FETs generated by COMPASS, LISA, and MS COBOL are compatible.

After a file's FET has been constructed, the file must be opened with the OPENF
routine. Then logical records can be read from and written on the file with GET and
PUT macros (refer to section 15).

File record sizes may vary from 1 to 4095 characters for files used by COMPASS,
LISA, and MS COBOL. Record sizes may vary from 1 to 32767 characters for files
used with ANSI COBOL. COMPASS, LISA, and MS COBOL cannot process files
generated by ANSI COBOL if the record size exceeds 4095 characters.

L-MSIO uses an overlay file which was allocated at system installation time. L-MSIO opens I
this file as file 53. Therefore, 53 cannot be assigned as a file number in any user program.

60410600 C 14-1

LOGICAL RECORDS

Logical records may be fixed or variable in length according to the five formats listed
below. All records within a file must have the same format. The format of these
records is described in detail in appendix F.

Fixed length

Variable length

Variable length with
trailer

Record delimiter

Universal

RECORD BLOCKS

All records are the same length. A parameter in the
file description macro specifies the length.

A key field, set in BCD format by the user, indicates the
record length in characters. If the key field is within the
logical record, it must occupy the same position and be
the same size within each record.

Logical records consist of a fixed length hase and a
variable number of fixed length trailer items. A key
field in the fixed length base specifies the number of
trailer items in the record. The user sets the key field
in BCD format.

Records may be fixed or variable in length. A special
delimiting character terminates each record. The user
may specify the character in the file environment table
(FET). If none is specified and this format is selected,
the system assigns the special character 728 .

A record blocking routine (PUT) prefixes each record with
a 24-bit binary control field. This field contains the
mode of the record as defined by the file description
macro and the number of 6-bit bytes in the record. The
record deblocking routine (GET) removes the control field
before delivering the record to the calling program. In
an address specified by the VARIABLE macro, the system
stores in binary format the length of a record and its
mode. t The record length must be set in the specified ad­
dress prior to a PU T.

Logical records are grouped together into blocks in order to provide more efficient
I/O. A whole block is written or read at once when L-MSIO does input or output
functions. A 11 records on tape and mass storage are stored in blocks.

MASS STORAGE BLOCKING

Record blocks on mass storage must be fixed length. The user determines the block
size and specifies the size when allocating and establishing a file.

I t Refer to the MODEBIT option in the MSOS Installation Handbook.

14-2 60410600 C

The user may specify through the block format parameter of the FILEDESC macro that
each block contains a two-word preamble. If present, the preamble contains the
following:

Block number of the next block to be read in logical sequence. This permits
creating and reading files that are not in sequential order physically.

Position of the first available data character within the block relative to the block
origin. This allows a variable number of records per block.

DATA

Data Block
without Preamble

NBN

POFAC

23 14 00

DATA

--- ---
Data Block

with Preamble

NBN

POFAC

N ext block number
to be read when file
is accessed sequenti­
ally

Position of first
available data
character

When no preamble has been specified, L-MSIO assumes a single record per block.

NONMASS STORAGE BLOCKING

The block size for line printers is 136 characters. Each write prints one line of 135
characters plus one control character. Any remaining characters in a larger output
buffer are truncated.

The block size for card punches is 20 words for BCD mode and 40 words for binary
mode. Each write punches only one card. Any remaining characters in a larger out­
put buffer are truncated.

For all other units, the block size may range from five to 4090 words, depending upon
the application. t The block size is selected in the FILEDESC macro.

FILE ACCESS

L-MSIO provides random access to file records under control of a seek address key
(SAK) in the file's FET. The SAK consists of a relative block address. When there
is more than one record per block, SAK has a pointer to the relative position of the
first data character of a record within the block.

BN
.: ... : CP

23 16 00

BN Relative block number within file.

CP Relative character position within block BN.
For the first record in block BN, CP equals O.

tMaximum of 32,767 characters for tape files in the modified version of L-MSIO
generated by the ANSI COBOL compiler.

60410~00 A 14-3

SEQUENTIAL ACCESS

Records within a file are read or written sequentially under control of the SAK. For
input or output files, L-MSIO automatically increments the SAK to the next record for
each GET or PUT request. For mass storage files opened with OPENF as I/O,
L-MSIO advances the SAK only for GET. When a PUT follows a GET, both reference
the same record. Since the I/O option implies the existence of data in a file, this
option cannot be used when a mass storage file is initially created or expanded.

For sequential output files, new data is written starting only at the highest block written
plus one. Thus, before rewriting over existing data, the file is released and reallocated.
The ANSI variant always begins writing at block one. Therefore, the whole file is re­
written in order to rewrite the last block.

RANDOM ACCESS

To access a file randomly, the user declares random access mode in the FILEDESC
macro. L-MSIO does not modify the SAK when GET or PUT requests are executed.
Prior to each GET or PUT, the user calls LOCATE to set the SAK for the record to
be referenced. Random access is allowed on mass storage only.

FILE SECURITY

Each mass storage file label has a provlslon for privacy codes. The user supplies
both an access privacy code and a modification privacy code when he allocates the file.
The access privacy code protects a file from unauthorized use. If the access privacy
code in the FET specified for an OPENF call does not match one in a file label,
L-MSIO rejects the call and terminates the job. RELEASE, EXPAND, and MODIFY
require a modification privacy code. If the codes are mismatched, the system rejects
the request and terminates the job.

The user may specify mass storage files as read only through a call to MODIFY.
L-MSIO rejects requests to open files for output which have been defined as read only.

BUFFERING

Buffering permits CPU processing to occur concurrently with I/O data transmissions.
The extent of the buffering depends upon the size of the record and buffer areas. A
record area is a memory block assigned for a logical record to reside in. A buffer
area is a memory area assigned to hold a block of records, including the two-word
preamble if specified for mass storage files. The user may specify one to five con­
figurations of record and buffer areas as follows:

1.

2.

14-4

Record area only

No buffering or blocking / deblocking occurs. Each input or output request re­
sults in transmission of one record to or from an I/O unit.

Buffer area only

With a buffer area, L-MSIO performs automatic I/O of record blocks. The
user may use the GET routine to obtain the first character address of the next
record in the input buffer and the record length in characters. L-MSIO re-
turns the first character address in register A and the record length in
register Q. The user may also use the PUT request to get the first character
address of the next record slot in an output buffer. However, the reads and
writes used to block or deblock a record, that is, write or read a new record
in the buffer area, must be done in the program. When an output buffer is full,
or an input buffer is empty, L-MSIO automatically initiates I/O to write the block
on an output unit or read a new block from an input unit.

60410600 A

3. Buffer area and a record area

With both a buffer and a record area, L-MSIO provides automatic I/O and
blocking / deblocking. The user can use the PUT request to read a record
from the record area and block (write) the record in the output buffer. The
user can also use the GET request to deblock (read) a record fr.om the input
buffer and write the record in the record area for inspection or processing.
When an input buffer is empty or an output buffer is full, L-MSIO automatically
initiates I/O to empty or refill the buffer area.

4. Double buffer areas and no record area

With two buffer areas, when one buffer area is either full or empty, L-MSIO
automatically switches the blocking / deblocking functions to the second buffer
and initiates I/O on the first buffer to empty or refill it. Blocking / deblocking
functions must be performed within the user program.

5. Double buffer area and a record area

This is the most efficient configuration for automatic blocking/deblocking and
I/O buffering. PUTs or GETs may be used in one buffer for blocking / deblocking
while I/O is being performed with the other buffer.

Two or more files may share buffer areas, a record area, or both. Files which share
buffer areas may not be open simultaneously. Files which share only the record area
may be open at the same time; the user must determine the file to which the current
record belongs.

Only one file on a multifile reel may be open at one time; thus the buffer areas for only
one of the files on that reel can be in use at one time. To conserve space, all files
on a multifile reel s.hould share the same buffer areas. A file on a multifile reel may
not share the same buffer areas with files not on the' reel.

LABELS

For mass storage files, L-MSIO references the standard device and file labels. These
labels are required. Device labels are prepared by OCAREM when the devices are
entered in the system. Mass storage file labels are prepared by OCAREM when the
files are allocated.

Files on unit record devices have standard, nonstandard, or omitted labels. The labeling
macro is used to define all standard and nonstandard labels, including mass storage,
when the file is initially defined with the FILEDESC macro. The formats of the mass
storage file and unit record file labels are given in appendix G. I
Files on tape drive devices may have header and trailer labels. A header label is a
single BCD record used as an identifier at the beginning of a file and at the beginning
of intermediate reels of a multireel file.

A trailer label is a single physical BCD record used to mark the end of a file (EOF
label) or the end 0 f a reel of a multireel file (EOT label). A trailer label is always
in standard format and is preceded and followed by an EOF mark.

A CLOSEF file request for an output file writes an EOF label. A close reel function
(CLOSEF macro) writes an EOT label on the file, and a PUT function writes an EOT
label when it finds an end-of-tape mark while writing an output file.

60410600 B 14-5

STANDARD TAPE LABELING

Standard labeling implies both header and trailer labels in standard format on every
reel of the file. The labels are single physical BCD records 80 characters in length.
If the user wants to utilize the optional information within either the header or trailer
labels, the information must appear in the specific character positions (33 through 80
for header labels, 9 through 80 for trailer labels) in the record area when the label is
written. The system moves this information to the record area when the label is read.
For multireel files, this optional information may be processed through user label
processing routines.

NONSTANDARD TAPE LABELING

Nonstandard labeling implies nonstandard header labels and standard trailer labels for
output files, and nonstandard header labels with no trailer label checking for input files.
A nonstandard header label can be 16 to 4095 characters in length and may be of two
types, data name or NON -STAN. For data name, the address and length of the label
buffer area must be stored in the FET by the LABELING macro. Data name label
type may be used with all types of logical records. For the NON -STAN type of header
label, L-MSIO uses the record area as the label buffer and writes the record area as
the label in accordance with the logical record type. Universal type records cannot
be used with NON-STAN labels.

If ANSI COBOL is being used, L-MSIO is automatically linked to a COBOL compiler
object time routine that checks the nonstandard header label information.

OMITTED TAPE LABEL

Neither header labels nor trailer labels are written or checked for files defined with
omitted labels. The optional user label routines are not applicable when labels are
omitted.

MULTIREEL FILES

A user may create a multireel file with anyone of the three labeling modes. Since
L-MSIO recognizes input multireel files from the existence of an EaT trailer label,
and the system checks trailer labels for input files only if labels have. been declared
as standard, output files to be used subsequently as input must have standard labeling.
L-MSIO assumes an input file with nonstandard or omitted labels to end at the first end
of file mark on the first reel. A multireel file with nonstandard or omitted labels can
be processed by treating each reel as a separate file.

MULTIFILE REELS

A multifile reel consists of a set of files contained on a single reel of magnetic tape.
A file cannot be on a multifile reel and also be multireel. Each file must be defined
by the STOPOPEN macro (refer to section 4). These files may have any type of
labeling, but all files on a reel must have the same type.

14-6 60410600 A

Files on a multifile reel are handled as all other files except that OPENF and CLOSEF
perform additional functions to locate each of the files on the reel. When opening an
input file on a multifile reel, L-MSIO compares the position of the file being opened
to the current position of the tape. If the new file is farther along the tape than the
current file, the tape is spaced forward the appropriate number of files. Otherwise,
the tape is rewound and then space d forward. Any file on an output multifile reel can
be accessed and opened for use as input without affecting the status of the remaining
files on that reel.

Files on an output multifile reel are written in the order dictated by the program rather
than the order in which they are defined in the FET by the STOPOPEN macro. There­
fore, if they are not in the same order, the system issues an error message at object
time giving the actual file position and the file position specified in the FET. Program
execution continues normally. If an output multifile' reel is to be used later as input,
the system assumes the files to be in the order specified in the FET. The user must
ensure that a tape is positioned at the end of the last file written when adding new files
to the tape.

Because no two files on a multifile reel may be open simultaneously, they should share
buffer and record areas.

USER LABEL PROCESSING ROUTINES

Label processing occurs at the time a reel of a tape file is closed or opened. The
following conditions close the current reel and open a new reel.

A CLOSEF request with the close reel option

The discovery of an EOT trailer label on an input file

The detection by PUT of an end of tape mark on an output file prior to a CLOSEF
request

L-MSIO enters user specified routines each time a label with which they are associated
is processed. These are closed subroutines entered through a return jump. These
routines cannot call or use L-MSIO routines (that is, L-MSIO cannot be reentered).

HEADER LABEL PROCESSING

If the user specifies a preheader label routine, the system enters the routine for an
input file after reading the label and moving it to the record area but before checking
it. For an output file, L-MSIO enters the user label routine before the label has been
forme d in the buffer.

If a post header label user routine is specified, L-MSIO enters the routine for input
files after reading, moving to the user record area, and checking the label. For
output files, the system enters the user routine after forming the label in the buffer
but before writing it.

60410600 A 14 -7

TRAILER LABEL P·ROCESSING

These routines apply only to nonmass storage files. Mass storage files have no trailer
labels. L-MSIO enters pretrailer label user routines after reading the trailer label on
an input file and moving it to the record area but before checking it or before forming
the trailer label for an output file.

A post trailer labeL.user routine is entered for input files after the label has been
read, moved to the user record area, and checked. For output files, the user routine
is entered after the label has been forme d but before it has been written.

The user can modify the label from within the user routine.

14-8 60410600 A

LOGICAL MSIO ROUTINES 15

DESCRIPTION

The L-MSIO routines are divided into four classes.

• File description routines which build a file environment table (FET) for a file

• Open and close routines which open and close files

• Logical I/O routines which read and write logical records

• Restart routines which restart a program if an irrecoverable I/O error occurs

FILE DESCRIPTION MACROS

L-MSIO uses macros to describe the characteristics of files to be processed. These
macros generate an FET for each file that MSIO references during I/O operations.
Refer to appendix F for the FET format.

There are five file description macros:

1. FILEDESC

2. LABELING

3. VARIABLE

4. STOPOPEN

5. RERUN

Only the FILEDESC macro is required~ and it must be the first macro used. It builds
the file FET. The other macros insert values in special purpose fields in the FET
which are left blank by the FILEDE SC macro. The other macros may appear in any
order~ but must follow the FILEDESC macro they apply to and must precede the OPENF
routine which opens the file.

FILEDESC MACRO

The FILEDESC macro builds the FET and provides the basic information necessary to
reference the file.

LOCATION

1 8

filename

filename

60410600 A

OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

10 120]41
I I

FILEDESC I (recl~ reca~ bufl~ bufa~ tiufb~ lu~ alu~ den~ mod~ bf~ opt~ acc)
I I
I I

Symbolic location of the first word of the FET. It is used to
reference the FET in subsequent I/O requests on the file.

15-1

recl

reca

bufl

bufa

bufb

lu

alu

den

mod

Logical record length. Size. in characters. for fixed length logi­
cal records or for the fixed length base of variable length records
which have a recurring item. If the end of a record is indicated
by a record mark or if the total number of characters is variable.
this field is specified as zero or is omitted. The maximum size
is 4095 characters.

Record area address. Expression representing the word address
of the first character of the record area. Files which share the
same record area should have the same or equated symbols. If
there is no record area for the file. this parameter is omitted.

Buffer length. Number of whole words. 5 to 4095 are needed to
contain the maximum record block in the file. If bufa is not
specified .. this parameter should be omitted.

Buffer address. Expression representing the first word address of
the buffer for this file.

Alternate buffer address. Expression representing the first word
address of the alternate buffer for this file.

First file number. This field is required for nonmass storage
files and omitted for mass storage files ..

Alternate file number. Alternate file number used if the file is
multireel. If this field is omitted and the file is multireel. the
first ·file number is used.

For mass storage files.. this parameter is interpreted as a write
check parameter.

Zero or blank

Other

No write check

Write check operations are issued after
every write on an output unit

Recording density on magnetic tape only.

1
2
3

low
med
high

7-Track

200 bpi
556 bpi
800 bpi

9-Track

800 cpi
800 cpi

1600 cpi

If this field is omitted.. medium density is assumed. The density
is recorded in an output label but is not checked on an input label.

Recording mode. Indicates parity of the file.

o even parity (BCD)t

1 odd parity (binary) t t

If this field is omitted.. even parity (BCD) is assumed.

t Conversion mode on 659 tape drives
tt Pack mode on 659 tape drives

15-2 60410600 A

bf

opt

acc

LABELING MACRO

Block format. Indicates whether records are to be written one
per block or blocked to the capacity of the buffer area. If the file
is on mass storage, this parameter governs whether a preamble
is attached to each block.

o Records are blocked to capacity of buffer area.
Preamble present for mass storage files.

1 One logical record per record block.

Optional file indicator. Indicates optional file. It mayor may
not be present at object time. For output files, output requests
only, this field should be omitted.

o Not optional

1 Optional

Access mode for mass storage files.

o Sequential

1 Random

This macro is required for all mass storage files and for nonmass storage files with
standard or nonstandard header labels.

I LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS
f-------~-+-----------------____,-------------------- ------
l1 __ 8 1 0 1 20 141

I
I I

i

l

I LABELING 1 (owner, fileid, ed, reel, Ireten)
. I :

I i I I

owner

fileid

ed

60410600 A

Owner of mass storage files. Address of an eight-character
owner identification. This field is omitted for nonmass storage
files.

File identification. Address of the file identification which is
compared with file name in the label record. For nonmass storage
files, this is a 14-character field. For mass storage files, it is
a 30-character field. For nonmass storage files, the special
symbol NON - ST AN specifies that the file has nonstandard labels,
and parameters ed and reel have special meanings. If NON-STAN
is used and ed and reel are omitted, the label is read into or
written from the record area according to the record type.

Edition number. Address in memory of a two-digit (BCD) edition
number. If fileid is NON-STAN, this parameter is the address
of the nonstandard label area.

15-3

I

I

reel

reten

V ARIABLE MACRO

Reel number on magnetic tape. Address in memory of a two-digit
BCD reel number. It is used when reading and writing labels. If
not specified, reel numbers are not checked on input. If fileid is
NON - ST AN, this is the length in characters of the nonstandard label
area.

Access security in mass storage. Address in memory of the
four-character access security.

Retention cycle for nonmass storage only. Address in memory of
a three-digit BCD retention cycle field. The value can range from
000 to 999.

This macro describes the characteristics of files containing variable length records.
It is not required if the logical records within a file are fixed length.

LOCATION

1 8

type

keyl

key

OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

10 120 141

I I
Kr ARIABLE 1 (type, keyl, key, kfm, max, tis, id, idl, idm)

I I
1 I

Logical record type (required)

1 Key field contains the total number of characters within
the record.

2 Key field contains the number of times a fixed length
trailer item occurs.

3 Universal format. The parameter key specifies the
address which contains the size of the record when writing
and reading records.

4 Record mark of 728 terminates each record.

n Record mark of n terminates each record. n can be
any six-bit octal number except 01 through 04.

Size of key field. Number of characters, from 1 to 31, in the
key field. For record types 1 and 2 above, the value iIi the key field
may not exceed 4095.

Location of key field. Character position for the left boundary of
the key field. If the field is within each record of the file, this
number indicates its position relative to the beginning of the record.
If the field is not in the record, this parameter represents the
character address for the first character of the BCD field. If type
indicates that the record format is universal, this is the address
which contains in binary the length of the record to be written or,
when reading, the address where the length and mode (bit 23) of the
record read can be stored. t

Bit 23 = 0

Bit 23 = 1

BCD records

Binary records

t Refer to the MODEBIT assembly option in the MSOS Installation Handbook.

15-4 60410600 C

kfm

max

tis

id

idl

idm

STOPOPEN MACRO

Key field indicator

Omitted or 0

1

Key field is within the record or not used

Key field is elsewhere.

If this field is omitted, the key field is assumed to be located
within each record of the file. This is not applicable for universal
format.

Maximum record size. Maximum size for the variable portion of
the file records. If the records consist of a fixed base and a
trailer item, this field contains a number equal to the size of the
trailer item times the maximum number of possible appearances.
If the records vary in any other way such as recor'd mark or total
number of characters, this parameter is the maximum possible
size for any record of the file. If a record mark terminates the
record, the maximum length should include this character.

Trailer item size. Character size of the trailer item. If records
vary in any other way, this field should be omitted.

Position of the left character of the identification field within the
record. t

Character size of the identification field. t

Mode of the identification field. t
o Numeric

1 Alphanumeric

This macro provides information on a file within a set of files. No more than one file
within the set is open at the same time. Files which share buffer areas may be des­
cribed by a STOPOPEN macro. STOPOPEN is required for files on the same reel.

------ - ----
I LOCATION OPERATION, MODIFIERS, ADDRESS FIELD

~--. 8 10 120 r" r= ===t
I STOPOPEN: (mnam, mi, mfi)

I I

COMMENTS

mnam Master file name; name of the file to which all other files in the
set are linked. One file from each set is arbitrarily chosen as
the master file. The same file name must be specified in all
STOPOPEN instructions for files of this set, including the master
file.

mi Master indicator

o or omitted

1

Indicates this is not the master file.

Indicates master file.

I

I
I
I

t Optional usage. Currently not used for record description but value is written in FET I
and mass storage file label by L-MSIO.

60410600 C 15-5

mfi Multifile indicator

o or omitted

1-63

Not a multifile reel" but buffer areas are
shared.

Specifies the position of this file on a
multifile reel.

Output files for a multifile reel are written in the order in which they are presented
to the I/O system. The user must insure that this order is the same as the position
numbers specified for the files.

Only input files to be processed need be declared. Position numbers for every input
file need not be present.

The buffer area addresses declared for each file mentioned in a STOPOPEN instruction
should be the same.

RERUN MACRO

This macro is required for every file when rerun dumps are taken during execution.
If rerun dumps are requested" all FETs for that job must be in consecutive memory
locations.

LOCATION ' OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

1

I

8 10 120 141

I I

RERUN 1 (rlu" fwafets. numfets" ft-eq)

rlu

fwafets

numfets

freq

I I
1 I

Rerun indicator. Indicates that rerun dump is to be taken as
defined by freq.

o No rerun dump associated with this FET.

nn Unit on which rerun dumps are to be taken. For nonmass
storage files this is the logical unit. For mass storage
files this is the file number assigned the rerun file.

First word address of the first FET within this job.

Number of FETs in this job. The maximum number allowed is 63.

Rerun dump control.

o
nnnnn

Rerun dump at end of reel.

Rerun dump taken after each nnnnn physical
records of this file (nnnnn equals 1 to 32767).

Parameters fwafets and numfets must always be present for every FET when using
rerun dumps. Parameters rlu and freq need to be present only for FETs which control
the rerun dumps.

15-6 60410600 A

OPEN AND CLOSE ROUTINES

L-MSIO contains an open file routine (OPENF) and a close file routine (CLOSEF).
These routines are used in place of the OCAREM open and close functions for files to
be processed with L- MSIO routines.

OPENF ROUTINE

OPENF initializes a file for processing. It processes file header labels, positions
mass storage output files and multireel tape files, inputs a block of recordst, and
provides automatic entry to user label processing routines. An OPENF request is
made prior to any processing of the file.

OPENING FILES ON UNIT RECORD DEVICES

The following conditions must exist before an OPENF request is made for a nonmass
storage file.

1

1. If labels are used in the file, they are described with the LABELING macro.

2. For output files, any optional information for the file header label is stored
in characters 33 through 80 of the record area unless a user preheader
routine has been defined for this purpose.

3. If nonstandard data name labels have been specified, the FET must contain
the address and length of the label buffer area.

4. Any user routines executed before or after label processing must be specified
in the OPENF calling sequence.

5. Files which share buffer areas, including multifile reels, are described by
the STOPOPEN macro.

6. The FET is defined by the FILEDESC macro.

7. If a mass storage file was specified as a dump unit with the RERUN macro,
the file is opened with an OPEN function.

LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

8 10 120 !41

OPENF i (filename, use, rewind ikey, error, L1, L2, L3, L4)
I I
1 I

filename Symbolic address of a FET which contains the file identifier and
other information necessary to open the file (refer to FILEDESC
macro).

use I/O key for the file.

I Read only

o Output

10 Input/ output (mass storage only)

tOnly for input or I/O files

60410600 C 15-7

I

Calling

p
p+1
p+2
p+3
p+4
p+5
p+6
p+7

rewind key Applies only to magnetic tape files and is ignored for mass
storage.

error

L1

L2

L3

L4

sequence

RTJ
use
rev

to

zero or blank

1

Rewind

No rewind

Address of a routine entered after executing the standard I/O error
recovery procedure.

Address of a user routine executed before header label processing.
Preheader label routine.

Address of a user routine to be executed after header label
processing. Postheader label routine.

Address of a pretrailer label routine.

Address of a post trailer label routine.

OPENF:

MOPENF
fet, rewind
error
L1
L2
L3
L4

Normal return

use 01 Input
Output 02

03 Input! output (mass storage files only)

rewind 0 Rewind

fet

rev

error

LI-L4

1 No rewind

Symbolic address of the FET

00 Forward
01 Reverse (ANSI FET only)

Addresses of optional user routines. If absent,
addresses in calling sequence are zero-filled.

If an input file was declared as optional in the FILEDESC macro and was not assigned
in an EQUIP statement before opening the file, an end-of-file exit is taken on the first
GET request for that file. If the file was equipped before opening, normal processing
occurs.

OPENF processes header labels according to the specified labeling mode (standard,
nonstandard, or omitted). After label processing .. L-MSIO positions the file and .. for
input files, inputs a record or a block of records in accordance with the assignments
in the FET.

15-8 60410600 A

STANDARD LABELING

For an output file, the system transfers optional' user information from characters
33 through 80 of the record area to the label area and writes the label. For input
files, L-MSIO reads the label and checks it against the LABELING parameters,
identification, edition, and reel number, in the FET.

If the label is valid, L- MSIO transfers it to the user record area. If it is not valid,
the system types a message to the operator identifying the file, the label expected, and
the label received. The operator may, by typing the proper key word, select one of
the following options.

Keyword

X

A

R

Option

Ignore the error condition and proceed.

Terminate the job.

Reread the label, either on the same tape or on a new one
mounted by the operator.

NONSTANDARD LABELING

At the time an output file is opened and for each reel of a multireel file, L-MSIO
writes the label from the nonstandard label area, if specified in the FET, or from the
record area if the label type is NON - ST AN. The first record of an input file is read
into the nonstandard label area if one is specified, or into the record area. No label
checking occurs.

If ANSI COBOL is being used, nonstandard labels are placed into the nonstandard label
area where they are checked by the ANSI nonstandard label checking routine.

OMITTED LABELING

No checking or writing of labels occurs.

OPENING FILES ON MASS STORAGE

The following conditions must exist at the time an OPENF request is made for a mass
storage file.

1. The area for the file must have been previously allocated.

2. The label must have been specified by the LABELING macro and must be
standard.

3. The OPENF calling sequence must specify any user routines to be executed
before or after label processing.

4. The FET must have been described by the FILEDESC macro.

5. Files which share buffer or record areas must have been described by the
STOPOPEN macro.

6. If a mass storage file was specified as a dump unit with the RERUN macro,
the file must have been opened with an OPEN function before the OPENF
routiile can be called.

60410600 A 15-9

For a mass storage file, an OPENF request dir~cts the system to search the label
directory for the specified file, get the proper devices on line, update the file usage
counter, set the file to open status, and check labels. Information concerning file
structure may be in the file label. If so, it is read into the FET, replacing any of
the parameters which may have been supplied by the user. Then, the OPENF routine
reads a block of records into the buffer area, if the file was opened as an input or
I/O file.

During file opening, L-MSIO checks the file label for the following error conditions.

1.

2.

3.

The file is being opened

The file is being opened

The file is being opened
is set in the label.

but

for

for

4. Wrong access security code.

is currently open for output.

output or I/O but is currently open for input.

output or I/O but the read only protection flag

5. The file identification cannot be found in the label directory and the file
was not declared optional.

6. The file cannot be placed on line and the file was not declared optional.

7. Too many files are open and there is no more room in the resident tables.

If one of these errors exists. L-MSIO sends a message to the operator and to the
standard output unit, giving owner identification, file name, edition number of the
requested file, and type of error.

If the input file is declared optional and the file label does not appear in the file label
directory or the operator elects not to place the file on-line, the first GET request for
the file causes an end-of-file or invalid key exit. The job is terminated if an optional
output file does not exist or cannot be mounted.

A mass storage input file may be opened any number of times without intervening close
requests in the same program as long as a different FET is supplied for each OPENF
request. For example, a mass storage input file may be in an open condition for both
random and sequential accessing. An output file can be opened only once without an
intervening C LOSEF •

15-10 60410600 A

CLOSEF ROUTINE

C LOSEF terminates processing on a file for a specific FET, prevents any subsequent
accessing of that file until it is opened again, updates the file label, and releases mass
storage resident tables. CLOSEF applies to both magnetic tape and mass storage files.
A close reel option is available for use with files on magnetic tape. It closes a reel
of a tape file and opens the next reel. CLOSEF is called by the following macro.

LOCATION OPERATION, MODIFIERS, ADDRESS FIELD

8 10 120

CLOSEF 1 (filename, p2, p3)
I
1

COMMENTS

41

filename Symbolic address of a FET containing the file identifier and
other information necessary to close a file (refer to FILEDESC
macro).

p2

p3

A rewind option for magnetic tape files.

zero or blank Rewind to load point

1

2

Unload

No rewind

This parameter is omitted for mass storage.

Close reel option intended for use with multireel magnetic
tape files only and used to close a reel of a multireel file
prior to the normal end.

R Close current reel and open next reel.

other Close file.

For ANSI COBOL, the close reel option rewinds and unloads the reel.

C aIling sequence to C LOSEF:

p RTJ MCLOSEF
p+2 rw fet, r
p+3 Normal return

fet Symbolic address

r Reel/file option

1 Close

0 Close

rw Rewind option

tape rw

mass storage rw

60410600 A

of the FET.

current reel and open next reel.

file.

00 Rewind

01 Rewind and unload

02

00

No rewind

15-11

When closing an output or r/o file. L-MSIO writes any records remaining in the buffer
areas on the I/O unit.

CLOSING FILES ON UNIT RECORD DEVICES

After emptying the buffers for output files. L-MSIO writes an end of file mark. an
ending label. and another end-of-file mark. L-MSIO writes an EOT label for a close
reel request and an EOF label for a close file request.

The ending label always has the following standard format.

Character
Position

1-3

4-8

9-80

Content

EOT

EOF

nnnnn

any

Explanation

End of tape for an intermediate reel

End of file for a final tape

Physical record (block) count for the reel

Optional information

The optional information is obtained from characters nine through 80 of the user record
area. If the user wishes to have this information in his labels, he must define a pretrailer
label routine or put the information there prior to a CLOSEF request for output files. The
optional information from the EOF label is in the user record area when the end of file
rou tine is called.

If an EOT label is encountered on an output file. L-MSIO produces a rerun dump if
requested and opens the next reel of the file. An EOF label on an input file causes
an exit to the user end-of -file routine.

When closing an input file with the reel option. L- MSIO does not check the end reel
label but assumes it to be an EOT label and opens the next reel in the sequence. A
C LOSEF request must be given for the last reel of a multireel file.

CLOSEF stores the optional information in the user record area when encountering a
trailer label on an input file. A post trailer label user routine can be used to examine
this information in the case of a multireel file.

CLOSING MASS STORAGE FILES

Mass storage files do not have ending labels. The user ending label routines specified
in the OPENF request have no meaning for mass storage files. A CLOSEF request fer
a mass storage file updates the FET and file label and closes the file to further
processing through that FET. The file ordinal and the label and error user routine
parameters are cleared from the FET. and control returns to the calling program.

15-12 60410600 A

LOGICAL READ /WRITE ROUTINES

The L-MSIO read/write routines allow the user to read and write logical records in
L- MSIO formatted files.

GET ROUTINE

The GET routine deblocks input records by reading them from an input buffer and
moving them to the record area. When an input buffer has been deblocked, GET
automatically reads a new block of records from the input unit. A file is read, one
record at a time, by looping on a GET request until an end of file is sensed. GET is
used on any L-MSIO formatted file that is open for input or I/O.

After a file is opened, the first GET request transfers the first record in the input
buffer to the record area for inspection or processing. If no record area was specified
in the FILEDESC macro, GET returns the first character address of the record in
register A and returns the record size, in characters, in register Q. This allows the
user to do his own deblocking. The process is repeated for the next record in the
buffer area each time a GET request is made.

When all records in a buffer have been processed, the next GET reads the next block
of records into the buffer area, and then moves the first record of the new block into
the record area. If there is no record area, the record address and size is returned
in the A and Q registers. If two or more buffer areas were specified, the GET
function reads the next records from the second buffer area while the first buffer area
is being refilled.

Optionally, the user can request that all or part of the record be transferred to an
additional area by specifying an INTO-area and an INTO-size. If the INTO-size is
less than or equal to the logical record size, L-MSIO transfers only the number of
characters specified. If the INTO-size is greater than the logical record size, the
unused portion of the rec ei ving field is blank filled.

1

i

LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

8 10 ! 20 141

II
GET I (filename, ur .. INTO-ar$a .. INTO-size)

1 I
I 1

filename Symbolic address of the FET (refer to FILEDESC macro).

ur Address of a user routine to be entered if an end-of-file or
invalid key condition exists when a program calls GET. This
is an open subroutine which L-MSIO calls by a UJP.

INTO -area Character address of an area in addition to' the record area
into which the record is read.

INTO-size Size in characters of the INTO -area. This must be specified
if INTO- area is present.

60410600 A 15-13

C aIling sequence for GET:

p RTJ
p+1
p+2
p+3
p+4

fet

ur

INTO

INTO

MGET
fet
ur
INTO area
INTO size

addres s of the FET

}

same as in the macro description; if absent,
a~ea addresses in calling sequence are zero-filled

SIze

The system enters the routine specified by ur when GET encounters either an end of
file condition on a file declared as sequential access or an invalid key condition on a
file defined as random access. An invalid key condition for a mass storage file in
random access mode occurs when a program attempts a GET request with a SAK which
is outside the physical limits of the file. Any attempt to execute a GET statement
after an end -of- file or invalid key user routine has been called is illegal unless subse­
quent CLOSEF and OPENF requests have been executed for the same file. The CLOSEF
and EXPAND macros can be used to expand the size of the file when an invalid key
condition occurs. To clear an invalid key condition on random files, execute a LOCATE
request. If a GET request detects an irrecoverable error, L-MSIO moves the current
record to the record area prior to calling the user error routine.

PUT ROUTINE

The PUT routine writes logical records in an output buffer and, when the buffer is
full, automatically writes the block of records on an output unit. The PUT routine can
be used on all files opened as output or 110 files.

A PUT request writes the contents of the record area in an output buffer and advances
a record counter by one for each record written. If no record area was specified in
the FILEDESC macro, the PUT request returns the first character address of the next
available space in the output buffer to register A, and advances the record counter by
one. With no record area, the user must do his own blocking.

When a buffer has been filled with records, the next PUT writes the block on an output
unit. If two buffers are not available, PUT waits for the buffer to be written on the
output unit and then writes the next record in the em ptied buffer.

The PUT routine does not split records across a block. If a record does not fit in the
remaInIng space of a buffer, PUT outputs the partially filled block and then writes the
record as the· first record of the next block.

The user c an specify an area, other than the record area, from which a record is to
be blocked with the FROM option. When the FROM option is selected, records are
transferred from the FROM area directly to the output buffers. If there are no speci­
fied output buffers, the record areas serve as the output buffer and receive the records
transferred from the FROM area. The FROM option used with the ANSI COBOL variant
moves records from the FROM area to both the record area and output buffer areas if
both areas are specified.

15-14 60410600 A

If the records of the file are fixed length, the FROM size indicates the number of
characters to be transferred. It may be less than,. equal to, or greater than the length
of a logical record. If the length is greater than that of a logical record, the system
truncates the record to fixed length size. If equal to or less than the size of the
logical record, L-MSIO transfers the number of characters specified.

If the records of the file are variable length, the number of characters transferred
depends on the value of the key field or the presence of a record mark, as well as
the FROM size. If the key field is not in the record, the field must be in the same
location as for all other records of the file. If the key field is normally in the record,
it must be in the same relative position in the FROM area. If the FROM size is
greater than the length indicated by the key field, L-MSIO truncates the record to the
indicated size and moves it to the buffer. If the FROM size is less than the length
specified by the key field, L- MSIO fills the unused portion of the record with blanks.
For universal record format, the key field is outside the record and contains the length
in binary of the record to be transferred.

If a record mark determines the length of each record in the file, L- MSIO searches
the FROM area until it encounters a record mark. L-MSIO then transfers the record
(starting with the FROM address and including the record mark) to the buffer. If a
record mark is not found before the maximum logical record length is exceeded, the
system issues a diagnostic and terminates the run.

PUT is referenced by the following macro:

I LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

~ _ . 8 ~ --=420 r-:4-1-----_-_--_--·-=--_-_-_-_-_-_-_.==--_~-_-_--==-_-
i i PUT I (filename, ur, FROM-atea, FROM-size)
! I I

filename

ur

I

Symbolic address of the FET (refer to FILEDESC macro).

Address of a user routine to be entered if an invalid key
condition exists. This routine is an open subroutine which
L-MSIO calls by a UJP. It is not required for nonmass
storage files.

FROM- area Character address of the area from which the record is to
be transferred. This overrides the record area specified in
the FET.

FROM-size Size in characters of the FROM-area. This must be specified
if FROM -area is present.

Calling sequence for PUT:

P RTJ MPUT
p+1 fet
p+2 ur
p+3 FROM-area
p+4 FROM-size

fet address of the FET

ur
FROM- }same as in the macro description; if absent,

area addresses in calling sequence are zero-filled
FROM-size

60410600 A 15-15

The invalid key condition occurs for mass storage files when an attempt is made to
write outside the physical limits of the file. In sequentially accessed files, L-MSIO
enters the user invalid key routine when a PUT request encounters the end of the last
block of a mass storage file. The invalid key routine is entered immediately after the
last record is written in the buffer, but before the buffer is written on the file. To
write the last buffer, the file must be closed in the invalid key routine with CLOSEF.
Closing causes all records in the file I s output buffer to be written. Then the file can
be expanded and reopened in the invalid key routine if more data must be written.

In randomly accessed files, L-MSIO enters the invalid key routine when a PUT request
follows a locate which located to a block outside of the physical file limits.

I Both GET and PUT requests can be made on an I/O file. t For sequential files the seek
address key (SAK) is updated or advanced only by the GET request. All PUT requests
that follow a GET request refer to the last record referenced by the GET request.

LOCATE ROUTINE

LOCATE references a specific record on a mass storage file. Randomly accessed files
require a LOCATE request before each GET or PUT to position the file to the record
to be referenced. LOCATE may be used while processing a sequentially accessed
input file in order to position the file to a noncontiguous record from which sequential
processing resumes. LOCATE is referenced by the following macro.

--
LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

1 8 10 120 141

I
LOCATE 1 (filename, rIp) i

filename

rIp

I I
1 I

Symbolic address. of the FET (refer to FILEDESC macro).

Record location parameter.

o or blank File is positioned to the highest block
written plus one for writing a record.

other Word address of a user supplied two-word
SAK which L-MSIO uses to position the file
(refer to file access in section 13).

Calling sequence to LOCATE:

P
p+1
p+2

RTJ

fet

rIp

MLOCATE
fet
rIp

Core address of the FET.

Same as in the macro description.

When locating to other than the first record in a block, the two word preamble should
be included in the calculation of the relative character position of the record.

I t Mass storage only.

15-16 60410600 C

LOCA TE is illegal on a sequential output file. For a sequentially accessed input or
IIO file, L- MSIO initiates buffering following the position operation in accordance wi th
buffer assignments in the FET. Since L-MSIO cannot anticipate the next record address
for random access files, only the current buffer is filled.

If an attempt is made to LOCA TE outside the allocated area of a file, an invalid key
condition is flogged so that the next GET or PUT causes an invalid key exit.

RELSE ROUTINE

The RELSE macro releases the records in the current buffer area and prepares the
buffer for the next block of records. For output buffers, RELSE writes the current
partially filled buffer on the output unit. All records in the buffer, up to and including
the last record referenced with a PUT or GET, are written. The remainder of the
record block is written as blank fill on the output unit. The next PUT macro writes
the next record in the first record position of the cleared buffer.

For input files, RELSE fills the buffer area with the next block of records from the
input unit. The next GET macro reads the first record in the refilled buffer area.

If two RELSE commands are given consecutively, the second is treated as a no operation.
RELSE is referenced by the following macro.

LOCATION OPERATION, MODIFI ERS, ADDRESS FIELD COMMENTS

1 8 10 120 141

1 (filenam~)
I

RELSE 1

1 I

filename Symbolic address of the FET (refer to FILEDESC macro).

Calling sequence for RELSE:

p
p+1

RTJ

fet

READF ROUTINE

MRELSE
fet

Address of the FET.

READF reads a record or block of records into a record area or an input buffer. All
read functions are sequential unless preceded by a file positioning routine (LOCATE).
Either of the two possible buffers specified in the FET or a record area specified in
the READF calling sequence may be used as the input area.

LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

1 8 10 120 !41

READF 1 (filename, fwa x)
I

I
I I
I I

60410600 A 15-17

filename

fwa x

23

I/O Area

Size

Status

Symbolic address of a FET (refer to FILEDESC macro).

First word address of an optional two word table in the
following form:

I/O Area

Size

18 16 14 o

First word address of the I/O record area.

Size in characters of record to read.

Buffer status code returned by L- MSIO as follows:

Status

00 Internal

01 External

02 Error

20 EOF

30 EaT / Invalid
Key

32 EaT /Error

Description

Buffer available for use

Buffer currently in I/O processing

Irrecoverable error on this buffer

EOF mark on this buffer

EaT mark on this buffer if nonmass
storage file; invalid key condition if
mass storage file

EaT and irrecoverable error on this buffer

There is no end of file status for reverse reads. A job aborts if a reverse read is
attempted past the load point.

Calling sequence to READF:

P
p+1
p+2

RTJ

fet

fwa x

MREADF
fet
fwa x (optional)

Address of the FET.

First word address of an optional two word table; if omitted,
location p+2 is zero-filled.

The fwa x parameter is optional and, if omitted, L-MSIO initiates a read into the
currently active buffer within the FET. If the user wishes to control buffering and
does not require GET, he may specify the fwa x parameter. In this case, buffer areas
must not be assigned within the FET.

If no user error routine was specified in the OPENF request for the file, an irrecover­
able error gives control to the operator. The operator must type in one of the follow­
ing:

15-18

X

B

A

R

Ignore the error condition and proceed.

Skip the erroneous record and proceed.

Terminate the job at this point.

Repeat the standard error recovery for this record.

60410600 A

If the OPENF request specified an error routine and no buffer areas are specified in
the FET, L-MSIO sets the A register to the first· word address of the buffer containing
the error record and the Q register to the buffer size. Then the system enters the
user error routine through the following calling sequence.

P RT J user error routine
p+1 return

Before returning to L-MSIO, the user error routine must enter a code in register A to
specify one of the following three alternatives.

o Accept

1 Bypass

2 Retry

In addition to the above options, a call to ABNORMAL can be made to terminate the
program.

