
PROGRAMMING
TRAINING MANUAL

1
)

INSTRUCTION INDEX

INSTRUCTIONS (by class) PSEUDO OPS (by mnemonic)

Hex Section Hex Section Section Page .,...-r'

Code Mnemonic Number Code Mnemonic Number Mnemonic Number Number
,.--,

"'--"'"

Storage Shifts**

1XXX JMP 5.1. 2.4 OF2X QRS 5.3 ADC 6.7 6-9

2XXX MUI 5.1.2.2 OF6X LRS 5.3 ADC* 6.8 6-10

3XXX DVI 5.1. 2. 2 OF4X ARS 5.3 ALF 6.9 6-11

4XXX STQ 5.1. 2.1 o FAX QLS 5.3 BSS 6.12 6-15

5XXX RTJ 5.1.2.4 OFCX ALS 5.3 BZS 6.12 6-15

6XXX STA 5.1. 2.1 OFEX LLS 5.3 COM 6.13 6-16

7 XXX SPA 5.1. 2.1 Interregister
DAT 6.13 6-16

8XXX ADD 5.1. 2. 2 DEC 6.10 6~13

9XXX SUB 5.1. 2. 2 0808* TRM 5.4 ElF 6.15 6-21

AXXX AND 5.1. 2. 3 081X TRQ 5.4 EJT 6.20 6-27

BXXX EOR 5.1. 2. 3 0818* TRB 5.4 EMC 6.16 6-23

CXXX LDA 5.1. 2.1 082X TRA 5.4 END 6.2 6-4

DXXX RAO 5.1.2.5 0828* AAM 5.4 ENT 6.3 6-4

EXXX LDQ 5.1. 2.1 083X AAQ 5.4 EQU 6.5 6-7

FXXX ADQ 5.1. 2.2 0838* AAB 5.4 EXT 6.3 6-4

Skip
084X CLR 5.4 EXT* 6.6 6-6

0848* TCM 5.4 IFA 6.15 6-21

010X SAZ 5.2.1 085X TCQ 5.4 IFC 6.18 6-25

011X SAN 5.2.1 0858* TCB 5.4 LOC 6.17 6-24

012X SAP 5.2.1 086X TCA 5.4 LST 6.19 6-27

013X SAM 5.2.1 0868* EAM 5.4 MAC 6.16 6-23

014X SQZ 5.2.1 087X EAQ 5.4 MON 6.22 6-29

015X SQN 5.2.1 0878* EAB 5.4 NAM 6.1 6-3

016X SQP 5.2.1 08A8* LAM 5.4 NLS 6.19 6-27 -_.-

017X SQM 5.2.1 08BX LAQ 5.4 NUM 6.6 6-9

018X SWS 5.2.2 08D8* LAB 5.4 OPT 6.21 6-28

019X SWN 5.2.2 08E8* CAM 5.4 ORG 6.14 6-19

01AX SOY 5.2.3 08FX CAQ 5.4 ORG* 6.14 6-19

01BX SNO 5.2.3 08F8* CAB 5.4 SPC 6.19 6-27

01CX SPE 5.2.4
Register Reference

VFD 6.11 6-13

01DX SNP 5.2.4
01EX SPF 5.2.4 OOXX SLS 5.5.5

01FX SNF 5.2.4 02XX INP 5.5.4

03XX OUT 5.5.4
04XX EIN 5.5.3
05XX lIN 5.5.3
06XX SPB 5.5.2
07XX CPB 5.5.2

09XX INA 5.5.1
OAXX ENA 5.5.1
OBXX NOP 5.5.5
OCXX ENQ 5.5.1

ODXX INQ 5.5.1
OEXX EXI 5.5.3

*Right most Hex number will include destination register.
**Third Hex number will include uppermost bit of shift count (bit 4).

I

)

l .J
'-./

'-_ .J

,,~-

/

1700 PROGRAMMING TRAINING MANUAL

TIDRD EDITION

FOR TRAINING PURPOSES ONLY

This manual was compiled and written by
instructional personnel of

CONTROL DATA INSTITUTE FOR ADVANCED
TECHNOLOGY

CONTROL DATA CORPORATION

Publication Number 60207900B
February, 1970

The original draft of this manual was compiled and
written by the Southern Region Training Staff. Tech
nical revisions which have been incorporated in this
printing were submitted by the Southern, Southeastern
and Eastern Region Training Staffs.

Physical composition was accomplished by the Graphic
Services Department within Control Data Educational
Institutes. Since this department has continuation re
sponsibilities for the originals of this manual, addi
tional corrections, revisions, or suggestions should
be submitted to the Manager of Graphic Services for
processing.

Copyright 1970, Control Data Corporation
Printed in the United States of America

\.

PART I

('--
',-,

PART II

TABLE OF CONTENTS

1700 BASIC SYSTEM DESCRIPTION

1700 ARITHMETIC

ASSEMBLY SOURCE FORMAT

BASIC 1700 INSTRUCTION FAMILIARIZATION

1700 MACHINE INSTRUCTIONS

PSEUDO OPS

INTRODUCTION TO MACHINE LANGUAGE I/O

SYSTEM REQUESTS r
MSOS USE

CONFIGURING A SYSTEM

ADVANCED CODING TECHNIQUES

PERIPHERAL PROGRAMMING - I (NON-INTERRUPT MODE)

PERIPHERAL PROGRAMMING - II (INTERRUPT MODE)

LIBEDT EXAMPLES

APPENDIXES

INDEX

,)
.,

\'

... ~
'J ..
\
I

~I

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19

r'~ ,

L/ 20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35

INDEX TO FIGURES

Description

1700 Computer System Characteristics
1700 Interrupt Trap Area .
Basic System Description •
Typical Configuration •
Console.
Numbers
1700 Integer Numbers .
Range of Numbers Used in the 1700.
Floating Point Example.
Processing the Assembly Language Program
Sample Assembly Listing .
Address Modes for Storage Reference Class Instructions
Data, Program and Common Counters.
Side and Top Views of 850 Disk Pack .
Flow of Requests •
Macro Calls for Requests Available to Background Programs .
Control Statements Available Under the Job Processor •
Control Statements Available to the Breakpoint Package.
Control Statements Available to the System Recovery Package.
1700 Computer System Block Diagram.
1700 Hardware Configuration .
1700 (1704 or 1774) Communications System Configuration.
Mass Memory Core Maps •
Object Tape
Flow of Program Through Execution
Error Examples for Incorrect Addressing in Mass Memory
Programs •
Maps of Mass Memory Modules and Core Subroutines
1700 Core Map (Externals)
Disk.
Sector Format on Disk •
Data Buffer for Disk.
Interim Drum Interface Codes
1731 Functions.
1700 Interrupt Hardware and Software Functions
Interrupt Flow.

v

Page

1-1
1-4
1-7

1-10
1-11

2-1
2-4
2-5
2-9
3-1
3-7
5-2

6-12
7-12
8-4
8-6
9-2

9-19
9-25
10...,7

· 10-10
• 10-12

11-2
11-5

• 11-11

· 11-22
• 11-45
· 11-51
• 12-37
• 12-38
• 12-39
• 12-49
• 12-59

13-2
• 13-10

INDEX TO PROBLEMS*

L I~ PROBLEM PAGE

Addressing 5-14

MOVE 5-28

SUM 5-28

CHNG 5-28

SUB 5-35

SORT 5-37

CLRPB 5-40

CONVRT 5-43

VALUE 6-16

INI 6-19

CKASSM 8-59

Runanywhere 11-23

REENTRANT 11-31

C·,.:,'- THREAD 11-38

MMPGM 11-47

*Note that solutions to problems appear in Appendix G.

r "\
\.~ ... ~. ~.

vii

PART I

.'

II

CHAPTER I

1700 BASIC SYSTEM DESCRIPTION

CHAPTER I - 1700 Basic System Description
~." ""\

lJ TOPIC PAGE

Introduction 1-1

1.1 Memory 1-1

1.2 Protect System 1-2

1.3 Interrupt System 1-3

1.4 Input/ Output 1-6

1.5 Basic System Description 1-6

1.5.1 Registers 1-6

1.6 Typical Configuration 1-10

1.7 Console Description 1-12

('

1.1

INTRODUCTION

C . ..} The CONTROL DATA® 1704 Computer is a stored program, digital computer. Physically
small, it is designed for high computation and input/output (I/O) s pee d. The program pro
tection features of the 1704 Computer and high reliability under a wide range of environmental
conditions make it suitable for real-time, on-line, or control applications.

The interface of the 1700 Computer System is capable of accepting a greatvariety of peripheral
devices. Refer to Figure 1 for system characteristics.

Figure 1. 1700 Computer System Characteristics

Stored program, digital computer

Completely solid - state, 6000-type logic

Parallel modes of operation

IS-bit storage word
16 data bits
1 parity bit
1 program protect bit

16-bit instruction word

Two 16-bit index registers

Multilevel indirect addressing

Magnetic core storage (options available):
4096 IS-bit w 0 r d s, expandable to
32,76S words

Input/ Output (options available):
Transmission of 16-bit words or S-bit
characters

Console includes: Register contents dis
played in binary; operating switches
and indicators

1.1 MEMORY

Reliability (calculated):
Approximately S,OOO h 0 u r s
mean time between failures for
the 1704 Computer

Environment:
40° F to 1200 F
Relative humidity 0% to SO%

Cooling: Forced Air

System Interrupt

Flexible repertoire of instructions:
Arithmetic operations
Logical and masking 0 per a
tions
Interregister transfers

Base 16 (hexadecimal) number sys
tem

Binary arithmetic:
Modulus 2 - 1 (one's comple
ment)

Intercomputer communications:
1700 to 1700
Satellite operations

The basic 1700 Computer System provides high- speed, random-access mag net i c core
storage for 4,096 IS-bit w 0 r d s. The storage capacity may be expanded from 4K by 4K
increments to 32K as a maximum. With the addition of special hardware, memory may
be doubled from 32K to 64K.

® Registered trademark of Control Data Corporation

1-1

1.1

storage c y c I e time is 1. 1 microseconds. This is defined as the shortest possible time
between successive Read/Write operations in storage.

A storage word may be a 16-bit instruction, a 16-bit 0 per and or a 16-bit addres s. A
parity bit and a program protect bit are a p pen de d to each 16-bit storage word; thus a
storage word is 18 bits long. Format:

17 16 15

t tparity Bit
Program Protect Bit

Bit o

l16-Bit Data or Instruction Word

Bit 16 is the parity bit. It takes on a value so that the total number of 1 bits is odd (total
number of bits includes the program protect bit). For example, if all 16 data bits are 1 's
and the program protect bit is 0, the parity bit is a 1.

Bit 17 is the program protect bit. If it is a one, the word is protected and can only be
modified or changed by a protected instruction.

1.2 PROTECT SYSTEM

The program protect system in the 1700 makes it possible to protect a program in the
computer from any other non-protected program also in the computer. The combination
of the high internal memory speed and the program protect s y s t e m makes possible the
use of the 1700 for background and foreground work. Foreground programs are protected
and are generally multi-level (level 2 to 15) process programs. The foreground job is
protected in core and runs at higher priority than background jobs which are assemblies,
compilations, programs being debugged, etc. The background programs use the time
available and are run in unprotected core. The protect system is enabled by setting the
program protect switch on the programmer's panel. Any attempt to violate in any manner
the protected portion of core from an unprotected instruction will cause a program pro
tect violation which sets an in t err up t on line 0 and also the program protect indicator
which is visible as one of the fault lines on the programmer's panel. There are four pro
gram protect violations. They are:

1. An attempt is made by a non-protected instruction to write into a storage location
containing a protected instruction or operand. It is legal to read from a protected
area.

2. An a t t em p t is made to write into a protected storage location by way of the ex
ternal storage access when a non-protected instruction was the ultimate source of
the attempt.

3. An attempt is made to execute a protected instruction following the execution of a
non-protected instruction.

.1-2

.' '" ~

u

o

n

1.2

4. An attempt is made to execute interregister class instructions with bit 0 a one (M
register is the destiriation); instructions EIN, IIN, EXI, SPB, or CPB. Later ex
amination of these instructions will show how these are used to change the state of
interrupts or the protected core area itself.

1.3 INTERRUPT SYSTEM

The basic computer (1704) provides two interrupt lines. Line 0 provides entry for inter
rupts generated as a result of a storage parity error, a program protect fault, or power
failure. There are instructions available for the processing program to check for parity
error or protect fault, and power failure can be assumed if one of the other two conditions
does not exist. In the case of power failure, approximately 8 milliseconds of program
ming time are available; then the computer generates a mas t e r clear before the power
actually goes down. Special hardware is a v a i I a b I e' which can generate an automatic
restart after the power comes back up.

Line Iprovides for interrupts from the low-speed peripherals controlled by Equipment #1,
the slow channel synchronizer. Any of the four stations (TTY, Card Reader, Paper Tape
Reader, Paper Tape Punch) on the slow channel synchronizer sends its interrupt to line 1.

The 1705 provides expansion from two interrupt lines to 16 interrupt lines, to pro v ide
for additional equipment.

Interrupts are controlled by an interrupt mask register (M Register, 16 bits) which either
allows selected interrupts in or blocks them out. Each line corresponds to its bit in the
M Register. If the bit is a 0, any interrupt on that line is blocked out and must wait; if
the bit is a 1, the interrupt is allowed in. The mask in the M register is set and changed
under pro g ram control. Priority is established by the mask in the M register, not by
the line position. In the case of concurrent interrupts on more than one line at the same
priority, the lowest numbered line is recognized first.

There is a fixed group of core 10 cat ion s assigned to the interrupt system, locations
$100-$13F, called the Interrupt Trap area. Four core locations are ~eserved for each
line, beginning at $100 for line 0; each 4-'word block is called the "trap" for that line.

1-3

1.3

Figure 2. 1700 Interrupt Trap Area

13F 1 13E
13D t----------4 LINE 15 TRAP

13C

107
106
105
104
103
102
101
100

....
".

I

I

r"

1 LINE 1 TRAP

1 LINE 0 TRAP

Contents of Trap:

word 3 - address of interrupt processor
word 2 - priority level for line
word 1- R T J to interrupt handler
word 0 - overflow and P

If the interrupt system is enabled and an in t err up t occurs on a line that has a corre
sponding 1 in the M register, the hardware does the following:

1. disables the interrupt system (locks out all interrupts),

2. saves the contents of the Pre g i s t e r (the address of the next instruction which
would have been executed in the interrupted program) in the first word of the trap
for that line,

3. saves the state of the 0 v e r flow indicator (1 if set, 0 if not set) in bit 15 of that
same word,

4. transfers control to the second word in the trap.

The above is all that the hardware does in handling an interrupt; anything else must be
done by the software. Under most systems, the second word of the trap for each line is
initialized by the software to contain a jump out of the t rap to a routine (or routines) to
save the registers of the interrupted program and handle the interrupt. The third and
fourth words of each trap can be used by the so f twa r e to contain anything desired; the
standard operating system uses these words to hold the priority level of the line and the
address of the processing program for the line, respectively. The interrupt processing
routine may exit interrupt state (back to the interrupted program) through word 0 of the
corresponding trap.

Example:

Assume line 1 has high priority, line 3 has lower priority. Line 0 always has highest
priority. Any other running program has lower priority than either line 0, 1, or 3.

1-4

.... '''-...

u

[)
\ ,

1.3

Make a table containing M register masks to be used while the routine servicing each
line is running:

bit ----.

MASKM

MASK3

MASK1

MASKO

15 o

o 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

o 0 0 0 0 0 000 0 0 000 1 1

o 0 000 0 0 0 0 0 0 0 000 1

o 000 0 0 0 0 0 0 0 000 0 0

mask for main program

mask for line 3

mask for line 1

mask for line 0

Note that MASKM will allow all pertinent lines to interrupt; MASK3 will allow line 1 or
line 0 to interrupt; MASK1 will allow only line 0 to interrupt; MASKO will not allow any
line to interrupt.

The processing programs would be set up as follows:

Main Program

Set M register to MASKM

Enable interrupt system

Enl
Interrupt Processor for Line 3

Store A, Q, I, M registers

Set M register to MASK3

Enable interrupt system

Inhitt interrupts

Restore registers

Exit interrupt state 03

Interrupt Processor for Line 1

Store A, Q, I, M registers

Set M register to MASK!

Enable interrupt system

Inhibi3 interrupts

Restore registers

Exit interrupt state 01

1-5

1.3

Interrupt Processor for Line 0

Store A, ~Q' I, M registers { could just leave interrupts locked \, _____ i

Exit interrupt state 00 J
out during execution as shown here
rat her than set new mask (mask
would be MASKO if set and inter-
rupts enabled)

Chapter 4 of the Computer Reference Manual contains more details abo u t the Interrupt
System.

1.4 INPUT/OUTPUT

Included with the 1704 is a slow channel synchronizer. This channel handles any or all
of the slow speed devices normally affixed to a 1704. These are the 1713 Teletype, the
1729 Card Reader, the 1721 Paper Tape Reader, and the 1723 Paper Tape Punch. * Fig
ure 2 shows a data pack extending from these slow speed devices through the slow channel
synchronizer to both the A and Q registers. T ran s fer of information to these devices
then is one word at a time (unbuffered) with the Q register containing address information
and the A register containing data. The addition of a 1705 to the 1704 extends the A/Q
unbuffered channel to eight more equipments. The 1705 also provides the addition of a
direct access bus (DAC) to core. This provides buffered transfer of data directly to or
from memory, bypassing the registers in the computer and, in fact, bypassingthe normal
compute channel of the computer. This direct access allows high speed transfer of data
from peripheral devices like discs, drums, mag tapes, or high speed industrial equip
ment like multiplexers, etc.

1.5 BASIC SYSTEM DESCRIPTION

Figure 2 ill us t rat e s the basic structure of the 1704 and also extension to peripherals
through the addition of a 1705. The basic 1704 is supplied with 4K (4096 words) of core
storage. Core can be expanded in 4K increments to a maximum of 32K (or to 64K with
the addition of special hardware).

1. 5. 1 Registers

There are four registers that the programmer can get to directly from instruc
tions. These registers are the A, Q, I, and M registers.

The A Register is the principal arithmetic register. It contains 16 bits (labeled
bit-O up to bit-15) of which bit-15 is the sign bit for arithmetic operations. The
A register is also the register used to interface data d uri n g input/output oper
ations to peripheral equipment.

*Also the variations of these (1711, 1713,11722, 1724).

1-6

" .. _-"",'

\

U

----... 1705

14
Inter
rupt
Line~

,

Figure 3. Basic System Description

1704 I ...--------......, DAC
Direct

Line 0 Interrupt
Core

Storage
4 K Basic

Access

-+--l

Parity & Program Protect

,

F Z

Expand
To 32K

14 L...

(8 Bits) (18 Bits)

t
X

f
---. (16 Bits)

P
..-. (15 Bits)

I~V 16 Interrupt Lines

.. M
-. (16 Bits) II

, 1'~ ~
~ _____ JAddend

Q Gates

(16 Bits)
~

..---

+1

.~ 1 t
Augend·l
Gates

S
(15 Bits)

Y
(16 Bits)

A

(16 Bits)

e
~
C,)

LogicaL... Adder ~ogical
(16 Bits) Difference

:s
1-i

Shif~--..
I JP.ft

C,)

oS~~--r-~~~~~

•
Shifter ..

H ~---~

Product

Shift
"Rig-ht

~

1.5.1

1705

rn
-+--l
!:l
C,)

S
~

or-!
;::l

1705 ~
r.iI
00

0
E-t -

'-Slow channeiSynchronizer -=- - -"'-1
Equip #1 ~--------------!t-----+ __

I A/Q Channel - I/O
(Part of 1704) I

I
I I

I

11711- TTY

11729 - CR 1

1721- PTRf

I 1723-PTP

Note: The I register is memory
location $FF.

1-7

-

1.5.1

The Q Register is a multi-use register. Its uses include:

a. Auxiliary arithmetic register.
b. Retains part of the result of arithmetic operations such as multiply or divide.
c. Retains the most significant portion of the dividend during divide operations.
d. The Q Register is also used as the primary index register for address modi

fication.
e. The Q Register supplies the addressing for per ip her a 1 equipments during

unbuffered input/output operations.

The I Register is the second index register available. It is actually core location

00FF16 ·

The M Register or Mask Register controls interrupts. A one bit in any position
of the mask register will enable an interrupt from the corresponding line number
while a zero in any bit position of the mask register blocks the interrupt from the
corresponding line number. The mask register is effective in controlling inter
rupts only when the interrupt system is enabled.

Other registers of interest to the programmer are:

P Register: This 15-bit register functions as the program address counter. It
holds the address of each instruction, and after executing the instruction at address
P, P is advanced to the address of the next instruction. The amount by which P
is advanced is determined by the type of instruction being executed.

X Register: The X register is an exchange register containing 16 bits. This
register holds data going to or from memory. It also holds one of the parameters
in most arithmetic operations.

Y Register: The Y register is an address register containing 16 bits. It is in this
register that storage addresses are formed and held for transfer during a storage
reference.

The A, Q, M, X~ Y and P Registers can be displayed and entered on the program
mer's panel.

Shifter: The shifter is used by multiply, divide, and shift ins t r u c t ion s. It is
capable of shifting the output of the adder left and right one binary position or
giving a direct transfer path to the arithmetic registers.'

Adder: A I6-bit adder is used toperform all arithmetic and address calculations.
Inputs to the adder are shown through the gates. The adder is a one's complement:
subtractive adder which is more fully described in the next chapter.

F Register: This 8-bit register is used by the control section of the 1704 for de
coding instructions.

1-8

'-, '

o

1.5.1

Z Register: This register communicates between the actual core storage and the
computer through the X register. Notice this is an IS-bit register; the lower 16
bits are data or instructions from core, the 17th bit or bit #16 is the par it Y bit
and the high order bit or bit #17 is the pro g ram protect bit. Core storage is
described more fully in the next section.

S Register: This 15-bit register w h i chis fed from the Y reg is t e r is used to
directly address core storage. Since core storage has a maximum of 32K loca
tions, the S register need only be 15 bits.

The Z register and the S register are connected directly to ext ern a I equipment
through the 1705. This d ire c t access channel allows insertion or extraction of
core data directly to peripherals without program intervention.

Refer to Reference 1, Appendix A, for a more de t a i led description of the reg
isters.

1-9

'I
o

.J

1721 PTR

1711 TTY

I
Analog
Gear

1704 CPU
32K

()

Disk

I-'

r-' .
~

~

~
~
I-d
(5
>
~
(":)

0
Z
~
~

0
c::::
!J:j
>
~
~

CR 0
Z

CONTROL DATA

1-1 Hi Temp
I Temp Warn OV PP Par

~OOOOO

Ind Sto

r-:::l
~
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

F

0

1

1

r

0 0

0 0

1 1

Fl

lind 1 q I

o

1

0

1

i

1700

r-:::l
~

F2

LP XR A Q

L A Q

6

6

SK

MIAfQIM

K

EMERGENCY
OFF

Skip

Interregister

Shift

Register ReferencL

Storage Reference

10 (500 510 0 0 0 006 0 0 0 a 0 a 6 a a 8ear

Program Sel Sel Master

Register Select
Protect Enter Skip stop Clear Run

Q 0 0 0 0 0 0
Test
Mode Sweep Step ..

(')
o
I:j
00
o
t-"
(D

1-1 .

1.7

1.7 CONSOLE DESCRIPTION

SWITCHES

Master Clear

Run/Step

Enter/Sweep

This is a three-position key/lever switch. A Mas t e r Clear is
executed whenever it is momentarily operated either up or down.
A Master Clear returns the computer and peripheral device'S to
initial conditions by clearing all registers and peripheral equip
ment logic.

This is a three-position key/lever switch. When the s wit chis
momentarily placed in the RUNposition, the computer begins pro
gram execution, starting with the instruction whose address is in
the P register. The computer is stopped by momentarily placing
the switch in the STEP position.

If the switch is repeatedly placed in the STEP position, the com
puter steps t h r 0 ugh the program, stopping after each storage
reference. The significance of the storage reference just made
is indicated by the Instruction Sequence indicators (INSTRUC TION,
INDIRECT ADDRESS, etc.).

This is a three-position key/lever switch maintained in all posi
tions. The center position is off. Enter is used to enter memory;
sweep is used to examine the contents of memory.

Enter

The ENTER position selects the Enter mode. In this mode, each
Step operation of the R UN/ STE P switch stores the contents of the
X register at the location specified by P + 1 and then advances the
P register by one. The first step after a Master Clear or clear
P stores the contents of the X register at the location specified
by P.

To store a few instructions in unprotected storage, pro c e e d as
follows:

1) Power is on but computer is stopped.

2) Operate Master Clear switch.

3) Press P REGISTER SELECT switch and CLEAR pushbutton,
in that order. Set desired address for instruction in P by use
of indicator pushbuttons.

4) Set ENTER/SWEEP switch to ENTER.

5) Press X REGISTER SELECT switch.

1-12

o

Selective Stop

Selective Skip

Program Protect/
Test Mode

Emergency Off

1.7

6) Press CLEAR pushbutton, then enter word to be stored by use
of indicator pushbuttons.

7) Move RUN/STEP switch to STEP one time (carefully).

To store additional words in successive storage locations, repeat
steps 6 and 7 until finished. To change to a new seq u e n c e of
addresses, start at step 2 for the first one, then repeat steps 6
and 7 for each successive word.

A lighted indicator pushbutton indicates a "1", a dark one a "0".

Sweep

The SWEEP position selects the Sweep mode. In this mode, each
operation of the RUN/STEP switch displays in the X register the
contents of the storage location whose address is P + 1. The P
register is advanced by one after each Step operation. The first
step after a Master Clear or clear P displays the location speci
fied by P. Instructions are not executed.

This is a three-position key/lever switch. The computer stops
when it executes a Selective Stop instruction if this switch is in
either the up or down po sit ion. The up position is maintained;
the down position is momentary.

This is a three-position key/lever s wit c h. Two Selective Skip
instructions (SWS and SWN) are conditioned by this switch. This
switch is off in the center position; the up position is maintained;
the down position is momentary.

This is a three-position key/lever switch maintained in all posi
tions. The center position is off.

Program Protect

The PROGRAM PROTECT position selects program protection.

Test Mode

The TEST MODE position s e I e c t s Test mode. This is used by
the customer engineers for maintenance.

Pressing this switch shuts off power for the entire system.

1-13

1.7

Register Select

INDICATORS

Program Protect

Faults

Instruction Sequence
Indicators

The M, P, Y, X, A, and Q registers are available for display and
manual entry of values via switch/indicators. A six-pushbutton
switch/indicator, REGISTER SELECT, selects the register for
display and entry.

Push the button for the desired register, and the contents of that
re gis te r will light up in the 16-bit console binary register. A
button lighted indicates a 1 bit; unlighted, a 0 bit.

If it is des ire d to change the contents of the register, push the
C LEAR button (not Master Clear switch) to clear out that register.
Then set the new con ten t s in the register by pushing the button
(it will light up when pushed) for each bit that should be a 1 bit in
the register.

The PROGRAM PROTECT bit indicator displays the state of the
program protect bit of the last storage location referenced by the
computer.

There are five fault indicators. When lighted, the fault condition
is present.

• HI TEMP The temperature inside the co mp ute r has ex
ceeded safe operating limits.

• TEMP WARN The ambient air temperature is approaching
the maximum safe operating limit.

• OVERF LOW An arithmetic register overflow has occurred.

• PROGRAM PROTECT A violation of the program protect
system has been detected.

• STORAGE PARITY A parity error has been detected in an
operand or instruction read from storage.

When an instruction is being stepped, this group of four indicators
des c rib e the meaning of the storage reference just completed.
The data of the storage reference (read or write) is in the X reg
ister. The four indicators and the i r meaning when lighted are:

• INSTRUCTION: The contents of the X register is an instruc
tion.

1-14.

,-.........

,.)
~i

I" .• ~ ... \

U

o

1.7

• INDIREC T ADDRESS: The contents of the X register is the
result of indirect addressing. The indirect address may also
be another indirect address, hence, this indicator may re
main lighted for several consecutive storage references.

• STORAGE INDEX: The contents of the X register is the value
of the Storage Index register.

• OPERAND: The contents of the X register is the value of the
operand either written into or read from storage.

If more than one Instruction Sequence indicator is 1 i g h ted, the
computer is running. If only one indicator is lighted, the com
puter is not running or is in a rather unlikely program loop which
does not use operands, the storage index, or indirect addressing.

1-15

o

CHAPTER II

1700 ARITHMETIC

o

CHAPTER II - 1700 Arithmetic

U TOPIC PAGE

2.1 HEX-DEC Conversions 2-1

2.2 Range of Numbers 2-4

2.3 Adder: 2-6

2.4 Overflow 2-7

2.5 Floating Point Numbers 2-7

2.6 Exercises 2-10

o

o

()

2.1

Figure 6. Numbers

Decimal Octal Binary Hexadecimal

0 0 0 0

1 1 1 1

2 2 10 2

3 3 11 3

4 4 100 4

5 5 101 5

6 6 110 6

7 7 111 7

8 10 1000 8

9 11 1001 9

·10 12 1010 A

11 13 1011 B

12 14 1100 C

13 15 1101 D

14 16 1110 E

15 17 1111 F

16 20 10000 10

2.1 HEX-DEC CONVERSIONS

Since the 1700 is a 16-bit machine, it is convenient to group the 16 binary bits into 4
hexadecimal digits. This allow s for quicker and easier manipulation of the arithmetic
and easier identification of program dumps. The relationship of the 4 binary bits to each
hexadecimal digit and the decimal equivalent is shown below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[I I I I
H3 H2 HI HO

16 Bit 1700 Machine Word

2-1

2.1

The Range of Binary Bits in Each HEX Position Is:

Binary HEX Decimal Binary HEX Decimal

0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7· 1111 F 15

This table must be memorized.

The arithmetic operations that are essentially basic involve binary to HEX, HEX to bi
nary, hexadecimal to decimal, decimal to hexadec imal conversion, taking the one's
complement of a hexadecimal number, and adding and subtracting hexadecimal numbers.

Each hexadecimal digit represents by its position in the n u m be r a certain power of the
base 16. The least significant digit is a multiple of 160 which is 1; the second least
significant digit represents a multiple of 161 which is 16; the third least significant digit
represents a multiple of 162 which is 256; and the most significant hex a dec i m a I digit
represents a multiple of 163 which is 4096. It is necessary then only to do these multi
plications followed by a final addition of the four multiples in 0 r d e r to convert a hexa
decimal number to the decimal equivalent.

Example: Convert 13ED16 to Decimal.

D x 160 = 13 x 1 = 13
E x 161 = 14 x 16 = 224
3 x 162 = 3 x 256 = 768
1 x 163 = 1 x 4096 =.4096

Sum 510110

There are many methods of converting a decimal number to hexadecimal. The simplest
method involves successive divisions of the decimal number by 16. Each remainder be
comes in turn the least significant hexadecimal digit of the converted answer, while each
quotient becomes the next decimal number to be divided. D i vis ion s continue until the
quotient becomes zero.

Example: Convert 147610. to HEX.

92 - Continue division
16 11476

.144
36

~
4 - First remainder is HO=4

2-2

",,--'.
I I

G'

5 - Continue division
16 192

80
12 - Second rema:inder is H1=C

o - Divis ion stops
1615

o
5 - Third rema:inder is H2=5

ANSWER - 147610 = 5C416

2.1

Addition of hexadecimal numbers is straightforward. Notice that 16 is carried fronl the
least significant position to the most. The subtract:ing, of course, is the opposite of ad
dition with 16 be:ing borrowed from the most significant position.

Example: Add the HEX numbers 13CE and 2AA 7.

13CE
+ 2AA7

3E 75 It " E (14) + 7 = 21 - Carry 16-Excess 5
C (12) + A(10) +1 = 23 - Carry 16-Excess 7
3 + A(10) +1 = 14 - No Carry-Excess E
1 + 2 = 3 - No Carry-Excess 3

As we'll encounter shortly, negative numbers in the 1700 are carried :in one's complement
form. The subtraction in each position of a dig it from the largest possible digit in the
base used yields the one's complement of the number.

Example: Find the One's Complement of the HEX Number 347E.

Subtract
FFFF
347E
CB 81 - is One's Complement of 347E.

The same result can be obtained by convert:ing both numbers to binary.

HEX

FFFF =
347E =

CB81=

BINARY

1111 1111 1111 1111
0011 0100 0111 1110~~~-------------------------------~

1100 1011 1000 0001--is One's Complement of ---'

Notice that the one's complement of a binary number has all ones :in the b:inary n u m be r
changed to zeroes, and all zeroes changed to ones, which s u g g est s another method of
obtain:ing the one's complement of a number.

2-3

2.2

Figure 7. 1700 Integer Numbers

Example:

D
------------~

-------------~
t
SIGN BIT
~

3 B 716 = 1010 0 0 0 0 1 1 1 0 1 1 0 1 1 11

3 B

Negative Numbers Stored in One's Complement Form:

F

F
3

c

F
B

4

7

F
7

8

1111 1 1 1 1000 100 10001

1
SIGN BIT

'2-4

! --"
" I

" ---~/

c

C)

2.2

2. 2 RANGE OF NUMBERS

Figure 8 illustrates the range of n u m be r s used in the 1700. The total number of bits
available is 16 and for arithmetic operations bit #15 will be a zero for positive numbers,
and a one for negative numbers. For positive numbers, bits 0-14 are in true form. How
ever, for negative numbers bits 0-14 are in one's complement form. Notice there are
two O's, a positive zero and a negative zero •

.-Positive Numbers-Bit 15 is a 0 - Number is in true form.

+32,767 0111 1111 1111 1111
+32,766 0111 1111 1111 1110

t • • • •
Positive • • • •
Numbers • • • •

+ • • • •
+1 0000 0000 0000 0001
+0 0000 0000 0000 0000

-0 1111 1111 1111 1111
-1 1111 1111 1111 1110

• • • • •
Negative • • • •
Numbers • • • • t • • • •

-32,766 1000 0000 0000 0001
-32,767 1000 0000 0000 0000

~Negative Numbers-Bit 15 is a 1 - Number is in One's
Complement Form.

Note: Each Negative Number is Represented as the One's Complement of its
Corresponding Positive Number.

Figure 8. Range of Numbers Used in the 1700 /

2-5

2.3

2.3 ADDER

A straightforward add e r would pose problems in the 1700 in that negative zero in many
cases would be produced as are s u 1 t instead of a positive zero. Consider the addition:

4321
+BCDE

FFFF - Straightforward addition of the positive number 4321 and a negative num
ber of the same size, BCDE, yields a correct result of zero, but nega
tive zero instead of positive zero.

Since the skip tests do not r e c a gn i z e negative zero, the adder in the 1700, which is a
16-bit one's complement subtractive adder, eliminates minus zero in all but one case. It
functions by taking the one's com p 1 e men t of the addend and subtracting this from the
augend. The same addition as in the above is accomplished:

Add

4321 4321 4321
+ BCDE----.One's Complement--.4321-.Now Subtract 4321

Same Result ----I .. ~ 0000
But +0

The one case where a minus zero is produced is the case where minus zero is added to
minus zero.

Add Subtract

FFFF FFFF
+ FFFF -----I .. ~O 000

FFFF (-0) + (-0) = (-0)

Negative zero can be con v e r ted to positive zero by simply adding positive zero to it.

Add Subtract

FFFF FFFF
+OOOO--------~~·FFFF

0000 (-0) + (+0) = (+0)

For subtraction, the subtrahend is not complemented, but is subtracted directly from the
minuend. The only case producing negative zero is (-0) - (+0) = (-0).

Subtract Directly

FFFF
0000
FFFF

Page 3-20 of Reference 1, Appendix A, expounds further on conditions causing negative
zero.

2-6

,.,,

u
2.4

2.4 OVERFLOW

Overflow in the 1700 is e sse n t i all y a condition wherein the result of some arithmetic
operation is too large to fit into its designated register. Overflow can be caused by add
type operations, by a subtract type operation and by divide. In a one's complement com
puter like the 1700, overflow, when it occurs, sets the overflow indicator which remains
on until tested. Refer to Figure 8. Notice that overflow will not occur when a positive
number is added to a negative number since the result will always lie within the range of
numbers. Adding two positive numbers together or adding two negative numbers together,
or the equivalent operation (subtracting a neg a t i v e number from a positive number or
subtracting a positive number from a negative number), can cause a result which is too
large to be contained in the A or Q Register. Recovery can be made from add type over
flow operations and, in fact, overflow is often a useful tool for accumulating single pre
cision numbers into double precision numbers.

Example: Add 1 to the Largest Possible Number

7FFF
000l--+-Complement 7FFF--Note:

Then Subtract --t-l •• FFFE
8001

Subtract Borrow 1

If the adder must borrow from
beyond the most significant
position, it subtracts 1 from
the result.

8000 ~Answer is now (-7FFF) which is wrong.

C) The computer logic will set the overflow indicator when both signs are initially the same
and a borrow occurs.

Recovery ca,.n be made, however, by accumulating the overflow in a second cell and
masking out bit-15 of the first, since bits 0 through 14 remain correct.

Remember that any add type instruction can cause overflow. This includes ADD, SUB,
RAO, AAQ, etc.

Divide overflow will be described in more detail in the storage reference class of instruc
tions for the DVI instruction itself.

2.5 FLOATING POINT NUMBERS

Floating point numbers will be of interest to scientific pro g ram mer s, and since the
Fortran compiler provides for them, their format will be discussed here. The range is
.591 x 10-39 through 1. 694 x 1039 •

Floating point numbers require two words of core and inc 1 u de: one bit, sign of coeffi
cient; 8 bits, biased exponent; 23 bits, normalized coefficient.

2-7

2.5

Word 1 Word 2

---------------~ ~---------------
/15 .14 7 6 0\/15 0\

[[----}----i--- -- -----]
_________ 1 ______ -----

I \ --------------------~/
Coef¥Cient

Sign of Coefficient
1 Bit

23 Bits

A number, for example 25., would be packed as follows:

1. convert decimal number to hexadecimal

25·10 = 19·'16

2. convert hexadecimal number to binary

19. 16 = 0001 1001. 2

3. normalize the binary number (move the binary point to the left of the first one bit)

0001 1001. 2 =)10012 x 25,

coefficient exponent
(power of 2)

4. bias the exponent. In the 1700, all exponents (positive or negative) are biased by
8016 (80 is added to the exponent)

25 = 5 + 80 = 8516

5. pack the number in the two words:

10\100001011 1100100! 00000000000000001

!' ex'lonent
f

\ V I

85 Coefficient
Left Justified

sign of coefficient

= 42E4000016

A ,negative number would be packed as though it was positive, then both words
would be complemented.

- 1916 =

1110111101010011011111111111111111111

= BDIBFFFF16

To unpack numbers (i. e., from a HEX dump) the reverse procedure is followed.

2-8

......
r

l'
" ",

CHAPTER III

ASSEMBLY SOURCE FORMAT

(j

o

Figure 9. Floating Point Example

EXAMPLE: PACK 375 10

375 10 = 17716 16/375

/23 r 7

LLr7

17716 = 0001 0111 0111 2 =
.1011 1011 1000 X 29

o r 1

1Q]1000 100D 101110111 100000000000000J
~

4 4 D DC 0 0 0

9
+80 ----

89 16

EXPONENT: 10001001 2

- 375 10 WOULD BE STORED AS

F F F F F F F F
-44 DOC 000 --- ----------------- ----'---

B B 2 2 3 F F F 16

~ [Q111011Q[01000 10 ~O 1111111111111}]

2-9

2.5

2.6

2.6 EXERCISES

1. Group these 16 bit 1700 binary numbers into hexadecimal, convert the an s w e r s to
decimal, then add the three together.

a. 0010 1101 1010 1110

b. 1000 1111 1100 0111

c. 1111 1111 1100 0000

2. Convert these decimal numbers to HEX, and represent each in binary as they would
appear as a 16-bit 1700 word.

a. 4095

b. -17

c. 255

3. How would a signed number, either positive or negative, that occupied only an 8-bit
field be expanded to occupy a 16-bit field?

2-10

CHAPTER III - Assembly Source Format

/..- -'\
"-.) TOPIC PAGE

3.1 Program Flow 3-1

3.2 1700 Assembly Language Source Format 3-2

3.2.1 Location Field 3-2

3.2.2 Opcode Field 3-3

3.2.3 Address Field 3-3

3.2.4 Comment Field 3-5

3.3 Assembly Listing 3-5

o

3.1

U 3.1 PROGRAM FLOW

(J

()

Two phases are involved in processing the assembly language program. The first phase
involves reading of the source program (the program prepared by the programmer) into
the computer un de r control of the assembler program. The assembler program reads
and decodes the instructions 0 u t put tin g a listing with the object program. The object
program, which can be output on either paper tape, mag tape, or disk is in a formatted
form suitable for loading back into the computer un de r control of the relocating linking
loader program. This re-entry of the object program into the computer through the loader
is Phase Two. After loading, relocating and linking this program appropriately to other
programs, the pro g ram can now be executed. Two large standard software packages,
then, are involved in the assembly process; the assembler itself and the relocating linking
loader. Figure 10 illustrates this diagrammatically.

Phase 1 - Assembly of Source Program

Source Program 1700 Computer

~-. Assembler
Program

or rv\Ju
Paper Tape

Obj

...

--

ect Program

Paper Tape 0J\J
MagTape Q
Disk g
Listing on typewriter
or printer

Phase 2 - Loading and Running of Object Program

Object Program 1700 Computer

Relocating
---.... ~ Linking Loader --------II ... ~ Results

Figure 10. Processing the Assembly Language Program

3-1

3.2

3.2 1700 ASSEMBLY LANGUAGE SOURCE FORMAT

Regardless of the standard assembler being used (utility assembler or macro assembler)
the source format is prepared the same. This source format consists of four fields, the
lo cat ion field, the opcode field, the address field and the comment field as illustrated
below:

I Location Opcode Address Comments

The total width of all four fields combined is 72 columns. Each field, however, can be of
any length and the statements are said to be free-field. To signal the end of these fields,
either a blank or a tab is used. The blank is technically used as the field terminator for
card input source with con sec uti v e blanks ignored and the first non-blank character
signifying the beginning of the next field. For paper tape input source the tab u I a r key
depression is normally the field terminator since the source can be typed using tab fields
to arrange the source type in an orderly fashion. Blanks, however, can be used for paper
tape input source as field terminators also. Consecutive tabs will indicate the absence of
a field. The carriage return key depression will signify the end of a statement for paper
tape input source. The end of the card itself for card input source is the statement ter
minator.

3.2. 1 Location Field

The location field is used for placing symbols which will de fin e positions in the
program. The s e symbols have a maximum length of· six characters (more than
six will not be processed by the assembler) and the first character must be alpha
betic.

Example:

Location

A123
1A23

TAGTOMB

Opcode Address Comments

------i~~ Legal
-----t .. ~ illegal - must begin with

alphabetic
-----;~. Legal - only TAGTOM is

processed.

The same symbol cannot be used twice in the same program, as this would con
stitute a doubly defined symbol, an error condition. Upon finding a symbol in the
location field, the assembler p I ace s this symbol with its location in its internal
symbol dictionary. Further references to this symbol then will yield its location.

An asterisk in the first column of the location field indicates that all subsequent
information in that statement is to be treated as a remark.

3-2

u

o

Example:

Location Opcode Address Comments

* THESE LINES WILL BE PROCESSED AS A REMARK AND
* APPEAR ONLY ON THE LISTING. THEY DO NOT GENERATE
* ANY MACHINE CODE.

START

3.2.1

Symbols appearing in the location field corresponding to certain pseudo instruc
tions are meaningless. These will be discussed under the section dealing with the
pseudo instructions. A n u mer i c entry into the location field is allowed for one
pseudo instruction only, the NAM pseudo instruction.

3.2.2 Opcode Field

In this field, machine instruction m n e m 0 n i c s or pseudo instructions or macro
names (if the macro assembler is used) are placed. The machine mnemonics will
be decoded by the assembler with the appropriate machine codes generated. The
pseudo instruction will produce act ion by the assembler and may not, for some
pseudo instructions, generate any specific machine instructions. Macro names
will be discussed in Chapter VII.

Example:

Location

START
]
I
I
j

3.2. 3 Address Field

Opcode

NAM
I
1
i

-LDA
J
I
~

Address Comments

NAM is a pseudo
instruction

LDA is a machine
mnemonic

The operands used in the address field are:

Symbolic
Numeric
Asterisk
Special Characters (A, Q, M, 0, I, B)
Combination of above special characters joined by arithmetic

operators (address expression)
Null (absence of operand)

Symbols used in the address field either alone or in an expression, must be legally
defined. Besides appearing in the location field, symbols can be defined as being
names in the address field of certain pseudo instructions.

3-3

3.2.3

Numeric operands in the address field can be either decimal or hexadecimal. To
distinguish between the two, a $ sign would precede the hexadecimal number (1234
is a decimal, $1234 would be hexadecimal). The range of decimal numbers must
be.± 32,767. The range for hexadecimal numbers is.±. 7FFF. Expressions are
formed by the combination of either symbolic or numeric operands with addition,
sub t r act ion, multiplication or division operators (+, -, *, /). Nesting is not
allowed. The expression is scanned left to right with divisions and multiplications
done first and a second scan left to right for addition or subtraction. An expres
sion e val u ate d as a constant in the address field may be used only with the =X
form of constant, not =N.

Example:

Location
I

TAG1
I

TAG2

Opcode
I
I
I

LDA

Address
I
I
I

TAG1+6*$1C/4
I

Comments

If TAG1 is at location 10316,

1st) 6 x 28 = 168

the expression is evaluated:

2nd) 168 i 4 = 42 = $2A
3rd) 0103 + 2A = 012D, then the contents of cor e location 012D16 is loaded into

the A register at run time.

The asterisk can be used in the address field to also specify the current location
of the program counter w hen the instruction is assembled. If the instruction is
two words long, the as t e r is k specifies the first word of the instruction. Even
though the asterisk is also used in the address field as a multiplication sign, the
logical use of the asterisk for both processes will not conflict.

Example:

Location Opcode
I I

TAG LJ?A
I I I

I I
I I

TAG1 LDA

Address
I

*-2
I
I
I

**2

Comments

Will load A with contents
of the core location 2 be
fore TAG.

The first * refers to the
1 0 cat ion of TAG 1, the
second * is for multipli
cation.

The special symbols Q, I andB are used with the storage reference instructions
to refer to index registers. Q refers to Q register index modification, I refers
to the contents of location FF to be used as an index register, and B would specify
both the Q register and location FF to be add e d to the base~ address to form the
effective address.

3-4

(
'-..... /

c·

Example:

Location Opcode
I

LDA
I
I
I
I

Address
I

TAG, I
I
I
I
I
I

LDA TAG,Q
I I
I I

LDA TAG,B
I I
I I

3.2.3

Comments

The contents of core lo
cation FF are added to
TAG to produce the ef
fective address.

Sam e as abo v e, but Q
register is used.

Both Q and I are adde d.

The address fie 1 d for any of the interregister instructions requires either A, Q
or M registers as a destination.

Example:

Location Opcode
I

AAQ
I
I

TRA
I
I

Address
I

A,Q
I
I
I

A,Q,M
I
I

Comments

Add A to Q and put re
sults in A and Q

Transfer A to A, Q and
M registers

For the interregister instructions, A, Q and M, refer to the registers A, Q and M.

3.2.4 Comment Field

This field is used for remarks that are printed as part of the list output. Entries
in this field do not produce any machine code.

If it is desired to put a comment on an instruction which does not have an address
field (i. e. , SLS) it is advisable to put a 0 in the address field, before the comment
begins, to eliminate an assembly error message.

i. e. , SLS
SLS 0

~. 3 ASSEMBLY LISTING

COMMENT
COMMENT

incorrect
correct

The assembly list consists of 18 columns of descriptive information related to the source
statement, followed by a maximum of 80 columns listing the source statement.

3-5

Column

1-4

5

6

7-10

11

12-15

16-17

18

19-98

Contents

line number; truncated to 4 deoimal
digits

space

relocation designator for location

P program relocation
D data relocation

location in hexadecimal

space

machine word iIi hexadecimal

relocation designator for word

space

P program relocation
- P negative program relocation

C common relocation
-C negative common relocation

D data relocation
- D negative data relocation

X external
blank absolute

input source statement

SYMBOL TABLE A table containing the location symbols, 10 cat ion s, and relocation
values is printed at the end of pass 3 if the L option is selected. For
mat of the symbol table:

Column Contents

1-6 symbol name
9-12 location
13 relocation of location

15-20 symbol name
23-26 location
27 relocation of location

29-34 symbol name
37-40 location
41 relocation of location

The columns not specified above contain spaces.

3-6

, '----........

',-..... ,

(\,

3.3

Figure 11. Sample Assembly Listing

0001
0002

Line Number

Location (relative to beginning of program)

Contents of Location (hexadecimal code
of instruction)

NAM SOURCE
ENT START

0003 POOOO 0000 START 0 0
0004 POOOi C400

POO02 OOOG P
0005 POO03 GOFF
0006 POO04 1400

POO05 8000 P
0007 POO06 0010 X
0008

\

I OOFF' ,START

LNumber of errors
would appear here

Appendix D contains error messages.

LDA + X

STA- I
JMP+ (START)

NUM $10
END START

I v

+ Input Source Statements

OOOOP X 0006P

Symbol Table -----'

3-7

(J

II

CHAPTER IV

BASIC 1700 INSTRUCTION FAMILIARIZATION

o

CHAPTER IV - Basic 1700 Instruction Familiarization

0 TOPIC PAGE

4.1 LDA, STA, ADD Assuming Data Available 4-1

4.2 LDA, STA, ADD Using Preset Data 4-1

4.3 LDA, STA, ADD Using Preset Data to 4-2
lllustrate Looping

4.4 STQ and MUI Instructions 4-2

4.5 LDQ and DVI Instructions 4-3

4.6 JMP and RTJ to lllustrate a Subroutine 4-3

o

4.1

c) 4.1 LDA, STA, ADD ASSUMING DATA AVAILABLE

The Load A (LDA) instruction replaces the contents of the A Register with the contents of
the referenced m e m 0 r y location. The contents of the memory location is not changed.

The Store A (STA) instruction replaces the contents of a referenced memory location with
the contents of the A Register. The contents of the A Register is not changed.

The Add to A (ADD) instruction forms a 16-bit sum of the contents of the A Register and
the contents of the referenced memory location and p I ace s this sum in the A Register.
The contents of the memory location is not changed.

Problem: Replace the contents of location SAVE with the sum of the contents
of locations SAVE and DATA, assuming that both locations con
tain legal data.

Location Opcode

LDA

ADD

STA

4.2 LDA, STA, ADD USING PRESET DATA

Address

DATA

SAVE

SAVE

The NUM instruction c rea t e s a table of constants listed in the addres s field behind the
instruction. If a Label is given, it is assigned to the first value.

The BSS pseudo instruction reserves a segment of core to be used for any purpose. The
data contained is unknown at load time.

The BZS pseudo instruction reserves a segment of core to be used for any purpose and
fills this area of core with all zeroes.

Problem: Add zero to the contents' of location TAG and store the res u I t in
location TAG2. Locations TAG and TAG2 should then be equal.

Location

TAG

BEGIN

Opcode

NUM

BZS

BSS

LDA

ADD

STA

4-1

Address

$423

TAGl(l)

TAG2(1)

TAG

TAGI

TAG2

4.3

4.3 LDA, STA, ADD USING PRESET DATA TO ILLUSTRATE LOOPING

The Skip if A is Zero (SAZ) instruction checks the contents of the A register. If A is all
zeros, the program skips to a prestated location up to 16 locations forward, (never back
ward). If not, program control goes to P + 1 (the next location).

The Skip if A is Positive (SAP) instruction checks the uppermost bit of the A register. If
this bit is "0" (positive), program execution will skip to the specified location up to 16
locations forward, (never backward). If not, the program will continue at P + 1.

The Skip if A is Minus (SAM) operates identically to the SAP instruction except that the
uppermost bit of the A Register is checked for a "1", indicating a negative quantity.

Problem: Add 2116 to each of the quantities in a r ray TAG1 and then store
these new numbers at array TAG2.

Index Register I will be used for con t roll in g the loop. It starts at 4 and progresses
through 3, 2, 1, 0, then the loop ends when it turns negative.

Solution:

Location

TAG1

TAG3
ONE
SAVE

BEGIN

LOOP

DONE

Ope ode

NUM
NUM
BSS
NUM
NUM
NUM

LDA
STA
LDA
ADD
STA
LDA
SUB
STA
SAZ
JMP
SLS
END

4.4 STQ AND MUI INSTRUCTIONS

Address Comments

$4152,$0431,$0210
$12F3, $F201
TAG2(5)
$21
$0001
$0004

SAVE
$FF 4~FF for loop control
TAG3 1st no. ----- A
TAG1, I (A)+(TAG1 +(FF» ---. A
TAG2, I (A) ~ TAG2+(FF)
$FF
ONE Subtracts 1 from A
$FF
DONE-*-l Skip to DONE if (A) = 0
LOOP
0 Stop Instruction

The S tor e Q (STQ) instruction replaces the contents of the referenced memory location
with the contents of the Q Register. The contents of Q are unchanged.

4-2

t'?""- "-

4.4

U The Multiply (MUI) instruction forms a 32-bit pro d u c t of the contents of A (multiplier)
and the contents of the referenced memory location (multiplicand) and places the product
in the QA Registers. The contents of the memory location is not changed.

o

Problem: Multiply the contents of MEMbythe quantity 2016 which is currently
in A. Store the results of A in memory location A and the results
of Q at memory location Q.

Location Opcode

MUI
STA
STQ

4.5 LDQ AND DVI INSTRUCTIONS

Address

MEM
A

Q

Comments

The Load Q (LDQ) instruction places the contents of the referenced memory location into
the Q register. Contents of memory are unchanged.

The Divide Integer (DVI) instruction divides the 32-bit QA Register by the contents of the
referenced memory location. The contents of memory are not changed. Q will contain
the remainder and A the quotient.

Problem: Divide 4528
16

by the contents of location SAVE

Solution:

Location

SAVE
TAG1
TAG2

Opcode

NUM
NUM
NUM
LDQ
LDA
DVI

Address

$0025
$4528
$0000
TAG2
TAG1
SAVE

4.6 JMP AND RTJ TO ILLUSTRATE A SUBROUTINE

Divisor
Dividend

Clear Q
Get dividend
Answer is in A

The Jump (JMP) instruction causes a program sequence to terminate and initiates a new
sequence at a specified location.

The Return Jump (RTJ) instruction is a jump enabling the progralll to begin execution in
a new location and, by storing a return address, return to the next ins t r u c t ion in the
program sequence.

Problem: During the main pro g ram sequence, skip to a routine to clear a
storage area, and ret urn to the location which the program left.

4-3

4.6

Location Opcode Address Comments \,-j

LDA NAME
STQ SAVE
RTJ CLEAR Lea ves P+2 in CLEAR.

I Program Control given

I to LDA TAGY.
I

SLS
CLEAR 0 0 Return address placed

LDA TAGY here.
STA TAG2 Clear location(s)

I

I
JMP (CLEAR) Will return control to the

I SLS instruction.
I
I

TAGY NUM 0
TAG2 BSS TAG2(1)

4-4

CHAPTER V

1700 MACHINE INSTRUCTIONS

o

/-

r-----
I
1,,--.. /

('
~. --

CHAPTER V - 1700 Machine Instructions
f'-

~) TOPIC PAGE

Introduction 5-1

• 5.1 Storage Reference Class 5-1
5.1.1 Addressing for Storage Reference Class 5-3

Instructions
5.1.1. 1 Constant Mode 5-3
5.1.1.2 Absolute: One Word 5-7
5. 1. 1. 3 Absolute: One Word Indirect 5-8
5.1.1.4 Absolute: Two Word 5-8
5. 1. 1. 5 Absolute: Two Word Indirect 5-9
5.1.1.6 Relative: One Word 5-10
5. 1. 1.7 Relative: One Word Indirect 5-12
5. 1. 1. 8 Relative: Two Word 5-12
5. 1. 1. 9 Relative: Two Word Indirect 5-13
5.1.1.10 Review of Addressing Modes 5-13
5.1.1.11 Indexing 5-13
5.1.2 Instructions in the Storage Reference Class 5-18
5.1.2.1 LDA, LDQ, STA, STQ, and SPA Instructions 5-18
5.1.2.2 ADD, ADQ, SUB, MUI and DVI Instructions 5-19
5. 1. 2. 3 AND and EOR Instructions 5-20
5.1.2.4 JMP and R T J Instructions 5-22

0 5.1.2.5 RAO Instructions 5-2!t
5.1.3 Execution Times 5-25

• 5.2 Skip Class Instructions 5-27
5.2.1 A and Q Skip Tests 5-27
5.2.2 Skip Switch Tests 5-28
5.2.3 Overflow Skip Tests 5-28
5.2.4 Parity and Program Protect Indicator Tests 5-29

o 5.3 Shift Class Instructions 5-32
5.3.1 Timing for Shift Class Instructions 5-33

o 5.4 Interregister Class Instructions 5-35
e 5.5 Register Reference Class Instructions 5-41

5.5.1 Instructions ENA, INA, ENQ and INQ 5-41
5.5.2 Instructions SPB and CPB 5-42
5.5.3 Instructions EIN and IIN 5-43
5.5.4 Instructions INP and OUT 5-44
5.5.5 Instructions SLS and NOP 5-44

• 5.6 Exercises 5-49
5.6.1 Exercises on Constant Mode of Addressing 5-49
5.6.2 Exercises on Absolute Mode of Addressing 5-49
5.6.3 Exercises on Relative Mode of Addressing 5-50
5.6.4 Exercises on Indexing 5-50
5.6.5 Exercises on Shift and Skip Instructions 5-51

C~.\I
5.6.6 Review Exercises 5-52

.... - .",.'

.j

L)

C)

INTRODUCTION

There are five classes of instructions in the 1700. They are:

Shift Class Instructions
Skip Class Instructions
storage Reference Class
Register Reference Class Instructions
Interregister Class Instruction

5.1

Only the storage reference cIa s s uses core for operands. Instructions in all classes other
than storage reference class are one word instructions and take 1. 1 microseconds to execute
with the exception of the shift clas!3 instructions whose execution time depends on the number
of bits shifted, and INP and OUT instructions. Refer to Appendix B for instruction execution
times, or to section 5. 1. 3.

5.1 STORAGE REFERENCE CLASS

Of the five classes of instructions in the 1700, only this group uses core for operands.
This means, then, that the instructions in this group are the only ones that are address
able. Because of the limitation of 16 bits in an instruction word to implement the ability
to reach any core location from any other core location, two-word instructions are used.
One-word instructions are available for addressing either absolute core blocks or within
a fixed range of core locations from the instruction. The format for these instructions is:

Address Mode

15 12 1~11----1-:--9--~~ 7 o
first word: , Fir lind , q I i , ~ I

, Instr¥ction 'J I G D¥1ta
Relative I Index Register Flag
Address Flag

Q

,

Indirect Address Flag ~--Index Register Flag
(ind.)

second word: M

~ is not zero for one-word instructions.
fl is zero, and M contains the operand (or operand address) for two-word instructions.'

The instructions are defined by the F field and will be discussed 1 ate r. The rest of the
format word deals with various ways of addressing the instruction; this will be discussed
first.

5-1

5.1 Figure 12. Address Modes for Storage Reference Class Instructions"

ADDRESS MODE

15 12 11 10 9 8
first word:

7 o
6. I: 0 for one-word instructions
6. = 0 for two-word instructions

Relative I Index Register Flag
Instructi(3'n J J t t Delta

Address Flag L... ______ Q Index Register Flag
Indirect Address Flag
(ind)

second word:

Name

Constant

One-Word Absolute

One-Word Abs. Ind.

Two-Word Absolute

Two-Word Abs. Ind.

One- Word Relative

One-Word ReI. Ind.

Two-Word Relative

Two-Word ReI. Ind.

M

Assembly Language
, Desi~tor ,
Opcode Address
Terminator Field

+

+

*

*

=N
=X
=A

()

()

()

()

Operand
Address

P+1

M

(M)

P+ 6.

(P+6.)

P+1+M

(P+1+M)

CC45

C800
0044

CCOO

0044

LDA* (BUFADR) Loc BUFADR contains addr of operand; operand
in BUF--'A; BUF ADR is wit hi n 12710 locs of
LDA instr.

LDA BUF

LDA (BUFADR)

Contents of loc BUF --.A; BUF is any distance
from the LDA instr.

Loc BUF ADR contains addr of operand; operand
--.A; BUF ADR is any distance from the LDA
instr.

*If the buffer is 4516 locations in the positive direction from this instruction

5-2

/' ..,

\,,,,,,,..-

5.1.1

L. 5. 1. 1 Addressing for Storage Reference Class Instructions

Figure 12 illustrates the various ways of addressing storage reference class in
structions. The combination of the r, ind, and b. bits determines the mode of
addressing used. Because of the limitation of 16 bits in an instruction word, some
modes of addressing require two words to reach all parts of core. A brief glance
at this chart shows a direct correspondence between two-word instructions and the
bit content of b.. When ~ (bits 0-7) in the instruction word is all 0' s, two con
secutive core words are used as a single instruction. Also, there are only three
main t y pes of addressing: constant, absolute and relative. Within the absolute
and relative types are one and two-word va r i e tie s and also one and two-word
indirect types. Listed also in this table are the proper assembly language desig
nators necessary to tell the assembler the exact mode of addressing desired. In
direct addressing is specified by parentheses enclosing the address field contents.
This table ignores man i p u I a t ion s with the index register since index register
modification is common to all modes of addressing. This fig u regives only the
base address for each mode. The base address must be found before index register
modification 0 c cur s even when indirect addressing is specified. In each of the
indirect addressing modes notice that the base address is specified as the contents
(the use of parentheses around the address specifies the contents of) of its corres
ponding non- indirect mode. This means that for indirect addressing a fur the r
search is made into the addressed core location to find the base address.

C~~~~ 5. 1. 1. 1 Constant Mode

This mode of addressing is used where an operand is lmown to the programmer,
that is, he is using a constant. This mode of addressing utilizes two words.

The first word of the instruction is specifically the instruction itself, the mode of
addressing for this example is constant, and the unused bits in this word will be
set to zero. This arrangement is illustrated below:

15 ---------------:.~ Bit ~I------------------ 0
I F 0 0 q I 0 0 0 0 0 0 0 01

t LInd=O L-il =00
R=O

The upper four bits signify the actual instruction. This field is called the F field.
The next four bits, that,is, bits 8, 9, 10 and 11, are used to signify the mode of
addressing for the instruction. Also, bits 8 and 9 will signify indexing, where
bit 8 signifies index register I which is core location FF, and bit 9 will indicate
indexing with the Q register. For the constant mode of addressing bit 10, which
is called the indirect bit, is a zero and bit 11, which is called the relative bit, is
also a zero. For our example here, we will assume no indexing used, therefore
bits 8 and 9 will be o. The lower eight bits, that is bits 0-7, are called the il
field, and for constant mode of addressing all these bits are O's.

5-3

-5. 1.1.1

The combination of the ~ field, the indirect bit and the relative bit are indicators ,'--
to the machine of the mode of addressing used. Note for constant mode the field '-__ ,/
is all 0' s, the indirect bit is a 0 and the reI a t i v e bit is a 0, signifying cons tant
mode of addressing.

Numeric constants. This form is for numbers.

Example:

LDA =N$407F

This con stan t mode instruction written in assembly language will generate two
machine words of code:

at P
P+1

COOO
407F

The operand itself is placed in the second word, so the base address is P+l, the
second word of the instruction.

The =N in the address field signifies to the assembler the constant as numeric (a
number). The number can be either decimal or hexadecimal (in which case it is
preceded by the dollar sign). The res u 1 t of the above example is to load into A
the number 407F16.

Example:

LDA =N256

The decimal number 256 would be converted and the following code generated:

Illegal example:

at P
P+l

LDA

COOO
0100

=N$100+$27

An error message would result because address arithmetic (+) is not allowed with
the =N form of constant addressing.

Address constants. This form is for 15-bit addresses and address arithmetic on
numbers.

Example:

LDA =XTAG

The =X in the address field signifies that TAG is a symbol. The assembler sub
stitutes the value in its symbol d ire c tor y for the symbol and puts this value in
P+l. If, for example, TAG is a location symbol at address 100 in the program,
the following code is generated.

5-4

..... _/

if"

r--- .
I

\..J' at P
P+1

An expression can also be used:

LDA

COOO
0100

=XTAG+10

This will put the address of TAG+10 in the code:

at P
P+1

COOO
010A

5.1.1.1

The =X form of add res s cons tants is the correct way to allow numeric address
arithmetic:

ADD =X$34F2-022+$lA

will generate code to add to the contents of the A register 34F616•

at P
P+1

1)000
COOO -
34F6

Even though the result of the expression in the address field is a constant, the =X
form must be used rather than =N because an expression is not allowed with =N.
LDA =X$100+$27 would be legal and would generate:

at P
P+1

COOO
0127

In address expressions only a 15-bit constant will be produced so note that

will generate

LDA

at P
P+1

also, with numbers:

will generate

LDA

at P
P+1

=X-TAG

COOO
7EFF

=X-11

COOO
7FF4

(not FEFF)

This feature of the assembler can well be utilized in sophisticated coding.

ASCII constants. This form is for alphabetic and numeric characters.

Example:

LDA =AXY

5-5

5.1.1.1

The =A means that the alphanumerics following (only 2 allowed) are to be converted
to their ASCII 8-bit code. (See Appendix E.) The first alphanumeric (X in this ',-_,
case) ASCII code is placed in the high order 8 bits of P+ 1, and the second ASCII
equivalent is placed in the lower 8 bits. The code will be:

at P
P+1

COOO
5859

A blank is a character in the ASCII form:

LDA

will generate the code:

at P
P+1

=A X

COOO
2058

ASCII will be discussed in detail when 110 is discussed.

Examples:

COOO LDA =N$1000 Get 100016 into A register
1000

COOO LDA =N200 Get 20010 into A register
00C8

COOO LDA =XDATA Get address of DATA P0500
0500 into A register

COOO LDA =XDATA+5 Get address of DATA+5 into A
0505 register

COOO LDA =X-$100 Get 15-bit negative of 10016
7EFF into A register

COOO LDA =AX Get ASCII cons tant X into A
5820 register

5-6

r- --,

5.1.1.2

l...; 5.1.1.2 Absolute: One Word

f',
I
. ___ .J

As was mentioned before, there are both one-word and two-word instructions for
the Storage Reference Class. Let's examine the absolute mode of addressing in
its one-word form. The format for this mode of addressing is:

Bit
15------------------------~~ ~4~----------------------------- 0
I F ~ 0 I 0 I Q 1'- I I !:!l I

Instructiot ~
Relative bit = O~
Indirect bit is 0

fl is a non- zero

The F field remains the same as in constant mode, that is, it signifies the type of
instruction within this class used. The relative bit and the indirect bit are also
O's for this class. However, ~ is non-zero (See Figure 12). It may have been
noticed now that this one-word type instruction has !:!l non- zero w her e the con
stant mode example had ~ as zero and was a two-word type. The actual value in
~ will be the absolute address. Notice the size of fl. It is only eight bits which
means that the range of n u m be r s in hexadecimal is from 01 to FF. In d~cimal
this gives a range from 1 to 255. This is the limitation on this mode of addressing.
Its advantage is its one-word length. To imp I e men t this absolute region from
core location 01 to FF, all operating systems for the 1700 deJine this area as being
the Communications Region. In this region are placed all system masks and all
references to other points in the system allowing quick access through this region
with this mode of addressing.

Example:

START LDA
STA-

$21
$EC

The contents of location 2116 in the absolute communications region is moved to
core location EC16. The minus sign as an opcode terminator signals the assem
bler to form a one-word instruction with the -!:!l field set to the address. The
example above generates two one-word instructions:

Example:

LDA
STA-

C021
60EC

=NO
$FF

This e x amp I e clears index register I. Since I is core location $FF which is in
the communications region, all references to I will use a b sol ute one-word ad
dressing.

5-7

5. 1. 1. 2

The base address, for one-word absolute mode of addressing cannot be 0 since a "' ____ ,
delta of 0 results in a two-word instruction at run time.

Example:

LDA- $4F-$50+1

This results in base address of 0 which is an assembly error. The base address
must be 01 to FF at run time.

5.1.1.3 Absolute: One Word Indirect

This mode of addressing is the indirect version of the a b sol ute one-word. Its
format, then, will be the same as for one-word a b sol ute; however, bit 10 (the
indirect bit) is set. Its base address, then, is not ~ but the contents of ~ and
further, if the high order bit of the contents of ~ is a 1 then the indirect search
will continue. This mode of addressing is extensively used where locations in the
communications region contain addresses of other programs. The reference to
these other programs is made by the use of the one-word absolute indirect mode
of addressing through the communications region.

Example: Assume location E6 in the communications region always contains the
address of a desired routine. The routine can then be en t ere d by:

JMP- ($E6)

5. 1. 1.4 Absolute: Two Word

Since it is necessary to be able to absolutely address any core location from any
other core location, it takes a second word for the absolute mode of addressing to
specify the absolute address. The format for a b sol ute two-word mode of ad-

dressing is: I(Iv lIB

P Flo IIIQ I I 10 0 0 0 0 0 0 0 I
\.-Address Placed

~--~
P+l M

r==O
ind == 1

!::J. == 0016

in P+l

Again, F will specify the particular instruction, ~ will be 0, the relative bit (bit
11) is 0, and the indirect bit (bit 10) is set. The second w 0 r d of the instruction
will contain the actual absolute address. Since the limit for allowable core in the
1700 is 32,767, only 15 of the 16 bits in the second word are u til i zed for this
absolute address. For absolute two-word bit #15 of the sec ond word will be o.

Cj

Example:

COUNT
START

o
LDA+

o
COUNT

5.1.1.4

The + opcode terminator signals the ass em b 1 e r that the base address must be
placed in P+ 1. The base address, then, is (P+ 1). Notice (Figure 12) that this is
really the indirect case for constant mode.

The address COUNT is placed in the second word. If the assembler's program
counter for COUNT is at 0033, then at 0034 the assembler would generate:

START

C400
D033

STA+ $7F32-41

The address is calculated as 7F3216-2916 or 7F09 and this address is placed in
the second word of the instruction:

At START location 6400
7F09

Example: Add 100010 to the contents of core location 1000.

LDA+
ADD
STA+

5.1.1.5 Absolute: Two Word Indirect

$1000
=NI000
$1000

With indirect addressing the base address does not contain the operand itself, but
rather this base address contains the address of the operand. Notice from Fig
ure 12 that two-word absolute is actually a case of constant mode indirect. Instead
of base address being P+ 1 as in constant mod e, the search is made into P+ 1 for
the base add res s. The indirect bit which is set for two-word absolute mode is
actually a case of constant mode indirect. Indirect addressing, however, can be
multi-level; that is the search may continue from address to address to find the
final base address. The continuation of this indirect search i~ accomplished each
time bit 15, the high order bit, of the base address is a 1 and the indirect bit (bit
10) is set. Using this high order bit of the address as an indirect flag is possible
since only the low order 15 bits of this address can contain another address. Since
the indirect bit is already set for the two-word absolute mode of addressing, the
use of parentheses in the address field for this mode of addressmg will cause bit
15 of the second word to be set. This forms two-word absolute indirect mode of
addressing.

Example:

TAG
START LDA+

Assume TAG contains 0400
(TAG)

5-9

5.1.1.5

If TAG is at the absolute location 0301, this code is generated:

302
303

C400
8301

The high order bit of 303 is set. The contents of 303 is examined at run time and
since the high order bit is set, the search for a base address continues. The con
tents of 301 is brought out, and if the high order bit is a 1, the search would con
tinue; in this case, however, the high order bit is a 0, so 400 is the base address.
The effect of this instruction, then, is to load A with the contents of 0400.

Example: Assume the following values in core:

Core

500
501

400F
4010

Value

C400
COlO

3407
8501

If the contents of core location 500 were executed as the first word of a two-word
instruction, the computer would be in an endless loop searching for an address.
The instruction at core location 500 is:

LDA+ ($4010)

Since this is two-word absolute indirect, the sea r c h continues to core location
4010 for an address. Bit 15 is set in core location 4010, so the search continues
to 501, then back to 4010, etc. This condition is catastrophic, of course, but it
illustrates the fact that the search for an address will continue until bit 15 is a 0;
then this cell contains the base address.

5.1.1.6 Relative: One Word

.~ There are two types of relocation associated with programs. One is called pro
gram reI 0 cat ion which means that the assembler begins the assembly with its
program counter equal to zero so that this program, when it is loaded into core
by the relocating linking loader, can be relocated anywhere. This program re
location is strictly a function of the assembler and the loader. This ability allows
the program to be loaded anywhere into the core and run. Once loaded, the ability
to take the same program and move it from one area of core to another and the
program still run, is not a function of the loader. This type of relocation is lmown
as dynamic relocation or "run anywhere". In process control programs, generally
many pro g ram s are put on a mass storage device with a common area of core
allotted for running these programs at any time. To allow pro per allocation of
this core area the programs on the mass storage device should be run anywhere
so they can fit into space available in the common area rather than in a particular

5-10

('

U

/"-"',
'\ ,

\,. -.... , ...

5. 1. 1.6

area of the common core. Achievement of run anywhere programs is the result
of the use of the relative mode of addressing in the 1700. For the one-word rela
tive mode of addressing /:::,. will contain a signed increment that when added to P
will yield the base address. The base address is made relative to P or where the
program instruction presently is so that if the whole program is moved, the same
reI a t i v e distance is maintained between instructions I data and the base address
found in exactly the same manner, since P is variable. The format for the one
word relative commands is:

F 11 0 Q I I Contains signed 8-bit
increment

The limitation for this one-word relative mod e of addressing is the size of /:::,..
Since I::l is 8 bits and s igne d, the range from P is +7F to 80 (-7F), or ±12710•

Example:

LOOP
I • I! Ii'"

(J j / J

-- J { I i f I () ,1

JMP* LOOP

If the JMP instruction !s -12710 locations back or less, the one-word relative form
can be used (and is pre fer red). Assume the program counter is at 010016 for
LOOP and at 014316 for; the JMP instruction, then the JMP instruction decodes at:

18BC Note: !J. is BC which is -4316 in 8 bits.

The * opcode terminator is used to sign if y to the assembler one-word relative
mode of addressing.

Example: Consider the same bas i c structure but coded absolutely, then rela
tively. Assume the distance from LOOP to LAST is less than 12710•

a) LOOP

LAST JMP+ LOOP

b) LOOP

LAST JMP* LOOP

For a) above, the routine could not be moved to another core location once loaded
because with two-word absolute used with the JMP instruction, the absolute ad
dress placed in the second cell would cause a jump back to the original location
of LOOP. But in case b), the incremental difference placed in /:::,. for JMP* LOOP,
and since the distance between LOOP and LAST will not change if the whole routine
is moved, the program will jump to the new location of LOOP. b), then, is "run
anywhere" where a) is not.

5-11

5. 1. 1.7

5. 1. 1. 7 Relative: One Word Indirect

This mod e of addressing is an extension of the one-word relative to the indirect
mode; the relative bit is set, the indirect bit is set, and b. is non-zero (see Fig
ure 12). With the base add res s found as in one-word relative (P+ b.) a further
search is made in this address location for the base address. The indirect bit is
set and the search will continue if the high order bit in the contents of P+ l:l con
tains a one.

Example:

ADDR

JMP* (ADDR)

Contains an address
Assume 0600.

For this example ADDR must be within 12710 of the JMP instruction and ADDR
contains the address, 0600, to which control will pass. This r 0 u tin e jumps to
location 600 and continues program execution from there.

5.1.1. 8 Relative: Two Word

Two-word relative mode of addressing is used when the difference bet wee n the
instruction and the address is greater than the limitations imposed by one-word
relative, that is greater than :!:12710. Two words are necessary and in the second
word of the instruction is placed the difference between that word and the address.
The base address is then P+1+M where M is the contents of P+1.

Example:

LOOP ==)------------l~ .. Assume PC-0100

. More than 12710

JMP LOOP -----t~ •.. Assume PC-0400

Two word relative mode of addressing is used here since the difference between
the JMP instruction and LOOP is greater than -7F. The above JMP LOOP would
decode as:

400-
401-

1800
FCFE

Notice that the difference between P+1 and LOOP is placed in P+1.

5-12

o

5. 1. 1. 9

5. 1. 1. 9 Relative: Two Word Indirect

This mode of addressing is the extension of the two-word relative to the indirect
mode; the relative bit is set, the indirect bit is set and ~ =00 since this is a two
word instruction. With the base address found as in two-word relative, a further
search is made in this address location for the base address. The base address
is then (P+l+M). The search will continue if the high order bit of the contents of
P+l +M contains a one since the indirect bit is set.

Example:

AD DR

JMP (ADDR)

Contains an address
Assume 0600.

ADDR can be any distance from the JMP instruction and ADDR contains the ad
dress, 0600, to which control will pass.

5. 1. 1. 10 Review of Addressing Modes

A cross check back through Reference 1, Appendix A, page 3-4 will show that the
Computer Reference Manual describes the s tor age reference class as having 7
modes of add res sin g. A count from Figure 12 here shows 9 distinct modes of
addressing. Although a seeming conflict exists, there is really none. From the
viewpoint of basic machine language, there are only 7 modes since two-word
absolute indirect to the basic machine is nothing more than an extension of two
word absolute in the in d ire c t mode and both relative modes can be grouped to
gether as one. When considering the manner in which the pro g ram mer must
specify the different modes to the assembler, there are 9 different combinations
as described. Some of the terminology also differs between this training manual
which essentially follows the terminology of the assembler manuals and the ter
minology used in the computer reference manual. The basic difference in ter
minology is:

S tor age Mode is the same as Two-Word Absolute
Absolute Mod e is the same as One-Word Absolute
Indirect is the same as One-Word Absolute Indirect
Relative Mode is the same as One-Word Relative
16-Bit Relative is the same as Two-Word Relative.

5.1.1.11 Indexing

Two index reg i s t e r s are available, the Q register and the I register which is
actually core location FF. The contents of these registers can be used to modify
the base address to form an effective address. This indexing, or address modi
fication is a c com pi ish e d simply by adding the contents of the specified index

5-13

5.1.1.11

register (either Q or I or both) to the base address. If indirect add res sing is \~ .. /
s p e c if i ed, the search is made to find the final base address before indexing is
done. This simplified flow chart illustrates this:

Get
Base
Address

Yes
Add Q
to Base
Address

Get Contents
of Base Ad
dress

Add I to This is
Yes

)----tptBase Ad- J---.r---I. Effective
dress Address

The use of in d ex in g is wide-spread principally for forming repetitive loops for
the type of work that would otherwise require an inordinate amount of repetitive
programming.

Example:

Suppose the problem is to add together a series of numbers located in consecutive
memory locations 1000 thru 1002 and then store the result into a location called
TEMP. This routine would accomplish the additions:

TEMP 0 0 Reserve Temporary Lo-
START LDA+ $1000 cation

ADD+ $1001
ADD+ $1002
STA* TEMP

If the series of numbers to be added was much longer, however, the length of the
program, due to the number of ADD instructions, would be prohibitive. The same
problem, with the numbers to be added in core 1000 thru 2000, ignoring overflow,
and with the instructions covered so far would be solved with an in de xed loop:

TEMP
START

LOOP

DONE

0
LDQ
LDA+
ADD+
ADQ
SQZ
JMP*
STA*

0 Reserve temporary loc.
=X$2000-$1000 Difference in Q
$1000
$1000,Q
=N-1 Decrease Q by i
DONE~*-l Finished?
LOOP No
TEMP Yes

5-14

('
" I

~-~ ,-.. ,

('--..-.-)

5.1.1.11

Here, Q is set up as the index register used. The, Q in the address field signifies
Q register indexing, and the assembler will set bit 9 in this instruction word. Q
contains initially the difference between the lower and upper core locations of the
numbers to be added. For each pass through the loop, Q is decreased by 1 allowing
the next lower core location contents to be added in turn. The sequence of addition
is: (1000) from the LDA instruction, (2000) from B.A. * of 1000 +Q which is
initially 1000, (lFFF) from B. A. of 1000 +Q which is now 1 less or OFFF,
(lFFE)---, till (1001). When Q is decreased to 0, the SQZ instruction skips out
of the loop.

If Q were not available at this point in the program, I could be used:

TEMP 0 0 Temporary storage
START LDA =X$2000-$1000

STA- $FF Index Register I
LDA+ $1000

LOOP ADD+ $1000,1
STA* TEMP
LDA- I Can use either I or $FF
ADD =N-1
STA- I
SAZ ENDIT-*-1
LDA* TEMP
JMP* LOOP

ENDIT Result is in TEMP

The , I in the address field signifies to the assembler that I register indexing is to
be used and bit 8 in the machine language word is set.

I cannot be manipulated as easily as Q. TEMP is used to store the partial results
of the adds when the A register is used to manipulate the contents of the index
register I.

The ,B in the address field signifies to the assembler that both Q and I indexing
are to be used.

The use of Q as an in d e x register does not increase the execution time, but use
of I indexing takes 1.1 microseconds longer.

*Base address

5-15

5.1.1.11

Addressing Problem

Given are contents of the index registers and some core I 0 cat ion s.
Contents of any locations not shown is zero. What will the A register
contain after each instruction is executed?

(1)=0020
(Q)=0120

a. LDA+ $240 .
b. LDA + ($240)
c. LDA+ ($240), I
d. LDA+ ($1111),B

5-16

(A)=

(1000) = 0120
(0240) = 1234
(1234) = 02E:q
(0260) = 1111
(1254) = 2311
(1111) = 9000

."" .. ,~,

l , ,-"

........... --,.

01
I

J-l
-:]

/~---\

\ ~
(')
,---'

*
* STORAGE REFER~NCE

* F RIQI DELTA M
• (P)=**** **** **** **** . (P+l)=**** **** **** ****
• ~~~~ ~"" ++++ ++++,.,.
... """"~"""""r+~~~~ ++"r+""""~""" '" * ~ *MNE**OPERATION* + + "MODE* *SAO *OP**ADR*
... 1-

'" '" * 1 JMP EFAr+P 0 =00 CONSTANT* p+l =
* 2 MUI (EFA)X(A)r+QA 0 ~OO ABSOLUTE DEL.TA -.. 3 DVI (QA)/(EFA),.A.REM,.Q 4 =00 STORAGE M +
.. 4 STQ (Q),.EFA 4 =~O STORAGE INDTRECT (M) +
... 5 RTJ P+lv~"EFA,EFA+lr+P 4 ~OO INDIRECT (DELTA)
* 6 STA (A),.EFA 8 =00 LONG RELATIvE P+l+M
... 7 SPA (A)"EFA,PARITYr+A 8 _00 RELATIVE P+DELTA ..
* 8 ADD tA}+(EFl)'+-A C -=00 LONG REL14-TlvE INDtRFCT (P·.l +M) -()

* 9 SUB (A)-(EFA)r+A C ~OO RELATIVE INnIRECT (P+DELTA)* ()
... A AND (A)I\(EFA)r+A

'"
oEFA*

* 8 EOR (A)""t-< EF A) r+A +0 SA
.. C LOA (EFA)r+A +1 SA+(I)
* 0 RAO (EFA)+!,.EFA +2 BA+(Q)
... E LDQ (EFA),.Q +3 BA+(Q)+(I)
... F ADQ (EFA)+(Q),.Q
...

~

#'

...

...

... ..
*
~
...
oC$

~

*-
..-..
*
* ...
..-
... ..

/-- ;

~j

01 · J-l · J-l · J-l
J-l

5.1.2

5.1.2 Instructions in the Storage Reference Class

The instructions for the storage reference class are:

F F

1 JMP Jump 9 SUB Subtract from A
2 MUI Multiply A AND AND with A
3 DVI Divide Integer B EOR Exclusive OR
4 STQ Store Q with A
5 RTJ Return Jump C LDA Load A
6 STA Store A D RAO Replace Add 1
7 SPA Store A, Parity in Storage

to A E LDQ Load Q
8 ADD Add to A F ADQ Add to Q

Any of the nine addressing modes, plus indexing, can be used on all of these in-
structions.

5. 1. 2. 1 LDA, LDQ, ST A, STQ, AND SPA Instructions

These instructions are the basic load and store instructions. For the load instruc
tions, either LDA or LDQ, the contents of the effective address specified is loaded
into the registers, either A or Q, as per the specific instruction and the contents
of the storage I 0 cat ion are not altered. The STA and STQ registers store the
contents of the register into the effective address, replacing what was in this core
address with the information that was in the register. For the store instructions
STA and STQ, the original contents of the A or Q registers are not changed. The
SPA instruction is the same as the STA instruction with the exception that aft e r
the information from A is stored into the core address specified, A is cleared and
the parity of the original contents of A is returned to bit 0 of A. This parity bit
is the value that would be necessary to make the total number of bits of the original
contents of A plus this bit, odd. This par it Y bit is not necessarily the same as
the parity bit that will appear in core for this data word since core might contain
a program protect bit. In fact, this bit is the exclusive OR of the core parity bit
and program protect bit.

Any method of addressing may be used with these instructions.

Example:

Location Opcode

LDA

Address Comments

TAG

Contents of A is replaced by the contents of core location labeled TAG. The con
tents of TAG is not changed.

5-18

C··' "
j

c.

5.1.2.1

Location Opcode

SPA

Address Comments

TAG1

The contents of A (assume F2F7) is stored into the cor e location labeled TAG1.
Then A is cleared and the parity of the original contents of A is returned to A, bit
position O. The parity returned is 1.

5. 1.2. 2 ADD, ADQ, SUB, MUI and DVI Instructions

These instructions are the p rim a r y arithmetic instructions for the 1700. Data
from core can be add e d to the A register with the ADD instruction, or to the Q
reg i s t e r with the ADQ instruction. Data from core can be subtracted from the
A register with the SUB instruction. Notice there is no instruction for direct sub
traction from Q. These a r it h met i c operations can cause overflow (refer to
Chapter II, Section 4).

Example:

Location Opcode

LDQ
ADQ

Address

TAG
=N-6

Comment

Using Constant mode of addressing for the ADQ produced an effective subtraction
from Q. Q is loaded with the contents of core location TAG and the number -6 is
added to Q.

The MUI instruction will multiply an operand in core by the contents of the A reg
ister. Both of these operands are 16 bits long, producing a double length, 32 bit
pro d u c t in the Q and A registers. The Q register contains the m?st significant
portion of the product and the sign of th~ product and the A register contains the
least significant portion of the product. The MUI instruction cannot cause over
flow. The MUI instruction destroys the original contents of Q.

Example:

Location Opcode

LDA
MUI

Result is (Q register)=FFFF
(A register)=D891

Address

=N$FF31
=N$31

The result in the double length register then is -276E16•

Negative zero can be produced by the MUI instruction:

(+0) X (- N) = (-0)
(- N) x (+0) = (-0)
(-0) x (+N) = (-0)
(+N) x (-0) = (-0)

5-19

Comment

-$CE to A register
Multiply by 31

5.1.2.2

Division of integers is a c com pi ish e d with the DVI instruction. It divides the
double length QA register by the contents of a core location. The Q register must
contain the most significant portion and the sign of the dividend and A must contain
the least significant portion of the dividend. The signed quotient will be placed in
the A register and the signed rem a in de r will be placed in the Q register after
division occurs. The DVI instruction can cause overflow, if the quotient is larger
than 7 FFF in absolute value.

Example:

Location Opcode

LDQ
LDA
DVI

Address

=N$FFFF
=N$FFFO
=N$FFFA

Comment

=N in address field indi
cates CONSTANT MODE
OF ADDRESSING used.
The number following =N
is the operand.

This example divides -15 by -5. Notice that Q had to be set to extend the sign to
32 bits. Result is 0003 in A and 0000 in Q •.

5.1.2.3 AND and EOR Instructions

These instructions perform logical manipulation of data from the specified core
location with the contents of the Are g is t e r. The AND instruction performs a i------
logical product operation; its bit by bit truth table is:

A B A/\B - -
1 1 1
1 0 0
0 1 0
0 0 0

Example:

15 Bit 0
Operand 1-- 1111 0010 1001 0111

Operand 2 -- 0011 1111 1100 0000

Logical Product 0011 0010 1000 0000

The AND instruction is used to extract a certain field of bits. In the e x amp I e
above, a field from bit 6 through 13 is extracted from operand 1. Operand 2 con
tains ones in these bit positions and O's in the remaining bit positions to block out
the unwanted bits. Operand 2 is referred to as a mask.

5-20

5.1.2.3

Example: Examine bits 4 thru 7 of core location TAG for all zeroes.

Location Opcode Address Comment

LDA TAG Load (TAG) in A register
AND =N$OOFO AND with A Mask
SAZ YES-*-1 Test for zeroes
JMP NO

YES

The EOR logical instruction performs an ex c 1 u s i ve OR bit by bit. The logical
rules for an exclusive OR are:

A B A-¥B -
1 1 0
1 0 1
0 1 1
0 0 0

A 0 is produced as a result of a match between the two bits and a 1 is produced as
a result of a mismatch. This instruction is frequently used to test for a particular
bit pattern.

Example: Test for 10110 in bit positions 3 thru 7 of contents of core 10 cat ion
DATA.

Location Opcode Address Comments

LDA DATA
AND =N$00F8 Mask out all except 3-7.
EOR =N$OOBO Test for bits 10110
SAZ YES-*-1

YES

If the exact bit pattern 10110 was present in bit positions 3 through 7, all the bits
in both operands would match, and a positive zero will be in the A register and the
program will skip to YE S.

An instruction that performs an inclusive OR is not specifically available in the
storage reference class. The truth table for the inclusive OR is:

A
1
1
o
o

B
1
o
1
o

AVB
1
1
1
o

A 1 is produced if a 1 appears in either or both operands. Notice that the inclu
sive OR logical function can be obtained by the combination of the logical product
and exclusive OR functions.

5-21

5.1.2.3

Example: Form the inclusive OR bit-by-bit of the contents of core location AA
and BB.

Location Opcode

TEMP 0
LDA
AND
STA
LDA
EOR
ADD

Address

0
AA
BB
TEMP
AA
BB
TEMP

Comment

Logical Product AA & BB
Store Temporarily
Exclusive OR AA & BB

Combine them. Inclusive
OR is now in A.

5.1.2.4 JMP and RTJ Instructions

These instructions alter the path of program flow. JMP is an unconditional pro
gram branch to the effective address. The RTJ, besides branching control to
another core location, also provides the link by which control can be returned to
the instruction following the R T J instruction. This allows program flow from a
main program to a closed subroutine and back again to the main program. This
is illustrated below:

Main
Program

Main Program
__ ---A'---_
I ~

Ad dress Effective
Subroutine

P \ RTJ Address
,""'--

=002516
A

~00f5
I \

I 1 Computer
stores P+ 1 or

I I

P+2 here

2
P+1 ,

1st Instruction
of

I

Subroutine

I
~P+2 ! 3 5 •

Next to Last
6 Instruction

of Subroutine

4

Indirect
JMP Address

=002516

I

5-22

0

(~
.. I

\ ~ .. ,' ...

5.1.2.4

The subroutine is structured with its first location left open to allow the address
(P+l or P+2) to be placed by the RTJ instruction. Program control is then given
to the second cell of the subroutine. By using a jump indirect through the first cell
as the last instruction in the subroutine, program control will be given to the next
executable instruction following the RT J in the main program. This flow is in
dependent of the location of the R T J instruction.

Example:

Location

LOOP

BACK

BACKl

Opcode

LDA

JMP

RTJ

0

JMP

Address

TEN

LOOP

BACKI

0

(BACKl)

Comment

Simply jumps back to lo-
cation LOOP

Sets BACK+2 into BACKI
since mode of addressing
is 2 word.

Address BACK+2 is placed
here.

Will jump not to location
B A C K 1, but to location
whose address is inBACKl
which is BACK+2.

To specify indirect mode of addressing the address is placed in parentheses as in
the above example. This means that the specified address (in this case, BACKl)
itself contains the address that is desired. More will be said on addressing later.

5. 1.2. 5 RAO Instructions

This RAO instruction is used to inqrease the contents of the effective address by
1. This instruction is very useful as a counter where a memory location is ini
tialized or preset and the RAO instruction increases the count in this memory cell
each time a desired condition occurs (number of times through a loop, etc.).

