Owner's Manual

Model 2116

16K Static RAM Module

California
Computer
Systems

CCS MODEL 2116 16K STATIC RAM MODULE OWNER'S MANUAL

TABLE OF CONTENTS

FEATURES ii
CHAPTER 1 SETTING THE 2116 JUMPERS
1.1 SETTING THE MEMORY GROUP ADDRESSES 1-1
1.2 SETTING THE BANK BYTE 1-2
1.3 SETTING THE BANK PORT ADDRESS 1-2
1.4 SETTING MEMORY GROUP BANK-INDEPENDENCE 1-3
1.5 SETTING THE BANK RESET JUMPER 1-3
1.6 SETTING THE PHANTOM JUMPER 1-3
1.7 SETTING THE WAIT JUMPER 1-4
1.8 EXAMPLES OF JUMPER SELECTION 1-5
CHAPTER 2 TESTING AND TROUBLESHOOTING THE 2116
2.1 FRONT PANEL QUICK CHECKOUT 2-1
2.2 DIAGNOSTIC TEST OVERVIEW 2-2
2.3 PREPARING DRIVER ROUTINES 2-3
2.4 SETTING UP FOR THE TEST 2-4
2.5 LOADING THE DIAGNOSTIC 2-4
2.6 RUNNING THE DIAGNOSTIC 2-5
2.7 ERROR PRINTOUT INTERPRETATION 2-7
2.8 SAMPLE MEMORY DIAGNOSTIC RUN 2-9
2.9 MEMORY DIAGNOSTIC LISTING 2-10
CHAPTER 3 THEORY OF OPERATION
3.1 MEMORY 3-1
3.2 MEMORY ADDRESSING 3-1
3.3 BANK SELECTION 3-3
3.4 BANK-INDEPENDENCE 3-4
3.5 DATA BUFFERS 3-4
3.6 WAIT STATES 3-5
3.7 RESET 3-5
CHAPTER 4 TECHNICAL INFORMATION
4.1 SCHEMATIC/LOGIC DIAGRAM 4-2
4.2 ASSEMBLY COMPONENT LAYOUT 4-3
4.3 PARTS LIST 4-4
4.4 ADDRESS/CHIP TABLE 4-6
APPENDIX A LIMITED WARRANTY

FEATURES

Uses Popular 2114 Static RAMs
Available with 200,300 , or 450 nsec RAMs
Berg Jumpers Used for Selectable Features
4 K Memory Blocks Individually Addressable to Any 4 K Boundary
Bank Selection by Bank Port and Bank Byte
4 K Blocks Individually Bank-Enabled
LEDs Indicate Board Active and Bank Active States
Wait State Jumper
Phantom Line Capability
Selectable Board-Enable/Disable on Reset
Operates on +8 Volts
Fully Buffered
Meets IEEE Proposed S-100 Signal Standards
Diagnostic Software Included
FR-4 Epoxy PC Board Solder-Masked on Both Sides
Silk Screen of Part Numbers and Reference Designations

CHAPTER 1

SETTING THE 2116 JUMPERS

The CCS 2116 is a 16 K -byte static RAM board designed for use on the $\mathrm{S}-100$ bus. Thirty-two $1 \mathrm{~K} \times 4$-bit static RAM chips are arranged in columns of two in order to provide an 8 -bit byte, and the sixteen 8 -bit columns are divided into 4 -column memory groups A through D. Each memory group is individually addressed and bank-enabled, and up to three memory groups can be buried to reconfigure the board to 4 , 8 , or 12 K . The bank select feature, using a bank port and bank byte, is compatible with Alpha Micro and Cromemco as well as with other systems. Board Active and Bank Active states are indicated by LEDs.

To provide optimum compatibility with a variety of systems, CCS has equipped the 2116 with selectable addressing and several optional features. Selections are hard-wired with reliable, easy-to-use Berg jumpers. The addresses for each of the 4 K memory groups, the bank port address and bank byte, and the bank-dependence or -independence of each memory group are jumper-set by the user to best suit his system. Phantom, Wait, and Reset features can be jumper-enabled as desired. Each jumper-selectable feature is discussed individually below. Further explanation can be found in Chapter 3, "Theory of Operation."

1.1 SETTING THE MEMORY GROUP ADDRESSES

In order to provide maximum flexibility in the location of the 2116's memory groups within a bank, CCS has made the addresses of the four memory groups jumper-selectable. The
jumper-set address for a memory group is compared with the high-order address lines A12-A15, and if the address matches, the memory group will be selected. Set the jumpers of each group to the binary equivalent of the high-order hex digit that specifies the 4 K block of addresses in which you wish to locate the group. For example, the addresses of the block between 16 K and 20 K are $4000 \mathrm{~h}-4 \mathrm{FFFh}$, so you would locate a group in that block by setting its jumpers to 0100. Remember that $A 15$ is the high-order binary digit, so you will set the binary addresses from right to left on the board.

The memory groups are fully prioritized, with A highest and D lowest. This allows you to give two (or more) memory groups the same address. Only the highest-priority group will be selected by that address; the RAMs of the other group(s) will be buried, permanently inaccessible and occupying no memory space until the address jumpers are reset. This allows you to configure the 2116 to 4, 8, or 12 K without removing RAMs.

1.2 SETTING THE BANK BYTE

The bank-byte jumpers allow you to hardware-map the 2116 memory board to whichever of the eight memory bank levels 0-7 you choose. To select a bank level, jumper-set a 1 in the bit that corresponds to the desired bank level and jumper-set all other bits to 0 . For example, to select bank 3 you would set bit D3 to 1 and D0-D2 and D4-D7 to 0 . Remember that on the board high-order is to the right rather than the left.

You may cause the board to be activated with more than one bank by setting the jumpers corresponding to each desired bank to 1.

1.3 SETTING THE BANK PORT ADDRESS

In order to assign the 2116 to a bank, you must output the bank byte to the bank port. Most presentlymarketed $S-100$ products using the bank port / bank byte scheme address the bank port at 40 h . We recommend that you use this bank port address unless you have a strong reason for doing otherwise. Remember that A7 is the high-order bit; thus 40 h is selected by setting jumper $A 6$ to 1 and jumpers $A 0-A 5$ and $A 7$ to 0 .