If the OPENF request specified an error routine and the FET assigned buffers, STATUS
is set to indicate an irrecoverable error.

WRITEF ROUTINE

WRITEF writes a record or a block of records on an output unit. All write functions
are sequential on the output unit unless the WRITEF request is preceded by a file
positioning function (LOCATE request). Either of the two possible buffers specified in
the FET or a record area specified in the calling sequence may be used as the output
buffer.

I LOCATION
-------- - -----

OPERATION, MODIFIERS, ADDRESS FIELD

10 120

WRITEF I (filename, fwa x)

I
I

COMMENTS

filename Symbolic address of a FET (refer to FILEDESC macro).

fwa x

23

I/O Area

Size

Status

60410600 A

First word address of an optional two word table in the
following form:

I/O Area

Size

18 16 14

First word address of the I/O area.

Size in characters of the record to be written.

Refer to buffer status codes for READF macro.

o

15-19

C aIling sequence to WRITEF:

P
p+l
p+2

RTJ

fet

MWRITEF
fet
fwa x (optional)

Address of the FET.

fwa x First word address of an optional two word table; if omitted,
location p+2 is zero-filled.

The fwa x parameter is optional. If it is omitted, L-MSIO initiates a write from the
currently active buffer within the FET. If the user wishes to control buffering and
does not required PUT. the fwa x parameter may be specified. In this case, buffers
should not be as signed within the FET.

Error recovery action is similar to that described under READF.

PAUSEF ROUTIN E

PAUSEF creates a pause until the previous READF or WRITEF request. including error
recovery, is completed. If the READF or WRITEF used the optional parameter, fwa x.
the status field contains the status of the last operation.

LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS

1 8 10 /20 /41

PAUSEF i (filename)
I

I
I I

I / /

filename Symbolic address of the FET (refer to FILEDESC macro).

Calling sequence to PAUSEF:

p RTJ MPAUSEF
p+l fet

fet Address of the FET.

15-20 60410600 A

RESTART FUNCTION

The L-MSIO restart routines CHECKPT and RESTART make periodic restart dumps
while a program using L-MSIO formatted files is running. If an irrecoverable I/O or
other error occurs which would normally require restarting the program from the
beginning, the program can be restarted at the point of the latest restart dump rather
than at the beginning.

Prior to using CHECKPT and RESTART, the RERUN macro must be used to enter the
dump unit number and dump frequency in the FETs of all files used in the program.
At the points in the program specified by the RERUN macro, a dump of all memory and
registers being used by the program is taken, and the position of all open L-MSIO
formatted files is recorded in the dump file. The dumps are written sequentially on the
dump unit specified in the RERUN macro. Any of the dumps on the dump unit can be
selected for a restart.

