L

| Burroughs L EIE

BASIC ASSEMBLER

REFERENCE MANUAL

Burroughs

v l/Tc | + INTRODUCTION

BASIC ASSEMBLER on

GP 300
INSTRUCTIONS

REFERENCE MANUAL

SYMBOLIC
PROGRAMING
PROCEDURES

PROGRAMING
EXAMPLE

ASSEMBLERS

APPENDIX

$5.00

Burroughs Corporation
) Detrpit, Michigan 48232

ii

COPYRIGHT © 1970, 1971 BURROUGHS CORPORATION
AA167490

Burroughs Corporation believes the program described herein to be
accurate and reliable, and much care has been taken in its preparation.
However, the Corporation cannot accept any responsibility, financial or
otherwise, for any consequences arising out of the use of this material.
The information contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

NOTE:
THIS PRINTING INCORPORATES:

PCN 1045481-001, dated March 29, 1971
PCN 1045481-002, dated July 23, 1971
PCN 1045481-003, dated August 9, 1971
PCN 1045481-004, dated November 8, 1971

TABLE OF CONTENTS
SECTION TITLE | PAGE

INTRODUCTION Xi
1 ASSEMBLER CODINGFORM 11

Program Identification o . . .14
Page Number and Heading11
Sequence L e e e s s s
Label o s s e s a2
OperationCode 0000012
Field Length 13
A Parameter — Label 13
A Parameter + Increment 13
BParameter. 14
CParameter. « . . .« e 14
Constant Data (Numeric) 14
Alphanumeric Data or Print Mask 14
Remarks14

Revised 3-29-71 by
PCN 1045481-001 111

TABLE OF CONTENTS (continued)

Ref. No. Subject

2.00 INTRODUCTION

2.01 ASSEMBLER PSEUDO INSTRUCTIONS
2.02 KEYBOARD INSTRUCTIONS

2.02.01 Enable Numeric Keyboard Instructions
2.02.02 Operation Control and Program Keys
2.02.03 Typewriter Keyboard Instructions

2,03 PRINT INSTRUCTIONS

2.03.01 Modes for Printing

2.03.02 Load Position Register Instruction

2.03.03 Print Alphanumeric from Memory Instruction
2.03.04 Load Print-Numeric Base Register Instruction
2.03.05 Mask Word

2.03.06 Numeric Printing Instructions

2.03.07 Single Character Print Instructions

2.03.08 Ribbon Shift Instruction

2.04 FORMS CONTROL INSTRUCTION

2.04.01 Forms Handler — Open and Close Instruction
2.04.02 Platen Control Register Instructions
2.04.03 Line Advance Instructions

2.05 ARITHMETIC INSTRUCTIONS

2.05.01 Addition Instructions

2.05.02 Add Constant to Accumulator Instruction
2.05.03 Clear Instructions

2.05.04 Insert Constant in Accumulator Instruction
2.05.05 Multiplication and Division Instructions
2.05.06 Subtract Instructions

2.06 DATA MOVEMENT INSTRUCTIONS

2.06.01 Transfer Instructions
2.06.02 Shift Accumulator Instructions

2.07 FLAG INSTRUCTIONS

2.08 INDEX REGISTER INSTRUCTIONS

2.09 BRANCH AND DECISION INSTRUCTIONS
2.09.01 Branch Unconditional Instruction

2.09.02 Subroutine Jump and Return Instructions
2.09.03 Compare Alphanumeric Instruction

2.09.04 Accumulator Skip and Execute Instructions

2.09.05 Flag Execute and Skip Instructions
2.09.06 Skip and Execute Instructions for TC 700

iv

Ref. No.

210
2.11

2.12

2.12.01
2.12.02
2.12.03
2.12.04
2.12.05
2.12.06
2.12.07
2.12.08
2.12.09

213

2.13.01
2.13.02
2.13.03

214

2.14.01
2.14.02
2.14.03

2.15
2.15.01
2.15.02
2.16
2.16.01
2.16.02
217

2.17.01
2.17.02

2.17.03

2.18

2.18.01
2.18.02
2.18.03
2.18.04

TABLE OF CONTENTS (continued)

Subject

MISCELLANEOUS INSTRUCTIONS
CHECK DIGIT INSTRUCTIONS

DATA COMMUNICATIONS INSTRUCTIONS

General Description

Establishing Receive/Transmit Record Areas

Transferring Data From One Memory Address to Another
Unpacking Messages Received

Preparing Messages for Transmission

Field Identifier Codes and Variable Length Fields

“D” Flag Group

Send and Receive Address Instructions

Transmission Numbers

POINT-TO-POINT PROGRAMING PROCEDURES

Basic Point-to-Point Line Discipline
Control Registers
Indicator Register Flags

CENTRAL TC CONTROLLER PROGRAMING PROCEDURES

Line Discipline Format Registers
Data Comm Processor Operations
Main Memory Processor

INPUT WITH PUNCHED PAPER TAPE/EDGE PUNCHED CARD READER
Paper Tape Reader Instructions

Paper Tape/Edge Punched Card Input Instructions

OUTPUT WITH PAPER TAPE/EDGE PUNCHED CARD PERFORATOR
Paper Tape/Edge Punched Card Output Instructions

Reader and Punch Flags

80-COLUMN PUNCHED CARD INPUT INSTRUCTIONS

80-Column Card Input Instructions
Input Indicator Lights and Flags
Program Keys

80-COLUMN PUNCHED CARD OUTPUT INSTRUCTIONS

Punching Alphanumeric Data

Punching Numeric Data from the Accumulator

Card Column Synchronization With the Punch Count Register
Output Indicator Lights and Flags

Revised 3-29-71 by
PCN 1045481-001

v

TABLE OF CONTENTS (continued)
Ref. No. Subiject

2.19 MAGNETIC UNIT RECORD INSTRUCTIONS

2.19.01 Magnetic Unit Record Formats

2.19.02 Magnetic Unit Record Pseudo Instructions

2.19.03 Magnetic Unit Record Flags

2.19.04 Write Instructions

2.19.05 Read Instruction :
2.19.06 Print Alpha From Magnetic Record Area Instruction
2.19.07 Arithmetic Instructions

2.19.08 Transfer Instructions ;

2.19.09 Unit Record Alignment Instructions

2.19.10 Record Alignment Errors and Flag Indicators

2.20 MESSAGE UNPACKING ROUTINE

2.20.01 General Description
2.20.02 Position Table

2.20.03 Data Element Codes
2.20.04 Storage Area

2.20.05 Error Conditions

2.20.06 Delimiter

2.20.07 Programing Requirements

2.21 TRANSACTION CODE TRANSLATOR

2.21.01 General Description
2.21.02 Translation Table Format
2.21.03 Automatic Codes
2.21.04 Code Modification
2.21.05 Error Conditions

2.21.06 Machine Code for Transaction Code Translation Instruction
2.21.07 Word 576
2.21.08 User Program Requirements

2.21.09 Programing Example

vi

TABLE OF CONTENTS (continued)

SECTION ‘ TITLE

3 SYMBOLIC PROGRAMING PROCEDURES .

Program Definition .

Program Writing .

Program Debugging .
Data Comm Debugging

4 PROGRAMING EXAMPLE.

Problem

Solution .

Solution Index ..
General Systems Flowchart .

Program Definition Worksheets .

Program Definition Charts .
Sample Coding Forms .
Assembler III Listing
Sample Output.

Cross Reference Table .

PAGE

. 3-1
. 3-1
. 33

. 4-1

. 4-1
. 41
. 41
. 42
. 43
. 44
. 47
. 433
. 469
470

Revised 11-8-71 by
PCN 1045481-004 viji

TABLE OF CONTENTS (continued)

Ref. No. Subject

5.00.00 ASSEMBLERS

5.00.00 FUNCTIONAL DESCRIPTION OF BASIC ASSEMBLERS
5.01.00 L/TC PAPER TAPE ASSEMBLERS '

5.01.01 Environment

5.01.02 Phase I

5.01.03 Assembler I

5.01.04 Assembler ISL

5.01.05 Assembler VI and VIII

5.01.06 Keyboard Mode

5.01.07 Phase I — Condensed Operating Instructions
5.01.08 Phase I — Diagnostic Facilities

5.01.09 Phase II

5.01.10 Phase II — Operating Instructions

5.01.10 Phase II — Condensed Operating Instructions and Index
5.01.11 Phase II — Error Detection and Indication

5.02.00 80-COLUMN CARD INPUT ASSEMBLERS
5.02.03 Environment

5.02.03 Card I/O Assemblers

5.02.03 Card In/Paper Tape Out Assemblers
5.02.04 Input

5.02.05 Operating Instructions .

5.03.00 L/TC ASSEMBLER 11l B 3500 VERSION
5.03.02 Environment :

5.03.02 Library Tape Input
5.03.03 MCP Control Cards
5.03.04 Option Control Cards
5.03.05 Operating Instructions
5.03.06 Error Detection

5.03.07 Output

5.03.08 LIBTAP — Utility Routine

5.04.00 L/TC ASSEMBLER IV — B 5500 VERSION
5.04.01 Environment

5.04.02 MCP Control Cards
5.04.03 Option Control Cards
5.04.04 Operating Instructions
5.04.05 Operation

5.04.06 Error Detection
5.04.07 Output

5.05.00 L/TC ASSEMBLER V — B 300 VERSION
5.05.01 Environment

5.05.02 Input

5.05.03 Output

5.05.04 Control Cards

5.05.05 End

5.05.06 Operating Instructions

5.05.07 Error Messages

viii

TABLE OF CONTENTS (continued)

SECTION TITLE PAGE
"APPENDIX A GloSsary o e AR
APPENDIX B GP 300 Instructions to Machine Language Y
APPENDIX C Assembler Pseudo InstructionsCl
APPENDIX D Series L/TC Character SetsD1
APPENDIX E = Table of Mask Codes O 1 |
APPENDIX F Error Messages for B 3500 Assembly O 19
Error Messages for B 5500 Assembly F2

Error Messages for B 300 Assembly F2

APPENDIX G Instructions for Keypunching Symbolic Cards R € 5 |
' Symbolic Card Format . . . S € 3 |

A 142/A 150 Keypunching Instructlons T € 5]

024/026/029 Keypunching Instructions G3

APPENDIXH CharacterSets.H1
CUSASCIT 0 . . . o B2

BCL. B2

EBCDIC8B2

APPENDIX I Table of Input Code Assignments e 5|
Input Functions for 6, 7, 8 Channel Tape Il

Field Identifier Codes P U

Table of Output Code Ass1gnments e

APPENDIX J GP 300 TimingsIJ
APPENDIX K Series L/TC ObjectCodeKl
ALPHABETICALINDEX0One

Revised 3-29-71 by
PCN 1045481-001 ix

INTRODUCTION

This manual will provide the information necessary for the L/TC user to write and assemble symbolic
programs using the GP 300 Basic Language. In Section 1 the coding form is analyzed by column. It is
suggested that the reader remove the coding form sample on page xii and locate each specific area on
the form as he reads the text. In Section 2 each of the GP 300 series firmware instructions is presented.
Individual instructions are discussed in a narrative section followed by an example which illustrates the
capabilities of the instruction. The instructions (Op Codes) are presented alphabetically by a category
which relates to machine function.

Section 3 defines the rules and techniques used in symbolic program writing and debugging. To the
non-experienced user it is suggested that he read pages 3-1—3-2 of Section 3 before attempting the other
materials contained in this manual.

A typical billing problem is discussed in Section 4. The analysis begins with-the program definition and
carries through to the sample output on an invoice. Section 5 is a functional description of the Basic
Assemblers. Operating instructions are included.

Users are provided a means of quickly referencing selected areas of the manual by coded boxes placed in
the upper corner of key pages. The information contained within the box is indicative of the material
on that page. In Section 2 the symbolic OP code is placed in these boxes along with a symbol to
indicate the type of firmware set to which the instruction applies. These are: CD-check digit add-on
firmware sets, CRD-80—column card firmware sets, DC—data communications firmware sets, and
PT—paper tape firmware sets.

Boxes which do not contain a firmware code apply to the basic instructions which are generally
common to all firmware sets.

The information provided in this manual applies to the 32-track styles and the 40-track styles of the
Series L/TC.

Revised 7-23-71 by X
PCN 1045481-002 X1

154

PAGE OF

BURROUGHS ASSEMBLER CODING FORM
PROGRAM 1D CUSTOMER
ss.7‘eslo
BRANCH
PARAMETER PROGRAMMER
TEne A B c i
SEQUENCE LABEL oP. CODE |} GTH LABEL R e REMARKS
1 ullenslulm 15[17'18]19]20!21 zzl'zslzals]zs nlzs alao|311~3z|33]34 3slas|37|ss 39|40|u|42 43 «las}aeln w]aslsolstlsz53154155]56}57‘59]59]60]51'52]53!54'55Ieslsvlsslsglmlnlyzlnl7,|-,5|-,57-,
;1 10,1, L1 L1] b1 L1 Ll L1 L1 11 [I SR L Ll 1 1l
.|°|21 I T T 111 I N T [11| 11| 1111 T N I O | | T T I
104043 f o1 T N N A O A A S Lo (| B N [I I O L1 [O T S O
LA T A e (I | T T N B | [11| | | I T Y T Y I I | 11 T T Y I O
||°151 | I T S U N WU O I I | 1 PR B N N O A B I | (| 114 [O N G N U (NN T N N N I N I | 11 | I T I T I
1 1046, | v 4110 L 1 1 L1 L L1 111 L1 [I S W I AR O L1 R B N
1 1047y T I I I I |] L1l L1 11y L1 1111 Ll L1 [I N |
1 10.8y by oy Py e v b b v p o by L1 N U N O T N T T L [B S O
1 10,9 L4l TN N U N U T T T AT Y [Lo Ll1 [B B B A | 1 L1y
TR NN IR T B 111 ! L1y L1 L1 L1 L1l N T N T S T S B | 11 [|
L il by L1111 L1t [| L1l L1 L1 TS A N O N O I I B B | 11 Ll 11
L2y TS T I O I | L1y L1 [L1 I N S T A SN O U N W S M L1 T B A |
Lol | I N O S N T T T Y T Y IO 11 [[I U R O T I 11 T O T O |
Lol A B 113 1 [N L1 L1 11 1111 | T T N T B BB L1 [N N O
11 1t51 Lo 1]t I W N Y T T T S I I O S T T T T T N Y O O O L1 1 I I I
1 11164 I B A | I T O T T Y [T T S B I O O B 11 | I T Y B
L7y I U T T I T T T O O B I S T I [TN IS S N N T N W T T O T O 1l I |
1 11181 | | I S WO N T S T U I I O | 111 11 [S T T N A T I O | 1| T I B
L1119 1111 1t 11 | T | 1 1 1 [L1 [| | I DT T U | [U W T I S |
b 12000 ooy v v v b b by [N VAN EN IR IR AN AN AN A A AR A | L Ll
CONSTANT DATA (NUMERIC)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4/5 6]7,8,9,10]11,12,13,18] 15 [1617 18 19| 20,21,22,23) 28

0 D 0 R DD e 0 e D O C O o D o e e e e S e e e e S

FORM MK TG - 2208 (7/68)

PRINTED IN U S AMERICA

Burroughs Assembler Coding Form

SECTION
ASSEMBLER CODING FORM

PROGRAM 1D
s|e|7|8]9 |10

PROGRAM IDENTIFICATION
DEFINITION — Identifies a specific program.

FIELD DEFINITION — One through six alphanumeric characters entered in columns 5-10. Right or left
justified. Automatically reproduced on succeeding cards with punched card source program.

PAGE . OF

CUSTOMER

BRANCH

PROGRAMMER

PAGE NUMBER AND HEADING
DEFINITION — Identifies and sequentially locates coded pages of a program.

FIELD DEFINITION — The page number is determined by the sequential order number of the page and
the total number of pages. The remaining information is filled in accordingly.

CODJ SEQUENCE

1 |11]12|13)1a] 15
| |oll|
1 lolzl
1 10,3,

1 |0|u’|
1 :0|5|

SEQUENCE

DEFINITION — Identifies the sequential order of the operation codes. Applies only to punched card
source programs.

FIELD DEFINITION — With a keyboard or paper tape source program the Basic Assembler assigns a
sequence number to each line in increasing numerical sequence. ‘

1-1

CODING
FORM

16 (17 {18(19]20 |21

LABEL

DEFINITION — A symbolic designation utilized by the assembler to descrlbe a parameter for a memory
location or other parameter value.

FIELD DEFINITION — A label consists of 1-6 alpha or numeric characters. The first character must be
an alpha character. A label may be the same as a mnemonic operation code of any GP 300 instruction
or assembler pseudo instruction. The label is entered in columns 16-21 and must be left justified.

" OP. CODE

22 23]24 25|28]

I

OPERATION CODE
DEFINITION — The applicable symbolic instruction is entered in this field.

FIELD DEFINITION — Op. Code is éntéred m columns 22-26 and left justified.

1-2

CODING
FORM

FiELo|
LEN-
GTH

FIELD LENGTH

DEFINITION — Indicates the number of characters or digits in the constants associated with certain
instructions. Applies to punch card source programs only.

FIELD DEFINITION — Number of characters contained in required constant entered in columns 27-28
and right justified.

PARAMETER
A B C
+ OR —
LABEL INC/REL

29(30|31|32|33(34{35|36{37|38(39 /40 |4142] 43

A PARAMETER — LABEL
DEFINITION — The applicable label or parameter is contained in this field.

FIELD DEFINITION — Label entries consist of 1-6 alpha or numeric characters and the first character
must be an alpha character. The parameter or label is entered in columns 29-34 and left justified.

A PARAMETER — = INCREMENT

DEFINITION — A signed numeric entry may be made in this field to denote a plus or minus value for
incrementing or relative addressing with the label in columns 29-34 as a base. If a label is not used when
using a branch instruction, the syllable location of the same instruction is used for the base address.

FIELD DEFINITION — If the field has a negative value, the *“-” must be entered in column 35. For a
positive value the “+” is optional. The increment is entered in columns 36-38 and right justified.

1-3

CODING
FORM

B PARAMETER

DEFiNITION — The applicable alphanumeric entry is made in this field.
FIELD DEFINITION — Entry is made in columns 39-42 and left justified.
C PARAMETER

DEFINITION — The applicable numeric entry is entered in this field.

FIELD DEFINITION — Entry is made in column 43.

| T I N T O T I T A O L1 1 | |

I N S N N SN N N O A | I T T A S T |

N A N N U A S TN O O N | 1 I O O T O |

| I I T I | I I T A S I
CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA Ok PRINT MASK
1,2,3,4,5 ,s]7,8,9,10|11,12‘1311al 15I15,17pe,19[zo|21,22123124

29]30 |31/32/33 |34 |35/36(37|38|39 [40 |41]42 | 43 |44 |45 |46 |47 | 48|49|50 |51|52

CONSTANT DATA.(NUMERIC)

DEFINITION — Location of constant data for certain instructions.

FIELD DEFINITION — The constant is entered in columns 29-47 and is left justified.
ALPHANUMERIC DATA OR PRINT MASK

DEFINITION — Location of alphanumeric data for certain instructions.

FIELD DEFINITION - If the data is greater than 24 characters in length in a punched card source
program, the excess characters are continued on the next line beginning in column 29 and preceded by a
“CC” in columns 27. The continuation card must also contain the appropriate instruction in the Op
Code field and a sequence number. Data is entered in columns 29-52 and left justified.

REMARKS

53|54 |55]s6 {57 | 58| 59|60 [61|62|63]|64|65 |66 |67 |68 |69 |70 |71 |72 |73 | 74| 75| 76| 771

REMARKS

DEFINITION — Remarks may be entered in this field, and will appear in the printed documentation.

FIELD DEFINITION — Remarks are entered in columns 53-77 and left justified.
1-4

SECTION
GP 300 INSTRUCTIONS

2.00 — INTRODUCTION

General Purpose Language (GP 300) is a programing language, consisting of machine instructions to
- control system operation, and is used for Series L/TC. For ease of programing the Series L/TC, the
programmer can write his programs in symbolic language and can convert them to machine language
through the use of an assembler program. By using an assembler program, the programmer is not
burdened with keeping track of the memory location used, or the actual machine language for the
symbolic instructions being used. '

The GP 300 instruction list is implemented in the system by various Firmware Sets; the number of
different instructions implemented is dependent on the particular Firmware Set used in the system.
Firmware is defined as a control program, and is stored in a designated area of the systems niemory.
The firmware performs some of the logic and control functions, programmatically, that are usually
performed by hardware electronic circuits in larger computer systems.

Firmware consists of “MICRO-programs” which implement each instruction of GP 300. A
MICRO-program consists of a “string” of MICRO instructions, each performing a step to accomplish the
function of the GP 300 instruction (referred to as MACRO instructions). Thus, in the execution of an
applicational program, the firmware identifies each MACRO instruction used by the programmer, and
selects the proper “MICRO string” to perform the function of the instruction.

2.00.01 MEMORY ORGANIZATION

Membry in the L/TC consists of 1,280 words of 64 bits each, and is organized into 5 blocks of 8 tracks
each, or a total of 40 tracks. Each track containing 32 words. Main Memory is subdivided into two
sections: The Control area and the Normal area.

The Control area contains the firmware which determine the system control functions and which
implement the GP 300 instruction list. The Normal area is used to store the user’s programs which are
written with the MACRO instructions. The MACRO instructions are used by the programmer to exercise
all of the capabilities of the L/TC such as arithmetic, logical comparisons, printing, input/output (paper
tape or 80-column cards), and data transmission. The Normal area is also used for storing constant data,
messages, and for accumulating totals. The amount of Normal area available to the user is dependent
upon the firmware in the Control area (some firmware requires more memory than others).

2.00.02 MEMORY WORD ORGANIZATION

Each word of memory contains 16 digits (64 bits) and may be used to store one of the following:

1. NUMERIC WORD — Contains only numeric values plus sign. Each digit within the number
occupies a single digit within the word. Digit position 15 is reserved for flag settings.

FLAGS 1411312111109 | 8|7 |6 |5 |43 |2]|1]0

Revised 3-29-71 by
PCN 1045481-001 2.00.02

2. ALPHA WORD - Contains only alphanumeric values, left justified. Each alpha character
requires two digit positions within the word. Eight is the maximum number of alpha
characters that can be contained within a word.

3. PROGRAM WORD - Contains 4 MACRO instructions. Each instruction requires 4 digit
positions (termed a syllable) within the word.

Syllable 3 | Syllable 2 | Syllable I | Syllable O

4. PRINT FORMAT WORD - Contains only print format codes. Each code value occupies a
single digit position within the word. Digit position 15 is reserved for flag setting_s.

FLAGS 1411311211110 }9 | 8|7 |6 }|5]4]|3]2]1]0

The words are addressed by a word number. The word number is an mteger wh1ch 11es between 0 and
the highest available word to the user. The word number is sometimes referred to as memory address or
memory location. If a word contains program instructions, it is divided into four syllables each syllable
containing one instruction. The syllables are numbered 0, 1, 2, 3 as shown above within the word.

2.00.03 PROGRAM EXECUTION

When the system is activated and the program mode is entered by depression of the START key,
execution of the program instructions begins in word 0, syllable 0. Execution continues sequentially by
incrementing the syllable value by 1 (certain instructions can modify this procedure, e.g., a branch
instruction). When the syllable value attains 3, the next increment will cause the word number to be

increased by 1 and the syllable counter to be set back to 0. The current word number and syllable value
are contained in the Program Counter.

2.00.03

The following example shows only word numbers and syllable values within those words. The arrows
show how the values in the program counter are changed.

Syllable 0 ‘
Word 0 Syllable 1 ¢
Syllable 2 ¢
Syllable 3§
Syllable 0§
Word 1 Syllable 1§ N
Syllable 2§
Syllable 3 ¢ Syllable 0
Syllable 0§ Word 79 Syllable 1
Word 2 Syllable 1 lopl— — — — | - —— - Syllable 2 —y
“Branch to 79-2” Syllable 3 *
Syllable 0 ¢
Word 80 Syllable 1 ¢
WW Syllable 2 }
TR A e

Sequential Program Execution and the effect of using the branch instruction

After the “START” key is depressed and program execution begins, the program counter always starts
at word 0, syllable O, it continues to be incremented until the execution of the instruction in word 2,
syllable 1 (Branch instruction). After execution of this instruction causes the program counter to change
value from word 2, syllable 1 to word 79, syllable 2, the program counter continues to increment until
another path is selected.

2.00.04 ACCUMULATOR

Set aside from the Normal area of memory, is one word called the Accumulator. It, like other numeric
words, contains 15 digits and a flag position. It is not addressed by a word number, but rather, access to
it is a function of certain instructions. It is a working memory location for the movement of data from
one area to another. It receives all numeric data entered through the keyboard including the keys that
set the Accumulator flags [RE(-), C, M]; it must contain any numeric data to be printed; it can sum up
several amounts and store the result in another word; it receives the product or quotient of
computations; it must be used to accumulate one word of data into another; and it can be used to move
alphanumeric information from one word to another.

When the Accumulator contains 0, the minus flag is reset (i.e., the Accumulator is positive).

Certain instructions will destroy the prior contents of the Accumulator (i.e., clear the Accumulator
before the instruction is executed). This frees the programmer from clearing the Accumulator through
instruction before moving data.

2.00.05 FLAGS

Instructions are provided to ‘“‘test” whether or not certain conditions exist during the execution of the
program, so that alternate paths of program may be selected, depending on the state of the condition

being tested. In GP 300 the user has 28 ‘“Flags™ divided into 7 groups, each of which can be tested.
Revised 3-29-71 by
PCN 1045481-001 2.00.05

There are flags for testing the condition of the Accumulator, flags to test the condition of tape or card
readers and tape or card punches, flags for the OCK Keys which the operator will use, flags for forms
limits, index registers used to control loops, plus general purpose flags which the user can assign for his
own particular needs. '

Each flag consists of 1 “bit.”” When the bit is “ON,” the flag is “Set”; when the bit is “off,” the flag is
“Reset.” The program can interrogate a flag to test whether or not it is set or reset, and select a path of
program accordingly.

A graphic explanation below of the Accumulator which has 4 flags will show how each flag is assigned
one bit. ‘

MICIEHMLIIBIRIHIIOIS? [sl7léels[uls3feli]o]

8L 21
BITS L bits
Accumulator ‘ (M) Per Thousand (S) Special
Flags (C) Per Hundred (-) Minus or Negative
If we were to examine the bit configuration for the flags, they would be fepresented as follows:
8 o) o .
) L 0 0 . 0
Bits 2 (-) o (8) ¢ (6) o (M o
1 . o o o

2.00.05 (Cont’d)

ADVL

ALF

2.01 — ASSEMBLER PSEUDO INSTRUCTIONS

Pseudo instructions control the manner of assembly and determine the interpretation of data fed to the
assembler. They generally do not directly produce machine language instructions, except in some cases
where they fill in syllables to increment the program counter to the next word.

The following instructions are valid for this Basic Assembler Language.

