
Owner's
Manual

Model 2810
I

Z-80CPU

California

Computer

Systems

CCS MODEL 2810

Z-80 CPU MODULE

OWNER'S MANUAL

COPYRIGHT 1980

CALIFORNIA COMP·UTER SYSTEMS

250 CARIBBEAN DRIVE

SUNNYVALE, CA 94086

MANUAL NO. 89000-02810

2810 Z-80 CPU MANUAL ADDENDUM

On some 2810 Z-80 CPU cards, the jumper settings for the WAIT
jumper have been mislabeled. The following figure shows the
correct labeling:

~ON
t.;J OFF

WAIT

If your board is labeled incorrectly, you may wish to change the
directions in section 2.1.4 to conform to the board's labeling.

CHAPTER 1

CHAPTER 2

CHAPTER 3

TABLE OF CONTENTS

INTRODUCTION TO THE 2810 Z-80 CPU
1 • 1 THE CPU•..•..••.........•..•..••••• 1-1
1.2 THE ASYNCHRONOUS SERIAL 1/0 PORT 1-2

SETUP AND INSTALLATION
2. 1 BOARD SETUP 2-1

2.2

2.3

2.1.1 Serial Port Enable and Address

2. 1 .2
2. 1 .3
2. 1 .4
2. 1 .5

2. 1 .6
2. 1 .7
2. 1 .8
2. 1 .9
2.1.10
2.1.11
SERIAL
2.2. 1
2.2.2
FRONT
2.3.1
2.3.2

Select Jumpers 2-1
Address Mirror Jumper 2-2
ROM Enable Jumper 2-2
M1 Wait State Select Jumper 2-3
Power-on Jump Enable and Address
Select Jumpers
2/4 MHZ Signal Enable Jumper
PHANTOM Enable Jumper
NMI Enable Jumper
REFRESH Enable Jumper•...•

214 MHz Toggle Swi tch
MREQ jumper•...

1/0 PORT SETUP•..............•
I/O Cable Installation•...
Peripheral Configuration

PANEL SETUP .•................•.....
ALTAIR 8800•......
IMSAI .•.•...••.•.••...•.•..•.•.•••

2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-7

THE MOSS 2.2 MONITOR
3.1 THE MONITOR'S MEMORY SPACE•.•... 3-1
3.2 SOFTWARE ENTRY POINTS 3-2
3.3 THE BASIC 1/0 ROUTINES AND THE IOBYTE 3-2
3.4 BRINGING UP THE MONITOR•........... 3-3
3.5 MONITOR COMMANDS•.................••. 3-3
3.6 ERROR MESSAGES•••............•••. 3-5
3.7 COMMAND DESCRIPTION•.......•....•. 3-6

3 . 7 . 1 Ass i gn (A) ...••.........••.•...... 3 - 6
3.7.2 Display (D)•..•...•...•. 3-8
3.7.3 End Of File (E)••.•.•..•...•. 3-9

i

CHAPTER 4

APPENDIX A

APPENDIX B

3.7.4
3.7.5
3.7.6
3.7.7
3.7.8
3.7.9
3.7.10
3.7.11
3.7.12
3.7.13
3.7.14
3.7.15
3.7.16
3.7.17
3.7.18
3.7.19

Fill (F)
Goto (G)
Hex Number Addition (H)
Input (I)•...•..........•...
Leader (L)
Move (M) ~

Output (0)
Query (Q)
Read (R) .•..••.••••••••.••••..•.•
Substitute (S)
Test (T)•...•.•..•..•••..•..
Verify (V) . e· •••••••••••••••••••••

Write (W) ~ .. .
Examine (X)
Ini tialize Baud Rate (Y)
Zleep (Z)•..

THEORY OF OPERATION

3-9
3-10
3-11
3-11
3-11
3-12
3-12
3-12
3-13
3-13
3-14
3-14
3-15
3-15
3-16
3-17

4.1 THE CPU 4-1
4.1.1 The Reset Logic 4-1
4.1.2 The External Clock Circuitry 4-2
4.1.3 The Address Bus and Address

Mirroring•..•.......... ' 4-2
4.1.4 The Data Out and Data In Busses ... 4-3
4.1.5 The Control Signals 4-3
4.1.6 The Status Bus 4-7
4.1.7 The Wait Circuitry 4-9
4.1.8 The Rom Enable Circuitry 4-9
4.1.9 Power-on Jump Circuitry 4-10

4.2 THE SERIAL 1/0 PORT 4-10
4.2.1 The CPU Interface••.. 4-11
4.2.2 The Peripheral Interface 4-11

THE 2810 Z-80 CPU BUSSES
A.1 THE SYSTEM BUS•..••........... A-3

A.1.1 The S-100 Bus•... A-3
A.1.2 The 2810 System Bus ...•....•...... A-3
A.1.3 The System Bus Pin Assignments A-8

A.2 SERIAL INTERFACE BUS•...•......... A-9
A.2.1 Signal Definitions A-9
A.2.2 RS-232-C Pin Assignments•... A-10

THE 2810 ACCESSIBLE REGISTERS
B.1 THE Z-80 PROGRAM ACCESSIBLE REGISTERS B-3

B.1.1 Accumulator and Flag Registers B-3
B.1.2 Special Purpose Registers B-3
B.1.3 General Purpose Registers B-4

B.2 THE 8250 ADDRESSIBLE REGISTERS B-5
B.2.1 Peripheral Control Register B-6
B. 2.2 Line Control Register B-7

ii

APPENDIX C

APPENDIX D

APPENDIX E

B.2.3
B.2.4
B.2.5

Peripheral Status Register B-7
Line Status Register B-8
Divisor Latch Registers B-8

FIRMWARE LISTING

PARTS LIST, BOARD LAYOUT, SCHEMATIC', SPECIFICATIONS
Parts List•..... D-3
Board Layout•................. D-5
Schematic•........•..........•. ' ..•.. D-7
Specifications•......... D-9

LIMITED WARRANTY

iii

HOW TO USE THIS MANUAL

No manual can be everything to everybody. But we have tried to
design this manual so that it will be a useful reference tool for
most of its users. The chapters up to "Theory of Operation"
contain the information you need to configure the boa~d to your
system and to operate it with the provided firmware. "Theory of
Operation" and the appendices are designed for those of you who
want more information about the board, whether from curiosity or
a desire to further customize it. Programming information on the
Z-80 is not included in this manual; the information is simply
too extensive. You will need to acquire a z-80 programming
manual.

v

CHAPTER 1

INTRODUCTION TO THE 2810 Z-80 CPU

California Computer Systems' 2810 Z-80 CPU provides you with
a CPU, a master serial 1/0 port, and monitor firmware. As a
result, it is the ideal foundation for an S-100 system; with the
addition of RAM memory and a console device, you can have a
complete system that allows considerable add-on flexibility. The
2810 Z-80 CPU is also an excellent choice for upgrading a present
system. It has been carefully designed to be compatible with
the major S-100 systems on the market.

The 2810 CPU and CCS's line of S-100 peripheral boards are
designed to work uniquely well with each other. For example, the
2422 Multimode Floppy Disk Controller board contains ROM-resident
firmware which can overlay the CPU firmware with its own,
changing the monitor firmware from a paper tape-oriented firmware
to a floppy-disk oriented firmware. No reprogramming of ROMs is
necessary; after a minimum amount of setup, the disk controller
board can be plugged in and operated with the 2810 cpu.

1.1 THE CPU

The 2810 z-80 CPU is an S-100 bus compatible card designed
for the z-80 microprocessor. As such it combines the best of two
worlds: the speed and large instruction set of the z-80
processor with the versatility of the S-100 bus. The Z-80, a
third generation processor, represents a real advance over the
earlier BOBO. Its large instruction set (BO more instructions
than the BOBO) and internal register configuration simplify the
the programmer's task and reduce program size. The z-Bo is also
designed to run at 4 MHz as well as 2 MHz. The 2B10 CPU
interfaces this powerful processor with the popular,
BOBO-oriented S-100 bus. This bus is used by numerous

1-2 INTRODUCTION

manufacturers, allowing the user of an S-100 system a wide choice
of products. To ensure compatibility with these products, the
2B10 simulates as closely as possible the BOBO signals used on
the S-100 bus.

Since this board will be used in a wide variety of systems
and for a wide variety of applications, a number of optional
features have been incorporated. These include a power-on jump
for systems without front panels, address mirroring circuitry for
BOBO system compatibility, and an M1 Wait State for slow memory.
Moreover, bus signals for which possible bus conflicts exist are
made jumper enabled.

Three diagnostic LEDs have been provided on the 2B10. One
indicates that the ROM is enabled and selected. The second
indicates that the CPU is executing a software Halt instruction
and is waiting for an interrupt. The third LED indicates that
CPU has been programmed to accept interrupts. Since the CPU will
remain halted while executing a Halt instruction until the system
is reset or the CPU receives an interrupt, the last two LEDi can
be used in combination to detect the software problem of the CPU
receiving a Halt instruction before it receives an Interrupt
Enable instruction.

1.2 THE ASYNCHRONOUS SERIAL I/O PORT

The 2B10 z-BO CPU contains an on-board, asynchronous serial
I/O port which allows you to interface to your CPU any serial I/O
device which conforms to a major subset of the RS-232-C standards
for asynchronous serial communications. You have several options
in using this port. If you are using the monitor firmware as
is, you are provided with driver routines for the port. These
routines intend that the port be used to interface the CPU to
some type of console device, preferably a CRT. For flexibility,
the baud rate can be set through console control .. Or you can, of
course, use your own driver software for the port. Appendix B
contains information on programming the port's Asynchronous
Communications Element. The number of stop bits, the baud rate,
the type of parity, and word length are all software-selectable
and the handshake lines are under software control. The port's
address is jumper-selectable. Finally, you can disable the
serial port with an on-board jumper.

CHAPTER 2

SETUP AND INSTALLATION

The first section of this chapter deals with configuring the
2810 to meet your system's requirements. Those of you who do not
plan to use the serial port and do not have a front panel can
install the board in your system after having configured the
board. If you do plan to use the serial port or a front panel,
section 4.2 gives additional setup and installation procedures
concerning the port, while section 4.3 gives information on
installing this board in a front panel system.

2.1 BOARD SETUP

The 2810 CPU has a number of features which are enabled or
configured through on-board plug jumpers'. Each of these features
is discussed below, roughly in the order of the jumpers on the
board, starting with the upper left corner of the board and
proceeding clockwise. In addition to the plug jumpers, there is
a switch to be set and an optional jumper that can be soldered
in. If you are having difficulty locating or identifying any of
the jumpers or the switch, the board layout in Appendix C should
help.

2.1.1 Serial Port Enable and Address Select Jumpers

The SER EN jumper allows you to enable or disable the
on-board serial port. If you enable the port, the SERIAL ADDRESS
SELECT jumpers allow you to select the base address for the
interface's registers. The address lines AO-A2 are needed to
select one register out of the registers used by the serial

BOARD SETUP 2-3

2.1.4 M1 Wait State Select Jumper

By setting the WAIT jumper to ON, you will force the CPU
into one Wait state during every M1 Cop code fetch) cycle of an
instruction cycle. In a Z-80, the memory access time
requirements are strictest during an M1 cycle; the Memory Read
and Write cycles allow an additional half a cycle to complete
memory access. Thus by enabling the M1 Wait circuitry, you can
use memories with access times half a clock cycle slower. In
practice, this means that when the CPU is operating at 4 MHz,
enabling the M1 Wait state circuitry slows the memory access
requirements by approximately 110 nsecs; at 2 MHz it slows the
requirements by approximately 220 nsecs. Theoretically, memories
with access times slower than 400ns need a Wait state when the
CPU is operating at 4 MHz. However, practice is often different
than theory; you should experiment with the requirements of your
system.

Most of CCS's memory boards do not need Wait states. All
have provisions, however, for on-board Wait state generation,
allowing Wait states to be inserted on an individual board basis.
Thus you can slow down the processor for slow memory and allow it
to run at full speed with fast. On-board Wait state generation
can also be used fo~ ve~y slow memory: adding a Wait state by
this method slows access times by approximately 250 nsecs at 4
MHz and 500 nsecs at 2 MHz. The disadvantage of on-board Wait
state generation is that it adds a Wait state to every memory
cycle in which the memory board is selected. You will have to
experiment to discover which method, or combination of methods,
is most efficient for your system. Note that the M1 Wait
circuitry will also add a Wait state to Interrupt Acknowledge
cycles, since the z-80's M1 control signal is active at that
time. The WAIT jumper set to ON enables the M1 Wait circuitry.

2.1.5 Power-on Jump Enable and Address Select Jumpers

If enabled by the JMP EN jumper, the power-on jump circuitry
forces the CPU to jump to the address set by the JMP ADDR SEL
jumpers when your system is turned on or reset. If the circuitry
is disabled, the processor looks for its first instruction at
memory location OOOOh on power-on or reset. Should you enable
the power-on jump circuitry, set the JMP ADDR SEL jumpers,
JA15-JAO, to the binary value of the jump address you wish.
Please note that JA15 is the high order bit; you should enter the
binary address from the bottom up.

If you plan to use the ROM-resident firmware, you must force

2-4 BOARD SETUP

a jump to the beginning address of the on-board ROM, FOOOh, on
power-on or reset. To do so, set JA15-JA12 to 1, JA11-JAO to 0,
and JMP EN to ON.

2.1.6 2/4 MHZ Signal Enable Jumper

In the early BOBO systems, pin 9B of the bus was assigned to
the .status signal sSTACK, indicating that a stack read or write
was in progress. Some manufacturers of S-100 systems, noting that
sSTACK is little used, have converted this line to a 2 MHz/4 MHz
operation indicator, where a high indicates the processor is
operating at 4 MHz. We have done so also. This is a
convenient feature for those of you with front panels; the sSTACK
LED will tell you at a glance at which frequency the CPU is
operating. It also allows peripheral devices which can monitor
this line to request Wait states only when the processor is
operating at 4 MHz. The newly proposed standards for theS-100
bus, however, suggest using pin 9B for an error signal input,
ERROR*. To avoid possible bus conflicts, we have made the 2/4
MHZ line jumper-enabled/disabled.

2.1.7 PHANTOM Enable Jumper

The PHANTOM line is used to overlay memory at a common
address. On the the 2B10 Z-BO CPU, the PHANTOM line allows an
external device generating the PHANTOM signal to overlay the
ROM's memory space on a byte-to-byte basis. Such a device might
be one of CCS's I/O boards. The ROMs on these boards can
generate the PHANTOM signal, allowing portions of the CPU's
firmware to be overlaid with the I/O boards' firmware. Thus
driver firware for the I/O boards can be patched onto the CPU's
firmware, without the CPU's ROM being reprogrammed.

Disable the signal if you do not plan to use it.

2.1.B NMI Enable Jumper

Unlike the BOBO processor, the Z-BO processor allows two
types of interrupts: a maskable interrupt (INT) and a nonmaskable
interrupt (NMI). A maskable interrupt request will be accepted
by the CPU depending on the state of the processor-internal
Interrupt Enable flip-flop, which can be set· or reset through

BOARD SETUP 2-5

software commands. A nonmaskable interrupt request, on the other
hand, forces the CPU to do a restart at address 0066h, regardless
of the state of the Interrupt Enable flip-flop. On the 2810
board, the nonmaskable interrupt control input appears on pin 12
of the bus, as required by the proposed S-100 bus standards.
However, since the 8080 processor "does not provide for
nonmaskable interrupts, some systems may use pin 12 for another
signal. To avoid bus conflicts, we have made the NMI line
jumper-enabled/disabled.

2.1.9 REFRESH Enable Jumper

The Z-80, unlike the 8080, is designed to work with dynamic
as well as static RAM. At the end of every M1 (op code fetch)
cycle, while the CPU is busy decoding the current instruction,
the Z-80's refresh register puts out a refresh address on the
address lines and the control signal REFRESH goes active. If
you have in your system a dynamic RAM board, such as CCS's 65K
dynamic RAM board, that can use the REFRESH signal for refresh
control, you should enable this line. Consult your memory
manual. Some 8080 systems may have the REFRESH line, pin 66,
assigned to another signal. If this is true of yours, disable
this line.

2.1.10 2/4 MHz Toggle Switch

This toggle switch, located on the top right half of the
board, allows you to select the operating frequency of the Z-80.
The switch positions are marked on the board. The position of
this switch should be set before you turn on your system or reset
it. It should not be changed during system operation.

2.1.11 MREQ jumper

Some memory boards require that the MREQ (Memory Request)
control signal from the Z-80 be available on the bus at pin 65.
If you have such a memory board, you can run a jumper wire from
the hex pad marked 65 near the REFRESH jumper at the bottom of
the board to the hex pad marked 65 near the WAIT jumper at the
top of the board. Consult your memory board manuals to determine
if your boards need this signal.

2-6 SERIAL I/O PORT SETUP

2.2 SERIAL I/O PORT SETUP

The following instructions apply only if you are planning to
use the serial port.

2.2.1 I/O Cable Installation

CC8 does not supply the cable assembly that plugs into J2,
the serial port's connector. You will have to obtain one.
The mating connector for J2 is a standar~ flat ribbon cable
connector; the other end of the cable requires a OB-258
connector. If you assemble the cable yourself, be careful not to
twist it; the pin 1 strip on the ribbon cable (usually the
colored outside strip) should match pin 1 on both connectors.
Plug the cable assembly into J2, matching pin Is. (Pin 1 for J2
is labeled on the board). Push the cable connector down firmly
until you can no longer see the metal pins. The OB-258 connector
should be fastened to one of the slots in the back of your
mainframe. Plug the OB-25P connector on your peripheral's signal
cable into it.

2.2.2 Peripheral Configuration

If you plan to use the I/O driver and initialization
firmware provided, your peripheral should be set to expect a
serial data format of 8 data bits, no parity bit, a 0 stick bit
and one stop bit per word. 8et your peripheral for the baud rate
at which you wish to operate; the firmware will initialize the
port to any standard baud rate. Consult your peripheral manual
for setup instructions.

If you are not using the initialization firmware provided,
you will have to configure your peripheral to match your
software.

FRONT PANEL SETUP 2-7

2.3 FRONT PANEL SETUP

If you will be using the 2810 in a front panel system, you
must connect the data cable from the front panel to the front
panel data socket, J3. S~cific instructions for the Altair and
Imsai microcomputers follow.

2.3.1 ALTAIR 8800

You must replace the molex connector on the front panel
cable with a DIP plug that you supply yourself. Be careful when
soldering the connections: Unlike the data lines on J3, the data
lines on the Altair molex connector are not arranged
sequentially.

2.3.2 IMSAI

Plug the data cable connector directly into J3, matching pin
1's. Pin 1 is labeled on the board for J3. Pin 1 on the cable
connector is identified by a mark or tick on the underside; it
does not necessarily correspond with any numbering on top.

CHAPTER 3

THE MOSS 2.2 MONITOR

CCS's MOSS 2.2 Monitor contains powerful routines for
program debugging and for controlling from a console keyboard a
system using the 2810 Z-80 cpu. It allows you to display a block
of memory in hex and ASCII, to move, change, and verify memory,
and to transfer control to another program in memory with
breakpoints set. You can also output or-input a data byte to or
from any 1/0 port and command the monitor to read, write, and
format paper tape.

Note that for the MOSS Monitor to work exactly as described
below, the on-board ROM, serial 1/0 port, and power-on jump
circuitry must be enabled, with the serial port's base address
set to 20h and the jump address set to FOOOh.

3.1 THE MONITOR'S MEMORY SPACE

The monitor is resident in the on-board ROM, the starting
address of which is FOOOh. In addition, it needs some RAM space
for the system stack and temporary storage area. The monitor
scans the available memory until it finds the highest active RAM
address and then counts down 56 bytes to store the breakpoints,
registers, and register restore routine. It locates the system
stack below that: you should reserve at least 88 bytes of high
RAM memory for the monitor's use. The monitor also requires some
low RAM as well: you should reserve locations OOOOh-0003h and,
if you use breakpoints, locations 0008h-OOOAh.

3-2 THE MONITOR

3.2 SOFTWARE ENTRY POINTS

A cold-start entry at FOOOh sets up the system stack and
work area, initializes the serial port and register storage area,
selects the on-board serial port as the console interface, and
loads memory locations OOOOh-0003h with a jump instruction to the
warm-start routine. It also loads the following locations,
called by the Z-80 restart commands, with jump vectors to a
restart error message: 0008h-OOOAh, 0010h-0012h, 0018h-001Ah,
0020h-0022h, 0028h-002Ah, 0030h-0032h, and 0038h-003Ah. These
locations can be overwritten with restart routines.

A warm-start"entry at F10Fh resets the stack pointer and the
warm start jump vector located at 0000-0002h. All other
conditions remain unaffected.

The breakpoint entry at F024 saves all register contents;
all other conditions remain unaffected.

3.3 THE BASIC 1/0 ROUTINES AND THE IOBYTE

You can call the monitor's basic 1/0 subroutines from your
own programs. The jump vectors are as follows:

Routine name

CONIN
CONOUT
CONST
READER
PUNCH
LIST

Address

F003
FOOg
F012
F006
FOOC
FOOF

Description

Console input
Console output
Console status
Paper tape reader input
Paper tape punch output
List device output

These routines perform the IOBYTE handling to support the
IOBYTE function, as developed in the Intel MDS system and as used
by CP/M.· The IOBYTE function allows you to assign a physical
device to one or more of four logical peripheral device
categories: Console, Punch, Reader, and List. The current
physical to logical device assignment is stored in the IOBYTE in
location 0003h. When an 1/0 routine, such as CONIN, is called,
it examines the contents of IOBYTE and jumps to the peripheral
driver routine indicated by the physical device assignment. The
contents of the IOBYTE, and hence the physical device
assignments, can be changed through the Assign command.

The monitor firmware contains driver routines to support

THE MONITOR 3-3

only the teletype physical ass~gnment in all four logical
categories. (Please note that the physical assignment names do
not have to accurately describe the actual peripheral used. The
teletype assignment, for example, could be used to implement
console operations with a CRT.) All other physical assignments
cause a jump to the I/O Assignment Error message when. one of the
above routines is called. For more information, see the Assign
command, 3.7.1.

With the exception of CONIN, the above basic I/O routines
are CP/M compatible when used with the default teletype
assignment. They conform to the CP/M calling conventions,
passing the data in the C register for any output and in' the A
register for any input. For a CP/M compatible console input
routine, use entry point F68Fh. This routine, CONI, strips the
ASCII parity bit as CP/M convention requires.

3.4 BRINGING UP THE MONITOR

To enter the monitor, turn your system on or reset it. This
results automatically in a cold-start entry into the monitor.
Set your terminal to the bauct' rate at which you wish to operate.
You have a choice of any baud rate between 2 and 56K baud. Hit
the carriage return key until the monitor responds with

MOSS VERS 2.2

The maximum number of carriage returns needed before the monitor
responds is three. When the monitor prompt appears, you may
start entering commands.

3.5 MONITOR COMMANDS

The MOSS Monitor commands must conform to a specific format.
The general form is

-CE1 E2 E3

where C is the command character and E1-E3 are th~ address a-nd
data entries, if any. The essential parts of a command are as
follows:

3-4

The Command
one-character
response to
is allowed
character.

THE MONITOR

Character: The monitor is controlled by
commands entered from the keyboard in
the monitor prompt, a dash (-). No space

between the prompt and the command

Address and data entries: The general form for an
address is a four digit hex number; for data, a two
digit hex number. Leading zeros need not be entered;
the monitor will supply them. No space is allowed
between the command character and the first address or
data entry. Subsequent entries must be separated by a
delimiter. The monitor looks at only the last four
address characters or last two data characters before a
delimiter. So if you make a mistake while typing an
entry, keep typing until the last two or four
characters are correct.

Delimiters: The MOSS Monitor recognizes three deli
miters: a carriage return (CR), a space, or a co~ma.
A carriage return indicates to the monitor that the
current command is complete and should be executed.
Either a space or a comma can mark the end of an
address or data entry. In our command examples we will
generally use a space as a delimiter, unless a comma
makes the command form clearer. Please note, however,
that you can use the space and the comma
interchangeably. In certain commands a space or a
comma can also be interchanged with a carriage return.
These are commands for which the Monitor expects a
fixed number of entries (and hence delimiter~)
following the command character.