CHECKPT ROUTINE

CHECKPT is used to produce rerun dumps any place in the program that a CHECKPT
macro or call is inserted. The dumps taken by CHECKPT are in addition to those
caused by the RERUN macro.

~~~ LOC~!~ OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS 

1 8 10 120 141 
~---- --- -=r=- ===t -- ~----------t= 

i I CHECKPT I (filename) 
! 1 

I I 

filename Symbolic address of the FET related to the rerun dump (refer 
to FILEDESC macro). 

Calling .. sequence to CHECKPT: 

P 
p+l 

RTJ 

fet 

MCHECKPT 
fet 

Addres s of the FET. 

RESTARTING A PROGRAM 

To restart a program, the user must ensure that the program is operating in the same 
physical environment as it was when the rerun dump was taken. t The RESTART state­
ment relocates each open file to the position where the last rerun dump was taken, 
and then restarts the program. 

t The system must have the same units equipped as well as the same tape reels, library 
editions, core addresses, and file numbers as before. 

60410600 A 15-21 



Use caution when restarting a program which uses files that are not on magnetic tape. 
When an input file consists of cards, the entire file must be reloaded. Mass storage 
110 files may be modified between rerun dumps. Therefore, the nature of the program 
determines whether restarts are acceptable. 

$RESTART, uu, n 

uu Logical unit number or file number on which the rerun 
dumps were written. 

n Number of the rerun dump to be used in the restart operation. 
If blank, the last dump written is used. 

If rerun dumps were taken on mass storage, the file containing the dumps must first 
be opened by using the OPEN statement. If uu is a file number, it must not be the 
same as a logical unit number used within the program. 

L-MSIO MACRO EXPANSIONS 
The following job may be run to obtain a list of the L-MSIO macro expansions. 

$JOB ••. 
$COMPASS, L 

IDENT 
LIBM 
LIBM 
LIBM 
LIBM 
END 
FINIS 

77 
88 
$EOJ 

15-22 

EXPAND 
FILEDESC, LABELING, VARIABLE 
STOPOPEN,RERUN,OPENF,CLOSEF 
GET, PUT, LOCATE,RELSE 
READF, WRITEF, PAUSEF, CHECKPT 

60410600 A 



STANDARD JOB OUTPUT AND SYSTEM JOB ACCOUNTING 16 

STANDARD LIST OUTPUT 

All batch jobs have list output at the system list output unit. The list output consists 
of job identification and accounting information, a copy of each MSOS control card used 
in the job, and the data written on the list unit by the program which was executed. 
The last line on the list output gives the amount of CPU time, in minutes and seconds, 
that was used by the job, plus the lines printed, and number of cards punched. 

If a job deck was preceded by a SEQUENCE statement, the SEQUENCE statement is 
written on the second line. If no SEQUENCE statement was used, the JOB statement 
is the first statement written. 

In addition to the normal information supplied on the JOB statement, MSOS writes the 
following additional information on the same line the JOB statement is written on. 

1. Job sequence number 

2. MSOS version number 

3. Library edition number 

4. Date 

5. Job initiation time 

After the SEQUENCE and JOB statements, all MSOS control statements are listed in the 
order that they were read and processed. Program list output immediately follows its 
associated library program call statement, or the RUN statement. For example, COBOL 
compiler output follows the COBOL statement and the output from a binary program deck 
follows the RUN statement. 

JOB SEQUENCE NUMBERS 

MSOS generates a sequence number for each batch job and writes the sequence number 
on the same line as the JOB statement on the list output. 

For jobs without a SEQUENCE statement, MSOS assigns sequence numbers from 1 
through 999 in accordance with the order that the jobs are processed (that is, first job 
processed after autoloading the system is job 1, second job is job 2, etc.). The job 
sequence number reverts to 1 after the 999th job. 

If a SEQUENCE statement is used, the number on the SEQUENCE statement replaces 
the sequence number generated by MSOS. The sequence counter is advanced for the 
next job and the number generated by MSOS for the job is skipped. 

If a job has punched output, its sequence number is punched in block letters on a job 
sequence card which is the last card in the deck (refer to job sequence card in section 
6). This card identifies the job punch output. The sequence cards are offset to separate 
the punched output decks. 

60410600 A 16-1 



I 

ELAPSED TIME ACCOUNTING 

An accounting routine in MSOS accumulates elapsed time for each batch job and prints 
this information at the eTO and at the end of the system list output. 

I SYS 400 hh/mm/ss id L=n C=c 

hh Hours 
mm Minutes 
ss Seconds 
id Account number from the JOB card 
n Number of line s printe d 
c Number of cards punched 

Accounting starts when MSOS reads a new job statement. Elapsed time accounting 
stops when MSOS reads an EOJ statement or senses an EOJ condition. The accounting 
routine subtracts the time used by any priority programs which interrupted the batch 
program so that the batch program is not charged for priority program time. MSOS 
does not perform accounting functions for priority programs. 

SPECIAL USER ACCOUNTING ROUTINES 
If additional accounting information is desired, a custom accounting routine may be 
added at system installation time. This routine must be supplied by the user. File 
number 57 is reserved as a system accounting file for the user supplied accounting 
routine. 

SYSTEM ACCOUNTS TABLE 

MSOS has a system accounting table which batch and priority programs written in 
COMPASS source language may reference by using the symbolic address ACCOUNTS. 
The accounts table holds only information pertaining to the current batch program. 
A ccounting information is not kept for priority programs. 

Accounts Table Format: 

123 181 12 6 I 00 

ACCOUNTS m d 

ACCOUNTS +1 y ed 

ACCOUNTS +2 ,!::::: I h min I s 

+3 ':::::: 

+4 ~::::: I j 

+5 ts 

+6 act 

+7 

+8 i 

+9 te 

+10 ,I, 
'I' 

+11 nl 

+12 lp 

ACCOUNTS +13 nc 

ACCOUNTS +14 cp 

16-2 60410600 C 



m Month. Two BCD digits from autoload. 

d Day. Two BCD digits from autoload. 

y Year. Two BCD digits from autoload. 

ed Current edition of library. Two BCD digits from autoload. 

h Hours. Two octal digits updated at the beginning of each job. 

min Minutes. Two octal digits updated at the beginning of each job. 

s Seconds. Two octal digits updated at beginning of each job. 

Sequence number from the last SEQUENCE card processed (BCD) or sequence I 
number from system counters. 

ts Machine clock time (octal), from register file register 22, at the beginning 
of the job. 

act Account number from JOB card. Eight BCD characters. 

i Job name from job card. First four BCD characters. 

te Time estimate in seconds from JOB card. Eight octal characters. 

nl Maximum number of lines that can be printed on the standard output unit for 
the j'ob. Value is from JOB card. 

lp Actual number of lines printed. This field is set at the end of the job. 

nc Maximum number of cards that can be punched for the job. Value is from 
JOB card. 

cp Actual number of cards punched. This field is set at the end of the job. 

-,' Reserved for future use. 

DATE AND TIME UTILITIES 

The DATE and TIME utilities place the current date and time in the address specified by 
the buffer. These statements may be used by COMPASS or ANSI FORTRAN. The calling 
sequence for the data or the time is: 

EXT 

RTJ 

n 

DATE or TIME 

DATE or TIME 

BUF 

Where n specifies the buffer size (ANSI FORTRAN requires that n equal 75). All 
values returned are in BCD format. If the buffer size is two words; the current wall 
clock time is returned with format of hh s... mm < ss, or the current date is returned 
with format of mln/dd/yy. 

If the buffer size is one word, the date is returned with format of mm dd or the 
job-start time (not current time) is returned with format of hh/m. 

60410600 C 16-3 





ABNORMAL PROGRAM TERMINATION 
AND PROGRAM DUMPS 

ABNORMAL TERMINATION 

17 

When a user wishes to terminate his program because an error or program condition 
has made further processing impractical. he may make a return jump to ABNORMAL. 
ABNORMAL terminates the program. If a DUMP statement was inserted in the program 
(refer to DUMP statement in section 4). ABNORMAL causes the core dump to be taken. 
A core dump of a priority program is delayed until the batch program that was inter­
rupted by the priority program is completed. Figure 17-1 is a sample core dump. 

Example: 

RTJ ABNORMAL 

An alternative method of abnormally terminating a program is to increase the return 
address by one. The address is in the lower fifteen bits of the program entry point. 
Then. set a nonzero value in register A and take a normal exit. The program is 
abnormally terminated but no core dump is taken. regardless of the presence or absence 
of a DUMP statement. This method of termination may be used to suppress a dump 
when a DUMP statement is included in the program. 

When a program in a job is abnormally terminated. all remaInIng control statements 
and/or programs on the job's input file are bypassed. until an end of file statement is 
sensed. All control statements and/ or programs in the job that follow the end of file 
statement are executed. 

PROGRAM DUMPS 

COMPASS and MS FORTRAN users can call a dump routine to print any portion of the 
program in octal. BCD. or floating point characters. The dump also prints the contents 
of the registers and optionally. the register file. The format of the dump is the same 
as the SNAPSHOT dump shown in Figure 4-1. 

In COMPASS programs. the dump is obtained by a call to PROGDUMP. In MS FORTRAN 
programs. the dump is obtained by a call to FORTDUMP. 

PROGDUMP 

C aIling sequence to obtain a dump with COMPASS: 

LOCATION OPERATION, MODIFIERS, ADDRESS FIELD COMMENTS 

1 8 10 120 141 

P RTJ I PROGDUMP i 
p+1 Ib I 
p+2 m I e I 
p+3 BCD I 1. id I 
p+4 ,I, 

I I 'I' 

I I 
I I 

60410600 A 17-1 



~ 

-.J 
I 

t."j 

0') 

o 
~ 
~ 

o 
0') 

o 
o 
td 

Program mode: 
Contents of Contents of 1 = batch 5 = P2 
registers A. inte.rrupt mask 2 = P4 6 = Pl 
Q. Bl. B2. B3 register. 3 = P3 

Address of tht:: ------------~ \-----7~ instruction that U SYS 036 HlIN ABORTt::D. PHOGRAM 
caused the abort 
dump. _____ REGISTERS ANn FILE: . /' Octal contents of 

LOC 77776 4 0"000014 (,I 00077751 Bl 77761 B2 00000 B3 77777 IMR 0411 M 01 I.JA 7703Aregister file 
Indicates this row 
contains re ister - 00000 004170'+0 1040 4464 00732640 0012525(\ 00044444 0012~250 0707070 7 07070707 OPy-a-MUO F"O Q04MMO 
file registe;s 00 I 00010 040770'+0 l6004464 2~.332640 04125250 04044444 04125250 07070707 07070701 47Y_FOMUF F-4 Q44MM4 Q7777777 
through 07 00020 77100177 000 76624 65363363 00071041 07070707. 00000014 0007775 1 00200000 83 07WDY T078J7777000 07 RO.OO 

00030 7)046~74 720 766 30 65363451 00071104 07070707 00000000 000 77777 041 70000 Z4W 7WHY R07947777000007 4 00 

00040 11111111 OOOUOOOO 00000000 00000000 00000000 00000000 000~7361 000~6260 99990000000000000000000005 1055 
0005 0 000777~1 0007775 1 00000001 00000000 00023103 00000064 00065562 00000003 07 RO? ROOOI000002J 3000U06 50003 
00060 ooooonoo 00000073 00200000 0000001 4 00000001 0000002~ 00011000 00001005 0000000 0+00000 0001000D018000YS 
00070 00000002 00000001 00000000 00000001 00000001 00000077 0000001? 00000000 00020001000000010001000 000 0000 

Contents of ~ 
Indicates this row . MEMORY 
contains memory 
addresses 00000 
through 00007---400000 
GAP indicates I 00010 
contents of all I • GAP 
omitted addresses 76230 
are same as last 
address listed. 

Indicates this row 
contains memory 
addresses 77700 

76240 
76250 

t077707~ 

I 77700 
77710 
77720 
77730 

77740 
77750 
77760 
77770 

*ENO* 

00000000 
00 717751 

00014040 

624547 02 
00077751 

60606060 
243656 05 
2536 3073 
31754~17 

33~&4{'143 
00017754 
010 77751 
15::177776 

00000000 
000} 45 2& 

0001 4 040 

000 77751 
77700023 

b0606060 
0753''+006 
'+2142032 
255(!2152 

17432651 
01000011 
21212121 
20100000 

00771771 
0001 45 27 

0001 4040 

71700020 
01077755 

60606060 
31000000 
27657 020 
2356 1326 

22356443 
14171761 
22222222 
40200000 

00002352 
0001 404 0 

0001404 0 

01077777 
00776254 

60606060 
00000002 
00000010 
65~H2040 

7114 0200 
14277764 
23232.323 
02177774 

00 711 777 
0001 4 0'+0 

0001 4 040 

00776254 
01076254 

31463146 
32155613 
34645312 
25037765 

3001 4241 
0077b252 
00000000 
02277775 

register 77 

Contents of memory 
address 00007 " 

00002~47 0077777? 00003 012 
0001~040 00014040 0001 404 0 

0001'+04 0 

00077757 
00776343 

31464 003 
53072015 
27662065 
04752324 

44531522 
14300003 
00000000 
02771771 

00077757 

06077764 
54176254 

24000000 
23420000 
21606744 
30236017 

25237565 
00777767 
00000000 
01017767 

06 077764 

62454701 
151 7777 0 

00000001 
00000004 
67702020 
51200100 

77350 400 
00776243 
01017777 

Octal contents 

/0 
of memory 

000000000 OOC 0 OOFPO OOH. 
o R01NFOING01~·01--01·-01·-01·. 

01-·01--01--01--01--01--07 ~~ U 

SNP207R YO+l7 0 5 01 67 USNP I 
07 R YOe17 0 5 175 0 TL 5 Y 

101010-3DOOOOOOI 
D 57 .610000002 7. CK000004 
E H K • GYY+0008 U GW.YA XMXV •• 
1 K E A C Fv1.·!J V4 COHC R.I0 

-L I.FRS UI.Z 20Hl~JM BEC V 40 
07 1009 I G UO S H030 XO 51. 
17 RAAAA8BBBCCCC00000000000017 

+BOO·.002 2G 2 Z17 X 

BCD con­
tents of 
register 
file t t 

/ 

BCD con­
tents of 
memoryt t 

tThis value is listed only by 3100 or 3200 systems with dynamic memory protection. or by 3300 or 3500 systems with standard memory protection. 
In the extended core variant. the loader converts the jump instructions which reference the executive subroutines to HLT instruction. (Refer to executive interrupts in section 18). 

t tOn 512 line printers. special characters on the print train (that is. characters that appear only once) are not printed to decrease the time required to print the dump. 

Figure 17-1. Sample Program Abort Dump 



b Beginning address of the dumped region. 

m Mode in which the dump of selected core memory occurs. 

Octal Code Mode 

1 Octal 

2 BCD character 

3 Floating point 

4 Register file 

5 Octal; register file 

6 BCD character; register file 

7 Floating point; register file 

e Ending address of dumped region. 

id Dump identifier of 0 to 4 BCD characters. 

':< Control returns at this instruction. 

FORTDUMP 

i .. ··············'! CAUTION 

S •••••••••••••••••• 
PROGDUMP enables an interrupt and should 
not be called during an interrupt subroutin8. 
PROGDUMP must be declared as an external 
symbol in the subprogram that contains the 
calling sequence. 

FORTRAN statement to call the system dump routine: 

5 7 

CALL FORTDUMP(b, e, m, d) 

b Simple or subscripted variable of first word to be dumped. 

e Simple or subscripted variable of -last word to be dumped. 

m Mode; octal constant with same meaning as COMPASS, 
PROGDUlVlP, or a variable identifier for the location of the constant. 

d Hollerith or internal BCD constant or variable identifier giving the 
location of four BCD characters that identify the dump. 

FORTDUMP need not be declared as an external symbol in the source program. 

60410600 A 17-3 



PROGDUMP AND FORTDUMP EXAMPLES 

Examples: 

To dump the area from BUFY to BUFY +24 and identify the dump as PRG 1: 

COMPASS Calling Sequence 

RTJ PROGDUMP 
BUFY 

1 BUFY+24 
BCD I.PRGI 

FORTRAN Call 

CALL FORTDUMP(BUFY(I). BUFY(25). 1. 4HPRG1) 

17-4 60410600 A 



INTERRUPT CONTROL 18 

INTERRUPT PROCESSING 

MSOS has a Central Interrupt Control routine (CIC) which is part of executive resident. 
Return jumps to crc subroutines may be coded in COMPASS programs to select and 
clear internal program interrupts. External (I/O) interrupts must be selected with cro. 

MSOS interrupts can be divided into three types: user interrupts, executive type inter­
rupts, and system interrupts. User interrupts are selected by coded statements within 
the user program. These interrupts enable the user to sense and process internal 
program fault conditions, I/O completions, time intervals, and operator commands. 
When a program is interrupted, CIC gives control to a user supplied interrupt routine 
to process the interrupt. 

Executive type interrupts apply only when the system is in the program state (that is, 
only to batch and priority 3 and 4 programs) and only for the memory protect and 
extended core variants of MSOS. These interrupts occur if the user attempts to execute 
an illegal instruction or do an illegal write in a protected memory area. crc processes 
the interrupt and usually terminates the program. Illegal instructions are listed in 
appendix D. The interrupt routines used to process this class of interrupts are part I 
of the system executive. 

System type interrupts are activated when a system condition, such as an r/o channel 
ready or trapped instruction, occurs which requires immediate action by the system 
executive. 

The user has no control over the occurrence of these interrupts. The system returns 
control to the interrupted program after processing the interrupts. 

When a program is interrupted, control is given to C Ie which: 

1. Saves the contents of all registers being used by the program. 

2. Clears the interrupt condition so that the interrupt will not be sensed a second 
time without being reselected. 

3. Gives control to the associated interrupt routine to process the interrupt. 

If additional interrupts occur while a previous one is being processed. the interrupt 
processing routine is interrupted and control is returned to CIC again. If the new 
interrupt is a higher priority, it is processed before control is returned to the first 
interrupt processing routine. If the new interrupt is of lower or equal priority, crc 
stacks it in an interrupt table for later processing according to its priority level, and 
then returns control to the interrupted routine. crc itself cannot be interrupted, except 
by a memory parity error or power failure interrupt. 

Table 18-1 lists the interrupts and programs in accordance with their priority level. 
Priority 1 through 4 programs are interrupt processing routines which are core resident. 
They are entered (executed) each time their associated interrupt occurs. When an 
interrupt gives control to a priority program, that program is allowed to complete 
execution before any interrupt routine below the program's priority level is proces sed. 
The system processes all stacked interrupts before reentering the batch program. 

60410600 C 18-1 



..... 
00· 
I 

t\:) 

0) 

o 
H::o­..... 
o 
0) 

o 
o 
(") 

Priority 
Level 

1 

2 

3 

3 

4 

5 

6 

TABLE 18-1. INTERRUPT AND PROGRAM PRIORITY LEVELS 

Interrupt Interrupt Processing 
Interrupt Selected in Type State Remarks 

Real-time interrupt Priority 1 eIe clears the interrupt condition 
program User Monitor (with INeL) but does not enable the 

interrupt system before entering the 
interrupt processing routine. The 
interrupt processing routine will be 
interrupted and reentered if the inter-
rupt system is enabled (with EINT) and 
a subsequent priority 1 real-time inter-
rupt occurs. Priority 1 real-time 
interrupts are the only ones that inter-
rupt CIa processing. 

1/ a channel equipment System System Monitor ----------
interrupt executive 

System real-time System System Monitor ere writes the clock interrupt's 
clock executive next value in its table. 

Manual interrupt System System Monitor e Ie stacks the logical interrupts to the 
executive user and moves message to user buffe.r. 

Heal-time interrupts Priority 2 User Monitor e Ie clears the interrupt condition but 
program does not enable the interrupt system 

before entering the interrupt processing 
routine. P2 real-time interrupts are 
stacked if priorities 1 through 3 are 
executing. 

Trapped instruction System System Monitor ----------
interrupt (only for executive 
occurrence during 
priority 1 process-
ing) 

Internal fault Priority 1 User Monitor eIe clears the interrupt condition but 
interrupt program leaves the interrupt selection before 

entering the interrupt routine . 



O':l 
o 
H:>. 
~ 

o 
O':l 
o 
o 
() 

~ 

00 
I 

t\:) 

~ 

Priority 
Level 

6 

7 

7 

TABLE 18-1. INTERRUPT AND PROGRAM PRIORITY LEVELS (Cont'd) 

Interrupt Interrupt Processing 
I 

Interrupt Selected in Type State Remarks I 
I 

I 
I 

Manual interrupt System System Monitor crc stacks the logical interrupts to 
executive the user and moves message to user 

buffer. 

r/o interrupt Priority 1 User Monitor crc clears the interrupt condition and 
(equipment only) program the interrupt selection before entering 

the interrupt routine. 

Clock interrupt Priority 1 User Monitor crc clears the interrupt condition and 
program the interrupt selection before entering 

the interrupt routine. The user must 
reselect the clock interrupt in his inter-
rupt routine or program if he needs further 
clock interrupts. 





0') 

o 
H::­
....... 
o 
0') 

o 
o 

n 

....... 
cc 
l 

W 

Priority 
Level 

8 

9 

9 

10 

10 

11 

11 

11 

TABLE 18-1. INTERRUPT AND PROGRAM PRIORITY LEVELS (eont'd) 

Interrupt Interrupt Processing 
Interrupt Selected in Type State 

I 

Trapped instruction System User Monitor ----------
interrupt (only for executive I 

occurrence during 
priority 2 processing) 

Internal fault interrupt Priority 2 User Monitor cre clears the interrupt condition but 
program leaves the interrupt selection before 

entering the interrupt routine. 

Manual interrupt System System Monitor ere stacks the logical interrupts 
I 

executive to the user and moves message to 
user buffer. 

I/O interrupt Priority 2 User Monitor e Ie clears the interrupt condition and 
(equipment only) program the interrupt selection before entering 

I 

the interrupt routine. 

Clock interrupt Priority 2 User Monitor eIe clears the interrupt condition and 
program the interrupt selection before entering 

the interrupt routine. The user must 
reselect the clock interrupt in his inter-
rupt routine or program if he needs 
further clock interrupts. 

Executive interrupt System Executive Monitor ----------
during priority 3 executive 
processing 

Illegal write inter- System Executive Monitor ----------
rupt during priority executive 
3 processing 

Trapped instruction System System Program ----------
interrupt during executive 
priority 3 processing 



..... 
co 
I 
~ 

0) 

o 
~ ..... 
o 
0) 

o 
o 
n 

Priority 
Level 

12 

12 

13 

14 

15 

15 

15 

16 

16 

TABLE 18-1. INTERRUPT AND PROGRAM PRIORITY LEVELS (eont'd) 

Interrupt Interrupt Processing 
Interrupt Selected in Type State Remarks 

Internal fault inter- Priority 3 User Program eIe clears the interrupt condition but 
rupt program leaves the interrupt selection before 

entering the interrupt routine. 

Manual interrupt System System Monitor e IC stacks the logical interrupts 
executive to the user and moves message to 

user buffer. 

I/O Interrupt Priority 3 User Program eIe clears the interrupt condition and 
(equipment only) program the interrupt selection before entering 

the interrupt routine. 

elock interrupt Priority 3 User Program eIe clears the interrupt condition and 
program the interrupt selection before entering 

the interrupt routine. The user must 
reselect the clock interrupt in his inter-
rupt routine or program if he needs 
further clock interrupts. 

Executive interrupt System Executive Monitor ----------
during priority 4 executive 
processing 

Illegal write inter- System Executive Monitor ----------
rupt during priority executive 
4 processing 

Trapped instruction System System Program ----------
interrupt during executive 
priority 4 processing 

Internal fault interrupt Priority 4 User Program eIe clears the interrupt condition but 
program leaves the interrupt selection before 

entering the interrupt routine. 

Manual interrupt System System Monitor e IC stacks the logical interrupts 
executive to the user and moves message to 

user buffer . 



0':1 
o 
~ ...... 
o 
0':1 
o 
o 

n 

...... 
00 
I 

c..n 

Priority 
Level 

17 

17 

I 

18 

18 

18 

19 

20 

20 

21 

TABLE 18-1. INTERRUPT AND PROGRAM PRIORITY LEVELS (Cont'd) 

Interrupt Interrupt Processing l 
Interrupt Selected in Type State Remarks 

I/O interrupt Priority 4 User Program CIC clears the interrupt condition and 
program the interrupt selection before entering 

the interrupt routine. 

Clock interrupt Priority 4 User Program CIC clears the interrupt condition and 
program the interrupt selection before entering 

the interrupt routine. The user must 
reselect the clock interrupt in his 
interrupt routine or program if he needs 
further clock interrupts. 

Executive interrupt in System Executive Monitor ----------
batch program executive 

Illegal write interrupt System Executive Monitor ----------
in batch program executive 

Trapped instruction System System Program ----------
interrupt in batch executive 
program 

Internal fault Batch program User Program C IC clears the interrupt condition but 
interrupt leaves the interrupt selection before 

entering the interrupt routine. 

I/O interrupt Batch program User Program ere clears the interrupt condition and 
the interrupt selection before entering 
the interrupt routine. 

Clock interrupt Batch program User Program CIC clears the interrupt condition and 
the interrupt selection before entering 
the interrupt routine. The user must 
reselect the clock interrupt in his 
interrupt routine or program if he needs 
further clock interrupts. 

Batch program ----- ----- Program ----------
. -



REAL-TIME INTERRUPTS 

Real-time interrupts have the highest priority of all user interrupts. These interrupts 
can be selected only in a priority 1 or 2 program. Real-time interrupts are activated 
by equipment interrupts from a special I/O channel. 

The channels used to activate real-time interrupts must be dedicated channels. The chan­
nels cannot be defined in the system (entered in the A UT table)~ and cannot be used or 
referenced by the system executive~ priority 3~ priority 4, or batch programs. If an 
existing channel is to be used~ the channel definition must be removed from tpe AUT by 
downing all 1/ a units on the channel before the channel is used for real-time applications. 

Since the dedicated channel is not available to the system~ CIa cannot be used to do 1/ O~ 
interrupt processing~ error checking, or error recovery functions on the channel. This 
can be done only by a priority 1 or 2 program using standard COMPASS I/O instructions. 

Real-time interrupts must be preselected by a call to SETCHV50 in order to inform CIC 
of the channel and equipment number that the interrupt occurs on. The procedure is as 
follows: 

1. 

2. 

Set the entry point address of the interrupt routine in bits 14 through 00 of register A. 

Set the channel and equipment interrupt number (octal) in the Q register. Bits 02 
through 00 are the channel number and bits 05 through 03 are the equipment (interrupt 
line) number. 

3. Return jump to SETCHV50. 

After the return from SETCHV50~ the priority program can set the interrupt with an 
SEL instruction~ The priority program must perform all the functions at the real-time 
channel (connects~ selects, reads, writes, etc.) as the system has no access to the 
channel for use by CIa and CIC. 

Interrupts may be set on all eight or any combination of the eight interrupt lipes on the real­
time channel. Each interrupt to be set requires a separate call to SETCHV50. All sub­
sequent calls to SETCHV50 for the same channel and equipment number replace the old 
interrupt processing address with a new address supplied in register A. Setting the contents 
of A equal to zero and the channel and equipment number in Q clears the interrupt selection. 

When a real-time interrupt occurs, ClC clears the interrupt condition, saves the contents 
of the registers being used by the interrupted program, disables the interrupt system 
with a DINT, and then gives control to the interrupt processing routine. The register 
file registers are not changed or saved by ClC, and therefore should not be used in the 
interrupt processing routine, unless site programming standards reserve some of the 
registers for real-time programs. 

Priority 2 real-time interrupts do not interrupt CIa processing and are stacked for 
ex-ecution. Priority 2 real-time may interrupt itself or lower priority pro~essing. 

Priority 1 real-time processing may interrupt all priorities of processing. 

Priority 1 real-time and priority 2 real-time processing should not share a common 
channel, because the termination of either of them would terminate both. 

18-6 60410600 C 



Calling system executive routines from an interrupt routine will enable the interrupt 
system. This allows priority 1 real-time processing routines to be reentered by 
subsequent priority 1 real-time interrupts. Some of the system routines enable the 
interrupt system when they are entered, and some when they exit. 

Routine Enable Interrupts 

BJSV50 
CIa 
RAARV50 
RLSMV50 
SCARV50 
SETCHV50 
SETFTV50 
SETCLV50 
SETMIV50 
WHATKIND 

Exit 
Entry 
Entry 
Exit 
Entry 
Exit 
Exit 
Exit 
Exit 
Exit 

Priority 1 real-time interrupt routines that call system executive routines should be 
written as reentrant routines. Non-reentrant priority 1 real-time routines may use 
executive routines that enable interrupts at exit if the real-time routine executes a 
DINT instruction immediately upon return. 

Before allowing itself to be reentered, the priority 1 interrupt routine must resave the 
contents of the registers which were initially saved when the first real-time interrupt 
occurred. 

Each time the priority 1 interrupt processing routine is entered or reentered, the 
following information is supplied in the A, Q, and B1 registers. 

A First-word address of the register save area that the registers were 
saved in (bits 14 through 00) 

Q Number of words in the registers save area (bits 05 through 00, octal) 

Bl Mode of the program that was interrupted 

1 Batch Program 5 Priority 2 program 

2 Priority 4 program 6 Priority 1 program 

3 Priority 3 program 

If there is a possibility of a subsequent real-time priority 1 interrupt occurring, the 
priority 1 interrupt routine must copy the contents of the register save area into another 
save area before executing the EINT instruction. Then, if the interrupt routine is inter­
rupted and reentered, the initial register save area must be restored upon returning to 
the initial interrupt processing. If multiple reentries occur, multiple register saves must 
be made. 

60410600 B 18-6.1 



I Any fault interrupts selected for the priority partition are ignored while in the real-time 
portion of the priority program. 

A DINT instruction should be executed before restoring a register save table to pre­
vent the restore operation from being interrupted. Interrupting a restore operation 
may result in a partial restore; a resulting loss of data. 

When a priority 1 interrupt subroutine is reentered, the subsequent interrupt can be 
flagged for later processing. Then, an exit to Cle through the routine entry point 
returns control to the initial interrupt processing. The subsequent interrupts can be 
processed upon completion of the initial interrupt processing. An alternative would be 
to complete the subsequent interrupt processing before exiting and returning to the initial 
interrupt processing. 

The priority 1 and 2 real-time interrupt processing routines should use CIa to execute 
I/O and control functions on all nonreal-time channels. Otherwise, there may be a 
conflict in usage from which both CIO and the interrupt processing routine cannot 
recover (that is, one routine clears a channel while another is reading from the same 
channel). 

Priority 1 real-time interrupts are the only ones that can interrupt CIO. Since CIO is 
not reentrant, priority 1 real-time interrupt processing routines should check for a 
CIO busy flag at location IOBLKV50 before calling CIO. If IOBLKV50 is zero, CIO is 
not busy and may be called. If the IOBLKV50 is not zero, CIO was interrupted. In 
such cases, the CIO call must be made from a nonreal-time routine. For example, a 
clock interrupt n;lay be selected to make the CIO call and then an exit taken to allow 
CIO to complete processing. The clock interrupt will be stacked until CIO completes 
processing. 

Priority 2 real-time interrupt processing routines will not run if the dedicated channel 
contains a non-standard I/O unit which generates interrupts that cannot be cleared by 
CIC with an INCL instruction. Only priority 1 real-time processing routines can be 
used. The priority 1 real-time routines must be written reentrantly and an I/O 
function code must be issued in the real-time routine to clear the interrupt. 

Before a priority 1 or 2 program with a real-time interrupt processing routine termi­
nates, all its real-time interrupt selections should be cleared. If a real-time interrupt 
occurs after the priority program has terminated, CIC issues a channel clear instruction 
(IOeL) which clears all interrupt selections on the real-time channel, including those 
which may have been selected by another priority program that is still active. 

18-6.2 60410600 e 



Table 18- 2 illustrates the hierarchy / mode processing of the central interrupt control 
(CIC). for logical interrupts. Only a hierarchy of three may interrupt itself. In all other 
cases, a program does not gain control unless its mode is greater than the mode currently 
in execution. If the mode is equal, the hierarchy must be greater than the current hierarchy. 

A program in execution with a hierarchy of 3 is considered real-time. It may not make 
CIO calls until it checks the IOBLOCK for availability. A hierarchy of 7 indicates that a 
priority AP processor gained control to process a batch I/O req"J.est. 

Hierarchy 

60410600 C 

3 

2 

1 

o 
3 

2 

1 

o 
2 

1 

o 
o 
2 

1 

o 
2 

1 

o 
2 

1 

o 
o 
7 

TABLE 18-2. CENTRAL INTERRUPT CONTROL 

Mode 

7 

7 

7 

7 

6 

6 

6 

6 

5 

5 

5 

4 

3 

3 

3 

2 

2 

2 

1 

1 

1 

o 
X 

Description 

PI real-time (true mode = 6) 

System I/O or CIO in XIOR 

System I/o or CIO in driver 
initialization processing 

System 

P2 real-time (true mode = 5) 

P1 fault-manual interrupt subroutines 

P1 I/O-clock interrupt subroutines 

P1 initialization 

P2 fault-manual interrupt subroutines 

P2 I/O-clock interrupt subroutines 

P2 initialization 

Illegal write processor 

P3 fault-manual interrupt subroutines 

P3 I/O-clock interrupt subroutines 

P3 initialization 

P4 fault-manual interrupt subroutines 

P4 I/o-ciock interrupt subroutines 

P4 initialization 

FG fault-manual interrupt subroutines 

FG I/O-clock interrupt subroutines 

Batch running 

System or batch 

AP processing batch request 
No associated RSA table 

18-7 



CLOCK INTERRUPTS 

Each priority program and the batch program may select one clock interrupt through 
the use of the SETCLV50 routine. If more than one interrupt selection is active at the 
same time, the selections are stacked in a clock interrupt table. 

To select a clock interrupt, place an interrupt processing routine address and a time 
interval in the A and Q registers and then do a return jump to SETCLV50 as follows: 

1. Set bits 14 through 00 of register A equal to the entry point address of the 
interrupt processing routine. 

2. Set bits 22 through 00 of register Q equal to the interrupt time interval in 
milliseconds (octal). Bit 23 of Q must be zero. 

3. Do a return jump to SETCLV50. 

Upon return from SETCLV50, register A contains zero if the interrupt was set, and 
negative one if the request was rejected. The SETCLV50 request is rejected if 
any of the following conditions exist. 

1. The interrupt was previously set and has not been cleared. 

2. An interrupt processing routine address was not supplied in register A. 

3. A time interval larger than 377777778 (2 hours 20 minutes) was us'ed. 

The minimum clock interrupt time that can be selected depends upon the program mode. 
Selecting a smaller time interval results in the minimum time interval. 

Program Mode 

Batch 
Priority 4 
Priority 3 
Priority 2 
Priority 1 

Minimum Time 

63 milliseconds 
48 milliseconds 
32 milliseconds 
10 milliseconds 

3 milliseconds 

The clock interrupt may be cleared any time up to the time the interrupt occurs. This 
can be done by setting register Q to zero and making a return jump to SETC LV50. 
Register A must contain the same address that was used to set the interrupt. After 
clearing the interrupt, SETCLV50 returns control to the user program with register A 
equal to zero. If register A does not equal zero, the interrupt was not cleared. The 
wrong address was used in register A. 

After clearing the clock interrupt, the interrupt can be reset with a different interrupt 
address and/or a new time interval. This may be done by setting a new time in the Q 
register, setting an interrupt address in the A register, and executing another return 
jump to SETCLV50. 

When a clock interrupt is selected, SETCLV50 adds the current clock time to the inter­
rupt time interval in register Q and then writes the sum in the clock interrupt mask 
register (register 32) and in the clock interrupt table. If more than one clock interrupt 
is active, the interrupt with the shortest time interval is written in the mask register 
to set the interrupt. 

When a clock interrupt occurs, eIC clears the interrupt condition and clears the interrupt 
selection so the same clock interrupt cannot reoccur during the interrupt processing. If 
interrupt selections were stacked, crc searches the clock interrupt table for the next 
shortest time interval, and places the new time value in the clock mask register (register 
32) to set the next clock interrupt. Then crc enters the clock interrupt processing routine. 

18-8 60410600 A 



Due to higher level interrupt processing, a clock interrupt processing routine may be 
entered late. If the interrupt time is critical, the user may check for a late interrllpt 
by reading the clock register (register 22 8) just before setting the interrupt, and again 
when the interrupt routine is entered. 

INPUT /OUTPUT EQUIPMENT INTERRUPTS 

The user may select input/ output equipment interrupts in calls to CIa in order to inter­
rupt his program upon normal or abnormal completion of an I/O function. The user 
must specify the type of interrupt and the first word address of an interrupt processing 
routine in the return jump sequence to CIa (refer to section 11). 

The interrupt processing routine may be used to make additional eIO calls on the same 
(or different) unit, to select other interrupts, to process errors, to check status, to 
communicate with the operator, etc. If another 1/0 interrupt is selected in the interrupt 
processing routine, and the interrupt occurs, the interrupt is stacked until the current 
interrupt processing has completed. However, higher level 1/0 interrupts interrupt the 
current interrupt processing routine. 

Before giving control to an I/O interrupt routine, eIe places the 1/0 unit status word 
in the A and Q registers. This facilitates checking for normal or abnormal termination 
within the interrupt routine. The return from the interrupt processing routine must 
always be back to eIe through the routine entry point. 

MANUAL INTERRUPTS 

Manual interrupts have the second highest priority of all user interrupts. One manual 
interrupt can be selected for each user program in core (priorities 1 through 4 and 
batch). Manual interrupts allow the operator to manually interrupt any program in 
execution in order to type a message to any program in core. The program that the 
message is directed to is given control to process the message. 

To send a message to a program, the operator presses the MANUAL INTERRUPT 
switch. He selects which program the message is directed to (priorities 1 through 4 
or batch program) by use of a prefix attached to the message. The prefixes are as 
follows: 

Prefix Program 

IFG, (message) Batch 

Ip4, (message) Priority 4 

Ip3, (message) Priority 3 

Ip2, (message) Priority 2 

I Pl, (message) Priority 1 

The SETMIV50 routine is used to select manual interrupts as follows: 

1. Place the entry point address of the message processing routine in register A, and I 
place number of words (bits 23 through 15) in user buffer and starting word ad-
dress of user buffer (bits 14 through 0) in register Q. 

2. Do a return jump to SETMIV50. 

The SETMIV50 routine sets the interrupt and places the entry point of the message processing 
routine in a table in accordance with the level of the program that requested it. There is one 
entry in the table for each program level (priorities 1 through 4 and batch). 

60410600 e 18-9 



The prefix of the operator message is matched with the table entry to select which mt~ssage 
processor routine is given control. 

Subsequent calls may be made to SETMIV50 to select a new message processor routine or 
to clear the interrupt. To select a new message processor~ do a return jump to SETMIV50 
with the entry point address of the new message processor in registers A and Q. To Glear 
the selection~ do a return jump to SETMIV50 with zeros in register A. Upon return from 
all SETMIV50 calls~ registers A and Q contain previous setting of manual interrupt processor, 
if there was one. 

When the manual interrupt is activated by an operator message~ eIe transfers operator 
message to user's buffer before giving user control. Then eIe gives control to the user's 
message processor routine. 

The user's buffer is not initialized before writing each new message. The numher of 
characters (octal) in a message is passed to the message processor routine in the lower six 
bits of register A when the processor is entered. 

CIa cannot be used or called in the message processing routine; therefore~ all processing 
should be as brief as possible. Processing should be limited to routines such as setting 
flags for processing the data later~ selecting other interrupts, activating a priority program, 
etc. 

Instructions that can cause an internal fault condition should be avoided in the manual 
interrupt routine. An internal fault interrupt selected in any routine of the same mode (batch, 
PI through P4) as the manual interrupt can cause the fault interrupt to occur in the manual 
interrupt routine. A fault interrupt occurring within a manual interrupt subroutine aborts 
the job. 

INTERNAL FAULT INTERRUPTS 

Batch and priority programs may select anyone or any combination of the following four 
internal program fault interrupts. 

ARITHMETIC OVERFLOW FAULT 

The arithmetic overflow fault is set when the capacity of the adder is exceeded. Its 
capacity~ including sign, is 24 or 48 bits for 24-bit precision and 48-bit precision, 
respectively. 

DIVIDE FAULT 

The divide fault sets if a quotient~ including sign, exceeds 24 or 48 bits for 24-bit 
precision and 48-bit precision, respectively. Therefore, attempts to divide by too 
small a number ~ including positive and negative zero, result in a divide fault. 

A divide fault also occurs when a floating point divisor is either equal to zero or not in 
floating point format. The results in the A, Q, and E registers are insignificant if a 
fault occurs. A divide fault can be correctly sensed only after the current instruction 
has been executed. 

18-10 60410600 C 



EXPONENT OVER/UNDERFLOW FAULT 

During all floating point arithmetic operations, exponential overflow occurs if the expo­
nent exceeds +17778 or is less than -17778" The faul t is also set if the SFPF instruc­
tion is executed. 

BCD FAULT 

In a 3100, 3150, or 3200 computer system, a BCD fault is generated by the BCD 
module if: 

1. The lower four bits of any character (except the sign character) exceed 11 8• The 
characters are tested only during LDE, ADE, and SBE instructions. 

2. The upper two bits of any character (except the sign character) do not equal 
zero. 

3. An attempt is made to load register D with 158, 16 8, or 17 8, 

In a 3100 through 3500 computer system with a BDP module, a BCD fault is 
generated if: 

1. The lower four bits of any character in field A, except the sign character, 
exceed 118 during the numeric character operation. 

2. The lower four bits of the sign character in field A exceed 128 during a 
numeric character operation. 

3. The upper two bits of any character in field A, except the sign character, 
do not equal 00 during a numeric character operation. 

4. 

5. 

An arithmetic carry out of the highest order character of field C occurs 
during an ADM or SBM instruction. 

Field length Is > lr for an ADM or SBM instruction. 

6. Field length 1 f 1 for a FRMT instruction, including provision for insertion 
characters. s r 

7. A carry occurs out of the 14th character position during a CVBD instruction. 

8. A field of more than 14 BCD characters is specified during a CVDB instruction. 

9. Bits 05 and 06 of an ASCII character are both l' s or both 0' s during the 
execution of an ATD instruction. 

The BCD fault may also be set by executing the SBCD instruction. 

INTERNAL FAULT PROCESSING 

If an internal fault interrupt is selected, a routine to process the interrupt must be 
included in the program. The internal fault interrupt may be selected by a return 
jump to the SETFTV50 routine as follows: 

1. Enter the address of the interrupt processing routine in bits 14 through 00 of 
register A. 

2. Enter an interrupt mask code in bits 03 through 00 of register Q. 

3. Execute the following instruction. 

RTJ SETFTV50 

60410600 A 18-11 



I 

On return to the next instruction~ register A is .zero if the int~rrupt was set~ an~ -
register A is negative one if the request was reJe~ted. Selecting. more than one .Inter­
rupt processing routine in the same program or Incorrect selectlon causes a reJect. 

The interrupt mask code in register Q selects one or any combination of the internal 
fault interrupts. The interrupt mask codes are as follows: 

Code Interrupt 

01 Arithmetic Fault 

02 Divide Fault 

04 Exponent Overflow 

10 BCD Fault 

Only one internal fault interrupt processing routine can be used in the same program. 
To select more than one fault~ use the sum of the codes for the interrupt wanted. 
For example~ to select an interrupt upon divide fault and an interrupt upon exponent 
overflow~ enter 06

8 
(2+4) in register Q. The remainder of the Q register must be 

filled with zeros. 

Each subsequent call to SETFTV50 clears the previous call. Setting a new value in 
register Q and setting the same interrupt address in register A selects the new code 
that is in register Q. A zero in register A clears the interrupt selection. 

If a 'ault interrupt occurs and more than one fault interrupt is selected~ the interrupt 
processing routine mu'st determine which fault caused the interrupt before the fault can 
be processed. Therefore~ before giving control to the interrupt routine~ CIC always 
places an interrupt code in register Q to indicate which fault activated the interrupt~ 
and the address of the instruction that caused the interrupt in register A. The contents 
of the A and Q registers may not be valid if the interrupt is not processed immediately. 

Interrupt 
Code in Q 

0111 8 
0112

8 
0113 8 
01148 

Fault 

Arithmetic overflow 

Divide -fault 

Exponent overflow 

BCD Fault 

Care should be taken not to cause an internal fault interrupt within an internal fault 
interrupt routine. This causes the same interrupt to loop on itself. 

ILLEGAL WRITE INTERRUPTS 

An illegal write occurs only in systems using the memory protect feature and only 
when the system is operating in the program state. This interrupt occurs whenever 
a batch or priority 3 or 4 program attempts to write in or alter the contents of any 
address in the protected memory area~ including return jumps into protected memory. 

The illegal write interrupt routine is a part of the system executive. It allows return 
jumps only to the executive routines listed in Table 18-3. The interrupt routine term­
inates the program if a return jump is made to any other location in protected 
memory ~ or if an attempt is made to write in protected memory. 

18-12 60410600 C 



! 

EXECUTIVE INTERRUPTS 

In MSOS Version 5, all batch, priority 4, and priority 3 programs must use system 
executive routines (CIO and CIC) to perform I/O and interrupt functions. In addition, 
MSOS does not allow batch or priority 3 and 4 programs to write in registers 00 through 
378 of the register file. Any attempt to perform these functions causes an executive 
interrupt and terminates the user program. 

TABLE 18 .... 3. EXECUTIVE ROUTINES CALLABLE BY BATCH AND PR.IORITY PROGRAMS I 
Routine Batch or 
Name Priority Use Function 

ABNORMAL Batch, Priority Abnormal termination of program 

BJSV50 Priority Submit a batch job from mass storage 

ClOt Batch, Priority I/O functions on logical units and mass storage 
files 

DINT. Batch Disable batch interrupts 

EINT. Batch Enable batch interrupts 

I LDABSV50 Batch I Load another maIn program I 
LOADER Batch 

RAARV50t Batch, Priority 

RDCKFI Batch 

REQSUV50 Batch 

RLSMV50 Priority 

SCARV50t Ba tch, Priority 

SETCHV50 Priority 1, 2 only 

SETFTV50 Batch, Priority 

SETCLV50 Batch, Priority 

SETMIV50 Ba tch, Priori ty 

WHATKIND Ba tch, Priori ty 

Load programs, data, etc., from input unit on 
the library 

I/O unit not ready recovery 

Load the loader 

Reassign system units to the priority program 

Release memory to the system 

I/O error recovery 

Set real-time interrupts 

Set internal fault interrupt 

Set clock interrupt 

Set manual interrupt 

Determine device type and location of A DT entry 
for any logical 110 unit number 

t To retain compatibility with MSOS V4. 2, calls to MSIO, MSIO. SP, SCAR, and RAAR 
may be made. These calls generate a call to the associated MSOS V5.0 routine (CIO, 
SCARV50, or RAARV50) which performs the requested function. 

60410600 C 18-13 



The COMPASS instructions which are illegal, or legal for limited usage only in batch 
and priority 3 and 4 program, are listed in appendix A. Any attempt to execute one 
of these instructions generates an executive interrupt. If the instruction is a limited 
usage instruction, and is being used within its limits, the system executive executes 
the instruction and returns control to the next instruction in the user's program. In all 
other cases the system executive will terminate the job. 

In an extended core system, when the loader loads a batch program in memory bank 1, 
the loader converts all RT J instructions that reference executive subroutines (Table 
18- 2) to halt instructions that reference the subroutines. 

Example: 

RTJ CIa Converts to 000, CIa entry point address 

When the batch program is executed, each halt instruction causes an executive inter­
rupt. In the interrupt processing, EXEC checks each halt instruction for a reference 
to a subroutine that is legal for batch programs. If a legal address is sensed, EXEC 
executes the subroutine for the batch program and then returns control to the batch 
program. If the code does not reference a legal subroutine, EXEC aborts the job. 

Note that an RT J instruction with a symbolic address is the only method that can be 
used to call on executive subroutines in an extended core system. All other methods 
will connect to an address in bank 1. 

TRAPPED INSTRUCTION INTERRUPTS 

The trapped instruction interrupt occurs if an attempt is made to execute a floating 
point, BCD, or BDP instruction in systems without the associated hardware. The 
interrupt causes the system executive to switch control to an interrupt routine which 
executes floating point and BCD instructions with software rather than with hardware. 
Trapped BDP instructions will abort the job. The following is a list of the instructions 
which are trapped and processed by the interrupt routine. 

Floating Point Instructions (hardware option for all 3000L systems) 

AEU ELQ FMU 

AEQ EUA FSB 

DVAQ FAD MUAQ 

EAQ FDV QEL 

BCD Instructions (hardware option only for 3100, 3150, and 3200 computer systems) 

ADE 

EZJ, EQ 

EZJ, LT 

18-14 

EOJ 

LDE 

SBE 

SET 

SFE 

STE 

60410600 A 



BDP Instructions (hardware option for 3100 through 3500 computer systems) 

ADM JMP, LOW SCAN, LR, EQ 

ATD JMP, ZRO SCAN~ LR, EQ, DC 

ATD, DC LBR SCAN, LR, NE 

CMP MVBF SCAN, LR, NE, DC 

CMP, DC MVE SCAN, RL, EQ 

CVBD MVE, DC SCAN, RL, EQ, DC 

eVDB MVZF SCAN, RL, NE 

DTA MVZS SCAN, RL, NE, DC 

DTA, DC MVZS, De TST 

EDIT PAK TSTN 

FRMT SBM UPAK 

JMP,HI SBR ZADM 

USER INTERRUPT ROUTINES 

All user interrupt routines are entered only from Cle. The return to the interrupted 
program must also be through eIC via the first address of the interrupt routine. ele 
either returns control to the interrupted program or processes other stacked interrupts, 
depending upon the program and interrupt priorities. 

In protected memory or extended core variant of MSOS, interrupt routines may not 
reside outside of the program as signed memory area (refer to memory limit table in 
section 8). Any attempt to store an interrupt routine outside of the program address 
limits causes the job to abort. 

DINT. AND EINT. ROUTINES 

The DINT. routine temporarily inhibits the processing of all interrupts selected in a 
batch program. All batch program interrupts which occur are stacked until the EINT. 
routine is executed. This allows the batch programmer to shut off batch interrupts 
without affecting priority or real-time program interrupts. For example, a DINT. 
function could be used to ensure an I/O buffer area was processed bp.fore the next I/O 
interrupt was processed. 

The EINT. routine enables batch interrupt processing. All stacked batch interrupts 
are processed in accordance with their priority. 

The DINT.. and EINT. routines may be entered with a return jump to DINT. or EINT. 
The A, Q, and B registers either are not used or are restored by the DINT. and 
EINT. routines. 

60410600 A 18-15 



USE OF DINT AND EINT INSTRUCTIONS 

Use of the disable interrupt system (DINT) and enable interrupt system (EINT) 
instructions should be avoided in programs and routines operating in the monitor state. 
D se of these instructions could cause unnecessary or destructive delays in processing 
real-time. clock. manual. or system interrupts for other programs in core. DINT 
and EINT instructions are illegal in program state. 

ILLEGAL INTERRUPTS 

The adjacent processor and search move interrupts cannot be selected or used in any 
program or routine operating under the MSOS operating system. 

On some 3100 and 3200 systems. special hardware is used to generate an adjacent 
processor interrupt if an indirect addressing loop occurs. The hardware imposes a 
time limit on instructions using indirect addressing. Exceeding. the time llmit triggers 
the adjacent processor interrupt which terminates the program. 

18-16 60410600 A 



PRIORITY PROGRAMS 19 

DESCRIPTION 

Priority programs are special interrupt routines which reside in core and are periodically 
activated by a preselected interrupt. If a LOAD statement or a binary IDC card is used 
!o. l.oad the program, a ~U~ statement must be ust;d to initiate the program. During this 
InItial run phase, the prIorIty program selects an mterrupt to activate itself at a sub­
sequent time, and then exits through its primary entry point. 

The first exit through the primary entry point establishes the priority program in core. 
The second exit through the primary entry point terminates the priority program. 
Figure 19-1 illustrates the use of a priority program to type the name of the batch job 
currently in core each time the operator presses the MANUAL INTERRUPT switch and 
types /P3. 

Up to four priority programs may reside in core memory at the same time. The 
PRIORITY statement assigns a priority level, P1 through P4, to each program. P1 
is the highest and P4 is the lowest. Each level can be assigned to only one program 
at a time. 

In the protected memory variants of MSOS, priority P1 and P2 programs operate in the 
monitor state. These programs have unrestricted use of core memory and all of the 
computer instructions. t Priority P3, P4, and batch programs operate in the program 
state. They write only in unprotected memory and are restricted from using COMPASS 
I/O and interrupt control instructions (refer to appendix D). In addition, the dynamic 
memory protection option restricts priority P3, P4, and batch programs from writing 
outside their own assigned memory areas. 

In the standard version of MSOS, all programs operate in the nonexecutive mode. As 
a result, the programs have free access to all memory and may execute all instruc­
tions. t t 

LOADING PRIORITY PROGRAMS 

Priority programs are loaded from the standard system input unit, from a tape or ma$S 
storage file, or from the library. All priority programs must be in the relocatable 
binary format. Source language cannot be entered as priority programs. Only FORTRAN 
or COMPASS produced relocatable binary decks are used. 

When using MSOS with standard memory protection, priority P1 and P2 programs must 
be loaded prior to priority P3 and P4 programs. For standard MSOS or MSOS with 
programmable memory protection, the priority programs are loaded in any order. 

t An exception is the autoload/dump area in 3100,3150, and 3200 computers, which is 
protected by hardware from all programs in core. 

t t Sixteen special executive mode instructions are executed as no operation instruction 
(refer to appendix D). 

60410600 A 19-1 



..... 
co 
I 

N 

Q) 

o 
~ ..... 
o 
0) 

o 
o 
to 

PRIMARY 
ENTRY PT. 

SECOND 
ENTRY PT. 

MANUAL 
INTERRUPT 

TYPE: USE 
/P3, FOR 

t.---~»I CURRENT 
BATCH JOB 
NAME 

CONSOLE 
TYPEWRITER 

SET MANUAL 
~---M~I INTERRUPT 

P3 

SETMIV50 

YES 
SET 
TERMINATE 
FLAG -

NO 

GET CURRENT 
JOB NAME '-----.....,.»1 FROM 
ACCOUNTS 
TABLE 

CONSOLE 
TYPEWRITER 

Figure 19-1. Priority Program, Initialization and Execution 

EXIT VIA 
SECOND 
ENTRY 



All priority programs must begin with a: PRIORITY statement and end with an EOJ 
statement. The following control statements are optional. They may be inserted after 
the PRIORITY statement and ahead of a LOAD or a library program name statement, 
or a binary program deck. 

EQUIP DUMP ALLOCATE CLOSE PAUS 

FMT TRAIN OPEN RELEASE 

CTO RAT EXPAND ABSTSK 
CTL FET MODIFY LED 

AUX oee REWIND UNLOAD 

Each priority program has its own table for logical unit and file numbers. Therefore, the 
same file numbers can be duplicated in each priority and batch program residing in core. 
However, once a physical hardware unit is assigned to a program with an EQUIP statement, 
the unit is not available to any other program in core. 

The following is an example of two priority programs: one loaded from a mass storage 
file, the other loaded from the card reader. 

$ PRIORITY, P3 
$FET, ••. 
$OPEN,03 
$EQUIP,04=MT 
$LOAD,03 
$RUN 
77 
88 
$EOJ 
$ PRIORITY, P4 
(Binary deck with IDC 
header) 
$RUN 
77 
88 
$EOJ 

Open mass storage file containing priority program deck. 
Assign tape drive to priority program. 
Load priority program from mass storage file. 

Load priority program from card reader. 