1.4 SETTING MEMORY GROUP BANK-INDEPENDENCE

Each of the memory groups can be made independent of bank selection, causing it to be enabled whenever it is addressed regardless of which bank is active. This makes it possible, in time-sharing situations, for some groups to be commonly accessible while the remaining bank-dependent groups are reserved for individual users. To make a memory group independent, set its bank-dependence jumper to ME (Memory Enable). To make it bank-dependent, set the jumper to BE (Bank Enable).

1.5 SETTING THE BANK RESET JUMPER

If the Bank Reset jumper is set to B, all 16 K of memory will be enabled each time the power is turned on or the system is reset. If the Reset jumper is set to A, the bankdependent memory groups will be enabled only when the board's bank has been selected. Bank-independent memory groups will be enabled with each reset no matter which position the Bank Reset jumper is set to.

1.6 SETTING THE PHANTOM JUMPER

Setting the Phantom jumper to $O N$ allows a device that generates a -PHANTOM signal to overlay portions of the 2116 memory. For example, CCS peripheral control boards generate Phantom signals when certain ROM locations are addressed; these locations contain code to drive the peripherals. If an identically-addressed location exists on the 2116 board, the Phantom signal will block the output from the 2116 of the contents of that location. This allows you to access the rest of the memory locations within the 4 K block that contains the overlayed portion. Without Phantom capability the 2116 would not be able to locate a memory group in that block because the 2116 and the peripheral control board would both put data on the bus when a shared location was addressed.

Setting the Phantom jumper to OFF disables the -PHANTOM line.

1.7 SETTING THE WAIT JUMPER

The Wait jumper allows you to slow down your processor every time the board is addressed. This will be necessary if your processor allows less memory access time than your RAMs require.

If you have a 2116 with 200 nsec or 300 nsec RAMs, you should not need to enable the Wait feature for use with presently-available microprocessors. If you have the 450 nsec RAMs and a processor that operates at 4 mHz you could, in theory at least, need to enable Wait. You should experiment, however; in most cases the 450 nsec RAMs will work successfully with a 4 mHz processor without a Wait state.

Some Z-80 CPU boards, including the CCS 2810 , provide a jumper-selectable Wait feature. Enabling this feature may be preferable to enabling the 2116 Wait feature. The 2116 Wait causes a Wait state to occur in every memory cycle in which the board is addressed; the CCS CPU Wait feature causes a Wait state to occur during the M1 cycle only. Because memory access time in the M1 cycle is half a clock cycle shorter than in the other machine cycles, a Wait state in this cycle effectively increases the time allowed for memory response without unnecessarily slowing the processor in other memory cycles. If you have memory boards operating at different speeds you probably will want to enable the Wait features as necessary on the slower memories rather than enable the processor Wait. This will allow you to operate at maximum speed with the faster memories. To find out what is best for your system, check your CPU manual and, if you're not sure, experiment.

1.8 EXAMPLES OF JUMPER SELECTION

The first diagram shows jumper settings for a basic CCS system consisting of a 2810 Z-80 CPU, a 2422 disk controller, and the 2116. The bank port address must be 40h. The board is activated with bank 0 as well as on start-up and reset. Memory is located between 0 and 16 K . Phantom and Wait are disabled.

In the last diagram memory groups A and B are bank-independent and located in the last 8 K of memory. Groups C and D reside in bank 2 between 12 K and 20 K . The bank port address is 40 h . Only groups A and B are enabled on start-up and reset. Phantom and Wait are enabled.

CHAPTER 2

TESTING AND TROUBLESHOOTING THE 2116

2.1 FRONT PANEL QUICK CHECKOUT

(If your computer does not have a front panel, skip this section.)

Before powering on the computer, set the 2116 jumpers as follows:

$\stackrel{\text { BANK }}{\text { RESET }}$
WAIT
\square
don't care PHANTOM
OFF ON

The priority feature will cause Group A to be selected. Set the Front Panel Adress Switches A0-A15 to the off position (0000H). Examine that address. Set the Data Switches D1-D7 to the off position and DO to the on position (01H). Deposit (write) into memory and compare the Data readout with the switch settings. Now switch D0 to off and D1 to on, deposit into memory again, and compare the result with the switch settings. Continue the pattern of one Data Switch on and the rest off until all data bits have been checked. If any data does not match the switch settings,
isolate the malfunction with a logic probe or voltmeter before continuing.

After Group A has been checked, power down the computer and set the jumpers of groups B, C, and D to 1 h .

Group B will be selected. Examine 1000 H (A12 on, the rest off), and deposit the same data bytes as was done with Group A. Isolate and correct any malfunctions as they become apparent.

To check Group C, power down the computer and set the jumpers of groups C and D to $2 h$.

Examine 2000 H (A13 on, the rest off), and test as with Groups A and B.

Finally, to test Group D, power down and set the jumpers of group D to 3 h .

Examine 3000 H (A12 and A13 on, the rest off), and test as before. When all malfunctions have been corrected, proceed to the next test.

2.2 DIAGNOSTIC TEST OVERVIEW

These memory diagnostics run on 8080 or $Z-80$ systems and provide a practical test of the 2116 memory board. Two diagnostics are provided: a walking bit test and a burn-in test. The routines have been written so that they do not require RAM other than the system stack and the RAM under test. The routines may be executed from either RAM or ROM.

Diagnostics in general can be divided into three classes: fault detection, fault isolation, and fault correction. These routines perform the fault detection and provide sufficient data for fault isolation. After a fault is isolated, correction is a practical matter.

Errors are displayed on the console device when they are detected. Two formats are used. The first, used by the burn-in test and the first stage of the walking bit test, shows errors as follows:
xx yyyy zz
Each character is a hexadecimal digit; $x x$ is the bad data, yyyy is the address where the bad data occurred, and $z z$ is what the data should have been.

The second stage of the walking bit test logs errors as follows:
wwww xx yyyy zz
Again, each character is a hexadecimal digit; wwww is the address where the error was found, $x x$ is the bad data, yyyy is the address where data was last written, and $z z$ is the last written data.

These error displays provide enough information for the problem to be isolated.

