
, I
I

,r;,i 1::\ CONTf\OL DATA
~ r:J CORPORf\TION

MASS STORAGE OPERATING
SYSTEM (MSOS) VERSION 5
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:

96769400

CYBER 18 MODELS 17/20/30 TIMESHARE

1700

REVISION RECORD
REVISION DESCRIPTION

A Manual released.
(1/77)

B Manual revised to complete ASCII Conversion Table. The affected pages are: title page, ii, iii/iv, G-3, G-4,
(2/77) and comment sheet.

C Manual revised to contain new information on peripheral equipment; 1860 LCTT/FORMATTER, 1827-2 Line
(10/77) Printer, 1811-2 COT, 1843-2 CLA. MSOS 5 Console. Incorporates PSRs 3658, 4245, 4310, 4366, 4375, 4418,

and 4421.

Publication No.
96769400

REVISION LETTERS I, 0, Q AND X ARE NOT USED

© 1977
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall
La Jolla, California 92037

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Cover - 14-45 C
Title page - 14-46 thru
ii C 14-49 A
iii/iv C 14-50 C
v/vi A 14-51 C
vii thru x C 14-52 A
1-1 thru 1-12 A 14-53 A
1-13 C 14-54 C
1-14 C 14-55 A
1-15 thru 1-19 A A-I thru A-9 A
2-1 thru 1-6 A B-1 thru B-4 A
2-7 C C-l thru C-3 A
2-8 C C-4 C
2-9 thru 2-19 A C-5 A
3-1 A C-6 A
3-2 C C-7 C
3-3thru 3-8 A C-8 A
3-9 C D-l A
3-11 A D-2 A
3-12 A B-1 A
3-13 A F-l A
3-14 C F-2 C
3-15 C F-3 thru F-5 A
3-16 C G-l, A
3-17 A G-2 A
3-18 A G-3 B
3-19 C G-4 B
3-20 A H-l thru H-5 A
3-21 A 1-1 A
4-1 A J-l A
5-1 thru 5-4 A J-2 C
6-1 thru 6-4 A J-3 A
6-5 C J-4 C
6-6 A J-5 A
6-7 A J-6 C
7-1 thru 7-5 A J-7 A
8-1 A J-8 C
8-2 A K-l thru K-12 A
9-1 C L-l thru L-3 A
9-2 thru 9-8 A Index-l A
10-1 thru 10-20 A Index-2 C
11-1 C Index-3 thru
11-3 thru 11-12 A Index-7 A
12-1 thru 12-5 A Comment sheet C
12-6 C Mailer -
13-1 thru 13-8 A Cover -
14-1 C
14-2 thru 14-32 A
14-33 C
14-34 thru

14-36 A
14-37 C
14-38 C
14-39 A
14-40 C
14-41 C
14-42 A
14-43 C
14-44 C
14-44 .. 1 r

96769400 C iii/iv

PREFACE

-ii-A.-{ .

This manual is directed at the CDC® CYBER 18/1700
MSOS Version 5 programmer and assumes a basic knowledge
of the system.

All numbers in this manual are assumed to be decimal unless
otherwise specified.

This manual uses 1700 when referencing features on 1704,
1714, 1774, and 1784 (CYBER 18-17) systems and CYBER 18
when referencing features on 18-20 or 18-30 Timeshare
systems.

Additional information may be found in the following
publications:

96769400 A

Publication

MSOS 5 Installation Handbook

MSOS 5 Diagnostic Handbook

MSOS 5 Macro Assembler Reference Manual

MSOS 5 Instant

MSOS 5 File Manager Version 1 Reference Manual

CYBER 18/1700 Peripheral Drivers Reference Manual

Small Computer Maintenance Monitor Reference Manual

MS FORTRAN Version 3A/B Reference Manual

RPG II Version 2 Reference Manual

AUTRAN 2 Reference Manual

Sort/Merge Reference Manual

CYBER 18 Processor with Core Memory (Macro Level)
Reference Manual

Publication Number

96769410

96769550

60361900

96769430

39520600

96769390

39520200

39518900

96769010

96729800

96769260

88973500

This product is intended for use only as described in this document. Control Data Corporation
cannot be held responsible for the proper functioning of undescribed features or undefined
parameters.

v/vi

"n

1. INTRODUCTION

Features
Languages
Foreground Processing
I/O Processing Subset of

Foreground Operations
Background Processing
Program and Data Maintenance
Other Features

Computer
Hardware Configurations

Minimum Configuration
Maximum Configuration

Software
Monitor
Request Processor and Dispatcher
Drivers (I/O and Pseudo Statements)
Job Processor
Libraries
Loading and Linkage to Other

Programs and to Data
Utilities and Maintenance Software
File Management
System Initialization and Startup
Mass Storage Allocation
Languages

2. MONITOR

Scheduling Tasks by Priorities and Interrupts
Priorities
Interrupts

Monitor Structure
Request Entry Processor
Scheduler Stack and Interrupt Stack

Interrupt Handling
Interrupt Trap
Common Interrupt Handler
Line 1 Interrupt Processors
General Interrupt Processors
Line 0 Internal Interrupt Processor

Dispatcher
Manual Interrupt Processor

Manual Input Program
I Input/Output Drivers

Find-Next-Request (FNR)
Complete Request (COMPRQ)
Error Flag Set-Up (MAKQ)
Completion Routines
Input/Output Hang-Up Errors

Alternate Devices
Dummy Driver (DUMMY)
Mass-Storage-Resident Drivers
Timer Request Processor and System

Timekeeping Routines
System Tim~rs
Timer Request Processor
Time-of-Day Program
Time/Date Function Program

96769400 C

CONTENTS

1-1

1-1
1-1
1-1

1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-7

1-14
1-14
1-15
1-15
1-16
1-16

1-16
1-17
1-18
1-19
1-19
1-19

2-1

2-1
2-1
2-2
2-2
2-2
2-2
2-4
2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-8
2-8
2-8
2-8
2-9
2-9
2-9

2-10
2-10

2-11
2-11
2-11
2-12
2-12

System Start-Up
I/O Channel Allocation

A/Q Channel Allocation
1706 Buffered Data Channel Allocation

Core Managers
Volatile Storage Assignment
Allocatable Core
Partitioned Core
CYBER 18 Extended Memory

Unprotected/Protected Communication
Unprotected Entry Points
Protected Core-Resident Entry Point

Linkage
System Common Organization

Protected Common
Unprotected Common

3. REQUESTS

Entry for Request
Threading

Threading in Place
Threading in Stacks

Request Descriptions
Protected and Unprotected Program

Requests
Protected Program Requests
Unprotected Program Requests

Request Restrictions
Swapping Core
Standard System Input/Output Devices

4. DRIVERS

5. FILE MANAGER

Storage and Retrieval
Sequential
Indexed
Direct
Variations

File Manager General Description
File Requests
Record Format
Update Protection
Unprotected File Requests
Requirements and Limitations

File Request Descriptions and Calls

6. SYSTEM INITIALIZATION

Control Statement Handler
Device Specification
Disk Testing
External String Patching
Program Loading
Comment Control
Hardware Device Drivers
Driver Operation
Driver Errors

2-12
2-13
2-13
2-13
2-13
2-13
2-15
2-16
2-16
2-16
2-18

2-18
2-18
2-18
2-19

3-1

3-1
3-2
3-2
3-3
3-5

3-5
3-12
3-16
3-20
3-20
3-21

4-1

5-1

5-1
5-1
5-1
5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-4

6-1

6-1
6-1
6-2
6-2
6-2
6-4
6-4
6-4
6-6

vii

Preload Initialization
Loader
Postload Initialization
System Memory Maps
Error Recovery

7. SMALL COMPUTER MAINTENANCE
MONITOR

Entry to SCMM
Operator/SCMM Conversation
Error Messages

8. ENGINEERING FILE

Device Failure Handling
Device Failure Storage
Device Failure Listing

9. JOB PROCESSING

Job Control Statements
Control Statements within a Job
User-Supplied Statements
Mass Storage Job File Handling

Statements
Statements Acceptable to Job and Manual

Interrupt Routines
Loader Response during Job Execution

10. DEBUGGING AIDS

On-Line Debug Package
Operator Procedures
Data Input Representation
Debug Mainframe Requests
Dump Data from Core
Transfer Data Core to Mass Memory
Logical Unit Alteration
General CPU Operations
Monitor Operations
Magnetic Tape Operations
Mass Storage
Mass Memory Operations with Alteration

Breakpoint Program
General Operations
Control Statements

Recovery Program
Control Statements
Addition of Control Statements

System Abort Dump
CYBER 18 Extended Memory Abort

Dump
On-Line Snap Dump

11. SYSTEM CHECKOUT PACKAGE

Checkout Bootstrap Programs
Assumptions and Restrictions
Completion and Errors
Bootstrap Operation

System Checkout Program
Structure

Messages

viii

Control Messages
Error Messages

6-6
6-6
6-6
6-6
6-6

7-1

7-1
7-5
7-5

8-1

8-1
8-1
8-2

9-1

9-1
9-1
9-5

9-5

9-7
9-8

10-1

10-1
10-1
10-2
10-3
10-3
10-4
10-4
10-7
10-8
10-9
10-9

10-10
10-11
10-11
10-12
10-17
10-17
10-18
10-18

10-19
10-19

11-1

11-1
11-1
11-1
11-1
11-1
11-1
11-2
11-2
11-2

Support Messages 11-2
Error Checks 11-2

Error Message Correlation 11-11

12. RELOCATABLE BINARY LOADER 12-1

Features of Loader 12-1
Partition Loading 12-1

Transfer Address Considerations 12-1
Data and Common Declarations 12-1
Relocatable Binary Input 12-1

Nonrelocatable Binary Input 12-6
EOL Block 12-6
Control Block 12-6
*Page Statement 12-6

13. LIBRARY EDITING 13-3

LIBEDT Program 13-1
Control Statements 13-1

14.

*M - Replace Program 13-1
*L - Add/Replace Program 13-3
*p - Produce Absolute Record 13-3
*U - Get Next Control Statement 13-4
*V - Get Next Control Statement ~L.- 13-4
*Z - Terminate Processing 0/'/ 13-5
*DM - List Pi 6 n .. Library Directory \g~3-5
*DL - List ~ Library Directory ''Q 13-5
*N - Modify Program Library 13-5
*S - Set Core Request Priority 13-6
*T - Transfer Information 13-6
*K - Change Devices 1'3-6
*R - Remove Program 13-7
*A - Replace Partition Program 13-7
*F - End-of-Transfer Indicator 13-8
*FOK - Transfer Indicator 13-8

SYSTEM MAINTENANCE AND UTILITY
ROUTINES 14-1

Calling Statements 14-1
System Initializer Loading Program (SILP) 14-1
SETUP (SETPV4) 14-1

Theory of Operation 14-1
Control Statements 14-2
*L Statement 14-2
*1 Statement 14-2
*D Statement 14-2
*R Statement 14-2
*S Statement i4-2
*C Statement 14-2
System Tape Install 14-2
FORTRAN Tape Install 14-2
*0 Statement 14-3
*E Statement 14-3
Installation 14-3
Operation 14-3
Execution 14-3
Time and Storage Considerations 14-3
SETUP Error Messages 14-3
SETUP Constraints and limitations 14-4
Sample Replacement Using SETUP 14-4
Sample Duplicate Replacement Using

SETUP 14-4
Two Input Select Options Using SETUP 14-4

96769400 C

I

INTRODUCTION 1

:"

The CDC ® 1704, 1714, 1774, 1784 (CYBER 18-17), 18-20,
and 18-30 Timeshare Computer Systems are small, high
speed digital processors that are designed to perform a
variety of on-line control, real-time data acquisition, busi
ness, and batch job processing applications. The Mass
Storage Operating System Version 5 (MSOS 5) is provided to
manage the system's resources on a priority basis within a
multiprogramming environment. MSOS queues requests for
input/output data transmission and program execution by
priority level. The program task that is selected for
execution is the one with the highest priority level.

A hardware interrupt system provides concurrent I/O
operations and computation.

A main memory is divided into two functional entities:
protected and unprotected memory. Protected memory (the
foreground) is reserved for executing all parts of the
operating monitor and the user's on-line high-priority
application programs. Unprotected memory (the
background) is used for execution of batch job processing
and program checkout at low priority levels. MSOS can
swap the contents of unprotected memory to mass memory
to make that space available to foreground programs. When
higher priority foreground tasks are completed, the swap is
reversed, allowing the background program to continue its
processing.

MSOS is modular in design, providing the user with
considerable flexibility to perform on-line system
modification.

The operating system is highly modularized with both
necessary and optional portions. Among the necessary
functions are:

• System monitoring

• I/O control

• Background processing control

• Mass storage library management

• Major utili ties

Among the optional functions are:

• File management

• Debugging aids

• Other utilities

MSOS also provides control for important systems that are
separate software systems. Among the most frequently used
systems are as follows.

96769400 A

:

• Mass-storage-resident FORTRAN compiler

• Macro assembler for 1700 language

• Report generator (RPG II)

• Sort/merge

FEATURES

LANGUAGES

The basic MSOS features are summarized below. The
software elements which implement these features are
shown in table 1-1.

• MSOS uses the basic 1700 assembly language and
supports the CYBER 18 enhanced instructions. With the
macro assembler present, user programs may be written
using standard macro commands as well as special
macro commands defined to fit the user's special needs.

• If the FORTRAN compiler is present, user programs
may be written using the FORTRAN instruction set.

FOREGROUND PROCESSING

• A series of request processors allow programs to link to
one another and to communicate with I/O drivers that
move data to/from computer peripherals. Background
program linkage to foreground programs is strictly
controlled by a protect bit system. This minimizes the
possibility of a background program destroying a fore
ground program or meddling with foreground (especially
process control) data. .

• Monitor and request processors are re-entrant.

• Monitor schedules programs and oversees core
allocation. Scheduled tasks are queued for execution on
a priority basis.

• Space allocation and loading provide main memory for
execution on a priority basis. If necessary, background
programs are swapped out of main memory so
foreground programs have processing space.

For foreground programs, one system of priorities
determines the program's place in the queue of programs
awaiting execution, and a related priority determines the
amount of main memory available for loading a mass
storage resident program for execution.

1-1

TABLE 1-1. MSOS ELEMENTS AND AIDS

Major System Components (Foreground - Required)

Monitor (includes scheduling, dispatching, core
allocation, and common data)

I/O drivers (core or mass-storage resident)

Initializer (leaves core after loading)

User applications programs

Job processor (operates at minimum foreground
priority, but the background programs operate below
minimum foreground priority)

Relocatable binary loader - optional

File manager

Utilities

Re-entrant FORTRAN routine

• CYBER 18 extended core capability allows use of main
memory above 65K as if it were a mass storage
peripheral device. Below 65K, core is fully executable
by word addressing.

• Initialization and checkout program are provided.
Autoload capability is available after initialization is
completed.

I/O PROCESSING SUBSET OF FOREGROUND
OPERATIONS

o Interrupt handlers process the 16 separate hardware
interrupts. Assignment of system priorities can give
preference to I/O interrupt processing over all other
programs. Interrupted program parameters are saved
and then are restored after the I/O data transfer
routines service the hardware requests. Also, each
interrupt is assigned a priority so that the more time
critical I/O devices are processed in preference to those
whose data transfer can remain on the I/O lines for a
longer period (e.g., the card reader is serviced in
preference to the disk).

o Each I/O device has its own driver. Maximum I/O error
detection and recovery procedures can be included in
each driver. (Kernel drivers usually allow the user to
select the level of recovery J?rocedure desired. This is
done at customization time.)

1-2

Languages

1700 Assembly
MS FORTRAN

Aids

Macro assembler

Languages/ Aids

Library build and edit:

COSY
Utilities

Debugging aids (including ODEBUG)

Small Computer Maintenance Monitor (SCMM)

Breakpoint/recovery

Report generator

• Alternate device handling techniques allow data for a
nonoperable device to be transferred automatically to
an operable device (e.g., a message output to the listing
device which is down can be output on the comment
device).

• Unrecoverable I/O errors are logged in an engineering
file.

• 1700 systems: I/O channels operate in one of three
ways:

- A and Q registers are used to transfer data one word
at a time.

- Direct storage access (DSA) provides I/O-to-main
memory transfers for mass storage devices.

-The 1706 Buffered Data Channel allocates DSA access
to I/O devices which would otherwise not have a DSA
capability

o CYBER 18 systems: I/O channels also operate in one of
three ways:

- A and Q registers are used to transfer one word at a
time.

- Direct memory access (DMA, the functional equivalent
of DSA for 1700 systems) provides I/O-to-main
memory transfers.

96769400 A

-Auto data transfer (ADT) provides A/Q transfers on a
buffered basis, relieving the requestingm?dule of the
burden of transferring data one word at a tIme. ,

• If SCMM (small computer maintenance monitor) is
included, an on-line I/O diagnostic capability is present.

BACKGROUND PROCESSING

• A job processor provides background (batch) program
processing.

• If foreground tasks need space currently allocated to
background, unprotected core is written to mass storage
(swapped) so the background program space can be
reallocated to the foreground task.

• A relocatable binary loader absolutizes programs as
they are read from the program library or peri.pher~
device. The loader links them to all entry pomts m
other programs required to complete the overall task.

• CYBER 18 bounds registers are provided for background
limits.

PROGRAM AND DATA MAINTENANCE

• On-line and off-line debugging aids are provided. These
include breakpoint and recovery capability.

• On-line system modification is provided.

• Extensive system maintenance and utility ro~tines allow
easy altering of mass storage programs m the two
libraries. A system library holds foreground programs
and a program library holds background programs.

• With the COSY data compression routine present,
program maintenance uses condensed Holl~rith <;ode to
minimize card deck (or other storage medIUm) Slze and
to speed and simplify program maintenance.

• If . the file manager is present, the system can create
and maintain sequential and indexed files.

• If the report generator is present, the system can tailor
reports from the filed data.

• If sort/merge is present, the system can sort files by
keys and merge files selectively to update them.

• Text editing is available for background files.

• CYBER 18 extended core storage can be used to provide
mass-storage compatible data regions.

96769400 A

OTHER FEATURES

• Date and time-of-day routines are available.

• A floating point arithmetic option (hardware or
software) is available.

COMPUTER

The CDC ® 1704, 1714, 1774, 1784 (CYBER 18-17), 18-20,
and 18-30 Timeshare Computer Systems run under MSOS.
These are stored program digital computers designed for
high computation and I/O speed. The program protect
features and high reliability under a wide rang.e of envi~on-'
mental conditions make it suitable for real-time, on-Ime,
business, or control applications.

The interface of the computer system is capable of
accepting a variety of peripheral devices.

The basic computer system for the 1704, 1714, 1774, and
1784 (18-17) provides high-speed, random-access central
memory storage for 4096 18-bit (sixteen bits and .one parity
and one protect bit) words. The storage capaclty of the
1704/1774 may be expanded to 32K in 4K increments; the
1714 may be expanded from 24K to 65K in 8K increments;
and the 1784 (18-17) may be expanded to 65K in 4K
increments.

The CYBER 18-20 is a micro-programmable processor that
accommodates from 32,768 to 262, 144 eight-bit bytes {one
protect and one parity bit is provi~ed for eac~ two bytes~ of
MOS main memory with an effective read/wrlte cycle time
of 750 nanoseconds. The 18-20 emulates the basic as well as
the enhanced 1700 instruction set.

The CYBER 18-30 Timeshare System consists of dual micro
programmable processors, each accommodating from 32,768
to 262,144 eight-bit bytes (one protect and ~ne parity bit ~or
each two bytes) of MOS main memory wlth an effective
read/write cycle time of 750 nanoseconds. Each processor
can address the memory of the other for a total capability
of 524,288 eight-bit bytes of main memory. The process?rs
emulate the basic as well as the enhanced 1700 mstrUCtIon
set. The CYBER 18-30 Timeshare System runs under a
modified MSOS.

The program protect system makes it possible to protect a
program in the computer from any other unprotected
program.

Figure 1-1 shows the protected and unprotected programs
and indicates how unprotected, product set, and user
programs are related.

1-3

MSOS PROTECTED PROORAMS cPORE'QROUJIot

MONlTOR
CONSTANTS/rABLES

REQUEST PROCESSORS
I/O DEVICE MANAGERS
INTERRUPT HANDLERS

DISPATCHER
CORE MANAGERS

I
r-----.....,.....-----..-----_----I----__ ----I----,----,

I I I
um..rrn:s

ON-LINE DEBUG
SYSTEM CHECKOUT
ENOINErRlNG FILE

JOB
PROC£SSOR

rILE
MANAGER

MSOS UNPROTECTED PROORAMS (BACKGROUND)

ON-UNE IllAGNOI'ITICS
SMALL COMPUTER

MAINTENANCE MONITOR

I PORTRAN 3
MUL TlPROORA MMD«l I PACKAOE

I
I
t
I
I
I
I

PROTECTED
usn

APPUCATtON
PROORAIIS

---r------,
.---'-_...., I I

I
L..-_-----' I

I
I

BATCH PROCESS/NG
REPORT GENERATOR
FILE EDITING

USER BATCH JOBS

Figure 1-1. Diagram of Protected/Unprotected/Product Set/User Programs

HARDWARE CONFIGURATIONS

To achieve standardization of equipment numbers, interrupt
lines, and logical units, MSOS supports only one like function
peripheral device in a given system. Other configurations
are possible but require deviation from the standards.
Figure 1-2 is a typical configuration. '

MINIMUM CONFIGURATION

The. following are the MSOS minimum machine
configurations.

Typical 1704 Configuration

1704 Computer with 4096 words of memory

1708 Storage Increment with 4096 words of memory (3)

1711-2 Teletypewriter, Comment Device

1777 Paper Tape Station, Input/Output Device

1739-1 Cartridge Disk/Library Device

1705 Interrupt/Data Channel

Typical 1714 Configuration

1714 Computer with 24,567 words of memory

1711-2 Teletypewriter, Comment Device

1777 Paper Tape Station, Input/Output Device

1739-1 Cartridge Disk Library Device

Typical 1774 Configuration

1774 System Controller with 4096 words of memory

1772 Memory Module with 4096 words of memory (3)

1773 Direct Storage Access

1775 Interrupt/Data Channel

1711-3 Teletypewriter, Comment Device

1777 Paper Tape Station, Input/Output Device

1739-1 Cartridge Disk, Library Device

17.2-30
LINE

1725-1
CARD PUNCH

1729-3
CARD READER

10336-1
REALTIME
CLOCK

1784-1 (18-17)
CPU

32K MEMORY

1732-3
MAGNETIC TAPE
CONTROLLER

NOTES: 1. CONFIGURATION IS TYPICAL, BUT NOT THE MINIMUM; NOR IS IT ALL INCLUSIVE
AS TO EACH SUPPORTED DEVICE.

2. MORE DISKS, READERS, TAPES, ETC., MAYBE INCORPORATED.

3. MEMORY CONSISTS OF COMBINATIONS OF MODULES DEPENDENT ON CPU AND
CORE SIZE.

Figure 1-2. Typical Equipment Configuration

Typical 1784 (CYBER 18-17) Configuration

1784-1 Computer (900-nanosecond cycle time) with 4096
words of memory

Program throughput can be enhanced by using the following
minimum configuration: .

1782-1 Memory Module (900-nanosecond cycle time) with
4096 words of memory (3)

1711-4 Teletypewriter, Comment Device

1732-3 1 x 4 Magnetic Tape Controller, Input/Output

616-72 Magnetic Tape Transport

1733-2 1 x 4 Disk Controller

856-2 Disk Drive

96769400 A

1784-2 Computer (600-nanosecond cycle time) with 4096
words of memory

1782-2 Memory Module (600-nanosecond cycle time) with
4096 words of memory (3)

1711-4 Teletypewriter, Comment Device

1732-3 1 x 4 Magnetic Tape Controller, Input/Output Device

616-72 Magnetic Tape Drive

1733-2 1 x 4 Disk Controller

1-5

856-2 Cartridge Disk Drive

Table 1-2 is a matrix of the minimum configuration for 1700
systems.

Typical CYBER 18.20 Configuration

CYBER 18-20 Computer with 16,384 words of memory

1882-16 Memory Module with 16,384 words of memory

1811-1 Console Display

1832-4 Magnetic Tape Controller, NRZI

1860-92 Magnetic Tape Drive, nine-track

1833-1 Storage Module Drive Interface

1833-3 Storage Module Control Unit

1867-20 Storage Module Drive, 50 megabyte

TABLE 1-2. MATRIX OF MINIMUM 1700 CONFIGURATIONS

Equipment 1704 1774 1714

1704 Computer (with 4096 memory words) X

1708 Storage Increment (three each with 4096 memory words) X

1774 System Controller (with 4096 memory words) X

1772 Memory Module (three each with 4096 memory words) X

1773 Direct Storage Access X

1775 Interrupt/Data Channel X

1714 Computer (with 24K memory words) X

1784-x Computer (with 4096 memory words)

1782-x Memory Module (three each with 4096 memory words)

1711-2 Teletypewriter X X

1777 Paper Tape Station X X X

1739-1 Cartridge Disk X X X

1705 Interrupt/Data Channel X

1711-3 Teletypewriter X

1711-4 Teletypewriter

1733-2 Disk Controller

856-2 Disk Driver

1732-2 Magnetic Tape Controller

616-72 Magnetic Tape Drive

. 1--6

1784

X

X

X

X

X

X

X

96-769400 A

MAXIMUM CONFIGURATION • Communications equipment

The following are the maximum machine configurations for -1595 Serial I/O Card
MSOS. -364-4 Communications Multiplexer

Typical 1704 Configuration
-361-1 Communications Adapter

~361-4 Communications Adapter

• CPU and channels -17 45-2/1706/210 Local Terminal Controller

-Combination can drive a mixture of 1711-4, 1711-5, -1704 Computer with 4096 words of memory 713-10,713-10/711-100 units.
-1708 Memory ModuJ,es with up to seven units of 4096

words each • Paper tape readers

-1706 Buffered Data Channel -1777/1778 Paper Tape Reader (part of unit)
-1705 Interrupt/Data Channel -1721/1722 Paper Tape Reader

• Teletypewriters • Paper tape punches

-1711-2 Teletypewriters -1777/1778 Paper Tape Punch (part of unit)
-1713-2 Teletypewriter/Paper Tape Input/Output (not -1723/1724 Paper Tape Punch supported for initialization)

• Clock timers • Card readers

-1729-2 Card Reader -1750/1572 Sample Rate Timer

-1726/1706/405 Buffered Card Reader -1750/1573 Line Sync Timer

-1726/405 Card Reader -1750-1/1572-1 Sample Timing Unit

-1728/430 Card Reader/Punch -364-4 Timer

• 1500 peripherals • Line printers

-1742-1 Line Printer -1544-1 to -4 Digital Input Unit

-1740/501 Line Printer -1553-1 to -4 Digital Output Unit

-1555-1 to -3 Relay Output Unit
• Disks -1525-3 Analog/Digital Converter

-1739-1 Cartridge Disk -1501';"10 Analog Input Multiplexer Controller

-1733-1 Disk Drive Controller with a mix of up to eight -1501-11 Multiplexer Channel Expansion
853 and 854 Disk Drives -1536-2 Relay Multiplexer Controller

-1738 Disk Drive Controller with a mix of up to two 853 -1502-80 Relay Multiplexer Module and 854 Disk Drives
-1590 Remote Computer Interface

• Drums -1547-1/2 Events Counter Unit

-1751A to J Drum -1566 Digital-to-Analog Converter

-1752-1 to -4 Drum -1501-81 to -83 Relay Input Channels

• Magnetic tapes -1750-1 Computer Interface Unit

-1750-2 Computer Expander Unit
-1731 Magnetic Tape Controller with up to eight 601

Magnetic Tape Drives (1706/10277-1 is optional) • Digigraphic console

-1732-1 Magnetic Tape Controller with a mix of up to -1744/1706 Digigraphic Controller with up to eight 274 eight 608 and 609 MagnetiC Tape Drivers (1706 is Digigraphic Consoles optional)

96769400 A 1-7

• Data set interface

-1747/1706 Data Set Unit (interface to CYBER
systems)

Typical 1714 Configuration

.' CPU and channels

-1714 Computer with 24,567 words of memory

-1706/10277-1 Buffered Data Channel

-10273-1 to -5 Memory Increments of 8192 words to
allow expansion of memory to 65K

• Teletypewriters

-1711-2 Teletypewriter

-1713-1 Teletypewriter/Paper Tape Input/Output (not
supported for initialization)

• Card readers

-1729-2 Card Reader

-1726/1706/405 Buffered Card Reader

-1726/405 Card Reader

-1728/430 Card Reader/Punch

• Line printers

-1742-1 Line Printer

-1740/501 Line Printer

• Disks

-1739-1 Cartridge Disk

-1733-1 Disk Drive Controller with a mix of up to eight
853 and 854 Disk Drives

-1738 Disk Drive Controller with a mix of up to two 853
and 854 Disk Drives

• Drums

-1751A to J Drum

-1752-1 to -4 Drum

• Magnetic tapes

-1731 Magnetic Tape Controller with up to eight 601
Tape Drives (1706/10277-1 is optional)

-1732-1 Magnetic Tape Controller with a mix of up to
eight 608 and 609 Tape Drives (1706/10277-1 is
optional)

• Communications equipment

-364-4 Communication Multiplexer

-361-1 Communications Adapter

-361-4 Communications Adapter

-1595 Serial I/O Card

1:-8

-1745-2/1706/210 Local Terminal Controller

-Combination can drive a mixture of 1711-4, 1711-5,
713-10, 713-10/711-100 units.

• Paper tapes

-1777/1778 Paper Tape Station

• Clock timers

-1750/1572 Sample Rate Timer

-1750/1573 Line Sync Timer

-1750-1/1572-1 Sample Timing Unit

-364-4 Timer

• 1500 Peripherals

-1544-1 to -4 Digital Input Unit

-1553-1 to -4 Digital Output Unit

-1555-1 to -3 Relay Output Unit

-1525-3 Analog/Digital Converter

-1501-10 Analog Input Multiplexer Controller

-1501-11 Multiplexer Channel Expansion

-1536-2 Relay Multiplexer Controller

-1502-80 Relay Multiplexer Module

-1502-81 to -83 Relay Input Channel

-1750-1 Computer Interface Unit

-1750-2 Computer Expander Unit

-1590 Remote Computer Interface

-1547-1/2 Events Counter Unit

-1566 Digital-to-Analog Converter

• Digigraphic console

-1744/1706 Digigraphic Controller with up to eight 274
Digigraphic Consoles

• Data set interface

-1747/1706 Data Set Unit (interface to CYBER
systems)

Typical 1774 Configuration

e CPU and channels

-1774 System Controller with 4096 words of memory

-1772 Memory Module with up to seven units of 4096
words each

-1773 Direct Storage Access

-1775 Interrupt/Data Channel

-1706 Buffered Data Channel

-1779 Character Handling

• Teletypewriters

-1711-3 Teletypewriter

-1713-3 Teletypewriter/Paper Tape Input/Output (not
supported for initialization)

• Card readers

-1729-2 Card Reader

-1726/1706/405 Buffered Card Reader

-1726/405 Card Reader

-1728/430 Card Reader/Punch

• Line printers

-1742-1 Line Printer

-1740/501 Line Printer

• Disks

-1739-1 Cartridge Disk

-1733-1 Disk Drive Controller with a mix of up to eight
853 and 854 Disk Drives

-1738 Disk Drive Controller with a mix of up to two 853
and 854 Disk Drives

• Drums

-1751A to J Drum

-1752-1 to -4 Drum

• Magnetic tapes

-1731 Magnetic Tape Controller with up to eight 601
Tape Drives (1706/10277-1 is optional)

-1732-1 MagnetiC Tape Controller with a mix of up to
eight 608 and 609 Tape Drives (1706 is optional)

• Communications equipment

-364-4 Communication Multiplexer

-361-1 Communications Adapter

-361-4 Communications Adapter

-1595 Serial I/O Card

-1745-2/1706/210 Local Terminal Controller

-Combinations can drive a mixture of 1711-4, 1711-5,
713-10,713-10/711-100 units.

• Paper tapes

-1777/1778 Paper Tape Station

• Clock timers

-1750/1572 Sample Rate Timer

-1750/1573 Line Sync Timer

-1750-1/1572-1 Sample Timing Unit

-364-4 Timer

• 1500 Peripherals

-1544-1 to -4 Digital Input Unit

-1553-1 to -4 Digital Output Unit

-1555-1 to -3 Relay Output Unit

-1525-3 Analog/Digital Converter

-1501-10 Analog Input Multiplexer Controller

-1501-11 Multiplexer Channel Expansion

-1536-2 Relay Multiplexer Controller

-1502-80 Relay Multiplexer Module

-1501-81 to -83 Relay Input Channels

-1750-1 Computer Interface Unit

-1750-2 Computer Expander Unit

-1590 Remote Computer Interface

-1547-1/2 Events Counter Unit

-1566 Digital-to-Analog Converters

• Digigraphic console

-1744/1706 Digigraphic Controller with up to eight 274
Digigraphic Consoles

• Data set interface

-1747/1706 Data Set Unit (interface to CYBER
Systems)

Typical 1784 (CYBER 18-17) Configuration

• CPU and channels

-1784-x Computer with 4096 words of memory

-1782-x Memory Modules with up to 15 units of 4096
words each

-1783-1 Expansion Enclosure (required when memory
size exceeds 32 K)

-1786-1 Memory Expansion Module (required for use of
memory in 1783-1)

-10297-1 Memory Hold Battery

-1706/10277-1 Buffered Data Channel t
-1785-3 A/Q Channel Adapter

-1785-4 DSA Channel Adapter Extension

• Teletypewriters

-1711-4 Teletypewriter, KSR-33

-1711-5 Teletypewriter, KSR-35

-1713-4 Teletypewriter (keyboard mode only), ASR-33

t Devices require the inclusion of the 1785-3 A/Q Channel Adapter and the 1785-4 DSA Channel Adapter.

96769400 A 1-9

-1713-5 Teletypewriter (keyboard mode only), ASR-35

-713-10 Conversational Display Terminal (as Teletype-
writer replacement)

-711-100 Conversational Display Terminal Memory
Expansion (optional)

-713-120 Slave Printer (optional usage via Conversa
tional Display Terminal mode selection)

• Card readers/punch

-1729-2 Card Reader t

-1729-3 Card Reader

-1726/1706/405 Buffered Card Readertt

-1728/430 Card Reader/Punch t

-1725-1 Card Punch

• Line printers

-1742-1 Line Printer t

-1740/501 Line Printer t

-1742-30 Line Printer

-1742-120 Line Printer with 595-4 Train Cartridge

• Disks

-1739-1 Cartridge Disk tt

-1733-1 Disk Drive Controller with a mix of up to eight
853 and 854 Disk Drives tt

-1733-2 Disk Drive Controller with a mix of up to four
856-2 and 856-4 Disk Drives

-1738 t Disk Drive Controller with a mix of up to two
853 and 854 Disk Drives tt

• Drums

-1751A to J Drum tt

-1752-1 to-4 Drumtt

• Magnetic tapes

-1731 Magnetic Tape Controllert with up to eight 601
Tape Drives (1706/10277-1 is optional) tt

-1732-1 t Magnetic Tape Controllert with a mix of up
to eight 608 and 609 Tape Drives (1706/10277-1 is
optional) tt

-1732-2 Magnetic Tape Controller with a mix of up to
four 615-73 and 615-93 Tape Drives

-1732-3 Magnetic Tape Controller with a mix of up to
four 616-72, 616-92, or 616-95 Tape Drives

• Communications equipment

-364-4 Communication, Multiplexer t

-361-1 Communications Adapter

-361-4 Communications Adapter

-Combination can drive a mixture of 1711-4, 1711-5,
713-10, 713-10/711-100 units.

-1595 Serial I/O Card t

-1745-2/1706/210 Local Terminal Controller tt

-1743-2 Asynchronous Communications Controller

• Paper tapes

-1777/1778 Paper Tape Station t

-1720-1 Paper Tape Reader and Punch

• Clock timers

-1750/1572 Sample Rate Timer t

-1750/1573 Line Sync Timert

-1750-1/1572-1 Sample Timing Unit t

-364-4 Timer

-10336-1 Real-Time Clock

• 1500 Peripherals

-1544-1 to -4 Digital Input Unit t

-1553-1 to -4 Digital Output Unit t

-1555-1 to -3 Relay Output Unit t

-1525-3 Analog/Digital Converter t

-1501-10 Analog Input Multiplexer Controllert

-1501-11 Multiplexer Channel Expansion t

-1536-2 Relay Multiplexer Controllert

-1502-80 Relay Multiplexer Module t

-1501-81 to -83 Relay Input Channelst

-1590 Remote Computer Interfacet

-1547-1/2 Events Counter Unit t

-1566 Digital-to-Analog Converterst

-1750-1 Computer Interface Unit t

-1750-2 Computer Expander Unit t

• Digigraphic console

-1744/1706 Digigraphic Controller tt with up to eight
274 Digigraphic Console

• Data Set interface

-1747/1706 Data Set Unittt (interface to CYBER
Systems)

Table 1-3 is a matrix of the maximum configurations for
1700 Systems. Many various optional configurations can be
constructed from the following information and matrices.

tDevices require the inclusion of the 1785-3 A/Q Channel Ada~ter.

ttDevices require the inclusion of the 1785-3 A/Q Channel Adapter and the 1785-4 DSA Channel Adapter.

1-10 96769400 A

96769400 A

TABLE 1-3. MATRIX OF MAXIMUM 1700 CONFIGURATIONS

Equipment

Channels

1783-1 Expansion Enclosure

1786-1 Memory Expansion

10297-1 Memory Hold Battery

1785-3 A/Q Channel Adapter

1785-4 DSA Channel Adapter

1706 Buffered Data Channel

1706/102771 Buffered Data Channel

1705 Interrupt/Data Channel

1773 Direct Storage Access

1775 Interrupt/Data Channel

1779 Character Handling

Teletype wri ters/Displays

1711-2 Teletypewriter

1711-3 Teletypewriter

1711-4 Teletypewriter

1711-5 Teletypewriter

1713-2 Teletypewriter

1713-3 Teletypewriter

1713-4 Teletypewriter

1713-5 Teletypewrit~r

713-10 Conversational Display Terminal

711-100 CRT Memory Expansion

713-120 Non-Impact Printer

Card Readers

1729-2

1729-3

1726/405

Card Readers/Punch

1728-430

1726/1706/405

1725-1

Line Printers

1742-1

1740-501

1704

x

X

x

x

X

X

X

X

X

X

1714

X

X

X

X

X

x
X

X

X

1774

X

X

X

X

X

X

X

X

X

X

X

X

1784-x

X

X

X

X

X

t

X

X

X

X

X

X

X

tt
X

tt

tt
t
X

tt
tt

t Devices require the inclusion of the 1785-3 A/Q Channel Adapter and the 1785-4 DSA
Channel Adapter.

tt Devices require the inclusion of the 1785-3 A/Q Channel Adapter.

1-11

TABLE 1-3. MATRIX OF MAXIMUM 1700 CONFIGURATIONS (Contd)

Equipment 1704 1714 1774 1784-x

Line Printers (Contd)

1742-30 X

1742-120/595-4 X

Disks

1739-1 X X X t
1733-1/853/854 X X X t
1733-2/856-2/856-4 X

1738/853/854 X X X t

Drum

1751 A/J X X X t
1752-1 to 1752-4 X X X t

Magnetic Ta2es

1731/601 X X X t
1732-1/608/609/1706 X X X t
1732-1/1706/601 X X X t
1732-1/608/609 X X X t
1732-2/615-73/615-93 X

Pa2er Ta2es

1721/1722 X

1723/1724 X

1777/1778 X X X tt
1720-1 ... X

Communications

364-4 X X X tt
361-1 X X X tt
361-4 X X X tt
1595-10/20 X X X tt
1745-2/1706/210 X X X t
1743-2 X X X X

Clock Timers

1750/1572 X X X tt
1750/1573 X X X tt
1750-1/1572-1 X X X tt
364-4 X X X tt
10336-1 X

t Devices require the inclusion of the 1785-3 A/Q Channel Adapter and the 1785-4 DSA
Channel Adapter.

tt Devices require the inclusion of the 1785-3 A/Q Channel Adapter.

96769400 A

TABLE 1-3. MATRIX OF MAXIMUM 1700 CONFIGURATIONS (Contd)

Equipment 1704 1714 1774 1784-x

Real-Time Peripherals

1544-1 to 1544-4 X X X tt
1553-1 to 1553-4 X X X tt
1555-1 to 1555-3 X X X tt
1525-3 X X X tt
1501-10 X X X tt
1501-11 X X X tt
1536-2 X X X t
1502-80 X X X tt
1501-81 to 1501-83 X X X tt
1750-1 X X X tt
1750-2 ~ X X X tt
1547-1 to 1547-2 X X X tt
1566-22 to 1566-23 X X X tt

Digigraphic Console

1774/1706/274 X X X t

Data Set Interface

1747/1706 X X X t

t Devices require the inclusion of the 1785-3 A/Q Channel Adapter and the 1785-4 DSA
Channel Adapter.

tt Devices require the inclusion of the 1785-3 A/Q Channel Adapter.

Typical CYBER 18-20 Configuration -1828-1/1829-60 Card Reader

• CPU • Line printers

-CYBER 18-20 Computer with 32K bytes, MOS -1828-1/1827-30 Line Printer
'-

-1882-16 MOS Main Memory Storage, 32K bytes -1828-1/65119-1 Line Printer

-1882-32 MOS Main Memory Storage, 64K bytes (up -1827-5/7 Matrix Printer
to 256K bytes)

-1874-1 ECC MOS Array • Disks
-1875-1 Breakpoint Controller

-1~33-1/1833-3 Di~k Drive Controller with up to
-1875-2 Breakpoint Panel eIght 1867-20 or eIght 1867-10 Disk Drives

• Displays -1833-4 Disk Controller with up to four 1866-12 or I 1866-14 Cartridge Disk Drives
I -1811-1/2 Console Display

• Flexible disks
0 Card readers

-1833-5 Flexible Disk Drive Controller with up to
-1828-1/1829-30 Card Reader two 1865 Flexible Disk Drives

96769400 C 1-13

I

I

• Magnetic tapes

•

-1832-4 Magnetic Tape Controller with a mix of up to
four 1860-72 and 1860-92 Magnetic Tape Transports

-1860-5/6 Magnetic Tape Subsystem with up to four
tape transports.

Communications equipment

-1843-1 Communications Line Adapter

-1843-2 Eight Channel Communications Line Adapter

SOFTWARE

The highly modular structure of the software allows the user
to customize this software and his hardware to fit his needs
in an economical manner. The following discussion uses
logical categories; these divisions may not necessarily be
the same as those used for modular divisions. Some of the
software discussed is not a part of the MSOS system, but
rather works with it to give increased capabilities. These
products are:

• File manager

• Report generator (RPG II)

• Sort/merge

• Macro assembler

• MSFORTRAN

• Magnetic tape utilities

Each of these subsystems has its own reference manual.

The remainder of section 1 contains a brief description of
each of the major software functions which operate as part
of, or under control of, MSOS:

• Monitor

• Requests (scheduling and dispatching)

• Drivers (I/O and pseudo equipments)

• Job processing

• Libraries

• Loading and linkage

• Utilities

• Maintenance

• Data Management

• System Startup

• Languages

MONITOR

The monitor is the real-time executive program for the
CYBER 18/1700 MSOS. It serves as an interface between
the programs and hardware. The monitor schedules use of
the central processor and the I/O equipment to the various

1-14

programs on a priority basis. Real-time programs that must
be executed within a time limit run at high priority levels
(the highest level is 15); non-real-time programs run at low
priority levels (the lowest level is 0).

Core allocation is a major monitor concern. Main memory is
apportioned in several ways: by priority levels, by
partitions, and by protected and unprotected areas. The
purpose of the first two methods is to allocate core so that
important programs have a relatively large area into which
they can be loaded and executed while less important
programs are restricted to relatively small segments of
core.

NOTE

Most foreground programs are written to
be run-anywhere, so that the program
need not be assigned a specific location in
all systems.

The purpose of the third method is to allow a large area for
background processing. This area ia allowed on a non
interference basis with the foreground programs so that if a
background program is operating when a foreground program
requires time, the entire background region of core is
swapped onto disk. The foreground program can be executed
in the space made available.

If main memory cannot be allocated because insufficient
space is currently available for a program of this importance
(allocation priority), the space request is queued to the core
allocation routine. Allocation is retried later when some
current program releases space.

The on-line programs (monitor, job processor, the library
editing program, and recovery) run in protected areas of
core. Batch programs (job processing) run in unprotected
core. This protect feature ensures that errors in the
unprotected programs do not destroy the on-line system.
However, unprotected programs may make use of protected
routines, such as I/O "drivers, through requests to the
monitor.

Unprotected programs are assisted in making monitor
requests by the comprehensive program protect system.
Programs running in unprotected areas are not allowed to
transfer control to locations in protected areas. When
unprotected programs make monitor calls, a memory protect
violation interrupt occurs. The interrupt service program
determines the nature of the memory protect violation and
then examines the monitor request for validity. If the
request is valid, the monitor proceeds with the request; if it
is in error, the request is rejected.

Each interrupt line is assigned a specific priority and an
associated interrupt response routine, usually a part of the
I/O driver for the line's device. The priority level of the
interrupt determines whether it is processed immediately or
not. The typical execution priority for the system is shown
in table 1-4.

If this typical priority structure is used, drivers are executed
in preference to foreground programs which themselves have

96769400 C

TABLE 1-4. TYPICAL MSOS PRIORITIES

Priority t Reserved For

15 Internal errors: stall alarm parity
and protect violations

9-14 I/O drivers. Those drivers that are
the most time-critical (e. g., card
reader) have the highest priorities.

4-8 Foreground programs

2-3 Foreground idle loop (job processor,
protect processor)

1
o

-1

Background
programs

CPU idle loop

(completion
scheduling)

t See also appendix F.

preference to background programs. The interrupt handlers
set an interrupt mask so that only interrupts of a higher
priority can interrupt an interrupt processor. Conversely, as
soon as an interrupt's processing is completed, the mask
drops to a lower level. This level is that of the interrupted
interrupt routine (if any) or the level below any interrupts
(level 8 in the scheme shown).

NOTE

Should the running of a foreground
program be critical for an application
(e.g., a process control program whose
failure to execute immediately could
cause catastrophic harm to the user's
process), such a process control program
might run at a higher priority than many
or all of the drivers.

These features permit the MSOS software system to execute
real-time programs in response to interrupts or internal
requests and to process on-line jobs on a real-time basis.
Numerous real-time programs can be handled by the system
with many independent concurrent processes being serviced
on the basis of their priority. The computer can debug new
programs in the background without danger to the process
while controlling an on-line process. A manual interrupt on
the computer console allows the operator to assume limited
direct computer control for batch processing.

REQUEST PROCESSOR AND DISPATCHER

The request processor is a scheduler that checks each
request for validity.

96769400 A

If the request is from a background program, an extensive
validity check is given to preclude harming protected
processes. A brief check is also given requests from
foreground programs. If the request is valid, it is threaded
to the appropriate device. In the case of a scheduler
request, the scheduler either schedules the request imme
diately or queues the request for later processing. The
former occurs only if the requesting program specifies the
request to be more important than its own continued
execution. In this case, the current program's operation is
suspended, and that program joins the queue of other tasks
awaiting execution (at, however, a higher priority than any
other waiting program). In the more common case, the
requested task operates at a lower priority level and takes
its place in the scheduler queue according to its request
priority level.

The dispatcher gains control when a task is completed or
when a program is waiting for a subtask to be completed.
The dispatcher executes the highest priority waiting
program using these criteria:

• CPU control is passed either to the highest priority
program that has been interrupted and is awaiting
completion or to the highest priority scheduled request.

• If an interrupted program and a scheduled program have
equal priority, the interrupted program is given CPU
control.

NOTE

Numerous awaiting-execution queues exist
in the systems. The most important of
these are the interrupt and scheduler
queues that are built up by requests and
interrupt handling routines and are worked
down by the dispatcher. Next in impor
tance are the I/O driver queues discussed
below. Also important are the space
assignment queues discussed above.

DRIVERS (I/O AND PSEUDO STATEMENTS)

Each hardware equipment has its own driver. Some software
programs (e.g., COSY or the pseudo tape unit) also have
drivers. These drivers set up I/O transfers and ensure that
all data transfers queued for an I/O device are processed as
fast as the device can handle them.

MSOS I/O drivers are interrupt driven and DMA/DSA devices
are asynchronous to mainframe operation (with the excep
tion of the pseudo I/O drivers such as the COSY driver).
Using the request parameters, the I/O drivers set up the I/O
equipment for the transfer, establish buffer limits if a block
transfer of data is requested, and start the data transfer.
Subsequent requests to the same device are queued to this
driver on a priority basis. The appropriate request· module
builds up the queue; the specified I/O driver works the
waiting requests off the queue.

The drivers, although an integral part of MSOS, have their
own separate reference manual.

1-15

JOB PROCESSOR

The job processor is a system program that monitors the
unprotected core programs. This program is mass-storage
resident, stored in run-anywhere form in the system library,
and is read into protected core by an operator request. It
allows programs to run in the background (unprotected core)
when the system does not need the CPU or the background
core area. The job processor runs under control of the
monitor at a low priority level.

The job processor initiates and supervises all the programs
running in or utilizing unprotected core, including:

Operation

FORTRAN compiler,
non-reentrant

Run-time version
Macro assembler

COSY

Off-line object
programs

Breakpoint

Recovery

On-line trace

Relocatable binary
loader

Skeleton and library
builder

Library editing

I/O utilities (various)

Text editor

System and program
maintenance routines

*FTN

*ASSEM

*COSy

*name

*B

*SR

Call

*TRACE (in program)

*L or *LGO

*SKED and *LIBILD

*LIBEDT

*IOUT, *MTUT, or *DTLP

*EDITOR

The job processor can be initiated through the console
manual interrupt processor.

Subsequent batch control may come from the computer
console or may be assigned to standard input device. The
operator may:

o Specify the input device for control statements

o Call the relocatable binary loader or load a program as
an absolute file

• Instruct the loader to load a specified program

• Set the breakpoint indicator

• Set the recovery indicator

• Start execution

• Reassign standard input and output device for job
processing

• Reassign standard input and output device for COSY

• Define, open, close, release, modify, and purge job
processor file

1-16

• List the directory of job processor files

• Execute programs after loading or load and execute by
load-and-go

• Rewind and/or unload magnetic tape units

• Temporarily suspend job processing for operator
intervention

• Call the library editing program

• Call a variety Of utility programs to manipulate files
and transfer data from one I/O device to another

LIBRARIES

Two libraries store the programs on mass storage. The
system library contains copies of all foreground programs
except those residing in main memory. The main-memory
resident programs are kept in absolute format on the system
image area of mass memory. From that location they are
read into main memory at autoload time. The program
library contains all background programs.

Foreground programs that are not main-memory-resident
are written in run-anywhere form, but are stored in absolute
binary format already linked to other programs. Background
programs may be stored in relocatable binary format or in
absolute binary format. In absolute binary format, the
programs are called library files.

Several utilities allow modification of the libraries:

• A skeleton editor and library builder allow changes to
the order and content of both libraries by restructuring
the installation file from which the system is built.

o A library editor allows internal changes to programs on
either library, including addition and deletion of
programs. Without reinitialization, the system library
can be expanded until all the previously provided
dummy programs slots are filled with programs. The
program library can be expanded as long as mass
memory space is available.

A third library stores standard macro commands used by the
macro assembler, which are selected during system customi
zation. Additional macro commands may be defined by the
user and stored in the library using the LIBMAC utility (see
section 14). Macro commands are changed to 1700 machine
code by the macro assembler.

LOADING AND LINKAGE TO OTHER PROGRAMS
AND TO DATA

Programs in object form are usually written in relocatable
binary format. The programs may then be stored on mass
storage in several ways:

• Absolutized format for main memory programs (stored
already linked in the system image region)

• Absolutized format for foreground programs (stored
already linked in the system library)

96769400 A

C) Relocatable binary format for background programs
(stored in the program library and linked as they are
loaded)

o Absolutized format for background programs (program
files) stored in the program library. Linked programs
must be absolutized and stored with the principal
program.

Background programs may also be stored in relocatable
binary format on cards, magnetic tape, etc. These programs
are linked as they are loaded.

Foreground Program Linkage

At system initialization time, main-memory-resident
programs are loaded and linked (*L, *LP, and *T statements,
section 6). The programs are then saved in absolute format
in the system image region of mass memory.

Also at initialization time, mass-memory-resident programs
are loaded and linked (*M and *MP statements, section 6).
These programs are then stored in the system library in
absolute format. Entry points to these programs are listed
in the CREP and CREP1 tables.

After initialization, additional foreground programs may be
placed on the system library by LIBEDT (section 13) using a
substitution procedure. At initialization, dummy program
ordinals are usually included in the system library, giving the
capability of adding programs without reinitialization until
all the dummy programs are gone.

Background Program Linkage

After the initial startup, LIBEDT may be called to build the
program library. Programs may be stored on the library in
absolute format (program files) or in relocatable binary
format (*L, *P, and *N statements, section 13). Relocatable
binary programs are linked when they are loaded for
execution (see *X, section 9, for linkage definition).

NOTE

A protect violation occurs when a
background program references a fore
ground program that does not expressly
allow such linkage (e.g., file manager, a
foreground program, allows such linkage).
The preset table in SYSDAT defines those
foreground entry points that may be
referenced by background programs.

If the background program is stored as an absolute file on
the program library, it is linked to all its external references
at the time it is initially loaded on the library (see *p
statement, section 13, for linkage definition).

FORTRAN Program Linkage

If the user elects to write any type of program in
FORTRAN, the subprogram linkage rules for that language

96769400 A

must be followed. See the MS FORTRAN Reference Manual
for details.

loading

For main-memory-resident programs, the autoload
procedure (see System Start-up, section 2) transfers the
main memory image from mass memory to main memory
and then passes control to the monitor. A foreground
program is loaded at its execution address as a result of a
schedule request (see SCHDLE and SYSCHD, section 3). A
background program is loaded into unprotected core at its
execution address as a result of a LOADER or GTFILE
request.

Three types of background loading are provided:

• From the program library, a relocatable binary program
is loaded, linked, and executed.

• From the program library, an absolute program
(program file) is read in whole or any designated
subpart, and executed.

o From the designated I/O device(s), a relocatable binary
program is loaded, linked, and executed. This loading
makes use of the program library directory to load
routines that are linked to the requested program, but
the requested program is not added to the program
library by this loading operation.

Finding Data and Common Area Information

Certain routine addresses and directory addresses are kept
in the communications region. These are fixed locations.
Some of them can be accessed by unprotected programs.

Foreground programs can define and link to a system blank
common and multiple labeled common areas. Labeled
common may be preset with data (section 2).

For background programs, a separate labeled and blank
common within the bac~ground area may be defined
(section 2).

Requests (see sections 3, 5, and 9) make data available
to/from an I/O device or from files. File manager files are
available to foreground programs and with restrictions to
background programs.

UTILITIES AND MAINTENANCE SOFTWARE

Three categories of programs are included in this group:

• Software programs to check hardware performance

e Software programs to aid in debugging other software

• Miscellaneous utilities

Hardware Performance Checking

The following two major programs are provided.

1-17

o The Small Computer Maintenance Monitor (SCMM) is an
on-line hardware error detection program. SCMM is
entered at operator option using the manual interrupt,
and gives the operator the ability to test I/O equipment.
The test is briefly described in section 7, and is fully
described in the SCMM Reference Manual. The
program cannot be used on CYBER 18-20 and
CYBER 18-30 Timeshare systems.

• The engineering file is a log for saving hardware device
failure information. Data is entered into the file by the
appropriate I/O driver when that driver encounters an
unrecoverable device error (e.g., a record cannot be
written to disk). When the log is filled, the operator is
notified. The contents of the log can be inspected at
any time by issuing a manual interrupt followed by a
request for the log contents (section 8).

Program Debugging

On-line debug (ODEBUG) may be used to debug programs at
low foreground priorities. ODEBUG treats programs as
files, and also includes load, dump, and alter capabilities.
Since ODEBUG accesses both protected and unprotected
regions of main memory, both foreground and background
programs can use the debugging functions. ODEBUG is
described in section 10.

The breakpoint program runs in the background and allows
the operator to inspect program performance at specified
decision points and to alter data and instructions at these
points. The program is described in section 10.

The recovery program is provided for checking performance
of batch programs after they have been executed. It is
described in section 10.

Miscellaneous Utilities

The system checkout package (SYSCOP) causes the image of
the failed system to be written to mass storage (bootstraps
are required for this dumping operation). Then, after
autoload restarts MSOS, SYSCOP systematically examines
the image at low priority and prints error information. The
operation of SYSCOP is described in section 11.

Library editing routines (LIBEDT) permit the user to
substitute programs on both the system and program
libraries, to add programs to both these libraries, and to
alter absolute programs (library files) on the program
library. LIBEDT is described in section 13.

Other utilities are described in section 14. These include:

• Initializer aids: SILP

• Library preparation aids: SKED, LIBILD, LIBMAC, and
SETPV4

• Listing and sorting aids: LULIST, LISTR, EESORT, and
OPSORT

• Program compression aids: COSY and its associated
programs, CYFT and LCOSY

1-18

o I/O utilities: DTLP, DSKTAP, and 10UP

• File editing: EDITOR

• On-line program tracing: TRACE

FILE MANAGEMENT

The file manager is a complete file management system
allowing the establishing and updating of files sequentially,
directly, or by keywords (indices). Files are essentially free
form. The file manager consists of a request supervisor that
resides in core, and a number of request processor that
reside on mass storage, minimizing core requirements.
Individual request processors are brought into core only as
they are needed.

Core requirements for the file manager are approximately
1000 words of resident and 1200 words of allocatable core to
accommodate the largest request processor. Mass storage
requirements are dependent on the average record length in
a file, the number of records in a file, and the length and
number of key values used for indexed files.

In order to minimize mass memory I/O traffic, the file
manager is designed to allow file information to remain in
allocatable core until a time-out occurs, at which time the
information is updated on mass storage. Users are cautioned
that abnormal system stops and autoloads can destroy this
information, and eventually cause fatal file errors.

If the system contains a file manager, a file validity check is
performed each time the system is autoloaded. The check is
preceded by the message:

CHECKING FILES -

on the system comment device. The check consists of a
trace of all file space threads on mass storage. If the
threads are found to be valid, an OK is printed. If errors are
found, the user is given the option to continue with the
autoload or to purge all the system files (i.e., all pointers to
the file manager space pool are reset to a state that
indicates that no files are defined). If the second option is
selected, the files have to be reloaded from a user-written
back-up dump.

The file manager is discussed in section 5 and is described in
detail in the File Manager Reference Manual.

Job processor files are free-form background files. They are
dated so that files are automatically purged on the file
expiration date.

Job processor files are allocated and controlled through the
file manager by use of pseudo magnetic tape logical units.
Each file is essentially anothel' tape logical unit in which
data can be written, stored, and read. Use of these files
provides such capabilities as:

• Establishment of dedicated files for binary and list
output

• Storage of ASCII or binary information for frequently
executed system routines such as LIBEDT, COSY,
FORTRAN, macro assembler, etc.

96769400 A

The control statements for job processor files are described
in section 9.

The following products and systems features use files under
file manager control:

o Sort/merge facilitates copying, sorting, and merging
files. Since subsorting by a series of weighted keywords
is available, sort/merge provides limited text searching
capability. Sort/merge uses file manager files. It is
described in detail in the Sort/Merge Reference Manual.

o The report generator (RPG II) uses highly structured file
manager files. RPG II produces business record-type
reports; it can alter data in its structured files quickly
and efficiently. This product is described in detail in
the RPG II Reference Manual.

• The text editor manipulates data in one background file.
Data processed by this text editor may then be stored in
a job processor file for future use. Input to the file may
be any free-form data whether previously declared as a
file or not. The text editor is described in section 14.

SYSTEM INITIALIZATION AND STARTUP

A system initializer constructs MSOS from an installation
file. At the end of initialization, the autoload sequence that
places the monitor in main memory is executed. At the first
startup time following initialization, the program library is
customarily constructed. The initializer is described in
section 6; system startup is described in section 2.

At the beginning of initialization, the operator can exercise
options to write address tags or surface test the disk pack.

The main memory resident programs are read into memory,
absolutized, and an image of this main memory is saved in
the system image region of mass memory.

The system library is constructed as foreground programs
are loaded, linked, and written onto mass memory.

After library construction is completed, initialization ends
by producing the autoload (system image) area on mass
storage, which makes system startup possible.

96769400 A

With the first startup, the program library is constructed.
The system is now fully operational for foreground and
background processing.

MASS STORAGE AllOCATION

While this is the direct result of requests to the mass
storage drive, certain areas are reserved on the library unit.
Appendix H shows a sample layout. The File Manager
Reference Manual also described the use of mass storage for
file and keyword directories as well as for the files
themselves.

MSOS uses word addressable storage (e.g., READ and WRITE
requests) or sector addressable storage (e.g., FREAD and
FWRITE requests). MSOS uses 96 word sectors. Sector
address tags may be rewritten on disk as a part of system
initialization.

LANGUAGES

Two principal languages are provided: 1700 assembly and
MS FORTRAN.

• 1700 assembly consists of the basic 1700 machine
instructions plus the enhanced machine instructions for
the CYBER 18 only. The complete instruction set is
found in the Macro Assembler Reference Manual. The
language also includes the pseudo instructions (standard
macros) for subprogram linkage, for data storage, for
constant declaration, for assembler and listing control,
and for definition of new macro instructions. All of
these are listed in the macro library.

• MS FORTRAN. This FORTRAN is a subset of ANSI
FORTRAN. There are two compilers for the
1700/CYBER 18 series. They provide the same run
time capability but differ in compilation speed and
memory requirements. The MS FORTRAN is described
in detail in the MS FORTRAN Reference Manual.

1-19

MONITOR 2

_'IEib * -N,'".¥¥*f"-iWi .,F i",+

The monitor performs two basic functions:

• Interfaces functional programs with hardware

• Assigns system resources to tasks by priority

The following features enable the monitor to perform these
functions:

• Sixteen levels of program priority - System compo
nents, including input/output equipment, are allocated
on a priority basis.

• Highly interruptible structure - Interrupts are
inhibited for short intervals only.

• Monitor structure - This structure allows the
computer system to be time-shared by an unrestricted
number of programs.

• Re-entrant structure - Monitor programs may be
interrupted, called by the interrupt program, and
resumed without loss of continuity.

Interrupts are handled by a common routine that saves the
interrupted program's registers and priority level in a stack.
For interrupts from line 0, the internal interrupt processor is
entered directly. The internal interrupt processor handles
abnormal conditions, such as memory parity and unprotected
monitor calls. Monitor calls are passed to processing
modules, which perform the required action; calls requiring
input/output action are queued on a priority basis.

SCHEDULING TASKS BY PRIORITIES AND
INTERRUPTS

PRIORITIES

The sixteen assigned priority levels allow the user to ensure
that all critical tasks are performed in a timely manner and
that the asynchronous data transfers are properly processed.
To preserve interrupts (some of which must be serviced in a
relatively short period of time lest a loss of data occur), the
highest priorities are assigned to these interrupt handlers.
To ensure that background programs do not interfere with
foreground tasks, the background programs are given low
priority. A typical system priority assignment is shown in
table 1-4.

MSOS uses a priority scheme to determine whether task
execution is to occur immediately or is to follow more
important tasks. Requests for higher priority programs are
executed immediately, suspending execution of the running
program; requests for lower priority programs are deferred
by queuing these on a first-in-first-out (FIFO) within priority
level queue.

96769400 A

M"tGit.ii -"".455:,6 ,j., 9rd-i i'M

Four principal methods are used to accomplish the priority
scheme:

• Scheduled programs are queued in the scheduler stack.
The stack also provides the ability to defer the actual
queuing of a task until a specified period has elapsed
(TIMER requests).

• Interrupted programs are stacked in the interrupt stack.
Since only a higher priority task can interrupt the
running program, this stack is arranged on a last-in
first-out basis.

• I/O requests are queued to the I/O driver which
processes them. Each of these queues is ordered on a
FIFO-within-priority basis.

• Requests for space in main memory are saved in a
separate queue if they cannot be accomplished
immediately. These are ordered on a FIFO-within
priority basis.

Servicing stacks and queues is as follows:

1. The dispatcher works requests off the scheduler and
interrupt stacks, executing the highest priority task in
either stack. In the case of equal priorities in both
stacks, the interrupt stack task is given control of the
CPU.

The timer routine periodically checks queued TIMER
requests in the scheduler stack. If the requested delay
time has elapsed, the request is queued with the other
scheduler requests on an FIFO-within-priority basis.

2. The find-next-request processor (FNR) starts the
highest priority task in an I/O queue as soon as the
previous task is completed.

3. When space is released in main memory, the space
assignment processor tries to assign space for the
highest priority task in the space queue.

Requests to the monitor contain two priority values: a
request priority that is the initial scheduling (threading)
priority and a completion priority for continuing execution
after the requested task (e.g., reading data from an I/O
device) has been completed. The initial request priority
determines the request's place in the appropriate queue
(scheduler queue for programs, I/O device queues for I/O
operations). The completion priority has a completion
address associated with it. When the request is completed,
that address is scheduled at the completion priority in the
scheduler queue.

2-1

INTERRUPTS

A variety of devices may be attached to the 15 possible
external interrupt lines available with the interrupt/data
channel. Interrupts signify the occurrence of some external
event and vary in importance. The computer responds to the
interrupt on a priority basis. Priorities are assigned to each
interrupt line at installation time.

Interrupts on any interrupt line are recognized only if the
interrupt system is enabled, and the bit in the interrupt
mask register (M register), which corresponds to the inter
rupt line, is set to one. The mask is a function of the
current priority level, so that only interrupts of a higher
priority level are processed.

Interrupt handling takes place in two stages: an initial
noninterruptable stage during which the current state is
saved, and a following stage when the interrupt processor
handles the interrupt. During this second stage, the
interrupt processing routine may itself be interrupted by a
higher priority interrupt.

When an interrupt occurs, the interrupt handler records the
current state of the A, Q, I, and P registers, overflow, and
priority level in the interrupt stack. On the CYBER 18, the
enhanced registers R1, R2, R3, and R4 are also saved in the
extended interrupt stack.

Control is then given to the interrupt response routine.
After the interrupt has been serviced. the dispatcher
permits the interrupted program to be restored to execution
at its original state by restoring the registers from the
interrupt stack. When simultaneous interrupts occur, the
hardware recognizes the lowest line number first. Mask
table entries for unused interrupt lines are set to zero.

MONITOR STRUCTURE

The basic monitor, which is responsible for scheduling and
for executing tasks, includes:

• Request modules to analyze requests and schedule them

• A common interrupt handler to suspend running
programs and to save CPU registers so that the
programs can be resumed following processing of the
interrupts.

• A manual interrupt processor to handle unsolicited
operator intervention

• A dispatcher to pass CPU control to the highest priority
task awaiting execution

• I/O drivers to handle data transfers for peripheral
devices as well as to handle special programs (e.g.,
pseudo tape) which are designed to appear as I/O
devices

2-2

• Common data areas (SYSDAT for system parameters
and I/O tables)

• Core allocation routines for volatile storage, for
allocatable core, and for partitioned core

Figure 2-1 illustrates the functional relationships of the
request processor, dispatcher, common interrupt handler,
I/O drivers, and user programs.

The following sections describe core-resident routines in the
operating system.

REQUEST ENTRY PROCESSOR

When a program makes a monitor request, the monitor
stores the registers of the requesting program, examines the
request for conformity with system constraints, and
transfers control to the required processor. The request's
parameter list defines the type of request, I/O devices
required, priority, etc. Requests are described in detail in
section 3.

If the program performing the request has a higher priority
than the requesting program, the request is executed
immediately. Otherwise, the request is queued. After a
request has been queued, control returns to the requesting
program if no higher priority program is waiting to run.
When the current task is completed, control returns to the
dispatcher (described below in this section). At this time
the dispatcher inspects two stacks: the interrupt stack and
the scheduler stack. The priority of the first program in
each stack is checked, and the highest priority request is
executed. If both stacks have an equal priority task waiting,
the task on the interrupt stack is executed, since that task
was already being executed before an interrupt occurred.

SCHEDULER STACK AND INTERRUPT STACK

The scheduler stack (SCHSTK) contains a waiting list of
programs that have been placed there by scheduler requests.
Requests are threaded together on a first-in, first-out
(FIFO) basis within each priority. When a program is taken
off the thread, the next program threaded becomes the top
of the list. Refer to the SCHDLE and TIMER requests in
section 3 for the schedule request format.

The scheduler stack also contains timer requests (requests to
be delayed for a specified time). Timer requests are
threaded separately from scheduler requests on four other
threads. The threads contain requests whose delay time is
measured in counts, tenths of seconds, seconds, and minutes,
respectively. Within each thread, requests are ordered on a
time-remaining-to-scheduling basis. The threads are
inspected periodically by the timer request processor
(TMINT). When the time remaining to scheduling elapses,
this request is removed from the timer thread and placed on
the scheduler thread. It is threaded using the same criterion
as all other scheduler requests: FIFO by request priority.

96769400 A

USER
PROGRAM ~~
REQUEST

USER
PROGRAM
FINISHED

EXTERNALINTERRUP1S ,
MONITOR

COMMON CONTROLS
INTERRUPT DATA
HANDLER TRANSFER

I
r----.J
I

I/O
EQUIPMENT
DRIVERS

1
i

REQUEST REQUEST REQUEST
ENTRY ~ PROCESSORt ~ EXIT
PROCESSORt PROCESSORt

; 1 I I I I I L.. ____ UP TO 25 ~ ___ ...J
REQUESTS

DISPATCHER

:
DISPATCHER CnECKS BOTH
INTERRUPT AND SCHEDCLER STACKS
TO FlND HIGHEST PRIORITY
PROGRAM AWAITING EXECUTION

FEEDBACK
TO. USER
PROGRAM

EXIT TO
I-~ USER

PROGRAM

STARTS
SCHEDULED
PROGRAM

RESTORES
INTERRUPTED
PROGRAM

tAFTER DRIVER ~TARTS PROCESSING A REQUEST. Sl.'BSEQUENT REQUESTS ARE Qt:Et:ED. AS EACH REQUEST IS
COMPLETED, THE DRIVER STARTS THE NEXT REQl'EST IN QUEUE.

Figure 2-1. Monitor Block Diagram for User Programs

96769400 A 2-3

One more thread is contained in the stack: the thread of
unused locations. When an entry is removed from scheduler
thread it is returned to the thread of empties for later use
by another request. When a request is removed from a timer
thread, it is threaded at the appropriate request priority in
the scheduler thread.

The scheduler stack is contained in SYSDAT and is composed
of four-word entries. The entry stack contains the
following:

Word 15
o
1

2

3
Q

o
Scheduler Call

starting Address
Thread to Next Call

Register (Scheduler Thread) or
Time-to-Go (Timer Thread)

This entry may be from a primary or secondary scheduler
call as a result of a request completion or a system
directory scheduler call. If the size of the scheduler list is
insufficient for the system load, the location ERRCNT in
the scheduler/dispatcher program (NDISP/RDISP) is nonzero.
If this overflow occurs, some scheduler calls are lost.

The interrupt stack (INTSTK) consists of a waiting list of
programs that have been interrupted by higher priority
programs. The program status information is ordered o~ a
last-in, first-out (LIFO) basis, since each succeSSlve
interrupt is of a higher priority level than the last.

The interrupt stack is contained in SYSDAT and is made up
of five-word entries, one for each priority level used in the
system. The stack entry contains the following:

Word 15 14

o
1

2

3

4 ovl

Q Register
A Register

I Register

P Register

Priority Level

Where: OV is the overflow status.

Data is related to the interrupted program.

o

On the CYBER 18, the four enhanced registers R1, R2, R3,
and R4 are also saved, but in an extended interrupt stack.
The extended interrupt stack is made up of four-word
entries, one for each priority level used in the system. Each
set of four-word extended interrupt stack entries is asso
ciated with the five-word interrupt stack entries at the

-same position in the LIFO stack.

2-4

The extended interrupt stack entry contains the following:

Word 15 o
o
1

2

3

------------------------------~

R2 Enhanced Register

R3 Enhanced Register
R4 Enhanced Register

INTERRUPT HANDLING

External interrupts transfer computer control to the
common interrupt handler or to the internal interrupt
handler. When an interrupt is received, the hardware
transfers control to the corresponding interrupt trap, saving
the program address and overflow status. An interrupt is
received only if the mask register bit corresponding to that
interrupt line number is set to 1.

INTERRUPT TRAP

The common interrupt handler can be entered from any of
the interrupt lines. Each line has a 4-word interrupt trap.
The trap region begins at location 10016 and ends at location
13F 16.

Each trap entry is of the form:

Word~I~5-----------------------------------0~
o Entry
1 RTJ-(FE16)

2- pI
~--------------------------------~ 3 pp

or (RTJ-(F816) for line 0)

Where: Entry is the program address applicable at the
time of the interrupt.

FE16 contains the address of the common
interrupt handler.

F816 contains the address of the internal
interrupt processor.

pI is the priority associated with this interrupt
line.

pp is the address of the primary processor that
is to service the interrupt.

The overflow status is preserved in bit 15 of word 0 in 32 K
mode. Each interrupt trap is assembled in the SYSDAT
program and is under complete control of the user. For

96769400 A

example. the common interrupt handler may be bypassed
simply by changing the second location of the four-word
interrupt trap. Unused lines are assigned to the invalid
interrupt processor. INVINT.

COMMON INTERRUPT HANDLER

The common interrupt handler (COMMON) responds to
interrupts for all lines except line O. When entered after an
interrupt. the common interrupt handler resets the overflow
indicator. inhibits the interrupts. and stacks (in the interrupt
stack) the following information required to save the
interrupted program:

• A register contents

• Q register contents

• Memory index I

• The return location and overflow indicator (if 32K)

• The priority level of the interrupt and overflow
indicator (if 65K)

• The interrupt line indication (saved in memory index I
after that register is saved)

• The four enhanced registers (CYBER 18 only)

The address of the next available entry in the interrupt
stack is saved in location B816•

The new interrupt mask level is established after the
required information is saved. The priority of the current
interrupt is used as an index to the interrupt mask table
(MASKT) and the M register is set to the value of the
corresponding mask. After the mask has been loaded into
the M register. the common interrupt handler enables the
interrupt system and exits to the primary processor. with
memory index I set to the address of the interrupt trap.

The two primary interrupt response routines provided as
standard modules are the internal interrupt processor
(NIPROC). for interrupts occurring only on interrupt line 0,
and the external interrupt processor (LlNI V 4). for interrupts
occurring on line 1. All remaining line numbers use their
own individual interrupt processors.

LINE 1 INTERRUPT PROCESSORS

The LINI V 4 interrupt processor (entry point LINI V 4) handles
interrupts from line 1 when more than one input/output
device is assigned to line 1 (normally this includes the
teletypewriter or keyboard, and paper tape equipment).

Each device on line 1 is checked for a set interrupt status.
If a device has interrupted. LINI V 4 enters the driver
continuator for that device (the location of the driver
continuator is in word 2 of the physical device table; refer
to appendix C) and the driver continues or completes the
input/output operation. If no device on line 1 has inter
rupted. a ghost interrupt is assumed and control is returned
to the dispatcher.

96769400 A

The physical device table address for all line 1 devices must
be listed in the SYSDA T table. LIN! TV 4. so that devices on
line 1 can be identified.

Example:

LlNlTV4 ADC
ADC
NUM

P1711
PI777R
$FFFF END OF TABLE

The general interrupt processor type response described
below is used in lieu of program LINIV4. when only one
device is on line 1.

GENERAL INTERRUPT PROCESSORS

Individual interrupt processing routines are used for
interrupt lines that are assigned to only one device. These
routines consist of setting Q to the address of the physical
device table for that device and then transferring control to
the driver continuator.

Example:

R17331 LDQ
JMP*

=XP73310
(P73310+2)

The address of the interrupt response routine (R17331) is
contained in word 3 of the interrupt trap for the interrupt
line.

If several devices are assigned to one interrupt line. the
interrupt processor must identify the device (usually by
reading the status on each device) that interrupted. For
some special devices the interrupt processing routine is an
integral part of the driver. The address in word 3 of the
trap is then set to the address of the processor for this
specific interrupt.

LINE 0 INTERNAL INTERRUPT PROCESSOR

The internal interrupt processor (NIPROC) handles all
internal interrupts on line 0: parity. power failure. and
program protect.

Power Failure

A power failure interrupt is diagnosed by the absence of
parity or program protect faults. The program saves the
contents of memory locations 0 and 1 and the A. Q, and M
registers. A jump to the power restoration section is placed
in memory locations 0 and 1. interrupts are inhibited. and
the system hangs on an 18FF 16 instruction. When power is
restored. the operator may continue by pressing the master
clear and RUN/STEP switches (the GO button on the 1784).
If auto-restart hardware is used. this sequence is done
automatically. The power restoration section restores the
saved memory locations and registers and exits to an
optional. user-supplied power restoration routine (POWERU).
If this routine is not present in the system. interrupts are
inhibited and the system hangs on an 18FF 16 instruction.
The operator may then autoload.

2-5

Memory Parity

A memory parity interrupt is diagnosed from a test of the
parity skip instruction. When this fault occurs, a diagnostic
message is printed on the comment unit and an exit is made
to an optional user-supplied parity fault routine (PARITY).
If this routine is not present, the interrupts are inhibited and
the system hangs on an 18FF 16 instruction. After the
parity fault problem is resolved, the system must be
restarted from an autoload. If the diagnostic message
PARITY DSA? appears, no parity error was encountered on
the core scan. The parity fault was most likely caused by a
DSA parity error.

Program Protect

A program protect interrupt is diagnosed from the program
protect skip instruction. When this fault occurs, a test is
made to determine if background processing is active. If no
background processing is being done, interrupts are inhibited
and the system hangs on an 18FF 16 instruction. This
condition can be caused by foreground program malfunctions
that allow entry to unprotected memory. In the situation
where background processing is active, the protect processor
is entered (programs UPROTK, BPROTK, or in LIBEDT) to
examine the system conditions and validity of the protect
violation. If the violation is legal, an exit is made to the
dispatcher, which allows continued execution. megal
violations cause job termination with a diagnostic message.

DISPATCHER

When a program or program element reaches the logical end
of its execution, it terminates by jumping to the dispatcher
[JMP-(EA 16) or by use of the DISP macro]. The dispatcher
determines which program is to be executed next: the top
entry in the interrupt stack or the top of the scheduler list.
The program with the highest priority is placed in execution
or, if the two programs have equal priorities, the interrupt
stack program is executed. When the program to be started
is from the interrupt stack, its A, Q, and I registers and
overflow condition are restored to their state at the time of
the interrupt. The M register is set to the state defined by
the new program's priority level.

If control is given to a program on the scheduler list, Q is
set with the contents of the fourth word of the list entry
[the or..iginal Q in scheduler calls, an error indication in I/O
calls, or the contents of E816 (which is the time when the
schedule request is made) for timer calls] and the mask or
M register is set to correspond to the new priority (word 1 of
the scheduler list entry). The other registers and overflow
are arbitrary. The interrupt system is enabled before the
program is placed in execution.

The dispatcher function is performed in the NDiSP or RDiSP
module of the monitor, which also contains the scheduler.
NDiSP is the normal scheduler/dispatcher; RDiSP is the
re-entrant FORTRAN scheduler/dispatcher. The two
variants perform identical functions, except that RDiSP also
has the capability to handle FORTRAN multiprogramming.
If RDiSP is used, the SYSDAT program must contain
FMASK, which· indicates allowable FORTRAN levels
(bit 0 = level 0, etc.), and the list (FLIST) of entries in the
re-entrant ENCODE/DECODE runtime that require

2-6

preservation in volatile storage to achieve runtime
re-entrancy. Each time a FORTRAN level is interrupted,
the memory locations whose addresses are in FLIST are
saved in volatile storage. When a FORTRAN level is
re-entered from a higher level, the memory locations are
restored.

MANUAL INTERRUPT PROCESSOR

The manual interrupt processor (MINT) responds to
interrupts generated by the use of the manual interrupt
button. The program prints the message, MI, on the system's
comment output device and requests input of the desired
operation from the comment input device.

CAUTION

. The response to the MI typeout is required
to terminate a level3 loop in MINT.
System programs running at level 3 are
suspended until the reply to the MI
typeout is entered.

The entry is of two basic forms: preceded or not preceded
by an asterisk. Entries preceded by an asterisk are only
allowable during job processing (section 9), with three
exceptions:

*BATCH

*

*R,LU

Initiates job processing

Treated as a do-nothing command in the
absence of the job processor

Restores a logical unit that has failed
(section 9)

megal entries cause the error message JP05 to be displayed.

Entries not preceded by an asterisk cause the scheduling of
the manual input processor program (MIPRO), which resides
in the system library. The Q register contains the location
of the input data character string.

Manual interrupts entered while another MI request is being
processed are ignored.

MANUAL INPUT PROGRAM

The manual input program (MIPRO) is a mass-storage
resident system library program. MIPRO handles all entries
following the MI typeout that do not begin with an asterisk.

There is a set of standard entry mnemonics that are
diagnosed by the MIPRO program. The following list defines
the entry sequence.

Input

DACS

Description

Enters the initialization package for the
A UTRAN 2 product. This mnemonic
should be used only if AUTRAN 2 is
present in the system. Consult the
AUTRAN 2 Reference Manual for usage
instructions.

96769400 A

Input

DATE

DB

DX

EF

EFLU

EFMM

SCMM

SYSCOP

TIME

TOFF

TON

TSUT

96769400 C

Description

Allows the entry of a new date/time value
via the system library program TDFUNC.
The request is

ENTER DATE/TIME MMDDYYHHMM

Where: MM is month

DD is day

YY is year

HH is hour

MM is minute

An entry, e.g.,:

0619761126

is acknowledged by:

DATE: 19 JUN 76 TIME: 1126:00

Initiates the on-line debug package.
Refer to section 10.

Terminates the on-line debug package I/O
operations. Refer to section 10.

Prints the system engineering file
information. Refer to section 8.

Prints the system engineering file
information for one logical unit. Refer to
section 8.

Prints the core-resident mass memory
error information for the engineering file.
Refer to section 8.

Initiates the on-line Small Computer
Maintenance Monitor. Refer to the
SCMM Reference Manual.

Initiates the system checkout package.
Refer to section 11.

Prints the current system date and time:

DATE: 11 JAN 76 TIME: 1146:26

Stops the system hardware timer, if
present in the system.

Starts the system hardware timer, if
present in the system.

Enters the utility package for the
TIMESHARE 3 product. This mnemonic
should be used only if TIMESHARE 3 is
present in the system. Consult the

VERIFY

WROF,lu

WRON,lu

CLEAR

EDTLP

FMAP

MIPRO

SYEXER

TSTATS

?

=Sxxx,y,zzzz

Description

TIMESHARE 3 Reference Manual for
usage instructions.

Initiates the system verification test
package, which is supplied with the
released system for basic system
validation.

Selects write ring off for specified
magnetic tape simulator lu

Selects write ring on for specified
magnetic tape simulator lu

Clear all file manager space

Extedned DTLP - Save/Restore mass
memory

File Manager File Mapping Program for
TIMESHARE 3.0.

Add description of new functions.

TIMESHARE 3.0 system exerciser

TIMESHARE 3.0 status program

Entries preceded by a question mark cause
entry to the 1700 IMPORT product. This
mnemonic should be used only if IMPORT
is included in the system. Consult the
1700 IMPORT Reference Manual for usage
instructions.

Allows the user to schedule mass-resident
system library ordinal programs.

Where: xxx is the decimal ordinal
number.

y is the hexadecimal execu
tion priority (4 bits).

zzzz is the optional hexadeci
mal Q-register param
eter that is passed to
the ordinal program.

NOTE: All leading zeros are
required~ The zzzz
parameter and pre
ceding comma are
optional.

lllegal =S parameters, unlinked command processors, or
commands entered outside the above mnemonic list cause an
error diagnostic. Rejects encountered in the hardware timer
commands cause an error diagnostic.

2-7

INPUT/OUTPUT DRIVERS

Each device in the system is associated with a device driver,
which is the only piece of software that is allowed to give
direct commands to the device. The driver controls
execution of the read, write, and motion requests that are
passed to the monitor by the user programs.

Each driver normally has three entries: initiator,
continuator, and time-out (error). Variable parameters
relating to the device and the driver's working storage are
contained in the physical device table, in a format common
to all drivers (refer to appendix C). Functionally, the
initiator initializes the working storage in the physical
device table and initiates input/output on an idle device; the
continuator drives the device to perform the actual
requested task. If the diagnostic timer detects a device
hang-up (the expected interrupt does not occur within the
specified time), a timer entry is entered.

Whenever a program requires input or, output (I/O) for data
it is processing, it makes a monitor request to effect the
desired transfer. The monitor queues the request for
processing by an I/O driver. A driver may handle more than
one device of the same type, but requires a separate
physical device table for each device.

When a request is queued, the appropriate request processor
determines if the driver is available. If the driver is not
busy, its initiator is scheduled. The request exit processor
returns control to the caller.

Upon entry to the initiator, a call is made to the find-next
request routine, which decodes the requestor's parameter
list and places the information in the physical device table.
The driver initiates the I/O operation and selects some
interrupt condition (EOP, data, etc.). A diagnostic clock
value also is set in the physical device table. This value sets
the maximum amount of time allowed to complete the
operation. Then an exit is made to the dispatcher.

When the I/O device completes the operation, an interrupt is
generated. When the interrupt mask is set to a priority
lower than the driver's interrupt priority, an interrupt occurs
that stops the program currently being executed. The
common interrupt handler saves the program's registers and
overflow state in the interrupt stack, and passes control to
the interrupt response routine, which enters the driver's
continuator entry point. The driver acknowledges the
interrupt and performs the I/O command or, if the request is
complete, the complete request routine is called, followed
by a jump to the initiator.

If there is a hardware malfunction and the device fails to
give an interrupt at the end of an operation, the time-out
entry is scheduled by the diagnostic timer routine when the
clock value in the physical device table has expired (if a
timer is present in the system). The driver uses the MAKQ
routine to set the error flags and calls the device error
logging routine. If the logical unit number is not that of a
diagnostic logical unit, the alternate device handler may be
called by a jump or by a scheduler request. If the request
was performed on a diagnostic logical unit, the complete
request routine is called instead of the alternate device
handler, followed by a jump to the initiator part of the
driver. The diagnostic clock is set negative when a device is
inactive.

FIND-NEXT-REQUEST (FNR)

The find-next-request (FNR) subroutine is used by all driver
initiator modules to find the next request for a device and to
fill the physical device table with information from the

I 2-8

request. FNR is entered by an ·indirect return jump through
B516 with the core address of the physical device table
entry in the I register.

Device Shared

FNR scans the logical unit table, starting with logical unit 1,
to locate other logical units related to the same device.
When a logical unit with a waiting request is encountered,
FNR initiates the input/output device in the same manner as
unshared devices. The lowest numbered logical unit with a
request waiting for that device has its request processed,
even if a higher numbered logical unit has a higher priority
request. If no requests are waiting on a device, FNR exits
to the caller at the address of the call plus one.