2.01.01 ADVANCE LINE INSTRUCTION

OP CODE A
ADVL 1-4

The ADVL pseudo instruction will advance the assembler output form the number of lines specified in
the A parameter. No machine language instruction is assembled.

2.01.02 ALPHA CONSTANT INSTRUCTION

OP CODE
~ ALF

The ALF pseudo instruction permits alphanumeric data, up to 24 characters, to be stored in memory as
constant data during program loading. Any character on the keyboard, including space, is a valid
character. (Except for Assembler I, a CC in columns 27 and 28 will allow a second line of 24 characters
to be entered.) '

If the syllable counter is not O at the beginning of the ALF, “STOP” instructions are inserted until the
‘counter is 0. The alphanumeric constant is then assembled starting in the next full word.

-The alpha data is identified by placing a label in the label field, unless reference will be made by + or —
incrementing from another entry. For assemblers other than Assembler I, the total number of characters

in the ALF constant must appear in the FIELD LENGTH

. Example: : .
PARAMETER
FIELD
vy : + OR - . <
LABEL OP. CODE GTH LABEL INC/REL

16 {17 |18{ 1920 |21 |22|23|24 |25| 26|27 |28| 29(30{31| 32| 33{34 | 35(36|37;38|39 (40 (41|42]| 43 |44)45 (46 (47

Revised 11-8-71 by
PCN 1045481-004 2.01.02

CcDB

CRD
LABEL ' OP CODE A
PA NAME
NAME , ALF JOHN DOE

When the PA instruction is executed, the alphanumeric characters JOHN DOE would be printed
(including the space).

2.01.03 RESERVE CARD BUFFER INSTRUCTION

OP CODE

CDB -

The CDB pseudo instruction inserts the instruction “BRU to word 11, syllable 0” in word 0, syllable O.
This causes the assembler to reserve words 1-10 as the card read-in buffer area. If the assembly word
counter is not at word 0, syllable 0, an error message will print. (When using Assembler I, the assembly
will halt; with Assembler III or IV it will not halt, but 10 words will not be reserved.)

Accordingly, the CDB instruction must be the first instruction in the program except for pseudo
instructions which do not affect memory allocation such as “Note.”

When the card input data is no longer needed, the 10-word read-in area may be referenced as working
memory by other parts of a program. This is accomplished by providing the CDB instruction with a
label. /

The CDB pseudo instruction is necessary only when the L/TC is used with an A 595 card reader.

Example:
PARAMETER
';'_'g-f’ __A . B c
LABEL OP. CODE GTH . LABEL INC/REL
1517181’92)212223l242526272883)313233343536373839404142 43 14445 |46 |47
c A 'D]] IR N T N T 111 L1 |
‘IIII|CICID|| I N T N O A NS A N | L1 1 1|
Lo TRM | CADEM L Al 1 L1
LABEL : OP CODE A B REMARKS
CARDIN CDB Reserve Card Buffer,
RCD Read 1 card.
TRM CARDIN+2 Use 3rd word of card

read buffer as a working
memory location.

2.01.03

The card input area can be reserved by using the “REG” pseudo instruction. In this circumstance the
programmer must include his own provision to by-pass the 10-word buffer area.

Example:

PARAMETER
FIELD
ey . + OR > <
P. GTH -
LABEL OP. CODE LABEL ING REL

31|32|33(3435|36|37|38(|39|40|41/42| 43 |44|45 46 |47

16 |17 (181920121 {22(23|24 |25| 26|27 |28

| T S | LIPINIR 1 PIM“‘I‘ [| L1 | L1 1
I O I | LJPIKIR] Plznﬁ.fél 111 L1 | |
crr o kbR SN L L
Lo BRY | BEGTIN | | L1
I W W | QJEA 1] ’lol T SR | Lot
g_lg&rl Ri‘&’l] 1 T R i T L1 | I

LABEL OP CODE i E REMARKS

LPNR PMASK Assembles in word 0

LPKR PKEYS Assembles in word 0

LLLR 51 Assembles in word 0

BRU BEGIN Assembles in word 0

REG 10 Assembles in words 1-10
BEGIN RCD 1 Ass:mbles in word 11, syl-

lable O

When using the A 596 Card Reader, the L programmer may utilize the “REG” pseudo instruction to set
up multiple buffers anywhere in the Track O area (words 1-31) alloted for card input.

A 596 Reader input to Series L

LABEL OP CODE A B REMARKS
LPNR PMASK Assembles in word O
LPKR PKEYS Assembles in word 0
LLLR 51 Assembles in word 0
BRU BEGIN Assembles in word 0
REG 10 Saves words 1-10
REG 10 Saves words 11-20
REG 10 Saves words 21-30
BEGIN RCD 1 Assembles word 31
Puts data in words 1-10
RCD 21 Puts data in words 21-30
RCD 11 Puts data in words 11-20

Revised 7-23-71 by R
PCN 1045481-002 2.01.03 (Cont’d)

CDF

CRD

The TC programmer may use any area with Block O (words 1-255). However, when processing data for
transmission, he should place his buffers on track boundaries (words 32, 64, 96, 128, ... 224). This
allows the data to be accessed with Data Comm instructions. The “ORG” and “REG” pseudo
instructions can be used to set up buffers on specific track boundaries. Care must be taken to ensure
- that buffer area and the memory area required for the macro program do not overlap.

'2.01.04 CARD FORMAT INSTRUCTION

Av 595 READER A 596 READER

OP CODE A B A B
CDF 1-80 1-80 1-255 1-255

The CDF pseudo instruction is used to define each field for 80-column card input. The A parameter
denotes the beginning card column of the field. The B parameter indicates the number of card columns
in the field. The values entered are assembled into one syllable as part of the card format table.

The field formats defined in the table may pertain to one or several types of input cards, and may be in
any sequence in relation to the card.

Only 16 CDF’s may be listed for each table name (LABEL).

LABEL OP CODE i_ E REMARKS

LCFR FIELDS Load Card Format Register
WORD
FIELDS CDF 1 1 1 - type of card

CDF 2 7 2 - Acct. No.
CDF 9 6 3 - Product Codes
CDF 15 36 4 - Product Description
CDF 51 6 5 - Gross Weight
CDF 57 8 6 - Price No. 1
CDF 65 8 7 - Price No. 2
CDF 73 8 8 - Cost
CDF 9 24 9 - Name
CDF 33 24 10 - Address
CDF 57 24 11 - City-State

The A 596 Card Reader allows the L programmer using card I/O instructions to read and access data
into any location in Track O except word 0. This provides for a maximum of 248 characters which can
be entered on successive cards. If more than 16 CDF’s are required, the programmer must use multiple
table-names.

The TC programmer must access buffer areas above Track 0 with Data Comm Instructions (Section
2.12.04 — Unpacking Messages Received). E e o]

Revised 7-23-71 by
PCN 1045481-002 2.01.04

CODE

2.01.05 CODE INSTRUCTION

OP CODE A

CODE 4 hexadecimal digits

The CODE pseudo instruction permits the insertion of 4 hexadecimal digits into the next available
syllable of a word of memory. The value designated by the 4 digits in the A parameter is assembled into

the word syllable. Other instructions may precede or follow its use in the same word of memory, or it
may be used successively to insert a full word or several words.

Example:
PARAMETER
FIELD
i : + OR— . .
LABEL OP. CODE GTH LABEL INC/ REL
16 {17 18] 19|20 |21 23!24 26127128(29|30131|32|33|34|35/36|37|38|39 ({40 |41{42]| 43 |44|45 |46
I | Q@_‘_El 1 m& 1 . L L1
Ll [N R Lt Lo |
OP CODE A REMARKS
CODE C925

Print word 293 as alpha.

2.01.05

DEF

DEFT

C925 is the machine language code for PA Word 293 and would be assembled into the next available
syllable. It may sometimes be convenient to use the CODE instruction in this manner to have access to
memory locations or program routines which have been loaded with another program.

2.01.06 DEFINE INSTRUCTIONS

A

0-767

0-15

L]

0-15

The DEF pseudo instruction is used to assign a numeric value to a label. This applies to labels which
name something other than a memory location.

Example:

PARAMETER
FIELD
A
LEN- + OR — <
H
oP. CODE | GT LABEL F REL

24 125|26|27|28/29|30|31|32|33[34{35(36(|37{38

43 |44)45 46

MKPITI h -

22|23
J X
2 |

[

L1 11

L

|
lﬁ_BLl]

U S

The print ball positions at position 35.
The function of the DEFT pseudo instruction is the same as that of the DEF instruction. The DEFT
instruction is used with instructions which require both an A and a B parameter. Values between 0 and
15 are permitted in each parameter.

Example:

OP CODE

POS

?

DEF

SHIPTO

PARAMETER
FIELD
LEN- . + OR — <
H
oP. CODE | GT LABEL Fo aEL
22|23|24 |25| 26 |27|28| 20|30 {31| 32| 3334 | 35|36 37|38 43 |aa|as a6

K

Ml

RDE R

[
]

I}
S

DEF.T

1 |

) N I |

L1

Revised 3-29-71 by
PCN 1045481-001

2.01.06

poc

ESTB
DC
LABEL OP CODE A B
NK , ORDER
ORDER DEFT 6 0

The DEF or DEFT instruction must be used in conjunction with a label (in columns 16-21) to denote
the item being defined. ~

2.01.07 DOCUMENTATION INSTRUCTION (USED ONLY FOR ASSEMBLY ON B 2500/3500/5500.)

OP CODE

DOC

The DOC pseudo instruction permits more extensive narrative to be included in programs and in the
subroutine library. Remarks of up to 49 characters are entered (beginning in card column 29) which
print on the assembly documentation from the B 3500, but which do not punch into the program tape
(or card deck).

2.01.08 ESTABLISH BUFFER INSTRUCTION

OP CODE

ESTB

The ESTB pseudo instruction is used for reserving main memory buffer areas in connection with the
data communications message handling instruction. This is required when it is desired to move a message
from the Data Communications Message Received Buffer into main memory before unpacking the
message, or to build a message in main memory and then transfer it (completely formatted) to the Data
Communications transmit buffer.

The ESTB instruction reserves a 32 word area (256 characters) or 1 track in user memory. Itvselects the
highest track of user memory that is available, reserving 32 words starting with the first word of that
track. '

For example, if 384 words of user memory (0 to 383) are designated in the program assembly, the first
use of ESTB would reserve words 352 through 383; the second use of ESTB would reserve words
320-351. ESTB has no parameters, but it must be labeled.

Example:
PARAMETER
FIELD
L8 2 + OR 2 <
H .
LABEL OP. CODE GT LABEL INC/REL

16 (17 {18|19]20 |21 2223‘24 25126(27|28(29|30|31|32|33{34|35|3637{38|39 [40(41|42]| 43 |44|45

2.01.07

END

EQU
MASK
LABEL OP CODE
RECEIV ESTB
SEND ESTB

In the above example, RECEIV would be assembled with a word number of 352 and SEND would be
assembled with a word number of 320.

2.01.09 END INSTRUCTION

OP CODE

END

The END pseudo instruction terminates the assembly program and must be used as the last line of code
in the program.

2.01.10 EQUATE INSTRUCTION

OP CODE

EQU

The EQU pseudo instruction will permit one label to be given the identical value of another label. The
label coded in columns 16-21 will be equated to the label in columns 29-34. The label contained in the
parameter field (column 29-34) must have been previously used or defined.

2.01.11 MASK INSTRUCTION

OP CODE

MASK

The MASK pseudo instruction is used to enter the table of mask words. An entry of up to 24 print
format characters is accepted.

If the syllable counter is not O at the beginning of the Mask instruction, “Stop” instructions are inserted
until the counter reaches 0. The Mask Characters are then assembled in the next full word.

The appearance of any character other than those listed in the Mask Character Table (see Appendix E)
results in an error condition.

The mask table must be identified by placing its label in the label field (columns 16-21) on:the line of
the first mask word entry. For Assemblers other than the Assembler I, the number of mask characters
must appear in the field length.

Revised 3-29-71 by
PCN 1045481001 2.01.11

NOTE

NUM

Example: See subject 2.03.05.

2.01.12 NOTE INSTRUCTION

OP CODE

NOTE

The NOTE pseudo instruction will permit the entry of up to 25 characters in the REMARKS field
(columns 53-77). No machine language instruction is assembled. No parameter field entry is required. If
one is given, it will be ignored.

Example:
PARAMETER
FIELD
1B . + OR . <
H .
OP. CODE GT! LABEL INC/REL REMARKS

. 122|23]24 |25[26{27 |28/ 29|30|31|32{ 33|34 |35|36 (373839 |40 |41|42| 43 53|54 |55|56 |57 | 58| 59|60 [61]|62|63 64|65 6768169|70 7117273

MLK!_ - N N - L1 | Mﬁi 101¢UTIN§J_

OP CODE REMARKS

N OTE Begin total routine.

2.01.13 NUMBER INSTRUCTION

OP CODE

NUM

The NUM pseudo instruction permits a word of numeric data to be stored as constant data in memory
during program loading.

A numeric constant of from 0 to 15 digits (Assembler I will allow only 14 digits) consisting of the digits
0-9 is accepted. In addition, the “—,” “C” and “M’’ codes preceding the digit positions of the constant
are accepted, and set their respective flags in the flag positions of the word.

If the syllable counter is not 0, “Stop” instructions are inserted until the counter is 0. The numeric
constant is then assembled in the next full word, right justified.

The number must be identified by placing its name label in the label field (columns 16-21) of the
coding form, unless reference will be made to it by +/— incrementing from another entry.

2.01.12

ORG
PAGE
REG

Example:

PARAMETER

FLIEND A 8 c
+ OR —
H
LABEL OP. CODE GT LABEL INC/REL

16 (17 (18| 19]20|21(22]23|24 |25| 26|27 (28] 29|30|31|32|33|34|35|36|37|38|39 |40 |41|42| 43 |44 (45 46|47

/I I I | IUILII IPIzllllll 11| 111
LEJLIJ L bjﬂﬂLL EREIE A 1Q2QL5135 92191 . .

LABEL OP CODE _;:_ _B_ REMARKS
MUL PI ‘ Multiply by PI
PI NUM 314159265358979 PI to 14 places.

2.01.14 ORIGIN INSTRUCTION

OP CODE A
ORG 0-767

The ORG pseudo instruction will assemble the next instruction in syllable O of the word specified in the
parameter field. If the specified word has already beén assigned by the assembler, an error message will
be printed and entry assignment will start at the same sequence.

No machine language instruction is assembled.

2.01.15 PAGE INSTRUCTION OP CODE
PAGE

The PAGE pseudo instruction will cause the assembler output to be spaced to the top of a new form.

2.01.16 REGION INSTRUCTION

OP CODE A
REG 1-255

The REG pseudo instruction sets aside the number of words of memory specified by the A parameter.

The actual memory address is assigned by the assembler. If the syllable counter is not 0, “Stop”
instructions are inserted until the counter equals zero.

Revised 3-29-71 by
PCN 1045481001 2.01.16

WORD

The word counter is advanced by the amount in the A parameter field. If the word counter exceeds the
highest order word available, an error message is printed and entry assignment will start at the same
sequence number.

No machine language instruction is assembled. The region must be identified by placing its name label in
the label field (columns 16-21) of the coding form. This region is not cleared.

Example:
.PARAMETER
FL‘S‘-? - + OR — = =
LABEL OP. CODE GTH LABEL INC/REL
16 |17 18] 19|20 |21 zzzalz4 25|26(27|28| 29| 30|31| 32| 33|34 | 35| 36 |37| 38[39 |40 |41/ 42| 43 4445 a6
[N | ILIMI | AI&JE_LA i TR Ll |
L (TEM 1S L
L1 u;nl I I AR R A B | L 11
I A I | | D | | I T S 111 [[
ﬁ 1’21‘1“1 1 ZS_LQU 1 41 I T N N B 1 11} B | ‘
LABEL OP CODE - i_ E REMARKS
LKBR AREA Load keyboard
TKM 25 Type 25
AREA REG 4 Save 4 words

' 2.01.17A WORD INSTRUCTION

OP CODE

WORD

The WORD pseudo instruction causes the assembler to assign the next instruction at the beginning
syllable of the next word.

If the syllable counter is not 0, it will be incremented and “Stop” instruction inserted into each syllable
until the counter reaches 0.

This instruction should immediately precede the entry of a Program Key Table.

2.01.17

WORD

Example:

PARAMETER
FIELD
1B A 8 c
LABEL OP. CODE | GTH LABEL + OR -
: INC/REL

16 |17 (18] 19|20 |21 |22|23|24 | 25| 26|27 28] 29|30 |31| 32| 33|34 | 35|36 |37|38|39 |40 |41|42] 43 44|45 {46 |47

cia1 1 LPER |(PREYS, | L L1

| I P 11511111111111 11 11 1
I T I | | AR T TN R T O N O O O O T 1 1 1 111

eV, . | . sTAaT | . .. 1. .. | |...

LABEL OP CODE A B REMARKS
LPKR PKEYS
WORD

PKEYS BRU START

Revised 3-29-71 by
PCN 1045481-001 2.01.17 (Cont’d)

NK NKCM

NKR NKRCM

2.02 — KEYBOARD INSTRUCTIONS

2.02.01 ENABLE NUMERIC KEYBOARD INSTRUCTIONS

OPCODE A B
NUMERIC KEYBOARD NK 0-15 0-15
NUMERIC KEYBOARD, PERMIT REVERSE ENTRY NKR 0-15 0-15
NUMERIC KEYBOARD, PERMIT C AND M KEYS . NKCM 0-15 0-15

NUMERIC KEYBOARD, PERMIT REVERSE ENTRY,

C AND M KEYS NKRCM 0-15 0-15

The four numeric keyboard instructions provide for the entry of a maximum of 15 digits of numeric
information into the Accumulator digit positions 0-14. The Accumulator digit position 15 contains 4
flags designated “minus” (-), “special” (S), “per hundred” (C) and “per thousand” (M). These four flags
are always reset at the start of any numeric keyboard or numeric entry instruction. (RE) identifies the

data entered into the Accumulator as negative by setting the minus flag. The C, M Keys set the
appropriate flag when depressed.

The “-,” “C,” “M”’ flags will be set if the particular keyboard instruction enables the use of their related
keys (RE, C, M respectively) and the operator depresses these keys during the instruction. The special
flag ““S” cannot be set by the depression of any keyboard key. Control of this flag is accomplished by
other means (see flag set/reset instructions).

The settings of the four flags transfer with the data from the Accumulator to memory and from
memory back to the Accumulator and thus can be retained for future use in the program.

The A .field of the instruction specifies the maximum number of digits permitted to the left of the
decimal point. The parameter values range from 0-15.

The B field specifies the maximum number of digits permitted to the right of the decimal point. The
parameter values range from 0-15. The sum of the A and B parameter cannot exceed 15.

When entering data, if either the A or B limits are exceeded, the Keyboard Error Indicator is turned on
and the alarm bell sounds, halting the program. When the Keyboard Error Indicator is lit, all keys are
disabled from performing their functions except the reset or ready push button. The entire entry must
be re-indexed following the use of the reset key.

Other conditions which will cause the Keyboard Error Indicator to turn on:

1. The RE, C, M Keys are depressed during a numeric keyboard instruction that does not permit
their use.

2. A typewriter key is depressed (other than 0-9, open/close key, line advance key or typewriter
OCK’s) during a numeric keyboard instruction.

3. A non-enabled program key has been depressed.

A numeric keyboard instruction is initiated when the capacity of the keyboard buffer has
been exceeded and when the valid codes in the buffer do not terminate the instruction.

2.02.01

NK NKCM

NKR NKRCM

Under control of the A field the programed number of digits enter the Accumulator. Although the B
field specifies how many digits can be entered to the right of the decimal point, it also determines the
digit position where the whole number enters the Accumulator. The entry of each whole number causes
the previously indexed digits to shift left one digit position permitting the newly indexed digit to enter
the vacated digit position. A zero key depression counts as a digit even if used as the most significant
digit entry. Double and triple zero keys act in the same manner counting two or three digits
respectively.

Under control of the B field (following recognition of the decimal point key), the first digit is entered
to the right of the phantom decimal point and the second digit in the second position with the
remaining digits entered accordingly. A zero counts as a digit even if entered as the last digit after the
decimal point key. It is not necessary to depress the Decimal Point Key if there are no decimal entries,
even though the B field permits decimals. When the B field is zero, the error light will not become
activated if the decimal point key is depressed without ensuing digit keys.

Example:

Suppose the Accumulator digit positions 0-14 contain 0. Examine the instruction.

|22{23]24 | 25| 26|27 [28({ 29|30|31| 32| 3334 | 35|36 {37|38|39 |40 (41|42| 43

NK L@ Lo

The operator wishes to index the number 5432.10.

The most significant digit “5” is indexed first and enters the Accumulator at digit position 2. The next
digit “4” is indexed and enters the Accumulator at digit position 2 and shifts the 5 to digit position 3.
This process continues until we have 000000000543200 in the Accumulator.

The decimal key is now used, and the digit 1 enters the first position to the right of the phantom
decimal point. The next digit indexed enters in the next Accumulator digit position to the right of the
previous entry. We now terminate the instruction with an appropriate OCK (i.e., according to program
instructions). '

The Accumulator now contains:

1511411311211]1101 9 |8 | 7|6 |54]3]|2]|1]0 | Accumulator Digit Position

ojojJojojojojojotol)st4a4l3]2ti1]o Content of Accumulator

]
]
Flag Position

Revised 3-29-71 by
PCN 1045481-001 2.02.01 (Cont’d-1)

NK " NKCM -

NKR NKRCM

Eiample 1: Tllustrates the use of the NK instruction.

PARAMETER
FIELD
iyl 2 + OR 2 <
: ; N =
LABEL OP. CODE - | GT LABEL o REL

16 |17 1181912021 |22| 23|24 |25{26|27 |28} 29|30{31| 32| 33|34 {35|36|37|38(39 |40 (41{42| 43

| B JAAMVNKI [] “;I I T I !;1 1|

OP CODE A B REMARKS
NK 6 5 Will allow for 11 characters to be entered into the

Accumulator. No printing occurs. 6 to the left of
digit position 5 and 5 to the right of it.-

Example 2: Illustrates the use of the NKR instruction.

PARAMETER
FIELD
o : + OR . <
GTH -
LABEL OP. CODE LABEL INC/REL

16 (17 (181920121 |22| 23|24 |25{ 26|27 (28| 29|30|31{32|33|34|35|36(37{38|39 |40 41|42

___L_L_L_L_l_JALJEAgI 1 J IkI L1 | érj I

OP CODE A B

43

REMARKS
NKR 6 5 Will permit use of negative numbers (set minus
flag).

Example 3: Illustrates the use of the NKCM instruction.

PARAMETER
FIELD
: |LEN- A s 8 c
LABEL . cop H ‘ -
B op. cooe |GTH | LasEL -y

16 [17 18| 19|20 |21 | 22| 23|24 | 25| 26 |27|28| 20| 30| 31| 32| 33|34 | 35| 36 |37/ 38|39 |40 |41

42| 43

1 4 L,i |£L16¢ht1 ;' qn, | I | L1 1 ‘51 11

If the operator indexes 123456789 then the decimal point and 654321, the Accumulator will then contain
in digit positions 0-14

123456789654321

If in addition the operator depresses the C or M key, the C or M flag will be set. Both keys can be used
during the same instruction. Both flags will be set.

2.02.01 (Cont’d-2)

PKA PKC

PKB LPKR

2.02.02 OPERATION CONTROL AND PROGRAM KEYS

Depression of any of the Operation Control Keys (OCK’s, on either the numeric or typewriter
keyboard) terminates the numeric or typewriter keyboard entry, sets the corresponding OCK flag, resets
the other OCK flags, and causes the next instruction in the program to be executed. All program keys
are turned off.

OP CODE A
ENABLE PROGRAM KEY GROUP A PKA 12345678
ENABLE PROGRAM KEY GROUP B PKB 12345678
ENABLE PROGRAM KEY GROUP C PKC 12345678

The function of a Program Key is to select and execute one instruction programed and stored in an area
of memory called a Program Key Table. It also will terminate a keyboard instruction instead of an OCK,
in which case all OCK flags are reset.

Program Key Group A refers to Program Keys A1-A8. Program Key Group B refers to Program Keys
B1-B8. Program Key Group C refers to Program Keys C1-C8. The allowable Program Key Groups are
dependent upon the machine style. The A parameter can include any number of the program keys 1-8
for a specific group (A, B or C).

All PK’s that are desired must be specified by the PK command for that group, as a later command
calling for that group will void the effect of an earlier command for the same group.

When in the ready mode PK: Al, A2, A3 (Start, Load, Utility respectively) have specially assigned
functions and are always enabled. In the ready mode the specially assigned firmware functions take

precedence over any functions programed for these keys.

After an enable program key instruction the program will not stop automatically to allow the operator
time to exercise a decision. This must be done by the programmer with an instruction such as TK or NK.

OP CODE A
LOAD PROGRAM KEY BASE REGISTER LPKR LABEL

The instruction Load Program Key Base Register is used to reference the first word of a Program Key
Table. (4 syllables per word). The A parameter is a label addressing the first word of the table.

The table must begin in syllable 0 of a word. Each PK has one instruction in the table. The Op-Codes
for a 24 PK machine would be arranged as follows:

Revised 3-29-71 by
PCN 1045481001 2.02.02

LKBR

BASE WORD 0 OPCODE for PKAl1 BASE WORD +3 0 OP CODE for BS
| 1 OP CODE for A2 1 OP CODE for B6
3 OP CODE for A3 2 OP CODE for B7

4 OP CODE for A4 3 OP CODE for B8

BASE WORD +1 0 OP CODE for AS BASE WORD +4 0 OP CODE for C1

1 OP CODE for A6 1 OP CODE for C2
2 OP CODE for A7 2 OP CODE for C3
3 OP CODE for A8 3 OP CODE for C4

BASE WORD +2 0 OP CODE for Bl BASE WORD +5 0 OP CODE for C5

1 OP CODE for B2 1 OP CODE for Co
2 OP CODE for B3 2 OP CODE for C7
3 OP CODE for B4 3 OP CODE for C8

There may be more than one PK table in memory at a time. The LPKR instruction must be used prior
to changing the functions of the PK’s in order to locate the base address of the new table.

Example:

PARAMETER
FIELD
LEN- A

GTH 4+ OR -
LABEL OP. CODE LABEL INC,/ REL

116 |1718| 19120121 | 22| 23|24 |25| 26|27 |28| 29|30|31{32| 3334 | 35|36 |37(38|39 [40|41|42| 43

l.llllplx_lAil I'LZ|&II [| L1
Ll 1 NK e e

This example illustrates the use of an NK instruction to halt the program and allow the operator to
select a PK key.

2.02.03 TYPEWRITER KEYBOARD INSTRUCTIONS
op coDE A

LOAD KEYBOARD BASE REGISTER LKBR LABEL

2.02.03

TK

The LKBR instruction specifies the starting memory location into which information will be transferred
for all succeeding TKM and EAM instructions. That is, until another LKBR instruction is executed. The
A parameter addresses the starting word location in which the alpha characters will be stored.

The keyboard base register contains the location that is loaded into it until a subsequent LKBR
instruction loads a new location into it.