5-23

i
5.1.2.5

Example:

Location

COUNT

LOOP

Opcode

o

LDA

SAZ

JMP
RAO
JMP

Address

o

TEST,Q

2

LOOP
COUNT
LOOP

Comment

Skips to RAO COUNT if A
is zero,

In this example the contents of core location COUNT is increased by 1 each time
the A register is found to be zero. This RAO (Replace and Add One) instruction
can only add one to the contents of the designated core location and does not change
the contents of any of the registers. This instruction can cause overflow and, as
such, is very useful for loop control.

Example: Loop through a given portion of a program 12 times then jump to core
location NEXT. It is necessary to preset a COUNT cell such that in
creasing it by 1 will not cause overflow until it has been increased 12
times. The largest po sit i v e number minus 11 then is preset into
COUNT.

Location

LOOP

COUNT

NEXT

Opcode

SOY
LDA
STA

RAO
SOY
JMP
o

Address

0

=X$7FFF-l1
COUNT

COUNT
NEXT-*-1
LOOP
o

Comment

Turn off overflow if set

Overflow will occur the 12th time the RAO instruction is performed.

5-24

o

r--.,
/ \

\..-.. -,:)

5.1.3

5. 1. 3 Execution Times

EXECUTION TIlVIE
INSTRUCTION (microseconds) *

LDA Load A 2.2
STA Store A 2.2
LDQ Load Q 2.2
STQ Store Q 2.2
ADD Add A 2.2
SUB Subtract 2.2
ADQ Add Q 2.2
AND AND with A 2.2
EOR Exclusive OR with A 2.2
RAO Replace Add One in Storage 3.3
MUI Multiply Integer 7.0
JMP Jump 1.1
RTJ Return Jump 2.2
DVI Divide Integer 9.0
SPA Store A, Parity to A 2.2

Timings are for one-word instructions. An additional cycle must be added for a
two-word instruction.

Note the speed of the integer multiply and divide instructions. These are con
sidered very fast for the computer hardware.

* Add 1. 1 microsecond if Storage Index Register is used.
Add 1. 1 microsecond for each level of Indirect Addressing.

5-25

c.n
I----l

""
* SKIPS *

* F=O Fl=l F2 SKIP COUNT *

* (P)=* * * * **** **** **** *

* ~~~~r~~~~~~~~~~~~~~~~~~~ *

* + ARITHMETIC TESTS ~ MACHINE STATE TESTS *

* t *TEST* ~ *TEST* *

* 0 SAZ (A)=ZERO 8 SWS SKIP SWITCH ON *

* 1 SAN (A)rfZERO 9 SWN SKIP SWITCH OFF *

* 2 SAP (A)=POSITIVE A SOY OVERFLOW *

c.n *
I

3 SAM (A)=NEGATIVE B SNO NOT OVERFLOW *
t\:)
0")

* 4 SQZ (Q)=ZERO C SPE PARITY ERROR *
* 5 SQN (Q)rfZERO D SNP NOT PARITY ERROR *

* 6 SQP (Q) =POSITIVE E SPF PROTECT FAULT *

* 7 SQM (Q)=NEGATIVE F SNF NOT PROTECT FAULT *

* *

--)'
i -) -(

5.2

5.2 SKIP CLASS INSTRUCTIONS

--/. These instructions are used to make conditional tests and skip forward depending on
whether the instruction meets the actual condition being tested. The format for these in
structions appears below:

.,.--

-;..,~

15 12 11 8 7 6 5 4 3 0

l o 0 0 0 I o 0 0 1 I I \ I I I l v ' , " " v v
Skip 'tount F Instruction Sub- Instruction

F1 F2

Notice the skip count is only four bits which allow s a skip count of only 15. The skip
count is not signed so the instructions will only allow a skip in the forward d ire c t ion.

If the skip condition is met, program control proceeds to P + 1 + skip_ count. If the skip "'-
condition is not met, program control continues from P+ 1.

5.2.1 A and Q Skip Tests

The following types of con d it ion a 1 tests are available on the A and Q register:

F2'
0 0000 SAZ A=+O
1 0001 SAN Arf+O
2 0010 SAP A= +
3 0011 SAM A= -
4 0100 SQZ Q=+O
5 0101 SQN Qrf+O
6 0110 SQP Q= +
7 0111 SQM Q=-

Example:

Location Opcode Address Comments

START LDA =N$0080 Loads 0080 into A
ARS 4
SAZ 1 1 is the Skip Count
ARS 4 will not skip to TAG

TAG SAZ TAGl-*-l will skip to TAG1

TAG1

The TAG1-*-1 address is a form peculiar only to the utility assembler. With this
form the assembler is being d ire c ted to form a skip count to TAG1, which has
some program counter value. This counter value, minus the current location of

5-27

5.2.1

tithe SAZ instructions (which is some program counter value less than TAG1), minus
one more, forms the skip count. The -1 is used to compensate for the +1 in the \.......
skip formula P+ 1 +skip count. When using the macro assembler, the address need
only be TAG! as the macro assembler will automatically calculate the skip count.
For all cases the distance skipped (to TAG1 in this example) must be no greater
than 16 lo cat ion s forward from the location of the skip command. The macro
assembler will also accept the -*-1 form.

5.2. 2 Skip Switch Tests

The SWS and SWN instructions test the condition of the skip switch located on the
programmer t s panel. This switch can be used to alter pro g ram flow from the
panel.

Example: .

Location

START

TAG

GO
TAG1

G01

Opcode Address Comments

SWS GO-*-l

SWN G01-*-1

The code bet wee n TAG and GO will be skipped at run time if the skip switch on
the programmer's panel is set. It would be executed if the switch were not set.

The code between TAG! and G01 will be skip p e d if the skip switch on the pro
grammer's panel is not set. It will not be skipped if the switch is set.

5.2.3 Overflow Skip Tests

The SOV (F2=A) and SNO (F2=B) instructions test the state of the overflow indi
cator. Ref e r to Chapter II, Section 4, for a dis c u s s ion of those arithmetic
operations causing overflow. The overflow indicator is cleared up o~ execution
of these instructions.

5-28

j

CJ

Example:

Location

START

CORR

TAG

ERROR

OPl
OP2
OP3
OK

Opcode

LDA
ADD
SNO

ADD
SOV
JMP

5.2.3

Address Comments

OPl
OP2
TAG-*-l

OP3
ERROR-*-l
OK

In the above e x amp 1 e, two numbers are added and if no overflow occurred, the
instructions between CORR and TAG will be skipped and a third n u m b e r will be
added. The overflow in die a tor is again checked and if overflow had occurred,
the routine would skip to ERROR. The overflow indicator once set, remains set
until tested with either an SOV or SNO instruction.

5.2.4 Parity and Program Protect Indicator Tests

The SPE (F2=C) and SNP (F2=D) instructions will test for a storage parity error
and the SPF (F2=E) and SNF (F2=F) instructions will test for pro g ram protect
fault errors.

Example:

Location

START

PAR
PROT

Ope ode

SPE
SPF
JMP
JMP
JMP

Address Comments

PAR-*-l
PROT-*-l
ERROR
PARITY
PROTEK

If either a parity error or a program protect fault occurs, an interrupt is generated
on line o. Since both interrupts can 0 c cur on the same line, the interrupt pro

- cessor for this line must distinguish between the two. This example illustrates
how this might be done with program control going to the location named PARITY

5-29

5.2.4

if a par it Y error is found, and program control jumping to core location named
PROTEKli the protection fault caused the interrupt. Ifneither interrupt was found
by this process, program control would jump to some error routine to service what
is apparently a ghost interrupt. The parity and protect indicators (both the inter
rupt signal and the programmer's panel fault indicators) will clear when these in
structions are executed.

Problem: The following routine will move how many numbers? From what core
locations to what core locations?

MOVE 0 0
LDQ =N$1000

LP1 LDA+ $1000,Q
STA+ $3000, Q
ADQ =N-1
SQM 1
JMP* LPI
JMP* (MOVE)

Problem: The follow in g routine sums how many numbers? From what core
locations? Where does it store the answer?

SUM LDQ =X$2000-$1000
LDA =N$

LOOP ADD+ $1000, Q
ADQ =N-l
SQM DONE-*-l
JMP* LOOP

DONE STA+ $3000

Problem: The following routine moves how man y numbers? From which core
locations to where?

CHNG 0 0
LDA =N$1000
STA* ADDR1
LDA =N$4000
STA* ADDR

LP2 LDA+ (ADDR1)
LDQ+ (ADDR)
STA+ (ADDR)
STQ+ (ADDR1)
RAO* ADDR1
LDA* AD DR
SUB =Nl
STA* ADDR
SUB =N$3000
SAM 3
JMP* LP2

ADDRI 0 0
ADDR 0 0

JMP* (CHNG)

5-30

~

('\
I

01
I
~
~

()
, --_/

*
*
*
*
*
*
*

n
"--- -

SHIFTS

rrSHIFT A

SHIFT LEFTr,+rSHIFT Q

F=O Fl=F +++ SHIFT COUNT

(P) =* * * * * * * * * * * * * * * *

~~~~rttr~~r~~r~r~~~~~~~~+H ~~t~ 
+ LEFT SHIFTS t RIGHT SHIFTS t DELAY 

\-

* 
* 
* 
* 
* 
* 
* 

* C 

* A 

ALS (A) LEFT 

QLS (Q) LEFT 

LLS (QA)LEFT 

4 ARS (A) RIGHT 

2 QRS (Q) RIGHT 

8 Nap 1.1+SHIFT COUNT(.l) * 

* 
* E 6 LRS (QA) RIGHT * 
* * 
* * 

01 

t..:> 

t+;:.. 



5.3 

5.3 SHIFT CLASS INSTRUCTIONS 

These instructions are used to shift the data bit by bit either in the A register or the Q 
register singly or together. The data can be shifted either left or right bit by bit. For 
these instructions the format appears below: 

15 12 11 8 7 6 5 4 3 0 
I 0 0 0 0 1111 I I I I I C- I 

1 
\ 

V 
/ 

Shift Count 

F=O F1=F 

l=shlltleft __________________________ ~ 

O=shift right 

1 =shift A -------------------------' 
l=shift Q -----________ --1 

Notice the shift count is five bits allowing a shift either way a maximum of 31 positions. 
The upper bit of the shift count will a p pea r in the hex code as part of the second digit. 
For example, a OF51 is an ARS %, instruction, not ARS 1. 

(l 

Left shifts are end around: the high order hit of the register is shifted around and into 
the low order bit of that register for single register shifts. For a double register shift, 
(Long Shift), the Q register is considered the most significant register and the A register 
the least significant register and on left shift s the high order bit of Q is shifted around 
into the low order bit of A. High bit of A is shifted left into the low order hit of Q. 

Right shifts are end off with sign extension. Bits shifted off the right end are lost, and 
the sign bit of the register is extended from the left., For long right shifts, the low bit 
(Bit 0) of Q is shifted into the high bit (Bit 15) of A arid the sign (Bit 15) of Q is extended 
from the left. . 

The mnemonics for the instructions in this class are: 

ARS 
QRS 
LRS 
ALS 
QLS 
LLS 

A Right· Shift 
Q Right Shift 
Long Right Shift (QA) 
A Left Shift 
Q Left Shift 
Long Left Shift (QA) 

5-32 



u 

o 

(--'1 
I , 
l .•.... ,' 

Example: 

Location Opcode 
I 

ALS 

Address 
I 
8 

Comments 

If the A register contained F302, execution of this instruction would 
shift the A register left 8 bits leaving 02F3. The high order bits of A 
moved end around into the low order bits of A. 

I I 

I I 
LRS 8 

If Q=8000 and A=AOFO, execution of this instruction extends the sign 
of Q to the right and the lower 8 bits of A would shift end off and be 
lost. Result is FF80 I in Q, and OOAO ?-n A. 

I I 

5.3 

LLS 40 
I I 

Illegal 

J I 

Maximum number of shifts 
allowed is 31, 

Legal QRS 0 
I I 

I J 

5.3. 1 Timing for Shift Class Instructions 

The time for shift class instruction execution is: 

For long shifts (QA together) 1. 1 + • 2 x shift count 

Is effectively a no opera
tion 

For single register shifts (Q or A) 1. 1 + • 1 x shift count 

5-33 



* INTERREGISTER * 01 . 
c:...:> 

* LX * . 
I-' 

* F=O Fl=8 PR AQM AQM * 

* (P)=* * * * **** ** *** *** * 

* ADDER CONTROLS ~ I +++ "+ ~~ DESTINATION REGISTERS * 

* '" ~~RIGIN REGISTERS * 

* '" ~OPERAND TWO * 
* +~"'OPERAND ONE * 

* * 
* TRANSFER TRANSFER COMPLIMENT SUM * 
* 40 CLR Or--A,Q,M 80 SET -O~A,Q,M 30 AAQ (A)+(Q)~A, Q, M * 

01 

* AO TRA (A)~A,Q,M 60 TCA (A) NOT r--A , Q, M 28 AAM (A)+(M) ~A, Q, M * • ~ 
~ 

* 90 TRQ (Q)~A,Q,M 50 TCQ (Q)NOT ~A, Q, M 38 AAB B+(A) ~A, Q, M * 
* 88 TRM (M)r--A, Q, M 48 TCM (M)NdT~A,Q,M * 
* 98 TRB B~A,Q,M 58 TCB B NOT~A,Q,M * 
* * 
* EXCLUSIVE OR LOGICAL AND COMPLIMENT LOGICAL AND * 
* 70 EAQ (A).3o'-(Q) ~A, Q, M BO LAQ (A)/\(Q)~A,Q,M FO CAQ «A) /\ (Q»NOT~A, Q, M 

* 68 EAM (A)~(M)~A, Q, M A8 LAM (A)/\(M)~A,Q,M E8 CAM «A)/\ (M»NOT~A, Q, M 

* 78 EAB B-'7"(A) ~A, Q, M B8 LAB B/\ (A)r*'A, Q, M F8 CAB (B/\ (A) )NOT~A, Q, M * 

* * 
* B=INCLUSIVE OR OF (M}AND(Q). * 

/l (~) ("1 , 



5.4 

l'''-- 5.4 INTERREGISTER CLASS INSTRUCTIONS 
./ 

This class of instructions performs arithmetic or logical manipulation with the contents 
of A, Q or M or any combination of the three. The format for this class of instruction is: 

15 

F=O 

Adder Control Lines ... 41------. I 
~ 

12 11 8 7 6 
L X 

Fl=8 P R 

+ 
1 Logical Product --------' 

Exclusive OR ----------' 

Operand 1 

+ ~and2 
5 4 3 2 1 o 

Origin 
Registers 

Destination 
Registers 

Since the adder can operate on only two 0 per and s and there are three possible origin 
registers, these three origin registers are considered as two operands, operand 1 and 
operand 2. Operand 1 includes bit 5 or the Are g i s t e r bit and it can have two forms: 

A (Bits) 
o 
1 

Operand 1 
FFFF 

Contents of A 

If this bit 5 is a· 0, then all l' s are used as an operand and if bit 5 is a 1, then the contents 
of A is an operand. 

Operand 2 is the combination of bits 3 and 4 or the combination of the Q and M register 
bits: 

Q (Bit 4) M (Bit 3) Operand 2 
0 0 FFFF 
0 1 (M) 
1 0 (Q) 
1 1 Inclusive OR of Q & M 

If neither of these registers is specified, then all l' s are used as the operand. If anyone 
but not the other is specified, then the contents of that specified register is used. If both 
Q and M are specified, then the inclusive OR of Q and M is used as Operand 2. The bit 
by bit truth table for the inclusive OR is: 

A 

1 
1 
o 
o 

B 

1 
o 
1 
o 

Here a bit in either position yields a bit in the result. 

5-35 

AVB 

1 
1 
1 
o 



5.4 

Either A, Q or M,or any combination of these can be specified as the destination reg
isters. These are listed in any order and s epa rat e d by commas in the address field. 

Since M is the interrupt mask register, the interregister instruction with M as a desti
nation register must itself be protected if the protect switch on the programmer's panel 
is on. Otherwise, a protect fault will occur. 

Formation of the operation itself comes fro m bits 6 and 7 of the instruction word. The 
operations possible are: 

LP (Bit 7) XR (Bit 6) Operation 

0 0 Arithmetic Sum 
0 1 Exclusive OR 
1 0 Logical Product 
1 1 Complement Logical Product 

Refer back to Section 5.1.2. 3 of this chapter for the truth tab I e s of the logical product 
and the exclusive OR. All the possible combinations of different instructions in this class 
using these two operands number 22. The mnemonics assigned with the instructions in 
this class are: 

SET 
CLR 
TRA 
TRM 
TRQ 
TRB 
TCA 
TCM 
TCQ 
TCB 
AAM 
AAQ 
AAB 
EAM 
EAQ 
EAB 
LAM 
LAQ 
LAB 
CAM 
CAQ 
CAB 

Set to l's 
Clear to "0" 
Transfer A 
Transfer M 
Transfer Q 

Transfer Q V M 
Transfer Complement A 
Transfer Complement M 
Transfer Complement Q 
Transfer Complement Q V M 
Transfer Arithmetic Sum A, M 
Transfer Arithmetic Sum A, Q 
Transfer Arithmetic Sum A, QV M 
Transfer Exclusive OR A, M 
Transfer Exclusive OR A, Q 
Transfer Exclusive OR A, Q V M 
Transfer Logical Product A, M 
Transfer Logical Product A, Q 
Transfer Logical Product A, Q V M 
Transfer Complement Logical Product A, M 
Transfer Complement Logical Product A, Q 
Transfer Complement Logical Product A, Q V M 

5-36 

- , / 

\ ....... - .. ~, 



C-") 
-' 

"~ •.. ' .. / 

Examples: 

Problem: 

LDA 
CLR 
CLR 
AAQ 
TCA 
TRA 
SET 
AAQ 

=NO 
A 
A,Q,M 
A 
Q 
Q,M 
M 
o 

Clears A 
So does this 
Clears A, Q and M 
Adds A to Q, puts result in A 
Puts complement of A into Q 
Transfers A to Q and M 
Set M to all l's 

5.4 

Only affects overflow indicator-
adds A and Q, puts result nowhere 

The following is an example of how a subroutine can pick up parameters from the calling 
r 0 uti n e. How does the subroutine pick up the parameters? Does it pick up the actual 
argument or the address of the argument? 

Calling Program: 

1 
LDA =XX 
STA ARGI 
LDA =XY 
STA ARG2 
LDA =xz 
STA ARG3 

$500 RTJ SUB 

$502 ARGI 0' o (l~.,) Address of X 

$503 ARG2 0 o {'p\ Address of Y 
r';!r 

Address of Z $504 ARG3 0 O'Y" 

f 
$700 X NUM 10 X data 

$701 Y NUM 12 Y data 

$702 Z NUM 6 Z data 

f 
Addresses of parameters fall directly beneath the call to the subroutine. 

5-37 



5.4 

Subroutine: (' 

" 

SUB 0 0 '---' 

STA* SAVEA+l 

STQ* SAVEQ+l 

LDA- $FF 

STA* SAVEI+l 

LDA* SUB 

EOR =N$8000 

STA* SUB 

LDA* (SUB) 

STA* SUBAGI \'::, 

RAO* SUB 

LDA* (SUB) 

STA* SUBAG2 '':-'J 

RAO* SUB 

LDA* (SUB) (-" 

STA* SUBAG3 ~ 

'LDA* SUB 

INA I 

AND =N$7FFF. 

STA* SUB 

t 
SAVEl LDA =NO 

STA- $FF 

SAVEQ LDQ =NO 

SAVE A LDA =NO 

JMP* (SUB) 

SUBAGI BSS SUBAGl(l) 

SUBAG2 BSS SUBAG2(1) 

SUBAG3 BSS SUBAG3(1) 

f (' 

5-38 



5.4 
~ .~ 

U Problem: 

How many numbers does the following r 0 uti n e sort? In what order? From what core 
locations? 

SORT CLR A 

STA- $FF 

ENQ 1 

BEGIN LDA+ $500, Q 

SUB+ $500, I 

SAP CHECK-*-l 

LDA+ $500, Q 

STA* TEMP+l 

LDA+ $500,1 

STA+ $500, Q 

TEMP LDA =NO 

STA+ $500,1 

0 CHECK INQ 1 

TRQ A 

EOR =N$lO 

SAZ 1 

JMP* BEGIN 

LDA- $FF 

INA 1 

STA- $FF 

EOR =N$F 

SAZ EXIT-*-l 

ENQ 1 

ADQ- $FF 

JMP* BEGIN 

EXIT SLS 

,..-,~ 

I I 
\. ___ .i 

5-39 



C1 . 
~ 

* REGISTER REFERENCE * 

* F70 Fl DELTA * 
* (P)= * * * * * * * * * * * * * * * * * 
* ,....r--~~~~r--~~~r--r-- r--~~ •• t+ "~~ ~ ~r+~~r-- * 

* t ARITHMETIC t INTERRUPT t PROTECT ~ I/O * 
* t t • + * 
* A ENA _ +-DELTA A 4 EIN* ENABLE 7 CPB CLEAR 2 INP I/O r-A * 
* C ENQ ' +-DELTA Q 5 lIN INHIBIT 6 SPB SET 3 OUT (A)~I/O * 

* 9 INA +-DELTA+(A) ~A E EXI*EXIT 0 SLS SELECTIVE STOP * 
* D INQ +-DE LT A +(Q)r-"Q B NOP * 

I * *ONE INSTRUCTION DELAY 

0 * 

* 
* 

/) 
(' " (-, 

! \ 



5.5 

"r ...• G 5.5 REGISTER REFERENCE CLASS INSTRUCTIONS 

o 

,f) 
\.. .. / 

All the instructions in the class are one-word. The F field is always a zero and the Fl 
field will signify the particular instruction within this class. The format for the Register 
Reference Class of instructions is: 

Fl 

Instruction + 
Code ---.J 

The instructions within this class are: 

Fl 

0 SLS 
1 
2 INP 
3 OUT 
4 EIN 
5 lIN 
6 SPB 
7 CPB 
8 
9 INA 
A ENA 
B NOP 
C ENQ 
D INQ 
E EXI 
F 

The 11 field is available in this class of instructions. 

5.5. 1 Instructions ENA, INA, ENQ and INQ 

Selective Stop 
SKIPS 
Input to A 
Output from A 
Enable Interrupt 
Inhibit Interrupt 
Set Program Protect 
Clear Program Protect 
INTERREGISTER 
Increase A 
Enter A 
No operation 
Enter Q 
Increase Q 
Exit Interrupt State 
SHIFTS 

These four instructions are used to e it her enter into or increase the A register 
or the Q register by the value in fl. This val u e is signed allowing numbers of 
the magnitude plus or minus 127. 

Example: 

LDA 
ENA 
SUB 
INA 

=N22 
22 
=N$1 
-1 

5-41 

Loads A with 1616 
So does this 
Decreases A by 1 
So does this 



5.5.1 

Where applicable, these instructions should be used in place of storage reference 
class with con s tan t mode as these take only one word and 1. 1 microseconds to 
execute. 

The value in the address field is p I ace d into D. by the assembler. The ENA 22 
machine instruction equivalent is OA16. 

5. 5. 2 Instructions SPB and CPB 

These. instructions are used to either set or clear the protect bit (Bit 17) in mem
ory. For these instructions f:j, is not used. The address of the core lo cat ion 
which will have its protect bit either set or cleared must be in the Q register. If 
the program protect switch on the programmer panel is on, then these instructions 
must be protected. Otherwise, a program protect fault (interrupt on line 0, pro
tectfault indicator on panel) will occur and these instructions become no operations. 

Example: Clear the protect bits in core from 1000 to 2000. 

TEMP 
START 
LOOP 

DONE 

0 
LDQ 
CPB 
INQ 
STQ* 
ADQ 
SQZ 
LDQ* 
JMP* 

0 
=N$1000 

1 
TEMP 
=N-$2000 
DONE-*-l 
TEMP 
LOOP 

Address is in Q 

Finished? 
No 

Yes 

This particular routine is further simplified with the use of interregister c las s 
instructions. 

Problem: The CLRPB subroutine clears protect bits on what core area? 

Calling Program 

LWA 
FWA 

RTJ 
NUM 
NUM 

5-42 

CLRPB 
$4000 
$2000 

\ '--. 

(' 
I . 

......... . ,,;' 

\ 
" .. ./ 



G 

o 

n '--_.-

Subroutine 

CLRPB 

LOOP 

DONE 
TEMPQ 
TEMPA 

5.5.3 Instructions EIN and IIN 

0 
STQ* 
STA* 
LDA 
SUB* 
RAO* 
LDQ* 
SOY 
CPB 
INQ 
AAQ 
SOY 
JMP* 
RAO* 
LDQ 
LDA 
JMP* 

5.5.2 

/ 
0 // 

/ 

TEMPQ+l / 

TEMPA+l 
=X$7FFF 
(CLRPB) 
CLRPB 
(CLRPB) 
0 

1 
0 
DONE-*-l 
LOOP 
CLRPB 
=NO 
=NO 
(CLRPB) 

These instructions are used to either en a b 1 e the interrupt system or inhibit the 
interrupt -s y s t em. If the program protect switch on the programmer's panel is 
on, these instructions must be protected. Othe rw is e, a protect violation will 
occur. The interrupt system is inhibited immediately upon execution of the IIN 
in s t r u c t ion. However, for the EIN instruction one free instruction is allowed 
before the interrupt system becomes enabled. 

Example: 

MAIN 

SUB 

RTJ 

o 
IIN 

EIN 
JMP* 

SUB 

o 
Interrupt System inhibited 

(SUB) This instruction is free. 

This subroutine will operate on any level without interference from any other level 
since the whole subroutine functions with the in t err up t system off. Control is 
returned to the main program -before the interrupt system is activated through 
use of the one free instruction following the EIN. 

5-43 



5.5.3 

For example, if an internal interrupt occurred on line 0, P and the overflow indi- ,--.... 

l
cator of 1 the inte$rrupted progra

l 
m wlOdUld havbe been saved in word 0 of thle trap for lo-

ine 0 (ocation 100). Contro wou have een transferred to word 1 ( 0 cat ion 
$101). If word 1 contained a jump tothe Internal Interrupt Processor, that routine 
would be executed. It would determine the cause of interrupt (program pro t e c t 
violation or parity error) by using the appropriate instructions (skips). Then the 
routine could exit back to the interrupted program. It would do that by: 

EXI 00 

The delta in the EXI instruction should be the lower 8 bits of the word 0 trap lo
cation for the appropriate line. In this case, the 00 means the trap for line 0, at 
address $100. 

$104 • 
... 

jump to proc. 
> line 0 

a 
P v ." $100 exit through here 

The EXI instruction (Exit Interrupt State) is use d to exit from an interrupt sub
routine. It restores the overflow indicator to its previous state, resets P of the 
interrupted program, and enables the interrupt system. 

5.5.4 Instructions INP and OUT 

The INP and OUT instructions are used for all input and output operations on the 
1700. They are used to input or output data to or from the A register. They out
put function codes to the peripheral equipment from the A register, and they input 
s tat us conditions of the equipment to the A register. The Q register is used to 
address the desired equipment. A brief introduction to I/O using these instructions 
is contained in Chapter 7. 

5.5.5 Instructions SLS and Nap 

The SLS or selective stop ins t r u c t ion is dependent upon the positioning of the 
selective stop switch on the programmer's panel. If the selective stop switch is 
up, then the program will stop on this instruction. If the selective stop switch is 
not up, then this instruction is the sam e as a Nap or No Operation Instruction, 
where the computer simply steps past this instruction without performing any op
eration. If the computer stops, program execution will continue by momentarily 
setting the RUN-STEP switch on the programmer's panel to the RUN pos ition. (' 

" ••• 0 

5-44 



o 

Example: 

START 

Problem: 

LDA 
NOP 
NOP 

SLS 

=N$1000 

5.5.5 

Put in for future expansion 

" Program stops i~ stop 
switch is up 

Continues when run switch 
is hit or if stop switch 
is not up. 

The following is a conversion routine which converts a positive or negative hexa
decimal number in the A register to the ASCII codes for the decimal number. It 
consists of a CONVRT subroutine and a main program CONTST which was used to 
check it out. 

Study the program carefully, see how the conversion is done and how the param
eters are passed. 

This should be considered a final examination over the 1700 instructions and their 
use. 

5-45 



5.5.5 

0001 NAM CONVRT 
0002 POOOO 0001 BSS SAVEQ(}}.SAVEI(l).SAVEA(l) 

POOOI 0001 
POO02 0001 

0003 POO03 0003 BUF BSS BUF(3) 
0004 POO06 0006 BUFI BSS BUFl(6) 
0005 POOOC 002B SIGN NUM $28.$20 

POOOO 0020 
0006 POOOE 0030 TAB 

POOOF 0031 
POOIO 0032 
POOll 0033 
POOl2 0034 
POOl3 0035 
POO14 0036 
POOlS 0037 
POOl6 0038 
POO17 0039 

0007 ENT CONVRT 
0008 POO18 0000 CONVRT 0 0 
0002 POO19 48E6 STg* SAVEO 
0010 POOIA EOFF LOO- I 
0011 POOIB 48E5 STO* SAVEl 
0012 POOIC 0842 CLR 0 
0013 POOlO 40FF STO- I 
0014 POOlE 0122 SAP POS 
0015 POOlF 0001 INO 1 
0016 P0020 0864 TCA A 
0017 P0021 EAEA POS LDO* SIGN.O 
0018 P0022 48E8 STQ* BUFI+5 
0019 P0023 E8EA LOO* TAB+O 
0020 P0024 48El STO* BUFI 
0021 P0025 EOOO LOQ -:N$20 

P0026 0020 
0022 P0027 480F STQ* BUFI+l 
0023 P0028 480F STQ* BUFl+2 
0024 P0029 480F STQ* BUFI+3 
0025 P002A 480F STQ* BUFl+4 
0026 P002B 0842 LOOP CLR 0 
0027 P002C 0106 SAZ OUT 
0028 P0020 3000 OVI =NIO 

P002E OOOA 
0029 P002F EAOE LOQ* TAB.Q 
0030 P0030 4905 STQ* BUFl.1 
0031 P0031 OOFF RAO- I 
0032 P0032 l8F8 JMP* LOOP 
0033 P0033 40FF OUT STQ- I 
0034 P0034 OC05 ENQ 5 
0035 P0035 CADO BACK LOA* BUFl.Q 
0036 P0036 OFC8 ALS 8 
0037 P0037 OOFE INQ -I 
0038 P0038 8ACO ADD* BUFl.Q 
0039 P0039 69C9 STA* BUF.I 
0040 P003A DOFF RAO- I 
0041 P003B OOFe: INQ -I 

(' 
\". 

5-46 



C~ 
0042 P003C 0171 
0043 P003D 18F7 
0044 P003E EBCI DONE 
0045 P003F C8CI 
0046 P0040 60FF 
0047 P0041 COOO 

P0042 0003 P 
0048 P0043 ICD4 
0049 

I OOFF SAVEQ OOOOP SAVEl 
SUFI 
LOOP 

0006P SIGN 
002AP OUT 

CONTST 2885 
CONVPT 2BC8 

OOOCP TAB 
0033P BACK 

5.5.5 

SQM DONE 
JMP* BACK 
LDQ* SAVEQ 
LDA* SAVEl 
STA- I 
LOA =XBUF 

JMP* (CONVRT) 
END 

OOOIP SAVEA 
OOOEP CONVRT 
0035P DONE 

TTY 
Output 

0002P BUF 
OOISP POS 
003EP 

PP 

* 
MI 
*p 
J 
*ASSEM 
OPTIONS LX 
J 
*P. 
J 
*L,5 
J 

*x" 

0003P 
0021P 

+ 1427 2 .... ~f--- Answer 
J 

5-47 



5.5.5 
r- -, 

\,-~, 

QOOI NAM CONTST 
0002 ENT CONTST 
0003 EXT CONVRT 
0004 POOOO 0000 CONTST 0 0 
0005 POOOI COOO LOA =N$37CO 

POO02 37CO 
0006 POO03 5400 X RTJ CONVRT 

POO04 7FFF X 
0007 POOOS 6800 STA WRITE+6 

POO06 0007 
0008 POO07 54F4 WRITE RTJ- ($F4) 
0009 poooa OC01 NUM $OCOI 
0010 POO09 OOOF P AOC COMPL 
0011 POOOA 0000 NUM 0 
0012 POOOB 18FC NUM $18FC Writes an 
0013 POOOC 0003 NUM 3 
0014 POOOO 0000 ADC 0 
00}5 POOOE 14EA JMP- ($EA) 

P EXIT 
00}7 18FF NUM $18FF 
0018 EXIT EXIT 
0018 POOl} 54F4 
QQIB PQ012 OAgO 
0019 END CONTST ,,---" 

I 

............ -~. 

I OOFF CONTST OOOOP WRITE 0007PCOMPL OOOFP EXIT 0011P 
CONVRT 0004X 

5-48 



... 
\ 

LJ 

---.. 
\ 

" ) 
-.---../ 

"' ........ ,,-

5.6 

5.6 EXERCISES 

5.6.1 Exercises - Constant Mode of Addressing 

1. What is in the A and Q registers when location NEXT is reached? 

a) 
LDA =N$1FOC 
ALS 3 
LDQ =N277 
LRS 12 
EOR =N$0106 

NEXT 

b) LDA =N$7FFF 
LDA =N6 
MUI =N6 

NEXT 

c) LDQ =AAB See Appendix E for 
LDA =AXY ASCII conversions. 
AND =ACD 
LLS 16 
AND =AWZ 

NEXT 

5.6.2 Exercises - Absolute Mode of Addressing 

1. Write code to increase the contents of Index Register I by 1016. 

2. If C017 is in core 10 cat io n 3F, and 4016 is in core location 4017, where would 
program control be given for: 

a) JMP- ($3F) 
b) JMP- $3F 
c) JMP+ ($3F) 

3. What is wrong with these: 

a) LDA- 0 
b) LDA+ $7F3-$700 
c) LDA+ (TEST) 

5-49 



5.6.3 

5.6. 3 Exercises - Relative Mode of Addressing 

1. Will these instructions address b a c k war d or forward, and how many locations 
from P? 

a) 1831 
b) 1800 

EFFF 
c) 18FE 

2. What modes of address are these assembly language instructions? 

a) 
b) 
c) 
d) 
e) 
f) 

g) 
h) 

LDA 
JMP
RAO+ 
STA* 
AND 
STQ 
LDA 
LDA-

TASK 
($44) 
(HIND) 
*+3 
=X$4111-4111 
(DRUM) 
=XTWIX 
10 

3. Why is relative addressing never used to address into the communications region? 

5.6.4 Exercises - Indexing 

1. What is wrong with these: 

a) 
b) 
c) 

LDA 
MUI 
ALS 

AB, Q, I 
A,Q 
6,Q 

2. What number is in A when NEXT is reached: 

Core Location 

0022-
0023-
0024-

Contents 

0000 
8024 
0023 

5-50 



5.6.4 

a) LDQ =N$-l 
I LDA- ($23), Q "-/ NEXT 

b) LDQ =N$24 
LDA- ($22), Q 

NEXT 

c) LDQ =N$l 
LDA $23,Q 

NEXT 

3. What is wrong with this program: 

NAM 
START LDA =N$10 

STA- r 
LDA+ $2000 

LOOP SUB+ $2000, I 
LDQ- r 
ADQ =N-1 
SQZ DONE-*-l 
JMP* LOOP 

DONE 

C·· 'I 
,/ 5.6.5 Shift and Skip Instructions 

1. What will these machine language instructions do: 

a) OFFO 
b) 01A3 
c) OF52 
d) OF88 

2. What will be in the Q and A Registers when this program jumps to OVER. 

Location Opcode Address Comments 

START LDA =N$738F Loads 738F in A 
LDQ =N$OlCA Loads 01CA in Q 
LLS 3 
QRS 14 
ALS 5 
SQM GO-*-l 
ARS 2 
SAM GQ-*-l 
ALS 2 
QRS 3 

GO JMP OVER 

5-51 



5.6.6 

5.6. 6 Review Exercises 

1. Switch the contents of Location 1000 into Location 1001, and vice versa: 

TEMP 0 0 

LDA+ $1000 
STA* TEMP 
LDA+ $1001 
STA+ $1000 
LDA* TEMP 
STA+ $1001 

Several points of note: 

1. The problem descriptions seldom, if ever, specify core locations in decimal; 
they're assumed to be hexadecimal since rarely is a core location referenced 
decimally. Therefore, 1000 and 1001 in the problem mean 1000 hex and 1001 
hex. 

2. The TEMP location is necessary for switching to hold the one operand while 
the other is being s wit c he d. This form TEMP 0 0 can be used to simply 
define a core location; one cell is reserved and zero's placed therein. 

3. The one-word reI a t i v e mode of addressing is used for locations within the 
range of .±.127 to save one core location and one cycle time, and also to allow 
the program to be run anywhere. 

4. Two-word absolute mode of addressing is used for the core locations 1000 & 
1001. This is because this program could be fin all y loaded any number of 
core locations away from 1000 and 1001; therefore, a two-word instruction 
is needed. But why use absolute mode instead of relative? For programming 
"run anywhere" programs there are two basic rules: 

a) Everything that will move with the program is to be coded using relative 
mode; 

b) Everything that remains fixed in core is to be coded using absolute mode. 

Since the statement of the problem states the two fix e d core locations to be 
switched regardless of where the program doing the switching is to be loaded, 
references to 1000 and 1001 should be made using absolute mode. 

5-52 



Cj 

o 

C) 

5.6.6 

2. Transfer the contents of core locations 1000 through 1FFF to 3000 through 3FFF. 

START LDQ =X$lFFF-$1000 
LOOP LDA+ $1000,Q 

STA+ $3000,Q 
1NQ -1 
SQM DONE-*-l 
JMP* LOOP 

DONE 

3. Do a reverse transfer of problem 2, i. e., place contents of 1000 in 3FFF, 1001 
in 3FFE, etc. 

START LDQ =X$lFFF-$1000 
CLR A 
STA- I 

LOOP LDA+ $1000,1 
STA+ $3000,Q 
RAO- I 
1NQ -1 
SQM DONE-*-l 
JMP* LOOP 

DONE 

For this problem, two in de x registers are needed, one indexing up (I), and one 
indexing down (Q). 

4. Do Example 2 without Index Registers: 

NAM EXAMP 
AREAl ADC 0 
AREA2 ADC 0 
COUNT NUM 0 NUM sets the number 0 

LDA =X$7FFF-$lFFF+$1000 
STA* COUNT 
LDA =N$1000 First Address in AREAl 
STA* AREAl 
LDA =N$3000 First Address in AREA2 
STA* AREA2 

LOOP LDA* (AREAl) Indirect Addressing 
STA* (AREA2) 
RAO* AREAl 
RAO* AREA2 
RAO* COUNT 
SOY DONE-*-l 
JMP* LOOP 

DONE 

5-53 



5.6.6 

Several points to note: 

1. The number prestored in location COUNT is the d iffe r en c e between the 
largest po s s i bI e positive number 7FFF and the difference between the be
ginning and end of the core blocks. Ifwe increase this count by one each time 
through the loop, we will en c 0 u nt e r an overflow condition when the count 
changes from 7FFF to 8000. We can then loop through and exit from the loop 
using this preset count. 

2. AREAl and AREA2 are preset 'by using the ADC pseudo-op to O. Formerly 
the form AREAl 0 0 was used to perform the same function. The assembler, 
when encountering a zero in the opcode field, treats it as an ADC pseudo-op 
so both forms are equivalent. 

3. This method of solving the problem is absolutely dependent on the use of in
direct addressing since the addresses must be contained and manipulated in 
core cells. 

:5-54 

~' 
....... -.. 



u 

CHAPTER VI 

PSEUDO OPS 

o 





.. ,,", ~ CHAPTER VI - Pseudo Ops lj 
TOPIC PAGE 

6.0 Introduction 6-1 

6.1 NAM 6-1 

6.2 END 6-2 

6.3 ENT, EXT 6-2 

6.4 EXT* 6-4 

6.5 EQU 6-4 

6.6 NUM 6-5 

6.7 ADC 6-6 

6.8 ADC* 6-6 

6.9 ALF A IQC-J1 l-oC.ft/~~ r/~tl)/ - IVj--r . .f-C-~p;cltl~7-- 6-7 

6.10 DEC 6-8 

6.11 VFD VA-All/It) f; !(<#'( el VlfIII1Tt;-., t (f?I--C/{ Mi::~71(,-//!4/1) 6-9 

C) 6.12 BSS, BZS 6-10 

6.13 DAT, COM 6-11 

6.14 ORG, ORG* 6-14 

6.15 IFA, ElF 6-15 

6.16 MAC, EMC 6-16 

6.17 LOC 6-18 

6.18 IFC 6-18 

6.19 NLS, LST, SPC 6-19 

6.20 EJT -~A-66 6.TC:eT ov f,l~T oIVIT) 6-19 

6.21 OPT 6-19 

6.22 MON 6-20 

6.23 Exercises on Pseudo Ops, Utility Assembler 6-21 

6.24 Exercises on Pseudo Ops, Macro Assembler 6-22 



c 



~- '\ 

o 

6.0 

6. 0 INTRODUCTION 

The 1700 has 3 assemblers: 

• Basic assembler, which operates as a stand-alone system in a 4-K computer 

• Utility assembler, which operates under the utility system and r e qui res an 8-K 
computer 

• Macro assembler, which 0 per ate s under the mass storage operating system and 
requires a 12-K computer 

The standard pseudo ops covered in this c hap t e r are available under all 3 assemblers, 
with the exception of some additional pseudo ops available only under the macro assem
bIer. These are noted where they are described. 

In addition to the mnemonics for the machine instructions which we have covered, there 
are certain instructions that are only recognized by the assembler. They are used by the 
ass em b Ie r itself to control the assembly, control the data, reserve storage, convert 
data, signify beginning and end of assembly and control the output listing. These in
structions are called pseudo instructions or pseudo ops. 

6.1 NAM 

The first instruction on any source pro g ram must be the pseudo instruction NAM. Its 
use is to signal the assembler when to begin ass em b I y and how to set up its program 
counter for this assembly. Its form is: 

Location Opcode 

NAM 

Address Comments 

Name 

If the location field is blank, the assembler will begin assembly with its counter at zero 
and signal to the loader in the object program that this program is program relocatable. 
This provides the ability to have the sou r c e program assemble without regard to where 
the program will finally be loaded and run in core. If a hexadecimal number appears in 
the I 0 cat ion field, the assembler sets its program counter to that value and assembles 
the program absolutely. When a program of this type becomes loaded, it is loa de d be
ginning at this absolute address specification. In the address field of the NAM pseudo op 
will be the program name which is reproduced on the output listing. 

6-1 



6.1 

Example: 

NAM SORT 

This program is assembled program relocatable and can be loa de d anywhere into core. 
The name SORT will appear on the output listing. 

$100 NAM INTERRUPT 

This program is assembled absolutely, beginning at 100 hex, and will be loaded into core 
at 100 hex only. 

6.2 END 

The last instruction in the pro g ram must be an END pseudo instruction. It marks the 
physical end of the program. The address field may con t a i n an entry point to the pro
gram. This is called a named t ran s fer address, and it is the entry point where it is 
desired for execution to begin after the object program is loaded. 

Example: 

START 

6.3 ENT, EXT 

NAM 
ENT 

END 

SORT 
START 

START 

Two pseudo instructions are used to pro v ide communication between programs. They 
are the ENT (entry point) pseudo ins t r u c t ion, and the EXT (external point) pseudo in
struction. Those 10 cat ion s internal to a program that are needed in another program 
are declared as entry points to the i mIne d i ate program. The other program .can then 
refer to these entry points in its immediate program by declaring them as external. The 
names must match identically. Since communication between these two pro g ram s can 
not be made at assembly time (since both programs can be assembled at different locations 
at different times), the relocating linking loader must provide the cor r e c t location ad
dresses when these two programs are finally loa d e d together. To accomplish this, the 
loader builds loader symbol tables (Figure 13) where it places ref ere n c e s to all entry 
points and ex t ern a I points. These tables locate exactly for the loader where the entry 
point addresses are and where the external point references are that need patching with 

6-2 



o 

6.3 

their corresponding entry point addresses. When it finds a mat chin names between an 
entry point and an external point, it does the patching. 

Example: 

Program 1 is w r itt e n and it needs to ext r act data from program 8 which has not 
yet been written. The writers of both pro g ram s agree to a 10 word area with the 
name of CLARK. Since program 1 needs to refer to CLARK in pro g ram 8, it de
clares CLARK as an external. This external declaration allow s the assembler the 
use of this symbol which is not otherwise defined in program 1. 

NAM 
EXT 

LDA+ 

PROGI 
CLARK 

CLARK 

Program 8, when it is finally written, will declare C LARK as an entry point. 

NAM 
ENT 

BSS 

PROG8 
CLARK 

CLARK(10) 

When both of these pro g ram s are finally loaded together in core, the loader will 
link the address of CLARK at program 8 to its correct reference in program 1. 

The EXT described above is called an absolute external. It means ref ere n c e s made 
from the program to the external are ass em b 1 e d in absolute form (even if a relative 
mode is used in the ins truction). 

More than one symbol can be defined with each ENT and EXT instruction, sin c e their 
general form is: 

n - name 

EXT 
ENT 

nl'n2'---
nl,n2'---

-6-3 



6.4 

6.4 EXT* 

Another form of external is available under the macro assembler: the relative external. 
It causes the loader (at load time, when linking is done) to patch in the relative distance 
from the referencing instruction to the location of the external, rather than the absolute 
core location. This allows the use of relative references. 

Example: E~T* TAG 
I 
I 

5800 RTJ TAG 
7FFFX I 

t 

A two-word relative mode must be used in referencing these externals. 

6.5 EQU 

It is common to use symbols in place of constants or !mown address 1 0 c a ti on s. The 
EQU pseudo instruction provides a means of declaring to the asselnbler the equivalence 
of a symbol with a number or expression. The form of EQU is: 

Location Opcode 

EQU 

Address Comments 

ONE (1), TWO(2), THREE(3) 

The symbol with its equivalent n u m be r is placed in the assembler's symbol directory r---

and all references to that symbol will yield its e qui val e n t number. It is important to \"-----
note that the EQU does not generate any code; it simply tells the assembler another value 
for symbols found in the program. For example, it uses a 2 wherever it s~es the name 
TWO. 

Example: Count the number of times the exact bit configuration 1110 appears in bit 
positions 4 to 7 of core locations 1000 to 10CE. 

COUNT 

START 
LOOP 

OVER 

DONE 

NAM 
0 
EQU 
EQU 
LDQ 
LDA+ 
AND 
EOR 
SAN 
RAO* 
INQ 
SQM 
JMP* 

FIND 
0 
MASKl($OOFO), MASK2($00EO), FmST($1000) 
LAST($10CE) 
=XLAST-FmST 
FIRST,Q 
=NMASKl And out all but bits 4 thru 7. 
=NMASK2 Look for exact match. 
OVER-*-l Was match not exact? 
COUNT No, match was exact. 
-1 Yes, no match. 
DONE-*-l Finished? 
LOOP No. 

Yes. 

6-4 

r---' 
......... ' 



c 

6.5 

By using the EQU, the same general problem with different parameters could be solved 
with this program simply by chan gin g the EQU card. Assume the problem looked for 
101102 in bit positions 8 through 12 of core location 3020 through 3F21. Simply pull out 
the EQU card and insert one: 

EQU 
EQU 

MASK2($lFOO), MASK2($1600), FIRST($3020) 
LAST($3F21) 

The EQU instruction is e s p e cia 11 y useful for referencing the mask tables in low core. 
(See Appendix I.) These masks are available for foreground or background programs to 
use, rather than defining additional core locations in a program to contain masks. The 
EQU's to be used would be as follows: 

EQU 
EQU 

LPMASK($2), NZERO($12), ZERO($22) 
ONEBIT($23), ZROBIT($33) 

These are the same EQU's used by the system and they make it easier to rem e m be r 
which mask is being used. For example: 

LDA- LPMASK+2 

This can be used instead of: 

LDA- $4 

The same code is generated: C004 

It is easier to remember that LPMASK+2 is a mask location containing two one bits on the 
right end than to remember what location $4 contains. NZER0+4 would contain 4 zero 
bits on the right. Location ZERO always contains a 0 word. . ONEBIT+5 would contain a 
one bit in bit position 5; ZROBIT+8 would contain a zero bit in bit position 8. 

6.6 NUM 

In order to insert known con s tan t s into the assembly, the pseudo op NUM is used. Its 
form is: 

Location 

s 

s means a symbol 

Opcode 

NUM 

Address Comments 

16-bit constants are inserted, in line, one constant to a word. If a symbol is specified 
in the location field, it is assigned the storage . address of the first constant. 

6-5 



6.6 

Example: 

HERE 
NAM 
NUM 

EXAM 
$7312,21,-21,-$216 

Since this is a program relocatable assembly (blank in location field of NAM card), HERE 
is at program counter POOOO and the following constants are inserted: 

POOOO
POOOl
P0002-
P0003-

7312 
0015 
FFEA 
FDE9 

Expressions are not allowed. 

NUM $7312-41 Ulegal 

6.7 ADC 

To insert in line a table of addresses, the ADC pseudo instruction ~s used. It functions 
identically to the NUM pseudo instruction except expressions may be used and the result 
is evaluated for only 15 bits since an address value cannot exceed 15 bits in length. Bit 
15 will be set if the expression is enclosed in parentheses (indicating an indirect refer-
ence). Its form is: ,~---, 

s 

Example: 

Location 

HAT 

STILL 

ADC 

Opcode 

NAM 
EQU 
EQU 

ADC 

ADC 

Address 

EXAM 
TEN(10) 
MASK($F302) 

TEN 

(HAT) 

Comments 

TEN is. OOOA (See EQU) 

Will set Bit 15 

Assume the program counter for HAT is at POI02 and for STILL, POIFF; then: 

6.8 ADC* 

POI02 

POIFF 

OOOA 

8102 

Under the macro ass em b Ie r there is a second form of the ADC pseudo op, the ADC* 
pseudo op. This form functions identically to the ADC pseudo op in the utility assembler. 
However, all address expressions e v al u a te d are then placed in relative form. Exam
ples of both forms are on the following page. 

6-6 

'--_." 



HERE 

NAM 
BSS 
ADC 

EXAM1 
TAG(10) ,TAGl(lO) 
TAG ,TAG1 

6.8 

HERE which is at P0014 has the absolute address of TAG (POOOO), and HERE+1 (P0015) 
has the absolute address of TAG1 (POOOA). 

HERE 

NAM 
BSS 
ADC* 

EXAM2 
TAG(10) , TAG1(10) 
TAG, TAG1 

HERE, at P0014, has the relative address of TAG (FFEB, or twenty decimal locations 
back) and HERE+1 (P0015) has the relative address of TAG1 (FFF5). 

6.9 ALF 

ASCII characters are stored in consecutive locations, two 8-bit characters for each core 
location, by the ALF pseudo instruction. The ALF pseudo instruction is used to pack a 
core area with a message which can be used for subsequent output to ASCII devices like 
the teletype. A symbol, if used in the location field, will refer to the fi r s t word of the 
block. The format for the ALF pseudo instruction is: 

s ALF n, <2n characters> 

C~) Example: 

r·-....." 
/' , 
\~-....... ,.-

HERE 
NAM 
ALF 

EXAM 
3,ABACAD 

Three words are packed with the ASCII equivalents of ABACAD: 

POOOO 4142 
P0001 4143 
P0002 4144 

Table of ASCII equivalents is found in Appendix E. 

A blank is stored into unused locations. 

Example: 

HERE ALF 6,ABACAD 

produces: POOOO 4142 
POO01 4143 
POO02 4144 
POO03 2020 
POO04 2020 
POO05 2020 

6-7 



6.9 

The ALF pseudo op in the utility system only allowed specification for its message by the 
use of an unsigned integer for the number of core locations to be reserved. In the macro 
assembler a second form for this pseudo op is available: 

ALF n, ~essag;>n 

n may be a non-integer character which signals the end of the message. n is a delimiter 
and appears before the comma and after the message. 

This form is an advantage where the programmer does not desire to count the number of 
words in his message and will find no conflict between his message and the terminating 
character used. 

For either form the pseudo op ALF will pack two ASCII characters per word. The address 
of the first location of the message in core will be assigned to the symbol in the location 
field, if specified. 

Example: 

GO 
NAM 
ALF 

EXAMP 
Z,DATAZ 

Two words· are reserved, starting at location GO for the ASCII equivalent of DATA. 

6.10 DEC 

A DEC pseudo op is available under the macro assembler. Suppose the following problem 
needed to be solved: 

y = 1. 63 x 103 x 2 + 21246 x 10-2 x + 81 x 26 

• 0074 x 106 .11 x 103 

Insertion of the constants in this problem would be facilitated by having the assembler do 
the binary or decimal conversions. The DEC pseudo op allows insertion of constants with 
decimal or binary scaling factors. Its form is: 

s 

k is a constant - IDdBb 

Example: 

HERE 

DEC 

NAM 

DEC 

EXAMP 

163D1,74D2,21246D-2,81B6,11Dl 

This example shows the cons tants from the equation inserted. The decimal numbers are 
converted men tall y to integers. HERE is the s y m b 01 i c address of the first of these 
decimal constants which are inserted one per core cell. The size, then, of the converted 
decimal constants must lie within the range of ±32, 767. 

6-8 

\ ....... 



c 

o 

6.11 

6.11 VFn 

The VFD pseudo op is available under the macro assembler. It is frequently desirable 
to pack data into memory locations. The VFD (variable field definition) pseudo instruc
tion assigns data to consecutive locations in the instruction sequence without regard for 
computer words. Data is stored in bit strings rather than word units. Its format is: 

m1n1/v1,m2n2/v2,···,mnnn/vn 

m will specify the mode. Three modes are possible: 

s VFD 

N 
A 
X 

numeric constant 
ASCII character code 
expression 

n will specify the number of bits and v is the value. n may be 16 bits or less for either 
N mode or X mode; however, for A mode n must be some mul tiple of 8 since ASCII 
character conversion is meaningless for a non-multiple of 8 bits. Numeric constants 
must be within the range of +32,767. 

Example using numeric constants: 

TAG 
NAM 
VFD 
LDA 

EXAMP 
N4/$F,N8/6,N8/-6,N2/16 

The ass e m b ly of the bit strings begins with the high order bit of the first core cell (in 
this example the core cell labeled TAG). TAG gets packed with 1111 which is the binary 
equivalent of hexadecimal F. The next 8 bits of TAG get packed with the binary equivalent 
of 6 which is 0000 0110. The next 8 bits (which will now be thelowerfourbits of TAG) and 
the upper four bits of TAG+1 get packed with -6 or 11111001. The next two higher order 
bits get packed with as much of the number 16 as is possible, that is, with the low order 
two bits (00). The remaining bits of TAG+1 set to zeros. TAG and TAG+1 will thenlook 
like this: 

TAG 
TAG+1 

F06F-
9000-

1111 0000 0110 1111 
1001 0000 0000 0000 

If the n u m be r of bits specified is not sufficient for the value then the high order bits of 
the value are truncated (chopped off), as many as are necessary. If the number of bits is 
larger than the value, then the sign of the value is extended. 

Example using expressions: 

TOP 

NAM 
EQU 
VFD 

EXAMP 
TAG($4FF1), HAT(20) 
X8/T AG+2, X8/HA T 

6-9 



6.11 

The pre v i 0 us example shows the use of expressions where the expression is evaluated 
absolutely (since neither TAG nor HAT is relocatable). If fewer than 16 bits are spec
ified, the absolute expression by itself is evaluated (using 16 bits) and is truncated. The 
previous example is decoded by the assembler. 

TOP F314 

When the expression is evaluated relatively, the n must be 15 and the expression must 
be positioned so that it will be stored right justified at bit position 0 of the computer word. 

Example using ASCII character mode: 

NAM EXAMP 
TAP VFD A24/ ABC, N8/$3F 

The above ex amp 1 e illustrates three ASCII characters, A, B and C; these will be con
verted using 8 bits for each, followed by the numeric constant 3F hex in the lower 8 bits 
of TAP+l. The above example is decoded by the assembler. 

TAP 4142 
TAP+l 433F 

6.12 BSS, BZS 

Blocks of data storage can be all 0 cat e d within the program using either the BSS or the 
BZS pseudo instructions. The block is given a name and a size according to the following 
format: 

BSS 

n is name of block 
s is size 

These pseudo ins t r u c t ion s reserve areas. The BZS area is zeroed out at load time 
while the BSS block is not changed at load time; therefore, anything may be initially set 
in a BSS block at run time. 

Example: NAM 
BSS 
LDA 

EXAM 
AA(10), BB(20) 

The symbol AA will be assigned the address of the first 10 c a ti on of the block of 10 and 
the symbol BB will be assigned the address of the first location of the block of 20 loca
tions reserved. When this program is loaded, anything can be initially contained in these 
first 30 locations. Had a BZS been used instead of the BSS, these first 30 locations would 
have been zeroed at load time. 

6-10 

(' 
'-. r' 



6.13 

,.....'" 
~ 6.13 DAT, COM 

o 

Two other pseudo ops are used to res e r v e areas for use that are outside the bounds of 
the main program. These areas are reserved by the DAT and COM pseudo ops. Refer 
to Figure 13. Notice that the common storage area (reserved by the COM pseudo instruc
tion) is the area that is used by the loader. This area cannot be preset with data and 
is used only at run time when the loader becomes destroyed. The data area (reserved by 
the DAT pseudo instruction) is assigned an area with the programs themselves; in fact, 
the data block will precede the pro g ram that declares it. The data area can be preset. 
The loader will make common and data area assignments just once and will use its com
mon counter and data counter at this assigned value for the rest of the programs loaded. 
It is necessary, then, for the first sub pro g ram s of a run declaring common or data 
storage to declare the largest amount necessary. The format for the COM and DAT 
pseudo instructions is the same as for the BSS and BZS and is: 

Example: 

DAT 

COM 

NAM 
BSS 
DAT 
COM 

nl (sl),n2(s2)'·· .nm(Sm) 

nl (Sl)' n2 (S2)' • • • nm (s m) 

EXAM 
AA(30) 
CAT(40) ,RAN(20) 
CCC (40) ,AB(10) 

The BSS will reserve 30 locations within the program while the DAT will reserve a total 
of 60 core locations, reserved outside of the program area. In fact, this data area will 
immediately precede the main pro g ram area in core. The common area, 50 words in 
this example, is reserved at the high end of core where the loader resides at load time. 
This common area cannot be preset with data and 'can only be used at run time, when the 
loader is no longer needed. 

6-11 



6.13 

High 
Core 

013F • 

0100 ~ 

OOFF ~ 

0000 ~ 

Loader 

Loader Symbol Tables 

More Programs 

1 
Program 

Data 
Executive Monitor 

Resident 

Interrupt 
Area 

Communication 
Area 

..... t---50 Words 
Common Counter 
I 

~ Program Counter 
~ 60 Words 
~Data Counter 

Figure 13. Data, Program and Common Counters. 

Figure 13 ill us t rat e s the three counters: data, program and common counter. There 
are three types of reI 0 cat ion po s sib 1 e when loading programs, each type using its 
appropriate counter. References to addresses will be relocated using the data counter if 
the address is in the data area, the program counter if the address is in the main program 
area and the common counter if the address is in the common area. 

6-12 

,,1' .... - ... , 

c: 

c 



6.13 

C/ Example: 

0 

NAM 
DAT 
COM 
BSS 
LDA+ 
STA+ 
STA+ 

The listing for the above looks like: 

001. 
002. OOOOD 
003. OOOOC 
004. POOOO OOOA 
005. POOOA C400 

POOOB 0003D 
006. POOOC 6400 

POOOD 0007C 
007~ POOOE 6400 

POOOF 0004P 

EXAMP 
AA(10) 
BB(10) 
CC(10) 
AA+3 
BB+7 
CC+4 

NAM 
DAT 
COM 
BSS 
LDA+ 

STA+ 

STA+ 

EXAMP 
AA(10) 
BB(10) 
CC(10) 
AA+3 

BB+7 

CC+4 

The first column is the line number. The second column is the core location in hex. 
The P preceding it indicates that the value of the pro g ram counter will be added to the 
number at load time, yielding the actual core location. 

Hex word followed by relocation symbol: P for program counter, D for data counter, and 
C for common counter. 

Although there is only one common area and one data area assigned per core load, refer
ences to data in these areas can be made by all programs in core. The relative position 
with respect to the data or common counter for the data desired must be kn own by each 
program but the same names need not be used by diffe_rent pro g ram s to reference the 
same data. 

Example: Program 1 is the first program loaded. It must declare the largest data or 
common area. 

NAM 
DAT 

PROG1 
AX(lOO) ,BX(50) ,CX(100) 

6-13 



6.13 

When the program is loaded, a data area of 250 locations is assigned and the data counter 
is set at the beginning of this area. 

Suppose PROG6, which is the sixth program loaded, is interested only in the data which 
PROG1 lmows as the 26th to 30th locations in BX. 

NAM 
DAT 

LDA 

PROG6 
DUMMY(125), MINE(5) 

MINE 

DUMMY is not used by program 6. It only allows a skip past the AX and first 25 locations 
of BX corresponding to program 1. Ref ere n c e to MINE in program 6 will yield the 
same data as reference to BX+25 in program 1. 

6.14 ORG, ORG* 

Presetting the data area is accomplished by the use of the ORG pseudo OPe Its form is: 

ORG a 

This pseudo op c han g e s the value of the assembler's counter to agree with a. All in
structions or data following the ORG instruction are assembled into consecutive locations 
until either an 0 the r ORG instruction is encOlmtered or an ORG* is encountered. When 
an ORG* is en c 0 u n t ere d, the assembler's program counter is set to the value that it 
would have been,if the very first ORG ins t r u c t ion had not occurred. The address ex
pression (a) may be either positive program relocatable, positive data reI 0 cat a b I e or 
absolute. Notice common reI 0 cat a b I e address expressions are not allowed since the 
common area cannot be preset. 

Example: NAM 
DAT 
LDA 

ORG 

ORG 
BZS 
ORG* 
LDA 

EXAMP 
AX(20) ,BX(40) 

AX+10 

AX 
10 

6-14 

Assume P. C. =P0030 

.......... .1 

C, 



6.14 

G In this example the program counter starts off at 0000 and pro c e e d s in sequence until 
the first ORG instruction is assembled. Since the address expression refers to the data 
area, the assembler's pro g ram counter will now be at DOOOA, indicating that the code 
beneath this first ORG pseudo i:n.struction will be inserted beginning in the 10th data area 
location. When the second ORG instruction is encountered, the code under it (BZS10) is 
assembled into the beginning of the data area. When the ORG* instruction is encountered, 
the program counter is set to P0031; this is the next location following the last location 
assembled before the first ORG instruction. Any symbols used in the address expression 
of the ORG pseudo op must have been previously defined in the program. 

0 

The following example can be used to illustrate presetting values in A and B in the DATA 
block: 

A= OOOOD DAT A(5) ,B(2) 
X:: OOOOC COM X 

C= 0007D DAT C(50) 
OOOOP START 0 0 
000lP LDA- $FF 
0002P STA+ X 

ORG A 
OOOOD NUM ~~ 

A B 
ORG* 

0004P RAO- $FF 

6. 15 IF A, ElF t 
The macro assembler contains a conditional assembly instruction. With the p s e u do op 
IF A, it is possible to specify portions of a program to be e i the r assembled or excluded 
during assembly time. Its format is: 

s IFA 

(This pseudo op can be used within a macro skeleton.) e may be an ex pre s s ion and c 
specifies one of four conditions: 

EQ 
NE 
GT 
LT 

e1=e2 
e1~e2 
e1>e2 
e1<;e2 

The termination of the coding en com pas sed within the ran g e of an IF A pseudo op is 
accomplished with the pseudo op ElF. Since nesting is allowed, a match between an IFA 
and ElF pseudo op range is made by correspondence between the first two characters of 
the symbols in the location field of the IF A and the address field of an ElF. 

6-15 



6.15 

Example: 

TOTS 

NAM 
EQU 

IFA 
LDA 
STA 
ElF 

EXAMP 
AB(10) ,AC (20) ,AD(30) 

AB+AC, EQ, AD 
TAG 
TAG1 
TOTS 

The LDA TAG and the STA TAG1 instructions will be assembled in this example since 
equality exists. Changing the EQU card, however, or changing the condition from EQ to 
NE would have excluded these two lines of code from the assembly. 

Problem: 

VALUE PROBLEM (COMMON) 

Starting in the 11th location of COMMON are 10 words. Bits 13-8 of each of the 10 words 
are to be compared with bits 5-0 of a location called VALUE which is ext ern a I to this 
program. Do not destroy the original contents of VALUE. Count how many complete 
matches are found in the bit strings compared and store the answer in the 7th word of the 
data block. For example, if bits 5-0 of VALUE con t a in 101100 and bits 13-8 of Xl 
con tain 101100, one match has been found. Any other bit configuration would be a no
match. Write a complete program to solve this problem. 

6.16 MAC, EMC 

x· 1 

Value 

[-----------] 
XXXXXX 

[-~ XXXXXX ------------

The macro assembler gets its name from the macro capability incorporated therein. An 
often used set of instructions may be grouped tog e the r to form a macro. Macros then 
need be defined once and the rea f t e r the whole macro structure will be incorporated in 
line in the assembly generated coding whenever the macro name is called. Each macro 
has a name which is first define d by the use of the MAC pseudo op and thereafter the 
name can be placed in the opcode field as if it were an instruction or pseudo instruction 
and the assembler will substitute, starting at that location, the whole structure that was 
previously defined by that name. The macro must first be defined. The form is: 

s MAC 

6-16 

(-', 
'-..." 



r 
I ' 

\J 

6.16 

s is the name of the macro. The p's are symbols of one or two characters that will de
fine variables wi thin the macro structure. Parameters are enclosed in apostrophes as 
shown within the macro. The keypunch code for apostrophe is 8-5. The macro structure 
itself is defined to be finished when the EMC pseudo op appears in the opcode field. EMC 
is always the last instruction in a macro definition. 

Example: 
NAM EXAMP 

HELP MAC XA,XB 
LDA 'XA' 
STA 'XA'+l 
ADD 'XA'-l 
STA. 'XB' 
EMC 

HELP is the name of the macro and XA and XB signify variables within the macro. All 
the code between the MAC and EMC is the mac r 0 structure. Anything in this structure 
can be made variable. In this assembly only positions of the address field were varied. 
Macros canbe of anylength and they can also be nested. A macro must be defined before 
it is called by name. Calling the macro in the above example would look like this: 

OVER 

SAZ 
HELP 

OVER-* .... l 
TAG,TAG1 

The macro is called by placing its name in the opcode field. The assembler will search 
the symbol d ire c tor y for a macro with the name of HELP, and if found, the complete 
macro structure is placed in line at this point. When calling a macro, the variables must 
be specified. For this example TAG will be inserted for each XAreference and TAG1 will 
be inserted for each XB reference. Effectively, then, the assembler will place in line 
the following: 

LDA 
STA 
ADD 
STA 

TAG 
TAG+1 
TAG-1 
TAG1 

A macro could be defined as "an instruction which' stands for' a number of other instruc
tions. " 

6-17 



6.17 

6.17 LaC 

Since' the code for a macro is ins e r ted in line wherever it is "called," if there are any 
symbols in the location field of the macro, it could be called only once, since the symbol 
would tbe doubly defined if the macro were called again. This problem can be eliminated 
by defining the symbols local to the macro. 

Symbols that are local to the macro being defined are listed in the LaC pseudo OPe This 
pseudo op i m m e d i ate I y follows the MAC pseudo op and it allows use of one- or two
c h a r act e r symbols local to the macro so that the same symbols can also appear in the 
main program. Its form is: 

Example: 

TOPP 

'AB' 
'G1' 
'G2' 

LaC 

NAM 
MAC 
LaC 
LDA 
EaR 
STA 
JMP 
EMC 

EXAMP 
AD,AB 
G1,G2 
'AD' 
=N$0171 
'AD'+l 
'AD'+2 

Symbols passed as parameters may not be defined as local. 

6.18 IFC 

A conditional assembly pseudo op is available for use within the macro skeleton. It is 
the IFC pseudo OPe It operates the same as the IFA covered previously; however, it has 
only two conditions, the NE and EQ. Its form is: 

s IFC 

Each a must be a string of from one to six characters, or a formal parameter specified 
in the MAC statement. The c h a r act e r strings should not contain commas, blanks or 
apostrophies. Two character strings are equal when they contain the same characters in 
the same po sit ion and are of the same length. Characters in excess of 6 are ignored. 
Termination of the range of the IFC is made when an ElF is encountered with the first 
two characters of the symbol in its address field matching the first two characters in the 
location field of the IFC. 

6-18 



o 

6.18 

Example: 

NAM EXAMP 
TOTAL MAC XA,XB,XC,XD 

LD'XA' =N$4000 
STA 'XB' 

IT IFC 'XC'EQ'XD' 
ADD 'XB'+2 
STA 'XB' 
ElF IT 
EMC 

If parameter XC and XD are equal when this macro is call e d then the ADD and STA in
structions will be inc 0 r p 0 rat e d in line with the rest of the macro structure. If para
meters XC and XD are not equal when the mac r 0 is called, these ins t r u c t ion s will 
not be inserted in line as part of this macro structure during assembly. 

The generated code is: 

TOTAL 

LDQ 
STA 

Q, TAG, TEN, NINE 

=N$4000 
TAG 

Since TEN and NINE do not match character for character, the IFC condition is not met 
and the ADD followed by the STA instructions are not assembled. 

Problem: 

Write a macro for an IN! instruction. Add a test routine to check it out. 

The IN! macro should increase the I Register by any constant exactly the same way the 
INA increases the A Register or the INQ increases the Q Register. In other words, no 
other registers should be destroyed when the macro is called.· 

6.19 NLS, LST, SPC 

Three pseudo instructions are used for control of the listing. They are NLS, which pre
vents normal output list until a LST instruction is encountered or until the end of a 
program. Spacing paper on the printer is a c com p 1 ish e d by the SPC pseudo OPe The 
n urn b e r of lines to space is specified as an absolute address expression in the address 
field. 

6-19 



6.19 

Example: NAM 
LDA 

EXAMP 

SPC 12 12 lines are spaced 

NLS Lis ting is stopped 

LST Lis ting is enabled 

6.20 EJT 

In addition to the NLS, LST, and SPC listing control pseudo instructions, the macro 
assembler also has an EJT pseudo OPe This ins t r u c t ion causes page ejection during 
printing of the lis t output. 

6.21 OPT 

Three standard options determine the type of output from the assembler. All three are 
automatically selected if no OPT statement is encountered be for e the first NAM. OPT 
is the only pseudo instruction that may precede the NAM pseudo OPe No code is generated 
by this pseudo instruction. 

OPT must begin in card column 2. 

Normal execution of ass em b I y produces list output on the standard list device, punch 
output on standardpunch device and load and go output on the mass storage device. These 
are 0 p t ion s L, P and X. Two other options are available. The Mop t ion will enable 
Ii sting of macro skeletons and an A option will cause abandonment of the assembly and 
will return control to the operating system. To exercise these 0 p t ion s or to eliminate 
any of the three standard options, the OPT pseudo instruction is used. When the OPT 

pseudo instruction is encountered by the ass e m bl e r it will type OPTIONS on the tele
typewriter and allow the operator to manually reset the options desired. He can choose 
any or all of these five options. 

Option 

L 

P 

X 

M 

A 

Meaning 

List output on standard list unit 

Punch binary output on standard punch unit 

Load and go; executable output loaded on a mass storage 
device 

List macro skeletons 

Abandon assembly 

6-20 

c 



/"' .... _ .. , 

\~ 

o 

6.21 

Relocatable binary output is s e I e c ted by the P option. The format is described in the 
1700 Operating System Reference Manual. 

If the X option is selected, relocatable binary output is placed on the mass storage unit 
for subsequent loading and execution as described in the 1700 Operating System Reference 
Manual. 

The L option results in assembly listing. 

6.22 MON 

Mter the last subprogram has been assembled, control can be returned to the operating 
system by use of the MON pseudo OPe It may be used only after the END statement. 

MON must begin in card column 2. 

Example: 

cc 
2 
OPT 

MON 
cc 
2 

NAM 

f 
END 
NAM 

1 
END 

PGM 

n ........ 1------ Name of main entry point in main 
SUB program 

...... 1-----No name on subroutine end card 

6.23 EXERCISES ON PSEUDO OPS - UTILITY ASSEMBLER 

1. What are the errors in this program? 

Location Opcode Address Comments 

NAM EXAMP 
LED EQU 720 
TAG NUM -72, $FFFF, 72 
TAG11 BSS 25 

EXT LAD, TAG 
START LDA+ TAG 

STA+ LAD 

END START 

6-21 



6.2.3 

2. Why will the ORG LIST produce an error? 

COM LIST (30) 

ORG LIST 

3. In this example: 

COM LIST(30) 

LDA LIST 
this assembler will decode the LDA LIST as: 

Why? 

C400 
OOOOC 

4. What is the problem? 

BSS LIST (10) 

LDA LIST+3 
SAZ 

6.24 EXERCISES ON PSEUDO OPS - MACRO ASSEMBLER 

1. What code is produced: 

a) VFD NI2/-17 ,N5/$7F2 ,N15/47 

b) VFD A8/A,A8/B 

c) DEC 16DIB4 

d) ADC* *-1 

6-22 

(~ 



(' -", 

~j 

o 

CJ 

2. What instructions are assembled: 

EQU 
G01 IFA 

LDA 
T02 IFA 

ADD 
H03 I?A 

ADD 
ElF 
ElF 
ElF 

3. If this macro definition: 

PRINT 
TAG 

TAG1 

is called by 

MAC 
ALF 
IFC 
ALF 
ElF 
EMC 

PRINT 

AA(10), BB(20), CC(30) 
10, GT, BB-15 
=N$1000 
CC-AA, EQ, BB 
=N$1000 
40, NE, BB*2 
=N$2000 
HO 
TO 
GO 

XA,XB,XC 
Z,ERROR'XB'Z 
'XA', EQ, LU 
Z, LOGICAL UNIT'XC'Z 

LU, 6, 8 

what assembly language is produced when this macro is called? 

4. What discrepancy is in this program? 

FALL MAC 

'TE' 
LOC 
NUM 
LDA 
EMC 

FALL 

TE 
$7FF3 
'TE' 

LDA TE 

6-23 

6.24 





c' 

l~ 
" I 
I~ .... "I 

CHAPTER VII 

INTRODUCTION TO MACHINE LANGUAGE I/O 



\, .... " ,," 

,~ -



CHAPTER VII 

C~ Introduction to Machine Language Ilo 

TOPIC PAGE 

7.0 Introduction 7-1 

7.1 Unbuffered Ilo 7-1 

7.1.1 Use of Registers in I/o 7-1 

7.1.1.1 Q Register 7-2 

7.1.1.2 A- Register 7-2 

7.1.2 Functions, Status and Data 7-2 

7.1.3 Summary, Unbuffered Ilo 7-3 

7.1.4 Low-speed Package 7-3 

7.1.5 Reply or Rej ect 7-4 

7.1.6 Functions 7-5 

7.1.6.1 Paper Tape Reader Example 7-5 

7.1.7 Status 7-9 

0 7.1.8 Interrupts 7-10 

7.2 Buffered Ilo, Disk Example 7-11 

7.2.1 Disk Functions 7-12 

7.2.1.1 Director Function 7-13 

7.2.1.2 Load Address Function 7-14 

7.2.1.3 Write Function 7-15 

7.2.1.4 Read Function 7-17 

7.2.1.5 Compare Function 7-17 

7.2.2 Disk Status 7-17 

7.2.2.1 Director Status 7-17 

7.2.2.2 Address Register Status 7-18 

7.2.3 Summary, Buffered Ilo 7-18 



'.-' 



7.0 

7. 0 INTRODUCTION 

The 1700 is composed of a 1704 and various peripherals. The 1704 contains the regis
ters and the logic necessary for bringing data into the computer, performing operations 
upon the data and sending the data out of the computer for fu tu r e reference and/or dis
play. 

CONTROL ARITHMETIC 

INPUT OUTPUT 
~~~~-...... :- - --- - - - -- - - -+-....:::;...;:~=--=~-. 

MEMORY

1704

The per i p her a 1 s are composed of devices capable of sending and/or receiving data.
Such devices are the tel e t y p e, paper tape reader and paper tape punch. Many other
peripherals are available and discussed in Chapters 12 and 14.

The peripherals and the 1704 cannot com m u n i cat e directly; therefore, an interpreter
is required. The interpreter is referred to as a controller. The program tells the con
troller the operation to be performed and the controller directs the per i p her a 1 in the
performance of the operation.

7.1 UNBUFFERED I/O

7.1.1 Use of Registers in I/O

Conlmunications among the 1704 and the peripherals is a c com pI ish e d via one
input/ output (I/O) .channel attached to each controller. The I/O channel works in
conjunction with the 1704's A register and Q register. It is, consequently, called
the A/ Q channel.

~ 4----r-A/-Q---~ _ _I

7-1

7.1.1.1

7. 1.1. 1 Q Register

The Q reg i s t e r designates the equipment to be referenced and directs the op-,
erations to be performed. The Q reg i s t e r will be in the following format when
performing an 110 operation via the AI Q channel.

15 11 10 '{\ 7 6 0
QI~ _______ W ______ ~ _____ E ____ ~~ __ S_' ______________ D~I

The Wfield, bits 15-11, will always be zero except when referencing a 1706;
this will be discussed later.

The E portion, bits 10-7, designates the e qui pm e n t number being referenced.
The equipment number will correspond directly with a hardware switch located on
each controller. The n u m be r will vary from a hexadecimal 0 to a hexadecimal
F.

The S po r t ion distinguishes among peripherals attached to the same controller.
The bits composing the station code will vary with controllers.

The D portion is the director bit or bits which designates the type of information
being transferred: data, status or function. The n u m be r of bits used to com
pose the D po r t ion also varies a c cor din g to the controller being referenced.

7. 1. 1. 2 A Register

The A register sends and receives all communications between the 1704 and
the peripherals; that is, the data, functions, or status.

7. 1. 2 Functions, Status, and Data

The 1704 is capable of sending or receiving data, sending a function, or receIVIng
status. The D portion of Q and the II 0 ins t r u c t ion executed denote which of
the three operations is to be performed. All inputloutput operations via the A/Q
channel are performed with two instructions.

INP
OUT

The INP instruction brings inf 0 rm a ti 0 n into the A register: data or s ta tu s.
The OUT instruction sends in f or mat ion from the A register: data or function.
Bit 0 of Q is usually the D portion, designating the type of in for mat ion being
transferred. (Note: the exceptions are discussed in Chapte r ,14.) When bit 0
of Q is a 0, the transfer of data is designated. The direction of the data flow is
in d i cat e d by the 110 instruction. The INP brings data into A. The OUT sends
data from A. When bit 0 of Q is a 1, the transfer of status or the transfer of a
function is requested. INP requests status while an OUT sends a function.

7-2

..............

~,------- "

o

,-\
~
",-,,--~

7. 1. 3 Summary, Unbuffered Ilo

< D=Odata
INP

D = 1 status

< D= 0 data
OUT

D = 1 function

7.1.2

In review, all input/output operations performed by the 1704 will take p I ace via
the A/Q channel. The Q register indicates the peripheral being referenced and
the type of information being transferred. The information to be transferred will
be brought into or sent from the A register, depending upon the instruction exe
cuted: INP or OUT. Three types of information may be transferred: data,
function, or status.

7.1.4 Low-speed Package

The grouping of the teletype, paper tape reader and paper tape punch is referred
to as the low-speed package. The low-speed package is always equipment number
1. The various peripherals attached are referenced specifically with the S por
tion of the Q register, bits 4-6.

Peripheral

Teletypewri ter
Paper tape reader
Paper tape punch

"S"tation

1
2
4

The format of Q for each of the low-speed peripherals is as follows:
...

15 11 10 7 6 5 4 3
Q 1 0 0 0 0 0 I 0 0 0 1 I 0 0 1 0

\ I'---y----/ v
Equip. Station

1 1

TELETYPEWRITER $0090/$0091 ..
15 14 13 12 11 10 9 8 7 6 5 4 3

Q 1 0 0 0 0 0 I 0 0 0 1 I 0 1 0 0
\ 1\ 1

V v
Equip. Station

1 2

PAPER TAPE READER $00AO/$00A1

7-3

2 1 0
0 0 DI

2 1 0
0 0 DI

7.1.4

Q

7.1.5

~

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1
0 0 0 0 0 I 0 0 0 1 I 1 0 0 0 0 0 DI

\
V

1\
V

I

Equip. Station
1 4

PAPER TAPE PUNCH $00CO/$00C1

The programmer must load the Q register with the cor r e c t equipment, station
and director setting prior to executing the desired I/o instruction.

The coding necessary ~o reference each of the low-speed peripherals for data is
as follows:

LDQ =N$0090 TTY FOR DATA
NOP
INP -1 DATA IN A

LDQ =N$0090 TTY FOR DATA
LDA DATA DATA IN A
NOP
OUT -1 SEND DATA TO TTY

LDQ =N$OOAO PTRDATA
NOP
INP -1 DATA IN A

LDQ =N$OOCO PTPDATA
LDA DATA DATA IN A
NOP
OUT -1 DATA TO PTP

Reply or Reject

Control will be returned to the program after the execution of an I/o instruction
at one of t h r e e locations: P+ 1, P+ ~, P+ 1 + il. Control will be returned to P+ 1
when the controller a c c e p t s the command, NORMAL REPLY. Control will be
returned to P+ 1 + ~ when the controller rejects the command, EXTERNAL REJECT.
If the con trolle r fails to reply or reject within 6 microseconds, an INTERNAL
REJECT is generated and con t r 0 I continues at P+ il. The NOP instruction is
inserted within the above coding to allow for an INTERNAL REJECT.

7-4

-',

"'--- .

~'.- -

C,

("
\,

r
~I

o

RESPONSE ADDRESS

INTERNAL REJECT -----i ... 2000
EXTERNAL REJECT .. (P) 2001
NORMAL REPLY .. 2002

INTERNAL REJECT
EXTERNAL REJECT
NORMAL REPLY

P+ b.
P+1+ "b.
P+1

INSTRUCTION

NOP
INP
Continue

2001 +(-1)=2009
2001 +1 +(-1)=2001.
2001+1=2002

7.1.5

-1

7. 1. 6 Functions

A

I/O programming for the 1700 peripherals requires the programmer to c onne c t
with the desired peripheral by set tin g the Q register and issuing a function.

LDQ
LDA
NOP
OUT

=N$OOAl
FUNC

-1

PTR FOR FUNC OR STATUS
FUNCTION IN A

SEND FUNCTION TO PTR

A function is a command or a group of commands sent to the controller. The
function sent will vary according to the equipment. The paper tape reader allows
the pro g ram mer to clear the con t roll e r, clear interrupts, select interrupt
on data and/or alarm, start motion and stop motion. Each function corres
ponds to a bit in the A register. The func ti on is requested if a 1 appears in
the corresponding bit.

15 7 6 5 4 3 2 1 0

I 0 0 0 0 0 0 0 0 01 1 1 1 ~~ 1 1 11

STOP MOTIOJ t 1 r 1
START MOTION

INTERRUPT ON ALARM
DATA INTERRUPT REQUEST

CLR INTERRUPTS
CLR CONTROLLER

The above functions may be sent together, with the ex c e p ti on of the clear con
troller and clear interrupt; these must be sent separately.

7. 1. 6. 1 Paper Tape Reader Example

The programmer may clear the controller to clear all logic and interrupts pre
viously selected by loading Q with $00A1, by setting bit 0 of the A register and by
issuing an OUT instruction.

7-5

7.1.6.1

LDQ
ENA
OUT

=N$00A1
1
-1

PTR FUNC OR STATUS
CLR CONTROLLER
FUNC TO PTR

The programmer may then start the motor on the paper tape reader. The start
motor command causes the reader to begin moving paper tape and start reading.

LDQ
ENA
OUT

=N$00A1
$20
-1

PTR FUNC OR STATUS
START MOTION
FUNC TO PTR

The' next step is to bring the data into the A register by set tin g the director bit
of Q to 0 and issuing an INP instruction.

LDQ
NOP
INP

=N$OOAO

-1

PTR FOR DATA

DATA INTO A

The program will continue to loop on the INP instruction until data has been read
into the holding register of the paper tape reader. Once data is available it will
be brought into the lower 8 bits of the A register. Note: the number of bits
composing a data word will vary among the peripherals. The first frame will be
in A and may be shifted to the upper 8 bits. Input will then be r e que s ted again
for the lower 8 bits.

ALS
NOP
INP

8

-1

FIRST FRAME UPPER 8 BITS A

NEXT FRAME BROUGHT TO A

The entire 16-bit word is now in the Are g i s t e r and s h 0 u I d be s tor e d in the
buffer area. Once the word is stored the program con tin u e s to bring data into
the A register. A check should be made to determine when all requested words
have been read from the reader.

7-6

7.1.6.1

r,.-·····

U NAM PTR
START LDQ =N$OOAI PTR FOR FUNC/STATUS

ENA 1 CLR CONTROLLER
OUT -1 FUNC TO PTR
ENA $20 START MOTOR
OUT -1 FUNC TO PTR
INQ -1 PTR FOR DATA
NOP

DATA INP -1 FRAME IN A
ALS 8 DATA UPPER 8 BITS
NOP
INP -1 16-BIT WORD IN A
STA* BUF SA VE IN MEMORY
LDA WDCK WORD CHECK IN A
SAP COMP WHEN POSITIVE COMPLETE
RAO* WDCK
JMP* DATA CONTINUE READING

COMP SLS 0 STOP WHEN COMPLETE
WDCK NUM FFFO CHECK FOR 16 WORDS

END START

0
The programmer may check for leader on the paper tape as has been done in the
example on the next page.

()
7-7

7.1.6.1

1721 PTR - AUG '6S C-':.
USDA -'

*Clear controller from console; cannot start motion and clear con t roll e r in same
function.

01. NAM BOOTSTRAP

02. ENT START

03. POOOO EOOO START LDQ =N$A1 PTR DIR FUNC
POOOI 00A1

04. POO02 OA20 ENA $20 START l\1:0TION*

05. POO03 03FE OUT -1

06. POO04 ODFE INQ -1 SET TO READ

07. POO05 OBOO NOP

OS. POO06 02FE LOAD1 INP -1 INPUT LEADER

09. POO07 0113 SAN 3

10. POOOS lSFD JMP* LOAD1

11. POO09 OBOO NOP

12. POOOA 02FE LOAD2 INP -1 INPUT FRAME C
13. POOOB OFCS ALS S SIDFT TO PACK

14. POOOC OBOO NOP

15. POOOD 02FE INP -1 INPUT NEXT FRAME

16. POOOE 6C04 STA* (ADDRES) STORE WORD

17. POOOF 0103 SAZ EXIT-*-l EXIT ON ZERO WORD

IS. P0010 DS02 RAO* ADDRES UPDATE ADDRESS

19. P0011 lSFS JMP* LOAD 2 GO GET NEXT WORD

20. POO12 0014P ADDRES ADC *+2 LOAD AT POO14

21. POO13 0000 EXIT NUM $0 ZERO FOR SLS

22. END START

I OOFF START OOOOP LOAD1 0006P LOAD2 OOOAP ADDRES 0012P
EXIT 0013P

Where ' Set Stop switch up and program will stop

BOO!ST
/ BOOTSTRAP after reading paper tape. Run and loaded

1725 loaded PG M will execute. r~ .,.; ..
7-S

! .• ,

7.1.7

o 7.1.7 Status

A

C)

()

The paper tape reader has been pro g ram me d "r'ithout the uFle of interrupts for
each of the above examples. Status may be taken on the paper tape reader at any
time to monitor the progress of the operation or to ass u r e the program that the
operation was com pIe ted correctly. Status is taken by setting the Q register
and issuing an INP instruction.

LDQ
NOP
INP

=N$OOAI

-1

PTR FUNC/STATUS

STATUS TOA

The status is now in the A register. The status conditions exist if a 1 is present
in the corresponding bit position.

15 11 10 9 8 7 6 5

~~~~ I I 
POWER ON+ t i PAPER MOTION FAILURE 

EXISTENCE CODE 1 1 PROTECTED 
LOST DATA 

ALARM 

4 3 2 1 0 

~ I I I 

DATA 
INTERRUPT 

BUSY 
READY 

Ready (bit 0): Power is on and paper tape has been loaded into the reader. The 
preparations have been made lmown to the logic by pressing the READY switch on 
the paper tape reader console. The reader beconles not ready if a paper motion 
failure occurs or if the power is turned off. 

Busy (bit 1): The paper tape reader is busy if a start motion command has been 
issued and no stop motion command has followed. Motion stops on a stop motion 
command, a paper motion failure, or if the power is turned off. 

Interrupt (bit 2): An interrupt condition exists. Other status bits must be ex
amined to determine the condition causing this interrupt. 

Data (bit 3): The data hold reg is t e r in the paper tape reader contains an 8-bit 
frame of data which is ready for transfer to the computer. Start motion must be 
set to receive this status. The s tat us· drops when the data hold reg is t e r is 
emptied by transfer to the computer. 

7-9 



7.1.7 

Alarm (bit 5): At least one of the following con d i t ion s exis ts in the paper tape (~= 
reader: (1) paper motion failure (bit A9), (2) lost data (bit 6), or (3) power off 
(bit A10 is 0). 

Lost data (bit 6): When in interrupt on data mode, paper motion continues after 
the data hold register is full. If the data is not t ran s fer red to the computer 
be for e the next frame appears, a los t data status occurs to show a f ram e has 
been passed. The time between frames is 2.857 milliseconds. The status drops 
when a clear controller command is sent. Lost data stops tape motion. 

Protected (bit 7): The PROGRAM PR OT E C T switch is on. This switch on the 
paper tape reader works in conjunction with the PROGRAM PROTECT switch on 
the computer. If the switch on the computer is off and the PROGRAM PROTECT 
switch of the peripheral device is on, no action is taken but the status bit is set to 
indicate the switch is on. If the switch on the computer is set, all rules of pro
gram pro t e c t ion apply. The paper tape reader in this condition only accepts 
protected instructions. 

Existence code (bit 8): The paper tape rea d e r is at t a c h e d. If the bit is a 1, 
the reader is missing from the particular computer system. 

Paper motion failure (bit 9): No change in the feed hole circuit has occurred for 
40 milliseconds while trying to read. The paper motion failure causes the reader 
to become not ready; it can only be made ready by pushing the READY switch or 
by a clear controller command. It is con sid ere d an illegal operation to send 
any other function code or a read command to the reader until the READY switch 
has been pressed or a clear controller has been issued. 

Power on (bit 10): Power to the rea d e r is on. If this bit is a 0, power is off. 

7.1.8 Interrupts 

The paper tape reader may be programmed with interrupts by s imp I y selecting 
the desired interrupts and exiting to the operating system or continuing execution 
of instructions within the progra~. When a selected interrupt is generated, con
trol will be returned to the program. 

LDQ =N$00A1 PTR FUNC/STATUS 
ENA 1 CLR CONTROLLER 
OUT -1 FUNC TO PTR 
ENA $34 START MOTOR, ALARM, DATA 
OUT -1 FUNC TOA 
Exit 

When the interrupt returns control to the program, status must be taken to deter
mine w hi c h of the two in t err u p t s was generated, data or alarm. If the data 
interrupt was generated, the programmer b r in g s the data into A and saves it. 
Once the data is saved, a check should be made to determine if all data has been (" .. 

7-10 



7.1.8 

transferred. If the operation was not complete, the pro g ram mer should re
select interrupts and exit, waiting for the next interrupt. 

7.2 BUFFERED I/O EXAMPLE 

The A/Q channel prohibits the execution of other instructions while data is being trans
ferred. The reason is obvious: the Q register and A register, which are used for I/O, 
are also the arithmetic registers. A direct storage access (DSA) channel may be con
nected to the 1704. The DSA transfers data di re c tly to memory, bypassing the A and 
Q registers. Therefore, apr 0 g ram may be executing while data is being transferred. 
The direct storage of data is ref err e d to as BUFFERING. The A/Q channel is used to 
send functions and receive status, but the data is transferred via the DSA. The disk is 
an example of a buffered device. 

A/Q 1704 

DSA 1 

7-11 



7.2 

SIDE VIEW: 
850 DISK PACK 
(6 DISKS) 

,1.-__________ _ DISK SURFACE 0 

DISK SURFACE 1 

------i-----..s..c-- - - - - - - - - DISK SURFACE 9 

TOP VIEW: 
DISK SURFACE 

r----~ 

CYLINDER 00...1 

CYLINDER 99£ -

DIRECTION OF 
ROTATION 

853 contains 100 cylinders; 854 contains 200 cylinders. 