Sample Command

The following commands to display the block of memory OFFBh
to 100Ah are all equivalent. Although the spacing is not form
free, some variety in the command form is allowed. Note that the
display command requires two and only two address parameters, so
that the last delimiter can be a comma or a space as well as a
carriage return.

-DOFFB 100A[CR]
-DFFB,100A,
-DFFB,100A[CR]
-DFFB 100A[space]
-DOEFOFFB,100A[space]

THE MONITOR 3-5

3.6 ERROR MESSAGES

The MOSS monitor detects three types of error conditions and
responds with a different error message for each. They are as
follows:

Command Error: Should you make an invalid entry, the
command will be aborted, a warm boot of the system will
occur, and the error message

????

will be printed, followed by the monitor prompt.

1/0 Assignment Error: As described in section 3.3,
the Assign command allows you to assign a physical
device to a logical peripheral category. When an 1/0
routine involving the logical category is called, the
CPU will jump to the driver routine indicated by the
physical assignment. If there is no driver routine, it
will jump instead to the 1/0 Assignment Error routine.
This routine sets the IOBYTE to its default value,
outputs the error message

1/0 ERR

and does a warm boot of the system. If you are using
the monitor's basic 1/0 routines with CPIM, an 110
assignment error will cause the error message to be
printed and control returned to CP/M. See the Assign
command for more detail.

Restart Error: During cold-start initialization,
jump-vectors to a restart error message are loaded in
the memory locations called by the 2-80 restart
instructions. This is done to prevent a program jump
to a restart address without code. A restart error
causes a warm boot of the system and the following
message to be printed:

RST ERR

The message is followed by the monitor prompt. If you
are running CPIM with the monitor enabled, a restart
error will cause the error message to be printed and
control returned to CP/M.

3-6 THE MONITOR

3.7 COMMAND DESCRIPTION

3.7.1 Assign (A)

The Assign command allows you to change the
physical-to-logical device assignments and thus choose the
peripherals you wish to work with while in the monitor. The
IOBYTE function as developed by Intel for the MDS systems divides
peripherals into four logical categories: Console, typically a
teletype or a CRT; Reader, a paper tape reading device; Punch, a
paper tape punching device; and List, a hard-copy printing
device. Each of the four logical categories may have one of four
physical devices assigned to them. The possible
physical-to-logical assignments are as follows:

(C) Console Logical Device
(T) Teletype
(C) CRT
(B) Batch Mode (input from logical reader device;

output to logical ~ist device)
(1) User Console #1

(R) Reader Logical Device
(T) Teletype
(P) Paper tape reade~
(1) User reader #1
(2) User reader #2 .

(P) Punch Logical Device
(T) Teletype
(P) High speed paper tape punch
(1) User punch #1
(2) User punch #2

(L) List Logical Device
(T) Teletype
(L) High speed line printer (CRT in CP/M)
(1) User list #1 (High speed line printer in CP/M)
(2) User list"#2 (User List #1 in CP/M)

To assign a peripheral to a logical device category, enter

-AX

where X equals either C,R,P, or L, the log~cal device codes. If
you enter a character other than these four, the computer }Nill
return with ???? and another prompt. If you enter a valid

THE MONITOR 3-7

logical device code, the computer will return immediately with a
prompt for the physical device code. Enter

-y

where Y equals the physical device code. Should you enter a
delimiter only or a nonvalid device code, the device assignment
will remain unchanged.

EXAMPLE:

Entering

-AR-P

assigns a high speed paper tape reader to the Reader logical
device category.

Assigning a physical device to a logical category alters the
contents of the IOBYTE, stored in location 0003h. Every time
an input or output routine involving a specific logical device is
performed, the I/O routine examines the contents of the IOBYTE
to determine the physical device assignment and jumps to the
driver routine called by the physical assignment. If there is no
driver routine, the I/O routine jumps to I/O assignment error
routine, resulting in the I/O Assignment Error message being
output and physical assignments being set to their default value,
the teletype.

For all the basic 1/0 routines, the teletype assignment
forces a jump to the on-board serial port drivers. The serial
port is designed to be the console interface; it is best used for
a CRT, although any console device can be used. Please note the
port drivers cannot drive the paper tape reader or punch of a
teletype. If you have not altered the firmware in any way,
calling the Reader or Punch I/O routines results in the CPU
reading from or writing to the console device when the teletype
assignment is used.

None of the other physical device assignments are supported
by driver routines. You can patch driver routines for different
devices onto the monitor firmware by two techniques. One is to
have the routines residing in a ROM device capable of generating
the PHANTOM signal (section 2.1.8), so that the jump instruction
to the I/O error message for a particular physical device
assignment is overlaid with a jump instruction to the driver
routine. CCS's S-100 peripheral boards can work in this manner;
each generates the PHANTOM signal when its on-board ROM is
selected. If you choose to use this method, you have the choice
of programming the ROM yourself or using a CCS preprogrammed ROM.

3-8 THE MONITOR

The second technique is to change the jump instruction in
the ROM itself. For example, if you wished to connect a line
printer to your system, you would change the jump instructions at
locations F61D and F676 so that they contained the starting
addresses of your driver routines and not the address of the 1/0
error message. This, of course, means erasing and reprogramming
the ROM.

3.7.2 Display (D)

This command allows you to display the contents of a
specified block of memory. The general form for the command is

-DA1 A2

where A1 and A2 are the first and last bytes, respectively, of
the memory block.

The resulting display divides the memory into 16 bytes per
line. Each line starts with the address of the first byte in
the line, followed by the data in hex and their ASCII
equivalents. The contents of locations having the same last hex
digit in their address are aligned vertically. Periods represent
data for which there are no ASCII equivalents. As the output
fills the screen, it will automatically scroll up. To freeze the
display, type a control-So To start it again, hit any key on the
keyboard. Should you wish· to escape from the display mode,
hitting any key on the keyboard will abort the command and cause
the monitor prompt to appear.

EXAMPLE

Entering

DF450 F4BF

results in the following display:

F453
F460
F470
F480
F490
F4AO
F4BO
F4CO

E1 08 09 01 C1 F1 E1 F9 00 21 00 00 C3
00 00 AF 32 03 00 21 6C F4 C3 B5 F6 49 2F 4F 20
45 52 02 CD E8 F6 BO 47 82 57 78 C9 DE 00 CO 7C
F6 DE OA C3 7C F6 CD 56 F6 E6 7F C9 3F 3F 3F BF
40 4F 53 53 20 56 45 52 53 20 32 2E 32 00 8A 3E
OF 03 24 11 40 00 62 6A DB 26 A3 28 FB DB 26 23
A3A3 C2 AD F4 E5 29 5C 19 19 E5 29 29 DB 20 2B
7D B4 C2 BO F4 E1 3E 83 03

a. YQAqay. ! .• C
• • /2 • • ! 1 tC5vIIO
ERRMhvOG.WxI •• MI
v •• ClvMVvf.I????
MOSS VERS 2.2 ••)
• S$.@. bj [&11 (f [&11
##B-te)\ •• eJJ[+
}4B=ta).S

THE MONITOR 3-9

3.7.3 End Of File (E)

The E command informs the computer to type punch an Intel
format End Of File record at the end of a just-punched paper tape
file. The Intel EOF format contains both the entry address for
the file and six inches null leader. The E command allows you to
specify the entry address and change the length of the leader, if
you wish. The general form for the command is

-EA L

where A is the entry address and L is the length of null leader
in tenths of inches expressed in hex. For example, for a 'four
inch leader, enter hex 28 (4"=40 tenths=28h). The default value
for the length is six inches; for the address, OOOOh. An entry
address of OOOOh will return control to the monitor after the
paper tape has been read.

The Monitor expects two parameters for the E command. A
carriage return after the E or first parameter will result in the
error message ???? If you wish to set the length and entry
address to their default values, simply enter a space or a comma
twice.

If you have assigned to the logical punch category a
physical punch device for which there is no driver code, using
the E command will result in the error message

1/0 ERR

and the return of the monitor prompt. The exception for this is
the teletype default assignment. The firmware is designed to
output the EOF record to the console device.

3.7.4 Fill (F)

The fill command allows you to fill a block of memory with a
specified constant. The general command form is

where A1 and A2 are the addresses of the first and last bytes of
the memory block and C is the constant in hexidecimal.

3-10 THE MONITOR

EXAMPLE

Entering

-F10AA 10BB

fills the memory block 10AAh to 10BBh with the constant 1.

3.7.5 Goto (G)

The G command allows you to transfer control from the
monitor to another program. It allows you to specify the entry
address and to set up to two breakpoints for returning control to
the monitor. When the monitor encounters a breakpoint, it saves
the contents of the z-80 registers in the system's temporary
storage and outputs to the console device an asterisk followed by
the next address in the program. It then returns the prompt.
You can use the Examine Register command (X) at this time to
examine or change the saved registers.

The general form for the G command is

-GA B1 B2

where A is the entry address, and B1 and B2 are the addresses of
the breakpoints. There are many allowed variations on this
command, however, which makes it a powerful and convenient
command. You have the option of establishing 0, 1, or 2
breakpoints: simply enter a [CR] when you have established the
number of breakpoints you wish. If you enter the maximum, two, a
delimiter (comma or space) is all that is necessary to begin
command execution.

You may also begin execution of the program at the PC
address saved in the register storage area. Thus you can return
control to the address where the program stopped when it
encountered a breakpoint, or to the address you have loaded in
the saved PC register through the Examine Register command. Note
that since all breakpoints are cleared when any breakpoint is
encountered, you must specify any desired breakpoints in the
command if you use it this way. The form of the command for
transferring program control to the address in the PC register is

-G[CR] (no breakpoints)
or

-G,B1,B2 (breakpoints set)

There are two more points regarding breakpoints that ought

THE MONITOR 3-11

to be mentioned. Because breakpoints are generated by the
monitor inserting a RST 8 instruction (CF) into the program at
the breakpoint location, breakpoints can be set only in programs
residing in RAM. Further, a breakpoint must be inserted at an
op code location. If it is inserted in an operand or data field,
it will not be executed.

3.7.6 Hex Number Addition (H)

This command provides an easy way to add or subtract hex
addresses. Entering

-HA1 A2

where A1 and A2 are the hex addresses results in the output

AS AD

where AS=A1+A2 and AD=A1-A2. Note that if the sum is greater
than FFFF, the carried one is lost. If A2 is greater than A1, A2
will be subtracted from A1 + 10000h.

3.7.7 Input (I)

This general purpose input command allows you to read a data
byte from any input port. To do so, enter

-IA

where A is the port address in hex. The monitor will respond by
printing the data byte in binary.

3.7.8 Leader (L)

The L command allows you to output hex-number nulls for a
paper tape leader. As with the E command, you may specify len~th
of the leader in tenths of inches in hex, the default value being
six inches. The form for the L command is

-LH

where H is the length in tenths of inches expressed in hex.

3-12 THE MONITOR

If the current physical-to-logical assignment for the Punch
category is the teletype, the null leader will be output to the
console device unless punch driver routines have been provided
for the teletype assignment.

3.7.9 Move (M)

The M command moves a block of data to a specified address.
The general form for the command is

-MA1 A2 AD

where A1 and A2 are the addresses of the first and last bytes of
the memory block and AD is the destination address.

When using this command, be careful not to locate the
destination address within the source block. Since the block is
moved byte by byte, starting with the byte with the lowest
address, the data being transferred will write over the original
contents of the section of the source block that follows the
destination address.

3.7.10 Output (0)

This general purpose output command allows you to output a
data byte to any output port. Enter

-OA D

where A is the port address and D is the data in hex.

If you have CCS memory boards in your system, you can use
this command to select a memory bank by outputting a Bank Select
Byte to the Bank Select Port. (See your memory board manual.)

3.7.11 Query (Q)

The Q command
device assignments.

displays the current
Entering the command

-Q[CR]

physical-to-logical

THE MONITOR 3-13

results in the current assignments being displayed in the format

C-X R-X P-X L-X

where X equals the physical device code.

3.7.12 Read (R)

The read command allows you to read from an Intel format
paper tape in the currently assigned paper tape reader and to add
a bias to the starting address in the paper tape header. The
general form for the read command is

-RB

where B is the address bias in hex.

The monitor checks for errors while reading the paper tape.
If it encounters one, the program is aborted. The read routine
also provides error checking of the program loaded in memory; if
an error is found, the address of the byte in error is displayed,
along with an 8-bit binary representation of the bit error, in
which a 1 indicates a bit in error. For example, the display

F038 00010000

would indicate that bit 4 of the byte in memory location F038 is
in error.

After the paper tape has been read, control will be returned
to the monitor if the entry address in the EOF record is zero.
If it is a non-zero number, control is transferred to that
address.

If the current physical device assigned to the Reader
logical category is the teletype, the monitor will respond to the
Read commmand by reading a a program in binary typed by hand from
the console unless you provide paper tape reader rountines for
the teletype assignment.

3.7.13 Substitute (S)

The substitute command allows you to examine the contents of
a specific memory location and alter them if you desire. Begin
the S command by entering

3-14 THE MONITOR

-SA,

where A is the address of the memory location you wish to
examine. The computer will immediately respond with the data
contents followed by a prompt:

-SA,D-

If you wish to leave the data unaltered, simply enter a
delimiter. If the delimiter is a space or a comma, the computer
will respond with the contents of the next consecutive memory
location and another prompt. If it is a carriage return, the
command is terminated and control is returned to the monitor.
Should you wish to alter the data, enter the desired data
followed by a delimiter: a carriage return if you want to
terminate the command or a space or a comma if you wish to review
the next memory location. You can continue examining and
altering memory byte by byte in this way as long as you wish. To
make it easier for you to keep track of where you are, on every
8-byte boundary (that is, an address ending with either 0 or 8,
the monitor will do a line feed and print the address along with
the data.

3.7.14 Test (T)

hard
RAM.

The test command provides a quick way to test RAM memory for
data bit failures without destroying the contents of the
To test a block of memory for bit failures, enter

-TA1 A2

where A1 and A2 are the addresses of the first and last bytes in
the block, respectively. The monitor will respond by printing
the address of any byte in error, followed by an 8-bit
representation of the bits in error. (See the Read command for
further details). If you wish to freeze the display type a
Control-So To start it again, hit any key. Hitting any key
while the command is executing returns you to the monitor.

3.7.15 Verify (V)

You can use the V command to compare two blocks of memory
and verify that they are the same. Type

-VA1 A2 AD

THE MONITOR 3-15

where A1 and A2 are the addresses of the first and last byte in
the source block and AD is the starting address of the block to
be verified. Should the two blocks match, the monitor will return
with the prompt. Should two correspondng bytes differ, the
monitor will display the source address and its contents in hex,
followed by a dash and the contents of the correRponding address
of the block being verified. During the execution of the
command, the display can be frozen or control returned to the
monitor as described in previous section.

3.7.16 Write (W)

Use the W command to punch a memory block on paper tape.
Enter

-WA1 A2 R

the first and last byte of
The Intel paper tape
16 data bytes. You can
from 1 to 255. Enter
value is 16 data bytes.
with this command.

where A1 and A2 are the addresses of
the block and R is the record length.
format specifies a record length of
change that length to any number of bytes
the length you want in hex. The default
Note the monitor expects three delimiters

If you want a null leader to begin your file, you must use
the L command before the W command. If you want to end your file
with an EOF record or null leader, use the E or L command after
the file has been punched.

Again, the monitor w~ll output the memory block to the
console device if the logical punch category is at its default
value and no driver routine has been provided for the teletype
punch assignment.

3.7.17 Examine (X)

The X command is a very useful command when
conjunction with the G command's breakpoint facilities.

-X[CR, space or comma]

used in
Entering

causes the Z-80 registers currently stored in the system stack
area to be displayed for examination. These registers are the
main and alternate accumulator and general purpose registers, the

3-16 THE MONITOR

Interrupt register (I), the Program Counter register (P), the
Stack Pointer register (S), the two Index Registers (X and Y) and
the Refresh register (R). In addition, the contents of the
memory locations addressed by the main and alternate Hand L
registers are also displayed (M and M'). The re~isters are
displayed in the following four-row format

A-xx B-xx C-xx D-xx E-xx F-xx H-xx L-xx
M-xx P-xxxx S-xxxx I-xx
A'-xx B'-xx C'-xx D'-xx E'-xx F'-xx H'-xx L'-xx
M'-xx X-xxxx Y-xxxx R-xx

where xx equals a two digit hex byte and xxxx equals a four digit
hex address.

To examine or alter the contents of one register, enter

where r is a
(Note that
must preface
monitor will
prompt:

-Xr[CR, space or comma]
or

-X'r[CR, space or comma]

main register and 'r is an alternate register.
if you wish to examine the X, Y, or R registers, you
register character with the prime mark.) The
return with the contents of the register and a

-Xr,Dh-

As in the substitute memory command, you have the option of
altering the memory (entering desired contents followed by a
delimiter) or leaving the contents unchanged (entering a
delimiter). A carriage return terminates the command; a space or
a comma causes the contents of the next register to be displayed.
Note that altering the contents of the Hand L registers changes
the address; if you wish to alter the contents of the memory
location, alter the M register. (See section B.1 for a
discussion of the Z-80 registers.)

3.7.18 Initialize Baud Rate (Y)

To change the baud rate of your system without a system
reset, use the Y command. Enter

-Y (no delimiter)

and then set the baud rate of your terminal to the desired rate.
Hit the carriage return key until the monitor returns with the

THE MONITOR 3-17

prompt. The monitor will accept any baud rate between 2 and 56K
baud.

3.7.19 Zleep (Z)

The Z command is used to prevent unauthorized use of your
system. Entering

-Z[CR, space or comma]

locks up the system so it will not respond to anything other than
the ASCII bell character (control G). Entering two consecutive
bell characters will unlock the system, returning control to the
monitor without altering anything.

CHAPTER 4

THEORY OF OPERATION

This chapter is divided into two main sections: the CPU and
the Serial Port. In both sections, active low signals are
indicated by an asterisk (*) following the signal name.
Definitions of the signals used by the CPU bus and the serial
interface can be found in Appendix A.

4.1 THE CPU

This section describes the 2B10's support circuitry for the
z-BO. Where it is pertinent, we discuss the z-BO's operation.
However, a complete description of the Z-80 is beyond the scope
of this manual. Should you wish to know more about it, we
suggest you consult a Z-BO technical manual.

Since the S-100 is an BOBO-oriented bus, much of the
circuitry in the 2B10 z-BO CPU is devoted to interfacing the z-BO
to the S-100 bus. Because of this, and because this board will
be used in BOBO-based systems, the following discussion of the
2B10's operation will often deal with the differences between the
BOBO and the Z-80.

4.1.1 The Reset Logic

The gates generating
connected in series, so that
low, which in turn pulls
approximately 50 msecs after
a one-shot which emits a

POC*, pRESET*, and EXT CLR* are
when POC* goes low, pRESET is pulled

EXT CLR* low. POC* goes low
power-on. The delay is provided by
positive-going pulse 50 msecs after

4-2 THEORY OF OPERATION - THE CPU

power-on. This pulse is inverted and pulls POC* low. Both
pRESET* and EXT CLR* can also be pulled low by external switches.

4.1.2 The External Clock Circuitry

The early 8080 microprocessor required a 2 MHz, two-phase,
nonoverlapping clock. Thus, by convention, there are three
clocks on the S-100 bus: CLOCK, which is a 2 MHz signal; phase
one, $1; and phase two, $2. The Z-80, on the other hand, can
operate at either 2 or 4 MHz and requires only a one-phase clock.
Thus the functions of the $1, $2, and CLOCK signals on the 2810
differ from those on an 8080 CPU. On the 2810, $1 and $2 can be
-either 2 MHz or 4 MHz signals. Once inverted, $2 is the
processor's clock, pCLK,. while $1 is available on the bus simply
for those devices that need it. CLOCK remains a 2 MHz signal,
regardless of processor speed, for those devices that need a
clock of a constant frequency.

The clocks on the 2810 are derived from the on-board 16 MHz
crystal oscillator. The 16 MHz signal is divided by 2, 4, and
8 by a synchronous 4-bit counter, U24. Thus the outputs of this
counter are in-phase 8 MHz, 4 MHz, and 2 MHz signals. These
si~nals are multiplexed by U22, a 4-to-2 line multiplexer. The
select line for the multiplexer is controlled by the 2/4 MHz
toggle switch. When the switch selects 2 MHz, the multiplexer's
outputs are the 2 and 4 MHz signals. The 2 MHz signal is the $2
clock and is inverted and buffered to become pCLK. The 4 MHz
signal is inverted and ANDed with the 2 MHz signal, creating the
non-overlapping $1 clock (see figure 4-1). When l~ MHz operation
is selected, the multiplexer's outputs are the 4 MHz and an 8 MHz
signals, which, through the process described above, become the 4
MHz $1, $2, and pCLK signals.

4.1.3 The Address Bus and Address Mirroring

The Z-80's low-order address lines are buffered by a three
state bus driver, the outputs of which are bus address lines
AO-A7. They are also multiplexed with the z-80's high-order
address lines by U28 and U29, the outputs of which are the bus
address lines A8-A15. The select line to the multiplexers is
controlled by the address mirroring circuitry. When it is
enabled through the address mirror jumper, it will pull the
select line hi~h, allowing the low-order address bits onto the
hi~h-order address bus whenever the I/O request signal from the
Z-80 (IOREO*) is active while the M1 signal (M1*) is inactive.

THEORY OF OPERATION - THE CPU 4-3

(An Interrupt Acknowledge cycle isdistinquished by both signals
being active.) In any other case, or if the address mirror
circuitry is disabled, the select line to the multiplexer will be
low, allowing only the high-order address bits onto the
high-order address bus.

The signal ADD DSB*, when active during DMA operations,
places the address bus driver and multiplexers in their high
impedance state, allowing an external device to control the
address bus without interference from the CPU.

4.1.4 The Data Out and Data In Busses

During pSYNC's active period, status bits must be available
on the Data Out bus. On the 2810, this is accomplished by
multiplexing the Status signals with the data lines from the
2-BO. The output of the multiplexers is the Data Out bus,
DOO-D07. The signal pSYNC controls the state of the select
lines. When pSYNC is active high, the status bits are
multiplexed onto the Data Out bus. When pSYNC is inactive low,
the data bits are multiplexed onto the Data Out bus. The Data
Out bus can be placed in its high impedance state by DO DSB* for
DMA operations.

The Data In bus is buffered by an B-bit, three-state bus
driver. This driver is disabled whenever pDBIN is inactive,
except :during DMA operations (indicated by the active BUS ACK*).
It is also disabled under a number of other conditions. When
either the ROM, the serial port, or the power-on jump circuitry
is enabled, the driver is disabled, since data will be passed to
the CPU on the internal bi-directional data lines. Front panel
examination of memory will also disable the Data In bus while the
front panel is commanding the CPU through the front panel data
lines to fetch the data.

4.1.5 The Control Signals

Because the S-100 is an BOB a-oriented bus, the signals on
its control bus are generally the functional equivalents of the
control signals of the BOBO itself. Thus the 2B10 2-Bo CPU must
emulate the BOBO's control signals if it is to be S-100
compatible. With the control inputs this causes no problem,
since the B080's control inputs have their 'functional equivalents
in the 2-BO. The control outputs of the BOBO, however, are quite
different from those of the 2-BO. The 2B10 must then generate

4-4 THEORY OF OPERATION - THE CPU

BOBO-like control outputs from the z-BO outputs. The following
section describes how each 80BO control output is emulated by the
2B10.

pSYNC In an 80BO system, this signal is generated by the
processor during T1 (the first clock cycle) of every
machine cycle and indicates to external devices that they
can read the current status of the processor on the data
bus.