Device Not Shared

FNR examines the queue to obtain the next request. If none
exist, FNR exits to the caller at the address of the call plus
one. If another request is found, FNR updates the queue,
fills the physical device table, and returns to the called at
the address of the call plus two. Upon return, the I register
is unchanged and the A, Q, and overflow registers are
destroyed.

COMPLETE REQUEST (COMPRQ)

The complete request (COMPRQ) subroutine is entered by an
indirect return jump through B6 from input/output
drivers to complete requests. This causes interrupts to be
inhibited and the completion address to be scheduled with
the error field from the physical device table, replacing the
error indicator (v field) of the I/O request parameter list for
logical units that do not share devices. Q is set negative if
an error occurs. The request parameter list (which contains
a request code designating it as an I/O call) is interpreted as
a secondary scheduler call by setting bit 15 of the first word
to 1. The scheduler resets it to 0 and the device is released
from its request assignment. When the driver has completed
the request, control is given to the dispatcher. The
dispatcher then passes control to the highest priority
interrupted program or scheduled program. The latter might
be the completion address if one was specified and is the
highest priority program awaiting execution.

The complete request is entered by a return jump to
COMPRQ, which terminates the request by executing the
following:

1. Resets the diagnostic clock counter (EDCLK) to
FFFF16

2. Transfers the error field in the physical device table
(ESTA Tl) to the v field of the request

3. Clears the operation-in-progress bit (EREQST)

4. Clears the thread and returns to the driv~r if there is no
completion address (C = O)

5. If there is a completion address, schedules the
completion address, passing any error condition in Q and
in the v field of the request, and returns to the driver.

ERROR FLAG SET-UP (MAKQ)

The MAKQ subroutine is used by the drivers to set up the
v field of the logical unit word of the request and to place
the address of the word following the last valid data into the
last word of the caller's buffer.

96769400 C

COMPLETION ROUTINES

The completion address specified in the parameter list is
scheduled when the I/O operation has been completed. Upon
entry to the completion routine, the Q register contains the
error status, if any, of the I/O operation, and the A register
contains the address of the parameter list. If an error has
occurred, the Q register is negative (bit 15 = 1) and should
be tested by the completion routine. Thus, the original state
of the registers at the time of the monitor request is not
preserved. The priority level is that specified by the
completion priority in the monitor request parameter list.

Completion routines that are in unprotected core are always
executed at priority level 1. Upon completion of an I/O
request, the request parameter specifying number of words
is returned to the user's request from the request stack.
This allows changes to this parameter by certain drivers
(OCR devices).

INPUT/OUTPUT HANG-UP ERRORS

An input/output hang-up error occurs when a driver fails to
get a completion interrupt on an operation that it initiated.
The diagnostic timer module detects hang-ups. The follow
ing features must be available for proper operation of the
diagnostic timer module or these errors cannot be detected.

o A hardware device that gives periodic interrupts to
measure time or a software pseudo-timer module

o The MSOS timer request module (TMINT)

• The MSOS diagnostic timer module (DTIMER)

The driver establishes a time differential (in increments of
seconds) for each input/output operation; when this period
elapses, a hang-up is declared. This dif~erential is entered
in the physical device table slot for the device. Each time
the diagnostic timer module is executed, it decrements the
time differential. When the differential becomes negative
after decrementing, a hang-up is declared. If the time
differential is negative before decrementing, either the
operation is complete or no operation has occurred.

When a hang-up occurs, the diagnostic timer accesses the
physical device table entry for that device to obtain the
driver core location to be executed in case of a hang-up.
This location is executed by a SCHDLE request at the same
priority level as the driver. Q contains the core address of
the physical device table entry for the device. The driver
takes any necessary action to clear the device involved in
the hang-up. If recovery is not possible, the error is logged
in the engineering file and control is transferred to the
alternate device handler. The logical unit number and error
code parameters are passed to the alternate device.

Initially, the diagnostic timer is executed after system
start-up. Thereafter, it is periodically reactivated by a
TIMER request. The frequency of execution is dependent on
a parameter internal to the diagnostic timer program
(normally one second).

The devices to be checked by the diagnostic timer are
specified by a table of physical device table addresses. This
table (DONTAB) is included in SYSDAT.

96769400 A

ALTERNATE DEVICES

When a driver detects an irrecoverable failure of a data
transfer or a motion request, the following actions take
place:

1. The driver sets the error field in bits 15 through 13 at
word 9 (ESTATl) of the physical device table for the
device.

2. The controller hardware is cleared and an error word is·
set in the Q register. Two formats are used. If bit 15
is 0, Q is interpreted as:

15 14 6 5 0

Logical Unit Error Code

If bit 15 is a 1, Q is interpreted as:

15 14 8 7 o

Logical Unit Error Code

3. The driver transfers control to the alternate device
handler by a jump or a scheduler request, with the error
word in the Q register.

Typical errors (see appendix J for error codes) are as
follows:

• Input/output hang-up (diagnostic timer)

o Alarm

• Parity errol'

o Checksum error

o Internal reject

o External reject

The alternate device handler determines if there is an
operational alternate physical device; if so, the request for
the device that failed is assigned to it at the priority level
of the driver operating the device that failed. The logical
unit that failed is marked down and the alternate logical
unit is set active (bit 13 of LOOI is set). The request is then
rethreaded to the requested logical unit. If no alternate
exists, the program reschedules itself at a low priority level
to request operator intervention. In either case, all message
output is executed from a low priority level section of the
program.

The alternate device handler continues to assign alternates
to devices that failed without waiting for completion of
input/output messages. Therefore, the buffer table

2-9

(ALTERR) must be provided to store the error words on
entry. This table is included in SYSDAT. The size of the
table is included in the first location of the table and is
equal to the number of devices that can malfunction at one
time. If this table size is not adequate for the system, the
alternate device program causes the system to hang on an
(18FF16) instruction (entry SYFAIL) in SYSDAT when the
table IS filled. Identical device failures are not accumulated
in the error table.

If the alternate is also inoperative and it does not specify
another alternate device, the procedure is the same as if no
alternate were available for the original unit. Alternate
devices for this device are checked until the handler
determines that none is available. Note that non-physical
devices serviced by drivers (e.g., pseudo-tape) cannot have
an alternate device.

If an operative alternate is found, pointers are set so that
requests from the failed device are automatically trans
ferred to the alternate. The comment device displays the
following message:

L,lu FAILED ec

ALT, aa

Where: lu is the logical unit number of the failed device.

ec is the error code.

aa is the logical unit number of the alternate.

If no alternate is found, the handler issues the following
diagnostic:

L,lu FAILED ec

ACTION

Where: lu is the logical unit number of the failed device.

ec is the error code.

The operator must respond to the error with one of the
following and press RETURN.

RP Repeat processing - directs the request to repeat

CU

CD'

DU

DD

2-10

Continued with device up - reports the error to
the requesting program; the device is allowed to
continue processing requests.

Continue with device down - causes any future
programs calling the device to be informed of the
failure upon completion; the error is reported to
the calling program and the device is marked down.
No subsequent attempt is made to operate this
device. The message LU xx DOWN is printed on
the comment device.

Discontinue, up - activates CU and terminates
the current job being processed; the input unit
attempts to slew to the next job to be executed.

Discontinue, down - activates CD and terminates
the current job being processed; the input unit
attempts to slew to the next job to be executed.

If job processing is not in progress when the DU and DD
options are selected, no action is taken, the word ACTION is
retyped, and another option may be selected.

Mass storage device drivers do not use the alternate device
handler. Mass storage device errors are logged in the
engineering file (section 8).

The comment device must never be marked down because it
is required to bring devices back up once they are
operational. The dummy device driver, acting as an
alternate for the comment device, restores the downed
comment device.

If a downed device is requested by a program and if this
device contains no alternate, the following message is typed
on the comment device:

L,lu DOWN

Where: lu is the logical unit number

This message occurs only the first time it is requested after
being downed.

The completion address is always scheduled with an error.
The requesting program should not repeatedly request
downed units.

DUMMY DRIVER (DUMMY)

When the dummy driver is defined as an alternate, it
completes failed I/O requests which have an error indication
without operator intervention. The dummy driver also
restores the failed device to an up condition. This technique
is always used to prevent system hang-ups on the standard
comment device. Programs should always check for I/O}
errors at their completion address and take appropriate
action when errors occur (bit 15 of Q = 1).

The dummy driver logical unit can also be used in place of
any other system logical unit. In this case, the I/O request
is completed with no error. This facility is useful for
slewing through records.

MASS-STORAGE-RESIDENT DRIVERS

Standard CYBER 18/1700 drivers released with MSOS have
the capability to operate from memory or mass memory
residency, with the exception of the following drivers which
may operate only from memory:

• 1711/1712/713 Teletypewriter, CRT, and 1811 Console
Display

• 1713 Teletypewriter Keyboard

• 364-4 Communications Multiplexer

• Mass memory device

• 1747 Data Set Controller

• 1744 Digigraphic Controller

96769400 A

• 1500 Series

• Software buffer

• Dummy

All mass-storage-resident drivers execute in a shared fixed
buffer area located in SYSDAT. The allocation of this
buffer is controller· by a core-resident executive routine,
MMEXEC. It is possible to load either one or two drivers in
the buffer, depending on its size.

The core buffer should be at least as large as the largest
driver that is used in the system. The maximum size
required, which would allow two drivers in core simul
taneously, is the combined size of the two largest drivers in
the system. Whenever the DCOSY driver is used in a
system, the maximum size criterion (the two largest drivers)
should be used since DCOSY makes I/O requests upon
another driver, which has to be in core at the same time to
complete the request for the COSY driver.

When a driver is mass-memory-resident, the driver's physical
device tables must declare their initiator, continuator, and
time-out entry addresses to be the corresponding entries in
MMEXEC; i.e., MASDRV, MASCON, and MASERR.

When an I/O request is made upon a mass-memory-resident
driver, control is routed to the entry point MASDRV.
MASDRV determines if the driver is already in core and
passes control to it. If the driver is not in core, it is
determined if there is sufficient core available in the buffer
for the new driver. If so, the driver is read in from mass
memory and placed in execution. When there is not
sufficient core for the driver, it is queued for later
execution when space is released by drivers that currently
occupy the buffer.

When a driver completes its I/O for all of the devices it
controls, it releases its space in the core buffer by jumping
to MASEXT. At this time MMEXEC resets all initiator,
continuator, and time-out addresses for this driver's physical
device tables to point to the corresponding entries in
MMEXEC. If any other drivers are waiting in the queue, the
first one encountered is read from mass memory and placed
in execution.

When MMEXEC enters a driver, the Q register contains the
physical device table address and the A register contains the
first,word address of the driver.

The mass memory location and size of each mass-memory
driver must be contained in words 13 and 14 of the physical
device table. These parameters are supplied by *S
initializer control statements during system installation. If
a driver is core-resident, its mass memory size must be set
to zero and its length to 7FFFF 16 . (This is not required for
mass memory device drivers such as disk or drum.)

TIMER REQUEST PROCESSOR AND
SYSTEM TIMEKEEPING ROUTINES

. The optional timer package, which is located within the
monitor, functions in conjunction with a system hardware
timer (for accurate time delays) or a software pseudo timer
(for approximating time delays). If one of these time bases

96769400 A

is present in the system, the system can execute timer
requests (TMINT), compute time of day (TOD), and provide
auxiliary time/date calendar functions (TDFUNC).

SYSTEM TIMERS

MSOS supports a variety of system timers that allow the
timer monitor requests to be implemented. The system
timer is started (if present) by the SPACE program routine
RESTRT when the system is autoloaded. Subsequently, the
timer may be turned off or restarted by entering the
commands TOFF and TON, respectively, through the manual
interrupt processor. The timer type is defined in SYSDAT
by the following codes:

o No timer present

1 1573 Line Synchronized Timer

2 1572 Sample Rate Generator

3 1572-1 Line Synchronized Timer

4 1572-1 Sample Rate Generator

5 364-4 Communications Multiplexer Timer

6 Pseudo software timer

7 10336-1 Real-Time Clock

8 CYBER 18 Real-Time Clock

Timer types 1 and 3 use the power source line frequency as a
time base. Types 2, 4, 5, 7, and 8 use a free-running
oscillator. Timer type 6 is noninterrupt driven. The time
base of type 6 is the rate at which the memory cell can be
counted down in the level 1 and 2 idle loops. This time base
is a function of system loading and, therefore, should not be
relied upon as an accurate time base.

When the 364-4 is used as the basic system timing device,
the multiplexer must be adjusted to provide 60 interrupts
per second, which causes the timer interrupt response to be
executed at every interrupt of the multiplexer. This
response routine is designed so that the 364-4 Driver is
entered on every other interrupt, which corresponds to 30
character-per-second operation. The timer response
processor is executed 60 times per second.

Users are cautioned that interrupts from timer types 2, 4, 5,
7, and 8 are generated from free-running oscillators.
Consequently, the time of day is not synchronized to wall
clock time, which is based on line frequency.

TIMER REQUEST PROCESSOR

The timer request processor (TMINT) is used to process
scheduler requests that are to be executed following a time
delay. Delays may be specified in increments of counts,
tenths of seconds, seconds, and minutes. Four threads are
maintained for the requests, one for each type of increment.
The top of each of these threads is contained within the
TMINT program, with the threaded requests located in the
scheduler list. The timing delay is not designed to be
precise, but to provide for a delay of at least the specified
number of increments. In addition to the specified delay,
the portion of the increment remaining to be counted down
is also added to the delay.

2-11

Examples:

1. A program is scheduled for a delay of 10 seconds.

2. The seconds counter within the TMINT program is 40
counts into the next second (60 counts per second).

3. The increment quantity word of the request is
decremented each time the seconds counter expires.
The first decrement operation occurs in 20 counts.

4. The increment quantity word is decremented until it is
negative. In this example the request is moved to the
scheduler list thread after 10 full seconds plus the 20
counts remaining in the seconds increment portion at
the start of the timer request.

5. In this example a request for a delay of 0 second would
be executed 20 counts later.

To control the system scheduler overhead, the number of
timer requests that can expire on the same count interrupt
is a SYSDAT parameter (NSR). If more delays expire than
the quantity allowed, the request is rethreaded to the counts
thread for servicing on the next count interrupt.

TIME.OF.DAXPROGRAM
./

"'''':'':'''':,.'/ .
The system time':"oi':::day program (TOO) is initiated during
system start-up (SPACE) and keeps system wall-clock time,
based on the time value entered during the system start-up
sequence. The TOO program operates by making 30-count
timer requests to update the time. The time parameters are
kept in the SYSDAT program. A user can cause an
immediate time update by making the subroutine call:

RTJ+ TOD or

CALLTOD

The routine is re-entrant and preserves all the caller's
registers.

The following entry point time information is available:

HORTO

MINTO

SECON

CONTA

HORMIN

TOTMIN

Hour (integer)

Minute (integer)

Second (integer)

Count (integer)

Military time (integer)

Total day minutes (integer)

At the beginning of each new day, the time/date function
program is scheduled to update the system date.

TIME/DATE 'FUNCTION PROGRAM

The time/date function program (TDFUNC) is used to set
and print the system date and time. The program can be
used through MIPRO to enter a date/time value or to print
the current date/time. The date is also automatically
updated at the start of each new day in conjunction with the

2-12

TOD program. The date parameters are kept in the SYSDAT
program.

The following is the entry point date information available:

YERTO Year (integer)

MONTO Month (integer)

DAYTO Day (integer)

AYERTO Year (ASCII)

AMONTO Month (ASCII)

ADAYTO Day (ASCII)

SYSTEM START-UP

The system is started from an inactive condition by a
master-clear-autoload-run operation. This causes the auto
load program, which resides on the mass memory library
unit, to be loaded into core and executed. The function of
the autoload program is to read the core-resident system
image from the library unit to core and then to transfer
control to the restart routine.

The restart routine is contained within the SPACE program
and resides immediately adjacent to the space request
processor. This has the effect of allowing the restart
routine to execute in allocatable core as a core-resident
routine, but does not require core once the system is in
operation.

The restart routine performs the following tasks:

1. Sets up the allocatable core area table, located in
SYSDAT

2. Protects and unprotects all appropriate core locations

3. Sets up the initial overlay program length for LIBEDT
and the protect processor in their respective system
directories

4. Starts the system hardware timer and schedules the
diagnostic timer and time-of-day programs

5. Prints a message on the comment device that contains
the current system PSR level and the date that the
system was built

6. Prints a message on the comment device to request that
the program protect switch be enabled

7. Prints a message on the comment device that contains
the system identification

8. Prints a message on the comment device that indicates
the addressing mode of the machine (e.g., 32K or 65K)

9. If the system contains a file manager, a file validity
check is performed. If the files are not valid, the user
has the option of continuing or purging them

10. Initiates the system program TDFUNC, which requests
an entry of the current date and time

11. Transfers control to the system idle loop

96769400 A

The memory occupied by restart reverts to allocatable core
at the conclusion of the routine.

The following is a typical system comment device output
that follows an autoload:

Message Input

MSOS 5.0 - PSR level
110 01/23/76

SET PROGRAM PROTECT
SYSTEM IDENTIFICATION
32K MODE

CHECKING FILES -
ERRORS

CLEAR ALL FILES?
(YES/NO) YES

ENTER DATE/TIME
MMDDYYHHMM

0209260905

DATE: 09 FEB 76
TIME: 0905:00

Comments

PSR levels define the soft
ware update configuraiton.
A new level is published
monthly.

Operating mode

File manager is in the
system.

The operator must choose to
accept bad files or purge
them. The operator accepts
files.

The operator sets the new
time base for CPU

The CPU replies with plain
text time

I/O CHANNEL ALLOCATION

Two I/O channels may be allocated:

• A/Q channel. A register is used to transfer data,
Q register indicates I/O channel used.

• 1706 Buffered Data Channel on 1700 Systems

A/Q CHANNEL ALLOCATION

The CYBER 18/1700 Computer I/O is an unbuffered
operation when performed via the A/Q channel. For devices
where the data is contained on transportable media, such as
caI'ds, paper tape, and magnetic tape, and where the
controller does not buffer the data, data can be lost if
inadequate response time is provided to service a data
interrupt. To avoid lost data, the drivers of these devices
must run at a higher priority than the system hardware
timer, if present.

The following devices are subject to this data handling
restriction on the 1700 systems:

• 1721/1722/1777 Paper Tape Reader

• 1723/1724/1777 Paper Tape Punch

• 1728/430·Card Reader/Punch

• 1729-2 Card Reader

• 1729-3 Card Reader

96769400 A

• 1731/601 Magnetic Tape

• 1732-1/608/609 Magnetic Tape

• 1713 Teletypewriter Paper Tape I/O

• 1711/1713/713 Teletypewriter/COT

The following devices are subject to this data handling
restriction on the CYBER 18 systems:

• 1827-30/65119-1 Line Printer

• 1829-30/60 Card Reader

• 1811-1 Console Display

The A/Q channel allocator (ALAQ) program is provided to
allocate the A/Q channel if more than one of these devices
is present in a system. The A/Q allocator is functionally
equivalent to the 1706 allocator except that the ALAQ
request entry is RQAQ instead of RLAQ.

1706 BUFFERED DATA CHANNEL ALLOCATION

The 1700 computer system uses the 1706 Buffered Data
Channel to buffer data transfers involving A/Q devices.
This is useful for decreasing software overhead on
input/output operations. Up to three 1706 units may be
present in a system, with up to eight devices on each unit.
Since a 1706 may only transfer data to one device at a time,
the buffered data channel allocator program (AL1706) is
used to queue the use of the 1706 by drivers whose devices
share one 1706. The following drivers are designed to
accommodate a shared 1706:

• 1726/1706/405 Card Reader

• 1731/1706/601 Magnetic Tape

• 1732-1/1706/608/609 Magnetic Tape

The following drivers control devices which each require a
dedicated 1706 and cannot use the 1706 allocator:

• 1747/1706 Data Set Controller

• 1744/1706/274 Digigraphic Console

The 1706 allocator must be requested prior to a 1706
operation. The request is:

RTJ+ RQ1706

CORE MANAGERS

VOLATILE STORAGE ASSIGNMENT

Volatile storage (VOLBLK) is the storage area located in
SYSDAT that is reserved for the allocation of small blocks
of data storage for re-entrant routines (may operate at
more than one level at the same time).

Volatile storage is available only to protected programs. At
least three locations must be requested and all system
interrupts disabled prior to entry at VOLA and VOLR.

2-13

The volatile storage area acquired must be released at the
same priority level at which it was acquired. The requesting
program and its possible accompanying program sequence
must not go to the dispatcher prior to the release of the
volatile storage area.

A request for more volatile storage than is available
constitutes a catastrophic condition. The volatile storage
assignment program enters OVFVOL with the following in
the A and Q registers:

A Amount of overflow in words

Q Base address of the interrupt stack

OVFVOL clears the M register and writes OV on the
comment device. No further action can be taken and the
system hangs (18FF 16 instruction). The OV error is caused
by incorrect set-up or use of the system.

The size of VOLBLK is the SYSDAT parameter. A block of
storage is assigned with the entry point VOLA and released
with the entry point VOLR. Both entry points are entered
by an RTJ with interrupts inhibited.

On entry to VOLA, the block size (minimum of three words)
is contained in the word following the RTJ. VOLA assigns
specified locations and fills the first three locations of the
block with the contents of Q, A, and I as follows:

Contents of Q Start of block in I on exit

Contents of A

Contents of I

Remainder of 1----------------
Storage Requested End-of-block

On exit from VOLA, the I register contains the address of
the start of the assigned block.

Example:

A subroutine is "entered with 1 in A, 2 in Q, and 3 in I. Eight
words of volatile storage are requested as intermediate
storage.

Subroutine

ENTRY NUM 0

2-14

EQU VOLA ($BB)

EQU VOLR ($BA)

lIN 0

RTJ- (VOLA)
NUM 8

LDA* ENTRY

EIN 0

STA- 3,1

Comments

Subroutine entry

Inhibit interrupts

Volatile calling
sequence

Get return address

Save entry in volatile

Process call

Subroutine

lIN 0

LDA- 3,1

STA* ENTRY

RTJ- (VOLR)

EIN 0

JMP* (ENTRY)

Comments

Restore return address

Return, registers
restored

This example could also have been coded using library
macros for volatile storage, as in the following:

Subroutine

ENTRY NUM 0

VOLA 5,ENTR Y

VOLR ENTRY

Comments

Subroutine entry

Get eight words (macro
adds three words to
number requested)

Process call

An optional form for the VOLR macro is

VOLR ENTRY,x

Where: x is an increment to be added to the return
address.

On return from VOLA, a block of eight volatile storage
locations has been assigned and words 0 through 2 have been
filled. The program stores word 3 and later uses the
remaining words.

Location 15 4 3 2 1 0

Original contents of (Q) 0 0 1 0

Original contents of (A) 0 0 0 1

Original contents of (I) 0 0 1 1

LOC-I-O

1

2

3
4

Return Address (Saved by Requesting Program)

Temporary Storage

7

The I register contains the core location represented by
LOC. The contents of A and Q are the same as an entry to
VOLA. On entry to VOLR, I must contain LOC. On return
from VOLR, the eight locations of volatile storage have
been released. The contents of the A, Q, and I registers are
replaced with the contents of the first three locations of the
released block.

96769400 A

ALLOCATABLE CORE

The SPACE request (section 3) allocates space for the
operation of mass-storage-resident programs in protected
core. The core allocator used in making a SPACE request is
not available to unprotected programs.

The core area from which space is assigned is defined within
the program SPACE. The area in the block is divided to
correspond to the level table, LVLSTR, as shown in
figure 2-2.

96769400 A

LVLSTR +0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

LEVEL START
TABLE

STARTE

STARTA

STARTB

STARTC

STARTD

STARTD

STARTD

STARTD

STARTD

STARTX

STARTE

STARTE

STARTE

STARTE

STARTE

STARTE

REQUEST
PRIORITY

°
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ALLOCATABLE CORE AREA MAP

7FFFt UNPROTECTED

STARTX ... MEMORY

STARTA ...
A

STARTB ...
B

C
STARTe ...

D

STARTD-+

E

STARTE ...

RESIDENT
CORE

00,00

NOTES: 1. PROGRAMS OF REQUEST PRIORITY LEVEL 1 CAN EXECUTE ONLY IN AREA A.

2. PROGRAMS OF REQUEST PRIORITY LEVEL 2 CAN EXECUTE IN AREA A
AND/OR AREA B.

3. PROGRAMS OF REQUEST PRIORITY LEVEL 3' CAN EXECUTE ANYWHERE IN
AREAS A, B, OR C.

4. PROGRAMS OF REQUEST PRIORITY LEVELS 4 THROUGH 8 CAN EXECUTE
ANYWHERE IN AREAS A, B, C, OR D.

5. PROGRAMS OF REQUEST PRIORITY LEVEL ° OR LEVELS 9 THROUGH 15
CAN EXECUTE ANYWHERE IN THE ENTIRE ALLOCATABLE AREA.

Figure 2-2. Allocatable Core Layout

2-15

Request priority levels 1 through 3 are restricted to the job
processor after initialization. Level 0 is used for core
swapping. During initialization of the system, the system
directory request priorities are also all 0, making the entire
allocatable area available. The user process programs must
avoid use of request priorities 0 through 3.

NOTE

The request priority determines core
allocation and queuing to receive space;
the completion priority determines the
execution (scheduling) priority of the
program just loaded.

When there is no space available for the specified request
priority, allocation is not attempted unless the specified
priority is greater than the priority of any other space
request in the stack. Instead, the request is threaded on a
priority basis with others waiting for space. The request
priority governs not only the area that is available to the
program, but also the order on the space allocation thread.
The thread is serviced on a first-in, first-out basis, within
priority. If the only areas defined in a given system are 1 to
4, a priority 6 SPACE request is serviced prior to a
priority 4 request, even though both requests use area 4.

When storage is released, the processor attempts to allocate
the released area to the top request in the queue. The first
address of an assigned block is stored in the fourth word of
the SPACE request parameter list and is passed to the
completion address in Q. The core allocator is used when
making a SPACE request and is unavailable to' the
unprotected programs.

Caution should be exercised by programs that make
additional SPACE requests for storage in allocatable core.
If the requesting program occupies the space needed to
satisfy the request, the request can never be completed.

PARTITIONED CORE

The area specified as partitioned core is defined in the
SYSDAT program in a table of starting locations for the
partitions (PARTBL). There may be from one to 16
partitions defined, with partition 0 as the first partition.
There are always 16 entries in PARTBL, with negative zero
indicating unused partitions. The number of the last
partition available in a system is equated to LSTPRT. The
last location of partitioned core plus one is contained in
LSTLOC. There may also be a seventeenth partition: this is
unprotected core when it is located at the top of core.
Partitioned core must start at the beginning of part I, at a
location of 8000 16 or less in core, but may end anyplace
above the starting address. Figure 2-3 shows two possible
partitioned core allocations.

Programs that execute in partitioned core reside on mass
memory and are initiated by scheduling their ordinal
numbers. Such a program, which may require one or more
partitions, always executes in the same partitions. Since
partitions may be in the upper bank, all monitor requests
must have the D-bit set and all address parameters specified
as 16-bit absolute.

2-16

Besides the partition table in SYSDAT, there is a table to
indicate how many partitions are assigned to a single block
(USE) and a table of tops of threads (THDS) for the
partitions. Each partition has a thread associated with it.

There are two priority systems at work in the allocation of a
partition. The first uses the request priority to place the
request on a partition's thread. The second priority results
from the direction of the scan of the thread tops. Since the
scan for requests begins on the thread of partition 0, a low
priority request for partitions 0 and 1 is processed before a
higher priority request for partition 1.

Requests for core are threaded and processed unless the
amount of core requested can never be available (for
example, the core requested extends beyond the end of
partitioned core). For this error, Q is set to 0 upon entry to
the user's completion address.

Partitions 0 through 15 are always contiguous. When
unprotected core is in part I, is it always partition 16. It
may not necessarily be contiguous to partition 15, as shown
in figure 2-3.

Protected programs absolutized to partition 16 must run at a
completion priority higher than 2 and, when scheduled, cause
a memory swap if job processing is active (section 3).

CYSER 18 EXTENDED MEMORY

CYBER 18 systems may have a main memory larger than
65,535 words. MSOS supports this extended memory, which
can only be accessed via a hardware page file, as a mass
storage compatible peripheral device. MSOS READ, WRITE,
FREAD, FWRITE, and MOTION requests to this device are
handled the same as on mass storage equipment.

UNPROTECTED /PROTECTED
COMMUNICATION
Unprotected programs may require entry to programs in
protected core. For example, to save space, floating-pOint
routines in protected core may be made available to
programs in unprotected core. However, the protected core
programs must be re-entrant and adhere to the following
sequential rules:

1. The entry point of each program to be entered from
unprotected core must be unprotected.

2. The entry point must be in the table of presets.

3. The program must be entered by an RTJ instruction.

4. An lIN instruction must immediately follow the entry
point.

5. The called program must use volatile storage for
intermediate results; interrupts may then be enabled.

6. The program must check the parameters passed from
unprotected programs to prevent fatal errors (such as
storing in protected core).

7. When the program exits it must release all requested
volatile storage.

96769400 A

PARTBL+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7

+ 8

+ 9

+ 10

+11

+ 12

+ 13

+ 14

+ 15

+ 16

PARTBL+ 0

96769400 A

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7

+ 8

+ 9

+10

+11

+12

+13

+14

+15

START 0

START 1

START 2

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

START 16

START 0

START 1

START 2

START 3

START 4

START 5

START 6

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

FFFF

,
1""1

UNPROTECTED CORE
(pARTITION 16)

RESIDENT CORE
BANK 1 < PARTITION 2) PART 1

PARTITION 1

i- - --- ------ -- -
PARTITION 0

1<

BANKO < ALLOCATABLE CORE
) PART 0

000016 "- RESIDENT CORE
~

FFFF16 ~ 1""1
PARTITION 6

PARTITION 5

PARTITION 4
BANK 1 <

PARTITION 3
PART 1

PARTITION 2

PARTITION 1
>f- - - - ---------

PARTITION 0

BANKO

000016

< UNPROTECTED CORE } ALLOCATABLE CORE

'-
RESIDENT CORE

PART 0

Figure 2-3. Partitioned Core Layout

2-17

UNPROTECTED ENTRY PO INTS

Programs in protected core that are entered from
unprotected core must have an available return location. An
unprotected entry point entered by an RTJ provides this
facility. Unprotected entry points are set up during system
initialization through a table of entry point names (table of
presets) in ASCII code which is assembled in the SYSDA T
program. The RESTRT module in SPACE uses this table to
find locations and to clear their protect bits. The table
remains in core and is available to the relocating loader as
preset entry points, with locations available to unprotected
programs that declare the entry points as externals. The
locations and length of the table are contained in the
communications region (appendix B) for availability to the
relocating loader.

CAUTION

Maximum system protection is provided
when protected programs are entered
from and returned to unprotected core.
Programs entered from unprotected core
should save their entry point addresses in
volatile storage before enabling interrupts
to prevent erroneous entries. Programs
entered from unprotected core should not
return to the job without checking to
ensure that the job has not been aborted.
If the job has been aborted, exit should be
made to the dispatcher. Entry point
JBCNFG in TRVEC is nonzero if the job
has been cancelled.

Entries from unprotected core result in protect violations,
with NIPROC transferring control to the protect processor
which recognizes the violation as follows:

• Violation occurs at a location preceded by liN

• The location preceding liN is unprotected

• The location preceding liN is filled with an address that
follows an unprotected return jump to the unprotected
entry point

When a protect violation is recognized, execution is resumed
at liN.

PROTECTED CORE-RESIDENT ENTRY POINT
LINKAGE

At intialization, entry points for all protected core-resident
programs are stored in either the CREP or CREPl tables.
These entry points are used by LIBEDT or the job processor
to link a program to protected core-resident programs. The
CREP table contains the entry point for all protected
programs that execute in part 0 and the CREPl table
provides the linkage for all part 1 protected programs.

2-18

When LIBEDT encounters undefined external symbols while
processing an *M statement for a part 0 program, it
instructs the loader to attempt to satisfy them by linking to
CREP and CREPl tables.

In an *A LIBEDT statement that replaces a partition core
program, linkage is attempted first to the CREPl table and
then to the CREP table (if required). The *p LIBEDT
statement allows linkage in the order the user desires.

When the job processor encounters undefined external
symbols after an *X or an *LGO statement has been
processed, the operator types an *E statement to instruct
the loader to attempt to satisfy the undefined external
symbols.

SYSTEM COMMON ORGANIZATION

MSOS provides for use of both blank and labeled common
areas. Blank common cannot be preset with data. Labeled
common can be preset with a DAT/ORO sequence in
assembly language or a block data subprogram in FORTRAN.
The system handling of common differs for protected and
unprotected programs.

PROTECTED COMMON

For protected programs, one blank common area can be
reserved in the system. This area must be assigned during
system initialization and is restricted in size to the common
block declaration of the first program declaring common.
All programs subsequently loaded that declare common refer
to this blank common block.

The common block is located in memory following
allocatable core, with the highest location equal to the value
of ENDOV4.

o SYSDAT and SPACE

Allocatable Core

Blank Common

ENDOV4 ~~--------------------------------------~

Part 1 (If Used)

96769400 A

Labeled common can be located in one or more memory
blocks. but must be core-resident (part 0 or 1) and be below
7FFF 16. Labeled common blocks may not be part of mass
memory system directory program groups. but must refer to
a core-resident labeled common area. Labeled common
blocks are created during system initialization with the *D
control statement (section 6).

o

Below
--+ 7FFF16

96769400 A

--
- -

-
-

- -

-
-

-
-

-

Part 0

- - - - - - - - - - - -
Block A Labeled Common
- -- - - - - - - - - -

Allocatable Core

Part 1
- - - - - - - -

Block B Labeled Common
- - - - - - - -

Block C Labeled Common
- - - - - - - - -

Partitioned Core

NOTE

All programs loaded by the initializer
declaring blank common reference system
blank common. All programs loaded by
the initializer declaring labeled common
(data) reference the last labeled common
block loaded. Programs that run in
partitioned core loaded under an *MP
initializer command refer to system blank
common. Through the use of LIBEDT
(section 13). programs may be loaded via
an *A command that has labeled common
declared with the partition.

UNPROTECTED COMMON

For unprotected programs. one blank common area and one
labeled common area may be specified. These areas are
different than those allocated for protected programs. The
common areas specified are assigned in unprotected core
with the program(s) loaded. Blank common is defined at the
top of unprotected core.

Block A
Labeled Common

I Bl~k Com=n [

Unprotected Core

2-19

REQUESTS 3

;f§'~J'4Si

ENTRY FOR REQUEST

Requests within a program cause the monitor to perform
operations such as reading, writing, loading, and program
scheduling. A request may be written in assembly language
as a macro instruction; for example:

FREAD lu, c, s, n, m, rp, cp, a, x, d

Where: FREAD is the type of request

lu, c, s, n, m, rp, cp, a, x, d is the parameter list
of request

The macro assembler converts the macro request into a
calling sequence; for example:

Program

parameters t

parameters t

Program

Entry point for requests (NMONI)

Parameters including constant
values not in the request param
eter list (these may be supplied
by the macro assembler for this
macro).

Usual re-entry point for
continuation after threading the
request.

At times the monitor has one or more other requests for the
same type of operation (several requests to write or read
data using the same disk). In this case, the new request
cannot be executed immediately. Instead, the new request
is queued for later execution. Three types of queuing are
used by MSOS: .:

• I/O requests. These include READ and WRITE
(formatted or unformatted), MOTION, and GETFILE
requests .. ' The logical unit that must perform the I/O
request keeps a thread of queued requests. Entries in
the thread are either the actual calling sequence
embedded in the requesting program or, in the case of
unprotected programs, a copy of the calling sequence
kept in protected core to prevent request modification
after the request has been error checked and threaded.
Each item in the thread contains a pointer to the next
calling sequence in the thread. When the I/O driver for
this logical unit completes a request, it checks the

t Parameter list of calling sequence

96769400 A

:'M "i, J

thread. If another request is queued, processing for
that request starts before the driver releases control.
By this means, a driver has the ability to process every
request in queue on a priority basis. During this period
new requests can be inserted in the queue.

• Scheduling requests. These requests include both
immediate scheduling and delayed scheduling (timer)

. requests. Each of these requests is moved to a
scheduler stack (part of SYSDAT) and threaded there.
Six separate threads coexist in the scheduler stack: one
for scheduler requests, four for timer requests, and one
for empty slots in the stack. The empty stack is
checked by the monitor to find the next entry that can
be used for a request. The dispatcher works requests
off the scheduler stack, ensuring that every request in
the stack is processed (except timer requests that have
not yet become immediate requests) on a priority basis.

• Memory allocation requests. These requests include
space assignment and release and partitioned core
assignment. The calling sequence for the request is
threaded in place. If no space is currently available to
satisfy the request, it is threaded. Within request
priority, space is allocated on a FIFO basis. Whenever a
release request is completed, the space request thread
is checked. If sufficient space exists for the first
threaded request, the space is assigned.

Monitor requests must conform to the type of addressing
required for the particular software configuration. In all
cases the basic rule to observe is to set the d-bit for
requests that reference or are made from part 1. Setting
the d-bit forces all such request parameters to be absolute.
This bit may also be used for part 0 requests if the request
parameters are absolute.

Parameter lists, which execute and reference only in the
lower bank, do not require the d-bit to be set and can
therefore have indirect parameters in their parameter lists.
Run-anywhere programs, if in part 0, may also use part 1
requests if they absolutize their request parameters. This is
practical in any system program that runs in either
allocatable or partitioned core, or unprotected or core
resident programs that may be required to run in the upper
bank on another system.

The CYBER 18/1700 MSOS provides 19 monitor requests;
each has an entry point Txx, where xx is the request code
(1 to 19). Refer to table 3-1.

The numerical part of each name corresponds to the value of
an index to a table of requests. All request processors are
entered with the location of the request parameter list in
the A register and exited by a jump to the request exit entry
point. Request codes 20 to 25 are reserved for future
system use.

3-1

I

TABLE 3-1. MONITOR REQUEST TABLE

Program
Request Request Program Handling Can Be
Codet Mnemonic Request Type Type Usage Request Queued?

0 - System directory read Monitor only RW Yes

1 READ Normal read All RW Yes

2 WRITE Normal write All RW Yes

3 STATUS I/O request status Unprotected T3 No

4 FREAD Formatted read All RW Yes

5 EXIT Unprotected exit Unprotected T5 No

6 FWRITE Formatted write All RW Yes

7 LOADER Relocatable binary loader Unprotected T7 No

8 TIMER Schedule program with delay All TMINT Yes

9 SCHDLE Schedule program All NDISP/ Yes
RDISP

10 SPACE Allocate core Protected SPACE Yes

11 CORE Unprotected core bounds Unprotected Tll No

12 RELEAS Release core Protected DCORE No

13 GTFILE Access permanent files in the program Unprotected T13 Yes
library

14 MOTION Tape motion All T14 Yes

15 TIMPTI Schedule directory program with delay Protected TMINT Yes

16 INDIR Indirect (use another parameter list) All T16 Yes

17 PTNCOR Allocate partItioned core Protected NDISP/ Yes
RDISP

18 SYSCHD Schedule directory program Protected NDISP/ Yes
RDISP

19 DISCHD/ Disable/enable system directory scheduling Protected NDISP/ No
ENSCHD RDISP

20
21
22 Reserved for future use 23
24
25

THREADING

THREADING IN PLACE

Certain monitor requests provide a thread word within the
parameter list to allow requests to be threaded by priority
while waiting to be processed. Requests from protected

programs are threaded in place using the thread word of the
calling sequence. Unprotected programs cannot depend on
this type of in-place threading since an unprotected program
could change the request parameters after threading.
Therefore, up to five unprotected requests can be moved
into protected core and threaded there. The number of
requests is arbitrarily set at five to limit the amount of
protected space needed to store these requests.

3-2 96769400 C

' _-,

Requests are threaded on a first-in-first-out (FIFO) basis
within each priority level. The logical unit table (LOG2)
holds a pointer to the first unprocessed parameter list
calling sequence. As soon as this request is started, the
LOG2 pointer is changed to the address given by the thread
word. Then the thread word is set to FFFF 16 ' indicating
tha t the request is being processed. The last request in the
thread always has its thread pointer set to FFFF16 • When
a request is completed, the thread word is set to +016,

In the example of figure 3-1, five requests are shown. These
could be in the same or different programs but all are for
the same logical unit (Iu). Also, the requests could be for
different types of operations; e.g., READ, WRITE, FREAD,
and FWRITE, all for the same logical unit.

P ,Q,R,S,T The addresses of the five
parameter lists

N Logical unit. Each request
specifies lu N.

E The physical device table
address for the device
corresponding to logical unit
N (appendix C)

LOG2 The logical unit table
(appendix C)

Parameter lists P 9. R S T

Completion priority 8 1 8 4 4

Request priority 3 9 0 4 1

Threaded by this priority

In this example, request T has a lower priority than P, Q,
and S. However, if request T is made before P, Q, and S,
request T will be started and completed before the others
are processed. Assume that request S is not active at this
time.

When a request has been threaded, control returns to the
address following the last word of the calling sequence, if no
request with a higher priority is waiting to run. The user
can, therefore, continue processing while the input/output
requested is in progress. If the program cannot continue
until completion of the input/output request, it should exit
to the dispatcher and allow other programs to run until the
completion address is scheduled. Unless the program is
unprotected, the user program should not loop while waiting
for completion by testing the request thread for zero.

CAUTION

Requesters that loop on the request
thread at priorities 2 and above can cause
serious interference with monitor
functions and inhibit system real-time
performance.

96769400 A

Completion priority is meaningless if no completion address
is specified.

NOTE

Users should not assume that the contents
of the A, Q, or I registers are returned to
the user in their original state following
MSOS requests. The contents of these
registers may vary from request to
request; within requests, the contents
may vary from foreground to background.

THREADING IN STACKS

The parameter lists of scheduler and timer requests are
copied into the scheduler stack as segments of one of the
five active threads: requests for immediate execution
(SCHDLE), or requests delayed for n counts, tenths of
seconds, seconds, or minutes (four separate timer threads).
SCHDLE requests are threaded by priority on an FIFO basis;
TIMER requests are threaded by time until activation in the
appropriate timer thread. When a TIMER request matures, a
SCHDLE request rethreads it to the SCHDLE thread. When
the dispatcher gains control, it checks both the scheduler
and interrupt stacks. If the scheduler stack has the highest
priority program awaiting execution, the dispatcher
executes the first entry in the SCHDLE thread. The space
occupied by that request's parameter list is returned to the
thread of unused spaces. As described in section 2, only
SCHDLE requests that are at the same or lower priority
than that of the calling program are stacked; higher priority
programs are executed immediately.

When the scheduler stack is full, new requests are rejected
until space is available.

To notify the requesting program that the request has been
threaded in the stack, the sign bit of Q is set:

Bit 15 o Request is accepted

1 Request is rejected

Bi ts 14 through 0 Unchanged

When scheduler requests are made for system directory
programs, only one request may be processed at a time
(allocate core, read program from mass memory, schedule
program). Subsequent program requests are rejected (bit 15
of the Q register is set to 1) until the initial request is
completed. Timer requests for system directory programs
that expire when a previous scheduler request is in process
are automatically retried on the next count interrupt until
successfully scheduled.

Scheduler requests made for system directory programs that
have been disabled (i.e., those operated on by DISCHD
request) are rejected with bit 15 of the Q register set to 1.

3-3

COMPLETION PRIORITY

REQUEST PRIORITY

REQUEST IN
PROGRESS (NOT
THREADED)

T +0

2

5

P+O

FFFF16

PHYSICAL DEVICE TABLE (PHYSTB)
FOR LOGICAL UNIT N

E +0

SECOND REQUEST
IN THREAD

2 R

1 3 1 8 f4-

-
5

- ---6

N

T

LOGICAL UNIT ASSIGNED

CURRENT REQUEST ADDRESS

FIRST REQUEST
IN THREAD

LAST REQUEST
IN THREAD

REQUEST NOT
INTImEAD

5

{

Q+:5

{
R+:5

{
8+:5

I 9 I 1

P

I 0 I 8

FFFF16

I 4 I 4

0000

~

12

+-- LOG2 + 0

""'-1.OG2 + N

FWA

LWA+l

LIMITS OF
DATA BUFFER

LOGICAL UNIT TABLE

~
MLU TABLE IS

INDEXED
BY LOGICAL UNIT

Q NEXT REQUEST
i----------t ADDRESS

NOTES: 1. LOCATIONS P, Q, R, S, AND T ARE IN THE USER PROGRAM, AND ARE STARTING POINTS OF THE PARAMETER
LISTS IN THE CALLING SEQUENCES.

2. REQUEST T WAS STARTED BEFORE P, Q, AND R WERE THREAllED.

3. REQUEST S IS EITHER COMPLETED OR HAS NOT YET BEEN MADE.

Figure 3-1. Threading Example

3-4 96769400 A

REQUEST DESCRIPTIONS

Some of the 19 requests supplied with the CYBER 18/1700
MSOS are applicable to both protected and unprotected
programs, and others are unique to either protected or
unprotected programs.

PROTECTED AND UNPROTECTED
PROGRAM REQUESTS

The requests allowed for both protected and unprotected
programs are:

Reguest Reguest Code

READ 1

WRITE 2

FREAD 4

FWRITE 6

INDIR 16

Description

Read record

Write record

Read format record

Write format record

Indirect execute request
Indirect request to part 1

rp is the request priority.

cp is the completion priority.

a is the absolute/indirect indicator for the
logical unit.

x is the relative/indirect indicator (affects
parameters c, s, and n).

d is the part 1 request indicator (absolute
parameter addresses).

A detailed description of each of the above parameters
follows after the calling sequence generated by the macro.

The request codes are 1 (READ), 2 (WRITE), 4 (FREAD), and
6 (FWRITE). The calling sequence generated by the macro is
as follows:

v r~\:) 0

i: !::.--- 1

15 14 13 12 11 9 8 7 4 3

RTJ-(F416) (address of NMONl)

Old I rc Ix I rp I
c

o -

cp 1"'1

TIMER 8 Schedule program on prior- ~:', ' 2
ity basis after specified,'1 "r', 3
time delay elapses .. 1 /

v Iml
thread

a I Iu
)

Required
Parameter
List

f+,I/'J\. 4 n

SCHDLE 9 Schedule program on prior- I".
ity basis

MOTION 14 Control peripheral device
motion

READ / FREAD jWRITEj FWRITE

READ/WRITE instructions transfer data between the
specified input/output device and core. The word count
specified in the request determines the end of the transfer.

FREAD/FWRITE requests read/write records in a specific
format for each device.

