Y 9V Ve v w

CONTROL DATA
feoRPoRATION.

CORPORATION

CONTROL DATA®
3100/3150/3170

3200/3300/3500
COMPUTER SYSTEMS

MSOS VERSION 5
OPERATING SYSTEM
REFERENCE MANUAL

CONTROL DATA
[corroration]

CORPORATION

CONTROL DATA®
3100/3150/3170

3200/3300/3500
COMPUTER SYSTEMS

MSOS VERSION 5
OPERATING SYSTEM
REFERENCE MANUAL

REVISION RECORD

REVISION DESCRIPTION
A Manual released.
2-74
B Manual revised to correct miscellaneous errors and omissions.
8-74
C Manual revised to incorporate changes for 580 printer and class-R mass storage interchange-
1-75 ability, plus miscellaneous corrections and additions. This revision applies to Version 5. 1.

Publication No.
60410600

© 1974, 1975

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue
Arden Hills, Minnesota 55112

by Control Data Corporation or use Comment Sheet in the back of
Printed in the United States of America this manual.

PREFACE

This manual describes the use of MSOS Version 5. In general, the manual is oriented
toward the COMPASS assembly language user. However, the first five sections apply
equally to ALGOL, COMPASS, COBOL, and FORTRAN users. These sections describe
the methods of allocating and using files, and the use of the system job control state-
ments. In addition, section 7 describes the use of overlays in FORTRAN and COMPASS
programs, and section 22 describes auxiliary libraries that can be used with ALGOL,
COMPASS, COBOL, and FORTRAN programs.

In addition to this manual, the user will need a copy of the MSOS Version 5 Diagnostic
Handbook to interpret the system diagnostic messages and an MSOS Version 5 Operator's
Guide. The following is a list of the manuals available for MSOS Version 5 and its
product set:

Control Data Publications Pub. No.

Operating System V5

MSOS Reference Manual 60410600
MSOS Operator's Guide 60410700
MSOS Diagnostic Handbook 60410900
MSOS Installation Handbook 60410800

Product Set v
MSOS ANSI COBOL 60417900

MSOS MS COBOL 60191100
MSOS COSY 60207300
MSOS SORT MERGE (TAPE SORT, MS SORT) 60281500
MSOS SAINT . 60213700
MSOS ADAPT 60173400
MASTER/MSOS ANSI FORTRAN 60281400
MASTER/MSOS MS FORTRAN 60057600
MASTER/MSOS ALGOL 60371800
MASTER/MSOS COMPASS 60236800
MASTER/MSOS LISA 60236900
MASTER/MSOS PERT TIME 60131100
MASTER/MSOS PERT COST 60132500

The MSOS V5 operating system is intended to be used only as described in this manual.
Control Data cannot be responsible for the proper functioning of any features or para-
meters that are not described or not used as described in this manual. I

60410600 B iii

SECTION 1

SECTICN 2

SECTION 3

SECTION 4

60410600 C

CONTENTS

INTRODUCTION
Mass Storage Operating System
Hardware Descriptions
MSOS Variants
Standard MSOS
Memory Protection Variant
Extended Core Variant
Batch Jobs
Priority Programs
Job Accounting
Operator Control of Job Processing

I/O EQUIPMENT ASSIGNMENT

Unit Record Devices

Mass Storage Files

Logical Unit and File Number Assignment
System Unit Protection

System I/O File Spooling

Submitting Batch Jobs from Mass Storage
Reassignment of System Scratch Files

MASS STORAGE FILE MANAGEMENT
OCAREM

Entering a Mass Storage Levice
Allocating a File

Selecting a File Block Size
Opening a File

Closing a File

Expanding a File

Modifying a File

Releasing a File

Class-R Devices

MSOS CONTROL STATEMENTS
Control Statements
Job Processing Statements
SEQUENCE
JOB
PRIORITY
CTL
CTO
PAUS
TRAIN
LOAD
ABSTSK
Binary IDC Card
RUN
Library Program Name

e T N G e
| I T S I |
AU U U A R DNDNDN = =

1

NNNDNDDNDNNN
] 11
W W N e e

LI A |

| I

WWWWWWWWwww
11
QUi W W0 W DN N = st

| N R R R A |

W D R R R R
]
ENEEN BEN le> Mo IS B2 IS) I SN SN WV I g

SECTION 5

SECTION 6

vi

ATUX
END-of-File
EQJ
ENDSCOPE
ENDREEL
I1/O Unit Control Statements
EQUIP
REWIND
UNLOAD
FMT
Mass Storage File Control Statements
RAT
RRAT
FET
ALLOCATE
OPEN
EXPAND
MODIFY
CLOSE
RELEASE
RONL
Utility Functions
XFER Statement
DUMP Statement
Tape Utilities
Tape Control Functions
Copy Function
Verify Function
Mass Storage Utilities
Purge Function
Enter Function
Delete Function
Dump Function
Load Function
List MSD Function
List FLD Function
Map Function

SAMPLE JOB DECKS

Batch Jobs

Initializing Priority Programs
Utility Functions

RELOCATABLE BINARY OBJECT DECKS
Binary Decks

Relocatable Binary Control Cards
IDC Card

RIF Card

EPT Card

XNL Card

BDT Card

LRL Card

TRA Card

Job Sequence Card

FLIP Card

LED Card

EXS Card

ELD Card

60410600 C

SECTION 7

SECTION 8

SECTION 9

SECTION 10

60410600 C

SNAP Card
OCC Card

Changing the Contents of a Program Address

Defining a Program Extension Area
Changing the Contents of the Data Area

OVERLAYS
Description
Overlay Elements
MAIN
Overlays
Segments
Overlay Programs
Symbolic Address References
Data Blocks
Common Blocks
Binary Overlay Header Cards
MAIN Card
OVERLAY Card
SEGMENT Card
Sample Overlay Program
Library File Overlays
Segment and Overlay File Headers
Overlay Mapping

MEMORY ORGANIZATION AND PROTECTION
Memory Organization
Executive Resident
Variable Resident and Common
Priority Program Area
Batch Program Area
Autoload/Autodump Area
Memory Limit Table
Memory Protection
Standard MSOS
Standard Memory Protection
Dynamic Memory Protection
Memory Protection Increments
Core Memory Utilization
Autoloading
Job Processing
Program Loading
Program Termination
Executive Tables
Register File Usage

RELOCATABLE LOADER
Description

Loading the Loader
Loading Programs
Loader Map

ABSOLUTE LOADER
LDABSV50 - Load Absolute Task

6-20
6-22
6-24
6-26
6-27

ENIENEENEES EEN BEN BEN BEN BEN BEN B B B B N s N
[}
== 00 =IO OO R W e e

- O

L I T T T T |

[}
bt et O O WO W T =T=JUD U WD =t it

©0 00 Co 00 0O 00 00 0 OO0 €O OO0 00 OO O CO 0 Q0 &
]

vii

SECTION 11

SECTION 12

SECTION 13

SECTION 14

viii

INPUT/OUTPUT CONTROL (CIO)
Description
Read/Write Function
Mass Storage ILocate Function
Unit Record Device Control Functions
Unit Record Device Format Functions
Unit Status Request
1/0O Reject Processing

RAARVS50

RAAR
I/O Error Recovery

SCARV50

SCAR

Read/Write With Error Recovery
Ascertaining Equipment Type
CIO Macro Calls
CIO Macro Expansions

SPECIAL FORMS CONTROL
Description

Special Card Forms

Special Printer Forms

MASS STORAGE FILE CONTROL MACROS (OCAREM)

File Control Macros
FILEID Macro
ALLOCATE Macro
OPEN Macro
CLOSE Macro
RELEASE Macro
EXPAND Macro
MODIFY Macro
Macro Expansions

LOGICAL MSIO (L-MSIO)

Description

FILE Requirements and Initialization

Logical Records

Record Blocks
Mass Storage Blocking
Nonmass Storage Blocking

File Access
Sequential Access
Random Access

File Security

Buffering

Labels
Standard L.abeling
Nonstandard Labeling
Omitted Labeling
Multireel Files
Multifile Reels

User Label Processing Routines
Header Label Processing
Trailer Label Processing

11-1
11-1
11-2
11-5
11-6
11-8
11-12
11-14
11-16
11-17
11-18
11-19
11-20
11-21
11-21
11-22
11-27

12-1
12-1
12-1
12-3

13-1
13-1
13-1
13-2
13-4
13-6
13-8
13-9
13-10
13-12

14-1
14-1
14-1
14-2
14-2
14-2
14-3
14-3
14-4
14-4
14-4
14-4
14-5
14-6
14-6
14-6
14-6
14-6
14-7
14-7
14-8

60410600 B

SECTION 15

SECTION 16

SECTION 17

SECTION 18

60410600 C

LOGICAL MSIO ROUTINES

Description

File Description Macros
FILEDESC Macro
LABELING Macro
VARIABLE Macro
STOPOPEN Macro
RERUN Macro

Open and Close Routines
OPENF Routine

Opening Files on Unit Record Devices
Opening Files on Mass Storage

CLOSEF Routine

Closing Files or Unit Record Devices

Closing Mass Storage Files
Logical Read/Write Routines

GET Routine

PUT Routine

LOCATE Routine

RELSE Routine

READF Routine

WRITEF Routine

PAUSEF Routine
Restart Function

CHECKPOINT Routine

Restarting a Program

STANDARD JOB OUTPUT AND SYSTEM JOB ACCOUNTING

Standard List Output
Job Sequence Numbers
Elapsed Time Accounting

Special User Accounting Routines

System Accounts Table
Date and Time Utilities

ABNORMAL PROGRAM TERMINATION AND PROGRAM DUMPS

Abnormal Program Termination
Program Dumps

PROGDUMP

FORTDUMP

PROGDUMP and FORTDUMP Examples

INTERRUPT CONTROL (CIC)
Interrupt Processing
Real-Time Interrupts
Clock Interrupts
Input/Output Interrupts
Manual Interrupts
Internal Fault Interrupts
Arithmetic Fault
Divide Fault
Exponent Over/Under Fault
BCD Fault
Internal Fault Processing
Illegal Write Interrupts
Executive Interrupts

15-1
15-1
15-1
15-1
15-3
15-4
15-5
15-6
15-7
15-7
15-7
15-9
15-11
15-12
15-12
15-13
15-13
15-14
15-16
15-17
15-17
15-19
15-20
15-21
15-21
15-21

16-1
16-1
16-1
16-2
16-2
16-2
16-3 l

17-1
17-1
17-1
17-1
17-2
17-3

18-1
18-1
18-6
18-8
18-9
18-9
18-10
18-10
18-10
18-11
18-11
18-11
18-12
18-13

ix

SECTION 19

SECTION 20

SECTION 21

SECTION 22

Trapped Instruction Interrupts
User Interrupt Routines

DINT, and EINT. Routines

Use of DINT and EINT Instructions
Illegal Interrupts

PRIORITY PROGRAMS
Description
Loading Priority Programs
Terminating Priority Programs
Operator Termination
Self Termination
System Termination
Loading New Priority Programs
RLSMV50 (Release Memory) Routine
Using System Input, List Output, and Punch Units
Special Coding Requirements for Priority Programs

SYSTEM FILE SPOOLING (APC)
Description

APC Options

Allocating Spooling Files
Loading APC

Spooling File Protection

System Unit Assignments

ALTERNATE PROCESSOR (AP)
Description
AP File Format
Submitting Batch Jobs from Priority Programs
Job Submission Routine
Initialization/Completion Routine
APCT Table
Mass Storage Control Table (MCT)
User Spooling Routines
AP File Processing Routines
APBLKV50
APDBKV50
APRDV50
APWRV50
APINCV50
APSPCV50
AP Edit Routines

AUXILIARY LIBRARY GENERATION
Description
AUX Library Generation

PRELIB Statement

FILE Statement

UNIT Statement
Subprogram Calling Symbols
Programs on Auxiliary Libraries

18-14
18-15
18-15
18-16
18-16

19-1
19-1
19-1
19-3
19-3
19-4
19-4
19-4
19-4
19-5
19-6

20-1
20-1
20-1
20-3
20-4
20-4
20-5

21-1
21-1
21-1
21-2
21-3
21-4
21-6
21-7
21-10
21-10
21-14
21-14
21-14
21-15
21-15
21-16
21-16

22-1
22-1
22-2
22-2
22-2
22-2
22-4
22-5

60410600 B

SECTION 23 SYSTEM 1/C ERROR RECOVERY ALGORITHM

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

=00 -3-00 k=
[
11 DN = DN o DN = DN =

60410600 A

Description
Magnetic Tape Error Recovery
Noise Records
Block Checksum
Read Error Recovery
Write Error Recovery
Mass Storage Error Recovery
Card Reader Error Recovery
Card Punch Error Recovery
Print Error Recovery

BCD/CHARACTER CODES

PRINT CONTROL CHARACTERS
HARDWARE CODES

ILLEGAL COMPASS INSTRUCTIONS
L-MSIO RECORD FORMATS
SYSTEM TABLES

FILE LABELS

o Q " B OO O W o »

SYSTEM FILES
OCR I/O CODES

-

OCTAL TO DECIMAL CONVERSIONS

[

FIGURES

Typical 3200 Computer Equipment Configuration
MSOS Variants

MSUTIL File Dump Format

Sample Device Map

Sample SNAP Dump

Overlay and Segment Organization Block Diagram
Sample Overlay Map

Standard Memory Protection

Loading Relocatable Binary Programs

FET Table

Sample Program Abort Dump

Priority Program, Initialization and Execution
System File Spooling

List Output Spooling

Sample User Spooling Program Using the Alternate Processor

23-1
23-1
23-1
23-2
23-2
23-2
23-4
23-5
23-5
23-5
23-86

LI N N |
N OV N

[\V]

[y

1 [}
DO DN bt ot OO = DD DN WO W W

b b
O -JWORR-JJOH P
1

20-1
21-9
21-11

xXi

xii

TABLES

System File Number Assignments

Mass Storage Device Characteristics
Variable EXEC Job Control Functions
Memory Limit Tables

CIO Function Codes

Format Codes for Unit Record Devices
Unit Status Codes Returned by CIO

Bits Updated by Dynamic Status Checks
1/0O Reject and Error Codes in Register A
Forms Control Reply Codes

Interrupt and Program Priority Levels
Central Interrupt Control

Executive Routines Callable by Batch and Priority Programs
APC Options and Features

Mass Storage Control

60410600 C

INTRODUCTION 1

A

MASS STORAGE OPERATING SYSTEM

The Mass Storage Operating System (MSOS) loads and executes programs on CDC
lower 3000 series computer systems. The major functions provided by the operating
system are as follows:

System control with control statements from console typewriter, the system
input unit (card reader), magnetic tape, or a mass storage file.

Program loader which loads relocatable binary object programs from the card
reader, tape files, mass storage files, or the system library.

Absolute loader which loads absolutized object programs from mass storage
files.

FORTRAN, AL GOL, and COBQL compilers, and a COMPASS assembler pro-
gram,

Use of independent auxiliary libraries which can be generated, used, and re-
leased without affecting the system library or the system EXEC operation.

Use of priority programs (user supplied) which reside in core and are periodi-
cally initiated by preselected interrupts.

Overlay functions for very large programs.

Memory protection which prevents untested programs from writing in resident
executive core area or core areas reserved for other programs.

Priority interrupt processing routines which initiate priority and real-time
programs, sense I1/O completions and system faults, and allow limited multi-
programming.

1/O processing routines to simplify driving the system's I/O units.

Automatic output record blocking and automatic input record deblocking during
1/O operations.

Automatic system I/O error recovery.
BCD to ASCII code conversion for ASCII I/O devices.

Utility and XFER routines for copying, transferring, and listing of tape,
mass storage, and card files.

Mass storage spooling of batch job input files, list output files, and punch
output files.

Test patterns for special forms alignment on the printer.

60410600 A 1-1

HARDWARE DESCRIPTION

Version 5 of MSOS runs on any of the following CDC computers.

3100 Computer System 3200 Computer System
3150 Computer System 3300 Computer System
3170 Computer System 3500 Computer System

The following are the hardware requirements for using MSOS on any of these systems,

1 Central processor (CPU module)

16K Core memory T
Control console and operator's console typewriter
1/O data channels

Card reader (system input unit)

Line printer (system list output unit)t t t

1

2

1

1 Card punch (system punch unit)ff

1

2 Mass storage units (library files and system scratch files)
2

Magnetic tape drives (recommended)
Figure 1-1 is a diagram of a typical 3200 computer system that uses MSOS.

All CDC lower 3000 series computer systems have fully buffered data transfer between
core memory and I/O devices., Under program direction, the CPU selects an I/O unit
by connecting to its data channel and controller. Then the CPU sends an I/O function
code to the data channel and controller. The channel and controller perform the I/0O
(read or write a block of data) leaving the CPU free to process other data or initiate
an I/O function on another channel. When the I/O function at a unit is completed, the
controller returns an end-of-operation interrupt to signal completion of the I/0.

MSOS VARIANTS

MSOS is available in three variants: standard, memory protection, and dynamic
memory protection. ‘

STANDARD MSOS

The standard variant of MSOS contains no memory protection for the resident executive
routines and resident priority programs. Only the autoload/autodump routines are
protected. Caution should be used when running untested programs during normal job
processing periods since the untested programs may destroy the resident executive or
resident priority programs. The standard variant is available with 16K or 32K of
memory and may be used for both batch and priority programs.

T Allows limited batch or priority programming. 32K normally required for both batch
and priority programming,
Tt Recommended, but not essential for system operation. The system punch unit can
be assigned to a tape unit or not used for a punchless system.
It A tape drive may be substituted for this function.

1-2 60410600 B

d 00901709

€-1

KEY
omsmvame DATA
CONTROL
405 CARD
READER
415 CARD
PUNCH
LEGEND
CH = CHANNEL NO
UN = UNIT NO.

EQ = EQUIPMENT NO.

NOTES

EXTENDED CORE VARIANT OF MSOS
MAY USE 48K OR 64K OF MEMORY.

DUAL INPUT CONTROLLERS ALLOW
A PROGRAM TO ACCESS A TAPE

OR DISK ON CHANNEL 2 IF OTHER
CHANNELS ARE BUSY. BOTH
ACCESSES MUST USE THE SAME
EQUIPMENT NUMBER.

TWO 3203 STORAGE MODULES
3204 PROCESSOR (32K OF MEMORY) ®
CONNECT AND
— F—> _ FUNCTION CODES
< EQUIPMENT
STATUS cH I cH 2 cH3
CONSOLE
3206 3206 3206
TYPEWRITER COMMUNICATION COMMUNICATION COMMUNICATION
CHANNEL CHANNEL CHANNEL
3447 CARD
READER 1
CONTROLLER [-
LINE PRINTER e
o CONTROLLER
3446 CARD
PUNCH
ONTROLLER [+
Lol 3234 pisk = o =
STORAGE MAGNETIC TAPE
CONTROLLER CONTROLLER
EQ3 EQ3 EQO EQO
h] L ﬁ
[XXX N XN K] (X R J L XX J
4708854 4708607
DISK DRIVES TAPE DRIVES
UNO UN7 UNO UN7
Figure 1-1. Typical 3200 Computer Equipment Configuration

MEMORY PROTECTION VARIANT t

The memory protect variant of MSOS prevents batch and priority level 3 and 4 programs
from writing in the areas reserved for the system executive and priority level 1 and 2
programs. This allows untested batch and priority level 3 and 4 programs to be run
without danger of destroying the operating system resident or priority level 1 and 2
programs.

Memory protect is provided by memory bounds switches, or optionally by memory
bounds registers for dynamic memory protection., The memory protection switches are
set by the operator. MSOS sends a.mesasage 1o the operator when system conditions
require changing the switches. The new switch settings are included in the message.