Figure 14. Side and Top Views of 850 Disk Pack 

7. 2. 1 Disk Functions 

SECTOR 14 

SECTOR 15 

SECTOR 0 

SECTOR 1 

The program s e 1 e c t s the disk by setting the Q register with the e qui pm e n t 
number and the desired director bits. Throughout this discussion the disk shall 
be considered equipment number 8. 

7-12 

\._.- . 



C) 

'i/) 
\ ....... 1 

7.2.1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o 
Q I 0 o o o o I 1 0 0 0 I o o o o D 

\\...... __ ---.. _---J' 
V 

EQUIP 8 

The setting of the director bits will define the operation and the information to be 
sent from or received in the A register. 

A (A) depends upon D field of Q 

Q I D I 

DISK FUNCTION CODES 

Value Set in Q 
(Bits 02-00) Output from A Input to A 

001 Director function Director status 
010 Load address Address register status 
011 Write 
100 Read 
101 Compare 
110 Checkword check 
111 Write address 

7-13 



7.2.1.1 

7.2.1.1 Director Function 

A 

D = 001 , OUT 

LDQ 
LDA* 
NOP 
OUT 

=N$0401 
FUNC 

-1 

UNIT SELECT 
RELEASE 

DISK FOR FUNC 
FUNC IN A 

FUNC TO CONTROLLER 

ALARM INTERRUPT 
END OF OPERATION INTERRUPT 

READY & NOT BUSY INTERRUPT 
CLEAR INTERRUPT 

The clear interrupt fun c t ion will clear all selected in t err u p t s, allowing the 
pro g ram mer to select the in t err up t s hde desires. Threedinlterrupts may be C 
selected: next ready and not busy status, en of operation, an a arm. The next 
ready and not busy in t err u p t occurs when the 1738 becomes not busy but still 
holds its ready status. 

The end of 0 per a t ion interrupt allows the controller to inform the 1700 when 
it has completed an 0 per at ion such as a data transfer. The alarm interrupt 
will notify the 1700 that an alarm condition has arisen. There are eight possible 
alarm conditions: not ready, checkword error, lost data, seek error, add res s 
error, defective track, storage parity error, and protect fault. 

The release function allows an unprotected pro g ram to use the disk even though 
the protect switch on the disk is still set. A protected pro g ram must issue the 
release function. The next time a protected program accesses the disk, the disk 
will become protected and must again be released before it will become accessible 
to an unprotected program. 

The unit select and unit select code will al way s be zero unl e s s two disks are 
connected to the con t roll e r. Bit 8 is the unit select bit. It informs the con
troller that the pro g ram will select unit 0 or unit 1. Bit 9 indicates which unit 
bit 8 wishes to select. If 9 bit is a 0, unit 0 is s e 1 e c ted; if it is a 1, unit 1 is 
selected. The controller ignores bit 9 unless bit 8 is set. 

7-14 



c 7. 2. 1. 2 Load Address Ftmction 

D = 010 , OUT 

7.2.1.2 

Once the functions have been sent to the controller, the program notifies the con
troller of the beginning add res s on the disk to be used by the program. The Q 
register is loa de d with the D portion set to 010 and the disk add res s (sector 
record address) is placed in the A register (Figure 14). 

LDQ 
LDA 
Nap 
OUT 

=N$0402 
=XDISKAD 

-1 

DISK FOR DISK ADDR 
ADDR IN A 

ADDR TO THE DISK 

The controller will position the Read/Write heads on the requested address. The' 
heads will be moved directly to the address forward or backward, depending on the 
cu rr en t location of the Read/Write heads. The address held in the A register 
will be in the following format. 

15 8 7 4 3 0 

AI L ___________________ c_Y_L_I_ND ___ E_R ____________ -L _________ H_E_A_D ______ ~ _______ SE_C ___ T_O_R ___ ~I 
The disk has been functioned and g i v e n the desired disk address. The next step 
will be to initiate one of three operations. 

7. 2.1. 3 Write Ftmction 

D = 011 , OUT 

WRITE 
READ 
COMPARE 

D = 011 
D = 100 
D = 101 

The write function code reques ts the con t roll e r to prepare to read data from 
memory and write it on the disk. 

LDQ 
LDA 
OUT 

=N$0403 
=XMEMADR 
-1 

DISK TO WRITE 
MEMORY ADDR IN A 
WRITE OPERATION INITIATED 

The controller expects to find the first word address minus 1 (FWA-1) of the buf
fer area in the Are g is t e r when the write function is received. The controller 
goes into memory via the DSA to the FWA-1, at which location the controller ex
tracts the last word add res s plus 1 (LWA+1). The controller keeps the LWA+1 
and upda te s the FWA-1 tmtil the two are equal; at this point the write operation 
is complete. The controller updates the address each time a 16-bit data word is 
transferred from memory. 

7-15 



7. 2.1~ 3 

DATA BUFFER FOR DISK 

,----. ----I 
I LWA + 1 I 
I I 

FWA---

DATA 

LWA-'~------------------~, 

FWA - 1 MUST CONTAIN LWA + 1 OF BUFFER 

Prior to issuing the write operation, the interrupts must be selected, the sector 
record add re s s must be sent to the controller and the LWA+1 of the buffer area 
must be at the FWA-1. 

LDQ =N$0401 DISK FOR FUNC 
LDA* FUNC SELECTED INT IN A 
NOP 
OUT -1 INT SELECTED 
LDQ =N$0402 DISK FOR DISK ADDR 
LDA =XDISKAD ADDR IN A 
NOP 
OUT -1 HEADS POSITIONED 
LDA =XLWAP1 LWA+1 IN A 
STA FWAMI LWA+1 AT FWA-1 
LDQ =N$0403 DISK TO WRITE 
LDA =XFWAM1 FWA-1 IN A 
NOP 
OUT -1 OPERATION INITIATED 

The 1704 continues executing ins tructions while the disk t ran s fer s data. When 
the data has all been transferred or an alarm condition has arisen, the 1704 will 
be notified. 

7-16 



o 

o 

7.2.1.4 

7. 2.1.4 Read Function 

D = 100 ; OUT 

The read function code follows the same programming pro c e d u r e as the write 
function, the differences being the D setting of Q and the fact that the disk reads 
data into memory rather than writing data on the disk. 

7. 2. 1. 5 Compare Function 

D = 101 ; OUT 

The compare function code follow s the same pro g ram min g procedure as the 
read and write function codes. The compare function causes the con t roll e r 
to read data from the computer's memory and compare it with the data stored on 
the disk. If at any time during the compare, one word does not compare, the no 
compare status bit will be set. This fun c t ion provides an extra c he c k on the 
validity of the data transferred. 

The checkword check (D=110) and write address (D=lll) functions are used by the 
customer engineers. 

7.2.2 Disk Status 

7. 2. 2. 1 Director Status 

D = 001 , INP 

Status may be t a ken to m 0 nit 0 r the operation of the disk. Once the disk gen
erates an interrupt, status must be taken to determine which interrupt was gen
erated. This is a c com p lis he d by loading the Q register with the D portion set 
to 001 and by issuing an INP instruction. 

15 14 
A 

PRODUCT FAULT 
STORAGE PARITY ERROR 

LDQ 
NOP 
INP 

=N$0401 

-1 

DEFECTIVE TRACK 
ADDRESS ERROR 

SEEK ERROR 
LOST DATA 

CHECKWORD ERROR 
PROTECTED 

DISK FOR STATUS 

STATUS IN A 

READY 
BUSY 

INTERRUPT 
ON CYLINDER 

END OF OPERATION 
ALARM 

NO COMPARE 

7-17 



7.2.2.1 

The ready status in d i cat e s that the unit is available. The busy bit indicates (' 
that the controller and/or the drive unit is presently involved in the performance _/ 
of an operation. This bit is set with the acceptance of a load address, write, 
read, compare, checkword check, or write address function. At the completion 
of the function which set the busy status, the status will be cleared and the disk 
will become not busy. Once the disk is not busy, a new function may be issued. 

The interrupt bit a c k now 1 e d g e s that an interrupt has occurred. Further ex
amination of A will determine which of the three selected in t err u p t s was gen
erated: bit 4 (EOP) and bit 5 (ALARM). 

If neither bit 4 nor bit 5 is set, the pro g ram mer should check bits 0 and 1 for 
ready and not busy. If the alarm bit is set, the pro g ram mer mus t determine 
which of the eight alarm conditions caused the interrupt. 

The on cylinder status bit 3 is set when the Read/Write heads have reached the 
sector record address initially sent to the controller via the A/Q channel. 

7. 2. 2. 2 Address Register Status 

D = 010 ; INP 

The programmer may request the disk to return the current position of the Read/ 
Write heads at any time by selecting the disk as above but issuing an INP instruc
tion. 

LDQ 
NOP 
INP 

=N$0402 

-1 

DISK FOR DISK ADDR 

CURRENT ADDR IN A 

The address will be in the same format used to send the address to the controller. 

7. 2. 3 Summary, Buffered 1/0 

The DSA provides the 1704 with a means of storing data directly in memory; this 
permits the execution of instructions while transferring data. The program sends 
the function word, the sector record address, and stores the LWA+1 of the buffer 
area at the FWA-1 prior to initiating an operation. The operation is indicated by 
the D portion of Q, with the A register containing the FWA-1 of the buffe-r area. 
The con t roll e r interrupts the 1704 when a selected interrupt condition arises. 
The program takes status to determine which of the selected interrupts was gen
erated. 

7-18 



CHAPTER VIII 

SYSTEM REQUESTS II 
o 





CHAPTER VIII - System Requests 

G TOPIC PAGE 

8.1 Operating Systems 8-1 

8.1.1 utility 8-1 

8.1.2 MSOS 8-1 

8.2 Request Processing 8-1 

8.2.1 Summary of Request Processing 8-3 

8.3 Requests 8-4 

8.3.1 Exit Request 8-7 

• 8.3.2 Read/Write Reques ts 8-8 

8.3.2.1 Format of the Read/write Request 8-9 

8.3.2.2 Request Code 8-10 

8.3.2.2.1 Format of Records 8-10 

8. 3.2. 2. 1. 1 Teletype 8-11 

8.3.2.2.1.2 Paper Tape Reader and Paper Tape Punch 8-11 

C) 8. 3. 2. 2. 1. 3 Mass Storage Addressing 8-15 

8.3.2.3 X Bit 8-15 

8.3.2.4 Request Priority 8-16 

8. 3.2. 5 Completion Priority 8-16 

8. 3. 2. 6 Completion Address 8-16 

8.3.2.7 Thread Word 8-19 

8.3.2.8 Error Code 8-19 

8.3.2.9 Mode 8-19 

8.3.2.10 A Field 8-19 

8.3.2.11 Logical Unit 8-19 

8.3.2.12 Number of Words 8-24 

8.3.2.13 Starting Address of Buffer 8-24 

8.3.2.14 Setting Up RW Requests in Background 8-28· 

8.3.2.14.1 Looping on the Thread Word 8-28 

(1 
'-../' 



CHAPTER VIII - System Requests (Cont) ". .. ~ 

\, •... / 
TOPIC PAGE 

8.3.2.14.2 Looping on a Flag 8-28 

8.3.2.14.3 Scheduling Out of the Completion Routine 8-29 

8.3.2.15 Examples of Programs Using Ilo Requests 8-30 

• 8.3.3 Schedule Reques t 8-36 

8.3.3.1 Format of Schedule Request 8-36 

8.3.3.2 Request Code 8-37 

8.3.3.3 X Bit 8-37 

8.3.3.4 Priority 8-37 

8.3.3. 5 Address 8-37 

8. 3. 3. 6 Example of Schedule Request 8-38 

• 8.3.4 Timer Request 8...;40 

8.3.4.1 The Format for the Timer Request 8-40 

8.3.4.2 Request Code 8-41 

8.3.4.3 X Bit 8-41 
(-~ 

\ 

8. 3.4.4 Units 8-41 

8.3.4.5 Priority 8-41 

8.3.4.6 Address 8-41 

8.3.4.7 . Q Parameter 8-41 

8.3.4.8 Example of Timer Reques t 8-42 

• 8.3.5 Status Request 8-42 

8.3.5.1 Format of the Status Request 8-42 

8.3.5.2 Request Code 8-43 

8.3.5.3 X Bit 8-43 

8.3.5.4 A Field 8-43 

8.3.5.5 Logical Unit 8-43 

8.3.5.6 Address of Parameter List 8-43 

8.3.5.7 Reply to Status Reques t 8-44 

8.3.5.7.1 Hardware Status 8-45 
(' 
\.,. 



Chapter VIII - System Requests (Cont) 
/' .. ,. 

~) TOPIC PAGE 

8. 3. 5.7. 2 Word 8 of PDT 8-45 

8. 3. 5.7.3 Current Buffer Address 8-47 

8. 3. 5. 8 Example of Status Reques t 8-47 

• 8.3.6 GTFILE Request 8-47 

8. 3. 6.1 Format of GTFILE Reques t 8-48 

8. 3. 6. 2 Request Code 8-49 

8. 3.6. 3 X Bit 8-49 

8.3.6.4 Request Priority 8-49 

8. 3. 6. 5 Completion Priority 8-49 

8. 3.6. 6 Completion Address 8-49 

8.3.6.7 Mode 8-49 

8. 3.6. 8 A Field 8-49 

8. 3. 6. 9 Logical Unit 8-49 

0 8.3.6.10 Word Addresses: wI, w2 8-50 

8.3.6.11 Starting Core Addres s 8-50 

8.3.6.12 File Name Address 8-50 

8.3.6.13 Example of a GTFILE Request 8-51 

• 8.3.7 Loader Request 8-54 

8. 3.7. 1 Format of the Loader Request 8-55 

• 8.3.8 Core Reques t 8-55 

8. 3. 8. 1 Format of Core Reques t 8-56 

8.3.8.2 Example of Core Request 8-56 

• 8.3.9 INDIR Request 8-59 

8. 3.9. 1 Format of the INDIR Request 8-59 

8. 3. 9. 2 Example of the INDIR Request 8-59 

8.4 Problem 8-60 





8.1 

c) 8.1 OPERATING SYSTEMS 

o 

o 

The 1700 computer system has two commonly used operating systems: the utility system 
and the mass storage operating system (MSOS). MSOS is a disk or drum oriented sys
tem and all 0 cat e s the resources of the computer according to a priority system. The 
utility system is a much smaller system. It provides for assembly, loading, and execu
tion of programs in a batch mode. 

8. 1.1 utility 

The 1700 utility system provides the 1700 computer with a means of loading and 
executing programs in configurations smaller than the minimum required for the 
1700 operating system. The utility system requires 8K of core but no disk or 
drum. I/O is by way of the paper tape rea d e r and paper tape punch, and lis ting 
and operator control is t h r 0 ugh the teletype. * Ex e cut ion of jobs through the 
utility system can make use of the standard drivers provided by utility. The 
standard drivers provided are for the teletype, paper tape input, and paper tape 
output. It is possible, then, to operate these devices in one's own pro g ram by 
simply using a standard calling sequence. 

8.1.2 MSOS 

Under MSOS core is divided into two areas: foreground and background. The 
foreground is for s y s tern and process programs. System programs are those 
programs that make up the operating system, such as the job processor and 
drivers. Pro c e s s programs are those application programs that are most im
portant to the particular installation. For example, if the system is controlling a 
chemical plant operation, those programs monitoring the chemical pro c e s s are 
the pro c e s s programs. The pro c e s s programs and system programs usually 
have the highest priority and have access to the resources of the computer first. 
Foreground is protected; this means the on-line process programs cannot be de
stroyed by programs in the background and they cannot be inadvertently brought 
into execution by background programs. However, b a c kg r 0 u n d programs may 
make use of protected routines such as I/O drivers. 

Backgr ound programs are run in a batch mode (serially) and run at the lowest 
priorities in the system. Programs in the background are called jobs. Assem
bling, compiling, and loading are examples of such jobs. 

8. 2 REQUEST PROCESSING 

Three basic functions of the 0 per at in g system are to: (1) allocate core space to those 
pro g ram s that want to use it, (2) communicate with the outside world, i. e., supervise 
I/O operations, and (3) allocate CPU time between the various programs. When a pro
gram wants one of these functions done, a request is made to the operating system. 

*There are other options available. 

8-1 



8.2 

Are que s t takes the form of a transfer of control to the module of the operating system 
that processes requests (the request entry processor, entry point name MONI) followed 
by words containing the necessary parameters for the particular request. 

The entry ad d res s for MONI is always located in core location F4 so every request is 
initiated by an indirect return jump through F4. The return jump will provide the link
age necessary. The parameter string length is different for different requests: 

54F4 RTJ ($F4) TO MONI 

=1 Reques t code 
and other parameters 

In the first parameter word, bit positions 9 through 14 will be the request code. This is 
for all requests. 

MON! saves the registers of the requesting program in a special core area called volatile 
storage and gives control to a request processor denoted by the request code in the para
meter list. This processor must return control to the request exit processor which re
turns control to the requesting program. 

,r---., ( , 

'----/ 

The 1700 ope ra ting system provides the user with up to 30 monitor requests; 20 are 
reserved for the operating system. However, they may be replaced by user-written pro
cessors when the system is initiated. The other 10 requests may be added at initialization 
by including in the resident load the necessary programs with the required entry points. 
The number of possible request processors can be extended from 30 to 63 by reassembly. C 
Each request processor is a separate submodule and has a coded entry point with one of 
the following names: 

T1 

.: \,---.----~- reserved for system use 
T20 
T21 

: ~r--____ available to users 

T3J 
The numerical part of each name is the request code. It corresponds to the value of an 
index to a table of request processor addresses contained in MONI. 

MONI has these entry points as externals providing linkage with each appropriate request 
processor. 

Since the numeric part of the entry point name for each request processor must corres
pond to its request code, a request code of 5 will provide entry through MON! to module 
T5. 

8-2 

c~ 



G 

o 

o 

User 
Requests .. 

Request 
Entry 
Processor 

... 

... 

:: 

I T1 I 

c;J 
I 
I 
I 

~ 

8.2 

Request Submodules 

Users can asselnble an added request processor, as sign a request code to it, and affix 
the entry point with T followed by the number for the request code and incorporate it as 
part of the sys tem. 

8. 2.1 Summary of Request Processing 

Note that all requests begin with the return jump toMONIand that MONIdetermines which 
type of request it is by examining the request code in the first word of the parameter 
string. Each type of r e que s t has a request processor to which MONI g i v e s control, 
depending on the request code. When control is given to the request processor, several 
functions take place before control is returned to the requesting program. 

It is important for the programmer to understand that a request only initiates action de
sired of the operating system. It does not do anything. In most cases, a request causes 
the des ire d action only to be put on a queue; control is returned i m me d i ate 1 y to the 
requestor at the next instruction beneath the parameter string. 

For example, it is desired to write a message on logical unit 4: 

REQ 

RET 

~ 
RTJ- ($F4) 
(Parameters for a 
write request on 
logical unit 4) 

~ 
Control is passed to MONI. MONI passes control to the Read/Write request processor 
which puts the request on a queue of other messages waiting to be printed on logical unit 
4. Control then passes to the request exit routine which returns control to the requestor 
at RET. The message has not yet been written but it will be done in due time. 

8-3 



8.2.1 

8. 3 REQUESTS 

RTJ- ($F4) request /~;propriat~ 
~ TO MONI --processor; R t 

~ 
eques 

~ "'Reque~s~ processor 

Back 
to 
program 

TOREQXT 

gets on a exits 
queue 

Figure 15. Flow of Requests 

The following requests are included in the standard operating system: 

READ * 
WRITE * 
FREAD* 
FWRITE* 
SCHEDULE 
TIMER 

EXIT * 
CORE 
LOADER 
GTFILE 
STATUS* 

SPACE 
RELEASE ) 

Available to both foreground and 
background programs. 

Available only to background programs. 

Request processor modules for these 
requests must have the same residency 
as the job processor. 

Available only to foreground programs. 

INDIR is an indirect version of any of the listed requests. 

The job processor can make any request. 

*These requests are included in the utility system. 

8-4 



c) 

o 

o 

8.3 

System macro calls are available to generate the code for the requests under the macro 
ass em b 1 e r, which runs under MSOS. Codes for the requests under the utility system 
must be coded by the programmer. 

In this chapter those requests that are available to b a c kg r 0 u n d programs will be dis
cussed. Those requests available only to for e g r 0 un d programs will be discussed in 
Chapter 11. 

Any of the allowable requests for background programs will be accepted by the operating 
system and put on the desired queue. They will not be rejected. 

8-5 



8.3 

EXIT 

FWRITE 

FREAD 

WRITE 

READ 

SClIDLE 

TIMER 

CORE 

LOADER 

Q, c, s, n, m, rp, cp, a,x* 

Q,c,s,n,m,rp,cp,a,x* 

Q, c, s, n, m, rp, cp, a,x* 

Q,c,s,n,m,rp,cp,a,x* 

c, p,X, Q, u ..... I----Parameter in Q 

....... 1---------Parameters in A and Q 

.... .--------Parameters in A and Q 

'~:::0:::-GTFILE c, f, s, w1, w2,x, rp, cp 

Q, ap, a,x STATUS 

INDIR (ap) 

Gene~al Definitions 

Q logical unit 
c completion address 
s starting address of data block 
n number of words 

m mode 
rp request priority 
cp completion priority 
ap address of parameter list 
p priority 
u units 
f index 
x mode of addressing indicator for c, s, n, f, and ap in STATUS 
a mode of addressing indicator for logical unit 

RC 

5 

6 

4 

2 

1 

9 

8 

11 

7 

13 

3 

Figure 16. Macro Calls for Requests Available to Background Programs 

NUM 

OAOO 

OCXX---<v""-

08XX 

04XX 

02XX 

12XX 

10XX 

1600 

OEOO 

1A01 

0600 

*For mass storage devices theprogrammer sets up two words following the request to contain 
the mass storage address. 

8-6 

r-., ( , 

'-_/ 

c 



C) 

8.3.1 

8.3.1 EXIT Request - Request Code 5 

The EXIT request is available only to background programs. 

When control is to be given back to the job processor, the EXIT request is used. 
This may be when the program has rea c he d a point where it has com pIe tel y 
finished its goal and wants to terminate itself or when it wants to give up control 
while waiting for an I/O operation to take place. 

The EXIT assembles into two words in the follOwing manner: 

I 0 I 0001011 000000000 
~ 

RC = 5 

54F4 
OAOO 

macro call: 

EXIT 

coded call: 

RTJ- ($F4) 
NUM $OAOO 

Most of the examples in this chapter have at least one EXIT request; check them 
for" its use and assembly. 

If this request were executed in a completion routine, normal processing of a job 
would resume at the 10 cat ion where it was interrupted. If this request was not 
executed in a completion routine, the job is considered complete. 

The EXIT request simply causes a jump to the dispatcher which could be accom
plished by: 

EQU 
JMP-

ADISP($EA) 
(ADISP) 

8-7 



8.3.1 

This would be abe t t e r way to code exits since it saves time and since protected 
programs cannot make EXIT requests. 

In the background, the jump to the dispatcher can be used only under MSOS 2.0; 
under 1. 0 it can only be used in the foreground. 

8. 3. 2 Read/Write Requests - Request Code 1,2,4, 6 

For peripheral equipment that more than one program may use, a standard driver 
for each is written and incorporated into the operating system. The programmer 
makes use of the driver when he makes a Read/Write request to the 0 per a tin g 
system. Read/Write r e que s t s are available to both foreground and background 
programs. 

When the programmer wants to communicate with a peripheral device, he makes 
a READ, WRITE, FREAD, or FWRITE request. Reads are used when informa
tion is to be b r 0 ugh t into core and writes when information is to be transferred 
from core to the device. 

When a Read/Write request is made, the transfer of data is only initiated. If the 
driver is busy working on another request, the new request is placed in a list of 
requests waiting to use the device. The position of the request on the queue will 
depend on the request priority. The request itse~f is not placed on a stack but is 
simply threaded. When the device is free and the transfer begins, there will be a 
period of time lapse before the com pie t e transfer has taken place. During this 
time, control is given back to the requesting program so that it may execute any 
portion of the program that is not dependent upon the data. Therefore, when con
trol returns to the instruction immediately following the parameter list, the pro
grammer cannot assume that the transfer of data has been completed or, for that 
matter, even begun. 

The programmer specifies a completion address in the request. Control will be 
given to this address when the request has been completed, according to the com
pletion priority in the reques t. 

This completion address is where the device driver will schedule reentry after the 
particular request has been completed. This scheduling of the completion address 
is done by the driver using the SCHDLE schedule request; this completion address 
is scheduled by priority. There are, then, parameters in the Read/Write requests 
to signify the priority of the request its elf and the priority of the com pie t ion 
address. 

8-8 

,1""- .... ,\ 



G 

o 

REQ 

8. 3. 2.1 Format of the Read/Write Request 

2 

4 

RT.J- ($F4) 

15 14 RC 9 I O~l I 7 RP 4 I 3 CP 
I, 2, 4, 6 0-15 0-15 

15 14 
c 

COMPLETION ADDRESS 

THREAD WORD = 0 

15 14 II 13 J 12 1011 10 bl 9 

~~ SHORT DEVICE M 0 A LOGICAL UNIT 
READ I FAI LEOI 0,1 I 

15 14 
D 

0,1 NUMBER OF WORDS 

15 14 s 
0,1 FIRST WORD ADDRESS OF BUFFER 

15 msb 
M~T SIGNIFICANT BITS OF MS AnDR. 

15 14 
Isb 

0 LEAST SIGNIFICANT BITS OF MS ADDR. 

rc request code, 6 bits: WRITE = 2, READ = 1, FWRITE = 6, FREAD = 4 
x relative/indirect indicator: 0 or 1 

rp request priority, 4 bits, 0-15: position of request on driver's thread 
cp completion priority: 0-15 

c completion address, bit 15 set if (c) 

8.3.2.1 

0 

0 

0 

0 

0 

0 

0 

thread word, is used by the system: equals zero when request is not active, non
zero when active 

v error code passed to the completion add res s in Q and set in the parameter 
list when the request is completed 

m mode bit: 0 = binary, 1 = ASCII 
Q logical unit, 10 bits; modified by a 
a settings for the a parameter (logical unit address indicator), 2 bits: 

a = blank =<ID: Q is a logical unit number 
a = R = 01: Q is a signed increment (±1FF) 
a = I = 10: Q is a core address (0 < Q::3FF) 

s starting word of storage block, bit 15 set if (s) 
msb-lsb set up by the programmer if logical unit specifies a mass storage device 

The type of addressing used is determined by the request code. Background pro
grams can a c c e s s scratch only; sector 0, word 0 ref e r s to the first word of 
scratch. These two words should be included in the request only if a mass storage 
device is involved. The macro call does not assemble them so the code must be 
added for them. 

8-9 



8.3.2.1 

The macro call is: 

REQ 
FREAD 
READ 
FWRITE 
WRITE 

Q,c,s,n,m,rp,cp,a,x 

REQ will be on the 54F4, which will be generated. REQ+1 is the first word of the 
parameter string. The parameter list is the same for all four of the Read/Write 
requests. 

An example of a coded call would be: 

RTJ- ($F4) 
NUM $OC01 
ADC COMPL 
NUM 0 
NUM $1004 
NUM 35 
ADC BUF 

8. 3. 2. 2 Request Code 

There are four input/ output requests handled by the Read/Write request processor 
RW, which has entry points T1, T2, T4, T6 for them. 

Request Code NUM 

READ 1 $02XX 
FREAD 4 $08XX 
WRITE 2 $04XX 
FWRITE 6 $OCXX 

The manner in which the data is to a p pea r on the device is determined by which 
form of the request is used. FWRITE and FREAD are used for formatted trans
fers and READ and WRITE are used for unformatted transfers. 

8. 3. 2. 2.1 Format of Records 

The format in which data may appear on a device is different for each device and 
driver. This information is given in the manual for each driver. The record 
formats for devices included in the minimum equipment configuration are outlined 
on the following page. 

8-10 

(" 
............ ~ . 



8. 3. 2. 2. 1. 1 

U 8. 3. 2. 2.1. 1 Teletype 

o 

C) 

FREAD 

A format record for a teletype read operation consists of any number of characters 
followed by a carriage return. Format reading continues until a carriage return 
is detected or the r e que s ted number of words is transferred. If the requested 
n u m b e r of words is transferred before the carriage return is detected, reading 
continues but no more data is transferred. A delete character will terminate data 
transfer until the next carriage return. The request will then be repeated. Line 
feed characters are not transferred in a format read. Before a for mat read on 
the teletypewriter begins, the break light is turned on; therefore, type in must be 
preceded by pressing the break release. 

FWRITE 

A format record for a teletype write operation consists of any number of charac
ters following a carriage ret urn and line feed character. A format write is the 
same as an ordinary write except that the d r i v e r supplies a carriage return and 
line feed c h a r act e r before beg inn in g the transfer of data for a format write 
request. 

READ 

In an unformatted read, the n u m be r of words requested is filled starting at the 
specified address. Two characters fill one word; the first character is put into 
the upper half of the word. All carriage control must be provided by the program
mer. 

WRITE 

In an unformatted w r i t e, two characters are transferred per word. The infor
mation must be stored in ASCII since no conversion is made from binary. 

8. 3. 2. 2.1. 2 Paper Tape Reader and Paper Tape Punch 

A format record for the paper tape reader and punch depends on mode. In ASCII 
mode, it is any number of c h a r act e r s preceding a carriage return. In binary 
mode, it is any n u m b e r of words preceded by a word which represents the ones 
complement of the number of words to be transferred and followed by a word con
taining a checksum. If the number of words to be t ran s fer red is greater than 
21, 759, the firs t word represents the ones complement of the number of words to 
be transferred plus 256. 

If the first character of the header word in a format record (requested in binary 
mode) is an asterisk, the r e cor d is read in ASCII mode. This allows ASCII and 
binary mode records to be mixed. 

8-11 



8.3.2.2.1.2 

FREAD, ASCII 

For a for mat read, ASCII mode, characters are read until a carriage return is 
detected or the requested number of words has been transferred. If the requested 
number of words is transferred before a carriage return is detected, reading will 
continue but no additional data will be transferred. Nulls (blank tape) preceding 
a format record are skipped; no data transfer takes place until a non-blank char
acter is detected. Line feed characters detected d uri n g the read are not trans
ferred; del e t e characters are ignored. All c h a r act e r s are checked for even 
parity. 

FREAD, Binary 

Format reading in binary mode continues until the word count is exhausted or the 
requested number of words has been transferred. If the latter occurs before the 
count is exhausted, reading will continue but no additional data will be transferred. 
The checksum is verified after the en ti rerecord is read. If the first character 
of the header word is an asterisk, the record is read in ASCII mode in spite of the 
binary mode declaration. Nulls (blank tape) preceding a format record are skipped. 

FWRITE, WRITE 

A format write is the same as an ordinary write request except the driver supplies 
carriage return and line feed characters after the end of the operation. 

In ASCII mode format write, c~aracters are transferred from the specified core -" 
block until the word count is exhausted. A parity bit is added to each character. l_ .... 
In binary mode, format write, characters are transferred until the word count is 
exhausted. Word count is the first word on the tape and is the ones complement 
of block size. The driver supplies a checksum word after the data. 

Checksum 

The driver generates the checksum word on a paper tape by accumulating a sum 
of the word count word (which is the complement of the data block size and is out
put on the tape first) plus all the data words, disregarding any overflow. This 
sum is then complemented and 0 u t put as the las t word in the block on the tape. 
For example, if the data words are $FOOl, $E001, $E002, $E003, and $B005, the 
word count will be 5 and the sum of the data 4010. The checksum will be $BFF4 
which is $FFF A (complement of 0005) plus $4010, which is $400B; the comple
ment of $400B is $BFF4. The tape will contain FFFA, FOOl, EOOl, E002, E003, 
B005, BFF4. 

When the c h e c k sum word is read on input, it will result in zero when the word 
count word is read, the data words added to it, and then the c h e c k sum word is 
added to that. For example, on the above tape the word count word FFF A is read 
first, the data totalling 4010 is added to it as the data is read, giving 400B. When 
the c h e c k sum BFF4 is read and added, the sum will be FFFF arithmetically, 
which will be 0000 by the subtractive adder. 

The paper tape on page 8-14 contains the data used in these examples. 

8-12 



8.3.2. 2. 1. 2 

The following example program shows the paper tape output for all four kinds of 
writes. It writes 100 words of data from a buffer BUF. The data in the buffer is 

0 1-64
16 

(1-100
10

). The buffer is written out from the end to the beginning. 

0001 NAt.,., TEST \~'R I TE INSTRUCTIONS 
0002 ENT WRITE 
0003 POOOO 0000 \~R I TE 0 0 
0004 -it- THIS IS HOW TO GENERATE DATA 
0005 ~ ... IN A PROGRAM FOR A TEST 
0006 POOO} OC63 ENO 99 
0007 POOO? OAOn ENA 0 
0008 POO03 0901 DATA INA 1 
0009 POOO4 6A21 5T.A* 8UF.Q 
0010 poaor:; 0142 SOZ PUNCI-i-*-l 
0011 POOOA OOFE IN(J -1 
0012 POO07 18FB JMP* DATA 
00 1·3 * 
0014 i~ WRITE. BINARY 
0015 poooq 54F4 . PUNCH RTJ- ($F4) 
0016 POOO9 0401 NUM $0401 
0017 POOOd 0000 NUlv1 0 
0018 POOOR 0000 NUM 0 
0019 poaae 0003 NUM tliOO03 
0020 POOOD 0064 NUH 100 
0021 POOOE 0025 p ADC BUF 
0022 * WRITF. ASCII 

0 0023 POOOF 54F4 RTJ- ($F4) 
0024 POOI0 0401 NUM $0401 
0025 POOl! 0000 NUM 0 
0026 POO12 0000 NUM 0 
0027 POO13 IOO3 NUM $1003 
0028 PO 01 L+ 0064 NU~~ 100 
002Q POOlS 0025 p ADC AUF 
D030 * FWRI.::rE, ASCII 
0031 PODIA 54F4 RTJ- ($F4) 
0032 tJOO17 oe01 NUM 9)OC01 
0033 POOlA 0000' NUM 0 
0034 ?OOlq 0000 NUt.., 0 
0035 POOIA 1003 NUI'-1 $1003 
0036 POOIR 0064 NIJM 100 
0037 POOIC 0025 P AOC BUF 
0038 * F\I/RITE, BINARY 
0039 POOlf) 54F4 RTJ- ($F4) 
0040 POOlE OC01 NUM $Oe01 
0041 POO1F 0000 NUM 0 
0042 POO20 0000 NUM 0 
0043 ?O021 0003 NUM $0003 
0044 IJOO22 0064 NUM I-D<r ~ 
0045 POO23 0025 P ADC . BUF 
0046 * 
0047 POO24 14EA Jfv1P- ($EA) 

(") 
0048 POO25 0064 AUF BZS BUF(IOO) 
0049 END WRITE 

'--'" 

8-13 



8.3.2.2.1.2 

() 0 F F \'/ R TTl=" OOOOP [)'\Tl\ 

(NOTE THAT DATA IS NOT BLOCKED) 

WRITE 
BINARY 

WRITE 
ASCII 

Parity 
Bit 

J. 

• 

• 
• 

• 

• 

· ' · . • · . 
•••• 
••• 
•• • 
•• 

•• 
• .. 

FWRITE 
ASCII 

Parity 
Bit 
J, 

8-14 

0025P 

FWRITE 
BINARY 

WORD· 
COUNT 

~ 

KSUM 

c 



8. 3.2. 2. 1. 3 

G 8. 3. 2. 2.1. 3 Mass Storage Addressing 

When the logical unit in a read/write r e que s t specifies a mass storage device, 
the address to be accessed must be in the two words following the parameter list. 
This must be set up by the programmer. For example: 

READ 
NUM 

-,-,-,-,-,-,-,-,-
$0000,0002 (sector 2) 

Since all transfers to and from mass storage do not have a mode or for mat as
sociated with them; that is, what is written on the disk is a mirror image of the 
contents of core, the.formatted and unformatted for m s of the request determine 
the type of addressing that will be used. Formatted requests mean sector addres
sing and Read/Write assumes word add res sin g. Check the man u a 1 for the 
driver for the ex act details of addressing mass storage. Sector addressing can 
always be used; word addressing can only be used under systems which have the 
disk word driver. 

In the background a program can access only the scratch area of the disk or drum 
through read/write requests. Therefore, sector one or word one in the back
ground is sector or word one of the scratch area. 

o 8. 3. 2. 3 X Bit 

The x bit is used in con j un c t ion with the cp, n, and s parameters to indicate 
d ire c t, indirect, or relative location of those parameters. It will be discussed 
as it relates to each parameter. 

As a rule, the x bit = 0 is sat is fa c tor y for background programs, with all. the 
associated parameters direct. 

8 

10 I 
0 c 

0 n 

0 s 

Its use as relative (for run anywhere programs) will be dis c u sse d in detail in 
Chapter 11. When the x bit = 1, the c and s parameters must be relative! 

8-15 



8.3.2.4 

8.3.2.4 Request Priority 

The request priority indicates to the operating system the priority of this request 
in relation to the other programs r e que s tin g use of the device. The request 
priority has nothing to do with the running priority of the program. In the back
ground the rp parameter is always O. 

Since the request priority determines the position of the request on the queue for 
the driver, the reads and writes done by jobs at priority 0 will a 1 way s be on the 
bottom of the queue and therefore will be done las t. 

This is why, for example, if a job and a process program are both writing mes
sages on a remote teletype, the messages will be interspersed together with the 
process program's messages taking priority over the job's. 

8. 3. 2. 5 Completion Priority 

The completion priority is the priority at which the completion routine is to run. 
For background jobs, cp is a 1 way s 1. Since the running priority for jobs is al
ways 0, the completion priority of 1 will cause the job to be interrupted, when the 
driver has finished the 1/0, and the completion routine to be entered. (When the 
completion routine exits, control is returned by the dis pat c her to the location 
where the job was interrupted. ) 

A completion priority greater than the running priority will always cause a pseudo ( 
interrupt of the program and will cause the priority to be changed higher and the \, 
completion address entered. A cp equal to or less than the running priority will 
cause the completion routine not to be entered until after the pro g ram exits and 
the priority structure works down to the desired level. 

8.3.2.6 Completion Address 

The completion address is scheduled by the driver as a program when the transfer 
is completed, or terminated by an error. The completion address is scheduled at 
a particular priority specified by the cp parameter. In the background cpis 
always 1. 

This completion routine is g e n era 11 y short because, under the utility system, 
when it is entered the interrupt mask is set to pre v en t external interrupts from 
occurring. Under MSOS, interrupts are not locked out while the completion rou
tine is being executed, so process equipment can interrupt • 

. The completion address may be omitted; then no address is scheduled upon com
pletion. 

When control is given to the completion address, the Q register will contain a 3-
bit code in the upper three bits of Q. These bits can also be f ou nd in the v field 
of the fourth word of the reques t. 

8-16 

c 



o 

o 

Bit 

15 

14 

13 

Value 

o 
1 

o 
1 

o 
1 

8. 3. 2. 6 

Condition 

Error free operation 

Error occurred (device failure) 

Reques ted number of words transferred 

Less than requested number of words trans
ferred during a read or for mat read (short 
read) 

Error occurred because device was not ready 

Error was due to failure of the de vic e; de
vice is ready 

The Q register should always be checked for the possibility that an error occurred. 
For example, if a short read occurred on a READ request, bit 14 would equal 1. 
Bit 15 would indicate whether it was a legal short read (Ql5=O), or due to device 
failure (Q15=1). If it was due to device failure, bit 13 would indicate whether the 
device is ready or not. 

The programmer could find out how much of the data was transferred by the las t 
word of the data buffer. This word would contain the address plus 1 of the last 
word transferred. Thus, by subtracting the contents of the last word in the buffer 
from the first word address of the buffer, the number of words can be found. If, 
for example, a read of 50 words was requested but only 25 words were read: 

BUF f 
25 words 

read 

BUF+24 ~ 

BUF+49 BUF+25 

LDA =XBUF 
SUB BUF+49 

(A) = BUF 
- BUF+25 

(A) = 25 

Each appropriate driver manual will indicate possible error conditions. 

The completion address may be specified in s eve r a 1 ways. The x parameter 
determines the mode of addressing that is used for the completion address. 

8-17 



8. 3.2. 6 

x 

o or blank 

~O 
~blank 

c 

c 

c 

(c) 

The meaning of c 

c is the completion address 

e. g., FWRITE -, COMPL, -, -, -, -, -, -, 0 
COMPL is assembled as an a b sol ute address 
(program relocatable). 

c is relative 

c is a positive increment added to the address 
of the first word of the parameter list to locate 
the completion address. 

i. e., FWRITE -, COMPL-*+ 1, -, -, -, -, -, -,X 
In the example the com pie t ion address is at 
COMPL. 

c in parentheses represents an index to the sys
tem library. x has no meaning. 

Note that there is no indirect version for the completion address. 

The option (c) cannot be used in the b ac kgr ound because the programs on the 
system library may not be scheduled from the background; see Chapter 11. 

c 

A completion routine in one's own program may be s c h e d u led in one of the fol- C 
lowing ways: . ./ 

0001 NAM D - R/w EXAMPLE 
0002 ENT GO 
0003 GO FWRITE 4, COMPLl, EXAMPLE, 9, B, 0, 1, A, 0 
0003 poooo 54F4 , \ 
0003 POOOI OCOI 
0003 POO02 0009 P .---- completion address • 

POO03 0000 
0003 POO04 0004 
0003 POO05 0009 

POO06 OOlAP 
0004 EXIT 
0004 POO07 54F4 
0004 POO08 OAOO 
0005 

I 
COMPLI 

0006 
0006 POOOB 54F4 

FWRITE 4, COMP2-*+1, EXAMPLE-*+5, 9, B, 0, 1,A,X , , 
0006 POOOC ODOI 
0006 POOOD 0008 ~---- Relative distance to completion address • 

POOOE 0000 
0006 POOOF 0004 
00(16 P0010 0009 

POOH OOOE 
0007 EXIT 
0007 POO12 54F4 
0007 POO13 OAOO 
0008 POO14 0172 COMP2 SQM ERROR 

8-18 



o 

o 

8.3.2.6 

Note that the first assembles with a P following the completion address, meaning 
that it is direct and will be absolutized at load time (the actual core address filled 
in); so the program will be relocatable. 

The second example is relative to the first word of the parameter list. Also, in 
the sec 0 n d example, note that the 8 refers to the location where the parameter 
is but that the parameter address must be relative to the first word of the para
meter list, hence COMP2-*+I. The x bit must be set in the first word. 

8. 3. 2. 7 Thread Word 

The thread word must always be initialized to 0 or the request cannot be executed. 
The thread word is used by the operating system for the que u e for requests and 
alsofor the completion. It is non-zero during the entire time the request is being 
processed and while the I/O is being done. It does not become zero again until 
the operation is complete. 

8.3.2.8 Error Code 

The 3-bit v field in the fourth word of the par arne t e r string is the same 3-bit 
error code that comes back to the Q register at completion. It will be set by the 
driver wheth~r or not there is a completion routine. Therefore, apr 0 g ram not 
using a completion routine may check the v field for errors. 

8. 3. 2. 9 Mode 

The m parameter tells the driver whether the data is s tor e d in core in Binary 
or ASCII. When m is A (or, if coded, 1) it means the data is s tor e d in ASCII, 
and B (or, if coded, 0) means Binary. 

8.3.2.10 A Field 

The a bits modify the logical unit field, indicating whether the log i c a I unit field 
contains the actual logical unit number, an indirect address containing the LUN, 
or a relative distance to LUN. The a bits will be discussed under the logical unit 
heading. 

8. 3. 2. 11 Logical Unit 

The logical unit may be specified directly (i. e., Q =4), a word may be specified 
that contains the logical unit, or a relative distance to the address of the LUNmay 
be specified. The a parameter indicates which form of the Q parameter the pro
grammer has used. 

8-19 



8.3.2.11 

a 

= 0 or 1 
= A or 
= blank 
= 2 or 
= I 

= lor 
=R 

J 

J 

Meaning of the Q parameter 

the parameter is the logical unit 

e. g., FWRITE 13, -, -, -, -, -, -, 0, -

Q is indirect 
Q is an absolute location that contains the logical unit 

e. g., FREAD $FD, -, -, -, -, -, -, I, -
is used when standard comments (input) wanted. Q can
not be larger than $3FF. 

Q is relative 
Q is a number that specifies the n u m b e r of words to a 
word that contains the logical unit. The Q parameter 
in this case can be positive or neg a t i v e but must not 
exceed + or - $lFF. 

e. g., READ LUN-*+3, -, -, -, -, -, -, R, -
where LUN contains the logical unit. 

Note the res t ric ti on that when using the I option the absolute address must be 
within the range of 000 to 3FF which in most cases p r ec 1 u des the use of the I 
option when the 10 c a ti on is within ones own program, except for system units. 

~ 

The foIl ow ing are the core locations in the operating system which contain the \._., 
logical unit numbers of the standard devices: 

Device 

Input comment device 

Output comment device 

Standard print output device 

Standard binary output device 

Standard input device 

Mass storage library 

Mass storage scratch 

Core Location 

$FD 

$FC 

$FB 

$FA 

$F9 

$C2 

$B3 

Each piece of equipment has a logical unit n u m be r assigned to it for the system 
to use. Also, one piece of equipment may have more than one logical unit number, ' 
depending on the use. It is not to be confused with the equipment number d i ale d 
on the con t roll e r nor with the unit number set on the unit (i. e., tape unit). It 
could be thought of as the system number of the driver. 

8-20 

c 



0 

8.3.2.11 

The logical unit numbers will be d iff ere n t at each installation but the following 
numbers are very commonly used: 

2 - PTR 

3 - PTP 

4 - TTY 

5 - CR 

6 - MT #1 

7 - MT #2 

8 - DISK 

9 - LP, system driver 

10 - LP, FORTRAN driver 

If the programmer does not want to change the logical unit for this request, during 
his program he could specify it directly, as in the following example. 

0001 NAM A R / W EXAMPLE A 
0002 ENT START 
0003 0003 EQU PTP(03) 
0004 POOOO FOOl BUF NUM $F001, $EOOl, $E002, $E003, $B005, $C004 

POOOI E001 
P0002 E002 
P0003 E003 
P0004 B005 
P0005 C004 

0005 START FWRITE PTP, XX, BUF, 5, B, 0, 1, , 0 
0005 P0006 54F4 
0005 P0007 OC01 \ \ 
0005 P0008 OOOF P 

P0009 0000 
0005 POOOA 0003 ........ --- logical unit • 
0005 POOOB 0005 

POOOC 0000 P 

Output 

ItmatM 4- wordcount 

1I!tI!E!B 4- checksum 

Note that the assembler put 0003 in the logical unit position (POOOA) of the code for 
the FWRITE. Note also that only 5 of the 6 words in the buffer were written out. 

8-21 



8.3.2.11 

See also the logical unit specification in the macro calls in the completion address (" 
example in section 8. 3. 2. 6. The A specified that the logical unit field (4) was ab- "--/ 
solute. 

On the other hand, if the programmer wanted to use one of the ,standard devices, 
such as the comment device, he would specify an indirect address in the following 
form: 

0004 Xl FWRITE $FC, XB, STATEM, 17, A, 0, 1, I, 0 
0004 POOll 54F4 \ \ 
0004 POO12 OCOl 
0004 POO13 001A P 

POO14 0000 
0004 POO15 18FC ~ location containing L UN 

0004 POO16 0011 
POO17 0000 P 

The programmer may want to change the logical unit, depending on the conditions 
in his program; therefore, he may have a location within his program in which to 
store the logical unit number. The following ex amp I e would be a way to code a 
program to write one message (from M21) on a LOG unit and the COMMENTS unit, 
then write another message (from M22) on the COMMENTS unit only. The entry 
point is GO TO, and LOG is EQU'd to the LOG unit while COMMENTS is EQU'd to r 
$FC. Note that the word in the program which contains the logical unit number ,_. 
must be addressed relatively because its absolute address may not fit in the 10-
bit Q field. Note also that the completion and buffer addresses may be addressed 
absolutely in this same macro call because the x bit is not set for a relative logi-
cal unit word. 

8-22 

( '-" 
I 

"- . 



8.3.2.11 .- -, 

'- ,~ 
0003 POOOO 5448 M21 ALF '1<, THl~ MESSAGE APPEARS ON THE LOG* 

POOOI 4953 

~ 
0004 P0010 414E M22 ALF *,AND TillS ON THE COMMENTS DEVICE. * 

~ 
0005 P0020 0001 LUNIT BSS LUNIT 
0006 P0021 OBOO Xl NOP 
0007 FWRITE LUNIT-*+3, COMPLETE, M21, 16, A, 0, 1, R, 0 
0007 P0022 54F4 

" " 0007 P0023 OC01 
0007 P0024 002B P 

P0025 0000 
0007 P0026 17FC ~ relative dis tance to L UNIT 

0007 P0027 0010 
P0028 0000 P 

0008 EXIT 
0008 P0029 54F4 
0008 P002A OAOO 
0009 P002B 1CF5 COMPLETE JMP* (Xl) 
0010 P002C COOO GOTO LDA =XLOG 

0 P002D OOOB 
0011 P002E 68F1 STA* LUNIT 
0012 IP002F 58F1 RTJ* Xl 
0013 P0030 017E SQM ERROR 
0014 P0031 COFC LDA COMMENTS 
0015 P0032 68ED STA* LUNIT 
0016 P0033 58ED RTJ* Xl 
0017 P0034 017A SQM ERROR 
0018 FWRITE $FC, OK, M22, 17, A, 0, 1, I, 0 
0018 P0035 54F4 
0018 P0036 OC01 
0018 P0037 003E P 

P0038 0000 
0018 P0039 18FC 
0018 P003A 0011 

P003B 0010 P 
0019 EXIT 
0019 P003C 54F4 
0019 P003D OAOO 
0020 P003E 0170 OK SQM ERROR 

1 
" .. _ .. 

8~23 



8.3.2. 11 

What other information does the programmer need to supply the operating system 
to perform an I/O operation? The 0 per a tin g sys tern needs to know how many 
words are to be transferred, where in core the information is stored for a write 
operation or, for a read, where it is to be stored. This is done by specifying the 
remaining parameters. 

8. 3. 2.12 Number of Words 

The n parameter is the number of words requested to betransferred. A read will 
transfer one r e cor d, so if less than the r e que s ted number of words is in the 
r e cord (i. e., on paper tape, see 8.3.2.2.1.2) a short read will occur. This is 
perfectly legal since it allows the programmer to specify a maximum but get the 
ac tual number. 

The location of the number of words can be specified in several ways: 

x 

=0 
=blank 

~o 
~blank 

n 

n 

(n) 

(n) 

Meaning of n 

n is the length of the block to be transferred; x 
has no meaning. 

e. g., FWRITE -, -, -, 6, -, -, -, -, -
In this case 6 words would be transferred. 

n is indirect. 
It is a core location containing the b 10 c k size. 

e. g., WRITE -, -, -, (n), -, -, -, -,0 
n contains the block size. 

n is relative. 
It is the relative distance to a core location con
taining the block size. 

e. g., READ -, -, -, (N-*+4), -, -, -, -, X 
N in this case contains the number of words to 
be transferred. 

See the other read/write examples for illustrations of the n parameter. 

8.3.2.13 Starting Address of Buffer 

The location in core in which the data to be transferred is stored is indicated by 
the s parameter. The s refers to the first word of the data block. The buffe r 
address can be specified in several ways, again in conjunction with the x. bit. 

8-24 

c 



c 

o 

x 

=0 
=blank 

=0 
=blank 

~o 
~blank 

~o 
~blank 

s 

s 

(s) 

s 

(s) 

8.3.2.13 

Meaning 

s is the starting add res s of the data block in 
core. 

e. g., FWRITE -, -, BUF, -, -, -, -, -, 0 
where BUF is the starting addres s. 

s is indirect. 
It is the core location that contains the absolute 
address of the data block. 

e. g., READ -, -, (BUFADR), -, -, -, -, -,0 
BUF ADR contains the absolute add res s of the 
starting address. 

s is relative. 
s is a positive increment adde d to the address 
of the firs t word of the parameter lis t to form 
the starting address. 

e. g., FREAD -, -, BUF-*+5, -, -, -, -, -, X 
BUF would be the first word of the data block. 

s is double relative. 
s is a positive increment added to the address 
of the parameter list to form the address of a 
word that contains an 0 the r relative indicator. 
This indicator is added to the firs t word of the 
parameter list to form the address of the data 
block. 

e. g., WRITE -, -, (BUFREL-*+5), -, -, -, -, -, X 
BUFREL contains a number to be added to the 
first word of the parameter list to 10 cat e the 
buffer. 

The above specifications mean one can s p e c i fy the address directly, relatively 
or indirectly. If the buffer were within one's pro g ram and if the request were 
a I way s going to deal with this one buffer, one could reference in one of the fol
lowing ways. 

8-25 



8.3.2.13 

,,- ...... ,\ 

0001 NAME - R/W EXAMPLE ~ .. 
0002 POOOO 5448 STATEM ALF *, THIS IS AN EXAMPLE FOR S PARAMETER* 

POOOI 4953 
POO02 2049 
POO03 5320 
POO04 4l4E 
POO05 2045 
POO06 5841 
POO07 4D50 
POO08 4C45 
POO09 2046 
POOOA 4F52 
POOOB 2053 
POOOC 2050 
POOOD 4152 
POOOE 4l4D 
POOOF 4554 
POOIO 4552 

0003 ENT Xl 
0004 Xl FWRITE $FC, XB, STATEM, 17, A, 0, 1, I 
0004 POOll 54F4 \ 0004 POOl2 OCOI 
0004 POO13 OOIA P C 

POO14 0000 
0004 POOl5 l8FC 
0004 POOl6 0011 

POO17 0000 P • Starting Addres s 
0005 EXIT 
0005 POO18 54F4 
0005 POO19 OAOO 
0006 POOIA 0179 XB SQM ERl 

0007 
~ 

FWRITE $FC, XC-*+l, STATEM-*+5, 17, A, 0,1, I, X 
0007 POOIB 54F4 \ '\ 
0007 POOIC ODOI 
0007 POOID 0009 

POOlE 0000 
0007 POOIF l8FC 
0007 P0020 0011 

P002l 7FE3 .. Starting Address, Relative 
0008 EXIT 
0008 P0022 54F4 
0008 P0023 OAOO 
0009 P0024 18lC ERI JMP* ERROR r" 

\ •.. - . 

8-26 



r· .. · u. 

0010 

0011 
0012 
0012 
0012 
0012 

0012 
0012 

0013 

0 
0013 
0013 
0014 

0015 

0016 
0017 
0017 
0017 
0017 

0017 
0017 

0018 
0018 
0018 
0019 
0020 

C) 

8.3.2.13 

The second example shows that even though the relative add res s mus t be in the 
positive direction the data block can come before the r e que s t in the pro g ram. 
This makes use of the wrap-around feature of the machine's 15-bit address arith-· 
metic. 

1C + 7FE3 = 7FFF, which is a zero in 15 bits, indicating POOOO. 

If, on the other hand, the r e que s t may be used to read or write a n urn be r of 
data tables, an indirect method might be used. 

P0025 COOO XC LDA =XSTATEM 
P0026 0000 P 
P0027 6818 -STA* PT 

FWRITE $FC, XD, (PT), 17, A, 0, 1, I, 0 
P0028 54F4 \ \ P0029 OC01 
P002A 0031 P 
P002B 0000 
P002C 18FC 
P002D 0011 
P002E 803F ~ Starting Address, Indirect 

EXIT 

P002F 54F4 
P0030 OAOO 
P0031 017C XD SQM ER2 

P0032 COOO LDA =XSTATEM-EX-1 
P0033 7FC9 
P0034 680B STA* PT 

EX FWRITE $FC, EC-*+ 1, (PT-*+5), 17, A, 0, 1, I, X 
P0035 54F4 
P0036 OD01 
P0037 0006 
P0038 0000 
P0039 18FC 
P003A 0011 
P003B 8009 

EC EXIT 
P003C 54F4 
P003D OAOO 
P003E 1802 ER2 JMP* ERROR 
P003F 0001 PT BSS PT 

8-27 



8.3.2.14 

8.3.2.14 Setting Up RW requests in Background 

Jobs are supposed to run at priority 0 and their completion routines are supposed 
to run at priority 1. There are th re e ways the input/output requests can be set 
up (for jobs) to maintain control in the program. 

1. Looping on the thread word 

2. Looping on a flag set by the completion routine 

3. Scheduling out of the completion routine 

The example to use would be an input of a card buffer which would then be written 
on the teletype. 

8.3.2.14.1 Looping on the Thread Word 
r 

RTJ- ($F4) 
NUM $0801 FREAD 
NU+VJ: 0 NO COMPL 

THR NUM 0 
NUM $1002 ASCII, PTR 
NUM 35 35 WORDS 
ADC BUF 

WAIT LDA* THR 
SAZ WRITE-*-1 
JMP* WAIT 

WRITE 

The thread word will be non-zero until the input is finished; then the buffer can be 
written out. This technique hru;lgs the computer in a loop and locks out any lower 
p rio r i ty operations. Of course, a job is running at 0 so this will not matter. 
However, this method should not ever be used in foreground programs. 

8.3.2.14.2 Looping on a Flag 

RTJ- ($F4) 
NUM $0801 FREAD 
ADC COMPL COMPL 
NUM 0 
NUM $1002 ASCII, PTR 
NUM 35 35 WORDS 
ADC BUF 

WAIT LDA* FLAG 
SAN WRITE 
JMP* WAIT 

WRITE ENA 0 
STA* FLAG 

l 
8-28 

C 

C 



u 

0 

C· 
) 

COMPL 

ERR 

FLAG 

~ 
EXIT 
SQM 
ENA 
STA* 
EXIT 

~ 
JMP* 
BSS 

ERR-*-l 
1 
FLAG 

COMPL+1 
FLAG(l) 

8.3.2.14.2 

Closed Routine 

This method does the same thing as looping on the thread word, except it provides 
for a completion routine where err 0 r s can be checked. It should not be used in 
the foreground either because it locks out p rio r i tie s lower than the completion 
priority. 

8. 3.2. 14. 3 Scheduling Out of the Completion Routine 

This method may be used only under MSOS. 

RTJ- ($F4) 
NUM $0801 FREAD 
ADC COMPL COMPL 
NUM 0 
NUM $1002 ASCII, PTR 
NUM 35 35 WORDS 
ADC BUF BUFFERADDR 
EXIT 

COMPL SQP OK-*-l CHECK ERRORS? 
RTJ* ERR 

OK SCHDLE WRITE, 0,0 SCHEDULE WRITE 
EXIT 

WRITE ~ 
This method provides for an exit i m m e d i ate 1 y after the reques t is initiated at 
priority 0, to wait for completion. When the com p let ion routine is entered at 
priority 1, a check is made for errors and then a schedule r e que s t is made for 
the address WRITE to be entered at priority 0, after the completion routine does 
its exit. (The schedule request is covered in the next section. ) 

Scheduling out of the completion routine is a good method to learn to use because 
it can be used by either background or foreground programs, it maintains a 
priority scheme if it is desired that the I/o completion routines run at a different 
priority from the main body of the program (either higher or lower), and it does 
not lock out lower priority operations. 

Any coding which can be done in the pro g ram before the data is needed can be 
inserted after the ADC BUF and before the EXIT. That coding will run at priority 
0, the priority of the main body of the program. 

8-29 



8.3.2.14.3 

A method s i mil a r to this is often used; it works in the background but does not 
maintain any priority scheme: 

RTJ- ($F4) 
NUM $0801 
ADC COMPRD 
NUM 0 Initiate Read 
NUM $1002 
NUM 35 
ADC BUF 
EXIT 

COMPRD SQP WRITE-*+l 
RTJ* ERR 

WRITE RTJ- ($F4) 
NUM $OCOI 
ADC COMPWR Initiate Write 
NUM 0 
NUM $1004 
NUM 35 
ADC BUF 
EXIT 

COMPWR ) 
In the above example, the read is initiated at priority O. When the first comple
tion routine is entered, COMPRD, the priority would change to 1 and would never 
drop back to 0 during the remainder of the pro g ram. Therefore, the write will 
be initiated at 1, not O. However, if it were desired to have completion routines 
run higher, the cp in the write r e que s t would have to be 2 (illegal in jobs) and 
each subsequent request would have to have a hi g her completion priority. This 
would be rather sloppy in the foreground. 

This method could not be used under the utility system because interrupts would 
be locked out at the beginning of the first com pIe t ion routine. The schedule 
method could not be used under utility either, because the s c he d u 1 e request is 
not available under utility. 

8.3.2.15 Examples of Programs Using I/o Requests 

The follow i n g two programs read one card into a buffer (BUF) from the card 
reader, log i cal unit 12. They then p r in t the card on the teletypewriter. The 
first program uses system macro requests; the second pr.ogram codes the system 
calls. 

8-30 

,~ 



/~ -~, 

U 

~ 
Q) 
1=1 

i 
1=1...-1 

.S'L> 
] .~ 
Po .... 

§~ 
C,,) 

'0 
~ 
Q) 

~ 

0 

(J 

JOB 
0001 NAM CARD TO PRINT 
0002 * 
0003 *TIDS PROGRAM USES SYSTEM REQUESTS TO READ AND WRITE 
0004 
0005 
0006 
0007 POOOO 0028 
0008 

* 

BUF 

* 

ENT 
EXT 
BSS 

START, PRINT 
IOERR ......-- error subroutine 
BUF(40) _ data buffer 

0009 
0009 
0009 
0009 

0009 

~_--ISTART 
P0028 54F4 
P0029 0801 
P002A 0031 P 
P002B 0000 
P002C 100C 

:::: ;:::r:RD
, T' 4

1

0, A

1
' or' f' ,t bitF:~t"'d Read Macro 

ADDR Buffer CP = 1 
RP= 0 

ASCII mode 
40 words 0009 

0010 

P002D 0028 
P002E 0000 P Read is initiated 

,-----1 EXIT EXIT Macro 
0010 P002F 54F4 Jump to dispatcher (EXIT Request) 
0010 P0030 OAOO No work to do until Read completed 
0011 
0012 
0013 

Read completed * 
P0031 0162 'COMPRD 
P0032 5400 X 

SQP 
RTJ 

SCHPRT 
IOERR 

Q15 = 0 if no Read error 
Q15 = 1 if error 

P0033 7FFF X.---_~ ________________________ _ 

0014 
0014 
0014 
0014 

.---_---lSCHPRT 
P0034 [54F4 Schedule PRINT at 
P0035 1200 priority 0 before exit 
P0036 0039 P from completion routine 

SCHDLE 

0015 EXIT 

PRINT,O,Q 
t Xbit= 0 
RP= 0 

Schedule Macro 

0015 P0037 154F4 Jump to dispatcher at end of completion 
0015 P003810AOO Dispatcher will now go execute PRINT at priority 0 

~--~*~-------~-------~-~-------------~-----0016 
0017 

,0017 
0017 
0017 

0017 
0017 

,-----1 PRINT 

LUN COMPL Indirect bit for LUN 
ADDR CP= 1 I 

Buffer RP = 0 

P0039 54F4 
P003A OC01 
P003B 0042 P 
P003C 0000 
P003D 18FC 
P003E 0023 
P003F 0000 P 

FWRIT~on~:t COMr
PR

• BU

1 
F. 3

1

5' A

1

, 0
1
, 1t' t t bi::r:atted Write Macro 

Write is initiated ASCII mode 
35 words (on TTY) 

om8 EXIT EXIT Macro 
0018 P0040 54F4 Jump to dispatcher 
0018 P0041 L;O.:,:A:..:O...:,O __ ..L7N:..,:o_w;,;..o:.:r:..,:k:...t:.:o:.....d.:.:o:.....::un.:.:t:..:il::......:..:W:..,:r...:,it:..:e:.....c:.:o:.,:m:::;p!:,;l:.,:e.:.;te:..;d=----____________________________ _ 
0019 * 
0020 P0042 0162 
0021 P0043 5400 X 

COMPPR SQP 
RTJ 

FIN! 
IOERR 

NO 10 ERR 

P0044 0033 X r---------------------~----------------------

[

FIN!, 0022 EXIT EXIT Macro 
0022 P0045 154F4 
0022 P0046 .OAOO 
0023 ~---~----=E~N=D--~S=T~A=R=T~----------------

Entry points 

I 
SCHPRT 

OOFF START 
0034P COMPPR 

0028P PRINT 
0042P' FIN! 

0001 
0002 
0003 POOOO 18FF 
0004 

CARD 
IOERR 

OOFF 

2210 } 
2257 

IOERR 

IOERR 

NAM 
ENT 
o 
NUM 
E;ND 

where pgms loaded 

OOOOP 

0039P BUF 
0045P IOERR 

IOERR 
IOERR 
o 

OOOOP COMPRD 
0044X 

II 0 subroutine 

0031P 

$18FF 4--- Hang instruction used for 
checkout 

8-31 

8.3.2.15 



8.3.2.15 

Reads and writes initiate r/ o. Control returns to next ins truction in program before r/o 
is done. Job I/O is done at priority O. Program should not loop waiting for r/o to be 
done. 

Completion add res s is entered when r/o is done, at priority 1. It should be short and 
exit to dispatcher. Check Q for r/o errors. 

This JOB does not check Q after Request, to see if Request accepted (Q15 = 0). Jobs do 
not have to but system programs must. 

------------------------~ --------------------------

*p 
J 
*ASSEM 
J 
*p 
J 
*L,8 
J 
* .___No MAP 
X" Ar 

TTY Printout 

l
·..---· .... '" 

.,' 

THIS PROGRAM WORKS ON THE 1700 COMPUTER SYSTEM UNDER MSOS 2.0 
J 

Formatted Write ( 
'-....... 

For program checkout, hang instruction could also be used to see if com pIe t ion r 0 uti n e 
entered. 

0019 * 
0020 P0042 0172 COMPPR SQM HANG 
0021 EXIT 
0021 P0043 54F4 
0021 P0044 OAOO 
0022 P0045 18FF HANG NUM $18FF 
0023 END START 

8-32 



(j 

o 

8. 3. 2. 15 

EXAMPLE READ/WRITE PROGRAM 

JOB 

0001 NAM CARD TO PRINT 
0002 ENT ST ART, PRINT 
0003 EXT IOERR 
0004 OOEA EQU ADISP($EA) 
0005 POOOO 0000 START 0 0 
0006 POOOI 54F4 RTJ- ($F4) Initiate FREAD 
0007 POO02 0201 NUM $0201 READ, CP = 1 RP = 0 
0008 POO03 0009 P ADC COMPRD ~ Completion Address 
0009 POO04 0000 NUM 0, $100C THREAD, LUN CR = 12, ASCII 

POO05 100C 
0010 POO06 0028 NUM 40 ONE CARD TO READ 
0011 POO07 001F P ADC BUF FWA BUFFER AREA 

Control returns beneath parameter string after Read is initiated. If program has 
nothing to do, it should exit until completion routine is entered. Unprotected program 
can exit to dispatcher. 

0012 P0008 14EA JMP- (ADISP) 

When Read is finished control will go to completion address COMPRD. Completion 
routine should check bit 15 of Q for 110 errors and exit to dispatcher. 

0013 P0009 0162 COMPRD 
0014 POOOA 5400 X 

0015 
0016 
0017 
0018 
0019 

POOOB 7FFFX 
POOOC 54F4 SCHPRT 

POOOD 11200 I 
POOOE 0011 P 
POOOF 54F4 
P0010 I OAOO I 

SQP 
RTJ 

RTJ
NUM 
ADC 
RTJ
NUM 

SCHPRT 
IOERR 

($F4) 
$1200 
PRINT 
($F4) 
$AOO 

Schedule PRINT at priority 0 
before exit, to drop priority 
back to O. 

EXIT REQUEST 

Dispatcher will pass control to Print after read completion routine exit. 

0020 P0011 54F4 
0021 P0012 0401 
0022 P0013 001A P 
0023 P0014 0000 

P0015 1009 
P0016 0023 

0024 P0017 001F P 

PRINT RTJ
NUM 
ADC 
NUM 

ADC 

($F4) 
$0401 
COMPPR 
0,$1009,35 

BUF 

PRINT, CP = 1 RP= 0 
COMPLETION ADDRESS 

35 words on TTY 

FWA BUFFER 

Control returns l).ere after print is initiated. Exit Request is same as jump to dis
patcher. 

0025 P0018 54F4 
0026 P0019 I OAOO I 

RTJ
NUM 

($F4) 
$AOO 

After print is done, control goes to COMPPR at priority 1. Here exit from program. 

0027 P001A 0162 COMPPR 
0028 P001B 5400 X 

P001C OOOB X 
0029 P001D 54F4 FINI 
0030 POOlE 10AOO I 
0031 P001F 0028 BUF 
0032 

SQP 
RTJ 

RTJ
NUM 
BSS 
END 

FINI 
IOERR 

($F4) 
$OAOO 
BUF(40) 
START 

8-33 

EXIT WHEN THRU 



8.3.2.15 

*p 

TTY Printout. Read/Write Program 

Not using system macros. 

Coding requests as in example will produce much faster assembly time than when using 
macros. 

J 
*ASSEM 
J 
*p 

J 
*L,8 
J 

*X, N ~The E message noted unpatched externals (IOERR). The * @typed by operator 
~ said to ignore them. 

~H,fS PROGRAM WORKS ON THE 1700 COMPUTER SYSTEM UNDER MSOS 2.0 

J ~ output from WRITE 

Unformatted Write did not do line feed as there are no line feed/ CR in unformatted Write. 

Formatted Write should be used on print devices such as TTY and LP. 

Unformatted Write on printer does not work correctly. The printer buffer is filled but 
the line is not printed until the next output line is sent to the printer. 

8-34 

c 



C) 

o 

8. 3. 2. 15 

Read formatted ASCII data records from paper tape into BUF area and type it out. 
Assume the BUF area is larger than the formatted record. Con tin u e until the 
reader runs out of tape, giving an error. 

FLAG 
BEGIN 
START 

READIT 

MORE 

READY 

NAM 
ENT 
BSS 
ADC 
0 
CLR 
STA* 
RTJ-
NUM 
ADC 
NUM 
ADC 
LDA* 
SAN 
JMP* 
LDQ 
SQP 
RTJ-
NUM 
CLR 
STA* 
RTJ-
NUM 
ADC 
NUM 
ADC 
LDA* 
SAN 
JMP* 
JMP* 
RAO* 
STQ 
RTJ-
NUM 

BEGIN 
BUF(30), STAT(1) 
0 Flag for swi tching 
0 
A 
FLAG Clear flag 

($F4) Format read L U2 is paper tape 

$800 reader where to go when fin-

READY ished 
0,$1002,30 
BUF 
FLAG Hang until flag set by comple-

1 tion routine 
*-2 
STAT 
MORE-*-1 
($F4) Exit request on input error-

$AOO end job 

A Clear flag 

FLAG Hang until flag set by comple-

($F4) tion routine. Type out format 

$COO 
READY 
0,$1004,30 
BUF 
FLAG 
1 
*-2 
START 
FLAG Completion routine sets flag 

STAT Exit back to program 
($F4) 
$AOO 

8-35 



8.3.3 

8. 3.3 Schedule Request - Request Code 9 

The schedule request is available only under MSOS. 

Programs occur in the 1700 run at 16 different priorities, 15 (high) to 0 (low). A 
program can schedule a section of coding to be executed at a certain priority level. 
The address of the scheduled coding can be either in the s c h e d u I in g program, 
external to it, or in the system. 

If the desired priority of the scheduled program is higher than the running priority 
. of the scheduling program, a pseudo interrupt occurs and the scheduled program 

is executed immediately. In this way a schedule reques t can be con sid ere d a 
jump that also changes the running priority. Control Will return to the "inter
rupted" program when the scheduled program exits. 

If the desired priority of the scheduled program is not higher, it is threaded onto 
a queue of programs waiting to be executed, in order of priority. In this way one 
program may schedule another to be executed at a different priority after the 
scheduling program exits. 

Background programs can be scheduled to run at levels 0 and 1 only. 

A parame ter may be pas sed in the reques tor f s Q reg i s t e r to the program being 
scheduled. 

8. 3. 3. 1 Format of Schedule Request 

REQ RTJ-

15 14 9 8 7 
0 0 0 1 0 0 1 x 0 0 

c 
Completion Address 

rc request code, 6 bits: 9 
x relative/indirect indicator, 1 bit: 0 or 1 

rp this field is ignored by the scheduler 
p priority, 4 bits: 0-15 
c address of program scheduled 

The macro call is: 

REQ SCHDLE c,p,x 

($F4) 

4 3 0 
0 0 p 

REQ will be on the 54F4, which will be g en era ted by the macro. REQ+ 1 is the 
first word of the parameter stringlO-

8-36 



\ 0
_-

o 

l) 

8. 3. 3. 1 

An example of a coded call would be: 

RTJ
NUM 
ADC 

($F4) 
$1201 
PGM 

(schedules PGM at priority 1) 

8.3.3.2 Request Code 

This field is always 9 for schedule requests. 

8. 3. 3. 3 X Bit 

The x bit is used in conjunction with the c parameter. It will be discussed as it 
relates to this parameter. 

8.3.3.4 Priority 

The p field is the priority at which the programmer desires to run the scheduled 
program. The priority may be greater than, e qua I to or less than the program 
that schedules it. However, in the background it is always 0 or 1. 

8. 3. 3. 5 Address 

The c field contains the address of the program being scheduled. The x parame
ter de t e r min e s the forms the c may take as it did for the c parameter of the 
read/write reques ts. 

x 

o or blank 

~O 
~blank 

c 

c 

c 

(c) 

The meaning of c 

c is the address. 

i. e., SCHDLE PGM, -, -
PGM is assembled as an absolute address (pro
gram relocatable). 

c is relative. 
c is a positive increment added to the address 
of the first word of the parameter list to locate 
the address. 

i. e., SCHDLE PGM-*+1, -, X 
In this example PGM is the address. 

c is an index to the system directory. The ( ) 
set bit 15. x has no meaning. 

8-37 



. , 

8.,3.3. 5 

Note that there is no indirect form and that the option (c) cannot be used in the C~' 
background because programs in the system 1 i bra r y may not be scheduled from 
the background; see Chapter 11. 

8.3.3.6 Example of Schedule Request 

The following example program writes one message from pro g ram SCHEDULE 
and then schedules TWO (the entry point in pro g ram NEXT) to run at priority 1 
and write another message. 

8-38 

c 



8. 3.3. 6 

0 0001 NAM SCHEDULE 
0002 ENT XA 
0003 EXT TWO 
0004 POOOO 4558 MA ALF *, EXAMPLE NO 1. * 

POOOI 414D 
POO02 504C 
POO03 4520 
POO04 4E4F 
POO05 2031 
POO06 2E20 

0005 XA FWRITE 4, XB, MA, 6, A, 0, 1, A 
0005 POO07 54F4 
0005 POO08 OC01 
0005 POO09 0010 P 

POOOA 0000 
0005 POOOB 1004 
0005 POOOC 0006 

POOOD 0000 P 
0006 EXIT 
0006 POOOE 54F4 
0006 POOOF OAOO 
0007 XB SCHDLE TWO,l 
0007 P0010 54F4 
0007 P0011 1201 
0007 P0012 7FFF X 
0008 EXIT 
0008 POO13 54F4 
0008 POO14 OAOO 

C) 0009 END XC 

I OOFF XA 0007P MA OOOOP XB 0010P TWO 0012X 

0001 NAM NEXT 
0002 ENT TWO 
0003 POOOO 4558 MB ALF *, EXAMPLE NO. 2* 

POOOI 414D 
POO02 504C 
POOQ3 4520 
POO04 4E4F 
POO05 2E20 
POO06 3220 

0004 TWO FWRITE 4, XC, MB, 7 ,A, 0, 1 
0004 POO07 54F4 
0004 POO08 OC01 
0004 P0009 0010 P 

POOOA 0000 
0004 POOOB 1004 
0004 POOOC 0007 

POOOD 0000 P 
0005 EXIT 

1 ENTRY POINT TABLE-
XA 2E2F TWO 2F44 

J 
*X 
EXAMPLE NO 1. 

() EXAMPLE NO. 2 

8-39 



8.3.4 

8.3.4 TIMER Request - Request Code 8 

The timer reques t is available only under MSOS. 

Ahardware timing device such as the 1573 timer is required for the timer request 
to work since there is no real time clock in the cpu. 
The timer request is a scheduled request where the program is scheduled after a 
predetermined time delay. The delay allowed will be from 1/60 second to 32, 767 
minutes. 

Parameters c, p, and x are specified as for the SCHDLE request. However, instead 
of a parameter a time delay is specified in Q when the request is made. The delay 
is specified in multiples of the basic unit of the timing device. The timer passes 
the current contents of the core clock (E8) to the scheduled program in Q. 

Timer requests are stacked in the s c he d u I e request stack but are not threaded 
with them. Ins tead, they are threaded together on the basis of time until activa
tion. When the delay for a timer request has expired, a SCHDLE request is made 
by the system and the request is rethreaded into the SCHDLE thread. 

The timer request is normally made by protected programs but it can be made by 
jobs at levels 0 or 1. 

The timer was different under MSOS 1. O. 

8. 3.4. 1 Format for the I TIMER Request 

RTJ-

15 14 rc 
0 8 

rc request code, 6 bits: 8 

($F4) 

9 8 
x 
c 
Q 

7 

x relative/indirect indicator, 1 bit: 0 or 1 
u type of units desired, 4 bits: 0 to 3 
p priority, 4 bits: 0-15 
c address of program to be scheduled 
Q number of units desired: 1-32,767 

must also be in Q register 

The macro form for this reques t is: 

TIMER c, p, x, Q, u 

8-40 

u 4 3 p 0 
0-3 0-15 

C'\ 
--' ' 

(" 
"'-' 



o 

0 

() 

An example of a coded call woold be: 

LDQ 
RTJ
NUM 
ADC 
NUM 

=N$0005 
($F4) 
$1024 
PGM 
5 

(schedule PGM in 5 seconds to run at priority 4) 

8.3.4.2 Request Code 

Request code is 8. 

8. 3. 4. 3 X Bit 

8.3.4.1 

The x bit is used in conjlUlction with the c parameter. It will be discussed as it 
relates to this parameter. 

8. 3.4.4 Units 

The type of lUli ts reques ted is s p e c if i e d bas ed on the bas i c unit of the timing 
device. 

u 

0 basic units: 60/sec on 1573 
1 1/10 second 
2 seconds 
3 minutes 

The units field is used in conjunction with the Q parameter to calculate the desired 
time delay and it controls the precision required in the timing. 

8. 3.4. 5 Priority 

This is the priority at which the scheduled program is to run. It follows the same 
rules as in a schedule request. 

8. 3.4. 6 Address 

The c field contains the address of the program being scheduled and it follows the 
same rules as for a schedule request. 

8. 3.4.7 Q parameter 

The Q parameter is the n u m be r of the type of units desired; it must be in the Q 
regis ter and the Q word of the reques t. 

8-41 



8.3.4.7 

For example, a timer request for 5 seconds could be either u=2 and Q=5, or u=l 
and Q=50. If u=2, the request will be on the seconds thread and will be scheduled 
in at leas t 5, but less than 6, seconds. If u=l, the r e que s t will be on the 1/10 
second thread and will be s c h e d u led in at least 5 seconds, but less than 5 1/10 
seconds. This is how the desired timing precision can be achieved. 

8. 3.4. 8 Example of\ TIMER Request 

Assume the basic unit of the system is 1/60 second. Schedule the program PGM 
using an absolute call, after 20 minutes has elapsed, to run at priority 6. 

ENQ 
TIMER 

8.3.5 STATUS Request - Request Code 3 

20 
PGM, 6, , 20, 3 

This request is available to unprotected programs only. Foreground programs do 
not use the status request to obtain status. 

The status of a particular read/write request is obtained with the status request. 
The status of the request is returned in the A, Q, and I registers. 

The status request can be used to determine whether an I/O operation is complete, 
to examine the type of hardware to which the logical unit is assigned, to check the 
dynamic status on the hardware, or to find out how far along the 1/ a is by checking 
the current buffer address. C 

8.3.5.1 Format of the STATUS Request 

RTJ-

15 14 rc 
0 0 0 0 0 1 

15 12 111 10 I 0 0 0 o A 
ap 

9 8 
1 x 
9 

address of parameter list 

rc request code, 6 bits: 3 

7 
0 

x relative/indirect indicator, 1 bit: 0 or 1 

($F4) 

0 0 0 0 0 

LUN 

Q logical unit, 10 bits; modified by a, same as for read/write requests 
a logical unit address indicator, 2 bits; same as for read/write requests 

Settings are: 
a = blank = 00: Q is the logical unit number 
a = R = 01: Q is a signed 'increment (±lFF) 
a = I = 10: Q is a core address (0< Q~3FF) 

ap address of parameter list of request 

8-42 

0 
0 0 

0 



o 

o 

() 

8.3.5.1 

The macro call is: 

STATUS Q, ap, a, x 

An example of a coded call would be: 

RTJ
NUM 
NUM 
ADC 

($F4) 
$0600 
0004 
REQ+l 

(Obtain status of a request on logical tulit 4; request address is REQ+l) 

8.3.5.2 Request Code 

The reques t code is 3. 

8. 3. 5. 3 X Bit 

The x bit is used in conjunction with the ap parameter and will be discussed as it 
relates to that parameter. 

8. 3. 5.4 A Field 

The a bits modify the logical unit field in the same way as in the I/O request. 

8. 3. 5. 5 Logical Unit 

The logical unit is the same 10 gi cal unit upon which the I/O request was made 
(the one we wish to have the status of). The logical unit may be specified directly, 
indirectly or relatively, in the same way the logical unit was specified in the I/O 
request. 

8. 3. 5. 6 Address of Parameter List 

The ap field is the address of the parameter list for the request for which status 
is desired. It can be specified directly, indirectly or relatively, in conjunction 
wi th the x bit. 

x 

==0 or blank 

~o 
~blank 

ap 

ap 

ap 

Meaning of ap 

ap is the address of the firs t word of the para
meter list of the I/O request. 

i. e., STATUS -, REQ+l, -,-
REQ+ 1 is the parameter address. 

ap is relative. 
ap is a positive increment added to the address 
of the first word of the status requestparameter 
list to obtain the address of the first word of an 
input/output reques t parameter lis t. 

8-43 



8. 3. 5. 6 

x 

=0 
=blank 

~o 
;iblank 

ap 

(ap) 

(ap) 

Meaning of ap 

i. e., STATUS -, REQ+l-*+2, -, X 
REQ+l is the parameter address. 

ap is indirect 
ap is the address of a I 0 cat ion containing the 
add res s of the first word of an input/output 
parameter list. 

i. e., STATUS -, (REQADR), -,
REQADR contains the address of REQ+l 

ap is double relative. 
ap is a positive increment added to the address 
of the first word of the status request parameter 
list to obtain the address of a location containing 
another positive increment. The second incre
ment is added to the address of the first word of 
the status reques t parameter lis t to obtain the 
address of the first word of an input/output re
quest parameter list. Because of wraparound 
in adding, both increments may refer to loca-
tions ahead of or behind the status reques t. (' 

i. e., STATUS -, (REQREL-*+2), -, X 
REQREL contains a number to be added to the 
firs t word of the status parameter list to form 
the distance to REQ+l (s+l+contents of REQREL). 

Although the parameter! address is not needed in the utility system, it is supplied 
to be compatible with 1700 MSOS. If it is omitted, only device status will be re
turned. 

8. 3. 5. 7 Reply to STATUS Requ~st 

Following execution of the status request, the A, Q, and I registers con t a i n the 
status. The content of these registers is as follows: 

A: hardware status of device 
Q: word 8 of Physical Device Table for device 
I: last core address of data transmission 

8-44 



o 

o 

8.3.5.7.1 

8. 3. 5.7.1 Hardware Status 

A Hardware Status Reply 

The hardware reply 1S dynamic unless the device is connected to a buffered data 
channel and the channel is busy. If it is-not busy, the hardware reply is the status 
obtained at the completion of the last request for that device. For an explanation 
of hardware replies refer to the hardware specifications. 

This status is the hardware reply bits on the device itself. 

8.3. 5.7.2 Word 8 of PDT 

See appendix D of the MSOS Reference Manual for contents of this word. 

15 14 13 11 10 4 3 1 o 
Q I E 

Word 8 

S 

EREQST 

Reques t Status 

Bits 

T R 

P- 0=1 Device not available to unprotected programs 
Device may be read from unprotected pro g ram s 
Device may be written by unprotected pro g ram s 
Equipment table includes words 18-33 for message 
buffering 

R 
[

1=1 
2=1 
3=1 

T --4-10 

S 

E 

un 
i 14 = 1 

15 = 1 
= 0 

Equipment type constant (T), see T table 

Equipment Class, see Stable 

Device failure 
Operation is in progress 
Operation is complete 

STABLE 

EQUIPMENT CLASS CODES 

Word 8, EREQST Bits 11-13 

o 
1 
2 
3 
4 
5 
6 

7 

Class not defined 
Magnetic tape device 
Mass storage device 
Card device 
Paper tape device 
Printer device 
Teletype device 
Reserved for future use 

8-45 



8.3.5.7.2 

T TABLE 
(-.~: 

STANDARD EQUIPMENT TYPE CODES 

Word 8, EREQST Bits 4-10 

0 1711/1713 Teletypewriter 
1 1721/1722 Paper Tape Reader 
2 1723/1724 Paper Tape Punch 
3 1 Unassigned 
4 
5 1738/853 Disk Unit 
6 1751 Drum Unit 
7 1729 Card Reader 
8 1738/854 Disk Unit 
9 601 Magnetic Tape Unit 

10 Software Buffering Device 
11 1742 Line Printer 
12 1728/430 Card Reader/Punch 
13 Software Core Allocator 
14 210 CRT Display Station 
15 1558 Latching Relay Output 
16 1553 External Register Output 
17 311B/312B Data Set Terminal 
18 322/323 Teletype Terminal 
19 Unassigned 
20 166 Line Printer 
21 1612 Line Printer C 
22 415 Card Punch 
23 405 Card Reader 
24 608 Magnetic Tape Unit 
25 609 Magnetic Tape Unit 
26 1713 Teletype Keyboard 
27 1713 TTY Paper Tape Punch 
28 1713 TTY Paper Tape Reader 
29 Unassigned 
30 1797 Buffered I/O Interface 
31 Software Dummy Alternate 
32 1584 Selectric I/O Typer 
33 1582 Flexowriter I/O Typer 
34 1716 Coupling Data Channel 
35 1718 Satellite Coupler 
36 Unassigned 
37 8000 Series Magnetic Tape Unit 
38 J Unassigned 
39 
40 1530 A/D Converter 30/40 PPS 
41 1534 A/D Converter 200 PPS . 
42 1538 A/D Converter High Speed 

43 ] 
44 

Unassigned 

45-99 Reserved for future standard equipment 
100-127 Open for user assignment 

C 
8-46 



o 

() 

B. 3. 5. 7. 2 

The word B status can be used to determine several things about the device. The 
E field can be used to see if any reques t is active on the device and w h e the r a 
hardware error is present; this requires operator intervention. T can be used to 
find out what kind of equipment the device is. For example, a program could see 
if the standard output device is a teletypewriter or a line printer and then output 
either 70-character lines or 136-character lines. The P and R fields can be used 
to determine the availability to jobs. 

B. 3. 5.7.3 Current Buffer Address 

I address 

The add res s of the las t word that was stored in the buffer or written from the 
buffer is in the I register. In this way a job can determine how much of its buffer 
has been filled during operation. 

B. 3. 5. B Example of Status Reques t 

0015 AA FWRITE $FC,XA, (AD DR) , (LENGTH), A, 0,1, I 
0015 POOBF 54F4 
0015 P0090 OC01 
0015 P0091 00A1 P 

P0092 0000 
0015 P0093 1BFC 
0015 P0094 B053 P 

P0095 B052 P 
XA 

0022 OUT 

EXIT 
SQP OK-*-l 

$FC, AA+1, I 0022 P009C 54F4 STATUS 
0022 P009D 0600 
0022 P009E BOFC 

OK ~ 
EXIT 

The above example takes status on the request from the completion routine if an 
error indication is present. 

More examples of status requests are in the CKASSM routine, section B. 3.10. 

B. 3. 6 GTFILE Request - Request Code 13 

This request is available only to background programs and only under MSOS. 

A permanent file that has been placed in the program library* can be ace e sse d 
during execution by the GTFILE request. A file is brought into core as it appears 
on the mass storage device; GTFILE does not load a program. If apr 0 g ram is 

-----------------
*A file is placed in the program library by a LIBEDT operation. 

B-47 



8.3.6 

placed in the program library as a file, it must be in its a b sol ute binary form. 
Data files cannot be c han g e d and written back on the library during execution. . C," 
GTFILE only reads the file into core. 

8. 3. 6.1 Format of GTFILE Request 

RTJ-

15 11~ rc ~ I ! I 7 
0 0 1 1 0 

c 
completion address 

thread 

v 1 ~ 1 :1 
w1 

s 
starting core address 

w2 

f 
filename address 

rc request code, 6 bits: 13 
x relative indicator 

rn 

$C2 
£ 

rp request priority (for MSOS), 4 bits: 0 
cp completion priority, 4 bits: 1 

c completion address 
thread for system: 0 

v error bits, 3 bits 
m mode, 1 bit: 0 * 
a logical unit modifier, 2 bits: 2 * 

($F4) 

4 I 

Q logical unit address of MS device, 9 bits: $C2 * 
w1 first word desired in file 

s starting core address for buffer 
w2 last word desired in file 

f filename address 

The macro call is: 

GTFILE c, f, s, w1, w2, x, rp, cp 

*Set by assembler if macro call used. 

8-48 

3 0 
CD 

c 

l 
':..-



o 

o 

An example of a coded call would be: 

FILNAM ALF 

1 
RTJ-
NUM 
ADC 
NUM 
NUM 
NUM 
ADC 
NUM 
ADC 

*, FILE * 

($F4) 
$lA01 
GOT 
o 
$08C2 
o 
BUF 
o 
(FILNAM) 

FILE NAME 

COMPL 

BINARY, LIBUNIT 
WHOLE FILE WANTED 
BUFFER 

ADDR OF FILE NAME 

8.3.6.1 

(The file FILE is requested to be stored in BUF. GOT is the completion address. ) 

8.3.6.2 Request Code 

Request code is 13. 

8. 3. 6. 3 X Bi t 

The x bit is used in conjunction with the f parameter. It will be discussed as it 
relates to that parameter. 

8.3.6.4 Request Priority 

The reques t priority is always 0 in the background for jobs. It will be used as the 
request priority for the mass storage driver when it reads in the file. 

8.3. 6. 5 Completion Priority 

The completion priority is always 1 in the background. 

8. 3. 6. 6 Completion Address 

c is for the completion add res s and takes the same form as for the read/write 
request. 

8. 3. 6. 7 Mode 

The mode field mus t be set to 0 (binary). 

8. 3. 6. 8 A Field 

The a bit, logical unit modifier, must be set to 2 (indirect). 

8. 3. 6. 9 Logical Unit 

The address of the library logical unit, $C2, must be set in this field. 

8-49 



8.3.6.10 

8.3.6.10 Word Addresses: wI, w2 

wI and w2 are the beginning and ending word addresses (mass storage) within the 
file if word addressing is used and the disk word driver is present in the system. 

If only a portion of a file is wanted, the wI, w2 specifies the words wanted. Th~y 

are specified directly. If the complete file is wanted, wI and w2 s h 0 u I d be left 
blank. 

GTFILE -, -, -, 10,45, -, -

GTFILE , , '" , 
In the first example words 10 to 45 would be brought in. In the second, the com
plete file would be brought in. 

8. 3. 6. 11 Starting Core Address 

s is the starting address of the block into which the file or a portion of the file is 
to be transferred. x determines the type of addressing mode stakes. 

x 

=0 
=blank 

~o 
~blank 

s 

s 

(s) 

(s) 

8. 3. 6. 12 File Name Address 

Meaning of s 

s is the starting address; x has no meaning. 

e. g., GTFILE -, -, BUF, -, -, -, -, -

s is indirect. 
s is the core location which contains the starting 
address of the block. 

e. g., GTFILE -, -, (BUFADR), -, -, -, -, -
In this case BU FADR con t a ins the address of 
the block. 

s is relative. 
s is a positive increment added to the first word 
of the parameter list to form the s tar tin g ad
dress of the block. 

e. g., GTFILE -, -, (BUF-*+5), -, -, X, -, -
BUF is the buffer. 