TERMINATING PRIORITY PROGRAMS 

Once established in core, a priority program remains in core until it is terminated by 
the operator, terminates itself, or is aborted by the operating system. 

OPERATOR TERMINATION 

The" operator may terminate a priority program at any time by pressing MANUAL 
INTERRUPT, typing: TERM, Pn and pressing MANUAL INTERRUPT. Pn is the 
priority program level (that is, PI, P2, P3, or P4). 

The operator may also terminate a priority program by loading another priority program 
with the same priority level. When the new priority program is read from the input 
unit, MSOS sends a message to the operator requesting permission to terminate the 
current priority program and replace it with the new one. If the operator types YES 
and presses FINISH or just. presses FINISH, the current priority program is terminated 
and the new priority program is loaded. If the operator types NO and presses FINISH, 
the new priority program is bypassed and the current one remains active. 

I 

I 
I 

60410600 B 19-3 I 



SELF TERMINATION 

A priority program may terminate itself either normally or abnormally. Normal termi­
nation results when a second exit is taken back to MSOS through ENTRY. The first 
exit through ENTRY is made after the priority program is initially loaded and has acti­
vated itself. 

Abnormal termination should be used when an error occurs from which the priority 
program cannot recover. Abnormal termination is accomplished by making a return 
jump to ABNORMAL. The ABNORMAL routine causes MSOS to abort the priority pro­
gram. Refer to section 17 for a description of ·abnormal termination. 

SYSTEM TERMINATION 

MSOS aborts priority 3 and 4 programs which attempt to write in a protected memory 
area or attempt to execute an illegal instruction (refer to appendix D). 

LOADING NEW PRIORITY PROGRAMS 

If a batch program is in core, it must complete processing and terminate itself or be 
terminated by the operator before any new priority programs can be loaded. 

When using standard MSOS t or MSOS with programmable memory protection, all new 
priority programs load below the current priority programs. This expands the size 
of the priority program area and reduces the size of the batch program area. The 
area occupied by old priority programs becomes dormant core (refer to Figure 8-1). 

Dormant core can be recovered only by terminating and then reloading all .priority and 
batch programs which reside below the dormant memory. 

When using MSOS with standard memory protection t t, a new priority 1 or 2 program 
cannot be loaded below a priority 3 or 4 program. The priority 3 or 4 program must 
be terminated and can be reloaded after the new priority 1 or 2 program has been loaded. 

RLSMV50 (RELEASE MEMORY) ROUTINE 

The RLSMV50 routine provides a means of releasing the core that was used tQ initialize a 
priority program so that the core can be used by the batch or other priority programs. The 
initialization portion of the priority program, or all core to be released, must be at the be-

I ginning of the binary program. RLSMV50 can be used only in the initialization phase of a 
priority program. 

To use RLSMV50, enter the address of the first instruction of the interrupt driven sec­
tion of the priority program in register A and do a return jump to RLSMV50. All 
addresses below the address in register A are released to the system. 

Example: 

Address Instruction 

P First instruction in initialization phase 

Pn Last instruction of initialization phase 

tWithout memory protection. 
t tWith memory protection switches. 

I 19-4 60410600 B 



LDA Pn+2 
RTJ RLSMV50 

Pn+l 
Pn+2 
Pn+3 
Pn+4 
Pn+5 

UJP 77777 (Primary entry point address and exit) 
UJP P 
First instruction of interrupt driven phase (secondary entry point 
address) 

Pn+3 

Pn+2 

P 

.J'.._ A. - - ~ -
Interrupt driven 

Code 

Termination exit 

Initialization code 

Batch or lower level 
priority program area 

.A .A -

I 
This area released for 
inclusiop in batch or 
lower level priority 
program area 

In the above example, after initialization of the priority program, RLSMV50 releases 
addresses P through Pn+2 to the system. Address Pn+3 (primary entry) is retained 
as the self termination exit. 

In addition to releasing memory, RLSMV50 can be used to acquire dormant core or core 
from the batch memory area during the initialization phase. For example, I/O buffer 
requirements may vary, depending on input values supplied during the initialization 
phase. To acquire memory, the call to RLSMV50 is the same as for releasing memory. 
The lowest address to be used must be entered in register A. 

USING SYSTEM INPUT, LIST OUTPUT, AND PUNCH UNITS 
The REQSUV50 routine may be used to assign the system input, output .. or punch unit(s) to 
a priority program for I/O functions. The priority program retains the system unit (or units) 
until the priority program terminates (that is, operator termination or exit through primary 
entry point). At termination .. the system unit(s) is automatically reassigned to batch pro-, 
grams. A batch program will terminate if it attempts to use a system unit when the unit is 
assigned to a priority program. 

The procedure for calling REQSUV50 is as follows: 

1. Set bits 23 through 17 of register A equal to: 

60 to select the system input unit 
61 to select the system output unit 
62 to select the system punch uni~ 

2. Set the file number to be assigned to the system unit in bits 05 through 00 of register 
A. The file number may range from 1 to 62. 

3. Execute a return jump to REQSUV50. 

The REQSUV50 call can be made only in the initia.lization phase of ~ p~iority program. 
If a call is made to REQSUV50 in the interrupt driven phase of a priorIty program .. the 
program aborts. 

REQSUV50 reassigns system units by zeroing ~ut the s~st~m units FDT address in the batch 
FOT table, and writing the units FDT address in the prIority programs FOT table. (Refer 
to appendix F. ) 

60410600 B 19-5 



SPECIAL CODING REQUIREMENTS FOR PRIORITY PROGRAMS 

Since priority programs can lock out batch and lower level priority program processing, 
the efficiency of batch/priority multiprogramming depends .upon the design of the priority 
programs. Therefore, the followi~-.1 items should be considered when coding priority 
programs. 

1. After a PRIORITY statement, mass storage files opened for output usage cannot 
be opened or used by any other batch or priority program until the priority 
program closes the file or is terminated. Mass storage files opened for input 
only can be opened for input and used by any other batch or priority programs. 

2. Mass storage files can be opened, closed, modified, etc. with OCAREM macros 
within a priority program. The open rules in item 1 above also apply to mass 
storage files opened within a priority program. 

3. If an OCAREM busy reject occurs when using the OCAREM macros, the priority 
program interrupted an OCAREM function in another program. The first 
OCAREM function must be completed before any other OCAREM function can be 
starte d. Set a clock interrupt and exit from the priority program in order to 
allow the first OCAREM function to finish. 

4. File numbers 1 through 53 and 60 through 62 can be assigned as user units. 
In addition, files 58 and 59 may be used to communicate with the operator. 
Files 54 through 56 ( batch scratch) and units 63 through 69 ( system files) 
cannot be referenced in priority programs. 

5. Each priority program can have only one preset or blank data area. All sub­
programs within the priority program can use this data area. The data area 
must be defined only in one subprogram. 

6. Priority programs cannot communicate with each other or with a batch program. 

7. No time limit can be imposed on a priority program. 

8. Compilers or assemblers cannot be loaded as priority programs, and priority 
programs cannot be run as batch jobs. 

9. Priority programs cannot use common. 

10. Except for the console typewriter, priority and batch programs cannot share 
unit record devices such as magnetic tapes and card punches. Units reserved 
with an. EQUIP statement are not available for batch jobs or other priority 
programs until they are released with a CLOSE macro within the priority pro­
gram, or the priority program terminates. 

11. The LOADER or calls to load library routines cannot be used within a priority· 
program. 

12. For large priority programs, overlays may be used to save core for batch 
programs. Permanent files must be used for the overlay segments. 

13. Priority programs cannot use the register file. 

14. Priority 1 and 2 programs must be thoroughly tested before running them with 
other batch and priority programs. These programs operate in the monitor 
state which allows them to write any place in core. Priority 3 and 4 programs 
operate ih program state where they can be tested during normal system opera­
tion without the possibility of affecting the system executive or priority 1 and 
2 programs currently in core. 

19-6 60410600 A 



15. The memory limit table (Table 8-2) may be referenced by a priority prog.cam 
to obtain its memory limits after loading. Since a priority program may be 
loaded at more than one priority level (that is. loaded as a priority 4 program 
one time and as a priority 2 program the next time). the priority level the 
program is loaded at is supplied in bits 02 through 00 of register Bl when the 
program is initially loaded during the initialization phase. The code in register 
B1 is as follows: 

Code Program Level 

2 P4 
3 P3 
5 P2 
6 PI 

The code in register B 1 may be used to determine which entries in the memory 
limit table contain the program memory limits. 

16. If a manual interrupt is selected for processing operator messages. the priority 
program should obtain its priority level from register Bland inform the opera­
tor of the program name and priority level during the initialization phase. 
Otherwise the operator may not know what level program to direct the messages 
to (refer to manual interrupts in section 18). 

17. In 3100. 3150. and 3200 systems. priority programs cannot use FDP and BCD 
instructions if BCD hardware is present. If BCD hardware is not present. 
priority programs can use FDP instructions. with FDP hardware or system 
FDP hardware simulation using FDPBOXS. Priority programs can also us e 
BCD instructions with system hardware simulation using BCDBOXS. 

In 3170. 3300. and 3500 systems. priority programs can use BDP instructions 
if the BDP hardware is present. Priority programs can use FDP instructions 
regardless of the presence or absence of special FDP hardware. 

18. In priority 1 and 2 programs. register A must be cleared before exe cuting 
instructions which use the block control hardware. Block control uses the 
lower three bits of register A as bank bits. These bits do not get cleared by 
block control before execution of the instrucJ;ion in priority programs. 

The block control instructions are: 

MOVE 
SRCN 
SRCE 

INPW 
IN PC 
OUTW 

OUTC 

19. Priority 1 and 2 programs can not use CTO or CTI instructions to read from 
and write on the console typewriter. These instructions use registers 23 and 
33. which the system also uses to control I/O to the typewriter. System files 
58 and 59 must be us ed for all console typewriter 1/ O. 

20. Use of register A for I/O functions (INAC. INAW. OTAC. and OTAW) should 
be avoided in priority 1 and 2 programs. These instructions are not buffered. 
In addition. they disable the interrupt system while they are in execution which 
may delay real-time.. channel I/O. and clock interrupt processing. 

21. SNAP cards cannot be used with priority programs. 

22. COBOL (ANSI or MS) source language and LISA and L-MSIO cannot be used because I 
of L-MSIO overlay file, 

60410600 C 19-7 





SYSTEM FILE SPOOLING (APe) 20 

DESCRIPTION 

The automatic peripheral control routine (APe) provides faster I/O by spooling (buffering) 
the system list output, punch output, and input files on mass storage before processing 
them. APC transfers data between system files 60, 61, and 62, and the mass storage 
spooling files. APC calls the alternate processor (AP) which replaces CIa for batch 
job I/O on the system units (refer to section 21). AP reads and writes on the mass 
storage spooling files instead of system units 60, 61, and 62. When using APC, the 
operator may switch the system units to tape drives. 

LIST PRINT LINE 
PRINTER OUTPUT 

BATCH ALTERNATE 
JOB PUNCH PROCESSOR PUNCH PROC- (AP) CARD 
ESSING OUTPUT APC PUNCH 

BATCH 
JOB READ 
INPUT CARD 

READER 

Figure 20-1. System File Spooling 

APC OPTIONS 

The APC routine has several assembly options and features which must be selected 
at system installation time. These options are listed in Table 20-1. 

UNIT 
61 

UNIT 
62 

UNIT 
60 

60410600 A 20-1 



Feature 

Restart 

Number of 
printers 

Number of 
punches 

System unit 
reassign­
ment 

ASCII 

Number of 
spooled 
jobs 

Number of 
spooled 
list output 
files 

Number of 
spooled 
punch output 
files 

20-2 

TABLE 20-1. APC OPTIONS. AND FEATURES 

Description 

If restart was selected and the system is reauto­
loaded, all jobs that were started but not com­
pleted are rerun from the beginning. All jobs 
that are spooled on mass storage but not started 
are run. All output files spooled on mass stor­
age but not processed are processed. All output 
files partially processed are reprocessed from the 
beginning. If zero, none of the above restart 
capabilities will be provided. 

Number of printers that may be assigned to APC. 
If zero, list output is not spooled. If 2, one or 
two printers may be selected when APC is initia­
lized. 

Number of punches assigned to APC. If zero, 
punch output is not spooled. 

Allows operator to reassign system units such 
as the card reader, card punch, or printer 
to a tape drive and to optionally down the unit 
reassigned. 

Allows use of ASCII code and ASCII com patible 
I/O units. 

Maximum number of jobs that can be spooled on 
mass storage at one time. 

Maximum number of list output files that can be 
spooled on mass storage at one time. 

Maximum number of punch output files that can 
be spooled on mass storage at one time. 

Options 

1. Zero: Restart 
not selected 

2. One: Restart 
selected 

1. Zero 
2. One 
3. Two 

1. Zero 
2. One 

1. Reassignment 
of system units 

2. No reassignment 
of system units 

1. ASC II supported 
2. ASCII not 

supported 

Any three digit 
decimal number 

Any three digit 
decimal number 

Any three digit 
decimal number 

60410600 A 



ALLOCATING SPOOLING FILES 

The mass storage spooling files must be allocated before using APC. The files may 
be permanently allocated, or they can be allocated prior to each use of APC and 
released after APe is terminated. The files are defined as follows: 

File Number Owner Filename Edition 

01 APC SYSTEM-INPUT 00 

02 APC SYSTEM-OUTPUT 00 

03 APC SYSTEM-PUNCH 00 

04 APC RESTART 00 

APC opens the spooling files and defines the I/O buffer. Any access and privacy codes 
may be used to allocate the files, asAPC uses the system access and modification 
privacy code to open and use the files. 

The following are suggested file sizes to be used when allocating the spooling files. 
Except for the restart file, these values may be changed at any time before APC is 
called. However, the file characteristics must not be changed before a restart. 

Filet 
Number 

01 

02 

03 

04 

Block Size in Characters 
841 Devices Other Devices 

640 

1280 

640 

8960 

512 

1024 

512 

4096 

Number 
of Tracks 

100 

500 

100 

1 

Minimum Capacitv 
841' s 853/854 's 813/814' s 

4200 cards 

28000 lines 

4200 cards 

2400 cards 4800 cards 

14000 lines 28000 lines 

2400 cards 4800 cards 

Only the INPUT file allocation is required. Allocation of the other files is dependent 
upon the APC options that were selected (refer to Table 20-1). 

Option 

Number of printers 
Number of printer s 
Number of punches 
Number of punches 
Restart 
Restart 

1 or 2 
o 
1 
o 
1 
o 

File Requirements 

System output file required 
System output file not required 
System punch file required 
System punch file not required 
Restart file required 
Restart file not required 

For maximum efficiency, each spooling file should be allocated on a different drive. 
None of the files should be on the device containing system scratch, OCAREM files, 
etc. As a minimum, the list output file must not be on a system unit. 

t Assigned as the logical file number when APC opens the file. Since APC is a priority 
program, these numbers may be used in other batch or priority programs. (Refer to 
loading priority programs in section 15.) 

60410600 C 20-3 

I 



LOADING APC 

APC must be loaded as a priority program. Standard units 60, 61, and 62 need not 
be equipped in the priority program as these units are requested by APC during the 
priority program initialization. 

The only other I/O equipment that APC can drive is a second printer. If a second 
printer is available, it must be equipped as unit 21. If the second printer is equipped, 
and the assembly option for a second printer was selected at system installation time, 
APC uses both printers for faster list output. 

The following is a sample job for calling and initiating APC. It is assumed that none 
of the spooling files have been allocated. 

$ PRIOR ITY , P2 

$FET, APC, SY STEM - INPU T, ••• 

$ALLOCATE ..... 

$FET, APC, SYSTEM-OUTPUT, ••• 

$ALLOCA TE, ••• 

$FET, APC, SYSTEM-PUNCH, ..• 

$ALLOCATE, ••• 

$FET, APC, RESTART, .•• 

$ALLOCATE ..... 

$EQUIP, 21=PR 

$APCV50 

77 
88 

$EOJ 

Once APC is initiated, all batch jobs have their input and output spooled on mass 
storage files. APC can be terminated by operator termination of the priority program 
(that is, TERM, P2 message for the above example). 

SPOOLING FILE PROTECTION 

Under APC, a file spooled on mass storage normally is retained on mass storage until 
the whole file has been processed. This allows APC to support the restart feature. 
The operator also can reposition and reprint or repunch output files in the event of an 
output unit malfunction, such as paper jam, card jam, etc. 

Selecting the no protect option allows APC to release each block of a file segment as 
soon as the block has been read. t As soon as a block has been released, the next 
block of a new segment can be written on the newly released block. This allows 
spooling of larger files and may provide somewhat faster I/O processing, depending 
upon the job mix. 

t Segments are the individual job input and output files. The input file for the first job 
would be the first segment, and the input file for the second job would be the second 
segment. When the end of the allocated area has been reached, the next block number 
is incremented end-around to block 1. 

20-4 60410600 A 



Files larger than the allocated spooling file size can be written by using the no protect 
option. When the end of the area allocated for a spooling file is reached, the next 
block is incremented end-around to block 1. The file is then written over released 
blocks until an unread block is reached. Then, the next block of the file is written 
each time the preceding block has been read and released, until the whole file has 
been written. This allows files of infinite size to be spooled. 

The no protect statement must be the first statement in each job u sing the no protect 
option. The no protect statement applies to all job files that are spooled. 

$APC,NP 

U sing the no protect statement inhibits the restart function, and if a printer 
or punch malfunction occurs, the amount of the list or punch file that can be 
reprinted or repunched may be limited. It may require rerun of the job. 

SYSTEM UNIT ASSIGNMENTS 

The operator may switch system input or output to a tape drive when using APC. 
However, the printer, punch, or reader cannot be used while a tape is being used as 
a substitute. If input or output is mostly on tape, tape drive(s) should be assigned as 
a system unit at autoload time. Then the printer, punch, or reader may be equipped 
and used in the user programs. 

If the operator switches the system list or punch output unit to a tape drive while APC 
is running, an occ asional internal control record may be written on the tape. If the 
tape is listed or punched by a pr.ogram or routine running under APC, it removes the 
extraneous records. If the tape is listed or punched without APC, the extraneous 
records are printed as extra lines in the listing, or punched as extra cards in the 
output deck. 

60410600 A 20-5 





ALTERNATE PROCESSOR (AP) 21 

DESCRIPTION 

Msas contains an alternate processor (A P) routine which uses mass storage files for 
standard system input and output units 60, 61, and 62. When called, the A P is sub­
stituted for and simulates the CIa routines that drive the system units. The A P allows 
the user to submit batch jobs from mass storage and to spool the system list and punch 
output on mass storage for faster batch job processing. 

AP FILE FORMAT 
The AP reads and writes mass storage files blocked in A P format. With the exception 
of the ASCII flag in the record header, the A P file format is identical to the universal 
record format described in appendix E. I 

A P Blocking F0rmat 

P 

P+1 

P+2 

23 

rh (cont'd) 

nbn 

pofac 

rh 

nbn 

pofac 

rh1 

data 
record 

data 
record 

rh2 

} block header 

record header 1 

record header 2 

unused char­
acters 

N ext block number. Usually equal to the current block plus one. 

Relative position of first available unused character position in the 
block (that is, last character written plus 1). t 
Record header; rh beings at the end of block header and after 
the last character of the data record. 

t Relative to first character of nbn which is character O. 

60410600 B 21-1 



I 

Record Header Format 

23 22 20 16 00 

rl 

In Mode 

1 Binary 
o BCD 

e EOF flag 

1 EOF record 
o Data record 

a ASCII flag 

1 ASCII data 
o Hollerith data 

rl Record length in characters. not including the record header 

The end-of-file record header is written with the following values. 

mOor 1 

1 1 

a 0 or 1 

rl 4 

data 17170000 

All spooled input from system file 60 is blocked in A P format. A PC blocks mass 
storage input files in A P format. If A PC is not used, the user supplies a routine or 
uses the A P file processing routine to block and write the files. 

A P writes system list and punch files in A P format. A PC deblocks A P formatted 
files. If A PC is not used, the user supplies a routine or uses the A P file pro­
cessing routines to deblock and read the files. 

SUBMITTING BATCH JOBS FROM PRIORITY PROGRAMS 

For some applications, a user may find it convenient to store batch jobs on mass 
storage files and submit them for execution by a priority program (that is, initiatiori 
via a manual or other type of interrupt). 

Each time MSOS completes a batch job, it checks for requests from priority programs 
for batch job processing. MSOS processes all priority submitted batch jobs before 
reading the next standard batch job from the system input unit. 

Priority programs can submit only one batch job at a time. However, each priority 
program in core can have one active request for batch job processing at the same time. 
The priority batch jobs are processed in the order of requests rather than in accor­
dance with the priority level of the submitted program. 

Upon completion of a priority batch job, the submitting program can initiate a second 
batch job which has priority over the next standard batch job from the system input 
unit. 

21-2 60410600 B 



The procedure for submitting priority batch jobs is as follows: 

1. Write job files blocked in A P file format on mass storage. 

2. In a priority program, supply a job submission routine. This routine consists 
of a call to BJSV50 to submit the batch job. The first word address of an 
initialization/ completion routine must be supplied in the call to BJSV 50. 

3. In the same priority program, supply an initialization/ completion routine. 
The initialization portion consists of a call to IAPV50 to initialize AP, and 
contains an A P control table (A PCT) and an A P mass storage control table 
(A PMCT) to identify and define the batch job files. The completion portion 
consists of a call to EAPV50 to inform A P of job termination. 

When a priority batch job is submitted, MSOS stores the initialization/ completion routine 
address until the current batch job is completed. Then MSOS enters the initialization 
routine at the secondary entry point to initiate the priority batch processing. After 
initialization, A P reads the next batch job from mass storage rather than input unit 60. 

Upon completion of the priority batch job, MSOS enters the completion routine in the 
priority program. This routine terminates the A P, and allows the user to submit an­
other priority batch job or do other processing before returning to MSOS for standard 
batch processing. 

JOB SUBMISSION ROUTINE 

To submit a batch job from mass storage, the user must submit a priority program to: 

1. Open a mass storage file containing the job. 

2. Enter the address of an initialization/ completion routine in register A. 

3. Return jump to BJSV50. 

4. Exit. 

Upon return, A equals zero if the request was processed, and A equals negative one 
if the request was rejected. The request is rejected if a previous call to BJSV50 from 
the same priority program is still outstanding. 

Example: 

PRIORITY 
PROG PRIMARY ~-~ 

ENTRY 

OPEN 
JOB FILE 

SUBMIT 1 

ADDR 

ADDR+n 
JOBF 

60410600 A 

UJP 
OPEN 
RTJ 
ENA 
RTJ 
AZJ,LT 
UJP 
(Initialization 

FILEID 

** 

CALL 
BJSV50 

Entry 

EXIT 

(JOBF, 01, I) 
ABNORMAL 

Logical file number must be 01 
for job file. 

ADDR 
BJSV50 
ABNORMAL 
SUBMIT 1 
completion routine) 

(OWNER, JOB1, 540, 1, PRIV1, PRIV2) 

21-3 



INITIALIZATION/COMPLETION ROUTINE 

I The initialization half of the initialization/ completion routine consists of providing an A PCT 
and A PMCT Table for each batch job to be submitted and calling IA PV50. When the call to 
AP is made (RTJ to IAPV50), register A must contain the address of the APCT Table. 

Upon return from the call to A P, register A equals zero if the call was rejected. A reject 
occurs if A P was not called from a priority program. 

The completion half of the initialization/ completion routine consists of a termination call 

I to the AP (RTJ to EAPV50) allowing AP to clear all flags used for processing and to write 
partially full output buffers on mass storage. In addition, the termination routine is used 
to submit another batch job to MSOS or do other processing before exiting back to MSOS. 

On return from the A P call, A equals zero if A P has terminated normally. Register 
A equals negative one if A P could not terminate due to a temporary space problem on 
an output spooling file. This condition does not occur unless the list or punch output 
is being spooled. If it occurs, a clock interrupt may be used to reenter the completion 
routine and submit another call to EA PV50. 

When MSOS enters the initialization / completion routine to initiate priority batch pro­
cessing, it sets register A equal to zero. When the A P enters the initialization/ com­
pletion routine after completing a batch job, it sets register A equal to a negative one. 

PRIORITY 
PROG SE~ 

ENTRY INT 

21-4 

NOTE 

The A P contains ~n external for loading the A PC 
initialization routine from the library. To prevent 
loading A PC, a dummy external entry point, A PC. INIT, 
must be included in the initialization/ completion routine. 
The dummy external satisfies the A PC. !NIT external 
in the AP. 

IAPV50 

YES AP 
INITIALIZE 
ROUTINE 

NO 

EAPV50 

AP 
TERM INATION 
ROUTINE 

ENTER SECOND 
SET SECOND JOB'S MCT 
JOB FLAG ADDRESS IN 

APCT TABLE 

CLOSE MASS CLEAR 
STORAGE t----~ SECOND 
JOB FILES JOB FLAG 

CALL 
BJSV50 

ENTER FIRST 
JOB'S MCT 
ADDRESS IN 
APCT TABLE 

EXIT 

TERMINATION 
EXIT 

60410600 B 



INITIAL UJP ** Entry 
AZJ.LT COMPL Completion entry? 
ENA APCT 
RTJ IAPV50 Initialization call to A P. 
AZJ.LT APC.INIT A bnormal return? 
UJP INITIAL Exit 

COMPL RTJ EAPV50 Completion call to A P. 
AZJ. LT APC.INIT Abnormal return? 
LDA FLAG 
AZJ.EQ SUBMIT2 Two jobs submitted? 
CLOSE (1) Close first job file. 
CLOSE (2) Close second job file. 
ENA 0 
STA FLAG Clear second job flag. 
ENA APMCT1 
STA APCT Restore initial APC T value. 
UJP SUBMIT 1 Termination exit through primary entry I point. 

SUBMIT2 ENA 7 Start second job. 
STA FLAG Set flag for second job start. 
ENA APMCT2 FWA of new APMTC Table. 
STA APCT Change entry in APCT Table. 
ENA INITIAL 
RTJ BJSV50 Submit second job. 
AZJ, LT APC.INIT Abnormal return? 

I UJP INITIAL Exit through second entry point. 
FLAG 00 0 

ENTRY APC.INIT External to prevent loading A PC. 
APC.INIT RTJ ABNORMAL 
APCT 00 APMCT1 FWA of an A PMCT Table for the input file. 
APCT1 00 0 
APCT2 00 0 
APCT3 00 0 
APCT4 00 0 
APCT5 00 0 

60410600 B 21-5 



AP CONTROL ~ABLE (APCT) 

I An A peT Table must be supplied to A P for each batch program processed. The format 
of the APCT table is as follows: 

Location 

APCT 

APCT+1 

APCT+2 

APCT+3 

APCT+4 

APCT+5 

23 

apmct 60 addr 

apmct 61 addr 

apmct 62 addr 

edit 60 addr 

edit 61 addr 

edit 62 addr 

15 14 01 

apmct 60 addr 

apmct 61 addr 

reserved apmct 62 addr 

edit 60 addr 

edit 61 addr 

edit 62 addr 

First word address of an A PMCT Table for the spooled 
job file. 

First word address of an A PMCT Table for the spooled 
list output file. This entry must be zero unless spooled 
list output files are being used (refer to user spooling 
routines). 

First word address of an A PMCT Table for the spooled 
punch output file. This entry must be zero unless spooled 
punch output files are being used (refer to user spooling 
routines). 

First word address of a us~r supplied edit routine for in­
put file records (refer to AP edit routines). Use of an 
edit routine is optional when submitting a batch job. Value 
is zero if an edit routine is not being used. 

First word address of -a user supplied edit routine for list 
output file records. This entry is zero unless spooled 
list output files are used. 

First word address of a user supplied edit routine for 
punch output file records. This entry is zero unless 
spooled list output files are used. 

If the values in the APCT are changed after initiating AP, they are ignored by AP. 
However, the value may be changed before initiating A P for subsequent jobs if more 
than one job is to be spooled. 

21-6 60410600 B 



MASS STORAGE CONTROL TABLE (APMCT) 

An APMCT Table must be supplied for each mass storage file spooled or unspooled by I 
AP. In addition, if AP file processing routines are used in a user's program, a second 
APMCT Table must be supplied for each spooling file for use by the AP file processing 
routines. 

The A PMCT Table defines a spooling file. Entries llbn (lower block number) and ulbn 
(upper block number) define the physical limits of the file. Incrementing ulbn by one 
gives llbn, and decrementing llbn by one gives ulbn. Although the total blocks allocated 
for the file are greater than the blocks defined by llbn and ulbn, the A P read and write 
routines restrict usage to the blocks defined by llbn and ulbn. 

The beginning and end of a file segment is defined by sbn and ebn. When a file segment 
is larger than the physical size of the file, the first blocks must be read before the 
last blocks can be written. Therefore, the ebn (last block in the file) should be set to 
zero until the last block number of the file is known or is written. 

Symbolic address 
used by the AP 

MCT.LU 

NiCT. LBN 

MCT. DBN 

MCT.LEN 

MCT.SBN 

MCT.CBN 

MCT.DBN 

MCT.EBN 

MCT.FWA 

MCT. POF 

MCT.LRP 

60410600 B 

~3 

f 

TABLE 21-1. MASS STORAGE CONTROL 

22 116 114 5 '0 

reserved lu 

reserved llbn 

reserved ulbn 

reserved I 1 

reserved sbn 

reserved cbn 

reserved dbn 

reserved ebn 

reserved I fwa 

reserved pofac 

reserved lrp 

21-7 



I 

Symbol 

f 

lu 

llbn 

ulbn 

I 

sbn 

cbn 

dbn 

ebn 

fwa 

pofac 

lrp 

Bits 

23 

5 through 0 

16 through 0 

16 through 0 

14 through 0 

16 through 0 

16 through 0 

16 through 0 

16 through 0 

14 through 0 

16 through 0 

16 through 0 

Des cription 

First time flag 

1 Processing not 
started 

o Processing started 

Initial Value for Simple 
Submission of a Batch Jobt 

1 

Logical file number on the 01 for job input file. 
spooling file. 

Lowest logical block num- First block written in the file 
ber in the file. (that is. block 1). 

Highest logical block Last block number written in 
number of the file. file. 

Block size in words. 

First block of the file 
segment. 

Number of the block cur­
rently being processed. 

Temporary upper limit 
for processing. 

Last block of the file seg­
ment. (Zero implies 
unknown. ) 

First word address of the 
I/O buffer in core for this 
file. 

Value used in FET card con­
verted to words. 

Same as llbn. 

Same as sbn. 

Zero. Implies no temporary 
limit. 

Last block number to be 
written. 

Address of an input buffer 
for A P to use. 

First character address of 108 t t 
the next available space for 
blocking a record in the 
output buffer. 

First character position 77777775 8 t t t 
of the last record de-
blocked in an input buffer. 

The dbn is used to avoid block conflicts when reading and writing concurrently on the same 
segment. The dbn is the block currently being written in an input file segment or the block 
currently being read from an output file segment. A P can read up to the dbn on an input seg­
ment and can write up to the dbn on an output segment. The dbn can be set to zero when there 
is no possibility of the same segment being written and read concurrently. The segment is 
protected if the dbn is not advanced beyond the sbn of the segment until after the segment has 
been fully processed. AP does not set or update the dbn in its APMCT Table. This must be 
done by A PC or a user spooling routine. 

The cbn is the block currently being read from an input segment or written on an output seg­
ment. The A P advances its cbns by one prior to each new read or write function. If a cbn 
becomes equal to a dbn. A P must wait for the dbn to be advanced before reading or writing 
the next block. 

Setting the first time flag inhibits advancing the cbn. A P clears the first time flag when a 
block is read or written without advancing the cbn. 

tWhen spooling I/O with user supplied routine. these valu.es depend upon the user spooling 

I routine. 
t tFirst eight characters of each block are a two-word preamble. 

t t tlndicates a new block is read before deblocking the next record. The LRP must always be 
set to a negative two when the A PMCT is initialized. 

21-8 60410600 B 



Figure 21-1. List Output Spoolingt 

A P uses the pofac when blocking output records for spooling. Each time a new record I 
is blocked, the A P blocking routine advances the pofac to the first character address 
of the next available space in the buffer. t t The AP blocking routine compares I 
pofac with the block size to determine when the buffer is full. When A P writes the 
buffer, the A P write routine writes the pofac in the block header and sets the A PMCT 
pofac to eight. 

A P uses the lrp and the pofac when deblocking input records after unspooling a block. I 
The A P read routine sets lrp to zero each time a new block is unspooled. Then, each 
time a record is deblocked, A P advances lrp to the first character address of that 
record. 

Each time a block is unspoole d, the A P read routine uses the infomation in the block 
header to set the pofac in the A PMCT to the first character address of the last record 
in the block. Then, during deblocking, when the lrp and the pofac become equal, the 
buffer is empty and the next block can be unspooled. 

tThe job 5 segment is not protected. To protect the segment, set dbn equal to the 
job 5 sbn. 

t t The character address is relative to the first character in the buffer (character zero) 
rather than the actual memory address. 

60410600 B 21-9 



I 

I 

USER SPOOLING ROUTINES 

For special applications, the user may choose to supply his own mass storage spooling 
routines. A user spooling routine must be part of a priority program. The priority 
program performs the following functions. 

1. Allocate one to three mass storage spooling files. A job input file is required, 
but the list and punch output files are optional (refer to allocation of spooling 
files in section 20). 

2. Request use of the AP for each batch job with calls to BJSV50. 

3. Supply an AP initialization/completion routine (calls to IAPV50 and EAPV50) 
and an A PCT Table for A P. 

4. Provide AP with an APMCT Table for each spooling file. 

5. Provide a second APMCT Table for each spooling file if the A P file processing 
routines are used to write the input file and read the output files (that is, in 
user supplied routines). 

6. Read batch jobs from the system input unit and write them on the mass storage 
input file in AP file format. 

7. Read and deblock data from the output files and print or punch the data. 

8. Update the, dbns in the APMCT Tables for AP. Set the dbn in the APMCT 
Table for input files after each job is written. 

For user spooling programs, the A PMCT Table settings for A P are initialized as 
follows: 

f 1 

sbn First block number written or read on the file. 

cbn Same as sbn. 

dbn Same as cbn for the input file. cbn-1 for list and punch output files. 

ebn Zero 

lrp 777777758 

AP FILE PROCESSING ROUTINES 

I The AP has six subroutines that are also available for us by the programmer for 
building and processing mass storage spooling files. These routines are used by the 
AP and may be used in user programs to spool and unspool files. 

If the A P file processing routines are used in a priority 1 real-time program, the A P 
busy flag, APBSYV50, should be checked before entering an AP routine. A priority 1 
real-time program can interrupt itself and may attempt to enter an A P routine that was 
previously entered and is not finished. The A P busy flag at symbolic location A PBSYV 50 
is zero if AP is not busy. If APBSYV50 is not zero, an exit must be taken to allow 
the A P function to finish before reentering another A P routine. 

I Figure 21-2 is an example of a program that uses the AP file processing routines to 
spool input from the system input unit and unspool the system list output. 

21-10 60410600 B 



en 
o 
~ ..... 
o 
en 
o 
o 

tJj 

t\:) 
..... 
I ..... 

I-' 

PRIMARY 
ENTRY 

SET NEW 
JOB FLAG 

INITIATEI ~~EGISTE 
TERMINATE AP A=ZERO 

NO 

YES 

EAPV50 

OPEN MASS 
STORAGE 
SPOOLING 
FILES 

IAPV50 

INITIATE 

AP 

REQSUV50 

REQUEST 
SYSTEM 
LIST OUTPUT 
UNIT 

CIC 

SET CLOCK 

INTERRUPT 

AP'S CBN =EBN 

SET EBN 
TERMINATE H IN PRINTERS 
AP APMCT TABLE 

REQSUV50 
i 

. REQUEST 
SYSTEM 

., INPUT UNIT 

~( EXIT 

CIO 

READ A 
CARD 

Figure 21-2. Sample User Spooling Program Using the Alternate Processor 

EXIT 



(:I.!) ..... 
I ..... 

(:I.!) 

CLOCK INT, 

PRINTER 
INTERRUPT 

DBN=AP'S CBN 

UPDATE DBN 
IN PRINTERS 
APMCT 

APDBKV50 

DEBLOCK 
t---....-...I 

A RECORD 

RELEASE ALL 
~ SPOOLING 

FILES 

~ 

o 
~ ..... 
o 
~ 
o 
o 

APRDV50 

READ A BLOCK 
FROM AP'S 
OUTPUT FILE 

CLEAR 
ALL 
FLAGS 

CIO 

PRINT 
A RECORD 

TERMINATION 
t---~~ EXIT 

UJP =TO':'""::'P~RI~M:-::::EENTRY 

EXIT 

CIC 

SET 

CLOCK 

PROCESS 
CIO REJECT 

OJ Figure 21-2. Sample User Spooling Program Using the Alternate Processor (Cont'd) 

EXIT 



0') 

o 
~ 
Jooo4 
o 
~ 
o 
o 
to 

N 
Jooo4 
I 

Jooo4 
Col) 

tARO READER 
INTERRUPT 

APWRV50 

WRITE 
BUFFER ON 
MASS STORAGEi 

SUBMIT 
BATCH 
JOB 

YES 

YES 

NO 

CLEAR 
NEW JOB 
FLAG 

UPDATE 
.------...... AP'S DBN 

APBLKV50 

BLOCK 

CARD 

Ap·S DBN=READERS CBN 

SAVE 
CARD 

READ 
NEXT 
CARD 

SET AP'S 
EBN 

AP'S EBN = READERS CBN 

EXIT 

Figure 21-2. Sample User Spooling Program Using the Alternate Processor (Cont'd). 



AP8lKV50 

APBLKV50 blocks records in CDC universal record format. The calling sequence is 
as follows: 

(B3) First word address of an A PMCT Table • 

. (Q) Record header 

RTJ APBLKV50 

On return: 

(A) First character address in memory where the record. excluding the header. 
must be moved to block it. A PBLKV50 writes the record header in the 
buffer before the return. 

Zero if the record does not fit and the data block must be written. 

APDBKV50 

A PDBKV50 deblocks records in CDC universal format. The calling sequence is as 
follows: 

(BS) First word address of an A PMCT Table. 

RTJ APDBKV50 

On return: 

(A) First character address in memory where the record is stored. excluding 
the header. 

The contents of register A is: 

Zero if buffer is exhausted and the next block must be read. 

Negative one if a garbled record header is detected. 

Negative two if the lrp was set to that value. U sed to indicate an ab­
normal termination of deblocking for this block. The next block should 
be read. 

(Q) The record header. 

APRDVSO 

The read routine advances the cbn and reads one block from the mass storage file. 
When ulbn is reached. A PRDV50 sets the block number equal to llbn. A PRDV50 rejects 
if ebn or dbn is sensed meaning data is not available. or if an I/O error occurred. 
The calling is as follows: 

(B3) First word address of an A PMCT Table. 

RTJ APRDV50 

21-14 60410600 A 



On return: 

(A) Positive zero if data was read. 

APWRV50 

Negative one if data is tempor,arily not available. The dbn is reached. 

Negative two if permanently out of space. The ebn has then been processed. 

A positive number other than zero is a CIa reject code. 

NOTE 

This routine requires that the first time flag be set if 
the cbn is equal to the sbn in order to read the sbn block. 

A PWRV50 is a write routine that increments the cbn and spools a block on mass storage. 
When ulbn is reached, A PWRV50 sets the next block number equal to llbn. It rejects if 
space is not available or if CIa rejects the call. If an irrecoverable I/O error occurs, 
the block in error is flagged and the data written in the next sequential block. The 
read routine recognizes these flagged blocks and skips to the next sequential block. 
The calling parameters are as follows: 

(B3) First word address of an A PMCT Table. 

RTJ APWRV50 

On return: 

(A) Positive zero if data was written successfully. 

APINCV50 

Negative one if temporary reject due to lack of space. The dbn was reached. 

Negative two if a permanent reject due to lack of space. The ebn has been 
processed. 

A positive number other than zero is a CIa reject code. 

NOTE 

This routine requires that the first time flag 
be set if the cbn is equal to the sbn in order 
to write the sbn block. 

APINCV50 calculates the next sequential block on a spooled file. The last, block plus 
one is set to the first block and the first block minus one is set to the last block. 

(A) Block number. 

(Q) One to increment current block number by one. 

Negative one to decrement current block number by one. 

(B3) First word address of an A PMCT Table. 

RTJ APINCV50 

On return: 

(A) Next block number. 

60410600 A 21-15 



APSPCVSO 

The A PSPCV50 checks if a particular block can be accessed by the read or write routines. 
A temporary reject is returned if the block number equals the dbn and a permanent re­
ject if it equals the ebn+1. 

(B3) First word address of an APMCT Table. 

(A) Block number. 

RTJ APSPCV50 

(A) Zero if block may be accessed. 

Negative one for a temporary reject. The dbn has been reached. 

Negative two for a permanent reject. The ebn has been reached. 

AP EDIT ROUTINES 

The user may add record edit routines to his spooling program. The address of the 
edit routine.(s) must be inserted in the A PCT Table before initializing the A P. 

When an edit routine address is specified in the A PCT Table, A P does a return jump 
to the edit routine for each record blocked or deblocked. 

If an input edit routine is specified, A P enters the edit routine after each input record 
is deblocked, but before the record is processed by the batch job. A P places the 
following information in registers A and Q before entering the edit routine: 

(A) First character address of the record. 

(Q) The record header. 

The edit routine must not increase the length of a record unless the record is moved 
to a user record processing area. 

On return to A P, the edit routine must supply A P with the s arne type of information in 
registers A and Q. If the record was not moved from the A P buffer area, the con­
tents of register A would be the same as when A P entered the edit routine. The 
record header in register Q mayor may not be changed, depending upon edit routine 
processing of the header. 

If an output edit routine is specified, A P enters the edit routine before each output 
record is blocked. AP places the following information in registers A, Q, and OSR 
before entering the output edit routine. 

(A) First character address of the record. 

(Q) The record header. 

(OSR) The memory bank containing the record. Zero or one for extended core 
variants only. 

The edit routine may not change the length of the record or the data in the record with­
out first moving the record to a record processing location. On return to the A P, the 
edit routine must supply the same type of information in registers A, Q, and OSR that 
A P supplied. This information mayor may not be changed depending upon the functions 
the edit routine performed. 

21-16 60410600 A 



AUXILIARY LIBRARY GENERATION 22 

DESCRIPTION 

MSOS has an auxiliary library feature allowing application users to generate and use 
their own libraries. COMPASS and FORTRAN users can use auxiliary libraries to 
store and call programs and subprograms. COBOL users can use auxiliary library to 
store and call only complete programs. 

Auxiliary libraries are active only when an AUX statement is included in the job (refer 
to AUX statement in section 4). The AUX statement applies only to the job it is used 
with. Other jobs and the operating system are not affected by the AUX statement or 
by the auxiliary library. 

When an AUX statement is used in a job, the loader searches the AUX library directory 
first for all programs or subprograms called for in a program or in a job. If the 
subprogram or program is not found in the AUX library directory, the loader searches 
the system library. directory. Therefore, if a subprogram on the AUX library and the 
system library have the same name, the program on the AUX library is always loaded 
when the A UX statement is used. The program on the system library is always loaded 
if the AUX statement is not used. 

The AUX library is a mass storage file which is allocated and opened the same as any 
other mass storage file used in a job. The file contains a directory in the first few 
blocks, and the remaining blocks contain relocatable binary subprograms in object code. 
MSOS closes the AUX library at the end of the job, the same as for the other mass 
storage files. The AUX library device need not be on-line when not in use and the 
library can be released when it is no longer needed. 

Some of the advantages of AUX libraries are: 

1. An AUX library is generated, used, and released without disturbing the system 
library. 

2. An AUX library can be used to resolve conflicts in duplicate entry point names. 

3. An AUX library provides easy access to special routines and subprograms. 
Autoloading a special library edition is not required. 

4. An AUX library is easy to prepare, easy to use, and is private. 

Name (2 words) 
Starting block (1 word) 

Name (2 words) 
Starting block (1 word) 

Subprog 1 
Subprog 2 

C§i?progn 

AUX Library Format 

60410600 A 

DIRECTORY 

LIBRARY 

Three words for each primary entry 
point name. There are a maximum 
of 41 entries per block. 

R elocatable binary subprogram decks 
IDC through TRA are produced from 
COMPASS, FORTRAN, and ALGOL 
programs. Each deck starts on a 
new block. 

22-1 



AUX LIBRARY GENERATION 

The procedure for preparing an AUX library is as follows: 

1. Allocate a mass storage file for the AUX library. The block size is 960 
characters per block, and the number of blocks is the sum of the blocks re­
quired for the directory and the library. 

a. For the directory, allow one block for each 41 entry point names. 

b. For the library, allow one block for each six binary cards. 

Each subprogram starts at the beginning of a new block. Therefore, extra 
space must be allowed between the subprograms for waste. 

2. Open the file. 

3. Use a PRELIB statement to load the binary relocatable subprograms onto the 
library. Refer to library file overlays in section 7 for loading overlay programs 
on an AUX library. 

;fhe most commonly used statements for auxiliary library generation are: ~PRELIB, 
~ FILE, and ~UNIT. Other specialized statements that may be used are described in 
the MSOS Installation Handbook. 

PRELIB STATEMENT 

ThePRELIB statement generates the AUX library from relocatable binary subprogram 
card decks or files. 

$PRELIB, s, AUX, u, n, I=in 

s Specifies whether or not a library listing is generated. 
s equals suppress listing. If omitted, a library listing is printed. 

u File number of a mass storage file that the library is to be stored in. 

n The number of allocated blocks that are used for the directory. 

in Logical unit or file number containing the input subprograms. The para­
meter may be omitted if the input unit is 60. All subprograms on tape 
files must be unblocked or blocked in universal format. All subprograms 
on mass storage must be blocked in universal format. t 

Files 1 through 14 are reserved for use by PRELIB. Therefore, 1 through 14 may not 
be assigned for the u or in parameters. 

FilE STATEMENT 

The FILE statement terminates PRE LIB input. The FILE statement must be the last 
input statement on the input unit (that is, unit specified with the 'in' parameter on the 
PRELIB statement). 

~FILE 

UNIT STATEMENT 

The UNIT statement switches the PRELIB input from the initial unit specified on the 
PRELIB statement to a new unit. PRELIB reads input from the new unit until an EOF 

t Refer to appendix E for universal format. 

22-2 60410600 B 



is sensed. 
input unit. 

PRELIB reads the next control statement or subprogram from the initial 
The file on the initial unit must be terminated with a ~FILE card. 

7UNIT u 9 ~ 

u = the file number. 

Example 1: 

$JOB~ 61~ RTDRV 
$RAT~ 853/131 
$FET, DEPT-4F, SPEC-DRIVES~ 960~ 03, DRIV, DRIV 
$ALLOCATE, B101, 741231, NOSEG, 853 
~OPEN, 21 
9.PRELIB, ~ AUX, 21, 1 
(binary deck 1) 
(binary deck 2) 
(binary deck 3) 

iFILE 
CLOSE, 21 
FET, DEP, T-4F~ SPEC-DRIVES, 960~ 03~ DRIV, DRIV 

$RELEASE, UNUSED 
77 
88 
$EOJ 

Example 2: 

$JOB~QT,GAMES 
$RAT.- 853/190 
$FET, SPECIAL, ODDS, 960, AR, 7/11, EVEN 
$ALLOCATE, B101, 741231, NOSEG, 853 
$OPEN,21 
$EQUIP,20=MT 
$FORTRAN, P=20 Use P parameter instead of X; 
(FORTRAN SOURCE DECK 1) 

FINIS 
77 
88 

X blocks the output in 960 character 
blocks. P gives unblocked card 
image output. 

$FORTRAN, P=20 
(FORTRAN SOURCE DECK 2) 

FINIS 
77 
88 
$FORTRAN, P=20 
(FORTRAN SOURCE DECK 3) 

FINIS 
77 
88 
$UTILITY 
WEOF, 20 
REWIND,20 
END 
7 _ 
gpRELIB, S, AUX, 21, 1,1-60 

7 
9UNIT, 20 

~FILE 

60410600 B 

Write EOF on input tape. 

Switch to unit 20 for input. 

Terminate PRELIB input and 
generate library on file 21. 

22-3 

I 



$CLOSE,21 
$FET, SPECIAL, ODDS, 960,AR, 7/11, EVEN 
$RELEASE, UNUSED 
$ UNLOAD, 20 
77 
88 
$EOJ 

SUBPROGRAM CALLING SYMBOLS 

The rules for calling and linking subprograms from an AUX library are the same as 
for the system libraryo Each binary subprogram deck must have one or more primary 
entry point names. The entry point names are on an EPT card which is located between 
the IDC card and the first RIF cards. The symbols on these cards are the names 
PRELIB enters in the library directory. These symbols are the subprogram calling 
names. The assembler or compiler uses the information from one of the following 
source language statements to generate and assemble these EFT cards into the- binary 
output decks. 

COMPASS 

FORTRAN 

First ENTRY statement after the IDENT card. 

{

PROGRAM name statement 
SUBROUTINE name statement 
FUNCTION name statement 

EPT -cards following the first RIF card indicate secondary entry points. Secondary 
entry points are not used until the subprogram has been loaded. 

The loader loads and links all subprograms called by the subprograms it has loaded. When 
a subprogram references an external name, the loader first searches for the external name 
in the subprograms it has loaded. If a matching name is found, the loader links the locations. 
If some names are not found, the loader searches the library directories for matching entry 
point names. If the matching entry point name is in both an auxiliary library and the system 
library directory, the subprogram is loaded from: 

1. The AUX library if an AUX statement was used in the job. 

2. The system library if an AUX statement was not used-. 

3. The system library if an AUX statement was cleared before the program 
load function was initiated. . 

4. The system library if the subprogram containing the external reference was 
called from the system library. Subprograms called from the system library 
can not call subprograms from an AUX library. 

When selecting entry point names for AUX library subprograms, care should be taken 
to avoid duplicating a secondary entry point name used in a subprogram on the system 
library. A duplicate symbol error occurs if both subprograms were loaded in the 
same program. For example, if subprogram DATE was loaded from an AUX library, 
subprogram TIME was loaded from the system library, and subprogram TIME had a 
secondary entry point called DATE, a conflict between the two DATEs would occur. 

The system analyst can supply a listing of all primary and secondary entry points-_ used 
in the system library subprograms. 

I 22-4 60410600 B 



PROGRAMS ON AUXILIARY LIBRARIES 

Programs may be placed on an auxiliary library and called from the auxiliary library 
with a library program name statement. (Refer to Library Program Name Statement I 
in section 4. ) 

A program consists of one or more subprograms linked to one another with external 
references such as XNL and EPT cards. One of the subprograms must have a transfer 
point address (program entry point) on a TRA card. No more than two transfer . 
addresses are allowed in a program. The assembler or compiler uses information from 
one of the following source statements to generate the transfer address and place it on 
the applicable TRA card. 

COMPASS 

FORTRAN 

COBOL 

The END statement. 

PROG RAM name statement. 

Compiler automatically adds the first word address of 
the procedure division to the TRA card in each deck 
compiled. The primary entry point name used to call 
the program is obtained from the PROGRAM - ID statement. 

I 

The symbolic name used in the above statements is the name used to call the program I 
off the auxiliary library. 

60410600 B 22-5 I 





SYSTEM I/O ERROR RECOVERY ALGORITHM 23 

DESCRIPTION 

The system I/O error recovery routines provide automatic I/O error processing. These 
routines attempt to determine the cause of the error, and they repeat the I/O function 
several times in different modes (such as recording modes and forward/reverse reads) 
in an attempt to perform the I/O function correctly. 

The error recovery routines are used with most MSOS products such as COBOL and 
FORTRAN. COMPASS users have the option of selecting the system I/O error recovery 
routines or writing their own I/O error recovery routines. t 

When standard error recovery is used unsuccessfully, the operator is normally notified 
by the system and requested to either ready the equipment or request I/O recovery be 
abandoned. 

If the operator requests the system to abandon the I/O attempt, an irrecoverable I/O 
error return occurs. COMPASS users must check the status word and then perform 
one of the following steps if an irrecoverable error return occurs. 

L Abort the job (refer to section 17). 

2. Select another I/O unit and repeat the I/O request. 

3. Continue without the I/O. 

4. Accept the error and continue. 

System error recovery routines are provided for the following I/O units. For all other 
units, the user must supply his own error recovery code. 

Tape drives 

Mass storage drives 

Printers 

Card reader 

Card punch 

601 through 604, 606 through 608, 657, 659 

813, 841, 853, 854, 863 

501, 505, 512, 3254 

405 

415 

MAGNETIC TAPE ERROR RECOVERY 

Special -noise records and a block checksum are used to facilitate I/O error recovery 
on magnetic tapes. The error recovery algorithm used varies in accordance with the 
type of error that occurred. The following paragraphs summarize the procedures 
error recovery uses to recover from magnetic tape read and write errors. 

t System error recovery is selected by calling SCAR, SCARV50, or by using function 
codes 41 or 42 for I/O functions (refer to s~ction 11). I 

60410600 B 23-1 



NOISE RECORDS 

A noise record is any data block which is 18 characters or less in length. t A system 
noise record (SNR) is four six-bit characters written by CIa to bracket bad spots on the 
tape detected during write error processing. 

Noise records, other than SRNs, are considered illegal. The system rereads these 
records several times to ensure a read error did not occur. If a legal size record 
of more than 18 characters cannot be read, the system assumes the record is noise. 
The system then discards the record and reads the next record. 

BLOCK CHECKSUM 

For each block written on tape, CIa calculates a checksum word which is stored until 
after the next block is correctly written. This checksum is used during write recovery 
to ensure the last block has been correctly located before repeating the w rite function. 

READ ERROR RECOVERY 

Read errors occur as noise records in the interblock gap or as parity errors within 
the data block. 

Noise Record Recovery 

If CIa reads a block of 18 characters or less, it uses the following error recovery 
procedure. 

1. Checks for end-of-file (EaF) mark. 

2. If EOF was not sensed, error recovery checks for a SNR, indicating a bad 
spot on the tape. If an SNR was not read, the routine skips to step 4. 

3. If an SNR was read, the error recovery routine reads the next block 
and returns to step 1. 

4. If the noise record was not caused by an EaF or an SNR, error re­
covery does a reverse read and a forward read three times. t t If the 
block was read correctly (that is, more than 18 characters and no 
parity error), CIa makes a normal return to the program. 

If the recovery was obtained with a reverse read, the data is adjusted 
in the buffer area to simulate a forward read. t t t Then a dummy 
forward read is made to position the tape at the next block of data. 

If a parity error occurs and a nonnoise record is read, a forward or 
reverse read recovery is attempted. 