The macro format for READ/WRITE/FREAD/FWRITE
requests (1,2,4,6) is shown below:

~~~k } lu, c, s, n, m, rp, cp, a, x, d 
FWRITE 

Where: lu is the logical unit. 

c is the completion address. 

s is the starting address. 

n is the number of words to transfer. 

m is the mode. 

96769400 A 

'", ,:, 5 s 

6 MSB of Mass Storage Address 
~-------------

7 LSB of Mass Storage Address ---------------,-

The field descriptions for the calling sequence generated by 
READ/WRITE macros are: 

rc 

thread 

v 

The request code 

The thread location used to point to the 
next entry or the threaded list. Each 
logical unit has its own thread; completion 
of one request causes the logical unit 
driver to inspect the thread, if any, and to 
start the transfer specified by the first 
entry in the thread. 

Error code. This code is passed to the 
completion address in bits 15 through 13 
of Q. This code is also set into the calling 
sequence at request completion. 

Detailed parameter descriptions for the requests are: 

lu 

c 

is the logical unit; an index to the LOGIA table of 
physical device table addresses (appendix G) may 
be modified by parameter a. 

is the completion address of the main memory 
location to which control is transferred when an 
I/O operation is completed. If omitted, no 

3-5 



s 

3-6 

completion routine is scheduled and control is 
returned to the interrupted program. If given in (c) 
format, it is an index to the system library 
directory; (c) indicates the program to be executed 
upon completion of the requested I/O operation. 
Use of the (c) option by unprotected programs 
results in job termination. 

Completion routines are operated by threading the 
I/O requests on the scheduler thread. A three-bit 
code in the v field of the fourth word of the 
request indicates completion status: 

15 14 

o o 

o o 

o 1 

o 1 

1 o 

1 o 

1 1 

1 1 

13 

o 

1 

o 

1 

o 

1 

o 

1 

Description 

No error condition detected 
by driver; number of words 
requested was read or 
written; device not ready 

No error; requested number 
of words read or written; 
device ready 

No error condition detected 
by driver; fewer words read 
than requested; device not 
ready 

No error; fewer words read 
than requested; device 
ready 

Error condition; requested 
words read; device not 
ready 

Error condition detected by 
driver; number of words 
requested are read or 
written; device ready 

Error condition and/or end
of-file detected; fewer 
words read than requested; 
device not ready 

Error condition and/or end
of-file detected; fewer 
words read than requested; 
device ready 

When control is returned to the completion address, 
these bits are set in similar positions in Q. if less 
than n words were transferred on a read operation, 
the end of buffered data (location following the 
last word transferred) is placed in the last word of 
the user's buffer. 

For all devices having an end-of-file (EO F) 
indication, EOF can be verified by checking bit 11 
of word 12 in the physical device table. 

is the starting address; the address of the data buffer 
to be transferred (see parameter x). 

n 

m 

rp 

cp 

a 

is the number of words to be transferred. 

(n) Number of words to be transferred is 
determined by parameter x. 

o The minimum information is transferred 
(one word or one character), depending on 
the device. 

NOTE 

For FREAD and FWRITE, n cannot be 
zero. Some devices signal zero words 
as an illegal request. 

is the mode; determines the operating condition 
(binary/ ASCII) of a driver. 

Macro 

A Data is converted from ASCII to external 
form for output; from external form to 
ASCII for input. 

B Data is transferred as it appears in core 
or on an I/O device. 

Coding 

o Binary 

1 ASCII 

is the request priority (15 through 0, with 0 as the 
lowest) with respect to other requests for this 
device. This request establishes the order in the I/O 
device queue. It is automatically zero for 
unprotected requests. 

is the completion priority (15 through 0); the level at 
which the sequence of the code specified by 
parameter c is executed. It is automatically one 
for unprotected requests. (see Scheduling Tasks by 
Priorities and Interrupts, section 2, for an 
explanation of priority levels.) 

is the absolute/indicator for the logical unit. 

Macro 

blank lu specifies the logical unit number. 

R lu is a signed increment 
-1FF16 = lu ~ IFF 16 ' which is added to 
the address of the first word of the 
parameter list to obtain the core location 
containing the logical unit number. 

lu is the address of the core location 
containing the logical unit number 
(lu ~ 3FF 16). 

96769400 A 



x 

Coding 

o lu is a logical unit number. 

1 lu is· a signed increment (± 1FF 16); not 
allowed if d = 1-

2 lu is a core address containing the logical 
unit number. 

is the relative/indirect indicator; this parameter 
affects parameters c, s, and n as shown here. 
Becuase of the wrap-around feature, computed 
addresses may be before or after the parameter 
list. 

(c) is indirect 

o or blank and 
c is direct 

o or blank and 
s is direct 

o or blank and 
(s) is indirect 

f 0 or not blank 
and c is direct 

f 0 or not blank 
and s is direct 

f 0 or not blank 
and (s) is indirect 

n is direct 

x is meaningless and c 
represents an index to the 
system directory. 

c is the completion address. 

s is the starting address. If 
the request is on mass 
memory, the mass memory 
address will be words 6 and 
7 of the calling sequence. 

s is a core location that 
contains the starting 
address. If the request is on 
mass memory, the mass 
memory address follows the 
core location that contains 
the starting address. t 

c is a positive increment 
that is added to the address 
of the first word of the 
parameter list to form the 
completion address. 

s is a positive increment 
added to the address of the 
first word of the parameter 
list to form the starting 
address. If the request is on 
mass memory, the mass 
memory address will be 
words 6 and 7 of the calling 
sequence. 

s is a positive increment 
added to the address of the 
parameter list to form the 
address of a location con
taining another positive 
increment. If the request is 
on mass memory, the loca
tion containing the second 
increment is immediately 
followed by two words which 
contain the mass memory 
address. 

x is meaningless and n is the 
length of the block to be 
transferred. 

d 

x is 0 or blank and 
(n) is indirect 

n is the core location 
containing the block size. 

x is f 0 or f blank 
and (n) is indirect 

n is a positive increment 
added to the address of the 
first word of the parameter 
list to obtain the location 
containing the block size. 

is the part 1 request indicator; this parameter 
indicates that the request requires the use of 
16-bit address arithmetic. 

o or blank 

1 

Preceding description of parameter 
applies 

x is ignored. 
n is the number of words 
c and s are 16-bit absolute 

addresses. 
lu is processed the same as 

d = o. 
a cannot be set to R. 

MSA is the mass storage address. It is not supplied by the 
macro. The two words must be supplied by the 
program. 

The memory address format is: 

15 14 o 

Most Significant Bits of Mass Storage Address 

o ILeast Significant Bits of Mass Storage Address (LSB) 

INDIR 

The mass storage address specifies a mass memory 
word address (READ/WRITE) or a mass memory 
sector (96-word size) address (FREAD/FWRITE). 

NOTE 

Following threading of the request, 
control is returned to the program at the 
continuation address. This address is the 
location following the parameter list. 
(Note that the mass storage address may 
be the last two words of the parameter 
list.) 

The INDIR request (16) allows indirect execution of any 
other request. Use of INDIR allows one call (e.g., FREAD) 
to be used several places in a program without needing to 
recompute certain parameters. The request to be used is 
specified by the address of the first word of the other 
request calling sequence: 

INDIR p,i 

t If bit 15 is set for (n) or (s), incrementing continues indirect until bit 15 is not set. 

96769400 A 3-7 



Where: p is the address of the first word of the parameter 
list in the calling sequence of any other 
request; p must not be enclosed in 
parentheses. 

TIMER 

is the indicator for 15- or 16-bit core addressing: 

o or blank 

15 14 

1 

1514 

Part 0 (15-bit addressing) 
contains the calling sequence and 
INDIR has no request code. The 
calling sequence generated by 
the macro is: 

o 

p 

This form is only useful when the 
address of the request to be 
executed is at an address below 
800016• 

INDIR requires 16-bit core 
addressing (part 1 of the CPU). 
The calling sequence generated 
by the macro is: 

9 8 0 

: 1~ __ ~ _____ ro _____ R.IT_:_:_(F_4_1_~ ___________ ---+ ____ o~I 

A TIMER request (8) is a delayed SCHDLE request. Through 
the user of TIMER, a SCHDLE request is made after the 
specified time elapses. The macro format is: 

TIMER c,p,x,t,u,d 

Where: c is the completion address to be executed. 

3-8 

p is the priority level of the program. p should be 
less than or equal to the priority level of 
TIMINT. The use of priority levels above this 
level allows the possiblity of losing an entry 
for the same timer thread as a result of a 
timer interrupt. 

x is the relative/indirect indicator. 

(c) is indirect 

o or blank and 
c is direct 

x is meaningless and c 
represents an index to 
the system directory. 
The entry referred to 
by the index specifies 
the program. This fea
ture is not available to 
unprotected programs 
and programs running in 
part 1. 

c is the location to be 
executed. 

':f 0 or not blank 
and c is direct 

c is a positive incre
ment added to the 
address of the first 
word of the parameter 
list to obtain the 
execution location. 
Because of memory 
wrap-around, the exe
cution location may be 
before or after the 
TIM ER request. 

t is the time delay. 

u is the units of delay; this parameter determines 
the units in which the time delay t is 
measured. 

o or blank 

1 

2 

3 

t is the basic unit of the timing 
device (counts). 

t is measured in tenths of a 
second. 

t is measured in seconds. 

t is measured in minutes. 

d is the part 1 request indicator (absolute request 
parameters). 

o or blank 

1 

All parameters operate as 
described above. 

x is ignored and c is a 16-bit 
absolute address; all other 
parameters operate as 
described above. 

The request code is 8 and the calling sequence generated by 
the macro is as follows: 

o 
1 

2 

15 14 13 

Old I 
\ 

rc 

9 8 7 

RTJ-(F416) 

I xf u 

c 

t 

4 3 o 

I p 

96769400 A 



TIMER requests are stacked in the scheduler list, but are not 
threaded to the SCHDLE requests. Instead, they are 
threaded together on the basis of time until activation. 
These threads are checked by the timer routine periodically. 
When the delay for a TIMER request has elapsed, a SCHDLE 
request is made with Q equal to the contents of location 
E816 (the core clock counter) at the time the SCHDLE 
request was made. This former timer request, if it is 
threaded at all (see SCHDLE, below), is then threaded to the 
SCHDLE requests on a FIFO-within-request-priority basis. 
An external parameter in SYSDAT specifies the number of 
simultaneous TIMER expirations permitted to prevent loss of 
interrupts if time is insufficient to process the number of 
TIMER requests expiring at one time. 

SCHDLE 

Programs are queued on a priority basis through the use of 
the SCHDLE request (9). A program requested by SCHDLE 
is executed only when it is the oldest waiting task with the 
highest priority. All programs specified by SCHDLE 
requests are entered by a simple jump and exited by a jump 
to entry point DISP (protected) or by an EXIT request 
(unprotected). The value in the Q register is passed to the 
requested program on entry. The macro format is: 

SCHDLE c,p,x,d 

Where: c is the address to be executed as described under 
parameter x. 

p is the priority level of the program; for 
unprotected programs, p is 1. If two programs 
are of equal priority, the one in progress is 
continued. 

x is the relative/indirect indicator. 

96769400 C 

(c) is indirect x is meaningless and c 
represents an index to 
the system directory. 
The entry referred to 
by the index specifies 
the program. This fea
ture is not available to 
unprotected programs 
and cannot be used if 
running in part 1 by 
protected programs 
(refer to the SYSCHD 
request in this section). 

o or blank and 
c is direct 

:f. 0 or not blank 
and c is direct 

:f. 0 or not blank 

c is the location to be 
executed. 

c is a positive incre
ment added to the 
address of the first 
word of the parameter 
list to obtain the execu
tion location. Because 
1S-bit arithmetic is 
used, the execution 
location may be before 
or after the SCHDLE 
request. 

(c) indirect is illegal. 

d is the part 1 request indicator (absolute request 
parameters). 

o or blank 

1 

Parameters are processed as 
described above. 

The x parameter is ignored and c 
is processed as a 16-bit absolute 
address. 

The SCHDLE request code is 9 and the calling sequence 
generated by the macro is: 

15 14 13 

J I d I rc 

Example: 

ENQ 

SCHDLE 

9 8 7 4 3 

RTJ-(F416) 

Ix 10----'0 I 
c 

1 

(COMP),6 

0 

0 p Parameter 
List 

At system initialization, entry point COMP is associated 
with an index to the system directory. The program 
associated with the system directory index (referred to by 
COMP) is operated at priority level 6. On entry to that 
program, Q contains 000116. The program may be core
resident or mass-storage-resldent, according to the system 
directory entry. If the request is written in the following 
manner, the core location associated with label COMP is 
executed at priority level 6 and is entered with 0001 
in Q. 

ENQ 

SCHDLE 

1 

COMP,6 

If a new program is at a higher priority' level than the 
current level, the request is not queued, but is immediately 
executed. If the requested program is mass-storage
resident, the scheduler request processor causes' the 
allocation of core for this program and requests the transfer 
of the program from mass storage to core. 

If the program priority level is less than or equal to the 
current level, the parameter list of the request is moved to 
the scheduler stack (SCHSTK) in SYSDAT, and is threaded 
by priority on a FIFO basis within the priority. 

The queuing routines move the entries to SCHSTK, and the 
dispatcher removes entries and threads the returned space 
to the SCHSTK empty thread. When an input/output request 
is completed, the driver causes the completion routine to be 
executed by threading the input/output request to the 
scheduler list. This process avoids filling the list with 
input/output completion addresses. 

3-9 

I 



MOTION 

This request (14) is used to control motion and end-of-file 
processing. The macro format is: 

MOTION lu,c,P1 ,P2,P3,dy ,rp,cp,a,x,d,m 

Where: lu 

c 

dy 

rp 

cp 

a 

x 

d 

m 

is the logical unit. 

is the completion address. 

the motion control parameters. Each 
of these results in a specific action, 
which is defined in table 3-2. Up to 
three motion commands may be 
defined in a MOTION request; they 
are executed in the sequence 
PI ,p 2 ,P3· The first command with 
a value of zero terminates the 
request. 

is the density parameter. 

o No change 

1 800 frames 
per inch 

2 556 frames 
per inch 

3 200 frames 
per inch 

4 1600 frames 
per inch 

External 
rejects will 
result when 
an illegal 
density 
selection is 
attempted. t 

is the request priority. 

is the completion priority. 

is the absolute/indirect indicator for 
the logical unit. 

is related only to the completion 
address. 

is set to 0 

1 

is the mode. 

AJI parameters are 
processed as described. 

A part 1 request is· 
indicated (c is a 16-bit 
absolute address and 
must not equal R for 
the a parameter). 

Mode Code 

A 

B 

1 

o 
ASCII 

Binary 

The MOTION control request code is 14 and the calling 
sequence generated by the macro is as follows. 

o 
1 

2 

3 

4 

15 14 13 12 11 10 9 8 7 

RTJ-(F416) 

OldT rc Ix I rp 

c 
thread 

v Iml a I 
pI I p2 I p3 

4 3 o 

I cp 

Iu 

I dy 

Where: rc is the request code. 

thread is the thread location used to point to the 
next entry or the threaded list. 

v is the error code setting. 

One MOTION control can be repeated for magnetic tape. In 
this case the macro request is as follows: 

MOTION lU,c,r ,p,n,O,rp,cp,a,x,d,m 

Where: r is the repeat function indicator, which must 
equal R in the a parameter. 

p is the motion code. 

n is the number of times to be executed, not to 
exceed 4095. 

o is a null parameter. 

All of the parameters are the same as in the preceding 
MOTION request except for r, p, n, and 0, which replace PI' 
P2' P3' and dye 

The coding sequence generated is the same as above except 
for the last word, which is generated as follows: 

15 14 12 11 o 

p n 

Where: 1 indicates that the request can be repeated. 

The following macros can also be used for MOTION requests; 
each macro can perform only one MOTION request. (Refer 
to table 3-2 to determine the action taken by the driver.) 

BSR* IU,a,n,c,p 

EOF* IU,a,n,c,p 

REW* IU,a,n,c,p 

UNL* IU,a,n,c,p 

tIn addition to the attempt to set a density which is not legal for a unit (e.g., 200/556 frames per inch on a 609), the drivers do 
not allow a density change if the unit is not at load point. 

3-10 96769400 A 



TABLE 3-2. MSOS DRIVER ACTION FOR MOTION REQUEST PARAMETERS Pi' P2' P3 

Code Description MT CR CP LP TTY PTR PTP MSD PTD CDt 

0 First zero terminates 
processing the request X X X X X X X X X X 

1 Backspace one record X X X 

Do nothing X X X X X X X 

2 Write one end-of-file mark X X X 

Punch one end-of -file mark X X 

Page eject; reset line count X X 

Punch leader X 

Do nothing X X X 

3 Rewind to loadpoint X X 

Set pointer to start of tape X 

Do nothing X X X X X X X 

4 Rewind and unload; 
terminates request X X 

Terminates processing the 
request X X X 

Sequence count goes to zero; 
termina tes request X X 

Reset line count; 
terminates request X 

Set pointer to start of tape; 
terminate this request X 

Do nothing X 

5 Skip one file forward X X X X 

Slew cards to end-of -file X 

Do nothing X X X X X 

6 Skip one file backward X X X 

Do nothing X X X X X X X 

7 Advance one record X X X 

Do nothing X X X X X X X 

KEY: MT Magnetic tape TTY Teletypewriter PTD Pseudo tape driver 
CR Card reader PTR Paper tape reader CD COSY driver 
CP Card punch PTP Paper tape punch 
LP Line printer MSD Mass storage driver 

t Assumes use of the magnetic tape physical device; for detailed information refer to the Peripheral Drivers 
Reference Manual. 

96769400 A 3-11 



ADF* 

BSF* 

ADR* 

lu,a,n,c,p 

IU,a,n,c,p 

IU,a,n,c,p 

Where: * specifies a relative completion address. If left 
blank, there is absolute completion. (The 
macro computes the relative address 
constant.) 

lu is the logical unit number of the device. 

a is the absolute/indirect/relative indicator for the 
logical unit. 

blank lu is the actual logical unit number. 

R lu is a signed increment (-lFF16 ~ 
lu ~lFF 16 ) added to the address of 
the first word address of the param
eter list to obtain the address of a 
location containing the actual logical 
unit number. 

lu is a core address (0 to 3FF 16 ) that 
contains the logical unit number. 

n is the number of iterations. If blank, 1 is 
assumed (not to exceed 4095). 

c is the completion address. If the macro call 
terminator is an *, completion is relative (only 
the label name is required). If the macro call 
terminator is a blank, the completion is 
absolute. If C is left blank, there is no 
completion. 

p is the priority level; defines both the request 
and completion priority. If left blank, the 
priority is zero. 

All parameters are optional and may be left blank, with the 
exception of lu. 

Examples: 

The following parameters are common to the four examples 
that fOllow. 

1. 

2. 

NEXT is the completion address. 

6 is the logical unit of the magnetic tape. 

10 is the logical unit of the card punch. 

MT is the program location containing a 6. 

F A16 is the low core location containing the standard 
binary output device. 

A backspace macro with the following: A relative 
location containing the logical unit number, backspace 
three records, a relative completion address, and a 
request and completion priority of 3. 

BSR * MT,R,3,NEXT,3 

Same as the above, except that the completion address 
is absolute. 

BSR MT,R,3,NEXT,3 

3-12 

3. An end-of-file macro with the following: The actual 
logical unit number, write one end-of-file, zero 
completion, and a priority of o. 

EOF 10 

4. Same as above, except that the logical unit number is in 
a low core location. 

EOF F A16,I",0 

PROTECTED PROGRAM REQUESTS 

The following requests, which are available only to 
protected programs, are described in this section. 

Request 
Reguest Code DescriQtion 

SPACE 10 Allocate protected core for 
system library programs. 

RELEAS 12 Release protected core used for 
system library programs. 

DISCHD 19 Disable scheduled system 
directory programs. 

ENSCHD 19 Enable disabled scheduled system 
directory programs. 

SYSCHD 18 Part 1 system directory request 

TIMPTI 15 Schedule system directory 
program from part 1 after time 
delay. 

PTNCOR 17 Allocate one or more partitions 
for system library programs. 

SPACE 

Space in core must be allocated by the SPACE request 
processor to execute mass-storage-resident programs. If a 
request cannot be completed, it is threaded to the space 
allocator. Each RELEASE request causes the thread to be 
proces~ed; space is assigned to the top entry of the thread, 
If posslble, at that time. The macro format is: 

SPACE n,c,rp,cp,x,d 

Where: n is the number of words necessary (see x). 

c is the completion address to which control is 
transferred when core space is allocated 
(see x). 

rp is the request priority (with respect to other 
SPACE requests). If space is not available, 
requests are threaded together so that the 
oldest (highest priority) is filled first when 
space becomes available. This priority is also 
used as the index to the table LVLSTR to 
determine the starting address of allocatable 
core for the request priority. This has the 
effect of providing larger areas of core to 
SPACE requests with a higher priority level. 

96769400 A 



cp is the completion priority; the level at which the 
completion address is entered. 

x is the relative/indirect indicator. 

(c) is indirect 

n is direct 

o or blank and 
c is direct 

o or blank and 
(n) is indirect 

~ 0 or not blank 
and c is direct 

~ 0 or not blank 
and (n) is 
indirect 

x has no meaning and c rep
resents an index to the 
system directory. This 
parameter is not allowed if 
running in part 1. 

x has no meaning and n is 
the number of words. 

c is the completion address 
(jump to c is made). 

n is the address of a location 
containing the number of 
words. 

c is a positive increment 
added to the address of the 
first word of the parameter 
list to obtain the completion 
address. Because of mem
ory wrap-around, this 
address can be before or 
after the parameter list 
even though c is positive. 

n is a positive increment 
added to the address of the 
first word of the parameter 
list to obtain the address of 
the location containing the 
number of words. Because 
of memory wrap-around, 
this location can be before 
or after the parameter list. 

d is the part 1 request indicator. 

o or blank 

1 

All parameters function as 
described. 

x is ignored; c and n are 16-bit 
absolute numbers. 

The SPACE request code is 10 and the calling sequence 
generated by the macro is as follows: 

o 
1 

2 

3 

4 

15 14 13 

Old I rc 

9 8 7 

RTJ-(F416) 

Ix I 
c 

thread 

q 

n 

4 3 o 

rp I cp 

Where: rc is the request code. 

RELEAS 

thread is the thread location used to point to the 
next entry or the threaded list. It must be 
set to zero initially and is reset to zero 
upon completion. 

q is the address of the area allocated; it is in 
the Q register when control is given to the 
completion address, c. If allocation is 
impossible, Q is set negative. 

The RELEAS request (12) is used to return to the system 
storage acquired by a SPACE request. After the space is 
released, the SPACE or PTNCOR request thread is checked 
to find if the first threaded entry can now be completed. 
The request macro format is: 

RELEAS s,t,x,d 

Where: s is the starting address of the block to be released 
(see parameter x). If this address is not the 
same as the address returned from a SPACE 
request, core space is not released; however, 
an error does not occur. If d = 1, then s is the 
16-bit address of the beginning partition of 
parti tioned core to be released. 

t is the exit indicator. 

o or blank RELEAS returns to 
requester at the location 
following the request 
parameter list. 

~ 0 or not blank The RELEAS request pro-
cessor jumps to the 
dispatcher. 

x is the relative/indirect indicator. 

s is direct 

x is 0 or blank 
and (s) is indirect 

x is ~ 0 or not blank 
and (s) is indirect 

x is meaningless and s is 
the starting address of 
the block. 

s is an address of a core 
location containing the 
starting address of the 
block. 

s is a positive incre
ment added to the 
address of the first 
word of the parameter 
list to obtain the start
ing address of the 
block. 

d is the part 1 request indicator. 

o Allocatable core is released. 

1 Partitions are to be released; s is the 
16-bit address of the beginning partition 
of the area to be released. The same 

96769400 A 3-13 



I 

number of partitions are released as were 
allocated (refer to PTNCOR), beginning at 
that partition. If several partitions are 
requested in a block, they must be 
released in a block. The contents of 
(F716 ) + 1 must be used to release the 
unprotected partition (refer to PTNCOR). 

NOTE 

Programs releasing the memory 
they occupy must use the exit 
indicator form: t is neither 0 nor 
blank. 

The RELEAS request code is 12 and the calling sequence 
generated by the macro is: 

15 14 13 9 8 7 1 0 

1
0 

RTJ-(F416) 

.0 I t I Id I I x 10 4 0 rc 

1 s 

When system programs are mass-storage-resident and 
scheduled via the system directory, core is allocated to 
them by a system SPACE or PTNCOR request. 

Core must be released with a RELEAS request before 
exiting. To make core-resident and mass-storage-resident 
programs similar so that a program can be stored in either 
place (initialization with no change), all programs should 
attempt to release core upon exiting. Core occupied by 
core-resident programs is not released. 

DISCHD 

With the DISCHD request (19), the scheduling of specific 
system directory programs can be disabled for a period of 
time. The ability to schedule these programs can be 
restored by an enable request (ENSCHD). 

The DISCHD request sets bit 15 to one of the first word of 
the system directory for the program to be disabled. This 
flag is checked whenever a system directory program is 
scheduled. The macro format is: 

DISCHD c 

Where: c is the index to the system directory. 

The DISCHD request code is 19. The calling sequence 
generated is: 

15 14 13 9 8 7 0 

I 0 

RTJ-(F416) 

0 10 1 rc 10 [ s 

1 c 

3-14 

Where: rc is the request code. 

s is set to FF 16 for a disable request. 

CAUTION 

If a schedule request is rejected because 
the disable flag is set, a system directory 
program that may be scheduled using 
timer requests will have its request 
automatically repeated on each count 
interrupt after the delay has expired. The 
DISCHD request in this case creates 
increased system overhead in the timer 
request processor. 

ENSCHD 

The ENSCHD request (19) enables the scheduling of system 
directory programs after they have been disabled by a 
DISCHD request. The ENDSCHD request sets bit 15 of the 
first word of the system directory entry for the program to 
zero. The macro format is: 

ENSCHD c 

Where: c is the index to the system directory. 

The ENSCHD request code is 19. The calling sequence 
generated is: 

15 14 13 9 8 7 0 

1
0 

RTJ-(F416) 

0 10 I rc 10 1 s 

1 c 

Where: rc is the request code. 

s is set to 0 for an enable request. 

SYSCHD 

Protected programs which run in part 1 must use this 
request to schedule a system directory program. It may also 
be used for programs that run in part O. The macro request 
format is: 

SYSCHD c,p 

Where: c is the index to the system directory. The entry 
referred to by the index specifies the program. 
Note that bit 15 of the c parameter is not set 
to one in this request form. 

P is the priority level of the program. 

The SYSCHD request code is 18 and the calling sequence 
generated by the macro is as follows. 

96769400 C 

I 



I 

15 14 13 9 8 7 4 3 0 

1° 

RTJ-{F416) 

0 10 I rc 10 I O~ ~O I p 

1 c 

TIMPTl 

The part 1 TIMER (delayed scheduling) request must be used 
for scheduling system directory programs that are loaded in 
part 1. This request may also be used (or part 0 programs. 
The calling sequence generated by the macro is as follows. 

TIMER from Part 1 

The macro format is: 

TIMPTI c,p,x, t,u 

Where: c is the index to the system directory. Note that 
bit 15 of the c parameter is not set to one in 
this request form. 

o 
1 

2 

p is the priority level of the program (see p in 
TIMER request description for restrictions to 
the priority leven. 

x has no meaning. 

t is the time delay. 

u is the units of delay. This parameter determines 
the units in which the time delay is measured. 

o or blank 

1 

2 

3 

15 14 13 

o 10 I 

t is the basic unit of the timing 
device (counts). 

t is measured in tenths of a 
second. 

t is measured in seconds. 

t is measured in minutes. 

9 8 7 4 3 

RTJ-{F4
16

) 

1 0 I u I 
c 

t 

o 

p 

PTNCOR 

The PTNCOR request (17) is used to allocate a block of 
partitioned core. The macro format is: 

PTNCOR n,c,p,rp,cp,x,d 

96769400 C 

Where: n is the number of words in block to be allocated. 
This number determines how many partitions 
are allocated, but it does not need to be the 
exact length of the combined partitions 
(unaffected by x parameter). 

c is the completion address, which is modified by x 
if d is not set. 

P is the starting partition number; the number of 
the first partition in the block to be allocated 
(partitions are numbered zero through fifteen). 

rp is the request priority. This priority governs 
where this request is threaded on the thread of 
partition p if more than one request is on the 
thread. 

cp is the completion priority; the level at which the 
completion address is entered. 

x is the relative/indirect indicator; x affects c as 
follows: 

(c) is indirect 

x is 0 or blank 
and c is direct 

x is 1- 0 or not 
blank and c is 
direct 

c represents an index to the 
system directory and x has 
no meaning. 

c is the completion address 
and a jump to c is made. 

c is a positive increment 
added to the address of the 
first word of the parameter 
list to obtain the completion 
address. Because of IS-bit 
arithmetic, this address can 
be before or after the 
parameter list, even though 
c is positive. 

d is the part 1 request indicator. x is ignored and c 
must be a 16-bit absolute address. 

The request code for PTNCOR is 17 and the calling sequence 
generated by the macro is as follows: 

o 
1 

2 

3 

4 

5 

15 14 13 

Old I rc 

9 8 7 

RTJ-{F416) 

I xl 
c 

thread 

q 

n 

p 

4 3 o 

rp I cp 

3-15 



Where: rc is the request code. 

thread is the thread location used to point to the 
next entry on the threaded list. These 
calling sequences are threaded to the 
partitioned core allocator; the thread is 
checked whenever the RELEAS request 
releases partitioned core. 

q is the address of the area allocated and is in 
the Q register when control is given to the 
completion address, c. If allocation is 
impossible, Q is set to, zero. 

UNPROTECTED PROGRAM REQUESTS 

The following requests, which are only available to 
unprotected programs, are described in this section. 

Request 
Reguest Code DescriEtion 

CORE 11 Set or determine bounds of 
unprotected core. 

LOADER 7 Operate relocatable binary 
loader. 

GTFILE 13 Access permanent files in the 
program library. 

STATUS 3 Determine the status of the 
input/output request. 

EXIT 5 Exit from the unprotected 
program. 

CORE 

This request is used to set or determine the bounds of 
available unprotected core (that portion of unprotected core 
not occupied by a program or data for a job). If the A and Q 
registers are zero when the request is made, the current 
upper bound is returned in A and the lower bounds in Q. To 
set the bounds, the request is made with the upper bounds 
in A and the lower bounds in Q. Both values must be in 
unprotected core and the upper value must be greater than 
the lower. lllegal values result in job termination. Each 
new request replaces the parameters from the previous 
request. At the beginning of a load, the entire unprotected 
area is made available again. The macro request format is: 

CORE 

The CORE request code is 11 and the calling sequence 
generated by the macro is: 

15 14 13 9 8 o 

rc O' ..... --------... ~ 0 

3-16 

LOADER 

The LOADER request is available to unprotected programs 
at level 0 only. It is used to execute the mass-storage
resident relocatable binary loader. Parameters required 
must be in the A and Q registers at the time the request is 
made. The loader is placed in the uppermost part of 
unprotected core and loads programs into the area 
designated by a CORE request as available for loading. The 
macro request format is: 

LOADER 

The LOADER request code is 7 and the calling sequence 
generated by the macro is as follows: 

15 14 13 9 8 o 

10 1
0 

I 

RTJ-(F4
16

) 

rc 0" I.-----------+~ 0 

Entry to the Loader Processor 

15 4 3 0 

A Iu t 

15 o 

Q tna 

Where: lu is the logical unit number of the input unit if 

Example: 

a relocatable binary program is being 
loaded. 

t is the type of loading operation. It can be 
used to execute the program when loading 
is completed. (See the following 
paragraphs for types of loading.) 

tna is the entry point; the core address of the 
first of three sequential locations contain
ing the entry point name. It is usually 
held elsewhere in the same program. 

LDA N$60 Load from logical unit number 6 

ENQ 0 

LOADER 

96769400 C 

I 



~pes of Loading 

There are three types of loading, which are desc~ibed in the 
sequence listed: 

• Relocatable binary programs 

• Subroutines 

• Library programs 

When relocatable binary programs are to be loaded the 
t field of the A register contains 0; the lu field contain's the 
logical unit number from which input is to be obtained. 

If the leftmost bit of the lu field is 1, the standard binary 
input device is to be used and the loader refers to a location 
in ~he communications region containing the equipment 
ordmal. The Q register is ignored. 

A .relocatable progr!lm can be loaded from as many logical 
umts as are requIred for execution on a single load 
operation. Th~s· is possibl~ since no patch is performed by 
the loader untIl a subroutme loader function or the CREP 
directories link function is specified by the user program. 

When the t field contains 1 and the lu field specifies the 
library unit, subroutines are loaded after relocatable binary 
programs. The Q register is ignored. The loader attempts 
to match external names with entry point names in its table. 
If successful, the appropriate routine from the program 
library is loaded for each match. If unsuccessful, the loader 
checks the program library directory and types the names of 
unpatched externals on the system print device. The 
operator must type: 

*E To search the directory of core-resident part 0 and 
part 1 entry point names 

*T To terminate the operation 

* To continue loading with unpatched externals 

~hen th~ t field equals 2, the loader enters the program 
~:hrectl¥ mto core from the program library and executes it 
Imme?lately. The lu field is ignored. The Q register 
cont~lns !he a~dress of the first of four sequential core 
locatIons In WhICh the program name is stored in ASCII code 
with the first character of the name appearing in the lowe; 
half of the first word. The program name is the entry point 
naI'Qe and must appear in the program library directory. 

Example: 

ENA 2 

LDQ = XADRESS 

ADDRESS ALF 4, NAMEXX 

When the t field equals 3, the loader produces a main 
memory map. This map includes the entry point table names 
and addresses. It may be produced subsequent to each 
subroutine load. The first word addresses of common and 
data storage reservation appear in the map as entry point 

96769400 A 

addresses. The entry point names ***COM and ***DAT are 
used for common and data storage reservations. The lu field 
and the Q register are ignored. 

W~en the t field contains a 4, the loader looks up the entry 
pOint name specified in A and Q as follows: 

A register 

Q register 

Bit 15 = 0 The name starts in the left 
character of the word 

1 The name starts in the right 
character of the word 

The locations containing the 
name should have the final 
character blank to terminate the 
name. 

Location of the name in ASCII 

On exit, the A register contains the location of the name. If 
the name specified is not in the loader table an E16 error 
!11:ssage is typed and the loader waits for a l~gal name that 
IS In the loader table. 

When t~e t fiel~ contains a 5, the operation is equivalent to 
subroutine loading, but no memory map is produced. 

When the t field contains a 6, the directories of the core
resident entry points (CREP and CREPl) can be searched 
fir.st, instead of the program library directory. This function 
prints all unpatched externals and the operator can input an 
* or *T to continue or terminate. 

When the t field contains a 7, the Q register specifies the 
core location to which subsequent data blocks should be 
relocated. 

The following is a list of the loader calls: 

t Function lu tna 

0 Load relocatable binary Input device Ignored 
programs from any unit. 

1 Load from program Ignored Ignored 
library on library unit. 

2 Load program from Ignored Location of 
library unit and execute Program 
immediately. name 

3 Produce memory map. Ignored Ignored 

4 Look up entry point Ignored Location of 
name. entry point 

name 

5 Same as t = 1, but no 
memory map is printed. 

6 Search directory of core- Ignored Ignored 
resident entry points. 

7 Initialize data base. Ignored Ignored 

3-17 



Termination of Loading 

Program loading continues until interrupted by an EOL 
statement, an operating system control statement, or an 
error condition. The following exit parameters for the 
loader appear in the A register: 

-0 Irrecoverable error 

fO Load is terminated normally. The A register 
contains the transfer address or the entry 
point address of the look-up entry point 
function. 

If there is insufficient core when the loader is active, the 
program load is paged to mass storage and the program read 
back into core by the loader request processor, after all 
linking operations have been completed. The transfer 
address is passed back to the loader as with a normal load 
operation. 

If the bad operation was terminated by a job processor 
control command, that command is passed to the job 
processor and executed as the next control function. 

GTFllE 

The GTFILE request (13) is used to read permanent files 
stored on the program library. A permanent file is written 
in absolute binary format. This request can be used to load 
absolute programs from the program library. 

The name of the file in ASCII must be provided separately in 
the program if the sector address is unknown. It may be up 
to six characters in length and it must be stored in a three
word (six-character) buffer. The program directory is 
searched for such a file name. If it is found, the file is read 
into the specified buffer. At this time, the address of the 
program on mass storage is saved in the last two words of 
the calling sequence parameter list. This allows subsequent 
uses of this source GTFILE call to read the file directly. 
Therefore, if the programmer knows the address of the file, 
the file name need not be specified at all. Instead, the file 
may be accessed directly, and not through the program 
library directory. 

NOTE 

The last two words of the calling sequence 
are not supplied by the macro. They are 
supplied by the caller, if known. If they 
are not specified by the caller, the sector 
address corresponding to the name is 
placed there when the request is 
processed. If the caller supplies an 
incorrect sector address, no diagnostic is 
given and the request results in bad data 
being read. 

The macro format is: 

GTFILE c,i,s, wI' w 2,x,rp,cp,d 

3-18 

Where: c 

s 

is the completion address; address of core 
location to which control transfers when 
an input/output operation is completed 
(refer to parameter x). 

is the pointer to the file name held 
elsewhere in the program. It has the form 
of a positive increment that is added to 
the address of the first word of the 
parameter list to form the address of the 
first word of a three-word block contain
ing the ASCII name of the file. Locations 
before and after the request can be 
accessed because of memory wrap-around. 
If i is indirect, the parameter is the actual 
address of the first word of a three-word 
block containing the file name. For 
part 1, an indirect i is illegal. (Refer to 
the d parameter for additional 
information.) 

is the starting address of the main memory 
block into which the file, or portion of the 
file, is to be read (refer to parameters x 
and d). 

w ware the first and last words of a partial file. 
l' 2 These parameters must be blank if the 

entire file is to be used. The file words 
are numbered from 1 through n. If wI is 
nonzero and w2 is zero, the remainder ~f 
the file starting at wI is read. If w 2 IS 
beyond the end of the file, the job 
terminates. Since the file length is 
specified in sectors rather than words, 
w2 must be specified if the file is desired 
in its exact length in words. 

x is the relative/indirect indicator and 
modifies the meaning of c and s as 
indicated below. 

(c) is indirect 

x is 0 or blank and 
c is direct 

x f 0 and is not 
blank and c is 
direct 

s is direct 

x is 0 or blank and 
(s) is indirect 

This is illegal. 

c is the completion 
address. 

c is a positive 
increment added to 
the address of the 
first word of the 
parameter list to 
form the comple
tion address. 

x is meaningless 
and s is the start
ing address. 

s is the core 
location that con
tains the starting 
address of the 
block. 

96769400 A 



rp 

cp 

d 

x f ° or not blank 
and (s) is indirect 

s is the core loca
tion that contains a 
positive increment 
added to the 
address of the first 
word of the param
eter list to form 
the starting 
address of the 
block. 

is the priority of the m!lSS storage requests 
needed to complete a GTFILE request; it 
is always zero for unprotected requests. 

is the priority of the completion address, the 
level at which the completion address is 
to be executed; it is always I for 
unprotected requests. 

is ° Parameters operate as defined above. 

I x may not be set. 

c and s are absolute I6-bit addresses. 

i is a positive address increment 
which, when added to the address of 
the first word of the parameter list, 
gives the location of a three-word 
block containing the name of the 
desired file. This block must occur 
someplace after the request since 
backward relocation is impossible in 
this case. 

The calling sequence generated by the macro is: 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

15 14 13 12 11 9 8 7 

RTJ-(F4I6) 

Old I rc I x I 
c 

thread 

v 10 I 2 I 
wI 

s 
w2 

i 

MSB 

LSB 

4 3 

rp I 

C2I6 (Iu) 

o 

cp 

Not 

} 

gener
ated by 
the macro 

Where: rc is the request code. 

thread is the thread location used to point to the 
next entry or threaded list. 

v 

96769400 C 

is the error code passed to the completion 
address. 

2 is set automatically when the GTFILE macro 
call is used. 

C2I6 is set automatically when the GTFILE macro 
call is used. That memory location holds 
the logical unit of the mass storage device 
containing the program directory. 

MSB is the most significant bits of n. (n is 
starting sector of the file.) 

LSB is the least significant bits of n. 

When the GTFILE request is made with parameters w t and 
w'2 and sector LSB is specified as zero, the program lIbrary 
directory is searched to determine the location and length of 
the requested file. When determined, this length and sector 
LSB are placed in the parameter list. The user may save 
these parameters for future references to that file, thereby 
decreasing the time required to access the file. Conversely, 
if the same request is used to access a different file, wi' 
w 2' and sector LSB must be appropriately set or zeroed. 

STATUS 

The STATUS request (3) is used to determine the status of 
an input/output device by accessing information from the 
physical device table for the specified logical unit. Refer to 
the note following the request description. The request 
macro format is: 

STATUS IU,O,a,x,d 

Where: lu is the logical unit; an ordinal in the logical 
equipment tables (refer to appendix C); modi
fied by parameter a. 

° is the third word of the calling sequence; it must 
always be zero. 

a is the absolute/indirect indicator, the same as 
the corresponding indicator for read/write 
requests. 

x has no meaning; it must always be zero. 

d is the part I request indicator (absolute param
eter addresses). 

The request code for STATUS is 3 and the calling sequence 
generated by the STATUS macro is as follows: 

o 
1 

2 

15 14 13 12 11 10. 9 8 7 

RTJ-(F41G> 

o Id I rc 10 I 0 .. 
o. .01 a J 

0 

o 

"0 

Iu 

3-19 

I 



Following execution of the STATUS request, the A, Q. and 
I registers contain status information derived from the 
physical device table (PHYSTB) of the specified logical unit 
(see appendix C). The A register contains the hardware 
status reply (word 12 of the physical device table), the 
Q register contains word 8 of the PHYSTB (identifying the 
hardware type of the logical unit), and the I register 
contains the last core address used by the data transmission; 
i.e •• the last word transferred to/from the peripheral device 
(word 11 of the physical device table minus 1). 

EXIT 

NOTE 

Since MSOS is a multiprogramming 
system, caution should be exercised in 
interpreting the results of the STATUS 
request. Since requests are executed on a 
priority basis, if more than one program is 
using a logical unit, it is difficult to 
determine which of the last operations 
created the status. 

This request allows background programs to return control 
to the job processor. It signals completion of a job or of an 
interrupt routine. When computation is completed, the 
request notifies the operating system. 

The interrupt stack is checked for exits to unprotected core. 
If any exist, the dispatcher is entered. If none exist, the 
request stacks are interrogated for requests originating in 
unprotected core. The job processor is entered for comple
tion if no requests originated in unprotected core. It waits 
for completion if one or more requests originated in 
unprotected core. 

A jump to entry point DISP from an unprotected program is 
treated as an EXIT request. The macro request format is: 

EXIT 

The EXIT request code is 5 and the calling sequence 
generated by the macro is as follows: 

15 14 13 9 8 o 

10 1
0 

I 

RTJ-(F4
16

) 

rc 10. 

REQUEST RESTRICTIONS 

Certain restrictions apply to the use of all requests executed 
from unprotected core. Violation of these restrictions 
results in job termination. If these restrictions are violated 
by requests from protected core, unpredictable results occur 
since limited error checking is performed. 

3-20 

• Invalid addresses - Addresses must be valid for the 
requesting program. A program in unprotected core 
cannot have interrupt or control information addresses 
in protected core. An example of a control information 
address is the address of an area of core from or to 
which a block is to be transferred. 

• lllegal logical unit - The logical unit number must be 
legal. Logical unit numbers of zero or greater than the 
largest available logical unit number defined in LOGIA 
table are illegal. 

• megal control information - Requests must not 
contain illegal control information (any information 
that can cause destruction of part of the system). For 
example, a READ into protected core or a WRITE into 
system areas of mass storage is illegal. 

• Busy requests - All input/output requests are threaded 
using the third word of the parameter list. A given 
input/output request cannot be repeated until it is taken 
off the thread (completed). An attempt to repeat a 
busy request in protected core is not processed. 
Instead, control returns to the caller at the normal 
place and the Q register is set negative to avoid delays 
at high priority levels. An attempt to repeat a busy 
request by an unprotected program is automatically 
repeated until its thread is cleared. A limit of five 
requests may be queued from unprotected core. 

SWAPPING CORE 

Swapping is a process in which the contents of unprotected 
core are stored on mass storage to make more protected 
core available for assignment by SPACE requests. The 
scratch area of mass storage normally used by jobs is 
unchanged. 

If unprotected core IS In part 0, the unprotected area is 
protected and combined with allocatable core. If unpro
tected core is in part 1, the unprotected area partition is 
protected and made available as a nonbusy partition for 
protected programs scheduled for that partition. The 
unprotected partition has its own special thread word and its 
boundaries are defined by F616 and F716• 

A core swap is automatically performed at system start-up. 

Swapping and subsequent swapping are attempted under the 
following conditions: 

• A SPACE request cannot be satisfied within the 
protected area set aside for this purpose. 

• Input/output from the unprotected area is not active. If 
the buffered version (BPROTK) of the protect processor 
is used, a swap may occur while unprotected I/O is in 
progress if the size of the request does not exceed 
96 words and a request is not currently buffered. 

• A minimum time (SYSDAT program parameter) has 
elapsed since the last swap. 

96769400 A 



(" 

• The request's completion priority is greater than two. 

• The part 0 swap inhibit flag is not set if unprotected 
core is in part o. 

When all the above conditions exist, the contents of 
unprotected core are written in a reserved area of mass 
storage and unprotected core is set up as protected. A null 
loop is started at priority level 2 to prevent operation of any 
portion of a job. The newly protected area is made available 
for assignment by the SPACE program. 

After swapping has occurred, subsequent RELEAS requests 
cause examination of the sWlipped area in core to ensure 
that it has been totally released. If it has, the area 
previously protected by swapping is set unprotected and 
information formerly in that area is returned from mass 
storage. The priority level 2 loop is discontinued and the 
newly unprotected area becomes available for SPACE 
assignment. Job processing can then resume at the point of 
interruption as if swapping had not occurred. 

When unprotected core is configured within part 0, the 
protected core area used for space assignment must be 
continguous with unprotected core if swapping is to work 
properly. Therefore, the space request processor module 
must be the last part 0 core-resident program presented 
during system initialization. 

Upon termination of job processing, a swap is automatically 
requested. The swap remains in effect until the operator 
again requests job processing. This allows the core allocator 

to allocate space in the entire area, including the area used 
by unprotected programs, without the delays caused by 
unnecessary swapping. Only programs of level 3 or above 
can run when job processing is not in progress, because of 
the level 2 loop started by the swap. 

STANDARD SYSTEM INPUT/ 
OUTPUT DEVICES 
The logical units of the devices listed are stored into the 
stated core locations. If these locations are used in system 
requests, changing equipment does not require reassembly. 

Core FORTRAN 
Device Location Logical Unit 

Standard input device t F9 l6 1 

Standard binary output FA16 2 
devicet 

Standard print output FB16 3 
devicet 

Output comment device FC16 4 

Input comment device FD16 

Mass storage scratch B3l6 

Mass storage library C2 l6 

t The operator can change these values by an *K statement from the comment device (section 9). All programs can, therefore, 
address these particular units (indirectly) or determine their numbers by interrogating the communications region. 

96769400 A 3-21 





DRIVERS 4 

MSOS drivers support operation of peripheral devices. They 
also simulate peripheral devices via software to provide 
additional system capability. Each peripheral device in the 
computer system is associated with a device driver, which is 
the only software allowed to give direct commands to the 
device. 

The driver controls execution of READ, FREAD, WRITE, 
FWRITE, and MOTION requests. 

READ/WRITE calls request processors to transfer data 
between the specified input/output device and memory. The 
word count specified in the request determines the end of 
the transfer. 

96769400 A 

Format read (FREAD) and write (FWRITE) requests cause 
records to be read or written in a specific format. A 
particular format is associated with each device. 

Further explanation and parameter descriptions of 
READ/FREAD/WRITE/FWRITE are in section 3. 

MOTION requests are handled by each driver. The meaning 
and function of each MOTION command may differ for each 
device. Refer to section 3 for parameter descriptions and 
device capabilities. 

A complete description of the drivers is found in the MSOS 
Peripheral Drivers Manual. 

4-1 





FILE MANAGER 5 

Hi 

The CYBER 18/1700 File Manager is a general-purpose file 
management package consisting of a request supervisor and 
a collection of request processors. The supervisor resides in 
core and the request processors on mass storage; core 
requirements are minimized by bringing in individual request 
processors only as they are needed. 

Communication between the user's program and the file 
manager is provided by predefined system macros in MSOS 
assembler language and by calls to predefined system 
subroutines in MS FORTRAN. These macros and subroutine 
calls enable the user to request any of the services provided 
by the file manager. Provision is made so that the user can 
specify any needed options and pass any required 
information as parameters. 

The file manager creates and maintains either sequential or 
indexed files. The records in any file may be variable in 
length and may be added, replaced, or removed at any time 
after the file has been defined and before it is released. 

A sequential file is one in which each new record is added 
immediately following the last record stored in the file. 
These records must be retrieved in the same sequence in 
which they were stored and cannot be retrieved at random. 
Thus, they are retrieved on a FIFO basis. 

An indexed file is one in which each record has an identifier 
or key (surname, social security number, etc.). These 
records are stored sequentially with a key value; records 
with the same key value may be linked together. These 
records may be retrieved sequentially or a specific record 
may be retrieved by using its key value. Consult the File 
Manager Reference Manual for complete information. 

To minimize mass memory I/O traffic, the File Manager is 
designed to allow file information to remain in allocatable 
core until a time-out occurs, at which time the information 
is updated on mass storage. Users are cautioned that 
abnormal system stops and autoloads can destroy this 
information and eventually cause fatal file errors. 

If the system contains a file manager, a file validity check is 
performed each time the system is autoloaded. The check is 
preceded by the message: 

CHECKING FILES -

on the system comment device. The check consists of a 
trace of all file space threads on mass storage. If the 
threads are found to be valid, an OK is printed. If errors are 
found, the user is given the option to continue with the 
autoload or to purge all the system files (i.e., all pointers to 
the file manager space pool are reset to a state that 
indicates that no files are defined). If the second option is 
selected, the files have to be reloaded from a user-written 
back-up dump. 

96769400 A 

'hSIW. EMUi! SfW t, 1tii··Wt.,.qc .. j# aM;;" 

STORAGE AND RETRIEVAL 

The file manager stores and retrieves information in three 
basic ways: 

• Sequential 

• Indexed 

• Direct 

In addition, variations for storage and retrieval are provided 
by combinations of the preceding and special options. The 
variations are: 

• Indexed-ordered 

• Indexed-linked 

SEQUENTIAL 

Records are stored one at a time immediately following the 
last record stored and retrieved one at a time in the same 
order they were stored starting from the beginning of the 
file. 

Sequential access is best suited for retrieving all records on 
a FIFO basis. It is not suited to retrieving a particular 
record since all preceding records must first be retrieved. 

NOTE 

All files may be accessed sequentially. 

INDEXED 

Indexed access is best suited for access of a specific record. 
Each record may be indexed by only one key. The key may 
be one or more words in length. Since all files are 
sequential, an indexed file may be termed indexed
sequential. Indexed access is only possible from an indexed 
file. 

A particular record can be stored and retrieved via a key. 
Each record key value can be translated into an index which 
can provide relatively quick access to the record. Indexed 
files require extra file space for the keys and key 
directories. 

DIRECT 

Direct access is best suited for frequently accessed records 
or records which the user desires to link together (e.g., in 
some types of list structure) using pointers within the 
records themselves. 

5-1 



Direct procedures are normally used in updating records and 
in forming list structures. Since the File Manager provides 
record pointers for all records, all the files may be accessed 
directly. 

VARIATIONS 

Indexed.Ordered 

When the indexed-ordered option is selected, indexed 
records can be retrieved in a manner similar to sequential 
retrieval. However, instead of on a FIFO basis, records are 
retrieved starting at the record with the lowest numeric key 
value (or the key value specified in the first of the repeated 
indexed-ordered retrieve) and continuing through to the 
record with the highest numeric key value. When this type 
of access is used, a sort of the key values is done; 
therefore, the key value must be one word in length. It is 
recommended that key values for an indexed-ordered file 
include only non-negative values. 

Indexed.Linked 

In an indexed file, each record normally has a unique key 
value. However, if the indexed-linked option is selected, 
records with the same key value are linked together in 
either a LIFO or FIFO manner. The records are linked by 
allocating two words of each record for the linking record 
pointer. The retrieval of these records is an example of a. 
list structure. LIFO or FIFO linking is specified by the user 
when a file is defined as indexed. 

List Structures 

Records may be retrieved as though they were part of a list 
structure by using the record pointers supplied by the file 
manager and the direct method of retrieval. The user may 
form complex list structures by linking forward, backward, 
ring, sublist, etc. A record may be a member of an 
indefinite number of lists as long as two words for a record 
pointer are reserved in the record for each list. An example 
of a list structure is the indexed-linked file. 

FI~E MANAGER GENERAL DESCRIPTION 

FilE REQUESTS 

Four types of file requests are described in File Request 
Descriptions and Calls. They are: 

• Specification Specification requests provide for: 

- Defining a file 
-Defining an indexed file 
-Locking a file 
-Unlocking a file 
-Releasing a file 

5-2 

• 
• 
• 

seqUential} 

Indexed 

Direct 

These three file requests are used to 
store and retrieve information. 

The file manager executes a request at the caller's priority 
level. If, however, the file manager is executing a previous 
request, the request is queued by its priority level and is not 
executed until the currently active request and any higher 
level waiting requests have been executed. 

Associated with each request is a 12-word temporary buffer 
and one indicator word giving status information. The 
buffer is used to process the file request; the indicator word 
denotes the sta.tus of the file request upon completion. Each 
bit of the indicator word which is a nonzero signifies an 
abnormal occurrence. 

RECORD FORMAT 

Each variable-length record is composed of three sections: 
header word, record pointers, and data words. 

Header Word 

The first word of each record is reserved exclusively for the 
header word. The file manager sets this word to the total 
length of the record when this record is stored. Once a 
record is defined, its length (and consequently the header 
word) cannot be changed. 

NOTE 

When storing and retrieving a record, the 
number of words in a record must include 
the header word. 

Record Pointers 

A record in an indexed-linked file includes a record pointer. 
A record pointer is a two-word mass-storage address which 
points to another record on mass storage. The first word is 
the sector location of the file record block in which this 
record resides. The second word contains the word the 
record starts in. If a file is indexed-linked, the second and 
third words are reserved for the record pointer, which points 
to the last record that was stored with the same key value. 
This is the same format as the recptr parameter passed back 
to the user from the STOSEQ and STOIDX requests. 

Data Words 

Each record may have zero or more data words which 
contain the actual record information. The information may 
be binary or ASCII. 

96769400 A 



UPDATE PROTECTION 

Whenever a record is to be updated, the user must retrieve 
the record and lock the file with a unique file combination, 
subsequently storing the updated record and unlocking the 
file with the same file combination, utilizing the store 
direct request. More than one record may be retrieved, 
updated, and restored as long as the same file combination 
that was used to lock the file is supplied. Note that the file 
should not be locked for an extended period of time because 
other users, who may also wish to update, cannot access the 
file until it is unlocked. Thus, a retrieve, which attempts to 
lock an already locked file with a different combination, is 
queued and cannot be executed until the file is unlocked. 

If a number of files are to be locked, it is advisable to lock 
and unlock the files in a given sequence. For example, lock 
files in ascending numerical order and unlock them in 
descending numerical order. 

A retrieve without a file combination or a store of a new 
record is permitted on a locked file with the understanding 
that one or more records of that file are in the process of 
being updated. Note that an update into an unlocked file or 
a locked file using an incorrect file combination results in a 
file request error. 

The file combination must be unique so that no two requests 
use the same file combination. This can be accomplished by 
using the ASSIGN statement in FORTRAN or the RTJ 
instruction in assembly language. 

UNPROTECTED FilE REQUESTS 

Unprotected programs are assumed not to be error-free; 
therefore, certain restrictions have been placed on 
unprotected file requests. 

An unprotected file request cannot update a record in a file 
because it cannot use the store direct request. This 
restriction is imposed because the file manager has no way 
to check the validity of the record pointer in the store 
direct request. The restriction is mitigated by the assump
tion that background programs primarily retrieve records 
(for example, data reduction, analysis, etc.) and that records 
can always be retrieved, updated, and stored as new records 
in another unprotected file. 

Since updates cannot be done, file locking is illegal for 
unprotected file requests. Note that unprotected file 
requests may not store records into or remove records from 
files that were defined by protected programs. 

NOTE 

If there is not enough allocatable core for 
both the file manager and job processor 
modules, file requests from background 
can hang batch processing indefinitely. 

REQUIREMENTS AND LIMITATIONS 

The file manager requires certain information to establish 
the file structure and imposes limitations on those files. 

96769400 A 

Maximum Record length 

The effective maximum record length and file record block 
length are determined as a function of the maximum record 
length specified by the define file request for each file. It 
places a maximum limit on the length of the records for that 
file, and also establishes a block of sector(s) that will be 
allocated when the first record is stored into the file. 
Subsequent records are stored into this block until it is full, 
then another equal block of sector(s) is automatically 
allocated. This process is continued as long as there is mass 
memory space available. Thus, a file record block may 
contain one or more records. 

The effective maximum record length is equal to the 
specified maximum record length if the specified maximum 
record length plus 3 is equal to an integral multiple of 96. 
Otherwise, the effective maximum record length is equal to 
the least integer value n such that n is greater than the 
specified maximum record length, and n = 96 • m - 3 for 
some positive integer m. Thus, specified maximum record 
length values of 3, 93, and 94 would result in effective 
maximum record lengths of 93, 93, and 189, respectively. 

Expected Number of Records With 
Different Key Values 

The expected number of records with different key values is 
specified by the define file indexed request number for each 
indexed file. Note that if a file is not indexed-linked, this is 
equivalent to the number of records in the file. The 
expected number of records with different key values 
establishes the structure of the indexed directories. A 
relatively accurate estimate is important if the number of 
expected key values exceeds 8,464. 

Too Iowan estimate may result in more mass storage 
accesses per indexed request, while too high an estimate 
may result in excessive core allocation for the indexed 
directories per indexed request. 

Parameter limitations 

The following limitations are necessary: 

File number range 

Record length range 

Number of expected records 
range (with different key values) 

Key value length range 

File combination range 

Key value range for 
indexed-ordered files 

CAUTION 

1 through 32,767 

1 through 32,767 

1 through 32,767 

1 through 63 

1 through 32,767 

o through 32,767 

Users are warned that programs making 
file manager requests that contain rela
tive parameters do not execute properly 
in partitioned core or at addresses above 
800016• 

5-3 



FILE REQUEST DESCRIPTIONS AND CALLS 

All file request calls to the file manager may be written as 
FORTRAN-type calls or as assembly language macros as in 
the following descriptions. A comprehensive set of macros 
is provided in the macro library for all file manager 
functions. These macros minimize the task of the assembly 
language programmer of making file manager calls. 

Specification descriptions and calls are: 

Define file (numbered files) 

Define file indexed (keyword files; 
these also have a file number) 

Lock file 

Unlock file 

Release file 

5-4 

Call 

DEFFIL 

DEFIDX 

LOKFIL 

UNLFIL 

RELFIL 

Sequential record request descriptions and calls are: 

Store records sequentially 

Retrieve sequential records 

Call 

STOSEQ 

RTVSEQ 

Indexed (keyword) record request descriptions and calls are: 

Call 

Store indexed records STOIDX 

Retrieve indexed records RTVIDX 

Retrieve indexed-ordered records RTVIDO 

Direct record request descriptions and calls are: 

Store records directly 

Retrieve records directly 

Call 

STODIR 

RTVDIR 

96769400 A 



SYSTEM INITIALIZATION 6 

The System Initializer is a group of programs used to 
construct a Mass Storage Operating System (MSOS) from an 
installation file. The initializer constructs core memory and 
mass memory areas based on the information in the 
installation file and produces a memory map of these areas. 

The basic elements of the system initializer are: 

• The control statement handler 

• Device drivers 

• The program loader 

• Pre-initialization set-up 

• Post-initialization set-up 

CONTROL STATEMENT HANDLER 

The system initializer control statements are processed by 
the Control Statement Handler (CONTRL). The following 
control statements are used for system initialization: 

Code 

*C 

*D 

*0 

*H 

*1 

*L 

*LP 

*M 

*MP 

*0 

*S 

*'T 

*u 

*y 

*y 

*YM 

* 

96769400 A 

Function 

Define memory map list unit. 

Assign labeled COMMON base address. 

Write address tags on disk unit. 

Run surface test on disk unit. 

Define input unit. 

Load part 0 core resident. 

Load part 1 core resident. 

Load system library in allocatable core. 

Load system library in partitioned core. 

Define mass memory unit. 

Patch external values. 

Terminate initialization. 

Read control statements from comment 
unit. 

Read control statements from input unit. 

Core-resident ordinal specification 

Mass-memory-resident ordinal specifi
cation 

Dummy character - used for comment 
records 

DEVICE SPECIFICATION 

*C Statement 

This statement assigns the standard list output to the logical 
unit specified by lu (6, 7, or 8). The equipment code, e, of 
the device is optional. If e is specified, this value (four 
hexadecimal digits) must correspond to _the WES word for 
the device status. The initial set-up is for logical unit 6 and 
equipment code 0091 (equipment 4). The logical unit 
assignments are given in the Hardware Device Drivers 
section. The *C format is: 

*C,lu,e 

*1 Statement 

This statement assigns the standard input to the logical unit 
specified by lu (1, 2, or 3). The equipment code, e, of the 
device is optional. If e is specified, this value (four 
hexadecimal digits) must correspond to the WES word for 
the device status. The initial set-up is for logical unit 3 and 
equipment code 0381 (equipment 7 for 1700 Systems), or 
equipment code 0480 (equipment 9 for CYBER 18 Systems). 
The *1 format is: 

*I,lu,e 

*0 Statement 

This statement assigns the standard mass memory device to 
the logical unit specified by lu (4). The equipment code, e, 
of the device is optional. If e is specified, this value (four 
hexadecimal digits) must correspond to the WES word for 
the device status. The initial set-up is for logical unit 4 and 
equipment code 0181 (equipment 3 for 1700 Systems), or 
equipment code 0700 (equipment 14 for CYBER 18 Systems). 
The *0 format is: 

*O,lu,e 

*u Statement 

This statement causes the system initializer to interrogate 
the comment unit for control statements. The initializer 
begins operation in this mode. The comment unit is always 
unit 6, the teletypewriter or display console. The *U format 
is: 

*U 

6-1 



*v Statement 

This statement causes the system initializer to interrogate 
the input unit for control statements. The *y format is: 

*y 

DISK TESTING 

*G Statement 

This statement causes the system initializer to write address 
tags on logical unit 4, the disk. On CYBER 18 Systems, *G 
causes the system initializer to write address tags and data 
on the entire disk. The *G format is: 

*G 

*H Statement 

This statement causes the system initializer to run a disk 
surface test to identify errors. The test is run on logical 
unit 4. hhhh is the maximum sector address for the surface 
test (sectors 0 through hhhh). The *H format is: 

*H,hhhh 

Performance of this function requires several hours. 

SYSTEM DIRECTORY ORGANIZATION 

*y Statement 

This statement sets up the core-resident entries in the 
system directory. The directory names aaaaaa, bbbbbb, ••• 
are placed in the CREP table as entry points. The decimal 
ordinal numbers, A,B,... correspond to the program(s) 
loaded under the Ath, Bth, etc. *L and *LP core-resident 
load control specifications. *y statements must precede 
*YM statements. The *y format is: 

*Y,aaaaaa,A,bbbbbb,B, .•• 

*YM Statement 

This st'B.tement sets up the mass-memory-resident entries in 
the system directory. The directory names 
cccccc,dddddd,. •• are placed in the CREP table as entry 
points. The decimal ordinal numbers, C,D, ••• correspond to 
the program(s) loaded under the Cth, Dth, etc. *M and *MP 
mass-memory-resident load control specificaitons. The 
release version allows a maximum of 256 ordinals. The *YM 
format is: 

*YM,cccccc,C,dddddd,D, ••• 

6-2 

EXTERNAL STRING PATCHING 

*'S Statement Program 

The statement *S,n,hhhh assigns the hexadecimal value hhhh 
to the entry point name n and places both in the CREP 
table. Previously defined external strings are patched with 
hhhh. If an *S statement occurs within an *M or *MP load, 
it is not put into the CREP table and is effective only for 
that particular load sequence. It patches to core-resident 
programs as required. 

The statement *S,n,S assigns the value of the current mass
storage sector to entry point name n. It permits dynamic 
assignment of values to symbolic names and places the 
name/sector value in the CREP table. 

The statement *S,n,P assigns the current value of the 
program base to entry point name n. If an *S is encountered 
during an *L or *LP load, n is set equal to the current 
absolute program counter. If an *S is encountered during an 
*M or *MP load, n is set equal to the current relative 
program counter. 

PROGRAM LOADING 

Control statement sequences have the following order (with 
the exception of the *D statement): 

*L, *LP, *M, *MP, *T 

*D Statement 

This statement resets the start of labeled COMMON to the 
current program base. The new labeled COMMON definition 
must follow the *D entry. The *D statements must follow 
the *L statement and precede the *M statement. The *D 
format is: 

*D 

*L Statement 

This statement loads core-resident part 0 programs. The 
hhhh parameter is the hexadecimal location where the 
program resides in the system when initialization is 
completed. Any space between hhhh and the top of 
previously stored programs becomes unavailable for 
subsequent storage, and the program starting at hhhh cannot 
extend past the end of part O. If hhhh is not present, the 
initializer loads relocatable programs from the input device 
into unused core locations beginning as close to 
location 0000 as possible. The *L format is: 

*L,hhhh 

96769400 A 



*LP Statement 

This statement loads core-resident part 1 programs. The 
hhhh parameter defines the hexadecimal location of the 
program in the system. Any space between hhhh and the top 
of previously stored programs becomes unavailable for 
subsequent storage. The program starting at hhhh must 
exceed the end of part 0, but cannot extend beyond the 
limits of part 1. if hhhh is not used, the program is loaded at 
the next available core location. The *LP format is: 

*LP,hhhh 

Part 1 data (labeled COMMON) blocks can be linked to the 
last block in part O. Note the restrictions for linking *M and 
*MP data blocks. 

*M Statement 

This statement loads and absolutizes mass-memory-resident 
programs to run in part 0 (allocatable core). The *M format 
is: 

*M,hhhh,s 

Where: hhhh is the base address used to absolutize a 
program to a previously defined entry 
point name plus the increment to be added 
to the entry to form the sector address of 
the program on mass storage. Loading is 
relative to hhhh; if hhhh is omitted, 
loading is relative to zero. 

s is the sector address in mass storage of the 
program or block of programs to be 
stored. If s is omitted, the next available 
sector is assumed. 

The initializer loads programs in relocatable form from the 
input device and places them in absolute form on mass 
storage. 

CAUTION 

The maximum sector available to the 
initializer loader is 154016. The area 
preceding this sector is used as intermed
iate storage for various tables. Depending 
upon the number of entry points, etc., the 
size of this area should nominally be 
considered as 30016 sectors. Loading of 
executable cod~ into the area between 
sectors 124016 and 154016 by *M or 
*MP statements should be avoided. 

Programs loaded under a single *M statement are linked to 
one another, but not to programs loaded as a result of other 
*M statements. They may also link to programs loaded 
under either *L or *LP statements. Entry points declared 
under an *M load may not be used for other *M loads as they 
are not retained in the core-resident entry points tables. 

96769400 A 

All programs loaded under *M must be written as run
anywhere. The total length on any program being loaded 
under an *M statement must not exceed the total length 
from the start of the load (usually 000016 on *M loads) to 
FFFF16• 

The mass-storage address that follows the last address 
containing information about the program block becomes the 
first address available for subsequent loading. 

Any mass-storage address between s and the last address 
used is unavailable for subsequent storage. 

Programs may not be stored on mass storage in areas 
containing previously stored programs. 

COMMON linkage is to system block and system labeled 
COMMON and cannot be assigned within the ordinal. If no 
system COMMON has been defined, an *M generates system 
COMMON. 

An *M load that declares data must have previously loaded 
the part 0 data block. Linkage is always to the last data 
block loaded in the appropriate part. 

Data blocks cannot be present within an *M or *MP load. 
Any data that is to be defined within these data blocks must 
be preset by the *L or *LP data block. 

*MP Statement 

This statement is used to load and absolutize mass-memory
resident programs to run in part 1 (partitioned core). The 
*MP format is: 

*MP ,pp,nn,ssss 

Where: pp is the number of the starting partition to 
which the program is absolutized (0 
through 15). If pp is omitted, an error 
message occurs. 

nn is the number of partitions required by the 
program (1 through 16). If nn is omitted, 
an error message occurs. 

ssss is the mass-storage address at which the 
program is to be stored. If ssss is 
omitted, the next available sector is 
assumed. 

The system initializer loads programs in relocatable format 
from the input device and places them in absolute form on 
mass storage. Loading is relative to the partition address. 
The programs are linked to core-resident programs loaded by 
*L and *LP statements. 

Programs loaded under a single *MP statement are linked to 
one another, but not to programs loaded as a result of other 

. *MP statements. Entry points declared under an *MP load 
may not be used for other *MP loads as they are not 
retained in the CREPl table. 

6-3 



The total length of any programs being loaded under an *M 
statement must not exceed the total length from the 
starting partition address as defined in PARTBL and 
FFFF16• 

Any mass-storage addresses between ssss and the last 
address used are unavailable for subsequent storage. 

Programs may not be stored on mass storage in areas 
containing previously stored programs. Therefore, ssss must 
be greater than the last sector used. 

COMMON linkage is to system blank and system labeled 
COMMON. Labeled COMMON cannot be assigned within the 
partition. If no system COMMON has been defined, an *MP 
generates COMMON within the partition. 

An *MP load that declares data must have previously loaded 
the part 1 data block. Linkage is always to the last data 
block loaded in the appropriate part. 

Data blocks cannot be preset within an *M or *MP load. 
Any data that is to be defined within these data blocks must 
be preset by the *L or .*LP data block. 

*T Statement 

This statement signifies the end of the load and causes the 
initializer to perform postload initialization and to 
terminate. The *T format is: 

*T 

At the completion of initialization the entry point DATBAS 
and the extended communications region word 17 
(appendix B) contains the address of the last data block 
loaded. Word 25 contains the last address of the last data 
block loaded. 

COMMENT CONTROL 

* Statement 

This statement may be used as a listing separator for 
comments, etc., when followed by a blank. The * is a null 
statement and must be followed by another control 
statement (e.g., *L, *M). The * format is: 

,. 

HARDWARE DEVICE DRIVERS 

The System Initializer provides device drivers for many of 
the peripherals supported under MSOS. One driver of any 
device type may be present in a given System Initializer. 

6-4 

The. drivers in the System Initializer do not use interrupts 
but operate the devices on the basis of the device status 
condition. In this mode of operation, device operation and 
timing may differ from the interrupt-driven MSOS driver. 
The logical units used by the initializer are predefined in the 
range 1 through 8. The minimum initializer requirement is 
an input driver, comment driver, and mass-memory driver. 
Dummy routines are provided to satisfy external linkages for 
missing routines. Table 6-1 defines the logical units, driver 
names, devices supported, and dummy names. 

DRIVER OPERATION 

Input Drivers 

The input drivers are controlled by the input driver 
interface, IORIV. IORIV calls the device driver by a return 
jump instruction which passes the following to the driver: 

• A register 

• Q register 

The buffer first word address for read 

The number of words to be read 

The driver returns to IORIV with the error indicator (0 for 
error and 1 for no error) in the A register. If an error 
occurred, the following error information is passed: 

• Q register - The error code 

• I register - The last hardware status 

Mas s -Me mo rY'D rive rs 

The mass-memory drivers are controlled by the mass
memory driver interface, MDRIV. MDRIV calls the device 
driver by a return jump instruction which passes the 
following to the driver: 

• A register - If set positive, buffer first word address 
If set negative zero, write address tags 
(disk only) 
On CYBER 18, writes address tags and 
data. 

• Q register - If set positive, number of words to be read 
If set negative, complement of the 
number of words to write 

• I register - The starting sector address 

The driver exits with the error indicator (0 for error and -0 
for no error) in the A register. If an error occurred, the 
following error information is passed: 

• Q register - The error code 

• I register - The last hardware status 

96769400 A 



TABLE 6-1. HARDWARE DEVICE DRIVERS 

Logical Driver Equipment 
Unit Name Hardware Devices Code/WES Dummy Namet Other Requirements 

1 QPTAPE 1721/1722 1/00A1 QPTDMY 
1777 

QPTAP1 1720-1 

2 QCARD 1726/405 11/0581 QCDDMY ASCII63 conversion requires 
1726/1706/405 11/1581 CR026. ASCII68 conversion 
1728/430 11/05A1 requires CR029. 
1729-2 11/0581 
1729-3 11/0581 
1829-30/60 11/0581 

3 QMT9TK 1732-1/609 7/0381 QMTDMY Unit 0 used 
1732-1/1706/609 7/1381 
1732-2/615-93 7/0381 

3 QMT7TK 1731/601 7/0381 QMTDMY Unit 0 used 
1731/1706/601 7/1381 
1732-1/608 7/0381 
1732-1/1706/608 7/1381 
1732-2/615-73 7/0381 

3 QMLCT9 1860-92 9/0480 QMTDMY Unit 0 used 

3 QMLCT7 1860-72 9/0480 QMTDMY Unit 0 used 

3 QM7LS9 1860-5/6 7/0601 QMTDMY Unit 0 used I 
4 QDK85X 1733-1/853/854 3/0181 Unit 0 used 

1738/853/854 

4 Q17391 1739-1 3/0181 

4 Q17332 1732-2/856-2/856-4 3/0181 Unit 0 used 

4 Q1751 1751 2/0101 

4 Q1751 1752 2/0101 

4 Q18331 1833-1 14/0700 Unit 0 used 

4 Q18334 1833-4 14/0700 Unit 0 used I 

6tt Q1711 1711 1/0091 
1712 
1713 
713-10 

6 Q1810 1811 1/0091 

7 Q40421 1740/501 4/0201 QPRDMY 
1742-1 

7 Q42312 1742-30 4/0201 QPRDMY 1742-120 requires train image 
1742-120 T5954 

7 Q18277 1827-5/7 1843-2 communication line 
adapter I 

8 DUMMYttt 

t Used to allow linkage of unused ~river entry points 

tt Logical unit 5 is reserved for future use. 

ttt Used when no device action is desired 

96769400 C 6-5 



DRIVER ERRORS 

The IDRIV module of the initializer reports device failures 
on the initializer comment device as: 

L,xx FAILED yy (zzzz) 
AQTION 

Where: xx is the failed logical unit. 

yy is the error code (same as for MSOS drivers). 

zzzz is the last hardware status. 

The response to the error takes one of two forms: 

• RP - Repeat the operation. 

• CU - Abort the operation and return to the comment 
unit for a subsequent control statement. 

PRELOAD INITIALIZATION 

The preload module of the initializer, 11, creates the system 
directory, intializes the loader table and, in general, 
prepares for the program loading operations. This module is 
operated when the first *L statement is encountered. 

LOADER 

The loader module of the System Initializer, ILOAD, handles 
the loading and linking of relocatable binary programs. The 
binary block handling is identical to the MSOS loader. Refer 
to section 12 for details. 

The loader data block is resident in the LDRTBL module. 

The loader is a paging type that uses mass memory for 
program storage, entry/external linkage, and intermediate 
storage. The only system components that are retained in 
core during the initialization operation are SYSDAT and the 
system directory. All core-resident linkage is done follow
ing the first *M statement (a pause occurs in the load 
operation). The loader creates the core image, CREP and 
CREP1 tables. 

POSTLOAD INITIALIZATION 

The postload module of the initializer, 12, creates the 
autoload program by placing system load parameters into 
the mass-memory device driver of the system. The mass
memory initializer driver becomes the autload program at 
this point. 

SYSTEM MEMORY MAPS 

The initializer produces a memory map for the programs 
loaded as a function of the initialization process (unless the 
dummy unit is used for list output). 

6-6 

The following is the standard core-resident system layout: 

o 

ENDOV4--

MSIZV4--

SYSDAT 

System Directory 

SPACE 

Allocatable Core 

Blank COMMON 

Partitioned Core 

Monitor 

Drlvers 

Part 
o 

1 
Part 

1 

The system may be reconfigured in several other forms. 
Consult the MSOS Customization Manual for. further 
information. 

The following is the standard mass-memory system layout: 

00 Autoload Area } 5 sectors 

Core Image 

System Library 

Background Swap Area 

CREP 0 Table 

CREP 1 Table 

Engineering File 99 sectors 

Sector Avallablllty Table 30 sectors 

Program Library 

Scratch 

ERROR RECOVERY 

The initializer handles error recovery and flags error 
conditions as they occur. Most error conditions are 
immediately recoverable, but if an irrecoverable loading 
error occurs in the loading of a program, the initializer 
bypasses the remainder of the program and continues loading 
the next program. ERROR 17 appears on the comment 
device. 

Table 6-2 identifies some of the problems that may cause 
initializer malfunctions. 

96769400 A 



TABLE 6-2. 

Problem 

Initializer stops while loading 
the SYSDAT program 

Initializer stops or restarts during 
loading 

Initializer terminates input or output 

Initializer skips the next program 
after an *V statement 

Job processor functions partially 

No autoload after successful 
initialization 

96769400 A 

PROBLEMS CAUSING INITIALIZER MALFUNCTIONS 

Cause 

Index I (location FF 16 ) is not assembled in SYSDAT as a BSS(t). 
Locations 0 and FF 16 usually contain the same value, which is the 
address of the initializer's constant table. 

The first *L control statement tried to load SYSDAT into the system 
library (an *Y, PROG, 1 statement has been used). The SYSDAT 
program establishes the location of the system directory and therefore 
cannot be placed in the directory. This can be avoided by changing 
the first *y statement to *Y, PROG, 2. 

Data has been stored over the initializer or a previously loaded 
program link string by an ORG instruction. Locate the ORG 
instruction. 

One of the following: 

• The requested device is not turned on. 

• The requested device is not ready and is locally cleared. 

• The equipment or station is not properly prepared for the initializer. 

• A hardware malfunction exists. 

When the *V statement instructs the initializer to read subsequent 
control statements from the binary input device, the record read may 
be the NAM block of the program which cannot be recognized as a 
control statement. Either place a control statement at the input 
device before typing *V or type * instead of *V. 

When certain functions of the Job Processor are not working, it may 
be a system problem, or the construction of the system library may 
not correspond to the order in the *y and *YM statements. 

The cause may be an improperly constructed interrupt trap or priority 
structure or a missing driver. 

6-7 



I 

l 



SMALL COMPUTER MAINTENANCE MONITOR 7 

The Small Computer Maintenance Monitor (SCMM) provides 
a method of on-line hardware error detection for 1700 
Computer Systems. SCMM consists of a main program and 
one test program for each I/O device to be tested. The main 
program is loaded into the operating system as a system 
ordinal and the tests are placed in the program library. 
SCMM runs at the lowest foreground priority, and all 
programs are run-anywhere. This section is intended as a 
general description only. For detailed instructions, refer to 
the 1700 Systems Small Computer Maintenance Monitor 
Reference Manual. SCMM is not applicable on 
CYBER 18-20 or 18-30 Timeshare Computer Systems. 

ENTRY TO SCMM 

Operator Entry 
SCMM Reply 

Press manual interrupt 
MI 

Comments 

SCMM Requests SCMM 
SCMM IN 
MM/DD/YY HHMM 
CONTROL, TEST ID 

Subsequent calls to the executive are made in the same way 
except that the SCMM response is CONTROL, TEST ID. 

The operator responds by typing in the following control and 
test identification mnemonics: 

ccc,ttt 

or 

ccc 

(form 1) 

(form 2) 

Where: ccc is any SCMM control word: 

SRT - Start 
STP - Stop 
PRM - Parameters 
NPT - Print inhibit 
PRT - Print re-enable 

LST - List 
CLR - Clear 
XIT - Exit 

Use form 1 

Use form 2 

ttt is any SCMM test that is loaded into the 
program library. (The operator can obtain 
a list of existing programs by use of the 
SCMM control word LST.) 

If the operator's request was SRT,xxx (start a test) or 
PRM,xxx (return to parameter entry section of test), some 
of the following questions may be asked by the test in 
question. 

96769400 A 

DLU,LU 

SECTIONS 

RUNS 
LINES 
CARDS 
RECORDS 

DENSITY 

BEG SEC 
END SEC 
BEG TRK 
END TRK 

WEMS 

BEG ADR, 
END ADR 

ADC BIT TYPE 

SCALE 

READINGS PER 
RUN 

% FS COUNTS/ 
100% FS COUNTS 

% FS, GAIN 

% FS 

Diagnostic logical unit or logical unit 
number (decimal) 

Sections of the test; to request that 
a section be set into execution, con
struct a hexadecimal word so that the 
bit corresponding to the desired sec
tion number is set. For example, if 
tests 2 and 4 were desired, 0014 
would be entered in this space. Bits 
for which no test section exists are 
ignored, so to obtain all sections of a 
test, the operator may enter FFFF. 
Test sections are listed in table 7-1. 

Number of runs, lines, cards, records, 
etc. desired in test; any decimal 
number up to 8000 may be entered. 
If 8000 is entered, the test executes 
indefinitely until the operator stops 
the test using conversational mode. 

Decimal tape density (200, 556, 800, 
or 1600). See example in figure 7-1 
of multiple test requesting magnetic 
tape test. 

Beginning/ending sector or track 
address of the disk or drum under 
test. The entry is hexadecimal. 

Equipment, module, and slot of 10M 
device being tested 

1501 and 1536 tests; channel (points) 
numbers 

1501 and 1536 tests; analog-to-
digital converter bit, type 12 or 14 

1501 and 1536 tests; scales histo
gram to value controls 

1501 and 1536 tests; number of times 
point is to be read per run 

1501 and 1536 tests; expected input 
for a 0 percent full scale and 100 
percent full scale 

1536 test; expected percent of full 
scale; gain I, 10, 100, 1000 that 
applied to the analog-to-digital 
converter 

1501 test; expected percent of full 
scale 

7-1 



INTERRUPT LINE 1572-1 test; interrupt line of timer 
(1 to 15) 

OUT LU MSOS logical unit for the 1555 or 
1553 

COMPUTER TYPE 1572-1 test; 

o 
computer type: 

1784-2 

IN LU 

SWITCH 

MSOS logical unit for the 1544 

1 
2 
3 

1784-1 
1704-1714 
1774 SC 

Used to set up test for open- or 
closed-type contacts on 1555 and 
1553 tests 

LST INT CNT Number of LST interrupts that are 
used in the 1572-1 test 

When all necessary parameters have been correctly entered, 
conversational mode is terminated by the program. The 
operator must re-initiate conversational mode by typing 
manual interrupt and SCMM for each control word to be 
entered. At any time during the entry of the test 
parameters, the operator can abort the test by typing a 
question mark (?) in the position of a parameter. 

MULT 

SYNC 

7-2 

Value that is to be loaded into the 
1572-1 multiplier register 

Sync enable word: 

Bit 1 = 
Bit 2 = 
Bit 15 = 

Sync 1 LST 
Sync 2 SRG 
Disable type out 
of results 

TABLE 7-1. SCMM TEST SECTIONS 

Test Section Description 

TTYt 1 Legal characters (sliding) 
(Teletypewriter) 2 Echo of operator input line (once) 

3 Echo of operator input line (repetitive) 

PRT 1 Variable length buffer test 
(Line Printer) 2 Ripple pattern test 

3 Full line of same character 
4 Alternate even and odd hammer test 
5 Single and double line spacing 
6 Six and eight lines per inch (1742 only) 

MTT 1 Worst case pattern 
(Magnetic Tape) 2 User-supplied pattern 

3 Advance and backspace records 
4 Advance and backspace files 

CRDt 1 Punch random data 
(Card Reader/Punch) 2 AAA16 , 555A16 , A55516 pattern punch 

3 Punch user-supplied pattern 
4 Punch sync check 
5 Read random data 
6 Read AAA516 , 555A16 , A55516 pattern 

7 Read user-supplied pattern 
8 Read sync check 

COl 1 Worst case pattern (955516 , 6AAA16 , 5A5A16 , A5A516 ) 

CO2 2 All ones 
DK1 3 Random data 
DK2 4 Random data, random block length 
(Disk) 5 Zeros written over ones· 

6 Random sector addresses 

t Sections of this test must be requested individually. 

96769400 A 



J 

DRM 
(Drum) 

DM1 
(Drum) 

PTRt 
PR1 

Test 

(Paper Tape Reader) 

PTPt 
PPI 

(Paper Tape Punch) 

405t 
(Card Reader) 

DVPt 
cvPt 
(Disk) 

AD1 
AD2 
(Analog-to-Digital 
Converter) 

STU 
(1572-1 Timer, 
local mode) 

LLV 

RLY 
(1555/1544, 1553/1544 
Digital Output/Digital 
Input) 

CTR 
(1547 Events Counter 
Unit) 

TABLE 7-1. SCMM TEST SECTIONS (Contd) 

Section 

1 to 6 

1 

7 

to 6 
7 

1 
2 

3 
4 

1 
2 

3 
4 

1 
2 

3 
4 

1 
2 

1 

1 
2 
3 
4 

1 

2 
3 

4 
5 

1 
2 

Description 

Same as COl and DK1 
Write sector number 

Same as COl and DK1 
Track switching test 

Read random data 
Read AAA516 , 55AA16 , A55516 pattern 

Read user-supplied pattern 
Read sync check 

Punch random data 
Punch AAA516 , 55AA16 , A55516 pattern 

Punch user input pattern 
Punch sync check 

Read random data 
Read AAA516 , 55AA16 , A555 16 pattern 

Read user input pattern 
Read sync check 

Variable positioning test 
Two-position seek test 

Histogram of analog input values 

Function and status of LST and SRG 
Transfer data to multiple register of SRG 
Count interrupts from LST, SRG 
Same as above, operator controlled 

All bits are set to O. FF16 (1555) or FFFF16 (1553) 
is output. 
All bits are set to FF 16 or FFFF 16 and a zero is output. 
User pattern is output. . 

A 1 bit is shifted across, then a 0 bit is shifted across. 
A 0 bit is shifted across, then a 1 bit is shifted across. 

Status, function test 
Counting, interrupts, and events per unit time 

t Sections of this test must be requested individually. 

96769400 A 7-3 



OPERATOR ENTRYt 

SCMM REPLY 

PRESS MANUAL INTERRUPT 

MI 

SCMM 

SCMM IN 
12/01/75 1035 
CONTROL, TEST 10 

SRT,MTT 

BEGIN MAG TAPE TEST 
SECTIONS,NO. OF RECDS,RUNS 

2,500,8000 

6,556 
7,800 
FFFF 

DLU, DENSITY 

PRESS MANUAL INTERRUPT 

MI 

SCMM 

CONTROL, TEST 10 

SRT,PRT 

BEGIN LINE PRINTER TEST 
DLU ,SECTIONS,RUNS 

14,3E,1 

PRESS MANUAL INTERRUPT 

MI 

SCMM 

CONTROL, TEST 10 

SRT,DK1 

BEGIN DISK 1 TEST 
BEWARE OF SCRATCH CONFLICT. $C1=xxxx 
LU,SECTIONS,BEG SEC,END SEC,RUNS 

2«,7E,6000,7000,2 

END PRINTER TEST 

COMMENTS 

REQUESTS SCMM EXECUTIVE 

EXECUTIVE IS IN OPERATION AND REQUESTS 
CONTROL AND TEST PARAMETERS. 
DATE: DECEMBER 1, 1975 TIME: 10:35 

REQUESTS MAGNETIC TAPE TEST 

TEST IS IN OPERATION AND REQUESTS OPERA
TIONAL PARAMETERS 

OPERATOR REQUESTS TEST SECTION 1, 500 
RECORDS, AND INFINITE EXECUTION TIME 

TEST REQUESTS ADDITIONAL INFORMATION 

OPERATOR ENTERS MSOS DIAGNOSTIC LOGICAL 
UNIT 6 AND 7, WITH THE DESIRED DENSITIES. 
THE LIST OF THE LOGICAL UNITS IS TERMINATED 
WITH THE FFFF; THE MAGNETIC TAPE TEST IS 
NOW IS EXECUTION. 

REQUESTS SCMM EXECUTIVE 

EXECUTIVE REQUESTS CONTROL AND TEST 
PARAMETERS 

REQUEST 1742x LINE PRINTER TEST. 

TEST IN OPERATION AND REQUESTS OPERATIONAL 
PARAMETERS 

REQUESTS ALL TEST SECTIONS OF DIAGNOSTIC 
LOGICAL UNIT 14, AND 1 PASS 

REQUESTS SCMM EXECUTIVE 

REQUESTS 1738/1733-1 DISK TEST 

TEST IN EXECUTION AND REQUESTS OPERATIONAL 
PARAMETERS 

REQUESTS ALL TEST SECTIONS OF LOGICAL 
UNIT 26, SECTORS 6000 TO 7000 INCLUSIVE, AND 
2 PASSES. 

LINE PRINTER TEST COMPLETED 

t ALL OPERATOR ENTRIES EXCEPT MANUAL INTERRUPT MUST TERMINATE WITH A CARRIAGE RETURN. 

Figure 7-1. A Typical Operator/SCMM Conversation (Sheet 1 of 2) 

7-4 96769400 A 



OPERATOR ENTRYt 

SCMM REPLY 

PRESS MANUAL INTERRUPT 

MI 

SCMM 

CONTROL. TEST ID 

STP.MTT 

END MAG TAPE TEST. 0000 RUNS 
TAPE LU 0006. 0000 ERRORS 
TAPE LU 0007. 0000 ERRORS 

PRE~ MANUAL INTERRUPT 

MI 

SCMM 

XIT 

CONTROL. TEST ID 

END DISK 1 TEST. 0000 RUNS. 0000 ERRORS 

SCMM OUT 
12/01/75 1048 

COMMENTS 

REQUESTS SCMM EXECUTIVE 

EXECUTIVE REQUESTS CONTROL AND TEST 
PARAMETERS 

REQUESTS TERMINATION OF MAGNETIC TAPE TEST 

MAGNETIC TAPE TEST TERMINATES 

REQUESTS SCMM EXECUTIVE 

EXECUTIVE REQUESTS CONTROL AND TEST 
PARAMETERS 

REQUESTS TERMINATION OF ALL TESTS AND 
RELEASES SCMM EXECUTIVE 

DISK TEST TERMINATES 

SCMM EXECUTIVE RELEASES ALLOCATED CORE 
AND EXITS. 
DATE: DECEMBER 1. 1975 TIME: 10:48 

t ALL OPERATOR ENTRIES EXCEPT MANUAL INTERRUPT MUST TERMINATE WITH A CARRIAGE RETURN. 

Figure 7-1. A Typical Operator/SCMM Conversation (Sheet 2 of 2) 

OPERATOR/SCMM CONVERSATION 

Figure 7-1 is an example of a typical operator/SCMM 
conversation. The purpose of this sequence is to have 
simultaneous operation of the magnetic tape. line printer. 
and disk tests. The example also depicts a test which. when 
set into execution. terminates only upon a request by the 
operator. Two methods of terminating a test before normal 
termination are included. 

ERROR MESSAGES 

The following error messages may occur during operator
SCMM interface: 

PROGRAM 
SCHEDULEDt 

PROGRAM NOT 
SCHEDULEDt 

The program requested by the 
operator is already in operation. 

The operator requested a control 
statement (STP. PRM. NPT. or 
PRT) for a test that had not been 
set into execution. 

t These errors cause SCMM to recycle to the query line. 

96769400 A 

CONTROL An illegal control statement was 
ERROR t entered by the operator. 

NOT IN The test required is not in the 
LIBRARY t program library. 

PROGRAM STACK No new test may be requested 
FULL t until one or more of the current 

tests is completed. 

DISK ERROR A disk error occurred during the 
transfer of a test from mass 
storage to core. The test may 
request parameters. or SCMM 
may recycle. If parameters are 
requested. the prudent procedure 
would, be to abort the test by 
typing in ? and re-requesting the 
test via the SCMM monitor. 

7-5 





ENGINEERING FILE 8 

The MSOS engineering file is provided to preserve driver 
error information for system maintenance. The engineering 
file is divided into three sections: 

• Failure data formatting and collection 

• Failure storage on mass memory 

• Failure listing 

DEVICE FAILURE HANDLING 

When an I/O driver determines that an error condition has 
occurred, it reports the error to the error logging routine 
EFDATA. The entry is: 

RTJ+ LOG 

In the Q register, two formats are used. If bit 15 is 0, Q is 
interpreted as: 

15 14 650 

Logical Unit Error Code 

If bit 15 is I, Q is interpreted as: 

15 14 8 7 o 

Logical Unit Error Code 

The I register contains the driver physical device table 
address. 

The current date and time and hardware status (PDT 
word 12) relevant to the failure is added to this data. If the 
failure is on a non-mass-memory device, the data is saved in 
a push-down pointer table, which has a capacity of five 
5-word entries. The entries are of the following form: 

Word 1 

2 

3 

4 

5 

15 

96769400 A 

11 10 8 7 6 

Logical Unit 

Day I Month I 
Military Time 

Seconds I 
Hardware Status 

o 

Year 

Error Code 

When the first failure is placed in the table, the mass 
memory failure storage module is scheduled to move the 
failure data to mass memory. Return is made to the driver 
caller. The LOG sequence is re-entrant. 

If the failure is on a mass-memory device, except for the 
flexible disk, the failure is saved in a 10-entry push-down 
table. Each 5-word entry of the table is of the same form 
as above. This failure data is saved in core on the premise 
that mass memory is not reliable because of the failure. 

For mass memory failures, EFDA TA also logs the failure on 
the system comment output device with the message: 

MM ERR xx LU=yy T=hhmm:ss S=zzzz 

Where: xx is the error code. 

yy is the logical unit. 

hh is the hour. 

mm is the minute. 

ss is the second. 

zzzz is the hardware status. 

If the failure occurred during a system directory program 
read, the allocated space is released. The mass memory 
diagnostic section of EFDATA operates on the mass memory 
failure table at a low priority after return to the driver. 

DEVICE FAILURE STORAGE 

The System Initializer defines a mass-memory area of 
99 sectors (preset to zero) for the engineering file. The 
address of this area is found in word 19 of the extended core 
table. One sector is allocated for each· possible system 
logical unit. For each logical unit, 24 failures are saved as 
4-word entries in a push-down/fall-off table. The first entry 
is the most recent failure. 

The EFDATA program schedules the EFSTOR program from 
the system library to log failures for non-mass-memory 
devices. The EFSTOR program takes data from the 5-entry 
failure table and moves it to mass memory in the engineer
ing file area for the failed logical unit. Each table entry is 
composed of words 2 through 5 of the core-resident table. 
The 5-entry holding table is examined and errors processed 
until all entries are zero. 

The core-resident, mass-memory device failure table is 
examined for new entries, which are moved to the engineer
ing file. Following a mass-memory error, the system is 
operating if further system I/O errors can be logged. 

If the 5-entry holding table overflows, a diagnostic message 
is printed and the system must be restarted with an 
autoload. 

8-1 



DEVICE FAILURE:LlSTING 

The device failure listing program, EFLlST, is entered via 
the following MIPRO mnemonic codes: 

• EF - Lists all engineering file data for the system 
logical units. The EF entry has the format shown in 
figure 8-1. 

• EFLU - Lists engineering file data for a specified 
logical unit. The EFLU entry requesting the logical unit 
number is: 

• 

ENTER LOGICAL UNIT (xx) 

Where: xx is the specified logical unit (printed in the 
same format as EF). 

EFMM - Lists data from the core-resident, mass
memory failure table for all errors in the table. This 
entry produces a listing in the same format as EF, but 
contains only failures from the core-resident, mass
memory failure table. 

LOGICAL UNIT 01 CORE ALLOCATOR 

FAILURE HARDWARE 
DATE TIME CODE STATUS 

LOGICAL UNIT 02 SOFTWARE DUMMY DEVICE 

FAILURE HARDWARE 
DATE TIME CODE STATUS 

LOGICAL UNIT 03 SOFTWARE DUMMY DEVICE 

FAILURE HARDWARE 
DATE TIME CODE STATUS 

LOGICAL UNIT 04 713-10/711-100/713-120 
CRT/SLAVE PRINTER 

DATE 
29 JAN 74 
29 JAN 74 
29 JAN 74 

TIME 
1903:38 
1902:15 
1901:28 

FAILURE 
CODE 

00 
00 
00 

HARDWARE 
STATUS 

0611 
0611 
0611 

Figure 8-1. Engineering File Information Listing 

8-2 96769400 A 



. } 
'--.-./ 

JOB PROCESSING 9 

'f' 1,.;*+'*9& 

The CYBER 18/1700 MSOS batch processing subsystem 
initiates, monitors, and terminates all jobs executed in 
unprotected core. 

This subsystem is scheduled for execution by the operator 
who must manually interrupt MSOS and type: 

*BATCH 
I or *BATCH, lu 

Upon recognition of the *BATCH statement, the batch 
processing subsystem is scheduled to begin processing user 
jobs. Processing continues until an *Z control statement is 
encountered, at which time all job processing is terminated 
and the batch processing subsystem is released from core. 

Jobs that the batch processing subsystem can recognize 
consist of all processing features executable through the use 
of the available job control statements. Any job to be 
initiated for execution must have an *JOB card as its first 
control statement and must be terminated by a device
detectable end-of-file. t Within a job, all legal control 
statements are recognized and executed by the subsystem. 
All legal batch processing control statements (except *Y, 
*R, and *Z) are permissible within the boundaries defined by 
an *JOB and end-of-file statement. 

This job structure permits a continuous flow of jobs through 
the subsystem without individual job initiation by operator 
intervention • 

In the event of an abnormal job termination, all open job 
files are closed and the subsystem proceeds to the next job. 
If batch recovery is indicated by an *SR control statement, 
the recovery module is executed prior to job termination. 
This procedure is executed for all job processing errors 
before the next job is initiated. 

If the control statement input device is the standard 
comment device, the character J is output, indicating that 
the subsystem is waiting for a new control statement. 

I The *BATCH ,lu statement assigns the control statement 
input from the specified logical unit lu. 

JOB CONTROL STATEMENTS 

Control statements to the subsystem are format records in 
ASCII mode. A maximum of 72 characters is allowed for 
each control statement. The first character of an input 
statement must be an asterisk, and the last must be a blank 
or a carriage return if input is on the teletypewriter. 
Intervening characters identify the type of statement and 
action. 

The set of legal control statements for the subsystem can be 
categorized as follows: 

• Control statements acceptable within a job 

• 

o 

-Basic set 

*JOB *X 
*Ytt *LGO 
*U *B 
*L *SR 

-User-supplied 

*1 
*2 
*3 

*REW 
*UNL 
*CTO 
*PAUS 

-Mass storage job file handling 

*DEFINE 
*OPEN 
*CLOSE 

*MODIFY 
*FILTBL 
*PURGE 

*EOF 
*ADR 
*BSR 
*ADF 

*BSF 

Control statements acceptable to both a job and the 
manual interrupt routine: 

*Z } 
*R 

*K ) 
*CSY 

May be entered at any time after manual 
interrupt 

May be entered only after a JOB control 
statement has been entered 

Control statements for loader response during a job: 

* 
*E 
*T 

CONTROL STATEMENTS WITHIN A JOB 

*JOB Statements 

An *JOB statement instructs the sUbsystem to begin 
accepting a new sequence of control statements. It must be 
the first control statement in a job, and only one is allowed 
for each job. The date and the information on the *JOB 
card is printed on the list device. 

t For teletypewriter input, a pseudo end-of-file (*G statement) is recognized by the job processor. 

tt *y ,lu is also allowed outside the boundaries of a job to permit the user to initiate input from a device other than standard 
input. 

96769400 C 9-1 



NOTE 

Whenever an *JOB statement is executed, 
the logical unit numbers of the standard 
input (F916 ), binary output (FA 16 ), and 
print output (FB 16 ) devices are reset to 
their values at autoload. 

The control statement format is: 

*JOB 

or 

*JOB,n,u,i 

Where: n is the job name. The first six characters are 
used by the job processor. When a line printer 
is used, N is printed in large letters (except 
special characters) up to the first blank. 

u is the user identification. The first six charac
ters are saved by the job processor (required if 
n is used). 

is the comments (optional). 

When an *JOB card is detected, the system initializes the 
values of standard list, standard input, and standard punch as 
they appear at autoload time. 

*v Statement 

An *V statement directs the subsystem to read all 
subsequent control statements from the specified logical 
unit. 

The contrpl statement format is: 

*V,lu,m 

Where: lu is the logical unit number. If not specified, the 
standard input is assumed. 

m is the mode in which control statements are 
read. 

A or blank 

B 

Formatted ASCII 

Formatted binary 

*u Statement 

An *U statement directs the subsystem to read all 
subsequent control statements from the comment device. A 
printout at the comment device indicates that the job 
processor is ready to receive statements. An *U statement 
may occur in any order with respect to other statements 
within a job. 

The control statement format is: 

*U 

9-2 

*l Statement 

An *L statement instructs the subsystem to call on the 
loader to load relocatable binary information. Once 
initiated, the loader continues loading from each specified 
logical unit until it reads an EOL block or a system control 
statement. The EOL block is an *T, which occupies the first 
two character positions. The subsystem can load from 
multiple logical units. 

The control statement format is: 

*L,lu1,lu2,lun 

Where: lUI is the logical unit number for the loading device. 

If the unit is not specified for loader input, the standard 
input device is used. The loader keeps track of the upper 
and lower limits of available core and adjusts limits 
according to the amount of core allocated during input. 

*x State me n t 

An *X statement instructs the subsystem to begin program 
execution. 

The control statement format is: 

*X,N 

Where: N is the memory map instruction. 

Omitted 

Specified 

The loader is directed to produce 
a memory map after loading. 

No memory map is produced. 

When this statement is executed, the loader detects any 
unpatched externals and searches the program directory for 
a matching name. For each one found, the library routine is 
loaded into unprotected core as part of the job. 

If an unpatched external does not match any name in the 
program directory, the loader comments with an E on the 
standard comment device. When all unpatched externals are 
printed on the standard print device, the loader interrogates 
the comment device for an *, *E, or *T statement. 

* 

*E 

Causes execution, regardless of unpatched 
externals 

Directory of part 0 core-resident entry points 
is searched for missing names. If externals are 
still undefineo, the loader interrogates the 
comment device for an * or *T statement. 

*T Causes job termination 

After patching all externals, the loader returns to the 
subsystem that tests the breakpoint switch. If this switch is 
off, the subsystem immediately executes the user's program. 
If it is set, the breakpoint routine is loaded and the 
subsystem enters the breakpoint routine. 

96769400 A 



*LGO Statement 

*LGO is the load-and-go command; the subsystem calls the 
loader to load relocatable binary programs. The loader loads 
from each specified logical unit until it reads an EOL block 
or a system control statement. Loading may occur from 
multiple logical units. 

The control statement format is: 

*LGO,N,lu1,lu2, ••• ,lu10 

Where: N is specified. No memory map is produced. 

lu is the logical unit number for the loading device. 

or 

If no parameters are specified (*LGO,N), the 
standard scratch device is used. 

Where: lu1,lu2, ••• ,lu10 is the logical unit number for the 
loading device; a memory map is 
produced. If no parameters are 
specified (LGO), the standard 
scratch device is used. 

The loader keeps track of the upper and lower limits of 
available core and adjusts the limits according to the 
amount of core allocated during input. 

When the go portion of this statement is executed, the 
loader detects any unpatched externals and searches the 
program directory for a matching name. For each one 
found, the library routine is loaded into unprotected core as 
part of the job. 

If an unpatched external does not match any name in the 
directory, the loader comments with an E on the standard 
comment device. When all unpatched externals are printed 
on the standard print device, the loader interrogates the 
comment device fol' an *, *E, or *T statement. 

After patching all externals, the loader returns to the 
sUbsystem that tests the breakpoint switch. If this switch is 
off, the user's program is executed. If it is set, the 
breakpoint routine is entered. 

The load-and-go option (using *L, *X, or *LGO statements) 
provides for execution immediately following compilation or 
assembly. 

When load-and-go output is specified to the compiler or 
assembler, binary output is placed on the scratch unit, 
starting at sector 1 of the scratch area. The compiler or 
assembler produces an EOL statement for the end of binary 
output and stores the end of the load-and-go block count in 
E4 16. The binary output of the next compilation or 
assembly begins at the sector containing the EOL and 
continues until the assembly or compilation is completed. 
Enter an *LGO statement to load binary information from 
the scratch unit. 

96769400 A 

For example, if the library is on logical unit 8 and programs 
are to be compiled, assembled, loaded, and executed, the 
following statements are required: 

*FTN 

*ASSEM 

*LGO 

*B Statement 

Load and execute FORTRAN; one of 
the parameters to FORTRAN 
requestsload-and-go 

Load and execute the assembler; one 
of the parameters to the assembler 
requestsload-and-go 

Load load-and-go information and 
execute the program just loaded. 

An *B statement instructs the subsystem to turn on the 
breakpoint load switch. It may occur in any order with 
respect to other statements wihtin a job. 

The control statement format is: 

*B 

The breakpoint program is stored in the system library and 
must be loaded before execution of the job. If the 
breakpoint load switch is on when an *X or *LGO statement 
is processed, the subsystem loads the breakpoint routine into 
unprotected core with the job to be executed. If there is 
insufficient core, the error message 

E5 
E10 BRKPT 

is printed on the standard list device and the job is executed 
without the requested breakpoints. 

The operator can then use the breakpint program for the 
following functions: 