The dynamic memory protect option uses bounds registers to perform the function of
the memory protect switches. t f MSOS automatically sets and clears the flip-flops,
thereby relieving the operator of the task of setting memory protect switches. The
bounds registers restrict batch and priority level 3 and 4 programs to their assigned
program area. In addition to protecting the operating system and priority level 1 and
2 programs, dynamic protection protects resident batch and priority 3 and 4 programs
from each other. The dynamic memory protect variant of MSOS is available with
32K, 48K, or 65K of memory.

EXTENDED CORE VARIANT

The extended core version of MSOS (refer to Figure 1-2) allows the use of more
memory for larger batch and priority programs. This variant of MSOS is available
with 48K or 65K of memory and uses standard or dynamic memory protect.

32Kr—~—~"- """~~~ 2 S HE B2K
' | !
I Batch and priority! | Priority Programs " | Batch Programs i
! programs : ' ! !
16K Batch 16K Priority Programs Batch Programs [I6K
programs
OPERATING OPERATING OPERATING
SYSTEM SYSTEM SYSTEM LINKT {1
Standard and 32K memory Bank 0 Bank 1
protection variants Extended core variant

---- Indicates optional core

Figure 1-2, MSOS Variants

tMemory protection does not restrict the higher level (level 1 and 2) priority pro-
grams from writing anywhere in core,
t tAvailable only with 3100, 3150, and 3200 computer systems.
t 1 tLess than 64 words.

1-4 60410600 B

BATCH JOBS

MSOS processes batch jobs sequentially from the system input unit, normally a card
reader. The operator may assign and reassign the system input unit to any available
card reader or magnetic tape unit. In addition, priority programs may submit a batch
job from mass storage files.

The operator places batch job decks (job stacks) in the system card reader and MSOS
sequentially reads and executes the jobs. Unless a batch job is terminated by the
operator, each batch job is processed and completed before the next batch job is started.

When priority programs are present in core, they periodically interrupt the execution

of batch programs, do the priority processing, and then return control to the batch
program at the point of interruption. If a batch job is submitted by a priority program,
the batch job is initiated immediately after the interrupted batch job has finished
processing. After the priority submitted batch job has finished, batch-program input
reverts to the system input unit.

PRIORITY PROGRAMS

Priority programs reside in core and are brought into execution by either a system or
an external interrupt. Priority programs normally remain in core after completion of
their interrupt processing and are reexecuted each time the system interrupt occurs.
Each time a priority program completes processing, control returns to the interrupted
program at the point it was interrupted.

Priority programs may be terminated (released from core) by the operator or by self
termination. Self termination occurs only if a self termination routine was coded into
the program to terminate the program after a certain number of executions, after a

certain time interval passed, or when certain system or programming conditions exist.

Priority programs must be assigned a priority level (1 through 4) when they are loaded.
A higher level priority program interrupts all lower level priority and batch programs.
The highest priority level (priority 1) is designed for use in real-time applications.

JOB ACCOUNTING

An accounting routine in MSOS accumulates the elapsed time for each job and prints
the elapsed time at the console typewriter and at the system output unit with the job's
list output.

A system accounts table is maintained which batch programs may reference for the
date, time, job time, print line limits, cards punched limits, library editions in use,
etc.

A provision for adding a system accounts file is included for those sites that choose to
add their own special accounting routines and a system accounting file,

60410600 B - 1-5

OPERATOR CONTROL OF JOB PROCESSING

The operator can control job processing in the following ways.

1.

Use the SELECT JUMP 6 switch to stop processing between batch jobs after the
next end-of-job card is read.{ This allows the operator to switch the system
input unit, punch output unit, or list output unit to a different unit (that is,
from card punch to a tape drive, etc.). At this time, the operator may also
type control statements for job sequencing and I/O equipment control and
mount tapes or disk packs if required.

Use the SELECT JUMP 5 switch to stop processing immediately after starting
the next batch job (that is, immediately after the next JOB card is read). This
allows the operator to inspect the JOB card, enter job control statements such
as special equipment assignments with EQUIP cards, and to terminate or
initiate the job.ft t

Press the MANUAL INTERRUPT switch to interrupt the program in execution.
This allows the operator to terminate any program in core (batch or priority),
or to use the typewriter to send commands or data to any program in core that
contains an operator message processor routine,

Use a SEQUENCE statement to search the input unit for a particular SEQUENCE
card. This would be useful in cases where SEQUENCE cards were used to
index job stacks on magnetic tapes.

+ The SELECT JUMP 6 switch cannot be used while the system is running under
control of APC (section 20).
t+ The SELECT JUMP 5 switch cannot be used to change JOB statements while the
system is running under conirol of APC.

1-6

60410600 B

1/0 EQUIPMENT ASSIGNMENT 2

“

UNIT RECORD DEVICES

Unit record devices consist of all I/O units except mass storage units (that is, disk
packs, disk files, and drums). TUnder MSOS, the user must use an EQUIP statement
to assign a logical file number to each unit record device he intends to use. The file
numbers are used in the program to designate units for I1/O.

The file number may be any number between 1 and 53. It may be assigned to a specific
type of hardware (any available unit of the type specified), or to a specific unit by
physical location (that is, by channel, unit, and equipment number).

Example:
$EQUIP 21 = ClE2U4 C = channel number, E = equipment number
U = unit number
$EQUIP 20 = MT MT is code for a tape drive

The above exumple assigns file number 21 to the I/O unit at channel 1, equipment 2,
unit 4. It also assigns file number 20 to a tape drive. Any tape drive that has not
been assigned may be assigned as number 20 by MSOS. These file numbers remain
assigned until the job they were assigned in is completed. All file numbers are auto-
matically released at the end of a job. Refer to section 4 for a detailed description
of the EQUIP statement.

Once assigned, the file numbers are used to designate units for I1/O functions within a
program. For example, to write on the tape unit that was assigned file number 20,
the following statements could be used.

COMPASS RTJ CIO (refer to section 11 for description of CIO)
02 20,0
COBOL SELECT PAY-FILE ASSIGN TO TAPE 20

OPEN 1I/O PAY-FILE
WRITE PAY-FILE FROM NAME

FORTRAN DIMENSION A(9260), B(4)
WRITE (20) A, B

The file number assignments are automatically cleared at the end of each job; they must
be reassigned at the beginning of the next job.

MASS STORAGE FILES

Mass storage files are files on disk packs, disk files, and drums. FORTRAN and
COMPASS users must use logical file numbers to reference exiting mass storage files
for 1/O, the same as for unit record devices. New mass storage files must be allo-
cated before they can be used for 1/O (refer to section 3).

To assign a logical file number, the user must use a FET statement to identify the file

(by owner name, file name, and block size), and an OPEN statement to assign a file
number (1 through 53) to the file.

60410600 B 2-1

Example:
$FET, OWNER, FILENAME, 512 512 indicates 512-character blocks
$OPEN, 22

This example opens a file called FILENAME which is owned by OWNER. The OPEN
statement assigns number 22 to the file. This number is used to reference the file for
I/0 in a program. The following examples are program statements that write on file
number 22.

COMPASS RTJ CIO (refer to section 11 for description of CIO)
02 22,0
FORTRAN DIMENSION A(100), B(40)

WRITE (22) A, B

If a mass storage file is on a disk pack (device) that is not mounted when the file is
opened, MSOS stops job processing and requests the operator to mount the device.
When the device is mounted, job processing resumes.

COBOL users cannot open mass storage files outside of the COBOL program. Existing
mass storage files must be opened in the COBOL program. New files must be allocated
outside the COBOL program before they can be opened in the COBOL: program.

Example:
SELECT PAY-FILE ASSIGN TO DISK
OPEN 1/0 PAY-FILE
WRITE PAY-FILE FROM NAME

The file identification must be supplied for each file that is opened in the LABEL RE-
CORD VALUE statement of the file description (FD) entry.

Example:
FD PAY-FILE

LABEL RECORD IS STANDARD
VALUE OF;
ID IS FILENAME
OWNER IS OWNERNAM
ACCESS-PRIVACY IS PRIV

The FILENAME, OWNERNAME, and PRIV codes are assigned with the $FET card when
the file is initially allocated.

LOGICAL UNIT AND FILE NUMBER ASSIGNMENT

MSOS uses file numbers for its system files and units. The MSOS system file numbers
are reserved and cannot be assigned by the user. However, some system files may
be referenced for input or output in user programs. Table 2-1 lists the system file
numbers and the file numbers that the user can assign and use.

2-2 60410600 B

SYSTEM UNIT PROTECTION

MSOS contains a subroutine (PROTECT) which monitors all I/O functions on system
files 58 through 63. This subroutine protects the system files from I/O functions
which would interfere with normal job processing of these files.

Input (file 60)- The following I/O functions are prohibited on file 60. If attempted,
PROTECT rejects them with an error code.

1. If file 60 is a tape instead of a card reader, PROTECT rejects I/O functions
that: write on the tape, position the tape forward, position the tape backwards
beyond the limits of the job file being read, rewind the tape, unload the tape,
or change the read/record density.

2. After an end-of-file condition is sensed, PROTECT allows only the following
1/0O functions:

If Previous If Next Function Is:

Function Was: Read Read Backward Backspace
Read Reject Accept Accept
Read Backward Accept Reject Accept
Backspace Accept Reject Reject

Qutput (files 61 and 62) - I/O functions on tape units are rejected if they reposition the
file over a previous job output, write over or erase any previous job outputs, or ad-
vance the file beyond the position that the current output is being written on. The
following functions are always rejected: REWIND, UNLOAD, READ BACKWARD, WRITE
EOF mark, and change of recording density. BACKSPACE is rejected unless the pre-
vious function was a WRITE or an ERASE.

CTO and CFO (files 58 and 59) - PROTECT allows only a read function on file 58 and
only a write function on file 59,

Library (file 63) - PROTECT allows only a read and locate function on file 63.

SYSTEM 1/0 FILE SPOOLING (APC)

MSOS has an automatic peripheral control routine (APC) that buffers (spools) the system
input, list output, and punch output on mass storage files before processing them.
Spooling 1/O files provides more efficient I/O and thereby increases the system through-
put.

APC operates as a priority program that can be set up for initiation by operator
commands.

60410600 B 2-3

¥-¢

D 00901%09

TABLE 2-1. SYSTEM FILE NUMBER ASSIGNMENTS

Number

Description

Batch Program Usage

Priority Program Use

1-52

User files. Assignments are made in batch jobs or
during initial loading of priority programs. File as-
signments are automatically released at the end of
each batch job or priority program.

May be assigned. and
used for unit record
devices or mass stor-
age files.

Logical units can be
referenced for I1/0 if
they are EFQUIPPED
before the priority pro-
gram is initialized,
Mass storage files can
be opened for use before
or after the program is
initialized.

53

Used by L-MSIO for an overlay file. The overlay file
is allocated at install time and opened by L.-MSIO as
required.

Can be assigned only if
ANSI COBOL, MS
COBOL, LISA, or L-
MSIO (macros) are not
used.

Same as 1-52.

54 1

Hollerith scratch file. Used by MSOS to store
Hollerith code which is to be passed to a language
processor (that is, assemblers, compilers, etc.).
May also be used for batch program scratch. Block
size is 512 characters per block.

551

Intermediate scratch file, Used to store first pass
output from assemblers and compilers, and used by
the loader to assemble absolutized code before load-
ing in core. Is also used by the recovery dump
routine to temporarily store the contents of memory
in which RDUMP will be overlayed. May also be
used for batch program scratch, Block size is 512
characters per block.

56

Load and go scratch file (LGO). Used by MSOS to
store relocatable binary output code from assemblers
and compilers. May also be used by batch programs.
Block size is 960 characters.

Use as mass storage
scratch files. The
files are opened by
the system. The user
needs only to refer-
ence the file numbers
to read or write on
them.

The block pointers are
reset to 0 at the end of
a job (after an EQJ
card).

Cannot be referenced
in a priority program.

577

Reserved for system account file. Assignment of this
file and its block size is a system installation option.

If this number is assigned, this file must be processed

with a user supplied accounting routine which must
reside in the variable resident area of core when it
executes.

Optional. Used to
record system account-
ing information ac-
cording to site require-
ments.

tNumber of blocks assigned to these files is an installation option.

6-¢

V 00901509

TABLE 2-1, SYSTEM FILE NUMBER ASSIGNMENTS (Cont'd)
Number Description Batch Program Usage Priority Program Use
58 CFO (computer from operator) unit. Input from Read messages from Read messages from
console typewriter. Referencing file 58 causes the operator. operator.
TYPE LOAD indicator to light at the console type-
writer, Maximum block size is 80 BCD characters.
59 CTO (computer to operator) unit. Qutput to con- Send messages to Send messages to
sole typewriter. Maximum block size is 80 BCD operator. operator.
characters.,
607t 7T Standard system input unit, This file may be either Read new batch jobs, These files cannot be
a tape unit or a card reader. Programs reading priority programs, referenced in priority
from this unit should be coded to read from either and input data. programs. However,
type of unit. Block size is 80 BCD characters (160 the file numbers can
octal characters). be used to open per-
manent files (user units)
61 Standard system output (list) unit., This file may be Print a job's output. f the same as file num-
either a line printer or a tape unit, Programs should bers 1 through 53.
be coded to write on either type of unit, Maximum
block size is 136 BCD characters. '
627 f Standard system punch unit. This file may be either Punch output cards.
a card punch or a magnetic tape. Programs with
punched output should be coded to write on either type
of unit. Maximum block size is 80 BCD characters
(160 octal characters).
63-68 System mass storage files: Cannot directly refer- | Cannot directly refer-
. . : file or unit ence any file or unit
63 Library file 66 Label file ence any
64 MSD file 67 ABS file number above 63. number above 62.
65 IDF file 68 Library directory file

t Print control character plus 135 data characters,
1 1Only word I/O can be used on these units.

Refer to appendix B for a list of print control characters.

SUBMITTING BATCH JOBS FROM MASS STORAGE

MSOS has an alternate processor routine (AP) which accepts batch jobs submitted for
execution from mass storage files. The batch jobs are coded for the standard system
input unit but submitted to AP for execution from mass storage files by a priority
program. Batch jobs submitted by priority programs are given priority in the order
of processing over batch jobs submitted from the standard system input unit.

REASSIGNMENT OF SYSTEM SCRATCH FILES

For special jobs, one or more of the system scratch files (files 54, 55, and 56) may
be closed and reassigned to a larger and permanent mass storage file. At the end

of the job, the system automatically reopens the files, as originally allocated and as-
signed, for the next job. Note that the system uses file 55 extensively during job
loading and termination. User information written on file 55 is not saved after the job.

2-6 60410600 A

MASS STORAGE FILE MANAGEMENT 3
_

OCAREM

Mass storage files are managed by OCAREM. OCAREM is a set of mass storage file
control routines that are used to allocate, open, close, expand, modify, and release
mass storage files. OCAREM does not read or write on a file. All reading and
writing must be done internally within a user's program. In COMPASS programs,
reads and writes may be done with CIO statements. (Refer to section 11 or L-MSIO
statements in sections 14 and 15.) In FORTRAN and COBOL programs, reads and
writes must be done with I/O statements in the program.,

The OCAREM routines are part of the system executive. These routines can be called
and used in a job with MSOS control cards. In addition, COMPASS users may call and
use these routines by using mass storage file control macros (refer to section 13)
within a COMPASS program.

ENTERING A MASS STORAGE DEVICE

Before a mass storage file or disk pack (device) can be used, it must be entered in the
system MSIO files with an ENTER statement. This is normally an operator function and
the procedure is described in the MSOS Operator's Manual. The ENTER statement is
described in section 4 as one of the mass storage utility routines.

MSOS uses the information on the ENTER statement to write a device label on track 0
of the device, and write an MSD label in the mass storage device label file (MSD file,
refer to appendix H). A track map is part of the MSD label. The map contains a
record of each track on the device. The map indicates which tracks are available
for new files or expanding old files, and which tracks are reserved for existing files.

ALLOCATING A FILE

Before doing I/O on a new mass storage device, the user must allocate space for a file
on the device. A file need only be allocated once. After allocation, the file needs
only to be opened before using it and closed when it is not in use.

Allocating a file reserves space on a mass storage device for the file and creates a
label which defines the file. The file label contains a file name, an owner's name,

an edition number, privacy codes, the files block size and length, its starting address
(that is, device number and first sector address), etc. QOCAREM writes all file labels
on a label file (LABELFILE, appendix H). Then OCAREM references the file label
every time a file is opened for input or output.

60410600 C 3-1

FET and ALLOCATE statements are used to allocate a file., These statements are
described in section 4. The information in these statements is used to construct the
file label. The label entries defined in these cards are initially built by OCAREM
and updated each time the file is used.

Example:

$FET,OWNER, FILENAME, 512
$ALIL.OCATE, B10

In the previous example, the FET statement specifies the owner, the file name, and
the block sizet to be used. The ALLOCATE card specifies that 10 blocks are to be
reserved for the file. This is the minimum number of parameters that can be used.
MSOS assigns values for the remaining parameters (privacy codes, edition number,
etc). These parameters and their default values are described in section 4.

SELECTING A FILE BLOCK SIZE

When selecting the block size for a file, the size should be equal to or an even mul-
tiple of the sector size of the device being used. Since OCAREM starts each new
block at the beginning of a new sector, failure to equate sector size with block size
results in wasted mass storage space.

Examples: Tt

1. A block size of 512 characters fills two sectors on an 853 device. If the
first block of a file starts at sector 00, the second block starts at sector
02. The same block size on an 841 device fills only 512 of the 640 char-
acters in each sector resulting in 128 characters of wasted space in each
sector.

2. A block size of 640 characters fills 2.5 sectors on an 853 device. If the
first block of a file starts on sector 00, the second block starts at sector
03. Half of the space on every third sector is wasted.

OPENING A FILE

After a file is allocated, it must be opened before using it. Since only a limited num-
ber of files can be open at the same time, t Tt files should be closed when they are not
in use, All files opened in a job will automatically be closed when the job terminates.

A FET and an OPEN statement may be used to open a file, The OPEN statement
assigns the file number used toreference the file for 1/O. The FET statement is
used to locate the file label in the label file. These statements are described in
section 4,

The modification privacy parameter on the FET statement may be omitted, and any non-
zero numeric value may be used as the block size parameter., These parameters are
not checked by OCAREM when opening a file,

tIn number of characters.
t tRefer to Table 4-1 for device sector sizes.

t ¥ f The number of files that can be open concurrently is determined by the size of the FDT
table which is an installation assembly option. Each mass storage file that is open has
an entry in the FDT table that uses 8 + (three times the number of segments) words.

A nonmass storage file (that is, unit record device entered with an EQUIP statement)
requires 9 words.

3-2 60410600 C

When an OPEN statement is read, OCAREM checks the file label and the labels of all
mounted devices to ensure the file is on-line. If the device that contains the file is

not mounted, OCAREM sends a message to the operator requesting the device be mounted.
Then OCAREM waits until the operator mounts the device before continuing the job.

If the file is segmented across more than one device, OCAREM requests the operator

to mount each device containing a segment of the file.

When the device containing the file is mounted, OCAREM enters the file label in a
file description table (FDT) and assigns the file number given on the OPEN statement
to the table. Then, when I/O requests are made on the file, OCAREM uses the file
number to locate the file label in the FDT table.

Example:

$FET,OWNER,FILENAME, 512, ED, ACCS
$OPEN, 21

These statements open edition ED of the FILENAME file and assign logical number 21
to the file. ACCS is the privacy code needed to open the file, and the block size is
512 characters.