The z-80 has no equivalent signal; pSYNCH must be
generated entirely through external circuitry. On the
2B10 CPU, it is generated primarily by two flip-flops, one
to generate pSYNC and the other to turn it off. The
first flip-flop, U35b, is clocked by the rising edge of
either the inverted M1*, MREQ*, or IOREQ*--whichever goes
active first in a bus cycle. It is set by the state of
the REFRESH* line: only when REFRESH* is inactive high
will pSYNC, the Q output of the flip-flop, be high. This
prevents pSYNC from being generated during the l~tter part
of an M1 cycle when MREQ* goes low again with the signal
REFRESH*. So that it can be turned off, pSYNC is input to
the second flip-flop, U35a. When U35a is clocked, its Q*
output clears U35b, turning off pSYNC. This flip-flop is
clocked by the $2 clock during cycles in which M1* or
IOREQ* is active and by the inverted $2 during bus cycles
in which MREQ* only is active, causing pSYNC to last
approximately one clock cycle in any bus cycle, as it does
when generated by an BOBO. Note that during an 1/0 cycle,
pSYNC occurs during T2, instead of T1, since IOREQ* goes
active then (see Fiqure 4-1). Its function remains
exactly the same, however; it still marks the beginning of
the bus cycle and indicates that valid status bits are on
the bus.

pWR* PWR* indicates that valid data is present on the data bus
and thus becomes active after pSYNC. The Z-BO's write
control output, WR*, serves the same function as pWR*; it
simply needs to be disqualified during the active pSYNC.
Flip-flop U34b serves this purpose. The flip-flop, its
D input tied high, is clocked on the falling edge of pSYNC
and cleared on the rising edge. Thus its Q* output will
be low only when pSYNC is inactive. The Q* output is ORed
with WR*. Only if both signals are low will the output of
the OR gate, pWR*, be active low. See Figure 4-1.

pDBIN In 80BO-based S-100 systems, pDBIN indicates that the data
bus is conditioned to accept data from external devices.
It goes active with the falling pSYNC signal and occurs
during Read and Interrupt Acknowledge cycles. On the

<1>2

pSYNC

pOBIN

REFRESH

Op Code Fetch Cycle
Memory Cycle I/O Cycle

(M1)

T1 T2 T3 T4 T1 T2 T3 T1 T2 TW 1 T3

~ U-LJ LJ U-LJ U-U-~ U-U-
'1 n n ~ , , n , ~ ~

U I l I

U , I , I L

l I L r
\ I

1 The Z-80 automatically inserts a Wait state in every I/O cycle

FIGURE 4-1 TIMING WAVEFORMS FOR SELECTED CLOCK AND CONTROL SIGNALS

~
I

U1

4-6 THEORY OF OPERATION - THE CPU

2810, the Z-80's Read signal, RD*, is inverted and ORed
with sINTA, producing pDBIN. Thus pDBIN will be active
whenever either RD* or sINTA is active. Note that pDBIN
is not disqualified by pSYNC; during a Read cycle it will
be active while pSYNC is active (see Figure 4-1). This
allows a longer memory access time, yet causes no bus
conflict. During the time pSYNC is active, the Data In
Bus and the internal data line~ are not being used, the
status bits having been gated onto the Data Out bus from
the status lines themselves.

pINTE The signal pINTE indicates the state of the
processor's internal interrupt enable flip-flop. The
8080 generates this signal itself; on the 2810 board it is
generated by an external flip-flop, U14a, since the z-80
has no equivalent signal. The state of the z-BO internal
interrupt flip-flop can be set by the EI (Enable
Interrupts) and DI (Disable Interrupts) commands. In
binary these commands are 1111 1011 and 1111 0011. Note
that these commands are distinguished by the state of bit
3 only. The rest of the bit pattern is the same. U32
monitors the data lines DO-D2 and D4-D7 for the EI/DI bit
pattern. When it occurs, U32 enables flip-flop U14b,
allowing it to be clocked by M1* going inactive. When
U14b is clocked, its Q output in turn clocks U14a. If D3
is high, the output of U14a, pINTE, will be set high and
the Interrupt Enable LED lit. If D3 is low, pINTE will be
low. U14a is cleared and pINTE made inactive low by
either the active pRESET* or sINTA. Thus the state of
pINTE can be changed only by an EI or DI op code, a system
reset, or an Interrupt Acknowledge. It should therefore
accurately reflect the state of the processor internal
interrupt flip-flop.

pHLDA pHLDA goes active in an 80BO system in response to a HOLD
request, indicated by the active pHOLD*. In the Z-BO,
there are two equivalent signals, BUSRQ* (Bus Request) and
BUSAK* (Bus Acknowledge). Thus on the 2B10, BUSAK* is
simply inverted to create pHLDA.

pWAIT The signal pWAIT indicates that the processor has entered
a Wait state. The Z-BO has no equivalent signal. On the
2810 this signal is generated by the Wait state flip-flop,
U34a. This flip-flop is preset every time a device
requests a Wait state. This forces its Q output, pWAIT,
high. This signal remains high until Preset is released
and the flip-flop is clocked by the rising edge of the B
MHz clock from U24. Please note that on the 2810, pWAIT
may be active high even if the processor itself has not
entered a Wait state. pWAIT goes high whenever a device
requests a Wait state. The CPU, however, samples the

THEORY OF OPERATION - THE CPU 4-7

state of its Wait input only on the falling edge of pCLOCK
during T2. A device must make its first Wait request then
or the CPU does not recognize it.

4.1.6 The Status Bus

The status bus on the S-100 bus communicates to external
devices the current state of the processor--i.e, what bus cycle
it is in--and qualifies the nature of the address on the address
lines. At the beginning of each instruction cycle, the BOBO puts
the 8-bit status information from its internal register out on
the data bus where it can be sampled by external devices. The
active pSYNC indicates its stable presence on the bus. At the
same time the status information is latched in the external
status latch to generate the status bus signals. The meaning of
the status bits are summarized in the table below.

DATA BUS BIT 07 06 05 04 03 02
1

01 DO

STATUS BIT MEMR INP M1 OUT HLTA WO INTA

Instruction Fetch 1 0 1 0 0 x 1 0

Memory Read 1 0 0 0 0 x 1 0

Memory Write 0 0 0 0 0 x 0 0
Input Read 0 1 0 0 0 x 1 0
Output Write 0 0 0 1 0 x 0 0
Interrupt Acknowledge 0 0 1 0 0 x 1 1
Halt Acknowledge 1 0 0 0 1 x 1 0

1 In 8080 systems 02 is the STACK bit. On the 2810 sSTACK Is not generated. See 2.1.6.

TABLE 4-1 STATUS WORD DEFINITIONS

Because the status of the z-BO can be decoded from the
control outputs themselves, the Z-BO has no internal status
register. Therefore, the S-100 Status lines must be generated
from the control outputs. When pSYNC is active, the status
lines, with two exceptions, are gated onto the data bus by the
bus multiplexers. Two of the status lines, sWO* and sINTA, will
not always be active when pSYNC is active. The WO and INTA
status bits must be generated separately.

sINTA This signal indicates that the CPU has accepted an
interrupt and is awaiting instruction from the
interrupting device. The z-Bo indicates an Interrupt
Acknowledge cycle by both M1* and IOREQ* being active in
the same bus cycle. IOREQ* in this case goes active
almost 2 1/2 clock cycles after M1* and is the Z-BO's read

4-8 THEORY OF OPERATION - THE CPU

strobe for this cycle. The bus signal sINTA is generated
by ANDing the inverted signals M1* and IOREQ*. Thus sINTA
will be hi~h only when IOREQ* is active. This is
important since the 2810 uses sINTA to generate the bus
Data In strobe, pDBIN, during an Interrupt Acknowledge
cycle. However, sINTA generated this way does not become
active until T3--too late to be gated onto the Data Out
bus by pSYNC. Therefore the INTA status bit is generated
by the inverted M1* being ANDed with RD*. Only when RD*
is inactive high will the INTA bit be high. Since an
active M1* occurs without an active RD* only during an
Interrupt Acknowledge cycle, the state of the INTA bit
accurately reflects the bus cycle.

sWO* When active low, sWO* indicates that the CPU is in a Write
cycle. On the 2810 board, sWO* and the status bit WO are
generated by two different methods. The status signal is
simply the Z-80's WR* signal. However, WR* goes active
low during T2 of a Memory Write cycle--too late to be
present on the data bus when pSYNC is active. Thus the
status bit wo is generated by either MREQ* or IOREQ* being
active while RD* is inactive. Only during an 1/0 or
Memory Write cycle would RD* be inactive. The method by
which the status bit WO* is generated cannot be used to
generate sWO*, since sWO* would then be generated during
an Interrupt Acknowledge cycle.

sHLTA sHLTA and the z-80 HALT* both indicate that the CPU has
received a HALT instruction and is awaiting an interrupt.
Thus sHLTA on the 2810 board is the inverted HALT*. The
active sHLTA lights the Halt Acknowledge LED.

sOUT Indicating that the CPU is outputting data to an 1/0
device, this signal is generated when both IORQ* and WR*
are active.

sM1 This signal is active during the Op Code Fetch cycle of an
instruction execution cycle and during an Interrupt
Acknowledge cycle in both the 8080 and Z-80. Thus sM1 is
generated by the inverted M1* of the Z-80.

sINP Indicating that the CPU is reading data from an 1/0
device, this si~nal is active when both IORQ* and RD* are
active.

sMEMR Active high when during a Memory Read cycle, sMEMR is
active only when both MREQ* and RD* are active.

THEORY OF OPERATION - THE CPU 4-9

4.1.7 The Wait Circuitry

The WAIT* input to the Z-80 is low when any of the following
four conditions occurs: 1) the XRDY line is pulled low; 2) the
pRDY line is pulled low; 3) M1* is active when the M1 Wait
states are enabled; 4) the ROM is enabled when the Z-80 is
operating at 4 MHz. U21c monitors for these conditions, its
output going high whenever one of them is met. This high is
inverted and pulls the Preset line to the Wait flip-flop, U34a,
low. The resulting low on the flip-flop's Q* output pulls the
WAIT* input to the Z-80 low. Q* will remain low as long as U21c
continues to pull the Preset input to the flip-flop low. As
soon as U21c releases the Preset line, the flip-flop will be
reset when it is clocked by the rising edge of the 8 MHz clock
from U24.

The 8 MHz clock is used to ensure that one and only one Wait
state is generated per cycle in which the M1 or ROM Wait state
circuitry is active. A Wait request from either circuit is
qualified by pSYNC; only if pSYNC is active will U21c be pulled
high. In most memory cycles, qualifying the signal with pSYNC
ensures one Wait state per cycle. However, during an M1 cycle,
pSYNC goes inactive before T2. Resetting the Wait flip-flop with
the 8 MHz clock allows WAIT* to remain active long enough for the
CPU to sample it, but not so long as to generate an extra Wait
state.

4.1.8 The Rom Enable Circuitry

Address lines AO-A10 from the Z-80 are input directly to the
ROM, since eleven address bits are necessary to select one
location out of 2K. Address lines A11-A15 are input to the
Address decoding ROM, U9, along with MREQ* and PHANTOM*. When U9
receives address bits on the high order address lines in the
range of FO-F7 when PHANTOM* is inactive and MREQ* active, the
output of U9 is pulled low. If the ROM enable jumper is set ON,
this low is jumpered to the enable inputs of the ROM, enabling it
and lighting the ROM LED. At the same time, the Data In bus will
be disabled. If either PHANTOM* is active or MREQ* is inactive,
U9's output will be high, disabling the ROM.

4-10 THEORY OF OPERATION - THE CPU AND SERIAL PORT

4.1.9 Power-on Jump Circuitry

The power-on jump circuitry works by placing on the data bus
the unconditional jump command C3 (11000011) during the first M1
cycle after power-on or a system reset and the low byte and high
byte of the jump address during the two memory read cycles that
follow a jump instruction. Because the Power-on Jump circuitry,
when enabled, disables the Data In bus, there is no conflict with
memory.

The correct order and timing of the command and address
bytes are achiev~d through the use of four D-type flip-flops and
two 8-line-to-4-line multiplexers. The flip-flops are used as a
4-bit shift register, the Q output of one flip-flop being tied to
the D input of the next. The flip-flops are triggered by the
inverted RD*. When the CPU is reset or turned on, it executes an
M1 cycle, pulling the RD* line low. This triggers the first
flip-flop, the output of which simply is tied to the next. In
the meantime, the A input lines to the multiplexers are tied in
such a way as to generate the data byte 11000011, which is
multiplexed onto the internal data bus and read by the CPU. The
CPU then executes a memory read cycle as a result of receiving a
jump instruction, pulling the RD* line low again. This clocks
the second flip-flop, the outputs of which change the state of
the A input lines such that they reflect the address settings on
the Low Byte Address jumpers.- The low address byte thus can be
read by the CPU. During the next memory read cycle 1 the third
flip-flop is clocked, its ou~put changing the state of the Select
inputs on the the multiplexers, allowing the B inputs to the
multiplexers onto the internal data bus. Because the B inputs
reflect the settings of the High Byte Address jumpers, the CPU
receives the high byte address. After having received the jump
address, the CPU executes another M1 cycle to fetch the op
code at the jump address. When RD* goes low again for the M1
cycle, the fourth flip-flop is clocked, the output of which
disables the multiplexer, effectively disqualifying the power-on
jump circuitry, and enables the Data In bus, allowing the CPU to
read from the jump address. When the system is reset, pRESET*
clears all the flip-flops, allowing the process to begin again.

4.2 THE SERIAL 1/0 PORT

National's 8250 Asynchronous Communications Element performs
almost all the necessary functions to interface the CPU to a
serial peripheral device. It takes the parallel data it receives
from the CPU and converts it to serial, adds start and stop bits,
and transmits it over a single wire one bit at a time. When

THEORY OF OPERATION - THE SERIAL 1/0 PORT 4-11

receiving serial data from the peripheral, it does the reverse,
stripping the start and stop bits from the data and converting
the data to parallel for output over the eight internal data
lines to the CPU. The 8250 requires a external clock, provided
on the 2810 by a 1.8432 crystal oscillator. It also requires
some minimal circuitry to interface it to the CPU and the
peripheral.

4.2.1 The CPU Interface

The 8250 is selected when its chip select inputs, CSO and
CS1, are high. CS1 is high when IOREQ* is active when M1* is
inactive. (The qualifying of IOREQ* with M1* is necessary to
distinguish a valid 1/0 cycle from an Interrupt Acknowledge
cycle.) CSO is high when the address bits on A3-A7 match the
settings of the Serial Address Select jumpers. ReadlWrite
control is provided by pDBIN and pWR*, which control the Data
Out Strobe and Data In Strobe of the 8250 respectively, allowing
the CPU to read and write to the registers selected by AO-A2.
When the CPU is reading from the 8250's registers, the 8250's
DDIS* line goes active, disabling the CPU's Data In bus, since
data will be transferred on the 2810's internal bi-directional
data lines.

4.2.2 The Peripheral Interface

The Peripheral side of the interface consists of a set of
line drivers and receivers which translate between the TTL
signals of the 8250 and the nominal +5 to -5 volt signals
required by the RS-232-C interface. The 8250's handshake lines
are also used in a way which requires explanation.

The RS-232-C specifications are concerned with the
communication link between a MODEM (or data communications
equipment, DCE for short) and a computer terminal (or data
terminal equipement, DTE for short). Thus equipment conforming
to the RS-232-C specifications must take on the role of either a
DCE or DTE device. The 2810's serial port is designed to be the
DCE side of the interface. The problem here is that the 8250's
handshake lines are defined as those of a DTE device. Thus the
roles of the 8250 handshake lines must change. For example, the
input into the 8250's CTS (Clear To Send) pin comes actually from
the DCE-type connector's RTS (Request to Send) line. The 8250's
output DTR (Data Terminal Ready) appears on the connector's DSR
(Data Set Ready) line. The 8250's auxiliary output, OUT 1, is

.!;.- 12 THEORY OF OPERATION - THE SERIAL 1/0 PORT

tied to the connector's Received Line Signal Detect (RLSD),
allowing RLSD to be available to signals that require the signal.
The following table summarizes the connections between the 8250
and the DCE-type connector.

8250

DSR
CTS
RTS
DTR
OUT 1

TABLE 4-3

CONNECTOR

DTR
RTS
CTS
DSR
RLSD

If you have reason to consult an 8250 data sheet, please keep
these role changes in mind. The serial input from the peripheral
is also connected to the 8250's Ring Indicator input to support
the auto-baud feature of the 2810's firmware.

APPENDIX A

THE 2810 Z-80 CPU BUSSES

THE SYSTEM BUS A-3

A.1 THE SYSTEM BUS

A.1.1 The S-100 Bus

The S-100 bus came into being with the Altair line of
microcomputers using the 8080 microprocessor. Known then as the
Altair bus, it was adopted by many other microcomputer
manufacturers and became an unoffical industry standard; hence
the name "standard-100" bus.

Recently the IEEE has undertaken the development of an
official standard for the S-100 bus. The proposed standard
differs from the unofficial standard in the definitions of
several lines. The changes. reflect in part the changes in the
microcomputer industry. New processors have come onto the market
with new capabilities: 16-bit data transfer, dynamic memory
refresh, nonmaskable interrupts, etc. And as system design has
become more sophisticated, there has been a move away from front
panels. In the proposed standards, for example,' several signals
previously used for front panel functions have been eliminated
and the lines themselves reserved for future use. The differences
between the proposed standard and the unofficial standard present
a dilemma for the manufacturer of S-100 product: Should he
conform to the proposed standard or aim for current product
compatability?

The 2810 board represents a compromise; we have conformed to
the proposed standards where possible without sacrificing
compatiblity with the major S-100 systems currently on the
market. In the next section, we define the signals used by the
2810 system bus, and make note of discrepancies between our line
use and those of the unofficial or the proposed standards.

A.1.2 The 2810 System Bus

The following are definitions of the signals used by the
2810 system bus. We have followed the convention of indicating
active low signals with an asterisk (*) following the signal
mnemonics.

For clarity's sake, we have divided the signals on the 2810
bus into 6 categories: 1) the address and data busses, 2) the
status bus, 3) processor control signals, 4) front panel control,
5) DMA control, and 6) system utilities.

A-4 THE SYSTEM BUS

1. Data and Address Lines

AO-A15

DIO-DI7

DOO-D07

The 16-bit parallel address lines.

The 8-bit parallel data input lines.

The 8-bit parallel data output lines.

2. The Status Signals

The Status signals indicate the nature of the bus cycle in
progress and are the functional equivalents of the outputs of the
8080's status latch. The mnemonics for the status lines begin
with a lower case "s."

sINTA

sWO*

sHLTA

The Interrupt Acknowledge signal indicates that the
CPU has accepted an interrupt.

The Write/Output signal indicates that the CPU is in a
write or output cycle.

The Halt Acknowledge signal indicates that the CPU is
executing a HALT instruction.

sOUT The Output signal indicates that the CPU is executing
an output instruction.

sM1 The M1 cycle signal indicates that the CPU is in the
Op Code fetch portion of an instruction cycle.

sINP The Input signal indicates that the CPU is executing
an input instruction.

sMEMR The Memory Read signal indicates that the CPU is
reading from memory.

3. The Processor Control Signals

The processor control signals are concerned with
synchronizing the movement of data to and from the processor
during any machine cycle. With the exception of NMI*, REFRESH*,
and MREQ*, they are the functional equivalents of the 8080
control inputs and outputs and are generally prefixed with the
let ter "p."

THE SYSTEM BUS A-5

Outputs

pSYNC

pDBIN

The Sync signal indicates the presence of status bits
on the Data Out bus.

The Data Bus In signal gates the data on the Data In
bus onto the 2810's internal data lines.

pWR* The Write signal indicates the presence of valid data
on the Data Out bus.

pHLDA

pWAIT

pINTE

REFRESH*

MREQ*

Inputs

The Hold Acknowlege signal indicates that the CPU has
relinquished control of the bus in response to a Hold
request.

The Wait signal indicates that the CPU has entered a
Wait state. In the proposed standard, this signal is
eliminated and the line is reserved for future uSe.

The Interrupt Enable signal indicates that the CPU
will respond to interrupt requests. In the proposed
standard, this signal is eliminated and the line is
reserved for future use.

(Optional) The Refresh signal is a control signal for
dynamic memory refresh. During the time REFRESH* is
active, a dynamic memory refresh is totally
transparent to the processor. This line is left
undefined by the proposed standard.

(Optional) The Memory Request signal from the Z-80
indicates that the address bus holds a valid address
for a memory read or write. This line is left
undefined by the proposed standard.

pRDY The Ready signal allows external devices to place the
CPU in a Wait state.

pINT*

pHOLD*

The Interrupt signal allows external devices
request service from the CPU.

to

The Hold signal allows external devices to request
control of the bus.

NMI* (Optional) The Nonmaskable Interrupt signal allows
external devices to assert an interrupt request that

A-6

pRESET*

THE SYSTEM BUS

cannot be masked off by the CPU.

The Reset signal, when active low, resets the CPU. It
is generated usually by a front panel switch and is
also asserted by POC*.

4. Front Panel Control

XRDY

SSW DSB*

RUN

SS

The External Ready signal is a ready line generally
used by front panels for single-step or stop
operations.

The Sense Switch Disable signal disables the data
input lines DIO-DI7 so that the input from the front
panel sense switches can be strobed onto the internal
bi-directional data bus. The proposed standard
eliminates this signal and reserves the line for
future use.

The Run signal indicates the state of the Run/Stop
flip-flop on the front panel is set to Run. This
proposed standard eliminates this signal and reserves
the line for future use.

The Single Step signal indicates a single step is
being performed. The proposed standard eliminates
this signal and reserves the line for future use.

5. DMA Control

STAT DSB* The Status Bus Disable signal allows external devices
to place the status bus driver in its high impedance
state.

C/C DSB* The Command/Control Disable signal allows external
devices to place the control bus driver in its high
impedance state.

ADD DSB* The Address Disable signal allows external devices to
place the address bus driver in its high impedance
state.

DO DSB* The Data Out Disable signal allows external devices to
place the Data Out driver in its high impedance state.

THE SYSTEM BUS A-7

6. System Utilities

POC*

EXT CLR*

MWRT

PHANTOM

$1

$2

CLOCK

2*/4 MHZ

+8 VOLTS

+16 VOLTS

-16 VOLTS

Active only during power-on, the Power-On Clear signal
asserts EXT CLR* and RESET*.

When active, the External Clear signal resets external
devices.

The Memory Write signal indicates that the current
data on the Data Out bus is to be written into the
memory location specified by the address bus. Often
generated by front panel devices, it usually is used
for front panel memory deposit.

(Optional) The Phantom signal is used to control
memory overlay. On the 2810 board, an external device
can use it to overlay the memory space occupied by the
on-board ROM.

$1 is the phase one clock for the 8080.

$2 is the phase two clock for the 8080.

Clock is a 2 MHz signal, regardless of processor
speed.

(Optional) When high, this signal indicates the
processor is operating at 4 MHz. When it is low, it
indicateB the processor is operating at 2 MHz. The
early S-100 bus used this line for the sSTACK signal;
the proposed standard suggests this line be used for
the signal ERROR*.

This is the unregulated +8 Volts from the power
supply.

This is the unregulated +16 Volts from the power
supply.

This is the unregulated -16 Volts from the power
supply.