2.3 PREPARING DRIVER ROUTINES

Except for the system-unique input/output drivers, the memory test routines are capable of standing alone. The drivers must be provided by the user. Three routines are needed:

CONIN: Console input. This routine reads one ASCII character from the console keyboard and sets the parity bit (bit 7) equal to 0 . The character is returned in the accumulator (A register).

CONOUT: Console output. This routine writes one ASCII character to the console display device. The character to be output is passed to CONOUT in the C register. If the console output device is sensitive to bit 7, then the user must set/reset bit 7 to what is needed in the CONOUT routine.

CONST: Console status. This routine reads the console input status. If data is not available, then the accumulator is set to 0 and the status flags must match. If data is pending, then a -1 (OFFH) should be returned in the accumulator (A register). The status flags must show at least a non-zero condition on the return.

After these routines have been prepared they must be loaded into memory. To allow the diagnostics to find them, three jump instructions are located at the front of the diagnostic: 0103 H for CONIN, 0106 H for CONOUT, and 0109H for CONST. The user should put the addresses of his I/O routines into these locations. See lines 51, 52, and 53 in the assembly listings.

2.4 SETTING UP FOR THE TEST

When you are ready to begin the test, set the jumpers as illustrated:

At this point you are ready to put the 2116 into the computer. Make sure that no other memory will respond to addresses in the range $4000 \mathrm{H}-0 \mathrm{BFFFH}$.

2.5 LOADING THE DIAGNOSTIC

No special precautions are necessary. Use your standard method to load the routines. Load the diagnostic into your system at location 0100 H . The diagnostic is small enough to fit into the first 1 K of memory. It was assembled
assuming a 16 K block of memory would be available starting at 0000 H ; if less memory is available, the only change necessary is to alter the stack location. The stack is currently initialized to $3 F 76 \mathrm{H}$; a good alternate location would be 0100 H .

2.6 RUNNING THE DIAGNOSTIC

Transfer control of the computer to location 0100 H . The computer will type out:

DIAGNOSTIC:
You can now select which diagnostic you want. Current options are "C" for continuous burn-in or "W" for walking bit test. Any other selection will cause ???? to be displayed, after which "DIAGNOSTIC:" will again be printed. For the initial test, type in W. The computer will respond:

DIAGNOSTIC: WALKING BIT TEST
BLOCK SIZE:
Select a small block size initially. This way the read/write circuitry can be checked out without a flood of error printouts. A block size of 2 is suggested. To terminate entry, type in a space, a comma, or a carriage return. If you type in the wrong number, continue typing in until the last four digits are correct.

The computer will now ask for

BASE ADDRESS:

Type in the desired base address. (Note: The base address must be a multiple of 1024 (0400 H). For the board setup suggested, a base address of 4000 H is indicated.) At this time the diagnostic will do its test. On completion it will type out

TEST DONE

DIAGNOSTIC:
It is now ready for the next test. If errors were logged, see the troubleshooting section and correct the malfunction. Rerun the diagnostic until an error-free run is achieved.

Rerun the walking bit test with a block size of 1 K $(400 \mathrm{H})$ and a base address of 4000 H . Repeat the test,
increasing the base address in 1 K (4000H) increments, until base address 7 COOH has been tested. This tests all memory chips.

BASE	CHIPS	MEMORY
ADDRESS	TESTED	GROUP
4000H	U18, U35	A
4400 H	U19, U36	A
4800 H	U20, U37	A
4 COOH	U21, U38	A
5000 H	U14, U31	B
5400 H	U15, U32	B
5800 H	U16, U33	B
5 COOH	U17, U34	B
6000 H	U26, U43	C
6400 H	U27, U44	C
6800H	U28, U45	C
6 COOH	U29, U46	C
7000H	U22, U39	D
7400H	U23, U40	D
7800H	U24, U41	D
7 COOH	U25, U42	D

TABLE 2.1

If errors are logged, replace the appropriate chip(s). The above table narrows any error to two chips. If the bad data is in the upper half of the byte, replace the lower-numbered chip (physically higher on the board). If the bad data is in the lower half of the byte, replace the higher-numbered chip. For example, the following error printout indicates chip 14 bad:
$\begin{array}{llll}5 \mathrm{CO} & 84 & 5 \mathrm{CO} 2 & 04\end{array}$
After a good run for all sixteen 1 K increments, run the walking bit test with a block size of 16 k (4000H).

At this point, invert the memory group address jumpers and run a 16 K block starting at 8000 H . This tests the group-select circuitry completely. The primary chips tested here are U2-U6.

When all walking bit tests run error-free, type in C for the continuous burn-in test. Specify a block size of 4000 H and the appropriate base address (8000 H if you follow the above procedure). Let it run for an hour or two to shake out the weak links (infant mortality). To terminate this test type in Control C. Errors, if any, will be printed out as they occur. The total number of errors will be printed out upon completion of the test.

2.7 ERROR PRINTOUT INTERPRETATION

Errors may show up in many forms. The table on the next page matches typical symptoms with probable causes. The best way to isolate a problem (and correct it at the same time) is to pull out a suspect part and replace it with a part that you know to be good. Then rerun the diagnostic and see if the problem is still present.

If a problem persists after all suspect parts are replaced, set up a controlled test condition and troubleshoot the problem with a logic probe or a voltmeter, using the logic diagram to identify test points.

ERROR CONDITION

Bad data=0FFH,

 all groupsRandom data or all 0 data, all groups

OFFH data, one group only

PROBABLE CAUSE
a) bank select
b) board select
bad write control
a) group A select
b) group B select
c) group C select
d) group D select
address buffers
grounded data line
a) open data line

SUSPECT PARTS
U49, U56, U59
U6, U56-59
U53-54, U57-58

U5, U6, U7, U9
U4, U6, U7, U9
U3, U6, U7, U10
U2, U6, U7, U10
U50 (A0, 1, 4, 5)
U51 (A2, 3, 6, 7, 12, 15)
U52 (A8-11, 13-14)

U53, U54, U55
a) hung 0 (good address, bad data=0)
b) hung 1 (good address, bad data=1)

Soft errors (random addresses and data, non-repeatable)

Hard memory errors
One address line hung (printout: good data, bad address)

One data line hung
b) data line shorted
a) memory chip access Try setting Wait time
b) heat-sensitive parts
bad memory chip
to +5 V jumper ON and rerunning tests. Treat as a hard error and replace suspect parts.