This instruction is somewhat modified in firmware sets containing data communications capability. See
Subject 2.12.03.

Example:
PARAMETER
FIELD
LEN- . + OR-— s <
LABEL OP. CODE GTH LABEL INC/REL

16 |17 |18[1920 (21 [22(23]|24 {25(26{27 |28| 29[30|31| 32| 33{34 | 35/36|37|38|39 (40 |41}42] 43

lllllL,LKLBLBLlT[’LPlElllll 1|
ll_ilLT(K'lL_JZ_Lﬁllilll L 1]

The instructions above will allow 25 alpha characters to be stored sequentially beginning in the memory
location addressed by the label TYPE.

OP CODE A
TYPE TK 0-150 15%” forms handler
TK 0-255 26’ forms handler

The type instruction provides for typing and printing as a maximum the number of alphanumeric
characters as specified in the A field. The A parameter ranges from 0 to 150 for 15% inch forms handlers,
while 26 inch forms handler styles provide for a 0 to 255 range. This instruction is terminated by
depression of an OCK or an enabled PK. '

Printing of the first character will begin at the position of the print head. If printing in a specified area
is required, the print head must be prepositioned to the beginning left-hand position of the print area
before the typewriter instruction is reached in the program.

If typing of more than the number of characters specified in the A field is attempted, the Error
Indicator is lit, and further typing is prevented. The error condition can be corrected by depression of
the Reset Key. If the Reset Key is depressed during a TYPE instruction without an error condition, the
instruction will be re-initiated and the print head will return to the beginning typing position.

PARAMETER
FIELD
LEN- A o B C
GTH -
LABEL OP. CODE LABEL INC/REL

16 |17 {18[19|20 |21|22|23]24 |25|26(27|28{29(30|31|32(33{34 {35(36|37}38(39 {40 (41{42| 43

Ivlll,l,rrx_‘ll lqlllllrg”lil I .

The above coding will allow the computer to act as a typewriter for 9 alpha characters.

Revised 3-29-71 by
PCN 1045481-001 2.02.03 (Cont’d-1)

TKM

' OP CODE A
TYPE INTO MEMORY PRINT TKM ~ 0-150 15%” forms handler
| TKM 0-255 26” forms handler

The Type into Memory instruction differs from the Type instruction in that in addition to printing
alphanumeric information, the characters are also stored in memory. The space character is considered a
print character and stores a code in memory. The codes for Backspace, Open/Close, Line Advance,
OCK’s and Program Keys are not stored in memory. :

Example:

PARAMETER
FIELD
) LEN- A Ty B C
LABEL OP. CODE GTH LABEL INC/REL

16 {17 (18119120121 22(23|24 |25{26|27 |28} 29|30(31| 32| 33|34 |35|36|37|38|39 {40 {41|42]| 43

L Tk 3 Lo

A maximum of 31 alpha characters can be typed and a maximum of 32 alpha characters (31 alpha
characters plus end of alpha code 0, 0) will be entered into memory. See LKBR instruction Subject
2.02.03

This instruction is somewhat modified in firmware sets containing data communications capability. See
Subject 2.12.03

The code, for each key depressed before instruction termination, is stored in memory with the first
character stored in the most significant character location of the word specified by the keyboard base
register. A single word can store 8 characters.

ALPHA WORD - (8 characters)

The depression of the backspace key effectively removes the last typing key code from memory.
Backspacing will not occur past the first typing position.

On a TKM instruction each word is cleared before any characters are entered. The unused portion of the
word remains clear. If no typing is done and the TKM instruction is terminated by an OCK, the word is
clear. If exactly 8 characters were entered and then an OCK was used, the next sequential word in
memory would be cleared. If a TKM is used again, without another LKBR, the data will enter memory
at the first position of the last LKBR.

Note this is modified when used with Data Comm firmware. See SCP, Subject 2.12.03.

2.02.03 (Cont’d-2)

EAM

OP CODE A
ENTER ALPHA INTO MEMORY EAM 0-150 15%” forms handler
EAM 0-255 26” forms handler

This instruction is identical to the TKM instruction except that printing does not occur. The print head
does not escape.

Revised 3-29-71 by
PCN 1045481-001 2.02.03 (Cont’d-3)

POS

PA

2.03 — PRINT INSTRUCTIONS

2.03.01 MODES FOR PRINTING

Instructions are provided to print in three modes:

1. Alphanumeric printing of data either from keyboard entry or from memory. When printing in
this mode, the field is left justified.

Printing of numeric data from Accumulator. In this mode printing is right justified.

Printing of a single character with the actual character specified by the instruction. A smgle
character prints in the position indicated.

2.03.02 LOAD POSITION REGISTER INSTRUCTION

OP CODE A
POS 0-150 15%” forms handler
POS 0-255 26 forms handler

The Position Register is loaded with the value of the A field. The A field ranges from 1 to 150 for
15% inch forms handlers and 1-255 for 26 inch forms handlers. The position loaded in the position
register corresponds with the actual position at which the printer will print. The print ball does not
move until the program reaches an instruction which specifies that a character is to be printed, or untﬂ
a keyboard instruction is reached. The print head escapes in 1/10 inch increments.

PARAMETER
FIELD
LEN- 2 + OR 2 <
N -
SEQUENCE LABEL OP. CODE GT| LABEL INC/REL

11112} 13]14{ 1516 |17 {18[19]20|21]|22|23|24 [25| 26|27 |28| 29|30|31| 32| 33|34 |35|36|37|38|39 |40 [41/42| 43 |44 |45 46 |47

L 10,1, 11111P|‘|$|| |I|°|’1|| [EERE| L1
1102 IlllllLJLll,llllllll Lt L1

1 108 | K 36 L1t

The above instruction will position at position 101 or 10 inches from position 1.

2.03.03 PRINT ALPHANUMERIC FROM MEMORY INSTRUCTION

OP CODE A
PA LABEL

2.03.01

LPNR

The Print Alphanumeric instruction prints alphanumeric information from memory beginning with the
first character in the memory location specified by the “A” field. Printing continues until an end of
alpha code (0,0) is encountered, regardless of the number of words used.

For the PA instruction, the ribbon will be in the normal (generally black) position, although it can be
changed to the reverse position by other instructions.

Example:

Suppose the alpha characters MESSAGE (and an end alpha code) are stored in memory location SAVE
and we desire to print the contents of this memory location.

Initially, we position the print head. The second step is to provide for the actual printing. These two
steps are programed.

PARAMETER
FIELD
A
LEN- + OR - 2 <
H
LABEL OP. CODE | GT LABEL e REL

16 |17 (18| 19|20 |21 23124 125(26|27 |28 31{32{33(34|35(36|37|38(39 |40 (41|42| 43 |44|45 |46 (47|48

P1¢‘11 lqlsllll TN N S N N | 14 1 l
L _|}|,P|A|1_J SAV.E | Loy N

The printed message would appear at print position 95, left justified and read MESSAGE.

2.03.04 LOAD PRINT-NUMERIC BASE REGISTER INSTRUCTION-

OP CODE

1>

LPNR LABEL

The Print Numeric Base Register is loaded with the value of the base address for the print mask table.
All succeeding print instructions reference this table until another LPNR instruction is executed. The
“A” parameter designates the base address of the print mask table.

Mask words are grouped into a table in memory. A Print Numeric Base Register contains the base

address or starting word of the table. The location of a mask word is specified by using the relative
addresses O thru 15.

Revised 3-29-71 by
PCN 1045481001 2.03.04

MASK

Example:

PARAMETER

FIELD
A
LEN- + OR 2 <
GTH -
LABEL OP. CODE LABEL INC/REL

16 {17 |18|19(20 |21 2223]242526272883)313233343536373839404142 43

j I Ll'l”l&] FM‘J [Loy

| VN I | | |
1 B I | 11| L 11
| piplnbl 1 | . L1 |
1) 11 1 1 1|

L 222,222,222, .00 |

The Print-Numeric Base Register is loaded with the word number of the label (FORMAT). Relative
address O would access the mask word in location FORMAT + O or DD.D. Mask number 1 would be
7277.DD, (FORMAT + 1), etc.

A maximum of 16 different masks can be referenced relative to the base address value in the Print
Numeric Base Register. If more than 16 masks are required, the register must be reloaded with a new
value before referencing the masks in the second table (by use of LPNR instruction), and then reloaded
with the original value before reusing any of the first set of 16 masks. If fewer than 16 masks are
required, those words of memory never referenced as mask numbers may be used for any other purpose.

2.03.05 MASK WORD (PRINT FORMAT)

The mask enables printing in varied formats. The mask word consists of control codes and control flags.
The control codes are entered into the mask word in digit positions 0-14. They control the printing (or
non-printing) and punctuation of each corresponding Accumulator digit. Mask flags are entered into digit
position 15 of the mask word, and are used to modify the effects of the control codes.

TABLE OF MASK CONTROL CODES

NAME CODE PRINTING RESULT

Digit : : D Accumulator Digit prints unconditionally.

Decimal Point and Digit .D Decimal Point and Accumulator Digit
print unconditionally.

Digit and Decimal Point D: Accumulator Digit and Decimal Point
print unconditionally.

Digit and Comma D, Accumulator Digit and Comma print
unconditionally.

Leading Zero Suppress Z Accumulator Digit prints if non-zero, or if

a previous digit to the left was non-zero.

2.03.05

MASK

TABLE OF MASK CONTROL CODES (Continued)

NAME

Leading Zero Suppress
and Decimal Point

Leading Zero Suppress
and Comma

Units of Cents

Tens of Cents

Terminal Zero Suppress

Decimal Point and Terminal
Zero Suppress

Ignore Digit
Ignore Digit End

Single Digit Zero Suppress

CODE

Z:

PRINTING RESULT

Accumulator Digit and Decimal Point
print if digit is non-zero or if previous
digit to the left was non-zero.

Accumulator Digit and Comma print if
digit is non-zero or if previous digit to the
left was non-zero.

Accumulator Digit prints if significant or
if there is a significant digit to the right.

Ignore if digit is zero and if significance is
not established by either a preceding digit
or a digit to the right.

Decimal Point and Digit print if signifi-
cant or if there is a significant digit to the
right.

Ignore if digit is zero and if significance is
not established by either a preceding digit
or a digit to the right.

Accumulator Digit prints if non-zero, or if
any digit to the right in this terminal zero
suppression field is non-zero.

Decimal Point and Digit print if digit or
any succeeding digits in this terminal zero
suppression field are non-zero.

Ignore if the digit and all digits to the
right in the terminal zero suppression field
are zero.

Digit is ignored, printer does not escape.

Digit is ignored, the print instruction is

- terminated, printer does not escape.

Digit prints if non-zero. Escape if zero.
Digits to the right and left have no effect.

Revised 3-29-71 by ,
PCN 1045481-001 2.03.05 (Cont’d-1)

MASK

TABLE OF MASK FLAGS
NAME CODE PRINTING RESULTS

Safegﬁard F When the Safeguard flag is set, the safe-
guard symbol ($) is printed to the left of
the most significant digit printed.

Suppress Punction + Print positions where commas or decimal
points would normally be inserted are
replaced by spaces.

Punch Leading Zeros P No effect on printing, causes preceding
zeros to punch even though they may not
print, starting at the pointer.

Print Condensed Numeric - Monetary punctuation prints without
causing printer escapement. Requires PIP
hardware.

MASK WORD EXAMPLES:

The examples below illustrate the filtering and control that a mask word and its control codes exert
over the printing of each accumulator digit.

Sample: Printing decimal fractions allowing for a 7-digit whole number and 3 decimal places:

Example 1:

pointer whole number | fraction
Instruction: PN 9 1 field = field——|
Accumulator: 0 000O0OOCOOTI®6 50120
Mask 1: zzz 2224 7Z 22272 ZZ/X XX
Printed Result: '1:, l6 5 6: i 2

Mask 1 provides 1 field for whole numbers and 1 for decimal fractions: The “Z” and “Z,” mask codes
establish a ‘“leading zero suppression field”” from digit position 3 through the pointer in position 9, and
the proper comma punctuation for whole numbers; thus, digit positions 7, 8, & 9 are suppressed because
they are not significant. The “X” and “.X” mask codes establish a “terminal zero suppression field”
from digit position O thru 2 and provide the decimal point, thus digit position zero is suppressed
because it is non-significant.

Example 2:

| pointet——————— whole number fractw‘nj
Instruction: PN 9 1 field field
Accumulator: 0 000O0OO0QCOO1 6 50000
Mask 1: 2222227227 171717'XX X
Printed Result: l1', é 5' (|)

2.03.05 (Cont’d-2)

PN
PNS —
PNS +

Using the same mask word as in example 1, this illustrates the printing effect when there is no
significant fraction value. The printed result being only a whole number. Also, as in example 1, digit
positions 7, 8 & 9 are suppressed for lack of significance. In both examples, digit positions 10 through
14 are ignored due to the pointer having been specified at position 9.

As we will see due to the PN instruction, the mask need not fill the entire mask word.
2.03.06 NUMERIC PRINTING INSTRUCTIONS

Numeric values to be printed must be contained in the Accumulator and can have a maximum of 15
digits. It is not possible to print numeric data directly from memory.

OP CODE A B

- PRINT NUMERIC PN 0-14 0-15

The Print Numeric instruction prints the contents of the Accumulator with‘the ribbon in the normal
(generally black) position regardless of sign. (Unless previously shifted by the RR instruction.)

The “A” field contains the Accumulator digit position number for the most significant digit to be
printed. This is independent of the print mask. All positions higher than the digit position specified are
ignored and lost from printing. Since the Accumulator digit positions start with 0, to print out a
maximum of § digits the “A” parameter should contain a 4.

The “B” field of this instruction identifies the print mask to be used during printing. There is a
maximum of 16 print masks per LPNR instruction so the B field contains a value from 0-15. The value
referenced in the B field is a function of the mask table. (See LPNR instruction).

OP CODE A B
PRINT NUMERIC, SHIFT RIBBON PNS— 0-14 0-15
IF MINUS ’

PRINT NUMERIC, SHIFT RIBBON PNS+ 0-14 0-15
IF PLUS

The PNS— and PNS+ instruction are similar to the PN instruction, the difference being:

1. The PNS— instruction shifts the ribbon if the sign of the Accumulator is negative. The PNS—
instruction also allows for Print in Place Capability. The ability to print in place is actuated by
the insertion of a Dash (—) in digit position 15 of the mask word. This will print the comma
(,) and period (.) without letting the printer actually escape the 1/10 inch normally permitted.

Revised 3-29-71 by
PCN 1045481-001 2.03.06

PN
PNS —
PNS +

2. The PNS+ instruction shifts the ribbon if the sign of the Accumulator is positive.

Example 1:
PARAMETER
FLI&D A B [
+ OR —
coma* SEQUENCE LABEL OP. CODE GTH LABEL INC/REL

I 11112{ 1314/ 15|16 {17]18| 19|20 |21 |22]23|24 |25|26|27|28| 29|30|31| 32| 33|34 |35|36|37|38|39 |40 |41{42| 43 |44 45 46 (47

L 10,1, 111LL€:§1| L RN RS & T L1
110121 I I T __l___&lllllllOI!I L 1]

LABEL OP CODE A E REMARKS
NK 5 3 Enable Numeric keys
PN 8 0 Print Accumulator contents

The contents of the Accumulator are printed beginning with digit position 8 and with the format
dictated by print mask O.

Example 2:
PARAMETER
FIELD
e : + OR > <
" -
COD! SEQUENCE LABEL OP. CODE GT! LABEL INC/REL

| [11]12] 13|14 15]|16 {17 [18|19|20|21|22|23]24 |25|26|27|28| 29|30|31| 32| 33|34 | 35|36 |37|3839 |40 |41|42| 43 |44|45 |46 |47

1101'1 11111W|‘Rﬂl |$l||4| 11|311[L1 1
||°|2L I | IM‘I.I 1311114 |||pl|| 11 |

P03 Lo L1 [N N DT N OO U A W W Lo | L1
] 101“'1 | I | |] I T B 11 L1 1 1 1
11045 | I T 1111 1 THR B N | L1 1 [L1 1
LABEL OP CODE _.5 E REMARKS
NKR 5 3 Enable Reverse Entry
PNS— 8 0 Print Shift if negative

Printing will occur as in the above example, but the ribbon will Shift if the Accumulator “minus’ flag is
set.

2.03.06 (Cont’d)

PC PC —

PCP PC +
2.03.07 SINGLE CHARACTER PRINT INSTRUCTIONS
OP CODE A
PRINT CHARACTER PC Character to be printed

This instruction unconditionally prints the character specified in the “A” field. If the “A” field is blank,
the instruction causes a single printer space operation. The PC instruction prints with the ribbon in the
normal position (unless previously shifted. See RR instruction).

OP CODE A
PRINT CHARACTER PREVIOUS RIBBON PCP Character to be printed

The PCP instruction will print a character with the same ribbon position that was used on the last print
operation.

OP CODE _li
PRINT CHARACTER IF ACCUMULATOR PC— Character to be printed
MINUS, PREVIOUS RIBBON
PRINT CHARACTER IF ACCUMULATOR PC+ Character to be printed

PLUS, PREVIOUS RIBBON

Printing of these instructions is dependent upon the Accumulator sign flag (+ or —). The character
specified in the “A”’ field is printed according to the following conditions:

1. PC- Print if Accumulator negative (i.e., sign flag set); do not print if plus.

2. PC+ Print if Accumulator positive (i.e., sign flag reset); do not print if negative.

Example:
PARAMETER
FIELD
o : +OR— . <
. GTH -
SEQUENCE LABEL OP. CODE LABEL INC/REL

11]12] 13114} 15116 |17 |18[19{20 |21 2223124 25|26|27|28| 29(30|31|32|33{34|35|36(37|38{39 (40 [41]42| 43 {4445 446 |47

llolll IIIIINIKJR]I Isljl;l ||13||I I 11

110121 L P 17 1110“11 b1 Olil Lt
11003 | i Ped i JENENENENEN RTRNET A A L1
| 1014 L1 e B T e B O T O O R O Ll L1

Revised 3-29-71 by
PCN 1045481-001 2.03.07

RR

LABEL OP CODE A B REMARKS
NKR - - - 8 3 Allow negative entry
PNS— ‘ 10 0 - Print amount
PC+ + ' Print if positive
PC— ‘ - Print if negative

If the Accumulator contains a positive quantity, a “4” character will be printed.fA negative coi}tent
would produce a “~’’ character. ‘

2.03.08 RIBBON SHIFT INSTRUCTION

Printing of data normally is with the ribbon color black, excépt for certain print instructions that cause
minus amounts to print in red. However, a ribbon shift instruction is also provided to change the normal
color of printing. .

OP CODE
RED RIBBON : ‘ " RR
The RR instruction is uséd to chahge the ribbon color of only the next printing instruction. The ribbon

color will be opposite to the color normally expected from the data and type of the next print
instruction. ’ ‘

Example 1: .
PARAMETER
FiELD| '
,’ o A _ _B c
copE] SEQUENCE LABEL OP. CODE | GTH LABEL + OR

INC/REL

| |11}12]13]14] 15{16 |17 18] 19 zo'ziizz,‘zal_‘zat 25|26 |27|28| 29| 30|31} 32| 33{34 | 35| 36|37| 38|39 |40 |41| 42| 43 |aa |45 |46 |47

||0||1,g411|j1';.1!1_&|.«,|_|,1x}|1 AT < T L1

..0,21”1111‘1:R’11 [ST N N I R L1
003 Ly PNy | S |y (B L1y
L 10,4, S G 1 R & W T T N ;3:;: I [
LABEL ﬁ E REMARKS
8 ' 3 ' Allow negative entry
o Reverse Ribbon
5 3
5 3

The Accumulator contents would print accordmg to the PN 5 3 instruction but the ribbon would change
to the opposite color. The second PN 5 3 would not be affected by the RR ‘instruction.

2.03.08

RR

Example 2:
PARAMETER
FIELD A 8 c
d LEN- + OR —
) GTH
(CODI SEQUENCE LABEL OP. CODE LABEL INC/ REL

| |11]12{13]|14| 15|16 [17|18|19|20 |21 |22|23|24 |25|26|27|28| 29|30|31| 32| 33|34 | 35|36 |37| 38|39 |40 (41|42| 43 |44|45 |46 |47

llolll lllll“lxlnll lgillll |||31|l L4 1
11012. IIIIIRRILIJilllJ Ll'I [[

1 10,3, ||1|||M‘|1l'nqllqlnulou.n L1
Ilolu'l I I N O Y OO T S A B T [L1

1 10|5| I N S | P”l l+l Il 'lpl | | 1 11 ol |- | 11
LABEL OP CODE A B REMARKS
NKR 8 3 Allow negative
RR Reverse Ribbon
PNS— 10 0 Shift Ribbon “—’
RR Reverse Ribbon
PNS+ 10 0 Shift Ribbon “+”

The effects of the PNS— and PNS+ instruction are reversed.

2.03.09 POWER ON AND OFF INSTRUCTIONS

Programmatic OFF-ON and manual ON for the Printer Power motor is applicable on the TC 700 series.
The PON and POF macro instructions are available only in TC 700 main memory firmware sets.

OP CODE

~ PRINTER POWER ON PON

The printer motor, which also supplies power to the keyboard, will be started when the PON instruction
is executed. If the motor is already ON, the PON will execute as a NOP. With the system main power
ON and the printer power OFF, depression of the Printer Power ON button alone will unconditionally
start the motor.

NOTE: Power to the printer motor will always be ON at the initial ﬁirn on of the system.

OP CODE

PRINTER POWER OFF POF

Revised 7-23-71 by
PCN 1045481-002 ‘ 2».103.09

Power to the printer (keyboard) motor will turn off if the printer motor OFF button is being held
depressed when the POF instruction is executed.

The POF instruction will not cause power to the printer motor to be turned OFF unless the Printer Off
button is depressed when the POF instruction is executed. The POF instruction will execute as a NOP if
it is executed when the Printer Motor Off button is not depressed. :

When the printer motor is OFF, the execution of the functions for printing, keyboard buffering,
keyboard indexing, the forms handler, and alarm are prevented. Attempted execution of any of the
preceding instructions will result in a system block. Attempted execution of PON or POF on a machine
not equipped with the Printer Motor OFF/ON buttons will also cause a system block. A systems block
can be cleared only by depression of the Program Halt and Clear Button.

LABEL OP CODE A B C REMARKS
LOOP ~ EX D 2 1 If message has been received,
\ BRU RECEIV . process it. If keyboard buffer
SK B 3 1 is empty continue in loop.
BRU KEYBRD Printer power on button must
POF have been depressed for data.
, BRU LOOP : to be in keyboard buffer.
RECEIV PON , Printer power must be turned
LRBR 0 -~ before PAB can be executed.
PAB 12 : :
PM-OFF EX B 3 2 If the keyboard buffer is
POF empty execute the POF and
BRU PM-OFF ‘ continue in the PRNTR
LKBR TABLE -motor off loop. Before the
EAM 4 PM-OFF loop can be exited,
NOTE : the PRNTR power on button
NOTE , must be depressed and data
NOTE must be entered into the

keyboard buffer.

2.03.09 (Cont'd) =

2.04 — FORMS CONTROL INSTRUCTIONS

2.04.01 FORMS HANDLER — OPEN AND CLOSE INSTRUCTION

OP CODE A
Open Forms Handler oC 0-255 rear feed handler
oC BLANK front feed handler

The OC instruction is used to open the forms handler mechanism in order to permit the insertion or
removal of a completed unit document. The A parameter is blank for front feed styles. For rear feed
styles of the L/TC the A parameter of the OC instruction specifies the number of lines the left forms
mechanism will advance when the handler mechanism is next closed.

This closing may be from any of the following sources:
1. The execution of a PN or PA instruction of any type.

2. The entering of alpha information at a TK instruction. If a TK instruction were terminated by
an OCK without the entering of alpha data, the handler mechanism would not close.

3. A CC instruction.

Manual depression of the open/close key on the keyboard.

When programing for automatic alignment of rear-fed unit documents, the number that must
be placed in the OC parameter must be 3 greater than the line number of the first actual line
of print.

To align a unit document to line number 14

OP CODE A REMARKS

ocC 17 Will align to 14

Although the form aligns to line 14, the Count Register contains 17. Thus, it may be desirable
to reload the Count Register with 14 before any further vertical spacing is performed.

OP CODE

Close Forms Handler CC

The CC instruction closes the forms handler. This instruction generally is not required since execution of
any print instruction or depression of a typing key during a type instruction will automatically close the
forms handler.

If the handler is open as the result of executing an OC instruction, when the CC instruction is executed,
the Left Forms mechanism will advance the number of times specified by the OC instruction.

Revised 8/9/71 by .
PCN 1045481-003 2.04.01 l

LLCR LRCR LLLR LRLR

AL AR ALR ALTO ARTO

2.04.02 PLATEN CONTROL REGISTER INSTRUCTIONS

OP CODE A
LOAD LEFT PLATEN COUNT REGISTER LLCR 0-255
LOAD LEFT PLATEN LIMIT REGISTER LLLR 0-255
LOAD RIGHT PLATEN COUNT REGISTER LRCR 0-255
LOAD RIGHT PLATEN LIMIT REGISTER LRLR 0-255

The programmer is provided with four platen control registers to control vertical spacing. These are the
Left and Right Forms Count Registers, and the Left and Right Limit Registers. In addition, there is a
Forms Limit Flag.

_A forms count register is associated with each platen advance mechanism. This register is automatically
incremented by 1 each time the respective (left or right) platen is advanced a line either program-
matically or by use of the Line Advance Key.

A forms limit register is also associated with each platen advance mechanism. This register contains a
limit to which the forms count register can be compared.

The LLLR and LRLR preset the forms limit registers to a specified line. The count register will be set
to 1 (not 0) on the next line advance after the respective limit and count registers are equal.

On the line advance following when the count register equals the corresponding limit register, the forms
limit flag is set. The limit flag becomes reset on the next line advance.

LLLR 50
LLCR = 50

On the next line advance the left count register equals 1 and the Forms Limit Flag will be set.
The next line advance (2nd after LLCR = LLLR) resets the flag.

The execution of a LLCR or LRCR will reload the appropriate count register. The count register is not
incremented when the platen is advanced by the platen twirlers.

The LLLR and LRLR instructions load the Left and Right Platen Limit Registers respectively with the
contents of the “A” field.

2.04.03 LINE ADVANCE INSTRUCTIONS

OP CODE A
ADVANCE LEFT PLATEN AL 0-255
ADVANCE RIGHT PLATEN AR 0-255
ADVANCE BOTH PLATENS ALR 0-255
ADVANCE LEFT PLATEN TO ALTO 1-255
ADVANCE RIGHT PLATEN TO ARTO 1-255

Revised 3-29-71 by
PCN 1045481-001 2.04.03

LLCR LLLR LRCR LRLR|

AL AR ALR ALTO ARTO

The AL, AR, and ALR instructions advance the form the number of lines specified by the “A”
parameter. These provide a single line advance with a maximum advance of 255 lines. The vertical spaces
occur in the 1/6 inch increments. The respective count register is incremented by 1 for each single line
advance. . : :

OP CODE . A
AL ‘ 1

The form will advance 1 line. The Count Register will be incremented by 1.