5. If the block was not read correctly in step 4, meaning less than 18 
characters, record is noise. The next block of data is read and if 
a read error does not occur, CIa makes a normal return to the pro­
gram. 

t Standard noise threshold length is 18 characters. This value may be changed with 
the FMT statement or with an assembly option at system installation time. 

t tIf the hardware is not capable of doing reverse reads, backspaces and forward reads 
are used. 

t t tReverse reads are valid only if the block size is equal to or less than the number 
of characters requested by the read function. If the block size is greater, the 
first record or records may be truncated. Refer to FMT statement in section 4 
for reverse read options. 

23-2 60410600 A 



If an FMT statement specifies minimum record length of less than 18 characters, 
the value specified is used for noise recovery. 

Noise recovery is bypassed if a noise record of zero characters is specified on 
a FMT statement. All noise records are read as valid 'data blocks, if no parity 
error occurs. 

Forward Read Recovery 

When CIO reads a block of data with a forward read parity error, it initiates the 
following error recovery procedures. 

1. Error recovery reads the block backward and forward seven times. t 
If programmable clipping hardware is present on the tape drive, error 
recovery does each read with a different read head clipping bias. If 
a successful read is made, CIO does a normal return to the program. 

2. For seven-track tapes, error recovery switches the mode (BCD/binary) 
and repeats step 1 twice. If a successful read occurs, CIO does an 
irrecoverable error return to the program. This prevents continuous 
error recovery attempts due to a user error. 

3. Error recovery resets the mode to the initial mode and does four 
reverse reads t t followed by four forward reads to move the bad 
block back and forth under the tape cleaner. 

4. Error recovery repeats steps 1 through 3 four times. 

I 

5. Error recovery reads the bad block one more time in reverse direction. 
If the error still occurs, the error is irrecoverable. 

6. If error is irrecoverable, CIa positions tape to the beginning of the 
next block and sends a message to the operator at the console type­
writer. 

7. If recovery was obtained with a reverse read, in any of the above 
steps, the data is adjusted in core. The tape is then repositioned 
with a dummy forward read, and control is returned to the program. 

Reverse Read Recovery 

The erroneous block is read in the forward direction and then reread in the re­
verse direction up to seven times. If the error persists, the block is reread two 
more times in the opposite mode (BCD/binary). 

If the error persists, the original mode is restored, and the bad block is moved 
back and forth under the tape cleaner. The block is then reread in the reverse 
direction. If the error persists, the entire procedure is repeated from step one 
four more times. 

After the fourth repetition, the block is read once again in the forward direction. 
If the error still persists, the error is irrecoverable. The tape is positioned to 
the beginning of the block with a reverse read, and the operator is notified at 
the console typewriter. 

If recovery was obtained with an opposite direction (forward) read, the data is 
adjusted in core, a dummy reverse read is done to reposition the tape to the be­
ginning of the block, and control is returne d to the program. 

tUse backspace and forward reads if the tape drive does not have reverse read capabilities. 
Only valid reverse reads (number of characters in the block is less than the characters 
in a read request) cause a successful return. For nine-track tapes, a backspace is al­
ways used to allow single track CRC correction. 

t tUses backspace if reverse read hardware is not on the tape device. 

60410600 C 23-3 



WRITE ERROR RECOVERY 

A parity error during a write function causes write recovery processing to occur. In 
write recovery, error recovery always assumes a bad or marginal area on the tape. 
No attempt is made to rewrite over the same bad area. 

Write recovery is divided into three phases. The first phase positions the tape at the 
beginning of the bad block of data. The second phase erase s six inches of tape and 
brackets the erased area with SNRs. The third phase rewrites the block and verifies 
a correct write. 

Repositioning Phase 

Error recovery uses the following procedures to reposition the tape to the end of 
the last good block (LGB) written. 

1. The tape is repositioned to the end of LGB with control backspaces. 
When controlled backspace hardware is not available, error recovery 
uses reverse reads or backspaces. 

2. Two reverse reads and one forward read to position tape at the 
beginning of LGB. 

3. LGB read forward. If a parity check error occurs, error recovery 
does a reverse read and a forward read, four times. t If the error 
persists, it repeats the procedure from step 2, four times. If the 
parity error continues to persist, the routine notifies the operator of 
an irrecoverable position lost error. 

4. A sum check is made after reading the LGB correctly. This is to 
ensure the correct LGB has been located. If a sum check error occurs, 
the routine notifies the operator of an irrecoverable checksum error. 

Erase Phase 

There are two types of erase phases, standard and nonstandard. The standard erase 
phase writes an SNR, erases 6 inches of tape and writes a second SNR. The last 
SNR is checked for parity. If a parity error occurs, another erase is done and 
another SNR is written. If the parity error persists after 50 tries, the write error 
is declared irrecoverable and the operator is notified. 

The nonstandard erase phase erases 6 inches of tape without bracketing the erased 
area with SNRs. This method is used on tapes using phase recording methods and 
on tapes that are interchangeable with other systems. A nonstandard erase is pre­
selected with a FMT statement or an assembly option at system installation time. 

Rewrite and Verification Phase 

After the last SNR has been written, the original data block is written. If a write 
error occurs, error recovery returns to the first step in the repositioning phase. 
An additional 6 inches of tape is erased in the erase phase. 

Verification of the erased bad spot is also necessary to ensure unerased noise does 
not remain. This is especially important if a nonstandard erase was made. The 
gap verification procedure is as follows: 

1. The block just written backward is read and then the tape is positioned 
at the beginning of the previous (LGB) block. If a record larger than 
eight characters was read with a parity error, recovery returns to the 
position phase, step 2. 

t The routine backspaces if reverse read hardware is not present. 

23-4 60410600 A 



2. The LGB -is read. If a length or checksum error occurred, a noise 
record greater than eight characters remains in the bad spot. That 
means the tape was positioned to a noise record rather than LGB. 
Recovery reverts to the repositioning phase, step 2. 

3. A forward read is used to reread the new data block. Records of less 
than eight characters are discarded and another read is made. If a 
parity error occurs in a read of eight or more characters, the error 
recovery returns to step 2 of the reposition phase. If no parity error 
occurs, a new checksum is created and control is returned to the pro­
gram. 

MASS STORAGE ERROR RECOVERY 

The following types of I/O errors can occur on mass storage devices. 

1. Address error 

2. Write check errors 

3. Check word error on a read function 

4. Lost data caused when memory did not input or output data fast enough 

5. Channel parity error 

Each time one of these errors occurs, error recovery repeats the read or write 
function 10 times. Then it declares the error irrecoverable and notifies the operator. 

CARD READER ERROR RECOVERY 

Two types of input errors can occur at the card reader, a channel parity error and a 
read compare error. t For both types of errors, typewriter messages request the 
operator to remove the card from the output tray and place it at the front of the input 
tray. The operator is requested to repeat this procedure each time the card is read 
incorrectly. If an error persists for the same card, the operator may declare the 
error irrecoverable. 

CARD PUNCH ERROR RECOVERY 

Two types of errors can occur at the card punch, a channel parity error or a punch 
compare error. t t The punch compare function automatically reads each card after 
it is punched and compares the total punches with the amount supposed to have been 
punched. 

For both types of errors, the bad card in the read station and the card currently in 
the punch station are repunched. The bad cards are offset in the output tray, and the 
operator is notified of the offset cards at the console typewriter so he can remove them. 
If an error persists, error recovery declares it irrecoverable after five retries. 

t The second read of a card did not compare with the first read. 
t tSCARV50 does the punch compare test only with 3446 and 3644 card punch controllers. 

The test cannot be done with a 3245 card punch controller. 

60410600 A 23-5 



PRINT ERROR RECOVERY 

Three types of error conditions can be detected during a print function. They are: 

1. Channel parity error 

2. Print error (character not printed) t 
3. Compare error (illegal character codes) t t 

Recovery is the same for all three types of errors. If preprint spacing was used 
when the line was printed, error recovery repeats the write function up to four times 
with a no space (+) control character. After the fourth try, error recovery declares 
the error irrecoverable and notifies the operator. 

If postprint line spacing was used, no recovery is possible. Error recovery declares 
the error as irrecoverable and notifies the operator. 

tDetectable on all 512 printers and on 501 printers with optional error checking 
hardware. 

t tApplicable only to train printers. The character code does not match a code in the 
image memory. 

23-6 60410600 A 



BCD/CHARACTER CODES A 

PRINTER CODES FOR 501/505 PRINTERS AND 512 PRINT TRAINS 

501/505 501/505 
Int. and 595-1 595-2 595-3 595-4 Int. and 595-1 595-2 595-3 595-4 
BCD Train Train Train Train BCD Train Train Train Train 
Code (501) (" AN") ("HN") (ASCII) Code (501) ("AN") (IIHN") (ASCII) 

00 0 0 0 0 40 - - - -
01 1 1 1 1 41 J J J J 
02 2 2 2 2 42 K K K K 
03 3 3 3 3 43 L L L L 
04 4 4 4 4 44 M M M M 
05 5 5 5 5 45 N N N N 
06 6 6 6 6 46 0 0 0 0 
07 7 7 7 7 47 P P P P 
10 8 8 8 8 50 Q Q Q Q 
11 9 9 9 9 51 R R R R 
12 : : 52 ] 
13 = # = 53 $ $ $ $ 
14 1= @ , " 54 '" '" ~<: ;::~:: ',' ',' 

15 < < 55 @ 
16 % % 56 ? 
17 [ , 57 > > 
20 + + + + 60 Blank Blank Blank Blank 
21 A A A A 61 / / / / 
22 B B B B 62 S S S S 
23 C C C C 63 T T T T 
24 D D D D 64 U U U U 
25 E E E E 65 V V V V 
26 F F F F 66 W W W W 
27 G G G G 67 X X X X 
30 H H H H 70 y y y y 
31 I I I I 71 Z Z Z Z 
32 < 72 ] & & ! 
33 . . . . 73 • , , , 
34 ~ ) ) 74 ( % ( ( 
35 75 -t 
36 76 # 
37 ; ; 77 & 

t Underline 

60410600 A A-I 



CQNSOLE TYPEWRIT~R CODES 

Internal Internal 
BCD Typewriter BCD Typewriter 

Codes: Characters Codes Characters 

00 o (zero) 40 - (minus) 
01 1 41 J 
02 2 42 K 
03 3 43 L 
04 4 44 M 
05 5 45 N 
06 6 46 0 
07 7 47 P 
10 8 50 Q 
11 9 51 R 
12 ± 52 (degree) 
13 = 53 $ 
14 " 54 ,~ 

15 : 55 # 
16 ; 56 0/0 
17 ? 57 (Shift to upper case) 
20 + 60 (space) 
21 A 61 I 
22 B 62 S 
23 C 63 T 
24 D 64 U 
25 E 65 V 
26 F 66 W 
27 G 67 X 
30 H 70 Y 
31 I 71 Z 
32 (Shift to lower case) 72 & 
33 . (period) 73 . (comma) 
34 ) 74 ( 
35 , (apostrophe) 75 (tab) 
36 @ 76 (backspace) 
37 ! 77 (carriage return) 

A-2 60410600 A 



0') 

o 
.+::­
...... 
o 
0') 

o 
o 

to 

:P 
I 

W 

CHARACTER SETS 

BCD/Hollerith/ ASCII Codes 

BCD BCD ASCII Hollerith Hollerith ASCII ASCII BCD 
Internal Tape Internal Printer Card Printer Card Internal 
Code Code Code Character Punches Character Punches Code 

60 20 20 BLANK BLANK BLANK BLANK 27 
t12 tOO 3A : 8,2 : 8,2 30 

15 15 3C ~ 8,5 < 12,8,4 31 
16 16 25 % 8,6 % 0,8,4 52 

17 17t t 27 [ 7.8 , 
8,5 41 

75 35 5F - 0,8,5 0,8,5 42 
76 36 23 - 0,8,6 # 8,3 43 
77 37 26 0,8,7 & 12 44 
55 55 40 t 11,8,5 @ 8,4 45 
56 56 3F • 11,8,6 ? 0,8,7 46 
57 57 3E > 11,8,7 > 0,8,6 47 
35 75 5C > 12,8,5 \ 0,8,2 50 
36 76 5E ~ 12,8,6 A 11,8,7 51 
33 73 2E 12,8,3 . 12,8,3 72 
34 74 29 ) 12,8,4 ) 11,8,5 62 
37 77 3B ; 12,8,7 ; 11,8,6 63 
20 60 2B + 12 + 12,8,6 64 
53 53 24 $ 11,8,3 $ 11,8,3 65 
54 54 2A * 11,8,4 * 11,8,4 66 
40 40 2D - 11 - 11 67 
61 21 2F / 0,1 / 0,1 70 
73 33 2C , 0,8,3 , 0,8,3 71 
74 34 28 ( 0,8,4 ( 12,8,5 00 
13 13 3D = 8,3 = 8,6 01 
14 14 22 i 8,4 " • 8, 7 02 
32 72 7B < 12,0 { 12,8,2 03 

21 61 41 A 12,1 
tttt 

A 12,1 04 
22 62 42 B 12,2 B 12,2 05 
23 63 43 C 12,3 C 12,3 06 
24 64 44 D 12,4 D ' 12,4 07 
25 65 45 E 12,5 E 12,5 10 
26 66 46 F 12,6 F 12,6 11 

t A 00 code cannot be written on tapes using even parity. Therefore, all 00 codes are automatically converted 
to 12's before writing them on tape. All 12 codes read from tape are automatically converted back to 00. As 
a result, if a 12 code (a : character) is written on tape, the: will be converted to a 00 when it is read back. 

t t Filemark on tape when bracketed with inter block gaps. 

t t t 11,8,2 and 11,0 'are equivalent 

t t t t 12. 8.2 and 12, 0 are equivalent 

BCD ASCII Hollerith Hollerith ASCII ASCII 
Tape Internal Printer Card Printer Card 
Code Code Character Punches Character Punches I 
67 47 G 12,7 G 12,7 
70 48 H 12,8 H 12,8 
71 49 I 12,9 I 12,9 
52 7D v 11,0 } 11,8. 2 

41 4A J 11,1 J 
tttt 
11,1 

42 4B K 11,2 K 11,2 
43 4C L 11,3 L 11,3 
44 4D M 11,4 M 11,4 
45 4E N 11,5 N 11,5 
46 4F 0 11,6 0 11,6 
47 50 P 11,7 P 11,7 
50 51 Q 11,8 Q 11,8 
51 52 R 11,9 R 11,9 

32 21 I 0,8,2 ! 12,8,7 
22 53 S 0,2 S 0,2 
23 54 T 0,3 T 0,3 
24 55 U 0,4 U 0,4 
25 56 V 0,5 V 0,5 
26 57 W 0,6 W 0,6 
27 58 X 0,7 X 0,7 
30 59 y 0,8 y 0,8 

31 5A Z 0,9 Z 0,9 
12 30 0 0 0 0 
01 31 1 1 1 1 

I 

02 32 2 2 2 2 
I 

03 33 3 3 3 3 

04 34 4 4 4 4 

05 35 5 5 5 5 
06 36 6 6 6 6 
07 37 7 7 7 7 
10 38 8 8 8 8 

11 39 9 9 9 9 

I 



6-LEVEL FLEXOWRITER AND PAPER TAPE CODES 

OUTPUT CONVERSION 

Internal 6-Level 
BCD Flexowriter Character 

00 L. C. 56 0 
01 74 1 
02 70 2 
03 64 3 
04 62 4 
05 66 5 
06 72 6 
07 60 7 

10 33 8 
11 37 9 
12 43 Stop 
13 42 
14 77 Illegal 
15 77 Illegal 
16 77 Illegal 
17 77 Illegal 

20 46 + 
21 30 A 
22 23 B 
23 16 C 
24 22 D 
25 20 E 
26 26 F 
27 13 G 

30 05 H 
31 14 I 
32 56 0 
33 L.C.42 
34 L. C.54 ) 
35 77 Illegal 
36 77 Illegal 
37 77 Illegal 

40 L. C. 52 
41 32 J 
42 36 K 
43 11 L 
44 07 M 
45 06 N 
46 03 0 
47 15 p 

A-4 60410600 A 



Internal 
BCP 

50 
51 
52 
53 
54 
55 
56 
57 

60 
61 
62 
63 
64 
65 
66 
67 

70 
71 
72 
73 
74 
75 
76 
77 

60410600 A 

6-Level 
flexowriter 

35 
12 
52 
50 
44 
77 
77 
77 

04 
L. C. 44 
24 
01 
34 
17 
31 
27 

25 
21 
45 
L. C. 46 
54 
77 
77 
77 

NOTE 

778 results in a delete 

-- means character deleted and no substitution is made 
internally. 

Character 

Q 
R 

$ 
* 
Illegal 
illegal 
Illegal 

Blank 
I 
S 
T 
U 
V 
W 
X 

y 

Z 
C/R 

( 
illegal 
illegal 
Illegal 

A-5 



INPUT CONVERSION 

6-Level Internal 
Flexowriter BCD 

Code u. C. - L. C. Character 

00 EOR Feed 
01 63 63 T 
02 Color Shift 
03 4646 0 
04 6060 Space 
05 3030 H 
06 4545 N 
07 44 44 M 

10 6060 TIle gal 
11 4343 L 
12 51 51 R 
13 27 27 G 
14 31 31 I 
15 4747 P 
16 23 23 C 
17 6565 V 

20 25 25 E 
21 71 71 Z 
22 2424 D 
23 22 22 B 
24 6262 S 
25 70 70 y 

26 26 26 F 
27 6767 X 

30 21 21 A 
31 66 66 W 
32 4141 J 
33 10 10 8 
34 6464 U 
35 50 50 Q 
36 4242 K 
37 1111 9 

40 6060 TIle gal 
41 6060 Illegal 
42 13 33 
43 STOP 
44 5461 * I 
45 EOR CR 
46 2073 + , 
47 U.C. 

60410300 A 



6-Level Internal 
Flexowriter BCD 

Code u. C. - L. C. Character 

50 53 53 $ $ 
51 75 75 TAB 
52 5240 
53 6060 illegal 
54 7434 ( ) 
55 6060 illegal 
56 3200 0 
57 L. C, 

60 07 07 7 
61 B.S. 
62 0404 4 
63 6060 illegal 
64 03 03 3 
65 6060 Illegal 
66 05 05 5 
67 6060 illegal 

70 02 02 2 
71 60 60 illegal 
72 06 06 6 
73 6060 illegal 
74 01 01 1 
75 6060 illegal 
76 6060 illegal 
77 Delete 

60410600 A A-7 



8-LEVEL (ASCII) FLEXOWHITER AND PAPER TAPE CODES 

OUTPUT CONVERSION 

Internal ASCII 
BCD Code --

00 011 0000 
01 011 0001 
02 0110010 
03 0110011 
04 0110100 
05 0110101 
06 011 0110 
07 0110111 

10 0111000 
11 0111001 
12 0111010 
13 0111101 
14 0100010 
15 0111100 
16 010 0101 
17 0100111 

20 010 1011 
21 1000001 
22 100 0010 
23 100 0011 
24 100 0100 
25 100 0101 
26 100 0110 
27 100 0111 

30 100 1000 
31 100 1001 
32 1111011 
33 010 1110 
34 010·1001 
35 1011100 
36 1011110 
37 0111011 

40 010 1101 
41 100 1010 
42 100 1011 
43 100 1100 
44 100 1101 
45 100 1110 
46 100 1111 
47 101 0000 

A-8 

ASCII 
Graphic 

o 
1 
2 

3 
4 
5 
6 
7 

8 
9 
: (COLON) 
= (EQUALS) 
" (QUOTATION MARKS) 
< (LESS THAN) 
% (PERCENT) 
I (APOSTROPHE) 

+ (PLUS) 
A 
B 
C 
D 
E 
F 
G 

H 
I 
[ (OPENING BRACE) 
• (PERIOD) 
) (CLOSING PARENTHESIS) 
\ (REVERSE SLANT) 
1\ (CIRCUMFLEX) 
; (SEMICOLON) 

- (HYPHEN) 
J 
K 
L 
M 
N 
o 
P 

60410600 A 



Internal ASCII ASCII 
BCD Code Graphic --
50 101 0001 Q 
51 101 0010 R 
52 1111101 ] (CLOSING BRACE) 
53 010 0100 $ (DOLLAR SIGN) 
54 010 1010 * (ASTERISK) 
55 100 0000 @ (COMMERCIAL AT) 
56 0111111 ? (QUESTION MARK) 
57 0111110 > (GREATER THAN) 

60 010 0000 SP (SPACE) 
61 010 1111 / (SLANT) 
62 101 0011 S 
63 101 0100 T 
64 101 0101 U 
65 101 0110 V 
66 101 0111 W 
67 1011000 X 

70 1011001 y 

71 101 101(1 Z 
72 010 0001 (EXCLAMA TION POINT) 
73 010 1100 , (COMMA) 
74 010 1000 ( (OPENING PARENTHESIS) 
75 101 1111 _ (UNDERLINE) 
76 010 0011 #= (NUMBER SIGN) 
77 010 0110 & 

60410600 A A-9 



INPUT CONVERSION 

CDC 
ASCII Internal ASCII Control 
Code BCD Graphic Character 

000 0000 77 NUL 
000 0001 77 SOH 
000 0010 77 STX 
000 0011 77 ETX 
000 0100 77 EOT 

000 0101 77 ENQ 
000 0110 77 ACK 
000 0111 77 BEL 
000 1000 77 BS 
000 1001 77 HT 

000 1010 77 LF 
000 1011 77 VT 
000 1100 77 FF 
000 1101 77 CR 
000 1110 77 SO 

000 1111 77 S1 
001 0000 77 DLE 
001 0001 77 DC1 
001 0010 77 DC2 
001 0011 77 DC3 

001 0100 77 DC4 
001 0101 77 NAK 
001 0110 77 SYN 
001 0111 77 ETB 
0011000 77 CAN 

0011001 77 EM 
0011010 77 SUB 
0011011 77 ESC 
0011100 77 FC 
0011101 77 GS 

0011110 77 RS 
0011111 77 US 

A-10 60410600 A 



CDC 
ASCII Internal ASCII Control 
Code BCD Graphic Character 

010 0000 60 SP 
010 0001 72 
oro 0010 14 " 
0100Q11 76 # 
010 0100 53 $ 

010 0101 16 % 
010 0110 77 & 
010 0111 17 
010 1000 74 ( 
010 1001 34 ) 

010 1010 54 * 
010 1011 20 + 
010 1100 73 
010 1101 40 
010 1110 33 

010 1111 61 / 
011 0000 00 0 
011 0001 01 1 
011 0010 02 2 
011 0011 03 3 

011 0100 04 4 
011 0101 05 5 
011 0110 06 6 
011 0111 07 7 
0111000 10 8 

0111001 11 9 
0111010 12 
0111011 37 
0111100 15 < 
0111101 13 

011 1110 57 > 
0111111 56 ? 
100 0000 55 @ 
100 0001 21 A 
100 0010 22 B 

60410600 A A-11 



CDC 
ASCII Internal ASCII Control 
Code BCD Graphic Character 
---
100 0011 23 C 
100 0100 24 D 
100 0101 25 E 
100 0110 26 F 
100 0111 27 G 

100 1000 30 H 
100 1001 31 I 
100 1010 41 J 
100 1011 42 K 
100 1100 43 L 

100 1101 44 M 
100 1110 45 N 
100 1111 46 0 
101 0000 47 P 
101 0001 50 Q 

101 0010 51 R 
101 0011 62 S 
101 0100 63 T 
1010101 64 U 

101 0110 65 V 

101 0111 66 W 
101 1000 67 X 
1011001 70 y 

1011010 71 Z 
101 1011 77 [ 

1011100 35 \ 
1011101 77 
1011110 36 1\ 

1011111 75 
110 0000 77 \ 

110 0001 77 a 
110 0010 77 b 
110 0011 77 c 
110 0100 77 d 
110 0101 77 e 

110 0110 77 f 
110 0111 77 g 
110 1000 77 h 
110 1001 77 i 
110 1010 77 j 

A-.1! 60410600 A 



CDC 
ASCII Internal ASCII Control 
Code BCD Graphic Character 

110 1011 77 k 
110 1100 77 1 
110 1101 77 m 
110 1110 77 n 
110 1111 77 0 

111 0000 77 P 
111 0001 77 q 
111 0010 77 r 
111 0011 77 s 
111 0100 77 t 

111 0101 77 u 
111 0110 77 v 
111 0111 77 w 
1111000 77 x 
1111001 77 Y 

1111010 77 z 
1111011 32 
1111100 77 
1111101 52 
1111110 77 
1111111 77 DEL 

66410600 A A-l! 





PRINT CONTROL CHARACTERS B 

In each output buffer for a 501, 505, or 512 line printer, the first character (character 
0) is a print control character. This character controls line spacing and page position­
ing, both before and after printing a line. The control character is not printed. 

Page positioning is in accordance with a prepunched format tape mounted in the printer. 
Selecting a level with a control character positions the page to the position punched for 
that level in the format tape. 

Control Preprinting Postprinting 
Character Function Function 

+ No spacing No spacing 

blank Space one line No spacing 

0 Space two lines No spacing 

1 Space to top line of next paget No spacing 

2 Space to last line on paget t No spacing 

3 Space to level 6 No spacing 

4 Space to level 5 No spacing 

5 Space to level 4 No spacing 

6 Space to level 3 No spacing 

7 Space to level 2 No spacing 

8 Space to level 1 No spacing 

9 (512/580 Space to level 7 No spacing 
printer only) 

(minus) Space three lines No spacing 

A Space one line Space to top line of next page t 

B Space one line Space to last line on paget t 

C Space one line Space to level 6 

D Space one line Space to level 5 

E Space one line Space to level 4 

F Space one line Space to level 3 

G Space one line Space to level 2 

H Space one line Space to level 1 

I 

tTop line is level 8 punch for 501/505 printers and a level 1 punch for 512/580 printers.1 

t t Last line is level 7 punch for 501/505 printer and level 12 punch for 512/580 printers. 

60410600 C B-1 



Control Pre printing Postprinting 
Character Function Function 

I (512/580 Space one line Space to level 7 
prin ter only) 

J (512/580 Space one line Space to level 8 
printer only) 

K (512/580 Space one line Space to level 9 
printer only) 

L (512/580 Space one line Space to level 10 
prin ter only) 

Q Set auto ejectt Printing suppressed 

R Clear auto ejectt Printing suppressed 

S For 512/'580. set 6 line/incn Printing suppressed 
print density; for 501/505 no 
action 

T For 512/580 set 8 line/inch Printing suppressed 
print density; for 501/505 no 
action 

Z (512/580 Space to level 8 No spacing 
printer only) 

W (512/580 Space to level 9 No spacing 
printer only) 

X (512/580 Space to level 10 No spacing 
printer only) 

t Auto eject automatically spaces to top of next page when last line on page is sensed. 

B-2 60410600 C 



HARDWARE CODES c 

HARDWARE TYPE CODES 

The following hardware codes are used in the system tables to identify hardware types. 

Code 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 through 3 1 

60410600 A 

Hardware Type 

Magnetic tape drive 

Card reader 

Printer 

Card punch 

Console typewriter 

Paper tape reader 

Paper tape punch 

Typewriter station 

Incremental plotter 

Satellite controller 

Disk drive 

Disk file 

Drum 

Optical character reader 

Seismic processor 

Display entry station 

Reserved for future use 

C-1 



DEVICE TYPE CODES 

The following codes are used in the system tables to identify controller and device types. 

Code Hardware Type Controller Number Device Type 

01 Card reader 3447,3649 405 

02 Card reader 3248 405 

05 Card punch 3446,3659 415 

06 Card punch 3245 415 

11 Printer 3256 .. 3659 501 

12 Printer 3254 501 

13 Printer 3256 .. 3659 505 

14 Printer 3555 512 

I 15 Printer 580 t 580 

20 D isplay/ entry station 3290 211 

21 Incremental plotter 3293 3293 

I 22 Paper tape stations 3691 3691 

30 Magnetic tape drive 362X, 3423, 322X 607 

31 Magnetic tape drive 362X, 3423, 322X 606 

32 Magnetic tape drive 3423, 322X 604 

33 Magnetic tape drive 3423, 322X 603 

34 Magnetic tape drive 3518,3528 659 

35 Magnetic tape drive 3518,3528 657 

36 Magnetic tape drive 3127,3128 602,608 

37 Magnetic tape drive 3127,3128 601 

50 Disk drive 3234 853 

51 Disk drive 3234 854 

52 Disk drive 3553 841 

60 Disk file 3234 813/814 

70 Drum 3637 863 

t Controller is in printer. 

C-2 60410600 C 



ILLEGAL COMPASS INSTRUCTIONS 

MEMORY PROTECT VARIANT OF MSOS 

The following COMPASS instructions are illegal for use in priority 3, priority 4, and 
batch programs, or whenever the system is operating in the program state. t Illegal 
use of one of these instructions causes an executive interrupt which terminates the 
program. 

ACR 
CILO 
CINS 
CLCA 
CON 
COpy 

CRA 
CTI 
CTO 
DINT 
EINT 
EXS 
HLT 
!APR 
INAC 
INAW 
INCL 
INPC 
INPW 
OTAC 
OTAW 
OUTC 
OUTW 
PRP 
SCIM 
SEL 
SLS 
SSIM 
UCS 
UMP 
LMP 

A to CR 
Channel interrupt lockout 
Copy internal status 
Clear channel activity 
Connect an 110 unit 
Copy 110 channel status and contents of interrupt mask register into 
register A 
CRto A 
Set. console typewriter input 
Set console typewriter output 
Disable interrupt control 
Enable interrupt control 
Sense external equipment status 
Halt 
Interrupt associated processor 
Input character to A 
Input word to A 
Clear interrupt 
Character addressed input to memory 
Word addressed input to memory 
Output character from A 
Out put word from A 
Character addressed output from memory 
Word addressed output from memory 
Priority pause 
Selectively clear interrupt mask register 
Select 110 unit function 
Selective stop 
Selectively set interrupt mask register 
Unconditional stop 
Set upper memory protecttt 
Set lower memory protect 1t 

t All instructions are legal in priority 1 and priority 2 programs. 
1t These instructions are available only with programmable memory protection. 

D 

60410600 B 0-1 

I 

I 

I 



I 

Only limited use of the following instructions is allowed in priority 3_ priority 4_ and 
batch programs_ or whenever the system is operating in the program state. t Use of 
these instructions beyond their limits results in an executive interrupt and termination 
of the program. 

INS 

INTS 

IoeL 

MOVE 

PADS 

TAM 

TIM 

TQM 

Sense internal status. It cannot be used to sense channel 
status. It can be used to sense internal fault status when 
bits 11 through 08 are set. 

Sense interrupt. 
interrupt lines. 

INTS cannot be used to sense external equipment 
It can be used to sense fault interrupts. 

Clear 1/0_ typewriter_ or search/move. IOCL cannot be used to 
clear I/O channel_ equipment_ or the console typewriter. It can 
be used to clear a search/ move function. 

Move n characters from field R to field S. MOVE instruction 
cannot be used to move data to a protected memory area. 

Pause if condition selected by pause mask is sensed. It cannot 
be used to sense 1/0_ channel_ or typewriter. It can be used 
only to sense a search/ move function. 

It writes the contents of register A in register file n. TAM 
cannot be used to write in registers 00 through 37

8
• Bits 05 

through 00 must be greater than 378• 

It writes the contents of register Bty in register file 
cannot be used to write in registers 00 through 37

8
• 

through 00 must be greater than 37
8

• 

n. TIM 
Bits 05 

It writes the contents of register Q in register file n. TQM 
cannot be used to write in registers 00 through 37

8
• Bits 05 

through 00 must be greater than 37. 

t In priority 1 and priority 2 programs_ use of these instructions is not limited. 

D-2 60410600 B 



STANDARD MSOS 

The standard version of MSOS operates in the nonexecutive mode. In this mode. 
memory protection is disabled and all instructions are legal for all priority and batch 
programs. The following executive mode instructions are executed as no-operation 
(NOP) instructions. These instructions should be avoided in batch and priority programs 
because the programs do not run under all variants of MSOS. 

ACI (A)- CIR 

ACR (A) • CR 

AIS (A) I ISR 

AOS (A) 'OSR 

APF (A OO- 11) I PIF 

CIA (CIR)-A 

CRA (CR) -A 

ISA (ISR) -A 

JAA Jump address ----+ A 

OSA (OSR)-A 

PFA (PIF) -A 

RIS Relocate to instruction state 

ROS Relocate to operand state 

SRJP Set boundary jump 

SDL Set destructive load 

TMAV Test memory available 

60410600 B D-3 

I 

I 

I 





L-MSIO RECORD FORMATS 

Logical MSIO processes the following combinations of logical records and record block 
formats for both magnetic tape and mass storage. 

VARIABLE LENGTH RECORD BLOCKS 

In variable length blocks the number of records and corresponding words within each 
block of a file vary in numbers. 

Sample: 

Record 1 I 
Record 2 

Record 3 

} Record Inock 1 

Interrecord Gap 

Record 1 I Record 2 Record Block 2 

UNBLOCKED RECORDS 

E 

In unblocked records (variable or fixed length) the record and the record block are one 
in the same. 

Sample: 

Record 1 

Interrecord Gap 

Record 2 

FIXED LENGTH RECORDS 

} 

} 

Block 1 

Block 2 

Fixed length records contain the same number of characters for each record within a 
record block. 

Sample: 

Record 3 } Record Block 

Record 1 

Record 2 

60410600 A E-1 



VARIABLE LENGTH RECORDS 

Variable length records contain an unequal number of characters for each record within 
the record block. 

Sample: 

Record 1 J } 
Record 2 

~-------; 

Record 3 

Record Block 

TWO-WORD PREAMBLE 

The two-word preamble used exclusively with mass storage files that indicates the next 
sequential block and the position of first available character within the block. The 
format of the two-word preamble is as follows: 

23 
NBN 

1 POFAC 

16 
DATA 

v--..... -

NBN - next block number to be used when 
file is accessed sequentially. 

POF AC - position of first available (unused) 
data character in the block (that 
is.. the last character written 
plus one). t 

The two-word preamble can be used with both fixed and variable length records located 
on block files. If records on mass storage are unblocked the preamble is not provided. 

MASS STORAGE 

Two-Word Preamble 

Record 2 Record Block 
Record 1 J 

Record 3 

Unus~d portion of record 

NOTE 

The unused portion of the record block is due to available block space 
not fully utilized by the existing record data on the file. When record 
blocks are allocated, the block size should be specified as a multiple of 
the standard 256 or 640 characters per sector. Therefore .. to optimize 
use of mass storage blocks, the total number of characters for all 
records in a block should approximate the files block size. 

t Relative to first character of the NBN which is character O. 

E-2 60410600 A 



RECORD DELIMIT:ER FORMAT 

A special delimiting character terminates each record within a file. The record delimiter 
can be specified with the default value (72 8) used in the illustration below or the user 
can specify his own delimiting character. The record delimiter can be used with fixed 
length or variable length records on blocked files. 

MAGNETIC TAPE 

Record 1 

r281 Record 2 

17281 Record Block 

Record 3 

J72a 

MASS STORAGE 

Two Word Preamble 

Record 1 17281 
Record 2 Record Block 

Record 3 

Unused portion of record block 

UNIVERSAL HEADER FORMAT 

The universal header format consists of a 24-bit binary control field as the first word 
of each record that specifies the character length and record type of the record in which 
it appears. The universal format can be used with fixed or variable length records 
located on blocked files. The universal header format is as follows. 

23 22 16 0 

rl 

m 1 Binary 

0 BCD 

e 1 End-of-file record. 

0 Data record. 

rl Character length of record. excluding the four characters of the 
record header. 

60410600 A E-3 



MAGNETIC TAPE 

UNIVERSAL I 
Record 1 

UNIVERSAL I 
Record 2 Record Block 

UNIVERSAL I 
Record 3 

MASS STORAGE 

Two Word Preamble 

UNIVERSAL I 
Record 1 I UNIVERSAL 

Record 2 Record Block 

UNIVERSAL I 
Record 3 

Unused portion of record block 

KEY FIELD FORlVIAT 

The key field (1 through 4095 character) set in BCD format by the user indicates the 
length in characters of the record in which it appears. The key field can be located 
in the same character position relative to the first character position of each record in 
a file or can be located outside the records. Key fields are used only with variable 
length records located on blocked files. 

MAGNETIC TAPE 

Record 

E-4 

Record 2 

"IV FIELD 

Record 3 

Record Block 

60410600 A 



MASS STORAGE 

Two Word Preamble 
IIY 

P1ELD 

Record 1 

Record 2 

Record 3 

KeY 
IIEI. 

TRAILER ITEM/KEY FORMAT 

Record Block 

Unused portion of record block 

There are a variable number of fixed length trailer items that can be attached to a 
fixed length base in logical records. If trailer items are specified a key field within 
the fixed length base of each record or located outside the record is set by the user 
in BCD format. The key is used to indicate the number of trailer items within each 
record. 

MAGNETIC TAPE 

~~D Record 1 

Record 2 Trailer 
~ __ ~~r-__________ ~~l~m 1 

Record 3 

MASS STORAGE 

Two Word Preamble 

60410600 A 

Trailer 
Item 3 

Record Block 

Record Block 

Unused portion of record 

E-5 





SYSTEM TABLES F 

The MSOS executive tables are located in the executive resident area of memory. 
Many of these tables can be read from both batch and priority COMPASS programs to 
obtain information related to the current batch jobs status, I/O hardware and file status, 
and system operating status. Refer to executive tables in section 8 for methods of 
referencing these tables. The tables that can be referenced from COMPASS programs 
are grouped in this appendix as follows: 

SYSTEM AND JOB STATUS TABLES 

• Resident param.eter table (RPT) 

• System accounts table (ACCOUNTS) 

• Memory lim.its table (UMEM and LMEM) 

I/O HARDWARE TABLES 

• File ordinal table (FOT) 

• File description table (FDT) 

• Available unit table (AUT) 

MASS STORAGE RELA TED TABLES 

• Mass storage table (MST) 

• Mass storage param.eter table (MSPT) 

• Resident allocation table (RAT) 

• File environment table (FET) 

The following tables cannot be referenced directly from a program, but the contents of 
the tables may be inspected in a core dump listing as an aid in locating program errors. 

• Equipment status table (EST) 

• Channel status table (CST) 

• Register save table (RSA) 

60410600 C F-1 

I 



I 

RESIDENT PARAMETER TABLE (RPT) 

The RPT contains mass storage file parameters and the symbolic memory .locations of 
the MST" MSPT" RAT, and AUT tables. The RPT can be referenced by indexing 
symbolic address RPT. All entries in the RPT are in octal and are right- justified. 

RPT Entries 

Location 

RPT 
RPT+1 
RPT+2 
RPT+3 
RPT+4 
RPT+5 
RPT+6 

RPT+9 
RPT+10 
RPT+11 

RPT+12 

RPT+15 
RPT+16 

Contents 

First word address of the MSPT table 
Number of words in the MSPT table 
First word address of the MST table 
Number of words in the MST table 
First word address of the RAT table 
Number of words in the RAT table 
Ordinal of the AUT entry for the system device 
Reserved for system use 
Reserved for system use 
Maximum mass storage file size (tracks) 
Maximum number of segments in any mass storage file 
Maximum number of mass storage files that can exist in 
the system 
Current number of mass storage files allocated in the 
system 
Reserved for system use 
Reserved for system use 
Number of words in the AUT table 
RA T class. 0 specifies entries in RA T table are for non­
class-R devices. 2 specifies entries in RA T table are for 
class-R devices. 

SYSTEM ACCOUNTS TABLE 

In COMPASS programs the system accounts table can be referenced to obtain the 
following information. 

Date 
Time of day 
Library edition in use 
Sequence number of current batch job 
Time current batch job started execution 
Account number for current batch job 
Name of current batch job 
Estimated run time for current batch job (from JOB statement) 
Maximum number of lines the current batch job can print 
Number of lines currently printed by the batch job 
Maximum number cards that the current batch job can punch 
Maximum number of cards currently punched by the batch job 

Refer to system accounts table in section 16 for the format of the table. The table 
can be read by indexing the symbolic address ACCOUNTS. 

F-2 60410600 C 



MEMORY LIMITS TABLE 

The user may reference the memory limits table to determine the absolute memory 
addresses in which his program was loaded. In batch programs. the user may also 
obtain the upper and lower addresses of the area assigned to common. The memory 
between the upper common address and the lowest batch program address can be used 
to expand the batch program into. or to load additional subprograms or routines from 
a library with the loader. If common is not used in a batch program. the upper and 
lower memory limits for common are the same. 

Refer to memory limits table in section 8 for the format of the table. The table can 
be read by indexing the symbolic addresses UMEMV50. which is the highest program 
address, and LMEMV50, which is the lowest progJ;"am address. 

FILE ORDINAL TABLE (FOT) 

Each program mode, batch and priorities 1 through 4, has an FOT. The FOT links 
each file that was opened or equipped to the file description table (FDT) for the file. 

The first word address of each FOT can be obtained from the FOTADV50 table by 
indexing the symbolic address FOTADV50. 

FOTADV50 

FOTADV50 

+1 

+2 

+3 

+4 

+5 

+6 

+7 

fgfot 

p4fot 

p3fot 

p2fot 

p1fot 

60410600 A 

23. I I J ~ 1171 1 I 

Zero 

Zero 

Zero 

Zero 

Zero 

Zero 

Zero 

Zero 

Address of first 

Address of first 

Address of first 

Address of first 

Address of first 

I 1111 I I I 1 1051 I I I .00 

Reserved for future use 

fgfot 

p4fot 

p3fot 

Reserved for future use 

p2fot 

p1fot 

Reserved for future use 

entry of the FOT for batch programs 

entry of the FOT for priority 4 programs 

entry of the FOT for priority 3 programs 

entry of the FOT for priority 2 programs 

entry of the FOT for priority 1 programs 

F-3 



I The format of the FOT for each program mode is identical, except for the number of 
entries (.69 entries for batch, 63 entries for each priority l'evel). 

I 
-I 

FOT Entry 

Word 

Word 

Word 

Word 

Word 

Word 

Word 

Word 

Word 

23 14 00 

1 r Reserved Current size of the FDT table 

2 r Reserved fdt for file 01 

3 r Reserved fdt for file 02 

4 r Reserved fdt for file 03 

5 r Reserved fdt for file 04 

· · · 
66 r Reserved fdt for file 65 

67 r Reserved fdt for file 66 

68 r Reserved fdt for file 67 

69 r Reserved fdt for file 68 

r FDT release flag (refer to parameter .in CLOSE macro in section 13) 

o Releases the FDT for a file when the file is closed. 

1 Does not release the FDT for a file when the file is closed. 

fdt First word address of the FDT for the file. The FDT is zero 
if the file is not open or equipped. 

FILE DESCRJPTION TABLE (FDT) 

Each time a file is equipped or opened, the EQUIP or OPEN statement creates an FDT 
for the file. The FDT for a file is released from core when the file is closed, when 
an EOJ statement is read in an associated batch program, or when the associated 
priority program terminates. The first word address of a file FDT table can be 
obtained from the file FOT. 

FDT For Unit Record Devices 

231 1 I I r 1171 I I I I Itl.t 1 1 I I 1051 I I I 100 

Word 1 Zero cpb 

2 caut Zero 

3 Zero Current record number 

4 al Zero hsw2 

5 Zero mbe 

6 status word It 
7 status word 2t 
8 cr b inadr 

9 dt hsw I aut 

t Refer to Unit Status Request in section 11 for the format of these words. 

F-4 60410600 B 



FDT For Mass Storage Files 

Word 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

23. ~ ~ i I 

nseg 

caut 

r 

r 

cr 

dt 

Zero 

Zero 

171 • I I 111 I ~ i • 1051 I I I 

b Ic 10 p sectors per block 

Zero lfbn 

current block number 

nbn 

file size in sectors 

status word lit 

status word 2tt 
b inadr 

hsw I aut 

first sector address of this segment 

segment length (in sectors) 

tOO 

Parameter Description Dset Word 

a ASCII flag. Applicable only to DR 4 
3446. 3447. and 3691 controllers. 
card reader. card punch. and 
paper tape station. 

0 Non-ASCII I/O function 

1 A SC II I/O function 

aut AUT entry for the file. B 9 

b Memory bank number that the B 8 
file is located in. 

c File label update flag MS 1 

0 update file's label if 
file closed 

1 Do not update file's 
label when file is closed 

l
One three-word 
entry for each 
segment of the 
file. 

Bits 

23 

05 through 00 

17 through 15 

16 

t MS = mass storage, UR = unit record, B = both mass storage and unit record 
ttRefer to Unit Status Request in section 11 for the format of these words. 

60410600 B F-5 

I 
I 

I 



Parameter 

caut 

cpb 

cr 

dt 

hsw 

hsw2 

inadr 

lfbn 

mbc 

nbn 

nseg 

p 

I r 

F-6 

Description 

Ordinal of AUT entry used for 
last I/O function on this fUe 
(that is. AUT for file segments 
on different mass storage 
drives. etc.). 

Maximum number of characters 
allowed per block (that is. max 
buffer size). 

Condition register value to be 
used if an I/O interrupt routine 
for the file is entered. The 
values may be: 

60 'Program state. interrupt 
enabled. 

20 Monitor state. interrupt 
enabled. 

Device type (refer to appendix 
C). 

Hardware status word obtained 
from the equipment upon receiving 
an interrupt. 

Second hardware status word 
obtained from 657 or 659 tape 
drives. 

First word address of a user 
I/O interrupt processing routine. 

Number of the block containing 
the label for the file in LABEL­
FILE. 

Maximum number of blocks that 
c an be read or written. This 
is an installation parameter which 
is applicable only to files 60. 
61. and 62. 

N ext available block number 
(last block written plus one). 

Number of segments in this 
file. 

Protection flag 

o Read or write 

1 Read only file 

Reserved for future use. 

Use 

B 2 23 through 18 

DR 1 14 through 00 

B 8 23 through 18 

B 9 23 through 18 

B 9 17 through 6 

DR 4 14 through 11 

B 8 14 through 00 

MS 2 14 through 00 

UR 5 14 through 00 

MS 4 14 through 00 

MS 1 23 through 21 

MS 1 14 through 12 

60410600 B 



AVAILABLE UNIT TABLE (AUT) 
\ 

The AUT describes each I/O unit known to the system. It contains one four-word 
entry for each unit. CIO cannot reference or use I/O units that do not have an AUT 
entry. These units can be used only by COMPASS priority 1 and 2 programs. These 
programs do their own selects. connects. input. and output instruction. 

The AUT starts at symbolic address AUTV50. The starting address of any AUT entry 
for a file may be obtained as follows: 

1. Obtain the AUT ordinal from the file FDT. 

2. Subtract one from the ordinal and multiply the result by four. 

3. Add the result from step 2 to the starting address of the AUT. 

AUT Entry 

Word 1 

2 

3 

4 

~3 

a 

e 

f 

> 

I • I , 17. I 

hh s Ir lu 

c 

dt olblp 

ml*1 

105. I I I 

I 

I • 111 • I I I .oq 
rhd cc 

d 

xlzl* clip I rdf I gl n 

c s 

I 
3 dt * 

4 f ml * 

xlzJ * I 
pb 

lsb These two words 
replace the pre- . 
ceding words 3 and 4 
for card punch units 

Parameter Description 

a Unit assigned flag 

b 

o No file number assigned to 
the unit 

1 A file number is assigned 
to the unit 

Controlled backspace hardware 
flag. 

o Controlled backspace hard­
ware available 

1 Controlled backspace hard­
ware not available 

Word Bits 

1 23 

3 16 

60410600 B F-7 



Parameter Description Word !ill!... 
c Channel number flags. A one 2 22 through 15 

indicates the unit controller is 
attached to the channel. A 
zero indicates the unit controller 
is not attached to the channel. 

Channel !ill. 
0 22 
1 21 
2 20 
3 19 
4 18 
5 17 
6 16 
7 15 

cc Twelve-bit connect code for 1 11 through 00 
the unit. 

clip Value of read clipping level 3 11 through 9 
bias to be used for reading. 
Applicable only for tape drives 
with programmable read clipping-
level hardware. 

cs Checksum from last record 4 20 through 00 
written. 

d The entry point of the driver 2 14 through 00 
for this unit. 

dt Device type code (refer to 3 23 through 18 
appendix C). 

I e ASSignment in process nag. 2 23 

0 File number assignment 
not in process 

1 File number assignment 
in process (li"tDT is being 
constructed) 

f End of file nag 4 23 

0 Last record written was 
not an EOF 

1 Last record written was 
an EOF 

g System noise record flag (only 3 06 
for tape drives) 

0 System noise records are 
used 

1 System noise records are 
not used 

hh Hardware type code (refer to 1 22 through 18 
appendix C). 

F-8 60410600 B 



Parameter Description 

lsb Number of words punched in 
the last card. 

m Binary record flag 

n 

o 

p 

pb 

r 

o Last record was not 
written in binary mode 

1 Last record was written 
in binary mode 

Maximum noise record size in 
characters. For tape drivers 
only. 

A SC II hardware flag 

o No BCD to ASCII conver-
sion hardware 

1 Controller has BCD to 
ASCII conversion hardware 

Programmable read clipping 
level hardware flag 

o Hardware not available 

1 Hardware available 

First word address of a 40-word 
punch save area address. Used 
for punch error recovery. 

Reserved flag 

o Unit not reserved 

1 Unit reserved for use by 
a second CPU 

Word 

3 

4 

3 

3 

3 

4 

1 

rdf Read recovery flag for tape drives 3 

rhd 

s 

u 

60410600 A 

00 Use standard read recovery 

01 Suppress opposite direction 
read recovery 

10 Force opposite direction 
read recovery 

Reserved for special hardware 1 
driver flags 

Unit inoperable flag 1 

o Unit operable 

1 Unit inoperable 

ASCII mode default flag. Speci­
fies default value if Hollerith/ 
ASCII parameter is omitted 
from JOB statement. 

o 
1 

Unit is Hollerith mode 

Unit is ASCII mode 

1 

Bits 

08 through 00 

22 

05 through 00 

17 

15 

14 through 00 

16 

08, 07 

12 through 10 

17 

15 

F-9 



I 

Parameter Description Word Bits 

x Error recovery flag 3 13 

0 Normal recovery 
processing 

1 Operator requested 
recovery be abandoned 

z Operator recovery action flag 3 12 

0 Not waiting for operator 
action for reject or error 
recovery 

1 Waiting for operator action 
for error or reject recovery 

,!< Reserved for future use. 

MASS STORAGE TABLE (MST) 

The MST has One two-word entry for each disk drive and disk file in the system. The 
first word address of the table and the table length are supplied in the RPT. 

MST Entry 

1

231 

I~l' 
b11 1051 

Word 1 aut osegs 

Word 2 dt dn 

aut The ordinal of the AUT table entry for the unit. 

u Unit inoperable flag. Flag (bit 17) is set and cleared by 
system operator. 

c Device class. 1 = class R; 0 = nonclass R. 

~Ol 

osegs Number of file segments on the device that are currently open. 

dt 

dn 

F-IO 

Device type code (refer to appendix C). 

Device number assigned to the disk pack currently mounted 
on-line. 

60410600 C 



MASS STORAGE PARAMETER TABLE (MSPT) 

The MSPT describes the characteristics of each type of mass storage device used by 
MSOS. The table contains one four-word entry for each type of device. The first 
word address of the table and the table length are supplied in the RPT table. 

MSPT Entry 

dt 

Word 1 

Word 2 

Word 3 

Word 4 

23. I • 

dt 

I I 171 • 

1 

aps 

spt 

• I • 1111 I I I 

devno 

spc 

wps 

tpd 

Device type code (refer to appendix C). 

I 1051 I I I .00 

devno Device number (in octal) corresponding to the device type 
code.. For example~ if dt equals 50~ devno equals 853. 

spc 

aps 

wps 

spt 

tpd 

60410600 A 

Number of sectors per cylinder. 

Number of addresses per sector (128 for drum; 1 for all 
disk units). 

Number of words per sector. 

Sectors per track. 

Tracks per device. 

F-11 



RESIDENT ALLOCA TION TABLE (RAT and NRA T) 

The RA T contains a 1-word entry for each mass storage device that OCAREM can use 
to allocate or expand a mass storage file. The user makes and clears entries in the 
RA T with RAT and RRAT statements. Each RA T or RRA T statement clears the old 
entries and enters the devices specified on the RAT or RRAT statement. A RAT or 
RRA T statement without parameters clears the RAT. The EOJ statement at the end 
of each job also clears the RAT. 

The NRA T is a table similar to the RA T. Just prior to each allocate or expand function, 
MSOS clears the NRA T and copies the entry or entries in the RA T into the NRA T. 
If the RA T has been cleared (no entries), MSOS makes an entry in the NRA T for each 
on-line mass storage device. 

OCAREM uses the NRA T entries and the RA T class entry in the RPT table to determine 
which devices it can use to allocate or expand a file. OCAREM uses only those devices 
in the NRA T which are of the class specified by the RA T class entry. The remaining 
entries are ignored. 

The first word address and the number of words in the RA T can be obtained from the 
RPT. 

RA T and NRA T Entries 

dt 

dn 

F-12 

1111 

dt dn 

Mass storage device type code (refer to appendix C). 

Device number assigned when the device was entered in the 
system with the ENTER statement. 

60410600 C 



FILE ENVIRONMENT TABLE (FET) 

MSOS has two types of FETs. One FET is constructed by OCAREM to identify mass 
storage files. The other FET is constructed by L-MSIO for both tape and mass storage 
files. 

The OCAREM FET must be constructed to identify a mass storage file before the file 
can be allocated, opened, modified, or released. Either a FET statement or a FILEID 
macro can be used to construct the FET. The OCAREM FET contains the following 
file identification information: 

Owner's name 

File name 

File edition number 

File access security code 

File modification security code 

File block size 

If a FILEID macro was used to construct the FET, the symbolic address for the FET 
location that was used in the FILEID macro may be used in COMPASS programs to 
read the FET. If a FET control statement was used to build the FET, it cannot be 
referenced in a program. 

Refer to the FILEID macro in section 13 for the format of the OCAREM FET. An I 
L-MSIO FET must be constructed for each tape and mass file to be processed with 
the L-MSIO routines. The L-MSIO FET must be constructed with a FILEDESC macro 
in a COMPASS program. The symbolic location address used in the FILEDESC macro 
may be used to read L-MSIO FET in COMPASS programs. 

60410600 C F-13 



F-14 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

23 22 21 

FILE ENVIRONMENT TABLE 

1. t 7 , e 15 12 

CURRENT SAK 

PREVIOUS SAl( 

NEXT AVAILABLE SAl( 

60410600A 



Codes in the column headed Set By represent the following: 

F FILEDESC macro 
V VARIAB LE macro 
L LABEIlNG macro 
R RERUN macro 
S STOPOPEN macro 
M Set during execution 
C MS COBOL 

HT 

Word Bit Set By Description 

1 23-22 M file mode 
01 input 
10 output 
11 input/ output 

21 M last operation on this file 
0 GET 
1 PUT 

20 M file status 
1 open 
0 closed 

19 F 1 file is optional 
0 file is mandatory 

18 M 1 EOF trailer label on this file 

17 M 1 EOT trailer label on this file 

16 not used 

15 C used by COBOL: mass storage scratch file flag 

14 F block format 
1 unblocked, one logical record per physical record 
0 records are blocked to capacity of block size 

13 M 1 EOF mark on this file 

12 M 0 first buffer is active 
1 alternate buffer is active 

60410600A F-15 



Word 

1 

2 

Bit Set By 

11-6 M 

5 

3 

2 

1 

o 

23-15 

14-0 

16-0 

M 

M 

M 

F 

M 

L 

L 

L 

Description 

hardware type 
01 magnetic tape 
02 card reader 
03 printer 
04 card punch 
05 console typewriter 
10 channel typewriter 
40 1311 disk packs 
41 852 disk packs 
50 853 disk packs 
51 854 disk packs 
52 841 disk packs 
60 813/814 disk file 
70 863 drum 

read reverse 
1 file open for reverse read 

used by COBOL 
1 last operation was SEEK 

1 active buffer has been altered 

access mode 
o sequential access 
1 random access 

1 invalid key condition resulted from last operation 

14 
Address of Label Area 

Address of File Identification 

length of nonstandard label in characters 

word address of the nonstandard label area 

o 

for standard labeling, address of the file identification 

If word 2 is zero and LM in word 4 specifies nonstandard labels, the record area is used 
as the label area. For an output file with fixed length records, MSIO writes all characters 
stored in the record area for each reel of the file opened. If the records are variable 
length, the user must specify the length of the label by the presence of a key field or 
record mark. 

F-16 60410600A 



Value of Edition No. 

Bit Set By 

3 23-17 M 

16-0 L 

4 23-22 L 

21-17 

16-0 L 

5 16-0 L 

Current Reel No. 

6 23-17 M 

16-0 L 

60410600A 

Address of Edition Number 

Description 

binary value of the edition number 

character address of two-digit BCD (00-99) edition number 

Address of Owner 

labeling mode 
00 omitted labels 
01 nonstandard labels 
11 standard labels 

not used 

address of an eight-character owner identification; not used for 
nonmass storage files 

Address of Retention Cycle 

address of three-digit BCD retention cycle field (000-999; 999 
indicates permanent retention); not used for mass storage 

Address of Reel Number or Access Privacy 

current value of reel number; initially contains specified value 
of the reel number; incremented by one for each new reel of 
file 

address of a two-digit BCD reel number. If zero, reel num­
bers are not checked on input. For mass storage files this is 
the address of four-character access security code. 

F-17 



7 

8 

9 

10 

F-18 

First LU/FO 

Bit Set By 

23-18 F 

17 

16-15 

14-0 

Buffer Status 

23-18 

17 

16-0 

It.LU;Write 

23-18 

17 

16-15 

14-0 

Buffer Status 

23-18 

17-15 

16-0 

M 

F 

F 

M 

M 

F 

M 

F 

M 

M 

Address of First Buffer 

Description 

first logical unit or file ordinal; for mass storage, the file 
ordinal is assigned by MSIO when the file is opened 

acti ve logical unit 
o first logical unit active 
1 alternate logical unit active 

number of buffers (00, 01, or 10) 

address of the first buffer 

Last Relative Character of First Buffer 

buffer status of first buffer 

not used 

last relative character in current buffer 

Address of Alternate Buffer 

alternate logical unit for nonmass storage files. If nonzero for 
mass storage files, write check operations are issued for all 
writes. 

not used 

number of buffers (00, 01, or 10) 

address of the alternate buffer 

Last Relative Character of Alternate Buffer 

buffer status of alternate buffer 

not used 

last relative character in current buffer 

60410600A 



Word 

11 

12 

13 

60410600A 

Address of Record Area 

Bit Set By DescriEtion 

23-2: F recording density 
7 Track 9 Track 

1 low 200 bpi 800 cpi 
2 med 556 bpi 800 cpi 
3 high 800 bpi 1600 cpi 

20 not used 

19-18 F recording mode 
00 even parity (BCD) 
01 odd parity (binary) 

17-15 not used 

14-0 F address of the record area 

Physical Block Size (words) Logical Record Size (characters) 

23-12 

11-0 

F 

F 

physical block size; number of words per phYSical record 

logical record size, in characters, of fixed records; size of 
fixed portion of variable records which have trailer items. 
This is zero if variable records vary by key field or record 
mark. 

Max Logical Record Size Trailer Item Size 

23-12 V maximum size in characters of the variable portion of logical 
records. For variable records with trailers, this is the size 
of the trailer item times the maximum number of occurrences. 
For all others, this is the maximum size of a record within 
the file. 

11-0 V trailer item size in characters 

F-19 



F-20 

14 

Bit 

23 

22-18 

17 

16-0 

I LI ID Length 

IDM 

15 23 

22-18 

17-12 

11-0 

Record Mark 

16 23-18 

17-15 

14-0 

v 

v 

v 

V 

V 

V 

LRT 

V 

V 

M 

Left Boundary of Key Field 

Description 

mode of key field address 
o key field is within the record 
1 key field is outside the record 

number of characters in key field 

not used 

character position of the key field relative to the beginning of 
the record if the key field is within the record. This is the 
character address of the key field if the field is outside the 
record area. 

ID Position 

mode of identification field 
0 numeric 
1 alphanumeric 

character size of identification field 

not used 

position of left character of identification field within the record 

Record Counter for Rerun 

record mark to be used with record delimiter format 

logical record type 
0 fixed length records 
1 key field contains total number of characters 
2 key field contains the number of occurrences of a 

fixed length trailer item 
3 universal format 
4 record mark terminates each record 

record counter for check point dumps 

60410600A 



Frequency Count (0 = End of Reel) 

Word Bit Set By Description 

17 23-18 R logical unit or file ordinal on which check point dumps are 
written 

17-15 not used 

14-0 R frequency count at which check point dumps are to be taken. 
H zero, dumps are taken at end of reel. 

t-~~·-~~E~-_- -- ____ F~~_o~!.~T~ ___ u_ ---J 
Block Count 

18 23-18 

14-0 

23-0 

Multifile Position 

19 

60410600A 

23-18 

17 

16 

15 

14-0 

R 

R 

M 

S 

M 

M 

S 

s 

number of FET's within this program 

first word address of FET's 

count of the number of physical blocks read or written; not 
applicable to random access files 

Address of Master FET 

position of file on a multifile reel 

1 file on this reel is already open 

o reel is at load point 

1 master FET indicator 
o address below points to the master FET 

address of master FET or, if bit 15 is 1, address of the last 
opened FET 

F-21 



22 

23 

24 

25 

26 

Error Processing Routine 

-

Post-Header Label User Routine 

Pretrailer Label User Routine 

Post-Trailer Label User Routine 

Word Bit Set By Description 

22 14-0 M address of error processing routine to be entered after standard 

23 

24 

25 

26 

27 

28 

14-0 

23-0 

14-0 

14-0 

14-0 

23-0 

15-0 

M 

M 

M 

M 

M 

M 

error recovery procedure is executed 

address of preheader label processing routine or 

flag used for LISA 

address of post-header label processing routine 

address of pretrailer label processing routine 

address of post-trailer label processing routine 

Current SAK 

block number for the current SAK 

relative character position of the current SAK 

Words 27 and 28 combine to form the current SAK. 

29 

30 

23-0 

14-0 

M 

M 

Previous SAK 

block numb~r for the previous SAK 

relative 'character position for the previous SAK 

Words 29 and 30 combine to form the previous SAK. 

F-22 60410600A 



Word 

31 

3'2 

Bit Set By 

23-0 M 

14-0 M 

Next Available SAK 

Description 

block number where the next record can be written 

relative character position within the above block where the 
next record can begin 

Words 31 and 32 combine to form the SAK of the next available record. This is not main­
tained for random access files. 

60410600A F-23 



MSOS FILE ENVIRONMENT TABLE WITH USASI OPTIONS 

If the USASI option is set (bit 4 of word 1) the following words of the FET table are redefined 
as follows. The remaining words in the table retain the same word definitions specified in the 
first section of this appendix. 

1 

2 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I U I 
~----------------------~--------------------------------------~ 

3 N'UMBER OF THREE WORD ENTRIES I ADDRESS OF NONSTANDARD LABEL TABLE (uSASI) t 

4 

5 

6 

7 

8 

9 

10 

11 
~~~~~~~~~~.--------------------------------------------~ 