CLOSING A FILE

A CLOSE statement applies to mass storage and unit record device file numbers. It
closes the file specified on the CLOSE statement. Closing a file clears that file entry
in the file ordinal table. For mass storage files, closing updates the file label in the
LABELFILE with the number of blocks written, last date accessed, etc. After a file
is closed, it cannot be used for I/O until it is reopened or reequipped. The file
number may be reassigned to another mass storage file or a unit rccord device, The
CLOSE statement is described in section 4.

Example:
$CLOSE, 21

This CLOSE statement closes file number 21.

' EXPANDING A FILE

A FET statement and an EXPAND statement may be used to expand a file. Expanding
a file increases the number of tracks assigned to the file. The file may be expanded
to additional devices. The EXPAND statement is described in section 4.

The EXPAND statement causes OCAREM to update the MSD file to reflect the additional
space reserved for the file, and to update the label in the LABELFILE with the location
and number of the new tracks,

The file must be closed before it can be expanded and the FET statement must contain
an access and a modification privacy code.

Example:
$EXPAND, B100

This EXPAND card adds 100 blocks of new space to the file defined by the preceding
FET card.

60410600 C 3-3

MODIFYING A FILE

A FET statement and a MODIFY statement may be used to change the owner name,
file name, block size, edition number, privacy codes, expiration date, and protection
(that is, read only or read and write) in a file label.

The expiration date and protection may be changed with a MODIFY statement. For
other changes, a FET statement with new values must be input following the MODIFY
statement.

The MODIFY statement is described in section 4. A file must be closed before it can
be modified and the FET statement must contain the files modification privacy code.

Example:
$MODIFY,I, 760704

This MODIFY card changes the protection to input only and changes the file expiration
date to July 4th, 1976,

Example:

$MODIFY,,,N
$FET,BLT, HAM, 512, AB, ACE, DUCE

These cards replace the old FET used to identify the file for modification with a new
FET statement. All new FET parameters replace the old FET parameters in the file
label in the LABELFILE.

RELEASING A FILE

A FET statement and a RELEASE statement may be used to release part or all of the
mass storage space reserved for a file. All released space will be made available for
new files or for expansion of existing files. The RELEASE statement is described in
section 4.

Releasing all of a file removes the file label from the LABELFILE, and releases all
space that was reserved for the file in the device label (MSD file). Since the file label
was deleted, the file can no longer be referenced for any purpose, and all space re-
served for the file is set as available in the mass storage device label (MSD).

Releasing part of a file releases a specified number of tracks starting with the highest
track number allocated for the file and working downward. The number of tracks to be
released is specified on the RELEASE card.

If a file has been loaded with data and the amount of unused space is unknown, all
unused space may be released by specifying UNUSED on the RELEASE statement. All
tracks which have not been written on are removed from the LABELFILE and set as
available in the MSD file. If the file has not been written on, all blocks are released
except the first track (or block if a block is larger).

A file must be closed before it can be released and the modification privacy code
must be included on the FET statement.

3-4 60410600 A

Examples:

$RELEASE,ALL All of a file
$RELEASE, 10 The upper ten tracks of a file
$RELEASE,UNUSED All the unused tracks of a file

CLASS-R DEVICES

Class-R devices and the files written on them can be moved to and used with any MSOS or
MASTER system containing class-R code. Nonclass-R devices and their files can be used
only at the system which the device was initially entered in. The operator selects a de-
vice's class (R or non-R) with the R parameter when he enters the device in a system with
the ENTER statement.

MSOS writes an RLABEL on class-R device when the device is entered in the system. The
RLABEL contains space for file labels and the device's MSD information.

When the user allocates a new file on a class-R device, OCAREM writes the new file's

label in both the system's LABEL file and in the device's RLABEL. MSOS uses the sys-
tem's LABEL file for mass storage file references and file modifications. However, MSOS
always updates the RLABEL entries so that they are always current with their corresponding
entries in the MSD and LABEL files.

When a class~R device is taken off-line, OCAREM removes the device's labels from the
system's MSD and LABEL files; and when a class-R device is brought on-line, OCAREM
copies the information from the device's RLABEL into the system's MSD and LABEL files
As a result, class-R devices with files from other systems can be brought on~line and used
the same as a class-R device that was initially entered in the system. However, the system
has no record of files on class- R devices that are off-line. A job aborts if an attempt is
made to open a file residing on a class-R device that is off-line.

Liabels for nonclass-R devices and files are permanently retained in the system's LABEL
and MSD files (that is, until the file or device is released). When the user opens a nonclass-
R file which is on an off-line device, OCAREM locates the number of the device containing
the file from the LABEL and MSD files and requests the operator to mount the device be-
fore continuing with the job.

60410600 C 3-5

MSOS CONTROL STATEMENTS 4

CONTROL STATEMENTS

The control statements described in this section may be input to MSOS as punched
cards from the card reader, typed by the operator at the console typewriter, or read
as card images from tape or mass storage files. ¥ These control statements allow the
user to load and execute programs, select I/O units for 1/O functions, allocate and
use mass storage files, call programs from the system library, and send messages
to the system operator. In addition, a series of I/O utility routines and error de-
tection and correction functions may be selected with these control statements.

Each control statement contains an MSOS control character (either g or $§ may be used
interchangeably) in column 1 and a control name starting in column 2. Following the
control name, a parameter string occurs on most cards. The parameters are sepa-
rated from the control name and from each other by commas.

When a parameter is omitted, the system substitutes a default value. The trailing
comma must be retained for omitted parameters, and the comma is omitted after the
last parameter on the statement.
Example:

$NAME, P1, P2,,, P5, P6

P Parameter

In the above example, parameters P3 and P4 were omitted (defaulted). If the complete
parameter string is eight parameters long, parameters P7 and P8 are also defaulted.
All blanks in the parameter stiring are ignored by the system.

All control statements will be printed on the jobs output listing.

JOB PROCESSING STATEMENTS

Job processing statements are control statements used to initiate and terminate a job,
communicate with the operator, and load and execute user programs.

SEQUENCE

The SEQUENCE statement is an optional job or job stack identification statement that
precedes JOB statement., At any time, the operator may request MSOS to skip to a
specific sequence statement in a job stack and start processing the jobs that follow it.
If the input unit is a card reader, MSOS will skip to the SEQUENCE card and process
jobs until the input hopper is empty. If the input unit is a magnetic tape drive, MSOS
searches tape for the SEQUENCE statement and then processes jobs in the job stack until
an ENDSCOPE or ENDREEL statement is sensed.

SEQUENCE, j

j Any one to three digit decimal number (0-999)

The j parameter is required.

tAPC or AP must be used when submitting control statements from mass storage
(refer to sections 20 and 21),

60410600 A 4-1

The SEQUENCE statements need not occur in sequential order., For example, the
SEQUENCE statements for a job stack on tape to be run at ten o'clock (SEQUENCE, 10)
could precede the SEQUENCE statement for a five o'clock job stack (SEQUENCE,5).

When a SEQUENCE statement is read, MSOS spaces the output unit one page, copies
the SEQUENCE card on the output unit, and writes the j parameter in the system ac-
counts table (refer to section 186).

JOB

The JOB statement must be the first statement in each batch job. Before starting a
new job, MSOS ejects a page on the output unit{ and prints the new JOB statement.
MSOS also prints the information from the JOB statement and a system generated se-
quence number at the console typewriter. If a SEQUENCE statement was used, MSOS
replaces the word JOB with the three-digit sequence statement at the typewriter.

$JOB, c,i,t,nl, nc, comments b
c Job account number. One to eight alphanumeric characters.

i Job name. Any number of alphanumeric characters may be used.
Only the first four characters of the i parameter are used. They are
written in the accounts file, listed with the job accounting output, and
punched with the jobs punch card output.

t The maximum job run time in minutes. Time may range from 1 to
999. f If omitted, a default value that was set in the system at installa-
tion time is used. If the job running time exceeds t, the job is aborted.

The t parameter applies only to elapsed clock time and operator inter-
vention time. It does not apply to time used by priority programs.

nl Maximum number of lines that can be printed on the output file. If
omitted, the default value set in the system at installation time is used.
If the number of lines to be printed on the system output unit exceeds
nl, the job aborts. {7t

nec, Maximum number of cards that can be punched by the job. It omitted,
the default value set at installation time is used. If the number of cards
to be punched exceeds nc, the job aborts. f Tt

comments Comments field follows after the nc parameter. Blank separators between the
two fields are not necessary, since nc is followed by a comma.

b Hollerith/ASCII parameter. Selects Hollerith or ASCII to BCD conversion
for card reader, card punch, and system output printer. The b parameter
occupies columns 78, 79, and 80.

tIf a SEQUENCE statement was used, MSOS ejects the page for the SEQUENCE card,
but not for the JOB card.
T tA value of * specifies unlimited number,.

4-2 60410600 C

Column Value
78 A

H
Omitted
79 A
‘ H
Omitted
80 A

H

Omitted

Description

Selects ASCII to BCD conversion of card reader
input.

Selects Hollerith to BCD conversion at thé card
reader input.

Uses the conversion selected at system installation
time.

Selects printed output in ASCII characters (BCD
to ASCII conversion)tt

Selects printed output in Hollerith- characters (BCD
to Hollerith conversion)

Uses conversion type selected at system installation
time. ’

Selects ASCII punched card output (BCD to ASCII
conversion)t 1 1

Selects Hollerith punched card output (BCD to
Hollerith conversion).

Uses conversion type selected at system installation
time.

The job statement will be printed on the standard OUT unit with the following additional

information.
1. Job sequence number
2. MSOS version number
3. Library edition number
4, Date
5. Job initiation time

Example:

$JOB, 54ANJ60, TYPE, 21, 950, 1260

13447-2 controller permits 405 card reader to read cards punched in ASCII or
Hollerith and convert them to internal BCD. If A parameter is specified without
the 3447-2 available, the cards are read as Hollerith.

T 1A 512 line printer with an ASCII subset train must be used if the A parameter
is selected (refer to TRAIN statement).
t 1 13446-2 card punch controller is required to accept internal BCD and convert to

ASCII or Hollerith punch codes.

If the A parameter is specified without the

3446-2 available, the cards are punched with Hollerith code.

60410600 A

PRIORITY
The PRIORITY statement is used in place of the JOB statement for priority programs.

$ PRIORITY, p

P Priority level of the program to be loaded. The value of p may be
P1, P2, P3, or P4. This parameter is required.

Only programs in relocatable binary format may be input following the PRIORITY
statement. Source language programs cannot be input or compiled following a PRIORITY
statement.

The priority program must contain one or more of the following statement groups.

LOAD and RUN if priority program is on a tape or mass storage file.

2. Binary IDC card and a RUN card if the priority program is to be input as
binary deck from the card reader.

3. Library program call statement if the priority program is to be input from
the library.

4. An ABSTSK statement if the priority program is on a mass storage file and
in absolutized format.

The priority program may contain any of the following statements.

1. EQUIP

2. DUMP

3. Any mass storage file control cards
Before a priority program is loaded, a message is sent to inform the operator of the
program priority level, Since only one priority program of each level can be in core
at the same time, the operator must terminate any priority program with the same
priority level before MSOS will load a new priority program.
Example:

PRIORITY, P3

CTL
The CTL statement prints messages on the jobs output listing.
$CTL, message.
The message consists of a series of 1 to 75 alphanumeric characters starting in
column 6 of the statement. MSOS inserts a blank space in the first column of the

printer and then prints the message.

Example:

$CTL, PLEASE SAVE THIS OUTPUT FOR JOES FILES

4-4 60410600 A

Cc10
The CTO statement sends messages to the operator at the console typewriter.

$CTO, comments to operator

The comments consist of a series of 1 to 68 alphanumeric characters (including
spaces) starting in column 6. MSOS does a carriage return at the typewriter
before typing the message. MSOS also prints the message on the output unit.

Example:

$CTO, PLEASE MOUNT JOES TAPE ON CH1 EQUIP2 UNIT3

PAUS

The PAUS statement stops all processing of the job and sends a message...
READY?... to the operator. Processing continues when the operator presses FINISH,
The PAUS statement can be used only with batch jobs. It causes a control statement
error diagnostic if used in a priority program. All comments on the PAUS card are
typed after the PAUS READY message to the operator,

$PAUS, comments

TRAIN

The TRAIN statement sends a message to the operator requesting a specific print train
to be mounted on the 512 or 580 line printer. MSOS waits for the print train to be mounted
before continuing with the job,

$TRAIN, n,1u

n Train number. Values are 1 through 4.
1 595-1 (501 compatible train)
2 595-2 (AN compatible train)
3 595-3 (HN compatible train)
4 595-4 (ASCII subset train)
Other Illegal, causes a diagnostic

lu Logical unit number of the 512 or 580 line printer (refer to EQUIP card). l

Values are 1 through 53 or 61. Default value is unit 61.

Example:

$TRAIN, 1,32

60410600 C

LOAD

The LOAD statement loads relocatable binary programs into core memory and links
all subprograms together so they are ready for execution.{ The relocatable binary
programs may be loaded as card decks at the system card reader, or from a tape or
mass storage file.

$L.OAD,f1,f2,f3,M or $LOAD, M

f Mass storage or tape file containing the relocatable binary
program. One to three files may be specified. The values for each
may range from 1 through 53 or 56 (load and go scratch file). If no
files are specified, the loader assumes all decks to be loaded are on
the system input unit following the LLOAD statement. The trailing
commas are omitted for all f parameters not included.

M Request for memory map. M is used to request a memory map on
the standard output unit. If the parameter is omitted, no map is pro-
duced. M may appear anywhere in the parameter list.

Examples:

$LOAD

$LOAD, 21

$L.OAD,21,M, 22
The mass storage files specified on the LOAD statement must be opened and the file
block size must be 960 characters per block. Tape files must be in card image for-

mat with 160 characters per block., All files are automatically positioned to the first
block by the loader.

The loader absolutizes and links all subprograms from file f1, f2, f3, and from any
decks following the LOAD statement on the input unit. Only one LOAD statement can
be used per task. Each file is loaded until an EOF is read.

The absolutized program produced by the loader is assembled on scratch file 55 be-
fore loading into core. If a MAIN (overlay) card is placed in front of a relocatable
binary deck, the loader assembles the absolutized program on the file number specified

on the overlay statement. In this manner, absolutized code is saved on a permanent
file for quick loading with the ABSTSK statement.

ABSTSK

The ABSTSK statement loads absolutized binary programs into core from a mass
storage file and starts execution of the program.

$ABSTSK, f,pl,...,p,
f Mass storage file number containing the absolutized program.

pl-pp Parameters to be passed to the program. Values depend upon the
program. Parameters are optional,

The ABSTSK statement loads absolutized binary programs from file f into core, The
memory locations used by the absolutized program must be available or the job aborts
with a diagnostic.

tRefer to section 6 for a description of the relocatable binary format.

4-6 60410600 C

When MSOS enters the program, register A, Q, and Bl contain the following informa-
tion.

Register Description
Register A, First character address of the $ABSTASK statement in core.‘rl
bits 16-00
“Register A, Relative position of first character of first parameter on the
bits 23-17 card. The control character g or $ is position 1.
Register Q, Second transfer address from TRA cards (if more than one
bits 14-00 entry is used).
Register B1 Mode of program.,

1 Batch

2 Priority 4

3 Priority 3

5 Priority 2

6 Priority 1

BINARY IDC CARD

Relocatable binary subprogram decks are loaded from the system input unit without a
LOAD statement. Whenever MSOS reads a binary card or card image on the system
input unit, it assumes the binary card is the first card (refer to IDC card in section 6)
in a subprogram deck. MSOS calls the loader which loads and links the subprograms
the same as if a $LOAD card were used with no f parameter specified.

RUN

The RUN statement starts execution of the program which has been loaded with a LOAD
statement or a binary IDC card.

$3RUN

Data cards or statements may follow the RUN statement at the system input unit.

LIBRARY PROGRAM NAME

The library program name statement loads programs from the system library or an
AUX library. A RUN statement is not used with the library program name statement;
execution is automatic, Data cards or statements may follow the library program name
statement on the system input unit,

$name, parameters

name A library program name (main entry point symbol)
parameters Parameter string to be passed to the program
+On 65K memory systems, the address will be a bank 0 address. l

60410600 B 4-7

Examples:
$FORTRAN,I, L

Thi.s statement calls MS FORTRAN into execution from the library. The I parameter
indicates the FORTRAN input source statements follow on the system input unit. The
L parameter specifies list output on the system list output unit.

$COMPASS,1=21,X=56

This card calls COMPASS into execution from the library. The I parameter indicates
that COMPASS input source statements are on file 21 and COMPASS executable output
is written on file 56, the load and go file.

Use of the standard MSOS library programs and their control parameters is described
in the applicable program reference manual.

When a program is called off a system or AUX library with a program name statement,
the loader enters the following information in the A, Bl, and Q registers and then enters
the program at the main transfer address (from TRA card).

Register Bits Contents
A 14-00 First word address of a block in core containing a

copy (BCD) of the library program name statement
used to load the program. In extended core sys-
tems, the address is a bank 0 address.

16-15 Zero

23-17 Position of first character of the parameter string
(relative to 1 which is 7/9 or $) on the library
program name statement. Zero if there were no
parameters in the statement.

B1 2-0 Mode of the program

Batch

Priority 4
Priority 3
Priority 2
Priority 1

DUTWN =

Q 14-0 Second transfer address from the TRA card.
Zero if there was no second transfer address.

AUX

The AUX statement specifies that an auxiliary library is to be searched for library
programs and routines before referencing the main system library. The system li-
brary is searched for all programs and routines not found on the auxiliary library or
libraries.

$AUX,f1,£2,f3
f File number of a mass storage file containing the auxiliary library or

directory. ©One to three files (different auxiliary libraries) can be
specified on each AUX card.

4-8 60410600 B

The AUX statement may be used with the following loader statements.

IDC card Library routines referenced in the binary decks will be searched
for on the auxiliary library first.

LOAD statement Library routines referenced in binary decks will be searched for
on the auxiliary library first.

Library program The auxiliary library will be searched for the program first.
name statement

The AUX statement remains in effect throughout the job, or until another AUX state-
ment is read. All subsequent AUX statements replace previous AUX statements. An
AUX statement with omitted f parameters will clear the previous AUX statement.

When more than one auxiliary library is specified, they are searched in the order listed
on the AUX card (that is, fl1 is searched first, then 2, etc.).

All files specified on the AUX statement must be opened with an OPEN statement be-
fore the AUX statement will be accepted.

Examples:

$AUX, 21
$AUX, 21,22,23
$AUX

END-OF-FILE

The end of file statement (EOF) is a gg punch in columns 1 and 2 of a card, or a gg

card image on a tape or mass storage file. MSOS will not read past an EOF card on
the input unit until the preceding task has been executed.t If an abort condition occurs,
MSOS aborts only the task in execution (that is, all control statements and programs up
to the EOF statement), Then MSOS reads and executes the remaining tasks in the job.
An EOF statement clears all interrupts selected by programs in the task and is required
at the end of each job.

rn
88

Columns 3 through 80 are ignored by MSOS. The end of file card spaces the printed
output to the top of the next page.

MSOS assumes the card following an EOF card is the first card of the next task in the
same job, unless one of the following cards is read next.

EQJ Indicates the end of a job and initiates end-of-job processing. it

A task is a group of MSOS control cards and/or user programs followed by an EOF
statement. Several tasks may be grouped into a single job to provide common ac-
counting, or a job may consist of only one task.

t tRefer to EQOJ card for a description of end-of-job processing.

60410600 B 4-9

JOB statement When following an EOF card, a job card indicates the end

of the current batch job and the start of a new batch job.
The JOB card initiates end-of-job processing (the same as
an EQJ statement) only when it follows an EOF statement.