The f parameter in d i cat e s the address of the firs t word of a three-word block 
that contains the ASCII name of the file. It takes two forms, f and (f). 

f is a positive increment to be added to the first word of the parameter list when 
it stands alone. 

8-50 

c 

c 



() 

o 

c) 

8.3.6.12 

For example: 

GTFILE -, NAME-*+7 , -, -, -, -, -, -

In this case NAME would contain the first two characters of the ASCII name and 
the relative distance to NAME would be assembled into the macro. 

(f) indicates f is the add res s of the three word block containing the ASCII name. 

For example: 

GTFILE -, (NAME), -, -, -, -, -,-

In this case the address of NAME is assembled into the macro. 

The system searches the program library for the file with the s p e c if i e d name. 

It is supposed to be necessary to specify two add i t ion a I words at the end of the 
reques t in which the s y s t e m will return the actual sector add res s of the file. 
This does not work, however, so we omit it. 

8. 3. 6. 13 Example of a GTFILE Request 

The following example uses a GTFILE request to obtain a file named SYSINI from 
the program lib r a r y and store it into a buffer, beginning at $6000 (absolute ad
dress). 

It happens that in this example the GTFILE request is to obtain a file that is an 
a b sol ute program and is to transfer control to it; but the GTFILE could simply 
have been used to input data to a buffer. 

The example shows how the GTFILE works and how it is assembled. 

8-51 



8.3.6.13 

EXAMPLE USING GTFILE REQUEST FOR SYSTEM INITIALIZER 

0001 NAM GETSI 
0002 ENT SI 
0003 POOOO '5359 FILNAM ALF *, SYSINI* ~ Name of FILE in program library 

POO01 5349 
POO02 4E49 

0004 POO03 5349 BUF ALF *, SI IN* 4 MSG Buffer for TTY 
POO04 2049 
POO05 4E20 

0005 6000 SIADDR EQU SIADDR($6000) File to go at $6000 
0006 POO06 0000 SI 0 0 
0007 GETFIL GTFILE GOT, (FILNAM), SIADDR, , ,0, o~ 
0007 POO07 54F4 

I \ \ ~ CP=l 0007 POO08 1A01 Completion address RP = 0 
0007 POO09 0014 P after SYSINI i~ brought Address X bit = 0 (not blank) 

POOOA 0000 lnto core where Core 
0007 POOOB 08C2 file name address Disk address 

POOOC 0000 is where left blank; 
POOOD 6000 file is program li-

0007 POOOE 0000 to go brarywill be 
POOOF 8000 P searched C 0008 EXIT (wait for completion) 

0008 P0010 54F4 
0008 P0011 OAOO 
0009 EXIT (unnecessary) 
0009 POO12 54F4 
0009 POO13 OAOO 
0010 POO14 017B GOT SQM NOGOOD 
0011 SIIN 

FWIUTE )FC, WRr

E

, Bf II rf t 1 bit = 0 (not blank) 0011 POO15 54F4 
0011 POO16 OC01 
0011 POO17 001E P (std com!~~ COMPL c~n~i:ect bit referring to $FC 

POO18 0000 device) ADDR MSG RP = 0 
0011 P0019 18FC 

BUF ASCII 
0011 P001A 0003 

3 words 
P001B 0003 P 

0012 EXIT 
0012 P001C 54F4 Wait until Write is done 
0012 P001D OAOO 
0013 POOlE 0171 WROTE SQM NOGOOD 
0014 POOIF ICED JMP* (GETFIL+6) • Jump to beginning addres s of 
0015 NOGOOD EXIT SYSINI which is $6000 
0015 P0020 54F4 
0015 P0021 OAOO 
0016 END SI 

C~' 
8-52 



o 

o 

C) 

8.3.6.13 

This program may be rea sse m b 1 e d for any system. Change the EQU for the desired 
high core address where the system initializer is to be pIa c e d. The system initializer 
should be stored in the program library under the file name SYSINIo It can then be called 
into core by typing on the TTY 

*8I 

8Y8INI was made a file so it could be stored in high core. 

8-53 



8.3.7 

8. 3.7 LOADER Request - Request Code 7 

A 

Q 

This request may be made only by background programs. 

The loader request enables the pro g ram to load programs during execution. A 
program is loaded beg inn in g at the first word of unassigned, unprotected core. 
When loading, the loader res ide s in the upper part of unprotected core, wiping 
out COMMON if it was being used. 

The par am e t e r s for the loader request are in the A and Q registers. These 
parameters pre s c rib e what type of load is to take place and from which logical 
unit. 

15 

15 

t 

Qu 

3 o 
Qu t 

o 
tna 

type of loading operation; discussion follows 

logical unit number of the input unit if a relocatable binary program is being 
loaded 

tna entry point, core address of the first of three sequential locations containing 
the entry point name C 

t Function Qu tna 

0 Load relocatable binary programs input device ignored 
from any unit 

1 Load from program library library unit ignored 
on library unit 

2 Load program from library library unit location of 
unit and execute immediately program name 

3 Produce memory map ignored ignored 

4 Look up entry point name ignored location of 
entry point 
name 

5 Same as t = 1 but no memory map 
printed 

6 Search directory of core-resident ignored ignored 
entry points 

7 Initialize data base ignored ignored 

c 
8-54 



G 

o 

C) 

8.3.7 

When the load is com pie ted without an error, the A register contains the last 
transfer address given, as in normal loading. If an error terminated loading, A 
contains zero and the Q register contains the storage address of the input block 
processed by the loader at the time the error occurred. 

8. 3.7. 1 Format of the LOADER Request 

RTJ-

o o 1 1 

The macro call would be: 

LOADER 

9 

1 

($F4) 

8 
o ------------------------------~-

An example of a coded request would be: 

RTJ
NUM 

($F4) 
$OEOO 

See the core request for a program example using the loader request. 

8. 3. 8 CORE Request - R~quest Code 11 

The core request can be made only by background programs. 

~I 

The core request can expand or contract available unprotected core. For exam
ple, if during execution the high locations of one's program are no longer needed, 
one could release these locations by a core request so that another program could 
be loaded into this area. 

The core request has two forms, depending on the contents of the A and Q regis
ters. If A and Q are zero, the core request asks for the cur r en t boundaries of 
unassigned unprotected core. When the request has been processed, the Q reg
ister contains the lower boundary-l and the A register contains the upper 
boundary+ 1. (The contents of A and Q are actually obtained from core locations 
$ED and $EC.) With this information the program can set new b 0 un dar i e s to 
available unprotected core. 

When A and Q are non-zero and a core request is made, the new boundaries are 
set according to the contents of A and Q. A contains the new upper boundary and 
Q the lower. Both boundaries mus t be within un pro t e c ted core and A mus t be 
larger than Q. 

The core request is supposed to return the actual lower and upper bounds of un
protected core, but since it currently returns the lower-l and upper+l (from $ED 
and $EC) we program it to allow for that. 

8-55 



8.3.8.1 

8. 3. 8. 1 Format of Core Request 

RTJ- ($F4) 

rc 
o 1 o 

The macro call would be: 

CORE 

The coded call would be: 

RTJ
NUM 

8. 3. 8. 2 Example of Core Request 

1 
9 8 

1 0 

($F4) 
$1600 

0 0 0 0 0 0 0 ~I 

The following example program, LOADERC, makes a core request to obtain 
bounds. It then drops the lower bound by 2216• Then it makes a loader request 
to load a relocatable binary program tape from logical unit 2. The program on 
the tape will begin to overlay the BSS block in LOADERC at address P0011. 
LOADERC receives the entry point address inA from the loader (from the end tna 
card of the loaded program) and stores it in the second word of the jump ins truc
tion, where it can jump to the loaded program. 

0001 NAM LOADERC 
0002 EXT ENTRY Unpatched external 
0003 0002 EQU TAPEU(2) 
0004 POOOO 0846 XX CLR A,Q 

0005 CORE Get core limits 

0005 POO01 54F4 
0005 POO02 1600 
0006 POO03 ODDD INQ -$22 
0007 CORE Set lower limit 

0007 POO04 54F4 
0007 POO05 1600 
0008 POO06 COOO LDA =XTAPEU Set up LUN 

POO07 0002 
0009 POO08 OFC4 ALS 4 
0010 LOADER Call loader 

0010 POO09 54F4 
0010 POOOA OEOO 
0011 POOOB 6802 STA* XA+1 Save entry point address 

0012 POOOC 1400 XA JMP+ ** Jump to it 

POOOD 0000 P 
0013 POOOE OBOO Nap 

0014 EXIT 
0014 POOOF 54F4 
0014 P0010 OAOO 
0015 ENT XX 
0016 P0011 0022 BSS PT($22) 

0017 END XX 

8-56 

r-'\ ( . 
........... -

C' 

C' 



C) 

o 

() 

8.3.8.2 

The system r e c 0 v e r y package was used to dump some of the program area be
ginning at POOOD in LOADERC. It shows that the new buffer of the loaded program 
exactly overlayed the BSS in LOADERC; then the write request, beginning at 
P0009 in the new program, wrote out the confirming message. 

Use of the system to execute this job is covered in Chapter 9, but the example is 
included here so that it can be studied for later reference (since it a p pi i e s to 
the core and loader requests). 

8-57 

" 



00 
I 

c..n 
00 

F 

[

2F3B 
RE DUMP 2F4B 

2F5B 

rJ 

New program F was 
loaded at 2F3F. 

i 
2F3F 
2F48 OBOO 54F4 
0000 1004 AF47 
1804 

*p 
J 
*L,8 
J 
*SR 
J 

*x 

E * 

RE DUMP 

Buffer PT began here at 2F3F but is now overlayed 
by message buffer. CORE wiped out PT buffer and 
set new lower limit at 2F3F. 

j ANOTHER EXAMPLE Write request at 
entry point of F 

( A " .. 
OAOO 414E 4F54 4845 5220 4558 414D 504C 4520 0008 54F4 OC01 
2F3F 54F4 OAOO 0179 54F4 OD01 0009 0000 1004 FFF3 7FEB 54F4 

" Buffer address in F 

TTY PRINTOUT 

~ 
Unpatched external ENTRY which was not needed so 
ignored. 

L, 02 FAILED 02 

J 

J 

Load F from paper tape reader. There is no *T on 
the end of the tape, hence the message and CU. ACTION 

CU 
ANOTHER EXAMPLE 
ANOTHER EXAMPLE 

RE 
*2F3B 
ERR 

RE 
*D2F3B,2F5B 

RE 

Output from Program F 

RE Dump Request 

(l 

2F51 
OAOO 

f~ 
l, ~ 

00 · C/.:) · 00 · t\j 



8.3.9 

o 8.3.9 INDm Request - No Request Code 

o 

o 

This request can be used by foreground or background programs under MSOS only. 
It is not a separate request but is an indirect version of any other request. 

Any request can be used again without repeating the r e que s t by using the INDIR 
request. 

8.3.9.1 Format of the INDIR Request 

RTJ- ($F4) 

ap 

Only in the INDIR request should bit 15 of the first word of the parameter list be 
set to 1. This tells the s y s t em that the w 0 r d under the RT J- ($F4) is not a 
parameter but is the address of the parameter list to be requested. 

The macro form is: 

INDIR (p) 

p is the address of the parameter list; it must be in parentheses. 

To code the call: 

RTJ
ADC 

($F4) 
(REQ+1) 

(if the desired request parameters begin at REQ+1) 

8. 3. 9. 2 Example of the INDIR Request 

An example of the INDIR reques t would be one in which the r e que s t parameters 
could be stored in a buffer and an indirect request could cause them to be executed. 

The following example stores the buffer address for MESSAGE in the s field of a 
reques t at REQBUF (the number of words in n) and then executes the r e que stat 
REQBUF. 

Note that by using the INDIR request, control returns beneath it after the request 
is initiated. If a jump had been made to REQBUF-1 (if a RTJ- ($F4) were there), 
can t r a I would return under the parameter string at REQBUF. This may not be 
the desired action. 

8-59 



8.3.9.2 

BUF 

REQBUF 

N 
S 

~ 
ALF 

~ 
LDA 
STA* 
ENA 
STA* 
INDIR 

~ 
NUM 
ADC 
NUM 
NUM 
NUM 
NUM 

~ 

*,MESSAGE * 

=XBUF 
S 
4 
N 
(REQBUF) 

$OCOl 
COMPL 
o 
$1004 
o 
o 

FWRITE 

ASCII, TTY 

More e x amp 1 e s of the INDIR reques t appear in the routine CKASSM in the next 
section, 8.4. 

8.4 PROBLEM 

The following program is a routine which can be used to check out the macro assembler. 
Study it car e fu 11 y to see what it does. 

After studying the program as it is written, figure out what would happen if the two SQP 
instructions at P0007 and POOOD were SQN instead. 

Comprehension of the CKASSM routine should be considered a "final examination" on re
quests. Any points which are not thoroughly clear to the reader should be restudied 
carefully in the appropriate sections. A very good knowledge of these r e que s t s is re
quired before the student goes on to study Part II of the training manual. 

8-60 



() 
0001 NAM CKASSM 84758702 
0002 'dO DEcK 10 M4'~M'O~ JUNI: 4. 19t>M 
0003 * VERIFICATION TEST FOR A007 MACRO ASSEMBLER 
0004 'dO spEC ID REFER TO 84800300 
0005 * PROGRAMMING SYSTEMS. AID SYSTEMS DIVISION. CDC 
0006 'I} AssEMBLE USING 1700 MACRO ASSEMBLER 
0007 * THIS PROGRAM IS A VERIFICATION FOR THE 
0008 * MACRO ASSEMBLER 
0009 * THIS IS ONE OF A SERIES OF TESTS THAT USES 
0010 * INDIRE.Ct SyStEM REQUEStS ON VARIOUS 
0011 * COMBINATIONS OF (F)READ/(F)WRITE REQUESTS. 
0012 ENT CKASSM 
0013 POOOO OBOO CKASSM NOP 
0014 INDIR (F1+U 
0014 POOOI 54F4 
0014 POO02 SOCS P 
0015 INDIR (W1+1) 
0015 POOO3 S4F4 
0015 POO04 80BC P 
0016 INI INDIR (T1 + 1) 
0016 POO05 54F4 
0016 POOO6 80B8 P 
0017 POO07 0161 SQP 1 
0018 POOO8 18FC JMP* INt 
0019 INOIR (R1+1) 
0019 POO09 s4F4 
0019 POOOA 80AF P 
0020 IN2 INDIR ( '2+ 11 
0020 POOOB 54F4 

0 
0020 POOOC 80AB p 
0021 POOOD 0161 SQP 1 
0022 poooE 18FC JMP'l} IN2 
0023 FWRITE $FC •• BUF,25,B, •• I 
0023 pOOOF 54F4 
0023 P0010 OCOO 
0023 pooll 0000 

POO12 0000 
0023 poo13 OaFC 
0023 POO14 0019 

pOOlS 004A P 
0024 EXIT 
0024 pool6 54F4 
0024 POO17 OAOO 
0025 poOla 4E45 MSG ALF 25.NEXT MESSAGE SHOULD INDICATE VERIF ICAl ION 

POOl9 5854 
poOIA 2040 
P001B 4553 
poolC 5341 
POOID 4745 
poolE 2053 
POOIF 484F 
P0020 554C 
P0021 4420 P002C 4E2-0 
P0022 494E P002D 2020 
P0023 4449 P002E 2020 
P0024 4341 P002F 2020 
P0025 5445 P0030 2020 
P0026 2056 
P0027 4552 
P0028 4946 
P0029 4943 

C) po02A 4154 
P002B 494F 

8-61 



8.4 

0026 P0031 4041 MSGI ALF 25.MACRO ASSEMBLER ON 1700 OK 
(~:~~ P0032 4352 

------------------- -

P0033 4F20 
POO34 4153 
P0035 5345 
POO36 4042 
P0037 4C45 
po03A 5220 
POO39 4F4E 
poo3A 2031 
P0038 3730 
P003C 3020 
P003D 4F48 
P003E 2020 
P003F 2020 
POO4O 2020 
P0041 2020 
POO42 2020 
P0043 2020 
P0044 2020 
P0045 2020 
P0046 2020 
P0047 2020 
POO48 2020 
P0049 2020 

0027 P004A 0060 AZS BOF(96) 
0028 T2 STATUS 5,R1+1 
0028 POUAA 54F4 
0028 POOAB 0600 C 0028 POoAC 0005 
0028 POOAO OOAF P 
0029 Rl FREAD $C2.,BUF.25.B •• ,I 
0029 POOAE 54F4 
0029 POOAF 0800 
0029 POOBO 0000 

POOS1 0000 
0029 POOB2 08C2 
0029 POOS3 0019 

POOB4 004A P 
0030 POOBS 0000 NOM 0.1 

POOB6 0001 
0031 , 1 STAIOS S.Wl+1 
0031 POOB7 54F4 
0031 POOA8 0600 
0031 POOB9 0005 
0031 POOBA OORC P 
0032 WI FWRITE $C2"MSG1.2S,B."I 
0032 POOBS 54F4 
0032 POOBC OCOO 
0032 POOAO 0000 

POOBE 0000 
0032 pOOBF 08C2 
0032 POOCO 0019 

POoCI 0031 P 
0033 POOC2 0000 NUM 0.1 

POOC3 0001 C 
8-62 



o 

C) 

o 

0034 Fl 
-Ulf~POOC4 54F4 
0014 POOCS OCOO 
0034 POOC6 0000 

POOC7 0000 
0034 POOC8 18FC 
0014 POOC9 0019 

POOCA 0018 P 
0035 

J 
*p 
J 
*ASSEM 
OPTIONS LX 
J 
*p 
J 
*L,5 
J 
*X,N 

END CKASSM 

NEXT MESSAGE SHOULD INDICATE VERIFICATION 
MACRO ASSEMBLER ON 1700 OK 
J 

8-63 

8.4 



r "- ' 



o 

o 

o 

--CHAPTE-R IX 

MSOS USE 



c 

c 



c) CHAPTER IX - MSOS Use 

TOPIC PAGE 

9.1 Job Processor 9-1 

9.1.1 Assembling a Program 9-2 

9.1.2 Loading and Executing a Program 9-6 

9.1.3 Other Job Processor Control Statements 9-7 

9.2 Debugging 9-13 

9.2.1 Assembler Errors 9-13 

9.2.2 Device Failure 9-15 

9.2.3 Loading Errors 9-17 

9.2.4 Logic Errors 9-17 

9.2.4. 1 Breakpoint Package 9-18 

9.2.4.2 System Recovery Package 9-24 

o 

C) 



c 



o 

o 

C) 

9.1 

9. 1 JOB PROCESSOR 

The job processor is that part of the operating system which monitors the background. 
It is a system program, and it allows jobs to run in the background when the system does 
not need the CPU or the background core area. Under the control of the job processor 
are the program library and such jobs as assembling, loading, compiling and executing. 

The job processor resides in the system lib r a r y on the mass storage device until it is 
called into execution by a manual interrupt and an * followed by any control statement and 
a carriage return (CR). 

For example: The operator depresses the MI key and types *P. 

MI 

® 
J 

The system will t y p e the MI and J. (In this chapter all messages typed by the operator 
will be circled.) MI indicates that the manual interrupt has been accepted. 

The J will be printed when the job processor has come into core and is ready for a control 
statement. The job processor types its messages on the standard comments device which, 
in most cases, is the teletypewriter. 

Each control s tat em e n t to the job processor must begin with an asterisk and must be 
terminated with a carriage return. The job processor will type a J when it has finished 
doing what it was instructed to do and is ready to a c c e p t another control statement. It 
will also light the BREAK light on the teletype, and the operator must depress the BREAK 
RE LEASE key to turn off the light (and start the motor), then type his statement. If this 
light was not lighted, the system is not waiting for his input. 

If the operator realizes that he has t y p e d the statement incorrectly before he types the 
car ria g e return, he can" erase" it by typing a rub out, line feed, carriage return and 
then proceed. 

JOX, hhhh indicates an error in a control statement to the job processor or a processing 
error in the background program. A sum mar y of the error messages appears in Ap
pendix D. 

The following control statements are available for the operator to use to instruct the job 
processor in running a job. A brief description of their mea n ing is here and they are 
described in detail in the MSOS reference manual. 

9-1 



9.1 

Figure 17. Control Statements Available Under the Job Processor 

Control Statement Meaning 

*p 

* K, Iu, Pu, Lu 

*L,u 

*X,m 

Brings in the loa d e r, initializes for an inde
pendent loading operation. 

Alters standard logical units. Where I is input, 
P is punch and L is the list device. 

Loads a program from logical unit u. 

Executes the program that was loaded. If m is 
blank, the memory map will be printed. 

* <entry point) Loads a program from the program library and 
transfers control to it. 

*Z 

*V 

*U 

*B 

If a job is in process, terminates the job. Fol
lowing a J, terminates job processor. 

Switches to standard input unit for subsequent 
control statements 

Returns control to comments unit for subsequent 
statements. (i. e. , This statement could appear 
on the card reader. ) 

Brings in the breakpoint package. 

*SR Brings in the system recovery package. 

Restores a logical unit u after it has failed. 

Terminates loading from input device. Should 
be last record of object deck being loaded. 

*R,u 

*T 

* Continue execution. 

9.1.1 Assembling a Program 

Once an Assembly Language program has been written and placed in mac h in e 
readable form (punched on a card, typed in USASI font for the OCR or punched on 
paper tape), it may be assembled by bringing in the assembler (*ASSEM(CR)) 
under the job processor's control. The *ASSEM(CR) statement assumes that the 
source deck will be read from the standard input device. For e x amp I e, if the 
standard input device is the card reader, the programmer could place his cards 
in the hopper, de pre s s the clear button and, at the teletypewriter, bring in the 
job processor and assembler in the manner described on the following page. 

9-2 

c: 



u 

0 

o 

Input Cards 

(MON 
(END GO 

ENT GO 
NAM EXAMPL 

Comments Device 

MI 

® 
J 
~ASSEIV0 
J 

9.1.1 

The *p brings in the job processor and the loa d e r to load the assembler. As
sembly will begin immediately and will continue until a MON card or an ill ega 1 
assembly card is encountered. 

In this case an OPT card was not used; the ref 0 r e, a listing will be made, an 
object program will be prepared on the standard output device and the relocatable 
binary pro g ram will be stored on the first scratch sector of the mass storage 
device for i m me d i ate loading and execution. This binary image of the object 
program on mass storage is called "load-and-go" (LGO). 

If an OPT card is used, the operator will have a choice of three results: listing, 
punching an object program and "load-and-go". The computer will type OPTIONS. 

Input Comments Device 

MON J 

END GO ® 
J 

ENT GO ~ASSEM) 
NAM EXAMPL OPTIONS 

OPT 

The operator's response can be: L if he wants a listing; P if he requires an object 
program; and X if he wants the "load-and-go" eXecute option. In the sit u a t ion 
where a programmer is debugging and wants a listing plus the "load-and-go" op
tion to allow an immediate load from the mass storage device, he would type the 

. following: 

® 
J 
~ASSEM) 
OPTIONS@ 
J 

9-3 



9.1.1 

The X, Land P can be in any combination and in any order; e. g., LX or just P. 

If more than one program is assembled in the same run and each has an OPT card, (-" 
the assembler will ask for new options when it assembles each subsequent pro
gram. 

Input. 
MON 

END 
NAM 

OPT 

NAM 
OPT 

Comments 

o 
J 

0ASSEM) 

OPTIONSiL 
OPTIONS XLP 
OPTIONS XP 
J 

Assembling a Program, Illustration 1 

Col. Col. Col. Source 
1 2 3 Program 

0001 NAM EXAMPL 
0002 ENT GO 
0003 POOOO 4558 MESSAG ALF *, EXAMPLE PRINT OUT* 

POO01 414D 
POO02 504C 
POO03 4520 
POO04 5052 
POO05 494E 
POO06 5420 
POO07 4F55 
POO08 5420 

0004 GO FWRITE $FC, Gal, MESSAGE, 9, A, 0, 1, I, 0 
0004 P0009 54F4 
0004 POOOA OC01 
0004 POOOB 0012 P 

POOOC 0000 
0004 POOOD 18FC 
0004 POOOE 0009 

POOOF 0000 P 
0005 EXIT 
0005 POOlO 54F4 
0005 POOl1 OAOO 
0006 POO12 0806 Gal SET Q,A 
0007 END GO 

I OOFF GO 0009P MESSAG OOOOP Gal 0012P 

Column one is the card number, e. g. , the symbol GO is on card four (4). Column 
two, when preceded by a P, is the address of each storage w 0 r d relative to the 
beginning of the program. For example: the EXIT request takes up words 1016 

c 

and 1116· C' 
9-4 



o 

0 

0 

9.1.1 

The complete program occupies 1316 locations (0000-0012). Note th a t the ENT 
card doesn't occupy a location in the program nor does the END card. 

Column 3 shows the assembled code. For e x amp 1 e, the first word of MESSAG 
ass em b 1 e s as 455816 which is the ASCII code for the letters EX. SET Q, A in 

machine language is 080616_ If a letter follows the machine code, for example P, 
the contents of the word is to be modified at load time. In the previous example, 
the word will be modified by the program counter. e. g. , If the program is loaded 
at 10 cat i on 200016 then the contents, afte r loading, of word 000B16 would be 
200016 + 001216 or 201216. 

Everything to the right of Column 3 is a printout of the source deck as it appeared 
on input. 

Assembling a Program, lllustration 2 

Col. Col. Col. Source 

1 2 3 Deck ----
0001 NAM PSEUDO EX 
0002 0010 EQU CAT(16) 
0003 0000 D DAT BUF(50), EX(50) 

0032 D 
0004 0000 C COM TABLE(50) 
0005 POOOO OOOA BSS XX(lO),X, Y, Z 

POOOA 0001 
POOOB 0001 
POOOC 0001 

0006 0032 D ORG EX 
0007 D0032 C400 LDA TABLE 

D0033 0000 C 
0008 D0034 FOFO NUM $FOFO, $FFFF 

D0035 FFFF 
0009 D0036 0000 D ADC BUF 
0010 0000 P ORG XX 
0011 POOOO 5341 ALF *,SAM IS OK* 

POOOI 4D20 
POO02 4953 
POO03 204F 
POO04 4B20 

0012 OOOD P ORG* 
0013 POOOD OBOO NOP 
0014 POOOE OBOO NOP 
0015 POOOF 0000 VFD X4/CAT 
0016 P0010 OBOO QQ NOP 
0017 POOll OBOO NOP 
0018 EXIT 
0018 POO12 54F4 
0018 POO13 OAOO 
0019 ENT QQ 

0020 END QQ 

9-5 



9.1.1 

In this example a D appears in column two - specifying the DATA area of storage. C: 
Thus, location 0032 of the DATA area will contain C40016 when loaded. 

The D and C following the machine instructions in column three indicate that these 
instructions will be modified by either the DA TA counter or the COMMON counter. 
AnXappearing in this position indicates an address eXternal to the program. The 
COMMON and DATA counters are used by the loader when it is loading into these 
core areas. 

9. 1.2 Loading and Executing a Program 

The general form for the -loa d statement is * L, u(CR). The u is for the logical 
unit of device from which the object deck is to be loaded. The program is loaded 
immediately but is not placed into execution until the *X(CR) statement is given. 
If a "load-and-go" option was chosen at assembly time, we could load and execute 
the program in the following manner (given that the scratch unit is logical unit 8): 

Input 

MaN 

END GO 

OPT 

Comments· 
Device 

J 

® 
J 

0ASSEM) 
OPTIONS (XLIV 
J o 
J 

C'L,8) 
J 

o 
EXAMPLE PRINT 
J 

Notes 

Execute the Program 
Output from the program 

The following is printed on the standard list de vic e as a result of the *L, 8 (CR) 
(program .name and address where loaded): 

List Device 

EXAMPL 24EO 

and as a result of the *X 

List Device 

ENTRY POINT TABLE (MAP) 

GO 24E9 

9-6 

c 



o 

o 

9.1.2 

Note that it was necessary to call in the loader with a *p control statement before 
asking the loader to load with the * L statement. After the loader loaded the pro
gram, the printout EXAMPL 24EO ind ic ate d that the absolute beginning core 
address where the program was loaded was $24EO. 

If one has an object deck to be loaded from another device (other than the scratch 
LGO device), the same sequence would take place but this time the other logical 
unit would be used. This would be, for example, an object tape made earlier 
being loaded. An *T (CR) must follow the last program to be loaded. 

There are two forms to the *X(CR) statement. If a nonblank character is used 
after the X (i. e., X, N(CR», the me m 0 r y map (Entry Point Table) will not be 
printed. 

*T 

OBJECT DECK 

Comments 
Device 

J 
@ 
J03, *A 
J 

® 
J 

~L,0 

List Device 

J EXAMPL 24EO 
~x,N) 
EXAMPLE PRINTOUT 
J 

Note that when an err 0 r on a control statement is made the job processor indi
cates the type of error, 03, that was made and prints out that error. In the above 
example, * A was an illegal control statement. 

9.1.3 Other Job Processor Control Statements 

*K Control Statement 

There are times when the programmer would like to change the various standard 
units. He may prefer that his listing a p pea r on the teletypewriter or be stored 
on another output device to be printed at a later time. The pro g ram mer may 
change any standard device except the comments device by the *K, Iu, Pu, Lu(CR). 
The I is for the input device with the u s tan din g for the logical unit it is to be 
changed to. P is for the punch (or binary output) device and the L stands for the 
list (or print) device. For example, if the programmer wanted to store his re
locatable binary program on magnetic tape (logical unit 5 at his installation), his 
listing to appear on the comments device (logical unit 4), and his source program 
is on another magnetic tape drive (logical unit 6), he could type the following: 

9-7 



9.1.3 

Comments 
Device 

J 
~K, P5, L4, 16) 
J 
*ASSEM 
OPTIONS (xL0 
J 

The parameters P, L, I can be in any order and in any combination. The change 
will be in effect until another *K statement is g i v en or until the system is auto
loaded again. It simply causes the contents of location $F9-$FD to be c han g ed 
in core. 

It is usually a good idea for the programmer to ref e r to standard devices in his 
program rather than directly to specific logical unit numbers. Then he can re
assign the units with the *K control statement if he des ire s. Particularly, for 
example, if he was 0 u t put tin g ans wers on the printer, he could output on the 
standard print device. Then if the printer was down, the output could be changed 
to go on the teletype without changing the program. 

A standard device is also used by the system when a particular function is to take 
place but the logical unit number of the particular device to be used may be dif
ferent for each installation. For example, a message is to be given to the operator 
but whether the teletype is logical unit 4 or 11, or whether the message is to be 
printed on a line printer or upon an a u x iIi a r y teletypewriter depends upon the 
purpose and configuration. The actual device to be used can be de fin e d by the 
logical unit placed in the LOCORE word associated with the standard device. The 
logical units are assigned at installation time but may always be changed by a *K 
control statement. 

*Vand *u 

The *V is used to direct the system to expect further control statements from the 
standard input device. The *U (on the input device) tells the system to switch back 
to the comments device for control statements. 

Input 

Deck 
NAM EXAMPL 

* ASSEM 
*P 

9-8 

Comments 
Device 

J 

EV 
J 

(' 
\ 
'--_.' 



o 

o 

9.1.3 

These allow the programmer to put his control statements in the card deck rather 
than type them on the teletype. 

*<Entry Point Name) 

When apr 0 g ram has been placed on the program library either during system 
initialization or through. LIBEDT it may be loaded into the system and brought into 
immediate execution by an *~ntry point name)(CR). The assembler and 
FORTRAN compiler work in this manner as do user written programs. 

Comments 
Device 

J 

® 
J 

(*PGM) 
J 

Call in PGM 

The following is an example of compiling, loading and executing a program under 
FOR TRAN. The TTY printout is shown. 

9-9 



9.1.3 

1700 MSOS 2.0 COMPILE AND EXECUTE 

Operator must first: STEP - center protect switch - master clear - autoload - run 

PP ... 4t-------- Set Protect Switch 
~ • Manual Interrupt 

MI 
~ "'~I------- Assign Input to Card Reader 

o .... 1-------- Call in Loader 
J 
~ ... 41---=---- Load FORTRAN 

~ONS @ "'~I---------- L list source 

Source 
list 

I I A list assembly 

{

PROGRAM NAME P punch object tape 
2 2 X object on disk 

CONTINUE 
3 3 

END 

0000 0000 NAM NAME} 
0000 1801 NAME JMP*. 00001 

3 0001 5400 .00001 RTJ+ Q8STP 
0002 7FFF 

3 0000 0000 

PROGRAM LENGTH $0003 

EXTERNALS 
Q8STP 

J 
® ... 41-------- Call in Loader 
J 

END 

~ ... 41------- Load object from PTR 
NAME 2066 ~ Loaded at $2066 

L, 02 FAILED 02 ....-- Reader out of tape 
ACTION 
@) ... ----
J 

Continue 

o 

Circled items are 
typed by operator 

Assembly list 

® ..... 1-------- Execute 
PSSTOP 2069 
Q8PAND 20A5 

I ENTRY POINT TABLE-
NAME 2066 Q8STP 2080 
Q8STPN 2087 Q8COMI 208A 

*X" will eliminate MAP } 

Q8PSE 2069 Q8PSEN 206E 

MAP 

MAP 

STOP 
J 

Q8PAND 20A5 

Finished. Run next job beginning with *P. 

9-10 

REL BIN OBJ PT ..-/" 

~, , . 

t~ .. k·J'~ 
r'~: 
I· U (J. 

I 

c 

c 



C) 
9.1.3 

The next example is one in which the control statements were on the input unit. In 
this case the card reader was used so the control statements were on cards with 
the source deck. TTY (comments device) printout and printer (list device) print
out are shown. 

TTY PRINTOUT CONTROL STATEMENTS ON INPUT UNIT 

MI 
*V ..--Typed by operator. "Options" would also be typed by operator. 
E * 4--Typed by operator. 
THIS PROGRAM WORKS ON THE 1700 COMPUTER SYSTEM UNDER MSOS 2.0 

J Program Printout ,/' 
(Formatted ASCII Write) 

Deck Setup: 

Operator must type *K (if needed to assign units), *V to send control to input unit. 

Deck would contain: 

*p 
*ASSEM (or *FTN) 

NAM V'\-- ... 
E~~ 
NAM 

Etn etc. 

MON 

*p 

If OPT used, operator must type options 
LAPX, etc. 

*L,8 ~ 4---- Load from LGO unit (i. e., 8) 
*X, , 

~ 40--- If missing subroutines, operator must type *CR 
*U To return control to TTY 

9-11 



9.1.3 

Printer Output 
Control Statements on Input Device 

P 4-*P 

ASSEM..- *ASSEM 

Deck 

0001 NAM CARD TO PRINT 
0002 ENT START, PRINT 
0003 (EXT IOERR ) 
0004 OOEA EQU ADISP($EA) 
0005 POOOO 0000 START 0 0 
0006 POO01 54F4 RTJ- ($F4) 
0007 POO02 0201 NUM $0201 READ, CP=l 
0008 POO03 0009 P ADC COMPRD 
0009 POO04 0000 NUM 0, $100C THREAD, LUN CR=12, ASCII 

POO05 100C 
0010 POO06 0028 NUM 40 ONE CARD TO READ 
0011 POO07 001F P ADC BUF FWA BUFFER AREA 
0012 POO08 14EA JMP- (ADISP) 
0013 P0009 0162 COMPRD SQP SCHPRT 
0014 POOOA 5400 X RTJ IOERR 

POOOB 7FFF X 
0015 POOOC 54F4 SCHPRT RTJ- ($F4) 
0016 POOOD 1200 NUM $1200 
0017 POOOE 0011 P ADC PRINT C 0018 POOOF 54F4 RTJ- ($F4) 
0019 P0010 OAOO NUM $AOO EXIT REQUEST 
0020 P0011 54F4 PRINT RTJ- ($F4) 
0021 POO12' OC01 NUM $OC01 PRINT, CP=l 
0022 POO13 001A P ADC COMPPR COMPLETION ADDRESS 
0023 POO14 0000 NUM ,0, $1009, 35 

POO15 1009 
POO16 0023 

0024 POO17 001F P ADC BUF FWA BUFFER 
0025 POO18 54F4 RTJ- ($F4) 
0026 POO19 OAOO NUM $AOO 
0027 P001A 0162 COMPPR SQP FIN! 
0028 P001B 5400 X RTJ IOERR 

P001C OOOB X 
0029 P001D 54F4 FIN! RTJ- ($F4) 
0030 POOlE OAOO NUM $OAOO EXIT WHEN THRU 
0031 P001F 0028 BUF BSS BUF(40) 
0032 END START 

OOFF START OOOOP PRINT 0011P ADISP OOEA COMPRD 0009P 
SCHPRT OOOCP COMPPR 001AP FIN! 001DP BUF 001FP IOERR 001CX 

P .. *p 

L,8 III *L 
CARD 2210 ~Loaded at $2210 

X" III Execute 
E10 
IOERR III Missing subroutine (", 

U 

9-12 



9.2 

o 9.2 DEBUGGING 

o 

After apr 0 g ram has been written, the programmer will want to run it to determine if 
the coding meets the specifications that he meant them to satisfy. There are basically 
two types of errors that may have been made: those of format and those of logic. The 
assembler and loa d e r detect most of the format errors and notify the programmer via 
diagnostics. 

Two software packages are provided to help the programmer detect errors of logic: the 
breakpoint package and the system recovery package. 

9.2.1 Assembler Errors 

If an error is made in the general format of the program the assembler may detect 
it in either of the first two passes or in the third. If an error is detected during 
the first two passes, the diagnostic will appear before the NAM card on the listing; 
otherwise, the diagnostic will be within the body of the program. If at assembly 
time the L option was chosen, the diagnostics will appear on the list device; other
wise, the diagnostics will appear on the comments device. 

When the error is detected during the first or second pass of the assembler, the 
diagnostic will take the following form: 

Column 

1 

2-5 

6-7 

8-9 

10-19 

Contents 

* 

4-digit card number 

** 

2-character error code 

********** 

In the following example a symbol to be used in an IF A pseudo-instruction must 
be defined before it is used. Therefore, the assembler prints the qiagnostic UD, 
meaning undefined. The 0004 indicates the error occurred in card #4. 

9-13 



9.2.1 

LIST DEVICE 

*0004* *UD**** *** ** * 
*0004**UD********** 

0001 NAM VARIABLE ASSEMBLY 
0002 POOOO 5448 ALF *, THIS WILL ALWAYS ASSEBLE* 

POO01 4953 
POO02 2057 
POO03 494C 
POO04 4C20 
POO05 414C 
POO06 5741 
POO07 5953 
POO08 2041 
POO09 5353 
POOOA 4542 
POOOB 4C45 

0003 POOOC OBOO NOP 
*******PP********** 
0004 
0005 

XX IFA DOG, GT, CAT 
ZZ ALF *,SOMETIMES ASSEMBLES DEPENDING UPON CAT* 

When an err 0 r is discovered in the third pass of the assembler, the assembler 
will print the message immediately before the line with the error in the following 
form: 

******op********** 
******UD********** 
0006 P0006 0000 SHIFT TWO 

The PP in the first example says the error in that card was identified in the pre
vious pass. 

The next example shows the RL error messages for attempted illegal relocation 
outside the program area (relative). It also shows the EX message for the illegal 
expression in the address field of the VFD. 

9-14 

C 



0 

0 

9.2.2 

9.2.1 

LIST DEVICE 

0001 NAM PSEUDO EX 
0002 0010 EQU CAT(16) 
0003 0000 D DAT BUF (50), EX(50) 

0032 D 
0004 0000 C COM TABLE (50) 
0005 POOOO OOOA BSS XX(10) , X, Y, Z 

POOOA 0001 
POOOB 0001 
POOOC 0001 

0006 0032 D ORG EX 
0007 D0032 C400 LDA TABLE 

D0033 0000 C 
0008 D0034 FOFO NUM $FOFO, $FFFF 

D0035 FFFF 
0009 D0036 0000 D ADC BUF 
0010 0000 P ORG XX 
0011 POOOO 5341 ALF *, SAM IS OK* 

POOOI 4D20 
POO02 4953 
POO03 204F 
POO04 4B20 

0012 0000 P ORG* 
0013 POOOD OBOO NOP 
0014 POOOE OBOO NOP 
*************RL*************** 
0015 POOOF 0000 ADDRESS ADC* BUF, EX, X, Y, Z, ADDRESS 
*************RL*************** 

POOIO 0032 
POOl1 FFF8 
POOl2 FFF8 
POOl3 FFF8 
POOl4 FFFA 

*************EX*************** I I ,I 
0016 POO15 5800 BYTE VFD A8/X,B3/7,B2/1,B8/$FF 

Device Failure 

If while working with the 1700 System there is a device failure, the ope rat in g 
system will print the following: 

L, nn Failed ee 
ACTION 

The nn specifies the logical unit that failed and the ee an error code indicating why 

it failed. 

9-15 



9.2.2 

Error Code Meaning 

00 Input/ output hangup (diagnostic timer) 

01 Reject (internal or external) 

02 Alarm 

03 Parity error 

04 Checksum error 

05 Internal reject 

06 External reject 

For special errors for each device see the manual for its driver. 

The operator may respond in one of the following ways: 

RP 

CU 

DU 

CD 

DD 

Repeat the request. This assumes the 
operator has corrected the condition and 
wan t s to complete the operation. The 
operator may have forgotten to ready the 
device. Upon receiving a device failure 
message, he depresses the ready button, 
types RP and goes on as normal. 

In d i cat e s the error has not been cor
rected but the operator would like to con
tinue operating. The program is notified 
of the error. 

The device is marked down for this re
quest and all future ones. This allows 
the operator to get back to the job pro
cessor and take the necessary steps to 
us e another device for his program. 

The same as CU but, also, suspends job 
processing. 

The same as DU but, also, suspends job 
processing. 

In the example on the following page the load was from the paper tape reader. The 
paper tape was read past its end, as the r e was no * T(CR) on the end of the tape. 
The CU signalled the loader to continue as all the tapes had been read. 

9-16 

C 

c 



CJ 

o 

o 

J 
*L,2 
L, 02 FAILED 02 
ACTION 
CU 
J 

9.2.2 

If it had been desired to load another tape, the operator w 0 u 1 d have put it in the 
reader and typed RP instead. 

o 
J 

eASSEM) 
L,02 FAILED 02 
ACTION 
@) 
J 

0K, L11, 113) 
J o 
J 

~ASSEIV0 
OPTIONS@ 
J 

In this case the operator did not want to assemble from the standard de vic e but 
forgot to change the logical unit before the *ASSEM statement. By marking the 
device down he got back to the job processor to change devices and continue. 

9. 2. 3 Loading Errors 

At the time of loading the loader may detect those types of errors that can only be 
detected at load time, such as undefined externals, DATA or COMMON declared 
larger by a sec 0 n d or third program than by the initiating program. The diag
nostics appear on the list device preceded by an E. 

9.2.4 Logic Errors (Detected During Execution) 

There are several standard software packages to help a programmer detect errors 
of logic. The Breakpoint Package and Sys tern Recovery Package aid in debugging 
programs in the background. UTOPIA and the On-line Debug Package are for de
bugging in the foreground in the real-time en vir 0 n men t. In this chapter the 
breakpoint package and system recovery package will be discussed. 

9-17 



9.2.4 

The breakpoint package allows the programmer to do such things as run his pro- C:, 
gram under d iff ere n t sets of trial data, divide his program into segments and 
execute only portions of his program at a time or check intermediate results as 
he goes along. The recovery package only functions after the program has aborted 
or finished normally. The programmer then can dump core or mass storage to 
determine the final state of his program and data. 

There are several reasons for using a debug package as compared to console de
bug gin g. One of the most important on the 1700 is that one can debug while the 
machine is being shared with other programs. It is also easier as several con
versions are made for the programmer and the programmer has a hard copy of 
his statements and results. 

9. 2.4. 1 The Breakpoint Package 

The breakpoint package must be b r 0 u gh t in by an *B sometime after an *p and 
before the program is put into execution. However, the breakpoint control state
ments are not used until after the *Xstatement. All numerics in the breakpoint 
package are in hexadecimal and 'all addresses are a b sol ute core addresses not 
program addresses. A BP message from the computer indicates that the break
point package is in operation and expects a control statement. 

The *B control statement actually causes a flag to be set in the job processor so 
that after the *x control statement is typed the breakpoint package is brought into C 
core and con t r 0 1 is transferred to it. Therefore, the core area the breakpoint _" 
package runs in is physically the core area immediately above the area occupied 
by the background program. 

9-18 



u 

o 

Figure 18. Control Statements Available to Breakpoint Package 

Control Statement 

*Ahhhh(CR) 

*C(CR) 

*Daaaa
1

, aaaa
2 

(CR) 

*Eaaaa, hhhh, •••• (CR) 

*llihhh(CR) 

*Jaaaa(CR) 

*Ms1, w1, s2, w2, n(CR) 

*P(CR) 

*Qhhhh(CR) 

*Raaaa(CR) 

*Saaaa, aaaa, •••• (CR) 

* Taaaa, aaaa, •••• (CR) 

*T(CR) 

*Z(CR) 

For example: 

Comments Device 

® 
J 
~ASSEM) 
OPTIONS@ 
J 

0'K,L4) 
J 

® 
J 

QS=8) 

J 
@) 
J 

® 
J 

o 

E8 

PSEUDO 
PSEUDO 

QQ 
CLASSP 

2544 

Brief Description 

En t e r register A with the hexadecimal 
number indicated by the hhhh. 

Con tin u e execution aft e r breakpoint 
reached 

Dump locations fro m hexadecimal ad
dress aaaal through aaaa2. 

Enter locations in core from hexadeci
mal address aaaa with data hhhh, hhhh, •••• 

Enter Index I with the hexadecimal num
ber hhhh. 

Jump, that is transfer con t r 0 1, to the 
address given by the aaaa. 

Dump data from the mass storage device 
beginning with the sector and word, sl, 
w1 through the sector and word indicated 
by s2, w2. Logical unit n. 

Print the contents of A, Q, I, P and M. 

Enter the Q register with the hexadecimal 
number given by hhhh. 

Transfer control to and set a breakpoint 
at location aaaa. 

Set breakpoints at locations indicated by 
the aaaa's. Maximum of 15 set at one 
time. 

Terminate breakpoints at the locations 
specified by the aaaa's. 

Terminate all breakpoints that have been 
set. 

Terminates the breakpoint package. 

255D> 

Note error and overlay 
255D 

1 ENTRY POINT TABLE-

BP 

***COM 7FCD 
***DAT 24EO 
QQ 2559 START 2587 

9-19 

9.2.4.1 



9.2.4.1 

At this point the programmer can enter anyone of the available breakpoint state
ments. 

The programmer may want to break his programs into portions and execute them 
s epa rat ely. An Saaaa, aaaa, •••• CR sets a stop or breakpoint at the addresses 
,aaaa, so that during execution when the program reaches this point the program 
will halt and control will return to the keyboard. The breakpoint program will at 
that time print the message BP, aaaa indicating that the breakpoint at the address 
aaaa has been reached and the breakpoint program expects another control state
ment. 

For example, in the program EXAMPL listed as illustration 1 under Section 9. 1. 1 
perhaps the programmer would like to execute his program thru the EXIT on card 
5, pro g ram location 12. He would probably take the TTY listing which has the 
address of the first location of his program (24EO). He would then add the pro
gram relocatable address of the instruction where he wants the breakpoint to the 
first location. He would set the breakpoint one instruction after the last instruc
tion that he wants executed. For example: 

Comments Device 

J 

® 
J 

0L,8) 
EXAMPL 24EO 

J 

® 
J 

@ 
J o 
1 ENTRY POINT TABLE-

GO 24E9 
BP 

0 S24F2) 
BP 

0D24EO, 24F2) 

Notes 

24E 0 machine addres s of program 
+ 12 instruction in program 
24F2 actual address 

24EO 4558 414D 504C 4520 5052 494E 5420 4F55 5420 54F4 
24EA OCOI 24F2 0000 18FC 0009 24EO 54F4 OAOO 54F3 

BP 
0J24E9) 
EXAMPLE PRINT OUT 
BP, 24F2 

9-20 



u 

o 

o 

9.2.4.1 

The *S24F2 sets a breakpoint at 24F2. The D24EO, 24F2 dump s that core area. 
The J24E9 jump s to location 24E9 (P0009) and executes the write. The program 
stops at 24F2 before executing the SE T A, Q instruction. 

One can set a maximum of 15 breakpoints with one *Saaaa(CR). However, many 
more than that can actually be set at anyone time. A breakpoint at a location is 
actually a RTJ to the breakpoint package inserted in place of the actual code. The 
actual code is kept by the breakpoint pac k age to be executed and to be returned 
when the breakpoint is removed. Therefore, s eve r a 1 considerations should be 
made when setting a breakpoint. A breakpoint should not be set at a non-executable 
instruction such as a data word because the program would never get to that word 
to ex e cut e the R TJ, and therefore would not stop at that breakpoint. Also, the 
breakpoint should not be set at the second word of a two-word instruction because 
when that instruction is put into execution the R T J would then be interpreted as an 
address rather than executed as a jump to the breakpoint package. The breakpoint 
should not be placed at a location that will be modified or changed during execution. 
For example, a breakpoint should not be set at an instruction whose address is to 
be modified or the first word of a subroutine whose en tr y is via a RTJ for then 
again the R T J to the breakpoint package would be modified or destroyed and the 
result would be unpredictable. 

A breakpoint should never be set on anR TJ instruction because the actual instruc
tion is executed in the breakpoint program itself. H enc e, the actual program's 
RTJ would take the wrong address with it. 

If a breakpoint is to be cleared, the * Taaaa, aaaa(CR) statement is used. If all the 
breakpoints that have been set are to be cleared, the *T(CR) statement is used but 
none of the addresses are speCified. 

The contents of the registers are printed out with the *P(CR) statement. 

BP 

® 
REG. A=18FD Q=18CD 1=0814 M=9000 P=54FF 

BP 

One can enter each of the registers except M by indicating the register and typing 
the hexadecimal number that is to be entered. 

BP 
~AFOFO) 
BP 

01FFFF) 
BP 
~Q1234) 
BP 

® 
REG. A=FOFO 

BP 
Q=1234 1=FFFF M=9000 P=54FF 

9-21 



9.2.4.1 

The contents of core can be dumped by the *Daaaa, aaaa statement. The first aaaa C~' 
s p e c if i e s the first location the programmer wants to print and the second aaaa 
specifies the last. 

BP 
*S24F2 
BP 
~D24EO, 24F2) 

24EO 4558 414D 504C 4520 5052 494E 5420 4F55 5420 54F4 
24EA OCOI 24F2 0000 18FC 0009 24EO 54F4 OAOO 54F3 

BP 

The output from the *P(CR) statement is on the standard list device. In this ex
ample the list devic~ has been made the same as the comments device with an *K 
statement. This example is a dump of the program listed as Illustration 1. Note 
that the last location printed out (54F3) has been set as a breakpoint. 

If only one location is wanted, specify the single address. 

BP 
~D24EO) 

24EO 
BP 

4558 

If one wants to enter a 1 0 cat ion in core an *Eaaaa, hhhh, hhhh, •••• (CR) is used. 
The aaaa specifies the first address to be entered and the following hexadecimal 
numbers to be placed in each sequential location. 

BP 
~E2557 , FFFF ,0000, FFFF) 
BP 
~D2557 , 2550 

2557 FFFF 0000 FFFF 
BP 
~EAAXx) 
BOl, *EAAXX Note the error message 
BP 
*E2557, AAAA, BBBB, CCCC 
BP 
~D2557 , 255~ 

2557 AAAA BBBB CCCC 
BP 

9-22 

c 



o 

o 

() 
',--./ 

9.2.4.1 

If a location is to be skipped, i. e., not en t ere d with data, skip that location by 
typ ing two commas in a row. This indicates that the location is to be left unaf
fected. If a location is to be filled with zeros, the zeros must be specified. 

When a programmer would like to begin execution of a sequence of programming 
out of the normal sequence, he may use'the jump s tat e men t, *Jaaaa(CR) to the 
instruction to be executed. Execution begins immediately after the *Jaaaa state
ment. The aaaa is the address of the first instruction to be executed. 

J 
~K, L4) 
J 

® 
J 

~L,~ 
EXAMPL 24EO 

J 

® 
J 
@ 
J o 
1 ENTRY POINT TABLE-

GO 24E9 
BP 
~S24FD 
BP 
~D24EO, 24F2) 

24EO 4558 414D 504C 4520 5052 494E 
24EA OC01 24F2 0000 18FC 0009 24EO 

BP 
~J24E9) 
EXAMPLE PRINT OUT 
BP,24F2 

5420 4F55 5420 54F4 
54F4 OAOO 54F3 

The *J24E9 caused the jump to P0009 to execute the write. 

The return jump *Raaaa is used when an iterative loop is b e in g checked out and 
the programmer would like a stop at each execution of the loop. 

The con ten ts of words on the mass s tor age device may be dumped using the 
*Ms1, w1, s2, w2, nCR where: 

sl 
w1 
s2 
w2 
n 

is the beginning sector number 
is the beginning word to be dumped of that sector 
is the last sector to be dumped 
is the last word of that sector to be dumped 
is the logical unit of the disk 

9-23 



9.2.4.1 

There are several combinations that one can use. If, while working in the back
ground, the scratch unit is wanted, the n may be omitted and the scratch unit is 
assumed. If complete sectors are wanted, the word specification can be omitted 
and the complete sector will print, If one wanted to examine a file that has been 
stored on sector 24 of the disk, he could do the following: 

*M24(CR) 

The programmer may begin in the mid dIe of a sector and dump the rest of the 
sector by specifying the first sector and first word but omitting the second sector 
and word. 

If the first complete sector of scratch is wanted, type 

*M(CR) 

Examples of the *M statement are under the system recovery section as the system 
recovery's *M works exactly the same as the breakpoint's. 

If at any time the program is to be terminated, a MI and an * Z (CR) will do so. An 
example of *z being used to terminate a job is in the first program in the system 
recovery section. 

If an error is made while using the breakpoint package, the breakpoint pac k age 
will p r in t a message beginning with a B. The possible error statements are as 
follows: 

B01, statement 

B02,hhhh 

B03,hhhh 

B04 

Statement or parameters are unintelli
gible for the breakpoint program. 

hhhh16 cannot be processed by b rea k
point program because it is protected. 

Breakpoint lim it exceeded •. hhhh16 is 
the last breakpoint processed. 

Previous *E statement requested entries 
in protected core. Entries are not pro
c e sse d; breakpoint program waits for 
new statement. 

9. 2.4. 2 System Recovery Package 

The system recovery package is called in with an *SR(CR) before the program is 
executed just as the breakpoint was. However, the system recovery package does 
not function and does not accept con t r 0 I statements until after the program has 
finished normally or aborts. A RE message indicates that Recovery is in and is 
ready to receive a statement. 

9-24 

c 



o 

o 

9.2.4.2 

Figure 19. Control Statements Available to the System Recovery Package 

Control Statements 

*Daaaa1' aaaa2(CR) 

*Ms1, wI, s2, w2, n(CR) 

*T(CR) 

*n(CR) 

Brief Description 

Dump locations of core beginning with hexadeci
mal address aaaal and ending with hexadecimal 
addres s aaaa2• 

Dump mass storage unitnfrom sector and word 
sl, wI to sector and word s2, w2. 

Terminate the system recovery package and re
turn to the job processor. 

Change the list device for dumping contents of 
core or mass storage. 

The statements for dumping core and mass storage are the same as for the break
point. The output is on the standard list device. 

An *T(CR) terminates the system recovery package. 

J 

® 
J 
EL,8) 

EXAMPL 24EO 
J 

o :======@ 
J 
@ 
1 ENTRY POINT TABLE-

GO 24E9 
BP 
~J24E9) 
EXAMPLE PRINT OUT 
BP, 24F2 
EE24ED, 18F~ 
MI ... '4_-------
ED 
RE 
~D24EO,24F0 

Note that breakpoint and recovery flags may be 
set 

The operator presses the manual interrupt 
but ton on the typewriter here if he desires to 
terminate job execution and enter the Recovery 
package 

24EO 4558 414D 
24EA OC01 24F2 

RE 

5048 4520 5052 494E 5420 4F55 5420 54F4 
0000 18FB 0009 24EO 54F4 OAOO 54F3 

The *D above dumps core from 24EO through 24F2, after the program has executed. 

9-25 



9.2.4.2 

BP 
(~ 

1'--..,-

<§E9) 
EXAMPLE PRINT OUT 
RE 

® 
RE 

QM,15,,12) 
ERR Note: ERROR Occurred because word 1 is larger than word 2. 

RE 
0M,15) 

SECTOR NUMBER 0000 
0015 5800 OD03 0302 1803 OBOO 18FO 5806 OD04 03FB 5803 
001F 0400 1401 0000 0844 E80D OBOO 02FE A30B B80B 0104 
0029 OFOA 012,1 18DF 18F5 C8EO 1CF2 0000 0181 0039 0019 
0033 OBOO 0000 0000 0000 0000 0000 0000 0000 0000 0000 

** 
RE 

0D2137) 
2137 C80D 

RE 
~D24EO, 255~ 

24EO 0001 0163 OAOO 0001 0002 0003 0004 0005 0006 0007 
24EA 0008 0009 OOOA OOOB OOOC OOOD OOOE OOOF 0010 0000 
24F4 0000 FFFE FFFA FFFC FFFB FFFA FFF9 FFFF 5443 4520 

C 24FE 534D 414C 4045 5354 '204E 4F2E 2049 5320 4154 204C 
2508 4F43 2E20 0000 24E3 68D5 0842 481D OC17 5825 54F4 
2512 OD01 0008 0000 18FC 001E 7FEA 54F4 OAOO 54F4 OD01 
251C 0008 0000 08FC 0001 255E 54F4 OAOO 54F4 OD01 0008 
2526 0000 18FE OOOA 0031 0000 OBOO 0000 2560 68B3 OC09 
2530 5805 0000 18FD 68F7 18DC OBOO CCAB 68A8 68A8 D8A8 
253A ODFE 0161 1CF8 90A4 OIA7 0138 CCA1 689E C800 FF9E 
2544 681A 18F3 0131 18F8 CC99 9897 01A6 012A CC95 6893 
254E C893 6810 18E8 0131 18E6 18F8 5448 4520 534D 414C 
2558 4045 

RE 
~M,124,25,124) 

SECTOR NUMBER 0000 
0124 0814 

SECTOR NUMBER 0001 
0001 5803 404F 4144 FFFF 6804 4804 1800 0003 FFFF FFFF 
OOOB 5800 OODO 0000 0000 0000 0000 0000 0000 0000 0000 
0015 0000 0000 0000 0000 5000 0000 0000 0000 0000 0000 
001F 2020 0000 0000 0000 0000 0000 0000 0000 0000 0000 

** 
SECTOR NUMBER 0002 

0001 0000 0000 0000 0000 0000 0000 0000 0000 2020 2020 
OOOB 2020 0000 0000 0000 0000 1400 FFFF FFFF FFFF FFFF 

** 
RE 

® Note: ** implies that the 0000 or FFFF continues for the rest of the sector. (-" 
J ....... _. 

9-26 



o 

o 

9.2.4.2 

In the previous example the *4 reassigns output to lun4, the TTY. The *M, 15 im
plies sector ° of s c rat c h from W 0 r d 15 on. *D2137 dumps 1 0 cat ion 2137. 
*D24EO, 2558 dumps those locations, inclusive. *M, 124,25,124 dump s several 
consecutive sectors. 

9-27 





PART II 

I '" 
\' ...... " 

( ,-. 





CHAPTER X 

CONFIGURING A SYSTEM 





CHAPTER X - Configuring a System 
.-. 

r Vi TOPIC PAGE 

10.1 Central Processor 10-1 

10.1.1 Low Speed I/O Package 10-1 

10.2 1705 Interrupt Data Channel 10-2 

10.3 Buffered Controllers 10-2 

10.4 1706 Buffered Data Channel 10-3 

10.5 Unbuffered Controllers 10-3 

10.6 160-A Peripherals 10-5 

10.7 1500 Equipment 10-5 

10.8 Priorities for DSA Bus 10-5 

10.9 Summary, Configuring Equipment 10-6 

10.10 Related Manuals 10-6 

I~ 
L.J 



c 



u 

o 

10.1 

CONFIGURING A SYSTEM 

The content of this chapter will be devoted to the 1700 and its peripherals as a total system. 
It is designed to assist the presales analyst in configuring a system by considering the inter
relationship of the various pieces of hardware. Each has its own characteristics which must 
relate to and interface with the total hardware configuration. 

Figure 20 is a diagram of m 0 s t of the s tan dar d hardware and it should be consulted as a 
reference from the text in this chapter. Figure 21 also contains the hardware and it includes 
the new hardware. 

10.1 CENTRAL PROCESSOR 

The basic 1704 computer consists of the centralprocessor, arithmetic unit, 4K memory 
and A/Q channel access to the low-speed I/O package via the slow-channel synchronizer, 
equipment number 1. 

Memory modules maybe added in 4K (1708) increments to a maximum of 32K. The 1709 
(8K mod u I e) is available only on a used basis. A new hardware addition has recently 
been made to the product line to allow an increase of memory size to 65K. 

Two interrupt lines are included: line 0 for internal interrupts and line 1 for the slow
channel synchronizer. 

10.1.1 Low Speed I/O Package 

The low-speed package consists of: 

• teletypewriter 

1711 - keyboard entry and printer only, 100 characters per second 

1712*- keyboard & printer, 100 cps, with offline mechanical paper tape 
reader and punch 

1713 - keyboard, printer, on-line mechanical paper tape reader and punch, 
100 cps 

• paper tape reader 

1721 - 400 cps reader, electronic 

1722 - same reader, with added take-up and supply reels 

• paper tape punch 

1723 - 120 cps punch 

1724 - same punch, with added take-up and supply reels 

• card reader 

1729*- 100 card-per-minute reader, replaced by 1729-2 which connects to 1705 

*Only available used on an as-available basis. 

10-1 



10.1.1 

C.' ... These are the stan dar d peripherals connected to line 1; other peripherals must . 
normally be connected through a 1705. Some exis ting con fig u rat ion s do have 
s p e cia 1 peripherals other than those above on line 1, but this is on a QSE basis 
and each case must be considered individually. 

10.2 1705 INTERRUPT DATA CHANNEL 

Any system which will require more than the two basic interrupts or the peripherals in 
the low-speed r/o package will need a 1705. The addition of the 1705 will add the fol
lowing capabilities to the system: 

a) addition of 14 more interrupt lines for external equipment 

b) addition of up to eight controllers to the A/Q channel 

c) addition of direct memory access for up to eight buffered controllers 

See note A, Figure 20, for additional explanation of line connections. 

Input/ Output for the additional eight controllers would be unbuffered if they are connected 
to the A/Q channel only. I/O will be buffered if they are connected to the A/Q channel 
and the DSA bus and are either capable of doing direct memory acces s on their own or 
are connected through a 1706 or 1716. 

10.3 BUFFERED CONTROLLERS 

Three controllers are capable of performing data transfers directly between computer 
memory and the attached peripheral device: 

1738 disk controller - controls one or two 853 (1. 5-million-word) or 854 (3. O-million
word) disks, 

1751 drum controller - controls drum; size from 65K to 524K words, 

1748 master communications terminal controller - controls up to 64 rem 0 t e com
munications sets (through 8136's) or up to four 302 communications expansion modules. 

The buffered controllers are connected to the A/Q channel (for transfer of control infor
mation) and the DSA bus (for transfer of data). Any program which is running and using 
the CPU continues to run while the controller is handling the data transfer, s inc e the 
A and Q registers are not used during the data transfer. 

Direct memory transfer is done on a cycle- stealing bas is; that is, the controller steals 
a me m 0 r y cycle every time it wishes to transfer a word (through the Z register). In 
order to calculate how much each buffered controller will slow down the CPU (and, there
fore, a running program), a percentage could be figured based on the transfer rate of 
the peripheral. For example, the 1738 is capable of transferring one word every 12.8 ).Is 
so it will steal approximately every 12th cycle and can therefore slow down a program 
by up to 9% when the disk is run n in g. The program would only be slowed down if the 
CPU and the 1738 both wanted to access memory at the same time. 

10-2 

c 



10.4 

o 10.4 1706 BUFFERED DATA CHANNEL 

o 

o 

The 1706 allows direct memory access for unbuffered controllers. It is for any of the 
controllers thatare not capable of doing buffered data transfers. (That is, any except the 
1738, 1751 and 1748.) The 1706 is connected between the 1705 (DSA and A/Q channels) 
and the peripheral controller. 

Only three 1706's are allowed in any system; this is a software limitation rather than a 
hardware limitation. The 1716 is exactly like a 1706 except it is accessible by two 
c ompu te r s. See note C of Figure 20. The 1706 may control up to eight controllers. 
However, when deciding which peripherals should go on the 1706, it is very important to 
note that it is logically busy the entire time it is handling a buffer t ran s fer for a pe
ripheral. During that time it cannot be accessed to do any operation or take status on; 
any other peripheral connected to it. Therefore, the timing on the peripherals must be I 
considered so that data will not be lost on one while the 1706 is working on another. 

As a rule, a 1706 would not be purchased to handle relatively slow peripherals (i. e. , the 
1742 line printer or 430 card reader/punch). These peripherals can very effectively be 
operated in interrupt mode as they will interrupt the CPU infrequently to perform their 
I/O. The 1706 would more effectively be used and needed to handle fast peripherals 
(such as magnetic tapes or the 405 card reader). For example, a 1732/608 magnetic 
tape can transfer one f ram e of data every 32 )lS. Since MSOS can lock out interrupts 
for up to 50 }.lS at one time, data could be lost on the tapes if they were not conriected to 
a 1706. 

Software for controllers operated in the buffered mode through the 1706 should be con
sidered on an individual basis in the light of new software releases. 

10.5 UNBUFFERED CONTROLLERS 

The standard controllers which could be operated in the unbuffered mode t h r 0 ugh the 
1705 to the A/Q channel are as follows. Most are shown in Figure 20. The newer ones 
are in Figure 21. 

• 1726/405 Card Reader - 1200 cpm reader. 405 can also be connected through 1750 
via a 177 controller. Shown on Figure 21. 

o 1728/430 Card Reader/Punch - 500 cards per minute read; 100 cards per minute 
punch, (column punch). Reader canbe purchased separately as a 1729-2, 330-cpm. 
Punch can be purchased separately as a 420A, 100 cpm. 

• 1729-2 Card Reader - this is the replacement for the 1729 and it reads 330 cpm. 
Not shown on Figures. 

• 1731/601 Magnetic Tapes - this is the 1x8 controller for 601 magnetic tapes (200, 
556 bpi). They do not have assembly/disassembly mode. They have been updated 
by the newer 1732/608-609 tapes, and are now available only on a used basis./ 

10-3 



10.5 

• 1732/608-609 Magnetic Tapes - the new controller, featuring assembly/disassembly 
option, which replaces the 1731. One controller can handle up to eight tape units; C~' 
608's or 609's or a combination of both. 

608's - 7 track; bcd or binary; 200, 556, 800 bpi; read forward and reverse 
609's - 9 track; binary only; 800 bpi only; read forward and reverse 

Software from the 1731/601 is completely upward compatible with 1732 hardware. 

The 1732 is a more expensive controller than the 1731, but the added f eat u res 
would be desirable for the more sophisticated user: 

assembly/disassembly mode* 
800 bpi 
forward and reverse read 
9-track tape 

• 1735/915 Page Reader - optical character recognition equipment, 370 characters 
per second. Software operates as a compiler under utility System; no standard 
driver is as yet available under MSOS, but it is planned to be added. 

• 1736-1 OCR Document Reader Controller - controls one 935-1 or 935-2 document 
reader. Software not yet available; will probably run under utility first. 

• 1740/501-505 Line Printers - 501, 1000-lpm printer or 505, 500-lpm; 136 char
acters. Software not yet available for 505. 

• 1742 Line Printer (with controller included) - this is the Holley 300-lpm with con- C 
trol, 136 columns. 

• 1744 Digigraphics Controller - controls one 274 dig i g rap h i c light-pen console. 
Shown on Figure 21. Software is QSS. 

• 17 45-1 Inquiry/Retrieval Controller - controls 211 Display/Entry and 218 Output 
stations. 

• 1746-1 Single Station Entry/Display - controls CRT display and keyboard. 

• 1747 Data Set Controller - controls 301-B data sets. Software runs under Utility 
System. Standard software is available for 6000 import/export. 

• 1749 Communications Terminal Controller - con t r 0 1 s remote communications 
equipment, up to 16 lines per controller. Standard software is available only in 
the unbuffe red mode on the 1749; software is not available to connect the 1749 
through the 1706 in a buffered mode. The 1748 is used for buffered operations." 

Standard software is available now or will be shortly on most of the peripherals above 
(except as noted) to run under MSOS in the unbuffered mode. 

*Also, new software for the 1732 utilizing assembly mode will mean the tapes only have 
to be accessed half as often. 

10-4 



10.6 

o 10.6 160-A PERIPHERALS 

o 

o 

Several 160-A peripherals are connected to the 1700 on existing configurations through 
a 160-A adapter, and the 1750: 

a) 405 card reader (through 177 controller) 
b) 166 line printer and control 
c) 415 card punch (through 170 controller) 
d) 165-2 Calcomp plotter and control 

These equipments are not listed as standard available products as they are only available 
used on an as-available basis. 

10.7 1500 EQUIPMENT 

The 1500 series of analog equipment for pro c e s s control is all connected to the 1700 
through different interfaces. A large, detailed chart of 1500 equipment is a v a i I a b I e 
through ADSD in La Jolla. Much of the series is shown in the Figure 20 chart and its 
primary interfaces are: 

a) 1750 DCB Termiriator - this is the prime in t e rfa c e and it allows A/Q channel 
access to the 1500 series via the 1705. It is required if any 1500 equipment is to 
be connected to the computer. 

b) 1797 Buffered I/O Interface - this provides access to the DSA bus for buffered 1500 
equipment. It is functionally equivalent to the 1706 for standard peripherals. It 
is connected to the DSA and the 1750 and it controls up to three 1571' s. 

c) 1571 Chaining Buffer Channel - this is the priority buffer channel which assigns 
priorities to the equipment on the 1797. It is required if a 1797 is pre sen t. A 
high priority pie c e of equipment can steal the channel away from a low priority 
equipment. 

See notes E-J of Figure 20. 

One piece of 1500 equipment will be mentioned here as it is nearly 'always needed in all 
configurations: 1573 Line Synchronized Timing Option. 

This is the clock con n e c ted to the 1750 which generates timed interrupts to the CPU 
(60/sec). Any process system which requires a clock for timed programs will need a 
1573 since there is no realtime clock in the computer itself. Many standard s y s t ems 
need a clock, especially to m on i t or I/O which can get hung up (for example, the 1706 
can hang up in a buffer operation if the peripheral malfunctions or drops Ready). Sev
eral controllers are capable of generating the necessary timed interrupt, but if one of 
these is not present in the system, the 1573 can be used. 

10.8 PRIORITIES FOR DSA BUS 

Since all memory accesses, even buffered, must go through the Z register, priorities 
must be assigned to all the interfaces which may use the DSA bus. The 1797 takes 

10-5 



10.8 

highest priority in direct memory access, the 1706 takes second priority, the standard (--
buffered equipments (1738, 1751, 1748) take third priority. The running program takes 
lowest priority for accessing memory. On Figure 20, see Q), ®, and ®. 

10.9 SUMMARY, CONFIGURING EQUIPMENT 

The chart in Figure 20 can be utilized very effectively to configure a system. Note that 
low-speed 110 package is connected to the CPU through the Low- Speed 110 Synchronizer. 
Each of the standard buffered equipments (1738, 1751 and 1748) has line connections 
leading to the CPU via the A/Q channel line and the DSA line. The unbuffered equipments 
connect to either the A/Q line or, through a 1706, to the DSA line and A/Q line (to add 
buffer capability). 

The 1750 connects to the 1705 (for A/Q access). The 1797 has lines to the 1750 and DSA, 
and the 1571 leads directly to the 1797. Note that all 1500 peripherals connect either to 
the 1571, 1797 or 1750. The 160-A peripherals connect through the 1750. 

10. 10 RELATED MANUALS 

Additional information on systems configuration will be found in: 

Systems Manual 
Communications Peripheral Equipment Manuals 
ADSD General Information Manual 
Pricing Manual 

10-6 

c 

c 



o 
It 

~ ..... 
~ 
~ 
CD 

N 
0 . 
I-L 
-.::J 
0 
0 

(') 
0 

S 
"0 

I-L ~ 
0 M-
I CD 

-.::J ~ 

U1 
~ 
(f.l 
M-
CD 

S 
td ...... 
0 
Q 54 INPUT/OUTPUT 

~ 
TElZTYPEWRITERS 

tJ ..... 
~ 

aq 
~ 
~ 

S 

Software Limitation o 
i 
A 

~ 
A/Q CHANNEL. MAXIMUM 8 DEVICES - 200 FEET 

Like AI Q chan 

K-

L-

~=~~~i 

HIGH-LEVEL 
ANALOG 

EVENT { 
COUNTER 
INPUTS 

EXTERNAL 
INTERRUPT 

LCGIC-LEVEL 
SIGNALS 

{ 

sr,.oARD 

INPUTS PROTECTED, 

NONPROTECTED 
CONTACT CLOSURE 
SlGNALS 

1563 

ANALOG 

Like 1706 

HIGH-SPEED, {. 

INPUTS _I 

DIGITAL 

LOGIC LEVEL 
SlGNALQ 

1564A - IS64H DIGITAL INPUT 
SIGNAL CONDITIONiNG 

{

srANDAHD 

INPUTS PROTECTED. 
NONPROTECTED 
CONTACT CLOSURE 
SIGNALS 

1564J - lS64R DIGITAL INPUT 
SlGNAL CONDInONING 

NOTE: @ ALL INTERFACE MODULES SHCM'N ON THE BDCB C-\N ALs:J BE 
CONNECTED TO TH E DC1;I 

E-

F-

G---

H-

COMPUTER 

14K-WORD CORf. MEMORY) 

srmV.GE INCREMENT 
(4K·WO!tD CORE MEMORY OPTION) 

CD 

TO 1750 

c 
I.T) COMMOS 

SYNCHRONIZER 

IO-BIT REOOWTION 

1 T05 MA I ANALOG 
4 T020 MA SIGNALS 
l(lTOSOMA 

} 

UTeHING 
REI..A.Y 

OUTPUTS 



10.10 

Figure 20 (cont) 

Figure 20 is an overall view of a CONTROL DATA® 1700 Computer System; it shows how 
different subsystems are used and the methods by which they can be connected. A few basic 
facts about the CDC®1700 Computer System are pointed out below. Each statement corres
ponds to letters on the block diagram. 

A Up to eight input/output (I/O) controllers can be connected directly to the A/ Q channel and 
up to eight I/O controllers can be connected directly to the direct storage access (DSA) 
bus. However, this does not mean that 16 I/O controllers can be directly connected; 
only eight can be connected because each controller that is connected to the-DSA bus must 
also be connected to the A/Q channel. 

B Only three CDC 1706 Buffered Data Channels and/or the buffered 1716 Coupling Data 
Channels can be used in a system complex; this is an addressing restriction, not a hard
ware restriction. 

C Each Model 1706 or 1716 provides up to eight data channels to which I/O subsystems can 
be connected. Either the 1706 or the 1716 permits the attached subsystems to operate 
via the direct storage access (DSA) bus. 

D The "OR" box indicates that the attached I/O subsystem can either operate through the 
1716 or connect directly to the A/ Q channel. Operation via the 1706 is in the buffered 
mode; operation via the A/Q channel is in the unbuffered mode. 

E The CDC Model 1750 DCB Terminator is required whenever a CDC 1500 Series subsys
tem is used with the CONTROL DATA 1700 Computer. The 1750 provides a data and 
control bus (DCB) which is functionally equivalent to the A/Q channel. 

F The DCB provides the capability of attaching up to 15 CDC 1500 Series I/O subsystems, 
all of which operate through the A/Q channel via the Model 1750. 

G The CDC 1797 Buffered I/O Interface is required when the attached CDC 1500 Series sub
systems must operate through the DSA bus; it provides up to eight priority buffer chan
nels to which the CDC 1500 Series equipment can be connected. 

H The CDC 1571 Chaining Buffer Channel connects to one of the eight priority buffer chan
nels of the Model 1797. Up to three 1571's can be connected to one 1797. Each 1571 
uses one priority buffer channel. 

NOTE 

If a 1797 is included in a system, the Model 1571 is also required 
to connect existing CDC 1500 Series I/O subsystems. 

I Each 1571 provides a buffered data and control bus (BDCB) to which up to 15 CDC 1500 
Series I/O subsystems can be connected. 

All devices that are s how n connected to the BDCB can be connected to the DCB (refer to F, 
above); this means that the 1797/1571 is only required by system definition. 

10-8 

c 

c~ 



C) 
J 

K 

L 

o 

10.10 

Figure 20 (cont) 

Subsystems connected to the BDCB normally operate through the Model 1797 and the DSA 
bus. However, by program control, they can operate through the Model 1750 and the 
A/Q channel. 

The 1587 A Mas t e r Control Panel, 1587B Digiswitch Panel, 1587C Pushbutton Panel, 
1587E Rotary Switch Panel and 1587F Ke yb 0 a rd Panel connect to the 1564A through 
1564H Digital Input Signal Conditioning and operate through the 1544 Digital Input Inter
face with the 1545 Digital Input Sync Unit. 

The 1587G Annunciator Panel receives its information directly from a 1553 Ext ern a 1 
Register Output Interface. 

10-9 



t':fj ...... 
~ .., 
co 
l\:) 
I-' . 
I-' 
-::] 
0 
0 

I-' 
::r: 
~ 0 .., 

I 0.. I-' ~ 0 
~ .., 
CO 

(j 
0 a ...... 
~ .., 
~ 
M-
1-1. 
0 
~ 

/~ 
. / 

H Dr ... Interfoee 
and Storage 

1751 

~ Dhk Storage 
Drive Cont1"ollet" 

1738 - IX2 

W OCR Document 
Reader Controller 

1736-1 IXI 

!fOTE: H x Ii indication for peripheral 
eontroUer t. used to show th.at the 
controller Inay be driven fro!:! S c.hannels 
and ,,111 drive up to K peripherals. 

1700 HARDWARE CONFIGURATION 

1704 CO'lPUTER 

with 4,096 16-blt 
word. of core atorage 

Interrupt D,ta Channell 4K Storage Increment 

1705 1708 

the following products have 
direct storage access for 
data transfer: 

MagnetiC Tape 
Controllpf 

1731 • IX8 

Magnetic tape 
Controlhr 

1732 - IX8 

Digtgraphici 
Controller 

1744 _ lXl 

Data Set 
Controller 

1747 

1706 
1716 
1738 

1748 
1751 
1797 

Up to 3 1706 ' , IMy attach to the 170~ 

Buffered Data Channel 

1706 

Up to eight peripherals or peripheral 
,ubsystems may be attached to • singh 
1706; or they 'I!I;r,y be .ttached directly 
to the 1705. 

n 

Card Re .. dcr-runC'h 
Controller 

1728 - lXl 

Card Rrader 
Controller 

1726.1 - IXI 

'rinter 
Controlhr 

\740 • IXI 

* Standard ,oftwarf' "':"~:: f.;)r th~ .bo\'. 
four products is ."'d!.1~!' ~nly whltn they 
Ire attached to t~~ l ... ~~a 

SL'BSYSTEMS I..~D trJLTl.SYSIU1 H::'::-:S 

Not lupportelf by standard .~!tv.:, .... ~S3 0:'\1y_ 

~---------------------------, 

CoupUng Oata 
Ch.nnel 

1716 

Multiplexer 
Controller 

\748 

A/D Int~rlace 

750 • DeB 
Ter.dnator 

797 - Buffead 
I/O Intf'rf.ace 

SatelHee Coupler 

1718 

Cor.tTIunic:ation 
leminal 

Controller 

1749 

te .a:"..o:~ot:' lir;o Systeo 

t!' 1:'~: Sot:! ••• q'.1!~t:1<tr.t 

tli:' a ::C J.:';O 0: 6000 
Cor"';-:';:f:' 

l ____________________________ _ 

() 

I-' 
o . 
I-' 
o 



o 

o 

C) 
.... 

10.10 

Figure 22 shows the latest configuration of com m un i cat ion s equipment through the 
various communications controllers. 

10-11 



~ 
~ . ., 
CD 
~ 

~ 

.-
-:J 
0 
0 

'0 
-:J 
0 
J+:. 
0 ., 
t-l 
-:J 
-:J 

~ 

.- (') 
0 0 
I S ... 
~ s 

s= 
::I ...... 
Q 
~ 
c-i-...... 
0 
::I 
00 

tW 
00 
c-i-
CD 
S 
(') 
0 a ...... 
~ ., 
~ 
c-i-...... 
0 
::I 

1772 
OR 

1708 
STORAGE 

INCREMENT 
4K 
to 
~2K 

1773 
OR 

STORAGE 
BUSS 

1774 
OR 

1704 
COMPUTER 

4K 

1775 
OR 

1705 
INTERRUPT 

DATA 
CHANNEL 

DIRECT ACCESS 
STORAGE 

{~ 

1748 
COMMUN ICATIONS 

MULT I PLEXER 
CONTROLLER 

303~1 

COMMUN ICATIONS 
EXPANSION 

Ut-lIT 

1749 lip COMMUNICATIONS, 
TERMINAL 

CONTROLLER I 
i : 

LINES AVAI LABlE 
4 LINES TO FOUR 304-1 
8 LINES TO EIGHT 303-1 

I 
I 
\ 
I 
I 
I 

304-1 I ~
l 

COMMUN I CAT IONS 
MULTI PLEXER I 

-----' 

304-1 
COMMUN ICATIONS 

MUL T.I PLEXER 

304-1 
COM'1UNICATIONS 

MULT I PLEXER 

I 
I 

I TO 4 LINES 

304-1 
COMMUN I CAT I ONS 

MULT I PLEXER 

1706 
BUFFERED 

DATA 
CHANNEL 

304-1 
!COMMUN I CAT I ON S 

MULTI PLEXER 

40,800 BPS 

321 

i~~~~~~ t-1 OR)-----1 TEST BOARD I-t7' 60 TO 100 WPM ~.C. 

UNIT 

323 

+~~~~~ V I A ~:~: ~~~ f-::,.. 2,000 TO 2,400 BPS 

UNIT 

311B 

~~r~T~~T /-{ OR H-I 301 B:C 1---7 1,200 TO 40,800 BPS 

312B 
DATA SET 

I I 
-

~ 1,200 TO 2,000 BPS 
ADAPTER 

313 
DATA SET I I IV"" n,1 f-:7 UP TO 300 BPS 
ADAPTER 

314 
DATA SET I I - 1----7 UP TO 300 BPS 
ADAPTER 

317 
DATA SET nATA SF1- t--7 UP TO 1,800 BPS 
ADAPTER 

318 
DATA SET 

I I t--7 UP TO 1,200 BPS ADAPTER 

330 
DATA SET I I nATA SF1- 1-:7' I , 800 TO 2,000 BPS 
ADAPTER 

332-1 
DATA SET I I nATA ~~T I-:;;:>' UP TO 300 BPS 
ADAPTER 

40,800 BPS 

I 

( Supplied By ColllTlOn Carrier ) : 

_________________ J 

() 

COMPUTER 
'- CONNECTED T~ 

8529 B 
DATA SET 

CONTROLLER 

3275 C 
DATA SET 

CONTROLLER 

1747 
DATA SET 

CONTROLLER 

6673 
DATA SET 

CONTROLLER 

6674 
DATA SET 

CONTROLLER 

8066 B 
'MMUN I CAT IONS 

TERMINAL 
CONTROLLER 

3266 B 
Co~~~~~~r~ONS II-________ ~ 

CONTROLLER 

1749 
COt.f.1UNICATIONS, I-________ -~ 

TERMINAL 
CONTROLLER 

304-1 
COtJMUNICATIONS 

MULTI PLEXER 

3316 
COiJMJN I CATION S 

MULTI PLEXER 
CONTROLLER 

1748 
COMMUN ICATIONS 

MULT I pLEXER 
CONTROLLER 

*Indlcates CDC terminal deylces using compatible data sets may be used, 
Use of other than CDC dey I ces. must be coord I nated with csa Product Management. 

("-, 
) 

1700 

8090 
80n 

8092 

8090 

3000 

1700 

3000 

1700 

8090 

8092 

3000 

1700 

6000 

6000 



o 
10.10 

The following is a systems bulletin describing buffered and non-buffered operations: 

BUFFERED/NON-BUFFERED OPERATIONS 

The purpose of this Data Sheet is to define the terms "Buffered and Non-Buffered" operations 
in terms of hardware. Hopefully, this will eliminate any misconceptions in actual hardware 
operations relative to the terms. It should be made clear that all I/O devices used with the 
1700 Computer are buffered in regard to the handling of data. Each output device or subsys
tem has a buffer into which the computer can load data. This is a temporary storage media 
that holds the data while the output de vic e goes through its slow-speed operation using that 
data. During this time, the computer is free to continue on with its program. Each input de
vice or subsystem contains a buffer media into which it loads data until the running program 
can accept it as input and during which time the input device is obtaining the next set of data 
for entry into the buffer. 

Non-Buffered Operations 

The term "Non-Buffered" operation is synonomous with "Direct" operation, and means that an 
I/O operation is in progress and data is being transferred during the execution of an I/O in
struction via the computer's A/Q Channel. Therefore, data is either being input to the A-Reg
ister or output from the A-register. The Q-register, in each case, holds an address speci
fying the e quip men t or device from which the data is coming or to which the data is going. 
Out put data goes to a buffer for temporary storage until the device can use it and input data 
comes from a buffer where it has been waiting. This is the Non-Buffered or Direct I/O o Operation. 

o 

Buffered Operations 

The term "Buffered" operation means that the program has initiated an I/O operation for the 
Direct Storage Access (DSA) bus and is then free to continue its program while the actual data 
transfer is completed. The run n in g program is not interrupted until the entire record has 
been either read or written. Typically, a buffered operation is carried out as follows: 

1) Normally initiated by the computer program executing a "Non-Buffered" input or output 
instruction to a device connected to both the A/ Q channel and D SA bus. This N on-Buffered 
output would be the instruction telling the device or subsystem to start operating in the 
"Buffered" mode. 

2) Information supplied to the device during this Non- Buffered operation would be a "Pointer 
Word" that would point to a set of control words located in memory. 

3) These control words may represent the Starting and Ending memory addre sses (Record 
length) plus any other information required by the device. They may also represent the 
starting and ending addresses used by the I/O device. 

4) Once the Non-Buffered op era t io n is completed, the program is free to continue its 
function. 

5) When the specified device wants data or has data available, it requests a memory cycle. 

10-13 



10.10 

6) On the next available memory cycle, the data word is transferred to or fetched from the 
memory. Therefore, the program is delayed for one memory cycle each time a data 
word is t ran s fer red in or out of memory. This is commonly referred to as cycle 
stealing. 

7) After each data transfer, the device or subsystem increments the current address and 
compares it with the Ending address. steps 5, 6 and 7 are repeated until the current 
address and Ending address match (held in the 1571 or its equivalent). 

8) When the entire record has been transferred, the Buffered operation stops and the pro
gram can be interrupted. 

Direct Storage Access (DSA) 

Direct Storage Access is com m 0 n 1 y referred to as Direct Memory Access or may just be 
called a memory channel. The 1700 Computer DSA contains a Data Register, Memory Ad
dress Register and control logic which enables at t a c h e d devices or subsystems to request 
memory cycles and receive access to the memory on a priority basis. The DSA bus always 
have a higher priority than the a r it h met i c unit. With no Memory request from DSA, the 
arithmetic units requests will continue to be granted for consecutive memory cycles. How
ever, a Memory request from the DSA has first priority so that when received, the next mem
ory cycle is granted for DSA use. Once the DSA has control of the memory, it would use as 
many memory c y c Ie s as necessary to satisfy all requests from the devices on the DSA bus. 
For e x amp 1 e, if six devices were attached to the DSA bus and all requested memory at the 
same time, the program would be effectively stall e d for six memory cycles (6.6 ,Us) while 
these six requests were serviced. 

Summary 

In summary, a Non-Buffered operation passes data in and out of the A-register via the A/Q 
channel while the B u f fer e d operation passes data in and out of the memory on the D ire c t 
storage Access Bus. 

10-14 

(' 
"----



o 

o 

CHAPTER XI 

ADVANCED CODING TECHNIQUES 

III 



c 

c 



CHAPTER XI - Advanced Coding Techniques 

C) TOPIC PAGE 

11.0 Introduction 11-1 
11.1 Source, Object and Absolutized Programs 11-4 
11.1.1 Source Program 11-4 
11.1.2 Obj ect Program 11-4 
11.1.3 Abs olutized Program 11-10 
11.1.4 Form of Programs in MSOS Libraries 11-12 
11.2 Run Anywhere Coding 11-12 
11.2.1 Writing Programs for Run Anywhere Coding 11-12 
11.2.2 Buffer Addresses 11-17 
11.2.3 X Bit in System Requests 11-19 
11.3 Reentrant Coding 11-24 
11.3.1 Methods of Reentrants 11-26 
11.3.2 Reentrant Problem, A VG 11-31 
11.4 MSOS Requests Made by System Programs 11-32 
11.4.1 Schedule 11-32 
11.4.1.1 Priorities (Schedule) 11-34 
11.4.1.2 Rejects (Schedule) 11-34 
11.4.2 TIMER Request 11-34 
11.4.3 I/O Requests 11-35 

0 
11.4.3.1 Priorities (I/O) 11-35 
11.4.3.2 Rej ects (I/O) 11-37 
11.4.3.3 System Request Problem, THREAD 11-38 
11.4.4 EXIT Requests 11-38 
11.4.5 SPACE and RELEASE 11-38 
11.4.5.1 SPACE Request 11-39 
11.4.5.2 RELEASE Request 11-40 
11.5 Coding Mass Memory Programs 11-42 
11.5.1 Modules in Library 11-42 
11.5.2 Allocatable Core 11-43 
11.5.3 Scheduling the Mass Memory Program 11-44 
11.5.4 Form of Mass Memory Programs 11-44 
11.5.5 Externals to Mass Memory Programs 11-46 
11.5.6 Space 11-46 
11.5.7 Mass Memory Problem, MMPGM 11-47 
11.6 External References and Linkage, Summary 11-49 

o 





11.0 

Q 11. 0 INTRODUC TION 

o 

Advanced coding techniques for the 1700 will be the special considerations needed for 
understanding and writing programs that are part of the system. There are two sep
arate libraries of programs: the Program Library and the System Library. 

The programs in the Program Library are relocatable binary programs which are run 
in the background as jobs. This would include such programs as the library subroutines 
needed by the jobs. They are loa d e d into the unprotected background area of core by 
the loader, for execution, after being called in from the teletypewriter. Jobs could' also 
be loaded from the card reader or paper tape reader for execution. 

The programs in the System Library are absolute programs which are part of the system; 
they are run in the foreground in a large area of protected core called allocatable core. 
This would include user process programs. The Operating System contains a directory 
of all the system programs (all the mass memory pro g ram s and maybe a few core 
resident programs). This is like a list of all the programs, by mod u I e name, and it 
con t a ins the addresses of where they are. The system uses the directory to find the 
programs when it is desired to bring them into core to execute them. 

Protected core is normally synonymous with the foreground, and unprotected core with 
the background. In the background only one program (and its subroutines) would be in 
execution at one time at the lowest priority. In the foreground many programs could be 
in various states of execution at different priorities. The lower priority ones might have 
been suspended (temporarily stopped) while the highest priority one is executed. The 
unfinished programs wait in core to finish execution. If the system needs more allo-
catable core because it is full, it will" swap out" the entire background area to the Swap 
area on mass memory, protect the background area, and use it for foreground programs. 
When en 0 ugh foreground programs are completed in order to release the background 
area, that core is unprotected again and the job swapped back in to continue. 

Note that some of the system programs are core resident. The reason all of them are 
not core, resident is that they will not all fit in core at once. Therefore, the ones which 
are not nee d e d all the time reside on mass me m 0 r y in the System Library and are 
called into allocatable core as they are needed. 

In order to understand what all these programs look like and how they execute, as well 
as how they call each other in to core, it will be necessary to study the different kinds 
of programs. 

Emphasis in this chapter will be on system programs as background programs will run 
with any of the coding techniques previously covered. 