• Set breakpoint addresses in the job 

• Make entries in the A, Q, and I registers 

• Make entries into unprotected core 

• Execute a transfer or a return transfer to unprotected 
core 

• Take core dumps 

• Take mass storage dumps 

• Print the register contents 

Breakpoint control statements are entered on the comment 
device. When the operator types *C in response to a 
breakpoint program query, the job is re-entered from the 
breakpoint program. Additional information on breakpoint 
programs is given in Breakpoint Program, section 10. 

9-3 



For example, if a job is to be loaded from logical unit 7, and 
the breakpoint program is to be loaded with the job, the 
following statements are required: 

*JOB 

*B 

*L,7 

*x 

*SR Statement 

Set the breakpoint load switch. 

Load the job from logical unit 7. 

Complete the load by patching the 
remaining externals from the program 
library, load the breakpoint program, and 
execute. At this time, BP on the 
comment device indicates the breakpoint 
program is waiting for a control 
statement. 

An *SR statement instructs the job sUbsystem to set the 
recovery indicator. Upon termination of job execution, the 
recovery program is entered. A message, RE, on the 
comment device indicates that the recovery program has 
been entered. 

The control statement format is: 

*SR 

When the recovery indicator is set, the recovery program is 
entered when the end-of-file for the job is encountered (*G 
on the teletypewriter). This occurs if the recovery indicator 
is set when the job terminates normally or abnormally. 

When the recovery program is terminated by the operator 
typing an *T recovery program control statement, the 
subsystem continues processing jobs. 

When the recovery program is in core, the operator may 
dump core and mass storage. All input to the recovery 
program is from the comment device (refer to Recovery 
Program, section 10). 

*REW Statement 

The *REW statement instructs the subsystem to rewind the 
specified logical units to their loadpoint. Several logical 
units can be specified in one request. Up to five logical 
units may be specified in an *REW statement. An error 
message is used if the number exceeds five. 

The format is: 

*UNL Statement 

An *UNL statement instructs the subsystem to rewind and 
unload the specified logical unit. Up to five logical units 
may be specified in an *UNL statement. 

9-4 

The format is: 

*ADR Statement 

The *ADR statement instructs the sUbsystem to advance a 
specified number of records on a specified logical unit. 

The format is: 

*ADR,lu,nn 

Where: lu is the logical unit number of the device. 

nn is the decimal number of records to advance in 
the range 1 through 32,767. 

*BSR Statement 

The *BSR statement instructs the sUbsystem to backspace a 
specified number of records on a specified logical unit. 

The format is: 

*BSR,lu,nn 

Where: lu is the logical unit number of the device. 

nn is the decimal number of records to backspace in 
the range 1 through 32,767. 

*ADF Statement 

The * ADF statement instructs the sUbsystem to advance a 
specified number of files on a specified logical unit. 

The format is: 

*ADF,lu,nn 

Where: lu is the logical unit number of the device. 

nn is the decimal number of files to advance in the 
range 1 through 32,767. 

*BSF Statement 

The *BSF statement instructs the subsystem to backspace a 
specified number of files on a specified logical unit. 

The format is: 

*BSF,lu,nn 

Where: lu is the logical unit number of the device. 

nn is the decimal number of files to backspace in 
the range 1 through 32,767. 

96769400 A 

. ";' 



*CTO Statem ent 

An *CTO statement causes the comments appearing on the 
card to be printed on the standard comment device for 
operator information. Continuation cards are not allowed. 
The format is: 

*CTO,comments 

*PAUS Statement 

This is the pause indicator; the format is: 

*PAUS 

On encountering an *PAUS, READY? is typed on the 
standard comment device. The next control statement is 
read only after a carriage return reply to this message. This 
statement can be used in conjunction with the CTO 
statement to control operations. A time-out causes the 
message to be typed and a new request for input to be made. 

*EOF Statement 

An *EOF statement instructs the subsystem to write one 
end-of-file to the current standard binary output device. 

*Control Statement 

An * control statement resets the load-and-go pointer to one 
and clears the loader-in-core flag. When load-and-go mass 
storage area is to be used by more than one program in a 
job, this statement should be used to ensure proper 
execution. For example, when used after a call to the 
assembler or compiler, the next assembled or compiled 
program replaces (rather than adding to) the last program 
(when'x option is used). 

An * statement should be entered to clear the loader-in-core 
flag whenever load operations have been performed, but a 
program has not executed, and the user wishes to initiate a 
new load sequence from the start of unprotected core. 

*Entry Point Name Statement 

An *entry point name statement instructs the subsystem to 
call on the loader to load a program from the program 
library. The entry point name must appear in the program 
library directory. 

The format is: 

*entry point name 

The program, which is stored in relocatable binary format in 
the program library, is loaded into available core. The 
loader records the limits of available core before and after 
the load. 

96769400 A 

This operation is a program load. A program loaded into 
core by a program load is entered immediately for 
execution. An *X statement is not needed. 

Example: 

*FTN Load a program from the program library with 
the entry point FTN. 

End-Of-File Card 

This is either a user-supplied or a device-detectable code 
that is used to terminate a job. It must be the last control 
statement in a job. For card readers, a 6/7/8/9 sequence in 
column 1 is used. For the teletypewriter input, an *G 
control statement serves the function of an end-of-file. 
Refer to the appropriate CYBER 18/1700 peripheral equip
ment reference manual for end-of-file capabilities for 
specific devices. 

USER-SUPPLIED STATEMENTS 

User-supplied statements are: 

*1, *2, or *3 

These statements are subroutines with entry points ONE, 
TWO, and THREE and are declared as relative externals in 
the statement analyzer module. 

Since these statements are supplied by the user, no attempt 
is made to define their formats, uses, or functions. 

MASS STORAGE JOB FILE 
HANDLING STATEMENTS 

The installation of the file manager package and the pseudo 
tape driver in the operating system provide the capability to 
create, use, and delete special job files. The following 
statements are used to define files and connect these files 
to an appropriate pseudo tape device. Having established 
the linkage of a file to a pseudo tape, I/O may be performed 
on the file as though it were a magnetic tape by using the 
appropriate monitor request (READ, WRITE, FREAD, 
FWRITE, or MOTION). These files provide capabilities such 
as the establishment of dedicated files for binary and list 
output. ASCII or binary information is possible, such as that 
now reserved on magnetic tape for frequently executed 
system programs (COSY, LIBEDT, ASSEM, FTN, etc.). 

The number of job files available is an option selected at 
installation. 

The number of job processing operations that may be 
performed concurrently during a job is a function of the 
number of pseudo tape logical units in the system. For 
example, to input, punch, and list three files during the same 
job, three pseudo units are required. The number of pseudo 
units required is equal to the number of operations assigned 
to files for the same job by an *K statement. 

9-5 



The following control statements provide the information 
required by the pseudo driver for interface with the file 
manager and provide maximum security and use of these 
files. 

If any of these file handling requests is rejected for any 
reason, a diagnostic is typed at the comment device and the 
subsystem terminates the job (refer to the MSOS Diagnostic 
Handbook). 

*DEFINE Statement 

An *DEFINE statement causes the job file handler to create 
a mass storage file with the parameters contained in the 
request. 

The control statement format is: 

*D EFINE,fileid,sc,da te 

Where: fileid is anyone to six alphanumeric characters, of 
which the first character must be 
alphabetic. 

sc 

date 

is the security code of one to six alpha
numeric characters. 

is the expiration date after which the file is 
released with an *PURGE request. If no 
date is supplied, the current system date 
is used. Calendar format (mmddyy) is 
used: 

mm 
dd 
yy 

month 
day 
year 

(01 through 12) 
(01 through 31) 
(00 through 99) 

*RELEAS Statement 

An *RELEAS statement causes the job file handler to close 
and release a mass storage file with a matching file 
identification (fileid) and security code (sc). 

The control statement format is: 

*RELEAS,fileid,sc 

Where: fileid is anyone to six alphanumeric characters, of 
which the first character must be 
alphabetic. 

sc is the security code of one to six alpha
numeric characters. 

*OPEN'Statement 

An *OPEN statement enables a user to reference a 
predefined job file for read and/or write requests. 

This statement tells the job file handler to permit a user to 
reference a job file with the matching fileid and sc. If the 
file is opened with an R (read) option, the file can be read 
only; with the W (write) option, the file can be read and/or 

9-6 

written by the user. When opened, the file is at its load 
point. Requests to open a previously opened file are 
rejected. The number of job files open at anyone time may 
not exceed the number of pseudo tape units available. Only 
one job file may be opened on a pseudo tape logical unit at 
any given time. 

The control statement format is: 

*OPEN ,fileid,sc,R/W ,lu 

Where: fileid is anyone to six alphanumeric characters, of 
which the first character must be 
alphabetic. 

sc is the security code in one to six 
alphanumeric characters. 

R is read only. 

W is read or write. 

lu is the logical pseudo tape unit to which the 
file is assigned. 

*CLOSE Statement 

An *CLOSE statement causes the specified job file to be 
made unobtainable to a user. 

This statement tells the job file handler to reject all 
subsequent references for read/write on a file with the 
specified file name (fileid) and security code (sc). After the 
execution of an *CLOSE statement, the specified file is 
rewound to its load point and any writing capability is 
removed. In the event of abnormal job termination, all 
opened files are closed for user protection. 

The control statement format is: 

*CLOSE,fileid,sc 

Where: fileid is anyone to six alphanumeric characters, of 
which the first character must be 
alphabetic. 

sc is the security code in one to six alpha
numeric characters. 

*MODIFY Statement 

An *MODIFY statement modifies the definition parameters 
of a defined file. 

An *MODIFY enables a user to modify the parameters that 
define a current file with the specified old file name (fileid) 
and security code (sc). 

The control statement format is: 

*M 0 DIFY ,fileid,sc,nfileid,nsc,da te 

96769400 A 



Where: fileid is the old file name in one to six alpha
numeric characters, of which the first 
character must be alphabetic. 

sc is the old security code in one to six 
alphanumeric characters. 

nfileid is the new file name in one to six alpha
numeric characters, of which the first 
character must be alphabetic. 

nsc is the new security code in one to six 
alphanumeric characters. 

date is the new expiration date after which the 
file can be released with an *PURGE 
request. If no data is supplied, the 
current system date is used. Calendar 
format (mmddyy) is used: 

mm 
dd 
yy 

*FILTBL Statement 

month 
day 
year 

(01 through 12) 
(01 through 31) 
(00 through 99) 

An *FILTBL statement prints the job files currently defined. 
The following printout is the format for the job processor 
files. 

name date OP/CL R/W 

Where: name is the name of the file in one to six 
alphanumeric characters. 

date is the expiration date in calendar format 
(mmddyy): 

mm 
dd 
yy 

month 
day 
year 

(01 through 12) 
(01 through 31) 
(00 through 99) 

OP/CL is the current state of the file. 

R/W 

OP open 
CL closed 

is the current mode of the file. 

R 
W 

read 
write 

*PURGE Statement 

An *PURGE statement deletes a file whose expiration date 
is the same or less than the date specified in an *PURGE 
request when the proper purge key is present. 

The control statement format is: 

*PURGE,date,purge key 

96769400 A 

Where: date is the target expiration date in calendar 
format (mmddyy): 

mm 
dd 
yy 

month 
day 
year 

(01 through 12) 
(01 through 31) 
(00 through 99) 

purge key is an installation parameter, which the 
standard release system specifies as 
ASCII 00. 

STATEMENTS ACCEPTABLE TO JOB AND 
MANUAL INTERRUPT "ROUTINES 

*K Statement 

An *K statement is used to reassign standard system logical 
unit numbers. 

With an *K statement, the operator can select devices for 
system units other than those currently used. 

The parameters in an *K statement are not ordered, but 
must be separated by a comma and followed by a carriage 
return or a space. 

The control statement format is: 

*K,llu,L1u,Plu 

Where: lu is the logical unit number (in all cases). 

I is the system input unit. 

L is the system print unit. 

P is the system binary output unit. 

One location in the communications region contains a 
physical device table or ordinal for each of the standard 
system devices. The logical unit number in an *K statement 
replaces the number in the communications region. 

An error exit is taken if a unit number designated a 
protected device, or if the print unit specifies a mass 
storage device. 

*CSy State me nt 

An *CSY statement reassigns standard COSY logical unit 
numbers. This control statement to the subsystem is for use 
with the COSY driver. The I, P, and L parameters may also 
be used to assign logical units for the COSY program control 
statements. If no logical units are specified on the COSY 
control cards, the assigned units are used. 

The parameters in an *CSY statement are not ordered, but 
must be separated by commas and the last parameter must 
be followed by a carriage return or a space. 

9-7 



The control statement format is: 

*CSy ,Lxx,Iyy ,pzz 

Where: xx is the logical unit of the COSY list output. 

yy is the logical unit of the COSY input library. 

zz is the logical unit of the Hollerith or COSY 
output. 

Use of the COSY driver requires the following sequence of 
commads: 

*CSY,Iaa 
*K,Izz,Pcc,Lbb 

Where: aa is the logical unit of the COSY input. 

zz is the logical unit of the COSY driver. 

cc is the logical unit of the standard punch device. 

bb is the logical unit of the standard list device. 

The next input statement could then be an *ASSEM or *FTN, 
which allows direct assembly or compilation from a COSY 
source. 

NOTE 

COSY revisions are not permitted when 
using the COSY driver. 

*Statement 

When the execution of a program in unprotected core is 
interrupted by a manual interrupt, typing an * causes job 
execution to continue. When encountered in a job stream, 
the * statement resets the load-and-go pointer and clears 
the loader-in-core flag. 

*z Statement 

An *Z statement, which marks the end of batch processing, 
is accepted by the subsystem, regardless of the order of its 
appearance. 

The format is: 

*Z 

After reading an *Z statement, the subsystem performs the 
following functions: 

• Releases core space occupied by the subsystem 

• 

• 

• 

Sets protect bits for all locations previously in 
unprotected core 

Releases this core area to the core allocator, which 
makes it available to protected system programs 

Resets the load-and-go pointer in location E416 to one 

9-8 

During the execution of a program in unprotected core, the 
operator may terminate a job with a manual interrupt, 
followed by typing an *Z. When this is done, the subsystem 
performs the following functions: 

• Deletes interrupt stack entries referring to unprotected 
core 

• Sets the completion of all I/O into unprotected core to 
the address of the dispatcher 

• Waits for the completion of all I/O from unprotected 
core if unbuffered protect processor operations are in 
execution 

• Waits for the completion of all timer requests from 
unprotected core 

• The job terminates. 

• Initiates a new job 

*R Statement 

An *R statement informs the operating system that a device 
that previously failed is operable and ready for input/output. 

The control statement format is: 

*R,lu 

Where: lu is the logical unit number of the failed device. 

If a device fails and an alternate device has been assigned, 
the alternate device is used to process requests (refer to 
Alternate Devices, section 2). 

Example: 

When a device associated with logical unit number 6 fails 
(and logical unit 6 has an alternate), the operator is notified 
by a comment and input/output processing continues on the 
alternate device. 

When the operator has taken corrective action regarding the 
device that failed, he notifies the operating system: 

Press MANUAL INTERRUPT 

Type *R,6 

This procedure restores logical unit 6 to the primary device. 

LOADER RESPONSE DURING JOB EXECUTION 

The following control statements are used for loader 
response during job execution: 

* 
*E 
*T 

These statements have been discussed briefly in this section 
under the *X and *LGO statements. Refer to Unprotected 
Program Requests, section 3, for a complete discussion of 
these statements. 

96769400 A 



DEBUGGING AIDS 10 

CYBER 18/1700 MSOS has five routines to aid in debugging 
programs: 

• On-line debug package Protected and unprotected 
core 

• Breakpoint program ) Unprotected core 
• Recovery program 

• Abort dump 

• On-line snap dump 

ON-LINE DEBUG PACKAGE 

The on-line debug package (ODEBUG) allows the 
programmer to access both protected and unprotected core 
in order to change core and mass storage locations and to 
execute debugging functions while the system is running in 
an on-line state. 

The program is resident on mass storage, but is executed in 
allocatable core. When ODEBUG is initiated, allocatable 
core is divided into three parts: 

• Area permanently assigned to the executive program 

• Area containing function processors; this may extend 
into the third area when necessary 

• Area to which subroutines are transferred as needed 

These areas are released when ODEBUG terminates. 

When activated, the memory required by this package is 
37016 • However, care must be exercised when 
single/double precision operations are involved. The pack
age uses its own internal floating point arithmetic packages 
(single precision as well as double precision). Therefore, it 
makes a monitor request to allocate about 1800 words from 
allocatable core to bring in the proper floating point 
routines for value conversion. This allocatable core is 
released as soon as the value conversion is finished. These 
routines need 1800 words of allocatable core; system 
allocatable core can be temporarily unavailable to other 
requests. 

OPERATOR PROCEDURES 

ODEBUG is initiated by pressing MANUAL INTERRUPT on 
the teletypewriter and typing in the characters DB. 
ODEBUG alerts the operator that it is in core and ready for 
use: 

DEBUG IN 

96769400 A 

The operator may then type in a request. Each request must 
be terminated by a carriage return. All requests are limited 
to one line of up to 80 characters on the comment device. 
After the request is completed and all associated messages 
have been typed, ODEBUG types: 

NEXT 

ODEBUG is then ready for the next request from the 
operator. 

To terminate ODEBUG, the operator types: 

OFF 

ODEBUG types: 

DEBUG OUT 

Many requests that could have lengthy I/O operations can be 
terminated abnormally. 

To ter"minate I/O, the operator must 

Press MANUAL INTERRUPT 

Type OX 

The debug messages are: 

DEBUG IN 
DEBUG OUT 
DB I/O ERROR 
NEXT 
DB FORMAT INCORRECT 
DB INVALID REQUEST 
CELL CONTENT 
DB SEARCH FINISHED 
DB NO CORE AVAILABLE 
DB ILLEGAL LU 
DB ILLEGAL MM ADD. 
DB ORDINAL OVER MAX. 
DB ORDINAL LENGTH ZERO 

A command that causes core or mass memory data to be 
altered requires confirmation by the operator. The new data 
to be entered and the old data currently in the system are 
printed for referencing purposes. The operator must type 
OK if the change is approved. A carriage return or any 
characters other than OK nullifies the change. 

Confirmation is also required by the move data commands, 
such as MBC, MMM. The first word of both new and old 
data is printed for reference. OK is entered by the operator 
for confirmation. Any other entry causes the request to be 
aborted. 

10-1 



DATA INPUT REPRESENTATION 

The mnemonic symbols used throughout this section are 
summarized as follows: 

• All data values are subscripted to designate the input 
values: 

Hexadecimal value entry; a maximum of four 
hexadecimal characters 

Decimal integer value entry; a signed 5-digit 
value 

ASCII character entry; a string of ASCII 
characters 

Single-precision value entry; both Fw.d and 
Ew.d formats are allowed. The Fw.d format 
has a maximum of seven digits for the numeri
cal part an~ is signed if needed. The Ew.d 
format has a maximum of seven digits for the 
numerical part and two digits for the exponent 
part. Both numerical and exponents parts can 
be signed. 

Double-precision value entry; both Fw.d and 
Dw.d formats are allowed. A signed 12-digit 
number is the maximum value for the Fw.d 
format, while the maximum digits for the 
numerical and exponent parts are 12 and 2, 
respectively, for the Dw.d format. 

Examples for sn and dn are shown below: 

Value Eguivalent ReEresentation 

sn +12.34 12.34000 = .1234E2 = 1.234E + 
01 = 0.123400E2 = 1.23400E + 
1 = 1234E-02 

dn +12.34 12.3400000000 = 0000000012.34 = 
.1234E2 = +.1234000000000E + 
02 = 1234E-02 = 1234E-2 

sn -0.00056 -0.000560 = -.0056E -01 = 
-.000056E + 1 = -.56E-3 

d -0.00056 -0.00056000000 = -56E-05 = n -5.6000000000E-04 = -56E-5 

The above data value entries are separated by commas 
and terminated by a carriage return. However, no 
delimiter (comma) is required for the ASCII data entry. 
The ASCII entry is a string of ASCII characters 
terminated by a carriage return. 

• The parameters for core data representation are: 

sc 

ec 

b 

10-2 

The beginning core location (hexadecimal 
value) 

The end core location (hexadecimal value) 

The base (hexadecimal value); 
assumed when unspecified 

o is 

nsc 

scr 

sa 

The beginning core location of block 2 
(hexadecimal value) 

The start of core location to be released 
(hexadecimal value) 

The scheduled address (hexadecimal value) 

• Mass Memory Representative 

• 

Three parameters are used for mass memory sector 
addressing entries. The first two parameters are for 
the most significant bits and least significant bits 
sector representation, and the third parameter is for a 
word within a sector. Note that the third entry value is 
not limited to the range of 0 through 95 (one sector). 
All three entries must be entered and are in 
hexadecimal mode. 

ssmsb 

sslsb 

sw 

nsmsb 

nslsb 

nsw 

The most significant bits of the 
starting sector (0 to 1) 

The least significant bits of the 
starting sector (0 to 7FFFF) 

The starting word 

The most significant bits of the new 
starting sector 

The least significant bits of the new 
starting sector 

The new starting word 

Sector value is expressed in most significant bits and 
least significant bits to account for mass storage sizes 
of 4.5 million words or more. 

lu The logical unit (decimal value) 

nlu The new logical unit (decimal value) 

Two logical units are available for system with multiple 
mass storage units: 

wa The word addressing mass memory address 
(hexadecimal value) 

All mass memory addresses are checked for maximum 
storage capacity within this package by means of their 
equipment type codes. 

The parameter for magnetic tape is: 

de The density (decimal value) 

• The parameters for miscellaneous representations are: 

ord 

nw 

p 

The ordinal number (decimal value) 

The number of words (hexadecimal 
value) 

The bit pattern (hexadedimal value) 

96769400 A 



x 

m 

q 

pI 

length 

rp 

Itt 

The logical unit (decimal value) 

The bit mask for search matching 
(hexadecimal value) 

The increment (hexadecimal value) 

The passed Q-register data (hexa
decimal value) 

The scheduled priority level (hexa
decimal value) 

The request size (hexadecimal value) 

The request priority (hexadecimal 
value) 

The location of the top of thread 
(hexadecimal value) 

mod The mode for output format (ASCII 
character) . 

prt The part 1 request indicator (0 or 1) 

DEBUG MAINFRAME REQUESTS 

The format to store data in core is: 

LHX,SC,b/h1,h2,h3 ••• hn 

Examples: 

Store data into core location + base: 

LHX,1601,O/C8*1606 

One-word relative instructions: 

LHX,1601,O/C8*1606 

(Stores 14EA 
tion 1600) 

into loca-

(Stores C805 into loca
tion 1601) 

Core is loaded with the 2-digit OP code preceding the 
asterisk and the 8-bit relative increment that is obtained by 
subtracting the address of the core location in which the 
data is to be stored from the address that follows this 
asterisk. The relative increment must be less than ± 127; 
otherwise, an incorrect relative increment is stored. 

16-Bit relative address: 

LHX,1602,O/*1703 (Stores 0101 into loca
tion 1602) 

Core is loaded with the 16-bit relative increment obtained 
by subtracting the address of the core location in which the 
data is to be stored from the address which follows this 
asterisk. 

96769400 A 

NOTE 

LHX,1600,0/14EA,C8*1606,*1703 has the 
same result as the three preceding 
examples. 

Four types of input data can be entered: 

• 
• 
• 
• 

Decimal - LIT,SC,b/ip i2,i3,.· .in 

ASCII character - LAS,SC,b/a1,a2,a3,a4, ••• an 

Single precision - LSP ,SC,b/sp s2, ••• sn 

Double precision - LDP,SC,b/dp d2,d3, ••• dn 

NOTE 

The single/double precision data is 
converted to the two-word/three-word 
floating value format before being stored 
in core. For a detailed description of the 
single/double precision format, refer to 
the MSOS FORTRAN Reference Manual. 
Only the last four digits of hexadecimal 
data entries and the last five digits of 
decimal data entries are accepted when 
more than the above numbers are entered. 

DUMP DATA FROM CORE 

Data output can be requested in one of five formats: 
hexadecimal, decimal, ASCII characters, and single- or 
double-preCision floating point. The current core location is 
printed on the left side of each line of the output data. The 
listing unit can be specified by the user via the change 
logical unit command. The standard comment unit is 
normally used unless the user redefines the list unit. The 
following are the command formats. 

Data Form 

Dump 
hexadecimal 

Dump 
decimal 
(integer) 

Dump ASCII 

Dump single 
precision 

Format 

DPC,sc,ec,b 

DIC,sc,ec,b 

DAS,sc,ec,b 

DSP ,sc,ec,b 

Description 

Print the 4-digit hexadeci
mal values for the request 
core locations. 

Print the signed 5-digit 
decimal values for the 
requested locations. 

Print sets of two ASCII 
characters with a space 
separating each set. 

Print single-precision val
ue(s) of seven significant 
digits in an Ew.d format as 
shown: 

(sign)O.xxxxxxxxxxxxE(Sign)xx 

Where x represents the inte
ger value digit. 

10-3 



Data Form 

Dump single 
precision 
(contd) 

Format 

DSP ,sc,ec,b 

Description 

The number of digits 
representing the mantissa 
and exponent parts are 
seven and two, respectively. 
For overflow or underflow 
conditions, the number is 
represented by a string of 14 
asterisk characters. 

Dump double DDP ,sc,ec,b 
precision 

Print the double-precision 
value of 12 significant digits 
in Dw.d format as shown: 

(sign)O.xxxxxxxxxxxxd(sign)xx 

The number of digits repre
senting the mantissa and 
exponent is 12 and two, 
respectively. A string of 17 
asterisk (*) characters is 
used to represent either 
underflow or overflow value. 

TRANSFER DATA CORE TO MASS MEMORY 

The following are the formats used to transfer data core to 
mass memory: 

Data Form 

Write 
operation 

Format 

W CD,ssmsb,sslsb, 
sW,sc,nw 

WDK,sc,ec,ssmsb, 
sslsb,sw 

Description 

Transfer data from core 
to mass memory. 

Data Form Format Descril2tion 

Read RDC,ssmsb,sslsb, Transfer data from 
operation sW,sc,nw mass memory to core. 

RDK,sc,ec,ssmsb, 
sslsb,sw 

Set mass SMP ,ssmsb,sslsb, Set mass memory to a 
memory to sW,nw,p specified bit pattern. 
pattern 

LOGICAL UNIT ALTERATION 

The list unit can be respecified by the operator with the 
following command: 

CLU,x 

It should be noted that the output of certain commands 
(table 10-1) is not affected by this command. 

If more than one mass memory unit exits, they can be 
redefined by using the following command: 

MLU,x 

Note that these new logical unit definitions remain in effect 
for debug usage until it is either respecified or the ODEBUG 
function is terminated. 

TABLE 10-1. ODEBUG COMMANDS 

Mass Memory 
Command Confirma tion List Logical Unit Logical Unit Input Logical Unit DX Comments 

LHX Yes Comment device t Comment device No 

LIT Yes Comment device t Comment device No 

LAS Yes Comment device t Comment device No 

LSP Yes Comment device t Comment device No 

LDP Yes Comment device t Comment device No 

DPC No Comment device/ t Comment device Yes 
user option 

DIC No Comment device/ t Comment device Yes 
user option , 

DAS No Comment device/ t Comment device Yes 
user option 

t Not applicable 

10-4 96769400 A 



TABLE 10-1. ODEBUG COMMANDS (Contd) 

Mass Memory 
Command Confirmation List Logical Unit Logical Unit Input Logical Unit OX Comments 

DSP No Comment device! t Comment device Yes 
user option 

DDP No Comment device! t Comment device Yes 
user option 

WCD No t Library unit/ Comment device No 
user option 

WOK No t Library unit/ Comment device No 
user option 

ROC No t Library unit! Comment device No 
user option 

RDK No t Library unit/ Comment device No 
user option 

LST No Comment device t Comment device No 

SMP No t Library unit! Comment device No 
user option 

CLU No t Comment device No 

MLU No t Comment device No 

SCN No Comment device t Comment device Yes 

SPE No Comment device t Comment device No 

ADH No Comment device t Comment device No 

SBH No Comment device t Comment device No 

SET No Comment device t Comment device No 

SPP No Comment device t Comment device No 

CPP No Comment device t Comment device No 

MBC Yes Comment t Comment No Print first word of 
both new and old 
address. 

'CCC No Comment device! t Comment device Yes 
user option 

SCH Yes Comment device t Comment device No Print the contents of 
the first word of the· 
scheduled program. 

ALC No Comment device t Comment device No 

REL No Comment device t Comment device No 

DAC No Comment device! t Comment device No 
user option 

DPT No Comment device! t Comment device No 
user option 

t Not applicable 

96769400 A 10-5 



TABLE 10-1. ODEBUG COMMANDS (Contd) 

Mass Memory 
Command Confirmation List Logical Unit Logical Unit Input Logical Unit DX Comments 

PTH No Comment device/ t Comment device No 
user option 

MSD No Comment device/ Library unit! Comment· device Yes 
user option user option 

MMM Yes Comment device User option Comment device Yes Print the first word 
of both the new and 
old address. 

DMH No Comment device/ Library unit! Comment device Yes 
user option user option 

DMI No Comment device/ Library unitt Comment device Yes 
user option user option 

DMA No Comment device/ Library unit! Comment device Yes 
user option user option 

DMS No Comment device/ Library unit! Comment device Yes 
user option user option 

DMD No Comment device Library unit! Comment device Yes 
user option user option 

CWA No Comment device t Comment device No 

CCM No Comment devic .... / Library unitt Comment device Yes 
user option user option 

CMM No Comment device/ User option Comment device Yes 
user option 

SMN No Comment device/ Library unitt Comment device Yes 
user option user option 

ADF No Comment device t Comment device Yes 

BSF No Comment device t Comment device Yes 

ADR No Comment device t Comment device Yes 

BSR No Comment device t Comment device Yes 

WEF No Comment device t Comment device Yes 

REW No Comment device t Comment device No 

UNL No Comment device t Comment device No 

SLD No Comment device t Comment device No 

LHC Yes Comment device Library unit Comment device No 

LIC Yes Comment device Library unit Comment device No 

LAC Yes Comment device Library unit Comment device No 

LHO Yes Comment device Library unit Comment device No 

. t Not applicable 

10-6 96769400 A 



TABLE 10-1. ODEBUG COMMANDS (Contd) 

Mass Memory 
Command Confirmation List Logical Unit Logical Unit Input Logical Unit DX 

LIO Yes Comment device Library unit Comment device No 

LAO Yes Comment device Library unit Comment device No 

LSO Yes Comment device Library unit Comment device No 

LDO Yes Comment device Library unit Comment device No 

LHM Yes Comment device Library unit! Comment device No 
user option 

LIM Yes Comment device Library unit/ Comment device No 
user option 

~AM Yes Comment device Library unit/ Comment device No 
user option 

LSM Yes Comment device Library unit! Comment device No 
user option 

LDM Yes Comment device Library unit! Comment device No 
user option 

t Not applicable 

GENERAL CPU OPERATIONS Data Form Format 

Core locations are searched from start core to end core by 
the increment for a match between AND (mask, number) and 
AND (mask, core). The format is: 

Subtract 
hexadecimal 
numbers 

SBH,number1, 
number2 

SCN,sc,ec,n,m,i 

An example of this operation is: 

SCN ,0, 7FFF ,A1F7 ,FFOO,2 

Where 0,2,4,6,8,... are searched for AND resulting in 
A1xx, where xx may have any value. The locations 
containing the searched configuration and their contents are 
printed {lfter the following heading: 

CELL CONTENTS 

The following are formats for CPU operations: 

Data Form Format 

Search core SPE,ec 
for parity 
error 

Description 

Print the location of the 
parity error. 

Set core SET,sc,ec,p 

Set program SPP ,sc,ec 
protect bit 

Clear pro- CPP ,sc,ec 
gram 
protect bit 

Move blocks MBC,sc,ec,nsc 
of core 

Comments 

Description 

Subtract number 2 from 
number 1, in hexadecimal. 

Set core with a pattern from 
start to end. 

Set the program protect 
bits. 

Clear the program protect 
bits. 

Move a block of core from 
one location to another. 
Before moving the block, 
the first words of the new 
and the old data are printed 
for operator verification. 
This allows the operator to 
abort the current selection 
if any errors in defining the 
parameters are discovered. 

Add hexa
decimal 
numbers 

The following comment ter
minates the request: 

SEARCH FINISHED 

ADH,number1, Add up to eight hexadecimal 
number2, • • • numbers. 
number8 

Compare 
core to 
core 

CCC,sc,ec,nsc Compare the core contents 
of data in block 1 (sc) and 
block 2 (nsc). The differ
ences are printed under the 
heading CELL CONTENT. 
Both the locations and con
tents of blocks 1 and 2 are 

96769400 A 10-7 



Data Form 

Compare 
core to 
core (contd) 

Format Description 

CCC,sc,ec,nsc printed. The following is an 
example: 

CELL CONTENT 

05F6 (1111) 58AC (0111) 

Where: 05F6 is the current 
sc location. (1111) is the 
content. 58AC is the cur
rent nsc location. (0111) is 
the content. 

MONITOR OPERATIONS 

Schedule Program 

A specified core location can be scheduled for execution at 
the specified priority level, with the user passing a param
eter contained in the Q register. The contents of the 
scheduled location are printed. If it contains the proper 
data, the operator can confirm (or approve) the schedule 
request by typing in OK. Conversely, this request can be 
aborted by entering any character(s) other than OK. The 
format is: 

SCH,sa,q,pl,prt 

Allocatable Core 

The format of the command to generate an area within 
allocatable core is: 

ALC,length,rp 

Where: length is hexadecimal. 

rp 

Release Core 

is the request priority (the minimum priority 
is three) of the location of allocated core 
that is printed out as follows: 

CORE ALLOCATED FROM h1h1h1h1h1 
to h2h2h2h2h2 

~A~J ~~~~1 is the start of the allocated 

The format is release allocated core is: 

REL,SCR 

List Allocatable Core Map 

The dump allocatable core command is: 

DAC 

10-8 

The following printout represents the core configuration. 

LLLL and MMMM are lengths of two programs in core 
starting at xxxx and zzzz, respectively. 

Printout 

ALLOCATABLE 
CORE MAP 

xxxx LLLL 

Core Configuration 

xxxx } 
LLLL 

yyyy 

yyyy 

(indicates 
empty core) 

zzzz MMMM 

(empty core) 

ZZZZ } MMMM 

aaaa 

aaaa End of 
alla-

* (indicates bbbb catable 

empty core) core 

bbbb 

ListPartition Core Map 

The format for this request is: 

DPT 

If partition core is being used, the printout for this command 
is as follows: 

PARTITION CORE MAP 

PARTITION NO. nn 1111 mmmm 
Where: nn is the partition number. 

1111 is the core location. 

mmmm is the size. 

If partition core is unused, the printout for this command is 
as follows: 

PARTITION CORE MAP 

UNUSED 

Print Thread 

The print thread request format is: 

PTH,ltt,b 

Where: Itt is the location of top of thread. 

b is the base. 

The format for each entry printout is as follows: 

96769400 A 



Where: loc is the location. 

w 1 is word 1 of the request. 

w 2 is word 2 of the request. 

The end-of-thread indicator (FFFF) terminates the printout, 
or if there are more than ten entries on the thread, only the 
first ten are printed. If the thread is empty, the printout 
consists of the end-of-thread indicator only. A sample 
printout is: 

153A, 
087B, 
44AC, 
FFFF 

120A, 
1277, 
1204, 

2357 
4324 
803A, 

Interrupts are inhibited while the thread is being searched. 
The priority level of the dump is the same as ODEBUG. 

List All Debug Commands 

All command mnemonics are printed on the standard list 
device. LST is the debug command. 

MAGNETIC TAPE OPERATIONS 

The following requests perform tape motion commands. The 
logical unit number is specified by lu. The parameters of 
these requests are decimal. If the number of iterations is 
blank, one iteration is assumed. 

NOTE 

The number of records/files is limited to 
4095 for all magnetic tape requests. 
Other standard device drivers accept the 
ODEBUG magnetic tape requests for 
motion, but only one motion function is 
performed (that is, single file record 
skips, etc.). 

The following are the tape motion command formats: 

Data Form Format 

Advllnce files ADF ,lu,number of files 

Backspace files BSF ,lu,number of files 

Advance records ADR,lu,number of records 

Backspace records BSR,lu,number of records 

Write end-of-file WEF ,lu,number of files 

Rewind tape REW,lu 

Unload tape UNL,lu 

96769400 A 

Data Form 

Select density 

Format 

SLD,lu,de 

Where: de is a designated 
density: 

o 200 bits per 
inch 

1 556 bits per 
inch 

2 

3 

800 bits per 
inch 

1600 bits per 
inch 

Omitted 1 or 556 
bits per inch 

MASS STORAGE 

List Mass Memory 

This statement performs a dump off mass memory to list 
unit from the starting sector to the ending sector. The 
format is: 

MSD,ssmsb,sslsb,esmsb,eslsb,mod 

Where: mod is the mode. If not specified, data is 
dumped in hexadecimal mode. 

A ASCII; data is dumped directly to the 
Hit output device. 

H Hexadecimal; data is converted to 
ASCII before being dumped. 

Decimal; data is converted to ASCII 
before being dumped. 

Dump Mass Memory 

Mass memory data can be dumped in one of the following 
five formats: 

• H~xadecimal - DMH,ssmsb,sslsb,sw,nw 

• Decimal - DMI,ssmsb,sslsb,sw,nw 

• ASCII - DMA,ssmsb,sslsb,sw,nw 

• Single Precision - DMS,ssmsb,sslsb,sw,nw 

• Double Precision - DMD,ssmsb,sslsb,sw,nw 

The data formats are the same as those described in the 
section entitled Dump Data From Core. The output format 
contains the mass memory address and data. The 
hexadecimal data output format is used for illustration. 

10-9 



The output format is: 

mm1111/wwww hI hI hI hI h2h2h2h2 

Where: mm is the two least significant digits of the 
starting sector most significant bits in 
hexadecimal. The two most significant 
digits are always 0 due to the size of a 
mass memory device. 

1111 is the starting sector least significant bits. 

wwww is the starting word in hexadecimal. 

is the hexadecimal data. 

Convert Word Address to Sector/Word Address 

This statement is used to convert the mass memory address 
from word to sector addressing mode. The format is: 

CWA,wa 

The mass memory address expressed in sector addressing 
mode is printed on the comment unit with the format shown 
below: 

SECTOR/WORD ADDRESS + msb Isb word 

Where: msb is the most significant bit; four hexadeci
mal digits 

lsb is the least significant bit; four hexadeci
mal digits 

word is four hexadecimal digits 

The input value of wa is a hexadecimal number with a 
maximum of eight digits. 

Compare Core to Mass Memory 

This statement is used to compare a block of core location(s) 
with a block of mass memory location(s). The format is: 

CCM,sc,ec,ssmsb,sslsb,sw 

When differences exist between the core and mass memory 
blocks, . locations and their contents (in hexadecimal) are 
printed as shown: 

MASS MEMORY DATA 

cccc(ssss) mm1111/wwww (yyyy) 

Where: cccc is the core location. 

10-10 

mm is the most significant bit sector of mass 

1111 

memory. 

is the least significant bit sector of mass 
memory. 

wwww is the word address within a sector. 

xxxx is the contents of the core location/ 

yyyy is the contents of mass memory. 

Compare Mass Memory to Mass. Memory 

This statement is similar to the last command (CCM) except 
that the comparison is between two mass memory areas. 
The format is: 

CCM ,lu,ssmsb,sslsb,sw ,nw ,nlu,nsmsb,nslsb,nsw 

The output format for any differences in the compared data 
is shown below: 

MASS MEMORY DATA 

\. mmllll/wwww (xxxx~ 

--
mmllll/wwww (yyyy) 

\.. / --
Set 1 of mass memory data Set 2 of mass memory data 

lu and nlu allow the data areas to reside on different mass 
memory logical units. 

Search Mass Memory for Pattern 

This command is used to locate data with a certain bit 
pattern on mass memory. The format is: 

SMN,ssmsb,sslsb,sw,nw,n,m,i 

If the last parameter, i (increment location count), is 
omitted, a value of 1 is assumed. The list output format for 
data is shown: 

CELL CONTENT 

mmmmllll/wwww (xxxx) 

MASS,MEMORY OPERATIONS WITH ALTERATION 

Move Mass Memory 

This command allows the programmer to move a block of 
data on mass memory from one location to another on the 
same or on a different device. The contents of the new 
location block are the same as the old one. The format is: 

M M M ,lu,ssmsb,sslsb,sw, esmsb, eslsb,sw ,nlu,nsmsb,nslsb, 
~ i'\S \U 

The two parameters, Iu and nlu, are provided for any system 
configuration with more than one mass memory unit. 

The contents of the first word of both old and new data is 
printed as a safety measure and for the programmer's 
approval prior to moving data from one block to another. 
This feature allows the operator to abort the request if an 
error is suspected. 

96769400 A 



Modify Core Image 

Data within the core image on mass memory can be 
modified by three types of input data: 

• 
• 
• 

Hexadecimal - LHC,sc,b/hl'h2,h3 ••• hn 

Decimal - LIC,sc,b/i1,i2,i3 ••• in 

ASCII - LAC,sc,b/a1,a2,a3 ••• an 

The new and old (data currently contained in core image) 
data is printed for approval by the operator before the 
change is made. The output format is: 

NEW OLD 

xxxx yyyy 

VERIFY 

From the previous printout, the operator can determine if an 
error exists in an input statement. If the operator is 
satisfied that the data is correct, OK is entered to signal 
that the change is correct. Any other entry causes the 
request to be aborted. The following message: 

DB REQUEST ABORT 

is printed and input is ignored. 

Modify Mass-Resident Ordinal Program 

Five types of input data formats are allowed as input data 
entry: 

• 
• 
• 
• 
• 

Hexadecimal - LHO,ord,sc,b/h1,h2,h3, ••• hn 

Decimal - LIO,ord,sc,b/i1,i2,i3, ••• in 

ASCII - LAO,ord,sc,b/a1,a2,a3, ••• an 

Single precision - LSO,ord,sc,b/s1,s2,s3,s4' ••• sn 

Double precision - LDO,ord,sc,b/d1,d2, ••• dn 

The ordinal number is checked against the maximum number 
in the. system. The following statement: 

DB ORDINAL OVER MAX. 

is printed when it is over the maximum. New and old data 
are printed for approval. When verified by the operator, 
data is transferred to mass memory in the specified ordinal 
and program location. The statement: 

DB ORDINAL LENGTH ZERO 

is printed if the ordinal contains no program. 

96769400 A 

Modify Mass Memory 

There are five commands used to modify mass memory. The 
command formats are shown below for the respective data 
types: 

• 
• 
• 
• 

Hexadecimal - LHM ,ssmsb,sslsb,sw /h1,h2 ,h3' ••• hn 

Decimal - LIM,ssmsb,sslsb,sw/i1,i2,i3, ••• in 

ASCII - LAM,ssmsb,sslsb,sw/a1,a2,a3,a4, ••• an 

Single Precision - LSM,ssmsb,sslsb,sw/s1,s2,s3' ••• sn 

• Double precision - LDM,ssmsb,sslsb,sw/d1,d2,d3,· •• dn 

The new and old data are printed for verification by the 
operator. 

BREAKPOINT PROGRAM 

The breakpoint program is a software checkout tool that 
enables the user to control and examine (in the background) 
the execution of a program in checkout. This program is 
loaded with the checkout job and achieves its purpose by 
means of breakpoints. Breakpoints are locations in the 
program in checkout before which execution is suspended 
and during which the operator is interrogated for control 
statements. 

GENERAL OPERATIONS 

The breakpoint program consists of a control program and a 
set of overlays that act on the various control statements. 
The control program is stored in the system library by the 
system initializer on LIB EDT (section 13). It is loaded with 
the program in checkout when the breakpoint load flag is set 
and an execute statement (*X or *LGO) is encountered. The 
load flag is set as the result of an *B statement. 

Breakpoint is entered just prior to execution and announces 
this event by printing BP on the comment medium. At this 
time the breakpoint program is ready to accept the set 
breakpoint control statements which are described below. 
After the breakpoints are set, the program in checkout is 
executed using an *END command. When the breakpoint 
program is entered because a breakpoint has been reached, 
it prints: 

BP,xxxx 

Where: XXX X is the 4-digit hexadecimal address of the 
breakpoint. 

When the breakpoint program is entered, the user can direct 
further operation by means of control statements in format 
records of 72 characters or less. These control statements 
are described in the sections that follow. 

On receipt of a control statement, the control program 
reads an associated statement processor (overlay) from the 

10-11 



program library. The processor was stored there as an 
absolute record by LIBEDT. 

Control statements which cannot be recognized by the 
breakpoint program are rejected and indicated by means of a 
diagnostic (FORMAT ERROR) after which the breakpoint 
program waits for a new statement. 

Breakpoint scans and acts on each field from left to right. 
Therefore, if an error is detected, all fields to the left of 
the error have been processed and fields to the right have 
not. 

CONTROL STATEMENTS 

Set Breakpoint 

This statement is used to specify locations at which 
breakpoints are to be set. A breakpoint may be set at any 
unprotected location regardless of the instruction contained 
there. However, breakpoints do not work in the following 
locations: 

• The second word of a two-word instruction 

• A storage location not accessed as an instruction 

• A location that is modified as a result of program 
execution 

• The RTJ- ($F4) of a system request 

• Instructions with two-way reject addresses 

The user is limited to a total of 15 active breakpoints. 
Should he specify a sixteenth, the breakpoint program 
responds with: 

TOO MANY BREAKPOINTS 
xxxx 
FORMAT ERROR 

Where: xxxx is the sixteenth breakpoint as specified in 
the control statement. 

If a user specifies a breakpoint outside the bounds of 
unprotected memory, the breakpoint program responds with: 

xxxx 
PROTECT ERROR 

Where: xxxx is the bad breakpoint specified. 

In addition to the above, the following errors are detected: 

• N onhexadecimal characters 

• Absence of commas between successive declarations 

• Addresses and/or increments of more than four 
hexadecimal digits 

In these cases, breakpoint responds with: 

xxxx 
FORMAT ERROR 

Where: xxxx is the erroneous field as specified in the 
statement. 

Should a user specify a location that is already a breakpoint, 
the breakpoint program ignores the additional declaration. 
The statement format is: 

*SET,bl + il ,b2 + i2, •• I ,bi + ii 

Where: b is a hexadecimal address of four characters or 
less. 

i is a positive hexadecimal increment of four 
characters or less. 

Either b or i may be omitted, in which case the value is 
assumed to be O. 

Example: 

*SET,105A+47"lBOl,+lBAl 

Where: 105A+47 causes a breakpoint to be set at 10Al 

lBOl causes a breakpoint to be set at lBOl 

implies omission of both b and i, and the 
breakpoint program would assume 
that the user wants a breakpoint at 
location 0 (which is illegal) 

+lBAl causes a breakpoint to be set at 
location lBAl 

Terminate Breakpoint 

This statement is used to remove breakpoints previously set 
by the *SET command. Its format is: 

*TRM,bl +i l ,bl +i2, ••• ,bl +i l 

Where: b is a hexadecimal base address of four digits or 
less. 

i is a positive hexadecimal increment of four 
digits or less, which, when added to its 
associated base, gives the actual breakpoint 
address. 

To remove a breakpoint it is not necessary to specify it in 
exactly the same form as was used to set it (*SET). It is 
only necessary that the sums be equal. Either v or i may be 
omitted; omitted parameters are assumed to be O. 

The following illegalities can be detected: 

• Nonhexadecimal characters 

• Absence of commas between successive declarations 

10-12 96769400 A 



• Breakpoints that do not exist 

• More than four hexadecimal digits in a base address or 
increment 

In each case the breakpoint program responds with: 

xxxx 
FORMAT ERROR 

Where: xxxx is the erroneous field as specified in this 
statement. 

Example: 

*TRM,lOAl,+lOA1,lOOl+AO 

Where: lOA1 omits the increment; the first break
point specified in the example 
under *SET would be deleted. 

+lOAl causes the same effect as the first 
field, only the base has been 
omitted; it would be illegal if 
presented as shown since the 
first field has already caused 
deletion of the breakpoint. 

lOOl+AO causes the same effect as lOAl; it 
would be illegal if presented as 
shown since the first field would 
previously have caused deletion 
of the breakpoint. 

Entry Of Data Into Core 

Data may be entered into memory in any of three forms: 
hexadecimal integers, decimal integers, and ASCII charac
ters. There is a unique control statement associated with 
each type of data. The statements are described below. 

Hexadecimal Data 

The statement format is: 

*LHX.b,i/h,h, ••• h 

Where: b is a base address of four hexadecimal digits or 
less. 

is an increment of four hexadecimal digits or 
less. 

h is a hexadecimal integer of four digits or less. 
There can be as many hexadecimal integers in 
a statement as can be accommodated on a 
teletype line. 

The breakpoint program adds b and i together to obtain the 
effective storage address for the first piece of data. Data is 
stored in sequential locations starting at b+i. Either b or i 
may be omitted; when omitted, they are assumed to be O. 
Hexadecimal integers that are omitted are signaled by 
successive commas. When an h is omitted, it is assumed to 
be O. 

96769400 A 

The following errors can be detected: 

• Nonhexadecimal characters in the address or data 

• Delimiters other than commas, or, in one instance, a 
slash 

• More than four digits in an integer 

• An attempt to store out of bounds 

Errors 1 through 3 cause the following diagnostic: 

xxxx 
FORMAT ERROR 

Where: xxxx is the erroneous field. 

Error 4 causes the following diagnostic: 

xxxx 
PROTECT ERROR 

Where: xxx x is the data that the user attempted to store 
improperly. 

Example: 

*LHX,4ACF ,1ESI A"BCDE 

This statement causes data to be stored in the location 
starting at 4CB7=4ACF+1ES. The data stored is A, 0, and 
BCDE. 

Alternate forms of the statement are: 

*LHX,4CB7,1 A"BCDE 

*LHX,4CB7 I A"BCDE 

Decimal Data 

The statement format is: 

*LIT,b,i/d,d, •• d 

(i omitted) 

(b omitted) 

Where: b is a base address of four hexadecimal digits or 
less. 

i is an increment of four hexadecimal digits or 
less. 

d is a decimal integer of five digits or less. There 
can be as many decimal integers in a state
ment as can be accommodated on a teletype 
line. 

Breakpoint adds b and i together to obtain the effective 
storage address for the first piece of ,data. Data is stored in 
sequential locations starting at b+i. Either b or i may be 
omitted; when omitted, they are assumed to be O. Decimal 
integers that are omitted are signaled by means of succes
sive commas with a value of O. The following errors can be 
detected. 

10-13 



• Nonhexadecimal characters in address or increment 

• Delimiters other than commas, or, in one instance, a 
slash 

• More than four digits in a hexadecimal integer 

• More than five digits in a decimal integer 

• Nondecimal digits in a data field 

• An attempt to store out of bounds 

Errors 1 through 5 cause the following diagnostic: 

xxxx 
FORMAT ERROR 

Where: xxxx is the erroneous field. 

Error 6 causes the following diagnostic: 

xxxx 
PROTECT ERROR 

Where: xxxx is the data that the user attempted to store 
improperly. 

ASCII Data 

The statement format is: 

*LAS,b,i/aaa ••• a 

Where: band i have the same meaning and restrictions as 
*LHX. 

a 

Cor:e Dumps 

is a null character to be transmitted to 
memory. The ASCII characters 
(carriage return, line feed, cancel, 
and null) that are not transmitted by 
the driver are not stored. 

Core can be dumped in three data forms: hexadecimal 
integers, decimal integers, or ASCII characters. A separate 
statement exists for each data form; however, the 
parameters for the three statements are identical and have 
identical restrictions. 

The three data statements are: 

*DPC,s,e,b 

*DIC,s,e,b 

*DAS,s,e,b 

Hexadecimal output 

Decimal output 

ASCII output 

Where: s is the starting address for the dump. 

e is the ending address for the dump. 

b is the base address. 

All parameters are hexadecimal integers of four digits or 
less. If a parameter is omitted, it is assumed to be O. b is 
. 1.lsed as follows. 

10-14 

b+s = Actual starting address for the dump 

b+e = Actual ending address for the dump 

The error conditions that can be detected are: 

• Hexadecimal integers of more than four digits 

• Nonhexadecimal characters in a hexadecimal integer 

• Noncomma delimiters 

• The end address is less than the start address 

Errors 1 through 3 cause the following diagnostic: 

xxxx 
FORMAT ERROR 

Where: xxxx is the contents of the erroneous field. The 
error 4 diagnostic omits the field con
tents. Output is in nine columns: the 
first column contains the address of the 
first data item; subsequent columns 
contain data from sequential cells. 

Example: 

*DPC"A,43AO 

Where: s is omitted 

e is 11 

b is 43AO 

The output is as follows: 

43AO xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

43A8 xxxx xxxx xxxx 

Where: xxxx is a four-digit hexadecimal integer, a five
digit decimal integer, or two ASCII 
characters. 

Mass Storage Dump 

The breakpoint program is capable of dumping portions of 
the scratch area on the library mass storage unit. Output 
can be in hexadecimal, decimal, or ASCII form. There is a 
unique statement for each output form, though the 
parameters for all three statements are identical in form. 

The statement forms are: 

*DMH,m,l,s,n 

*DMI,m,l,s,n 

*0 MA, m ,l,s,n 

Hexad~cimal dump 

Decimal dump 

ASCII dump 

Where: m is the most significant bits of the starting 
scratch sector number; up to four hexadeci
mal digits. 

is the least significant bits of the starting 
scratch sector number; up to four hexadeci
mal digits • 

96769400 A 



s is the starting word number in the starting 
sector; up to four hexadecimal digits 
between 0 and 7FFF. 

n is the number of words to dump; up to four 
hexadecimal digits. 

Any parameter that is omitted is assumed to be O. An 
exception is n. which cannot be 0 and therefore cannot be 
omitted. 

The error conditions that can be detected are: 

• Nonhexadecimal digit found in a hexadecimal number 

• Too many digits in a number 

• Number is out of the expected range 

• Noncomma delimiter 

When detected. an error condition results in the following 
diagnostic: 

xxxx 
FORMAT ERROR 

Where: xxxx is the erroneous field. 

Output is in blocks of sector size. each block headed by its 
sector number. The blocks are in nine columns. of which 
eight are data. The leftmost (first) column contains the 
word number of the data in the same row of the next 
(second) column. Subsequent data elements in a row have 
sequential word numbers. 

Example: 

*DMH.,1.50.12 

This statement requires that data be dumped from scratch 
sector 1 starting at word 50 16. 12 16 words are to be 
dumped. Output would appear as follows: 

0000 0001 

0050 xxxx xxxx xxxx xxxx xxxx xxxx xxx x xxxx 

0058 xxxx xxxx xxxx xxx x xxxx xxx x xxxx xxxx 

0000 0002 

0000 xxxx xxxx 

Where:- xxxx represents hexadecimal data. 

Resume 

When a user has completed work at a breakpoint. or prior to 
initial program execution. the *END statement is used to 
inform the breakpoint program. There are no parameters. 

On receipt of this statement. the breakpoint program resets 
A. Q. and i to the latest object program values. executes the 
instruction at the breakpoint interpretively. and resumes 
object code execution. If the entry to breakpoint was before 

96769400 A 

program execution. the *END statement causes the 
breakpoint program only to enter the object program at its 
entry point. There are no error conditions or diagnostics 
associated with this statement. 

Jump 

A user can cause the breakpoint program to execute a jump 
to any location in the background by entering the following 
statement: 

*JP.b+i 

Where: b is a hexadecimal address of four digits or less. 

is a hexadecimal value of four digits or less 
which. when added to b. gives the effective 
jump address. 

Either b or i can be omitted. in which case they are assumed 
to be O. 

The error conditions that can be detected are: 

• Nonhexadecimal characters in a number 

• More than four characters in a hexadecimal number 

• lllegal delimiter (+) 

• An effective jump address outside the bounds of 
unprotected memory 

The first three errors cause the following diagnostic: 

FORMAT ERROR 

The jump is made with A. Q. and I containing the latest 
object program values. 

Examples: 

*JP.2A43 

*JP.+2A43 

*JP.2AOO+43 

(i omitted) 

(b omitted) 

(neither omitted) 

All three examples cause a jump to 2A43 if that location is 
within the bounds of unprotected memory. 

Return Jump 

The breakpoint program executes a return jump command 
from a user. The statement form is: 

*RJ.b+i 

Parameters and conditions are the same as for *JP. (see the 
Jump section). If the subroutine entered returns. the 
breakpoint program resumes operation at the current 
breakpoint. 

10-15 



Change Of Logical Unit 

The breakpoint program initially makes use of the comment 
input and output devices for communication. A user may 
change this for the breakpoint program only by the following 
statements: 

*LUI,1 

*LUO,1 

Change input device to logical unit 1 
(a decimal number). 

Change output device to logical 
unit 1 (a decimal number). 

The breakpoint program checks 1 to ensure that it is a legal 
logical unit number and is available to the background for 
input or output. If this is not the case, the breakpoint 
program prints the following diagnostic: 

FORMAT ERROR 

Setting Of A,Q, Or I 

When the breakpoint program is entered, it saves the current 
values in A, Q, and I. When the object program is resumed, 
the registers are restored to these values. If a user wishes to 
change any or all of these saved values, he may do so by 
means of the following statements: 

*SAH,b+i 

*SQH,b+i 

*SIH,b+i 

Change A. 

Change Q. 

Change I. 

Where: b is a hexadecimal base of four digits or less. 

is a hexadecimal increment of four digits or less. 

The value inserted into the indicated register is b+i. 
Either b or i or both may be omitted, in which case they are 
assumed to be O. 

The following errors can be detected: 

• More than four hexadecimal digits in a number 

• Nonhexadecimal characters in a number 

• I!legal delimiter between b and i 

Any of these errors cause the following diagnostic: 

FORMAT ERROR 

Examples: 

*SQH,5 

*SAH,+5 

*SIH,3+2 

*SQH, 

(i omitted) 

(b omitted) 

The first three examples set all registers to 5. The last 
sets Q to 0 since all parameters have been omitted. 

10-.16 

List Registers 

The contents of A, Q, I, M, and P on entry to the breakpoint 
program are saved for resumption of the object program. 
The user can change A, Q, and I and display them by the 
*LRG statement. There are no parameters or illegalities 
associated with this statement. 

The output has the following form: 

P = xxx x A = xxx x Q = xxxx I = xxxx M = xxxx 

Where: xxxx is the hexadecimal contents of the asso
ciated register. 

Motion Request 

Breakpoint performs motion operations via the commands 
described below. In each case the logical unit specified 
must be available to background programs. 

Advance File 

The advance file statement format is: 

*ADF,1,n 

Where: 1 is the logical unit (a decimal number). 

n is the number of files to skip (a decimal number). 

If n is omitted it is assumed to be 1. The following errors 
can be detected: 

• lllegallogical unit number 

• Nondecimal character in a decimal number 

• A decimal number greater than five digits 

• lllegal delimiter 

In all cases the diagnostic is: 

FORMAT ERROR 

Example: 

*ADF,5 

If logical unit 5 is available to the background, it is moved 
forward until the first file mark is sensed. 

Backspace File 

The backspace file format is: 

*BSF,1,n 

Parameters and conditions are the same as for * ADF. *BSF 
causes the tape to be searched for file marks in a reverse 
direction. 

96769400 A 



Advance Record 

The advance record statement format is: 

*ADR,l,n 

The parameters and conditions are the same as for * ADF, 
except that the tape searches forward for end-of-record 
gaps. 

Backspace record 

The backspace record statement format is: 

*BSR,l,n 

The parameters and conditions are the same as for * ADF. 
Operation is the same as *BSF, except that the tape 
searches in reverse for end-of-record gaps. 

Write End-of-File 

The write end-of-file statement format is: 

*WEF,l,n 

The parameters and conditions are the same as for *ADF. 
This statement causes n file marks to be written on the 
indicated logical unit. 

Rewind 

The rewind statement format is: 

*REW,l 

Parameter 1 and its conditions are as described under *ADF. 
This statement causes the indicated unit to be rewound to 
load point. 

Unload 

The unload statement format is: 

*UNL,l 

Parameter 1 and its conditions are as defined under *ADF. 
This statement causes the specified logical unit to be 
rewound to load point and, if possible, unloaded. 

Select Densi ty 

The select density statement format is: 

*SLD,l,d 

Where: 1 is the logical unit number (decimal). 

d is the density indicator. 

96769400 A 

o 
1 
2 
3 
Omitted 

200 bits per inch 
556 bits per inch 
800 bits per inch 

1600 bits per inch 
556 bits per inch 

This statement causes the breakpoint program to attempt to 
set the specified logical unit to the desired density. No 
check is made to determine if the unit is capable of the 
density requested. 

RECOVERY PROGRAM 

The programmer may, with the recovery program, determine 
the state of core and mass storage at the end-of-job 
execution. The recovery program is operated under the 
direction of the job processor. Whenever the job processor 
detects an *SR statement before job execution, it sets the 
RECOVERY indicator switch. The recovery program is 
operated after job execution when the switch is set. 

The recovery program is entered after it is loaded into 
protected core. Entrance is indicated by the printout RE. 
The operator may then direct operation by control 
statements. 

The recovery program rejects any input statement for which 
there is no entry in its list of control statements. Unaccept
able control statements are indicated by a printout and the 
recovery program waits for another control statement. 

CONTROL STATEMENTS 

Control statements to the recovery program are formatted 
records. All control statements must be entered from the 
comment device. 

The first character of a control statement must be an 
asterisk; the last character must be a carriage return. 
Intervening characters identify the type of statement and 
action. 

Unacceptable control statements are indicated by the 
printout ERR, and the recovery program waits for another 
control statement. 

The following are some of the standard input statements for 
the recovery program: 

Input Transfer 
Statement Address 

*Dssss,eeee DMPCOR 

*Ms2,w1,s2,w2,n MASDMP 

*T TERMIN 

*unit number OUTSEL 

Dump Core 

The contents of core are dumped beginning at ssss and 
terminating at eeee. 

The format is: 

*Dssss,eeee 

10-17 



Where: ssss is the starting address in hexadecimal digits. 
If eeee is less than ssss, no data is printed. 
If eeee is omitted, only one word is 
printed in hexadecimal digits. 

eeee is the ending absolute address in hexadeci
mal digits. 

Mass Storage Dump 

Any area on mass storage can be dumped (not just the 
scratch area) beginning at word 1 in sector 1 and 
terminating at word 2 in sector 2. 

The format is: 

*Ms1,w1,s2,w2,n 

Where: sl is actual sector 1. If s 1 is omitted, dumping 
begins with the first sector on the mass 
storage device. 

If s 1 is the only value specified, a single 
sector is dumped. 

If sl is greater than s2' no information is 
dumped. 

If s 1 is equal to s 2 and wJ. is greater than 
w 2' no information is dumpe • 

wI is word 1. If wI is omitted, dumping begins 
with the first word of the first sector. 

s2 is sector 2. If s2 is omitted, s2 has the same 
value as sl. 

w 2 is word 2. If w 2 is omitted, the last word to be 
dumped is the last word in sector 2. 

n is the logical unit number of the mass storage 
device. If omitted, the mass storage unit 
containing the library is assumed. 

Terminate 

This statement terminates recovery program control and the 
job processor is re-entered. 

The format is: 

*T 

Select Output Device 

This statement allows the operator to select a device for 
output by the recovery program. The unit number must be 
legal and the device must be capable of output. If this 
statement is not used, the standard print output device is 
used. 

The format is: 

*unit number 

10-18 

ADDITION OF CONTROL STATEMENTS 

Control statements may be added to the recovery program 
in the following manner: 

1. Add the statement and external name (transfer address) 
to the list. 

2. Supply a function module, beginning at the 
corresponding entry point, to accommodate the action 
required by the control statement. This function 
module should be processed with the control module at 
system initialization. 

SYSTEM ABORT DUMP 

When a system condition causes abnormal termination of 
system operation, the core-resident system abort dump 
program can be executed to dump the contents of selected 
core locations. There is a unique dump routine for each type 
of line printer (DMP421 for the 1742-1 Line Printer, 
DMP42x for the 1742-30/1742-120 Line Printer, and 
DMP827 for the 1827-30/65119-1 Line Printer). The 
procedure to operate the program is: 

1. Press MASTER CLEAR. 

2. Enter the starting address of the location to be dumped 
in the A register. 

3. Enter the ending address of the location to be dumped 
in the Q register. 

4. Set the P register to the address 14016• 

5. Execute the program by setting the RUN/STEP switch 
to RUN. 

The following results after the program is executed: 

1. The paper is set to the top of the form. 

2. There is an absolute/relative heading of 16 columns at 
the top of each page. 

3. Absolute and relative addresses and 16 words are 
printed per printer line. 

4. Lines, whose 16 words are the same as the last line 
printed, are ignored by printing a line of asterisks. 

5. Sixty lines are printed per page. 

6. The program hangs when the requested number of words 
is printed. 

The system abort dump program can be executed as many 
times as is required to dump the selected contents of core 
by repeating the operating procedure. 

The printout is ishown in figure 10-1. 

96769400 A 



At.:>1. lEI. »t 61 72 8l 94 A) 116 C7 01 n FA 011 IC 20 )E 4F 

Ins lAlO 1('.F7 0000 0000 0000 0000 0180 0000 oaro 48F8 &lOS OFA6 000) ()\OF StoOO 1791 cIn 
IrIS lA80 terl OF61 48::F 0121 18" CIOO FC67 09Fe 0100 D800 Fe63 S802 18211 01:00 5800 F079 
IFtS IA90 OFe7 0132 08E2 0337 leFa CIOO FeS8 09FD 0111 leoe 0800 Fes) 00\00 6803 SSEE 5800 
IrAS IMO FIlO~ UFO IISr.! ,\e3D OllF S8E7 saoo £004 l8FO A02D 0119 DaeS S8EO 5800 FeFD 1800 
IFI'S t.\~0 FFre "020 0111 18010 calle 09FE 6881. 8119 0113 E888 OFAI 1"12 09rE 681:) 5800 FD49 
Ires IACO C02t 0309 OIlF: 0202 18FE 0Il00 5800 £CE4 18F" 18ED 0800 1800 FCA£ 1800 FFle 1100 
IFIIS lADO '''43 1100 FEU 0800 Fel9 09FO 0101 IInl eaoc Fe IS 0800 Fell 09FO 0138 Olll 1820 
IrU 1.\[0 Deco 4S00 reOD 4000 FeM le90 581.6 £110 OFA.\ C02C 0172 COOO 022C 2000 OOOC 681) 
IFrs IAFO U06 SUF OOF£ OF6F 380E 6801> SooO 1'1111 C8011 030e san C807 Ol02 09FE 1816 6800 

Figure 10-l. System Abort Dump Program Printout 

NOTE 

In order to conserve core memory, the 
train image is not loaded when the 
1742-120 Line Printer is used (assuming 
an existing train image). 

CYBER 18 EXTENDED MEMORY ABOUT DUMP 

A CYBER 18 with extended memory requires a different 
dump routine (ECMDMP) if the capability to dump the 
extended memory is required. 

The procedure to operate the program is: 

1. Press MASTER CLEAR. 

2. Depress ESCAPE. 

3. Enter K31000800G. 

4. Enter the starting address of the location to be dumped 
in the A register. 

5. Set the ending address of the locations to be dumped in 
the Q register. 

6. Set the M register with a value for the 65 K bank from 
which the dump will occur. 

m=O 

m=l 

m=2 

Dump the page file values and the current 
locations specified by the page files. 

Dump from the first 65 K physical bank. 

Dump from the second 65 K physical bank. 

7. S"et the P reister to the address 14016• 

8. Execute the program by setting RUN mode. The line 
printer must be ready. 

The following results after the program is executed: 

1. The paper is set to top-of-form. 

2. If M is zero, the 32-page mode 0 registers are printed, a 
top-of-form is done, the 32-page mode 1 registers are 
printed, and a top-of-form is done. 

3. There is an absolute relative heading of 16 columns at 
the top of each page. 

96769400 A 

4. The physical address upper, the physical address lower, 
the logical address, the relative address, and the 
contents of 16 memory locations are printed. 

5. Lines, whose 16 words are the same as the last line 
printed, are ignored by printing a line of asterisks. 

6. The program hangs when the requested number of words 
is printed. 

The system abort dump program can be executed as many 
times as is required to dump the selected contents of core 
by repeating the operating procedure. 

The printout is shown in figure 10-2. 

ON-LINE SNAP DUMP 

This routine dumps the contents of the A, Q, M, and 
I registers, along with the contents of P, which equals the 
next program address to be executed after the call to dump. 
The register contents are temporarily saved in a circular
managed buffer to allow multiple use of the dump routine. 
The dump information is converted to print format and 
output at the output device speed. If multiple calls to the 
dump routine fill the available buffer area (standard set-up 
allows five dumps to be stacked), future dump calls are 
ignored until a previous entry output is completed, making 
entry into the buffer possible. 

This routine is an optional debugging aid that may be deleted 
from the system. If included, the routine is resident in 
protected core. Any user program may call the dump 
routine. Unprotected program communication is provided by 
an entry in the table of PRESETS. 

The calling sequence for an on-line dump is a return jump 
from the user program to the entry point SNAPOL. Any 
user program with a calling sequence to the dump routine 
must declare SNAPOL as an external. Output is directed to 
the standard list device on a FIFO basis in the following 
format: 

P = pppp Q = qqqq A = aaaa M = mmmm 1= iiii 

Control returns to the location following the calling 
sequence (return jump) with the program state the same as 
it was before the call for a dump. 

10-19 



90 t AI 82 C3 04 ES F5 07 Ie 29 lIA 4B 5C 50 7E SF 

0000 1579 1579 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 

.............. ,.~ ••••••••••••• tIo •••••••••••••••••••••• ~ ••• 9 ••••••••••••••• w ••••••••••••••••• h' ............................... 

"~r." ' ..... 0 1""Q "t.rl') "~~,, M
'
n/l I". foIll/l ,,/1/1;) 0':' ~ fir 010 /1'1/1/1 l'rl 7~FF .".~~ 3131 :11:11 3131 (11)(111 n~n~ 

I\n/ll\ ,,"" . 1 .... 0 f\nr'n npo:: ~"n" !I/I~R (,Pt, nll:-" ~.r·7 n7~~ n"I'IC nlllln " .. ,n r.'>,'" (,';Jf ~r'''1 n~(\ .. 0'>;09 1'''·1' 
,,"-, , ... .,0; 1""0 "1/111 r."~11 IInnn '10(11 (I~r." nil" • Ilf·/I,; 1111'13 .. ··n /1/11\0\ o,o,p !",,, .. ~ 0;".( c.on ~~'f ",<;/1 .r".:' 

•. "'.t\~ 1'00 '''~'' 1\11~ (' .. ~a 44 ..... .. f .... ... ·C ellln ";040; 'r." ,Q4r rlll , ... " ."." '4"" C.71!> ,(4' .... " .')4(" 

t The 9 is absolute; the 0 is relative. 

Figure 10-2. Extended Memory Abort Dump Program Printout 

10-20 96769400 A 



SYSTEM CHECKOUT PACKAGE 11 

System checkout is an on-line program that diagnoses 
failures in a CYBER 18/1700 Mass Storage Operating System 
(MSOS). 

The failed system image is written on mass storage by one 
of the following bootstrap programs: 

• 
• 
• 

B1751 - 1751 Drum 

B1752 - 1752 Drum 

BDK85X _ {1733-1I853/854 Disk 
1738/853/854 Disk 

• B17332 1733-2/856-2/856-4 Cartridge Disk 

• B17391 - 1739-1 Cartridge Disk 

• B18331 - 1833-1/1833-3/1867-10/1867-20 
Module Drive 

Storage 

I. B18334 - 1833-4/1866-12/1866-14 Cartridge Disk 

This bootstrap operation is followed by a system restart 
(autoload) and call-up of the system checkout program 
(SYSCOP) via MIPRO. This program executes at a low 
priority level, obtaining its information from the image on 
mass storage in an attempt to isolate the system problems. 

System checkout is written as a series of overlays to 
minimize core requirements. 

CHECKOUT BOOTSTRAP PROGRAMS 

The checkout bootstrap programs write the core image on 
mass storage; they are self-contained and thus require no 
drivers. 

ASSUMPTIONS AND RESTRICTIONS 

The user is responsible for ensuring that the bootstrap 
program is intact and in core. The bootstrap must be core
resident, as it is referenced absolutely by the user. 

The bootstrap program transfers the number of words 
specified by the user via SYSDAT to mass storage. 

The starting sector number is specified by an EQU in 
SYSDAT. 

When using a cartridge disk, the failed image must reside 
completely on either disk 0 or disk 1. 

When using the storage module drive, the failed image must 
reside completely within the lower 7FFF 16 sectors. 

The release system has standard values specified for 
memory size and the mass memory location of the failed 
image. Refer to the MSOS Customization Manual for 

96769400 C 

procedures to alter these parameters. The system's A, Q, 
and I registers are saved by the bootstrap program for 
reference by SYSCOP. 

COMPLETION AND ERRORS 

After .transferring the failed image to mass storage, the 
bootstrap stops (loops on a selective stop) with the 
Q register set to 0 if no errors occurred during the transfer 
or negative if errors occurred. 

BOOTSTRAP OPERATION 

When the system fails, the following steps are used to 
bootstrap the failed system onto mass memory: 

1. Stop the computer. Do not press MASTER CLEAR. 

2. Clear the M, P, Y, and X registers. 

3. 

4. 

5. 

6. 

Set the P register to the address 14216, 

Set the SELECTIVE STOP switch. 
Q register. 

Select the 

Place the computer in RUN. The computer stops when 
the failed image has been transferred. If Q is zero, go 
to step 6. Otherwise, a transfer error has occurred and 
re-try from step 2. 

Autoload the system. 

7. After system start-up, request SYSCOP via MIPRO. 

SYSTEM CHECKOUT PROGRAM 

The system checkout program (SYSCOP) systematically 
examines the failed image for evidence of failures in the 
CYBER 18/1700 MSOS. When an error is encountered or 
questionable information is found, an appropriate message is 
given. 

STRUCTURE 

SYSCOP is divided into a control module and segment 
portions. The control module remains in core while the 
checkout program is running. It reads in each segment 
through a mass memory request as it is required. The 
control module includes subroutines common to all 
segments. SYSCOP segments are structures to conform to 
the 96-word sectors. 

The program executes in a series of overlays, thus 
minimizing core requirements. 

11-1 



MESSAGES 

The system checkout program produces three categories of 
messages: control, error, and support. The operator selects 
the type of message. All numbers included in the messages 
are given in hexadecimal. 

CONTROL MESSAGES 

The system checkout program gives messages to control the 
operation of SYSCOP. Control messages appear on the list 
device unless operator intervention is required. In this case 
the control message and its associated input are via the 
comment device. 

Control messages always appear, regardless of the message 
option selected. 

ERROR MESSAGES 

Error messages indicate that an error condition was 
detected. Gross error detection messages, as well as 
specific error messages, are included in this level of 
messages. 

Error messages appear on the list device. 

SUPPORT MESSAGES 

The system checkout program uses support messages to 
support, expand, and present information to the user. 
Support messages supply the user with organized information 
that may help in isolating errors. 

Support messages may not always be related to an error. 

All support messages appear on the list device. 

ERROR CHECKS 

The following sections describe the various checks 
performed by the system checkout program. 

Set-Up 

The set-up routine initializes the system checkout program, 
informs the operator of the program's presence, gives the 
sector number for the beginning of the failed system image, 
and allows the operator to select a message option. 

Initial Message 

The following control message indicates the start of the 
system checkout program: 

SYSCOP START 

11-2 

Acknowledgement of Image Sector 

The following control message acknowledges the beginning 
of the image sector: 

IMAGE START SECTOR IS ssss 

Where: ssss is the starting sector of the failed image. 

Selecting the Message Option 

The following control message indicates operator selection 
of the message option: 

SELECT OPTION 

s (reponse) 

Where: s is the desired option. 

*Z 
o 

1 

2 

3 

Checkout package is released. 

Control is transferred to the dump 
routine. 

Output error messages only 

Output error messages and support 
messages assOciated with detected 
errors 

Output error messages and all support 
messages 

When 1, 2, or 3 is completed, the user is again 
asked to select options. After a dump is 
completed, the typeout DUMP is repeated. 
The user may then return to select options by 
entering an *R, executing another dump, or 
releasing SYSCOP. 

An undefined option or an error on the input comment 
device causes SYSCOP to re-issue the option message. 

Reg iste r Con te n ts 

This segment of the system checkout program prints the 
p,ontents of the registers as saved by the checkout bootstrap 
program. 

This support message appears as follows: 

A Q 
qqqq 

REGISTER 

aaaa iiii 

Where: aaaa is the contents of the A register. 

qqqq is the contents of the Q register. 

iiii is the contents of the I register. 

96769400 A 



Locore Constants 

The system checkout program analyzes the various 
constants. both numbers and addresses. contained in the 
communications region. for possible errors. Both the failed 
image and the autoload image are checked. 

The following error message indicates an error detected on 
the autoload image: 

***LOCORE CONSTANT ERROR INITIALLY 

The messages that follow refer to these errors. If no error 
is found on the autoload image. the message does not 
appear. 

The following error message indicates an error detected on 
the failed image: 

***LOCORE CONSTANT ERROR 

The succeeding messages refer to those errors. If no error 
exists on the failed image. the message is suppressed. 

LOCORE Bit Table Error 

The following error message indicates an incorrect 
checksum of the total of locations 216 through 4616: 

BIT TABLE CHECKSUM ERROR 

This indicates that at least one location between 216 and 
4616 inclusive has been\altered. If no error is detected. the 
message does not appear. 

LOCORE Communication Address Error 

The following error message appears each time an altered 
address is found in LOCORE: 

ADDRESS IN aa WAS ffff BUT SHOULD BE iiii 

Where: aa is the address of the LOCORE location 
containing a monitor address. 

ffff is the value at the time of failure. 

iiii is the value at the time of initialization. 

The list of addresses checked for alteration include: 

B516 FNR 

B616 COMPRQ 

B716 MASKT 

B916 REQST 

BA16 VOLR 

BB16 VOLA 

BC16 LUABS 

96769400 A 

BD16 SABS 

BE16 CABS 

BF16 NABS 

E916 EXTBV4 

EA16 DISPxx 

F416 MONI 

F816 IPROC 

FE16 ALLIN 

Error in Core Bounds 

The following error message indicates that the unprotected 
bounds exceed the limits of core. the top of unprotected is 
below the bottom. or any of the addresses is negative if in 
32K mode: 

MAX CORE WAS hhhh WITH iiii TO jjjj UNPROT (ERROR) 

Where: hhhh is the contents of F516• 

iiii is the contents of F716 + 1. 

jjjj is the contents of F616 - 1. 

Highest Core Location and Bounds of Unprotected Core 

The following support message indicates that no location 
error was detected. This message appears only if option 2 
or 3 is selected. 

MAX CORE WAS hhhh WITH'iiii TO jjjj UNPROT 

Where: hhhh is the contents of F516• 

iiii is the contents of F716 + 1. 

jjjj is the contents of F616 - 1. 

Error in MAXSEC 

The following error message indicates that the most 
significant bits specified in MAXSEC were nonzero: 

MAXSEC WAS hhhhhhhh (ERROR) 

Where: hhhhhhhh is the most significant bits (MSB). 

MAXSEC Value 

The support message for the error in MAXSEC is: 

MAXSEC WAS hhhhhhhh 

The MAXSEC and MAXCORE messages appear twice on the 
printout. The first is for the autoload image and the second 
for the failed image. 

11-3 



System Priority Level 

The following messages analyze the system priority level. In 
some cases, system programs may be locked out because of 
a hang-up at a higher level. If the system consistently stops 
at a particular level, that level should be suspected. The 
following error message appears only if this level is two or 
higher: 

***POSSIBLE LEVEL HANGUP 

Incorrect Priority Level 

The following error message indicates an incorrect priority 
level (not between -1 and 15): 

PRI LVL WAS hhhh (ERROR) 

Where: hhhh is the priority level of the system at the 
time the image was written on mass 
storage; the value is from EF 16. 

System Priority Level 

The following support message gives the system priority 
level and is printed only to aid subsequent debugging: 

PRI LVL WAS hhhh 

Where: hhhh is the priority level of the system. 

Interrupt Trap Region 

This section of messages detects possible errors in the 
interrupt trap region. 

The following error message is detected on the autoload 
image in the trap region: 

***INTERRUPT TRAP ERROR INITIALLY 

The following error message indicates an error in the failed 
image: 

***INTERRUPT TRAP ERROR 

The succeeding messages aid in isolating an error in the 
interrupt trap region. 

Unpatched Interrupt Response Routines 

The following error message indicates unpatched interrupt 
response routines: 

LINE ii RESPONSE IS UNPATCHED 

Where: 

11-4 

ii is a hexadecimal interrupt line number that had a 
7FFF 16 (unpatched external) for the address 
of its interrupt processing routine. 

Line 0 Error 

The following error message indicates a line 0 error. The 
priority level for line 0 is assumed to be F 16 and the 
response routine is the Internal Interrupt Handler. 

LINE 0 IS NOT SETUP FOR PARITY/PROTECT 

Interrupt on an Invalid Line 

The following error message indicates an interrupt on an 
invalid line. The specified line has INVINT as its response 
routine, yet an interrupt has occurred. 

LINE ii LAST INTERRUPTED tttt (INVALID) 

Where: ii is the line number. 

tttt is the location specified in the appropriate trap. 

Last Location Interrupted by Each Valid Line 

The following support message indicates that an interrupt 
occurred on a line. The line 1 trap is also used by the 
monitor to initiate or resume a program's operations. 

LINE ii LAST INTERRUPTED tttt 

Where: ii is the line number. 

tttt is the location specified in the appropriate trap. 

Line vs. Level Printout 

The following support message gives the line and level 
status: 

LINE 0 1 2 3 4 5 6 7 8 9 ABC D E F 
LEVEL h h h h h h h h h h h h h h h h 

Where: h is the level indicated in the trap region. 

Interrupt Set for a FORTRAN Level 

The following error message indicates that the interrupts 
cannot use the level reserved for FORTRAN. When FMASK 
is unpatched (7FFF), it is assumed that no FORTRAN levels 
are reserved. 

LEVEL hh IS USED FOR INTERRUPTS AND 
IS RESERVED FOR FORTRAN 

Where: hh is the priority level number. 

96769400 A 



FORTRAN Levels Error 

The following error message notes errors in the FORTRAN 
levels. There are five priority levels between 3 and E. 

FORTRAN LEVELS 
ti i j k I (ERROR) 

Where: ht it jt kt and I are priority level numbers. 

FORTRAN Levels 

The following support message designates the legal levels 
reserved ~ FORTRAN levels in FMASK: 

FORTRAN LEVELS 
h i j k I 

Where: ht it jt kt and I are priority level numbers. 

Inconsistent Use of RDISP or NDISP and FORTRAN Levels 

The following error message appears if more than one 
FORTRAN level was reserved in FMASKt but the system is 
using NDISP instead of RDISP: 

SYSTEM USING NDISP WITH REENT FORTRAN 
(ERROR) 

Interrupt Stack And Mask Table 

This section of messages lists errors in the interrupt stack 
and mask table. 

The following error message verifies that an error was 
detected in the autoload image mask table: 

***MASK TABLE ERROR INITIALLY 

The following error message indicates that the failed image 
mask table contains an error or has been modified: 

***MASK TABLE ERROR 

The succeeding messages indicate the type of error within 
the interrupt stack and mask table. 

Mask Table Error 

The following error message appears each time a bit is 
encountered in the mask table for a line at a higher level 
than tlie level indicated in the trap region. 

LINE hh IS SET FOR LVL iiii BUT UNABLE TO 
INTERR UPT jjjj 

Where: hh is the line number. 

iiii and jjjj are priority level numbers; iiii is a lower 
level than jjjj. 

96769400 A 

A similar error message appears when no bit is detected in 
the mask tables for lower level masks: 

LINE hh IS SET FOR LVL jjjj BUT IS ABLE TO 
INTERRUPT iiii 

Where: hh is the line number. 

iiii and jjjj are priority level numbers; iiii is a lower 
level than jjjj. 

Mask Table Altered 

The following support message gives the image for each 
level entry in the mask table that was modified: 

ENTRY FOR LVL hhhh INITIALLY iiii CHANGED TO jjjj 

Where: hhhh is the level of the mask table entry -1 to F. 

iiii is the value on the autoload image. 

jjjj is the value on the failed image. 

Interrupt Stack Entries 

The following support message gives the interrupt stack 
entries: 

INTRPT STACK LEVEL 
hijklmnopqrstuvw 

Where: h through ware levels of the entries in the 
interrupt stack. The lowest level 
is h and should be -1; the high
est permissible level is E. The 
maximum number of entries 
is 16. 

If any of these conditions is violated or levels are not in 
ascending order t an error has occurred. A level can appear 
only once; nothing appears if the stack is empty and the 
priority level was -1. 

Log i c a I Un it Cap a b iI i ty 

This section of messages checks the read/write capability of 
the standard logical unit assignment and its alternates. 

The following error message indicates that the autoload 
image has logical units with illegal capabilities: 

***LOGICAL UNIT CAPABILITY ERROR INITIALLY 

The following error message indicates that the failed image 
is incorrect: 

***LOGICAL UNIT CAPABILITY ERROR 

The next two messages further explain logical unit errors. 

11-5 



Standard I/O LogJcal Units Read/Write Capability Error 

The following error message appears for each input device 
that cannot be read or for each output device that cannot 
write: 

aaa IS NOT A bbbb DEVICE 

Where: aaa is one of the following devices: 

SBI Standard binary input device 
specified in F916 

SBO Standard binary output device 
specified in FA16 

SLO Standard print output specified 
in FB16 

SCO Output comment specified in 
FC16 

SCI Input comment specified in FD16 

bbbb is either READ or WRIT. 

Alternate Logical Units Capability Error 

The following error message indicates that the alternate 
device does not have the read/write capability specified for 
the primary device: 

LU aa IS ALTERNATE FOR lu. BUT HAS LESS 
CAPABILITY 

Where: aa is the assigned alternate logical unit for logical 
unit lu. 

lu is the logical unit number. 

Logical Unit And Physical Device Table 

This section of messages analyzes the logical unit tables and 
the physical device table. An investigation of active I/O 
requests is also included. 

The following error message indicates an error was detected 
on the autoload image in the logical unit tables: 

***LOGICAL UNIT TABLE ERROR INITIALLY 

The following error message indicates an error was detected 
on the failed image: 

***LOGICAL UNIT TABLE ERROR 

The succeeding messages aid in diagnosing errors in the 
logical unit tables and the physical device table. 

11-6 

Number of Logical Units 

The following error message indicates that LOG1A. LOG1, 
and LOG2 do not contain the same number of logical units. 
This message does not appear if the first word of each of the 
three tables agrees. 

NUM OF LUS DO NOT AGREE, ASSUME lu 

Where: lu is the number of logical units specified in 
LOG1A. 

Logical Unit 1 Must Be Core Allocator 

The following error message indicates the equipment type 
code, if logical unit 1 does not specify the software core 
allocator. If logical unit 1 is the core allocator, the message 
is suppressed. 

LU 1 NOT CORE ALLOCATOR 

Physical Device Table Setup 

The following error message indicates that the particular 
LOG1A entry does not point to a core location that contains 
a scheduler request code (52xx16 ) followed by three cells 
(n.one of which is unpatched). This message appears for each 
error: 

NO VALID PHYSTB FOR LU lu 

Where: lu is the logical unit number. 

Marked Down Logical Units 

The following support message indicates that bit 13 of the 
LOG1 table reflects an inoperative logical unit. This 
message appears for each logical unit marked down: 

LU lu WAS MARKED DOWN 

Where: lu is the logical unit number. 

Inconsistent Shared Devices 

The following error messages indicate inconsistently shared 
devices: 

LU lu IS SHARED BUT UNMATCHED 

Where: lu is the logical unit in which bit 14 of the LOG1 
table entry is set, but for which there is no 
other logical unit with an identical physical 
device table in LOG1A. 

96769400 A 



LU lu AND vv MATCH BUT SHARED BIT IS NOT SET 

Where: lu and vv are logical units whose physical device 
table addresses match in LOGIA, but 
the LOGI entry for logical unit lu 
does not indicate a shared device. 

Analysis for Active Drivers 

The following support message appears for each busy device. 
A device is considered busy if a nonzero logical unit appears 
in word 5 of the physical device table. 

LU lu CURRENT PARA LIST AT iiii 
RC jjjj 
C kkkk 
TH 1111 
LU mmmm 
N nnnn 
S 0000 

I/O IN PROGRESS 

Where: lu 

iiii 

Request code 
Completion address 
Thread 
Logical unit 
Number of words to transfer 
Starting address 

is the active logical unit. 

is the parameter list address 
contained in word 6 of the 
driver's physical device tables; 
specifies the last parameter list 
that the driver operated on. 

jjjj through 0000 is the hexadecimal dump of the 
parameter list at location iiii. 

The last line of this support message does not appear if the 
diagnostic clock (word 4) is set minus (device idle). 

Logical Unit Threads 

The next two messages give information about the logical 
unit threads. The first support message lists the elements of 
the thread until it encounters an empty entry (FFFF 16): 

LU lu THREAD 
jjjj kkkk 1111 mmmm nnnn 0000 pppp qqqq rrrr •••• 

Where: lu is the logical unit whose LOG2 entry is not 
FFFF I6• 

jjjj ••• are entries on the thread. 

If more than 4016 elements are on the thread, only the first 
4016 are listed and the following message is given: 

LU lu THREAD MAY BE BROKEN 

Last Return Addresses for FNR and NCMPRQ 

The following support message gives the last return 
addresses for FNR and NCMPRQ: 

RETURN FOR FNR WAS hhhh 
RETURN FOR CMR WAS iiii 

96769400 A 

Where: hhhh is the last location to call find next request; 
it should be in a driver. 

iiii is the last location to call complete request; 
it should be in a driver. 

Scheduler Stack and Volatile Storage 

The following error message indicates that the levels in the 
scheduler stack are inconsistent. The priority level at the 
time of failure is also checked. 

***SCHEDULER STACK ERROR 

The succeeding messages further explain possible errors on 
the scheduler stack and volatile storage. 

Scheduler Stack Entries 

The next three support messages give information 
concerning the scheduler stack entries: 

NUM OF SCHEDL STACK ENTRIES WAS hh 
NUM OF SCHEDL CALLS STACKED WAS ii 

Where: hh is the total number of scheduler entries defined 
in the system. 

ii is the number of scheduler entries that were 
queued when the system failed. 

SCHEDL STACK ENTRIES 
hhhh/iiii jjjj kkkk llli 

mmmm/ ••• 

(A line appears for each 
entry) 

Where: hhhh and mmmm are the addresses of scheduler 
stack entries. 

iiii through llli is the dump of the hhhh entry. 

The following message defines the last entry that was 
scheduled. If jjjj is zero, the message is suppressed. 

LAST ENTRY TO BE SCHEDULED 
hhhh/iiii jjjj kkkk llli 

Volatile Storage 

The following support message specifies the amount of 
volatile storage in use at the time of system failure: 

THERE WERE hhhh OF THE iiii VOLATILE WORDS 
ASSIGNED 

Where: hhhh is the amount of volatile storage assigned at 
failure. 

iiii is the total volatile storage available.-

11-7 



Allocatable Core and System Directory 

The following error message indicates that not all of 
81locatable core can be accounted for and a thread has been 
broken: 

***ALLOCATABLE CORE ERROR 

Allocatable Core 

The following support message appears only if the block was 
assigned at failure. If the block was not assigned, EMPY is 
listed instead of an ordinal. 

ALLOCATABLE CORE MAP 
INDEX START LNGTH THRD DUMP 
jjjj hhhh iiii tttt mmmm nnnn 0000 pppp qqqq 
EMPY kkkk 1111 tttt mmmm nnnn 0000 pppp qqqq 

Where: jjjj is the ordinal of the mass 
storage program in the 
system whose length 
matches the length of 
the block. 

hhhh and kkkk are the starting addresses 
of blocks of allocatable 
core. 

iiii and 1111 are lengths of block. 

mmmm through qqqq is the dump of the first 
five words of the block. 

tttt is the thread to the next 
empty block or next 
word. 

If the length does not match the length in a directory entry, 
XXXX appears on the listing. A line appears for each block 
of core. Only the last system directory entry with a 
matching length appears. The length and start include the 
two control words preceding each block of core. 

System Directory 

The following error message is printed if the system 
directory is not set up correctly: 

***SYSTEM DIRECTORY ERROR 

The n~xt two error messages give information about the 
request priority. 

INDEX hhhh HAS INVALID REQ PRI iiii 

Where: hhhh is the ordinal in the system directory. 

iiii is the request priority level. 

The preceding message is printed for allocatable core 
programs. 

The job processor is the only program that is permitted to 
have a request priority below 3. Ordinals for these modules 
are verified and all other programs must be at a request 
priority level of 4 or above. For each ordinal that does not 
have a valid request level, the preceding message appears. 

11-8 

For each system directory program that is longer than the 
core reserved for its request priority level, the following 
error message appears: 

INDEX hhhh TOO LONG FOR REQ PRI iiii 

Where: hhhh is the system directory ordinal. 

iiii is the request priority level. 

Swapping and Job Processor 

The system is normally swapped unless the job processing 
executive is operating. During the job processor's execution, 
swaps may occur up to some predetermined frequency. Each 
time a swap occurs, a level 2 idle loop is executed, which 
locks out all job processor execution for the duration of the 
swap. Thus, if the system is swapped, it should not be 
executing below level 2. If the system is waiting to swap, 
either swapping is occurring at a rate greater than the 
predetermined interval or the job processing executive has 
I/O waiting to be completed. 

Swapping and Job Processor Diagnostics 

The following error message indicates that the system is 
waiting to swap and that unprotected I/O is active: 

CONSIDER UNPROTECTED I/O HANGUP 

The following error message indicates that the system was 
kept from swapping because a set time interval had not 
elapsed: 

CONSIDER SWAP RATE TOO RAPID 

The following error message indicates that the job processor 
was in core and the system was swapped. This is not an 
error and normally occurs during job processing. 

CORE USAGE CAUSED SWAP WHILE JP IN 

Swap Status 

The next three support messages give information 
concerning the swap status. 

The first support message appears if the SWAPON flag was 
set, indicating that a swap was in effect. This flag is in the 
DRCORE program. 

SYSTEM WAS SWAPPED 

The second support message indicates the SW APON flag and 
the swap waiting flag (SPASW) were not set. SPASW is in 
the TRVEC program. 

SYSTEM NOT SWAPPED 

The next support message appears if SWAPON is not set but 
SP ASW is set. 

SYSTEM NOT SWAPPED BUT WAITING TO SWAP 

96769400 A 



Job Processor in Core at Failure 

The next two support messages give information about the 
job processor in core at the time of failure. 

The first support message indicates that the job processing 
executive was not in core at the time of system failure. 
Specifically. address pointer FILEI in the TRVEC program 
had a pointer of zero. No further job processor checks are 
made. The job processing executive maintains four files 
that can be located from addresses in FILEI. FILE2. FILE3. 
and FILE4. 

JP NOT IN CORE 

The second support message indicates that FILEI contained 
a file address. The remainder of the job processor checks 
are made. 

JP WAS IN CORE 

Job Processor File Locations 

The following support message gives the job processor file 
locations. If an address is zero. it implies that the 
respective module was not active. 

FILEI FILE2 FILE3 FILE4 LOADR BP 
hhhh iiii jjjj kkkk 1111 mmmm 

Where: hhhh. iiii. jjjj. and kkkk are the absolute starting 
addresses of the four 
job processor files. 

1111 

mmmm 

is the starting address of 
the reloca table binary 
loader (in TRVEC). 

is the starting address of 
the breakpoint package 
(F316)· 

Job Processor Lockout Switch Status 

The following support message gives the job processor 
lockout switch status. If SWITCH in TRVEC is negative. 
only the first line appears. If positive. only the second line 
appears. This indicates the job processor is either locked 
out or LlBEDT or the Recovery program has requested a 
sign-off. If SWITCH is zero. the message does not appear. 

JP LOCKED OUT FOR LIBEDT OR RECOVERY 

SIGN OFF REQUESTED OF LIBEDT OR RECOVERY 

Unprotected I/O and Timer Request Status 

The following support message gives the unprotected I/O and 
timer request status. If no I/O or timer requests are active. 
the message does not appear. 

hhhh UNPROT REQ WERE ACTIVE AND STACKED 
AT LOC iiii 

96169400 A 

Where: hhhh is the su·m of UNPIO and UNPTIM in 
TRVEC. 

iiii is the absolute location of the stacked 
requests in the protect processor 
(PROTEC). 

Manual Interrupt Handling 

The next two messages give information about manual 
interrupt handling. The first support message indicates the 
MIB flag was set and input is for the job processor. 

PENDING INPUT REQUEST FOR JP 

The second support message indicates that the MIB flag was 
set and the input is for the MIPRO program. 

PENDING INPUT REQUEST FOR MIPRO 

Core Dump Request 

This module of the SYSCOP program executes last and 
permits the operator to dump selected core locations for the 
failed image. The valid control characters are: 

*D Output on the print logical unit. 

*R Repeat SYSCOP package with options set. 

*z Terminate SYSCOP. 

The following message indicates that the package is 
awaiting valid dump addresses. 

DUMP 

It appears after completing a request or after an invalid 
entry. The dump is 16 locations per line unless the comment 
logical unit is used. in which case the dump is eight locations 
per line. 

The following message is the last message from SYSCOP: 

FINISH SYSCOP 

Partition Core 

Support Messages 

The following support message appears for every assigned 
partition: 

PARTITION CORE ADDRESSES 

PARTITION xx hhhh 

Where: xx is partition number 0 through 15. 

hhhh is the address. 

11-9 



The following message appears with a printout of partition Dump 
and thread for every busy partition: 

PARTITION THREADS 

When the USE table is analyzed, each partition in use is 
printed with the following support message: 

PARTITION IN USE 

Error Messages 

When an error is detected, an error header message appears: 

PARTITION CORE ERROR 

Partition 0 must begin at 800016 or below. The following 
message appears when addresses above 800016 are used: 

PARTITION 0 ABOVE 8000 

Partitions must be specified in ascending order. If this is 
not done, the following message appears: 

PARTITION OUT OF ORDER 

A bit in the busy word must be set for each permanently 
busy or unused partition; otherwise, the following message 
appears: 

ILLEGAL BUSY INDICATOR 

Sample Requests 

Teletypewriter Listing 

MI 
SYSCOP 
SELECT OPTION 
o 
DUMP 
*DO,FF 
DUMP 
*R 
SELECT OPTION 
1 
SELECT OPTION 
2 
SBLECT OPTION 
3 
SELECT OPTION 
*z 
MI 

Line Printer Listing 

SYSCOP START 
IMAGE START SECTOR IS 2000 

11-10 

See figure 11-1 for a sample dump. 

Option 1 

***INTERRUPT TRAP ERROR 
LINE OA RESPONSE IS UNPATCHED 
LINE OB RESPONSE IS UNPATCHED 
***INTERRUPT TRAP ERROR INITIALLY 
LINE OA RESPONSE IS UNPATCHED 
LINE OB RESPONSE IS UNPATCHED 
***LOGICAL UNIT CAPABILITY ERROR 

SBO IS NOT A WRIT DEVICE 
SLO IS NOT A WRIT DEVICE 

***LOGICAL UNIT CAP ABILITY ERROR INITIALLY 
SLO IS NOT A WRIT DEVICE 

***SYSTEM DIRECTORY ERROR 
INDEX OOOF HAS INVALID REQ PRI 0004 
INDEX 0014 TOO LONG FOR REQ PRI 0004 

Option 2 

A Q I REGISTER 
FFFF 7FFFF 295F 
PRI LVL WAS 000 
***INTERRUPT TRAP ERROR 
LINE OA RESPONSE IS UNPATCHED 
LINE OB RESPONSE IS UNPATCHED 
LINE 00 LAST INTERRUPTED 8BDI 
LINE 01 LAST INTERRUPTED 2925 
LINE 03 LAST INTERRUPTED B478 
LINE 04 LAST INTERRUPTED 042C 
LINE 05 LAST INTERRUPTED B38C 
LINE 06 LAST INTERRUPTED OC9A 
LINE 0 1 2 3 4 5 6 7 8 9 ABC D E F 
LEVEL FAD B 9 A 8 6 9 9 D D 6 6 6 6 
***INTERRUPT TRAP ERROR INITIALLY 
LINE OA RESPONSE IS UNPATCHED 
LINE OB RESPONSE IS UNPATCHED 
LINE 0 1 2 3 4 5 6 7 8 9 ABC D E F 
LEVEL FAD B 9 A 8 6 9 9 D D 6 6 6 6 
*uLOGICAL UNIT CAPABILITY ERROR 

SBO IS NOT A WRIT DEVICE 
SLO IS NOT A WRIT DEVICE 

*uLOGICAL UNIT CAPABILITY ERROR INITIALLY 
SLO IS NOT A WRIT DEVICE 

LU 04 CURRENT PARA LIST AT 291D 
RC 0900 
C 0000 
TH FFFF 
.LU 18FD 
N 0000 
S 0042 
I/O IN PROGRESS 
RETURN FOR FNR WAS 1656 
RETURN FOR CNR WAS 1608 
LAST ENTRY TO BE SCHEDULED 
0366/ 1200 2569 036A FFF3 
THERE WERE 0000 OF THE 0101 VOLATILE WORnS 

ASSIGNED 
ALLOCATABLE CORE MAP 
INDEX START LNGTH THRD DUMP 
EMPY 1F09 0870 2D5E OAOO 60FF 487F C622 997F 
0003 2845 0519 2847 08FE 605P 5807 04E2 0030 

96769400 A 



0000 1400 7FFF 0000 0001 0003 0007 OOOF 001F 003F 007F OOFF 01FF 03FF 07FF OFFF 1FFF 
0010 3FFF 7FFF FFFF FFFE FFFC FFF8 FFFO FFEO FFCO FF80 FFOO FEOO FCOO F800 FOOO FOOO 
0020 0000 8000 0000 0001 0002 0004 0008 0010 0020 0040 0080 0100 0200 0400 0800 1000 
0030 2000 4000 8000 FFFE FFFD FFFB FFF7 FFEF FFDF FFBF FF7F FEFF FOFF FBFF F7FF FFFF 
0040 DFFF BFFF 7FFF 0005 0006 0009 OOOA 0000 0000 0000 0000 0000 0000 0000 0000 0000 
0050 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 
0060 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 
0070 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 
0080 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 
0090 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 
OOAO 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 
OOBO 0000 0000 0000 0008 0366 06AB 067A 0205 021A OCOA OA49 OA34 OA7A OA94 OAC4 CA83 
OOCO 0000 0957 0008 0000 0121 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 
OODO 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 3348 34C9 0000 0000 
OOEO 0000 0000 0000 0000 0001 0000 0080 0000 0000 0000 063F 014B 7DCF 2EE5 OA77 0000 
OOFO 0265 0004 0140 0000 OBCF 7FFF 7FFF 2EBA OAEF OOOC OC07 OC09 0004 0004 OAD8 295F 

Figure 11-1. Sample Dump 

EMPY 2D5E 0009 2F AB 0000 0000 0000 0000 0000 
0002 2D67 0144 2D69 08FE 6022 40FF 0822 0927 
EMPY 2EAB 0010 FFFF 0000 0000 0000 0000 0000 
***SYSTEM DIRECTORY ERROR 
INDEX OOOB HAS INVALID REQ PRI 0004 
INDEX 0014 TOO LONG FOR REQ PRI 0004 
SYSTEM NOT SW APPED 
JP WAS IN CORE 
FILE1 FILE2 FILE3 FILE4 LOADR BP 
2D69 2847 0000 0000 0000 0000 

Option 3 

A Q REGISTER 
FFFF 7FFE 295F 
MAX CORE WAS 7FFF WITH 2EBB TO 7FFE UNPROT 
MAXSEC WAS 00003E7F 
MAX CORE WAS 7FFF WITH 2EBB TO 7FFE UNPROT 
MAXSEC WAS 00003E7F 
PRI LVL WAS 0000 
***INTERRUPT TRAP ERROR 
LINE OA RESPONSE IS UNPATCHED 
LINE OB RESPONSE IS UNPATCHED 
LINE 00 LAST INTERRUPTED 8BD1 
LINE 01 LAST INTERRUPTED 2925 
LINE 03 LAST INTERRUPTED B478 
LINE 04 LAST INTERRUPTED 042C 
LINE 05 LAST INTERRUPTED B38C 
LINE 06 LAST INTERRUPTED 009A 

'LIN E 0 1 2 3 4 5 6 7 8 9 ABC D E F 
LEVEL FAD B 9 A 8 6 9 9 0 D 6 6 6 6 
***INTERRUPT TRAP ERROR INITIALLY 
LINE OA RESPONSE IS UNPATCHED 
LINE OB RESPONSE IS UNPATCHED 
LINE 0 1 2 3 4 5 6 7 8 9 ABC 0 E F 
LEVEL FAD B 9 A 8 6 9 9 0 D 6 6 6 6 
INTRPT STACK LEVEL 
-1 
***LOGICAL UNIT CAPABILITY ERROR 

SBO IS NOT A WRIT DEVICE 
SLO IS NOT A WRIT DEVICE 

***LOGICAL UNIT CAPABILITY ERROR INITIALLY 
SLO IS NOT A WRIT DEVICE 

96769400 A 

LU 04 CURRENT PARA LIST AT 291D 
RC 0900 
C 0000 
TH FFFF 
LU 18FD 
N 0000 
S 0042 
I/O IN PROGRESS 
RETURN FOR FNR WAS 1656 
RETURN FOR CMR WAS 1608 
NUM OF SCHEDL STACK ENTRIES WAS 18 
NUM OF SCHEDL CALLS STACKED WAS 00 
LAST ENTRY TO BE SCHEDULED 
0366/ 1200 2569 036A FFF3 
THERE WERE 0000 OF THE 0101 VOLATILE WORDS 

ASSIGNED 
ALLOCATABLE CORE MAP 
INDEX START LENGTH THRD DUMP 
EMPY 1F09 0870 2D5E OAOO 60FF 487F 0622 997F 
0003 2845 0519 2847 08FE 605F 5807 04E3 0030 
EMPY 2D5E 0009 2EAB 0000 0000 0000 0000 0000 
0002 2D67 0144 2069 08FE 6022 40FF 0822 0927 
EMPY 2EAB 0010 FFFF 0000 0000 0000 0000 0000 
***SYSTEM DIRECTORY ERROR 
INDEX OOOF HAS INVALID REQ PRI 0004 
INDEX 0014 TOO LONG FOR REQ PRI 0004 
SYSTEM NOT SWAPPED 
JP WAS IN CORE 
FILEI FILE2 FILE3 FILE4 LOADR BP 
2D69 2847 0000 0000 0000 0000 
FINISH SYSCOP 

ERROR MESSAGE CORRELATION 

This section gives an alphabetical listing of the error 
messages for the system checkout program. 

A Q I REGISTER 
ADDRESS IN xx WAS xxxx BUT SHOULD BE xxxx 
ALLOCATABLE CORE MAP 
*** ALLOCATABLE CORE ERROR 
***INTERRUPT TRAP ERROR 
***INTERRUPT TRAP ERROR INITIALLY 
***LOCORE CONSTANT ERROR 

11-11 



***LOCORE CONSTANT ERROR INITIALLY 
***LOGICAL UNIT CAPABILITY ERROR 
***LOGICAL UNIT CAPABILITY ERROR INITIALLY 
***LOGICAL UNIT TABLE ERROR 
***LOGICAL UNIT TABLE ERROR INITIALLY 
***MASK TABLE ERROR 
***MASK TABLE ERROR INITIALLY 
***POSSIBLE LEVEL HANGUP 
***SCHEDULER STACK ERROR 
***SYSTEM DIRECTORY ERROR 
BIT TABLE CHECKSUM ERROR 
CONmDER SWAP RATE TOO RAMO 
CONSIDER UNPROTECTED I/O HANGUP 
CORE USAGE CAUSED SWAP WHILE JP IN 
DUMP 
ENTRY FOR LVL xxxx INITIALLY xxx x BUT 

CHANGED TO xxxx 
FILE1 FILE2 FILE3 FILE4 LOADR BP 
FINISH SYSCOP 
FORTRAN LEVELS 
FORTRAN LEVELS (ERROR) 
ILLEGAL BUSY INDICATOR 
IMAGE START SECTOR IS xxxx 
INDEX xxxx HAS INVALID REQ PRI xxxx 
INDEX xxxx TOO LONG FOR REQ PRI xxx x 
INTRPT STACK LEVEL 
JP LOCKED OUT FOR LIBEDT OR RECOVERY 
JP NOT IN CORE 
JP WAS IN CORE 
LAST ENTRY TO BE SCHEDULED 
LEVEL xx IS USED FOR INTERRUPTS AND IS 

RESERVED FOR FORTRAN 
LIN E 0 1 2 3 4 5 6 7 8 9 ABC D E F 
LINE 0 IS NOT SETUP FOR PARITY/PROTECT 
LINE xx IS SET FOR LVL xxxx BUT ABLE TO 

INTERRUPT xxxx 
LINE xx IS SET FOR LVL xxxx BUT UNABLE TO 

INTERR U PT xxx x 
LINE xx LAST INTERRUPTED xxxx 
LINE xx LAST INTERRUPTED xxxx (INVALID) 
LINE xx RESPONSE IS UNPATCHED 
LU 1 NOT CORE ALLOCATOR 
LU xx AND xx MATCH BUT SHARED BIT NOT SET 
LU xx CURRENT PARA LIST AT xxxx 

11-12 

LU xx IS ALTERNATE FOR xX,BUT HAS LESS 
CAPABILITY 

LU xx IS SHARED BUT UNMATCHED 
LU xx THREAD 
LU xx THREAD MAY BE BROKEN 
LU xx WAS MARKED DOWN 
MAX CORE WAS xxxx WITH xxx x TO xxx x UNPROT 
MAX CORE WAS xxxx WITH xxx x TO xxxx UNPROT 

(ERROR) 
MAXSEC WAS xxxxxxxx 
MAXSEC WAS xxxxxxxx (ERROR) 
NO VALID PHYSTB FOR LU xx 
NUM OF LUS DO NOT AGREE, ASSUME xx 
NUM OF SCHEDL CALLS STACKED WAS xx 
NUM OF SCHEDL STACK ENTRIES WAS xx 
PARTITION CORE ADDRESSES 
PARTITION xx hhhh 
PARTITION CORE ERROR 
PAR TITIO N IS USE 
PARTITION 0 ABOVE 8000 
PARTITION OUT OF ORDER 
PARTITION THREADS 
PENDING INPUT REQUEST FOR JP 
PENDING INPUT REQUEST FOR MIPRO 
PRI LVL WAS xxxx 
PRI LVL WAS xxxx (ERROR) 
RETURN FOR CMR WAS xxxx 
RETURN FOR FNR WAS xxxx 
SCHEDL STACK ENTRIES 
SELECT OPTION 
SIG N OFF REQUESTED OF LIBEDT OR RECOVERY 
SYSCOP START 
SYSTEM NOT SWAPPED 
SYSTEM NOT SWAPPED BUT WAITING TO SWAP 
SYSTEM USING NDISP WITH REENT FORTRAN 

(ERROR) 
SYSTEM WAS SW APPED 
THERE WERE xxxx OF THE xxxx VOLATILE WORDS 

ASSIGNED 
xxx IS NOT A READ DEVICE 
xxx IS NOT A WRIT DEVICE 
xxxx UNPROT REQ WERE ACTIVE AND STACKED 

AT LOC xxxx 

96769400 A 



RELOCATABLE BINARY LOADER 12 

The relocatable binary loader operates under the control of 
the job processor to load relocatable binary programs from 
peripheral devices or from the program library into available 
unprotected core. 

The loader is read from the system library by an *LGO, *L, 
or * entry point name statement that sets the limits of 
available core to the highest and lowest addresses of 
unprotected memory and then places the loader into the high 
end of unprotected core. It can also be called by a LOADER 
request to the monitor. 

Input to the loader consists of relocatable binary format 
records of variable length with a maximum of 120 charac
ters from any peripheral device in the system. EOL 
statements and control statements for the job processor are 
also in the form of format records. These format records 
begin with an asterisk and terminate with a carriage return 
(or space if input is from a card reader); they are stored in 
a buffer internal to the loader in ASCII code. 

Loader input is single buffered. After each input operation, 
the accuracy of the previous input operation is checked for 
input/output errors. If an error occurred, the loader 
terminates the operation and types a diagnostic; if no errors 
are detected, the loader reads the next input block. If 
unprotected core is not large enough to accommodate the 
loader, a JP05 message is printed. 

Note that in this section all references to the format of the 
relocatable binary data (RBD) blocks are interpreted by the 
relocatable binary loader. For example, blocks terminating 
on the first zero word are true only because the loader fills 
its input buffer with Os prior to each input. Users 
interpreting RBD blocks without the use of the relocatable 
binary loader must ensure that the input buffer is zero-filled 
prior to each input. 

FEATURES OF LOADER 

The following are features of the relocatable binary loader: 

• The object code may be patched with 15- or 16-bit 
addresses, depending on the program's execution base 
address. 

• The command sequence and loader tables are paged to 
mass storage if available core becomes filled. This 
alleviates the problem of loader table overflow while 
loading large programs with many entry points. Loading 
can take place if 195 words plus the length of the loader 
are available. 

• Both the core-resident entry point tables (refer to 
Unprotected Common, section 2) and the program 
library may be linked to in any order without a 
duplicate entry point error. 

96769400 A 

@",."'" 

• Two programs may reference the same external name in 
different addressing modes; one with relative 
addressing, the other with absolute addressing. 

• Control and update information contained in the NAM 
block is printed. 

PARTITION LOADING 

TRANSFER ADDRESS CONSIDERATIONS 

A two-word absolute jump instruction is always stored as the 
first two words of a command sequence during a partition 
load. The last transfer address encountered is stored as the 
second word of the jump instruction. This satisfies the 
requirement that the first word of a system directory 
program must be executable. The absence of a transfer 
address is considered an irrecoverable error by the loader. 

DATA AND COMMON DECLARATIONS 

Data (labeled common) and common blocks may reside 
within the partitions used by the programs loaded under an 
*A statement to LIBEDT. The loader places the data block 
in front of the first program declaring data. The common 
block resides at the end of the last partition used. 

Example: 

Programs A and B are loaded by an * A under LIBEDT and 
occupy two partitions. Program A is declared both a data 
block and a common block. 

Two-word jump instructions 

Data block 

- - - ._----- Program A ----------