See TABLE 2.1 to identify chip.

TABLE 2.2

```
TESTING AND TROUBLESHOOTING
2.8 SAMPLE MEMORY DIAGNOSTIC RUN
DIAGNOSTIC: WALKING BIT TEST Typed in \(W\)
BLOCK SIZE: 30
BASE ADDRESS: ..... 300
BAD BASE ADDRESS:
BASE ADDRESS: 400
TEST DONE
DIAGNOSTIC: WALKING BIT TEST New test
BLOCK SIZE: 400
BASE ADDRESS: 400
TEST DONE
DIAGNOSTIC: WALKING BIT TEST
```BLOCK SIZE: 1000BASE ADDRESS: 400
```

TEST DONE
DIAGNOSTIC: WALKING BIT TEST
BLOCK SIZE: 1800
BASE ADDRESS: 400
TEST DONE
DIAGNOSTIC: ????

```DIAGNOSTIC: WALKING BIT TEST
```

BLOCK SIZE: ..... 579
BASE ADDRESS: 400
TEST DONE
DIAGNOSTIC: CONTINUOUS BURNIN Typed in C

```BLOCK SIZE: 3765BASE ADDRESS: 3D3
OO ERRORS
TEST DONE
DIAGNOSTIC: CONTINUOUS BURNIN
BLOCK SIZE: 3ABC
BASE ADDRESS: 3EF
OO ERRORS
TEST DONE
DIAGNOSTIC:
```

10000
20000
30000
0000
50000
0000
70000
80000
90000
100000
110000
120000
130000
140000
150000
160000
170000
180000
190000
200000
210000
220000
230000
240000
250000
260000
270000
280000
290000
300000
310000
320000
330000
340000
350000
360000
370000
380040
390040
400043
410043
420100
430100
440100
450100
460100
470100
480100
490100
500100
510103
306 CO
530109 C373C3
54 010C C300C0
55010 F

TITLE '2114 MEMORY DIAGNOSTIC VER 1.1'
;

Console input/output support routines

These routines are a highly-matured, well-thoughtout set based on Intel's monitor. They provide a significant capability to converse with an 8080 , 8085, or $Z-80$ based microprocessor system. The only registers altered are the accumulator and the pass register carrying active parameters upon entry to a routine. The stack is used extensively; sufficient space must be provided by the calling programs. The stack pointer is returned to its original place on exit unless an error was detected (SP=?) or parameters are returned on the stack. In the latter case, the stack is offset by 2 times the requested number of parameters and will be set right after these parameters are popped off the stack.

Register use conforms to ICOM and CP/M defined conventions: Output data is passed in the $C$ register and input data is expected in the $A$ register. These routines require CP/M-compatible CONIN and CONOUT routines as contained in the user's BIOS program, or $C I$ and $C O$ as in the ICOM

## Resident ROM.

EQU	$0 A H$	; ASCII line feed
EQU	$0 D H$	; ASCII carriage return
EQU	$40 H$	; ASCII Cntl offset



111	012E	7 A
112	012 F	CD3301
113	0132	7B
114	0133	
115	0133	
116	0133	F5
117	0134	OF
118	0135	OF
119	0136	OF
120	0137	OF
121	0138	CD3C01
122	013B	F1
123	013 C	
124	013C	
125	013 C	CD 1501
126	013 F	C34501
127	0142	
128	0142	
129	0142	
130	0142	
131	0142	
132	0142	
133	0142	
134	0142	
135	0142	
136	0142	
137	0142	CDO301
138	0145	
139	0145	C5
140	0146	E67F
141	0148	4F
142	0149	
143	0149	CD0 601
144	014C	C1
145	014D	C9
146	014E	
147	014 E	
148	014 E	
149	014E	
150	014 E	
151	014E	
152	014 E	
153	014 E	
154	014E	
155	014 E	CD1E01
156	0151	
157	0151	EB
158	0152	CD2E01
159	0155	EB
160	0156	C9
167	0157	
162	0157	
163	0157	
164	0157	
165	0157	



166	0157	
167	0157	
168	0157	
169	0157	
170	0157	
171	0157	
172	0157	
173	0157	
174	0157	CD4201
175	015A	
176	015A	FE20
177	015C	C8
178	015D	FE2C
179	015F	C8
180	0160	FEOD
181	0162	
182	0162	37
183	0163	C8
184	0164	3 F
185	0165	C9
186	0166	
187	0166	
188	0166	
189	0166	
190	0166	
191	0166	
192	0166	
193	0166	
194	0166	
195	0166	
196	0166	
197	0166	
198	0166	
199	0166	
200	0166	
201	0166	
202	0166	
203	0166	
204	0166	
205	0166	
206	0166	
207	0166	
208	0166	
209	0166	
210	0166	
211	0166	
212	0166	OE0 1
213	0168	
214	0168	210000
215	016B	CD4201
216	016 E	47
217	016F	CD9901
218	0172	DA7E0 1
219	0175	29
220	0176	29




277	01 AB		;
278	01 AB		; Entry Parameters: (HL) = Message start address
279	01 AB		(B) = ETX delimiter (See
280	01 AB		description above.)
281	01 AB		; Exit Parameters: None - (HL) is altered
282	01 AB		; Stack usage: 12 bytes MAX
283	01 AB		;
284	01 AB		; Entry point for CR,LF (will not work with user
285	01 AB		; defined ETX delimiter).
286	01 AB	CD1E0 1	PRTWD: CALL CRLF
287	01AE		; Entry point for No. CR,LF and a bit 7 or ASCII
288	01 AE		; ETX Delimiter.
289	01AE	C5	PRTWA: PUSH B ; Save (BC)
290	01 AF	0603	MVI B,3 ; Get an ASCII ETX
291	01B1	CDB60 1	Call Prta ; Print message
292	01B4	C5	POP B ; Restore (BC)
293	01B5	C9	RET
294	01B6		;
295	01B6		; Entry point for user defined ETX delimiter
296	01B6	78	PRTA: MOV A,B ; Put ETX in A
297	01B7	4E	MOV $C, M$; Get next character
298	01B8	B9	CMP C ; EOM?
299	01B9	C8	RZ ; Yes, done
300	01BA	CD0601	CaLL CONO ; No, output it
301	01BD	79	MOV A,C ; Retrieve CHAR
302	01BE	23	INX H ; Point to next CHAR
303	01 BF	B7	ORA A ; See if bit 7 is set
304	0110	F2B60 1	JP PRTA ; No, continue
305	01C3	C9	RET
306	$01 \mathrm{C4}$		
307	$01 \mathrm{C4}$		; Routine QPRT prints "????" and transfers control
308	$01 \mathrm{C4}$		; to the user's error- recovery routine. (SP) is
309	$01 \mathrm{C4}$		; indeterminate on exit.
310	$01 \mathrm{C4}$		;
311	01 C 4	21 CD 01	QPRT: LXI H,QMSG ; Message address
312	$01 \mathrm{C7}$	CDAE0 1	CALL PRTWA ; Print it
313	01CA	C30C0 1	JMP ERR ; Go to error recovery
314	01 CD		; ${ }^{\text {a }}$ ( ${ }^{\text {a }}$
315	01 CD	3F3F3FBF	QMSG: DB ${ }^{\text {a }}$ (?? ${ }^{\prime}$,'?'+80H
316	01D1		;
317	01D1		Hardware diagnostics can be divided into 3 stages:
318	01 D 1		; 1) fault detection
319	01D1		2) fault isolation
320	01D1		3) fault correction
321	01D1		; These routines automate the first stage only. See
322	01 D 1		; the user's manual for guidelines for the second
323	01D1		; stage. After the second step is completed, fault
324	01D1		; correction should be no trouble.
325	01D1		
326	01D1		;
327	01D1		;