11-1 



11.0 

Scratch 

programs) 

programs) 

Loader -------

Allocatable 
Core 

Core Resident 
Process 

Programs 

Core Resident 
Operating 

System 

Figure 23. ,Mass Memory and Corel\1aps 

11-2 

Protected 

Background: 
Unprotected 

+-® 
Foreground: 
Protected 

c 



( \ 
'-.) 

o 

11.0 

An introduction to the priority structure of the running programs under MSOS will also 
be helpful as an introduction to this chapter. There are 16 program priorities from 15 
(high) to 0 (low). An idle loop runs at priority -1 when the system has nothing else to 
do. These priorities pertain to core res ide n t and mass memory resident programs. 
When apr 0 g ram is running at its priority, it can be suspended by any higher priority 
program which the system allows to run. The suspended program waits in core to re
sume execution when the priority structure works back down to it. 

The priority structure can only be changed by interrupts (hardware) or scheduling (soft
ware). The mask in the M register allows hardware, which has a higher priority than 
the running program, to interrupt. When an interrupt occurs, the Common Interrupt 
Handle r saves all the registers of the interrupted program on the Interrupt Stack (so 
that the program can later be resumed) and transfers control to the program which will 
service the interrupt on the line. 

A schedule request allows a program to change the priority level. If the request is for 
a higher level program, a pseudo interrupt will occur immediately (the suspended pro
gram goes on the Interrupt Stack) and the hi g her level program is executed. Control 
will later return to the suspended program. If the schedule request is for an equal or 
lower level priority, the request parameters go on the Scheduler Stack and are threaded 
in it by priority to be picked up later when the priority structure works down to that level. 

All programs exit to the MSOS Dispatcher. It is the Dispatcher that must cause the next 
lowest priority program to be executed. It does this by looking at the Interrupt Stack 
and Scheduler Stack and finding the highest priority waiting program. 

Interrupts 
from 
Hardware 

Interrupt 
Stack' 

All Programs 
exit to: 

~ 
DISPATCHER 

~ 
Choos es next 
program from 

11-3 

Scheduled 
Programs 

Scheduler 
Stack 



11.1 

11.1 SOURCE, OBJECT AND ABSOLUTIZED PROGRAMS 

11.1. 1 Source Program 

The source program is the program written in ass em b 1 y language code by the 
programmer. It most likely would be punched on cards or on paper tape. Here 
is an example of'a source program listing: 

0001 NAM SOURCE 
0002 ENT START 
0003 POOOO 0000 START 0 0 
0004 POOOI C400 LOA+ X 

pOOO2 0006 P 
0005 POO03 60FF STA- I 
0006 POOO4 1400 JMP+ (START) 

POOOS 8000 P 
0007 POO06 0010 X NUM 510 
0008 END START 

I OOFF START OOOOP X 0006P 

The source program is read into the computer by the assembler. The computer 
does not execute the pro g ram at this time. The ass em b 1 e r translates the 
mnemonics into binary 0 b j e c t code. The source program is listed at this time 
(on the teletypewriter or the line printer) and the 0 b j e c t program is punched on 
paper tape (or on the disk, drum or magnetic tape). 

11. 1.2 Object Program 

It is important to lmow that the object program is not executed either. It must be 
loaded by a "relocating" loader back into the computer before it can be executed. 
It is not important at this point to be able to interpret the codes in the object pro
gram. One must just understand that the codes represent the des ire d program 
and that the loader will interpret the codes when it loads the object program and 
will make an executable program out of these codes. On the following page is an 
example of how the previous source program would look in object form. 

11-4 

c 



c 

CI 

Figure 24. Object Tape 

EISE~s 
R 
C 
E ms!ltt 

• • · • • · • • • .. • • • • · • • .. • 
• • ••• ....... . 
••••••••• •••••• •• •• • • • • • •• • ••• • • · . . . · ... • • •••• ... . , .. 

00 
00 
00 
00 
04 
00 
00 
06 
60 
FF 
1 4 
00 
80 
00 
00 
'0 

S 
T 
A 
R 
T 
1\ 

S 
T 
A 
R 
T 

} 
} 

11.1.2 

NAM block 

RBD block 

ENT block 

XFR block 

Note that each block on the paper tape is preceded by the one's complement of the 
word count in that block and followed by a checksum word on that block. 

11-5 



11.1.2 

Figure 24. Object Tape (Cont) 

--.. NAM BLOCK 

001010000 010110000 1 word = 2 frames on paper tape 
0 0 0 0 
0 0 0 0 
0 '0 0 7 

S a 
u R 
C E 

RBD BLOCK 

0100 0000 0101 0000 
0001 0000 0000 0001 

0 0 0 0 
0 0 0 0 
C 4 0 0 
0 0 0 6 

0000 0000 0001 1000 
6 0 F F 
1 4 0 0 

, 8 0 0 0 
0 0 1 0 
0 0 0 0 

ENT BLOCK 

100010000 010110000 
s T 
A R 
T 

0 0 0 0 

XFR BLOCK 

110010000 01011 
s T 
A R 
T 

11-6 

,,""" f "-
I ,,-,,/' 



C) 

C) 

11.1.2 

The following is some of the information about the blocks the assembler makes in 
the binary object program for the loa d e r. This was extracted from the Loader 
Chapter of the MSOS Reference Manual, and it may be consulted for more detail. 

Relocatable Binary Input 

The loader recognizes r e 1 0 cat a b 1 e binary blocks by the type indicator field in 
bits 13-15 of the first word of the block. The following block types are defined: 

Type Indicator Description 

NAM 001 Name block 
RBD 010 Command sequence block 
BZS 011 Zero storage block 
ENT 100 Entry point block 
EXT 101 External name block 
XFR 110 Transfer address block 

If the loader is unable to recognize the indicator, it does not process the block. 

NAM Block 

The NAM block contains a word count for common storage and data storage, the 
program length, and the name of the program. 

0010 1 0000 I 0101 J 
Number of words in common storage block 

Number of words in data storage block 
program length 

character 1 character 2 
character 3 character 4 
character 5 character 6 

RBD Block 

0000 

} 
Program 
Name 

An RBD block contains a portion of the actual command sequence data of the pro
gram. Words 2-59 contain the r e lo cat ion bytes and words for the command 
sequence input. Each relocation byte is a 4-bit indicator that identifies a word 
of the command sequence input as an absolute 15-bit address or as a 15-bit address 
relative to some relocation base. The relocation base for a word is determined 
by the particular combination of bit settings within the relocation byte. 

Relocation bytes in RBD blocks: 

0000 
0001 
0101 
0010 
0110 
0011 
0111 

Abs olute (no relocation) 
Positive program relocation 
Negative program relocation 
Positive common storage relocation 
Negative common storage relocation 
Positive data storage relocation 
Negative data storage relocation 

11-7 



11.1.2 

0100 0000 0101 0000 
RO R1 R2 R3 

WO 
WI 
W2 
W3 

R4 R5 R6 R7 
W4 
W5 
W6 
W7 

R8 R9 RIO R11 

- -- ---
R40 R41 R42 R43 

W40 
W41 
W42 
W43 

R44 R45 not used 
W44 
W45 

Core Image of RBD Block 

Wn nth word of input block, (n=1-45) 
Rn Relocation byte of nth word 
WO Origin addres s of input block 
RO Relocation byte for WO 

There is one relocation byte for every word in the command sequence input, and 
a maximum of 45 words in an RBD block. The first word is the address at which 
the loa d e r begins storing command sequence data. The relocation byte for the 
first word address (storage address) of an RBD block may be 0000, 0001, or 0011. 
Zero is the leading bit for all but the last relocation byte; one is the leading bit for 
the last relocation byte. 

In processing an RBD b I 0 c k, the loader picks up the 15 bits which represent the 
first word address of the command seq u e n c e data in the block. It adjusts this 
address for relocation according to the setting of the bits representing its relo
cation byte. The resulting absolute address is the first word address in core to 
receive the command sequence data (stored in consecutive locations). Each word 
is relocated according to its relocation byte. 

11-8 

(~ 
\ 



o 

ENT Block 

1000 I 0000 0101 I 
name 1 ; character 1 character 2 

3 -4 
5 6 
El 

name 2 

E2 

-- -
name 13 

E13 
name 14 

E14 
not used 
not used 

Core Image of ENT Block 

Namen = Six-character name of nth entry in block 
En = Entry point address of nth name 

XFR Block 

11.1.2 

0000 

-

The XFR block contains a t ran sf e r address (in words 2-4), which is six ASCII 
characters in length, including trailing spaces. The transfer address must be an 
entry point in the program being loaded or in another program loaded during the 
same load operation. 

1100 I 0000 0101 I 0000 
Character 1 Character 2 

3 4 
5 6 

Core Image of XFR Block 

The XFR block must be the last in a relocatable binary program. If an XFR block 
is out of order, a loader error message is issued and the load is terminated. The 

11-9 



11.1.2 

loader records the transfer address in the XFR block. If two or more relocatable 
binary programs are loaded with one operation, the loader saves the last trans
fer address for the start of execution. 

It is obvious by looking at the code that it could not be executed exactly as it ap
pears. Normally the programmer n eve r has to know what the object tape looks 
like. He would only have to know the format if he wanted to examine parts of the 
tape. For example, if he stored a number of object programs on one tape, he may 
wish to be able to search the tape for a particular program. He could do that by 
writing a program to look at the NAM blocks until it found the right one. 

11. 1. 3 Absolutized Program 

The programmer is, however, very much concerned with how the program looks 
after it is loaded into core for execution. The different addressing modes he used 
when he wrote the source pro g ram will determine what the final core image of 
that pro g ram looks like. An absolutized program is an exact copy of this core 
image, which can be executed. The loader loads and absolutizes the object pro
gram at a certain adqress, which is wherever it happens to load it. It also links 
the program to any externals and loads and links any library subroutines required. 
A utility routine could be used to punch a tape with this core image on it; hence, 
the term "absolute tape". Here is an example of an absolutized image of the pre
vious object program, (if the program was loaded at $1000). 

($1000) 0000 0 0 Op Code 
($1001) C400 LDA+ X 
($1002) 1006 
($1003) 60FF STA- I 
($1004) 1400 JMP+ (START) 
($1005) 9000 
($1006) 0010 NUM $10 

Notice that the contents of location $1002 is $1006 to indicate where X is and that 
$1005 contains $9000 to indicate the jump through location $1000. The 0006P and 
8000P in the source code were relocated by the loader when the object pro
gram was loaded. No matter where the program was loaded, the correct addresses 
would be filled in at that time. 

11-10 

l., 

C 



o 

o 

C~) 

11.1.3 

Figure 25. Flow of Program Through Execution 

Source 
Deck 

(read into computer 
by assembler) 

(generated by program) 

ASSEMBL Y TIME 

Assembler 

unprotected core ~ 

EXECUTION TIME 

Loader 

Absolutized 
Program 

unprotected core 

11-11 

P option 

object tape 
(written out by assembler) 

(listed by assembler) 
L option 

G object form on 
V disk scratch 

X option 

Object tape 

(loaded into computer 
by loader) 



11.1.4 

11. 1.4 Form of Programs in MSOS Libraries 

The reason it is so important for the analyst to understand the distinction between 
what the object program generated by the assembler and the absolutized program 
after loading look like is because user and system pro g ram s are stored in the 
libraries on mass storage in th e s e two different forms. User background pro
grams in the program library are stored in relocatable binary object form. They 
will be loaded by the loader into core whenever they are executed, so they will be 
absolutized and linked each time they are loaded and' run. 

System programs (including user pro c e s s programs) in the system library are 
stored in absolutized form and will be read into core (without any changes) when
ever they are needed for execution. This is because it must be possible to bring 
the real time process programs into memory very fast; the relative time it would 
take to load them in with the loader every time they are needed would be too great. 
A much better solution would be to write the source program in such a fashion that 
the absolutized program could be run any w her e in core and would still execute 
properly. The absolutizing of the system process programs is done during system 
initialization (by the loader portion of the system initializer) when the programs 
are stored on the system library. 

11.2 RUN ANYWHERE CODING 

11.2. 1 Writing Programs for Run Anywhere Coding 

The method devised for writing programs so they can be stored in absolute form 
and still run anywhere in core is called Run Anywhere Coding. It is important to 
know that this is done at the source level. 

Source Object Absolute 

assemble ~ ------------. ~ load D ------. anywhere 

Runanywhere or 
not Runanywhere 

Runanywhere or 
not Runanywhere 

Runanywhere or 
not Runanywhere 

The object program can be loaded anywhere and absolutized and will run correctly 
at that time because the loader has reI 0 cat e d any addresses which were in the 
program. However, if an absolute image of this program is later run somewhere 
else in core, it will run cor r e c t I y if it was coded run anywhere in the original 
source form. Here is an example of the same program coded both ways; (assume 
it was loaded and absolutized at $1000). 

11-12 



, .... ~ .. , , 

U 

o 

o 

11.2.1 

Not Runanywhere 

Source Absolute 

START 0 0 ($1000) = 0 0 0 0 
LDA+ X ($1001) = C 4 o 0 

($1002) = 1 0 o 6 
STA- r ($1003) = 6 0 F F. 
JMP+ (START) ($1004) = 1 4 0 0 

($1005) = 9 0 0 0 
X NUM $10 ($1006) = 0 0 1 0 

Runanywhere 

Source Absolute 

START 0 0 ($1000) = 0 0 0 0 
LDA* X ($1001) = C 8 0 3 
STA- r ($1002) = 6 0 F F 
JMP* (START) ($1003) = 1 CFC 

X NUM $10 ($1004) = 0 010 

Notice that the addresses of X and START in the first example were relocated by 
the loader to show that X is at $1006 and START at $1000. The program will run 
at $1000, but if, for example, it is moved to $2000 without the object being reloaded, 
it will not run correctly because it will think X is at $1006 (when actually it moved 
to $2006) and then it will jump through $1000 (when actually the entry point START 
moved to $2000) • 

However, in the second example all addressing in the program is relative. The 
LDA * loads from X which is 3 10 cat ion s forward and the JMP* jumps through 
STAR T which is 3 locations b a c k war d. Yet the STA- r must be left as it was 
because the r register is absolute core location $FF, and it will always be there. 
The program is runanywhere because it can be kept in absolute form and can be 
later run anywhere in core with correct results. 

One might at this point wonder why not code all programs in run anywhere form. 
The primary reason is that it is more difficult ~o learn to do run anywhere coding 
since there are more chances for the programmer to make errors which will not 
produce any error me s sag e s. In general, w hen writing a program to be run 
anywhere, all ref ere n c e s to addresses that move with the program should be 
relative, and all addresses w h i c h are absolute core locations must be absolute. 

11-13 



11.2.1 

references to subroutine 
of program relative 

references within ~ 
program relative 

NAM 
ENT 
EXT* 
EXT 
COM 

SCAN 0 
1 
LDA+ 

f 
STA-

T 
LDA+ 

1 
RTJ 

\ 
RTJ+ 

f 
END 

~ 
~ 

COMMON 

SUBROUTINE 

PROGRAM 

CORE RESIDENT 
PART OF 
SYSTEM 

RA 
SCAN 
ALARM 
LOWPGM 
X(10) 
0 

x+o 

$FF 

$10C 

ALARM 

LOWPGM 

14 

~ 

I-

• 

references to common 
absolute 

references to low core 
absolute 

relative external 
absolute external 

reference common abso
lute 
reference $FF absolute 

reference interrupt trap 
absolute 
reference subroutine 
relative 
reference program. in 
system resident absolute 

Without worrying about the externals at this point, note that all references within 
the program area must be relative. A good way to tell if there are any which are 
not relative is to look at the source listing and see if any of the codes on the left 
are followed by a P, i. e., in the program SOURCE example, change: 

, f 
POOOI C400 LDA+ X 

to 

P0002 0006, f '\ 
POOOI C803 LDA * 

j '\ 
X 

11-14 

C
--" 
... ,.,., 



o 

11.2.1 

Change all loads, stores, jumps, etc., in the program to relative. 

Look at the VALUE problem from chapter 6 and observe the addressing used in 
the program. COUNT is addressed in two-word relative mode, because the DATA 
block most likely moves with the pro g ram and may be further away than 12710 
locations. LPMASK+6 is addressed with one-word absolute mode because it is a 
fixed low core address. MASK in the program is addressed in one-word relative 
mode because it moves with the pro g ram. Yet X in the common block must be 
addressed in two-word absolute mode because common is fixed and is in high core. 
The LDA VALUE is in two-word relative mode. This implies VALUE is relative 
to the TEST subroutine and the assembler requires two-word addressing for any 
relative externals. 

11-15 



11.2.1 
/' 

VALUE PROBLEM ('-- .. 

NAM TEST 

COM DUMMY(10), X(lO) 

DAT DUM (6) , COUNT(1) 

EQU LPMASK($2) 

ENT START 

EXT* VALUE 

MASK BZS MASK(l) 

START 0 0 

CLR Q 

STQ COUNT 

LDA VALUE 

AND- LPMASK+6 

ALS 8 

STA* MASK ('~ 

ENQ 9 
........ " .. ' 

SEARCH LDA+ X,.Q 

AND =N$3FOO 

EOR* MASK 

SAN t 
RAO COUNT 

SQZ EXIT-*-l 

INQ -1 

JMP* SEARCH 

EXIT JMP* (START) 

END 

11-16 



11.2.2 

U 11.2.2 Buffer Addresses 

o 

Buffe r addresses used for indirect addressing (to load or store) in the program 
must be absolutized each time they are used. If the buffer is in low core system 
resident, it can be absolutely addressed: 

BUFADR 

I 
I 

EXT 
ADC 

I 
I 
I 
I 

STA* 
I 
I 

BUF 
BUF 

(BUFADR) 

The address assembled into BUFADR will be the absolute address of the buffer. 
Since the buffer will never move, even though the program moves, the addressing 
will still be correct. 

However, if the buffer moves with the program, the ADC would not work because. 
it would contain the address of where the buffer was when the program was abso
lutized. In the following example RE LA TIVE the buffer BUF is in the program at 
P0007. BUF ABS must always contain the address of where the buffer really is. 
If we used: 

BUFABS ADC BUF 

BUFABSwouldassemble as 0007P which, if the program was absolutizedat $1000, 
would contain $1007. Whenever the program moved, the buffer would not be at 
$1007 any more. Neither would the example at P006C work correctly for the same 
reason. 

Study the code beginning at POOOO and see that BUF ABS is calculated each time it 
is used. The RTJ* will cause the current address of the BD ins t r u c t ion to be 
stored in BD. (R T J stores P+ 1 in jump add res s, then RNI at P+2.) Then the 
LDA calculates the distance from BUF to BD. ADD the contents of BD (the current 
address of BD) and store it in BUF ABS to calculate the buffer address! 

11-17 



11.2.2 

CORRECT ~ 000 I ..... _. ___ ... __ ._. ____ ... ___________ NA M. _R.~J~~_l! VE 
r?~ ·---·-0002---- * 
1-, I 0003 POOOO 5801 RTJ* *+1 

~--..... . . -- ... _. . ._ ...... ---------- . _ ...... _. __ ._ ... -_._---
0004 POOOI 0000 SO NUM a 

.-, 0005 P0002 COOO LDA = XBUF-BD ~ , 7 _ ..•. _ . . ..... . -__ .. - -_._ .. _ .' __ -. __ • ______ -.---. .- ----- .-----.-.-- .. -. -... - '-' ...•. -..•. - -.-

P0003 0006 
0006 P0004 88FC ADD* SD 

(' ~"--OO 0 7-'-PO 005 '-'6 86 G-' -----···--··---·-------S TA*·--··-·------- B UF' A 8'S 
? _0 0 0.8 _______ .... _._._ ... _. _______ ~ __ .. _______ . _ .. ____ __. ________ ._._. __ 

0009 * 
('lOOI0 P0006 0000 SLS 
' ... In·----·oo 1'1 --"PO ob1·--··0·064----·-·BU-~----------ljz S----------- B·UF ('1'00) . 

0012 POOGB 0001 BUFABS BSS BUFABS(l) 
11. ___ . .. . ... ---- ... - .. ' .. --. --"--" -. - --. - ----- .. ----.- ------ - ------ - -- .--------- ---.- _ .. - ........... -- - -. -

r 0013 * 
0014 * 

11-00'1'S--pcftf({c-C'o-6b .----- LDA =XB"uF'---INCORRECT 

P006 D 0007 P 
1J---'b(fi'6-~P'()'O 6-E--6 g-FC-------------------S·TA*---------·B·U F' A-a g-'- -- . 
. 0017 END 1~ _____________________________________________________________________ _ 

The b u f fer address will be correct whether the buffer is forward from the LDA 
=XBUF-BD or behind it, because of the 15-bit arithmetic used. With BUF in its C 
current location the calculation would be .... 

0007 
-0001 

0006 assembled 
+0001 

0007 

If the buffer were at 7FFE relatively, the calculation would be 

7FFE 
-0001 

7FFD assembled 
+0001 
7FFE 

A very nice way to clean up even the correct code above would be: 

RTJ* BUFABS 
BUF BZS BPF(lOO) 
BUFABS 0 0 

1 
11-18 

(' 
\ 



C) 

o 

(---') 
'-,-/ 

11.2.2 

The RTJ jumps over the buffer, taking the buffer address with it. It stores it in 
BUFABS, then continues execution following BUF ABS. 

Look at the peripheral program BOOTSTRAP for the paper tape reader in chapter 
8. Location P0012 is used to contain the buffe r address of where the data is to 
read into. Since this address is program relocatable (contains 0014P), the pro
gram is not run anywhere be c au s e when it is loaded and absolutized P0012 will 
contain the absolute buffer address at that time. If the program and buffer were 
moved, ADDRES would then contain the wrong buffer address. 

More coverage of the externals for run anywhere programs will be mentioned in 
a later section, 11.6. How the externals are written depends primarily on where 
they and the referencing program are in the system. 

11.2. 3 X Bit in System Requests 

In run anywhere programs, the X bit must be used in s y s t e m requests; and ad
dresses used in the requests must follow the same rules for add res s e s in the 
program which move relative to the program or are external in low core. 

The following example is for the X bit being set in a schedule request: 

($F4) ,( 
N7 19, N111, N8/8 ---+ ~_9--.J1L---1.L..-1 _0--,-1 8_-1 
HE LP+ 1 •. dis tance 

RTJ-
VFD 
ADC* 

Since this is a request made from a run any w her e program, the address being 
scheduled, which is HE LP, must be relative if HE LP is relative to this request. 
(HE LP could be in the scheduling program or external to it.) 

When the X bit is used as above to indicate relative addresses, the relative dis
tance must be from the first word of the parameter string (not from the RTJ or 
the ADC). That is why the relative address constant (ADC* HELP+1) is coded as 
HE LP+ 1 instead of HE LP. The dis tan ce established from the ADC to HE LP+ 1 
would be the same dis tan c e as from the VFD to HE LP , which is the distance 
required by the operating system. 

POOOO 54F4 RTJ- ($F4) 
POOOI 1308 VFD N7 19, N111, N8/8 
POO02 00-07 ADC* HE LP+l 
POO03 
POO04 7 
POO05 7 

POO06 
POO07 
POO08 HELP 
POO09 

11-1-ff 



11.2.3 

Of course, if HELP were a core resident program, it would have to be scheduled C"~ 
absolutely from a run anywhere program. It can be scheduled this way tV'en if it 
is in the sys tern directory. 

54F4 RTJ- ($F4) 
1208 NUM $1208 
7FFFX ADC HELP 

r 
EXT HELP 

When the X bit is set to indicate relative, all addresses in that request must fol
low suit. In an I/O request, for example, the completion address and huffer 
address must be relative. Again, they must be relative to the first word of the 
parameter string. 

RTJ- ($F4) 
REQ NUM $OD56 FWRITE, RP=5, CP=6 

ADC* COMPL+1 
NUM 0 
NUM $18FC ASCII, STD PRINT DEV 
NUM 10 
ADC* BUF+5 

1 
COMPL 

BUF ~ 
Note that COMPL+1 is used to add 1 to the distance between the ADC* and COMPL 
(to make it relative to REQ). BUF+5 is used to add 5 to the distance between the 
ADC* and BUF. The number of words does not have to be relative even though 
the X bit is set. 

If it is desired to use relative addressing to locate the number of words, it would 
be done as follows: 

REQ 

COMPL 

BUF 

N 

RTJ
NUM 
ADC* 
NUM 
NUM 
ADC* 
ADC* 

NUM 

($F4) 
$OD56 
COMPL+1 
o 
$18FC 
(N+4) 
BUF+5 

10 

"11-20 



o 

C) 

11.2.3 

All other requests which can utilize the X bit for relative addressing must follow 
the same pattern. 

The ADC* in the above examples will only calculate the correct distance for ad
dresses forward from the ADC*. Since the r e 1 at i v e address must be a 15-bit 
positive increment which is added to P and must work whether the distance is for
ward or backward, the following method is often used: 

ADC COMPL-*+l 

or 

ADC BUF-*+5 

The regular ADC form used here has an expression in the address field which will 
always calculate the correct distance. The desired address minus the current P 
counter makes a 15-bit relative distance from P and the adjustment of +1 or +5 in 
the example is for a completion or buffer address. 

Figure 26 shows incorrect examples of relative addressing. See MMPGM in the 
mass memory coding section 11.5.7 for more examples. Relative addressing is 
detailed in Chapter 8 of this manual. Also, the MSOS Reference Manual contains 
details of using the X bit in all system requests. 

11-21 



11.2.3 

0013 
0013 POO02 
0013 POO03 
0013 POO04 

POO05 
0013 POO06 
0013 POO07 

Figure 26. Error Examples for Incorrect Addressing in 
Mass Memory Programs 

Buffer is at P0018 
! NOTE: Completion address is at P0012 

FWRITE $FC, WROTE, MSGBUF, 10, A, 5,6, 1,1 

54F4 
4---- X bit set OD56 • 

0012 P 
0000 
18FC But address still program relocatable 

OOOA 

~ 0013 

..-- Buffer was at P0018 in early example 

FWRITE $FC, WROTE-*+ 1, (MSGBUF), 10, A, 5, 6, I, X 

0013 
0013 
0013 

0013 
0013 

0016 
0016 
0016 
0016 

0016 
0016 

POO02 54F4· 
POO03 OD56 .. 4----X bit set 

.----Rel. dist. to WROTE POO04 OOOF .. 
POO05 0000 
POO06 18FC 
POO07 OOOA 
POO08 ...---Indirect bit on buffer address 8018 P .. 

NOTE. Buffer is at P0003 
. Completion address is at P001D 

WRITE FWRITE $FC, *-WROTE-5, *+MSGBUF-5, 10, A, 5,6, I, X 

POOOD 54F4 
POOOE OD56 
POOOF 7FEC 4------ Wrong reI. dist. to compl. ~ 

P0010 0000 
P0011 18FC 
P0012 OOOA 

********RL********* 

~~ 
WRITE 0016 

4------ Illegal relocation to buffer 

FWRITE $FC, *-WROTE-5, *-MSGBUF-5, 10, A, 5, 6, I, X 

0016 POOOD 54F4 
0016 POOOE OD56 
0016 POOOF 7FEC .------ Wrong reI. dist. to compI. (appears backward) -4 

P0010 0000 
0016 P0011 18FC 
0016 POO12 OOOA 

POO13 OOOB 4------ Backward reI. dist. to buffer (appears forward) ~ 

11-22 

c 

c 



11.2.3 

() Problem: Write a runanywhere program. 

Given: skeleton of a program which computes an average of 10 pos itive numbers. 

NAM AVERAGE 

ENT AVG 

BZS OVFL(1) 

AVG 0 0 

ENQ 9 

ENA 0 

SOY 0 

LOOP ADD* X,Q 

SNO TEST-*-1 

RAO* OVFL 

AND =N$7FFF 

TEST SQZ AV-*-1 

INQ -1 

JMP* LOOP 
o 

AV LDQ* OVFL 

ALS 1 

LRS 1 

DVI =N10 

JMP* (AVG) 

END AVG 

11-23 



11.2.3 

a. Write a main program, with a buff e r with data in it, to call A VG as a sub- C~· 
routine. Set up the proper lin k age between the main program and its sub-
routine. The main program should punch the answer (the average of the data) 
on binary paper tape. * Be sure the pro g ram s work before going further. 

b. The programs should be coded in runanywhere form and should not des t roy 
themselves. 

c. To check out the runanywhere features of the programs add a move subroutine 
to move the main program and A VG to a higher core area after they have run 
once and given one answer. Then control should be transferred to the entry 
point of the m a in program at its new add res s to run it again and see if it 
gives the same answer. 

This will simulate a runanywhere mass memory module being executed in a 
different core area, and it can be checked out in the b a c kg r 0 u n d with the 
protect switch set. 

If CONVRT is used, it should not be moved in the move and should be addressed 
absolutely. This is because it is not runanywhere. Using CONVRT would 
s i m u 1 ate a mass memory module calling a core resident subroutine which 
remains at a fixed location even though the module runs in different locations. 

11.3 REENTRANT CODING 
I'~ 

It is necessary in a real time process en vir 0 n men t for many of the programs to be l._" 
reentrant. This is because the process programs run at different priority levels and 
may have common subroutines. A reentrant program is one that can be entered at more 
than one priority level. The program may begin its computations but be stopped (per-
haps as a result of a hardware in t err u p t at a higher level). Then it may be entered 
again at a hi g her level (perhaps by being called by the higher level interrupting pro-
gram). It mus t do a computation for the hi g her level calling program. Then it mus t 
resume the original com put a t ion later without losing any continuity or results. An 
example of a situation in which a subroutine PGM must be reentrant is as shown on the 
following page. 

*The main program could instead call the CONVRT conversion subroutine to convertthe 
hexadecimal answer to ASCII codes, then write it in ASCII on the teletype. 

11-24 

c 



o 

o 

(Priority 4) 

Program A 

CD r 
RTJ+ 

r- - ---. 

: @ r 
I Exit 
I 

PGM 

CD 
I 
I 
I 

(Priority 6) 

Program B 

o f 
RTJ+ 

r- -. 

: °1 
I 
I 
I 
I 
I 
I 

Exit 

11.3 

PGM 

CD 

I I I 
I J I 

PGM L __ -. +-:-( _________ -1 

CD hardware °1 CD: 
I 
I 
I 

interrupt" I 
@~ I 

L __ _ \ CD I 
_______ @EXit __ -l 

1. Program A runs at Priority 4 and 

2. calls PGM (at same priority). 

3. PGM is running when 

4. an interrupt occurs. 

5. Pro g ram B begins to run at priority 6 (higher) as a result of the interrupt, and 

6. it, too, calls PGM. 

7. PGM must run a calculation for program Band 

8. return to program B. 

9. Program B must complete and exit. At that time 

10. the priority drops back down to 4, and PGM resumes its computation for program 
A where the interrupt 0 c cur red. It must correctly complete its run for A and 

11. return to program A. A then can 

12. complete and exit. PGM must be reentrant so it can make correct computations 
and exits for A and B. 

11-25 



11.3.1 

11.3.1 Methods of Reentrants 

There are a n urn be r of d iff ere n t methods which are used to make programs 
reentrant. ]700 MSOS provides for reentrant programs by con t a in i n g a core 
area called Volatile Storage which any pro t e c ted program may use. Volatile 
storage is actually a BSS block in the pro g ram VOLA and its size is set up at 
system initialization time. A program can establish its reentrancy by requesting 
a temporary area of volatile storage for each run in which to store its temporary 
results during ex e cut ion. No locations in the program are a can be used for 
temporary results because they would be destroyed if the program was reentered 
before it completed execution. The ref 0 r e, all data would be either in volatile 
storage or in the registers. (P, A, Q and I would be saved in the interrupt stack if 
an interrupt occurred. ) 

The follow in g program can be used as an example and it will be recoded to be 
reentrant. The addresses of two parameters which are to be add e d together by 
the subroutine are passed in A and Q. The answer is to be passed back in A. 

NAM ADD2 
ENT ADD2 

ADD2 0 0 
STA* TEMP STORE ADDRESSES OF 
STQ* TEMP+1 PARAMETERS. 
LDA* (TEMP) PICK UP PARAM 1 
ADD* (TEMP+l) ADD PARAM 2 
JMP* (ADD2) RETURN WITH ANSWER 

f IN A 
BSS TEMP(2) 
END 

The program as it is written above would not be reentrant because its return ad
dress andparameter addresses would be lost if the program was reentered before 
it was finished. 

11-26 

(~ 
'-. .. ' 



r'. 

(-) 

C) 

11.3.1 

The following is the program coded in reentrant form. 

NAM ADD2 
ENT ADD2 
EQU A VOLA($BB), A VOLR($BA), ZERO($22) 

1. ADD2 0 0 ENTRY POINT 
2. IIN· LOCK OUT INTERRUPTS 
3. RTJ-:- (AVOLA) GO GET SOME VOLA TILE M 
4. NUM 4 4 WORDS WANTED Z 

t-3 
5. EIN ~ 

6. LDA* ADD2 PICK UP RETURN ADDRESS 
~ 

7. STA- 3,1 SA VE IT IN VOLA TILE 
8. LDA- (ZERO), Q GET PARAM 2 IN A 
9. LDQ- 1,1 GET PARAM 1 ADDRESS IN Q 

10. ADD- (ZERO), Q ADD PARAM 1 TO PARAM 2 
11. STA- 1,1 PASS ANS. BACK IN A 
12. EXIT LDQ- 3,1 PICK UP RETURN ADDRESS 
13. IIN 
14. STQ* ADD2 STORE RETURN ADDRESS M 
15. RTJ- (AVOLR) GIVE BACK VOLA TILE ~ ....... 
16. EIN ENABLE INTERRUPTS t-3 

17. JMP* (ADD2) EXIT 
END 

4-word volatile storage block 

3 Return 

2 I :=} calling program's registers 1 A 

(I) + 0 Q 
I 

Subroutine ADD2's I register contains volatile address. 

A separate 4-word block of volatile storage will be assigned each time the program 
is reentered. Since its I register is always saved when an interrupt occurs, the 
value of I in each run will locate the specific block being used in that run. 

S u c c e s s i v e blocks allocated will always be to higher priorities and, naturally, 
release will be in reverse order. 

11-27 



11.3.1 

$1008 

$1004 

$1000 

r
turn 

1 
r

mrn

l 
r

turn 

1 

Volatile assigned on 3rd en try; 
i.e., at priority 6, I register 
contains $1008 

Volatile assigned on 2nd en try; 
i.e., at.priority 5, I register 
contains $1004 

Volatile assigned on 1st en try; 
i. e., at priority 4, Ire g is t e r 
contains $1000 

Lines 1 through 7 in the e x amp I e ADD2 program could be the same in any re
entrant program consisting of getting volatile storage for that run and saving the 
return add res s. Lines 12 through 17 could be the same also, con sis tin g of 
ret urn in g the volatile and exiting. Lines 8 through 11 comprise the program 
itself. Note that in this case no TEMP's were needed because the par a met e r 
addresses in the calling program's A and Q registers are con t a in e d in volatile 
locations 1 and 0 and they can be used to access the parameters. The following 
is a line-by-line description of the reentrant coding for the ADD2 program. r'" 
1. The entry point is entered by a RTJ from the calling program. 

2. The subroutine must lock out interrupts because the return address which the 
RTJ stored in the entry point must not be lost. Since the RTJ instruction 
s tor e s its return address in the jump address and does an RNI at jump ad
dress+1 (line 2, the IIN) an interrupt cannot occur and wipe out the ret urn 
add res s in ADD2 before the IIN. The IIN must also be in effect before the 
R TJ to VOLA because VOLA is not r e en t ran t and expects interrupts to be 
locked out before it is entered. 

3,4 Jump to VOLA (through locore location $BB). Pass a parameter to VOLA 
requesting four words of volatile storage. A different block will be assigned 
each tim e this subroutine is entered, and the address of the block comes to 
the calling pro g ram (ADD2) in I. ADD2 must never destroy its I register 
because it contains the address of the volatile b I 0 c k. VOLA also saves the 
calling program's Q, A and I registers in the first three words of the block. 

All the registers inADD2 (including I) will always be safe from an interrupting 
and r e e n te ring program because ADD2's registers would be saved on the 
interrupt stack. 

11-28 

1...... .... 

\' 
\-- . 



o 

o 

11 • .3.1 

5. En a b I e interrupts as soon as possible because it is illegal to lock them out 
for more than 50}.ls (including the time in VOLA). 

6. One free instruction is allowed after the E1N before an interrupt can occur; so 
the return address is rescued from the entry point -- it will be safe in A. At 
any time after this point an in t err up t can occur and the Interrupt Handler 
will save the registers. 

7. Store the return address in volatile so that the A register can be used in the 
program. 

8. Q still has the address of parameter 2 in it from the calling program so itcan 
be used to get the parameter into A. 

9. The address of parameter 1 was passed in A and VOLA put it in the 2nd word. 
It can be loaded into Q. 

10. Parameter 1 is then add e d into A using the address in Q. Note in 8 and 10 
that the addresses are put in Q. One way of addressing the parameters which 
would not work is: 

LDA
ADD-

(1+1) 
(1+0) 

It looks like it would work because the addresses are in 1+1 and 1+0 but this 
would be assembled as $100 and $FF which of co u r s e is not where the ad
dresses are. An assembly error would probably occur at the 1+1. Another 
method which would not work is: 

LDA
ADD-

($3), I 
($22), I 

Location $3 has a 1 in it to which will be added the contents of $FF (giving 1+1) 
and the add would be from 0+ the con ten t s of $FF (giving 1+0). This would 
get the par a met e r address in A. Then the ADD would add in the second 
parameter address. 

11. The answer is stored in volatile+1 because that is where VOLR will restore 
the A register from. Any parameters to be returned in registers must be put 
in the first three words of volatile. 

12. The return address must be picked up out of volatile because volatile is going 
to be returned and it would be lost. 

13. Interrupts are locked out for exiting. 

14. The return address is stored in ADD2 because the 0 rig ina I Q is going to 
replace ADD2' s Q. 

11-29 



11.3~1 

15. Vol a til e is returned. VOLR restores the original registers from the first 
three words of volatile! That is why the an s we r was put there, to get it in 
the original A. Also, since volatile is now gone, the return address had to 
be res cued; and it c 0 u 1 d not be left in Q (to exit through Q) because ADD2' s 
Q is gone. 

16. Enable interrupts. 

17 • Free instruction to exit. 

Incorrect example: 

line 10 ADD
LDQ
RTJ
EIN 

..------+. JMP* 

(ZERO), Q 
3,1 
(AVOLR) 

(ZERO), Q 

ANSWER IN A. 
RETURN ADDR INQ 
RETURN VOLATILE 

Q now has the original Q in it, not the return address; also the answer in A 
was clobbered and has the original A in it. 

If any other t e m po r a r y locations were needed by the reentrant program, they 
would be requested in vol at i 1 e and would be addressed the same way. For ex
ample, if it was desired to move the par a met e r addresses to volatile +5 and 6 
(like TEMP's in non-reentrant program), the NUM in line 4 would be 6 and lines 
8 through 12 would be replaced with: 

LDA- 1,1 PICK UP PARAM 1 ADDRESS 
STA- 4,1 MOVE TO TEMP (1+4) 
LDQ+ 0,1 PICK UP PARAM 2 ADDRESS 
STQ- 5,1 MOVE TO TEMP+1(I+5) 
LDQ- 4,1 GET PARAM 1 ADDRESS IN Q 
LDA- (ZERO), Q GET PARAM 1 
LDQ- 5,1 GET PARAM 2 ADDRESS IN Q 
ADD- (ZERO), Q ADD PARAM 2 TO PARAM 1 
STA- 1,1 STORE ANSWER TO PASS IN A 

11-30 

~' 
....... , .. ," 



0 

o 

o 

11.3.1 

5 
address of 
parameter 2 

4 
address of 
parameter 1 

3 return 

2 I 

1 A 

(I) + 0 Q 

This example coding (immediately above) is used simply to ill u s t rat e how the 
program can a c c e s s volatile for its temporary results. Of course, it would be 
inefficient to code the present example this way because the move and reloading 
are not necessary. Study all the addressing carefully. 

11.3.2 Reentrant Problem, AVG 

Following is the AVG program which computes an average. Rewrite the program 
as a non-destructive and reentrant subroutine. Assume that the calling program 
passes the number of words in A and the first word address in Q to the subroutine. 
The subroutine s h 0 u 1 d pass the average back in A and the remainder in Q. Re
member that interrupts may not be in hi bit ed more than 50 J1S at anyone time. 

NAM AVERAGE 
ENT AVG 
BZS OVFL(l) 

AVG 0 0 
ENQ 9 

ENA 0 
SOY 0 

LOOP ADD* X,Q 
SNO TEST-*-l 
RAO* OVFL 
AND =N$7FFF 

TEST SQZ AV-*-l 
INQ -1 
JMP* LOOP 

AV LDQ* OVFL 
ALS 1 
LRS 1 
DVI =N10 
JMP* (AVG) 
END AVG 

11-31 



11.4 

11.4 MSOS REQUESTS MADE BY SYSTEM PROGRAMS 

Remember that all requests to MSOS simply put a des ire d action (such as a Write or 
Schedule) on a list (queue) and that the action mayor may not be performed (depending 
on the rules) before control returns to the requestor. 

There are special con sid era t ion s system programs (either core resident or mass 
memory resident) must make when making requests to the operating system. This is 
in addition to the considerations and rules jobs must follow. 

First, all pro t e c ted programs must check a request after it is made to see if it was 
accepted. When control is returned to the requestor beneath the parameter string, Q 
will be positive if the request was accepted, negative if the request was rejected. For 
example: 

CKQ 

REQOK 

f 
. RTJ-

NUM 
ADC 
SQP 
JMP* 

f 

($F4) 
$1206 
PGM 
REQOK-*-l 
REQREJ 

schedule request 

In the above example when control is ret urn e d at CKQ, a skip is made to REQOK if, 
indeed, the request was accepted. Otherwise, (Q negative) a jump is made to REQREJ 
because the r e que s t is rejected. If a request is rejected, the program might either 
rep eat the request at REQREJ, change the priority, or print an error message. Re
member that when a job made a request, the system would continually repeat the request 
until it was accepted, then return control to the program beneath the parameter string. 
However, all protected programs should check every request in the above fashion since 
there will be no other indication if a request is rejected. 

Even though a bit of Q is used to in d i cat e acceptance or rejection of a request by the 
system, if the program were passing a parameter in Q, the full 16-bit original Q is still 
passed intact. Only the upper bit has been changed when contI-ol comes back to the re
questor. 

11.4.1 Schedule 

A schedule request made by a s y s tern program would be coded the same as one 
made by a job except the requestor should check to see that it is accepted. Ex
amples would be: 

OK 

) 
RTJ-
NUM 
ADC 
SQP 
JMP* 

f 

($F4) 
$1205 
WRITE 
OK-*-l 
REJ 

WRITE is in the scheduling program. It will be executed at priority 5. 

11-32 

c 

c 



0 

o 

f 
11.4.1 

EXT MIPRO 

f 
RTJ- ($F4) 
NUM $1204 
ADC MIPRO 
SQP OK-*-1 
JMP* REJ 

OK f 
MIPRO is external to the scheduling program and will be run at priority 4. It is 
core resident and not in the system directory. 

y. 
EXT MIPRO 

l 
RTJ- ($F4) 
NUM $1204 
ADC (MIPRO) 
SQP OK-*-1 
JMP* REJ 

OK ) 
Here MIPRO is in the system directory and will run at 4. The MIPRO program 
could be either core resident or mass memory resident. The scheduling program 
does not have to know where MIPRO is as the system will find it. 

There is an important consideration to make when deciding whether to schedule a 
program with the regular external form or whether to schedule it with the system 
directory for m (having the program in the system directory). If it is undecided 
whether the scheduled program will be core resident or mass memory resident, 
use the system d ire c tor y form as it will work in either case. The same logic 
would apply to a core resident program which may later be a mass memory pro
gram. Using the system directory form simply causes the system to have four 
more words of core (for the directory entry) and take a few microseconds longer 
to schedule but this can save miles of recoding. 

11-33 



11.4.1.1 

11.4. 1. 1 Priorities (Schedule) 

The system program will be concerned with the priorities of the scheduled pro
grams. The software p rio r it i e s run from 15 (highest) to 0 (lowest). The C P 
(completion priority) fie 1 d in'the request is the desired priority for the address 
scheduled. This Ineans that scheduling is actually like jumping to an address and 
changing the running priority concurrently. 

If the priority in the schedule request is lower than or equal to the current running 
priority of the program making the request, the scheduled program will run after 
the current program is finished and the p rio r it y works down to it. It waits by 
priority in the scheduler stack with other scheduled programs. This is the way to 
set up things to be done after the current program exits. 

If the scheduled priority is higher than the running priority, a p s e u d 0 interrupt 
occurs immediately and the scheduled program is executed. Then control returns 
back to the requestor. 

Pro c e s s programs usually run at priorities of 4, 5 and 6. Jobs run at 0 and 1. 
Other priorities are us u a 11 y for the operating system and hardware interrupts. 

11.4. 1.2 Rejects (Schedule) 

A scheduled request for a core resident system program which is not in the sys- C 
tem directory would be r e j e c ted if there is no room in the scheduler stack (the 
queue for waiting scheduled programs) for the request parameters. If the request 
is for apr 0 g ram which is in the system directory and that program is already 
threaded on some thread, a reject would occur. This implies that the program 
has been scheduled (perhaps by some 0 the r program) and not yet finished.. Pa
rameters for schedule requests for system directory programs are not transferred 
to the scheduler stack so a reject would not occur as a result of the s c h e d u 1 e r 
stack being full. 

At this poi n t it could be noted that relatively minor modifications to the system 
would be required to allow for a que u e of requestors waiting to rerun a desired 
system directory program (for example, a mass memory program which is already 
in core). It would even be possible to allow that mass memory program to be re
entered by a higher priority interrupting program (in which case it would have to 
be reentrant). 

11. 4. 2 TIMER Request 

Since TIMER requests are simply delayed scheduler calls, they may be made by 
system programs with the same considerations as required for scheduler calls. 

11-34 



11.4.1.1 

(j 11.4.3 I/O Requests 

o 

o 

The I/O requests (READ, WRITE, FREAD, F W R I T E) must consider priorities 
when these requests are in protected programs o They must also check to see if 
the requests were accepted. The actual operation of what the requests do is the 
same as for jobs. 

The following is an FWRITE example: 

RTJ-
NUM 
ADC 
NUM 
NUM 
NUM 
ADC 
SQP 
JMP* 

OK T 
WROTE 

~ 
BUF BSS 

END 

11.4.3.1 Priorities (I/O) 

($F4) 
$OC76 
WROTE 
o 
$18FC 
35 
BUF 
OK-*-l 
REJ 

T 
l 

BUF(35) 

FWRITE, RP=7, C P=6 
COMPLETION 

ASCII MODE, STD. PRINT DEVICE 
35 WORDS 
BUFFER ADDRESS 

The request priority (RP=7 in example) has a b sol ute 1 y nothing to do with the 
running priority of the program. It is the priority of this request with respect to 
other requests for a logical unit number. In other w 0 r d s if there are RP=6 and 
RP=10 r e que s t s waiting to be written on the printer, the RP=7 requests will be 
threaded in between the 10 and the 6. Each logical unit has a queue of requests 
waiting for it and the driver will handle them sequentially by priority. When the 
write actually gets done is a function of the driver (program) priority and its re
lationship with the priority of the running program. For example, if the teletype 
driver runs at priority 10 and the program runs at p rio r i t Y 6, the driver will 
periodically interrupt the program to do the actual write operation. 

The completion priority in the requests (CP=6 in example) is related to the running 
priority of the program. It is like a schedule request for the completion address 
after the I/O is finished. In the example, if the running priority is 4, a pseudo 
interrupt will occur and the priority will be changed to 6 when the I/O is finished 
and the completion routine entered. 

11-35 



11.4.3.1 

From the time the request is in it i ate d until the time the I/O is completed, the 
thread word in the request will be non- zero. Here is an example of apr 0 g ram 
which runs at priority 4, initiates a request, and loops waiting for the request to 
be finished. 

RTJ-
NUM 
NUM 

THREAD NUM 
NUM 
NUM 
ADC 
SQP 
JMP* 

LOOP LDA* 
SAZ 
JMP* 

COMPL 

($F4) 
$OCEO 
0 
0 
$0804 
35 
BUF 
LOOP-*-l 
REQREJ 
THREAD 
COMPL-*-l 
*-2 

FWRITE, RP=14 
NO COMPLETION 
THREAD 
ASCII, OUT ON TTY 

REQUEST ACCEPTED 

THREAD ZERO YET? 
SKIP OUT; I/O DONE 

Many programs have been coded this way; and this should not be done. Looping 
like this at any p rio r it y is going to slow down a s y s t e m by locking out lower C 
priorities. For example, if many process programs were coded this way, they 
could almost completely lock out job processing (which runs at 0 and 1). It would 
be much better to cod e the write with a completion address and jump to the dis
patcher to wait for the completion routine to be entered. 

It is important to control the priorities in a program which makes a number of I/O 
requests. Com pIe t ion routines should be very short and should be at a higher 
priority than the rest of the program to cause a software interrupt in the program 
when I/O is complete. Completion priority could be lower than running priority 
if it is simply desired to check for errors at the end of the pro g ram or if it is 
desired for the programs handling the data to run lower. 

If a program is to run at priority 4 and all its I/O completion is to run at priority 
5, it would be necessary for each completion routine to schedule the priority back 
down to the program priority before initiating the next request. 

11-36 

c 



0 

0 

11.4.3.1 

EXT REJ, IOERR 
EQU ADISP($EA) 

T 
RTJ- ($F4) 
NUM $0875 FREAD, CP=5 
ADC COMPRD COMPLETION 
NUM 0 
NUM $1005 ASCII, LUN 5=CR 
NUM 40 40-WORD BUFFER 
ADC BUF 
SQP REQOK 
JMP+ REJ 

REQOK JMP- (ADISP) 

COMPRD SQP SCHPRT PRIORITY HERE IS 5 
RTJ IOERR 

SCHPRT RTJ ($F4) 
NUM $1204 SCHEDULE, DOWN TO 4 
ADC PRINT PRINT IN SAME PGM 
JMP- (ADISP) 

PRINT RTJ- ($F4) PRINT NOW AT PRIORITY 4 
NUM $OC05 FWRITE, CP=5 
ADC COMPPR 
NUM 0,$1004,35 LUN 4 (TTY), 35 WORDS 
ADC BUF 

1 

11.4.3.2 Rejects (I/O) 

An I/O request could be r e j e c ted if the request is already threaded (like if the 
program tried to start up that write again before it was finished) or if the system 
tries to schedule the driver and finds the scheduler stack full. (In that case the 
driver's priority would be lower than the running priority of the program and that 
is not normal. ) 

11-37 



11.4.3.3 

11.4. 3. 3 System Request Problem, THREAD 

The following example program .runs at priority 12 and makes a Write request for 
the teletypewriter (logical unit 4) at priority 14. Since it has no completion ad
dress, it does not jump to the dispatcher to wait for the Write to be finished as 
control would not return to the pro g ram. Instead, it waits for the Write to be 
finished by looping on the thread word at LOOP. (The thread word was filled when 
the request was made and becomes z e r 0 again only when the driver has finished 
this request.) The driver runs at priority 10. 

RTJ- ($F4) 
NUM $OCEO FWRITE ,~RP=14 
NUM 0 NO COMPLETION 

THREAD NUM 0 THREAD 
NUM $1004 ASCII, OUT ON TTY 
NUM 35 
ADC BUF 
SQP LOOP-*-l 
JMP* REQREJ 

LOOP LDA* THREAD 
SAZ COMPL-*-l 
JMP* *-2 

COMPL 

When will the write actually be done? 

11. 4. 4 EXIT Requests 

All pro g ram s exit to the dispatcher. This is so the dispatcher can pick up the 
highest priority program waiting to be executed next, whether it is a previously 
interrupted program or a scheduled pro g ram. This is how the priority drops. 

The EXIT request made by an unprotected program generates a jump to the dis
patcher. A protected pro g ram may not use the EXIT request; it must code the 
jump to the dispatcher: 

f 
EQU 

1 
JMP-
END 

11.4.5 SPACE and RELEASE 

ADISP($EA) 

(ADISP) 

There are two requests which only protected programs are allowed to make: Space 
and Release. These requests are used to get, and later release, core in the pro
tected area called allocatable core. Any unprotected program may a c c e s s this 

11-38 

c 

~' 
-...., 



\ U·" 

o 

o 

11.4.5 

area and may use the space for anything it desires -- to contain data or programs. 
The allocatable cor e area is divided into priority blocks (so that some core will 
always be available at the highest p r io r it ie s). The sizes of the blocks at each 
priority are set up by the systems analysts at system initialization time. 

11.4.5.1 SPACE Request 

Here is the format of the SPACE request: 

RTJ- ($F4) 

15 9 8 4 

I RC=10 I I RP 1 CP 
COMPL 
THREAD = 0 

Q 
N WORDS 

The Macro form for the SPACE request would be: 

SPACE n, compl, rp, cp, X 

RC is request code 10. Bit 8 is X bit. 

RP is priority of the block in which space is des ired. 

C P is the priority of the completion address. 

o 

COMPL is the completion add res s of where control will go after the space has 
been gotten. 

THREAD is the thread word, zero • 

..s. is the Q register par am e t e r passed back to the completion routine. Q will 
contain: 

address - of the space gotten, or 
$8000 - if no space will ever be available at this p rio r it y; this means 

that even if the background were swapped out there would still 
not be enough core to fill the request. 

N WORDS is the number of words of space requested. 

The address of the space would also be in core immediately preceding the space 
block which was acquired. 

11-39 



11.4.5.1 
r-------, 
I FWA I 
I I 

FWA 

BLOCK 

A swap would occur if necessary to get core under the following conditions: 

Request priority is greater than 3 
Completion priority is greater than 2 
Core is not already swapped 
No unprotected I/O is going on 
The minimum time between swaps is passed 

Otherwise, the request for space waits on a queue. 

The space request would only be rejected if it was already threaded. (i. e., still 
involved in a previous operation.) 

11. 4. 5. 2 RE LEASE Request 

After the program which requested the space is finished using it, it must release 
the space. This is done with aRE LEA S E request. The format of the release 
request is as follows: 

RTJ- ($F4) 

15 9 8 1 0 
RC = 12 [I o 

FWA 

The Macro call for RE LEASE is: 

RE LEAS fwa, t, x 

RC is request code 12; bit 8 is X bit. 

11-40 

c' 

c 



o 

C) 

o 

11.4.5.2 

~ bit, bit 0, should be 0 if it is desired for con t r 0 I to return to the program 
(releasor) after the release is made. The It' bit is set to 1 if control should go to 
the dis pat c her instead. The release request is the only one which allows this 
choice of whether to come back to the program beneath the parameter string (as 
all other requests do) or to go to the dispatcher if this was the last thing to do. The 
It' bit will be used in coding mass memory programs. 

FWA is the address of the core to be released. It must be the correct address of 
the block or else no release will occur and there will be no error message. This 
is to provide flexibility so that a program which was coded to run on mass memory 
(in a later sec t ion) could be changed to be core resident without any changes or 
reassembly of the program. When it became core resident and tried to release 
its core, the core simpJy wouldn't be released. 

The release request causes the space to be immediately given to any other space 
requestor waiting on the space que u e before control returns to the releasor (or 
dispatcher) • 

An example of a space and release request could be: 

f 
RTJ- ($F4) 

1. NUM $1445 RP=4, CP=5 
ADC COMPL COMPLETION ADDRESS 
NUM 0 
NUM 0 ADDRESS COMES BACK HERE 
NUM $1000 $1000 WORDS WANTED 

2. SQM REJ REQUEST REJECTED 
JMP- (ADISP) WAIT FOR SPACE 

3. COMPL SQP GOTSP-*-l GOT SOME SPACE 
JMP* NOSPAC NO SPACE GOTTEN 

4. GOTSP STQ* REL+2 ADDR. OF SPACE IN RELEASE 
5. 

r 
6. REL RTJ- ($F4) GO RELEASE SPACE 
7. NUM $1800 
8. NUM 0 ADDRESS OF SPACE 
9. 

END 

11-41 



11.4.5.2 

1. Space request, priority 4 block, completion priority 5 
2. Q is checked to see if request was not accepted. 
3. Completion address is entered when sbPace ids gotten or if there is no space. C~, 

Q would be negative if no space was 0 taine • 
4. If space was obtained, Q contains the address of the block. Here it is stored 

in the release request. The address could also have been obtained later from 
word 3 of the space parameter list. 

5. Continue in program, using space. 
6. Release the space; program is finished using it. 
7. It' bit is not set, so control returns to the program after the release. 
8. The address of the block is here; it was placed here after the space was ob-

tained. 
9. Continue in program. 

Note that the above program is not runanywhere so it must be a core resident sys
temprogram. The completion address in the space request is not relative. 

11.5 CODING MASS MEMORY PROGRAMS 

All programs that are to be part of the System Library resident on mass memory must 
conform to special rules. All of the rules are logical when the inter-relationship of the 
program and the system is considered. The most important general consideration is to 
be sure the program gets to do everything it set out to do before it disappears. 

11. 5. 1 Modules in Library 

The programs are stored on mass memory in a b sol uti zed form. (The System 
Initializer put them there.) E a c h program - or a set of a program and its sub
routines together - is called a module and has a name unique to the module. The 
name must not appear as an entry point anywhere in the system. The name of 
the 'module must be in the system directory. Here is an example of two modules 
on mass memory: 

MIPRO 
Module 

SCAN 
Module 

{ 
MIPRO 

Program 
'----------' 

~ 

SCAN! 
Program 

SCAN2 
Subroutine 

SCAN3 
Subroutine 

11-42 

(MIPRO is not an entry 
point. ) 

c 



o 

o 

11.5.1 

MIPRO is the program which handles manual interrupts to the process; the module 
is made up of the single program. SCAN is a module made up of a user process 
program SCAN1 and its subroutines SCAN2 and SCAN3. These three programs go 
together and will always be together as a g r 0 u p when the module is brought into 
core for execution. 

It is possible for a mass memory module to contain a DATA block within it, ac
cessible only to the programs in that module. Any number of modules may contain 
s epa rat e DATA blocks, but there may be only one in each module. Here is an 
example of the SCAN module if it contained a DATA block: 

SCAN3 

SCAN2 

SCAN1 

DATA 

The programs in any module may use system COMMON, which is in highest core. 

11.5.2 Allocatable Core 

The area of core that the mass memory programs run in is called all 0 cat a b 1 e 
core. It is divided into priority blocks and the highest core area is available to 
the larges t priority programs. A program to be run will be put in the smallest 
space it will fit in which is available to that priority. Note that this means a pro
gram may run at different places in allocatable core at different times. There is 
no dynamic relocation of the programs in allocatable core so as core spaces are 
released, they are saved for subsequent programs to be run in. 

Time 2 

Time 1 

MIPRO 

MIPRO 

area of allocatable core 
available to priority 4+ 

In the above example MIPRO may run in different places depending on the space 
available. 

11-43 



11.5.2 
/-" 

The systems analysts decide what priority area the program will run in (at system (_, 
initialization time); so a program calling a mass memory program has no control 
over this. 

11.5.3 Scheduling the Mass Memory Program 

When it is desired to bring a mass memory program into core for execution, the 
calling program schedules it in. An example would be: 

EXT MIPRO 

r 
SCHDLE (MIPRO), 4,0 

The system program MIPRO is scheduled in, to be executed at priority 4. As in 
all requests for system programs, MIPRO must be named external and must be in 
parentheses in the SCHDLE request. 

The name MIPRO is the name of the mod u I e in the system directory. This re
quest causes the system to obtain space in allocatable core to put the program in 
(by a SPACE request), then to read it in (by a mass memory READ request), then 
transfer control to it at its first core location. 

The calling program does not have to worry about all this; it s imply knows that 
scheduling it causes the program to come in to core and begin ex e cut ion. The C 
schedule request would be rejected if the program has already been scheduled (by 
another caller) and is still in the process of being brought into core. It could not 
be rejected from the scheduler s t a c k being full because the parameters are not 
transferred to the stack. 

11.5.4 Form of Mass Memory Programs 

All mass memory programs have to be runanywhere, as has already been covered. 
This is because they are stored on the s y s t e m library in absolute form and are 
run at different places in allocatable core, not where they were absolutized. 

Mass memory programs· do not normally have to be reentrant because a program 
is usually brought into core each time it is called to be run. Minor modifications 
to the system would be r e qui re d to allow a mass memory program which is in 
core to be r e en t ere d by a higher priority interrupting program; in that case it 
would have to be reentrant. 

11-44 

c 



o 

o 

o 

11.5.4 

Figure 27. Maps of Mass Memory Modules and Core Subroutines 

Priority 4 

SCAN4 

SCAN3 subroutine needed by both 
SCAN and ALARMS modules 
One copy in each module. 

... ~--+----SCAN4 subroutine also needed by both 
~--------------~ SCAN and ALARMS modules. It is core 

resident and reentrant. 

11-45 



11.5.5 

11.5.5 Externals to Mass Memory Programs 

Externals in mass memory programs which reference locations w h i c h are core 
resident must be absolute. Externals which reference addresses in other mass 
memory programs (in the same module) must be relative. There must not be any 
externals which reference addresses in any other mod u I e. This is because one 
module does not know when another module is in core (or where it is) unless special 
links are pro v ide d to handle it. This means that any subroutine which several 
modules need would be either core resident or there would be a separate copy in 
each mod u I e that needs it. Another solution would be to put the subroutine in a 
separate module by itself and let routines needing it schedule it. 

11.5.6 Space 

Mass memory programs may reI e a s e their own space. This is a good feature 
because it means that a program can schedule a mass memory program and then 
can forget about it after the schedule request has been accepted and exit knowing 
that the scheduled program will be executed at its priority. The mas s memory 
program could pick up the address of where· it is, as its first instruction (i. e.), 
and store it in the release request which would be the last instruction in the pro
gram. 

1. NAM 
2. SCNMSG NUM 

STA* 
f . 

REL RTJ-
3. NUM 

NUM 
END 

core during execution: 

FWA 

SCNMSG 
$C8FE 
REL+2 

($F4) 
$1801 
0 

FWA 

C8FE 

68xx 

54F4 

1801 

FWA 

11-46 

LDA* *-1 

RELEASE REQ., TBIT SET 
ADDRESS TO BE RELEASED 

Space gotten in SPACE 
request 

C
-' 
-' 

c 



u 

o 

o 

1. 

2. 

3. 

11.5.6 

Note that SCNMSG is not declared as an entry point since it is also the name 
of the module. 

Remember that the first word preceding Space in allocatable core obtained by 
a SPACE request contains the address of where that block of space is. The 
NUM $C8FE is to fake out the assembler and cause it to make a code as the 
first word of the program which will be a LDA* *-1. A LDA* *-1 instruction 
would not have been assembled properly because it attempts to reference out
side of the program area relatively. Also remember that the first word of a 
mass memory module is executed so the NUM will not be treated as data. So, 
the $C8FE gets the address of the space occupied by the program into A. 

Note that in the release request the 't' bit (bit 0 in the fir s t word of the pa
rameter string) is set to indicate to the system not to return to the program 
which made the release request after releasing the space. This bit would be 
necessary for a mass memory program reI e a sin g its own core. It makes 
sense because if control was returned to the program, there isn't any program 
after the end. Or, even if there was some more program (such as a jump to 
the dispatcher), it may not be executed. Rem e m be r that when a release 
request is made, the space is allocated to any waiting r e que s t s before the 
return to the requestor. Therefore, the space may have been given away and 
may in fact contain another program or data; a return to the releasing program 
would cause a mess because it may not be there any more. 

If the mass memory module contains several subroutines, the NUM $C 8FE 
would be the first instruction in the mod u I e and the RE LEASE would be the 
last request made in the module. 

Mass memory programs should com pIe t e their I/O and their calls to any 
subroutines before ex it i n g. This is because when they release their space 
and exit, any data b u f fer s or completion addresses in the program may be 
lost as soon as the release request is made. 

11.5.7 Mass Memory Problem, MMPG1V[ 

The following example program contains one err 0 r which could cause incorrect 
results. It is very subtle and difficult to locate. 

Assume that the assembly-language coding is runanywhere and correct. Look for 
an error which can occur during execution. The program runs at priority 4. The 
driver runs at priority 10. The completion routine runs at priority 6. 

11-47 



11.5.7 

OOFA 

POOOO C8FE 

* 
ADISP 

* 
* 
MMPGM 

NAM 
ENT 
EXT * 
EXT 
EXT 

EQU 

NUM 
STA* 

MMPGM 
MMPGM 
REQREJ, IOERR 
CORSUB 
SYSPGM 

ADISP($FA) 

$C8FE 
REL+2 

MASS MEM PGM EXAMPLE 

MM EXTS IN SAME MODULE RELATIVE 
CORE RES SUB EXT ABSOLUTE 
SYS DIR PGMS MUST BE EXTERNAL 

FIRST INSTR OF MM PGM EXECUTABLE 
PICK UP CORE ADDRESS OF MMPGM 

JMP* WRITE 

P0003 4D4l 
P0004 5353 
P0005 204D 
P0006 454D 
P0007 4F52 
P0008 5920 
P0009 4558 
POOOA 4l4D 
POOOB 504C 
POOOC 4520 

POOOD 54F4 
POOOE OD56 
POOOF OOOF 
POOIO 0000 
POOll l8FC 
P0012' OOOA 
P0013 7FF4 
P0014 0162 
P0015 5800 X 
P0016 7FFF X 

* 
MSGBUF 

* 
WRITE 

P0017 5400 X REQOK 
P0018 7FFF X 
P0019 l4FA 

POOIA 54F4 
POOIB 12(14 
POOIC FFFF X 

* 
POOID 0162 WRaTE 
POOlE 5800 X 
POOIF 7FFF 

P0020 54F4 
P002l 1801 
P0022 0000 

* 
REL 

* 

ALF 

FWRITE 

SQP 
RTJ 

RTJ+ 

JMP
SCHDLE 

SQP 
RTJ 

RELEAS 

END 

*, MASS MEMORY EXAMPLE* 

$FC, WROTE-*+l, MSGBUF-*+5, 10, A, 5,6, I, X 

REQOK 
REQREJ 

CORSUB 

PROT PGMS MUST CHECK REQ ACC 
GO HANDLE REJ;REL ADDRESSING 

ABS ADDRESSING TO CORE RES PGM 

(ADISP) NO MORE TO DO 
(SySPGM), 4, 0 SCH SYS Dm PGM, CORE OR MM 

REL 
IOERR 

0, T, 0 

MMPGM 

CHECK Q FOR 10 ERRORS 
GO ANALYZE ERRORS 

o WILL BE REPLACED. W / ADDRESS 

DO NOT RETURN TO PGM AFTER REL 

I 
REQOK 
IOERR 

OOFF MMPGM OOOOP ADISP OOFA MSGBUF 0003P WRITE OOODP 
0017P WROTE OOIDP REL 0020P SYSPGM OOlCX CORSUB 0018X 
OOlFX REQREJ 0016X 

11 ... 48 

c 



o 

o 

11.5.7 

The following is a description of the concepts presented in MMPGM. Note that an 
entry point MMPGM is declared; therefore, the name of the module must be some
thing other than MMPGM. There are two relative externals, REQREJ and IOERR, 
which must be subroutines in this same module. There is one absolute external, 
CORSUB, which must be a core resident subroutine. 

POOOO -

POOOD -

P0014 -

picks up the address of the cor e block MMPGM is 10 cat e d in, then 
stores it in the release request. 

initiates an FWRITE from MSGBUF. RP=5 and CP=6. The X bit is 
set so WROTE-*+l and MSGBUF"'*+5 calculate the correct distances 
from POQOE to the completion address WROTE and the buffer MSGBUF 
and places them in-POOOFanci-P0013~ 

OOOE 
+OOOF 

001D WROTE 

OOOE 
+7FF4 

8002 
1 

0003 MSGBUF 

checks to see if the request was accepted. 

P0017 - jumps to execute CORSUB at running priority 4. 

P0019 - schedules a program in the system directory, SYSPGM, to be executed 
at priority 4 aft e r completion of MMPGM. Note that SYSPGM must 
be named external and that the ( ) causes bit 15 to be set in I P001B. The 
program should have checked Q to see if the r e que s t was accepted. 

P001C - the pro g ram has now run out of things to do, so it goes to the dis
patcher to await the write completion. 

P001D - after the write, the completion routine (running at priority 6) checks 
for errors. 

P0020 - the completion routine then releases cor e. The T bit is set so that 
after core is released, control will go to the dis pat c her instead of 
returning to the program. 

11.6 EXTERNAL REFERENCES AND LINKAGE, SUMMARY 

It is desirable at this point to review the rules regarding externals among the various 
types of system programs. 

Core resident programs can make references to other core resident programs e it her 
relatively or a b sol ute I y. Since there is a choice, it is probably best to use absolute 
mode. Then if this program is ever made mass memory res ide nt, its references to 
low core programs will be correct. 

11-49 



11.6 

Core resident programs would not make any references to mass memory programs by 
way of externals. They would schedule the mass memory programs (which would be in 
the system directory). 

Mass memory programs are grouped together in modules. A module may be composed 
of a single program or several pro g ram s. Externals which reference core resident 
programs must be a b sol ute. Externals which reference other programs in the same 
module must be relative. Mass memory programs may not reference any programs in 
another module by externals (they can schedule them in). 

A mod u 1 e has a name unique to it which is not an entry point anywhere in the system. 
This is the name in the system directory. Cor e resident programs can also be in the 
directory but only a few us u all yare. Any program which may at some later date be 
changed from cor e resident to mass memory resident (or vice versa) should be in the 
directory so that it can be scheduled by the system directory schedule r e que s t form. 

11-50 

c 

c 



C
'-" 

" 

I 

o 

o 

11.6 

Figure 28. 1700 Core Map 

system common 

Loader Common 

Unprotected 

Subprogram B 

Subprogram A 

Program Library 
Data Block 

Job Processor 1----------

Request Processor 
---------

System and Process - do not have to be 
Programs run anywhere 

(* L) ----------- -

- run anywhere 

- mass memory externals 

;----------
Communications 

Region 

- -

relative 0000~'---__________ --1 

- locore externals abs olute 

- cannot reference any locations in 
other mas s memory modules by 
way of externals 

- cannot reference any 
locations in a mass 
memory module by 
externals 

Each" group" of mass memory programs loaded and linked together by one *YM control 
statement is called a mass memory module and has a name unique to the module. 

11-51 



c 



(j 

CHAPTER XII 

PERIPHERAL PROGRAMMING - I 

o 



c 

(' 
\ ...... 



CHAPTER XII - Peripheral Programming I 

Cj TOPIC PAGE 

12.1 1721 Paper Tape Reader 12-1 
12.1.1 PTR Functions 12-1 
12.1.2 PTR Status 12-3 
12.1.3 PTR Example Program 12-5 
12.2 1723 Paper Tape Punch 12-6 
12.2.1 PTP Functions 12-6 
12.2.2 PTP Status 12-7 
12.2.3 PTP Example Program 12-9 
12.3 1711 Teletypewriter 12-11 
12.3.1 TTY Functions 12-11 
12.3.2 TTY Status 12-12 
12.3.3 TTY Example Program 12-15 
12.4 1713 Teletypewriter 12-17 
12.4.1 1713 Functions 12-18 
12.4.2 1713 Status 12-19 
12.4.3 1713 Example Program 12-20 
12.5 1726/405 Card Reader 12-23 
12.5.1 CR Functions 12-23 
12.5.2 CR Status 12-25 
12.5.3 CR Example Program 12-28 

0 12.6 1742 Line Printer 12-29 
12.6.1 LP Functions 12-29 
12.6.2 LP Status 12-31 
12.6.3 Programming the Printer 12-31 
12.6.4 Example, 1742 Line Printer 12-32 
12.7 1738/853 Disk 12-36 
12.7.1 Disk Functions 12-40 
12.7.1.1 Director Bits 001 - Director Functions 12-40 
12.7.1.2 Director Bits 010 - Sector Record Address 12-41 
12.7.1.3 Director Bits 011 - WRITE 12-41 
12.7.1.4 Director Bits 100 - READ 12-42 
12.7.1.5 Director Bits 101 - COMPARE 12-42 
12.7.1.6 Other Director Functions 12-42 
12.7.2 Disk Status 12-42 
12.7.2.1 Director Status 12-42 
12.7.2.2 Address Register Status 12-43 
12.7.3 Disk Sample Programs 12-44 
12.7.3.1 Addresses Tag Program 12-47 
12.7.4 Problem 12-48 



12.8 1751 Drum Controller 12-48 
12.8.1 Drum Functions 12-50 C~-~ 
12.8.2 Drum Status 12-52 
12.8.2.1 Director Status I 12-52 
12.8.2.2 Director Status II 12-53 
12.8.3 Programming the Drum 12-53 
12.8.4 Drum Example Program 12-55 
12.9 1731/601 Magnetic Tape 12-57 
12.9.1 D = 00 MT Data ·12-57 
12.9.2 M T Functions 12-60 
12.9.2.1 D = 01 Control Function 12-60 
12.9.2.2 D = 10 Unit Select Function 12-61 
12.9.3 MT Status 12-61 
12.9.3.1 D = 01 Status I 12-61 
12.9.3.2 D = 10 status II 12-62 
12.9.4 MT Example Programs 12-62 
12.9.4.1 MT Example 1 12-62 
12.9.4.2 MT Example 2 - With Error Checks 12-63 
12.10 1732/608-609 Magnetic Tape 12-66 
12.11 1706 Buffer Data Channel 12-66 
12.11.1 1706 Functions 12-67 
12.11.2 Programming the Peripheral Through the 1706 12-68 
12.11.3 1706 Status 12-69 
12.11.4 Summary of 1706 12-70 (' 
12.11.5 1706 Example Program 12-71 '-.. .. ' 



12.1 

12.1 1721 PAPER TAPE READER 

The paper tape reader transcribes data to the lower 8 bits of the A Register at a rate 
of 350 !eight-bit characters per second. The time between frames is 2. 857 milliseconds. 
These times qualify the 1721 to be grouped with the low speed package; equipment num
ber 1, station number 2. 

The Q Register will be in the following format when referencing the paper tape reader • .. 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o 

Q I?}~t~tj~j~l{r{~l~}}j~~ 0 0 0 1\ 0 1 0 0 o 0\ 
, J~ 

Equipment 1 Station 2 
~ 
Director 
O-+- Data 
I-+- Status/Function 

The Q Register will contain either $OOAO or $OOAl. 

LDQ 
LDQ 

12.1.1 PTR Functions 

=N$OOAO 
=N$OOAI 

DATA 
FUNCTION/STATUS 

The D portion dictates the. operation to be performed in conjunction with the INP 
and OUT instructions. 

D = 1 FUNCTION (OUT) 

The programmer may issue the functions together with the exception of the clear 
controller and clear interrupt functions which must be issued separately. 

1 0 
A 11'T'"T""T""T""')){T'"T"'T"'T"T'"tWm~fWm"""""""'ffW~(mW~mm?~mtm-:-:-:-;-:-(?m-:-:-:-:-:-)~(~~j~f{~jf~\-:-:-:7':'""n{(~~ffj:-:-:-:-:-:~{fj~~{~ TI 

LDQ 
ENA 
OUT 

=N$00A1 
3 
-1 

12-1 

r +Clear Controller 
Clear Interrupts 

PTR for FUNC 
CLR INT, CLR CONT 



12.1.1 

The remaining functions may be issued jointly. 

43210 

A 

Stop Motion t l 1 bata Interrupt Request 
Select Interrupt on Alarm 

Start Motion 

Data Interrupt -

Bit 2 allows the programmer to instruct the 1721 to interrupt the 1700 when the 
holding register on the 1721 contains a frame of data ready for transfer. 

Alarm Interrupt-

Bit 4 permits the paper tape reader to interrupt the computer if one of the following 
conditions arise: 

a) Paper Motion failure 
b) Lost data 
c) Power off 

Start Motion -

Bit 5 starts the pap e r tape reader moving tape through the read . station. Paper 
will continue to be moved through the read station until the motion is stopped or 
the reader runs out of paper. 

Stop Motion -

Bit 6 stops the movement of the paper through the read station. The brakes on the 
1721 assure stopping before reaching the next frame. 

LDQ 
LDA 
NOP 
OUT 

=N$00A1 
=NFUNC 

-1 

PTR for FUNC 
PLACE FUNCTION IN A 

INITIATE DESmED OPERATIONS 

The logic has been set up, the ref 0 r e, the programmer needs only to bring the 
data into the computer. 

D = 0 DATA 

LDQ 
NOP 
INF 

=N$OOAO PTRFORDATA 

-1 DA TA IN LOW 8 BITS OF A 

12-2 



o 

o 

o 

12.1.2 
12.1.2 PTR status 

The programmer may monitor the operations of the paper tape reader by taking 
status. 

D = 1 STATUS (INP) 

LDQ =N$00A1 
Nap 

INP -1 

The status bits are in the A Register. 

A 

15 11 10 987 

I I I 
poweron+W' 

Paper Motion Failure ~ 
Existence Code 

Protected 

6 

Lost Data ----,-------' 
Alarm ---------' 

PTR FOR STATUS 

STATUS IN A 

5 4 3 2 1 0 

I I I I 

11 
+ • I Ready 
Busy 

Interrupt 
Data 

Ready (Bit 0): Power is on and paper tape has been loaded into the reader., 
The preparations have been made known to the logic by pressing the READY switch 
on the paper tape reader console. The reader becomes Not Ready if a paper motion 
failure occurs or if the power is turned off. 

Busy (BJtJ): The paper tape reader i~_ Busy if a Start Motion command has 
been iss u e d and no Stop Motion command has followed. Motion stops on a Stop 
Motion command, a paper motion failure, or if the power is turned off. 

Interrupt (Bit 2): An interrupt condition exists. Other s tat us bits must be ex
amined to determine the condition causing this interrupt. 

Data (Bit 3): The Data Hold register in the paper tape rea de r contains an 8-bit 
frame of data which is ready for transfer to the computer. Start Motion must be 
set to receive this status. The status drops when the Data Hold register is emp
tied -by transfer to the computer. 

Alarm (Bit 5): At least one of the follow in g conditions exists in the paper tape 
reader: (1) paper motion failure (bit A9), (2) lost data (bitA6), or (3) power off 
(bit A10 is '0'). 

Lost Data (Bit 6): When in interrupt on Data mode, paper motion continues after 
the Data Hold register is full. If .the data is not transferred to the computer before 
the next frame appears, a lost data status occurs to show aframe has been passed. 
The time between frames is 2.857 milliseconds. The status drops when a clear 
controller command is sent. Lost data stops tape motion. 

12-3 



12.1.2 

Protected (Bit 7): The PROGRAM PROTEC T s wit chis on. This switch on the 
paper tape reader works in conjunction with the PROGRAM PROTECT switch on 
the computer. If the switch on the computer is off and the PROGRAM PROTECT 
switch of the peripheral device is on, no ~ction is taken but the status bit is set to 
indicate the switch is on. If the switch on the computer is set, all rules of pro
gram protection apply. The paper tape reader in this condition only accepts pro
tected instructions. 

Existence Code (Bit 8): The paper tape reader is attached. If the bit is a '1', the 
reader is missing from the particular computer system. 

Paper Motion Failure (Bit 9): No change in the feed hole circuit has occurred 
for 40 milliseconds while trying to read. The paper motion fa i I u r e causes the 
reader to become Not Ready; it can only be made ready by pus h in g the READY 
switch or by a Clear Controller command. It is considered an illegal operation to 
send any other function code to the rea d e r or a read command until the READY 
switch has been pressed or a Clear Controller has been issued. 

Power __ 9n (Bit 10): :power to the reader is on. If this bit is a '0', power is off. 

12-4 

c 



o 

0 

o 

12.1.3 

12.1.3 

Example 

The following is a test program for the 1721 paper tape reader. It inputs data, 
beginning with the first nonzero frame, until a zero word is encountered, atwhich 
time data input stops. The data is stored in the consecutive locations beginning 
after the end of the program. 

The controller should be cleared from the console before the program begins, as 
the clear controller function cannot be sent with the start motion function at line 4. 
The stop switch should be set so the program will stop after reading the tape. 
After it stops, if the switch is set to RUN, the tape which was just read will exe
cute (assuming it contained an absolutized program). 

1721 PTR - AUG '68 
USDA 

*CLEAR CONTROLLER FROM CONSOLE - CANNOT START MOTION & CLEAR CONTROL
LER IN SAME FUNCTION 

The following is a test routine for the 1711 teletype. It outputs an 11-word mes
sage from the buffer GET. The controller is cleared in a separate function before 
a new function is selected. Write mode is s e 1 e c ted because Read mode is in 
effect after the clear controller function. 

0001 ~IAM 800TSTRA~ 

0002 ENT START 
00 03 ~oOoo Eono START LOn -f\l$A1 PTB DJR ETINe 

POOOI OOAI 
000 4 ~?OO02 OA?O ENA $20 START MOTION 

OP05 POO03 03FE OUT -1 
00 06 120004 oOFE INO -1 SET TO READ 
0007 POOOS OBOO NOP 
000 8 ~n006 !l2FE LOAD] H.IP -1 INPUT LEADER 
0009 POOO7 0113 SAN 3 
00]0 12000 8 18FD 'MP* LOADI 
0011 POOO9 0800 NOP 
OOl~ PODOA O~Fe; bOl\02 HI~ -} INpUT FR I\ME 
0013 POOOB OFC8 ALS B SHIFT TO PACK 
0014 poooe o~Oo ~IQI2 

0015 POOOD 02FE INP -1 INPUT NEXT FRAME 
OOlg poooe; ~CO(I STA* ( A(;)ORES) STORE WOOD 
0017 POOOF 0103 SAZ EXIT-*-l EXIT ON ZERO WORD 
00·18 1200]0 DB 02 RAO* ADDRES UPDf~TE hDDRESS 
0019 POOll 18FB JMP* LOAD2 GO GET NEXT WORD 
00 2 0 120012 00 14 ~ ADORES ADC *+2 LOI\D I\T POO14 
0021 POO13 0000 EXIT NUM $0 ZERO FOR SLS 
0022 E~IO START 

DOFF START oooO~ LOAD] 0006P 'OAD2 OOOAP ADORES 0012P 
EXIT 00131-' 

BOOTST 1725 where bootstrap loaded 

12-5 



12.2 

12.2 1723 PAPER TAPE PUNCH 

The punch is grouped with Control Data I s low speed package. The punch is a character 
device. It accepts the lower 8 bits of the A Register as data. These 8 bits may be ASCII 
codes or binary. 

The punch is addressed as Equipment 1, Station 4. 

Q 
15 11 

~~III{IIIIIII~~rl 

LDQ 
LDQ 

10 9 8 7 6 5 4 

0 0 0 1 I 1 0 0 

Equipment 1 Station 4 

=N$OOCO 
=N$00C1 

3 2 1 0 

Director 
O-+Data 
1-. Function/Status 

PTP, DATA 
PTP, FUNC/STATUS 

12.2. 1 PTP Functions 

The programmer may direct the operations and interrupt selections of the Punch 
via the Director function. The clear interrupt and clear controller function may 
be issued together but should not be issued with the other functions. 

15 1 0 

A fr}\~(:~:~:tt~:~:~:~:~:~:tt~:~:~:~:~:~:~:~:~:~:~:~:~:t~:~:~:~:t~{{}{}{{r{r~IIrII I I 

LDQ 
ENA 
OUT 

=N$OOCI 
3 
-1 

t ~LR Controller 
CLRINT 

PTP, FUNG 

The remaining functions may be issued together. 

15 6 

LDQ 
LDA 
OUT 

=N$OOCI 
=NFUNC 
-1 

12-6 

5 4 3 2 1 O. 

I I ~tt~1 tttrt~J 

1 t bata Interrupt 
Alarm Interrupt 

Start Motion 

PTP, FUNC 
FUNCTIONS 
INITIATE FUNCTIONS 

(' 
,--". 

(~ 
., .... -" 



o 

o 

C) 

12.2.2 

12.2.2 PTP Status 

The programmer may status the Paper Tape Punch by setting the Director bit to 
a '1' and is suing an INP instruction. 

LDQ 
NOP 
INP 

=N$00C1 

-1 

15 12 11 10 9 8 

~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:I I I A k:.:.:-:-:-:.:.:.:.:-:.:.:.:-:.:.:.:.:.:. 

Tape Supply Low ~ t J 1 
Power On ~ 
Tape Break 

Existence Code 
Protected 

Alarm 

, 
7 6 5 

1' ......... , 

. .... 

PTP, STATUS 

STATUS TO A 

4 
r········) 
. .... 

3 2 1 0 

, I 

[1 i R~ady 
Busy 

Interrupt 
Data 

Ready (Bit 0): The paper tape punch is Ready when its power is on, tape has been 
loaded, and the READY switch on the s tat ion console has been pressed. The 
punch becomes NOT READY if tape break occurs or if power is turned off. 

Busy (Bit 1): The pun chis Busy if a Start Motion is in effect or until the punch 
has finished processing the data in the Data Hold register. 

Interrupt (Bit 2): An interrupt condition exists. 0 the r bits can be monitored to 
determine if one or more of the selected interrupts has occurred. 

Data (Bit 3): The 8 bits of d a t a in the Data Hold register of the punch have been 
pun c he d and the new data may be received from the computer. The data status 
drops when a transfer from the computer is made. 

Alarm (Bit 5): This status indicates that one of the following conditions has arisen: 

a. Tape Break 
b. Power off 
c. Tape low 

The status drops when the condition is corrected. 

Protected (Bit 7): The PROGRAM PROTECT switch on the peripheral equipment 
is set. The status bit only indicates that the switch is set; it does not show if a 
program protect violation occurred. If the PROGRAM PROTEC T switch on the 
computer is on, the punch does not accept commands which are not protected. All 
rules of program protection apply. 

12-7 



12.2.2 

Existence Code (Bit 8): A zero setting acknowledges that the paper tape punch is 
attached. If the bit is a '1', the pun chis missing from the particular computer 
system. 

Tape Break (Bit 9): The tape break status bit is set if the punch supply tape has 
broken or run out and approximately 2 inches of tape remain. '- If the tape supply 
low bit is ignored, it results eventually in the Tape Break condition as the supply 
of tape is exhausted. The Tape Break condition causes the punch to become Not 
Ready. It can onlybe made Ready by loading paper tape and pressing the READY 
switch. However, it is still able to receive the Clear Controller and Clear Inter
rupts function codes so that the Interrupt signal (if Interrupt on Alarm was selected) 
can be dropped. It is considered an illegal operation to send any 0 the r function 
code or a Write signal until the READY switch has been pressed. 

Power On (Bit 10): The power to the punch is on. If this bit is not a '1', the 
power is off and an Alarm interrupt may be generated. 

Tape Supply Low (Bit 11): The available supply of tape remaining to be punched is 
limited. 

12-8 

c 



C) 12.2.3 

12.2.3 PTP Example Program 

0001 NAM PUNCH 
0002 ENT START 
0003 POOOO 0019 BZS AA(25) • SET BUFFER TO 1 tg 

0004 001A P EQU BB(AA+25)~ FROM CONSOLE 
0005 OOEA EQU ADISP (SF A) NOTE THAT 26 WORDS WILL 
0006 00C1 EQU PUNCH($00C1) BE OUTPUT, NOT 25 
0007 EXT ERROR,DISP 
0008 POO19 0002 BSS TEMP(2) RESERVED FOR BLOCK SIZE 
0009 POO18 0001 BZS CKS(l) 
0010 P001C COOO START LDA =XAA FWA 

P001D 0000 P 
0011 POOlE 9000 SUB =XBB LWA 

P001F 001A P 
0012 P0020 0113 SAN OK-*-l IF UNEQUAL, ALJ IS FINE 
0013 P0021 1400 X JMP+ ERROR CONTAINS SIZE 0 BLOCK 

POO22 7FFF X 
0014 P0023 OBOO NOP 
0015 P0024 68F5 OK STA* TEMP+1 BLOCK SIZE COMPL 
0016 P0025 0864 TCA A COMPLEMENT BLOCK SIZE 
0017 P0026 68F2 STA* TEMP BLOCK SIZE A 

0 
0018 P0027 COOO LDA =X$7FFF-50 

P0028 7FCD 
0019 P0029 60FF STA- I I EQUALS COUNTER FOR LEADER 
0020 P002A EOOO LnQ_ =XPUNCH PREPARE PUNCH TO RECEIV 

P002B 00C1 
0021 P002C OA01 ENA +1 CLEAR CQNTROLLER 
0022 P002D 03FE OUT -1 
0023 P002E OA20 ENA $20 
0024 P002F 03FE OUT -1 
0025 P0030 ODFE INQ -1 PREPARE PUNCH FOR DATA 
0026 P0031 0844 CLR A 
0027 P0032 03FE LOOP1 OUT -1 JUMP_ ON SELF UNTIL :OUT 
0028 P0033 DOFF RAO- I UPDATE LEADER COUNT 
0029 P0034 01A1 SOY NEXT-*-l WHEN 1=8000, 50 BLANKS 
0030 P0035 18FC JMP* LOOP1 KEEP OUTPUTTING BLANK L 
0031 P0036 C8E3 NEXT LDA* TEMP+1 COMPLEMENT OF BLOCK SIZE-
0032 P0037 OFC8 ALS 8 HIGH ORDER BITS PUNCHED FIRST 
0033 P0038 OBOO NOP 
0034 P0039 03FE OUT -1 
0035 P003A OFC8 ALS 8 LOW ORDER BITS SECOND 
0036 P003B OBOO NOP 
0037 P003C 03FE OUT -1 SIZE OF BLOCK NOW ON TAPE 
0038 P003D 0844 CLR A 
0039 P003E 60FF STA- I ZERO OUT THE INDEX I 
0040 P003F C500 LOOP2 LDA+ AA,I PLACE FIRST WORD OF DATA IN 

P0040 0000 P 
0041 P0041 88D9 [ ADD* CKS CHECKSUM 
0042 P0042 68D8 STA* CKS 

0 
12-9 



12.2.3' 

0043 

0044 
0045 
0046 
0047 
0048 

0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 

0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 

0074 
0075 
0076 

I 
PUNCH 
NEXT 

P0043 C500 LDA+ 
P0044 0000 P 
P0045 OFC8 ALS 8 
P0046 OBOO NOP 
P0047 03FE OUT 
P0048 OFC8 ALS 
P0049 0800 NOP 

Could 
P004A 03FE compute OUT 
P004B DOFF CKSUM ---. RAO-
P004C COFF here 
P004D 98CB 
P004E 0101 
P004F 18EF 
P0050 C8CA SUM 
P0051 OFC8 
P0052 OBOO 
P0053 03FE 
P0054 OFC8 
P0055 OBOO 
P0056 03FE sov 0 
P0057 COOO 
P0058 7FCD 
P0059 60FF 
P005A 0844 
P005B 68BF 
P005C 03FE LOOP3 
P005D DOFF 
P005E OlAl 
P005F l8FC 
P0060 ODOI DONE 
P0061 OAOI 
P0062 03FE 
P0063 COOO 
P0064 C040 
P0065 03FE 
P0066 14EA 

OOFF START 
00C1 TEMP 
0036P LOOP2 

LDA-
SUB* 
SAZ 
JMP* 
LDA* 
ALS 
NOP 
OUT 
ALS 
NOP 

-----.OUT 
LDA 

STA-
CLR 
STA* 
OUT 
RAO-
SOY 
JMP* 
INQ 
ENA 
OUT 
LDA 

OUT 
JMP-
END 

001CP AA 
0019P CKS 
003FP SUM 

DISP 7FFFX ERROR .0022X 

AA,I 

-1 
8 

-1 
I 
I 
TEMP 
SUM-*-l 
LOOP2 
CKS 
8 

-1 
8 

-1 
=X$7FFF-50 

I 
A 
CKS 
-1 
I 
DONE-*-l 
LOOP3 
1 
1 
-1 
=N$40 

-1 
(ADISP) 
START 

OOOOP BB 
001BP OK 
0050P LOOP3 

ORIGINAL DATA IN A 

OUTPUT FIRST CH. 