A-8 THE SYSTEM BUS PIN ASSIGNMENTS

A. 1 .3 The System Bus Pin Assignments

2810 BUS CONNECTOR PINOUT

+8V 1 51 +8V
+16V 2 52 -16V
XRDY 3 53 RW"

4 54 EXTCrJ(

5 55
6 56
7 57
8 58
9 59

10 60
11 61

AJ.1i* 12 62
13 63
14 64
15 65 ;;.mm*
16 66 REFR!IH*
17 67 PHANTOM*

STAT biB 18 68 MWRITE
C C7Clmi 19 69

0 20 70 C
M SS 21 71 RUN I
P ADD DSB 22 72 pRDY R
0 DO"H§ 23 73 piNT C
N <1»2 24 74 pHOLD U
E <1»1 25 75 pRESET I
N pHLDA 26 76 pSYNC

T
T pWAIT 27 77 pm

plNTE 28 78· pDBIN S
S A5 29 79 AO I
I A4 30 80 A1 0
0 A3 31 81 A2 E
E A15 32 82 A6

A12 33 83 A7
A9 34 84 A8

D01 35 85 A13
DOO 36 86 A14
A10 37 87 A11
D04 38 88 D02
D05 39 89 D03
D06 40 90 D07

DI2 41 91 DI4
DI3 42 92 DI5
DI7 43 93 DI6
M1 44 94 DI1

sOUT 45 95 DIO
slNP 46 96 s·INTA

sMEMR 47 97 'i'9nS
sHLTA 48 98 }'/4 MHZ*

CLOCK 49 99 ~
GND 50 100 GND

TOP VIEW

* Jumper-enabled signals

SERIAL INTERFACE BUS A-9

A.2 SERIAL INTERFACE BUS

A.2.1 Signal Definitions

The following are the RS-232-C signals used by the
asynchronous serial port.

Inputs

DTR Data Terminal Ready. When active, this signal indicates
that the peripheral is ready to establish a
communications link and receive or transmit data to/from
the 8250.

RTS Request to Send. When active, this signal indicates that
the peripheral's transmit data buffer is full and is
ready to transmit data.

TxD Transmit Data. This signal is the serial data input from
the peripheral to the 8250.

Outputs

RxD Receive Data. This signal is the serial output from the
8250 to peripheral.

CTS Clear To Send. The active signal informs the peripheral
that the 8250 is ready to send data.

DSR Data Set Ready. This informs the peripheral that the
8250 is ready to communicate.

RLSD Received Line Signal Detect. This signal indicates that
the 8250 has detected a signal from the peripheral.

A-10 SERIAL INTERFACE BUS PIN ASSIGNMENTS

A.2.2 RS-232-C Pin Assignments

2810 DCE-TYPE CONNECTOR PIN ASSIGNMENTS

EIA RS-232-C STANDARD

. PROTECTIVE GROUND AA 1
@ 14

TRANSMIT DATA BA 2 @
~

@ 15
RECEIVE DATA BB 3 @ ..-

@ 16
REQUEST TO SEND CA 4 @ --..

@ 17
CLEAR TO SEND CB 5 @

~

@ 18
DATA SET READY CC 6 @-

@ 19
SIGNAL GROUND AB 7 @

@ 20 CD DATA TERMINAL READY
~

REC LINE SIG DET CF 8 @ --- @ 21
9 @

@ 22
10 @

@ 23
11 @

@) 24 DA TRANSMIT SIG ElE ClK (DTE)

@)
..-

12

@ 25
13

DB-25S (FEMALE)
FRONT VIEW

APPENDIX B

THE 2810 ACCESSIBLE REGISTERS

THE 2-BO PROGRAM ACCESSIBLE REGISTERS B-3

B.1 THE 2-BO PROGRAM ACCESSIBLE REGISTERS

Twenty-two of the 2-BO's internal registers are accessible
to the programmer. Figure B-1 shows the configuration of the
accessible registers, while sections B.1.1 through B.1.3 give a
short description of them.

ACCUMULATOR FLAG
A F

MAIN SET

ACCUMULATOR FLAG
A' F'

AL TERNATE SET

INTERRUPT I MEMORV
VECTOR I REFRESH MR

PROGRAM COUNTER PC

r
MAIN SEl

B C

D E

H L

STACK POINTER SP r B' C'

INDEX REGISTER IX

INDEX REGISTER IV

ALTERNATE SEl D' E'

H' L'

SPECIAL PURPOSE REGISTERS GENERAL PURPOSE REGISTERS

FIGURE 8-1 Z-80 REGISTERS

B.1.1 Accumulator and Flag Registers

The two B-bit accumulators hold the result of arithmetic and
logical operations while their associated flag registers indicate
the special results of such operations. A single exchange
instruction allows the programmer to work with either pair of
registers.

B.1.2 Special Purpose Registers

Program Counter (PC)--This 16-bit
address of the current instruction.

register
The PC

holds the memory
is automatically

B-4 THE Z-80 PROGRAM ACCESSIBLE REGISTERS

incremented after its contents have been transferred to the
address lines. A program jump overrides the incrementer and
places a new value in the PC.

stack Pointer (SP)--This 16-bit register holds the address of the
current top of a stack located anywhere in external RAM memory.
The PUSH and POP instructions push data from specific registers
onto the stack or pop the data off the stack into specific
registers.

Index Re~isters (IX and IY)--These two independent 16-bit
registers hold a base address that is used in indexed addressing
modes. This base address is used in conjunction with a
displacement byte (a two's complement integer) in an indexed
instruction to specify a location in memory.

Interrupt Page Address Register (I)--This register is used for
interrupt response mode involving an indirect call to memory.
The register stores the high order 8-bits of the indirect
address; the interrupting device provides the lower 8-bits. (See
your programming manual for more details.)

Memory Refresh Register (R)--This register is used as counter
register for dynamic memory refresh. It contains a refresh
address which is placed on the address bus during the last two
clock cycles of every M1 cycle. The address is then
automatically in9remented. You would not normally access this
register, although you can load it for testing purposes.

B.1.3 General Purpose Registers

The general purpose registers consist of a main and
alternate set of six 8-bit registers. They can be used as
individual 8-bit registers or as 16-bit register pairs. The
main set pairs are BC, DE, and HL; the alternate set pairs are
BC', DE', and HL'. A single exchange command allows the
programmer to select either set. See your z-80 programming
manual for more details.

THE 8250 ADDRESSABLE REGISTERS B-5

B.2 THE 8250 ADDRESSABLE REGISTERS

There are nine accessible registers of concern in the 8250.
These registers are addressed through the low-order three bits of
the serial port address. The registers are addressed as follows:

DLAB A2 A1 AO REGISTER

0 0 0 0 Receiver Buffer (read), Transmitter Holding Reg i s t e r (w r it e)

0 0 0 1 Interrupt Enable

x 0 1 1 Line Control

x 1 0 0 Peripheral Control
x 1 0 1 Line Status
x 1 1 0 Peripheral Status
1 0 0 0 Divisor Latch (least significant byte)

1 0 0 1 Divisor Latch (most significant byte)

TABLE B-1 8250 REGISTER ADDRESSING

Note that the address lines alone are not always sufficient to
select a register; the state of the Divisor Latch Bit (DLAB) of
the Line Control Register determines which of the registers
sharing the same address will be selected.

The contents and function of each register are summarized in
Table B-2 below. In addition, six of the regist~rs are described
in more detail in the the following pages. If you consult the
8250's data sheet, you will notice discrepancies between our bit
descriptions and the data sheet's descriptions for some of the
bits. Such discrepancies are more apparent than real: the data
sheet assumes the 8250 will be used as a DTE device and thus has
named the bits accordingly; we use it as a DCE device and thus
have renamed the bits. Note that since we do not use the 8250's
interrupt capabilities, the first four bits of the Interrupt
Enable Register should be set to O.

B-6

a:
w
m
::i!:
:::l
Z

I-
iii

0

1

2

3

4

5

6

7

B. 2. 1

THE 8250 ADDRESSABLE REGISTERS

REGISTER ADDRESS

o DLAB = 0 o DLAB =0 1 DLAB =0 3 4 5 6 o DLAB=1 1 DLAB = 1

Receiver Tranamltter
Interrupt Line Peripheral Line Peripheral

Buffer Holding
Enable Control Control Statua Statua

Dlvlaor Divisor
Register Reglater

Reglater Reglater Register Register Register
Latch Latch

(Read Only) (Write Only)
RBR THR IER LCR PCR LSR PSR DLL MSR

Data Bit 0 Data Bit 0 Set to 0
Word Length

DSR Data Ready Delta CTS Bit 0 Bit 8
Select Bit 0

Data Bit 1 Data Bit 1 Set to 0
Word Length

CTS
Overrun

Delta DSR Bit 1 Bit 9
Select Bit 1 Error

Data Bit 2 Data Bit 2 Set to 0
Number of

RLSD Parity Error 0 Bit 2 Bit 10
Stop Bits

Data Bit 3 Data Bit 3 0
Parity

Set to 1
Framing

0 Bit 3 Bit 11
Enable Error

Data Bit 4 Data Bit 4 0
Even Parity

Loop
Break

RTS Bit 4 Bit 12
Select Interrupt

Transmitter

Data Bit 5 Data Bit 5 0 Stick Parity 0
Holding

DTR Bit 5 Bit 13
Register
Empty

Transmitter

Data Bit 6 Data Bit 6 0 Set Break 0
Shift

0 Bit 6 Bit 14
Regi .tElr

Empty

Data Bit 7 Data Bit 7 0
Diviaor Latch

0 0 0 Bit 7 Bit 15
Access Bit

TABLE B-2 8250 REGISTER SUMMARY

Peripheral Control Register

This register controls the interface with the peripheral. Bits 0
through 2 control the state of the DSR, CTS, and RLSD outputs.
To set one of these signals active high, write a 1 to its bit.
Bit 4, when set to 1, enables loopback testing, in which the data
in the transmitter register is looped to the receiver register,
without having been output. Thus data that is transmitted is
immediately received. See Table B-2 for a summary of the
register.

THE 8250 ADDRESSABLE REGISTERS B-7

B.2.2 Line Control Register

The line control registers allows
format. For ease of programming,
the line control register at any
functions are summarized in Table

you to specify the serial data
you can examine the contents of
time. The bit definitions and
B-3.

BIT NO. BIT NAME FUNCTION DEFINITION

-
Bit 0 Bit 2 = Word Lengt h

0
BitOandB select the number of

0 0 5 bits
Word Length 1

0 1 6 bits
Select bits in each serial character.

1 0 7 bits 1

1 1 a bits

S e I e c t s the n u m b e ro f s top bit s in
0= 1 Stop bit

2 Stop Bits Select 1 = 1 1/2 Stop bits (5-bit word)
each serial character.

2 Stop bits (6-, 7-, a-bit words)

Selects whether or not a parity bit Is
0= No Parity bit

3 Parity Enable generated between the last dat a bit
1 = Parity bit

and stop bit(s).

Selects whether the parity bit will
0= Odd parity

4 Even Parity Select make an even or odd number of 1s In
1= Even parity

the data word.

Bit 3 Bit 4 Bit 5 = Stick parity bit
Selects whether a 1 or a 0 will be x x 0 None

5 Stick Parity
sent In the parity bit position. 1 0 1 1

1 1 1 0

.-
Selects whether or not sOUT is 0= Break disabled

6 Set Break
forced to spacing (logic 0) 1 = Break (spacing enabled)

Determines which register of those
0= Receiver buffer or transmitter

7 Divisor Latch holding register
sharing the same address Is selected. 1 = Divisor latches

T ABLE B-3 LINE CONTROL REGISTER

B.2.3 Peripheral Status Register

This register indicates the current state of the control lines
from the peripheral device. The first two bits are set to a
logic 1 whenever the state of the control line has changed since
the peripheral status register was last read by the CPU. See
Table B-2 for a summary of the register's contents.

B-8 THE 8250 ADDRESSABLE REGISTERS

B.2.4 Line Status Register

This register provides status information to the CPU concerning
the data transfer. The bit definitions and functions are
summarized in Table B-4 below. Except where otherwise noted, the
bits are reset when the CPU reads the line status register.

BIT NO. NAME DEFINITION

0 Data Ready (DR)
Set to 1 If the Receiver Buffer Is full. Reset by CPU

reading buffer or writing a 0 to It.

Set to 1 If the CPU did not read the data In the
1 Overrun Error (OE) Receiver Buffer before the next character was

transferred to it.

2 Parity Error (PE) Set to logic 1 when a parity error is detected.

3 Framing Error (FE) Set to 1 If incoming character has no valid stop bit .

Set to 1 whenever the received data input is held In the
4 Break Interrupt (BI) sDaclng state for longer than a full word transmission

time.

Transmitter Holdln;J Set to 1 wheri Transmitter Holding Register Is empty.
5 Register Empty having transferred Its data to the Transmitter Shift

(THRE) Register. Reset when CPU loads the THR.

Transmitter Shift
Set to 1 when Transmitter Shift Register is Idle. Reset

6 Register Empty
upon data transfer from THR. A read-only bit.

(TSRE)

7 Permanently set to 0

TABLE B-4 LINE ST ATUS REGISTER

B.2.5 Divisor Latch Registers

T~e divisor latch registers are used to select the baud rate you
wish. The programmable baud rate generator can divide the 1.8432
Mhz clock input by any divisor from 1 to (2**16)-1. The output
frequency of the baud rate generator is 16X the baud rate
(divisor# = frequency input/ (baud rate * 16». The divisor is
stored in the two divisor latches in a 16-bit binary format.
Table B-5 shows the divisors for some common baud rates.

THE 8250 ADDRESSABLE REGISTERS B-9

BAUD DIVISOR PERCENT ERROR
FOR 16x DIFFERENCE BETWEEN

RATE CLOCK DESIRED AND ACTUAL

50 2304 -
75 1536 -

110 1047 0.026
134.5 857 0.058
150 768 -
300 384 -
600 192 -

1200 96 -
1800 64 -
2000 58 0.69
2400 48 -
3600 32 -
4800 24 -
7200 16 -
9600 12 -

19200 6 -
38400 3 -
56000 2 2.86

TABLE B-5 BAUD RATE DIVISOR

APPENDIX C

FIRMWARE LISTING

FIRMWARE LISTING

CP/M MACRO ASSEM 2.0 /1001

TITLE
PAGE
MACLIB

MOSS 2.2 MONITOR

'MOSS 2.2 MONITOR'
68
Z80

MOSS MONITOR (VERSION 2.2)

20 JUNE 1980
ALL RIGHTS RESERVED BY ROBERT B. MASON

FOOO MOSS: ORG OFOOOH
FOOO = ROM: EQU OFOOOH ;ROM START ADDRESS
0000 = WSVEC: EQU a jVECTOR FOR WARM RESTART
0002 = NBKPTS: EQU 2 jNUMBER OF BREAKPOINTS
0013 = CTRLS: EQU 13H 'ASCII DC3
OOOD = CR: EQU ODH ;ASCII CARRIAGE RETURN
OOOA = LF: EQU OAH 'ASCII LINE FEED
OOOC = FMFD: EQU OCH ~ASCII FORM FEED
0007 = BELL: EQU 7 ;ASCII CNTRL CHAR TO RING THE BELL
0003 = IOBYTE: EQU 3 ;ADDRESS OF I/O CONTROL BYTE
0020 = SDATA: EQU 20H ;SERIAL DATA PORT BASE ADDRESS
0021 = SINTEN: EQU SDATA+1

C-3

;SERIAL INTERRUPT ENABLE REGISTER
0022 = SIDENT: EQU SDATA+2 ;SERIAL INTERRUPT IDENTIFICATION REGIS
002~ SLCTRL: EQU SDATA+~ ;SERIAL LINE CONTROL REGISTER = 002 = 0025 = 0026 =

0006 =

0015 :I:

0013 = .
0012 =
0011 =
0010 =
0014 -=
0031 = 0030 = 0034 = 0017 = 0035 = 0025 = 0020 =
0009 = OOOB = OOOA = 0000 = OOOC = 0008 = OOOF = OOOE = 0007 = 0005 = 0002 = 0003 =

FOOO C35BFO
F003 C346F6
F006 C356F6

SMDMCT: EQU SDATA+ ;SERIAL MODEM CONTROL REGISTER
SLSTAT: EQU SDATA+5 'SERIAL LINE STATUS REGISTER
SMDMST: EQU SDATA+6 ;SERIAL MODEM STATUS REGISTER

SPSV: EQU 6 ;STACK POINTER SAVE LOCATION ,
; REGISTER STORAGE DISPLACEMENTS FROM
; NORMAL SYSTEM STACK LOCATION.

ALOC: EQU 15H
BLOC: EQU 13H
CLOC: EQU 12H
DLOC: EQU 11 H
ELOC: EQU 10H
FLOC: EQU 14H
BLOC: EQU 31H
LLOC: EQU 30H
PLOC: EQU 34H
SLOC: EQU 17H
TLOC: EQU 35H
TLOCX: EQU 25H
LLOCX: EQU 20H

APLOC: EQU 9
BPLOC: EQU 11
CPLOC: EQU 10
DPLOC: EQU 13
EPLOC: EQU 12
FPLOC: EQU 8
HPLOC: EQU ~ij LPLOC: EQU
XLOC: EQU 1
YLOC: EQU 5
RLOC: EGU 2
ILOC: EQU 3

; JUMP TARGETS FOR BASIC INPUT/OUTPUT

CBOOT: JMP INIT ;COLD START
CONIN: JMP CI ;CONSOLE INPUT
READER: JMP RI ;READER INPUT

C-4 FIRMWARE LISTING

CPIM MACRO ASSEM 2.0 11002

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

MOSS 2.2 MONITOR

F009 C300F6 CONODT:
FOOC C37CF6 PUNCH:

CO ;CONSOLE OUTPUT
;PUNCH OUTPUT
;LIST OUTPUT
;CONSOLE STATUS

PO
FOOF C310F6 LIST: LO

CSTS
IOCHK
IOSET
MEMCK
RTS
RTS
REST

F012 C323F6 CONST:
F015 C36AF1
F018 C365F1
F01B C3BAFO
F01E C394F6
F021 C394F6
F024 C3CFF3

F027 FBFO
F029 09F1
F02B 09F1
F02D ACF1
F02F F6F4
F031 3CF1
F033 FDF1
F035 DOF5
F037 4DF2
F039 09F1
F03B 09F1
F03D OEF5
F03F 5DF2
FO& 1 09F1
F043 55F2
F045 09F1
F047 21F5
F049 4CF5
F04B 67F2
F04D BFF2
F04F 09F1
F051 91F1
F053 BDF5
F055 ECF2
F057 9FF4
F059 82F1

F05B F3
F05C 313FOO
F05F 2100C3
F062 11B2F6
F065 0610
F067 D5
F06B E5

F069+10FC
F06B 3195FO
F06E 3EOO
F06F

F06F C5
F070 0100FO
F073 21FFFF
F076 24
F07~ 7E
F07 2F
F079 77

·PUT IOBYTE INTO (A)
;(C) HAS A NEW IOBYTE
;MEMORY LIMIT CHECK
;IODEF- DEFINE USER liD
·SPCL- 110 CONTROL
;BREAKPOINT ENTRY POINT

ENTRY POINTS

TBL CONTAINS THE ADDRESSES OF THE ACTION ROUTINES
THE EXECUTIVE USES IT TO LOOK UP THE DESIRED ADDRESS.

tEL: DW ASGN
DW QPRT
DW QPRT
DW DISP
DW EOF
DW FILL
DW GOTO
DW HEXN
DW INPT
DW QPRT
DW QPRT
DW LEADER
DW MOVE
DW QPRT
DW OUPT
D~J QPRT
D~I QUERY
DW READ
DW SUBS
DW HTEST
DW QPRT
DW COMP
Dvl WRITE
DW XMNE
DW IB250
DW BYE

THE COLD INITIALIZATION CODE

INIT: DI
LXI
LXI
LXI
MVI

;DISABLE INTERRUPTS
SPj3FH ;USE STACK TO INITIALIZE RESTARTS
H, MP*250 WITH RESTART ERROR VECTORS

INIT1: PUSH
PUSH
DJNZ

D RSTER
B;16 ;16 TIMES (64 BYTES)
D
H
INIT1

LXI SP,FAKE-2 lSET UP TEMPORARY STACK
MVI A,O ; SKIP THE NEXT INST
ORG $-1 ;SAVE A BYTE HERE

MEMSIZ CALCULATES THE TOP OF CONTIGUOUS RAM. IT SEARCHES
FROM THE BOTTOM UP UNTIL A NON-RAM LOCATION IS
FOUND. IT THEN TAKES OFF FOR MONITOR WORK SPACE
NEEDS AND RETURNS THE VALUE IN (H,L).

MEMSIZ: PUSH B ;MONITOR START LOCATION
LXI B,ROM
LXI H,-1 ;START OF MEMORY ADDRESS SPACE

MEMSZ1: INR H
MOV A,M
CMA
MOV M,A

'FIRMWARE LISTING C-5

CP/M MACRO ASSEM 2.0 11003 MOSS 2.2 MONITOR

F07A BE
F07B 2F
F07C 77

F07D+2004
FO~F 7C
FO 0 B8

F081+20F3
F08~ 25
F08 01DEFF
F087 09
F08S C1
F089 C9

F08A E5
F08B CD6FFO
F08E 7D
F08F D63C

F091+3001
F093 25
F094 44
F095 E1
F096 C9

F097 99FO
F099 F9
F09A 1145F4
F09D EB
F09E 011DOO

FOA1+EDBO
FOA3 010600
FOA6 D5
FOA7 E1
FOA8 2B

FOA9+EDBO
FOAB 21E8FF
FOAE 39
FOAF E5
FOBO 23
FOB1 23
FOB2 220600
FOB5 160A
FOB7 C5
FOB8 15

FOB9+20FC

FOBB CD94F6
FOBE CD9FF4
FOC1 CD94F6
FOC4 2190F4
FOC7 CD95F6

F'OCA+1843

FOCC 0601
FOCE 210000

CMP M
CMA
MOV M A
JRNZ M~MSZ2

MOV A,H ;SEE IF ON MONITOR BORDER
CMP B
JRNZ MEMSZ1

MEMSZ2: DCR H -TAKE OFF WORKSPACE
LXI B,EXIT-ENDX-3*NBKPTS+1
DAD B
POP B
RET

;(B,C) IS UNPREDICTABLE DURING INIT

ROUTINE MEMCHK FINDS THE CURRENT TOP OF CONTIGUOUS MEMORY
(LESS THE MONITOR WORKSPACE) AND RETURNS THE VALUE.

MEMCK: PUSH
CALL
MOV
SUI
JRNC

DCR
MEMCKO: MOV

POP
RET

FAKE: DW
SPHL
LXI
XCHG
LXI
LDIR

LXI
PUSH
POP
DCX
LDIR

LXI
DAD
PUSH
INX
INX
SHLD
MVI

INIT2: PUSH
DCR
JRNZ

INSERT IIO
CALL
CALL
CALL
LXI
CALL
JMPR

H
MEMSIZ
~OL
MEMCKO

H
B,H
H

FAKE+2

-SAVE (H L)
;GET THE'RAM SIZE

;TAKE OFF WORK SPACE

D,EXIT

B,ENDX-EXIT

B,3*NBKPTS
D
H
H

~p-24
H
H
H
SPSV
D,10
B
D
INIT2

;ADJUST USER STACK LOCATION

;SAVE THE STACK INITIAL VALUE
;INITIALIZE REGISTER STORAGE AREA

;LOOP CONTROL

INIT CODE HERE
RTS
18250 jINITIALIZE THE 8250
RTS
H~LOGMSG ;LOG ONTO THE SYSTEM
P liT,1D
WINIT ;GO TO MONITOR EXECUTIVE

ROUTINE EXF READS ONE PARAMETER. IT EXPECTS THE FIRST
CHARACTER OF THE PARAMETER TO BE IN THE A REGISTER
ON ENTRY.

EXF: MVI
LXI

B,1
H,O

;SET UP FOR ONE PARAMETER

C-6 FIRMWARE LISTING

CP/M MACRO ASSEM 2.0 11004

JMPR

MOSS 2.2 MONITOR

FOD1+ 180C

!-'OD3+1079

FOD5+2032
FOD7 05
FOD8 C8
FOD9 210000
FODC CD7BF3
FODF 4F
FOEO CDBOF3

FOE3+3808
FOE5 29
FOE6 29
FOE7 29
FOE8 29
FOE9 B5
FOEA 6F

FOEB+18EF
FOED E3
FOEE E5
FOEF 79
FOFO CDC3F3

FOF3+30EO

FOF5+1012
FOF7 C9

FOF8 CD7BF3
FOFB 216EF1
FOFE 110500
F101 0604
F103 BE

F104+2842
F106 19

F107+10FA
F109 218CF4
FlOC CD98F6

EX1 ;FIRST CHARACTER IN A ALREADY

ROUTINE EXPR READS PARAMETERS FROM THE CONSOLE
AND DEVELOPS A 16 BIT HEXADECIMAL FOR EACH ONE.
THE NUMBER OF PARAMETERS WAN·TED IS IN THE B REG
ON ENTRY. A CARRIAGE RETURN WILL TERMINATE THE
ENTRY SEQUENCE- A BLANK OR A COMMA WILL END THE
CURRENT PARAMEtER ENTRY. EACH PARAMETER ONLY
TAKES THE LAST 4 DIGITS TYPED IN; ANY EXCESS IS
DISCARDED. A NON-HEX DIGIT WILL TERMINATE THE
ENTRY SEQUENCE AND CAUSE A WARM BOOT OF THE MON.