~: :'j::i::iii::':i:1::1:1i111:1:1:1.1::·:i111:::1::.1.::ii:1i11i1i::}-~-~-~-~C-'~-~-L-R:_~_:_:-~-:-:-~:--::-w_CH_~_:_:_C_(:_:R_A S_SI_:U_S_A_S_D _______ --I

14

15

16

17

18

19

20

21

22

RECORD LENGTH RETURNED BY GET (uSASI SORT)
r---~

MAXIMUM VARIABLE PART IN CHARACTERS (USASD
TRAILER ITEM SIZE IN CHARACTERS (USASI)

~~~~~~~--~~~~~--------------------------------------~ 

:: 1:1:1.:1:::.1,iii1::i':::1::i::::i::i:i:i::::::iii:i:i:11::11/1::11i:1:i1i:::::l:i:: :~;o~: ~:MR:E:O:~~N~\CR~::ESNS::~:~:GS:~SOARS~) ~ORn t 
25 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~ CHARACTER ADDRESS OF CURRENT RECORD (USASI SORT> t 

26 

27 

28 

29 

30 

31 

32 

:.:.: .. :.:.~.:.:.:.:.:.:.:.:.:.:.:.:.:::.:.:.:.:::::::::::::::::::3 

t These words can have variable definitions. Even though the USASI option is selected, the 
program can select not only the new word definition listed above but the alternate word 
definitions listed in the first section of this appendix. 

F-24 60410600A 



23 

Word 

1 

Bit 

23-6 
4 

Description 

unused 
USASI FET set by USASI COBOL compiler 

4 o 

23 14 0 t 
.--------------------.------------------------------------------~ 
Number of table entries Address of table area 

3 23-15 number of three word table entries 

23 

used to make comparisons on nonstandard'labels 
for USASI COBOL. 

14-0 address of table area 

16 
::::::::::::::::::::::::::::::::::::::::::::::::::::::: Logical Record Size in Characters (USASI) ................. : ... :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:. 

12 not used 

o 

23-17 
16-0 logical record size in characters. For variable length records 

the logical record size specified in this word refers to the fixed 
length section found in each variable length record. 

23 16 

IttmmmttfIIfWtfJ Physical Block Size in Words (USASI) 

13 

23 

15 

23 

23-17 
16-0 

23-0 

not used 
physical block size in words 

Record Length Returned by GET (USASI) 

record length returned by GET. 
This record length is used by USASI SORT. 

14 

~rrrrtrtrItrr\{r}~ Maximum Variable part in characters (USASI) 

o 

o 

o 

t This word can have variable definitions. Even though the USASI option is selected, the 
program can select not only the new word definition listed above but the alternate word 
definition listed in the first section of this appendix. 

60410600A F-25 



Word 
20 

23 

Bit 
23-15 
14-0 

Description 
not used 
maximum size of variable sections of logical records 

14 

~~rttttItfrtr~ttrt(t Trailer Item Size in Characters (USASI) 

21 23-15 not used 
14-0 trailer item size in characters 

o 

23 14 0 t 
~~····~····~·····~····~·····~·····~····~·····~I ----------------~I 
(~{{}:~:~:~:~:~:~:~:~:~:}}t~{:~:~:~:~:t})~: Number of Records in Current String (USASI SORT) . 

23 . 23-15 not used 

14-0 number of records in current string 
14 0 t 

.-~~~~~~~~~~~~------------------------------------------~ 

~I~~~ttt~I}}~~~ttrrrJr Record Number Being Processed (USASI SORT) 

24 

23 

23 
22-15 
14-0 

end of string indicator 
not used 
record number being processed 

16 o t 
~~~~~~~~~~------------------------------------------------~ 

:r)r~~~(~t~}rfrrrrr~t~ Character Address of Current Record (USASI SORT)

25 23-17 not used
16-0 character address of current record

t These words can have variable definitions., Even though the USASI option is selected, the
program can select not only the new word definition listed above but the alternate word
definitions listed in the first section of this appendix.

F-26 60410600A

EQUIPMENT STATUS TABLE (EST)

The EST is a 64-word table that contains one entry for each possible I/O equipment
(controller) in the system. MSOS uses the EST for lost interrupt detection and to
identify equipment dedicated to real-time applications. The EST cannot be referenced
within a program. However_ the EST may be inspected in a core dump listing by
obtaining the first word address from a PRELIB listing.

EST Entry

23
Word 0

(equip O. ch 0) t------L-------''----.l...---...&....-..L-------L-..l-----------l

Word 77
(equip 7. ch7) h

h Always equal to one.

m lVIode of program using

0 unit not in use

1 batch

2 P4

3 P3

5 P2

6 PI

r Real-time flag

to

the unit

o Unit is not a real-time equipment

1 Unit is a real-time equipment

i Interrupt flag

o No user interrupt selected for the unit

* If

I Abnormal termination interrupt was selected for the unit

*

2.3 Normal completion or abnormal termination interrupt selected
for the unit

Reserved for future use.

to Time out flag. Contains the number of system-check clock interrupts
that occurred since I/O was initiated on this unit. This parameter is
used for lost interrupt detection.

If Logical file number assigned to this unit (FaT index for this unit).

60410600 B F-27

CHANNEL STATUS TABLE (CST)

The CST is an 8-word table that contains one entry for each possible 110 channel in
the system. The CST follows immediately after the EST (that is_ first word address
of EST+100

8
equals first word address of CST).

The CST is used for lost interrupt detection_ identifying the unit which is currently
active on the channel_ and the mode of the program using the channel for 1/0. The

I CST cannot be directly referenced in a program. However_ the contents of the CST
may be inspected in a core dump listing by obtaining the first word address from a
PRELIB listing or by adding 1008 to the first word address of EST.

I

CST Entry

Word 0
(Channel 0)

Word 7
(Channel 7)

23

*

* Reserved for future use.

to

m Mode of the program using the channel

o Channel unused

1 Batch

2 P4

3 P3

5 P2

6 P1

* If

to Time out flag. Contains the number of system-check clock interrupts
that occurred since I/O was initiated on the channel. This parameter
is used for lost interrupt detection.

If Logical file number currently active on this channel.

The CST can be used to determine the equipment and unit number of an I/O unit that
caused a channel interrupt. The interrupt code appearing in the lower 12 bits of address
five when the I/O interrupt occurred can be used to locate the CST entry for the channel
that ca-qsed the interrupt. This can be done by adding the interrupt code to the first
word address of the EST. Once the CST entry for the channel is located_ the inter­
rupting unit FOT entry can be found by using the If and m parameters in the CST entry.
Then the FOT can be used to locate the unit FDT table and AUT entry. The interrupting
unit equipment and unit numbers may be obtained from the connect code in the unit AUT
entry.

F-28 60410600 B

REGISTER SAVE TABLE

MSOS reserves an area for 12 register save tables which CIC uses to save the system
operating conditions when a batch or priority program is interrupted. The table may
be referenced from a priority 1 real-time program. The format of the table is de­
pendent upon the absence or presence of floating point and/or BDP hardware in the
system.

o

1

2

3

4

5

6

23, , , , , 171 ,
CR ISR

Return Address

.R.!:9graIp. Mode r

Interrupt Mode r

I I I 111 I , , I 105, I I I ,00

I OSR Fault

I Interrupt Code

A

Q

j Bl

B2

I B3

:lr _____________ r ______ ~:~~------------------I-B~CRl ::

CR

ISR

OSR

Contents of the condition register

Contents of the instruction state register

Contents of the operand state register

t This word is included only if the system has either BDP or floating point hardware.
The word contains zero if the system has floating point but no BDP hardware.

it These words are included only if the system has floating point hardware.

60410600 B F-29

I

I

Fault

Return Address

Interrupt Code

A

Q

BI-B3

Program Mode

Interrupt Mode

r

BCR

Eu

EI

Contents of interrupt fault register

Address of next instruction in the program that
was interrupted

Interrupt code received when interrupt occurred

Contents of re gister A

Contents of register Q

Contents of B registers

Leve 1 of program that was interrupted

I

2

3

Batch

P4
P3

5

6

7

P2

PI

CIa processing

Interrupt mode; lower three bits are the same as
program mode and upper three bits are interrupt
hierarchy

I User selected interrupt

2 Manual or program fault interrupt

3 Real-ti_me interrupt t

Reserved

Contents of BDP condition register

Upper 24 bits of E register

Lower 24 bits of E register

t For real-time interrupts, the program mode is 6 for P2 real-time and 7 for
P 1 real-time.

F-30 60410600 C

FILE LABELS G

TAPE FILE LABELS

L-MSIO, COBOL, and SORT use 3000/1700 Standard Tape Labels. The standard tape
labels can be used with the following types of file sets:

Single file. single reel

Single file, multireel

Multifile. single reel

A user data file which can be contained on a single
reel of magnetic tape

A user data file which cannot be contained on a
single reel of magnetic tape

Related user data files which can be contained on a
single reel of magnetic tape. All files must be
recorded at the same density, but recording parity
may vary.

Every reel has a header label as the first block of the reel. The last block of a file
is followed by an end-of-file label. One tape mark t immediately precedes. and two
tape marks (or one tape mark and one header label) immediately follow this end-of-file
label. Whenever a reel ends within a file. the last block of the file on that reel is
followed by an end-of-tape label. One tape mark immediately precedes and two tape
marks immediately follow this end-of-tape label. The following examples show the use
of these labels in the file structure.

Examples:

1. Single File, Single Reel

IHEADER 1- -----------------I * I END-OF-FILEI * I * I
2. Multifile, Single Reel

3. Single File, Multireel

FIRST PART OF FILE A - - - - - - * END-OF-TAPE * *

* Tape mark

User data

t Tape marks (end-of-file marks) are not prohibited as data on 3000/1700 standard
labeled tapes, but because they are used to detect labels, they may produce erroneous
block counts in the trailer label and inhibit the EOF feature. Tapes containing such
extra tape marks should not be multifile and generally should not be used for informa­
tion interchange.

60410600 A G-l

HEADER LABEL

All header label records are 80 characters (480 bits) long and are unblocked. They
are recorded in the same density as the remainder of the data file and are always
recorded in even parity mode. Header ret:ords are separated from succeeding data
records by an interrecord gap only. The following table shows the format and content
of a header label.

Starting
Character Length in Defined Values

Field Name Position Characters (BCD Characters Only) Function

Density 1 1 7-track 9-track

2 200 bpi 800 cpi
5 556 bpi 800 cpi
8 800 bpi 1600 cpi

Header label 2 -3 2 () Identifies record as
identifier header label record

Logic al unit 4-5 2 As applic able Specifies logical unit to
number which file is assigned

Retention 6-8 3 000-999 Specifies, in days,
code retention period of file

File name 9 -22 14 Any combination of Identifie s file
legal BCD characters

Reel 23-24 2 01-99 Identifies sequence of
number reels for multireel files

Date 25-30 6 Any legal numeric Identifies date written;
written date, expressed as used with retention

mmddyy period to determine
release date of file

Edition
number 31-32 2 00-99 Identifies a single file set

User- 33 48 Any combination of User comments field
supplied legal BCD characters
information

G-2 60410600 A

TRAILER LABEL

All trailer labels are 80 characters (480 bits) long, recorded in even parity in the
same density as the remainder of the data file. Trailer labels are separated from
preceding records (either data or label records) by a single tape mark, and are always
followed by either a double tape mark or a .tape mark and a header label. The format
and content of the three types of trailer labels, end-of-tape, end-of- set, and end-of-file,
are shown in the following table.

Starting
Character Length in Defined Values

Field Name Position Characters (BCD Characters Only) Function

Trailer 1 3 EOT End-of-tape for inter-
label mediate reel
identifier

EOS End-of-set for final tape

EOF End-of-file for final tape

Record 4 5 00000-99999 If nonblank, the value is
count the count of the physical

records between the last
reader label record and
this trailer record.

User field 9 72 Any combination of User comments field
legal BCD characters

e04106CC A G-3

MASS STORAGE DEVICE LABEL

I
Each mass storage device that has been entered in the system has a device label written on
track 0, and an MSD label written in the mass storage director file (MSD). The format of
the labels is as follows:

I MSD Label Device Label

1

2

3

D

dt

mod

E V 1

dn

External

1 D E V 1

2 dt dn

3 mod External
I 4 Identifier I c Identifier l c Device 4

Label

I

5

6

7

8

9

n

Low Track Address

High Track Address

Label Address

Total Available Space

Storage Map. Length is
dependent upon device type.

- ~

CheCkS~

5 Low Track Addres s

6 High Track Address

7 Label Address

8 Pass Code
9 (class- R devices)

10 Reserved for
11 user's use

12 ofe

Reserved for
system use . n

Length of label is equal to sector
length on the device.

I In the MSD label, word 8 contains the number of unassigned tracks. Words 9 through
n contain a bit mapping of the tracks on the device. A bit set to one indicates the
corresponding track is assigned. A bit set to zero indicates the correspondent track is
available. The correspondence between bits and tracks is:

Word Number Bit Number Track Number

9 0 0
9 1 1

9 23 23
10 0 24
10 1 25

i 24(j- 9)+i

The length of a label for a device is 8+n/24 where n is the number of allocatable tracks
on the device. When the number of bits in the map exceeds the number of tracks (number
of tracks not divisible by 24), the unused bits in the last word are set to one.

G-4 60410600 C

DEVICE AND MSD LABEL PARAMETERS I
Number of

Field Name Characters Description

DEV1 4 Standard identifier prefixed to device labels

dt 1 6-bit device type code (appendix C)

dn 3 18-bit device number that matches an external
number on each device

mod 1 6-bit device type modifier. Value is always 1.

External 6 Alphanumeric characters corresponding to an
identifier external identifier on each device

c 1 Device class. o = nonclass-R, 2 = class-R I
Low track 4 Lowest track number (binary) accessible
address by MSIO

High track 4 Highest track number (binary) accessible
address by MSIO

Label 4 For class-R devices: bits 23 through 18 contain the
address number of tracks (octal) reserved for the R label on

the device. Bits 17 through 00 contain the first track
address of the R label.

For a device containing IDFILE: fi !'st sector address
of the IDFILE.

For all other devices: not used, zeros.

Pass code 8 Class-R pass code specified on the ENTER state-
ment. Not used on nonclass-R devices.

------------ --- . - --- -'-0 _ __ ".--.... ----------_.- ---.-- --- - - - ---"--- - .. _-_ . - ------

ofc 4 This field indicates whether or not the current
OCAREM function has completed. A new OCAREM
function cannot be started until the current one has
completed. Appears on label of system device only.
Zero for all other devices.

-- - ---- '--- ------- ---- ~ ... __ ._ ·-0 ______ • ___ . __________ .. _________ .. _________________

60410600 C G-5

I

I

I

MA.SS STORAGE FILE LABEL

A mass storage file label is composed of a fixed 50-word base plus three additional
words for each segment of the file. MSIO is capable of processing files which contain
up to 63 segments although installations may set the maximum allowable segment count
to some value less than 63 if they wish. The labels for all files are stored in a cen­
tral label directory (called LABELFILE) which is contained on the system disk pack.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

t40
t41

47
48
49
50
51
52
53

Owner
r-----_--=Id=entifis_a tio~ . __ .

File Name

~ __ A __ c_c~e_s s §.~cu~i ty ___ _
:~, ______ Modificati()n _~ecuri~y _

NBKS
.... 1... I'

~_.f ..

~__ Block C'ount
I Usage Count

Block Size

Creation Date
.Expiration Date
Last Access Date

-: --_-J-.. ~--,. _sc !: p

: File Size
~--- ---. - N ext A vailabl e

r---___ -'-Seek Address Key
I RM iRffIBF I ,:~ . '-LRS-
L-- i , '_I

--- - ~x 1 -r-= 1 TIS
! KFM KFS ~~: Key Location

IDM I IDL-r Status 'Tn r.;-ocallon·-
~ ____ ._._-1 ____ . _. •. ______ .. _____ 1. _______ . _________ _

1 ____ -

'-~ --

Reserved for
User's Use

i Checksum
---~~--'l s I Device Number
r---- Lo~ Segment Limit
t==~_Segment Length . }

File
Identifier

,:~ These fields are reserved
for system use.

These 3 words are repeated for
each segment of the fil e.

I t OCAREM sets these fields to zero for all nonclass-R files.

G-6 60410600 C

FILE LABEL FIELD DESCRIPTION

Field Name Size Description

File Identifier 40 Char. Used to uniquely identify a file in the label directory. The
standard identifier consists of:

Owner Identification - 8 characters.
File Name - 30 characters.
Edition Number - 2 characters.

The 40-character field may be divided in other ways if an
installation chooses to do so.

Access Security 4 Char. This field is supplied when the file is allocated and must be
supplied for each succeeding OPEN request.

Modification 4 Char. This field is supplied when the file is allocated and must be
Security supplied for each RELEASE, EXPAND, and MODIFY request.

NBKS 24 Bits ! Number of blocks (binary) allocated to a file.
I

-+------_._---- -- -~ -----"--_. - -_. -_.----_._---------_._-- --- - I
Block Size 3 Char. This field contains the number of 6-bit characters

(binary) in each record block.

Block Count 4 Char. This field contains the highest block number that has
(binary) been written. If the file is processed sequentially,

this is actually the number of blocks written into the
file.

Usage Count 4 Char. Number of times the file has been opened.
(binary)

Creation Date 4 Char. Date, in the form YYMMDD, that the file was

(binary) allocated.

Expiration Date 4 Char. A date, in the form YYMMDD, supplied by the user

(binary) when the file was allocated. This field determines
when a file may be deleted.

Last Access Date 4 Char. A date, in the form YYMMDD, supplied by the 1/0
(binary) system each time the file is opened or changed.

DT (Device Type) 1 Char. A 6-bit code to indicate the type of mass storage device on
which the file is contained.

SC (Segment Count) 1 Char. This field contains the number of segments in the file.
(binary)

P (Protection) 1 Char. This field contains protection flags for use by the I/O system.
The only values currently defined are:

0 The file may be read or written
1 The file may not be written

604106CG C G-7

FILE LABEL FIELD DESCRIPTION (Cont'd)

Field Name Size Description

DTM 1 Char. Always a one.

I c 1 Char. Devic e class
0 Nonclass R
2 Class R

~--------- - ------.----------- -- ------ - -- - -- - -- - --- - -- -- ---

File size 4 Char. This field contains the number of tracks assigned
(binary) to the file.

Next available 8 Char. Number of the next available block that c an be
seek address '(binary) written on.
key

RM (record 1 Char. Character that terminates each record when
mark) variable record sizes are used with a record

delimiting character.

RF (record 3 Bits Denotes type of record format used in the file
format) 0 Fixed length records

1 Key field containing number of characters in
the record

2 Variable number of fixed length trailers
3 Universal
4 Record terminated by a delimiting character

BF (block 1 Bit Denotes type of block format
format) 1 Logical record per block

0 More than one logical record per block. Each
block contains a two-word preamble (refer to
appendix E).

LRS (logical 12 Bits Logical record size in characters for fixed length
record size) (binary) records, or siz e of fixed length tr ailer. Zero for all

other variable size records.

MAX (maximum 12 Bits Maximum size in characters of variable logical records.
logical record (binary) For records with variable number of fixed length
size) trailers, MAX is size of the trailer times maximum

number of trailers. For all others, maXImum size of
records.

TIS (trailer 12 Bits Size of trailers in characters, if the RF field equals
item size) (binary) two. Otherwise, TIS is zero.

KFM (key field 1 Bit Mode of key field address
mode) 0 Key field within each record

1 Key field outside of the record or not in
the file

KFW (key field 5 Bits Number of characters in the key field of each record.
size) (binary)

KEY LOCATION 17 Bits Location of first character of key field in all records.
(binary) If key field is not in the record, key location contains

the character address in core of the key field.

G-8 60410600 C

FILE LABEL FIELD DESCRIPTION (Cont'd)

Field Name Size Description

IDM (Id mode) 1 Bit Type of record identification
0 Alphanumeric
1 Numeric

IDL (Id length) 5 Bits Length in characters of record identification field in
(binary) each record

STATUS 6 Bits Current status of the file

ID location 12 Bits First character of identification field in each record
(binary)

DT/DN 4 Char. DT is a 6 -bit device type number (octal, bits 23
through 18). DN is a device number (octal, bits 17
through 00). If the file is on a nonclass-R device,
OCAREM sets DT/ DN field to zero.

-------------- --_ ... -_._----------------- - ----~----- ---- -- -- ----------- ---- - - ---------- --- - - ---
Nap 1 Bit Nonopenable flag. A 1 indicates file is a class - R

device and is not usable because allocation parameters
(from different systems) exceeded value allowable on
this system (that is, too many segments, too large
file size, etc.). A 0 indicates the file can be used.

--- -- •. -_._------ --- -------- .-._---- - _._---- - - ---_._-- -.- ------ ---_.- -~--- ---------- ...
BN 23 Bits Block number (octal) in RLABEL that contains this

file's label. OCAREM sets BN to 0 for all nonclass-
R files.

----- .----- ---_ ..

Checksum 4 Char. Checksum of the entire label. This field is checked by
(binary) the I/O system to detect accidental modification of the

label.

S (segment down 1 Bit Segment down bit. Set by a CLOSE function for all
segments downed in the FDT.

0 Segment up
1 Segment downed

Device number 3 Char. The number of the device on which this file segment is
(binary) stored. This field is checked against the device label

to ensure that proper packs are mounted.

Low segment 4 Char. The hardware address at which this file segment begins
limit (binary)

Segment length 4 Char. The number of allocatable tracks in this segment
(binary)

>:< (Reserved) -- These fields are reserved for future use by the system

60410600 C G-9

SYSTEM FILES H

The MSOS system files, other than system scratch described in Table 2-1, cannot be
directly referenced by a user. This appendix provides general background information
about these files. These files are allocated at system installation time and are opened
automatically each time the system is autoloaded. The system files are grouped in this
appendix as follows:

MSOS LIBRARY FILES

• Resident file (RES)

• Absolute binary file (ABS)

• System library file (LIB)

• Directory of relocatable subprograms (DR S)

MASS STORAGE FILES

• Mass storage label file (LABELFILE)

• Mass ~torage label ID file (IDFILE)

• Mass storage devices label file (MSDFILE)

• Bad track file (BADTRACK)

RESIDENT FILE (RES)

RES contains the resident executive routines in absolute binary format. The autoload
routine loads the RES file into the executive resident area of core when the system is
autoloaded. The executive resident is described in section 8.

ABSOLUTE BINARY FILE (ABS)

ABS consists of all the absolute binary subprograms in the library that are not a part
of the resident executive. ABS contains the nonresident executive routines which are
loaded or overlayed in the variable resident area of core as they are needed by the
system executive. These routines include the loader # error recovery, and job I
control routines used to process MSOS control statements.

In addition, the ABS contains subprograms which are part of L-MSIO, COMPASS,
FORTRAN, COBOL, and ALGOL. These subprograms are absolutized to decrease
compiler and assembler loading time. Each of these subprograms has a system entry
point so that it can be called by a user or another library subprogram.

All routines in ABS are loaded in the variable resident area of core by RDCKF1 which
is a resident routine. RDCKF 1 uses a resident directory table (RDT) to locate and
load subprograms from the ABS. The format of each entry in the RDT is as follows:

60410600 C H-l

word 1
word 2
word 3
word 4
word 5

Subprogram name
Subprogram name
Location in ABS (first block address)
First absolute address in memory
Subprogram length (in words)

For special applications where fast loading is needed, user supplied subprograms or data
can be placed on the ABS at system installation time.

SY STEM LIBRARY FILE (LIB)

The LIB contains all the relocatable binary programs, subprograms, and COMPASS
macros that can be called and used in a user program. This includes COBOL and
FORTRAN object-time routines, special data processing packages such as LISA, SORT,
the MSOS utilities, etc.

When a user calls a subprogram or macro from the library, MSOS uses RDCKF 1 to load
the loader from ABS. The loader absolutizes, links, and loads the subprograms that
were called from the library.

DIRECTORY OF RELOCATABLE SUBPROGRAMS (DRS)

MSOS uses the DRS to locate subprograms and macros in the LIB. The DRS contains
a three-word entry for each subprogram and COMPASS macro on the LIB. Each entry
contains a subprogram or macro name and the block number in LIB on which the subpro­
gram or macro starts. The format of the DRS is the same as the AUX library directory
described in sectidn 22.

lVIASS STORAGE LABEL FILE (LABELFILE)

The LABELFILE contains the label for each mass storage file allocated in the system.
The mass storage file label is described in appendix G. The first label in LABELFILE

I is the label for LABELFILE itself.

MASS STOR AGE LABEL ID FILE (IDFILE)

The IDFILE consists of one 12-word entry for each label in the label file. The 12 words
are identical to the first 12 words in the LABELFILE entry for the same file. The
12-word entries are blocked in 120-word blocks.

H-2

1
2
3
4
5
6
7
8
9
10
11
12

OWNER
IDENTIFICATION

FILE NAME

IEDITION
ACCESS SECURITY
MODIFICATION SECURITY

NO.

ID File
Entry

60410600 C

To locate a label in LABELFILE. OCAREM. searches the IDFILE to find an entry that
matches the file FET (appendix F). Since all labels in LABELFILE are the same size
and in the same order as in the IDFILE. OCAREM can calculate the block number in
the LABELFILE that contains the first word entry of the label.

MASS STORAGE DEVICE LABEL FILE (MSDFILE)

The MSD contains the labels for each mass storage device (disk pack or disk file) that
has been entered in the system with an ENTER statement. The mass storage device
label is described in appendix G.

BAD TRACK FILE

The bad track file is a file listing each track on a mass storage device that has been
downed by the system operator.t This file must be allocated by the system analyst
before the bad track utilities can be used by the system operator.

The format of the bad track file is as follows:

Word 1

2

3

4

5

6

7

8

Word n

231 I I I I

number

dt

dt

dt

1171 I I I I 1111 I I

checksum

of bad tracks

BADT

RACK

I dn

track number

I dn

track number

dn

track number

dt Device type (refer to appendix C)

I I 1051 I I I ,00

dn Device number assigned to the device when it was entered in the system

track Track number of the bad track
number

All unused entries are zero.

t When a track is downed by operator command" the track bit in the device track map
in the MSD is set to one.

60410600 A H-3

OCR I/O CODES

I/O functions for the optical character reader (OCR) differ in certain particulars from the standard
CIO requests. The five types of functions for the OCR are:

1. Data transfer

Read from OCR into CONTROL DATA® 3195 Page Reader Controller buffer

Read from 3195 buffer into core

2. Mirror control

Read current mirror status (mirror status is the current horizontal position
of the mirror)

Position mirror and/or advance page

3. Other control functions

4. Status

Zero mirror

Locate line

Advance counter 1, 2, or 3

Clear counter 1, 2, or 3

Stop read

Primary or secondary sort

Alarm 1 or 2

Mark document

The OCR function is identical to the standard cIa status function and uses the same
calling sequence-.

5. Format

The OCR function is identical to the standard CIO format function and uses the same
calling sequence.

Legal functions, format codes for the format calling sequence, and status bits for the OCR driver
are described in the OCR driver table.

60410600 A

I

1-1

OCR PARAMETERS

The following parameters appear in OCR calling sequences and macros.

u

jump

raddr

Logical unit number of OCR

RT J or UJP; in the macros, zero or blank = UJP

Reject address

Interrupt selections:

o No interrupt

1 Interrupt on abnormal end-of-operation

2,3 Interrupt on end-of-operation, normal or abnormal

Other parameters are defined as they appear.

OCR DATA TRANSFER

To read from OCR into 3195 buffer:

LOCATION OPERATIO MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 '20 '41

P RTJ 'CIO 'Call CIO
p+l 02 lu i I

p+2 jump 'r~ddr

iJ
p+3 m I Function code ,P1'0
p+4 ,P2 and parameters
p+5 normal liaddr

return I ,
if i = 0 I ,

p+6 normal retlurn if i :I ° IContinue program
I I

m Mode change

1-2

00

40

41

42

43

44

45

46

47

No change

Scan 3 character heights, alphanumeric

Scan 3, alphabetic

Scan 3, numeric

Scan 3, mark sense (read zeros and filled zeros only)

Scan ~ character heights, alphanumeric

Scan 2, alphabetic

Scan 2, numeric

Scan 2, mark sense (read zeros and filled zeros only)

60410600 A

~I Initial mirror coordinate of data block; three octal digits, 0 ~ PI ::=; 3778

P2 Final mirror coordinate of data block; three octal digits, PI < P2 ~ 3778

The OCR macro for this function is:

LOCATION

I 8

icoor

fcoor

m

s

OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

10 120 141

READOCR ;(u, icoor, fcoor ,m, s, ra,ddr ,jump, i, iaddr)

1 I
\ \

Location containing initial mirror coordinate of the data block

Location containing final mirror coordinate of the data block

Mode change

0 No change

ANM Alphanumeric

APH Alphabetic

NUlVI Numeric

MKS Mark Sense

2 Scan 2 character heights

other Scan 3 character heights

symbol

In processing this function, the OCR driver determines the position of the mirror. If the mirror
is to the right of the requested initial mirror coordinate, the driver sets the mirror position error
bit in the status entry and rejects the request. If the mirror is to the left of the requested initial
coordinate, the read operation occurs, starting at the requested initial coordinate. The function
code is changed from 02 to 04 to prevent a channel from being declared busy.

To read from 3195 buffer into core:

LOCATION foPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 '20 '41

P RTJ leIO pall CIO , .
p+1 01 ,U,1

iJ
p+2 jump ,raddr
p+3 00 ,fadd,l Function code
p+4 00 \1 and parameters
p+5 normal liaddr

return , ,
if i = 0 , I

p+6 normal redurn if i '" 0 Continue program
I I

60410600 A 1-3

fwaddr Address of first word in user's buffer

n Octal digits specifying number of words to read

·Character addressing is not allowed since data input is in 12-bit bytes.

The OCR macro for this function is:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 120 '41

INPUT ,(u, fwaddr, r, raddr ,jum,p, i, iaddr)
, , , 1

Parameters are as described previously.

OCR MIRROR

To read current mirror status:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10
'
20 '41

P ~TJ 'CIO ;Call CIO
p+l 01 ' . ,U,1

!1

p+2 jump ,raddr
p+3 00 ,fwaddr ,0 Function code
p+4 00 r and parameters
p+S normal liaddr 1

return I ,
if i = 0 , I

p+6 retlurn if
" 0

,
normal i ,Continue program

I I

fadd Address of location in which mirror status is to be stored

The OCR macro for this function is:

LOCATIO" OPERAT,O". MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 '20 '41

MIRSTAT ,(u ,mstat, raddr ,jump) :

I I
I ,

mstat Word address of location where mirror status is to be stored

1-4 60410600 A

To position mirror and/or advance page:

LOCATIO ... iOPERATIO"', ... OOIFiERS ADDRESS FIELD CO ... MENTS

I 8 10 '20 141

RTJ 'CIa I p ICall CIa
p+l 02 I .

lu,1

11
p+2 jump Iraddr

Function code p+3 !Pl,l and parameters p+4 1P2
p+5 normal liaddr I

return I I
if i = 0 I I

p+6 normal I IContinue program
return I I
if i i= 0 I I ,

PI Four octal digits of the form Dxxx

D = 2

3

xxx

Forward mirror movement

Backward mirror movement

Desired mirror coordinate; o..c::. xxx ~377 8

P2 Four octal digits of the form xxx

xxx Number of lines to advance page

The OCR macro for this function is:

LOCAT'ON OPERAT'O,", MOD"',ERS ADDRESS FIELD CO E ... TS

I 8 10 '20 141

POSITION I(u ,nl ,me, raddr ,jump ,i b iaddr)
I I , I

nl Location containing the number of lines to advance; O..c::. (nl) ~ 1778

mc Location containing the desired mirror coordinate; 0 ~ (mc) ~ 3778

When positioning the mirror for a read request, the user should place the mirror 10 to 20 coordinates
to the left of the initial coordinate of the data block. This position compensates for document drift,
hardware tolerances, and acceleration time.

If the direction specified for motion of the mirror is not the direction in which the mirror must move
to reach the desired coordinate, the OCR driver rejects the request. The mirror position error bit
is set in the status word for this type of reject.

\Vhen the request format is legal, the driver changes the function code to 04 to prevent a channel
from being declared busy.

60410600 A 1-5

OTHER OCR CONTROL FUNCTIONS

~;:'A"'C~ PEIlAT,O", \400 '.EIlS ADDRESS "ELD

I 8 10 '20

P RTJ 'CIa
p+l 02 'u i
p+2 jump 'r~ddr
p+3 I

,Pl,2
p+4 ,a
p+5 Inormal liaddr

Ireturn I
if i = 0 I

p+6 inormal I
return I
if i <f 0

I
I

PI Hardware control function code

Code 1\1eaning

05 Zero mirror

07 Line locate

47 Stop read

50 Primary sort

51 Secondary sort

57 Mark document

30 Advance counter 1

31 Clear counter 1

32 Advance counter 2

33 Clear counter 2

34 Advance counter 3

35 Clear counter 3

52 Alarm 1

53 Alarm 2

COMMENTS

'41

'Call CIa ,

iJ
Function code
and parameters

I
I
I
'Continue program ,
I
I

These codes generate an
external interrupt

These codes do not generate
an external interrupt. In the
calling sequence, i should be
zero and iaddr should be blank.
The normal return is to p+5.

The OCR driver rejects a request for an illegal hardware function. For legal requests which
generate external interrupt, the driver changes the dummy function code 02 to 04 to prevent a
channel from being declared busy. For legal requests for functions which do not generate exter­
nal interrupt, 02 is changed to 14 (FORMAT) so that neither the channel nor the equipment is
dec lared busy.

1-6 60410600 A

OCR macros for these functions are as follows:

Control functions which generate external interrupt:

I

I

LOCATION OPERATION. MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

ZMIRR ;(U, raddr ,jump, i, iaddr~
LINELOC I(u,raddr,jump,i ,iaddr~
MARK ,(u, raddr, jump, i, iaddr ~
STPREAD I(u, raddr, jump, i, iaddrO

I I

ZMIRR

LINELOC

MARK

STPREAD

Zero mirror

Line locate

Mark document

Stop read

LOCAT,,,,,,

8

S

)"E"AT:O". MODlf,ERS ADDRESS FIELD COMMENTS

10,

SORT

120 141

l(u,S,raddr,jump,i ,iad~r)
,

I
I I

When present, eject page to secondary hopper; when omitted, eject page
to primary hoppe r

Control functions which do not generate external interrupt:

,-OCATION OPERAT·O". ,"OD·'·ER5 ADDRESS FIELD COMMENTS

I 8 10 120 141

~VANCC I(U ,en, raddr ,jump) I
P.EARC I(U ,en, raddr ,jump) ,

1 I

ADVANce Advance counter

CLEARC Clear counter

cn 1, 2, or 3 Advance counter 1, 2, or 3

Other symbol Advance counter 1

60410600 A 1··7

LOCATION

I 8

a

OPERATION, MODIFIERS ADDRESS FIELD

10 '20

ALARM :(u,a,raddr,jump)
I
I
1

1 or blank Alarm 1

2

Other symbol

Alarm 2

Alarm 1

COMMENTS

'41
I

I
I
I

OCR STATUS AND FORMAT CALLS

Calling sequences for status and format request~ for the OCR are identical to the sequences for
other peripheral equipment.

The OCR macros for these functions are:

I

I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 141

STATUS I(u,d) I , ,
I I

d 1 Dynamic status request

o Static status request

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 :41

FRMTOCR ,(u,m,s ,raddr,jump) I
I

I ,
I

m Mode change:

0 No change

ANM Alphanumeric

APH Alphabetic

NUM Numeric

MKS Mark sense (read only zeros or filled zeros)

s 2 Scan 2 character heights

other Scan 3 character heights
symbol

1-8 60410600 A

OCR REJECT AND ABORT

The normal CIa reject conditions and abort conditions apply in calls for the OCR. The following
conditions result in reject by the OCR driver.

Function code in p+1 is not 01, 02, 13, or 14.

':\Iirror position error occurs; mirror position error status bit is set to 1.

Request contains an illegal hardware function code.

CIa passes the reject to the user program.