SEQUENCE statement Indicates the end of the current batch job and the start of

a new batch job stack. The SEQUENCE statement initiates
end-of-job processing (the same as an EOJ statement) only
when it follows an EOF statement.

PRIORITY statement Indicates the end of the current job and the start of a

priority program. The PRIORITY statement initiates end-of-
job processing (the same as an EOJ statement) only when
it follows an EOF statement.

ENDSCOPE statement Indicates the end of a batch job stack. The ENDSCOPE

statement initiates end-of-job processing the same as an
EOJ statement.

ENDREEIL statement When the INPUT unit is magnetic tape, the ENDREEL

EOJ

statement indicates the end of the tape reel. When following
an EOF statement, the ENDREEL statement initiates end-of-
job processing, the same as an EOJ statement.

The EOJ statement indicates the end of a batch or priority job. It must be preceded
by an end-of-file statement.

$EOJ

When an EQJ statement is read or an end-of-job condition is sensed (refer to end-of-
file statement) MSOS performs the following end-of-job processing.

1.

2.

4-10

Prints the jobs output and the jobs accounting information on the standard
system output unit.

Releases all equipment assigned with an EQUIP statement, and closes all mass
storage files opened in the job. '

Resets block pointers for scratch files (files 54, 55, and 56) to block 1. If the
preceding job closed one or more of the scratch files for possible reassignment,
MSOS releases all system scratch files and reopens them as originally allocated
and assigned.

Initiates any batch job that has been submitted from a priority program.

Senses SELECTIVE JUMP 6 switch. If the switch is set, MSOS requests
operator to reassign the system input, output, or punch units before initiating
the next batch job from the input unit. The operator may assign new units,
continue with the same units, or type control statements.

Initiates the next batch job from the input unit.

60410600 A

ENDSCOPE

The ENDSCOPE statement indicates the end of a batch job or batch job stack. It initiates
end-of-job processing, the same as an EOJ statement, In batch jobs, the ENDSCOPE
statement stops all job processing and gives control to the operator so the operator can
switch any of the standard system units (input, list output, or punch output) to a different
unit. The operator must restart batch job processing. In batch jobs submitted from a
priority program, ENDSCOPE is treated as an EOJ statement. Normal batch processing
continues.

$ENDSCOPE, a

a Action to be taken for all standard system units that are on magnetic
tape. This parameter is ignored for all standard system units not
on magnetic tape.

R Write end-of-file marks and rewind the tape units.
N Write end-of-file marks, but do not reposition the tape units.

Omitted Write end of file marks and unload the tape units.

ENDREEL

When the system input unit is a magnetic tape, the ENDREEL statement indicates the
end of the tape reel. The ENDREEL statement stops the processing and unloads the
reel. The operator must mount a new tape before processing resumes.

$ENDREEL

ENDREEL may be used only for batch jobs and must occur between jobs. If it is
not preceded by an EQOJ statement, the ENDREEL statement causes end-of-job processing
to occur.

1/0 UNIT CONTROL STATEMENTS

1/0 unit control statements assign file numbers to I/O units, rewind and unload tape

drives, and specify the type of I/O error recovery to be used with a specific I/O unit.
In addition to the following statements, the CLOSE statement described with the mass
storage file control statements may be used to release unit file number assignments.

EQUIP

Each I/O unit (except mass storage devices) to be used in a job must be assigned a
file number in order to reference the unit for 1/O functions in a program. MSOS
clears all user file assignments after each EOJ statement.

$EQUIP, X1=Uqs Xg=Ug,s o X U

X A two-digit file number assigned by the user for reference purposes.
The numbers may range from 01 through 53. The file number can-
not have the same value as any other file number assigned or used
in the same job,

60410600 C 4-11

Definition of the I/O unit to which the file number is being assigned.
The I/O unit may be defined in one of four ways.

1.

By hardware type. u is equated to one of the hardware types
as follows:

MT Magnetic tape drive
CR Card reader

PR Line printer

CP Card punch

TP Paper tape punch
TR Paper tape reader
DS Display station

TY Typewriter

TS Typewriter station
PL Plotter

OR Optical character reader
SL Satellite controller
SP Seismic processor

Example:
--, 06=MT, --
In the example, file number 06 is assigned to any available
unassigned tape drive.
By physical equipment location. u is equated to a specific I/O unit
by channel, equipment, and unit number. The format is CnEnUnn
Example:
--, 07=COE1UO03, --

In the example, file number 7 is assigned to unit number 3
on equipment number 1 and channel O.

If the unit number is omitted, the logical unit number is
assigned to any available unit attached to the specified
channel and equipment.

Example:
--, 08=C1E2, --

By both hardware type and equipment location.
Example:
--, 09=TRC2E3, --

In the example, file number 9 is assigned to the paper tape
reader that is attached to equipment number 3 and channel
2.

When specifying both hardware type and equipment location,
the equipment number and/or unit number may optionally be
omitted,

Examples:
--, 10=MTC3, --,11=MTC4E1l, -~

In the examples, file number 10 is assigned to any available
tape drive connected to channel 3 and file number 11 is as-
signed to any available tape drive connected to channel 4,
equipment number 1.

60410600 A

4. By equating one file number to another file number that was
previously defined (assigned to a hardware unit).

Example:
12=11

In the example, file number 12 is equated to the same I/O
unit that file number 11 is currently assigned to. Then,
either 11 or 12 may be used to reference the unit for I/0.

Any user or scratch file (files 01 through 53) can be equated to any other program file
(files 01 through 53). Also, a user file can be equated to the standard input, list out-
put, punch output, CTO, or CFO files (that is, 21=60). However, the system files
cannot be equated or reassigned with an equip statement. Only the operator can re-
assign system units.

The following is an example of an EQUIP statement that assigns file numbers 06 through
12. Note that spaces may be used to separate the u parameter definitions.

Example:

$EQUIP, 06=MT, 07=COE1U3, 08=ClE2, 09=MTC3E3U4, 10=TPC3,11=TRC3E1l, 12=11

REWIND

The REWIND statement rewinds magnetic tapes and positions mass storage files to
block 1.

$REWIND,u1,u2, ceesuy

u File number of a tape or mass storage file. The values for u may
range from 1 through 56.

The file number is ignored if any of the file numbers are unassigned, or the file is not on
mass storage or tape. No diagnostic is printed on the output unit.

Example:

$REWIND, 01, 03, 27, 53

UNLOAD

The UNLOAD statement unloads magnetic tape reels.
$UNLOAD, uy,ug, ...,u,

u Number of the file to be unloaded. The value may range from 01
through 53.

If any file number is unassigned or not a tape unit, the number is ignored. No diag-
nostic is printed.

Example:

$UNLOAD, 02, 04, 28, 52

60410600 B 4-13

FMT
The format statement (FMT), specifies the type of error recovery to be used on tape
and mass storage files if the system error recovery routines are used. t

The FMT statement may be used in both batch and priority programs. Additional
FMT statements may be added to a job to reset error recovery for different programs
in the same job.

1. For tape files:

$FMT,u, t{,ty,...
u Tape file number
t Type of recovery to be selected. One or more of the following

values may be used:

SNR Four-character system noise records (SNRs) are written
to bracket bad spots on tape. The SNRs are discarded
on reads. The noise threshold for input files is 18
frames (characters) for a data block. Seventeen or less
characters are rejected as noise. Eighteen or more
characters are accepted as a data block.

NSNR SNRs are not used to bracket bad spots on a tape. The
noise record size is 17 characters (same as for SNR).

NSN=n n is the maximum number of characters that are discarded
as noise on an input file. N+1 characters are accepted as a
valid data block. Maximum number of noise characters is
63 decimal. Setting n larger than 63 defaults to 63. If the
NSN option is selected, SNRs are not used to bracket bad
spots on the tape.

R1 Opposite-direction READ recovery is suppressed.

R2 The data from opposite direction read recovery is
returned to the user when the parity is correct.

R3 The data from an opposite direction READ during read
recovery is returned whenever parity is correct and the
record read is equal to or less than the size specified
on the read request. That is, the data is returned if
it is certain that truncation has not occurred.

The t parameters may appear in any order, If conflicting para-
meters are used, the last parameter in the series takes
precedence.

If an FMT statement is not used, the default values will be SNR and R3 for each tape
drive. The default values may be changed by an assembly option when the system is
installed.

Example:

$FMT,21,NSNR,R2,R3

tRefer to section 23 for a description of noise records and other system I/O error
recovery methods,

4-14 ' 60410600 C

2. For mass storage files:
$FMT, msopt

MS1 Do a write check (read back and compare) whenever SCARV50
or SCAR is called for write error recovery or whenever write

with error recovery (CIO function code 42) is used to write a
block.

MS2 Suppress the write check when SCARV50 or SCAR is called and
when write with error recovery is used.

The FMT statement applies only to user mass storage files opened in the same job.
The MS1 option is always in effect for files 54 through 68. Default is MSI1.

Increased job throughput can be obtained when the MS2 option is used in conjunction
with APC. The MS2 option also provides a significant decrease in the time required
for MS SORT jobs.

Example:

$FMT, MS2

MASS STORAGE FILE CONTROL STATEMENTS

The mass storage file control statements call OCAREM routines into core to define,
open, and close mass storage files. Control statements may also call OCAREM
routines to expand, redefine, and release mass storage files, In addition, the REWIND
statement may be used to reset the block pointer, for opened mass storage files, to
block 1. All reading and writing on mass storage files must be done within the user's
program, or with the mass storage utility routines,

RAT

The RAT statement is the first of a series of three statements used to allocate or expand

a mass storage file. The RAT statement is an optional statement that specifies nonclass-R
mass storage device or devices on which the file is to be allocated or expanded. A device
need not be on-line to allocate or expand a file on it.

If the RAT statement is omitted, OCAREM allocates or expands the file on any nonclass-R
device or devices that are mounted (on-line) when the job is in execution. OCAREM searches
the on-line devices for the smallest available space that the file fits in. t If none of the
on-line devices have a block of space large enough for the file, OCAREM may segment the
file across more than one device.

$RAT, dtl/dnl, cees dtn/dnn

dt The mass storage drive hardware type. It may be any of the following. T
853, 854,813,841,863
dn The device number specified when the device was entered in the system

MSD file (refer to description of ENTER card). The values may range
from 1 to 362144 (decimal). If a class-R device is specified, the device
number is ignored with no diagnostic.

T1f two or more devices are equal, the device is selected according to the order the de-
vices were entered in the system with an ENTER statement (that is, first entered, first
selected).

T TAn 814 is considered the same as two 813 units.

60410600 C 4-15

If two or more devices are specified on the RAT statement, the file is allocated or expanded
on the first device that contains a block of space large enough for the file. If none of the de-
vices have sufficient space, the file may be segmented across two or more of the devices
specified on the RAT statement.

The parameters on the RAT statement remain in effect until they are cleared. A new RAT
statement or an EQOJ statement clears the previous RAT statement. Therefore, if more than
one file is to be allocated or expanded on the same device or devices, only one RAT state-
ment is required. If the files are to be allocated on different devices, a new RAT statement
must precede the ALLLOCATE statement. A RAT statement without parameters clears the
previous RAT statement without assigning new devices (that is, any nonclass-R device which
is on-line may be used).

Example:

$RAT, 853/21,853/22 $RAT, 854/23

RRAT

The RRAT statement is the same as the RAT statement except that RRAT specifies only
class-R devices for file allocation or expansion. Any nonclass-R devices specified on a
RRAT statement is ignored by the system. The class~-R requirement for file allocation and
expansion remains in effect until a RAT statement is used., Allocation or expansion across
class-R and nonclass-R devices is not possible,

Files cannot be expanded or allocated on a class-R device unless the device is on-line.

A RRAT statement with no parameters specifies file allocation or expansion on any class-R

device or devices currently on-line. A RRAT statement with parameter limits the alloca-
tion or expansion to devices that are on-line and that are specified on the RRAT statement.

Example:

$RRAT, 853/23, 853/24

FET

The FET statement defines file block size, privacy codes, and identification.

$FET, owner, name, blksize, ed, acpr, mdpr

owner File owner's name. One to eight alphanumeric characters
(required).

name File name. One to thirty alphanumeric characters (required).

blksize File block size in characters. One to six decimal digits. Block

size may range from 1 to 131071 characters (required).

ed File edition number. Must be two alphanumeric characters or
one numeric character; default is 00 (optional).

acpr Access privacy code., One to four alphanumeric characters;
default is four blanks (optional).

mdpr Modification privacy code. One to four alphanumeric characters;
default is four blanks (optional).

The FET statement is used with other mass storage control statements to perform the
following functions.

4-16 60410600 C

RAT

FET Allocate space for a file. RAT statement is optional,

ALL.OCATE

FET Open a file for input or output. The mdpr parameter may be omitted on
the FET statement. Any nonzero numeric character may be used for

OPEN block size.

RAT Expand the size of an existing file. The RAT card is optional. Any
nonzero numeric character may be used for block size on the FET

FET card.

EXPAND

FET Modify the file label. The second FET card is optional. If used, it
must contain all parameters (changed and unchanged) and follow the

MODIFY MODIFY card. Any nonzero numeric character may be used for
block size on the first FET card.

FET

FET To release all or part of the space allocated for a file. The block size
on the FET card can be any nonzero numeric character.

RELEASE

The FET parameters remain in effect for all mass storage file control statements that
follow it until:

1. OCAREM reads a new FET statement for a different file

2. A MODIFY statement followed by a new FET statement is encountered
3. MSOS reads an end-of-file statement |

If only one mass storage file is used in a job, only one FET statement would be needed
for all file control functions.

The block size parameter is checked by OCAREM only when allocating a file or when

a file is modified with a new FET statement. When allocating a file, the block size
should be selected in accordance with the device sector size (refer to Table 4-1).

60410600 C

TABLE 4-1. MASS STORAGE DEVICE CHARACTERISTICS

Characters Words Sectors Sectors Words Tracks J|Sectors
Per Per Per Per Per Per Per
Device Sector Sector Track Device Track Device |Cylinder
853 256 64 16 16,000 1024 1000 160
854 256 64 16 32,480 1024 2030 160
841 640 160 14 56, 840 2240 4060 280
813 256 64 32 524,288 2048 16,384 4096
814 256 64 32 1,048,576 2048 32,768 4096
863 256 64 16 16,384 1024 1024 0
ALLOCATE

The ALLOCATE statement reserves (allocates) mass storage space for the file des-
cribed in the FET statement that preceded the ALLLOCATE statement. On new devices,
OCAREM allocates space for files upwards from the lowest available track, until the
device is full. On other devices, OCAREM searches the available space map in the
MSD file for the smallest contiguous area that the file fits into.

Only the devices listed on the RAT statement are considered for the file. If a RAT
statement is not included, only those devices currently mounted(on-line) are con-
sidered. If a large enough space cannot be located in one of the devices, the file is
segmented. The largest space available is selected for the first segment. Then a
search is made for an area large enough for the remainder of the file.

OCAREM allocates all segments of a segmented file on one device whenever possible,
and divides a file into as few segments as possible.

$ALLOCATE, ntrks, exp, ,seg, dtt

ntrks Number of tracks or blocks to be allocated. The B prefix indicates
blocks. No prefix indicates tracks. The value may range from 1
to 8388607, (required.)

exp File expiration date. Value is in the form
yymmdd
where yy Year
mm Month
dd Day
If exp is omitted, OCAREM inserts the current date for the expiration
date.
seg Segmentation parameter. Use either NOSEG or omit the parameter.

NOSEG No segmentation. The file must reside on one contiguous
area in mass storage. The job aborts if a large enough
area cannot be located on one of the devices.

Omitted The file may be segmented on one or more devices.

dt Type of mass storage device the file is to be allocated on. If a RAT
statement is used, the dt on this card must be included and must
match the dt on the RAT statement. I a RAT statement is not used
and dt is omitted, OCAREM uses the device type defined in the first
MST entry.

t The mode parameter is no longer applicable and is not checked. An S or a double
comma may be used between exp and seg.

4-18 60410600 C

OCAREM allocates space by tracks., When the space is specified in blocks, OCAREM
allocates the number of tracks required to hold the number of blocks specified on the
ALLOCATE statement. Depending upon block size and number of blocks, extra space
may be allocated. This space can be written on without expanding the file,

Examples:

$ALLOCATE, 24
$ALLOCATE,60,,,,853
$ALILOCATE, B1598,991231, ,NOSEG, 841

The file size limits are as follows:

Max block size 131,071 characters

Max number of blocks per file 8,388,607 blocks

Max number of sectors per block 4,095 sectors

Max number of tracks per file 8,388, 607 tracks

Max number of devices for segmented files 8 devices

Max number of segments per file 64 segments{
OPEN

The OPEN statement assigns a number to a mass storage file. The file number is
used to identify the file for input or output within a user program. A mass storage
file cannot be referenced for input or output until it is opened.

$OPEN, fo,use
fo File number assigned for the file by the user. The number may range
from 1 to 53 (decimal).
use File protection parameter.
I Read only file
Omitted or other Read/write file

When a file is initially allocated, its protection is set at read/write. Either value of
the use parameter may be used when opening the file, The MODIFY statement may be
used to protect a file by setting its usage to read only. In such cases, the I value

must always be used on the OPEN statement. Any other value causes the job to abort.

If the I parameter is used, the file may also be opened for input at the same time by
other batch or priority programs which are in core (that is, the file can be shared).
If the I parameter is not used, only one program at a time can open and use the file.

Any attempt to write on a file that has been opened as a read only file causes the job
to abort.

The OPEN statement must be preceded by an FET statement to identify the file to be
opened,

Examples:

$OPEN, 24,1
$OPEN, 21

tAn installation option. May be less on some systems.

60410600 A 4-19

EXPAND

The EXPAND statement may be used to expand the amount of mass storage space as-
signed to an existing file, A file must be closed to expand it.

$EXPAND, n, seg

n Number of tracks or blocks to be added to the file. The value may
range from 1 to 262142 (decimal). If B precedes the n value, n is
the number of blocks to be added.

seg Segmentation parameter.

NOSEG No segmentation. The new block of mass storage
resides on one continuous area in mass storage.
If contiguous unallocated space is unavailable,
the new space is added as a single segment.

Omitted or other Segmentation allowed. The new space may be
added in segments and may be on other devices.

The EXPAND statement must be preceded by a FET statement to identify the file being
expanded, The FET statement may optionally be preceded by a RAT statement to
specify which devices the file may be expanded on.

OCAREM expands mass storage files by tracks. If blocks are specified, OCAREM ex-
pands the file by the number of tracks required to hold the specified number of blocks.
Depending upon the block size and number of blocks, extra space may be added to the
file that is used without another file expansion.

Examples:

$EXPAND, 839
$EXPAND, 8, NOSEG
$EXPAND, B80, NOSEG

MODIFY

The MODIFY statement may be used to change file protection, block size, or its
identification and privacy codes., The MODIFY statement must be preceded by a FET
statement to identify the file being modified, and the file must be closed before it can
be modified.

$MODIFY, prot, exp, newfet

prot Protection code that restricts file usage.
I Read only file
O Read and write file
Omitted No change
exp New file expiration date in the form yymmdd
yy Year
mm Month
dd Day

(Optional. Default is no change.)

4-20 60410600 A

newfet New FET statement. Any character indicates that a new FET state-
ment follows the MODIFY statement. All of the parameters on the
new FET may be changed.