Program B 

Common block 

Programs loaded in partitions may also link to the system 
data and system common blocks. 

RELOCATABLE BINARY INPUT 

Blocks of ASCII are identified by an asterisk in bits 15 
through 8 of the first word. If bits 15 through 8 are anything 
else, relocatable binary is assumed. 

12-1 



The driver for the input device verifies that the block is 
read correctly. 

The loader recognizes relocatable binary blocks by the type 
of indicator field in bits 15 through 13 of the first word of 
the block. If the loader is unable to recognize the indicator, 
it does not process the block. The following block types are 
defined: 

~ Indicator Description 

NAM 001 Name block 

RBD 010 Command sequence block 

BZS 011 Zero storage block 

ENT 100 Entry point block 

EXT 101 External name block 

XFR 110 Transfer address block 

Input for a single relocatable binary program must begin 
with a NAM block and terminate with an XFR block. There 
must be only one NAM block and one XFR block. The EXT 
blocks must follow the RBD blocks; RBD, aZs, and ENT 
blocks may be in any order. If input consists of several 
relocatable binary programs, the NAM block of the third 
program must follow the XFR of the second, etc. 

NAM Block 

The NAM block contains a word count for common storage 
and data storage, the program length, and the name of the 
program. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

15 14 1:3 12 11 10 9 8 7 6 5 -1 3 2 I II 

0 0 1 o 10 0 0 0 0 1 0 1 10 0 0 0 

Number of words in common storage block 

Number of words in data storage block 
~----------------Program length 

Character 1 Character 2 

Character 3 Character 4 

Character 5 Character 6 

Unused 

Unused 

Unused 

Column 27 Column 28 

} 

Program 
name 

34 1~------CO-I-U-Jn-n-7-1----~-----C-OI-u-m-n-7-2---~J} 
Comments 
from NAM 
card 

. NAM is the first block in each relocatable binary program 
loaded. An out-of-order NAM block is catastrophic and 
results in a diagnostic and a loader exit. 

Words 11 through 33 contain name information. These words 
are printed by the loader during load operations and 
initialization and contain comments preset by the user on 
the NAM card. 

The loader uses the NAM block to allocate available core to 
common and data storage. When several relocatable binary 
programs are to be loaded in one operation, the loader 
assigns space according to the first NAM block processed 
that specifies common storage. Data storage is assigned in 
the same manner. Subsequent NAM blocks must not require 
larger common or data storage than the first common or 
data storage to be declared. The loader recognizes violation 
of this rule as an error. As each NAM block is read by the 
loader, the core location, which is the base address of the 
program's command sequence, is printed on the list output 
device together with the program name. 

Execution time core is allocated for relocatable binary input 
as follows: 

Common 
storaget 

Command 
sequence 
storage 

Assigned at the high end of 
execution time memory 

Assigned at the low end of 
execution time memory; relo
catable binary programs are 
loaded in a forward direction. 
All assigned execution time is 
available for command sequence 
storage. If assigned command 
sequence limit is exceeded, the 
loader terminates the operation 
and issues an error message. 

Da ta storage t Assigned space in core is 
reserved for command sequence 
storage; data storage precedes 
command sequence storage for 
the first program declaring data 
storage on its N AM block. 

RBD Block 

An RBD block contains a portion of the actual command 
sequence data of the program. 

Words 2 through 59 contain the relocation bytes and words 
for the command sequence input. 

Each relocation byte is a 4-bit indicator that identifies a 
word of the command sequence input as an absolute 15-bit 
address or as a 15-bit address relative to some relocation 
base. The relocation base for a word is determined by the 
particular combination of bit settings within the relocation 
byte. 

The following are the relocation bytes in the RBD blocks: 

0000 

0001 

0101 

Absolute (no relocation) 

Positive program relocation 

Negative program relocation t 

0010 Positive common storage relocation 

t Common and data may also be assigned to system common and system data addresses. 

12-2 96769400 A 



0110 Negative common storage relocation t 

0011 Positive data storage relocation 

0111 Negative data storage relocation t 

The following is the core image of the RBO block: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

52 

53 

54 

55 

56 

57 

58 

59 
60 

0 1 0 

RO 

R4 

R8 

R40 

R44 

0 10 

I 

I 

I 

I 

I 

0 0 o 10 1 0 11 0 

Rl I R2 I 
WO 
WI 

W2 

W3 

R5 I R6 I 
W4 

W5 

W6 

W7 

R9 L RIO 1 

R41 I R42 J 
W40 

W41 

W42 

W43 

R45 f Not used 

W44 

W45 

Not used 

Where: WO is the origin address of the input block. 

RO is the relocation byte for WOo 

0 0 

R3 

R7 

Rll 

R43 

o 
0 

Wn is the nth word of the input block (n = 1 through 
45) 

Rn is the relocation byte of the nth word. 

t lllegal if execution time address is in part 1. 

tt Negative relocation is not allowed in part 1 programs. 

96769400 A 

There is one relocation byte for every word in the command 
sequence input and a maximum of 45 entries in the RBO 
block. The first word is the address relative to the start of 
the program where the loader begins storing command 
sequence data. The relocation byte for the first word 
address (storage address) of an RBO block may be 0000, 
0001, or 0011. If the field contains a number larger than 
0011, 0011 is assumed. Zero is the loading bit for all but the 
last relocation byte; one is the leading bit for the last 
relocation byte. The loader accepts absolute origins within 
the area from C516 to E316 only. 

In processing an RBO block, the loader picks up the 16 bits 
that represent the first word address of the command 
sequence data in the block. It adjusts this address for 
relocation, according to the setting of the bits representing 
its relocation byte. The resulting absolute address is the 
first word address in core to receive the command sequence 
data (stored in consecutive locations) at the completion of 
loading. Each word is relocated according to its relocation 
byte. 

In the following rules for address relocation, the letter E 
identifies the core address after adjustment for relocation. 

E=A 

E=P+M 

E = -(P + M) 

E=C+K 

E = -(C + K) 

E=D+N 

E = -(0 + N) 

Absolute addressing 

Positive program relocation 

Negative program relocation tt 

Positive common storage relocation 

Negative common storage relocationt 

Positive data storage relocation 

Negative data storage relocation tt 

Where: A is the absolute address. 

P is the positive program relocatable address. 

C is the positive common storage relocatable 
address. 

D is the positive data storage relocatable address. 

M is the base address for the program's command 
sequence storage. 

K is the base address for common storage. 

N is the base address for data storage. 

A negative relocation base is represented by the ones 
complement of the positive relocation base. 

12-3 



The first word address for the command sequence storage of 
an RBD block is positive program relocatable, absolute, or 
positive data storage relocatable. The only allowable 
absolute first word address for command sequence storage 
on an RBD block is within the range of C516 to E316 (the 
FORTRAN scratch pad area). All other absolute addresses 
generated with an ORG statement are rejected by the 
loader, an error message issued, and the load terminated. 
The loader computes the absolute value for the execution 
time storage address according tO,the rules above. 

Command sequence data is absolutized sequentially for 
execution time addresses beginning with the first word 
address specified in the RBD block. Before this data is 
absolutized, the loader checks that the absolute first word 
address is greater than the lower limit of available core and 
less than the upper limit. If not, an error message is issued 
and loading is terminated. 

Execution time core is defined as the areas of core that are 
available for the load. For an unprotected program, this is 
the area designated by the contents of F616 and F716 low 
core locations; for partitions, it is the beginning of the first 
partition and the end of the last partition designated in the 
LIBEDT control statement. 

BZS Block 

A BZ8 block contains relocation bytes, starting addresses, 
and block sizes for areas of core to be cleared to zeros when 
the program is loaded. 

The relocation byte for a starting address may be 0000, 
0001, or 0011. These relocation bytes have the same 
meaning as described for the RBD block (refer to the RBD 
Block section). In a BZ8 block entry, the loader adjusts A 
for the relocation base and stores zeros at every address in 
memory from A to A + 8 - 1. The relocation bytes for all 
but the last entry in the BZ8 block have a zero leading bit. 
The relocation byte for the last entry has a one leading bit. 
A maximum of 25 entries are contained in the block 
beginning with word two and extended to word 58; words 59 
and 60 are not used. 

When processing a BZ8 block, the loader picks up a starting 
address, a relocation byte, and a block size for a number of 
sequential locations to be cleared to zero at load time. If 
the starting address is not absolute, the loader adds the 
relocation base and stores zeros at sequential locations 
determined by the block size and beginning with the starting 
address. The rules for address relocation are the same as 
for an RBD block and the same checking procedures are 
used. 

12-4 

The following is the core image of the BZ8 block: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

47 

48 
49 

50 

51 
52 

53 

54 
55 

56 

57 
58 

59 

60 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 10 0 0 o 10 1 0 11 0 0 0 0 

R1 I R2 I R3 J R4 
A1 
81 

A2 
82 

A3 

sa 
A4 

S4 

R5 J R6 I R7 I R8 

R21 I R22 I R23 I R24 
A21 ; 

821 

A22 

822 

A23 
823 

A24 
824 

R25 I Not used 

A25 
825 

Not used 

Not used 

Where: An is the starting address of the nth entry. 

8n is the size of the BZ8 reservation for the nth 
entry. 

Rn is the relocation byte of the nth entry. 

96769400 A 



ENT Block 

Up to 14 entry point names and addresses may be included in 
an ENT block. The end of data in this block is identified by 
zeros. If the sign bit of a word containing the entry point 
address is zero, the address is program-relocatable. If the 
sign bit of the word is one, the address is absolute and in 
ones complement. Data begins in word 2 and extends to 
word 57; words 58, 59, and 60 are not used. 

The following is the core image of the ENT block: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 o 10 0 0 0 0 1 0 1 10 0 0 0 

Character 1 Character 2 

Character 3 Character 4 

Character 5 Character 6 

E1 

Character 1 Character 2 

Character 3 Character 4 

Character 5 Character 6 

E2 

Character 1 Character 2 

Character 3 Character 4 
Character 5 Character 6 

E13 

Character 1 Character 2 
Character 3 Character 4 

Character 5 Character 6 

E14 

Not used 

Not used 
Not used 

} Name 1 

} Name 2 

} Name 13 

~ Name 14 

Where: Name n is the six-character name of the nth entry 
block. 

En is the entry point address of the nth name. 
En is negative (ones complement) if 
absolute and positive if program
relocatable. 

When processing an ENT block, the loader records the entry 
point name in its table. The entry point address is adjusted 
for relocation (either program or absolute) and then 
recorded in the table of entry points. This procedure is 
repeated until the end of input is reached (a name equal to 
zero). 

For each name, the loader determines if an entry point has 
been previously recorded in the table. If so, a duplicate 
entry error has occurred. The same entry point name may 
not be used by two programs to occupy memory space at the 
same time. Only the first occurrence of an entry point 
name is valid; others are illegal and are not loaded. 

96769400 A 

EXT Block 

Up to 14 external names and link addresses may be included 
in an EXT block. 

The following is the core image of the EXT block: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 o 10 0 0 0 0 1 0 1)0 0 0 0 

2 

3 

4 

Character 1 Character 2 } Character 3 Character 4 

Character 5 Character 6 

Name 1 

5 L1 

6 

7 

8 

Character 1 Character 2 } Character 3 Character 4 

Character 5 Character 6 

Name 2 

9 L2 

50 

51 

52 

Character 1 Character 2 

~ Character 3 Character 4 

Character 5 Character 5 

Name 13 

53 L13 

54 

55 

56 

Character 1 Character 2 

D Character 3 Character 4 

Character 5 Character 6 

Name 14 

57 L14 

5tl Not used 

59 Not used 

60 Not used 

Where: Name n is the six-character name of the nth entry 
block. 

Ln is the link address of the nth name. Ln is 
negative (ones complement) if absolute 
and positive if the program is relocatable. 

Zeros indicate the end of the EXT block. If the sign bit of 
the word containing the link address is zero, the address is 
program-relocatable. If the sign bit is one, the address .is 
absolute and in ones complement. The format of the data m 
the block is the same for EXT as for ENT information. 

The loader records the external name in its table. The link 
address for the external name is adjusted for relocation 
(program or absolute) and recorded in the table of external 
names. This procedure is repeated until the end of the input 
block is reached (a zero is encountered). 

XFR Block 

The XFR block contains a transfer· address (in words 2 
through 4), which is six ASCII characters in length including 

12-5 



trailing spaces. The transfer address must be an entry point 
in the program being loaded or in another program loaded 
during the same load operation. 

The following is the core image of the XFR block: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 

2 

3 

4 

1 1 0 o 10 0 0 0 

Character 1 

Character 3 

Character 5 

0 1 Q 1JO 0 0 0 

Character 2 

Character 4 

Character 6 

The XFR block must be the last in a relocatable binary 
program. If an XFR block is out of order. a loader error 
message is issued and the load is terminated. The loader 
records the transfer address in the XFR block. If two or 
more relocatable binary programs are loaded with one 
operation. the loader saves the last transfer address for the 
start of execution. 

NONRELOCATABLE BINARY INPUT 

Input to the loader may not always be relocatable binary 
blocks. It may be in ASCII format (e.g.. EOL. system 
control statements). 

If bits 15 through 8 of the first word in the block are set to 
the ASCII code for an asterisk. information is stored in the 
input buffer in ASCII code. The end of a nonrelocatable 
binary input record is the internal code for a blank or a 
carriage return. 

12-6 

EOL BLOCK 

The EOL block. which marks the end of loader input. 
contains an asterisk followed by a T in the first word. as 
shown below. The normal procedure for termination implies 
that the operation has been error-free. 

The following is the core image of the EOL block: 

• ~ 00101010 T = 01010100 

OR = 00001101 Not used 

Not used 

CONTROL BLOCK 

Control blocks are similar to the EOL block and are stored 
in the loader's buffer in ASCII code. They are not fixed in 
length and are terminated by a blank or carriage return. 
These blocks are handled by the job processor rather than 
the loader. The loader transfers control to the job 
processor. giving it the address of the input buffer in A. *L 
and *X are examples of operating system control 
infot:mation blocks. 

*PAGE STATEMENT 

When the loader encounters a *PAGE statement. the load 
address is incremented to the start of the next 2K (2048 
words) page in core. This statement is for use only by 
systems that use the paging feature of the CYBER 18 (for 
instance. ITOS). 

96169400 C 



LIBRA~Y EDITING 13 

.' .MiHi·. 

The library editing program allows the user to: 

• Add a program or file to the program library 

• Remove a program or file -trom the program library 

• Replace one program or file with another in the 
program library 

• Replace allocatable core programs or partition core 
programs in the system library 

• Combine several relocatable binary programs in an 
absolute binary record and output this record on the 
binary output device 

• Transfer information between peripheral devices and/or 
job processor file manager files 

• Set request priorities for system directory programs 

The system library is composed of programs stored in 
absolute form. Each program in the library is referenced by 
an entry in the system library directory. The program 
identification is the directory ordinal that identifies the 
first location containing information relating to the program 
(refer to appendix D). 

The program library is composed of programs stored in 
either relocatable or absolute form. Each relocatable binary 
program in the library is referenced by one or more entries 
in the program library directory. These entries consist of all 
entry points declared in the relocatable binary program. No 
two programs in the program library may have duplicate 
entry point names, although a file may have the same name 
as an entry point in a program. Each file is referenced by a 
file name in the program library. 

The system library directory cannot be expanded since it 
resides in core. However, empty spaces can be provided 
during initialization by making an *y or *YM entry for 
programs which do not exist. An *y statement, when added 
as a dummy, must have a dummy program to save core to 
load into when updated by LIB EDT • The library editing 
program cannot predict interaction of changed programs, 
especi~y while the change is taking place; this 
responsibility remains with the user. 

LlBEDT PROGRAM 

The library editing program is stored in the system library 
by the System Initializer. The control statement *LIBEDT 
instructs the job processor to load the library editing 
program into protected core and begin operation. The 
library editing program types LIB on the comment device to 
indicate it has been entered and, after completing its 

96769400 A 

6'" A 

functions, IN is typed on the comment device. LIBEDT uses 
the system loader (see section 12) for any program load 
operations. 

The library editing program outputs to three devices: 

• Comment device - Prints error messages and indicates 
entrance to the library editing program 

• Standard binary output device - Produces absolute 
records on an external device from relocatable binary 
input 

• Standard print output device - Lists the system or 
program library directory 

CONTROL STATEMENTS 

Control statements to the library editing program are 
format records. The first character of a control statement 
must be an asterisk; the last must be a carriage return. 
Intervening characters identify the type of statement and 
action. 

The library editing program contains a list of acceptable 
control statements. Control statements read by the 
program must match an entry in this list. Each entry in the 
list is associated with an address to which the library editing 
program is transferred when carrying out the operation 
directed by the control statement. 

Table 13-1 is the standard list of control statements for the 
library editing program. 

LIBEDT, with all the preceding functions, resides in the 
system library as one program. As each particular function 
of LIBEDT is called, that function processor along with 
associated subroutines are read into core under LlBEDT 
control for execution. 

Additional control statements may be processed by adding 
the control statement and by supplying a sequence of code in 
the program to accomplish the required action in a manner 
similar to that for the existing LIBEDT functions. 

The *F and *FOK statements are pseudo statements; 
therefore, no processor or subroutines exist for these 
statements. 

*M - REPLACE PROGRAM 

An *M statement replaces a program in the system library 
that executes in allocatable core with another program. 
Programs that declare blank and/or labeled common link to 
the system common. 

13-1 



TABLE 13-1. CONTROL STATEMENTS FOR LIBRARY EDITING PROGRAM 

Transfer Address 
Input Statement to Begin Action 

*M SLINSN 

*L PLINSN 

*p PGHABS 

*U CONCTL 

*V SYSINP 

*Z LIBXIT 

*DM LISTSD 

*DL LISTPD 

The following is the statement format: 

*M,or,s,d,M,N 

Where: or is the ordinal number in the system library 
directory; it is a required parameter. If the 
ordinal number does not appear in the system 
library directory, or if the parameter is not 
specified, the statement is illegal. 

13-2 

s is a mass storage address; this parameter is 
illegal if M is blank. After the relocatable 
binary programs are loaded and linked, the 
thread of the directory entry being replaced is 
checked. If it is busy, LIBEDT waits for it to 
be freed, indicating that this directory entry is 
not currently being operated. The thread is 
then set busy to prevent the file from being 
scheduled while LIBEDT is manipulating the 
directory and writing the new file onto mass 
storage, beginning at address s. If s is not 
specified in the input statement, mass storage 
is searched for the first block of sectors large 
enough to contain this file. In most instances, 
this is at the end of the library. When the new 
program is shorter than the one it is to 
replace, it is stored on the sectors of the file 
it is replacing. At the completion of the 
update, the thread is cleared. 

d is not used and must be blank. 

M is the mass storage indicator. When M appears in 
the statement, the program to be replaced is 
mass-storage-resident and the ordinal repre
sents its position in the system library 
directory relative to other mass-storage
resident programs. When the length of the 
replacement program is less than or equal to 
the length of the program being replaced 
(rounded to the nearest sector), the new one 
overlays the old one on mass storage. 

If the replacement program is longer than the 
program to be replaced, it is added to the 

Transfer Address 
Input Statement to Begin Action 

*N FILE 

*S RPUPDT 

*T COpy 

*K CHANGE 

*R REMOVE 

*A AINSN 

*F 

*FOK 

library on the first block of available sectors 
large enough to contain the file. The total 
length of the file being loaded cannot exceed 
the length of allocatable core, including 
unprotected core. . 

If M is omitted in the statement, the program 
to be replaced is core-resident and the ordinal 
represents its position in the system library 
directory relative to other core-resident pro
grams. The length of the new program, if 
core-resident, must be equal to or less than 
that of the program being replaced. Since the 
directory entry for a core-resident ordinal 
does not contain length, no error indication 
can be given if it is longer than the program 
being replaced. 

CAUTION 

On-line use of LIBEDT for replace
ment of system library programs 
exposes the operation to the follow
ing potential faults: 

• The interrupt system is disabled 
during core-resident program 
replacement. Thus, for large 
programs, the system response 
could be inhibited for excessive 
periods of time. 

• The program length of a core
resident program being replaced 
cannot be checked by LIBEDT. 
A larger program is loaded with
out error, potentially destroying 
part of the system. 

N indicates that linking to the program library is 
not required. When a new program is added to 
the system library, the library editing program 
issues a loader request to load one or more 
relocatable binary programs from the standa~d 

96769400 A 



input device until a loader EOL statement 
(*T>, a nonloader statement, or a device 
failure is detected. If any unpatched externals 
exist at this time, automatic linkage is 
performed first to the CREP table and then to 
the CREPI table. Any unpatched externals 
that remain after this linkage are listed and 
the user has the option of continuing by typing 
an *. Termination of the load is performed by 
entering an *T. 

If the field is blank, automatic linkage to the 
program library is performed after the CREP 
linkage. Any remaining unpatched externals 
are listed and the user may continue or 
terminate as described above. 

CAUTION 

Run-anywhere FORTRAN programs 
cannot specify part I core-resident, 
upper-bank entry points as formal 
parameters in subroutine calls. 

If loading is terminated with an EOL 
statement, the library editing program looks to 
the comment device (*U statement) or the 
standard input device (*V statement) for the 
next control statement. If loading was termi
nated by a nonloader statement, the nonloader 
statement is processed as a control statement 
to the library editing program. 

*L - ADD/REPLACE PROGRAM 

An *L statement adds a new program to the library or 
replaces a program in the library. 

The following is the statement format: 

*L,epn 

Where: epn adds a new program to the library if the entry 
point name does not appear in the 
program library directory. 

96769400 A 

When an addition is made to the library, 
the library editing program reads format 
records of binary input from the standard 
input device and writes them onto mass 
storage. 

Entry point names for programs added to 
the library are recorded in the directory 
together with the beginning mass storage 
addresses. 

If the entry point name does appear in the 
directory, the program containing this 
entry point is replaced. The new entry 
point name is placed in the directory. 
When a program is replaced in the library, 
its entry point name is removed from the 
directory. 

If a mass storage unit is to be used as a system input device, 
the input operation begins at the first scratch sector. This 
feature allows the user to assemble and obtain load-and-go 
output. By assigning the load-and-go unit as the system 
input device with a monitor control statement (*K,I unit 
number), the load-and-go unit becomes the input device for 
processing an *L, entry point name control statement. 

*p - PRODUCE ABSOLUTE RECORD 

An *p statement directs the library editing program to 
produce an absolute record from one or more relocatable 
binary programs. The relocatable binary programs are 
loaded in core by the loader under control of the library 
editing program. 

The following is the statement format: 

*p ,n,R/P,sa 

Where: n is the record format parameter. 

n:f For 
omitted 

A single format record is 
written on the standard 
binary output device. 

CAUTION 

Some binary output devices (for 
example, magnetic tape drives) 
are not able to write single 
format records longer than a 
value specified in the driver. 
The driver may truncate a longer 
record or segment and write it as 
a series of physical records. The 
user should refer to the appro
priate MSOS 5 peripheral equip
ment reference manual. 

n;lF Output is in format records 
of 96 words each. If binary 
output is assigned to a mass 
storage device, this unit 
must be the library unit, as 
subsequent operations 
except the absolute file to 
start on the scratch area 
following the library (that 
is, the sector defined by the 
contents of CO l6 and CI16). 

RIP is the order of linkage parameter. The use 
of the RIP option makes it possible to 
build subprogram parts for allocatable 
foreground or to partition core programs. 
Such programs can then be stored on the 
disk as files by using the *N LlBEDT 
processor, which is overlaid in the fore
ground user buff er areas by the user 
programs. The use of this technique 
negates the need for using system 
directory entries for such files. 

13-3 



13-4 

• P parameter - If the P parameter 
field is blank. the order of linkage is 
the preset table, the program library, 
and/or the unprotected unlabeled 
common area. If any unpatched 
externals exist at this time, the *p 
processor links to the CREP table 
first and then to the CREPl table. If 
any unpatched externals still exist 
following this linkage. they are listed 
and the user can enter an * to 
continue or *T to terminate. 

If the parameter field is set to p. 
linkage is performed in the following 
order: protected unlabeled 
COMMON, CREP table, CREPl 
table, and the program library. If 
unpatched externals exist following 
the linkage. a list 'is printed and the 
user can enter an * or an *T. 

• R parameter - If the parameter 
field is set to R, linkage is performed 
in the following order: protected 
unlabeled COMMON, CREPl table, 
CREP table. and the program library. 
If unpatched externals exist following 
the linkage, a list is printed and the 
user can enter an * or an *T. 

NOTE 

n all preceding cases of the 
R/P parameter, absolutizing 
begins at the location speci
fied by F716 plus one. 

• If the parameter field is set to a 
numeric value between 1 and 16, the· 
relocatable binary programs are 
absolutized at the beginning of the 
partition specified by the field. 

In all other cases of the R/P parameter, 
absolutizing begins at the location speci
fied by F716 plus one. 

sa is the starting address and can be one of the 
following: 

hhhh16 

Entry point 
name 

Hexadecimal number as 
core address 

Core address for an 
entry point of a relo
catable binary program 
read in by the loader. 
The entry point name 
DATBAS is used to ref
erence the data block 
set aside during a 
loader operation. 

Entry point 
name + hhhh 

hhhh is added to or sub
tracted from the core 
address to find the 
starting address. 

If the starting address is specified. the 
binary output extends from the starting 
address to the last word of the load. 
Therefore, the starting address must not 
be specified beyond the last word address 
of the relocatable binary load. 

If the *p statement is unacceptable to 
LIBEDT because it exceeds the last word 
address of the relocatable. binary load, the 
error message Ell appears on the print 
device. The operator must type in an 
acceptable starting address without 
repeating an *P,n. A carriage return 
without a starting address has the same 
effect as a starting address equal to the 
contents of location F7l6 plus one. The 
error message is issued by the loader 
processing the starting address portion of 
an *p statement. 

*u - GET NEXT CONTROL STATEMENT 

An *U statement directs the library editing program to go to 
the comment device for subsequent control statements. 

The statement has the following format: 

*U 

*V - GET NEXT CONTROL STATEMENT 

An *V statement directs LIBEDT to read control statements 
from the specified logical unit until an *U statement is read. 

The statement has the following format: 

*V,lu,m 

Where: lu is the logical unit; if the logical unit is not 
specified, LIBEDT (system) input unit is 
assumed. 

m is the mode of the control statement 

A Formatted ASCn mode 
B Formatted binary mode 

If mode is not specified, the control 
statements are read in formatted ASCn mode. 

If the control statement *LIBEDT is read under an *Voption 
in the job processor, LIBEDT continues processing with the 
same *V option. 

96769400 A 



*Z - TERMINATE PROCESSING 

An *Z statement terminates the library editing program 
processing and returns control to the job processor. 

The statement has the following format: 

*z 
$1i~-r&\ 

*DM - LIST PAl e IlhM LIBRARY DIRECTORY 

An *DM statement directs the library editing program to list 
the, system library directory on the print output device and 
includes an *y or an *YM ordinal at the begillning of each 
line. 

The statement has the following format: . 

*DM 

The format of the dump is n lines of hexadecimal numbers as 
shown: 

Group Q. _1_ _ 2_ _ 3 _ _ 4 _ _ 5 _ _ 6 _ _7 _ 

~[ 
xxxx xxxx xxxx xxxx xxxx 0000 xxxx 

xxxx xxxx xxxx xxxx xxxx 0000 xxxx 

Where: n is the ordinal of the system library program 
(n ~ 256). One line is provided for each *YM 
statement: 

word 1 has the format: 

15 14 13 987 

1 1 1 1.'0 I 
i run area: 0 = part 0, 1 = part 1 , 

Where: rc = Request code $' 
rp = Request priority 
cp = Completion priority 

4 3 

rp 

word 2 = Lowest possible execution address in core 

word 3 = Thread address 

cp 

word 4 = Q register contents when program is entered 

word 5 = Program length in words 

word 6 = 0 

word 7 = Mass storage address of program 

o 

The form of the directory entry is shown in appendix D. 

96769400 A 

?i2.C6l?A-Vl.. 
*DL - LIST SJ'aRM LIBRARY DIRECTORY 

An *DL statement directs the library editing program to list 
the program library directory on the standard print output 
device. 

The statement has the following format: 

*DL 

The format of the dump is n lines with each line as shown: 

MNEMON 

I 
program 
name: up 
to six 
alphanumeric 
characters 

$hhhh , i 
starting 
address 
of program 
on mass 
storage 

[file/program 
rldeSignation 

L permanent file: 
complement of 
number of 
sectors in file 

programs: 0 

Where: one line is supplied for each program in the 
directory. 

*N - MODIFY PROGRAM LIBRARY 

An *N statement is used to add; replace, or edit a 
permanent binary file in the program library. When a file is 
added or replaced, only the name and mode need to be 
specified. 

The statement has the following format: 

*N,n,w
1
,w2,m 

Where: n is the name of the file; the name is a one- to 
six-character identification by which the file 
is addressed. 

w 1 is the first word of the file to be changed. If 
only part of a file is to be changed, w 1 and w 2 
(where w

1 
is less than w2) are used. 

w2 is the last word of the file to be changed (refer 
to W1). If w 2 is omitted, only the word 
specified by w 1 is changed. 

m is the mode of input. 

A ASCII format records 
B Binary format records 

Input to an *N processor consists of format records of 
96 words or less. 

Input is terminated with any valid LIBEDT or *Z statement. 

The load-and-go unit can be used as an input device for 
processing an *N statement in the same way as an *L 
statement (see the *L section). 

13-5 



*S - SET CORE REQUEST PRIORITY 

An *S statement sets the core request priority of an entry in 
the system directory. This is the priority of the area of core 
where the file runs. 

The statement has the following format: 

*S,or,v,M 

Where: or is the ordinal number that refers to an entry in 
the system directory. 

v is the level at which the request priority is to be 
set. 0 ~ v ~ 15. 

M indicates that the ordinal number is mass
storage-resident. If not set to M, the ordinal 
number is core-resident. 

*T - TRANSFER INFORMATION 

An *T statement permits the transfer of information 
between any two peripheral devices such as card-to-tape or 
tape-to-printer. An *T can also be used ~o transfer 
information to, from, or between job processor fIle manager 
files. 

An *T statement can be used in conjunction with an *F 
pseudo LIB EDT statement to perform information transfers 
within a batch job. Upon recognizing an *F during a transfer 
operation, LIBEDT outputs the IN message and proceeds to 
read the next control card. 

If the file manager is present in the system and job 
processor files are used, LIBEDT can be used to perform 
library functions with those files, provided they have been 
assigned by an *OPEN statement in the job processor. 

Example: 

{ 
*JOB Call job processor. 
*OPEN ,FILEA,1234, W ,20 Assign files as 

Call input. 
*LIBEDT Call LIBEDT. 
*V,20 Go to FILEA for 

input statements. 

*T,20,B,7,B Transfer informa-
tion from FILEA 
to logical unit 7. 

or 

*L,PROG Put relocatable 
program previous-
ly punched on 

or FILEA on library. 

*N,PROGl, , , B Put absolutized Typical file punched on Uses FILEA on library. or 

*M,10", M Put allocatable 
core program 
from FILEA on 

or system library. 

*A,12,2,1, , , , , Put partition core 
program from 
FILEA on system 
library 

13-6 

The following is the format for an *T statement: 

*T ,i,mi,o,mo,n,f 

Where: i is the input logical unit; if omitted, LIBEDT's 
standard input binary unit is selected. 

mi is the mode of input. 

A 
\ B 

ASCII 
Binary 

o is the output logical unit; if omitted, LIB EDT's 
standard output unit is selected. 

mo is the mode of output. 

A ASCII 
B Binary 

n is the upper limit on the number of records to be 
transferred. If n is omitted, records are 
transferred until the input device is empty or 
fails, encounters an *F control statement, or 
the number of files specified is reached. The 
upper limit of the number of records to be 
transferred is decimal. At the end of transfer 
the number of records and files encountered is 
printed in decimal format and output on the 
standard print device. 

f is the upper limit on the number of files to be 
transferred. If f is omitted, files are trans
ferred until the input device is empty, fails, 
encounters an *F control statement, or the 
number of records specified is reached. The 
upper limit of the number of files to be 
transferred is decimal. At the end of transfer 
the number of records and files encountered is 
printed in decimal format and output on the 
standard print device. 

*K - CHANGE DEVICES 

An *K statement, which may occur in any order with respect 
to other statements, allows the operator to change LIBEDT 
devices. These changes are internal to LIBEDT and do not 
affect the system device assignments. 

The parameters of an *K statement may be in any order, but 
must be separated by commas. The statement *K,I2,L5,P3, 
sets the LIBEDT input unit to logical unit 2, its print unit to 
logical unit 5, and its binary output unit to logical unit 3. 

An *K statement is terminated by a carriage return. 

The following is the format for an *K statement: 

*K,nu,Plu,Llu 

Where: lu is the logical unit number. An error exit is taken 
if a unit number designates a protected device 
or a print unit specifies a mass storage device. 

is the LIBEDT input unit. 

P is the LIBEDT binary output unit. 

L is the LIBEDT print unit. 

96769400 A 



*R - REMOVE PROGRAM 

An *R control statement removes a program with entry 
point n from the program library. 

The statement has the following format: 

*R,n,F 

Where: n is the entry point of the program name of the 
file to be removed. If F is included, the file 
name n is removed. 

F specifies that n is a file name. 

*A - REPLACE PARTITION PROGRAM 

An *A statement replaces a partition program in the system 
library with another partition program. 

The program to be replaced is mass-storage-resident. The 
ordinal represents its position in the system library directory 
relative to other mass storage programs. When the length of 
the replacement program is less than or equal to the length 
of the. program being replaced. (rounded to the nearest 
sector), the new program overlays the. old one on mass 
storage. If the replacement program lS longer than the 
program to be replaced, mass storage is obtained from the 
first area of the disk large enough for the file. In most 
cases this is at the end of the library. 

Next the loader request is issued to load one or more 
reloc~table programs from the standard input device until a 
loader EOL statement, a nonloader statement, or a device 
failure is detected. If the L parameter was specified, the 
program interrogates the user by typing * on the output 
comment medium. If the user wants to load from another 
input logical unit, the reply is *K,nu, and a carriage return. 
The program continues until is is t~rminated. again. If t~e 
user is through loading when an * mterrogatIon message IS 
sent requesting another logical unit, the user must type 
an *T and press RETURN. The loading process terminates. 

If any unpatched externals exist at this time, the program 
links: 

• Other programs just loaded 

• The CREP1 table, if present 

• The CREP table 

• The program library if the P parameter is set 

Any unpatched externals at the end of this load are listed; 
to continue, the user must type an * and press RETURN. 

After the binary programs are loaded and linked, a check is 
made on the thread of the directory entry being replaced. If 
busy, LIBEDT waits for it to be freed, indicating that this 
directory entry is not currently being operated. The thread 
is then set busy to prevent scheduling of the program while 

96769400 A 

LIBEDT is manipulating the directory and writing the next 
program on mass storage. At completion of update, the 
thread is cleared. 

If loading is terminated with an EOL statement, the library. 
editing program looks to the comment device (an *U 
statement) or standard input device (an *V statement) for 
the next control statement. If loading was terminated by a 
nonloader statement, the nonloader statement is processed 
as a control statement to the library editing program. 

The system library directory cannot be expanded sinc~ it 
resides in core. However, empty spaces can be provlded 
during initialization by making an *YM entry for programs 
that do not exist. The library editing program cannot 
predict interaction of change~ program.s,. ~speciall~ wh!le 
the change is taking place. Thls responslbllIty remams WIth 
the user. 

The following is the format for an *A statement: 

* A,ord,s,n,d,c,l,p,m 

Where: ord is an ordinal of the program being replaced in the 
system library directory. If the ordinal 
number is not in the system library directory, 
or it is not specified, the statement is illegal. 

s is the starting partition number, 0 through 15; if 
omitted the statement is illegal. Partition 16 
may be' indicated if unprotected core is in 
part 1. If partition 16 is used, the n parameter 
must be one or not used. Partition 16 is 
unprotected core and programs are absolutized 
starting at F7 16 plus one. The user must 
schedule any program absolutized for execu
tion in partition 16 at a completion priority 
greater than two. 

n is the number of partitions the program requires 
to load a program. The range of n is 1 through 
16; if n is omitted, one partition is assumed. 

d is the data base indicator; this is an alphabetic 
indicator, and if omitted, data area within the 
program is created. If it is equal to d, the 
system data base is used. 

c is the common indicator; this is an alphabetic 
indicator, and if omitted, common area within 
the partition of the program is created. If 
specified, the common area in system common 
is used. 

is the multiple input units indicator; this is an 
alphabetic indicator, and if omitted, loading is 
performed from only one logical unit. If 
specified, the system interrogates the user for 
new input logical units. This interrogation is 
repeated when the new input unit has 
completed loading and continues until the user 
terminates the load. 

13-7 



p is the link program library indicator; this is an 
alphabetic indicator, and if omitted, the 
program library is not linked to loaded 
programs. 

m is the memory map indicator; this is an 
alphabetic indicator, and if omitted, no 
memory map is printed. 

*f - END-Of-TRANSfER INDICATOR 

The *F statement is a pseudo instruction to the *T processor 
of LIBEDT. When an *F followed by two spaces is 
encountered, the current *T operation is terminated and the 

13-8 

encountered, the current *T operation is terminated and the 
next LIB EDT control statement is read from the standard 
input device. 

*fOK - TRANSfER INDICATOR 

This statement, like the *F, is a pseudo instruction to the *T 
processor of LIB EDT. If this statement is encountered at 
input, an *F is transferred to the output device. This allows 
for use of *F on devices such as magnetic tape, paper tape, 
etc. 

96769400 A 



I 

SYSTEM MAINTENANCE AND UTILITY ROUTINES 14 

,s 

To increase the ease of installing, updating, and debugging 
programs, the CYBER 18/1700 MSOS has system and 
program maintenance routines. These routines are discussed 
in this chapter. 

CALLING STATEMENTS 

The following list gives the calling name for the various 
routines which are described in sequence in this section. 

INITIALIZER 

SILP System initializer 
program 

loading 

LIBRARY PREPARATION 

SKED Skeleton editor 

LIBILD 

LIBMAC 

SETPV4 

LIST AND SORT 

LULIST 

LISTR 

EESORT 

Library builder 

Macro library prepara tion 
routine 

CYBER 18/1700 editing tape and 
update program (SETUP) 

Logical unit listing 

List relocatable 

Entry point/external sort and list 

OPSORT Operand sort 
PROGRAM COMPRESSION 

CYFT COSY format 

COSY Source program compression 

LCOSY List COSY 

I/O UTILITIES 

DTLP Disk-to-tape loading program 

EDTLP Extended DTLP 

DSKTAP Disk-to-tape program 

10UP Input/output utility package 

FILE EDITING 

EDITOR Word processing text edi tor 

PROGRAM TRACE 

TRACE On-line trace 

All of these programs can be called from the job processor 
using at *NAME statement. 

SYSTEM INITIALIZER LOADING 
PROGRAM (SILP) 

The system initializer loading program provides a means of 
loading the system initializer into core. The system 

96769400 C 

,g 

initializer must be absolutized and put on the disk prior to 
using SILP with a file name SI. 

The procedure to execute this program is: 

*JOB 
J 
*SILP 

If unprotected core is in the upper 32K, SILP types: 

THE SYSTEM INITIALIZER WILL BE MOVED TO 
LOCATION 4000 AND EXECUTED 

TURN OFF PROTECT SWITCH AND TYPE CARRIAGE 
RETURN 

If unprotected core is in the lower 32K, the system 
initializer is executed where it is brought into core. 

NOTE 

The System Initializer must be loaded into 
the lower 32K of core. 

SETUP (SETPV4) 

The CYBER 18/1700 editing tape and update program 
(SETUP) provides a user with the capability of building and 
maintaining installation materials for all CYBER 18/1700 
products. It increases the ease of handling PSR updates and 
binaries of user modifications that are made to the system 
and other associated software. 

SETUP allows the user to make changes to installation 
materials in any form (paper tape, magnetic tape, or cards). 
It is a mechanism to add, remove, or change the binaries 
comprising an installation tape or deck. It has the 
advantage of being able to handle products, such as MSOS 
FORTRAN, which have the same program name but unique 
programs contents. A control card deck or tape that is used 
to build a system can be saved and reused when 
reconstruction becomes necessary. 

THEORY OF OPERATION 

The SETUP program must be able to determine the type of 
update it is doing and where to find the working materials, 
which is determined by an *L control statement. An *C 
control statement permits the user to know the position of 
each type of entry (binary control statement, relocatable 
binary data, absolute binary information, and ASCII records) 
relative to other units. SETUP works on a positional theory 
and internally identifies an entry with respect to its position 
from the beginning of the information (tape, deck, etc.). 

As the program is trying to insert, delete, or replace, it 
expects a new binary to be next on the binary unit, unless 
informed to an * that the last binary is to be used again. 

14-1 



Control statements must be in the order of their respective 
references on the master unit. If these statements are not 
in the correct order, the control statements are sorted into 
the correct order. Updates on the binary unit must be in the 
order of their respective references on the master unit; the 
updates are not sorted. When the control set contains *S 
commands, the control statements are not sorted. They are 
executed in the order input. 

All control information is given with respect to the master 
unit. All *1, *0, and *R statements alter the information on 
the master unit; during use of an *S statement the master 
unit is still used for reference. Although it appears that 
selection is made freely from both binary and master units, 
output is done with respect to the master unit. 

CONTROL STATEMENTS 

Control statements may be input from the following devices: 

• Teletypewriter 

• Paper tape 

• Cards 

• Magnetic tape 

At the start of execution, the standard input unit is used as 
the control statement input unit. A listing of all control 
statements input appears on the standard list device. 

*L STATEMENT 

The following is the control statement format. 

*L, lul , lu2, lU3 

Where: lU1 is the unit containing the update binaries or input 
unit 1 (binary unit). 

lU2 is the old master unit or input unit 2 (master 
unit). 

lU3 is the unit to receive new output (new unit). 

All logical unit numbers used must be the same as for MSOS. 

*1 STATEMENT 

*I,n 
*I,n,* 

This statement allows binary or ASCII input on unit lUI to 
be inserted after the program in position n on the master 
tape. If an *1, n, * statement is used, the binary inserted is 
the same as the last one specified on the previous *1 control 
statement. 

*0 STATEMENT 

*D,n 
*D, m, n 

14-2 

This statement allows the binaries in positions m to n to be 
deleted from the old master unit lu2• The deleted positions 
do not appear in the output. 

*R STATEMENT 

*R,n 
*R,n,* 

This statement allows replacement of modules on the old 
master unit lU2 with the binary or ASCII input on unit lu 1. 
The n parameter defines the position on unit lu 2 and an * 
parameter signals replacement to be made with the last 
binary used in a preceding control statement. 

*S STATEMENT 

*S, a, m 
*S, a, m, n 

This statement selects a module or modules from unit a to 
be output. The first unit to be output is m and the last unit 
output is n. The a parameter has one of the following forms: 

B 

M 

IU1 unit specified on an *L control statement 

lU2 unit specified on an *L control statement 

*C STATEMENT 

This statement instructs SETUP to list binary and/or ASCII 
information from unit lu 2' the old master. Each unit of 
information listed has a positional number assigned to it. 
The following are some typical examples. 

SYSTEM TAPE INSTALL 

1 *YM, LlBEDT 
2 *YM, LOADSD 

28 *L 

29 DECK - SYSDAT 

FORTRAN TAPE INSTALL 

1 *K, 16, P8 
2 *JOB 
3 DECK -FTN 
4 DECK -GOA 
5 DECK - CFIVOC 

96769400 A 



Four types of units of information can be assigned and used 
by SETUP. 

• Binary control statements 

• Relocatable binary data blocks 

• Undefinable binary blocks of length less than or equal to 
96 decimal woros 

• ASCII records of length less than or equal to 80 
characters 

NOTE 

Units referenced in the following 
description as B, M, and N refer to the 
following as defined under an *L control 
statement. 

*0 STATEMENT 

*0, m, n 

Binary update 

Old master unit 

New output unit 

This directs SETUP to begin otuput. Parameter m is the old 
master position reference to begin the output and parameter 
n is the last position to be output. Multiple *0 statements 
can be used; however, output parameters m and n cannot be 
reused. For example: *0, I, 5 and *0, 2, 4 are not allowed. 
Since the input and old master have been stored on disk, 
SETUP has no capability to rewind in the case of magnetic 
tape or reread in the case of punch cards or paper tape. 

*E STATEMENT 

This is the end of control statement set identifier. It allows 
SETUP to begin executing the control statements. An *E 
statement must be the last control statement in the set and 
must be present to continue execution. 

INSTALLATION 

SETUP is coded in FORTRAN and assembly language and is 
installed on the program library. The FORTRAN object 
library is not required for execution of those segments 
written in FORTRAN. 

OPERATION 

The following are the operating instructions to call and 
execute SETUP. 

Type *JOB 

Type *SETPV4 

SETUP is loaded by the loader. Execution begins with a 
READ on the standard input unit of the control statements. 
All control statements are read at the same time during 
program irtitiation. When execution has finished, control 
goes back to the job processor. 

96769400 A 

EXECUTION 

Execution proceeds in several paths, depending on unit 
specification. It is assumed that an *C control statement 
has been previously executed to produce directory reference 
for the old master installation tape. 

• Control statements are read from the standard input 
unit. 

• If an *L statement defines parameter b as· equal to 
parameter m or parameter b equal to parameters m and 
n, the update binaries are read in from unit B unit! an 
end-of-file is read. A message is issued to the comment 
device to mount ther old installation tape on unit M 
(same as unit B). Response to this message is a carriage 
return. 

• The device containing the old master installation tape is 
read and stored on disk. 

• If parameter m equals parameter n or parameter b 
equals parameters m and n, a message to mount the new 
tape to receive the newly formed install tape is typed 
on the comment device. Response to this message is a 
carriage return. The update is made and stored on mass 
storage and is output when the unit is ready to receive 
it. 

If an *L statement defines all three units to be different, 
the update is made and output is as follows. 

• Control statements read from the standard input unit 

• Binary updates read from unit B 

• Building and editing performed from unit M 

• Outputting of the new tape or deck to unit N 

TIME AND STORAGE CONSIDERATIONS 

If units B, M, and N are separate units, the update and 
output can proceed with the minimum amount of mass 
storage usage and in the minimum amount of time. If unit B 
equals unit N, the update binaries are read and placed on 
mass storage. If only two units are available, assignment 
must be unit B to unit N and not unit M to unit N. In the 
latter case, both the update binaries and old installation 
tape must be stored, thus resulting in excessive mass storage 
allocation and updating time. 

If the control deck contains an *S statement, all the binaries 
on units Band M must be placed on mass storage. An *S 
statement must not be mixed in the same execution with *1, 
*R, and *D statements. 

Time and storage minimums are achieved through use of *1, 
*R, and *D statements during executions where B, M, and N 
are separate high-speed peripherals. Maximum time and 
storage result when an *S control statement is used during 
execution where units B, M, and N are the same physical 
units. 

SETUP ERROR MESSAGES 

Error messages are output on the standard list device. 
Errors occur in two phases: statement reading and 
statement execution. All errors are fatal; however, some 

14-3 



errors may be delayed fatal (OF) allowing all statements to 
be read and diagnosed. Errors occurring in the statement 
execution phase are immediately fatal (IF) and cause an exit 
to the job processor (refer to the MSOS Installation 
Handbook). 

SETUP CONSTRAINTS AND LIMITATIONS 

The following are constraints and limitations imposed by 
internal programming techniques and functions: 

• The maximum logical unit value is 99 (decimal). 

• The maximum number of control statements is 1200. 

• The maximum reference entry number is 32767 (see 
next entry). 

• The maximum number of entries that can be stored on 
mass storage is 1000 for both the B unit and M unit. If 
entries do not need to be stored on disk, the maximum 
is 32767. 

• All reference numbers refer to the unit defined as M in 
an *L statement. 

• An *C may only appear once, which is immediately 
after an *L statement. 

• An *S statement is not to be sorted. 

• An *S statement cannot be mixed in a job with an *1, 
*R, and *D statements. 

• The largest control statement may not exceed 16 
characters. 

• Control statements that are entered (from other than 
cards) must have two spaces after the last character. 

• An end-of-file on paper tape is considered to be a tape 
motion failure condition; e.g., the reader runs out of 
tape. 

• The mass storage requirements are 50 sectors, plus one 
sector for each record stored as a result of unit 
assignment or control statement selection (*S or *1, 
m, *). 

• Mass storage overflow occurs when access reaches the 
value of MAXSEC defined by the system. 

• All input from nine-track magnetic tape is assumed to 
be binary information. SETPV4 relies upon a switch 
mode error to change from ASCII mode to binary mode. 
A switch error does not occur on a 609 Magnetic Tape. 
This makes the use of SETPV 4 with 609/608 
combinations useless. 

SAMPLE REPLACEMENT USING SETUP 

Figure 14-1 shows a control statement deck and table 14-1 
shows sample deck structures. 

14-4 

SAMPLE DUPLICATE REPLACEMENT USING SETUP 

Figure 14-2 shows a control statement deck and table 14-2 
shows sample deck structures. 

TWO INPUT SELECT OPTIONS USING SETUP 

A control card deck is shown in figure 14-3 and a sample 
deck structure is shown in table 14-3. 

SKELETON EDITOR (SKED) 

A skeleton is a file that consists of requests to the 
installation file building program, L18ILO. These requests 
specify the order and identification of the binary programs 
that are to be retrieved from a set of library programs and 
included into the installation file that is being built. The 
skeleton itself contains no binary programs; it specifies the 
programs that are to be put in the installation file, which is 
the output from LI8ILO. The skeleton may also contain 
LIBEOT and system initializer control statements, which 
will be included in the installation file. 

The following are typical skeleton statements: 

* B'SYSOAT' 

* S, ENOOV 4, 7FFF 

*YM, LIB EDT, 1 

*L, 

*M 

*K,15 

*p 

* END 

Include binary program 
SYSOAT. 

Assign value 7FFF to entry 
point name ENOOV 4. 

Define system directory 
entry LIBEOT as ordinal 1. 

Load part 0 core-resident 
programs. 

Load system library ordinal. 

Change standard input to 
LU 5. 

Produce an absolute record. 

End of the skeleton file 

The purpose of the skeleton editor SKEO is to provide a 
facility for modifying a skeleton to allow changes to an 
existing system. SKEO cannot be used to modify the 
SYSOAT program, but it can be used to redefine the order 
and content of the program and system libraries. 

To generate a system skeleton, it is necessary to read the 
system's installation file into SKEO via a Build command. 
To change the skeleton, the user has a number of commands 
enabling him to add, delete, or change the statements in the 
file. The modified skeleton may then be output on a 
convenient medium, such as cards or tape, and used as input 
to LIBILO. 

96769400 A 



96769400 A 

*E 

*0,1,11 

*R,8 

*R,6 

Figure 14-1. 

END-OF-JOB 

OUTPUT PROGRAM"S 1 THROUGH 11. 

REPLACE EIGHTH PROGRAM ON M 
WITH THE THIRD BINARY FROM B. 

REPLACE SIXTH PROGRAM ON M WITH 
THE SECOND BINARY INPUT FROM B. 

REPLACE TIflRD PROGRAM ON M WITH THE 
FIRST BINARY ON B. 

ASSIGN LOGICAL UNITS. 

Control Statement Deck for Sample Replacement Using SETUP 

TABLE 14-1. SAMPLE DECK STRUCTURES FOR REPLACEMENT USING SETUP 

Tape on Unit Tape on Unit Tape On Unit 
B Contains M Contains N Will Contain 

C A 1 A 

F B 2 B 

H C 3 (£] t 

End-of -file D 4 D 

E 5 E 

F 6 0 
G 7 G 

H 8 [ill 
I 9 I 

J 10 J 

K 11 K 

End-of -file End-of -file 

t DDesignates programs originating from unit B. 

14-5 



14-6 

*R, 14, * 

END-OF-JOB 

OUTPUT PROGRAMS 1 THROUGH 20 

REPLACE 19TH PROGRAM ON M 
WITH SECOND BINARY ON B. 

REPLACE 11TH PROGRAM ON MWITH 
SECOND BINARY ON B. 

REPLACE SECOND, SEVENTH, AND 14TH PROGRAMS 
ON M WITH FIRST mNARY ON B. 

*L, 6, 7,6 ASSIGN THE LOGICAL UNITS. 

Figure 14-2. Control Statement Deck for Sample Duplicate Replacement Using SETUP 

TABLE 14-2. SAMPLE DECK STRUCTURES FOR DUPLICATE REPLACEMENT USING SETUP 

Tape On Unit Tape On Unit Tape On Unit 
B Contains M Contains N Will Contain 

B A 1 [!] 
K B 2 [!] t 

S C 3 C 

End-of-file D 4 D 

E 5 E 

F 6 F 

G 7 [[) 
H 8 H 

I 9 I 

J 10 J 

K 11 K 

L 12 L 

M 13 M 

N 14 ~ 
a 15 a 

t DDesignates programs originating from the B unit. 

96769400 A 



TABLE 14-2. SAMPLE DECK STRUCTURES FOR DUPLICATE REPLACEMENT USING SETUP (Contd) 
--

Tape On Unit Tape On Unit Tape On Unit 
B Contains M Contains N Will Contain 

P 16 P 

Q 17 Q 

R 18 R 

S 19 mt 

T 20 T 

End-of-file 

t . 
ODesignates programs originating from the B unit. 

*E END-OF-JOB 

OUTPUT PROGRAMS 1 THROUGH 20. 

SELECT 20TH PROGRAM FROM UNIT M. 

SELECT 19TH PROGRAM FROM UNIT B. 

*S, M,lS SELECT 18TH PROGRAM FROM UNIT M. 

SELECT 12TH THROUGH 17TH PROGRAMS FROM UNIT B. 

SELECT NINTH THROUGH 11TH PROGRAMS FROM UNIT M. 

SELECT EIGHTH PROGRAM FROM UNIT B. 

SELECT FOURTH THROUGH SEVENTH PROGRAMS FROM UNIT M. 

SELECT THIRD PROGRAM FROM UNIT B. 

SELECT FIRST AND SECOND PROGRAMS FROM UNIT M. 

*L, 6,7,15 ASSIGN THE LOGICAL UNITS. 

Figure 14-3. Control Statement Deck for Two Input Select Options Using SETUP 

96769400 A 14-7 



TABLE 14-3. SAMPLE DECK STRUCTURE FOR TWO INPUT SELECT OPTIONS USING SETUP 

Tape On Unit Tape On Unit Tape On Unit 
B Contains M Contains N Will Contain 

A 1 A A 

B 2 B B 

C 3 C @] t 

D 4 D D 

E 5 E E 

F 6 F F 

G 7 G G 

H 8 H [[J 
I 9 I I 

J 10 J J 

K 11 K K 

L 12 L ~ t 
M 13 M rm 
N 14 N [!J 
0 15 0 @] 
P 16 P (!] 
Q 17 Q ~ 
R 18 R R 

S 19 S [!] 
T 20 T T 

End-of -file End-of-file 

to Designates programs originating from unit B. 

NOTE 

See the Skeleton Editor section in this 
manual for a description of the skeleton 
statements. 

In addition to the modification commands, SKED has the 
facility to list all or part of the skeleton, resequence the 
record numbers, and allow tape motion control. 

SKED runs wider the control of the job processor and can be 
brought into execution by entering an *SKED command. 

14-8 

SKED identifies itself by typing SKED IN on the console, 
followed by NEXT (SKED types NEXT whenever it is ready 
to receive a command). The user enters a valid command, 
followed by a carriage return. A command consists of a 
unique command name followed by any necessary arguments. 
The command name may be abbreviated to as few letters as 
will keep the name unique; it may not contain more letters 
than the forms given in the list below. No embedded blanks 
are allowed in the command, but commas are required to 
separate arguments. The following are the editing 
commands. 

96769400 A 

i· 



LIST 

COMAND,LU 

BUILD,LU 

LOAD,LU 

CATLOG,NI,N2 

DELETE,NI,N2 

INSERT,m,LU 

DUMP,LU 

CHANGE,ILUl,LU2 

EXIT 

Type a brief description of 
the valid commands. 

Change the command input 
device to LU. 

Read the installation file 
from device LU and build 
the skeleton file in the 
scratch area. 

Read the skeleton file from 
device L U and transfer it to 
the scratch area. 

List records numbered NI 
through N2 from the 
skeleton file. 

Delete records NI through 
N2 from the skeleton file. 

Read new skeleton records 
from L U and insert in the 
file immediately following 
record number n. 

Write the skeleton file onto 
device LU. 

Find all *K records that 
specify LUI as the input 
device and change LUI to 
LU2. 

Exit from SKED and return 
control to the job processor 
or respond to the NEXT 
statement with a carriage 
return. 

The tape motion commands have the same formats as those 
in DEBUG. Pseudo tape motion of the skeleton file is 
accomplished by specifying SK as the logical unit. These 
commands are: 

REW,LU 

UNL,LU 

ADF,LU,n 

BSF,LU,n 

ADR,LU,n 

BSR,LU,n 

WEF,LU,n 

Rewind LU. 

Unload LU. 

Advance n files on LU. 

Backspace n files on LU. 

Advance n records on LU. 

Backspace n records on LU. 

Write n file marks on LU. 

The following are further descriptions of some of the editing 
commands: 

• COMAND - If Lu is a device other than the standard 
input comment device, the comments are output on the 
standard list output device. 

• BUILD - When an end-of-file condition is detected, 
the user is asked: 

ANY MORE INPUT. ENTER LU 

96769400 A 

If there is more input, type the logical unit number 
where the information will be read from, followed by a 
carriage return. If there is no more input, enter a 
carriage return. 

• LOAD - The load command functions in the same way 
as BUILD. 

• CATLOG - The three forms of the CATLOG command 
are as follows. 

-CATLOG - Resequence and list the entire skeleton 
file. 

-CATLOG,n - List the record number n of the file. 
-CATLOG,NI,N2 - List records numbered NI through 

N2. 

The only way to resequence the file, with the exception 
of the DUMP command, is by the simple command 
CATLOG. Prior to resequencing, there are gaps in the 
sequence numbers where records have been deleted; any 
inserted record appears in its proper position, but 
without sequence numbers. 

• DELETE - No record may be referenced that has been 
deleted or inserted since the file was last resequenced. 

A maximum of 500 record deletions is allowed before 
the file must be resequenced. When the number of 
deletions exceeds 500 on a certain command, the delete 
command is ignored and the user receives a message 
asking him to resequence the file. 

The last record in the file is the *END record and may 
not be deleted. 

The command has two forms: 

-DELETE,NI - Delete record number Nl. 
-DELETE,Nl,N2 - Delete records Nl through N2, 
where NI !: N2. 

.• INSERT - No record may be referred to which has 
been deleted or inserted since the file was last 
resequenced. No insertion may be made after the last 
record. 

• DUMP - The skeleton is dumped onto the specified 
device with an end-of-file written at the end. The file 
is automatically resequenced and listed after the dump 
is complete. 

ERROR CONDITIONS AND MESSAGES 

If a device failure occurs, the appropriate standard MSOS 
device fa~lure message is printed on the console. This 
condition commonly occurs with the device being used to 
build or load the skeleton file (e.g., the card reader has read 
all the cards without detecting an end-of-file). When failure 
is not an error, respond to the ACTION query with a CU, 
which has the same effect as an end-of-file. The program 
then continues. In this case, the user is asked if there is any 
more input. 

The following are the SKED error messages: 

INVALID COMMAND 

The command name was not valid. 

14-9 



ERROR IN COMMAND FORMAT 

An error was made in the format of the command 
statement (e.g., omitted argument, omitted 
comma, etc.). 

COMMAND NAME NOT UNIQUE 

Not enough letters were included in the command 
name to specify it uniquely. 

LU NOT LEGAL FOR COMMANDS 

A check is made for a valid device type for any 
commands requiring an LU. 

SKELETON NOT LOADED 

An operation on the skeleton was attempted before 
the skeleton was loaded or built. These operations 
are CATLOG, INSERT, DELETE, DUMP, CHANGE. 

RECORD NUMBER IS ZERO 

A record number of zero was entered as an 
argument. 

INVALID CHARACTER IN NUMBER 

A nondecimal character was included in a record 
number argument. 

INVALID RECORD NUMBER 

The record number was outside the range of the 
skeleton file or the second number in the argument 
list was less than the first. 

RANGE CONTAINS NUMBER ALREADY DELETED 

A reference was made to a record that was deleted 
since the file was last resequenced. 

RECORDS HAVE BEEN PREVIOUSLY DELETED 

A CATLOG command was entered in which the 
range of numbers requested have all been deleted. 

NO INSERTION RECORDS AT SPECIFIED LU. 

The device specified did not contain any insertion 
records. 

RECORDS NOT DELETED 
SKELETON 

PLEASE RESEQUENCE 

An attempt was made to delete more than 
500 records since the file was last resequenced. 

RESPONSE MUST BE LU(CR) OR (CR) 

An invalid response was given to 

ANY MORE INPUT. ENTER LU 

ENTER COMMANDS ON INPUT COMMENT DEVICE 

This message will appear when one of the preceding 
error messages has occurred and the command 
input device was not the console. 

14-10 

LIBRARY BUILDER (LiBILD) 

The library and installation file builder (LIBILD) provides the 
following capabilities: 

• Merges input libraries of relocatable binary programs 
into a single output library and discards duplicated 
programs 

• Produces an installation file suitable for building a 
system via the system initializer or LIBEDT 

• Conversational control statements 

• Batch control statements 

• Absolutized file input and output to installation file; 
e.g., MACSKL, MACROS 

• Input and output devices fully selectable via logical unit 
designations 

• Substantial recovery features 

• Diagnostics in English 

• Prompts messages and pauses at appropriate times to 
allow the operator to mount tapes, etc. 

SUMMARY OF OPERATION PHASES 

• Control statements - Required 

• Library input - Required 

• Library output - Optional 

• Definitions input - Optional 

• Skeleton input and installation output - Optional 

DEFINITION OF TERMS 

Absolute file 

A set of binary records (whose first record is neither a 
N AM block nor an asterisk) preceded by a record of the 
form: 

*N ,xxxxxxmB 

and terminated by a record having an asterisk (*) as the 
first character. For example, if the macro skeleton is 
on an input library it must take the following form. 

*N ,MACSKLmB 

} absolute binary records 

* 
(anything) 

The name given to the absolute file is that of the name 
field of the *N record (MACSKL in this example). 

96769400 A 



Control8tatement 

The operator's response to a query made by LIBILD. 
The response may be entered via the standard input 
comment device or another device specified by the 
operator. 

Definitions 

A set of A8CII records, each of which has an asterisk as 
the first character, that terminates with an *END or 
end-of-file indication or an I/O error answered by CU. 
A definition group begins with an *DEF record, contains 
only valid skeleton records, and ends with an *TER 
record. Definition records have the following format: 

*DEF x 

This record directs LIBILD to set up an internal 
directory entry identified by the single character x, 
which must be unique for each *DEF reocrd. 8ubse
quent records are read until an *TER record is 
detected; those records are then referred to as group x. 
This process is analogous to the CYBER 18/1700 macro 
assembler definition. Every record in the group must 
begin with an asterisk. 

Example: 

*DEF 
*B 
*B 
*B 
*B 
*8 
*B 
*TER 

F 
'FILMGR' 
'RTN8PC' 
'DEFFIL' 
'RELFIL' 
'RTV8EQ' 
'8T08EQ' 

'39795252' 
'M8085.0' 
'M8085.0' 
'M8085.0' 
'M808 5.0 V02' 
'M808 5.0 V03' 

Note that the identification field may contain any 
characters, with the exception of single quote marks 
which are used as delimiters. 

Duplicate program 

A relocatable binary program or subprogram whose 
NAM block contains a name and identification equal to 
a previously input program or subprogram. In the case 
of absolute files, only the name is used as a basis of 
comparison. 

Identification 

The information beginning in column 25 of the NAM 
block; it is scanned until six successive blank columns 
are encountered, at which point the end of the 
identification is assumed. 

If two programs have identical identification fields with 
one program having additional identification informa
tion as in the following example, the user must ensure 
that the identification field of each *B record contains 

96169400 A 

sufficient data to make it unique. For example, two 
program identification fields appear in the following 
order: 

NAM MIPRO DECK-ID A26 M808 5.0 1700 
NO.1 

NAM MIPRO DECK-ID A26 M808 5.0 

Each *B record must be unique. If 

*B 'MIPRO" DECK-ID A26 M808 5.0' 

is input, the first program matches up to the point at 
which the ' mark is encountered. Thus, the first 
program is loaded even though additional identification 
exists on the NAM block because the' mark terminates 
the search. 

In order to obtain the second program, the *8 record 
must then appear as 

*B 'MIPRO" DECK-ID A26 M808 5.0 ' 

By adding spaces to the end of the identification 
information before the ' mark, this identification 
information is unique and causes the proper program 
selection. 

Leading spaces in the identification field of a NAM 
block are ignored unless the entire field is spaces. A *B 
record which has identification information of all 
spaces matches correctly with a NAM record which has 
a blank identification field. For example, the record 

*B 'NAME01' 

matches with the specific program named NAME01 with 
a blank identification field. 

*B 'NAME01' 

matches with the first occurrence of the program 
named NAME01, regardless of the identification field 
information. 

Input library 

A set of relocatable binary programs and subprograms 
that are terminated by an *END record or an end-of
file indicator, or an I/O error answered by a CU. A 
library can have any number of system initializer and 
LIB EDT control statements; thus, an existing 
installation tape can be used as a library. Absolute files 
such as MAC8KL can be a part of a library. 

Installation file 

When produced by LIBILD, the installation file is the set 
of relocatable programs, subprograms, and absolute 
files specified by the *B records in the skel~ton, plus all 
other records in the skeleton that have no meaning to 
LIBILD. 

14-11 



Usually the installation file is suitable input to the 
system initializer or LIBEDT. 

Output library 

Produced from one or more input libraries; a set of 
relocatable binary programs and subprograms 
terminated by an *END record. 

Skeleton 

A set of ASCII records, each of which has an asterisk as 
the first character, that terminates by an *END or end
of-file indication or an I/O error answered by CU. 
These can be system initializer and LIB EDT control 
statements, LIBILD control statements, or anything else 
supported by MSOS. The skeleton defines the logical 
sequence and content of information written to the 
installation file. The following record formats are 
recognized as LIBILD statements: 

*B 'aaaaaa' 'bbbbbb' 

The *B statement directs LIBILD to retrieve a 
relocatable binary program, subprogram, or absolute 
file and to write the entire program on the installation 
f~le. The name of the program is specified by a one- to 
SIx-character name, enclosed by single quote marks. 
The identification field provides the capability to 
differentiate between programs having the same name. 
Leaving the identification field blank (without even 
quote marks) causes the first copy of several copies or 
the only copy of a program to be retrieved. 

The *B record for an absolute file should have a blank 
identification field. The following is an example of an 
*B record: 

*B 'JOBENT' 'DECK-ID 031 MSOS 5.0' 

Quote marks may begin anywhere after column 2; 
embedded blanks are significant. 

*WEF 

This record directs LIBILD to write an end-of-file 
indication of the installation file. 

*USE A 

~his ,'record is the counterpart of a CYBER 18/1700 
Macro Assembler call and is used to call out or specify 
that the records grouped under a previous 
*DEF A record are to be inserted in the skeleton at this 
point. The ·USE record may be nested to a depth of six 
levels. 

Example: 

-DEF 
*B 
-TER 
*DEF 
-USE 
*B 
*TER 

~ROGRM') 
B } At 
'PROGRA' 

tlnsert definiti<?n for A, B, or C. 

14-12 

Defines symbol A 

Defines symbol B 

*DEF C } *USE Bt Defines symbol C 
*TER 
*DEF D } *USE A Defines sym bol D 
*USE B 
*USE ct 
*TER 

When specifying an *USE record, the *DEF and -TER of 
the corresponding symbol are not inserted in the 
skeleton. 

-END 

This record signifies the end of the skeleton. It is 
. written to the installation file. 

*character string 

When the character string is not identically equal to B, 
WEF, DEF, TER, or USE, the control statement has no 
meaning for LIBILD. The record is written to the 
installation file. 

Example: 

*K,15,P8 
*LIBEDT 
*T 
*z 
*u 

OPERATION 

1. LIBILD resides in the program library and is executed 
by the job processor in response to the following control 
statement: 

*LIBILD 

2. The program always requests its first control statement 
from the standard comment input device as follows: 

CONTROL LU = 

This query is for determining the logical, unit from 
which the program reads subsequent control statements, 
such as a card reader. If the operator types only a 
carriage return, the queries and control statements 
remain on the standard comment device. If a logical 
unit number is entered, each query is printed on the 
standard list device prior to reading the control 
statement, which is also printed. 

A negative reply to any query is either a carriage return 
on the comment device or a card image having a blank 
in column 1, whichever is appropriate. If a card is used, 
the entire card is printed on the list device following 
the query message and the characters following the 
first blank are ignored. 

All positive replies are followed by a carriage return or 
a blank. 

96769400 A 



3. The next statement is used to specify the logical unit 
from which definitions will be read. 

DEFS LU = 

4. This is followed by the statement which specifies the 
logical unit on which the installation file is to be 
written: 

INSTALL LU = 
5. The next statement specifies the output library logical 

unit: 

NEWLIB LU = 
6. Up to nine input libraries may now be specified. The 

first query of this type is: 

LIB 01 LU = 
A logical unit number should be typed at this point. The 
next query is: 

LIB 01 LU = 
On this and subsequent replies, the negative reply 
signifies that there are no more library logical units. 
The number following LIB is just a library number 
counter. 

7. The next query is produced when the library logical 
units have been specified. 

SKELETON LU = 
Following this reply, the first library -is read. 

During the library input phase, each program name and 
identification field is printed on the list device. 

DIAGNOSTICS AND MESSAGES 

During the control statement input phase, the logical unit 
numbers are checked for legality. If the number is out of 
the logical unit range or is indecipherable, this message is 
produced: 

INVALID LU (1) 

If the number specifies a device that is incompatible with 
the function to be performed on that device, this message is 
produced: 

INVALID CLASS CODE (2) 

If the control statement device is the standard comment 
device and one of the above diagnostics is produced, the 
routine repeats the query; otherwise, the routine exits to 
the job processor. 

96769400 A 

Library Input Phase 

During the library input phase the following messages can 
appear on the list device: 

LAST DECK REJECTED - NOT UNIQUE (3) 

This means that the immediately previous program 
had the same name and identification as another 
program. The program that is initially loaded, 
having a specific name and identification, is 
retained. 

LAST DECK REJECTED - NO XFR RECORD (4) 

This message is produced in conjunction with 
another message on the comment device when the 
operator chooses to continue library input rather 
than aborting the job. 

During the library input phase the following messages can 
appear on the comment device: 

NAM RECORD NOT 1ST RECORD OF DECK. 
TYPE 1, CR TO TERMINATE EXECUTION. 
TYPE 2, CR TO PROCEED TO SUBSEQUENT 

LIBRARY OR SKELETON. 
TYPE 3, CR TO CONTINUE ON WITH 

CURRENT LIBRARY. 

(5) 

This means that the anticipated relocatable binary 
deck did not have a NAM block format. The 
message tells the operator to type 1, 2, or 3, 
followed by a carriage return and the noted action 
will occur. 

1 Exit to the Job Processor. 

2 Ignore the remainder of the current library 
(just as though it has been completely 
processed). 

3 Slew over the records until either a record 
having an asterisk as the first character or a 
NAM block is detected; then resume at that 
point as if no error had occurred. 

XFR RECORD MISSING FOR LAST PGM 
LISTED. 

PGM DELETED. 
TYPE 1, CR TO TERMINATE EXECUTION. 
TYPE 2, CR TO PROCEED TO SUBSEQUENT 

LIBRARY OR SKELETON. 
TYPE 3, CR TO CONTINUE ON WITH 

CURRENT LIBRARY. 

(6) 

This means that a relocatable binary deck was 
being input and after the initial NAM block, either 
a record having an asterisk as the first character or 
another NAM block was detected prior to finding a 

14-13 



XFR block. The instructions to the operator and 
the corresponding action taken are the same as the 
previous statement. 

TOO MANY BINARY DECKS LOADED. (7) 
CHANGE LIMIT AND RECOMPILE. 

LIBILD can handle a fixed number of unique 
program names. (See restrictions and limitations.) 
This message means that the fixed number has been 
exceeded and that, unless fewer programs are 
present on the libraries, LIBILD itself must be 
modified and reinstalled. 

LOAD LIBRARY INPUT xx ON LU yy. (8) 
CR WHEN READY. 

This is not an error message. If more than one 
library was specified during the control statement 
phase, this message appears after the first library 
and each subsequent library is input. The library 
count is xx and the logical unit number is yy; all 
such numbers in this message occur in the order 
they were defined during the control statement 
phase. When this message is printed, the operator 
may change tapes, reload the card reader, etc. 
When the desired library is finally on the device, 
depressing the carriage return key will cause that 
library to be input. 

Library Output Phase 

During the library output phase the following message can 
appear on the comment device: 

LOAD OUTPUT LIBRARY. CR WHEN 
READY. 

(9) 

This is not an error message. It always appears 
when an output library option has been selected. 
When the device is ready, depressing the carriage 
return key causes the relocatable binary programs 
to be written to the device. 

During the library output phase, each program name and 
identification is printed on the list device and this error 
message can appear: 

CHECKSUM ERROR NOTED IN LAST 
PROGRAM. 

(10) 

14-14 

When a program is input from a library, a checksum 
for each record is generated and the record and its 
checksum are transferred to mass storage. When 
that program is retrieved during the library or 
installation file output phase, the checksum is 
recomputed and compared with the original 
checksum. Differences result in the above 
messages and cause that program's records to be 
terminated, resulting in an incomplete relocatable 
binary on the file. 

Definitions Input phase 

During the definitions input phase this message appears on 
the comment device: 

LOAD DEFS, CR WHEN READY (11) 

This is not an error message. The purpose of this 
message is to allow the operator time to load and 
ready the device. Depr.essing the carriage return 
key causes the definitions to be input. 

During the definitions input phase, each definition record is 
printed on the list device. One of the following error 
messages can be printed after the definition record is 
printed. 

BAD *DEF RECORD. NO IDENT 
CHARACTER. 

See the Definition of Terms section. 

BAD *DEF RECORD. IDENT CHAR 
ALREADY USED. IGNORED 

See the Definition of Terms section. 

INVALID DEFINITION RECORD. IGNORED. 

(12) 

(13) 

(14) 

The first record of a definition group was not an 
*DEF. Records are slewed until an *DEF is 
encountered. 

NO DEFINITIONS WERE SUCCESSFULLY 
LOADED. 

This message is self-explanatory. 

(15) 

TOO MANY DEFINITION SETS. IGNORED. (16) 

There is a limit to the number of definitions that 
can be input. This message means that the limit 
has been exceeded and subsequent records are 
slewed over until the *END record is encountered. 
(See Restrictions and Limitations.) 

Ske leton In put Ph ase 

During the skeleton input phase this message always appears 
on the comment device: 

LOAD SKEL/INSTAL, CR WHEN READY (17) 

This is not an error message. The purpose of this 
message is to allow the operator time to load and 
ready both the skeleton input and the installation 
output devices. Depressing the carriage return 
causes the skeleton records to be input and the 
installation records to be output concurrently •. 

96769400 A 



During the skeleton input and installation file output phase, 
skeleton records are normally printed on the list device 
under one of two conditions. If the record has no meaning 
for LIBILD, it is written to the installation file. If the 
record has meaning for LIBILD, the appropriate sUbstitution 
or action is performed. (See Definition of Terms.) 

During the skeleton input and installation output phase, one 
of the following error messages can occur after the printing 
of the skeleton record: 

PROGRAM SPECIFIED BY THIS 
RECORD NOT FOUND. 

(18) 

This means that the name on the *B record did not 
match the name of any program read during the 
library input phase. Nothing is written to the 
installation file for this record. 

PROGRAM HAVING THIS ID INFO 
NOT FOUND. 

(19) 

The name on the *B record matched at least one 
name of a program read during the library input 
phase, but the identification field on the *B record 
did not match the identification field of any of 
those same programs •. Nothing is written to the 
installation file for this record. 

MORE THAN ONE PROGRAM HAS 
THIS NAME (NO ID INFO.) 

(20) 

The name on the *B record matched more than one 
of the program names read during the library input 
phase, but no identification was specified on the *B 
record. The first program loaded during library 
input having the specified name is written to the 
installation file. 

CHECKSUM ERROR NOTED IN 
LAST PROGRAM. 

See Library Output phase. 

ILLEGAL CHARACTER STARTS 
IDENT FIELD. 

(21) 

(22) 

On an *B record the identification field must start 
with a single quote mark. Nothing is written to the 
installation file for this record. 

ILLEGAL IDENT FIELD. RECORD 
IGNORED. 

(23) 

The identification field on an *B record was not 
terminated by a single quote mark prior to column 
69. Nothing is written to the installation file for 
this record. 

ILLEGAL *B RECORD. RECORD 
IGNORED. 

(24) 

No leading or trailing single quote for the name 
field detected prior to column 73. Nothing is 
written to the installation file for this record. 

96769400 A 

NULL PROGRAM NAME. RECORD 
IGNORED. 

(25) 

The name field on an *B record consisted of only 
two single quote marks. Nothing is written to the 
installation file for this record. 

PROGRAM NAME TOO LONG. (26) 
RECORD IGNORED. 

The name field on an *B reocrd had more than six 
nonblank characters between the single quote 
marks. Nothing is written to the installation file 
for this record. 

NO DEFINITIONS ARE STORED. (27) 
RECORD IGNORED. 

An *USE record was encountered and no definitions 
are present. Nothing is written to the installation 
file for this record. 

INVALID *USE RECORD. IDENT FIELD. (28) 
RECORD IGNORED. 

No nonblank character was detected prior to 
column 69. Nothing is written to the installation 
file for this record. 

INVALID *USE RECORD. MAX 
EMBEDDED LEVEL IS 6. 
RECORD IGNORED. 

See Definition of Terms. 

(29) 

INVALID *USE RECORD. REQUESTED (30) 
SET IS IN USE. RECORD IGNORED. 

An embedded *USE record was encountered having 
an identification field identical to that of the 
current *USE record. This is an infinitely recursive 
condition. 

What is written to the installation file is dependent 
upon the logic flow of the *USE expansion. Refer 
to the printer output to determine what was 
written. 

END FILE MARK WRITTEN (31) 

This is not an error message. It appears whenever 
an *WEF record is encountered. (see Definition of 
Terms.) 

FATAL PROGRAM ERROR. RUN 
KILLED. 

(31a) 

The sector number in the directory of program 
names points to a sector whose first word is zero. 
This should be the length of the record. This 
indicates some error has occurred in defining the 
sector address of the program in the program 
directory, or the program data has been written 
incorrectly. 

14-15 



At the completion of the skeleton input phase, the following 
message is output on the comment device: 

LIBRARY BUILD COMPLETE (32) 
TYPE *Z TO TERMINATE OR 
TYPE *C TO CONTINUE WITH CURRENT 

SKELETON AND/OR 
OUTPUT LIBRARY LU'S 

If the operator types *Z followed by a carriage 
return, LIBILD exits to the job processor. If he 
types *C, the routine is recycled to the point at 
which the skeleton and installation file devices are 
loaded and set ready. In other words, a different 
skeleton and installation file may be loaded but 
only on the same devices used by the first skeleton 
and installation file; the same set of library 
programs is retained. This feature could be used 
after skeleton errors are detected and corrected. 

There is no program limit to the number of times 
this feature may be exercised. 

RECOVERY FROM ERRORS 

If diagnostic message 5 is output during the library input 
phase, there may be a transient hardware problem (e.g., tape 
positioning, card feed problems) and the operator should 
manually backspace the library and try again by typing 3 in 
response to the message. The card reader is backspaced by 
refeeding the card. 

Magnetic tape backspacing is more complex. If the operator 
has the time, he may rewind the tape and reprocess it, 
obtaining diagnostic message 3 for every program 
successfully loaded on the previous pass of that tape. 

If the library input is already very large, a slightly more 
complicated but faster process can be used: Manually 
backspace the tape a few feet. The tape will now be 
positioned in the middle of a record, at the beginning of a 
record that is not a NAM block or a record beginning with an 
asterisk, or at a NAM or asterisk record. Type 3 is followed 
by carriage return and a record will be read. 

If the tape position was at an asterisk or NAM record, the 
input library processing proceeds with reject message 3. 

If the tape was positioned elsewhere, message 5 is output 
again. 

Typing 3 causes LIBILD to slew over records until an 
asterisk or N AM record is encountered. Processing this 
input library proceeds with reject message 3. 

If skeleton format errors are detected or certain skeleton 
records are out of order or missing during the skeleton input 
phase, the operator can correct or rearrange the skeleton 
deck and try again after message 32 is output. 

If, during the control statement phase, the operator 
accidentally specifies more input libraries than he really has 
and all of °the libraries have been input, in lieu of starting 
over he can do the following. 

14-16 

1. When message 8 occurs for the nonexistent library, 
verify that the device is not ready and type carriage 
return. The operating system will output a failure 
message for the device. 

2. Type CU. 

3. LIBILD defaults an *END at this point and proceeds as 
though a library had been input. 

Perform these three steps for each nonexistent input library. 
The following is a typical LIBILD operation: 

*LIBILD 
CONTROL LU = 
DEFS LU = 5 
INSTALL LU = 6 
NEW LIB LU = 7 
LIB 01 LU = 6 

LIB 02 LU = 5 
LIB 03 LU = 7 
LIB 04 LU = 14 
LIB 05 LU = 5 
LIB 06 LU = 
SKELETON LU = 5 

[ ] 
LOAD LIBRARY INPUT 
02 ON LU 05. CR 
WHEN READY. 

[ ] 
LOAD LIBRARY INPUT 
03 ON LU 07. CR 
WHEN READY. 

[ ] 
LOAD LIBRARY INPUT 
04 ON LU 14. CR 
WHEN READY. 

[ ] 

Comments 

Control stays at 
comment device 

All input libraries 
merge to this device 

No more libraries. 
Also ensure library 01 
on LU 06 is ready. 

At this point library 01 
is input on LU 06. 

Library 02 is input. 

Library 03 is input. 

Library 04 is input. 

96769400 A 



LOAD LIBRARY INPUT 
05 ON LU 05. CR 
WHEN READY. 

[ ] 
LOAD OUTPUT LIBRARY. 
CR WHEN READY. 

[ ] 
LOAD DEFS. CR 
WHEN READY. 

[ ] 
LOAD SKEL/INSTAL. 
CR WHEN READY. 

[ ] 
LIBRARY BUILD 
COMPLETE 
TYPE *Z TO TERMINATE OR 
TYPE *C TO CONTINUE 
WITH CURRENT SKELETON 
AND/OR 
OUTPUT LIBRARY LU'S @]t 
LOAD SKEL/INSTAL. 
CR WHEN READY. 

[ ] 
LIBRARY BUILD 
COMPLETE 
TYPE *Z TO TERMIN
ATE OR 
TYPE *C TO CONTINUE 
WITH CURRENT 
SKELETON AND/OR 
OUTPUT LIBRARY LU'S ~ 
JEID 

Library 05 is input. 

At this point all 
programs from 
libraries 01 - 05 are 
output to LU 07. 

Definitions are input 
from LU 05. 

Skeleton is input from 
LU 05 and the instal
lation file is written on 
LU 06. 

Operator wants to 
continue. 

Another skeleton and 
installation file are 
processed. 

LIBILD is terminated. 

RESTRICTIONS AND LIMITATIONS 

• The maximum number of unique program/identification 
combinations is 1024. 

• The maximum number of input libraries is nine. 

t 0 represents operator entry. 

96769400 A 

• The maximim number of definition groups or sets is 20. 

• The maximum number of recursive levels in a definition 
is six. 

• There is no limit to the maximum number of times a 
given program name/identification can appear on an *B 
record. 

• The maximum number of times a given program name 
can have a different identification is 1024. 

• There is no limit to the maximum number of times the 
same program name/identification is rejected if it is 
encountered more than once. 

• There is no limit to the number of records in a skeleton. 

• There is no limit to the number of skeleton input. 

• Changing any of the above limits requires a nontrivial 
program modification. 

SPECIAL NOTES 

The name and identification information of a binary program 
are obtained by SKED during the BUILD operation from the 
NAM record of that program. It may be desired to exclude 
certain information from the identification field of the NAM 
card (columns 25 through 68) in the identification field of 
the skeleton record that is generated, because of possible 
problems that may occur later when running the library 
builder program, LIBILD. 

When replacing a program on one input library with a 
program on another input library, LIBILD recognizes the 
program to be replaced by comparing the programs' names 
and identification fields in their respective NAM records. If 
any information is different, such as a date, LIBILD treats 
the two programs as though they were unique and both 
programs will be included in the installation file. 

General case: Any information on the NAM card that is not 
to be included in the identification field of the skeleton 
record should follow the information that is to be included 
by at least four blank columns. 

Special case: If none of the information in the identification 
field is to be included, at least eight blank columns must be 
left at the beginning of the identification field (i.e., the 
identification information on the card should start in or 
after column 33 on the NAM card). 

MACRO LIBRARY BUILDER (LIBMAC) 

LIBMAC is the macro library preparation routine. Input to 
LIBMAC is a set of source macro definitions. The set of 
macro definitions is terminated by ENDMAC, starting in 
column 1 of the source image. 

14-17 



The procedure to execute this program is: 

*JOB 
J 
*K,llu,Plu 
J 
*LIBMAC 

Where: assigns the logical unit of input. 

P assigns the logical unit of output. 

Output from this routine is in the following form: 

• Macro skeletons 

• End-of-file 

• Macro directory 

• End-of-file 

The following control statements can be used to put 
MACSKL and MACROS on the program library: 

*JOB 
J 
*LIBEOT 

LIB 
IN 

*K,llu 
*N,MACSKL", B 
*N,MACROS", B 

LIST SYSTEM LOGICAL UNITS (LULlST) 

The LULIST program is a utility function that lists the 
system logical units. 

A typical operation is: 

Operator 
Action 

*LULIST 

System Output 

ON LIST 
DEVICE 

E10 

LOG1A 

ON COMMENT 
DEVICE 

E 

(Logical unit listing) 

J 

Comments 

Call program 
into execution 

Loader mes
sage Link to 
CREP table 

End of opera
tion 

LIST PROGRAM NAMES (LiSTR) 

LISTR lists the name and record length of all programs on a 
binary tape. It is used primarily for validating and listing 
installation tapes whenever programs have been added or 
replaced. This program should be installed on the 1700 
MSOS program library using an *L, entry point name 

14-18 

function of LIBEDT (refer to the MSOS Installation 
Handbook). 

The procedure to execute this program is: 

*JOB 
J 
*K,llu,Llu 
*LISTR 

Where: assigns the logical unit for the binary programs 
to be listed. 

L assigns the logical unit for the printout. 

Examples for the standard printer and the FORTRAN printer 
are shown in figures 14-4 and 14-5. 

SORT OPERANDS (OPSORT) 

The operand sort program (OPSORT) cross references 
CYBER 18/1700 assembly language operands. The program 
operates on the list output of the 1700 Macro Assembler. It 
reads the list output from the standard input device (cards, 
paper tape, magnetic tape). Each record is sorted by 
operand; an alphabetic listing of all operands is given on the 
standard list output device. The listing includes the source 
card number and operation code for each operand. 

If any macros are present in the program, they are printed 
along with their location numbers prior to output of sorted 
operands. 

OPSORT is a debugging aid to assist in isolating program 
errors. References to all labels are listed alphabetically, 
thus allowing the user to identify all instructions and their 
locations that affect or use the code at that point. OPSORT 
can be used when changing or inserting labels to ensure that 
duplication does not occur. 

The procedure to execute this program is: 

*JOB 
J 
*K,llu,Llu 
J 
*OPSORT 

Where: assigns the logical unit of the list tape. 

L assigns the logical unit of the list device. 

The following is an example of the output: 

NAM MINT 
0040 SCHDLE M11A,3 Down to level 3 
0115 SCHDLE (JPCHGE), Yes-Schedule 
LLS 0077 8 
LOA* 0192 ALVST),Q 
STA* 0196 ALVST),Q 
LOA- 0194 HICORE 
EQU 0033 HICORE F6 
EXT 0024 JBCNCL 

96769400 A 



1 
+ 001 *S,SYSMON,$3-38 
+ 0001 RECORDS 0001 TOTAL RECORDS •• 

+ 0002 *S,SYSDAY,$3136 
+ 0001 RECORDS 0002 TOTAL RECORDS •• 

+ 0003 *S,SYSYER,$3734 
+ 0001 RECORDS 0003 TOTAL RECORDS •• 

+ 0004 *S,SYSLVL,$3832 
+ 0001 RECORDS 0004 TOTAL RECORDS •• 

+ 0005 *V 
+ 0001 RECORDS 0005 TOTAL- RECORDS. 

+ 0006 *V 1700 MASS STORAGE 0 
+ 0001 RECORDS 0006 TOTAL RECORDS •• 

+ 0007 *V 
+ 0001 RECORDS 0007 TOTAL RECORDS •• 

Figure 14-4. Standard Printer Example 

0001 
0002 
0003 
0004 
0005 
0006 
0007 

*S,SYSMON ,$3038 
*S,SYSDAY,$3136 
*S,SYSYER,$3734 
*S, SYSLVL, $3832 
*V 
*V 1700 MASS STORAGE 0 
*V 

0001 RECORDS 
0001 RECORDS 
0001 RECORDS 
0001 RECORDS 
0001 RECORDS 
0001 RECORDS 
0001 RECORDS 

0001 TOTAL RECORDS •• 
0002 TOTAL RECORDS •• 
0003 TOTAL RECORDS •• 
0004 TOTAL RECORDS •• 
0005 TOTAL RECORDS •• 
0006 TOTAL RECORDS •• 
0007 TOTAL RECORDS •• 

Figure 14-5. FORTRAN Printer Example 

OPSORT can be used to sort a single program or multiple 
programs prior to returning to the job processor. An exit 
from OPSORT occurs when the SKIP switch is set. There
fore, when sorting a single program, set the SKIP switch 
immediately. On a multiple program sort, set the SKIP 
switch during execution of the last program to be sorted. 

LIST AND SORT PROGRAMS (EESORT) 

EESORT is a utility program that processes relocatable 
binary programs and prepares a listing of information that is 
unique to those programs. EESORT resides in the program 
library on mass memory and is executed in unprotected core. 

EESORT is called from the program library and placed in 
execution in the following manner. 

EESORT requests the user to specify the LIST or SORT 
option via· the standard comment device. After the user 
enters a response, EESORT continues reading from the 
standard input device until an *T is encountered. If the LIST 
option is specified, EESORT prepares a listing for output on 
the standard list device, which contains the following 
information. 

96769400 A 

• Program name 

• Name card comments 

• Program length 

• Common size 

• Data size 

• Entry points 

• Externals referenced 

If the SORT option is specified, EESORT prepares a listing 
of the program names (sorted alphabetically), the declared 
entry points, and the programs that reference these entry 
points as externals. 

The information that is to be sorted is recorded within the 
bounds of unprotected core. If insufficient unprotected core 
is available, no sort is performed and the following 
diagnostic is printed: 

MEMORY OVERFLOW - NO SORT 

14-19 



If a binary program appears several times within the file 
being processed, it is stored each time it is encountered. 

A sample job deck is shown in figure 14-6. 

COSY FORMAT (CYFT) 

The COSY format program is used to insert the proper 
COSY control cards in assembly language programs so that 
the generated output can be input to build COSY source 
programs. Input source is from the standard input device 
(cards, paper tape, magnetic tape). If input is from 
magnetic tape, the last deck of the input source must have 
an end-of-file mark. 

The COSY format program should be installed on the 
CYBER 18/1700 MSOS program library using an *L, entry 
point name function of LlBEDT (refer to CYBER 18/1700 
MSOS Installation Handbook). 

The procedure to execute this program is: 

*JOB 
J 
*K,nu,Plu,Llu 
J 
*CYFT 

Where: assigns the logical unit for the source program 
input. 

P assigns where COSY control cards and source 
programs are to be punched (written). 

Example: 

xxxxxx DCKI 

xxxxxx HOLI 

NAM xxxxxx 

END 
ENDI 

I,C (CYFT gen
erated) 
(CYFTgen
erated) 

(CYFT gen
erated) 

L assigns the logical unit for a listing of COSY 
DCKI cards to be listed. 

Example: 

xxxxxx DCKI I,C 

xxxxxx DCKI I,C 

If the logical unit fails upon completion of input, type in CU. 
This generates the final ENDI for COSY. 

COSY PROGRAM 

The CYBER 18/1700 COSY program provides a means of 
compressing information in source decks by replacing three 
or more blanks on a card with two special ASCII 
characters. t COSY compresses Hollerith source decks and 

converts the Hollerith code to ASCII code. The resulting 
deck, called a COSY deck, is in COSY format (see COSY 
Library). COSY reduces average deck size by about 60 
percent. 

A COSY library consists of a group of COSY decks. Each 
COSY deck is preceded with a COSY deck identifier card 
and terminated with an end-of-deck character. The COSY 
library may be written on paper tape, magnetic tape, or 
punched cards, and is terminated with an ENDI card 
followed by an end-of-file mark. 

The COSY program is called from mass storage by typing 
*COSY and pressing RETURN on the teletypewriter console 
or with a *COSY punched card. There are no parameters for 
the teletypewriter call to COSY or for the *COSY card. 

A COSY revision deck follows the call to COSY. COSY 
revision decks (see Revision Deck) allow the user to prepare, 
revise, or copy COSY decks, and to prepare, update, or copy 
COSY libraries. COSY may be used with any source 
language that does not use COSY control statements. COSY 
output may be in Hollerith or COSY (compressed ASCII) 
format and may be listed, punched, or sent to a compiler or 
assembler. 

COSY CARDS 

COSY revision decks are comprised of COSY control cards 
and· new source cards. There are seven COSY control cards 
(MRG/, DCK/, CPY/, DELI, INS/, REM/, and END/) and two 
deck identifier cards (HaLl and CSY I). The fields for all 
COSY control and identifier cards (except DELI and INS/) 
are in the following standard format: 

1 8 

rdeCk 
name 

card 
name 

deck name 

card name 

parameters 

13 73 

para
meters 

comments id 

Columns 1 through 6; the name of a 
deck in a COSY library that is to be 
modified or copied. Deck name is 
used only on DCK/, CPY/, HaLl, and 
CSY I cards. The field is blank on all 
other COSY cards. 

Columns 8 through 11; the name of 
the COSY control card. 

Start in column 13; parameters are 
terminated by a space. 

t In this section, card refers to any single input/output record, and deck refers to a set of cards. 

14-20 96769400 A 



RELOCATABLE BINARY 
DECKS 

END OF JOB 

CALL EESORT FROM THE PROGRAM LIBRARY • 

• 1{, In OPTIONAL - USED IF INPUT BINARY PROGRAMS 
ARE ON ANOTHER DEVICE. 

Figure 14-6. EESORT Sample Job Deck 

comments 

id 

Can start in any column after the 
terminating space for parameters; 
comments may run through column 72 
and are optional. 

Columns 73 through 75; a three
character deck name identifier, used 
only on DCK/, HOL/, and CSY/ cards. 

The control card fields for DEL/ and INS/ cards are in the 
following format. 

1 8 

card 
name 

13 66 72 

para- comments change record 
meters 

The card name, parameter, and comment fields are the same 
as for the standard card above, except that the comment 
field ends in column 65. A change record field is added to 
these cards to add change identification information. 

The change record field is a seven-character field 
(columns 66 through 72) used to identify the type, nature, or 
date of a change. COSY writes an asterisk in column 73 and 
the contents of the change record record field in columns 74 
through 80 of each new source card following the INS/ or 
DEL/ card. This provides a means of identifying new or 
changed source cards when a COSY deck is listed. Adding 
change record information on an INS/ or DEL/ card is a user 
option, which is not required input to COSY. 

96769400 A 

MRG/Card 

An MRG/ card directs COSY to merge two revision decks 
(see Revision Deck). 

1 

( 

a,b,c 

8 1.3 

MRG/ a, b, c 

Specifies actions to be taken - This card 
directs COSY to merge the revision deck 
on logical unit a with a revision deck on 
logical unit b and write a merged revision 
deck on logical unit c. 

If revisions between a and b conflict, 
revisions from a are used. The conflicting 
revisions from b are listed with asterisks 
in columns 2 through 5 on the standard 
print device and not on unit c. 

If either a or b is missing or zero, COSY 
assumes the decks are on the standard 
input device. If c is missing or zero, the 
standard output device is used. 

If a and b are the same logical unit, the 
first revision deck is written onto mass 
storage and then merged with the second 
revision deck on the logical unit. 
Revisions on mass storage have priority if 
conflicts occur. 

The DCK/ card in the merged deck is the DCK/ card from 
unit a. The merge terminates when the END/ card on both 
decks is read. 

14-21 



COSY locates a OCK/ card on unit a and searched unit b 
until the deck names match. If COSY reaches the end of the 
revision deck on unit b before obtaining a match, it treats 
all the remaining decks on unit a as new decks and inserts 
them at the end of the merged deck. If revisions are to be 
input from different input devices, logical units must be 
specified on the MRG/ control card. 

DCK/ Card 

A OCK/ card identifies the COSY or Hollerith deck to be 
updated or created and specifies the actions to be taken 
with the new deck. 

1 

(deck 
I name 

8 

OCK/ 

13 73 

PI'···' Pn 
id 

deck name Names the COSY or Hollerith deck to 
be processed 

P1,···,Pn Specifies the actions to be taken -
All parameters are optional, can be in 
any order, and are separated by 
commas. Blanks are now allowed 
within the parameter field. 
Parameters have the form: 

p, or p = lu, or D = deck name 

where p is I, C, H, or L, and lu is the 
logical unit on which input or output 
occurs. Deck name specifies a new 
deck name for the COSY output. 

I Parameter (Input) 

1= lu 
or 
I 

I specifies the logical unit containing the COSY or 
Hollerith source deck(s) to be updated or created. 
If the parameter is absent or just I, COSY assumes 
the source deck is on the COSY standard input 
device. (COSY standard devices are set by a 
*CSY, ••• statement, see section 9.) 

If I = lu is used and lu is the system standard input unit, 
COSY assumes a new deck is being added to the COSY 
library. If the first card after the OCK/ card is a source 
deck identifier, COSY assumes it is a new deck to be added 
to the COSY library. COSY processes the deck until an 
END/ card is read. Additional new source decks may follow. 

Each new deck nust begin with a source deck identifier card 
and end with an END/ card. The card following the END/ 
card must be a DCK/, MRG/, or another END/ card to mark 
the end of the revision deck. 

14-22 

If the first card after the DCK/ card is not a COSY or 
Hollerith source deck identifier card, COSY assumes that 
the cards following the DCK/ card are revision cards, and 
the COSY source deck follows the revision cards. COSY 
reads the revision cards and places them on the mass storage 
scratch area until an END/ card is read. Then COSY reads 
the new COSY source deck (which must follow the revision 
cards), and modifies the new deck according to the revision 
cards. 

If I = lu is used and lu is not the system standard input, 
COSY reads the revision cards from the system standard 
input unit and the source deck specified by the DCK/ card 
from unit lu. Then COSY updates the source deck according 
to the revision cards. 

C Parameter (COSY Output) 

C = Iu 
or 
C 

C specifies the device to receive COSY 
output. If C is absent, there is no COSY 
output. If just C is used, COSY output is on 
the COSY standard output device. C cannot 
be equated to the unit containing the current 
COSY library. 

H Parameter (Hollerith Output) 

H = lu 
or 
H 

H specifies the device receIving Hollerith 
output. If H is absent, there is no Hollerith 
output. If just H is used, Hollerith output is on 
the COSY standard output device. 

D Parameter (Deck Name) 

D= 
name 

D changes the name of the COSY or Hollerith 
deck. COSY uses the six characters (including 
blanks and commas) following D = for the new 
deck name. 

NOTE 

If the name is less than six characters and 
an I, C, or H parameter follows it, COSY 
misinterprets the name. 

id Parameter 

id is the three-character field for changing the 
COSY or Hollerith deck identifier. If id is 
blank, the old deck identifier on the HOL/ or 
CSY / card is used. 

L Parameter (list) 

L = lu 
or 
L 

L specifies that a listing (in decompressed 
Hollerith form) of the deck be made on logical 
unit lu. If just L is used, the listing is on the 
COSY standard list device. 

96769400 A 



DELI Card 

COSY deletes a specified number of cards from a previously 
defined input deck and inserts any Hollerith source cards 
immediately following the DELI card up to the next COSY 
control card. A DELI card has two forms: 

1 8 13 66 72 

r DEL/ m . change record 

1 8 13 66 72 

r DEL/ m,n change record 

In the first form, card m is deleted; in the second, cards m 
through n are deleted. The unsigned decimal numbers m and 
n are the sequence numbers in columns 76 through 80 of the 
Hollerith source cards. Sequence number m must be less 
than n. 

The number of Hollerith cards following a DELI card need 
not equal the number of cards being deleted. 

INSI Card 

COSY inserts the Hollerith source cards immediately 
following an INSI card into the new COSY or Hollerith deck. 

1 8 13 66 72 

r INS/ m change record 

The Hollerith source cards are inserted after sequence 
number M, which is found in columns 76 through 80 of the 
Hollerith source cards. 

REMI Card 

The REMI card is used to remove the DELI or INSI card and 
all Hollerith source cards that follow. This operation occurs 
only when merging two revision decks. A REMI card has 
two forms: 

1 8 13 

( REM/ m 

1 8 13 

( REM! m,n 

96769400 A 

The sequence numbers m and n must match the sequence 
numbers on DELI or INSI control cards in the revision deck 
that is being merged. 

A REMI card detected when COSY is not merging is ignored. 

Cpy I Card 

The CPY I card causes the COSY library to be copied onto a 
logical output unit. The CPY I card has two forms: 

1 8 13 

r Cpy/ P1,P2 

1 8 13 

~eck Cpy/ PI' P2 
name 

The first form, without the deck name, causes the COSY 
library to be copied from its current position to the end of 
the library. The second form, with a deck name specified, 
causes the COSY library to be copied from its current 
position through the named deck. CPY I places and ENDI 
card at the end of the new library, followed by an end-of
file mark. 

The COSY library can be positioned to the beginning of any 
deck by the use of a CPY I card on which only the deck name 
and the I parameter are specified. This card positions the 
COSY library to the beginning of the deck, immediately 
following the named deck. 

The p parameters specify the logical I/O units used to copy 
the COSY library. These parameters can occur in any order 
and are in the form p = lu, where: 

p = lor C 
lu = a logical 1/0 unit 

1= lu 
or 
I 

I specifies the logical unit, lu, from which the 
COSY library is copied. If the I parameter is 
omitted or just I is used, the COSY library is 
copied from the COSY standard input device. 

C = lu C specifies the logical unit, lu, to which the 
or COSY library is copied. If just C is used, the 
C COSY library is copied onto the COSY stand

ard output device. If C is omitted, there is no 
COSY output. 

As each COSY deck is read from input unit I and copied on 
output unit C, the deck name is listed on the COSY standard 
print device. For example: 

Deck name CSYI *COPIED* 

14-23 



For each deck that is read but not copied, the *COPIED* 
notation is omitted. For example: 

Deck 1 CSYI *COPIED* 
Deck 2 CSYI *COPIED* 

Deck 9 CSYI *COPIED* 
Deck 10 CSYI 

} Decks 10 
through 14 
were read but 

Deck 14 CSYI not copied. 

Deck 15 CSYI *COPIED* 
Deck 16 CSYI *COPIED* 

ENOl Card 

The ENOl card terminates Hollerith input decks, COSY 
libraries, Hollerith input libraries, and revision decks. 

1 8 

( ENDI 

HOlI Card 

When a Hollerith deck is input, the first card must be a 
Hollerith deck identifier. 

1 

(deck 
I name 

deck name 

id 

8 

HaLl 

Names the COSY deck being processed 

Three~character deck identifier 

73 

id 

A Hollerith deck identifier is not produced for a Hollerith 
output deck. 

CSY I Card 

When COSY output is requested on the DCKI card, COSY 
generates a COSY deck identifier card as the first card of 
the COSY output deck. COSY deck identifiers must also 
precede COSY DECKS on input. 

1 

(deck 
I name 

14-24 

8 73 

Csyl id 

deck name 

id 

Names the COSY deck being processed 

Three-character deck identifier or 
original deck 

SAMPLE COSY REVISION DECKS 

The following sample COSY revision decks illustrate the use 
of COSY control cards. 

Generating A Cosy Library 

Figure 14-7 generates a COSY library from two Hollerith 
source decks and places the library on output unit 3. The 
system standard input unit (card reader) is unit 1. 

Updating Cosy Desks 

Figure 14-8 updates three COSY decks and places the 
updated decks on logical unit 7. Two of the COSY decks are 
on logical unit 6 and the third deck (deck 3) is input 
following the revision decks. The system standard input unit 
(card reader) is unit 1. 

Using the CPY I Card to Upd ate COSY Library 

Figure 14-9 is an example of updating a COSY library by 
using the CPY I card to replace five old COSY decks with 
five new COSY decks. Logical unit 5 contains the old COSY 
library (decks 1 through 24), and logical unit 4 contains five 
replacement decks. The new COSY library is output on 
logical unit 6. 

Merging Two Revision Decks 

Figures 14-10 and 14-11 contain two examples of merging 
revision decks. Example 1 (figure 14-10) merges two decks 
that appear on the same input unit. Example 2 
(figure 14-11) merges two decks that appear on different 
input units. 

Example 1 

This job merges two revision decks (A and B), which appear 
on logical unit 2 (card reader), and writes the merged output 
as a revision deck in Hollerith format on logical unit 3 (see 
figure 14-10). 

Example 2 

This job merges two revision decks (A and B) and writes the 
merged revision deck on logical unit 3 (magnetic tape). 
Revision deck A is on logical unit 5 (card reader) and 
revision deck B is on logical unit 2 (punched paper tape). 
See figure 14-11-

Since deck A was the primary deck, the DELI 10, 11 card 
and the insert cards following it take precedence over the 
DELI 10, 11 card and insert cards in deck B. The REMI 21, 
22 card in deck A removes the DELI 21, 22 card and the 
following source cards from deck B. The DELI 29 card from 
deck A is added to the merged revision deck. 

96769400 A 



END OF COSY INPUT DECK ---.. END/ 

END OF SOURCE DECK 10 -----...... END/ 

