
1 Burroughs L/TC

BASIC ASSEMBLER

REFERENCE MANUAL

Burroughs

l/TC
BASIC ASSEMBLER

REFERENCE MANUAL

$5.00

Burroughs Corporation.
Detroit, Michigan 48232

, INTRODUCTION

CODING
FORM

GP 300
INSTRUCTIONS

SYMBOLIC
PROGRAMING
PROCEDURES

PROGRAMING
EXAMPLE

ASSEMBLERS

APPENDIX

ii

COPYRIGHT© 1970, 1971 BUR ROUGHS CORPORATION
AA167490

Burroughs Corporation believes the program described herein to be
accurate and reliable, and much care has been taken in its preparation.
However, the Corporation cannot accept any responsibility, fmancial or
otherwise, for any consequences arising out of the use of this material.
The infonnation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

NOTE:

THIS PRINTING INCORPORATES:

PCN 1046481-001, dated March 29, 1971
PCN 1045481-002, dated July 23, 1971
PCN 1045481-003, dated August 9, 1971
PCN 1045481-004, dated NovemberS, 1971

SECTION

TABLE OF CONTENTS

INTRODUCTION

ASSEMBLER CODING FORM

Program Identification
Page Number and Heading
Sequence . . .
Label
Operation Code
Field Length .
A Parameter - Label
A Parameter ± Increment
B Parameter

TITLE

C Parameter
Constant Data (Numeric)
Alphanumeric Data or Print Mask
Remarks

PAGE

xi

1-1

1-1
1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-4

Revised 3-29-71 by
PCN 1045481-001 iii

Ref. No.

2.00

2.01

2.02

2.02.01
2.02.02
2.02.03

2.03

2.03.01
2.03.02
2.03.03
2.03.04
2.03.05
2.03.06
2.03.07
2.03.08

2.04

2.04.01
2.04.02
2.04.03

2.05

2.05.01
2.05.02
2.05.03
2.05.04
2.05.05
2.05.06

2.06

2.06.01
2.06.02

2.07

2.08

2.09

2.09.01
2.09.02
2.09.03
2.09.04
2.09.05
2.09.06

iv

. >TABLE OF CONTENTS (continued)

Subject

INTRODUCTION

ASSEMBLER PSEUDO INSTRUCTIONS

KEYBOARD INSTRUCTIONS

Enable Numeric Keyboard Instructions
Operation Control and Program Keys
Typewriter Keyboard Instructions

PRINT INSTRUCTIONS

Modes for Printing
Load Position Register Instruction
Print Alphanumeric from Memory Instruction
Load Print-Numeric Base Register Instruction
Mask Word
Numeric Printing Instructions
Single Character Print Instructions
Ribbon Shift Instruction

FORMS CONTROL INSTRUCTION

Forms Handler - Open and Close Instruction
Platen Control Register Instructions
Line Advance Instructions

AfUTHMETIC INSTRUCTIONS

Addition Instructions
Add Constant to Accumulator Instruction
Clear Instructions
Insert Constant in Accumulator Instruction
Multiplication and Division Instructions
Subtract Instructions

DATA MOVEMENT INSTRUCTIONS

Transfer Instructions
Shift Accumulator Instructions

FLAG INSTRUCTIONS

INDEX REGISTER INSTRUCTIONS

BRANCH AND DECISION INSTRUCTIONS

Branch Unconditional Instruction
Subroutine Jump and Return Instructions
Compare Alphanumeric Instruction
Accumulator Skip and Execute Instructions
Flag Execute and Skip Instructions
Skip and Execute Instructions for TC 700

Ref. No.

2.10

2.11

2.12

2.12.01
2.12.02
2.12.03
2.12.04
2.12.05
2.12.06
2.12.07
2.12.08
2.12.09

2.13

2.13.01
2.13.02
2.13.03

2.14

2.14.01
2.14.02
2.14.03

2.15

2.15.01
2.15.02

2.16

2.16.01
2.16.02

2.17

2.17.01
2.17.02
2.17.0J

2.18

2.18.01
2.18.02
2.18.03
2.18.04

TABLE OF CONTENTS (continued)

Subject

MISCELLANEOUS INSTRUCTIONS

CHECK DIGIT INSTRUCTIONS

DATA COMMUNICATIONS INSTRUCTIONS

General Description
Establishing Receive/Transmit Record Areas
Transferring Data From One Memory Address to Another
Unpacking Messages Received
Preparing Messages for Transmission
Field ldentifier Codes and Variable Length Fields
"D" Flag Grou p
Send and Receive Address lnstructions
Transmission Numbers

POINT-TO-POINT PROGRAMING PROCEDURES

Basic Point-to-Point Line Discipline
Control Registers
lndicator Register Flags

CENTRAL TC CONTROLLER PROGRAMING PROCEDURES

Line Discipline Format Registers
Data Comm Processor Operations
Main Memory Processor

INPUT WITH PUNCHED PAPER TAPE/EDGE PUNCHED CARD READER

Paper Tape Reader lnstructions
Paper Tape/Edge Punched Card Input lnstructions

OUTPUT WITH PAPER TAPE/EDGE PUNCHED CARD PERFORATOR

Paper Tape/Edge Punched Card Output lnstructions
Reader and Punch Flags

80-COLUMN PUNCHED CARD INPUT INSTRUCTIONS

80-Column Card Input lnstructions
Input lndicator Lights and Flags
Program Keys

80-COLUMN PUNCHED CARD OUTPUT INSTRUCTIONS

Punching Alphanumeric Data
Punching Numeric Data from the Accumulator
Card Colu:rµn Synchronization With the Punch Count Register
Output lndicator Lights and Flags

Revised 3-29-71 by
PCN 1045481-001 V

' ~: -

Ref. No.

2.19

2.19.01
2.19.02
2.19.03
2.19.04
2.19.05
2.19.06
2.19.07
2.19.08
2.19.09
2.19.10

2.20

2.20 .. 01
2.20.02
2.20.03
2.20.04
2.20.05
2.20.06
2.20.07

2.21

2.21.01
2.21.02
2.21.03
2.21.04
2.21.05
2.21.06
2.21.07
2.21.08
2.21.09

yi

TABU: Oi= CONTENTS (continued)

Subject

MAGNETIC UNIT RECORD INSTRUCTIONS

Magnetic Unit Record Formats
Magnetic Unit Record Pseudo Instructions
Magnetic Unit Record Flags
Write Instructions
Read Instruction
Print Alpha From Magnetic Record Area Instruction
Arithmetic Instructions
Transfer Instructions
Unit Record Alignment Instructions
Record Alignment Errors and Plag Indicators

MESSAGE UNPACKING ROUTINE

General Description
Position Table
Data Element Codes
Storage Area
Error Conditions
Delimiter
Programing Requirements

TRANSACTION CODE TRANSLATOR

General Description
Translation Table Format
Automatie Codes
Code Modification
Error Conditions
Machine Code for Transaction Code Translation Instruction
Word 576
User Program Requirements
Programing Example

SECTION

3

4

TABLE OF CONTENTS (continued)

TITLE

SYMBOLIC PROGRAMING PROCEDURES .

Program Definition .
Program Writing
Program Debugging . . .

Data Comm Debugging

PROGRAMING EXAMPLE.

Problem ...
Solution
Solution Index

General Systems Flowchart .
Program Definition Worksheets
Program Definition Charts .
Sample Coding Forms.
Assembler III Listing .
Sample Output. . . .
Cross Reference Table .

PAGE

3-1

3-1
3-1
3-3

3-3

4-1

4-1

4-1

4-1

4-2
4-3
4-4
4-7
4-33
4-69
4-70

Revised 11-8-71 by
PCN 1045481-004 vii

Ref. No.

5.00.00

5.00.00

5.01.00
5.01.01
5.01.02
5.01.03
5.01.04
5.01.05
5.01.06
5.01.07
5.01.08
5.01.09
5.01.10
5.01.10
5.01.11

5.02.00
5.02.03
5.02.03
5.02.03
5.02.04
5.02.05

5.03.00
5.03.02
5.03.02
5.03.03
5.03.04
5.03.05
5.03.06
5.03.07
5.03.08

5.04.00
5.04.01
5.04.02
5.04.03
5.04.04
5.04.05
5.04.06
5.04.07

5.05.00

5.05.01
5.05.02
5.05.03
5.05.04
5.05.05
5.05.06
5.05.07

viii

TABLE OF CONTENTS (continued)

Subject

ASSEMBLERS

FUNCTIONAL DESCRIPTION OF BASIC ASSEMBLERS

L/TC PAPER TAPE ASSEMBLERS
Environment
Phase I
Assembler I
Assembler ISL
Assembler VI and VIII
Keyboard Mode
Phase I - Condensed Operating Instructions
Phase I - Diagnostic Facilities
Phase II
Phase II - Operating Instructions
Phase II - Condensed Operating Instructions and Index
Phase II - Error Detection and Indication

80-COLUMN CARD INPUT ASSEMBLERS
Environment
Card I/0 Assemblers
Card In/Paper Tape Out Assemblers
Input
Operating Instructions .

L/TC ASSEMBLER III B 3500 VERSION
Environment
Library Tape Input
MCP Control Cards
Option Control Cards
Operating Instructions
Error Detection
Output
LIBTAP - Utility Routine

L/TC ASSEMBLER IV - B 5500 VERSION
Environment
MCP Control Cards
Option Control Cards
Operating Instructions
Operation
Error Detection
Output

L/TC ASSEMBLER V - B 300 VERSION

Environment
Input
Output
Control Cards
End
Operating Instructions
Error Messages

TABLE OF CONTENTS (continued)

SECTION TITLE

. APPENDIX A Glossary -~

APPENDIX B GP 300 Instructions to Machine Language.

APPENDIX C Assembler Pseudo Instructions

APPENDIX D . Series L/TC Character Sets

APPENDIX E Table of Mask Codes

APPENDIX F Error Messages for B 3500 Assembly .
Error Messages for B 5500 Assembly .
Error Messages for B 300 Assembly .

APPENDIX G Instructions for Keypunching Symbolic Cards
Symbolic Card Format
A 142/ A 150 Keypunching Instructions .
024/026/029 Keypunching Instructions .

APPENDIX H Character Sets ~

. USASCII .
BCL
EBCDIC .. .

APPENDIX I Table of Input Code Assignments
Input Functions for 6, 7, 8 Channel Tape .
Field Identifier Codes
Table of Output Code Assignments

APPENDIX J GP 300 Timings

APPENDIX K Series L/TC Object Code

ALPHABETICAL INDJ?X

PAGE

A-1

B-1

C-1

D-1

E-1

F-1
F-2
F·2

. G-1

G-1
G-2
G-3

H-1
H-2
H-2
H-2
I-1
I-1
I-3
I-4
J-1

K-1

One

Revised 3-29-71 by
PCN 1045481-001 ix

INTRODUCTION

This manual will provide the information necessary for the L/TC user to write and assemble symbolic
programs using the GP 300 Basic Language. In Section l the coding form is analyzed by column. lt is
suggested that the reader remove the coding form sample on page xii and locate each specific area on 1
th~ form as he reads the text. In Section 2 each of the GP 300 series ·firmware instructions is presented.
Individual instructions are discussed in a narrative section followed by an example which illustrates the
capabilities of the instruction. The instructions (Op Codes) are presented alphabetically by a category
which relates to machine function.

Section 3 defines the rules and techniques used in symbolic program writing and debugging. To the
non-experienced user it is suggested that he read pages 3-1-3-2 of Section 3 before attempting the other
materials contained in this manual.

A typical billing problem is discussed in Section 4. The analysis begins with- the program definition and
carries through to the sample output on an invoice. Section 5 is a functional description of the Basic
Assemblers. Operating instructions are included.

Users are provided a means of quickly referencing selected areas of the manual by coded boxes placed in
the upper corner of key pages. The information contained within the box is indicative of the material
on that page. In Section 2 the symbolic OP code is placed in these boxes along with a symbol to
indicate the type of firmware set to which the instruction applies. These are: CD-check digit add-on
firmware sets, CRD-80-column card firmware sets, DC-data communications firmware sets, and
PT-paper tape firmware sets.

Boxes which do not contain a firmware code apply to the basic instructions which are generally
common to all firmware sets.

The information provided in this manual applies to the 3 2-track styles and the 40-track styles of the
Series L/TC.

Revised 7-23·71 by
PCN 1045481-002 Xi

><
i:::

PRj)GRAM ID

slsl?lelgl10

1 1 1 1 1 1 1

lcooel SEQUENCE LABEL

1 1 111j1~1j_1s 1611718119120}

...L -10-11...L ...L L ...L -1 ...L

...1.0 2 ...1.J.J.J....L

...L ..1.0...1.3.J. ...1. ...L _J_ -1 J.

...1....1.0 ~ ...1. ...L -1 ...L J_

...L...J.0...1.5.i __J_ _l_ ..l.

...L O_& __J_ __J_ -1. -1 __J_

...1....1.0.ih ...1._l__l_ J. L

__1__&,i.8.1. ...1. ...1. ...1. J. .l.

__J_ ...L0_-9!_ __J_ __J_ ...1. -1 _l_

__J_ .J. t1..o.i. .l ...1. .1 .l. __J_

__J_ _i_L__li _l_ ...L .1 .J. ...1.

-1 ...1.I _2_ __J_ ...L...L _l_ ..l.

J. ...L.i1..3J. .J. ...1. J_J_ J.

_i _L_IL_ __J_ __J_ _l_ .J. J.

.J. _t__li_5J_ .J. _l_ .J. J_ _l_

...1. ...1. l.L.6..L ...1..1...1.-1.l
I·

J. _tl_ih ..1 __J_ __J_ -1 _l

..1 ..Ll.L8.i J..l..1.1.l

.1 ..1 lj_9.J. _l ...1. _l_ ...1. J

__J_ J.2J.0_j .1 LJ....1.-1

Ptt11i1TIO lfll U S AMf.ltlCA

FIELD
LEN-

OP. CODE GTH

22123124 }s}21 27128

-1. ...L ...L...L ...1.

1 ...1. ...L ...L J_

-1 -1 ...L ...1. ...1.

...L -1 ...L J_ _l

..l. -1. ..L...L _l_

...L -1. .1....L _l_

...1. -1 ...L __J_ _l_

.J. -1 __J_ __J_

...L ...L ...L .l .l.

...1. ...1. __J_ -1 _l

.l. .J. .l .1 .1

__J_ ...L -1 .1 .J.

...1. ...1. 1 J J_

.J. .J. .1 -1 .J.

l.i...1..1 .J.

..1....1. .J....L .J.

J_ _l_ .J. ...1. _l_

.1 -1 ...1. ...1. ...1.

l __J_ _l_ -1 j_

l .J. .J. J J_

BURROUGHS ASSEMBLER CODING FORM PAGE OF -----

CUSTOMER

BRANCH

PARAMETER PROGRA'-'MER

A B c
LABEL + OR-

REMARKS INC/REL

29}113132133134 351361198 391«>14142 43 44145M7 48J~soJsis2 sj54Jsslss.f?lsels~a>lsi12}164Jss_Els1681691711}1Jnl73}{~~77
...1. ..i...L ...L -1. ...L ...L...L -1 -1 -1 ...L ...1. l_ _i J. LL_l_-1....1..1...L...L...1....l....L...1._l...L...L...L-1 ...1. ...L...L ...L ...L

...LJ....LJ..1 ...L ...L...1. .1 1 .1 .1 .1 J_ ...1. -1 ...L .1 .1...LJ....1.J__l_J....1....L...L...L-1...L.J.J.iJ....1.J_j__l__J____l_

...L ...1. ..l. -1 J_ ...L ...L J. J_ ..l. J. J_ l ...1. 1-.1...L.1 ...l....1....1....1.J.J_l...1...L...L...L...1....L...L...L-1...L...L.J....1.j_~...1..J.

...L _l_ -1 __J_ _l_ _l_ ..l. .1 ...1. _l_ J. _l_ -1 ...L -1 __l__l__l___l_l_i_L_l _J_l__l .1....l....1....L...L...1....L...L__l__l_.l...L

...L...L ...L..L ...L .1..1. __J_ _l___J_ _l_ ...L...L-1. ...1....L...L...L-1...L...L..L.1....L...L...L...LJ...LJ.J....L...L..L.i_J_..1.

...L __J_ i _l_ :1- __J_ __J_ -1. __J_ -1 _l_ __J_ __J_ __J__l__l_ -1 _l_ ...L L _l _ _J_ J. •__l_...l.j_J....L...L.l...L.l_i_
~

l .l ...L .l ...L .1 J. __J_ ...1. .1 __J_ __J_ _l__l_ J. __J_ ...L ...L _l_ J.J_ J. __J_ __J_J. _l___J_ __J_ ...1. __J_ ...L...1. _l_ _L__l__l___J__l...Li_l_

L ...L _l_ -1 _l_ ..l. J. .J. .J. -1. .1 l _l _l J_ J. J. -1 .1.1....1..J.J. _J_ 1--1-1...L...L...L...L..l. ...L cl_ _l_ _l_ _l_ ...1. __J_

__J__l__J__lj_ _J_ .l ...L .J. ...L .1 ...L _l_ .J. J. ...L ...L _L..l..J...l....L_l_...1....L..l....1....L...L.i...L...LJ_i...1..1.J....L...L__l_...L

.LJJ....L.1 .1 J. .J. J_ .1 _l_ J_ J. .J. .J. J. J. ...1. J..J..l...l._l_...1...1....1....L_l__l___J_j___l___J__l__J__j_J....LJ....Llj_

.1.1...L...L_l_ -1 _l_ _l_ __J_ -1 l_ __J_ J. __J_ -1 J. __J_ __J_ __1_J_1_l_...1....L...l..1....L..l....L...LJ....L..L..l....L...1..i...LJ....L.J....1.

-1. -1 __J_ __J_ _l_ __J_ l_ _l ...1. .1 ...L J. ...1. ...1. J_ ...1. ...1. ..l. .lL__l___l_...L...L...L...L-1.1...1....LJ....L...1....L.l....1._LJ....1....L+__l_

.1.1...1..J.J_ J_ -1 _l_ _l_ J_ __J_ 1 __J___l_ 1 J_ _l_ __J_ __l_...1.-1.__l_.l__l_J_..L_l...L...1....l....1...l....l..J....1...l....l..l...1._l_...1.j_

_l_l__J___J_j_ J J. .J. ...1....1. .J. .J. J. ...1. .J. J_ .J. .J. .1...1..J.J._l___l__l __J_ _i __J_ ...1. ...1. ..l. _l_ .1 ..l. __J_ ...L _l_ ...L .J.L :...1.

.J. .l_L..l.J. -1 1 j_ .J. l ..L J_ j_ .J. j_ .J. .1 .J. .1.J.J..J.i__l___1___1_J_.J..J.-1...1..1.l.l.J..J....1....1..lJ.A_.J.

...1. .J....L .J. __J_ _l_ .J. __J_ "_l_..l. ...1. __J_ J_ __J_ l j __J___l_ _l_ __J_ J.__J_ _l_ J___J_ __J_ J....L ...1. ...1. _L..l. ...1. _l_...L .J. ...L ..1 .J. J..J.L

l __J__ .J. j_ .1 J_ j_ j_ j_ _l_ __J_ ..1 J. ...1. J_ J_ j_ .l. _J___J_J.j__J_J_j__J___l_J_ .1..LJ.l_J_ lJ..J. 1 __l__j J___i_1

...1. _l_ __J_ _l_ -1 _l _l_ j ..1...1. ...1. J_ J_ ...L 1 j_ .J. .J. .l.l..i.J....L.l..i_J_.J.j_l__l__...L_l_j_.J....1._L__l___l__l__l_i_l

...1. j_ ...1. __J_ .1 _l_ _l_ __J_ __J__l_ __J_ J_ _l_ ...1. .J. ..L..l. _l_ __J_ __J_ __J___J___l__l__l...1.__1_..l__l_...1..ll...1.1-..l.-1....L...1.J.J...1

.J. .J..J. .J. l J_ J_ J_ J_ _l_ ...1. .J. J_ J_ J_ ..1 .J. 1 __J__l_J__l_J_j___J__J...1._ll...1.__l_...1.__1___1___1_...1..l.i...1..J..l.J.
CONSTANT DATA (NUMERICI

ALPHANUMERIC DATA OR PRINT MASK

'...1. 2..1. 3__1_ 4-15 _l_ 6 7 8 9 10111 12 13 14 15 16t17__1_18_Ll9 21>...1.21..L22...1.23j_24

f'O•M MK TG · 2291 tT/•I)

Burroughs Assembler Coding Form

SECTION 1
ASSEMBLER CODIN6 FORM

PROGRAM 10

s ~ 7 8 9 10

PROGRAM IDENTIFICATION

DEFINITION_ - Identifies a specific program.

FIELD DEFINITION - One through six alphanumeric characters entered in columns 5-10. Right or left
justified. Automatically reproduced on succeeding cards with punched card source program.

PAGE -"'----- OF ----

CUSTOMER

BRANCH

PROGRAMMER ---------------

PAGE NUMBER AND HEADING

DEFINITION - Identifies and sequentially locates coded pages of a program.

FIELD DEFINITION - The page number is determined by the sequential order number of the page and
the total number of pages. The remaining information is filled in accordingly.

COD SEQUENCE

11 12 13 14 15

0 1

0 2

0 3
0 q.

0 5

SEQUENCE

DEFINITION - Identifies the sequential order of the operation codes. Applies only to punched card
source programs.

FIELD DEFINITION - With a keyboard or paper tape source program the Basic Assembler assigns a
sequence number to each line in increasing numerical sequence. ·

1-1

1

CODlNG

FORM

LABEL

LABEL

16 17 18 19 2D 21

DEFINITION - A symbolic designation utilized by the assembler to describe a parameter for a memory
locatlon or other parameter value.

FIELD DEFINITION - A label consists of 1-6 alpha or numeric characters. The first character must be
an alpha character. A 'label may be the same as a mnemonic operation code of any GP 300 instruction
or assembler pseudo instruction. The fabd is entered in columns 16-21 and must be left justified .

• OP. CODE

22 23 24 25

OPERATION CODE

DEf,TNITION - The applicable symbolic instruction is entered in this field.

FIELD DEFINITION - Op. Code is eritered in columns 22„26 and left justified.

1-2

FIELD LENGTH

FIEl..D
LBI·
GTH

CODING

FORM

DEFINITION - Indicates the number of characters or digits in the constants associated with certain
instructions. Applies to punch card source programs only.

FIELD DEFINITION - Number of characters contained in required constant entered in columns 27-28
and right justified.

A PARAMETER - LABEL

LABEL

PARAMETER

A
+ OR­
INC/REL

B c

29 30 31 32 33 34 35 36 37 SB 39 40 41 42 43

DEFINITION - The applicable label or parameter is contained in this field.

FIELD DEFINITION - Label entries consist of 1-6 alpha or numeric characters and the first character
must be an alpha character. The parameter or labet is entered in columns 29-34 and left justified.

A PARAMETER - ± INCREMENT

DEFINITION - A signed numeric entry may be made in this field to denote a plus or minus value for
incrementing or relative addressing with the labet in columns 29-34 as a base. lf a label is not used when
using a branch instruction, the syllable location of the same instruction is used for the base address.

FIELD DEFINITION - lf the field has a negative value, the "-" must be entered in column 35. Fora
positive value the "+" is optional. The increment is entered in columns 36-38 and right justified.

1-3

CODING

FORM

B PARAMETER

DEFINITION - The applicable alphanumeric entry is made in this field.

FIELD DEFINITION - Entry is made in columns 39-42 and left justified.

C PARAMETER

DEFINITION - The applicable numeric entry is entered in this field.

FIELD DEFINITION - Entry is made in column 43.

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

CONSTANT DATA (NUMERIC)

DEFINITION - Location of constant data for certain instructions.

FIELD DEFINITION - The constant is entered in.columns 29-47 and is left justified.

ALPHANUMERIC DAT.A OR PRINT MASK

DEFINITION - Location of alphanumeric data for certain instructions.

FIELD DEFINITION - lf the data is greater than 24 characters in length in a punched card source
prograrn, the excess characters are continued on the next line beginning in column 29 and preceded by a
"CC" in colurnns 27. The continuation card must also contain the appropriate instruction in the Op
Code field and a sequence nurnber. Data is entered in colurnns 29-52 and left justified.

REMARKS

53 54 55 56 57 58 59 eO 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 T1

REMARKS

DEFINITION - Remarks rnay be entered in this field, and will appear in the printed documentation.

FIELD DEFINITION - Remarks are entered in columns 53-77 and left justified.

1-4

SECTION 2
GP 300 INSTRUCTIONS

,2.00 - INTRODUCTION

General Purpose Language (GP 300) is a programing language, consisting of machine instructions to
control system operation, and is used for Series L/TC. For ease of programing the Series L/TC, the
programmer can write his programs in symbolic language and can convert them to machine language
through the use of an assembler program. By using an assembler program, the programmer is not
burdened with keeping track of the memory Jocation used, or the actual machine language for the
symbolic instructions being used.

The GP 300 instruction list is implemented in the system by various Firmware Sets; the number of
different instructicms implemented is dependent on the particular Firmware Set used in the ~ystem.
Firmware is defined as a control program, and is stored in a designated area of the systems memory.
The firmware performs some of the logic and control functions, programmatically, that are usually
performed by hardware electronic circuits in larger computer systems.

Firmware consists of "MICRO-programs" which implement each instruction of GP 300. A
MICRO-program consists of a "string" of MICRO instructions, each performing a step to accomplish the
function of the GP 300 instruction (referred to as MACRO instructions). Thus, in the execution of an
applicational program, the firmware identifies each MACRO instruction used by the programmer, and
selects the proper "MICRO string" to perform the function of the instruction.

2.00.01 MEMORY ORGANIZATION

Memory in the L/TC consists of 1,280 words of 64 bits each, and is organized into 5 blocks of 8 tracks
each, or a total of 40 tracks. Bach track containing 32 words. Main Memory is subdivided into two
sections: The Control area and the Normal area.

The Control area contains the firmware which determine the system control functions and which
implement the GP 300 instruction list. The Normal area is used to store the user's programs which are
written with the MACRO instructions. The MACRO instructions are used by the programmer to exercise
all of the capabilities of the L/TC such as arithmetic, logical comparisons, printing, input/output (paper
tape or 80-column cards), and data transmission. Tue Normal area is also used for storing constant data,
messages, and for accumulating totals. The amount of Normal area available to the user is dependent
upon the firmware in the Control area (some firmware requires more memory than others).

2.00.02 MEMORY WORD ORGANIZATION

Bachword of memory contains 16 digits (64 bits) and may be used to store one of the following:

1. NUMBRIC WORD - Contains only numeric values ·plus sign. Bach digit within the number
occupies a single digit within the word. Digit position 15 is reserved for flag settings.

5 4 3

Revised 3-29-71 by
PCN 1045481-001 2~00.02

2. ALPHA WORD - · Contains only alphanumeric values, left justified: EacJi. alpha ch~acter
requires two digit positions within the word, Eight. is the maximum number of alpha
characters that can be contained within a word.

7 6 5 4 3 2

3. PROGRAM WORD Contains 4 MACRO instructions. Each instruction requires 4 digit
positions (termed a: syllable) within the word.

SyUable 3 Syllable 2 Syllable 1 Syllable 0

4. PRINT FORMAT WORD - Contains only print format codes. Each code value occupies a
single digit position within the word. Digit position 15 is .reserv.ed for flag settin~s.

1 FLAGS l 14J13 l 12 j 11l 10 19 1 8 7 1 6 1 5 4 1 3 2 1 0

The words are addn~ssed by a word number. Th.e word number is an integer whichlies bet~een 0 and
the highest available word to the user. The word number is sometimes referred to as memory ,address or
memory location. If a word contains program instructions, it is divided into four syllables, each syllable
containing one instruction. The syllables are numbered 0, 1, 2, 3 as shown above within the word.

2.00,03 PROGRAM EXECUTION

Wl:ien the system is activated and the program mode is entered by depression of the START key,
execution of the program instructions begins in word 0, syllable 0. Execution continues sequentially by
incrementing the syllable value by 1 (certain instructions can modify this procedure, e.g„ a branch
instruction). When the syllable value attains 3, the next increment will cause the word number to be
increased by 1 and the syllable counter to be set back to 0. The current word number and syllable value
are contained in the Program Counter.

2.00.03

The following example shows only word numbers and syllable values within those words. The arrows
show how the values in the program counter are changed.

Word 0

Word 1

Word 2

Syllable 0

Syllable 1

Syllable 2

Syllable 3

Syllable 0

Syllable 1

Syllable 2

Syllable 3

Syllable 0

Syllable 1
"Branch to 79-2"

Word 79

--~

Word 80

Syllable 0

Syllable 1

Syllable 2

Syllable 3

Syllable 0

Syllable 1
Syllable 2

Sequential Program Execution and the effect of using the branch instruction

After the "START" key is depressed and program execution begins, the program counter always starts
at word 0, syllable 0, it continues to be incremented until the execution of the instruction in word 2,
syllable 1 (Branch instruction). After execution of this instruction causes the program counter to change
value from word 2, syllable 1 to word 79, syllable 2, the program counter continues to increment until
another path is selected.

2.00.04 ACCUMULATOR

Set aside from the Normal area of memory, is one word called the Accumulator. lt, like other numeric
words, contains 15 digits and a flag position. lt is not addressed by a word number, but rather, access to
it is a function of certain instructions. lt is a working memory location for the movement of data from
one area to another. lt receives all numeric data entered through the keyboard including the keys that
set the Accumulator flags [RE(-), C, M]; it must contain any numeric data tobe printed; it can sum up
several amounts and store the result in another word; it receives the product or quotient of
computations; it must be used to accumulate one word of data into another; and it can be used to move
alphanumeric information from one word to another.

When the Accumulator contains 0, the minus flag is reset (i.e., the Accumulator is positive).

Certain instructions will destroy the prior contents of the Accumulator (i.e., clear the Accumulator
before the instruction is executed). This frees the programmer from clearing the Accumulator through
instruction before moving data.

2.00.05 FLAGS

Instructions are provided to "test" whether or not certain conditions exist during the execution of the
program, so that alternate paths of program may be selected, depending on the state of the condition
being tested. In GP 300 the user has 28 "Flags" divided into 7 groups, each of which can be tested.

Revised 3-29-71 by
PCN 1045481-001 2.00.05

.

There are flags for testirlg the condition of the Accumulator, flags to test the condition of tape or card
readers and tape or card punches, flags for the OCK Keys which the operator will use, flags for forms
limits, index registers used to control loops, plus general purpose flags which the user can assign for his
own particular needs.

Each flag consists of 1 "bit." When the bit _is "ON," the flag is "Set"; when the bit is "off," the flag is
"Reset." The program can interrogate a flag to test whether or not it is set or reset, and select a path of
program accordingly.

A graphic explanation below of the Accumulator whicb has 4 flags will show how each flag is assigned
one bit.

IMIClsF114 I 13 112 l 11 l 10 1 9
84 21
filTs

Accumulator
Fiags

8 7 6 1 5 1 4· 1 3

(M) Per Thousand
(C) Per Hundred

2 1 1 0 --
4 bits

(S) . Special
(-) Minus or Negative

If we were to examine the bit configuration for the flags, they would be represented as follows: .

H
0 0 0 •
0 0 • 0

Bits (-) 0 (S) • (C) 0 (M) 0

• 0 0 0

2.00.05 (Cont'd)

..._ _____ :_:_:_L ______ j

2.01 ·-· ASSEMBLER PSEUDO INSTRUCTIONS

Pseudo instructions control the manner of assembly and determine the interpretation of data fed to the
assembler. They generally do not directly produce machine language instructions, except in some cases
where they fill in syllables to increment the program counter to the next word.

The following instructions are valid for this Basic Assembler Language.

2.01.01 ADVANCE LINE INSTRUCTION

OP CODE A

ADVL 1-4

The ADVL pseudo instruction will advance the assembler output form the number of lines specified in
the A parameter. No machine language instruction is assembled.

2.01.02 ALPHA CONSTANT INSTRUCTION

OP CODE

ALF

The ALF pseudo instruction permits alphanumeric data, up to 24 characters, to be stored in memory as
constant data during program loading. -{\ny character on the keyboard, including space, is a valid
character. (Except for Assembler 1, a CC in columns 27 and 28 will allow a second line of 24 characters
to be entered.)

lf the syllable counter is not 0 at the beginning of the ALF, "STOP" instructions are inserted until the
counter is 0. The alphanumeric constant is then assembled starting in the next full word .

. The alpha data is identified by placing a label in the label field, unless reference will be made by + or -
incrementing from another entry. For assemblers other than Assembler 1, the total number of characters
in the ALF constant must appear in the FIELD LENGTH

,Example:
PARAMETER

FIELD A B C
..-~~~~-.~~~~--tL~-1--~~~~---..~~~-r~~~--t---1

LABEL OP. CODE GTH .

16 17 18 19 20 21

p MA

LABEL + OR­
INC/REL

43 44 45 47

Revised 11-8-71 by
PCN 104548l-004 2.0L02

1

•

CDB

LABEL OP CODE A

PA NAME

NAME ALF JOHN DOE

When the PA instruction is executed, the alphanumeric .characters JOHN DOE would be printed
(including the space).

2.01.03 RESERVE CARD BUFFER INSTRUCTION

OPCODE

CDB ·

The CDB pseudo instruction. inserts the instruction "BRU to word 11„ syllable O" in word 0, syllable 0.
This causes the assembler to reserve words 1-10 as the card read-in buffer area. IfJhe assembly word
counter is not at word 0, syllable 0, an error message will print. (When using Assembler I, the assembly
will halt; with Assembler III or IV it will not halt, but 10 words will not be reserved.)

Accordingly, the CDB instruction must be the first instruction in the program except for pseudo
instructions which do not affect memory allocation such as "Note."

When the · card input data is no longer needed, the 10-word read-in . area may be referenced as working
memory by other parts of a program. This is accomplished by providing the CDB instruction with a
label.

The CDB pseudo instruction is necessary only when the L/TC is used with an A 595 card reader.

Example:

2.0l.03

PARAMETER
FIELD A B C

--...-...-...-...---...-...-...-...--1L~->-~~~~~~~~--+-~~~-----1

LABEL OP. CODE GTH

16

LABEL OP CODE

CARDIN CDB

RCD

TRM

LABEL

c

A

CARDIN+2

+ OR­
INC/REL

B

43 44 45 47

REMARKS

Reserve Card Buff er,

Read 1 card.

Use 3rd word of card
read buff er as a working
memory location.

The card input area can be reserved by using the "REG" pseudo instruction. In this circumstance the
programmer must include his own provision to by-pass the 10-word buffer area.

Example:

PARAMETER
FIEl..D

...-~~~~--~~~---lL~-1--~~~~A~~~~-+-~B~___.~C___.
LABEL OP. CODE GTH

16 17 18 19 20 21

LABEL OP CODE

LPNR
LPKR
LLLR
BRU
REG

BEG IN RCD

LABEL

A

PMASK
PKEYS

51
BEGlN

10

1

+ OR -
INC/REL

B

43 44 45 6 47

REMARKS

Assembles in word 0
Assembles in word 0
Assembles in word 0
Assembles in word 0
Assembles in words 1-10

Ass . .:mbles in word 11,syl-
lable 0

When using the A 596 Card Reader, the L programmer may utilize the "REG" pseudo instruction to set
up multiple buff ers anywhere in the Track 0 area (words 1-31) alloted for card input.

A 596 Reader input to Series L

.LABEL OP CODE A B REMARKS

LPNR PMASK Assem bles in word 0
LPKR PKEYS Assem bles in word 0
LLLR 51 Assem bles in word 0
BRU BEG IN Assem bles in word 0
REG 10 Saves words 1-10
REG 10 Saves words 11-20
REG 10 Saves words 21-30

BEG IN RCD 1 Assem bles word 3 1
Puts data in words 1-10

RCD 21 Puts data in words 21-30
RCD 11 Puts data in words 11-20

Revised 7-23-71 by ,
PCN 1045481-002 2.01.03 (Cont d)

1
CDF

The TC programmer may use any area with Block 0 (words 1-255). However, when processing data for
transmission, he should place his buffers on track boundaries (words 32, 64, 96, 128, ... 224). This
allows the data to be accessed with Data Comm instructions. The "ORG" and "REG" pseudo
instructions can be used to set up buffers on specific track boundaries. Care must be taken to ensure
that buffer area and the memory area required for the macro program do not overlap.

2.01.04 CARD FOR-MAT INSTRUCTION

A 595 READER A 596 READER

OP CODE A B A B

CDF 1-80 1-80 1-255 1-255

The CDF pseudo instruction is used to define each field for 80-column card input. The A parameter
denotes the beginning card column of the field. The B parameter indicates the number of card columns
in the field. The values entered are assembled into one syllable as part of the card format table.

The field formats defined in the table may pertain to one or several types of input cards, and may be in
any sequence in relation to the card.

Qnly 16 CDF's may be, listed for each table name (LABEL).

LABEL

FIELDS

OP CODE

LCFR

WORD

CDF
CDF
CDF
CDF
CDF
CDF
CDF
CDF
CDF
CDF
CDF

A

FIELDS

1
2
9

15
51
57
65
73

9
33
57

B REMARKS

Load Card Format Register

1 1 - type of card
7 2-Acct. No.
6 3 - Product Codes

36 4 - Product Description
6 5 - Gross Weight
8 6 - Price No. 1
8 7 - Price No. 2
8 8 -Cost

24 9-Name
24 10-Address
24 11 - City-State

The A 596 Card Reader allows the L programmer using card 1/0 instructions to read and access data
into any location in Track 0 except word 0. This provides for a maximum of 248 characters which can
be entered on successive cards. If more than 16 CDF's are required, the programmer must use multiple·
table-names.

The TC programmer must access buffer areas above Track 0 with Data Comm Instructions (Section
2.12.04 - Unpacking Messages Received).

Revised 7-23-71 by
PCN 1045481-002 2.01.04

1
1

CODE

2.01.05 CODE INSTRUCTION

OP CODE A

CODE 4 hexadecimal digits

The CODE pseudo instruction permits the insertion of 4 hexadecimal digits into the next available
syllable of a word of memory. The value designated by the 4 digits in the A parameter is assembled into
the word syllable. Other instructions may precede or follow its use in the same word of memory, or it
may be used successively to insert il full word or several words.

Example:

2.01.05

PARAMETER
FIEl..D A 8 C

~~~~~~--~~~---iLEN-1--~~~~~~~~~+--~~~+----1 

LABEL OP. CODE GTH 

OP CODE 

CODE 

LABEL 

A 

C925 

+ OR -
INC/REL 

REMARKS 

Print word 293 as alpha. 



DEF 

DEFT 

C925 is the machine language code for PA Word 293 and would be assembled into the next available 
syllable. lt may sometimes be convenient to use the CODE instruction in this manner to have access to 
memory locations or program routines which have been loaded with another program. 

2.01.06 DEFINE INSTRUCTIONS 

OP CODE A B 

DEF 0-767 

DEFT 0-15 0-15 

The DEF pseudo instruction is used to assign a numeric value to a label. This applies to labels which 
name something other than a memory location. 

Example: 
PARAMETER 

FIEl..D A 8 C 
.--~~~~~..-~~~--Lel-1--~~~~~..---~~~1--~~~1---1 

LABEL OP. CODE GT.H 

16 17 18 19 20 21 

LABEL OP CODE 

POS 

> 
SHIPTO DEF 

LABEL 
+ OR -
INC/REL 

43 44 45 6 

A 

SHIPTO 
~ 
35 

The print ball positions at position 35. 

The function of the DEFT pseudo instruction is the same as that of the DEF instruction. The DEFT 
instruction is used with instructions which require both an A and a B parameter. V alues between 0 and 
15 are permitted in each parameter. 

Example: 
PARAMETER 

FIEl..D A 8 C 
..-~~~~~..-~~~----iLE>l-t--~~~~~~~~~+--~~~+----t 

LABEL OP. CODE GTH LABEL 
+ OR -
INC/REL 

4344456 

Revised 3-29-71 by 
PCN 1045481-001 2.01.06 



ESTB t 
DOC. 

LABEL OP CODE A 

NK ORDER 

ORDER DEFT 6 0 

The DEF or DEFT instruction must be used in conjunction with a label {in columns 16-21) to denote 
the item being defined. ,·:_.· 

2.01.07 DOCUMENTATION INSTRUCTION (USED ONLY FOR ASSEMBLY ON B 2500/3500/5500.) 

OP CODE 

DOC 

The DOC pseudo instruction permits more extensive narrative to be included in programs and in the 
subroutine library. Remarks of up to 49 characters are entered (beginning in card column ·. 29) which 
print on the assembly documentation from the B 3500, but which do not punch into the program tape 
(or card deck). Y ' 

2.01.08 ESTABLISH BUFFER INSTRUCTION 

OP CODE 

ESTB 

The ESTB pseudo instruction is used for reserving main memory buffer areas in connection with the 
data communications message handling instruction. This is required when it is desired to move a message 
from the Data Communications Message Received Buffer into main memory before unpacking the 
message, or to build a message in main memory and then transfer it (completely formatted)lo the Data. . . 

Communications transmit buffer. 

Tue ESTB instruction reserves a 32 word area (256 characters) or 1 track in user memory. lt selects the 
highest track of user memory that is available, reserving 32 words starting with the first word of that 
track. 

For example, if 384 words of user memory (0 to 383) are designated in the program assembly, the first 
use of ESTB would reserve words 352 through 383; the second use of ESTB would reserve words 
320-351. ESTB has no parameters, but it must be labeled. 

Example: 

2.01.07 

PARAMETER 
FIEl..D 

...-~~~~-..~~~~~L~-1--~~~~A~~~~-1-~~B'--'-~~C--1 
LABEL OP. CODE GTH LABEL + OR -

INC/REL 

43 44 45. 



LABEL 

RECEIV 

SEND 

OP CODE 

ESTB 

ESTB 

END 

EQU 

MASK 

In the above example, RECEIV would be assembled with a word number of 352 and SEND would be 
assembled with a word number of 320. 

2.01.09 END INSTRUCTION 

OP CODE 

END 

The END pseudo instruction terminates the assembly program and must be used as the last line of code 
in the program. 

2.01.10 EQUATE INSTRUCTION 

OP CODE 

EQU 

The EQU pseudo instruction will permit one label to be given the identical value of another label. The 
label coded in columns 16-21 will be equated to the label in columns 29-34. The label contained in the 
parameter field (column 29-34) must have been previously used or defined. 

2.01.11 MASK INSTRUCTION 

OP CODE 

MASK 

The MASK pseudo instruction is used to enter the table of mask words. An entry of up to 24 print 
format characters is accepted. 

lf the syllable counter is not 0 at the beginning of the Mask instruction, "Stop" instructions are inserted 
until the counter reaches 0. The Mask Characters are then assembled in the next full word. 

The appearance of any character other than those listed in the Mask Character Table (see Appendix E) 
results in an error condition. 

The mask table must be identified by placing its label in the label field (columns 16-21) on'the line of 
the first mask word entry. For Assemblers other than the Assembler 1, the number of mask characters 
must appear in the field length. 

Revised 3-29-71 by 
PCN 1045481-001 2.01.11 



NOTE 

NUM 

Example: See subject 2.03.05. 

2.01.12 NOTE INSTRUCTION 

OP CODE 

NOTE 

The NOTE pse\ldo instruction will permit the entry of up to 25 characters in the REMARKS field 
(columns 53-77). No machine language instruction is assembled. No parameter field entry is required. If 
one is given, it will be ignored. 

Example: 

PARAMETER 
FIELD 

...-~~~--t· L~-1--~~~~A~~~~--+~-B~~~C---l 

N 

OP. CODE GTH 

OP CODE 

NOTE 

LABEL + OR­
INC/REL 

2.01.13 NUMBER INSTRUCTION 

OP CODE 

NUM 

REMARKS 

43 

REMARKS 

Begin total routine. 

The NUM pseudo instruction permits a word of numeric data to be stored as constant data in memory 
during program loading. 

A numeric constant of from 0 to 15 digits (Assembler 1 will allow only 14 digits) consisting of the digits 
0-9 is accepted. In addition, the "-," "C" and "M" codes preceding the digit positions of the constant 
are accepted, and set their respective flags in the flag positions of the word. 

If the syllable counter is not 0, "Stop" instructions are inserted until the counter is 0. The numeric 
constant is then assembled in the next full word, right justified. 

The number must be identified by placing its name label in the label field (columns 16-21) of the 
coding form, unless reference will be made to it by +/- incrementing from another entry. 

2.01.12 



Example: 

PARAMETER 

ORG 

PAGE 

REG 

Fl~ B C .--~~~~--~~~~--tL~-t--~~~~A~~~~---r~~~-r---1 
LABEL OP. CODE GTH LABEL 

16 17 18 19 20 21 

LABEL OP CODE A 

MUL PI 

PI NUM 314159265358979 

2.01.14 ORIGIN INSTRUCTION 

OP CODE A 

ORG 0-767 

+ OR -
INC/REL 

B 

43 44 45 6 47 

REMARKS 

Multiply by PI 

PI to 14 places. 

The ORG pseudo instruction will assemble the next instruction in syllable 0 of the word specified in the 
parameter field. If the specified word has already been assigned by the assembler, an error message will 
be printed and entfy assignment will start at the same sequence. 

No machine language instruction is assembled. 

2.01.15 PAGE INSTRUCTION OP CODE 

PAGE 

The PAGE pseudo instruction will cause the assembler output to be spaced to the top of a new form. 

2.01.16 REGION INSTRUCTION 

OP CODE A 

REG 1-255 

The REG pseudo instruction sets aside the number of words of memory specified by the A parameter. 
The actual memory address is assigned by the assembler. If the syllable counter is not 0, "Stop" 
instructions are inserted until the counter equals zero. 

Revised 3-29-71 by 
PCN 1045481-001 2.01.16 

1 



WORD 

The word counter is advanced by the amount in the A parameter field. lf the word counter exceeds the 
highest order word available, an error message is printed and entry assign~ent will start at the same 
sequence number. 

No machine language instruction is assembled. The region must be identified by placing its name label in 
the label field (columns 16-21) of the coding form. This region is not cleared. 

Example: 

PARAMETER 
FIELD A B C 

--~~~~--~~~~~L~-1-~~~~~~~~-J.~-'-~-+-~ 

LABEL OP. CODE 

16 17 18 19 3) 21 

LABEL 

AREA 

OP CODE 

LKBR 
TKM 

REG 

2.01.17 WORD INSTRUCTION 

OP CODE 

WORD 

GTH + OR -
LABEL INC/REL 

A 

AREA 
25 

4 

B 

43 44 45 

REMARKS 

Load keyboard 
Type 25 

Save 4 words 

The WORD pseudo instruction causes the assembler to assign the next instruction at the beginning 
syllable of the next word. 

lf the syllable counter is not 0, it will be incremented and "Stop" instruction inserted into each syllable 
until the counter reaches 0. 

This instruction should immediately precede the entry of a Program Key Table. 

2.01.17 



Example: 

WORD 

PARAMETER 
FIELD A B C 

--~~~~--~~~~~L~-1--~~~~~~~~-t-~~~-+---t 

LABEL 

LABEL 

PKEYS 

OP. CODE GTH . 

OP CODE 

LPKR 

WORD 
BRU 

LABEL 

A 

PKEYS 

START 

+ OR­
INC/REL 

B 

43 44 45 47 

REMARKS 

Revised 3-29-71 by 
PCN 1045481-001 2.01.17 (Cont'd) 



NK NKCM 

NKR NKRCM 

2.02 - KEYBOARD INSTRUCTIONS 

2.02.01 ENABLE NUMERIC KEYBOARD INSTRUCTIONS 

OP CODE A B -
NUMERIC KEYBOARD NK 0-15 0-15 

NUMERIC KEYBOARD, PERMIT REVERSE ENTRY NKR 0-15 0-15 

NUMERIC KEYBOARD, PERMIT C AND M KEYS NKCM 0-15 0-15 

NUMERIC KEYBOARD, PERMIT REVERSE ENTRY, 
NKRCM 0-15 0-15 

C AND M KEYS 

The four numeric keyboard instructions provide for the entry of a maximum of 15 digits of numeric 
information into the Accumulator digit positions 0-14. The Accumulator digit position 15 contains 4 
flags designated "minus" (-), "special" (S), "per hundred" (C) and "per thousand" (M). These four flags 
are always reset at the start of any numeric keyboard or numeric entry instruction. (RE) identifies the 
data entered into the Accumulator as negative by setting the minus flag. The C, M Keys set the 
appropriate flag when depressed. 

The "-," "C," "M" flags will be set if the particular keyboard instruction enables the use of their related 
keys (RE, C, M respectively) and the operator depresses these keys during the instruction. The specia1 
flag "S" cannot be set by the depression of any keyboard key. Control of this flag is accomplished by 
other means (see flag set/reset instructions). 

The settings of the four flags transfer with the data from the Accumulator to memory and from 
tnemory back to the Accumulator and thus can be retained for future use in the program. 

The A .field of the instruction specifies the maximum number of digits permitted to the left of the 
decimal point. The parameter values range from 0-15. 

The B field specifies the maximum number of digits permitted to the right of the decimal point. The 
parameter values range from 0-15. The sum of the A and B parameter cannot exceed 15. 

When entering data, if either the A or B limits are exceeded, the Keyboard Error lndicator is turned on 
and the alarm bell sounds, haltirig the program. When the Keyboard Error lndicator is lit, all keys are 
disabled from performing their functions except the reset or ready push button. The entire entry must 
be re-indexed following the use of the reset key. 

Other conditions which will cause the Keyboard Error lndicator to turn on: 

l. The RE, C, M Keys are depressed duriiig a numeric keyboard instruction that does not permit 
their use. 

2. A typewriter key is depressed (other than 0-9, open/close key, line advance key or typewriter 
OCK's) during a numeric keyboard instruction. 

3. A non-enabled program key has been depressed. 

4. A numeric keyboard instruction is initiated when the capacity of the keyboard buffer has 
been exceeded and when the valid codes in the buff er do not terminate the instruction. 

2.02.01 



NK NKCM 

NKR NKRCM 

Under control of the A field the programed number of digits enter the Accumulator. Although the B 
field specifies how many digits can be entered to the right of the decimal point, it also determines the 
digit position where the whole number enters the Accumulator. The entry of each whole number causes 
the previously indexed digits to shift left one digit position permitting the newly indexed digit to enter 
the vacated digit position. A zero key depression counts as a digit even if used as the most significant 
.digit entry. Double and triple zero keys act in the same manner counting two or three digits 
respectively. 

Under control of the B field (following recognition of the decimal point key), the first digit is entered 
to the right of the phantom decimal point and the second digit in the second position with the 
remaining digits entered accordingly. A zero counts as a digit even if entered as the last digit after the 
decimal point key. lt is not necessary to depress the Decimal Point Key if there are no decimal entries, 
even though the B field permits decimals. When the B field is zero, the error light will not become 
activated if the decimal point key is depressed without ensuing digit keys. 

Example: 

Suppose the Accumulator digit positions 0-14 contain 0. Examine the instruction. 

The operator wishes to index the number 5432.10. 

The most significant digit "5" is indexed first and enters the Accumulator at digit position 2. The next 
digit "4" is indexed and enters the Accumulator at digit position 2 and shifts the 5 to digit position 3. 
This process continues until we have 000000000543200 in the Accumulator. 

The decimal key is now used, and the digit l enters the first position to the right of the phantom 
decimal point. The next digit indexed enters in the next Accumulator digit position to the right of the 
previous entry. We now terminate the instruction with an appropriate OCK (i.e., according to program 
instructions). 

The Accumulator now contains: 

15 14 13 12 11 10 9 

0 0 0 0 0 0 
T 
1 

Flag Position 

8 7 6 5 4 3 

0 0 0 5 4 3 

2 

2 

l 0 Accumulator Digit Position 

1 0 Content of Accumulator 

Revised 3-29-71 by 
PCN 1045481-001 2.02.01 (Cont'd-1) 



····. 

NK NKCM 

NKR NKRCM 
... 

Example 1 : Illustrates the use of the NK instruction. 

PARAMETER 
FIELD A B C 

..-~~~~~.,.....~~~~Lal-l--~~~~~~~~~1------==--~~-1 

OP. CODE GTH LABEL + OR -
INC/REL 

LABEL 

16 17 18 19 20 21 

OP CODE A 

NK 6 

B 

5 

43 

REMARKS 

Will allow for 11 characters to be entered into the 
Accumulator. No printing occurs. 6 to the left of 
digit position 5 and 5 to the right of it. 

Example 2: Illustrates the use of the NKR instruction. 

PARAMETER 
FIELD A B C 

--~~~~~~~~~-....ILE>i-...._~~~~~~~~~...._~~~....___, 

LABEL OP. CODE 

16 17 18 19 20 21 

OP CODE A 

NKR 6 

B 

5 

GTH LABEL + OR -
INC/REL 

REMARKS 

43 

Will permit use of negative numbers (set minus 
flag). 

Example 3: Illustrates the use of the NKCM instruction. 

PARAMETER 
FIELD 

...... ~~~~--...--~~~~LE>i-1-~~~~~A~~~~~~~B=--~"'-=C-1 
LABEL OP. CODE GTH 

16 

LABEL + OR -
INC/REL 

43 

lf the operator indexes 123456789, thert the decimal point and 654321, the Accumulator will then contain 
in digit positions 0-14 

123456789654321 

lf in addition the operator depresses the C or M key, the C or M flag will be set. Both keys can be used 
during the same instruction. Both flags will be set. 

2.02.01 (Cont'd-2) 



PKA PKC 

PKB LPKR 

2.02.02 OPERATION CONTROL AND PROGRAM KEYS 

Depression of any of the Operation Control Keys (OCK's, on either the numeric or typewrlter 
keyboard) terminates the numeric or typewriter keyboard entry, sets the corresponding OCK flag, resets 
the other OCK flags, and causes the next instruction in the program to be executed. All program keys 
are tumed off. 

ENABLE PROGRAM KEY GROUP A 

ENABLE PROGRAM KEY GROUP B 

ENABLE PROGRAM KEY GROUP C 

OP CODE 

PKA 

PKB 

PKC 

A 

12345678 

12345678 

12345678 

The function of a Program Key is to select and execute one instruction programed and stored in an area 
of memory called a Program Key Table. lt also will terminate a keyboard instruction instead of an OCK, 
in which case all OCK flags are reset. 

Program Key Group A refers to Program Keys Al-A8. Program Key Group B refers to Program Keys 
Bl-B8. Program Key Group C refers to Program Keys Cl-C8. The allowable Program Key Groups are 
dependent upon the machine style. The A parameter can include any number of the program keys 1-8 
for a specific group (A, B or C). 

All PK's that are desired must be specified by the PK command for that group, as a later command 
calling for that group will void the eff ect of an earlier command for the same group. 

When in the ready mode PK: Al, A2, A3 (Start, Load, Utility respectively) have specially assigned 
functions and are always enabled. In the ready mode the specially assigned firmware functions take 
precedence over any functions programed for these keys. 

After an enable program key instruction the program will not stop automatically to allow the operator 
time to exercise a decision. This must be done by the programmer with an instruction such as TK or NK. 

OP CODE A 

LOAD PROGRAM KEY BASE REGISTER LPKR LABEL 

The instruction Load Program Key Base Register is used to reference the first ward of a Program Key 
Table. ( 4 syllables per word). The A parameter is a label addressing the first word of the table. 

The table must begin in syllable 0 of a word. Bach PK has one instruction in the table. The Op-Codes 
for a 24 PK machine would be arranged as follows: 

Revised 3-29-71 by 
PCN 1045481-001 2.02.02 



1 
LKBR 

BASE WORD 0 OP CODE for PKAI BASE WORD +3 0 OP CODE for BS 

1 OP CODE for A2 1 OP CODE for B6 

3 OP CODE for A3 2 OP CODE for B7 

4 OP CODE for A4 3 OP CODE for B8 

BASE WORD +l 0 OP CODE for AS BASE WORD +4 0 OP CODE for Cl 

1 OP CODE for A6 OP CODE for C2 

2 OP CODE for A7 2 OP CODE for C3 

3 OP CODE for AB 3 OP CODE for C4 

BASE WORD +2 0 OP CODE for Bl BASE WORD +5 0 OP CODE for CS 

1 OP CODE for B2 1 OP CODE for C6 

2 OP CODE for B3 2 OP CODE for C7 

3 OP CODE for B4 3 OP CODE for C8 

There may be more than one PK table in memory at a time. The LPKR instruction must be used prior 
to changing the functions of the PK's in order to locate the base address of the new table. 

Example: 

PARAMETER 
FIEl..D A 8 C 

.-~~~~--~~~---4L~-1--~~~~~~~---'i---=-~-+--~ 

LABEL OP. CODE GTH 

0 

LABEL + OR­
INC/REL 

o, 

This example illustrates the use of an NK instruction to halt the program and allow the operator to 
select a PK key. 

2.02.03 TYPEWRITER KEYBOARD INSTRUCTIONS 

OP CODE A 

LOAD KEYBOARD BASE REGISTER LKBR LABEL 

2.02.03 



TK 

The LKBR instruction specifies the starting memory location into which information will be transferred 
for all succeeding TKM and EAM instructions. That is, until another LKBR instruction is executed. The 
A parameter addresses the starting word location in which the alpha characters will be stored. 

The keyboard base register contains the location that is loaded into it until a subsequent LKBR 
instruction loads a new location into it. 

This instruction is somewhat modified in firmware sets containing data communications capability. See 

Subject 2.12.03. 

Example: 
PARAMETER 

FIEl..D A 8 C 
--~~~~~..-~~~---4Lel-1---~~~~~~~~~1---~~~1-----1 

LABEL OP. CODE GTH 

16 17 18 19 20 21 

LABEL + OR -
INC/REL 

43 

The instructions above will allow 25 alpha characters to be stored sequentially beginning in the memory 
location addressed by the label TYPE. 

TYPE 

OP CODE 

TK 

TK 

A 

0-150 15W' forms handler 

0-255 26" forms handler 

The type instruction provides for typing and printing as a maximum the number of alphanumeric 
characters as specified in the A field. The A parameter ranges from 0 to 150 for 15Yi inch forms handlers, 
while 26 inch forms handler styles provide for a 0 to 255 range. This instruction is terminated by 
depression of an OCK or an enabled PK. 
Printing of the first character will begin at the position of the print head. lf printing in a specified area 
is required, the print head must be prepositioned to the beginning left-hand position of the print area 
before the typewriter instruction is reached in the program. 

lf typing of more than the number of characters specified in the A field is attempted, the Error 
Indicator is lit, and further typing is prevented. The error condition can be corrected by depression of 
the Reset Key. lf the Reset Key is depressed during a TYPE instruction without an error condition, the 
instruction will be re-initiated and the print head will return to the beginning typing position. 

PARAMETER 

FIEl..D A 8 C 
....-~~~~~..--~~~---iLE)l-1--~~~~~.---~~~t--~~~t---1 

LABEL OP. CODE GTH 

16 17 18 19 20 21 

LABEL + OR -
INC/REL 

43 

The above coding will allow the computer to act as a typewriter for 9 alpha characters. 
Revised 3-29-71 by 
PCN 1045481-001 2.02.03 (Cont'd-1) 



1 
TKM 

OP CODE A 

TYPE INTO MEMORY PRINT TKM 0-150 15W' forms handler 

TKM 0-255 26" forms handler 

The Type into Memory instruction diff ers from the Type instruction in that in addition to printing 
alphanumeric information, the characters are also stored in memory. The space character is considered a 
print character and stores a code in memory. The codes for Backspace, Open/Close, Line Advance, 
OCK's and Program Keys are not stored in memory. 

Example: 

PARAMETER 

FIEl..D A 8 C 
--~~~~__,,;~~~~~L~-1--~~~~--..~~~-+~~~--+---t 

LABEL OP. CODE GTH 

16 17 18 19 20 21 

LABEL +DR -
INC/REL 

43 

A maximum of 31 alpha characters can be typed and a maximum of 32 alpha characters (31 alpha 
characters plus end of alpha code 0, 0) will be entered into memory. See LKBR instruction Subject 
2.02.03 

This instruction is somewhat modified in firmware sets containing data communications capability. See 
Subject 2.12.03 

The code, for each key depressed before instruction termination, is stored in memory with the first 
character stored in the most significant character location of the word specified by the keyboard base 
register. A single word can store 8 characters. 

ALPHA WORD - (8 characters) 

7 6 5 4 3 2 0 

The depression of the backspace key effectively removes the last typing key code from memory. 
Backspacing will not occur past the first typing position. 

On a TKM instruction each word is cleared before any characters are entered. The unused portion of the 
word remains clear. If no typing is done and the TKM instruction is terminated by an OCK, the word is 
clear. If exactly 8 characters were entered and then an OCK was used, the next sequential word in 
memory would be cleared. If a TKM is used again, without another LKBR, the data will enter memory 
at the first position of the last LKBR. 

Note this is modified wheh used with Data Comm firmware. See SCP, Subject 2.12.03. 

2.02.03 (Cont'd-2) 



EAM 

OP CODE A. 

ENTER ALPHA INTO MEMORY EAM 0-15 0 15W' forms handler 

EAM 0-255 26" forms handler 

This instruction is identical to the TKM instruction except that printing does not occur. The print head 
does not escape. 

Revised 3-29-71 by 
PCN 1045481-001 2.02.03 (Cont'd-3) 



2.03 """'.~PRINT INSTRUCTIONS 

2.03.01 MODES FOR PRINTING 

lnstructic>ns are provided to print in three modes: · 

1. Alphanumeric printing of data either froni keyboard entry or 'from memory. When printing in 
this mode, the field is left justified. 

2. Printing of numeric data from Accumulator. In this mode printi:p.g is right justified. 

3. · Printing of a single character with the actual character specifi~d by the insiruction. A single 
character prints in the position indicated. 

2.03.02 LOAD POSITION REGISTER INSTRUCTION 

OP CODE 

POS 

POS 

A 

0-150 15W' forms handler 

0-255 26" forms handler 

Tue Position Register is loaded with the value of the A field. The A field ranges from 1 to 1 SO for 
151h inch forms handlers and 1-255 for 26 inch forms handlers. Tue position loaded in the position 
register corresponds with the actual position at which the printer will print. The print ball does not 
move until the program reaches an instruction which specifies th.at a character is to be printed, or .until 
a keyboard instruction is reached. The print head escapes in 1/10 inch increments. 

P"'RAMETER 
FIEl..D A B C 

------------------------------tLEH-1--~~~~~~~~-+-~~--;1--~ 

SEQUENCE LABEL OP. CODE GTH LABEL + OR­
INC/REL 

Tue above instruction will position at position 101 or 10 inches from position 1. 

2.03.03 PRINT ALPHANUMERIC FROM MEMORY INSTRUCTION 

OP CODE A 

PA LABEL 

2.03.01 



LPNR 

1 
The Print Alphanumeric instruction prints alphanumeric inf ormation from memory beginning with the 
first character in the memory location specified by the "A" field. Printing continues until an end of 
alpha code (0,0) is encountered, regardless of the number of words used. 

For the PA instruction, the ribbon will be in the normal (generally black) position, although it can be 
changed to the reverse position by other instructions. 

Example: 

Suppose the alpha characters MESSAGE (and an end alpha code) are stored in memory location SAVE 
and we desire to print the contents of this memory location. 

Initially, we position the print head. The second step is to provide for the actual printing. These two 
steps are programed. 

PARAMETER 
FIEL.D A B C 

r-~--~~-..~~~~~L~-t---~~~~-----..~~~---r~~~-t---t 

LABEL OP. CODE GTH 

1s 17 1a 1s ao 21 

LABEL + OR -
INC/REL 

43 44 45 47 48 

The printed message would appear at print position 95, left justified and read MESSAGE. 

2.03.04 LOAD PRINT-NUMERIC BASE REGISTER INSTRUCTION 

OP CODE A 

LPNR LABEL 

The Print Numeric Base Register is. loaded with the value of the base address for the print mask table. 
All succeeding print instructions reference this table until another LPNR instruction is executed. The 
"A" parameter designates the base address of the print mask table. 

Mask words are grouped into a table in memory. A Print Numeric Base Register contains the base 
address or starting word of the table. The location of a mask word is specified by using the relative 
addresses 0 thru 15. 

Revised 3-29-71 by 
PCN 1045481-001 2.03.04 



MASK 

Example: 

PARAMETER 
FIEl.D A B C 

---------------------iL~-t--~~~~~~~~-t-~~~--+---o 
LABEL OP. CODE GTH LABEL 

+ OR -
INC/REL 

43 

The Print-Numeric Base Register is loaded with the word number of the label (FORMAT). Relative 
address 0 would access the mask word in location FORMAT + 0 or DD.D. Mask number 1 would be 
ZZZ.DD, (FORMAT + 1), etc. 

A maximum of 16 different masks can be referenced relative to the base address value in the Print 
Numeric Base Register. If more than 16 masks are required, the register must be reloaded with a new 
value before referencing the masks in the second table (by use of LPNR instruction), and then reloaded 
with the original value before reusing any of the first set of 16 masks. lf fewer than 16 masks are 
required, those words of memory never referenced as mask numbers may be used for any other purpose. 

2.03.05 MASK WORD (PRINT FORMAT) 

The mask enables printing in varied formats. The mask word consists of control codes and control flags. 
The control codes are entered into the mask word in digit positions 0-14. They control the printing ( or 
non-printing) and punctuation of each corresponding Accumulator digit. Mask flags are entered into digit 
position 15 of the mask word, and are used to modify the effects of the control codes. 

NAME 

Digit 

Decimal Point and Digit 

Digit and Decimal Point 

Digit and Comma 

Leading Zero Suppress 

2.03.05 

TABLE OF MASK CONTROL CODES 

CODE 

D 

.D 

D: 

D, 

z 

PRINTING RESUL T 

Accumulator Digit prints unconditionally. 

Decimal Point and Accumulator Digit 
print unconditionally. 

Accumulator Digit and Decimal Point 
print unconditionally. 

Accumulator Digit and Comma print 
unconditionally. 

Accumulator Digit prints if non-zero, or if 
a previous digit to the left was non-zero. 



1 -----_MASK _I 
TABLE OF MASK CONTROL CODES (Continued) 

NAME 

Leading Zero Suppress 
and Decimal Point 

Leading Zero Suppress 
and Comma 

Units of Cents 

Tens of Cents 

Terminal Zero Suppress 

Decimal Point and Terminal 
Zero Suppress 

lgnore Digit 

lgnore Digit End 

Single Digit Zero Suppress 

CODE 

Z: 

z, 

c 

c 

X 

.X 

1 

E 

s 

I 
( 

PRINTING RESULT 

Accumulator Digit and Decimal Point 
print if digit is non-zero or if previous 
digit to the left was non-zero. 

Accumulator Digit and Comma print if 
digit is non-zero or if previous digit to the 
left was non-zero. 

Accumulator Digit prints if significant or 
if there is a significant digit to the right. 

lgnore if digit is zero and if significance is 
not established by either a preceding digit 
or a digit to the right. 

Decimal Point and Digit print if signifi­
cant or if there is a significant digit to the 
right. 

lgnore if digit is zero and if significance is 
not established by either a preceding digit 
or a digit to the right. 

Accumulator Digit prints if non-zero, or if 
any digit to the right in this terminal zero 
suppression field is non-zero. 

Decimal Point and Digit print if digit or 
any succeeding digits in this terminal zero 
suppression field are non„zero. 

lgnore if the digit and all digits to the 
right in the terminal zero suppression field 
are zero. 

Digit is ignored, printer does not escape. 

Digit is ignored, the print instruction is 
. terminated, printer does not escape. 

Digit prints if non-zero. Escape if zero. 
Digits to the right and left have no eff ect. 

Revised 3-29-71 by 
PCN 1045481-001 2.03.05 (Cont'd-1) 

1 



MASK 

NAME 

Safeguard 

Suppress Punction 

Punch Leading Zeros 

Print Condensed Numeric 

MASK WORD EXAMPLES: 

TAB LE OF MASK F LAGS 

CODE 

F 

+ 

p 

PRINTING RESULTS 

When the Safeguard flag is set, the safe­
guard symbol ($) is printed to the left of 
the most significant digit printed. 

Print positions where commas or decimal 
points would normally be inserted are 
replaced by spaces. 

No effect on printing, causes preceding 
zeros to punch even though they may not 
print, starting at the pointer. 

Monetary punctuation prints without 
causing printer escapement. Requires PIP 
hardware. 

The examples below illustrate the filtering and control that a mask word and its control codes exert 
over the printing of each accumulator digit. 

Sample: Printing decimal fractions allowing for a 7-digit whole number and 3 decimal places: 

Example 1: 

pointer whole num~ fractio~ 1 t Instruction: PN 9 1 f ield .._...__ field 

Accumulator: 0 0 0 0 0 0 0 0 1 6 5 0 1 f 0 „ . 1 .. ' ' 1 /' • ,, 1 1 '• 1 ' ' , 1 1 . 
Mask 1: z z Z, z z Z' z z Z• z z Z.' X X X 

' ' 1 1 
, , 1 . '1 , , 1 1 11 1 . 

Printed Result: 1 ! 
' 

6 5 O! 1 2 

Mask 1 provides 1 field for whole numbers and 1 for decimal fractions: The "Z" and "Z," mask codes 
establish a "leading zero suppression field" from digit position 3 through the pointer in position 9, and 
the proper comma punctuation for whole numbers; thus, digit positions 7, 8, & 9 are suppressed because 
they are not significant. The "X" and ".X" mask codes establish a "terminal zero suppression field" 
from digit position 0 thru 2 and provide the decimal point, thus digit position zero is suppressed 
because it is non-significant. 

Example 2: 

Instruction: PN 9 1 
pointer whole number -+-- fractio:I 

~ field field 

Accumulator: 

Mask 1: 

Printed Result: 

0 0 0 0 0 0 0 0 1 6 5 0 0 Q ? ,. 1 1 ,, . 1 1 ,, ,. z 1 ,, ' 1 ' , 1 1 

z z Z, z z Z\ z Z' z z z/x X X 
' ' ' ' ' 1' 

1' 1 ' 1 

l • 6 5 0 
' 

2.03.05 (Cont'd-2) 



PN 

PNS­

PNS+ 

Using the same mask word as in example 1, this illustrates the printing eff ect when there is no 
significant fraction value. The printed result being only a whole number. Also, as in example 1, digit 
positions 7, 8 & 9 are suppressed for lack of significance. In both examples, digit positions 10 through 
14 are ignored due to the pointer having been specified at position 9. 

As we will see due to the PN instruction, the mask need not fill the entire mask word. 

2.03.06 NUMERIC PRINTING INSTRUCTIONS 

Numeric values to be printed must be contained in the Accumulator and can have a maximum of 15 
digits. lt is not possible to print numeric data directly from memory. 

OP CODE A B 

PRINT NUMERIC PN 0-14 0-15 

The Print Numeric instruction prints the contents of the Accumulator with the ribbon in the normal 1 
(generally black) position regardless of sign. (Unless previously shifted by the RR instruction.) 

Tue "A" field contains the Accumulator digit positio:n number for the most significant digit to be 
printed. This is independent of the print mask. All positions higher than the digit position specified are 
ignored and lost from printing. Since the Accumulator digit positions start with 0, to print out a 
maximum of 5 digits the "A" parameter should contain a 4. 

The "B" field of this instruction identifies the print mask to be used during printing. There is a 
maximum of · 16 print masks per LPNR instruction so the B field contains a value from 0-15. Tue value 
referenced in the B field is a function of the mask table. (See LPNR instruction). 

OP CODE A B 

PRINT NUMERIC, SHIPT RIBBON PNS- 0-14 0-15 
IP MINUS 

PRINT NUMERIC, SHIPT RIBBON PNS+ 0-14 0-15 
IP PLUS 

The PNS- and PNS+ instruction are similar to the PN instruction, the difference being: 

1. The PNS- instruction shifts the ribbon if the sign of the Accumulator is negative. The PNS­
instruction also allows for Print in Place Capability. The ability to print in place is actuated by 
the insertion of a Dash ( -) in digit position 15 of the mask word. This will print the comma 
(,) and period (.) without letting the printer actually escape the 1/10 inch normally permitted. 

Revised 3-29·71 by 
PCN 1045481-001 2.03.06 



1 

PN 

PNS­

PNS+ 

2. The PNS+ instruction shifts the ribbon if the sign of the Accumulator is positive. 

Example 1: 

PARAMETER 
FIELD A B C 

----~~~~...-~~~~~..--~~~---tL~-1-~~~~~~~~--+-~-.::...~-....;........i 

SEQUENCE LABEL OP. CODE GTH 

11 12 13 14 15 16 17 18 19 20 21 

0 1 

0 2 

LABEL OP CODE 

NK 
PN 

A 

5 
8 

LABEL 

B 

3 
0 

+ OR­
INC/REL 

43 44 45 6 47 

01 

REMARKS 

Enable Numeric keys 
Print Accumulator contents 

The contents of the Accumulator are printed beginning with digit position 8 and with the format 
dictated by print mask 0. 

Example 2: 
PARAMETER 

FIEl..D 
...-....... ~~~~--~~~~~..--~~~---tL~-1--~~~--'-A'---~~~-'-~~B::___..~C::......i 
CO SEQUENCE 

11 12 13 14 15 16 

0 1 

0 2 

0 3 
0 q 

0 5 

LABEL 

LABEL OP. CODE 

17 18 19 20 21 

OP CODE 

NKR 
PNS-

GTH 

A 

5 
8 

LABEL 

B 

3 
0 

+ OR -
INC/REL 

43 44 ~ 47 

REMARKS 

Enable Reverse Entry 
Print Shift if negative 

Printing will occur as in the above example, but the ribbon will Shift if the Accumulator "minus" flag is 
set. 

2.03.06 (Cont'd) 



PC PC-

PCP PC+ 

2.03.07 SINGLE CHARACTER PRINT INSTRUCTIONS 

OP CODE A 

PRINT CHARACTER PC Character to be printed 

This instruction unconditionally prints the character specified in the "A" field. If the "A" field is blank, 
the instruction causes a single printer space operation. The PC instruction prints with the ribbon in the 
normal position (unless previously shifted. See RR instruction). 

OP CODE A 

PRINT CHARACTER PREVIOUS RIBBON PCP Character to be printed 

Tue PCP instruction will print a character with the same ribbon position that was used on the last print 
operation. 

PRINT CHARACTER IF ACCUMULATOR 
MINUS, PREVIOUS RIBBON 

PRINT CHARACTER IF ACCUMULATOR 
PLUS, PREVIOUS RIBBON 

OP CODE 

PC-

PC+ 

A 

Character to be printed 

Character to be printed 

Printing of these instructions is dependent upon the Accumulator sign flag (+ or -). The character 
specified in the "A" field is printed according to the following conditions: 

1. PC- Print if Accumulator negative (i.e., sign flag set); do not print if plus. 

2. PC+ Print if Accumulator positive (i.e., sign flag reset); do not print if negative. 

Example: 

PARAMETER 
FIELD 

.--------....----------..----------IL~-1--~~~~A~~~~-1-~~B~_._~C-1 
SEQUENCE LABEL OP. CODE GTH 

11 12 13 14 15 16 17 18 19 20 21 

0 1 

0 2 

LABEL + OR-' 
INC/REL 

3 
0 

43 44 45 6 47 

Revised 3-29-71 by 
PCN 1045481-001 2.03.07 

1 



'FtR 

LABEL 

''l 
OP COPE 

Nl{R 
PNS....; 
PC+ 
PC....; 

A 

8 
10 
+ 

B REMARKS 

3 Allow negative entry 
0 Print amount 

Print if positive 
Print if negative 

lf the Accumulator contllins a positive quantity; a "+" character will be printed. ·.A negative content 
would produce a "-" character. 

2.03.08 RIBBON SHIFT INS'fRUCTION 

Printing of data normally is with the ribboh color black, except .für certain p.rint instnictfons that cause 
minus amounts to print in red. However, a. ribbort shift instruction is also provided to change the normal 
color of printjng. 

OP CODE 

RED RIBBON RR 

The RR instruction is used to change the ribbon color of only the n.ext printing instruction. The ribbon 
color will be opposite to the color normally expected · from the data and type of the next print 
instruction. 

Example 1: 

.PARAMETER 

FIELD A B c 
------------..-----------..-------~1-~---~~~~--.~~~-+~~~-+---1 

OP. CODE · .GTH LABEL + OR -SEQUENCE LABEL 
INC/REL 

' 11 12 .13 1~ ls 11:;. 43 4445 647 

0 1 

0 2 

0 3 

Tue Accumulatot contents would print accordin:g to the PN 5 3 instruction but the ribbon would charlge 
to the opposite color. The second PN 5 3 would not be affected by the RR instruction. -. 
2.03.08 



Example 2: 

PARAMETER 
FIB.D A B c 
Lai-

COD SEQUENCE LABEL OP. CODE GTH LABEL + OR -
INC/REL 

11 12 13 14 15 16 17 18 19 20 21 43 44 45 6 47 

0 1 

0 2 

0 3 • 10 0 
0 q. 

0 5 PNS+ I Q 

LABEL OP CODE A ! REMARKS 

NKR 8 3 Allow negative 
RR Reverse Ribbon 

PNS- 10 0 Shift Ribbon "-" 
RR Reverse Ribbon 

'·'' PNS+ 10 0 Shift Ribbon "+" 

The eff ects of the PNS- and PNS+ instruction are reversed. 

2.03.09 POWER ON AND OFF INSTRUCTIONS 

Programmatic .OFF-ON and·manual ON for the Printer Power motor is applicable on the TC 700 series. 
The PON and POF macro instructions are available only in TC 700 main memory firmware sets. 

OP CODE 

PRINTER POWER ON PON 

The prin.ter motor, which also supplies power to the keyboard, will be started when the PON instruction 
is executed. If the motor is already ON, the PON will execute as a NOP. With the system main power 
ON and the printer power OFF, depression of the Printer Power ON button alone will unconditionally 
start the motor. 

NOTE: Power to the printer motor will always be ON at the initial turn on of the system. 

OP CODE 

PRINTER POWER OFF POF 

Revised 7-23-71 by 
PCN 1045481-002 2:03.09 



Power to the printer (keyboard) motor. will turn off if the printer motor OFF button is being held 
dep:ressed when the POP instruction is executed. 

The POP instruction will not cause power to the printer motor to be turned OFF unless the Printer Off 
button is depressed when the POP instruction is executed. The POP instruction will execute as a NOP if 
it is executed when the Printer Motor Off button is not depressed. 

When the printer motor is OFF, the execution of the functions for printing, keyboard buffering, 
keyboard indexing, the forms handler, and alarm are prevented. Attempted execution of any of the 
preceding instructions will result in a system block. Attempted execution of PON or POP on a machine 
not equipped With the Printer Motor OFF /ON buttons will also cause a system block. A systems block 
can be cleared only by depression of the Program Halt and Clear Button. 

LABEL OP CODE 

LOOP EX 
BRU 
SK 
BRU 
POP 
BRU 

RECEIV PON 
LRBR 
PAB 

PM-OFF EX 
POP 
BRU 
Ll{BR 
BAM 
NOTE 
NOTE 
NOTE 

- . 
2,03;Q9 (Cqnfd) 

A 

D 
.RECEIV 

B 
KEYBRD 

LOOP 

0 
12 

B 

PM-OFF 
TABLE 

4 

B c 

2 1 

3 1 

.3 2 

REMARKS 

If n:iessage has been received., 
process it. If keyboard bµffer 
is empty continue in loop. 
Printer power on button must 
ha.Y:e been depressed for data 
to be in keyboard buffer. 

Printer power must be turned 
before PAB can be executed. 

lf the keyboard buffer is 
empty execute the POP and 
continue in the PRNTR 
motor offloop. Before the 
PM-OFF loop can be exited, 
the PRNTR power on button 
must be depressed and data 
must be entered into the 
keyboard buffer. 



2.04 - FORMS CONTROL INSTRUCTIONS 

2.04.01 FORMS HANDLER - OPEN AND CLOSE INSTRUCTION 

Open Forms Handler 

OP CODE 

oc 
oc 

A 

0-255 rear feed handler 

BLANK front feed handler 

The OC instruction is used to open the forms handler mechanism in order to permit the insertion or 
removal of a completed unit document. The A parameter is blank for front feed styles. For rear feed 
styles of the L/TC the A parameter of the OC instruction specifies the number of lines the left forms 
mechanism will advance when the handler mechanism is next closed. 

This closing may be from any of the following sources: 

1. The execution of a PN or PA instruction of any type. 

2. The entering of alpha information at a TK instruction. If a TK instruction were terminated by 
an OCK without the entering of alpha data, the handler mechanism would not close. 

3. A CC instruction. 

4. Manual depression of the open/close key on the keyboard. 

When programing for automatic alignment of rear-fed unit documents, the number that must 
be placed in the OC parameter must be 3 greater than the line number of the first actual line 
of print. 

To align a unit document to line number 14 

OP CODE 

oc 
A 

17 

REMARKS 

Will align to 14 

Although the form aligns to line 14, the Count Register contains 17. Thus, it may be desirable 
to reload the Count Register with 14 before any further vertical spacing is performed. 

OP CODE 

Close Forms Handler cc 

The CC instruction closes the forms handler. This instruction generally is not required since execution of 
any print instruction or depression of a typing key during a type instruction will automatically close the 
forms handler. 

If the handler is open as the result of executing an OC instruction, when the CC instruction is executed, 
the Left Forms mechanism will advance the number of times specified by the OC instruction. 

Revised 8/9/71 by 1 
PCN 1045481-003 2.04.01 





2.04.02 PL,ATEN CONTROL REGISTER INSTRUCTIONS 

LOAD LEFT PLATEN COUNT REGISTER 

LOAD LEFT PLATEN LIMIT REGISTER 

LOAD RIGHT PLATEN COUNT REGISTER 

LOAD RIGHT PLATEN LIMIT REGISTER 

LLCR LRCR LLLR LRLR 

AL AR ALR AL TO ARTO 

OP CODE 

LLCR 

LLLR 

LRCR 

LRLR 

A 

0-255 

0-255 

0-255 

0-255 

The programmer is provided with four platen control registers to control vertical spacing. These are the 
Left and Right Forms Count Registers, and the Left and Right Limit Registers. In addition, there is a 
Forms Limit Flag . 

. A forms count register is associated with each platen advance mechanism. This register is automatically 
incremented · by 1 each time the respective (left or right) platen is advanced a line either program­
matically or by use of the Line Advance Key. 

A forms limit register is also associated with each platen advance mechanism. This register contains a 1 
limit to which the forms count register can be compared. 

The LLLR and LRLR preset the forms limit registers to a specified line. The count register will be set 
to 1 (not 0) on the next line advance after the respective limit and count registers are equal. 

On the line advance following when the count register equals the corresponding limit register, the forms 
limit flag is set. The limit flag becomes reset on the next line advance. 

LLLR = 50 
LLCR = 50 

On the next line advance the left count register equals 1 and the Forms Limit Flag will be set. 
The next line advance (2nd after LLCR = LLLR) resets the flag. 

The execution of a LLCR or LRCR will reload the appropriate count register. The count register is not 
incremented when the platen is advanced by the platen twirlers. 

The LLLR and LRLR instructions load the Left and Right Platen Limit Registers respectively with the 
contents of the "A" field. 

2.04.03 LINE ADVANCE INSTRUCTJONS 

ADVANCE LEFT PLATEN 

ADVANCE RIGHT PLATEN 

ADV ANCE BOTH PLATENS 

ADV ANCE LEFT PLATEN TO 

ADVANCE RIGHT PLATEN TO 

OP COOE 

AL 

AR 

ALR 

ALTO 

ARTO 

Revised 3-29-71 by 
PCN 1045481-001 

A 

0-255 

0·255 

0-255 

1-255 

1-255 

. 2.04.03 



LLCR LLLFl LRCR . LRLR 

AL AR ALR AL TO ARTO 

The AL, AR, and ALR instructions advance the form the number of lines specified by the "A" 
parameter. These provide a single line advance with a maximum advance of 255 lines. The vertical spac,es 
occur in the 1/6 inch increments. The respective count register is incremented by 1 for each single line 
advance. 

OP CODE 

AL 

A 

1 

The form will advance 1 line. The Count Register will be incremented by 1. 

The ALTO and ARTO instructions advance a form until the associated count register is equal to the 
value of the "A" field. If the Count Register equals the line number specified in the ALTO or ARTO 
instruction prior to its execution, no advance occurs. Specifying "O" or an integer larger than the 
contents of the. Limit Register in the "A" parameter of the ALTO/ARTO instruction is a programing 
error. This will result in a continuous search for a line number that does rtot exist. 

1. To determine the number of lines which will be advanced, subtract the Count. Register from 
the va.lue of the "A" parameter in the ALTO or ARTO instruction. If positive, this will be the 
number of lines advanced. If negative, assume this number is positive, then subtract from the 
value of the Limit Register to ascertain the number of lines advanced. 

a. OP CODE 

LLLR 
LLCR 

ALTO 

A 

255 
20 

3 

Value of ALTO parameter - Value of Count Register 

3 20 = 

Since negative assume positive (i.e„ -17 = 17) 

Value of Limit Register - 17 = 
255 17 = 

There will be an advance of 238 lines. 

b. OP CODE A 

LLLR 255 
LLCR 20 

ALTO 25 

-17 

238 

REMARKS 

Load Left Limit Register 
Load Left Count Register 

Advance to line 3 

REMARKS 

Load Left Limit Register 
Load Left Count Register 

Advance to Line 25 

Value of ALTO parameter - Value of Count Register = 
25 20 = 5 

Since resultant is positive, there will be 5 line advance. 

2.04.03 (Cont'd-1) 



2. OP CODE 

LLLR 

ALTO 

llCR lllR lRCR lRlR 

Al AR AlR Al TO ARTO 

A 

30 

5 

Assume contents of Left Count Register= 20, when ALTO command is executed. This is an example of 
the type of programing employed when using pin fed continuous forms with the requirement that the 
program automatically advance from the last line on one form to the first line of a new form. 

The form advances 10 lines, then the LLLR = LLCR, on the next line advance the Count Register is set 
to 1. Advancing continues for 4 more lines to line 5 of the new form. In this case, the last line on the 
form would be line 30. 

Another method of continuous forms programing utilizes the forms limit flag. 

E:ll:ample: 

Suppose we have the following form: 

Line 1 
First Print Line 
Last Print Line 
Last Line on Form 

T-­
lt/-
'IO , -·------

The following programing will advance the form automatically when the forms limit flag is set. 

OP CODE A B c 
LLLR 40 
LLCR 0 

AL 1 
EX T L 1 

ALTO 17 
LLLR 6 

The following illustrates the use of the Limit Register to enable the program to know when 40 lines 
have been filled on the invoice. The total length of the invoice is 8% inches (8.5 x 6 = 51 lines). The 
first print line is 14 as measured from the top of the form. 

Revised 3-29-71 by 
PCN 1045481-001 2.04.03 (Cont'd-2) 

1 



.. 

'· LLCR LLLR~ · '" LACR 

, Al AR AlR. ALTO 
= 

LRLR 
t 

ARTO 

OP CODE 

LLLR 
LLCR 
oc 
TK 

., 
A '•.' 

40 
37 
17 

10 

When the forms· handler i~ elosed, ·· the: ~orm will advance ; 17 J.iqes. The · first thre~. lines increment the 
Count Register to · 40, the next advance will set the Count Register to 1. After an advanc.e . of t:tie 
remaining U lines;· 'the (::ount ·Register will be a:t 14. This. is the actual first print line, and th~ number 
wa~ted in the Count Regist~r. . . · . '., · " 

2.04.03 (Cont'd-3) · 



2.05 - ARITHMETIC INSTRUCTIONS 

2.05.01 ADDITION INSTRUCTION 

ADD TO ACCUMULATOR 

ADD TO MEMORY 
'i· 

··ADA 

·ADM· 

OP CODE 

ADA 

ADM 

A 

LABEL 

LABEL 

l 

The ADA'instruction provides for adding the contents of a memory location, specified by the A field to 
the conteiits of the Accumulator. The resultant sum is placed in the Accumulator leaving the meinory 
lo~ation undisturbed. 

The ADM instruction provides for adding the contents of the Accumulator to the contents of the 
memory location specified in the A field. The resultant sum is placed in memory location A leaving the 
Accumulator undisturbed. 

The overflow flag is set if an overflow occurs and reset if there is no overflow. 

The ADA and ADM commands cannot be used to move alpha data, even if the receiving location is 
clear. 

Example 1: 

PARAMETER 
FIELD 

.-.~~~~ ........ ~~~~~LEH-t--~~~~A_,.~~~-+-~-B~---i~C"---1 
LABEL 

OP CODE 

ADA 

Example 2: 

LABEL 

16 17 18 19 20 21 

OP CODE 

ADM 

OP. CODE 

ADA 

A 

AREA 

OP. CODE 

A 

AREA 

GT"H 

B 

FIEl..D 
LEH-
GT"H 

B 

LABEL 

AR 

LABEL 

AR 

+ OR­
INC/REL 

REMARKS 

Add to Accumulator the contents of Area, content 
of Area is unchanged. 

PARAMETER 

A B c 
+ OR -
INC/REL 

43 44 45 

REMARKS 

Add to memory location Area contents of 
Accumulator leaving Accumulator unchanged. 

Revised 3~29-71 by 
PCN 1045481-001 2.05.01 



[ 'AOK· 

CLM 

CLA 1 
2.05.02 ADD CONSTANT TO ACCUMULATOR tNSTRUCTION 

OP C9DE A B 

APlC . 0-14 0-9 

The ADK instruc.tion proVides algebraic _addition of the digit contained)n'the B field to the digit in the 
Accumulator position specified by the A field, with carries propagated in succeeding high order digits. 

' ' ~· 

The Special (S), per thousand (M) and per hundred (C) flags are unconditionally reset. 

The sign flag is reset ( +} if the result is positive or set ( - ) if negative. 
. . 

Tue 'overflow flag is set ff an overflow occurs and reset if there is no overflow. 

Exarnple: 
PARAMETER 

LABEL 

Fla.D A 8 C 
...-~~~~--..~----~~L~-t--~~~~--.----~~-+-~~---;~~ 

GTH LABEL + OR -
INC/REL 

OP. CODE 

16 43 44 45 47 

REMARKS OP CODE 

ADK 

A 

6 

B 

3 Add 3 to digit · position 6 in the Accumufator. 

2.05.03 CLEAR INSTRUCTIONS 

CLEAR MEMORY WORD 

CLEAR ACCUMULATOR AND INSERT CONSTANT 

OP CODE 

CLM. 

CLA 

A 

LABEL 

0-15 

The. CLM instruction will clear the 16 digits of the memory location specified in the A field. 

B 

0-15 

The CLA instruction sets _all 16 digits of the Accumulator to zero, thus resetting the four Accumulator 
flags (M, C, special, and sign); it places the digit specified by the B field in the digit position of the 
Accumulator specified by the A field. 

lt is_ important to notice that the B parameter although expressed as 0-15 on the coding form, is placed 
in tbe Accumulator as a. hexadecimal digit (0-F) rather than two decimal digits. 

Arithmetic operations can only use the values from 0-9 in any digit position. Any values over 9 will not 
arithmetically combine. 

2.05.02 



1 ...__ --INK __ , , 

Example 1: 

PARAMETER 

FIEL.D A 8 C 
...-----------..-------~Lal-t--~~~~~..--~~~t--~~~t---t 

LABEL 

OP CODE 

CLM 

OP. CODE GTH . 

A 

AREA 

B 

LABEL + OR­
INC/REL 

REMARKS 

The Memory location called Area will contain all 
zeros. 

Example 2: 

PARAMETER 

FIEL.D A 8 C 
...-----------------------tLal-t--~~~~~..--~~---"t--~~____...t---t 

LABEL OP. CODE GTH . LABEL + OR­
INC/REL 

16 17 18 19 20 21 22 2324 2S 26 27 28 29 ~ 31 32 3334 35 36 3,7 38 39 40 41 42 43 44 45 6 47 

OP CODE 

CLA 

C L A. 

A 

0 

B 

0 

0 0 

REMARKS 

The A~cumulator contains zeros in positions 0-15. 

2.05;04 INSERT CONSTANT IN ACCUMULATOR INSTRUCTION 

INSERT CONSTANT IN ACCUMULATOR 

OP CODE 

INK 

A 

0-15 

B 

0-15 

The INK instruction inserts the digit specified by the B field in the digit position of the Accumulatc>i: 
specified by the A field. The remaining digit positions are unaff ected. 

Similar to the CLA instruction the B pararneter field in this instruction also permits entry of a value 
from 0-15. Again this is a hexadecimal value rather than a decimal value. 

Arithil.letic operations can only use the values 0-9 in any digit position. Any values over 9 (i.e., A-F) will 
not arithmetically combine. 

Example: 

PARAMETER 
FIEL.D A 8 .. C 

.----------------------..iLal-t--~~~~~..--~~~t--~~-'-t---t 

LABEL OP. CODE GTH . 

0 

LABEL + OR­
INC/REL 

.J 
Revise.d 3-29-71 by 
PCN 1045481-001 2;05.04 



LSR 

OP CODE 

INK 

A 

0 

B 

3 

REMARKS 

The digit 3 will be placed in Accumulafor fügit 
position 0 replacing the previous contents of 
Accumulator digit position 0. 

2.05.05 MUL TIPLICATION AND DIVISION INSTRUCTIONS 

OP CODE A 

LOAD SHIFT REGISTER LSR 0-15 

The LSR instruction provides for loading the multiply-divide shift register with the contents of the A. 
field. The shift register must be loaded prior to the execution of a Multiply or Divide instructipn. Th.e 
shift register will contain the value loaded until a subsequent load shift register command is ex~cuted. 
For multiplication, the shift register designates the number of places the product is shifted right after 
multiplication. The shifted off digits are lost, the remaining digits set in the Accumulator as the product. 
Division will be carried out to the number of places specified in the shift register. These operatiöns take 
into account the shift register even though it is not loaded immediately preceding each MUL. or DIV 
instruction. The contents of the shift register must be changed only when the shift requirements are 

. changed. 

PARAMETER 
FlaD 

..-~....-~~--.~~~---4L~-1--~~~~A~~~~--+-~~B---~~C-=-1 
LABEL 

16 17 18 19 20 21 

OP CODE 

LSR 

OP. CODE GTH 

A 

3 

3 

LABEL + OR -
INC/REL 

43 44 45 6 47 

REMARKS 

Load shift register with 3 

Computing the Value of the Shift Register 

FOR MULTIPLICATION-To compute the value which must be loaded in the shift register, subtract the 
desired number of decimal places in the final result from the sum of decimal places in the multiplier and 
multiplicand. 

Number of places 
in multiplier 

100.00 

2 

+ 

+ 

Number of places 
in multiplicand 

.25 

2 

Desired Number 
of places 

1 

= 

= 

Value of 
Shift Register 

3 

Accumulator contains 250 .in digit positions 0-2, when printed with one decimal this becomes 25.0. 

2.05.05 



MUL 

FOR DIVISION-The value to be loaded into the Shift Register can be determined with a knowledge of 
the assumed decimal places needed in the quotient as well as the divisor and dividend. 

Assumed decimal 
places in divisor 

.25 

2 

MULTIPLY 

+ 

+ 

Assumed decimal 
places quotient 

100.00 

2 

Assumed decimal 
places dividends 

= 

25.0 

1 = 

OP CODE 

MUL 

Value of 
Shif t Register 

3 

A 

LABEL 

The multiply instruction provides for multiplying the contents of the Accumulator by the contents of 
the memory location specified in the A parameter. The product is shifted right the number of places 
specified in the multiply - divide shift register, causing the shifted off digits to be lost. The next 15 low 
order digits are placed in the Accumulator as the product. 

If the Accumulator and the memory location in the A parameter have identical signs, the sign of the 
pröd:uct is positive [Accumulator sign flag is reset (+)]. With unlike signs, the product is assigned a 
negative sign [Accumulator sign flag is set (-)]. 

Both the Accumulator and the memory location can contain a maximum of 15 digits each. If the 
product contains more than 15 digits after shifting occurs, the excess number of digits are lost and the 
overflow flag is set. The flag is reset otherwise. (In the event of an overflow there is not an indication 
light). 

If the possibility of an overflow condition exists, the program should provide for interrogating the flag 
to determine if a corrective routine should be employed. 

The number of significant digits in the multiplier (memory location in the A field) determines the length 
of time for the execution of the multiplication instruction. The number of digits in the multiplicand 
(Accumulator) has no effect on the timing. 

Example: 
1 

PARAMETER 
FIEl..D A 8 C 

.--~~~~.....,..--~----~L~-i--~~~~--.~~~--+-~~~-+----1 

LABEL OP. CODE GTH LABEL + OR -
INC/REL 

16 17 18 19 20 21 22 23 24 25. 26 27 2B 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 6 47 

OP CODE 

MUL 

UL 

A 

PRICE 

Pt .s:c 1 

REMARKS 

Multiply Accumulator by PRICE 

Revised 3-29-7lby 
PCN 1045481-001 2.05.05 (Cont'd-1) 



MULR 

DIV 

MULTIPLY AND ROUND 

OP CODE 

MULR 

A -LABEL 

The MULR instruction is the same as the MUL instruction except that a 5 is added to the last digit 
which was shifted off in the product. The product contained in the Accumulator is increased by 1 
( decreased if - ) if the last digit shif ted off was greater tlian or equal to 5. lf the shift register value is 
zero, there will be no rounding. 

DIVIDE 

OP CODE 

DIV 

A 

LABEL 

Tue DIV instruction divides the contents of the Accumulator by the contents of the memory location 
specified in the A field. The quotient is placed in the Accumulator. After division has been carried out, 
the number of decimal places specified in the shift register, any remainder is placed in working memory 
(in the control area). (See REM instruction.) 

Example: 

PARAMETER 
~~ c 

.--~~~~....,.~~~~~L~-,__~~~~A~~~~-+-~B~--<1---
LABEL 

16 17 18 19 20 21 

OP CODE 

DIV 

0P. CODE GTH 

A 

TOTAL 

LABEL + OR­
INC/REL 

43 44 45 47 48 49 

REMARKS 

Divide Accumulator by TOTAL 

Both the Dividend and the Divisor may contain up to 15 digits. lf the signs of the operands are alike, 
the sign of the quotient is positive (accumulator sign flag is reset +): if the signs are unlike, the sign of 
the quotient is negative (accumulator sign flag is set -). The remainder is always positive. 

Example 1: 

Accumulator (dividend) = 
Memory location 200 (divisor) = 
Multiply-Divide Shift Register = 
Accumulator (quotient) = 
Remainder = 

2.05.05 (Cont'd-2) 

100 

3 

5 

3333333 

1 

= 

OP CODE A 

LSR 5 

DIV 200 

l printed with decimal = 33.33333 

printing of decimal provided by 

print mask. 



DIV 

The division process treats the contents of the Accumulator and the specified memory location as whole 
numbers, even though they may have "assumed" decimal points; for example: 6 A 25 + 5 A 00 produces 
a quotient of 1 and a remainder of 125 if the shift register has a zero value: 

Accumulator (dividend) = 
Memory location 200 (divisor) = 
Shift register = 
Accumulator (quotient) = 
Remainder = 

625 

500 

0 

1 

125 

= could be printed as "1" or "1.". Since 

it is in first digit position, any other 

decimal places shown in printing would 

require shif ting it lef t such as to permit 

"l.0000" 

Thus, since division halts once the dividend can no longer be divided, the shift register must contain a 
value equal to the number of decimal places desired beyond what the "whole numbers" themselves 
would provide. In the above example, by giving the shift register a value of 4, the quotient reflects the 
"assumed" decimal values: 

Accumulator ( dividend) = 625 

Memory location 200 (divisor) = 500 

Shift register = 4 

Accumulator (quotient) = 12500 (printed with decimal = 1.2500) 

Remainder = 0 

The value to be loaded into the shift register can be determined in the following manner with a 
knowledge of the "assumed" decimal places needed in the quotient as weil as the dividend and divisor: 

{ 
assume~ decimal } 
places m 
DIVISOR 

Ex: 5 A 00 

2 

PLUS 

+ 

{ assumed decimal } 
places m LESS 
QUOTIENT 

1 A 2500 

4 

rssumed decimal} 
Value of 

places m = SHIFT 
DIVIDEND REGISTER 

6 A 25 

2 = 4 

lf the quotient after final shift exceeds 15 digits, the overflow flag is set; otherwise the flag is reset. The 
size of the quotient can be estimated and a prediction of possible overflow made if the following rule is 
used: 

"Add the MAXIMUM size DIVIDEND to the Value of the SHIFT REGISTER plus 
1, subtract the MINIMUM size DIVISOR and that equals the MAXIMUM size 
Quotient possible." 

The rule is in terms of the number of significant digits expected in each operand including intervening 
and terminal zeros, and without regard to "assumed" decimal places. 

Revised 3-29-71 by 
PCN 1045481-001 2.05.05 (Cpnt'd-3) 



SUA 

1 
SUK 

Example 2: 

Maximum size Value of Minimum size Maximum size 
DIVIDEND + + SHIFT REG. DIVISOR = QUOTIENT 

Ex: (9999) (2) (1) (999900) 

4 + + 2 = 6 

Ex: (9999) (3) (100) (99990) 
4 + 1 + 3 3 = 5 

When an overflow occurs, the division is halted and 
(reflects some stage of partfal quotient development). 

the result in the Accumulator is meaningless 

2.05.06 SUBTRACT INSTRUCTIONS 

SUBTRACT FROM ACCUMULATOR 

SUBTRACT CONSTANT FROM ACCUMULATOR 

OP CODE 

SUA 

SUK 

A 

LABEL 

0-14 

B 

0-9 

The SUA instruction provides for subtracting the contents of the memory location specified by the A 
field from the contents of the Accumulator. The difference is placed in the Accumulator leaving 
memory location A undisturbed. 

The SUK instruction provides algebraic subtraction of the digit contained in the B field from the digit in 
the Accumulator position stated in the A field with carries propagated in succeeding high order digits. ( 
The special (S), per thousand (M), and per hundred (C) flags are unconditionally reset.) The overflow 
flag is set if an overflow occurs and reset if there is no overflow. 

Example 1: 

PARAMETER 
FIEl.D 

,.........-....-....-....-.......,....-....-....-....--.IL~-t--~~~~A~~~~-+~-B~~~C.:........i 
LABEL OP. CODE GTH LABEL + OR -

INC/REL 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 6 47" 

suA R '" 
OP CODE A B REMARKS 

SUA AREA Subtract the contents of the memory 
called Area from the Accumulator. 

Example 2: 

PARAMETER 

FIEl.D 
L~-

A 8 c 
LABEL OP. CODE GTH LABEL + OR -

INC/REL 

16 17 18 19 20 21 43 44 45 6 47 

0 
2.05.06 

location 



OP CODE 

SUK 

A 

0 

SUBTRACT FROM MEMORY 

B 

2 

SUM 

REMARKS 

Algebraic subtraction of the integer 2 from the 0 
digit position in the Accumulator 

OP CODE A 

SUM LABEL 

The SUM instruction provides for subtracting the contents of the Accumulator from the contents of the 
memory location specified in the A parameter. 

The difference is placed in the given memory location, leaving the Accumulator unchanged. 

Example: 

PARAMETER 
FIEJ..D A B C 

..-~~~~~-r-~~~--ILEN-1--~~~~~.--~~~1--~~~1---1 

LABEL OP. CODE GTH LABEL + OR -
INC/REL 

16 17 18 19 20 21 22 2324 25 26 27 28 29 3) 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 6 47 

su 

OP CODE A 

SUM AREA 

B REMARKS 

Subtract the contents of the Accumulator from 
the memory location called Area. 

Revised 3-29-71 by 
PCN 1045481-001 2.05.06 (Cont'd) 



TRA 

TRM 

2.06 - DATA MOVEMEN'f INSTRUCTIONS 

2.06.01 TRANS.FER INSTRUCTIONS 

TRANSFER TO THE ACCUMULATOR 

TRANSFER TO MEMORY 

OP CODE A 

TRA LABEL 

TRM LABEL 

The TRA instruction provides for transferrjng the contents of the memory location specified in the A 
field to the Accumulator, keeping the contents of the memory location Ul}changed. 

The. TRM instruction provides for transferring the contents of the Accumulator to the memory location 
specified by the A field. There is no change in the contents of the Accumulator. 

Example 1: 

PARAMETER 
FIELD 

.--~~~~--.~~~~-4L~-1--~~~~A--..~~~-+-~-B~--4~C--4 
LABEL OP. CODE GTH 

16 11 18 19 20 21 

T.I 

LABEL + OR -
INC/REL 

43 44 45 47 

.OP CODE A B REMARKS 

Example 2: 

TRA AREA Transfer the contents of memory location Area to 
Accumulator. Memory location unchanged. 

PARAMETER 

FIELO A B C 
.-~~~~--.~-------4L~-1--~~~~---y~~~-+-~~~-+---1 

OP. CODE GTH . LABEL + OR -LABEL 
INC/REL 

16 17 18 19. 20 21 43 44 45 

QP CODE ~ 

AREA 

B REMARKS ..... 
TRM Transfer the contents of Accumulator .to memory 

location addressed by label area. 



REM 

1 
SLRO 

OP CODE 

TRANSFER REMAINDER TO ACCUMULA TOR REM 

The REM instruction transfers the remainder of a division operation to the Accumulator from the 
control area. The transfer will reset all Accumulator flags. 

Example: 

PARAMETER 
FIELD A B C 

--~~~~-...~~~~~L~-1--~~~~~~~~-+-~~~-+----t 

LABEL OP. CODE GTH LABEL + OR­
INC/REL 

16 17 18 19 20 21 4344456 

2.06.02 SHIFT ACCUMULATOR INSTRUCTIONS 

OP CODE A 

SHIFT OFF SLRO 0-14 
' 

B 

0-14 

The SLRO instruction first causes the 15 digits of the Accumulator to be shifted left the number of 
positions specified by the A field. Any non-zero digits shifted off causes the overflow flag to be set. lf 
the digits shifted off are zero, the flag is reset. 

The 15 Accumulator digit positions are then shifted right the number of positions specified by the B 
field. Any non-zero digit shifted off does not set the overflow flag. Rounding is not performed. The 
shifted off digits are lost. 

Example: 

The Accumulator contains 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ACCUMULATOR DIGIT POSITION 

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 VALUE 

LFlag Position 

Examine the results when we execute the following instruction: 

LABEL LABEL 

16 17 18 19 20 21 

OP CODE A 

SLRO 5 

PARAMETER 
A 

+ OR­
INC/REL 

B 

6 

B c 

43 44 45 47 

Revised 3-29-71 by 
PCN 1045481-001 2.06.02 

1 



SLROS 

After the 5 in the A parameter is executed the Accumulator contains 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ACCUMULATOR DIGIT POSITION 

6 7 8 9 8 7 6 5 4 3 0 0 0 0 0 VALUE 

L .. Flag Position 

The Overflow flag is set. 

Then the contents are shifted right 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ACCUMULATOR DIGIT POSITION 

0 0 0 0 0 0 6 7 8 9 8 7 6 5 4 VALUE 

L .. 
Flag Position 

OP CODE A B 

SHIFT OFF WITH SIGN SLROS 0-15 0-15 

The SLROS instruction is the same as the SLRO instruction except that the sign position is also shifted. 

This instruction may be used to shift alpha information. 

2.06.02 (Cont'd) 



2.07 - FLAG INSTRUCTIONS 

2.07.01 CHANGE FLAGS INSTRUCTION 

OP CODE 

CHG 

CHG 

LOD 

A 

AKX 
y R p 

B 

1 2 3 4 
-SCM 

The CHG instruction reverses the condition (set or reset) of selected flags of any one flag group. A set 
flag is reset, a reset flag is set. 

The flag group is designated in the A field and represented as: 

DESIGNATION 

A 
K 
X 
y 

R 
p 

FLAG GROUP 

Accumulator Flags (-, S, C, M) 
Operation Control Key Flags (1, 2, 3, 4) 
General Purpose Flags (1, 2, 3, 4) 
General Purpose Flags ( 1, 2, 3, 4) 
Reader (Paper Tape or Card) Flags (1, 2, 3, 4) 
Punch (Paper Tape or Card) Flags (1, 2, 3, 4) 

The flags to be changed are represented as symbols or numbers in the B field. Any or all of the fom 
flags of a flag group may be changed; all other flags in the group not changed are left unaltered. 

Example: 

PARAMETER 
FIELD A B C 

..-~~~~-T"~~~~~L~-t--~~~~---..~~~-+-~~~--+---; 

LABEL OP. CODE GTH 

16 17 18 19 20 21 

k 

LABEL + OR -
INC/REL 

43 44 45 6 47 

1 l 

2.07.02 LOAD FLAGS INSTRUCTION 

OP CODE 

LOD 

A 

AKX 
Y RP 

B 

1 2 3 4 
- SC M 

The LOD instruction provides for setting selected flags of any one flag group. The A field designates the 
flag group to be set (refer to CHG instruction). The flags to be set are designated by numbers or 
symbnls in the B field. Any or all of the four flags in a group may be set. All other flags in the group 
not set, are reset. 

Revised 3-29-71 by 
PCN 1045481-001 2.07 .02 



Example: 

RST 

SET 

PARAMETER 

FJELD A B C 
--~~~~_,.~~~~~L~-1--~~~~---..~~~---~~~-J---1 

LABEL OP. CODE GTH . 

16 17 18 19 20 21 

OP CODE A B 

LOD X 2,3 

LABEL + OR­
JNC/REL 

43 44 45 47 

REMARKS 

General purpose (group X) flags 2,3 are set, the 
other X flags are reset. 

2.07.03 RESET FLAGS INSTRUCTION 

OP CODE 

RST 

A --
AKX 
YRP 

B 

1 2 3 4 
-SCM 

An RST instruction resets selected flags of any one flag group. The flag group is designated in the A 
field. (See CHG instructions for flag group designation.) The flags to be reset are specified by numbers 
or symbols in the B field. Any or all of the four flags may be reset. All other flags not reset are left 
unaltered. 

Example: 

PARAMETER 

FJELD A B C 
--~~~~--..--~~~-tL~-1--~~,~~---..-+~0R--~---~~~-i---I 

LABEL OP. CODE GTH . LABEL JNC/REL 

16 17 18 19 20 21 

OP CODE A 

RST A 

B 

43 44 45 6 47 

REMARKS 

Tue "minus" flag of the Accumulator flag group 
is reset. ALL others are left unaltered. 

2.07.04 SET FLAGS INSTRUCTIONS 

OP CODE 

SET 

A 

AKX 
Y RP 

B 

1 2 3 4 
-SCM 

The SET instructions sets selected flags of any one flag group. The flag group is designated in the A 
field. (Ref. to CHG instruction for flag group and designation.) The flags to be set are designated by 
number or symbols in the B field. Any or all of the four flags of a group may be set. All other flags in 
the group not set, are left unaltered. 

2.07.03 



Example: 

SET 

1 

PARAMETER 

FIEL.D A B C 
.-~~~~~-.-~~~~-tLel·t--~~~~~~~~~-+-~~~----o 

OP. CODE GrH . LABEL + OR -
INC/REL 

LABEL 

16 17 18 19 20 21 

OP CODE A 

SET K 

B 

3 

43 44 45 47 

REMARKS 

The OCK flag 3 is set, other flags are unaltered. 

Revised 3-29-71 by 
PCN 1045481-001 2.07.04 



L,IR 

ADIR 

DIR 

1 
2.08 -·- INDEX REGISTER INSTRUCTIONS 

2.08.01 LOAD INDEX REGISTER INSTRUCTION 

OP CODE 

LIR 

A B 

1-4 0-255 

The LIR instruction loads the value contained in the B field into the index register indicated in the A 
parameter (1, 2, 3 or 4). The B parameter can be any positive value from 0 to 255. The prior contents 
of the index register are destroyed. 

2.08.02 ADD TO INDEX REGISTER INSTRUCTION 

OP CODE A B 

ADIR 1-4 0-255 

The number contained in the B field is added to the contents of the index register ( 1, 2, 3 or 4) 
indicated by the A parameter. The B field contents and the index register contents are always positive. 
If the sum of the index register contents and the B field number equal 256, the register is reset to 0. lf 
the sum is greater than 256, only the overflow is retained in the index register. In both cases, the 
overflow causes the Index Register Flag to be set. lf the sum is less than 256, the flag is reset. 

Example: Index Register l contains 225. 

PARAMETER 
FIEl.D A B C 

,......~~~~....,.~~~~~L~-1----~~~~---.,.~~~--+-~~~-+----1 

LABEL OP. CODE GTH LABEL + OR :­
INC/REL 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 ::K> 31 32 33 34 35 36 37 ga 39 40 41 42 43 44 45 6 47 

ADXR I 

OPCODE A B 

ADIR 1 35 

After execution of the above command, the contents of Jndex Register 1 is equal to 4 (225 + 35 -
256 = 4). The Index Register Flag is set. 

2.08.03 DECREMENT INDEX REGISTER INSTRUCTION 

OP CODE A B 

DECREMENT INDEX REGISTER DIR 1-4 0-255 

The DIR instruction decreases by l, the contents of the index register desigrtated by the A field. lf the 

2.08.01 



llR 

TAIR 

index register contains 0, a decrement causes the value 255 to be entered into the register. The B field 
designates a value which is compared to the contents of the index register. 

If the contents of the index register, designated by the A field, is equal to the value of the B field 
before decrementing is effected, the Index Register Plag is set after execution. If an unequal condition 
exists, the flag is reset after execution. Thus, if the flag is set during one decrementing, it will be reset 
during the next. For that reason, it becomes necessary to test this flag after each decrementing. 

The value of the B field does not halt decrementing or turn the register back to 0, once decrementing 
has reached that limit. 

2.08.04 INCREMENT INDEX REGISTER INSTRUCTION 

OP CODE A B 

IIR l-4 0-255 

The IIR instruction increases by l, the contents of the index register denoted by the A field. lf the 
index register contains 255, incrementing causes the register to become 0. The B field designates a value 
which is compared to the contents of the index register. 

The Index Register Plag is set and reset as in the DIR instruction. 

Example: Use of Index Registers to terminate a loop (see SK instruction). 

LABEL OP CODE 

LIR 

BEG IN MOD 

TRA 

IIR 

SK 

BRU 

A 

2 

2 

TABLE 

2 

T 

BEG IN 

B 

0 

9 

I 

2.08.05 TRANSFER ACCUMULATOR CONTENTS TO INDEX REGISTER 

TRANSFER ACCUMULATOR TO INDEX REGISTER 

c 

OP CODE A 

TAIR l-4 

The TAIR instruction transfers the contents of the Accumulator tö the register indicated by the A field. 
The prior contents of that index register are destroyed. The value of the Accumulator is treated as an 
absolute number, regardless of any "assumed" decimal places duririg entry in the Accumulator, and 
regardless of the setting of the Sign Plag. 

Revised 3-29-71 by 
PCN 1045481-001 2.08.05 



MOD 

1 

Since art index register has a capacity of 255, an Accumulator value greater than 255 that is transferred 
to an index register will be äccepted as that amount that exceeds the nearest multiple of 256 (maximum 
of 1024). · 

Example: 

If the Accumulator contains 258, then 2 is transferred (258 - 256 = 2). 

If the Accumulator contains 525, then 13 is transferred (525 - (2 x 256) ) = 13). 

2.08.06 MODIFY BY INDEX REGISTER INSTRUCTION 

OP CODE A 

MOD 1-4 

The MOD instruction provides for adding the value in the index register designated by the A field to the 
parameter (or parameters) of the next instruction in program sequence following the MOD instruction. 
The instruction following MOD is then executed in accordance with the combined parameter value~. 

The MOD instruction does not change the instruction stored in memory. Modification occurs during the 
execution of the instruction, as the parameter is extracted from the instruction and placed in a special 
register. The MOD instruction affects the execution of only the ~ instruction immediately following. 

Example: 1 

PARAMETER 
FIELD A B C 

.-~~~~...-~~~~~.--~~~--tLEN-1--~~~~~..-~~~1--~~~t---t 

SEQUENCE LABEL OP. CODE GTH LABEL +DR -
INC/REL 

11 12 13 14 1516 17 1B 19 20 21 22 2324 25 26 27 28 29 3:) 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 6 47 

0 1 0 I 
0 2 

Assume Index Register Number 1 contains 50 

OP CODE A 

MOD 1 

POS 7 

The index register value of 50 combined with the value of the A parameter for the POS instruction 
causes the printer to position to 57 (7 + 50). 

Although the MOD instruction is most generally used to modify those instructions which address word 
locations in memory, it may also be used to modify the parameters of most other instructions. The 

2.08.06 



1 
MOD 

1 
contents of the index register are added to the parameter field to modulo 256. Modulo 256 means that 
if the index register (maximum capacity of 256) when added to the parameter field (also a maximum 
capacity of 256 in machine language), exceeds 256, a "carry" of l is generated and the excess value 
starts back to 0. 

Example: 2 

An index register with a value of 1 SO, when added to an AL 200, generates a "carry" of l and a 
remaining parameter of 94 (350 - 256 = 94). The carry is propagated to machine language operation 
code. Because of this, caution must be used in modifying most instructions since a "carry" may 
improperly modify the Op Code. 

Different types of instructions will have the A parameter, or the B parameter, or both the A and B ' 
parameters modified. Some instructions cannot be modified. 

The contents of the index register specified by the MOD instruction are added to the A parameter. lf 
the combined value exceeds the range shown for each instruction parameter, either a "carry" will 
generate a new instruction, or the instruction will otherwise be improperly modified: 

Revised 3-29-71 by 
PCN 1045481-001 2~08.06 (Cont'd-l) 



1 

MOD 

1 
TABLE 

Instnictions in which only the A parameter is modifiable. 
OP CODE A OP CODE A OP CODE A -- - -

ADA LABEL* LRLR 0-255 SUA LABEL* 
ADM LABEL* LSR 0-15 SUM LABEL* 
AL 0-255 TAIR 1-4 

ALR 0-255 MUL LABEL* TK 0-150 
ALTO 0-255 MULR LABEL* TKM 0-150 

AR 0-255 oc 0-255 TRA LABEL* 
ARTO 0-255 PA LABEL* TRAB 0-15 
BRU LABEL* PAB 0-150 TRB 1-15 
CLM LABEL* PBA 1-16 TRBA 0-16 
CPA LABEL* POS 1-150 TRCA 1-16 
DIV LABEL* RCP 1-255 TRCM 1-16 
DUP 1-80 REAM 0-150 TRF 0-255 
EAM 0-150 RTK 0-150 TRM LABEL* 
IRCP 0-255 RTKM 0-150 TSB 1-15 
LCD 0-255 RXEAM 0-150 XA LABEL* 

LCFR LABEL* RXTK 0-150 XB 0-255 
LKBR LABEL* RXTKM 0-150 XBA 1-16 
LLCR 0-255 SCP 1-255 XEAM 0-150 
LLLR 0-255 SKP 1-80 XMOD 
LPKR LABEL* SRJ LABEL* XPA LABEL* 
LPNR LABEL* SRR 1-4 XPBA 1-16 
LRBR LABEL* XTK 0-150 
LRCR 0-255 XTKM 0-150 

*Tue memory address referenced by the LABEL will be incremented by the value of the index register. 

In the foUowing instructions, only the B parameter field is modified; other parameter fields are 
unmodified. The contents of the index register is added to the B parameter of the instruction. If the 
combined value exceeds 255, either a "carry" will create a different instruction, or the instruction will 
otherwise be improperly modified. 

TABLE 

Instructions in which only the B parameter can be modified. 

OP CODE A B - -
ADIR 1-4 0-255 
DIR 1-4 0-255 
IIR 1-4 0-255 
LIR 1-4 0-255 

2.08.06 (Cont'd~2) 



MOD 

A. ONE PARAMETER CAN SPECIFY ONE OR MORE ITEMS. For some instructions the A and B 
parameters represent a binary pattem to the machine. The PKA, PKB instructions as weil as the LOD, 
SET, RST and CHG flag instructions are programed by listing the digits 1-8 (in the case of the PK 
instructions) and 1-4 (in the case of the flag instructions) in the A, B or A and B parameters for the 
desired pattem. 

The EX, EXE, SK and SKE instructions are programed by listing the digits 1-4 in the B parameter to 
designate the particular flag pattem desired. 

To modify this binary pattem, it is necessary to find the decimal equivalent of the pattem desired and 
add it to the Index Register used in the MOD instruction. The value table below may be used to 
determine the number necessary to obtain the desired pattern. 

TABLE 

Value Table 

Decimal Equivalent 

No. in A, Bor PKA Flag Instructions 
A & B Fields PKB 

A & B field B field only A field 
1 1 2 Punch = 0 
2 2 4 Read = 16 
3 4 8 X = 64 
4 8 1 y = 80 
5 16 T = 128 
6 32 K = 144 
7 64 A = 192 
8 128 

For PK's, add together all of the equivalent values for the PK's specified in the A field, to determine the 
total value which must be loaded in the index register. 

For Flag instructions (Set/Reset and Skip/Execute), add together the equivalent values for the flags 
specified in the B parameter. If the flag group is also to be modified, add its value to the total value for 
the individual flags, and the resulting sum is the value to be loaded in the index register. 

To modify these instructions it is essential to originate them with 0 in the parameter fields and the 
desired pattern in the index register. 

If these instructions are originated with some significant value in the parameter fields, an attempt to 
modify the parameters can propagate a carry which will be added to the Op Code, changing it to 
another Op Code. 

Revised 3-29-71 by 
PCN 1045481-001 2.08.06 (Cont'd-3) 

1 



MOD 

TABLE 

Instructions in which A and B parameters can be modified. 

ONE PARAMETER CAN SPECIFY ONE OR MORE ITEMS. 

OP CODE A B c 

PKA 12345678 
PKB 12345678 
LOD AKX 1 2 3 4 

YRP 
SET AKX 1 2 3 4 

Y RP 
RST AKX 1 2 3 4 

Y RP 
CHG AKX 1 2 3 4 

Y RP 
EX ATKX 1 2 3 4 1-4 

Y RP 
EXE ATKX 1-4 

SK ATKX 1 2 3 4 1-4 
YRP 

SKE ATKX 1 2 3 4 1-4 
Y RP 

B. EACH PARAMETER CAN SPECIFY ONLY ONE ITEM. In these instructions, either or both, the A 
or B parameter can be modified. The C parameter, if one exists, is not modified. The A and B 
parameters combined cannot exceed 256. The sixteen possibilities in the B parameter requires a value 
from 0 to 15 in the index register for modification. The six.teen possibilities in the A parameter field 
require a value expressed in multiples of 16 (reflecting the digit position value of the A parameter in the 
instruction format). 

The following table illustrates the proper values to be loaded in the index register to achieve the desired 
values for the A and B parameters. 

2.08.06 (Cont'd4) 



MOD 

TABLE FOR VALUES 

'"m" 
1 

"n" 
Number desired Value tobe Number desired Value tobe 

in A field contained in in B field contained in 
Index Reg. Index Reg. 

0 0 0 0 
1 16 1 1 
2 32 2 2 
3 48 3 3 
4 64 4 4 
5 80 5 5 
6 96 6 6 
7 112 7 7 
8 128 8 8 
9 144 9 9 

10 160 10 10 
11 176 11 11 
12 192 12 12 
13 208 13 13 
14 224 14 14 
15 240 15 15 

"m" + "n" = total value to be contained in register. 

Example: Modify NK 0 0 to provide 8 whole numbers and 3 decimal fractions: 

Parameters required: Index Register value required: 

A = 8 = 128 

B=3 = 3 

131 (total value) 

Thus: LIR 1 131 
MOD 1 
NK 0 0 

The index register value of 131 modifies the NK instruction to permit 8 whole numbers and 
3 fractions. 

Any time that the modification of the B parameter results in a carry (exceeds 15), the carry will add to 
the A parameter changing its specification. A carry resulting from modification of the A parameter 
(exceeds 255) will add to the Op Code causing an improper modification. 

Revised 3·29-71 by 
PCN 1045481-001 2.08.0q (Cont'd-5) 

1 



1 
·NIQ.D 

1 

EACH PARAMETER·CANSPECIFY ONLY ONE.ITEM 
•• ':' 1 ~ 

01> CODE A 8 c - -
AOK 0-14 .··0-9 

CLA 0-15 0-9 
EXL 0-15 0-15 1-4 
INK 0-14 0-9 
NK Ö-15 0-15 

NKCM 0-l5 0-15 
N'kR. .. 0-15 0-15 

NKRCM 0-f 5 0-15 
SKL 0-15 ·0-15 1-4 

SLRO ,0-14, Q-1~ 
SLROS 0-15 0-15 

SUK 0-14 '0-9 
RNK 0-15 0-15 

Tue following instroctions caimot be modified: 

TABLE .. 

· Instfuctions · which are nd~ 'modifiable. 

ALARM 
ALTP 
cc 

EXZ 
LPF 
LPR 
LRA 
LSA 

A -

l-4 

OP CODE 

LSN 
LTN 
LXC 
NOP 
RCD 
REL 
REM 
RPF 

.Qft,C,(>DE 

PN 
PNs+ 
PNS-· ·' 

TRCB 
XC 
XN 

XPN 
XPNS+ 
XPNS-

l 

.. A .. f--
0:.:14 
0-14 
0-14 
0-15 
0-15 
0-14 
0-14 
,0-14 
0-14 

OP CODE 

RPR 
R'.R 

RRA 
RSA 
RSN 
RTH 
RTN 
SKZ 

STOP 

B „ 

0-15 
0-15 
.0-15 
0-15 
0-15 
0-15 
0-15 
0-l5 
0-15 

., ;.1 

A -

1-4 

Tue character. in the A parameter of a PC instruction may be modified to obtain a different character. 
Tue MOD instruction will · add the contents of the inde]{ register to the internal code of the character in 
the A parameter of the PC· instrlittioti.: 

. ·'" - ··y .·.z 

2.08.06 (Cont'd-6) 



Exarnple: 

1 
MOD 

PARAMETER 
Fta.D A B C 

..-~~~~----~~~ ...... L~-1--~~~~~~~~-+-~-=-~_._::........i 
LABEL 

16 17 18 19 20 21 

OP CODE 

MOD 
PC 

OP. CODE GTH . 

A 

1 
A 

LABEL + OR­
INC/REL 

43 44 45 47 

1 

lf PC A (A = index value of 65) is to be rnodified to piint M (M = index value of 77), a value of 12 
(77-65 = 12) is loaded into the index register # 1. Index values are contained in Appendix D. The above 
rernarks also apply to PC+, PC- and PCP. 

A MOD instruction rnay be used to rnodify another rnodify instruction with the sarne or different index 
register. Tb,e total arnount of modification equals the SUIIl: of the MOD instructions, and should not 
exceed 255. When the total exceeds 255, only the difference between the total and 255 rernains in the 
index register. 

Revised 3-29-71 by 
PCN 1045481-001 2.08.06 (Cont'd-7) 



BRU 

2.09 - BRANCH AND DECISION INSTRUCTIONS 

2~09.01 BRANCH UNCONDITIONAL INSTRUCTION 

OP CODE A +/- REL 

BRU LABEL +N 

The BRU instruction provides the ability to branch unconditionally to a different segment of the 
program. This instruction does not automatically provide for return to the.branched from segment of 
the program. 

The A parameter contains the label which identifies the memory address to where the program will 
branch. The A parameter can be incremented by an integer (N, positive or negative) located in the +/­
REL field. A ± increment without a label will branch the program to either an instruction further ahead 
(+) or one behind(-) the current (BRU) instruction. 

Example: 

PARAMETER 
FlaD 

.--~~~~--....-~~~--tL~-.__~~~~A~~~~_._~-8~-'-~C__, 
LABEL OP. CODE GTH LABEL + OR -

INC/REL 

z 

When the BRU instruction is executed program execution continues with the Op Code contained in the 
memory location referenced by the label. In this case the label is SHIPTO and the Op Code is POS. 

2.09.01 



l ___ :_:: __ 'I 
2.09.02 SUBROUTINE JUMP AND RETURN INSTRUCTIONS 

OP CODE A +/- INC 

SUBROUTINE JUMP SRJ LABEL +N 

SUBROUTINE RETURN SRR 1-4 

The SRJ and SRR instruction facilitate branching to, and returning from a subroutine. The A parameter 
of the SRJ instruction contains the label of the memory location to where the jump will occur. 

The SRJ and SRR instruCtions utilize the Subroutine Return Stack which appears thusly: 

LOCATION ADDRESS 

1 MEMORY LOCATION 
2 MEMORY LOCATION 
3 MEMORY LOCATION 
4 MEMORY LOCATION 

! 

This example illustrates the use of these instructions and explains the A parameter of the SRR 
instruction. 

WORD/SYLLABLE LABEL OP CODE A B REMARKS -
25. 0 NKR 10 4 Allow Numeric Entry. 

1 AL 1 Advance 1 line. 
2 POS 63 Position to print. 
3 SRJ PRNC SRJ to print. 
~ } I 

48 0 PRNC PNS- 14 0 
1 PC-
2 PC+ + 
3 SRJ TKMAD 
~ f 1 

so 0 TKMAD POS 95 Positions for type. 
1 TK 31 Type 31 characters. 
2 SRR 1 Subroutine return. 
3 

When the SRJ instruction in word 25 syllable 3 is executed, the program counter is increased by J 
syllable. The new program counter content, word 26 syllable 0 is stored in Subroutine Return Stack 
locatiori l. The value of the A parameter in the SRJ instruction is insertedin the program, executio~ 
now begins at word 48, syllable 0. The Subroutine Return Stack would appear: 

· Revised 3-29-71 by 
PCN 1045481-001 2.,09.02 



f SRJ 

1 
SRR 

"-.:: .. 

LOCATION ADDRESS 

1 26 0 
2 UNKNOWN-1 ' 

3 UNKNOWN-2 
4 UNKNOWN-3 

When the SRJ instruction in word 48, syllable 3. is reached, the .contents of the Return Stack are- shifted 
down 1 location. The memory address in location 4 is lost. Execution continues in word 50 syllable 0. 
The stack now contains: 

LOCATION ADDRESS. 

1 49 0 
2 26 0 
3 UNKNOWN-1 
4 UNKNOWN-2 J 

lf the process is repeated 5 times, the original address entered (word 25 syllable 3) is lost from program 
control. Bach additional repetition loses another memory address. lt is recommended to limit the nesting 
ofsubroutines to 4.· 

The execution of the SRR instruction in word 50 syllable 2 will cause the program counter to ·be loaded 
with a value from the Subroutine Return Stack. The value loaded is a function of the A parameter for 

: . . . . . . -

the SRR instiuction. 

If the A value is 1, the. memory address in location 1 is inserted in the program counter. A value of 2 
would select location 2. A value of 3 would select location 3. A value of 4 would sele.ct the fourth 
location. 

Since in our example we have a value of 1, word 49, syllable 0 is inserted into the program counter. 
Program execution begins with that value. The Return Stack would appear: 

LOCATION AD DRESS 

1 26 0 
2 UNKNOWN-1 
3 UNKNOWN-2 
4 UNKNOWN-4 

lf the A value had been 2, word 26; syllable 0 would have been inserted in the program counter. All 
addresses with location numbers less than the selected location are lost. The remaining values · are pushed 
to the top of the stack. 

· 2;09.02 (Co~t'd) 



CPA l 
In this case the Subroutine Return Stack would appear: 

LOCATION ADDRESS 

1 UNKNOWN-1 
2 UNKNOWN-2 
3 UNKNOWN-4 
4 UNKNOWN-5 

Prograrn execution begins at word 26, syllable 0. 

2.09.03 COMPARE ALPHANUMERIC INSTFIUCTION 

OP CODE A 

SKIP AND EXECUTE INSTRUCTIONS CPA LABEL 

. . 

The CPA instruction compares the contents of the memory word, referenced by the label contained in 
the "A" field, to the contents of the Accumulator. The outcome: 

1. Execute the hext instructio:p if contents are equaL . ........,__ 

2. Execute second if mernory word content is less than Accumulator content. Skip the first in 
sequence and begin execution-. - - -· · 

3. If memory location content is greater than the Accurnulator content, skip the first two in 
sequence and execute the third. 

Refer to Appendix for collating sequence of character set. 

·Exarnple: 
PARAMETER 

Fl~D A 8 C 
__ L_A_B.,.EL--...--0-P-. -CO_D_E ~ ~-t----LA-B-EL---.--+-O-R -_-+-----1--.....j 

INC/REL 

43 44 45 47 

+ J 

This routine will allow t4e opetator to index ~ , valµe less than the value contained in the memory 
location TEST, 

Revised 3-29-71 by 
PC;N 1045481-001 2.09~03 



EXZ 
SKZ 

2.09.04 ACCUMULATOR SKIP AND EXECUTE INS't'RUCTIONS 

EXECUTE IF ACCUMULATOR ZERO 

OP CODE A 

EXZ 1-4 

lf the content of the Accumulator is zero, the EXZ instruction will cause the number of instructions in 
the "A" field to be executed. If it is not zero, the next "A" instructions will be skipped. 

OP CODE A 

SKIP IF ACCUMULATOR ZERO SKZ 1-4 

The SKZ instruction will cause the next 1-4 instructions (as specified in the "A" field) to be skipped 
when the Accumulator content is zero. Otherwise, the next instruction is executed. 

Example: 1 Routine to enforce a non-zero keyboard Usting 

PARAMETER 
FIEl..D A B C 

--~~~~--~~~~~L~-i--~~~~~~~~-&----'=-_...1--=-~ 

LABEL 

LABEL 

NUMRIC 

OP. CODE GTH 

OP CODE 

NK 
EXZ 

BRU 
PNS-

A 

5 
1 

NUMERIC 
5 

LABEL 

B 

1 

0 

+ OR­
INC/REL 

43 44 45 47 

I 

REMARKS 

Enable numeric keyboard. 
Execute 1, instruction if 

Accumulator zero. 
Branch to numeric keyboard. 
Print shift ribbon (-). 

lf an OCK is depressed without a numeric keyboard entry, the Accumulator contains zero. lrt the above 
example, whenever the Accumulator contains zero the BRU instruction is executed and the program 
branches to the NK comrnand. This occurs until a numeric keyboard Usting is made and the 
Accumulator is not zero; the BRU instruction is then skipped. 

2.09.04 



Example 2: Do not print if the Accumulator is zero. 

PARAMETER 
FIELD A B C 

--~~~~ ..... ~~~~~L~-1--~~~~--.-~~~-+-~~~1--~ 
LABEL OP. CODE GTH LABEL + OR -

INC/REL 

EXL 

SKL 

EX 

16 17 18 19 21) 21 43 44 45 47 

OP CODE A B REMARKS 

TRA AREA Transfer to Accumulator. 
SKZ 1 Skip 1 instruction if zero. 
SRJ PRINT Branch to print routine. 

OP CODE A B 

EXECUTE IF DIGIT LESS THAN CONSTANT EXL 0-15 0-15 

c 

1-4 

The EXL instruction causes the next instruction to be executed if the digit in the Accumulator digit 
position specified in the "A" field is less than the constant contained in the "B" field, otherwise the 
next "C" are skipped. The Accumulator is undisturbed. 

OP CODE A B c 

SKIP IF DIGIT LESS TRAN CONSTANT SKL 0-15 0-15 1-4 

The SKL instruction causes the next 1-4 instructions (as specified by the "C" field) to be skipped if the 
digit in the Accumulator digit position specified in the "A" parameter is less than the constant 
contained in the "B" field. Otherwise, the next instruction is executed. The Accumulator is undisturbed. 

2.0.9.05 FLAG EXECUTE AND SKIP INSTRUCTIONS 

OP CODE A B c 

EXECUTE IF ANY FLAG EX ATK 0 LI U 1-4 
XYRP 1 2 3 4 
LBDS -SCM 
VW WRF 

Revised 3-29-71 by 
PCN 1045481-001 2.09.05 



EX 

1 

The EX instructiori causes the next instruction in sequence tö be execute~ if any of the fla~s specified 
in the "B" field (of the flag group designated in "A" field) are set. Otherwise, the next "C" .instructions 
are skipped. (See SKE instruction for flags and flag groups.) 

Example 1: Use of OCK to choose alternate. branch of program 

PARAMETER 
FIEl..D ·----........,....,...-.,....,.....""""""'-t.. ·. 1,,'EN'- i-,-,,...,.,,... ___ A_..,.....,...,...,,.,....,....,~---B-~....,.C-,ot 

LABEL dP~' CODE GTH ' LABEL 

I I 

OP CODE A B c REMARKS 

LKBR TYPE Load· Base Register. 
TKM 25 Type iµto memory. 
i;:x K 1 2 1 Execute 1 if OCK 1, 2 
BRU START Branch 
PA TYPE 

In the above examvle the ptogtam will branclf if OCK 1 or 2 was used. OCK 3 or 4 would cause a 
print. 

Example 2 :. Lc.>ad the Shift Register with 2 if the C key is used and with 3 if the M key is used 

PARAMETER 
FIEl..D A B c· 

.---------..---•. ~ .... ~.~-....... LJ:N-i-,-,...-,.,.,..-_~--.--+-o~.R~--.--+~---+---t 
L.A, BEI.. OP. CODE GrH . LABEL 

INC/REL 

16 43 44 .45 ' 

C, I 

, ' 
2.09.05, (Coned:-1) 



OP CODE 

LSR 
EX 
LSR 
EX 
LSR 

A 

0 
A 
2 
A 
3 

EXECUTE IF EVERY FLAGS 

B c 

c 1 

M 1 

OP CODE 

EXE 

EXE 

1 
SK 

REMARKS 

Test if "C" key used. 
Load shift register with 2. 
Test if "M" key used. 
Load shift register with 3. 

A B c 

ATK 0L1 U 1-4 
XYRP 1 2 3 4 
LBD~ -SCM 
VW WRF 

The EXE instruction causes the next instruction to be executed if all the flags specified in the "B" field 
(of flag group designated by the "A" field) are set. Otherwise, the next "C" instructions are skipped. 

PARAMETER 

FIELD A B C 
--~~~~--~~~~~L~-1--~~~~~~~~-+-~~---<1--~ 

LABEL OP. CODE GTH LA E + OR -
B L INC/REL 

16 17 18 19 20 21 43 44 45 6 

2 

lf the operator indexes both C and M keys, the alarm will sound. 

OP CODE A B c 

SKIP IF ANY FLAGS SK ATK 0L1 U 1-4 
XYRP 1 2 3 4 
LBDS -SCM 
VW WRF 

The SK instruction causes the next "C" instructions (1-4) to be skipped if any of the flags specified in 
the "B" field, (flag group specified in "A" field) are set. Otherwise, the next instruction is executed. 

Revised 3-29-71 by 
PCN 1045481-001 2.09.05 (Cont'd-2) 



Example: To terminate a loop 

PARAMETER 

LABEL 

c B FIELD A 
...---.--.--.--..,.---.--.--.---1L~·l--~---'-'-~---'--r--+-O-R--~-t-~~~i--4 

OP. CODE GTH . LABEL INC/REL 

43 44 45 6 47 

'3 1 

' c.+ I 

LABEL OP CODE A B c REMARKS 

NUMRIC LIR 1 0 Load Index Register. 
NK 2 3 Enable numetic keyboard. 
POS 1 2 Position printer. 
AL 3 Advance 3 Iines. 
PN 4 0 
IIR 1 4 Increment Index Register. 
SK T 1 1 Skip 1 instruction if T set. 
BRU NUMRIC +1 Br~nch to NUMRIC plus 1. 

OP CODE A B c 
SKIP IF EVERY FLAGS SKE ATK 0L1 U 1-4 

XYRP 1 2 3 4 
LBDS -SCM 
VW WRF 

The SKE instruction will cause the next "C" instructions to be skipped if all the flags specified in· the 
"B" field (of the flag group specified) are set. Otherwise, the next instruction is executed. 

2,09.05 (Cont'd-3) 



The flags and flag groups are designed thusly: 

1. ACCUMULATOR FLAGS 5. L FLAGS (SHIFT REG) 9. TEST FLAGS 

{·~ L{! -IT OW~ow 
A S Special T L Forms Limit 

C Per Hundred 1 Index Register 
M Per Thousand U Unassigned 

2. KEYBOARD BUFFER FLAGS 6. PUNCH FLAGS 10. TELLER LOCK FLAGS 

-{ 2 KB Buffer Filled {' M<dla Not fu~nt {' Tolltt 1 
B 3 KB Buffer Empty 

p i ~~~~ ;:;;~ V 2 Teller 2 
3 Supervisor 

4 Punch Off 4 Not Used 

3. DATA COMM FLAGS 7. READER FLAGS 11. PASSBOOK FLAGS 

{' Ro"'l"d TR# Not -[f """'' Corulltion , {' P"'book Fold 
0 Equal Expected TR # R 2 Message Received W 2 Last Print Line 

2 Message Received 3 Transmit Ready 3 Not Used 
3 Transmit Ready 4 Invalid Code 4 First Print Line 

4. OCK FLAGS 8. STRIPE LEDGER FLAG 12. GENERAL PURPOSE FLAGS 

{' OCK-1 -IT NotU~d x-{} K 2 OCK-2 S W Write Error 
3 OCK-3 R Read Error y 3 

4 OCK-4 F Filled Sheet 4 

2.09.06 SKIP AND EXECUTE INSTRUCTIONS FOR THE TC 700 

The lock flags and passbook signal flags may be interrogated using the SKIP and EXECUTE instructions 
(see Subject 2.09.05). They cannot be referenced with the SET, RESET, LOAD or CHANGE macro 
instructions. 

Lock Flags (V flag group) 

Th.ree flags are provided which test the status of the Teller l lock, Teller 2 lock and Supervisor lock. 
These are: 

Flag Vl for the Teller 1 flag 

Plag V2 for the Teller 2 flag 

Flag V3 for the Supervisor Override Flag 

Flag V 4 is not used 

When the Teller 1 key is inserted in its lock and turned, the Teller 1 flag will be set. When · the key is 
removed from its lock, the Teller l flag will be reset. Tue same applies to the Teller 2 key and the 
Supervisor key. 

JNStRUCTION OPCODE A B ..E._ -----
Skip if any flags SK V 123 1~4 

Skip if every flag SKE V 123 1-4 
Execute if any flags EX V 123 1-4 
Execute if every flag EXE V 123 1-4 

Revised 3-29-71 by 
2.Ö9.06 PCN 1045481~001 • 

1 



Passbook Signal Flags (W flag group) 

Three flags test the sensors in the passbook alignment area. These are: 

Plag W4 for lst Print Line 

Plag Wl for Passbook Pold 

Plag W2 for Last Line 

Plag W3 not used 
0; 

When the Passbook is inserted to the fixed rear limit, the lst Print Line Plag will be set. lt will be reset 
at all other times. When the Passbook is so situated in the alignment ai:ea ~t,the current P:r;i!lt line will 
fall within the passbook fold area, the Passbook Pold Plag will be set. lt will be reset when this 
condition does not exist. 

When the Passbook is so aligned that the current print line is below the last printing line of the 
Passbook, the last Print Line Plag will be set. lt will be reset when the passbook is aligned to any of the 
actual printing lines of the book. 

A separate Passbook Present Plag does. not exist. This condition can. be determined by testing for · the 
NOT SET condition of the Last Line Plag. This result occurs because if a passbook is present in the 
alignment mechanism and is aligned to any of the possible posting lines of'the passbook, the Last Line · 
Plag will be reset. Tue flag will be set if the passbook is aligned to the line below the last print line or if 
there is no passbook in the mechanism at all. 

INSTRUCTION OP CODE _A.. 

Skip if any flags SK w 
Skip if every flag SKE w 
Execute if any flag · EX w 
Execute if every flag EXE w 

Machihe language code for V and W flag groups. 

Reference the appropriate SKIP or EXECUTE instruction in Appendix B. 

Use the weights: 

Pai:ameter upper position: 

V flags 
W flags 

Parameter lower position: 
FLAG 

Wl or Vl 
W2 or V2 
W3 or V3 
W4 or V4 

2.09.06 Cont'd) · 

use E 
use F 

WEIGHT 

2 
4 
8 
1 

_Jl._ ~ 

124 1-4 
124 1-4 
124. 1-4 
124 1-4 



2.10 - MISCELLANEOUS INSTRUCTIONS 

2.10.01 ALARM INSTRUCTION 

OP CODE 

ALARM 

ALARM 

NOP 
1 

The ALARM instruction will sound the Error Alarm once. The system does not go into the error state. 

Example: Notify operator an error has been made. See the EXE instruction. 

2.10.02 NO OPERATION INSTRUCTION 

OP CODE 

NOP 

The NOP instniction petfo:tms rto operation, · but 10 milliseconds are expended when this instruction is 
used. Ptogram execution continues, sequentially, uninterrupted. The NOP instruction is particularly 
useful in building the PK table and in conjunction -with the CPA instiuction. 

Example: Use only PKA 4, 6 and 8. 

LABEL 

PKEYS 

QP coo~ 

NOP 

NOP 

NOP 

BRU 

NOP 

BRU 

NOP 

BRU 

A 

TOTAL 

SUBTTL 

START 

Example: If the c~ntents o-f memory word TQTAL are equal to or less than the contents of the -
Accumulator, ,branch to START. If the contents are greater, go to error. 

LABEL OPCODE 

(;;PA 

NOP 

BRU 

BRU 

A 

TOTAL 

START 

-ERROR 

Revised 3-29-71 by 
PCN 1045481-001 2. l0.02 

1 



STOP 

OFF 

2.10.03 STOP PROGRAM INSTRUCTION 

OP CODE 

STOP 

The STOP instruction halts the execution of a program and returns the computer to the Ready Mode. 

2.10.04 POWER OFF 

OP CODE 

OFF 

The OFF instruction provides the ability for the TC to turn itself off by causing the power to the entire 
system to be turned off. This instruction permits the data center to notify a TC to shut down, by 
sending a reserved character or other unique data (selected by user) to it. Upon testing and recognizing 
this character, the TC would branch to the instruction OFF as a part of the user program. 

2.10.03 



CDC 

CD 

2.11 - CHECK DIGIT INSTRUCTIONS 

Macro instructions to compute and verify check digits are available for use on the L/TC by 
incorporating a CDC-CDV Add-On Firmware Set with the Basic Main Memory Firmware Set being 
utilized. CDC-CDV Add-On Firmware Sets occupy the highest track of user memory provided by the 
main memory firmware set. 

2.11.01 CHECK DIGIT COMPUTE INSTRUCTION 

OP CODE A B 

CDC 1-15 0-9 

The CDC instruction, when used in conjunction with a check digit table, will generate a check digit for 
a number located in the Accumulator. The check digit will be generated for the number which begins in 
the Accumulator digit position indicated by the A parameter and ending in Accumulator digit position 
1. The generated check digit will be inserted in Accumulator digit position 0, remaining Accumulator 
digit positions are not disturbed. 

The B parameter specifies the constant remainder that is to be used when computing the check digit. 

Example 1: 

PARAMETER 
FIB.D 

--~~~~-.~~~~~L~-1---~~~~A~~~~---+-~~B=--~~C-=-..i 
LABEL OP. CODE GTH 

16 17 18 19 20 21 

If the Accumulator contains: 

15 14 13 12 11 10 9 8 7 

6 9 8 4 2 9 6 3 

L .. Plag Position 

LABEL 

' 
OP CODE 

CDC 

6 5 

8 4 

4 

2 

+ OR­
INC/REL 

3 2 

9 6 

43 44 45 47 

A B 

6 1 

1 0 Accumulator Digit Pos. 

3 0 Value 

the check digit will be calculated for the number beginning in Accumulator digit position 6 and ending 
in Accumulator digit position 1; in this case 842963. 

The remainder factor used will be 1. 
Revised 3-29-71 by 
PCN 1045481-001 2.11.01 



CDV 

1 CO 

Example 2: 

LABEL OP CODE A B c REMARKS 

INITIL LPNR TtBLE LOAD CD & P MASK TABLE 
? l ~ ? 

TRA BAL RD NEW BALANCE 
SLRO 1 0 POSITION FOR CD 
EX A 1 TEST IF MINUS BALANCE 
CDC 8 3 COMPUTE CD ON MINUS USING REM 3 
SK A 1 SKIP IF MINUS BALANCE 
CDC 8 2 COMPUTE CD ON PLUS USING REM 2 
PNS- 8 2 PRINT NEW BALANCE 
PNS- 0 3 PRINT CHECK DIGIT 

NOTE ALTERNATE COL DOUBLE ADD DOUBLE 
NOTE MOD 10 CD TABLE & P MASKS 

TABLE NUM 166009753186420 IST WORD CD TABLE 
NUM 066009876543210 LAST WORD CD TABLE 
MASK ZZZ,ZZZ,DDE P MASK BALANCE 
MASK +.D P MASK CHECK DIGIT 

2.11.02 CHECK DIGIT VERIFY INSTRUCTION 

OP CODE A B 

CDV 1-15 0-9 

The CDV instruction will verify the check digit of a number located in the Accumulator. The number 
begins in the Accumulator digit position specified by the A parameter and ends in Accumulator digit 
position 1. Any significant digits located to the left of the Accumulator digit position specified by the A 
parameter are ignored by the CDV instruction. 

The check digit must be located in Accumulator digit position 0. 

The B parameter specifies the constant remainder that is used in computing the check digit. lf the check 
digit is not equal to the computed check digit, the Accumulator S. Flag is set and a Keyboard Error 
Condition occurs at the next keyboard instruction. The programmer should provide the required 
instructions to check the S Flag after verification. 

The checking method is determined by the table designated in the A parameter of the last executed 
LPNR instruction. 

2.11.02 



Example 1: 

CDV 

PARAMETER 

FIB.D A B C 
...-~~~~----------1L~-1--~~~~-..-~~-+-~~~+-~ 

LABEL OP. CODE GTH LABEL 

" 
OP CODE 

CDV 

+ OR­
INC/REL 

A 

8 

43 44 45 47 

CD 

B 

0 

If the Accumulator contains: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Accumulator Digit Pos. 

0 0 0 0 0 0 2 3 5 6 8 9 2 4 5 Value • 

L- Plag Position 
the number to be verified begins in Accumulator digit position 8 and ends in Accumulator digit position 
1, in this case 23568924. 

The remainder factor is 0. The check digit is 5. 

Example 2: The CDV Instruction in conjunction with a Modulus 11 weighted system could be utilized 
in the user program in the following manner. 

LABEL OP CODE A B c REMARKS - -
INITIL LPNR TABLE LO~D CD & P MASKl TABLE 

~ ) ) 

ACCTNO NKCM 7 0 INDEX ACCT NO. & CHECK DIGIT 
NOTE USB "C" FOR C.D. VALUE OF "A." 

EX A c 2 TEST FOR "A" 
SLRO 1 0 POSITION NUMBER 
INK 0 A INSERT CHK DIGIT "A" 
CDV 6 0 VERIFY 
EX A s EX IF NOT VERIFIED 

BRU ACCTNO BR TO REINDEX 
PN 6 1 PRINT ACCT NO. 
\ ' { ? { 

NOTE 1, 3, 7 MODULUS 11 CHK DIGIT 
NOTE TABLE AND PRINT MASKS 

TABLE NUM 355003692581470 WT. 7 VALUES IST WORD CD TABLE 
MASK +DDDDDD,D ACCT. NO. PRINT MASK 

MASK ZZZ,ZZZ.DD AMOUNT PRINT MASK 
NUM 455007418529630 WT. 3 VALUES 2ND WORD CD TABLE 
NUM 055009876543210 WT. 1VALUES3RD WORD CD TABLE 

Revised 3-29-71 by 
2.11.02 (Cont'd) PCN 1045481-001 



LPNR 

CD 

2.11.03 LOAD CHECK DIGIT AND PRINT NUMERIC TABLE INSTRUCTION 

OP CODE A 

LPNR LABEL 

The LPNR instruction is used to locate the check digit and print mask tables when check digit firmware 
is used. The first entry of the table must be a check digit entry. The table can vary in size from 1 to 
256 words. The reader should reference CHECK DIGIT TABLE CONSTRUCTION. 

2.11.04 CHECK DIGIT TABLE CONSTRUCTION 

The table(s) that are utilized by the CDC-CDV instruction determine the checking method to be used. 
The table(s) can be located anywhere within user memory and are referenced by the A Parameter of the 

LPNR instruction. The table can vary in size from 1 word to 256 words and the individual entries 
within the table do not have to be stored in consecutive order. However, the first entry in the table 
must be labeled so that it can be referenced by the LPNR instruction. 

Bach entry (word) in the table is divided into three sections. These divisions are as follows: 

1. Location of the next table entry tobe referenced (digit positions 15 & 14). 

2. Modulus used (digit positions 13 & 12). 

3. Digit values (digit positions 0-9). 

The CDC & CDV instructions start with the table entry specified by LPNR. The location of the next 
table entry to be referenced by the CDC or CDV instruction is determined by the Hexadecimal value of 
digit positions 15 & 14 of the table entry. This location is relative to the base Word of the table (the 
beginning word of the table which is referenced by the A parameter of the LPNR instruction). 

Example: 

HEXADECIMAL VALUE RELATIVE LOCATION OF 

IN 15 & 14 NEXT TABLE ENTRY 

0 1 Base Word+ 1 

0 2 Base Word+ 2 

1 1 Base Word + 17 

0 0 Base Word+ 0 

Digit pösitions 13 & 12 specify the modulus to be used in the verification scheme. The values in both 
digit positions within the word must be identical and the value in positions 13 & 12 in each table entry 
must be identical. The table assumes a base modulus of 16. 

2.11.0 3 



Therefore, to determine the entry for positions 13 & 12 the decimal values of the modulus desired must 
be subtracted from the base modulus of 16. For example, if a modulus 10 scheme is to be used a 6 
would be entered in digit positions 13 & 12 of every table entry ( 16-10 = 6). 

Each digit position of an integer (to be checked/computed) has 10 possible values (0 to 9). Each table 
entry word represents certain digit positions in the integer. 

Example: A table with 3 entries (words) is used to check/compute a check digit for a 6-digit integer. 

The 1 st table entry is used for digit positions 1 and 4 

The 2nd table entry is used for digit positions 2 and 5 

The 3rd table entry is used for digit positions 3 and 6 

The Digit Values section of each table entry contains the weighted or assigned values for the digit 
positions that the table entry represents. The weighted or assigned values are located within · the digit 
values section (Digit Positions 0-9) in order according to the possible value that it represents. For 
example, the weighted or assigned values for the possible digit position value of 7 on the integer is 
stored in digit position 7 of the table entry. 

A simple alternate column Double-Add-Double Check Digit scheme would require a two-word table with 
the following values in digit positions 0-9 (Digit Values Section) of the table entries. 

Integer Digit V alue and 
Table Entry Digit Position 9 
lst Table Entry Values 9 
2nd Table Entry Values 9 

Example 1: 

Alternate Column, Double-Add-Double 

Modulus 10 

Remainder 0 

Integer (Acct No.) 

Assigned V alues From Table 

Remainder 

Total Sum of Assigned Values 

8 
7 
8 

Next High Multiple Of Modulus ( 10) 

Check Digit 

7 6 5 
5 3 1 
7 6 5 

4 3 

4 +6 

4 3 2 1 0 
8 6 4 2 0 
4 3 2 1 0 

2 2 5 7 

+2 +4 +5 +5 = 26 

0 

26+0 = 26 

30 

30-26 = 4 

Tue values assigned in computing the check digit for the above integer (Acct No:) are as follows: Tue 
assigned values for the digits located in positions 1, 3 & 5 of the integer are taken from the 1 st table 
entry. The assigned values for the digits located in positions 2, 4 & 6 of the integer are taken from the 
2nd table entry. 

Revised 3-29-71by 
PCN 1045481-001 2.11.04 



COMPLETE TABLE 

POSITIONS 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Next 
Word Mod Digit V alues 
LOC 

_:_ 

T ABLE ENTRY 1 0 1 6 6 9 7 5 3 l 8 6 4 2 0 
TABLE ENTRY 2 0 0 6 6 9 8 7 6 5 4 3 2 1 0 

Example 2: 1, 3, 7 MODULUS 11 METHOD. 

In this method the assigned value for each digit is obtained by assigning weights of 7, 3, 1, 7, 
3, 1, ... continuously; starting with the least significant digit of the number. A three-word 
table is required. 

Integer 

Assigned Value From Table 

Remainder 

Total Sum of Assigned V alues 

Next Higher Multiple of Modulus 

Check Digit 

15 14 13 12 11 10 

Next 
Word Mod 
LOC 

0 1 5 5 
0 2 5 5 
0 0 5 5 

2.11.04 (Cont'd-1) 

TABLE 

POSITIONS 

9 8 7 

8 1 5 
5 2 A 
9 8 7 

4 3 2 2 7 7 

4 + 9 + 3 + 2 +A+ 5 = 33 

1 

33 + 1 = 34 

44 

44~34 = A 

6 5 4 3 2 1 0 

Digit V alues 

9 2 6 A 3 7 0 
7 4 1 9 6 3 0 
6 5 4 3 2 1 0 



The table for the example of the 1, 3, 7 Modulus 11 Method was derived in the following manner. 

1 st Table Entry (Weighted 7). 

7 X 0 = 
7 X 1 = 
7 X 2 = 
7 X 3 = 
7 X 4 = 
7 X 5 = 
7 X 6 = 
7 X 7 = 
7 X 8 = 
7 X 9 = 

Minus Next Lowest 
Multiple of Modulus 

1 st Table Entry = 

2nd Table Entry (Weighted 3). 

3 X 0 = 

3 X 1 = 
3 X 2 = 
3 X 3 = 
3 X 4 = 

3 X 5 = 

3 X 6 = 

3 X 7 = 

3 X 8 = 

3 X 9 = 

Minus Next Lowest 
Multiple of Modulus 

2nd Table Entry = 

63 56 49 42 35 28 21 14 7 0 

-55 -55 -44 -33 -33 -22 -11 -11 -0 

7 

-0 

0 8 1 5 9 2 6 A 3 

27 24 21 18 15 12 9 6 3 0 

-22 -22 -11 -11 -11 -11 -0 -0 -0 -0 

5 2 A 7 4 1 9 6 3 0 

Revised 3-29-71 by 
PCN 1045481-001 2.11.04 (Cont'd-2) 



3rd Table Entry (Weighted 1 ). 

1 X 0 = 
1 X 1 = 
1 X 2 = 
1 X 3 = 
1 X 4 = 
1 X 5 = 
1 X 6 = 

X 7 = 
1 X 8 = 

1 X 9 = 

Minus Next Lowest 
Multiple of Modulus 

3rd Table Entry = 

1 1 
9 8 

-0 -0 

9 8 

7 6 5 4 3 2 1 0 

-0 -0 -0 -0 -0 -0 -0 -0 

7 6 5 4 3 2 1 . 0 

A check digit can be accurately computed and verified on fixed length alphanumeric fields that do not 
exceed 7 characters in length. The check digit would make the 8th character. 

Example 3: 

The following example illustrates how a check digit could be computed on a 5-character fixed length 
alpha field (check digit is entered as the 6th character) using a 1, 3, 7 Modulus 10 Method. 

SEO LABEL OP CODE ~ B c REMARKS 

1 INITAL LPNR TABLE LOAD CHECK DIGIT TABLE 
2 CMPCD POS 10 POSITION PRINTER 
3 LKBR PARTNO SET KB BASE REGISTER 
4 TKM 5 ENTER PART NUMBER 
5 TRA PARTNO READ ALPHA TO ACCUMULATOR 
6 SLROS 0 4 RIGHT JUSTIFY ALPHA NUMBER 
7 INK 1 3 INSERT 3 COL 1 
8 NOTE THE 3 IS INSERTED SO THAT THE CD 
9 NOTE NUMBER CAN BE ENTERED THROUGH 

10 NOTE THE ALPHA KEYBOARD AS A COL 3 
10.1 NOTE USASCII NUMERAL. 
11 ADK 0 0 **DECIMAL CORRECT ALPHA 

2.11.04 (Cont'd-3) 



SEO 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

LABEL 

VER CD 

TABLE 

OK 

OP CODE 

CDC 

PN 

AL 

POS 

LKBR 

TKM 

TRA 

SLROS 

ADK 

CDV 

EX 

ALARM 

BRU 

PA 

AL 

BRU 

NUM 

NUM 

NUM 

MASK 

ALF 

END 

A 

12 

0 

1 

10 

PARTNO 

6 

PARTNO 

0 

0 

12 

A 

VER CD 

OK 

1 

B 

3 

3 

4 

0 

3 

s 

CMPCD 

16600369258147 

26600741852963 

06600987654321 

+,D 

OK 

c RE MARKS 

COMPUTE CD USING REM 3 

PRINT CHECK DIGIT 

ALIGN FORM 

POSITION PRINTER 

SET BASE REGISTER POINTER 

ENTER PART NUMBER & CD 

RD ALPHA TO ACCUMULATOR 

POSITION CD TOPOS 0 

DECIMAL CORRECT 

VERIFY USING REM 3 

2 TEXT IP VERIFIED 

SIGNAL OPERATOR IP ERROR 

BR TO RE ENTER 

PRINT VERIFIED MSG 

ALIGN FORM 

BR FOR NEXT 

FIRST ENTRY 7 WT CD TABLE 

SECOND ENTRY 3 WT CD TABLE 

LAST ENTRY 1 WT CD TABLE 

PRINT CD ON CDC 

VERIFIED MSG 

**NOTE: The eight bit alpha characters stored in the accumulator must be decimal corrected to 

eliminate hexadecimal values greater than 9 (A-F). 

If a Modulus 11 method is used, the following additional instructions would be required in the VERCD 
Routine. 

SEO 

20.1 

20.2 

20.3 

LABEL OP CODE 

SKL 

INK 

INK 

A 

1 

0 

B 

4 

3 

A 

c 

2 

REMARKS 

SK IF CHECK DIGIT NOT A 

RESET DIGIT 1 TO COL. 3 

INSERT A IN COLUMN 0 

These instructions are used to test and compensate for a check digit value of A, which is entered as an 
"A" ( 4, 1 on the USASCII Chart). The 4, 1 must be tested and compensated for or the alphanumeric 
number will not verify. The A must be corrected to the Col. 3 USASCII numeral that was derived 
during the compute phase (3A). 

Revised 3-29-71 by 
PCN 1045481-001 2.11.04 (Cont'd-4) 

1 



2.12 - DATA COMMUNICATIONS INSTRUCTIONS 

2.12.01 GENERAL DESCRIPTION 

Tue Data Communications Procedures and Configurations of the various TC's are covered in detail in the 
Series L/TC Equipment Reference Manual. The Equipment Reference Manual also discusses the basic 
characteristics of the Data Communications Processor and the way in which its associated firmware 
controls the interaction of the TC with the communications network and devices on that network. 

Two tracks of the Data Communications Processor are permanently assigned as communications buff ers, 
one for receiving messages from the network and one for sending messages to the network. Bach buffer 
has a capacity of 255 characters of data plus the BTX character. 

The Data Communications Processor firmware validates all incoming messages, removes the header infor­
mation and stores the data (text) with the BTX in the receive buffer. Conversely, the Data 
Communications Processor firmware attaches the Header, BTX and BCC information to any outgoing 
message, the programmer being required to place only data (text, up to 255 characters) into the 
Transmit Buffer. 

Messages to be transmitted are placed into the Data Communications Transmit buffer by the user 
program and the Transmit Ready Flag (R3 or D3) is set - See Subject 2.12.07. The Data 
Communications Processor will then handle the transmission of the message leaving the Main Memory 
Processor free to continue with the user program. 

After the successful transmission of a message the Transmit Ready Flag (R3 and D3) will be reset. The 
user program should always examine the R3 flag (or the D3 flag which is the Data Communications 
Processor equivalent of R3) prior to placing another message into the Transmit Buff er to determine if 
the previous message has been transmitted. 

In a data communications environment, the most efficient operation is achieved by using only the "D" 
flags. 

The Data Communications Processor indicates to the user program that it has sucessfully received a 
message by setting the Data Communications Processor Receive Ready Flag (D2) and the Main Memory 
Processor Receive Ready Flag (R2) - Refer to Subject 2.12. 07. The user program will interrogate one 
of these flags to determine when a message has been received. 

After removing the data from the Receive buffer, the user program will reset the R2 or D2 flag to 
indicate to the Data Communications Processor that the buffer is free to receive another message. 

The Data Communications Instructions covered in this section fall into three main groups, all are used in 
combination with the normal Main Memory instructions. 

1. Send Instructions 
These instructions provide for preparing messages to be transmitted from the TC. 

2. Receive Instructions 

2.12.01 

These instructions provide for unpacking and processing messages that have been received by 
the TC 



ESTB 

DC 

3. Control Instructions 
These instructions provide for accessing and loading the various Terminal Addresses, Trans­
mission Numbers, and other registers of the TC. 

All of these instructions are executed as part of the user program. Their combined eff ect is to provide 
the most efficient handling of data communications with the TC. 

2.12.02 ESTABLISHING RECEIVE/TRANSMIT RECORD AREAS 

LABEL OP CODE -
ESTABLISH RECEIVE RECORD AREA RECEIV ESTB 

ESTABLISH SEND RECORD AREA SEND ESTB 

lt is usually desirable to use a receive record area to unpack messages while freeing the data comm 
receive buff er to accept more data. These receive record areas have a counterpart in the send record 
area, used to prepare a message for transmission while another message is in the transmit buff er awaiting 
a poll from the central processor. 

These record areas are always thirty-two words ( 1 track) in length and are assigned space in memory by 
the assembler according to two things: 

1. Memory size - as specified by the option "MEMORY NNN" 

2. and by the use of the pseudo instruction ESTB. 

The first use of the ESTB pseudo instruction will cause the assembler to assign the record area to the 
highest thirty-two words of memory available that fall on a track boundary (as indicated by the memory' 
size option card) in user memory. The second use of the ESTB instruction will cause the record area to 
be established in the next 32 words of user memory available. For example, if user memory is 
384 words, (0-383), the first record area will be in words 352-383. The second use of ESTB will 
establish the record area in words 3 20-351. 

The ESTB pseudo instruction has no parameter, but it must always be labeled. 

So far, we have only established receive and transmit record areas. The use of them will be discussed 
later. 

NOTE: lf the last user word is specified in assembly rather than the total number of user words of user 

memory (example: 383 rather than 384), the assembler will select the next lower track available 

(example: words 320 to 352). This would cause the last 32 words to be inaccessible to the assembler 

for other use. 

An alternate, but less frequently used method of reserving main memory buff er areas is to specify a 
word value as in the following examples which assume 384 words of memory. 

Revised 3-29-71 by 
PCN 1045481-001 2.12.02 



LRBR 

RCP 

IRCP 

LABEL -

RECEIV 

·. DC 

OPCODE 

ORG 

REG 

···~ 

352 

32 

In this example, Receive would be assembled with a starting word of 352. The word number must be 
the first word of a track. Track 0 is not a valid entry. 

Any number of transmit or receive record areas may be used. The number is determined by system 
requirements. and memory availability. 

2.12.03 TRANSFERRING DATA FROM ONE MEMORY ADDRESS TO ANOTHER MEMORY ADDRESS 

The unpacking of messages received and the constructing of messages to be transmitted usually involves 
moving data FROM one memory location TO another. The transfer can be from a record area to the 
transmit buffer, from the receive buffer to ~emory location, or from one memory address to another 
memory address. The following instructions deal with this data movement . 

. LABEL OP CODE A 

LOAD RECEIVE BUFFER REGISTER LRBR BLANK OR LABEL 

Tue LRBR instruction designates the starting memory address from which data will be transferred until 
the next LRBR is encountered, or the Character Pointer· Register is otherwise altered .. lt is the origin 
address. Tue A parameter is the label of a memory address, often a record area which has already been 
established. Tue A .parameter may be blank, however, in which case the data will be transferred directly 
frOJll the Receive Buffer. Each time the LRBR instruction is executed, the character pointer for that 
record area or buff er is set to L This means the first chracter transferred will be the high order 
character of the first word in the designated memory location. 

LABEL . OP CODE A 

SET RECEIVE CHARACTER POINTER RCP 1-255 

Each use of the LRBR instruction sets the associated character pointer to one. For each character trans­
ferred or printed from the track, this character pointer is incremented serially. The RCP instruction sets 
the pointer to the character position specified by the "A" parameter relative to the last LRBR word 
location. 

Thfä instruction permits transfer of data starting with the character position designated by the "A" 
parameter. 

OP CODE A 

INCREMENT RECEIVE CHARACTER POINTER IRCP 1-255 

The IRCP instruction increments the receive character pointer by the number of character positions 
designated in the A field, or until the next field indentifier code is encountered. The pointer is 
incremented for the field identifier code also. This instruction permits by-passing a data ffeld in a 

2.14.03 



LKBR 

TRB 

SCP 

TRBA 
DC 

message containing variable length fields. If the RCP is incremented past 255, the Overflow Test Flag 
will be set, otherwise it will be reset. 

OP CODE A 

LOAD KEYBOARD BASE REGISTER LKBR BLANK OR LABEL 

The LKBR instruction designates the starting memory address to which data will be transferred, until 
the next LKBR is encountered, or the Character Pointer Register is otherwise altered. lt is the 
destination address. (The A parameter is the label of a memory address, often a record area.) The A 
parameter may be blank however, in which case the data will be transferred directly to the transmit 
buffer. Each time the LKBR instruction is executed, the Send Character Pointer for that memory 
address, record area or buffer is set to 1. This means the first character transferred will be placed in the 
first character position of the designated memory location. 

OP CODE A 

SET SEND CHARACTER POINTER SCP 1-255 

Each use of the LKBR instruction sets the associated character pointer to one. For each character 1 
transferred, the character pointer is incremented serially. The SCP instruction sets the character position 
specified-by the "A" parameter relative to the last LKBR word location. 

This instruction permits transfer of data starting with the character position designated by the "A" 
parameter. 

2.12.04 UNPACKING MESSAGES RECEIVED 

Normally, when transferring the contents of a word in the Accumulator, the whole word is transferred. 
Likewise, when printing the alpha contents of a word, the entire contents (up to an end alpha code) are 
printed. The data comm instructions used to unpack messages pay no attention to word boundaries in 
the receive buff er or receive record area. In Data Communication programing, it is possible to transfer 
any number of digits up to 16 to the Accumulator and it is possible to move alpha characters from one 
location to another regardless of the number of word boundaries crossed. 

OP CODE A 

TRANSFER RECEIVE BUFFER TO RECORD AREA TRB LABEL 

The TRB instruction transfers the contents of the Data Communications Receive Buff er to the Normal 
Memory Receive Record area (32 words on one track) specified by the "A" parameter. The Receive 
Record area must have been established using the ESTB instruction previously described in this section. 
This instruction permits the use of one or several Receive Record areas in Normal memory. 

OP CODE A 

TRANSFER TO ACCUMULATOR AS NUMERIC TRBA 1-16 

The TRBA instruction, transf ers the number of characters specified in the "A" field from the Receive 
Buffer, or working record area, to 1he Accumulator as Numeric digits. The buffer or Receive Record 

Revised 3-29-71 by 
PCN 1045481-001 2.12.04 . 



TRBA 

DC 

area is the one specified by the last LRBR instruction, and the beginning character is determined by the 
current position of the RCP. The TRBA instruction is terminated by the transfer of the ilumber of 
characters specified or by a field identifier code, whichever comes first. The field identifier code sets a 
specified flag patt'ern (see Subject 2.12.06). The RCP iS incremented for each character transferred and 
for the field identifier code (which is not transferred ihto the Accumulator). The Overflow flag will be 
set if the RCP is incremented past 255 and the instruction will be terminated; otherwise, the Overflow 
flag is reset. 

Although alpha numerals occupy 2 digit positions (8 bits) for the character in either the Receive Buff er 
or Receive Record area, the TRBA instruction places then in the Accumulator as numeric digits ( 4 bits). 
Thus, up to 16 buffer characters can be transferred to the Accumulator as 16 digits (any data required 
for computational purposes must be limited to 15 digits). 

Valid codes accepted by TRBA are any codes from column 3 of the USASCII table. These include the 
numerals 0 to 9 and : ; < = > ? In addition, the minus ( -) and plus ( +) codes and 'any field identifier 
codes from columns 0 and 1 are valid. When used in a numeric field, the minus or plus code may be 
any character in the field. After first use in a given numeric field, subsequent plus or minus codes are 
invalid. The minus code will set the sign flag in the accumulator; the plus code will reset the sign flag. 
The minus or plus code will not be counted as one of the characters transferred as specified by the para­
meter field, however, the RCP will be incremented for this character. The field identifier codes are not 
transferred to the Accumulator but do terminate the TRBA instruction. The characters : ; < = > and ? 
are transferred to the accumulator as hexadecimal digits (undigits) with binary values of 10, 11, 12, 13, 
14 and 15 respectively (values are designated by A, B, C, D, E, and F). 

Other characters will be considered as invalid, will cause the "S" flag of the Accumulator to be set, will 
count as a code transf erred, but the instruction will not be terminated. 

Remember that if it is desired to read a terminating FI Code the TRBA parameter must be one more 
than maximum numeric field likely to be transfered in order to ensure that the FI Code is transfered 
and sets the flag patterns. 

EXAMPLES 

Instruction Buff er contents Result in accumulator 

TRBA 4 - 1234 ABC 1000000000001234 

TRBA 5 - 1234 FIABC 1000000000001234 

TRBA 5 1234 - FIABC 1000000000001234 

TRBA 4 1234 - ABC 0000000000001234 
(Sign is lost) 

TRBA 5 1234 +ABC 2000000000012341 
(S flag is set by transfer of 
A an invalid code) 

lt is important to remember that the TRBA instruction, while designed to transfer one character at a 
time into the Accumulator, must "scoop up" two digit positions from the memory location indicated by 
the current LRBR and RCP instruction in order to determine the digit being transferred. Look at the 
USASCII chart (Appendix H). Every code in the table is represented by a row and column and must 
occupy 8 bits. Tue "numbers" in the table are located in column three. Since there are 16 rows in the 

2.12.04 (Conf d-1) 



TRBA 

DC 

table, column 3 has 16 entries: 0-9 and the hexadecimal digits A through E. This information is useful 
when, for instance, an "A" is desired in the Accumulator as a .result of a TRBA instruction. Tue central 
processor would send to the TC an USASCII equivalent of a colon (:). In USASCII code, it is "3,A." 
When the TRBA instruction encounters the 8 bit representation of a colon (3,A), the upper Jour bits are 
pared off and the lower four bits are placed in the Accumulator. 

Used this way, the TRBA instruction is an instrumental tool for loading programs in the TC using codes 
sent from a central processor. 

Example: 
OP CODE A -

TRANSFER TO ACCUMULATOR AS NUMERIC TRBA 16 

Result in Accumulator: 

E 8 0 3 E E 0 1 E B 5 5 E D 0 1 

t t - Digit Pos. 15 
Digit Pos. 0 

In this instance, the "E's," "B's," and "D's" in the Accumulator resulted from a 3,E, and a 3,B, and a 
3,D in memory which ate valid codes for the TRBA instruction. The "E" in the Accumulator is, in 

reality, a hexadecimal 14, the "B" a hexadecimal 11, and the "D" a hexadecimal 13. 

NOTE: Let's say the contents of the Accumulator were moved to a memory location, e.g., word 30. 
Word 30 would then look like this: 

syllable 0 ED01 

syllable 1 EB55 

syllable 2 EE01 

syllable 3 E803 

These are the machine codes for these mnemonics: 

LABEL OP CODE 

AL 

POS 

AR 

oc 

A 

1 

86 

1 

3 

B c REMARKS 

Advance left 1 

Position to 86 

Advance right 

Open handler, advance 3 

Revised.3-29-71 by 
PCN 1045481-001 2.12.04 (Cont'd-2) . 



1 

TRF 

DC 

OP CODE A 

TRANSFER ALPHA TRF 0-255 

. The TRF instruction transfers alphanumeric (8 bit) characters from the memory location specified by 
the last LRBR instruction beginning at the current RCP position to the memory location specified by / 
the last LKBR instruction beginning at the current SCP position. The number of characters to be 
transferred is specified by the A parameter of the TRF instruction; the instruction is terminated by the 
transferring of the exact number of characters specified or by encountering a field identifier code. When 
the instruction is terminated, no matter how it is terminated, (by reaching the number of characters · 
specified or by encountering a field identifier code) an end of alpha cöde will be inserted in the next 
character position of the memory address indicated by the LKBR. The · SCP is not incremented for that 
code, however. 

The following example attempts to show how several product codes, which have come from a central 
processor, can be stored in TC user memory: 

First word of Receive Buff er: 

"ITEM#" 

l4 19 l5 l4 14 l5 l4 IDl 2 13 1 1 1 1 1 1 1 

t Digit Pos. 15 1 Digit Pos. 0 

Example: 
LABEL OP CODE 

LOAD RECEIVE BUFFER REGISTER LRBR 

LOAD KEYBOARD BASE REGISTER LKBR 

TRANSFER ALPHA TRF 

RESERVE REGION STORE REG 

This is what "STORE" would look like after the transfer: 

"ITEM#" 

l41915141415141Dl2l3lolololololol 

t Digit Pos. 15 1 
Digit Pos. 0---~----

A 

RECEIV 

STORE 

5 

1 

Tue RCP and SCP are incremented for each character transferreci; the RCP will also be incremented for 
a field identifier code if one is present. Tue overflow flag will be set if either pointer is incremented past 
255, or if BTX is encountered. 

2.12.04 (Cont'.d-3) 



PAB 

DC 

OP CODE 

PRINT ALPHA RECEIVE BUFFER PAB 0-150 

The PAB instruction usually is used with a receive buffer or record area but ,will print from any memory 
location designated by the last LRBR instruction beginning with the current RCP position. Th~ printing 
will continue until the exact number of characters have been printed, or until a field identifi~r code is 
encountered. For each character printed, the RCP will be incremented by 1. lf the RCP is incremented 
past 255, the overflow flag will be set. lf printing is attempted beyond 150 on a 15~ inch platen, the 
system will return to ready mode. 

Example: 

ESTABLISH RECEIVE RECORD AREA 

LOAD RECEIVE BUFFER REGISTER 

PRINT ALPHA 

LABEL 

RECEIV 

OP CODE 

ESTB 

LRBR 

PAB 

A 

RECEIV 

15 

NOTE: lt is also possible to print from memory using the PA instruction. The distinction is the 

flexibility of the PAB instruction since it allows the programmer to designate a starting character 

position within a word (done by setting RCP) and to designate the exact number of characters to be 

printed. The PA instruction simply prints from the first character position of the word specified by its 

A parameter until it en.counters the end alpha code. 

2.12.05 PREPARING MESSAGES FOR TRANSMISSION 

Remember from the discussion of unpacking messages received that instructions which transferred 
characters and printed characters were not limited by word boundaries. The transfer is guided by a 
character pointer (RCP). Likewise, in preparing a message for transmission, those instructions dependent 
on a character pointer (SCP) and an LKBR instruction are not limited by word boundaries. 

lf any of these instructions are used to transfer data to the transmit buff er while the transmit ready flag 
is set, execution of the instruction is delayed. The transmit ready flag is always interrogated before 
information is moved into the transmit buffer. 

Revised 3-29·71 by 
PCN 1045481-001. 2.12.05 

1 



TSB 

TRAB 
DC 

A message may be prepared for transmission in a user memory send record area and then be transferred 
to the transmit buffer. This transfer will move the entire 32 words of a send record area to the transmit 
buffer. The send record area is determined by the A parameter of the TSB instruction. The A parameter 
is the label of a record area established by one of the routines using ESTB. The End of Text Character 
will be automatically inserted after the last character of the message. 

OP CODE A 

TRANSFER SEND RECORD AREA TSB LABEL 

OP CODE A B 

TRANSFER ACCUMULATOR TO "LKBR" TRAB 0-15 0 or 1 

The TRAB instruction will transfer up to 15 numeric digits ( 4 bits) from the Accumulator into the 
memory location designated by the last LKBR instruction, placing the digits into memory as 8 bit alpha 
characters beginning with the current position · of the SCP. 

The digit position of the Accumulator from which digits are to be transferred is designated by the A 
parameter. The B parameter must be either a zero or one: A "1 " meaning leading zeros will be 
transferred and a "O" meaning leading zeros will not be transferred. 

Example 1: 

LOAD KEYBOARD BASE REGISTER 

TRANSFER ACCUMULATOR 

LABEL 

If the Accumulator looks like this prior to execution of TRAB: 

OP CODE 

LKBR 

TRAB 

1 o( ol o 1 o) ol o 1ol2 l 1 f s J9 f 1 l 5 f 4f o ( 61 
t Digit Position 15 . • l 

Digit Position 0-------'-

A 

SEND 

10 

B 

then the digit 0 located in position 10 would be transferred to the current position Of the SCP as the 
character 0 (repre.sented in hexadecimal as 30). The digit 0 in position 9 of the Accumulator would be 
transferred as the character 0 (represented in hexadecimal as 30); digit 2 would transfer as character 2 
(hexadecimal 32); etc. The first and second words of the memory location designated by the last LKBR 
would look like this after the execution: 

lst word 

2nd word 

2.12.05 (Cont'd-1) 

13 J o f 3 J o ( 3 ( 2 l 3 ( 1J3 ls l 3 l 9 J 3 l 1 f 3151 

f-------- Digit Positio.n 15··· .. ·. ··· .. · ·. ·.· t. ~ ·. .• . . · · Digit Position 0 ------i 



1 
TRAB 

The transfer could also have been directly to the Data Communications Transmit Buffer. 

Example 2: 

LOAD KEYBOARD BASE REGISTER 

TRANSFER ACCUMULATOR TO LAST "LKBR" 

If the Accumulator looked like this prior to execution: 

2 0 0 9 6 8 9 

.___ ____ Digit Position 15 

OP CODE 

LKBR 

TRAB 

Digit Position 0-----

A 

10 

DC 

B 

0 

then the first digit transferred would be the digit 9 in position 8 of the Accumulator, since the B para­
meter indicates zero suppression. lt would be transf erred to the current position of the SCP as the 
character 9 (hexadecimal 39). The digit 6 in position 7 would transfer as character 6 (hexadecimal 36), 
etc. 

The first and second words of the memory location designated by the last LKBR would look like this: 

lst word 

2nd word· 

13191316131sl3l9l3l1f3j5f 3l4l3lol 

Digit Position 15 t 
Digit Position 0---i 

Those digits occupying positions in the Accumulator higher than the digit position specified by the A 
parameter were ignored. 

Example 3: Transferring signed numbers. 

OP CODE A B c 

LOAD KEYBOARD BASE REGISTER LKBR WORK 

EX A 1 

TRANSFER CHARACTER TRCB 2 13 

TRANSFER· ACCUMULATOR TO LAST '.'LKBR" TRAB 9 0 
.Revised 3-29-71 by 

2.12.05 (Cont'd-2) PCN 1045481-001 



TRAB 

TRF:·: 

TRCB DC 

If the Accumulator appears like this prior to execution: 

1-lolololololo olo o 011 2 5 51ol 

then after execution, the memory location specified by the last LKBR would appear as fpHows: 

l2lnl3l1l3l2 3 51315 31ol 
1 2 5 5 0 

lt is necessary to test for the presence of the minus flag in fäe Accumulator and to insert the actual 
minus character (hexadecimal 2D) into memory, since a minus flag would be converted to the charact~r 
1 (hexadecimal 31) by the TRAB instruction. 

To insert a plus sign into memory, the foHowing code could be used: 

OP CODE A B c 

LOAD KEYßOARD BASE REGISTER LKBR WORK 

~ ~ 
SK A 1 

TRANSFER CHARACTER TRCB 2 11 

TRANSFER ACCUMULATOR TO MEMORY TRAB 9 0 

OP CODE A 

TRANSFER ALPHA TRF 0-255 

Refer to previous discussion on this instruction under Subject 2.12.04 "Unpacking Messages Received". 

OP CODE A B 

TRANSFER CHARACTER TO BUFFER TRCB 0-7 0-15 

Tue TRCB instruction transfers the USASCII code designated by the decimal value in the "A" and "B" 
parameters into the memory address specified by the last LKBR instruction, with the first character 
being transferred to the position indicated by the current position of the SCP. For each character 
ttansferred, the SCP is incremented by one. 

To use this instruction, · it is neces$ary to know the USASCII row and. column designation of the 
character to b.e transferred. The A parameter indicates the column number from the USASCII table, and 
the B parameter is the row number. 

For example, if an asterisk (*), USASCII column 2, row 10, is to be placed in the buffer, then the 
instruction to accomplish this is: 

2;12:os (Cont'd„3) .· 



TRCB 

TKM 

FI CODES 

OP CODE A B 

TRANSFER CHARACTER TO BUFFER TRCB 2 10 

OP CODE A 

TYPE TO MEMORY TKM 0-150 

The TKM instruction allows the operator to enter data directly into the memory address specified by 
the last LKBR beginning with the current position of the SCP. The SCP will be incremented for eacp. 
character entered and an end of alpha code will be placed in memory after the last character ende.d. 
However, the SCP is not incremented for this character. 

The use of the backspace key will cause the SCP to be decremented for each depression. However, the 
SCP c~not be decremented beyond the position held when the TKM instruction was encountered. 

LOAD KEYBOARD REGISTER 

TYPE INTO MEMORY 

EST ABLISH 4 WORD REGION 

LABEL OP CODE A 

AREA 

LKBR 

TKM 

REG 

AREA 

16 

4 

The instruction may have been used to enter data into the transmit record area: 

LABEL 

LOAD KEYBOARD BASE REGISTER 

TYPE INTO LAST "LKBR" 

ESTABLISH SEND RECORD AREA SEND 

2.12.06 FIELD IDENTIFIER CODES AND VARIABLE LENGTH FIELDS 