Omitting the newfet parameter indicates no new FET statement follows

the MODIFY statement.
§ CAUTION i
HO0H000000 000000

If file blocksize is expanded beyond the mass
storage devices sector boundary, data is lost.
In addition, the buffer sizes must be expanded
in programs currently using the file,

Examples:

$MODIFY, I
$MODIFY,,,F

CLOSE

The CLOSE statement closes a file or releases a unit record device. The file num-

ber is available for other assignments in the same job. The CLOSE statement also

updates the block count (highest block written) in the file label (refer to appendix G).
$CLOSE, fo

fo File number

All user files and unit record assignments are automatically closed when an EQJ
statement is read, and all mass storage file labels are updated in the LABELFILE.

Example:

$CLOSE, 21

RELEASE

The RELEASE statement releases all or some of the mass storage space assigned to
a file with the ALLOCATE statement. The space is made available for assignment
to other files. A file must be closed before it can be released.

$RELEASE, amount

amount Amount of the allocated space to be released. The values are as

follows:

ALL Release all space and all records of the file,

UNUSED Release all tracks that have not been used. If no tracks
have been used, all but the first track are released.

nnnn A decimal number indicating the number of tracks to be
released. Only the highest unused tracks are released.
If the number is preceded by a B, nnnn is the number of
blocks released,

Other Illegal

60410600 A 4-21

The RELEASE statement must be preceded by a FET statement to identify the file that
is to have space released.

Examples:

$RELEASE, ALL
$RELEASE, UNUSED
$RELEASE, 27
$RELEASE, B5

RONL

The label file has no entries for files on class-R devices that are not on-line. The
RONL card should be used to ensure that the required class-R devices are on-line be-
fore opening any file that is written on a class-R device. The RONL task checks to
see if the specified class-R device is on-line. If the device is on-line, RONL allows
the job to continue. If the device is not on-line, RONL sends a request to the operator
to mount the device and waits until the operator responds. If operator response indi-
cates that mounting is not possible, the job is aborted.

($RONL, dt/dn/dt/dn, ...

dt Device type that the file was allocated on:

853
854
841

dn Device number written on the device label when the device was
entered.

When a file is segmented over more than one class-R device, each device must be on-
line. Class-R files cannot be partially opened.

4-22 60410600 C

UTILITY FUNCTION

MSOS has the following utility routines that may be used to control I/O equipment

and

The

mass storage devices, and to transfer data between I/O units.

XFER and DUMP Statements
UTILITY Routines
MSUTIL Routines

XFER statement transfers binary decks from the system input unit (card reader

or tape) to a mass storage or tape file, The DUMP statement dumps core whenever
a job aborts itself or is aborted by MSOS.

The

UTILITY routines are intended for use mainly with magnetic tape units, These

routines perform the following functions.

The

Rewind a tape

Unload a tape

Space forward

Space backward

Erase

Write EOF mark

Check tape density

Verify a new tape

Copy from one tape to another tape
Copy from card reader to tape
List a tape

List a card deck (from card reader)

Punch a card deck (from card reader or tape)

mass storage utility routines perform the following mass storage functions.
Release expired files

Dump for backup

Dump and reload to reorganize space on a disk

Enter a new mass storage device in the system

Release a mass storage device

List a file label from the LABELFILE

List a device label from the MSD Label File

60410600 C 4-22.1

XFER STATEMENT

An XFER statement will transfer relocatable binary decks and cards from the system
input file to a tape or mass storage file, or to the card punch. If a mass storage
file is used, the file must be allocated with a block size of 960 characters and opened
before using XFER., Output tapes will be blocked at 160 characters. XFER can be
used only with batch jobs, and will transfer only binary decks (except for file 62).

$XFER, lu
lu File number. May be 1 through 53, 56, and 62.

XFER transfers relocatable binary cards following the XFER card into file lu. When
an end-of-file statement or the next MSOS control statement is read (7/9 or $ in
column 1), XFER writes an end-of-file mark (EOF) on file lu and backspaces over the
EQOF mark., t If lu is not a tape, punch, or mass storage file, the job aborts.

Example:
$XFER, 21

The XFER statement may also be used to transfer binary and Hollerith cards to the
system punch file (file 62). When file 62 is specified, XFER transfers all cards
(MSOS control cards, source decks, binary cards, etc.) until XFER reads an end-of-
file-card. If file 62 is a tape file, XFER writes an EOF on the file and backspaces,
the same as for all other files.

DUMP STATEMENT

The DUMP statement causes a memory dump to be taken if a job containing the dump
statement aborts. The DUMP statement must follow the JOB statement.

$DUMP, FD

FD Full dump parameter. Dump the aborted program and the operating
system.

Qmitted Take a partial dump. Dump only the aborted program.

The FD parameter applies only to batch jobs. It is ignored if the DUMP card is
inserted in a priority program. The following information is provided in the dump.

1. Full dump, batch programt t

o All registers
e All register files

e All memory locations from address zero to the priority program area

7On mass storage, XFER writes the EOF mark on a new block. The block pointer
is left positioned at the beginning of the block containing the EOF mark.

t 1t In batch programs run with the extended core variant of MSOS, the loader converts return-
jump instructions that reference executive routines to HLT instructions that reference the
routines (refer to executive interrupts in section 18). These HLT instructions appear in
the core dump in place of the jump instructions.

60410600 A 4-23

2. Partial dump, batch program}

e All registers

e All register files

e All memory locations from the beginning of the common area to the
priority program area

3. Priority program dump

e All registers
o All register files

e All memory locations between the priority program's upper and lower
limits

If the operator terminates a program at the control console, he may select no dump,
a partial dump, or a full dump.

TAPE UTILITY ROUTINES

The tape utility routines must be called with a $UTILITY statement. After UTILITY
has been called, individual utility functions may be selected by name with control card
statements or operator statements at the console typewriter,

MSOS control statements ($ or 7/9 in column 1) and binary decks cannot be intermixed
with utility statements. Utility must be terminated with an END card before any new
MSOS control cards or binary decks can be input to MSOS.

$UTILITY,u, m
function, parameters

function, parameters
END

u Control unit. File number of the input unit containing utility func-
tion statements. The unit can be the card reader, a tape unit, or
the operator's console typewriter. Default value is unit 60
(standard system input file) if the statement is from card or tape.
Default is 58 if the statement is from the console typewriter.

If the console typewriter is selected, the input functions and END
statement must be typed by the operator. The format of the type-
writer input is described in the operator's guide.

m Message unit. File number that the output messages are printed
on. Only logical units 59 (CTQ) or 61 (system output unit) may be
selected. Default is 59 if the statement was typed at the console
typewriter; otherwise, default is 61.

function Name of function to be performed.

tIn batch programs run with the extended core variant of MSOS, the loader converts
return jump instructions that reference executive routines to HLT instructions that
reference the routines (refer to executive interrupts in section 18). These HLT
instructions appear in the core dump in place of the jump instructions.

4-24 ‘ 60410600 A

TAPE CONTROL FUNCTIONS

The following utility functions apply to tape drives only.

Function, parameters Description
REWIND,uy,...,u, Rewind file uy...u, to loadpoint
UNLOAD,uq,...,uy Rewind and unload file ujy...u,
FORWSPCE, u Space one block forward on file u
FORWSPCE,u,n Space n blocks forward on logical file u
BACKSPCE,u Backspace one block on file u
BACKSPCE,u,n Backspace n blocks on file u
SKFF,u Skip forward past one end-of-file mark on file u
SKFF,u,n Skip forward past n end-of-file marks on file u
SKFB,u Skip backward past one end-of-file mark on file u
SKFB,u,n Skip backward past n end-of-file marks on file u
WREOF,ul,uz, ...,u, Write an end-of-file mark on files uy...un¥
ERASE,u Erase bad spot (6 inches of tape) on file u
ERASE,u,n Erase n times in a row on file u
CHKDNS, u Check the density of file u and print one of the following
statements at the message unit:
Statement 7-track drive 9-track drive
IUTIL 010 LOW 200 bpi 800 cpi
IUTIL 010 MEDIUM 556 bpi 800 cpi
IUTIL 010 HIGH 800 bpi 1600 cpi
SETDNS,u,d Sets the density on file u
d 7-track density 9-track density
L 200 bpi 800 cpi
M 556 bpi 800 cpi
H 800 bpi 1600 cpi

COPY FUNCTION

The copy function copies files or file blocks from an input tape or card reader onto an
output tape, printer, or card punch. In addition, the input data may be listed on a printer.

COPY,uy,uy,u3,r,0p,...,0pP

uq File number of the input unit. May be a tape file or a card reader.
This parameter is required.

Ug File number of the output unit. May be a tape file, printer, or card
punch. No carriage control characters are provided for the printer
and the data is unformatted (carriage control and data is printed
exactly the way it is read from the tape or card reader). If only a
listing is needed, this parameter is omitted. However, its trailing
comma is required. This parameter is required if ug is not supplied.

1 An end-of-file mark is a 17, ([character) bracketed with interrecord gaps.

60410600 B 4-25

ug File number of the list unit. May be a tape file or a printer.
Printer carriage control characters are added before printing or writing
and the data is formatted for easy reading. If no listing is needed, this
parameter may be omitted. However, its trailing comma is required if
other parameters follow.

r The number of blocks or files to be read from the input unit. If an
F is affixed to the r, r indicates the number of files to be read. If
the F is omitted, r indicates the number of blocks to be read. R is
a one- to four-digit decimal number. Default is one file if the parameter
is omitted.

op Optional parameter string. These parameters and their trailing com-
mas are optional and may be punched in any order. When one is
omitted, both the parameter and its trailing comma must be omitted.
The parameters are as follows:

C Specifies I/O is in character mode at tape files u; and u,.
Omitted specifies I/O is normal word mode at tape files
u, and ug. The C is ignored for 9-track tape units, card
réaders, printers, and card punches.

N Allows writing on ug beyond the end-of-tape mark. If
omitted, the COPY function will terminate upon detection
of an end-of-tape condition at u,.

H or O H specifies u, output is formatted as Hollerith code.
O specifies ug output formatted as octal code. Omitting
this parameter specifies the records on ug will be for-
matted the same as the data read from the input file uy.

M Select BCD read mode for input file uj. Omitted specifies
binary mode. The M value is required only for 9-track
tape drives that use code conversion. For T7-track tapes,
the correct mode is automatically selected by the soft-
ware.

On the list file ug, BCD (or Hollerith) characters are printed 119 characters per line,
Octal digits are printed as 8 words (64 digits) per line with an octal word count at
the beginning of each line. An end-of-file mark is not written on the list file after
the last record on file is listed. Each line printed on ug is preceded by the record
(block) number and length.

If the list file is a tape drive, carriage control characters are added as part of the
input written on the tape. An end-of-tape mark on the list unit terminates the copy
function.

The block size copied from the input unit may vary from block to block. However,
the maximum size of a block is limited by the amount of core available for use by
the copy function. Before reading the first block, the copy function prints the maxi-
mum block size that can be read,

I UTIL 100 MAX REC SIZE n B

n Maximum block size in words (octal)

4-26 60410600 B

If a block exceeds the maximum size during copying, the following occurs.

1. The oversize block is copied with the excess characters truncated.

2. An informative diagnostic is printed on the message file.

3. Copying will continue normally.
After each file is copied and when the copy function terminates, the number of blocks or
files copied are written on the message unit as follows:

I UTIL 110 n BIN RECORDS COPIED

or
I UTIL 110 n BCD RECORDS COPIED

n Number of blocks copied (decimal)

Examples:
1. Copy 96 blocks from unit 1 to unit 2 with no list output.
COPY, 1,2,,96
or
COPY, 1,2,0,96
2. List 9 files on unit 3.
COPY, 1,,3,9F
or
COPY, 1,0, 3,9F
3. Copy 1 file from unit 1. Use character I/O and list the file in octal format.
COPY,1,2,3,1F,C,0O

VERIFY FUNCTION

The verify function compares the data on two tapes or a tape and card reader. All
no compare blocks are written on a third unit which may be a tape or printer,

VERIFY,ul,uz,ug,r,op, e eesOD

u,; and u The file numbers of the units containing the data to be compared.
1 2 .
May be tape or card reader. These parameters are required.

ug The file on which are differences are listed. May be any tape or
printer. If omitted, there is no difference listed.

r The number of blocks or files to be compared. If an F is affixed
to the r, r indicates the number of files to be read. If F is
omitted, r indicates the number of blocks to be read. R is a one-
to four-digit decimal number which must be greater than zero.
This parameter is required.

op Optional parameter string, These parameters and their trailing
commas are optional and may be in any order. When omitted,
both the parameters and the trailing comma are omitted.

C Character I/0O for files uq and us. Selects word I/0 if omitted.
Ignored for 9-track tapes, card readers, card punches, and
printers.

60410600 C 4-27

R Selects reverse reads (in word mode) at files u; and u
for the comparison. The loadpoint is counted as a file
mark. Omitted selects forward reads.

M Selects BCD mode for files u; and u,. Omitted selects
binary mode. The M value is required only for 9-track
tape drives that use code conversion. For T7-track tapes,
the correct mode is automatically selected by the software.

During processing, a descriptive diagnostic is written on file ug (message unit) if any
of the following comparison errors occur.

Error Message
Recording mode comparison I UTIL 102 MODE ERROR RECORD n
Word or character compare error I UTIL 103 CONTENT ERROR RECORD n
WORDx
Block length compare error I UTIL 104 LENGTH ERROR RECORD n
n Block number (decimal)
X Word number (octal)

Only the first six compare error messages per block are printed on OQUT. Then

verification of the next block starts. This process continues until all blocks are verified.

When the verify function terminates, or after each file is verified, the number of blocks
verified is printed on the message file.

If an end-of-file is encountered on file uy or uy, the following is sent to the message
unit.

I UTIL 105 EOF ABSENT u RECORD n
u u; or u,
n Block number

Processing continues as if it were a matching end-of-file. If an end-of-file is en-
countered on both units, the end-of-file message and the block count are sent to the
message file and to ug.

An end-of-tape condition on file ug causes termination of the list, but the verification
continues. An end-of-file mark is written on the file only if the list is terminated by
an end-of-tape condition.

Variable block sizes will be compared by the verify function. However, the maximum
block size that can be compared is limited by the amount of core that is available for
the verify function to use.

At the beginning of each verify run, the verify function prints the maximum block size
that can be compared on the message file.

I UTIL 100 MAX REC SIZEn

n Maximum block size in number of words (octal),

4-28 60410600 A

If the block size is exceeded, the block is truncated and the truncated portion is
not verified. An informative diagnostic is printed and normal processing continues.

Examples:

1, To compare a file on unit 1 with the file on unit 2 and list the file on the
system output file,

VERIFY, 1,2,61, 1F
2. To compare the first five blocks of a file on unit 27 with the first five blocks
on unit 36, and with no list output:

VERIFY, 27,36,,5

MASS STORAGE UTILITIES

The mass storage utility routines must be called with an MSUTIL statement. After
MSUTIL has been called, individual utility functions may be selected by name with
control card statements or with operator statements at the console typewriter.

MSOS control statements ($ or I in column 1) and binary decks cannot be intermixed
with utility statements., MSUTIL must be terminated with an END, SCOPE, or STOP
statement before any new MSOS control statements or binary decks can be input to

MSOS.

$MSUTIL, u
function, parameters

function, parameters
END

u Control unit. File number of input file for utility function statements.
The unit may be a card reader, a tape file, or the operator's con-
sole typewriter. Default value is file 60 (standard system input file)
if the statement was read from file 60, and 58 if the statement was
typed at the console typewriter.

If the console typewriter is selected as the control unit, the function
and end statements must be typed by the operator. The format of
the typewritten input is described in the operator's manual.

function Name of function to be performed.

60410600 B 4-29

PURGE FUNCTION

The purge statement scans the file label directory and releases all user files that have
reached their expiration date or a specified edition of a system library.

PURGE, ed, code

ed

code

Example:

Edition number. All system or auxiliary library files having edition
number ed are released. If this parameter is omitted, all user files
with an expiration date that is one day past the current date are re-
leased.

Combined MSOS system access and privacy code that was set at system
installation time. The access code must appear first and the two codes
must not be separated by a space or comma.

PURGE, A2, MSOSPRIV
PURGE, ,ACE/DUCE

ENTER FUNCTION

The enter statement enters a new device in the system by writing a mass storage device
label in the MSD file, a device label on track 0 for the device (refer to section 3), and an
R-label on class-R devices. f This makes the device available for use by the system.

To enter a device nonclass-R:
ENTER, ,dt/dn,,,,lta, hta, exid

To enter a device as class-R:
ENTER, R, dt/dn, lra, ntr, pass-code, lta, hta, exid

dt

dn

lra

ntr

Device type. It may be any of the following hardware type numbers.

813
814
841
853
854
863

Device number may be any decimal identification number between 1 and 262143
that the user wishes to assign and which is unique to this device.

First track number reserved for the R-label on class-R devices. A 1- to 5-
digit decimal number. Must be equal to or greater than the lta parameter. 1T

Number of tracks to be reserved for the R-label on class-R devices.fTA 1- to
3-digit decimal number with range of 1 to 511, The number of tracks needed
for the R-label can be calculated as follows:

Device
841 ntr = (3+2NF) <+ 14
853 ntr = (2+44NF) =+ 16
854 ntr = (3+4NF) + 16
813 ntr = (12+4NF) +32
863 ntr = (2+4NF) <+ 16

NF is the maximum number of files to be allocated on the device.

T R-label may be placed any where on the device above track zero.
ft1lra + ntr < hta +1.

4-30

60410600 C

pass-code A 1- to 8- character alphanumeric security code which is written'into the de-
vice label on class-R devices.T Blanks are written for the default case.

lta Lowest track address that may be assigned to user file. Default is track 1.

hta Highest track address that may be assigned to a user file. If omitted, the
default value is the last track on the device. Refer to the description of the
allocate card for a list of the number of tracks on the different device types.

exid A 1- to 6-character alphanumeric external identification code. The code
is written on the outside of the pack for identification. If the code is o-
mitted in the statement, the operator is reguested to supply a code at the
console typewriter.

Examples:

ENTER, R,841/32,1,3,,1,, RIVETS
ENTER,, 841/33,,,,,, FILE6
ENTER,, 841/34

When MSUTIL reads an ENTER statement, it searches for a device without a label that is on
the type of drive specified on the ENTER statement. MSUTIL asks operator permission to
enter the first such device found. Searching continues if the operator rejects the first request.

If a device cannot be located, the operator is requested to specify the drive that contains the
device to be entered or to mount a new device.

DELETE FUNCTION

The delete function removes the device label from the mass storage device label file
(MSD file). The device is no longer accessible by MSOS.

DELETE, dn/dt
dn/dt The device number and device type used to enter the device.

All files on a device must be released before a device can be deleted. The files on
the device that need to be saved can be dumped, released, reallocated, and loaded on
a different device.

DUMP FUNCTION

The dump statement dumps a mass storage file onto a tape. This function may be
used for backup purposes, or when used in conjunction with the load function, to re-
organize space on a device so that all available space is in one contiguous area. A
file must be opened before it can be dumped. The dump function dumps all segments
of a segmented file.

DUMP, lu, fo

lu Tape file that the mass storage file is to be dumped on.

fo File number of the file to be dumped.

The file label from the LABELFILE (appendix G) is dumped on unit lu as part of
the tape header label, The format of the header and trailer labels are shown in
Figure 5-2. This format is compatible with the MASTER operating system. A file
dumped by MSUTIL dump function can be loaded with a MASTER *FMU LOAD card.

Example:

DUMP, 20,21
T Pass code is for compatibility with MASTER systems. It is not referenced by MSOS.