AS3: DJNZ AS2 ;PART OF THE ASSIGN CODE

EX3: JRNZ QPRT ;NON-ZERO IS ERROR

EXPR1:

EXPR:
EXO:
EX1:

DCR B ;MORE PARAMETERS?
RZ -NO RETURN
LXI HeO ;IN!TIALIZE PARAMETER
CALL E HO ;GET NEXT NUMBER
MOV C+A ;SAVE CHAR FOR LATER USE
CALL N BBLE
JRC EX2 ;NOT A NUMBER 1 JUMP

DAD H jMULTIPLY BY 16
DAD H
DAD H
DAD H
ORA L ;ADD ON NEW DIGIT
MOV LXA
JMPR E 0 ;GO GET NEXT DIGIT

EX2: XTHL ;PUT UNDER RETURN ADDRESS ON STACK
PUSH H -RESTORE RETURN ADDRESS
MOV A1C ;REGET THE LAST CHARACTER
CALL P2C ;TEST FOR DEL~MITER
JRNC EX3 ;JUMP IF NOT 8ARRIAGE RETURN

DJNZ QPRT ;CARRET WITH MORE PARAM MEANS ERROR

RET

MAIN ACTION ROUTINES

LOGICAL ASSIGNMENT OF PERIPHERALS

;THIS ROUTINE CONTROLS THE ASSIGNMENT OF PHYSICAL
PERIPHERALS TO THE FOUR LOGICAL DEVICE TYPES. IT
ALTERS IOBYTE (MEMORY LOCATION 0003) TO MATCH THE
CURRENT ASSIGNMENT. THE FOUR LOGICAL DEVICES ARE
CONSOLE, READER+ LIST, AND PUNCH. IN ALL CASES,
THE TTY DEVICE S SET UP AS THE DEFAULT DEVICE.

ASGN: CALL
LXI
LXI
MVI

ASO: CMP
JRZ

DAD
DJNZ

QPRT: LXI
CALL

ECHO ;GET THE LOGICAL DEVICE DESIRED
H1ALT -START OF CONVERSION TABLE
D1APT-ALt iDISTANCE BETWEEN LOGICAL CHOI
B,4 ;NUMBER uF LOGICAL CHOICES
M ;IS THIS ONE IT?
AS1 ;YES 1 JUMP

D jNO, GO TO NEXT LOGICAL ENTRY
ASO

H~QMSG ;GET ADDRESS OF QUESTION MARK MSG
P~TWA jPRINT IT

FIRMWARE LISTING C-7

CP/M MACRO ASSEM 2.0 11005 MOSS 2.2 MONITOR

; THE WARM START CODE

~INIT: LHLD SPSV
SPHL

;RESET THE STACK F10F 2A0600
F112 F9
F113 210FF1
F116 E5
F117 220100
F11A 3EC3
F11C 320000
F11F CDA9F6
F122 CD78ft'3
F125 D641

WINITA: LXI
PUSH
SHLD
MVI
STA
CALL
CALL
SUI
JRC

H,WINIT
H
WSVEC+1
A.z.OC3 H
W~VEC
CRLF
DECHO

;RESET RETURN AND WARM START VECTOR

F127+38EO
F129 FE1A

F12B+30DC
F12D 87
F12E 5F
F12F 1600
F131 0602
F133 2127FO
F136 19
F13~ 7E
~1~9 ~~
F13A 6F
F13B E9

F13C CD86F3
F13F 71
F140 CD8FF3

F143+30FA
F145 D1

F146+18C7

F148 50
F149 0604
F14B CD78F3
F14E 23
F14F BE

F150+2081
F152 68
F153 2D
F15Il 42
F155 2603
F157 05

F158+2804
F15A 29
F15B 29

F15C+10FC
F15E 3A0300
F161 B4

, A'
QPRT

;START A NEW LINE
;GET THE COMMAND
;GET RID OF ASCII ZONE
;BAD COMMAND

CPI 'Z'-'A'+1 ;CHECK UPPER LIMIT
JRNC QPRT ;BAD COMMAND

ADD
MOV
MVI
MVI
LXI
DAD
MOV
INX
MOV
MOV
PCHL

A
E,A
D,O
B 2
H:TBL
D
A,M
H
H,M
L,A

;DOUBLE IT FOR TABLE OFFSET
;SET UP FOR DOUBLE ADD

-SET UP FOR TWO PARAMETERS
;GET ACTION ROUTINE ADDRESS

;LOAD H,L INDIRECT

;GO TO ACTION ROUTINE

FIlL ACTION ROUTINE

FILL:
FlO:

AS1:

AS2:

AS4 :

AS5:

THIS ROUTINE FILLS A BLOCK OF MEMORY WITH A USER
DETERMINED CONSTANT. IT EXPECTS THREE PARAMETERS
TO BE ENTERED IN THE FOLLOWING ORDER:

START ADDRESS
FINISH ADDRESS
FILL VALUE

CALL
MOV
CALL
JRNC

POP
JMPR

MOV
MVI
CALL
INX
CMP
JRNZ

MOV
DCR
MOV
MVI
DCR
-JRZ

DAD
DAD
DJNZ

LDA
ORA

EXPR3
M C
HiLO
FlO

D
WINIT

D,B
B 4
D~CHO
H
M
AS3

L,B
L
B,D
H,3
B
AS5

H
H
AS4

IOBYTE
H

-GET THREE PARAMETERS
!PUT DOWN THE FILL VALUE
;INCREMENT AND CHECK THE POINTER
;NOT DONE YET, JUMP

;RESTORE STACK POINTER IN CASE
; STACK WAS OVERWRITTEN

;SAVE THE COUNTER RESIDUE
"LOOP CONTROL
;GET THE NEW ASSIGNMENT
;INCREMENT POINTER
;SEE IF THIS IS IT

;SAVE THE RESIDUE TO FORM ASGT
"ADJUST VALUE
;REGET THE LOGICAL RESIDUE
;SET UP THE IOBYTE MASK
;ADJUST THIS ONE ALSO
;NO SHIFT NEEDED

;SHIFT THE MASKS INTO POSITION

;NOT DONE YET, JUMP

;MASK THE DESIRED ASSIGNMENT IN

C-8 FIRMWARE LISTING

CP/M MACRO ASSEM 2.0 11006

XRA
ORA
MOV

MOSS 2.2 MONITOR

F162 AC
F163 B5
F16& 4F
F165 79
F166 320300
F169 C9
F16A 3A0300
F16D C9

F16E 4C
F16F 32
F170 31
F171 4C
F172 54
F173 50
F174 32
F175 31
F176 50
F177 54
F178 52
F179 32
F17A 31
F17B 50
F17C 54
F17D 43
F17E 31
F17F &2
F180 43
F181 54

F182 0602
F184 CD8Ff'6
F187 FE07

F189+20F7
F18B CD7EF3

F18E+10F4
F190 C9

F191 CD86F3
F194 OA
F195 C5
F196 46
F197 B8

F198+280C
F19A F5
F19B CDFBF5
F19E 78
F19F' CDF4F'5
F1A2 F1

IOSET: MOV
STA
RET

IOCHK: LDA
RET

ALT: DB
DB
DB
DB
DB

APT: DB
DB
DB
DB
DB

ART: DB
DB
DB
DB
DB

ACT: DB
DB
DB
DB
DB

H ;LOGICAL ASGT BITS NOW OFF
L jPUT IN NEW VALUE
C,A
A C
16BYTE jSAVE NEW ASSIGNMENTS

IOBYTE

'L' ;LOGICAL LIST DEVICE TABLE
'2' ;USER DEVICE 112
, 1 ' ; USER DEVICE //1
'L' ;LIST TO HIGH SPEED PRINTER
'T' -LIST TO TTY
'P' ;LOGICAL PUNCH DEVICE TABLE
'2' ;USER DEVICE 112
, 1 ' ; USER DEVICE It 1
'P' jPUNCH TO HIGH SPEED PUNCH
'T' -PUNCH TO TTY
'R' iLOGICAL READER DEVICE TABLE
'2' jUSER DEVICE 112
, 1 ' ; USER DEVICE It 1
'P' jREADER TO HIGH SPEED READER
'T' -READER TO TTY
'C' ;LOGICAL CONSOLE DEVICE TABLE
, 1 ' ; USER DEVICE It 1
'B' jCONSOLE TO BATCH (PRINTER OR PTR)
'C' jCONSOLE TO CRT
'T' jCONSOLE TO TTY

THE BYE ROUTINE IS USED TO PREVENT UNAUTHORIZED USAGE

BYE:
BYE1 :

OF THE SYSTEM. THE SYSTEM LOCKS UP AND WILL NOT
RESPOND TO ANYTHING OTHER THAN TWO ASCII BELL
CHARACTERS. WHEN IT SEES THEM CONSECUTIVELY
CONTROL IS RETURNED TO THE MONITOR WITHOUT AtTERING
ANYTHING.

MVI
CALL
CPI
JRNZ

CALL
DJNZ

RET

B 2
C6NI
BELL
BYE

ECH1
BYE1

jSET UP FOR TWO CHARACTERS
-GO READ THE CONSOLE
!SEE IF AN ASCII BELL
;NO, START OVER AGAIN

-ECHO THE BELL
;NOT YET, GET NEXT ONE

;RETURN TO MONITOR

COMPARE ROUTINE

;THIS ROUTINE COMPARES TWO BLOCKS OF MEMORY AGAINST EACH
; OTHER. IF A DIFFERENCE IN THE RELATIVE ADDRESS

CONTENTS IS DETECTED THE ADDRESS OF THE FIRST
BLOCK IS DISPLAYED ALONG WITH ITS CONTENTS AND
THE CONTENTS OF THt OTHER BLOCK'S SAME RELATIVE
ADDRESS.

COMP: CALL EXPR3
CMPA: LDAX B

PUSH B
MOV B,M
CMP B
JRZ CMPB

PUSH
CALL
MOV
CALL
POP

PSW
LADRB
A B
DAsH1
PSW

;GO GET THREE PARAMETERS
-GET SOURCE 2 DATA
;SAVE SOURCE 2 POINTER
;READ SOURCE 1 DATA
;COMPARE DATA
;JUMP IF OK

;SAVE SOURCE 2 DATA
;WRITE THE ADDRESS
;GET SOURCE 1 DATA
; FORMAT
;REGET SOURCE 2 DATA

FIRMWARE LISTING

CP/M MACRO ASSEM 2.0

F1A3 CDE6F5
F1A6 C1 CMPB:
F1A7 CD9BF3

F1AA+1BEB

11007

CALL
POP
CALL
JMPR

C-9

MOSS 2.2 MONITOR

HEX1
B
HILOXB
eMPA

;OUTPUT IT

;INCREMENT SOURCE 1 POINTER AND SEE IF
;JUMP IF NOT DONE YET

DISPLAY ACTION ROUTINE

F1AC
F1AF
F1B2
F1B3
F1B6
F1B7
F1BB
F1BB

CDA4F6
CDFBF5
7D
CDFOF1
E5
7E
CDE6F5
CDBFF3

F1BE+3B2A
F1CO CDFEF5
F1C3 7D
F1 Cll E60F

F1C6+20EF
F1CB E1
F1C9 7D
F1CA E60F
F1CC CDF5F1
F1CF 7E
F1DO E67F
F1D2 4F
F1D3 FE20

F1D5+3B04
F1D7 FE7E

F1D9+3802
F1DB OE2E
F1DD CD09FO
F1EO CD9CF3
F1E3 7D
F1Ell E60F

F1E6+20E7

F1 EB+ 1BC5
F1EA 93
F1EB CDFOF1

F1EE+1BD8

F1FO E60F
F1F2 47
F1F3 B7
F1F4 BO
F1 F5 47
F1F6 04
F1F7 CDFEF5

F1FA+10FB
F1FC C9

DISP:
DIS1:

DIS2:

DIS3:

DIS4:

DIS5:
DIS6:

DIS7:

tRPLSP:

TRPL2:

TRPL 1 :

THIS ROUTINE DISPLAYS A BLOCK OF MEMORY ON THE
CURRENT CONSOLE DEVICE (CONSOLE DUMP). THE USER
MUST SPECIFY THE START AND FINISH ADDRESSES.
THE DISPLAY IS ORGANIZED TO DISPLAY UP TO 16 BYTES
PER DISPLAY LINE WITH ALL COLUMNS ALIGNED SO
EACH COLUMN HAS tHE SAME LAST HEX DIGIT IN ITS ADDRESS

CALL
CALL
MOV
CALL
PUSH
MOV
CALL
CALL
JRC

CALL
MOV
ANI
JRNZ

POP
MOV
ANI
CALL
MOV
ANI
MOV
CPI
JRC

CPI
JRC

MVI
CALL
CALL
MOV
ANI
JRNZ

JMPR

SUB
CALL
JMPR

ANI
MOV
ADD
ADD
MOV
INR
CALL
DJNZ

RET

EXLF
LADRB
A L
T~PLSP
H

~E~1
HILO
DIS7

BLK
A,z.L
OrB
DIS2

H
A,z.L
Or-H
TRPL2
A.z.M
7r-H
C,A , ,
DIS5

7EH
DIS6
C ' ,
C6NOUT
HILOX
A,z.L
Or-H
DIS4

DIS1

E
TRPLSP
DIS3

OFH
B,A
A
B
B,A
B
BLK
TRPL1

;GO GET BLOCK LIMITS
;DISPLAY THE START ADDRESS
;SEE IF ON 16 BYTE BOUNDARY
;SKIP OVER TO RIGHT COLUMN
;SAVE (H L)
;GET THE'CONTENTS
-OUTPUT IT
;INCREMENT

A
CHECK POINTER

;DONE IF C RRY SET

-MAKE COLUMNS
;READY FOR NEW LINE?

;REGET LINE START ADDRESS
;SKIP OVER TO RIGHT SPACE

;GET MEMORY VALUE
;STRIP OFF PARITY BIT
;SET UP FOR OUTPUT
-SEE IF PRINTABLE IN ASCII
;JUMP IF SO

;ELSE, PRINT A DOT

;INCREMENT (HAL) AND SEE IF DONE
jNOT DONE, RE DY FOR NEW LINE?

;JUMP IF NOT

;DO THE NEXT LINE

;SKIP OVER TO START ASCII PRINTOUT

;GO PRINT THE ASCII

;ISOLATE THE LOW FOUR BITS
;PREPARE TO SPA.CE OVER TO RIGHT COLUMN
;TRIPLE THE COUNT

jPUT BACK INTO B
jADJUST COUNTER
-DO THE SPACING
;NO, DO ANOTHER COLUMN

C-10 FIRMWARE LISTING

CP/M MACRO ASSEM 2.0 11008 MOSS 2.2 MONITOR

F1FD CDCOF3

F200+3831

F202+2810
f204 CDCCFO
F201 D1
F208 213400
Ii'20B 39
F20C 12
F20D 2B
F20E 13
F20F 19
F210 FEOD

F212+2825
F214 0602
F216 213500
F219 39
F21A C5
F21B E5
F21C 0602
F21E CDD1FO
F221 D1
F222 E1
F223 1A
F2211 B3

F225+280A
F227 13
F22~ 23
F229 12
F22A 23
F22B 1A
F22C 11
F22D 23
F22E 3ECF
F230 12
F231 19
F232 FEOD
F234 C1

F235+2802

F231+10E1
F239 CDA9F6
F23C E1
F23D 2143F4
F240 E5
F241 21CFF3
F244 220900
F241 211800
F24A 39
F24B D1
F24C E9

GO TO ACTION ROUTINE

GOTO COMMAND TRANSFERS CONTROL TO A SPECIFIED ADDRESS.
IT ALLOWS THE SELECTIVE SETTING OF UP TO TWO BREAKPOINTS
AS WELL AS ALLOWING ANY CONSOLE INPUT TO BREAKPOINT
THE RUN, AS LONG AS INTERRUPT 1 IS ACTIVE.

GOTO: CALL PCHK ;SEE IF OLD ADDRESS WANTED
JRC G03 ; YES, JUMP

GOO:

G01:

G02:

JRZ GOO YES, BUT SET SOME BREAKPOINTS

CALL
POP
LXI
DAD
MOV
DCX
MOV
MOV
CPI
JRZ

MVI
LXI
DAD
PUSH
PUSH
MVI
CALL
POP
POP
MOV
ORA
JRZ

MOV
INX
MOV
INX
LDAX
MOV
INX
MVI
STAX
MOV
CPI
POP
JRZ

DJNZ

EXF
D
MpPLOC
M,D
H
M,E
~RC
G03

;GET NEW GOTO ADDRESS

;PUT ADDRESS IN PC LOCATION

;LOW BYTE

; HIGH BYTE

;SEE IF A CR WAS LAST ENTERED

B,NBKPTS
~pTLOC ;POINT TO TRAP STORAGE

B ;SAVE NUMBER OF BREAKPOINTS
H ;SAVE STORAGE POINTER
B,2 ;SET UP TO GET A TRAP ADDRESS
EXPR1 -GET A TRAP ADDRESS
D ;GET THE TRAP ADDRESS INTO (D,E)
H jREGET THE STORAGE ADDRESS
A,D ;INSURE THE TRAP ADDRESS ISN'T ZERO
E
G02

M,E
H
M,D
H
D
M,A
H

;JUMP IF SO

;SAVE THE BREAKPOINT ADDRESS

;SAVE THE INSTRUCTION FROM THE BP ADDR

A,RST OR 8 ;INSERT THE BREAKPOINT
D
AC~C ;REGET THE DELIMITER TO SEE
~ ; IF WE ARE DONE SETTING BREAKPOINTS

B ; UNLOAD THE STACK FIRST
G03 ;YES, JUMP

G01 ;JUMP IF NOT AT BP LIMIT

G03: CALL CRLF
POP H jGET RID OF STACK JUNK
LXIH,RS9
PUSH H
LXI H,REST
SHLD 9 ;SET BREAKPOINT JUMP VECTOR ADDRESS
LXI SH~24 ;FIND REGISTER SET ROUTINE ADDRESS
DAD 1"'
POP D ;ADJUST THE STACK
PCHL jGO TO THE DESIRED PLACE

GENERAL PURPOSE INPUT/OUTPUT ROUTINES

;THESE ROUTINES ALLOW BYTE-BY-BYTE INPUT OR OUTPUT FROM
THE CURRENT CONSOLE DEVICE. THEY ARE INVOKED BY

FIRMWARE LISTING C-11

CP/M MACRO ASSEM 2.0 11009 MOSS 2.2 MONITOR

F24D CDD7FO
F250 C1

F251+ED58

F253+1851

F255 CDD9FO
F258 D1
F259 C1

F25A+ED59
F25C C9

F25D CD86F3
F260 7E
F261 02
F262 CD9BF3

F265+18F9

F267 CDD7FO
F26A E1
F26B 7E
F26C CDF4F5
F26F CDCOF3
F272 D8

F273+280F
F275 FEOA

F277+280D
F279 E5
F27A CDCCFO
F27D D1
F27E E1
F27F 73
F280 79
F281 FEOD
F283 C8
F284 23
F285 23
F286 2B
F287 7D
F288 E607
F28A CCFBF5

F28D+18DC

, THE MONITOR "I" OR "0" COMMAND.

iNPT: CALL EXPR1 'GET INPUT PORT NUMBER
POP B ;GET PORT # INTO C REGISTER
INP E ;READ VALUE INTO E REGISTER

JMPR BITS2 ;GO DO A BINARY PRINT OF THE VALUE

6UPT: CALL EXPR ;GET THE ADDRESS AND DATA FOR OUTPUT
POP D ;DATA VALUE INTO E
POP B ;PORT INTO C
OUTP E ;DO THE ·OUTPUT

RET

MOVE ROUTINE

MOVE:
MOV1 :

THIS ROUTINE EXPECTS THREE PARAMETERS, ENTERED IN THE
SOURCE FIRST BYTE ADDRESS
SOURCE LAST BYTE ADDRESS
DESTINATION FIRST BYTE ADDRESS

CALL
MOV
STAX
CALL
JMPR

EXPR3
A,M
B
HILOXB
MOV1

;GET THREE PARAMETERS
;OET NEXT BYTE
'MOVE IT
;GO INCREMENT

t
CHECK SOURCE POINTER

;NOT THERE YE , GO DO IT AGAIN

SUBSTITUTE ACTION ROUTINE ,
;THIS ROUTINE ALLOWS THE USER TO INSPECT ANY MEMORY LOCATION
; AND ALTER THE CONTENTSt IF DESIRED AND IF THE ADDRESS

IS IN RAM. THE CONTEN S MAY BE LEFT UNALTERED

~UBS:

SUB1:

SUB2:

SUB3:

BY ENTERING A SPACE, COMMA OR A CARRIAGE RETURN. IF
A CARRIAGE RETURN IS ENTERED~ THE ROUTINE IS TERMINATE
IF A SPACE OR COMMA IS ENTER~D, THE ROUTINE
PROCEEDS TO THE NEXT LOCATION AND PRESENTS THE USER
WITH AN OPPORTUNITY TO ALTER IT.

CALL
POP
MOV
CALL
CALL
RC
JRZ

CPI
JRZ

PUSH
CALL
POP
POP
MOV
MOV
CPI
RZ
INX
INX
DCX
MOV
ANI
CZ
JMPR

EXPR1
H
A,M
DASH1
PCHK

SUB2

LF
SUB3

H
EXF
D
H
M,E
~BC

H
H
H
A,L
7
LADRB
SUB1

'GO GET ONE PARAMETER
;GET THE START ADDRESS
;GET THE CONTENTS OF THE ADDRESS
;DISPLAY IT ON CONSOLE AND A DASH
;GET CHECK CHARACTER
;DON~ IF CARRIAGE RETURN
;NO CHANGE IF BLANK OR ,

;SEE IF PREVIOUS BYTE WANTED
;YES, DO IT

'SAVE MEMORY POINTER
~GO GET REST OF NEW VALUE
;NEW VALUE TO E REGISTER
;RESTORE MEMORY POINTER
;PUT DOWN NEW VALUE
'GET THE DELIMITER
;SEE IF DONE (CARRIAGE RETURN)
;YES RETURN TO MONITOR
-NO 'INCREMENT MEMORY POINTER
;ALtOW A FALL-THROUGH ON THE NEXT INST
;ADJUST (H~L) AS APPROPRIATE
;GET LO ADvRESS BYTE
-SEE IF ON A BOUNDARY
;CALL IF ON THE BOUNDARY
;GO DO THE NEXT LOCATION

C-12 FIRMWARE LISTING

CP/M MACRO ASS EM 2.0 11010 MOSS 2.2 MONITOR

MTEST ROUTINE TESTS A SPECIFIED BLOCK OF MEMORY TO
SEE IF ANY HARD DATA BIT FAILURES EXIST. IT IS
NOT AN EXHAUSTIVE TEST+ BUT JUST A QUICK INDICATION
OF THE MEMORY'S OPERAT~VENESS.