OUTPUT SECOND CH. 
UPDATE INDEX 
PLACE UPDATE IN A 

BLOCK IS PUNCHED 

FIRST CH. OUT 

CHECKSUM ON PAPER TAPE 
PREPARE FOR END LEAD 

INITIALIZE INDEX I 

OUTPUT BLANK LEADER 
UPDATE INDEX 

IF OVERFLOW FINISHED 

PREPARE PTP FOR FUNCTION 

CLEAR CONTROLLER 
STOP MOTION 

OUTPUT FUNCTION 

OOlAP ADISP 
0024P LOOPI 
005CP DONE 

OOEA 
0032P 
0060P 

~-:~i~J!llll!!!!!=!1111!!II![ ~ 
. I' J~ 

CHECKSUM ---.J DATA: 26 vWORDS LWORD 
t COUNT 

SUM OF ALL DATA WORDS, DISREGARDING OVERFLOW 

12-10 

C 

C' 



o 

0 

12.3 

12.3 1711 TELETYPEWRITER 

The 1711 Teletype may send and receive information. The data transmission to or 
from the 1711 takes 100 milliseconds. 

The Teletype is one of three devices composing the low speed package which is always 
Equipment Number 1. All interrupts generated by the teletype shall be processed via 
line 1 interrupts. 

The Q Register will contain $0091or $0090 when communicating with the teletype. Break 
this word down into Binary, and we have Equipment 1, Station 1. 

W E 

I············l··· .' .. , ..... J". '1··· ·1 , I I Q::::::::::::::::::::::::::::::::::::::::::::::::: 0 0 0 
":.:.:.:.:.:_:.:-:.:":"::.:.:.:"_:.:.:.:.:.:.:.:.:.:. - . . 

'-----v..-----' , '---v------" '-v-' 

Equipment 1 Station 1 Data 0 
Function or Status 1 

The Dportion denotes the transfer of data when set to zero. All data transmissions will 
be to and from the lower 8 bits of the A Register. The characters will be transferred 
in ASC II codes, one character at a time. The directional flow of the data will be governed 
by the INP and OUT instructions. 

LDQ =N$0090 TTY FOR DATA 
NOP 
INP -1 READ DATA INTO A 

LDQ =N$0090 TTY FOR DATA 
LDA BUF PUT DATA IN A 
NOP 
OUT -1 WRITE DATA ON TTY 

12.3.1 TTY Functions 

The D portion indicates a function or a status when set to a 1. A function is indi
cated by issuing an OUT instruction with A preset to the function. 

LDQ 
LDA 
NOP 
OUT 

=N$0091 
FUNC 

-1 

TTY FOR FUNC OR STATUS 
PLACE FUNCTION IN A 

OUTPUT A FUNCTION 

1 0 
A I: ~: ~ : ~ : ~ : ~ : ~: ~ : ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~: ~: ~ : ~: ~ : ~ : ~ : ~: ~: ~: ~ : ~: ~: ~: ~ : ~: ~ : ~: ~ : ~: ~: ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~: ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~: ~ : ~: ~ : ~ : ~ : ~ : ~ : ~ : ~: ~ : ~ : ~ : ~ : ~ : ~ : ~ ~ ~ ~ ~ ~ : ~ , 

f C·LR CONT 
CLRINT 

The clear controller and clear in t err u p t functions must be sent to the teletype 
prior to selecting other functions. 

12-11 



12.3.1 

15 10 9 8 7 5 4 3 2 1 0 C' 
A !~??~~?(}r(}r~)f\{fJ r~~tttt~~~t~J I 

Select Read Mode t i tIl f' ·Clear Controller 
Select Write Mode ~ Clear Interrupts 

Select Interrupt on Alarm Data Interrupt Request 
Select Interrupts on End of Transmission 

(EOT Key) 

The 1711 provides the capability of selecting t h r e e interrupts; DATA, ALARM, 
and END OF TRANSMISSION (EOT). The DATA interrupt will occur when the 
teletype is pre par e d to send or receive d a t a. The ALARM interrupt will be 
generated if data has been lost or if the teletype goes from READY to NOT READY. 
The END OF TRANSMISSION interrupt will 0 c cur whenever the EOT key on the 
console of the teletype has been pressed. None of these conditions will generate 
an interrupt unless the programmer has selected them. 

The motor will be started on the 1711 by an output of a dummy character - to the 
teletype. 

12. 3. 2 TTY status 

Status will be sent to the A Register from the tel e t y p e with an INP instruction. 

LDQ 
NOP 
INP 

=N$0091 

-1 

TTY FOR STATUS OR FUNC 

INPUT STATUS TO A 

The A Register will contain the status and the pro g ram mer may examine it to 
determine the next procedure he wishes to follow. 

15 12 11 10 9 876 

Manual Interrupt t t.J J 
Motor On~ 

Read Mode 
Lost Data 

Alarm 

5 4 3 210 

I I 

11 
t I teady 
I Busy 
Interrupt 

Data 
End of Transmission 

Ready (AO is 1): If this bit is set in the A Register, the Power switch on the con
sole of the teletypewriter is in the ON-LINE position and the motor is on. 

Busy (AI is 1): If this bit is set, one or more of the following conditions ex i s t: 

a) The controller is in Read mode and is in the process of receiving a char
acter from the teletypewriter or the Data Hold register contains data for 
transfer to the computer. The Busy status drops upon completion of the 

12-12 



o 

o 

/ 

12.3.2 

transfer to the computer if data has not been lost. If data has been lost, 
the con t roll e r requires 200 milliseconds to stop the teletypewriter and 
remains Busy all this time. 

b) Write mode and the Data Hold register contains data and is in the process 
of transferring it to the teletypewriter. Busy drops upon completion of the 
transfer. 

c) Either mode and the controller is in the process of starting the motor in 
the teletypewriter. In Write mode output of a character starts the motor 
and this character is lost. In Read mode, the BREAK key must be pressed 
to s tart the motor. 

Interrupt (A2 is 1): An interrupt condition exists. Other bits must be monitored 
to determine the condition caus ing this interrupt. 

Data (A3 is 1): An interrupt is generated and this status bit is a 1 under the fol
lowing conditions: 

a) Read mode and the Data Hold reg i s t e r contains data for transfer to the 
computer. The status drops upon completion of a Read. 

b) Write mode and the controller is ready to accept another Write from the 
computer. The status drops upon completion of the Write. 

End of Transmission (A4 is 1): The Data Hold register contains the End of Trans
mission code. This code is generated by pressing the EaT key on the keyboard 
of the teletypewriter. The end of transmission status drops upon the completion 
of the next Write or Read. 

Alarm (A5 is 1): The teletypewriter is not in a Ready state or has lost data. 

Lost Data (A6 is 1): The controller was not s e r vic e d by the computer before a 
new character was sent by the teletypewriter. The keyboard and tape transmitter 
are locked out. The status bit indicates a Lost Data condition, and a Busy status 
indicates that the process of stopping the teletypewriter is in progress. Data held 
in the Data Hold register is not disturbed, but the incoming data is ignored. The 
lost data status can be cleared by a Clear Controller or a Select Write Mode com
mand. These two functions are rejected while the controller is stopping the tele
typewriter. The Select Write mode command must be preceded by a Read operation 
to clear the Data Hold register. Mter the teletypewriter has stopped, the computer 
may do an Output operation to notify the controller of the Error condition. 

Read Mode (A9 is 1): If this bit is a 1, the controller is conditioned for an Input 
operation from the teletypewriter. Read mode is automatically in effect after a 
clear controller function has been issued. 

12-13 



12.3.2 

Motor On (A10 is 1): The motor of the teletypewriter is on. The presence of this 
bit indicates that the teletypewriter motor is on and up to speed. 

a) Write mode: Motor starts with the output of a c h a r act e r. Two-second 
delay occurs between output of the character and this status bit being set 
to allow the motor to get up to speed. 

b) Read mode: Press the BREAK key to turn on the motor. Tw 0 - sec 0 n d 
delay. also occurs between the action of the BREAK key and the status bit 
being set to allow the motor to get up to speed. 

Manual Interrupt (All is 1): The manual interrupt button on the teletype has been 
pressed. 

Example: 

The following is a test routine for the 1711 teletype. It outputs an II-word mes
sage from the buffer GET. The con t roll e r is cleared in a separate function 
before a new function is selected. Write mode is selected because Read mode 
is in effect after the clear controller function. 

12-14 

c. 



0 
12.3.3 

12.3.3 TTY Example Program 

QQQI ~Ll\M +¥~~ Olll 
0002 POOOO 504C GET ALF 11,PLEASE INPUT YOUR CODE 

POOOl 1, 5 /,1 ~ 
\ 

POOO2 5345 Message 
POOO] 20/,9 
POOO4 4f..50 
POOO!:) 5b54 
POOO6 20S9 
POQ07 L+F!:J5 
POOO8 ~)220 

POQ09 f. 3 1* F 
POOOA 4445 

0003 POQ08 0844- CLR A 
0004 pooac 60FF STA- I 
0005 POOOD EOOO bDO -f\J$OO91 TTY DIR FUMe 

POOOE 0091 
0006 PQQOF ell, Q] EN" $3 cr,B CONTB & TNT 

0007 POOIO 03FE OUT -1 
0008 POOll GOOD bOA -f\J$100 'iVRITE MODE 

POO12 OlUO 
0009 POOl) OdOO NOP 

0 0010 POO14 03FE OUT -1 
0011 POO15 QDFE INC) -1 WRITE DJJ:TJ.c FUNC 
0012 POO16 OHOO NOP 
0013 PO 01 -, 03FE OIIT -1 SEND DUMMY CHAR 

0014 POOI8 C9E.7 LOOP LDA{~ GET,! OUTPUT DATA 
0015 POO19 orcs l\LS 8 
OOIA POOIA 0800 NOP 
0 01 7 DOO]R 03F E aliT -1 

0018 POOIC OFCB ALS 8 
0019 POOl!) (InDO "lOP 
0020 POOlE 03FE OUT -1 
002 J POOlE DOFF RAO- T 

0022 POO20 COFF LOA- I 
0023 POO?] 09F4 INA -] 1 

0024 POO22 DI01 SAZ DONE-{~-l 

00?5 f:>()()C1 ldF4 IMPi} lOOP 
0026 POO24 0000 DONE 0 0 
0027 E~ID 

C) I OOFF GET OOOOP LOOP OOlBP DON~ 002 1, P 

12-15 



12.3.3 

PP 

* 
MI 
*K,I5 
J 
*p 
J 
*ASSEM 
L,03 FAILED 01 
ACTION 
CU 
L, 03 FAILED 01 
ACTION 
CU 
L,03 FAILED 01 
ACTION 
CU 
J 
*p 
J 

Typewriter Printout 

*L, 8 Output from program 

~LEASE INPUT YOUR CODE / 

12-16 

USDA - August 1968 



o 

C) 

12.4 

12.4 1713 TELETYPEWRITER 

The 1713 is com po sed of a keyboard, printer, paper tape reader, and a paper tape 
punch, each a c c e s sib 1 e by the computer. The 1713 is grouped with the low speed 
package, equipment number 1, station number 1. The Q Register will be in the following 
format when referencing the 1713. 

15 11 10 9 8 7 6 5 4 3 2 1 0 
Q 0 0 0 0 01 0 0 0 11 0 0 1 0 0 0 1-

v '---v----' + 
Equipment 1 Station 1 o = Data 

1 = Function/Status 

LDQ =N$0090 SEL TTY, DATA 
LDQ =N$0091 SEL TTY, STATUS OR FUNCTION 

The programmer has the option of selecting the reader, punch, printer or keyboard. All 
four units may be used together or s epa rat ely. The selection is made by setting an 
appropriate bit in the function word. 

15 14 13 12 11 10 

A l}}d I I I I I 

11 
i telect Keyboard Mode 
Select Keyboard- Tape Mode 

Select Tape Mode 
Select Tape-To-Tape Send Mode 

Select Tape-To-Tape Receive Mode 

o 

Bit 14 -. Connects the punch to the controller leaving the keyboard and reader inactive. 

Bit 13 ----. Connects the reader only to the controller. 

Bit 12 -. Connects the page printer and r e ade r to the controller. The keyboard and 
punch are connected together as an off-line tape preparation de vic e. Read 
operations transfer information from the paper tape reader to the controller 
and the page printer. Write 0 per a t ion s transfer information to the page 
printer. Simultaneously, a new tape can be prepared from keyboard entries. 

Bit 11----. Connects the keyboard, page printer, reader and punch to the controller. A 
character struck on the keyboard or sent from the reader is printed, punched 
and transmitted. A character sent to the 1713 is printed and punched. 

Bit 10 ----. Connects the keyboard and printer to the controller which act as a send/receive 
page printer. The paper tape units are inactive in this mode. 

12-17 



12.4 

The 1713 accepts the lower eight bits of the A Register as data and sends eight bits of 
data to the A Register. All codes going to the page p r in t e r must be eight bit ASC II 
codes. The data transfer rate is 100 milliseconds per character. 

12.4.1 1713 Functions 

Prior to selecting a mode, the controller and interrupts may be cleared by issuing 
a function to the ·1713. 

15 
A [:}\) 

LDQ 
ENA 
OUT 

=N$91 
$3 
-1 

1 0 

I 
t 6 LR Controller 
C LR Interrupts 

SEL TTY, FUNCTION 
CLR CONT & CLR INT 

Interrupts may be selected by setting the following bits. 

15 4 3 2 
A F:::::::] :.:.:.:.: I I I 

1 t 
+ 
Data INT Request 

End of Operation Interrupt 
Alarm Interrupt Request 

Bit 2 ---.. Allows the 1713 to interrupt the computer whenever the holding register 
is ready to send or receive data. 

Bit 3 ~ Notifies the 1713 to interrupt the computer whenever an operation is 
completed. 

Bit 4 ~ Provides for an interrupt whenever an alarm condition arises. Alarm 
conditions: 

1. 1713 becomes NOT READY 
2. LOST DATA 
3. Out of Tape 

LDQ 
LDA 
NOP 
OUT 

=N$91 
=N$lC 

-1 

12;.,..18 

SEL TTY, FUNCTION 
INT ON DA TA, ALARM, EOP· 

C~ 



o 

o 

12.4.1 

The operating mode, READ or WRITE, is selected by setting a bit in the function 
word. 

15 

LDQ 
LDQ 
NOP 
OUT 

LDQ 
LDA 
NOP 
OUT 

9 8 

t t Select Write Mode 
Select Read Mode 

=N$91 
=N$100 

-1 

=N$91 
=N$200 

-1 

SEL TTY, FUNCTION 
WRITE MODE 

SEL TTY, FUNCTION 
READ MODE 

When running in Tape- To- Tape Send Mode, the pro g ram must issue a START 
TAPE MOTION function. When reading data from the reader a start motion function 
must be issued after each character. 

15 

LDQ 
LDA 

NOP 
OUT 

=N$91 
=N$2220 

-1 

5 

I I 
+ 
Start Tape Motion 

SEL TTY,I_:fl!!'ICTION 
TAPE SEND, READ, START TAPE 
MOTION 

All of the functions ma v be iss u e d together with the exception of the clear con
~roller and clear Interrupt functions which must be issued separately. 

12.4.2 1713 status 

Status may be taken on the 1713 at any time. 

LDQ 
NOP 
INP 

=N$91 

-1 

12-19 

SEL TTY, STATUS 

STATUS IN A 



12.4.2 

11 10 9 6 5 4 3 2 1 0 

A k~ttf})ttfjtl I It(ttt~ I 

Manual INT J J) J 
Motor On 

Read Mode 
Lost Data 

11 
1 keady 
Busy 

Interrupt 
Data 

End of Operation 
Alarm 

When the corresponding bit is a 1, the condition exists. 

READY ----+~ 

BUSY --,~~ 

INTERRUPT ----.~ 

DATA 

The 1713 is capable of performing operations and ac
cepting functions. 

The 1713 is in the process of performing an operation. 

An interrupt has been generated. 

The holding register in the 1713 is prepared to send or 
receive data. 

END OF OPERATION --+ The 1713 has completed an operation. 

ALARM 

LOST DATA ---.. 

READ MODE ----+~ 

MOTOR ON ---.~ 

An alarm condition exists in the 1713. 

The 1713 had data in the holding register which was not 
picked up by the computer before another character was 
read into the register. 

The 1713 is in are a d mode. If this bit were not set, 
the write mode would be in effect. 

The 1713 mot 0 r is on. If this bit were not set, the 
motor is not on. 

MANUAL INTERRUPT ~The manual interrupt button on the 1713 has been 
pressed. 

12.4.3 Example Program, 1713 TTY 

The following program generates 10 frames of data in the A Register and ·punches 
them on paper tape. It then stops and waits for the tape to be put in the reader. 
It reads 20 frames and stores them in a buffer. Program read can be checked by 
sweeping the buffer. 

12-20 

C~ 

c 



12.4.3 

C) 
The STOP Switch should be set before the program is run. 

OOOl ~IOM RIIZ13 
0002 ENT PT1713 
OOOJ POOOO 0000 ~l1113 0 0 
0004 POOOI EOOO LDQ =N$91 TTY, FUNC/STATUS 

ROO£l2 00~1 

0005 POO03 OA03 ENA $3 CLR CONTR, CLR INT 
0009 ROOO4 03j::~ 0111 -1 
0007 POOOS 02FE INP -1 INP STATUS 
0006 ~O'HIE> O~T~ Al:S 15 READY BIT 
0009 POOO7 0131 SAM 1 SKI P WHEN READY 
0010 120008 18EC IMR* *-3 GG Wl.c±± ±Ibb &EAl)¥ 
0011 POOO9 COOO LDA =N$4120 TTR, WRITE, START MOTION 

ROOOO ~12() 

0012 POOO8 0800 NOP 
0013 Roooe o 3~-E 0111 -] 
0014 pooon ODFE I N(l -1 PREPARE TO SEND DATA 
00]5 ROOOE S8~) ~I 1* I EADE~ GG GlJ±PlJ± bEWER 
001f1 POOOF OAOF WRITE ENA $F DATA $F IN A 
00]1 eOOl{) 03EE 0111 -] QtJtFlJt DAXA 
0018 POOll DOFF RAO- I 
0019 eOO12 Clon I D~ -~-]O!I lQ FRAMES 

POOl3 FFF5 
0020 eOO]~ 0] 0 ) SAZ ) 

0021 POOl5 1 HF 9 JMP* WRITE 
0022 eOOle 5839 eI 1* I E~DEH GO OIIT EI IT TRAILER 

0 0023 POO17 0000 STOP SLS 0 
0024- POOla 1)001 I~IQ 1 FREPARE FGR FYNG~IQN 
0025 POO19 OAOI ENA 1 CLEAR CONTROLLER 
0026 e001{}' W3FE 0111 -] 
0027 PODIA 02FE INP -1 INPUT STATUS 
0028 e001C (lECE ~I 5 15 READY BIT 
0029 POOIO 0131 SAM 1 SKI P WHEN READY 
0030 eOOlE 18fC IMe* *-3 GO WAIl IJNTIL READY 
0031 POOIF COOO SEL LDA =N$2000 TTS MODE 

120020 20un 
0032 P0021 0800 NOP 
0033 eQQ22 Q3EE ~UI -1 
0034 POO23 OA20 MOTION ENA $20 START MOTION 
0035 e002~ O]fE OllI -1 
0036 POO25 ODFE INQ -1 PREPARE FOR DATA 
0031 e0026 Ot::H1O ~OE 
0038 P0027 02FE LDR INP -1 INPUT DATA 
0032 eOO2~ 0118 SAD! SIOHE-*-l STORE WHEN DATA COMES 
0040 P0029 0001 INQ 1 
004] eOQ2A 1St: ~ .H1e* SEI GO WAIl EOR DATA 
0042 pa02A coon READ LDA =N$20aO TTS MODE 

eOO2C 2QUO 
0043 P0020 onOl INQ 1 FUNCTION 
OO~~ e002f UbQQ Dloe 
0045 POO2F 03FE OUT -1 
OO~6 EOll30 OAZQ E~A $20 STABT TAEE MOTION 
0047 P0031 03rE OUT -1 
OO~B Ell!l32 QDEE I~Q -1 DATA 
0049 POO33 02FE INP -1 INPUT DATA 

0 
OOSO EOO34 byo7 STORE SIA* RlJE!! STORE DATA 

12-21 



12.4.3 (\ 
'---' 

0051 POQ35 OOFF ROO- I 
0052 PU036 CIOO LOA =N-20.I 20 FRAMES 

PIJQ3l F~-l=fj 

0053 P003H DIUl SAl FINI-*-l 
0054 POY=i~ 1~1=1 JMI2i! RE;oD 
0055 POO3A ()ouu FINI SLS 0 STOP AFTER READING 
OOS~ ~O038 ODIc.. 1:i1J~ azs 911f=:(~O) SWEEE BW~EB XO CHECK 
·0057 POO4F 0000 LEADER 0 0 WRITE LEADER OR TRAILER 
0058 ROOSO eono bDA -X-50 

POOSl 7fCD 
0059 PUO!3~ ~O~F ~+I\- I 
0060 POOS3 0844 CLR A 
0061 PQQ34 Q J~ E; QbJ+b6l~ GlJ+ -1 

0062 P0055 DOFF RAO- I 
OQ~J PGQ~~ g I tIl ~GV 1 
00h4 P0057 IHFC JMP* OUTLDR 
OQ6~ PCJo~a 9U~ ~ ~+o- I 
00h6 P0059 lCF5 JMP* (LEADER) 
0061 E~ID 

c 

Plant 2 - September 1968 

12-22 



12.5 

o 12.5 1726/405 CARD READER 

o 

o 

The 405 is a Non-Buffered Card Reader capable of reading 1200 80-column cards per 
minute or 1600 51-column cards per minute. The transfer rate for one 80-column card 
is 384 microseconds. 

The twelve rows in each column constitute the 12-bit data word transferred to the com
puter. Software packing must be performed in order to form a 16-bit word. The format 
for the columns in relation to memory words is as follows: 

15 7 4 3 o 
Word 1 

Word 2 

Word 3 

ColI (12 rows) I Col 2 (4 rows) 

Col 2 (8 rows) I Col 3 (8 rows) 

Col 3 (4 rows) I . Col 4 (12 rows) 

Four card col u m n s represent three computer words, therefore, one 80-column card 
represents 60 memory words. 

The data read by the 405 may be buffered if connected to the 1706. 

The Q Register will be in the following format when referencing the 405 Card Reader. 

15 11 10 7 6 1 0 

Q W= 0 E 
I

··················································· ........... ~ 1 

??~ttt?tttmmmmmmmr~ D 

The E portion will correspond with the setting of the equipment switch on the controller. 
The D portion designates the operation to be performed. 

12.5.1 CR Functions 

D = 1 DIRECTOR FUNCTION (OUT) 

LDQ 
LDA 
NOP 
OUT 

=N$0101 
=NFUNC 

-1 

EQUIP 2, FUNC 
FUNCTION IN A 

ESTABLISH LOGIC 

15 14 13 12 11 10 9 876 5 4 3 2 1 o 
A [:}~{{{:}\:J I I I 

+ Reload Memory 

1 Negate Hollerith to 
ASCII 

Release Negate Hollerith 
to ASCII 

12-23 

I 

11 
t t ~ LR Controller 
I CLR INT 

Data INT 
EOPINT 

Alarm INT 



12.5.1 

The functions for the 405 Card Reader may be issued jointly. 

Clear Controller (Bit 0): Directs the clearing of all interrupt requests, mot ion 
requests, errors, and other logic that may be cleared. This function is sub
ordinate to all other functions. 

Clear Interrupts (Bit 1): Clears all interrupt requests and their responses. 

Data Interrupt Request (Bit 2): Sets the interrupt request to be set which causes 
an interrupt to be generated when an information transfer may occur. 

~terrupt on End of Operation (Bit 3): Requests an interrupt to be generated when 
the last card column lias been read or a Reload Memory Function has been per
formed. 

Interrupt on Alarm (Bit 4): Generates an interrupt whenever any of the following 
conditions arise: 

1. Compare or pre-read error 
2. Stacker full or jam 
3. Input tray empty 
4. Fail to feed 
5. Separator card is read into computer memory 
6. Auto/man switch is in man position 

Gate Card (Bit 9): This bit gates the card being read to the secondary s t a c k e r. 
This function must be performed during the 1.5 milliseconds following the input 
of the last column to the buffer memory of the Card Reader. 

Negate Hollerith to ASCII (Bit 10): When bit A10 is selected, 7 and 9 punch positions 
in column 1 are ignored and all information (binary or Hollerith) is read as binary. 
Bit A10 is subordinate to bit All. Bit A10 is rejected if the controller is Busy. 

NOTE 

Before beginning a new operation, make certain that bit A10 and the 
following bit, All, are appropriately selected. If this is not done, 
the cards will be read in the mode or state that the card reader was 
in during the previous operation. 

Release Negate Hollerith to ASCII (All = 1): When bit All is selected, the 7 and 9 
punch pos itions in column 1 determine whether the card information is to be trans
ferred in ASCII code or in binary for m. The Release Negate Hollerith to ASCII 
function takes precedence over the select Negate Hollerith to ASC II function, and 
it is rejected if the controller is Busy. See Note. 

12-24 



o 

o 

o 

12.5.1 

Reload Memory (A12 = 1): This bit directs the controller to initiate a card feed 
thereby reloading the controller memory with the data from the next card in the 
card reader. The data that has not been t ran s mit ted from the memory to the 
computer is lost when Reload Memory is executed. A Reload Memory is required 
only if less than a full card of information is desired. Bit A12 is rejected if the 
controller is Busy. 

12.5.2 CR Status 

D = 1 STATUS (INP) 

LDQ 
Nap 
INP 

15 14 13 12 11 10 
A I I I 

=N$0101 EQUIP 2, STATUS 

-1 STATUS IN A 

9 8 7 6 5 43210 

f
·:·:·:·:·j ......... ......... 

I Alarm 

1 i 
+ , 
Protected 

Error 1
1 Ls:eadY 
Interrupt 

Data Binary Card 
Separator Card 

Fail to Feed 
Stacker Full of Jam 

Input Tray Empty 
End of File 

Manual Switch or Motor Power Off 

EOP 

Ready (Bit 0): The presence of this bit indicates that the card reader is ready for 
operation. 

Busy (Bit 1): The controller is Busy whenever a card is being en t ere d into the 
buffer memory. 

Interrupt (Bit 2): The interrupt status is available if one or more of the selected 
interrupts has occurred. Other bits must be monitored to determine the condition 
causing the interrupt. 

Data (Bit 3): This status bit indicates that data is ready to be transferred to the 
computer. 

12-25 



12.5.2 

End of Operation (Bit 4): This status bit indicates that the last card column has 
been read from the buffer memory, or a reload memory function has been sent. 
This bit remains a 1 until a Reply signal is sent, or a Clear Controller function or 
Master Clear is issued. 

Alarm (Bit 5): The bit remains a 1 until whatever caused the Alarm condition is 
removed. This s tat us bit indicates that one or more of the following conditions 
has occurred: 

1. Compare or Pre-read error 
2. Stacker full or jam 
3. Input tray empty 
4. Fail to feed 
5. A separator card has been transferred to the computer memory. 
6. The AUTO/MAN switch is in the MAN position 

Status bit A06 is not used. 

Protected (Bit 7): This status bit indicates that the controller recognizes only the 
I/O instructions that have the protect bit present. This status bit is a 1 when the 
PROTECTED/UNPROTECTED switch is in the PROTECTED position. 

Error (Bit 8): This bit indicates that a Pre-read or Compare error has occurred. 

Binary Card (Bit 9): This bit is present when the contents of the first card column (~ 
have been transferred to the computer memory and a binary card (rows 7 and 9 
punched in first column) was detected, or the Negate Hollerith to ASC II function 
was selected. This bit remains a 1 until a Clear Con t roll e r or Master Clear 
function is issued, or a Reply is sent when a card is read under the follow in g 
conditions: 

1. The card is not a binary or a separator card. 
2. The Release Negate Hollerith to ASCII function is selected. 

Separator Card (Bit 10): This bit is present when the contents of the fir s t card 
column have been transferred to computer memory and a separator card (rows 6, 
7, 8, and 9 punched in first column) was detected. This bit remains a 1 until a 
Reply is sent when a card is read that is not a separator card, or until a Master 
Clear or Clear Controller function is executed. 

Fail to Feed (Bit 11): This bit is a 1 if another card is not detected at the primary 
read station 500 ms after the previous card has cleared the secondary read station. 

Stacker Full or Jam (Bit 12): This bit is a 1 when the stacker is full of cards or 
when the cards have jammed. 

Input Tray Empty (Bit 13): This bit is a 1 when the input tray is empty. 

12-26 



o 

o 

o 

12.5.2 

End of File (Bit 14): This status bit becomes a 1 when the input tray is empty, the 
buffer memory is unloaded, and the END OF FILE switch is on. When the input 
tray does not contain the last card of a file, the switch should be off to inhibit this 
status bit. 

Manual (Bit 15): This status bit is a 1 when the A UTa/MAN switch is in the MAN 
position or the MOTOR POWER switch is off. 

D = 0 DATA (INP) 

LDQ 
NOP 
INP 

15 12 11 

A I 0 o 0 0 I 

=N$0100 EQUIP 2, DATA 

-1 DATA IN A REG 

o 

DATA 

Packing must be performed in order to obtain 16 bit words as indicated earlier in 
this discussion. 

12-27 



12.5.3 C: 
12.5.3 CR Example Program 

NAM CARDRD 
EQU AA($3FF), CARD($0281) SEL EQUIP 5 F 
EQU MASKB($OOOF) 
BSS TEMP (2) 

START CLR A 
STA- I 

SECOND LDQ =XCARD 
LDA =N$lA03 CLR CON CLR INT RM H TO A 
NOP 

. OUT -1 OUTPUT FUNCTION 
INQ -1 PREPARE FOR DATA INPUT 
NOP 

LOOP INP -1 INPUT TO A FmST COLUMN (12) 
ALS 4 DATA UPPER 1 I BITS ••• ZERO 
STA* TEMP 
INP -1 INPUT 2nd COLUMN 
STA* TEMP+1 SAVE THE DATA 
ARS 8 UPPER 4 BITS IN LOWER 4 
AND =XMASKB ZERO UPPER 12 BITS 
ADD* TEMP FmST WORD PACKED 
STA* AA,I 
LDA* TEMP+1 
ALS 8 LOWER 8 BITS IN UPPER 8 BITS 
AND =N$FFOO ZERO LOWER 8 BITS 
STA* TEMP 

C INP -1 INPUT 3rd COLUMN 
STA* TEMP+1 
ARS 4 UPPER INPUT 8 BITS IN LOW 8BITS 
AND =X$OOFF ZERO UPPER 8 BITS 
ADD* TEMP PACK 2nd WORD 
STA+ AA+1,I PLACE IN BUFFER 
LDA* TEMP+1 
AND =XMASKB ZERO UPPER 12 BITS 
ALS 12 LOWER 4 BITS IN UPPER 4 BITS 
STA* TEMP 
INP -1 
AND =N$OFFF 
ADD* TEMP THIRD WORD PACKED 
STA* AA+2,I 
LDA- I GET INDEX 
INA 3 UPDATE INDEX 
STA- I 
INA -54 
SAZ 1 IF END OF CARD SKIP 
JMP* LOOP CONTINUE 
LDQ =XCARD 
RAO *+3 
LDA =N$7FFA 
SOV 1 
JMP SECOND 

DONE SLS 
END 

03FF CARD 0281 MASKB OOOF TEMP OOOOP 
0004P LOOP OOOCP DONE 003EP c-' 

12-28 



o 12.6 

12.6 1742 LINE PRINTER 

The 1742 Line Printer (the Holley HR-300 Printer) prints 300 lines per min ute, each 
line being 136 characters. The printer accepts ASCII codes with two characters per 16 
bit word. The printer has a holding register capable of accepting an entire line before 
printing: 136 characters (8 bits) or 68 words (16 bits). The ASCII codes require 7 bits, 
therefore, the 8th bit is used as a print control bit. This bit on each character is set 
by the controller when the c h a r act e r is received. As the printer actually prints the 
character, the 8th bit is cleared. When all print con t r 0 1 bits have been zeroed, the 
printer has completed the print operation and is ready to receive data from the computer. 
The programmer is not required to send the maximum number of c h a r act e r s to the 
printer. The p r in t e r accepts the characters sent by the program and blanks the re
maining positions prior to printing. 

The Q Register will address the printer in the following format: 

15 11 10 7 6 1 0 

Q w 

The W portion will equal zero. The equipment number will correspond to the equipment 
setting of the hardware switch on the controller ($O-$F). The D portion will direct the o type of transmis sions to and from the A Register. 

C) 

DATA 

D=OO indicates the transfer of data to the printer's holding register. It will always be 
issued with an OUT instruction. 

LDQ 
LDA 
NOP 
OUT 

12. 6. 1 LP Functions 

=N$0380 
DATA 

-1 

EQUIP 7, DATA 
PLACE DATA IN A 

DATA SENT TO PRINTER 

DIRECTOR FUNCTION 1 

D=01 denotes the transfer of Director Function 1, which allows the programmer 
to CLEAR PRINTER and CLEAR INTERRUPTS. It also provides the medium for 
selecting as many as three interrupts: DATA, EOP, and ALARM. 

15 5 4 3 2 1 0 
A 0 0 0 0 0 0 0 0 0 0 0 I 1 1111 I 1 11 I 

1 top! r + 
Clear Controller 

Alarm C lear Interrupts 
Data Interrupt 

12-29 



12.6.1 

LDQ 
LDA 
OUT 

=N$0381 
FUNCI 
-1 

EQUIP 7, FUNC 1 
PLACE FUNC IN A 
SEND FUNC 

DIRECTOR FUNCTION 2 

D=11 accompanied by an OUT instruction sends Director Function 2 to the printer 
from the A Register. 

LDQ =N$0383 EQUIP, FUNC 2 
LDA FUNC2 PRE SET A TO FUNC 
NOP 
OUT -1 SEND FUNC FROM A 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I I I I I I 

r 
t , + + + + + , + + + 

1 r 
t + 

12 11 10 9 8 7 6 5 4 3 2 Print 
Single Space 

8- Line Select Double Space 
Levell 

Print (Bit 0=1) -. Commands the printer 0 per a t ion to begin. Once the entire 
line has been printed the 0 per a t ion is complete. The print 
command must be issued for each line printed. 

Single Space 
(Bit 1 = 1) ~ Advances the page by one line. 

Double Space 
(Bit 2 = 1) ----+ Advances the page by two lines. 

Format Level 
(Bit 3 - Bit 14) ~ This command causes paper motion. The paper is moved to 

the next hole punched in the specified level. The tape levels 
are used for formatting documents, as the levels may be used 
instead of the spacing commands. Levell usually specifies 
top of page while level 12 usually s p e c ifi e s bottom of page. 

8- Line Select 
(Bit 15 = 1) ----. This bit changes the logic to allow for 8 lines per inch rather 

than 6 lines per inch. Once 8 lines per inch has been selected 
it remains in effect until a MASTER CLEAR, CLEAR CON
TROLLER, or bit 15 is issued as a zero. 

12-30 

c 

c 



o 

o 

o 

12.6.2 LP Status 

D=Ol with an INP instruction requests status. 

A 

LDQ =N$0381 
NOP 
INP -1 

15 10 9 8 7 

I I 1 k~{~ 1 

6/8 Lines COinCident~ ~ 
Protected 

6 
r········1 .... 

5 
1 

EQUIP #7, STATUS 

BRING STATUS TO A 

4 
1 

i 

3 2 1 0 
111 1 

1 
t i ~eadY 
I Busy 
Interrupt 

Data 
End of Operation 

Alarm 

12.6.2 

The status of the Line Printer notifies the program of the READY and BUSY states 
of the printer by setting bits 0 and 1, respectively. Bit 2 indicates the existence 
of an interrupt, while bits 3, 4, and 5, designate which interrupt was generated. 
Bit 3 is the bit in d i cat ion that the printer is prepared to receive data from the 
computer. Bit 4 notifies the pro g ram that an operation is complete, such as a 
print or top of form command. Bit 5 indicates an ALARM condition has occurred, 
such as out of paper, paper tear, fuse alarm, open interlock, or an illegal char
acter. Bit 7 corresponds with the Protect Switch on the printer. If the switch is 
on, bit 7 will be set and only protected programs will be allowed to use the printer. 
Bit 9, when set, acknowledges that a c han g e from 6 to 8 lines per inch may be 
effectively made. 

12. 6. 3 Programming the Printer 

Programming the printer simply requires advancing the page to the desired print 
level. Once the page is positioned, data is sent to the printers holding register. 
Once the data has been sent to the printer, the p r in t command is issued. When 
the printer com pie t e s the print cycle, the program advances the page by level 
selection, or spacing and outputs the next line. The programmer selects the top 
of page level (usually Levell) once a page is complete. 

12-31 



12.6.4 

12. 6. 4 Example, 1742 Line Printer 

~.!AM PRINT 0001 
440~ ------ --------------------~T_- - ___________ OQ -l-NT 

. 0 0 f) i ',-,< it n /l f) ~ !) n () P Q rr\1 T L i) () = ;\1 q., f) 7 R 1 
;.I;)t)f) 1 ()7o.1 

{}{)-04---··iJOOO-~··--oArq.- .. --- . -fNA .-- .. - ---1-· 
0005 ;:;0001 01FF ()t1T-1 
0006 P0004 Fnno LnQ =N~0781 
---+p4-l04-lnH-JO~!L7_~-------. -----q _h __________ •. ___ . ___ .--.- •• -

o 0 0 7 j-' Ii () 0 IS f1.l\'" ~ ~ 

-1 

EQUIP .15, FUNC 1 

CLR CONTROLLER

EQUIP 15, FUNC 2 

LEVEL 1 TOP OF FORM 
DOOR F-'0007 OiFF. 

-G-O-0-9--+' {} t}-Q-R -G 1) n1)----.- --.- .--. 

OIIT 

--- -LOA .. =Xi)7FFF"';l" LOOP FOR OVERFLOW·· .. -· 
P0009 7FFA 

0010 POOOA 6A26 STA* LIN~CT 
0011 PO 0 Oq 0 A4'1 ----I:--1>.P"-------Gh..Q-· -------.-A-- ----- .-- .---- -
001? poooe ~()FF STA- T 
0013 ~noon OOFC INn-3 

-0 Gl4-·--r' O-G-9-E·---G9-l--l-· --- -().lJ-T-· --- --LtJA-*- -. -----.. [)Al"-A.~ I 
0015 POOOF ORno NOP 
0016 ~OOI0 03FE OUT-l 

6 LINES PER PAGE 

ZERO INDEX. 
PRINTER FOR DATA 
2 ASCII CHARACTERS-·· 

--&e+1-f4H.H 1 COFf'" 1::-8-A-----... --'f-----.---- -.. --.------ CHECK WORD LOOP--------
0018 (.Jon I? fl9FF II\lll. -<1; 11 17 CHARACTER PER LINE 
0019 ~OOI1 1110? SAZ hJEXTL SKIP IF COMPLETE' 
{t.g~O-·+tH)-l_4·PO~-F_-·--_:_----·------· ·--R-AC)--... -----.--1-----.--- .. -.-- -- -NOT GOMF,-- UPDATEINDE*-----
OO?1 POOle; lRF8 J~1P* OUT CONTINUE LINE OUTPUT 
002? ~OOlt, ().I103 I\lFXTL· H·.!Q 1 LINE COMPLETE FUNCTION 
-{l~ PO 017 C) 0. O-l--··--···-----·-- .. --·--.. --·€-NA --------------1:---.------------ ·PRIN~eMMAND·'------- --- -' . 
0024 f-JOOI A fl1FF OUT-I 
OO?5 ~J001q Ofl()4 F.:"lA 4 DOUBLE SPACE 
4{)~··~tlO_lA---q-'1FF_ --- ----.-------. ---.- OU T----·---- --- ·-1--- -- - ----------. - ------.---- ----.---- -.----
0027 POOIq OBlS RAO* L!I\JECT UPDATE LINE COUNT 
OOi?A ijOO 1 C () 1 Al SOV cr-1p SKIP IF PAGE COMPLETE 
~Q--~l n 1 RFO --------.--J14P-*------------CN:T---------- -CONTINUE .IF-P~E--NOT COMPLETE 
0030 ~001~ noon CMP SLS . ... .. 
0011 ;.JOOIF ·r.:;44R I)ATfI ALF -I*",THIS PROGRAtA \~'()Pt<s Of\.1 PRINTER i742* 
----+-,-f}-{}-2 0---49-5--3---·- -----------.---.-.-.- - ... -.. --- "---'---"-- - - --.- .. --- . -'-'-'-- --.-.- .-.------.-.- -- -.- -

.J0021 2050 
P002? 5?4F 

---~'l-?--~4-1 r;; ~ .-.-.----.-- -.-- ---.-------- ----- --.- ~--.--- ----------------.----------

:--' () f) 24 4 1 41) 

.-JOO?S ?f)t;7 
--·~?__6_-4~-----··---······ .-.-.----.-.--.-..... ---- .. -.. -.--------.- ... ---.----.-....... - ... ---. --... - -- -- .. - -.-..... --.. -.-- .... -------

P0027 4RS3 
?OO?R 204F 

----~9_-4F?-9---------- ---------.--------.. -.------.--.. --- - ..... -.... --.--.... -.-.-.------------
~OO?t\. 5()~? 

. .,/JO?Q 4q4F 
.. --;:.-Ht')-20-·~44_~- . -.. -

po(2)") S??O 
P002F 1137 
"'0 l)?r 343? 

003? ;Joo)n nf)fll 
0013 

~~s LtNFCT(I) 
E /,! rj ;:> P T '\l T 

12-32 

c 



o 

o 

12.6.4 

THIS PROGR,A'M ,INOPKS ON PRINTER 1742 

THIS PQORR4"1 1742 

THIS PQOGRAM "/ORKS ON PQINTfR 1742 
--.----.--.----.---.~ .-.--

THTS PROGRAM \A/ORKS ON PRINTER 1742 

TIfTe; P P (U;-9-1\ ~ 4 h'ORKS O~j PPI~jTE=R 1742 

THIS PROr,QAM \,\1001<5 ON PPINTEQ 1742 

Note what happens in the following program when the functions for print command 
and double space are issued Simultaneously! (Line 23, ENA 5.) 

12~33 



12.6.4 

0001 
0002 
0003 ~o~on ~n00 PRINT 

;:";0001 07q] 

I\!A~·1 

FNT 
Lon 

-~- -fh.'}1}-4 r:::'{} ·0· !).?:--.1l-M.-l-.--------.. -----JF~._ /\~I Llrl\, ~-

0005 i;"OOOl 03FE - OUT 
0006· PQ004 fono LDO 

_--,-,-0 Q-4-{tS-f.LlR}-.--. 

PRINT 
PRI"/T 
=N1i0781 

--1-1-· Cl-R--··.GOf\C!:---
-1 
=.f\J$0783 . 

0007 ~noo~ DAOA E~A 8 TOO OF FORM 
o 008 p () 0 07 () 3 F E 0 II T - 1 

--·~{}-0-9-·-~tJ·90B_ .... C_G-~-------·---.-_b~.+A_--- .. - ... ----=X..$_1f'F-F--'5-·· . 
P0009 7FFA 

0010 POOOA ~A?4 STA* LINECT 
~·e-l-] ;~o 04-0 0 844 -*'~ CLR Q 

0012 poooe 60FF STA- I 
0013 ~000~ 0nFC INQ-3 

-_·-{)-O-l-4- -P-fJ-.f:)4E-- G-9.n.F---~---·-b.-DA*-----IJ-A.+.A.·._I-·-·----. 
0015 POOOF OROO NOP 
0016 ROOlO 03FE OUT-l 
o a 11 p 13 ell 1 € q F-F- L D l\ - I 
o 0 1 8 \.:/{);) l? I) q F ~ I I'.J A - ~ 1 1 
001 9 \;;',0011 () 1 n? SAl f\,JI:.)(, TL 

---f; () 2-{}--,-;-J{t-O-l-4 f) 0 F f R4G-------I------· .. -----·-----
0021 POOlS 18FA JMP* OUT 
OO?2 P0016 0003 NEXTL INQ 3 

~3--+,,-*l-+ ('I~ (' S . I E '~Q '5 :--
00(>4 POOI P 03FE . our -1 J 
OO?S ~OOlq'OR15 RAQ* LINECT 

---.. ·trO-?-6----.p{H)-b~ 01 A+ -----~V- .. - ---.~----

0027 pnOlg 18EF JMP* tNT 
0028POOIC 0000 CMP SLS 
-B.~~ ~)-L/~I'''''''~ Q~_. --40-:1-<,. ot.\-, Th. (JI.\-, ---A-l'.'I-F~. ----.x* .. ,-+T-I=:1HI-l-I ~-R.q-GQ·~-j,JJJ-QK.S----ON-AA-P1 TER 17', 2* 

;J001~ 4QSl 
:;nOl~ ;>050 

- .. ---__ --~ .. Lll{}-?4-t::; ?:4-F-----:----------
?0021 4752 
r:'002? 4140 

-----·-~~#q~c:;+7--

)-Jt)024 4FS? 
\-' 0 0 ?" '-'- R 5 3 

··-------·----~-H·~--?44F--

P0027. 4E?O 
P002R 50S2 

-----------P-fh')-;.?q 494£. 
Pon2L\ <=)445 
~)QO?q S2?O 

.------.. - ---PG{}-2·{?---3-·l-3-+--------·--
p'002n 3432 

0030 P002E 0001 BSS ~INECT{l) 
. 0031 ------------------E·~~!O~--~~P~Q~,I~~~'T~· 

12-34 



12.6.4 . 

r P R p· s P R 
T::) '. T 

--:t+T S P RB G Q.o, q -hlC}PK-s-SL~-f-N-~_-l--+4~ 

~Ts pP0~qAM ~OPKS ON PRINT~P 174? T . 
_~.J,. __ ' ___ . __ .. ___ .. __ " __ .. ____ \#../" .~. ______ "_ ".. ._.~._._.,.._ .... _~~, __ . _______ ~ ___ .. ___ . __ ~ 

T~TS PROGRAM ORKS ON PRINT~q 1742 

\it! 
p OG AMO K ON P IN~. 1742 

o 

Digigrapbics - September 1969 

C) 
12-35 



12.7 

12.7 1738/853 DISK 

The disk is a buffered peripheral device attached to the 1705 Direct Access Bus. All 
data will be buffered in and out of memory via the 1705 in 16-bit words. The functions 
will be sent from the A Register and status will be r e c e i v e d in the A Register, nec
essitating the connection to the A/Q channel. The disk transfers 16-bit data words in 
12.8 microseconds. Access time for positioning the head is 165 milliseconds maximum. 
Cylinder-to-cylinder pos itioning time is 30 milliseconds. The disk has a maximum 
latency time of 25 milliseconds. 

Ninety-six 16-bit words may be s tor e d on one sector with 1,536 words on a track and 
15,360 words to a cylinder. The 853 disk pack allows a total of 1,536,000 words, while 
the 854 disk pack has a capacity of ~, 118,080 words. 

The data format may be summarized in the following: 

16 Bit data words 
96 Words to a sector 
16 Sectors to a track 
10 Tracks to a cylinder 

100 Cylinders to an 853 file 
203 Cylinders to an 854 file 

The three interfaces for communications with the 1738 controller are the A/Q channel, 
DAC (1705) and the CONTROLLER/FILE. The A/Q channel is the interface between 
the con t roll e r and the programmer. It is via the A/Q channel that the programmer 
may status the disk and issue functions. The DAC is the interface between the controller 
and the computer's memory. It is via this channel that the data is transferred. The 
DAC also provides the 1738 access to the LWA+1 of the programmer's buffer area. 
CONTROLLER/FILE INTERFACE is used for communications between the controller 
and the disk. It is through this interface that the con t roll e r informs the disk of the 
Sector Record Address selected by the programmer. The SEEK operation which posi
tions the read/write heads to the SECTOR RECORD ADDRESS is generated by the 
controller once the controller receives the desired add res s from the A/Q interface. 
The controller will issue a SEEK FORWARD or SEEK REVERSE command depending 
upon the current position of the read/write heads. It does not return to a set address 
prior to positioning on a new address. 

12-36 

c 



o 

o 

SIDE VIEW: 
850 DISK PACK 
(6 DISKS) 

L_ - - - - -- DISK SURFACE 0 
C-------DISKSURFACE 1 

------------~---------7--L ______ _ 

,-------
~-------;-----------7L--______ _ 

.-- - - - - ---
----------;-----------TL-______ _ 

,-------
------:--------~.-- - - - - - -

.- - - - - - - DISK SURF ACE 9 
-----------~-------~-

TOP VIEW: 
DISK SURF ACE 

CYLINDER 00 - -

CYLINDER 99 - - 1-----, --SECTOR 15 

--SECTOR 0 

--SECTOR 1 

DIRECTION OF 
ROTATION 

853 contains 100 cylinders; 854 contains 203 cylinders. 

Figure 29. Disk 

12-37 

12.7 



12.7 

ADDRESS 

\ 

Figure 30. Sector Format on Disk 

HEAD 
GAP 

60 

BITS 

DATA 

I 

CHECKWORD 

Each sector on the disk contains the above information. Note that the 96 16-bit words 
of data (1536 data bits) are in addition to the other check bits in the sector. 

12-38 

c 



o 12.7 

Figure 31. Data Buffer for Disk 

r-----------, 
I I 

LWA + 1 I 

FWA-. 

DATA 

o 

LWA-+ 

FWA-1 must contain LWA+1 of buffer. 

o 
12-39 



12.7 

The Q Register will contain the address of the disk. 

15 11 10 7 6 5 4 3 2 o 
Q r 01 010Jo[0] E r010Jolo] D I 

'-----v--~ '----v-----' 

W Equipment Director Bits 

W field is zero and E field contains equipment number (set on controller). 

The setting of the director bits will define the desired operation to the controller. 
The contents of the A Register will vary according to the director bits. 

12.7.1 Disk Functions 

DISK 'FUNCTION CODES 

Value Set in Q 
(Bits 02 - 00) Output from A Input to A 

001 Director Function Director Status 
010 Load Address Address Register Status 
011 Write 
100 Read 
101 Compare 
110 Checkword Check 
111 Write Address 

12.7. 1. 1 Director Bits 001 - Director Functions 

This setting with an OUT instruction prepares the controller for director functions 
which are found in the A Register. The functions for the disk may all be sent at 
the s arne time. 

15 10 9 8765432 1 0 
1::::::::::::::::::::1 

Unit Select cOde~l . 
Unit Select 

Release 11 
I blear Interrupt 
Ready & Not Busy Interrupt 

End of Operation Interrupt 
Alarm Interrupt 

The CLEAR INTERRUPT function will clear all selected interrupts allowing the 
programmer to select the interrupts he des ires. Three interrupts may be 
selected: NEXT READY AND NOT BUSY STATUS, END OF OPERATION, and 
ALARM. The NEXT READY AND NOT BUSY interrupt occurs when the 1738 
becomes not busy, but still maintains its ready status. This interrupt can be used 
during an overlap seek. The overlap seek is used when two disks are connected 
to one controller. The programmer may issue a sector record address for one 

12-40 

~, 

l .... 

(' 
'-.... __ .. 



o 12.7.1.1 

disk and then issue a sector r e cor d address for the other. The controller will 
generate a NEXT READY AND NOT BUSY interrupt, if selected by the programmer, 
when one of the disks reaches the requested addres s. 

The END OF OPERATION interrupt allows the controller to inform the 1700 when 
it has completed an operation such as a data transfer. The ALARM INTERRUPT 
will notify the 1700 that an alarm condition has arisen. There are eight possible 
alarm conditions; not ready, checkword error, lost data, seek error, address 
error, defective track, storage parity error, and protect fault. 

The RELEASE function allows an unprotected program to use the disk even though 
the protect s wit chon the disk is still set. A protected program must issue the 
release function. The next time a protected program accesses the disk, the disk 
will become protected and must again be reI e as e d before the disk will become 
accessible to an unprotected program. 

The UNIT SELECT and UNIT SELECT CODE will always be zero unless two disks 
are connected to the 1738. Bit 8 is the UNIT SELECT bit which informs the con
troller that the pro g ram will select unit 0 or unit 1. Bit 9 indicates which unit 
bit 8 wishes to select. If bit 9 is a 0, unit 0 is s e 1 e c ted; if it is a 1, unit 1 is 
selected. The controller ignores bit 9 unless hit 8 is set. 

o 12.7.1.2 Director Bits 010 - Sector Record Address 

This director code in the Q Register with an OUT instruction will send the SEC TOR 
RECORD ADDRESS from the A Register to the controller. Once the controller 
receives the address, it in it i ate s the seek operation. The SEC TOR RECORD 
ADDRESS will be in the following format: 

15 8 7 4 3 o 

AI ~ ______ c_Y_L_I_ND __ E_R ________ ~ ___ H_E_A_D ____ ~ __ S_E_C_T_O __ R~ 
12.7. 1. 3 Director Bits 011 - WRITE 

The WRITE function code requests the controller to pre par e to read data from 
memory and write it on the disk. P rio r to this function, the programmer must 
send the SECTOR RECORD ADDRESS to the controller. 

The controller expects to find the first word address minus 1 (FWA-1) of the buf
fer area in the A Register when the write function is re c e i v e d. The controller 
goes into memory via the DAC to the FWA-1 at which location he extracts the last 
word address plus 1 (LWA+1). The controller keeps the LWA+1 and updates the 
FWA-1 until the two are equal at which point the write 0 per at ion is complete. 

Prior to issuing the WRITE function, the SECTOR RECORD ADDRESS must be 
sent to the controller and the LWA+1 of the buffer area must be at the FWA-1. 

12-41 



12.7.1.4 

12.7. 1.4 Director Bits 100 - READ 

The READ function code follows the same programming procedure as the WRITE 
function. The d iff ere nc e being the disk reads data into memory rather than 
w r it in g data on the disk. An unprotected program may READ from a protected 
disk without generating a protect FAULT, howe v e r, if an unprotected program 
attempts to w r it e on a protected disk, a protect fault will occur. An alarm in
terrupt will be generated if previously seJected. 

12.7.1.5 Director Bits 101 - COMPARE 

The COMPARE function code follows the same programming pro c e d u r e as the 
READ and WRITE function codes. The COMPARE function causes the controller 
to read data from the computer's memory and compare it with the data stored on 
the disk. If at any time during the compare, one word does not compare, the NO 
COMPARE s tat us bit will be set. This function provides an extra check on the 
validity of the data transferred. 

12.7. 1.6 Other Director Functions 

The remaining director functions (CHECKWORD CHECK and WRITE ADDRESS) 
are used by the customer engineers for maintenance work. 

12.7.2 Disk Status 

12.7. 2. 1 Director Status 

D = 001 accompanied by INP instruction, will request the 1738 to send status to 
the A Register. 

15 14 13 12 11 10 9 8 7 
A I:~{{~ I I I 

Protect Fault 1 11 
Storage Parity Error 

Defective Track 

6 5 4 3 2 1 0 

I 

11 
I heady 
Busy 

Interrupt 
Address Error On Cylinder 

Seek Error End of Operation 
Lost Data Alarm 

Checkword Error No Compare 
Protected 

12-42 

c 



o 

c) 

12.7.2.1 

The READY s tat us indicates that the unit is available. The BUSY bit indicates 
that the controller and/or the drive unit is presently involved in the performance 
of an operation. This bit is set with the acceptance of a LOAD ADDRESS, WRITE, 
READ, COMPARE, CHECKWORD CHECK, or WRITE ADDRESS function. At the 
completion of the function which set the BUSY status, the status will be cleared 
and the disk will become NOT BUSY. Once the disk is NOT BUSY, a new function 
may be issued. 

The INTERRUPT bit acknowledges that an interrupt has occurred. Further ex
amination of A will determine which of the three selected interrupts was generated; 
bit 4 (EOP) and bit 5 (ALARM). If neither bit 4 nor bit 5 is set, the programmer 
should check bits 0 and 1 for READY and NOT BUSY. If the alarm bit is set, the 
programmer must evaluate A further to determine which of the eight alarm con
ditions caused the interrupt. 

The ON C Y LIND E R status, bit 3, is set when the READ/WRITE heads have 
rea c h e d the SECTOR RECORD ADDRESS initially sent to the controller via the 
A/Q channel. 

12.7.2.2 Address Register Status 

The D=010 Q setting accompanied by an INP instruction will direct the controller 
to return the cur r e n t sector record address of the disk to the A Register, the 
location at which the READ/WRITE heads are currently positioned. It will be in 
the same format as described in the Address Function. 

12-43 



12.7.3 

12. 7 • 3 Disk Sample Programs 

N.A'" OISK .0001 
. OOO? ----'---+-EN-~I~----------- ------- --------------

0003 POOOO conn DISK LOA =XL~~'P() LWA+1 IN 'A' 
PODOl OOQ2 D 

~4-~2-f,-A{H}--------------S-T-A---F\-/w)---------'-----' LWA+ 1 AT FWA-1 
P0003 OO?E 

0005 P0004 DAOO RAO FLAG UPDATE FLAG FOR LOOf 
--~F-'~-&e--l-+-----------------------' ----.--- -_.----- -. --- -

0006 POOOA EOOO LDQ =N$0181 EQUIP 3, FUNCTION 
PO'007 0 UH 

0007 ~~------~-------ENA--$-~H)-&2-------'- ----------CLR· INT 
00~8 P0009 03FE nUT -1 

_0009 POOOl\ -EOOO ZAP LnQ =N$01A2· EQUIP 3, LOAD ADDRESS 
--~pfrjO (H}~*R-?-- ' -------- -----

0010 poooe OAIO fNA ~OOlO CYL 0, HEAD 1, SECTOR 0 
0011 Pooon nlFE OUT -1 

-{}&-l-2--P{l-O-oE--E-DtH)--·------tGfi}----~N_$_O I-B-l-- . ---------EQUIP 3, STA;TUS 
POOOF 0181 

0013 POOIO OBOO NOP 
-&Ol4 POOll f)2FE --s-:fAr+T--HHIdtJPL..--+l- --STATUS IN A 

0015 POOl? OFCC ALS 12 ON CYL 
0016 POOl) 0111 SA~ 1 SKIP WHEN ON CYL 

--{)-&l--7-.tJ-fH)--l-4----lA.F-C- -----------------d!..4P-*-- ·-s TA--T -- - ------- -----WAIT 
o 0 .1 8 POOl SIC 0 0 t-J U "'1 $ 1 COO . JMP (0) 
0019 P0016 0000 FLAA 0 0 

-{H) 2 0 1-' (l 0 17 00 19 D --Af)-<>------w-R+TF- --G(} WRITE h_ -

o a 21 PO a 1 8 0 0 ? A PA 0 C READ GO READ 
00?2 POOIQ COOO II/RITE LDA =XF',IMO FWA-1 IN A 

------- POOlA n031- p--------------------- --.-------------------------- ---. 
0023 P0018 EOOO LOQ =N$0183 EQUIP 3, WRITE 

P001C 0183 
-{H}-?-4--P-{HHtT-:-f)~- NO P 

OO?5 POOlE 03FE nUT -1 
0026 POOIF FOOO xx LOQ =N$OI81 EQUI P 3, STATUS 

~---_ --fJf}-020----0'1 ~H------------ -----. ----------.-----: -- -- -- ------
, 0027 P0021 .OBOO .' MOP 

OO?8 P002? O?FE LOOP INP -I. STATUS IN 'A' 
~?4--?-{)&2-=t__f)_f"_€_B__-----------_A_l-5----11---·------------CH FOR END OF OP 

0030 20024 0 131 SA~'" 1 SKIP WHEN COMP 
.0031 P002S lAFC JMP* LOOP WAIT 
-O-&-~fl02-6---{)-on~---------S~5---O---::...---~----- ----- '-STOP TO ZERO:BUF FROM CONSOLE 
0033 P0027 DAOO RAO FLAG ADD 1 FLAG READ 

P0028 FFED 
~·O~-O~3*4~p~o~e~2~q~lA~F~_O~--------~2~:A*P~-----
0035 P002~ cnno READ LDA =XFWMO 

P002R 0031 0 

--eeNTlNUE-;---READ - --- - -- ----- -
FWA-1 IN A 

003 6P-&fl2C--EfHH)--d---' -------l-M--zN$-O-l-84-------- --EQUI-F-- -3 -, -READ 
P002D OI~4 

-,0037' P002F." OBOO _ NOP 

r~'~R1-~Frg"lf~+-4~.1-f~H~h-~LF~~~~~;F~+-~-----·-t3-Jt-~H~-*-x-+~------G-O-S-T-li-TUS-FOR-END-·-OF-OP ---
'ri040 P003' QOOI 875 FWMOC}) 

-----t-Bt-JlZ~S.-----t-FWA-(~6_~---- --- -------,---
\.:_ Q42 . POQ92 0001 BZS LWPO (1) 
JIl043' ; ---;-END DISK 
~<:", '>'-" ' ., ;- ; 

12-44 

c 



C,- 1 

c. 

12.7.3 

~::Q.QQ:,l;:,X:,.,:>, ,', .' c"~c~~'"'cc' N A ~1 DISK 
;;eeo2Pooorj-[(HlO START LOo. -N$OIBI EQUIP 3, FUNCTION 

POOOI 0181 
10003 POOO? 0844 CLR A INITIALIZE INDEX 
-I,,:p+f,O~:9ht.i't.,..,.,-Pr-A-.OA-;~ O~P~,. -fo6.w;0~r+-r-----,-,----~S r-A,-----IIf------ -----,--,---------

[;9.:~:?5'<,eRoqf4:, COQO: ' LOA =N$0002, CLEAR INTERRUPI'S 
/;~6~(N)6;;~g·g ,~,.~.: '~.g.~.~ ....... ; 
;0001 P0007 03FE 
i0008 ?OOOA EOOO 
~"" .... ·;·P0009 0182 , . 

!;'Qttl'~,;'>e.O~():J9:5Q,eJl.O 
ItQOlit-::'.8.P9J}.' 02FE>JES.Ti' .,';' 
r:ooiS'POOl:? 'OF43 

pJOP 
JUT 
LDP 

LOA 

NOP 
OUT 
LOQ 

NOP 
INP 
ARS 
AND 

-1 
=N$0182 

=N$460 

-1 
=N$0181 

,~1 

3 
=XMSK 

SECTOR RECORD ADDRESS 

CYL4,HEAD 6, SECTOR 0 

EQUIP 3, STATUS 

STATUS'IN A 
CHECK ON CYI .. 

1'~'~'~:7':g~i: ::gb p STA BUF-l STORE AT FWA-l 
I POQ LA 003C 

..... ,f) COOO LOA -XBUF 1 LOAD -l--A-t-FWA-...-f: 
',;,f*O.91P'QgpQ P 
;:POOID EOOO LOQEQUIP 3, WRITE 

~~~~~~~~~~~~~~~~~~~~_~~J_'~ __________ ~ ___ ~_ 

1'0023 P001F NOP
P024 P0020 OUT-l

b.IHi~r--,-p-A-A-~-:-FlHHl---::--,------,-~---,--4--I-H-Q;;~---'----'---lC~~~~ $IifOHl-+'8Hl~-~EQU-IF~-~3,-Sr-lcTA~A .. T+UHiS~---------,---

TEST2;·
~~~~~~~~~~~~~~~~~~~~~--&fATUS IN A 
0028 P002S 

,0029 P0026 
k:+~9R27 

,'0033 P002R 6900 
i P002C 0028 
I 

j0031 P0031 0132 
10038 P003? 1800 
I . .... P0033 C(F6 ... 

RE,4D r;'Q()·.~·? .. ....•.. PP. 0 .3 •. ':+ ............ O.() p ••. O 
['00 4(»PQ 9 :35'; E 0 00 c---c~---, __ 

b. . PtHl36 f) 1 A2' ' .. '-'~.-'-.\.-" 

.ARS 
AND 

STA 

SAIv1 
JMP 

SLS 
·LOQ. 

4 
=XMSK 

ZERO 
:'.TEST2 . 

BUF,I 

READ 
ZERO 

=N$0182· 

12-45 

CK END OF OP 

,SKIP WHEN COMPLETE 
,CONTINUE WAITING -

BUFFER AREA 

IF COM SKIP 
CONTINUE ZERO UNTIL COMPLETE 

",.: -------. 

STOP TO CKBUFFER 
EQUIP 3, LOAD ADDR 



12.7.3 

0042 P0039 0800 
0043 Pf)03A 03FE 

POO.3~ EOOO 
f'003C 0.181 
P003D 08QO
~' ... " ;3S,q 2Ft: 
fJ003F OF43 
P0040 Aoon 
POO~+l .. OOOl 

·0049' P()042 ,01··11··.····· 
0050 P004318F7 
0051 DOO 44 C'l(H} 

P004S 0056 p 

0052 P0041S Eonn. 
:=>0047 0184 

. 0053 POQ480BnU 
I 0054 P0049 03FE 
l-=-----tt-o 55 PO 0 4~ F 0 0 9 
I ~004P 0181 
I 0056 P004C oRn6 
1- t' 057 ? 0 0 l~ C) 0 2F E 

0058 P004E OF44 
0059 P004F A'OOO 

\:>0050 OOPl 

TES 

PEADl 

TEST4 

NOP 
OUT 

NOP 
INP 
ARS 
AND 

SAN· 
JMP* 
LOA 

lDQ 

NOP 
OUT' 
LOg 

NOP 
INP 
ARS~ 

'AND 

0060 ~0051 0111 SAN 
OO~l '~005? lRF7 JMP* 

"';1 

-I 
3 
=XMSK 

CK 'ON CYL 

"READ1 SKIP·<WHENONCY~ 
Tssta' WAIT····,· ' 
~xBtJ:S;.;;.f' FWA lIN 'A" 

=N$0184 

' ..... 1 
NS0181 

-1 
<4 

=XMSK 

EXIT 
TEST4, 

EQUIP 3, READ 

OPERATION'.' INITIAtED 
EQUIP 3, "STi\TUS .... ', 

STP .. TUS IN. A 
CKEND,OP 

SKIP WHEN COMP . 
WAIT 

'.- --.. ;')·1)42··-;2.0-0 S ;l're ---1:0+-\:" OH.('++, O,l----r.:~:-.IIXr-:l:I-l-T--~S-b.-5~--- - STOP 
. 0063°0054. 1800 JMP START 'BEGIN AGAIN . 

PO OS5 FFA-,o. 
__ ~----~n~O:HO~lr-~----~--~E~Q~'J~----~~~S~K~(H-IH)~~----~~~~~~~ 

'0065 (lOAr) EQI) COlJNT(96) 
. OOA6 000S~ ~n01 ASS (1) 

,-: --~61--AH1-5-=7---l}(}-64---~----. --------+»c;:;!..r-: ---·-B-Y-F--+.Q.6r-t-)-------:----:-----,-----:---:-----' 

0068 END 

12-46 



o 

o 

12.7.3.1 Address Tag Program 

Write Addresses: 

12.7.3.1 

Every new disk pack has to have addresses written on it before it can be used for 
data storage. Each sector must have an address tag. The hardware address tag 
switch and the write' address function code are for writing the addresses. The 
following program could be used to write tags. 

* 
* 

* 
* 

TAGS 

LOOP 

EXIT 

NAM WRITE ADDRESS TAGS 

TURN ADDR TAG SWITCH ON * DISK IS EQUIP 3 
FOR 854 CHANGE CYL EQU TO $CB 

* 

* 
* 
* 

EQU EQUIP($0182) , CYL($64) 
ENT TAGS 
0 0 
LDA =N$0102 *SEL UNIT 0, CLRINT 
LDQ =XEQUIP-1 *DIR FUNC 
Nap 
OUT -1 
INQ 1 *SEEK FUNC 010 
ENA 0 *ADDRESS 0000 
OUT -1 
INQ 5 *WRITE TAG FUNC 111 
Nap 
OUT -1 
INQ -6 *DUMMY DIR FUNC 001 
ENA 0 *LAZY MAN'S BUSY CK 
OUT -1 *F ALLS THRU WHEN BUSY 
INQ 1 *LOAD ADDR FUNC 010 
Nap 
INP -1 *NEXT ADDR IN A 
EaR =XCYL *FINISHED? 
SAZ EXIT 
Nap 
INP -1 *GET NEXT ADDR BACK 
JMP* LOOP 
SLS *STOP 
JMP* TAGS+1 *GO DO IT AGAIN 
END 

12-47 



12.7.3.1 

Usually the program to write tags is keyed in from the console rather than run in 
assembly language. Therefore, it would be desirable to s h 0 r ten the program. 
Error checks can be eli min ate d if the hardware is functioning properly. The 
following code is used by the customer engineers: 

EOOO 
0182 
02FE 
OD05 
03FE 
ODF9 
OAOO 
03FE 
18 F7 

Decode the program and see what it does. A master clear sets the disk at address 
0000 to begin. The program will stop on alarm when it is finished and is attempting 
to write an address beyond the last cylinder (on an 853 or 854). 

12. 7 • 4 Problem 

Write apr 0 g ram to write zeroes on the entire disk pack after the new address 
tags have been written. Include error checks. C' 

12.8 1751 DRUM CONTROLLER 

The 1751 Drum Controller interfaces with drums ranging in size from 65,53610 words 
to 8,388,50810 words. The drum word size is 20 hits composed of 16 data bits, 1 parity 
bit (odd), 1 protect hit and 2 spacing bits. 

DRUM 
WORD 

19 18 17 16 15 

I I II I 
~lc~g 1 tarity 

Protect 

o 

DATA BITS 

The transfer rate for one word is 8 microseconds. All data transfers to and from the 
1700 are via the DAC. The access time for the drum is 8 milliseconds, with a maximum 
of 16 milliseconds. 

The Q Register will be in the following format when addressing the 1751. 

15 11 10 

Q W=O E 

7 3 

1

································1 :::::::::::::8·:::::::::::::::: 
:=:::::=:::=::::::::::::::::::::: 

12-48 

o 

D 



C) 

o 

() 

12.S 

The D portion of Q determines the type of information be in g sent or received in the A 
Register. The INP and OUT instructions, accompanied by the Q setting, con t r 0 1 the 
information flow to A (INP) and from A (OUT). 

Figure 32. Interim Drum Interface Codes 

~ C\1 M 0 

1700 I/O 
000 0 
(§(§(§ (§ DESCRIPTION 

Write x x x 1 Director function 
AO = Not used 
A1 = 1 Clear Interrupt 
A2 = Not used 
A3 = 1 End of Operation Interrupt Request 

Write 0 a b 0 Initiate Operation 
0 0 0 0 ab = 00 Write Data From Core 
0 0 1 0 ab = 01 Write Zeros 
0 1 0 0 ab = 10 Read Data to Core 
0 1 1 0 ab = 11 Check Parity on Drum 

Write 1 a b 0 Load Address Register 
1 0 0 0 ab = 00 Track 
1 0 1 0 ab = 01 Initial Sector 
1 1 0 0 ab = 10 Initial Core 
1 1 1 0 ab = 11 Final Core 

Read x x 0 1 Director Status I 
Ao = 1 Ready 
A1 = 1 Busy 
A2 = 1 Interrupt 
A3 =. Not used 
A4 = 1 End of Operation 
A5 = 1 Not used 
A6 = 1 Lost Data 
A7 = 1 Protected 

AS = 1 Parity Error 
A9 = 1 Not used 
A

10 
= 1 Guarded Address 

All = 1 Timing Track Error 

x x 1 1 Director Status II 

AO - All Sector Address 

12-49 



12.8.1 

12.8.1 Drum Functions 

When the D portion equals 00012 accompanied by an OUT instruction, the A Register 
must be preset. The setting of A determines the function or functions to be sent 
to the 1751. 

3 1 

A 1~~~~~~{}}}}}{}{{~~{}{}{{}{}~~}{}}f~~~~~~~~~))~~J 1 k~{~ 1 I~r~tl 

i blears Interrupt 
EOP Interrupt 

The Clear Interrupt bit clears the in t err up t. The EOP INT (End of Operation 
Interrupt) takes precedence overthe CLR INT. When the EOP bit is set, the 1751 
will g e n era t e an interrupt when it has completed an operation. The remaining 
bits in A are not used, therefore, they should be set to zeros. 

When programming the drum the programmer first clears interrupts. If writing 
in iilterrupt mode, he should also select the EOP interrupt. 

LDQ 
ENA 
OUT 

=N$0101 
$OOOA 
-1 

EQUIP 2, DRUM FUNC 
CLR INT, SEL EOP 
OUTPUT FUNCTION 

Once the interrupts have been cleared and res elected, the programmer must tell 
the controller the first word address (FWA) of his buffer area in core memory, as 
well as the last word address (LWA) of the core memory buffer. This is accom
plished by two D settings: D = 11002 denotes FWA, D = 11102 indicates the last 
word add res s. These settings are accompanied by an OUT instruction with the 
address preset in the A Register. 

LDQ =N$010C EQUIP 2, FWA 
LDA =XFWA A=FWA 
NOP 
OUT -1 OUTPUT ADDRESS 

LDQ =N$010E EQUIP 2, LWA 
LDA =XLWA A=LWA 
NOP 
OUT -1 OUTPUT ADDRESS 

The controller then knows the area and length of the computer buffer area. Once 
the con t roll e r knows the memory limits, the programmer must give the drum 
area by sending the beginning track address and sector address. Both are sent 
from the lower 12 bits of the A Register. The D portion of the Q Register dis-

C~ 

tinguishes be tw e e n sector and track add res s: D = 1000
2 

indicates TRACK, r-'" 
'\.. ... ' 

12-50 



C) 

o 

0 

12.8.1 

D = 10102 specifies sector. The programmer may select anyone of 409610 tracks. 
(Note: Not all s y s t ems have the maximum number of tracks, therefore, check 
your configuration.) The programmer may select one of 204810 sectors. (A sec
tor is the drum address of a word within a track.) 

LDQ =N$0108 EQUIP 2, TRACK ADDR 
ENA $0004 TRACK 4 
OUT -1 OUTPUT TRACK NUMBER 

LDQ =N$010A EQUIP 2, SECTOR ADDR 
ENA 0 SECTOR 0 
OUT -1 OUTPUT SECTOR NUMBER 

The controller now knows the core memory and drum memory to be used for an 
operation. The programmer must now specify one of four operations. The op
erations are also indicated by the D setting of the Q Register in conjunction with 
an OUT instruction. The four operations are as follows: 

D = 0000
2 

D = 0010
2 

D = 0100
2 

D = 0110
2 

LDQ 
Nap 

initiates a w r i t e operation. This write operation instructs the 
1751 to write data on the drum from core memory. 

instructs the 1751 to write zeros on the designated drum area. No 
data is transferred from memory. 

initiates a read 0 per at ion. The read operation transfers data 
from the drum to core memory. 

initiates a check operation. The check 0 per a t ion causes the 
designated drum area to be read and checked for parity err 0 r s 
without any transfer of data into core memory. 

=N$0100 EQUIP 2, WRITE 

OUT -1 INITIA TE WRITE 

LDQ =N$0102 EQUIP 2, WRITE ZEROS 
NOP 
OUT -1 INITIA TE ZERO WRITE 

LDQ =N$0104 EQUIP 2, READ 
Nap 
OUT -1 INITIA TE READ 

LDQ =N$0106 EQUIP 2, CHECK 
Nap 
OUT -1 INITIATE CHECK 

12-51 



12.8.1 

The d rum at this point will be in the process of performing an operation. If the 
END OF OPERATION interrupt were selected, the 1751 will generate an interrupt 
when the operation is completed. 

12. 8. 2 Drum Status 

The programmer may take status while the operation is being performed in order 
to monitor the progress of the operation. He may also take status again at the end 
of the operation to verify an error free operation. 

12. 8.2. 1 Director Status I 

status may be requested by a D setting of 00012 accompanied by an INP instruction. 
The status will be brought into the A Register. 

LDQ ! =N$OlOl EQUIP 2, DffiECTOR STATUS 
NOP 
INP -1 BRINGS STATUS INTO A 

15 14 13 12 11 10 987 654 3 2 1 0 

Ir:::mI 1 11 11 kmm 1 tIIl1 11 11 I 
+ 1 + + + t + Parity Lost EOP INT Ready 

Error Data Busy 

Protected 

A 1 in the corresponding bit indicates that the stated status exists. For example, 
a 1 in bit 11 indicates a timing track error. 

Timing Track Error 

Bit 11 is an error in the timing track which insinuates a hardware problem. 
The programmer should attempt the 0 per a t ion three or four times before 
accepting the status as a hardware failure. 

Guarded Address 

Bit 10 indicates that a core to drum transfer was attempted to a track with an 
address lower than the one set on the track protect switch. 

Parity Error 

Bit 8 indicates that the parity was not odd, i. e., it did not have an odd num
ber of one bits in the word. 

12-52 

C~ 

c 

c 



o 

o 

12.8.2.1 

Protect 

Bit 7 indicates that the protect switch on the drum has been set. 

Lost Data 

Bit 6 in d i cat e s that data was not transferred from the controller's holding 
register before new data was read into the register. 

EOP 

Bit 4 notifies the programmer that an operation has been completed. 

Interrupt 

Bit 2 indicates that an interrupt has been generated by the 1751. 

Busy 

Bit 1 ind i cat e s that the 1751 is in the process of performing an operation. 

Ready 

Bit 0 indicates that the controller is in a ready state. 

12.8.2.2 Director Status II 

The programmer may also request the 1751 to send the current sector address of 
the drum to the lower 12 bits of the A Register.. This is accomplished by setting 
D = 0011

2 
and executing an INP instruction. 

LDQ =N$0103 EQUIP 2, SECTOR STATUS 
NOP 
INP -1 INPUT SECTOR ADDRESS 

12.8.3 Programming the Drum 

In summary, the programmer must first clear interrupts and select desired inter
rupts. Once this has been issued, the programmer notifies the 1751 of the first 
word address and the last'word add res s of core memory. Then, he must send 
the track and sector addresses of the drum. Finally, he specifies the operation 
to be performed. Status may be taken d uri n g the operation to monitor the pro
gress and should be taken at the end of the operation to confirm that the operation 
was performed correctly. 

When data is being written on or read from the drum, the track address is auto
matically incremented when the sector address overflows to the next track. 

12-53 



12.8.3 

Also, the Write Zeros and Check Parity functions operate on a specified area of 
the drum. Since only a beginning track and sec tor address were specified, the 
core address must be sent also to indicate the number of words, even though the 
data in core is not involved in those operations. 

Example: 

The following is a test program for the drum. It writes 100 words from a buf
fer beginning at FWA, on the drum beginning at track 4, sector o. It then checks 
drum parity on the data written and reads it back in. 

To operate the program, the initial buffer should be set to all one bits from the 
console. The STOP switch should be set, and the program will stop before the 
Read. The buffer should then be cleared from the console. By setting the STOP 
switch again and continuing the RUN, the read will be done and the program will 
stop. Then the buffer can be swept from the console to see that the data was read. 

Note that the drum controller must be dialed to equipment #2 and that the drum 
address registers and memory address reg is t e r s must be reset before each 
operation. 

Note also the nifty coding at lines 0026 - 0030 to jump different places on a flag. 

12-54 

c 

c 



c) 12.8.4 

12.8.4 Drum Example Program 

OOOl ~IOM O~IIM 

0002 ENT DRUM 
OOOJ 120000 0000 b)~II~ 0 () 

0004 POOOI OAOI ENA 1 FIRST JMP TO WRITE 
O()O~ POoo~ ~~lf S:J: A i~ E:L..AG 
0006 POOO3 OA02 ENA $0002 CLEAR CONTROL 
0001 P£lO()4 EOOO bDO -~1$0101 EQYIP 2 I)IR FYNG 

POOOS 0101 
OOOB ~OOO6 OBOO M08 
0009 POO07 03FE OUT -1 
OOJO ROOoa COIlO MEM LOA -~EWA BIIEEEB 

POOO~ l)03E P 
00] 1 ROOOA EOOO LOa -~$O]OC EWA(CORE) EIINC 

POO08 OlOC 
0012 poooe O~OO ~I08 

0013 POOOO 03FE OUT -1 
0014 ROOOI;; cuon L.OA -~EltJA ±99 !,W.A 

POOOF OOA1 P 
0015 ROOIO EOOO bDO -~I$O 1 OE I,WA(COBE) EIINC 

POOll OlOE 
001~ ROO12 1)800 MOR 
0017 POOl] 03FE OUT -1 
OOla ~OO14 Goao A6HH~ bDA -~1$4 TBACK 

POOl5 0004 

0 00]9 eOO]6 EOOO L OQ =~I$Ol08 XR ACT<: ADDR ~IINC 
POO17 0108 

0020 POOl~ Q~()O ~JQR 
0021 POOl9 03FE OUT -1 
0022 eOO1{A rooo IDA -~IO SECTOR 

POO1B 0000 
0023 eOOlC Eono I DQ -~$O]O~ SECTOR ADDR FUNC 

POOID OIOA 
002?:!: eOOlE O!:H!U ~Ioe 

0025 POOIF 03FE OUT -1 
0026 EO(}2D ] CII D ~IIIM SlCDO JMP* CO} 
0027 POO21 0000 FLAG 0 0 WHERE TO JUMP 
0028 eOO22 O{}25 e ~DC WH I IE-
0029 POO23 0033 P ADC CHECK 
0030 e002!± () () '~8 e ~DC HE~D 

0031 P0025 OAOO WRITE ENA 0 
0032 e0026 EOO(l L.D (l -~I$O 100 WRITE DATA 

P0027 0100 
0033 eOO28 0800 ~Ioe 

0034 P0029 03FE OUT -1 
0035 EW02A EOOO SIAr Loa -~I$() 10] DIR EIINC 

POO28 0101 
0036 eOO2C (lBOO ~Ioe 

0037 P0020 02FE INP -1 INP STATUS 
0038 e002f OfCS ~I 5 ] 1 CK EOP 
0039 P002F 0131 SAM 1 SKIP ON EOP 
009:0 EOO3!) lBEC IMe* SIAI±3 WAIT ON EOE 
0041 P003l D8EF RAO* FLAG NEXT JMP 
OO{t2 ~OO32 IBli5 U~H~* MEM GO BEINIXII\LIZE 

C) 
0043 P0033 EOOO CHECK LDQ =N$0106 CKPAR E~R ON DRUM (ONLY) 

e0034 0106 

12-55 



12.8.4 

00', i, rOO3S 01300 Nor 
0045 POO36 03FE OUT -1 
0046 rOe31 181'2 ;:H1r~ SfAf GO 13lAI~ ON EOP 
0047 P0038 0000 READ SLS 0 CLEAR BUFFER FROM CON~ 
e OllB POO39 E{HH~ 1::89 ~~!J, 01 Q II REA;g ~:gNQ 

POO3A 0104 
ggll9 rgg~H QtHHI ~J8P 

0050 POO3C 03FE OUT -1 
0051 POQ39 (HHlQ 51::5 S~OP AF~ER RE A;g 
0052 P003E 0004 FWA BZS FII/A(100) SET BUFFER TO 1 ' ! 
0053 ~~m 9RbI~4 

I Q 0 FF Dr~UP1 QOQQP ~4E~4 QOQ8P AgDr~ 0021P 
WRITE 0025P STAT 002AP CHECK 0033P READ 0038P FWA 003EP 

c 

La Jolla..-September 1968 

(' 
\. --

12-56 



o 12.9 

12.9 1731/601 MAGNE TIC TAPE 

The 1731 magnetic tape con t roll e r is used with 601 tape transports. A maximum of 
eight 601's may be connected to one 1731. Buffering may be accomplished via the 1706. 

The 601 is a 7-track t ran s p 0 r t capable of reading or writing at 200 or 556 Bits Per 
Inch (BPI). The tape is moved at a rate of 37 1/2 inches per second. 

Reading and writing may be done in either Binary or BCD codes. The 601 accepts six 
bits of data and generates parity for the 7th bit. The parity will be odd for binary and 
even for BCD. 

The data is arranged in groups of records and files. Consecutive frames of information 
con s tit ute a record. A record may consist of a minimum of one frame. A file is a 
group of records with the minimum being one record. Lon g it u din a 1 parity (even) is 
generated on each record and stored four spaces past the last data character. A record 
gap is 3/4' of unrecorded tap e surface which denotes the end of a record. A BCD 17 8 
code is placed six inches from the last record to indicate the end of a file. 

Each time a character is written by a 601, it transfers the character to the 1731 which 
checks the parity. If the parity is inc 0 r r e c t, the Parity Error status is set and an 
alarm interrupt is generated. (Note: The alarm interrupt will be generated only if the 
programmer has selected this interrupt.) The controller also checks for correct parity C) on a read operation. 

C) 

The Q Register will be in the following format when programming the 1731. 

15 11 10 7 6 2 1 0 

QI,-_~ __ L_~_~I::::::::::~::::::::::·.:~::::::::::~:::::::::::~::::::::::I~D~1 .:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: .................................................... 

The W field will always be zero when going to the 1731. This field will be used for 
programming the 1706 which will be discussed later. The E specifies the equipment 
number of a 1731. The equipment number corresponds with a switch selection on the 
1731 ranging from 0 to $F. (Check the equipment setting for your site.) The D fie 1 d 
specifies a command. 

12.9.1 D = 00 MT Data 

This setting specifies a data transfer. A write operation is indicated by an OUT 
instruction. The write sends the lower six bits of A to the 1731 which generates 
parity and writes the data and parity on the tape. Whenever the computer breaks 
the continuity of the character outputs, the controller initiates an End of Record 
sequence. If no new control functions are iss u e d after the end of record is re
corded, tape motion stops. 

An INP instruction with D = 00 denotes a Read 0 per at i 0 D. The read operation 
transfers data from the tape to the controller. The controller checks parity and 

12-57 



12.9.1 

sends the 6 data bits to the lower 6 bits of the A Register. The 1731 stops sending 
data to the computer when the computer stops requesting data or when the End of 
Record is sensed. Tape motion will not terminate except when the End of Record 
gap is sensed. 

If the 1731 is connected to the 1706, the data will be buffered into the computer's 
memory. The lower six bits of each word in the buffer area will con t a in data. 
The A Register will contain the FWA-1 of the buffer area for both read and write 
ope rat ion s, therefore, the data transfer will always be initiated with an OUT 
instruction. The FWA-1 in memory must contain LWA+1 of the buffer area. 

12-58 

c 



o 

o 

12.9.1 

Figure 33. 1731 Functions 

COMPUTER INSTRUCTION 
D Output from A Input to A 

-
00 Write Read 

01 Control Function Director Status I 

10 Unit Select Directo"t' Status II 

(A) - Control Function 
NOT USED 

ALARM I NTERRUPT REQUEST 

MOTION CONTROL 
NOT USED ~ I 

END OF OPERATION INTERRUPT REQUEST 

j 
DATA INTERRUPT REQUEST 

1 
CLEAR INTERRUPT 

~ ;LEAR CONTROLLER 
+ 

115 11110 71 6 ~~~~----~--5~1-4~13~1-2~11~1~01 
\ 

I 
Bits 10-7 

of A 

0001 
0010 
0011 
0101 
1000 
1100 

(A) - Unit Select Function 

TAPE UNIT 0 - 7 

SELECT TAPE UNIT 1 
DESELECT TAPE UNIT l 

NOT USED, ~ 

115 121"11019 

I 

Motion Function 

Write Motion 
Read Motion 
Backspace 
Write File Mark 
Rewind Load 
Rewind Unload 

NOT USED 
SELECT 200 BPI 

[

SELEC.T 556 BPI 
SELECT 800 BPI 

1 
BINARY 

BCD l i ,NOT USED 

700514131211101 

12-59 



12.9.2 

12. 9.2 MT Functions 

12. 9. 2. 1 D = 01 Control Function 

This D setting, accompanied by an OUT instruction, indicates that the A Register 
contains control functions. The control function gives the programmer the capa
bility of clearing interrupts, c 1 ear in g the controller, selecting interrupts, and 
establishing motion control. All control functions may be issued together. The 
pro gr amme r is allowed to select three interrupts: Data, Ala rm and End of 
Operation. 

15 11 10 7 6 543 2 1 0 

ktfittl I 
MotionA ....... Co-n-tr--..ol 111 t bLR Controller 

CLR INT 
Data INT 

EOPINT 
Alarm 

0001 Write Motion 

Sets the write logic in the selected 601. Once the logic is set, a data 
transfer function must be sent with an OUT instruction in 0 r de r for C 
the data to actually be written on tape. 

0010 Read Motion 

Sets the read logic within the selected 601. A data transfer function 
must be sent with an INP instruction in order for the data to be trans
ferred to the A Register. 

0011 Backspace 

Causes the 601 to backspace one record. 

0101 Write File Mark 

Write file mark generates six inches of blank tape followed by a 178• 
When the end of file mark is w r itt e n or read, longitudinal parity is 
checked. If the controller is in binary mode, a parity error will be 
generated, as the 17 8 is in BCD mode (even parity). 

1000 Rewind Load 

The rewind controls bring the tape back to the mag net i c load point 
indicator. The ready status stays up without any manual intervention. 

12-60 



o 

o 

12.9.2.1 

1100 Rewind Unload 

The rewind load keeps the ready status while the rewind unload causes 
the 601 to drop ready. 

12. 9.2.2 D = 10 Unit Select Function 

Allows the programmer to select the desired 601, density, and mode, when ac
companied by an OUT instruction. The 601 tape units can read at 200 and 556 BPI. 
The deselect function, bit 11, is used to deselect a protected 601 in order that an 
unprotected program may "get access to the 1731 to use an unprotected 601. 

15 12 11 10 9 7 

Deselect Tape Unit j 1 '---------v---'J 

Select Tape Unit 
Tape Unit 0-7 

6 5 4 3 2 1 0 

1
1 tm~~D 
Select 800 BPI 

Select 556 BPI 
Select 200 BPI 

Bits in A 
Register 

The Select Tape Unit, Bit 10, indicates that the unit number in Bits 9-7 is to be 
the desired unit. If Bits 10 and 11 are not set, the controller ignores Bits 7-9. 

12. 9. 3 MT Status 

12.9.3.1 D = 01 Status I 

This D setting brings Director Status I into the A Register when accompanied with 
an INP instruction. 

15 13 12 11 10 9 8 7 

A I~~~~~~~~~~~~~/~~~~~~/~~~~I I I I 
Controller Active til 1 

File Mark ' 
Load Point 

End of Tape 
Parity Error 

Protected 

6 

I I 
5 4 3 2 1 0 

I I 

1 1 1 t Ready 
Busy 

Interrupt 
Data 

End of Operation 
Alarm 

Lost Data 

12-61 



12.9.3.2 

12.9.3.2 D = 10 Status II 

Director Status II is requested with this D setting on an INP instruction. 

15 5 4 3 2 

12.9.4 Magnetic Tape Example Programs 

12.9.4. 1 . MT Example 1 

1 o 
I 

• 556 BPI 
800 BPI 

The following is a test program for a 601 magnetic tape on a 1731 controller. (It 
could also be used for a 608 tape on a 1732 controller.) The program generates 
200 frames of data in the ARe g i s t e r and outputs 1 frame at a time (the lower 
order 6 bits of A) to the tape unit. The pro g ram then backspaces the tape and 
reads the data back in, s tor in g it in the buffer DATA. Each frame of data oc
cupies the lower 6 bits of a word in the buffer. 

c 

The program can be run with the STOP switch set. It will stop when finished, and 
the buffer can be swept from the console. One cannot "step through" the program 
because the tape is moving as soon as the first tape motion command is issued. C= 

12-62 



12.9.4.1 

0 NAM MT601 
LDQ =N$0382 Q382 EQUIP 7, UNIT SE L 

USEL LDA =N$0494 UNIT1, 556BPI, BIN 
Nap 
OUT -1 
INQ -1 Q381 MOTION FUNC 

WRITEMO LDA =N$81 WRITE MOT, CLR CaNT. 
Nap 
OUT -1 
LDA =N-200 200 FRAMES 
STA- I 
INQ -1 Q380 DATA FUNC 

DATA LDA =N$FF DATA 3F 
Nap 
OUT -1 
RAO- I 
LDA- I 
SAZ BACKSP 
JMP* DATA+3 

BACKSP INQ 1 Q381 MOTION FUNC 
LDA =N$0180 BACKSPACE 

0 
Nap 
OUT -1 

READMO LDA =N$0100 READ MOTION 
Nap 
OUT -1 
LDA =N-200 
STA- I 
INQ -1 

RDDATA Nap Q830 DATA FUNC 
INP -1 
STA* DATA+200, I STORE DATA 
RAG- I 
LDA- I 
SAZ STOP-*-l 
JMP* RDDATA+1 

STOP SLS 0 SWEEP BUFFER TO CHECK 
DATA BZS DATA(200) 

END 

o 
12-63 



12.9.4.2 

12. 9.4.2 MT Example 2 - With Error Checks 

This test program for magnetic tape is the same as Example 1, with the addition 
of error checks. Note that the program never hangs in a loop on a reject. 