EXAMPLE:. 

OP CODE 

LKBR 

TKM 

ESTB 

A 

SEND 

25 

A customer's name, street address, city and state are being transrnitted to the TC to be printed on 3. 
different lines of an invoice. · The message is in the Receive Buff er and the programmer wishes to use the 
PAB instruction to print the name on the ship-to portion of the invoice. If the name is "Acme 
Printing," the A parameter of the PAB instruction should be 13 characters. Names may be of variable 
length, and a convention in GP 300 allows for varying length fields. This convention is called a "field 
identifier code." Whenever a field identifier code is encountered by any of the following data comm 
instructions, execution is terrninated and the next instruction will begin. These instructions are: 

Revised 3-29-71 by 
PCN 1045481·001 .. 2.12.06 



FI CODES 

LABEL OP CODE A B c REMARKS 

TRBA 0-16 Transfer as numeric 

TRF 0-255 Transfer alpha 

PAB 0-150 Print from buff er 

IRCP 0-255 Increment receive character 
point~r 

Valid field identifier codes are in columns 0 and l of the USASCII Chart. The two charts below show 
the codes, their 4 bit hexadecimal value and their accompanying flag patterns. 

The cödes from column 0 present problems if the "Y" flags are used in the TC user program. After 
reading a column 0 field identifier code, all four Y flags are either set or reset, and the appearance of 
these Y flags could seriously upset the logic of the TC program if the Y flags are interrogated and acted 
upon without knowledge of these additional flag settings. This same problem could arise when reading 
column 1 codes and when interrogating the K flags. Therefore, the use of these field identifier codes 
must be given careful consideration and their use must be coordinated with the central processor. 

NO FLAGS SET Y FLAGS SET* K FLAGS SET* TEST F LAGS SET 

3 2 1 4 3 2 1 4 UILO 

NUL SOH 0 0 0 1 DCl 0 0 0 1 BTX 0 0 0 1 
STX 0 0 1 0 DC2 0 0 1 0 

DC3 0 0 1 1 
DC4 0 1 0 0 

ENQ 0 1 0 1 NAK 0 l 0 1 
ACK 0 1 l 0 SYN 0 l 1 0 
BEL 0 1 1 1 ETB 0 1 1 1 
BS 1 0 0 0 CAN 1 0 0 0 
HT l 0 0 1 EM 1 0 0 1 
LF 1 0 1 0 SUB 1 0 1 0 
VT 1 0 1 1 ESC 1 0 1 1 
FF 1 1 0 0 FS 1 1 0 0 
CR 1 1 0 1 GS 1 1 0 1 
so 1 1 1 0 RS 1 1 1 0 
SI 1 1 1 1 US 1 l 1 1 

*Y and K flags designated are set if "1" and reset if "O" 

lt is . generally agreed that many of the above USASCII codes should never appear in a text. BOT 'is 
specifically filtered out by the Data Communications Processor. NUL does serve as a field identifier but 

. ' 
as in,dicated i11 the chart above, it termjnates the instruction but does not set any flags; neither does it 

rel)et any previous flags. lt merely terminates the instruction. BTX has special significance in that when 
BTX is detected during a transfer instruction, the Overflow flag will be set and the instruction 
terminated. 

2.12.06 (Cont'd-1) 



FI CODES 

Tue following examples show the proper use of field identifier codes. 

Example 1: 

An invoice ship-to region has been defined as consisting of from 2 to 4 lines of not more than 25 
characters per line. In addition, the last line of the ship-to address will determine if the sold-to address is 
"SAME" or if it requires a separate address. 

PROBLEM: Tue TC programmer must program for variable length fields and for a variable number of 
fields. He must also decide whether to print "SAME" in the sold-to address area or to begin printing a 
new sold-to address. 

DECISION: After each field or line of ship-to address a field identifier code will be inserted by the 
central processor. For example, "DCl ," after each line except for the last line of the ship-to address 
which will be "DC2" if the sold-to address is "SAME" or a "DC4" if sold-to address is another distinct 
address. A "CAN" code will terminate the last line of the sold-to address. 

On the following page are some programing suggestions that will accomplish the necessary invoice 
addressing routine. (Assume the necessary steps have been taken to establish a receive record area, to 
establish alpha constants, etc.) 

This routine is very flexible. Bach line printed can be of any length up to 25 characters. If the field 
(line) is less than 25 characters*, the field identifier will terminate the instruction and set a K flag 
pattern. Also, there may be any number of lines to an address since either Kl or K2 will mark the end 
of the lasflfue of the address. 

*Notice the A parameter of the PAB instruction is 26. The prob1em definition permits only 25 
characters per line. In the event, however, the field is ex11ctly 25 characters long, the extra character in 
the A parameter will allow the PAB instruction to pick up the f~eld identifier code. Otherwise, the 

character pointer will be pointing at the 26th character at the time of execution of the next PAB 

instruction since it is not incremented when reading an F.1. This PAB instruction would read the field 
identifier and terminate, instead of reading the next field. 

Revi~ed 3~29-71 by 
PCN 1045481-001 2.12.0~ (Cont'd-2) 



LABEL OP CODE A B c REMARKS 

PRTLIN LRBR RECEIV Load Receive Buff er Register 

AL 1 Advance left 1 line 

POS 5 Position to print 

PAB 26 Print on address line 

EX K 4 1 K4 - means more lines 

BRU PRTLIN +1 Print another line 

EX K 1 3 Kl - ship-to = sold-to 

ALTO 15 Advance to sold-to area 

PA SAME Print "SAME" 

BRU RIBBON Exit the routine 

EX K 2 2 K2 - means sold-to address 

ALTO 15 Advance to sold-to area 

BRU PRTLIN +1 Base to print new address 

RIBBON ALTO 22 Ribbon Routine 

Example 2: 

This example shows how field identifier codes may be helpful while constructing messages for 
transmission to the central processor. 

Assume we are in a file maintenance routine and wish to send the name and number of a customer to 
the central processor. Every name has a corresponding number. 

2.12.06 (Cont'd-3) 



PROBLEM: Tue TC programmer must allow for several such combinations of names and numbers and 
also must distinguish between the names and numbers. 

DECISION: Every name will be followed by the field identifier "DC2." Every customer number will be 
identified by a trailing "DC4" if there are more names and numbers to follow or a "CAN" if the 
current customer number is the last one. After indexing a name, the operator terminates with OCK 1. 
After indexing a number, the operator terminates with OCK 2 if there are more names and numbers and 
OCK 3 or OCK 4 if there are no more. 

LABEL OP CODE A # B c REMARKS 

LODBUF LKBR XMIT Load transmit buff er 

AL 2 Advance to type 

POS 5 Position to print 

TKM 25 Index name/number 

EX K 2 Kl - means name 

TRCB 1 1 1,2 = DC2 = OCK 1 

BRU LODBUF #1 Index again 

EX K 2 2 K2 - means num ber 

TRCB 1 2 1,4 = DC4 = OCK 2 

BRU LODBUF #1 Index again 

EX K 3,4 3 K3,4 - last number 

TRCB 1 8 1,8 = CAN = OCK 3 

SET D 3 Set transmit flag 

BRU AWAY Exit routine 

The function of the "D" flag group is to provide a method for interrogating and changing the status of 
the DCP Transmit and Receive Buffers. Tue "R" flag group may also be utilized in the same manner as 
the "D" flag group. However it is recommended that the "D" flag group be used due to timing and 
syllable placement considerations involved in using the "R" fla~. 

Revised 3-29-71 by 
PCN 1045481-001 2.12.06 (Cont'd-4) 



D FLAGS 

1 
RSA 

DC 1 
2.12.07 .. "D" FLAG GROl)P 

All versions of the Series L/TC Assemblers which. have the capability of .assembling a data communica­
tions program have been revised to allow any flag in the D Plag Group to be set (SET) and reset (RST). 
Previously the D flags coulcl be interrogated but the status could not be altered. When it was necessary 
for the application program to notify the DCP of a change in the status .. of the Transmit and Receive 
buff ers, it had to be done via the R2 (Ready to Receive new data) oi R3 (message ready for 
transmission) flags. 

lt is. suggested that only the D flag group be used when it is required to set, reset or interrogate the 
status of the DCP. The previous method of setting or resetting the R flags and interrogating the D flags, 
although confusing, will also work. 

IMPORTANT: The CHG or LOD instructions can not be used to change or load the R or D flag groüps 
when the TC is functioning with any Data Communications Main Memory Firmware Set. The CHG or 
LOD Instructions may be used to change or load the R flags only when using any non Data 
Communication firmware set. 

Tue following flags. are available in the Data Communication Plag Group: 

D 1 Trouble Plag 

D2 Message Received Plag 

D3 Transmit Ready Plag 

D4 Micro Plag. Not available to the macro programmer. 

2.12.08 SEND AND RECEIVE ADDRESS INSTRUCTIONS 

GP 300 has a group of instructions, which allow the programmer to assume some firmware responsi­
bilities. An examJ?le is the transmission number that is part of the header portion of a niessage. This 
number is usually calculated by firmware and can be an important programing consideration. There are 
two instructions in GP 300 that allow the prograrnmer to transfer the transmission nuniber to the 
Accumulator and also. to assign any l, 2, or 3 digit number as the transmission number. Tue 
transmission number must initially be set by the prograrnmer to eff ectively check for lost messages. 

OP CODE 

RBTRIEVE SEND ADPRESS RSA 

This instruction transfers the two-character send machine address from the send address register in the 
Data-Communications Processor into the four (4) most significant digit positions of the Accumulator. 
The balance of the Accumulator will be zero. 

Exarnple: If Send Machine-Address is: lA, Accumulator will be as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ACCUMULATOR DIGIT POSITION 

6 0 0 0 0 0 0 
.. 

VALUE 3 l 4 1 0 0 0 0 0 

2.12.07 



LSA 

RRA 

LRA 

These two characters may be any characters from columns 2 through 6 of the USASCII set ( except cir­
cumflex and underline). With a range of 78 different characters in each of the two positions, the total 
machine address range potential would be 6,084 different combinations. 

OP CODE 

LOAD SEND ADDRESS LSA 

This instruction transfers the four most significant digits of the Accumulator into the Send Machine 
Address Register in the Data Communications Processor. Only the 4 most significant digits of the 
Accumulator may contain significant digits (i.e„ 2 characters). The balance of the Accumulator must 
contain zeros. 

Example for loading Send Address: 

WORK 

LKBR 

TKM 

TRA 

LSA 

REG 

WORK 

2 

WORK 

1 

RETRIEVE RECEIVE ADDRESS 

DESIGNATE MEMORY AREA 

ENTER 2 CHARACTER ADDRESS 

TRANSFER TO ACCUMULATOR 

LOAD SEND ADDRESS 

RESERVE MEMORY AREA 

OP CODE 

RRA 

This instruction functions in exactly the same fashion as RSA, except it will transfei" the machine 
address from the Receive Address Register in the Data Communications Processor into the four ( 4) most 
significant digit positions of the Accumulator. The balance of the Accumulator will contain zeros. 
Generally the Receive and Send Machine Addresses are alike, however, a condition can exist where they 
could be different. 

Normally, in addition to the Receive and Send addresses, the TC has a permanent machine address, 
located in word 1064. This address is loaded into the Send and Receive register every time power is 
turned on or when the program halt button is used. The Ready Button has no effect on Send or 
Receive addresses. 

The Permanent machine address can be changed by unprotecting block 4, track 4, and using Memory 
Modify. 

OP CODE 

LOAD RECEIVE ADDRESS LRA 

This instruction transfers the contents of the accumulator into the Receive Machine Address Register in 
the Data Communications Processor. Only the four ( 4) most significant digit positions of the Accumu­
lator may contain significant characters. The balance of the Accumulator must contain zeros. 

Refer to example for loading send machine address. 

Revised 3-29-71 by 
PCN 1045481-001 2.12.08 



RSN 

LSN 

2.12.09 TRANSMISSION NUMBERS 

OJ 

The TC may maintain a transmission number that accompanies every m~ssage it sends. to a central 
processor. lt may be a one, two or three digit number, or no transmission number. A separate trans-:­
mission number is maintained for normal transmission, group select and broadcast select. 

If the transmission number is one digit only, it will return to zero every ten transmissions. If it is a 
two-digit number, it will return to zero after each one hundred transmissions, and for a three-digit 
number af ter every thousand transmissions. 

Tue Send Transmission ntimber is included in the header of all data transmissions from the terminal and 
is automatically incremented by 1 when transmission has succeeded so that the next message _will carry 
the next transmission number in sequence. 

Tue Expected Receive Transmission number is maintained by the data communications processor, and 
automatically compared with the actual transmission number on all data messages received from the data 
center. 

If a message is received Successfully from the data center, the expected transmission mimber. is 
incremented in anticipation of the next message transmission number. 

If the transmission number from the data center does not agree with the expected transmission number 
in the TC, the transmission failure flag (Dl) is set. This flag can be interrogated by the user program for 
necessary recovery procedures. The D 1 flag will be reset by the next transmission received, unless the 
number still does not agree 

OP CODE 

RETRIEVE SEND TRANSMISSION NUMBER RSN 

This instruction transfers the 1, 2, or 3 digit USASCn' Send Transmission Number from its register into 
the 2, 4, or 6 most significant digit positions of the Accumulator. The balance of the Accumulator will 
contain zeros. Tue user program will process the send transmission number depending on reqliirements. 

OP CODE 

LOAD SEND TRANSMISSION NUMBER LSN 

Execution of this 1nstruction will cause transfer of the Accumulator to the Send Transmission Number 
Register. Only the 2, 4, or 6 high order digit positions may contain significant digits. Tue rest must 
contain zeros. (The number of positions in the Accumulator that may contain significant digits is 
determined by the length of the Send Transmission Number - 1, 2, or 3 digits.) 

NOTE: The Transmission Number must be in the high order positions of a word. IT IS IMPERATIVE 

THAT THE SEND TRANSMISSION NUMBER BE SET UP AS USASCll NUMERALS. IF THE 

NU.MBER IS SET UP IN THE NUMERIC MODE (4 BIT DIGITS), COLUMN 0 USASCll C()OES WILL 

BE INSERTED IN THE H.EADER PORTION OF THE MESSAGE WHICH WILL EVENTUALLY 

CAUSE A DATA LOSS WHEN THE TC ATTEMPTS TO TRANSMlT THE MESSAGE AFTER 

INCREMENTING THE TRANSMISSION NUMBER. 

2.12.09 ! 



RTN 

LTN 
RGN 

LGN 

RBN 

DC 

As a result of the addition of fast select, group select, and broadcast se1ect three sets of expected 
transmission numbers are maintained by 2-1044-006-00 in those processors that use TR numbers. The 
following instructions are provided to load and retrieve the three sets of transmission numbers. Standard 
Select and Fast Select use the same Expected Transmission number. 

OP CODE 

RETRIEVE EXPECTED TRANSMISSION NUMBER RTN 

Tue RTN instruction transfers the 1, 2 or 3 USASCII numeric Character "Expected Transmission 
Number" from its appropriate Register into the 2, 4, or 6 most significant digit positions of the 
Accumulator. The balance of the Accumulator will contain zeros. This instruction retrieves the Expected 
Transmission Number (word 1190) for Select and Fast Select messages. 

OP CODE 

LOAD EXPECTED TRANSMISSION NUMBER REGISTER LTN 

The L TN instruction transfers the contents of the Accumulator into the Expected Transmission Number 
Register for messages received. Only the 2, 4, and 6 most significant digit positions of the Accumulator 
may have significant characters. The expected Transmission number may be up to 3 USASCII numeric 
characters in length. The balance of the Accumulator must contain zeros. This instruction loads the 
expected Select and Fast Select Transmission number. 

OP CODE 

RETRIEVE EXPECTED GROUP TRANSMISSION NUMBER RGN 

The RGN instruction transfers the Expected Group Transmission Number from the Expected Group 
Transmission Number Register (word 1192) to the Accumulator. The Expected Group Transmission 
number may be up to 3 USASCII numerals in length and will occupy the most significant positions in 
the Accumulator. Tue remaining positions are ignored. 

OP CODE 

LOAD EXPECTED GROUP TRANSMISSION NUMBER LGN 

The LGN instruction transfers the contents of the Accumulator into the Expected Group Transmission 
Number Register. The Expected Group Transmission· number may be up to 3 USASCII numeric 
characters (left justified) in length and although the entire Accumulator is transferred, the remaining 
locations are ignored. 

OP CODE 

RETRIEVE EXPECTED BROADCAST TRANSMISSION NUMBER RBN 

The RBN instruction transfers the Expected Broadcast transmission number from its register (word 
1193) to the Accumulator. The Expected Broadcast Transmission number may be either 0, 1, 2 or 3 
USASCII numeric characters in length and is contained in the most significant digit positions of the 
word in the Data Communications Processor and, after the transfer, in the most significant digit 
positions of the Accumulator. Any remaining digit positions are ignored. 

Revised .3-29-71 by 
PCN 1045481-001 2.12.09 (Cortt'd-1) 



LBN 

RTH 
DC 

OP CODE 

LOAD EXPECTED BROADCAST TRANSMISSION NUMBER LBN 

LBN transfers the contents of the Accumulator into the Expected Broadcast Transmission Number 
Register in the Data Communications Processor. The Expected Broadcast Transmission Number may be 
0, 1, 2 or 3 USASCII numeric characters located in the most significant positions of the Accumulator. 
The remaining positions, although transferred, are ignored. 

OP CODE 

RETRIEVE TRANSMISSION HEADER RTH 

The Retrieve Header Transmission Number (RTH) instruction transfers the Tran,smission Header Register 
(word 1184) into the Accumulator. This register is loaded with the 8 characters following the start of 
header (SOH) character of any message received whether by select, fast select, group select, or broadcast 
select. Among these 8 characters will be the transmission number of the message received if the DCP 
uses TR numbers. The numbers will be in their 8-bit USASCII representation. The format of this register 
for each of the four cases (0, 1, 2, or 3 transmission numbers) is shown below. When necessary to 
determine the communications procedure used by the data center, a character in the text of the message 
can be used tO'' ,jndicate how the message was transmitted. Below is the format of the transmission 
header register for 0, 1, 2, and 3 transmission number systems. 

3 Transmission Numbers 

Character 7 6 5 4 3 2 1 0 
Position IADl AD2 TR# TR# TR# STX TEXT DATA 

2 Transmission Num bers 

Character 7 6 5 4 3 2 1 0 

Position IADl AD2 TR# TR# STX TEXT DATA 

1 Transmission Number, 

Character 7 6 5 4 3 2 1 0 

Position IADl AD2 TR# STX TEXT DATA 

0 Transmission Number 

Character 7 6 5 4 3 2 1 0 

Position IADl AD2 STX TEXT DATA 

2.12.10 SPECIAL PURPOSE REGISTERS 

Tue TC may be connected to a central processor two ways. When operating in two-wire direct connect 
(TDI) or over leased duplex (four-wire) lines, a four-wire mode must be specified. When operating over a 
switched line or through half-duplex (two-wire) leased line, two-wire mode must be specified. 

2.12.09 (Cont'd-2) 



RTF 
LTF 
RPR 

The Data Communications Processor contains a special register to enable two or four wire transmission 
mode. One bit in this register is used to determine which mode is active. 

OP CODE 

RETRIEVE TWO/FOUR WIRB REGISTER RTF 

Execution of this instruction will transfer the contents of the two wire/four wire register into tht: 
Accumulator. When the Accumulator M Flag is on, the mode is two wire; when it is off the mode is 
four wire. Like other "Retrieve" instructions, the user program must then interrogate the Accumulator 
flag and perform according to program requirements. 

LABEL OP CODE A B c REMARKS ....., 

LTF Load Two/Four Wire Register 

Execution of this instruction will transfer the contents of the Accumulator into the Two or Four wire 
register. The mode will then be 2 or 4 wire depending upon the status of the Accumulator M flag at 
the time of execution. 

OP CODE 

RETRIEVE POINTER REGISTER RPR 

This instructjon will transfer the contents of the Character Pointer Register into the Accumulator. All 
digits in the Accumulator will be hexadecimal and the format of the Accumulator will be as follows: 

Revised 3-29-71 by 
PCN 1045481-001 2.12.09 (Cont'd-3) 

1 



Example 1: 

ww 
0 0 
R R 
D D 

15 14 

6 2 

13 12 

0 c 

~RCP-

RPR 

B B 
L L 
0 0 
c c 
K K 

11 10 

1 1 

w w w w 
0 0 0 0 
R R R R 
D D D D 

9 8 7 6 

6 1 4 3 

BASE 
1-LRBR-

5 4 

1 3 

'-SCP .... 

B B 
L L W W 
0 0 0 0 
C C R R 
K K D D 

3 2 1 •O 

1 1 A 1 

BASE 
1-LKBR -

.._ WORKING LRBR· w ORKN I GLKBR 

BASELRBR BLOCK 1 
WORD 97 (352) 

WORKING LRBR BLOCK 1 
WORD 98 (353) 

RECEIVE CHARACTER POINTER 12 

BASELKBR BLOCK 1 
WORD 161 (416) 

WORKING LKBR BLOCK 1 
WORD 67 (322) 

SEND CHARACTER POINTER 19 

2.12.09 (Cont'd-4) 

ACCUMULATOR DIGIT POSITION 

VALUE 



LPR 

When controlling the loading of a buffer, it is necessary to be able to check the buffer capacity at the 
start of each line of the message. 

We must establish that we can put another full message line in the buffer. 

To do this, we use a technique which examines the SCP 

Example 2: 

RPR 
SKL 
EXL 
SKL 
BRU 

BRU 

Example 3: 

RPR 

EXL 

BRU 

BRU 

Buffer size 

Maximum Line 

SCP Limit 

255 CH+ 

60 CH-

195 CH 

SCP is hexadecimal. Therefore, 

5 
5 
4 
TRANS MIT 

CONTINUE 

195 = C 3 in digit positions 5-4 

12 
13 

4 

Buffer Size 

Maximum Line 

SCP Limit 

RETRIEVE POINTER REGISTER 
3 TEST FOR UPPER DIGIT < 12 
1 TEST FOR UPPER DIGIT = 12 
1 TEST FOR LOWER DIGIT < 4 

IF NO. OF CHARACTERS > 195 

IF NO. OF CHARACTERS < 195 

255 CH+ 

63 CH-

192 CH 

Therefore, SCP = C 0 

5 12 

CONTINUE 

TRANSMIT 

1 TEXT FOR UPPER DIGIT < 12 

IF NO. OF CHARACTERS < 192 

IF NO. OF CHARACTERS > 192 

LOAD POINTER REGISTER 

OP CODE 

LPR 

Execution of this instruction will transfer the contents of the Accumulator into the Character Pointer 
Register. 

Revised 3-29-71 by 
PCN 1045481-001 2.12.09 (Cont'd-5) 



SUBJECT 2.13 - POINT-TO-POINT PROGRAMING PROCEDURES. 

2.13.01 BASIC POINT-TO-POINT LINE DISCIPLINE 

Point-to-Point Firmware provides the TC with a contention type line control procedure which allows 
Series TC Computers to communicate on an equal basis with another Data Communications Unit (CPU 
or another TC). The basic Point-to-Point line discipline does not pro:vide a terminal addressing scheme 
nor a transmission number sequence. Since an address scheme is not provided, only two units can be 
listening to the line at any given time. When operating in this mode, the TC can communicate with a 
CPU or another TC. When this Line Discipline is implemented, either unit on the line can initiate 
transmissions without previously being interrogated (TC does not have to be polled). 

In a Point-to-Point environment, the TC must normally contend for control of the line before it can 
transmit a message. After a successful transmission is completed, control of the line is given to the 
receiving unit. The receiving unit may then, if transmit ready, transmit a message without having to 
contend for control. If the receiving unit is not transmit ready, the sequence is terminated. 

A TC can operate in a switched line, leased line or a direct connect communication network when 
utilizing Point-to-Point Firmware. 

Point-to-Point Data Comm Processor (DCP) firmware is compatible with all standard main memory Data 
Comm Firmware sets. 

2.13.02 CONTROL REGISTERS 

Five Control Registers are provided which allow user program control of the functiöns listed below. 

Time Out Limit 
Demand Disconnect 
Idle Line Disconnect 
Line Mode (2 wire or 4 wire) 
NAK/NO Response Limit 

The Control Registers can be controlled by · user program or they can be set manually when the TC is 
installed. To avoid the possibility of human error it is recommended that the Control Registers be set by 
the user program. 

a. Accessing of Control Registers: 
The Control Registers are stored in the DCP memory (word 1188) and are accessed via the 
RTF and LTF macro instructions. The RTF instruction retrieves the control register word and 
stores it in the accumulator for manipulation. The LTF instruction transfers the contents of 
the accumulator to the control register word in the DCP memory. 

b. Control Word Fonnat: 
The five control registers are arranged within the control word in the following manner: 

2.13.01 



LINE MODE - Digit Position 15. 
NAK/NO RESPONSE LIMIT - Digit positions 7 and 6. 
TIMEOUT LIMIT - Digit positions 5 and 4. 
DEMAND DISCONNECT - Digit position 2. 
IDLE LINE DISCONNECT - Digit positions 1 and 0. 

PT TO PT 

The digit positions within the control word which are not used must be set to zero. 

c. Time Out Limit Register: 
The length of time which the TC will wait for a response after transmitting is determined by 
the value in the Time Out Limit Register. 

The Time Out value for the two units must be different to avoid "locking up" the line when 
both units are contending for control of the line at the same time. The optimum diff erence 
between timeout values is 500 milliseconds and this difference should be maintained if 
possible. 

The time out value in the TC can vary from 0 to 2550 milliseconds. To determine the minimum time 
out value double the turn around time of the data set being used and add 100 milliseconds. 

EXAMPLE: 

If communication is over switched lines, using 202C data sets, the Time Out Limit should be determined 
and set as follows: 

Minimum Time Out = Time X 
Maximum Time Out = Time Y 
Turnaround time of 202C data set = 200 milliseconds. 

Time X = (200ms) (2) + 100 ms = 500 ms 
Time Y =Time X+ 500 ms= 1000 ms 

The value which is inserted into the Time Out Limit Register to achieve the desired time out 
limit is the hexadecimal representation of 1/10 of the desired time out limit. 

EXAMPLE: 
Using the time out limit for time X computed in the example above, the values which would 
be inserted into the Time Out Limit Register would be as follows: 

Value for TIME X= 1/10 X 500 = 50. 
50 expressed hexadecimally = 32. 

A hexadecimal value of 32 would be inserted into the Time Out Limit Register to 

achieve a Time Out Limit of 500 milliseconds. 

Revised 3-29-71 by 
PCN 1045481-001 2.13.02 



PT Tö PT 

When the DCP transmits or Receives a DLE-EOT message the trouble flag (D 1) and an 
Indicator Register flag are set for user program interrogation. 

d. NAK/NO Response Limit: 
The number of times that the TC will attempt to transmit an ENQ or TEXT before taking 
alternate actions is determined by the value in the NAK/NO Response Limit Register. 

When the TC receives a NAK or a time out occurs, the TC will increment the NAK/NO 
Response Counter and check the new count against the limit register. lf the limit has not been 
reached, the TC will return to the Transmit sequence and attempt to transmit the message 
again. Upon reaching the NAK/NO Response Limit the Data Comm Processor (DCP) sets the 
Trouble Plag (D 1) and an Indicator Plag for user program interrogation. The Data Comm 
Processor will then delay retransmission of its message for two seconds. During this 
transmission delay the DCP is sensitive to the line and can receive a message. This delay is 
required to permit the unit with the longer time out limit to gain control of the line if it has 
been sending NAK's due to having its receive buffer loaded and it has a message to send. 

The value which is inserted into the NAK/NO Response Limit Register is the hexadecimal 
representation of the desired decimal value. Por example, if it is desired to set. the NAK/NO 
Response Limit to 10, a hexadecimal value of A would be inserted into the register. 

e. Demand Disconnect: 
A Demand Disconnect sequence is provided to allow a TC to programmatically .disconnect the 
line. When a TC demands a disconnect a DLE-EOT message is automatically transmitted. The 
trouble Plag (D 1) and an Indicator Register Plag is set when a TC transmits or receives a 
DLE-EOT message. 

The disconnect sequence is under the control of the user program and is initiated by setting 
the Demand Disconnect Register to a value of 1. The Demand Disconnnect Register must be 
set to 0 at all other times. The disconnect sequence can be used by a TC running in the 
unattended mode to notify the other unit that it has completed transmission and is going to 
turn itself off. 

Additional capabilities of the Demand Disconnect feature will be published later. 

f. ldle Line Disconnect: 
When the line has been inactive for the length of time specified in the Idle Line Disconnect 
Register, an ldle Line Timeout is declared and a DLE-EOT message is transmitted by the DCP. 
The length of time specified in this register can vary from approximately 1 minute to 42 
).llinutes or it can be set to never declare an ldle Line Timeout. However, the minimum time 
allowed by the DCP is 60 seconds regardless of the time specified in the Register. 

The number which is inserted into the Idle Line Disconnect Register to achieve the desired 
length of time for an Idle Line Timeout is in hexadecimal format and has a weighted value of 
10 seconds. The correct value can be determined by dividing the number of seconds desired 
for an Idle Line Timeout by a factor of 10 and then converting the resulting quotient to its 
corresponding hexadecimal value. 

2.13.02 (Cont'd) 



EXAMPLE: 

The value to insert in the ldle Line Disconnect Register to declare an Idle Line Timeout after 
5 minutes may be computed in the following manner. 

1. S minutes X 60 = 300 seconds 
2. 300 divided by 10 = 30 
3. 30 expressed hexadecimally = IE 
4. IE would be inserted into the register. 

If it is desired to never declare an ldle Line Timeout, a value of 00 must be inserted into the 
ldle Line Disconnect Register. 

Additional capabilities of the Idle Line Disconnect Register will be published at a later date. 

g. Line Mode: 

2.13.03 

The Line mode register is used by the DCP to determine the line configuration in which it is 
operating. This register must be set properly to provide the correct timing for the type of line 
being used. 

The values for the two modes of operation are: If 2 w'ire mode is used, insert a value of 8 in 
the register; if a 4 wire mode is used, insert a 0 in the register. 

EXAMPLE: 

The control registers could be set programmatically using the parameters listed below: 

PARAMETERS: 

LINE MODE - 2 wire 
NAK/NO Response Limit - 6 
TIMEOUT LIMIT - 500 Milliseconds 
IDLE LINE DISCONNECT - 5 minutes. 

LABl;:L INST A J!. 

CTLREG CLA 0 0 
SET A M 
INK 6 6 
INK 5 3 

INK 4 2 

INK 1 1 
INK 0 E 

LTF 

INDICATOR REGISTER FLAGS 

c REMARKS 

CLEAR ACCUMULATOR 
SET 2 WIRB MODE 

SET NAK/NO TO SIX 
SET UPPER TIMEOUT 

SET LOWER TIMEOUT = 500 ms 

SET UPPER IDLE LINE 
SET LOWER IDLE LINE = 5 min 
LOAD CONTROL REGISTERS 

Eight flags are provided in the Indicator Register to allow the user prograrri to interrogate the cause of 
exceptfön conditions which can occur in the Data Comm Processor. The lndicatör Register is located in 
the DCP ( word 1197) and is accessed via the RPF and LPF macro instructions. 

Revised 3-29-71 by 
PCN 1045481-001 2.13.03 



1 

' PT TO PT 

OP CODE 

RETRIEVE PROBLEM FLAGS RPF 

The RPF instruction transfers the contents of the lndicator Register from the DCP to the Accumulator 
where the flags can be tested using the Accumulator flag group (A flags). 

LOAD PROBLEM FLAGS 

OP.CODE 

LPF 

The LPF instruction transfers the contents of the Accumlator to the lndicator Register in the DCP. 

The following f]ags are provided in the Indicator Register. The Flags in Group 1 are located in 4igit ·. 
position 15 of the register (word 1197) and the flags in group 2 are located in digit position 14 of the 
Indicator Register. 

Group l: 

"A" FLAG 

M 
c 
s 

Group 2: 

"A" FLAG 

M 
c 
s 

2.13.03 (Cont'd-1) 

Exception Item 

Received DLE-EOT message 
Transmitted DLE-EOT message 
Break 
NAK/NO Response limit reached. 

Exception ltem 

Received Buff er overload 
Transmitted Buff er overload 
Parity Error Received 
Invalid Character Received 



1 
PT TO PT 

1 
NOTE: Flag Group 2 must be shifted into digit position 15 of the accumulator before testing. 

The Flags in Group 2 are provided mainly as a debugging aid to help in qualifying a data 
communications network and/or application programs and normally would not be used in a live 
operating environment. 

a. Trouble Plag: 
When a condition occurs which causes an Indicator Plag to be set, the Trouble Plag (D 1) is 
also set. The Trouble Plag can only be tested by the user program using skip and execute 
instructions: lt cannot be set or reset. The Trouble Plag is reset by firmware when it finds 
that the Indicator Flags have been reset by the user program. 

b. Program Requirements: 
·· The following steps are recommended in handling exception conditions in order to get a valid 

test of the Indicator Register Flags and. to avoid the possibility of losing an Indicator Plag 
setting: 

1. Test Trouble Plag (D-1): lf set, go to Step 2; if reset, continue mainline program. 

2. READ Indicator Plag Register to the Accumulator. 

3. Test if any Indicator Flags are set. 

1. If set - Go to Step 4. 

2. If reset - Return to mainline program (see note below). 

4. Process all Flags set (more than one can be set). 

5. Reset Indicator Register. 

NOTE: lt is possible under some circumstances for the User Program to retest D-1 before 

Firmware can reset D-1. 

Revised 3-29-71 by 
PCN 1045481-001 2.13.03 (Cont'd-2) 



PT TO PT 

EXAMPLE: 

The Indicator Flags could be tested for in the following manner: 

LABEL INST A B c REMARKS - - -
EX D l 1 TEST FOR DATA COMM ERROR 

SRJ TSTERR GO TEST ERROR 

~ ? ~ ~ 
TSTERR RPF RETRIEVE INDICATOR FLAGS 

SK A -SCM 3 TEST NEW TROUBLE GRP l FLAG 

EXZ 1 TEST NEW TROUBLE GRP 2 FLAG 

SRR 1 RETURN - NOT NEW TROUBLE 

BRU GP2FLG TROUBLE IN GROUP 2 

EX A 1 TEST NAK/NO LIMIT 

SRJ NAK GO PROCESS ERROR 

EX A s 1 TEST BREAK 

SRJ BREAK GO PROCESS ERROR 

EX A c 1 TEST TRANS DLE-EOT 

SRJ TRMEOT GO PROCESS - DISCONNECT 

EX A M TEST RECEIVE DLE-EOT 

SRJ RECEOT GO PROCESS - DISCONNECT 

GP2FLG EXZ 1 TEST TROUBLE THIS GROUP 

BRU RESET GO RESET INDICATOR FLAGS 

SLROS l 0 POSITION GP2 FLAGS 
EX A 1 TEST STRANGE CHAR 
SRJ STRANG GO PROCESS 
EX A s l TEST PARITY ERROR RECV 
SRJ PARITY GO PROCESS 
EX A c 1 TEST TRANS OVERLOAD 
SRJ TROVER GO PROCESS 
EX A M 1 TEST RECV OVERLOAD 

SRJ RCVOVR GO PROCESS 

RESET CLA 0 0 CLEAR FLAGS 
LPF RESET INDICATOR REGISTER 
SRR 1 RETURN TO MAINLINE 

2.13.03 (Cont'd-3) 



2.14 - CENTRAL TC CONTROLLER PR()GRAMING PROCEDURES 

Central TC Controller (CTCC) is a Data Communications Processor (DCP) firmware set which allows a 
TC to assume the Data Communication I/O functions of a central processing unit in a polling and 
selecting environment. A TC which utilizes the Central Controller DCP Firmware can control from 1 to 
16 remote TC's in an on-line applicational environment. 

The Central TC Controller operates in a standard Polling and Selecting line control environment. In 
addition to standard selection of remote units the following types of special select formats are provided: 

Fast Select, Group Select, and Broadcast Select. 

Tue polling or selecting of the various terminals in a network is controlled by a series of 16 control 
words which are stored in the memory of the Data Communications Processor. These control words can 
be easily accessed and manipulated as required by macro programing techniques thus giving the user 
program positive operational control of the network. 

In addition to controlling the polling and selecting operations, the line discipline of the Central TC (the 
term used to describe the TC loaded with the CTCC firmware) can also be controlled. This is possible 
because the line discipline of a Central TC is not buried in the program codes of the Data Comm 
Processor. Instead, it is specified and controlled by a collection of Line Procedure Format Registers. A 
degree of flexibility of line discipline is thus achieved because a change of line discipline does not 
require a change in the firmware. 

The controller will function via a switched, leased or direct connect line configuration. 

The following sections discuss in detail: the line disciplines of a Central TC 500 as controlled by the 
Format Registers; the Data Comm Processor operations of polling and selecting as controlled by the 
Control Registers; and the Main Memory firmware requirements. 

2.14.01 LINE DISCIPLINE FORMAT REGISTERS 

Several disciplines are made possible through the use of the Central TC Controller firmware. The line 
procedures that can be implemented by this new Data Comm firmware are: poll, select, fast select, 
group select, and broadcast select. 

Bach line procedure uses two Format Registers; each register consists of one word or eight (8) 
characters. The most significant character position is called the Data Character Counter (DCC) and is 
used to specify the number of significant characters contained in the Format Register (this is indicati.'.d 
in digit position 14) along with other information (digit position 15). The seven (7) remaining character 
positions accommodate the necessary format character which must be right justified. Dummy characters 
are used as substitute for the address (ADl, AD2, and group address) and the transmission number 
(TRI, TR2, and TR3). The actual terminal address and transmission number will be fitted in by the 
Controller firmware during the actual transmission. 

Revised 3-29-71 by 
PCN 1045481-001 2.14.0 J 



cTcc· 1 · 

~~··· 

The dummy characters used in each of the Format Registers are further defi~ed: . 

These values must be 

used in a three (3) 

TR # system. 

Must be used in a two (2) 

TR # system. 

Value in a one ( l) TR # system. 

Character 

ADl 

AD2 

AD3 (Group) 

TRl 

TR2 

TR3 

TRl 

TR2 

· TRl 

·Dummy Hexadecimal Value 

80 

81 

82 

8'8 

89 

BA 

89 

8A. 

8A 

All of the actual characters to be transmitted from each of the Format Registers have their normal 
USASCH format with their parity bits equal to zero (0). Their correct parity bits are generated by 
hardware as each character goes out on the Hne. 

The succeeding sectfons specify the formats of the individual pairs of Format Registers used with the 
various line disciplines supported by the Central TC Controller. ·· 

a. Poll Format Registers 
These two registers are the Poll Message Register and the Expected Header Register. 

The Poll Message Register is located in word 1155 and consists of the actual (and dummy) 
characters, right justified and in their proper sequence, that are used to poll the slave 
terminal(s). The Data Character Counter (DCC) in character position eight (8) of the Poll 
Register contains a value from zero (0) to six (6) depending on the number of characters in 
the poll message. A poll message one (1) character in length would have a DCC value of zero 
(0). A poll message seven (7) characters in length would have a DCC value of six (6). 

EXAMPLE: Poll Message Register containing the standard TC polling characters. 

Character Position 8 7 6 5 4 3 2 1 
Word 115 5 l,....0_4_.---_0-0----...--0-0-..--0-4-.---8-0---.---'8-1 ----..-70-.---0-5---.· 

DCC BOT ADJ AD2 POL ENQ 

The Expected Header Register is located in word 1154 and consists of the actual (and 
dummy) characters, right justified and in the sequence desired are in the header portion of the 
remote · terminals message. A comparison is made using only the first and last character of the 
actual received header against the first and last character of the expected header. The DCC in 
character position eight (8) of the Expected Header Register again contains a value from zero 
(0) to six (6) depending on the number of characters loaded into the register. Tue BCC is 
computed, starting with the second significant character in the Expected Header Register. 

2.14.01 (Cont'd-1) 



CTCC 

EXAMPLE: Expected Header Register containing the standard TC header for a three-digit 
transmission number system. 

Character Position 8 7 6 5 4 3 2 1 

Word 1154 06 01 80 81 88 
1 

89 8A 02 ,I 
DCC SOH ADl AD2 TRI TR2 TR3 STX 

b. Select Fortnat Registers 
There ate two seled reg}sters; the Select Message Register and the Header Format Register. 

The Select Message Register is located in wotd 1157 and contains the characters (both actual 
and dummy) that are used tö select the slave terminal(s). 

EXAMPLE: Select Message Register with standard TC select characters. 

Character Position 

Word 1157 

8 

04 

DCC 

7 6 

00 00 

5 4 3 2 1 

04 80 81 71 05 

EOT ADl AD2 SEL ENQ 

The Header Format Register is located in word 1156. lt contaihs the characters (actual and 
dummy) that are in the header portion of the Central TC's message. Depending on the number 
of <i:haracters in the header, character position eight (8) of the Header Register contains one of 
the follbwing hexadecimal values for the DCC. 

No. of Charactttrs in. Header DCC Value 

1 08 

2 09 

3 OA 

4 OB 

5 04 

6 05 

7 06 

The BCC is computed, starting with the second significant character in the Header Register. 

EXAMPLE: Header Format Register containing the standard TC header for a no transmission 
number system. 

Character Position 

Word 1156 

8 

OB 

DCC 

7 

00 

c. Fast Select (FSL) F6rmat Registers 

6 

00 

5 4 3 2 1 

00 01 80 81 1 02 

SOH ADl AD2 · STX 

The characters used in implementing the fast . select line discipline are defined as those 
characters that precede the actual message text. They are further defined as consisting of a 

Revised 3-29-71 by 
PCN 1045481-001 2.14.01 (Cont'd-2) 

1 



1 
CTCC 

first half (all characters up to and including the SOH) and a second half (all characters 
_f?llgwing the SOH up to and including the STX). Bach half of the fast select discipline has a 
separate format register. 

The first half is located in word 1159. Character position eight (8) of word 1159 contains 
both the Data Character Counter (in digit position 14)and special information {digit position 
15) peculiar to halved line discipline formats. Depending on the number of characters in the 
first half register digit position 14 contains one of the following hexadecimal values for the 
DCC. 

No. of Characters in First Half DCC Value 

1 8 

2 9 

3 A 

4 B 

5 4 

6 5 

7 6 

Digit position 15 contains one of three possible hexadecimal values. A hex 4 indicates there is 
no second half. In this case, the actual message text is transmitted immediately after the first 
half. A hex 8 indicates the characters in the first half register are not to be transmitted; 
proceed to inspect the second half. Hex 0 implies normal (first and second half) fast select. 

The BCC computation does not include any of the characters in the first half register. 

BXAMPLB: Fast Select Format Register (first half) indicating no second half. 

Character Position 8 7 6 5 4 3 2 1 

Word 1159 /44 / 00 / 00 / 04 / 80 I 81 / 73 / 01 / 
D BOT ADl AD2 FSL SOH 
c 
c 

The second half of the fast select format is located in word 1158. Again character position 
eight (8) contains both the DCC (digit position 14) and special information (digit position 15). 
The possible hexadecimal values for the DCC are the same as those outlined for the first half 
register. Digit position 15 of the second half register contains one of four possible values. 

Hexadecimal 0 

Hexadecimal 2 

Hexadecimal 4 

Hexadecimal 8 

2.14.01 (Cont'd-3) 

Implies normal mode. 

Indicates thefirst half register contains four ( 4) characters or less. 

Indicates there is no first half. 

The characters in this register are not to be transmitted; proceed to 
actual message text. 



! 
The BCC is computed, starting with the first significant character in the second .half register. 

EXAMPLE: Fast Select Format Register (second half) indicating first half contained 4 characters 
or less. 

Character Position 8 7 6 5 4 3 2 1 

Word 1158 /2s / 00 / 80 / 81 /88 / 89 / 8A /02 / 

D ADl AD2 TRI TR2 TR3 STX 
c 
c 

d. Group Select (GSL) Format Registers 
The GSL Format Registers also specify a first half and a second half. The first half is located 
in word 1161, the second half in word 1160. Their structures are identical to those of the 
first and second halves respectively, of the Fast Select Format Registers. 

Broadcast (BSL) 
The Broadcast Format Registers again specify a first half (located in word 1163) and a second 1 
half (located in word 1162). Their structures are also identical to those of the first and second 
halves, respectively, of the Fast Select Format Registers. 

e. Summary 
When the Central TC Controller firmware is first loaded into the machine, all forrnat registers 
become initialized to their corresponding standard (3 transmission numbers) TC line disci­
plines. These disciplines can be changed to meet most non-Burroughs standards by altering the 
contents of the appropriate Format Register(s). 

However, irt spite of this scheme to seek flexibility, certain basic structures of line disciplines 
have to be adhered to. Refer to charts 1, 2 and 3 at the end of this subject for illustrations of 
the basic structures for polls, selects, fast selects, group selects, and broadcast selects. 

2.14.02 DATA COMM PROCESSOR OPERATIONS 

The ope:ration of the Data Comm Processor of a Central TC is dictated by the contents of sixteen ( 16) 
Control Registers. Since each terminal connected to a Central TC requires the use of only one ( 1) 
Control Register, the CTCC firmware can handle up to sixteen (16) terminals at any one time. 

These registers occupy memory words 1184-1199 in the DCP memory. Bach register is one ( 1) word in 
length and contains: 

1. The address (AD 1, AD2, and group address) of its associated terminal. This information is 
contained in character positions 8, 7 and 6 respectively. 

2. The beginning transmission number of the outgoing message to this terminal in a three (3) 
transmi~sion . nur~ber system, character positions 5, 4 and 3 of the Control Register are used for the 
TR numbers. In a two (2) TR number system, character positions 4 and 3 are used. A one 0) TR 
number system, uses character position 3. In a zero TR number system, character positions 5, 4 and 
3 must be cleared. 

Revised 3-29-71 ~Y 
PCN 1045481-001 2.14.02 



--cTcc _I 
3. Operation Indicators to service this terminal. These are located in character position 1. 

The Control Registers are placed in memory in the form of a list. The Data Comm Processor will 
process this list of sixteen ( 16) Control Registers one at a time, in sequence, beginning at the top. 
lt will perform the function(s) indicated by the Operation Indicator(s) contained within the 
Control Register. Thus, the terminals will be serviced in the sequence in which their corresponding 
Control Register is placed. When the 16th Control Register is processed, operation will return to 
the top of the list. Should less than sixteen terminals be connected to a Central TC, and AD 1 
hexadecimal value of 00 in the first un-used Control Register causes the Data Comm Processor to 
return to the register at the top of the list. Any column 0 code from the USASCII chart ( except 
00) or any column 1 code used in place of AD 1, causes the current register to be skipped. 
Operation then proceeds to the next Control Register in the list. 

a. Operation Indication 
As mentioned, Operation Indicators occupy the least significant character position of a 
Control Register. Their individual bit allocations are shown: 

Character 1 
of Control 
Register 

8 

~ 

4 

+ 
2 

• ~ 

8 4 

~ • 
2 

t +_ Poll Indicator 

Select Indicator 

Firmware use only 

Fast Select Indicator 

Group Select Indicator 

Broadcast Indicator 

Unassigned 

2 wire/ 4 wire Indicator 

lf any of the above operations result in no response, strange response, or inability to transmit 
a message, due to some condition at the remote terminal, the Data Comm Processor times out 
and goes into an idle state. A special flag (D 1) is set and the exact cause of the time out is 
contained in a special Time Out Register. This register is available to the macroprogram. (See 
section on Data Comm Processor Time Out.) 

" 1. Poll Indicator 

2.14.02 (Cont'd-1) 

The Poll Indicator is normally reset. To poll a terminal, the Main Processor sets the 
Poll Indicator of a Control Register, as specified by the macroprogram. The input 
buffer of the Data Comm Processor should be empty and D2 should be reset. The 
Processor will not poll any terminal unless D2 is reset. After a successful poll, the 
Poll Indicator will be reset, and the Message Received Flag (D2) set. A special 
register (called the Header Register) containing the received message header, right 
justified, is available. This allows the macroprogram to retrieve the address of the 
terminal from which the message came, and the transmission number of the message 
received. By numbering the terminals sequentially, and organizing the Control 
Register list in the same manner, the address in the Header Register serves as a 
pointer to its corresponding Control Register. Upon completion of a poll procedure, 
the Data Comm Processor will time out and assume the idle state. The other bits in 



l CTCC 

the Operation Indicators will be interrogated only when the macro programmer 
releases the processor from its idle state. This is accomplished through the use of the 
RESUME command. 

2. Select Indicator 
This indicator is normally reset. To transmit a message to a terminal, the 
macroprogram must transfer the message to the output buffer, set the Transmit 
Ready Flag, and set the Select Indicator in the appropriate Control Register. The 
Data Comm Processor then selects this terminal when its Control Register is 
processed. The Select Indicator is reset by firmware after a successful Select. 

3. Fast Select lndicator 
This indicator is normally reset. To transmit a message to a terminal via Fast Select, 
the macroprogram must set up the output message, set the Transmit Ready Flag; 
and set the Fast Select Indicator in the appropriate Control Register. The Data 
Comm Processor then Fast Selects this terminal when its Control Register is 
processed. The FSL Indicator is reset by the CTCC after a successful Fast Select. 

4. Group Select and Broadcast lndicators 1 
Both of these indicators perform their respective functions in the identical manner 
of the Fast Select Indicator. 

5. 2 Wire/4 Wire Indicator 
This indicator must be set by the macroprogram for a 2 wire system. lt must be 
reset (0) for a 4 wire system. 

The following example illustrates the initial format of the Control Register in a 
three (3) terminal, 4 wire, network using a two-digit TR number. 

Character Position 8 7 6 5 4 3 2 1 

Word 1184 /31 / 41 / 31 / 00 / 30 / 30 / 00 / 01/ 
ADl AD2 GSL TRl TR2 POL 

Character Position 8 7 6 5 4 3 2 1 
Word 1185 /31 / 42 / 31 / 00 / 30 / 30 / 00 / 01 / 

ADl AD2 GSL TRl TR2 POL 

Character Position 8 7 6 5 4 3 2 1 

Word 1186 /31 / 43 / 31 / 00 / 30 / 30 / 00 / 03 / 
ADl AD2 GSL TRl TR2 POL and 

SEL 

Character Position 8 7 6 5 4 3 2 1 

Word 1187 /oo / 00 / 00 / oo·; 00 / 00 / 00 / oo/ 
* ADl AD2 GSL 

* The AD 1 hexadecimal value of 00 causes the Data Comm Processor to retum to 
word 1184. 

Revised 3-29-71 by 
PCN 1045481-001 2.14.02 (Cont'd-2) 



---C-TCC __ __.I 

b. Data Comm Flags 
Three Data Comm flags are defined to serve as communications between the Data Comm 
Processor and the Main Memory Firmware: 

D 1 - This flag is set by the Data Comm Process.or whenever it goes into an idle state. 
An idle state occurs when either the Data Comm Pro.cessor times out or the 
macroprogram issues an Idle Request. (See section on macro instructions under 
MAIN MEMORY). D 1 is reset when the macroprogram re-activates the Data 
Comm Processor to bring it out of the idle state. 

D2 Message ReceiVed Plag 

D3 Transmit Ready Plag. lt is set by the macroprogram to indicate that the output 
buffer contains a message ready for transmission. However, this message will be 
transmitted to a terminal only if the Select Indicator in the proper Control 
Register is also set. 

All three flags are available for interrogation through the regular Skip/Execute instructions. 

c. Data Processor Time Out 
The following situations cause the Data Comm Processor to time out: 

1. Tue Central TC receives no response from a terminal to any of the following: poll, 
select, fast select, group select, or broadcast. 

2. Tue Central TC receives a strange response from a terminal to any of the following: 
poll, select, fast select, group select, or broadcast. 

3. Terminal NAKs a select, fast select, group select or a broadcast. 

4. Persistent parity error occurs between the Central TC and the terminal. 

As previously discussed, while the Data Comm Processor is in the time out condition, D 1 is 
set and a register is available for interrogation. This register, called the Time Out Register, is 

located in word 1169 and is a replica of the Control Register that is involved at the time, 
supplemented by information stored in character position 2 as shown: 

Character Position 

Word 1169 

2.14.02 (Cont'd-3) 

8 7 6 5 4 3 2 1 

ADl AD2 GSL 11111 /III 
Transmission 

Number 
Persistent Parity Etror „. 1---------' 
Terminal NAKs Message _______ ..... 

Strange Response +----------....1 
No Response-------------..... 

F= 0000 POL 
F = 0001 SEL 
F = 0010 FSL 
F = 0011 GSL 
F= 0100 BSL 

F Operation 
Indicators 



CTCC 

When the Data Comm Processor times out and goes into an idle state due to one of the above 
conditions, the rilacroprogram must retrieve the Time Out Register and, after examining its 
contents, clear it. This must be done prior to re-initiating the Data Comm Processor to its 
normal operation. Re-initiating the Processor also resets the D 1 flag. 

The Time Out Register serves no purpose if the idle state of the Data Processor is initiated by 
the macroprogram as there is no indicator in the register to reflect such a condition. 

d. Header Register 

lf a remote TC makes an affirmative response to a Poil Enquiry (data) the Header portion of 
the remote TC's message is stored in the Header Register (word 1166) for use by the 
macroprogrammer. 

lf a sequencial numeric addressing scheme is utilized, the macroprogrammer can examine the 
contents of the Header Register to determine which remote is responding to the POLL and 
reload the appropriate control register. Tue data in the Header Register is right justified and 
contains all of the header information up to and including the STX character. 

EXAMPLE: 

Character Position 

8 7 6 5 4 3 2 1 

/ / SOH / AD1 / AD2 / TR1 / TR2 / TR3 / STX/ 

2.14.03 MAIN MEMORY PROCESSOR 

Main Memory can not access Data Comm firmware unless the latter is in an idle state. However, the 
Main Processor can cause an idle condition by issuing an idle request. A special macroinstruction, IDLE 
REQUEST, is implemented to perf orm this function. 

The operation of the IDLE REQUEST instruction involves the setting of the D 1 flag. The Data Comm 
Processor interrogates D 1 at certain convenient points during its regular operation. Should the flag be 
set, any Data Comm procedure previously initiated is allowed to terminate before the Processor goes 
into the idle. state. When the Processor is re-initiated, D 1 is reset. 

A situation can arise where the Data Comm Processor encounters one of the previously discussed 
conditions that cause a time out after the Main Processor initiates an idle request and before the Data 
Comm Processor actually goes into idle. Since the Main Processor was first in initiating the setting of D 1, 
the Time Out Register is left unchanged if no error conditions are encountered. lf the Time Out Regis­
ter has been cleared everytime it was interrogated, the fact that the register is zero (0) is adequate 
indication to the macroprogram that the idle state is due to the request and not to any error conditon .. 
However, since the idle request does leave the register unchanged, it must be cleared everytime so that it 
will always reflect to the macroprogram the correct cause of the time out (i.e., error condition or idle 
request). 

Revised 3-29-71 by 
PCN 1045481-001 2.14.03 

1 



CTCC··· I 
The Central TC Controller finnware will operate with any of the standard GP 300, Data. GqmlJl main 
memory firmware sets that are supplem~nted by : the CTC~ main mem9ry add:Oll tape .. Utls add-:on 
implements special macroihstructions described below: . · 

a. Resume 

OP CODE 

CODE 

LABEL 

1000 

This command te-initiates the Data Comm Processor's normal opera.tion. lt should orlly be 
given wheh the Processor is in an idle state. If the. DCP processor is not in an idle state, the 
machine will hang·on ·the instruction. 

b. Idle Request 

OP CODE LABEL 

CODE 1100 

This command allows . the macroprogram to interrupt the · noril1al operation of the ·Data Comm 
Processor and cause an idle state. 

The A·field specifies ~hich of the sj.xteen (16) Cont.rol Registers is to be placed into the 
Accumulator. 

'•, 

g. Load Corttro1 Register 

2.14.03 .(Cont'd-1) 

OP (:ODE 

CODE 

LABEL 

34A 

A 

0-F 



CTCC 

The A-field specifies which of the sixteen (l6) Control Registers to load the contents of the 
Accumulator into. 

Example of controlling one terminal in a normal TC Polling and Selecting environment. 

LABEL OP CODE A B c REMARKS - - -
LIR 2 0 
CLM ADDR 
LKBR ADDR 
TKM 2 ENTER REMOTE'S ADDR 
TRA ADDR LOAD INTO ACCUM 
INK 0 1 LOAD POL OP-INDICATOR 
CODE 1100 IDLE REQUEST 
CODE 34AO LOAD 0 CONTROL REGISTER 
CLA 0 0 
CODE 34Al LOAD l CONTROL REGISTER 
CODE 1000 RESUME 

LISTEN EX D 1 1 
SRJ ERROR 

1 SK B 3 
BRU SELECT 
EX D 2 1 
BRU MSGE 
BRU LISTEN 

ERROR IIR 2 10 KEEP ERROR COUNT 
CODE 3C91 RETRIEVE ERROR REG 
SKL 3 8 4 TEST FOR PARITY 
AL 1 

POS 50 
PA PARMSG 
LIR 2 0 RESET COUNTER 
SK T I 4 
CLA 0 0 CLEAR TIME OUT REG 
CODE 3491 RELOAD TIME-OUT REG 
CODE 1000 RESUME 
SRR 1 
LIR 2 0 RESET COUNTER 
AL 1 
POS 50 
EXL 3 2 2 CHECK FOR NO RESPONSE INDICATOR 
PA NOMSG 
BRU RTNE 
EXL 3 3 2 CHECK FOR A STRANGE RESPONSE 
PA STRMSG 

BRU RTNE 
EXL 3 4 2 CHECK FOR INVALID 

Revised 3-29-71 by 
PCN 1045481-001 2.14.03 (Cont'd-2) 



r 
-_„_"-~'--·1'1,-,--,,„_,'-~-

·r crcc 

LABEL OP CODE A B c REMARKS - - -
PA INDIC DIGIT IN INDICATOR 

BRU RTNE 

EXL 3 5 2 
PA NAKMSG CHECK FOR NAK 
BRU RTNE LIMIT INDICATOR 

SKL 3 5 CHECK FOR INVALID 

PA INDIC DIGIT IN INDICATOR 
RTNE CLA 0 0 CLEAR REGISTER 

CODE 3491 LOAD TIME OUT REG 

CODE 1000 RESUME 

SRR 1 
SELECT AL 2 

POS 10 
LKBR SEND 
TKM 150 
EX D 3 3 
EX D 1 1 
SRJ ERROR 

BRU -3 
CODE 1100 IDLE REQUEST 

CODE 3CAO 
INK 0 3 SET POL-SEL INDICATOR 

CODE 34AO LOAD CONTROL REG 0 
TSB SEND 

CODE 1000 RESUME 
SET R 3 
BRU LISTEN 

MSGE CODE 1100 IDLE REQUEST 
TRB RECEIV TRANSFER TO RECORD AREA 
CODE 3CAO RETRIEVE CONTROL REG 
INK 0 SET POL INDICA TOR 
CODE 34AO LOAD CONTROL REGISTER 
CODE 1000 RESUME 
RST R 2 
LRBR RECEIV PRINT 
AL 2 MESSAGE 
POS 10 ROUTINE 

.··pR 

PAB 130 
SK T 0 2 
AL 1 
BRU „5 
BRU LISTEN 

2.14;03 (Cont'd-3) 



SIMULATOR 

ANY SEQUENCE OF 
POLL MESSAGE 

1-7 CHARACTERS 

+ t 
PERSISTENT A 

PARITY c 
ERROR K 

! 
TIME OUT-

MICROPROGRAM SHOULD 
DETERMINE NATURE OF 

TIMEOUT AND RE-INITIATE 
OPERATION 

CONTINUE WITH NEXT 
OPERATION SPECIFIED 

IN THE CONTROL 
REGISTER - ETC. 

+ 
N 
A 
K 

+ 

CTCC 

TERMINAL 

READY 
TOSEND 

1 
1 

1 
E INVALID 
0 OR 

1 
[ANY HEADER] (TEXT) E B T NO RESPONSE 

1 
1-7 CHAR T c 

1 
X c 

1 l 1 

LUPTOJI 
Tl~ES l 

t 
[ [R E-TRANSM IT)] 

E 
0 
T 

Chart 1. Poil 

Revised 3-29-71 by 
PCN 1045481-001 . 2.14.03 (Cont'd-4) 



crce. In 

SIMULATOR TERMINAL 

ANY SEOUENCE OF 
SELECT MESSAGE 
1-7 CHARACTERS 

TIME OUT -
MACROPROGRAM SHOULD 

DETERMINE NATURE OF 
TIMEOUT AND RE-INITIATE 

OPERATION 

[ANY HEADER J 
1-7 (TEXT) 

CHARACTERS 

t 
RE-TRANSMIT 

n TIMES 

E B 
T c 
X c 

t 
AFTER 

n 
TIMES 

CONTINUE WITH NEXT OPERATION 
SPECIFIED IN THE CONTROL 

REGISTER - - ETC. 

2.14.03 (Cont'd-5) 

Chart 2. Select 

INVALID 
OR 

NO RESPONSE 

* 

t 
N 
A 
K 

• 

NOT READY 
READY 

N 
A 
K 

+ 

+ 
INVALID 

OR 
NO RESPONSE 

A 
c 
K 

l 
A 
c 
K 



SIMULATOR 

[
FIRST HALF J 
MESSAGE 
C.7 CHARACTERS 

[
2ND HALF J 
MESSAGE 
0-7 CHARACTERS 

(TEXT) 

t 
TIME OUT -

MACROPROGRAM SHOULD 
DETERMINE NATURE OF 

TIMEOUT AND RE-INITIATE 
OPERATION 

CONTINUE WITH NEXT 
OPERATION SPECIFIED 

IN THE CONTROL 
REGISTER - - ETC. 

E 
T 

B 
c 

X C 

I"---'--· •. _;...__-CTC-C __ I 
TERMINAL 

t t • INVALID N A 
ÖR A c 

NO RESPONSE K K· 

t 1 

Chart 3 ... Fast Selec;t, Group Select, and Broac;fcast Select 

Revised 3-29-71 by 
PCN 1045481~1 2J 4.0~ (Cont'd-6) . 

1 



2.15 - INPUT WITH PUNCHED PAPER TAPE/EDGE PUNCHED CARD READER 

Instructions are provided to read punched paper tape or edge punched cards, using a Burroughs Style A 
581 Paper Tape/Edge Card Reader as the input adjunct. All subsequent reference to "paper tape" 
applies both to punched paper tape and to edge punched cards, unless indicated otherwise. 

Tape reading is serial, one character at a time, at a speed up to 40 characters per second (when no 
printing accompanies it). When reading paper tape and printing, the reading speed is up to 20 characters 
p,er second; when reading and punching only (no printing), reading speed is up to 40 cps. 

The Series L/TC internal character code is USASCII; however, any 5, 6, 7, 8 channel paper tape code 
can be read and interpreted by utilizing a Table of Input Code Assignments for conversion of the paper 
tape code into the internal USASCII code. The functional codes in a code set may be used as field 
identifier codes to terminate tape reading and set flag patterns, or may be ignored (refer to the Table of 
Input Assignments in Appendix 1). The scheme of character parity checking for a particular code set is 
also a function of the Table of Code Assignments. Firmware for 5 channel code is different than that 
for 6, 7, or 8 channel "table look-up" firmware or for USASCII No Table firmware. 

2.15.01 PAPER TAPE READER INSTRUCTIONS 

The Paper Tape Reader instructions are designed to function both as "read" instructions and as 
"keyboard" .instructions. 

When all tape reading conditions exist, i.e., the reader is on, the photo-electric light is on, and media is 
present, reading of the paper tape will occur according to the specifications of the instruction. 

If any of the above conditions do not exist, then the reader is not operable (a "reader condition" has 
occurred). The read instruction now reverts to its keyboard counterpart**, and the keyboard buffer is 
cleared so that the operator may manually index that data required by the altered read instruction. Note 
that any data resident in the keyboard buffer is lost when the read instruction falls to execute. lt 
follows that the read instruction must be reached before a manual entry is made in its place, because if 
the operator anticipates this condition and indexes data before the program halts, the data will be lost. 

The mnemonic representations of the read instructions are the same as selected keyboard instructions 
with the addition of a prefix letter "R." 

Insuuctions that involve punching paper tape along with reading of paper tape will inhibit the punch 
part of the instruction if the tape perforator is turned off. In addition, the Punch Off Indicator light is 
tumed on and Punch Off Plag is set (refer to Subject 2.16.02), 

** EXCEPTION: RNK reverts to a NKRCM (see Subject 2.02.01). 

2.15.01 



RTK 

RTKM 

REAM 

2.15.02 PAPER TAPE/EDGE PUNCHED CARD INPUT INSTRUCTI01".; 

OP CODE A 

READ ALPHA AND PRINT RTK 0-1 SO 15112" forms handler 

RTK 0-255 26" forms handler 

PT 

Tue RTK instruction reads from tape (i.e., paper tape or edge punched card) and prints the number of 
alohanumeric characters specified by the "A" field. The instruction will be terminated upon reading a 
field identifier code or after reading the number of alphanumeric characters as denoted by the "A" 
parameter. 

Tue flag pattems to be set by the field identifier codes are determined by the Table of Input Code 
Assignments (see Appendix 1). 

When a "reader condition" exists, the RTK instruction reverts to a TK instruction and the keyboard 
buffer is CLEARED in anticipation of manual input. 

READ ALPHA INTO MEMORY AND PRINT 

OP CODE 

RTKM 

RTKM 

A 

0-150 15112" forms handler 

0-255 26" forms handler 
Tue RTKM instruction reads from tape into memory and prints the number of alphanumeric characters 
specified by the "A" field. The RTKM should be preceded by an LKBR instruction to indicate the 
starting word location in memory for character storage. (See Subject 2.02.03.) 

Tue LKBR is incremented to the next higher word after each eight characters have been read. The 
instruction will be terminated upon reading a field identifier code or completion of reading the number 
of alphanumeric characters specified in the "A" field. Tue flag patterns to be set by the field identifier 
codes are determined by the fable of input code assignments. (See Appendix 1). 

If a reader condition exists, the RTKM instruction will revert to a TKM instruction. (See RTK 
instruction). 

READ ALPHA INTO MEMORY, NON-PRINT 

OP CODE A 

REAM 0-150 15%" forms handler 

REAM 0-255 26" forms handler 

Tue REAM instruction reads from tape into memory the number of alphanumeric characters specified in 
the "A" parameter; no printing occurs. Tue REAM instruction should be preceded by an LKBR 
instruction to denote the starting word location in memory for character storage. Tue LKBR is 
incremented to the next higher order word after each set of eight characters has been read. The 
instruction will be terminated upon reading a field identifier code or completion of reading the number 
of alphanumeric characters specified in the "A" field. Tue flag patterns to be set by the field identifier 
codes are determined by the Table of Input Code Assignments. 

Revised 3-29-71 by 
PCN 1045481-001 2.15.02 

1 



1 
RXEAM RXTK 

RXTKM RNK 

;(r!;i., 

lf a reader concJ}tion exists, the REAM )nstruction reverts to an BAM instruction. (See RTK 
instruction).' 

OP CODE A 

READ ALPHA INTO MEMORY AND PUNCH, NON-PRINT RXEAM 0-150 151h'' forms handler 

0-255 26" forn1s handler 

The RXEAM instruction is the ~ame as the REAM instruction, except that punching will also occur. 

The RXEAM instruction can revert to an XEAM instruction if the tape reader is not operable,. to an 
REAM instruction if the tape perforator is turned off, or to an BAM instruction if neither the reader 
nor the perf orator is operable. 

OP CODE A 

READ ALPHA, PRINT AND PUNCH RXTK 0-15 O 15112'' forms handle1 

RXTK 0-255 26" forms handler 

The RXTK instruction reads from tape, and simultaneously prints and punches the number of chatacters 
specified in the A parameter. The instruction is terminated after reading the specified number of 
characters ~ upon reading a field identifier code. 

The .. flag patterns to be set by the field identifier codes are determined by the Table of Input 
Assignments. (See table in Appendix 1). 

The RXTK instruction can revert to an XTK instruction if the tape reader is not operable. lf the paper 
tape punch is off, the RXTK will revert to a RTK instruction; or to a TK instruction if both a reader 
and perforator condition exist. (See RTK instruction). 

OPCODE A 

READ ALPHAINTO MEMORY, PRINT AND PUNCH RXTKM 0-150 lSW' forms handler 

RXTKM 0-255 26" forms handler 

The. RXTKM instmctiön is the same as the RTKM instruction, except that tape punching occur.s ·, . 

simultaneously .. · 

The RXTKM instruction can reYert to an XTKM instruction if the tape reader is not operable. lf a 
perforator condition exists, the RXTKM will revert to a RTKM instruction; or to a TKM instruction if 
both a reader and perf6rator cqndition eJdst. 

OP CODE A B 

READ NUMERIC INTO ACCUMULATOR RNK 0-15 0-15 

The. RNK instruction reads froII1 the tape into the Accumulator the total number of characters specified 
by the sum (maximum of 15) of the A · and B parameters. The instruction is terminated after the total 
number of characters specified have been read (fixed field) or upon reading a field iclentifier code 
(variable fields); The paper tape .characters enter the Accumulatö; as digits, from low to high order digit 
positions. NOTE:. No printing occurs. 

2. 15.02 (Cont~d-1) 



REL 

PT 

A number may be read into the Accumulator as either a fixed field or a variable field. 

With a fixed field, the tape must contain as many codes as the total number of digits required by the 
instruction. This may require that preceding zeros be included in the tape in order to obtain the fixed 
field size. Because the codes enter the low order position, reading a decimal number into the 

· Accumulator requires that the maximum number of decimal places to the right of the decimal point be 

filled with digits or zeros. Note that the separation of the fields into whole and decimal digits is 

provided to permit keyboard flexibility when a reader condition occurs (see use of NK, Subject 
2.02.01). 

Example l: Read 12.25 into the Accumulator, allow for 3 decimal places, fixed field of 9. 

OP CODE A B 

RNK 6 3· 

Tape must contain: 000012250 (no field I.D. code) 

Manual entry must be: 12250 (left to right) 

Manual entry format: l, 2, decimal, 2, 5, and 0 

Variable fields eliminate the "preceding zeros" requirement of fixed fields. lnstead, a "field identifier 
code" immediately follows the number in the tape causing termination of the RNK. With variable fields, 
the A parameter must be l greater than the maximum digits allowed for that quantity so that the field 
identifier code may be read. 

Example 2: Read 12.25 into the Accumulator, allow for 3 decimal places with maximum of 9 digits. 

OP CODE A B 

RNK 6+FS = 7 3 

Tape contains 12250 FS (FS denotes field I.D. code) 

Example 3: Read 4000 into the Accumulator. Maximum of 4 digits. 

OP CODE A B 

RNK 5 0 

Tape contains 4000FS 

OP CODE 

RELEASE MEDIA CLAMP REL 

The REL instruction will cause the media clamp for paper tape or edge · punched cards to open, thus 
halting any further reading until the operator places new material in the reader. 

Revised 3-29-71 by 
PCN 1045481-001 2.15.02 (Cont'd-2) 



This instruction is useful when using edge punched cards, to release the card after necessary information 
has been read, and to prevent any additional inforination · on t11e catd from: enabling the read iristruction 
for the .next entry: 

2.15 .02 (Cont'd-3) 



XTK 

PT 

2.16 - OUTPUT WITH PAPER TAP!;/EDGE PUNCHED CARD PERFORATOR 

The instructions described in this section provide the means to output data into punched paper tape 
and/or edge punched cards by using a Style A 562 Paper Tape/Edge Punched Card Perforator as the 
output adjunct. All subsequent reference to "paper tape" applies both to punched paper tape and to 
edge punched cards, unless indicated otherwise. 

Tape punching is serial at a speed up to 40 characters per second when no printing accompanies it. 
When printing accompanies punching paper tape, the punching speed is up to 20 characters per second. 

The Series L/TC internal character code is USASCII and output to paper tape will normally be in this 
code. However, any 5, 6, 7, or 8 channel paper tape code can be punched by utilizing a Table of 
Output Code Assignments for conversion of the internal code into a different paper tape code (refer to 
Appendix 1). The firmware for 5 channel code is different than that for 6, 7, or 8 channel "table 
look-up" firmware or for USASCll No Table firmware. 

The Paper Tape Punch Instructions provide the ability to print and punch data from the Accumulator, 
print and punch alphanumeric data from memory, and to type or type into memory while punching. In 
addition, a register is provided which counts the number of codes punched. This enables the use of 
continuous edge punched cards by making it possible to determine when one continuous card has been 
filled or when to fill any unused portion of a continuous card with feed codes before aligning the next 
continuous card to the first sprocket hole. 

The Paper Tape Punch Instructions are designed to function in three ways: 

1. When proper tape punching conditions ex'ist, punching will occur according to the 
specificatiorts of the instruction. 

2. If the perforator is not connected or is turned off, the punch portion of the instruction is 
inhibited and the instruction is executed in accordance with its counterpart keyboard or print 
instruction. Thus, although the program may provide for punching, the perforator may be 
turned off or discontinued without affecting the operation of the rest of the system. 

3. If the perforator is turned on but does not have media loaded, execution of the punch 
instruction is held up until the condition is corrected. 

The mnemonic representations of the punch instructions are the same as selected keyboard and print 
instructions with the addition of a prefix letter "X." 

2.16.01 PAPER TAPE/EDGE PUNCHED CARO OUTPUT INSTRUCTIONS 

OP CODE A 

TYPE, PUNCH XTK 

XTK 

0-150 15W' forms handler 

~255 26" forms handler 

The XTK instruction allows typing, printing and punching up to the number of charactets specified in 
the A field. the insttuctiort fu:nctioils llke a TK instruction except that punching occurs with it. The 
tetmination of this instruction witli an OC:k ot PK does not cattse a cöde to punch. 

Revised 3:29~71 by 
PCN 1045481-001 2.16.01 



.. 

XTKM XPA 

XEAM XA 
PT 

lf the perforator is turned off or disconnected, the XTK instruction will operate only as a TK 
instruction. 

TYPEINTO MEMORY, PUNCH AND PRINT 

OP CODE A 

XTKM 0-150 15Y2" forms handler 

XTKM 0-255 26" forms handler 

The XTKM instruction allows typing into memory, printing and punching up to the maximum number 
öf characters specified in the A field. This instruction should be used in conjunction with the LKBR 
instruction to denote the entry position in memory for the characters typed. (See Subject 2.02.03.) 

The XTKM instruction functions like a TKM instruction except that punching also occms .. The 
termination of this instruction with an OCK or PK places an End Alpha code in memory but does not 
cause a code punch. 

lf the perforator is turned off, or disconnected, the XTKM instruction functions as a TKM instruction. 

ENTER INTO MEMORY AND PUNCH 

OP CODE A 

XEAM 0-150 15W' forms handler 

XEAM 0-255 26" forms handler 

The XEAM instruction functions exactly like the XTKM instruction except that printing does not occur. 
lf the perforator is turned off, or disconnected, XEAM will operate only as an EAM instruction. 

OP CODE A 

PRINT ALPHA AND PUNCH XPA LABEL 

The XPA instruction prints and punches the alphanumeric data stored in the memory location 
designated by the A field. The instruction is terminated upon reaching an End of Alpha cody. in the 
data; the End of Alpha code is not punched. This instruction operates like a PA instruction in every 
respect except that punching occurs. 

With the perforator turned off or disconnected, the XPA will operate as a PA instruction. 

OP CODE A 

PUNCH ALPHA FROM MEMORY, NON-PRINT XA LABEL 

The XA instruction functions exactly as an XP A instruction except that printing does not occur'. 

If the perforator is turned off or disconnected, the XA functions as a No Opera,tion (NOP) instruction. 
When using Data Comm P. T. I/O firmware the XA will terminate on any Col. 0 USASCU Code. Codes 
from either column will punch. 

2.16.01 (Cont'd-1) 



PUNCH CODE 

XC 

XPN 

OP CODE 

XC 

PT 

A B 

0-15 Q-15 

The XC instruction punches into tape the bit pattem specified by the parameter fields. The A parameter 
indieates the decimal value of the high order 4 bits (b8, b7, b6, b5, having decimal values of 8, 4, 2, 1 
respectively); the B parameter represents the decimal value of the low order 4 bits (b4, b3, b2, b1, 
having decimal values of 8, 4, 2, 1 respectively) in the bit configuration of the desired code. The parity 

bit must be included in the appropriate bit position when applicable if a table look-up Firmware set is 
being utilized. lf the standard USASCII 1/0 f1.rmware set is used, the parity bit will be automatically 
inserted when applicable. · 

In the case of USASCII code the column number of the desired code in the table represents the A field 
(parity bit must be added when applicable); the row number of the desired code represents the B field. 

Printing does not occur with this instniction. If the perforator is turned off or disconnected, the XC will 
function as a "No Operation" (NOP) i~struction. 

Example: Punch the USASCII code "RS" 

bg b7 b6 b5 b4 b3 b2 b1 

Bitpattern ("X"= hole in tape) 0 0 0 X X X X 0 

Decimal va,lue 8 4 2 1 8 4 2 1 

Parameter value A = (O+o+O+l) = 1 

B = (8+4+2) = 14 

This corre'sponds to the USASCll table locatiort of RS in column 1, row 14. 

OP cdoE A B 

PRINT AND PUNCH NUMERIC XPN 0-14 0-15 

The XPN instruction prints and punches the contents of the Accumulator, beginning with the high order 
digit position specified in the A parameter and with the print mask designated by the B parameter. The 
print mask is relative to the mask table established by the last LPNR instruction. (See Subject 2.03.04.) 

There will be no aff ect on the Accumulatör flags position or any other data in Accumulator positions to 
the left of .the digit position. spedfied by the · A parameter. 

This instruction functions like the .PN instruction except that punching' occurs. 

If the perforator is turned . off; or disconnected, the XPN instruction ,will operate only as a PN 
· instruction. · 

Revised 3-29-71 by 
PCN 1045481-001 2.16.01 (Cont'd-2) 



XPNS- XPNS+ 

XN LXC 

PT 

PRINT AND PUNCH NUMERIC, SHIFT RIBBON IF MINUS 

PRINT AND PUNCH NUMERIC, SHIFT RIBBON IF PLUS 

OP CODE 

XPNS-

XPNS+ 

A 

0-14 

0-14 

B 

0-15 

0-15 

The XPNS- instruction is the same as the XPN instruction except that the ribbon color is changed if 
the Accumulator Sign Flag is set (minus). 

The XPNS+ instruction is the same as the XPN instruction except that the ribbon color is changed 
(opposite to the normal operating color of black, is red) if the Accumulator Sign Flag is reset (plus). 

lf the perforator is turned off or disconnected, the XPNS- and XPNS+ function as PNS- and PNS+ 
instructions respectively. 

OP CODE A B 

PUNCH NUMERIC, NON-PRINT XN 0-14 0-15 

The XN instruction is the sarne as the XPN instruction except that printing does not occur. A mask 
word is used with this instruction since it controls the punching. (See Subject 2,03.05.) The mask word 
selected may be the same as is used with other Print Numeric Instructions since' it would not affect the 
non-print function of this instruction. 1 

lf the perforator is turned off or disconnected, the XN will operate as a "No Operaticm" (NOP) 
instruction. 

OP CODE A 

LOAD PUNCH COUNT REGISTER LXC 0-255 

The Punch Count Register is provided to count the number of holes punched. This enables the use of 
continuous edge punched cards by making it possible to determine when one edge punched card has 
been filled or to fill any unused portion of a continuous card with feed codes before aligning the next 
continuous card to the first sprocket hole. 

Tue LXC instruction will load the number contained in the A field, into the punch count register. The 
instruction is normally used at the start of each new continuous edge punched card to reset the count. 
The punch count register is incremented by one for each code punched from any punching instruction. 
lf the register is equal to 255, incrementing causes the register to become 0. 

2.16.01 (Cont'd-3) 



XMOD XB 

OP CODE 

MODIFY BY PUNCH COUNT REGISTER XMOD 

The XMOD instruction will modify the parameter field of the next instruction by the contents of the 
punch count register. This modification occurs as in the MOD instruction. The XMOD cannot be 
changed by the Index Register instructions. (i.e., IIR, ADIR, etc.) 

OP CODE A 

PUNCH FEED CODES XB 0-255 

Tue XB instruction causes feed (sprocket) holes to be punched. The number of codes punched will be 
the difference between the number in the A field and 255. 

If the perforator is turned off, XB will operate as a "No Operation" (NOP) instruction. 

When edge punched cards are the media present, punching of sprocket holes is inhibited. Therefore, the 
card is just advanced without sprocket hole punching. 

2.16.02 READER AND PUNCH FLAGS 

Two reader flags are provided to enable program control over the tape reader. 

Reader flag Rl is set when a reader condition exists. A reader condition exists if any of these 
contingencies arise: 

1. The Paper Tape Reader is not turned on. 

2. Media (paper tape or an edge punched card) must be positioned in the reader. 

3. The media clamp must be closed. 

4. The photo-electric device must be illuminated. 

When the reader condition exists, along with the Rl flag being set, the keyboard buffer is cleared, and 
the instruction is held up from execution pending operator action. Tue action depends on two 
conditions: 

1. Tue reader is intended to be used: Turn on the reader and then depress the Read Key. This 
reinitiates the read instruction and causes the media to be read. Tue Rl flag is reset. 

2. The reader is not intended to be used: Tue operator may make an entry through the 
keyboard. (At this point, remember, the reader instruction has reverted to its keyboard 
instruction). Tue Reset Key will reinitiate the tape read instruction, but it must be indexed 
prior to the use of an OCK or PK. 

Once the operator has taken either course of action, the indicator light is turned off and reader flag Rl 
is reset. 

NOTE: The keyboard buffer is cleared every time a reader instruction reverts to its keyboard 

counterpart. lf the operator has anticipated this and indexed data prior to the halt in the program when 
the reader instruction becomes a keyboard 'instruction, then that data will be lost. The operator wou1d 
have to index the data again. 

Revised 3-29·71 by 
PCN 1045481-001 2.16.02 



Reader flags R2, R3 are reserved for Data Colllßlu.~~catiö~ .Operations. 

Reader Flag R4 is set when an invalid tape cÖde is read. Reading is 'not halted on the invalid 'tape code. 
The next read instruction will reset the R4 flag. 

The Reader flag settings can be manipulated by use of the Plag instructions. 

Pour Punch Flags are provided to alert the operator of the perforator condition. 

The Punch Plag Pl is set if media is not present in the perforator and the program attempts to .execute 
a punch instruction. The instruction iS halted. Correction of the situation will cause the system to 
resume execution of the punch instruction. 

The Punch flag P2 is set if incorrect punching has occurred during a · punch instruction. The echo check 
indicator light is lit. The punching is not terminated; the flag remains set. 

The program should provide for checking flag P2 at least after each line of punching. When the flag is 
set, a Skip or Execute instruction would enable perf orming the necessary instruction ·to sourtd the alarm, 
punch a tape error code, or to take other corrective action. 

The Punch flag P3 is seUf reel tape is being used and the supply is nearly exh.austed (approximately 20 
f eet remaining). The Tape Supply indicator is lit. Placing a new roll ,of tape in the supply reel wilL turn . 
off the indicator and reset the flag on the next punch instruction. This condition does not hal~ progr~ . 
execution nor inhibit punching. 

The Punch Plag P4 is set if the paper tape perforator is "OFF." The instruction will be executed, but 
the punching will be inhibited. Switching the perforator to the "ON" condition causes the P4 flag to · be 
reset on the next instruction. However, the data to be punched on the first "puhch'' instruction would · 
be missing from the output tape. Therefore, it is recommended that a punch instruction be used during 
the program initialization routine with subsequenf' fosting of the Punch Flags ( especially the P4 flag) 
since the perforator condition is only apparent once a punch instruction is initiated. AU punch flags may 
be examined by use of the flag instructions. 

2.16.02 (Cont'd} 



LCD RCD 

2.17 - 80-COLUMN PUNCHED CARD INPUT INSTRUCTIONS 

With either tll.e A 595 or A 596 80-column Card Reader and the A 149 Card Punch used as peripherals 
to either the Series L or TC, 80-column punched cards can be used as input and 80-column punched 
cards can be punched as output. The programing instructions required to use these two peripherals as 
part of a: program will be explained in two sections. The first section will deal with card input 
instructions, the second will explain card output instructions. 

2.17.01 80-COLUMN CARD INPUT INSTRUCTIONS 

OP CODE A B 

LOAD MEMORY FROM CARD LCD 0-255 

The LCD instruction causes the reading of object program cards and stores the new object program 
instructions into memory locations specified in the program cards. The A parameter specifies the 
number of cards to be read. This instruction _ utilizes and requires that the Card Reader Memory Load 
Routine be present in the Utility Track. 

LCD allows programmatic control of program overlays. After reading the designated number of program 
cards, the program execution continues on' to the next instruction in accordance with the program 
counter. Thus, caution must be exercised to ensure that a program does not overlay the same memory 
area occupied by the LCD instructiön. The program cards must be of the same format as required for 
regular program loading with the Card Reader. (Refer to Appendix K for card format required to load 
object program by card.) 

After execution of this instruction, a "Hash Total" of the program data read in, is in the Accumulator. 

If the specified number of program cards are not read, the instruction is held up, the Reader Condition 
light is turned on and the Rl flag is set. 

Placing the remaining cards to read in the Card Reader and depressing the Restart switch on the Card 
Reader, or depressing the Ready push button to return the machine to Ready mode, are the only two 
alternatives available to complete the LCD instruction. 

A 595 OP CODE 

READCARD RCD 

When an L/TC is used with an A 595 card reader, the RCD instruction reads a single 80-colum punched 
card into words 1 through l 0 of memory. All 80 columns are read and placed into memory including 

· blank card columns. 

A 596 OP CODE A 

READ CARD RCD 0-255 

When an A 596 card reader is used as the input device for an L/TC, the RCD instruction reads a single 
80-column punched card into the next 10 words of memory beginning with the word specified by the A 
parameter. Data can be read into any word in Block 0 except word 0. A parameter of 0 defaults to 
word 1. The L programmer may use the TRCA and TRCM instruction to a:ccess data in Track 0 only 

Revised 7-23-71 by 
PCN 1045481-002 2.17.01 





( words 1-31). The TC programmer can use the data comm instructions used in processing messages 
received to access data at any location in Block 0. If the TSB instruction is to be used, the data to be 
transmitted must begin on a Track boundary (word 32, 64, 96, ... 224) and should be contiguous 
within the track. 

In general, whenever a programmer attempts to force data tobe read into memory above word 255, the 
RCD instruction is terminated, the overflow flag is set, and all data following that which was placed in 
word 255 is lost. The next read instruction automatically resets the overflow flag. 

During the execution of each RCD instruction, the original contents of the Accumulator are destroyed 
and the Accumulator is not cleared. Any number in the Accumulator prior to a RCD instruction which 
is to be used later in the program, should be transferred to a memory location to save it, as it will be 
altered during the execution of the RCD instruction. 

If a card is not present in the Card Reader, when a RCD instruction is to be executed, the Reader 
Condition indicator light is turned on, flag Rl is set, and the instruction is held up. 

Revised 7-23-71 by 
PCN 1045481-002 2.17.01 (Cont'd-1) 



1 

LCFR PBA 

CRD 

Placing a card in the Card Reader and depressing the Restart switch on the Card Reader will enable the 
instruction to be completed and allow the program to continue to the next instruction. The other 
alternative would be to depress the Ready push button, to retum the machine to Ready mode. 

OP CODE A 

LOAD CARD FORMAT REGISTER LCFR LABEL 

Tue LCFR instruction loads into the Card Forniat Register the word number associated with the Label 
name. A Card Format Table may contain up to 16 different card field formats. lf more than 16 are 
required, another table location (i.e., another LCFR instruction with a different label) must be 
established before any formats can be referenced in the second table. Only one table can be referenced 
at one time, and that table referenced is dependent upon the last LCFR instruction. 

The label in the A parameter must reference the beginning of a word. The Pseudo Instruction "WORD" 
should be used preceding the label of the first CDF pseudo instruction, so that it starts at the beginning 

of a word. (Refer to Subject 2.01.04 for explanation of CDF Pseudo Instructions.) 

Example: 

LABEL 

CRDTAB 

OP CODE 

LCFR 

WORD 
CDF 
CDF 

PRINT ALPHA FROM CARD READ AREA 

A 

CRDTAB 

1 
3 

B 

2 
5 

OP CODE A 

PBA 1-16 

The PBA instruction prints from the card read area, the field, specified by the forrnat nurnber, as 
alphanurneric data. 

The forrnat nurnber, references the format table last identified by the LCFR instruction. 

Exarnple: 

LABEL OP CODE A B 

LCFR CRDTAB 

PBA 2 Print second field on card. 
NOTE Card cols. 3-10 

CRDTAB CDF 1 2 Card cols. 1-2 
CDF 3 8 Card cols. 3-10 

2.17.01 (Cont'd-2) 



XPBA XBA TRCA 

CRD 

OP CODE A 

PRINT & PUNCH ALPHA FROM CARD READ AREA XPBA 1-16 

Tue XPBA instruction prints from the card read area, the field specified by the format number, as 
alphanumeric data, and punches the data into an output card in the A 149 Card Punch. The instruction 
is terminated after printing and punching the number of characters specified by the field length in the 
format. The status of OCK flags is not affected. 

lf the Punch is off, XPBA is executed as a PBA instruction. 

lf there are no cards in the card hopper and the Punch is on and on-line, the XPBA instruction will be 
held up until cards are placed in the card hopper and the auto feed button depressed on the Punch. 

OP CODE A 

PUNCH ALPHA FROM CARD READ AREA, NON-PRINT XBA 1-16 

The XBA instruction punches into an output card, from the card read area, the field specified by the 
format number, as alphanumeric data. The data is not printed. The instruction is terminated after 
punching the number of characters specified by the field length in the format. 

lf the Punch is off, XBA is executed as a NOP instruction. 

If no cards are in the card hopper and the Punch is on line, the XBA instruction will be held up until 
cards are placed in the card hopper and the auto feed button depressed on the Punch. 

TRANSFER CARD FIELD TO ACCUMULATOR AS 
NUMERIC 

OP CODE A 

TRCA 1-16 

The TRCA instruction transfers the field of data, specified by the format number in the A parameter, 
from the Card Read Area into the Accumulator. The digits in that field are right justified when 
transferred into the Accumulator. The instruction is terminated by transferring the number of card 
columns specified in the format. The status of the OCK flags is not changed by this instruction. 

If an "11" overpunch is present in any of the card columns of the field being transferred ( denoting a 
negative field), the Minus Flag in the Accumulator is set. 

If a "12" or "O" overpunch is present in any of the card columns of the field being transferred, the 
Invalid Code Plag (R4) is set and the corresponding indicator light is tumed on. An unknown digit will 
be transferred to the Accumulator. The flag is reset and the indicator is tumed off at the beginning of 
the next Card Input Transfer instruction; therefore, this flag must be examined immediately in the 
program (with the SK or EX instructions) when it is necessary to detect illegal codes in a given field~ 

Tue characters "+" (card codes 12,0) and "&" (card code 12) will not affect the Minus flag nor set the 
Invalid Code flag, but will transfer as the digit "O" in accordance with their position in the field. Tue 
hyphen character (minus sign) " " (card code 11) and "X" (minus zero - card code 11,0) set the 

Revised 7-23-71 by ·1 
PCN 1045481-002 2.17.01 (Cont'd-3) 



Minus flag, do not set the Invalid Code flag, and are transferred as the digit "O" in accordance with 
their position in the field. The letters A through I and S through Z, as well as all other special 
characters, will set the Invalid Code flag and a digit will be transferred. The letters J through R are the 
same as numerals with an "11" overpunch. The space code (blank card column) is treated as the 
numeral "O". 

An invalid code can be used to advantage to indicate special conditions, such as the last card in an input 
file. For example, a "12" overpunch with a transaction type number would permit the program to 
determine when to stop reading cards. This would not require a separate card column for this purpose, 
and would not affect the usability of the transaction number. 

The programing below is an example of minimizing the length of alpha print time by examining certain 
positions of a description field in the card read area to determine the amount of significant data, and 
selecting a field format length accordingly; thereby eliminating some of the trailing space codes in the 
unused portion of the field when printing or transferring to memory. 

The diagram below illustrates a card with a description field of 42 characters (col's. 13 to 54). On the 
premise that most descriptions are less than 21 characters, some are less than 29, only a few use the 
maximum field capacity, and that no more than 6 consecutive space codes ate permitted within the 
description, then three formats are defined for the description field to permit the program to select the 
shortest length; thus, considerably reducing print time and/or transfer time (42 characters require 
approximately 2100 ms print time vs. approximately 1000 ms using a 20 character length format). 

13 DESCRIPTION 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................ . 
81 16: 24: 32: 40: 481 61 641 721 80 

1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 

WORD 1 1WORD 2 iWORD 3 WORD 4 1WORD 5 1WORD 6 WORD 7 1WORD 8 1WORD 9 •1WORD 10 
' 1 1 1 1 1 ......__,_-....._1~, _ _,,___..I,--.....,--....-~~_,---..--._, 

LABEL INSTR A 

FIELDS CDF 13 

CDF 13 

CDF 13 

B 

20 

28 

42 

REMARKS 

SHORT DESCRIPTION 

MEDIUM DESCRIPTION 

MAXIMUM DESCRIPTION 

For simplest programing, the positions in the field to be examined for space codes must be defined 
taking into account the word boundaries of the card read area. The 21 st through 28th positions in the 
description field are card columns 32 to 40 and are in word 5 (base word +4). If word 5- contains all 
zeros (8 space codes), then significant data is presumed to not extend beyond col. 32 (20th field 
position). If word 5 contains any significance, then word 6 is examined. If word 6 has all zeros, then 
data does not extend beyond col. 40 (28th position). If word 6 contains data, the infrequency of 
occurrence suggests that no further tests should be made and a maximum field size is used. The card 
read area is reserved with REG instead of CDB to permit a label for referencing specific words. (Refer 
to Subject 2.01 for explanation of Pseudo Instructions.) 

1 2.17.01 (Cont'd-4) 



Program Segments: 

LABEL INSTR A B REMARKS - -
START LPNR PMASKS 

LPKR PKEYS 

LLLR 51 

BRU BEG IN 

CARDIN REG 10 RESERVE CARD READ AREA 

BEG IN Note that Card Read area is reserved 
with REG to permit labeling; but 
must be sequenced to assure assem-
bly in words 1-10. 

RCD READACARD 

LCFR FJELDS SELECT FORMAT TABLE 

LKBR DESCRP SELECT DESCRIP TANK 

TRA CARDIN+ 4 READ COLS 33 TO 40 

SLROS 0 2 MOVE PLAG POSITION 

EXZ 3 EXAMINE FOR SPACES 

a PBA 1 PRINT SHORT FJELD 

a TRCM 1 TRANSFER SHORT FLD 

a BRU +9 

b c TRA CARDIN+ 5 READ COLS 41 TO 48 

b c SLROS 0 2 MOVE PLAG POSITION 

b c EXZ 2 EXAMINE FOR SPACES 

b PBA 2 PRINT MEDIUM FJELD 

b TRCM 2 TRANSFER MED FLD 

b c SKZ 2 EXAMINE FOR DATA 

c PBA 3 PRINT LONG FJELD 

c TRCM 3 TRANSFER LONG FLD 

DESCRP REG 6 DESCRIPTION WORK AREA 

Note: The key along the left margin indicates the program path selected depending on field size; "a" = 

short field, "b" = medium field, "c" = long field. Statements without a key are executed by all three 

paths. 

Revised 7·23-71 by 
PCN 1045481-002 2.17.01 (Cont'd-5) 



TRCM 

TRANSFER CARD COLUMNS TO MEMORY 
AS ALPHA 

OP CODE A 

TRCM 1-16 

The TRCM instruction transfers the field specified by the format number in the A parameter to a 
memory location starting with the word designated by the prior use of the LKBR instruction. The 
instruction is terminated after transferring the number of characters specified by the field length in the 
format. An "End of Alpha" code is placed in memory following the last code transferred. The status of 
OCK flags is not affected. 

Space codes (blank columns) are transferred and translated as Space Codes; in subsequent printing of 
this data from memory (not the card read area) with the PA instruction, the space characters will cause 
the printer to escape rather than increment the position register. This condition would be common in 
the unused portion of a description field such as name or address, when the card input data has to be 
retained for further processing while additional cards are being read. Escaping through space cÖdes can 
be reduced, by programmatically examining certain points in the card read field and using a smaller field 
format when transferring the field to memory. This may be desirable when the field must be designed 
with a large capacity to accommodate all transactions, but which may have many transactions with small 
entries of data (see example, above). 

An indication of Invalid Code is not provided if an incorrect combination of punches has been read into 
the Card Read Area. Invalid Code indication is only included with the TRCA instruction. 

2.17.02 INPUT INDICATOR LIGHTS AND FLAGS 

The two Series L keyboard input indicator lights advise the operator as to whether the Card Reader is 
operable, and, under certain conditions, whether invalid codes have been read. Also, the associated 
Reader flags enable the program to provide alternate procedures in the event of a Reader Condition or 
invalid code. 

[ INPUT j INVALID READER MESSAGE TRANSMIT 

CODE CONDITION RECEIVED READY ... 
0 0 0 0 

1 nput 1 ndicator Lights 

INVALID CODE INDICATOR - The Invalid Code Indicator is turned on and its associated flag (R4) is 
set, when, during the execution of the TRCA (Transfer to Accumulator) instruction, a code is sensed 
that represents an invalid combination as described in the TRCA instruction. This flag is reset and the 
lndicator turned off at the beginning of the next transfer instruction. 

2.17.02 



READER CONDITION INDICATOR - The Reader Condition Indicator is illuminated and flag Rl set 
when a card read instruction (RCD) is being executed and any of the following conditions exist: 

1. The reader is not on 

2. The reader is out of cards 

3. Burned out bulb. in reader 

The read instruction is held up pending operator action as follows: 

1. lf the Reader is out of cards, the placing of cards ih the feed hopper and depression of the 
Restart Switch on the reader will then cause the card read instruction to be executed. 

2. lf the Reader is not on, the Reader power on switch must first be turned on and then the 
Restart switch depressed. 

3. The use of the Ready push button, at this point will return the program to the READY 
mode. 

The Rl flag is set only while waiting to read a card, and is reset when the instruction is executed. 
Therefore, only the lndicator light can be used to notify the operator of this condition. 

The R2 and R3 flags are set or reset by Data Comm instructions and are not controlled by card 
instructions. 

FLAG INSTRUCTIONS (LOAD, SET, RESET, CHANGE) - The execution of a LOD, SET, RST, or 
CHG Flag instruction involving the Reader Flags will also cause their associated indicator lights to either 
be turned on or off depending on the instruction used. 

2.17.03 PROGRAM KEYS 

Program Keys that have been enabled prior to a Card Read instruction or any of the Card Transfer 
instructions will be ignored during those instructions. lf a Reader Condition occurs and the Card Read 
instruction is held up, use of a PK will have no immediate affect except to place the PK code in the 
keyboard buffer pending the next keyboard instruction where it will be recognized. 

Revised 3-29-71 by 
PCN 1045481-001 2, 17 .03 



2.18 - 80-COLUMN CARD OUTPUT INSTRUCTIONS 

2.18.01 PUNCHING ALPHANUMERIC DATA 

The following instructions provide for punching alphanumeric data during keyboard entry or directly 
from storage in memory. Bach use of one of these instructions punches one field, or a portion thereof, 
depending on the number of characters and the field size. Therefore the SKP (See Subject 2.18.03) 
instruction should normally be used following each of these instructions to by-pass unused trailing 
positions in the field and to position the card to the first column in the next field. 

OP CODE A 

TYPE AND PUNCH XTK 0-150 151/i'' forms handler 

XTK 0-255 26" forms handler 

The XTK instruction combines typing, printing and punching up to the maximum number of characters 
specified in the A parameter. This instruction functions like a TK instruction in most respects with the 
additional function of punching the data into an 80-column card. However, the use of the Backspace 
Key is disabled, since a code would already have punched. The termination of this instruction with an 
OCK or PK does not cause a code to punch. 

If the punch is off-line, XTK will be executed only as a TK instruction. 

The use of the Backspace Key has been prohibited; therefore, if it is depressed, an error state occurs 
which requires depression of the Reset Key. Caution must be exercised with use of the Reset Key since, 
if in the middle of a keyboard entry but not in an error state, use of the Reset Key re-initiates the 
instruction and sets the LXC Register back to the start of the field. This puts the card out of step since 
part of the field has already punched. These considerations also apply to XTKM and XEAM following. 

TYPE INTO MEMORY, PUNCH AND PRINT 

OP CODE A 

XTKM 0-150 151/i'' forms handler 

XTKM 0-255 26" forms handler 

The XTKM instruction combines typing, printing, entering the data into memory and punching up to 
the maximum number of characters specified in the A parameter. The prior use of LKBR designates the 
starting word for storing the data. The XTKM instruction functions like the TKM instruction in every 
respect with the additional function of punching into an 80-column card. However, the use of the 
Backspace Key is disabled (see XTK) since a code would already have punched. The termination of this 
instruction with an OCK or PK does not cause a code to punch, but does place an End of Alpha code 
in memory. 

If the Punch is off-line, XTKM is executed only as a TKM instruction. 

ENTER ALPHA INTO MEMORY AND PUNCH, 
NON-PRINT 

OP CODE A 

XEAM 0-150 151/i'' forms handler 

XEAM 0-255 26" forms handler 

The XEAM instruction functions exactly like the XTKM instruction except that printing does not occur. 
If the Punch is off-line, XEAM is executed only as an EAM instruction. 

2.18;01 



.XPA XA 

OP CODE A 

PRINT ALPHA AND PUNCH XPA LABEL 

The XPA instruction prints and punches the alphanumeric data stored in the memory location 
designated by the A parameter. Tue instruction is terminated upon reachihg an End of Alpha code in 
the data: the End of Alpha code does not punch. This instruction functions like a PA instruction in 
every respect with the additional function of punching into an 80-column card. lf the Punch is off-line, 
the XPA instruction is executed only as a PA instruction. 

OP CODE A 

PUNCH ALPHA FROM MEMORY, NON-PRINT XA LABEL 

The XA instruction functions exactly like the XPA instruction except that printing does not occur. lf 
the Punch is off-line, XA is executed as a NOP instruction. 

2.18.02 PUNCHING NUMERIC DATA FROM THE ACCUMULATOR 

The following instructions provide for printing and punching, or just punching, numeric data from the 
Accumulator. The Pointer designates the high order digit position of the Accumulator at which printing 
and punching begin; the printing format and punching are controlled by the Mask word selected. The 
instruction is terminated after punching and printing through digit position zero or when an "E" (End) 
Mask code is encountered in the Mask word. A Mask word is used for all punch numeric instructions 
even though printing may not be a function of a given instruction. lt serves to right justify the numeric 
data in the card field, filling in preceding zeros or blank columns. Therefore, a fixed field length results 
and the use of SKP subsequently is not needed. 

The Punch Flag (P) in the Mask word, when set, causes leading zeros to punch even though leading zero 
suppression Mask codes (Z,Z) prevent their printing. If the Punch Flag is not set, a blank card column 
results for each leading zero suppressed by a Z (or Z,) Mask code; however, if the Punch Flag is not set 
and if an Unconditional Print Mask code is used (D D, etc.), all leading zeros will punch into the card 
(refer to the following table). The Punch Flag has no effect on the print characteristics of the Mask 
codes. 

Revised 3-29-71 by 
PQJ 1045481-001 2.18.02 

1 



MASKCODE 

F 

+ 

p 

D 

D, 

.D 

D: 

PRINTING 

Print $ 

Suppress Punctuation 

No Effect 

.·. 

Print Character regardless 
of significance 

r-- - - - - - - - - - - - - „ +---------------1 
X Trailing zero suppression 

.X 
t- - - - - - - - - - - - - - -+---------------t 

c 

.c 

z 

z, 

Z: 

s 

1 

E 

Leading zero & trailing 
zero suppression 

Print if: 
( 1) Accum digit not 

zero. 
(2) A non-zero digit 

has been printed 

Print only if Accum digit 
not zero 

lgnore 

Terminate, Non·print 

TABLE 

• PUNCHING 

No Effect. 

No Effect 

Leading zeros punch if P 
flag set, blank card column 
if reset 

Punch Character regardless 
of significance 

Punch .if: 
(1) P is Set 
(2) Accum digit not 

zero 
(3) A non-zero digit 

.· has been punched 

lgnore 

Terminate, .Non-punch 

If an lgnore (1) Mask code is used, the corresponding digit in the Accumulator does not print or punch. 
If the End (E) Mask code is used, the corresponding digit neither prints nor punches and the instruction 
is terminated. All other Mask codes cause the corresponding digit to punch. 

The punctuation provided by some of the Mask codes during printing does not punch. 

2.18.02 (Cont'd-1) 



XPN 
XPNS-

In a numeric field on the output card, if only significant,digits are to he interpreted along the top of 
the card, then leading zeros of the numeric word in the Accumulator must be represented by blank card 
columns in the output card (P Flag must be reset and "Z" mask codes used in order for tbis to occur). 

OP CODE A B 

PRINT & PUNCH NUMERIC XPN 0-14 0-15 

The XPN instruction prints and punches the contents of the Accumulator, starting at the high order 
digit position designated by the A parameter, in accordance with the print mask designated by the B 
parameter. The print mask value is relative to the mask table base word established by the last LPNR 
instruction. This instruction functions like a PN instruction in every respect with the additional function 
of punching. 

If the Accumulator Minus Flag is set, an "11" overpunch is punched with the least significant digit of 
the Accumulator (digit 0); if minus, and if the mask word terminates printing/punching prior to digit 0 
(with an "E") or ignores digit 0 (with an "I"), an "11" overpunch does not punch. If the "11" 
overpunch is not desired in the field, the Minus flag must first be reset. 

All Accumulator digits of a higher order position than the A parameter are ignored. 

When it is necessary to punch a plus "+" or minus "-" sign into a separate card column, or when the 
value of the other Accumulator flags ·(S, C, M) must be punched, this can be accomplished by testing 
the individual flag settings (SK or EX) and punching an appi:opriate code in the card column(s) with the 
XC (Punch Code) instruction prior to or after punching the numeric field with the XPN instruction. If 
the sign column must follow the numeric field, a set Minus flag must first be reset before punching the 
data; this usually requires separate program paths, after testing for a minus condition, to both punch the 
data and punch the correct sign code. 

If the Punch is off-line, XPN is executed only as a PN instruction. 

OP CODE A B 

PRINT & PUNCH NUMERIC, SHIFT RIBBON IF MINUS · XPNS- 0-14 0-15 

The XPNS- instruction is the same as the XPN instruction except that the ribbon color is changed if 
the Accum~lator Sign Flag is s~t (Minus). lf the Punch is off-line, XPNS- is executed only as a PNS-. 
mstruction. 

Revised 3-29-71 by 
PCN 1045481-001 2.18.02 (Cont'd-2)' 

1 



XPNS+ XN 

XC 0 
~f;t 

CRD 
J 

\ 
OP CODE A B 

PRINT & PUNCH NUMERIC, SHIFT RIBBON IF PLUS XPNS+ 0-14 0-15 

The XPNS+ instruction is the same as the XPN instruction except that the ribbon color is changed if the 
Accumulator Sign Plag is reset (Plus). lf the punch is off-line, XPNS+ is executed only as a PNS+ 
instruction. 

Punch Numeric Data, Non-print 

OP CODE A B 

PUNCH NUMERIC, NON-PRINT XN 0-14 0-15 

The XN instruction is the same as the XPN instruction except that no printing occurs. A mask word is 
used with this instruction since it controls punching, and may be the same mask word used with other 
Print Numeric instructions as there would be no affect on the non-print characteristic of XN. lf the 
punch is off-line, XN is executed as a NOP instruction. 

OP CODE A B 

PUNCH CODE XC 0-15 0-15 

The XC instruction permits outputting any desired single card code (without it being resident in 
memory) or any special punch pattern in a card column (except only one punch can be created in rows 
1 to 7 in a card column although any punch combination in the other rows can be obtained). The A 
parameter controls punching in card rows 12, 11, 0, and 9; the B parameter controls punching in card 
rows 1 through 8. 

Printing does not occur with this instruction. If the Punch is off, XC is executed as a NOP instruction. 

A Parameter Value 

ROWS 

12,11,Q,9, 
~ /\,;\ 

8- 4 2 L 

B Parameter Value tl 
~­

To punch an "A" (Row 12, 1) the XC instruction would be 

OP CODE 

XC 

To punch Rows 12, 11, 0, 8, 6 the XC instruction would be 

OP CODE 

XC 

A 

8 

A 

14 

B 

B 

14 

ROWS 

1-8 

J-8 

Refer to Appendix H to find A and B parameter values of various characters to be punched. 

2.18.02 (Cont'd-3) 



LXC 

SKP 

2.18.03 CARD COLUMN SYNCHRONIZATION WITH THE PUNCH COUNT REGISTER 

A Punch Count Register is used by firmware to count the card columns either punched or escaped in 
order to control the location of the card and maintain synchronization. When the system is turned on, 
the value in this register is indeterminable, and therefore it must be loaded with the value "l" at the 
start of a program. 

OP CODE A 

LOAD PUNCH COUNT REGISTER LXC 1 

The LXC instruction loads the value specified in the A parameter into the Punch Count Register. The 
parameter value must be "l" to synchronize the register with the card in the punch station (card must 
be registered in the punch station at card column one). 

The LXC instruction is normally used only once in a program, during the initialization routine. Once 
into the program, firmware resets the Punch Count Register to 1 whenever a card is released in the 
punch and another card registered at column 1. However, it is recommended that a provision be 
included in the program for the operator to reset the register to 1 in the event a card becomes out of 
step. This condition could occur from the improper use of the keyboard Reset Key during a keyboard 
entry, or from inadvertent manipulation of the control keys on the card punch (which should not be 
necessary once a program is in operation). Note that if the keyboard Reset Key is used during a 
keyboard entry and the system is not in an error state, the keyboard instruction is re-initiated 
(repositioning the printer and permitting a complete new entry) and the Punch Count Register is set 
back to the beginning column of that field. The card containing the incorrect data should be released 
and duplicated to the beginning column of the reset field. The new entry may then be made without 
losing synchronization between the L/TC and the card punch. Backspacing will generally result in new 
data being punched over incorrect data producing incorrect cards. 

OP CODE A 

SKIP TO COLUMN SKP 1-80 

The SKP instruction causes the card to skip to the card column specified in the A parameter. A skip to 
card column 1 causes the card to be released and a new card registered at column 1. This is the 
prescribed manner in which the Series L program releases a card. If the card is presently on the card 
column specified by the SKP instruction, no skipping occurs. An exception to this is a skip to 1 when 
the card is already on column 1; this results in the card being released and another card registered. 

Revised 8/9/71 by 
PCN 1045481-003 2.18.03 

1 

1 



DUP 

CRD 1 
Once the skip function · has been initiated, the program resumes execution while the .skipping is being 
completed, except for skips of up to 3 columns. If the program reaches another punch instruction while 
skipping is occurring, the program is . held up until skipping has been completed. Skips of 3 'columns or 
less are actually treated as Punch Blanks (XC 0 0, blank card columns), and' in this situation, program 
execution is held up until the skip is completed. 

A skip to a lesser numbered column than the present card location will cause the .release of the card and 
the registration of a new card; however, the count register will be in error for the newly registered card. 

lf the punch is off-line, the SKP instruction is executed as a NOP instr_uctiqri. 

The SKP instruction should normally be used after each punch instruction · where unused card columns 
could remain, such as with XTK, XTKM, XP A, etc. lt is normal for these instructions to be terminated 
before punching the total number of characters specified in the parameter; therefore, a SKP instruction 
must be used to ensU:re that the card is pröperly positioned . to the start of the next field. 

OP CODE · A 

DUPLICATE THROUGH COLUMN DUP 1-80 

The DUP instruction causes data from the card in the Read Station tobe punched (duplicated) into the 
corresponding columns of the card in the punch station. The duplication function starts at and includes 
the card column at which it is initiated, and · continues through the card .column specified in the A 
parameter. A DUP through 80 will cause the card to be duplicated thröugh column 80, released, and a 
new card registered . at columh 1. A DUP through the same card column number .as the present location 
of the card results in no duplication. 

Once the duplication · fun<;:tion has been initiated, the · program resumes execution while the duplication is 
being completed. lf the program reaches another punch instruction while duplication is occurring, the 
program is held up until the duplication has been completed. 

A DUP through a lesser nurnbered card column than the present location of the .card will cause a 
duplication through column 80, release of the· card and registration of a new card; however, the count 
register will be in error for the newly registered card. 

Ifthe punch is off-line, the DUP instruction is executed as a NOP instruction. 

Cards are released from the punch station by . the Series L program with the use of a Skip to Column 1 
instniction (SKP l} or a Duplicate Through Coluinn 80 irtstruction (DUP 80). Use ofthe card punch 
manual controls, during program operation, or any other type of program release will in most cases 
cause the newly registered card tobe out of synchronization ,with the PunchCount Register .. 

2.18.03 (Cont'd-1) · 



1 
ALTP 

CRD 

The Regular Card Stacker is selected automatically if the program has not specified otherwise for the 
card being released. The .Alternate Stacker is selected by executing the following instruction: 

OP CODE 

ALTERNATE STACKING POCKET ALTP 

The ALTP instruction causes the card in the Punch Station to be routed to the Alternate Stacking 
Pocket after it has been released from both the Punch Station and the Read Station. The ALTP 
instruction must be executed while the card is still in the Punch Station, and prior to any instruction 
that will cause the card to be released from the Punch Station, in order to affect that card when it is 
finally released from the Read . Station. 

This instruction can be used to advantage in many ways, such as to segregate two groups of transactions, 
or to out-sort special information cards from standard transaction cards (such as low quantity alerts, 
etc.) or to collect reject cards from error entries. 

If the punch is off-line, the ALTP instruction is executed as a NOP instruction. 

2.18.04 OUTPUT INDICATOR LIGHTS AND FLAGS 

Three of the Output lndicator Lights on the Series L keyboard are used to advise the operator of the 
operating status of the card punch. 

l 1 

OUTPUT 

. PUNCH 

1 1 OFF MEDIA ERROR 

0 0 0 0 
Output 1 ndicator Lights 

The Punch Off Indicator Light is turned on and Punch Plag P4 is set if the card punch "On-Line" 
switch is not on, or if the On/Off switch is not on while a card punching instruction is attempted. The 
punch portion of the instruction is inhibited and the instruction is . executed in the manner of its 
counterpart keyboard or print instruction. The program does not halt. An insthlction involving no other 
functions but punching is execilted as a NOP instruction. The correction of the condition by turning on 
the punch and placing it in the On-Line mode will cause the indicator to be turned off and Punch Plag 
P4 to be reset on the next punch instruction. 

To avoid the possibility of the operator failing to turn on the punch when begirining an operation, it is 
recommended that during the program initialization. a card be released (SKP 1) and the Punch Off Plag 
P4 be examfoed. lf P4 is set, the program can warn the operator (with the Alarm or by printing a 
warning messagei and in addition may prohibit further processing or halt to allow' an operator decision 
as to whether the following group of transactions requires card output. 

Revised 3-29-71 by 
PCN 1045481-001 2.18.04 



lf the program attempts to execute a punch instruction and a card is not registered in the punch Station, 
the instruction is held up, the Media Indicator light is turned on, and Punch Flag PI is set. Correction 
of the coridition by registering a card in the ,punch station permits the instruction to be executed, at 
which time the Indicator light is turned off and Punch Flag PI is reset. Only the lridicator light can be 
used to notify the operator that a card is not present in the punch station since the PI flag is set only 
while the pµnching instruction is held up and is reset after the punching instruction is executed . 

. The Error Indicator Light is turned oh and Punch Flag P2 is set if a card punch malfunction or 
misoperation occurs. If this condition occurs, the card punch is not operative, the RESET key 
(switch-light) on the card punch is turned on, and the program is held up on the punch instruction. A 
depression of the RESET key removes the error condition and permits execution of that instruction to 
be completed and the program to continue; Punch Flag P2 and the Indicator light are turned off. 

Depression of the RESET key does not change the fact that mis-punching may have occurred,or that a 
newly registered card may be out of synchronization with the punch count register. 

The execution of a LOD, SET, RST, or CHG Flag instruction involving the Punch Flags will also cause 
their associated indicator lights to either be turned on or off depending on the instruction used; 

Program keys . that have been enabled prior to a card punch instruction involving a keyboard entry 
(XTK, XTKM, XEAM) may be used to terminate that instruction. If the instruction is terminated with 
an OCK, such PK's as were enabled will be disabled. 

2.18.04 (Cont'd-1) 



LSFR 

MUR 

SUBJECT 2.19 - MAGNETIC UNIT RECORD INSTRUCTIONS 

The Magnetic Unit Record (MUR) Instructions provide the ability to read data from or write data on, a 
single magnetic record on a magnetic record card. These instructions apply to a unit record handling 
mechanism integrated into the console of the system with the magnetic unit record option, or an option 
magnetic record handling Auto Reader. All reading and writing is from a 22-word section of main 
memory used as an input/output buffer. Input Instructions provide the ability to read data from the 
magnetic record, to transfer the variable length data fields from the buff er into either memory or the 
accumulator, and to process data directly from the buffer. Output Instructions provide the ability to 
transfer both numeric and alpha data to the buffer and to write the contents of the buffer on the 
magnetic record. The location of the buffer is dependent upon, and specified by the type of firmware 
used. 

A maximum of 349 digits of data, plus 2 line-find digits, and a block check digit, may be stored on the 
magnetic record of a standard 11" magnetic unit record. The data is read from, or written on, the 
magnetic record in one continuous motion of the record mechanism past the read/write heads. There are 
no separation digits or characters written on, or read from, the magnetic record. All data field 
formatting is accomplished after the data has been read from the magnetic record into the buffer, 
following the read or input mode, and upon entry of data into the buffer prior to the write or output 
mode. Formatting of data is accomplished by values stored in a stripe format table. 

2.19.01 MAGNETIC UNIT RECORD FORMATS 

The Magnetic Record Format specifies the starting digit location and the length of a data field within 
the magnetic record input/output area. This allows variable length data fields to be moved from, or 
inserted into, the input/output buffer. The values that describe these fields are contained in a Stripe 
Format Table. A Stripe Format Register is used to contain the memory location of the first word of the 
Stripe Format Table, and it must be loaded in the program before any fields are accessed. 

LOAD STRIPE FORMAT REGISTER 
OP CODE 

LSFR 
A 

LABEL 
B 

The LSFR instruction provides the ability to establish the location of a Stripe Format Table in memory. 
The format instruction loads the Stripe Format Register with the memory location of the label 
contained in the A parameter. The Stripe Format Register establishes the base address of the Stripe 
Format Table. A format table for the magnetic record is 16 words in length, and may contain up to 64 
formats. More than 1 table may be used; however, when replacing a table currently in use, the base 
address of the replacement table must be initialized by an LSFR (Load Stripe Format Register) 
instruction. 

Example: 

PARAMETER 
FIEl..D 

.--~~~--.IL~-1--~~~-'-A'-r~~~---4-~~B=---<~C=---l 
OP. CODE GTH LABEL + OR­

INC/REL 

43 44 45 47 

1 1 1 1 1 _ ___L . 1 1 1 

Revised 3-29-71 by 
PCN 1045481-001 · 2.19.01 



[ SlF 

OP CODE 

LSFR 

MUR 

A 

FJELDS 

B REMARKS 

LOAD THE STRIPE FORMAT REGISTER WITH FJELDS, 
THE BASE ADDRESS OF THESTRIPE FORMAT TABLE. 

2.19.02 MAGNETIC UNIT RECORD PSEUDO INSTRUCTIONS 

The Pseudo instructions allow the programmer to communicate both with the assembler program and 
the system. These Pseudo instructions do not directly produce machine language instructions for the 
object program. They do, however, control the manner of assembly, determine the interpretation of data 
input to the assembler and exert control over the system such as forms control and word-syllable 
counter control. 

MAGNETIC RECORD FORMAT (PSEUDO) 

OP CODE 

SLF 

A 

1-349 

B 

1-15 (numeric) 
1-63 (alphanumeric) 

The SLF instruction is used to format the magnetic record data (read from the unit record) during a 
transfer from the input area into either memory or the accumulator, or is used to format data transfer 
to the output area prior to a magnetic record write instruction. 

The A parameter specifies the starting digit location of a data field; the B parameter specifies the length 
of that data field within the magnetic record input/output area. Signs for signed numeric data require a 
digit. Alpha characters require two digits. The values entered are assembled into one syllable as part of 
the Stripe Format Table which begins at the location designated by the use of the LSFR instruction 
(Load Stripe Format Register). The table may contain up to 64 field formats if more than 64 are 
required, another table must be designated with LSFR. The table must begin with syllable 0 of the 
designated word; therefore, it should be preceded with the "WORD" pseudo instruction to assure proper 
assembly. 

Example: 

2.19.02 

PARAMETER 
FIELD A 8 C 

.--~~~~~~~~~--1L~-1--~~~~~~~~~~_:::_~-1-"'--" 

LABEL OP. CODE GTH 

16 17 18 19 20 21 

\ 

LABEL 
+ OR -
INC/REL 

43 44 45 6.47 



WL 

LABEL OP CODE A B REMARKS 

LSFR FIELDS LOAD STRIPE FORMAT REGISTER 

FJELDS 

WORD 

SLF 

SLF 

SLF 

SLF 

SLF 

2.19.03 MAGNETIC UNIT RECORD FLAG 

1 

63 

67 

74 

85 

31 

4 

7 

11 

11 

1-ACCOUNT NAME 

2-CHECK COUNT 

3-ACCOUNT NUMBER 

4-BALANCE + SIGN 

5-LOW MONTHLY BAL. + SIGN 

Three flags (the "S" group) are included in the system with the Magnetic Record option: the Read 
Error Flag (R), the Filled Sheet Flag (F), and the Write Error Flag (W). 

READ ERROR FLAG (R) - The Read Error Flag is set if a read error occurs during the record-read 
process. Read errors occur because of the following conditions: 

1. The data encoded on the magnetic unit record has become corrupted. 

2. There is a blank magnetic record in the magnetic unit record mechanism. 

3. The magnetic record is prematurely removed from the mechanism. 

The "R" flag may be interrogated by the Skip · and Execute ir).structions, but is reset by the initiation of 
the next read or write instruction. 

FILLED SHEET FLAG (F) - The Filled Sheet Flag is set when the Stripe Count Register is 
incremented to a value of 1 greater than the contents of the Stripe Limit Register. The "F" flag may be 
interrogated by the Skip and Execute instructions, but it is reset by the initiation of the next read or 
write instruction. 

WRITE ERROR FLAG (W) - The Write Error Flag is set if a write error occurs during the record-write 
process. Write errors occur because of the following conditions: 

1. The magnetic record in the mechanism is improperly coded. 

2. There is no unit record in the mechanism. 

3. The magnetic unit record is prematurely removed from the mechanism. 

The "W" flag may be interrogated by the Skip and Execute instructions, but is reset by the initiation of 
the next read or write instruction~ 

2.19.04 WRITE INSTRUCTIONS 

WRITE RECORD 
OP CODE 

WL 

The WL instruction writes the data from the Magnetic Record Buffer onto the magnetic record on the 
unit record. The Une number contained in the Stripe Count Register is written in the line-find-digits area 
of the magnetic record. 

Revised 3-29-71 by 
PCN. 1045481-001 2.l 9.04 



The initial phase of execution will open the handler if closed. The data is written while the magnetic 
record is being ejected. 

lf a write error occurs, the W (write error) flag is set. All error recovery routines are programmatic. 

Example: PARAMETER 
FIELD A B C 

.--~~~~...-~~~-L~-1--~~~~~~~4---='---+-""'--I 

LABEL OP. CODE GTH 

\ 

LABEL OP CODE A 

SRJ WRITEL 
~ ? 

WRITE RL 3 

EX s 
PKA 1 

BRU 

WRITEL WL 

EX s 
PKA 3* 

TK 0 

BRU 

*PKA 3 - BRU WRITE 

2.19.04 (Cont'd) 

LABEL 

+1- B 

0 

R 

-3 

w 

-2 

+ OR­
INC/REL 

43 44 45 6 47 

- a 

c REMARKS 

GO TO WRITE RECORD 

NON-READ AND ALIGN RECORD 

2 EX IF JAM/READ ERROR 

ENABLE RECONSTRUCT PK 

GO RETRY 

WRITE MAGNETIC RECORD 

3 EXECUTE IF WRITE ERROR 

PKA 3-WRITE ERROR ROUTINE 

HALT FOR PK SELECTION 

GO TO SELECT PK. 



RL 

MUR 

2.19.05 READ INSTRUCTION 

OP CODE A B 

READ RECORD RL 0-5 0-15 

The RL instruction provides the ability to read the magnetic record on a unit record either from the 
console mechanism, or from the auto reader. This instruction is comprised of two operational phases. 
Phase one is a numeric keyboard operation and phase two is a read and/or align operation. (There is not 
a numeric phase on a read from auto reader instruction.) 

The A parameter specifies the type of read and/or alignment. lt also specifies the input device. The 
possible entries for the A parameter are: 

0 - Read and align to the line number on the magnetic record. 

1 - Read and align to the line number contained in the Stripe Count Register. 

2 - Read and align to posting line 1 (the first posting line). 

3 - Non-read and align to the line number contained in the Stripe Count Register. 

4 - Read and eject record. 

5 - Read from auto reader. 

Parameter 0 - Reads the magnetic record and loads the line number contained on the magnetic record, 
automatically, incremented by one by firmware because it is the last posting line number, 
into the Stripe Count Register, and aligns the ledger to thecontents of the Stripe Count 
Register. 

Parameter 1 - Reads the magnetic record, ignores the line-find digits, and aligns the unit record to the 
number contained in the Stripe Count Register. 

Parameter 2 - Reads the magnetic unit record and aligns the record to posting line 1, the first posting 
line. The line-find number read from the magnetic record is incremented by one, since it 
is the number of the last posting line, and loaded into the Stripe Count Register. The unit 
record may be posted in its current position, or may be aligned to the contents of the 
Stripe Count Register, or may be aligned after reloading the register. 

Parameter 3 - This parameter provides the ability to insert either a striped or non-striped record and 1 
align it to the number contained in the Stripe Count Register. Since this parameter does 
not attempt to read the stripe, the contents of the Striped Record Buffer are not 
affected. 

Parameter 4 - Reads the contents of the magnetic record into the buff er and ejects the unit record. 

Parameter 5 - This parameter specifies an auto reader read. the contents of the magnetic unit record are 
read into the buffer. If the auto reader is turned off, or is not connected to the system, 
the instruction will change control to the console mechanism and perform a Read and 
Eject as described for parameter 4. 

The B parameter specifies the number of numeric digits which may be entered into the Accumulator 
during the numeric keyboard phase of the RL instruction. This is a standard keyboard operation, except 
that the 00,000, Decimal Fraction, RE, C and M keys are not valid. 

Revised 11-8-71 by 
PCN 1045481-004 2.19 .05 

1 



When the instruction is initiated, the numeric keyboard indicator is tumed on and the number of digits 
specified by the "B" parameter may be entered. If this number is exceeded, a keyboard error results. 
The use of the Reset Key will clear the Accumulator and reinitiate the instruction. PK's may be enabled 
prior to the RL instruction, so the entry may be terminated by depressing an activated PK. The entry 
may also be terminated by any OCK which will also set the appropriate OCK flag. lf the keyboard entry 
is in error and has been terminated by an OCK, the depressing of the Ready Button will retum the 
system to the Ready Mode. When the system is in the Ready Mode, the use of the Reset Key will 
reinitiate the RL instruction; however, any PK;'s that were enabled, when the RL was originally initiated, 
have been eliminated by the OCK termination. 

If the numeric keyboard phase of the RL instruction is terminated by a PK, a jump to some specific 
subroutine takes precedence. 

If the numeric keyboard phase of the RL instruction is terminated by an OCK, the read phase is 
initiated, and the system idles waiting for the insertion of a unit record. The insertion of a magnetic 
unit record will execute the read phase of the instruction. 

The numeric keyboard phase may also be terminated by the insertion of a magnetic record, without 
depressing any OCK. lt is possible to initiate the RL instruction, enter numeric digits not exceeding the 
number specified by the B parameter, and insert a unit record which terminates the numeric keyboard 
phase and initiates execution of the read phase. This type of termination of the keyboard phase resets 
all OCK flags. 

The forms handler is automatically opened during the initiation of the instruction. lt is closed by the 
first print instruction or a close instruction. 

In the read phase, data is transferred to the unit record buffer, destroying the prior contents. 

If a magnetic record from a previous operation remains in the mechanism when an RL instruction is 
initiated, the "presence" sensor logic requires that it be removed and reinserted, even if it is intended as 
the media for the current read operation. 

If a read error occurs, either in the console mechanism or the auto reader, the R (read error) flag is set 
and magnetic record is ejected. All error recovery routines are programmatic for either reader; however, 
provision is made in the presence sensor logic, for the console mechanism, to allow the unit record to be 
pushed from the eject position for a programmatic retry of the RL. instruction. lf a read error occurs 
when the auto reader has been selected, the urtit record must be moved from the stacking hopper back 
to the feed hopper for the programmatic retry of the RL instruction. 

If a Filled Sheet is detected during the execution of an RL instruction, the unit record is automatically 
ejected and the Filled Sheet Flag is set. Detection of the filled sheet condition, and error recovery, must 
be programmatic. 

2.19.05 (Cont'd.;1) 



Example 1: 

OP CODE 

RL 

EX 

PKA 

BRU 

EX 

PKA 

TK 

BRU 

PARAMETER 
FIEl..D A B C 

.-.~~~~L~-1--~~~~-.-~~---11--~~------1 

OP. CODE GTH LABEL + OR -
INC/REL 

22 23 24 25 26 Z7 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 47 

0 

\ 

1 1 1 1 1 -
A +/- B c REMARKS 

RL 

MUR 

0 4 INDEX 4-DIGIT NUMBER AND INSERT RECORD 

s R 2 IF READ ERROR OR JAM 

1 PKA 1-RECONSTRUCT ROUTINE 

-3 BRANCH BACK IF "R" FLAG IS SET AND 
ATTEMPT TO READ AGAIN, UNTIL PKA 1 IS 
SELECTED. 

s F 3 IF FILLED SHEET 

2 PKA 2-FILLED SHEET ROUTINE 

0 HALT FOR ENFORCED PK SELECTION 

-2 BRANCH BACK IF "F" FLAG IS SET TO ENSURE 
DEPRESSION OF PKA 2. 

If a Filled Sheet is detected during the posting procedure, that is, if during the posting procedure an 
OCK or a PK was selected which would advance the magnetic unit record to a line below the last 
available posting line (<;>r if the Stripe Count Register is incremented to a value of 1 greater than the 
contents of the Stripe Limit Register), the Filled Sheet Flag is set. (The automatic ejection of the record 
can be suppressed if desired.) Detection of the filled sheet condition and error recovery, must be 
programma tic. 

Revised 3-29-71 by 
PCN 1045481-001 2.19 .05 (Cont'd-2) 



Example 2: 

LABEL 

INITAL 

PARAMETER 
FIELD A B C 