F2BF CDA4F6 MTEST: CALL EXLF
F292 7E MTEST1: MOV ASM ;READ A BYTE
F29~ F5- PUSH P W 'SAVE IT
F29 2F CMA ;COMPLEMENT IT
F295 77 MOV M,A 'WRITE IT
F296 AE XRA M ;RESULT SHOULD BE ZERO
F297 C4A1F2 CNZ BITS ;LOG ERROR IF NOT
F29A F1 MTEST2: POP PSW ;RESTORE ORIGINAL BYTE
F29B 77 MOV M A·
F29C CD9CF3 CALL HiLOX ;POINT TO NEXT AND SEE IF DONE

JMPR MTEST1 ;NO, CONTINUE
F29F+1BF1

F2A1 D5 BITS: PUSH D ;SAVE (D E)
F2A2 5F MOV E A .. SAVE ERROR PATTERN IN E
F2A~ CDFBF5 CALL LADRB ;FIRST PRINT THE ADDRESS
F2A 060B BITS2: MVI B,B ;LOOP CONTROL FOR B BITS
F2AB 7B BITS1: MOV A,E ;GET NEXT BIT
F2A9 07 RLC ; INTO CARRY
F2AA 5F MOV E A 'SAVE REST
F2AB 3E1B MVI A; '0' /2 ~BUILD ASCII 1 OR 0
F2AD 17 RAL ; CARRY DETERMINES WHICH
F2AE 4F MOV C A jNOW, OUTPUT IT
F2AF CD09FO CALL C6NOUT

DJNZ
F2B2+10F4

BITS1 ;DO IT AGAIN

F2B4 D1 POP D
F2B5 C9 RET

EXAMINE REGISTERS COMMAND INSPECTS THE VALUES OF THE
THE REGISTERS STORED BY THE LAST ENCOUNTERED BREAKPOINT.
THE VALUES MAY BE MODIFIED IF DESIRED.

F2B6 23 XAA: INX H ;SKIP OVER TO NEXT ENTRY
F2B~ 2~ INX H
F2B 3 XA: INR M ;SEE IF AT END OF TABLE
F2B9 CB RZ ;COULDN'T FIND MATCH

A
QUIT

F2BA F2C1F2 JP XAB ;SORT OUT EIT 7 OF T BLE
F2BD F6BO ORI BOH ;SET IT ON TEST VALUE

JNPR XAC
F2BF+1B02
F2C1 E67F XAB: ANI 7FH ;RESET BIT 7
F2C~ 35 XAC: DCR M ;TO BE PULLED OUT IN ROM
F2C BE CMP M ;SEE IF THIS IS IT

JRNZ XAA ;NO, GO TRY AGAIN
F2C5+20EF
F2C7 CDFEF5 CALL BLK ;YES~ PREPARE TO SHOW CURRENT VALUE
F2CA CD15F3 CALL PRTVAL ;GO RINT THE VALUE
F2CD CDF7F5 CALL DASH ;PROMPT A NEW VALUE
F2DO CDCOF3 CALL PCHK ;GET THE INPUT
F2D3 DB RC 'DONE IF CARRIAGE RETURN

JRZ XF ;JUMP IF NO CHANGE DESIRED
F2D4+2B12
F2D6 E5 PUSH H ;TO BE CHANGED, SAVE POINTER
F2D7 CDCCFO CALL EXF ;GET THE NEW VALUE
F2DA E1 POP H ; INTO (H L)
F2DB 7D MOV A,L ;GET THE N~W LOW BYTE
F2DC 13 INX D ;ADJUST POINTER
F2DD 12 . STAX D 'PUT IT DOWN
F2DE E3 XTHL ;RECOVER THE TABLE POINTER
F2DF 7E MOV A,M ;GET THE ATTRIBUTES
F2EO E3 XTHL ;SET THE STACK STRAIGHT

FIRMWARE 'LISTING

CP/M MACRO ASSEM 2.0

F2E1 07

11011

RLC
JRNC

F2E2+3003
F2E4 '3
F2E5 7C
F2E6 12
F2E7 E1
F2EB 79
F2E9 FEOD
F2EB CB
F2EC 213DF3
F2EF CDCOF3

F2F2+3BOB

F2F4+2BF9
F2F6 FE27

F2FB+20BE
F2FA 2155F3

F2FD+1BFO

F2FF 7E
F300 4F
F301 3C
F302 CB
F303 FCA9F6
F306 CD09FO
F309 CDF7F5
F30C CD15F3
F30F CDFEF5
F312 23

F313+1BEA.

F315 23
F316 7E
~~~~ ~gd~ 
F31B EB 
F31C 6F 
F31D 2600 
F31F 39 
F320 EB 
F321 7E 
F322 0601 
F324 07 

F325+300E 
F327 04 
F32B 07 

F329+300A 
F32B E5 
F32C 1A 
F32D 67 
F32E 1B 
F32F 1A. 
F330 6F 

~~~1 ~~ 
F333+1001
F335 1A
F336 CDE6F5
F339 1B

XE:
XF:

XMNE:
XMNE1:

INX
MOV
STAX
POP
MOV
CPI
RZ
LXI
CALL
JRC

JRZ

CPI
JRNZ

LXI
JMPR

XG: MOV

,

MOV
INR
RZ
CM
CALL
CALL
CALL
CALL
INX
JMPR

PRTVAL: INX
MOV
ANI
ADI
XCHG
MOV
MVI
DAD
XCHG
MOV
MVI
RLC
JRNC

INR
RLC
JRNC

PUSH
LDAX
MOV
DCX
LDAX
MOV
MOV
POP
DJNZ

PV1: LDAX
PV2: CALL

DCX
DJNZ

MOSS 2.2 MONITOR

XE
jSEE IF B BIT REGISTER
jJUMP IF SO

jREGISTER PAIR, DO OTHER B BITS

jRESTORE THE TABLE POINTER
jSEE IF IT WAS A CR

C-13

H.z.ACTBL
'pc;HK

jDONE IF SO
;GET ADDRESS OF REGISTER LOOK-UP
jFIND OUT WHAT ACTION IS WANTED
;SHOW ALL IF CARRIAGE RETURN

TABLE

XG

XMNE1 jIGNORE BLANKS OR COMMAS

"" -SEE IF PRIMES WANTED
XA ;NO, MUST BE SINGLE REGISTER

H,PRMTB ;YES, SET TABLE ADDRESS
XMNE1 ; AND FIND OUT WHICH ONE

A,M
C,A
A

CRLF
CONOUT
DASH
PRTVAL
BLK
H
XG

H
A.z.M
~r·H

A,M
B,1

PV1

B

PV1

H
D
H,A
D
D
L,A
A,M
H
PV2

D
HEX1
D
PV1

jSEE IF AT END OF TABLE
-DONE IF SO
;START A NEW LINE IF BIT 7 IS SET

;PROMPT FOR A NEW VALUE
;GO PRINT THE VALUE
jFORMATTER
;POINT TO NEXT ENTRY
;DO THE NEXT VALUE

-POINT TO NEXT ENTRY
;GET OFFSET AND ATTRIBUTES BYTE
-ISOLATE THE OFFSET
;ALLOW FOR RETURN ADDRESS
-SWAP POINTERS
;BUILD THE ADDRESS OF THE REG CONTENTS

;RE-SWAP THE POINTERS
;NOW FIND OUT ATTRIBUTES
;SET UP FOR SINGLE REG VALUE

;JUMP IF SINGLE REGISTER VALUE WANTED

;SET UP FOR REGISTER PAIR

jJUMP IF REGISTER PAIR IS NEXT

;SPECIAL CASE FOR MEMORY REGISTER
;BUILD ADDRESS IN (H,L)

;GET THE MEMORY VALUE
;RESTORE (H).L)
;ALWAYS JUMt'

;GET THE REGISTER CONTENTS
-OUTPUT THE VALUE
;ADJUST THE MEMORY POINTER

C-14 FIRMWARE LISTING

CP/M MACRO ASSEM 2.0

F33A+10F9
F33C C9

/1012 MOSS 2.2 MONITOR

F33D C115
F33F 4213
F3Li1 4312
F343 4Li11
F345 4510
F347 4614
F349 4831
F34B 4C30
F34D CDF1
F34F 50B4
F351 5397
F353 4903

F355 C109
F357 420B
F359 430A
F35B 4LiOD
F35D 450C
F35F 4608
F361 480F
F363 4COE
F365 CDCF
F367 5887
F369 5985
F36B 5202
F36D FF

F36E E60F
F370 C690
F372 27
F373 CE40
F375 27
F376 4F
F377 C9

F378 CDF7F5
l:i'37B CD8FF6
F37E C5
F3~F 4F
F3 0 CD09FO
F38~ 79
F38 C1
F385 C9

F386 04
F387 CDD9FO
F38A C1
F38B 01
F38C C3AAF6

RET

ACTBL: DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

REST OF Z-80

PRMTB: DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

80H+'A').ALOC
'B' BLOc;
'C' 'CLOC
'0' 'DLOC
'E' 'ELOC
'F"FLOC
'H' 'HLOC
'L' 'LLOC
80H~'M').HLOC+OCOH
'P' PLOc;+80H
, S' : SLOC+80H
'I' ,ILOC

REGISTER OFFSETS

80H+'A'6APLOC
'B' BPL C
'C"CPLOC
'D' : DPLOC
'E' EPLOC
'F' 'FPLOC
'H"HPLOC
'L' :LPLOC
80H+'M').HPLOC+OCOH
'X' ,XLOc;+80H
'Y' ,YLOC+80H
'R' RLOC
OFFH

GENERAL PURPOSE ROUTINES

ROUTINE CONV CONVERTS THE LOW ORDER NIBBLE OF THE
ACCUMULATOR TO ITS ASCII EQUIVALENT. IT
PUTS THE RESULT INTO C FOR LATER OUTPUT.

CONV: ANI OFH ;STRIP OFF BITS 4-7
ADI 90H jPUT ON THE ASCII ZONE
DAA
ACI 40H
DAA
MOV C,A ;PUT IN OUTPUT PASS REGISTER
RET

ROUTINE ECHO READS A BYTE FROM A HALF-DUPLEX CONSOLE
DEVICE~ THEN ECHOES THE CHARACTER BACK TO THE
CONSOL~.

DECHO: CALL DASH ;PRINT A DASH
ECHO: CALL CONI ;CONSOLE READ, WRITE ROUTINE
ECH1 : PUSH B ; SAVE (B C)

MOV C A ; PASS CHARACTER IN C REGISTER
CALL C6NOUT ; OUTPUT IT
MOV A,C PUT CHARACTER BACK INTO A
POP B RESTORE (B,C)
RET

ROUTINE EXPR3 GETS THREE PARAMETERS, DOES A CTRH~ LpFARAAMNDETERS. THEN LOADS (B,C), (D,E), AND (H,L) WITH ~

EXPR3: INR B ;2 IS ALREADY IN THE B REGISTER
CALL EXPR -GET THE PARAMETERS
POP B ;PUT PARAMETERS INTO REGISTERS
POP D
JMP CRLFA ;GO DO THE CARRIAGE RETURN SEQUENCE

FIRMWARE LISTING C-15

CPIM MACRO ASS EM 2.0 /1013 MOSS 2.2 MONITOR

F3BF 23
F390 7C
F391 B5
F392 37
F393 CB
F394 7B
F395 95
F396 7A
F397 9C
F39B C9

F399 D1
F39A C9
F39B 03
F39C CDBFF3

F39F+3BFB
F3A1 CD12FO
F3A4 B7
F3A5 CB
F3A6 CDBFF6
F3A9 FE13

F3AB+20EC
F3AD C3BFF6

F3BO D630
F3B2 DB
F3B3 FE17
F3B5 3F
F3B6 DB
F3B7 FEOA
F3B9 3F
F3BA DO
F3BB D607
F3BD FEOA
F3BF C9

F3CO CD7BF3
F3C3 FE20
F3C5 CB
F3C6 FE2C
F3CB CB

ROUTINE HILO INCREMENTS (H L). IT THEN CHECKS FOR (AND
DISALLOWS) A WRAP-AROUND SITUATION. IF IT OCCURS,
THE CARRY BIT WILL BE SET ON RETURN. IF NO WRAP
AROUND OCCURRED~ (HLL) IS COMPARED TO (D,E) AND
THE FLAG BITS S~T ACCORDINGLY.

HILO: INX
MOV
ORA
STC
RZ

H
A,H
L

MOV A,E
SUB L
MOV A,D
SBB H

jINCREMENT (H,L)
jTEST IF ZERO
j IN (H L)
jSET CAR~Y FOR (H,L)=O
jRETURN IF (H L) = 0
;COMPARE (H,Lj TO (D,E)

RET jRETURN WITH FLAGS SET

RO~#I~~u~t~0~Eiff~~~M~~~~R6r'~6'T2~M~~~~~O~TEi~c~¥f~~.AND
OTHERWIS~, CONTROL RETURNS TO THE CALLING ROUTINE.

RILOD: POP D jGET RID OF RETURN ADDRESS
RET jRETURN TO MONITOR

HILOXB: INX B -INCREMENT (B,C)
HILOX: CALL HILO ;INC AND CHECK (H,L)

JRC

CALL
ORA
RZ
CALL
CPI
JRNZ

JMP

HILOD

CONST
A

CONI
CTRLS
HILOD

CONI

jDONE IF CARRY· SET

jSEE IF CONSOLE BREAK PENDING

jNONE
f

RETURN TO CONTINUE
jSEE ~F WAIT OR BREAK

jJUMP IF BREAK

;GO WAIT FOR NEXT CHARACTER

ROUTINE NIBBLE CONVERTS THE ASCII CHARACTERS 0-9 AND
A-F TO THEIR EQUIVALENT HEXADECIMAL VALUE. IF
THE CHARACTER IS NOT IN RANGE, THE CARRY BIT IS SET TO
FLAG THE ERROR.

NIBBLE: SUI
RC
CPI
CMC
RC
CPI
CMC
RNC
SUI
CPI
RET

'0' jASCII TO HEX CONVERSION
; DONE IF OUT OF RANGE

'G'-'O' ;CHECK UPPER 'END
j TOGGLE THE CARRY BIT
, DONE IF OUT OF RANGE

'9'-'0'+1 -SEE IF NUMERIC
tOGGLE THE CARRY BIT
DONE IF SO

'A'-'9'-i -SUBTRACT THE ALPHA BIAS
10 SET CARRY FOR INVALID CHAR

ROUTINE PCHK READS A CHARACTER FROM THE CONSOLE, THEN
CHECKS IT FOR A DELIMITER. IF IT IS NOT

, ,
PCHK:
P2C:

A DELIMITER A NON-ZERO CONDITION IS RETURNED.
IF IT IS A DELIMITER, A ZERO CONDITION IS RETURNED.
FURTHER~ IF THE DELIMITER IS A CARRIAGE RETURNt THE CAR~Y BIT IS SET. A BLANK OR A COMMA RESE S
THE CARRY BIT.

CALL
CPI
RZ
CPI
RZ

ECHO , ,
, , ,

jGET, TEST FOR DELIMITER
j BLANK?
; YES, DONE

NO). COMMA?
YE~, DONE

C-16 FIRMWARE LISTING

CP/M MACRO ASSEM 2.0

F3C9 FEOD

/1014

CPI
STC
RZ
CMC
RET

MOSS 2.2 MONITOR

CR NOA CARRIAGE RETURN?
SHuW IT IN CARRY BIT
DONE IF CR

F3CB 31
F3CC C8
F3CD 3F
F3CE C9

F3CF E5
F3DO D5
F3D1 C5
F3D2 F5
F3D3 CD6FFO
F3Do EB
F3D1 210AOO
F3DA 39
F3DB 0604
F3DD EB
F3DE 2B
F3DF 12
F3EO 2B
F3E1 73
F3E2 D1