NOP 
OUT -1 

Instead it jumps to REJINT for any internal reject or REJEXT for any external 
reject. Even with no error analysis, note that con side r ably more coding is 
required just to allow for errors. Also note that the program is con tin u all y 
waiting for the tape. 

The program will stop either on normal termination or after a reject. It can be 
restarted after a reject by simply correcting the error condition and setting the 
RUN switch. 

This particular program has been run with the 1706 code set but it is still an un
buffered operation. The site where it was run had their magnetic tapes connected 
through the 1706, but the Direct Storage Access line was not also connected so 
operations simply went through the 1706 in unbuffered mode. 

12-64 

c 

C~' 



(j 
12.9.4.2 

0001 NAM TEST 1706 
0002 POOOO EOOO A LOQ =N$1382 EQUIP 7 

POOOI 1382 UNIT SEL 
0003 POO02 COOO LUA =N$0494 

Select POO03 0494 UNIT 1, %%¢ BPI, BINARY 

0004 POO04 0302 OUT 2 
0005 POO05 1804 JMP* A2 GOOD 
0006 POO06 58bA RTJ* REJINT INTERNAL REJECT 

0007 POO07 5861 RTJ* REJEXT EXTERNAL REJECT 
0008 POO08 18F 7 JMP* A RETURN AFTER REJECT 
0009 POO09 EOOO A2 LOU =N$1381 

POOOA 13E:H CONTROL FUNCTION 

0010 POOOS COOO LDA =N$OO81 

lrite POOOC 0081 WRITE MOT - CLR CONTROL 

/lotion 0011 POOOD 0302 OUT 2 
0012 POOOE 1804 JMP* A4 
0013 POOOF 5861 RTJ* REJINT 
0014 POOIO 5858 RTJ* REJEXT 
0015 P0011 18F7 JMP* A2 
0016 POO12 COOO A4 LDA =N-200 EOR 200 FRAMES 

POO13 FF37 
0017 POO14 60FF STA- I 
0018 POOlS EOOO AS LDQ =N$1381 DIR STAT 1 

POO16 1381 
0019 POO17 0202 INP 2 STATUS o Status 0020 POO18 1804 JMP* ASS 
0021 POO19 5857 RTJ* REJINT 
0022 POOlA S84E RTJ* REJEXT 
0023 POOlS 18F9 JMP* AS 
0024 P001C OFCC ASS ALS 12 DATA READY? 

0025 POOI0 0131 SAM *+2 
Data 0026 POOlE 18F6 JMP* AS 
Ready? 0027 POOIF ODFE INQ -1 WRITE DATA FUNC 

0028 P0020 COOO LOA =N$FF 
P0021 OOFF 0000 0000 1111 1111 

0029 P0022 0305 OUT OUT 5 
0030 P0023 DOFF RAO- I 
0031 P0024 COFF LDA- I 
0032 P002S 0104 SAL A7-"-1 

Output 0033 P0026 18EE JMP* AS GO STATUS AGAIN FOR DATA READy 

Data 0034 P0027 5849 RTJ* REJINT 
0035 P0028 5840 RTJ* REJEXT 
0036 P0029 18E8 JMP* AS 
0037 P002A EOOO A7 LDQ =N$138l DIR STATUS 1 

P002B 1381 
0038 P002C 0205 INP 5 
0039 P002D AOOO AND zN$2 CHECK BUSY 

P002E 0002 
Busy? 0040 P002F 0104 SAl A9-"-1 SKIP WHEN NOT BUSY 

0041 P0030 18F9 JMP* A7 
0042 P0031 583F RTJ* REJINT 
0043 POO32 5836 RTJ* REJEXT 
0044 P0033 18F6 JMP* A7 

0 0045 P0034 EOOO A9 LOQ =N$1381 CONTROL FUNCTION 

P0035 1381 

12-65 



12.9.4.2 

0046 P003b COOO LOA =N$0180 BACKSPACE C 
P0037 OIBO 

0047 P0038 0302 OUT 2 
Backspace 0048 P0039 1804 JMP* All 

0049 POO3A 5836 RTJ* REJINT 
0050 P003B 5820 RTJ* REJEXT 
0051 P003C l8f7 JMP* A9 
0052 P003D EOOO All LOQ =N$1381 DIR STATUS 1 

P003E 1381 
0053 P003f 0202 INP 2 
0054 P0040 1804 JMP* AlII 
0055 P0041 582f RTJ* REJINT 

Busy? 
0056 P0042 5826 RTJ* REJEXT 
0057 P0043 1801 JMP* AlII 
0058 P0044 OfCE AlII ALS 14 BUSY? 
0059 P0045 0121 SAP *+2 SKIP WHEN NOT BUSY 
0060 P0046 18f6 JMP* All 
0061 POO4·/ COOO LOA =N$0100 SEL READ MOTION 

P0048 0100 
Read 0062 P0049 0302 OUT 2 

Motion 0063 P004A 1804 JMP* A13 
0064 P004B 5825 RTJ* REJINT 
0065 P004C S81e RTJ* REJEXT 
0066 P004D 18Ef JMP* All 
0067 P004E eooo A13 LOA =N-200 

E-7 POO4f Ff37 
0068 POOSO 60FF STA- I 

C 0069 POOSI EOOO A14 LOQ =N$1381 STATUS 
POOS2 1381 

0070 POOS3 0202 INP 2 
0071 POOS4 1804 JMP* A44 

Data 0072 POOS5 5818 RTJ* REJINT 
0073 POOS6 5812 RTJ* REJEXT 

Ready? 0074 POOS7 18F9 JMP* A14 
0075 POOS8 OfCe A44 ALS 12 WAIT FOR DATA READY 
0076 P0059 0131 SAM *+2 
0077 POOSA 18F6 JMP* A14 
0078 POOSB OOFE INQ -1 INPUT DATA 
0079 POOSC OAOO ENA 0 
0080 POOSO 0207 INP 7 
0081 POOSE 6900 STA OATA+200.1 STORE DATA NOT 

Input POOSF 00E2 ASSEMBLED 
Data 0082 P0060 DOff RAO- I 

0083 P0061 eOFF LOA- I 
0084 P0062 0104 SAZ A16-*-1 
0085 POO63 18EO JMP* A14 
0086 P0064 S80e RTJ* REJINT 
0087 P0065 5803 RTJ* REJEXT 
0088 P0066 18EA JMP* A14 
0089 P0067 0000 A16 SLS STOP WHEN THROUGH 
0090 P006B 0000 REJEXT 0 0 

External 0091 P0069 EOOO LOQ =N$1381 EXT REJ 
Reject P006A 1381 

0092 P006B OBOO NOP TAKE STATUS 
0093 P006C 02fE INP -1 AND STOP C 

12-66 



12.9.4.2 

o 

0094 P006D EBFA LDQ* REJEXT 
0095 P006E 0000 SLS 0 RUN TO RETURN 
0096 P006F lCF8 JMP* (REJEXT) 
0097 P0070 0000 REJINT 0 0 
0098 P0071 EOOO LDQ -N$13Bl INTERNAL REJECT 

P0072 1381 
0099 P0073 0800 NDP TAKE STATUS 

0100 P0074 02FE INP -1 AND STOP 
0101 P0075 EBFA LDQ* REJINT RUN TO RE TURN 
0102 POO76 D8F9 RAD* REJINT 
0103 P0077 0000 SLS 0 
0104 P007B lCF7 JMP* (REJINT) 
0105 P0079 ooca BZS DATA(200) DATA BLOCK 

0106 END 

0 
Lockheed - September 1968 

o 
12-67 



12.10 

12.10 1732/608-609 MAGNETIC TAPE 

The 1732 controller for 608 and 609 Magnetic tapes is very similar to the 1731 and can 
be programmed in identically the same way as the 1731. For that reason, a separate 
program for the 1732 is not included here. Instead, the 1731 program was run on the 
1732/608. 

The 1732 provides an additional feature which was not available on the 1731: option for 
selecting assembly/disassembly mode. This means that two frames at a time can be 
sent to or received from the controller in one OUT or INP (consequently meaning the 
controller has to be accessed half as often). The controller takes care of assembling 
or disassembling the frames on the tape. Bit 6 (not used on the 1731) in the function 
code is used to select this mode. 

This is especially useful on the 609 (9-track tape) in that two 8-bit frames exactly fit 
in one 16-bit 1700 word. Repacking the buffer· can be eliminated since a word at a 
time is sent to the controller. The 609 uses only 800 BPI density, and normal end of 
files are not used on it. For example: 

• Load 601 MT program from lockheed (or reassemble with changes). 

• Clear 1706 code from all Q addresses - MT's are not on 1706 (i. e., change $1382 
to $0382) 

• Change P0003 to: 
$4D4 for 608 (adds selection of assembly) 
$4CC for 609 (800 BPI only, assembly) 

• Change P0021 to FFFF 

• Follow operating instructions on 601 program 

• Output from A will be (in assembly/disassembly): 

608 - bits 8-13 and 0-5 Ix X I I I I I I Ix X I I I I I II 
"----v---J ~ 

609 - bits 8-15 and 0-7 II I I I I I I III I I I I I I I I 
• Input to A will be: 

608 

609 

, 'V' I\. v--------I 

100 I I 11100 I II I I II 

II I I I I III I I I I I I II 
• The upper bits in A are the first frame; the lower bits are the second frame. 

12.11 1706 BUFFER DATA CHANNEL 

The 1706 is a 16-bit, bid ire c t ion a 1, buffer channel with word transfer rates up to 
900 KC (approximately 1. 1 microseconds per 16-bit word). 

c 

The 1706 buffers data between the computer's memory and a peripheral. The 1706 is 
capable of buffering as many as eight devices. The 1700 system may have three 1706's 
attached. C· 

12-68 



o 

C) 

12.11 

The 1706 has no indicators nor control panels, therefore, all operations are initiatad 
by the computer via the A/Q channel. The 1706 is considered as one of the eight devices 
attached to the A/Q channel and the DSA channel with each peripheral connected to the 
1706 being a substation. Consequently, only one of the 1706's peripherals may be 
referenced at a time. 

The program requests direct access to a peripheral via the 1706 to establish the logic. 
Once the logic has been established, the program requests the 1706 to perform the data 
transfer. 

Bits 11-15, the W field, of the Q Register are used to reference the 1706 and to indi
cate the desired operation. Bits 0:-10 of the Q Register will contain the same bit setting 
used to reference a particular peripheral when it is not attached to the 1706. 

15 11 10 7 6 0 

Q W I E S D I 
V' 

I \ 
'V' 

1706 Peripheral 

It is possible to perform direct I/O on a device connected to the 1706 simply by setting 
W to 00010 and sending all the codes for the device thru the 1706. (However, normally 
if a device is on the 1706, it is desired to perform data transfers in a buffered mode 
by letting the 1706 perform the operations.) 

12. 11. 1 1706 Functions 

1. 

2. 

3. 

4. 

The setting of the W field is dependent upon which of the possible three 1706's the 
program is referencing. There are four settings for each 1706. 

W SETTING* COMPUTER OPERATION 

1706 1706 1706 
#3 #2 #1 INP OUT 

oC 07 02 Direct Input Direct Output 

oD 08 03 Terminate Buffer: Function 
Current Addr of 1706 

oE 09 04 1706 Status Buffered Output 

of oA 05 1706 Current Addr Buffered Input 

* The left digit is binary, the right digit is hexadecimal. 

12-69 



12.11.1 

The first W setting provides the computer direct access to the peripheral. The 
peripheral may be requested to send to the A Register a data word or status word. 
The computer may send to the peripheral a function or data word from the A Reg
ister. This mode of operation is identical in every way to that on the A/Q channel. 

12.11.2 Programming the Peripheral Through the 1706 

The 609 magnetic tape unit shall be used as an example with 1706 number 1. It is 
neces sary to set up the equipment prior to tell in g the 1706 to do any I/O on the 
equipment. 

LDQ 

LDA 

NOP 

OUT 

INQ 

LDA 

NOP 

OUT 

=N$1202 

=N$4CC 

-1 

-1 

=N$80 

-1 

DIRECT OUT 

SEL UNIT 1, ASSEMBLY, 
SOO BPI, BIN 

PREPARE FOR TAPE MOTION 

WRITE MOTION 

The 609 tape unit has now been functioned. The next step is to function the 1706, 
requesting it to interrupt the computer when the data transfer is complete. (This 
is if the 1706 will be operated in interrupt mode.) 

LDQ 

LDA 

NOP 

OUT 

=N$1S00 

=N$S001 

-1 

1706 FOR FUNCTION #3 

INT ON EOP 

1706 IS FUNCTIONED 

The 1706 and the peripheral have both been functioned. The next step is to initiate 
the I/O operation. At this point the 1706 will take over and do the data transfer. 
It will now be impossible to directly access the peripheral until the 1706 is finished 
or becomes hung up. 

The 1706 expects to find the First Word Address minus one (FWA-1) of the buffer 
area in the A Register when the I/O operation is in it i ate d. Upon receiving the 
FWA-1 the 1706 goes into the computer's memory and extracts the Last Word Ad
dress plus one (LWA+1) from that location. The 1706 then updates the FWA-1 by 
1 until it equals the LWA+1 at which point the data transfer is complete. 

12-70 

c 

c 



0 

0 

o 

12.11.2 

LDA =XLWA+1 LAST WORD ADDR + 1 IN A 
STA FWA-l LWA=1 AT FWA-1 
LDQ =N$2200 BUFFER OUT. EQUIP #4 
LDA =XFWA-1 FWA-l IN A 
NOP 
OUT -1 OPERA TION INITIA TED 

The program at this poi n t may exit and wait for the End of Operation interrupt. 
Two other alternatives are available: s tat us for End of Operation or status for 
current address. 

LDQ =N$2200 STATUS 1706 

NOP 

STAT INP -1 STATUS IN A 

ALS 11 EOP BIT AT SIGN BIT 

SAM CMP WHEN SET OP COMPLETE 

JMP* STAT WAIT UNTIL COMPLETE 

CMP 

LDQ =N$2AOO CURRENT ADDR, EQUIP 4 

NOP 

STADR INP -1 CURRENT ADDR IN A 

SUB =XLWA+l SUBT LWA+l 

SAZ CMPI ZERO, OPERATION CMP 

JMP* STADR CONTINUE STATUS FOR ADDR 

CMP1 

12.11.3 1706 Status 

Once the data transfer is complete, the program may process the data. The pro
gram may at any time status the 1706 for the current address and for the 1706 
status word. The program may check the status word for the following information. 

15 10 9 8 7 6 5 4 3 2 1 0 

[t] 1·········1 1 1 I A I,.............,}( ............... ((....-.-r-;"(( ............... ~{}-;-;-;-:-}{~}\~\}~:-:-:-:-l{q.-.-------r:"'""r·:-,-,-,--;·:-1 ------rrrrr~..........,...,---r----r-___, 

Device RePl) i 1 Device Reset 
Program Protect Fault 

12-71 

+ 
EOP 1 I 

+ 
Ready 

Busy 
Interrupt 



Note that this is the status of the 1706, not the peripheral. It is not possible to 
get the status of the peripheral while the 1706 is working on it. 

Ready (Bit 0 = 1) 

Busy (Bit 1 = 1) 

Interrupt (Bit 2 = 1) 

This bit is set when power is on. 

This bit is set from the tim e the 1706 accepts 
an output w 0 r d from the computer initiating a 
block transfer until the b 1 0 c k transfer is ter
minated, or during a direct operation. 

A buffer transfer input or output has been com
pleted. 

Program protect fault (Bit 6=1) --. A reference to computer storage caused a pro
gram protect fault. 

Device Reject (Bit 8 = 1) ---~.. This bit, if set, means the peripheral de vic e 
rejected the last word transfer attempted from 
the 1706. 

Device Reply (Bit 9 = 1) -'----.. This bit, if set, means the peripheral de vic e 
accepted the last word transfer attempted from 
the 1706. 

It is possible for the 1706 to get hung up as it continually rep eat s an attempt to 
make a data transfer to the peripheral if the peripheral fails. 

The program may status and find a Device Reject status. If this condition were to 
arise, the program may terminate the buffer operation. This t e r min a t ion is 
always necessary when the buffer becomes hung up. When the operation is ter
minated, the current address is sent to the A Register automatically. 

LDQ 
NOP 
INP 

12.11.4 Summary of 1706 

=N$1AOO 

-1 

TERMINATE BUFFER, EQUIP 4 

CURRENT AD DR IN A 

In summary, the computer functions the peripheral direct via the 1706. Once the 
peripheral is functioned, the End of Operation interrupt is requested. The program 
must have the LWA+1 at the FWA-1 prior to initiating a buffer operation. When 
the buffer operation is initiated, the FWA-1 is in the A Register and sent to the 1706. 
The status word of the 1706 may be requested anytime as well as the current ad
dress. The program cannot status the per ip her a 1 itself until the operation is 
completed or terminated. 

12-72 

c 

c 



o 

o 

12.11.5 1706 Example Program 

Example: 

12.11.5 

The following is a test program for a 609 magnetic tape on a 1732 controller, op
erated in buffered mode by the 1706. The program outputs 50 words of data from 
the buffer beginning at BUF+1, rewinds the tape, and reads the data back in. 

The buffer should be set to all one bits from the console. Then the program should 
be operated with the STOP switch set so that the program will stop after writing 
(to allow the programmer to clear the buffer from the console). After reading, 
it will stop again where- the buffer can be swept to see the data. 

12-73 



12.11.5 

OO'H t:>IAM Mlb09 C-', 
0002 ENT MT 

./ 

(HlOJ loog 1;:011 QIIlOb ($1 01l0) DlREC± QU± 
0004 leuo EQU FLJN06($lBOO) FUNCTION 
OOO~ ~I~O 0 !;:QII 1;i11t::O!) ($2000) BtwFER QtJ± GR ~±A±g:~ 
0006 28UO EQU RUFIN($2800) BUFFER IN 
QQg1 \};?~Q E;QtJ E;QIJHH ~;;HW) 17J2 EQYIP #4 
OOOR * 
gggq :!l:~~+ !:Jy~~g~ +0 Qt>jg,,~ ~RQ~I CQt>JSObE. 
0010 *SET STOP SWITCH 
gQll :II: 

0012 * 
0013 ROOOO ~O(JO Ml bOO - X 0 II I (} 6 + E (lll I e + 1 DIRECT OIlT 

POOOI 1281 
0014- 1=10002 OA01 e;~J A 1 CL~ CON~~OLLER 
0015 POOO3 03FE OUT -1 
001~ QOOO4 gooO bOQ -XOlll06±E(JIII e±2 DI~ECX OIlX 

POO05 12b2 
0011 ROOO6 COIlO bOA -tll$4CC SEL UNIX 1, ASSEMBL¥, 

POOO7 04CC 800 bpi, BINARY 
0018 ROOO8 0800 ~Ioe 

0019 POOO9 03FE OUT -1 
0()20 POOOA o Q~' E; BIQ -1 
0021 POOOH COUO LOA =N$BO WRITE MOTION 

8000C (lOBO 
0022 POOOO 0800 NOP 
992~ pggg~ 8dr~ gbl+ 1 
0024 * HERE IS WHERE NORMALLY WE 
0025 * ~tjGYlJ) SEt EGP Im AN:9 
002p * OUTPUT IT 
0021 ROOOt:: goOO bDO -)(BIIE06±EOllle BYFFER GYt 

/ POOIO 2280 
002S POOll COIlO bOA -XSIIE ~-lA 1 C' POO12 OOcC P 
0029 ROO13 ()~OO t:>I08 
0030 POO14 G3FE OUT -1 
0031 800]5 IlBOO SIAl ~oe 

0032 POO16 02FE INP -1 INPUT STATUS 
0033 ROOIZ (lECS ilLS 1 ] ~,\I± FGR EGP 
0034 PO 0 U:~ 0131 SAM i~+2 EOP IMPLIES GOOD PARITY 
0035 ~OOl~ 18£:13 IMe* SIAl 
0036 POOIA OOuo SLS a CLEAR BUF FROM CONSOLE 
0031 ~OOIB EOOO LD(l -XOII!06:tEQllle±] DI~EC~ OUI 

POOle 12Bl 
0038 8001[1 CIIIII) LDCI =~1$400 REHIND ~A~E 

POOlE 0400 
0039 e001E OI:3I1U ~IO~ 

0040 POO?O 03FE OUT -1 
OO~] ~OO21 CODA IDA =rJ$)OO READ MOTION 

POO?2 0100 
00~2 80023 OBOO ~Ioe 

0043 POO24 03FE OUT -1 
00~4 ~OO25 E' 0 (I (I I [} (;) -XBIIEHJ+EQI1I2 BIIEEEB IN 

P0026 2A80 
00~5 eOO2-l COOO LDA -l':BIIE EWA-l 

POO28 (102C P - -
9 9 £1/, P(J·921~ 8H~e ~WP 

0047 POO?A U3FE OUT -1 
9 g'lf=! P8928 09UlJ SLS 9 
0049 POO2C 0033 BUF RZS BlJF(51) 1 CONTROL WORD, 
995(:) 992G P ORC OYF SO DAtA wORDS 
0051 P002C OO~F P ADC BUF+Sl PUT LWA+l IN FWA-l 
9052 g8SF P onc~; 

0053 END C 
12-74 



o 

CHAPTER XIII 

PERIPHERAL PROGRAMMING - II 

o 

II 

o 



(' 
. -.. . 



CHAPTER XIII - Peripheral Programming II 

l'l ",/ TOPIC PAGE 

13.0 Introduction 13-1 

13.1 Initiator Section of Driver 13-1 

13.2 Interrupt from Equipment 13-1 

13.3 Common Interrupt Handler 13-3 

13.4 Interrupt Line Processor 13-3 

13.5 Continuator Section of Driver 13-3 

13.6 Error Section of Driver 13-4 

13.7 Summary 13-5 

13.8 ADSD Bulletin, Number 4 13-7 

13.9 Listing of Interrupt Handler 13-12 

13.10 Lis ting of Dispatcher 13-13 

o 



· \. 



13.0 

r' . 

""\...-) 13. 0 INTRODUCTION 

o 

o 

The preceding chapter, Peripheral Programming I, discussed in detail the procedures 
for programming the standard 1700 peripherals. Inefficiency would result if each user 
program were required to contain the coding necessary to drive a peripheral; therefore, 
the 0 per a tin g sys tem contains programs that per for m all input/output operations. 
These programs are referred to as drivers. 

Drivers are divided into three main parts: initiator, continuator and error. 

13.1 INITIATOR SECTION OF DRIVER 

The initiator portion sets up the logic to be used and initiates the operations to be per
formed. The paper tape reader shall be used as an example. All of the d r tv e r s are 
written in interrupt mode. Interrupt mode allows the driver to initiate an operation and 
select interrupts, exit to the operating system and regain control when the peripheral 
has completed the operation. 

LDQ =N$A1 SEL PTR, FUNC 
ENA 1 CLR CONTROLLER 
OUT -1 
ENA $34 START MOTION, SEL INT ON 
OUT -1 ALARM OR DATA 
EXIT TO OPERATING SYSTEM 

Via the above coding, the in i t i a tor portion of the paper tape reader has selected the 
e qui p men t, selected interrupts, and exited to wait for an interrupt. The initiator 
portion of every driver initiates these three operations. 

13.2 INTERRUPT FROM EQUIPMENT 

M 

The equipment will generate an interrupt when a selected in t err up t condition arises. 
The aclmowledgement of interrupt is on a priority basis. The priority depends on the 
setting of the 16-bit mask register. A maximum of 16 interrupt lines may be connected 
to the 1700, with each line corresponding to a bit in the mask register. 

15 14 13 12 11 10 

Line 13 
Line 12 

Line 11 
Line 10 

Line 9 
Line 8 

13-1 

Line 1 
Line 2 

Line 3 
Line 4 

Line 5 
Line 6 

Line 7 



13.2 

The bit in the corresponding bit position must be a 1 in order for the in t e r ru p t to be 
aclmowledged. If the bit is a 0, the interrupt holds and is not acknowledged until the bit 
becomes a 1. 

Once the bit is set to a 1 in the M regis ter , control is transferred to the interrupt trap 
region. The trap region is set up to allow four words for each interrupt line. The core 
locations are always from location 10016 to 13F16. See section 1.3 to review the in
terrupt sys tem. 

13E 1---------1 LINE 15 
13F } 

13D 
l3C 

(11-

t " ItO 

I-----------t 

I-----------t 

,of 
1,0 e. .... "'" ,/ 

.'" 
.- --

I<OP 
--LO-C-: 
106 
I ([) f\ 
'10 '1 
,ott> 

107 
106 
105 
104 
103 
102 
101 
100 

LINE 1 

LINE 0 

Interrupts may be nes ted 16 deep I 

Four core locations reserved for each 
interrupt line: 

- word 4 - address of interrupt processor 
- word 3 - priority level for line 
- word 2 - RT J to interrupt handler 
- word 1- - overflow and P 

Figure 34. 1700 Interrupt Hardware and Software Functions 

Hardware: 

• Disables interrupts 

• Stores overflow indicator and P of interrupted program in word 1 

• Transfers control to word 2 

13-2 

c 



o 

o 

13.2 

Software: 

• Word 2 contains RTJ to common interrupt handler 

• Interrupt handler saves registers of interrupted program, sets new mask from 
priority level in word 3, enables interrupts, and t ran s fer s control to interrupt 
processor for that line (from address in word 4). 

• Interrupt processor must exit to the driver con tin u at 0 r which will service the 
equipment (i. e., input data). 

• The continuator must exit through the dispatcher to restore the interrupted program. 

The computer hardware dis a b 1 e s interrupts and stores the contents of the P register 
in the lower 15 bits of the first trap word for the interrupting line. The hardware sets 
the upper bit of the firs t word to a 1 if the overflow in die a tor is on and to a 0 if the 
indicator is off. Control is then passed to the second word. 

Once con t r 0 I is passed to the second word, the processing is under software control. 
See Figure 36 for hardware and software functions. 

13.3 COMMON INTERRUPT HANDLER 

The second word contains a return jump to the common interrupt handler. The common 
interrupt handler saves the contents of all the per tin e n t registers: A, Q, M, and I. 
The M regis ter is set to the priority for the interrupting line by using the priority level 
set in the third word. Interrupts are then enabled by the common in t err u p t handler. 
The interrupt handler transfers control indirectly t h r 0 ugh the fourth word to the pro
cessor for that line. 

13. 4 INTERRUPT LINE PROCESSOR 

The processor for the interrupt line (LYNEI or EPROC) takes status on all equipment 
on the interrupting line and checks bit 2 of each status word. 

The processor will be able to determine which peripheral interrupted bee au s e the in
terrupt bit (bit 2) of the status word will be set. The interrupt pro c e s so r will pass 
control to the appropriate continuator portion or a driver. 

13.5 CONTINUATOR SECTION OF DRIVER 

The continuator checks the alarm bit to de t e r min e if control should be passed to the 
error portion of the driver. 

13-3 



13.5 

LDQ =N$A1 SEL PTR, STATUS 
NOP 
INP -1 STATUS IN A 
STA STATUS SAVE STATUS 
AND =N$20 CK FOR ALARM 
SAZ 1 IF ZERO CONTINUE 
JMP ERR IF NOT ZERO ALARM 

If the alarm bit were not set the interrupting condition would be processed by the con
tinuator. The continuator checks further to determine which interrupt was generated. 
The paper tape reader allows the s e Ie c ti on of only two interrupts, alarm and data; 
therefore, if the alarm bit was not set the data in t err u p t was probably generated. It 
would be wise to check the data in t err u p t bit and if it is not set, pass control to GI 
(ghost interrupt) in the error section: 

LDA STATUS 
AND =N8 
SAN DATA 
JMP GI 

Input data if the data bit was set: 

DATA LDQ =N$AO SEL PTR, DATA 
NOP 
INP -1 DATA IN A 

The continuator then performs the n e c e s sa r y packing operations to form one 16-bit 
word. A check is made to determine if all data has been processed. If not, the con
tinuator exits to wait for the next interrupt. 

LDQ 
ENA 
OUT 

=N$A1 
$14 
-1 

SEL PTR, FUNC 
INT ON DATA OR ALARM 

EXIT TO OPERATING SYSTEM 

The continuator could s imp I y exit without res electing interrupts because the interrupt 
reques t is s till up if it has not been cleared. 

13. 6 ERROR SECTION OF DRIVER 

The ERROR portion takes s tat us to determine which alarm condition has arisen. Thel 
error routine then performs the necessary operation to correct the error. If the error 
cannot be corrected without operator intervention, the operator should be notified. 

13-4 

C_ .. ~ 

C 

c 



o 

o 

C) 

13.6 

LDQ =N$A1 SEL PTR, STATUS 
NOP 
INP -1 STATUS IN A 
ALS 5 POWER ON BIT AT 15 
SAM POWOFF 
ALS 1 PAPER MOTION FAIL BIT AT 15 
SAP PMF 
ALS 3 LOST DATA BIT AT 15 
SAM LOSTD 
JMP GI IF HERE NO ALARM OCCURRED 

The above coding establishes the condition at fault. The skip address sends control to 
routines that process the various errors. 

GI is where control is passed for a ghost interrupt. The equipment interrupted but ap
parently for no reason. This would indicate a hardware malfunction. 

13. 7 SUMMARY 

The driver can be summarized as follows. The initiator is the first to have control. It 
selects the e qui pm e n t and selects interrupts, then it exits to the operating system. 
The continuator gains control via the interrupt trap area after the peripheral generates 
an in t err up t. It checks for alarm and if one is present, sends control to the error 
portion. If no error occurred, it maintains control and processes the interrupt. If the 
operation is not complete the continuator exits to the operating syst~m. The error por
tion determines which alarm condition occurred and attempts to correct the fault and/or 
notifies the operator. Figure 35 illustrates the flow of the interrupts through the con
tinuator. 

It is important to note that the primary purpose of this chapter is to ill u s t rat e tech
niques for programming the h a r d war e in interrupt mode. The linkage through MSOS 
routines is secondary. 

The logical division of programming func ti ons into initiator, continuator, and error 
sections could be utilized to program any peripheral, either in a stand-alone system or 
under MSOS. The operations to be included in each section are the important consid
eration here -- what the e qui pm e ntis capable of doing, its timing, and the status of 
responses it can send. At this point the pro g ram mer should be able to write an in
terrupt-mode driver which would not run under MSOS. 

To actually write a driver to run under MSOS, it would be n e c e s s a r y to study all the 
linkage to MSOS since system tables and common subroutines are used by all the MSOS 
drivers. 

Some of the MSOS routines are included at the end of this chapter for illustration. 

13-5 



13.7 

Example 

The following is a test program to print a message on the teletype in interrupt mode. It 
uses the MSOS Interrupt Handler to save the state of the interrupted program (probably 
the idle loop) each time the interrupt comes in. It by pas s e s the Line 1 Interrupt Pro
cessor (interrupt response routine) and MSOS driver by s tor in g its own address in the 
fourth word of the interrupt trap for Line 1 (location $107). 

After the program has been assembled and loaded under MSOS, the computer should be 
stopped, the protect switch turned off, and P set to the address TTYI; then it should be 
run. A master clear should not be done because that would disable the interrupt system 
and clear M. 

In reality, if a program such as this were used in a stand alone system, it would assure 
that bit 1 was set in the M register and execute an EIN. It would also have a routine cor
responding to the interrupt handler to save the state of an interrupted program. 

The test routine here simulates the operations on the equipment which would logically be 
performed by different portions of a driver. 

1. TTY! sets up the trap. 

2. INIT is the initiator to set up the equipment. It then exits and waits for the first in
terrupt. 

3. CONT is the continuator and it outputs a character each time the interrupt comes in. 
It also must keep track of the number of words des ire d to be written. It hangs at 
CMPLET when finished. An MSOS d r i v e r would schedule the programmer's com
pletion address when his request was finished. 

4. ERR. The error section a n a I y z e s errors. It hangs in the test r 0 uti neon each 
error, but in MSOS it would attempt to correct the error. 

5. The TABLES used by the routine contain information which is used by the driver for 
the write; they simulate a physical device table. 

6. INTRES. The interrupt response routine is actually not a part of the driver. It must 
status each device on the line to see which one interrupted. Our example only checks 
the TTY. 

13"':'6 

c 



o 

o 

C) 

0001 
0002 
0003 

·0004 UOt:.A 
0005 
0006 PuOOO OUuO 
0001 puOOl CUVU 

PU002 UOJA P 
0008 P0003 b400 

'PU004 0107 
0009 
0010 
0011 POOO~ r:8JU 

. 0 0'1 2 PO 0 0 bOA 0 J 
0013 P0007 03FE 

-~fOT4· '-PO 00 e co 0 0 
POOOY ulOO 

-0015 POOOA 0800 
0016 PUOOt:5 OJFE 
OU17 poooe 0D~'E 

0018 POOOLJ GbDO 
"0 n 19'"' PO 0 0 E 0 3 F E 
0020 POOOF 0001 
0021 POOIO OAl4-
0022 POO 11 03f E 
0023 P0012 141:..A 
0024 

'0"0·25 
0026 POOIJ ce~S 
0027 P0014 UrCA 
0028 POOlS ulel 
0029' P0016 1817 
0030 POOl7 UFC2 

"0 n 3 1'" P 0 0 1 a a 1 J 1 
0032 POOIY Id~l 

'0033 P001A CCOO 
P0018 uU1H 

'0034 POD'le E81D 
0035 POOlO U144 

"0'030" PO OlE OFCB 
0037 POOlf UCOU 
0038 P0020 4819 
0039 P0021 1803 

-UO'40' PO 0 22 081 I 
0041 P0023 lJe13 

-OO-liZ PO 0 24 E811 
0043 P002S OI)~E 

0044 P0026 0800 
0045 P0027 U3fE 
0046 P0028 C80E 
0047 pa02'i beOE 

-on 0'48 PO 0 2 A 0 1 0 1 
004Y POU21j lltt.A 
0050 P002C 18FF 
OOSl 

13.7 

NAM TTY INTE~kUPT MODE 
* LOAU THE PkOGRAM UNO~R MSOS - TURN OFF PROTECT SWITCH 
* rUHN OfF DISC - LJO NOT MASTER CLEAR - SET P AND RUN 

EQU ADISP($EA) 
ENT TTYI.CON1,ERR,INTRES 

TTYl 0 U 

INIT 

* 
* 
CONT 

OK 

DATA 

LOwER 

OU1PUT 

CMPLET 
* 

LDA =XINIRES SUHSTITUET INTRES IN TRAP 

LOQ* 
ENA 
OUT 
LOA 

NOP 
OUT 
INQ 
NOP 
OUT 
INQ 
ENA 
OUT 
JMP-

LOA* 
ALS 
SAP 
JMP* 
ALS 
SAM 
JMP* 
LDA 

LDQ* 
SQZ 
ALS 
ENQ 
5TQ* 
JMP* 
RAO* 
RAO* 
LDQ* 
INQ 
NOP 
OUT 
LDA* 
EOt<* 
SAl 
JMP-

NUM 

TTY 
3 
-1 
=N$100 

-1 
-1 

-1 
1 
~14 

-1 
(AOISP) 

STAT 
10 
OK-*-1 
ERR 
2 
DATA 
GI 
(FWA) 

FLAG 
LOWER 
8 
o 
FLAG 
OUTPUT 
FLAG 
FWA 
TTY 
-1 

-1 
FWA 
LwA 
CMPLET 
(ADISP) 
!i>ldFF 

13-7 

INITIATOR 
GET TTY FUNC CODE 
CL~ CONTROL CLR INTERRUPT 

SELECT WRITE MOOE 

CHANGE TO DATA FUNCTION 

OUTPUT DUMMY CHARACTER 
SEND FUNCTION 
SEL INTERRUPT ALARM OR DATI 

GO wAIT FO~ INT 

CONTINUAI0~ 
GET STATUS BACK 
CK ALARM BIT 5 

ALARM UP 
CK DATA 8IT 3 

NOT ALARM OR DATA 
GET DATA 

GET CHAR FLAG 

UPPER CHAR 

CLR FLAG FOR LOWER NEXT 
GO OUTPUT DATA 
SET FLAG FOR UPPER NEXT 
UPDATE HUFfER ADDR 

DATA fUNC 

OUTPUT 1 CHAR 
LAST WORD YET 

GO AWAIT NEXT INT 
HANG WHEN FI~IShED 



1.3.7 

0052 * 
bOS3 * 
0054 P002D CHUd Ekk 
"O(rS5 -p'o 6-2 E . U F t S 
00S6 POOet'- 0131 
0057 POOJO ItjrF 
0058 P0031 UFC'+ 
0059 POOJ2 01el 
0060 P0033 lefF 

"'o-ob-C p'o '034' 1 eO C 

0062 * 
-6663 * 
0064 * 

-era 65-- P 603 S' U () ';I iTT Y 
00b6 P003b 00'+1 P FWA 

-'6-6b-7~p66j-1 'ou6-,+ P LwA 
0068 P003ti 0001 STAT 

-O~69 P0039 OOUI 
0070 * 

--0071------··· * 
0072 * 

- 0 0 7 j--po 0'"3 A "Eti VA- . I NT R I::: S 
0074 P003H 02FE 

- 0075 -PCfO]C-- b8F 8 
0076 P003U OFCD 

---0071"' PO (fjt: "01 t!.l 
0078 POOJF 18U3 
o 0 79 P 0040-r&VF'·- - '"'('-1 
0080 * 

---0'08}" pTf041-20S4 HUF 
P0042 4tj4'1 

--PO -043-' SJ ~ lr 
P0044 '+D'+S 

---'PO<r4-S-'-'S"J5"J --.. -.... -- .. -
P004b 4147 

_.-_. -. ----15-0 04 T -4520 
POQ48 4':1~3 

----.---.- ):)00-49 20~-r 

P004A S2't-:J 
--. --po0"4B-5"454--~' . 

P004C '+S'+E 
P004D 204-9 
P004E 4,[20 
-P004F 494E 
P0050 54,+:' 

·-----'PUOS15252 
P0052 SS~O 

---P0053 5420 
P0054 '+O'tF 
P"O-055 . 4'445 
P005b 2020 

""----PU'05T' 2020' 
P0058 2U20 

. P0059 2020 
POOSA 20~O 

.. POOS8 2020 

LDA* STAT 
ALS S 
SAM 1 
NUM ~18FF 
ALS '+ 
SAP 1 
NUM ~ltjFF 

JMP* Gl 

NUM $91 
ADC BUF 
AOC BUF+35 
BLS STAT(1) 
BZS FLAG(1) 

LOQ* TTY 
INP -1 
STAil- STAT 
AL~ 13 
SAP GI-*-l 
JMP* CONT 
NUM $18FF 

ALF 35, THIS 

13-8 

/-- " 

ERkOR SECTION ~ .. FINU CAUSE OF ERROR 

CK MUTOR aNN 

MOTOk OFF - HANG HERE 
Ct<. LOST DATA 

LOST DATA - HANG HERE 
NO EkROI-< APPARENT ••• 

TA~LES (PHYSTB) 
USEU BY URIVER 

TTY FUNe CODE 
CUkRENT 8UFFER ADDRESS 
LWA+l 
STATUS wORD 

INTtRRUPl I-<ESPON'SE 
NOl PART OF DRIVER 

STATUS TTY 
SAVE IT 
CK INTERRUPT BIT 

GO TO TTY CONTINUATOR 
GHOST INTERRUPT HANG HERE C 

MESSAGE IS WkITTEN IN INTERRUPT 



o 

o 

o 

0082 
d083 

P005C ~020 
po-050- 2'020 
P005E c02U 
PO'05f~ 2020 
P0060,20cO 
ri()O 6 1 202 0 
P0062 2020 
P006'3 2Ci20 

* 

I OUFF ADISP 
INTRES 003AP 
OUTPUT U02'tP 
STAT 0038P 

J 
*p 
J 
*ASSEM 
OPTIONS LX 
J 
*p 
J 
*L,8 
J 

INIT 
CMPLET 
FLAG 

OUEA 
0005P 
002ep 
0039P 

END 

TTYI 
OK 
TTY 
GI 

OOOOP CONT 
0017P DATA 
0035P FWA 
0040P BUF 

TIllS MESSAGE IS WRITTEN IN INTERRUPT MODE 

13-9 

0013P ERR 
OOlAP LOWER 
0036P LWA 
0041P 

13.7 

002DP 
0022P 
0037P 



13.7 

3 

2 

1 

o 

Figure 35. Interrupt Flow 

~----- Common 
Interrupt 

~----- Handler .. 
RTJ- ($FE) To To 

f----------

From Trap 
• Save Running Program 

• Change M 

Operating 
System Exit To 

"Dispatcher" ---

•• 
Chooses 

Next Program From 

i 
I I 

Interrupt Scheduler 
Stack Stack 

Interrupt 
Line 

- Processor 

I 
• Who Interrupted? 

To 

, 
Driver 

Continuator 

• Read Data 

or 

• Service Alarm 

13.8 The following is an example of one of the ADSD bulletins, illustrating in t e r ru p t pro
cessing routines. 

13-10 

c' 



o 

c) 

ANALOG-DIGITAL SYSTEMS DIVISION 13.8 

INFORMATION BULLETIN CONTROL DATA 
coi~'t'()f~All()N_ 

Number: 4 

December, 1967 

INTERRUPT PROCESSING ROUTINES 

This Information Bulletin briefly describes the software involved in processing an interrupt. 
Although interrupt processing is not new, it is often misunderstood. An Interrupt Service 
Routine varies in complexity depending on the hardware constraints and user requirements. 
The Interrupt Service Routine used in the CONTROL DATA 1700 Computer Operating System 
is not a "closed" routine; rather, it is a group of subroutines which are linked together to 
provide the flexibility required by today's state-of-the-art programming techniques. 

The following conditions must be met in the CDC 1700 Computer before an interrupt can be 
detected. 

• The interrupt system must be enabled. 
• An interrupt line must be true. 
• The corresponding bit in the interrupt Mask register (M) must be set. 

In the following discussion, it has been assumed that the above conditions have been met and 
that the interrupt is detected or trapped. When an interrupt is trapped, the program sequence 
is interrupted (or suspended), the address of the instruction to have been executed next is 
saved, the interrupt system is disabled, and control is transferred to the Interrupt Trap Region. 

INTERRUPT TRAP REGION 

The Interrupt Trap Region is a dedicated area of memory from location 10016 through location 
13F16 (64 locations). Four consecutive locations in this region are assigned to each inter~upt 

HARDWARE DISABLES INTERRUPTS .. SECURE STATE OF SET NEW PRIORITY .. AND TRANSFERS CONTROL TO .. 1 
TRAP REGION RUNNING PROGRAM LEVEL IN M-REG 

g..-. MULTI-DEVICES ON YES 
READ STATUS THIS DEVICE ENABLES 

INTERRUPTS 
.. AN INTERRUPT LINE ~ NEXT DEVICE --.. CAUSED INTERRUPT 

NO NO I YES 

L... 

GO TO ROUTINE RESTORE COMPUTER TO 
~ . 

STATE OF SECURED TO ACKNOWLEDGE AND 
PROCESS INTERRUPT PROGRAM AND CONTINUE 

13-11 



13.8 

line. Since there are 16 interrupt lines with 4 memory cells for each line, there are 64 loca- (-~' 
tions assigned to the Interrupt Trap Region. The first four locations are for interrupt line '-_/ 
"0, " the next four are for interrupt line "1, " and so on. When an interrupt is trapped, control 
is transferred to the second location of the group that is associated with the interrupt line. The 
exact location is computed as 

LOC. 10016 + 416 (LINE NO.) + 1. 

The four memory locations for each interrupt line are shown below followed by an explanation 
of the contents of each word. (Words are labeled A, B, C~ and D.) 

INTERRUPT ADDRESS 
LINE NO. BASE 16 

( 100--
0 

103--

( 104 
1 

107 
15 0 

2 108 114 A 

3 10C 

4 110 

( 
114 

5 115 
116 
117 

r 
t---t' 116 

117 

B 

c 

D 
6 118 

7 11C 

8 120 

9 124 

10 128 

11 12C 

12 130 

13 134 

14 138 

( 13C 
15 

13F 

A = When an interrupt is trapped, the address of the instruction to have been executed next 
is saved in A14 - AO. A15 will contain the Overflow flip-flop's status when the interrupt 

c 

was trapped. Loading this memory location as described above is accomplished automa- C 
tically by the hardware. '., " 

13-12 



o 

o 

C) 

13.8 
B = This location normally contains a one -word indirect Return Jump instruction to a routine 

that is responsible for preserving the state of the computer's registers (A, Q, 1), con
tents of location "A" and the interrupted programs priority level. In most cases, this 
Return Jump is to the Common Interrupt Handler. The exact parameters for this word 
are decided when building the Operating System. 

C = This location contains the software priority level associated with this interrupt line. 
Note that only one priority level can be associated with a given interrupt line; however, 
any number of interrupt lines, up to 16, can be assigned the same software priority 
level. The exact parameters for this word are decided when building the Operating 
System. (See Note 2.) 

D This last location of the four-word group contains the absolute address of the Interrupt 
Response Routine for this interrupt line. 

From the above descriptions it can be seen that the "A" parameter is loaded automatically by 
the hardware and that control is transferred to the "B" parameter (Return Jump). It is assumed 
in this discussion that the Return Jump instruction passes control to the Common Interrupt 
Handler. See Note 1. 

COMMON INTERRUPT HANDLER 

The Common Interrupt Handler saves the state of the computer (interrupted program) in the 
Interrupt Stack Region. Information saved includes the contents of the A-, Q-, I-, and P
registers, the Overflow status, and the software priority of the interrupted program. The 
Common Interrupt Handler then sets the new software priority level, sets the M-register for. 
the new software priority level, enables the interrupt system, and transfers control to the 
address specified by the liD" parameter, the absolute address of the Interrupt Response 
Routine. 

INTERRUPT RESPONSE ROUTINE 

The Interrupt Response Routine is usually a small, user-written subroutine to determine which 
device caused the interrupt if there is more than one device on the interrupt line and transfer 
control to the "driver" entry point to process the interrupt. 

DRIVERS 

The Driver acknowledges (clears) the interrupt line and processes the data as required. Even
tually, upon completion of the program initiated by the interrupt, the Driver passes control to a 
module which is responsible for returning the computer to the original state of the secured pro
gram. In the CDC 1700 Computer Monitor, this module is called the Dispatcher. 

DISPATCHER 

The Dispatcher returns the computer to its original state (its condition at the time of the 
interrupt) by reloading the A-, Q-, I-, and P-registers, Overflow Status, and priority 
levels .from the Interrupt Stack Region and transfers control back to the address stored as 
parameter "A" in the Interrupt Trap Region. The M-register is also restored. 

13-13 



13.8 

FROM INTERRUPTED 
PROGRAM 

~r 

INTERRUPT 
TRAP 

.. ... 
COMMON INTERRUPT 

INTERRUPT 
... ... RESPONSE 

HANDLER ROUTINE 

RETURN TO INTERRUPTED PROGRAM ... 
~ 

SPECIAL NOTES 

Note 1 

I 
I 

IJJ I 
... 1 

DRIVER .... 1 

] 

~, 

DISPATCHER 

A software rule exists which states that interrupts will not be inhibited for more than 45 mem
ory cycles (50 I1s). If an interrupt can be processed in less than 50 Ils, the Common Interrupt 
Handler and the Dispatcher may be bypassed. Therefore, in such cases, parameters "C" and 
"D" in the Interrupt Trap Region will not be necessary. The one-word indirect Return Jump 
in location B will transfer control directly to the Interrupt Response Routine or Driver. 

Note 2 

Interrupt priorities 
1. Hardware priorities are from the lower numbered interrupt lines, to the higher numbered 

interrupt lines. The lower numbered lines being recognized first by the hardware. 

2. Software priorities are not necessarily associated with interrupt line numbers, the higher 
software priority numbers are processed first. For example, a program running at soft
ware priority level 5, requests a driver that has a software priority level of 10. The 
running program would be interrupted and the driver would be initiated (software interrupt). 

As an example of how the hardware and software priorities work together assume the following: 

1. Processing is being accomplished by the Monitor with interrupts disabled. 

2. When the interrupt system is enabled there are two hardware interrupts ready for 
processing interrupt line-l (common synchronizer), and software priority level 10, and 
interrupt line-2 (the timer) software priority level 13. 

When the interrupt system is enabled the hardware control will trap the interrupt from line-l 
(higher priority, lower line number and disable the interrupt system). This interrupt will be 
processed through the Common Interrupt Handler requiring about 50 microseconds. The Com
mon Interrupt Handler sets the new software priority level (M-Register Mask), enables interrupts, 
and transfers control to the Interrupt Response Routine. Interrupt line-2 will trap. This is 

\ 
'--. .. 

allowed by the mask setting in the "M" register. The software priority of the "Timer" is always C 
13-14 



o 

C) 

13.8 

higher than the common synchronizer and must be processed first. However, this could not 
have been determined prior to the interrupt response routine. Line-2 will continue being 
processed until completion or until it itself is interrupted. 

Therefore, even though the hardware indicated that interrupt line-l had priority, the software 
dictated that interrupt line-2 actually had a higher priority. 

Del Sandusky tJ 

13-15 



13.9 

13.9 The following is a listing of the interrupt handler. 

001. 

003. 

005. 
006. 
007. 
OOB. 
009. 
010. 
011. 
012. 
013. 
014. 
015. 
016. 
017. 
01B. 
019. 
020. 

OOBB 
OOEF 
00B7 
0022 

0000 
0001 
0002 
0003 
0004 
0005 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

NAM COMMON INTERRUPT HANDLER 

PART NO. E00610A0010S 

ENT ALLIN 
EQU COUNT ($BB) 
EQU PRLVL($EF) 
EQU AMASKT($B7) 
EQU ZERO($22) 

AFTER CONTROL IS TRANSFERRED FROM THE INTERRUPT 
TRAP LOCATION TO THE COMMON INTERRUPT HANDLER, 
THE RETURN LOCATION, A, Q AND I REGISTERS AND 
PRIORITY ARE SAVED IN A PUSH-UP POP-DOWN STACK 
BY PRIORITY LEVEL. THEN THE NEW PRIORITY AND 
MASK ARE SET AND CONTROL IS TRANSFERRED TO THE 
ADDRESS ASSOCIATED WITH THE LINE ON WHICH THE ' 
INTERRUPT APPEARED. 

EQU XQ(O),XA, (1),XI(2),XR(3),XPL(4),XL(5) 

021. POOOO 0000 ALLIN o 0 LINK TO LEVEL ENTRY 
SAVE Q IN STACK 022. P0001 44BB 

023. P0002 EOBB 
024.· P0003 6201 
025. P0004 COEF 
026. PO005 6204 
027. P0006 COFF 
02B. P0007 6202 
029. POOOB 40FF 
030. P0009 OD05 
031.POOOA 40BB 
032. POOOB EBF4 
033. POOOC ODFD 
034. POOOD C622 
035. POOOE 6103 
036. POOOF 40FF 
037. P0010 . E202 
03B. P0011 40EF 
039. P0012 C6B7 
040,. P0013 0400 
041~ PO014 OB21 
042. P0015 E103 
043. P0016 1622 
044. 

I OOFF ALLIN 
ZERO 0022 XQ 
XPL 0004 XL 

STQ- (COUNT) 
LDQ- COUNT 
STA- XA,Q 
LDA- PRLVL 
STA- XPL,Q 
LDA- I 
STA- XI,Q 
STQ~ I 
INQ XL 
STQ- COUNT 
LDQ* ALLIN 
INQ '-2 
LDA- (ZERO),Q 
STA- XR,I 
STQ- I 
LDQ- 2,Q 
STQ- PRLVL 
LDA- (AMASKT),Q 
EIN 
TRA M 
LDQ- 3,! 
JMP- (ZERO),Q 
END 

OOOOP COUNT OOBB PRLVL 
0000 XA 0001 XI 
0005 

STACK COUNTER AS INDEX 
SAVE A 
SAVE PRIORITY 

SAVE MEMORY 
INDEX REGISTER 

STACK LOCATION BASE 
UPDATE STACK 

LEVEL LINK 
ADJUST TRAP LOCATION 

RETURN LOCATION 

SAVE TRAP LOCATION IN I 
SET NEW 
PRIORITY LEVEL 

SET NEW MASK I M REGISTER 

JUMP TO PROCESSOR 
LOCATION IN Q 

OOEF AMASKT 
0002 XR 

00B7 
0003 

c~ 



13.10 

13.10 The following is a lis ting of the dispatcher 

U OOL NAM DISPATCHER 

003. * PART NO. E00610A0020S 

005. ENT DISP,SCHTOP 
006. EXT SCHSTK, SCHLNG 
007. OOBS EQU CONT($BS) 
OOS. OOEF EQU PRLVL($EF) 
009. 00B7 EQU AMASKT($B7) 
010. 0104 EQU COMEXT($104) 
01l. 0002 EQU LPMSK($2), NZERO($12), ZERO($22), ONEBIT($23), ZROBIT($33) 

0012 
0022 
0023 
0033 

012. 0009 EQU RCSCHD(9) 
013. 0000 EQU XQ(O), XA(l) , XI(2), XR(3), XPL(4), XL(5) 

0001 
0002 
0003 
0004 
0005 

014. 00B4 EQU TOMPT($B4) 
015. 0001 EQU PC(l), PT(2), PQ(3) 

0002 
0003 

016. * UPON COMPLETION OF A PROGRAM, THE DISPATCHER 

0 017. * DETERMINES THE PROGRAM OF HIGHEST PRIORITY 
01S. * WAITTNG FOR EXECUTION. IT MAY EITHER BE IN THE 
019. * INTERRUPT STACK OR THE SCHEDULER STACK. 
020. * 
02l. * 
022. POOOO FFFF SCHTOP NUM $FFFF SCHEDULE STACK TOP 
023. POOOI EOBS DISP LDQ- CONT 
024. POO02 ODFA INQ -XL ADJUST STACK 
025. POO03 0500 liN 0 
026. POO04 CSFB LDA* SCHTOP IF SCHEDLER STACK IS 
027. POO05 0900 INA 0 
02S. POO06 0106 SAZ RESINT-*-l EMPTY, CHECK INT. STACK 
029. POO07 CCFS LDA* (SCHTOP) LOAD FIRST WORD 
030. POOOS A006 AND- LPMSK+4 ISOLATE PRIORITY 
03l. POO09 OS2l TRA M SAVE TEMP. IN M 
032. POOOA 9204 SUB- XPL,Q PRIORITY OF IDGHEST INT. 
033. POOOB 0101 SAZ RESINT-*-l GO TO INTERRUPT STACK 
034. POOOC 012C SAP SCHSTC-*-l GO TO SCHEDLE STACK 
035. * 
036. * IDGHEST PROGRAM IS IN THE INTERRUPT STACK. 
037. * 
03S. POOOD C203 RESINT LDA- XR,Q SET RETRN LOCATION 
039. POOOE 6C2B STA* (ACOMEX) 
040. POOOF C202 LDA- XI,Q RESTORE I 
04l. POOIO 60FF STA- I 
042. P0011 C20l LDA- XA,Q RESTORE A 
043. POO12 40BS STQ- CONT STORE INT. STACK BASE 
044. POO13 E204 LDQ- XPL,Q RESTORE PRIORITY LEVEL 

0 045. POO14 40EF 

13-17 



13.10 

046. POO15 E6B7 LDQ- (AMASKT),Q RESTORE MASK c: 047. POO16 0811 TRQ M 
048. POO17 E4B8 LDQ- (CONT) RESTORE Q 
049. POO18 OE04 EX! COMEXT-256 
050. * 

05l. * IDGHEST PROGRAM IS IN THE SCHEDLER THREAD. 
052. * 
053. P0019 080A SCHSTC TRM Q PRIORITY TO Q 
054. P001A 40EF STQ- PRLVL SET NEW PRIORITY AND MASK 
055. P001B C6B7 LDA- (AMASKT),Q 
056. P001C 0821 TRA M 
057. P001D E8E2 LDQ* SCHTOP STORE NEW POINTER 
058. POOlE C202 LDA- PT,Q TOP OF SCHEDLER THREAD 
059. P001F 68EO STA* SCHTOP 
060. P0020 0814 TRQ A TEST IF PRIMARY SCHEDULER 
06l. P0021 9819 SUB* ASCHD CALL WAS MADE. 
062. P0022 0138 SAM SCHSEC-*-l 
063. P0023 9818 SUB* ASCLNG 
064. P0024 0126 SAP SCHSEC-*-l 
065. P0025 COB4 LDA- TOMPT IF PRIMARY CALL RELEASE 
066. P0026 6202 STA- PT,Q STACK POSITION AND PLACE 
067. P0027 40B4 STQ- TOMPT ON EMPTY THREAD. 
068. P0028 C201 LDA- PC,Q LOAD ABSOLUTE ADDRESS 
069. P0029 6C10 STA* (ACOMEX) STORE INTO COMEXT 
070. P002A 180C JMP* SCHXIT C 07l. P002B C622 SCHSEC LDA- (ZERO),Q TEST IF ABSOLTE OR RELATIVE 
072. P002C A02B AND- ONEBIT+8 
073. P002D 0101 SAZ SCH1-*-1 CALL. SKIP IF ABSOLUTE 
074. P002E 0814 TRQ A ADDRESS 1ST WD OF CALL 
075. P002F A011 SCH1 . AND- LPMASK+15 
076. P0030 8032 ADD- ONEBIT+15 
077. P0031 8201 ADD- PC,Q ADD REL. ADDRESS OR IF 
078. P0032 A011 AND- LPMSK+15 
079. P0033 6C06 STA* (ACOMEX) A=O, ABS ADDRESS AND STORE 
080. P0034 0844 CLR A ZERO INTO THREAD 
08l. P0035 6202 STA- PT,Q COMPLETION INDICATION 
082. P0036 0814 SCHXIT TRQ A PASS POINTER TO CALL IN A 
083. P0037 E203 LDQ- PQ,Q PASS,Q 
084. P0038 OE04 EXI COMEXT-256 
085. P0039 0104 ACOMEX ADC COMEXT 
086. P003A 7FFF X ASCHD ADC SCHSTK SCHED. STACK LOCATION 
087. P003B 7FFF X ASCLNG ADC SCHLNG SCHED. STACK LENGTH LOC. 
088. END 

I OOFF DISP 0001P SCHTOP OOOOP CONT 00B8 PRLVL OOEF 
AMASKT 00B7 COMEXT 0104 LPMSK 0002 NZERO 0012 ZERO 0022 
ONEBIT 0023 ZROBIT 0033 RCSCHD 0009 XQ 0000 XA 0001 
XI 0002 XR 0003 XPL 0004 XL 0005 TOMPT 00B4 

0001 PT 0002 PQ 0003 RESINT OOODP SCHSTC 0019P 
SCHSEC 002BP SCH1 002FP SCHXIT 0036P ACOMEX 0039P ASCHD 003AP 
ASCLNG 003BP SCHLNG 003BX SCHSTK 003AX C 

13-18 



C) 

o 

o 

CHAPTER XIV 

LIBEDT EXAMPLES 



C: 

c 



CHAPTER XIV - LIBEDT Examples 

0 TOPIC PAGE 

14.0 Introduc tion 14-1 

14.1 Mass Memory Replace 14-1 

14.2 GTFILE Request for System Initializer 14-3 

14.3 Adding Programs and Files to the Program Library 14-5 

14.4 Transferring Records 14-7 

14.5 Absolutizing and Linking Subprograms 14-9 

o 

o 



c 

c 

- --------. -----------.... 
~ -~- ._-

c 



o 

o 

o 

14.0 

14.0 INTRODUCTION 

The MSOS library editing program, LIBEDT, can be used effectively for adding routines 
to the program library, exchanging old routines in the program or system library for 
new ones, and for many utility functions such as transferring records from one logical 
unit to another, absolutizing programs, etc. 

The LIBEDT chapter of the MSOS reference manual describes the features of LIBEDT 
very accurately. Therefore, this chapter will consist simply of examples using 
LIBEDT. 

14. 1 MASS MEMORY REPLACE 

The first example, teletype printout, shows a sample of the c he c kin g which could be 
done while replacing a mass memory module in the system library. The replacement 
module is larger than the original one. The comments on the listing are self-explana
tory. 

14-1 



14.1 

J 
*LIBEDT 

LIB 

IN 

*DL 
IN 

*DM 
IN 

LIBEDT MASS MEMORY REPLACE 

Dump program library 

Dump system library 

*M, 26, ,M. ... .... 1----- Cancel this statement with rub-out, LF, CR 
*K, 12 4 Input on lun 2 PTR 

IN 

*M, 26, , M .... -4Ir----- Replace MM ordinal #26 in system library 
It,02 FAILED 02 
ACTION 
RP 
L, 02 FAILED 02 
ACTION 
RP 
L, 02, FAILED 02 
ACTION 
CU 

E *E 
MI 
*Z 
J 
*p 
J 
*LIBEDT 

LIB 

IN 

*DM 
IN 

*z 
J 
*p 
J 
*L,8 
J 
*SR 
J 

*X" 

RE 
*M2E6 

RE 

4 

} 
*M2E6;O, 2Fl 

RE 
*M2Fl, 0, 2F5 

RE 

Add and link subroutines from PTR 

Patch missing externals from core resident entry points 

Following checking is only to illustrate debugging features: 

Check to see if ordinal changed (sector address should be larger because new 
program is larger than one it replaces; therefore, it will be put in first avail
able scratch sector) 

Dummy L and X to get sys. rec. package 

Dump sector $2E6 (on LP) to check program 

*DCO, Cl .------ Dump core $CO and $Cl - scr sector address .. 
RE 

14-2 

r" 
\ ..... _- -

c 



14.2 

o 14.2 GTFILE REQUEST FOR SYSTEM INITIALIZER 

o 

o 

This example is not actually a LIBEDT example. However, it is inc Iud e d because it 
pertains to the system in i t i a liz e r. GETSI is a program which can be modified to be 
included in any program library (in relocatable binary form); it can then be called into 
execution in the background by: 

J 

® 
J 

@D 
The pro g ram does a GTFILE r e que s t to bring in a file, SYSINI, from the program 
library to address $6000. SYSINI is actually an absolute copy of the system initializer. 
GETSI then jumps to $6000 to ex e cut e the system initializer. This is very handy be
cause it provides for storing the system initializer on the program library so it can be 
called in without having to key in a bootstrap loader from the console. 

14-3 



14.2 

0001 
0002 
0003 

0004 

0005 
0006 
0007 
0007 
0007 
0007 

0007 

0007 

0008 
0008 
0008 
0009 
0009 
0009 
0010 
0011 
0011 
0011 
0011 

0011 
0011 

0012 
0012 
0012 
0013 
0014 
0015 
0015 
0015 
0016 

NAM GETSI 
ENT SI 

POOOO 5359 FILNAM ALF *, SYSINI* 'III Name of FILE in program library 
POO01 5349 
POO02 4E49 
POO03 5349 BUF ALF *, SI IN* ~ MSG Buffer for TTY 
POO04 2049 
POO05 4E20 

6000 SIADDR EQU SIADDR($6000) File to go at $6000 
POO06 0000 SI 0 0 

GETFIL GTFILE GOT, (FILNAM), SIADDR, , ,0, O~ 
POO07 54F4 

I , \ ~ CP=1 POO08 1A01 Completion address RP = 0 
POO09 0014 P after SYSINI i~ brought Address X bit = 0 (not blank) 
POOOA 0000 lnto core where Core 
POOOB 08C2 file name address Disk address 
POOOC 0000 is where left blank; 
POOOD 6000 file is program li-
POOOE 0000 to go brary will be 
POOOF 8000 P searched 

EXIT (wait for completion) 
P0010 54F4 
P0011 OAOO 

EXIT (unnecessary) 
POO12 54F4 
POO13 OAOO 
POO14 017B GOT SQM NOGOOD 

SIIN 

FWIDT:U!FC, WRr

E

, Br' r l °i Ii t 1 bit = 0 (not blank) 
POO15 54F4 
POO16 OC01 
POO17 001E P (std comment COMPL c~n~i;ect bit referring to $FC 

POO18 0000 device) ADDR 
MSG RP= 0 

POO19 18FC 
BUF ASCII 

P001A 0003 
3 words 

P001B 0003 P 
EXIT 

P001C 54F4 Wait until Write is done 
P001D OAOO 
POOlE 0171 WROTE SQM NOGOOD 
P001F 1CED JMP* (GETFIL+6) .. Jllmp to beginning address of 

NOGOOD EXIT SYSINI which is $6000 
P0020 54F4 
P0021 OAOO 

END SI 

This program may be reassembled for any system. Change EQU for the desired high 
~ address where the system initializer should run when in core. The system initial
izer should be s tared in the program library under the file name SYSINI, as an absolute 
file. 

14-4 

/"-...., 

(-/, 

(' 
"'-. ' 



(j 

o 

o 

14.3 

14.3 ADDING PROGRAMS AND FILES TO THE PROGRAM LIBRARY 

The following example shows the use of LIBEDT to absolutize the system initializer and 
put it in the program library under file name SYSINI. Then GETSI is put in the program 
library as a relocatable binary program. 

A subsequent sys tem initialization run was made to check out GETSI; the lis ting shows 
it beginning to execute. 

14-5 



14.3 

MI 
*p 
J 

Put System Initializer in Program Library 

*LIBEDT .... t-------- Call in LIBEDT 
LIB 

IN ____ -----------rnput on lun 2 PTR - sys. ini. in reI. bin. form 
*K,12,1>S • Absolutize on lun S (disk scratch) 

IN 

*P,F ------ Absolutize in 96-word blocks for disk 
L,16 FAILED 
ACTION 
RP 
L,02 FAILED 
ACTION 
CU 

E * .. 
IN 

*K,IS • 
IN 

-*N-
~ 

-I,Q4-

IN 

*N,SYSINI" ,B 
IN 

l~·rn IN 

*L,GETSI 
LOS 
IN 

*z .. 
J 
*p 

Printer failed 

Out of tape. Complete absolutizing 

Unpatched externals (unnecessary modules were taken out of sys. ini.) - ignore 

Input now on S 

• .------ File SYSINI, binary, placed in pgm. lib. 

.... ---- Input now on lun 2 PTR (GETSI) • 

4 ~---- Put GETSI in pgm. lib. in reI. bin. form 

Sign off LIBEDT 

CHECK IT OUT 

J 
*SI 

• .. Turn off protect switch here! 
.... ------ Call in GETSI 

J 

SI IN 
SI 
*1,1 

Q 
*V 

• 
• 
• 

GETSI gets SYSINI and types SI IN 
System initializer types SI 
Begin initialization! 

*Y, QQTEST, 2, QQQ8AB, 3, QQSPAC, 4 
*YM, LOADSD. 1, JOBENT, 2, JOB PRO, 3, JPLOAD, 4 
*YM, JPST, 5, JPCHGE, 6, JBKILL, 7, JPT13, S 
*YM, RCOVER, 9, LIBEDT, 10, MODI, 11, MOD2, 12 
*YM, MOD3, 13, BRKPT, 14, RESTOR, 15, MOD4, 16 
*YM, DEBUG, 17, DSUTIL, lS, TYPEID, 19, DSTART, 20, RSTART, 21 
*YM, QQFMTl, 22, QQCOM, 23, QQANAB, 24, QQUTLl, 25 etc. 

14-6 



o 

o 

14.4 

14.4 TRANSFERRING RECORDS 

In this example, LIBEDT was used to t r an s fer a card image from the card reader to 
paper tape. The *T image in the example was then a t t a c h e d to the end of a series of 
paper tape programs being loaded, to cause the loader to end loading. 

14-7 



14.4 

*z 
J 
*p 
J 
*LIBEDT 

LIB 

IN 

*T,12,A,11,A,1 
IN 

TRANSFER RECORDS FROM ONE LUN TO ANOTHER 

LIBEDT *T (*T option is used to transfer reI. bin. pap e r 
tapes which are SI input to high portion of disk 
so that disk input may be made to SI.) 

Transfer from LUN 12 (CR), ASCII mode, to LUN 11 (PTP), 
ASCII mode, one record (1 card) 

14-8 

c 



14.5 

o 14.5 ABSOLUTIZING AND LINKING SUBPROGRAMS 

o 

Next, LIBEDT was used to build a utopia system. This involves loading, absolutizing, 
and linking a series of relocatable binary paper tapes. Only the routines applicable to 
the particular configuration were included. The new utopia in core can then be used to 
punch out an absolute paper tape image of itself. 

14-9 



14.5, 

BUILD UTOPIA SYSTEM USING LIBEDT 

*p 
J 
*LIBEDT .... 4~---- Call in LIBEDT 

LIB 

IN 

*K, 12, P11 ..... ------- Assign input LUN 2 (PTR) output LUN 11 (PTP) 
IN 

*p .... ~------ Load and: absolutize tapes 
L,02 FAILED 
ACTION 
RP 

02 1 
L, 02 FAILED 02 
ACTION 
RP 
L,02 FAILED 02 
ACTION 
RP 
L,02 FAILED 02 
ACTION 
RP 
L, 02 FAILED 02 
ACTION 
RP 
L,,02 FAILED 02 
ACTION 
RP 
L,02 FAlLED 02 
ACTION 
RP 
L, 02 FAILED 02 
ACTION 
RP 
L,02 FAILED 02 
ACTION 
RP 
L,02 FAILED 02 
ACTION 
RP 
L,02 FAILED 02 
ACTION 
RP 
L,02 FAILED 
ACTION 
CU .... ~-----

UTOPIA 

UMAINF 

USILLY 

U1711 

UDISK 

CARDIN 

U1729 

U601MT 

UTODMP 

UDALP 

CKOUT 

UTLAST 

Wind up load and link 

E * 44~----- Externals missing; ignore; punch tape 
IN 

*z ..... f----- Sign off LIBEDT 
J 

14-10 



() 

0 

UTOPIA 
UMAINF 
USILLY 
U1711 
UDISK 
CARDIN 
U1729 
U601MT 
UTODMP 
UDALP 
CKOUT 
UTLAST 

E10 
CKD 
peR 
DKM 
MAR 
VDM 
LPRINT 
RDM 
WDM 

2210 
2392 
25A8 
3258 
343E 
3680 
3707 
38A9 
39BE 
3AA2 
444A 
4F23 

14.5 

BUILD UTOPIA PRINT OUT 

Routine names and addresses where loaded 

Missing Externals 
(These are for modules not included in this 

system) 

Applicable Utopia routines for customer's configuration can be loaded and linked to
gether, then an abs olutized tape can be punched. It can then be loaded by a cksum 
loader (which must be loaded by a bootstrap loader). 

Utopia modules could also be loaded and linked and put on program library in reI bin 
form (with Libedt * L). Then Utopia could be called from TTY with *UTOPIA. 

14-11 



c 



APPENDIXES 

o 

o 



c 



APPENDIXES 

TABLE OF CONTENTS 
I'~-' ~ 

U TOPIC PAGE 

APPENDIX A References A-1 

APPENDIX B 1700 Instruction Execution Times B-1 

APPENDIX C utility Assembler Pseudo Instructions C-1 

APPENDIX D Assembly Error Messages D-1 

APPENDIX E ASCII Codes E-1 

APPENDIX F Answers to Exercises F-l 

Chapter II F-1 

Chapter V F-2 

Chapter VI F-7 

Chapter VI F-8 

Chapter VIII F-9 

APPENDIX G Solutions to Problems G-1 

APPENDIX H Examples of Instructions H-1 

0 APPENDIX I Communications Region 1-1 



C', 



o 

APPENDIX A 

o 

C) 



C~ 



() APPENDIX A 

Ref. No. Reference Title Publication No. 

1 Reference Manual 60153100 

2 Codes 60163500 

3 Assembler Reference Manual 60171600 

4 1700 Macro/ Assembler Reference Manual 60176300 

5 utility Reference Manual * 60172300 

6 Operating System Reference Manual 60174600 

7 1700 4K Assembly System (ADB) 60176500 

8 Input/ Output Specifications Manual 60165800 

9 Sys tems Manual 60152900 

10 ADSD General Information Manual 60187600 

*utility Assembler requires 8K system. 

C
· --, 

'I 

) 

A-1 





APPENDIX B 

o 



C~: 



() 

o 

C) 

APPENDIX B 

1700 INSTRUCTION EXECUTION TIMES 

STORAGE REFERENCE 

Ins truction 

LDA Load A 
STA Store A 
LDQ Load Q 
STQ Store Q 
ADD Add A 
SUB Subtract 
ADQ AddQ 
AND AND with A 
EOR Exclusive OR with A 
RAO Replace Add One in Storage 
MUI Multiply Integer 
JMP Jump 
RTJ Return Jump 
DVI Divide Integer 
SPA Store A, Parity to A 

* Add 1. 1 microsecond if Storage Index Regis ter is used. 
Add 1.1 microsecond for each level of Indirect Addressing. 
Add 1.1 microsecond for two word instructions. 

REGISTER REFERENCE 

Ins truction 

Selective Stop 
Input to A 
Output from A 
Enter A 
Enter Q 
Increase A 
Increase Q 

Execution Time 
" (microseconds)* 

2.2 
2.2 
2.2 
2.2 
2.2 
2.2 
2.2" 
2.2 
2.2 
3.3 
7.0 
1.1 
2.2 
9.0 
2.2 

Execution Time 
(microseconds) 

1.1 
1.1 min., 10 max. 
1.1 min., 10 max. 
1.1 
1.1 
1.1 
1.1 

o 

SLS 
INP 
OUT 
ENA 
ENQ 
INA 
INQ 
ARS 
QRS 
ALS 
QLS 

Q Right Shift )-. _______________ 1.1 +(shift count *.1) 
A Right Shif) 

A Left Shift 
Q Left Shift 

B-1 



REGISTER REFERENCE (Cont) 

Instruction 
Execution Time 
(microseconds) 

LRS 
LLS 

Long Right Shift) 
Long Left Shift >---------------- 1. 1 + (shift count * .2) 

NOP 
EIN 
IIN 
EXI 
SPB 
CPB 

No Operation 
Enable Interrupt 
Inhibit Interrupt 
Exit Interrupt State 
Set Program Protect 
Clear Program Protect 

B-2 

1.1 
1.1 
1.1 
2.2 
2.2 
2.2 



INTERREGISTER 

0 Execution Time 
Instruction (microseconds) 

SET Set to Ones 
CLR Clear to Zero 
TRA Transfer A 
TRM Transfer M 
TRQ Transfer Q 
TRB Transfer Q V M 
TCA Transfer Complement A 
TCM Transfer Complement M 
TCQ Transfer Complement Q 
TCB Transfer Complement Q V M 
AAM Transfer Arithmetic Sum A, M 
AAQ Transfer Arithmetic Sum A, Q 1.1 
AAB Transfer Arithmetic Sum A, Q V M 
EAM Transfer Exclusive or A, M 
EAQ Transfer Exclusive or A, Q 
EAB Transfer Exclusive or A, Q V M 
LAM Transfer Logical Product, A, M 
LAQ Transfer Logical Product A, Q 

0 LAB Transfer Logical Product A, Q V M 
CAM Transfer Complement Logical Product A, M 
CAQ Transfer Complement Logical Product A, Q 
CAB Transfer Complernent Logical Product 

A, Q VM 

B-3 



SKIPS 

SAZ 
SAN 
SAP 
SAM 
SQZ 
SQN 
SQP 
SQM 
SWS 
SWN 
SOY 
SNO 
SPE 
SNP 
SPF 
SNF 

Ins truction 

Skip if A = +0 
Skip if A f: +0 
Skip if A = + 
Skip if A = -

Skip if Q = +0 
Skip if Q f: +0 
Skip if Q = + 
Skip if Q = -

Skip if Switch Set 
Skip if Switch Not Set 
Skip on Overflow 
Skip on No Overflow 
Skip on Storage Parity Error 
Skip on No Storage Parity Error 
Skip on Program Protect Fault 
Skip on No Program Protect Fault 

B-4 

Execution Time 
(microseconds) 

1.1 

c 

c 



APPENDIX C 

o 

C) 



c 

c 

c 



o 

o 

APPENDIX C 

UTILITY ASSEMBLER PSEUDO INSTRUCTIONS 

NAMn 

ENDe 

EXT*n1, n2 ' • • • 

BZS n1 (S1)' n2 (S2) , • • • 

COM n1 (S1)' n2 (S2) •• • 

ALF n <:2n character~ 

First ins truc tion in source program. The 
name, n, if given, identifies the program. A 
numeric location fi e 1 d for this ins t r u c t ion 
specifies the absolute starting location for the 
program; a symbolic location field is ignored. 

Last instruction in source program. The entry 
point, e, if given, is the start of the. program. 

Entry points, ni' that may be ref err e d to by 
other programs. 

External locations, ni' of other programs that 
are referred to by this program. 

S i mil a r to EXT except that references to the 
external names, ni, are made relative. 

Reserves a block of program storage locations. 
The names, ni' identify segments of si words in 
length. 

Similar to BSS. In addition, zero fills the block. 

Reserves a block of common storage locations. 
The names, ni' identify segments of si words in 
length. Data may not be prestored in the com
mon block. 

Reserves a block of data storage locations. The 
names, ni' identify s e g men t s of si words in 
length. Data may be pre s tor e d in the data 
block. 

Defines add res s expressions to be stored as 
address constants. The addresses maybeposi
tive or negative and a b sol ute or relocatable. 
Parentheses indicate indirect addressing. 

Stores ASCII alphanumeric characters into con
secutive locations of program storage. 

Stores decimal or hexadecimal constants, ci' in 
consecutive locations in program storage. 

C-1 



UTILITY ASSEMBLER PSEUDO INSTRUCTIONS (CONT) 

ORGe 

ORG* e 

EQU n
1 

(e
1

), n
2 

(e
2

) , ••• 

NLS 

LST 

SPC v 

Assemble subsequent instructions beginning at 
the address expression, e, which may be pro
gram relocatable, data relocatable or absolute. 

Resumes assembling instructions immediately 
after the location preceding the ORO instruction 
or the firs t ORG if more than one in a string. 

Equates names, ~, to address expression, ei. 

Inhibits list output of assembly. 

Enables list output of ass em b 1 y following is
suance of a NLS instruction. (Listing is auto
matic unless NLS is given.) 

Spaces v lines on the typewriter. 

C-2 

(' 
'--- .. 



APPENDIX D 

o 



c' 

c 



· APPENDIX D 

ASSEMBLY ERROR MESSAGES 

ERROR LISTING 

A list of errors occurring in passes 1 and 2 precedes the program listing on the standard 
comment Ilo unit. If the L option is selected, errors in pass 3 pre c e d e the source line on 
the list output. A decimal error count is printed at the end of each subprogram. If L is not 
selected, error messages are output on the standard comment unit. 

Format for pass 1 and 2 error messages: 

Column 

1-3 

4 

5-6 

7-8 

Contents 

3 -digit line number 

space 

** 

2-character error code 

Format for pass 3 error messages: 

Column 

1-6 

7-8 

9-18 

Contents 

****** 

2-character error code 

********** 

Following are the error message codes and their definitions. 

Message 

**DS 

**UD 

**SO 

Meaning 

Doubly defined symbol. A name in 

1) location field of a machine instruction or an ALF, NUM, or ADC 
pseudo instruction 

or 

2) address field of an EQU, COM, DAT, EXT, BSS, or BZS pseudo 
ins truction 

has been used again in one of the above fields. 

Undefined symbol in an address expression. 

Available storage for saving symbol names exceeded; no more names 
may be defined. Symbol table overflow. 

D-1 



Message 

**EX 

**LB 

**IX 

**OP 

**OR 

**RG 

**RL 

**OV 

**SQ 

**MD 

**MC 

**PP 

**NN 

**MO 

Meaning 

Illegal expression. One of the following: 

1) No forward referencing of some symbolic operands 

2) No relocation of certain expression values 

3) A violation of relocation 

4) Possibly a comment is being interpreted as an address field in an 
ins truction which has no address field 

Numeric or symbolic label contains illegal character. The I abe I is 
ignored. 

Illegal index register; specified by symbol other than Q, I or B. 

1) illegal symbol in operation code field, e. g., LDI TAG 
2) illegal operation code terminator 
3) Could also be caused by error in macro 

Numeric or symbolic operand in address expression contains illegal 
characters. 

Illegal register for interregister instructions, e. g., CLR I 

1) Symbol other than A, Q, or Mused in address field of interregister 
instruction, or the same symbol used more than once. 

2) Registers separated by other than a comma. 

1) Violation of relocation. 
2) Violation of a ru1e for instructions which r e qui r e the expression 

value to 

a) be absolute 
b) have no forward referencing of symbolic operands. 

Numeric operand overflow-numeric value greater than allowed, e. g. , 
1 wd. reI. more than $7 F. 

Sequence error 

Macro definition error 

Macro instruction error 

Error in previous pass of compilation 

No NAM statement. Blank name will be inserted by assembler. 

Overflow of the load-and-go area .of mass storage. 

D-2 

/~ 



LOADER ERROR MESSAGES 

r0 All loading error messages appear on the standard print output device. 

() 

EOl Irrecoverable input error; terminates loading. 

E03 Illegal or out-of-order input block; terminates load. Also, this diagnos tic appears 
on the comment device when illegal input from that device is detected. The comment 
device is interrogated for a new statement. 

E04 Incorrect common block storage reservation. Occurs if the first NAM block to de
clare common storage does not declare the I a r g est amount. The loader uses the 
previously declared length and continues. 

E05 Program too long or loader table overflow. Terminates loading. Occurs if program 
to be loaded exceeds available unprotected core. It may be possible to load the pro
gram by rearranging the 0 r d e r of loading to insure entry points are defined before 
they are referred to as external symbols. Loader produces a memory map and list 
of unpatched externals prior to terminating the load. 

E06 Attempt to load information in protected core; terminates loading. 

E07 Attempt to ORG into part of data storage beyond assigned block; terminates loading. 

E08 Duplicate entry point; loading continues. The succeeding program is loaded, over
laying the program with the duplicate entry point. 

E10 Unpatched external. External name is p r i n ted following diagnostic. The operator 
may c h 00 s e to terminate the job or continue execution in spite of unpatched exter
nals (with *(CR». A *E(CR) will cause the loader to sea r c h the directory of core 
resident entry points for the missing external. 

Ell Error in HEX block; loader skips remainder of block and resumes loading with the 
next block. Image of HEX block in error is printed following diagnostic. 

E12 Two programs reference same external name, one with a b sol ute addressing, the 
other relative addressing. 

E13 Undefined or missing transfer address; occurs when loader does not encounter a 
name for the t ran sf e r address to begin execution, or the name encountered is not 
defined in loader's table as an entry point name. 

D-3 



JOB PROCESSOR ERROR MESSAGES 

PARITY, hhhh 

OV 

L, nn FAILED ee 

ALT,aa 

ACTION 

J01,hhhh 

J02,hhhh 

J03, statement 

J04, statement 

J05 

J06,hhhh 

J07,hhhh 

J08,hhhh 

Memory parity error at location hhhh16• Message appears on output 
comment device. 

Overflow of volatile storage. Message a p pea r s on output comment 
device. 

Informs operator of device failure. 

nn logical unit number 

ee code indicating cause of failure as follows: 

00 I/O hangup 
01 Internal or external reject 
02 Alarm 
03 Parity error 
04 Checksum error 
05 Internal reject 
06 External reject 

Informs oper.ator an alternate device, aa, has been assigned. 

Requests operator action when a failed device has no alternate. The 
device is identified in the FAILED diagnostic. 

Program protect violation. hhhh is cur r e n t contents of P register. 
Standard print output device. 

illegal request or parameters at location hhhh16- Standard print out
put device. 

Unintelligible control statement is output with the diagnostic. Standard 
output device. 

illegal or unintelligible parameters in con t r 0 I statement. Standard 
print output device. 

Statement entered after manual in t err u p t illegal. Output comment 
device. 

A threadable request was made at level one when noprotect processor 
stack space was available, or an unprotected t h rea d e d request was 
made at level one. Standard print output device. 

Unprotected program tried to a c c e s s protected device from location 
hhhh. Standard print output device. 

Attempt to access read only unit for write, or write only unit for read, 
or an attempt to access an unprotected r e que s t on a protected unit. 

D-4 

('" 
\" .. 



APPENDIX E 



("'I 

(' 
\- .' 



APPENDIX E 

r~ AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE (ASCII) 

Bit Configuration Symbol Bit Configuration Symbol 

000 0000 NUL 001 1011 ESC 

000 0001 SOH 001 1100 FS 

000 0010 STX 001 1101 GS 

000 0011 ETX 001 1110 RS 

000 0100 EOT 001 1111 US 

000 0101 ENQ 010 0000 SP 

000 0110 ACK 010 0001 

000 0111 BEL 010 0010 " 
000 1000 BS 010 0011 =If 

000 1001 HT 010 0100 $ 

000 1010 LF 010 0101 % 

000 1011 VT 010 0110 & 
~ 

I I 000 1100 FF 010 0111 
'..............-

000 1101 CR 010 1000 

000 1110 SO 010 1001 

000 1111 SI 010 1010 * 
001 0000 DLE 010 1011 + 

001 0001 DC1 010 1100 

001 0010 DC2 010 1101 

001 0011 DC3 010 1110 

001 0100 DC4 010 1111 / 

001 0101 NAK 011 0000 0 

001 0110 SYN 011 0001 1 

001 0111 ETB 011 0010 2 

001 1000 CAN 011 0011 3 

001 1001 EM 011 0100 4 

001 1010 SS 011 0101 5 
(') 
\ .' ,.,_.-

E-1 



ASCII (Cont) 
.--- -

Bi t C onfigurati on Symbol Bit Configuration Symbol i 
"-- --

011 0110 6 101 0010 R 

011 0111 7 101 0011 S 

011 1000 8 101 0100 T 

011 1001 9 101 0101 U 

011 1010 101 0110 V 

011 1011 101 0111 W 

011 1100 < 101 1000 X 

011 1101 = 101 1001 y 

011 1110 > 101 1010 Z 

011 1111 ? 101 1011 [ 
100 0000 \ 101 1100 ---
100 0001 A 101 1101 ] 
100 0010 B 101 1110 A 

100 0011 C 101 1111 r' 
I 
\ 
'--. 

100 0100 D 110 0000 @ 

100 0101 E 110 0001 a 

100 0110 F 110 0010 b 

100 0111 G 110 0011 c 

100 1000 H 110 0100 d 

100 1001 I 110 0101 e 

100 1010 J 110 0110 f 

100 1011 K 110 0111 g 

100 1100 L 110 1000 h 

100 1101 M 110 1001 i 

100 1110 N 110 1010 j 

100 1111 0 110 1011 k 

101 0000 P 110 1100 1 

101 0001 Q 110 1101 m 

r 
\ ... 

E-2 



ASCII (Cont) 

,-- "'.., 

~ ) Bit Configuration Symbol 
~ 

110 1110 n 

110 1111 0 

111 0000 p 

111 0001 q 

111 0010 r 

111 0011 s 

111 0100 t 

111 0101 u 

111 -0110 v 

111 0111 w 

111 1000 x 

111 1001 y 

111 1010 z 

111 1011 [ 
0 111 1100 ---, 

111 1101 ] 
111 1110 

, 

111 1111 DEL 

E-3 



c 



APPENDIX F 

o 



c:·~ 

\ 



to 
"---J 

C' 

APPENDIX F 

ANSWERS TO EXERCISES ON CHAPTER II 

1. a. 0010 1101 1010 1110 is 2DAE
16 

b. 1000 1111 1100 0111 is 8FC7
16 

c. 1111 1111 1100 0000 is FFC0
16 

2DAE
16 

= 11694
10 

8FC7
16 

= -28728
10 

FFC0
16 

= -63
10 

2DAE
16 

+ 8FC7
16 

+ FFC0
16 

= 

BD75
16 

+ FFC0
16 

= BD36
16 

No overflow was generated. 

2. a. 409510 = OFFF 16 = 0000 1111 1111 11112 

b. -17
10 

= FFEE
16 

= 1111 1111 1110 1110
2 

c. 255
10 

= OOFF 16 = 0000 0000 1111 11112 

3. By extending the sign. Consider the 8 bit positive number: 

OOOOOii1
2 

- Decimal value 7 

i Sign Bit. Extend the sign bit to the left 8 places - 0000 0000 0000 01112 - same value 
of 7 but the number now occupies a 16-bit field. 

The same applies for a negative number. FE16 is -1 in an 8-bit field and FFFE16 is also 
-1, but in a 16-bit field. 

F-1 



ANSWERS TO EXERCISES ON CHAPTER V - Shift and Skip Instructions 

1. a. Shifts QA left 16 bits. This effectively switches the data in A to Q and Q to A. 

b. Will JUMP to P + 4 if the overflow indicator is on, and clear the indicator. Will go 
to P + 1 if overflow indicator is not on. 

c. Shifts the data in A right 18 bits. This will clear A if bit 15 was originally a 0 or will 
set A to all 1 's if bit 15 was originally a 1. It also wastes time since the maximum 
necessary shift count to accomplish the same result is 15. 

d. Neither the A nor the Q register is specified so the instruction is essentially a time 
delay. It takes 1. 1 + • 1 x8 = 1. 9 microseconds to execute and does nothing to the A 
or Q registers. 

2. Q = 0000 
A = E3C4 

F-2 

I 
" " .. 

(' 
\ 



ANSWERS TO EXERCISES ON CHAPTER V - Constant Mode of Addressing 

(') 
'"-' .... 1. a. A = 1059 Q =0000 

b. A = 0024 Q = 0000 

c. A = 4142 Q = 4040 

o 
F-3 



ANSWERS TO EXERCISES ON CHAPTER V - Absolute Mode of Addressing 

1. LDA-
ADD 
STA-

also 

LDA-
ADD 
STA-

$FF 
=N$10 
$FF 

I 
=N$10 
I 

I can be used in place of $FF for storage reference class of instructions. One-word ab
solute mode is used since $FF is in the communications region. 

2. a. 4016 

b. 003F 

c. 4016 (However, this is two-word absolute indirect which requires two core cells 
and 1. 1 microseconds more time. Since the base address is in the commu
nications region, one-word absolute indirect should be used. ) 

3. a. This will dec 0 d e as COOO; ~ will be 0, yielding not one-word absolute but the first 
word of constant mode. The base address for one-word absolute must be 01 to FF. 

b. One-word absolute could have been used since the base address is F3. 

c. Nothing. This is a legitimate example of two-word absolute indirect. Bit 15 of the 
sec ond word (P+l) will be set because of the parentheses and bits 14-0 of P+l will 
contain the address equivalent for TEST. 

F-4 

C·' 

c 



ANSWERS TO EXERCISES ON CHAPTER V - Relative Mode of Addressing 

1. a. Forward, 31 hex locations from P. 

b. Backward, 1000
16 

or 4096
10 

from P+1, or OFFF 16 or 4095
10 

from P. 

c. Backward, one location back from P. 

2. a. Two-word relative 
b. One-word absolute indirect 
c. Two-word absolute indirect 
d. One-word relative 
e. Constant. Two-word. 
f. Two-word relative indirect 
g. Constant. Two-word. 
h. One-word absolute 

3. The communications region is fix e d and will never move with the program. If the pro
gram moved and not the communications region, the rei a t i v e distance which had been 
established would be worthless. Fixed areas of core are addressed absolutely, and those 
that move with the program are addressed relatively. 

F-5 



ANSWERS TO EXERCISES ON CHAPTER V - Indexing 

1. a. B is used to in d i cat e use of both Q and lin d e x regis ters. Should be w r itt e n C_ 
LDA AB,B. 

b. Nothing, if A is defined as a legitimate symbol elsewhere in the program. 

c. No indexing with shift class instructions, only storage reference class. 

2. a. A = 0000 

b. A = 0023 

c. A = 0023 

3. It will loop forever since the reduced index register I value is never stored back. Need 
a. STQ- I after the ADQ =N-1. 

Answer to indexing problem: 

a. $1234 

b. $02ED 

c. $2311 

d. $1111 

F-6 



/'- , 

"'<'oJ 

o 

C) 

ANSWERS TO EXERCISES ON CHAPTER VI - Utility Assembler 

1. a. Symbols for the EQU and BSS pseudo ops are defined by appearing in the address 
field. 

b. TAG is a doubly defined symbol. It cannot be an EXT. 

c. START should be an entry point. The program should look like: 

Location Opcode Address Comments 

NAM EXAMP 
ENT START 
EQU LED(720) 

TAG NUM -72, $FFFF, 72 
BSS TAG11(25) 
EXT LAD 

START LDA+ TAG 
STA+ LAD 

END START 

2. The common area cannot be preset. 

3. Since the common area is fixed, all references to it can safely be made absolutely. This 
is necessary instead of a relative addressed mode for run anywhere programs. 