~~~~ 

END OF SOURCE DECK 1 --..

Figure 14-7. Example of Generating a COSY Library

96769400 A 14-25

END OF SOURCE DECK 3~..... ENDI I

~--- -~f'1 L HOLLERITH SOURCE DECK 3 III
IDENTIFIER CARD FOR_----+ DECK 3 HOL! DKa I I ~
SOURCE DECK 3 / DECK 3 DCK/ 1=1, C=7 L lY
END OF REVISION DECK ..-~ ENDI I ,--.

- / / SOURCE CARDS wr
/ IN:

E
;'28 163 UPDArEA ~J

CHANGES THE NAME DECK 18 DCK/ 1=6, C=7. D=FINAL I 1------'

OF DECK 18 TO -,-. FIN ~ ro
FINAL AND THE ID -- /' n I
TO FIN / / SOURCE CARDS "I III

DE~:;4.~~: UPDATEAI I IIII~
A

/,f'I'l ;1
SOURCE CARDS II III

"'rNS/ 24 UPDATEA I ~
DECK 3 DCK/ i=1, C=7 I I ~

'-----~/ A/ /-~/-isouiRCEiCA5RDslI.~~I~
DEli 120,121 UPDATEA 1/llly I '

DECK 1 DCK/ 1=6, C=7 V
*COSY -

-

Figure 14-8. Example of Updating COSY Decks

14-26 96769400 A

END OF REVISION DECK-------.... END/

CPY/ 1=5, caS

POSITION OLD LIBRARY TO DECK 20 --+ DECK19 CPY/ 1=5

COpy NEW DECKS 18 and 19 ---..., Cpy/ 1=4, C=6

DECK17 CPY/ 1=5, C=6
POSITION OLD LIBRARY DECKll CPY/ 1=5
TO DECK 12 --+.-a.-----------,
COpy NEW DECKS 9-11~ DECKll CPY/ 1=4, C=6

DECK8 CPY/ 1=5, C=6

Figure 14-9. Example of Using the CPY/ Card to Update a COSY Library

96769400 A 14-27

14-28

END OF COSY RUN ./ END/

END OF REVISION DECK B ----+ END/ I
/=--

./ --ij I / SOURCE CARDS ...
/ DEL/ 213 UPDATEB

~1 /DECK3 DCK/ 1=5. H=2. D=D4 D4

(DEL/ 126 I r---

'Y

/ SOURCE CARDS I
INS/ 82 UPDATEB

1" l-
A;-

/ SOURCE ·CARDS r-
END OF
REVISION~

DECK A

'--

~ DEL/ 21.27 UPDATEB

/DECK2 DCK/ I.H

L DEL/ 5

/DECK1 DCK/ I.C ~

END/ 1 ~

DEL/ 102.106 I i---

DECK4 DCK/ I.H=2 t-
/.

1111
- /

//SOURCE CARDS

DEL/ 82.86 UPDATEAl [! REM! 21.27 I
DECK 2 DCK/ I,H=2 ~

i...-- REM/ 213 1
/

/
i...--

---- /SOURCE CARDS

---/ DEL/ 24,32 UPDATEAl

DELi 4,9

DECK 1 DCK/ I,H=2

- MBG/ 2,2,3

"'-- ·COSy
'--

-

III

~

II

~IIJ r--;-
I

Figure 14-10. Example of Merging Two Revision Decks from Same Input Unit

96769400 A

END OF REVISION DECK ~/ END/

/ DEL/ 102,106

DECK4 DCK/ I,H=2

~I
-

/ SOURCE CARDS

/ DEL/ 213 UPDATEB @~ DECK3 DCK/il=5.H=2,D=D4 D4 1
DEL/ '126 I

/ /
10...-.

/ fl
// SOURCE CARDS IIIII

DELI 82,86 UPDATEAl II J ,DECK2 DCK/ I, H=2 !
REM/ 213 I~/'

i.-
/.

1fi
i.- ~

// SOURCE CARDS

DEL/ 24,.32 UPDATEA!

II~ DELI 4,9

DECK 1 DCK/ 1,11=2 ~V
i.-

10...-.

Figure 14-10. Example of Merging Two Revision Decks from Same Input Unit (Contd)

96769400 A 14-29

ENDI

END OF REVISION DECK A ---.. ENDI

DEL/ 29 UPDATEA

REMI 21,22

STA* C

ADD* B

LDA* A

DELI 10,11 UPDATEA

1=6, H=7

5,2,3

REVISION DECK A (INPUT FROM CARD READER)

DECK1 DCK/ 1=6,H=7
DEL/ 10,11 UPDATED
LDA* A
SUB* B
STA* C
DEL/ 21,22 UPDATED

(SOURCE CARD:) FOR INSERTION BETWEEN COSY CARDS 20 AND 23)

DECK1

ENDI (END OF REVISION DECK B)

REVISION DECK B (INPUT FROM PAPER TAPE)

DCKI
DELI
LDA*
ADD*
STA*
DELI
ENDI

1=6, H='l
10,11
A
B
C
29

UPDATEA

UPDATED
(END OF MERGED
REVISION DECK)

MERGED REVISION DECK (OUTPUT ON MAGNETIC TAPE)

Figure 14-11. Example of Merging Two Revision Decks from Different Input Units

14-30 96769400 A

Converting COSY Decks to a Hollerith Library

Figure 14-12 is an example of a job that converts three
COSY decks into a Hollerith library and writes the Hollerith
library on logical unit 6. COSY decks 1 and 2 are on logical
unit 5 and COSY deck 3 is on logical unit 7.

COSY LIBRARY

The COSY library consists of one or more COSY decks and is
terminated with an END/ card. The COSY deck is a series
of compressed source written in ASCII format. Each COSY
deck begins with a COSY deck identifier and ends with an
end-of-deck character followed by and end-of-file mark.

COSY compresses a card image by inserting a special ASCII
character and value for three or more sequential blanks.

5F5E16

5F5F16

Special ASCII character indicating
compression

Indicates 3 to 62 consecutive blanks,
where 2116 :s xx :s 5016 (except 2616,
which is illegal)

End-of-card image

End- of-deck image

The format allows COSY to process all ASCII characters on
paper tape that are valid for the device. Illegal paper tape
characters are 00, 7F, 09, OA, OB, OC, and 00. However, the
only valid ASCII characters on magnetic tape are
20 16 :s xx:s 5F 16 (except 2616). This set includes all

END OF REVISION DECK,

capital letters and all numbers. ASCII characters 0016
through IF 16 and 6016 through 7F 16 are illegal because
they cannot be written on magnetic tape in BCD mode. The
character 2616 is illegal because it produces blank tape in
BCD mode.

The COSY library may be written on paper tape or magnetic
tape. When the library is on paper or magnetic tape, the
block size is 192 words and all blocks are completely filled.
Source cards images may be split across blocks.

HOLLERITH INPUT

A Hollerith input library is a group of (one or more)
Hollerith source decks which is terminated by an END/ card.
Each Hollerith source deck begins with a Hollerith deck
identifier card and ends with an ENOl card. The Hollerith
input may be input from cards, paper tape, magnetic tape,
or teletypewriter.

HOLLERITH OUTPUT

Hollerith output consists of source decks in uncompressed
Hollerith code produced from COSY decks. Columns 73
through 75 of the source cards contain a deck identifier.
Asterisks appear in this field if the source card was inserted
by a revision deck.

Columns 76 through 80 of the Hollerith source cards contain
a decimal sequence number. If new source cards are
inserted with a revision deck containing DELI or INS/ cards,
COSY writes an asterisk in column 73 of each new source
card and writes the change record field (contents of columns

.(END/

DECK3 DCK/ 1=7, H=6 I
~ ~I

(SOURCE CARDS

C
INS/ 249 REV1

I II

bJ 1r LSOURCE CARDS

(DEL/ 198, 199 REV1

1 (DECK2 DCK/ 1=5,H=6

(DECK 1 DCK/ 1=5, H=6

-*COsy

-
I---

Figure 14-12. Example of Converting COSY Decks to a Hollerith Library

96769400 A 14-31

66 through 72 on the DEL/ or INS/ card) in columns 74
through 80 of the new source cards. If the change record
field was blank on the INS/ or DEL/ cards, COSY fills
columns 73 through 80 with asterisks.

Hollerith output may be on punched cards, punched paper
tape, or magnetic tape, and is terminated with an end-of
file mark. If the COSY output is on magnetic tape, COSY
writes an end-of-file mark and rewinds the tape upon
completion of the COSY run.

REVISION DECK

A revision deck is a group of COSY control cards and new
source cards that are used to update or revise an existing
COSY library. The first card of a revision deck must be a
DCK/, MRG/, or CPY/ control card and the last card must
be an END/ control card. The new source cards, if used,
must follow an INS/ or DEL/ control card. The control cards
are described in the Calling Statements section. All cards
are in Hollerith code.

The revision deck is input to COSY on the system standard
input device. If the source deck to be revised is on the
system standard input device, COSY stores the revision deck
or mass storage scratch until the source deck has been read.
The revision deck is stored as card images with 40 words per
sector.

LISTINGS

Under normal operation, COSY lists reVISions from the
revision deck as they occur on input. However, when
merging two revision decks, COSY lists the final merged
revision deck on the standard print device. Asterisks in
columns 2 through 5 indicate the card was not used in the
COSY operation. Columns 6 through 85 contain the revision
input card.

If the L parameter is not present on the DCK/ card and
revision cards follow the DCK/ card, the revision cards are
listed.

MESSAGES

COSY error messages are written on the COSY standard list
device in the following format:

COSY Cxx

Where: xx is the error code.

Refer to the MSOS Diagnostic Handbook for descriptions of
the COSY error messages.

At the end of a COSY job, the following message is written
on the COSY standard list device (only if errors exist):

xx ERRORS.

Where: xx is a decimal count of errors in the COSY job.

At various times during a COSY job, the following message
may be written on the system standard comment device:

REWIND LU xx

14-32

Where: xx (decimal) indicates the logical unit to be
rewound.

The operator may enter any value through the system
standard input comment device after rewinding the unit to
tell COSY that the unit has been rewound.

LIST COSY PROGRAM (LCOSY)

The list COSY program provides a means of listing the
names of programs on a COSY tape and punching DCK/
control cards for each program.

The procedure to execute this program is:

*JOB
J
*K,Ilu,Plu,Llu
J
*LCOSY

Where: I assigns a logical unit of COSY tape to be read.

P assigns the logical unit where DCK/ control
statements are to be punched; the END/
statement is not punched.

L assigns the logical unit where names of programs
are listed. The listing appears in the
following format:

PBY CSY/
PBYA CSY/
PBZ CSY/
PBZA CSY/
END OF COSY LIBRARY

Upon executing LCOSY, the following typeout occurs:

DCK/ I,H,C

LCOSY waits for a two-digit logical unit number for each of
the parameters separated by a comma; for example: 06, 07,
18.

If a parameter is not desired, a slash replaces the logical
unit number; for example: 06,/,18. If a slash is used under
the I parameter, no DCK/ control cards are punched; only a
listing of the deck names from the input source is produced.

DISK-TO-TAPE LOADER (DTLP)

The disk-to-tape loading program provides the means of
loading the disk-to-tape (DSKTAP) program into core.
DSKTAP must be absolutized and put on the disk prior to
using DTLP.

The procedure to execute this program is:

*JOB
J
*DTLP

DSKTAP is put into operation by a jump to the location at
which DSKTAP is loaded into core.

96769400 A

I

I

DISK-TO-TAPE UTILITY (DSKTAP)

The disk-to-tape program is a stand-alone, off-line program.
When executing, the protect switch must be off because
protected core is used as a buffer area. The program has its
own drivers for the following equipment:

o Disk - One of the following device drivers is loaded:

-1833-1/1833-3/1867-10/1867-20 Disk
-1833-4/1866-12/1866-14 Cartridge Disk
-1733-1/1738 Disk
-1733-2 Disk
-1739-1 Disk
-1752 Drum

• Tape - One of the following device drivers is loaded.

-1860-95 Magnetic Tape
-1860-92 Magnetic Tape
-1860-72 Magnetic Tape
-All other seven- and nine-track tapes

When DTLP is called from the program library for
execution, it does a GTFILE request for the file DSKTAP
and prints the following message on the standard comment
device.

DTLP FIRST WORD ADDRESS WILL BE xxxx

Where: xxxx is the core location.

DTLP then prints the followimg message on the comment
device and gives control to DSKTAP:

TURN OFF PROTEC SWITCH, TYPE CARRIAGE
RETURN

DSLTAP then enters into the following dialogue with the
operator:

4 DIG. EQ. CODE FOR ••
MAG TAPE

(1)

Response to this message is the four-digit hexadecimal
equipment code. For example:

0381

0480

for 1700 systems

for CYBER 18 systems

For a buffered tape, it might be:

1381

96769400 C

The following message is then entered:

4 DIG. EQ. CODE FOR ••
MASS MEMORY

(2)

Respond by typing the four-digit hexadecimal equipment
code for the mass-memory controller. For example, an
equipment code of 3 for 1700 or 14 for CYBER 18 requires
the following to be entered:

1811 for 1700 Systems

0700 for CYBER 18 Systems

If either equipment code contains a nonhexadecimal digit,
the following message is printed:

ILLEGAL PARAMETER SPECIFIED (3)

Control then reverts to message 1.

When the equipment codes have been properly specified, the
message:

SCRATCH SECTOR IN $C1 IS xxxx (4)

is typed with xxxx being the current beginning of scratch
mass memory. If a system is being saved on tape, all mass
memory sectors up to xxxx should be saved.

The next message is self-explanatory.

TYPE LOAD FOR TAPE-TO-DISK, SAVE
FOR DISK-TO-TAPE OR CARRIAGE
RETURN

(5)

If LOAD is the response, control goes to message 6. If SAVE
is the response, control goes to message 7. If a carriage
return is the response, control goes to message 11.

INPUT TAPE ON UNIT O. READY/

Response with a carriage return when ready.

OUTPUT TAPE ON UNIT O.
HOW MANY SECTORS?

(6)

(7)

Response with the four-digit hexadecimal number of sectors
to be saved.

14-33

If the mass memory device does not respond properly to I/O
commands, the following message is typed and control
passes to message 5.

DISK ERROR (xxxx) (8)

Where:. xxxx is the last device status.

If the magnetic tape does not respond, the following
message is printed and control passes to message 5.

TAPE ERROR (xxx x) (9)

Where: xxx x is the last device status.

When the LOAD operation has completed, the following
message is printed and control passes to message 11.

xxx x SECTOR LOADED (10)

When the SAVE operation is completed, the following
message is printed:

TYPE V FOR VERIFY,
A FOR AUTOLOAD, OR
A CARRIAGE RETURN

(11)

If the response to message 11 is an A, the program simulates
an autoload by reading the first track of the mass-memory
device to location 0 and jumping to zero. This is the only
exit from DSKTAP.

If the response is a V, the tape is verified against mass
memory when the following message is responded to with a
carriage return.

VERIFY TAPE ON UNIT O. READY? (12)

When the verification is complete, control goes to message
11. When errors are encountered on verify, control goes to
message 13.

Only the first verify error in a block of 16 sectors is logged.
Verify errors cause the following message:

SECTOR xxxx WORD - ww - DOES
NOT COMPARE. TYPE C TO CON
TINUE OR A CARRIAGE RETURN
TO ABORT.

(13)

Where: xx is the sector and ww is the word within the
sector.

When a carriage return is the response, control passes to
message 11.

14-34

NOTE

On the CYBER 18, the DTLP program
must be loaded into the lower 32K of
core. If the background area is in the
upper bank area, the DTLP program
moves itself to the lower 32K before
execution.

INPUT/OUTPUT UTILITY (lOUP)

The CYBER 18/1700 background I/O utility program (lOUP)
enables the user to perform simultaneous peripheral back
ground operations during normal foreground processing via
requests entered at the standard input or comment device.
Since the 10UP program operates under CYBER 18/1700
MSOS, the operating system's drivers must be available for
all I/O equipment used in the 10UP program.

IOUP STATEMENT

The 10UP program runs in the background and is called by
the job processor when the operator types an *IOUP
statement. 10UP reads control statements from the
standard input device. The operator may switch control to
the standard comment device by entering an *K,14; it
continues processing until terminated by either an OUT or
an *Z statement, followed by a RETURN.

All operator requests are limited to 40 characters on the
input device.

An *IOUP statement initiates the program that alerts the
operator that it is in core and ready for use by typing out:

UTILITY IN

NEXT IOU

After the request is completed and all messages associated
with the completed requests have been typed out, the 10UP
program types out:

NEXT IOU

The 10UP program then waits for the next request form the
operator. To terminate the 10UP program, the operator
must:

Type OUT

Press RETURN

96769400 A

The IOUP program types out:

UTILITY OUT

To abort a request in execution, the operator must

Press MANUAL INTERRUPT (on console)

Type *Z

Press RETURN

The job processor terminates the processing of the request.

THEORY OF OPERATION

An IOUP request performs three tasks:

• Transfers data

o Compares data

• Requests motion control

The transfer and comparison of data is performed as .follows:
data is read form one logical unit and written to or
compared with the data on the second logical unit. Multiple
copies of the input data can be made on the output device.

The tape motion request may be: skip the specified number
of files/records forwards/backwards, set the density, write
and end-of-file, rewind, or unload a magnetic tape.

The IOUP program executes these tasks on the following
types of devices:

• Card reader

• Card punch

• Magnetic tape

• Paper tape reader

• Paper tape punch

0 Line printer

References to the I/O devices used by the IOUP are made by
logical units or the standard I, P, or L notation assigned by
the system or the job processor.

96769400 A

Data Transfer

The IOUP program employs two methods for the transfer of
data. The method to be used is governed by the following:

o Intermediate storage is used if the input and output
units are the same and/or multiple copies of the input
data are requested (method 1).

• Intermediate storage is not used (record-by-record
transfer occurs) if the input and output units are not the
same and only one copy of the input data is requested
(method 2).

Method 1

Read the entire input data from the input and write to
intermediate storage (scratch unit). For transfer requests
the input data from the intermediate storage is read one
record at a time and then output to the specified device. If
multiple copies of the- output are required, the intermediate
storage is read and output until the repeat count is satisfied.

Using this method, the amount of data to be transferred is
restricted by the size of the available scratch unit. If the
input data to be transferred is specified to be larger than
the available scratch, or if it is in the process of writing, the
scratch is exhausted and the request is aborted.

Method 2

The intermediate storage is not used in the execution of an
10UP request.

Transfer of data from one record of the input device is read
and written directly to the specified output device. This
record-by-record transfer continues until either the
specified amount of data is transferred or a physical end of
the input device is detected. Only one copy of the data can
be made.

Data Verification

The IOUP program ses one of the following methods for
verification of data:

• Comparison of data with two of the same logical units.

o Comparison of data with two different logical units.

14-35

Method 1

When the two logical units are the same, the entire data
from the first logical unit is read and written on inter
mediate storage. This continues until all of the specified
number of records are read and written or until the end of
data on either logical unit is detected. After completion of
reading from the first logical unit and writing on inter
mediate storage, one record at a time is read from the
second logical unit and compared with the imtermediate
storage for record length and data matching. This
comparison continues until the end of the data on the second
unit or to the end of intermediate storage.

When a mismatch occurs, a diagnostic is output (refer to the
MSOS Diagnostic Handbook).

Method 2

When the data to be compared is on two different logical
units, a record from the first logical unit is read and
compared with the corresponding record of the data on the
second logical unit. The two records are checked for the
same number of words and word-by-word likeness. The
comparison continues until all of the specified number of
records are compared or until the end of data on either
logical unit is detected.

When a mismatch occurs, a diagnostic is output (refer to the
MSOS Diagnostic Handbook).

Data Record Size

The maximum data record size for an 10UP request is 192
words (assembly parameter). The I/O devices used by this
request are:

o Card reader/punch

• Paper tape reader/punch

• Magnetic tape

PERIPHERAL OPERATIONS PERFORMED BY THE
IOUP PROGRAM

The following is a summary of the peripheral operations
performed by the 10UP program. They are discussed in
detail in the remainder of the section.

Data Transfer Requests:

Request

Card to card

Card to magnetic
tape

Card to paper tape

Card to printer

Paper tape to printer

Call Format

CC,ul'u2,m,x

CM,u1,u2,m,x

CP,u1,u2,m

CL,ul'u2,m,x

PL,u1,u2,A/B,n,m

Paper tape to paper
tape

Paper tape to magnetic
tape

Paper tape to card
and printer

Paper tape to card

Magnetic tape to card

Magnetic tape to
printer

Magnetic tape to card
and printer

Magnetic tape to
magnetic tape

Magnetic tape to
paper tape

Data Verification Requests:

Request

Card and card

Card and paper tape

Card and magnetic
tape

Paper tape and paper
tape

Magnetic tape and
magnetic tape

Magnetic tape and
paper tape

Motion Control Requests:

Request

Advance unit number
of files

Advance unit number
or records

Backspace unit number
of files

Backspace unit number
of records

Rewind unit

Write end-of-file
mark on unit

PC,u1,u2,A/B,n,m

MC,u1 ,u2,R/F ,n,m,x

ML,u1 ,u2,R/F ,n,m,x

Call Format

VCC,u1,u2,x

VCP,u1,u2

VCM,u1,u2,n,x

Call Format

TAF,u,n

TAR,u,n

TBF,u,n

TBR,u,n

TRW,u

TEF,u

96769400 A

Set density of unit

Unload unit

TSD,u,d

TUL,u

The u, ul> u2, and u3 of all the preceding IOUP requests
indicate the devices used by the job processor to execute an
IOUP request. If the type of the device indicated by I, P, L,
u, ul, u2, or u3 does not match the type of IOUP request,
the request is rejected.

Data Transfer Requests

Card to Card

The card-to-card data transfer request format is:

CC,ul ,u
2

,m,x

Where: ul is card reader unit 1. }

u2 is punch unit 2.

m is the number of times the
copied.

x is optional.

ul and u2 can
refer to the same
unit.

input deck is to be

o or blank Format of input data is 1700
formatted binary/ASCII.

1 or 99999 SO-column card image in binary

I Card deck input at card reader unit u1 is duplicated m times
at the card punch unit u2•

The end of input data occurs when an end-of-file is detected
or the card reader hopper is empty. The number of records
(one record = one card) transferred is typed out after the
completion request.

Card to Magnetic Tape

The card-to-magnetic-tape data transfer request format is:

Where: ul is the card reader unit.

u2 is the magnetic tape unit.

m is the number of times the input deck is to be
copied.

x is optional.

o or blank Format of input data is 1700
formatted binary/ASCII.

1 to 99999 SO-column card image in binary

Card deck input at card reader unit u1 is written m (1 to 10)
times on the magnetic tape on u2.

An end-of-file mark is written at the end of each copy of
the magnetic tape unit.

96769400 C

The end-of-input information occurs when an end-of-file
card is detected or the card reader hopper is empty.

When an end-of-tape condition on magnetic tape is detected,
a diagnostic is printed. At the end of each copy the
following message is output:

COpy COMPLETED, @ WHEN READY FOR NEXT
COPY.

Where: @ is carriage return.

Data is written on the u 2 magnetic tape, beginning at the
current physical position of the tape. The tape density is
determined by the setting on unit u 2 • The number of
records (one record = one card) transferred is typed on
completion of the request.

Card to Paper Tape

The card-to-paper-tape data transfer request is:

CP,ul'u2,m

Where: u1 is the card reader unit.

u2 is the paper tape punch.

m is the number of copies of paper tape required. I
Card deck input at card reader unit u 1 is written m times
on the paper tape on unit u 2 • The mode of the data
transfer is the mode of the input data; 1700 binary/ASCII
mode ill assumed.

C1 leader is written at the end of each copy on the paper
tape. The end of the input information occurs when an end
of-file card is detected or the card reader is empty.

The number of records (one record = one card) of data
transferred is typed on completion of the request.

Card to· Printer

The card-to-printer data transfer request format is:

CL,u
1
,u

2
,m,x

Where: ul is the card reader unit.

u2 is the printer.

m is the number of listings required.

x is optional.

o or blank The first character of the card
record is not interpreted as a
carriage control function for a
FORTRAN line printer; it is
printed as a data character.

1 to 99999 The first character of the card
record is interpreted as a
carriage control function for a
FORTRAN line printer.

14-37

I Card deck input at card reader unit u1 is written m times on
the printer of unit u2•

I

The mode of the data transfer is assumed to be 1700
formatted binary/ASCII mode used for the input card deck.
Non-ASCII input data results in a garbled printout.

A paper eject occurs at the end of each listing.

The end of the information occurs when an end-of-file card
is detected or the card reader hopper is empty.

The number of records (one record = one card) is typed on
completion of the request.

Paper Tape to Printer

The paper-tape-to-printer data transfer request format is:

PL,u1,u2,A/B,n,m

Where: u1 is the paper tape reader.

u2 is the printer.

A/B is the mode of the data on paper tape.

A ASCII
B 1700 binary

n is the number of records of data to be printed.

m is the number of listings required.

The mode of the data transfer is that specified in the
request and is assumed to be 1700 formatted binary/ASCII.
The paper tape on unit u 1 is read in and n (1 to 99,999)
records of data (or the actual number read if there are
records less than the specified number) are printed on
printer unit u

2
•

After each listing a paper eject occurs.

The paper tape is read in the specified mode by a format
read request.

The number of records transferred is typed out on
completion.

The printout of binary input data is garbled.

Paper Tape to Paper Tape

The pnper-tape-to-paper-tape data transfer request format
is:

PP ,ul'u2,n,m

Where: u1 is the paper tape reader.

u2 is the paper tape punch.

14-38

n is the number of records of data to be
transferred (1 to 99,999).

m is the number of times the paper tape is to be
duplicated.

The number of records of data on paper tape unit u
1

is read
in and duplicated m times on paper tape punch unit lf2•

Paper ·Tape to Magnetic Tape

The paper-tape-to-magnetic-tape data transfp,r request
format is:.

PM,U1,u2,A/B,n,m

Where: u1 is the paper tape reader.

u2 is the magnetic tape unit.

A/B is the mode of data on paper tape.

A
B

ASCII
1700 binary

n is the number of records to be transferred.

m is the number of times the paper tape is to be
duplicated.

At the end of each copy the following message is output:

COpy COMPLETED, @ WHEN READY FOR NEXT
COPY.

Where: @ is carriage return.

The paper tape is read by a format read request in the mode
specified in the request. The density of recording data on
magnetic tape is the setting on the physical magnetic tape
unit.

The paper tape unit u 1 is read in and n (1 to 99,999) or less
(if the number of records actually read is less than n)
records of data are written on magnetic tape unit u 2 in the
specified mode; 1700 formatted binary/ASCII is assumed.

An end-of-file mark is recorded after each copy of the data
on the magnetic tape. When an end-of-tape mark is
detected on the magnetic tape, a diagnostic is printed.

The number of records transferred is typed on completion of
the request.

Paper ·Tape to Card and Printer

The paper-tape-to-card-and-printer data transfer request
format is:

PB,u1,u2,u3,A/B,n,m

Where: u1 is the paper tape reader.

u2 is the card punch unit.

u3 is the printer.

96769400 C

A/B is the mode of data on paper tape.

A
B

ASCII
1700 binary

The mode of the data transfer is that specified
in the request. The paper tape is read by a
format read in the specified mode; 1700
formatted binary/ASCII is assumed.

n is the number of records of data to be
transferred.

m is the number of listings and punched card decks
required.

The paper tape or unit u 1 is read in and n (1 to 99,999) or
less (if the number actually read is less than the specified n
value) records of data are printed on printer unit u 3 and
punched on card punch unit u2•

After each listing a paper eject occurs.

The number of records transferred is typed on completion of
the request. The printout of binary input data is garbled.

Paper Tape to Card

The paper-tape-to-card data transfer request format is:

PC,u1,u2,A/B,n,m

Where: u1 is the paper tape reader.

u2 is the card punch unit.

A/B is the mode of data on paper tape.

A
B

ASCII
1700 binary

n is the number of records of data to be
transferred.

m is the number of punched card decks to be
duplicated.

The paper tape on unit u 1 is read in and n (1 to 99999) or,
less (if the number actually read is less than the specified
n value) records of data are punched on card punch unit u2•

The paper tape is read as formatted records in the specified
mode and the cards are punched as formatted records in the
mode of the input data; 1700 formatted binary/ASCII format
is assumed.

The number of records transferred is typed on completion of
the request.

Magnetic Tape to Card

The magnetic-tape-to-card data transfer request format is:

96769400 B

Where: u1 is the magnetic tape unit.

u2 is the card punch unit.

R is the number of records (n) to be transferred (1
to 99,999).

F is the number of files (n) to be transferred (1 to
99,999).

n is the number of records/files to be transferred
(refer to R, F)

m is the number of card decks to be produced.

x is optional.

o or blank Format of input data is 1700
formatted binary/ASCII.

1 to 99999 Binary card image (160 tape
characters/record) is punched as
an 80-column card record.

The magnetic tape on unit u 1 is read in and the specified
number of records/files are punched on card punch unit u2•

The number of records/files transferred is less than the
specified number if the end-of-tape is detected before all
specified input data has been read in.

The number of records/files transferred is typed on
completion of the request.

Magnetic Tape to Printer

The magnetic-tape-to-printer data transfer format is:

ML,ul'u2,R/F ,n,m,x

Where: u1 is the magnetic tape unit.

u2 is the printer.

R is the number of records (n) to be transferred.

F is the number of files (n) to be transferred.

n is the number of records/files to be transferred
(refer to R, F).

m is the number of listings required.

x is optional.

o or blank First character of magnetic tape
record is not interpreted as a
carriage control function. It is
printed as data character.

1 to 99,999 The first character of magnetic
tape record is interpreted as a
carriage control function for a
FORTRAN line printer.

14-39

The magnetic tape on unit u 1 is read in and the specified
number of records/files is printed on printer u2•

Each end-of-file encountered on magnetic tape causes a
page eject.

A t the end of each listing a page eject occurs.

The number of records/files transferred is less than the
specified number if the end-of-tape is detected before all
specified input data has been read in.

The mode of data transfer is 1700 formatted binary/ASCII
mode of data on magnetic tape. The magnetic tape is read
by a format read request and the data is written in the mode
of the input data. The printout of binary input data is
garbled.

The number of records/files transferred is typed on
completion of the request.

Magnetic Tape to Card and Printer

The magnetic-tape-to-card-and-printer data transfer
request format is:

MB,u1,u2,u3,R/F ,n,m,x

Where: u1 is the magnetic tape unit.

u2 is the card punch unit.

u3 is the printer.

R is the number of records (n) to be transferred.

F is the number of files (n) to be transferred.

n is the number of records/files to be transferred
(1 to 99,999).

m is the number of listings and card decks required.

x is optional.

o or blank First character of the magnetic
tape record is not interpreted as
a carriage control function for a
FORTRAN line printer. It is
printed as a data character.

1 to 99,999 First character of the magnetic
tape record is interpreted as a
carriage control function for a
FORTRAN line printer.

The magnetic tape on unit u 1 is read in and the specified
number of records/files are output on printer u3 and punched
on card punch unit u2•

Each end-of-file encountered on the magnetic tape causes a
page eject on the printer. At the end of each listing a page
eject occurs.

14-40

The number of records/files transferred is less than the
specified number n if the end-of-tape is detected before all
specified data is read in.

The mode of data transfer is 1700 formatted binary/ASCII
mode on magnetic tape. The magnetic tape is read by a
format read request and the data is output to the printer and
card punch units in the mode of the input data. The printout
of binary input data is garbled.

The number of records/files transferred is typed on
completion of the request.

!\1agnetic Tape to Magnetic Tape

The magnetic-tape-to-magnetic-tape data transfer request
format is:

MM,u
1
,u2,R/F,n,m

Where: u1 is the input magnetic
tape unit.

u2 is the output magnetic
tape unit.

} uland u 2 can
refer to the
same unit.

R is the number of records (n) to be transferred (1
to 99,999).

F is the number of files (n) to be transferred (1 to
99,999).

n is the number of records/files to be transferred
(refer to R, F).

m is the number of copies to be made.

The magnetic tape in unit u 1 is read in and the specified
number n of records/files is written m times on magnetic
tape unit u2• u1 and u2 can refer to the same unit.

The mode of data transfer is that of the data on the input
magnetic tape. The magnetic tape is format read in 1700
binary/ ASCII mode and the data is written in the format
mode of input data. At the end of each copy of data, an
end-of-file mark is written on the output magnetic tape.
Each end-of-file mark detected on the input magnetic tape
is counted as one record when R is specified. The number of
records/files transferred is less than the specified number if
the end-of-tape mark is sensed on the input magnetic tape
before n is satisfied.

When an end-of-tape mark is detected on the output
magnetic tape u2, a diagnostic is typed.

The total number of records/files transferred is printed on
completion of the request. At the end of each copy the
following message is output:

COpy COMPLETED, @ WHEN READY FOR NEXT
COPY.

Where: @ is carriage return.

96769400 C

I

D

Magnetic Tape to Paper Tape

The magnetic-tape-to-paper-tape data transfer request
format is:

Where: u1 is the magnetic tape unit.

)

u1 and u 2
can refer to

u2 is the paper tape punch unit. the same unit.

R is the number of records (n) to be transferred (1
to 99,999).

F is the number of files (n) to be transferred (1 to
99,999).

n is the number of records/files to be transferred
(refer to R, F).

m is the number of times the paper tape is to be
duplicated.

The magnetic tape on unit u 1 is read in and the specified
number n of records/files is written n times on the paper
tape on unit u2.

The mode of data transfer is that of the data on the input
magnetic tape. The magnetic tape is format read in 1700
binary/ ASCII mode and the data is format-punched as 1700
binary/ASCII. At the end of each copy of data, a leader of
blank characters is punched. An end-of-file mark on the
magnetic tape causes a leader to be punched on the paper
tape. Each end-of-file mark on the magnetic tape is
counted as one record when records are transferred. The
number of records/files transferred is less than the specified
number if the end-of-tape mark is sensed on the input
magnetic tape before n is satisfied.

The total number of records/files is typed at the completion
of the request.

Data Verification Requests

Card and Card

The card and card verify request format is:

VCC,u1,u2,x

Where: u1 is card reader unit 1.

u2 is card reader unit 2.

x is optional.

o or blank

1 to 99,999

96769400 C

Format of data to be
compared is 1700 formatted
binary/ASCII.

Format of data to be
compared is the SO-column
binary card image ..

The two card decks to be compared are input at card reader
units u 1 and u 2. The IOUP program compares each card
and, in the event of any discrepancy in the data, a diagnostic
is printed. The comparison continues until an end-of-data on
unit u 1 /u 2 is detected. When verification is completed,
the total number of records checked is printed (one card =
one record).

Card and Paper Tape

The card and paper tape verify request format is:

VCP,u1,u2

Where: u1 is the card reader unit.

u2 is the paper tape reader.

The card deck to be compared against a paper tape is read
by a format read at u 1 in the mode of the input deck. The
paper tape is read by a format read in the same mode as the
card deck at unit u 1. The data on one card is compared
with one paper tape record. If a discrepancy exists, a
diagnostic is typed. The verification proceeds until the last
record on the card deck or paper tape, whichever is earlier,
is processed. At the end of verification the total number of
records checked is typed.

Card and Magnetic Tape

The card and magnetic tape verify request format is:

VCM,u1,u2,n,x

Where: u1 is the card reader unit.

u2 is the magnetic tape unit.

n is the number of records to be compared (1 to
99,999).

x is optional.

o or blank

1 to 99,999

Format' of data compared is
1700 binary/ASCII

Format of data compared is
SO-column binary card
image.

The card to be compared is read on unit u 1 until either n
cards are read or the reader hopper is empty, whichever
occurs first. This data is compared with each magnetic tape
record until either an end-of-data or n is detected (actual
number of cards/records of data is read, whichever occurs
first). At the end of verification, the total number of
records checked is printed. If any discrepancy exists, a
diagnostic is typed.

Paper Tape and Paper Tape

The paper tape and paper tape verify request format is:

VPP,ul'u2

Where: ul'u2 are paper tape readers.

14-41

The two paper tapes are read consecutively in unformatted
binary mode at unit u • A discrepancy in any record causes
a diagnostic to be typed. At the end of verification the
total number of records checked is typed.

Magnetic Tape and Magnetic Tape
Magnetic Tape and Magnetic Tape

The magnetic tape and magnetic tape verify request format
is:

VMM,u1,u2,n

Where: u1 is magnetic tape unit 1. } ul and u2 can
refer to the

u2 is magnetic tape unit 2. same unit.

n is the number of records of magnetic tape to be
compared (1 to 99,999).

u 1 Equal to u 2 - Magnetic tape 1 on unit u 1 is read by a
format read request in the mode of the data on the tape
until the specified number of n records of data is read. If
the end-of-tape mark is detected on tape 1 before n has
been read, the number of records actually read is the
number of records to be compared. An end-of-file counts as
one record.

Magnetic tape 2 on unit u 2 is format read in the mode of
the data of the corresponding record on tape 1 and compared
for equality in the number of words and word-by-word meter
in each record. A discrepancy causes a diagnostic to be
typed. At the end of verification the total number of
records checked is typed. Verification also ends when the
end-of-tape mark is detected on tape before the specified
number of records has been checked.

u 1 Not Equal to u 2 - The comparison of the data is one
record from each of the two units. The verification ends
when either the specified number of records are checked or
the end of tape is reached on u1 and u2•

Magnetic Tape and Paper Tape

The magnetic tape and paper tape request format is:

VMP,u1,u2,n

Where: u1 is the magnetic tape unit.

u2 is the paper tape reader.

n is the number of records of magnetic tape to be
compared (1 to 99,999).

The verification of data on the magnetic tape and paper
tape is executed by reading one record of magnetic tape and
comparing it with the corresponding record of paper tape.
The comparison is for equality in the number of the words
and a word-by-word match in each record. The comparison
continues until either the number of words specified has
been compared or the end-of-data on either unit is detected.

When a mismatch occurs, a diagnostic is output (refer to the
MSOS Diagnostic Handbook).

14-42

Motion Control Requests

Advance Unit Number of Files

The advance unit number of files request format is:

TAF,u,n

Where: u is the magnetic tape unit.

n is the number of files to be advanced (1 to 4095).

Magnetic tape on unit u is advanced n number of files. When
the end-of-tape mark is detected before all the n files
advanced, the tape motion stops at the end-of-tape mark. A
typed diagnostic indicates the total number of files
advanced. An end-of-file mark is counted as one record.

Advance Unit Number of Records

The advance unit number of records format is:

TAR,u,n

Where: u is the magnetic tape unit.

n is the number of records to be advanced (1 to
4095).

Magnetic tape on unit u is advanced n number of records.
When the end-of-tape mark is detected before all the n
records are advanced, the tape motion stops at the end-of
tape mark. A diagnostic is typed to indicate the total
number of records advanced. An end-of-file mark is counted
as one records.

Backspace Unit Number of Files

The backspace unit number of files request format is:

TBF,u,n

Where: u is the magnetic tape unit.

n is the number of files to be backspaced (1 to
4095).

Magnetic tape on unit u is backspaced n number of files. If
load point is detected before all the specified files are
backspaced, tape motion stops at load point. A typed
diagnostic indicates the number of files backspaced.

Backspace Unit Number of Records

The backspace unit number of records request format is:

TBR,u,n

Where: u is the magnetic tape unit.

n is the number of records to be backspaced (1 to
4095).

96769400 A

Magnetic tape on unit u is backspaced n number of records.
An end-of-file mark is counted as one record. If load point
is detected before all the specified records are backspaced,
tape motion stops at load point. A typed diagnostic
indicates the number of records backspaced.

Rewind Unit

The rewind unit request format is:

TRW,u

Where: u is the magnetic tape unit. The magnetic tape on
unit u is rewound to its load point.

Write End-of-File Mark on Unit

The write end-of-file mark on unit request format is:

TEF,u

Where: u is the magnetic tape unit. An end-of-file mark is
written on magnetic tape at unit u.

Set Density of Unit

The set density of unit request format is:

TSD,u,d

Where: u is the magnetic tape unit.

d is the density code.

o
2
5
8
16

Do nothing.
Select 200 bits per inch.
Select 556 bits per inch
Select 800 bits per inch.
Select 1600 bits per inch.

The density of magnetic tape on unit u is set

The program then lists the physical unit. MSOS lo~ical unit,
and last used sector address for each file manager logical
unit. If the file manager had not been called or is not in the
system, the program prints:

****NO FILE MANAGER DATA AVAILABLE****

If the file manager files exist, then the program prints:

SPECIFY DEFAULT CHANGES
LL = MSOS LU (DEC)
SSSS = SECTOR ADDRESS (0001-7FFF)
(CR) = USE DEFAULT

LL,ssss

Where: ssss is the last sector to be saved; an input of
0000 means do not save this MSOS lu

If an invalid response is entered, one of the following is
printed:

11 ERROR
ssss ERROR
FORMAT ERROR

The program then reprints:

ll,ssss

and waits for input. When completed, the program prints:

OUTPUT TAPE ON UNIT 0, CR WHEN READY

Respond with carriage return when ready. The program then
prints:

UNIT MSOS L U SA
xx yy ssss

Where: xx is the physical logical unit

to the specified density. yy is the MSOS logical unit

Unload Unit

The unload unit request format is:

TUL,u

Where: u is the magnetic tape unit.

EXTENDED DISK TO TAPE PROGRAM (EDTLP)

EDTLP is a save/load storage module drive disk pack
program which executes as an ordinal using MSOS I/O
requests.

The program is executed by manual interrupt of the
computer and entering EDTLP and a carriage return. The
program then responds with:

EDTLPIN

ENTER LOAD/SAVE

Response to this is SAVE for the disk to magnetic tape save
operation or LOAD to restore the disk from a previously
saved magnetic tape.

If SAVE is entered the program prints:

DEFAULT CONDITIONS

PHY UNIT MSOS LU LAST SA

96769400 C

ssss is the sector address

If the mass memory device does not respond properly to I/O
commands, the following is printed:

MM I/O ERROR
xxxx hhhh Y u zz

Where: xxxx is the sequence number of the record

hhhh is the sector address

y is the MM physical logical unit

u is the physical logical uni t

zz is the MSOS logical unit

ENTER A FOR ABORT, C FOR CONTINUE, THEN CR

Where: A aborts the program

C flags the record as bad so it will not be written
on MM during a LOAD, and continues the

;SA VE operation

If the program read request to MM fails, the following
prints:

****MM FREAD I/O ERROR****

14-43 •

When an end-of-tape is reached, the program prints:

END-OF-TAPE, MOUNT NEXT TAPE, CR WHEN
READY

Respond with a carriage return when ready.

If the following message is printed, then an irrecoverable
tape error has occurred:

****MT ERROR

The message EDTLP OUT at any time signifies exiting from
EDTLP.

If the SAVE has executed to completion, the following is
printed:

SAVE OPERATION COMPLETE

If LOAD is entered, the program prints:

INPUT TAPE ON UNIT 0, CR WHEN READY

Respond with a carriage return when ready.

The program prints the MSOS lu and last sector address:

UNIT
x

MSOS LU
yy

SA
ssss

Where: x is the physical logical unit

yy is the MSOS logical unit

ssss is the sector address

When end-of-tape is reached, the program prints:

END-OF-TAPE, MOUNT NEXT TAPE, CR WHEN
READY

Respond with a carriage return when ready.

Magnetic tape errors terminate the load with the printing
of:

****MT ERROR

When a SAVE tape is generated, sequence numbers are
generated for each tape record; if out of sequence, the
program prints:

OUT-OF-SEQUENCE RECORD

Then the program requests instructions with the following:

ENTER DIGIT THEN (CR)

1- ABORT
2 - CONTINUE
3 - REREAD TAPE

If bad sectors were encountered, the program prints:

THE FOLLOWING SECTORS WILL NOT BE LOADED
xxxx-yyyy

Where: xxx x is the first bad sector

yyyy is the end-of-the-file sector

• 14-44

When the load operation has completed, the following
message is printed:

LOAD OPERATION COMPLETE

WORD PROCESSING TEXT EDITOR
(EDITOR)
This is a utility tape background program that creates,
modifies, or retrieves files of data.

In this context, file refers to contiguous data at a specified
place on mass storage (work file); this use of the word file is
not to be confused with the more restricted definition of file
as used by the job processor or the file manager. However,
a job processor file may be placed in the work file and
manipulated by the word processing text editor.

After calling the editor, file data may be entered into the
work file in a number of ways:

• The LOAD statement loads ASCII data on a line-by-line
basis, numbering each line as it is loaded into the work
file.

• The GET statement loads a previously defined job
processor file.

• The AUTO mode assigns line numbers in a preselected
sequence but otherwise allows the operator to build a
file as in the manual mode.

Manipulation of the work file is performed on a record-by
record basis. Since only one record is proceSsed at a time,
this makes text editing particularly applicable to:

• Editing plain English text (word processing)

• Editing programs (either FORTRAN or CYBER 18/1700
assembly language format) that are to be batch
processed at a later date.

• Editing CYBER 18/1700 MSOS batch processor
commands that are to be processed at a later time.

• Editing, merging, or rearranging other data that the
user wishes to treat as a file

Since all work is done on the text editor's work file, source
language programs treated as files are untouched by the text
editor. This allows the user to save the old program or data
until the new one is completely revised and checked.

In addition to manipulating the file data, the text editor has
the ability to:

• Search for a data string (e.g., a statement label in one
line or several lines)

• Format the data (i.e., align the spacing so that it
corresponds to FORTRAN or assembly language line
format; or to space output to listing device)

• Output the file on a specified device or as a Job
Processor file

Since the text editor operates on a line-by-line basis,
operator inputs (normally made from the comment device)
are limited to an 80-character string. However, if the text
editor is in manual mode, the operator must also enter the
line number. In this mode, the text editor accepts a four
character line number followed first by a space and then by
a data string up to 80 characters in length.

96769400 C

USING THE TEXT EDITOR

The text editor is a background utility program; to call it,
the user must first place the system in job processing mode.
(In the discussion that follows, ti is assumed that the
operator is editing files from the comment device unless
some other mode is specified). When the system replies with
a J, the user enters an *EDITOR request. When the text
editor is loaded, it replies with READY. The operator may
then select (or create) his work file and manipulate it as he
desires.

After each text editor command is executed, the editor
indicates it is ready for further commands by displaying
READY or > on the next line of the comment device. The
operator types the next request on the same line and enters
the complete request by pressing the RETURN key.

NOTE

The text editor works on a single file at a
time. If two or more files are to be
processed during a single call to the text
editor, each of these files should be
defined as a job processor file. The files
may be read, processed, and rewritten to
the job processor as described in the GET,
MERGE, and SAVE commands.

To exit from the text editor, the user types EXIT and
presses the RETURN key. At this point, the work file is
released along with the scratch file. However, a copy of the
file may have been transferred to the job processor files or
listed on an output device for subsequent use.

The complete list of all text editor commands is shown in
table 14-4. The typical command consists of two parts: a

command type followed by a parameter list (i.e.,
COMMAND, parameter 1, parameter 2, •••). It is not
necessary to type the entire command type; a minimum
abbreviation that distinguishes this command from all others
is sufficient.

Trailing commas may always be omitted when one or. more
of the parameters separated by the commas are omitted.

Each of the commands is described in detail in the following
section.

Parameters used in text editor commands are defined as
follows:

ai
bi
fileid
k
lu
n

x

Member of character string
Member of character string
File identifier
Text line number
Logical unit
1. Line number
2. Incremental line value
Statement modifier

DETAILED DESCRIPTION OF TEXT EDITOR
COMMANDS

Program Entry

The program entry command has the following format:

*EDITOR @
No parameter list is supplied. The editor replies with
READY on the next line. At this point, the program is in
the manual data entry mode (described below). If that mode
is not desired, one of the other commands must be used.

TABLE 14-4. TEXT EDITOR REQUESTS

Command
(minimum
abbreviation
is underlined)

*EDITOR

EXIT

CONTROL

(manual)

AUTO

LOAD

GET

96769400 C

Parameters

None

None

,lu

None

,n

,lu,n

,fileid,

Action

Entry/Exit Program Control Statements

Job processor passes CPU control to text editor.

Text editor returns control to job processor.

Changes editor's command input to logical unit (Iu)

Entering or Changing Data in Work File

Allows operator to enter one line of text. Operator must supply line
number and text. Can be used anytime editor replies with READY or >.

Enters the user-specified line from the input device; line number is
previous line plus n

Loads data into work file from specified lu; sequences line number in
increments of n

Load job processor file named fileid into work file; sequences line
number in increments of n

14-44.1 I

'--

Command
(minimum
abbreviation
is underlined)

MERGE

DELETE

CHANGE

CLEAR

SEARCH -

LIST

DUMP -

SAVE -

RESEQ

ALIGN

ADF --
ADF

BSF --
ADR

BSR

REW

96769400 C

TABLE 14-4. TEXT EDITOR REQUESTS (Contd)

Parameters

,fileid,n

,k or

,*a1• •• am *
,*b1• •• bm*
,k1,k2

None

,*a1• . .a *
,k1 ,k2

m

,lu,k1 ,k2 ,x

,lu,k1 ,k2

, fileid

,lu, nnnn

,lu, nnnn

,lu,nnnn

,lu, nnnn

,lu

Action

Merges job processor file named fileid with the existing file in work file.
New data is inserted following line n.

Deletes line of text numbered k, or

deletes all text between (and including) lines k1 and k2

Changes the character string a1 ••• am to the new character string
b
1
••• bm in all lines between (and including) k1 and k2

Clears the work file

Search for or Save Data

Searches for character strin~ in all lines between (and including) k1
and k

2
; lists line numbers where character string was found

Lists contents of all line numbers between kl and k2 on logical unit
(lu). If x is blank, also lists the line numbers (if lu is blank,
comment device is used)

Same as LIST except line numbers are not included, and list formatting
commands cannot be used

Saves work file as a job processor file named fileid

Data Formatting

Resequences line numbers starting at line n1• Value n2 is added to that
line number and to every line number following n1•

Aligns fields in file lines to conform to:

• Assembly language format (x = A)

• FORTRAN (x = F or x = blank)

• Align data starting at line n1 and terminating at line n2

See AUTO or manual mode for command.
Text is:

• SNG L - Single space listed output

• DaUB - Double space listed output

• SPAC xx - Space down xx lines

.,. PAGE - Go to top of form

Advance file

Backspace file

Advance record

Backspace record

Rewind logical unit

lu is the logical unit
nnnn is the number of iterations

14-45

After each text editor command is executed, the program
reverts to manual data entry mode and indicates this with a
READY or > reply.

NOTE

The READY or > reply occurs on the next
line of the comment device. It is followed
by a space. Any command should be
entered on this same line and should be
terminated by a carriage return.

Prog ram Ex it'

The program exit command has the following format:

§XIT @
No parameter list is supplied. This command may be used
only after a READY or > reply. Control returns to the job
processor.

NOTE

if the operator causes an exit from the
text editor in an abnormal state and the
editor is currently using job processor
files, it is possible that all current job
processor files being used by the text
editor may be lost.

Change Editor Control Input

This command has the following format:

CONTRL,lu @
This transfers input control from the current logical unit
(normally the comment device) to the logical unit
designated.

If the designated logical unit fails and MSOS signifies this on
the comment device with a L,xx,FAILED,y reply, the
operator's entry of the CU statement returns control to the
comment device.

While operating from the specified logical unit, text editor
replies are printed on the line printer.

Control remains with the specified logical unit changed by a
subsequent CONTRL statement.

14-46

NOTE

When the text editor is called, all
parameters are reinitialized. Specifically,
the work file and scratch files are initial
ized, and operator interface control
resides in the current system comment
device.

Manual Mode Data Entry

No command is associated with this entry mode. As soon as
the text editor replies with READY or >, the line of data
can be entered in the form:

Where: nmbr is the line (record) number, which can be
between 1 and 9999. If this number is
already assigned to another line, the old
data for that line is deleted and the newly
entered data replaces it.

sp is space.

data is 80 characters (maximum). Error
correction characters are excluded up to a
total of 85 characters. If a carriage
return is not found within the line buffer
size, the text editor supplies a carriage
return at the 86th character position.

Leading zeroes in the line number are suppressed and the
number is right-justified in the first four character
positions.

The editor signifies it is ready for second and succeeding
manual line entries (or a new command) with a > reply.
Following execution of any command except AUTO, the text
editor defaults to manual mode condition. The first editor
reply (which follows all commands except repeated use of
manual mode entry) is READY.

Automatic Mode Data Entry

This command has the following format:

AUTO,n @
Automatic entry is similar to manual entry except the text
editor supplies the line number. The value n is the desired
increment between line numbers. If text has been previously
entered and the last line of text entered was m, then the
starting line number is m + n. If no text has yet been
entered in the work file, the starting line number is n. If n
is omitted, the value of n is assumed to be 10. (In this case,
the comma may also be omitted).

The text editor replies on the following line with a four-digit
line number without leading zeros.

The operator types in the text desired on this same line (up
to 80 characters), ending with a carriage return.

The text editor replies with the next line number, etc. To
exit from the automatic sequencing mode, the operator
types a carriage return instead of more text.

NOTE

In all text editor commands using n, both
the n and the preceding comma may be
omitted. In this case, n equals 10.

96769400 A

Error Recovery During Data Entry

If an error is discovered while typing a line before the
carriage return has been pressed, and only a few characters
have been typed since the error was made, the character
- (upper case letter 0) may be typed once for each
preceding character to be deleted. The correct character
may then be typed. For example, suppose the following
formula is to be typed:

Y=X**2+Z**2+ATAN(Q+.0134)

Instead the user types:

Y=Z**2+Z+AT

At this point the error is discovered. The user types the
character three times, and then enters the correct

characters. The typed line would appear as follows:

Y=X**2+Z+AT - - - **2+ATAN(Q+.0134)

The above line would be interpreted by the text editor as the
desired formula.

On conversational display terminals, the back-arrow cursor
control key - may also be used to delete characters. Each
time the key is pressed the cursor is moved back one
character. When the correct characters have beeIl typed,
the corrections appear on the screen in the exact format
that the computer receives them.

If an error in a line is discovered before the carriage return
has been pressed but after more than a few characters have
been typed since the error occurred, the entire line may be
deleted and retyped. To do this the procedure is as follows:

1. Press RUB-OUT

2. Press LINE FEED or cursor control

3. Press carriage return

4. Retype the line

The 90-character line buffer size limits the ability to
correct text as described above. The total text line
including the line number must be 85 or fewer characters
(errors are carried in a separate buffer). Otherwise, the
text ,editor truncates the data by supplying its own carriage
return at the 86th character position.

Load File From Specified Logical Unit

This command has the following format:

LOAD,lu,n @
This command loads ASCII data into the work file from the
specified logical unit, and sequences the statement in
increments of n (the default condition for n is n = 10, and
the trailing comma may be omitted).

96769400 A

The loading operation terminates if an end-of-file (EOF)
occurs or if the specified entry device fails. In the latter
case, the operator responds to the failure message:

L,xx,FAILED,yy
ACTION

with a CU statement. Then in both cases, the text editor
returns control to the comment device (or to the control
device if a CONTRL statement previously redesignated the
command input device).

The line number value must remain with the range 1 through
9999. If there is text already in the work file when LOAD is
executed, the new data is appended to the existing file. The
first new text line is numbered n + m where m is the last
statement number of the previously existing work file
number. The next statement numbers are m + 2n, m + 3n, •••
If an overflow occurs (m + kn > 9999), all lines (records) up
to the record causing the overflow are saved in the work
file. However, the loading operation terminates and the
error message:

LINE NUMBER OVERFLOW

is displayed on the comment device.

(At this point the user may ordinarily resequence the
existing file, and may then continue loading from the first
overflow statement with a new LOAD statement. Alterna
tively, he may dump the existing file as a job processor file,
clear the work file, and load the overflow portion in the
reinitialized work file witha new LOAD statement).

Load File From Job Processor

The format of this command is as follows:

QET,fileid,n@

This command is similar to LOAD, except the file loaded
already is defined in the job processor with the label fileid
(one to six alphanumeric characters beginning with a letter).
The numbering parameter n designates:

1. Starting line number

2. The increment between line number values

Previously entered program text in the work file is
automatically cleared; this command cannot be used to
merge files as in the LOAD command case.

CAUTION

The file must be closed before entering
the text editor.

14-47

Merge File from Job Processor

The format of this command is as follows:

MERGE,fileid,n @
This command allows the operator to merge a job processor
file into the file currently existing in the work file. The file
to be merged is identified by the alphanumeric label fileid.
This file is inserted in the existing file starting at statement
n. Succeeding merged statements are numbered n + 10, n +
20, ••• , n + k. If there are text lines in the original work file
following the last fileid line (now numbered n + k), each of
these lines has its value increased by (n + k).

If n is omitted, fileid file is appended to the last statement
in the work file, numbered m. New lines from fileid are
then numbered m + 10, m + 20, etc.

Delete Lines From File

The formats of this statement are:

DELETE,k@

DELETE,k1,k2 @
Where k, k1, and k2 are line numbers.

This command deletes the single line numbered k or
deletes all lines between and including lines numbered kl
and k2•

If no parameters are entered, this command is rejected. The
command is also rejected if k2 is less than k1•

Change Part of One or More Lines

The format of this command is as follows:

CHANGE,*ar •• an *,*b, ••• bm *,kl'k2 @
This command substitutes one character string (b1 ••• bm)
for another character string (a 1 ••• a n) in all statements
between (and including) those numbered k 1 and k 2. The
character strings a 1 ••• a nand b 1 ••. b m must be 20
characters or less. Each character string must start and end
with a delimiter. The delimiter may be any legal alpha
numetic character (it is * in the example) except a comma;
however, it must be the same character at the start and end
of each string. It must not be the same as any other
character in the string, since the text editor treats each
appearance of the delimiter character as a string delimiter
and truncates the character string (and probably declares an
invalid command) at that point. A comma cannot be a
delimiter since it is required as a parameter delimiter.

14-48

If character string la 1 ••• a n is not found in the series of
searched lines, no changes are made. The text editor
informs the operator of this with the reply:

OPERATION FINISHED - STRING NOT FOUND

If the string a1 ••• an is found in one or more of the
searched lines, lhe other string b 1 ••• bm is SUbstituted
whenever the original string is found. The text editor
informs the operator by displaying at the comment device:

n CHANGES

Where: n is the number of lines in which the substitution
occurred.

NOTE

If m is greater than n (i.e., the other
string has more characters than the first
string) and the original line length is close
to 80 characters, the substitution occurs,
but all characters beyond the new 80th
character are lost.

If k 2 is omitted, only line number k is checked for the
character string. If both k 1 and k 2 are omitted, the entire
work file is searched for the a1 •.• an string. k2 must be
greater than kr

Clear the Work File

The format of this command is as follows:

CLEAR@

This command clears the entire contents of the work file so
that new text can be entered.

Search for a Data String

The format for this command is as follows:

SEARCH, *ar •• an * ,kl'k2 @
This command searches all lines from k1 to (and including)
k2 for the string of characters designated a1 ••• an. As in
Uie CHANGE command, the data string is set off by a
delimiter (* in the example shown). The same delimiter
restrictions described in CHANGE apply to SEARCH.

If k 2 is not specified, only line kl is checked. If neither
k1 nor k2 is specified, the entire file is searched. k2 must
be greater than k1•

96769400 A

Two results are possible. If none of the lines searched
contain the data string, the text editor displays:

OPERATION FINISHED - STRING NOT FOUND

If the string was found in one or more of the lines searched,
and if the string was found more than once in a single line,
the line number of each occurrence is displayed:

STRING FOUND IN LINE

List Lines of Text

The string occurred three times in
line k n , once in line k x , and twice
in line kz

The format of this command is as follows:

LlST,lu,k1,k2,x @
This command lists all text lines between k1 and k2 on the
logical unit specified. If no logical unit is specified, the
comment device is used. If x is not a blank, no line numbers
are included in the listing.

NOTE

If a display is used as the listing device
and the number of lines requested is
greater than the number of lines that can
be concurrently displayed on the display
screen, the listing takes the form of a
scrolled output. Once the screen is
initially filled, scrolling continues as each
new line is added until the last line is
displayed at the bottom of the screen.
For the slow character display rate (300
characters per second), this can be a
convenient way to inspect the file; for the
rapid display rate (9600 characters per
second), the user may wish to list only the
number of lines that the screen displays
concurrently. Note that this number may
include blank lines as specified by the list
formatting commands discussed below.

If k2 is omitted, only kl is listed; if both kl and k2 are
omitted, the entire file is listed. If kl is larger than the
line number of the last line in the file, only the last line is
listed. k2 must be larger than k1•

96769400 A

The special list formatting commands are described later in
this section.

Dump Lines of Text

DUMP ,lu,k1 ,k2 @
This command is similar to LIST except:

• Line numbers are not included

• There is no default lu, the editor uses the lu specified as
its dump device

• List formatting commands do not apply: the dump is
always single spaced and continuous

• A end-of-file is written to DUMP lu upon completion of
transfer

The conditions for line number parameters kl and k2 are the
same as for the LIST command.

Save Work File as a Job Processor File

The format for this command is as follows:

SA VE,fileid @
This command saves the work file as a job processor
(background) file. Fileid is an alphanumeric consisting of six
or few characters, with the leading character being a letter.
Before saving the file, the user must:

• Define the file under the job processor. The command
is *DEFINE,fileid,sc,date (see section 9).

o Be sure that no data is currently stored in the file and
that the file was never opened as a write type of file.
The file must currently be closed.

o When using the file outside of the text editor, the file
may be opened only as a read file. If opened as a write
file, the pseudo tape driver releases and redefines the
file when an attempt to write into it is made. This, in
effect, clears and then overwrites the data in the file.

The following example demonstrates use of job processor
files as input and output for the text editor:

*JOB
J
*DEFINE,AA,AA
*DEFINE,BB,BB
*OPEN,AA,AA,W,19
*LIBEDT
*T,10,A,19,A,2000
*Z
*CLOSE,AA,AA

}

}

Comments

Define input and output
files in job processor

Open AA to receive
2000 ASCII lines;
close AA

14-49

I

*EDITOR
READY GET,AA,l }
READY DELETE,1,1500
READY RESEQ
READY AUTO

Additions made

READY SAVE,BB) READY EXIT

*0 PEN ,BB,BB,R19

User program or MSOS
utility

*CLOSE,BB,BB
*DEFINE,CC,CC

*EDITOR
READY GET,AA,l
READY DELETE,50,2000
READY SAVE,BB
READY SA VE,CC
READY EXIT

NOTE

Text edit rile AA in
the work rile

Save as rile BB in job
processor; exit

Open and use as read-
only rile ror the user

Define a third job
processor rile

Text edit data in AA,
save in BB and CC as
job processor files.
Data that was in BB is
lost and replaced with
the same data that was
stored in CC.