F3E3+10F9
F3E5 C1
F3E6 OB
F3E1 F9
F3E8 212500
F3EB 39
F3EC D5
F3ED 1602
F3EF 1E
F3FO 91

~~~~ 7~ 
F3F3 98 

F3F4+2806 
F3F6 23 
F3F1 23 
F3F8 15 

F3F9+20F4 
F3FB 03 
F3FC 212000 
F3FF D1 
F400 39 
F401 13 
F402 23 
F403 12 
F404 C5 
F405 OE2A 
F407 CD09FO 
F40A D1 
F40B 3EF4 
F40D BA 

F40E+2809 
F410 23 
F411 23 
F412 13 
F413 23 
F414 12 

;CLEAR CARRY FOR NO DELIMITER 

ROUTINE REST TRAPS ALL OF THE REGISTER CONTENTS WHENEVER A 
RESTART 1 INSTRUCTION IS EXECUTED. THE TRAPPED CONTEN 
ARE STORED IN THE SYSTEM STACK AREA FOR LATER ACCESS A 
USE BY THE GOTO AND THE EXAMINE REGISTERS COMMANDS. 

, INSERT INTERRUPT DISABLER SOFTWARE AT START OF REST: 
REST: PUSH H ;SAVE ALL THE REGISTERS 

PUSH D 

RS1: 

RS2: 

RS3: 

RS4: 
RS5: 

PUSH B 
PUSH PSW 
CALL MEMSIZ ;GET THE MONITOR'S STACK LOCATION 

-GO UP 10 BYTES IN THE STACK 
XCHG 
LXI 
DAD 
MVI 
XCHG 
DCX 
MOV 
DCX 
MOV 
POP 
DJNZ 

POP 
DCX 
SPHL 
LXI 
DAD 
PUSH 
MVI 
MOV 
SUB 
INX 
MOV 
SBB 
JRZ 

INX 
INX 
DCR 
JRNZ 

INX 
LXI 
POP 
DAD 
MOV 
INX 
MOV 
PUSH 
MVI 
CALL 
POP 
MVI 
CMP 
JRZ 

INX 
INX 
MOV 
INX 
MOV 

H 
M,D 
H 
M,E 
D 
RS1 

; TO SKIP OVER TEMP REGISTER SAVE 
;PICK OFF THE REGISTER VALUES 

;SAVE IN WORK AREA 

B ;GET THE BREAKPOINT LOCATION 
B 

-SET THE MONITOR STACK 
~pTLOCX ;SET UP TO RESTORE BREAKPOINTS 

D 
D,NBKPTS ;LOOP CONTROL FOR N BREAKPOINTS 
A,M 
C ;SEE IF A SOFTWARE TRAP 
H 
A,M 
B ; MAYBE , TRY REST OF ADDRESS 
RS5 ;FOUND ONE, JUMP TO RESET IT 

H ;NOT FOUND, TRY NEXT ONE 
H 
D 
RS2 

B ;NONE FOUND 
H,LLOCX 
D 
SP 
M,E ;STORE USER (H,L) 
H 
M,D 
B ;SAVE (B,C) 
C ,*, ;TYPE THE BREAK INDICATION 
CONOUT 
D ;REGET THE BREAKPOINT LOCATION 
A,RS9/25o 
D ;SEE IF A RET BREAKPOINT 
RS6 

H 
H 
M,E 
H 
M,D 

;RESTORE USER PROGRAM COUNTER 



FIRMWARE LISTING C-17 

CP/M MACRO ASSEM 2.0 11015 MOSS 2.2 MONITOR 
F415 EB XCHG ;PRINT THE BREAKPOINT LOCATION 
F416 CDE1F5 CALL LADR 
F419 212500 RS6: LXI ~f>TLOCX F41C 39 DAD 
F41D 010002 LXI B NBKPTS*256 
F420 5E RS7: MOV E:M ;RESTORE BREAKPOINTED LOCATIONS 
F421 71 MOV M,C ;RESET SYSTEM BP SAVE AREA 
F422 2g INX H 
F42~ 5 MOV D,M 
F42 71 MOV M,C 
F425 23 INX H 
F426 7B MOV A,E 
F427 B2 ORA D 

JRZ RS8 ;DO NOTHING IF ZERO 
F428+2802 
F42A 7E MOV A,M 
F42B 12 STAX D 
F42C 23 RS8: INX H ;SAME THING FOR OTHER 

DJNZ RS7 ; BREAKPOINT 
F42D+10F1 

F42F+08 
EXAF ;NOW SAVE THE Z-80 UNIQUES 

EXX 
F430+D9 
F431 E5 PUSH H 
F432 D5 PUSH D 
F43~ C5 PUSH B 
F43 F5 PUSH PSW 

PUSHIX 
F435+DDE5 

PUSHIY 
F437+FDE5 

LDAI 
F439+ED57 
F43B 47 MOV B,A 

LDAR 
F43C+ED5F 
F43E 4F MOV C,A 
F4~F C5 PUSH B 
F4 0 C313F1 JMP WINITA ;RETURN TO MONITOR 
F44~ E5 RS9: PUSH H ;RET BREAKPOINT ENCOUNTERED, ADJUST TH 
F44 CF RST 1 ;DO THE BREAKPOINT 
F445 C1 EXIT: POP B 
F446 79 MOV A,C 

STAR 
F447+ED4F 
F449 78 MOV A,B 

STAI 
F44A+ED47 

POP IX 
F44C+DDE1 

POPIY 
F44E+FDE1 
F450 F1 POP PSW 
F451 C1 POP B 
F452 D1 POP D 
F453 E1 POP H 

EXAF 
F454+08 

EXX 
F455+D9 
F456 D1 POP D 
F45~ C1 POP B 
F45 F1 POP PSW 
F459 E1 POP H 
F45A F9 SPHL 
F45B 00 DB 0 ;PLACE FOR EI 



C-18 FIRMWARE LISTING 

CPIM MACRO ASSEM 2.0 #016 MOSS 2.2 MONITOR 

F45C 210000 LXI H,O 
o F45F C30000 JMP 

F462 = ENDX: EQU $ 

ERROR HANDLERS 

THREE TYPES OF ERRORS ARE DETECTED: A RESTART 
ERRORi AN IIO ASSIGNMENT ERROR; AND CERTAIN PROGRAM 
ERROR~ (DETERMINED BY THE PARTICULAR ROUTINE WHERE 
THE ERROR CONDITION WAS ENCOUNTERED.) EACH CAUSES 
A UNIQUE MESSAGE TO BE PRINTED, THEN DOES A WARM 
INITIALIZATION OF THE MONITOR. THE IIO ERROR 
CAUSES THE IIO ASSIGNMENTS TO BE RESET TO DEFAULT ASSI 

F462 AF tOER: XRA 
STA 
LXI 
JMP 
DB 

A ;SET IOBYTE TO DEFAULT VALUE 
IOBYTE F463 320300 

F466 216CF4 
F469 C3B5F6 
F46C 492F4F2045IOMSG: 

HAIOMSG ;GET ADDRESS OF IIO ERROR MSG 
CuMERR ;GO PROCESS IT 
'IIO ER' ,'R'+80H 

F473 CDE8F6 
F476 BO 
F477 47 
F478 82 
F479 57 
F47A 78 
F47B C9 

F47C OEOD 
F47E CD7CF6 
F481 OEOA 
F483 C37CF6 

F486 CD56F6 
F489 E67F 
F48B C9 

BYTE ROUTINE READS TWO ASCII CHARACTERS FROM THE 
CURRENT PAPER TAPE READER AND ASSEMBLES THEM INTO TWO 
HEXADECIMAL BYTES OF DATA. IT UPDATES A CHECKSUM 
ACCUMULATED IN REGISTER D. 

BYTE: CALL BYT ;GET NEXT BYTE 
ORA E ;COMBINE THEM 
MOV B,A 
ADD D jUPDATE CHECKSUM 
MOV D,A 
MOV A,B ;RESTORE BYTE 
RET 

PEOL: MVI pC6CR 
CALL 
MVI pC

6
LF 

JMP ;GO PUNCH THE OUTPUT 

RIX ROUTINE READS ONE CHARACTER FROM THE CURRENT 
PAPER TAPE READER AND STRIPS OFF THE PARITY BIT. 

RIX: CALL RI 
ANI 7FH 
RET 

F48C 3F3F3FBF QMSG: DB 
F490 4D4F535320LOGMSG: DB 
F49D OD8A DB 

'???', '?'+80H 
'MOSS VERS 2.2' 
CR,LF+80H 

F49F 3EOF 
F4A1 D324 
F4A3 114000 
F4A6 62 
F4A7 6A 
F4A8 DB26 
F4AA A3 

F4AB+28FB 
F4AD DB26 
F4AF 23 
F4BO A3 
F4B1 A3 

INITIALIZATION CODE FOR THE 8250 ASYNCHRONOUS COMMUNICATION 
ELEMENT. THIS CODE WILL INITIALIZE THE BAUD RATE OF THE 
~~60NOA~A~~i ~~ET~~L~g~~D:OR~~iHER82D~~A3B~I~AIIG~T~~T~~~ 
MUST BE ENTERED TO ESTABLISH THE CORRECT BAUD RATE. 

18250: MVI A,OFH ;SET UP THE 8250 
OUT SMDMCT 
LXI D,40H ;SET UP TO TIME THE START BIT 
MOV H,D 
MOV L,D jZEROES TO (HAL) 

18250A: IN SMDMST ;WAIT FOR STAHT BIT 
ANA E 
JRZ 18250A 

18250B: IN 
INX 
ANA 
ANA 

SMDMST ;NOW, TIME THE START BIT DURATION 
H 
E 
E 



FIRMWARE LISTING 

CP/M MACRO ASSEM 2.0 

F4B2 C2ADF4 
F4B5 E5 
F4B6 29 
F4B7 5C 
F4BB 19 
F4B9 19 
F4BA E5 
F4BB 29 
F4BC 29 
F4BD DB20 IB250C: 
F4BF 2B 
F4CO 7D 
F4C1 B4 
F4C2 C2BDF4 
F4C5 E1 
F4C6 3EB3 IB250D: 
F4CB D323 
F4CA 7D 
F4CB D320 
F4CD 7C 
F4CE D321 
F4DO 3E03 
F4D2 D323 
F4D4 AF 
F4D5 D321 
F4D7 D325 
F4D9 CDCEF6 
F4DC E67F 
F4DE FEOD 
F4EO E1 
F4E1 CB 
F4E2 5D 
F4E3 54 
F4E4 CDEEF4 
F4E7 CDEEF4 
F4EA 19 
F4EB E5 

F4EC+1BD8 

, /1017 

JNZ 
PUSH 
DAD 
MOV 
DAD 
DAD 
PUSH 
DAD 
DAD 
IN 
DCX 
MOV 
ORA 
JNZ 
POP 
MVI 
OUT 
MOV 
OUT 
MOV 
OUT 
MVI 
OUT 
XRA 
OUT 
OUT 
CALL 
ANI 
CPI 
POP 
RZ 
MOV 
MOV 
CALL 
CALL 
DAD 
PUSH 
JMPR 

F4EE B7 
F4EF 7C 
F4FO 1F 
F4F1 67 
F4F2 7D 
F4F3 1F 
F4F& 6F 
F4F5 C9 

DIV2: ORA 
MOV 
RAR 
MOV 
MOV 
RAR 
MOV 
RET 

MOSS 2.2 MONITOR 

IB250B 
H 
H 
E,H 
D 
D 
H 
H 
H 
SDATA 
H 
A,L 
H 
IB250C 
H 
A,B3H 
SLCTRL 
A L 
SDATA 
A H 
SINTEN 

~t~TRL 
A 
SIN TEN 
SLSTAT 
TTYIN 
7FH 
ODH 
H 

E,L 
D H 
DIV2 
DIV2 
D 
H 
IB250D 

A 
A,H 

H,A 
A,L 

L,A 

jSAVE COUNT IN CASE OF 4 MHZ 
jPREPARE THE 2 MHZ DIVISOR 
;SET UP THE FUDGE FACTOR 
;APPLY THE FUDGE FACTOR 

-SAVE FOR LATER USE 
;WAIT FOR B BIT TIMES 

;WASTE SOME TIME 

-REGET 2 MHZ DIVISOR 
;SET DIVISOR REGISTER ACCESS 

;SET THE DIVISOR 

;SET DATA REGISTER ACCESS 

;DISABLE INTERRUPTS 

jAND RESET ERROR FLAGS 
-GET A CHARACTER 
!STRIP OFF ANY PARITY BIT 
;SEE IF IT IS A CARRIAGE RETURN 
-SET THE STACK STRAIGHT 
;DONE IF CARRIAGE RETURN RECEIVED 
;ELSE, MUST BE 4 MHZ SYSTEM 
; SO, COUNT=COUNT*5/4 

;GO SET THE NEW DIVISOR 

;CLEAR THE CARRY BIT 
JDO A 16-BIT RIGHT SHIFT 

C-19 

EOF ROUTINE PUNCHES AN END OF FILE RECORD (INTEL HEX 
FORMAT) ONTO THE CURRENTLY ASSIGNED PAPER TAPE PUNCH 
DEVICE. AN ENTRY POINT ADDRESS FOR THE FILE WILL ALSO 
BE PUNCHED, IF SPECIFIED. 

F4F6 CDA4F6 
F4F9 D5 
F4FA CDC8F5 
F4FD AF 
F4FE 57 
F4FF CDF6F6 
F502 3E01 
F504 CDFEF6 
F507 AF 
F508 92 
F509 CDFEF6 

F50C+1803 

EOF: CALL EXLF -GET JUMP ADDRESS 
PUSH D ;SAVE THE # OF TRAILER NULLS 

EOFA: CALL PSOR jPUNCH START OF RECORD 
XRA A ;ZERO OUT THE CHECKSUM 
MOV D,A 
CALL peADR ;OUTPUT THE RECORD LENGTH AND EP 
MVI A 1 ;PUNCH RECORD TYPE = 1 
CALL PBYTE 
XRA A 
SUB D ;OUTPUT THE CHECKSUM 
CALL PBYTE 
JMPR LEO jGO DO THE TRAILER 



C-20 FIRMWARE LISTING 

CP/M MACRO ASSEM 2.0 11018 MOSS 2.2 MONITOR 

F50E CDD7FO 
F511 C1 
F512 78 
F513 B1 
F514 41 
F515 OEOO 

F517+2002 
F519 063C 
F51B CDOCFO 

F51E+10FB 
F520 C9 

F521 3A0300 
F524 0604 
F526 217DF1 
F529 11FBFF 
F52C F5 
F52D CDFEF5 
F530 4E 
F531 CD09FO 
F534 CDF7F5 
F53~ F1 
F53 F5 
F539 E5 
F53A 23 
F53B 3C 
F53C E603 

F5~E+20FA 
F5 0 4E 
F541 CD09FO 
F544 E1 
F545 F1 
F546 1F 
F54~ 1F 
F54 19 

F549+10E1 
F54B C9 

F54C CDD7FO 
F54F E1 
F550 E5 
F551 CD86F4 
F554 DE3A 

F556+20F9 
F558 57 
F559 CD73F4 

F55C+2823 

~ LEADER ROUTINE "PUNCHES" SIX INCHES (OR AS SPECIFIED) 
; OF LEADER ON THE PAPER TAPE PUNCH. NULLS ARE PUNCHED 
; TO FORM THE LEADER (OR TRAILER). 

LEADER: CALL EXPR1 ;SEE IF SOME OTHER LENGTH WANTED 
LEO: POP B ;GET THE VALUE 

LE1: 

QUERY 

QUERY: 

QUE1: 

QUE2: 

MOV A,B 
ORA C 
MOV B,C 
MVI C).,O 
JRNZ Lt;1 

MVI 
CALL 
DJNZ 

RET 

B 60 
PONCH 
LE1 

;TEST FOR DEFAULT SELECT 
;MOVE NEW VALUE IN JUST IN 
'GET A NULL CHARACTER 
;JUMP IF NEW VALUE WANTED 

;DEFAULT~ SET 60 NULLS 
'PUNCH ONE NULL 
;KEEP GOING TIL DONE 

CASE 

ROUTINE WILL TELL THE OPERATOR WHAT HIS CURRENT LOGICA 
PHYSICAL PERIPHERAL DEVICE ASSIGNMENTS ARE. NO PARAME 
(OTHER THAN A CARRIAGE RETURN) ARE REQUIRED ON ENTRY. 

LDA IOBYTE ;GET THE ASSIGNMENT CONTROL BYTE 
MVI B,4 ;SET UP FOR FOUR LOGICAL DEVICES 
LXI H,ACT 'ADDRESS OF CONVERSION TABLE 
LXI DSALT-APt ;NEGATIVE OFFSET FOR LOGICAL TABLE 
PUSH P W 
CALL BLK ;FORMAT THE PRINT-OUT 
MOV C,M ~GET THE CURRENT LOGICAL DEVICE CODE 
CALL CONOUT 'OUTPUT IT 
CALL DASH ;OUTPUT A DASH 
POP PSW ;REGET THE CONTROL BYTE 
PUSH PSW ;RESAVE IT 
PUSH H ;SAVE THE TABLE POINTER 
INX H ;ADJUST POINTER TO CURRENT PHYSICAL DE 
INR A 
ANI 3 oBITS 0 AND 1 ARE 0 WHEN ON CURRENT AS 
JRNZ OUE2 ;NOT THERE YET, TRY AGAIN 

MOV C M ;FOUND IT, NOW PRINT IT 
CALL C6NOUT 
POP H 
POP PSW ;GO TO NEXT LOGICAL DEVICE 
RAR ;ADJUST THE IOBYTE 
RAR 
DAD D ;ADJUST THE TABLE POINTER 
DJNZ QUE1 ;GO DO NEXT LOGICAL DEVICE 

RET ;RETURN TO MONITOR 

READ ROUTINE READS AN INTEL HEX FORMAT PAPER TAPE FROM 
THE CURRENT PAPER TAPE READER. IF A NON-ZERO ADDRESS 
IS SPECIFIED IN THE END OF FILE RECORD CONTROL WILL 
BE TRANSFERRED TO THAT ADDRESS. OTHER~ISE, CONTROL 
WILL REVERT TO THE EXECUTIVE. 

READ: CALL EXPR1 ;GET OFFSET BIAS 
REDO: POP H . INTO (H L) 

PUSH H ;SAVE THE BIAS 
RED1: CALL RIX 'READ A BYTE 

SBI f.f ;LOOK FOR START OF RECORD 
JRNZ RED1 ;JUMP TO KEEP LOOKING 

MOV 
CALL 
JRZ 

D,A 
BYTE 
RED3 

;INITIALIZE CHECKSUM 
;GET RECORD LENGTH 
;JUMP IF EOF RECORD 



FIRM~ARE LISTING 

CP/M MACRO ASSEM 2.0 

F55E 5F 

flO 19 

MOV 
CALL 
PUSH 
CALL 
POP 
MOV 
DAD 
CALL 
CALL 
MOV 
CMA 
XRA 
CNZ 
INX 
DCR 
JRNZ 

MOSS 2.2 MONITOR 

E A 
BYTE 
PSW 
BYTE 
B 
G,A 
B 
BYTE 
BYTE 
M,A 

; ELSE ASSUME DATA RECORD 
;GET (OAD ADDRESS HIGH BYTE 
;SAVE IT 

F55F CD73F4 
F562 F5 
F563 CD73F4 
F566 C1 
F561 4F 
F56~ 09 
F569 CD73F4 
F56C CD73F4 
F56F 77 
F570 2F 
r'571 AE 
F572 C4A1F2 
F575 23 
F576 1D 

F577+20F3 
F579 CD73F4 
F57C C209F1 

F57F+18CE 
F581 CD73F4 
F584 67 
F585 CD73F4 
F588 6F 
F589 B4 
F58A D1 
F58B C8 
F58C E9 

F58D CD86F3 
F'590 AF 
F591 47 
F592 B1 

F593+2002 
F595 OE10 
F597 E5 
F59B 09 
F599 B7 

F59A+ED52 
F59C E1 

F59D+3BOA 
F59F D5 
F5AO EB 
F5A1 B7 

F5A2+ED52 
F5A4 23 
F5A5 E3 
F5A6 EB 
F5A7 C1 
F5AB DB 
F5A9 C5 
F5AA D5 
F5AB 50 
F5AC 41 
F5AD CDCBF5 
F5BO 7B 
F5B1 CDF6F6 
F5B4 AF 
F5B5 CDFEF6 
F5BB 7E 

RED2: 

CALL 
JNZ 
JMPR 

M 
BITS 
H 
E 
RED2 

BYTE 
QPRT 
REDO 

;GET LOAD ADDRESS LOW BYTE 
;BUILD ADDRESS IN (B,C) 

;ADD ON THE BIAS 
;SKIP OVER RECORD TYPE 
-GET A DATA BYTE 
;PUT IT INTO MEMORY 
-DO A QUICK CHECK 
; RESULT SHOULD BE ZERO 
;IF ERROR

t 
PRINT ADDRESS AND DATA 

;INCREMEN MEMORY POINTER 
;RECORD LENGTH FOR LOOP CONTROL 
;DO REST OF THE RECORD 

;GET THE CHECKSUM 
-ABORT IF ERROR 
;GO DO NEXT RECORD 

RED3: CALL BYTE ;EOF RECORD
t 

GET ENTRY POINT 
-HIGH BYTE a (H) MOV BHJ,.ATE CALL r ;GET THE LOW BYTE 

MOV L,A 
ORA H ;SEE IF IT IS ZERO 
POP D jRESTORE THE STACK 
RZ ;RETURN TO MONITOR IF EP=O 
PCHL jELSE, GO TO THE ENTRY POINT 

WRITE ROUTINE IS USED TO PUNCH AN INTEL HEX FORMAT 
PAPER TAPE ON THE CURRENT ASSIGNED PUNCH UNIT. 

~RITE: CALL EXPR3 jGET 3 PARAMETERS, DO CRLF 
XRA A ;SEE IF RECORD LENGTH CHANGE 
MOV B,A ;SET HIGH BYTE TO ZERO 
ORA C ;NOW SEE IF CHANGE WANTED 
JRNZ WRI1 ;YES, JUMP AND SET IT UP 

MVI C,16 ;NO, DEFAULT TO 16 BYTES/RECORD 
WRI1: PUSH H ;SAVE MEMORY POINTER 

DAD B ;ADD THE RECORD LENGTH 
ORA A ;CLEAR THE CARRY BIT 
DSBC D ;SEE IF FULL RECORD REMAINS 

POP H ;RESTORE (H L) 
JRC WRI2 ;GO DO A FuLL RECORD 

PUSH D ;SAVE LAST BYTE ADDRESS 
XCHG ;SWAP (DLE) AND (HfL) 
ORA A -RESET THE CARRY B~T 
DSBC D ; FIND II OF BYTE REMAINING 

INX 
XTHL 
XCHG 
POP 
RC 

WRI2: PUSH 
PUSH 
MOV 
MOV 
CALL 
MOV 
CALL 
XRA 
CALL 

WRI3: MOV 

H 

B 

B 
D 
D,B 

~SgR 
A B 
PBADR 
A 
PBYTE 
A,M 

;ADJUST TO INCLUDE LAST BYTE 
-SWAP TOP OF STACK 
;SET (D~E)~ (H,L) TO NORMAL 
-NEW RE~ORv LENGTH TO (B C) 
;DONE IF ZERO LENGTH REC6RD 
;SAVE LOOP COUNT 

-ZERO THE CHECKSUM 
;MOVE LOOP CONTROL TO B 
;PUNCH START OF RECORD 
;GET RECORD LENGTH 
-PUNCH IT 
;PUNCH RECORD TYPE '0' 

;GET NEXT DATA BYTE 

C-21 



C-22 FIRMWARE LISTING 

CP/M ~~CRO ASSEM 2.0 11020 MOSS 2.2 MONITOR 

F5B9 2B 
F5BA C FEF6 

F5BD+10F9 
F5BF AF 
F5CO 92 
F5C1 CDFEF6 
F5C4 D1 
F5C5 C1 

F5C6+1BCF 

F5CB CD7CF4 
F5CB OE3A 
F5CD C37CF6 

F5DO r.DA4F6 
F5D3 E5 
F5D4 19 
F5D5 CDFBF5 
F5DB E1 
F5D9 B7 

F5DA+ED52 

F5DC+1B03 

F5DE CDA9F6 
F5E1 7C 
F5E2CDE6F5 
F5E5 7D 
F5E6 F5 
F5E7 OF 
F5EB OF 
F5E9 OF 
F5EA OF 
F5EB CDEFF5 
F5EE F1 
F5EF CD6EF3 

F5F2+1BOC 

F5F4 CDE6F5 
F5F7 OE2D 

F5F9+1B05 

F5FB 

F5FB CDDEF5 

F5FE OE20 

INX H ;BUMP THE POINTER 
CALL PBYTE -PUNCH THE DATA 
DJNZ WRI3 ;DO REST OF RECORD 

XRA A ;NOW, DO THE CHECKSUM 
SUB D 
CALL PBYTE ;PUNCH IT 
POP D ;RESTORE THE REGISTERS 
POP B 
JMPR WRI1 ;GO DO NEXT RECORD 

; 
PSOR: CALL PEOL 

MVI ~6' : ' JMP 

; HEXN ROUTINE 

~THIS ROUTINE ADDS AND SUBTRACTS TWO HEXADECIMAL 16-BIT 
; UNSIGNED NUMBERS AND DISPLAYS THE RESULTS ON THE 

CONSOLE. 

ImXN: CALL 
PUSH 
DAD 
CALL 
POP 
ORA 
DSBC 

JMPR 

EXLF 
H 
D 
LADRB 
H 
A 
D 

LADR 

-GET THE TWO NUMBERS 
;SAVE IT FOR THE SUBTRACT 
;ADD THEM 
;OUTPUT THEM 
;REGET THE FIRST NUMBER 
;CLEAR THE CARRY BIT 
;DO THE SUBTRACT 

;GO OUTPUT THE RESULT 

, 

ROUTINE LADR PRINTS THE CONTENTS OF (HtL) ON THE 
CURRENT CONSOLE EITHER AT THE S ART OF A NEW 
LINE (EP = LADRA) OR AT THE CURRENT LOCATION (EP 
= LADR). 

LADRA: 
LADR: 

HEX1 : 

HEX2: 

CALL 
MOV 
CALL 
MOV 
PUSH 
RRC 
RRC 
RRC 
RRC 
CALL 
POP 
CALL 
JMPR 

CRLF 
A H 
H~X1 
AJ.L 
P::sW 

HEX2 
PSW 
CONV 
CO 

-START A NEW LINE 
!GET HIGH TWO DIGITS 
!PRINT THEM 
;GET LOW TWO DIGITS 
-SAVE THE LOW DIGIT 
;PUT HIGH NIBBLE INTO BITS 0-3 

;GO PRINT SINGLE DIGIT 
-REGET THE LOW DIGIT 
;GO INSERT ASCII ZONE 
;DO THE CHARACTER OUTPUT 

; ROUTINE DASH TYPES A DASH ON THE CURRENT CONSOLE DEVICE. 

DASH1: CALL HEX1 ;FIRST, PRINT ACCUM AS TWO HEX DIGITS 
DASH: MVI r.c~6'-' -GET AN ASCII DASH 

JMPR ;GO TYPE IT 

IOBYTE HANDLERS 

ORG 

LADRB: CALL 

BLK: MVI 

MOSS+5FBH 

LADRA 

C ' , , 
;OUTPUT (H,L) AS 4 ASCII DIGITS 

;OUTPUT A BLANK 



FIRMWARE LISTING C-23 

CP/M MACRO ASS EM 2.0 11021 MOSS 2.2 MONITOR 

F600 3AO~00 CO: LOA IOBYTE 
F60~ E60 ANI 3 ;ISOLATE CONSOLE ASGT 
F60 CADEF6 JZ TTY OUT jTTY DEVICE ACTIVE 
F60 FE02 CPI 2 
F60A FA62F4 JM CRTOUT ;CRT ACTIVE 
F60D C262F4 JNZ CUS01 jUSER CONSOLE 1 ACTIVE 
F610 3A0300 LO: LDA IOBYTE 
F613 E6CO ANI OCOH ;ISOLATE LIST ASGT 
F61~ CADEF6 JZ TTYOUT jTTY DEVICE ACTIVE 
F61 FE80 CPI 80H 
F61A FA62F4 JM CRTOUT ;CRT ACTIVE 
F61D CA62F4 JZ LPRT -LINE PRINTER ACTIVE 
F620 C362F4 JMP LUSE1 ;USER PRINTER 1 ACTIVE 

F62~ 3A0300 CSTS: LDA IOBYTE 
F62 E60~ ANI 

1TST 
;ISOLATE CONSOLE ASGT 

F628 CAC F6 JZ ;TTY ACTIVE 
F62B FE02 CPI 2 
F62D FA62F4 JM CRTST -CRT ACTIVE 
F630 C262F4 JNZ CUST1 ;USER CONSOLE 1 ACTIVE 

F63~ 3AOaOO BATST: LDA IOBYTE 
F63 E60 ANI OCH ;ISOLATE BATCH ASGT 
F638 CAC6F6 JZ TTST ;TTY ACTIVE 
F6~B FE08 CPI 8 
F6 D FA62F4 JM PTRST jPAPER TAPE READER ACTIVE 
F'6 0 CA62F4 JZ RUST1 jUSER READER 1 ACTIVE 
F643 C362F4 JMP RUST2 jUSER READER 2 ACTIVE 
,F646 3A0300 CT · LDA IOBYTE ~" 

F649 E603 ANI 3 ;ISOLATE CONSOLE ASGT 
F64B CACEF6 JZ TTYIN ;TTY DEVICE ACTIVE 
F64E FE02 CPI 2 
F650 FA62F4 JM CRTIN -CRT ACTIVE 
F653 C262F4 JNZ CUSI1 ;USER CONSOLE 1 ACTIVE 
F656 3A0300 RT. LDA IOBYTE ~" 

Fg5~ E60C ANI OCH ;ISOLATE BATCH ASGT 
F 5 CACEF6 JZ TTYRDR ;TTY ACTIVE 
F65E FE08 CPI 8 
F660 FA62F4 JM PTRIN ;PAPER TAPE READER ACTIVE 
F66~ CA62F4 JZ RUSI1 jUSER READER 1 ACTIVE 
F66 C362F4 JMP RUSI2 ;USER READER 2 ACTIVE 
F669 3A0300 LSTAT: LDA IOBYTE 
F66C E6CO ANI OCOH ;ISOLATE THE LIST DEVICE ASSIGNMENT 
F66E CAD6F6 JZ TTOST 
F671 FE80 CPI 80H 
F67~ FA62F4 JM CRTOST 
F67 CA62F4 JZ LPRST 
F679 C362F4 JMP LUST1 
F67C 3A0300 PO: LDA IOBYTE 
F6~F E6~0 ANI 

1
0H jISOLATE PUNCH ASGT 

F6 1 CA EF6 JZ TPNCH ;TTY ACTIVE 
F684 FE20 CPI 20H 
F686 FA62F4 JM HSP jHIGH SPEED PUNCH ACTIVE 
F689 CA62F4 JZ PUS01 jUSER PUNCH 1 ACTIVE 
F68C C362F4 JMP PUS02 ;USER PUNCH 2 ACTIVE 

, ROUTINE CONI READS THE CONSOLE AND STRIPS OFF THE ASCII , PARITY BIT. 

F68F CD46F6 CONI: CALL CI "GET THE NEXT CHARACTER 
F692 E67F ANI 7FH ;STRIP OFF THE PARITY BIT 
F694 C9 RTS: RET 



C-24 FIRMWARE LISTING 

CP/M MACRO ASSEM 2.0 /1022 MOSS 2.2 MONITOR 

F695 CDA9F6 
F698 C5 
F699 4E 
F69A CDOOF6 
F69D 23 
F69E 79 
F69F 07 

F6AO+30F7 
F6A2 C1 
F6A3 C9 

F6A4 CDD9FO 
F6A7 D1 
F6A8 E1 

F6A9 E5 
F6AA 21C2F6 
F6AD CD98F6 
F6BO E1 
F6B1 C9 

F6B2 21BBF6 
F6B5 CD95F6 
F6B8 C30000 

ROUTINE PRTWD PRINTS AN ASCII STRING ONTO THE CONSOLE. 
THE STRING MUST BE TERMINATED BY BIT 7 SET IN THE 
LAST CHARACTER OF THE STRING. THE STRING WILL START 
A NEW LINE (EP = PRTWD) OR CONTINUE ON THE SAME 
LINE (EP = PRTWA) 

PRTWD: CALL CRLF ;START A NEW LINE 
PRTWA: PUSH B -SAVE (B C) 
PRTA: MOV Cc6M ; GET NEXT CHARACTER FROM MEMORY 

CALL -OUTPUT IT 
INX H ;INCREMENT MEMORY POINTER 
MOV A, C 

;TEST FOR BIT 7 DELIMITER 

PRTB: 

RLC 
JRNC 

POP 
RET 

PRTA ;NO DELIMITER, GO DO NEXT CHARACTER 

B ;RESTORE (B,C) 

~ ROUTINE EXLF READS TWO PARAMETERS, PUTS THEM INTO THE 
DfE AND H,L REGISTERS, THEN DOES A CARRIAGE RETURN, 
L~NE FEED SEQUENCE. 

EXLF: CALL 
POP 
POP 

EXPR 
D 
H 

jGO GET TWO PARAMETERS 

ROUTINE CRLF GENERATES A CARRIAGE RETURN, LINE FEED 
SEQUENCE ON THE CURRENT CONSOLE TO START A NEW LINE 
IT INCLUDES TRHEE NULL CHARACTERS FOR TTY TYPE 
DEVICES FOR THE HEAD MOVEMENT TIME. 

CRLF: PUSH H ;SAVE THE CONTENTS OF (HAL) 
CRLFA: LXI HLCRMSG ;ADDRESS OF CR,LF MESSAG~ 

CALL P~TWA ; OUTPUT IT 
POP H jRESTORE (H,L) 
RET 

RSTER: LXI 
COMERR: CALL 

JMP 

HLRSTMSG IGET ADDRESS OF RESTART ERROR MSG 
P~TWD ;¥RINT IT ON NEW LINE 
WSVEC ;GO TO WARM BOOT 

F6BB 5253542045RSTMSG: DB 'RST ER' 'R'+80H 
F6C2 ODOA0080 CRMSG: DB CR,LF,0,80H 

F6C6 DB25 
F6C8 E601 
F6CA C8 
F6CB C6FE 
F6CD C9 

F6CE DB25 
F6DO 1F 

F6D1+30FB 
F6D3 DB20 
F6D5 C9 

F6D6 DB25 
F6D8 E620 
F6DA C8 
F6DB C6BF 
F6DD C9 

F6DE DB25 
F6EO E620 

, 
; IIO DRIVERS FOR THE 8250 ASYNC COMM ELEMENT 

TTST: IN SLSTAT ;GET 8250 LINE STATUS 
ANI 1 ;SEE IF RECEIVE DATA AVAILABLE 
RZ -RETURN IF NOT 
ADI OFEH ;FLAG THAT DATA IS AVAILABLE 
RET 

TTYIN: IN 
RAR 
JRNC 

IN 
RET 

TTOST: IN 
ANI 
RZ 
ADI 
RET 

TTYOUT: IN 
ANI 
JRZ 

SLSTAT 

TTYIN 

SDATA 

SLSTAT 
20H 

OBFH 

SLSTAT 
20H 
TTYOUT 

-GET 8250 LINE STATUS 
;MOVE RX DATA READY BIT INTO CARRY 
jLOOP UNTIL DATA IS IN 

;READ THE DATA 

;GET 8250 LINE STATUS 
;ISOLATE TX BUFFER EMPTY BIT 
;RETURN IF NOT EMPTY 
;FLAG THE EMPTY STATE 

;GET 8250 LINE STATUS 
·ISOLATE THRE BIT 
;WAIT UNTIL ONE OF THE REGISTERS EMPTI 



FIRMWARE LISTING C-25 

CP/M MACRO ASSEM 2.0 

F6E2+28FA 
F6E4 79 

11023 MOSS 2.2 MONITOR 

F6E5 0320 
F6E7 C9 

F462 = 
F462 = 
F462 = 
F462 = 
F462 = 
F462 = 
F462 = 

F6DE = 
F462 = 
F462 = 
F462 = 
F462 = 

F462 = 
F462 = 
F462 = 
F462 = 

F6CE = 
F462 = 
F462 = 
F462 = 
F462 = 
F462 = 
F462 = 
F6E8 CDFOF6 
F6EB 07 
F6EC 07 
F6ED 07 
F6EE 07 
F6EF 47 
F6FO CD86F4 
F6F3 C3BOF3 

F6F6 CDFEF6 
F6F9 7C 
F6FA CDFEF6 
F6FD 70 

F6FE F5 
F6FF OF 
F700 OF 
F701 OF 
F702 OF 
F703 CD6EF3 
F706 CDOCFO 

MOV 
OUT 
RET 

AS~CATA jMOVE THE DATA OVER 
v ;OUTPUT THE DATA 

EQUATES FOR ADDITIONAL CONSOLE DEVICES 

CRTIN: EQU 
CRTOUT: EQU 
CRTST: EQU 
CRTOST: EQU 
CUSI1: EQU 
CUS01: EQU 
CUST1: EQU 

IOER 
IOER 
IOER 
IOER 
IOER 
IOER 
IOER 

;UNASSIGNED CRT OUTPUT STATUS 
·UNASSIGNED USER CONSOLE (INPUT) 
;UNASSIGNED USER CONSOLE (OUTPUT) 

EQUATES FOR 

TTPNCH: EQU 
HSP: EQU 
HSPST: EQU 
PUS01: EQU 
PUS02: EQU 

ADDITIONAL PAPER TAPE PUNCH DEVICES 

TTYOUT 
IOER 
IOER 
IOER 
IOER 

·UNASSIGNED TELETYPE PUNCH 
!UNASSIGNED HIGH SPEED PUNCH 
;UNASSIGNED HIGH SPEED PUNCH STATUS 
jUNASSIGNED USER PUNCH 1 
;UNASSIGNED USER PUNCH 2 

EQUATES FOR ADDITIONAL LIST DEVICES 

LPRT: EQU IOER ;UNASSIGNED LINE PRINTER 
LPRST: EQU IOER ;UNASSIGNED PRINTER STATUS 
LUSE1: EQU IOER ;LIST DEVICE 1 
LUST1: EQU IOER jLIST DEVICE 1 STATUS 

EQUATES FOR ADDITIONAL PAPER TAPE READER DEVICES 

TTYRDR: 
PTRIN: 
PTRST: 
RUSI1 : 
RUST1 : 
RUSI2: 
RUST2: 
BYT: 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

CALL 
RLC 
RLC 
RLC 
RLC 

TTYIN 
IOER 
IOER 
IOER 
IOER 
IOER 
IOER 
RIBBLE 

;UNASSIGNED TELETYPE PAPER TAPE READER 
jUNASSIGNED HIGH SPEED PAPER TAPE READ 
-UNASSIGNED HS PTR STATUS 
;UNASSIGNED PAPER TAPE READER 1 
jUNASSIGNED PAPER TAPE READER 1 (STATU 
jUNASSIGNED PAPER TAPE READER 2 
;UNASSIGNED PAPER TAPE READER 2 (STATU 
;READ AND CONVERT ONE CHARACTER 
;SHIFT INTO HIGH NIBBLE 

MOV B,A ;SAVE IN B TEMPORARILY 
RIBBLE: CALL RIX ·READ A CHARACTER 

JMP NIBBLE ;GO CONVERT TO HEX DIGIT 

; PADR ROUTINE PUNCHES (H,L) AS FOUR ASCII CHARACTERS. 
IT IS USED TO PUT THE ADDRESS INTO AN INTEL HEX 
FORMAT RECORD. 

PBADR: CALL PEYTE 
PADR: ~~~L ~B~TE 
. MOV A,L 
; PBYTE ROUTINE PUNCHES (A) AS TWO ASCII CHARACTERS ON 
; THE CURRENT PUNCH DEVICE. 

PBYTE: PUSH PSW ·SAVE THE BYTE 
RRC ;DO HIGH NIBBLE FIRST 
RRC 
RRC 
RRC 
CALL 
CALL 

CONV 
PUNCH 

jCONVERT TO ASCII 
;PUNCH IT 



C-26 

CP/M MACRO ASSEM 2.0 

F709 F1 
F70A F5 
F70B CD6EF3 
F70E CDOCFO 
F711 F1 
F712 82 
F713 57 
F71li C9 

F715 

11024 

POP 
PUSH 
CALL 
CALL 
POP 
ADD 
MOV 
RET 

END 

FIRMWARE LISTING 

MOSS 2.2 MONITOR 

PSW 
PSW 
CONV 
PUNCH 
PSW 
D 
D,A 

-GET LOW NIBBLE 
;RESAVE FOR CHECKSUM 
;CONVERT TO ASCII 
;PUNCH IT 

jUPDATE CHECKSUM 



APPENDIX D 

PARTS LIST, BOARD LAYOUT, SCHEMATIC, SPECIFICATIONS 



PARTS LIST 

QTY REF NO~ 

Capacitors 

2 
12 

1 
6 
1 
1 

C1,3 
C2,7,12,13 

15,C17-23 
C4 
C5,6,8-11 
C14 
C16 

Integratbd Circuits 

1 
2 
2 
1 
1 
2 
1 
1 
1 
3 
2 
3 
1 
3 
1 
1 
1 
7 

1 
6 

1 
1 
1 
1 
2 
1 

U1 
U13,39 
U2,3 
U4 
U5 
U6,7 
U8 
U9 
U10 
U11,18,26 
U12,27 
U14,34,35 
U15 
U16,17,25 
U19 
U20 
U21 
U22,28,29,33,42, 

43,45 
U24 
U30,31,37,40,41, 

44 
U32 
U36 
U38 
U46 
U47,49 
U48 

Resistors 

2 
1 
1 

R 1 ,2 
R3 
R4 

DESCRIPTION 

27pf~ Mica 
~1uf 50v Monolythic 

56pf 500v Mica 
4~7uf 35v Dip Tantalum 
.47uf 50v Monolythic 
33pf Mica 

7404 
74LS04 
75150 
75154 
8250 
74LS136 
2716, 2048 X 8 EPROM 
5623, 256 X 4 ROM 
Z-80 
74LS08 
74LSOO 
74LS74 
74LS175 
74LS02 
78L12, +12V Regulator 
79L12, -12V Regulator 
74LS10 
74LS257 

74LS161 
74LS367 

74LS30 
74LS20 
74LS32 
7805, +5V Regulator 
75453 
555 

470 1/4W 5% 
680 ohm 1/4v.1 5% 
1.5K 1/4W 5% 

D-3 

CCS PART NO~* 

42215-52705 
42034-21046 

42215-55605 
42804-54756 
42034-24746 
42215-53305 

30200-07404 
30000-00004 
30300-00150 
30300-00154 
31200-08250 
30000-00136 
31900-02716 
30900-05623 
31200-38804 
30000-00008 
30000-00000 
30000-00074 
30000-00175 
30000-00002 
32000-17812 
32000-17912 
30000-00010 
30000-00257 

30000-00161 
30000-00367 

30000-00030 
30000-00020 
30000-00032 
32000-07805 
30300-00453 
30900-00555 

40002-04715 
40002-06815 
40002-01525 

* U~e CCS part number when orderin~ spare parts or replacements. 



D-4 

CONTINUED 
QTY REF NO. 

3 R5-7 
2 R8,R15 
1 R9 
1 RIO 
4 Rll-14 
5 Zl-5 

IC Sockets 

20 XUl,6,7,11-14,16-
18,21,25-27, 
32,34-36,38,39 

5 XU2,3,47-49 
18 XU4,9,15,22,24, 

28-31,33,37, 
40-45, J3 

1 XU8 
2 XU5,10 

Miscellaneous 

3 
1 
1 
1 

30 
30 

1 
1 
1 
1 
1 
2 
1 
2 
2 

CRl-3 
J2 
01 
Sl 
Wl-30 
Wl-30 
Yl 
Y2 

DESCRIPTION 

1M 1/4W 5% 
2.7K 1/4W 5% 
1.2K 1/4W 5% 
22 ohm 1/4W 5% 
220 ohm 1/4W 5% 
2.7K X 7 SIP Network 

14-Pin Low Profile 

8-Pin Low Profile 
16-Pin Low Profile 

24-Pin Low Profile 
40-Pin Low Profile 

LED, Rectangular R~d 
Header, 2 x 13 Right Angle 
Transisttir, PN2907 
Switch, Toggle 
Header, 1 x. 3 Straight 
Berg Jumper Plugs 
Crystal, 1.8432 MHz 
Crystal, 16.000 MHz 
Heatsink 
Nut, Hex Kep 6-32 
Screw, 6-32 x 5/16 I, 
Tape, Foam Two-sided 
PC Board, 2810 CPU, -rev A 
Extractor, PCB nonlocking 
Extractor Roll Pins 

PARTS LIST 

CCS PART NO. 

40002-01055 
40002-02725 
40002-01225 
40002-02205 
40002-02215 
40930-72726 

58102-00140 

58102-00080 
58102-00160 

58102-00240 
58102-00400 

37400-00001 
56005-02013 
36100-02907 

"27391-12000 
56004-01003 
56200-00001 
48132-84321 
48231-60003 
60022-00001 
73006-32001 
71006-32051 
60003-00001 
02810-00002 
60010-00001 
60010-00000 



SERI ... L ... DDRESS SELECT 

... DDRESS .... RDR 
SER .... L PORT EN .... LE 

J2 

I RS-232-C SER CONN I 

Yl 

1.8432MHZ 

@ 
C8 

REFRESH EN ... IILE PH ... NTOM EN ... nE 

RO .. EN .... LE 

2/4 .. Hz 
TOGGLE SWITCH 

2810 Z-80 CPU 

MREQ PAD, .. , W ... IT ST ... TE EN .... LE 

W27 

~ 

2/4 11HZ ENA&E 

U15 

POWER-oN .IUIIP 
ADDIIE .. SELECT 

POWER-QN .IUIIP EN ... nE 



SPECIFICATIONS 

2810 z-80 CPU SPECIFICATIONS 

BOARD MEASUREMENTS 

Board: 10 tl L x 5" W 
Connector: 6.35" L x .3" W (2.125" from right of board) 

0.125" pin spacing 
Component Height: less than .5" 
Weight: approximately 11 ounces 

POWER 

Supply: Unregulated 
Maximum power draw: 

Power Dissipation: 

+8, +16, -16 volts 
.650 amps at +8 volts 
.030 amps at +16 volts 
.025 amps at -16 volts 

6.2 watts 

ENVIRONMENTAL REQUIREMENTS 

Temperature: 0 to 70 degrees Celsius 
Humidity: 0 to 90% noncondensing 

D-9 



COMMENT SHEET 

2810 Z-80 CPU MANUAL 
89000-02810A 

Any comments, criticisms, or suggestions you have will be appreciated. 

Name: 
Company: 
Address: 

Position: 

Publications. California Computer Systems 
250 Caribbean Dr .• Sunnyvale, CA 94086 



APPENDIX E 

LIMITED WARRANTY 

California Computer Systems (CCS) warrants to the original 
purchaser of its products that its CCS assembled and tested 
products will be free from materials defects for a period of one 
(1) year, and be free from defects of workmanship for a period of 
ninety (90) days. 

The responsibility of CCS hereunder, and the sole and 
exclusi~e remedy of the original purchas~r for a breach of any 
warranty hereunder, is limited to the correction or replacement 
by CCS at CCS's option, at CCS's service facility, of any 'product 
or part which has been returned to CCS and in which there is a 
defect covered by this warranty; provided, however, that in the 
case of CCS assembled and tested products, CCS will correct any 
defect in materials and workmanship free of charge if the product 
is returned t6 CCS within ninety (90) days of original purchase 
from CCS; and CCS will correct defects in materials in its 
products and restore the product to an operational status for a 
labor charge of $25.00, provided that the product is returned to 
CCS within one (1) year in the case of CCS assembled and tested 
products. All such returned products shall be shipped prepaid 
and insured by original purchaser to: 

Warranty Service Department 
California Computer Systems 

250 Caribbean Drive 
Sunnyvale, California 

94086 

CCS shall have the right 
existence and cause of 
right to "decide whether. 
replaced. 

of final determination as to the 
a defect, and CCS shall have the sole 
the product should be repaired or 

This warranty shall not apply to any product or any part 



E-2 LIMITED WARRANTY 

thereof which has been subject to 

(1) accident, ne~lect, negligence, abuse or misuse; 

(2) any maintenance, overhaul, installation, storage, 
operation, or use, which is improper; or 

(3) any alteration, modification, or repair by anyone 
other than CCS or its authorized representative. 

THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES 
EXPRESSED OR IMPLIED OR STATUTORY INCLUDING THE WARRANTIES OF 
DESIGN, MERCHANTABILITY, OR FITNESS OR SUITABILITY FOR USE OR 
INTENDED PURPOSE AND OF ALL OTHER OBLIGATIONS OR LIABILITIES OF 
CCS. To any extent that this warranty cannot exclude or disclaim 
implied warranties, such warranties are limited to the duration 
of this express warranty or to any shorter time permitted by law. 

CCS expressly disclaims any and all liability arising from 
the use and/or operation of its products sold in any and all 
applications not specifically recommended, tested, or certified 
by CCS, in writing. With respect to applications not 
specifically recommended, tested, or certified by CCS, the 
original purchaser acknowledges that he has examined the products 
to which this warranty attaches, and their specifications and 
descriptions, and is familiar with the operational 
characteristics thereof. The original purchaser has not relied 
upon the judgement or any representations of CCS as to the 
suitability of any CCS product and acknowledges that CCS has no 
knowledge of the intended use of its products. CCS EXPRESSLY 
DISCLAIMS ANY LIABILITY ARISING FROM THE USE AND/OR OPERATION OF 
ITS PRODUCTS, AND SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL OR 
INCIDENTAL OR COLLATERAL DAMAGES OR INJURY TO PERSONS OR 
PROPERTY. 

CCS's obligations under this warranty are conditioned on the 
original purchaser's maintenance of explicit records which will 
accurately reflect operating conditions and maintenance 
preformed on CCS's products and establish the nature of any 
unsatisfactory condition of CCS's products. CCS, at its request, 
shall be given access to such records for substantiating warranty 
claims. No action may be brought for breach of any express or 
implied warranty after one (1) year from the expiration of this 
express warranty's applicable warranty period. CCS assumes no 
liability for any events which may arise from the use of 
technical information on the application of its products supplied 
by CCS. CCS makes no warranty whatsoever in respect to 
accessories or parts not supplied by CCS, or to the extent that 
any defect is attributable to any part not supplied by CCS. 

CCS neither assumes nor authorizes any person other than a 



LIMITED WARRANTY E-3 

duly authorized officer or representative to assume for CCS any 
oth~r ~~~~i~t~y or extension or alteration of this warranty in 
connection with the sale or any'shipment of CCS's products. Any 
such ass~~pt~qq qf liab~l~ty or moq~fication of warranty must be 
in writing and signed 'by such duly authov.ized officer or 
represent~~iy~ tg 9~ ~~fqrqeable. T0ese warr~qt~~s apply to the 
orginal p.~rgqg~~r o~~y, a.nd ~o ~o~ r4n to sueeessGPs, assigns, or 
subsequent purchasers o~ owners; AS TO ALL PERSONS OR ENTITIES 
OTHER THAN T~g O~+G~NA~ PURCHA~~R, ~CS MAKES NO WARRANTIES 
WHATSOEV~ft, E¥P~~S~ ~R ~MP~IED 9R STATqTORY. The term "oniginal 
purchaser" as used in this warranty shall ee Geemed to mean only 
tha~ p~r§qq tg WhQ~ it§ prq~~Qt ~~ or!~~na~1Y sold by CCS. 

Unl~ss qth~rwi~~ Agre~q, !n ~ri~!ngt aBG except as may be 
nec~~~~rY ~o qq~p*y with t~~s ~~rr~q~y, ~C~ veS6Pves the right to 
mak~ ch~nge@ i~ .~~~ pr9d~cts without any obligation to 
inc9rp9r~te ~~QP ghanges in any pro9uct maRufaetuped theretofore. 

This warranty is limited to the terms statee he~ein. CCS 
disclaims ~ll ~~~~!1i~y for ~n9idental or c9Ps~gue~t~al damages. 
Som~ s~~~e~ ~Q P9t ?~~?w l~m~tatiqns on hpw l~ng an im~lied 
warr~pty +~~t@ ang ~om~ d? not ?~low the eX91~sion er- limitation 
of tncidenta~ or P9P~~quen~ial damages so t~e abeve ~imitati0ns 
and ~~Q~~~t9~~ may P9t appl¥ to you .. This warr~nt¥ gives you 
speq~f~p ~eg?! r~ghts, and Y9u may also have other rights which 
vary fr9~ ~t~t~ to state. . -



n.D BB ,,~, f----'<f;---c<I 

cT·eB'~· 

D.nee .~"t--.<.P.;-~ 
RlSDCF .~n 

U5 
8250 

SCHEMATIC D-1 

+i: 
'" ... DO!lll!E55 BUFfER ..., 

,~""~,, ADD DSB 
:.:.:.~~' I 7~~". " 19 AO 

b-------.-------_4_4~~~~----------_.----------_4----------------------------~_r----~~----~--------+_~_+~--~_r------------+_r_----------~--.-------------------------------------------.--_+~--------_..~)~--~~--4~A1 

.. b .. -------.--------4_4_~~~------------~----------~--------------------------~~r_----~----~--------_+~r_+__r-+--r_----------_+_r----------_r~~;------------------------------------------.--+_~--------~DL~--~--~·I A2 
M-~~_+------------------------~------------------------~~+_r_-----.----_+--------_+--r_~~_4--r_----------_+_+----------_+_r+_~~---------------------------------------.--+_~~------~~~---.--~~ A3 
~~_+------------.-----------4_----------------------~_r4_t_r_-----.----_+--------_+--r_+__r-T--r_----------_+_+----------_+~+_~~.-----------------------------------------+_~_+~----ui~+_--~---4)~A4 

H-_+------------.-----------~--------------------_._+_r+_r_r_-----.----_r--------_+~~+__r~--r_----------_+-r-----+-----r~+_~_.~------------------------------------~--+_~_+_+~--~,~----~--~NA5 

rl-------------~----------+_------------------~_+~_r+_~------~----~--------_+_4--+__r--~r_----------_+_r-----.----_r~~_+_+~~----------------------------------~--~_+_+~4_._~~~--~--_4.'A6 

,-----------~----------t_----------------~rt_+_r~+_~------~----_r--------_r~--+_~_r~------------_r_r-----.----_r+-~_+_r_r~~--------------------------------~--~_+_+_r+_t4~~----~---4~A7 

t t 

-~~,,~-------------------------------------------------------, Q 

+Jv tel G 

-~,,-----------------------------------------------, 
~~,--------------~------------------------------_+~+_~r_--~~_+~~~ 

D.~.--------------------~--------------------------+~+-~r---~~ 

XTAL::! • 

ccoooo 
zzcccc 
00»» 