60410600 C 4-31

WORD |
WORD 2

WORD 3

WORD 240
WORD 241
WORD 242
WORD 243

WORD 244

WORD |

WORD 2408

4-32

WORD |

WORD 2048

WORD |
WORD
WORD
WORD
WORD
WORD

oM HUN

WORD 20

HEADER LABEL

F H 0 R
FILE
‘ LABEL

NO. OF 2048 WORD
BLOCKS IN DUMPED FILE

TOTAL NUMBER OF RECORDS
IN DUMPED FILE

NO. OF RECORDS PER
DUMP BLOCK

RECORD LENGTH (WORDS)

DATA BLOCK 1

DATE BLOCK N

TRAILER LABEL

| EOF_MARK]
E 0 F A
A A A A
M A 5 T
€ R A]
| U M P i}
F [L E
A A A A
A —
A
CATATA A
L EOF_MARK]

Each data block is 2048 words long.
The number of records per block is
dependent upon the device type as
follows:

Device Records/Block

853
854
863
813
814
841

- DD DN

When the DUMP file is written, the
trailer label is written and the tape
is backspaced past the first EOF.
Thus, if another DUMP request is
made, that file is written over the
trailer., In this way, a string of
dumped files are written with one
trailer,

Figure 4-1, MSUTIL File Dump Format

60410600 A

LOAD FUNCTION

The load statement loads files from tapes that were written in the MSUTIL dump for-
mat. The dump may have been taken by either the MSOS or the MASTERT operating
system.

LOAD, 1u, fo

lu File that the dump tape is mounted on.
fo File number of an open mass storage file into which the dump is loaded.
The load function searches the tape for a file with a header label that matches the file

label for file fo. The load function then loads the file from file lu into the mass
storage file area allocated for file fo.

To allocate a new file, the old file must be released and a FET, ALLOCATE, and OPEN
statement used before reloading the dumped file. The following descriptions for the new
file (file fo) must match those on the tape file header label.

Name

Owner

Edition

Device type

Access privacy code

Modification privacy code
The block size must be the same as in the original mass storage file, and the number
of blocks allocated must be equal to or greater than the number of blocks written on
the old file or an error message occurs.
The sequence for reorganizing files on a device is as follows.

1. Open all of the files on the device,

2. Dump all files.
3. Release all dumped files,
4., Re-RAT, re-FET, re-ALLOCATE, and re-OPEN each of the files.
5. Load each of the files.
Example:

LOAD, 20,21

LIST MSD FUNCTION

‘The LIST MSD statement lists all or part of the entries in the mass storage device
label file.

LIST,lu, MSD, dt/dn
or
LIST,lu, MSD
1u Logical unit for the list output.
dt/dn Device type and device number to have its label listed. If dt/dn is omitted,
the labels for all devices in the system are listed,
tWith an *FMU Dump Card.

60410600 A 4-33

A storage map is also provided with each label. The storage map is a list of each as-
signed and unassigned (available) track on the device.

LIST FLD FUNCTION

The LIST FLD statement lists all or part of the entries in the mass storage LABELFILE
in the order that they appear on the file.

LIST,lu, FLD, dt/dn

or
LIST, lu, FLD, owner, name, edition
or
LIST, lu, FLD, owner
or
LIST,lu, FLD
lu File number for the list output.
dt/dn Device type and number. If this parameter is used, the labels of all

files and file segments on the device are listed.
owner The file owner name, f ‘
name The file name. f

edition The edition number of the file.
If a file name, owner, and edition number is specified, only the label for that file is
listed. If the file name and edition are omitted, labels for all files with the specified
owner name are listed. If owner, name, edition, and dt/dn parameters are omitted,

the entire label file is listed. The access and privacy codes are omitted from the file
label listings.

MAP FUNCTION

The MAP statement provides a map of the track usage of a specified mass storage
device.

MAP,lu, dt/dn

lu Logical unit (or file) the map is listed on.
dt Mass storage device type.

dn Mass storage device number.

The map consists of a listing of the file label directory (IDFILE) entries for each
file on the device. The file label entries are sorted by track numbers,

Example:

MAP, 61,854/803

tRefer to FET card for description of owner and name.

4-34 60410600 A

D 00901%09

Se-¥v

JHNER

RTS-MSIC
RTS=MSIC
FTS=MSIC
MSOS
RTS=MSIC
RTS=MSIC
RTS=MSIC
RTS=-MSIC
MSOS
+SOS
MSO0S

"RTS=MSIC

RTS=MSIC
RTS=MSIC
RTS=-MSIC
MSOS

RTS=MSIC
RTS=MSIC
RTS=MSIC
RTIS=MSIC
¥ FREE *

OWNER

FILe NAM:

LABELFILE
19FILE
MSCFIL:
L-MS IO
RESFILE
BESFILE
LIBDIRFILE
LISFILE
FILESY
FILESS
FILESS
ABSFILE
RESFILE
LIBFLLE
LIBDIRFIL.
ALXLIB
AGSFILE
RISFILE
LIBFILE
LIBDIRFIL:

FILE NAME

FREE
ED
C-DATE
E-DATE
L-DATE
USE-CT
F-SIZE
B-SIZE

E0 C-0AT:
09 A Q=
00 A J=
90 A -

93 08-01~73
SS 08-21-74
SS (6=21-74
SS 06-21-74
SS 0e=21-74
00 04~17-74
00 04=25-74%
00 04-17-74
SX 07+15-74
SX 07-15-74
SX 07-15-74
SX 07=16=-74
00 07-15-74
EX 07-15=74
EX 07-15-74
EX 07=15=/4
EX 07=15-74

Name of the file owner
Name of the file,
Unused tracks.

The
The
The
The

file edition.

file creation date.

file expiration date,

last date the file was used,

E-DATE

86-07-38
86=-07-38
85-07-38
99-99-99
99-99-99
¢9+~99-99
99-99-¢9
93-33-39
99-99-¢99
99-99-99
G4=17=74

93-83-83

99-99-99
€9-¢9-99
€9=-99-99
99-93-93
99-99-99
99-99-99
€9-99~-99
93-99-99

The number of times the file was used.
file size in tracks, including all segments

The
The

block size used in the file,

Figure 4-2,

L-CATE

A 0=
A Q0=
01-41=74
06-15-74
07-15-74
07=15=74
07=15-74
07=15=74
06-16-T4
03=16=-74
06-1€-74
07=-15+74
07~15=74
07=138=74
07-15=74
07=15=-74
07-15=-74
07-15=74
07-15=-74
07=15=74

USE-CT F-SIZE B-SIZE BLK-CT SEG-CT SEG GT ON LTL st
0 60 392 24 1 1 854 8541 2 €0
] 6 %480 2 1 1 854 @541 62 6
¢ ? 4 5 3 1 854 8541 1] 7

1574 15 1280 0 1 1 854 8541 75 "15
2 9 4 138 1 1 854 &s56t 90 9
3 27 4 429 H 1 854 e5t1 99 114
-3 t 500 3 3 1 854 E541 126 1
3 86 960 244 p 1 854 €541 127 86
5 200 512 0 1 1 854 8541 213 200
3 450 512 0 1 1 B854 €541 413 LEQ
4 100 960 0 1 1 854 8541 863 10
1 154 4 2463 1 1 854 e544 963 154
1 9 4 137] 1 854 8541 1147 9
1 274 980 1095 1 1 854 8501 1126 274
1 “ 500 30 1 1 854 8541 14007 K
2 58 960 z30 H 1 854 8541 1804 58
z 28 b 443 1 1 854 8541 1462 28
H 10 4 149 3 1 854 8541 1490 10
z 87 960 345 1. 1 BS54 g541 1500 e7
e 1 500 3 b1 1 854 8541 1587 1

BLK-CT

SEG-CT
SEG

DT
DN
LTL

SL

Sample Device Map

e541 1588 k42

The block count. The highest block number
written,

The number of segments the file is divided into.
Which segment this entry is for. Each file
segment has a separate entry.

The type of device the files are on.

The number of the device containing these files.
The track number that the file, or the segment
of the file, starts on.

The number of tracks or segments in the file.

SAMPLE JOB DECKS 5

BATCH JOBS

The following are examples of MSOS control statements used to compile, load, and
execute batch programs,

1. Assemble a COMPASS program, punch a binary program deck (object program),
and print a COMPASS output listing at the system list output unit.

$JOB,ACT1, ASSEMBLE, 10 Job name is assemble; ACT1 is account
number, 10 is time limit
$COMPASS, P, L Library program name card calls the
(COMPASS subprogram deck 1) COMPASS assembler from the library to
. assemble the program and punch a binary
. output deck. t
(COMPASS subprogram deck n)
FINIS End -of -COMPASS program decks.
77 End-of file card.
88
$EQJ End-of -job, print job accounting informa-
tion,

2. Execute the object binary program deck produced by the COMPASS assembly
in example 1. Open a mass storage input file and an output file for the job.

$JOB,ACT1,SCHEDULES, 10 Job name is schedules.
$DUMP Dump program if job aborts.
$FET,SUE, UPDATES, 640,1, PRVl Job input file.

$OPEN, 10,1 Open the input file,

$FET, BEVERLY,SCHEDULES, 640, Job output file.
2, PRV2,MPV2

$EXPAND, 100 Expand and open the output file,

$OPEN, 11 COMPASS program deck from the assemble
(Binary deck with IDC header card) job.

$RUN Execute program.

$FET, BEVERLY,SCHEDULES, 640
2,PRV2,MPV2

$CLOSE, 11 Close schedule file.

$RELEASE, UNUSED Release unused tracks on output file.
77

88

$EOJ

tRefer to the COMPASS Reference Manual for a description of the COMPASS card.

60410600 B 5-1

3. Compile an ANSI COBOL program, write object code on a mass storage file,
and print a COBOL output listing av the system output unit.

$JOB,ACT1, TIME~-CARD-PROCESSOR, 1

$RAT,841/20,841/21 Select devices for output file.
$FET,LINDA, TIME-CARDS, 960. 1, Defines an LGO output file. LGO file
PRV3,MPV4 block size must always be 960 char-
acters.
$ALIL.OCATE, 10, 741231, ,, 841 Allocate output file.
$OPEN, 12 Open output file.
$UCBL, L,X=12 Library program name card writes

object code on file 12, t
(COBOL program decks)
FINIS End of COBOL program,

T
88

$EQJ

4, Execute the COBOL program compiled in example 3, using the output file pre-
pared by the COMPASS program in example 2 as the input file, Write output
on a tape file.
$JOB, ACT1, NEW-SCHEDULES
$FET,BEVERLY,SCHEDULES, 640, 2, Define output file from schedules job

PRV2, MPV2 as the input file,

$OPEN, 13,1

$FET,LINDA, TIME-CARDS, 960, 1, Use the output file from the time card
PRV3,MPV4 processor job as the COBOL object

program file,

$OPEN, 14

$EQUIP, 20=MT Define unit 20 as a magnetic tape.

$LOAD, 14 Load COBOL program,

$RUN Execute COBOL program.

77

88

$EOJ

tRefer to the ANSI COBOL Reference Manual for a description of the UCBL statement.

5-2 60410600 A

5. Compile and execute an ANSI FORTRAN program. Prepare a punched output
deck of the object program. Use an auxiliary library for object-time routines
and use tape units for input data and the output file.

$JOB,ACT1,F21-PROJECT
$CTO, MOUNT F21-INPUT TAPE ON

DRIVE 3
$EQUIP,20=-MTC1E1U03,21=MT 20=input file; 21=output file.
$UFORTRAN, X,L, P Write object code on load-and-go file
(FORTRAN program deck) (file 56), and punch a binary object

FINIS program deck.t

$FET, MSOS, AUXLIB, 960, 1, UF Define auxiliary library file.
$OPEN, 10 Open auxiliary library file.
$AUX, 10
$LOAD, 56 Load object code in core.
$RUN Execute object code.
$UNLOAD, 21 Unload output tape.

$PATUS, MARK TAPE F21 AND STORE Pause so operator can remove the F21 I

tape.
$UNLOAD, 20 Unload input tape.
77
88
$EOJ
$JOB... Next batch job.

6. Compile an ANSI FORTRAN program. Absolutize the object code and place the
absolutized code on a mass storage file for quick loading by ABSTSK. Do not
execute the job at this time,

$JOB,ACT1, ACRONYM-GENERATOR, 10

$RAT, 841/21 Select a device for the absolutized
FORTRAN object code file.

$FET,NANCY,ACRONYMS, 640, AX, Define an output file for absolutized

PRV6, MPV6 FORTRAN object code,

$ALLOCATE,B40, 741231, ,NOSEG, 841

$OPEN, 22 Open file for absolutized binary object
code,

$XFER, 56 File 56 is load and go scratch. XFER
transfers only binary cards.

M22 MAIN overlay header card.ftt |

iRefer to the ANSI FORTRAN Reference Manual for a description of the UFORTRAN
statement.

t tThe MAIN overlay header card specifies on which file the loader will assemble the
absolutized program before loading the program in core. If the MAIN card is omitted,
the loader uses scratch file 55. Refer to section 7 for a description of the MAIN
overlay card.

60410600 B 5-3

5-4

$UFORTRAN,X, L

(FORTRAN program deck)
$LOAD, 56, M

s
88

$EOJ

X parameter writes binary output on
file 56.

Acronym generator program

Dummy load to assembly absolutized
code on file 22 in accordance with the
MAIN card.

‘Prepare an absolutized binary program from a relocatable binary program deck and

place the absolutized program on a mass storage file for quick loading by ABSTSK.

$JOB,ACT 1,QUICK-UPDATE, 10

$FET, PUBS, UPDATE, 640, 01, PRV7,
PRVT7

$ALLLOCATE,B10, 741231, ,NOSEG, 841

$OPEN, 25
$LOAD

M25

(Binary deck with IDC header card)

7
88

$EOJ

Execute an absolutized program file.

$JOB,ACT1,LOCATE-MANUAL, 20

$FET, TONI, PUB-NUMBERS, 640,
APVI, MPV9

$OPEN, 26

$ABSTSK, 26, P1,..., PN

(data cards)

(i
88

$EQJ

Allocate and open a file for the
absolutized program.

Dummy load to assemble absolutized
code on a file,

MAIN overlay header card specifies
file 25 for absolutized object code,.

Program deck

Open file containing absolutized program,

I.oad absolutized code from file 26.
P1 through PN are parameters passed
to the program.

Optional

60410600 B

INITIALIZING PRIORITY PROGRAMS

The following are examples of jobs which load and initialize priority programs in core.
Refer to section 15 for additional description of priority program loading.

1. Assemble a COMPASS program and load it as a priority 2 program.

$JOB,ACT1,BUZZWORD-DECODER, 10

$FET,JOY, DECODER, 960, AY, PRVS, 960 -character block required for LGO
MPVS8 files.

$ALILOCATE,B10, 760604, , NOSEG

$OPEN, 23

$COMPASS, X=23,L,R X parameter puts LGO output on file 23.
(COMPASS deck)

$CLOSE, 23

$RELEASE, UNUSED

77
88

$EQJ

$ PRIORITY, P2

$FET,JOY, DECODER, 960, AY, PRVS

$OPEN, 26

$LOAD, 26 Load priority program.
$RUN Initialize priority program.

77
88

$EOJ

2. Load a priority program from a relocatable binary deck.
$PRICRITY, P4 Relocatable binary deck with IDC header
(binary deck) Program deck I

$RUN

77
88

$EOJ

60410600 B 5-5

UTILITY FUNCTIONS

The following are examples of using the MSOS storage utility functions to copy, print,
dump,

5-6

1.

and load files.

Print a tape file,

$JOB, ACT3, PRINT

$CTQO, MOUNT LIST-A TAPE ON DRIVE 3

$EQUIP, 6=-MTC1E6U3

$UTILITY

COPY,6,,61,1F File 61 is system output file,
END

7
88

$EOJ

Copy a card deck onto a mass storage file and print a second card deck which
follows the first deck.

$JOB,ACT3, COPY~-REPRINTS

$RAT,841/20 : ?;{ecify a mass storage device for the
ile.

$FET, PAT,REPRINTS, 960,R1,APV2,

MPV2

$ALI.OCATE, 100, 760704, NOSEG, 841

$OPEN, 44 Open reprints file,

$XFER, 44

(Reprints deck)

$CLOSE, 44

$RELEASE, UNUSED Release all space not written on in the
reprints file,

(ki Task separator, optional.

88

$UTILITY Second group of tasks in the job,

CcCOPYvY,60,,61,1F
(List deck)

X
88 EQF indicates end of the file being copied

END

71
88

$EOQJ

60410600 B

3. Punch a tape file.
$JOB,ACT3, PUNCH
$CTO, MOUNT PERS-23 TAPE ON DRIVE 3
$EQUIP, 21=-MTC2E 7U3
$UTILITY
COPYv, 21,62,,1F 62 System punch unit.
END

77
88

$EOJ
4. Copy a tape with 25 files and verify the results.

$JOB, ACT3, COPYFILES

$CTO, MOUNT FILES-A TAPE ON TAPE
DRIVE 1.

$PAUS

$EQUIP,01- MTCOE1U1, 02=MT 01 Tape with files; 02 new tape. [
$UTILITY

COPY, 1,2,,25F Copy from tape 1 to tape 2.

VERIFY 1,2,61,25F,B Compare tapes 1 and 2 in back-
wards mode., Write compare
errors on file 61,

UNLOAD, 1,2 I
END

77
88

$EOJ

60410600 B 5-7

Dump and reload three mass storage files on the same device in order to re-
claim unused (released) tracks between files and make all files contiguous.

$JOB,ACT3,REALLOCATE

$FET, HARRY,BLONDS, 640,6,A1,A1 Define first file on the device.
$OPEN, 1 .
$FET, HARRY,BRUNETTES, 640,3,B,B Define second file on the device.
$OPEN, 2

$FET, HARRY,RED-HEADS, 640, 1,C,C Define third file on the device.
$OPEN, 3

$EQUIP, 10=MTC1E1U3 Dump tape.
$MSUTIL

DUMP, 10, 1

DUMP, 10, 2

DUMP, 10,3 Dump redheads.
END

$CLOSE, 1

$CLOSE, 2

$CLOSE, 3

$FET, HARRY, BLONDS, 640,6,A1,A1

$RELEASE, ALL

$FET, HARRY, BRUNETTES, 640,3,B,B

$RELEASE,ALL ‘

$FET, HARRY,RED-HEADS, 640,1,C,C

$RELEASE,ALL

$REWIND, 10 Rewind dump tape.
$RAT, 841/20 Select same device for new files,
$FET, HARRY, BLONDS, 640,6,A1,A1

$ALLOCATE, 200, 760704, , NOSEG, 841 Reallocate blonds.
$OPEN, 4

$FET, HARRY, BRUNETTES, 640, 3, B, B

$ALLQCATE, 75, 760704, , NOSEG, 841

$OPEN, 5

$FET, HARRY,RED-HEADS, 640,1,C,C

$ALLOCATE, 25, 760704, , NOSEG, 841

$OPEN, 6

$MSUTIL

LOAD, 10,4

LOAD, 10,5

LOAD, 10,6

END

77

88

$EQJ 60410600 B

RELOCATABLE BINARY PROGRAM DECKS 6

L

BINARY DECKS

The compilers and assemblers used with MSOS produce assembled output (object code)
in relocatable binary format. The relocatable binary output may be directed to the
card punch to produce punched card output, or the output may be written on a mass
‘'storage file or a tape file.

The relocatable binary output for each program consists of a separate deck for each
subprogram in the program. Fach deck is headed by an IDC (identification) card and
ended with the TRA (transfer address) card., FEach deck may contain symbolic reference
to addresses in other subprograms and to library routines. The library routines are
loaded and linked when the program is loaded for execution.