~~~~~~-~~---IL~-1--~~~_:_:_..--~~-+--__:~-+---i 

. LABEL + OR -
OP. CODE GTH LABEL INC, REL

1 1 1 1 1

OP CODE

LSLR

?
AR

SK

BRU

A

45

i
1

s
POST

+/- B c

F 1

DOC UNE 46 IS BALANCE

DOC FORWARD UNE

POS

PA

POS

TSBA

PNS­

SRJ

BRU

BAL

BALFWD

BALCOL

6

4

FILLIN

POST

1

43 44 4S 6 47

\

REMARKS

LOAD MAG REC LIMIT REGISTER

() [(
ALIGN TO NEXT LINE

TEST LAST UNE .

GO TO POST NEXT UNE

POSITION TO BALANCE

TYPE BALANCE FWD MSG

POSITION TO BALANCE COLUMN

READ BALANCE

PRINT BALANCE

GO TO FILLED SHEET

GO POST NEXT ENTRY

2.19.05 (Cont'd-3)

PAS

MUR

In this example, when the AR instruction advances the record to line 46 (Limit Register value +l) the
Filled Sheet Plag (F) is set and 'the system displays a notification message and the Balance. The program
then jumps to a filled sheet routine for heading up the next record and returns to the correct posting
routine.

2.19.06 PRINT ALPHA FROM MAGNETIC RECORD AREA INSTRUCTION

OP CODE A

PRINT ALPHA FROM MAGNETIC RECORD AREA PAS 1-64

The PAS instruction prints alpha characters from the Magnetic Record Read-In Area. The number of
characters printed, and their location in the Magnetic Record Buffer, is determined by the format
selected by the A parameter.

The PAS instruction is terminated by the printing of the number of characters specified by the selected
format, or by the presence of NUL (0,0) codes in the data field.

Example:

PARAMETER
FIEl..D

....-~~~~~~~~~-L~-1--~~~~A-..~~~-+-~-B~--1~C_.,
LABEL OP. CODE GTH LABEL

16 17 18 19 20 21

+ OR -
INC/REL

\ \

1 1 1 \ ,\ 1 1

43 44 45 6 47

Revised 3-29-71 by
PCN 1045481-001 2.19.06

2.19.07

LABEL

FJELDS

SUB MUR 1 ·

OP CODE

LSFR

PAS

WORD

SLF

SLF

SLF

SLF

SLF

A

FIELDS

1

1

63

67

74

85

ARITHMETIC INSTAUCTIONS

B

31

4

7

11

11

ADD FROM MAGNETIC RECORD AREA
TO ACCUMULATOR

SUBTRACT MAGNETIC RECORD AREA
FROM ACCUMULATOR

REMARKS

LOAD STRIPEFORMAT REGISTER

PRINT 31 ALPHA CHARACTERS FROM THE
MAGNETIC RECORD READ-IN AREA.

1-ACCOUNT NAME

2-CHECK COUNT ,

3-ACCOUNT NUMBER

4-BALANCE' AND'SIGN ·

5-LOW MONTHL Y BALANCE ANP SI.GN

~ ,,

OP CODE A B

ADB 1-64 0-1

SUB 1-64 0;1

Th~ ADB instruction adds the number of di~ts specified by the format, which is selected by the A
parameter, to the 1\ccumulator. · · . ·

The B parameter of the ADB instruction, if 0, specifies an unsigned data field; if 1, a signed data field.
lf the field is signed, the least s~gnificant digit contains the sign (all Accumulator flags).

The SUB instruction subtracts the number of digits specified by the format, which is selected by the A
parameter, from the Accumulator. The B parameter specifications are identical to those described for
the ADB instruction above.

Example: This example utilizes the Stripe Format Tableas defined iri the~PA~Linsttuction example.

2.19.07

PARAMETER
FIEl.D A B C

..-~~~~L,,E)l-t--~~~~~~~-'--1r--~~----i

OP. CODE !il"H . · LABEL + OR -
INC/REL

22 23 24 25 26 Z7 28 29 3) 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 6 47

0

TSBA TSBM

MUR

OP CODE A B REMARKS

ADB 2 0 ADD 4 DIGITS (UNSIGNED) TO THE ACCUMULATOR.

2.19.08 TRANSFER INSTRUCTIONS

TRANSFER NUMERIC FROM MAGNETIC
AREA TO ACCUMULATOR

TRANSFER ALPHA FROM MAGNETIC
AREA TO MEMORY

OP CODE

TSBA

TSBM

A B

1-64 0-1

1-64

The TSBA instruction transfers the number of digits specified by the format, which is selected by the A
parameter, into the Accumulator.

The B parameter of the TSBA instruction, if 0, specifies that the field is unsigned. If the B parameter is
1, the field is signed. The sign digit is contained in the least significant digit position of the data field
defined by the format. lt is inserted into the sign position of the Accumulator during the transfer
process. The sign digit is considered to occupy a digit position in the field defined by the format. All
Accumulator flags (- S C M) will be transferred.

The TSBM instruction transfers the number of alpha characters, specified by the format selected by the
A parameter, into memory. An LKBR instruction must precede this instruction, since the value
contained is the memory location of the first word of the transfer.

The TSBM instruction is terminated by the transfer of the number of characters specified by the
selected format. NUL (0,0) codes will be inserted into memory following the last character of the
transfer. If the data does not completely occupy the last word of memory addressed in the transfer
process, the balance of the word is filled with NUL (0,0) codes. If data completely fills the last word of
memory addressed in the data transfer process, the next sequential memory word is filled with NUL
(0,0) codes.

Example 1: This example utilizes the Stripe Format Table as defined in the PAS instruction example.

OP CODE

TSBA

PARAMETER
FJELD

.--~--~~L~-t--~~~~A-r-~~~-t--~B~___.,~C---1
OP. CODE GTH

A B

4 1

LABEL + OR -
INC/REL

\

ll3 44 45 6 47

REMARKS

TRANSFER 11 DIGITS (INCLUDING THE SIGN) TO THE
ACCUMULATOR.

Revised 3-29-71 by
PCN 1045481-001 2.19 .08

1

TASB TMSB LA

MUR
A B OP CODE

TRANSFER FROM ACCUMULATOR TO TASB 1-64 0-1

MAGNETIC RECORD AREA

TRANSFER ALPHA FROM MEMORY TO TMSB 1-64

MAGNETIC RECORD AREA

The TASB instruction transfers the number of digits specified by the format, which is selected by the
A parameter, from the Accumulator into a data field in the Magnetic Record Buffer. The location of the
data field within the buffer is also specified by the format.

If the B parameter of the TASB instruction is 0, the sign of the Accumulator is ignored. If the
B parameter is 1, the sign of the Accumulator is transferred into the least significant digit position of
the data field. If the sign is included, it is considered a digit transfer. (All Accumulator flags are
transferred.)

The TMSB instruction transfers the number of alpha characters, specified by the format, which is
selected by the A parameter, from memory to a data field in the Magnetic Record Buffer. The location
of the data field within the buff er is also specified by the format. The memory location of the starting
word of the transfer is contained in the Keyboard Base Register. To specify an intended memory
location the TMSB instruction must be preceded by an LKBR instruction. The instruction is terminated
by transferring the number of characters specified by the selected format or upon recognizing an end of
alpha code.

Example 2: This example utilizes the Stripe Format Table as described in the PAS instruction example.

OP CODE

TASB

PARAMETER
FIEl...D A 8 C

r--~~~-tL~-1--~~~~~~~~-+-~~~1--~

OP. CODE GTH LABEL + OR -
INC/ REL

A B

5

43 44 45 6 47

REMARKS

TRANSFER 11 DIGITS (INCLUDING THE SIGN) FROM
THE ACCUMULATOR TO THE MAGNETIC RECORD
BUFFER.

2.19.09 UNIT RECORD ALIGNMENT INSTRUCTIONS

The Unit Record Alignment instructions provide the ability to control record movement and alignment
in the console mechanism.

OP CODE

RECORD ALIGN LA

The record align instruction provides the ability to move the handling mechanism from its current
position to the line number contained in the Stripe Count Register. The Record Alignment Errors,
"jam" indications, and error recovery procedures are discussed under su bject 2.19 .10.

2.19.09

Example 1:

OP CODE

LSCR

LA

PARAMETER

FIEl.D A B C
...--~~~~L~-1--~~~~~~~~-+-~~~-+-~

OP. CODE GTH

A B

45

LABEL

1 1 J . \. __

+ OR -
INC/REL

__ .L _L l

43 44 45 6 47

1 1 1 l !__

REMARKS

LOAD STRIPE COUNT REGISTER

ALIGN RECORD TO UNE 45

OP CODE

EL

MUR

EJECT RECORD EL

The EL instruction ejects the unit record that is in the handling mechanism. This is the only operation
performed. The Magnetic Record Buffer is not affected. See subject 2.19.10 for error conditions and
recovery procedures. lf the handler is closed, it is open for the execution of the EL instruction.

Example 2:

OP CODE

EL

PARAMETER

FIEl.D A B C
..--~~~-iL~-1--~~~~~~~~-+-~~~-+-~

OP. CODE GTH LABEL + OR -
INC/REL

22 23 24 25 26 27 28 29 ~ 31 32 33 34 35 36 37 38 39 llO 4, 42 43 44 45 47

1 1 1 1 1 .. 1 _J_~_l 1 1 1 1

A B REMARKS

EJECT RECORD

Revised 11-8-71 by
PCN 1045481-004 2.19.09 (Cont'd-1)

RET lSCR

MUR

OP CODE

RETRACT RECORD RET

The magnetic unit record handler travels down and to the rear of the console until a fixed limit is
reached. The RET instruction moves the handler to this fixed limit, with the handler open, to permit
the insertion and manual alignment of a record or form. See subject 2.19.10 for error conditions and
recovery procedures. The handler will remain retracted until an EL, LA, or RL instruction moves it back
to its forward limit. If the handler is in the retracted position when the power is turned on, the
power-on routine will move it to the forward position.

Example 3:

PARAMETER
FIELD

~~~~~L~-1--~~~~A~~~~--+-~-B~~~C-=-i 
OP. CODE GTH LABEL + OR -

INC/REL 

22 23 24 25 26 'Z7 2B 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 6 47 

1 
L _t l J_ J 1 1 J_ _ _L__t _L 1 1 1 1 1 L 1. 

OP CODE A B REMARKS 

RET RETRACT RECORD MECHANISM 

OP CODE A 

LOAD STRIPE COUNT REGISTER LSCR 1-46 

The LSCR instruction loads the Stripe Count Register with the value stored in the "A" parameter. The 
"A" parameter value may vary from 1 to 46 ( 46 is maximum number of posting lines on an 11" 
Magnetic Record). 

The Stripe Count Register aild the appropriate Forms Count Register are incremented by the AR, ALR, 
and ARTO instruction if a Magnetic Record is in handler. If a Magnetic Record is not present, only the 
appropriate Forms Count Register is incremented. 

The Stripe Count Register must be reset to its initial value by the programmer when a filled sheet 
condition is detected. If the Stripe Count Register is not reset it will continue being bumped by every 
AR, ALR, and ARTO instruction until it reaches a value of 255. lt is then reset to zero. The filled sheet 
flag is set only when the stripe count register is incremented ~ beyond the stripe limit register. At all 
other times the filled sheet flag is reset. 

When a Write Magnetic Record (WL) instruction is executed, the contents of the Stripe Count Register 
are written on the magnetic record in the area reserved for the line-find number. 

In a Read and Align operation the contents of the Line-Find number on the magnetic record are 
incremented by one and stored in the Stripe Count Register. 

2.19.09 (Cont'd-2) 



Example 4: 

FIELD 
LEN-

OP. CODE GTH LABEL 

\ 

1 1 1 1 

OP CODE A B 

LSCR 

1 

LSCR LSLR 

PARAMETER. 

A 

1 

B c 
+ OR -
INC/REL 

43 44 45 6 47 

1 1 1 1 1 1 l 1 j 

REMARKS 

LOAD THE STRIPE COUNT REGISTER WITH 

A VALUE OF 1. 

OP CODE A 

LOAD STRIPE COUNT REGISTER LSCR 1-46 

MUR 

The LSLR instruction loads the Stripe Limit Register with the value contained in the A parameter. 

Example 5: 

OP CODE 

LSLR 

PARAMETER 

FIELD A B C 
...-~~~~L~-1--~~~~~~~~-+-~~~--+---t 

OP. CODE GTH LABEL 

1 1 1 1 

45 

+ OR -
INC/REL 

1 1 1 

43 44 45 6 47 

REMARKS 

LOAD THE STRIPE LIMIT REGISTER WITH A 
VALUE OF 45. 

2.19.10 RECORD ALIGNMENT ERRORS AND FLAG INDICATIONS 

Record Alignment Errors occur because of the following conditions: 

1. The "gripper" jaws in the handler mechanism are not moving or are not at proper speed when 
the handler has been activated. 

2. When the total number of lines, from the line-find operation, plus the number of program­
matic line advances, does not equal the number of lines the form moves when it travels back 
to the limit to prepare for an eject or write operation. 

If either of the above conditions occur, a "jam" condition is probable. A jam can also be caused by a 
tom or accordioned form. The jam condition will result in the following indications: 

Revised 3-29-71 by 
PCN 1045481-001 2.19.10 



LSCR LSLR 

MUR 

1. The execution of the instruction in process when the alignment error occurred will not be 
terminated. 

2. PKA 1 is enabled. Its indicator and the Error indicator are turned on. All other PK's are 
disabled. All keyboard indicators, other than PKA 1 and the Error indicator are turned off. 
The alarm is sounded. 

Error recovery consists of clearing the alignment condition or record jam by pressing PKA 1 and by 
removing the unit record from the handler. The depression of PKA 1 clears the error condition, 
terminates the execution of the instruction in process when the error occurred, turns off the PKA 1 
indicator and the Error indicator, sets both the R and W flags, and returns to sequential execution of 
the program. 

lt is essential since the instruction in process when the error occurred was terminated, that the Record 
Align (AL), Eject Record (EL), Write Record (WL), Read Record (RL), and the line advance 
instructions (AR, ALR, ARTO) each are followed by flag interrogation instructions to allow program­
matic recovery from an error condition. 

Example: 

OP CODE 

LSCR 

RL 

EX 

PKA 

BRU 

2.19·.t 0 (Cont'd) 

PARAMETER 
FJELD A 8 C 

..-~~~-cL~-1--~~~~~~~~-+-~~---<1--~ 

OP. CODE GTH 

A +/- B 

1 

3 0 

s R 

1 

-3 

LABEL 

c 

2 

+ OR -
INC/REL 

43 44 45 6 47 

REMARKS 

LOAD STRIPE COUNT REGISTER 

NON-READ AND ALIGN RECORD 

IF READ ERROR OR JAM 

PKA 1-RECONSTRUCT ROUTINE 

BRANCH BACK IF "R" FLAG IS SET AND 
ATTEMPT TO READ AGAIN, UNTIL PKA 1 
IS SELECTED. 



2.20 - MESSAGE UNPACKING ROUTINE 

2.20.01 GENERAL DESCRIPTION 

The message unpacking microstring is used for unpacking numeric information after it has been 
transferred from the Data Communications buffer to the accumulator. The use of this macro, as 
opposed to a user written routine to accomplish the same results, will on some applications result in a 
considerable reduction in the time it takes for the TC to process the data. The message unpack macro 
should be used when the following conditions exist: The number and types of data elements in the 
message are variable; and like elements in the message are to be grouped for printing, totaling or storing. 
Up to 32 different numeric elements may be stored. 

To use this Macro the Programmer must set up a Position Table and a Storage Area. The element tobe 
unpacked is programmatically transferred to the accumulator from the receive buffer. The last two digits 
in the accumulator make up the data element code that directs the microstring to a position table which 
in turn determines the particular word of the storage area to transfer the item to. 

2.20.02 POSITION TABLE 

The position table must occupy words 11-14. lts function is to determine whether or not the contents 
of the accumulator will be transferred to the storage area and if so, into which word. Bach word of the 
table contains 8 hexadecimal indicator codes, ending in digit positions 0, 2, 4, 6, 8, 10, 12, 14 
respectively. 

Digit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Word II E E F F 0 6 0 A 0 4 0 3 0 7 0 2 

In the position table, each indicator code is referenced by its least significant digit position. For 
instance, the code in digit position 4 and 5 is referenced by a 4; the code in digits 2 and 3 is referenced 
by the 2; etc. There are three different types of codes: 

1. A code that indicates which word of the storage area the data is to be transferred to. In the 
diagram, indicator code 6 (the two digit values in digit position 6 and 7) would cause the data 
to be transferred to word 4 of the storage area. Indicator code 8 would transfer the data to 
word 10 of the storage area. 

2. FF is a code that indicates the numeric data transmitted to the TC is invalid. The Special (S) 
flag of the accumulator is set by this code. FF would be most useful when first developing 
and debugging the on-line system. 

3. A code of BE indicates that the data in the accumulator is tobe ignored. If the central processor 
sends a fixed format message to all remotes, some of the fields in that message may pertain to 
only certain remotes and should be ignored by all others. In this type situation, the BE code 
proves to be most helpful. 

2.20.03 DATA ELEMENT CODES 

After the data element is transferred to the accumulator from the buffer, the last two digits, which 
make up the data element code supplied by the data center, are in accumulator digit positions 1 and 0. 
The hexadecimal value in digit position 1 refers to a particular position table word i.e., actual position 

Revised 3-29-71 by 
PCN 1045481-001 2.20.03 



table words 11, 12, 13 and 14 are referenced by numbers 0, 1, 2 and 3 respectively. The hexadecimal 
value in digit position 0 of the accumulator indicates which code of the position table word is to be 
accessed. For example, to reference indicator code 2 in word 11 of the position table, a data element 
code of 02 is used. 

2.20.04 STORAGE AREA 

Tue storage area starts in word 15. Word 1 of the storage area would be word 15; 2, word 16, etc. The 
number of areas used in the prograrn is determined by the programmer, up to a maximum of 32 areas 
or words. 

2.20.05 ERROR CONDITIONS 

If the microstring detects an error the data will not be stored and the accumulator S flag will be set. 
The following will result in an error condition: 

1. The word designation given in accumulator digit position 1 for the position table is other than 
0, 1, 2 or 3. 

2. The digit designation given in accumulator digit position 0 of the word in the position table is 
other than 0, 2, 4, 6, 8, A, C, or E. 

3. An illegal indicator code in the position table. The only valid entries are FF, BE and 
hexadecimal values 1 to 20. 

2.20.06 DELIMITER 

The delimiter is a character transmitted to the TC which is used to determine the status of the message 
being transmitted. For example, DC 1 may indicate the end of a print line; DC2 may indicate the end of 
a buffer but not the end of a message; BTX is used to indicate the end of a message. Bach delimiter will 
set its appropriate K or Y flags. 

2.20.07 PROGRAMING REQUIREMENTS 

The instruction B40B accesses the unpacking routine. The data element is transferred to the accumulator 
from the buff er by the application program. 

Also, the K and Y flags must be reset by the programmer for each data element, since delimiters which 
set the flags are used to indicate when to stop unpacking and begin to print the message. The following 
group of instructions demonstrate how the message unpacking routine is used. 

SYM OP A B c 
LOC. CODE PAR PAR PAR REMARKS 

NEWFLD RST K 1 RESET K FLAGS BEFORE MOVING DATA TO THE 
ACCUMULATOR. 

TRBA 15 

CODE B40B ACCESS UNPACKING ROUTINE. 

EX A s 1 CHECK FOR INVALID DATA ELEMENT CODE. 

BRU ERROR 

SK K 1 1 IP Kl IS SET UNPACKING IS FINISHED. 

BRU NEWFLD NOT SET SO CONTINUE UNPACKING. 

(PRINT ROUTINES) 

When printing from the storage area, it is necessary to examine each word to determine whether or hot 
it contains a numeric value. If an area does contain numeric information, it should l?e cleared by the 
programmer after printing. 

2.20.04 



2.21 - TRANSACTION CODE TRANSLATOR 

2.21.01 GENERAL DESCRIPTION 

The Transaction Code Translator is a Firmware Add-On Micro string used for interpreting typewriter 
keyboard depressions. As a result, a 2-character abbreviation is stored in memory for printing and a 
transaction code is stored in a designated location of the Accumulator for transmission to the Data 
Center. The 2-character abbreviation and the transaction code and its location in the accumulator are 
deterrnined by a table which is stored in main memory. The Translation table can be of any length; 

however, it must be located entirely within block 0 (words 0-255). 

The Transaction Code Translator also provides for the automatic insertion of a predetermined (modular) 
2-character abbreviation and transaction code when a key is not depressed in Row 2 of the typewriter 
keyboard. 

The Transaction Code Translator is primarily designed for use with the TC 700 in a financial application 
environment. However, versions of the Transaction Code Translator are available which are compatible 
with most GP 300 firmware sets. 

2.21.02 TRANSLATION TABLE FORMAT: 

a. Work Area 
The First five words of the table are reserved as a work area and must be located entirely 
within a Track in Block 0 ( words 0-31 of a track). The Five word work area is used in the 
following manner: 

Word 0: The First word of the table must contain the keyboard codes before executing the 
Translation instruction. (Maximum of 4 codes, one for each typewriter keyboard 
row.) 

Words 1-4: After executing the instruction the 2-character abbreviation for the key depressed is 
stored in the 4 high order positions of words 1-4 of the 5-word work area. The 
exact location of the abbreviation is deterrnined by a code stored in the Translation 
Table entry for the key depressed. (See factor 4 below). 

One key from each row can be translated each time the instruction is executed; 
Multiple key depressions in the same row will cause an error condition. 

b. Translation Area: 
The Translation area of the table must immediately follow the work area and it can be of any 
length depending on the number of key codes being translated. Bach word in the translation 
area contains the factors necessary for translating 2 keyboard characters. These factors are as 
follows: 

1. 2-digit hexadecimal USASCII value for key indexed. 

2. 4-digit hexadecirnal USASCII value of the 2-character abbreviation to be printed. 

3. One-digit hexadecimal value (0-F) of transaction code to be stored in the accumu­
lator for later transmission to the data center. 

4. One-digit decirnal value (0-3) representing the Accumulator digit position where the 
transaction code is to be stored and the location in the work area where the 

Revised 3-29-71 by 
PCN 1045481-001 2.21.02 



TCT 

abbreviation codes are stored. The location of the abbreviation code in the work area can be determined 
by the following chart. 

FACTOR 4 
VALUE 

0 

1 

2 

3 

ACCUMULATION 
DIGIT POSITION 

0 

1 

2 

3 

ABBREVIATION 
TABLE LOCATION 

1 

2 

3 

4 

The above factors are located within a table word in the following manner: 

Character 1 Character 2 
Digit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Factor No. 2 1 4 3 2 1 4 3 
(See Above) 

Example: 

Character 1 Character 2 

Digit Positions 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Table Entry 4 5 4 8 4 5 1 2 5 3 5 4 5 7 

Value E H E 1 2 s T w 
Factor No. 2 1 4 3 2 1 

Character 1 Character 2 

Key Depressed E w 
Stored For Print EH ST 

Transaction Code 2 3 

Digit Position in Accum. 1 2 

1 

2 

2 

4 

The last entry in the translation table must be OOOOFFOO. Upon recognizing an FF code, the 
search routine halts and the results can be processed by the user program. 

The microstring searches the table sequentially beginning with the character stored in digit 
position 15-8 of the first table entry following the work area. The table entries can be in any 
order within the table. However, since the microstring searches sequentially, the most 
frequently used entries should be at the beginning of the table. 

2.21.03 AUTOMATIC CODES 

0 

1. 
3 

3. 

The Transaction Code Translator instruction will automatically insert an SV abbreviation into word 4 of 
the work area and a transaction code of 1 into Accumulator digit position 3, when a typewriter key in 
row 2 is not depressed. Also, when a typewriter key in row 4 is not depressed a transaction code of 9 is 
2.21.03 



TCT 

stored in Accumulator digit position 1. An automatic abbreviation is not provided. These automatic 
abbreviations and the transaction codes can be modified as required by the application. 

The values which determine what abbreviation and/or transaction codes are to be generated in the 
absence of a key depression in Row 2 and/or Row 4 (Transaction Code only), are stored within the 
instruction microstring. Hence, ~~~~--!!_l.1:1~!.- be taken to ensure that only the desired values in the 
microstring are modified. 

Since the instruction microstring will be located in various tracks depending on which main memory 
firmware set is implemented, all memory locations are relative to the base word of the track (first word 
of the track) in which the microstring is stored. The microstring is stored in the highest available track 
provided by the main memory firmware set being utilized. 

2.21.04 CODE MODIFICATION 

Modification of the various "automatic" codes is accomplished by changing the desired codes using the 
Memory Modify utility and then punching out the modified firmware using one of the Memory Punch 
utility routines. 

The bit configuration of the desired abbreviation characters to be printed is determined by each 
character's row (upper bits) and column (lower bits) location in the USASCII chart. The abbreviation 
characters are stored in memory in the following manner. (Addresses are relative to the base address of 
the microstring). 

1 st Print Character 
1. The lower 4 bits of the first print character are stored iri digit position 6 of word 3. 

2. The upper 4 bits of the first print characters are stored in digit position 14 of word 3. 

2nd Print Character 
1. The lower 4 bits of the second print character are stored in digit position 10 of word 5. 

2. The upper 4 bits of the second print character are stored in digit position 2 of word 6. 

The transaction code which is stored in the Accumulator when a key in row 2 is not depressed is 
located in digit position .6 of word 24. 

The transaction code which is stored in the accumulator when a key in row 4 is not depressed is located 
in digit position 10 of word 31. 

Example: The Firmware configuration used is: 

Main Memory 2-1021-001 (384 words of user memory), CDC-CDV Firmware Add-On. 
Using this configuration, the transaction code translator microstring would be in words 
320-351 (Block 1, Track 2). The base word of the microstring is word 320. (CDC-CDV 
would occupy words 352 to 383). 

The automatic abbreviation to be printed is DR and a transaction code of 4 is to be inserted 
in the Accumulator. The keyboard row 4 automatic transaction code is to remain the same 
(9). 

Revised 3-29-71 by 
PCN 1045481-001 2.21.04 



1 

323 

TCT 

1 
USASCII Column and Rowlocations are: · 

D = 4,4 

The ~ and lower digits of the first print character (D) are stored in word 3 digit position 
14 & 6 respectfully of the microstring. The actual memory location is word 323. (Base word 
is 320 + 3 = 323). 

The printout of the TC using Memory Modify would be as follows: 

2 f5l A2 4FE2 F f3l E2 CC38 14 4A24FE2F4 

2 ~ A2 4FE2 F ~J E2 CC38 

The lower digit ( 4) of the second print character (R) is located in word 5 digit position 1 O 

(word 325) 

Printout: 

325 40E2 8 f6l E2 AA16 

8 ~E2 AA16 

9F5B 

9F5B 

10 4 

40E2 

The upper digit (5) of the second print character (R) is located in word 6 digit position 2. 
(word 326) 

Printout: 

326 7Fl4 Al40 

Al40 

BlEl 

BlEl 

D f5I A2 

D~A2 
2 5 

7Fl4 

The Row 2 transaction code is located in word 24 digit position 6. (word 344) 

Printout: 

344 235B 5042 

5042 

3 ltl E2 

3 ~E2 
9751 

9751 

6 4 

235B 

When the modification of the microstring is complete, the new microstring is punched out 
using one of the Memory Punch utility routines. lt is recommended that all firmware 
extensions which are used in an installation be incorporated on one tape with the main 
memory firmware set. In the above example this would be accomplished by punching words 
320-575 and words 608-1023. 

2.21.05 ERROR CONDITIONS 

The. Transaction Code Translator instruction will detect the following two types of errors. 

1. No Table entry forthe keyboard character depressed. 

2. Multiple depressions on the same typewriter keyboard row. · 

When one of the above errors is detected, the instruction will set all of the accumulator flags. 

2.21.05 



TCT 

2.21.06 MACHINE CODE FOR TRANSACTION CODE TRANSLATION INSTRUCTION 

This instruction is executed by using a machine language code of 104A. This machine language code is 
incorporated into the object program by use of a CODE psuedo instruction with an A parameter value 
of 104A. 

2.21.07 WORD 576 

Word 576 of the utility track is used as a link address between the MACRO instruction (104A) and the 
microstring. Since the location of the microstring is variable, the content of word 576 will also vary 
depending on the location of the microstring. The content of word 576 for the various possible 
locations of the microstring can be determined by the following chart. 

MICROSTRING LOCATION CONTENTS OF WORD 
BLOCK TRACK 576 

1 0 F244 0000 31Fl 0000 

F344 0000 31Fl 0000 

2 F254 0000 31Fl 0000 

3 F354 0000 31Fl 0000 

1 4 F264 0000 3.lFl 0000 

1 5 F364 0000 31Fl 0000 

1 6 F274 0000 31Fl 0000 

1 7 F374 0000 31Fl 0000 

2.21.08 USER PROGRAM REOUIREMENTS 

1. Set word 576 during the initialize portion of the user program. 

In addition to one track in user memory, the Transaction Code Translator also uses Syllables 1 
and 3 of Word 576. Since various Utility Routines also use word 576, the User Program 
should set word 576 during the initialize phase of the program. 

2. Clear words 1 and 3 of the work area. These words must be cleared · prior to executing the 
microstring to ensure that the abbreviation codes from the previous entry are not printed 
twice. Words 2 artd 4 of the table are cleared automatically. 

3. Set the keyboard base register (LKBR) to the first word of the work area and enter the 
keyboard codes to be translated into the first word of the work area using the EAM macro 
instruction. 

4. Execute the Translation lnstructions: (Code 104A). 

NOTE: The Code 104A instruction MUST be executed immediately after the EAM 

i nstru ction. 

5. Test for an error condtion (all Accumulator flags set) immediately after executing the 
instruction. 

6. Set the LKBR to the Send Buffer or Work area. Revised 3-29-71 by 
PCN 1045481-001 2.21.08 



TCT 

1 

7. Transfer the transaction codes stored in Accumulator into the send buffer or send record area. 

8. Print the abbreviation codes stored in words 1-4 of the work area. 

2.21.09 PROGRAMING EXAMPLE 

Transaction Code Translator could be incorporated into the user Program and utilized in the following 
manner. 

LABEL INST A B REMARKS - -
INITIL CLM MCHTOT CLR DAIL Y TOTAL 

CLM OFLNTT CLR OFF-LINE TOTAL 

LPNR PMASKS LD PRT MASK REGISTER 

LPKR PKEYS LD PK REGISTER 

BRU START 

NOTE THE FOLLOWING TABLE IS USED BY THE 
NOTE MICRO-STRING TO TRANSLATE KEYBOARD 
NOTE ENTRIES. 

TABLE REG 5 5 WORD WORK AREA 
CODE 4134 KB=A, TRANS CODE = 4 COL 3 
CODE 4D4F ABBV =MO 
CODE 3101 KB = 1, TRANS CODE = 1 COL 0 
CODE 2031 ABBV = 1 
CODE 5527 KB= U, TRANS CODE= 7 COL 2 
CODE 5452 ABBV = TR 
CODE 4637 KB = F, TRANS CODE = 7 COL 3 
CODE 5353 ABBV = SS 
CODE 0000 

CODE 0000 

CODE FFOO END OF 
CODE 0000 TABLE 

START PKA 13 ENABLE PK KEYS 

TRANS LKBR TABLE SET BASE REG POINTER TO TABLE 
CLM TABLE +l CLEAR WORK WORD 1 
CLM TABLE +3 CLEAR WORK WORD 3 
BAM 4 ENTER KEYBOARD CODES 
CODE 104A TRANSLATE CODES 
EXE A -SCM2 TEST FOR INVALID ENTRY 
ALARM SIGNAL OPERA TOR 
RST A -SCM2 

2.21.09 



TCT 

LABEL INST A B REMARKS - -

BRU TRANS BRANCH TO RE ENTER 

LKBR SENBUF SET SCP TO SENBUF 

TRAB 3 0 STORE TRANSACTION CODE 

AL 1 ALIGN FORM 

POS 10 POSITION PRINTER 

PA TABLE +1 PRINT ABB RE VIA TION 1 

POS 14 POSITION PRINTER 

PA TABLE +2 PRINT ABBV 2 

POS 18 POSITION PRINTER 

PA TABLE +3 PRINT ABBV 3 

POS 22 POSITION PRINTER 

PA TABLE +4 PRINT ABBV 4 

MCHTOT REG 1 DAILY TOTAL 

OFLNTT REG 1 OFFLINE TOTAL 

1 
PKEYS BRU RECV PKl-TO PROCESS MSG 

NOP 

BRU SEND TO TRANSMIT MSG 

Revised 3-29-71 by 
PCN 1045481-001 2.21.09 (Cont'd) 





SECTION 3 
SYMBOLIC PROGRAMING PROCEDURES 
PROGRAM DEFINITION 

A program definition is a set of specifications used for the efficient development of the application 
software needed for a machine-oriented data processing system. The program definition procedure is: 

1. Systems Analysis. 

2. Defining the output. 

3. Defining the processing. 

4. Defining the input. 

5. Evaluating the system and, 

6. Defining for programing - or - reanalyzing and repeating the procedure. 

When the program definition procedure is used to design an acceptable system, the system specifications 
are recorded in the form of: 

1. A general systems flow chart of the complete data processing system. 

2. Completed Program Definition Worksheets, MKTG 2366, illustrating the required output from 
each program in the system. 

3. Complete Program Definition Charts, MKTG 2402, explaining the input, processing, and 
output requirements of each program in the system. 

The necessary applicational software will then be developed from this information. 

PROGRAM WRITI NG 

After the program definition specifications are completed and given to the programmer, the process of 
writing the program begins. 

The first step the programmer should take, is to thoroughly analyze the program definition 
specifications. This will serve two basic purposes. First, it will enable the programmer to ask questions 
about any area or steps in the definition, that are unclear. This can save later reprograming on steps the 
programmer incorrectly understood. Second, it will give the programmer an opportunity to develop a 
general idea of what the program will contain when completed, how much memory it is going to take 
(this evaluation becomes more accurate with experience) and to look for possible use of any routines, 
already written, which can be used in the program. 

After the definition is thoroughly analyzed and all questions answered, the writing of symbolic 
instruction begins. 

Every program generally has three separate sections, initialize, main body, and definition section. Coding 
forms should be set aside for each section. This enables the programmer to add pages to any sectiOn 
without interrupting the order. 

An explanation of each section using the programing example in Section 4 follows. 

Revised 3-29-71 by 
PCN 1045481-001 3-1 



Tue initialize portion of a program is generally the shortest portion of a program (in terms of numbers 
of instructions). In its narrowest sense, this portion will be executed before an NK or TK instruction, 
halts the internal program execution for the first operator action. In the example Seq. No. 's 20, 30, 40 
loads the base register for the PK table, the print mask table, and the line limit register for the form 
being used in the machine. Even though its instructions are few in number, without them the 
programmer could not control the program. For example program execution stops at Seq. 90, if the 
operator selected PKA 5 without having the LPKR instruction at Seq. No. 20, the base register for the 
PK Table would contain the word number for the LPKR instruction of the previous program in the 
machine. Therefore selecting PKA 5 would not have caused the execution of the BRU INCOST 
instruction. 

A broader description of the initialize section would be to include routines in the program which are 
not part of the main program. Seq. steps 1 through 5 on the Program Definition Chart in Section 4 
could be included under this broader definition. These sequence steps are not ·concerned with the 
mainline function, i.e., creating the invoice, but rather prepare the system for invoice writing. 

Tue second section of a program, the main body, is the area of the program which accomplishes the 
task assigned to the program. In the programing example, sequence steps 6 through 32, are concemed 
with creating an invoice. Each sequence step should be completely programed before going to the next. 
In the example, sequence steps 8 through 14, are accomplished by Sequence Numbers 430 to 570. Since 
these sequence steps are concerned with the ribbon line on the invoice, the programmer has labeled 
Sequence No.· 430 RIBBON. Tue use of descriptive labels gives the program added readability. This 
enables others who read the program documentation to follow the logic with a better understanding. 
Using the REMARKS field on each instruction to explain the purpose of the instruction also increases 
the readability of a program. These comments in the REMARKS field also help the programmer when 
debugging the program. 

While programing the sequence steps from the Program Definition Chart, the programmer will generally 
make use of three techniques, straight line, loops, and subroutines. Tue straight line method is exactly as 
its name implies, it is a series of instructions, without any branches which solves the given problem. 
Sequence numbers 110 through 230 are an example of this method. This sequence accomplishes the task 
of storing the page number, positioning the printer, printing the customer name, storing it, advancing 
the form, etc., without the use of loops or subroutines. Tue looping technique uses a counter to execute 
the same series of instructions a desired number of times. Tue routine which clears 11 words of memory 
labeled CLRMEN uses the looping technique. An index register value is incremented each time the loop 
is executed, up to a maximum number of times, when this limit is reached the program branches out of 
the loop. Tue subroutine technique is like the straight line method except that in the series of 
instructions we branch out to execute another series of instructions and when finished with these the 
program returns to the instruction following where we left the series. This allows writing a routine, 
which is to be executed a number of times during a program, only once; and going to it any time and 
returning to where it branched from. An example is sequence number 560 where we leave the straight 
line to print the date and invoice number and when finished, return to sequence number 570. 

Tue last section 'of the program, the define section, is actually written along with the initialize and main 
body. This area contains all PK Tables, Print Masks, storage regions, numeric constants, alpha constants, 
etc. An example of how this section is completed would be to look at Sequence Number 30. Tue LPNR 
instruction has in its A parameter the label MASKTB. Right after this instruction is written, the 
programmer codes the first MASK instruction with the label MASKTB in the definition section. This 
process is repeated for all storage locations, numeric constants, alpha descriptions, etc., as the program is 
written. 

3-2 



After the program is written, the last step is to assemble it and debug the program when it is loaded in 
the machine. 

PROGRAM DEBUGGING 

Generally, program debugging is completed in two steps. Tue first step is to correct Assembler errors, 
these are invalid conditions which the Assembler finds in the symbolic instructions, these errors are 
corrected by removing the invalid conditions in the symbolic instructions. Tue second step is to find the 
logic errors, i.e„ areas of the program which are not giving the desired results. 

When the Assembler detects an error in the source program, the invalid instruction is replaced by a 
NO-OP instruction. Thus the object program contains the correct instructions and the Assembler inserted 
NO-OP's. lt is possible to load the object program and replace the NO-OP's with the correct machine 
language code for the desired instruction, through the use of the Memory Modify service routine. 

Logic errors can be found by analyzing the sequence of instructions or by using one of three available 
Trace service routines. When a logic error is found, its proposed solution should be tested before 
re-assembly. This is accomplished by inserting the appropriate machine language codes for the symbolics 
in place of the incorrect codes. If the new solution cannot be placed within the area of the incorrect 
codes, a branching out of that area to an area not used by the program (usually starting at the word 
location following the last word of the program) placing the rest of codes and then branching back into 
the program at the appropriate place. If the new solution is correct, then it can be written in symbolics 
and inserted in the program before re-assembly. Once debugging is completed, the corrected program can 
be obtained, by the Punch from Memory service routine. 

As mentioned before, during debugging the Trace routines will sometimes be used. In general they are 
useful for (1) reading the program execution sequence (especially for conditional branches), (2) to check 
when the flags are being set or reset, (3) to read the values of the index registers (especially when used 
as counters in loops), (4) to read the value in the Accumulator (to debug shift and arithmetic 
instructions). 

DATA COMM DEBUGGING 

Debugging a TC 500 on-line program can be expensive if a central processor remains on demand while 
the TC 500 operator is detecting and correcting errors on the TC. lt is possible to debug off-line by 
using the memory modify utility routine, especially the selective start feature. 

Tue first word of the receive buffer in Data Comm Memory is located in word 124 7. Tue second word 
is 1216 and the remaining words follow serially to word 1246. Knowing this, it is possible to access 
these words using memory modi(y and index from the keyboard the USASCII code representation of 
the characters of any message the operator is anticipating, thus doing the work of data comm memory 
by placing the message in the receive buffer. Then, using the selective st.art feature of memory modify, 
access the word and syllable of the instruction immediately after the receive flag (R2) has been 
interrogated and determined to be set. Tue object program will begin executing from that word and 
syllable. This routine allows the operator to proceed as if a message had been received from the central 
processor and allows testing of those parts of the object program that unpack messages. 

Likewise, the transmission of messages can be tested off-line. Tue first word of the transmit buffer is 
located in ward 1249 and the next 30 words proceed serially to ward 1279. Tue last ward is 1248. 
After programmatically packing a message into the transmit buffer, the operator should depress the 

Revised 3-29-71 by 
PCN 1045481-001 3-3 



:program halt b\!Jton after the transmit ready flag (R3) is set (evidenced by the transmit ready light 
heing on) and then use meniory modify to read these words and determine if the message was assembled 
in the buff er correctly; 

Tue word locations of transmit or receive record work areas are determined by the Assembler and would 
be accessed accordingly. 

MODI FICATIONS NECESSARY TO THIS MANUAL FOR PROGRAMING 
THE 40 TRACK STYLE SERIES L 

Previously presented information in this manual applies only to 32 Track Styles of the Series L except 

for Assembler VI which utilizes the 40 track styles of the Series L. This section details all the additional 
information needed to utilize this assemblet martual when programing the Extended Memory Styles. 
Styles. 

An object program which was assembled for a 32 track system will operate on a 40 track. system using 
40 track firmware, except for the REM instruction. An object program which was assembled for a 40 
track system will operate only on a 40 track system. 

GP 300 OPERATION CODE MODIFICATIONS 

Forty track systems allow the use of any GP 300 instruction explained in this manual except for the 
Data Communications Message Handling instructions. All user memory may contain program data or any 
other desired data. However, certain instructions do not permit referencing memory locations a,bove 
word 511. These instructions are listed in Table 1 below: 

INSTRUCTIONS 

ADA 

CLM 

CPA 

DIV 

MUL 

MULR 
.· 

SUA 

XA 

Table 1 

lnstructions which only can reference words 0 to 511 of user memory 

lt is essential that the instructions contained in Table 1 be bome in mind when moving .or accumulating 
data in memory. Generally, the machine language codes are the same for either 3 2 track or 40 track 
systems. Examine Appendix B, for the machine language codes of both 32 track and 40 track systems. 

PROGRAMING CONSIDERATIONS 

Due to the fact that some . instructions cannot reference user memory locations above word 511, it is 
necessary that all constant data and working data be assembled in memory locations below word 511. 
Tue remaining memory is then used for program instructions. 

3-4 



SVMBOLIC 

PROGRAMING PROCEDURES 

Tue following example illustrates a generally used programing principle 

Example: 

r-1 1 

1 
2 

1 

L+ 3 

The three r.ectangles above illustrate a technique to have the working and storage area of the program 
assembled below memory word 511. 

Rectangle l represents word 0. The first three syllables (0, 1, 2) contain programing. Syllable 4 contains 
a branch around rectangle 2 to rectangle 3. 

Rectangle 2 contains the working-storage area. 

Rectangle 3 contains further programing as required for data manipulation. 

The following sample program illustrates the technique described above. 

LABEL 

TOTALS 
ZERO 
STORE 

BEG IN 

OPCODE 

LLLR 
LRLR 
LPKR 
BRU 

R~G 
NUM 
REG 

NK 

A 

35 
15 
PKEYS 
BEG IN 

( 
200 
0 
150 

5 

B 

l 

c 

With the expanded memory size it may become necessary to clear a memory area larger than 255 words. 
This cannot be accomplished, easily, in a single loop since Index Registers have a maximum value of 
255. 

Revised 3-29-71 by 
PCN 1045481-001 3-5 



SVMBOLIC 
PROGRAMING PROCEDURES 

Tue following technique is recommended: 

OPCODE A 

LIR 1 
MOD 1 
CLM TOTAL 
MOD 1 
CLM TOTAL 
IIR 
SK T 
BRU 

+/- INCREMENT B c 

0 

+ 200 ' 

1 
- 6 

Tue above programing clears 400 words of memory beginning with the .word number referenced by 
TOTAL. 

Example: 

This example illustrates a method to reference an array of memory ~arger than 255 words. Controlling 
such an. array of memory must. be accomplished by examining the indexing value and changing the base 
address for values over 255. 

Problem: Accumulate sales by 500 product codes (in words 1 to 500). 

Tue progr::i.ming segment below utilizes the fact that Index Registers have a capacity of 255. When a 
value transferred to an Index Register exceeds 255, only the difference between that value and 256 
remains in the Index Register. 

LABEL 

TOTAL 1 
TOTAL 2 

BEG IN 

3-6 

OP CODE 

SRJ 
LPNR 
BRU 
REG 
REG 
AL 
POS 
NK 
SKL 
ALARM 
BRU 
TRM 
PN 
POS 
NKR 
PNS­
TRM 
TRA 
TAIR 

A 

CLEAR 
PMASKS 
BEG IN 
255 
245 
1 
10 
3 
2 

CODE 
2 
16 
8 
7 
AMOUNT 
CODE 
1 

0 
5 

B 

-3 

0 

0 
1 

c 

2 

REMARKS 

Enter Product Code 
Valid Code 0-499 

Store Valid Code 
Print Code 

Enter Amount 
Print Amount 
Store Amount 



LABEL OP CODE A -
SUA LIMIT 
EX A 
TRA AMOUNT 
MOD 1 
ADM TOTAL 1 

BRU BEG IN 
TAIR 

TRA AMOUNT 
MOD 1 
ADM TOTAL 2 
BRU BEG IN 

B c -

4 

SYMBOLIC· 

PROGRAMING PROCEDURES 

REMARKS 

Compare Code to 256 

Under 256 

Reset I.R. 

Use Base of 257 

Revised 3-29-71 by 
PCN 1045481-001 3-7 





SECTION 4 
GP 300 PROGRAMING EXAMPLE 

PROBLEM 

Examine the Program Definition Chart and Worksheet located on pages 4-3 through 4-6. 

SOLUTION 

Tue proposed solution is located from page 4-7 to page 4-32. 

SOLUTION INDEX 

General Systems Flowchart ............................................................................ 4-2 

Program Definition Worksheet .......................................... „ ............................ 4-3 

Program Definition Charts ....................... „ .•....•.............•. „„ ........................... 4-4 

Sample Coding Forms ........ „ ..•....•...............•....................•. „ .... „ ..................... 4-7 

Assembler III Program Usting „ ....... „ •.... „ .......... „ ........... „ ....... „„.„ .. „.„ ... „ ... 4-33 

Sample Output ............................. „ .. „ .. „ .....•....... „ ................ „„ ........ „ ............ 4-69 

Cross Reference between Assembler III Output and 
Program Definition Chart „.„„.„„.„ „ ... „„ .. „.„„„ .. „„.„ „„ .... „ .. „ .. „ .. „. „„ 4-70 

4-1 



4-2 

SAMPLE BILLIN& PROGRAM 
GENERAL SYSTEMS FLOWCHART 

INVOIGE 
AND 

PRODUCT.__ __ .....,. L 2000 
DATA 

INVOICE 

a....---... SALES 
REPORT 



1-w 
w 
J: 

~ 
a: 
~ 
z 
0 
i= 
z 
u.. 
w 
0 
:2E 

1 
<( 
a: 
C!J 
0 
a: 
a.. 

4-3 



~ 

.!::. 
.... ---------------INPUT I · PROCESSING OUTPUT-----------M 

s a 
~ 
N c 
E 

DATA DESCRlmON 
OR 

OPERATION 

INPUT SOURCE 
Key-(KBI. S,-ify -· 
SpKify MB. DCK, PK. 81C., only 

if pertic:uls one-required; 
Pu,_ Cord IPCI; 
Edgt Pu.- Cord IEPCl; 
Pu-T-IPTI; 
S1ripod l.odgow CSLI. 
s,-ifyR-; 

Memory (MI.: Dom Com R-.. 

1" 1 1"'1~+----KB 

l..QJJ..t:JU'l~-------f--111-t---l---t"-t'CL-f---IUL_ __ ---

PRDCESSING REOUIREMENTS 

Accumulations; 
Formulm; 
Extenlions; 
Store for leter um; 
Colculadons; 
Formotting fo< OU!pUt. 

P 1 P i FIELD DEFINITION 
~ ~ ! OUTPUT 
N C 
T H 

(,r) (,rl 

TOf\E.__.EOft_AUTO_HlllC PRINT II'' 
DllZEB.O~ lf..N_QT_ AUIO MATlC 

OUTPUT DETAIL 

Print: Specify Printer end. FonnM , 
Console ICPl„ Une Prinur (U'I; 

Punch' S,-ify Adjunct. Fom111t. 
Speciol ,,__ .... , 

Stripodl.odglw' 

0-ComT.....,.it. 

1 
N 
s 
T 
R 
u 
c 
T 
1 
0 
N 
s 

ll.o.t...C.USilll'll:~J!LU.1~~~+11L+--t-'Lt'"'T--t---~=~-=--=-t- - l 

fJ.J..j~"lLJ'J____,QL ______ -+-LL-.-t--r-r::--r--r-----~---=I ---f 

1 1 1 • „~.... 1 ---+---1 

+-----P"-fll"+ ----Lj 
iJ.C.1'--'"ll..l::..._.ilU.1'1___ ____ ~'---t--t-'"--t--r---r--·--·-_KR_--
IA"lol--V.Jl'U....C.......~------+---r---r- -+---+-----+---- _11.. . 

KB 

CUSTOMER APPLICATION 

EOUIPMENT 

SALESMAN BRANCH DATE 

Prin1mdJn u. s. Amorlc:o 3-69 m 

i -, 
1 ----+---, 

' ~--i 

--i 

+""+i_+i.+- --- --·--·-

l""'"'I'- l'-J "nnom„ a'ER.MAX.1M!Jl1_ 
---i 

- -~-1 

PROGRAM DEFINITION CHART 
1040060 



f" 
VI 

i...~~~~~~~~~~~~~~INPUT 1 • PROCESSING OUTPUT~~~~~~~~~--iM 

l 
~ 
N 

~ 

DATA DESCRIPTION 
OR 

OPERATION 

L 1 U 
I' IM 
H 1 E 1 FIELO OEFINITION 
Q 1 ~. INPUT 
u 1 c 
M l (NI. 

~I 
1 1 
c 1 

INPUT SOURCE 
~IKBl,5-ifv-
5-ify MB, OCK, PK, -· anly 

ifpordcuwone-ind; ....-c.ni ll'CI: 
Edgo Pu.- Cord IEl'Cl; 
Pu-T- ll'TI; 
Stripodl.JldgorlSU, 
llpocily-; 

Mlmary IMI: Olm Com R-... 

11a,i.::iic.LL rn1'-«c IN 1 1u111„1 .KB 

1 -1------------ - -

1 I"' Ar '* ~ · n • cn 1 1 1 1 1 ----t-____M__ . 

~::Ru~:~nwi:>c. I " 1 lu 1-r lc: 1 ~. 

PROCESSING llEOUIREMENTS --; Formulm; 
E-; 
SU..for--; Colc:u-Formoning for OUlpUt. 

~d NET i~uNT I '„ 1 I ' I"' I ' 1 ---~-=--- -- n __ , .... , -gn~a „„ 

1 IU r .->1;.u:\o 1 cu "1 - .:J' 1 ,., 1 1u1 1 1.:> 1 _K..B ___ _ 

- _M 
1'"'"'1 "'wwy1.yi;;. _,Uct!UI ftL I 1 1 -------

1 1 1 1 ----- __ M. --1 1 ftl ... „bb 1 1 __ __M 

1 "' 1 1 - 1 ·• 1 1 1 __KB ___ _,_ ·----

P 1· P 1 FIELD OEFINITION . 
~ ~ 1 OUTPUT 
N C 
T H 

loll ,„, 

OUTPUT DETAIL 

Print: Spocify Prirmor ond Formot 
~ ICPI„ UnePrirmor ILPI: 

Punch: 5-ify Adjunct, Famm. 
llpociol - .... ; 

Stripodl.Jldgor: 

0..ComT.....,.it. 

~, ,, 
RI g. 
y, 
1 
0 
N s 

~-1-- --4---! 
! 

--1 

---+---t---r----j,,.--;----;---- __ ___M___ ____ „ __:________iL.f "' IUMIW 1 - gvp 1 V' nL..- 1 °• ,. 1•- l ---- -- --~-----

---i 
! 
i 
~ 

1 

------- --j 
CUSTOMER Al'PLICATION m PROGRAM DEFINITION CHART 

1040060 

EOUll'MENT 

MLESMAN 

-1nu.·s,"-
BRANCH DATE 

3-69 



~ 
0\ 

"---------------INPUT PROCESSING OUTPUT----------' 

s 
E 

u 
N 

~ 

DATA DESCRIPTION 
DR 

OPERATION 

------

INPUTSOURCE 

=:.::~~~~ PROCESSING REQUIREMENTS P P I FIELD DEFINITION ............ ___ - 7 ~ 1 DUlPUT 

=--==:IEPCI: ~:::., ~ fi ! 
=i.!:,~. ==--= ""'"'I ~ Spicify-· FormottlngfarlXltput. v.- ' 
Momary IMI; omcam - ra Min IMoxlN: 

OUTPUT DETAIL 

Print: ·Spocffy Prlntllr-F­
-~ ICPlu Uno Primw ILPI; 

l'Uncll: Speoify Adlunct. F~ 
Speoiolcadlo.no.; 

s.ipod l.ollgor: 

0...ComT-. 

1 
N s 
T 
R 
g 
T 
1 
D 
N s 

--·--~ 

~~: :_Zr:,Bl~ 11 lt~--:-i ~TOHATIC COtlnNUA:.. 

,-·-1c- --

•
~8TOT.AL +TAX+ ADDO.NS__ ··t· _ 

__ TOTAL s SUATOTAL +ADbONS _ !- t---f-++ __ -_-!-1' 
_ __ E. IS Bf.YOND ONE. _ __ _ -~---1---+-+--+--+-------------D 

--

--r-----t-t---------------f--

IDAI'-~~ __ Q.W_ FOR INDEFINIIE. 
_ ___ UMBER. 1--1 1 1 1 ~ 

M 
----- + m-tt-:-----=== 

:~~~~~~~~;~~;=====f~~±~f~~~~i·--=-=--=- ~- - :ET -co~_AaQUK-=-~-J:t-++~ -~ 
__ -- -- WITH PK,IDeirifi-t--i···-t---rl~lttl 11-~~-==± 

FIGURES WITH --- - - -+ . . , 1 ; -r-"-"-.c:..ir:ia..-"~""u" . i 

-

- -·---r--r-r----t-----t---------------+--

-- ·---+----+---+---+ ~ L ~~:~:~N:.D~~c 1 1 1 1 1 I · -- · - ---t-----
-- - ---- -- 1- ---f -+-+-----+- -1--

i -- ------ - - -·----- -; 
-+- -

--··--- --· -·--· - -· ·---t--- -------·-- -- -· 

U~MA.L__aus___r.c~AlllDD.IUi'-f--'-+-+-+--t----t------------- -- --1---- -----„------------- ----
1 

_JtJLilITlllL_J:ßA~L__----t---t---t---t-1-1- -- ----=~=--~=~~~~=-- - --- ~= • •. ~ ~-- ~ 
....... L-Z~loh.--D-lliidooo- J'a'-"----+---r-- ---. --·-· ---- ---1 

'AllL.:..-+:----+-+-r-+--t----- --- -- : __j 
--·'---~---------------f-1 ' 

t--+-------- ------- --1-------------------1-+--~--;--+---t------

. ----~~-~- 1 1 1 1 1 1 1 rrrn 1 __ 1 __ -~~~t~i 
c:tlSTOMER APPUCATIDN m PROGRAM DEFINITION CHART 

1040080 

:-t:OU-NT· 

SA~ BRANCH DATE 

-•u.s.- 3-811 



f' 
-.J 

PROGRAM 10 

BURROUGHS ASSEMBLER CODING FORM 

LABEL 

PARAMETER 

A 
+ OR­
INC/REL 

B c 

351361371381391401411421 43 144145 

ALPHANUMERIC DATA OR PRINT MASK 

1 1 2 1 3 14 15 1sp1e 19 110111 112113 114l 15 l1s11711e 119120121 122123l24 

PAGE OF 2. 6 

CUSTOMER 

BRANCH 

PROGRAMM ER 

REMARKS 

11 l12l 13l 14 l15 l16 l17 l1B 119120 l21 l22 l23124 l2Sl26 l2712B 129130 33134135136137138139140141142 I 43 144145146147148149150 l51 l52 l53l54 l55 l56 ls7 ISB IS9 l60l61 l62l63 l64165 l66 l67 l6Bl69 l70 l71 l72 l73l74l75 l76177 

PRINTED IN U S. AMERICA P'OftM MK TG - 2291 (7/11) 



-f>' 
00 

BURROUGHS ASSEMBLER CODING FORM PAGE 2. OF 2 6 

PRO.GRAM 10 
CUSTOMER 

BRANCH 

PARAMETER PROGRAMMER 

REMARK'S 

II l12113l 14l15l16 l17 llB 119121> 121122123124125126127128 331341351361371381391401411421 43 60l61 l62l63 l64165l66l67l6Bl69170171172173174175176177 

PRINTED IN U S. AMERICA PORM MK TG • 2298 (7/81) 



f" 
\0 

PROGRAM ID 

10 

E 

BURROUGHS ASSEMBLER CODING FORM 

PARAMETER 

A 

+ OR -
INC/REL 

B c 

43 144145 

.ALPHANUMERIC DATA OR PRINT MASK 

3, 4 ,s , 6 17 , B , 9 , 10 l 11, 12, 13, 14 1 15 [ 15,17 118 119120121122123124 

PAGE 3 OF 2 6 

CUSTOMER 

BRANCH 

PROGRAMMER 

REMARKS 

61 l62l63l64165166l67l68169l'l0171172173 174175176177 

11 112113114115116 [11118 119 120 121122123124125126127128 129130 33134135136137138139140141142 I 43 144145146147148149150 l51 l52 l53f54 l55 l56 l57 f5B l59 f60l61 l62l63 f64165 l66 l67 l68169 l'l0 f71 l72 l73 l74l75176177 

PRINTEO IN U S. AMERICA P'OftM MK TG - 229e (7/08) 



~ ....... BURROUGHS ASSEMBLER CODING FORM PAGE 4 OF 2. 6 
0 

PROGRAM ID CUSTOMER 

9 110 
BRANCH 

LIE 
PARAMETER PROGRAMMER 

A B c 
REMARKS 

CONSTANT DATA ( NUMERIC) 

1, 2 

11112113l14l1Sl16 l17l1S l19 l3l l21 l22l2312412Sl26127128 l29130 33134135136137138139140141142 I 43 144145146147148149150 l5tl52 l53l54 l55 l56 l57 ISB ls9 l60l61 l62l63 l64165 l66l67.l6B169110 l71l72l73l74175 l76177 

PRINTEO IN U S. AMERICA 
FORM MK TG,- 2298 (7/G8) 



BURROUGHS ASSEMBLER CODING FORM -PAGE 5 OF" 2. 6 

PROGRAM 10 CUSTOMER 

BRANCH 

PARAMETER PROGRAMMER 

A B c 
REMARKS 

1 I0!:>1v1u10I 1 1 1 1 1 IS1L.ß© 1 1 171 1 1 1 1 1 1 1 1 I01 1 1 j j 1 1 1 j 1 1 ! 1 jDIC::.11 !ILJIQ!Lll ll i\U!DI! ![ !'Kl!DI 1!-,,!AI 111'11 1 1 1 1 1 j 

11 l12113l14l15l16 l17l18 l19l3:>121122123124125126127128 44145 47148149150 IS11?2 l53 l54 l55 l56 l57 l5B l59 l60l61 l62l63 l64165 l66l67 l68l69IJO171172173174175176177 

~ 
PRINTED IN U S. AMERICA POJltM MK TG - 229• (7/el) --



~ 
1 

PAGE 6 OF 2 6 BURROUGHS ASSEMBLER COD 1 MG FO.RM -N 
Cl,JSTOMER 

&RANCH 

PARAMETER PROGRAMMER 

A B c 
REMARKS 

II lt2l 13l 14 l1S lt6 lt7 l18 lt9 IZ> 43 144145 l59 l6016t l62l63 l64165 l66 l67l681691'l0 l71 l72 l73l74l7Sl76177 

PRINTED fN U S. ·AMERICA POOM MKTG.·22H 17/H) 



BURROUGHS ASSEMBLER CODING FORM PAGE 7 OF 2. 6 

CUSTOMER 

BRANCH 

PARAMETER PROGRAMM ER 

FIEl..DI A j B 1 C 1 
~~~~~-r-~~~~-r~~~-iL~-· 

REMARKS

43 144145

5 ·617 ,8 ,9,10111,12,13,141 15116117118119120121122123124

11112113114115116117118119 la> 33134135136137138139140141142 I 43 144145146147148149150 l51 l52 l53IS4 ISS l56 l57 IS8 l59 l60l61 l62l63 l64165166 l67l6Bl69170171172173174175176177

.j::. PRINTEO IN U S. AMERICA P'O"M MK TG - 228e (7/el)
1 -w

~
1 - BURROUGHS ASSEMBLERCODING FORM PAGE 8 OF 2 6
~

CUSTOMER

BRANCH

PARAMETER PROGRAMM ER

FIEl..DI A 1 B 1 c 1
~~~~~-'-..,...~~~~~T""~~~---jL~- 1 +oR-

INC/REL 
REMARKS 

35136137138139140141142143144145 

ALPHANUMERIC DATA OR PRINT MASK 
,, 

1 , 2 , 3 , 4 , 5 , 6 1 7 , B , 9 , 10 l 11 , 12, 131 14 I 15 

11 ll2\ 13\.14 l15l16 \17 \1B 119120 121122123124125\26127 \28 33134135\ 36137138139140141142 \ 43 144145 146147148149150 l51 l52 l53l54 l55 l56 l57 ISB l59 l60l61 l62l63 l64165l66l67l6B169170171172173174175176177 

PR 1 N TED IN U S. AM ERi CA IPORM MK TG - 2218 (7/11) 



..i;:... 
1 ...... 

Ul 

PROGRAM 10 

11l12l13l14 l15l16 l17l18 

PRINTED IN U S. AM'l:RICA 

BURROUGHS ASSEMBLER CODING FORM PAGE 9 OF 2 6 

CUSTOMER 

BRANCH 

PARAMETER PROGRAMM ER 

A B c 
REMARKS 

43 144145 

CON ST ANT DATA ( NUMERIC) 

ALPHANUMERIC DATA OR PRINT MASK 

9,10111,12,13'141 1s l16117118o19l20121122123l24 

33134135136137138139140141142 I 43 l44 l45 l46 l47l4Bl491501s11s2 ls3l54 Iss Iss ls7 l5B ls9 l60l61 l62l63 l64165166 l67l68169170 l71 l72 l73 l74l75 l76177 

l'OJtM MK TG • 229S (7/•I) 



~ 
1 
~ 

0\ 

BURROUGHS ASSEMBLER CODING FORM PAGE 1 Q OF ....2..15. 

CUSTOMER 

BRANCH 

PARAMETER PROGRAMM ER 

FIELDI A 1 B 1 c 1 
~~~~~~""T""~~~~~-r~~~--tL~- 1 +OR-

INC/REL
COD' LABEL REMARKS

43 144145

ALPHANUMERIC DATA OR PRINT MASK
·,,

15

11 l12l 13l 14 l15 l16 l17 l18 l19 la> l21 l22 l23l24 l2Sl26 l27 l28 129130 43 144145146147148149150 l51 l52 l53 l54 l55 l56 l57 ISB ls9 l60l61 l62l63 l64l65 l66 l67 l68169IJO171 172173174175176177

PRINTED IN -U S. AMERICA FORM MK TG - ~298 (7/el)

..(:>.
1
-.l

PRINTE& IN U S. AMEfUCA

BURROUGHS ASSEMBLER CODING FORM

PARAMETER

A B c

-1

ALPHANUMERIC DATA DR PRINT MASK

43 144145

PAGE 1 1 OF 2. 6

CUSTOMER

BRANCH

PROGRAMM ER

,gl60l6l l62163164l6S l66 l67f68l69l70 l11 l12 l13174l75 l76177

POftM MKTG·22H (7/H)

+:-.
00

PAOGRAM 10

111!2113114115116117118119 la>

PRINTIED IN U S. AM ERi CA

BURROUGHS ASSEMBLER CODING FORM

PARAMETER

A B c

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5 o6l7,B,9i10l11,12,13,141 15

331341351361371381391401411421 43

PAGE OI' 26

CUSTDMER

BRANCH

PROGRAMM ER

REMARKS

P'OlltM MK TG - 2291 (7/11)

f'
\0

BURROUGHS ASSEMBLER CODING FORM

PROGRAM 10

PARAMETER

-----------T------j~~~I A 1 B 1 C 1 + OR -
INC/REL

LABEL

43 144145

0

CONSTANT DATA (.NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

S , 6 1 7 , B , 9 , 10 l 11 .12, 13 114 1 15

PAGE 1 3 OF 2. 6

CUSTOMER

BRANCH

PROGRAMM ER

REMARKS

11 l12l13l14l15l16 l17l1B 331341351361371381391401411421 43 1441451461471481491501s11s2 ls3l54 l55 l56 ls7158 IS9 l60ls11s2ls3 l64l65 l66 l67 l6B l691JO l71 l72 l73 l74l75 l76177

PRINTED IN U S. AMERICA POftM MK TG - 229e (7/elJ

f"
N
0

PROGRAM ID

LABEL

BURROUGHS ASSEMBLER CODING FORM

PARAMETER

A

+ OR­
INC/REL

CONSTANT DATA (NUMERIC}

B c

43 144145

ALPHANUMERIC DATA OR PRINT MASK

1' 2 15 116117118119120121122123124

PAGE 14 OF 2 6

CUSTOMER

BRANCH

PROGRA-MMER

REMARKS

55l56 l57 ISBl59l60 l61 l62l63l64l65 l66l67l68l69 l70 l71 l72 l73 l74l 7Sl76l 77

11 112113114115116 117118 119 120 1211221231241251:16127128 129130 43 144145146147148149150 l51l52 l53l54l55156157 lsB l59 l60l61 l62l63 l64l65 l66 l67l68l69170171 172173174175176177

PRINTEO IN U S. AMERICA P'OftM MK TG • 229S (7/el)

f"
N
~

PROGRAM 10

9 110

LIE

11 112'113114115116117118 l19 l2J 121122123124125126127128

PRINTED IN U S. AMERICA

BURROUGHS ASSEMBLER CODING FORM

LABEL

PARAMETER

A

+ OR­
INC/REL

B c

35l36l37l38l39 l40l41l42I 43 144145

PAGE 1 5 OF 26

CUSTOMER

BRANCH

PROGRAMM ER

REMARKS

l59 l60l61 l62l63 l64165 l66l67l6B169170171 172173174175176177

P'ORM MiK TG • 229e (7/•I)

~
1 '---,
N'
N

·PROGRAM 10

11 112113114115116117118119 120

PRINTED IN U S. AMUICA

BURROUGHS ASSEMBLER CODING FORM PAGE 1 Q OF 2. Q

CUSTOMER

BRANCH

PARAMETER PROGRAMM ER

A B c
FIEMARKS

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA. OR PRINT MASK

3 1'4 15 1 6 17 • 8. 9 ,10 111,12, 13114 I 15 l 16117118119120121122123124

331341351361371381391401411421 43 144145

J'ORM MK TQ - 2"Z•• (7/eaJ

~
l\.l w

PROGRAM 10

10

E

12l 13l14°l15 l16 l17f18 l19 lllll

f'-flllNTtD" IN U S. -AMEIUCA

BURROUGHS ASSEMBLER CODING FORM PAGE 1 7 DF -2....6.

CUSTDMER

BRANCH

PARAMETER PROGRAMM ER

A B c
REMARKS

43 144145

ALPHANUMERIC DATA DR PRINT MASK

1 1 2 13 14 15 1s j1 1e ,e 110111 112,13 11411s j1s111 11e 11elllll121 122123j24

33134135136137138139140141142 I 43 159160161 l62l63l64165 l66l67l68169 l70 l71 f72 l73l74l75 l76177

POlllM MK TG ·"2298 t7ieaJ

f"
N
~

11 l12l13l14l15l16l1711Bl19l20

Pf„NTED IN U S. A.MERICA

BURROUGHS ASSEMBLER CODING FORM

PARAMETER
A B c

43 144145

,,_

15 l 16117118119120121122123124

43

PAGE ! 8 OF 2. 6

CUSTOMER

BRANCH

PROGRAMMER

REMARKS

60l61 l62l63 l64165 l66l67l6B1691'10171172173174175176177

P'O'-M MK TG - 221S (7/el)

f"
N
VI

II

PRINTED IN U S .. AMERICA

BURROUGHS ASSEMBLER CODING FORM

PARAMETER

A B c

43 144145146147148149150 ls1 ls2 l53154ISS156157

PAGE 1 9 OF -2.....6.

CUSTOMER

BRANCH

PROGRAMM ER

REMARKS

60l61 l62l63l6416Sl66l67l68·169l'l0-l71 l72 l73174175176177

PORM MKTll·22H (7/111

f"
N
0\

PROGRAM 10

PRINTED IN U S. AMERICA

BURROUGHS ASSEMBLER CODING FORM

PARAMETER

PAGE 2 0 OF __2_Q

CUSTOMER

BRANCH

PROGRAMM ER

REMARKS

73174175176177

POftM MKTG-22H (7/11)

f"
N
-J

PROGRAM ID

11 l12l13l14l15l16l17l18119120

PRINTEO IN U S. AMEIUCA

BURROUGHS ASSEMBLER CODING FORM

PARAMETER

A B c

AL.PHANUMERIC DATA OR PRINT MASK

31415 1617 ,8 ,9110111,12.131141 15116117118119120121122123124

331341351361371381391401411421 43

PAGE 2. 1 OF 2. 6

CUSTOMER

BRANCH

PROGRAMMER ~~~~~~~~~~~~~~~~~~~~

REMARKS

l59 l60l61 l62l63 l64165 l66l6716B l69l'l0171172173174175116177

POftM MKTG·ZZH (7/Hl

~
N
.00 ... BURROUGHS ASSEMBLER . COD 1 NG. FORM: PAGE :..2.....G. OF 2 6

PAOGRAM· ID CUSTOMER

BRANCW

PARAMETER: Pi!OGRl.MMER
A I' a :c

U:(12J 13l14f1Sl16 lt7 69170171172173174175176177

PRINTED'" u s. ·AMDHCA PO~M MK TGI • lta98 17/HI

T-.
N
\0

PRINTED IN U S. AMERICA

BURROUGHS ASSEMBLER CODING FORM

PARAMETER

A B c

s, 617 ,e ,9,10111.12,13,141 1s l1611711s119120121122123124

33134135136137138139140141142143144145

PAGE. 2 3 OF -2.....6.
CUSTOMER

BRANCH

PROGRAMM ER

74175115177

so161162l63 l64·lss lssl67168 l691'l0 l71 l72 l73l74l75l76177

l'OftM MK TG • 229• (7/•I)

t­.w
0 BURROUGHS.ASSEMBLER CODING FORM

PROGRAM JO· ·• • · --

PARAM1;;TER

A B c

ALPHANUMERIC DATA OR PRINT MASK

10·111. i2.13114 I. 15

1.1 l12l 13l14 l15l16lt711B11912112112212312ll l2Sll!l612712B l29l30 38139140141142 I 43 1441'15

PtUNTED IN U S. AMEIUCA

PAGE 2 4 OF 2. 6

CUSTOMER

BRANCH

PROGRAMM ER

flEMARKS

s 11s2 IS3 IS4 ISS l56 ls7 60161 162163164165166.167

PORM MKTG·22H 17/H)

f" w
...,.;.

PROGRAM 10

BURROUGHS ASSEMBLER CODING FORM

PARAMETER

A

+ OR -
INC/REL

B c

3Sl36l37l38l39l40l41l42I 43 144145

ALPHANUMERIC DATA OR PRINT MASK
-,

3 1 4 , 5 , 6 1 7 , 8 , 9 , 10 l 11 .12, 13 1 14 1 15

PAGE 2. 5 OF 2 6

CUSTOMER

BRANCH

PROGRAMM ER

REMARKS

74175176177

11 112l 13l14l15l16117118 119 la> l21 l22l23l24 l2Sl26 l27 l2B 129130 l31l32l33 l34 l 3Sl 36l37l 38139l40141142 I 43 l44 l45 l46 l47 l 4Bl 49ISO l51 l52 l53l54 l55 IS6 ls7 ISB l59 l60l61 l62l63 l64165 l66l67l68169170171172173174175176177

P'RINTED IN U S. AMERICA P'ORM MK TG - 2281 (7/11)

~ w
N

PROGRAM.10

210

,.11.,

PRINTED IN U S. AMERICA

.-,.::~''/. i,; .·~·- . -~,

BURROUGHS ASSEMBLER CODING FORM

PARAMETER

A

+ OR­
INC/REL

CONSTANT DATA (NUMERIC)

B c

43 144145

ALPHANUMERIC DATA OR PRINT MASK

PAGE OF 2 6

CUSTOMER

BRANCH

PROGRAMM ER

REMARKS

IS!! l61>l61 l62l63 l64l65 l~l67l68l69l70 l71 l72 l·7i3l74l75 l76177

POltM MKTG·aa•• (7~11)

PROGRAM ID. • llATE RUN 3126/70 TIM~ • 12148 VERSION 0?.•01•70 PAGE 001
WORD 08-JEC T sni. SYM 0 nP FO. A•PARAMETER B C. LARf.L . RF:MARKS-

SYL cnnE · NO. LOC. CODE . LN. LAqEL INC PAR PAR OEC .QU

4EM0RY SIZE NOT [NTEREO r512 AfSUMEO)
0 NOTE RASIC 8ILLING PROGRAM

0 0 FC69 2 0 LPKR Pl<TABL 105 LOAO PK BASE REGISTER

1 F'l\68 3 0 LPNR MA~KTß 107 LnAD PRINT NüM. BASE REG.

2 E.433 4 0 LLLR 51 LOAD LEFT LIMIT REGl~TER

3 F6.93 5 0 IN IT AL PKA 4 11-'iA· ENABL[PKA 1 LOAD DATE

6 0 NOTE I~V. NO. TAX. PKA2 PRINT

7 0 NOTE OAILY TOTALS. PKAS cnsT

8 0 NOTF: INVOlCE, PKAA CLEAR TOTL

1 0 All\00 9 0 NK 0 n XA~Y nCK TO START INVOICE

1 6758 10 0 SET y 3 SfT STANDARD TNVOICE FLAG

2 TA'OF 11 0 .BEGlNV oc SLnTOL + 7 15 ADVANCE TO tlNE 10

3 ;6t;52 12 0 RSf .y ''., ,·:
t SfT Y 1 ~ONT. PA~E

2 (j ato2 · 13 0 CLA 0 :.:. CLEAR Ace. INSERT 2

1 3.n12 14 0 TRM PAGEN() t14 STORE FOR PAGE NOe 2

2· FA40 15 0 PKA 1 7
. _,_,, BRANCM TO INtTIALIZE

3· rn1s 1„ 0 LKBR Ctl!{TNf.f '117 LOAD K[YRnARn 8ASE REG,

3 .0 E'~OC ·17 0 POS t04AO•P 13 POSITION TO SOLO TO

1 Antr 16 0 TKM lt XTYPE CUSTO~[R NAM[

2 E!lOl 19 0 AL 1 AOVANCE LF:FT ONE L INF.'

3 . (001\ ?O o LLCR SLnTOt.. e LOAD wITK sntn TO LINE

4 0 5noo 21 0 LTR 4 „ REGIN TVPtNG LOOP
'·,;; 1 s::.oo 22 0 LTR 3 n Ln~o I~OEX ~EGJSTER 1

f'-· ·~
·w·,
!;N . .

;t PROGRAM ID. • nATE RUN 3/'?.ti/70 TlMF: • l?S48 VERSION 0~·01•70 PAGE ocn
-i::.. WORO OßJECT SEl,J. SYM. nP ro. A•PARAMETf.R 13 c LAREL R F:' M A R !(S

SYL cnoE NO. LOC. Cl'lOE LN. LßREL INC PAR PAR DEr EQU

2 6544 23 0 RST X ? RESET X F'LAG
3 EROC 24 0 SHIPTO POS NMAO•P 13 PnSITtON TO PRINT

5 0 AClf 7.5 0 T K 31 XTYPE INfO

1 EOOl 2fi 0 Al 1 AOVANCf. Lr.rr ONE LINE
2 5R02 27 0 TIR 4 ' TEST Tf TMIRO TIME
3 4444 28 0 EX X 2 4 ENTER IF SHIPTO

6 0 5R03 29 n ITR 3 3 Tf ST FOR COMPLETJON

1 4164 30 0 SK T T 1 TERMINATE LOOP

2 7C04 31 0 BRU SHTPTO 4 3 REPEAT

3 7A09 32 0 ßRU RJRRON 9 2 JIJMP TO RJBBON AREA

7 0 4184 33 0 SK T T 1 TERMINATE LOOP

1 7C04 34 0 ARlJ SMTPTO 4 3 RFPf.AT LOOP

2 4599 35 0 f X K 34 1 BRANCM TO PRINT SAME

3 7COR 36 0 B~U + 4 8 3 EXIT tOOP

8 0 6744 37 0 SET X ?. SET TO ENTER SHIPTO LOOP

1 El'l02 38 0 AL 2 AOVANCE TWO LINES

2 7C04 39 0 6RU SHTPTO 4 3 Rf TURN TO LOOP

3 [002 40 0 Al 2 AOVANCE rwn LINES

9 0 EROC 41 0 POS NMAD•P 13

1 C888 42 0 PA 'lAME 136 PRINT ALPMA M[SSAGE

2 E914 43 0 RIBAON ALTn RTRRL 20 ADVANCE TO RJBBON LINE

3 EROS 44 0 POS Tl'.:RM•P 6 POSTTTON TO TERMS

PR0GRA"4 JO, • llATE RUN
WORD OBJECT

S Y·L COOE
SEQ. SYM.
NQ,. LOC.

10 0 ACOB 45 0

1 ER12 46 0

2 ACOA 47 0

3 ER1E 48 0

11 0 AC09 49 0

1 Eq29 50 0

2 ACOC 51 ()

3 E~37 52 0

12 0 AC09 53 0

1 [)ß7C 54 0

2 0A70 55 0

3 2~5E 56 0

13 0 7~00 57 0

1 2062 58 0 80DYTV

2 4652 5? n

3 2A56 60 0

14 0 2R50 6 1 11

1 6'549 62 ()

63 0

2 F604 (,4 0

3 ER04 65 0
f" w 15 0 A640 66 0 "1A X VI

3/26/70 TIME • 12148

OP ro. A•PARAMETER
CODE LN. LAAEL INC

TK 11

POS ORONOP

TK 10

POS C!J~NOP

TK 9

POS SLOl3YP

TK 1?

POS 51-fPVJP

TK 9

CLM lNVNET

CLM lNVCST

SRJ DATE•J

RRU + ?

SRJ CKLTNE

EX V

SRJ SlHHOT

SRJ CONTPG

RST X

NOTE

PKA 1 3

POS PRnCOP

NK 4

VERSION 0?•01•70

B C LABEL
PAR PAR orr. (QIJ

19

31

42

56

1. 24

1. 25

94 2

13 2

9A 0

t 2

86 2

80 2

34

5

0

PAGE 003

R E M A R K S

XTYPE TERMS

POSITION TO ORDER NO,

TYPE nROER NO,

PnSITtON TO CUSTOMER NO.

XTYPE CUSTOMER NUMBER

POSITIO~ TO SOLO BY

XTYPE SALES NAMES

PO'STTION TO SHIP VIA

XTYPE SHIPVIA

CLEAR INVOICE NET TOTAL

CLEAR INVOICE COST TnTAL

PRINT DATE ~ INVOICE NO

RRU SKIP LINE INCREMENT

INCREMENT & CHECK LINE CT

TEST roR CONT, PAGE

PRINT SUB•TOTAL

REGIN CO~TINUATION PAGE

~ESET DISCOUNT FLAG

AnOON FLAG

ENA0LE SUB•TnTAL PK

PnSITION TO PROOUCT COOE

INDEX NO. LESS THAN '5000

f' PRO GRAM. JO • • OATF.: RUN 31?.6170 TIME • 12:48 VERSION 02•0l•70 PAGE 004 . . w .
°' WORO 08JE.C T SEO. SYM. OP ro. A•PARAMETfR B c LABEL R f, M A R K S

SYL CIJClE NO. L.OC. CODE LN. LA~EL INC PAR PAR OEC EQU

l O:Uf7 67 0 CPA n:sr 135 CHECK IF VALID

2 060.0 68 -0 NOP EQUAL TO. NO OPERATinN

3 · 7410 69 0 BRU + ? 16 t tNVALTO CODE

16 ·o 1C10 .70 0 BRU + 3 16 3 VALID PRINT

1 0980 71 0 ALARM INVALID no NOT PRINT

2 700f 72 0 ARU MAX 15 0 Tn INOEX NEXT (ODE

l .. 4.75~ 73 ·O EX y
'·

3 TrsT FOR A CONT. PAGF

17 0 2856 74 0 SHJ SU8TOT 86 2 PRINT SUBTOTAL

1 2'A50 75 0 SRJ CnNTPG 80 2 BE"GTN CONTINUATION PAGE

2 7COE 76 0 RRU ßl"lnY IV + 6 14 3 BRANCH TO INDEX PROD•NO,

3 Ent)t 77 0 AL 1 AOVANCE LtFT ONE llNE

18 0 0280 78 0 SLRO 11 0 SHIFT FOR PRJNlING

1 04E3 19 0 P.N 14 3 PRINT PROOUCT NO.

2 A440 80 0 NKR 4 0 INDEX QUANTITY

3 4592 81 0 EX K 1 l TST FOR OJSC OCKI NO DISC

19 0 6748 82 0 SET)(.3 SET X3 NO DISCOUNT FLAG

1 ER06 83 0 POS QTY•P 1 POSITION TO QUANlTY

2 01.90 64 0 PNS• 9 ('\ PRINT WHOLE NO, QUANTITY

3 C52D 85 0 PC• • PRINT • Ir MINUS

20 0 0210 86 0 SlRfl 1 0 REPOSITION rnR EXTN

1 307A R1 0 TRM QTY 1z2 STORE QUANITY

2 ER15 88 0 TKDESC POS OE~C„p 22 POSITION TO nESCRIPTTON

PROGRAM ID. • OATE RUN 3/26/70 TIMf • 12:48

WORD OB,JECT
SYL CfJOE

SEQ. SYM. OP FO. A•PARAMfTfR
NO. LOC. cnDE LN. LAREL INC

3 AC17 89 0 TK 23

21 0 4092 90 0 SK K

1 2062 91 0 SRJ CKL.INE

2 4252 92 0 SK y

3 E001 93 0 Al 1

22 0 7814 94 0 8RU TKDESC

1 E02A 95 0 MPRICE POS SPRC•P

2 A252 96 0 NKCM 5

3 4ECC 97 0 EXE A

23 0 0980 98 0 ALARM

1 7416 99 0 BRU MPRICE

2 2864 100 0 SRJ CTMILL

3 45C1 101 0 EX A

24 0 7017 102 0 BRU MPRICE + 3

1 2R4E 103 0 SRJ PT•PRC

2 EA36 104 0 PnS PERU•P

3 44C4 105 0 EX A

25 0 C043 106 0 p c c
1 387A 1 Oi' 0 TRA QTY

2 0202 108 0 SLRO ()

~ 3 3071\ 109 0 TRM QTY
1
w
-.:i

VERSION 0?•01•70

R C LAAEL
PAR PAR DEC EQU

l 4

98 0

1 2

20 ?

43

2

CM 2

22 1

100 2

- 1

23 0

78 ::>

55

c ll

122

2

122

PAGE 005

R E M A R K S

XTYPE OESCRJPTJON

TEST IF OCK1 USEO

INCREMENT llNE COUNT

TEST IF LAST INVOICE LINE

ADVANCE LEFT ONE LINE

BRANCH TO TYPE DESC.

POSITION TU SELL PRICE

XINOf.X PRICE'

TEST TF BOTH C M USEO

WARN PRICF ERROR

ARANCH Tn INOEX PRICE

OETERMINE IF MlLLS INDEX

TEST IF MINUS FlAG SET

RRANCH TO INDEX PRICE

PRINT SELL PRICE

PnSITION TO PER UNIT COLN

TEST IF C FLAG SET

PRINT C

TRANStER QUANITY

SHlFT FOR PER C PRICE

STORE QOAN!TY

~ PROGRAM ID. • w
DATE RUN 3/26/70 TIMf'. • 1~:48 VERSION 0::>•01•70 PAGE 006

00 WORD OBJECT SEQ. SYM. OP FO, A•PARAMETER 8 c LAREL RF'.MARK"
SYL CODE NO, LOC, CODE LN, LA13El INC PAR PAR OEC EQU

26 0 44C8 110 0 EX A M 4 TEST TF M K!Y USEO

1 C040 111 0 PC M PRINT M

2 3A7A 112 0 TRA CHV 122 TRANSFER QUANITY

3 0:?03 113 0 SLRO 0 3 SHIFT FOR PER M PRICE

27 0 307A 114 0 TRM QTY 122 STORE QUANITY

1 38713 115 0 TRA PRTCE 123 TRANSFER SELL PRICE

2 45CC 116 0 EX A CM 1 TEST JF EITHER C M USED

3 741f) 117 0 BRU fl?SAMT 29 t BRANCH TO GROSS AMOUNT

28 0 4791 118 0 EX K 4 3 TEST TF OCK4 USEO

1 C045 119 0 PC E PRINT E

2 C041 120 0 PC A PRINT .A

3 741D 121 0 BRlJ GRSAMf 29 t BRANCH TO GROSS AMOUNT

29 0 AC04 122 0 TK 4 XTYPE PER UNTT CHARACTER

1 6429 123 0 GRSAHT LSR 9 LOAD SHIFT REGISTER

2 8C7A 124 0 MULR <HY 122 MULT PRICE X QUANITY

3 EA37 125 0 POS GRS•P 56 POSITION TO RROSS AMOUNT

30 0 2C4D 126 0 SRJ PNUMRC 77 3 PRINT GROSS AMOUNT

1 306F 127 0 TJ~M WRKREG 1 1 1 STORE GROSS AMOUNT

2 8085 128 0 ADM T<lROSS 133 AOO Tn GRAND GROSS TOTAL

3 4548 129 0 Ex X J 1 TEST JF OJSCßUNT APPTCABL

31 0 7C21 130 0 BRU NfTAMT 33 3 BRANCH TO NET AMOUNT

1 ER43 131 0 POS OtSC•P 68 PnSITION TO OlSCOUNT

PR0GRM4 lD • • OATE RUN 3/26/70 TIMr „ 12:48 VERSION 0~•01•70 PAGE 007

WORD 08,JECT SEQ. SYM. OP ro. A•PARAMETF.'R 8 c LABEL R F' M A R K S
SYL cnoE NO. Lnc. COOE LN. LARf.l INC PAR PAP OEC EQU

2 A622 132 0 NK 2 2 XINOEX DISCOUNT

3 4500 13 3 (l EXZ 1 Tf ST rr ZERO INOE~ED

32 0 7C21 134 0 R~U Nf.TAMT 33 3 BRANC~ TO NET AMOUNT

t 0473 135 0 PN 7 ' PRINT DISCOUNT AS IAt 1

2 C025 l. 36 0 PC i PRINT "I"
-3 6424 137 0 LSR 4 LOAO SKirT REGISTER

33 0 6C6F' 13-8 0 MLIL'R WRKREc; 111 MULT DISCOUNT X GROSS

[906f . 139 0 SUM lltRKREG 111 SUBT OlSCOUNT F'ROM G~OSS

2· en86 140 0 AOM TOTSCT 134 AOD Tn TOTAL DISCOUNTS
_ 3- 3A6F' 141 0 NETAMT TRA WRl<REG 111 TRANSFER NET AMOUNT

34 0 (R4B 142 0 POS Nf.'T•P 76 POSITION TO NET AMOUNT

1 2t:4D l 43 -0 SRJ PNllMRC 77 3 PRINT NET AMOUNT

2 807C 144 0 ADM INVNET 124 AOD LTNE NET rn TOTAL NET

3 807E \45 0 AOM TNf"T 126 AOO Tn TOTAL NET SALES

35 u 455A 146 0 !'.'.X "(3 t TEST rr COST APPLICAqLE

l 7400 147 0 RRU 1rnnv r v 13 t BRANCH TO NtxT lINE

2 6429 14fi n LSR 9 LOAD SHIF'T REGISTER

3 ER59 1.49 0 POS C.PRC•p 90 POSITION TO C-OST PRICE

36 O· A632 150 0 COSTJV "JK 3 ::> INDEX COST PRJCE

1 2~64 151 0 SRJ CTMTLL 100 ::> OETERMINE Ir MILLS I~DEX

2 4'iC1 152 0 F')(A „ 1 TEST IF' COST PRICE ERROR

t 3- 7024 153 0 BRU cn~TIV 36 f) ßRANCH TO INOEX COST
\0

~ PROGRAM I 0 • •
~

0 WORD OBJECT
SYL cnOE

37 0 2<':4E

1 8C7~.

2 ER61

3 2C40

3A 0 80R4

1 8070

2 7A00

3 f ~28

39 0 OA6F

1 6424

2 2A56

3 ER3A

40 0 2062

1 A622

2 4c;no

3 742E

41 0 4552

1 2"50

2 4551

3 2R5A

42 0 6741

OATE RUN 1/?6/70 TIHE • t2:4R

SEA. SYH. OP FO. A•PARAMETER
NO, LOC. CODE LN. LAAEL INC

154 0 SR ,J PT•PRC + 1

155 0 NOTE.:

156 0 MULR CHY

157 0 POS CSTX•P

158 0 SPJ PNllMRC

159 n AOM TCn5T5

160 0 AOM INVCST

161 0 BRlJ BOOYIV

162 0 INVTOT PKA 2 46

163 n CLM WRKREG

164 0 LSR 4

165 0 SRJ SUIHOT

J. 66 0 POS AOON•P

167 0 SRJ CKtTNE

168 0 . NK 2

169 0 EXZ 1

170 0 RRU AnnnNs

1 71 0 EX y

172 0 SRJ CONTPG

173 0 EX y

l. 7 4 () SRJ AOLNCK

175 0 SET X

VERSION 0?•01•70 PAGE 008

ß C LABEL R F" M A R K S
PAR PAR OEC f QU

78 3 PRINT COST PRICE

SHIFT fOR MILLS

122 MULT COST X QlJANITY

98 POSlTTON TO COST AMOl.INT

77 3 PRINT COST AMOUNT

132 AOO LJNE COST TO TOT COST

125 AnD Tn INV01CE COST TOTAL
"" 13 1 ARANCH TO NEXT LlNE

E NA B L F T A)(R T O'T A L P K

111 CLEAR WORKING MEMORY

LOAD SHIFT REGISTER

86 ? PRINT SUBTOTAL
59 POSITION TO ALF TAX

9~ 0 !NCREMENT L!NE COUNT

? XINDEX MISC TAX PERCFNT

TEST TE ZERO JNDEXED
4 (, . 1. BRANCH TO AOOONS

1 1 TEST FOR LAST lINE

80 2 REGIN CONTINUATION PAGE
4 1 TEST roR LAST SIX LINES

90 2 INCREMENT llNE COU~T

4 SET X fOR AOOONS

PROGRAM JO, • VATE RUN 3/26/70 TlMF • 1214A VERSION 0~·01•70 PAGE 009

WORO 08JECT
SVL CODE

S~Q. SYM, OP FO, A•PARAMETER
NO, LOC, CODE LN. LA~tl . INC

ß C LAREl R F M A R K S
PAR PAR OEC EQU

.l E:OOl 116 0 AL t AOVANCE LEFT ONE LIN[

2 EB3A 177 0 POS · AiJON•P 59 POSITION TO ALF TAX

:3 C054 - 118 0 PC T PRINT "TAX"

43 0 C041 -119 0 PC A

1 cn~ss 18-.0 0 PC X

'2 04Jl3 •. 181 0 P·N 4 3 PRINT TAX AS A PERCENT

l. C02S 182 0 ·pc ' PRINT III

.44 o. . EB'48: 183 0 P.OS NET•P 76 POS TO Nf T COLUMN

1 a<rtc t ·84 () MULR INVNET 124 MULT TAX i X NET

2 .2C40., 1·8.5 0 SRJ PNUMRC 71 3 PRINT TAX DOLLARS

3' 8063 186 0 •AOM fTAXES 131 AOO TO TOTAL TAX DOLLARS
. , ~ ..

45. -0 '. 8C>7C ' 1.81 0 Am~ I NVNET 124 AOO TO TOT NET INVOltE S
1· 306F 188 0 TRM WPKREG 1 11 STORE TAX DOLLARS
2 .·· ·2062 169 0 $RJ CKLlNE 98 n INCREMENT LINE COUNT

•'

3· . 4.552 190·0 EX y 1 t Tf ST JF LAST INVOl~E LlNf

46 0- .. 2856. 191 0 SRJ SlJRTOT 86 ' PRINT SUR•TOTAL

1 f (;20 192 0 A.DDO~S PKA 1 6 ENABLE TOTAL JNVOlCE PK

2' E~3A 193 0 POS Anr:iN•P 59 POS t T ION TO AOOON AU"

3 4241 19,4 0 SK X 4 2 TEST IF rtRST tDOON

47 '() 4552 195 0 E:X y t t TEST TF LAST INVOICE LINE

t
1 2850 l96·0 SRJ Cl'.l~TPG 80 2 RfGJN CONTINUATION PAGE

2 4?41 197 o. SK)(4 2 TEST IF FIRST AOOON -

t PROGRAM ro. - DATE RUN 3/26/70 TIME • l?l4A VERSI-ON 0'•01•70 PAGf 010

N WORD ORJECT
SYL cnOE

SEQ. SYM. OP ro. A•PARAMETER
NO. LOC. cnor LN. LAqEL INC

R C LAAEL R f M A R K S
PAR PAR OEC EQU

3 4551 198 f) EX y 4 1 TEST TF ROTTOM OF lNVOlCE

48 0 285A 199 0 SRJ ArlLNCK 90 ? INCREMENT LINf COUNT

1 6741 200 0 SET X 4 SET X4 INVOICE HAS AnOONS

2 4652 201 0 EX y t 2 TEST JF LAST rNVOICE LINE

3 2A56 202 0 SRJ SIJRTOT 86 2 PRINT SUBTOTAL

49 0 2850 203 0 SRJ CnNTPr, 80 2 RFGIN CON11NUATION PAGE

1 EF>Ot 204 0 At 1 AOVANCE lfFT ONE LINE

2 ER3A 205 0 POS AOnN•P 59 POSITION TO AODON ALr

3 AC12 206 0 TK 18 XTVPE AOOON OESCP.

50 0 ER4B 207 0 POS NF:T•P 76 prysITTON TO NET COLUMN

1 A470 208 0 NKR 7 0 XTYPE AOOON COST AMOllNT

2 2C40 209 0 SRJ PNUMRC 77 3 PRINT AOOON AMOUNT

3 45C1 210 0 EX .1\ - 1 TFST TF MINUS

51 0 8080 211 0 AOM TAOONM 128 Ano Tn AOOONS MINUS

1 41Cl 212 0 SI< A „ 1 Tf ST IF PLUS

2 807f 213 ') AOM TAOONP 127 AOO Tn AOOONS PLUSSES

3 807C 214 0 AOM TNVNET 124 AOO Tn TOT NET JNVOICE $

52 0 4558 215 0 f X y 3 1 TEST rr STANDARD INVOICE

1 7836 21(> 0 RRU + 9 54 ? 8RANCH TO CHfCK LINE CT

2 EA61 217 0 POS CSTX""P 98 POSITION TO COST COLUMN

3 A450 218 0 NKR 5 0 XINOEX AOOON COST AMOUNT

PROGRAM ro OATE RUN 3/26/10 TTMF' „ 12:48 VF'RSION 0?•01•70 PA'1E 011

WOKO OBJECT SEQ. SYM. OP FO. A•PARAMETER B c LABEL RFMARKS
SYL CODE NO. LOC. CODE LN. LA~EL lNC PAR PAR OEr, EQU

53 0 2C40 219 0 SR ,J PNUMRC 77 3 PRINT AOnn.N cnsT AMOllNT

1 8070 220 0 AOM lNVCST 125 AnD TO TOT TNV TOT cnsT

2 45C1 221 0 r.x A „ 1 TF:ST Tf MJNllS

3 8082 222 () AOM TAl")NCM 130 AOO Tn cn~T TOTAL MINUS

54 0 41Cl 223 0 SK A „ 1 TEST TF PLUS

1 8081 224 0 AOM TAnNCP 129 AOD TO COST TOTAL PLUS

2 2062 225 0 SR,J CKLINE 98 0 lNCREMENT LtNF COUNT

3 742E 226 0 ARU ADOONS 46 1 BRANCM TO NEXT AODON

55 0 4541 227 0 TOTALI EX X 4 1 TfST IF AOOONS ON INVOICE

1 2A56 228 0 SRJ SllRTOT 86 ? PRINT TOTALS

2 4558 229 0 EX y 3 1 TEST TF STANDARD INVnICE

3 n~o1 230 0 RRU 8Ffl!NV 1 2 BRU TO NEXT tNVOICE

56 0 3R7C 231 0 TRA INVNET 124 TRANSFER TOTAL NET INV.

1 9A6f 232 0 SUA wR!<REG 1 1 1 SUBT TAX FROM NET

2 9R71) 233 () SUA INVCST , 25 SUBT COST fRQM NfT

3 ER56 234 0 POS PRT9:•P 87 POSITTON TO PRINT PRnrtT

57 0 2(".40 :?35 0 SRJ PNUMRC 77 3 PRINT PROFIT AMOUNT

1 7AOt 236 0 RRU Rfr.tNV 1 ;> BRANCH Tn NfXT INVOICE

2 2040 237 0 TNV•NO SRJ AR·POS 77 0 AOVANCF. FnRM POStTION

3 CRB6 238 0 PA F RS TIN 182 PRINT ALFA FRSTIN

~A 0 u:o2 239 n AR 2 ADVANCE RtGHT TWO LINES
.i;::..

1 ER77 240 0 POS 1 ?n POSITION FOR PRINT 1
.i;::..
w

t PROGRAM JO. • OATE RUN 3176170 TIMf • 12:48 VERSION 0::>•01•70 PAGE 012

.i:. WORD OBJECT SE<~• SYM. OP F'D, A•PARAMETER ß c LAREL R r M A R K S
SYL cnoE N Cl, LOC. CODE LN. LARtl INC PAR PAR OEC EQLJ

2 4660 241 0 NK 6 0 XINOEX INVOICE Nn.

3 0450 242 0 PN 5 0 PRINT INVOICE NUMBER

59 0 3071 243 0 TRM INVNO 113 STORE tNVOICE NO

1 2040 244 0 SRJ ArhPOS 17 0 AOVANCE F'ORM POSITION

2 CABE ?45 0 PA OATT 190 PRINT ALF"A OAtT

3 EE02 246 0 AR 2 AOVANCE RJGHT TWO LINES

60 0 EA77 247 0 POS l?O POSITTON fOR PRINT

1 f"073 248 0 LKBR DATE t 15 LOAD OATE BASE M.A,

2 AOOC 249 0 TKM 12 XTYPE OATE

3 204D 250 0 SRJ AR•POS 77 0 AnVANCE rnRM POSITION

61 0 CABA 25l 0 PA TXRT 186 PRINT ALF'A non
1 ER77 252 0 POS t::>O POSITION F'OR PRINT

2 Ef 02 253 0 AR 2 AOVANCE RYGHT Two LINES

3 A622 254 0 "JK 2 ::> XTNDEX TAX RATE

62 0 0473 255 0 PN 7 ~ PRINT TAX RATE

1 3079 256 0 TRM TAXCST 121 STORE F'IRST TAX RATE

2 7COO 257 0 RRU PH TAL 0 3 RRU TO JNTTIALIZE

3 ER77 258 0 DL Y TOT POS l?O POS SUMMARY HEAOING

63 0 Ef"OS 259 0 AR 5 ADVANCE RTGHT F'lVE LTNES

1 CA8B 260 0 PA HFAONG 139 PRINT ALFA MESSAGE

2 P~8C 261 0 POS 1 lt 1_

3 0700 '262 0 RR PRINT OATf TN REn

PROGRAM IU. „

WORD OBJECT
SYL cnOE

64 0 CA73

1 EE02

2 ER77

3 CBBO

65 0 Ef01

1 ER87

2 3~85

3 2C41)

66 0 5100

1 5?00

2 5A1C

3 4584

67 0 7P.46

1 5603

2 Ef 04

3 F;R77

68 0 6?00

1 CA90

2 6100

3 3~7F

f"
69 0 Ef"02

~ 1 ER87 Vl

OATE HUN 3/?6170 TIMF • 1?:48

Sf Q.
Nfl.

2 6 3 ()

26 4 ()

2~5 ()

?66 ()

267 n
268 0

269 ()

270 0

2 71 0

272 0

?73 0

274 0

275 0

27(:.. 0

277 ()

278 (')

'?..79 0

280 0

281 0

2~2 0

283 Cl

284 0

SYM.
LOC.

OLYNF.:T

OP Fn. A-PARAMETER
cnor LN. LAREL INC

PA DA TE

AP 2

pns 1 ?0

PA r-r.Rns

AR 1

POS 11~

TRA rr.1rnss
SRJ Pf\!!IMRC

LlR 1

LIR 2

!IR 2

EX T

RRIJ FPUL

AOJR 2

AR 4

POS l?O

MOO 2

PA T"J~ - 4

MOO 1

lRA TNF:T

AR 2

POS 13~

Vf:RSJON 0?•01•70 PAGE Oi3

R F' M A R K S R C LARfL
PAR PAR DEr. f:Qll

115 PRINT CURRENT DATE

ADVAll.JCf RTGHT TWO LINES

PnSITJON FOR PRINT

176 PRINT ALFA MFSSAr,E

AOVANCf R!GHT ONE LlNE
PnSITTON FOR PRINT

133 TRANSFER TOTAL GROSS

77 1 PRJNT TOTAL r.ROSS

() LOAD TNDFX REGISTER

0 LOAO TNDEX REGISTER

:'.>A TEST FOR THE 1 LOOP

T 1 EXECUTE Jr Lnnp 1

70 ? FXIT LOOP

3 INCREMENT AY FOUR

AnVANCE RJGHT F'OllR L!NES

PnSITTON rOR PRINT

MODlFV BY REGISTER #?

144 PRINT ALFA MFSSAGE

MnOIF'Y BY REGISTER #1

126 TRANSFER NET, COST AMQUNT

AOVANCE RTGHT TWO LINES
POSITtON FOR PRINT

t PRDGRAM ro. - nATE RUN 3/?~/70 TIME • t?:48 VfRSION 0?•01•70 PAGE 014

~ WORO OBJECT
SYL CODE

SEQ. SYM. OP ro. A•PARAMETER
NO. LOC. CODE LN. LA~fl INC

R C LAAEL R E M A R K S
PAR PAR Df C [QU

2 [) 1 91 285 0 PNS• 9 1 SHlFT IF' MINllS

3 C52D 286 () PC• - PRINT • lr MJNUS

70 0 5501 287 () AOIR 1 1 INCREMENT INOEX ~EG RY 1

1 7A42 288 0 BRU DLYNET 66 2 REPEAT LOOP

2 Ef04 289 0 FINAL AR 4 ADVANCE RIGHT F'OUR LTNES

3 ER77 290 0 POS 1?0 POSITION f"OR PRINT

71 0 CAB2 291 0 PA Tf>TSC 1. 78

1 EF:Ol 292 0 AR 1 AOVANCE RTGHT ONE LINE

2 ER87 293 0 POS 13~ POSITfON F'OR PRINT

3 3A86 294 0 TRA Tf'lTSCT 134 TOTAL DISCOUNTS

r2 o 2C40 295 0 SRJ PNllMRC 77 3 PRINT TOTAL OISCOUNTS

1 EE02 296 0 AR 2 AOVANCE RJGHT TWO LINES

2 ER77 297 0 POS 1?0 POSITION F'OR PRINT

3 CA8r 298 0 PA AC T 143 ALFA MESSAGE

73 0 EF"01 299 0 AR 1 Af>VANCE RJGHT ONf LINE

8880 300 0 AOA TAT)ONM 128 Af)O MtNIJS AOOONS

2 8A7f" 301 0 AOA TA!10NP 127 ADD PLUS AOOONS

3 8A7E 302 0 ADA TNF"T 126 AOO PROOUCT NET

74 0 2C40 303 0 SRJ PNllMRC 77 3 PRINT ACCT RFC NET

1 Et.02 304 () AR 2 AOVANCE RTGHT TWO llNES

2 E077 305 0 POS 1 :>o PT)SITTON FOR PRINT

3 CA91 306 0 PA T Nr. 145 PRINT ALrA MESSAGE

PROGRAM ID. • OATE RUN 3/26/70 TTMF • 12:48 VERSION 0?•01•70 PAGE 015

WORO OBJECT
SYL CODE

SEQ. SYM. OP FD. A•PARAMETER
NO, LOC. cnOE LN. LARFL INC

R C LAREL R r M A R K S
PAR PAR OEC EQU

75 0 Ef01 307 0 AR 1 AOVANCE RTGHT ONE LINE

1 ER87 308 0 POS 1 '3 „ POSITTON FOR PRINT

2 3~84 309 0 TRA rcn~ns 132 TRANSFER TOTAL CQSTS
3 8881 310 0 AOA TAf)NCP 129 AOO PLUS COST AOOONS

76 0 8882 311 0 AOA TAONCM 130 AnO MINUS cnsr AnOONS
1 2C40 312 () SRJ PNll"1RC 77 .l PRINT TOTAL NET COST~

2 EE14 313 0 AR 20 AnVANCE 20 LTNES
3 7COO 314 0 RRIJ INTTAL 0 3 RRU Tn INJTIALIZE

77 0 Ef02 315 0 AR•POS AR 2 AOVANCE RJGHT TWO LINES
1 EA77 .3 1 6 0 POS SM·HOP 120 POS PRINT

2 0400 317 0 SRR 1. SURROUTINE RETURN
3 0191 3 1 8 (1 PNUMRC PNS• 9 1 PRINT MONTERY VALUE

78 0 C520 319 0 PC• ... PRINT • tr MJNUS
1 0400 320 0 SRR 1 SUBROUTlNE RETURN
2 ER2A 371 0 PT•PRC POS SPRC•P 43 POSITION TO SELL PRICE
3 4?C2 322 0 SK A ~ 2 TEST PRICE fOR MILLS

79 0 0471 323 0 PN 7 1 PRINT WITH CENTS MASK

1 0?20 3?4 0 SLRO 2 n SHIFT LEfT Twn POSITIONS
2 45C2 325 0 EX A s l TEST PRICE FOR MILLS
3 0472 326 0 PN 7 2 PRINT WJTH MTLLS MASK

~ 80 0 307B 327 0 TRM PRTCE 123 TRANSfER SELL PRICE ~
-..J

f"PROGRAM ro. „ OATE RUN 3/26/70 TlMF • t?:48 VER&TON 0?•01•70 PAGE 016
~
00 WORD OH.JECT SE<~. SYM. OP f"D, A•PARAMETER A c LARFL R F" M A R K S

SYL CODE NO, LOC, COOF: LN. Lf!RF:l INC PAR PAR OfC EQlJ

1 0400 328 0 SRR 1 SUBROUTINF RETURN

2 3070 329 0 CONTPG TRM WRKREG + 1 112 TFMPORARY STORE AMOUNT

3 EROF 330 0 nc SLl'HOL + 7 15 AnVANCE Tn CUSTOMER NAME

81 0 Al'.~() 0 3 31. 0 TK 0 CHANGE INVOICE

1 EROC 332 0 POS NMAO•P 13 POSITTON TO PRINT

2 CA75 333 0 PA Cll<;TNM 117 PRINT CUSTOMER NAME

3 f OOA 334 () LLCR stnTOL 8 LDAO SOLO TO LJNE Nü.

82 0 EQOO 335 0 ALTO $14PTOL 13 ADVAN~E TO SHIP TO LTNE

1 ER3f" 336 0 POS CNT1>•P 64 POSITTON TO PRINT

2 C050 3 ~ 7 () PC p PRINT "PAGE"

3 C041 338 0 PC A

83 0 C047 339 0 PC G

1 C045 340 0 PC E

2 3A72 341 0 TRA PAl;(NO 114 TRANSrER PAGF NUMBER

3 0420 342 0 PN 2 n PRINT PAGE t>Jn.

84 0 aro1 343 0 AOK 0 1 AOO 1 TO PAGE NO,

1 3072 344 0 TRM Pl\l'iENO 114 STORE PAGf Nn,

2 3871 345 n TRA lNVNO 113 TRANSFER JNVOJCE NO.

3 4200 346 0 SKZ 2 T~ST IF" ZERO

85 0 9F"01 347 () SUK 0 1 SUBT t FROM TNVOTCE NO,

1 3071 34R 0 TRM INVNO 113 STORE INVOICE NO,

2 E914 349 0 ALTO RIRRL 20 AOVANCE TO RTBRON LINE

PROGRAM ID. • OAlE RUN 3/'Ui/10 TIME ... 1?.14R VfRSION 0?•01•70 PAGE 017

WORD ORJECT SEQ. SYM. nP FD 0 A•PARAMETER B c LAREL R f M A R K S
SYl cnDE NO. LDC. CODF LN. LARfL INC PAR PAP Df.C EQU

3 2A5E 350 0 SRJ DATF•J 94 ' PRINT DATE & tNVOICE NO

86 0 3A70 351 0 TRA WR!<REG + 1 112 TRANSFER STORED AMOUNT

1 OllOO 352 0 SRR 1 SUBROUTINf RETURN

2 3070 353 0 SUB TOT TRM WRKREG + 1 112 TrMPORARILY STORE AMnUNT

3 ER4E 354 0 POS tJF: T • P + 3 79 POSITION FOR UNDERSCnRE

IH 0 CA89 355 0 PI\ UNnERS 137 PRINT UNOERSCORE

4?5R 356 0 SK y ~ 2 TFST FOR TNVOlCE COSTING

2 ER64 357 0 POS CSTX•P + 3 101 PnSITTON F"OR UNDFRSCnRE

3 C889 358 0 PA UNf'lf RS 137 PRINT UNOERSCORE

68 0 Eno1 359 0 f.\L 1 l\OVANCE LEFT ONE LINE

1 ER4B 360 0 POS NF'T „p 76 PnSITTON TO NET AMOUNT

2 3A7C 361 0 TRA I t\IVNET 124 TPANSF"fR TOTAL NET A~OUNT

3 2C40 362 0 SRJ PNUMRC 77 3 PRINT TOTAL NET AMOUNT

89 0 4358 363 0 SK y 3 3 TrST FOR TNVOICE COSTING

1 ER6l 364 ('\ POS CSTX•P 98 PnSITION TO COST AMOUNT

2 3A7D 365 0 TRA JN\/CST 125 TRANSF"ER TOT. COST A~OUNT

3 2r.40 366 0 SRJ PN11MRC 77 3 PRINT TOTAL COST AMOllNT

90 0 3R70 367 0 TRA WRKREG + 1 112 TRANSF"ER ST0Rf0 AMOUNT

1 0400 36R 11 SRR 1 SUBROUTINE RETURN

2 5402 369 0 AOLNCK AOIR 4 ' AnD 2 TO LINr COUNT

3 4684 370 0 EX T T 2 TEST rOR LAST LINE
..i::.
1

..i::.
91 0 2850 3 7 1 (l SRJ CnNTPG 80 2 PRINT TOTAL ~ CONT, PAGE \0

~ PRUGRAM JO. „
Vl

o WORD 08.JECT
SYL CODE.

1 0400

2 5CE8

3 01~ 00

92 () 5300

1 6300

2 OR7C

3 5AOA

93 () 4 l! 84

1 8FOO

2 2040

3 1)1'11

94 0 7COO

1 7 !t 5C

2 [R41

3 CR73

95 0 EA4f

1 3A71

2 4300

3 0450

96 0 8F"01

1 3071

2 4500

llA TE RU"-1 3 /'?6/70 TI MF' • 12: 48

SFQ. SYM 0 OP FD. A•PARAMETER
NO. LOC. cnOE LN. LAREL INC

372 0 SRR 1

373 0 DIR 4

374 () SRR 1

375 0 CLRMf M LTR 3

376 () MOO 3

377 0 CLM Il\JV~JET

378 0 TIR 3

37Q 0 f X T

380 () CLA 0

381 Q SRJ AP„POS

382 0 PN 1

383 0 RRU INTTAL

384 (') ARU CLRMf M + 1

385 0 OAT[•J POS 0 A TE„;>

386 0 PA fHTE

387 0 POS INVMOP

388 0 TRA TNVNO

389 n SKZ 3

390 tj PN 5

391 0 AOK 0

392 0 TRM JNVNO

393 0 EXZ 1

V(RSION Oi'•01•70

R C LABEL
PAR PAR DEC f QU

?32

0

1. 24

10

T 4

n

17 0

1

0 3

Q2 1

66

1.15

80

113

0

1

tl 3

PAl'1E 01.8

R f M A R I< S

SUBROUTTNE RETURN

SU8T l fROM LINE COUNT

SUBROtlTINE RETURN

LOAO rOR COUNTER

MOOffY WJTH COUNTER

CLEAR MEMnRY LOCATION

CONTROL NUMBER Of LO"PS

TEST Tf LAST TOTAL

CLEAR ACCUMULATO~

AOVANCE FORM POStTIO~

PRJNT Zf.Rn

HRLI rn INTIALIZE

RRU TO CLEAR NEXT TOTAL

PnSTTTON TO OATE

PRINT CURRENT DATE

POSTTTON TO JNVOICE NO,

TRANSF"ER Jl\JVnICE NO.
TFST F"OR lERn
PRINT INVOICE NUMBER

AOO 1 TO INVOJCE NO.

STORE INVr1ICE NO

TF:"S T f:"OR ZERO

PRÜGRAM JO. •

WORD OBJECT
SYL cnDE

3 AC07

97 0 50EA

l 6~53

2 E916

3 OllOO

98 0 4051

1 5Af8

2 4184

3 0400

99 () 6751

1 5AFf

2 09RO

3 4C584

100 0 6752

1 0400

2 306F

3 O?nO

101 0 4700

1 3R6F

~ 2 0?()?
' Vl

3 OllOO ... T

nATE RUN 3/26/70 TtMF • 1?148

Sf Q.
NO.

394 ()

395 0

396 ()

3Qf 0

398 0

399 ()

400 0

401 ()

402 ()

403 f')

404 f)

40'5 0

406 ()

4 0 7 ()

408 0

4 09 n

4 l 0 ()

4 1 l 0

412 n

·~ 1 3 n

41 '~ n

4 1 ? ()

S YM.
t:.oc.