When the file is saved as a job processor
file, the line numbers are deleted.

Resequence Line Numbers

The formats ror this command are as follows:

RESEQ @ or

RESEQ,n,n1 @
The first command shown resequences line numbers starting
at the beginning line in the work file, with a line interval
value of 10 (i.e., n, n + 10, n + 20 ••••).

The second command shown resequences line numbers
starting at line n and using a line interval value of n1 (i.e., n,
n + n1, n + 2n1, •••).

Alig n Text

The format for this command is as follows:

14-50

This command aligns text in the format required by
CYBER 18/1700 assembly language (x = A) or FORTRAN
(x = blank or F). Starting line is designated by n1, ending I
line is n2.. If n1 is omitted, one is assumed; if n2 is omitted,
last line IS assumed.

Assembly language text is aligned according to these rules:

• The label, operation, operand, and comment fields are

•

•

•

•

aligned to start in character positions 5, 12, 17, and 31,
respectively (corresponding to text positions 1, 8, 13,
and 27, respectively). .

In the original unaligned text, each field is delimited by
at least one blank. If there is to be no label field there
must be at least one blank at the start of the line.

If a field extends beyond the starting character position
of the next field, the extended field is completely
reproduced and the next field is separated from it by
two blank characters.

If the first non-blank character is an asterisk (*), the
line is treated as a comment line and the asterisk and
all following characters in the line are moved intact so
that the asterisk is in character position 5 (text position
1).

Any text that extends beyond the end character position
(data text character pOSition 80) after alignment is
truncated and lost to the user.

An example of assembly language alignment by the text
editor appears below.

Note that some job control statements may not be aligned
properly with this request. Control statements should be
added or corrected after alignment, as necessary.

Text Before Alignment:

90 LDQ* XADD
100* CALCULATE STARTING ADDRESS
110 LDA =N96 WORDS/SECTOR
120 ADD =XBASE+REL1-REL2 ALLOW FOR ADDRESS
130 START NOP 0

Text After Alignment:

90 LDQ* XADD
100* CALCULATE STARTING ADDRESS
110 LDA =N96 WORDS/SECTOR
120 ADD =XBASE+REL1-REL2

ALLOW FOR ADDRESSES
130 START NOP 0

FORTRAN text is aligned according to these rules:

• If a C is the first text character in a line (that is, a C is
in character position 5 including line number), the line
is not altered.

• If an * is the first non-blank character of text in a line,
the line is justified as a continuation line with the * in
character position 10 (next character position 6).

96769400 C

o If a numeric string is the first non-blank character in a
line, the string is assumed to be a statement label. The
line is then justified so that the right-most character of
the numeric string is in character position 5 (text
character position 9). The label field must be delimited
in the original unaligned text by the occurrence of any
non-numeric character. Label fields greater than five
digits are truncated. Any text that extends beyond end
character position (data text character position 80)
after alignment is truncated and lost to the user.

o If a non-blank, non-numeric character other than an
asterisk is the first character in a line, the line is
justified so that the first character is in character
position 11 (text character position 7).

An example of text aligned according to FORTRAN format
is shown below. Note that care must be taken not to begin a
line with the character C if a comment line is not intended,
as in line 1.

Text before Alignment:

50C(I)=0
60A(I)=0
70Q=Y +Z+LOG(X*X +35.4*X)
80*+Z**5
90 10 IF(I.EQ.L) GO TO 50

100 C(I)=l

Text after Alignment:

50C(I)=0
60 A(I)=O
70 Q=Y+Z+LOG(X*X+35.4*X)
80 *+Z**5
90 10 IF(I.EQ.L) GO TO 50

100 C(I)=l

MOTION COMMANDS

The following motion commands allow the operator to
control certain devices within the Text Editor.

ADF, lu, nnnn
BSF ,lu, nnnn
ADR,lu,nnnn
BSR, lu, nnnn
REW,lu

Advance file
Backspace file
Advance record
Backspace record
Rewind logical unit

Where: lu specifies the logical unit. Care must be
taken to ensure that the device interprets
the motion command correctly

nnnn is the number of iterations; must not be
greater than 9999

SPECIAL L.IST FORMATTING

The special LIST commands are entered as normal lines of
text, rather than as commands. This may be done either in
manual mode or using the AUTO command. The LIST
command interprets these special texts as they are defined
below. It should be noted that only the LIST command uses
these special text commands; the DUMP command ignores
them as commands but treats them as ordinary lines of data
(i.e., if the working file is dumped, these special texts
appear as they were entered).

The special LIST commands are:

96769400 C

.SNGL - Single-space text. Note that the editor defaults
to single spacing.

.DOUB - Double-space text. Editor double spaces until the

.SNGL command is found.

.SPAC XX - Space down 1 through 99 lines (consecutive

.SPAC XX commands are illegal).

.PAGE - This causes a top-of-form

NOTE

Since a check is made for these special
words at the start of each line of text
during the listing operation, no normal
text line may begin with these
mnemonics, even if more text follows the
mnemonic.

TEXT EDITOR COMPATIBILITY REQUIREMENT

o The text editor is designed to operate under control of
MSOS.

o Since the work file and scratch file reside on disk, the
file manager is needed to assign file space.

o Two file numbers are used by the text editor. If these
numbers conflict with file munbers reserved for an
application program, the conflicting file number(s) must
be reassigned in ei ther the. text edi tor or the other
program (DEBUG or COSY may be used to accomplish
the reassignment).

o Area 4 of allocatable core should be at least 2125 words
in length to accommodate the file manager. If
insufficient space is allocated, background processing
may hang indefinitely.

o FORTRAN should be a part of the system if the
ALIG N ,F com mand is used.

Table 14-5 is an example that shows the text editor
operating on two files entered from cards, and saved as
three job processor files (after editing). The text of the
input files and listed output are not shown.

Devices used in the following examples are:

lu device

2 Punch
4 Comment device (conversational display terminal)
9 Line Printer

10 Card reader

ERROR MESSAGES

The text editor displays on the comment error device the set
of messages shown in table 14-6.

ON-LINE TRACING PROGRAM (TRACE)

The on-line program, TRACE, interpretively executes user
defined machine code and prepares information listings
pertaining to each instruction for output on the standard list
device. The data area of the traced program is operated
upon in the same manner as the program in normal
execution.

14-51

TABLE 14-5. TEXT EDITOR EXAMPLE

Comment Device Statements
and Replies

*EDITOR

READY LOAD, 10, 2

L, 10 FAILED 14)
ACTION
RP

READY SEARCH, *FINT6*}
STRING FOUND IN LINE

52
72
80

READY CHANGE, *FINT6*)
:FINT6A: 3 CHANGES

READY SEARCH, :FINT6A}
STRING FOUND IN LINE

52
72
80

READY DELETE, 10, 13

READY RESEQ

READY LIST, 9

READY SAVE, PG1

READY CLEAR

READY CONTRL, 10

READY SAVE, PG2)
READY CLEAR

READY AUTO

10C THIS PROGRAM IS TO FUNCTION
AS A SWITCHING NETWORK FOR
A CYBER 18-20

20 . CALL SWITCH
30 IX=100
40 ASWTCH = $2020
50C EXIT BACK TO CALLER
60

READY LIST, 9

READY ALIGN

READY LIST, 9

READY 40 ASWTCH = $2020

>ALIGN

14-52

Significance

Text editor called under job processor control

Load file from cards; sequence in increments of two

Device not ready, operator corrects condition, file loaded

Following search, string FINT6 is found in lines numbered 52, 72,
and 80 (three occurrences total)

FINTA6A substituted for FINT6

Substitution did occur in all three places

Deletes all lines between and including 10 and 13

File resequenced with line numbers n, n + 10, n + 20

File listed on the line printer

File saved in predefined job processor file PG1

Text editor's file space cleared

Control statements are read from card reader. These control
statements include load, data statements, and return control
to comment device.

New file is saved in predefined job processor file PG2. Then
text editor file is cleared.

Auto mode: Text editor provides line number at intervals of 10.
Operator enters program line by line.

This label is illegal (seven characters)

List new file on line printer, nonaligned

Align if FORTRAN, format

List new file on line printer, aligned incorrectly because of
ASWITCH label

In manual mode, re-enter line 40 (deletes old line 40 and sub
stitutes new line with correct ASWTCH label)

96769400 A

TABLE 14-5. TEXT EDITOR EXAMPLE (Contd)

Comment Device Statements
and Replies Significance

READY MERGE, PG2 50 New file is merged with PG2, starting at PG2 statement line 50

READY LIST, 9 Merged file listed on line printer

READY DUMP, 2 Merged file punched

READY SAVE, PG2 Merged file resaved at PG2 (This destroys former data in PG2)

READY 15 .SPAC 10
>41 .DOUB
>52 .SNGL
>53 .PAGE

>SAVE, PG3

READY CLEAR

READY GET, PG2, 1

READY LIST, 9

READY CLEAR

READY GET, PG3

READY LIST, 9, 10, 70

READY EXIT
J

Message

DISK READ
ERROR

DIRECTORY
READ ERROR

FILE NOT
DEFINED

FILE SPACE
FULL

INVALID
COMMAND

96769400 A

} In manual mode, provide formatting statements as text state
ments. If former statements had these line numbers, new lines
are substituted, otherwise new (format) lines go at end of file
formerly called PG2.

Save the formatted file at predefined job processor file PG3

Clear editor file

Retrieve PG2 and number each line consecutively, starting with
line 1

List renumbered PG2 on line printer

Clear text editor file

Retrieve PG3, number lines in increments of 10, starting with
line 10

List lines 10 through 70 of PG3

Return CPU control to job processor

TABLE 14-6. TEXT EDITOR ERROR MESSAGES

Command

Any

GET
MERGE
SAVE

GET
MERGE
SAVE

Any except
EXIT
CLEAR
CONTROL

Any

Error Condition

Work file and scratch file are kept on disk; each line is read
as a separate record. Disk read or write error may occur
during any read operation.

The parameter fileid cannot be obtained while reading the job
processor directory.

The parameter fileid is not in the job processor directory.

The file manager has run out of space to assign the text
editor (work file or user file).

Necessary characters at beginning of command mnemonic are
erroneous, or a necessary parameter is omitted or wrong
(e.g. ,k2 is less than k1).

14-53

TABLE 14-6. TEXT EDITOR ERROR MESSAGES (Contd)

Message Command Error Condition

INVALID LINE
NUMBER

Any but
EXIT
CLEAR
CONTROL
SAVE
ALIGN

The line number parameter (k or n) is greater than 9999.

LINE NUMBER
OVERFLOW

LOAD
MERGE
GET
AUTO
RESEQ

Line number is greater than 9999. For all but RESEQ, the
text editor saves in the work file all data up to the line
causing the overflow. For RESEQ, the work file is lost.

NAME NOT
UNIQUE

AUTO
ALIGN
CHANGE
CLEAR
CONTRL
ImLETE
DUMP
LIST
LOAD
SAVE
SE'ARCH
imR
1mlr
Am'
mp-

The operator specified only the first letter of the command
mnemonic (A, C, D, L, or S). At least the first two
letters of these commands must be specified.

ttmv

PROTECTED
FILE

SAVE User tried to save work file in a file defined by a protected
program (pseudo tape)

TRACE resides on mass memory in the system's program
library. A program that is to be traced is loaded with an *L
command. The trace program is loaded and executed by an
*TRACE command.

Upon initial entry to the trace program, a message is printed
on the standard comment device, which requests the
specification of parameters.

SPECIFY P ARMS (ssss,llll,eeee,aaaa,qqqq,iiii,x,y)

Where: ssss is the four-digit hexadecimal address at
which tracing begins. If ssss, 1111, and
eeee are defined to be a value that is less
than the address of the beginning of
unprotected core, the values are assumed
to be relative to the beginning of
unprotected core.

14-54

1111 is the four-digit hexadecimal address where
the traced program begins.

eeee is the four-digit hexadecimal address at
which tracing terminates.

aaaa is the initial hexadecimal value of the A
register.

qqqq is the initial hexadecimal value of the Q
register.

iiii is the initial hexadecimal value of the I
register.

x If this parameter is defined to be L, printout
of the instructions within a loop is
suppressed. Otherwise, all instructions
are listed.

Y if this parameter is defined to be S, printout
of the instructions within a subroutine is
suppressed. Otherwise, subroutine
instructions are listed.

A sample job deck is shown in figure 14-13.

The trace program cannot trace through the monitor. It
must relinquish control to the program being traced when
calls to the monitor, jumps to the dispatcher, or jumps and
return jumps into protected core (i.e., entry points in the
table of presets) are detected. Whenever a READ, WRITE,
FREAD, or FWRITE request is detected, the trace program
determines the completion address (if specified) and inserts
a recall of the trace program at that location. If no
completion address is defined, tracing continues at the
location following the I/O request. In all other situations,
the trace program has the responsibility of recalling TRACE
if further tracing is to be performed. The trace program
also interprets the code, FFFF 16 ' as the end of the trace
command and gives control to the program being traced.

96769400 C

END-OF-FILE END-OF-JOB

*TRACE LOAD TRACE FROM PROGRAM LIBRARY.

*L,8 LOAD AND GO FROM MASS MEMORY.

TERMINATE THE ASSEMBLER.

CALL THE ASSEMBLER.

Figure 14-13. Sample Trace Job Deck

When the trace program detects a situation in which it
cannot logically continue, the message

TYPE *C TO CONTINUE, TYPE *z TO ABORT

is typed on the standard comment device. The *C response
causes control to be given to the traced program and an *Z
causes control to be relinquished to the job processor.

When the *C option is selected, it is implied that the traced
program must recall TRACE to continue the trace listing.
There are three recall entry points in TRACE which are
accessed via a return jump (RTJ).

• TRACE1 - Continue tracing with current parameter.

• TRACE2 - Respecify parameters aaaa, qqqq, iiii, x,
and y.

• TRACE - Respecify all parameters.

The listing that the trace program produces has eleven
columns in a tabular form, with the following contents:

Code

P

RELA

CODE

96769400 A

Description

The current absolute value of the
P register

The current P register value relative to
the beginning of unprotected core.

The four-digit hexadecimal instruction
contained at the address P

Code

INST

ADD

A

Q

Description

The assembly language mnemonic for the
current instruction

The effective address of the operand that
is being operated upon by the current
instruction

The current contents of the A register

The current contents of the Q register

The current contents of the I register

P +1 The contents of the location at P +1

P +2 The contents of the location at P +2

CONT The contents of the location where
control is given by a jump or return jump
instruction. The column is blank for all
other instructions.

The following message appears on the standard list device
wherever the trace listing is suspended:

EXECUTION TIME DURING THIS PART OF
EXECUTION

1784-1**1774**1704**1784-2
wwww xxxx yyyy zzzz

Where: wwww, xxxx, yyyy, and zzzz are the hexadecimal
count of the
instruction time.

14-55

-'

GLOSSARY A

ABORT - To terminate a program when a condition
(hardware or software) exists from which the program
or computer cannot recover

ABSOLUTE BINARY PROGRAM - A program that must be
loaded according to specific logical addresses

ABSOLUTE CODE - A code using absolute operators and
addresses; a code using machine language

ABSOLUTE PROGRAM - A program composed of
command sequence storage information, which may be
loaded by a checksum loader

ADC - 1. Analog-to-digital converter 2. Address
constant

ADT - Automatic data transfer a mode of data transfer on
the CYBER 18 that simulates block transfer at the
micro level via interrupts

AGENCY - A composition of processors dedicated to
performing a single task

ALLOCA TE - To reserve an amount of a resource in a
computing system for a specific purpose

ALLOCATABLE MAIN MEMORY - That portion of main
memory that can be assigned to programs by the core
allocator (i.e., SYSDAT and resident program areas
cannot be allocated)

ALTERNATE DEVICE - A peripheral device that can be
assigned the tasks originally directed to another
malfunctioning peripheral device

AMPLITUDE INACCURACY - 1. The relative amplitude
error of analog values; the maximum absolute allowable
error for the entire acquisition process (including cable
transmission) is related to the amplitude peak
value. 2. The accuracy a wave or alternating current
value maintains during its maximum departure from its
zero value

ANALOG CHANNEL - A channel that transmits an analog
quantity (a voltage) rather than a binary value. The
number of volts represents the value transmitted by the
channel.

APPLICATIONS PROGRAM - A task or group of tasks that
perform a defined function under the control of an
executive system

A/Q CHANNEL - A CONTROL DATA 1700 Computer data
channel, which can handle input/output only through the
A register, is called the A/Q channel

ASSEMBLER - A computer program that generates
machine instructions from symbolic input data by
translating symbolic operation coding into computer

96769400 A

···,.er.@{.l- ,.j,. ..J tJ

operating instructions, assigning locations in storage for
successive" instructions, or, computing absolute addresses
from symbolic" addresses. An assembler generates
machine instructions from symbolic codes and produces,
as output, nearly the same number of instructions or
constants as were defined in the input.

ASSIGN - To reserve a part of a computing system for a
specific purpose (usually refers to an active part such as
an I/O device (e.g., tape unit)

ASYNCHRONOUS - Not synchronous; not happening, exist
ing, or arising with a fixed-time correlation

A TP - Acceptance test procedures

AUTOLOAD - To place the resident routines of the
operating system in core storage

AUTRAN-DACS - Automatic translator; a complete
software system for either batch-sequencing or contin
uous process control, which can be configured, param
eterized, and installed by the user. It is a flexible,
English-like language that allows a process engineer to
specify the process system and describe control actions
conveniently. It can be intermixed with FORTRAN
mathematical calculations. AUTRAN incorporates the
parameterization of the integral data acquisition and
control system.

BACK-UP STORAGE - Copies of permanent file images on
tape (as generated by the disk-to-tape program)

BANK (MEMORY BANK) - A grouping of computer words
into physically independent units which operate in
parallel; the 1714 and 1784 can contain 16 banks, with
4096 words each.

BATCH - In MSOS, an object program running in a stacked
job manner; shares the central processing unit with the
priority program when a priority program is present and
executes only when the priority program is not in
control of the processor. Batch interrupts have lowest
priority in the interrupt processing priority scheme.

BATCH JOB - A job submitted in the queue for batch
processing (input queue)

BATCH PROCESSING - Pertaining to the technique of
executing a set of computer programs so that each is
completed before the next program of the set is
started. Batch jobs are not considered to be time
critical since they do not need a particular response
time (batch jobs will have the lower priority).

BDC - Buffered data channel

A-I

BENCHMARK - A point of reference from which measure
ments or comparisons for computer performance can be
made

BIAS - A quantity added to the true exponent when packing
a floating point number. Bias permits expression of
both positive and negative exponents by positive
numbers.

BLACK BOX - A generic term used to describe an
unspecified electronic or mechanical device which
performs a special function or in which known inputs
produce known outputs in a fixed relationship.

BLOCK - 1. Consecutive matching words or characters
considered or transferred as a unit, particularly appli
cable to I/O 2. Core: a unit size of core or MOS
memory (4096 words)

BPI - Bits per inch. On multi-track magnetic tapes this is
often used to mean frames per inch (fpi)

BUFFERED - Buffered drivers utilize the 1706 Buffered
Data Channel. The 1706 controls read and write
operations and moves data to or from core via the
direct storage access bus (DSA).

BUFFERING - Overlapping execution of one or more I/O
routines with the execution of the program that called
them

CALIBRATION - Conversion of a quantity into measurable
units (engineering units)

CARD COLUMN - A vertical line of punching positions on
a card

CARD IMAGE - A one-to-one representation of the
contents of a punched card; e.g., a matrix in which a 1
represents a punch and 0 represents the absence of a
punch

CARD ROW - A horizontal line of punching positions on a
card

CARTRIDGE DISK - One form of mass storage disk
(1733-2/856)

CATEN ATE - To unite in a series, link together, chain

CC - Contact closure

CDT - Conversational display terminal

CENTRAL MEMORY - Refers to the directly addressable
core storage of computers

CENTRAL PROCESSING UNIT - A unit of a computer that
includes the circuits controlling the interpretation and
execution of instructions; abbreviated as CPU.

CHAINING - A system for reading or writing records in
which each record belongs to a list or group of records
and has a linking field for tracing the chain

A-2

CHECKSUM - A summation of digits or bits used primarily
for checking purposes and summed according to an
arbitrary set of rules

CIRCULAR BUFFER - Refers to a buffer mechanism that
allows write/read of data in a rotating manner;
controlled by in/out and limit pointers

CLOSED LOOP CONTROL - A system capable of repeat
edly reading data values from an object, comparing
skew with desired values, and directly feeding back
information into the object to correct value read

COMMON - An area of memory that may be shared
between batch subprograms; common may not be preset
with data.

COMPILER - A program that translates a programming
language such as FORTRAN into an assembly language
and often into machine language. A compiler may
generate many machine instructions for a single
symbolic statement.

COMPLETION PRIORITY - The priority assigned to the
completion phase of a request (see request priority)
after the requested task has been accomplished.

COMPONENT - A constituent part or ingredient; a
software component is a basic logical software unit;
several components form a module.

CONCENTRATOR - A device connecting a set of input
lines with a set of output lines; the number of input
lines normally is greater than the number of output
lines.

CONTACT CLOSURE - A method of generating a singal by
opening a closed electrical connection

CONTROLLER - A hardware device that controls access
and data transfer to I/O units which are connected "to it

CONTROL CARD, CONTROL STATEMENT - A command
instruction recognized by the operating system

CONTROLWARE - Similar to firmware except that the
control memory (e.g., micro memory) is self-modifiable.

CORE - 1. The core-type memory of the 1700 or System
17 or CYBER 18-10 CPUs. 2. Loosely used: The main
memory (as opposed to the micro memory) of the
CYBER 18-20 and CYBER 18-30 Timeshare systems. In
fact, the core in these machines is composed of MOS
memory elements.

CORE RESIDENT - The part of the operating system that
resides permanently in central memory; it contains the
code, various system tables, special buffers, etc. and
begins at absolute location zero in the central memory

CORE SWAP - The contents of unprotected core is stored
on mass storage and unprotected core is protected and
made available for assignment by SPACE requests.

96769400 A

COSy - Program compression processor cumUlate

CPU - Computer (central processing unit)

CREP - Core-resident entry point table. Holds entry
points (linkage addresses) to protected programs exe
cuted in part 0 of core

CREPI - Core-resident entry point 1 table. Holds entry
points (linkage addresses) to protected programs exe
cuted in part 1 of core.

CR - Carriage return

CRT - Cathode ray tube

DACS - Data acquisition and control system; see
AUTRAN-DACS.

DATA AREA - An area of memory that may be preset with
data at load time and shared between subprograms; both
batch and priority programs may have data areas.

DATA BLOCK - Equivalent to labeled common

DEADSTART - An initial action taken to start a computer
when no software is resident or active on the system.
This is serial interface via panel commands as
contrasted to autoload.

DECK - A collection of punched cards that has a definite
service or purpose; structured to represent a processing
unit in the operating system

DESTRUCTIVE PROCEDURE - A procedure that is
modified in place when executed. For example, a
return jump to a subroutine modifies the entry point;
therefore, the return jump and the subroutine are a
destructive procedure.

DIAGNOSTIC - 1. Pertaining to the destruction and
isolation of a malfunction or mistake 2. A message
printed when an assembler, compiler, or monitor
detects a program error

DIAGNOSTIC LOGICAL UNIT - A logical unit defined for
diagnostic routines only

DIAGNOSTIC ROUTINE - A program or routine designated
to locate and explain errors in a computer routine or
malfunctions of a hardware component.

DICHOTOMY - A division into two subordinate classes;
e.g., all zero and all nonzero.

DIGITAL CHANNEL - A channel that is transmitting a
binary value rather than a voltage

DIGITAL INPUT SYNCHRONIZATION - The process by
which digital data input operations are synchronized
with external devices whose outputs change so that
sampling is not done while they are changing.

DIGITAL-TO-ANALOG CONVERTER - A device that
converts digital channel data to an analog signal

96769400 A

DIRECT DIGITAL CONTROL - A closed loop control
system in which the output depends directly on input
and computation (all in one frame time)

DIRECT STORAGE ACCESS - Method of accessing blocks
of data directly in 1700 core memory by the peripheral
equipment, without using the A/Q channel; abbreviated
as DSA.

DISK - A magnetic storage device; the usual mass memory
device

DISP ATCHER - The portion of the monitor which locates
the highest priority program awaiting execution and
executes that program.

DMA - Direct memory access. CYBER 18 terminology
same as direct storage access

DOCUMENTATION - The group of techniques necessary
for the orderly presentation, organization, and commun
ication of recorded specialized knowledge in order to
give an unquestionable historical reference record for
reasons for changes .

DOUBLE BUFFERING - Two accessing elements that share
a buffer space; e.g., processing data in one buffer while
data is being input to an alternate buffer

DRIVE - A hardware device such as a tape drive or disk
drive

DRIVER - A program whose main function is to perform a
physical I/O transfer of data between one storage
medium and another (e.g., between central memory and
mass storage, between central memory and magnetic
tape)

DSA - Direct storage access

DSKTAP - A disk-to-tape utility program.

DUMMY DRIVER - An I/O driver that processes requests
to a non-existent peripheral device, usually by returning
control directly to the requesting program

ECC - Error correction code. A special technique for
reconstituting garbled data on certain disk systems.

EMULATOR - The 1700 emulator is a firmware component
that allows the CYBER 18 hardware to function as an
enhanced 1700 computer

END-OF-FILE - Information designating the termination
point of data or of a program

END-OF-FILE INDICATOR - A signal supplied by an input
or output unit that makes an end-of-file condition
known to the routine or operator controlling the device

ENGINEERING LOG - Also called engineering file. A file
for saving unrecoverable I/O error information. Data in
the log is stored by logical unit. Each failure item has
an identifying time tag associated with the failure
status word.

A-3

ENT - Entry points to programs

ENTRY - 1. An entry point to any program 2. Initiator
entry point to an I/O driver 3. Continuator entry
point to an I/O driver 4. Timeout entry point to an
I/O driver

EOB End of buffer

EOF End of file

EOP End of operation

EOT - End of text, end of tape

EQUIPMENT - An interface between a data channel and a
unit; a channel controller

ERS - External reference specification

ETX - End-of-text

EXECUTE - To carry out an instruction or perform a
routine

EXECUTION - The process whereby the instructions
contained in a program direct the activities of the
central processing unit

EXT - Externals; entry points used by this program in
other programs.

EXTERNAL INTERRUPT - An interrupt that occurs as a
result of conditions within peripheral devices or their
immediate interfaces; interrupts that occur as a result
of conditions within a data channel are classified as
external or internal, according to specifications set
forth in the individual hardware system reference
manuals.

FCR - Functional control register. An internal register on
the CYBER 18 that allows the user to select operational
machine modes and determine machine status.

FFFF 16 - -0; often used as a flag to indicate end of a
table, list, etc., or to indicate the physical absence of
an I/O device.

FIELD LENGTH - The number of central memory words
that a program occupies

FIFO - First-in-first-out; a method of handling queued
entries

FILE ORDINAL - A number equated to a mass storage file
for the duration of the job

FIRMW ARE - A physical electronic component in which a
program resides that is incorporated in a product to
provide a programmed mode of operation defining the
product's functional characteristics. Firmware is not
self-modifiable and is subject to change or modification
only by physical modification or replacement.

A-4

FLOW - A general term used to indicate a sequence of
events

FNR - Find-next-request routine. Used by I/O drivers to
find next request queued to an I/O device.