The ALTO and ARTO instructions advance a form until the associated count register is equal to the

~value of the “A” field. If the Count Register equals the line number specified in the ALTO or ARTO .
instruction prior to its execution, no advance occurs. Specifying ‘““0” or an integer larger than the
contents of the Limit Register in the “A” parameter of the ALTO/ARTO instruction is a programing
error. This will result in a continuous search for a line number that does ot exist.

1. To determine the number of lines which will be advanced, subtract the Count Register from
the value of the “A” parameter in the ALTO or ARTO instruction. If positive, this will be the
number of lines advanced. If negative, assume this number is positive, then subtract from the
value of the Limit Register to ascertain the number of lines advanced.

a. OP CODE A REMARKS
LLLR 255 Load Left Limit Register
LLCR ‘ 20 Load Left Count Register
ALTO 3 ~ Advance to line 3
Value of ALTO parameter — Value of Count Register
3 — 20 = -17

Since negative assume positive (i.e., —17 = 17)
Value of Limit Register - 17 =
| 255 — 17 = 238

There will be an advance of 238 lines.

b. OP CODE é_ REMARKS ,
LLLR 255 Load Left Limit Register
LLCR 20 Load Left Count Register
ALTO 25 Advance to Line 25
Value of ALTO parameter — Value of Count Register =
25 - 20 = 5

Since resultant is positive, there will be 5 line advance.

2.04.03 (Cont’d-1)

LLCR LLLR LRCR LRLR

AL AR ALR ALTO ARTO

2. OP CODE A
LLLR 30
ALTO 5

Assume contents of Left Count Register = 20, when ALTO command is executed. This is an example of
the type of programing employed when using pin fed continuous forms with the requirement that the
program automatically advance from the last line on one form to the first line of a new form.

The form advances 10 lines, then the LLLR = LLCR, on the next line advance the Count Register is set
to 1. Advancing continues for 4 more lines to line 5 of the new form. In this case, the last line on the
form would be line 30.

Another method of continuous forms programing utilizes the forms limit flag.
Example:

Suppose we have the following form:

Line 1 I

First Print Line "

Last Print Line lvo

Last Line on Form e U
e A AAAAAANAAAN

The following programing will advance the form automatically when the forms limit flag is set.

OP CODE

A B <
LLLR 40
LLCR 0
AL 1
EX T
ALTO 17
6

LLLR

The following illustrates the use of the Limit Register to enable the program to know when 40 lines
have been filled on the invoice. The total length of the invoice is 8% inches (8.5 x 6 = 51 lines). The
first print line is 14 as measured from the top of the form.

Revised 3-29-71 by R
PCN 1045481001 2.04.03 (Cont’d-2)

LLCR LLLR LRCR LRLR

. AL AR ALR ' ALTO ARTO

OP CODE A
LLLR 40
LLCR 37

ocC | 17

- TK | 10

When the forms- handler is closed, the form will advance 17 lines. The first three lines increment the
Count Register to '40, the next advance will set the Count Register to 1. After an advance of the
remaining 13 lines; the Count Register will be at 14. This is the actual first print line, and the number
wanted in the Count Register. C

2.04.03 (Cont’d-3)

. -ADA

-~ ADM-
' 2.05 — ARITHMETIC INSTRUCTIONS
2.05.01 ADDITION INSTRUCTION
OP CODE A
ADD TO ACCUMULATOR ADA LABEL
ADD TO MEMORY | ADM LABEL

The ADAfinstruction provides for adding the contents of a memory location, specified by the A field to

the contents of the Accumulator. The resultant sum is placed in the Accumulator leaving the memory
location undisturbed. ‘

The ADM instruction provides for adding the contents of the Accumulator to the contents of the

memory location specified in the A field. The resultant sum is placed in memory location A leaving the
Accumulator undisturbed.

The overflow flag is set if an overflow occurs and reset if there is no overflow.

The ADA and ADM commands cannot be used to move alpha data, even if the receiving location is
clear.

Example 1:
PARAMETER
FIELD
o . + OR 2 <
LABEL OP. GTH -
P. CODE » LABEL INC/REL

16 117 |18{19|20 121 |22]23|24 | 25| 26|27 |28 31}32{33|34|35/36|37|38|39 |40 |41|42] 43 |44|45 46

T B AIDIAI | 1 Alnglhl] L1 |]

OP CODE A B REMARKS
ADA AREA Add to Accumulator the contents of Area, content
of Area is unchanged.
Example 2:
PARAMETER
mED A B c
LABEL OP. CODE | GTH . LABEL ':’Ng';R'EL

16 |17 18| 19|20 (21 |22|23|24 | 25|26 |27 |28| 29{30]|31]| 32| 33(34 | 35| 3637|3839 [40 [41|42] 43 |44|45 [46

11||1LAID|MU1 ldA_L_‘R_LgLAl 1_ - L1 11

OP CODE ;_A_ _ _B_ REMARKS
ADM AREA Add to memory location Area contents of
Accumulator leaving Accumulator unchanged.

Revised 3-29-71 by
PCN 1045481001~ 2.05.01

ADK -
cLM
CLA

2.05.02 ADD CONSTANT TO ACCUMULATOR INSTRUCTION

OP CODE A B

ADK 014 09

The ADK instruction provides algebraic addition of the digit contained in the B field to the digit in the
Accumulator position specified by the A field, with carries propagated in sqcceeding high order digits.

The Special (S), per thousand (M) and per hundred (C) flags are unconditionélly reset.
The sign flag is reset (+) if the result is positive or set (—) if negative.

The overflow flag is set if an overflow occurs and reset if there is no overflow.

Example:
. PARAMETER
Tg-? ’ . +’ OR — 2 <
LABEL OP. CODE GTH LABEL INC/REL
16 |17 (18| 19(20121]22|23(24 [25| 26|27 (28| 29(30{31| 32| 33(34 | 35|36 |37|38|39 |40 |41 4>2‘ 43 {44145 W46 |47
....f.JA',BKH Mn ‘11111 1||3LLL', L1
OP CODE A E REMARKS
ADK 6 3 Add 3 to digit position 6 in the Accumulator.
2.05.03 CLEAR INSTRUCTIONS
| OP CODE A B
CLEAR MEMORY WORD CLM LABEL
CLEAR ACCUMULATOR AND INSERT CONSTANT CLA 0-15 0-15

The CLM instruction will clear the 16 digits of the memory location specified in the A field.

The CLA instruction sets all 16 digits of the Accumulator to zero, thus resetting the four Accumulator
flags (M, C, special, and sign), it places the digit specified by the B field in the digit position of the
Accumulator specified by the A field. : [

It is important to notice that the B parameter although expressed as 0-15 on the coding form, is placed
in the Accumulator as a hexadecimal digit (0-F) rather than two decimal digits.

Arithmetic opérations can only use the values from 0-9 in any digit position. Any values over 9 will not
arithmetically combine.

2.05.02

INK

Example 1:
PARAMETER
FIELD
LEN- . + OR-— > <
LABEL OP. CODE GTH . LABEL INC/REL
16 {17 |18{19|20 |21 |22|23|24 |25|26|27|28|29(30|31}32|33|34 |35{36 (373839 {40 [41|42| 43 |44 45 46 |47
S I B | ‘ILIM 1] AIRIBIALl - 14) L1 1
OP CODE A B REMARKS
CLM AREA The Memory location called Area will contain all
Zeros.
Example 2:
PARAMETER
FIELD
~ LEN- . + OR - 2 <
LABEL OP. CODE GTH . LABEL INC/REL
16 |17 18| 19|20 |21 | 22| 23|24 | 25| 26 |27 | 28| 29|30|31| 32| 33[34 | 35|36 {37| 38|30 |40 |a1| 42| 43 |44 |as [as |47
lllllclLlAlllollllllllolll |
‘OP CODE A ' B _ REMARKS
CLA 0 0

The A¢cumulator contains zeros in positions 0-15.

2.05.04 INSERT CONSTANT IN ACCUMULATOR INSTRUCTION

OP CODE A B

INSERT CONSTANT IN ACCUMULATOR INK 0-15 0-15

The INK instruction inserts the digit specified by the B field in the digit position of the Accumulator
spegified by the A field. The remaining digit positions are unaffected.

Similar to the CLA instruction the B parameter field in this instruction also permits entry of a value
from 0-15. Again this is a hexadecimal value rather than a decimal value.

Arithmetic operations can only use the values 0-9 in any digit position. Any values over 9 (i.e., A-F) will
not arithmetically combine. ‘

Example:

PARAMETER

FIELD v
. A B |c
LABEL OP. CODE | GTH . LABEL + OR -~

INC/REL ‘
16 {1718 19]20|21]22 23124 25|26|27|28| 29|30|31| 32| 33(34 | 35|36 37| 38|39 |40 |4 1] 42| 43 [aa|as s |47

;llnni;M‘ll Ilo;!‘llll ll"l}’lllr ||'1‘

Revised 3-29-71by |
PCN 1045481001 2.05.04

LSR

OP CODE A B REMARKS £
INK 0 3 The digit 3 will be placed in Accumulator digit

position O replacing the previous contents of
Accumulator digit position O.

2.05.05 MULTIPLICATION AND DIVISION INSTRUCTIONS

OPCODE A
LOAD SHIFT REGISTER LSR 0-15

The LSR instruction provides for loading the multiply-divide shift register with the contents of the A
field. The shift register must be loaded prior to the execution of a Multiply or Divide instruction. The
shift register will contain the value loaded until a subsequent load shift register command is executed
For multiplication, the shift register designates the number of places the product is shifted right after
multiplication. The shifted off digits are lost, the remaining digits set in the Accumulator as the product.
Division will be carried out to the number of places specified in the shift register. These opératiohs take
into account the shift register even though it is not loaded immediately preceding each MUL or DIV
instruction. The contents of .the shift register must be changed only when the shift requ1rements are
- changed.

PARAMETER
FIELD '
A
‘ LEN- —- B C
. GTH -
LABEL OP. CODE LABEL INC/REL

16 |17 (181920 |21 2223J24 25(2627|28| 29|30(31{32| 3334 {3536 |37|38|39 |40 {41/42| 43 {4445 46 |47

I [N I IRJ 1] «3l I I T - 11 | L1 |

OP CODE _A_ REMARKS
LSR 3 Load shift register with 3

Computing the Value of the Shift Register

FOR MULTIPLICATION-To compute the value which must be loaded in the shift register, subtract the
desired number of decimal places in the final result from the sum of decimal places in the multiplier and
multiplicand.

Number of places Number of places . Desired Number _ Value of
in multiplier in multiplicand of places Shift Register
100.00 : .25 L '
2 + 2 — 1 = 3

Accumulator contains 250 in digit positions 0-2, when printed with one decimal this becomes 25.0.

2.05.05

MUL

FOR DIVISION—The value to be loaded into the Shift Register can be determined with a knowledge of
the assumed decimal places needed in the quotient as well as the divisor and dividend.

Assumed decimal + Assumed decimal _ Assumed decimal _ Value of
places in divisor places quotient places dividends Shift Register
25 100.00 25.0
2 + 2 — 1 = 3
OP CODE A
MULTIPLY MUL LABEL

The multiply instruction provides for multiplying the contents of the Accumulator by the contents of
the memory location specified in the A parameter. The product is shifted right the number of places
specified in the multiply — divide shift register, causing the shifted off digits to be lost. The next 15 low
order digits are placed in the Accumulator as the product.

If the Accumulator and the memory location in the A parameter have identical signs, the sign of the
product is positive [Accumulator sign flag is reset (+)]. With unlike signs, the product is assigned a
negative sign [Accumulator sign flag is set (—)].

Both the Accumulator and the memory location can contain' a maximum of 15 digits each. If the
product contains more than 15 digits after shifting occurs, the excess number of digits are lost and the
overflow flag is set. The flag is reset otherwise. (In the event of an overflow there is not an indication
light).

If the possibility of an overflow condition exists, the program should provide for interrogating the flag
to determine if a corrective routine should be employed.

The number of significant digits in the multiplier (memory location in the A field) determines the length
of time for the execution of the multiplication instruction. The number of digits in the multiplicand
{(Accumulator) has no effect on the timing.

Example:
PARAMETER |
FIELD
o . ¥ OR > <
LABEL OP. CODE GTH -
LAB.EL, INC/REL

16 {17 |18119{20 |21 | 22| 23(24 |25/ 26 |27 (28| 29|30 |3 1| 32| 3334 | 35|36 [37|38[39 |40 |4 1| 42| 43 |44|4as la6 |47

|l|.IIMJI l'lle‘lEl 1| 11| L1 |

OP CODE A REMARKS
MUL PRICE Multiply Accumulator by PRICE

Revised 3-29-71 by
PCN 1045481-001 2.05.05 (Cont’d-1)

MULR

Div

OP CODE o A
MULTIPLY AND ROUND MULR LABEL
The MULR instruction is the same as the MUL instruction except that a 5 is added to the last digit
which was shifted off in the product. The product contained in the Accumulator is increased by I

(decreased if —) if the last digit shifted off was greater than or equal to 5. If the shift register value is
zero, there will be no rounding.

OP CODE A
DIVIDE DIV LABEL

The DIV instruction divides the contents of the Accumulator by the contents of the memory location
specified in the A field. The quotient is placed in the Accumulator. After division has been carried out,

- the number of decimal places specified in the shift register, any remainder is placed in working memory
(in the control area). (See REM instruction.)

Example:

PARAMETER
FIELD
o : + OR - . <
LABEL OP. CODE | GTH . LABEL o REL

16 {17 {18{19120 121 |22|23|24 |25|26(2728| 29|30|31|32| 3334 |35(36|37{38|39 (40 |41{42] 43 |44]45 |46 47|48 |49

L DX 1T|¢1'|ﬁ;l-| IR BT L]

OP CODE _Ii REMARKS
DIV TOTAL Divide Accumulator by TOTAL

Both the Dividend and the Divisor may contain up to 15 digits. If the signs of the operands are alike,
the sign of the quotient is positive (accumulator sign flag is reset +): if the signs are unlike, the sign of
the quotient is negative (accumulator sign flag is set —). The remainder is always positive.

Example 1:
OP CODE A

LSR 5

DIV 200
Accumulator (dividend) = 100
Memory location 200 (divisor) = 3
Multiply-Divide Shift Register = 5
Accumulator (quotient) = 3333333 = printed with decimal = 33.33333
Remainder = 1 printing of decimal provided by

print mask.

2.05.05 (Cont’d-2)

DIV

The division process treats the contents of the Accumulator and the specified memory location as whole
numbers, even though they may have “assumed” decimal points; for example: 6 , 25 + 5 5 00 produces
a quotient of 1 and a remainder of 125 if the shift register has a zero value:

Accumulator (dividend) = 625

Memory location 200 (divisor) = 500

Shift register = 0

Accumulator (quotient) = 1 = , could be printed as “1” or “1.”. Since
Remainder = 125 . it is in first digit position, any other

decimal places shown in printing would
require shifting it left such as to permit
“1.0000”

Thus, since division halts once the dividend can no longer be divided, the shift register must contain a
value equal to the number of decimal places desired beyond what the “whole numbers” themselves
would provide. In the above example, by giving the shift register a value of 4, the quotient reflects the
“assumed’ decimal values:

Accumulator (dividend) = 625

Memory location 200 (divisor) = 500

Shift register = 4

Accumulator (quotient) = 12500 (printed with decimal = 1.2500)
Remainder = 0 '

The value to be loaded into the shift register can be determined in the following manner with a
knowledge of the “assumed” decimal places needed in the quotient as well as the dividend and divisor:

assumed decimal assumed decimal assumed decimal Value of
{ places in } PLUS { places in } LESS {places in } SHIFT

DIVISOR QUOTIENT DIVIDEND REGISTER
Ex: 5 , 00 1 4 2500 6 5 25
2 + 4 2 = 4

If the quotient after final shift exceeds 15 digits, the overflow flag is set; otherwise the flag is reset. The
size of the quotient can be estimated and a prediction of possible overflow made if the following rule is
used:

-“Add the MAXIMUM size DIVIDEND to the Value of the SHIFT REGISTER plus
1, subtract the MINIMUM size DIVISOR and that equals the MAXIMUM size
Quotient possible.”

The rule is in terms of the number of significant digits expected in each operand including intervening
and terminal zeros, and without regard to ‘“‘assumed’ decimal places.

‘Revised 3-29-71 by X ,
PCN 1045481001 2.05.05 (Cont’d-3)

SUA

SUK
Example 2:
Maximum size Value of Minimum size Maximum size
DIVIDEND + 1 + SHIFT REG. - DIVISOR = QUOTIENT

Ex: (9999) 2) (1) (999900)

4 + 1 + 2 — 1 = 6
Ex: (9999) 3) (100) ~(99990)

4 + 1 + 3 - 3 = 5

When an overflow occurs, the division is halted and the result in the Accumulator is meaningless
(reflects some stage of partial quotient development).

2.05.06 SUBTRACT INSTRUCTIONS

OP CODE A B
SUBTRACT FROM ACCUMULATOR SUA LABEL
SUBTRACT CONSTANT FROM ACCUMULATOR SUK 0-14 0-9

The SUA instruction provides for subtracting the contents of the memory location specified by the A

field from the contents of the Accumulator. The difference is placed in the Accumulator leaving
memory location A undisturbed.

The SUK instruction provides algebraic subtraction of the digit contained in the B field from the digit in
the Accumulator position stated in the A field with carries propagated in succeeding high order digits. (
The special (S), per thousand (M), and per hundred (C) flags are unconditionally reset.) The overflow
flag is set if an overflow occurs and reset if there is no overflow.

Example 1:
PARAMETER
FIELD .
LEN- . + OR — 2 <
LABEL OP. CODE GTH LABEL INC/REL
16 |17 |18|19(20 |21 |22]23|24 |25|26|27|28| 29{30|31]|32(33(34|35(|36(37|38|39 (|40 (41{42| 43 |44)45 |46 |47
lllJlSlulAIl lﬂL&gjnJI .| [L1 1
OP CODE A B REMARKS
SUA AREA Subtract the contents of the memory location
called Area from the Accumulator.
Example 2:
PARAMETER
FIELD
LEN- A T B C
LABEL OP. CODE GTH . LABEL INC/REL

16 {17 1819|2021 |22}23|24 |25|26|27|28| 29|30|31|32|33(34 | 35|36 (373839 |40 |41{42| 43 M45P647

nll!IMl lfollll_Jll\ZJll |

2.05.06

SUM

OP CODE A B REMARKS
SUK 0 2 Algebraic subtraction of the integer 2 from the O
digit position in the Accumulator
OP CODE A
SUBTRACT FROM MEMORY SUM LABEL

The SUM instruction provides for subtracting the contents of the Accumulator from the contents of the
memory location specified in the A parameter.

The difference is placed in the given memory location, leaving the Accumulator unchanged.

Example:

PARAMETER
FIELD
v . + ORr . <
ABEL . GTH -
LAB OP. CODE LABEL INC/REL

16 |17 |18{19(20121|22|23|24 (25| 26|27 |28| 29|30 |31| 32| 33|34 | 35(36|37(38|39 (40 |41|42| 43 |44 (45 46 |47

L1 |[SuM A REA | Ll Ll | !
OP CODE A B REMARKS
SUM AREA Subtract the contents of the Accumulator from

the memory location called Area.

Revised 3-29-71 by
PCN 1045481-001 2.05.06 (Cont’d)

TRA

TRM

' 2.06 — DATA MOVEMENT INSTRUCTIONS

2.06.01 TRANSFER INSTRUCTIONS

OP CODE A
TRANSFER TO THE ACCUMULATOR TRA LABEL

TRANSFER TO MEMORY TRM LABEL

The TRA instruction provides for transferring the contents of the memory location specified in the A
field to the Accumulator, keeping the contents of the memory location unchanged.

The TRM instruction provides for transferring the contents of the Accumulator to the memory location
specified by the A field. There is no change in the contents of the Accumulator.

Example 1:
PARAMETER
FIELD
v . + OR > <
. GTH -
LABEL OP. CODE LABEL INC/REL

16 |17 {18 19|20 |21 222312452627288&31 32|33|34|35|36|37|38(39 |40 |41|42| 43 |44|45 46 |47

11.||T.R|A|| IML”_I] T 11l L1

OP CODE A B REMARKS
TRA AREA Transfer the contents of memory location Area to
Accumulator. Memory location unchanged.
Example 2:
PARAMETER
D
Tg‘ 2 + OR - 2 <
LABEL OP. CODE GTH LABEL INC/REL

16 (17 (18] 19|20 |21 |22| 23|24 |25| 26|27 |28| 29|30 (31| 32| 33({34 | 35|36 {37|38|39 (40 {41}42| 43 |44|45 A6

ILLLI-rlgynll L“LQ_LEI“II Lt | . 1

N S T NS U NN N N Y T T O Y A I | L 11
OP CODE A B

REMARKS
TRM AREA Transfer the contents of Accumulator to memory

location addressed by label area.

©2.06.01

REM

SLRO

OP CODE
TRANSFER REMAINDER TO ACCUMULATOR REM

The REM instruction transfers the remainder of a division operation to the Accumulator from the
control area. The transfer will reset all Accumulator flags.

Example:
PARAMETER
FIELD
LEN- . + OR — 2 <
LABEL OP. CODE GTH LABEL INC/REL
16 [17 (181920121 |22|23{24 |25]|26|27 28] 29{30|31]{32(33{34|35|3637|38|39(40|41{42| 43 |44 |45 |46
||111R_1£1n|1111111|11 [1 1
I I [I N T T I O | | L1
2.06.02 SHIFT ACCUMULATOR INSTRUCTIONS
OPCODE A B

SHIFT OFF SLRO 0-14 0-14

The SLRO instruction first causes the 15 digits of the Accumulator to be shifted left the number of

positions specified by the A field. Any non-zero digits shifted off causes the overflow flag to be set. If
the digits shifted off are zero, the flag is reset.

The 15 Accumulator digit positions are then shifted right the number of pbsitions specified by the B
field. Any non-zero digit shifted off does not set the overflow flag. Rounding is not performed. The
shifted off digits are lost.

Example:

The Accumulator contains

1511413 |12|11|10|9 |8 |7 |6 |5|4|3]|2|1]|0|ACCUMULATOR DIGIT POSITION

1121314151617]18]9|8|7]6]5]4]3 VALUE
LFlag Position i

Examine the results when we execute the following instruction:.

,,,,,, PARAMETER
FIELD
prin : + OR . <
: GTH -
LABEL OP. CODE LABEL INC/REL

16 |17 18|19 Z)lZl

23]24 |25(26|27|28|29|30|31(32| 33|34 |35/36(37(38|39 (40 41| 42| 43 {44145 |46 (47

22
Illl_lSlLlRLé |‘51|||1 lllﬁLli S W

OP CODE A B

SLRO 5 ‘ 6

Revised 3-29-71 by
PCN 1045481-001 2.06.02 -

SLROS

After the 5 in the A parameter is executed the Accumulator contains

15(14f13|12]11|10{9 |8 |7 |6]|5|4]|3|2]|1]0]|ACCUMULATOR DIGIT POSITION

6171891871654]|3]0]0j0}]0}0 VALUE

L

Flag Position

The overflow flag is set.

* Then the contents are shifted right

15114113 112]11]110|9 |8 |7 |6 |54 |3 |2|1]0}|ACCUMULATOR DIGIT POSITION

oloJolo]Jo|o]le|7]|8]9]|8]|7]|l6]|5]|4 VALUE
L‘ Flag Position
OP CODE A B
SHIFT OFF WITH SIGN : SLROS 0-15 0-15

The SLROS instruction is the same as the SLRO instruction except that the sign position is also shifted.

This instruction may be used to shift alpha information.

2.06.02 (Cont’d)

CHG

LOD
2.07 — FLAG INSTRUCTIONS
2.07.01 CHANGE FLAGS INSTRUCTION
OP CODE A B
CHG AKX 1234
YRP -SCM

The CHG instruction reverses the condition (set or reset) of selected flags of any one flag group. A set
flag is reset, a reset flag is set.

The flag group is designated in the A field and represented as:

DESIGNATION FLAG GROUP
A Accumulator Flags (—, S, C, M)
K Operation Control Key Flags (1, 2, 3, 4)
X General Purpose Flags (1, 2, 3, 4)
Y General Purpose Flags (1, 2, 3, 4)
R Reader (Paper Tape or Card) Flags (1, 2, 3, 4)
P Punch (Paper Tape or Card) Flags (1, 2, 3, 4)

The flags to be changed are represented as symbols or numbers in the B field. Any or all of the fowm
flags of a flag group may be changed; all other flags in the group not changed are left unaltered.

Example:

PARAMETER
FIELD
A
LEN- + OR 2 <
" -
LABEL oP. CODE | GT LABEL o aEL

16 |17 (18| 19(20 |21 |22]23|24 |25|26|27|28]{29|30|31|32|33|34|35|36(37|38|39 {40 {41|42| 43 |4445 J46 |47

llllligdgllylkllllllll'l&l -

2.07.02 LOAD FLAGS INSTRUCTION

OP CODE A B
LOD AKX 1234
YRP -SCM

The LOD instruction provides for setting selected flags of any one flag group. The A field designates the
flag group to be set (refer to CHG instruction). The flags to be set are designated by numbers or
symbiols in the B field. Any or all of the four flags in a group may be set. All other flags in the group
not set, are reset.

Revised 3-29-71 by
PCN 1045481-001 2.07.02

RST

SET
Example:
. PARAMETER
FIELD
LEN- A Ty B C
LABEL OP. CODE GTH . LABEL INC/REL
16 |17 (18| 19]20 |21 222324 25|26|27|28] 29|30|31| 32| 33|34 | 35|36 |37|38| 39 [40 |4 1]|a2| 43 |44 |45 la6 |47
_4!1!1‘9@_2[1 L. TR ||1MzL3|L L1
OP CODE ‘ A B REMARKS
LOD X 2,3

Generai purpose (group X) flags 2,3 are set, the
other X flags are reset.

2.07.03 RESET FLAGS INSTRUCTION

OP CODE A B
RST AKX 1234
YRP -SCM

An RST instruction resets selected flags of any one flag group. The flag group is designated in the A
field. (See CHG instructions for flag group designation.) The flags to be reset are specified by numbers

or symbols in the B field. Any or all of the four flags may be reset. All other flags not reset are left
unaltered.

Example:
PARAMETER
FIELD
i ‘ . + OR- > <
LABEL OP. CODE GTH LABEL INC/REL
16 |17 |18 19|20 (21| 22| 23|24 | 25| 26 |27 |28| 29|30|31| 32| 33|34 | 35|36 |37| 38|39 |40 |4 1{42| 43 (4445 [46 |47
ljljlklslnlLlAJilln R e B | |
OP CODE A B

B REMARKS

RST A - The “minus” flag of the Accumulator flag group

is reset. ALL others are left unaltered.