CKLJNF

CTMTLL

OP FO. A•PARAMETER
cnor LN. LA~El TNC

TK 7

LIR 4

'?ST '(

llL HI ROr)YL

SRR 1

SK y

IIR l'

SK T

SRR 1

NOTE

SET y

TIR 4

ALARM

FX T

SET y

SRR 1

TRM WPKR[G

SLR(l L~

EXZ 3

TRA WC?KRE:C.

SLRO 0

SRR l

VERSION 0?•01•70 PAGE 019

R r M A R K S R C LAR[L
PAR PAR [)f r. EQLI

XTYPE INVnICE NO.

?34 1-nAO FOR LJNE COUNT

lq RESET Y 4 ANO 1

22 AOVANCE TO INVOICE anoy

SUBROllTINF RETURN

4 4 TFST Tf LAST SIX LlN[S

?48 INCREMENT fOR LINE cnuNT

T i TEST EOR 17TM LINE

SUBROIJTJNE RETUR"I

srT y FOR LAST 6 LINES IN

4 ROOY nF JNVOTCE REACHEO

?55 INCREMENT LINE COUNT

WARN OPERATOR BOTTOM INV.

T 1 TEST FOR LAST LINE

1 SET Y1 FOR CONT, PAGE

SUBROUTINE RETURN

111 TPANSrER PRICE TO M.A.
() SMIFT OFF DOLLARS & CENTS

TEST rr ZERO MILLS

111 TRANSS:-ER PRICE

' REPOSITION FOR CENTS ONLY

SU8ROUTIN!=' RETUR"I

~PROGRAM IO. • DATE RUN 3/26/70 TIME • 1?148
VI

N WORD OBJEC T
SYL cnOE

SEQ. SYM. OP FO, A•PARAMETER
NO. LOC. COOE LN, LAREL INC

102 0 3A6F" 416 0 TRA WRKRE'G

1 0?07 417 0 SLRO 0

tit 8 0 NOTE

2 4300 419 0 SKZ 3

3 67C1 420 0 SET A

103 0 0980 421 0 ALARM

1 01•00 422 0 SRR 1

2 3R6F 423 0 TRA WF?KREG

424 () NOTF'

3 67C2 425 0 SFT A

104 0 0400 426 0 SRR 1

1 6558 427 0 rvcosr RST '(

2 7A01 428 () HRU BF'GJNV

3 0000 STOP

429 0 WORD

105 0 7A39 430 0 PKTARL HRU I ~I v„ NO

1 7C3E 4 31 0 RRU OLYTOT

2 7C26 432 0 RRU INVTOT

3 3A79 433 n TRA TAXCST

106 0 746A 4 3 4 () BRU rvr.osr
1 7fl37 435 0 HAU TOTALT

2 7COO 436 0 HRU lNTTAL

VERSION 02•01•70

R C LAREL
PAR PAR DEC EQU

111

7

-

111

s

3

1 2

57 2

62 3

3A 3

121

104 .1

55 0

0 3

PAGE O?O

R E M A R K S

TRANSF"ER PRTCE

SHIF"T OF"F 7 OIGITS

TEST Jf MORE THAN SEVEN

DIGITS WERE INOE~EO

n:s, SET • F'I AG

WARN OPERATOR ERROR PRICE

SUHROlJTJNJ!" RETURN

TRANSFER PRTCE

SF'T FLAG TO JNOICATE

CENTS ANO MILLS

SlJBROUTINE RETURN

RESET STANDARD INV. F"LAG

BRU Tn INVOICE ROUTINE

** TNSERTEO BY ASSEM 0 **

PROGRAM KEY TABLE

ARU LOAD OATf. INV NO TAX

ARU Tn PRINT OAILY TOTALS

F!RlJ Tn SURTOTAL

TRANSfER TAX Pf.RCENT

BAU Tn COST INVOICE

BRU TO TOTAL INVOICE

BRU TO tNITJALIZE

f"
VI
w

PROGRAM IO. •

WORO OBJECT
SYL CODE

3 705C

OATE RUN 3/26/7~ TIME • 1?:48

SEQ. SYM, OP ro. A•PARAMETER
NO, LOC, CODE LN. L~qEL INC

437 0 BRlJ CLRMEM

438 0 PAGE

VEPSION 02•01•70

R C LAREL
PAR PAR OEC EQU

92 0

PAGE 021

R F.' M A R K S

8RU TO CLEAR MEMORY

·._;

f" PROGRAM ro. - DATE RUN 3/2(:,/70 T!Mf" • 1:>s48 VF:"RSION 0?•01•10 PAGE 0.?2 ·.
Vl

~ WORI) O~X·5~T SE f,i. SYM. 11P ro. A•PARAMETfR R c LAAEl R 1:: M A R K S
SYL NO. LDC. cnor LN. LA~fl JNC PAR PAR OEC EQU

107 0 1139 0 MASKTR MASK 15 z77,zzz,zzz,zzz NM ME RTC

107 0 f:.1,66 ** INSERTEO RY ASSEM, **
1 6F'66 ** INSERTFO qy ASSE~. ••

2 6f)E6 •• INSERTfO ijy ASSEM; **
3 0333 ** lNSERTEO BY ASSEM. **

106 0 440 0 MASK 16 z .1zz, zzz, zzz. rrn MnNETARY Z~RO~RI~T

108 () 6fi97 ** INSERTEO av ASSEM •••

1 66E6 ** INSERTEO RY ASSEM, **

2 Eli6E ** INSERTEO RY ASSEM. **
3 0333 ** INSERTEO R'(ASS.EM, **

' ' .~': : \/

109 0 441 0 "IASK 15 z1,zzz,zzz.cccc MONETARY WlTM ·MILLS

109 0 8000 •• tNSERTEO ·gy ÄSSEM, **

1 f 1,66 •• INSERTEO ~y JSSEM, **
.. · 2 6':.-1>6 ** INSERTEO RY-ASSEM, **

3 0333 ** INSERTED BY ASSEM, **

uo 0 442 0 MA.SK 16 Z7Z7EZZZZZZZZ.xs HUNDREDS PERCENT $ NO,

110 0 66C2 ** INSERTED RY ASSEM. **
1 61i66 ** INSERTFO BY ASSEM, **
2 61.66 ** INSERTED AY ASSEM. **

3 0666 ** INSERTFO qy ASSEM. **

111 0 443 0 WRKRf G REG 2 GfNERAL WORK REGISTER

.113 0 444 0 tNVNfl REG 1 INVOICE NIJMRl'.R

114 0 445 0 PAGE NO REG 1 PAGE N!JM~f'R

PROGRAM ID. • OATE RUN 3/26/10 TfMf • 12t48 VERSION 02•01•10 PAGE 0~3

WORD OBJECT
SYL cnoE

SEQ. SYM. OP ro. A•PARAMETER
NO, LOC. CODE LN. LAREL. INC

B C LABEL R E M A R K S
PAR PAR OEC EQU -

115 0 446 0 DATE REG 2 CURRENT OATE
117 0 447 0 CUSTNM REG 4 CUSTOMER NAMF

121 0 448 0 TAXCST REG t TAX CONSTANT
122 0 449 0 QTY REG J. INVOICE QUANITY

123 0 450 0 PR ICE REG 1 INVOICE PRICE
124 0 451 0 INVNET REG 1 INVOICE NET TOTAL
125 0 452 0 INVCST REG 1 INVOICE COST TOTAl
126 0 453 0 TNET REG 1 TOTAL NET SALES
121 0 454 0 TAOONP REG 1 TOTAL PLUS AODONS
1.28 0 455 0 TAOONM REG 1 TOTAL MINUS AODONS
129 0 456 0 TADNCP REG 1 TOTAL PLUS COST ADDONS
130 0 457 0 TAONCM REG 1 TOTAL MINUS AOOONS

131 0 458 0 TTAXES REG 1 TOTAL TAXES
132 0 459 0 TCOSTS REG 1 TOTAL COSTS
133 0 460 0 TGROSS REG t TnTAL GROSS SALES
134 0 461 0 TOISCT R[G 1 TOTAL DISCOUNTS
135 0 462 0 TEST l\IUM 4 5000 TEST VALUf. 5000

135 0 5000 ** INSERT[O BY ASS!~~ ••
1 0000 •• INSERTEO ffY ASSEM, **
2 0000 •• INSERTEO BY ASSEM. **
3 onoo •• INSERTF"O av ASSEM •••

136 0 463 0 SAME ALF" 4 SAME

f"
136 0 0000 •• INSERTEO RY ASSEM. **

V. 1 0000 •• INSERTEO BY ASSEM~ ** V.

~ PROGRAM ID, • DATE RIJN 3/26/70 TIME • 12148 VERSlnN 0~·01•70 PAGE 0?4
Vl

~ WORO OBJECT
SYL cnDE

SEQ. SYM, np FO. A•PARAMETER
NO. LOC. cnor LN. LA~EL INC

B C LAREL R F' M A R K S
PAR PAR DEC [QU .

2 4045 ** INSERTEO RY ASSEM, **
3 5341 ** INSERTFO BY ASSEM. **

137 0 I~ 6 4 0 UNDERS ALF 11 ----------· IJNDERSCORE

137 0 5F"5F ** INSERTED RY ASSEM. **
1 5F'5f ** l~SERTED BY ASSEM. **
2 Sf 5F ** INSERTEO BY ASSEM, **
3 srsr ** INStRTEO RY ASSEM. **

13R 0 0000 ** INSERTED RY ASSEM~ ••
1 0000 ** TNSERTEO RY ASSEM 0 **
2 SF"OO ** INSERTEO BY ASSEM, **
3 5F"5F ** INSERTEO RY ASSEM. **

139 0 465 0 HE A f>NG ALF 24 ~AILY TOTALS FOR.,,.

139 0 2054 ** INSERTEO BY ASSEM, **
1 4C5Q ** INSERTFD RY ASSEM, **
2 4149 ** INSERTED RY ASSEM. **
3 2044 ** INSERTED RY ASSEM, *'*

140 0 464F' ** JNSERTEO RY ASSEM. **
1 5120 ** INSERTfO RY ASSEM, **
2 414C ** INSERTFO RY ASSEM. **
3 4F'54 ** INSERTfO RY ASSEM, **

141 0 2n.20 ** INSERTtO RY ASSEM. **
1 2r20 ** INSERTED RY ASSEM. **

PROGRAM ro. - OATf RUN 3/26170 TIME • 12:4R VERSION 0?•01•70 PAGE 0?5

WORD OBJECT
SYL cnDE

SEQ. SYM. OP fD. A•PARAMETER
NO. LOC. CODE LN. LAREL INC

A C LAAEL R E M A R K S
PAR PAR OEC EQIJ

2 2r2E ** INSERTEO BY ASSEM. **
3 5~2E ** INSERTro RY ASSEM. **

142 0 . 0000 •• INSERTED RY ASSEM, .„
1 0000 •• JNSERTEO RY ASSEM. **
2 0000 ** JNSERTEO BY ASSEM. **
3 0000 •• INSERTfO av ASSEM. **

143 0 466 0 ACT AL f" 12 ACC REC Nf T

143 0 4543 •• INSERTfO RY ASSEM. **
1 2052 ** lNSERTED RY ASSEM, **
2 4343 ** INSERTEO BY ASSEM. ••
3 2041 ** INSERTED RY ASSEM, **

144 0 0000 ** INSERTf.D RY ASSEM, **
1 0000 ** INSERTEO BY ASSEM, ••
2 4554 •• INSERTED BY ASSEM, **
3 204[** INSERTEO BY ASSEM, **

145 0 467 0 TNC ALF" 16 TOTAL NfT cnsr

145 0 4C20 ** JNSERTF"O BY ASSEM, **
1 5441 ** INSERTEO 8Y ASSEM, ••
2 544f ** INSERTEO RY ASSEM, **
3 2020 ** INSERTfO ~y ASSEM, **

f" 146 0 5~54 ** INSERTEO RY ASSEM, **
VI

1 434f -.l ** INSERTf.0 BY ASSEM, **

~ PRUGRAM JO. • nATE RUN 3/26/70 TJMf • 1'-f48 Vf.RSION 0'•01•10 PAGE 0~6
VI

00 WORO OBJECT
SYL cnoE

SEQ. SYM. OP FO. A•PARAMETER
NO. LOC. CODE LN. LAREL lNC

R C LAREL R E M A R K S
PAR PAR OE'C EQU

2 5420 •• INSERTEO RY ASSEM, **
3 4f 45 •• INSERTEO BV ASSEM. **

147 0 0000 •• TNS(RTEO RY ASSEM. **
1 01')00 •• INSERTfO BV ASSEM. **
2 0000 ** INSERTED BY ASSEM. **
3 onoo •• INSERTEO RY ASSEM, ••

148 0 468 0 TNS ALF 24 TOTAL NfT SALrs

148 0 4F'45 ** INSERTf.0 BY ASSEM. **
l 4C20 ** INSERTf.0 BY ASSEM, **
2 5441 ** INSERTED BY ASSEM. **
3 544F' ** INSERTFD RY ASSEM, **

149 0 5320 ** I~SERTf.D RY ASSEM. **
I - -/~ ~

1 4C45 ** INSERTED RY ASSEM, **
2 5341 ** INSERTED ~y ASSEM. **
3 5420 ** INSERTfO RY ASSEM. **

150 0 2020 ** INSERTED RY ASSEM, ••
1 2020 ** INSERTED BY ASSEM. **
2 2020 ** INSERTEO BY ASSEM. **
3 2020 •• INSERTrD RY ASSEM. **

151 0 0000 ** INSERTEO BY ASSEM, **
1 0000 ** INSERTEO AY ASSEM. **
2 0000 ** INSERTEO RY ASSEM. **

PROGRAM JO, • OATE RUN 3/26/70 TIME • 1?148 VERSinN 0?•01•70 PAr,E 0?7

WORO 08JECT
SYL CODE

SEQ. SYM. OP FD. A•PARA~ETER
NO. LOC. CODE LN. LAREL INC

B C LAREL R E M A R K S
PAR PAR DEC EQLJ

3 0000 ** JNSERTF.0 RY ASSEM, **
'

152 0 469 0 ALF" 24 TOTAL PLUS ADOONS

152 0 504C •• tNSERTfO BY ASSEM. **
1 4C20 ** INSERTED RY ASSEM. **
2 5ll41 ** INSERTEO RY ASSE"• **
3 544F ** INSERTEO RY ASSEM, **

153 0 4f'4E ** INSERTEO RY ASSEM, **
1 4444 ** INSf.RTEO 9Y ASSEM. ••
2 2041 ** INSERTED BY ASSEM, **
3 5553 ** INSERTEO RY ASSEM, ••

154 0 2020 ** INSERTEO RY ASSEM, **
1 2020 ** INSERTEO RY ASSEM, **
2 ?.020 ** INSERTf.0 ~y ASSEM, **
3 5320 ** INSERTEO ßY ASSEM, **

155 0 0000 ** INSERTEO av ASSEM. **
1 onoo •• INSERTFD BY ASSEM, **
2 0000 ** tNSERTEO BY ASSEM, **
3 0000 ** TNSERTFO RY ASSEM. **

156 0 470 0 ALF 21~ rnTAL MINUS AOOONS
156 0 4049 ** INSERTf.0 RY ASSEM, **

f"
1 4C20 ** lNSERTFD BY ASSEM. **

-Vl 2 5441 ** INSERTEO RY ASSEM, ** \0

f" PROGRAM ID. • OATE RUN
O'\

o WORD OHJECT
SYL CODE

SE'Q. SYM.
NO. LOC.

3 544f

157 0 444F

1 4144

2 5320

3 4f55

158 0 2020

1 2020

2 2020

3 4E53

159 0 onoo
1 0000

2 0000

3 0000

160 0 471 ()

160 0 504C

1 4C20

2 5441

3 544F'

161 0 5420

1 4F'53

2 2043

3 5553

3/26/70

OP
CODE

Alf

TIME • l/?148

ro. A„PARAMETER
LN. LABEL INC

VERSION 02•01•70 PAGE 0?8

R E M A R K S A C LABEL
PAR PAR OEC fQlJ

•• INSERTEO AY ASSEM. **

•• IN5ERTf0 RV ASSEM. **
** INSERTEO BV ASSEt-t. **
•• IN~ER1EO RY ASSEM. ••

•• JNStRTEO RY ASSEM, **

•• INSERT~D RY ASSEM, **
** JNSERTED-AY ASStM, **
** INSERTEO RY ASS[M, **
** INSERTED RY ASSEM. **

** JNSERTEO RV ASSEM, **
** INSERn:o BY ASSEM •••

** INSERTEO AY kSSEM, ••
** INSERTEO RY ASSEM, **

24 TOTAL PLUS COST AOOONS

** fNSERTfD'BY ASSEM, **
** lNSERTEO BY ASSEM, **
** INSERTF'O RY ASSEM, '**
** INSERTF'O RY ASSfM, ••

** INSERT[D RY ASSEM, **
** INSERTED RY ASSEM, **
** INSERTEO RY ASSEM, **
** INSERTED RY ASSEM. ••

PROGRAM JO. • nATE RUN 3/?6/70 TIME • 12148 VERSION 0?•01•70 PAGE 0?9

WORD OBJECT
SYL CODE

SEQ, SYM. OP ro. A•PARAMETER
NO. LOC, CODf LN, LAREL INC

R C LABEL R F' M A R K S
PAR PAR OEC EQU

162 0 2020 ** INSERTEO RY ASSEM, **
1 4F'53 ** INSERTED RY ASSEH, **
2 444F' •• lNSERTFO RY ASSEM~ *~

3 4144 ** INSERTEO RY ASSEM, **
163 0 0000 ** lNSERTED RY ASSEM, **

l 0000 ** INSERTfO B~ ASSEM. **
2 0000 ** JNSERTfD RY ASSEM. **
3 0000 ** INSERTED ~y ASSEH~ **

164 0 472 0 ALF' 24 TOTAL MINUS COST AODONS
164 0 41")49 ** INSERTF"O RY ASSEM, **

l 4C20 ** IN5ERTEO BY ASSEM, **
2 5441 ** INSERTF"O RY ASSEN~ *~

3 S44F ** INSERT[~ RY' ASSEM, **

165 0 5354 ** INSERTEO RY ASSEM. *~

1 434F' ** JNSERTEO BY AS~EM~ **
2 53?0 •• INSERTEO RY ASSEM~ ••·
3 4ESS ** INSERTfO RY ASStH. ••'

166 0 5320 ** INSERTED BY ASSEM, **
1 4F'4E ** INSERTED RY ASSEM. **
2 4444 ** INSERTED RY ASSEM, **

f' 3 2041 ** INSERTEO ~y ASSEH, **

°'

PROGRAM 10, • OATE RUN 3/26/70 T J ME • 12 f48 VERSION 0?•01•70 PAGE 031

WORD OBJECT SEl~. SYM. OP ro. -A-PARA~ETER R c LAAEL REMARKS
SYL CODE NO, LOC. COOF" LN. LAREL INC PAR PAR OEC EQU

172 0 434F ** INSERTfD BY ASSEM, **
1 4C20 •• INSERTEO BY ASSEM, **
2 5441 •• INSERTEO av ASSEM. **
3 544F ** tNSERTEO RY ASSEM. **

173 0
. i: ',

** JNSERTf.0 RY ASSEM. ** 2020

l 2020 ** INSERTfD BY ASSEM, **
2 5320 ** INSERTEO BY ASSEM, **
3 5354 ** INSERTEO RY ASSEM, **

174 0 2020 ** INSERTEO RY ASSEM, **
1 2020 ** INSERTED BY ASSEM, **
2 2020 ** INSERTEO RY ASSEM, **
3 2020 ** INSERTFO RY ASSEM. **

175 0 0000 ** INSERTfO RY ASSEM. **
1 0000 ** JNSERTfO BY ASSEM. **
2 0000 ** INSERTEO RY ASSEM, ••
3 0000 ** INSERT[D RY ASSEM, **

176 0 475 0 T•GROS Alf 14 TOTAL GROSS

176 0 4C20 ** INSERTF'O RY ASSEM, **
1 5441 ** INSERTED BY ASSEM, **
2 544f ** INSERTf.0 RY ASSEM, **
3 2020 ** INSERTEO BY ASSEM, ••

-~ l77 0 0000 ** INSERTED AY ASSEM, ** °' ~

~ PROGRAM ID. „ DATE RUN 3/26/70 TlMF: • 12&48 VERSinN 0?•01•70 PAGE 012
0\

~WORD OBJECT SEQ. SYM. OP FO. A•PARAMETER B c LAREL R E M A R K S
SYL cnoE NO. LOC. coor LN. LAAEL INC PAR PAR OEC EQlJ

1 5320 ** INSERTED RY A5SEM, **

2 4F53 ** INSERTED RY ASSEM. ••
3 4752 ** INSERTEO RY ASSEM, **

178 0 476 0 TOISC Alf 24 T n TAL 0 IS C 0 lJ NT S

178 0 2044 •• INSERTEO RY ASSEM, ••
1 4J4C ** INSERTFO RY ASSEM, **

2 4F54 ** INSERTEO RY ASSEM, **

3 2054 ** INSERTED BY ASSEM. **

17Q 0 5453 *• INSERTEO AY ASSEM. **

1 554f ** I NSERH::O BY ASSEM, ••
2 434F ** INSERTEO RY ASSEM. **

3 4q53 ** INSERTEO RY ASSEM 0 ••

180 0 2020 •• INSERTEO BY ASSEM, **

1 2020 •• INSERTEO RY ASSEM. ••
2 2020 •• TNSERTED RY ASSEM 1 ••
3 2020 ** INSERTEO RY ASSEM, ••

181 0 onoo ** INSERTEO RY ASSEM~ ••
1 0000 ** INSERTEO BY ASSEM. ••
2 0000 ** INSERTfO RY ASSEM. ••
3 0000 ** INSERTEO AY ASSEM 1 **

182 0 477 0 F'RSTT\I A lS 24 STARTING INVnICE Nn.

182 0 4Q4E ** tNSERTFD BY ASSEM. **

PROGRAM ro. - OATE RUN 3126110 TIMF: • 12146 VfRSION 02•01•70 PAGE 033

WORD OBJECT SEQ. SYM. IJP F'O. A•PARAMETER R c L l\FlE L RF.:MARl<S
SYL CODE NO. LOC. COOE L~. LA~EL INC PAR PAR OEC EQU

1 5254 ** INSfRTED RY ASSEM, **
2 5441 ** tNSERTfO 8Y ASSEM. **
3 2053 ** INSERTEO RY ASSEM. **

183 0 4943 ** INSERTEO RY ASSEM. **
1 564f' ** INSERTF.:0 ~y ASSEM. **
.2 4C»4E ** INSERTEO RY ASSEM. **

~ 4120 ** INSERTEO AY ASSEM. **

184 0 2020 ** INSERTEO BY ASSEM. **
1 2f 20 ** INSERTEO 8Y ASSEM. **
2 4F.:4f ** INSERTEO BY ASSEM. **
3 4520 ** INSERTf.0 BY ASSEM. **

185 0 0000 ** INSERTEO RY ASSEM. **
1 0000 ** INSERTED RV ASSEM. **
2 0000 ** INSERT(O RY ASSEM, **
3 0000 ** INSERTEO ~y ASSEM. **

186 0 478 0 ·· TXRT ALF' 24 TAX RATE·

t86 0 4154 ** INSERTEO av ASSEM. **
.1 2052 ** INSERTEO BY ASSEM. **

2 41. 56 ** TNSERTEO RY ASSEM. **

3 2054 ** INSERTEO BY ASSEM. **

187 0 2020 ** JNSERTfO RY ASSEM. **
~ 1 2020 ** JNSERTEO BY ASSEM. **
O'I
CJt

~ PROGRAM JO, - OATE RUN 3/26/70 TJMF • 1~148 VERSION 0?•01•70 PAGt: O'.U
0\
°' WORD U8JECT SE C.J. SYM. OP FO. A•PARA~ETER ~ c LAREL R F" M A R K S

SYL cnoE NO. L OC. CODE LN. Ll\REL INC PAR PAR orc EQU

2 2020 ** INSERTEO BY ASSEM. **
3 4r:;20 •• tNSERTEO 8Y ASSEM. **

188 0 2020 ** lNSERTEO BY ASSEM, **
1 2020 ** JNSERTED RY ASS(M, **
2 2020 ** tNSERTEO ffY ASSEM. **
3 2020 ** INSERTED BY ASSEM, **

189 0 0000 ** INSERTEO BY.ASSEM. **
1 0000 ** INSERTED AY ASSEM, **
2 0000 ** INSERTEO RY ASSEM, **
3 0000 ** TNSERTEO BY ASSEM. **

190 0 IH9 0 llA IT ALF' 24 CIJRR[NT DATE

190 0 4F:.'54 ** tNSERTED AY ASSEM, **
1 5?45 ** TNSERTfO RY ASSEM, **
2 5552 ** tNSERTEO RY ASSEM, **
3 2043 ** INSERTEO 0Y ASSEM, **

191 0 2020 ** INSERT(O RY ASSEM, **
1 4520 ** INSERTEO RY ASSEff. **
2 4154 ** INSERTEO ßY ASSEM, **
3 2044 ** INSERTEO RY ASSEM, **

192 0 2020 ** INSERTEO RY ASSEM, **
1 2020 ** INSERTro BV ASSEM. **
2 2020 ** INSERTEO BV ASSEM, **

PROGPAM ID. • nATE RUN 3 /.26 /70 TIME •]2:48 VERSION 02•01•70 PAGE 0~5

WORO 08.JECT SEQ. SYM. OP FO. A•PARAMETER R C LAREL R f M A R 1(S
SYL cnoE NO. LOC. CODE LN. LA~El JNC PAR PAR on: [QU

3 2020 ** INSERTfD 9Y ASSEM, **

193 0 0000 ** INSERTEO ijY ASSEM, **
1 0000 ** INSERTEO ßY ASSEM. **
2 0000 ** INSERTEO ~y ASSEM. **
3 0000 ** INSERTEO BY ASSEM. **

'~80 0 SLOTnl.: nEF 8 SOU) TO LINE

481 0 SHPTOL DE F' 13 SHIP TO LINE

4R2 0 RIBRL llEF' 20 RtBBON LINE

483 0 HOOYL OEF' 21? ßODY OF' INVOICE LINE

481.1 0 NMAO•P OF.:F' 13 POS. NAME AODRESS
485 0 TERM•P OEF' 6 POS TERMS

48h 0 ORDNOP OEf 19 POS ORDER NUM~ER

487 0 CUSNOP OEF 31 POS CUSTOMER NUMRER

488 0 SL08YP OEf 42 POS SOLD BY NAME

489 0 SHPVIP 1) f.F 51, POS SHIP VIA

490 o. OATE•P DEF' 6 „ POS DATE

491 0 TNVNOP DEf 80 POS INVOICE NUMBER

492 0 PRDCOP OEF' 5 POS PROOUCT NUM8ER

493 0 CHY•P OEF 7 POS QlJA~lTY

494 () OESC•P DEf" 22 POS OESCRIPTJON

495 0 SPRC•P OEF' 43 POS SJ=:LL PRICE

496 0 PERIJ•P OEf 55 POS PER UNIT COLUMN

·~
497 0 GRS•P OEF' 56 POS GROSS AMOUNT

1
0\ 49R 0 DISC•P OEF" 66 POS OISCOtJNT PERCENT:i

f' PROGRAM ID. •
O\'
00 WORD OBJEC T

_ SYL CODE

DATE RUN 3/26/70 TIME • 12148

SEQ. SYM. OP fO. A•PARAMETER
NO. LOC. CODE LN. LAREL INC

499 0 NET•P OEF' 76

500 0 CPRC•P OEF" 90

501 0 CSTX•P OEF" 91'

502 0 AOON•P DEF' 59

503 0 PRTl•P OEF' 87

504 0 CNTP•P OEF 64

505 0 SM•HOP OEF 12n

506 0 SM•CTP OEF 1311

507 0 NOTE
508 0 NOTE
509 0 NOTE
510 0 NOTE"

511 0 NOTf.

512 0 NnTE

513 0 END

VERSION 0?•01•70 PA~E 036
B C LAREL R E M A R K S

PAR PAR OE'.C EQU

Pns Nf.T AMOUNT
POS COST PRICE
POS COST AMOUNT
POS ALPHA ADOONS

Pns PROFIT/Lnss '
POS TO CONT. PAGE
POS MISC ENTRifS RGHT ,_

POS SUMMARY COST
X3 NO DISCOUNT LINE
X4 AOOONS ON INVOICE

Y1 START CONT. PAGE
Y3 STANDARD TNVOICE
Y4 LAST 6 INVOICE lINES
X INOJCATES MANUAL INDEX
END or JOR

f"
0\
\0

• . ·~· . Burrou~...._.,~":il. --• • • • • • •
---~ - - -- - - - ---- ------- -------- ---- --- -------- - --- - ----

1
2

SOLO
TO : ACME TOOL AND DIE

4444 MAIN STREET
BAKEWELL, OHIO
48122

SHIP SAME
TO :

TERMS

INVOICE
BurrouQhs C)
DEMONSTRATING FORM

CUSTOMER NO. T SOL.0 BY l SHIP VIA l DATE I ORDER NO.

COD I 23-A6_I ATD-_.2.00 I J1L S I R_A_J. lMAR l..5._ -1..910.
CODE QUANTITY OESCRIPTION PRICE UNIT GROSS DISCOUNT

6 10 ASST NUTS AND BOLTS
WITH WASHERS 1.00 EA 10.00

12 5 REVERSIBLE RATCHETS 11. 50 EA 57.50
21 100 ASST SIZES SOCKETS 1.20 EA 120,00
05 .6 TOOL CHESTS 4.75 EA 29.50
99 5,000 NONLEAK RUBBER

RUBBER-GASKETS 2,00 c 100,00 23 %
75 25 000 COLD CHISELS 60,00 c 15,000,00 12 %

TAX 9.12%

214117180 PRINTED IN U.S. AMERICA

INVOICE NO. 1

_.101; 1
NET l COST PRJCE COST EXTENSION

1

10 .oo 1 • 10 1.00
57.50 4.50 22,50

120.00 1 .67 67.00
28, 50 1 2 .18 13,0S

77.00 1 .02 1.00
l3.2CC,QC 1 49.00 l2.25Q,gg
13,493.00 12,354.59
1,230.56 J

14. 723. 56 1 1,138.42 12,354.SS

1

1
1

1

1

1

1033151

CROSS REFERENCE TABLE BETWEEN
PROGRAM DEFINITION CHART SEOUENCE NUMBER AND

ASSEMBLER 111 OUTPUT SEOUENCE NUMBER

PROGRAM DEFINITION ASSEMBLER III

CHART SEOUENCE OUTPUT SEOUENCE

FUNCTION NUMBERS NUMBERS

Invoice 1. 2410 - 2430
Date 2. 2480- 2490
Tax Rate 3. 2540 - 2550
Clear Daily Totals 4. 3750- 3840
Choice of lnvoice 5. 50 - 100
Sold-to and Ship-to Information 6. 7. 160-420
Terms 8. 440 -450
Order Number 9. 460 - 470
Customer Number 10. •480 "'490
Sold-by-lnformation 11. 500-510
Ship-via-lnformation 12. 520 - 530
Print Date 13. 560, 3850 - 3860
Print Invoice Number 14. 3870 - 3940
Product Number 15. 650- 720
Quantity 16. 800- 820
Product Description 17. 880 - 890
Sell Price 18. 950-1220
Unit 19. 1060, 1110, 1220
Gross 20. 1230 - 1240
Discount 21. 1290 - 1350
Net Amount 22. 1410 - 1430
Cost Price 23. 1490 - 1500
Cost Amount 24. 1560- 1580
Invoice Subtotal 25. 1620- 1650
Tax Per Cent 26. 1666 - 1682
Tax Amount 27. 1840
Add Ons 28. 1920- 2060
Cost Add On 29. 2070- 2260
Invoice Total 30. 1620-
Automatie Continuation Pages 31. 3290 - 3520
Calculate and Print Profit 32. 2310- 2350
Print Totals 33. 2580 - 3140

4-70

SECTION 5
ASSEMBLERS

5.00.00 FUNCTIONAL DESCRIPTION OF BASIC ASSEMBLERS

An assembler is a program or system of programs which prepares a machine language program from a
symbolic language program by substituting absolute operation codes for symbolic operation codes and
absolute or relocatable addresses for symbolic address.

Versions of the Series L/TC Assembler are available for several of Burroughs Computer systems. Tue
processing time and operation is different in varying degrees from one version to the other although the
functions of all versions are basically the same. These functions include error detection, preparation of
object program media, symbolic and object program listings, and other operating and debugging aids.
Input to each version of the L/TC Assembler consists of GP 300 instructions in the format specified by
the Burroughs Assembler Coding Form (MK.TG 2296) (See Section 1 of this manual).

Revised 8/9/71 by
PCN 1045481-003 5.00.00

5.01.00 L/TC PAPER TAPE ASSEMBLERS

The paper tape assemblers are two phase (two pass} assemblers. Each phase is a separate program and
must be loaded prior to its operation. The. series L/TC keyboard is used for Phase I input. The output
consists of a Phase I listing as wen as a symbolic paper tape. This symbolic paper tape is then used as
input for Phase II. Phase II output consists of a phase II assembler listing and an object program tape.

The paper tape assemblers which operate exclusively on L/TC equipment are Assembler 1, Assembler
ISL, Assembler VI, Assembler VIII. The operating instructions for these assemblers are the same except
for additional options available with some assemblers as cited below.

Assembler 1

Assembler 1 operates on TC 500/700, L 2000, L 3000, and L 4000 3 2-track machines, and will generate
code for these machines, and also the L 2000, L 3000, and L 4000 40-track machines.

Assembler ISL

Assembler ISL operates on TC 500/700, L 2000, L 3000, and L 4000 32-track machines, and generates
code exclusively for the L 5000. Note striped ledger options in Topic 5.02.04.

Assembler VI

Assembler VI operates on the L 2000, L 3000, and L 4000 40-track machines, and generates code for
these machines and the L 5000, and also the 32-track machines. Note striped ledger options in Topic
5.02.04.

Assembler VIII

Assembler VIII operates exclusively on the L 5000, and generates code for the TC 500/700, L 2000, L
3000, and L 4000 32-track machines for the L 2000, L 3000, and L 4000 40-track machines and for
the L 5000. Note striped ledger optrons in Topic 5.02.04.

5.01.01 ENVIRONMENT

Equipment required for the assemblers mentioned above is as fo11ows:

Assembler I, and ISL are compatible with any one of the fo11owing 32-track füll memory Series
L/TC's: TC 525, TC 725, TC 1545, TC 2545, L 2101-608, L 2301-608, L 3111-608, L 3311-608, or L
4311-608.

Assembler VI is compatible with any one of the fo11owing extended memory Series L's: L 2302-908, L
4312-909, L 3312-908.

Assembler VIII is compatible with the following füll memory Series L 5112-609.

These assemblers require the following peripherals and firmware:

5.01.00

A 581 Paper Tape Reader

A 562Paper tape Punch

Assembler Hardware Firmware Required*

Assembler 1 and ISL TC 525, TC 725, TC 1545 2-1021-001-XX

Assembler 1 and ISL L 2101-608, L 2301-608 2-1001-001-XX

Assembler 1 and ISL L 3111-608, L 3311-608 2-1001-001-XX

Assembler 1 and ISL L 4311-608 2-1301-001-XX

Assembler 1 and ISL TC 2545 2-1321-001-XX

Assembler VI L 2302-908, L 3312-908 2-1101-001-XX

Assembler VI L 4312-909 2-1401-001-XX

Assembler VIII L 5112-609 2-1201-001-XX

* XX denotes latest revision

Applicable Program 1. D. numbers are as follows:

Program 1. D.

Assembler Phase 1 Phase II

Assembler 1 1-1001-008-XX 1-1001-009-XX

Assembler ISL 1-1001-069-XX 1-1001-070-XX

Assembler VI 1-1101-001-XX 1-1101-002-XX

Assembler VIII 1-1201-022-XX 1-1201-023-XX

5.01.02 PHASE 1

Phase 1 of the assemblers operates under 3 modes: 1) Keyboard Mode, 2) Correction Mode, and
3) Continuation Mode~ Under Keyboard Mode, the symbolic instructions are entered on the Series L/TC
keyboard, a label Table is built up in memory, a Phase 1 listing is prepared on the printer, and a
symbolic paper tape is punched. Under Correction Mode, instructions may be changed, added or deleted 1
in the symbolic paper tape. Correction Mode allows the Phase 1 assembly process to be resumed after an
interruption. Phase 1 also has diagnostic facilities for the detection and indication of errors.

Phase 1 - Input

The input öf Phase I of the assembler program is comprised of the labels, symbolic operation codes,
parameters and remarks which are entered sequentially via the keyboard or the tape reader (in the case
of continuation mode or correction mode).

Phase 1 - Operating lnstructions

In operating the assemblers pin fed continuous forms, a minimum of 11 % inches in width, must be used.
The left edge of the pin fed form should be at position 5 on the scale and the positioned forms are
visible along the bottom form bail. Both Pass 1 and Pass II object program tapes include their own
firmware. Therefore, when loading the assembler programs, all 32 tracks of main memory (words
0-1023) must be unprotected.

1. Via Memory Loader Device: Load in normal manner. (See Section 6 of this manual for
specific instructions.)

Revised 8/9/71 by
PCN 1045481-003 5.01.02

2. Via Paper Tape Reader:

a. Load "Memory Load P. T. Reader" into Utility Track with normal load procedure.

b. From Ready Mode, depress PKA 3 - Utility - and load Pass 1 of Assembler 1 through
tape reader. _

c. Execute Assembler Pass 1. See below.

d. Upon completion of all Pass 1 assemblies, depress PKA 3 from Ready Mode to load
Assembler Pass 2. Pass 1 assembly does not destroy the Reader Load Routine in the
Utility Track.

e. Execute Assembler Pass 2. See below.

f. Upon completion of all Pass 2 assemblies depress PKA 3 from Ready Mode to load in
appropriate Main Memory Firmware through Tape Reader, plior to loading and executing
any user programs. *

5.01.03 ASSEMBLER 1

Start

Depress PKA 1, the "START" Key.

The program will stop at a Numeric Keyboard (NK)' instruction with three PK's enabled. The three
enabled PK's are:

PKA 2 KEYBOARD MODE OF OPERATION

PKA 3 CORRECTION MODE OF OPERATION

PKA 4 CONTINUATION MODE

OCK's The use of any OCK will allow 15 inches of leader tape (sprocket holes) to be punched and
an automatic return to the initial keyboard (NK) instruction.

1. When "MEMORY" prints, enter the number of words of user memory. No entry assumes 512
words.

2. When "EXTMEM" prints, depress OCK 2, 3, 4.

3. When "PAGE 51" prints, depress OCK 1 for 51 lines/page or OCK 2, 3, 4, if 66 line/page are
desired.

When the desired OCK's have been depressed, refer to Topic entitled "keyboard mode",
5.01.06 or condensed operating instructions Topics 5.01.07 and 5.01.10.

*Keyboard Modifiers for the Commercial Keyboard may be loaded immediately after loading Pass 1.

5.01.04 ASSEMBLER ISL

Start

Depress PKA 1, the "START" Key.

Tue program will stop at a Numeric Keyboard (NK) instruction with three PK's enabled.

Tue three enabled PK's are:

5.01.03

PKA 2 KEYBOARD MODE OF OPERATION

PKA 3 CORRECTION MODE OF OPERATION

PKA 4 CONTINUATION MODE

OCK's Tue use of any OCK will allow 15 inches of leader tape (sprocket holes) tobe punched
and an automatic return to the initial keyboard (NK) instruction.

1. When "MEMORY" prints, enter the number of words of user memory. No entry assumes 512
words.

2. When "PAGE 51" prints, depress OCK 1 for 51 lines/page or OCK 2, 3, 4, of 66 lines/page
are desired.

3. When "SLT" prints, depress OCK 1 for the striped ledger table option (necessary when using
80-column card input) or OCK 2 if the striped ledger table option is not desired. lf this
option is chosen, the assembler forces a memory limit of 482 words.

When the desired OCK's have been depressed, refer to Topic entitled "keyboard mode"
5.01.06 or condensed operating instructions Topics 5.01.07 and 5.01.10.

5.01.05 ASSEMBLER VI AND VIII

Start

Depress PKA 1, the Start Key.

The program will stop at a numeric keyboard (NK) instruction with three PK's enabled. The three
enabled PK's are:

PKA 2 KEYBOARD MODE OF OPERATION

PKA 3 CORRECTION MODE OF OPERATION

PKA 4 CONTINUATION MODE

OCK's The use of any OCK will allow 15 inches of leader tape (sprocket holes) to be punched
and an automatic return to the keyboard (NK) instructions.

1. When "MEMORY" prints, enter the number of words of user memory.

2. When "EXTMEM" prints, depress OCK 2, 3, 4 for 32 Track; OCK 1 for 40 Track. lf this
option is used, the striped ledger option or the striped ledger table option will not be
available.

3. When "PAGE 51" prints, depress OCK 1 for 51 lines/page or OCK 2, 3, 4 if 66 line/page are
desired.

4. lf the extended memory option, "EXTMEM", was not chosen above, "SL'' prints. Depress
OCK 1 for the striped ledger option or OCK 2 if the striped ledger option is not desired.

5. lf the striped ledger option was chosen above (i.e., if OCK 1 was depressed), then "SLT"
prints. Depress OCK 1 for the striped ledger table option (necessary when using 80-column
card input) or OCK 2 if the striped ledger table option is not desired. lf this option is chosen,
the assembler forces a memory limit of 482 words.

When the desired OCK's have been depressed, refer to Topic entitled "keyboard mode",
5.01.06 or condensed operating instructions Topics 5.01.07 and 5.01.10

Revised 8/9/71 by
PCN 1045481-003 5.01.05

5.01.06 KEYBOARD MODE

Depress PKA 2 to enter the keyboard mode. Tue program will stop with the numeric keyboard enabled
to allow the operator to enter the total words of memory intended for the object program.

Use any OCK to terminate the instruction. Tue program will then stop in the INSTRUCTION FIELD
with the Alpha Keyboard enabled. Failure to enter the total words of memory will inhibit the operator
from continuing at the INSTRUCTION FIELD position.

lnstruction Field

Type the Mnemonic Op Code or Pseudo Op Code, listed on the symbolic program form.

Tue following choices are available to the operator:

OCK 2 - Program will return to and stop in the LABEL FIELD. This may be done before or after the
entry of the Mnemonic.

OCK 4 - Program will stop in the parameter field, but a stop in the remarks field will be enforced
before the entry of the instruction is completed.

OCK 1-3 - Program will stop in the parameter field without an enforced stop in the remarks field.

PKA 1 - Partial Phase I Halt. Tue use of PKA 1 will permit Phase I to be halted at any time. A special
code is punched in the source tape instead of the pseudo operation code END. Tue label table is printed
and punched in the source tape at each stop or "breakpoint." Tue label table punched at the conclusion
of each segment of assembly is updated and all inclusive to that point. In addition, the last operation
sequence number is printed and punched. There are two possibilities of continuing the assembly of the
program. Tue first possibility is that the next section of the program will be assembled before the status
of the assembler program in the machine has been disturbed. In this case, it is only necessary to enter
the continuation mode and proceed. Tue second possibility is that the continuation will be at some later
date when all current information in the system has certainly been destroyed.

In this case, it is necessary to load the Phase I assembler program and the labei table along with the
ending sequence number, both of which were printed and punched at the time of the "breakpoint,"
enter the continuation mode and proceed.

Tue partial Phase I halt, or breakpoint makes it possible to assemble large programs in sections.

Tue special code used for the breakpoint makes it possible to use small sections of Phase I source tape
for input to Phase II. Tue breakpoint code will halt Phase II at a keyboard instruction, as described in
Phase II operation, and the use of any OCK will permit Phase II to continue.

PKA 8 - Will print "ERROR" in red at left of sequence number column, the form will space and the
program will stop in the Instruction Field for re-entry.

Tue entry of an Invalid Mnemonic will function in the same manner as the depression of PKA 8.

Tue typing of the Pseudo-Op word END will cause the program to enter a routine where the label table
will be printed and punched out. Tue program will then allow the system to return to the READY
MODE.

5.01.06

Label Field

Type in the Label - a maximum of 6 characters is permissible. Tue first character must be an Alpha
character. A maximum of 139 labels may be used.

OCK's - Use of any OCK to terminate the field will cause the program to skip to the PARAMETER
FIELD IF THE INSTRUCTION FIELD has been previously entered. If not, the program will stop in the
INSTRUCTION FIELD.

Use of OCK 4 will also enforce a stop in the REMARKS FIELD before the line is completed.

PKA 8 - Will print "ERROR" in red at left of sequence number column, the form will space the
program and the program will stop in the Instruction Field for line re-entry.

If a duplicate label is entered, the same function will occur as if PKA 8 had · been depressed.

Para1T1eter Field

Tue Parameter Field may actually be a 1, 2 or 3 field entry, depending on the Mnemonic entered in the
Instruction Field. Either the Alpha Keyboard or the Numeric Keyboard will be enabled at this time, also
depending on the Mnemonic.

OCKS's - Use of OCK 2 before the entry will change the entry mode from NUMERIC to ALPHA;
however, the program will allow this switch only if the Mnemonic permits it.

ALPHA ENTRY - Enter the appropriate Alpha Characters. A maximum of 6 characters is permitted on
labels.

NUMERIC ENTRY - Enter appropriate numeric digits. Where a zero entry is not permitted or where
the numeric entry exceeds the value permitted by the Mnemonics, the program validation routine will
re-initiate a numeric keyboard instruction until the operator indexes a valid entry.

OCK 1 - Tue program will stop in the next PARAMETER FIELD if the Mnemonic calls for another
field entry. If the parameter field entry is the ending parameter field entry, the program will print the
sequence number, the form will space and the program will stop in the INSTRUCTION FIELD for the
next entry. If OCK 4 had been used in any previous entry position, after printing the sequence number,
the program will stop in the REMARKS FIELD before ending the line entry.

OCK 2 - Depression of OCK 2 will activate the altemate keyboard when . the instruction allows both
absolute. and symbolic parameter entries. For example, if the numeric keyboard is active, depression of
OCK 2 will cause the alphanumeric keyboard to become active if the choice is available. In all other
instances the key will function the same as OCK 1.

OCK 3 - The program will stop to permit entry of a +/- increment (numeric).

OCK 4 - On. the ending Parameter Field entry, after printing the sequence number, the program will
stop in REMARKS FJELD before ending the line entry.

PKA 8 - Use of this PK will print "ERROR" in red at the left of the sequence number column, the
form will space and.the program will stop in the INSTRUCTION.FIELD for re-entry.

If an· Invalid Alpha key has been used, the same function will occur as if PKA 8 had been depressed. .

Revised 8/9/71 by
PCN 1045481-003

5.01.06 (Cont'd-1)

+/- lncrement

Tue numeric keyboard is enabled. Tue numeric entry may be up to 255. Use of the RE key prior to
termination, will permit a MINUS value; otherwise, the entry will be positive.

OCK 1, 2, 3 - These OCK's will print the sequence number, space the form and stop in the
INSTRUCTION FIELD for the next line entry. If OCK 4 has been used previously, at any time in the
symbolic entry, the sequence number will be printed and the program will stop in the REMARKS
FIELD.

OCK 4 - Enforces a stop in the REMARKS FIELD.

PKA 8 - This PK will print "ERROR" in red at left of the sequence number column, the form will
space and the program will stop in the INSTRUCTION FIELD for re-entry.

Remarks Field

Typing of up to 25 Alpha characters for remarks is permitted. Tue entry of a 26th character will result
in a keyboard Error condition. Tue program will be halted. Tue RESET key must be used to correct the
error condition and an OCK used to terminate REMARKS FIELD correctly. Remarks are not punched
into the output tape until all typing is completed and the instruction terminated by the use of an OCK.
Tue form will space and the program will stop in the INSTRUCTION FIELD for the next entry.

Alf Pseudo-lnstruction

Tue entry of the pseudo-op ALF will permit the entry of up to 24 alpha characters as a constant. Tue
entry of from 1 to 23 characters followed by OCK termination will cause the program to allocate the
correct number of words for the message. Tue program will then stop in the INSTRUCTION FIELD for
the next entry. Tue entry of exactly 24 characters and termination will cause the program to allocate
the words and, in addition, the program will automatically print ALF in the INSTRUCTION FIELD on
the next line and then stop for an additional alpha constant entry. Tue entry of a 25th character will
result in a keyboard error condition. Tue RESET key must be used to correct the error condition and
permit the proper termination by an OCK. However, the word ALF will still print in the
INSTRUCTION FIELD with a stop to allow for an additional alpha-constant entry.

Continuation Mode

In addition to loading the Assembler program tape Phase 1, using the standard program load procedures,
the label table must also be loaded into memory. Tue tape perforator must be turned on and sufficient
leader tape (sprocket holes only) punched. Tue RESET KEY will return the machine to the READY
MODE.

PKA 4 - This will cause the sequence number printed out with the first line of entry and to be in
proper sequence with the last sequence number from the previous section of tape, prior to the

breakpoint. Tue program will then enter the KEYBOARD MODE portion of the Assembler program,
Phase 1 for continuation.

Correction Mode

Depression of PKA 3 will cause the CORRECTION MODE of operation to be entered. Enter the appro­
priate selection for "MEMORY", "EXTMEM" and "PAGE 51" as previously discussed. The program will

5.01.06 (Cont'd-2)

then stop at a NUMERIC KEYBOARD instructions with three (3) PK's enabled. At this point, the source
tape must be loaded in the A 581 Tape Reader and the A 562 Tape Perforator must be on. The enabled
PK's determine the following functions:

Add to Sequence Number - PKA 5

PKA 5

PKA6

PKA 7

ADDTO

CHANGE

DELETE

At the numeric keyboard entry which is reached via PKA 3, prior to depressing PKA 5, index the
sequence number of the symbolic entry, from Phase 1 documentation, that precedes the area in which
instructions are to be added. "ADD TO" will print followed by the sequence number.

Tue program will automatically read the source tape, punch out a new tape, and will build a label table
in memory. When the sequence number indexed has been read and punched, the program will print the
sequence number plus .1 (XX.1). This provides the ability to add one symbolic instruction in the

position following the sequence number indexed (XX) with a sequence number of X:X.1. Following the
entry of this added symbolic operation, the program will return to the Correction Mode. To successively
add a group of instructions, PKA 5 must be depressed prior to each added instruction. Re-entry of the
sequence number isn't required. Tue added instruction will be automatically inserted and numbered in .1
increment. Tue number of "ADD TO" instructions is not limited, but when .9 is exceeded, duplicate
sequence numbering will result.

Example:

If instruction sequence number 23 is incremented by ten .1 increments, the result would be a duplicate
sequence number 24.0. Further "ADD TO" instructions would cause this sequence number to in turn be
incremented (24.1, 24.2, etc.). Tue original instruction listed as 24.0 will appear in the output tape
immediately following the last instruction added.

Re-entry of the original instruction is not required, however, duplicate sequence numbering can lead to
diffi.culty in later correction of the source program; therefore, the original 24.0 sequence number should
be "deleted" then a new sequence number "added." See Delete From Source Tape paragraph.

Change Source Tape - PKA 6

At the numeric entry reached by depressing PKA 3, prior to the depression of PKA 6, index the
sequence number from the Phase 1 documentation that is to be changed. When the instruction is
terminated by PKA 6, "CHG" will print followed by the number indexed.

Tue program will automatically read the source tape, punch out a new tape and will build a label table
in memory. When the sequence number indexed has been read, it will not be punched out. Tue program
will enter the Keyboard Correction Mode to permit entry of a line of coding following the entry of the
changed symbolic operation, the program will return to the Correction Mode described under correction
mode.

The assembler program permits instructions to be changed and new instructions immediately added to
the program.

Revised 8/9/71 by
PCN 1045481-003 5.01.06 (Cont'd-3)

1

Depression of PKA 6 without a sequence number being indexed, will cause the very n~t instruction on
the source tape to be read in but not punched out.

Delete From Source Tape - PKA 7

At the numeric entry reached by the use of PKA 3, prior to the depression of PKA 7, index the
sequence number, from the Phase I documentation that is to be deleted. When the instruction is
terminated by the use of the PKA 7, "DEL" will print followed by number indexed. Tue program will
automatically read the source tape, punch out a new tape and will build a label table in memory. When
the sequence number indexed has been read, it will be ignored and not punched. Once deleted on first
correction pass, that sequence number is gone and will never be found on any subsequent correction
pass. The program will return to the Correction Mode described under correction mode.

Depression of PKA 7 without a sequence number being indexed, will delete the next sequence in the
tape and print out the sequence number deleted.

Source Tape Interrupt Procedures

After indexing a sequence number and depressing any of the PK's described above, if the operator
realizes that the wrong sequence number was entered, PKA 8 may be depressed. At the end of the line,
the program will print out, ''NOW AT" followed by the last sequence number read in and the program
will stop at the Keyboard entry with the three (3) PK's enabled.

End Procedure

When the last "ADD TO," "CHANGE" and "DELETE" has been entered, the entry of any sequence
number larger than the END sequence number, from Phase I documentation, will read the source tape
and punch a new one. When the word END is read, it will cause termination of the Phase I correction
routine and will then follow the END pseudo instruction procedure.

5.01.07 PHASE 1 - CONDENSED OPERATING INSTRUCTIONS AND REFERENCE LIST (SEE TOPICS 5.01.02
AND 5.02.04 FOR LOADING INSTRUCTIONS AND OPTIONS.)

1. Depress PKA 2 for Keyboard Mode.

2. Type total words of memory you intend to use.

3. Depress any OCK and it will space correctly and stop for you to type the Op code of the first
instruction. (Col. 22-26 on coding forms.)

4. Type OP Code.

5. Use one of the following 3 lists of instructions:

5.01.07

a. No remarks (Col. 53)
No labet (Col. 16)

(1) Depress OCK 1 or 3.

(2) If parameters are required, it will stop in each necessary parameter field. Type
parameter. Depress OCK 1 or3 after each parameter entry.

(3) Tue final OCK will space for next Op Code entry.

b. No label (Col. 16)
Remarks present (Col. 53)

(1) Depress OCK 4.

(2) If parameters are required, it will stop in each necessary parameter field. Type
parameter. Depress OCK 1, 2 or 4 after each parameter entry.

(3) Final OCK will space to remarks field. Type remarks.

Depress OCK 1 to space to next OP code entry.

c. Label present (Col. 16)

(1) Depress OCK 2.

(2) If parameters are required, it will stop in each necessary parameter field. Type
parameter. Depress OCK 2 after each parameter entry.

(3) Final OCK will space to label field. Type label.

(4) If .!!Q. remarks, depress OCK 1 to space to next Op code entry.

(5) If remarks present, depress OCK 4. Type remarks. Depress OCK 1 to space to next
Op code entry.

Typing Error

If mistake made, depress PKA 8 before an OCK. lt will print ERROR and will stop in Op code field
for re-entry of instruction.

Correction Mode

1. Turn on perforator and put Source Tape in reader.

2. Be in READY MODE.

3. Depress PK 1.

4. Depress PK 3.

5. Type memory size and OCK 1.

Add To

1. Type sequence number before area to be added.

2. Depress PKA 5.

3. Program will read source tape, punch new tape, build labet tapes.

4. When indexed sequence number has been reached, .1 will be printed beside it.

5. Add new instruction as other original instruction.

6. If there are additional instructions, depress PKA 5 and type next instruction.

a.&nging Source Tape

1. Type number tobe changed.

2. Depress PKA 6.

3. Sequence number will not be punched.

4. Enter new instructions as original instructions.
Revised 8/9/71 by
PCN 1045481-003 5.01.07 (Cont'd)

Delete from Source Tape

1. Type sequence number.

2. Depress PKA 7.

Sequence Number Typing Error

1. Depress PKA 8.

2. Depress PKA 5, 6 or 7 again.

To Terminate any Correction

1. Enter any sequence number larger than the END sequence number then depress PKA 5, 6 or
7.

2. lt will read source tape and punch a new one. This will give new symbolic tape and new labet
table.

5.01.08 PHASE 1 - DIAGNOSTIC FACILITIES

Provision is made for the detection and printed indication of errors that may occur in the Assembler
pro gram.

Error Detection and lndication

Tue entry of the symbolic language in Phase 1, as previously stated, is via. the keyboard or paper tape
reader. Errors are detected as the symbolic entry is made.

MNEMONIC ERROR DETECTION - Tue mnemonic is entered first in sequence. If the mnemonic is
invalid, the OCK used to terminate the entry will initiate an error sequence that will space the print
head to position 10, print ERROR, align the form 1 space, and re-position the print head so that the
invalid mnemonic may be corrected.

LABEL ERROR DETECTION - Tue next sequential operation, in the entry sequence of the program,
is the entry of a label if required. Tue label error detection consists of determining if the label has been
used previously and/or if the total number of labels exceeds the maximum of 139.

Duplicate labet validation occurs after the specific symbolic operation has been entered. If the label is

invalid, the print head is positioned to 10, ERROR is printed, and the printer document is advanced 1
line and a corrected entry must be made.

If the maximum of 139 labels is exceeded, the printer document advances to the next form (over fold),
prints and punches out the contents of the label table up to that point. Tue assembler program will
return the system to the ready mode and the correction routine must be used.

PARAMETER ERROR DETECTION - Tue parameters are also validated following the termination of
their entry. Label-type parameters are not validated in Phase 1. Separate error detection is used for
numeric parameters and alpha parameters.

NUMERIC PARAMETER ERROR DETECTION - Two numeric parameter conditions are validated in
Phase 1.

1.
2.

5.01.08

Parameter exceeds specified limits (maximum or minimum) value.
Parameter is required and has not been entered.

In both cases, the validation routine will, upon recognizing the invalid condition, re-initiate the
parameter entry sequence. However, if a zero parameter is acceptable, it is not necessary to index a
zero. Leaving the parameter area blank will force the zero entry.

ALPHA PARAMETER ERROR DETECTION - An alpha parameter error is detected upon termination
of the entry. In an invalid situation, such as entering an invalid alpha character, or no entry where an
alpha entry is required, the print head will be positioned to 10, ERROR is printed, the printer
document aligned 1 space and the entire symbolic operation sequence must be re-entered.

MEMORY ERROR DETECTION - Memory error conditions are:

1. Tue program exceeds the maximum memory available.

2. A specific point in the program is reached where sufficient memory has been occupied such
that specifying a REG instruction, with a large parameter, will exceed the maximum memory
available.

In both of the above error conditions, the assembler program will return the system to the
Ready Mode. This condition can only be corrected by use of the correction routine. (See
correction mode.)

Error Detection - Correction Mode

Tue correction mode features error detection similar to that previously discussed.

MNEMONIC ERROR - If an invalid mnemonic is encountered, the validation routine will print the
sequence number, label - if any - and the mnemonic as it appears in the input tape, advance the form
1 line, print INSTR ERROR, punch a NOP instruction in the output tape and continue assembly.

LABEL ERROR - If an invalid label is encountered, the validation routine prints the sequence number,
label and instruction as it appears on the input tape, advances the form 1 line, prints LABEL ERROR,
removes the invalid label, but punches the rest of the instruction in the output tape and continues
assembly.

PARAMETER ERROR - If an invalid ALPHAparameter is encountered, (PK, LOD's, SK's or MASKS)
the validation routine prints the sequence number, label, instruction and parameters, advances the form
1 line, prints PARMTR ERROR, punches the instruction in the output tape and continues assembly.

PHASE 1 - .OUTPUT

Tue output of Phase I of Assembler I consists of a print-0ut and a punched paper tape (source tap1'\

Tue Phase I Print-Out is in the same format as the Phase I output tape. lt is in two sections, the first is
a listing of the Symbolic operations and the second a listing of the label table with memory addresses,
as illustrated in Exhibit I.

Tue output tape is created in two sections. Tue first section is the symbolic operation codes, complete
with parameters and remarks, with the addition of a sequence number and the decimal equivalent of the
actual location of the instruction in memory, punched in USASCII.

The forma t is:

Sequence Number

Decimal equivalent of the actual memory location of the operation.
Revised 8/9/71 by
PCN 1045481-003 5.01.08 (Cont'd)

Label (if entry is labeled)

Symbolic Operation Code

Parameters

Remarks

Tue second section of output tape is separated from the first section by approximately ten inches of
unpunched tape. This is the labet table and is punched in compact format hexadecimal which is the
same format punched for the object program.

Tue forma t is:

Label

Memory Location

1 t~OTE ADDING MACHINE EXAMPLE
2 BRU START BYPASS PSEUDU INSTRCT
3 ORG 10
4 TOTAL NUM 0 INITIALIZE AT ZERO
5 STAR ALF -,,1: -.,'.· „,(SYMBOL FOR TOTAL .. START LPNR PRINT LUAD PRINT MASK AREA 0

7 LPKR i"E YS LOAD PROGRAM KEYS
8 ZERO CLM TOTAL CLEAR MEMORY TOTAL
';) ENTER AL 1 ADVANCE FORM A LINE

10 POS 10 POSITION TO PRINTER
1 1 PKA 1 2 ENABLE PROGRAM KEYS
1 2 NKRCM 1 5 0 INDEX OPERANDS
1 3 PNS- 1 4 0 PRINT OPERAND
14 Si'\ K 2 2 USE OCK2 IF ERROR
15 ADM HHAL ADD TO TUTAL
16 EX ~< 2 2 PR ltH ~ FOR ERROR AMT
1 7 POS 30 PUSITION TO PRINT
1ö PC PRINT CHARACTER ,..,
1 ~ BRU ENTER RETURN TO INDEX OPERAND
20 PRINT hASK ZZZZZZZZZZZ.DD PRINT FORMAT
21 WURD
22 i'\E YS i3RU PRTSUB PKAl TO SUBTUTAL
23 ßRU PRTTOT PKA2 TU TOTAL
24 PRTSUS SRJ CWMR
25 PC ",'(TU SIGNIFY SUB TOTAL
26 BRU ENTER
27 PRTTOT SRJ COMR
26 PA STAR TO SIGNIFY TOTAL
29 BRU ZERO ,...., TU CLEAR nHAL 1.:1 IJ

30 CUr'iR TRA TOTAL CO MM ON TOTAL ROUTINE
31 PNS· 11.+ 0 PRINT TUT AL
32 POS 30
33 SRR 1 Exhibit 1 SUBROUTINE RETURN
34 END Basic Assembler 1

Phase 1

5.01.09 PHASE 11

Phase II of Paper Tape Assemblers uses a symbolic (source) paper tape as input and provides an object
program tape which operates on a Series L/TC computer. lt also provides a program listing with the

5.01.09

object code as well as the symbolic code for each instruction and the absolute memory assignment.
Phase II is also equipped with diagnostic facilities for the detection and indication of Phase II errors.

PHASE 11 - 1 NPUT

Tue inpt:t to Phase II of the assembler program is the label-table tape, which has been separated from
the symbolic tape and loaded via the program loader and the symbolic operation tape (source tape)
which is mounted on the optional A 581 paper tape reader and entered under assembler program
control.

PHASE II - OPERATING INSTRUCTIONS

Tue Phase II Assembler program must first be loaded into memory using the standard program load
procedure. In addition, the same type of continuous pin feed forms must be used, with the forms
positioned with left edge at position 5. lf Phase II is being run immediately after running Phase I, it is
not necessary to load the LABEL TABLE into memory. lf Phase II is being run at any other time, it
will be necessary to load the LABEL T ABLE. This table is at the end of the source tape which is the
output from Phase I. Tue table is separated from the source tape (sprocket holes only), is punched in
compact hexadecimal format and must, therefore, be loaded via the program loader. When this
procedure is complete, the RESET KEY must be depressed to return the machine to the READY
MODE.

Start

PKA 1 - Tue program will stop at an Alpha Keyboard entry position to permit the typing of up to 6
alpha characters for any identification purposes desired.

At this point, the Symbolic output (source) tape from Phase I must be loaded on the A 581 tape reader
and both the tape reader and tape punch switches turned on.

Depression of any OCK will cause the program to enter the automatic mode. This mode reads the
source tape. Complete documentation is printed out, including the hexadecimal object program coding

. and all remarks. An object program will also be punched out.

Tue Assembler program Phase II will automatically put the machine into the READY MODE, when the
Pseudo-Op END at the end of the source tape is read.

PKA 8 - This PK effects an interrupt. Operation can be resumed by the use of any OCK.

5.01.10 PHASE II - CONDENSED OPERATING INSTRUCTIONS AND INDEX

1. Read Phase II tape in PROGRAM LOADER or through paper tape reader.

2. Return to READY MODE.

3. At this point, if Phase I has not been run immediately prior to this, it will be necessary to
load the label-table into memory using the same load procedure as in loading Phase II above.
Then retum to READY MODE.

4. Depress PKA 1.

5. Type up to 6 alpha characters for program identification and then OCK 1.

6. Insert symbolic tape into reader and depress READ switch.

Revised 8/9/71 by
PCN 1945481-003 5.0l.10

1

7. This will give you a complete program listing and object tape.

8, If you have error in program it will be necessary to go to Phase I documentation for changes
or to hexadecimally change program.

5.01.11 PHASE II - ERROR DETECTION AND INDICATION

As stated previously, the input to Phase II is the output tape, or source tape, from Phase I.

Error detection in Phase II is supplemental to the error detection in Phase I and is designed to validate
the assignment of actual machine language, which is function of Phase II, plus the provision to indicate
the possibility of machine-inflicted error, and the possibility of remote combination of programs vs.
machine logic which could cause misinterpretation of the symbolic entries.

MNEMONIC ERROR DETECTION - The mnemonic is validated again in Phase II. At this particular
point in assembler program progression, the potential error possibility is the misreading of the mnemonic
as a result of a mispunch, some internal system failure or reader f ailure. In any event, an invalid
mnemonic in Phase II is an irrecoverable error and will cause the validation sequence to return the
system to the ready mode.

PARAMETER ERROR DETECTION - Parameters are again validated in the same manner as described
under Phase I diagnostic facilities. In addition, if a label is used to define a parameter, the actual value
of the label is validated.

For all parameter errors, except label errors, the word ERROR is printed starting in position 45, the
printer escapes one space and PARMTR (parameter) is printed.

In the event of a parameter-label error, the word ERROR is printed starting in position 45, the printer
escapes one space änd LABEL IS printed.

For all instructions that are in error, a NOP instruction is substituted, printed out in the instruction
sequence, and punched in the object program tape. The end result is that the object program tape
contains NOP instructions instead of invalid instructions; plus, the program provides documentation
which defines the location and type of parameter error.

Correction Routine Phase 11

Phase II errors are corrected by using the Source tape (tape output from Phase I) and the Assembler
Phase 1 correction routine, or correcting the Symbolic language and restarting the entire program.
Corrections in the object program can be made by using the Memory Modify service routine with a
cqrrected object tape·generated with, the PUnch from Memory service routine.(See Section 3).

PHASE II - OUTPUT

The output from Phase II of Paper Tape Assemblers consists of a print-out and an object program tape.

The Phase II print-out is a complete print-out of the object program along with explanatory information.
The format is illustrated. by Exhibit 2.

The Assembler program Phase II output tape is the object program tape and is punched in compact
hexadecimal format. lt contains the complete program, in machine language, ready to be loaded directly
into the Series L/TC computer.

5.0Lll

33 0 CS40 133 PA LINE 77
1 EOOl 134 AL 1
2 3949 135 TRA TTL 73
3 EB76 136 POS 119

34 0 0700 137 RR
1 C84F 138 PA TOTAL 79
2 EB7E 139 POS 127
3 0496 140 PN 8 6

35 0 904A 141 AOM DWNTTL 74
1 0849 142 CLM TTL 73
2 F740 143 LOOPT PKB 7
3 F640 144 PKA 7 OVERFL

.-----.--

-
so 0 33366797 196 MASK zzo.oo

03333333

51 0 66E66797 197 MASK ZZZ,ZZ0.00
03333333

52 0 33333679 199 MASK zo.o
03333333

53 0 66E66797 199 MASK zz.zzz,zzo.oo
0333336E

~~
z 3. 54 0 190 ORORNO REG 1 „
,_.. CD

55 0 191 WO SAME ALF SAME~r ~c:i. ..,, °"
"""''° °" --..... _,, 56 0 192 WOPP ALF PP~"r '
0 a"
~'<

57 0 193 wocoo ALF coo~r

Ul

0 59 0 194 WDFGHT ALF MTFGHT~·:
......
..-. Exhibit 2 (j
0 Basic Assembler I ::s
.-t;.
0. Phase II ._,,

5.02.00 80-COLUMN CARD INPU1" ASSEMBLERS

The Card Input assemblers are two pass assemblers with object card or object paper tape output. Unlike
the paper tape assemblers, these assemblers consist of only one p~ogram and are loaded 'only once. GP
300 symbolic punched cards are used as input through the card reader. Pass 1 reads the symbolic deck,
validates mnemonics, creates a label table, sequence checks the cards if requested, · and prints certain
errors. Pass II reads the symbolic deck again, produces a complete lising print-out including error
messages and punches an object deck or object tape depending upon which assembler fä used.

The card input assemblers which operate exclusively on L/TC equipment are Assembler II, Assembler
IIA, Assembler IISL, Assembler IIASL, Assembler VII, Assembler VIIA, Assembler IX, .and Assembler
IXA.

The operating instructions for these assemblers are the same except for additional options available with
some assemblers as cited below.

Assembler II

Assembler II operates on TC 500, L 2000, L 3000, and L 4000 with Card 1/0 and generates code for
these machines and also the L 2000, L 3000, and L 4000 40-track machines.

Assembler llA

Assembler IIA operates on TC 500/700, L 2000, L 3000, and L 4000, generates code for these
machines and also the L 2000, L 3000, and L 4000 40-track machines, and is the same as A.ssembler II
except that output is in object paper tape.

Assembler llSL

Assembler IISL operates on TC 500, L 2000, L 3000, and L 4000 with card 1/0 and generates code
exclusively for the L 5000. Note striped ledger options in topic 5.02.04.

Assembler llASL

Assembler IIASL operates on TC 500/700, L 2000, L 3000, and L 4000, with object paper tape output,
and generates code exclusively for the L 5000. Note striped ledger options in topic 5 .02.04.

Assembler VII

Assembler VII operates on the ·L 2000, L 3000, and L 4000 40-track machines with Card 1/0, and
generates code for these machines and also the L 5oqo and 32-track machines. Note striped ledger
options in topic 5 .02.04.

Assembler VllA

Assembler VIIA operates on the L 2000, L 3000, and L 4000 40-track machines, with object paper tape
output and, generates code for these machines and also the L 5000 and 32-track machines. Note striped
ledger options in topic 5.02.04.

Assembler IX

Assembler IX operates exclusively on the L 5000 with Card 1/0 and generates code for the TC 500, L
2000, L 3000, and L 4000 32-track machines for the L 2000, L 3000 and L 4000 40-track machines,
and for the L 5000. Note striped ledger options in topic 5.02.04. ,

5.02.00

Assembler IXA

Assembler IXA operates exclusively on the L 5000 with object paper tape output, and generates code
for the TC 500/700, L 2000, L 3000 and L 4000 32-track machines, for the L 2000, L 3000 and L
4000 40-track machines, and for the L 5000. Note striped ledger options in topic 5.02.04.

5.02.01 ENVIRONMENT

Equipment required for the assemblers mentioned above is as follows:

5.02.02 CARD 1/0 ASSEMBLERS

Assemblers II and IISL are compatible with any of the following 32-tracks füll memory Series L,
TC's: TC 525, TC 1545, TC 2545, L 2101-608, L 2301-608, L 3111-608 or L 4311-608.

Assembler VII is compatible with any of the extended memory L's: L 2302-908, L 3312-908, L
4312-909.

Assembler IX is compatible with the following füll memory Series L: L 5112-609.

These assemblers require the following peripherals and firmware:

Assembler

A 595 Card Reader

A 149 Keypunch

Assembler II and IISL

Assembler II and IISL

Assembler II and IISL

Assembler II and IISL

Assembler II and IISL

Assembler VII

Assembler VII

Assembler IX

Hardware

L 2301-608, L 2101-608

TC 525, TC 1545

L 3311-608, L 3311-608

L 4311-608

TC 2545

L 2302-908, L 3312-908

L 4312-909

L 5112-609

5.02.03 CARDIN/PAPER TAPE OUT ASSEMBLERS

Firmware Required*

2-1004-001-XX

2-1024-001-XX

2-1004-001-XX

2-1304-001-XX

2-1324-001-XX

2-1104-001-XX

2-1404-001-XX

2-1204-001-XX

Assembler HA and IIASL are compatible with any of the füll memory Series L/TC's: TC 525, TC 725,
TC 1545, TC 2545, L 2101-608, L 2301-608, L 3111-608, and L 3311-608.

Assembler VIIA is compatible with any one of the following füll memory Series L's: L 2302-908, L
3312-908, and L 4312-909.

* XX denotes latest revision

Assembler IXA is compatible with the following füll memory Series L: L 5112-609.

These assemblers require the following peripherals and firmware:

A 595 Card Reader

A 562 Paper Tape Punch

Revised 8/9/71 by
,PCN 1045481-003 5.02.03

Assembler Hardware Firmware Required*

Assembler IIA TC 525, TC 725, TC 1545, TC 2545 2-1005-002-XX or 2-1024-001-XX**

Assembler IIA L 2101-608, L 2301-608, L 3111-608 2-1005-002-XX or 2-1004-001-XX**

Assembler IIA L 3311-608 2-1005-002-XX or 2-1004-001-XX**

Assembler VIIA L 2302-908, L 3312-908, L 4312-909 2-1104-001-XX**

Assembler IXA L 5112-609 2-1204-001-XX**

Applicable Program I. D. Numbers are as follows:

5.02.04 INPUT

Assembler

Assembler II

Assembler IIA

Assembler IISL

Assembler IIASL

Assembler VII

Assembler VIIA

Assembler IX

Assembler IXA

Program l.D.

1-1001-011-XX

1-1001-066-XX

1-1001-071-XX

1-1001-072-XX

1-1101-022-XX

1-1101-015-XX

1-1201-024-XX

1-1201-025-XX

Card Input Assemblers use GP 300 symbolic cards as input, as defined in Section 1, and the desired
control cards are described beJow.

** XX denotes latest revision

* Although these firmware sets are used with the card 1/0 Assemblers, they will also work with Card
In/Paper Tape Out Assemblers. The assemblers themselves include the necessary firmware required to
provide paper tape output.

CONTROL CARDS - The control cards specify the input and output of the Assembler II program.
Bach control card must contain a $ in card column one and the name of that control card starting in
card column 16.

The control cards available for the various assemblers are as follows:

Assemblers II and IIA

Assemblers IISL and IIASL

- $DATA, $DATAB, $SEQ-CK, $MEMORY, $PAGE51, $LABELS,
$EXTMEM

- $DATA, $DATAB, $SEQ-CK, $MEMORY, $PAGE51, $LABELS,
$SL-T

Assemblers VII, VIIA, IX, IXA - $DATA, $DATAB, $SEQ-CK, $MEMORY, $PAGES51, $LABELS,
$SL, $SL-T, $EXTMEM

$DATA - This control card tells the system that the symbolic card deck is punched in EBCDIC code.

$DATAB - This control card tells the system that the symbolic card deck is punched in BCL code.
BCL code does not include some special characters available with EBCDIC.

5.02.04

$SEQ-CK - This control card enables the checking of sequence numbers in the symbolic card deck. The
sequence number of the current card is compared to the sequence number of the preceding card and if
the value of the current card is less than or equal to the previous card, the error message SERR is
printed and the program continues.

$MEMORY - Firmware sets vary in memory requirements, which controls the amount of user memory
available. If the size of object memory is other than 512 words, the Assembler program may be
informed by the control option $MEMORY followed by the memory size, stated as a 3-digit integer
value, starting in card column 29.

$P AGE51 - This control card tells the system that the Assembler listing is being printed on a form 8W'
x 11". If the above option is not used, the system assumes a form size of 11" x 14".

$LABELS - This control card generates a list of labels along with the word and syllable location that
each label represents. A maximum of 139 labels are allowed.

$SL - This control card tells the system that the striped ledger option is desired.

$SL-T - This control card tells the system that a striped ledger conversion table, contained in words
482-489 are necessary when using 80-column card input, is desired. If this control card is used, the
assembler forces a memory limit of 482 words.

NOTE: If the extended Memory option is used, these striped ledger options will not be available.

$EXTMEM - This control card is required when generating code for a 40-track machine.

5.02.05 OPERATING INSTRUCTIONS

Readying the System

1.

2.

Unprotect Uumper) all tracks of main memory - words 0 to 1023 (do not jumper the utility
track - Block 2 Track 2 - or any tracks that have been permanently jumpered by a Field
Engineer.)

From the Ready Mode, load the Utility routine "Memory Load, Card Reader".

3. Turn on Card Reader and depress Feed key. Place Assembler object program deck in Card
Reader and depress PKA 3 from the Ready Mode. After all cards have been loaded, depress
any OCK or keyboard character to print the hash total, the system then returns to Ready
Mode.

4. Preparation of Card Punch:

a. Depress the POWER ON SWlTCH and place blank cards in the feed hopper.

b. Place a blank card around Program Drum No. 1. Around Program Drum No. 2 (left
drum) place a card containing altemate "12" and "11" punches in card columns 1
through 80. These punches may start with either "12" or "11" so long as they alternate
through all 80 columns.

c. Place drums on the Card Punch and place brush assemblies in contact with drums, the
Program Switch on the Card Punch keyboard may be set in any position.

Revised 11-8-71 by
PCN 1045481-004 5.02.05

Pass 1

d. .lf it is desired to interpret the punch cards, the Print button should be depressed.
Miscellaneous characters will be printecl if the Card .Punch Js interpreting objec;t program
being punched.

e. Depress the Auto Feed button to place a card in the punch station, depre~s the ERR.
REL. key to position a blank card in the read station.

f. Depress the Punch-On-Line button, the card punch is now under control of the Series
L/TC. Halts on punch instruction if not on-line.

Place control cards and symbolic deck in the Card Reader, depress PKA 1 from Ready Mode;··

When it is necessary to temporarily halt assembly to add or remove cards in the Card Reader, three
choices are available.

1. Depress Feed switch to OFF. To restart assembly, depress Feed switch to ON and depress
Restart switch.

2. Depress RESET key, the program halts and the Numeric keyboard light is lit. Depression of
any OCK will resume the assembly of the program.

3. Tue system halts on a Reader condition if there are no cards in the Reader and the lasf card
read was not the END card. Placing cards in the Reader and depressing the Restart switch will
cause the assembly to continue.

Pass 1 is completed when the symbolic END card is read. Tue system will halt on an NK instruction
following the print-out of the label table, if a $ LABELS card was used.

Pass 1 Erron
. . .

During Pass 1 the only thing printed are the symbolic cards containing errors (card columns 11 through
77) preceded by a description of the error.

Tue following messages are used on the print-out to indicate detection of errors. These messages are
printed in red.

Sequence Error

SERR - lf the current card being checked at the request of the control card $ SEQ-CK has a lower or
equal sequence number than the previous card, then that card is out of sequence.

Previously Used Label

LERR - Tue label in card columns 16 through 21 has been previously used. That instruction is not
assigned a label, in Pass 1 or Pass II. Tue symbolic deck must be run again through Pas&I, with a
different label if the instruction is to have one.

Label Limit Exceeded

ELERR - A maximum of 139 labels are allowe.d, those labels beyond 139 are not put il1 the label
table. Tue instruction is assembled without a label assigned to it.

5.02.05 (Cont'd-J).

Invalid Mnemonic

IERR - Tue mnemonic in the op code field is invalid. This card or a corrected card must be used in
Pass II. lt is assigned a syllable in memory.

Word Length Exceeded

No message is used when either the NUM or MASK instruction is too long to be translated into one
word. Tue overflow is ignored and processing continues.

Memory Assignment Error

MERR - This tells the user that the specified memory has been previously assigned. This could occur
for example if an ORG instruction is used and specifies a word number already assigned by the
Assembler.

Assumed Memory

No message is used. Memory of 512 is assumed by the Assembler unless a $ MESSAGE specifies
memory other than 512.

Memory Capacity Exceeded

MERR - This tells the user that the symbolic program is too large for the specified object memory size.
Tue Assembler does continue to process.

End Card

No message is printed and the Assembler halts on a reader condition. Tue symbolic deck must have as
its last card the mnemonic END card. To correct place END card in Reader and depress Restart key on
Reader. Pass 1 cannot be completed without the END card.

Pass II

Place the control cards and all or part of the symbolic deck in the Card Reader and depress any OCK.

A complete listing print-out including error messages and an object deck is produced.

After Pass II is completed, it is necessary to reload main memory firmware before executing any
assembled object program.

Pass II Errors

Tue description prints next to the field in error.

Undefined A Parameter Label

PERR - Tue label in the A parameter was never used as a labet to a mnemonic instruction. A NOP is
generated and Pass II continues.

Invalid Parameter Range

PERR - Tue value in the parameter is not within the limits allowed by the mnemonic. A NOP is
generated and Pass II continues.

Revised 8/9/71 by
PCN 1045481-003 5.02.0S{Cont'd-2)

1

Invalid lncrement Field

PERR - Tue value in the increment field is not within 255 or an invalid character is located within the
field. A NOP is generated and Pass II is continued.

No Label or lncrement Error

PERR - There is no label or the increment field is in error. A NOP is generated and Pass II is
continued.

Invalid Mnemonic

IERR - Tue mnemonic is not in the language specifications. Tue mnemonic is ignored and a NOP is
generated. Pass II is continued.

VVord Length Exceeded

No message is used when either the NUM or MASK instruction is too long to be translated into one
word. Tue overflow is ignored and processing continues.

Memory Capacity Exceeded

MERR - Tue symbolic program is too large for the specified object memory size. Pass II processing
continues.

End Card

No message is printed and the Assembler halts on a Reader condition. Place END card in Card Reader
and depress Restart switch. Tue symbolic deck must have as its last card the mnemonic END card.
Pass II cannot be completed without the END card.

After the reading of all cards in Pass II, the last object program card is released. This completes
Assembler II. Tue user may now reload main memory firmware, protect memory and run the object
program just produced.

5.02.05 (Cont'd-3)

5.03.00 L/TC ASSEMBLER III B 3500 VERSION

Tue Assembler III Program operates on a B 3500 system and prepares an object program for Series L/TC
systems. lt accepts symbolic input directly from cards or will accept a symbolic punched paper tape if it
is loaded on disk via a utility program prior to the execution of the assembler and the appropriate
control card is included in the source media.

All references in this document to Assembler 1 or Basic Assembler 1 refer to the Series L/TC keyboard
version of the Series L/TC Assembler.

5.03.01 ENVIRONMENT

Tue following system hardware is required for Assembler III:

B 3500 - 60 KB Bytes Core

1 Module Disk (800 segments, 100 bytes each)

1 Tape Unit (7 or 9 channel)

Card Reader

Paper Tape Punch

Paper Tape Reader (Optional for Symbolic Paper Tape Input)

Card Punch (Optional for Symbolic or Object Card Output)

Line Printer

5.0~.02 LIBRARV TAPE INPUT

Tue input for Assembler III is the Group II Software Library Tape and the source media which is either
a card deck that included both the symbolic program and the appropriate control cards, or the symbolic
paper tape output from Phase 1 of the Basic Assembler 1 Program for Series L/TC systems .

. Ubrary Tape

Tue tapes contain the following programs:

ASSEMB This is the assembler program.

QCONV This produces the object program on paper tape.

LCNVRS

CRDCVR

XRFBTC

OBJCRD

This converts input symbolic paper tape code to card image and stores it on disk. This
must be executed first if symbolic tape input is specified. lt creates a disk file which is
used as the source file for input to the ASSEMB program.

This produces a symbolic paper tape for input to Assembler 1.

This is the cross-reference program. lt produces a cross-reference listing of labels.

This produces the object punched card deck.

LIBTAP This is the utility routine used to create and update library tapes used by the $ library
input option of Assembler III.

Tue following files are used intemally in the Assembler III Program:

COND Used in error detection.

OPTBL Tue operation code file.

Revised 8/9/71 by
PCN 1045481~003 . 5.03.02

5.03.03 MCP CONTROL CARDS

The following MCP Control Cards are used in the assembly process; the 1-2-3 indicates a multi-punch in
card column 1 for the specified cards:

Execute Card

The execute card initiates program execution. lt must be punched in the following format:

Data Card

1
2 EXECUTE ASSEMB
3

The data card specifies the type source media. lt must be punched in the following format:

1
2 DATA SOURCE
3

or
1
2 DATAB SOURCE
3

This tells the system that the source media is cards, punched in either EBCDIC or BCL code,
respectively. BCL does not include some special characters available with EBCDIC.

Dollar Sign Card

Tue dollar sign card specifies an option which controls the input and output during the assembly
process. lt must be punched in the following format:

$ (LIST OPTION HERB)

The options available on Assembler III are discussed below.

Data Deck

The symbolic deck to be assembled.

End Card

The end card must follow any card deck. lt is punched in the following format:

1
2 END
3

lt .tells the system that the input from the Card Reader is complete. This card is used in addition to the
GP 300 END card.

5.03.04 OPTION CONTROL CARDS

There are several options which control the input and output of the Assembler III Program. Tue options,

5.03.04 ..

specified in the succeeding sections, must be preceded by a ($) dollar sign and may either be coded on
individual cards, or may be coded free-form serially on one or more cards.

SEll-CK, Sequence Checking

Tue format on the control card is SEQ-CK. When a sequence number has been punched into column 11
through 15 of the source cards, sequence check:ing may be desired. If this control option is used, the
sequence number of the current card is compared to the sequence number of the preceding card and, if
the value is less or equal to, the error comment "SEQUENCE ERROR" will print. Execution of the
program continues. Code generation is not ensured when sequence errors occur.

RESEO, Resequencing

Tue format of the control card is RESEQ. If this control option is used, any sequence numbers punched
in columns 11 through 15 of the source cards are ignored. Resequencing is initialized at 10 and
incremented by 10 for each succeeding card.

MEMORY, Memory $ize

Since different firmware sets vary in memory requirements, the size of user memory also varies. If the
size of user memory is other than 512 words, the Assembler III Program may be informed by the
control option MEMORY followed by the memory size, stated as an integer value. If this option is

omitted, memory of 512 words is assumed and appropriate warning message is printed.