328	01D1		SUBROUTINES FOR THE MEMORY DIAGNOSTICS
329	01D1		;
330	01D1		; When a bad memory cell is detected, this routine

331 01D1
332 01D1
333 01D1
33401 Di
335 01D1
336 01D1 CD2B01
337 01D4 CDOFO1
338 01D7 78
339 01D8 C3E001
34001 DB
34101 DB
34201 DB
343 01DB F5
344 01DC CD1E01
345 01DF F1
346 01EO CD3301
347 01E3 CDOF01
348 01E6 CDOF01
349 01E9 CD5101
350 01EC CDOFO1
351 01EF 79
352 01F0 C33301
35301 F 3
35401 F 3
35501 F 3
35601 F 3
357 01F3
35801 F 3
359 01F3
360 01F3 CD0901
361 01F6 C8
$36201 F 7$ CD0301
363 01FA FE0 3
364 01FC
365 01FC
366 01FD 210702
3670200 CDABO 1
3680203 313E00
3690206
3700206 C9
3710207
$372020741424 F 52$
020B
D4
373 020C
374 020C
375020 C
376 020C
377 020C
378 020C CDAEO 1
379 020F 212402
3800212 CDABO 1
3810215 CD6601
3820218 E1
3830219 E3
384 021A E5
; is called to print the bad address, bad data, test
; address, and test data (in that order). With this ; error log, the fault isolation process can be ; conducted.

ADPRT: CALL DEPRT ; Print bad address
CALL BLK ; Print a blank MOV A,B ; Get a bad data JMP ADPRB
; Alternate entry point when bad address is ; meaningless
ADPRA: PUSH PSW
CALL CRLF ; Do a (CR,LF)
POP PSW
ADPRB: CALL HEX2 ; Print bad data
CALL BLK
CALL BLK
CALL HLPRA ; Print test address
CALL BLK
MOV A,C ; Get test data JMP HEX2 ; Print it
;
; Routine BREAK tests the consoit status to see if a ; character has been typed in. If so, it checks to ; see if it is an ASCII ETX (CNTRL C). If so, it types an "ABORT" message and returns control to ; the calling routine.
;
BREAK: CALL CST ; Character waiting?
RZ
CALL CONI ; Yes, get it
CPI 'C'-CNTL
RNZ
LXI H,ABMSG
CALL
PRTWD ; ABORT' message
LXI SP,STACK-2
; Reset the stack
; Return to exec
ABMSG: DB 'ABOR','T'+80H
;
; Routine PARM reads in the desired test block size ; and block base address. Both parameters are ; pushed ontc the stack.
;
PARM: CALL PRTWA ; Print caller's name
LXI H,BZMSG
CALL PRTWD
CALL PARM1 ; Get block size
POP H ; Retrieve it
XTHL
PUSH H
; Print BLOCK SIZE message
; Save return address




540	02FC	79		MOV	A, C	; Get data into (A)
541	02FD	07		RLC		; Shift for next pattern
542	02FE	4 F		MOV	C, A	
543	02FF	D2C002		JNC	WLKC	; Not done yet
544	0302	C1		POP	B	; Get base address
545	0303	D1		POP	D	; Get block size
546	0304	3600		MVI	M, 0	; Reset test cell
547	0306	7D		MOV	A, L	; Strip off base
548	0307	91		SUB	C	; address
549	0308	6F		MOV	L, A	
550	0309	7 C		MOV	A, H	
551	030A	98		SBB	B	
552	030B	67		MOV	H, A	
553	030C	29		DAD	H	; Go to next address bit
554	030D	CD1703		CALL	CHLDE	; See if done
555	0310	FO		RP		; Yes, return
556	0311	09		DAD	B	; Build next address
557	0312	D5		PUSH	D	; Save block size
558	0313	C5		PUSH	B	; Save base address
559	0314	C3BE0 2		JMP	WLKDA	; Go do it again
560	0317		;			
561	0317		; Compa	e (HL	egist	to (DE) register and set
562	0317		; flags	on re		
563	0317		;			
564	0317	7 C	CHLDE:	MOV	A, H	
565	0318	92		SUB	D	
566	0319	CO		RNZ		
567	031A	7 D		MOV	A, L	
568	031B	93		SUB	E	
569	031C	C9		RET		
570	031D		;			
571	031 D		; Rout	ne BR	contin	ously writes a sequence of
572	031 D		; non-	ero nu	ers int	a specified memory block and
573	031 D		; read	them	ack for	comparison. If errors occur,
574	031 D		; they	are lo	d on	e console. A running error
575	031 D		; total	is	so ma	tained. The test may be
576	031 D		; term	nated	any t	e with a CNTRL C; the error
577	031D		; total	at	is tim	will be displayed on the
578	031D		; cons	le.	test	data steps from 1 to 255
579	031 D		; decim	al, th	repea	itself, always skipping 0 .
580	031D		;			
581	031D		;			
582	031 D	217703	BRNIN:	L XI	H, CBM	; Get message address
583	0320	CDOCO2		CALL	PARM	; Write it, get parameters
584	0323	E1		POP	H	; Get base address
585	0324	D1		POP	D	; Get block size
586	0325	OEO 1		MVI	C, 1	; Seed the data
587	0327	0600		MVI	B, 0	; Initialize error count
588	0329	C5	BRNA:	PUSH	B	; Save data, error count
589	032A	D5		PUSH	D	; Save block size
590	032B	E5		PUSH	H	; Save base address
591	032C	71	BRNB:	MOV	M, C	; Write the data byte
592	032D	OC		INR	C	; Advance data patern
593	032E	C23203		JNZ	BRNC	; Skip 0
594	0331	0 C		INR	C	; Set to 1



645	0398	218903		LXI	H,RETN	; Set up return address
646	039B	E5		PUSH	H	
647	039 C	CDO301		CALL	CONI	; Wait for command
648	039F	FE43		CPI	${ }^{\prime} \mathrm{C}$ '	; Continuous burn-in
649	03A1	CA1D03		J Z	BRNIN	
650	03A4	FE57		CPI	'W'	; Walking bit
651	03A6	CA3E02		J Z	MADT	
652	03A9	C3C401		JMP	QPRT	
653	03AC		;			
654	03AC	44494147	DIMSG:	DB	' DIAGNO	TIC: ', ' +80 H
	03B0	4E4F5354				
	03 B 4	49433AAO				
655	03B8		;			
656	03B8	0000		END		

TOTAL ERRORS $=00$

## CHAPTER 3

THEORY OF OPERATION

This chapter is intended for those users who want a more thorough understanding of the 2116 operation than they need to make the 2116 function in their systems. Used in conjunction with the logic diagram in Chapter 4, it should provide a sound understanding of the design and features of the board. Additional information, if desired, can be obtained from data sheets for the individual chips.

### 3.1 MEMORY

The 2116 uses 2114-type RAMs, which are fully static (i.e., they require no clock or refresh signals) and provide 4096 bits of storage organized $1024 \times 4$. Each RAM thus requires ten address inputs and four bi-directional data lines. A Chip Select input (-CS) provides for the selection of individual chips in a memory array. To prevent erroneous data from getting into the chip a $R / W$ input inhibits the data input buffer when high. Thus data can be written to a memory chip only when both -CS and R/W are low. The 2116 controls -CS through the address decoders; R/W goes low when either - pWR or MWRITE is active.