2.07.04 SET FLAGS INSTRUCTIONS

OP_CODE A B
SET AKX 1234
YRP -SCM

The SET instructions sets selected flags of any one flag group. The flag group is designated in the A
field. (Ref. to CHG instruction for flag group and designation.) The flags to be set are designated by

number or symbols in the B field. Any or all of the four flags of a group may be set. All other flags in
the group not set, are left unaltered. '

2.07.03

SET

Example:
PARAMETERr
FIELD
o : + OR — . <
LABEL OP. CODE GTH . LABEL INC/REL
16 |17 |18 19|20 |21 |22]23|24 |25|26(27 28| 29{30(31|32| 33|34 | 35|36 |37|38|39 (40 |41|42| 43 |44|45 Ja6 |47
o SEr | (KR 3 L1
OP CODE A B REMARKS
SET K 3

The OCK flag 3 is set, other flags are unaltered.

Revised 3-29-71 by
PCN 1045481-001 2.07.04

LIR
ADIR
DIR

2.08 — INDEX REGISTER INSTRUCTIONS

2.08.01 LOAD INDEX REGISTER INSTRUCTION

OPCODE A | B
LIR 1-4 0-255

The LIR instruction loads the value contained in the B field into the index register indicated in the A
parameter (1, 2, 3 or 4). The B parameter can be any positive value from 0 to 255. The prior contents
of the index register are destroyed.

2.08.02 ADD TO INDEX REGISTER INSTRUCTION
OPCODE A B

ADIR 1-4 0255

The number contained in the B field is added to the contents of the index register (1, 2, 3 or 4)
indicated by the A parameter. The B field contents and the index register contents are always positive.
If the sum of the index register contents and the B field number equal 256, the register is reset to 0. If
the sum is greater than 256, only the overflow is retained in the index register. In both cases, the
overflow causes the Index Register Flag to be set. If the sum is less than 256, the flag is reset.

Example: Index Register 1 contains 225.

PARAMETER
FIELD
B C
LEN- 2 + OR
H | -
LABEL OP. CODE GT LABEL ING, REL

16 {17 (18{19(20 |21 | 22| 23|24 |25| 26|27 (28| 29(30|31|32(33(34 | 35|36 (37(38|39 |40 |41]42| 43 |44|45 {46 |47
lllllfAIDlzlli,ll'ilj |z|3§|l 1 1|

OP CODE A

|w

ADIR 1 35

After execution of the above command, the contents of Index Register 1 is equal to 4 (225 + 35 —
256 = 4). The Index Register Flag is set.

2.08.03 DECREMENT INDEX REGISTER INSTRUCTION

OPCODE A B

DECREMENT INDEX REGISTER DIR 1-4 0-255

The DIR instmction. decreases by 1, the contents of the index register designated by the A field. If the
2.08.01

IR

TAIR

index register contains O, a decrement causes the value 255 to be entered into the register. The B field
designates a value which is compared to the contents of the index register.

If the contents of the index register, designated by the A field, is equal to the value of the B field
before decrementing is effected, the Index Register Flag is set after execution. If an unequal condition
exists, the flag is reset after execution. Thus, if the flag is set during one decrementing, it will be reset
during the next. For that reason, it becomes necessary to test this flag after each decrementing.

The value of the B field does not halt decrementing or turn the register back to 0, once decrementing
has reached that limit.

2.08.04 INCREMENT INDEX REGISTER INSTRUCTION
OPCODE A B

IIR 1-4 0-255

The IIR instruction increases by 1, the contents of the index register denoted by the A field. If the
index register contains 255, incrementing causes the register to become 0. The B field designates a value
which is compared to the contents of the index register. '

The Index Register Flag is set and reset as in the DIR instruction.

Example: Use of Index Register‘sy to terminate a loop (see SK instruction).

LABEL OP CODE A B c
LIR 2 0

BEGIN MOD 2
TRA TABLE
IIR 2 9
SK T I 1
BRU BEGIN

2.08.05 TRANSFER ACCUMULATOR CONTENTS TO INDEX REGISTER

OP CODE A
TRANSFER ACCUMULATOR TO INDEX REGISTER TAIR 1-4

The TAIR instruction transfers the contents of the Accumulator to the register indicated by the A field.
The prior contents of that index register are destroyed. The value of the Accumulator is treated as an
absolute number, regardless of any “assumed” decimal places during entry in the Accumulator, and
regardless of the setting of the Sign Flag.

Revised 3-29-71 by
PCN 1045481-001 2.08.05

MOD

Since an 1ndex register has a capacrty of 255, an Accumulator value greater than 255 that is transferred
to an 1ndex reglster will be accepted as that amount that exceeds the nearest multiple of 256 (maximum
of 1024)."

Example:
If the Accumulator contains 258 then 2 is transferred (258 — 256 = 2).
- If the Accumulator contains 525, then 13 is transferred (525 — (2 x 256)) = 13)

2.08.06 MODIFY BY INDEX REGISTER INSTRUCTION

OP CODE A

MOD 1-4

The MOD instruction provides for adding the value in the index register designated by the A field to the
parameter (or parameters) of the next instruction in program sequence following the MOD instruction.
The instruction following MOD is then executed in accordance with the combined parameter values.

The MOD instruction does not change the instruction stored in memory. Modification occurs during the
execution of the instruction, as the parameter is extracted from the instruction and placed in-a special
register. The MOD instruction affects the execution of only the one instruction immediately following.

Example: 1
PARAMETER
FIELD
A
LEN- + OR— : -
VSEQUENCE LABEL OP. CODE GTH LABEL INC/REL

11112 13]14| 15|16 |17 |18[19|20 |21 |22|23|24 |25|26|27|28| 29(30{31|32|33(34|35(36|37{38|39 |40 (41|42| 43 |44 (45 46 |47

Ilolll 1L11|"L¢D|1»1’111|| I L1 1 L1 1
110121 lllllpl¢$ll lZIlllLll L 11 Lt 1

Assume Index Register Number 1 contains 50

OP CODE A
MOD 1
POS 7

The index register value of 50 combined with the value of the A parameter for the POS instruction
causes the printer to position to 57 (7 + 50).

Although the MOD instruction is most generally used to modify those instructions which address word
locations in memory, it may also be used to modify the parameters of most other instructions. The

2.08.06

MOD

contents of the index register are added to the parameter field to modulo 256. Modulo 256 means that
if the index register (maximum capacity of 256) when added to the parameter field (also a maximum
capacity of 256 in machine language), exceeds 256, a “‘carry” of 1 is generated and the excess value
starts back to 0. '

Example: 2

An index register with a value of 150, when added to an AL 200, generates a “‘carry” of 1 and a
remaining parameter of 94 (350 — 256 = 94). The carry is propagated to machine language operation
code. Because of this, caution must be used in modifying most instructions since a ‘“‘carry” may
improperly modify the Op Code.

Different types of instructions will have the A parameter, or the B parameter, or both the A and B
parameters modified. Some instructions cannot be modified.

The contents of the index register specified by the MOD instruction are added to the A parameter. If
the combined value exceeds the range shown for each instruction parameter, either a “carry” will
generate a new instruction, or the instruction will otherwise be improperly modified:

Revised 3-29-71 by
PCN 1045481-001 2.08.06 (Cont’d-1)

OP CODE

SUA
SUM

TAIR
TK

TKM
TRA
TRAB
TRB
TRBA
TRCA
TRCM
TRF
TRM
TSB
XA
XB
XBA
XEAM
XMOD
XPA
XPBA
XTK
XTKM

.MOD
TABLE
Instructions in which only the A parameter is modifiable.

OP CODE A OP CODE A
ADA LABEL* LRLR 0-255
ADM LABEL* LSR 0-15

AL 0-255
ALR 0-255 MUL LABEL*
ALTO 0-255 MULR LABEL*
AR 0-255 oC 0-255
ARTO 0-255 PA LABEL*
BRU LABEL* PAB 0-150
CLM LABEL* PBA 1-16
CPA LABEL* POS 1-150
DIV LABEL* RCP 1-255
DUP 1-80 REAM 0-150
EAM 0-150 RTK 0-150
IRCP 0-255 RTKM 0-150
LCD 0-255 RXEAM 0-150
LCFR LABEL* RXTK - 0-150
LKBR LABEL* RXTKM 0-150
LLCR 0-255 SCP 1-255
LLLR 0-255 SKP 1-80
LPKR LABEL* SRJ LABEL*
LPNR LABEL* SRR 1-4
LRBR LABEL*
LRCR 0-255
*The memory address referenced by the LABEL will be incremented by the value of the index register.

A
LABEL*
LABEL*

1-4
0-150

0-150
LABEL*
0-15
1-15
0-16
1-16
1-16
0-255
LABEL*
1-15
LABEL*
0-255
1-16
0-150

LABEL*
1-16
0-150
0-150

In the following instructions, only the B parameter field is modified; other parameter fields are
unmodified. The contents of the index register is added to the B parameter of the instruction. If the
combined value exceeds 255, either a “‘carry” will create a different instruction, or the instruction will

otherwise be improperly modified.

TABLE
Instructions in which only the B parameter can be modified.
OP CODE A
ADIR 1-4
DIR 1-4
IIR 1-4
LIR 14

jm

0-255
0-255
0-255
0-255

2.08.06 (Cont’d-2)

MOD

A. ONE PARAMETER CAN SPECIFY ONE OR MORE ITEMS. For some instructions the A and B
parameters represent a binary pattern to the machine. The PKA, PKB instructions as well as the LOD,
SET, RST and CHG flag instructions are programed by listing the digits 1-8 (in the case of the PK
instructions) and 1-4 (in the case of the flag instructions) in the A, B or A and B parameters for the
desired pattern.

The EX, EXE, SK and SKE instructions are programed by listing the digits 1-4 in the B parameter to
designate the particular flag pattern desired.

To modify this binary pattern, it is necessary to find the decimal equivalent of the pattern desired and
add it to the Index Register used in the MOD instruction. The value table below may be used to
determine the number necessary to obtain the desired pattern.

TABLE
Value Table
Decimal Equivalent
No. in A, B or PKA Flag Instructions
A & B Fields PKB
A & B field | B field only A field
1 1 2 Punch = 0
2 2 4 Read = 16
3 4 8 X = 64
4 8 1 Y = 80
5 16 T = 128
6 32 K = 144
7 64 A = 192
8 128

For PK’s, add together all of the equivalent values for the PK’s specified in the A field, to determine the
total value which must be loaded in the index register.

For Flag instructions (Set/Reset and Skip/Execute), add together the equivalent values for the flags
specified in the B parameter. If the flag group is also to be modified, add its value to the total value for
the individual flags, and the resulting sum is the value to be loaded in the index register.

To modify these instructions it is essential to originate them with O in the parameter fields and the
desired pattern in the index register.

If these instructions are originated with some significant value in the parameter fields, an attempt to
modify the parameters can propagate a carry which will be added to the Op Code, changing it to
another Op Code.

Revised 3-29-71 by
PCN 1045481001 2.08.06 (Cont’d-3)

MOD

TABLE
Instructions in which A and B parameters can be modified.
ONE PARAMETER CAN SPECIFY ONE OR MORE ITEMS.
OP CODE A B 9_
PKA © 12345678
PKB 12345678
LOD AKX 1234
YRP
SET AKX 1234
YRP
RST AKX 1234
YRP
CHG AKX 1234
YRP ‘
EX ATKX 1234 1-4
YRP
EXE ATKX 1-4
SK ATKX 1234 1-4
YRP
SKE ATKX 1234 1-4
YRP

B. EACH PARAMETER CAN SPECIFY ONLY ONE ITEM. In these instructions, either or both, the A
or B parameter can be modified. The C parameter, if one exists, is not modified. The A and B
parameters combined cannot exceed 256. The sixteen possibilities in the B parameter requires a value
from 0 to 15 in the index register for modification. The sixteen possibilities in the A parameter field
require a value expressed in multiples of 16 (reflecting the digit position value of the A parameter in the
instruction format).

The following table illustrates the proper values to be loaded in the index register to achieve the desired
‘values for the A and B parameters.

2.08.06 (Cont’d-4)

MOD

TABLE FOR VALUES

e e
Number desired Value to be Number desired Value to be
in A field contained in in B field contained in
Index Reg. Index Reg.

0 0 0 0

1 16 1 1

2 32 2 2

3 48 3 3

4 64 4 4

5 80 5 5

6 96 6 6

7 112 7 7

8 128 8 8

9 144 9 9

10 160 10 10

11 176 11 11

12 , 192 12 12

13 , 208 13 13

14 224 14 14

15 240 15 15

“m” + “n” = total value to be contained in register.

Example: Modify NK 0 O to provide 8 whole numbers and 3 decimal fractions:

Parametefs required: Index Register value required:
A=8 = 128
B=3 = 3

131 (total value)

Thus: LIR 1 131
MOD 1
NK 0 0

The index register value of 131 modifies the NK instruction to permit 8 whole numbers and
3 fractions.

Any time that the modification of the B parameter results in a carry (exceeds 15), the carry will add to
the A parameter changing its specification. A carry resulting from modification of the A parameter

(exceeds 255) will add to the Op Code causing an improper modification.

ised 3-29-71 b
géﬁmusmmy 2.08.06 (Cont’d-5)

EACH PARAMETER CAN SPECIFY ONLY ONE ITEM
OP CODE: A : E L E) OPCODE . ﬂ_ E.
ADK 014 09 ‘f‘PN - 014 0I5
CLA 0-15 09 ~ PNS+ 014 015
EXL 0-15 0-15 1-4 PNS— 014 015
INK 0-14 09 , .~ TRCB 015 0-15
NK 015 015 I XC 0-15 0-15
'NKCM 0-15 015 XN 0-14 0-15
NKR 0-15 0-15 XPN 0-14 0-15
NKRCM 0-15 0-15 ' XPNS+ 0-14 0-15
SKL 0-15 0-15 1-4 XPNS— 0-14 015
SLRO 014 0-14
SLROS 0-15 0-15
SUK 0-14 09
RNK 0-15 015
The following instructions cannot be modlﬁed
TABLE
Instructions which are not modifiable.
Qp’éODE i‘_ , < OP CODE A OP CODE A
ALARM R LSN - " RPR
ALTP LIN RR
cc el e LXC 1 ~ RRA
- EXZ 1-4 NOP | ‘ RSA
LPF ~ RCD RSN
LPR REL ~ RTH
LRA - REM RTN
LSA R RPF SKZ 1-4
' STOP

The character in the A parameter of a PC 'mstructlon may be modified to obtain a different character.
The MOD instruction will add the contents of the mdex reglster to the internal code of the character in
the A parameter of the PC 1nstruct10n

2.08.06 (Cont’d-6)

Example:
PARAMETER
FIELD ‘
LEN- . ¥ OR - > <
LABEL OP. CODE GTH . LABEL INC/REL
16 |17 [18| 19|20 |21 | 22| 23|24 | 25| 26 | 27| 28] 20| 30| 31| 32| 33{34 | 35|36 |37| 38|39 a0 |4 1| 42| 43 |44 |45 lac |47
I O T I | Illlllllljlllll |
| J<E |_VA||||1'|11“1:1 !
OP CODE A
MOD 1
PC A

If PC A (A = index value of 65) is to be modified to print M (M = index value of 77), a value of 12

(77-65 = 12) is loaded into the index register #1. Index values are contained in Appendix D. The above
remarks also apply to PC+, PC— and PCP.

A MOD instruction may be used to modify andther modify instruction with the same or different index
register. The total amount of modification equals the sum of the MOD instructions, and should not

exceed 255. When the total exceeds 255, only the difference between the total and 255 remains in the
index register.

ised 3-29-71 b
ggﬁs‘f&smwmy 2.08.06 (Cont’d-7)

" BRU

2.09 — BRANCH AND DECISION INSTRUCTIONS

2.09.01 BRANCH UNCONDITIONAL INSTRUCTION

OP CODE A +/— REL
BRU LABEL N

The BRU instruction provides the ability to branch unconditionally to a different segment of the
program. This instruction does not automatically provide for return to the branched from segment of
- the program.

The A parameter contains the label which identifies the memory address to where the program will
branch. The A parameter can be incremented by an integer (N, positive or negative) located in the +/-
REL field. A + increment without a label will branch the program to either an instruction further ahead
(+) or one behind(-) the current (BRU) instruction.

Example:
PARAMETER
FIELD -
‘ i = + OR 2 <
N- -
LABEL OP. CODE GT| LABEL INC,/REL

16 |17|18]/19]|20 |21 2223‘24 25|26127128{29(30|31|32|33{34|35|36|37{38{39 |40{41{42| 43 |44)45 |46 |47]|48

[R | Enrlll'xljxﬁl nllell

RN N RNy N N N
L1111 1BRY, | ISHTPTE . |
| T T | 11211 L | N O | [[

) PT P T .WM.A@-.F'.H L1
g (0K L

a1, Al Y FETETT RN RN

)

When the BRU instruction is executed program execution éontinues with the Op Code contained in the
memory location referenced by the labcl. In this case the label is SHIPTO and the Op Code is POS.

2.09.01

2.09.02 SUBROUTINE JUMP AND RETURN INSTRUCTIONS

SUBROUTINE JUMP

SUBROUTINE RETURN

SRJ

SRR

OP CODE A +/— INC
SRJ LABEL +N
SRR 1-4

The SRJ and SRR instruction facilitate branching to, and returning from a subroutine. The A parameter
of the SRIJ instruction contains the label of the memory location to where the jump will occur.

The SRJ and SRR instructions utilize the Subroutine Return Stack which appears thusly:

LOCATION

ADDRESS

1

MEMORY LOCATION

MEMORY LOCATION

MEMORY LOCATION

2
3
4

MEMORY LOCATION

This example illustrates the use of these instructions and explains the A parameter of the SRR

instruction.
WORD/SYLLABLE LABEL OP CODE
25 0 NKR
: 1 AL
2 POS
3 SRJ
3 3
48 0 PRNC PNS—
1 PC—
2 PC+
3 SRJ
3 3
50 0 TKMAD POS
1 TK
2 SRR
3

A L4
10 4
1

63

gRNC

14 0
+

TKMAD

}

95

31

REMARKS

Allow Numeric Entryr.
Advance 1 line.
Position to print.

SRJ to print.

Positions for type.
Type 31 characters.
Subroutine return.

When the SRIJ instruction in word 25 syllable 3 is executed, the program counter is increased by 1
syllable. The new program counter content, word 26 syllable O is stored in Subroutine Return Stack
location 1. The value of the A parameter in the SRJ instruction is inserted in the program, execution
now begins at word 48, syllable 0. The Subroutine Return Stack would appear:

‘Revised 3-29-71 by

PCN 1045481-001

2.09.02

SRJ

SRR

LOCATION ~ ADDRESS

1 26 0

2 UNKNOWN-1
3 ‘ UNKNOWN-2
4 UNKNOWN-3

When the SRJ instruction in word 48, syllable 3 is reached, the contents of the Return Stack are shifted
. down 1 location. The memory address in location 4 is lost. Execution continues in word 50 syllable O.
The stack now contains:

LOCATION) } ADDRESS
1 ' 490
2 26 0
3 UNKNOWN-1
4 UNKNOWN-2 |

If the process is repeated 5 times, the original address entered (word 25 syllable 3) is lost from program
control. Each additional repetition loses another memory address. It is.recommended to limit the nesting
of subroutines to 4. '

The execution of the SRR instruction in word 50 syllable 2 will cause the program counter to-be loaded
with a value from the Subroutine Return Stack. The value loaded is a function of the A parameter for
the SRR instruction.

If the A value is 1, the memory address in location 1 is inserted in the program counter. A value of 2
would select location 2. A value of 3 would select location 3. A value of 4 would select the fourth
location.

Since in our example we have a value of 1, word 49, syllable O is inserted into the program counter.
Program execution begins with that value. The Return Stack would appear:

LOCATION ADDRESS
1 . 260
2 ' UNKNOWN-1
3 UNKNOWN-2
4 UNKNOWN-4

If the A value had been 2, word 26, syllable 0 would have been inserted in the program counter. All
‘addresses with location numbers less than the selected location are lost. The remaining values are pushed
‘to the top of the stack. ’

2.09.02 (Cont’d) -

In this case the Subroutine Return Stack would appear:

CPA

LOCATION ADDRESS
1 UNKNOWN-1
2 UNKNOWN-2
3 UNKNOWN-4
4 UNKNOWN-5

Program execution begins at word 26, syllable O.

2.09.03 COMPARE ALPHANUMERIC INSTRUCTION

SKIP AND EXECUTE INSTRUCTIONS

Op cODE A
CPA LABEL

The CPA instruction compares the contents of the memory word, referenced by the label contained in
the “A” field, to the contents of the Accumulator. The outcome:

1.
2.

Execute the next instruction if contents are equal

Execute second if memory word content is less than Accumulator content. Skip the first in

sequence and begin executlon

If memory location content is greater than the Accumulator content, skip the first two in

sequence and execute the third.

Refer to Appendix for collating sequence of character set.

Example:

PARAMETER
v A B c
. G'fH 4+ OR -
LABEL OP. CODE LABEL INC/REL
16 (17 |18] 19|20 |21 | 22| 23|24 | 25| 26 |27|28| 29| 30|31| 32| 33|34 | 35|36 |37| 38|39 [40 41| 42| 43 |44as ja6 |47

11 1‘41"1111

Ll J’JA_II T EST |

L1

(I

|

L.t 1

_max

This routine will allow the operator to mdex a value less than the value contained in thé memory
location TEST. ‘ '

Reﬁsed 3-29v71kby ‘
PCN 1045481-001 2.09.03

EXZ
SKz

2.09.04 ACCUMULATOR SKIP AND EXECUTE INSTRUCTIONS

OP CODE A
EXECUTE IF ACCUMULATOR ZERO ' EXZ ‘ 14

If the content of the Accumulator is zero, the EXZ instruction will cause the number of instructions in
the “A” field to be executed. If it is not zero, the next “A” instructions will be skipped.

OP CODE A
SKIP IF ACCUMULATOR ZERO ' SKZ 1-4

The SKZ instruction will cause the next 1-4 instructions (as specified in the “A” field) to be skipped
when the Accumulator content is zero. Otherwise, the next instruction is executed.

Example: 1 Routine to enforce a non-zero keyboard ﬁsting

PARAMETER.

FIELD
LEN- | A — B8 C
H -
LABEL OP. CODE GT| LABEL INC, REL

16 |17 (18| 19(20 |21 2223‘24252627%8&31323334 35|36(37|38|39|40(41|42| 43 |44 (45 46 |47

II C L1 |£1111 1o ’ L1 111
T N | ﬁuxli,] L 11 L+ | 1|
L1111 |BRV, | NVMRXE| | L1l
'|1|1|IP1M$1‘1 151u11|1 ngqll,_A L1l

LABEL OP CODE A B REMARKS
NUMRIC NK 5 1 Enable numeric keyboard.
EXZ 1 Execute 1 instruction if
v Accumulator zero.
BRU NUMERIC Branch to numeric keyboard.
PNS- 5 0 Print shift ribbon (-).

If an OCK is depressed without a numeric keyboard entry, the Accumulator contains zero. In the above
example, whenever the Accumulator contains zero the BRU instruction is executed and the program
branches to the NK command. This occurs until a numeric keyboard listing is made and the
Accumulator is not zero; the BRU instruction is then skipped.

2.09.04

EXL
SKL
EX

Example 2: Do not print if the Accumulator is zero.

PARAMETER
FIELD
LEN- 2 + OR - . <
LABEL OP. CODE | GTH LABEL e REL

26127]28{29]30|31| 32{33{34 | 35|36 |37(38|39 (40 (41|42]| 43 {4445 46 |47

16 |17 {18(19]20|21|22123|24 |25

|l|||1’|&nll 1_|_&£:ﬂ111;.| L1 L1 1

i (SRR b L1
L SR .,P.ll‘jmfu I B L1

OP CODE A E_ | REMARKS
TRA AREA Transfer to Accumulator.
SKZ 1 Skip 1 instruction if zero.
SRJ PRINT Branch to print routine.
OP CODE A E c
EXECUTE IF DIGIT LESS THAN CONSTANT EXL 0-15 0-15 1-4

The EXL instruction causes the next instruction to be executed if the digit in the Accumulator digit
position specified in the “A’ field is less than the constant contained in the “B” field, otherwise the

next “C” are skipped. The Accumulator is undisturbed.

OPCODE A B c
SKL 0-15 0-15 1-4

SKIP IF DIGIT LESS THAN CONSTANT

The SKL instruction causes the next 14 instructions (as specified by the “C” field) to be skipped if the
digit in the Accumulator digit position specified in the ‘A’ parameter is less than the constant
contained in the “B” field. Otherwise, the next instruction is executed. The Accumulator is undisturbed..

2.09.05 FLAG EXECUTE AND SKIP INSTRUCTIONS

OP CODE A B c

EXECUTE IF ANY FLAG EX ATK OLIU 1-4
XYRP 1234
LBDS —~SCM
VW WRF

Revised 3-29-71 by
PCN 1045481-001 2.09.05

EX

The EX mstructlon causes the next instruction in sequence to be executed if any of the flags specified
in the “B” field (of the flag group designated in “A”’ field) are set. Otherwise, the next “C” instructions
are skipped. (See SKE instruction for flags and flag groups.)

Example 1: Use of OCK to choose alternate branch of program

PARAMETER
; ; F'g{’ A B Jc
5 BRSEERD B T P ! TS . +OR - H
H
LABEL OP. CODE GTI LABEL INC/REL

‘e |17 18|18 20 ‘2‘1*52“23]22 25|26 |27 |28| 26130|31| 32| 33|34 | 35| 36 37| 38|30 [a0 |4 1| 42| 43 |44 a5 lae

| I . LM_& 41 TI* PIEI 1 [Ll l’ 1 I
I O lel"l 1 l 151 1 | L1 I 11
L1 Bk 1&11»4 Y A A
' 1@4‘1; | &LUJ L1 S;T.QL&T. N IR I B 41
- ILLAI L4 ’n TJY|P|£| 1 L1 1] I‘ 1 | L ‘1

REMARKS

OP CODE A B c
LKBR TYPE Load Base Register.
TKM 25 Type into memory.
EX K 12 1 Execute 1 if OCK 1, 2
BRU START Branch
PA TYPE

In the above example the program will branch if OCK 1 or 2 was used. OCK 3 or 4 would cause a
print.

Example 2: Load the Shift Register with 2 if the C key is used and with 3 if the M key is used

PARAMETER
oot A _ B c |
- - , : T
; L_ABEL OP. CODE GTH . LABEL INC/REL

16 {1718 1‘9202{1_22 232_]»4;_25&57?88@31 32|33[34 353537333940’41 42} 43 4_44546'
T I LSR | |0 .
T I E.)& [P A 6y

L1 E.; N
| S | l:"erl/xl |

2.09.05 (Cont’d-1)

EXE

SK
OP CODE A E _C_ REMARKS
LSR 0 ,
EX A C 1 Test if “C*” key used.
LSR 2 Load shift register with 2.
EX A M 1 Test if “M” key used.
LSR 3 Load shift register with 3.
OP CODE A_ E_ 2
EXECUTE IF EVERY FLAGS EXE ATK OLIU 1-4
XYRP 1234
LBDS —-SCM
VW WRF

The EXE instruction causes the next instruction to be executed if all the flags specified in the “B” field
(of flag group designated by the “A” field) are set. Otherwise, the next “C” instructions are skipped.