60410600 A 1-9

OPTICAL CHARACTER HEADER

Permissible
Logical Unit (u)

Operation
Function

Calling Macro
1- 3~ 39

Performed Sequence Name
(jO 61 62 (j;j

Code 37 CFO eTO INP OUT PUN LIB

Head from OCR
02t

data HEAD
to 3195 buffer transfer OCR

yes

Head from 3195
01

data
INPUT

buffer into core transfer
yes

Head present
01

mirror
MIRSTAT

mirror status control
yes

PositIon mlrror
02t

mirror
and/ or advance

control
POSITION yes

Page

Select hard-
02t

other
1

ware function 1 control
yes

Check unit
13 status STATUS

Status
yes

Select
Format 2

14 format FOHMAT
OCR

yes

B=batch P=priority

t Dummy function <.:ode

1-10 60410600 A

l. Hardware function codes and macro names:

Code Meaning Macro Name

05 Zero mirror ZMIRH

Generate
07 Line locate LINELOC

external -17 Stop read STPHEAD
interrupt

30 Primary sort SORT

31 Secondary sort SORT

37 Mark document MARK

:30 Advance counter 1 ADVANCC

:31 C lear counter 1 CLEARC

Do not
:32 Advance counter 2 ADVANCC

generate :3:3 Clear counter 2 CLEARC
external interrupt

:34 Advance counter :3 ADVANCC

:35 Clear counter :3 CLEARC

32 Alarm 1 ALAHM

33 Alarm 2 ALARM

L Format 'codes:

00 Scan 2, alphanumeric

01 Scan 3, alphabetic

02 Scan :3, numeric

U3 Scan :3, mark sense

0-1 Scan 2, alphanumeric

05 Scan 2, alphabetic

OG Scan 2, numeric

U7 Scan 2, mark sense

60410600 A 1-11

OCTAL/DECIMAL CONVERSIONS

TABLE OF POWERS OF TWO

1 0 1.0
2 0.5
4
8

16
32
64

128

256
512
024
048

4 096
8 192

16 384
32 768

65 536
131 072
262 144
524 288

2 025
3 0125

4 0.062 5
5 0.031 25
6 0.015 625

0.007 812 5

8 0.003 906 25
9 0.001 953 125

10 0000 976 562
11 0.000 488 281 25

12 0.000 244 140 625
13 0.000 122 070 312
14 0.000 061 035 156 25
15 0000 030 517 578 125

16 0.000 015 258 789 062 5
17 0000 007 629 394 531 25
18 0000 003 814 697 265 625
19 0000 001 907 348 632 812

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562
8 388 608 23 0000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0000 000 000 465 661 287 307 739 257 812

4 294 967 296 32 0000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453' 125

17 179 869 184 34 0000 000 000 058 207 660 913 467 407 226 562
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701, 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25

2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

4 503 599 627 370 496 52 0000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
144 115 188 075 855 872 57 0000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625

60410600 A

J

J-1

DECIMAL/BINARY POSITION TABLE

Decimal
Number

Largest Decimal
Digits

of
Largest Decimal Fraction

r Integer Binary
I Req'd*

Digits
1 1 .5
3 2 .75
7 3 .875

15 1 4 .937 5
31 5 .968 75
63 6 .984 375

127 2 7 .992 187 5
255 8 .996 093 75
511 9 .998 046 875

1 023 3 10 .999 023 437 5
2 047 11 .999 511 718 75
4 095 12 .999 755 859 375
8 191 13 .999 877 929 687 5

16 383 4 14 .999 938 964 843 75
32 767 15 .999 969 482 421 875
65 535 16 .999 984 741 210 937 5

131 071 5 17 .999 992 370 605 468 75
262 143 18 .999 996 185 302 734 375
524 287 19 .999 998 092 651 367 187 5

1 048 575 6 20 .999 999 046 325 683 593 75
2 097 151 21 .999 999 523 162 841 796 875
4 194 303 22 .999 999 761 581 420 898 437 5
8 388 607 23 .999 999 880 790 710 449 218 75

16 777 215 7 24 .999 999 940 395 355 244 609 375
33 554 431 25 .999 999 970 197 677 612 304 687 5
67 108 863 26 .999 999 985 098 838 806 152 343 75

134 217 727 8 27 .999 999 992 549 419 403 076 171 875
268 435 455 28 .999 999 996 274 709 701 538 085 937 5
536 870 911 29 .999 999 998 137 354 850 769 042 968 75

1 073 741 823 9 30 .999 999 999 068 677 425 384 521 484 375
2 147 483 647 31 .999 999 999 534 338 712 692 260 742 187 5
4 294 967 295 32 .999 999 999 767 169 356 346 130 371 093 75
8 589 934 591 33 .999 999 999 883 584 678 173 065 185 546 875

17 179 869 183 10 34 .999 999 999 941 792 339 086 532 592 773 437 5
34 359 738 367 35 .999 999 999 970 896 169 543 266 296 386 718 75
68 719 476 735 36 .999 999 999 985 448 034 771 633 148 193 359 375

137 438 953 471 11 37 .999 999 999 992 724 042 385 816 574 096 679 687 5
274 877 906 943 38 .999 999 999 996 362 021 192 908 287 048 339 843 75
549 755 813 887 39 .999 999 999 998 181 010 596 454 143 524 169 921 875

1 099 511 e27 775 12 40 .999 999 999 999 090 505 298 227 071 762 084 960 937 5
2 199 023-255 551 41 .999 999 999 999 545 252 649 113 535 881 042 480 468 75
4 398 046 511 103 42 .999 999 999 999 772 626 324 556 767 940 521 240 234 375
8 796 093 022 207 43 .999 9~9 999 999 886 313 162 278 383 970 260 620 117 187 5

17 592 186 044 415 13 44 .999 999 999 999 943 156 581 139 191 985 130 310 058 593 75
35 184 372 088 831 45 .999 999 999 999 971 578 290 569 595 992 565 155 029 296 875
70 368 744 177 663 46 .999 999 999 999 985 789 145 284 797 996 282 577 514 648 437 5

140 737 488 355 327 14 47 .999 999 999 999 992 894 572 642 398 998 141 288 757 324 218 75

*Larger numbers within a digit group should be checked for exact number of decimal digits required.

Examples of use:

1. Q. What is the largest decimal value that can be expressed by 36 binary digits?
A. 68,719,476,735.

2. Q. How many decimal digits will be required to express a 22-bit number?
A. 7 decimal digits.

J-2 60410600 A

OCTAL ARITHMETIC MATRICES

ADDITION-SUBTRACTION

2 3 4 5 6 7 10

3 4 5 6 7 10 11

4 5 6 7 10 11 12

5 6 7 10 11 12 13

6 7 10 11 12 13 14

7 10 11 12 13 14 15

11 12 13 14 15 16

MULTIPLICATION-DIVISION

2 3 4 5 6 7

2 4 6 10 12 14 16

3 6 11 14 1 7 22 25

4 10 14 20 24 30 34

5 12 17 24 31 36 43

6 14 22 30 36 44 52

7 16 25 34 43 52 61

60410600 A -J-3

CONSTANTS

1T 3.14159 26535 89793 23846 26433 83279 50
y'3 1.732 050 807 569

vm 3.162 277 660 1683

e 2.71828 18284 59045 23536

1 n 2 0.69314 71805 599453
1 n 10 2.30258 50929 94045 68402

log1O 2 0.30102 99956 63981

log1O e 0.43429 44819 03251 82765

log1O log1O e 9.63778 43113 00537-10

log1O 1T 0.49714 98726 94133 85435

1 degree 0.01745 32925 11943 radians

1 radian 57.29577 95131 degrees
log1O(5) 0.69897 00043 36019

7! 5040

8! 40320

9! 362.880

10! 3.628.800

11 ! 39.916.800

12! 479.001.600

13! 6.227.020.800

14! 87.178.291.200

15! 1.307.674.368.000

16! 20.922.789.888.000

--L 0.01745 32925 19943 29576 92369 07684 9
180

Hj2 2.4674 01100 27233 96

W3
3.8757 84585 03747 74

W4
6.0880 68189 62515 20

k15
9.5631 15149 54004 49

W6
15.0217 06149 61413 07

Hj7 23.5960 40842 00618 62

t-Ha
37.0645 72481 52567 57

k)9 58.2208 97135 63712 59
2 •

(;yo 91.4531 71363 36231 53

(;t 143.6543 05651 31374 95

(;}2 225.6516 55645 350

(;}3 354.4527 91822 91051 47

(;}4 556.7731 43417 624

J-4 60410600 A

CONSTANTS (Continued)

7r2 = 9.86960 44010 89358 61883 43909 9988
27r2 = 19.73920 88021 78717 23766 87819 9976
37r2 = 29.60881 32032 68075 85680 31729 9964
47r2 = 39.47841 76043 57434 47533 75639 9952
57r2 = 49.34802 20054 46793 09417 19549 9940
67r2 = 59.21762 64065 36151 71300 63459 9928
77r2 = 69.08723 08076 25510 33184 07369 9916
87r2 = 78.95683 52087 14868 95067 51279 9904
97r2 = 88.82643 96098 04227 56950 95189 9892

viz 1.414 213 562 373 095 048 801 688

1 + V2 2.414 213 562 373 095 048 801 688
(1 + \1'2)2 5.828 427 124 746 18
(1 + 0)4 33.970 562 748 477 08
(1 + y2)6 197.994 949 366 116 30
(1 + y2)8 1153.999 133 448 220 72
(1 + \1'2)10 = 6725.999 851 323 208 02
(1 + \1'2)12 = 39201.999 974 491 027 40
(1 + 0)14 = 228485.999 995 622 956 38
(1 + 0)16 = 1331713.999 999 246 711
(1 + y2)18 = 7761797.999 999 884 751

Sin .5 0.47942 55386 04203
Cos .5 0.87758 25618 90373
Tan .5 0.54630 24898 43790

Sin 1 0.84147 09848 07896
Cos 1 0.54030 23058 68140
Tan 1 1.55740 77246 5490

Sin 1.5 0.99749 49866 04054
Cos 1.5 0.07073 72016 67708
Tan 1.5 14.10141 99471 707

60410600 A J-5

OCTAL-DECiMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0000 0000 0001 0002 0003 0004 0005 0006 0007 0400 0256 0257 11'258 0259 0260 0261 0262 0263 0000 0000
0010 0008 0009 0010 0011 0012 0013 0014 0015 0410 0264 0265 0266 0267 0268 0269 0270 0271 to to
0020 0016 0017 0018 0019 0020 0021 0022 0023
0030 0024 0025 0026 0027 0028 0029 0030 0031
0040 0032 0033 0034 0035 0036 0037 0038 0039

0420 0272 0273 0274 0275 0276 0277 0278 0279
0430 0280 0281 0282 0283 0284 0285 0286 0287
0440 0288 0289 0290 0291 0292 0293 0294 0295

0777 0511
(Octal) (Decimal)

0050 0040 0041 0042 0043 0044 0045 0046 0047 0450 0296 0297 0298 0299 0300 0301 0302 0303
0060 0048 0049 0050 0051 0052 0053 0054 0055 0460 0304 0305 0306 0307 0308 0309 0310 0311
0070 0056 0057 0058 0059 0060 0061 0062 0063 0470 0312 0313 0314 0315 0316 0317 0318 0319 Octal Decimal

10000 - 4096
0100 0064 0065 0066 0067 0068 0069 0070 0071
0110 0072 0073 0074 0075 0076 0077 0078 0079
0120 0080 0081 0082 0083 0084 0085 0086 0087
0130 0088 0089 0090 0091 0092 0093 0094 0095
0140 0096 0097 0098 0099 0100 0101 0102 0103

0500 0320 0321 0322 0323 0324 0325 0326 0327
0510 0328 0329 0330 0331 0332 0333 0334 0335
0520 0336 0337 0338 0339 0340 0341 0342 0343
0530 0344 0345 0346 0347 0348 0349 0350 0351
0540 0352 0353 0354 0355 0356 0357 0358 0359

20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480

0150 0104 0105 0106 0107 0108 0109 0110 0111 0550 0360 0361 0362 0363 0364 0365 0366 0367 60000 - 24576
0160 0112 0113 0114 0115 0116 0117 0118 0119 0560 0368 0369 0370 0371 0372 0373 0374 0375 70000 - 28672
0170 0120 0121 0122 0123 0124 0125 0126 0127 0570 0376 0377 0378 0379 0380 0381 0382 0383

0200 0128 0129 0130 0131 0132 0133 0134 0135 0600 0384 0385 0386 0387 0388 0389 0390 0391
0210 0136 0137 0138 0139 0140 0141 0142 0143 0610 0392 0393 0394 0395 0396 0397 0398 0399
0220 0144 0145 0146 0147 0148 0149 0150 0151 0620 0400 0401 0402 0403 0404 0405 0406 0407
0230 0152 0153 0154 0155 0156 0157 0158 0159 0630 0408 0409 0410 0411 0412 0413 0414 0415
0240 0160 0161 0162 0163 0164 0165 0166 0167 0640 0416 0417 0418 0419 0420 0421 0422 0423
0250 0168 0169 0170 0171 0172 0173 0174 0175 0650 0424 0425 0426 0427 0428 0429 0430 0431
0260 0176 0177 0178 0179 0180 0181 0182 0183 0660 0432 0433 0434 0435 0436 0437 0438 0439
0270 0184 0185 0186 0187 0188 0189 0190 0191 0670 0440 0441 0442 0443 0444 0445 0446 0447

0300 0192 0193 0194 0195 0196 0197 0198 0199 0700 0448 0449 0450 0451 0452 0453 0454 0455
0310 0200 0201 0202 0203 0204 0205 0206 0207 0710 0456 0457 0458 0459 0460 0461 0462 0463
0320 0208 0209 0210 0211 0212 0213 0214 0215 0720 0464 0465 0466 0467 0468 0469 0470 0471
0330 0216 0217 0218 0219 0220 0221 0222 0223 0730 0472 0473 0474 0475 0476 0477 0478 0479
0340 0224 0225 0226 0227 0228 0229 0230 0231 0740 0480 0481 0482 0483 0484 0485 0486 0487
0350 0232 0233 0234 0235 0236 0237 0238 0239 0750 0488 0489 0490 0491 0492 0493 0494 0495
0360 0240 0241 0242 0243 0244 0245 0246 0247 0760 0496 0497 0498 0499 0500 0501 0502 0503
0370 0248 0249 0250 0251 0252 0253 0254 0255 0770 0504 0505 0506 0507 0508 0509 0510 0511

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1000 0512 0513 0514 0515 0516 0517 0518 0519 1400 0768 0769 0770 0771 0772 0773 0774 0775 1000 0512
1010 0520 0521 0522 0523 0524 0525 0526 0527 1410 0776 0777 0778 0779 0780 0781 0782 0783 to to
1020 0528 0529 0530 0531 0532 0533 0534 0535
1030 0536 0537 0538 0539 0540 0541 0542 0543
1040 0544 0545 0546 0547 0548 0549 0550 0551

1420 0784 0785 0786 0787 0788 0789 0790 0791
1430 0792 0793 0794 0795 0796 0797 0798 0799
1440 0800 0801 0802 0803 0804 0805 0806 0807

1777 1023
(Octal) (Decimal)

1050 0552 0553 0554 0555 0556 0557 0558 0559 1450 0808 0809 0810 0811 0812 0813 0814 0815
1060 0560 0561 0562 0563 0564 0565 0566 0567 1460 0816 0817 0818 0819 0820 0821 0822 0823
1070 0568 0569 0570 0571 0572 0573 0574 0575 1470 0824 0825 0826 0827 0828 0829 0830 0831

1100 0576 0577 0578 0579 0580 0581 0582 0583 1500 0832 0833 0834 0835 0836 0837 0838 0839
1110 0584 0585 0586 0587 0588 0589 0590 0591 1510 0840 0841 0842 0843 0844 0845 0846 0847
1120 0592 0593 0594 0595 0596 0597 0598 0599 1520 0848 0849 0850 0851 0852 0853 0854 0855
1130 0600 0601 0602 0603 0604 0605 0606 0607 1530 0856 0857 0858 0859 0860 0861 0862 0863
1140 0608 0609 0610 0611 0612 0613 0614 0615 1540 0864 0865 0866 0867 0868 0869 0870 0871
1150 0616 0617 0618 0619 0620 0621 0622 0623 1550 0872 0873 0874 0875 0876 0877 0878 0879
1160 0624 0625 0626 0627 0628 0629 0630 0631 1560 0880 0881 0882 0883 0884 0885 0886 0887
1170 0632 0633 0634 0635 0636 0637 0638 0639 1570 0888 0889 0890 0891 0892 0893 0894 0895

1200 0640 0641 0642 0643 0644 0645 0646 0647 1600 0896 0897 0898 0899 0900 0901 0902 0903
1210 0648 0649 0650 0651 0652 0653 0654 0655 1610 0904 0905 0906 0907 0908 0909 0910 0911
1220 0656 0657 0658 0659 0660 0661 0662 0663 1620 0912 0913 0914 0915 0916 0917 0918 0919
1230 0664 0665 0666 0667 0668 0669 0670 0671 1630 0920 0921 0922 0923 0924 0925 0926 0927
1240 0672 0673 0674 0675 0676 0677 0678 0679 1640 0928 0929 0930 0931 0932 0933 0934 0935
1250 0680 0681 0682 0683 0684 0685 0686 0687 1650 0936 0937 0938 0939 0940 0941 0942 0943
1260 0688 0689 0690 0691 0692 0693 0694 0695 1660 0944 0945 0946 0947 0948 0949 0950 0951
1270 0696 0697 0698 0699 0700 0701 0702 0703 1670 0952 0953 0954 0955 0956 0957 0958 0959

1300 0704 0705 0706 0707 0708 0709 0710 0711 1700 0960 0961 0962 0963 0964 0965 0966 0967
1310 0712 0713 0714 0715 0716 0717 0718 0719 1710 0968 0969 0970 0971 0972 0973 0974 0975
1320 0720 0721 0722 0723 0724 0725 0726 0727 1720 0976 0977 0978 0979 0980 0981 0982 0983
1330 0728 0729 0730 0731 0732 0733 0734 0735 1730 0984 0985 0986 0987 0988 0989 0990 0991
1340 0736 0737 0738 0739 0740 0741 0742 0743 1740 0992 0993 0994 0995 0996 0997 0998 0999
1350 0744 0745 0746 0747 0748 0749 0750 0751 1750 1000 1001 1002 1003 1004 1005 1006 1007
1360 0752 0753 0754 0755 0756 0757 0758 0759 1760 1008 1009 1010 1011 1012 1013 1014 1015
1370 0760 0761 0762 0763 0764 0765 0766 0767 1770 1016 1017 1018 1019 1020 1021 1022 1023

J-6 60410600 A

2000 1024
to to

2777 1535
(Octal) (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000 1536
to to

3177 2047
(Ocral) (Decimal)

60410600 A

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont'd)

0 1 2 3 4 5 6 7 0 1 2 3 4

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400 1280 1281 1282 1283 1284
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410 1288 1289 1290 1291 1292
2020 1040 1041 1042 1043 1044 1045 1046 1047 2420 1296 1297 1298 1299 1300
2030 1048 1049 1050 1051 1052 1053 1054 1055 2430 1304 1305 1306 1307 1308
2040 1056 1057 1058 1059 1060 1061 1062 1063 2440 1312 1313 1314 1315 1316
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450 1320 1321 1322 1323 1324
2060 1072 1073 1074 1075 1076 1077 1078 1079 2460 1328 1329 1330 1331 1332
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470 1336 1337 1338 1339 1340

2100 1088 1089 1090 1091 1092 1093 1094 1095 2500 1344 1345 1346 1347 1348
2110 1096 1097 1098 1099 1100 1101 1102 1103 2510 1352 1353 1354 1355 1356
2120 1104 1105 1106 1107 1108 1109 1110 1111 2520 1360 1361 1362 1363 1364
2130 1112 1113 1114 1115 1116 1117 1118 1119 2530 1368 1369 1370 1371 1372
2140 1120 1121 1122 1123 1124 1125 1126 1127 2540 1376 1377 1378 1379 1380
2150 1128 1129 1130 1131 1132 1133 1134 1135 2550 1384 1385 1386 1387 1388
2160 1136 1137 1138 1139 1140 1141 1142 1143 2560 1392 1393 1394 1395 1396
2170 1144 1145 1146 1147 1148 1149 1150 1151 2570 1400 1401 1402 1403 1404

2200 1152 1153 1154 1155 1156 1157 1158 1159 2600 1408 1409 1410 1411 1412
2210 1160 1161 1162 1163 1164 1165 1166 1167 2610 1416 1417 1418 1419 1420
2220 1168 1169 1170 1171 1172 1173 1174 1175 2620 1424 1425 1426 1427 1428
2230 1176 1171 1178 1179 1180 1181 1182 1183 2630 1432 1433 1434 1435 1436
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 1442 1443 1444
2250 1192 1193 1194 1195 1196 1197 1198 1199 2650 1448 1449 1450 1451 1452
2260 1200 1201 1202 1203 1204 1205 1206 1207 2660 1456 1457 1458 1459 1460
2270 1208 1209 1210 1211 1212 1213 1214 1215 2670 1464 1465 1466 1467 1468

2300 1216 1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 1474 1475 1476
2310 1224 1225 1226 1227 1228 1229 1230 1231 2710 1480 1481 1482 1483 1484
2320 1232 1233 1234 1235 1236 1237 1238 1239 2720 1488 1489 1490 1491 1492
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730 1496 1497 1498 1499 1500
2340 1248 1249 1250 .1251 1252 1253 1254 1255 2740 1504 1505 1506 1507 1508
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750 1512 1513 1514 1515 1516
2360 1264 1265 1266 1267 1268 1269 1270 1271 2760 1520 1521 1522 1523 1524
2370 1272 1273 1274 1275 1276 1277 1278 1279 2170 1528 1529 1530 1531 1532

0 1 2 3 4 5 6 7 0 1 2 3 4

3000 1536 1537 1538 1539 1540 1541 1542 1543 3400 1792 1793 1794 1795 1796
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410 1800 1801 1802 1803 1804
3020 1552 1553 1554 1555 1556 1557 1558 1559 3420 1808 1809 1810 1811 1812
3030 1560 1561 1562 1563 1564 1565 1566 1567 3430 1816 1817 1818 1819 1820
3040 1568 1569 1570 1571 1572 1573 1574 1575 3440 1824 1825 1826 1827 1828
3050 1576 1577 1578 1579 1580 1581 1582 1583 3450 1832 1833 1834 1835 1836
3060 1584 1585 1586 1587 1588 1589 1590 1591 3460 1840 1841 1842 1843 1844
3070 1592 1593 1594 1595 1596 1597 1598 1599 3470· 1848 1849 1850 1851 1852

3100 1600 1601 1602 1603 1604 1605 1606 1607 3500 1856 1857 1858 1859 1860
3110 1608 1609 1610 1611 1612 1613 1614 1615 3510 1864 1865 1866 1867 1868
3120 1616 1617 1618 1619 1620 1621 1622 1623 3520 1872 1873 1874 1875 1816
3130 1624 1625 1626 1627 1628 1629 1630 1631 3530 1880 1861 1882 1883 1884
3140 1632 1633 1634 1635 1636 1637 1638 1639 3540 1888 1889 1890 1891 1.1192
3150 1640 1641 1642 1643 1644 1645 1646 1647 3550 1896 1897 1898 1899 1900
3160 1648 1649 1650 1651 1652 1653 1654 1655 3560 1904 1905 1906 1907 1908
3170 1656 1657 1658 1659 1660 1661 1662 1663 3570 1912 1913 1914 1915 1916

3200 1664 1665 1666 1667 1668 1669 1670 1671 3600 1920 1921 1922 1923 1924
3210 1672 1673 1674 1675 1676 1677 1678 1679 3610 1928 1929 1930 1931 1932
3220 1680 1681 1682 1683 1684 1685 1686 1687 3620 1936 1937 1938 1939 1940
3230 1688 1689 1690 1691 1692 1693 1694 1695 3630 1944 1945 1946 1947 1948
3240 1696 1697 1698 1699 1700 1701 1702 1703 3640 1952 1953 1954 1955 1956
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650 1960 1961 1962 1963 1964
3260 1712 1713 1714 1715 1716 1717 1718 1719 3660 1968 1969 1970 1971 1972
3270 1720 1721 1722 1723 1724 1725 1726 1721 3670 1976 1977 T978 1979 1980

3300 1728 1729 1730 1731 1732 1733 1734 1735 3700 1984 1985 1986 1987 1988
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710 1992 1993 1994 1995 1996
3320 1744 1145 1746 1747 1748 1749 1750 1751 3720 2000 2001 2002 2003 2004
3330 1752 1753 1754 1755 1756 1757 1758 1759 3730 2008 2009 2010 2011 2012
3340 1760 1761 1762 1763 1764 1765 1766 1767 3740 2016 2017 2018 2019 2020
3350 1768 1769 1710 1171 1772 1713 1714 1175 3750 2024 2025 2026 2027 2028
3360 1716 1777 1778 1779 1780 1781 1782 1783 3760 2032 2033 2034 2035 2036
3370 1784 1785 1786 1787 1788 1789 1790 1791 3770 2040 2041 2042 2043 2044

5 6 7

1285 1286 1287
1293 1294 1295
1301 1302 1303
1309 1310 1311
1317 1318 1319
1325 1326 1327
1333 1334 1335
1341 1342 1343

1349 1350 1351
1357 1358 1359
1365 1366 1367
1373 1374 1375
1381 1382 1383
1389 1390 1391
1397 1398 1399
1405 1406 1407

1413 1414 1415
1421 1422 1423
1429 1430 1431
1437 1438 1439
1445 1446 1447
1453 1454 1455
1461 1462 1463
1469 1470 1471

1477 1478 1479
1485 1486 1487
1493 1494 1495
1501 1502 1503
1519 1510 1511
1517 1518 1519
1525 1526 1527
1533 1534 1535

5 6 7

1791 1798 1799
1805 1806 1807
1813 1814 1815
1821 1822 1823
1829 1830 1831
1837 1838 1839
1845 1846 1847
1853 1854 1855

1861 1862 1863
1869 1870 1871
1877 1878 1879
1885 1886 1887
1893 1894 1895
1901 1902 1903
1909 1910 1911
1917 1918 1919

1925 1926 1927
1933 1934 1935
1941 1942 1943
1949 1950 1951
1957 1958 1959
1965 1966 1967
1973 1974 1975
1981 1982 1983

1989 1990 1991
1997 1998 1999
2005 2006 2007
2013 2014 2015
2021 2022 2023
2029 2030 2031
2037 2038 2039
2045 2046 2047

Rev.H

J-7

0 1

4000 2048 2049
4010 2056 2057
4020 2064 2065
4030 2072 2073
4040 2080 2081
4050 2088 2089
4060 2096 2097
4070 2104 2105

4100 2112 2113
4110 2120 2121
4120 2128 2129
4130 2136 2137
4140 2144 2145
4150 2152 2153
4160 2160 2161
4170 2168 2169

4200 2176 2177
4210 2184 2185
4220 2192 2193
4230 2200 2201
4240 2208 2209
4250 2216 2217
4260 2224 2225
4270 2232 2233

4300 2240 2241
4310 2248 2249
4320 2256 2257
4330 2264 2265
4340 2272 2273
4350 2280 2281
4360 2288 2289
4370 2296 2297

0 1

5000 2560 2561
5010 2568 2569
5020 2576 2577
5030 2584 2585
5040 2592 2593
5050 2600 2601
5060 2608 2609
5070 2616 2617

5100 2624 2625
5110 2632 2633
5120 2640 2641
5130 2648 2649
5140 2656 2657
5150 2664 2665
5160 2672 2673
5170 2680 2681

5200 2688 2689
5210 2696 2697
5220 2704 2705
5230 2712 2713
5240 2720 2721
5250 2728 2729
5260 2736 2737
5270 2744 2745

5300 2752 2753
5310 2760 2761
5320 2768 2769
5330 2776 2777
5340 2784 2785
5350 2792 2793
5360 2800 2801
5370 2808 2809

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont'd)

2 3 4 5 6 7 0 1 2 3 4 5 6 7

2050 2051 2052 2053 2054 2055 4400 2304 2305 2306 2307 2308 2309 2310 2311
2058 2059 2060 2061 2062 2063 4410 2312 2313 2314 2315 2316 2317 2318 2319
2066 2067 2068 2069 2070 2071 4420 2320 2321 2322 2323 2324 2325 2326 2327
2074 2075 2076 2077 2078 2079 4430 2328 2329 2330 2331 2332 2333 2334 2335
2082 2083 2084 2085 2086 2087 4440 2336 2337 2338 2339 2340 2341 2342 2343
2090 2091 2092 2093 2094 2095 4450 2344 2345 2346 2347 2348 2349 2350 2351
2098 2099 2100 2101 2102 2103 4460 2352 2353 2354 2355 2356 2357 2358 2359
2106 2107 2108 2109 2110 2111 4470 2360 2361 2362 2363 2364 2365 2366 2367

2114 2115 2116 2117 2118 2119 4500 2368 2369 2370 2371 2372 2373 2374 2375
2122 2123 2124 2125 2126 2127 4510 2376 2377 2378 2379 2380 2381 2382 2383
2130 2131 2132 2133 2134 2135 4520 2384 2385 2386 2387 2388 2389 2390 2391
2138 2139 2140 2141 2142 2143 4530 2392 2393 2394 2395 2396 2397 2398 2399
2146 2147 2148 2149 2150 2151 4540 2400 2401 2402 2403 2404 2405 2406 2407
2154 2155 2156 2157 2158 2159 4550 2408 2409 2410 2411 2412 2413 2414 2415
2162 2163 2164 2165 2166 2167 4560 2416 2417 2418 2419 2420 2421 2422 2423
2170 2171 2172 2173 2174 2175 4570 2424 2425 2426 2427 2428 2429 2430 2431

2178 2179 2180 2181 2182 2183 4600 2432 2433 2434 2435 2436 2437 2438 2439
2186 2187 2188 2189 2190 2191 4610 2440 2441 2442 2443 2444 2445 2446 2447
2194 2195 2196 2197 2198 2199 4620 2448 2449 2450 2451 2452 2453 2454 2455
2202 2203 2204 2205 2206 2207 4630 2456 2457 2458 2459 2460 2461 2462 2463
2210 2211 2212 2213 2214 2215 4640 2464 2465 2466 2467 2468 2469 2470 2471
2218 2219 2220 2221 2222 2223 4650 2472 2473 2474 2475 2476 2477 2478 2479
2226 2227 2228 2229 2230 2231 4660 2480 2481 2482 2483 2484 2485 2486 2487
2234 2235 2236 2237 2238 2239 4670 2488 2489 2490 2491 2492 2493 2494 2495

2242 2243 2244 2245 2246 2247 4700 2496 2497 2498 2499 2500 2501 2502 2503
2250 2251 2252 2253 2254 2255 4710 2504 2505 2506 2507 2508 2509 2510 2511
2258 2259 2260 2261 2262 2263 4720 2512 2513 2514 2515 2516 2517 2518 2519
2266 2267 2268 2269 2270 2271 4730 2520 2521 2522 2523 2524 2525 2526 2527
2274 2275 2276 2277 2278 2279 4740 2528 2529 2530 2531 2532 2533 2534 2535
2282 2283 2284 2285 2286 2287 4750 2536 2537 2538 2539 2540 2541 2542 2543
2290 2291 2292 2293 2294 2295 4760 2544 2545 2546 2547 2548 2549 2550 2551
2298 2299 2300 2301 2302 2303 4770 2552 2553 2554 2555 2556 2557 2558 2559

2 3 4 5 6 7 0 1 2 3 4 5 6 7

2562 2563 2564 2565 2566 2567 5400 2816 2817 2818 2819 2820 2821 2822 2823
2570 2571 2572 2573 2574 2575 5410 2824 2825 2826 2827 2828 2829 2830 2831
2578 2579 2580 2581 2582 2583 5420 2832 2833 2834 2835 2836 2837 2838 2839
2586 2587 2588 2589 2590 2591 5430 2840 2841 2842 2843 2844 2845 2846 2847
2594 2595 2596 2597 2598 2599 5440 2848 2849 2850 2851 2852 2853 2854 2855
2602 2603 2604 2605 2606 2607 5450 2856 2857 2858 2859 2860 2861 2862 2863
2610 2611 2612 2613 2614 2615 5460 2864 2865 2866 2867 2868 2869 2870 2871
2618 2619 2620 2621 2622 2623 5470 2872 2873 2874 2875 2876 2877 2878 2879

2626 2627 2628 2629 2630 2631 5500 2880 2881 2882 2883 2884 2885 2886 2887
2634 2635 2636 2637 2638 2639 5510 2888 2889 2890 2891 2892 2893 2894 2895
2642 2643 2644 2645 2646 2647 5520 2896 2897 2898 2899 2900 2901 2902 2903
2650 2651 2652 2653 2654 2655 5530 2904 2905 2906 2907 2908 2909 2910 2911
2658 2659 2660 2661 2662 2663 5540 2912 2913 2914 2915 2916 2917 2918 2919
2666 2667 2668 2669 2670 2671 5550 2920 2921 2922 2923 2924 2925 2926 2927
2674 2675 2676 2677 2678 2679 5560 2928 2929 2930 2931 2932 2933 2934 2935
2682 2683 2684 2685 2686 2687 5570 2936 2937 2938 2939 2940 2941 2942 2943

2690 2691 2692 2693 2694 2695 5600 2944 2945 2946 2947 2948 2949 2950 2951
2698 2699 2700 2701 2702 2703 5610 2952 2953 2954 2955 2956 2957 2958 2959
2706 2707 2708 2709 2710 2711 5620 2960 2961 2962 2963 2964 2965 2966 2967
2714 2715 2716 2717 2718 2719 5630 2968 2969 2970 2971 2972 2973 2974 2975
2722 2723 2724 2725 2726 2727 5640 2976 2977 2978 2979 2980 2981 2982 2983
2730 2731 2732 2733 2734 2735 5650 2984 2985 2986 2987 2988 2989 2990 2991
2738 2739 2740 2741 2742 2743 5660 2992 2993 2994 2995 2996 2997 2998 2999
2746 2747 2748 2749 2750 2751 5670 3000 3001 3002 3003 3004 3005 3006 3007

2754 2755 2756 2757 2758 2759 5700 3008 3009 3010 3011 3012 3013 3014 3015
2762 2763 2764 2765 2766 2767 5710 3016 3017 3018 3019 3020 3021 3022 3023
2770 2771 2772 2773 2774 2775 5720 3024 3025 3026 3027 3028 3029 3030 3031
2778 2779 2780 2781 2782 2783 5730 3032 3033 3034 3035 3036 3037 3038 3039
2786 2787 2788 2789 2790 2791 5740 3040 3041 3042 3043 3044 3045 3046 3047
2794 2795 2796 2797 2798 2799 5750 3048 3049 3050 3051 3052 3053 3054 3055
2802 2803 2804 2805 2806 2807 5760 3056 3057 3058 3059 3060 3061 3062 3063
2810 2811 2812 2813 2814 2815 5770 3064 3065 3066 3067 3068 3069 3070 3071

4000 2048
to to

4777 2559
(Octal) (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

5000 2560
to to

5777 3071
(Octal) (Decimal)

J-8 60410600 A

6000 3072
to to

6777 3583
(Octall (Decimall

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

7000 3584
to to

7777 4095
(Octall (Decimall

60410600 A

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont'd)

0 1 2 3 4 5 6 7 0 1 2 3 4

6000 3072 3073 3074 3075 3076 3077 3078 3079 6400 3328 3329 3330 3331 3332
6010 3080 3081 3082 3083 3084 3085 3086 3087 6410 3336 3337 3338 3339 3340
6020 3088 3089 3090 3091 3092 3093 3094 3095 6420 3344 3345 3346 3347 3348
6030 3096 3097 3098 3099 3100 3101 3102 3103 6430 3352 3353 3354 3355 3356
6040 3104 3105 3106 3107 3108 3109 3110 3111 6440 3360 3361 3362 3363 3364
6050 3112 3113 3114 3115 3116 3117 3118 3119 6450 3368 3369 3370 3371 3372
6060 3120 3121 3122 3123 3124 3125 3126 3127 6460 3376 3377 3378 3379 3380
6070 3128 3129 3130 3131 3132 3133 3134 3135

1 6100 3136 3137 3138 3139 3140 3141 3142 3143

6470 3384 3385 3386 3387 3388

6500 3392 3393 3394 3395 3396
6110 3144 3145 3146 3147 3148 3149 3150 3151 6510 3400 3401 3402 3403 3404
6120 3152 3153 3154 3155 3156 3157 3158 3159 6520 3408 3409 3410 3411 3412
6130 3160 3161 3162 3163 3164 3165 3166 3167 6530 3416 3417 3418 3419 3420
6140 3168 3169 3170 3171 3172 3173 3174 3175 6540 3424 3425 3426 3427 3428
6150 3176 3177 3178 3179 3180 3181 3182 3183 6550 3432 3433 3434 3435 3436
6160 3184 3185 3186 3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444
6170 3192 3193 3194 3195 3196 3197 3198 3199 6570 3448 3449 3450 3451 3452

6200 3200 3201 3202 3203 3204 3205 3206 3207 6600 3456 3457 3458 3459 3460
6210 3208 3209 3210 3211 3212 3213 3214 3215 6610 3464 3465 3466 3467 3468
6220 3216 3217 3218 3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476
6230 3224 3225 3226 3227 3228 3229 3230 3231 6630 3480 3481 3482 3483 3484
6240 3232 3233 3234 3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492
6250 3240 3241 3242 3243 3244 3245 3246 3247 6650 3496 3497 3498 3499 3500
6260 3248 3249 3250 3251 3252 3253 3254 3255 6660 3504 3505 3506 3507 3508
6270 3256 3257 3258 3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516

6300 3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524
6310 3272 3273 3274 3275 3276 3277 3278 3279 6710 3528 3529 3530 3531 3532
6320 3280 3281 3282 3283 3284 3285 3286 3287 6720 3536 3537 3538 3539 3540
6330 3288 3289 3290 3291 3292 3293 3294 3295 6730 3544 3545 3546 3547 3548
6340 3296 3297 3298 3299 3300 3301 3302 3303 6740 3552 3553 3554 3555 3556
6350 3304 3305 3306 3307 3308 3309 3310 3311 6750 3560 3561 3562 3563 3564
6360 3312 3313 3314 3315 3316 3317 3318 3319 6760 3568 3569 3570 3571 3572
6370 3320 3321 3322 3323 3324 3325 3326 3327 6770 3576 3577 3578 3579 3580

0 1 2 3 4 5 6 7 0 1 2 3 4

7000 3584 3585 3586 3587 3588 3589 3590 3591 7400 3840 3841 3842 3843 3844
7010 3592 3593 3594 3595 3496 3497 3598 3599 7410 3848 3849 3850 3851 3852
7020 3600 3601 3602 3603 3604 3605 3606 3607 7420 3856 3857 3858 3859 3860
7030 3608 3609 3610 3611 3612 3613 3614 3615 7430 3864 3865 3866 3867 3868
7040 3616 3617 3618 3619 3620 3621 3622 3623 7440 3872 3873 3874 3875 3876
7050 3624 3625 3626 3627 3628 3629 3630 3631
7060 3632 3633 3634 3635 3636 3637 3638 3639

7450 388,0 3881 3882 3883 3884
7460 3888 3889 3890 3891 3892

7070 3640 3641 3642 3643 3644 3645 3646 3647 7470 3896 3897 3898 3899 3900

7100 3648 3649 3650 3651 3652 3653 3654 3655 7500 3904 3905 3906 3907 3908
7110 3656 3657 3658 3659 3660 3661 3662 3663 7510 3912 3913 3914 3915 3916
7120 3664 3665 3666 3667 3668 3669 3670 3671 7520 3920 3921 3922 3923 3924
7130 3672 3673 3674 3675 3676 3677 3678 3679 7530 3928 3929 3930 3931 3932
7140 3680 3681 3682 3683 3684 3685 3686 3687 7540 3936 3937 3938 3939 3940
7150 3688 3689 3690 3691 3692 3693 3694 3695 7550 3944 3945 3946 3947 3948
7160 3696 3697 3698 3699 3700 3701 3702 3703 7560 3952 3953 3954 3955 3956
7170 3704 3705 3706 3707 3708 3709 3710 3711 7570 3960 3961 3962 3963 3964

7200 3712 3713 3714 3715 3716 3717 3718 3719 7600 3968 3969 3970 3971 3972
7210 3720 3721 3722 3723 3724 3725 3726 3727 7610 3976 3977 3978 3979 3980
7220 3728 3729 3730 3731 3732 3733 3734 3735 7620 3984 3985 3986 3987 3988
7230 3736 3737 3738 3739 3740 3741 3742 3743 7630 3992 3993 3994 3995 3996
7240 3744 3745 3746 3747 3748 3749 3750 3751 7640 4000 4001 4002 4003 4004
7250 3752 3753 3754 3755 3756 3757 3758 3759 7650 4008 4009 4010 4011 4012
7260 3760 3761 3762 3763 3764 3765 3766 3767 7660 4016 4017 4018 4019 4020
7270 3768 3769 3770 3771 3772 3773 3774 3775 7670 4024 4025 4026 4027 4028

7300 3776 3777 3778 3779 3780 3781 3782 3783 7700 4032 4033 4034 4035 4036
7310 3784 3785 3786 3787 3788 3789 3790 3791 7710 4040 4041 4042 4043 4044
7320 3792 3793 3794 3795 3796 3797 3798 3799 7720 4048 4049 4050 4051 4052
7330 3800 3801 3802 3803 3804 3805 3806 3807 7730 4056 4057 4058 4059 4060
7340 3808 3809 3810 3811 3812 3813 3814 3815 7740 4064 4065 4066 4067 4068
7350 3816 3817 3818 3819 3820 3821 3822 3823 7750 4072 4073 4074 4075 4076
7360 3824 3825 3826 3827 3828 3829 3830 3831 7760 4080 4081 4082 4083 4084
7370 3832 3833 3834 3835 3836 3837 3838 3839 7710 4088 4089 4090 4091 4092

5 6 7

3333 3334 3335
3341 3342 3343
3349 3350 3351
3357 3358 3359
3365 3366 3367
3373 3374 3375
3381 3382 3383
3389 3390 3391

3397 3398 3399
3405 3406 3407
3413 3414 3415
3421 3422 3423
3429 3430 3431
3437 3438 3439
3445 3446 3447
3453 3454 3455

3461 3462 3463
3469 3470 3471
3477 3478 3479
3485 3486 3487
3493 3494 3495
3501 3502 3503
3509 3510 3511
3517 3518 3519

3525 3526 3527
3533 3534 3535
3541 3542 3543
3549 3550 3551
3557 3558 3559
3565 3566 3567
3573 3574 3575
3581 3582 3583

5 6 7

3845 3846 3847
3853 3854 3855
3861 3862 3863
3869 3870 3871
3877 3878 3879
3885 3886 3887
3893 3894 3895
3901 3902 3903

3909 3910 3911
3917 3918 3919
3925 3926 3927
3933 3934 3935
3941 3942 3943
3949 3950 3951
3957 3958 3959
3965 3966 3967

3973 3974 3975
3981 3982 3983
3989 3990 3991
3997 3998 3999
4005 4006 4007
4013 4014 4015
4021 4022 4023
4029 4030 4031

4037 4038 4039
4045 4046 4047
4053 4054 4055
4061 4062 4063
4069 4070 4071
4077 4078 4079
4085 4086 4087
4093 4094 4095

J-9

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000 .000000 .100 .125000 .200 .250000 .300 .375000

.001 .001953 .101 .126953 .201 .251953 .301 .376953

.002 .003906· .102 .128906 .202 .253906 .302 .378906

.003 .005859 .103 .130859 .203 .255859 .303 .380859

.004 .007812 .104 .132812 .204 .257812 .304 .382812

.005 .009765 .105 .134765 .205 .259765 .305 .384765

.006 .011718 .106 .136718 .206 .261718 .306 .386718

.007 .013671 .107 .138671 .207 .263671 .307 .388671

.010 .015625 .110 .140625 .210 .265625 .310 .390625

.011 .017578 .111 .142578 .211 .267578 .311 .392578

.012 .019531 .112 .144531 .212 .269531 .312 .394531

.013 .021484 .113 .146484 .213 .271484 .313 .396484

.014 .023437 .114 .148437 .214 .273437 .314 .398437

.015 .025390 .115 .150390 .215 .275390 .315 .400390

.016 .027343 .116 .152343 .216 .277343 .316 .402343

.017 .029296 .117 .154296 .217 .279296 .317 .404296

.020 .031250 .120 .156250 .220 .281250 .320 .406250

.021 .033203 .121 .158203 .221 .283203 .321 .408203

.022 .035156 .122 .160156 .222 .285156 .322 .410156

.023 .037109 .123 .162109 .223 .287109 .323 .412109

.024 .039062 .124 .164062 .224 .289062 .324 .414062

.025 .041015 .125 .166015 .225 .291015 .325 .416015

.026 .042968 .126 .167968 .226 .292968 .326 .417968

.027 .044921 .127 .169921 .227 .294921 .327 .419921

.030 .046875 .130 .171875 .230 .296875 .330 .421875

.031 .048828 .131 .173828 .231 .298828 .331 .423828

.032 .050781 .132 .175781 .232 .300781 .332 .425781

.033 .052734 .133 .177734 .233 .302734 .333 .427734

.034 .054687 .134 .179687 .234 .304687 .334 .429687

.035 .056640 .135 .181640 .235 .306640 .335 .431640

.036 .058593 .136 .183593 .236 .308593 .336 .433593

.037 .060546 .137 .185546 .237 .310546 .337 .435546

.040 .062500 .140 .187500 .240 .312500 .340 .437500

.041 .064453 .141 .189453 .241 .314453 .341 .439453

.042 .066406 .142 .191406 .242 .316406 .342 .441406

.043 .068359 .143 .193359 .243 .318359 .343 .443359

.044 .070312 .144 .195312 .244 .320312 .344 .445312

.045 .072265 .145 .197265 .245 .322265 .345 .447265

.046 .074218 .146 .199218 .246 .324218 .346 .449218

.047 .076171 .147 .201171 .247 .326171 .347 .451171

.050 .078125 .150 .203125 .250 .328125 .350 .453125

.051 .080078 .151 .205078 .251 .330078 .351 .455078

.052 .082031 .152 .207031 .252 .332031 .352 .457031

.053 .083984 .153 .208984 .253 .333984 .353 .458984

.054 .085937 .154 .210937 .254 .335937 .354 .460937

.055 .087890 .155 .212890 .25f .337890 .355 .462890

.056 .089843 .156 .214843 .25(.339843 .356 .464843

.057 .091796 .157 .216796 .257 .341796 .357 .466796

.060 .093750 .160 .218750 .260 .343750 .360 .468750

.061 .095703 .161 .220703 .261 .345703 .361 .470703

.062 .097656 .162 .222656 .262 .347656 .362 .472656

.063 .099609 .163 .224609 .263 .349609 .363 .474609

.064 .101562 .164 .226562 .264 .351562 .364 .476562

.065 .103515 .165 .228515 .265 .353515 .365 .478515

.066 .105468 .166 .230468 .266 .355468 .366 .480468

.067 .107421 .167 .232421 .267 .357421 .367 .482421

.070 .109375 .170 .234375 .270 .359375 .370 .484375

.071 .111328 .171 .236328 .271 .361328 .371 .486328

.072 .113281 .172 .238281 .272 .363281 .372 .488281

.073 .115234 .173 .240234 .273 .365234 .373 .490234

.074 .117187 .174 .242187 .274 .367187 .374 .492187

.075 .119140 .175 .244140 .275 .369140 .375 .494140

.076 .121093 .176 .246093 .276 .371093 .376 .496093

.077 .123046 .177 .248046 .277 .373046 .377 .498046

J-10 60410600 A

OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont'd)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC .

.000000 . 000000 .000100 .000244 .000200 .000488 .000300 .000732

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736

.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740

.000003 :000011 .000103 .000255 .000203 .000499 .000303 .000743

.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747

.000005 .000019 .000105 .000263 .00'0205 .000507 .000305 .000751

.000006 .000022 .000106 .000267 .000206 .000511 .000306 .000755

.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759

.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766

.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .000782

.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785

.000017 .000057 .000117 .000301 .000217 .000545 .000317 .000789

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801

.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805

.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827

.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839

.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843

.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846

.000037 .0001; 8 .000137 .000362 .000237 .000606 .000337 .000850

.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862

.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881

.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885

.000051 .000156 .000151 .000400 .000251 .000944 .000351 .000888

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892

.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896

.000054 .000167 .000154 .000411 .000254 .000656 .000354 .000900

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907

.000057 .000179 .000157 .000423 .000257 .000667 .000357 .000911

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919

.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938

.000067 .000209 .000167 .000453 .000267 .000698 .000367 .000942

.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946

.000071 .000217 .000171 .000461 .000271 .000705 .000371 .000949

.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953

.000073 .000225 .000173 .000469 .000273 .000713 .000373 .000957

.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961

.000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965

.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968

.000077 .000240 -.000177 .000484 .000277 .000728 .000377 .000972

60410600 A J-11

OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont'd)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC .

.000400 .000976 .000500 .001220 .000600 .001464 .000700 . 001708

.000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712

.000402 .000984 .000502 .001228 .000602 .001472 .000702 .001716

.000403 .000988 .000503 .001232 .000603 .001476 .000703 .001720

.000404 .000991 .000504 .001235 .000604 .001480 .000704 .001724

.000405 .000995 .000505 .001239 .000605 .001483 .000705 .001728

.000406 .000999 .000506 .001243 .000606 .001487 .000706 .001731

.000407 .001003 .000507 .001247 .000607 .001491 .000707 .001735

.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739

.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743

.000412 .001014 .000512 .001258 .000612 .001502 .000712 .001747

.000413 .001018 .000513 .001262 .000613 .001506 .000713 .001750

.000414 .001022 .000514 .001266 .000614 .001510 .000714 .001754

.000415 .001026 .000515 .001270 .000615 .001614 .000715 .001758

.000416 .001029 .000516 .001274 .000616 .001518 .000716 .001762

.000417 .001033 .000517 .001277 .000617 .001522 .000717 .001766

.000420 .001037 .000520 .001281 .000620 .001525 .000720 .001770

.000421 .001041 .000521 .001285 .000621 .001529 .000721 .001773

.000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777

.000423 .001049 .000523 .001293 .000623 .001537 .000723 .001781

.000424 .001052 .000524 .001296 .000624 .001541 .000724 .001785

.000425 .001056 .000525 .001300 .000625 .001544 .000725 .001789

.000426 .001060 .000526 .001304 .000626 .001548 .000726 .001792

.000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796

.000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800

.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804

.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808

.000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811

.000434 .001083 .000534 .001327 .000634 .001571 .000734 .001815

.000435 .001087 .000535 .001331 .000635 .001575 .000735 .001819

.000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823

.000437 .001094 .000537 .001338 .000637 .001583 .000737 .001827

.000440 .001098 .000540 .001342 .000640 .001586 .000740 .001831

.000441 .001102 .000541 .001346 .000641 .001590 .000741 .001834

.000442 .001106 .000542 .001350 .000642 .001594 .000742 .001838

.000443 .001110 .000543 .001354 .000643 .001598 .000743 .001842

.000444 .001113 .000544 .001358 .000644 .001602 .000744 .001846

.000445 .001117 .000545 .001361 .000645 .001605 .000745 .001850

.000446 .001121 .000546 .001365 .000646 .001609 .000746 .001853

.000447 .001125 .000547· .001369 .000647 .001613 .000747 .001857

.000450 .001129 .000550 .001373 .000650 .001617 .000750 .001861

.000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865

.000452 .001136 .000552 .001380 .000652 .001625 .000752 .001869

.000453 .001140 .000553 .001384 .000653 .001628 .000753 .001873

.000454 .001144 .000554 .001388 .000654 .001632 .000754 .001876

.000455 .001148 .000555 .001392 .000655 .001636 .000755 .001880

.000456 .001152 .000556 .001396 .000656 .001640 .000756 .001884

.000457 .001155 .000557 .001399 .000657 .001644 .000757 .001888

.000460 .001159 .000560 .001403 .000660 .001647 .000760 .001892

.000461 .001163 .000561 .001407 .000661 .001651 .000761 .001895

.000462 .001167 .000562 .001411 .000662 .001655 .000762 .001899

.000463 .001171 .000563 .001415 .000663 .001659 .000763 .001903

.000464 .001174 .000564 .001419 .000664 .001663 .000764 .001907

.000465 .001178 .000565 .001422 .000665 .001667 .000765 .001911

.000466 .001182 .000566 .001426 .000666 .001670 .000766 .001914

.000467 .001186 .000567 .001430 .000667 .001674 .000767 .001918

.000470 .001190 .000570 .001434 .000670 .001678 .000770 .001922

.000471 .001194 .000571 .001438 .000671 .001682 .000771 .001926

.000472 .001197 .000572 .001441 .000672 .001686 .000772 .001930

.000473 .001201 .000573 .001445 .000673 .001689 .000773 .001934

.000474 .001205 .000574 .001449 .000674 .001693 .000774 .001937

.000475 .001209 .000575 .001453 .000675 .001697 .000775 .001941

.000476 .001213 .000576 .001457 .000676 .001701 .000776 .001945

.000477 .001216 .000577 .001461 .000677 .001705 .000777 .001949

J-12 60410600 A

ABBREVIATIONS AND ACRONYMS

The list of abbreviations does not include COMPASS pseudo instructions, machine
language instructions, programmer control cards, operator control statements, or
diagnostics.

ACC

ABS

ALGOL

AP

APC

AUT

BCD

CFO

CIC

CIa

COBOL

COMPASS

COSY

CPU

CR

CST

CTO

DINT.

DRS

EINT.

ELD

EOF

EaT
EPT

EST

fca

FDT

FET

FORTRAN

FaT
fwa

. 60410600 A

Standard accounting unit

Library file containing absolutized subprograms and routine.

Algorithmic language compiler

Alternate processor

Automatic peripheral control

A vailable unit table

Binary coded decimal

Comment-from-operator unit; console typewriter

Central interrupt control routine

Central input / output routine

Common business oriented language

Comprehensive assembly system

Compressed symbolic library program

Central processing unit

Card reader

Channel status table

Comment-to-operator unit; console typewriter

Disable interrupt routine

Library directory file

Enable interrupt routine

End-loader-declaration card

End-of-file

End-of-tape mark

Loader entry point name card

Equipment statu stable

First character address

File description table

File environment table

Formula translation compiler

File ordinal table

First word address

Abbreviations-1

iaddr

IDC

IDFILE

IMR

INP

I/O

LABELFILE

lca

LED

LGO

LIB

L-MSIO

LRL

lwa

MAP

MSD

MSDFILE

MT

OCAREM

OCR

OUT

PERT

PRE LIB

PUN

RES

RIF

RAT

RNI

TRA

XNL

Abbreviations- 2

Interrupt address

Subprogram identification card

Directory for LABELFILE· entries

Interrupt mask register

Standard input unit; typically a card reader

Input/ output

A file containing the label of each allocated mass storage file

Last character address

Loader equipment declaration card

Load - and - go unit

Standard system library file. Contains relocatable subprograms
and routines.

Logical MSIO

Local reference list loader card

Last word address

Listing the subprogram entry points and locations in core

Mass storage device/pack

A file containing the mass storage device labels

Magnetic tape

Mass storage file management routine

Optical character reader

Standard output unit; typically a printer

Programmed evaluation and review technique

Program to prepare library

Standard punch unit

Library file containing the executive resident routine

Relocatable information loader card

Resident allocation table for mass storage files

Read next instruction

Transfer address loader card

External name loader card

60410600 A

GLOSSARY

ABNORMAL DUMP

ABORT

A dump occurring immediately following abnormal termination of a program.

To terminate a program when a condition (hardware or software) exists from which
the program or computer cannot recover.

ABSOLUTE PROGRAM
A program that must always be loaded in the same memory addresses.

ABSOLUTE CODE
A code using absolute operators and addresses; that is, a code using machine
language.

ALLOCATE
To reserve an amount of some resource in a computing system for a specific
purpose (usually refers to a data storage medium such as allocating space on
a disk for a mass storage file).

ALPHANUMERIC
Pertaining to a character set that contains alphabetic letters, numerical digits,
and special characters which are usually machine processable.

ASSEMBLE
To prepare an object language program from a symbolic language program by
substituting machine operation codes for symbolic operation codes and absolute
or relocatable addresses for symbolic addresses.

ASSEMBLER
A computer program that generates machine instruction from symbolic input data
through translating symbolic-operation coding into computer operating instructions,
assigning locations in storage for successive instructions, or computing absolute
addresses from symbolic addresses. An assembler generates machine instructions
from symbolic codes and produces, as output, nearly the same number of in­
structions or constants as were defined in the input.

AUTOLOAD
To place the resident routines of the operating system in core storage.

60410600 A Glossary-l

BATCH •
In MSOS, an object program running in a stacked job manner. Shares the
central processing unit with the priority program when apriority program is
present and executes only when the priority program is not in control of the
processor. Batch interrupts have lowest priority in the interrupt processing
priority scheme.

BINARY

BLOCK

A characteristic property, or condition, having two alternatives, a numbering
system based on 2 rather than 10, and using only 0 and 1.

Consecutive machine words or characters written or read as one unit.

BLOCKING
Combining two or more numbers (records) into one block to reduce the number
of physical I/O operations.

BLOCK LENGTH
Number of records, words, or characters in one block.

BUFFER
An area in core used to store a block of words for output, or to receive a block
of words from an input unit. The entire buffer is written when an output function
is performed. When an input function is performed, one block of data from the
input unit is written in the buffer area.

CARD COLUMN
A vertical line of punching positions on a card.

CARD IMAGE
A representation in storage of the holes punched in a card such that holes are
represented by ones and unpunched spaces are represented by zeros. In machine
language, a duplication of the data on a punched card.

CARD ROW
A horizontal line of punching positions on a card.

COMMON
An area of memory that may be shared between batch subprograms. Common
may not be preset with data. Priority programs may not have a common area.

Glossary-2 60410600 A

COMPILER
A program which translates a progr~mming language such as FORTRAN or
COBOL into an assembly language and, often, into machine language. A com­
piler may generate many machine instructions for a single symbolic statement.

CONTROL CARD, CONTROL STATEMENT
An instruction recognized by the operating system.

DATA AREA

DECK

An area of memory which may be preset with data at load time and shared be­
tween subprograms. Both batch and priority programs may have data areas.

A collection of punched cards that has a definite service or purpose, structured
to represent a processing unit to the operating system.

DRIVER

DUMP

A program that operates a peripheral device.

To copy the contents of all or part of a storage device, usually from internal
storage into external storage; the process of performing the copy, or the re­
sulting document.

END-OF-FILE
Information designating the termination point of data or of a program.

END-OF-FILE INDICATOR
A signal supplied by an input or output unit that makes an end-of-file condition
known to the routine or operator controlling the device.

EQUIPMENT

ERROR

A n interface between a data channel and a unit; a channel controller.

Any deviation of a computed or a measured quantity from the theoretically correct
value.

EXECUTE
To carry out an instruction or perform a routine.

EXECUTION
The process whereby the instructions contained in a program direct the activities
of the central processing unit.

60410600 A Glossary-3

EXTERNAL INTERRUPT
An interrupt occurring as a result of conditions within peripheral devices or their
immediate interfa"ces. Interrupts occurring as a result of conditions within a
data channel are classified external or internal in keeping with specifications set
forth in individual hardware system reference manuals.

FAULT
1. A physical condition that causes a device, a component, or an element to fail

to perform in a required manner; that is, a short circuit, a broken wire,

FIELD

FILE

2.

an intermittent connection; synonymous with malfunction.

An operation whose results exceed the capacity of one or more registers
and which is detected by the hardware.

In a record, a specified area used for a particular category of data; that is, a
group of card columns used to represent a wage rate or a set of bit locations
in a computer word used to express the address of the operand.

A collection of related records treated as a unit; that is, in inventory control,
one line of an invoice forms an item, a complete invoice forms a record, and
the complete set of such records forms a file.

FILE LABEL
For mass storage devices, an information set in a standard format, including
entries for file identification, structure, location, and use. The file label
appears in the file label directory (LABELFILE).

FILE ORDINAL

FLAG

FLOW

A number equated to a mass storage file for the duration of a job.

1.

2.

3.

4.

Any of various types of indicators used for identification; that is, a wordmark.

A character or bit that signals the occurrence of some condition, such as
the end of a word.

An indicator (program or hardware initiate) used frequently to tell some later
part of a program that some condition occurred earlier.

To generate a flag (1, 2, 3).

A general term to indicate a sequence of events.

INITIALIZE

INPUT

To set counters, switches, and addresses to zero or som e other starting value at
the beginning of or at prescribed points in a program.

Information or data transferred from an external storage device into computer
memory.

Glossary-4 60410600 A

INPUT /OUTPUT
The bidirectional transmission of information between computer memory and
peripheral devices.

INPUT /OUTPUT SYSTEM
The portion of the monitor that handles I/O; includes CIO, CIC, and I/O drivers.

INTERNAL INTERRUPT
An interrupt occurring as a result of conditions within computer mainframe.

INTERRUPT

JOB

1. A break in the normal flow of a system or routines such that the flow can be
resumed from that point at a later time. An interrupt is usually caused by
a hardware -generated signal.

2. To cause an interrupt.

A deck consisting of control statements, programs, and data; presented serially
in a job stack to MSOS through the standard input unit.

LIBRARY
An organized collection of standard subprograms and routines as a file or files.

LIBRARY FILES
In MSOS, the library consists of RES, ABS, LIB, and DRS files.

LINKAGE
The interconnections between subprograms or between a main routine and closed
subroutines; that is, the entry into a closed routine and the exit back to the
main routine.

LOAD-AND-GO FILE
The MSOS file designated by the file ordinal 56 when MSOS is initiated. This is
automatically positioned to its origin when the user requests loading from the file.
When loading is complete, MSOS again positions the load-and-go file to its origin
to make it available for other output. Unless the user specifies otherwise, as­
sembly and compilation output is written on the load-and-go file.

LOADING
The process of transferring a program from external devices to memory. In
MSOS the relocatable loader transfers a relocatable program to the first se­
quential available positions in core; the absolute loader RDCKFI transfers pro­
grams which must be loaded into specific locations.

LOCATION
A position in storage where one computer word can be stored and which is usually
identified by an address.

60410600 A Glossary-5

MACRO INSTRUCTION

MAIN

An instructi~n in a source language that is equivalent to a specified sequence of
machine instructions. Usually, a symbolic mnemonic type instruction that a
programmer can write in a source program to call for library or special routine s.

An element of a program prepared in overlays. The main element typically is a
controlling program which calls overlay elements into core in succession.

MASS-STORAGE CAPABILITY
The operating system is designed to provide effective and efficient use of available
mass storage devices. The result is a lightening of operator duties thus elimi­
nating many of the errors believe d inherent in large -scale software systems.
The system provides for the maintenance of permanent data and program files on
mass storage devices with full facilities for modification and manipulation of these
files. Privacy access codes prevent unauthorized use.

MASS STORAGE DEVICE
A disk or drum capable of storing large quantities of information (2 million to 200
million characters).

MASS STORAGE (ON -LINE)
High-capacity data storage accessible to the central processing unit.

MEMORY PROTECT
Hardware and software that prevent batch program from writing in core assigned
to priority programs or the executive resident.

MSIO FILES
System files used by OCAREM to manage the mass storage files. These files
are LABELFILE, IDFILE, and MSDFILE.

MULTIPROGRAMMING
In MSOS, a technique for processing two programs simultaneously by overlapping
or interleaving their execution. In 1VfSOS, multiprogramming is achieved by
allowing the priority program to gain control of the processor periodically through
interrupts.

OBJECT LANGUAGE
The language that is the output of a given translation process; that is, the language
into which as assembler or compiler translates a source language.

OPERATING SYSTEM
An organized collection of programmed techniques and procedures for operating a
computer.

ORDINAL
The location of an entry in a table.

Glossary-6 60410600 A

ORIGIN
1. The absolute address of the beginning of a program or block.

2. In relative coding the absolute address to which addresses in a region are
referenced.

OVERLAY
In overlay processing, an element called by the main element.

OVERLA Y PROCESSING
A technique for processing a program whose total storage requirements for
instructions exceed available memory. The user divides the program into ele­
ments which are stored in mass storage and brought into core at different points
of processing. An element of an overlay program, when brought into core
memory, may occupy the same storage locations as another element which exe­
cuted previously.

PARAMETER
1. A variable that is given a constant value for a specific purpose or process.

2. A quantity in a routine which specifies a machine configuration, subroutines
to be called, or other operating conditions.

PRIl\IfARY ENTRY POINT
An entry point named on a EPT card that is used to call a subprogram from a
library.

PRIORITY
A scheme for determining that a routine or job is to be executed before another.
In l\IfSOS priority distinctions are applicable in the following:

1.

2.

3.

Multiprogramming. The priority program may gain control of the processor
from the batch program through interrupts; the batch program receives con­
trol of the processor only when the priority program relinquishes control.

Interrupts. Real-time program interrupts have highest priority processing
under l\IfSOS; that is, when an interrupt generated by a real-time program
occurs, MSOS immediately gives control to the real-time interrupt processing
routine. Non-real-time priority programs have next highest priority; MSOS
gives control to the non-real-time priority program when an interrupt generated
by that program occurs, except when this interrupt occurs during MSOS input/
output processing. In this case, MSOS waits for the input / output routine to
complete execution and then gives control to the non-real-time priority pro­
gram. Batch program interrupts have the lowest priority. The priority
program, real-time or non-real-time, may gain control of the processor
through an interrupt after a batch interrupt has occurred. MSOS waits until
the priority program has relinquished control of the processor before routing
control to the batch program interrupt routine.

Job stack processing. Under MSOS, the priority p~og:am may submit a.
batch job stack, and this stack has a processing prIorIty over ~ll batch .Jo~s
except the one currently in execution. MSOS waits for completIon of thIS Job
and then initiates processing of the priority-submitted batch job stack.

60410600 A
Glossary-7

PRIORITY PROGRAM

A specially prepared program requlrlng control for discrete intervals and that
resides in core during batch runs.

PROGRAM
1. The precise sequence of coded instructions necessary to solve a problem.

To plan the procedures for solving a problem. This may involve~ among
other things, analyzing the problem, preparing a flow diagram, providing
details, developing and testing subroutines, allocating storage~ specifying
input and output formats, and incorporating a computer run into a complete
data processing system.

2.

READ
To transfer information, usually from an input device, to internal s"torage.

REAL-TIME
Pertaining to a program for which time requirements are particularly stringent;
that is, the data transfer must keep up with a physical process within a time
period of seconds or less.

RECORD
1. A collection of related items of data treated as a unit.

2. To put data into a storage device.

RE-ENTRANT
A subprogram or routine that does not modify itself while in execution. The
subprogram or routine does not have to be .reloaded to reenter it.

RELOCATABLE BINARY SUBPROGRAM
A subprogram that can be loaded into any available area in memory which is
large enough to contain the subprogram.

RESIDENT
That part of the operating system residing in core memory at all times.

RETURN
To transfer control back to the point in a program or subprogram from which
a call was issued.

ROUTINE
A set of instructions arranged in a sequence such that the computer performs a
desired task.

Glossary-8 60410600 A

SEGMENT
1. An element of a program prepared in overlays.

called into core by an overlay element.
A segment element is

2. A section of a mass storage file that is not contiguous with the rest of the
file. A segment may be <;:m a different device or pack.

SNAPSHOT DUMP
A selective dynamic dump performed at various points in a machine run.

SOURCE LANGUAGE
Input language for a given translation process.

STATUS
A state or condition of hardware or task; that is, busy or not busy.

SUBPROGRAM
A part of a larger program which can be converted into machine language in­
dependently.

SPOOLING
Buffering the system input, output, and punch files on mass storage so the CPU
does not have to wait for the current job output to be printed and punched before
starting the next job.

SUBROUTINE
1. A portion of a routine that causes a computer to carry out a well-defined

mathematical or logical operation.

2. A routine arranged so that control may be transferred to it from a master
routine and so that, at the conclusion of the subroutine, control reverts to
the master routine. Such a subroutine is usually called a closed sub­
routine.

SYSTEM DEVICE
The mass storage device containing system library files and the MSIO files.

SYSTEM FILES
The operating system files on the system device.

TRANSFER ADDRESS
The entry point address for a program supplied on the TRA card.

TRAPPED INSTRUCTION
1. An instruction that is executed by a software routine if the necessary hard­

ware is lacking or if the central processor is not in the required state.

2. An instruction whose execution is blocked.

60410600 A Glossary-9

UNIT
A peripheral device capable of storing, receiving, transmitting, or interpreting
data.

UNLOAD
To remove a tape from ready status by rewinding beyond the load point; the
tape is then no longer under control of the computer.

UPDATE
1. To modify a file with current information according to a specified procedure.

To modify an instruction so that its operand address is changed by a stated
amount each time the instruction is performed.

2.

USER INTERRUPT
An interrupt selected by the user program through a eIe call.

USER PROGRAM
An object program loaded and entered under MSOS control; includes batch and
priority programs.

UTILITY ROUTINE

WRITE

A routine in general support of the operation of a computer; that is, an input/
output. diagnostic, tracing, or monitoring routine.

To transfer information, usually from internal storage, to an output device.

Glossary-10 60410600 A

INDEX

ABNORMAL 17-1
Abnormal program termination 17-1
Abort dump 17-2
ABS file 9-2; 10-1; H-1,2
Absolute loader (refer to RDCKF 1)
ABSTSK

Files 7-6
Statement

A ccounts file
A ccounts table
ALLOCATE

4-6
1-5; 2-4; 16-2

16-2; F-1, 2

Macro 13-3
Statement 3 -2; 4-17

Alternate Processor (refer to A P)
AP

Busy flags 21-10
Com pletion routine 2 1-4
Description 2-6; 21-1
Edit routine 21-16
File formats 21-1
File processing routines 21-10
Initialization 21-4
Submitting batch jobs to A P 21-2
Tables 21-2

A PBLKV50 21-14
A PBSYV50 21-10
APC

Description 2 -3; 20-1
Loading 20-4
Options 20-1, 2
Spooling file allocation 20-3
Spooling file prote ction 20-4

APC. INIT 21-4
A PC, NP statement 20-5
APCT Table 21-6
A PDBKV50 21-14
APINCV50 21-15
APMCT Table 21-7
APRDV50 21-14
APSPCV50 21-16
APWRV50 21-15
A rithmetic fault 18 -1 0
Autoload/ Autodump memory area 8-1,5,7
Autoloading 8-9; H-1
Automatic peripheral control (refer to A PC)
AUT 11-1; 18-6; F-1, 7
Auxiliary library

Advantage 22-1
Block size 22-2
Calling subprograms 22-4
Description 22-1

60410600 B

Format 22-1
Generation 22-2
Program 22 - 5

A UX statement 4-8; 22 -1,4
Available unit table (refer to AUT)

BACKSPACE tape utility 4-25
Badtrack file H-1,3
Batch job

Description 1-5; 2-6
File usage 2 -4, 5
Memory area 8-1, 5

Batch program (refer to Batch Job)
BCD codes A-3
BCD fault 18-11
BDT card 6-2, 11
Binary cards 6-1
Binary decks 6-1
BJSV50 21-3
BKSP macro 11-24
Block size

ABSTSK file 7-6
A PC file 20-3
A UX library file 22-2
Card punches 11-3
CFO (file 58) 2-5
CTO (file 59) 2-5; 11-3
Line printer 11-3
L-MSIO tape files 14-3
LOADER 9-4
LOADER statement 4-6
MSUTIL dump file 4-32
Overlay file 7-6,7
Scratch file (54, 55, 56) 2-4
System standard input / output units 2 - 5
User selection 3-2
XFER 4-23

Buffering 14-4
Buffer sizes (refer to Block Size)

Callable executive routines 18-3
Calling (refer to Subprogram Loading)
CFO file 2-5
CHECKPT macro 15-21
CHKDNS, tape utility 4-25
CIC (refer to Interrupt also) 18-1
CIO

Calling sequence 11-1
Control function 11-6

Index-1

CIO (Cont I d)
Description 11-1
Error recovery (also refer to I/O

error recovery) 11-4,11,18,21
Form at co de s 11- 9
Format function 11-8
Function codes 11-7
Interrupt selection 11-1, 3,4, 6; 18- 9
Interruption of 18-7
Locate function 11-5
Macros 11-22
Macro expansions 11-27
Read/write functions 11-2
Reject error code 11-15
Reject processing 11-14
Rejects 11-1
Status codes 11-12, 13
Status requests 11-10

Class-R. device 3- 5
Clock interrupts 18-8
CLOSE statement 3-3; 4-11
CLOSE macro 13-6
CLOSEF macro 15-11
COMMON

Area is memory 8-2
A$signing 8-2,5
Overlay programs 7-4
Priority programs 19-6
When using LOADER 9-4

Control statements
Description 4-1
I/O 4-11
Job processing 4-1
Mass-storage file 4-15
Utility function 4-22

COpy function 4-25
CST Table F-l,28
CTL statement 4-4
CTO file 2-5
CTO statement 4-5

DATA area
Changing contents
In batch programs
In overlay programs
In priority programs

Date 16-3; F-2
Dedicated channel 18-6
DELETE function 4-31
Device type codes C-2
DINT. 18-15, 16
Divide fault 18-10
Double buffers 14-5
DRS file H-1,2

6-27
8-5

7-4
19-6

DUMP mass-storage function 4-31
DUMP statement 4-23; 8-12; 17-1
Dynamic memory protection 1-4; 8-7,9

Index-2

EA PV50 21-4
EINT 18-15,16
Elapsed time 16-2
ELD card 6-2, 19
End-of-File 4-9,10,11
ENDREEL statement 4-10
ENDSCOPE statement 4-10, 11
ENTER statement 3-1; 4-30
Entry points (refer to Subprogram Entry

Points, Transfer Point Address, and
External Entry Point)

EOF (refer to End-of-File)
EOJ statement 4-9,10
E PT car d 6 - 1, 7; 22 - 4, 5
Equating files 4- 13
Equipment type

Device type code C-2
Determination (refer to WHATKIND)
Hardware type code C-1

EQUIP statement (refer to LED card) 2-1; 4-11
ERASE macro 11-24
ERASE, tape utility 4-25
EST table 8-1, 5
EXEC2 F-l,27
EXECOVR 7-3
Executive resident 8-1
Executive table 8-12; F-1
EXPAND macro 13-9
EXPAND statement 4-17,20
Exponent overflow fault 18-11
EXS card 6-2, 18
External entry points 6-29; 7-4

FET statement (also refer to FILEID macro)
2-1; 3-2,3,4; 14-16,17

FET table 13-1; F-l, 13
File (also refer to logical file num ber)

Block size (refer to Block Size)
Labels (also refer to Mass Storage

Labels and Tape Labels) 3-1; 14-5
Logical number assignment 2-1,2
Security (refer to Mass Storage files)
Size 14-19

File description table (FDT) F-l,4
File environment table (refer to FET table)
File ordinal table (refer to FOT table)
FILE statement 22-2
FILEID macro (also refer to FET statement)

13-1; F-13
FILEDESC macro 15-1; F-13
Flexowriter character codes A-4
Flip card 6-2, 15
FMT statement 4 -14
FORMAT macro 11-24
FORMAT statement 4-14; 11-8
FORMSV50 12-1
FORTDUMP 17-2
FORWSPCE tape utility 4-25

60410600 C

FOT table F-1,3
FOTADV50 table F-3

GET macro 15-13

Hardware
Codes C-1
Description
Device codes
Requirements

IA PV50 21-4

1-2
C-2
1-2

IDC card 4-7; 6-1,3; 9-2; 22-3
IDFILE 4-34; H-1, 2
Illegal instruction 18-4; D-l
Illegal write interrupt (refer to Interrupts)
INITIAL 8-9, 10
Instructions

Illegal D-l
Limited use D-2
No-operation D-3

Internal fault processing 18-11
Interrupts

Clock inter,rupt 18-8
Executive interrupt 18-13
Illegal write interrupt 18-12; 8-3
Input/output interrupts 11-1,3,4; 18-9
Internal falut interrupt 18-10, 11
Manual interrupt 18-9; 19-7
Priority of interrupt 18-1,2,3,4,5
Processing interrupt 18-1
Real-time interrupt 18-2,6
Trapped instruction interrupt 18-14
Types of interrupt 18-1
User interrupt processing routine 18-15

IOBLKV50 18-7
I/O data transfer 2-1
I/O error recovery (also refer to System

I/O Error Recovery) 11-4,14,18,21
I/O reject error codes 11-15

JOB statement 4-2,4,10; 16-1
Job

Accounting 1-5; 16-1
Account number 4-2
Decks (refer to Sample Job Decks)
Execution time 16-1
Name 4-2
Output 16-1
Processing 8-10
Run time 4-2
Sequence number 4-1,2,3; 6-2,15;

16-1
Job sequence card 6-2, 15; 16-1

60410600 C

LABELFILE 3-1,4; 4-34; H-1,2
LABELING macro 15-3
Labels (also refer to File Labels) G-1
LDABSV50 10-2
LDMEMV 50 9-4
LED card 6-2,16
LGO (Load and Go) file 2-4
LIB file H-1,2
Library subprogram entry points (also refer

to EPT card and Subprogram Entry Point
Names) 22-3

Library program name statement 4-7
LIST FLD function 4 -34
LIST MSD function 4-33
List output (jo b) 16 - 1
LMEMV50 8-5,6; F-3
L-MSIO

Defining files 14-1
Description 14-1
File access method 14-3
File blocking 14-2,3
File closing routine 15-11
File description routine 15-1
File environment table (FET) F-14
File formats E-1
File labels 14-5,6,7; G-l
File opening routine 15-7
File record types 14-2; E-1
File security 14-4
File size 14-1
I/O buffers 14-4
Read/write functions 15-13
Restart function 15-21
Tape files 14-6

L-MSIO macros
CHECKPT 15-21
CLOSEF 15-11
FILEDESC 15-1
GET 15-13
LABELING 15-3
LOCATE 15-16
OPENF 15-7
PAUSEF 15-20
PUT 15-15
READF 15-17
RELSE 15-17
RERUN 15-6
STOPOPEN 15-5
VARIABLE 15-4
WRITEF 15-19

LOAD, mass storage utility 4-33
LOA DER (also refer to Program Loading

and Subprogram Loading)
Description 9-1
Function 6-14; 9-1; 22-3
Input file block size (refer to Block Size)
Loading 9-1; 10-1
Memory map 4-6; 9-4
Use 9-2

Index-3

Loading data cards 6-19
Loading overlays 7-3
LOAD statement 4-6, 7
LOCATE macro 15-16
LOCATES macro 11-24
Logical file number

Assignment 2-4,5; 3-3; 4-11, 12, 19
Description 2-2

Logical MSIO (refer to L-MSIO)
LRL card 6-2, 13

Macro expansions
CIO 11-27
L-MSIO 15-22
OCAREM 13-12

Macros
CIO (refer to CIO macros)
L-MSIO (refer to L-MSIO macros)
OCAREM (refer to Mass Storage File

macros)
Main card 7-5
Manual interrupt 1-6; 18-9; 19-7
Map

Mass storage device map 4-35
Memory map (refer to LOA DER map

and Overlay map)
Mass storage files 2-1; 3 ... 1

Allocating space 3-2; 4-17; 13-2
Block size 3-2,4; 4-16, 17
Closing 3-3; 4-21; 13-6
Expanding 3-3; 4-20; 13-9
Expiration date 4-18,40,30; 13-11
Identification 4-16; 13-1
Macros 13-1
Modification 3-4; 4-20; 13-10
Opening 3-2; 4-19; 13-4
Privacy codes 3-1; 4-16; 13-1; 14-4
Protection 4-19,20; 13-10
Releasing space 3-4, 18; 4-20
Sharing 4 -19
Size limits 4-19

Mass storage labels
Description 3-1; 14-5
Device labels G-4
File labels G-6
Reading of 13-5
Writing of 13-6

Memory areas 8-1
Memory dumps 4-23; 8-12; 17-1
Memory limits table 8-5,6; 19-7; F-1,3
Memory protection 1-4; 8-7
Memory protection increments 8-8,9
MIBUF 18-10
MODIFY macro 13-10
MODIFY statement 3 -4; 4-17
MSD file (refer to MSDFILE)
MSDFILE 3-1,4; 4-33; H-1,3
MSIO files (refer to OCAREM)

In dex-4

MSOS
Extended core variant 1-4
Memory protect variant 1-4; 8-7,9
Standard variant 12-; 8-7
Variants of 1-2

MSPT table F-l, 11
MST table F-l, 10
MSUTIL statement 4-29

Noise records (refer to SNR)
NRAT table F-12

OCAREM 3-1,2,3; 4-15,18,19
OCAREM busy 19-6
OCR D-5
OCT correction card 6-2,22
OPEN macro 13-4
OPEN statement 2-1; 3-2; 14-17,19
OPENF macro 15-7
Operator

Control of job processing 1-6
Interrupting programs 18-9
Terminating priority programs 19-3

Optical character reader D-5
Overlay cards 6-3; 7-5,6
Overlays

Binary header cards 7-5
Description 7-1
Elements 7-1
File header 7-10
Loading overlay elements 7-3
Memory map 7-11
Programs 7-3
Segments 7-1

Paper tape character codes A-4
PAUS statement 4-5
PAUSEF macro 15-20
Pofac 14-3; 21-1,9; E-2
Preamble 14-3; E-2
PRELIB statement 22-2
Print control characters 11-4; B-1
Print train 4-5; A-I
Print character codes A-I
Priority batch jobs (refer to Submitting

Batch Jobs from Mass Storage)
Priority program

Control statements 19-2
Description 1-5; 4-4; 19-1
File usage 2-4,5
Levels 19-1
Loading 19-1,4
Memory area 8-1,3
Number 19-1
Special coding requirements 19-6
Terminating 19-3

60410600 C

PRIORITY statement 4-4, 10; 19-3,6
PROGDUMP 17-1
Program dumps 17-1
Program extension area 6-26
Program entry point (refer to Transfer

Point Address)
Program loading (also refer to LOADER)

4-3; 8-10
Program termination 8-12; 17-1
PROTECT 2-3
PURGE, mass-storage function 4-30
PTIOV50 18-13
PUT macro 15-15

RAAR 11-17
RAARV50 11-16
RAT statement 4-15, 17
RAT table F-1,12
RDCKF1 9-2; 10-1; H-1
RDUMP 8-12
READB macro 11-23
REA DF macro 15-17
READS macro 11-22
Real-time interrupt 18-2,3, 5
Reassigning system units 4-10; 20-5
Record formats 14-2'; E-1
Register file uS'age 8-12
Register save table F-29
RELEASE macro 13-8
RELEASE statement 3-4; 4-17
Releasing memory 19-5
RELSE macro 15-17
REQSUV50 18-13; 19-5
RERUN macro 15-6
RES file 8-9, H-1
RESTART statement 15-22
REWIND macro 11-23
REWIND statement 14-13,15
REWIND, tape utility 4-25
RIF card 6-1, 5; 22-3
RLSMV50 19-4
RONL 4-22
R PT table F-1,2
RRAT 4-16
RSTOREQ 9-4
RUN statement 4-7

Sample job decks
AUX library generation 22-2,3
Batch jobs 5-1
Overlay programs 7-7,8,9
Priority program initialization 5-5;

19-3
Utility functions 5-6

Scratch files 2-4; 4-10; 19-6
SCAR 11-18,20
SCARV50 11-4,18,19

60410600 C

Sectors (mass-storage device)
SEFB macro 11-23
SEFF macro 11-23

segment)
1-6
1-6; 4-10

3-2; 4-18

7-5,6 Segment card (overlay
Select jump 5 switch
Select jump 6 switch
SEQUENCE statement 1-6; 4-1,10; 16-1
SETCHV50 18-6
SETCLV50 18-8
SET DNS, tape utility 4-25
SETFTV50 18-11
SETMIV50 18-9, 10
SKFB, tape utility 4-25
SKFF, tape utility 4-25
SNA P card 6-2,20; 19-7
SNA P dump 6-23
SNR 4-14; 23-2
Special card forms
Special forms control

Calling sequence

12 -1

12-1,3
Description 12-1

Special printer forms 12-3
Spooling 2-3; 20-1; 21-10
Spooling file allocation 20-3
Spooling file protection 20-4
Standard MSOS 1-2
Standard system units (also refer to

System Files) 2-5
Status, I/O unit

Dynamic status ('heck 11-12
Static status cheGk 11-12
Status codes 11-10,11

STATUS macro 11-24
STOPOPEN macro 15-5
Submitting batch jobs from mass storage

2-6; 21-2
Subprogram loading (also refer to Program

Loading and LOADER) 9-3; 22-4
Subprogram entry points 6-1,7,8; 22-4
System files

Description 2-5
Reassignment 2-6; 20-5
Use of in priority programs

SystemI/O error recovery
Card punch 23-5
Card reader 23-5
Description 23-1
Magnetic tape 23-1
Magnetic tape read error
Magnetic tape write error
Mass storage 23-5
Printer 23-6

19-6

23-2
23-4

System noise records (refer to SNR)
System tables (also refer to Tables)

8-12; F-1
System unit protection 2-3

Index-5

Tables
Accounts 16-2; F-1,2
APCT 21-6
APMCT 21-7
AUT 11-1; 18 - 6; F -1, 7
CST F-l,28
EST F-l,27
FDT F-l,4
FET 13-1; F-l,13
FOT F-l,3
FOTADV50 F-3
Memory limits 8-5, 6; 19-7; F-l,3
MSPT F-l,11
MST F-l,10
NRAT F-12
RAT F-l,12
RPT F-l,2

Tape files G-l
Tape file labels

Description 14-6
Processing 14-7
Standard 3000/1700 tape label format

G-1
Tape utilities 4-25
Terminating programs 17-1
Time (of day) 16-3
TRA card 6-1, 2, 14~ 22-5
TRAIN statement 4-5
Transfer point address 4-8; 6-2, 14;

8-10; 9-3; 22-4
Trapped instruction 18-4
Typewriter character codes A-2

Index-6

UMEMV50 8-5, 6
Unit record devices 2-1
UNIT statement 22-2
Universal record format 14-2; 21-1; E-3
UNLOAD macro 11-23
UNLOAD statement 4-13
UNLOAD, tape utility 4-25
User accounting routine 16-2
UTILITY statement 4-24
Utility routines 4-22

Mass-storage 4-29
Tape 4-24

VARIABLE macro 15-4
Variable resident 8-1
VERIFY tape function 4-27

WEOF macro 11-23
WHATKIND macro 11-21,24
WREOF tape utility 4-25
Write check 11-2,3,4
WRITEF macro 15-19
WRITES macro 11-22

XFER statement 4-23
XNL card 6-2, 9; 22-5

60410600 B

COMMENT SHEET

MANUAL TITLE _..:::C::...:O::..N~T:..:R~O-=L=-....;;;D;;..;;;A~T;.::..'A;;;;..®_R --::.:M;.::..S~O~S_V...:........;;e-=r-=s-=i..;;;.o.:;.;;;n_5:........:0:.Jp.;;...e.;;;.;r::...a:.:;.t.:;.;;;i:.;;:.;n~gt.....S;.;:..~y.::..s..;;;.te::..:m~ __

Reference Manual

PUBLICATION NO. _6_0_4_1_0_6_0_0 _____ _ REVISION __ C ____ _

FROM: NAME: ____________________________ __

BUSINESS
ADDRESS: __ __

COMMENTS:
This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FOLD. FOLD

---~

MD 220

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Technical Publications Department
4201 North Lexington Ave.
Arden Hills, Minnesota 55112

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

FOLD

w
Z
~

o
z
o
-'
~
~

=> u

.-

CORPORATE HEAOQUARTERS, 8100 34th AVE . SO ., MINNEAPOLIS, MINN . !i!i440

SALES OFFICES ANO SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

LITHO IN U S.A .