To execute a program, the relocatable binary output deck must be input to the reloca-
table loader (refer to section 9). The relocatable loader converts the relocatable ad-
dresses to absolute binary addresses, and loads the program and all referenced library
routines in core for execution. The LOAD card calls the loader which loads the pro-

gram decks following the LOAD card, or loads programs from a file specified on the
LOAD card.

RELOCATABLE BINARY CARDS

There are three types of relocatable binary card images.

1. Cards produced by the assembler or compiler
2. Optional cards that are punched and inserted in the deck by the operator

3. Overlay cards used as headers when overlay and overlay segments are used
in a program

The following is a summary of the binary cards produced by the assemblers and com-
pilers.

IDC card Program identification card produced by the compiler or assembler.
It must be the first card in each subprogram deck. The only
exception is the overlay cards used with program overlays.

RIF card Relocatable information card. Contains 32 relocatable binary
instruction or data words per card.

EPT card Entry point card. Contains symbolic entry point names that may
be used as entry points in the subprogram by the other subprograms.
Fach name is followed by its relocatable address. Library sub-
programs and routines are called with the entry point name used
on the first EPT card in the deck.

60410600 A 6-1

XNL

BDT card

I.RL card

TRA card

External name and linkage card. Lists external symbolic addresses
referenced within the subprogram. These addresses may be entry
points in other subprograms or in library routines.

Blocked data table card. Contains name and length of each labeled
data block field used in the program. Produced only for ANSI
COBOL or ANSI FORTRAN programs. Labeled data blocks are
illegal in all but these programs.

Local reference list card, When a program references a sym-

bolic address before the address is defined, the compiler or as-
sembler produces an LRL card for the symbolic address. The

LRL card contains the relocatable address that defines the sym-
bolic address.

Transfer address card. Indicates the end of a subprogram deck.
Must be the last card in each deck. If the subprogram contains
the program's main or secondary entry point, the symbolic entry
point name appears on the TRA card.

The following cards are punched for output deck identification purposes. The identifica-
tion information is punched in large legible block letters across the center of the card,

Job sequence
card

Flip card

Job sequence number. Last card punched in a job output deck.
Contains the sequence number of the job that punched the deck so
that the job's list and punch output can be matched. This card is
offset and can be used as an end-of-file card.

First two cards punched in an MS FORTRAN binary output deck,

First flip card contains the subprogram name and the second file
card contains the compilation date and the library edition number.
This card is ignored by the relocatable loader.

The following is a summary of the binary cards that may be punched and added to
a subprogram deck by the operator.

LLED card

EXS card

ELD card

SNAP card

OCC card

Loader equipment declaration card. Assigns a logical I/O unit to
a specific hardware unit (by channel, unit, equipment number) or
to a specific hardware type (by hardware type number). The
special I/O unit assignment applies only for the program being
loaded.

External symbol card. Declares additional symbolic addresses or
library routines as external to the subprogram, or equates several
external symbols to the same entry point in another subprogram.

End load card. Indicates the end of the deck being loaded from the
card reader. Does not indicate end-of-job or end-of-file, Follows
a TRA card. Can be used only when a program calls the loader
to load a binary deck from the card reader.

Snap dump card. Produces dumps of user specified memory
locations while the program is in execution.’

Octal correction card. May be used to change the contents of any of the
memory addresses in the program while the program is being loaded.
The change applies only to the current load. Provides a quick program
fix without recompiling the source deck.

60410600 A

The following binary cards are used in overlay programs. These cards are the headers
for the main, overlay, and segmented sections of the overlay subprograms. They pre-

cede the IDC card in each subprogram. The overlay cards are described in detail in
section 7,

Main card Indicates that the subprogram following this card is the main pro-
gram,
Overlay card Indicates that the subprogram following this card is an overlay

section of the main program.

Segment card Indicates that the subprogram following this card is a segment of
an overlay of the main program.

IDC CARD

The IDC card is the subprogram identification card. It must be the first card in the

subprogram deck, with the exception of overlay cards (refer to section 7). In addition
to the subprogram name, the IDC card specifies the subprogram length, the data area
-length, and the common area length. 1In a deck containing more than one subprogram,

the first data area size specified on an IDC card is the maximum size that can be used
in any of the remaining subprograms.

In addition to supplying the subprogram name and core requirements, the IDC card
causes MSOS to call the relocatable loader which absolutizes the relocatable addresses
and loads the subprogram following it for execution.

-~ c cL{pL|ooO N

H PROGRAM {0 E|A E DATE (o]

w g | NAME M N|[T N[NOT AND T
]| ¢ M 6| A 6|useD EDITION

Al K oT| T v

- s N H H s

. u E

M D

it T3 15 s i i3 lis's 54" T80

60410600 A

Field

A
columns

columns

columns

columns

columns

columns

columns

columns

Example:

3 and 4

5 through 8

9 and 10

11 and 12

13 and 14

15 through 50

51 through 54

Significance
Six-bit field that contains 41g (octal)., Identifies the card
as an IDC card,,

Three-bit field that contains an octal 5 or 7. A 7 indicates
loader should not make a checksum test using columns 3

or 4. A 5 indicates the loader would make a checksum
test using columns 3 and 4.

15-bit field that contains the subprogram length in words.
The most significant digit (msd) is in column 1.

24-bit sum of columns 1, 2, and 5 through 80. An end
around carry is used if overflow occurs.

Subprogram name. 1 to 8 internal BCD characters left
justified. If the name has fewer than 8 characters, octal
60's complete the field.

Number of storage locations reserved for common memory;
must be unpunched in priority program.

Number of storage locations reserved for data.

A one or a zero (punch or no punch) in the top row of both

columns indicates starting address of common memory.

0 Starting address of common memory not adjusted,

1 Starting address of common memory adjusted to follow
MSIO overlays.

Not used.

Date and edition (optional) mmddyyed (refer to ACCOUNTS
Table, section 16,

55 through 80 Not used.

4|0 ololoflo|1 {1 ololo]|i

C ISIMIY|> —
lsg olt|o|2]{o]o o{1|{7]1

c =
12| x ololo|o|olo 1{ofo]1

S fa|m|e|> -
53] » ololofolofo]|Ylo]|elo]t
3 7 9 W 1B 15 5 54 80

The subprogram SAMMYS is 10623g words long; common memory is 100g words long and

data is 200g words long.

The common memory starting address is adjusted. The date is

8/16/70 and edition number is 99.

6-4

60410600 A

RIF CARD

The RIF card contains up to 32 24-bit relocatable binary instruction or data words, and
a 4-bit relocation character for each word. The relocation character specifies how its
corresponding word is to be relocated. These cards may appear in any order in the

subprogram deck,

-~ c |p
H |D B
w E L
c REL K WORDS
Al K N
s
c U
M
] 5 16 'so

Field

columns 3 and 4

PD

60410600 A

Six-bit field that identifies the card as an RIF card and

specifies the number of instruction or data words on the
card. May range from 1 to 40.

Three-bit field that contains an octal 5 or 7. A 7 indi-
cates the loader should not make a checksum test using
columns 3 and 4. A 5 indicates the loader should make
a checksum test using columns 3 and 4.

15-bit field containing the relocatable address of the first
instruction or data word on the card. The address of the
second word is a +1, the third word is a +2, etc. The
msd is a column 1,

When the subprogram is relocated, the relocation address
is supplied by the loader and added to this address.

24-bit sum of columns 1, 2, and 5 through 80. An end-
around carry is used if overflow occurs.

Four-bit field which specifies whether field A contains a
program address or a data address. A 2 indicates a
program address, a 3 indicates a labeled data address,
and a 4 indicates a data address.

6-5

Field Significance
REL Contains one four-bit relocation character for each instruc-

tion or data word on the card. Modification of each word is
in accordance with its relocation character as follows:

Relocation
Character Significance
1000 Indicates that data block increment (or data
block decrement) is to be changed by the fwa
(or complement fwa) of a new block.
0000 Unused; constitutes an error.
x001 No modification (absolute address).
x010 Instruction; increment relocation address
with bits 14 through 00 of the word.
x011 Common block; increment relocation address
with bits 14 through 00 of the word.
x100 Data block; increment relocation address
with bits 14 through 00 of the word,
x101 Instruction; decrement relocation address
with bits 14 through 00 of the word.
x110 Common block; decrement relocation ad-
dress with bits 14 through 00 of the word.
x111 - Data block; decrement relocated address

with bits 14 through 00 of the word.

In each word that x=0, the modified 15-bit relocated word
address replaces the old address in bits 14 through 00,
In each word that x=1, the modified 17-bit character ad-
dress replaces the old address in bits 16 through 00.

BLKN Contains block number for relocation of labeled data.

columns 17 through 80 Up to 32 storage words. The address portion of the
first word (bits 14 through 00) is modified according to
the first relocation character in the relocation field; the
address field of the second word is modified according
to the second relocation characters, etc.

6-6 60410600 B

Example:

F‘
P—
olo 0| i1|7]lolo]e]|o]alo
o[
(2} am | EE]
al3l B 1l 25|« 73| 1lolo]2]o
» o]]-3%
[-4 I'-I‘I:
o|o] * [iTol|3e|7|7|ofofo]o]of3
0
o 0]
s 7|s]o]lololi]ol3
1
1 3 5 17 25 8o
- v J__ y /
UNUSED STORAGE WORD UNUSED STORAGE WORD
RELOCATION INFORMATION INFORMATION AREA
Relocatable .
Address Relocation Character Relocatable Word
00300 0001 14777775
00301 0010 03000100
00302 0011 40000001
00303 1100 42000033

If the loader relocates the subprogram so that:
Program starts at 60000
DATA starts at 57400
COMMON starts at 4000

The results after relocation are:

Address Word
60300 14777775
60301 03060100
60302 40014002
60303 42276033

EPT CARD

The EPT cards list the symbolic names of the entry points in the subprogram. Each
entry point is followed by its relocatable address. Other subprograms must use one
of these addresses to enter the subprogram. These cards may appear anywhere in the
subprogram deck, but must be in correct sequence.

60410600 A 6-17

When a subprogram (or routine) resides on the system library or an AUX library, one
EPT card must be located between the IDC card and the first RIF card. This EPT
card contains the primary entry points that are the names used to call the subprogram
from the library. A subprogram cannot be called from the library unless it has a pri-
mary entry point. All other entry points are secondary entry points and can be refer-
enced only after the subprogram is loaded.

C §

W H ;
E ENTRY POINT
C NAMES AND

A K RELOCATABLE

S ADDRESSES
v

LRERE 's0

Field Significance

W Six-bit field that contains an octal 42. Identifies the
card as an EPT card.

C Three-bit field that contains an octal 5 or 7. A 7 in-
dicates the loader should not make a checksum test using
column 3 or 4. A 5 indicates the loader should make a
checksum test using columns 3 and 4.

A 15-bit field that contains the card sequence number. The
field contains a zero for first card, a one for second card,
etc. Column 1 is the most significant digit of the number.
Cards must be in correct sequence,but do not have to be
next to each other. The cards may be anywhere between
the IDC and TRA card.

columns 3 and 4 24-bit sum of columns 1, 2, and 5 through 80. An end-
around carry is used if overflow occurs.
columns 5 through 80 Variable length fields, each containing an entry point

name in BCD and its address. An entry point name
may be 1 to 8 alphanumeric characters, when it is fewer
than 8 characters. 728 terminates the field.

The address field for each entry point name begins after
the last character of the name or after 728 and is 18
bits long.

6-8 60410600 A

The address, with any leading zeros, occupies the-least significant 15 bits of the field,
Bits 18 through 16 are always zero, because entry points cannot be character address.
An entry point name and address field cannot be continued from one card to another.

Example:
4|0 C 0|3 o|6 5 7
H |A|PIATI EIlA A(M|R]Y | Z|D °
2|0 (E: 714 62 4q 515
K
ol0| s o] 0 o|7 7
U ILH|2|aH4B|[T|aFG|M|A]A Al
s5lo| M o i 5|3 6
Entry Point Name Address
ALPHA21 : 70034
BETA 60162
GAMMARAY 55473
ZED 57675
XNL CARD

The XNL card lists external entry points in other subprograms or library routines
that are referenced in the subprogram. '

" H
E EXTERNAL
c NAMES
K

A

S

-

c U
M

I 3 5 g0

60410600 A 6-9

Field Significance
W Six-bit field that contains an octal 43. Identifies the
card as an XNL ‘card.

C Three-bit field that contains an octal 5 or 7. A 7 in-
dicates the loader should not make a checksum test
using columns 3 and 4. A 5 indicates the loader should
make a checksum test using columns 3 and 4.

A 15-bit field that contains the card sequence number. The
field contains a zero for the first card, a one for the
second card, etc. Column 1 contains the most significant
digit of the number. The cards must be in sequential
order in the subprogram deck but may be spread anywhere
between the IDC and the TRA card.

columns 3 and 4 24-bit sum of columns 1, 2, and 5 through 80. An end=
around carry is used if overflow occurs.

columns 5 through 80 Variable length fields, each containing an external name
and the last address in the subprogram at which the ex-
ternal name is referenced. An external name may be one
to eight alphanumeric characters; when it has fewer than
eight characters, it is terminated by a 728’

The address field for each external name begins after

the last character of the name or after 72g and is 18
bits long. The address, with any leading zeros, occupies
the low order 15 bits of the field., The most significant
three bits are zero for the word address and nonzero for
a character address.

If the symbol is declared external, but is not referenced in the subprogram, the ad-
dress on the XNL card is 777778.

The address given on the XNL card may specify another location in the same subpro-
gram where reference is made to the external name. A series of reference addresses
is called an external string. The low order 15 bits of the last entry in the string con-
tain TT177g. External strings may run in any order through the subprogram.

All external references are to subprogram relocatable word addresses. However, the
external reference may be made by either a word- or character-type instruction. Entries
in a string may be from both word-type instructions and character-type instructions.

XNL cards may occupy any position between the IDC card and the TRA card in a pro-
gram deck. An exception is, when the binary deck is loaded from the system or
auxiliary library file, the XNL card must follow the first EPT card. An external string
may refer to previously encountered external symbols only after the relocatable infor-
mation has been loaded for them.

6-10 60410600 A

Example:

alo| ¢
H |ploflo[m|o]o]o
3lo| E
c
K
olo| s
: rRle|lul[r|o]3]o
5|o
L) 5 8 Teo

The external name PROGDUMP was last referenced in the subprogram at relocatable
address 000300,

BDT CARD

The blocked data table (BDT) card contains the name and length of any labeled data
block fields used by the subprograms. The labeled data areas are legal only for sub-
programs written in ANSI FORTRAN or ANSI COBOL. A maximum of 63 labeled data
areas may be used per subprogram and ANSI FORTRAN allows a maximum of 14 BDT
cards per subprogram. The BDT cards must be in sequential order. However, they
may be spread out between the IDC and TRA card.

BLOCK NAMES
AND LENGTHS

LT cCcuou xXoOoOmI O

60410600 A 6-11

Field

columns 3 and 4

columns 5 through 80

Each individual block name is

Significance

Six-bit field that contains an octal 47. Identifies the
card as a BDT card.

Three-bit field that contains an octal 5 or 7. A 7 in-
dicates the loader should not make a checksum test
using columns 3 and 4. A 5 indicates the loader should
make a checksum test using columns 3 and 4.

15-bit field that contains the card sequence number.

The field contains a one for the first card, a two for the
second card, etc. Column 1 contains the most signifi-
cant digit in the number.

24-bit checksum of columns 1, 2, and 5 through
80. An end-around carry is used if overflow occurs.

Variable length fields, each field containing a block name
in BCD, and the corresponding block length in characters.
Block names and block lengths (octal) for any single
block can not be continued from one card to another.
Block ndme 1- to 8-alphanumeric characters. If the
name has fewer than 8 characters, a 725 terminates the
field, Block length 18-bit positions, right justified, and
begins after the last character of the name or a 72g.

assigned a number sequentially starting with 1.

Example:
rd
c
4fof 4 2
EBOK:I——«BOK:I——AAA Ajaja
T|0 0] (0]
c
010 : ojo0 o|o
u L{C|A L{C|B Alaja AjAlA
5|2 0|0 0|0
M
I 3 5 80
Sequence number 2
First data block BLOCKA 4000g characters
Second data block BLOCKB 20008 characters

60410600 A

LRL CARD

The LRL card is produced only by single pass assemblers and compilers. The card

is produced when the program references a symbolic address before the address occurs.
The LRI. card contains the relocatable address that defines the symbol, the last
relocatable address that used (referenced) the symbol, and the number of times the
symbolic address was referenced.

TC ® xX O M T O

RAC | CIA N

|

u U UNUSED

columns 3 and 4

R
RAC

CIA

60410600 A

1

7 9 T I5' ‘76 80

Significance

Six-bit field that contains an octal 45. Identifies the
card as an LRL card.

Three-bit field that contains an octal 5 or 7. A 7 in-
dicates the loader should not make a checksum test using
columns 3 and 4. A 5 indicates that the loader make a
checksum test using columns 3 and 4.

15-bit field that indicates whether the address specified
in the RAC field is a word or character address.

A = zero for word address
A # zero for character address

24-bit sum of columns 1, 2, and 5 through 80.
An end-around carry is used if overflow occurs.

Seven-bit field that is unused (zero filled).

17-bit field that contains the relocatable address

that defines the symbol. Column 5 contains bits 12
through 16 and column 6 contains bits 00 through 11.
If the address is a word address, bits 16 and 15 in
rows 8 and 9 are zero-filled.

Nine-bit fields that are unused (zero-filled).

15-bit field that contains the relocatable address of the
last reference to the symbol. Column 7 contains bits 12
through 14 and column 8 contains bits 00 through 11.

15-bit field that contains an octal digit indicating the
number of times the symbol was referenced. Column 10
contains bits 00 through 11 and column 9 contains bits 12
through 15.

6-13

TRA CARD

The transfer address (TRA) card indicates the end of a subprogram or library routine.
It must be the last card in each subprogram deck. If a subprogram contains the pro-
gram's entry point, the entry (transfer) point symbol appears on the subprogram

TRA card.

MSOS uses the transfer point symbol to initially enter all programs. If a second
transfer point is used, it appears in the Q register when the program is entered. The
user may then elect to reenter the program at the secondary entry point via a jump
instruction or to start execution at the main entry point.

Only two transfer point addresses can be used in a program. If one transfer point
address is used, the loader assigns it as the main entry point to the program. If two
transfer point addresses are used, the LOADER assigns the first transfer point en-
countered as the secondary transfer point and the last transfer point encountered as the
main transfer point. ¥ The loader terminates loading a library routine when it reads
the routine's TRA card.

c ENTPOINT
H
w
E
c UNUSED
A K
S
c u
M
Pl Ts 3 80
Field Significance
w Six-bit field that contains an octal 44. Identifies the card
as a TRA card.
C Three-bit field that contains an octal 5 or 7. A T indicates
the loader should not make a checksum test using columns 3
and 4. A 5 indicates the loader should make a checksum test
using columns 3 and 4.
A 15-bit field that is not used (unpunched).
columns 3 and 4 24-bit checksum of columns of all cards in the sub-
program. There is no checksum for the TRA card alone.
An end-around carry is used if overflow occurs.
columns 5 through 12 Symbolic program entry point name (punched in Hollerith).
Does not appear on all cards.
columns 13 through 80 Unused and unpunched.

tThe transfer point addresses may be on the same or different TRA cards.

6-14 60410600 A

JOB SEQUENCE CARD

The job sequence card is the last card punched in a job's punched card output. It is
an EOF card and is offset to indicate the end of the job output. An EOJ and the job
sequence number are punched in block letters across the middle of the card (refer to
job sequence numbers in section 16). The card may be used as an end-of -file card
when loading the deck, and may be turned end-around to separate the input decks.

/ .