PARAMETER
’;’_‘g—“ A B C
4+ OR —
LABEL OP. CODE GTH . LABEL INC/REL

16 |17 [18(19120121 (222324 |25|26|27 (28| 29|30|31{ 32| 33|34 | 3536 |37{38|39 (40 [41|42]| 43 |44 45 |46

Lo o NKEM LS R L
:Illl‘{iﬁllnlmll EE o B 1
I I | A:l-lﬂllnl‘!l I T O | T | L1

lllllbiRUll Illlll-lllslll |

If the operator indexes both C and M keys, the alarm will sound.

OP CODE A B c
SKIP IF ANY FLAGS SK ATK OLIU - 14
' ' XYRP 1234
LBDS —-SCM
VW WRF

The SK instruction causes the next “C” instructions (1-4) to be skipped if any of the flags specified in
the “B” field, (flag group specified in “A” field) are set. Otherwise, the next instruction is executed.

Revised 3-29-71 by
PCN 1045481-001 2.09.05 (Cont’d-2)

Example:' To terminate a loop

PARAMETER
FLIS;D A B C
- 4 OR —
LABEL OP. CODE GTH | LABEL INC/REL

16.(17 (18| 19]20 |21 |22]|23]|24 [25|26]27|28|29{30|31]32{33(34 | 35|36|37(38|39 |40 |41[42| 43 |44|45 46 |47

INUMRZI € |LIR, | I I L 1@ |
L NK Y A B i [
o P@S L R |1

| T I | ’h!ﬂ I 3ﬂ [T I 111 R 11
| I | 1 ! PJM 11 1 ql i1 | 1 1 11 o| g { | |
| | L;L 1 i | ' [T T | 1 11 VI 1 1 | -
L1 S L N
Li1 1, BRV, | NUMRTEH] 11
LABEL OP CODE A _B_ _C_ REMARKS
NUMRIC LIR 1 0 Load Index Register.
NK 2 3 Enable numeric keyboard.
POS 1 2 Position printer.
AL 3 Advance 3 lines.
PN 4 0
IIR 1 4 Increment Index Register.
SK T 1 1 Skip 1 instruction if T set.
BRU NUMRIC +1 Branch to NUMRIC plus 1.
OP CODE A B c
SKIP IF EVERY FLAGS SKE ATK OLIU 1-4
‘ ‘ ' XYRP 1234
LBDS —-SCM
VW WRF

The SKE instruction will cause the next “C” instructions to be skipped if all the flags specified in- the
“B” field (of the flag group specified) are set. Otherwise, the next instruction is executed.

2.09.05 (Cont’d-3)

The flags and flag groups are designed thusly:

1. ACCUMULATOR FLAGS
— Sign
A S Special
C Per Hundred
M Per Thousand

2. KEYBOARD BUFFER FLAGS

2 KB Buffer Filled
3 KB Buffer Empty

3. DATA COMM FLAGS

1 Received TR# Not

D —| Eaual Expected TR #
2 Message Received

| 3 Transmit Ready

4. OCK FLAGS

1 OCK -1
x— 2 0K -2
3 OCK -3
| 4 OCK - 4

5.

L FLAGS (SHIFT REG)
1
2
L_
3
4
PUNCH FLAGS

1 Media Not Present
2 Echo Check

3 Tape Supply

_4 Punch Off

P —

X

EADER FLAGS

1 Reader Condition
R—d 2 Message Received
3 Transmit Ready
| 4 Invalid Code

STRIPE LEDGER FLAG
@ Not Used

§ — W Write Error

R Read Error

| F Filled Sheet

2.09.06 SKIP AND EXECUTE INSTRUCTIONS FOR THE TC 700

9. TEST FLAGS

@ Overflow

T —] L Forms Limit
I Index Register
U Unassigned

10. TELLER LOCK FLAGS

1 Teller 1
2 Teller 2
3 Supervisor
| 4 Not Used

V =

11. PASSBOOK FLAGS

. 1 Passbook Fold
W — 2 Last Print Line

3 Not Used

L4 First Print Line

12. G.E_NERAL PURPOSE FLAGS
1
X_|2
Y |3
| 4

The lock flags and passbook signal flags may be interrogated using the SKIP and EXECUTE instructions
(see Subject 2.09.05). They cannot be referenced with the SET, RESET, LOAD or CHANGE macro

instructions.

Lock Flags (V flag group)

Three flags are provided which test the status of the Teller 1 lock, Teller 2 lock and Supervisor lock.

These are:

Flag V1 for the Teller 1 flag

Flag V2 for the Teller 2 flag

- Flag V3 for the Supervisor Override Flag

Flag V4 is not used

When the Teller 1 key is inserted in its lock and turned, the Teller 1 flag will be set. When the key is
removed from its lock, the Teller 1 flag will be reset. The same applies to the Teller 2 key and the

Supervisor key.
INSTRUCTION

Skip if any flags
Skip if every flag
Execute if any flags
Execute if every flag

OP CODE A
SK \%
SKE v
EX A%
EXE 'V

B c
123 1-4
123 14
123 1-4
123 1-4

Revised 3-29-71 by .
PCN 1045481001 2.09.06

Passbook Signal Flags (W flag group)
Three flags test the sensors in the passbook alignment area. These are:
Flag W4 for 1st Print Line
Flag W1 for Passbook Fold
Flag W2 for Last Line
| Flag W3 hot used

When the Passbook is inserted to the fixed rear limit, the 1st Print Line Flag will be set. It will be reset
at all other times. When the Passbook is so situated in the alignment area that the current print line will
fall within the passbook fold area, the Passbook Fold Flag will be set. It will be reset when this
condition does not exist. :

When the Passbook is so aligned that the current print line is below the last printing line of the
Passbook, the last Print Line Flag will be set. It w111 be reset when the passbook is aligned to any of the
actual printing lines of the book.

A separate Passbook Present Flag does not ex1st Th]S condltlon can: be determmed by testmg for the
NOT SET condition of the Last Line Flag. This result occurs because if a passbook is present in the
alignment mechanism and is aligned to any of the possible posting lines of ‘the passbook, the Last Line"
Flag will be reset. The flag will be set if the passbook is ahgned to the line below the last print line or if
there is no passbook in the mechanism at all. '

INSTRUCTION OP CODE A B C
Skip if any flags SK \ 124 1-4
Skip if every flag SKE W 124 1-4
Execute if any flag EX W 124 1-4
Execute if every flag EXE \ 124 1-4

Machine language code for V and W flag groups.
Reference the appropriate SKIP or EXECUTE instructibn in Appendix B.
Use the weights:

Parameter upper position:

V flags | useE
W flags o use F
Parameter lower posiﬁon: 4
_FLAG ' WEIGHT
W1 or V1 2
W2 or V2 4
W3 or V3 8
W4 or V4 1

2.09.06 Cont’d) -

ALARM
NOP

2.10 — MISCELLANEOUS INSTRUCTIONS

2.10.01 ALARM INSTRUCTION
OP CODE
ALARM

The ALARM instruction will sound the Error Alarm once. The system does not go into the error state.

Example: Notify 6perator anb efror has been made. See the EXE instruction. |

2.10.02 NO OPERATION INSTRUCTION
OP CODE

NOP

The NOP instruction performs no operation, but 10 milliseconds are expended when this instruction is
used. Program execution continues, sequentially, uninterrupted. The NOP instruction is particularly
useful in building the PK table and in conjunction with the CPA instruction.

Example: Use only PKA 4, 6 and 8.

LABEL | P CODE A

PKEYS NOP
NOP
NOP
BRU TOTAL
NOP
BRU ~ SUBTTL
NOP |
BRU START

Example: If the contents of memory word TOTAL are equal to or less than the contents of the
Accumulator, branch to START. If the contents are greater, go to error.

LABEL OP CODE A
CPA TOTAL
NOP
BRU START
BRU ERROR

Revised 3-29-71 by
PCN 1045481-001 2.10.02

STOP
OFF

2.10.03 STOP PROGRAM INSTRUCTION

OP CODE
STOP

The STOP instruction halts the execution of a program and returns the computer to the Ready Mode.

210.04 POWER OFF

OP CODE
OFF

The OFF instruction provides the ability for the TC to turn itself off by causing the power to the entire
system to be turned off. This instruction permits the data center to notify a TC to shut down, by

sending a reserved character or other unique data (selected by user) to it. Upon testing and recognizing
this character, the TC would branch to the instruction OFF as a part of the user program.

2.10.03

cDC

CD

2.11 — CHECK DIGIT INSTRUCTIONS

Macro instructions to compute and verify check digits are available for use on the L/TC by
incorporating a CDC-CDV Add-On Firmware Set with the Basic Main Memory Firmware Set being
utilized. CDC-CDV Add-On Firmware Sets occupy the highest track of user memory provided by the
main memory firmware set.

2.11.01 CHECK DIGIT COMPUTE INSTRUCTION

OPCODE A B

CDC 1-15 0-9

The CDC instruction, when used in conjunction with a check digit table, will generate a check digit for
a number located in the Accumulator. The check digit will be generated for the number which begins in
the Accumulator digit position indicated by the A parameter and ending in Accumulator digit position
1. The generated check digit will be inserted in Accumulator digit position O, remaining Accumulator
digit positions are not disturbed.

The B parameter specifies the constant remainder that is to be used when computing the check digit.

Example 1:
PARAMETER
FIELD
i A — 8 c
. GTH | -
LABEL OoP. CODE LABEL INC/REL

16 17|8193)2122231245252728‘8&3132333435%373839404142 43 14445 K6 |47

41111£|M>y|‘1|||n|1|I|n| Lt 1

OP CODE A

CDC 6 1

If the Accumulator contains:

15{1a]13f12f11|10|lo 8] 7]6|5]|4]3]|2]1]0 |Accumulator Digit Pos.

6191841219613]18]4]2]9]16|3]0 Value

—-Flag Position

the check digit will be calculated for the number beginning in Accumulator digit position 6 and ending
in Accumulator digit position 1; in this case 842963.

The remainder factor used will be 1.

Revised 3-29-71 by
PCN 1045481-001 2.11.01

cbv

CcD
Example 2:
LABEL OP CODE A B C REMARKS
INI'{IL LPNR T/?BLE LO?D CD &P 1\§ASK TABLE
e .

TRA BAL RD NEW BALANCE
SLRO 1 0 POSITION FOR CD
EX A - 1 TEST IF MINUS BALANCE
CDC 8 3 COMPUTE CD ON MINUS USING REM 3
SK A - 1 SKIP IF MINUS BALANCE
CDC 8 2 COMPUTE CD ON PLUS USING REM 2
PNS— 8 2 PRINT NEW BALANCE
PNS— 0 3 PRINT CHECK DIGIT
NOTE ; ALTERNATE COL DOUBLE ADD DOUBLE
NOTE ; MOD 10 CD TABLE & P MASKS ’

TABLE NUM 166009753186420 1ST WORD CD TABLE
NUM 066009876543210 LAST WORD CD TABLE
MASK 777,777.DDE P MASK BALANCE ‘
MASK +D ' P MASK CHECK DIGIT

2.11.02 CHECK DIGIT VERIFY INSTRUCTION

OP CODE A B

CDV 1-15 0-9

The CDV instruction will verify the check digit of a number located in the Accumulator. The number
begins in the Accumulator digit position specified by the A parameter and ends in Accumulator digit
position 1. Any significant digits located to the left of the Accumulator digit position specified by the A
parameter are ignored by the CDV instruction.

The check digit must be located in Accumulator digit position 0.

The B parameter specifies the constant remainder that is used in computing the check digit. If the check
digit is not equal to the computed check digit, the Accumulator S Flag is set and a Keyboard Error
Condition occurs at the next keyboard instruction. The programmer should provide the required
instructions to check the S Flag after verification.

The checking method is determined by the table designated in the A parameter of the last executed
LPNR instruction. '

2.11.02

Ccbv

CD

Example 1:

PARAMETER
FIELD A 8 c

- LEN- -
4+ OR —
H
LABEL OP. CODE GTi LABEL INC/REL

16 |17]18[19]20 |21 2223]24 25|26|27|28| 2913031/ 32| 33{34 | 35/36[37}38{39 |40 |41]42| 43 44|45 W46 |47

L1 GOV 181L||1 L 10 L 11
OP CODE A B
ChbV 8 0

If the Accumulator contains:

151141131211 l10l9o |87 |6 |54]|3|21|1]| 0 |Accumulator Digit Pos.

olojojlojojJo{2|3]|5]|6]|8]9]|2]41]5 Value ,

L Flag Position
the number to be verified begins in Accumulator digit position 8 and ends in Accumulator digit position

1, in this case 23568924.

The remainder factor is 0. The check digit is 5.

Example 2: The CDV Instruction in conjunction with a Modulus 11 weighted system could be utilized
in the user program in the following manner.

LABEL OP CODE A B Cc REMARKS
INI;I‘IL LPNR TA])?’LE LOAD CD & P MASK{ TABLE
ACCTNO NKCM 7 0 INDEX ACCT NO. & CHECK DIGIT

NOTE . USE “C” FOR C.D. VALUE OF “A.”

EX A C 2 TEST FOR “A”
SLRO 1 0 POSITION NUMBER
INK 0 A INSERT CHK DIGIT “A”
CDhV 6 0 VERIFY
EX A S 1 EX IF NOT VERIFIED
BRU ACCTNO BR TO REINDEX
PN 6 1 PRINT ACCT NO.
! { < { ¢
NOTE 1, 3, 7 MODULUS 11 CHK DIGIT
NOTE i TABLE AND PRINT MASKS
TABLE NUM 355003692581470 WT. 7 VALUES 1ST WORD CD TABLE
MASK +DDDDDD,D ACCT. NO. PRINT MASK
MASK ZZ2,Z22.DD AMOUNT PRINT MASK
NUM 455007418529630 WT. 3 VALUES 2ND WORD CD TABLE
NUM 055009876543210 WT. 1 VALUES 3RD WORD CD TABLE

Revised 3-29-71 by
PCN 1045481-001 2.11.02 (Cont’d)

LPNR

CD .

2.11.03 LOAD CHECK DIGIT AND PRINT NUMERIC TABLE INSTRUCTION

. OP CODE" A

LPNR LABEL

The LPNR instruction is used to locate the check digit and print mask tables when check digit firmware
is used. The first entry of the table must be a check digit entry. The table can vary in size from 1 to
256 words. The reader should reference CHECK DIGIT TABLE CONSTRUCTION.

2.11.04 CHECK DIGIT TABLE CONSTRUCTION

The table(s) that are utilized by the CDC-CDV instruction determine the checking method to be used.
The table(s) can be located anywhere within user memory and are referenced by the A Parameter of the

LPNR instruction. The table can vary in size from 1 word to 256 words and the individual entries
within the table do not have to be stored in consecutive order. However, the first entry in the table
must be labeled so that it can be referenced by the LPNR instruction.
Each entry (word) in the table is divided into three sections. These divisions are as follows:

1. Location of the next table entry to be referenced (digit positions 15 & 14).

2. Modulus used (digit positions 13 & 12).

3. Digit values (digit positions 0-9).

The CDC & CDV instructions start with the table entry specified by LPNR. The location of the next
table entry to be referenced by the CDC or CDV instruction is determined by the Hexadecimal value of
digit positions 15 & 14 of the table entry. This location is relative to the base word of the table (the
beginning word of the table which is referenced by the A parameter of the LPNR instruction).

Example:
HEXADECIMAL VALUE RELATIVE LOCATION OF
IN 15 & 14 NEXT TABLE ENTRY
0 1 Base Word + 1
0 2 Base Word + 2
1 1 Base Word + 17
0 0 ’ Base Word + 0

Digit positions 13 & 12 specify the modulus to be used in the verification scheme. The values in both
digit positions within the word must be identical and the value in positions 13 & 12 in each table entry
must be identical. The table assumes a base modulus of 16.

2.11.03

Therefore, to determine the entry for positions 13 & 12 the decimal values of the modulus desired must
be subtracted from the base modulus of 16. For example, if a modulus 10 scheme is to be used a 6
would be entered in digit positions 13 & 12 of every table entry (16-10 = 6). '

Each digit position of an integer (to be checked/computed) has 10 possible values (0 to 9). Each table
entry word represents certain digit positions in the integer.

Example: A table with 3 entries (words) is used to check/compute a check digit for a 6-digit integer.

The 1st table entry is used for digit positions 1 and 4

b3

The 2nd table entry is used for digit positions 2 and 5
The 3rd table entry is used for digit positions 3 and 6

The Digit Values section of each table entry contains the weighted or assigned values for the digit
positions that the table entry represents. The weighted or assigned values are located within the digit
values section (Digit Positions 0-9) in order according to the possible value that it represents. For
example, the weighted or assigned values for the possible digit position value of 7 on the integer is
stored in digit position 7 of the table entry.

A simple alternate column Double-Add-Double Check Digit scheme would require a two-word table with
the following values in digit positions 0-9 (Digit Values Section) of the table entries.

Integer Digit Value and

Table Entry Digit Position 9 8 7 6 5 4 3 2 1 0

1st Table Entry Values 9 7 5 3 1 8 6 4 0

2nd Table Entry Values 9 8 7 6 5 4 3 2 1 0

Example 1:
Alternate Column, Doublé—Add—Double

Modulus 10

Remainder 0

Integer (Acct No.) 4 3 2 2 5 17

Assigned Values From Table 4 +6 +2 +4 +5 +5 = 26
Remainder - 0

Total Sum of Assigned Values 26+0 = 26
Next High Multiple Of Modulus (10) 30

Check Digit 3026 = 4

The values assigned in computing the check digit for the above integer (Acct No.) are as follows: The
assigned values for the digits located in positions 1, 3 & 5 of the integer are taken from the 1st table
entry. The assigned values for the digits located in positions 2, 4 & 6 of the integer are taken from the
2nd table entry.

 Revised 3-29-71 by ‘
PCN 1045481001 =~ 2.11.04

COMPLETE TABLE

POSITIONS :
15 1413 12|11 1019 8 7 6 5 4 3 2
Next - |
Word Mod Digit Values
LocC)
TABLE ENTRY 1 0 116 6 9 7 S5 3 1 8 6 4
TABLE ENTRY 2 0O 0}]6 6 9 8 7 6 4 3 2
Example 2: 1, 3, 7 MODULUS 11 METHOD. 4 .

‘ In this method the assigned value for each digit is obtained by assigning weights of 7, 3, 1, 7,
3, 1,...continuously; starting with the least significant digit of the number. A three-word
table is required. '

Integer 4 3 2 2 7 17
Assigned Value From Table 4 +9+3+2+A+5=33
Remainder 1
Total Sum of Assigned Values 33+ 1 =34
Next Higher Multiple of Modulus 44
Check Digit 44-34 =
TABLE
POSITIONS
15 14113 12|11 1019 8 7 6 5 4 3 2 1 0
Next
Word Mod Digit Values
LOC
0 1 5 5 8§ 1 5 9 2 A 3 7 0
0O 215 5 5 2 A 7 4 1 9 6 3 0
0O 0|5 5 9 8 7 6 5 4 3 2 1 0

2.11.04 (Cont’d-1)

The table for the example of the 1, 3, 7 Modulus 11 Method was derived in the following manner.

1st Table Entry (Weighted 7).

b
o
]

NN N NN NN N NN
>

»
O 00 N O v bW
]

63 56 49 42 35 28 21 14 7 0

Minus Next Lowest

Multiple of Modulus -55 55 —44 -33 -33 -22 -1 -1 -0 -0
Ist Table Entry = 8 1 5 9 2 6 A 3 7 0

2nd Table Entry (Weighted 3).

>
o
1]

W W W W oW oW oW W W W
>

>
O 00 N O v AW
Il

27 24 21 18 15 12 9 6 3 0

Minus Next Lowest

Multiple of Modulus -22 -22 -1 -1 -1 -1 -0 -0 -0 -0
2nd Table Entry = 5 2 A 7 4 1 9 6 3 0

Revised 3-29-71 by
PCN 1045481-001 2.11.04 (Cont’d-2)

3rd Table Entry (Weighted 1).

O
i

e
»

O 00 N O Ui A W N = O
]

Minus Next Lowest
Multiple of Modulus

3rd Table Entry =

]

9 8
0 0
9 8

A check digit can be accurately computed and verified on fixed length alphanumeric’ fields that do not
exceed 7 characters in length. The check digit would make the 8th character.

Example 3:

The following example illustrates how a check digit could be computed on a 5-character fixed length
alpha field (check digit is entered as the 6th character) using a 1, 3, 7 Modulus 10 Method.

EQ LABEL OP CODE

1 INITAL LPNR
2 CMPCD POS
3 LKBR
4 TKM
5 TRA
6 SLROS
7 INK
8 NOTE
9 NOTE
10 NOTE
10.1 NOTE
11 ADK

2.11.04 (Cont’d-3)

A

TABLE
10
PARTNO
5
PARTNO
0

1

0

B

w

REMARKS

LOAD CHECK DIGIT TABLE

POSITION PRINTER

SET KB BASE REGISTER

ENTER PART NUMBER

READ ALPHA TO ACCUMULATOR
RIGHT JUSTIFY ALPHA NUMBER
INSERT 3 COL 1

THE 3 IS INSERTED SO THAT THE CD
NUMBER CAN BE ENTERED THROUGH
THE ALPHA KEYBOARD AS A COL 3
USASCII NUMERAL.

**DECIMAL CORRECT ALPHA

SEQ LABEL OP CODE A B c REMARKS
12 CDC 12 3 COMPUTE CD USING REM 3
13 PN 0 3 PRINT CHECK DIGIT
14 VERCD AL 1 ALIGN FORM
15 POS 10 POSITION PRINTER
16 LKBR PARTNO SET BASE REGISTER POINTER
17 TKM 6 ENTER PART NUMBER & CD
18 TRA PARTNO RD ALPHA TO ACCUMULATOR
19 SLROS 0 4 POSITION CD TO POS 0
20 ADK 0 0 DECIMAL CORRECT
21 Cbv 12 3 VERIFY USING REM 3
22 EX A S 2 TEXT IF VERIFIED
23 ALARM SIGNAL OPERATOR IF ERROR
24 BRU VERCD BR TO RE ENTER
25 PA OK PRINT VERIFIED MSG
26 AL 1 ALIGN FORM
27 BRU CMPCD BR FOR NEXT
28 TABLE NUM 16600369258147 FIRST ENTRY 7 WT CD TABLE
29 NUM 26600741852963 SECOND ENTRY 3 WT CD TABLE
30 NUM 06600987654321 LAST ENTRY 1 WT CD TABLE
31 MASK +D PRINT CD ON CDC
32 OK ALF OK VERIFIED MSG
33 END

**NOTE: The eight bit alpha characters stored in the accumulator must be decimal corrected to
eliminate hexadecimal values greater than 9 (A-F).

If a Modulus 11 method is used, the following additional instructions would be required in the VERCD
Routine.

SEQ LABEL OP CODE A B C REMARKS

20.1 SKL 1 4 2 SK IF CHECK DIGIT NOT A
20.2 INK 1 3 RESET DIGIT 1 TO COL. 3
20.3 INK 0 A INSERT A IN COLUMN 0

These instructions are used to test and compensate for a check digit value of A, which is entered as an
“A” (4,1 on the USASCII Chart). The 4,1 must be tested and compensated for or the alphanumeric
number will not verify. The A must be corrected to the Col. 3 USASCII numeral that was derived
during the compute phase (3A).

Revised 3-29-71 by R
PCN 1045481-001 2.11.04 (Cont’d-4)

2.12 — DATA COMMUNICATIONS INSTRUCTIONS

2.12.01 GENERAL DESCRIPTION

" The Data Communications Procedures and Configurations of the various TC’s are covered in detail in the
Series L/TC Equipment Reference Manual. The Equipment Reference Manual also discusses the basic
characteristics of the Data Communications Processor and the way in which its associated firmware
controls the interaction of the TC with the communications network and devices on that network.

Two tracks of the Data Communications Processor are permanently assigned as communications buffers,
one for receiving messages from the network and one for sending messages to the network. Each buffer
has a capacity of 255 characters of data plus the ETX character.

The Data Communications Processor firmware validates all incoming messages, removes the header infor-
mation and stores the data (text) with the ETX in the receive buffer. Conversely, the Data
Communications Processor firmware attaches the Header, ETX and BCC information to any outgoing
message, the programmer being required to place only data (text, up to 255 characters) into the
Transmit Buffer.

Messages to be transmitted are placed into the Data Communications Transmit buffer by the user
program and the Transmit Ready Flag (R3 or D3) is set — See Subject 2.12.07. The Data
Communications Processor will then handle the transmission of the message leaving the Main Memory
Processor free to continue with the user program.

After the successful transmission of a message the Transmit Ready Flag (R3 and D3) will be reset. The
user program should always examine the R3 flag (or the D3 flag which is the Data Communications
Processor equivalent of R3) prior to placing another message into the Transmit Buffer to determine if
the previous message has been transmitted.

In a data communications environment, the most efficient operation is achieved by using only the “D”
flags. '

The Data Communications Processor indicates to the user program that it has sucessfully received a
message by setting the Data Communications Processor Receive Ready Flag (D2) and the Main Memory
Processor Receive Ready Flag (R2) — Refer to Subject 2.12.07. The user program will interrogate one
of these flags to determine when a message has been received.

After removing the data from the Receive buffer, the user program will reset the R2 or D2 flag to
indicate to the Data Communications Processor that the buffer is free to receive another message.

The Data Communications Instructions covered in this section fall into three main groups, all are used in
combination with the normal Main Memory instructions.

1. Send Instructions
These instructions provide for preparing messages to be transmitted from the TC.

2. Receive Instructions
These instructions provide for unpacking and processing messages that have been received by
the TC ‘

2.12.01

ESTB

DC

3. Control Instructions
These instructions provide for accessing and loading the various Terminal Addresses, Trans-

mission Numbers, and other registers of the TC.

All of these instructions are executed as part of the user program. Their combined effect is to provide
the most efficient handling of data communications with the TC.

2.12.02 ESTABLISHING RECEIVE/TRANSMIT RECORD AREAS

LABEL OP CODE

ESTABLISH RECEIVE RECORD AREA RECEIV ESTB

ESTABLISH SEND RECORD AREA SEND ESTB

It is usually desirable to use a receive record area to unpack messages while freeing the data comm
receive buffer to accept more data. These receive record areas have a counterpart in the send record
area, used to prepare a message for transmission while another message is in the transmit buffer awaiting
a poll from the central processor. '

These record areas are always thirty-two words (1 track) in length and are assigned space in memory by
the assembler according to two things:

1. Memory size — as specified by the option “MEMORY NNN”
2. and by the use of the pseudo instruction ESTB.

The first use of the ESTB pseudo instruction will cause the assembler to assign the record area to the
highest thirty-two words of memory available that fall on a track boundary (as indicated by the memory
size option card) in user memory. The second use of the ESTB instruction will cause the record area to
be established in the next 32 words of user memory available. For example, if user memory is
384 words, (0-383), the first record area will be in words 352-383. The second use of ESTB will
establish the record area in words 320-351.