FPI - Frames per inch. Sometimes called bits per inch
(bpi)

~~~~':>E - The formatted read and write requests. 

GHOST INTERRUPT - An unsolicited interrupt from a 
peripheral device or an unused line 

HALF-DUPLEX CHANNEL - A channel capable of 
transmitting and receiving signals, but only in one 
direction at a time 

HANG-UP - When a request is unable to be completed 
because a peripheral device is not able to issue the 
necessary interrupt, the condition is called an I/O hang
up. 

HEAD OFFSET - A mode for moving the magnetic read 
head on a desk slightly off track center line to 
compensate for data written on another disk, which disk 
had heads not perfectly aligned with the reading disk. 
Head offset is used when data cannot be read initially, 
in an effort to find some position of the head which can 
read the data. 

HOLLERITH - A data code used by the COSY program 

HOOK - Any piece of software that is embedded in the 
operating system, whose presence serves only to gener
ate or save information about the activities of the 
operating system and whose presence in the operating 
system is not essential to and does not alter the 
functions of the operating system 

HOUSEKEEPING - 1. Operations in a routine that do not 
contribute directly to the solution of a problem, but 
which are necessary to coordinate with the operation of 
the computer 2. Those necessary steps of computer 
operation that are common to nearly all instructions of 
a particular computer 

ID - Identification 

IFIPS - Internal Federation for Information Processing 
Societies 

INDEX SEQUENTIAL - A method of file organization in 
which records are in a logical collating sequence, 
according to a key that is part of every record; a 
separate index or levels of indexes are maintained to 
give the location of certain records or segments of the 
file. The records may be accessed sequentially in a 
serial manner or directly in a random manner, through 
the index structure. 

96769400 A 



INPUT/OUTPUT - The bi-directional transmission of 
information between computer memory and peripheral 
devices 

INSTRUMENTATION - Those components in a process 
control system that are not part of the computer 
system; i.e., the test stands and their related panels 

INTERLEAVING - A technique in multiprogramming 
whereby segments of one program are inserted into 
another program so that the two programs can be 
processed sim ul taneously 

INTERLOCK - 1. To ensure that only one process at a 
time can update something in a computer system (e.g., 
a system table) 2. The result of interlocking; the user 
can obtain an interlock on a table, allowing him 
exclusive access to that table. 

INTERNAL INTERRUPT - An interrupt occurring as a 
result of conditions within the computer mainframe or 
immediate interfaces 

INTERRUPT - 1. To stop a process so that it can be 
resumed at a later time 2. A break in the normal 
flow of a system or routine so that the flow can be 
resumed from that point at a later time; an interrupt is 
usually caused by a hardware-generated signal. 

INTERR UPT MASK - A device for preventing interrupts of 
lower priority from interrupting the interrupt handler 
currently controlling the CPU. 

INTERRUPTABLE PROCESS - A process that is composed 
of an interruptable processor and interruptable data; 
this process may be interrupted, the processor taken 
away and applied to another process, and later rein
stated and run to completion without ill effects from 
the interrupt. 

INTERRUPT STACK - A region in SYSDAT that holds 
information concerning programs that have been inter
rupted by a higher priority I/O task. Entries are 
processed on a last-in-first-out (LIFO) basis. 

INTSTK - The interrupt stack 

I/O - Input/output 

IPS - Inches per second 

JOB PROCESSOR - The background program executive 

JOB TERMINATION - Those activities necessary to logi
cally terminate job execution 

K - Kilo; thousand 

LATCHING RELAY - Refers to a type of relay with 
contacts that remain in their last position if power 
fails (a nonlatching type relay's contacts opens if 
power fails); in connection with contact closures, 

96769400 A 

failsafe refers to a failsafe condition for the external 
equipment, i.e., the hardware that connects to the 
equipment must be selected in such a way that no harm 
will be done to the external devices in the event of a 
power failure. 

LIBRAR Y - An organized collection of standard, checked
out programs, routines, and subroutines that can be used 
to solve any types of problems. There are two principal 
libraries in MSOS: a system library for foreground 
programs, a program library for background programs 

LIFO - Last-in-first-out; a method of handling stacks. 

LINKAGE - The interconnections between subprograms or 
between a main routine and closed subroutines; for 
example, the entry into a closed routine and the exit 
back to the main routine 

LIST - A sequence of ordered data items in which special 
items or groups of items can have different meanings 

LIST PROCESSOR - A routine or a set of routines working 
on a list 

LOADING - The process of transferring a program from 
external devices to storage; in MSOS the relocatable 
loader transfers a relocatable program to the first 
sequential available positions in core. 

LOCATION - A position in storage where a computer word 
can be stored and which is usually identified by an 
address 

LOG TABLES - The logical unit tables (LOGl, LOGIA, and 
LOG2) 

LOGICAL UNIT - A number that can be used to reference 
peripheral units 

LSB - Least significant bit(s) 

LU - Logical unit 

MACRO - On the CYBER 18 macro describes those 
features applicable to the actual set of hardware (e.g., 
macro instructions, macro interrupt, macro memory) 

MACRO ASSEMBLER - The program that compiles source 
language into 1700 machine language statements 
(ASSEM) 

MACRO INSTRUCTION - An instruction in a source 
language that is equivalent to a specified sequence of 
machine instructions; usually a mnemonic instruction 
that a programmer can write in a source program to 
call for library or special routines. 

MAIN MEMORY - The memory bank on a CYBER 18/1700 
machine. It may be composed of core (17xx) or MOS 
memory (CYBER 18-20/30 Timeshare). Main memory 
does not include the micro memory (see below) of the 
micro processor. 

A-5 



MAN-MACHINE COMMUNICATION - Software compo
nents that establish communication between the 
operating system and the operators. 

MASK - A machine word that specified which bits of 
another machine word are to be operated upon. 

MASS STORAGE DEVICE - A disk or drum capable of 
storing large quantities of information; it can be 
randomly accessed. Data may also be stored and 
accessed by sectors (96 words) in formatted mode. 

MASS-STORAGE-RESIDENT - A part of the system that 
resides on mass storage and which is brought into core 
when needed by the system 

MASTER CLEAR - A switch that returns a computer or 
peripheral devices to initial conditions; abbreviated as 
MC 

M C - Master clear 

MEMORY PROTECT - Hardware and software that 
prevent batch programs from destroying foreground 
programs or operating system main storage 

MI - Manual interrupt 

MICRO - On the CYBER 18, describes those features 
applicable to the actual set of hardware (e.g., micro 
instructions, micro interrupt, micro memory) 

MICRO MEMORY - The program emulation memory of the 
CYBER 18 CPUs. It contains both ROM and RAM 
memory and is not currently programmable by the user. 

MIPRO - Manual interrupt processor; processes the 
operator generated manual interrupt. 

MODULUS - An integer that describes certain arithmetic 
characters of registers, especially counters and accum
ulators, within a digital computer; the modulus of a 
device is defined by R n for an open-ended device and 
R n -1 for a closed (end-around) device, where R n is 
the base of the number system used, and n is the 
number of digital positions (stages) in the device. 
Generally, binary devices with modulus 2 n use twos 
complement arithmetic; devices with modulus 2 n -1 
use ones complement. 

MONITOR - The supervisory routine in an operating system 
that coordinates and controls the operation of user and 
system programs. 

MOTION - The request to position an I/O drive (e.g. rewind 
magnetic tape) 

MSB - Most significant bit 

MSEC - Millisecond 

MSOS 5 - The Mass Storage Operating System for 
CYBER 18/1700 CPUs 

A-6 

MULTIPLEX - 1. To interleave or simultaneously transmit 
two or more messages on a single channel 2. To 
utilize a single device for several similar purposes or to 
operate several devices in a time-sharing mode 

MULTIPROGRAMMING - The interleaved execution of two 
or more programs, which stay in the same memory, by a 
single processing unit. 

NAM - The program name block 

NMONI - The monitor call 

NONDESTRUCTIVE PROCEDURE - A procedure that is 
not modified in place when executed; see destructive 
procedure 

NONREUSABLE PROCEDURE - A procedure that is 
destructive and noninitializing. 

OBJECT LANGUAGE - The language that is the output of 
a given translation process; e.g., the language into 
which an assembler or compiler translates a source 
language 

OCR - Optical character reader 

ODEBUG - On-line debug package 

OPEN LOOP - A loop used to control a repeated operation, 
but having no feedback for self-correcting action; 
contrast with closed loop 

ORDINAL - 1. A number that specifies the relative order 
of an element (such as a word in a table in memory) 
within a collection of items (i.e., all the words of the 
table). 2. In assembly language coding, the ordinal of 
the first element in a collection is one. 

ORIGIN - 1. The absolute address of the beginning of a 
program or block 2. In relative coding, the absolute 
address to which addresses in a region are referenced 

OVERFLOW - The state of having too many entries (bits) 
for a register, fixed sized list, etc. 

OVER LA Y PROCESSING - A technique for processing a 
program whose total storage requirement for instruc
tions exceeds available memory; the user divides the 
program into elements which are brought into core at 
different points of processing. When brought into core 
memory, an element of an overlay program may occupy 
the same storage locations as another element that was 
previously executed. 

PARAMETER - 1. A variable that is given a constant 
value for a specific purpose or process. 2. A quantity 
in a routine that specifies a machine configuration, 
subroutines to be called, or other operating conditions. 

96769400 A 



PARAMETER LIST - A portion of a calling statement 
which defines all special values necessary to the call 

PARITY - A method of checking data qUality. 

PART 0 - A user-defined block of contiguous memory 
extending from location 0 up to the location ENDOV 4; 
part 0 must be large enough to include SYSDAT, 
SPACE, allocatable core, and system common. 

PART 1 - Part 1 is the block of contiguous memory 
immediately following part 0 and extending to the 
highest available core location; it contains the monitor 
and drivers, and may contain the file manager, 
FORTRAN library, and partitioned core. 

PARTITION - One of a number of predefined segments of a 
given area in main memory into which a mass-storage
resident program may be read and executed. (See 
Part 0, Part 1 and Allocatable Core). 

PATCH - A temporary correction to a program 

PHYSICAL DEVICE TABLE - A table containing necessary 
parameters for the I/O driver. Every logical unit has its 
own physical device table (PHYSTB). 

PHYSTB - Physical device table 

POSITIONING TIME - The time required for the access 
arm to move a selected track on a disk 

POST AMBLE - A group of special signals recorded at the 
end of each block on phase encoded tapes for the 
purpose of electronic synchronization 

PREAMBLE - A group of special signals recorded at the 
beginning of each block on phase encoded tapes for the 
purpose of electronic synchronization 

PRESET TABLE - A table of protected program entry 
points that can be used by unprotected programs. 

PRIORITY - A scheme for determining that a routine or 
job is to be executed before another. 

PRIORITY LEVEL - All programs are assigned a priority 
level, which determines the use of the central pro
cessor. The highest program priority is 15; the lowest is 
-1. 

PROCESS - A process or process control application is a 
function external to the machine that is to be moni
tored or controlled by the 1700. Programs performing 
operations with respect to a process are referred to as 
process programs. 

PROGRAM LIBRARY - Library of background programs. 
These can be relocatable binary or absolute (program 
files). 

PROGRAMMING SYSTEMS REPORT - A form containing a 
listing of code to replace or to be added to a specified 
software component; form AA1901; abbreviated as PSR 

96769400 A 

PROTECTED MAIN MEMORY - A defined area of main 
memory storage in which each word of that area can 
only be accessed by words in that area, thus providing 
memory protection 

PSEUDO DISK - A portion of disk addressed as if it were a 
separate disk 

PSEUDO.TAPE - A portion of memory wh~ch is treated and 
addressed as if it were a separate magnetic tape unit. 

PSR - Programming systems report 

PUSHDOWN POP-UP STACK - A list that is constructed 
and maintained so that the item to be retrieved is the 
most recently stored item in the list; i.e., last-in, first
out (LIFO) 

QUEUE - A list of requests waiting to be processed; MSOS 
requests are ordered FIFO by priority level. Queued 
requests are usually threaded to one another throughout 
core; however, they may be restricted to a certain area, 
as in the scheduler stack. 

READ - To transfer information from an external device 
to internal storage 

REAL-TIME - Pertaining to a program for which time 
requirements are particularly stringent 

RE-ENTRANT - Programs that may be interrupted, called 
by interrupting programs, and resumed at the point of 
interruption without loss of continuity. A program may 
be re-entrant to any level; an interrupted program 
might be called again, etc. 

RE-ENTRANT CODE - A code that does not alter itself 
during execution. The same body of code may be used 
concurrently by two or more processors. This feature 
saves space as does a serially reusable subroutine. It 
also saves time because there is no waiting. Re-entrant 
subroutines rely quite heavily on the use of registers 
especially for use in addressing so that each task will 
have its own data storage area and so that all valuable 
information will be stored if the processor is 
interrupted. 

RELOCATABLE BINARY SUBPROGRAM - A program that 
can be loaded contiguously into available memory with 
the aid of a loader program 

RELOCATABLE PROGRAM (OBJECT DECK) - A program 
that includes control information regarding program 
name, entries, externals, transfer address, and com
mand sequence storage; it may be loaded anywhere in 
absolute form by a relocating loader. 

REMOTE - Physically displaced; e.g., a remote terminal 
might be located miles from a central computer but be 
linked by telephone lines 

A-7 



REQUEST PRIORITY - The priority of a request with 
respect to other requests; determines when the request 
is processed 

RESPONSE TIME - The time interval between the 
occurrence of an event and the perception of some 
action at the source of the event 

RETURN - To transfer control back to a point in a 
program or subprogram from which a call was issued 

REWIND - To return a tape or disk file to its beginning 

RMS - Rotating mass storage; refers to disks and drums 

ROW BINARY - Pertaining to the binary representation of 
data on punched cards in which adjacent positions in a 
row correspond to adjacent bits of data; e.g., each row 
in an 80-column card may be used to represent 80 
consecutive bits of two 40-bit words 

RSM - Request system modification 

RTJ - Return jump 

RUN-ANYWHERE - Programs that execute properly 
regardless of where they are executed in core memory; 
all addressing internal to the program is referenced by 
relative addressing. 

R W - The read/write request processor 

SEALING - Changing the value of a quantity by a factor in 
order to bring its range within prescribed limits 

SCHEDULER STACK - The list space in SYSDAT that 
contains all the queued scheduler calls. Six queues are 
threaded through the space: one for programs that can 
be immediately executed; four for programs to be 
delayed, and one for empty entries. Programs in the 
scheduler queue are FIFO within priority; programs in 
each of the four timer queues are threaded on a time
to-go-before-execution basis. 

SCHSTK - The scheduler stack 

SCMM - Small Computer Maintenance Monitor 

SECTOR - A contiguous space on mass storage, 96 words in 
leng~h for MSOS. 

SECTOR MARKS - Flags on disk tracks, marked off in 
equidistant points for addressing purposes. 

SEEK - The process of moving the disk heads over the 
desired track. 

SEQUENTIAL FILE ACCESS - A process for obtaining 
information from or placing information into a file 
where the access time depends on the number of 
undesired logical records that must be processed before 
reaching the desired location in the file (also referred 
to as serial access); a file on magnetic tape can only be 
accessed sequentially. 

A-8 

SERIAL RECORDING - Consecutive recording of bits of 
data on a single path (track) 

SET POINT - Data output that informs the test object as 
to what reference point it should start and maintain 

SI - System initializer 

SIGNAL CONDITIONING - The transformation of an 
analog signal so that it can be processed by an A/D 
converter 

SLEW - To pass data until desired end of input pattern is 
sensed. 

SMM17 - System Maintenance Monitor for the 1700 
computer systems 

SNAPDUMP - A selective dump performed at various 
points in a machine run 

SOURCE LANGUAGE - Input language for a given 
translation process 

SPOOLING - A technique of transferring jobs and data 
from one input device to another (usually a mass 
storage file) for processing later 

STACK - A contiguous space for fixed sized entries. In a 
pushdown pop-up stack all entries must be contiguous, 
as shown below: 

5 

3 

2 

1 

STATUS - A state or condition of hardware or a task; e.g., 
busy or not busy 

STX - Start of text 

SUBPROGRAM - A part of a larger program that can be 
coverted into machine language independently 

SUBROUTINE - 1. A portion of a routine that causes a 
computer to carry out a well-defined mathematical or 
logical operation 2. A routine arranged so that 
control may be transferred to it from a master routine 
and, at the conclusion of the subroutine, returned to the 
master routine; such a subroutine is usually called a 
closed subroutine. 

96769400 A 



SYSTEM - A regularly interdependent group of subsystems 
forming a unified whole 

SYSTEM FILES - The entire operating system as it appears 
on the system device; sometimes called the library 

SYSTEM TABLES - Tables that are used by the operating 
system and which lie outside the user's field length 
(SYSDAT) 

THREAD - A list of entries (requests) that each contain a 
pointer to the next entry; e.g., logical unit thread. 
Threads may extend throughout core. The position of a 
request in the thread determines how many requests are 
queued in front of it. 

THROUGHPUT - The productivity of a computer based on 
all aspects of an operation; throughput of computers is 
often compared by calculating the amount of time 
required by each computer to complete the same 
processing. 

TIME-SHARING - The capability of a computing system to 
accommodate more than one user during the same 
interval of time without apparent restriction caused by 
the existence of other users; a given device is used in 
rapid succession by a number of other devices, or 
various units of a system are used by different users or 
programs. The sharing is controlled automatically and 
mayor may not include a priority scheme by using 
multiprocessing. The time-sharing may reduce total 
processing time from that required to do batch 
processing. 

TRANSDUCER - A device for converting energy from one 
form to another 

UNIT - A peripheral device capable of storing, receiving, 
transmitting, or interpreting data; connected to an 
equipment 

UNIT RECORD DEVICES - Devices such as the card 
reader, line printer, and card punch 

UNLOAD - To remove a tape from ready status by 
rewinding beyond the load point; the tape is then no 
longer under control of the computer. 

96769400 A 

UNPROTECTED - A defined area of core storage in which 
memory references are restricted to other locations in 
that area; memory accesses which reference a 
protected area will generate an internal fault condition, 
thus providing memory protection. References from a 
protected area may legally access this area. 

UPDATE - 1. To modify a file with current information 
according to a specified procedure 2. To modify an 
instruction so that its operand address is changed by a 
stated amount each time the instruction is performed 

USER - A programmer, process, or job that uses MSOS 

USER PROGRAM - An object program loaded and entered 
under MSOS control; includes batch and priority 
programs and library routines 

USER'S EXECUTABLE CODE - That portion of a program 
that represents steps that the computer will perform; 
for example, in FORTRAN, the GO TO statement 
results in executable code. 

USER'S WORKING AREA - That portion of a program that 
results in storage for data prior to post-processing; for 
example, in FORTRAN, the COMMON statement 
generates a working area. 

UTILITY ROUTINE - A routine in general support of the 
operation of a computer; e.g., a code updating, I/O, 
diagnostic, tracing, or monitoring routine 

VOLATILE STORAGE - Temporary storage area to save 
register contents or data; used by the 1700 Monitor 

WORST CASE - That which gives maximum stress or 
consumes maximum time; e.g., the pattern of ones and 
zeros in storage that creates the greatest noise or the 
maximum possible time between two significant 
programming operations 

WRITE - To transfer information, usually from internal 
storage, to an output device 

A-9 





COMMUNICATIONS REGION B 

,w 

The area of core from 0 - FF 16 is used as a 
communications area because it can be addressed directly by 
a one-word instruction. Its contents are defined in 
table 8-1; all locations are protected except as noted. 

An extended communications region table is provided to 
increase storage for essential system information. The table 
that resides in SYSDAT is accessed through core location 
E9. These locations in the table have been reserved for use. 
Any information in the table can be manipulated or used by 

e 

using the contents of E9 and an index register set equal to 
the sequential number of the required item in the table. For 
example, if the contents of the fifth word of the extended 
table were required, it could be obtained by the following 
sequence of code: 

ENQ 5 
LDA- ($E9), Q 

The current table usage is shown in table 82. 

TABLE 8-1. COMMUNICATIONS AREA CONTENTS 

Hexadecimal 
LOcation Label Contents Equivalent 

0 0001100011111111 18FF 
1 0 0 
2 LPMASK 0 0 0 
3 ONE 0 01 1 
4 THREE 0 011 3 
5 SEVEN 0 0111 7 
6 0 01111 F 
7 0 01 1 IF 
8 0 01 1 3F 
9 0 01 1 7F 
A 0 01 1 FF 
8 0 01 1 IFF 
C 0 01 1 3FF 
D 0 01 1 7FF 
E 00001 1 FFF 
F 0001 1 1FFF 

10 001 1 3FFF 
11 01 1 7FFF 
12 NZERO 1 1 FFFF 
13 1 10 FFFE 
14 1 100 FFFC 
15 1 1000 FFF8 
16 1 10000 FFFO 
17 1 10 0 FFEO 
18 1 10 0 FFCO 
19 1 10 0 FF80 
1A 1 10 0 FFOO 
18 1 10 0 FEOO 
1C 1 10 0 FCOO 
1D 1 10 0 F800 
1E 1 10 0 FOOO 
1F 1110 0 EOOO 
20 110 0 COOO 
21 10 0 8000 
22 ZERO 0 0 0000 
23 ONEBIT 0 1 1 
24 TWO 0 10 2 
25 FOUR 0 100 4 
26 EIGHT 0 1000 8 
27 0 10000 10 
28 0 10 0 20 
29 0 10 0 40 
2A 0 10 0 80 
28 0 10 0 100 

96769400 A 8-1 



B-2 

Location 

2C 
2D 
2E 
2F 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 
40 
41 
42 
43 
44 
45 
46 
47 - B2 
B3 
B4 

B5 
B6 
B7 
B8 

B9 
BA 
BB 
BC 
BD 
BE 
BF 
CO 

C1 

C2 
C3 

C4 

C5 - E3 
E4 
E5 
E6 
E7 

E8 

Label 

ZROBIT 

FIVE 
SIX 
NINE 
TEN 

TABLE B-1. COMMUNICATIONS AREA CONTENTS (Contd) 

Contents 

o 10 0 
o 10 0 
o 10 0 
o 10 0 
o 10 0 
010 0 
10 0 
1 10 
1 101 
1 1011 
1 10111 
1 101 1 
1 101 1 
1 101 1 
1 101 1 
1 101 1 
1 101 1 
1 101 1 
1 101 1 
11101 1 
1101 1 
101 1 
01 1 
o 101 
o 110 
o 1001 
o 1010 
Reserved for user applications 
Logical unit number of scratch unit 
Top of thread of empty entries in schedule stack 
(TOMPT) 
Location of FNR 
Address of complete request subroutine used by drivers 
Address of MASKT 
Core location of next open location in interrupt stack 
(COUNT) 
Address of request exit 
Address of volatile storage release routine 
Address of volatile storage assignment routine 
Address of absolutizing routine for logical unit 
Address of S parameter absolutizing routine 
Address of C parameter absolutizing routine 
Address of N parameter absolutizing routine 
Most significant bits of the first scratch area sector 
number 
Least significant bits of the first scratch area sector 
number on the library unit 
Logical unit number of the library unit 
Most significant sector number of first program library 
directory block (always zero) 
Least significant sector number of first program library 
directory block 
Reserved for FORTRAN (unprotected) 
Used for load-and-go sector (unprotected) 
Reserved for FORTRAN (unprotected) 
Length of system library directory 
Index to first mass storage entry in the system 
directory 
Real-time clock counter, incremented once each 
timer interrupt 

Hexadecimal 
Equivalent 

200 
400 
800 

1000 
2000 
4000 
8000 

FFFE 
FFFD 
FFFB 
FFF7 
FFEF 
FFDF 
FFBF 
FF7F 
FEFF 
FDFF 
FBFF 
F7FF 
EFFF 
DFFF 
BFFF 
7FFF 

5 
6 
9 
A 

96769400 A 



TABLE B-1. COMMUNICATIONS AREA CONTENTS (Contd) 

Hexadecimal 
Location Label Contents Contents Equivalent 

E9 Core address of extended core table 
EA Location of the dispatcher 
EB Core location of beginning of the system library 

directory 
EC Temporary highest unprotected location +1 
ED Temporary lowest unprotected location -1 
EE Used by the job processor for returns from loader 
EF Current priority level -
FO Core location of next available volatile storage 
Fl Length of the table of presets 
F2 Location of the table of presets 
F3 Location of the breakpoint program when in the 

core (unprotected) 
F4 Location of entry for system requests 
F5 Largest core location used 
F6 Highest unprotected location +1 
F7 Lowest unprotected location -1 
F8 Address of internal interrupt processor 
F9 Logical unit number of standard input device 
FA Logical unit number of the standard binary output device 
FB Logical unit number of the standard print output device 
FC Logical unit number of the output comment device 
FD Logical unit number of the input comment device 
FE Location of the common interrupt handler 
FF Memory index register I (unprotected) 

TABLE B-2. EXTENDED COMMUNICATIONS REGION TABLE 

Label Operator Address Word Comments 

ENT MPFLAG 
ENT MAXSEC 
EXT JFILV4 
EXT RCTV 
EXT ENDOV4 
EXT DATBAS 
EXT SECTOR 
EQU CSYLST (9) 
EQU CSYINP (10) 
EQU CSYPUN (11) 
EQU JFILV4 (7FFF16) 

EXTBV4 ADC 0 00 Mode switch: 

0= 32K 
1 = 65K 

ADC CSYINP 01 Standard COSY input logical unit number 
ADC CSYPUN 02 Standard COSY output logical unit number 
ADC CSYLST 03 Standard COSY list logical unit number 
ADC 0 04 First sector LSB of system core image 
ADC 0 05 First sector LSB of sector availability table 
ADC 0 06 First sector LSB of CREP t table (part 0) 
ADC 0 07 First sector LSB of CREPl table (part 1) 
ADC JFILV4 08 First sector LSB of job file directory 

t CREP = core-resident entry point 

96769400 A B-3 



TABLE B-2. EXTENDED COMMUNICATIONS REGION TABLE (Contd) 

Label Operator Address Word Comments 

ADC RCTV 09 Address of RCTV table in the monitor 
ADC 0 10 Unprotected core flag: 

o = Part 0 
1 = Part 1 

ADC 0 11 Unprotected swap allowed: 

0= yes 
1 = no 

ADC AYERTO 12 Address location containing the year 
ADC AMONTO 13 Address location containing the month 
ADC ADAYTO 14 Address location containing the day 
ADC ENDOV4 15 Last address of part 0 core 
ADC 0 16 First address of blank (system) common 
ADC DATBAS 17 First address of labeled common 
ADC 0 18 COSY driver current physical device table address 
ADC 0 19 Job table initialization flag 
ADC 0 20 Mass memory location of engineering file 
ADC SECTI 21 MSB of maximum scratch sector 

MAXSEC ADC SECTOR 22 LSB of maximum scratch sector 
ADC SECT3 23 MSB of maximum library sector 
ADC SECT4 24 LSB of maximum library sector 
ADC 0 25 Last address of labeled common 
ADC N16KMM 26 Number of 16K memory increments 

MPFLAG ADC EXTSTK 27 Pointer ot extended interrupt stack 
ADC LOGIA 28 Address of LOGIA table 

B-4 96769400 A 



"-

PHYSICAL DEVICE TABLES AND LOGICAL UNIT TABLES C 

, 

The physical device tables are included in SYSDAT (the 
system and parameters program). 

driver which device to use, and the information which allows 
the driver to fulfill the current request. The table contains 
at least 16 words for a device. Words 0 through 15 have a 
standard function for all devices. Additional words are 
added for use by the output message buffer package and 
special use by drivers. Drivers written in kernal form have 
an additional eight specified words (words 16 through 23). 
Additional words for these kernal drivers begin at word 24. 

PHYSICAL DEVICE TABLE 

Each device has a physical equipment table that contains the 
interfacing information specified by the user to the device. 
It contains the entry addresses to the driver responsible for 
operating the device, the station address that tells the Table C-1 gives a detailed description of each of the words 

in the basic driver physical device table (figure C-1). 

Word Name 

0 ELVL 

1 EDIN 

2 EDCN 

3 EDPGM 

4 EDCLK 

5 ELU 

6 EPTR 

7 EWES 

8 EREQST 

96769400 A 

TABLE C-l. PHYSICAL DEVICE TABLE WORDS 

Description 

520x 16 ; a scheduler request to operate the driver initiator address at level x, the driver 
priority level 

The driver initiator address 

The driver continuator address; control is transferred to EDCN on interrupt at the 
priority level assigned to the interrupt trap region. This priority level must be the 
same as the priority level specified by word o. 

The driver error routine address; control is transferred to EDPGM when the diagnostic 
clock is counted down to negative by the diagnostic timer at the driver priority level. 

The diagnostic clock; this location is set by the driver and counted down by the diagnostic 
timer for a hardware completion interrupt. It is set idle (-1) by a complete request. 

The logical unit currently assigned to the device; zero if the device is not in use. 
It is set by the request processor and may be reassigned by find-next-request, and 
cleared by find-next-request or complete request. 

Call parameter list location for current request; it is set by find-next-request. 

Hardware/ Address 

Bits 

o through 6 
7 through 10 
11 through 15 

Code 

Station 
Equipment 
Converter 

The equipment status is obtained by loading this word into Q, followed by input. 
Status is saved in word 12, ESTAT2. 

Request Status 

Bits 

15 

14 

Code 

1 
o 

1 

if operation is in progress 
if operation is complete 

if driver detects I/O hardware failure 

C-l 



TABLE C-l. PHYSICAL DEVICE TABLE WORDS (Contd) 

Word Name Description 

8 EREQST Request Status 

Bits ~ 

13) 12 The equipment class 
11 

Code Device 

0 Class undefined 

1 Magnetic tape 

2 Mass storage 

3 Card 

4 Paper tape 

5 Printer 

6 Teletypewriter 

7 Reserved for future use 

10 through 4 Equipment type constant (T) 

0 1711 

1 1721/1722 

2 1723/1724 

3 1752 

4 713-10/711-100/713-120 

5 1738/853 

6 1751 

7 1739-1 

8 1738/854 

9 1731/601 

10 Software buffer 

11 COSY driver 

12 1728/430 

13 Core allocator 

14 1733-1/854 

15 1733-1/856-2 

16 1733-2/856-4 

17 1742-30 

18 1742-120 

19 1740/501 

20 1732-2/615-73 

21 1732-2/615-93 

22 1732-1/1706/608 

23 1726/405 

24 1732-1i608 

25 1732-1/609 

C-2 96769400 A 



TABLE C-l. PHYSICAL DEVICE TABLE WORDS (Contd) 

Word Name Description 

8 EREQST Request Status 

Bits 

10 through 4 Equipment type constant (T) 

Code Device 

26 1713 Keyboard 

27 1713 Punch 

28 1713 Reader 

29 1729-2 

30 1732-1/1706/609 

31 Software Dummy 

32 364-4/361-1 

33 364-4/361-4 

34 1742-1 

35 1777 Reader 

36 Pseudo Tape 

37 1777 Punch 

38 1729-3 

39 1733-1/853 

40 1731/1706/601 

41 1726/1706/405 

42 1747 

43 1744/274 

44 1536 (Local) 

45 1501 (Remote) 

46 1536 (Remote) 

47 1544 (Remote) 

48 1553 (Remote) 

49 1555 (Remote) 

50 1566 (Remote) 

51 1547 (Remote) 

52 1595 Serial I/O Card 

53 1732-3/616/72 

54 1732-3/616-92/95 

55 1743-2 

56 1745/210 

57 1725-1 Card Punch 

58 1720-1 Reader 

59 1720-1 Punch 

60 Mag Tape Simulator 

61 1732-3 Long Record Driver 

96769400 A C-3 



TABLE C-l. PHYSICAL DEVICE TABLE WORDS (Contd) 

Word Name Description 

8 EREQST Request Status 

Bits 

10 through 4 Equipment type constant (T) 

Code Device 

62 1811-1 LIAT CRT/Printer 

63 1829-30/60 Card Reader 

64 1827-30/65119-1 Line Printer 

65 1860-72 Mag Tape 

66 1860-92/95 Mag Tape 

67 1832-5 Cassette Tape 

68 1833-5 Flexible Disk 

69 1833-1/1867-10 Disk 

70 1833-1/1867-20 Disk 

71 Extended Core Driver 

72 Pseudo Disk 

I 
73 1843-2 Eight-Channel CLA 

74 1866-14 Cartridge Disk 

75 1866-12 Cartridge Disk 

76 1827-7 Matrix Printer 

77-89 Reserved 

90 Reserved - OCR 

91 915 Page Reader 

92 929 Document Reader 

93 936 Document Reader 

94 Reserved - OCR 

95 955 Page/Document Reader 

96 Reserved 

97 979 Reader/Sorter 

98 Reserved - OCR 

99 Reserved - OCR 

100 - 127 For user assignment 

3 Not used (reserved) 

2 1 If device may be written by unprotected programs 

1 1 If device may be read from unprotected programs 

0 1 If device is not available to unprotected programs 

9 ESTAT1 Status word number 1 

15 1 If error condition and/or end-of-file 
is detected 

14 1 If fewer words are read than requested Driver 

13 1 If device remains ready after detecting 
an error or end-of-file or both 

C-4 96769400 C 



v 

Word 

9 

10 

11 

12 

13 

14 

15 

16 

96769400 A 

Name 

ESTAT1 

ECCOR 

ELSTWD 

ESTAT2 

MASLGN 

MASSEC 

RETURN 

TABLE C-l. PHYSICAL DEVICE TABLE WORDS (Contd) 

Status word number 1 

Bits 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

o 

/ 

Description 

Code 

Reserved for special use by individual drivers 

o 
o 
1 

If this is a control character 

If this is the first character 

If ASCII; 0 if binary mode 

Reserved for special use by individual drivers 

1 If format READ or WRITE 
o if unformatted 

1 If WRITE; 0 if READ 

) FNR 

} FNR 

The location where the driver will next store or obtain data; it is set initially by FNR 
and updated by the driver (refer to Find Next Request, section 2). 

Last location +1 where the driver is to store or obtain data to satisfy the request. 

Status word 2; the last value of the equipment status (refer to word 7) 

The length of the driver for this device when the driver is mass-storage resident. 
This word is zero if the driver is core-resident. 

Contains the name associated with the sector number on mass storage; if the driver 
is core resident, this name is patched with 7FFF 16. 

Used for a return address by NFNR, MAKQ, and NCMPRQ 

These words may be added to the device table if required for special purposes for a 
particular driver. For example, they can be used to count the lines per page of 
output or to link several tables together all using the same driver. 

C-5 



15 
WORD 

o 

1 

2 

3 

4 

11 

11 10 9 8 7 4 3 

0 1 0 0 1 101 0 0 0 01 
DRIVER INITIATOR ADDRESS 

DRIVER CONTINUATOR ADDRESS 

DRIVER I/O HANG-UP DIAGNOSTIC ADDRESS 

DIAGNOSTIC CLOOK 

5 LOGICAL UNIT CURRENTLY ASSIGNED TO THIS DEVICE 

6 CURRENT REQUEST PARAMETER LIST LOOA TION 

7 CONVERTER I EQUIPMENT CODE I S"TATION CODE 

8 REQUEST STA TUS BITS 

9 STATUS BITSt 

10 CURRENT LOCATION FOR DRIVER 

11 LAST LOCATION +1 FOR DRIVER 

12 LAST EQUIPMENT STATUS READtt 

13 DRIVER LENGTH 

14 MASS STORAGE ADDRESS OF DRIVER 

15 USED FOR RE-ENTRANCY BY FNR, MAKQ, COMPRQ 

r 
tREFER TO WORD 8 DESCRIPTION 

ttREFER TO THE 1700 DIAGNOSTIC HANDBOOK 

Figure C-1. Physical Device Table 

o 

T 

SYMBOLIC 
NAME 
ELVL 

EDIN 

EDCN 

EDPGM 

EDCLK 

ELU 

EPTR 

EWES 

EREQST 

ESTATI 

ECCOR 

ELSTWD 

ESTAT2 

MASLGN 

MASSEC 

RETURN 

STANDARD 
FOR ALL 
DEVICE 

OPTIONAL BY 

nmv1 

The following information gives a detailed description of the 
words in the kernel driver's PHYSTB expansion (figure C-2). 

Word 19 MICROI 
The device's micro-interrupt number, if any. 

Word 16 

Word 17 

Word 18 

C-6 

FLTCOD 
Kernel fault code if an error occurs. 

DIAGLU 
Diagnostic logical unit. If ELU equals 
DIAGLU, then the request is completed with 
error. The error is not logged in the engineer
ing file and ALTDEV is not called. 

GHOSTI 
A count of the number of ghost (unexpected) 
interrupts that have occurred. 

Word 20 

Word 21 

Word 22 

TIMOUT 
The amount of time in seconds to wait for an 
expected interrupt. 

SENTRY 
The status after the initial entry into the 
kernel. 

SINTER 
The status after the device has interrupted 
(entry into the kernel's continuator entry). 

96769400 A 



1 

WORD ;L6 FAULT CODE 

17 DIAGNOSTIC LOGICAL UNIT 

18 GHOST INTERRUPT 

19 MICRO INTERRUPT 

20 TIMEOUT 

21 INITIAL STATUS 

22 CO~'TlNUATOR STATUS 

TIMEOUT STATUS 

CONTROL POINT LOCATION 

25 
~I". 

T 

1 

-::~ 

T 

SYMBOLIC 
NAME 

FLTCOD 

DIAGLU 

GHOSTI 

MICROI 

TIMOUT 

SENTRY 

SINTER 

STIMEO 

CPVLOC 

STANDARD 
FOR ALL 
DRIVERS 

STANDARD 
FOR ALL 
KERNEL 
DRIVERS 

OPTIONAL 

Figure C-2. Kernel Device Table Expansion 

Word 23 

I 

Word 24 

Word 25 
and 
following 

STIMEO 
The status after the device's interrupt has 
timed out. 

CPVLOC 
Control point location. Used for DMA devices 
only. 

These words may be added to the device table 
if required for special purposes. For example, 
they can be used to count the lines per page. of 
output, link several tables together all USing 
the same driver/kernel, or save multiple status 
words (the auxiliary sta tus words should start 
at word 24). 

LOGICAL UNIT TABLES 

Three logical unit tables (LOG1, LOG1A, and LOG2) specify 
',---- correspondences between logical and physical units,. ~nd 

between logical units and the threads of I/O tasks awaIting 
execution of those logical units. 

96769400 C 

LOGl TABLE - ALTERNATE DEVICE TABLE 

The logical unit table indicates whether a logical unit has an 
alternate physical device that can be used for the I/O 
transfer in the event that this physical device fails. Only 
one alternate unit can be used for a given logical unit. 
However, several logical units can in fact use one physical 
device. 

LOG! 

L1 

L2 

L3 

15 1-1 13 12 11 10 9 

Largest legal logical unit number 

Alternate logical unit number 

o 

C-7 



Where: Bit 15 is reserved. 

Bit 14 

Bit 13 

Bit 12 

is 0 if the logical unit does not share 
the device. 

1 if the logical unit shares a device 
with another logical unit. 

is 0 if the logical unit is operative. 
1 if the logical unit is out of 

service: the alternate, if any, is 
in use. 

is flag bit for LU down message. 

Bits 11-10 are reserved for future use. 

Bits 9-0 are the alternate logical unit number. 

LOG1A TABLE - LOGICAL/PHYSICAL UNIT TABLE 

This table relates each logical unit to its physical device 
table (PHYSTB). One physical device may have many logical 
units, hence many PHYSTBs, but each logical unit has one 
and only one PHYSTB. 

C-8 

LOGIA 

Ll 

L2 

L3 

15 o 
Largest legal logical unit number 

Address of PHYSTB slot corresponding to this 
lol!:ical unit 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

: 

LOG2 TABLE - TASK THREADS 

The table contains a pointer to the first entry in each logical 
unit's thread. The threads may be extended throughout 
(protected) core. Entries in each thread are ordered on a 
FIFO within priority basis. Unprotected requests are not 
threaded to the I/O threads until execution time unless 
swapping is prohibited. At execution time, a copy of the 
request is saved in SYSDAT and this copy is threaded to the 
I/O device. 

LOG2 Largest legal logical unit number 

Top of thread for this logical unit number 
I 
I 
I 

: 

96769400 A 



SYSTEM AND PROGRAM DIRECTORIES D 

n;Qi&W@' '¥iMiM}f;W' Mtt. Hi 

The two directories in the CYBER 18/1700 MSOS are used to 
locate system programs in core memory or mass storage and 
programs or files on mass storage. 

SYSTEM LIBRARY DIRECTORY 

The system directory is core-resident and is divided into two 
parts. 

• Entries relating to core-resident system programs (in 
core at all times) 

• Entries relating to system programs that are resident on 
mass storage and placed in core only when needed 

The system directory is constructed during system 
initialization. When it is complete, the system initializer 
stores its initial address in location EB16 • The index is the 
number added to the contents of EB16 to obtain the address 
of the first mass storage entry; it is stored in E716• The 
length of the system directory is stored in E616• 

Inl"tl"al address { } Index to the first mass Entries for core-resident storage entry is stored 
stored in EB1S programs 1-----------1 in E7'6 
Length stored Entries for mass-storage 
in E616 resident programs 

Entries for core-resident programs appear as follows: 

1 

2 

3 

4 

Where: 

15 14 13 

Old 1 

d 

rc 

9 8 7 4 3 o 
rc 10 1 rp 1 cp 

c 

thread 

q 

is the part indicator 

0 Indicates that a program runs in 
part 0 

1 Indicates that a program runs in 
part 1 

is the request code, which is set to 1 for 
core-resident programs. 

rp has no meaning to the core-resident directory. 

cp is the priority level at which the program is 
operated. It is set to the value of p in the 
parameter list of the program requesting 
the library program. 

96769400 A 

c 

eW¥,feae;e· iM,_ c 58 

is the core location of the initial execution 
address of the program. 

thread is the location used to thread the entry into 
the scheduler thread. 

q is the parameter to be passed to the pro
gram in the Q register when the program 
is entered; the contents of the Q register 
at the time the request was initiated. 

Entries for mass-storage resident programs appear as 
follows~ 

o 
1 

2 

3 

4 

5 

6 

15 14 13 

01 d 1 
01 

rc 

987 

·101 
c 

thread 

q 

n 

M 

m 

4 3 o 
rp 1 cp 

Where: d is 0 Indicates that a program runs in 
part 0 

rc 

rp 

cp 

c 

1 Indicates that a program runs in 
part 1 

is the request code. It is set to zero so that 
when the directory entry is threaded to 
the queue for the mass-storage logical 
unit, the driver will recognize the special 
form. 

is the area of allocatable core available to 
this request. This is set by an *S com
mand of LIBEDT. If d is 1, rp determines 
the priority in the partition thread. 

is the priority level at which the program is 
operated. It is set to the value of p in the 
parameter list of the program requesting 
the library program. 

is the lowest (toward zero) memory address 
allocated for this request. It is deter
mined by a SPACE request, after core in 
which the program can be operated has 
been allocated. If d is 1, c is fixed to the 
starting address of the partition into 
which this program was absolutized. 

thread is the location used to thread the entry into 
the scheduler thread. 

q is the parameter to be passed to the pro-
gram in the Q register when the program 
is entered (the contents of the Q register 
at the time the request was initiated). 

D-1 



n 

M 

m 

is the program length in words. 

is always zero. 

is the mass storage address; it contains the 
starting sector address of where the pro
gram begins. 

When the system initializer substitutes an index for an 
external name, it proceeds as follows: 

Core-resident entry (ordinal - 1) * 4 

Mass-storage-resident entry (ordinal - 1) * 7 + (E716) 

The ordinal represents the position of the program among 
others of its type (core or mass storage) in the system 
directory. For example, both the fifth core-resident 
program and the fifth mass-storage-resident program would 
have the ordinal 5. 

JOB PROCESSOR FILE DIRECTORY TABLE 

Files defined and used by job processor routines (refer to 
section 9) are listed in the job processor file directory table 
which is available on mass storage. Each file entry in the 
table consists of nine words, with ten file entries per sector. 
The first sector LSB of the job processor file directory 
table is available in the extended core table (E9

16
) + 8. 

The total number of files used for the job processor file 
directory table is in SYSDAT as EQU JBFLV4 (the number of 
files). 

The following is the format of a file entry: 

o 
1 

2 

3 

4 

5 

6 

7 

8 

15 14 

,at'l 
wIRj 

8 7 

Character 1 

Character 3 

Character 5 

Character 1 

Character 3 

Character 5 

Character 1 (m) 

Character 3 (d) 

Character 5 (y) 

o 
Character 2 

Character 4 

Character 6 
} File name 

(ASCII) 

Character 2 

Character 4 

Character 6 
} Security 

code 
(ASCII) 

Character 2 (m) 

Character 4 (d) 

Character 5 (y) 
} 

Expiration 
date 
(ASCII) 

Where: file name is the file name, stored in ASCII 
format. If the name consists of 
less than six characters, blanks 
are used for the trailing 
characters. 

security code is the security code, stored in 
ASCII format. If this code is of 
less than six characters, blanks 
are stored as trailing characters. 

expiration date is the expiration date, stored in 
ASCII format. The six-character 
date is of mm dd yy format. 

O/C 

W/R 

mm 

dd 

Month - 01 through 12 

Day - 01 through 31 

yy Year - 00 through 99 

is the OPEN/CLOSE status of the 
file. 

1 

o 
File is open. 

File is closed. 

is the WRITE/READ status of the 
file. 

1 File can be read or 
written. 

o File is read only. 

PROGRAM LIBRARY DIRECTORY 

The program directory is stored entirely on mass storage in 
a linked form: each link points to the next link and each link 
occupies a sector. The first sector in the linked list has its 
number stored in core locations C316 (MSB) and C416 (LSB). 

The program library directory contains the ASCII names of 
all entry points in the program library together with their 
beginning mass storage addresses. The names of all 
permanent files are stored in the program library directory. 
No entry point or file name appears twice however, an entry 
point name and file name may be the same. Names are one 
to six characters; the first character must be alphabetic and 
the remaining characters are alphanumeric. 

A representative sector in the program directory is shown 
below: 

1 

2 

3 

4 

5 

91 

92 

93 

94 

95 

96 

A B 

C D 

E F 

The file/program designator t 
The starting sector number of the file or program 

Additional sector entries (up to 18 in a sector) 

~----------------Not used t------------------
Number of empty locations, if last sector 

MSB of next sector number 

LSB of next sector number 

} 

A six-
character 
name 

} 

Zero, if 
this is the 
last sec
tor in list 

t If the entry is a permanent file, the fourth word contains the complement of the number of sectors that the file occupies; 
otherwise, it contains zero. 

D-2 96769400 A 



DISK ADDRESSING E 

EM'*kAAW@M%: . "'*i' tv ,:",'. J~'f''''¥p#.J g. ,'S"" <iMA*d"'fW4fi' 'es5GH 't',·it4' .... +J-,s 14kr fA' 

Disk sectors are numbered logically from 0 to n, where n is 
the number of sectors on the disk. Two consecutive words 
are used to specify a sector number. The 16 most 
significant bits (MSBs) of the sector address are contained in 
word 1 and the 15 least significant bits (LSBs) are contained 
in word 2. Bit 15 of word 2 is always zero. When a read or 
write requires more than one disk sector to satisfy the word 
count, consecutive sectors are accessed. 

Since the system may access the disk between successive job 
requests, each user must specify the sector at which an 
operation begins. The system does not guarantee successive 
sectors on successive operations. 

The library unit consists of two sections: library and 
scratch. 

The library can be accessed by unprotected programs only 
through a GTFILE or LOADER request. Unprotected 
programs can access the scratch area directly by READ, 
WRITE, etc. The system can access the entire disk at any 
time by specifying the sector number. Unprotected pro
grams cannot access the library portion of the library unit 
and need not be concerned with the beginning of the scratch 
area; they may address the scratch area logically from 
sector 1, etc. The library unit is arranged as follows. 

96769400 A 

SCRATCH 

When an unprotected program asks for sector 1 on the 
library unit, it is given sector x, which is computed by 
adding the sector defined in locations C016 and Cl16 to 
value 1. C016 and Cl16 define the end of library and the 
start of scratch for the library unit only. Units not 
containing the library have their scratch starting at physical 
sector 1. 

The library and scratch units may be physically different. 

On the library unit, sectors 0 through 4 are used for the 
system autoload area. 

E-1 





96769400 A 

Logical Unit 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

MSOS SYSTEM STANDARDS 

A M¥ 

TABLE F-l. MSOS STANDARD LOGICAL UNIT ASSIGNMENT 

Core allocator 

Dummy 

Dummy 

Comment I/O 

Function 

COSY driver - Unit 0 t 

Magnetic tape - Unit 0 t 

Pseudo tape or tape simulator - Unit 0 t 

Library unit 

Standard list unit 

Standard input unit 

Standard output unit 

FORTRAN list unit 

t If not present in a system, dummy is substituted. 

F 

F-1 



I 

I 

F-2 

TABLE F-2. DRIVER PRIORITY LEVELS 

Equipment 

601 Magnetic Tape (Unbuffered) 

1721. 1723. 1777 Paper Tape I/O 

1729-2. 1729-3. 1728-430 Card I/O 

1829-30/60 Card Reader 

1711. 1713. 711 CDT. 1811-1 Console Display 

364-4 Communications Multiplexer 

Remote 1500 equipment 

1744 Digigraphics Controller 

Dummy driver 

601 Buffered Magnetic Tape 

1832-5 Cassette Tape 

608. 609. 615. 616 Magnetic Tape 

1860-72/92 Magnetic Tape 

1860-5/6 Magnetic Tape 

1742-501. 1742-30/120 Printer 

1746-405 Card Reader 

1747 Data Set Controller 

1743-2. 1595 Communications Multiplexer 

1745-2 Buffered Display Controller 

1733-1. 1733-2. 1738. 1739. 1833-1. 1751. 
1752. 1833-4 Mass Memory 

1833-5 Flexible Disk 

1536 Relay Analog Multiplexer 

COSY driver. extended memory driver 

Pseudo tape •. magnetic tape simulator 

Core allocator 

Level 

14 

14 

14 

14 

13 

12 

12 

11 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

9 

9 

9 

8 

8 

7 

96769400 C 



Level 

15 

14 
--

13 

12 

11 

10 

9 

8 

7 

6t 

5t 

4t 

3 

2 

1 

0 

-1 

TABLE F-3. SOFTWARE PRIORITY ASSIGNMENTS 

Use 

Stall/parity/protect violations 

Card reader/punch, unbuffered magnetic tape 

Timer, low-speed I/O 

Communications multiplexer, remote 1500 equipment 

Digigraphics 

Line printer, message buffering, magnetic tape 

Analog input, disk drum 

DACS scan, direct digital control, in-line responses (AUTRAN); TIMESHARE Executive 

Core allocation 

Special application programs (IMPORT) 

DACS alarm, AUTRAN supervisory, CRT console handler (AUTRAN) 

Calculations, logs (AUTRAN); Timeshare user ~rograms; SCMM 

Manual interrupt processing, magnetic tape rewind 

Job cancel, idle if swapped 

Job I/O completion 

Job processing, AUTRAN and FORTRAN compilation 

Idle 

tRe-entrant FORTRAN levels 

96769400 A F-3 



F-4 

TABLE F-4. STANDARD EQUIPMENT CODES AND INTERRUPT LINES FOR 1700 MSOS 

Device Type 

Low-speed I/O line 1 device 

Drum mass memory 

1747 Data Set Interface 

Line printers 

Communications controller 

Magnetic tape 

1500 Series equipment t 

Card punch 

Card reader 

1744 Digigraphics Controller 

1745-2 Display Controller 

Unassigned 

1781-1 Floating Point Unit 

Interrupt Line 
And 
Equipment Code 

1 

2 

3 

4 

5 and 6 

7 

8 and 9 

10 

11 

12 and 13 

12 and 13 

14 

15 

t The 1590 also uses interrupt line 6. The 1595 also used interrupt line 5. 

tt The 1576 also uses interrupt line 15. 

TABLE F-5. STANDARD EQUIPMENT/INTERRUPT ASSIGNMENTS FOR CYBER 18-20 AND 18-30 

Equipmentt Macro Micro 
Peripheral Code Interrupt Interrupt 

Teletypewriter/Console Display 1 1 1 

Paper Tape Reader 2 2 2 

Paper Tape Punch 2 2 2 

Gard Punch 2 2 2 

None 3 3 3 

Line Printer 4 4 4 

None 5 5 5 

None 6 6 6 

Cassette 7 7 7 

t Equipment codes 0, 3, 5, 6, and 8 are currently unassigned and reserved for future use. 

96769400 A 



TABLE F-5. STANDARD EQUIPMENT/INTERRUPT ASSIGNMENTS FOR CYBER 18-20 AND 18-30 (Contd) 

Peripheral 

Clock 

Magnetic Tape Transport (NRZl only) t t 

Eight-Channel Communications Line Adapter 

Dual-Channel Communications Line Adapter 

Card Reader 

Magnetic Tape Transport (NRZl and Phase Encoded) 

10M 

Storage Module Drive 

Cartridge Disk Drive 

Flexible Disk Drive 

Protect, Parity and Power Failure (internal) 

Macro Stop and Panel (internal) 

Equipmentt 
Code 

1 

9 

10 

10 

11 

12 

13 

14 

14 

15 

ttt 

ttt 

Macro 
Interrupt 

8 

9 

10 

10 

11 

12 

13 

14 

14 

15 

o 

ttt 

tEquipment codes 0, 3, 5, 6, and 8 are currently unassigned and reserved for future use. 

Micro 
Interrupt 

8 

0, 9 

10 

10 

11 

ttt 

ttt 

ttt 

ttt 

ttt 

ttt 

12-15 

ttThe LCTT (NRZI only) micro interrupt is wired to both micro interrupt zero and nine. The software 
has responsibility to select the desired one. 

tttNot applicable 

96769400 A F-5 





ASCII CONVERSION TABLES G 

&&+9 

The 1963 American Standard Code for Information 
Interchange (ASCII) is used by the CYBER 18/1700 MSOS. 
ASCII code uses eight bits: bit 8, which is always zero, is 
omitted in the table below. Bits 1 through 4 contain the 

'e' pi 

low-order four bits of code for the character in that row. 
Bits 5 through 7 contain the high-order three bits of the 
code for the character in that column. The code is given in 
ascending sequence in table G-1. 

TABLE G-I. ASCII CONVERSION TABLE 

ASCII Bit Hexadecimal Meaning 
Symbol Configuration Number 

NULL 000 0000 0 Null/idle 

SOM 000 0001 1 Start of message 

EOA 000 0010 2 End of address 

EOM 000 0011 3 End of message 

EOT 000 0100 4 End of transmission 

WRU 000 0101 5 Who are you 

RU 000 0110 6 Are you 

BELL 000 0111 7 Audible Signal 

FEO 000 1000 8 Format effector 

HT/SK 000 1001 9 Horizontal tab skip (punched card) 

LF 000 1010 A Line feed 

VTAB 000 1011 B Vertical tabulation 

FF 000 1100 C Form feed 

CR 000 1101 D Carriage return 

SO 000 1110 E Shift out 

SI 000 1111 F Shift in 

DCO 001 0000 10 Device control/data link escape 

DC1 001 0001 11) DC2 001 0010 12 Device controls 

DC3 001 0011 13 

DC4 (STOP) 001 0100 14 Device control/stop 

ERR 001 0101 15 Error 

SYNC 001 0110 16 Synchronous idle 

LEM 001 0111 17 Logical end of media 

So 001 1000 18 .... 

Sl 001 1001 19 

S2 001 1010 1A 

S3 001 1011 1B Information separators 

S4 001 1100 1C 

S5 001 1101 1D 

S6 001 1110 IE 

S7 001 1111 IF ... 

96769400 A G-1 



TABLE G-2. ASCII TO "EBCDIC CONVERSION 

8-Bit 171x-1 171x-2 6-Bit 
ASCII Teletypewri ter Teletypewriter EBCDIC 026 029 Extended BCD Tape Code 
"Codes Array Array Character Punches Punches Magnetic Tape EBCDIC 

2016 ; 
Space Space Space No Punch No Punch 208 4016 

21 t ! ! ! 11-8-2 12-8-7 52 5A 
, 

22 " " " 8-7 8-7 17 7F 

23t .# # # 12-8-7 8-3 77 7B 
r 

24 $ $ $ 11-8-31' 11-8-3 53 5B 

25t % % % 0-8-5 0-8-4 35 6C 

26t & & & 8-2 12 00(35}tt 50 

27t , , 
~ 8-4 8-5 14 70 

28t ( ( ( 0-8-4 12-8-5 34 40 

29t ) } } 12-8-4 11-8-5 74 50 

2A * * * 11-8-4 11-8-4 54 5C 

2Bt + + + 12 12-8-6 60 4E 

2C , , , 0-8-3 0-8-3 33 6B 

20 - - - 11 11 40 60 

2E . . 12-8-3 12-8-3 73 4B 

2F / / / 0-1 0-1 21 61 

30 0 0 0 0 0 12 FO 

31 1 1 1 1 1 01 F1 

32 2 2 2 2 2 02 F2 

33 3 3 3 3 3 03 F3 

34 4 4 4 4 4 04 F4 

35 5 5 5 5 5 05 F5 

t To operate in 026 punched card mode, ASCII 63 options are selected. To operate in 029 punched card mode, 
ASCII 68 options are selected. These options are assembly-time options for each driver affected. 

t t Since 173x magnetic tape controllers do not provide any code conversion, BCD code 00 is illegal and causes 
a noise record or BCD code 35 is substituted for the illegal 00 code to prevent tape errors. 

On tape write operations, the ASCII codes 2516 (%) and 2616 (&) are written as BCD 388. 

On tape read operations, the BCD code 358 is always translated to an ASCII 2516 (%). 

G-2 96769400 A 



TABLE G-2. ASCII TO EBCDIC CONVERSION (Contd) 

8-Bit 171x-l 171x-2 6-Bit 
ASCJI Teletypewriter Teletypewriter EBCDIC 026 029 Extended BCD Tape Code 
Codes Array Array Character Punches Punches Magnetic Tape EBCDIC 

36 6 6 6 6 6 06 F6 

37 7 7 7 7 7 07 F7 

38 8 8 8 8 8 10 F8 

39 9 9 ~ 9 9 11 F9 

3A : : : 8-5 8-2 15 7A 

3B ; ; ; 11-8-6 11-8-6 56 5E 

3Ct < < 12-8-6 12-8-4 76 CE 

3Dt = = = 8-3 8-6 13 7E 

3Et > > 8-6 0-8-6 16 EC 

3Ft ? ? ? 12-8-2 0-8-7 72 6F 

40 Rej. 0-8-7 8-4 37 3F 

41 A A A 12-1 12-1 61 Cl 

42 B B B 12-2 12-2 62 C2 

43 C C C 12-3 12-3 63 C3 

44 D D D 12-4 12-4 64 C4 

45 E E E 12-5 12-5 65 C5 

46 F F F 12-6 12-6 66 C6 

47 G G G 12-7 12-7 67 C7 

48 H H H 12-8 12-8 70 C8 

49 I I I 12-9 12-9 71 C9 

4A J J J 11-1 11-1 41 Dl 

4B K K K 11-2 11-2 42· D2 

4C L L L 11-3 11-3 43 D3 

4D M M M 11-4 11-4 44 D4 

4E N N N 11-5 11-5 45 D5 

4F 0 0 0 11-6 11-6 46 D6 

50 P P P 11-7 11-7 47 D7 

51 Q Q Q 11-8 11-8 50 D8 

52 R R R 11-9 11-9 51 D9 

t To operate in 026 punched card mode, ASCII 63 options are selected. To operate in 029 punched card mode, 
ASCII 68 options are selected. These options are assembly-time 9ptions for each driver affected. 

96769400 B G-3 



TABLE G-2. ASCII TO EBCDIC CONVERSION (Contd) 

8-Bit 171x-1 171x-2 6-Bit 
ASCII Teletypewriter Teletypewri ter EBCDIC 026 029 Extended BCD Tape Code 
Codes Array Array Character Punches Punches Magnetic Tape EBCDIC 

5316 S S S 0-2 0-2 228 E2 

54 T T T 0-3 0-3 23 E3 

55 U U U 0-4 0-4 24 E4 

56 V V V 0-5 0-5 25 E5 

57 W W W 0-6 0-6 26 E6 

58 X X X 0-7 0-7 27 E7 

59 Y Y y 0-8 0-8 30 E8 

5A Z Z Z 0-9 0-9 31 E9 

5Bt [ [ '\. 12-8-5 12-8-5 75 4A 

5Ct " "- I 0-8-2 0-8-2 36 FA 

5Dt ] ] J 11-8-5 11-8-5 55 CC 

5E f 1\ -- 11-8-7 11-8-7 57 6D 

5Ft +- - -, 0-8-6 0-8-5 32 5F 

60 " " " N/A 79 

7B i t t N/A CO 

7D ~ I } N/A DO 

7E - - - N/A Al 

t To operate in 026 punched card mode, ASCII 63 options are selected. To operate in 029 punched card mode, 
ASCII 68 options are selected. These options are assembly-time options for each driver affected. 

G-4 96769400 B 



CUSTOMIZATION AND INSTALLATION H 

',$. eNd ·MPfWW ; 1.-lp¥.gA! 

The CYBER 18/1700 Mass Storage Operating System is 
designed to meet a large variety of user needs. Detailed 
descriptions of the customization processes can be found in 
the MSOS Customization Manual. 

The system consists of a collection of standard software 
modules and a program containing all system variables and 
tables (SYSDAT). 

Customization is performed by including or deleting various 
standard modules and by modifying SYSDAT. In addition, 
special user programs and data may be easily included in the 
system. 

Installation of this software is performed by the system 
initializer routines, which load and link all system software 
in main memory and mass storage, based on initializer 
control statements that specify the installation. 

Although the initializer is executed off-line (i.e., not as a 
part of MSOS), a certain amount of customization may be 
performed on-line by the use of the library editing feature. 
This includes such items as the modification of system 
library and program library programs. 

CUSTOMIZATION 

Customization of MSOS is performed by modifying SYSDAT. 
All standard MSOS modules make use of data in SYSDAT for 
configuration dependent information. This section provides 
a summary of the customizable data found in SYSDAT. The 
MSOS Customization Manual should be consulted prior to 
attempting any modifications. 

COMMUNICATIONS REGION 

An area in low core has been reserved for applications use. 
It is 108 words in length (4716 through B216 ) and is 
especially valuable because all locations in this region may 
be referenced directly with one word instructions. 

INTERRUPT REGION 

The area between 10016 and 13F16 is reserved for 
interrupt response. Each interrupt line is related by 
hardware design to a four-word block of memory in this 
area. 

EXTENDED COMMUNICATIONS REGION 

A table of frequently used MSOS parameters is referenced 
through location E916 • Of particular interest are words 10 
and 11, which indicate the memory bank in which unprotect
ed core resides, and words 21 and 22, which specify the 
maximum sector of scratch. 

96769400 A 

,if BE ,z'Nib.' 

SYSTEM IDENTIFICATION 

An IS-word table that contains an alphanumeric system 
identification and the date the system was installed is 
located immediately following the extended core table. This 
information is printed on the commnet device each time an 
autoload is performed. The installation date is specified by 
*S control statements in the installation file. This table is 
useful in identification of the system from a core dump. 

STORAGE STACKS 

The storage stacks are divided into two customizable parts. 
The size of volatile storage is dependent upon the configur
ation and is based on the number of re-entrant FORTRAN 
priority levels, as well as additional user requirements. The 
scheduler/timer stack holds requests unit! the system prior-' 
ity level conditions dictate their execution. This stack 
should be sized to contain all expected simultaneous 
requests. 

LOGICAL UNIT TABLES 

Each logical unit in the system must have an entry in the 
LOG lA, LOG1, and LOG2 tables and may require an entry in 
the Diagnostic Timer (DGNTBL) table. Refer to appendix C 
for a description of these tables. 

STANDARD LOGICAL UNITS 

Equivalences defining the standard dummy, comment I/O, 
library, scratch, list, input, and binary output units are 
contained in SYSDAT. 

LINE 1 TABLE 

Some configurations require several logical units that are 
connected to the line one (low-speed I/O) interrupt. In this 
case a list of physical device table addresses is required by 
the line one handler routine. 

PHYSICAL DEVICE TABLES 

Each logical unit in the system generally requires a physical 
device table, which contains information necessary to the 
device's driver. Refer to appendix C for a description of 
these tables. 

CORE-RESIDENT DATA 

Several items of data are required to specify the manner in 
which core memory is arranged. BGNCOR specifies the 
first word address of the core-resident monitor, and this 

H-1 



address must be changed if additional modules are included 
in this part of core. The core area size parameters (N5 
through N15) allow specification of allocatable core areas. 
The partition core tables are used to define the address of 
each core partition. The system common declaration 
defines the amount of blank common in the system. 

SYSTEM IDLE LOOP 

This program is executed when there are no other tasks to 
perform in the system. In addition, a section of this routine 
is executed the first time the idle loop is entered following 
an autoload, and may be used to perform user start-up 
functions. 

A counter of idle loop cycles is maintained in the location 
labeled IDLCTR. This may be used by an applications 
program to calculate system idle time. 

SYSTEM TIMER INTERRUPT RESPONSE 

The 1700 MSOS supports six different types of timing 
devices. The interrupt response for the particular configu
ration is contained in SYSDAT.After acknowledging and 
reactivating the timer interrupt, the timer response routine 
is executed to allow completion of timer requests and the 
calculation of the time of day. The CYBER 18 has one 
timer type with the timer tables and interrupt response in 
SYSDAT. 

BUFFERED DATA CHANNEL TABLES 

Data tables are required by the 1706 handler if any system 
hardware controller share a buffered data channel. 

A/Q ALLOCATION TABLES 

Certain system devices require allocation of the A/Q 
channel during input/output operations in order to avoid lost 
data. The A/Q channel allocator routine uses these tables 
for this purpose. 

MASS-RESIDENT DRIVERS BUFFER 

This buffer is sized to hole mass-resident drivers during 
execution. It must be of sufficient size to contain the 
largest mass-resident driver in the system. It may, however, 
be sized to contain any two drivers simultaneously, or to 
contain some drivers simultaneously and some singularly. 

RE-ENTRANT FORTRAN MASK 

This location (FMASK) contains a bit that is equal to 1 for 
every re-entrant FORTRAN priority level in the system. 

SYSTEM TIMER PARAMETERS 

This section contains parameters related to the system 
timer, including the specification of the expected interrupt 
frequency. 

B-2 

SYSTEM OVERLA Y SIZES 

Certain system library programs are designed to operate as 
overlays. This table specifies the size of the first overlay 
for each of these programs. 

10M PARAMETERS 

This section contains information defining the physical 
configuration of any 1500 Series devices in. the system, 
included are station assignments, the digital output history 
table, and digital input/output block assignment tables. 

SYSTEM CHECKOUT PARAMETER 

The starting sector of the failed core image to be used by 
the system checkout bootstrap is contained here. This 
image must be contained on the library unit and must be 
large enough to hold the physical size of core memory in the 
system. 

FILE MANAGER TABLES 

There are three items contained in this section. General 
parameters required by the file manager, the logical unit 
tables for each mass storage device that contains file 
information, and data required for the background job files. 
Refer to the File Manager Reference Manual for a detailed 
description of the file manager tables. A description of job 
files is contained in section 9 of this manual. 

SYSTEM PRESETS 

System presets allow unprotected reference to the 
foreground, which would otherwise result in protect 
violations. Care should be exercised in adding items to this 
table, as this tends to degrade the protected system. 

INSTALLATION 

Installation of CYBER 18/1700 MSOS is performed by the 
use of the system initializer routines, which accept the 
installation file containing initializer control statements and 
relocatable binary programs. 

Under MSOS, an attempt has been made to allow system 
installation to be performed in an extremely simple and 
straightforward manner. This section contains an overview 
of the procedures necessary to install CYBER 18/1700 
MSOS. The system installation manual should be consulted 
for detailed information. 

The MSOS user receives an installation file that has been 
configured, built, and tested to the required configuration. 
This installation file may be contained on seven- or nine
track magnetic tape, punched cards or paper tape, and is 
divided into sections as shown in figure B-1. 

In order to install the system, the user has two options. If 
an operating MSOS system is available, the system initial
izer may be loaded from the program library and executed. 
In this case, the installation file should be advanced past the 

96769400 A 



START ~ 

BOorSTRAPPABLE INITALIZER 

SYSTEM INITIALIZ Ea 
CONTROL STATMENTSAND 
RELOCATABLE BINARY PROGRAMS 

END OF SYSTEM 

LIBEDT CONTROL STATEMENTS 
AND PROGRAM LIBRARY 
PROGRAMS 

*Z 
RPG INITIALIZATION DISK AND 
LOAD FILEt 

RPG ERROR FILEt 

VERIFICATION TEST MATERIALS 

SYSDAT IN COSY FORM 

ASCII IF MAGNETIC TAPE 
BINARY IF ON CARDS 

END 

tSUPPLIED ONLY WITH SYSTEMS THAT HAVE RPG. 

Figure H-l. MSOS Installation File 

• 

• 
• 
~ 

.. 

~ 

FILE MARK 

FILE MARK 

FILE MARK 

FILE MARK 

THREE FILE MARKS 
IN TIllS SECTION 

. FILE MARK 

first file mark prior to installation. If a system is not 
available, a short hand loaded bootstrap must be entered and 
executed. On the CYBER 18 with the deadstart feature, a 
deadstart card deck to read seven- or nine-track tape is 
supplied. This will load the system initializer and allow it to 
be executed. 

The system initializer processes the installation file and 
builds the core and mass resident portions of the system 
until the *T control record is encountered. At this time, a 
request to autoload the system is output on the comment 
device. Following autoload, the user initiates the library 
edit routine by entering *BATCH after a manual interrupt. 

LIBEDT then processes the next portion of the installation 
file. This allows the program library to be loaded and is 
terminated by an *U control statement. The system is now 
completely installed and may be verified by initiating the 
MSOS verification tests. All material required to execute 
these tests is contained in the next portion of the 
installation file. Once the tests are successfully completed, 
the system may be put into operation or customized as the 
user desires. 

96769400 A 

The installation of MSOS 5 into core and mass memory is 
shown in figures H-2 and H-3. 

H-3 



SECTOR 0--+ AUTOLOAD 

SYSTEM CORE IMAGE 

USER TABLESt 

SYSTEM LIBRARY 

MASS RESIDENT DRIVERS 

FILE MANAGER REQUEST 
PROCESSORS 

SYSTEM FILE SPACE tt 

SYSTEM SWAP AREA 

SYSTEM TABLES 
CREPO, CREPl, EFILE, S.A. T. 

PROGRAM LIBRARY 

SCRATCH 

USER TABLES 

t OPTIONAL ITEMS. 
ttFOR FIXED PLATTER DISK, TIDS AREA IS MOVED TO THE FIXED PLATTER. 

Figure H-2. Mass Memory Arrangement (Library Unit) 

H-4 96769400 A 



~6769400 A 

LOCA TI ON 0000 --. 

t 

IDGHEST CORE LOCATION'-. 
(65K OR LESS 

tOPTIONAL ITEMS 

SYSDAT 

SPACE 

AREA 15-4t 

AREA 3 

AREA 2 

AREA 1 

AREA 0 
(UNPROTECTED) 

BLANK COMMON 

PARTITION 0 

PARTITION 15 

MONITOR 

DEBUGGING/CHECKOUT t 

FILE MANAGER t 

DRIVERS 

RE-ENTRANT FORTRAN LIBRARY t 

Figure H-3. Memory Arrangement 

ALLOCATABLE CORE 

s 

PARTITIONED CORE t 

H-5 





BACKGROUND iPROGRAMMING OVERVIEW 

'8-"·"1: 

Available to the CYBER 18/1700 MSOS user is the capability 
to execute programs in batch mode, unprotected core, and 
at low priority. Use of unprotected core provides for system 
protection from undebugged programs, while execution at a 
low priority ensures that higher priority real-time functions 
may be completed as required. The job processor is the 
supervisory program for unprotected programs. 

The following capabilities are available to the background 
programmer: 

• System requests as defined in section 3 - The job 
processor validates unprotected requests prior to 
queueing them to protect the system from undebugged 
programs. 

• Protected core communications region (refer to 
appendix B) containing fixed constants for operand 
masking - In addition, any protected core location may 
be read only. 

• Protected core communication capability by use of a 
table of preset entry points (refer to Unprotected Entry 
Points, section 2) - This t,illows unprotected programs to 
utilize protected core subroutines. 

96769400 A 

tkiM ,;*y. fN 

• Relocatable binary loader for program loading and 
subroutine linking - Common subroutines may be stored 
on the mass storage program library and called by 
unprotected programs. At load time these are loaded 
with the main program. 

• Job files for assignment as data storage areas for 
simulation of magnetic tape input/output on disk (refer 
to Mass Storage Job File Handling Statements, section 
9). 

• File manager for storage and management of data in 
permanent files - The background user may access 
protected files and prepare reports or create, maintain, 
and analyze his own unprotected files (refer to 
section 5). 

• On-line debug, on-line trace, breakpoint program, and 
recovery program debugging aids to enhance program 
checkout (refer to section 10). 

• Library editing program (refer to section 13) for 
program and system library maintenance. 

• Editor program to create and modify files (refer to 
section 14). 

1-1 





DEVICE FAILURE CODES J 

eN ,ee.,;;,·, , "a"i,.; A' ; . * b*·~;;; ;;;;&If d t: .,·'!dA4 i'mtf 

TABLE J-1. DEVIQE FAILURE CODES 

Device 
Failure 
Code Error Significance 

0 Time-out Failure to interrupt within allotted time (requires TIMER package) 

Teletypewriter: Operator failed to supply input within allotted 
time. Ignore message and continue normally. 

All Other Devices: Hardware failed to generate an interrupt within 
the allotted time. Hardware maintenance required. 

1 Lost data Data not transferred out of read register before the next data word 
appeared. 

1711/1713 Teletypewriter: Retype statement. 

1829-30/60 Card Reader (diagnostic logical unit only); bad initiator 
status. 

1833-5 Flexible Disk: Bad initiator pseudo status 

Magnetic Tape: Use CU option to continue without processing 
lost record or abort the read option. 

2 Alarm Indicates the presence of an abnormal condition 

1713 Paper Tape Reader: Paper tape motion failure. No change 
in feed hole circuit has occurred for 40 milliseconds while trying 
to read. If not end-of-tape, manually position the paper tape so 
that the end of the next to last record and the beginning of the 
last record are on opposite sides of the photocells. If end-of-tape, 
take the CU option. 

Paper Tape Punch: Paper tape supply low or tape break. Abort 
punch operation and correct the problem. 

Line Printer: Paper out, paper tear, fuse alarm, or interlock open. 
Correct problem and use the RP option. 

1729-2 Card Reader: Interlock open. Correct the problem and take 
the RP option. 

1728/430 Card Reader: Interlock open or chip box full. Correct 
the problem and take the RP option. 

1726/405 Card Reader: If output stacker is full, clear the output 
stacker and type RP. If card jam has occurred, abort the operation 
and correct the problem. If there is a failure to feed, attempt to 
ready the device and take the RP option. 

1829-30/60 Card Reader: (diagnostic logical unit only: Bad continuator 
status 

1832-5 Cassette Tape: Runaway tape 

1833-5 Flexible Disk Drive: Bad continuator pseudo status 

COSY driver: First record is not a CSY / control record. 

96769400 A J-1 



I 

I 

J-2 

Device 
Failure 
Code 

2 

3 

4 

5 

Error 

Alarm (contd) 

Parity error 

Checksum error 

Internal reject 

TABLE J-1. DEVICE FAILURE CODES (Contd) 

Significance 

Magnetic tape simulator: Failure to fulfill request due to mass 
storage device error or illegal parameter in FILMGR request. 

Pseudo tape: Failure to fulfill request due to mass storage device 
failure or illegal parameter in FILMGR request. 

1711/1713 Teletypewriter: Attempt recovery by retyping the 
command. 

1713 Paper tape reader: Manually position the paper tape so that 
the end of the next to last record and the beginning of the last 
record are on opposite sides of the photocells. Repeat the read 
request by typing RP in response to the error message. 

Magnetic tape: Tape is positioned after the bad record. Either 
tape the CU option to continue processing (the bad record will be 
ignored) or abort the operation. 

COSY driver: Last record was not an END/ record. 

1833-4 Cartridge Disk: DMA parity error 

(FREAD binary) Sum of the header word and data in a record 
did not balance to zero when added to the checksum word. 

Paper tape reader (1713): Plugged feed holes or dirty paper 
tape. Check the tape for dirt and plugged feed holes. Attempt 
recovery by manually positioning the paper tape so that the end 
of the next ot last record and the beginining of the last record are 
on opposite sides of the photocells. Repeat the read request by 
typing RP in response to the error message. 

Card readers: Holes are not cleanly punched. Check cards for 
tears between holes. If cards are all right, attempt recovery. 
Otherwise, perform the following operations: 

1. Remove cards from the input hopper 

2. (1729-430/1729-2/1729-3 only) Single cycle the card in the 
transport area to the output stacker. 

3. Take the last two cards in the output hopper and put them 
into the input hopper ahead of the unread cards; with a 
multicard record, re-read all cards within the record. 

4. (1726-405 only) Press the RELOAD memory switch. 

5. Ready the card reader. 

6. Take the RP option. 

1833-5 Flexible Disk Drive: Status faults after I/O. 

COSY Driver: No end-of-file mark following the END/ record. 

I/O device did not send reply to the computer within the 
allotted time. 

The computer cannot communicate with the device. Check the 
hardware address switch and POWER ON switch. The RP option 
may be used if the problem has been corrected. 

COSY driver: Read on the write unit or write on read before 
the end-of-deck marker was encountered. 

96769400 C 



Device 
Failure 
Code 

6 

7 

8 

9 

10 

If 

12 

96769400 A 

Error 

External reject 

Compare 

Pre-read 

lllegal Hollerith 
punch 

Sequence 

Non-negative 
record length 

Read/write 
mode change 

7/9 punch 

TABLE J-l. DEVICE FAILURE CODES (Contd) 

Significance 

The I/O device has replied to the computer that it is not ready 
to perform specified request. 

The device is pusy or not ready. If the device is not busy, check 
the ready switch. Attempt to continue by typing RP. 

COSY driver:. Motion request is on read unit after CSY /record 
and before end-of-deck marker. 

Hardware problem - A compare error occurs when a faulty signal 
is detected in the area of the punch solenoid and echo amplifier 
circuits during an echo check. 

1728-430 Card Reader: Remove and discard last card punched. 
Ready device and type RP. 

Card readers: Attempt recovery as for card checksum error (see 
code 4). 

A pre-read error occurs if all read amplifiers are not off during 
a dark check. 

1728-430 Card Reader: Remove and disacrd the last card 
punched. Ready the device and type RP. 

Card readers: Attempt recovery as for card checksum error (see 
error code 4). 

Occurs when the card reader encounters a punch sequence that 
does not comply with the Hollerith to ASCII conversion table 
being used by the driver. 

To allow software recovery, the driver places an ASCII? in the 
buffer word for the bad column. Select the repeat option to 
continue, or abort the job and correct the mispunched cards. 

Cards within a record are not in sequential order. Abort the read 
operation and restore sequential order to the record. 

The first word of a formatted binary record is the complement 
of the number of records within the record. The word may be a 
negative number indicating that the card read was not the first 
card of the record. 

Attempt recovery using the procedure for checksum error 
(see error code 4). 

Indicates a switch from read or write mode 

1728-430 Card Reader: This message is issued only as a warning 
to the operator. 

If mode switch is allowable, repeat the request using the RP option. 

The error occurs if a 7/9 punch in column 1 is read when an FREAD 
ASCII request is specified. 

J-3 



I 

I 

I 

J-4 

Device 
Failure 
Code 

12 

13 

14 

15 

16 

17 

18 

19 

20 

TABLE J-1. DEVICE FAILURE CODES (Contd) 

Error 

7/9 punch (contd) 

Can't write on device 

Not ready 

Noise record 

Controller seek 

Drive seek 

Address 

Protect 

Checkword 

Significance 

Card reaaer recovery: 

1. If column 1 is a 7/9 punch, no recovery; abort operation 
request is wrong mode. 

2. If column 1 was misread, read card as for checksum error. 

Magnetic tape: No write ring installed. 

Attempt was made to write on magnetic tape without write enabled. 
Insert write ring and use RP option. 

Pseudo tape: Attempt to write on file that was opened to read 
only 

Magnetic tape simulator: Attempted write with write ring not 
enabled. See manual input operations. 

1832-5 Cassette Tape: Write not enabled 

1833-5 Flexible Disk: Write enable switch not set or diskette has 
been defined as read only via motion request (code = 5). 

1833-4 Cartridge Disk: Write not enabled. 

Ready the device and use the RP option. 

1832-4 Magnetic Tape: A noise record was detected and ignored. 

The controller seek error occurs when the controller has failed 
to obtain the file address selected during a read, write, compare, 
or checkword operation. This is usually an indication of a positioning 
error. 

The drive seek error occurs when the drive unit detects that the 
cylinder positioner moved beyond the legal limits of the device 
during a load address, write, read, compare, check word , check, 
or write address function. 

This error occurs when an illegal file address obtained from the 
computer is detected, or the controller has advanced beyond the 
limits of file storage. 

Magnetic tape simulator: Attempted read past end of written 
data. 

1833-5 Flexible Disk: Requested sector area for I/O does not fit 
within the 75 logical tracks that can be addressed or initialization 
of diskette attempts to reference track beyond the valid 0-76. 

1833-4 Cartridge Disk: End of medium 

The protect fault occurs when an unprotected controller operation 
attempts to write in a protected core location. 

1833-4 Cartridge Disk: DMA protect fault 

The checkword error occurs when the controller logic detects an 
incorrect checkword in data read from file storage during a read, 
compare, or checkword operation. 

96769400 C 



Device 
Failure 
Code 

20 

21 

22 

23 

24 

25 

96769400 A 

TABLE J-1. DEVICE FAILURE CODES (Contd) 

Error 

Checkword (contd) 

End-of-tape error 

Card output stacker 
full 

Card input hopper 
empty 

Card feed 

Card jam 

Significance 

1833-5 Flexible Disk: Data written to diskette is not the same 
as data read from diskette when the software compare option 
selected via motion request (code = 3). 

1832-5 Cassette Tape: End-of-tape is an unrecoverable error; 
tape automatically rewinds on next back motion command. 

1728-430/1729-2/1729-3/1829-30/60 Card Readers: Empty output 
hopper and take the RP option. 

If the read operation is complete, use the CU option; otherwise, 
supply more cards and take the RP option. 

The read ready station does not contain a card after a feed cycle 
has occurred, and the input hopper is not empty. 

1728-430/1729-2/1729-3/1829-30/60 Card Readers: Card feed 
failure error can occur as a result of warped or damaged cards. 
If the card reader can be made ready, take the RP option. 

A card transport problem has occurred. It is possible for a card 
jam to occur in anyone or more of four read stations in the 1728 
Card Reader. 

CAUTION 

Do not attempt to single-cycle 
the machine. Damage to the card 
transport or punch head may 
result. Call Customer Engineer
ing to aid in clearing the jam. 

Jam While Reading 

1. Examine the transport area. 

2. Remove all cards that have completely passed under 
the read station. 

3. The cards that have not completely passed the read station 
have not been read. Put these cards back into the hopper. 
Ready the card reader and repeat the request via the RP option. 
The cards must be recycled in proper sequence. 

4. If the procedure results in failure, abort the read. 

Jam While Punching 

1. Clear the jam 

2. If a card has only partially passed the punch station, it has not 
been punched correctly. Discard the card. 

3. Ready the card reader and type RP. If any cards were damaged, 
the operation may have to be started over to obtain a readable 
deck. 

1829-30/60 Card Reader: Stacker jam status returned. 

J-5 



I 

I 

J-6 

Device 
Failure 
Code 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

TABLE J-l. DEVICE FAILURE CODES (Contd) 

Error 

Insufficient file space 

Device message 

File 

Read 

Validation error 

Short record 

Tape error 

Significance 

Not enough file space available for this request to the pseudo tape 
driver. 

megal device message on 1720 punch 

No file assigned to this logical unit (pseudo tape driver) 

A read error occurred in reading resident mass-storage driver. 

The frame punched does not compare with the original data, or 
echo error on 1720-1 punch. Abort the punch operation. 

Attempt to write a record with a length less than the standard 
noise record length. 

Magnetic tape simulator: Noise record. Attempt to do zero length 
write. 

1720-1 Punch: Tape supply low 

1860-5/6 Magnetic Tape: Tape error 

Line break Line break occurred while attempting to input on the 361-1 Communica
tions Adapter. 

. Data interrupt 

End-of-operation 

TX parity error 

Wrong address 

Not used 

Not used 

Data interrupt occurred after reading 80 columns • 

1728-430/1729-2/1729-3/1829-30/60 Card Readers: This error 
indicates a hardware failure, possibly due to improper card travel; 
reread the card (see the recovery procedure for error code 4). 

End-of-operation interrupt occurred prior to reading 80 columns. 

1728-430/1729-2/1729-3/1829-30/60 Card Readers: Continuous 
failures may indicate card slippage in feeding - Reread the card 
as for error code 4. 

1860-5/6 Magnetic Tape: Transmission parity error 

Buffered data channel is using the first word address other than 
the address sent by a buffered driver. 

Repeated the request due The driver is attempting recovery. 
to an err<?r 

Incomplete request 

Timing error 

The request was not successfully completed. The driver attempted 
to repeat the request the maximum number of times. 

Occurred while drum was busy 

Incomplete directory call Due to irrecoverable error 
or overlay read request 

Guarded address Error on write 

Magnetic tape simulator: Attempt to write past the end of 
the specified magnetic tape simulator disk area. 

96769400 C 



Device 
Failure 
Code 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

96769400 C 

TABLE J-l. DEVICE FAILURE CODES (Contd) 

Error 

Timing 

External reject 

External reject 

Controller address 

Drive address 

No ID 

Illegal density 

Power failure 

EOP 

Data 

Status 

Mass memory buffer 
expired 
Buffer transfer 

Not used 

PE lost data 

Illegal tape motion 
request 

Interrupt status bit 

ADT 

Busy after EO P 

Not busy 

No interrupt selected 

Memory address 

Significance 

Occurred while drum was not busy 

On output 

On input 

Controller address status not the expected value 

Drive address status not the expected value 

1732-2. 1732-3. 1860-5/6: ID abort. no ID burst 

1833-4 Cartridge Disk: Missing index sector pulse 

Attempt to select illegal density (1732-2. 1732-3) or attempt to 
select density when unit not at load point. 

Power failure on 1752 Drum 

EOP not set after interrupt (1752 Drum) 

1829-30/60 Card Reader: No end-of-operation status. 

Data not set after interrupt (1752 Drum) 

1829-30/60 Card Reader: No data before end-of-operation. 

Bad status (an indeterminate error occurred on 1752) 

No more buffer space available (software buffer driver) 

Mass memory error on buffer transfer. which is detected in the 
software buffer driver. 

Error in the phase encode formatter that affected the data transfer. 

An illegal tape motion request was made to the magnetic tape 
simulator. 

1833-5 Flexible Disk and 1860-5/6 Magnetic Tape: Interrupt should 
not be set when initial status taken. 

1829-30/60 Card Reader: No interrupt status indication. 

1833-5 Flexible Disk: No interrupt status. 

1829-30/60 Card Reader: Auto-data transfer indication fault status 

1829-30/60 Card Reader: Still busy after end-of-operation occurs. 

1829-30/60 Card Reader: Not busy before end-of-operation occurs. 

1833-5/1865-1 Flexible Disk: No interrupt select status bit when 
interrupt occurred. 

1833-5/1865-1 Flexible Disk: DMA memory address fault or A/Q 
transfer attempted to cross a bank boundary or DMA attempted 
to cross a bank boundary without priming request (motion request 
of code = 1). 

I 

B 

J-7 



TABLE J-1. DEVICE FAILURE CODES (Contd) 

Device 
Failure 
Code Error Significance 

67 Not used 

68 Interrupt status bit 1833-5/1865-1 Flexible Disk: Interrupt status bit not set when 
interrupt occurred 

69 Initialization not 1833-5/1865-1 Flexible Disk: Disk initialization switch not set 
enabled 

70 Connect 1833-1 Disk: Failure to connect to the control unit or drive after 
maximum retries. 

71 ECC 1833-1 Disk: Error correction code could not correct error since 
too many error bits were generated. 

72 Ghost interrupt 1833-1 Disk: Unexpected interrupt received 

73 Force release 1833-1 Disk: Force release requested but disk not released (multiple 
disk adapter system.) 

74 Transfer length 1833-1 Disk: Data transfer longer than requested 

75 Transfer 1833-1 Disk: Data transfer was unaccomplished after maximum 
number of retries. 

76 Recovery indicator 1833-5/1865-1 Flexible Disk: Informative error logged in the engineering 
file to indicate recovery has been performed on this device a specific 
number of times. Threshold value for error is contained in word 
43 of the physical device table for this unit. 

77 Expected reject did 1833-5/1865-1 Flexible Disk: (diagnostic logical unit only) megal 
not occur function issued but did not cause reject. 

78 Transfer 1833-5/1865-1 Flexible Disk: The number of words transferred 
not correct or the spindle speed during initialization of disk more 
than 3.5 percent of normal value. 

79 Unit busy 1833-5/1865-1 Flexible Disk: Unit busy at time I/O request is attempted. 

80 Unit seeking 1833-5/1865-1 Flexible Disk: Unit seeking when I/O request is 
attempted 

81 Unit doing I/O 1833-5/1865-1 Flexible Disk: unit doing I/O when I/O request is 
attempted 

82 CU 1833-1 Disk: Error in 1833-3 control unit 

83 Main memory address 1833-1 Disk: Disk adapter attempted to address a non-existent 
CPU memory address. 

84 Bus relinquished 1833-4 Disk: Bus relinquished 

85 CWA status error 1860-5/6 Magnetic Tape: Check word address status error 

86 Switch mode error 1860-5/6 Tape: Attempt to read in binary mode a seven-track 
tape recorded in BCD or vice versa. 

87 No character read 1860-5/6 Tape: No data found 
in 25 feet 

88 DMA address error 1833-4 Cartridge Disk error 

J-8 96769400 C 



Message 

ERROR 1 

ERROR 2 

ERROR 3 

ERROR 4 

ERROR 5 

ERROR 6 

ERROR 7 

ERROR 8 

ERROR 9 

ERROR A 

ERROR B 

ERROR C 

ERROR D 

ERROR E 

ERROR F 

ERROR 10 

ERROR 11 

~RROR 12 

ERROR 13 

96769400 A 

SYSTEM ERROR CODES K 

TABLE K-l. SYSTEM INITIALIZER CODES 

Significance 

Asterisk initiator missing 

Number appears in the name field 

megal control statement 

Input mode illegal 

Statement other than *y or *YM 
previously entered 

Statement other than *y previously 
entered 

*y not entered prior to the first *L 

Name appears in the number field 

megal hexadecimal core relocation 
field 

megal mass storage sector number 

Error return from the loader module 

Not used 

Not used 

Field terminator invalid 

More than 120 characters in the 
control statement 

Ordinal name without ordinal number 

Doubly defined entry point 

megal value 

Loader control statement out of 
order - Correct order is L, LP, 
M, MP 

Message 

ERROR 14 

ERROR 15 

ERROR 16 

ERROR 17 

ERROR 18 

ERROR 19 

ERROR 20 

ERROR 21 

ERROR 22 

ERROR 23 

ERROR 24 

ERROR 25 

ERROR 26 

Significance 

Data declared during an *M load but 
not by the first segment; initializa
tion restarted 

Not used 

Irrecoverable mass storage I/O error 

Irrecoverable loader error; last 
program loaded was ignored. 

Not used 

Not used 

*S, ENDOV 4, hhhh not defined before 
first *L 

*S, MSIZV 4, hhhh not defined before 
first *LP or *MP 

Attempt to load part 1 core resident 
into non-existent memory 

The name used in the second field 
of an *M control statement was not 
previously defined as an entry point. 

The entry point, SECTOR, was riot 
defined at the start of initialization 
and is not available to the initializer. 

megal partition number in the first 
field of an *MP statement or illegal 
number of partitions in the second 
field of statement 

An attempt was made to load an *MP 
program when no partitioned core 
table exists in SYSDAT. 

K-l 



TABLE K-2. SYSTEM INITIALIZER LOADER ERRORS 

Error Significance Message Significance 

LOADER . Unrecognizable input LOADER Unpatched externals ERROR 1 ERROR 10 

LOADER Mass storage overflow LOADER Insufficient core for both SYSDAT ERROR 2 ERROR 11 and paging 

LOADER Out-of-order input block LOADER Illegal page number used ERROR 3 ERROR 12 

LOADER lllegal data or common declaration LOADER Undefined transfer address ERROR 4 ERROR 13 

LOADER Core overflow LOADER Invalid function for loader ERROR 5 ERROR 14 

LOADER Overflow of entry point table LOADER Link table overflow ERROR 6 ERROR 15 

LOADER Data block overflow LOADER External table overflow ERROR 7 ERROR 16 

LOADER Duplicate entry point LOADER Entry point absolutized to $7FFF ERROR 8 ERROR 17 

LOADER 15/16-bit arithmetic error 
ERROR 9 

TABLE K-3. SYSTEM INITIALIZER DISK ERRORS 

Error Significance Error Significance 

DISK ERROR Address tag write sequence DISK COMPARE Surface test pattern error on 
attempted but internal/external ERROR SECT sector aaaa at word bbbb. Only 
reject found aaaa WORD bbbb one error will be listed per 

IS cccc SB dddd sector. Data read was cccc but 
DISK F AlLURE Surface test operation caused it should be dddd. 
xx error xx. Refer to the device 

error codes to interpret xx. 

K-2 96769400 A 



Message 

B01, statement 

B02, hhhh 

B03, hhhh 

CHECKING 
FILES - ERRORS 

DATE/TIME 
ENTRY ERROR 

DB FORMAT 
INCORRECT 

DB INVALID 
REQUEST 

DB I/O 
ERROR 

DB LHO/ 
LHC ERROR 

DB NO CORE 
AVAILABLE 

DB ORDINAL 
LENGTH ZERO 

EF STACK 
OVERFLOW 

EFSTOR LU 
ERR0R 

EFSTOR MASS 
MEMORY ERROR 

ILLEGAL 
PARAMETERS 
SPECIFIED 

K-3 

TABLE K-4. GENERAL SYSTEM ERROR MESSAGES 

Significance 

Statement or parameters are 
unintelligible for the break
point program. 

The specified hexadecimal 
address hhhh cannot be pro
cessed by the breakpoint 
program because it is 
protected. 

The breakpoint limit is exceeded. 
The specified hexadecimal address 
is the last breakpoint processed. 

Errors detected in the file man
ager files check after autoload. 

Re-enter MSOS date/time. 

Some part of remaining portion 
of request is incorrect for 
ODEBUG. 

Mnemonic does not agree with 
known mnemonic for ODEBUG. 

Monitor request return with error 
bit set for ODEBUG 

Data written on mass storage 
does not match LHO/LHC input 
for ODEBUG 

No allocatable core available 
for ODEBUG 

No program loaded in ordinal 

Currently there is no space in 
the engineering file stack to 
record this device failure. 

An attempt was made to update 
the engineering file for a logical 
unit less than 1 or greater than 
99. 

An error occurred in updating the 
engineering file on mass memory. 

Disk-to-tape has detected a non
hexadecimal character for equip
ment code. Respecify the 
equipment codes. 

Message 

L, nn FAILED 
xx ACTION 

L, nn FAILED 
xx (yyyy) 
ACTION 

LU nn DOWN 

MI INPUT 
ERROR 

MM ERR xx 
LU = nn T = 
hhmm:ss S= ssss 

OV 

Significance 

The number of the failed device 
appears when a driver cannot 
recover from an error 

Where: nn 

xx 

Logical unit of 
the failed device 

Code indicates 
the cause of 
failure 

Status informs the operator of 
device failure in the initializer. 

Where: nn 

xx 

Logical unit of 
the failed device 

Code indicates 
the cause of 
failure. (See 
appendix J for 
the code descrip
tion. ) 

(yyyy) The test hardware 
status of the 
failed device 

If a device is marked down, yet 
requested by a program, and this 
device contains no alternate, 
this message is typed on the 
comment device the first time 
it is requested after being 
downed. The completion address 
is always scheduled with error. 
The requesting program should 
not continually request downed 
units. 

Statement presented to the man
ual interrupt processor is unrecog
nizable or the requested program 
is not supplied. 

Mass storage input/output error 

Where: xx Error number 
nn Logical unit 
hhmm Hours/minutes 
ssss Hardware status 

Overflow of volatile storage; 
appears on the output comment 
device - no recovery is possible. 

96769400 A 



Message 

PARITY, hhhh 

SET PROGRAM 
PROTECT 

Message 

JOB ABORTED 

JP,yyyyyy 

JPOl,hhhh 

JP02,hhhh 

JP03, state-
ment 

JP04, state-
ment 

JP05, 

-
JP06 

JP07 

JP08 

K-4 

TABLE K-4. GENERAL SYSTEM ERROR MESSAGES 

Significance Message Significance 

Memory parity error at the speci- TIMER REJECT Timer start-up rejected (SPACE 
fied hexadecimal location; appears or MIPRO) 
on the output comment device -
no standard recovery is provided. STALL REJECT Stall alarm disable reject (SPACE) 

If hhhh = DSA? no parity error DISK ERROR Restart the disk to tape program; 
was encountered on the core scan. (ssss) (ssss) = status 
The parity fault was most likely 
caused by a DSA parity error. TAPE ERROR 

(ssss) 
Restart the disk to tape program; 
(ssss) = status 

System waiting for program 
protect switch to be set GIXX Ghost interrupt on interrupt line 

XX reported by LINIV4. 

TABLE K -5. JOB PROCESSOR ERROR CODES 

Significance 

The current batch job has 
abnormally terminated. If the 
job card included a job name, 
that name replaces JOB. 

yyyyyy is the last program the 
library program executed before 
the job terminated. 

Program protect violation occurred 
at address hhhh. 

megal request or parameters at 
the specified hexadecimal address 
hhhh. 

Unintelligible control statement 
is output with the diagnostic. 

megal or unintelligible param
eters in control statement. 

Statement entered after manual 
interrupt is illegal. 

A threadable request was made 
at level 1 when no protect 
processor stackspace was avail
able or an unprotected threaded 
request was made at level 1. 

Unprotected program tied to 
access protected device 

Attempt to access read-only 
unit for write, or write-only 
unit for read, or an attempt 

Message 

JP08 (contd) 

JP09 

JPI0 

JPll 

JP12 

KP13 

JP14 

JP15,xxx 

Significance 

to access an unprotected request 
on a protected unit, or an . 
attempt to select a mass storage 
device as the standard print unit 

I/O error while accessing the job 
processor file directory table 

Operation attempted on file that 
is not in the file table; define 
the file. 

File name being defined already 
exists for another file. Dump 
the file table to select a name 
not used previously or attempt 
a new definition with another 
name. 

Attempt to access a file that 
has not been opened 

No files are available for defini
tion. Purge the file table to 
make any expired files available. 

Attempt to open a previously 
opened file or attempt to open 
more than one file on the same 
unit at the same time. 

JOB card is not the first control 
statement in the job or more 
than one job card is detected 
within a job. xxx is the control 
statement in error. 

96769400 A 



Message 

EI 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 

EIO 

Message 

L01 

L02 

L03 

96769400 A 

TABLE K-6. LOADER ERROR CODES 

Significance 

Irrecoverable input/output error; 
terminates load 

Overflow of entry/external table 
reservation on mass storage; ter
minates load 

Illegal or out-of-order input block; 
terminates load 

Incorrect common or data block 
storage reservation. Occurs if the 
largest common storage declaration 
is not on the first NAM block to 
declare common or data storage or, 
if protected common or data was 
being used, the N AM block declared 
a reservation longer than protected 
common or data; terminates load. 

Program is longer than area or 
partitions allotted to it; terminates 
load. 

Attempt to load information in 
protected core; terminates load 

Attempt to begin data storage 
beyond the assigned block; 
terminates load 

Duplicate entry point 

High order bit of a relocatable 
address is set or negative relocation 
has been encountered during a Part 1 
load; terminates load. 

Unpatched externals; external name 
is printed following the diagnostic. 
When all unpatched externals 'have 
been printed, the operator may ter
minate the job by typing in an *T 
@ or continue execution by typing 

Message 

EIO 
(contd) 

Ell 

EI2 

E13 

EI4 

EI5 

E16 

E17 

TABLE K-7. LIBEDT ERROR CODES 

Significance Message 

More than six characters in a param- L04 
eter name are presented to the 
library editing program. 

L05 
More than six digits in a number are 
presented to the library editing pro-
gram. 

L06 
Improper system directory ordinal 
was presented to the library editing 
program. 

Significance 

in an * Q. Core resident entry 
point tabt?s" may also be linked by 
typing in an *E. 

The minimum amount of core is not 
available for load. At least 195 
words plus the length of the loader 
must be available; terminates load. 

Overflow of command sequence 
storage reservation on mass storage; 
terminates load 

Undefined or missing transfer address; 
this code is not given if the loading 
operation is part of system initial
ization. It occurs when the loader 
does not encounter a name for the 
transfer address or the name encoun
tered is not defined in the loader's 
table as an entry point name; load
ing is terminated. 

The loader request operation code 
word is illegal; terminates load. 

Overflow of loader table used to store 
relocatable addresses that have been 
absolutized to 7FFF 16; terminates 
load. 

Entry point name is not in the loader 
table; operator must type in the 
correct entry point name. 

Informative diagnostic. Relocatable 
entry point has been absolutized to 
location 7FFF16' If any program 
in the system is testing for an entry 
point value of 7FFF16 to indicate 
that this entry point is not present, 
the test is not valid. 

Significance 

Invalid control statement was presented 
to the library editing program. 

megal field delimiter in a control 
statement was presented to the 
library editing program. 

megal field in the control statement 
was presented to the libraty editing 
program or I/O was attempted on a 
protected device. 

K-5 



Message 

L07 

L08 

LOg 

L10 

Lll 

L12 

L13 

L14 

Message 

nn ERRORS 

K-6 

····COSy 
Cnn· .. • 

01 

02 

03 

04 

05 

TABLE K-7. LOADER ERROR CODES (Contd) 

Significance Message 

Errors in loading as a result of a L14 
library editing program control (contd) 
statement 

A program to be added to the pro- L15 
gram library has an entry point 
duplicating one already in the 
directory. 

L16 
Standard input failed on the first 
input record following an ·N request 

L17 
The opera tor is deleting a program 
that is not in the library. 

No header record on file input from L18 
mass storage 

On an ·L entry statement either 
there was an input error or the L19 
first record was not a NAM block. 

Common declared by the program 
being loaded exceeds available com- L20 
mon or system common not specified 
in the system when requested. 

L21 
Program being loaded is longer than 
the size of unprotected core, but 

TABLE K -8. COSY ERRORS 

Significance 

This message appears at the end of a COSY 
job if errors exist. The number specified is 
the decimal count of errors in the COSY job. 

First card of revisions deck is not a DCK/, 
MRG/, CPY /, or END/control card. 

Illegal parameters on MRG/control card 

First card from merge input is not a DCK/ 
control card. 

MRG/ control card within revisions decks 

Illegal parameters on DEL/, INS/, or REM/ 
con trol card 

Significance 

not longer than the distance from 
the start of unprotected core to the 
top of core. 

megal input block encountered; last 
program stored in library is not 
complete. 

I/O input error occurred; last program 
stored is not complete. 

An ·L program being installed exceeds 
the capacity of LIBEDT to input from 
mass storage. 

Attempt to load a zero-length pro-
gram during an ·M request or an ·N 
request 

No data base entry point specified 
in the system for use by an • A 
statement and parameters 

Irrecoverable error occurred during 
loading 

Attempt to write beyond the maximum 
sector number specified for MAXSEC 
at initialization 

COSY Action 

Reads revisions and lists them with 
asterisks in columns 1 through 4 until 
it reads a DCK/. MRG/, CPY /, or 
END/card 

COSY aborts 

Reads revisions and lists them with 
asterisks in columns 1 through 4 until 
it reads a DCK/ or END/ card 

COSY aborts 

Reads revisions and lists them with 
asterisks in columns 1 through 4 until 
it reads the next control card 

96769400 A 



Message 

06 

07 

os 

09 

10 

11 

12 

13 

14 

15 

16 

17 

1S 

19 

20 

21 

22 

23 

96769400 A 

TABLE K-S. COSY ERRORS (Contd) 

Significance 

Sequence numbers out of order within the 
revisions set 

Two sequence numbers on INS/ control card 

Control card does not follow DCK/ card 
when merging revisions. 

First card of source deck not CSY / or HOL/ 
control card 

Requested deck not on input library 

Decknames on DCK/ and HOL/ cards do not 
agree when adding new deck to COSY library. 

Revision card following DCK/ card is not a 
control card. 

DEL/ or INS/ card contains sequence number 
beyond the end of the input deck 

lliegal parameter on DCK/ card 

Parameter on DCK/ card twice 

DCK/ card requests both Hand C or Hand 
L on the same unit. 

DCK/ card requests input from logical unit 
previously used for output. 

COSY output requested on unit previously 
used for Hollerith output or Hollerith output 
requested on unit previously used for COSY 

Maximum number of output units is exceeded. 

The DCK/ card requests output on a logical 
unit previously used as input. 

The DCK/ card requests C and L output on 
the same unit. 

The CPY / control card is not the first card 
of the revisions deck. 

The CPY/ card was not followed by a CPY/ 
or END/ card. 

COSY Action 

Reads revisions and lists them with 
asterisks in columns 1 through 4 until 
it reads the next control card 

Reads revisions and lists them with 
asterisks in column 1 through 4 until 
it reads the next control card 

Reads revisions and lists them with 
asterisks in column 1 through 4 until 
it reads next control card 

COSY aborts. 

Read revisions and lists them with 
asterisks in column 1 through 4 until 
it reads a DCK/. MRG/. or END/ card 

COSY aborts. 

Reads revisions and lists them with 
asterisks in columns 1 through 4 until 
it reads a control card 

Reads revisions and lists them with 
asterisks in column 1 through 4 until 
it reads a DCK/. MRG/. or END/ card 

Reads revisions and lists them with 
asterisks in columns 1 through 4 until 
it reads a DCK/. MRG/. or END/ card 

Uses second parameter 

C or L parameter is ignored; processing 
continues. 

Reads revisions and lists them with 
asterisks in columns 1 through 4 until 
it reads a DCK/. MRG/. or END/ card 

illegal output request is cleared; processing 
continues. 

Output is cleared; processing continues. 

The output is removed; processing 
continues. 

The L parameter is ignored; processing 
continues. 

The CPY / control card is listed with 
asterisks in the first four columns and 
the next control card is read. 

COSY aborts. 

K-7 



TABLE K-8. COSy ERRORS (Contd) 

Message Significance COSY Action 

L,lu FAILED ec COSY driver errors are output by the For protected requests, type CU 
alternate device handler - All errors 
are catastrophic. 

For unprotected requests, type DU 

1 Not assigned 

2 First record read was not a CSY / record. 

3 END/ card was not the last card on COSY 
input. 

4 No end-of-file on COSY input 

5 A read request was made to a logical unit 
assigned to output or a write request was 
made to a logical unit assigned to input. 

6 MOTION request was madeto a logical unit 
assigned to input/output and no end-of-deck 
marker was encountered. 

REWIND LUnn This message may appear at various times Operator must enter any value through 
during a COSY job. The specified number the standard input comment device after 
is the decimal logical unit to be rewound. rewinding the unit. 

TABLE K-9. UTILITY PROGRAMS 

Message Significance 

IOUP Program 

END OF TAPE LU nnnn ACTION? An end-of-tape mark is sensed while writing data on 
magnetic tape. The operator must respond with either 
$RES, to resume action from the point of last interruption, . 
or $END, to terminate the request. 

FILE BACKD FILE nnnn FILE BACKD RECS 

FILE SKIPD FILE nnnn FILE SKIPD RECS nnnn 

FORMAT ERROR 

IN/OUT ERROR LU nnnn 

MISMATCH REC nn*32768+nnnnn 

K-8 

The specified unit has been backspaced by nnnn files or 
records. 

The specified unit has been advanced by nnnn files or 
records. 

Invalid control statement; re-enter statement. 

An error occurred in an input/output operation on logical 
unit nnnn. 

The indicated record is not the same on both data being 
verified. 

Where: nn is 00 through 03; the quotient obtained by 
dividing the total number of records by 
32,768. If nn is 0, only nnnnn is typed 
out. 

nnnnn is 0 through 32,767; the remainder obtained 
by dividing the total number of records by 
32,768. 

96769400 A 



TABLE K-9. UTILITY PROGRAMS (Contd) 

Message Significance 

MODE DIFFERENT ON MAG TAPE One or more records on magnetic tape contain the same 
information as the record being verified against, but of 
different mode. 

UT FORMAT INCORRECT The request is not correctly formatted; parameters and/or 
delimiters are incorrect. 

UT INVALID REQUEST The mnemonic request code is illegal. 

SETPV 4 Program 

*****ERROR code SETPV 4 error messages are output on the standard list 
device. Errors occur in two phases: statement reading 
and statemen.t execution. All errors are fatal, however, 
some errors may be delayed fatal (DF) allowing all state
ments to be read and diagnosed. All errors occurring in 
the statement execution phase are immediately fatal (IF) 
and cause an exit to the job processor. A flag is set and 
checked on entry to phase 2 (execution) and, if set, the 
execution is not initiated. 

Error 

1 

2 

3 

4 

IF An *L control statement must be the first statement. 

5 

6 

7 

8 

9 

10 

DTLP Program 

ILLEGAL PARAMETERS SPECIFIED 

LIBILD Program 

INVALID LU 

INVALID CLASS CODE 

96769400 A 

DF lllegal or wrong format for control statement 

IF An *E must be the last control statement. 

IF Output is attempted with parameters less than the 
current position. 

DF Control statements are out of order (issued after an 
attempted sort). 

IF The maximum number of control statements is 
exceeded (1200 maximum). 

DF The first statement is an *1 or an *R statement and 
and can not have an asterisk (*) indicating use of 
the previous binary. 

IF An attempt is made to access a unit after a file 
mark has been encountered. 

IF An *E statement is encountered before an *0 state
ment. Outputting must take place if there are any 
*R, *1, *0, or *S statements in the set. 

IF Mass storage overflow 

Equipment code specified for disk-to-tape contains a non
hexadecim al character. 

Logical unit illegal 

Device is incompatible with the function to be performed. 

K-9 



TABLE K-9. UTILITY PROGRAMS (Contd) 

Message 

LAST DECK REJECTED - NOT UNIQUE 

LAST DECK REJECTED - NO XFER RECORD 

Significance 

There are duplicate copies of the program; program identifi
cation must be unique. 

The binary program does not have a transfer record. Type: 

1 = Terminate 

2 = Proceed to subsequent library 

3 = Continue with current library 

NAME RECORD NOT 1ST RECORD OF DECK Type: 

XFR RECORD MISSING FOR LAST PGM 
LISTED. PGM DELETED. 

TOO MANY BINARY DECKS LOADED. 
CHANGE LIMIT AND RECOMPILE. 

CHECKSUM ERROR NOTED IN LAST 
PROGRAM. 

BAD *DEF RECORD. NO IDENT CHARACTER 
BAD *DEF RECORD. IDENT CHAR ALREADY 
USED. IGNORED. INVALID DEFINITION 
RECORD. IGNORED. 

NO DEFINITIONS WERE SUCCESSFULLY 
LOADED. TOO MANY DEFINITION SETS. 
IGNORED. 

PROGRAM SPECIFIED BY THIS RECORD 
NOT FOUND. PROGRAM HAVING THIS 
ID INFO NOT FOUND. MORE THAN 
ONE PROGRAM HAS THIS NAME. 

ILLEGAL CHARACTER STARTS IDENT 
FIELD. 

ILLEGAL IDENT FIELD. RECORD 
IGNORED. 

ILLEGAL *B RECORD. RECORD IGNORED. 

NULL PROGRAM NAME. RECORD IGNORED. 

PROGRAM NAME TOO LONG. RECORD 
IGNORED. 

K-10 

1 = Terminate 

2 = Proceed to subsequent library 

3 = Continue with current library 

Type: 

1 = Terminate 

2 = Proceed to subsequent library 

3 = Continue with current library 

This library has more programs than LIBILD can process. 

Previously generated checksum does compare with the 
current checksum whrn the program is read from mass 
memory. 

*DEF is not the first record of a definition group. 

The first program on the library with this name will be 
written to installation file. 

Ident field must start with a single quote. 

*B record was not terminated by a single quote prior to 
column 73. 

The name field of *B must be enclosed by single quotes. 

The name field consists of two single quotes. 

The name on *B contains more than six nonblank characters. 

96769400 A 



TABLE K-9. UTILITY PROGRAMS (Contd) 

Message 

NO DEFINITIONS ARE STORED. RECORD 
IGNORED. 

INVALID ·USE RECORD. IDENT FIELD. 
RECORD IGNORED. 

INVALID ·USE RECORD. MAX IMBEDDED 
LEVEL IS 6. RECORD IGNORED. 

SKED Program 

INVALID COMMAND 

ERROR IN COMMAND FORMAT 

COMMAND NAME NOT UNIQUE 

LU NOT LEGAL FOR COMMANDS 

SKELETON NOT LOADED 

RECORD NUMBER IS ZERO 

INVALID CHARACTER IN NUMBER 

INVALID RECORD NUMBER 

RANGE CONTAINS NUMBER ALREADY 
DELETED 

RECORDS HAVE BEEN PREVIOUSLY 
DELETED 

NO INSERTION RECORD AT SPECIFIED LU 

RECORDS NOT DELETED PLEASE 
RESEQUENCE SKELETON 

RESPONSE MUST BE LU (CR) OR (CR) 

EDITOR Program 

FILE -NOT DEFINED 

LINE NUM OVERFLOW 

FILE SPACE FULL 

INVALID COMMAND 

NAME NOT UNIQUE 

INVALID LINE NUMBER 

DIRECTORY READ ERROR 

DISK READ ERROR 

96769400 A 

Significance 

·USE is encountered, but no definitions are made. 

No nonblank character was detected prior to column 73. 

This ·USE is infinitely recursive. 

Command is not legal for SKED. 

A comma, argument, etc. was omitted. 

Not enough letters are included to uniquely define the 
command • 

. LU type is not valid for the command requiring the LU. 

SKELETON was not previously loaded, prior to operation 
upon it. 

The record number of zero is illegal. 

Nondecimal character is specified in number argument. 

Record number is out of range or the second argument is 
less than the first argument. 

The record that is referenced has been deleted. 

The range of record numbers of the CATLOG command 
includes numbers that have been deleted. 

The device defined for insertion records does not contain 
any records. 

An attempt was made to delete more than 500 records 
since the file was last resequenced. 

An invalid response to the message: ANY MORE INPUT. 
ENTER LU 

File not in job file directory 

Line number larger than 9999 

Editor's or user's file full 

Invalid command file full 

Name not unique 

Invalid line number 

Error while readying the file directory 

Disk error, see device error message 

K-ll 



TABLE K-10. FILE MANAGER CODES 
.-

Error Significance . Error Significance 

F.M. ERROR 1 An irrecoverable mass memory F.M. ERROR 1 invalid space pool threads 

Errort 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

error occurred while space was (contd) and/or file space being lost 
being returned to the space to the file manager. 
pool. This error may result in 

TABLE K-11. FILE MANAGER REQUEST ERRORSt 

Significance 

File defined/not defined 

File locked/not locked 

long store or short read 

End-of-file encountered 

At least one more record exists with 
the same key value 

Record does not exist or has been 
removed 

Unused 

Mass storage error 

No file space left 

Attempt to store direct outside File 
Manager's disk space 

File combination incorrect 

File already defined/not defined as 
indexed 

Errort 

12-

13 

14 

15 

Significance 

Key length not one for indexed-order
ed file 

Unprotected file request attempt 
to change a protected file 

File request illegal 

File request rejected; this bit is set 
whenever: 

• Bits 14, 13, 12, 11, 10, 8, 7, 
or 0 are set. 

• Bit 5 is set for RTVIDX if 
record does not exist or request 
is repeated after end-of-link 
reached. 

• Bit 4 is set for STOSEQ/STOIDX. 

• Bit 1 is set for RELFIL, UNLFIL, 
STODIR, LOKFIL (already locked) 
RTVSEQ, RTVIDX, RTVIDO, and 
RTVDIR (attempt to remove 
from locked file without the 
combination) • 

t This is a list of the file request indicator bits. This list is referenced for the reqind parameter in each of the 
request calls. 

K-12 96769400 A 

~ ... 



CYBER 18 PANEL INTERFACE L 

idMWI 

I On the CYBER 18, the standard system comment device 
(1811-1 Console Display) can function in a second mode as a 
computer panel interface. Used in this mode it can be 
utilized to select processor functions, examine or set 
memory locations, and examine or set registers. This is 
accomplished with a processor function control register 
(FCR) and a set of control function characters. See tables 
0-1 and 0-2. 

Functioning as the system comment device, the console 
display is in console mode. Functioning as the computer 
interface panel, the console display is in panel mode. 

A master clear of the machine places the console 
display/interface in console mode. 

To place the console display/interface in panel mode, press 
the escape key (ESC) on the console display. The console 
display accepts a special set of characters in panel mode to 
perform defined functions. 

Some panel functions useful to the MSOS user are described 
below. For a more detailed description of the panel 
interface functions, refer to the CYBER 18 Processor with 
Core Memory Hardware Reference Manual. 

When in panel mode, the following operations select 
processor functions. All numeric values are hexadecimal. 
After most operations, the FCR register (eight hexadecimal 
characters) are displayed. 

Operation Function 

@ Return to console mode 

? Master clear computer and return to 
console mode 

HG Halt 

IG Run 

I@ Run and return to colsole mode 

J-28G Set protect switch on 

J28a (@) Set protect switch on and return to 
console mode 

96769400 A 

When in panel mode, the following operations select 
registers and allow display or setting of the registers. 

Operation 

J11G 
KG 
KhhhhG 

J14G 
KG 
KhhhhG 

J1BG 

KG 
KhhhhG 

J03G 
LG 
LhhhhG 

J04G 
LG 
LhhhhG 

J07G 

LG 

LhhhhG 

Function 

Select P register to K function 
Display current value of P 
Set P to hhhh16 

Select A register to K function 
Display current value of A 
Set A to hhhh16 

Select M (mask) register to K 
function 
Display current value of M 
Set M to hhhh16 

Select X register to L function 
Display current value of X 
Set X to hhhh16 

Select Q register to L function 
Display current value of Q 
Set Q to hhhh16 

Set L function to current memory 
location defined by P register 

Display current memory location 
defined by P. P is incremented by 1 
after each display 

Set memory location defined by P to 
the value hhhh16." P is incremented 
by 1 after value IS entered 

NOTE 

When using the 1811-1 console display and the 
ALERT light comes on, the BREAK key is used 
to clear the ALERT condition. 

L-1 



TABLE L-l. FUNCTION CONTROL REGISTER (FCR) 

Bit Digit Bit Definition Bit Digit Bit Definition 

31 (LSB) 
""'I 

Overflow 15 00 Breakpoint off 

30 Protected instruction 14 01 Instruction reference 

29 7 Protect fault breakpoint 
10 Storage operand breakpoint 

28 Parity error Status 3 11 All references breakpoint 
Only 13 Breakpoint interrupt (breakpoint 

27 Interrupt system active stop if clear) 
26 Auto-restart enabled 12 Micro breakpoint, step, go, stop, 
25 6 Micro running (macro breakpoint if clear) 

24 Macro running ~ 11 Step 

23 10 Selective stop 

22 09 2 Selective skip 

21 5 Auto display 08 Protect switch 

20 Enable console echo 07 (See table L-2 for parameter 

19 Enable micro memory write 
selected by the value of this digit) 

06 
18 Multi-level Indirect 1 

4 Addressing Mode 05 Display 1 

17 04 

16 Suppress console transmit 03 (See table L-2 for parameter 
selected by the value of this digit) 

02 0 
01 Display 0 

00 (MSB) 

TABLE L-2. DISPLAY CODE DEFINITIONS 

Select Select 
Code Code Display 1 (K Function) Code Display 0 (L Function) 

O. 0 0 0 0 JI0: FCR JOO: F2 (Addressed by N) 

1 0 0 0 1 J11: Pt JOl: N (MSBs) tt 

2 0 0 1 0 J12: I J02: K (LSBs)tt 

3 0 0 1 1 J03: X 

4 0 1 0 0 J14: A (1) J04: Q 

5 0 1 0 1 J15: MIR J05: F 

6 0 1 1 0 J16: BP /P-MA (BreakPoint Entry J06: Fl ( Addressed by K 
Enabled by SM1l1 

7 0 1 1 1 J17: BP /P-MA (DisPlay only J07: MEM 

L-2 96769400 A 



TABLE L-2. DISPLAY CODE DEFINITIONS (Contd) 

Select Select 
Code Code - Display I (K Function) Code Display 0 (L Function) 

8 I 0 0 0 J18: SMI 

9 I 0 0 I J19: MI J09: im) Display only 

A 1 0 1 0 JIA: SM2 

B 1 0 1 1 JIB: M2 

C 1 1 0 0 JOC: MM 

D 1 1 0 1 JID: 
A* } Double 

E 1 1 1 0 JIE: x* Precision 
Option 

F I 1 I I JIF: Q* 

t Used to address main memory. Automatically incremented after each memory reference. 

tt Combined contents of these two registers are used to address micro memory. The K register automatically 
incremented after each memory reference. The N register does not automatically increment. 

96769400 A L-3 





INDEX 

Abort dump 10-37 
ADT 1-3 
Allocatable core 2-15 
Allocatable core area generation (ALC) 10-8 
Allocation, mass storage 1-19; H-2 
Alternate device handler 2-9 
Alternate device table C-7 
A/Q channel allocation (ALAQ) 2-13 
Area 0-15; H-5 
ASCII conversion table G-1 
Autoload 1-18,19; 6-6; H-4 

Background processing 1-3 , 14, 15 , 17 
Background programming overview 1-1 
Batch processing 1-3; 9-1 
Blank common 2-18 
Bootstrap checkout programs 11-1 
Bootstrap operation 11-1 
Breakpoint program 10-11 

change of logical unit (*LUI, *LUO) 10-16 
control statements 10-12 
core dumps (*DPC,*DIC,*DAS) 10-14 
entry of data into core 

(*LHX, *LIT, *LAS) 10-13 
general operations 10-11 
jump (*JP) 10-15 
list requests 10-16 
mass storage dumps (*DMH,*DMI,*DMA) 10-14 
motion requests 10-16 
resume (*END) 10-15 
return jump (*RJ) 10-15 
set breakpoint (*SET) 10-12 
setting of A, Q, or I (*SAH,*SQH,*SIH) 10-16 
terminate breakpoint (*TRM) 10-12 

Buffered data channel allocation 2-13 
BZS block 12-4 

Card punch 1-5,7,8,9,10,11,13 
Card reader 1-5 
COMMON 1-17; 2-19; 6-6; H-5 
Common interrupt handler 2-3,5 
Communication protected/unprotected 2-16 
Communication region B-1; H-1 
Compare core to mass memory (CCM) 10-10 
Compare mass memory to mass memory (CMM) 10-10 
Complete request (COMPRQ) 2-8 
Computer 1-3,5 
CONTRL 6-1 
Control blocks 12-12 
Control statements for engineering file 8-2 
Control statements for initialization 6-1 

*C 6-1 
*D 6-2 
*G· 6-2 
*H 6-2 
*1 6-1 
*L 6-2 
*LP 6-3 

96769400 A 

it 

*M 6-3 
*MP 6-3 
*0 6-1 
*S 6-2 
*T 6-4 
*U 6-1 
*y 6-2 
*y 6-2 
*YM 6-2 

""'/' 

Control statements for job processor and manual 
interrupt routines 9-1 

·*CSY 9-7 
*K 9-7 
*R 9-8 
*statement 9-8 
*Z 9-8 

Control statements handler (CONTRL) 6-1 
Control statements (JOB) 9-1 

*ADF 9-4 
*ADR 9-4 
*B 9-3 
*BSF 9-4 
*BSR 9-4 
*CLOSE 9-6 
end-of-file card 9-5 
*control statement 9-5 
*CTO 9-5 
*DEFINE 9-6 
*entry point name 9-5 
*EOF 9-5 
*FILTBL 9-7 
*JOB 9-1 
*L 9-2 
*LGO 9-3 
mass storage job files 9-5 
*MODIFY 9-6 
*OPEN 9-6 
*PAUS 9-5 
*PURGE 9-7 
*RELEAS 9-6 
*REW 9-4 
*SR 9-4 
*U 9-2 
*UNL 9-4 
user statements 9-5 
*y 9-2 
*X 9-2 

Convert word address to sector address (CWA) 10-10 
Core dumps 10-14 

ASCII output (*DAS) 10-14 
decimal output (*DIC) 10-14 
hexadecimal output (*DPC) 10-14 

Core manager 2-13 
allocatable core 2-15 
core layout 2-15; 6-6 
parti tioned core 2 -16 , 17 
volatile storage assignment 2-13 

Core swap 3-20 
COSY cards 14-20 

copy (CPY) 14-23 
COSY output (CSY) 14-24 

Index-1 



deck identification (DCK) 14-22 
delete (DEL) 14-23 
Hollerith input (HaL) 14-24 
insert (INS) 14-44 
merge (MRG) 14-21 
remove (REM) 14-23 
terminate deck (END) 14-24 

COSY format program (CYFT) 14-20 
COSY list program (LCOSY) 14-32 
COSY program 1-18; 14-20 

COSY cards 14-20 
COSY library 14-31 
Hollerith input 14-31 
Hollerith output 14-31 
listings 14-32 
messages 14-32 
revision deck 14-32 
sample revision decks 14-24 

CPU operations (ODEBUG) 
ADH 10-7 
CPP 10-7 
MBC 10-7 
SBH 10-7 
SCN 10-7 
SET 10-7 

CREP, CREP1 tables 2-18; 6-2,3,6; H-5 
Customization and installation H-1 
CYBER 18 extended memory abort dump 10-19 

Data transfer request (IOUP) 14-37 
card to card (CC) 14-37 
card to magnetic tape (CM) 14-37 
card to paper tape (CP) 14-37 
card to printer (CL) 14-39 
magnetic tape to card (MC) 14-39 
magnetic tape to card and printer (MB) 14-40 
magnetic tape to magnetic tape (MM) 14-40 
magnetic tape to paper tape (MP) 14-41 
magnetic tape to printer (ML) 14-39 
paper tape to card (PC) 14-39 
paper tape to card and printer (PB) 14-38 
paper tape to magnetic tape (PM) 14-38 
paper tape to paper tape (PP) 14-38 
paper tape to printer (PL) 14-38 

Data verification requests (IOUP) 14-41 
card and card (YCC) 14-41 
card and magnetic tape (YCM) 14-41 
card and paper tape (YCP) 14-41 
magnetic tape and magnetic tape (YMM) 14-42 
magnetic tape and paper tape (YMP) 14-42 
paper tape and paper tape (ypp) 14-41 

Debugging aids 1-18; 10-1 
breakpoint program 10-11 
on-line debug package 10-1 
on-line snap dump 10-19 
recovery program 10-17 
system abort dump 10-18 

DEBUG IN 10-1 
Debug mainframe requests 10-3 

store data in core 10-3 
Device failure codes J-1 
Device failure handling 8-1 
Device failure listing 8-2 
Device failure storage 8-1 
Device specification 6-1 

Indcx-2 

Direct access storage and retrieval 5-1 
DISCHD program request 3-14 
Disk 1-4 
Disk addressing E-l 
Disk testing 6-2 
Disk to tape loading program (DTLP) 14-32 
Disk to tape program (DSKTAP) 14-33 
Dispatcher 1-15; 2-3,6 
Drivers 1-15; H-4 

priorities F-2 
Display (CDT) 1-13 
Drum 1-7,8,9 
DSKTAP 14-33 
DTLP 14-32 
Dummy driver (DUMMY) 2-10 
Dump data from core 

DAS 10-3 
DDP 10-4 
DIC 10-3 
DPC 10-3 
DSP 10-4 

Dump mass memory 
DMA 10-9 
DMD 10-9 
DMH 10-8 
DMI 10-9 
DMS 10-9 

EBCDIC G-1 
EDITOR 14-44 

commands 14-44 
compatibility 14-51 
error messages 14-51 
list formatting 14-51 
use 14-44.1 

EFDATA logging routine 8-1 
EFLIST error listing 8-2 
EFSTOR error storage routine 8-1 
Engineering file 1-18; 8-1 
ENSCHD program request 3-14 
ENT block 12-5 
Entry of data into core (breakpoint) 10-13 

ASCII data (*LAS) 10-14 
decimal data (*LIT) 10-13 
hexadecimal data (*LHX) 10-13 

EOL block 12-6 
Error logging routine (EFDATA) 8-1 
Error recovery 6-6 
EXIT program request 3-20 
EXT block 12-5 
Extended communications region B-3; H-1 
External interrupt processor (LIN1Y4) 2-5 
External string patching 6-2 

File manager 1-14,18; 5-1; 
direct requests 5-1 
file calls 5-4 
file requests 5-4 
general description 5-2 
indexed requests 5-1 
record format 5-2 
requirements and limitations 5-3 
sequential requests 5-1 

96769400 A 



storage and retrieval 5-1 
unprotected file requests 5-3 
update protection 5-3 

File request calls 5-4 
File requirements and limitations 5-3 

expected number of records with 
different key values 5-3 

maximum record length 5-3 
parameter limitations 5-3 

File validity check 1-18 
Find next request (FNR) 2-1,8 

device not shared 2-8 
device shared 2-8 

Foreground processing 1-1,15,16,17 
FORTRAN 1-17,18 
FREAD program request 3-5 
FWRITE program request 3-5 

General interrupt processors 2-5 
GTFILE program request 3-18 

Hardware configuration 1-4 
Hardware device drivers (initialization) 6-4 
Hardware failure codes J-1 
Hollerith code 14-31 

Idle loop H-2 
ILOAD 6-9 
Indexed-linked file use 5-2 
Indexed-ordered file use 5-2 
Indexed requests 5-1 
Indexed file use 5-1 
INDIR program request 3-7 
Initialization 1-19; 6-1 
Input/output utility (lOUP) 14-34 

10UP statement 14-34 
peripheral operations performed 14-36 
theory of operation 14-35 

Installation H-1 
Installation file H-3 
Internal interrupt handler 2-5 
Interrupt handling 2-4 
Interrupt levels and priorities 2-2; F-4 

interrupt mask register 2-2 
priority levels 2-1 

Interrupt mask table (MASKT) 2-5 
Interrupt region H-1 
Interrupt stack (INTSTK) 2-4 
Interrupt trap 2-4 
Interrupts 2-1 
I/O drivers 1-15; 2-3 
I/O processing 1-2 
I/O requests 2-1 
10UP statement 14-34 

Job control statements 9-1 
mass storage job file handling 9-5 
statements acceptable to job and manual 

interrupt routines 9-7 
user-supplied 9-5 
within a job 9-1 

Job processing 1-16; 9-1 
Job processor file directory table D-3 

96769400 A 

Labeled common 2-19 
Languages 1-1,19 

1700 assembly (macro assembler) 1-1,19 
FORTRAN 1-1,19 

LCOSY 14-32 
LIBEDT program (*LIBEDT) 1-18; 13-1 
LIBILD 14-10 
LIBMAC 14-17 
Libraries 1-16; E-1 
Library builder (LIBILD) 14-10 

definition of terms 14-10 
diagnostics and messages 14-13 
operation 14-12 
recovery from errors 14-16 
restrictions and limitations 14-17 
special notes 14-17 
summary 14-10 

Library editing (LIBEDT) 13-1 
control statements 13-1 
LIBEDT program (*LIBEDT) 13-1 

Library editing control statements 13-1 
add/replace program (*L) 13-3 
change devices (*K) 13-6 
end-of-transfer indicator (*F) 13-8 
get next control statement (*U, *V) 13-4 
list program library directory (*DL) 13-5 
list system library directory (*DM) 13-5 
modify program library directory (*N) 13-5 
produce absolute record (*P) 13-3 
remove program (*R) 13-7 
replace partition program (*A) 13-7 
replace program (*M) 13-1 
set core request priority (*S) 13-6 
terminate processing (*Z) 13-5 
transfer indicator (*FOK) 13-8 
transfer information (*T) 13-6 

Line 0 internal interrupt processor (NIPROC) 2-5 
Line 1 interrupt processor (LIN1 V4) 2-5 
Linkage 1-16 
List allocatable core map (DAC) 10-8 
List debug commands (LST) 10-9 
List mass memory (MSD) 10-9 
List partition core map (DPT) 10-8 
LISTR 14-16 
List system logical units (LULIST) 14-23 
Load and go (LGO) 9-3 
LOADER request 3-16 

termination of loading 3-18 
~ypes of loading 3-17 

Loader response control statements (JOB) 9-15 
Loading 1-16 
Logical unit alteration 10-4 

CLU 10-4 
MLU 10-4 

Logical unit, standards 3-21 
LOG1 table C-7 
LOG 1A table C-8 
LOG2 table C-8 
Logical unit tables (LOG1, LOG1A, LOG2) C-1 
LULIST program 14-23 

Macro assembler 1-19 
Macro library preparation routine (LIBMAC) 14-18 

Index-3 



Magnetic tape operations 
ADF 10-9 
ADR 10-9 
BSF 10-9 
BSR 10-9 
REW 10-9 
SLD 10-9 
UNL 10-9 
WEF 10-9 

Magnetic tape recovery H-1 
Magnetic tape units 1-5 
Main memory map 6-6; H-5 
Maintenance routines 14-1 

COSY 14-20 
CYFT 14-20 
DSKTAP 14-33 
DTLP 14-32 
EDITOR 14-43 
EESORT 14-19 
IOUP 14-34 
LCOSY 14-32 
LIBILD 14-10 
LlBMAC 14-17 
LISTR 14-18 
LULIST 14-18 
OPSORT 14-18 
SETPV4 14-1 
SILP 14-1 
SKED 14-4 
TRACE 14-51 

Manual interrupt 9-7 
Manual interrupt processor (MINT) 2-6 

/-;"~ .. / 

manual input program (MIPRO) 2-6 
Mass storage allocation 1-19; H-1 
Mass memory drivers (initialization) 6-4 
Mass storage dump (breakpoint) 

ASCII (*DMA) 10-14 
decimal (*DMI) 10-14 
hexadecimal output (*DMH) 10-14 

Mass storage dump (recovery) 10-18 
dump core (*D) 10-17 
mass storage dump (*M) 10-18 
select output device (*lun) 10-18 
terminate (*T) 10-18 

Mass storage job processor file handling 9-5 
*CLOSE 9-6 
*DEFINE 9-6 
*FILTBL 9-7 
*MODIFY 9-6 
*OPEN 9-6 
*PURGE 9-7 
*RELEAS 9-6 

Mass storage maps 6-6; H-4 
Mass storage-resident drivers 2-10 
MINT 2-6 
MIPRO 2-6; 8-2 
Modify core image (ODEBUG) 

LAC 10-11 
LHC 10-11 
LlC 10-11 

Modify mass memory (ODEBUG) 
LAM 10-11 
LDM 10-11 
LHM 10-11 
LIM 10-11 
LSM 10-11 

Ind~x-4 

Modify mass-resident ordinal program (ODEBUG) 
LAO 10-11 
LDO 10-11 
LHO 10-11 
LIO 10-11 
LSO 10-11 

Monitor 1-14; 2-1 
alternate devices 2-9 
A/Q channel allocation 2-13 
buffered data channel allocation 2-13 
core managers 2-13 
dispatcher 1-15; 2-3,6 
dummy driver (DUMMY) 2-10 
features 2-2 
functions 2-2 
input/output drivers 1-15; 2-3 
interrupt handling 2-4 
interrupt levels and priorities 2-2 
manual interrupt processor 2-6 
mass storage-resident drivers 2-10 
monitor structure 2-2 
protected communication 2-16 
SCMM 7-1 
system COMMON organization 2-19; 6-6 
system start-up 1-19 
system timekeeping routines 2-11 
timer request processor 2-11 
unprotected communication 2-16 

Monitor entry request 3-1 
Motion control requests (lOUP) 14-42 

advance unit number of files (TAF) 14-42 
advance unit number of records (TAR) 14-42 
backspace unit number of files (TBF) 14-42 
backspace unit number of records (TBR) 14-42 
rewind unit (TRW) 14-43 
set density of unit (TSD) 14~43 
unload unit (TUL) 14-43 
write end-of-file mark on unit (TEF) 14-43 

MOTION program request 3-10 
Motion requests (breakpoint) 10-16 

advance file (*ADF) 10-16 
advance record (*ADR) 10-17 
backspace file (*BSF) 10-16 
backspace record (*BSR) 10-17 
rewind (*REW) 10-17 
select density (*SLD) 10-17 
unload (*UNL) 10-17 
write end-of-file (*WEF) 10-17 

Move mass memory (ODEBUG) (MMM) 10-10 

NAM block 12-2 
NDISP 2-6 
Nonrelocatable binary input 

control blocks 12-6 
EOL block 12-6 

ODEBUG commands 
ADF 10-1 
ADH 10-1 
ADR 10-1 
ALC 10-1 

96769400 A 



BSF 10-9 
BSR 10-9 
CCC 10-7 
CCM 10-10 
CLU 10-4 
CMM 10-10 
CPP 10-7 
CWA 10-10 
DAC 10-8 
DAS 10-3 
DDP 10-3 
DIC 10-3 
OMA 10-9 
OMD 10-9 
OMH 10-9 
DMI 10-9 
DMS 10-9 
DPC 10-3 
DPT 10-8 
DSP 10-3 
LAC 10-11 
LAM 10-11 
LAO 10-11 
LAS 10-3 
LOM 10-11 
LDO 10-11 
LOP 10-3 
LHC 10-11 
LHM 10-11 
LHO 10-11 
LHX 10-3 
LIC 10-11 
LIM 10-11 
LIO 10-11 
LIT 10-3 
LSM 10-11 
LSO 10-11 
LSP 10-3 
LST 10-7 
MBC 10-7 
MLU 10-4 
MMM 10-10 
MSO 10-9 
PTH 10-8 
ROC 10-4 
RDK 10-4 
REL 10-8 
REW 10-9 
SBH 10-7 

.SCH 10-8 
SCN 10-7 
SET 10-7 
SLD 10-9 
SMN 10-10 
SMP 10-4 
SPE 10-7 
SPP 10-7 
UNL 10-9 
WCD 10-4 
WDK 10-4 
WEF 10-9 

ODEBUG data input representation 10-2 
ODEBUG operator procedures and commands 

DB 10-1 
DEBUG IN 10-1 
DEBUG OUT 10-1 

96769400 A 

NEXT 10-1 
OFF 10-1 

On-line debug package (ODEBUG) 10-1 
debug mainframe requests 10-3 
dump data from core 10-3 
general CPU operations 10-7 
logical unit alternation 10-4 
magnetic tape operation 10-9 
mass memory operations with alteration 10-10 
mass storage 10-9 
messages 10-1 
monitor operations 10-8 
ODEBUG commands 10-4 
operator procedures 10-1 
transfer data core to mass memory 10-4 

On-line snap dump 10-19 
Operand sort program (OPSORT) 14-18 

Paper tape equipment 1-5 
PARTBL 2-16,17 
Part 0, 1 2-19 
Partition loading 

data and common declarations 12-1 
transfer address considerations 12-1 

Partitioned core (PARTBL) 2-16,17; H-5 
Physical device table (PHYSTB) C-1 
PHYSTB C-1 
Postload initialization 6-6 
Preload initialization 6-6 
Print thread (PTH) 10-8 
Priorities, standard F-2,3 
Process relocatable binary programs (EESORT) 14-19 
Program library 1-16; H-4 
Program library directory D-2 
Program loading (initialization) 6-2 
Program maintenance 1-3 
Program priorities F-3 
Protected communication 2-16 
Protected core-resident entry point linkage 2-18 
Protected program requests 3-6,12 

DISCHD 3-14 
ENSCHD 3-14 
PTNCOR 3-15 
RELEAS 3-13 
SPACE 3-12 
SYSCHD 3-14 
TIMPTI 3-15 

Protected/unprotected program requests 3-5 
FREAD 3-5 
FWRITE 3-5 
INDIR 3-7 
MOTION 3-7 
READ 3-5 
SCHDLE 3-7 
TIMER 3-7 
WRITE 3-5 

PTNCOR program request 3-15 

Queueing 1-15; 2-1; 3-1 
I/O requests 3-1 
scheduler requests 3-1 
timer requests 3-1 

Index-5 



RBD block 12-2 
READ program request 3-5 
Record format 

data words 5-2 
header word 5-2 
record pointers 5-2 

Recovery program 10-17 
addition of control statements 10-18 
control statements 10-17 

Release core (REL) 10-8 
RELEASE program request 3-13 
Relocatable binary input 12-1 

BZS block 12-4 
ENT block 12-5 
EXT block 12-5 
NAM block 12-2 
RBD block 12-2 
XFR block 12-5 

Relocatable binary loader 12-1 
features 12-1 
non-relocatable binary input 12-5 
partition loading 12-1 
relocatable binary input 12-1 

Request 3-1 
description 3-5 
entry for 3-1 
queueing 1-15; 2-1; 3-1 
restrictions 3-20 
swapping core 3-20 
threading 2-1; 3-2 
threading in place 3-2 
threading in stacks 3-3 

Request entry processor 2-2,3 
Request processor 1-15 

Scheduling tasks 2-1 
SCHDLE program request 3-7 
Schedule program (SCH) 10-8 
Scheduler stack (SCHSTK) 2-2 
SCMM 7-1 
Scratch E-1; H-4 
Search core locations (SCN) 10-8 
Search mass memory for pattern (SMN) 10-10 
Sequential storage and retrieval 5-1 
Set breakpoint (*SET) 10-12 
SETUP program 14-1 

constraints and limitations 14-4 
control statements 14-2 
error messages 14-3 
theory of operation 14-1 
time and storage considerations 14-3 

SILP 14-1 
SKED file 14-4 
Skeleton builder (SKED) 14-4 

error conditions 14-9 
summary of operations 14-10 

Small computer maintenance monitor (SCMM) 7-1 
entry to SCMM 7-1 
error messages 7-5 
operator/SCMM conversation 7-5 
test sections 7-2 

Snap dump on-line 10-19 
Software 1-14 
SPACE program request 3-12 
Standard system I/O devices (Iu) 3-21 

InC! ~-6 

Standard lu table F-1 
Startup 1-19; 2-12 
STATUS program request 3-19 
Storage and retrieval of records/files 5-1 
Store data in core 10-3 

LHX 10-3 
Swap area H-4 
Swapping core 3-20 
SYSCHD program request 3-14 
SYSCOP 1-18; 11-2 
SYSDAT 2-18; 6-6; H-5 
System abort dump 10-18 
System checkout package 11-1 

bootstrap programs 11-1 
messages 11-2 
system checkout program 11-1 

System checkout program (SYSCOP) 11-1 
System common organization 2-18; 6-6 

protected common 2-18 
unprotected common 2-19 

System error codes K-1 
System initialization 1-19; 6-1 

comment control 6-4 
control statement handler 6-1 
device specification 6-1 
disk testing 6-1 
driver operation 6-4 
error recovery 6-6 
external string patching 6-2 
hardware device drivers 6-7 
loader 6-9 
postload initialization 6-6 
preload initialization 6-6 
program loading 6-2 
system directory organization 6-2; D-1 
system memory maps 6-6 

System initializer loading program (SILP) 14-6 
System library 13-1; H-4 
System library directory D-1 
System maintenance and utility routines 14-1 

calling statements 14-1 
COSY program 14-20 
I/O utility (IOUP) 14-34 
library builder (LIBILD) 14-10 
skeleton editor (SKED) 14-4 

System memory maps 6-6 
System start-up 1-19; 2-12 
System timers 2-11 

Tape editing and update program (SETUP) 14-1 
TDFUNC request 2-11,12 
Teletypewriter 1-5 
Terminate breakpoint (*TRM) 10-12 
Text editor 14-43 
Threading 2-1; 3-2 

in place 3-2 
in stack 3-3 

Time/date calendar functions (TDFUNC) 2-11,12 
Time of day request (TOD) 2-12 
TIMER program request 3-7 
Timer request (TMINT) 2-11 
Timer request processor 2-11 
TIMPT1 program request 3-15 
TMINT request.J2-11 
TOD request 2-12 

96769400 A 



TRACE program 14-51 
Transfer data core to mass memory (ODEBUG) 

RDC 10-4 
RDK 10-4 
SMP 10-4 
WCD 10-4 
WDK 10-4 

Unprotected communication 2-16 
Unprotected entry points 2-18 
Unprotected file requests 5-3 
Unprotected program requests 3-16 

CORE 3-16 
EXIT 3-20 

96769400 A 

GTFILE 3-18 
LOADER 3-16 
STATUS 3-19 

Update file protection 5-3 
User-supplied statements (JOB) 9-5 
Utilities 1-17,18; 14-1 

Volatile storage assignment (VOLBLK) 2-13 

WRITE program request 3-5 

XFR block 12-5 

Index-7 





WI 
~I 
0 1 

~: 
~I 

~I 
01 

I 
I 
I 
I , 

COMMENT SHEET 

MANUAL TITLE CDC® Mass Storage Operating System (MSOS) Version 5 Reference Manual 

PUBLICATION NO. __ 96_7;...,;6..;;,9..;;,4.;.,00.;...-. ________ REVISION c 

FROM 
NAME: ________________________________________________________________ ___ 

BUSINE~ 
ADDRE~: ______________________________________________________________ __ 

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed 
by Control Data Corporation. Any errors t suggested additions or deletions, or general comments may 
be made below. Please include page number. 



STAPLE STAPLE I 
I 
I 

J 
I 
I 
I 
I 
I 
I 

. I 
I 
I 
I 
I 

FOLD 
~~---------------------------------~ 

. BUSINESS REPLY MAIL 
NO ~OSTAGE STAM~ NECESSARY IF MAiLEO !N U.S.A. 

POSTAGE WILL BE PAlO BY 

CONTROL DATA CORPORATION 
PUBLICATIONS AND GRAPHICS DIVISION 
4455 EAST GATE MALL 
LA JOLLA, CALIFORNIA 92037 

FiRST CLASS 
~ER~-1IT. NO. 3'33 

LA JOLLA. CA. 

I 
1 
I 
I 
I~ 
Iz 
1::3 

I~ 
~S 
1< 
I~ 
1° 
I 
I 
I 
I 
I 

------------------------------------~ FOLD 

L ... .i\PLE 
STAPLE 





CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A. 

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

@:~ 
CONTI\.OL DATA COI\POR<\TION 