SYM-CD, Symbolic Card Output

If output, in symbolic BCL code, is required on punched cards, the symbolic-card control option
SYM-CD is used. This will provide a symbolic card source deck, resequenced if the RESEQ option is
used. If a program identification is punched in card columns 5-10 of the first symbolic card, it will be
punched in every card of the output symbolic deck.

SYM-CN, Symbolic Card Output

This option is the same as SYM-CD with the exception that the output symbolic deck is punched in
EBCDIC code.

SYM·PT, Symbolic Paper Tape Output

If symbolic paper tape output is required, the SYM-PT control option is used. This provides an input
symbolic paper tape for Phase I of the Basic Assembler I Program.

LABELS, Printed Table of Labels

Tue entry of the control option LABELS provides a print-out of Assembler III generated table of labels.
Tue list of labels is printed in the order in which they were programmatically defined along with the
location that each label represents.

DOC, Documentation Punch and Print

If the psuedcrop DOC is used in a program and it is necessary to reproduce it in a symbolic card, the

Revised 8/9/71 by
PCN 1045481-003 5.03.04 (Cont'd-1)

• t 1 ' 1

control option DOC is used. $ DOC will retain the psuedo-op and print and punch it in its proper
programmatic sequence.

PUNCH, Paper Tape Object Code

lf the output of the Assembler III Program must be a Series L/TC object program punched in paper
tape, the control option PUNCH is used. (See S.ection 6, Page 6-6 for a discussion of the object tape
format.)

OBJ-CD, Object Card Output

lf object card output in hexadecimal object code is required on punched cards, the control option
OBJ-CD is used. This will provide an object card deck for input to a Series L/TC card system. (See
Section 6, Page 6-2 for a discussion of the object card format.)

DISK-IN, Paper Tape Input

lf the symbolic paper tape output from Phase I of the Basic Assembler I Program is tobe used as input
to the Assembler III Program, it is required that the conversfon program, LCNVRS be executed prior to
the execution of the Assembler III Program (discussed ·on Page 5-27.' lt also requires the control option
DISK-IN which must be entered as the last control option in the control option deck. The DISK-IN card
must be followed by an end card: ? END.

The Assembler III Program will use the information transferred from the symbolic paper tape to the disk
by the conversion program, as source media.

XREF, Cross Reference of Labels

lf a cross reference listing of labels is desired, control option XREF is used. The labels are printed in
alphabetical order with their sequence number and the sequence numbers of those statements
referencing that label.

LINES, Specifying Number of Lines Per Page

This option will permit the programmer to specify the nuniber of lines desired ·on each page below the
heading. lt is possible to use any two-digit integer for the number of lines per page. lf this option is not
used, the maximum of 60 is assumed, which provides 7~ inches of text at 8 lines per inch.

SAVE ~:::xxxxx

This will cause the Assembler to retain the object program upon the disk. Punching of paper tape or
80-column card does not occur. XXXXXX represents a 6 alpha character disk file-name. lt must be used
in conjunction with $ PUNCH or $ OBJECD.

$S. L. T.

This Control option card must be used when assembling for an 80-column card striped ledger system. A
character translation table is produced 'in the object program by the assembler. This option also forces a
memory size limit of 482 which supersedes any memory option card.

$ S. L.

This control card tells the system that the striped ledger option is desired.

5.03.04 (Cont'd-2)

$EXTMEM

This control card is required when generating code for a 40-track machine.

$LIBRARY

The $ LIBRARY option provides the capability of assembling from magnetic tape. A program is called
in from a library tape labeled LIBL, updated on disk and then assembled. The program on the tape
LIBL is not updated.

LIBL is created by the LIBTAP Utility Routine. (See 5.03.08)

Cards can be (1) deleted, (2) added, (3) changed during assembling:

1. Deleting cards.

cc 1 D

cc 11-15 Sequence number

cc 16-80 Blank (must be blank)

2. Adding cards.

cc 1 A

cc 11-15 Sequence number (unique)

cc 16-80 Format of regular source card

3. Changing cards.

cc 1 c
cc 11-15

cc 16-80

Sequence number - must match a sequence number of a card in the program

The patch cards, contained between the LIB instruction and the pseudo END card, must be in
sequential order. These patch cards change the program during assembling but do not alter the tape
"LIBL".

The control deck necessary to assemble from magnetic tape is as follows:

? EXECUTE ASSEMB

? DATA SOURCE (or? DATAB SOURCE if BCL is used)

$OPTIONS

*$ LIBRARY

LIB FILE NAME

PATCH CARDS IF ANY - these must be in sequential order

END (CC 22-24)

? END

*Last $ OPTION card

Revised 8/9/71 by
PCN 1045481-003 5.03.04 (Cont'd-3)

5.03.05 OPERATING INSTRUCTIONS

Operation of the Assembler III Program involves the setting up of peripherals as a major function as
opposed to Basic Assembler 1 Program operation which requires manual intervention as a major function.

Equipment Setup

To exercise all the control options of the program, 1 magnetic tape unit, 1 card reader, 1 card punch, 1
paper tape reader, 1 paper tape punch, and a line printer are required.

1. Magnetic Tape Units

Mount the Library Tape. Choose an MTU with the proper channel (7 or 9) and set the
appropriate density. Both of these are marked on the library tape reel label. Load the tape
reel.

2. Card Punch (If symbolic or object card-out is required)

Load the hopper on the card punch with sufficient cards and ready the punch.

3. Paper Tape Reader (If symbolic paper tape-in is desired)

Wire the channel select board, inside the front doors on the upper left of the reader in the
following manner.

A
B
c

2 3 4 5 6 7 8 9 0

Turn the three control code switches off. Depress the Parity on-off switch to off. Depress the
High-low switch to low. Depress the Strip-Reel switch to strip or reel, depending on input
type.

4. Paper Tape Punch

Wire the channel select board, inside the front doors on the upper left of the punch, in the
following manner:

A
B
c

1 2 3 4 5 6 7 8 9 0

X

Turn the Control Code Switch off. Set the LEVEL Designator Switch to 8-LEVEL. Ready the
punch.

5. Line Printer

Equip the--printer with an 8 lines per inch control tape and ready the printer.

Operation

Loading the Library Tape: Tue loading of the magnetic library tape may be initiated by either a control
card or a control input message via the supervisory printer (SPO). If a control card is used, the card
would read

5.03.05

1
2 LOAD FROM GRPII < list of programs and files to be loaded >
3

Tue control card would load the programs specified from the list of available programs and files. For
example:

1
2 LOAD FROM GRPII ASSEMB QCONV CRDCVR OPTBL COND OBJCD XREF
3

In either case the card must be passed through the card reader by itself. When the tape has been loaded, an
output message to this effect will be typed on the SPO, after which the Assembler may be executed.

If the library tape load is initiated via the SPO, the input message

CC LOAD FROM GRPII < list of programs and files tobe loaded >

would load only the specified programs and files.

Assembling with Card Input: If symbolic punch card input is used, the following cards must be read in
through the card reader in the order specified:

1. 2 EXECUTE ASSEMB
3

1 1
2. 2 DATA SOURCE (or 2 DATAB SOURCE if BCL is used)

3 3

3. $ Option Cards specifying any or all of the options defined.

4. Tue symbolic source deck.

1
5. 2 END

3

Assembling with Symbolic Paper Tape: If symbolic paper tape input is used, the paper tape must first
be loaded via the paper tape reader, converted to card format, and placed on disk using the LCNVRS
program (which must have previously been loaded). After mounting the symbolic tape on the paper tape
reader, the following card must be read in through the card reader in the order specified:

1
2 EXECUTE LCNVRS
3

When the symbolic paper tape has been loaded, the procedure discussed above for punch card input
would be followed with the exception that the DISK-IN option must be the last option specified and
must be followed immediately by the END card (since no symbolic deck is used).

Revised 8/9/71 by
PCN 1045481-003 5.03.05 (Cont'd)

5.03.06 ERROR DETECTION

Tue Assembler III Program in processing the input, or source, data makes several passes through the
information. These passes may be divided into 2 major categories:

1. Pass I - the processing of data prior to the assignment of object code to the symbolic
pro gram.

2. Pass II - the processing of the data, the major function of which is the assignment of object
code.

Both passes incorporate editing functions and the resultant error detection.

Pass 1 Error Detection

Pass I errors are printed out prior to the program listing. Each error comment will be followed by the
print-out of the symbolic operation which is determined to be in error.

LABEL ERRORS - Several types of label errors are detected in Pass I:

1. Duplicate Label

If a label has been previously used, the error comment printed starts with the label followed
by:

... HAS ALREADY BEEN ENTERED AS A SYMBOLIC IDENTIFIER

the duplicate label is not entered, processing continues.

2. Invalid Label

Labels for the Assembler III Program must begin with an alphabetic character. If the first
character of the label is not an alphabetic character, the error comment is:

LABEL MUST BEGIN WITH AN ALPHABETIC CHARACTER

Blanks are not allowed in a label. If the label contains a blank, the error message is:

LABEL MUST NOT CONTAIN BLANK CHARACTER

The label is not entered, processing continues.

3. Label Limit Exceeded

The Assembler I Program allows a limit of 139 labels. This limit is not significant to the
Assembler III Program, but the possibility exists that a symbolic paper tape, generated by the
control option $ SYM-PT could be used as input to the Assembler I Program for Series L.

The error comment is:

NUMBER OF LABELS EXCEEDS LABEL LIMIT WHEN USING ASSEMBLER I

The error is ignored and processing continues.

4. Card Field Definition Label Error

Labeling of the CDF table is allowed only on the first syllable of a word. If the label is not
on the first syllable of a word, the error message is:

LABEL NOT AT START OF WORD

A NOP is inserted and processing continues.

SEQUENCE ERROR - As described in Option Control Cards, if $ SEQ-CK is used, and the sequence

5.03.06

number in columns 11 through 15 of the current card is less than the sequence number on the previous
card, the error comment is:

SEQUENCE ERROR

This is followed by a print-out of the information on the current card and processing continues.

EXCEEDS MEMORY CAPACITY - If the symbolic program is too large for the specified object
memory size, or if an erroneous ORG instruction has been entered, the error comment is:

STORAGE EXCEEDED BY INSTRUCTION

followed by a print-out of the instruction that exceeded memory. Processing continues.

REGION ERROR - If a REG instruction is entered with either a 0 parameter or a parameter exceeding
255, the error message is:

REGION MUST HAVE SIZE 1-255

A memory location is not reserved and processing continues.

BACKWARD ORGANIZATION ERROR - If an ORG instruction is entered that attempts to assign
memory that has been previously assigned, or at a memory location sequence number that is lower than
the current instruction address, the error message is:

BACKWARD ORG NOT ALLOWED ON ASSEMBLER I

Memory is assigned and assembly continues.

CONTINUATION CARD ERROR - If a card with a numeric field length follows either an ALF or
MASK instruction with a field length greater than 24, a continuation card was expected. Tue error
message consists of a print-out of the current card followed by:

PREVIOUS CARD HAS INVALID FIELD LENGTH

In an ALF instruction a missing field length will result in the error message:

EMPTY FIELD-LENGTH FIELD

In either case the instruction assigns l word which is not filled and processing continues.

INVALID MASK ENTRY - If an invalid mask character has been entered, the character will be printed
followed by:

.... IS NOTA VALID MASK ENTRY

the character is ignored and processing continues.

MASK LENGTH ERROR - If an erroneous mask length has been specified, the mask will be printed
followed by:

MASK LENGTH RECALCULATED TO BE ...

and the correct length. Tue mask is corrected and processing continues.

INVALID OPERATION CODE - If an invalid op code is entered, the invalid code will be printed
followed by:

... IS AN INVALID INSTRUCTION OP CODE

A NOP (no Operation) instruction is generated and processing continues.

Revised 8/9/71 by
PCN 1045481-003 5.03.06 (Cont'd-1)

1

PARAMETER ERRORS - Tue parameter errors detected in Phase I are defined in the following
sections.

1. No Label

Some of the instructions specified in Series L Assembler Language, required a label in the
parameter field. If a label has not been entered, the error message is:

MISSING SYMBOLIC LABEL

Tue instruction is ignored, a NOP is assembled and processing continues.

2. Increment Exceeds Limit

If the increment exceeds the limit of 255, the error message:

INCREMENT GREATER THAN 255 NOT ALLOWED ON ASSEMB 1

is printed.

This does not affect .Assembler III or IV, processing continues.

3. Invalid Numeric Entry

If a non-numeric character is entered in the numeric portion of a NUM instruction, the error
message is:

INVALID NUM ENTRY

A word of zeros is assembled and processing continues.

4. Parameter Length Exceeded

If the parameter length of either a MASK or NUM instruction is too long to be translated into
1 word, the error message:

PARAMETER TOO LONG

is printed, a word of zeros is assembled and processing continues.

5. Invalid Define Parameters

If the entry in the parameter field of a DEF is invalid, the error message is:

A-ENTRY MUST BE NUMERIC AND LESS THAN 767

If either one or both entries in the parameter fields of a DEPT are invalid, the error message
is:

DEPT PARAMETERS MUST BE NUMERIC AND 0-15

In either case memory is not assigned and processing continues.

6. Code Parameter Error

If entries in the CODE instruction parameter field are not 0 through 9 and A through P, the
error message is:

ILLEGAL DIGIT ENTERED IN CODE INS....,RUCTION

A NOP is inserted and processing continues.

7. Card Field Definition Error

If the total length of the fields defined in the CDF instruction exceeds the maximum number

5.03.06 (Cont'd-2)

of characters allowed on a card, the error message is:

SUM OF CDF PARAMETERS MUST NOT BE > 80

A NOP is inserted and processing continues.

CARD BUFFER DECLARATION ERROR - A CDB instruction must be the first card in the symbolic
source deck. If it is not the first card, the error message is:

CDB MUST BE FIRST INSTRUCTION IN DECK

Tue instruction is ignored and processing continues.

Pass 11 Error Detection

At the beginning of the second pass, the printer will skip to the starting position on the next page.

LABEL ERRORS - Label error detection includes the re-evaluation of the label limit and validation of
labels in the parameter field.

1. Label Limit Exceeded

This iS identical to Pass I and uses the same error comments.

2. Label Parameter Error

lf the label entered as an A parameter has not been recorded as a label identifier, the error
comment prints the label followed by:

... HAS NOT BEEN ENTERED AS A LABEL

A NOP is generated and processing continues.

3. Label Increment Error

lf a label is valid but the increment is invalid, the error message is:

ILLEGAL ENTRY IN INCREMENT FIELD

Tue increment is ignored and processing continues.

INVALID OPERATION - Tue validity of the operation code is rechecked in Pass II and if invalid, the
entry is printed followed by:

... NOT A VALID OP-CODE

A NOP is generated and processing continues.

PARAMETER ERRORS - The parameters are edited for validity and content in Pass II.

1. Label Parameter Error

See above.

2. No Parameter Entry

lf a reqi.üred parameter has not been entered, the error comment will be:

EMPTY

followed by the specific field in which the error occurred, A PARAMETER, B PARAMETER
or C PARAMETER. Tue program assumes a value of zero and processing continues.

Revised 8/9/71 by
PCN 1045481-003 5.03.06 (Cont'd-3)

3, Illegal Parameter Entry

Fora parameter entry in a field that should be empty the error comment is:

ILLEGAL PARAMETER ENTRY IN ...

followed by; A PARAMETER, B PARAMETER or C PARAMETER, depen,ding upon which
parameter contained the error. Processing continues.

4. Invalid Parameter Entry

For an entry that is invalid in either size or type, a listing of the valid parameter entries for
that specific instruction is printed including an indication of which parameter(s) is/are in error.

Example:

OP A B C
ADIR I 32

In the above instruction a keypunch error has been made in the A parameter field.

Tue error message is:

APARAMETER
B PARAMETER

MUST HAVE NUMERIC V ALUE 1-4
MUST HAVE NUMERIC VALUE 0-255

lf a symbolic entry is allowed the error message is:

SYMBOLIC ENTRY ALLOWED

5. Flag Instruction Parameter Error

lf the flag designated in the parameter is not valid for the flag group specified, the error
message is:

INVALID PLAG ENTRY PAIR OF

Tue entry is ignored and processing continues.

5.03.07 OUTPUT

Tue output of the Assembler III Program may be any, or all, of the output options described under
Control Options. In additiön to the paper tape or card media produced as output, a print-out, which
lists the symbolic input, object code developed, and any error comments is pro,4uced at the completion
of the program. An example of a symbolic listing (with or without Control Options) is illustrated on the
following page. Tue word and syllable of the instruction is listed along with sequence number, object
code, expanded print-out of the source .card, and decimal equivalent for each label used within a source
statement.

lf the control option PUNCH is used, a separate print-out of the object code will be produced.
Similarly, a card listing is produced if the option OBJCD is used. Examples of these as well as the Label
Table (LABELS option) and the Cross Reference Listing (XREF option) are provided.

5.03.07

PROGRAM ID. •

WORD 08,IECT
SYL CODE

6

7

6

9

~~ z ;S .
.... r.:
oi:i.

~-E!
"'"'\C °" --.... -:i
Oe" e'<

Vl

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

5R03

4184

7C04

7809

4184

rr.04
4599

7C08

6744

E002

7C04

f 002

(BOC

C888

E914

ER05

DATE RUN 3/26/70

SEQ.
NO.

SYM.
LOC.

OP coor

29 0 IIR
30 0 SK
31 0 ßRU

32 0 BRU

33 0 SK

34 0 BRU

35 0 EX

36 0 BRU

37 0 SET

36 0 AL

39 0 RRU

40 0 AL

41 0 POS

42 0 PA

43 0 RIBBON ALTO

44 0 POS '

\

TIME • 12148 VERSION 0'•01•70 PAGE 002

FO. A•PARAMETER R C LA13EL Rf'MARKS
LN. Ltd3EL JNC PAR PAR DEC EQU

3 3 TtST VOR COMPLETION

T l 1 TERMINATE LOOP

SHTPTO 4 3 Rf"PEAT

RiqRON 9 2 JUMP TO RIBßnN AREA

T l 1 TF:RMINATE LOOP
SHTPTO 4 3 RFPEAT LOOP

K 34 1 BRANCH TO PRINT SAME
+. 4 8 3 EXIT LOOP

X 2 SET Tn ENTER SHIPTO LOOP

2 AOVANCE TWO LINES

SHTPTO 4 3 RETURN TO LOOP

2 AOVANr.E TWO LINES

NMAO•P 13

SAME 136 PRINT ALPHA MESSAGE

RTR8L 20 AOVANCE TO RißBON LINE

TERM•P 6 POSITION TO TERMS

0
w Notice in sequence number 420 the actual memÖry location being referenced by label SAME is 136.
0
-..J -(')

In sequence number 390 the unconditio11al branch to SHIPTO is actually a branch to word i_ syllable l:
In sequence number 410 the actual value associated with label NMAD-P is)3.

0
::s
'"t
9' -._,

Labels Usting:

LAAEL VA UJE

1 INITAL 000 03

2 BEGJNV 001 02

3 SHIPTO 004 03

4 RIBfHlN OOQ 02

5 BODYIV 013 01

6 MAX 015 00

7 TKDESC 020 02

8 MPRICE 022 01

Q GRSAMT 029 01

Illustration 1

Tue value of a label refers to the word number associated with the label in defined memory (regions,
numeric constants, etc.). Value refers to the word number and syllable nurnber associated with the label
in program memory. Tue list is in the order in which the labels were programmatically defined.

Labels Cross Reference Usting:

NE PKA6 01620 01920

NE PKA7 00150

NE PKA8 00050

0466.o ACT 02980

0192.0 AOOONS 01100 02260

0369.o AOLNCK 01740 01990

0502.0 AOOt-J"•P 01660 01770 01930 02050

l llustration II

Associated with each label, listed alphabetically, is the sequence number of the instruction where the
label was defined as well as the list of sequence numbers of instructions that reference the label.

5.03.07 (Cont'd-2)

5.03.08 LIBTAP - UTILITY ROUTINE

This Utility Routine creates and updates library tapes to be used with the $ LIBRARY input option of
Assembler III.

Options

1. Creating a library tape from punched cards.

2. Updating a program on the library tape.

3. Combining library tapes.

4. Punching card decks of all or specified programs on a library tape.

*Creating a Library Tape

The create option provides the capability of creating a library tape from punched cards. The control
deck necessary to do this is as follows:

? EXECUTE LIBT AP

? DATA or DATAB SOURCE

$CREAT

LIB FILE NAME

SOURCE STATEMENTS

LIB FILE NAME

SOURCE STATEMENTS

LIB FILE NAME

SOURCE STATEMENTS

ETC

LIB FILE NAME

SOURCE STATEMENTS

? END

Notes:

LIB is a pseudo instruction to be typed in CC 22-24. FILE NAME is a 6 character or less program name
to be typed in the A parameter, CC 29-34.

SOURCE STATEMENTS are the 80-column cards contained in a program deck. This deck must not
contain a pseudo END card; that is, no card with END in CC 22-24 is necessary. The MCP end card
should be the last card of the deck.

Resul t of Create Option:

1. A tape labeled "LIBL" containing files (programs) in 80-column card image. Bach program is
accessed through the 6 character or less program name on the LIB card preceding the source
statements comprising that program.

2. A listing of programs on the tape LIBL.

Revised 8/9/71 by
PCN 1045481-003 5.03.08

*Updating a Library Tape

The update option provides the following capabilities: (1) deleting programs, (2) adding programs (3)
correcting programs by deletion, addition or correction of source statements. This option requires the
use of two tapes.

1. Deleting programs.

Tue format of the option card is:

cc 1

cc 22-24

cc 29-43

D

LIB

6 character or less program name

2. Adding programs.

Tue format of the option card is:

cc 1

cc 22-24

cc 29-34

A

LIB

6 character or less program name

The LIB card is followed by the cards that make up the program to be added. This program
will be added after all the programs have been copied from the old tape.

3. Correcting programs.

The. format of the option card is:

cc 1

cc 22-24

cc 29-34

c
LIB

6 character or less program name

This card is followed by the detail (patch) cards to the program.

These detail cards have the following format:

a. To delete a card

CC 1 D D

CC 11-15 Sequence number

CC 16-80 Blank (must be blank)

b. To add a card

CC 1 A

CC 11-15 Sequence number (unique)

CC 16-80 Format of regular source card

c. To correct a card

5.03.08 (Cont'd-1)

cc 1 c
CC 11-15 Sequence number - must match a sequence number of a card

in the program.

CC 16-80 Corrections made to card

The patch cards must be in sequential order.

The control cards would be:

? EXECUTE LIBT AP

? DATA or DATAB SOURCE

$UPDAT

C LIB FILE NAME

D 01400

A 01601 POS 10

C 02000 LIR 3 1 7

D LIB FILE NAME

.Etc

? END

Result of Updating Option:

1. An updated library tape and an original library tape.

2. A Usting of the new library tape.

*Combining Library Tapes

This option provides the ability to merge two or more library tapes onto a new library tape. Tue
original tapes are not altered. The new library tape should be mounted and original tapes should be
mounted (one at a time) as called for by the SPO. The control deck necessary to do this is as follows:

? EXECUTE LIBT AP

? DATA SOURCE or DATAB SOURCE

$MERGE n n = number of tapes to be combined, must be one digit

? END

Results of Combine Option:

1. A newly created library tape containing all combined programs.

2. A listing of all combined programs.

3. The original unaltered library tapes.

*Punching Programs from Ubrary Tapes

The punch option provides the capability of punching onto 80-column cards one or more programs from
a previously created library tape.

? EXECUTE LIBTAP

? DATA SOURCE or? DATAB SOURCE

(A) $PUNCH n n = any non zero number, must be one digit

LIB FILE NAME

? END

Revised 8/9/71 by
PCN 1045481-003 5.03.08 (Cont'd-2)

or

(B) $PUNCH 0

? END

Result of Punch Option:

Punch all files (programs)

1. Punched program decks as specified.

2. A listing of each program punched.

3. The unaltered library tape.

5.03.08 (Cont'd-3).

5.04.00 L/TC ASSEMBLER IV B 5500 VERSION

Tue Assembler IV Program operates on a B 5500 system and prepares an object program for Series L/TC
systems. lt accepts symbolic input directly from cards and will accept a symbolic punched paper tape if
the appropriate control card is included in the source media.

All references in this document to Assembler I or Basic Assembler I refer to the Series L/TC keyboard
version of Assembler I.

5.04.01 ENVIRONMENT

Tue following system hardware is required for the TC 500, Basic Assembler Program:

B 5500 - 4 memory modules utilizing MCP

1 Module Disk (300 segments, 240 characters each)

1 Tape Unit (7 or 9 channel)

Line Printer

Card Reader

Paper Tape Punch

Paper Tape Reader (Optional for Symbolic Paper Tape Input)

Card Punch (Optional for Symbolic or Object Card Output)

5.04.02 MCP CONTROL CARDS

Tue following MCP Control Cards are used in the assembly process:

Execute Card

Tue execute card initiates program execution. lt must be punched in the following format:

Data Card

1
2 EXECUTE ASSEMB/TCSOO
3

Tue data card specifies the source media. lt must be punched in the following format:

1
2 DATA SOURCE (Only BCL card code is accepted.)
3

Library Tape Input

Tue input for Assembler IV is the library tape labeled "TC 500," and the source media which is either a
card deck that includes both the symbolic program and the appropriate control cards, or the symbölic
paper tape output from Phase I of the Basic Assembler I Program for Series L/TC systems.

Revised 8/9/71 by
PCN 1045481-003 5.04.02

Llbrary Tape/TC500

The tapes contain the following programs:

ASSEMB/TCSOO

XREF/B55TC

This is the assembler program.

This is the cross-reference program. lt produces a cross-reference listing of
labels at the end of assembly.

The following files are used internally in the Assembler IV Program.

0000000/COND

0000000/0PTBL

Used in error detection.

The operation code file.

Dollar Sign Card

Tue dollar sign card specifies an option which controls the input and output during the assembly
process. lt must be punched in the following format starting in card column 1.

$ (LIST OPTION HERE)

Data Deck

Tue symbolic deck to be assembled.

End Card

The end card must follow any card deck. lt is punched in the following format:

1
2 END
3

lt tells the system that the input from the Card Reader is complete.

5.04.03 OPTION CONTROL CARDS

The following options available with Assembler III (B 3500 version) are available with Assembler IV and
function identically.

5.04.03

SEQ-CK, Sequence checking

RESEQ, Resequencing

MEMORY, EXTMEM, Memory size

SYM-PT, Symbolic paper tape output

LABELS, Printed table of labels

DOC, Documentation - punch and print

XREF, C-ross reference listing

LINES, Specifying number of lines per page

SYM-CD, Symbolic card output

$ S. L. T„ 80-Column Card striped ledger system

$ S. L„ Striped Ledger

$ EXTEM 40-track machine code

Tue following options available with Assembler III function differently with Assembler IV.

PUNCH, Paper Tape Object Code

This option is different in that the object program is punched in ASCII code and must be converted to
internal Series L/TC format.

OBJ-CD, Object Code Card Output

This option is different in that the object program is punched in BCL and must be converted to internal
Series L/TC forma t.

Tue option PT-IN is used with Assembler IV in a manner identical to that of DISK-IN with
Assembler III. That is, PT-IN is used for symbolic paper tape input.

Tue option SYM-CN, available with Assembler III, is not available on Assembler IV.

5.04.04 OPERATING INSTRUCTIONS

Operation of the Assembler IV Program is identical to that of Assembler III (B 3500 version) with the
following exceptions.

Equipment Setup

The only differences in equipment setup are found with the paper tape reader and paper tape punch.
The setup procedure for each is therefore given here.

PAPER TAPE READER - (lf symbolic paper tape-in is desired.) The Paper Tape Reader must have an
Input Code Translator Board, wired as illustrated in Figure 5-1. (Wire 1 for 1: A-1 to A-1, B-1 to B-1,
etc.) Wire the channel select board, inside the front doors on the upper left of the reader in the
following manner:

A
B
c

1 2 3 4 5 6 7 8 9 0

Turn the three control code switches off. Depress the Parity on-off switch to Off. Depress the High-Low
switch to Low. Depress the Strip-Reel switch to Reel.

The input paper tape must have an opaque strip approximately 1 W' long attached at a minimum of 2W
prior to the first data frame and 2W after the last frame.

Depress Load Switch. Position tape under the Read Head to the frame preceding the first data frame.

Depress Ready Switch then set Remote/Local Switch to Remote. When the first paper tape read
instruction is encountered, the Supervisory Printer will respond with an ''unlabeled paper tape file"
message. Tue operator must respond with the appropriate corrective procedure.

PAPER TAPE PUNCH - Tue Paper Tape Punch must have an Output Code Translator Board, wired as

Revised 8/9/71 by
PCN 1045481-003 5.04.04

illustrated in Figure 5-2. (Wire 1 for 1: A-1 to A-1, B-1 to B-1, etc.) Wire the channel select board,
inside the front doors on the upper left of the punch, in the following manner:

A
B
c

1 2 3 4 5 6 7 8 9 0

Turn the Control Code Switch off. Set the LEVEL Designator Switch to 8-LEVEL.

5.04.05 OPERATION

There are a few differences between AssemblerIV and Assembler III with respect to the operation of
the system. These diff erences are as follows.

Loading the Library Tape: The SPO message which loads the magnetic library tape is:

CC LOAD FROM TC500 =/=.
If the tape is loaded by card, the necessary control card would be:

1
2 LOAD FROM TC500 =/=.
3

Assembling with Card Input: The first card in the deck must be:

1
2 EXECUTE ASSEMB/TC500.
3

The rest of this procedure is identical to that of Assembler III.

Assembling with Card Input: The option card PT-IN with an Assembler IV replaces the option card
DISK-IN of Assembler III. The rest of this operation is the same.

5.04.06 . ERROR DETECTION

The editing functions and error messages provided by Assembler IV are identical to Assembler III
(B 3500 version).

5.04.07 OUTPUT

The output from Assembler IV is the same as that from Assembler III with a few exceptions.

l. With Assembler IV, no card listing is provided with object card output (OBJCD option).

2. The pbject paper tape output code with Assembler IV .is USASCII rather than the compact
hexadecimal provided by Assembler III. Thus, the object code provided by Assembler IV must
be converted to compact hexadecimal in order to operate on a Series L/TC System.

3. Object card from Assembler IV is punched in BCL as opposed to compact hexadecimal output
from Assembler III. Thus, an output program deck from Assembler IV must be converted prior
to attempting to operate on an L/TC System.

5.04.07

$PT-IN

This control card is used if the symbolic paper tape output from Phase 1 of the Assembler 1 Program is
used as input to the Assembler V Program.

$ SEO-CK

This control enables sequence checking of the sequence number punched in card columns 11
through 15.

$ RESEQ

When this control card is used, any sequence numbers punched in columns 11 through 1 S of the source
cards are ignored. Resequencing is initialized at 10 and incremented by 10 for each succeeding card. lf
both sequence checking and resequencing are specified, sequence checking will be ignored.

$MEMORY

lf the size of the object memory is other than 512 words, the desired size may be inserted by the
option $ MEMORY followed by the memory size stated as a 3-digit integer value, starting in card
column 29.

$ SYM·CD

This option provides a symbolic card source deck, resequenced when the $ RESEQ control option is
used.

$ SYM·PT

This option provides an input symbolic paper tape for Phase 1 of Assembler 1.

$0BJCD

This control option is used when the output of the Assembler V Program is tobe an object program on
punched cards in 80-column card compact hexadecimal format.

$ 0/P OBJECT CARD BCL

This control option is used when the output of the Assembler V Program is tobe an obj(}ct program on
punched cards in BCL forma t.

$PUNCH

This control option is used wheil the output of the Assembler V Program is to be an object program in
punched paper tape, USASCII format.

$LABELS

Tue entry of this control option ptovides a print-out of the labet table generated by the Assembler V
Program. The list of labels is prirtted in the order in which they were programmatically defined, along
with the location, or value, that each labet represents.

Revised 8/9/71 by
PCN 1045481-003 5.04.07 <Conf d)

5.05.00-L/TC ASSEMBLER V - B 300 VERSION

Tue Assembler V program operates on a B 300 system and prepares an object program for Series L/TC
Systems. The program accepts symbolic input directly from cards and will accept a symbolic punched
paper tape if the appropriate control card is included in the source media.

5.05.01 ENVIRONMENT

Tue following system hardware is used for Assembler. V.
B 283 or equivalent having a minimum 9.6K core memory configuration.

3 - Tape Storage Units

Line Printer

Card Reader

Card Punch

Paper Tape Reader (optional)

Paper Tape Punch (optional)

A Central Processor with punch binary capability is required if object cards in Series L internal code are
required.

5.05.02 INPUT

Tue input for Assembler V is the Assembler V Program object deck and the source media wJ:üch is either
a card deck that includes both the symbolic program and the appropriate control cards, or the symbolic
paper tape output from Phase 1 of Assembler 1 with appropriate control cards. Symbolic cards are
punched as defined in Section 1.

5.05.03 OUTPUT

Tue output of the Assembler V Program may be any one of the output object options and/or any one
of the output symbolics described under control cards.

5.05.04 CONTROL CARDS

Data Cards formulate the option control deck and specify the options which control the input and
output of the Assembler V Program. Each card is punched with a ($) sign in card column 1 and the
option in forma tion coded starting in column 16.

Tue control cards allowable are:

$Date

This control card is used to express the date. Ten (10) characters are reserved starting in column 29.

$1/P Card

This control card is used to tell the system that the source media is cards punched in BCL code.

5.05.00

$ S. L. T.

This Control option card must be used when assembling for an 80-column card striped ledger system. A
character translation table is produced in the object program by the assembler. This option also forces a
memory size limit of 482 which supersedes any memory option card.

$ S. L.

This control card tells the system that the striped ledger option is desired.

$EXT EM

This control card is required when generating code for a 40-track machine.

5.05.05 END

Tue system is informed that the input from the Card Reader is complete by use of the mnemonic END
card included at the end of the source deck; or by actuation of the END OF FILE button on the
Reader.

5.05.06 OPERATING INSTRUCTIONS

Operation of the Assembler V Program involves the setting up of peripherals as a major function as
opposed to Assembler 1 which requires manual intervention as a major function.

Equipment Setup

1. Magnetic tape units

Set the 3 magnetic tape units, designated as stations 1, 2, 3, for remote operation. Make sure
that. all other magnetic tape units, set for rem:ote operation, are addressed by station numbers
other than 1, 2 or 3.

2. Line Printer

Equip the printer with a 6 lines per inch control tape and press the READY button.

3. Card Reader

See Operation.

Paper Tape Reader (if required).

Tue paper tape reader uses an Input Code Translator Board wired as illustrated in Figure 1.
Wire 1 for 1: A-1 to A-1, B-1 to B-1, etc.

Tue Channel Select Plugboard is wired one to one:

A

B

c

1 2 3

4. Card Punch (if required).

4 5 6 7 8 9 0

0

0

0

0

Load the hopper of the card punch with sufficient cards and press the READY butfon.

Revised 8/9/71 by
PCN 1045481-003 5.05.06

1

• INPUT CODE TRANSLATOR TEMPLATE • •••••••••••••••••••• •••••••••••••••••••• ••••••••••••••••••••
1~: ::: r: t·! f 'l : : : : : : : : : :

ORS BUS ·/·C·· ••• ,. .· •••• . ~······3· •• ·3··· •••• •• 2 ••• •2•. • ••• ••1• •• •1•. • ••• ·t·O· ••• <. ··~\ •••••••• E·~·- C
ee1e • • • • •• • • • • e1s • e •Ge
• 02, ••••• i.' ~ i i28 •• 820.
O eae • e • e e e e C> e G e3e e 8 03• ~
e G•@ e 0 e e ~ ·" e e 0 e ~4G e 8 O.G G
0 ese e e 0 Ge e G Ge 0 ese G 0 GsG 0
•• 6 ••••••••.•••• 6 ••••• c
e e1~ e e e e e e e e e e e1e e 0 C1C ~
• eae e e e e e e e e e e ese e 0 SsO S
•• 9 •••••••••••• 9 ••• 090.
9 •oe e e 0 See 0 0 e 0 •oe e 8 OoO G • •1• •••••••••• @.18 •• auo •
• • 2. 0 • c s ••••••• 2 ••• 920 •
e OsO e e e e O 0 f e e e •3• e G 939 G o · 1 · 2 a 4 s 6 1 8 10 u 12. 13 14 15 ·o 1 2 3
•• 4 •••••••••••• 4 ••• 040.

•••••• ••••••••••• 5 •••• 5 •• ····· .· .. · ... ·.. .. ORS . . BUS ••i••• ·1···· ... • ••• •• 2 •••• 2.. • •••
e ese e e eae e e e e e
• ece. A eca A, · e e e e

1 0 S'fOP CmLS f lf' EN BIN

% .• ·:. % ·i··· •••••••••• 0. 5 . 6 7 8 ...

. e: • • • • • • • • • • • • • ~ •••••••••••••••••••• ••••••••e••••••••••• •.•••••••••••••• '1oJL• ••
e Burroughs Corporation PRINTED 1N u.s.A. e

5.05.06 (Cont'd-1) FIGIJRE 1

• OUTPUT CODE TRANSLATOR TEMPLATE e
ee•••••••••••••••••e ···········••e•••e••
e••··············••e
·········••e•ee•••ee .l.. 2 .1_ C .l.. 2 3 C 1 ORS C 1 2 3 C 1 2 3 C

···•·e•••e••eeeeeeee
STOP CTRLS SHIFT EMITTER UNSHIFT EMITTER w ~ : r: i : n: : nr-·:i-i:·6 ·~1·· ~c··.~

: % : : t tSHfffTt: t t t t :-:~::
--EXITS ENTRIES -------••o• ••.eo• •• e e ••• e e ••.• e
e t>1C c p eie e e e e e e e a e a A1.ta •.·
0 1 2 3 ·. 1 2 3 4 5 6 7 8 9 iO 11 i2 ~ 14 .tr'

·~·········••ee•••••
•• 3 ••••••••• e ••••••• e
O 940 f> e Q.40 e S e e G G e e S e 040 e
0 GsG G 0 ese t> e '8 ~ e e 8 $ e 0 • e G
8 6 Ge e6e e e e e e e e e e e ••.•
o c10 e e e1s • e • • e • • • • • e1e •
o oso ~ e ese • • • e • • • • e •es••
•••••••c•••••••e•~e•
• ooo •• • 0 • ••• 0 ••• 0 • c • 0 • •

e S11C 8 e 01 1~ e G e e CD ~ e e • e • 18 e
G • 20 0 f> • 2e e e S 9 e e G S e 9 • 2e 0

' f 3f t ' , 3
, ' ' ' ' ' f ' t rP ' f 3 fP t 1 •• 4 •• e .4 •••••••••••• 4. e

'8 f15IY ~ e •:tr !DEtLEtOR• •••••• tt~ •

%ll.tltUJll: ;,; ; i;:: = w w %t%l!t:?:: :: : :::
·················••e ················••e• ···············••ee• •••••••••••••••••••• ••••••••••••••• ,~~·· e Burroughs Corporation PRINTED 1N u.s.A. e

Revised 8/9/71 by
FIGURE 2 PCN 1045481-003 5.05.06 (Cont'd-2)

5. Paper Tape Punch (if required).

Operation

The paper tape punch uses an Output Code Translator Board wired as illustrated in Figure 2.
Wire 1 for 1: A-1 to A-1, B-1 to B-1, etc.

The Channel Select Plugboard, inside the front doors on the upper left of the punch, is wired
in the following manner:

1 2 3 4 5 6 7 8

A

B

c
d d d d d d d d

Turn the Stop and Delete Switch Off.

Set the Level Switch to 8-Level.

9

0

0

0

0

0

After the peripherals are set up as described above, proceed with the following operations:

1. Press the CLEAR Switch on the console of the Central Processor.

2. Load the first 160 cards of the Assembler V object deck into the card reader hopper and press
the RESET and START switches on the card reader.

3. Press the LOAD switch on the processor and the object cards will begin to read in.

4. After the 160 cards have been read, press the processor CLEAR switch.

5. Place the remainder of the object deck, the control cards and the GP 300 source deck, when
used, in the card reader hopper and press the RESET and START switches on the card reader.

6. Press the processor CONTINUE switch and the card reader will read the remaining cards.

NOTE: lf the source deck does not end with a GP 300 END pseudo card, press the END OF FILE

switch on the card reader after the card reader has read the last card.

7. When the paper tape is used in place of the source deck, the control card deck should be
concluded with any card not having a $ in card column 1. The RESET, START and
CONTINUE switches are then pressed to read the remainder of the object deck and control
cards.

NOTE: lf the control deck of cards is not concluded with a card not having a $in card column 1, the

END OF FILE and START switches on the card reader must be pressed after the card reader has read

the object deck and control cards.

Once the object deck and first control card have been read, the Assembler V Program can be

reinitialized automatically by pressing the CLEAR, then CONTINUE switches on ·the processor console.

This means the user:. can start over at any point of processing without reloading the object card deck.

Programed Halts

The Assembler performs a number of automatic edits of the input data. Programed halts inform the
operator of conditions requiring immediate attention. The halt indicator on the central processor is
illuminated and the digit 9 is displayed in the 0 position of the INSTRUCTION register. The M and N
positions of the register identify the specific programed halt that is encountered. See table 1.

5.05.06 (Cont'd-3)

INSTRUCTION REGISTER

0 M N

9 2 0

9 2 2

9 2 4

9 2 8

9 2 9

9 6 0

9 6 1

9 6 4

9 6 5

9 7 0

9 7 N

Error Detection

PROGRAMED HALTS

CAUSE

Invalid control card

End of magnetic tape

No input control card entered

Paper Tape punch out of paper

End of assembly

Paper tape read error

Paper tape reader out of paper

Paper tape field greater than 26
characters. Tape or reader is in
error.

NUM on paper tape with wrong
sign character. Tape or reader in
error.

Paper tape punch out of paper

Magnetic tape read error.
Station number is indicated by
N.

Table 1

REMEDY

Correct the last card read,
reinsert and press CONTINUE
switch on the central processor.

Rerun on a larger reel of tape.

Insert card, press CONTINUE.

Reload paper tape punch, press
CONTINUE.

Press CONTINUE to start next
assembly.

Press CONTINUE. If unable to
read, space past the bad record
and press CONTINUE again.

Reload paper tape reader, press
CONTINUE.

Press CONTINUE to bypass the
entry and resume the
processing.

Press CONTINUE to bypass the
sign and resume the processing.

Reload paper tape punch, press
CONTINUE.

Press CONTINUE. If unable to
read, restart with new tape and
reload the Assembler from
cards.

Tue Assembler V Program, in processing the input, or source data, makes three basic passes through the
information.

Pass I accepts input from purtched cards or punched paper tape, validates mnemonics and adds
control information creating a resultant symbolic output on magnetic tape.

Revised 8/9/71 by
PCN 1045481-003 5.05.06 (Cont'd-4)

1

Pass II updates the output or source tape from Pass], generating a new symbolic tape. and,creating a
magnetic tape label table.

Pass III processes the outputs of Pass II assigning the object code fo the · symbolic program and
supplying a complete listing~

Bach error message or group of error messages is followed on the next line of print-out by the symbolic
operation which is determined to be in error.

5.05.07 ERROR MESSAGE$

No Operation lnserted

NOP INSERTED

This message is used only in conjunction with another error message. Tue detec.ted error is identified by
its specified message followed by NOP INSERTED on the next line. Tue NOP instruction is inserted in
the program by the assembler and processing continues.

No Input Control Card

NO I/P CTL

Tue user has failed to enter either the $ I/P CARD or $ PT IN contiol card. Orie or the other has to be
inserted in the program and the CONTINUE switch on the central processor activated for contitmation
of the processing.

Invalid Control Card

INVALID CTL CARD

This programed halt indicates the entered card is not one of the specjfied control cards. Tue invalid card
is read and printed but must be corrected, reinserted, and the processor CONTINUE switch activated
before processing can continue.

Sequence Error

SEQUENCE

Tue current card being checked at the request. of control card $ SEQ-CK has a lower sequence n:umber
than the preceding card and is therefore out of sequence. Processing contiriues.

No Object

NO OBJECT

This warning message indicates the user failed to specify the type of object output. Processing continues
without an object output.

No Symbolic Output

NO O/P SYM
.

This warning message indicates · the user failed to specify the type of ~ymbolic output. Processing
continues without a symbolic output.

S.OS.07

Invalid lnstruction Label

INSTR LABEL INVALID

Tue instruction label in columns 16 through 21, which must be left justified, begins with an alpha
character and contains no blanks, is in error. Tue label is not entered; processing continues.

Duplicate lnstruction Label

INSTR LABEL DUPLICATED

This instruction label has been previously assigned. The label is not entered; processing continues.

Label Limit Exceeded

LABEL LIMIT

More than 139 labels have been assigned and the Assembler V Program therefore cannot be used as
input to the Assembler I Program. Processing continues.

Invalid Field Length

INVALID FLD LENGTH

Tue field length coded in columns 27 and 28, following an ALF instruction, is other than 0-99 or CC.
Tue entry is bypassed and processing continues.

Previous Invalid Field Length

PRE INV FLD LENGTH

Based upon the contents ofthe field length of the previous ALF instruction, the following entry should
have had a field lertgth marked CC. Processing continues.

Invalid A Parameter Label

A-PAR LABEL INVALID

Tue A parameter label in columns 29 through 34, which must be left justified, begins with an alpha
character and contains no blanks, is ir.. error. A NOP is generated and processing continues.

Undefined A Parameter Label

A-PAR LABEL UNDEFINED

This label in the A parameter was never declared as an instruction label. A NOP is generated and
processing continues.

Illegal Entry

ILLEGAL

Tue A parameter, which should be blan)(, contains an entry. Processing continues.

Revised 8/9/71 by
PCN 1045481-003 5.05.07 (Cont'd-1)

Invalid Parameter Range

X PARAMETER INVALID RANGE XXX-XXX

The A, B, or C parameter is indicated with its specified permissable range. Comparison of the print-out
following the message to the specified range in the error message shows the detected invalidness. A NOP
is generated and processing continues.

Invalid Parameter Character

X PARAMETER INVALID X

This message is used with instructions referring to flags. The A or B parameter with the detected invalid
flag is specified in the error message. A NOP is generated and processing continues.

Invalid lncrement Field

INVALID INCREMENT FLD

Contents of columns 35 through 38, which should be blank or contain the sign in column 35 and 0-255
in columns 36 through 38, are in error. A NOP is generated and processing continues.

No Label or lncrement Error

MUST HA VE LBL OR INC

This message is used with BRU mnemonics only. If the label field is empty, the + or ~ relative address
is assumed as the label. A NOP is generated and processing continues.

Invalid Mnemonic

INVALID MNEMONIC

This mnemonic does not appear in the language specification. Tue instruction is ignored, a NOP is
entered and processing continues.

Invalid Sign

INVALID SIGN RESULT

This message is used with a NUM instruction. The user has used an invalid combination of sign
characters. Tue sign portion of the instruction is ignored whereas the rest is printed. Processing
continues.

Invalid Character

INVALID CHARACTER(X)

Tue detected invalid character of the NUM or MASK parameter is indicated in parentheses. Processing
continues.

5.05.07 {Cont'd-2)

Wol'd Length Exceeded

WORD LENGTH EXCEEDED

This message is used when either a NUM or MASK instruction is too long to be translated into one
word. Tue overflow is ignored and processing continues.

Memory Assignment Error

MEMORY OVERLAYED ERR

This message informs the user that the specified memory has been previously assigned. Processing
continues.

Assumed Memory

MEMORY 512

No memory card has been used to specify the memory size. Tue assembler assumes a memory of 512
and processing continues.

Memory Capacity Exceeded

STORAGE EXCEEDED

Tue symbolic program is too large for the specified object memory size. Processing continues with the
location counter reset to zero.

End Card

LAST UNE NOT "END"

Tue user failed to use the mnemonic END card to complete the deck file. Processing continues.

Revised 8/9/71 by
PCN 1045481-003 5.05.07 (Cont'd~3)

ACCESS TIME

ACCUMULATOR

ALPHA CHARACTER

ALPHANUMERIC CHARACTER

ASSEMBLER

BASE WORD

BINARY CODE

BLOCK

BRANCH

BUFFER

CARD FIELD

CHARACTER

CLEAR MEMORY WORD

CODING FORM

COMPUTER

CONSTANT

CONTROL AREA

APPENDIX A

GLOSSARY

Tue amount of time required for a computer to locate and
transfer a character of data from its storage position and
make it available for processing.

A working numeric memory location containing 15 digit
positions and a flag position.

A character chosen from A-Z.

A character chosen from A-Z or 0-9 and other specially
designated characters.

A program written to convert a symbolic program to a
corresponding program in machine language. Principally
designed to relieve the programmer of the problem of
assigning actual storage locations to instructions and data
when coding a program and to permit the use of mnemonic
operation codes rather than numeric.

Tue first word in a table.

A coding system in which successive digits reading from right
to left are interpreted as successive powers of two.

A memory block consists of 256 words.

Tue point in a program at which the machine will proceed
with one or two or more existing possible routines according
to existing conditions and instructions.

A temporary storage area used to hold data until the data
can be accepted for processing.

A set of card columns fixed in number and position into
which the same classification of information appears.

A graphic symbol of any sort.

A memory word consisting of zero.

A form upon which coding is placed.

A machine for carrying out calculations and performing
specified transformations of data.

A magnitude which does not change its value.

Tue area which contains the firmware which determines
system control functions.

A-1

APPENDIX A (cont'd)

DEBUGGING

DIGIT

DOCUMENTATION

ERROR

FIRMWARE

PLAG

FORMAT

HARDWARE

INPUT

INSTRUCTION

INTEGER

KEYBOARD BASE REGISTER

LA.BEL

LEAST SIGNIFICANT DIGIT
POSITION

LEFT JUSTIFY

LOGIC

A-2

Tue process of removing problems from the program so as to
meet the program specifications.

Any of the figures 0-9.

Tue explanatory remarks included by a good programmer.

Tue amount of precision lost in a quantity. Tue difference
between an accurate quantity and its calculated
approximation. Errors occur in numerical methods; mistakes
occur in programs, coding, data transcription, and operation;
malfunctions occur in computers.

A control program, stored in the systems memory. Tue
firmware identifies each instruction used by the program and
selects the proper "micro string" to perform the functions of
the instruction.

An indicator which is set or reset upon execution of certain
instructions, which provides a test factor to determine
whether or not the conditions specified by the program exist,
so that alternate paths of the program may be selected.

An arrangement of information on a form or into storage.

Physical equipment.

Tue information fed into a computer system, in the form of
numbers or letters, from punched paper tapes, punched
cards, keyboard, etc.

Tue information which tells a machine where to obtain the
operands, what operations to perform, what to do with the
result, and sometimes, where to obtain the next instruction.

A whole number.

Specifies the starting memory location in which succeeding
information will be stored.

A set of characters identifying an absolute machine address.

Tue 0 position of an Accumulator word or a memory word,
if the word is numeric. In an alpha word, the 0 position is
the most significant character pÖsiliÖn.

To position a field to begin at the left-most margin.

A reasonable analysis of the procedures followed in solving a
problem.

LOGICAL COMPARISON

LOGICAL OPERATION

LOOP

MACHINE LANGUAGE

MACRO INSTRUCTION

MAIN MEMORY

MASK

MASK WORD

MEMORY LOCATION

MICROSECOND

MILLISECOND

MNEMONIC OPERATION CODE

MOST SIGNIFICANT DIGIT
POSITION

MULTIPLICAND

MULTIPLIER

NANOSECOND

NEGATIVE V ALUE

NORMAL AREA

OBJECT PROGRAM

APPENDIX A (cont'd)

Tue consideration of two things with regard to · some
characteristic, to obtain a yes if they are t~e same, or a no if
they are different.

A computer operation of comparing, selecting, or taking
alternative action.

A number of instructions which occur sequentially, a given
number of times.

A code that the computer can recognize and execute.

A main memory instruction which serves to activate a series
of micro instructions contained in firmware.

1,024 words subdivided into the control area and the normal
area.

A print format for numeric values.

A ward of memory containing mask codes which define print
format.

A component of the computer in which memory is stored.

A millionth of a second (.000001 = ms.)

A thousandth of a second (.001 seconds).

See operation code.

Tue highest digit position of an Accumulator word or a
memory ward, if the ward is numeric. In an alpha ward, the
highest position or the > position is the least significant
character position.

Tue quantity which is multiplied by each digit of the
multiplier in the operation of multiplication.

Tue operand which controls the repetitive addition of the
multiplicand in the operation of multiplication.

A billionth of a second.

A value less than zero.

An area in memory used to store the users programs which
are written with the macro instructions. lt is also used to
store constant data, messages, and for accumulating totals.

A program in machine language resulting from the translation
of a source program by an assembler.

A-3

APPENDIX. A (cont'd·)

OPERATION CODE

OUTPUT

PAPER TAPE

PAPER TAPE SOURCE PROGRAM

PARAMETER

PARITY CHECK

PRINT HEAD

PROGRAM COUNTER

PROGRAM KEY

PROGRAM KEY BASE REGISTER

PROGRAM KEY TABLE

POSITIVE V ALUE

PSEUDO INSTRUCTION

PUNCH CARD SOURCE PROGRAM

READIN

RIGHT JUSTIFY

ROUTINE

SAFEGUARD SYMBOL

SEQUENCE NUMBER

SHIFT

A-4

A symbolic abbreviation for a machine cöde which controls a
computer function.

Tue results .Qf computer operations in the form -Of punched
cards, punched ·. paper tape, or printing, etc.

A specially treated strip of paper in which a pattern of holes
is punched, which in combination with blank spaces
represent numbers and letters.

A. source program punched on paper tape.

A quantity which may be assigned different values.

A summation check in which the bits, in a character or word
are added and the sum checked against a single previously
computed parity digit.

Tue print ball.

A special register which contains the memory address being
executed.

A key which allows insertion of an arbitrary instruction in
the program.

A register containing the first word of the word program
key table.

An area of memory containing instructions assigned to
Program Keys.

A value greater than zero.

An instruction designed to provide information to an
assembler program.

A source program punched on cards.

To place data in storage at a specified address.

To position afield to terminate at the right most margin.

A · set of instructions arranged in proper sequence to cause a
machine. to perform a desired operation;

Commonly · referred to as the dollar sign ($).

A number identifying the desired order of operations.

To move an ordered set of characters one or more places · to
the right or left.

SIGNIFICANT DIGIT

SOFTWARE

SOURCE PROGRAM

STORE

SYMBOLIC PROGRAM

TRACK

TRANSFER

TRANSLATE

UNP,.\CK·

UTILITY PROGRAM

VARIABLE LENGTH FJELD

WORD LENGTH

WORD NUMBER

WORD OF MEMORY

WORKING STORAGE AREA

' . .

:{;L~ERO·.•SUPPRESSIQN ·
· ... : ·t'„:·~·'",\;: .'. :·''"'·· .. · ' . ' .

APPENDIX A (oont'd)

Any digit (except a zero in places higher than the highest
order non-zero digit) in the expression of a quantity.

Tue material supplied by a computer manufacturer along
with the actual equipment (Hardware) i.e., programs, service
routines, and operating manuals.

A program written in other than machine language, intended
for automatic translation into machine language.

To transfer information to a place from which the unaltered
information can be obtained at a later time.

Tue use of arbitrary symbols to represent addresses in order
to facilitate programing.

A track consists of 32 words.

To convey information from one location to another.

To convert information from one language to another
without significantly affecting the meaning.

To separate a machine word into parts according to fields of
information.

A program which has a use in common to a number of
different and unrelated programs, yet is not integral to any
program, i.e., trace.

A field in which the number of characters within the record
are not restricted to a given number of positions.

Tue number of symbols that constitute a word.

A memory address or memory location.

16 digits (64 bits) used to store information.

A portion of storage in which a data item may be processed
or temporarily stored. Tue term often refers to a place in
storage used to retain intermediate results of calculations
which will not appear as direct output from the program.

Tue integer represented by the character 0, having .the
property that 0 multiplied by any number and 0 divided by
any number is 0.

Tue elimination of non-significant zeros to the left of the
integral part of a. quantity before printirtg is begun.

A-5

1

APPENDIX B

GP 300 INSTRUCTIONS TO MACHINE LANGUAGE

Appendix B provides an alphabetical listing for the GP 300 instructions and the hexadecimal machine 1
language code for each GP 300 instruction.

Appendix B also provides hexadecimal values for q.ecimal numbers between 0 and 767.

If a table is not available, the desired value (for values between 0 and 255) may be calculated with the
following chart and two simple procedures.

If the value is between 0-15, convert by this chart:

0 l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 decimal

0 1 2 3 4 5 6 7 8 9 A B c D E F hexadecimal

1. Decimal to hexadecimal conversion:

Divide the decimal value by 16.

Insert the hexadecimal equivalent from above chart as the left most digit of the two digit
number.

Insert the hexadecimal equivalent of the remainder as the right most digit of the two digit
number.

Example: What is the hexadecimal equivalent of the decimal value 255?

255 + 16 = 15 with 15 remainder

So 255 must be represented as FF in hexadecimal notation.

2. Hexadecimal to decimal conversion:

Multiply the decimal equivalent of the left most digit of the two digit hexadecimal number by
16.

Add the decimal equivalent of the hexadecimal value in the right most position to the
previous sum.

Example: What is the hexadecimal value 2A equivalent to in decimal notation?

2 X 16 = 32

A = 10 (see above chart)

32 + 10 = 42

The machine language code for a GP 300 instruction consists of 4 hexadecimal digits. These digits are
identified as Op Code Upper, Op Code Lower, Parameter Upper, and Parameter Lower.

Example:

Tue machine language code for AL 5 is ED05.

Eis the Op Code Upper.

D is the Op Code Lower.

0 is the Parameter Upper.

5 is the Parameter Lower.

In some cases the Op Code Lower is incremented by 1 for word locations above 255 (See Table A).

Revised 7-23-71 by
PCN 1045481-002 ß-1

APPENDIX B (c~nt'd)

INSTRUCTION

Add to Accumulator
Add to Index Register
Add Constant to Accumulator
Add to Memory
Advance Left Platen

. Alarm

Advance both platens
Advance left platen to
Select Alternate Stacker
Advance right platen
Advance right platen to

Branch unconditionally

Close forms handler

Check Digit Compute
Check Digit Verify
Change Flags

Clear Accumulator and insert constant .·
Clear Memory Word
Compare alphanumeric

Decrement Index Register
Divide
Duplicate thru column

Enter Alpha into Memory
Execute if any Plag
Execute if every Plag
Execute if digit less than constant
Execute if Accumulator zero

. Increment Index Register
Insert Constant inAccumulator

Load Index Register
Load Memory from Card
Load Card P ormat Register
Load Keyboard Base Register
Load Left Count Register
Load Left Limit Register
Load Flags

OPCODE

ADA
ADIR
ADK
ADM
AL

ALARM
ALR

ALTO
ALTP

AR
ARTO

BRU

cc
CDC
CDV
CHG

CLA
CLM ·
CPA

·.DIR

DIV
. DUP

BAM
EX

EXE
EXL
EXZ

IIR
INK

LIR
LCD

LCPR
LKBR
Ltcll,·.
LLLR
LOP

Load Program Key Base. ~egi$ter . > .· •. · · .· . LPKR
Load Ptjnt Numeri~ Brtse·~i&i$~~J'·;·; .. 'f'?t:i.,; i:.<i \ ;f;,::.;i;~N·Ji : .
Load Right Count Register · • ' · · · · · ·· · ·. „ · .. · · , · IR.cR. · ·
Load Right Limit Register LRLR
Load Shift Register LSR

B-2

A

LABEL
1-4

0-14
LABEL
0-255

0-2.55
1-255

0-255.

1-255

LABEL

1-15
1-15

.A,K,R,P,
X,Y
0-15

LABEL
LABEL

1-4
LABEL.

1-80

0-255
0-9

0-9
0-9

1,2,3,4,-,
S,C;M
0-15

0-255

LABEL
JA,T,K,P,V,Bf) -SCMWRP

)D,R,X,Y,W,S) 12340LIU
0-15 0-15
1-4

1-4
0-15

1-4
0-255

LABEL

... LA.BEL
0-255
0-255

A,K,R,P,
·xv .

'
LABEL

. :LA:SEL.
,.· .. ·.

0-255
0-255
0-15

0-255
0-15

0-255

·. 1,2,3,4,-,
. S,C,M

c

1-4
1-4
1-4

APPENDIX B (cont'd)
INSTRUCTION OPCODE A B c

Load Punch Count Register LXC 1
Load Punch Count Register LXC 0-255

Modify by Index Register MOD 1-4
Multiply MUL LABEL
Multiply and Round MULR LABEL

Numeric Keyboard NK 0-15 0-15
Numeric Keyboard Permit C, M Keys NKCM 0-15 0-15
Numeric Keyboard Permit Reverse Entry NKR 0-15 0-15
Numeric Keyboard Permit Reverse Entry, NKRCM 0-15 0-15
C, M Keys
No-Operation NOP

Open forms transport oc 0-255

Print Alphanumeric PA LABEL
Print Character PC CHARACTER
Print Character if Accumulator plus, PC+ CHARACTER
Previous Ribbon
Print Character if Accumulator minus, PC- CHARACTER
Previous Ribbon
Print Character Previous Ribbon PCP CHARACTER
Enable Program Key Group A PKA 1-8
Enable Program Key Group B PKB 1-8
Enable Program Key Group C PKC 1-8
Print Numeric PN 0-14 0-15
Print Numeric Shift Ribbon if plus PNS+ 0-14 0-15
Print Numeric Shift Ribbon if minus PNS- 0-14 0-15
Load Position Register POS 1-255

Read Card RCD
Enter Alpha into memory, punch non-print REAM 0-150
Release Media Clamp REL
Transfer Remainder to Accumulator REM
Read Numeric into Accumulator RNK 0-15 0-15
Red Ribbon RR
Reset Flags RST A, K,R,P, 1,2,3,4,-,

X,YJL,D S,C,M
Read Alpha and Print RTK 0-255
Read Alpha into Memory and Punch, RXEAM 0-255
non-print
Read Alpha, print and punch RXTK 0-255
Read Alpha into memory, print and punch RXTKM 0-255

SetFlags SET A,K,R,P, 1,2,3,4,-,
X,Y,L,D S,C,M

Skip if any Plag SK A,K,R,P 1,2,3,4,-,w 1-4
S,X,Y,B,L S,C,M,R
T,V,D,_V O,C,l,U,F

Revised 3-29-71 by
PCN 1045481-001 B-3

APPENDIX B (cont'd)

INSTRUCTION

Skip if every Flag

Skip if digit less than Constant
Skip to card column
Skip if Accumulator Zero
Shift Off
Shift Off with Sign
Subroutine Jump
Subroutine Return
Stop
Subtract from Accumulator
Subtract Constant from Accumulator
Subtract from Memory

Transfer Accumulator to Index Register
Type
Type into Memory
Transfer to Accumulator
Transfer Card Field to Accumulator
as Numeric
Transfer Card Column to Memory as
Alpha
Transfer to Memory

Punch Alpha from Memory, Non-Print
Punch Feed Codes
Punch Alpha from Card Read Area,
Non-Print
Punch Code
Enter Alpha into Memory and Punch,
Non-Print
Modify by Punch Count Register
Punch Numeric, Non-Print
Print Alpha and Punch
Print and Punch Alpha from Card
Read Area
Print and Punch Numeric
Print and Punch Numeric Shift Ribbon
if Plus
Print and Punch Numeric Shift Ribbon
if Minus
Type Punch and Print
Type to Memory Punch and Print

B-4

OPCODE

SKE

SKL
SKP
SKZ

SLRO
SLROS

SRJ
SRR

STOP
SUA
SUK
SUM

TAIR
TK

TKM
TRA

TRCA

TRCM

TRM

XA
XB

XBA

XC
XEAM

XMOD
XN

XPA
XPBA

XPN
XPNS+

XPNS-

XTK
XTKM

A B c

A,K,R,P,T, 1,2,3,4,-,w 1-4
X,Y,L,B S,C,M,R
D,V,W,S O,C,I,U,F

0-15 0-15 1-4
1-80
1-4

0-14 0-14
0-15 0-15

LABEL
1-4

LABEL
0-14 0-9

LABEL

1-4
0-255
0-255

LABEL
1-16

1-16

LABEL

LABEL
0-255
1-16

0-15 0-15
LABEL

0-14 0-15
LABEL

1-16

0-14 0-15
0-14 0-15

0-14 0-15

0-255
0-255

APPENDIX B (cont'd)

DATA COMMUNICATION INSTRUCTIONS

INSTRUCTIONS OPCODE A B c

Change Flags CHG R 23
Execute if any Flag EX RBD 1234 1-4
Execute if every Flag EXE RBD 1234 1-4
Increment Receive Character Pointer IRCP 0-255
Load Flags LOD R 23
Load Polled Flags Register LPF -
Load Receive Address Register LRA -
Load Receive Buff er Register LRBR LABEL or

BLANK
Load Expected Group Transmission Number LGN
Load Expected Broadcast Transmission Number LBN

Load Send Address Register LSA -
Load Send Transmission Number LSN -
Load Expected Transmission Number LTN -
Register
Power Off OFF
Print Alpha from Receive Buffer PAB 0-150
Set Receive Character Pointer RCP l-255
Retrieve Expected Broadcast Transmission

Number RBN
Retrieve Polled Flags RPF -
Retrieve Expected Group Transmission Number RGN

Retrieve Character Pointer Register RPR -
Retrieve Receive Address RRA -
Retrieve Send Address RSA -
Retrieve Send Transmission Number RSN -
Reset Flags RST
Retrieve Header Transmission Number RTH -
Retrieve Expected Transmission Number RTN -
Set Send Character Pointer SCP 1-255
Set Flags SET R 23
Skip if Flag SK RBD 1234 1-4
Skip if every Flag SKE RBD 1234 1-4
Transfer Accumulator to Send Record Area TRAB 0-15 0 or 1
Transfer Receive Buff er TRB LABEL
Transfer to Accumulator as Numeric TRBA 0-16
Transfer Character TRCB 0-15 0-15
Transfer Alpha TRF 0-255
Transfer Send Record Area TSB LABEL

Revised 7-23-71 by
PCN 1045481-002 ß-5

APPENDIX B (Cont'd.)

OPERATION CODE AND PARAMETER TO MACHINE CODE

INSTRUCTION OP CODE PARAMETER SEE FOOTNOTE

u L u L NUMBER - - - -
ADA 8 8 0:15 0: 15 l*

• ADB A 0 0 17,18
ADIR 5 4 0: 15 0:15 2

ADK 8 F 0:14 0:9
ADM 8 0 0:15 0:15
AL E D 0:15 0:15
ALARM 0 9 8 0
ALR E F 0:15 0:15
ALTO E 9 0:15 0:15

• ALTP E 5 0 0
AR E E 0:15 0:15
ARTO E A 0:15 0:15

BRU 7 0 0:15 0:15 3

cc E c 0 0

1 CDC B 2 2: 15 0:9
CDV B 3 2:15 0:9
CHG 6 6 5
CLA 8 E 0:15 0:15
CLM D 8 0:15 0:15 l*
CPA D A 0:15 0:15 1*

DIR 5 c 0: 15 0:15 2
DIV 9 A 0:15 0:15 1*
DUP E 0:5 0:15

EAM A 9 0:5 0:15 8

• EL A 7 B 0
EX 4 4,5

EXE 4 4,5

EXL 6 0: 15 0:15 4

EXZ 4 D 0 4

• B-6

APPENDIX B (Cont'd.)

,•

INSTRUCTION OPCODE PARAMETER SEE FOOTNOTE

u L u L NUMBER - - - -
IIR 5 8 0:15 0:15 2

INK 9 E· 0:15 0:15 .
IR~P A 0: 15 0:15

LA A 7 8 0
LBN 3 4 A 9
LCD c D 0:15 0:15
LCFR D c 0:15 0:15
LGN 3 4 A 8
LIR 5 0 0:15 0:15 2

LKBR F· 0 0:15 0:15 1

LLCR E 0 0:15 0:15
LLLR E 4 0:15 0:15
LOD 6 4 5

LPF 3 4 A D
LPKR F c 0:15 0:15 1

LPNR F 8 0:15 0:15 1

LPR 3 2 4 A
LRA 3 4 B 1
LRBR 1 8 0:15 0:15 1

LRCR E 2 0:15 0:15
LRLR E 6 0:15 0:15
LSA 3 4 B 2

1 LSCR B 7 0 0 19

LSFR B 4 0:15 0:15 1

LSLR B 7 4 0 19

LSN 3 4 A 7

LSR 6 4 2 0:15
LTF 3 4 A 4 •
LTN 3 4 A 6
LXC 0 6 0:15 0:15

Revised 7-23-71 by
PCN 1045481-002 ß;. 7 •

APPENDIX B (Cont'd.)

INSTRUCTION OP CODE PARAMETER SEE FOOTNOTE

u L u L NUMBER - - - -·
MOD 6 0 0 0 2

MUL 8 A 0:15 0:15 l*
MULR 8 c 0:15 0:15 l*

NK A 6 0:15 0:15

NKCM A 2 0:15 0: 15
NKR A 4 0:15 0:15

NKRCM A 0 0:15 0:15

NOP 0 8 0 0

oc E 8 0: 15 0:15

OFF 0 9 1 0

PA c 8 0:15 0:15 1 *, 20

• PA 1 8 0:15 0:15 1 *' 21
PAB 1 D 0:15 0: 15 8
PAS A 5 0 0 18

PBA B c 0 0:15 18
PC c 0 7

PC+ c 4 7

PC- c 5 7

PCP c 7

PKA F 6 0:15 0:15 6
PKB F 7 0: 15 0:15 6

• PKC F 5 0:15 0:15 6

PN D 4 0:14 0:15
PNS+ D 0 0:14 0:15

PNS- D 0:14 0:15

1 POF 0 1 1 0

PON 0 1 2 0

POS E B 0:15 0:15 8

• B-8

APPENDIX B (Cont'd.)

INSTRUCTION OP CODE PARAMETER SEE FOOTNOTE

u L u L NUMBER - - - -
RBN 3 c A 9 •
RCD c c 0 0

RCP 1 c 0:15 0:15

REAM B 9 0: 15 0:15 . 8

REL 0 1 0 1

REM 3 A 4 20

REM 3 B 4 1 21

1 RET A 7 c 0

RGN 3 c A 8

RL A 7 0:5 0:15 23

RNK B 0 0:15 0:15

RPF 3 c A D
RPR 3 A 4 A
RR 0 7 0 0

RRA 3 c B 1

RSA 3 c B 2

RSN 3 c .A 7

RST 6 5 5

RTF 3 c A 4 •
RTH 3 c A 0

RTK B c 0:15 0: 15 8

RTKM B D 0:15 0:15 8

RTN 3 c A 6

RXEAM B B 0:15 0:15 8

RXTK B E 0:15 0:15 8

RXTKM B F 0:15 0:15 8

SCP 1 4 0:15 0:15

SET 6 7 5

SK 4 4,5

SKE 4 4,5

SKL 6 0:15 0:15 4

SKP E 3 0:5 0:15

SKZ 4 D 0 4

Revised 7-23-71 by
PCN 1045481-002 B-9 1

APPENDIX B ('COnt"d.)

INSTRUCTION OP CODE · PARAMETER SEE FOOTNOTE

u L u L NVMBER - - _..,....

SLRO 0 2 0:14 O:i4
SLROS 0 3 0:15 0:15
SRJ 2 0 0:15 0:15 3
SRR 0. 4 0 9
STOP 0 0 0 0
SUA 9 8 0:15 0: 15 1*

• SUB A• 8 0 17, 18
SUK 9 F 0:14 0:9
SUM 9 0 0:15 0:15 1

TAIR 9 c 0 0:3 22

• TASB A· c 0 17. 18
TK A c 0:15 0:15 8
TKM A D 0:15 0:15 8

• TMSB A 5 8 0 18
TRA 3 8 0:15 0:15 1
TRAB l 5 0:1 0:15
TRB 1 E 0 1: 15
TRBA 1 B 0 1: 15
TRCA B 8 0 0:15 18
TRCB 6 0:15 0:15 16
TRCM B 9 0 0:15 18
TRF 7 0:15 0:15
TRM 3 0 0:15 0:15

\ 1
TSB 1 F 0 1: 15 \

1 TSBA A 4 0 17, 18
TSBM A 5 4 0 18

• B-10

APPENDIX B (Cont'd.)

INSTRUCTION OP CODE PARAMETER SEE FOOTNOTE

u L u L NUMBER - - - -
WL A 7 A 0 •
XA c 6 0: 15 0: 15 1*

XB 0 c 0: 15 0: 15
XBA B A 0 0:15

XC c 2 0:15 0:15 16

XEAM A B 0:15 0:15 8

XMOD 0 A 0 0

XN D 7 0:14 0:15

XPA c A 0:15 0:15 1 *, 20

XPA 1 c 0:15 0:15 1 *' 21 •
XPBA B E 0 0:15

XPN D 6 0:14 0:15

XPNS+ D 2 0:14 0: 15

XPNS- D 3 0:14 0: 15

XTK A E 0:15 0:15 8

XTKM A F 0:15 0:15 8

Revised 7-23-71 by
PCN 1045481-002 B-11 •

APPENDIX B (Cont'd.)

OPERATION CODE AND PARAMETER TO MACHINE CODE

(DATA COMMUNICATIONS ADDITION)

INSTRUCTION OP CODE PARAMETER SEE FOOTNOTE

u L u L NUMBER - - - -
IRCP A 0:15 0:15 11

LKBR F 0 0: 15 0:15 l, 10

LPF 3 4 A D

LPR 3 2 4 A
LRA 3 4 B 1

LRBR 1 8 0: 15 0: 15 1, 10

LSA 3 4 B 2

LSN 3 4 A 7

1 LSR 6 4 2 0:15

LTF 3 4 A 4

LTN 3 4 A 6

OFF

PAB D 0:9 0:15 8

RCP 1 c 0:15 0:15 11

RPF 3 c A D

RPR 3 A 4 A
RRA 3 c B 1

RSA 3 c B 2

RSN 3 c A 7

RTH 3 c A 0

• RTK 3 c A 4

RTN 3 c A 6

SCP 1 4 0:15 0:15 11

• B-12

APPENDIX B (Cont'd.)

INSTRIJCTION OP CODE PARAMETER SEE FOOTNOTE

u L u L NUMBER

TKM
TRAB 1 5 0:15 15

TRB E 1: 15 12

TRBA 1 B 1: 16 13

TRCB 1 6 0:15 0:15 16

TRF 1 7 0:15 0:15 14

TSB 1 F 1: 15 12

1

Revised 7-23-71 by
PCN 1045481-002 B-13 •

1

t

FOOTNOTES

FOOTNOTE (Statements preceded by an asterisk apply~to only extended memory machines.)

1. For word.number 256:511add1 to the OP code lower.

2.

3.

For word number 512:767 add 2 to the OP code lower except for the following instructions
which are restricted to referencing words 0 to 511 of user memory:

ADA
SUA
MUL

MULR

DIV
CLM

CPA

XA

. The PA instruction for the 40-track system has a new OP code of l8. For word number .
256:511 add 1 to the OP code lower 08 + 1=19). For word number 512:767 .add 2 to the
OP code lower (18 + 2=1A).

*Thes.e instructions are restricted to ref erencing words of 0 to 511 of user memory.

Modify OP code lower as follows:

INEX REG. NO. 4 1

ADD TO OP LOWER 0 1

Mod~fy OP code lower as follows:

Syllable Word NumbJr

0 0:255

1 0:255

2 0:255

3 0:255

0 256:511

1 256:511

2 256:511
3 256:511

*O 512:767

"'1 512:767

*2 512:767

*3 512:767

2 3
2 3

Acid to OP Lower

0
4

8
c
1
5

9
D
2

6
A
E

• B-14

4. OP cöde lower is derived from table below.

INSTRUCTION

SK
or

SKZ

EX
or

EXZ

SKE "'

EXE

i

SKL

EXL

OF INSTRUCTIONS

TO BE EXECUTED OR

SKIPPED

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

APPENDIX B (Cont'd.)

OPLOWER

0

1

2

3

4

5

6

7

8

9

A

B

c
D

E

F

8

9

A

B

c 1
D

E
F

Revised 7-23-71 by B-IS , •
PCN 1045481-002

APPEN01x 8 (Cont'd]

• B-16

1

5. Parameter Upper Digit is determined as follows:

FLAG TYPE

PUNCH·

READ

TEST

· OCK'S

ACCUM

KEYBOARD

DATA COMM

SKZ

EKZ

p

R

X

y

T

K

A

B (Buffer)

D (Buffer)

PARAMETER UPPER

1

0

4

5

8

9

c
3

A

D

D

Parameter Lower Digit is determined as follows:

FLAG GROUP

AT P,R,X,Y,K,B,D

- 0 4

S L 1
c 1 2

MU3

MACHINE LANGUAGE

CODE VALUE

1

2

4

8

EXAMPLE: lf test flag L is being tested, the lower digit parameter is 2. lf test flag L and U
are being tested, the lower digit parameter is the sum of the representative code
values 2 and 8 = 10. Since the hexadecimal representative of · 10 is A, the Para­
meter lower digit is A.

6. Program Key Parameter Designation is determined as follows for Upper and Lower Digit
Parameters.

PROGRAM KEY

WEIGHT

UPPER

8 7 6 5

8 4 .2 1

LOWER

4 3 2 1

8 4 2 1

EXAMPLE: To determihe upper and lower parameter values fqr keys 7 and 4. Key 7 value is
4, key 4 value is 8. Tue upper and lower parameter digits are then 4, 8.

EXAMPLE: To detenriine Upper and Lower parameter values for keys 8 and 5. Key 8 value
is 8 and S value is 1. Both are within the Upper parameter giving an Upper
parameter digit of 9 (8 + ·· 1) and Lo\Ver parameter digit of 0 .

APPENOI)(B (Cont'cp

7. PC character codes are determined from the following chart:

TC 500 CHARACTER SETS

The USASCII and Commerical character sets for the TC 500 are listed below in their collating sequence
in ascending order. Each character set consists of 64 graphic characters, the Space code, and the End of
Alpha code. The USASCII character set consists of the USASCII characters in columns 2, 3, 4, and 5 of
the USASCII table, plus End of Alpha (NUL) and Overline. Those Commercial characters that diff er
from the USASCII characters are shown in parentheses.

The internal or machine language code for each character is given; this code consists of two hexadecimal
digits which correspond to the column and row number of the character in the USASCII table (A = row
10, B = 11, C = 12, D = 13, E = 14, F = 15). In addition, the decimal value of each character is given
as required when using Index Registers for modification.

....
0) - ~

0) - .s 0) - bO 0) - bO i:::: i:::: u c;S u c;S u c;S u c;S
8 0)

..... 5 0) 8 0) E 0)
c;S >< 0) c:s >< 0) e >< 0) c:s >< 0)

0) =
0) = 0) :::1 0) :::1 c:s 0) 'Ö

'Ö- c:s "C "C ca c:s 0) 'Ö
"C -

c:s 0) "C
"C ca 0 0 i:::: c:s 0 i:::: 0 0 0 .s> 0 0

.5u -> -u .E:> .5u .Eu .E:>

End of

Alpha

(NUL) 0 0 0

Space 2 0 32 0 3 0 48 @ 4 0 64 p 5 0 80

! 2 1 33 1 3 1 49 A 4 1 65 Q 5 1 81

" 2 2 34 2 3 2 50 B 4 2 66 R 5 2 82

2 3 35 3 3 3 51 c 4 3 67 s 5 3 83

$ 2 4 36 4 3 4 52 D 4 4 68 T 5 4 84

% 2 5 37 5 3 5 53 E 4 5 1 69 u 5 5 85

& 2 6 38 6 3 6 54 F 4 6 70 V 5 6 86

' 2 7 39 7 3 7 55 G 4 7 71 w 5 7 87

(2 8 40 8 3 8 56 H 4 8 72 X 5 8 88

) 2 9 41 9 3 9 57 I 4 9 73 y 5 9 89

* 2 A 42 3 A 58 J 4 A 74 z 5 A 90

+ 2 B 43
'

3 B 59 K 4 B 75 [(%) 5 B 91

'
2 c 44 <(~) 3 c 60 L 4 c 76 \(<t) 5 c 92

- 2 D 45 = 3 D 61 M 4 D 77](CR) 5 D 93

2 E 46 >(%)- 3 E 62 N 4 E 78 A (o) 5 E 94

/ 2 F 47 ? 3 F 63 0 4 F 79 - 5 F 95

-(0) 7 E 126

DEL 7 F 127
; ;

Revised 7-23-71 by B-,l 7 •
PCN 1045481-002

1

· · Ai>Pei\tolx ifcco~t'd.>

8. PARAMETER LIMIT

15Yi INCH FORMS HANDLER 0: 150
26 INCH FORMS HANDLER 0:255

9. Lower Parameter determined as follows:

SUBROUTINE RETURN LEVEL 1 2 3 4
MACHINE CODE 0 1 2 3

10. Use upper and lower param~ter of 0 (Zero) to indicate data communication processor send or
receive buffer. '

11. Parameterlimit 1 :255

12. Parameter limit 1 : 15

13. Parameterlimit 0: 16

14. Parameterlimit 0:255

15. Parameterlimit 0: 15

16. Column number"(stick number) from USASCII table is upper parameter. Row number (level
number) from USASCII table is the lower parameter.

1 7. Lower OP code is determined as · follows:

Unsigned 1
Signed 3

18. Add hexadecimal value of format number, minus 1, to the upper and lowe;r para.meter.

19. Add hexadecimal value of line number, minus 1, to the upper and lower parameter.

20. For 32-track systems.

21. For 40-track systems.

• B-18 ·

22. Modify lower parameter as follows:

INOEX R,EG. NO.

2
3
4

LOWER PARAMETER

2
3
0

23. Upper parameter is detennined as follows:

0 Read and align to the line number on the magnetic unit record.

. APPENDIX B (Q>nt'd.)

1 Read and align to the line number contained in the magnetic unit record count register.

2 Read and align to the first posting line.

3 Non-read and align to the line number contained in the magnetic unit record count
register. ·

4 Read and eject magnetic unit record.

5 Read from magnetic unit recor(j reader.

Revised 7-23-71 by
PCN 1045481-002 B-19. 1

1

•
O:l

~
DEC. ADDTO PARAMETER

EOUIV. OP FIELD

L u L

0 0 0 0
1 0 0 1
2 0 0 2
3 0 0 3
4 0 0 4
5 0 0 5
6 0 0 6
7 0 0 7
8 0 0 8
9 0 0 9

10 0 0 A
11 0 0 B
12 0 0 c
13 0 0 D
14 0 0 E
15 0 0 F
16 0 1 0
17 0 1 1
18 0 1 2
19 0 1 3
20 0 1 4
21 0 1 5
22 0 1 6
23 0 1 7
24 0 1 8
25 0 1 9
26 0 1 A
27 0 1 B
28 0 1 c
29 0 1 D
30 0 1 E
31 0 1 F

DECIMAL TO HEXADECIMAL CONVERSION TABLE

DEC. ADDTO PARAMETER DEC. ADDTO PARAMETER
EOUIV. OP FIELD EOUIV. OP FIELD

L u L L u L

32 0 2 0 64 0 4 0
33 0 2 1 65 0 4 1
34 0 2 2 66 0 4 2
35 0 2 3 67 0 4 3
36 0 2 4 69 0 4 4
37 0 2 5 69 0 4 5
38 0 2 6 70 0 4 6
39 0 2 7 71 0 4 7
40 0 2 8 72 0 4 8
41 0 2 9 73 0 4 9
42 0 2 A 74 0 4 A
43 0 2 B 75 0 4 B
44 0 2 c 76 0 4 c
45 0 2 D 77 0 4 D
46 0 2 E 78 0 4 E
47 0 2 F 79 0 4 F
48 0 3 0 80 0 5 0
49 0 3 1 81 0 5 1
50 0 3 2 82 0 5 2
51 0 3 3 83 0 5 3
52 0 3 4 84 0 5 4
53 0 3 5 85 0 5 5
54 0 3 6 86 0 5 6
55 0 3 7 87 0 5 7
56 0 3 8 88 0 5 8
57 0 3 9 89 0 5 9
58 0 3 A 90 0 5 A
59 0 3 B 91 0 5 B
60 0 3 c 92 0 5 c
61 0 3 D 93 0 5 D
62 0 3 E 94 0 5 E
63 0 3 F 95 0 5 F

DEC. ADDTO
EOUIV. OP

L

96 0
97 0
98 0
99 0

100 0
101 0
102 0
103 0
104 0
105 0
106 0
107 0
108 0
109 0
110 0
111 0
112 0
113 0
114 0
115 0
116 0
117 0
118 0
119 0
120 0
121 0
122 0
123 0
124 0
125 0
126 0
127 0

PARAMETER
FIELD

u L

6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 A
6 B
6 c
6 D
6 E
6 F
7 0
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 A
7 B
7 c
7 D
7 E
7 F

~ .,,
m
2 c
x
m

~
~ -

~:;i;i
z~.
- !C oc:i.
~ -;-1

. .j>.t..,)
~w -' ' -:i o-
00'
"''<

t:ci
1

N -
•

DEC. ADDTO
EOUIV. OP

L

128 0
129 0
130 0
131 0
132 0
133 0
134 0
135 0
136 0
137 0
138 0
139 0
140 0
141 0
142 0
143 0
144 0
145 0
146 0
147 0
148 0
149 0
150 0
151 0
152 0
153 0
154 0
155 0
156 0
157 0
158 0
159 0

PARAMETER

FIELD

u L

8 0
8 1
8 2
8 3
8 4
8 5
8 6
8 7
8 8
8 9
8 A
8 B
8 c
8 D
8 E
8 F
9 0
9 1
9. 2
9 3
9 4
9 5
9 6
9 7
9 8
9 9
9 A
9 B
9 c
9 D
9 E
9 F

DECIMAL TO HEXADECIMAL CONVERSION TABLE

DEC. ADDTO PARAMETER DEC. ADDTO PARAMETER
EOUIV. OP FIELD EOUIV. OP FIELD

L u L L u L

160 0 A 0 192 0 c 0
161 0 A 1 193 0 c 1
162 0 A 2 194 0 c 2
163 0 A 3 195 0 c 3
164 0 A 4 196 0 c 4
165 0 A 5 197 0 c 5
166 0 A 6 198 0 c 6
167 0 A 7 199 0 c 7
168 0 A 8 200 0 c 8
169 0 A 9 201 0 c 9
170 0 A A 202 0 c A
171 0 A B 203 0 c B
172 0 A c 204 0 c c
173 0 A D 205 0 c D
174 0 A E 206 0 c E
175 0 A F 207 0 c F
176 0 B 0 208 0 D 0
177 0 B 1 209 0 D 1
178 0 B 2 210 0 D 2
179 0 B 3 211 0 D 3
180 0 B 4 212 0 D 4
181 0 B 5 213 0 D 5
182 0 B 6 214 0 D 6
183 0 B 7 215 0 D 7
184 0 B 8 216 0 D 8
185 0 B 9 217 0 D 9
186 0 B A 218 0 D A
187 0 B B 219 0 D B
188 0 B c 220 0 D c
189 0 B D 221 0 D D
190 0 B E 222 0 D E
191 0 B F 223 0 D F

DEC. ADDTO
EOUIV. OP

L

224 0
225 0
226 0
227 0
228 0
229 0
230 0
231 0
232 0
233 0
234 0
235 0
236 0
237 0
238 0
239 0
240 0
241 0
242 0
243 0
244 0
245 0
246 0
247 0
248 0
249 0
250 0
251 0
252 0
253 0
254 0
255 0

PARAMETER

FIELD

u L

E 0
E 1
E 2
E 3
E 4
E 5
E 6
E 7
E 8
E 9
E A
E B
E c
E D
E E
E F
F 0
F 1
F 2
F 3
F 4
F 5
F 6
F 7
F 8
F 9
F A
F B
F c
F D
F E
F F

J>
"a
"a
m z c x
m

g
a
E

•
1:1:1
1

N
N.