The ESTB pseudo instruction has no parameter, but it must always be labeled.

So far, we have only established receive and transmit record areas. The use of them will be discussed
later.

NOTE: If the last user word is specified in assemblY rather than the total number of user words of user
memory (example: 383 rather than 384), the assembler will select the next lower track available
(example: words 320 to 352). This would cause the last 32 words to be inaccessible to the assembler
for other use.

An alternate, but less frequently used method of reservihg main memory buffer areas is to specify a
word value as in the following examples which assume 384 words of memory. :

Revised 3-29-71 by
PCN 1045481-001 2.12.02

LRBR
RCP
IRCP
DC
LABEL OP CODE ' A
ORG 352

RECEIV REG , 32

In this example, Receive would be assembled with a starting word of 352. The word number must be
the first word of a track. Track 0 is not a valid entry.

Any number of transmit or receive record areas may be used. The number is determmed by system
requirements and memory availability.

2.12.03 TRANSFERRING DATA FROM ONE MEMORY ADDRESS TO ANOTHER MEMORY ADDRESS

The unpacking of messages received and the constructing of méssages to be transmitted usually involves
moving data FROM one memory location TO another. The transfer can be from a record area to the
transmit buffer, from the receive buffer to a memory location, or from one memory address to another

memory address. The following instructions deal with this data movement.

LABEL OP CODE A

LOAD RECEIVE BUFFER REGISTER ' LRBR BLANK OR LABEL

The LRBR instruction designates the starting memory address from which data will be transferred until
the next LRBR is encountered, or the Character Pointer Register is otherwise altered. It is the origin
address. The A parameter is the label of a memory address, often a record area which has already been
established. The A parameter may be blank, however, in which case the data will be transferred directly
from the Receive Buffer. Each time the LRBR instruction is executed, the character pointer for that
record area or buffer is set to 1. This means the first chracter transferred will be the high order
character of the first word in the designated memory location. "

LABEL . OP CODE A
SET RECEIVE CHARACTER POINTER - RCP 1-255

Each use of the LRBR instruction sets the associated character pointer to one. For each character trans-
ferred or printed from the track, this character pointer is incremented serially. The RCP instruction sets

the pointer to the character position specified by the “A’ parameter relative to the last LRBR word
location.

This instruction permlts transfer of data startmg with the character position des1gnated by the “A”
parameter.

OP CODE A
INCREMENT RECEIVE CHARACTER POINTER IRCP : 1-255

The IRCP instruction increments the receive character pointer by the number of character positions
designated in the A field, or until the next field indentifier code is encountered. The pointer is
incremented for the field identifier code also. This mstructlon permlts by-passmg a data field in a

21203

LKBR © SCP
TRB . TRBA
DC

message containing variable length fields. If the RCP is incremented past 255, the Overflow Test Flag
will be set, otherwise it will be reset.

OP CODE A

LOAD KEYBOARD BASE REGISTER LKBR ~ BLANK OR LABEL

The LKBR instruction designates the starting memory address to which data will be transferred, until
the next LKBR is encountered, or the Character Pointer Register is otherwise altered. It is the
destination address. (The A parameter is the label of a memory address, often a record area.) The A
parameter may be blank however, in which case the data will be transferred directly to the transmit
buffer. Each time the LKBR instruction is executed, the Send Character Pointer for that memory
address, record area or buffer is set to 1. This means the first character transferred will be placed in the
first character position of the designated memory location.
OP CODE A

SET SEND CHARACTER POINTER SCP 1-255

Each use of the LKBR instruction sets the associated character pointer to one. For each character
transferred, the character pointer is incremented serially. The SCP instruction sets the character position
specified-by the “A’’ parameter relative to the last LKBR word location.

This instruction permits transfer of data starting with the character position designated by the “A”
parameter.

2.12.04 UNPACKING MESSAGES RECEIVED

Normally, when transferring the contents of a word in the Accumulator, the whole word is transferred.
Likewise, when printing the alpha contents of a word, the entire contents (up to an end alpha code) are
printed. The data comm instructions used to unpack messages pay no attention to word boundaries in
the receive buffer or receive record area. In Data Communication programing, it is possible to transfer
any number of digits up to 16 to the Accumulator and it is possible to move alpha characters from one
location to another regardless of the number of word boundaries crossed.

OP CODE A

TRANSFER RECEIVE BUFFER TO RECORD AREA TRB LABEL

The TRB instruction transfers the contents of the Data Communications Receive Buffer to the Normal
Memory Receive Record area (32 words on one track) specified by the “A’ parameter. The Receive
Record area must have been established using the ESTB instruction previously described in this section.
This instruction permits the use of one or several Receive Record areas in Normal memory.

OP CODE A

TRANSFER TO ACCUMULATOR AS NUMERIC ~ TRBA 1-16

The TRBA instruction, transfers the number of characters specified in the “A” field from the Rgceive
Buffer, or working record area, to the Accumulator as Numeric digits. The buffer or Receive Record

Revised 3-29-71 by
PCN 1045481-001 2.12.04

TRBA

DC

area is the one specified by the last LRBR instruction, and the beginning character is determined by the
current positioh of the RCP. The TRBA instruction is terminated by the transfer of the number of
characters specified or by a field identifier code, whichever comes first. The field identifier code sets a
specified flag pattern (see Subject 2.12.06). The RCP is incremented for each character transferred and
for the field identifier code (which is not transferred into the Accumulator). The Overflow flag will be
set if the RCP is incremented past 255 and the instruction will be terminated; otherwise, the Overflow
flag is reset.

Although alpha numerals occupy 2 digit positions (8 bits) for the character in either the Receive Buffer
or Receive Record area, the TRBA instruction places then in the Accumulator as numeric digits (4 bits).
Thus, up to 16 buffer characters can be transferred to the Accumulator as 16 digits (any data required
for computational purposes must be limited to 15 digits).

Valid codes accepted by TRBA are any codes from column 3 of the USASCII table. These include the
numerals 0 to 9 and : ;< = > ? In addition, the minus (=) and plus (+) codes and any field identifier
codes from columns O and 1 are valid. When used in a numeric field, the minus or plus code may be
any character in the field. After first use in a given numeric field, subsequent plus or minus codes are
invalid. The minus code will set the sign flag in the accumulator; the plus code will reset the sign flag.
The minus or plus code will not be counted as one of the characters transferred as specified by the para-
meter field, however, the RCP will be incremented for this character. The field identifier codes are not
transferred to the Accumulator but do terminate the TRBA instruction. The characters : ;< = > and ?
are transferred to the accumulator as hexadecimal digits (undigits) with binary values of 10, 11, 12, 13,
14 and 15 respectively (values are designated by A, B, C, D, E, and F). ' ‘

Other characters will be considered as invalid, will cause the ‘S flag of the Accumulator to be set, will
count as a code transferred, but the instruction will not be terminated.

Remember that if it is desired to read a terminating FI Code the TRBA parameter must be one more
than maximum numeric field likely to be transfered in order to ensure that the FI Code is transfered
and sets the flag patterns.

EXAMPLES

Instruction Buffer contents Result in accumulator
TRBA 4 — 1234 ABC 1000000000001234
TRBA 5 ’ — 1234 FIABC 1000000000001234
TRBA § 1234 — FIABC 1000000000001234
TRBA 4 1234 — ABC 0000000000001234

, (Sign is lost)

TRBA 5 1234 + ABC 2000000000012341

(S flag is set by transfer of
A an invalid code)

It is important to remember that the TRBA instruction, while designed to transfer one character at a
time into the Accumulator, must “scoop up” two digit positions from the memory location indicated by
the current LRBR and RCP instruction in order to determine the digit being transferred. Look at the
USASCII chart (Appendix H). Every code in the table is represented by a row and column and must
occupy 8 bits. The “numbers” in the table are located in column three. Since there are 16 rows in the

2.12.04 (Cont’d-1)

TRBA

DC

table, column 3 has 16 entries: 0-9 and the hexadecimal digits A through E. This information is useful
when, for instance, an “A” is desired in the Accumulator as a result of a TRBA instruction. The central
processor would send to the TC an USASCII equivalent of a colon (:). In USASCII code, it is “3,A.”
When the TRBA instruction encounters the 8 bit representation of a colon (3,A), the upper four bits are
pared off and the lower four bits are placed in the Accumulator.

Used this way, the TRBA instruction is an instrumental tool for loading programs in the TC using codes
sent from a central processor.

Example:
OP CODE A
TRANSFER TO ACCUMULATOR AS NUMERIC TRBA 16

Result in Accumulator:
E 803 EEOI!I EBSSEDTG OI1

t Digit Pos. 15
Digit Pos. 0

In this instance, the “E’s,” “B’s,” and “D’s” in the Accumulator resulted from a 3,E, and a 3,B, and a
3,D in memory which are valid codes for the TRBA instruction. The “E” in the Accumulator is, in
reality, a hexadecimal 14, the “B” a hexadecimal 11, and the “D” a hexadecimal 13.

NOTE: Let’s say the contents of the Accumulator were moved to a memory location, e.g., word 30.
Word 30 would then look like this:)

syllable 0 : EDO1
syllable 1 : EB55
syllable 2 : EEO1
syllable 3 : E803

These are the machine codes for these mnemonics:

LABEL OP CODE A B c REMARKS
AL 1 Advance left 1
POS 86 Position to 86
AR 1 Advance right

oC 3 Open handler, advance 3

Revised.3-29-71 by ‘
PCN 1045481-001 2.12.04 (Cont’d-2)

TRF

DC
OP CODE A
TRANSFER ALPHA TRF 0-255

‘The TRF instruction transfers alphanumeric (8 bit) characters from the memory location specified by
the last LRBR instruction beginning at the current RCP position to the memory location specified by ’
the last LKBR instruction beginning at the current SCP position. The number of characters to be
transferred is specified by the A parameter of the TRF instruction; the instruction is terminated by the
transferring of the exact number of characters specified or by encountering a field identifier code. When
the instruction is terminated, no matter how it is terminated, (by reaching the number of characters
specified or by encountering a field identifier code) an end of alpha code will be inserted in the next
character position of the memory address indicated by the LKBR. The SCP is not incremented for that
code, however.

The following example attempts to show how several product codes, which have come from a central
processor, can be stored in TC user memory:

First word of Receive Buffer:

“ITEM# ”
41915]414|5]4|D|2]3
t Digit Pos. 15 T
Digit Pos. 0
Example:
LABEL OP CODE A

LOAD RECEIVE BUFFER REGISTER LRBR RECEIV
LOAD KEYBOARD BASE REGISTER LKBR STORE
TRANSFER ALPHA TRF 5
RESERVE REGION STORE REG 1

This is what “STORE” would look like after the tfansfer:

“ITEM# »
4]19(|51414|5|4|D|2]3]|0]0]O|0O]O]}O
4

Digit Pos. 15 T

Digit Pos. 0 : ‘

The RCP and SCP are incremented for each character transferred; the RCP will also be incremented for
a field identifier code if one is present. The overflow flag will be set if either pointer is incremented past
255, or if ETX is encountered.

2.12.04 (Cont’d-3)

PAB

DC
OP CODE A
PRINT ALPHA RECEIVE BUFFER PAB 0-150

The PAB instruction usually is used with a receive buffer or record area but will print from any memory
location designated by the last LRBR instruction beginning with the current RCP position. The printing
will continue until the exact number of characters have been printed, or until a field identifier code is
encountered. For each character printed, the RCP will be incremented by 1. If the RCP is incremented
past 255, the overflow flag will be set. If printing is attempted beyond 150 on a 15% inch platen, the
system will return to ready mode.

Example:
LABEL OP CODE A
ESTABLISH RECEIVE RECORD AREA RECEIV ESTB
LOAD RECEIVE BUFFER REGISTER " LRBR RECEIV
PRINT ALPHA PAB 15

NOTE: It is also possible to print from memory using the PA instruction. The distinction is the
flexibility of the PAB instruction since it allows the programmer to designate a starting character
position within a word (done by setting RCP) and to designate the exact number of characters to be
printed. The PA instruction simply prints from the first character position of the word specified by its
A parameter until it encounters the end alpha code. ‘

2.12.05 PREPARING MESSAGES FOR TRANSMISSION

Remember from the discussion of unpacking messages received that instructions which transferred
characters and printed characters were not limited by word boundaries. The transfer is guided by a
character pointer (RCP). Likewise, in preparing a message for transmission, those instructions dependent
on a character pointer (SCP) and an LKBR instruction are not limited by word boundaries.

If any of these instructions are used to transfer data to the transmit buffer while the transmit ready flag
is set, execution of the instruction is delayed. The transmit ready flag is always interrogated before
information is moved into the transmit buffer.

Revised 3-29-71 by
PCN 1045481001 2.12.05

TSB
TRAB

- 'DC

A message may be prepared for transmission in a user memory send record area and then be transferred
to the transmit buffer. This transfer will move the entire 32 words of a send record area to the transmit
buffer. The send record area is determined by the A parameter of the TSB instruction. The A parameter
is the label of a record area established by one of the routines using ESTB. The End of Text Character
will be automatically inserted after the last character of the message. '

OPCODE A

TRANSFER SEND RECORD AREA TSB LABEL
OPCODE A B
TRANSFER ACCUMULATOR TO “LKBR” ~ TRAB 0-15 Oorl

The TRAB instruction will transfer up to 15 numeric digits (4 bits) from the Accumulator into the
memory location designated by the last LKBR instruction, placing the digits into memory as 8 bit alpha
characters beginning with the current position of the SCP.

The digit position of the Accumulator from which digits are to be transferred is designated by the A
parameter. The B parameter must be either a zero or one: A “1” meaning leading zeros will be
transferred and a ““0” meaning leading zeros will not be transfe’rred.

Example 1:
LABEL OP CODE A B
LOAD KEYBOARD BASE REGISTER - LKBR SEND

TRANSFER ACCUMULATOR ' TRAB 10 1

If the Accumulator leoks like this prior to execution of TRAB:

olojojojojolof2|7|8|o}1]5|4]|0]6

A :)) . ‘
Digit Position 15 - I
Digit Position 0

then the digit O located in position 10 would be transferred to the current position of the SCP as the
character O (represented in hexadecimal as 30). The digit O in position 9 of the Accumulator would be
transferred as the character O (represented in hexadecimal as 30); digit 2 would transfer as character 2
(hexadecimal 32); etc. The first and second words of the memory location designated by the last LKBR
would look like this after the execution:

‘1st word 3lo13lo0]3]213]|71318]3l9]3|1]3]5

— Digit Position 15
Digit Position 0 ——

2nd word 3]14(3]0}3]6

2.12.05 (Cont’d-1)

TRAB

DC
The transfer could also have been directly to the Data Communications Transmit Buffer.
Example 2:
OP CODE A _E
LOAD KEYBOARD BASE REGISTER LKBR
TRANSFER ACCUMULATOR TO LAST “LKBR” TRAB 10 0

If the Accumulator looked like this prior to execution:

1[8]415]|2]0]|0]|9]|6]8|9|1]|5]4|0]6

— Digit Position 15
Digit Position O

then the first digit transferred would be the digit 9 in position 8 of the Accumulator, since the B para-
meter indicates zero suppression. It would be transferred to the current position of the SCP as the
character 9 (hexadecimal 39). The digit 6 in position 7 would transfer as character 6 (hexadecimal 36),
etc.

The first and second words of the memory location designated by the last LKBR would look like this:

1st word 319131613 |813|9]3}113|5]3{4]31]0
A A
‘ Digit Position 15 |
Digit Position 0 ‘
\ \ 4
2nd word 3]l6

Those digits occupyihg positions in the Accumulator higher than the digit position specified by the A
parameter were ignored. :

Example 3: Transferring signed numbers.

OP CODE A B C

LOAD KEYBOARD BASE REGISTER LKBR WORK
| EX A - 1
TRANSFER CHARACTER TRCB 2 13

TRANSFER ACCUMULATOR TO LAST “LKBR” TRAB 9 0

.~ Revised 3-29-71 by
PCN 1045481001 2.12.05 (Cont’d-2)

TRAB
TRF -

TRCB DC

If the Accumulator appears like this prior to execution:

~JoJojofofoofo]|o|o|o|[1|[2]5]5]0

then after execution, the memory location specified by the last LKBR would appear as follows:

21D |31 312 ({3 (|5 |3]5([3]60
- 1 2 5 5 0

It is necessary to test for the presence of the minus flag in the Accumulator and to insert the actual
minus character (hexadecimal 2D) into memory, since a minus flag would be converted to the character
1 (hexadecimal 31) by the TRAB instruction.

To insert a plus sign into memory, the following code could be used:

OPCODE A B C
LOAD KEYBOARD BASE REGISTER LKBR \%VORK
SK A - 1
TRANSFER CHARACTER TRCB 2 11
TRANSFER ACCUMULATOR TO MEMORY TRAB 9 0
OP CODE A
TRANSFER ALPHA TRF 0-255

Refer to previous discussion on this instruction under Subject 2.12.04 “Unpacking Messages Received”.

OP CODE A B

TRANSFER CHARACTER TO BUFFER TRCB 0-7 0-15

The TRCB instruction transfers the USASCII code designated by the decimal value in the “A” and “B”
parameters into the memory address specified by the last LKBR instruction, with the first character

being transferred to the position indicated by the current position of the SCP. For each character
transferred, the SCP is incremented by one.

To use this instruction, it is necessary to know the USASCII row and column designation of the
character to be transferred. The A parameter mdlcates the column number from the USASCII table, and
the B parameter is the row number.

For example, if an asterisk (*), USASCII column 2, row 10 is to be placed in the buffer, then the
instruction to accomplish this is:

2.12.05 (Cont’d-3)

TRCB

TKM
FI CODES
OP CODE A B
TRANSFER CHARACTER TO BUFFER TRCB 2 10
OP CODE A
TYPE TO MEMORY TKM 0-150

The TKM instruction allows the operator to enter data directly into the memory address specified by
the last LKBR beginning with the current position of the SCP. The SCP will be incremented for each
character entered and an end of alpha code will be placed in memory after the last character ended.
However, the SCP is not incremented for this character.

The use of the backspace key will cause the SCP to be decremented for each depression. However, the
SCP cannot be decremented beyond the position held when the TKM instruction was encountered.

LABEL OP CODE A
LOAD KEYBOARD REGISTER LKBR AREA
TYPE INTO MEMORY TKM 16
ESTABLISH 4 WORD REGION AREA REG 4

The instruction may have been used to enter data into the transmit record area:

LABEL OP CODE A
LOAD KEYBOARD BASE REGISTER LKBR SEND
TYPE INTO LAST “LK]éR” TKM 25
ESTABLISH SEND RECORD AREA SEND ESTB

2.12.06 FIELD IDENTIFIER CODES AND VARIABLE LENGTH FIELDS

EXAMPLE:

A customer’s name, street address, city and state are being transmitted to the TC to be printed on 3
different lines of an invoice. The message is in the Receive Buffer and the programmer wishes to use the
PAB instruction to print the name on the ship-to portion of the invoice. If the name is “Acme
Printing,” the A parameter of the PAB instruction should be 13 characters. Names may be of variable
length, and a convention in GP 300 allows for varying length fields. This convention is called a “field
identifier code.” Whenever a field identifier code is encountered by any of the following data comm
instructions, execution is terminated and the next instruction will begin. These instructions are:

Revised 3-29-71 by)
PCN 1045481-001 . 2.12.06

FI CODES

LABEL OP CODE A B E REMARKS
TRBA 0-16 Transfer as numeric
TRF 0-255 Transfer alpha
PAB 0-150 Print from buffer
IRCP 0-255 Increment receive character
pointer

Valid field identifier codes are in columns O and 1 of the USASCII Chart. The two charts below show
the codes, their 4 bit hexadecimal value and their accompanying flag patterns.

The codes from column O present problems if the Y’ flags are used in the TC user program. After
reading a column O field identifier code, all four Y flags are either set or reset, and the appearance of
these Y flags could seriously upset the logic of the TC program if the Y flags are interrogated and acted
upon without knowledge of these additional flag settings. This same problem could arise when reading
column 1 codes and when interrogating the K flags. Therefore, the use of these field identifier codes
must be given careful consideration and their use must be coordinated with the central processor.

NO FLAGS SET Y FLAGS SET* K FLAGS SET* TEST FLAGS SET
3214 3214 UILO
NUL SOH 0001 DC1 0001 ETX 0001
STX 0010 DC2 0010
DC3 0011
DC4 0100
ENQ 0101 NAK 0101
ACK 0110 SYN 0110
BEL 0111 ETB 0111
BS 1000 CAN 1000
HT 1001 EM 1001
LF 1010 SUB 1010
VI 1011 ESC 1011
FF 1100 FS 1100
CR 1101 GS 1101
SO 1110 RS 1110
SI 1111 Uus 1111

*Y and K flags designated are set if “1”’ and reset if “0”

It is generally agreed that many of the above USASCII codes should never appear in a text. EOT is
specifically filtered out by the Data Communications Processor. NUL does serve as a field identifier but,
as indicated in the chart above, it terminates the instruction but does not set any flags; neither does it
reset any previous flags. It merely terminates the instruction. ETX has special significance in that when

ETX is detected during a transfer instruction, the Overflow flag will be set and the instruction
terminated. '

2.12.06 (Cont’d-1)

Fl CODES

The following examples show the proper use of field identifier codes.

Example 1:

An invoice ship-to region has been defined as consisting of from 2 to 4 lines of not more than 25
characters per line. In addition, the last line of the ship-to address will determine if the sold-to address is
“SAME” or if it requires a separate address.

PROBLEM: The TC programmer must program for variable length fields and for a variable number of
fields. He must also decide whether to print “SAME’’ in the sold-to address area or to begin printing a
new sold-to address.

DECISION: After each field or line of ship-to address a field identifier code will be inserted by the
central processor. For example, “DC1,” after each line except for the last line of the ship-to address
which will be “DC2” if the sold-to address is “SAME” or a “DC4” if sold-to address is another distinct
address. A “CAN’’ code will terminate the last line of the sold-to address.

On the following page are some programing suggestions that will accomplish the necessary invoice
addressing routine. (Assume the necessary steps have been taken to establish a receive record area, to
establish alpha constants, etc.)

This routine is very flexible. Each line printed can be of any length up to 25 characters. If the field
(line) is less than 25 characters*, the field identifier will terminate the instruction and set a K flag
pattern. Also, there may be any number of lines to an address since either K1 or K2 will mark the end
of the last line of the address.

*Notice the A parameter of the PAB instruction is 26. The problem definition permits only 25
characters per line. In the event, however, the field is exactly 25 characters long, the extra character in
the A parameter will allow the PAB instruction to pick up the field identifier code. Otherwise, the
character pointei will be pointing at the 26th character at the time of execution of the next PAB

instruction since it is not incremented when reading an F.l. This PAB instruction would read the field
identifier and terminate, instead of reading the next field. /

Revised 3-29-71by ‘ B ‘
PoN T0dsasioor 2.12.06 (Cont’d-2)

LABEL OP CODE _Il # E 9_ REMARKS
PRTLIN LRBR RECEIV Load Receive Buffer Register
AL 1 Advance left 1 line
POS 5 Position to print
PAB 26 Print on address line
EX K 4 1 K4 — means more lines
BRU PRTLIN +1 Print another line
EX K 1 3 K1 — ship-to = sold-to
ALTO 15 Advance to sold-to area
PA SAME Print “SAME”
BRU RIBBON Exit the routine
EX K 2 2 K2 — means sold-to address
ALTO 15 Advance to sold-to area
BRU PRTLIN +1 Base to print new address
RIBBON ALTO 22 Ribbon Routine

Example 2:

This example shows how field identifier codes may be helpful while constructing messages for
transmission to the central processor.

Assume we are in a file maintenance routine and wish to send the name and number of a customer to
the ceniral processor. Every name has a corresponding number.

2.12.06 (Cont’d-3)

PROBLEM: The TC programmer must allow for several such combinations of names and numbers and
also must distinguish between the names and numbers.

DECISION: Every name will be followed by the field identifier “DC2.” Every customer number will be
identified by a trailing “DC4” if there are more names and numbers to follow or a “CAN” if the
current customer number is the last one. After indexing a name, the operator terminates with OCK 1.
After indexing a number, the operator terminates with OCK 2 if there are more names and numbers and
OCK 3 or OCK 4 if there are no more.

LABEL OP CODE A # B E REMARKS

LODBUF LKBR XMIT Load transmit buffer
AL 2 Advance to type
POS 5 ’ Position to print
TKM 25 Index name/number
EX K 1 2 K1 — means name
TRCB 1 1 1,2=DC2=0CK 1
BRU LODBUF #1 Index again
EX K 2 2 K2 — means number
TRCB 1 2 1,4 =DC4 = OCK 2
BRU LODBUF #1 Index again
EX K 34 3 K3,4 — last number
TRCB 1 8 1,8 = CAN = OCK 3
SET D 3 Set transmit flag
BRU AWAY A Exit routine

The function of the “D” flag group is to provide a method for interrogating and changing the status of
the DCP Transmit and Receive Buffers. The “R” flag group may also be utilized in the same manner as
the “D” flag group. However it is recommended that the “D” flag group be used due to timing and
syllable placement considerations involved in using the “R” flags.

Revised 3-29-71 by
PCN 1045481-001 2.12.06 (Cont’d-4)

D FLAGS
RSA

DC

2.12.07 “D” FLAG GROUP

All versions of the Series L/TC Assemblers which have the capability of assembling a data communica-
tions program have been revised to allow any flag in the D Flag Group to be set (SET) and reset (RST).
Previously the D flags could be interrogated but the status could not be altered. When it was necessary
for the application program to notify the DCP of a change in the status of the Transmit and Receive
buffers, it had to be done via the R2 (Ready to Receive new data) or R3 (message ready for
transmission) flags.

It is suggested that only the D ﬂag group be used when it is required to set,‘reset or interrogate the
status of the DCP. The previous method of setting or resetting the R flags and interrogating the D flags,
although confusing, will also work.

IMPORTANT: The CHG or LOD instructions can not be used to change or load the R or D flag groups
when the TC is functioning with any Data Communications Main Memory Firmware Set. The CHG or
LOD Instructions may be used to change or load the R flags only when using any non Data
Communication firmware set. ‘

The following flags are available in the Data Communication Flag Group:

Dl - Trouble Flag

D2 - Message Received Flag

D3 - Transmit Ready Flag

D4 - Micro Flag. Not available to the macro programmer.

2.12.08 SEND AND RECEIVE ADDRESS INSTRUCTIONS

GP 300 has a group of instructions, which allow the programmer to assume some firmware responsi-
bilities. An example is the transmission number that is part of the header portion of a message. This
number is usually calculated by firmware and can be an important programing consideration. There are
two instructions in GP 300 that allow the programmer to transfer the transmission number to the
Accumulator and also to assign any 1, 2, or 3 digit number as the transmission number. The
transmission number must initially be set by the programmer to effectively check for lost messages. '

OP CODE

RETRIEVE SEND ADDRESS RSA

This instruction transfers the two-character send machine address from the send address regist_er in the
Data-Communications Processor into the four (4) most significant digit positions of the Accumulator.
The balance of the Accumulator will be zero.