~~~~ 

~ ~'~O
I

",.. .., ...
Q'n ~2~~'~~L~--.-_+~
"'lao. 1'" 7",toc

I~
I~

b------...... AS

f:,--~--~"A9

r;;------.... " A10

f:,--~--~" A11

'=------:> " A 12

~-------:>" A 13

':-__ ---:>n A 15

r-=:''-~-7> STAT OSB

~.r+__r--~r_.---_r+_~~~--~"~"~--~~+_~----_4 •• sHLTA

r=-+~~;:~t=~~~~~~==~~~==~~§t==::====!.' ~ ,~ " sMEMR

~F±~~~~~~~~=F~~:=tl==~~t:.~~==::====:% slNP f,i ., sOUT

k,~+---~+_----~~~~~_rti--lt--ro~:r--~----7% slNTA
L-,I:::.-,--IH--H++-~~')"_I-------~ .. sM 1

~_+~<r--r---~~~----~_+~~_+~----------~~~LO

~~~~~~---+~~------_r~_r~+_~------r---__7"pINT 

U-L--!.(,L--L-_...u ____ ~~~tTmlllt__==_______=_--7" NMI 

L-__ -4 ____ ~---4_r~~_rr+-'~:~uMWRT 

• un 

:~ l~ 
,~.::,T~:um~;~~ i)" DO OSB 

f:.-----7,. 000 

10-----7" 001 

f:,-------'J .. 002 

!;;--------7 .. 003 

':-_---7' " 004 

Io------'J'" 005 

io-----7"'D06 

':---~) .. 007 