### 3.2 MEMORY ADDRESSING

Addressing a specific memory location on the 2116 involves addressing a location on each chip while enabling only one two-chip column. Address lines A0-A15 enter the board and are inverted, A0-A9 addressing one location on
each chip through a common address bus. Chip selection is handled by a pair of 3 -to- 8 decoders. Each decoder selects one of eight columns, depending on the conditions of inputs $A, B$, and $C$. Inputs $G 1, G 2 A$, and $G 2 B$ determine whether a decoder will be enabled, G2A and G2B low and G1 high enabling a decoder.

Decoder enabling is controlled by the Address Select circuitry. Address bits A12-A15 are compared with the user-selected four-bit addresses of each of the four memory groups. -A12 through -A15 are parallelled into four quad open collector exclusive-OR gates. Each gate compares -A12, -A13, -A14, or -A15 with the corresponding bit of the memory group address. The output of each exclusive-OR gate in a memory group must be high for the memory group to be selected; one low output will pull the open collector output from that group low. All of the memory groups are ORed and the output is NANDed with the MEM line (high when sINTA, sINP, and sOUT are all low) to form the -SEL line. -SEL is the G2A input of the U10 and the G2B input of the U9. Thus if no memory group on the board is addressed, both chips are disabled by -SEL high.

If -SEL is low, the ORed outputs of groups $A$ and $B$ and groups C and D determine which decoder is enabled. U9's G2A is permanently pulled low. If the ORed output of groups A and $B$ is high U9 is enabled through G1 and U10 is disabled through G2B. If the ORed output of groups A and B is low and the ORed output of groups $C$ and D (U10's G1 input) is high, U10 is enabled and $U 9$ is disabled.

Chip selection within the enabled decoder is determined by inputs $A, B$, and $C . \quad U 9 ' s C$ input is tied to the output of group A's memory-address-comparison circuitry; if group A is addressed, $C$ is high, and one of the columns enabled by decoder outputs $4-7$ will be selected. In the same way group C's memory-address-comparison circuitry determines which group U10 will select. Address lines A10 and A11 are the A and $B$ inputs of the decoders, determining which of the four columns in a group will be selected.

The 2116 decoding scheme provides full prioritizing of the memory groups. If either or both of groups $A$ and $B$ are addressed, $U 9$ is enabled and $U 10$ is disabled; whether group $C$ or $D$ is addressed is irrelevant. Group selection by the decoders is determined by whether or not group $A$ or $C$ has been addressed, groups $B$ and $D$ being irrelevant. Thus group A has the highest priority, followed in order by groups B, C, and D. If two or more memory groups are given identical addresses, only the highest priority group will be selected when that address is received. The other groups will
effectively be buried; they will be unaddressable and will occupy no memory space.

### 3.3 BANK SELECTION

The CCS 2116 is bank-selectable by bank port address and bank byte. Thus it is fully compatible with Cromemco, Alpha Micro, and other bank port systems. IT IS NOT COMPATIBLE WITH ADDRESS-SELECT SYSTEMS SUCH AS IMSAI.

You assign the 2116 to a bank by jumper-setting the bank port address and the bank byte. To enable a bank during operation, the processor must address the bank port through the low order byte on the address bus and put the bank byte on the data bus. When the processor is in an I/O cycle (sOUT or sINP high), the 2116 compares the low-order byte on the address bus with the user-selected bank port address. If the two match, the 2116 compares the bank byte on the data bus with the user-selected bank byte. The bank-dependent memory groups are enabled or disabled according to whether or not the two bytes designate the same bank.

The 2116 compares -AO through -A7 with the jumper-set bank port address using an open collector set of exclusive-OR gates. A pull-up resistor holds the output high unless a wrong address pulls the output low. The bank-address-comparison line is ANDed with the I/O line, and the resulting output is NANDed with inverted -pWR to form the BANK CLK line. This line clocks a D-type positive-edge-triggered flip-flop.

The bank address and I/O lines go high first. As long as -pWR is inactive (high, inverted low) the BANK CLK line is low. When -pWR goes active (low, inverted high) the BANK CLK line goes high, clocking the flip-flop. In the meantime the bank byte is written onto the data bus. A high signal on any of the data lines indicates that the corresponding bank is being selected (data lines DOO-7 corresponding to banks 0-7). The bank byte signals are inverted for comparison with the user-selected bank byte. Jumper-selecting a bank connects the corresponding data line to the BANK DATA line; a low signal on that line pulls BANK DATA low. Other jumpers may also be connected and more than one bit of the bank byte on the data bus can be high; the open-collector output will be pulled low whenever a high-inverted-low data line is jumper-connected.

When the flip-flop is clocked by -pWR going low the condition of BANK DATA, the flip-flop's $D$ input, determines the outputs $Q$ and $-Q . Q$ takes the value of $D$ and $-Q$ is $D$ 's complement. A low on the BANK DATA line resets $Q$ to low, lighting the Bank Select LED. A high on the BANK DATA line sets $Q$, and therefore -BANK ENABLE, to high. -BANK ENABLE high is inverted to disable the memory groups that are jumper-set bank-dependent (see BANK-INDEPENDENCE below).