DEC.
EOUIV.

256
257
258
259
260
261·
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
·277
278
279
280
281
282
283
284
285
286
287

ADDTO

OP

L

1
l
1
1
1
1
1
1
1
1
1
1
1
1
1
1

' 1

1
1
1
1
1
1
1
1
1
1
1
1
1
l
1

PARAMETER

FIELD

u L

0 0
0 1
0 2
0 3
o· 4
0 5

.o 6
0 7
0 8

'0 9
0 A
0 B
0 c
0 D
0 E
0 F
1 0
1 1
1 2
1 3
1 4
l 5
1 6
1 7
1 8
1 9
l A
1 B
1 c
1 D
1 E
1 F

DECIMAL TO HEXADECIMAL CONVERSION TABLE

DEC. ADDTO PARAMETER ,oEc. ADDTO PARAMETER

EOUIV. OP FIELP EOUIV. OP FIELD

L u L. L u l

288 1 2 0 320 1 4 0
289 1 2 1 321 1 4 1

' 290 1 2 2 322 1 4 2
291 1 2 3 323 1 4 3
292 1 2 4 324 ' 1 4 1 4
293 1 ' ' 2. 5 325 l ,. 4 5 '
294 ' 1 2 6 I• 326 l 4 6
295 l 2 7 327 1 4 7
296 1 2. 8 328' 1 4 8
297 1 2 9 , 329 1 4 9

' 29,8 1 2 A '330 1 4 'A
299 1 2 B 331 1 4 B
300 1 2 c 332 1. 4 c
301 1 2 D 333 1 4 D
302 1 2 E 334 1 4 E
303. 1 2 F 335. l 4 F
304 l 3 0 336 1 5 0
305 1 3 1 337 1 5 1
306 1 3 2 338 1 5 2
307 1 3 3 339 1. 5 3

·30_8 1 3 4 '340 1 .5 '4'
309 1 3· ·' 5 341 1 5 5_~
3JO. 1 3 6 342 1 5 6
311 1 3 7 343 1 5 7
3l2 1 3 8 344 1. 5 8
313 1 3 ' 9 345 1 5 9
314 1 3 A 346 1 5 A
315 1 .3 B. .347' 1

„. ·I 5 ' B
.·316 1 3 c '·.348 .. · L 5 c
317 1 3 D 349 1 5 D
318 1 3 E 350 1 5 E
319 1 3 F 351 1 5 F

DEC. ADDTO
EOUIV. OP

L

352 1
. 353 1

354 1
355; 1
356 l

'357 1
358 L
359.

,
l

1 360 1
'361 1

362 1
363 1
364 l
'365 1
366 1:
367 1

,· 368 1
369 1·

' 370 1
1 371 l
.372 t

; 373· L
', 374 l

375 L
376 1
377 1
378 1
379' 1

.380 1·
381 1
382 1
383 1

PARAMETER
FIELD ..

u L

6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 A
6 B
6 c
6 D
6 E
6 F
7 0
7 1.
7 2
7 3
7 4

I• 7 5
1 7 6

7 7
7 8.
7 9
7 A
7 B
7 c
7 D
7 E
7 F

J> :g
"' z c x
gl'

g
:::i: „
e

?l~
~~-
oP.
~
"' ' ~IV
oow - ' ' _,
o-
00"
IV'<

t:J:!
1

N
w

1

DEC.
EOUIV.

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

ADDTO

OP

L

1
1
1
1
1
1
1
1
1
1
1
l
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

PARAMETER
FIELD

u L

8 0
8 1
8 2
8 3
8 4
8 5
8 6
8 7
8 8
8 9
8 A
8 B
8 c
8 D
8 E
8 F
9 0
9 l
9 2
9 3
9 4
9 5
9 6
9 7
9 8
9 9
9 A
9 B
9 c
9 D
9 E
9 F

DECIMAL TO HEXADECIMAL CONVERSION TABLE

DEC. ADDTO PARAMETER DEC. ADDTO PARAMETER
EQUIV. OP FIELD EQUIV. OP FIELD

L u L L u L

416 1 A 0 448 1 c 0
417 1 A 1 449 1 c 1
418 1 A 2 450 1 c 2
419 1 A 3 451 1 c 3
420 1 A 4 452 1 c 4
421 1 A 5 453 1 c 5
422 1 A 6 454 1 c 6
423 1 A 7 455 1 c 7
424 1 A 8 456 1 c 8
425 1 A 9 457 1 c 9
426 1 A A 458 1 c A
427 1 A B 459 1 c B
428 1 A c 460 1 c c
429 1 A D 461 1 c D
430 1 A E 462 1 c E
431 1 A F 463 1 c F
432 1 B 0 464 1 D 0
433 I B 1 465 1 D 1
434 1 B 2 466 1 D 2
435 1 B 3 467 1 D 3
436 1 B 4 468 1 D 4
437 1 B 5 469 1 D 5
438 1 B 6 470 1 D 6
439 1 B 7 471 1 D 7
440 1 B 8 472 1 D 8
441 1 B 9 473 1 D 9
442 1 B A 474 1 D A
443 1 B B 475 1 D B
444 1 B c 476 1 D c
445 1 B D 477 1 D D
446 1 B E 478 1 D E
447 1 B F 479 1 D F

DEC. ADDTO PARAMETER
EQUIV. OP FIELD

L u L

480 1 E 0
481 1 E 1
482 1 E 2
483 1 E 3
484 1 E 4
485 1 E 5
486 1 E 6
487 1 E 7
488 1 E 8
489 1 E 9
490 1 E A
491 1 E B
492 1 E c
493 1 E D
494 1 E E
495 1 E F
496 1 F 0
497 1 F 1
498 1 F 2
499 1 F 3
500 1 F 4
501 1 F 5
502 1 F 6
503 1 F 7
504 1 F 8)>

505 1 F 9
506 1 F A
507 1 F B

.,, .,,
m
2
c
x

508 1 F c gJ

509 1 F D §
510 1 F E
511 1 F F • ~

~ -

•
= 1
N

·,,S:..

DEC.
EOUIV.

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

ADDTO
OP

L

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

PARAMETER
FIELD

u L

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
0 A
0 B
0 c
0 D
0 E
0 F
1 0
1 1
1 2
1 3
1 4
1 5
1 . 6
1 7
1 8
1 9
1 A
1 B
1 c
1 D
1 E
1 F

DECIMAL TO HEXADECIMAL CONVERSION TABLE

DEC. ADDTO PARAMETER DEC. ADDTO PARAMETER
EQUIV. OP FIELD EOUIV. OP FIELD

L u L L u L

544 2 2 0 576 2 4 0
545 2 2 1 577 2 4 1
546 2 2 2 578 2 4 2
547 2 2 3 579 2 4 3
548 2 2 4 580 2 4 4
549 2 2 5 581 2 4 5
550 2 2 6 582 2 4 6
551 2 2 7 583 2 4 7
552 2 2 8 584 2 4 8
553 2 2 9 585 2 4 9
554 2 2 A 586 2 4 A
555 2 2 B 587 2 4 B
556 2 2 c 588 2 4 c
557 2 2 D 589 2 4 D
558 2 2 E 590 2 4 E
559 2 2 F 591 2 4 F
560 2 3 0 592 2 5 0
561 2 3 1 593 2 5 1
562 2 3 2 594 2 5 2
563 2 3 3 595 2 5 3
564 2 3 4 596 2 5 4
565 2 3 5 597 2 5 ' 5
566 2 3 6 598 2 5 6
567 2 3 7 59~ 2 5 7
568 2 3 8 600 2 5 8
569 2 3 9 601 2 5 9
570 2 3 A 602 2 5 A
571 2 3 B 603 2 5 B
572 2 3 c 604 2 5 c
573 2 3 D 605 2 5 D
574 2 3 E 606 2 5 E
575 2 3 F 607 2 5 F

DEC. ADDTO
EOUIV. OP

L

608 2
609 2
610 2
611 2
612 2
613 2
614 2
615 2
616 2
617 2
618 2
619 2
620 2
621 2
622 2
623 2
624 2
625 2
626 2
627 2
628 2
629 2
630 2
631 2
632 2
633 2
634 2
635 2
636 2
637 2
638 2
639 2

PARAMETER
FIELD

u L

6 0
6 • 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 A
6 B
6 c
6 D
6 E
6 F
7 0
7 1
7 2
7 .3
7 4
7 5
7 6
7 7
7 8
7 9
7 A
7 B
7 c
7 D
7 E
7 F

.:\..,.

~
m z c x
.m

.~ ,a
e

~~ z :s .
.... IB
oc:>.
~-...) "' . ~N
oow -...)
o
00'
N'<

~
1

IV'
VI

•

DEC.

EQUIV.

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

ADDTO PARAMETER
OP FIELD

L u L

2 8 0
2 8 1
2 8 2
2 8 3
2 8 4
2 8 5
2 8 6
2 8 7
2 8 8
2 8 9
2 8 A
2 8 B
2 8 c
2 8 D
2 8 E
2 8 F
2 9 0
2 9 1
2 9 2
2 9 3
2 9 4
2 9 5
2 9 6
2 9 7
2 9 8
2 9 9
2 9 A
2 9 B
2 9 c
2 9 D
2 9 E
2 9 F

DECIMAL TO HEXADECIMAL CONVERSION TABLE

DEC. ADDTO PARAMETER DEC. ADDTO PARAMETER

EQUIV. OP FIELD EQUIV. OP FIELD

L u L L u L

672 2 A 0 704 2 c 0
673 2 A 1 705 2 c 1
674 2 A 2 706 2 c 2
675 2 A 3 707 2 c 3
676 2 A 4 708 2 c 4
677 2 A 5 709 2 c 5
678 2 A 6 710 2 c 6
679 2 A 7 711 2 c 7
680 2 A 8 712 2 c 8
681 2 A 9 713 2 c 9
682 2 A A 714 2 c A
683 2 A B 715 2 c B
684 2 A c 716 2 c c
685 2 A D 717 2 c D
686 2 A E 718 2 c E
687 2 A F 719 2 c F
688 2 B 0 720 2 D 0
689 2 B 1 721 2 D 1
690 2 B 2 722 2 D 2
691 2 B 3 723 2 D 3
692 2 B 4 724 2 D 4
693 2 B 5 725 2 D 5
694 2 B 6 726 2 D 6
695 2 B 7 727 2 D 7
696 2 B 8 728 2 D 8
697 2 B 9 729 2 D 9
698 2 B A 730 2 D A
699 2 B B 731 2 D B
700 2 B c 732 2 D c
701 2 B D 733 2 D D
702 2 B E 734 2 D E
703 2 B F 735 2 D F

DEC. ADDTO
EQUIV. OP

L

736 2
737 2
738 2
739 2
740 2
741 2
742 2
743 2
744 2
745 2
746 2
747 2
748 2
749 2
750 2
751 2
752 2 i

753 2
1

754 2
1

755 2
1

756 2 1
1

757 2 1

758 2 1

1 759 2
760 2 1

761 2 1

762 2
763 2
764 2
765 2
766 2
767 2

PARAMETER

FIELD

u L

E 0
E 1
E 2
E 3
E 4
E 5
E 6
E 7
E 8
E 9
E A
E B
E c
E D
E E
E F
F 0
F 1
F 2
F 3
F 4
F 5
F 6
F 7
F 8
F 9
F A
F B
F c
F D
F E
F F

~
;I
z c
x
m

i
~ -

OP CODE

ADVL

ALF

CDB

CDF

CODE

DEF

DEFT

DOC

END

EQU

ESTB

MASK

NOTE

NUM

ORG

A

1-4

1-80

4 hexa­
decimal
digits

0-N*

0-15

0-N**

ASSEMBLER PSEUDO INSTRUCTIONS

B

1-80

0-15

FUNCTION

To space the Assembleroutput form
the number of lines specified in the
A parameter.

To store alphanumeric constants.

To reserve words 1-10 as card read­
in buffer, automatic branch to word
l l, syllable 0.

A parameter indicates the beginning
card column of a field, B parameter
defines the number of card columns
in the field.

To allow insertion of 4 hexadecimal
digits into a syllable of memory.

To assign a value to a label.

To assign a value to a label in both
A and B fields.

For documentation when assem­
bling onB 2500, B 3500, B 5500 49
characters beginning in column 29.

To terminate the Assembler pro­
gram, the last line of code in the
pro gram.

To equate the label in label field to
the label in the A parameter.

To reserve 32 words in high order
memory for receive send buffer.

Allow entry of mask word 24 print
format characters are accepted.

For documentation will allow entry
of 25 characters, beginning in col­
umn 53.

To store numeric constants.

To assemble the instruction follow­
ing ORG in the word location speci­
fied in the A parameter.

APPENDIX C

SUBJECT REFERENCE

2.01.01

2.01.02

2.01.03

2.01.04

2.01.05

2.01.06

2.01.06

2.01.07

2.01.09,

. 2.01.10

2.01.08

2.01.11

2.01.12

2.01.13

2.01.14

Revised 3-29-71 by
PCN 1045481-001 C-1

1

APPENDIX C (cont'd)

OPCODE A B FUNCTION SUBJECT REFERENCE

PAGE To space Assembler output to the 2.0l.15
first line of the next page.

REG 1-255 To reserve the .number of words 2.01.16

specified in the A parameter for
working-storage.

WORD To cause the Assembler to assign the 2.01.17
next instruction in syllable 0 of the
next word.

*The upper limit is variable depending upon which Operation Code the label will be used.

**The upper limit is variable depending upon the amount of user memory.

C-2

APPENDIX D

SERIES L/TC CHARACTER SETS

Tue USASCII and Commercial character sets for the Series L/TC Systems are listed below in their
collating sequence in ascending order. Each character set consists of 64 graphic characters, the Space
code, and the End of Alpha code. Tue USASCII character set consists of the USASCII characters in
columns 2, 3, 4, and 5 of the USASCII table, plus End of Alpha (NUL) and Overline. Those
Commercial characters that differ from the USASCII characters are shown in parentheses.

Tue intemal or machine language code for each character is given; this code consists of two hexadecimal
digits which correspond to the column and row number of the character in the USASCII table (A=row
10, B=l l, C=l2, D=13, E=14, F=lS). In addition, the decimal value of each character is given as
required when using Index Registers for modification .

....
Q) - ~ Q) ca Oll Q) - Oll Q) Oll CISs CIS .s ca .s (.) .„ (.) (.) (.)
CIS s Q) >< Q) e s Q) >< Q) CIS E Q) >< Q)

~ s Q) >< Q)
~· Q) "O Q) ;j

CIS Q) "O Q) ;j ~ Q) "O Q) ;j
Q) "O Q) ;j

.s:: 0 "O - .s:: 0 "0- .s:: 0 "O - .s:: 0 "O -S:: CIS S:: CIS S:: CIS S:: CIS u .Su -> u .Su -> u .Su -> u .Su ->
End of
Alpha
(NUL) 0 0 0
Space 2 0 32 0 3 0 48 @ 4 0 64 p 5 0 80

! 2 1 33 1 3 1 49 A 4 1 65 Q 5 1 81
" 2 2 34 2 3 2 50 B 4 2 66 R 5 2 82
2 3 35 3 3 3 51 c 4 3 67 s 5 3 83
$ 2 4 36 4 3 4 52 D 4 4 68 T 5 4 84
% 2 5 37 5 3 5 53 E 4 5 69 u 5 5 85
& 2 6 38 6 3 6 54 F 4 6 70 V 5 6 86
' 2 7 39 7 3 7 55 G 4 7 71 w 5 7 87
(2 8 40 8 3 8 56 H 4 8 72 X 5 8 88
) 2 9 41 9 3 9 57 1 4 9 73 y 5 9 89

* 2 A 42 3 A 58 J 4 A 74 z 5 A 90
+ 2 B 43

'
3 B 59 K 4 B 75 [(%) 5 B 91

' 2 c 44 < (7'2) 3 c 60 L 4 c 76 \ (t) 5 c 92
- 2 D 45 = 3 D 61 M 4 D 77](CR) 5 D 93

2 E 46 > (~) 3 E 62 N 4 E 78 A (0) 5 E 94
/ 2 F 47 ? 3 F 63 0 4 F 79 - 5 F 95

- (<>) 7 E 126
DEL 7 F 127

D-1

1

r.·

CONTROL CODES

F
+

p

-

FLAG CODES

D

D,

.D

D:

X

.X

c

.c

z

Z,

Z:

APPENDIX E

TABLES OF MASK CODES

TABLE E-1 MASK CONTROL CODES

PRINT FUNCTION PUNCH FUNCTION

Print$ No effect
Suppress Punctuation No effect

No effect Leading zeros punch in P flag set blank card
column in 80 column card if P flag reset.

Print Condensed Numeric Monetary punctuation prints without causing
printer escapement. Requires PIP hardware.

TABLE E-2 MASK FLAG CODES

PRINT FUNCTION PUNCH FUNCTION

Print digit regardless of signif- Punch character regardless of signif-
icance.

Print digit and comma regard­
less of significance.

Print decimal point and digit
regardless of significance.

Print digit and decimal point
regardless of significance.

Suppress Terminal Zeros

Decimal point and terminal
zero suppression.

Units of cents leading and ter­
minal zero suppress.

Tenths of cents decimal point
with leading and terminal zero
suppression.

Leading zero suppression.

Leading zero suppression and
comma.

Leading zero suppression and
decimal point.

icance.

Punch if:
1. Pisset.
2. Accumulator digit not zero.
3. A non - z er o digit has been

punched.

Revised 3-29-71 by
PCN 1045481-001 E-1

.· APPENDIX E (cont'd)

FLAG CODES PRINT FUNCTION PUNCH FUNCTION

s Print only if Accumulator digit
non-zero.

1 lgnore digit lgnore

E Terminate, non-print Terminate, non-print

E-2

ERROR MESSAGES

MESSAGE

Assembler 111 - B 3500 Error Messages and Warnings

A PARAMETER - MUST HAVE NUMERIC VALUE 1-4

B PARAMETER - MUST HAVE NUMERIC VALUE 0-255

A - ENTRY MUST BE NUMERIC AND LESS THAN 767

BACKWARD ORG NOT ALLOWED ON ASSEMBLER I

CDB MUST BE FIRST INSTRUCTION IN DECK

DEFT PARAMETERS MUST BE NUMERIC AND 0-15

EMPTY

EMPTY FIELD - LENGTH FIELD

HAS ALREADY BEEN ENTERED AS A SYMBOLIC IDENTIFIER

HAS NOT BEEN ENTERED AS A LABEL

ILLEGAL DIGIT ENTERED IN CODE INSTRUCTION

ILLEGAL ENTRY IN INCREMENT FIELD

ILLEGAL PARAMETER ENTRY IN ...

INCREMENT GREATER THAN 255 NOT ALLOWED ON ASSEMB I

INVALID FLAG ENTRY PAIR OF - -

INVALID NUM ENTRY

... IS AN INVALID INSTRUCTION OP CODE

... IS NOTA VALID MASK ENTRY

LABEL MUST BEGIN WITH AN ALPHABETIC CHARACTER

LABEL MUST NOT CONTAIN BLANK CHARACTER

LABEL NOT AT START OF WORD

MASK LENGTH RECALCULATED TOBE ...

MISSING SYMBOLIC LABEL

... NOT A VALID OP CODE

NUMBER OF LABELS EXCEEDS LABEL LIMIT WHEN USING ASSEMBLER I

PARAMETER TOO LONG

PREVIOUS CARD HAS INVALID FIELD LENGTH

REGION MUST HAVE SIZE 1-255

SEQUENCE ERROR

STORAGE EXCEEDED BY INSTRUCTION

SUM OF CDF PARAMETERS MUST NOT BE > 80

SYMBOLIC ENTRY ALLOWED

Assembler IV - B 6500 Error Messages and Warnings

The messages are identical to those printed by Assembler III. See above.

~mbler V - B 300 Error Messages and Warnings

A~PAR LABEL INVALID

A„PAR LAl3EL UNDEFINED

ILLEGAL

·APPENDIX F

TOPIC
REFERENCE

5.03.06

"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

5.04.06

"
5.05.07

"
"
"

Revised 8/9/71 by
PCN 1045481-003 F-1

APPENDIX F (cont'd)

MESSAGE
INSTR LABEL DUPLICATED

INSTR LABEL INVALID

INVALID CHARACTER

INVALID CTL CARD

INVALID FLD LENGTH

INVALID INCREMENT FLD

INVALID MNEMONIC

INVALID SIGN RESULT

LABEL LIMIT

LAST LINE NOT "END"

MEMORY 512

MEMORY OVERLA YED ERR

MUST HA VE LBL OR INC

NO I/P CTL

NO O/P SYM

NO OBJECT

NOP INSERTED

... PARAMETER INVALID X

... PARAMETER INVALID RANGE XXX-XXX

PRE INV FLD LENGTH

SEQUENCE

STORAGE EXCEEDED

WORD LENGTH EXCEEDED

F-2

TOPIC
REFERENCE

5.05.07
„

"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
„

"

"
"
"

SYMBOLIC CARD FORMAT

1
1

CARD COLUMNS

•

5 - 10

11 - 15

16 - 21

22 - 26

27 - 28

29 - 34

29 - 47

29 - 52

35 - 38

39 - 42

43

55 - 77

1111
1

INSTRUCTIONS FOR KEYPUNCHING
SYMBOLIC CARDS

1 1
1

DESCRIPTlON

Program ID

Sequence

Label

Op Code

Field Length

Label "A" Parameter

Constant Data (Numeric)

Alphanumeric Data or Print Mask

+ or - inc/rel

"B" Parameter

"C" Parameter

Remarks

1 1 1 1
llH

'APPENDIX G

1
0 0 0 0 lo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 00 0 &O 0

; ; ; ; iiliii 1
;

1: 1131; 1:,iliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiHiiiiliiiiiiiiiiiiHiiii~~7
2 2 2 2 l 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 u 2 7 22 2 2 2 2

3 l 3 3 3 3 3 s 3 3 llll 3 u 3 3 3 3 3 3 3 3 l .IJ 3 3 3 3 3 3 3 3 3 3 III l 3 l 3 a 3 3 3 s 3 3 3 l 3 3 3 3 3 l 3 3 3 3 3 3 3 3 3 l 3 3 3 a 3 3 3 3 3 a

4 44

55
. ~ .„

& n & & & & & && u & & && &&

1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 1 1 7 1 1 7 7 1 7 1 1 1 1 7 1 7 7 1 1 1 1 1 1 1 1 7 1 7 1 1 1 1 1 1 1 1 1 1 1

8 .8 8 8 8 8 8 8 .8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

9999999999999999999999'999999!1'9999!99
1 1 J 4 ~ 6 1 8 9 10 11 12 13 14 I~ lb 11 18 19 20 11 22 2) 74 i!i ·26 V)8 29 30. J! 3' JJ j4 J!i 3S 31 38 Ji 40 41 41 43 44 45 46 41 48 49 50 'i1 ~1.'.!J 'l4 '5~ Sb ~I !18 59 60 61 61 6) 64 6!t 66 61 68 69 10 11 11 13 14 15 16 11 18 19 80

5081 BSC

Drum Card .For Burroughs A 149/A 150 Keypunch

Revised 3-29-71 by
PCN 1045481-001 G-1

APPENDIX G {eont'd)

A 149/A 150 KEYPUNCHING INSTRUCTIONS

1. Insert drum card - position 1.

2. Lower drum card brushes.

3. Turn Power switch ON.

4. Turn PRINTER switch ON.

5. Turn AUTO FEED switch ON.

6. Turn Program switch 1 (Pl) ON.

7. First card stops in CC 5. ERR REL light turns on. Depress ERR REL switch.

8. Must punch Program I.D. CC 5-10 in Ist card*. Thereafter, CC 5-10 will automatically duplicate.

9. CC 11-15. Sequence Number - numeric (right justified).

10. CC 16-21. Label. If no Label, depress SKIP key.

11. CC 22-26. 0p Code. If OP CODE less than 5 characters, depress SKIP key.

12. CC 27-28. Field Length (right jµstified). If no field length, depress SKIP key.

13. CC 29-34. ''A" Parameter. If less than 5 characters, depress SKIP key. If numeric, hold NUMERIC
key down while punching numeric character.

14. CC 35-38. + or - Increment field. If -, enter - in CC 35 (if CC 35 is blank, + is assumed). Enter
numeric in CC 36-38. If no + or - lncrement, depress SKIP key.

15. CC 39-42. "B" Parameter. If nmneric, hold NUMERIC key down while- punching numeric character.
If no "B" parameter, depress SKIP key.

16. CC 43. "C" Parameter. Numeric only. If no "C" parameter, depress SKIP key.

17. CC 53-77. Remarks columns - alphanumeric. If no Remarks, depress SKIP or REL key.

18. When numeric is to be punched, other than sequence field, hold numeric key down while punching
that field.

*lf Program l.D. is not required, the user may modify the existing drum card thusly:

G-2

1. Eliminate the 2 punch in card column 5. This will allow the detail card tp duplicate blank

columns 5 through 10.

or

2. Eliminate the 12 punch in card column 4. This will allow a skip over columns 5-10.

APPENDIX G (cont'd)

024/026/029 KEYPUNCHING INSTRUCTIONS

1. Insert front drum card - star wheels down.

2. Turn Power switch ON.

3. Turn PRINT switch ON.

4. Turn AUTO DUP-AUTO SKIP switch OFF - first card only.

5. Must punch Program I.D. CC 5-10*. Turn on AUTO DUP-AUTO SKIP after punch of sequence
field, so that CC 5-10 will automatically duplicate on all subsequent cards.

6. CC 11-15. Sequence Number - numeric (right justified).

7. CC 16-21. Label. If no Label, depress SKIP key.

8. CC 22-26. Op Code. If OP CODE less than 5 characters, depress SKIP key.

9. CC 27-28. Field Length (right justified). If no field length, depress SKIP key.

10. CC 29-34. "A" Parameter. If less than 5 characters, depress SKIP key. If numeric, hold NUMERIC
key down while punching numeric character.

11. CC 35-38. + or - Increment field. If -, enter - in CC 35 (if CC 35 is blank, + is assumed). Enter
numeric in CC 36-38. lf no + or - Increment, depress SKIP key.

12. CC 39-42. "B" Parameter. If numeric, hold NUMERIC key down while punching numeric character.
If no "B" parameter, depress SKIP key.

13. CC 43. "C" Parameter. Numeric only. If no "C" parameter, depress SKIP key.

14. CC 53-77. Remarks columns - alphanumeric. If no Remarks, depress SKIP or REL key.

15. Whenever numeric punching is required, other than sequence field, numeric key must be held down
while punching that field.

* lf Program 1.0. is not required in detail card, insert a "12" punch in CC 5 of program card. This will

allow skip CC 5 through 10 in detail card. AUTO DUP/AUTO SKIP key can be turned 2!!. from the

very !.!!.!.!. card.

Revised 3-29-71 by
PCN 1045481-001 G-3

APPENDIX G (Cont'd)

III 11111 1111 11111 1111 1 lllH III III 111111111 llllllllUllllllllllllll II
1 1
o o o o I o o o o oo e o o o o o .o o o oo o o o o
1 2 3 4 5 6 l 8 9 10 II 12 13 14 15 16 II 18 19 20 21 22 23 24 25 26 2! 28 29 30. 31.32 33 34 35 .36 37 38 39 40 41 42 43 44 45 41 47 4149 50 51 52 53 54 5S 56 57 515180 61 62 63 605 66 &I 68 69 70 II 72 l3 741516 72 18 79 10

11
2 2 2 2 2 2 2 2 2 2111112 2 2 2 2 2 2 2 22 2 l 2 2 2 2 2 2 2 2 2 2 211112 2 2 27 2 2 2 2 2 2 2 2 2 Z 2 2 2 2 2 U 2 2 2 2 2 2 2 2 H 2 2 2 2 2 2

3 333 .3 j 3 3 3 3 3 3 3 3

4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44

55

& s & & & s s s s & & & s s· & & s & & & & & & & s & & & & & & & & & & & & & & & & & s & s & & s & && n & s & & s & s & s & & & s & & s s & & s s & & s & s &

7 1 .1 1 1 7 7 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 7 1 :J 1 1 1 1 1 7 1 7 7 1 1 1 1 1 1 1 11 7 1 1 1 1 7 1 1 1 1 1 1 1 1 1 7 1 7 7 7 7

8 8 8 8 8 8 8 8 8 8 8 8 B 8 B 8 U 8 8 8 8 8 8 8 8 8 8 8 .8 8 8 8 8 8 8 8 8 8

9 9. 9 9 9 9 9 9 9 9 9 g 9
1 ' J 4 5 6 1 8 9 10 11 12 13 M l!a lt. '1 18 19 20 21 12 23 14 15 26' 21 28 2'9 JO 31 31 JJ 34 J~ 36 37 38 39 40 41 41 43 44 45 46 41 48 4Y 50 ;1 5? 53 54 55 Sb !.7 !.8 59 60 61 61 6'.3 64 ti!I 66 67 sa 69 10 11 72 73 /4 75 16 11 18 19 80

5081 BSC

Front Drum Card for 024/026/029

G-4

APPENDIX H

USASCI 1 CHART AND CHARACTER SETS

b7 0 0 0 0 1 1 1 1

~ 0 0 1 1 0 0 1 1
bs ~

0 1 0 1 0 1 0 1

~b b3 b2 bl ; ~ 0 1 2 3 4 5 6 7 1 1 1 w

0 0 0 0 0 NUL DLE S'P 0 @ p ' p

0 0 0 1 1 SOH DCl ! 1 A Q a q

0 0 1 0 2 STX DC2 II 2 B R b r

0 0 1 1 3 ETX DC3 # 3 c s c s

0 1 0 0 4 EOT DC4 $ 4 D T d t

0 1 0 1 5 ENQ NAK % 5 E u e u

0 1 1 0 6 ACK SYN & 6 F V f V

0 1 1 1 7 BEL ETB , 7 G w g w

l 0 0 0 8 BS CAN (8 H X h X

1 0 0 1 9 HT EM l 9 1 y i ..r.
1 0 l 0 10 LF SUB • : J z i z

l 0 l l 11 VT ESC + i K [k {
1 1 0 0 12 FF FS L \. 1

1 , < 1

1 1 0 1 13 CR GS - = M l m }
l l l 0 14 so RS > N " n -
l l 1 l 15 SI US / ? 0 -- 0 DEL

USA Standard Code far 1 nfarmation 1 nterchange

H-1

=.c=
N USASCll

USASCll INTRNL L/TC PAPER INDEX
CHAR CODE GRAPHIC TAPE CODE REG

UP LOW VALUE

NUL 0 0 • 0 •
SOH 0 1 • • • 1

• 2 STX 0 2 • • • • 3 ETX 0 3 • •• • 4 EOT 0 4 • •• • 5 ENQ 0 5 ••• • 6 ACK 0 6 ••• • 7 BEL 0 7 • •••• • 8 BS 0 8 • •• • 9 HT 0 9 •• • • IF 0 A ••• 10
• VT 0 B • ' 11
• FF 0 c ••• 12
• CR 0 D • •••• 13
• so 0 E • •••• 14
• 15 SI 0 F ••••• 1 • DLE 1 0 • • • 16

DCl 1 1 • 17 • • •
DC2 1 2 • 18 • • •
DC3 1 3 • • 19 • • ••
DC4 1 4 • 20 •••
NAK 1 5 • 21 '• ••••
SYN 1 6 • 22 • ••••
ETB 1 7 • 23 •••••
CAN 1 8 • 24 •••

EM 1 9 • 25 • ••• •
SUB 1 A • 26 • ••••
ESC 1 B • 27 •••••
· FS 1 c • 28 • ••••
GS 1 D • 29 •••••
RS 1 E • 30 •••••
US 1 F • 31 • ••••••

EBCDIC

GRAPHIC

CHAR CARD CODE

NUL 12- 0-9-8-1
SOH 12 - 9 - 1
STX 12 - 9 - 2
ETX 12 - 9 - 3
EOT 9 - 7
ENQ 0 - 9 - 8-5
ACK 0 - 9 - 8-6
BEL 0 - 9 - 8-7

BS 11 - 9 - 6
HT 12 - 9 - 5
IF 0 - 9 - 5
VT 12 - 9 - 8-3
FF 12 - 9 - 8-4
CR 12 - 9 - 8-5
so 12 - 9 - 8-6
SI 12 - 9 - 8-7

DLE 12-11-9-8-1
DCl 11 - - 9 - 1
DC2 11 - - 9-2
DC3 1 I - 9-3
DC4 9-8-4
NAK 9-8-5
SYN 9-2
ETB 0 - 9-6
CAN 11 - 9-8

EM 11 - 9-8-1
SUB 9-8-7
ESC 0 - 9-7

FS 11 - 9-8-4
GS 11 - 9-8-5
RS 11 - 9-8-6
US 11 - 9-8-7

KAV' M l\A11l+in.11ru„t... ... - n'l~ n.I"\..... A „ „

BCL

80COL
K GRAPHIC K CARD

CARD
E CHAR

CODE E INTRNL
V V BUFFER

l.u_p LO....W.
.M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

PAPER

TAPE

CODE

JJ.P LOW
0 0
8 1
8 2
0 3
8 4
0 5
0 6
8 7
8 8
0 9
0 A
8 B
0 c
8 D
8 E
0 F
9 0
1 1
1 2
9 3
1 4
9 5
9 6
1 7
1 8
9 9
9 A
1 B
9 c
1 D
1 E
9 F

~ -a
m z
c
X
::c

8 a
c:: -

(")
:c
)>
::0
)>

~
m
::0
C/)
m

~

USASC 11

USASCll INTRNL L/TC INDEX
PAPER

CHAR CODE GRAPHIC REG
TAPE CODE

UP LOW VALUE

SP 2 0 SP • • • 32 •
! 2 1 ! • • 33

" 2 2 " • • 34

2 3 # • • •• 35
$ 2 4 $ • • 36
% 2 5 % • • • • 37
& 2 6 & • • •• 38
' 2 7 ' • ••• 39
(2 8 (• • 40
) 2 9·) • • • • 41 •
* 2 A * ••••• 42 •
+ 2 B -t ••••• 43 •

2 c ••••• 44
'

, • - 2 D - ••••• 45 •
2 E ••••• 46 . . •

I 2 ·p I •• ••••• 47
0 3 0 0 •• 48

1 3 1 1 • •• • 49
2 3 2 2 • •• • 50
3 3 3 3 •• •• 51
4 3 4 4 • •• • 52
5 3 5 5 •• • • 53

6 3 6 6 •• •• 54
7 3 7 7 • •• ••• 55

8 3 8 8 • • •• 56

9 3 9 9 ••• • 57
3 A ••• • 58

'
3 B

' • • •• •• 59

< 3 c <or~ ••• • 60

= 3 D = • ••• • • 61

> 3 E > or~ • ••• •• 62

? 3 F ? ••• • •• 63

:r= w

Key: * Keys on 026, 029 A 149 and A 150 Punch Correct Code.
M Multipunch on 026, 029, A 149 and A 150.

EBCDIC BCL

GRAPHIC K GRAPHIC K
CARD

CHAR E CARDCODE E BUFFER TAPE
CODE CHAR

V V UP LOW UP LOW

SP BLANK * SP BLANK * 0 0 A 0
! 11-0 1 X 11-0 M 6 0 2 1

" 8-7 # " 0-8-7 M 2 F 2 2

8-3 * # 8-3 * 0 B A 3
$ 11-8-3 * $ 11-8-3 * 4 B 2 4

% 0-8-4 * % 0-8-4 * 2 c A 5
& 12 * & 12 * 8 0 A 6
' 8-5 11 ;:;;;. 8-7 M 0 F 2 7
(12-8-5 # (12-8-5 # 8 D 2 8
) 11-8-5 #) 11-8-5 # 4 D A 9

* 11-8-4 * * 11-8-4 * 4 c A A

+ 12-0 1 + 12-0 1 A 0 2 B
0-8-3 * 0-8-3 * 2 B A c

' ' - 11 * - 11 * 4 0 2 D
12-8-3 * 12-8-3 * 8 B 2 E

I 0-1 * I 0-1 * 2 1 A F

0 0 * 0 0 * 2 0 3 0
1 1 * 1 1 * 0 1 B 1
2 2 * 2 2 * 0 2 B 2
3 3 * 3 3 * 0 3 3 3
4 4 * 4 4 * 0 4 B 4
5 5 * 5 5 * 0 5 3 5

6 6 * 6 6 * 0 6 3 6
7 7 * 7 7 * 0 7 B 7

8 8 * 8 8 * 0 8 B 8

9 9 * 9 9 * 1 0 3 9
8-2 # . 8-5 M 0 D 3 A

'
11-8-6 # '

11-8-6 # 4 E B B

< 12-8-4 # < 12-8-6 M 8 E 3 c
= 8-6 # ~ 0-8-5 M 2 D B D

> 0-8-6 # > 8-6 M 0 E B E

? 0-8-7 Jt ? ALLOTHER M 3 F
-

Keys on 029, and A 150 punch correct cOde; multipunch on 026 and A 149.
1 Keys on 029 and A 150 punch invalid code; multipunch on 026, 029,A 149 and A 150.

)> .,, .,,
m z
c x
:c
8
::s c: -

! USASCI 1
USASCll INTRNL l/TC INDEX

CHAR CODE GRAPHIC PAPER REG

UP LOW TAPE CODE
VALUE

@ 4 0 @ •• 64
A 4 1 A • • 65
B 4 2 B • • 66
c 4 3 c •• •• 67
D 4 4 D • • 68
E 4 5 E •• • • 69
F 4 6 F •• •• 70
G 4 7 G • • •• 71
H 4 8 H • • 72
I 4 9 1 ' 73 ••• • •
J 4 A J 1 74 •• • •
K 4 B K • • •• 75
L 4 c L •• • • 76
M 4 D M • • • • 77
N 4 E N • • •• 78
0 4 F 0 •• • ••• 79
p 5 0 p • • 80
Q 5 1 Q •• • • 81
R 5 2 R •••• • 82
s 5 3 s • • •• 83
T 5 4 T •••• • 84
u 5 5 u • • • • 85
V 5 6 V • • •• 86
w 5 7 w •• • ••• 87
X 5 8 X •• •• 88
y 5 9 y • •• • 89

' z 5 A z • •• • 90
[5 B [or% •• •• •• 91
\ 5 c \ or q • •• • 92
] 5 D] or er •• •• • • 93

" 5 E "or 0 •• •• •• 94
- 5 F - • •• • •• 95

E~CPIC BCL
GRAPHIC K GRAPHIC

CHAR CARD CODE E CHAR CARD CODE
y

@ 8-4 * @ 8-4
A 12-1 * A 12-1
B 12-2 * B 12:..2
c 12-3 * c 12-3
D 12-4 * D 12-4
E 12-5 * E 12-5
F 12-6 * F 12-6
G 12-7 * G 12-7
H 12-8 * H 12-8
1 12-9 * 1 12-9
J 11-1 * J 11-1
K 11-2 * K 11-2
L 11-3 * L 11-3

M 11-4 * M 11-4
N 11-5 * N 11-5
0 11-6 * 0 11-6
p 11-7 * p 11-7
Q 11-8 * Q 11-8
R 11-9 * R 11-9

s 0-2 * s 0-2
T 0-3 * T 0-3
u 0-4 * u 0-4
V 0-5 * V 0-5
w 0-6 * w 0-6
X 0-7 * X 0-7
y 0-8 * y 0-8
z 0-9 * z 0-9
[12-8-2 M 12-8-4
-, 11-8-7 # \ 11-8-7
] 11 ~8-2 M 0-8-6
+ 12-8-6 #
- 0-8-5 # - 0-8-2

K BUFFER

E
y UP LOW

* 0 c
* 8 1

* 8 2

* 8 3

* 8 4

* 8 5

* 8 6

* 8 7

* 8 8 .
* 9 0

* 4 1

* 4 2

* 4 3

* 4 4

* 4 5

* 4 6

* 4 7

* 4 8

* 5 0

* 2 2

* 2 3

* 2 4

* 2 5

* 2 6

* 2 7

* 2 8

* 3 0
M 8 c
M
M 2 E

M 2 A

TAPE ·--

UP LOW
c 0
4 1
4 2
c 3
4 4
c 5
c 6
4 7
4 8
c 9
c A
4 B
c c
4 D
4 E

c F

5 0
D 1
D 2
5 3
D 4
5 5
5 6
D 7
D 8
5 9
5 A
D B
5 c
D D
D E
5 F

~
"'O
m z
0

><
:J:

8
:::1
r+
b..

APPENDIX I'.

TABLE OF INPUT CODE ASSIGNMENTS

A Table of Input Code Assignments provides the means by which any type of paper tape code (BCL,
etc.) may be read and interpreted into the Series L/TC internal code (USASCII). The table not only
permits any type of code (from any 5, 6, 7, or 8 channel tape), but also enables assigning any desired
character or certain functions to be interpreted from a particular code. Tables are available for such
common code sets as BCL, IBM 046, Friden and 5 Channel Teletype (Baudot); however, any other code
set (up to 8 channels or bits) may be incorporated.

Input tape that contains USASCII code does not require a table for conversion, but may use a table if
special functions are desired from certain codes.

The conversion table, where required, is stored in the Normal (or user) area of memory and occupies up
to 16 words. Bach code (character) in the tape is represented by a pattern of punches in one position
(or frame) which constitutes a unique configuration of "bits." As codes are read from tape, each code
references its own character position in the conversion table based on its "bit" configuration. In other
words, the bit configuration of the code serves as an "address" to a specific position in the table. The
way in which that code is interpreted is determined by the internal code value that the programmer has
placed in that position of the table. Tue tables available represent "standard" interpretations of characters
and functional codes. Tue internal code representing an input code may be changed in the table to suit a
user's particular need and give any desired interpretation as outlined in the following paragraphs.

INPUT FUNCTIONS FOR 6, 7, or 8 CHANNEL TAPE BASED ON THE TABLE OF CODE ASSIGNMENTS

An input code is interpreted in any one of the following ways depending on the internal code placed in
its position in the table (does not apply to 5 channel code):

1. Interprets the incoming code as one of the Series L/TC printable (graphic) characters when the
internal code for that character is contained in that position of the table.

2. Ignores the incoming code when the Series L/TC internal code for Ignore is contained in that
position of the table.

3. Interprets the incoming code as an invalid character when a forced parity error is contained in
that position of the table. This turns on the Invalid Code Indicator Light and sets Reader
Invalid Code flag.

4. Causes the incoming code to set any or all of the flags of one flag group (the Y or K flag
groups). The flags can then be tested as part of the user program, to provide alternate results.
Codes that set the Y or K flags also terminate the read instruction. Incoming codes interpreted
in this manner serve as Field Identifier codes and do not provide a printable Series L/TC
character.

5. Causes the incoming code to set any or all of the Accumulator (A) Flags during a Read
Numeric instruction. This permits numeric data to be read as minus and/or .identified uniquely
(as per hundred, etc.). The flags can then be tested to cause alternate results as part of the
user program. Codes that set the Accumulator Flags do not terminate the Read instruction;
therefore, they can be located in· any character pösition in the data field on the tape. They do
not provide a printable character during read-in. but as in. the case ()f the Sign flag, subsequent
Print Numeric instructions can be affected.

Tue codes described in paragraphs 4 and 5 above may or may not correspond to those codes that are
normally considered "control" or "functional" in a given code set, depending on the interpretation value
given to them in the table by the programmer.

I-1

APPENDIX 1 (cont'd)

FIRMWARE SUBSETS FOR THE TABLE OF CODE ASSIGNMENTS

Specific GP 300 Firmware subsets are provided with paper tape input/output capability. However, the
Table of Code Assignments is usually loaded into memory as part of the user program load procedure.
This permits using various code sets at different times with the same user program, or permits use of a
different code set with each separate user program without changing the firmware, with certain
exceptions:

1. Input with any code set requiring conversion to the internal code (USASCII), with a table of
code assignments, requires a firmware subset that provides "table look-up." Input with
USASCII does not require "table look-up" firmware since no conversion is necessary.
However, various code sets can be used as input to the same system, along with USASCII, so
long as "table look-up" firmware is used and a table of code assignments is provided for each
code set including USASCII.

2. Firmware for 5 channel code includes "table look-up" capability; however, it is different than
firmware for 8, 7, or 6 channel code, or for USASCII (no table look-up).

USASCll PAPER TAPE CODE WITHOUT TABLE LOOK-UP FIRMWARE

When USASCII is the paper tape input code, a table of code assignments is not required, and a separate
Firmware subset is provided.

Tue following chart shows the code that represents each of the USASCII characters on tape (even
parity). Each character is represented by two hexadecimal digits: the left for the upper four bits, the
right for the lower four bits. As the tape is read and after parity checking, the parity bit (b8) is set to
zero before the character is stored in memory; therefore, if a tape code's upper four bits are A, B, C, or
D, they would become 2, 3, 4, or 5 memory respectively; (See Appendix D.)

Sp A, 0 0 3, 0 @ c,o p 5,0
! 2, 1 1 B, 1 A 4, 1 Q D, 1

" 2, 2 2 B, 2 B 4, 2 R D, 2
A, 3 3 3, 3 c c, 3 s 5, 3
$ 2,4 4 B,4 D 4, 4 T D,4
% A, 5 5 3, 5 E c, 5 u 5, 5
& A, 6 6 3, 6 F c, 6 V 5, 6
' 2, 7 7 B, 7 G 4, 7 w D, 7
(2, 8 8 B,8 H 4, 8 X D, 8
) A, 9 9 3, 9 I C,9 y 5, 9
* A,A 3, A J C,A z 5, A
+ 2,B

'
B,B K 4, B 3/4 ([) D,B

, A,C Yz (<) 3, c L C,C ~ (\) 5, c
- 2, D = B,D M 4, D CR(]) D,D

2,E ~ (>) B,E N 4,E 0 (") D,E
/ A,F ? 3, F 0 C,F - 5,F

DEL F,F <> ("') 7,E

I-2

APPENDIX 1 (c-0nt'd)

FIELD IDENTIFIER (TERMINATION) CODES: Tue following chart shows the paper tape USASCII
control codes which cause tape read instructions to be terminated, and some of which set a specified
flag pattern. Each code is represented by two hexadecimal digits. Codes in column 1 of the table set the
"K" flags. These codes do not enter into memory.

USASCll COLUMN 0 FIELD IDENTIFIER CODES** USASCll COLUMN 1 FIELD IDENTIFIER CODES
FLAG PATTERN FLAG PATTERN
SET BY CODE* PAPER TAPE SET BY CODE*

PAPER TAPE V FLAG NUMBER VALUE OCK FLAG NUMBER
CODE VALUE 3 2 1 4 CODE a, b 3 2 1 4
NUL 0,0 0 0 0 0
SOH 8,1 0 0 0 1
STX 8,2 0 0 1 0
ETX 0,3 0 0 1 1
EOT 8,4 0 1 0 0
ENQ 0,5 0 1 0 1
ACK 0,6 0 1 1 0
BEL 8,7 0 1 1 1
BS 8,8 1 0 0 0
HT 0,9 1 0 0 1
IF 0,A 1 0 1 0
VT 8,B 1 0 1 1
FF o,c 1 1 0 0
CR 8,D 1 1 0 1
so 8,E 1 1 1 0
SI O,F 1 1 1 1

DLE 9,0 0 0 0 0
DCl 1,1 0 0 0 1
DC2 1,2 0 0 1 0
DC3 9,3 0 0 1 1
DC4 1,4 0 1 0 0
NAK 9,5 0 1 0 1
SYN 9,6 0 1 1 0
ETB 1, 7 0 1 1 1
CAN 1,8 1 0 0 0
EM 9,9 1 0 0 1
SUB 9,A 1 0 1 0
ESC l,B 1 0 1 1
FS 9,C 1 1 0 0
GS l,D 1 1 0 1
RS l,E 1 1 1 0
US 9,F 1 1 1 1

*0 = flag is reset; 1 = flag is set

**Firmware sets are available which prevent the setting of the V flags when these codes are read.

Tue NUL code is the same as a sprocket feed code in that no channels are punched in a frame, and
thus, it functions diff erently than the other field identifier codes. During a read tape instruction, it is
ignored (treated like a delete code - DEL) until the first significant character of data is read. If
encountered after the first significant character, it will then be treated as a field identifier code and will
terminate the read instruction. lt should not be used for a field identifier code if a variable field of data
would ever contain no significant data but only a field identifier code. This would cause the NUL code
to be ignored, since a significant character was not read, and it would not serve its intended function to
terminate the instruction. This would result in the paper tape getting out of step with the program.

Tue END OF ALPHA (code 0,0) is the same as the NUL code.

Tue DEL (Delete) code is completely ignored by all paper tape read instructions, and does not count as
a character read. lt consists of a punch in all 8 channels in a frame of tape.

1-3

APPENDIX 1 (con't'd)

TAPE CODES
ACCUMULATOR

FLAGS*

M c s -
A,0 C;O 5,0 1 0 0 0 0
2,1 4,1 D,l 0 0 0 1
2,2 4,2 D,2 0 0 1 0
A,3 C,3 5,3 0 0 1 1
2,4 4,4 D,4 0 1 0 0
A,5 C,5 5,5 0 1 0 1

A,6 C,6 5,6 0 1 1 0
2,7 4,7 D,7 0 1 1 1

2,8 4,8 D,8 1 0 0 0
A,9 C,9 5,9 1 0 0 1

A,A 3,A C,A 5,A 1 0 1 0
2,B B,B 4,B D,B 1 0 1 1

A,C 3,C c,c 5,C 1 1 0 0
2,D B,D 4,D D,D 1 1 0 1

2,E B,E 4,E D,E 7,E 1 1 1 0
A,F 3,F C,F 5,F 1 1 1 1

TABLE OF OUTPUT CODE ASSIGNMENTS

When a code set other than USASCII is desired iri the output tape, or when certain variations may be
desired in the USASCII set, a Table of Output Code Assignments may be used. This permits output into
any 5, 6, 7, or 8 channel code without modification to the Perforator. Output in USASCII code does
not require a table.

The table is loaded into a Normal memory area and occupies up to 16 words. The loading may
a:ccompany regular loading of user programs. This table is a separate table from the Table of Input Code
Assignments described above. Bach Series L/TC intemal character selects a particular character position
in the output table. The 8-bit code that is put in each character position of the table is the code that
will be punched into the output tape.

Normally, the Punch Code (XC) instruction . will be used to punch field identifier (functional) codes.
However, since any of the Series L/TC intemal characters, through the table, can cause any 8-bit code
to be punched, field identifier codes may be punched in this manner also.

1-4

APPENDIX 1 (cont'd)

Tue programmer may construct an output table to achieve any desired output code. However, tables are
available that contain "standard" values for the following code sets:

BCL/IBM
Friden
US ASCII
Teletype

8 channel
8 channel
8 channel
5 channel (Baudot)

Tue bit configuration of most Friden tape codes is the same as BCL. However, many of the functional
code names given to the various codes are different, and for that reason a table is provided for ease in
interpretation.

FIRMWARE SUBSETS FOR THE TABLE OF CODE ASSIGNMENTS

Tue firmware which includes "table look-up" for conversion of the internal code to the output code is
different than firmware which does not use "table look-up" (output in USASCII). Thus, a USASCII
table is available for use in systems that require "table look-up" firmware due to varying output code
requiFements.

NOTE: Output in 5-channel tape code requires firmware that is different from either 8-channel "table

look-up" firmware or for output in USASCll without "table look-up."

1-5.

1

APPENDIX J

GP 300 TIMINGS

This section contains the timings for GP 300 instructions as recorded by tests on Firmware Set
2-1002-001-02. Tue timings are averages depending u pon two factors:

1. Tue Firmware Set being used.

2. Tue context in which the particular macro instruction appears, in particular fetch time and
other disk position considerations.

TIMINGS

Tue following instruction timings were measured on firmware set 2-1002-001-02, with the instruction
placed in syllable zero. When an instruction is placed in syllable three (3) or the execution of the
instruction causes a word boundary to be crossed, an additional 10 to 20 milliseconds will be required
for a new instruction word access.

When the keyboard extension buffers are full and the hardware buffer (A3) contains at least three (3)
characters an additional 10 ms must be added to every macro instruction.

This condition could occur with 13 entries in the buff ers. Tue following is a typical example of this
condition.

EXT. BUF 1 EXT. BUF 2 EXT. BUF 3 EXT. BUF 4

EJ lrB 1 EJ
PREVIOUSLY PROCESSED

HARDWARE BUFFER

FGH

Tue 9 and one OCK were processed on the last keyboard instmction. Extension buffer 1 now contains 1
entry to be processed. Extension buffers 2, 3, and 4 each contain 3 entries.

When the hardware buffer receives 3 or more entries an attempt will be made to unload the hardware
buff er. Since the extension buff ers are full the unloading cannot take place. Thus, an additional 10 ms
cycle will occur with each new instruction fetched, until at least one buffer is emptied and the hardware
buffer is unloaded.

MACRO INSTRUCTION

ADA
ADIR
ADK
ADM
BRU
CHG

EXECUTION TIME IN MS

50
20
30
70
20
20

J-1.

APPENDIXJ (coot'd)

MACRO INSTRUCTION EXECUTION TIME IN MS . •

CLA 20
CLM 40
CPA 60
DIR 20
DIV * SEE NOTE 2
EX 20

EXE 20
EXL 20 .

EXZ 20
IIR 20
INK 20
LIR 20

LKBR 20
LLCR 30
LLLR. 30
LOD 30
LPKR 30
LPNR 30
LRCR 30
LRLR 30
MOD 30
MUL * SEENOTE3

MULR * SEENOTE3
NOP 10
PKA 20
PKB 20
POS 10 SEENOTE4
REM 30
RR 20

RST 20
SET 20
SK 20

SKE 20
SKL 20
SKZ 20

SLRO * SEE NOTE 1
SLROS * SEE NOTE 1

SRJ 40
SRR Stack address 0::::: 50·

Stack address 1 = 60
Stack address 2:;:: 70
Stack address 3 = 80

SUA 50
SUK 30
SUM 70
TAIR 50
TRA 30
TRM 30

J-2

APPENDIX J (cont'd)

Tue following instructions are variable, since mechanical synchronization is required. These may vary
from machine to machine. Tue minimum and maximum execution times shown were measured on
machine serial #QlOOlP.

MACRO INSTRUCTION

ALARM
AL

AR

ALR
ALTO
ARTO

cc
oc

PA
PC

PC+
PC-

PN

FORMS COMMANDS

1 LINE
10 LINES

1 LINE
10 LINES

1 LINE
10 LINES
10 LINES

PRINT COMMANDS *SEE NOTE 4

Per character

a) If no print occurs
b) If print occurs

a) First digit or punctuation
printed is 90-120 ms; all
succeeding places are 50
ms each

b) 10 ms per digit or
punctuation suppressed.

EXECUTION TIME IN MS

50ms
30-70
10
30-70

20-50
60-80

480-520
60-80

480-520
60-80

550-590
550-590
210-280
210-280

An additional 250 ms will be required for the first printing instruction encountered after exiting the
READY MODE unless the carriage is closed prior to executing one of the following instructions.

PA
PC

PC+
PC­
PCP

KEYBOARD COMMANDS

NK

40 ms per digit

80 ms per OCK

110 ms per PSK

*SEE NOTE 5
*SEE NOTE 6

PN
PNS+
PNS­

TK
TKM

J-3.

APPENDIX J (cont'd)

TK

TKM

EAM

J-4

BASE

CHARACTER

OCK
OCK
PSK
PSK

=

=

=
=
=
=

20-50 ms (due to mechanical Timing)

50ms

100 ms - from hardware buffer
110 ms - from extension buff er
130 ms - from hardware buffer
140 ms - from extension buff er

*SEE NOTE 5
*SEE NOTE 6

BASE

CHARACTER

OCK
OCK

PSK
PSK

=

=

=
=

=
=

20-50 ms

SO ms

100 ms - from hardware buffer
110 ms - from extension buffer

130 ms - from hardware buffer
140 ms - from extension buffer

*SEE NOTE 5
*SEE NOTE 6

30 ms required to load each word to
memory. This will occur every
8 characters or upon receiving
a termination code.

CHARACTER = 40ms

OCK
OCK
PSK
PSK

= 100 ms - from hardware buffer
= 110 ms - from extension buffer
= 130 ms - from hardware buffer
= 140 ms - from extension buffer

30 ms required to load each word to
memory. This will occur every
8 characters or upon receiving
a termination code.

*SEE NOTE 5
*SEENOTE6

APPENDIX J (cont'd)

DATA COMM COMMANDS

SCP
RCP
LRBR
LKBR

TRAB

TRCB
TRF

TRBA
IRCP

PAB

TRB
TSB

TKM

}

}

50 ms

100 ms + 10 ms/digit transferred
+20 ms/word boundary

140 ms to 180 ms (avg. 150 ms)
120 ms+ 10 ms/char transferred

+20 ms/word boundary

50 ms +10 ms/char
+20 ms/word boundary

20 char/sec + 30 ms base time

40 ms

can process at keyboard speed

RSA
RRA
LSA
LRA
RTN
RTH
LTN
RSN 30 ms
LSN
RPR
LPR
RPF
LPF
RTF
LTF

OFF 10 ms

NOTE: The above times do not include the Fetch II word boundary time of 20 ms. "Word Boundary"
mentioned above pertains to the actual transferring of data during the execution of a single instruction.

Revised 3-29-71 by
PCN 1045481-001 J-5

1

..

„

APPENDIX J (cont'd) .

NOTEl

NOTE 2

Divide

Shift· Titning

SLRO

• SLROS

Base = 30ms

0-3 shifts = IOms
4-6 shifts = 20ms
7-9 shifts = 30ms

10-12 shifts = 40ms
l J-1 s · shifts = SO ms

Compute number of shifts h~ft
and number of shifts right.

1. a. Set down div'idend (15 digits) followed by i 5 zeros.

b. Subtract divisor from dividend and repeat until dividend is ~maller than divisor.

c. Using the number of successful subtractions:

d.
e.

f.

For no. = 0 to 3 set down 10 ms

For no. = 4 to 8

For no. =9,10,ll

set down 20 ms

set down· 30 ms

Shift divisor one place to the ri.ght and repeat steps a, b, c; d for 15 titnes.

Add base timing of 70 ms to total obtained above.
.. ' . . ' '

, .. ,,

Multiply contents of the shift register by 10 ms and add to tota:l obtained in e.

NOTE3

Multiply

1. Set down the contents of the shift register.

2. When shift register is not equal to zero:

a. Examine the accumulator contents for timing purposes.

b. For each accumulator digit starting least significanf digit.

For digit = 0 to 6 set down 10 ms

For digit = 6 to 9 set down 20 ms

c. Subtract 1 from shift register .and repeat steps 2 a, b, c until register becomes zero.

J-6

3. When shift register = zero

a. For digit = 0 to 3

For digit = 4 to 8

For digit = 9

set down 10 ms

set down 20 ms

set down 30 ms

APPENDIX J (cont'd)

b. Repeat step 3a for each digit of accumulator until most significant digit of accumulator
contents is reached.

c. Add base timing of 70 ms to total obtained above.

NOTE4

Positioning

Carrier positioning time must be added to the following instructions.

TK

TKM

PA

PC+

PC­

PN

Positioning Timings:

NOTE 5

0-6 positions
6-150 positions

300ms
300 ms + 5 ms for each position beyond 6

When the extension buff ers each contain entries, the buffer full flag will be set. When the first
extension buffer word is completely processed, an additional 10 ms is required to teset the buffer
füll flag.

NOTE6

10 ms must be added to the last entry when processed from each of the extension buffers or the
hardware buffer.

J-7

APP.ENDIX K

SERIES L/TC OBJECT CODE

PUNCHED PAPER TAPE OBJECT TAPE CODE

The paper tape output is in the format illustrated below. Bach 16-digit word is compressed into 8
frames of tape. Bach frame contains a "lower digit" (channels 1-4) and an "upper digit" (channels 5-8).
This type of punch format is referred to as "compact code" or "compact Hexadecimal code". Most
object program tapes will be punched in this format.

In the diagram below, "l" represents a punch (bit on) and "O" represents no punch (bit off) in the tape
channel indicated.

Tape Channel

Bit V alue of Tape Channels

Start Code

Word Number
(0-255)

Digit Positions ____ _
of Word

End of Word

8 7 6 5 4 TF

8 4 2 l 8

0 0 0 0 0

3 2 l

4 2 1
0 0 0

1 0 l 0 (Block No.)

(W o r d

l
3
5
7
9

11
13
15

Number

0
2
4
6
8

10
12
14

)

l 1 1 0 (Parity)

Frame 1

"

"
"

2

3
4

" 5
" 6
" 7
" 8
" 9
" 10

" 11
etc.

The diagram shown represents a word of program as punched into paper tape. The first word contains
the Start Code-Block Number frame and the Word Number frame. Tue End of Word Parity frame will
be punched with every word. The End of Word code with the very last word in a sequence is
"O l 0 l ". Parity (4 bits, as indicated above) is arrived at by exclusively OR'ing each four bit grouping
as shown above with the exception of the Start Code and the End of Word Code. Figures l and 2
illustrate the two types of compact object tape.

Revised 3-29-71 by
PCN 1045481-001 K-1

APPENDIXK (Cont'd)

K-:2

PUNCH PAPER TAPE COMPACT OBJECT CODE·

SPROCKET FEED HOLES

CHANNEL __ „ 8 7 6 5 4 3 2 1 l . DIHECTION OF
TAPE FEED

START
MESSAGE

_t„ lJ _!rl_•_J_lJ_
„ • • 1 • • - - ·.--,--.--.,.--.~

BLOCK 1

WORD 5

'END OF
. MESSAGE

START
MESSAGE

END OF
MESSAGE

„. .
--- ---'------ --

0 • • •

SYL OE • • • • • • •
8 • • •

SYL 1 F • • • • • • • •
• • • • •

SYL 2 E • • • • • • • .. • •
SYL 3 A. · • • • • • ------r-------,

3

0 .

2

.1

B

B

0

6

261

A610 EB1B F782 E.003

----1„~1 . : • · • 1 • • PARITY
- ·~ --- -t---- - - ---„ • • 1 • • ~BLOCK1
-------- ------' e • • ..___ WORD6 ______ ...! ______ _

0 • • • • 0

SYL 04

0

SYL 1 0

0
SYL 2 7

0

SYL 3 0

-- ~ :.

• • • •
•

• • •
• • •

• • • • • •
• • • • • • • • ------·-------. .,. . .

~ f 1-+ -+_j_T_• _f 1-f
8 4 2

,,„,:;

UPPER

8 • 4 2

Figura 1.

1
LOWER

6

0

9

5

5

5

4

262

0405 7505 0900 4600

....._ PARITY

BINARY VALUE
+--

APPENDIX K (cont'd)

REFERENCE:

1. OP code lower digit requires modification according to word syllable.

Modify thusly:

Syllable 0 add 0 to previous value
Syllable 1 add 4 to previous value
Syllable 2 add 8 to previous value
Syllable 3 add 12 to previous value

Example:

What is the machine language code for the instruction "Branch to word 625 syllable 2''?

Examine table K-2.

Tue OP code upper and lower for a branch to word numbers between SH and 676 are 72. Reference 1
indicates add 8 to OP code lower (2+8=A) resulting in 7A.

Tue hexadecimal value for the difference between word 625 and word 511 (625-511=114) is 72.

Tue machine language code becomes 7 A 72.

ASSEMBLING PROGRAMS FOR 40 TRACK SYSTEMS

Tue information below is the only material which is needed in addition to Section 5 when attempting to
assemble a symbolic program whose object program will function in an environment which allows
extended memory macro programs.

Assembler 1

L/TC (32 track) Environment

pages 5-1 to 5-16

Paper Tape 1/0 version

When EXTMEM prints on the journal, depress OCK 1 to indicate this is an assembly for a 40 track
Style L. See page 5-1.

Assembler 11 pages 5-17 to 5-21

L/TC (32 track) Environment 80 Column Card 1/0 version

Tue control card $ EXTMEM indicates that the object program will utilize finnware which allows a
macro program of 767 words.
See page 5-17.

Assembler III . pages 5-22 to 5-34

B 3500 Environment

Tue option EXTMEM will indicate that the size of user memory is 767 words.
See page 5-22.

Revised ll-8-71by
PCN 1045481-004 K-3

1

APPENDIX K (Cont'd)

USASCll OBJECT PROGRAM TAPE FORMAT

B 5500/B 300 OUTPUT

Bach program word in tape consists of 21 frames punched in USASCII code.

Tape Frame

1 Block No. (0 to 3)
2-4 Word No. (000 to 255)
5-20 16 Digits:

Frame Digit Position

5 1 Hexadecimal digit V alue expressed as code from
6 0 USASCII table:
7 3 USASCll Hexadecimal
8 2 30 0
9 5 31 1

10 4
32 2

11 7
33 3

12 6 34 4
13 9 35 5
14 8 36 6
15 11 37 7
16 10 38 8
17 13 39 9
18 12 41 A
19 15 42 B
20 14 43 c

21 Termination Code (l ,E) 44 D

45 E

46 F

K-4

Channel

Block Number

Word Number

Pro gram
Word

Termination
Code

APPENDIX K (Cont'd)

Sprocket Feed Holes

0

p 7 6 5 4 0 3 2 1

• • • 0 • 1

• • • 0 • 1

• • 0 • • 5 153
• • 0 • • 3

-----------------• • 0 0

• • 0 • • 3

• • 0 • 1 E

• 0 • D

• • • • 0 8

• • • 0 • 2

• • 0 • • F A610 EBlB F782 ED03

• • • 0 • • • 7

• • • 0 • 1

• 0 • B

• • 0 • 1 E

• 0 • B

• • • 0 • 1

• • 0 0

• 0 1 A

• • 0 • • 6
-----------------• • 0 • •

0

0

0

0

K-5

APPENDIX K ((:ont'd)

THE SERIES L PROGRAM PUNCH CARD FORMAT (COMPACT HEXADECIMAL)

card-Column
1 „ 6 Program Identification (Alpha-in BCL Code)

9

10

11 - 15

16

Beginning Word Number (hexadecimal value for word 0 to 255)

Number of Program Words on Card (Decimal 1 to 8)

No significance

Block Number
Block 0 = blank card column
Block 1 = decimal 1

Up to 8 program words
Each word occupies 8 card columns.

17 -24
25 -32
33 -40
41 -48
49-,56
57 -64

Each card column contains binary value for 2 of the 16 hexadecimal digits in a word.

65 - 72
73 -80

Hardware will cause the 12 bit representation on an 80 Column Card to be compressed into 8 bits in the
Card Read Area during input, and conversely will cause the 8 bit representation in memory to be expanded
into 12 bits on the output punch card in the following manner.

8 bit code representation

Upper Digit Lower Digit
Bits Bits

8 4 2 1 8 4 2 1

X
X

X

X
X
X X

X
X X
X X
X X/ X

X

X

K-6

Card Column Punching

12
11
0

1
2
3
4
5
6
7
8

9

Upper
Digit
Bits

Lower
Digit
Bits

Upper Digit Bits

APPENDIX K (Cont'd)

A Sample Output Catd would appear as follows:

UPPER
DIGIT
BITS

LOWER
DIGIT
Bits

8

4

2

p
u
N
c
H

V
A
L
u
E

1
CARD COLUMN

PUNCH VALUE

FOOTNOTE

II

1 II 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 HI 1
111111

~ 1 III II II

~II 1111~ 1 1 ~

II

11~111
0001000000110100101ooooolooooll.lollllllolooooll~oolollooooooolo~olloloolllololl
1 2 l 4 !I 1 J 1 ' 1111 12 1l 14 H li 11 II 19 ::0 21 n 2l 2'4 ~ 21 21 n 19 ll ll ll J3 l4 ~ ll 31 ll l9 40~1 42 43 4' 45 46 47 48 ~9 ~G 51 52 5J ~ 5!'I $1~ 51 51 IO ,, u u MjD 1111 II. 70 11 1113 14 J'j 11 11 " 79 III

1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 11 111111 1111 1 1 111 111 1 1 1 1 1 111111 1 1 1 1l1 1 1l11 1 1 1 1 11 1 1l11 1 1 1 1 1 1 1 1 1 1

21222222222222222122222222222222222222212212222221222121221222222122221122222221

IJJJJJJJJJJl3333l3333333l33333333333333333333333~3333JIJ3J33333333JJJJ333l3IJJ33

444444~444l4444444l4•l•••ll44444444444l444444444~4444444~44444l44444l444~44444l4

555l55~5555555555555555l55555555555555555555l55555ll55555555l55555555l5555555555

666666~6666666666666666666&6l66666666666666666666666666666666666l666666666l66666

7 ; 7 7 7 I~) 7 7 7 7 7 7 7 7 7 7 111 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 111 7 7 7 7 111 .1 7 7 7) 7 ,1 7 7 7 7 7 7 111 7 7 7 7 7 7 7 7 7 7 7 7. 7 7 7

aaaaas~sl~l••l•l•lll•••lllalaaaasasslaslaasaaaala~lalasllslalsllslallllasaalslaaa
9 9 l 9 l 9 9 9 9 9 9 9 9 9 9 9 9 9 l 9 9 9 ~ ~ 9 II s l s I ~ s s II l 911 l s 9 9 9 9 l 9 9 l 9 9 l 9 9 9 919 l 9 II 9 9 9 II 9 l 9 I 999s11s9
1 2 l 4 ! ~e~~ld'I 1213141! II 711llZO2122 2324'fn2127112tlDJ1 3 lJ J4ß)(j Jl J8 J94if1141434445·4'4141 9~ 51 52)3)4 ~'j 5551:ilstm11 '2 ,j Mn• 11&11!110 n /, 13 14 /'j 1' 1111 ""

E0704851 E190D2B3 60338283 DEC44C32 E5C2DEE4 49C149BO 60330FC1 62607162

LBIVRP 88 lo BAC71490 B4C16000 10090DC2 70215197 BA5D12BA 182858C7 E289CD22 43E38042

23 4 5 5 5 5 5 5 5 5

Revised 3-29-71 by
PCN 1045481-001 K•7

APPENDIX K (Cont'd)

FOOTNOTES

1. Program 1. D. (Alpha BCL Code)

2. Beginning Word Number (Hexadecimal 0-255)

3. Number of Program Words on card (Decimal 1-8)

4. Block Number (Decimal 0-4)

5. 12 Program Words 1-8 (Compact Hexadecimal-2 Hexadecimal digits per card column)

Word No.

2

3

4

5

6

7

8

Syllable 3

EBOA

EB14

6100

D7EO

EB5A

4198

6E02

6423

2 1

7C07 4184

9C01 D620

3039 B02D

C241 45Cl

C52D D1E2

C218 4598

3839 OCFD

6E03 7810

BCL OBJECT PROGRAM CARD FORMAT

Card Column

1-6

12

13-16

17-32

33-48

49-64

65-80

K-8

PROGRAM 1. D.

Number of words in card (1 to 4)

Beginning Word Number (0000 to 1023)

Ist word (digit 15 in cc 17 to digit 0 in cc 32)

2nd word (digit 15 in cc 33 to digit 0 in cc 48)

3rd word (digit 15 in cc 49 to digit 0 in cc 64)

4th word (digit 15 in cc 65 to digit 0 in cc 80)

0

5910

B030

BC32

3927

EB4A

BC07

C212

6422

ALPHABETICAL INDEX

A

Accumulator - 2.00.04
Accumulator Skip and Execute lnstructions - 2.09.04
Add Constant to Accumulator - 2.05:02
Add from Magnetic Record Area to Accumulator - 2.19:07
Add to Accumulator - 2.05:01
Add to Index Register - 2.08:01
Add to Memory - 2.05.01
Advance Left and Right Platen - 2.04:03
Advance Left to - 2.04:03
Advance Left Platen - 2.04:03 ·
Advance Line lnstruction - 2.01.01
Advance Right Platen - 2.04.03
Advance Right to - 2.04.03
Alarm lnstruction - 2.10.02
Alpha Constant lnstruction - 2.01.02
Alphanumeric Data - 1-4
Alphanumeric Printing from Memory - 2.03.01
Alpha Word - 2.00.03, 2.02.03
Alternate Stacking Pocket - 2.18.04
A Parameter Label - 1-3
A Parameter - +/- lncrement - 1-3
Arithmetic lnstructions - 2.05.01
Assemblers - 5.00.00
Assembler Pseudo lnstruction 2.01.02
Assembler VI and VIII - 5.01.05

B

B Parameter - 1-4
Branch - Decision lnstructions - 2.09.01
Branch Unconditional - 2.09.01

c

Card Format Instruction - 2.01.04
Card In/Paper Tape Out Assemblers - 5.02.03
Card lnstructions(80Column) - 2.17.01
Card 1/0 Assemblers - 5.02.03 ·
Change Flags lnstructions - 2.07 .02
Check Digit lnstructions - 2.11.01
Clear Accumulator and Insert Constant - 2.05.04
Clear Memory Word - 2.05.04
Close Forms Handler Instruction - 2.04.01
Code Instruction - 2.01.05
Coding Form Heading - 1-1
Coding Form Page Number - 1-1
Compare Alphanumeric lnstructi.on - 2.09.03
Computing Shift Factor - 2.05.05
Constant Data - 1-4
Control Registers - 2.13.01
C Parameter - 1-4
Cross Reference Table Between Program Definition Chart and

Assembler III Output Sequence Number - 4-70

D

DataComm Debugging- 3-3
Data Communications lnstructions - 2.12.01
Data Comm Processor Operations - 2.14.02
Data Element Codes - 2.20.03
Decrement Index Register - 2.08.01
Define Instructions - 2.01.06
Delimiter - 2.20.06
D FlagGroup - 2.12.07
DiviSion lnstruction - 2.05 .05-2

Documentation Instruction - 2.01.07
D~plicate Through Column - 2.18.03-1

E

Eject Record - 2.19.09-1
Enable Numeric Keyboard Instruction - 2.02.01
End Instruction - 2.01.11
Enter Alpha Into Memory and Punch, Non-print - 2.18.01
Enter Alpha into Memory lnstruction - 2.02;03
Enter lnto Memory and Punch - 2.16:01-1
Equate lnstruction - 2.01.11
Error Conditions - 2.20:05
Establish Record Areas - 2.01.07
Execute if Accumulator Zero - 2.09:04
Execute if Any Flag - 2.09:05
Execute if Digit Less Than Constant - 2.09.05
Execute if Every Flag - 2.09:05-2
Execute lnstructions - 2.09.04

F

Field ldentifier Codes - 2.12.06
Field Length - 1-3
Flags - 2.00.05
Flag Execute and Skip Instructions - 2.09.05
Flag Instructi.on - 2.07 .02
Forms Control lnstructions - 2.04.01
FortyTrack Style Series L - K-1

G

GP300 Operation Code Modifications - 3-4

H

Increment Index Register - 2.08.05
Increment Receive Character Pointer - 2.12.03
Indicator Register Flags - 2.13.03
Insert Constant in Accumulator - 2.05.04

J

K

Keyboard Error Indicator - 2.02.01

L

Label-J-2
Line Advance Instructions - 2.04.03
Line Discipline Fonnat Registers - 2.14.01
Load Card Format Register - 2.17 .01-2
Load Expected Broadcast Transmission Number - 2.12.09-2
Load ExpectedGroup Transmission Number - 2.12.09-1
Load Expected Transmission Number - 2.12.09-1
Load Flags lnstruction - 2.07 .02
Load Index Register - 2.08.01
Load Keyboard Base Register - 2.12.04
Load Left Count Register - 2.04.03
Load Left Limit Register '-- 2.04.03
Load Memory from Card - 2~11.91
Load Position Register lnstruction ~ 2.03.01
Load Print Numetic Base Register - 2.03.04
Load Program Key Base Register - 2.02:02

Revised 11-8-71 by
PCN 1045481-004 Orte

"'
Load Punch Count Register - 2,16.01-3, 2,18:.03
Load Receive Address - 2.12.08 · · ·
Load Receive Buffer Register - 2.14.03 . . . r . • ' '

Load Right Count Register - 2.04.03
Load Right Limit Register -- 2.04,03
Load Send Address - 2.12;08
Load Send Transmission Number - 2.12;09,
Load Shift Regist\'lr -·2,0S.QS .. , •. ,
Load Stripe Count Register-:- 2 •. 19.09-2
Load Stripe Format Registers - 2.19.01
L/TC Assembler III B 3SOO Versi9n - S.03.02

Environment - S.03;02
Error Detection- S.03.06 ..
Library Tape Input - S.03:02
MCP Control Cards - S.03.04
Operating lnstructions - S.03.0S
Option Control Cards - S.03.04.
Output - S.03.07
Utility Routine - S.03.08

L/TC Assembler IV B SSOO Version - S.04.02
Environment - S.04.02
Error Detection - S.04.07
MCP Control Cards - S.04.02
Operating lnstructions - S.04.04
Operation - S.04.07
Option Control Cards - S.04.03
Output - S.04.07

L/TC Assembler V - B 300 Version - S.OS.00
Control Cards - S .OS .00
End - S.OS .06
Environment - S.OS.00
Error Messages - S.OS.07
Input - S.OS.00
Operating lnstructions - S .OS .06
Output - S.OS.00

L/TC Character Set - D-1
L/TC 80-Column Card Input Assemblers - S.02.00
L/TC Paper Tape Assemblers - S.01.00

M

Environment - S.01.00
Keyboard Mode - S.01.06
Phase 1 - S .01.02
Phase 1 - Condensed Operating Instructions - S.01.07
Phase 1 - Diagnostic Facilities - S.01.08
Phase II - S.01.09
Phase II - Condensed Operating lilstructions and Index -

S.01.10
Phase II - Error Detection and Indication - S.01.11

Machine Code for Transaction Code Translation
Instruction - 2.21.06

Magnetic Record Format Instruction,... 2.19.02
Magnetic Unit Record Plag - 2.19.04
Main Memory Processor - 2.14.03
Mask Control Code - 2.03.0S-1
Mask Flags - 2.03.0S-2
Mask Instruction - 2.01.11
Mask Word - 2.03.0S
MemoryOrganization - 2.00.01
Memory Word Organization - 2.00.02
Miscellaneous Instructions - 2.10.02
Modes for Printing - 2.03.01
Modify by lildex Register - 2.08.06
Modify by Punch Count Register - 2.16.02
Multiplication Instruction - 2.0S.OS~l

Multiply with Rounding - 2.0S.OS-2

Two

N

NOP Instruction - 2.10.02
• Note lnstruction - 2.01.12

Number Instruction - 2.01.12, 2.01.13
Numeric Keyboard lnstructions - 2.02.01
Numeric Printing Instructions - 2;03.06
Numeric Word·- 2.00.02

0

Open and Close lnstruction - 2.04.01 · ·
Open Forms Handler lns~ction - 2.04.01
Operation Code - 1-2

•. ·Operation Control Keys - 2.Q2-.Q2
Origin lnstruction - 2.01.14, 2.01.16

p

Page Instruction - 2;01.lS
Paper Tape Instructions - 2.lS.02
Platen Control Register lnstructions - 2.04.03
Point to Point Line Discipline;.,.. 2,13.01
Position Table - 2.20.03
Power On and Off Instruction. - 2.03.09
Print Alpha and Punch - 2.16.01-1, 2.18.02
Print Alpha from Card ReadAr:e.a - 2.17.01-2
Print Alpha from Magnetic Record Area · - 2.19 .06
Print Alpha from Memory (D.C.) - 2.ll.O?~
Print Alpha fron Memory Instruction - 2.03.01
Print Alpha from Memory, Non-Print~ 2.16;01-1
Print and Punch Alpha from Card Read Area - 2.17.01·3
Print and Punch Numeric - 2.16.01-2, 2.18.02-2
Print and Punch Numeric, Shift Ribbon if Minus..., 2.16.01.3, 2;18.02
Print and Punch Numeric, Shift Ribbon if Plus - 2.16.0l.3, 2.18.02
Print Format (Mask) Word - 2.03.0S
Print Format Word - 2.00.03
Print Instructions - 2.03.01
Program Debugging - 3-3
Program Execution - 2.00.03
Program ldentification - 1-1
Programing Example ..., 4-l
Program Keys - 2.02.02
Program Word - 2.00.03
Prognun Writing - 3·1
Punch Alpha ftom Card Read Area, Non-print - 2.17.01-3
Punch Code lnstruction - 2.16.01-2, 2.18.02-3
Punch Feed Codes - 2.16.02
Punch Flags - :i.16.02
Punch Numeric, Non-print.,. 2.16.01·3; 2.18.02·3

R

Read Alpha and Print. - 2.15,02
Read Alpha Into Memory an(l Print - 2.lS.02
Read Alpha Into Me~Ql\f and Punch, N1>n·prin,t - _2.15.02-l
Read Alpha Into Memory, Non-print - 2.lS.02 . . .
Read Alpha Into.Memory, Printand Punch 2.15.02·1
Read Alpha, J,>rint and Puncl.l- ;- 2.lS.02-1
ReadCard lnstruction..:. 2.17.Ql
Reader Flags - 2.16.02 . . ;
ReadingPunc}!.edCaids ~ 2.17.01 ·
Read Numerlc Into Accumµlatqr - 2.15.02-1
Read Record Instruction - ;7;19.0S
Receive R,~~Y State. ,.... 2.1.2,0l

ALPHABETICAL INDEX. (Continued)

Record Align - 2.19.09
Record Alignment Errors and Flag Indications - 2.19.10
Region Instruction - 2.01.16
Remarks - 1-4.
Reserve Card Duffer Instruction - 2.01.03
Reset Flags - 2.07 ;03
Retract Record - 2.19.09-2
Retrieve Expected Broadcast Transmission Number - 2.12;09-1
Retrieve Expected Group Transmission Number - 2.12.09•1
Retrieve Expected Transmission Number - 2.12.09-1
Retrieve Pointer Register - 2.12;09
Retrieve Receive Address - 2.12.08
Retrieve Send Address - 2.12;08
Retrieve Send Transmission Number - 2.12.09
Retrieve Transmission Header - 2.12.09-2
Retrieve Transmission NumbeT - 2.12.09-2
Retrieve Two/Four Wire Register - 2.12.09-3
Ribbon Shifts - 2.03.08

s

Sequence Number - 1-1
Set Flags - 2.07 .03
Set Receive Character Pointer - 2.12.03
Set Send Character Pointer - 2.12.04
Shift Off lnstruction - 2.06.02
Shift Off with Sign - 2.06.02-1
Single Character Print lnstruction - 2.03.07
Skip and Execute -TC 700 - 2.09.06
Skip if Accumulator Zero - 2.09.04
Skip if Any Flag - 2.09.05-2
Skip ü Digit Less Than Constant - 2;09.05
Skip üEvery Flag- 2.09.05-3
Skip Instructions - 2.09.04
Skip t~ Column - 2.18.03
Stop Instruction - 2.10.03
Storage Area - 2.20.04
Subroutine Jump - 2.09.02
Subroutine Return - 2.09.02
Subtract Constant from Accumulator - 2.05.06-1
Subtract from Accumulator - 2.05.06-1
Subtract from Memory - 2.05.06-1
Subtract Magnetic Record Area from Accumulator - 2.19.07
Symbolic Programing Procedures - 3-1

T

TC 700-L-l
Transaction Code Translator - 2.21.02

Automatie Codes~ 2.21.03
Code Modification - 2.21.04
Error Condition - 2.21.05
Programing Example - 2.21.09
User Program Requirements ~ 2.21.08
Word 576 - 2.21.08

Transfer Accumulator to Index Register - 2.08.05
Transfer Accumulator to Memory Instruction - 2.12.05
Transfer Alpha from Magnetfo Area to Memory - 2.19.08
Transfer Alphafrom Memory to Magnetic Record'Area - 2.19.09
Transfer Alpha lnstruction - 2.12.04 ·
Transfer Card Colunuis to Memory as Alpha - 2.17 :02
Transfer Card Field to Accumulator As Nulneric -2.17.01-3··
Transfer Character to Memory InstructiOn - 2.12.05.3
Transfer from Accumulator to Magnetic Record Area - 2.19.09
Transfer Numeric from Magnetic Area to Memory - 2.19.08
Transfer Receive Duffer to Recotd Area .:.:.· 2;12.04
Transfer Remainder to Accumulator ~ 2.06.02
Transfer Send Record Area to Memory Iristruction - 2.12.05-1

Transfer to Accumulator as Numeric - 2.06.01
Transfer to the Accumulator - 2.06.01
Transfer to Memory - 2.06.01
Translation Table Format-:- 2.21.02
Transmit Ready State - 2.12.01
Type and Punch lnstruction - 2.16.01-1, 2.18.01
Type lnstruction - 2.0i;03 ·
Type lnto Memory Instruction - 2.02.03
Type Into Memory, Punch and Print - 2.16.01-1, 2.18.01
Typewriter Keyboard Instructions - 2.02;03 ·

u

Unpacking Routine Programing Requirements - 2.20.04

V

Variable Length Field - 2.12.06

w

Word Instruction - 2.01.17
Write Record Instruction - 2.19.04

X

y

z

Revised 11-8-71 by
PCN 1045481-004 Three

1045481
Revised 11-71

(See Note on Page ii) Printed in U. S. America

I

1