4. When the reference is made to LIST+3, the operand is unpredictable. The loader skips 
over the LIST area at load time. A BZS should have been used. It would be worthwhile 
at this point to refer to reference 5 or 6 for more information concerning the loader since 
this information is not covered in this manual. 

F-7 



ANSWERS TO EXERCISES ON CHAPTER VI - Macro Assembler 

1. a. FEE9 
l_. -

002F 

b. 4142 

c. OAOO 

d. FFFE 

2. LDA . =N$lOOO 
ADD =N$lOOO 

3. TAG ALF Z,ERROR6 Z 
TAGl ALF Z, LOGICAL UNIT8 Z 

4. The symbol TE is declared local to the macro and cannot be called by the main program. 
Also, since the code is inserted in-line, the $7FF3 could be executed as an instruction. 

~ 

( 
'--.. 

F-8 



ANSWERS TO EXERCISES ON CHAPTER VIII 

1. STA* FIRST 
ENA $20 
LDQ =N$Al 
OUT -1 
INQ -1 
INP -1 
SAN 1 
JMP* *-2 

LOOP INP -1 
ALS 8 
INP -1 
STA* (FIRST) 
RAO* FIRST 
JMP* LOOP 

FIRST ADC 0 

a. This program is run anywhere. 

b. Starting location for the checksum program is initially placed in the A regis ter. 

c. Reader will run out of tape and stop on a lost data condition. 

o 

F-9 



c· 

c 



APPENDIX G 

c' 





o 

o 

APPENDIX G 

SOLUTIONS TO PROBLEMS IN CHAPTER V 

ADDRESSING PROBLEM 

a. 1234 

b. 02ED 

c. 2311 

d. 1111 

MOVE 

The MOVE routine moves 1001
16 

numbers from $1000-$2000, inclusive, to $3000-$4000, in
clusive. 

$2000 $4000 

etc. 

$1000 $3000 

SUM 

The SUM routine sums 100116 numbers from $1000-$2000, inclusive. The answer is stored 
in $3000. 

$2000 

sum 

$1000 .r 

-G-1 



CHNG 

The CHNG routine swaps two arrays, inverting them. The contents of locations $1000-$2000 C 
are swapped and inverted with the contents of locations $3000-$4000. ~/ 

$2000 $4000 

$1000 $3000 

The swap is completed when the last address in ADDR has been decremented past $3000. 

SUB 

The SUB pro g ram picks up the actual data from the calling program and stores them in its 
locations SUBAG1, SUBAG2, and SUBAG3. The EOR =N$8000 put an indi re c t bit on the 
contents of location SUB (which in the example was $502). This caused the LDA * (SUB) to get 
the actual data, 10, etc. Mter picking up all the data, the subroutine updated the return ad
dress to $505 and ANDed off the extra indirect bit, AND =N$7FFF, so the return would be! 
to the proper place. 

The subroutine saved the reg i s t e r s when it was entered, and restored them when it exited, 
which most subroutines would do. ( 

SORT 

The SORT r ou tine sorts 16 numbers, in ascending order, in core locations $500-$50F, in
clusive. The method used is to push the smallest number to the top, the next smallest number 
to the next-to-top, etc. 

CLRPB 

The CLRPB subroutine clears protect bits on the core area from $2000-$4000, inclusive. The 
parameters pas s ed by the calling routine are the la~t word address of the buffer (LWA) and 
the first word address (FWA). The subroutine will work for any addresses passed to it. It 
uses the A register and overflow indicator for loop con t r 01. When the last word address is 
subtracted from $7FFF in A, the number left will be: such that when Q reaches the last word 
address +1 and the AAQ 0 instruction is executed, overflow will occur, and the exit will be 
made from the loop. The SOV 0 ins truction before entering the loop turned off the overflow 
indicator in case it may have been on. The CLRPB subroutine must be a protected routine 
itself or the protect switch must be off. 

'-.,' 

(' 
\ 
'-... 



CONVRT o The CONVRT subroutine converts a hexadecimal number which it receives in A to the ASCII 
codes for the decimal number. It packs the codes in a buffer, BUF, and returns to the caller 
with the buffer address in A. 

o 

o 

The method used is to divide the number by 10, in hexadecimal arithmetic, and save the re
mainders. Each time a divide is done, the remainder in Q will be used to get the ASCII code 
for the number from a table, TAB. 

It would have been possible in this example to simply add $30 to each remainder for the con
version. However, the table-look-up method is used for ill us t rat ion. Also note that the 
routine puts the characters in one buffer, BUF1, then packs them in BUF for the caller. 

The CONTST pro g ram checks out CONVRT by calling it to convert a number $37 CO, then 
writing the answer on the teletypewriter in ASCII. 

G-3 



SOLUTIONS TO PROBLEMS IN CHAPTER VI 

VALUE 

MASK 
START 

SEARCH 

EXIT 

PROBLEM 

NAM 
COM 
DAT 
EQU 
ENT 
EXT* 
BZS 
0 
CLR 
STQ 
LDA 
AND-
ALS 
STA* 
ENQ 
LDA+ 
AND 
EOR* 
SAN 
RAO 
SQZ 
INQ 
JMP* 
JMP* 
END 

TEST 
DUMMY(10), X(10) 
DUM(6), COUNT(l) 
LPMASK($2) 
START 
VALUE 
MASK(1) 
0 
Q 
COUNT 
VALUE 
LPMASK+6 
8 
MASK 
9 
X,Q 
=N$3FOO 
MASK 
2 
COUNT 
EXIT-*-1 
-1 
SEARCH 
(START) 

NAM gives the pro g ram a name. ENT gives it an entry point. START is where execution 
begins, but it does not a p pea r on the END card, implying that it is a subroutine. COM de
clares the XIS in COMMON; COUNT declares the 7th word of the data block for the answe!. 
DUMMYandDUM space over locations not used in this program. The EXT* declares VALUE 
ex t ern a 1 (it must be an entry point in the other program), and the * implies it is relative. 
The BZS initializes MASK to O. The EQU declares that LPMASK is location $2. 

INI MACRO 

The two lis tings on the follow i n g pages show one way to w r i t e the INI macro. The firs t 
listing does not have the macro expanded, while the second does (M option). 

'.The test routine was run with the STOP switch set. When the computer stopped, the Q reg
ister was s e 1 e c ted on the console for display. It contained a 6, to indicate that the macro 
worked. 

The INI is not exactly like an INA or INQ because of the size of operands allowed. Line 0008 
has an ADD =N'N' instead of an INA 'N'. 

G-4 

c 

(' 



,'- 0001 NAM INIMAC L/ 0002 INI MAC N 
0003 LOC SA 
0004 JMP* *+2 
QOOS 'SA' NUM 0 
0006 STA* 'SA' 
0007 LDA- I 
0008 ADD =N'N' 

/ 

0009 STA- I 
0010 LDA* 'SA' 
0011 EMC 
0012 ENT INIMAC 
0013 eOQOQ 0000 IMIMAC 0 0 
0014 POOOI 0842 CLR Q 

0015 POO02 40FF STO- I 
0016 INI 6 
0016 POO03 1802 
0016 POO04 0000 
0016 POOOS 68FE 
0016 Pq006 COFF 
0016 eQQOl 8000 

POOOS 0006 
0016 POOOe) 60FF 
0016 POOOA C8F9 
0017 poooa EOFF LDO- I 

C" 0018 poooe 0000 SLS 
0019 END INIMAC 

I OOFF INIMAC OOOOP roo 0004P 

C) 
G-5 



I 
"--

0001 NAM INIMAC 
0002 INI MAC N 
0003 LOC SA 
0004 JMP* *+2 
0005 'SA' NUM 0 
0006 STA*- 'SA' 
0007 LDA- I 
0008 ADD =N'Nt 
0009 STA- I 
0010 LDA* 'SA' 
0011 EMC 
0012 ENT INIMAC 
0013 POOOO 0000 INIMAC 0 0 
0014 POOOI 0842 CLR Q 
0015 POO02 40FF STQ- I 
0016 INI 6 
0016 POO03 1802 JMP* *+2 
0016 POO04 0000 [00 NUM 0 
0016 POOOS 68FE STA* (00 
0016 POO06 COFF LDA- I 
0016 POO07 8000 ADD =N6 

poooa 0006 
0016 POO09 60FF STA- I 
0016 POOOA C8F9 LDA* (00 ,r~' 

0017 POOOS EOFf LDQ- I ' ...... 

0018 poooe 0000 SLS 
0019 END INIMAC 

I OOFf INIMAC OOOOP [00 0004P 

G-6 



o 

o 

SOLUTION TO PROBLEMS IN CHAPTER VIn 

CKASSM PROBLEM (8.4) 

The first INDIR request, line 13, is for the w r it e request at line 34, out of the buffer MSG, 
line 25, on the teletypewriter. "NEXT MESSAGE SHOULD INDICATE VERIFICATION." 

The next, at line 15, is to s tar t the write request at line 32 to write a message from MSG1, 
line 26, on the disk. "MACRO ASSEMBLER ON 1700 NOW OK." This message will be written 
on the disk concurrently with the first message which is going out on the TTY. 

At line 16, a status request is made to wait for the disk write to finish. Then, at line 19, the 
message on the disk is read back in, line 28, into a different buffer, BUF, which is a BZS at 
line 27. At line 20, status is taken from line 28 to wait for com p let ion of the disk read. 
Finally, this message is transferred out of BUF to the teletypewriter at line 23, after which 
an exit is made at line 24. 

The program works out the assembler by the ass 0 r tm e n t of requests used to transfer the 
message around. Note that no completion routines are used; it will be obvious that if the two 
messages come out, it 'worked; and if they don't, it didn't. 

The errors which could be found are: 

1. SQN 1 at lines 17 and 21. This is the main error and the instruction effectively doesn't 
do anything. It was intended to loop on the indirect status request until the operation in 
progress bit (bit 15 of Q) be cam e clear. To accomplish that, a SQP instruction should 
have been used. Since Q is word 8 of the disk physical de vic e table, it will never be a 
whole word of zero (upon which the SQN could be used). Only bit 15 should be checked 
for zero. Therefore, as the program is set up, control falls right through to initiate the 
disk read at line 19, then the teletypewriter write at line 23. 

The program works because of the speed of the peripherals involved and the threading of 
r e que s t s onto the driver for each logical unit. The correct message is written, not 
garbage. 

What actually happens (if the SQN's are used ins tead of SQP' s) is: 

a. The firs t TTY message is initiated. 

b. The disk write is initiated. 

c. The disk read is initiated; it is t h rea d e d onto the disk driver after the disk write, 
since both are at priority O. Therefore, the read will not be done until the write is 
finished. 

d. The second TTY write is initiated and is t h rea de d on behind the first write, again 
since the priority is the same (RP = 0). That is why the second line comes out after 
the first, as it should. 

e. The second line does not contain garbage because the TTY is slow compared with the 
disk; the disk buffer has been w r itt en and read back in before the TTY driver gets 
ready to write it out. Any change in hardware or priorities involved could cause a 
mess. 

G-7 



2. The next item to note is the bin a r y write on the teletypewriter at line 23. Normally an 
ASCII write would be used. No damage is done because the words being written already 
contain ASCII characters which can be sent directly to the teletypewriter. 

3. Note the formatted write and read on the disk. This is not an error but implies that the 
disk sector driver is in the system, not the disk word driver. 

4. Note the disk sector address words which must be inserted after the macros at lines 30 
and 33. They indicate sector 1 in the scratch area. This is not an error. 

The version of the CKASSM routine which is used to check out the macro assembler contains 
SQN instructions at P0007 and POOOD. This is probably to test the s tat us request itself and 
then also to check out the operation of MSOS. 

(
--. 

-,~-_/ 



o 

0 

o 

SOLUTIONS TO PROBLEMS IN CHAPTER XI 

SOLUTION TO RUN ANYWHERE PROBLEM 

Program AVERAGE is written as a nondestructive run anywhere subroutine which may be 
called to compute an average. The buffer address in the calling routine is X, and the number 
of words is 10. Note that all of the addressing in the program is relative. 

0001 NAM AVERAGE 

0002 EXT * X RELATIVE EXTERNAL X 

0003 ENT AVG 

0004 POOOO 0001 BZS OVFL(l) 

0005 POOO1 0000 AVG 0 0 

0006 POO02 OC09 ENQ 9 N WORDS 9 

0007 POO03 OAOO ENA 0 CLEAR A AND OVFL 

0008 POO04 68FB STA* OVFL RELATIVE TO OVFL 

0009 POOO5 01AO SOV 0 

0010 POO06 8AOO !X LOOP ADD X,Q 2 WORD RELATIVE EXT 

POO07 7FFFX 
0011 POO08 01B3 SNO TEST-*-l 

0012 POO09 D8F6 RAO* OVFL RELATIVE TO OVFL 

0013 POOOA AOOO AND =N$7FFF 
POOOB 7FFF 

0014 POOOC 0142 TEST SQZ AV-*-l 

0015 POOOD ODFE INQ -1 

0016 POOOE 18F7 JMP* LOOP RELATIVE TO LOOP 

0017 POOOF E8FO AV LDQ* OVFL RELATIVE TO OVFL 

0018 P0010 OFC1 ALS 1 
0019 P0011 OF61 LRS 1 
0020 POO12 3000 DVI =NIO 

POO13 OOOA 
0021 P0014 1CEC JMP* (AVG) RELATIVE TO AVG 

0022 END 

G-9 



PROBI calls AVERAGE and punches out the answer, 4, and remainder, 5. The program is 
run anywhere, and note the relative addressing used in the punch request. ANS is before the c= request and COMPL is after the request. 

0001 NAM PROBl 
0002 EXT* ,AVG,IOERR RELATIVE EXTERNAL A VG 
0003 ENT START, X 
0004 POOOO 0001 X NUM 1, 2, 3, 4, 5, 6,7, S, 9, 0 

POOOl 0002 
POO02 0003 
POO03 0004 
POO04 0005 
POO05 0006 
POO06 0007 
POO07 OOOS 
POOOS 0009 
P0009 0000 

0005 POOOA 0003 ANS BZS ANS(3) 
0006 OOEA EQU ADISP($EA) 
0007 POOOD 5S00 X START RTJ AVG TWO-WORD RELATIVE EXT 

POOOE 7FFF X 
0008 POOOF 6800 STA ANS RELATIVE TO ANS 

P0010 FFF9 
0009 POOll 4S00 STQ ANS+2 

P0012 , FFF9 
0010 P0013 54F4 RTJ- ($F4) PUNCH OUT ANS AND REM 
0011 POO14 0501 NUM $0501 SET X BIT 
0012 POO15 0007 ADC* COMPL+l RELA TIVE TO COMPL (FWD) C~\ 0013 POO16 0000 NUM 0 
0014 POO17 0003 NUM $0003 
0015 POOlS' 0003 NUM 3 
0016 P0019 7FF5 ADC ANS-*+5 RELATIVE TO ANS 
0017 P001A 14EA JMP- (ADISP) 
0018 P001B 0162 COMPL SQP 2 
0019 P001C 5S00 X RTJ IOERR 

P001D 7FFF X 
0020 POOlE lSFF NUM $lSFF HANG WHEN FINISHED 
0021 END START 

c 
G-IO 



o 

o 

o 

Here is an error example of incorrect relative addressing used in the punch request. Note at 
line 16 that the ADC* ANS+5 assembles as FFF5, because ANS comes before the ADC in the 
program. A positive inc rem e ntis required, relative to the first word of the parameter 
string, so it should have been 7FF5. The ADC ANS-*+5 should have been used. 

In de bugging this program, the punch tape was studied •. (Be sure to get it right side up.) 
Note that the codes punched are: 

03 
FF 
F5 
14 
EA 

By studying the output, it was no ti c e d that these are the codes for part of the program, in
dicating that the buffer ANS was not output, but program codes were. Hence the discovery of 
the FFF5 at P0019. 

G-l1 



0001 hJ.A!"1 PROYl C~ 0002 EX Til- AVG"IOERR 
0003 ENT START,X 
0004 pooon 0001 X NI Jt"1 1.2.3,,4,5,6,7,8,9,,0 

~j\)OOI (1002 
?OOO? 0001 
r}UOOl 0004 
eOOO4 0005 
PO()OS 0006 
paOOA 0007 
"JO 0 0 7 n00A 
j-; tJ 0 0 q OO()g 
POOOg 0000 

0005 ';'UO 0 A Don3 ANS ,iZS ANS(3) 
0006 OOEA EOU Af)ISP($EA) 
0007 t)ooon 5800 X START RTJ AVG 

!JOOOI=" 7FFF X 
0008 POOOI=" AROO STA At-·!S 

~UOl() FFF9 
0009 ~)OOll 4800 STO ANS+2 

":'0012 FFF9 
0010 POOL~ S/+F4 RTJ- (~F4) 

0011 ":"0014 0501 !\JIJ :-1 $0501 
0012 PO 01 c; 0007 Af)C·n· CO~PL+l 
0013 ~"O{)l~ 0000 - - NtH"-- 0 
0014 POOl7 0003 i\jUi'4 '~OOO3 C~ 
0015 POOIR 000] NUf'" 3 

------.{) 0 1 6 POOIQ FFF5 1 C· I.\OC*- AI\IS+5 ) 
0017 r-'OO]fl 14EA .Jf\1P- (ADISP) 
0018 ~JOO IP 0162 COMPL SQP 2 
0019 t;.iOO le 5800 )( RTJ I OERR---'-' 

lJO 01 {I 7FFF X 

0020 POOIF' lRFF NlJi'.t1 1118FF 
0021 END ST.ART 

c 
G-12 



o 

o 

In order to verify that the programs were indeed run anywhere andnondestructive and did link 
correctly, coding was inserted to move them (after they ran one time) to higher core and run 
again. Two identical answers would indicate that the programs did run correctly. 

The following example includes coding added which will move 10010 words, beginning at 
START, to $4000, and then jump to $4000 to reexecute. This continues repeatedly. Since 
the program lengths are 2816 and 1D16, for a total of 4516, the 10010 (6416) words moved is 
sufficient. 

Another method would be to use the contents of locations $F7 and $ED to find the core address 
and program length, and use them in the move. 

When checkout methods such as this are used, remember that if the breakpoint package is in 
core it is physically located immediately above the last subroutine. Therefore, it would be 
wise not to move the programs on top of the breakpoint package and wipe it out. 

G-13 



0001 NAfv1 PROSl C_~~ 
0002 EXT~} AVG.IOERR 
0003 ENT START.X 
0004 OOFA !::f,)U ADISP($EA) 
0005 1-10000 SHOO X START RTJ AVG 

POOOI "lFFF X. 
0006 POOO? 6800 STA ANS 

POOO) 0024 
0007 ~O 0 O{~ 4AOO ST(~ A"JS+2 

0000S Of) ?'+ 
0008 i'OOOf; 54F4 RTJ- ($F4) 
0009 r>OOO7 0501 NUM <;0501 
0010 POOOq 0007 ADC'u, COMPL+l 
.0011 1.)0009 0000 NUM 0 
0012 ~OOOl\ 0003 NUM $0003 
0013 ,"0008 0003 NU"'" 3 
0014 POOOC ()O?O ADC ANS-~}+5 

0015 POOOD 14E.A JMP- (ADISP) 
0016 POOOE 0162 COMPL SQP 2 
0017 POOOF 5800 X RTJ IOERR 

~OOlO 7FFF X 
0018 ;JO 01 1 OAOO ENA 0 
0019 1-'001? 60FF STA- I 
0020 POOl3 C9Ee LOOP LDA·n· START,I 
0021 f"OOl!+ 6500 STA+ <J>4000.1 (~' 

~)O 015 l+OOO MOVE \,' ........ ' 

OO?? POOIA f)OFF R.AQ- I 
0023 I~O 01 7 COFF LOA- I 
0024 rJOO18 099C I f\·JA -99 
()O25 ~;;o 019 0101 SAl OUT 
002(1 ,·;001 A I8F8 JMP* LOOP 
00?7 POOIR l400 OUT JMP+ $4000 

!-IOOIC 4000 
OO?R i~;OOlf) 0001 X NUrw1 1,2.3,4,5,6,7,8,9,0 

I-'OOlF 0002 
~OOIF 00(l3 
POO20 0004 
~OO21 0005 
POO22 0006 
POO23 0007 
rJ OO24 OOOR 
t-JOO25 OO()q 
POO2A 0000 

0029 ~OO27 0003 ANS fiZS ANS(3) 
0030 END START 

G-14 



o To illustrate the use of the conversion routine, the following program MAIN calls AVa to com
pute an average, then calls CONVRT to convert the answer (which was returned inA by AVG). 
CONVRT returns a 3-word buffer address of the ASCII characters (in A) which the main pro
gram then stores down in the write reques t. 

o 

Note that this is an absolute buffer address. The completion address, COMPL, must also be 
absolute, yet it is in the run anywhere program MAIN. For that reason, the program must 
absolutize the completion address at each run and store it at C in the write request. 

After the answer is computed once, MAIN calls the MOVE sub r 0 uti n e to move everything 
except CONVRT up to higher core locations, immediately following the 0 rig ina I programs. 
Absolute addressing is used in MAIN to CONVRT so that the original copy of CONVRT is used 
for conversion, since it is not a run anywhere program. 

This would simulate a mass memory mod u I e using a core resident subroutine which always 
remained in the same place. Even if CONVRT had been moved, the original copy would still 
have been the one called. 

Note also that the flag used to control the move is addressed absolutely. This is so the ori
ginal flag in core will be used: set by one routine and checked by another. This will simulate 
run anywhere routines communicating with each other t h r 0 ugh a core resident flag cell. In 
the current example, the flag could have been addressed relatively. 

G-15 



0001 ~J" ~4 ~4,\I~~ 

0002 * FRAN GIACOBBE - PHILA 
oe03 .a. CLASS PROQLE:M NO. 1 PI 
0004 ENT MAIN,X,MVFLAG 
eees EXT~$. AVG, ~~OVE 
0006 EXT CONVRT 
0007 ~~ 

0008 'i~ ~1A IN MUST BE LOADED FIRST, CONVRT LAST, FOR CHECKOUT 
0009 * ~4A I N ENT~Y POI~n MUST BE FIRST LaC ,\T I O~J IN MAI~J 

0010 
0011 PQOOO 3~H' 1 
0012 POOOI 0000 
0013 POOO2 C~H E 
0014 POOO3 tjOOO 

PODOl, 0012 
0015 POO05 680H 
ODIe PGGOa 5fHJO x 

POO07 lFFF X 
0017 POOOR 5 /,00 'Ii 

h, 

POOO9 "lFFF X 
OG18 poao'\ 6R.u7 
0019 POOOH 54F4 
002(;) PQOOe OeOI 
0021 POOOO 0000 
0022 POOOE 00 11 0 
0023 POOOF 1004 
002', POOIO 0003 
0025 POOll 0000 
002~ 120012 14EA 
0027 POO13 0161 
0028 POO14 U3FF 
0029 POOlS C400 

POO16 0025 P 
0030 POO17 0101 
0 0 3 1 POO18 14EA 
0032 POO19 IHOO X 

PODIA 'ZFF F X 
0033 POOlS l5F9 

POOIC 7FFF 
POOll) 00b5 
POOlE 0002 
P001F OOUO 
P0020 1000 
P0021 DOOR 
PQO?2 0012 
POD23 0004 
P0024 0003 

0034- POO?5 aOul 
0035 

I DOFF "AIN 
WRITE 
eO~d'JRT 

0008P C 
GOQ')X '10V~ 

~~ 

~~ A I PI RTJ* 
T 0 

LDA* 
ADD 

STA* 
FlTJ 

RTJ+ 

STA~c 

~~R I TE RTJ-
~JlI ~1 

C ADC 
NUM 
NUM 
NU~4 

ADC 
'MP-

COMPL SQP 
t\jIIM 

CKMOVE LOA+ 

SAl 
I~p-

GOMOVE JMP 

;<. NUM 

MVFLAG BlS 
E~ID 

0900P X 
OOOOP COMPL 
9QlPeX A'IG 

;1:+ 1 1'8S0LIIT1£[ COMPL a.Og~ 

a 
it-I 
=XCOMPL-T 

C 
.o.VG GO ~E:T I\V£~AGE: 

CONVRT GO CONVE:RT ANSWE~ 

WRITE+6 BUfFER ADORESS 
($F4) 
~geOl GO '.tJR 1 TE: ," ~IS'/JER 
0 
0 
$1004-
3 
0 
($[") 
CKMOVE 
$18FF HANG IF ERROR 
MVFLAG FIRST OR SECOND RUN '? 

GOMOVE-*-l 
('SEAl 
MOVE 

$15F9,$7FFF,$65,2,0,$100O,8,$12,4,3 

MVFLAG(!) 
MAI~J 

OOlBP r1VFLAG 0925P T 9091P 
0013P CKMOVE 0015P GOMOVE 0019P 
OOY7X 

G-16 

C~' 
/' 

C 

(~ 

, .,\ .. ." -



~-u 

QQQl ~JAM t\'1ER/\GE 
0002 EXT* X BUFFER IN MAIN PGM 
gggJ E~J+ A~JG 

0004 POOOO 0001 OVFL SZS OVFL(l) 
ggO~ POgOI OOg" I~~~ 0 CJ 

0006 POO02 OC09 ENQ 9 N WORDS 10 
ggO:]: pgQQ;J YAOQ E~J~ 0 CLEAR A ,A~IO O~Jt=:b 

0008 POOO'+ 68FB STA* OVFL 
gOO~ PO 0 (H;i OlAO ~Q~,l 0 ::r:WR~1 O~t=: O\lERt=:LOlfJ IMOICAlOI 
0010 POO06 SAOO X LOOP ADD X,Q ADD UP DATA 

PQQQ7 7f~V " I 

0011 POOO8 01B3 SNO TEST-*-l 
gg12 pgggg QBfe RA9~i: GVfb If OVERfbGltt 
0013 POOOA AOOO AND =N$7FFF 

pg9gB +FfF 
0014 POOOC 0142 TEST SQZ AV-*-l 
ggl~ PtHHlIJ QQt==g I~JQ -1 
0016 POOOE 18F7 JMP* LOOP 
0017 POOOF E8FO A \l . LOQil- GVFL COMP11lE AVERAGE 
0018 POOIO OFCI ALS 1 
OOl~ POOll U~~l LR~ 1 

C' 
0020 P0012 3000 DVI =NIO 

P001;;3 gOOo. 
0021 POO14 ICEC ,JMP* (AVG) 
0022 * bE A \lE A~JS~IER I ~I A A~JO REMA I~IDER I~I Q A ~ID . RElIIR~1 lO CALLER 
0023 END 

I OOFF AV~ aDaIR Q"FL OOOOP LOOR 0006P TEST OOOCP 
AV OOOFP X 0007X 

o 
G-17 



0001 NAM MOVE 
DOD? ENT MOVE 
00 0 3 EXT MVELAG 
0004 0022 EQU ZERO($22) 
0005 POaoo no"o MOVf. 0 0 

0006 POOOI CUt.D LDA- $ED FIGURE OUT N WORDS 
0007 POO o 2 9C!f7 5 118- $F7 
DOOR POOO] 90()O SU8 =N$44 SUHTRACT OFF SIZE OF CONVR' 

POQOL!. a (Itt 4 
0009 ~;. SO IT WONT GET MOVED 
00 10 pon05 f'B?? IRA Q 

0011 POOO6 ChF7 MOVLP LDA- ($F7) ,Q MOVE IT 
0012 P (, 0 07 6bFfi 5T4- (:hEo) ,0 

0013 POOOR OOFE INQ -1 
0014 pnoog (,141 50l 0111-*-1 
0015 POOOA 1 R~· B JMP* MOVLP 
0016 POoOH 0400 x ollT RAO+ MVEI AG SET MOVED EI AG 

POOOC 7F FF X 
0017 PODOl) EDED I D(,)- $Eo FIGURE OUT ,JUMp ADDRESS 
0018 paonE 0001 INQ 1 
0019 POOOE ]622 IMP- (ZERO) ,0 ,JlJMP TO MAIN l' 0020 END '--. 

I QaFF MOVE OQQOP ZERO 0022 MO"lP 0006P 0' 'T OOOBP 
MVFLAG oonex 

(' 
G-18 



--'" 

U eQgl ~JA~4 GQNVRl 
0002 POOOO DOOl BSS SAVEQ(l),SAVEI{l),SAVEA{l) 

P99gl ~Hl n 1 
POOO2 00U1 

QQQ;1 PCHHlJ PG'=I~ ~HJ~ ij~~ ~11f:: (J) 
0004 POOO6 0006 8UFl RSS AUFl(6) 
0003 POQ(lG y 0 6~~ SIG~~ ~JUM ~2~h $21;) 

POOOO 002D 
OOO~ POOgg oo~O lA~ ~JIIM $30,~31,$32,$33,$34,$35,$36,$31,$38,$39 

POOOF 0031 
pgQIG yOJ~ 

POOll 0033 
PGGIt1 OOJl, 
POO13 0035 
pg GIl, yGJe 
POOl5 0037 
PQQls QQd~ 

P0017 0039 
0001 g~n: GQ~PJRl 

0008 PO 0 lf~ OOUO CONVRT 0 0 
OOOQ POQIQ "~~9 ~+Q* ~AVgQ 

0010 PODIA EIJFF LOQ- I 
9911 P991B " ~E;9 £+Q~ 510j lJE; J 
0012 POOIC oe42 CLR Q 

QQl;;l PQGIQ I, Q~. F= ~+Q- I 
0014 POUIE 0122 SAP POS 
0015 POOIF OUOI INQ 1 

0 OOln POO20 0864- TCA A 
gQl1 PQQ~1 gAgA PQ~ bQQ* ~IG~J,Q 

001P. POO22 4REH STQ* BUFl+5 
gQIQ PGQ~J E;~gA bQQ* +JH~:i: 0 
0020 POO24 48£1 STO* BUFI 
Oggl PQO~;} ggyQ bQQ -~J$gg 

P0026 0020 
OO~g pggg1 " I:HJ~ ~+Q1i: ~11r:: l:i: 1 
0023 P0028 48DF STO* BUFI+2 
0024- 12002~ 4~Qr:: SlQ* 611r::l '*=3 
0025 P002A 48DF STCJ* BUFl+4 
002~ P0028 O~42 bQQP CbR Q 

0027 POOcC 0106 SAZ OUT 
0028 ~OO~O 3000 OHI -~Il 0 

POO?E aOUA 
0029 ~002~ E:Ab)~ bQQ-l! lA6,Q 
0030 P0030 49U5 STOil- BUFI,I 
0031 120031 gO~r:: RAQ- I 
0032 POO32 18FB JMP* LOOP 
OOJJ POOJ~ 1.0 r:: r:: QkJ+ ~+Q- I 
0034 POO34 OCU5 ENQ 5 
OOJ5 1200JS C~lbh) ~ACK bg~* QlJ~l,Q 

0036 P(j036 OFC8 ALS 8 
00J1 PClOJ1 QQFE; J ~JQ -1 
003A POO38 8AeD ADD* BUFl,Q 
0039 g0039 (;)9C9 SltUt ~11f::, I 
0040 POO3A DuFF RAO- I 
004] PO 0 '-\b ilDf~ INQ -1 

() 
G-19 



00',2 
0043 
00 /,/, 
0045 
00 1, (, 

0047 

004R 
00 /,9 

I 
SUFI 
LOOP 

POO:1G 01 11 
POOJD 1 Hf-( 

POO3£ EgGl DO~~E 

POO3F CBel 
P II 0" 0 bO~F 

P(1041 COOO 
PO 0 /12 UOO3 f' 
POO43 lC04 

gOfF SAVEQ 
0006P SIGN 
Q02fjP OUT 

SQM 
JMPit 
LOQJc 

LDA* 
STA 
LOA 

JMPit 

E~JD 

OOOOP SAVEl 
OOOCP TAB 
gY33P ~/\Cl:< 

DO~JE 

BACK 
S.AVEQ 
SAVEl 
I 
=XRUF 

(CONVRT) 

OOOlP SA'IEA 
OOOEP CONVRT 
OOJ5P DO~JE 

0002P BUf 
0018P POS 
QOJEP 

0003P 
002lP 

ADDRESSES WHERE -------------------------
PROGRAMS LOADED 

AVERA.G 2392 
MOVE 2347 

1 Et>lTRY POINT T"tlLE-~ 
MAP 

MAIN 236C X 2381' MVFLAG' 2391 
MOVE 23ft7 AVG 239J 

G-20 

CONVRT 23CF 

(~ 

c 



u * 
MI 
*p 

J 
*K, 113, P6 
J 
*ASSEM 
OPTIONS 
J 
*p 
J 
*L,8 
J 
*X 
+ 4263 
+ 4263 
J 

MI 
*p 
J 

~ 

TTY PRINTOUT 

LX 

Answers 

o *UTOPIA 

o 

E * 
CKDISK - ENTER CKD/ FOR HEADING 

ADH, 15F9, 7 FFF / 
95F8 
ADH, 95F8, 65/ 
965D 
ADH, 965D, 2/ 
965F 
ADH, 965F, 100D/ 
A66C 
ADH, A66C, 8/ 
A674 
ADH, A674, 12/ 
A686 
ADH, 4, A686/ 
A68A 
ADH, A68A, 3/ 
A68D 

G-21 



utopia was used to sum the hex n urn be r s, to check out the answer. The sum is A68D16 = 

4263710• Divide by 1010 for a decimal answer of 4263. The remainder 7 was not considered 
when the answer was printed. Note that the numbers used did generate 'overflow in the sum, 
thereby checking out the average routine. (The average routine would work only for positive 
numbers. ) 

In analyzing and planning the move portion, the following s imp I e method could be used with 
imaginary core addresses: 

Core 

Address. 
~----+-----~--

1014 

100B 
100A 

1001 
1000 

00F7 1000 
OOED 100A 

move 10 words 

100A 
-1000 

A 

100A 
+A 

1014 

By drawing a simple picture to move only 10 words, beginning at 1001 and showing the con
tents of $ED and $F7 (which will be used for indirect addressing) it can be determined that the 
program should subtract the contents of $F7 from $ED and use that answer, $A, for the index 
in Q. The store through $ED would be analyzed the same way: ($ED) + $A = $1014. By 
looking at the picture, one can see that Q should go from $A to 1; hence, the skip out of the 
loop should be after the last move when Q equaled 1. 

G-22 

c 

c 



0 

o 

o 

The actual addresses involved after loading were: 

MOVE 
------

AVERAG 
------

second run: 
CONVRT not moved 

MAIN 
23FB 

CONVRT 
23B7 -------

MOVE 
23AC -----

AVERAG 
first run 

2392 ------
MAIN 

236C 

00F7 236B 23FA 26 

OOED 23FA 
-236B 15 

8F 10 
-44 CONVRT 4B 
4B moved 

The total number of locations involved was 8F16• Less CONVRT, left 4B16 to move. Q was 
indexed from 4B16 (the last location in MOVE) through 1 (the first location in MAIN). 

G-23 



Solution to the AVG Reentrant Problem (11.3.2) 

0001 
0002 
0003 

0004 
0005 
0006 
0007 
0008 
0009 

-0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 

0033 
0034 
0035 
0036 
0037 
0038 
0039 

OOBB 
OOBA 
0022 
0002 

POOOO 0000 
POOOI 0500 
POO02 54BB 
POO03 0006 
POO04 0400 
POO05 C8FA 
POO06 6103 
POO07 0844 
POO08 6104 
POO09 FlOl 
POOOA 4i05 
POOOB OlAO 
POOOC E4FF 
POOOD 8622 
POOOE 01B2 
POOOF Dl04 
POOlO AOll 
POOll ODOI 
POO12 4522 
POO13 0852 
POO14 Fl05 
POO15 0141 
POO16 l8F5 
POO17 El04 
POO18 OFCI 
P0019 OF6l 
POOlA 3101 
POOlB 6101 
POOlC 4500 
POOlD 0000 
POOlE Cl03 
POOlF 0500 
P0020 68DF 
P002l 
P0022 
P0023 

54BA 
0400 
lCDC 

5 
4 
:8 
2 
1 

(1)+0 

NAM 
ENT 
EQU 

AVG 0 
lIN 
RTJ-
NUM 
EIN 
LDA* 
STA-
CLR 
STA-
ADQ-
STQ-
SOV 

LOOP LDQ-
ADD-
SNO 
RAG-
AND-

TEST INQ 
STQ-
TCQ 
ADQ-
SQZ 
JMP* 

DV LDQ-
ALS 
LRS 

DIV DVI-
STA-
STQ+ 

EXIT LDA-
lIN 
STA* 
RTJ-
EIN 
JMP* 
END 

LWA+l 
OVERFLOW 
RETURN 
I 
A (N WORDS) 
Q (FWA) 

AVG 
AVG 
AVOLA($BB),AVOLR($BA), ZERO($22), LPMASK($2) 

0 

(AVOLA) 
6 

AVG SAVE RETURN ADDRESS 
3,1 
A 
4,1 ZERO OVERFLOW CELL 
1, I LWA+l IN Q 
5,1 SAVE IN VOLA+5 
0 TURN OFF OVERFLOW 
(I) FWA IN Q 
(ZERO),Q ADD DATA TOA 
TEST-*-l 
4,1 COUNT OVERFLOW 
LPMASK+15 AND OUT SIGN BIT 
1 UPDATE ADDRESS 
(ZERO), I SA VE NEXT ADDRESS 
Q COMPLEMENT NEXT ADDRESS 
5,1 ADD LWA+l 
DV-*-l FINISHED WHEN MATCH 
LOOP 
4,1 PICK UP OVERFLOW 
1 SQUEEZE OUT SIGN BIT 
1 
1,1 DIVIDE FOR AVERAGE 
1,1 RETURN ANSWER IN A 
0,1 RETURN REMAINDER IN Q 

3,1 RESCUE RETURN ADDRESS 

AVG 
(AVOLR) 

(AVG) 

G-24 

C~ 

C' 

C~ 



o 

o 

The following routine, NAM A VGTST, was used to check out the subroutine to see if it re
turned the correct answer. It only checks the answer and does not check the reentrancy. It 
asked AVG for an average of 9 words of a lO-word buffer X, and then punched the average 4 
and remainder O. 

The method used to run the routine in the background, since VOLA is a protected routine, was: 

1. Assemble and load A VGTST and A VG under MSOS. Do not execute yet. 

2. Turn off protect switch on console. 

3. Turn off disk (to protect the system). 

4. Set P on the console to the beginning address of A VGTST and RUN. 

This method could be used to check out any r ou tin e in the background which links to system 
routines in pro t e c ted core. If the system in core gets clobbered, the image on the disk is 
intact. 

G-25 



c~ 

0001 NAM AVGTST 
0002 ENT X, BEGIN 
0003 EXT* AVG 
0004 POOOO OA09 BEGIN ENA 9 NUMBER OF WORDS 
0005 POOOI EOOO LDQ =XX BUFFER ADDRESS 

POO02 0011 P 
0006 POO03 5800 X RTJ AVG 

POO04 7FFFX 
0007 POO05 6816 STA* TEMP SAVE ANSWER 
0008 POO06 4816 STQ* TEMP+1 SAVE REMAINDER 
0009 XA WRITE 3, XB-XA-1, TEMP-XA-1, 2, B, 0, 1, A, X 
0009 POO07 54F4 
0009 POO08 0501 
0009 POO09 0008 

POOOA 0000 
0009 POOOB 0003 
0009 poooe 0002 

POOOD 0013 
0010 EXIT 
0010 POOOE 54F4 
0010 POOOF OAOO 
0011 P0010 14EA XB JMP- ($EA) 
0012 P0011 0000 X NUM 0,1,2,3,4,5,6,7,8,9 C POO12 0001 

POO13 0002 
POO14 0003 
POO15 0004 
POO16 0005 
POO17 0006 
POO18 0007 
POO19 0008 
P001A 0009 

0013 P001B 0002 TEMP BSS TEMP (2) 
0014 END BEGIN 

ANSWER: 4 

C' 
G-26 



o 

() 

After tes ting out AVG to see if it gives an answer, it is then necessary to check out itsre
entrancy. In the following computer run, two pro g ram s (PGMA and PGMB) were set up, 
each to call AVG as a subroutine. Links and a flag were added to the routines for test pur
poses only. PGMA calls AVG and AVG begins its calculation. It then checks a flag and causes 
a pseudo interrupt of itself, and c au s e s PGMB to begin its run. PGMB calls AVG, gets an 
answer, punches it, and returns control back to the location in A VG where the pseudo interrupt 
occurred. A VG completes its calculation for PGMA, returns to PGMA, and PGMA punches 
its answer and hangs. 

Again, the programs are loaded under MSOS. Then the protect switch and disk are turned off 
while they execute. 

This method could be used as a skeleton to check a routine's reentrancy. 

The coding for testing reentrancy is marked by brackets in the example. 

G-27 



0001 NAM PGMA 
0002 ENT PGNtA 
0003 EXT AVG 
0004 POOOO 0000 PGMA 0 0 
0005 POOOI OAOA ENA 10 10 ~UMBERS 
0006 POO02 EOOO LDQ =xx BUFFER ADDRESS X 

POO03 OOOF P 
0007 POO04 5400 X RTJ+ AVO COMPUTE AVERAGE 

POO05 7FFFX 
0008 POO06 6813 STA* ANS 
0009 POO07 54F4 RTJ- ($F4) PUNCH ANSWER 
0010 POO08 0401 NUM $0401 
0011 POO09 0000 ADC 0 
0012 POOOA 0000 NUM 0 
0013 POOOB 0003 NUM $0003 
0014 POOOC oooi NUM 1 

'P 0015 POOOD 00i9 P ADC ANS 
~ 0016 POOOE i8FF NUM $18FF HANG 
00 0017 POOOF 0000 X NuM 0,1,2;3,4,5;6,7;8,9 

pool0 0001 
P0011 0002 
POO12 0003 
POO13 0004 
POO14 0005 
POO15 0006 
POO16 0007 
POO17 0008 
POO18 0009 

00i8 P0019 0001 ANS BSS ANS(l) 
0019 END PGMA 

ANSWER: 4 

~) n 
, / n 



0001 NAM AVG 
0002 ENT AVG 

0 
0003 ENT FIN! 
0004 EXT PGMB 
0005 OOBB EQU A VOLA ($BB) , AVOLR ($BA), ZERO($22), LPMASK($2) 

OOBA 
0022 
0002 

0006 POOOO 0000 AVG 0 0 
0007 POOOI 0500 !IN 
0008 POO02 54BB RTJ- (AVOLA) 
0009 POO03 0007 NUM 7 ONE MORE WORD VOLATILE 
0010 POO04 0400 EIN NEEDED 
0011 POO05 C8FA LDA* AVG 
0012 POO06 6103 STA- 3,1 
0013 POO07 0844 CLR A 
0014 POO08 6014 STA- 4, I 
0015 P.0009 F101 ADQ- 1,1 
0016 POOOA 4105 STQ- 5,1 
0017 POOOB 01AO SOY 0 
0018 POOOC E4FF LOOP LDQ- (I) 
0019 * 
0020 * 
0021 'POOOD 6106 STA- 6,1 
0022 POOOE C820 LDA* FLAG 
0023 POOOF 0115 SAN C 
0024 P0010 OA01 ENA 1 
0025 P0011 681D STA* FLAG FIRST OR SECOND CALL? 
0026 POO12 C106 LDA- 6,1 
0027 POO13 1400 :X JMP+ PGMB 

POO14 7FFFIx 

0 
0028 * 
0029 POO15 C106 C LDA- 6,1 
0030 P0016 . 0000 FIN! 0 0 RETURN AFTER INTERRUPT 
0031 * 
0032 * 
0033 POO17 8622 ADD- (ZERO),Q 
0034 POO18 01B2 SNO TEST-*-l 
0035 POO19 D104 RAO- 4, I 
0036 P001A A011 AND- LPMASK+15 
0037 POOIB OD01 TEST INQ 1 
0038 P001C 4522 STQ- (ZERO), I 
0039 P001D 0852 TCQ Q 
0040 POOlE F105 ADQ- 5,1 
0041 POOIF 0141 SQZ DV-*-l 
0042 P0020 18EB JMP* LOOP 
0043 P0021 E104 DV LDQ- 4, I 
0044 P0022 OFC1 ALS 1 
0045 P0023 OF61 LRS 1 
0046 P0024 3101 DIV DVI- 1,1 ANSWERS: 

0047 P0025 6101 STA- 1,1 3 
0048 P0026 4500 STQ+ 0,1 4 

P0027 0000 
0049 P0028 C103 EXIT LDA- 3, I 
0050 P0029 0500 !IN 
0051 P002A 68D5 STA* AVG 
0052 P002B 54BA RTJ- (AVOLR) 
0053 P002C 0400 EIN 
0054 P002D 1CD2 JMP* (AVG) 
0055 P002E 0001 BZS FLAG(l) 

C') 0056 END 

G-29 



r-' 
0001 NAM PGMB ~---' 
0002 ENT PGMB 
0003 EXT AVG, FINI 
0004 POOOO 0000 PGMB 0 0 
0005 POOOI 6817 STA* 

SA+! } 0006 POO02 4814 STQ* SQ+1 
SAVE REGISTERS 

0007 POO03 COFF LDA- I 
0008 POO04 680F STA* SI+1 
0009 POO05 OA08 ENA 8 8 NUMBERS 
0010 POO06 EOOO LDQ =XX BUFFER ADDRESS X 

POO07 001B P 
0011 POO08 5400 X RTJ+ AVG COMPUTE AVERAGE 

POO09 7FFFX 
0012 POOOA 6819 STA* ANS 
0013 POOOB 54F4 RTJ- ($F4) PUNCH AmWER 
0014 POOOC 0401 NUM $0401 
0015 POOOD 0000 ADC 0 
0016 POOOE 0000 NUM 0 
0017 POOOF 0003 NUM $0003 
0018 P0010 0001 NUM 1 
0019 P0011 0023 P ADC ANS 
0020 POO12 COOO SI LDA =NO 

POO13 0000 
0021 POO14 60FF STA- I 

RESTORE REGISTERS~ 
0022 POO15 EOOO SQ LDQ =NO ,,--.,' 

POO16 0000 
0023 POO17 COOOO SA LDA =NO 

POO18 0000 
0024 POO19 1400 X JMP+ FIN! ) RETURN TO AVG 

P001A 7FFFX 
0025 P001B 0000 X NUM 0, 1,2,3,4,5,6,7 

P001C 0001 
P001D 0002 
POOlE 0003 
P001F 0004, 
P0020 0005 
P0021 0006 
P0022 0007 

0026 P0023 0001 ANS BSS ANS(l) 
0027 END 

ANSWER: 3 

(~ 
....... -



() 

C' 

o 

Another possible solution would be: 

NAM AVG 
ENT AVG 
EQU A VOLA($BB), A VOLR($BA), ZERO($22) 
EQU LPMASK($2),ONEB1T($23) 

AVG 0 0 
IIN 
RTJ- (AVOLA) 
NUM 5 
E1N 
LDA* AVG 
STA- 3,1 

LDA- I 
EOR- ONEB1T+15 
STA- I 
CLR A 
STA- 4,1 
LDQ- 1,1 
INQ -1 

LOOP ADD- (I), Q 
SNO TEST-*-1 
RAO- 4,1 
AND- LPMASK+15 

TEST SQZ DV-*-1 
INQ -1 
JMP* LOOP 

DV LDQ- 4,1 
ALS 1 
LRS 1 

DIV DV1- 1, I 
STA- 1,1 
STQ+ 0, I 

EXIT LDA- 3,1 
IIN 
STA* AVG 
LDA- 1 
.AND- LPMASK+15 
STA- 1 
RTJ- (AVOLR) 
EIN 
JMP* (AVG) 
END 

The indirect bit on the contents of I causes proper addressing to be used to add up the buffer. 
Only 15 bits of the address are used for the direct addressing used to access the other volatile 
locations. 

G-31 



SOLUTION TO THREAD PROBLEM. (11.4.3.3) 

Solution: Never. 

The problem here is that the programmer thinks the request priority of 14 will override the 
running priority of 12, but this is not so. It is the driver's priority which must be considered, 
and the slow-equipment drivers usually run at 10. So, since the requestis threaded as 
highest priority (14) on the queue for the logical unit (TTY,4) and will be processed when the 
driver gets to run at its p rio ri ty (10), the write will never be done. This is because the 
running program is hung in a loop at priority 12, waiting for an event which cannot occur (the 
thread word becoming zero) because the loop at 12 is locking out the driver. 

Process programs usually run at 4, 5, and 6 (below the drivers); this would eli min ate the 
problem in the example program. However, any looping like this at any priority is going to 
slow down a system by locking out lower priorities. For example, if many process programs 
were coded this way, they could a 1m 0 s t completely lock out job processing (which runs at 0 
and 1). It would be much better to code the write as follows, if it mus t run at 12: 

EQU ADISP($EA) 
~ 

($F4) RTJ-
NUM $OCED FWRITE, RP=14, CP=13 
ADC COMPL 
NUM 0 
NUM $18FC 
NUM 35 
ADC BUF 
SQP OK-*-l 
JMP REJ 

OK JMP- (ADISP) 
COMPL 

G-32 

C 



SOLUTION TO MMPGM PROBLEM. (11. 5.7) 

o Note that afte~ the FWRITE is initiated (at P0017), the program return jumps to CORSUB and 
then schedules SYSPGM. CORSUB will run at the calling program's priority (4). Then, since 
SYSPGM is scheduled to run at 4 also, it will r')t begin until MMPGM is finished. (This is 
per f e c t I y legal, as long as SYSPGM does not need any of the data in MMPGM and does not 
store anything in MMPGM.) At P001C a jump is then made to the dispatcher to a w a i t com
pletion of the 1/0. This all looks very good. 

o 

o 

However, the 110 has been going on concurrently and the driver runs at a very high priority 
(usually 10). If by any chance it finishes the write and t r an sf e r s control to the completion 
routine WROTE (at P001D) at priority 6 before the RTJ+ CORSUB and the schedule for SYSPGM 
are finished, the space MMPGM is in will be released. Surprise! 

This is quite possible because other system programs at intermediate priorities (i. e., 7 and 
9) could be locking out the MMPGM at 4, yet the driver at 10 would be plod din g away at its 
write. Naturally the completion at 6 will be done (after the 7 and 8 are finished) be for e the 
p rio r i t Y drops back down to 4 to try to do the return jump to CORSUB and the schedule re
quest, which, of course, aren't there any more. 

The word on mass memory coding is: Be careful, and think! 

G-33 



A possible correction for the program would be: 

NAM MMPGM 
ENT MMPGM 
EXT * REQREJ,IOERR 
EXT CORSUB 
EXT SYSPGM 

ADISP EQU ADISP($EA) 
MMPGM NUM $C8FE 

STA* REL+2 
JMP* WRITE 

MSGBUF ALF *,MASS MEMORY EXAMPLE* 
WRITE FWRITE $FC, WROTE-*+l, MSGBUF-*+5, 10, A, 5,6, I, X 

SQP REQOK-*-l 
RTJ REQREJ 

REQOK RTJ+ CORSUB 
JMP- (ADISP) 

WROTE SQP 2 
RTJ IOERR 
SCHDLE REL,4,X 
SQP 2 
RTJ REQREJ 
SCHDLE (SYSPGM), 4, ° 
SQP 2 
RTJ REQREJ 
JMP- (ADISP) 

REL RELEAS 0, T, ° 
END MMPGM 

In this solution, if the completion routine is entered before the RTJ+ to CORSUB is finished, 
REL and SYSPGM will be put on the scheduler stack to be executed after the completion exit 
to the dispatcher allows MMPGM to be picked up from the interrupt stack. 

Another possible correction to the program, perhaps better, would be s imp I y to change the 
completion priority in the FWRITE request from 6 to 3. That would insure that any priority 4 
work would be finished before the release is executed. However, this would cause the space 
MMPGM is in to be tied up until SYSPGM is finished, which was not the intent. 

G-34 

C--: 

C~ 



APPENDIX H 

o 



c 



c) 
********pp******** 
0001 *p 
0002 *ASSEM 
********Op******** 
********UD******** 
0003 POOOO 0000 
********OP******** 
********UD******** 
0004 P0001 0000 
0005 0000 
0006 0000 OBOO 
0007 0001 7FFF X LOWCOR 
0008 OOFE 
0009 OOFE OOBD P TEMP1 
0010 OOFF 0000 INDEX2 
0011 0100 0000 ABSRNG 
0012 0002 P 
0013 P0002 0000 RELOW 
0014 * 

::q 0015 * 
I 

0016 * I-' 

0017 * 
0018 * 
0019 *LABEL* 
0020 P0003 COFE 
0021 P0004 C2FE 
0022 P0005 C1FE 
0023 P0006 C3FE 
0024 P0007 C020 
0025 P0008 C014 
********FX******** 
0026 P0009 COOO 
********PL******** 
0027 POOOA C002 
********RL******** 
0028 POOOB COlO 
* * ** ** * *RL* ** * ** ** 
0029 POOOC COOO 
********UD******** 
0030 POOOD COOO 

n 

NAM L 

NAM DAN 
ORG 0 
NOP 
0 DPNDNT 
ORG $FE 
0 ANYWHR 
0 0 
0 0 
ORG* 
0 0 

1700 
ADDRESSING EXAMPLES 
ASSEMBLED UNDER MSOS 2. 0 
OCT. 1968 

SET ABSOLUTE ADDRESS 

EXTERNAL SYMBOL 
RE-SET ABSOLUTE ADDRESS 

1700 ASSEMBLY EXAMPLES 
********STORAGE REFERENCE******** 

**GROUP 1** 

C.' 

EVALUATION OF ADDRESS FIELD RESULTS IN DESIRED OPERAND ADDRESS 
*ABSOLUTE* 
*OPN* *ADDRESS* *DESCRIPTION* *BA* *EFA* 

LDA- TEMPI NO INDEXING TEMP1 TEMP1 
LDA- TEMP1, Q Q INDEXING TEMPI TEMP1+(Q) 
LDA- TEMP1, I I INDEXING TEMPI TEMP1 +(OOFF) 
LDA- TEMPI, B DOUBLE INDEXING TEMPI TEMP1+(Q)+(00FI 
LDA- $20 NUMERIC HEX EXAMPLE 20 HEX 20 HEX 
LDA- 20 NUMERIC DEC EXAMPLE 20 HEX 20 DEC 

LDA- ABSRNG 4DELTA OUT OF RANGE 

LDA- RELOW PROGRAM RELOCATABLE ADDRESS 

LDA- BLOCK6 DATA RELOCATABLE ADDRESS 

LDA- BLOCK3 COMMON RELOCATABLE 

LDA- UNDEFINED UNDEFINED SYMBOL 

~ 



0032 
0033 
0034 POOOE C822 
0035 POOOF CA21 
0036 P0010 CB20 
0037 P0011 C8FC 
0038 P0012 C8FD 
0039 P0013 181D 
********RL******** 
0040 P0014 C017 
* ** * ** **RL* ** * * * ** 
0041 P0015 COlO 
* ** *** **RL***** *** 
0042 P0016 COOOO 

********FX******** 
0043 P0017 COA6 

p:: 
I 

l\:) 

0045 
0046 
0047 
0048 
0049 P0018 C800 

P0019 0017 
0050 P001A C800 

P001B 00A2 
0051 P001C CAOO 

P001D OOAO 
0052 POOlE 5800 

P001F 009E 
0053 P0020 C400 

P0021 OOFE 
0054 P0022 C400 

P0023 0500 
0055 P0024 C800 
0056 P0025 0000 

(~ 

* *RELATIVE* 
*LABEL* *OPN* *ADDRESS* *DESCRIPTION* *BA* *EFA* 
BAKREL LDA* RELADR DELTA=RELADR+(-*) RELADR RELADR 

LDA* RELADR,Q DE L T A= RE LADR+ (- *) RELADR RELADR+(Q) 
LDA* RELADR,B DELTA=RELADR+(-*) RELADR RELADR+(Q)+(OOFF) 
LDA* BAKREL DELTA=BAKREL+(-*) BAKREL BAKREL 
LDA* *-2 DELTA+*-2+(-*) *-2 *-2 
JMP* RELADR JUMP ADDRESS=EFA RELADR RELADR 

LDA* TAGLRM-BAKREL FORM RELATIVE ADDRESS 

LDA* $10 ABSOLUTE ADDRESS 

LDA* ABSRNG ABSOLUTE ADDRESS 

LDA* ANYWHR DELTA OUT OF RANGE 

* ****CONTINUATION OF STORAGE REFERENCE**** 
* 
* *LONG RELATIVE* 
*LABEL* *OPN 

LDA 

LDA 

LDA 

RTJ 

LDA 

LDA 

LDA* 
TAGLRM 0 

*ADDRESS* 
RELADR 

ANYWHR 

ANYWHR,Q 

ANYWHR 

TEMP1 

$500 

* 
0 

(\ 
) 

****GROUP 1**** 

*DESCRIPTION* *BA* *EFA* 
M=RELADR+(-*. +1) RELADR RELADR 

M=16 BIT REL ADDRESS ANYWHR ANYWHR 

Q INDEXING ANYWHR ANYWHR+(Q) 

JUMP ADDRESS=EFA ANYWHR ANYWHR 

ABSOLUTE ADDRESS, ASSEMBLED AS STORAGE 

ASSEMBLED AS STORAGE MODE 

WORD ONE OF LONG RELATIVE 
WORD TWO OF LONG RELATIVE 

n 



0 0 (" 

"--' 
0058 * *STORAGE* 
0059 *LABEL* *OPN* *ADDRESS* *DESCRIPTION* *BA* *EFA* 
0060 P0026 C400 BACIND LDA+ ANYWHR 2ND WORD=ANYWHR ANYWHR ANYWHR 

P0027 OOBD P 
0061 P0028 C600 LDA+ ANYWHR,Q Q INDEXING ANYWHR ANYWRR+(Q) 

P0029 OOBD P 
0062 P002A C700 MEMADR LDA+ $500, B NUMERIC EXAMPLE $500 $500+(Q)+(00FF) 

P002B 0500 
0063 P002C C400 LDA- (0) WORD ONE Of!' ~TORAGE MODE 
0064 P002D 0000 TAGSM 0 0 WORD TWO OF STORAGE MODE 
0065 P002E 5400 RTJ+ ANYWHR JUMP ADDRESS=EFA ANYWHR ANYWHR 

P002F OOBD P 

0067 * 
0068 * 
0069 * EVALUATION OF ADDRESS FIELD RESULTS IN DESIRED ADDRESS OF OPERAND ADDRESS 
0070 * *INDIRECT* 
0071 *LABEL* *OPN* *ADDRESS* *DESCRIPTION* *BA* *EFA* 
0072 P0030 C4FE RELADR LDA- (TEMPI) DELTA=TEMPI (TEMPI) (TEMPI) 
0073 * LDA- (TEMPl),Q DELTA=TEMPI (TEMPI) (TEMPl)+(Q) 

~ 0074 * LDA- . (TEMPl),B DELTA=TEMPI (TEMPI) (TEMPI )+(Q)+(OO FF) 
I 0075 P0031 C4FF LDA- (TEMPl+l) DELTA=TEMPI + 1 (TEMPl+l) (TEMPl+l) ~ 

0076 P0032 C420 LDA- ($20) DELTA=$20 ($20) ($20) 
0077 P0033 14FE JMP- (TEMPI) JUMP ADDRESS=EFA (TEMPI) ANYWHR 

0079 * *STORAGE INDIRECT* 
0080 *LABEL* *OPN* *ADDRESS* *DESCRIPTION* *BA* *EFA* 
0081 P0034 C600 RELIND LDA+ (BACIND+l), Q 2ND WORD=BACIND+l (BACIND+l) ANYWHR+(Q) 

P0035 8027 P 
0082 P0036 C700 LDA+ (MEMADR+l), B 2ND WORD=MEMADR+l (MEMADR+l) $500+(Q)+(00 FF) 

P0037 802B P 
0083 P0038 C400 LDA+ ($700) NUMERIC EXAMPLE ($700) ($700) 

P0039 8700 
0084 P003A 5400 RTJ+ (BACIND+l) JUMP ADDRESS=EFA (BACIND+l) ANYWHR 

P003B 8027 P 

0086 * *RELA TIVE INDIRECT* 
0087 *LABEL* *OPN *ADDRESS* *DESCRIPTION* *BA* *EFA* 
0088 P003C CCEA LDA* (BACIND+l) DELTA=BACIND+ 1 +(-*) (BACIND+l) ANYWHR 
0089 P003D CDED LDA* (MEMADR+l), I DELTA=MEMADR+ 1 +(-*) (MEMADR+l) $500+(00FF) 
0090 P003F CFF6 LDA* (RELIND+l), B DELTA=RELIND+ 1 +(-*) (RELIND+l) ANYWHR+(Q)+(OOFF) 



0092 * *LONG RELATIVE INDIRECT* 
0093 *LABEL* *OPN* *ADDRESS* *DESCRIPTION* *BA* *EFA* 
0094 P003F CCOO LDA (BACIND+1) M=BACKIND+(-*)+l (BACIND+1) ANYWHR 

P0040 FFE6 
0095 P0041 CEOO LDA (ANYWHR),Q 16 BIT REL ADDRESS (ANYWHR) (ANYWHR)+(Q) 

P0042 007B 
0096 P0043 C400 LDA ($700) ASSEMBLED AS STORAGE INDIRECT 

P0044 8700 

0098 * ****CONTINUATION OF STORAGE REFERENCE**** 
0099 * ****GROUP 3**** 
0100 * EVALUATION OF ADDRESS FIELD RESULTS IN DESIRED OPERAND 
0101 * N = NUMERIC X = ADDRESS A = ALPHANUMERIC 

0103 * *CONSTANT* 
0104 *LABEL* *OPN* *ADDRESS* *DESCRIPTION* *BA* *EFA* 
0105 P0045 COOO LDA =N1000 NUMERIC EXAMPLE DEC P+1 P+1 

P0046 03E8 
~ 0106 P0047 COOO LDA =N$1000 NUMERIC EXAMPLE HEX P+1 P+1 I 
..p.. P0048 1000 

0107 P0049 COOO LDA =N-$1000 NUMERIC EXAMPLE NEG P+1 P+1· 
P004A EFFF 

0108 P004B COOO LDA =XBACIND ADDRESS EXAMPLE P+1 P+1 
P004C 0026 P 

0109 P004D COOO LDA =X-BACIND ADDRESS EXAMPLE NEG P+1 P+1 
P004E 7FD9-P 

0110 P004F COOO LDA =ABC ALPHA EXAMPLE P+1 P+1 
P0050 4243 

0111 P0051 C200 LDA =N$1000, Q RA=(P+1) *INDEXING* $1000 OPERAND 
P0052 1000 

0112 P0053 COOO LDA- 0 WORD ONE OF CONSTANT MODE 
0113 P0054 0000 TAGCM 0 0 WORD TWO OF CONSTANT 
********EX******** 
0114 P0055 6400 STA =N$O ASSEMBLER WILL NOT ALLOW 

P0056 0000 
0115 P0057 COOO LDA =X-4 NUMERIC WITH ADDRESS INDICATOR 

P0058 7FFB 
0116 P0059 COOO LDA =X(BACIND) SET INDIRECT BIT ON ADDRESS VALUE 

P005A 8026 P 

f\ f) r----"'\ 
I / . /' 



o 
0118 
0119 
0120 
0121 P005B 0847 
0122 P005C 080C 
0123 P005D 0811 
0124 P005E 0823 
0125 P005F 081C 
01 ~(i 
01~7 

01~H 

0129 
0130 
0131 

P0060 0801 
P0061 0854 
1>0062 0834 
POO():~ 086A 
POO()--! 08B2 
POOG5 08F4 

*****~~~EX******** 

0132 P0066 0820 

0134 
~, 0135 
01 0136 

0137 P0067 0105 
0138 P006H 0156 
0139 P0069 0115 
-1- *******EX* * ****** 
0140 P006A 0120 

. ********EX******** 
0141 P006B 013A 

0143 
0144 
0145 
0146 P006C OFAC 
0147 P006D OFD2 
0148 P006E OF7F 
0149 P006F OBOA 
0150 P0070 OF53 
0151 P0071 OF5F 
0152 P0072 OFDA 

* 
* 
*LABEL* 

* 
* 
*LABEL* 

* 
* 

o c~ 

********REGISTER TRANSFER******** 
EVALUATION OF ADDRESS FIELD RESULTS IN DESIRED DESTINATION HEGISTER 

*OPN* 
CLR 
THlVl 
TRQ 
TAA 
TRB 
SET 
TCQ 
AAQ 
EAM 
LAQ 
CAQ 

TAA 

*ADDHESS* 
A,Q,1\'1 
A 
M 
Q,M 
A 
M 
A 
A 
Q 

Q 
A 

x 

*DESCRIPTION* 
CLEAH A Q AND 1\1 REGISTERS 
TRANSFER 1\'1 TO A 
TRANSFER Q TO M 
TRANSFER A TO Q AND 1\1 
TRANSFER INCLUSIVE OR OF M Q TO A 
SET M TO ALL ONES 
TRANSFER THE COMPLEMENT OF Q TO A 
TRANSFER SUM OF A Q TO A 
TRANSFER EXCLUSIVE OR OF A M TO Q 
TRANSFER LOGICAL AND OF A Q TO Q 
TRANSFER COMPLEMENT OF LOGICAL AND OF A Q TO A 

ILLEGAL DESTINATION REGISTER 

********SKIPS******** 
EVALUATION OF ADDRESS FIELD RESULTS IN DESIRED SKIP COUNT 

*OPN* 
SAZ 
SQN 
SAN 

SAP 

SAM 

*ADDRESS* 
5 
SKI PAD .. *-1 
SKI PAD 

$10 

-5 

*DESCRIPTION* 
IF(A) IS 0 SKIP FORWARD 6 PLACES ++l+SKIPCOUNT 
IF(Q) NEG SKIP TO SKIPAD (NON ABSOLUTE METHOD) 
SKIP COUNT OUT OF RANGE 

SKIP COUNT OUT OF RANGE 

NEG SKIP COUNT 

********SHIFTS******** 
EVALUATION OF ADDRESS FIELD RESULTS IN DESIRED SIDFT COUNT 

*LABEL* *OPN* *ADDRESS* 
12 

*DESCRIPTION* 
QLS 
ALS 
LRS 

SKI PAD NOP 
ARB 
ARB 
ALS 

$12 
31 
10 
$33 
DELTA 
-5 

LEFT SHIFT Q 12 DECIMAL POSITIONS 
LEFT SIDFT A 12 HEX POSITIONS 
RIGHT SHIFT Q/ A 31 DECIMAL POSITIONS (31:::: MAX) 
WAIT XX MICROSECONDS 
SHIFT COUNT GREATER THAN $31 
SYMBOLIC SHIFT COUNT 
NEG SHIFT' COUNT 



~ 
I 
m 

0154 
0155 
0156 
0157 P0073 OA75 
0158 P0074 OCEA 
0159 P0075 OA7F 
********EX******** 
0160 P0076 OA80 
********EX******** 
0161 P0077 OA01 
0162 P0078 OA1F 
0163 P0079 OAEO 
********EX******** 
0164 P007 A OAFF 
********EX******** 
0165 P007B OA02 
********EX******** 
0166 P007C OA10 
********EX******** 
0167 P007D OAOO 
0168 P007E 09FE 
0169 P007F OD25 
0170 P0080 0206 
********EX******** 
0171 P0081 0287 
0172 P0082 0400 
0173 P0083 0500 
0174 P0084 OE04 
0175 P0085 0600 
0176 P0086 0700 
0177 P0087 0000 
0178 00lF 

r, 

* 
* EVALUATION OF ADDRESS FIELD RESULTS IN VARIOUS PORTIONS OF ASSEMBLED INSTS 
*LABEL* *OPN* 

ENA 
ENQ 
ENA 

REJCTA 

ENA 

ENA 
ENA 
ENA 

ENA 

ENA 

ENA 

ENA 
INA 
INQ 
INP 

INP 
EIN 
IIN 
EXI 
SPB 
CPB 
SLS 
EQU 

*ADDRESS* 
$75 
-$15 
127 

128 

257 
DELTA 
-DELTA 

INDEX2 

RELOW 

BLOCK6 

BLOCK3 
-1 
$25 
REJCTA-*-l 

REJCTA 
o 
o 
4 
o 
o 
o 
DELTA($lF) 

f) 

*DESCRIPTION* 
ENTER A WITH VALUE SPECIFIED IN ADDRESS FIELD 
NEG EXAMPLE 
DEC EXAMPLE (MAX VALUE) 

NEG. NUMERIC VALUE 

OUT OF RANGE NUMERIC VALUE 
POSe SYMBOLIC VALUE 
NEG. SYMBOLIC VALUE 

NEG. SYMBOLIC VALUE 

PROGRAM RELOCATABLE VALUE 

DATA RELOCATABLE VALUE 

COMMON RELOCATABLE VALUE 
INCREASE A BY THE VALUE SPECIFIED IN ADDRESS FD 
INCREASE Q 
INPUT TO A REJECT ADDRESS-P+1+DELTA 

DELT OUT OF RANGE 
ENABLE INTERRUPT SYSTEM 
INHIBIT INTERRUPT SYSTEM 
EXIT INTEHRUPT ADDRESS FIELD = INTERRUPT 
SET PROTECT BIT (Q) = ADDRESS 
CLEAR PROTECT BIT (Q) = ADDRESS 
STOP IF STOP KEY SET 

EQUATE SYlVIBOLIC VALUE FOR ABOVE USE 

r--"', 
. j 



C) o C) 

0180 * ********CLASS 2 PSEUDOS******** 
0181 * *ADC* ADDRESS CONSTANT PSEUDO 
0182 * THE ADDRESS EXPRESSIONS IN SUBFIELD ARE ASSEMBLED INTO CONSECUTIVE CELL 
0183 * LOCATIONS. IF ADDRESS EXPRESSION IS ENCLOSED IN PARENTHESIS THE ADDRESS 
0184 * BECOMES INDIRECT. 
0185 *LABEL* *OPN* *ADDRESS* 
0186 P0088 0030 P ADLIST ADC RELADR, BACIND, (MEMADR), -RELADR 

P0089 0026 P 
P008A 802A P 
POO~B 7FCF-P 

0187 P008C 7FFO o -$F TREATED AS ONE WORD ADC 

::c: 
I 0189 ..::J * *NUM*NUMERIC CONSTANT PSEUDO 

0190 * THE NUMERIC EXPRESSIONS IN SUBFIELD ARE ASSEMBLED INTO CONSECUTIVE CELL 
0191 * LOCATIONS. THE CONSTANTS CAN BE EITHER DECIMAL OR HEX VALUES. 
0192 *LABEL* *OPN* *ADDRESS* 
0193 P008D 1000 CONLST NUM $1000, 1000, -$1000, -100 

P008E 03E8 
P008F EFFF 
P0090 FF9B 

0195 * *ALF* ALPHANUMERIC MESSAGE PSEUDO 
0196 * THE ADDRESS FIELD CONTAINS THE NUMBER OF CELLS TO BE RESERVED FOR THE 
0197 * REMAINING CHARACTERS IN FIELD. 
0198 *LABEL* *OPN* *ADDRESS* 



0200 * 
0201 * 
0202 * 
0203 * 
0204 * 
0205 

0207 * 
0208 * 
0209 * 
0210 * 
0211 

~ 0212 * I 
00 0213 P0091 5400 X 

P0092 0001 X 
0214 P0093 OBOO 
0215 P0094 5400 X 

P0095 0092 X 
0216 P0096 OBOO 
0217 P0097 5401 
0218 P0098 OBOO 
********EX******** 
0219 P0099 5400 X 
0220 P009A OBOO 
********EX******** 
0221 P009B 5000 X 

r~) 

I 

*****CONTINUATION OF CLASS 2 PSEUDOS***** 
*ENT* ENTRY PSEUDO 

TillS PSEUDO WILL CAUSE A BINARY OUTPUT WHICH WILL ALLOW -EXTERNAL 
SYMBOLS OF OTHER PROGRAMS TO BE DEFINED AT *LOAD TIME* 

*OPN* 
ENT 

*ADDRESS* 
START, BACIND 

*EXT* EXTERNAL PSEUDO 
TillS PSEUDO WILL ALLOW SYMBOLIC VALUES UNDEFINED IN THE INDEPENDENT 
PROGRAM TO BE MATCHED WITH ENTRY VALUES AND DEFINED AT LOAD TIME. 

*OPN* *ADDRESS* *DESCRIPTION* , 
EXT DPNDNT DPNDNT WILL BE MATCHED WITH ENTRY POINT 

AT LOAD TIME. 
RTJ DPNDNT DPNDNT IS UNDEFINED IN CURRENT ROUTINE 

NOP 
RTJ 

NOP 
RTJ
NOP 

DPNDNT 

(LOWCOR) 

RTJ* DPNDNT 
NOP 

RTJ- DPNDNT 

/\ 
I 

ASSEMBLED AS STORAGE 

INDIRECT LINKING 

r~ 



f --" 
U 

0223 
0224 
0225 
0226 
0227 
0228 0100 

009C P 

0230 
0231 
0232 
0233 
0234 
0235 P009C OBOO 
0236 P009D 0010 
0237 POOAD OBOO 

0239 

~ 0240 
I 0241 c.o 

0242 POOAE OBOO 
0243 POOAF 0005 
0244 POOB4 OBOO 

0246 
0247 
0248 
0249 
0250 
0251 0000 C 

0030 C 

0253 
0254 
0255 
0256 
0257 0000 D 

0010 D 
0258 POOB5 OBOO 

* 
* *EQU* 
* 
* 
* 

o (--\ 
,-.-/ 

****CLASS 3 PSEUDOS**** 
EQUATE PSEUDO 
TillS PSEUDO WILL CAUSE A SYMBOLIC VALUE TO BE EQUATED TO ANOTHER 
SYMBOLIC VALUE OR TO A NUMERIC VALUE AND PLACED IN SYMBOL TABLE. 

*OPN* 
EQU 

*ADDRESS* 
START($100), HERE(*) 

* *BSS* BLOCK STORE PSEUDO 
* TillS PSEUDO WILL CAUSE A RESERVATION OF THE NUMBER OF CELLS SPECIFIED 

BY THE VALUE IN THE ADDRESS FIELD. THE CONTENTS OF THESE CELLS WILL BE 
UNCHANGED AT LOAD TIME. 

*LABEL* *OPN* 
NOP 
BSS 
NOP 

*ADDRESS* 
o 
BLOCK8($10) 
o 

*DESCRIPTION* 
INDICATOR TO SHOW CURRENT ADDRESS 

INDICATOR TO SHOW CURRENT ADDRESS 

* *BZS* BLOCK ZERO STORE PSEUDO 
* SAME AS BSS EXCEPT CELLS WILL BE SET TO ZERO AT LOAD TIME. 
*LABEL* *OPN* 

NOP 
*ADDRESS* 
o 
BLOCK9($5) 
o 

*DESCRIPTION* 
INDICATOR TO SHOW CURRENT ADDRESS 

BLOCK2 BZS 

* *COM* 
* 
* 
* 
* 

* *DAT* 
* 
* 
* 

NOP INDICATOR TO SHOW CURRENT ADDRESS 

COMMON STORAGE PSEUDO 
THE NAME OF THE BLOCKS AND THE SIZE ARE DEFINED IN THE ADDRESS FIELD 
OF PSEUDO. THE STORAGE AREA WILL BE ASSIGNED TO THE AREA OF THE 
LOADER AT LOAD TIME. 

*OPN* 
COM 

* ADDRESS* *DESCRIPTION* 
BLOCK3($30), BLOCK4($100) BLOCK4=BLOCK3+$30 

DATA STORAGE PSEUDO 
THE METHOD OF RESERVATION IS THE SAME AS COM EXCEPT THE AREA CAN 
BE PRESET. 

*OPN* 
DAT 

NOP 

* ADDRESS* *DESCRIPTIQN* 
BLOCK5($10), BLOCK6($20*$20) 

o INDICATOR TO SHOW CURRENT ADDRESS 



0260 * METHODS OF PRESETTING DATA IN DATA AREA 
0261 * ALSO SHOWN IS ILLEGAL USE OF COMM AREA 

0263 0000 D ORG BLOCK5 PRESET TO DATA AREA 
0264 DOOOO 0088 P ADC ADLIST, MEMADR, CONLST, HERE, (WORD2A) 

DOOOI 002A P 
D0002 008D P 
D0003 009C P 

********UD******** 
D0004 8000 

0265 D0005 0001 NUM 1,2,3,4,5 
D0006 0002 
D0007 0003 
D0008 0004 
D0009 0005 

0266 00B6 P ORG* 0 RESET TO NORMAL COUNTER 

~ 
0267 POOB6 OBOO NOP 0 INDICA TOR TO SHOW CURRENT ADDRESS 

I *** * ** **RL*** * ** ** I-' 
0 0268 0000 ORG BLOCK3 SET COUNTER TO COMMON AREA 

0269 POOB7 0001 NUM 1,2,3,4, 5 ILLEGAL TO SET DATA IN COMMON 
POOB8 0002 
POOB9 0003 
POOBA 0004 
POOBB 0005 

0271 * ********CLASS 1 PSEUDOS******** 
0272 * NAM NAME PSEUDO 
0273 * THE NUMERIC VALUE IN LABEL FIELD WILL SET PROGRAM COUNTER TO AN 
0274 * ABSOLUTE VALUE. THE ADDRESS FIELD CONTAINS THE PROGRAM NAME. 
0275 * ONLY ONE NAM ALLOWED PER PROGRAM. NAM IS USED TO IDENTIFY INDE-
0276 * PENDENT PROGRAMS. 

0278 * ORG PROGRAM COUNTER CONTROL PSEUDO 
0279 * COUNTER. IF NUMERIC IS USED PROGRAM WILL BE ASSEMBLED ABSOLUTE. 

() .f\ (\ 



T 
t-l 
t-l 

r-) 
l 
• l 

0281 
0282 
0283 
0284 

* 
* 
* 

n (': 

ORG* RETURN PROGRAM COUNTER PSEUDO 
USED TO RETURN COUNTER TO NORMAL VALUE 

*ADDRESS* *DESCRIPTION* 

0285 POOBC OBOO 

*OPN* 
ORG* 
NOP o INDICATOR TO SHOW CURRENT ADDRESS 

0287 

0289 
0290 
0291 
0292 
0293 
0294 
0295 

I 
RELOW 
TAGSM 
REJCTA 
HERE 
BLOCK5 

030 ERRORS 

OOBD P EQU ANYWHR(*) 

* *END* END PSEUDO 
* MUST BE LAST CARD OF EACH PROGRAM, SYMBOL IN ADDRESS FIELD IS THE 
* ADDRESS CONTROL WILL BE TRANSFERRED TO AT LOAD TIME. 
* *OPN* 

* 
* 

END 

OOFF LOWCOR 
0002P BAKREL 
0002DP RELADR 
0087P DELTA 
009CP BLOCK8 
OOOOD BLOCK6 

*ADDRESS* 

START 

0001 TEMPI 
OOOEP TAGLRM 
0030P RELIND 
001F ADLIST 
009DP BLOCK9 
0010D ANYWHR 

OOFE 
0025P 
0034P 
0088P 
OOAFP 
OOBDP 

INDEX2 OOFF ABSRNG 0100 
BACIND 0026P MEMADR 002AP 
TAGCM 0054P SKI PAD 006FP 
CONLST 008DP START 0100 
BLOCK3 OOOOC BLOCK4 0030C 
DPNDNT 0095X 





c-

APPENDIX I 

c-

'''-''-/ 



'-... 



--., 
-

.~ 

APPENDIX I 

COMMUNICATION REGION 

The communication region is the area of core below FF 16. It can be addressed directly by a 
one-word instruction. Contents are defined by the follow i n g table. All locations are pro
tected except as noted. EQU names are noted also. 

",Location Contents HEX Equivalent 

o &1 Reserved for the system 
LPMASK ... 2 0000000000000000 0 . 

3'. 0000000000000001 1 
4 0000000000000011 3 
5. 0000000000000111 7 

___ a~. 
• __ ._.,. ___ .~ .... _____ ._K"--"'~' OOOOOOOOOOOOllll~ F -. _. ,~. --' - .".... ..~ .-, .-... -.~.~~. __ J'-

7 000000000001111Jl 1F 
8 

I-.~ ..... _.~ .... ~ 

000000000011111~ 3F 
9'· 0000000001111111 7F 

A- 0000000011111111 FF 
B 0000000111111111 1FF 
C 0000001111111111 3FF 
l) 0000011111111111 7FF 
E 0000111111111111 FFF 
E 0001111111111111 1FFF 

l(t 0011111111111111 3FFF 
.---l-L-_--------.. ---Jf~~_!!!.!!!lJJlJl~.--- 7FFF 

NZERO .. 12 1111111111111111 FFFF 
. --, .......... _--' ...... _ ..... ~' ___ ~ •. "''''·''_K_'~. _." .. _,...:.,.~ ........ ,_ .. _., .. ,,_.~.~._ ->-.1'".,;:, ... "-............ ~-.--.,~""---- •• ,---,,...~-.~ ... --' .. "~ • 

13 111111111111111~ FFFE 
14 1111111111111100 FFFC 
15 1111111111111000 FFF8 
16 1111111111110000 FFFO 
17 1111111111100000 FFEO 
18 1111111111000000 FFCO 
19 1111111110000000 FF80 
1A 1111111100000000 FFOO 
1B 1111111000000000 FEOO 
1C 1111110000000000 FCOO 
1D 1111100000000000 F800 
1E 1111000000000000 FOOO 
1F 1110000000000000 EOOO 
20 1100000000000000 COOO 
21 1000000000000000 8000 

ZERO .. 22 pOOOOOOOOOOOOOOO 0000 

1-1 



Location Contents HEX Equivalent 

ONE BIT ... 23 0000000000000001 0001 
24 0000000000000010 0002 
2.5 0000000000000100 0004 
26 0000000000001000 0008 
2[1 0000000000010000 0010 
28 0000000000100000 0020 
29 0000000001000000 0040 
2A 0000000010000000 0080 
2B 0000000100000000 0100 
2C 0000001000000000 0200 
2D oooootOOOOOOOOOO 0400 
2E 0000100000000000 0800 
2F 0001000000000000 1000 
30 0010000000000000 2000 
31 0100000000000000 4000 
32 1000000000000000 8000 

ZROBIT ... 33 1111111111111110 FFFE 
34 1111111111111101 FFFD 
35 1111111111111011 FFFB 
36 1111111111110111 FFF7 
37 1111111111101111 FFEF 
38 1111111111011111 FFDF 

r-. 
39 1111111110111111 FFBF 
3A 1111111101111111 FF7F 
3B 1111111011111111 FEFF 
3C 1111110111111111 FDFF 
3D 1111101111111111 FBFF 
3E 1111011111111111 F7FF 
3F 1110111111111111 EFFF 
40 1101111111111111 . DFFF 
41 1011111111111111 BFFF 
42 0111111111111111 7FFF 
43 5 
44 6 
45 9 
46 A16 

47 through B2 Reserved for process 
B3 Logical unit number of scratch unit 
B4 Top of thread of entries in schedule stack 
B5 Address of FNR 
B6 Address of COMPRQ 
B7 Address of mask table 
B8 Address of top of interrupt stack 
B9 Address of request exit 

1-2 



Location 

''"'''~,. BA 
\...../ BB 

BC 
BD 
BE 
BF 
CO 
Cl 
C2 
C3 

C4 

C5 through E3 
E4 
E5 
E6 
E7 
E8 
E9 
EA 
EB 

( ' . EC 
\---...- .. / ED 

EE 
EF 
FO 
Fl 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
FA 
FB 
FC 
FD 
FE 
FF 

Contents HEX Equivalent 

Address of volatile storage release routine - VOLR 
Address of volatile storage assignment routine - VOLA 
Address of absolutizing routine for logical unit number 
Address of S absolutizing routine 
Address of C absolutizing routine 
Address of N absolutizing routine 
Most significant bits of first scratch area sector number 
Least significant bits of first scratch area sector number 
Logical unit number of the library unit 
Most significant bits of sector number of first program library di
rectory block 
Least significant bits of sector number of first pro g ram library 
directory block 
Reserved for FORTRAN (unprotected) 
Used for load and. go (unprotected) 
Address of timer handler 
Length of system library directory 
Index to firs t mas s storage entry in the s y s tern library direc tory 
Countdown register 
Real time clock 
Address. of dispatcher 
Address of sys tern library directory 
Temporary highest unprotected location + 1 
Temporary lowest unprotected location - 1 
Used by job processor for returns from loader, etc. 
Current priority level/- PRLVL 
Address of firs t available volatile storage 
Length of table of presets 
Address of table of presets 
Address of breakpoint program when in core (unprotected) 
Address of entry for system requests (unprotected) 
Highest core location - MAXCOR 
Highes t unprotected location + 1 
Lowes t unprotected location - 1 
Address of internal interrupt processor 
Logical unit number of standard input device 
Logical unit number of standard binary output device 
Logical unit number of standard print output device 
Logical unit number of output comment device 
Logical unit number of input comment device 
Address of the common interrupt handler 
Memory index (unprotected) - I register 

1-3 



~"''''' . I 
" __ .J 



{'" '--:'''. 
'-../. 

'-c , 
.. / 

rr ..... _. 

\'--"'-" 

INDEX 



,,-- .-., 

/' 

........ 



INDEX 

CJ~~· absolute addressing 5-49 comment field 3-5 

absolute addressing mode common block 6-12, 9-6, 11-15 
one-word 5-7 

communications region 11-1 
one-word indirect 5-8 
two-word 5-8, 5-52 completion address 8-8, 8-16 
two-word indirec t 5-9 

conditional assembly 6-15, 6-18 
absolutized program 11-10, 11-12 

configuration 1-10 
absolutizing addresses 11-17 

console 1-11 
absolutizing programs 14-5 

constant addressing mode 5-3, 5-49 
adder 2-6, 5-35 

continuator, driver 13-3 
address expressions 5-5 

control statements 
address field 3-3 job processor 9-2, 9-7 

addressing modes 5-2, 5-13 
breakpoint 9-18 
recovery 9-24 

allocatable core 
conversion 5-45 

11-1, 11-38, 11-43, 11-47 

alphanumeric characters 6-7 
core request 8-55 

C· arithmetic 2-1 
core size 1-1, 1-6 

r-·"· cylinder 12-41 
-"". assembler errors 9-13 

assembler format 3-2 
data block 6-12, 6-14, 9-5 

as sembling a program 9-2 
debugging 9-13 

automatic res tart 1-3 
delta 5-1 

background 8-1, 8-4, 9-1, 11-1 
device assignment 9-7, 9-17 

basic assembler 6-1 
device failure 9-15 

breakpoint package 9-17 
direct access channel (1705) 

1-3, 1-6, 12-36 
buffer data channel 12-66 

disk 7-:12 
card reader 12-23 

dispatcher 11-3, 13-9, 13-13 
characteristics of 1700 1-1 

drivers 13-5, 13-9 
checksum 12-9 

drum 12-48 
checkword, disk 12-38 

entering memory 1-12 
CKASSM program 8-61 

\ ...... ,..... ._.. .J 



entry points 

error bit in Q 

INDEX (CONT) 

6-2 

8-16, 8-17, 8-19 

error checking, peripherals 12-63 
als 0 see error bits on each peripheral 

error section, driver 

executing a program 

execution times 

13-4 

9-7 

shift class 5-32 
storage reference class 5-32 

exits 

EXIT request 

8-7, 11-3, 11-30., 11-38 

8-7 

externals 
6-2, 9-5, 11-14, 11-46, 11-49 

floating point numbers 

flow of program 

foreground 

FREAD request 

function codes 

2-7 

11-11 

8-1, 8-4, 11-1 

8-8 

see specific peripheral 

FWRITE request 

GTFILE request 

hexadecimal numbers 

8-8 

8-47, 14-3 

2-1 

11-3 idle loop 

indexing 

INDIR reques t 

indirect addressing 

initiator, driver 

instruction classes 

3-4, 5-13, 5-15, 5-50. 

8-59, 8-61 

5-53 

13-1 

5-1 

interregister instructions 5-34 

input/output 1-6, 5-44, 7-1 
buffered 7-11, 12-36, 12-48, 12-66 
functj.ons 7 -5, 7 -12 

input/ output 
interrupts 7-10., 13-1 
reply or reject 7-4 
requests 11-35 

priorities 11-35 
rejects 11-37 

status 7-9, 7-16 
unbuffered 7-1 

integer numbers 2-4 

interrupt 
handler, common 

11-3, 13-3, 13-9, 13-12 

line processor 
mode programming 
stack 
system 

13-3, 13-7 
13-1 
11-3 

1-3, 5-43, 7-10., 11-29, 13-1, 13-7 

job processor 9-1 

jump 5-22 

LIBEDT 14-1 

libraries 11-1, 11-12 . 

listing 3-5, 3-7 

load-and-go 9-3 

loader blocks 11-6 

loader errors 9-17 

LOADER request 8-54, 8-55 

loading a program 
9-6, 9-16, 14-2, 14-7 

location field 3-2 

logical operations "5-21, 5-36, 6-16 

logical units 8-19 

low-speed I/O package 7-3 

M 

macro assembler 

5-1 

6-1 

-r--

~ ," 

'--~-t 

-" 

r·· 



~-,~---

.--...../ 

--.,. 

I 

'",,-.,,;' 

INDEX (CONT) 

macros 6-16, 6-19 
sys tem macros 6-19 

magnetic tape 
1731 12-57 
1732 12-66 

manual interrupt 9-1 

mask regis ter 1-3 

masks 6-5 

mass memory program coding 11-42 

mass memory program replacement 

mass storage addressing 

mass storage files 

14-1 

8-15, 8-50 

8-47, 14-5 

mass storage operating system 8-1, 8-4 

memory 1-1 

memory parity 5-29 

MONI 8-2, 8-4 

object program 11-4 

opcode field 3-3 

options for assembly (OPT card) 

overflow 

paper tape punch 

paper tape reader 

parity bit 

physical devic e tables 

power failure 

printer 

2-7, 

7-5, 

6-20, 9-3 

5-24, 

8-11, 

8-11, 

5-28 

12-6 

12-1 

1-2 

8-44 

1-3 

12-29 

priorities 
hardware 

11-3, 11-24, 8-28, 8-30 
13-10 

I/O reques ts 
11-35, 11-38,. 8-9, 8-16 

priorities 
mass memory programs 
schedule reques ts 

11-47 
11-34 

space 

program library 

protect bit 

protect sys tem 

protected core 

pseudo-ops 

READ request 

real numbers 

record formats 

reentrant coding 

registers 

11-38, 11-43 

11-1, 11-12, 14-3 

1-2 

1-2, 5-29, 5-42 

11-1 

6-1 

8-8 

2-7 

8-10 

11-24 

1-7 

register reference instructions 5-40 

rejects 
input/output requests 11-35, 11-37 
schedule reques ts 7-4 

release request 11-40, 11-46 

relative addressing 
5-50, 11-14, 11-17, 11-19 

relative addressing mode 
one-word 5-10, 5-52 
one-word indirect 5-12 
two-word 5-12 
two-word indirect 5-13 

requests 8-1, 11-32 

REQXT 8-2, 8-4 

runanywhere coding 11-12 
buffer addresses 11-17 
externals 11-12 

schedule request 
11-32, 11-44, 8-8, 8-29, 8-36 



INDEX (CONT) 

scheduler stack 11-3 

sector 12-37 

shift ins tructions 5-31, 5-51 

short read 8-17, 8-47 

skip instructions 5-26, 5-51 

source program 11-4 

space request 11-39, 11-46 

STATUS request 8-42 

status responses 8-44 
also see specific peripheral 

storage reference addressing mode 5-18 

storage reference instructions 5-18 

storage reservation 6-10 

subroutine parameters 

swapping core 

sweeping memory 

system initializer 

system library 

5-37, 11-29, 11-32 

11-40 

1-13 

14-3, 14-6 

11-1, 11-12, 11-42 

system recovery package 

tape 

9-17 

see magnetic or paper 

teletypewriter 
1711/1712 
1713 

thread word 8-19, 

timer reques t 

track 

transfer address 

transferring records 

8-28, 

8-40, 

traps for interrupts 1-4, 13-2, 

8-10 
12-11 
12-17 

11-36 

11-34 

12-37 

6-2 

14-7 

13-7 

unprotected core 

utility assembler 

utility system 

utopia 

variable fields 

volatile storage 

word size 

WRITE request 

11-1 .- ..... ~-- -. 

6-1 

8-1, 8-4, 8-5 

14-9 

6-9 

11-26, 11-28, 11-30 

1-1, 1-2 

8-8 

-- '. 

-'10-



CONTROL DATA 
CORPORA TI ON 