The processor can determine whether a bank has been selected by reading DIO at the bank port address. When pDBIN is active and the bank port has been addressed, the BANK READ ENABLE line is high. This line is NANDed with -Q, which is high when the 2116's bank has been selected. A low output from the NAND pulls DIO low, acknowledging to the processor that a bank has been enabled.

The flip-flop will be reclocked the next cycle in which the bank port address is received and the I/O line is high, at which point the new bank byte will be compared and $Q$ and $-Q$ set or reset depending on the BANK DATA line input to D. Until then the bank-dependent memory groups will remain enabled.

### 3.4 BANK-INDEPENDENCE

The 2116 allows you to make any memory group independent of bank selecting by setting a jumper so that the inverted -BANK ENABLE line is not connected to the memory-address-comparison circuitry of the memory group you want to make independent. This prevents that memory group's open collector output from being pulled low when the -Bank Enable line is active. The memory group will therefore be enabled whenever it is addressed, independent of which bank has been selected.

### 3.5 DATA BUFFERS

The DI and DO lines from the data bus are tied together to form the bi-directional data lines for the RAM chips. DIO-7 and DOO-7 are buffered by 3-State Bus Drivers. If the drivers are in the high-impedance state, the lines they drive are disabled. DOO-7 are disabled unless either -pWR or MWRITE is active (-WR line low). If the -WR line is low the buffer allows data to be written to the RAMs.

Read-enabling is more involved. Basically, if the Phantom jumper is off DIO-7 will be enabled whenever a memory group on the board is addressed and the processor is in a memory read cycle. If the Phantom jumper is on, a low on -PHANTOM will disable DIO-7. -PHANTOM is generated by another device in the system and allows that device to overlay identically-addressed memory locations on the 2116 board by preventing 2116 data from reaching the data bus. Thus data is read from the overlaying device only.

### 3.6 WAIT STATES

A Wait state is necessary when a peripheral device takes more time to complete a task than the processor normally allows. Because the 2116 is available with 200, 300, or 450 nsec Rams, and because processor speeds vary, the Wait feature on the 2116 has been made jumperselectable. If the Wait jumper is set to on, pRDY will be pulled low whenever pSYNC goes high and the board is selected (-SEL low). This causes an extra clock cycle to be added to each memory read or memory write machine cycle during which the board is selected, thereby increasing the time that signals remain on the address and data busses. If the jumper is set to off the 2116 does not pull pRDY low and a Wait state does not occur unless it originates elsewhere.

### 3.7 RESET

The Reset jumper allows you to choose whether or not the 2116 will be enabled when the system is powered up or reset by determining which input of the bank-enable flip-flop will be controllé by pRESET. Pull-up resistors normally hold both the Preset and Clear inputs high, which they must be for the flip-flop to operate normally. The -pRESET line can be jumper-set so that either the Preset input or the Clear input is pulled low whenever the power is turned on or the system is reset. If the Reset jumper is set to position A, -pRESET active pulls Preset low, the flip-flop is set ( $Q$ high), and the bank-dependent memory groups are disabled. If the jumper is set to position $B$, -pRESET active pulls the Clear input low, the flip-flop is reset ( $Q$ low), and the bank-dependent memory groups are enabled.

## CHAPTER 4

TECHNICAL INFORMATION

### 4.1 SCHEMATIC/LOGIC DIAGRAM



### 4.2 ASSEMBLY COMPONENT LAYOUT



### 4.3 PARTS LIST

## QTY

5	$\mathrm{C} 1,3,5,7,8$	Tantalum, 4.7uf,   $35 \mathrm{vdc}, 20 \%$	$42084-54756$
4	$\mathrm{C} 2,4,6,9$	Ceramic, .1 uf,	$42142-21046$
$50 \mathrm{vdc}, 20 \%$			

## RESISTORS

2	R1,2
1	R3
1	$Z 1$
INTEGRATED CIRCUITS	


32	U14-29,31-46	MOS 2114 1Kx4   Static RAMS	$\begin{gathered} 31900-21142 \\ (200 \mathrm{nsec}) \\ \text { or }-21143 \\ (300 \mathrm{nsec}) \\ \text { or }-21144 \\ (450 \mathrm{nsec}) \end{gathered}$
4	U1, 13, 30,47	$7805+5 v$ regulator	32000-07805
6	U2-5, 11, 12	74LS136 quad ex-OR:OC	30000-00136
1	U6	74LS32 quad 2-in OR	30000-00032
2	U7,8	74LS05 hex inverter:0C	30000-00005
2	U9, 10	74LS138 octal decoder	30000-00138
1	U48	75452 dual NAND: OC	30300-00452
1	U49	$74 \mathrm{LS74}$ dual D flip-flop	30000-00074
3	U50-52	74LS04 hex inverter	30000-00004
3	U53-55	74 LS 367 hex bus driver	30000-00367


QTY	REF	DESCRIPTION	CCS PART 非
1	U56	74 LS 10 tri 3-in NAND	30000-00010
2	U57,58	74LS02 quad 2-in NOR	30000-00002
1	U59	74LS08 quad 2-in AND	30000-00008
IC SOCKETS			
1		IC Socket, 8 PIN	58102-00080
17		IC Socket, 14 PIN	58102-00140
5		IC Socket, 16 PIN	58102-00160
32		IC Socket, 18 PIN	58102-00180
MISCELLANEOUS			
39		Header Strip, 1x3	56004-01003
39		Berg Jumper	56200-00001
2	CR1, CR2	Diode, Light Emitting	37400-00001
4		Heatsink, to 220	60022-00001
4		Nut, hex, 6-32   \& lock washer (KEPS)	73006-32001
4		Screw, Phillips head (SIMS), 6-32×3/8	71006-32061
1		PC Board	02016-00003
2		Extractor, PCB Non-locking	60100-00000
2		Roll Pin Extractor Mounting	60100-00001
1		Owner's Manual	89000-02116

$$
4-6
$$

## 2116 ADDRESS/CHIP TABLE

	X000-X3FF	X400-X7FF	X800-XBFF	XC00-XFFF
HIGH	U18	U19	U20	U21
Low	U35	U36	U37	U38
HIGH	U14	U15	016	U17
Low	U31	U32	U33	U34
HIGH	U26	U27	U28	U29
Low	U43	444	U45	U46
HIGH	U22	U23	U24	U25
Low	U39	U40	U41	042