ROW | | yrz i i I i Tz

Row 0 77727 77474
LTI LU B L L PR [T LI

! ' ' (| '

ROW 7
Row & [
6|7 74|75
row 11 1's punched in columns 2 through 79
row 0 1's punched in columns 2 through 6 and 75 through 79
rows 7 and 8 1's punched in columns 1 through 6 and 75 through 80

FLIP CARD

The flip cards are the first two cards in subprogram decks produced by the MS FORTRAN
compiler. The first flip card contains the subprogram name punched in block letters,

and the second flip card contains the date of compilation and the library edition number
punched in block letters. The block letters are inverted so that they are readable when
the card is flipped upside down. Flip cards are produced only for the punch output unit;
the cards do not appear at the list output unit. The loader ignores flip cards when
reading a binary input deck.

ROW |2
7 A I I v

(| | P
ALPHANUMERIC
ID FIELD
ROW 9 —
7 I i I T T T I 7T 7777 7

112 7918

60410600 B 6-15

column 1 Contains an octal seven in the upper and lower three rows.
rows 8 and 12 Contain binary 1's punched in each column of the card.
ID field Contains either an 8-character subprogram name punched in in-

verted block letters or an 8-digit date/edition number punched
in inverted block letters. The data/edition number is in the follow-

ing form.,
mmddyyed
m Month
d Day
y Year

ed Library edition number

column 80 Upper three and lower three rows contain octal sevens. Rows 1
through 6 are part of the ID field.

Example:
] 1
ROW 8| | Wi i |
1 '
Moy iy, 08 M 4 1 «
R vt ey ,“', ¢ e
o I T A S R Jtm BACK SIDE UP
! 11 (TR »
[[| ' ! U]
(R B T YT L B I I T B T
Row |2 : VSNSRI NSNS ANTIT NI RSN N IS NIRRT I I I RTINS :
! '
N]
ROW 12 \ o I T I I TIIIITA,
(SR L P [T ' v —
[] HE .. .' l'] .' 'l ' ' ". H i
Ve LW 8 LRI AL
g N g "Moo v gl Lo
. l: ='l l' R R l" . FRONT SIDE UP
YL TTTA YL P (LI I L R S
ROW 8| | I I 7 IT7I7777 |
]]

The loader equipment declaration (LED) card may be punched and inserted in a sub-
program deck by the user. The card is produced only by the ANSI COBOL compiler.

The LED card performs the same function as an EQUIP statement. It assigns logical
unit numbers to I/O equipment. If a logical unit has been assigned previously by an
EQUIP statement, the EQUIP statement takes precedence; the LED declaration is ignored.
A LED card may contain more than one hardware declaration.

The use of LED cards is an assembly option which may be selected or omitted when
the system is installed. If the option is omitted, LED cards are ignored by the loader.
Units with a dialable equipment number that are assigned by LED cards are logged on
CTO and the operator is asked: READY?. ’

Priority programs may not contain LED cards.

6-16 60410600 B

I/0 EQUIPMENT SPECIFICATIONS

U
Cc
| T80
Field Significance
W Six-bit field that contains an octal 54. Identifies the
card as a LED card
U Unused, unpunched,
C Three-bit field that contains an octal 5.
columns 2 through 80 uuhh Parameters appear in Hollerith code,
or occupying 4 or 8 columns.
uuhheeuu
uu Logical unit, 01 through 56.
hh Hardware type, 01 through 31g (appendix C).
c Channel number, b
0 through 7 Parameters may be
. : blank. If so MSQS
e Equipment, X 1abl
0 through 7 assigns an available
uu Unit designator unit of the hardware

type specified. If one
00 through 774 parameter is present,

all must be present.
Declarations are separated by commas. Embedded blanks are ignored. Any number of
LED cards may appear in a program deck. If the logical unit indicated in a declaration
has been previously assigned to a physical unit, the declaration is ignored.

Example:

This card assigns logical unit 16 to the magnetic tape designed by the hardware code
COEOQUO06, and logical unit 21 to any available card punch.

51t 6 01l 000 6 , 2 1| 0 4 ,

|

T T
60410600 A ! 16! 77 80 . 6-17

EXS CARD

The external symbol card (EXS) may be punched and inserted in a subprogram deck
by the user. This card is not produced by an assembler or compiler.

The EXS card declares external symbols not listed on an XNL card or equates one or
more external symbols to a single entry point. A common use is to load additional
library routines not referenced in the subprograms being loaded.

/
w
SYMBOLS
U
c
[ol 171 80
Field Significance
w Six~bit field that contains an octal 55. Identifier card
as an EXS card,
8) Three-bit field that is unused and unpunched.
C Three-bit field that contains an octal 5.
columns 2 through 80 Contain Hollerith characters. To declare symbols ex-

ternal, the form is:
external symbol, external symbol,...,external symbol
To equate symbols to an entry point, the contents are:
external symbol, external symbol,...,external
symbol=entry point

When EXS declares SNAPSHOT external, a SNAP control card must provide linkage.
When EXS declares any other subroutines external, the source program must provide
linkage (jump instruction) to enter the subroutine.

If EXS is used to equate symbols to an entry point, only the program containing the
entry point is loaded. EXS declarations override later EPT declarations. If a sub-
sequent entry point name is identical to an external symbol in an EXS declaration, a
duplicate symbol error results.

6-18 60410600 A

Example:

\

n

symBotL 1t , sY 9 ENTRYS3

-
5

[80

On this card, symbols SYMBOL1 through SYMBOLY9 are equated to ENTRY 3.

ELD CARD

The end-of-load (ELD) card may be punched and added to the end of a binary program
deck by the user. This card will not be produced by an assembler or compiler.

The ELD card terminates loading a binary card deck from the card reader and causes
control to revert back to the program. For example, this option permits a batch pro-
gram to call the loader to load a binary data deck from the card reader. Upon reading
the ELD card, the loader terminates reading and returns control to the program.

(

7

- UNPUNCHED

| 9! T70 8o

60410600 A 6-19

SNAP CARD

A SNAP card may be used to obtain a periodic dump of a specified area of core while
a program is running, SNAP cards can be used only in conjunction with relocatable
binary program decks in batch programs. SNAP cards cannot be used with priority
programs. f

When loading a binary deck for execution, SNAP cards may be inserted in any of the
following positions in the job deck.

1. Behind the last TRA card in the program deck.

2. In front of an OVERLAY card.

3. Behind an OCC card.
The SNAP card can be used behind a TRA card only when the binary deck is being

loaded from the card reader. A separate SNAP card must be used for each area of
core to be dumped.

When a SNAP card is read, MSOS replaces one of the binary instructions of the process
with a return jump to SNAP. The replaced instruction is saved for execution by the
SNAP routine.

When the jump to SNAP occurs, SNAP dumps the area of core specified by the SNAP
card., Then SNAP executes the saved instruction, and returns to the next instruction
in the program.

@SNA P, (subprog)n, fwa, lwa, mode, id

(subprog)n Location of the instruction to be replaced by a return jump to
SNAP. (subprog)is a one- to eight-BCD subprogram name and n
is a five-digit relocatable octal address. MSOS will modify this
address with the absolute address of the subprogram in order to
obtain the absolute address of the instruction to be replaced. The
parentheses must be used around the subprogram name.

Example:
,(PROGNAME)1537,
fwa,lwa First and last word address of the area to be dumped by SNAP,

Only the locations between fwa and lwa will be dumped. fwa and
lwa will not be dumped.

The fwa and lwa parameters must be punched in one of the follow-
ing formats. Both must be in the same format.

1. D/id/address

D Indicates the location to be dumped is in a
data block.

id One- to eight-character data block name
used in the program.

address A five-digit relocatable octal address in

the data area. MSOS will modify the
address with the absolute address of the
first word in the data area in order to
obtain the absolute address of the data area
to be dumped.

Example:
,D/DATA1/0053,

T The SNAP function is an assembly option in the loader. In some systems, the SNAP function
may have been omitted at system installation time to save core.

6-20 ' 60410600 A

mode

id

60410600 A

2. C address

C Indicates the area to be dumped is in a
common area.
address A five-digit relocatable octal address in the

data area. MSOS will modify the address
with the absolute address of the first word
in the common area in order to obtain the
absolute address of the common area to be
dumped.

Example:
, C00053,
3. (subprog) address

(subprog) The name of the subprogram containing the
core area to be dumped. May be one- to
eight-BCD characters. The parentheses
must be around the subprogram name.

address A five-digit relocatable octal address with-
in the subprogram. MSOS will modify the
address with the absolute address of the
first word in the subprogram in order to
obtain the absolute address of the program
area to be dumped.

Example:
, (PROG6)00053,
Format the dump will be printed in. One of the following
values must be used.

O Print the dump in octal numbers and omit the register file

dump.

C Print the dump in BCD characters and omit the register file
dump. :

F Print the dump in floating point numbers and omit the register
file dump.

R Include the register file dump. The R parameter may precede

or follow the O, C, or F parameter.
Example:

RO Print octal with register file dump.
OR Print octal with register file dump.
o Print octal without register file dump.

If any other values are used for mode, the SNAP dump will be
bypassed and an error message will be typed on the output unit.

One to four characters used to identify the dump. The id character
precedes each line of the dump as it is printed.

6-21

The following rules should be observed when using SNAP cards.
1. The location of the inserted return jump to snap must:
a. not be a location that is modified during program execution.
b. not be a location that is indirectly addressed.

c. not be part of a two or more word instruction (that is, searches, skips,
and BDP instructions).

d. not be modified by an OCC correction card.
2. To avoid excessive printouts, avoid using SNAPSHOT in a loop.

The format of a SNAP dump is shown in Figure 6-1.

Examples:

($SNAP, (PROG1)00123, (PROG1)10236, (PROG1)10237, C, STAT

r$SNA P, (PROG1)00124, C00000, C00777,C, RSLT

OCC CARD

The octal correction card (OCC) may be used to change the contents of any address in
a program while loading the program for execution. The OCC card is used in conjunc-
tion with relocatable binary batch program decks. The OCC card cannot be used with
priority programs or source language decks. f

When loading a relocatable binary program for execution, OCC cards may be inserted
in any of the following positions of the job deck.

1. Behind the last TRA card in the program deck.

2, In front of an OVERLAY card.

3. " Behind a SNAP card.

The OCC card can be used behind a TRA card only when the binary deck is being
loaded from the card reader.

The OCC card changes only the loaded program. The binary deck or file used to load
the program will not be changed, The OCC card may be used to make the following
changes to a program during loading.

1. Change the contents of any address in the program.

2. Define an extension to the program area in which additional instruction can be
added. '

3. Change the contents of any address in a data area or block.t+t

4, Change the contents of library routine (in core only) which was declared ex-
ternal in the program.

tThe OCC function is an assembly option in the loader. In some systems, the OCC
function may have been omitted at system installation time in order to save core.

t The OCC function cannot be used to make corections in a labeled data area defined in an
ANSI FORTRAN or ANSI COBOL program, or the instructions which reference the labeled
data area.

6-22 60410600 B

VvV 00901%09

£€¢-9

This row contains
contents of registers
10 through 17.

SNP]1 LOC

Location of

REGISTER FILE

00000
00010
00020
00030

00040
00050
00060
00070

CHARACTER MEMORY

77757

First
address
dumped

Number
of words
dumped

Contents of

Contents of

Contents of
register 07

RTJ to SNAP register 00 register 01
instruction / Contents of registers A, Q, and B1-B3
77754 A 00000014 Q@ 00077751 77761 R2 77764 83 717777
00516544 10404464 00732640 0012528 00044644 00125250 07070707 07070707
014116544 26004464 26332640 04125250 040464644 04125250 07070707 07070707
77100377 00000364 65363057 00071114 07070707 00000014 00077751 70700100
71046674 72032020 65363067 00071116 07070707 00000000 00077777 04170000
11111111 00000000 00000000 00000000 00000000 00000000 00057363 00056260
00077751 00077751 00000001 00000000 00023103 00000064 00065562 00000003
00000900 00000073 00200000 00000014 00000001 00000024 00011000 00007005
00000002 00000001 00000000 00000001 00000001 00000077 00000077 00000000
0ASL 17AR AAAA BBRB ccce 0000
* END »
Contents Contents Last address
of address of address (77764) dumped
77757 77760

Contents of
register 77

In batch programs run with the extended core variant of MSOS, the loader converts jump instructions that
reference executive subroutines to HLT instructions that reference the subroutines (refer to executive interrupts

in section 18).

Figure 6-1.

Sample SNAP Dump

CHANGING THE CONTENTS OF A PROGRAM ADDRESS

The format of the OCC card used to change the contents of memory locations in a pro-
gram is as follows:

(&SOCC, (subprog)addr, oc,...,0c r$OCC, +,0C,...,0C f‘BOCC, +n,0¢, ..., 0C

6-24

(subprog)addr

+n

oc

Address of the first word to be changed. MSOS advances the
address by one for each additional correction word on the card.

(subprog) is the name of the subprogram to be changed. The
parentheses must be used.

addr is the first address to be changed. If word addressing

is to be used, use a five-digit number. If character addressing
is to be used,use a six-digit number., MSOS adds addr to the
first word address of (subprog) to obtain the absolute address
of the word to be changed.

Continuation card with additional octal corrections. Corrections
will be continued at next sequential address.

Continuation card with additional octal corrections. The ad-
dress of the last correction on the previous card will increase
by ng and be used as the address for the first correction word
on this card (that is, skip ng addresses).

Octal correction word with relocation factor. Consists of a
new word which is an eight-digit octal number with a reloca-
tion suffix. The new word is right-justified. The leading
zeros may be omitted.

The relocation suffix modifies only the lower 15 or 17 bits of
the correction word. The values are as follows:

omitted No modification of the word.

(subp) Relocate the lower 15-bit address in the word
relative to the first word address of the sub-
program (subp). The parentheses must be

used around the subprogram name.

(subp)C Same as (subp) except that character addressing
is used. The lower 17 bits are modified.

D Relocate the lower 15-bit address in the word
relative to the first word address of the data
area assigned to (subprog).

DC Same as D, except that character addressing
is used. The lower 17 bits are modified.

C Relocate the lower 15-bit address in the word
relative to the first word address of the common
area assigned to (subprog).

CcC Same as C, except that character addressing is
used. The lower 17 bits are modified.

*

Relocate the lower 15-bit address in the word
relative to the first word address of the last
(subp) name used on this card or on a preceding
OCC or SNAP card.

60410600 A

*C Same as *, except that character addressing is
used. The lower 17 bits are modified.

X Relocate the lower 15-bit address in the word
relative to the first word address of a pro-
gram extension area. An OCC card defining
the program extension area must precede this
relocation suffix.

XC Same as X, except that character addressing
is used. The lower 17 bits are modified.

Any number of correction words may be added to a program by using OCC, + cards.
To skip an address in a series of corrections, omit the octal correction word and re-
tain the trailing comma. The address counter will be advanced by the comma, but will
not change the contents of a location for which there is no correction word.

Examples:

|{BOCC, (PROG1)70, 15600100

This example writes 15600100 (INA by 100) in address PROG1+70. If subprogram
PROG1 starts at address 73355, 20000100 would be written in address 73445,

ﬁOCC, (PROG1),20000100%

This example modifies the lower 15 bits of the octal correction word with the first word
address of PROG1 and then stores the word in the first address of PROG1. If sub-
program PROGI1 starts at address 73355, 20073455 (LDA from 73455) will be written

in address 73355.

|($OCC, (SUB1)20, 000000386, , 00036, , 036, 36

This example stores the octal value 00000036 into locations 20, 22, 24, and 25 of sub-
program SUB1l. Because values are right-justified, all the octal corrections, 00000036,
036, etc., are stored as 00000036. If SUB1 was loaded beginning at address 63652,
the results of this OCC are:

Address Contents
63672 00000036
63673 Unchanged
63674 00000036
63675 Unchanged
63636 00000036
63637 00000036

60410600 A 4 6-25

ﬁ‘ﬁOCC, (PROG1)70,20000100(PR0OG2), 30000100D, ,40000100C

Enter octal correction 200xxxxx at address 00070 relative to subprogram PROG1l. Re-
locate word address portion of this octal correction relative to subprogram PROG2.
Enter octal correction 300xxxxx at address 00071 relative to subprogram PROG1; relocate
word address portion of this correction relative to the data area. Enter 400xxxxx at
address 00073 relative to subprogram PROG1; relocate word address portion relative

to the common area. Absolute initial locations for PROG1l. PROG2, data, and common
are:

PROG1 45333
data 45534
PROG2 45635
common 46036

The results of this OCC are:
45423 = 20045735
45424 = 30045634
45425 = (unchanged)
45426 40046136

1]

DEFINING A PROGRAM EXTENSION AREA

The format of an OCC card used to define an extension of the program area for addi-
tional instructions is as follows.

($0CC. Xn

n Length of program extension area. One to five octal digits.

If length n exceeds available memory, the area is adjusted to the size of available
memory. A message is printed on OUT and the program executes if this is the only
error in the run. A memory overflow error occurs when the number of corrections
for loading exceeds the defined area. The job will abort.

Only one program area extension statement may be used. Any octal corrections appear-
ing on this statement will be ignored.

All subsequent OCC,X statements will load octal instructions in the extended program
area. The format is as follows:

$0CC,Xn,o0¢c,...,0cC
n Relative load address for first word to be stored in the extended program
area, First correction word on the card will be stored at first location
in extended program area plus the value of n.

oc OQOctal correction word and relocation suffix.

6-26 60410600 A

Example:

4. ﬁOCC, X10,20000620(SUB4), 40000621*, 20000622(SUB5), 40000623 *

3. FOCC, +,20000400(SUB2)40000401%*, 20000402(SUB3), 40000403

2. (30CC,X,20000100(SUB1)40000101%*,20000102%,40000103*

1. [$0CC,X20

Assign a program extension area of 20 locations.

2. Load corrections into locations 0 through 3 of the program extension area,

Relocate word address portions of these corrections relative to subprogram
SUBL.

3. Load corrections into locations 4 through 7 of the program extension area,
Relocate word address portions of the first two corrections, relative to SUB2.
Relocate word address portions of the second two corrections, relative to
SUB3.

4. Load corrections into locations 10 through 13 of the program extension area.
Relocate word address portions of the first two corrections, relative to SUBA4.
Relocate word address portions of the second two corrections, relative to SUBS5.

CHANGING THE CONTENTS OF THE DATA AREA

The format of the OCC card used to change the contents of the data area is as follows:

@OCC, Dk,o0c,...,0C
k Address (relative to first address in data area) of first correction.
If k is omitted, first correction word is written in first address
of data area. Otherwise, first correction word is written in first word
address plus k addresses.

oc Octal correction word and relocation suffix.

Example:

$0CC, +, 73535353, 1060

($OCC, D, 4, 10, 14, 20,,, 57632, 114567

60410600 A 6-27

Enter four octal values in successive data area locations starting with the first word.

Skip two addresses and enter four more values.,
70000, the results of these cards are as ﬂﬂlowsa

6-28

(70000)
(70001)
(70002)
(70003)
(70004)
(70005)
(70006)
(70007)
(70010)
(70011)

00000004
00000010
00000014
00000020
(unchanged)
(unchanged)
00057632
00114567
73535353
00001060

If the data area begins at location

60410600 A

OVERLAYS 7

e

DESCRIPTION

A batch or priority program that is larger than available core may be divided into a
main program and overlay elements. The main program resides in core and the over-
lay elements reside on mass storage files. During execution of the program, the main
program calls and gives control to the overlay elements as they are needed.

OVERLAY ELEMENTS

In MSOS, overlay programs are divided into the following elements: MAIN, OVERLAY,
and SEGMENT. Each of these elements is written and co