## APPENDIX A

## LIMITED WARRANTY


#### Abstract

California Computer Systems (CCS) warrants to the original purchaser of its products that (1) its CCS assembled and tested products will be free from materials defects for a period of one (1) year, and be free from defects of workmanship for a period of ninety (90) days; and (2) its kit products will be free from materials defects for a period of ninety (90) days.

The responsibility of CCS hereunder, and the sole and exclusive remedy of the original purchaser for a breach of any warranty hereunder, is limited to the correction or replacement by CCS at CCS's option, at CCS's service facility, of any product or part which has been returned to CCS and in which there is a defect covered by this warranty; provided, however, that in the case of CCS assembled and tested products, CCS will correct any defect in materials and workmanship free of charge if the product is returned to CCS within ninety (90) days of original purchase from CCS; and CCS will correct defects in materials in its products and restore the product to an operational status for a labor charge of $\$ 25.00$, provided that the product is returned to CCS within ninety (90) days in the case of kit products, or one (1) year in the case of CCS assembled and tested products. All such returned products shall be shipped prepaid and insured by original purchaser to:


Warranty Service Department
California Computer Systems 250 Caribbean Drive Sunnyvale, California

CCS shall have the right of final determination as to the existence and cause of a defect, and CCS shall have the sole right to decide whether the product should be repaired or replaced.

This warranty shall not apply to any product or any part thereof which has been subject to
(1) accident, neglect, negligence, abuse or misuse;
(2) any maintenance, overhaul, installation, storage, operation, or use, which is improper; or
(3) any alteration, modification, or repair by anyone other than CCS or its authorized representative.

THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED OR STATUTORY INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS OR SUITABILITY FOR USE OR INTENDED PURPOSE AND OF ALL OTHER OBLIGATIONS OR LIABILITIES OF CCS. To any extent that this warranty cannot exclude or disclaim implied warranties, such warranties are limited to the duration of this express warranty or to any shorter time permitted by law.

CCS expressly disclaims any and all liability arising from the use and/or operation of its products sold in any and all applications not specifically recommended, tested, or certified by CCS, in writing. With respect to applications not specifically recommended, tested, or certified by CCS, the original purchaser acknowledges that he has examined the products to which this warranty attaches, and their specifications and descriptions, and is familiar with the operational characteristics thereof. The original purchaser has not relied upon the judgement or any representations of CCS as to the suitability of any CCS product and acknowledges that CCS has no knowledge of the intended use of its products. CCS EXPRESSLY DISCLAIMS ANY LIABILITY ARISING FROM THE USE AND/OR OPERATION OF ITS PRODUCTS, AND SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL OR INCIDENTAL OR COLLATERAL DAMAGES OR INJURY TO PERSONS OR PROPERTY.

CCS's obligations under this warranty are conditioned on the original purchaser's maintenance of explicit records which will accurately reflect operating conditions and maintenance preformed on CCS's products and establish the nature of any unsatisfactory condition of CCS's products. CCS, at its request, shall be given access to such records
for substantiating warranty claims. No action may be brought for breach of any express or implied warranty after one (1) year from the expiration of this express warranty's applicable warranty period. CCS assumes no liability for any events which may arise from the use of technical information on the application of its products supplied by CCS. CCS makes no warranty whatsoever in respect to accessories or parts not supplied by CCS, or to the extent that any defect is attributable to any part not supplied by CCS.

CCS neither assumes nor authorizes any person other than a duly authorized officer or representative to assume for CCS any other liability or extension or alteration of this warranty in connection with the sale or any shipment of CCS's products. Any such assumption of liability or modification of warranty must be in writing and signed by such duly authorized officer or representative to be enforceable. These warranties apply to the orginal purchaser only, and do not run to successors, assigns, or subsequent purchasers or owners; AS TO ALL PERSONS OR ENTITIES OTHER THAN THE ORIGINAL PURCHASER, CCS MAKES NO WARRANTIES WHATSOEVER, EXPRESS OR IMPLIED OR STATUTORY. The term "original purchaser" as used in this warranty shall be deemed to mean only that person to whom its product is originally sold by CCS.

Unless otherwise agreed, in writing, and except as may be necessary to comply with this warranty, CCS reserves the right to make changes in its products without any obligation to incorporate such changes in any product manufactured theretofore.

This warranty is limited to the terms stated herein. CCS disclaims all liability for incidental or consequential damages. Some states do not allow limitations on how long an implied warranty lasts and some do not allow the exclusion or limitation of incidental or consequential damages so the above limitations and exclusions may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