Example: If Send Machine-Address is: 1A, Accumulator will be as follows:

15|14 (13 {12 |11|10 |9 {8 |7 |6 |5{4|3|2|1|0 | ACCUMULATOR DIGIT POSITIO
3l1{4|1{ofloflofo|ofofjofo]ofofojo| - VALUE

2.12.07

LSA
RRA
LRA

These two characters may be any characters from columns 2 through 6 of the USASCII set (except cir-
cumflex and underline). With a range of 78 different characters in each of the two positions, the total
machine address range potential would be 6,084 different combinations.

OP CODE
LOAD SEND ADDRESS LSA

This instruction transfers the four most significant digits of the Accumulator into the Send Machine
Address: Register in the Data Communications Processor. Only the 4 most significant digits of the
Accumulator may contain significant digits (i.e., 2 characters). The balance of the Accumulator must

contain zeros.

Example for loading Send Address:

LKBR WORK DESIGNATE MEMORY AREA
TKM 2 ENTER 2 CHARACTER ADDRESS
TRA WORK TRANSFER TO ACCUMULATOR
LSA LOAD SEND ADDRESS
WORK REG | RESERVE MEMORY AREA
OP CODE
RETRIEVE RECEIVE ADDRESS RRA

This instruction functions in exactly the same fashion as RSA, except it will transfer the machine
address from the Receive Address Register in the Data Communications Processor into the four (4) most
significant digit positions of the Accumulator. The balance of the Accumulator will contain zeros.
Generally the Receive and Send Machine Addresses are alike, however, a condition can exist where they
could be different. '

Normally, in addition to the Receive and Send addresses, the TC has a permanent machine address,
located in word 1064. This address is loaded into the Send and Receive register every time power is
turned on or when the program halt button is used. The Ready Button has no effect on Send or

Receive addresses.

The Permanent machine address can be changed by unprotecting block 4, track 4, and using Memory
Modify.

OP CODE
LOAD RECEIVE ADDRESS ’ LRA

This instruction transfers the contents of the accumulator into the Receive Machine Address Register in
the Data Communications Processor. Only the four (4) most significant digit positions of the Accumu-.
lator may contain significant characters. The balance of the Accumulator must contain zeros.

Refer to example for loading send machine address.

Revised 3-29-71 by
PCN 1045481-001 2.12.08

RSN
LSN

DC

2.12.09 TRANSMISSION NUMBERS

The TC may maintain a transmission number that accompanies every message it sends to a central
processor. It may be a one, two or three digit number, or no transmission number. A separate trans-
mission number is maintained for normal transmission, group select and broadcast select.

If the transmission number is one digit only, it will return to zero every ten transmissions. If it is a

two-digit number, it will return to zero after each one hundred transmissions, and for a three-digit
number after every thousand transmissions.

The Send Transmission number is included in the header of all data transmissions from the terminal and

is automatically incremented by 1 when transmission has succeeded so that the next message will carry
the next transmission number in sequence. '

The Expected Receive Transmission number is maintained by the data communications processor, and

automatically compared with the actual transmission number on all data messages received from the data
center.

If a message is received successfully from the data center, the expected transmission number is
incremented in anticipation of the next message transmission number.

If the transmission number from the data center does not agree with the expected transmission number
in the TC, the transmission failure flag (D1) is set. This flag can be interrogated by the user program for

necessary recovery procedures. The D1 flag will be reset by the next transmission received, unless the
number still does not agree

OP CODE
RETRIEVE SEND TRANSMISSION NUMBER RSN

This instruction transfers the 1, 2, or 3 digit USASCII Send Transmission Number from its register into
the 2, 4, or 6 most significant digit positions of the Accumulator. The balance of the Accumulator will
contain zeros. The user program will process the send transmission number depending on requirements.

» OP CODE
LOAD SEND TRANSMISSION NUMBER - LSN

Execution of this instruction will cause transfer of the Accumulator to the Send Transmission Number
Register. Only the 2, 4, or 6 high order digit positions may contain significant digits. The rest must
contain zeros. (The number of positions in the Accumulator that may contain significant digits is
determined by the length of the Send Transmission Number — 1, 2, or 3 digits.)

NOTE: The Transmission Number must be in the high order positions of a word. IT IS IMPERATIVE
THAT THE SEND TRANSMISSION NUMBER BE SET UP AS USASCII NUMERALS. IF THE
NUMBER IS SET UP IN THE NUMERIC MODE (4 BIT DIGITS), COLUMN 0 USASCII CODES WILL
BE INSERTED IN THE HEADER PORTION OF THE MESSAGE WHICH WILL EVENTUALLY

CAUSE A DATA LOSS WHEN THE TC ATTEMPTS TO TRANSMIT THE MESSAGE AFTER
INCREMENTING THE TRANSMISSION NUMBER.

2.12.09 .

RTN LGN .
LTN RBN

RGN
DC

As a result of the addition of fast select, group select, and broadcast select three sets of expected
transmission numbers are maintained by 2-1044-006-00 in those processors that use TR numbers. The
following instructions are provided to load and retrieve the three sets of transmission numbers. Standard
Select and Fast Select use the same Expected Transmission number.

OP CODE
RETRIEVE EXPECTED TRANSMISSION NUMBER RTN

The RTN instruction transfers the 1, 2 or 3 USASCII numeric Character “Expected Transmission
Number” from its appropriate Register into the 2, 4, or 6 most significant digit positions of the
Accumulator. The balance of the Accumulator will contain zeros. This instruction retrieves the Expected
Transmission Number (word 1190) for Select and Fast Select messages.

op cODE
LOAD EXPECTED TRANSMISSION NUMBER REGISTER LTN

The LTN instruction transfers the contents of the Accumulator into the Expected Transmission Number
Register for messages received. Only the 2, 4, and 6 most significant digit positions of the Accumulator
may have significant characters. The expected Transmission number may be up to 3 USASCII numeric
characters in length. The balance of the Accumulator must contain zeros. This instruction loads the
expected Select and Fast Select Transmission number.

OP CODE
RETRIEVE EXPECTED GROUP TRANSMISSION NUMBER RGN

The RGN instruction transfers the Expected Group Transmission Number from the Expected Group
Transmission Number Register (word 1192) to the Accumulator. The Expected Group Transmission
number may be up to 3 USASCII numerals in length and will occupy the most significant positions in
the Accumulator. The remaining positions are ignored.

OP CODE
LOAD EXPECTED GROUP TRANSMISSION NUMBER LGN

The LGN instruction transfers the contents of the Accumulator into the Expected Group Transmission
Number Register. The Expected Group Transmission number may be up to 3 USASCII numeric
characters (left justified) in length and although the entire Accumulator is transferred, the remaining
locations are ignored.

OP CODE

RETRIEVE EXPECTED BROADCAST TRANSMISSION NUMBER RBN

The RBN instruction transfers the Expected Broadcast transmission number from its register (word
1193) to the Accumulator. The Expected Broadcast Transmission number may be either 0, 1, 2 or 3
USASCII numeric characters in length and is contained in the most significant digit positions of the
word in the Data Communications Processor and, after the transfer, in the most significant digit
positions of the Accumulator. Any remaining digit positions are ignored. ' o

Revised 3-29-71 by
PCN 1045481-001 2.12.09 (Cont’d-1)

LBN

RTH
DC
. o OP CODE
LOAD EXPECTED BROADCAST TRANSMISSION NUMBER LBN

LBN transfers the contents of the Accumulator into the Expected Broadcast Transmission Number
Register in the Data Communications Processor. The Expected Broadcast Transmission Number may be
0, 1, 2 or 3 USASCII numeric characters located in the most significant positions of the Accumulator.
The remaining positions, although transferred, are ignored.

OP CODE

RETRIEVE TRANSMISSION HEADER RTH

The Retrieve Header Transmission Number (RTH) instruction transfers the Transmission Header Register
(word 1184) into the Accumulator. This register is loaded with the 8 characters following the start of
header (SOH) character of any message received whether by select, fast select, group select, or broadcast
select. Among these 8 characters will be the transmission number of the message received if the DCP
uses TR numbers. The numbers will be in their 8-bit USASCII representation. The format of this register
for each of the four cases (0, 1, 2, or 3 transmission numbers) is shown below. When necessary to
determine the communications procedure used by the data center, a character in the text of the message
can be used to'indicate how the message was transmitted. Below is the format of the transmission
header register for 0, 1, 2, and 3 transmission number systems.

3 Transmission Numbers

Character 7 6 5 4 3 2 1 0
Position [AD1 | AD2 | TR# | TR# | TR# | STX | TEXT DATA

2 Transmission Numbers

Character 7 6 5 4 3 2 1 0
Position [aAD1 | AD2 | TR# | TR# | STX TEXT DATA

1 Transmission Number

Character 7 6 5 4 3 2 1 0
Position [AD1 | AD2 | TR# [sTX | TEXT DATA

0 Transmission Number

Character 7 6 5 4 3 2 1 0
Position [AD1 | AD2 | STX | TEXT DATA

2.12.10 SPECIAL PURPOSE REGISTERS

The TC may be connected to a central processor two ways. When operating in two-wire direct connect
(IDI) or over leased duplex (four-wire) lines, a four-wire mode must be specified. When operating over a
switched line or through half-duplex (two-wire) leased line, two-wire mode must be specified.

2.12.09 (Cont’d-2)

RTF
LTF
RPR

The Data Communications Processor contains a special register to enable two or four wire transmission
mode. One bit in this register is used to determine which mode is active.

OP CODE

RETRIEVE TWO/FOUR WIRE REGISTER RTF

Execution of this instruction will transfer the contents of the two wire/four wire register into the
Accumulator. When the Accumulator M Flag is on, the mode is two wire; when it is off the mode is
four wire. Like other “Retrieve” instructions, the user program must then interrogate the Accumulator
flag and perform according to program requirements.

'LABEL OP CODE A

lw
1o

REMARKS

LTF ‘ Load Two/Four Wire Register

Execution of this instruction will transfer the contents of the Accumulator into the Two or Four wire
register. The mode will then be 2 or 4 wire depending upon the status of the Accumulator M flag at
the time of execution.

op coDE
RETRIEVE POINTER REGISTER RPR

This instruction will transfef the 'contents of the Character Pointér kRegister into the Accumulator. All
digits in the Accumulator will be hexadecimal and the format of the Accumulator will be as follows:

Revised 3-29-71by
PCN 1045481-001 2.12.09 (Cont’d-3)

RPR

Example 1:
B B B B
W W L L WWWW L L WW
OO0 OO0 O0O0O0O OO0 0O
R R C C R R RR C C R R
D D K XK D DDD K K D D
1511413 (12|11 10| 9 |8 7|6 |54 |3 |2 |1]0 | ACCUMULATOR DIGIT POSITION
612101Cl1j1]6(1]4]|3 (1|31 |1|A]|1l VALUE
L RCP- ~-SCP -
BASE BASE]
— — -
LRBR LKBR
LWORKING LRBR- L WORKING LKBR-
BASE LRBR BLOCK 1
WORD 97 (352)
WORKING LRBR BLOCK 1
WORD 98 (353)
RECEIVE CHARACTER POINTER 12
BASE LKBR BLOCK 1
WORD 161 (416)
WORKING LKBR BLOCK 1
WORD 67 (322)
SEND CHARACTER POINTER 19

2.12.09 (Cont’d4)

LPR

When controlling the loading of a buffer, it is necessary to be able to check the buffer capacity at the
start of each line of the message.

We must establish that we can put another full message line in the buffer.

To do this, we use a technique which examines the SCP

Example 2: Buffer size 255 CH+
Maximum Line 60 CH-
SCP Limit 195 CH

SCP is hexadecimal. Therefore,

195 = C 3 in digit positions 5-4

RPR RETRIEVE POINTER REGISTER
SKL 5 12 3 TEST FOR UPPER DIGIT < 12
EXL 5 13 1 TEST FOR UPPER DIGIT = 12
SKL 4 4 1 TEST FOR LOWER DIGIT < 4
BRU TRANSMIT IF NO. OF CHARACTERS > 195
BRU CONTINUE IF NO. OF CHARACTERS < 195
Example 3: Buffer Size 255 CH+
Maximum Line 63 CH-
SCP Limit 192 CH

Therefore, SCP = C 0

RPR
EXL 5 12 1 TEXT FOR UPPER DIGIT < 12
BRU CONTINUE IF NO. OF CHARACTERS < 192
BRU TRANSMIT IF NO. OF CHARACTERS > 192
OP CODE
LOAD POINTER REGISTER LPR

Execution of this instruction will transfer the contents of the Accumulator into the Character Pointer
Register.

Revised 3-29-71 by :
PCN 1045481001 2.12.09 (Cont’d-5)

SUBJECT 2.13 — POINT-TO-POINT PROGRAMING PROCEDURES
2.13.01 BASIC POINT-TO-POINT LINE DISCIPLINE

Point-to-Point Firmware provides the TC with a contention type line control procedure which allows
Series TC Computers to communicate on an equal basis with another Data Communications Unit (CPU
or another TC). The basic Point-to-Point line discipline does not provide a terminal addressing scheme
nor a transmission number sequence. Since an address scheme is not provided, only two units can be
listening to the line at any given time. When operating in this mode, the TC can communicate with a
CPU or another TC. When this Line Discipline is implemented, either unit on the line can initiate
transmissions without previously being interrogated (TC does not have to be polled).

In a Point-to-Point environment, the TC must normally contend for control of the line before it can
transmit a message. After a successful transmission is completed, control of the line is given to the
receiving unit. The receiving unit may then, if transmit ready, transmit a message without having to
contend for control. If the receiving unit is not transmit ready, the sequence is terminated.

A TC can operate in a switched line, leased line or a direct connect communication network when
utilizing Point-to-Point Firmware.

Point-to-Point Data Comm Processor (DCP) firmware is compatible with all standard main memory Data
Comm Firmware sets.

2.13.02 CONTROL REGISTERS
Five Control Registers are provided which allow user program control of the functions listed below.

Time Out Limit

Demand Disconnect

Idle Line Disconnect

Line Mode (2 wire or 4 wire)
NAK/NO Response Limit

The Control Registers can be controlled by user program or they can be set manually when the TC is
installed. To avoid the possibility of human error it is recommended that the Control Registers be set by
the user program.

a. Accessing of Control Registers:
The Control Registers are stored in the DCP memory (word 1188) and are accessed via the
RTF and LTF macro instructions. The RTF instruction retrieves the control register word and
stores it in the accumulator for manipulation. The LTF instruction transfers the contents of
the accumulator to the control register word in the DCP memory.

b. Control Word Format:
The five control registers are arranged within the control word in the following manner:

2.13.01

PT TO PT

LINE MODE - Digit Position 15.

NAK/NO RESPONSE LIMIT — Digit positions 7 and 6.
TIMEOUT LIMIT — Digit positions 5 and 4.

DEMAND DISCONNECT - Digit position 2.

IDLE LINE DISCONNECT — Digit positions 1 and O.

The digit positions within the control word which are not used must be set to zero.

c. Time Out Limit Register:
The length of time which the TC will wait for a response after transmitting is determined by
the value in the Time Out Limit Register.

The Time Out value for the two units must be different to avoid “locking up” the line when
both units are contending for control of the line at the same time. The optimum difference
between timeout values is 500 milliseconds and this difference should be maintained if
possible.

"The time out value in the TC can vary from 0 to 2550 milliseconds. To determine the minimum time
out value double the turn around time of the data set being used and add 100 milliseconds.

EXAMPLE:
If communication is over switched lines, using 202C data sets, the Time Out Limit should be determined
and set as follows:

Minimum Time Out = Time X
Maximum Time Out = Time Y
Turnaround time of 202C data set = 200 milliseconds.

Time X = (200ms) (2) + 100 ms = 500 ms
Time Y = Time X + 500 ms = 1000 ms

The value which is inserted into the Time Out Limit Register to achieve the desired time out
limit is the hexadecimal representation of 1/10 of the desired time out limit.

EXAMPLE:

Using the time out limit for time X computed in the example above, the values which would
be inserted into the Time Out Limit Register would be as follows:

Value for TIME X = 1/10 X 500 = 50.
50 expressed hexadecimally = 32,

A hexadecimal value of 32 would be inserted into the Time Out Limit Register to
achieve a Time Out Limit of 500 milliseconds.

Revised 3-29-71 by
PCN 1045481-001 2.13.02

PT TO PT

When the DCP transmits or Receives a DLE-EOT message the trouble fldg (D1) and an
Indicator Register flag are set for user program interrogation.

d. NAK/NO Response Limit: v ; v
The number of times that the TC will attempt to transmit an ENQ or TEXT before taking
alternate actions is determined by the value in the NAK/NO Response Limit Register.

When the TC receives a NAK or a time out occurs, the TC will increment the NAK/NO
Response Counter and check the new count against the limit register. If the limit has not been
reached, the TC will return to the Transmit sequence and attempt to transmit the message
again. Upon reaching the NAK/NO Response Limit the Data Comm Processor (DCP) sets the
Trouble Flag (D1) and an Indicator Flag for user program interrogation. The Data Comm
Processor will then delay retransmission of its message for two seconds. During this
transmission delay the DCP is sensitive to the line and can receive a message. This delay is
required to permit the unit with the longer time out limit to gain control of the line if it has
been sending NAK’s due to having its receive buffer loaded and it has a message to send.

The value which is inserted into the NAK/NO Response Limit Register is the hexadecimal
representation of the desired decimal value. For example, if it is desired to set.the NAK/NO
Response Limit to 10, a hexadecimal value of A would be inserted into the register.

e. Demand Disconnect:
A Demand Disconnect sequence is provided to allow a TC to programmatically disconnect the
line. When a TC demands a disconnect a DLE-EOT message is automatically transmitted. The

trouble Flag (D1) and an Indicator Register Flag is set when a TC transmits or receives a
DLE-EOT message. '

The disconnect sequence is under the control of the user program and is initiated by setting
the Demand Disconnect Register to a value of 1. The Demand Disconnnect Register must be
set to O at all other times. The disconnect sequence can be used by a TC running in the
unattended mode to notify the other unit that it has completed transmission and is going to
turn itself off.

Additional capabilities of the Demand Disconnect feature will be published later.

f. Idle Line Disconnect:
When the line has been inactive for the length of time specified in the Idle Line Disconnect
Register, an Idle Line Timeout is declared and a DLE-EOT message is transmitted by the DCP.
The length of time specified in this register can vary from approximately 1 minute to 42
minutes or it can be set to never declare an Idle Line Timeout. However, the minimum time
allowed by the DCP is 60 seconds regardless of the time specified in the Register.

The number which is inserted into the Idle Line Disconnect Register to achieve the desired
length of time for an Idle Line Timeout is in hexadecimal format and has a weighted value of
10 seconds. The correct value can be determined by dividing the number of seconds desired
for an Idle Line Timeout by a factor of 10 and then converting the resulting quotient to its
corresponding hexadecimal value.

2.13.02 (Cont’d)

EXAMPLE:

PT TO PT

The value to insert in the Idle Line Disconnect Register to declare an Idle Line Timeout after

5 minutes may be computed in the following manner.

1 5 minutes X 60 = 300 seconds

2. 300 divided by 10 = 30

3. 30 expressed hexadecimally = 1E
4

1E would be inserted into the register.

If it is desired to never declare an Idle Line Timeout, a value of 00 must be inserted into the

Idle Line Disconnect Register.

Additional capabilities of the Idle Line Disconnect Register will be published at a later date.

g. Line Mode:

The Line mode register is used by the DCP to determine the line configuration in which it is
operating. This register must be set properly to provide the correct timing for the type of line

being used.

The values for the two modes of operation are: If 2 wire mode is used, insert a value of 8 in
the register; if a 4 wire mode is used, insert a 0 in the register.

EXAMPLE:

The control registers could be set programmatically using the parameters listed below:

PARAMETERS:

LINE MODE — 2 wire
NAK/NO Response Limit — 6
TIMEOUT LIMIT — 500 Milliseconds

IDLE LINE DISCONNECT — 5 minutes.

LABEL INST.

BS

CTLREG CLA
SET
INK
INK

INK
INK
INK
LTF

O~ &~ Lo » O
H— N wo 2o

2.13.03 INDICATOR REGISTER FLAGS

lo

REMARKS

CLEAR ACCUMULATOR

SET 2 WIRE MODE

SET NAK/NO TO SIX

SET UPPER TIMEOUT

SET LOWER TIMEOUT = 500 ms
SET UPPER IDLE LINE

SET LOWER IDLE LINE = 5 min
LOAD CONTROL REGISTERS

Eight flags are provided in the Indicator Register to allow the user program to interrogate the cause of
exception conditions which can occur in the Data Comm Processor. The Indicator Register is located in
the DCP (word 1197) and is accessed via the RPF and LPF macro instructions. :

Revised 3-29-71 by
PCN 1045481-001 2.13.03

PT TO PT

RETRIEVE PROBLEM FLAGS

The RPF instruction transfers the contents of the Indicator Register from the DCP to the Accumulator
where the flags can be tested using the Accumulator flag group (A flags).

LOAD PROBLEM FLAGS

The LPF instruction transfers the contents of the Accumlator to the Indicator Register in the DCP.

The following flags are provided in the Indicator Register. The Flags in Group 1 are located in digit
position 15 of the register (word 1197) and the flags in group 2 are located in digit position 14 of the

Indicator Register.
Group 1:
“A” FLAG

©wOZ

Group 2:
“A” FLAG

wnAaz

2.13.03 (Cont’d-1)

Exception Item

Received DLE-EOT message
Transmitted DLE-EOT message
Break

NAK/NO Response limit reached.

Exception Item

Received Buffer overload
Transmitted Buffer overload
Parity Error Received
Invalid Character Received

PT TO PT

NOTE: Flag Group 2 must be shifted into digit position 15 of the accumulator before testing.

The Flags in Group 2 are provided mainly as a debugging aid to help in qualifying a data
communications network and/or application programs and normally would not be used in a live
operating environment.

a. Trouble Flag:
When a condition occurs which causes an Indicator Flag to be set, the Trouble Flag (D1) is
also set. The Trouble Flag can only be tested by the user program using skip and execute
instructions: It cannot be set or reset. The Trouble Flag is reset by firmware when it finds
that the Indicator Flags have been reset by the user program.

b. Program Requirements:
The following steps are recommended in handling exception conditions in order to get a valid

test of the Indicator Register Flags and to avoid the possibility of losing an Indicator Flag
setting:

1. Test Trouble Flag (D-1): If set, go to Step 2; if reset, continue mainline program.
2. READ Indicator Flag Register to the Accumulator.

3. Test if any Indicator Flags are set.
1. If set — Go to Step 4.

2. If reset — Return to mainline program (see note below).
4. Process all Flags set (more than one can be set).
5. Reset Indicator Register.

NOTE: It is possible under some circumstances for the User Program to retest D-1 before
Firmware can reset D-1.

Revised 3-29-71 by
PCN 1045481001 2.13.03 (Cont’d-2)

PT TO PT

EXAMPLE:

The Indicator Flags could be tested for in the following manner:

LABEL NST A B C REMARKS
EX D 1 1 TEST FOR DATA COMM ERROR
Sl;] TSTERR GO TEST ERROR
TSTERR RPF RETRIEVE INDICATOR FLAGS
SK A -SCM 3 TEST NEW TROUBLE GRP 1 FLAG
EXZ 1 TEST NEW TROUBLE GRP 2 FLAG
SRR 1 RETURN — NOT NEW TROUBLE
BRU GP2FLG TROUBLE IN GROUP 2
EX A - 1 TEST NAK/NO LIMIT
SRJ NAK GO PROCESS ERROR
EX A S 1 TEST BREAK
SRJ BREAK GO PROCESS ERROR
EX A C 1 TEST TRANS DLE-EOT
SRJ TRMEOT GO PROCESS — DISCONNECT
EX A M 1 TEST RECEIVE DLE-EOT
SRJ RECEOT GO PROCESS — DISCONNECT
GP2FLG EXZ 1 TEST TROUBLE THIS GROUP
BRU RESET GO RESET INDICATOR FLAGS
SLROS 1 0 POSITION GP2 FLAGS
EX A - 1 TEST STRANGE CHAR
SRJ STRANG GO PROCESS
EX A S 1 TEST PARITY ERROR RECV
SRJ PARITY GO PROCESS
EX A C 1 TEST TRANS OVERLOAD
SRJ TROVER GO PROCESS
EX A M 1 TEST RECV OVERLOAD
SRJ RCVOVR GO PROCESS
RESET CLA 0 0 CLEAR FLAGS
LPF RESET INDICATOR REGISTER
SRR 1 RETURN TO MAINLINE

2.13.03 (Cont’d-3)

2.14 — CENTRAL TC CONTROLLER PROGRAMING PROCEDURES

Central TC Controller (CTCC) is a Data Communications Processor (DCP) firmware set which allows a
TC to assume the Data Communication I/O functions of a central processing unit in a polling and
selecting environment. A TC which utilizes the Central Controller DCP Firmware can control from 1 to
16 remote TC’s in an on-line applicational environment.

The Central TC Controller operates in a standard Polling and Selecting line control environment. In
addition to standard selection of remote units the following types of special select formats are provided:

Fast Select, Group Select, and Broadcast Select.

The polling or selecting of the various terminals in a network is controlled by a series of 16 control
words which are stored in the memory of the Data Communications Processor. These control words can
be easily accessed and manipulated as required by macro programing techniques thus giving the user
program positive operational control of the network.

In addition to controlling the polling and selecting operations, the line discipline of the Central TC (the
term used to describe the TC loaded with the CTCC firmware) can also be controlled. This is possible
because the line discipline of a Central TC is not buried in the program codes of the Data Comm
Processor. Instead, it is specified and controlled by a collection of Line Procedure Format Registers. A
degree of flexibility of line discipline is thus achieved because a change of line discipline does not
require a change in the firmware.

The controller will function via a switched, leased or direct connect line configuration.

The following sections discuss in detail: the line disciplines of a Central TC 500 as controlled by the
Format Registers; the Data Comm Processor operations of polling and selecting as controlled by the
Control Registers; and the Main Memory firmware requirements.

2.14.01 LINE DISCIPLINE FORMAT REGISTERS

Several disciplines are made possible through the use of the Central TC Controller firmware. The line
procedures that can be implemented by this new Data Comm firmware are: poll, select, fast select,
group select, and broadcast select.

Each line procedure uses two Format Registers; each register consists of one word or eight (8)
characters. The most significant character position is called the Data Character Counter (DCC) and is
used to specify the number of significant characters contained in the Format Register (this is indicat.d
in digit position 14) along with other information (digit position 15). The seven (7) remaining character
positions accommodate the necessary format character which must be right justified. Dummy characters
are used as substitute for the address (AD1, AD2, and group address) and the transmission number
(TR1, TR2, and TR3). The actual terminal address and transmission number will be fitted in by the
Controller firmware during the actual transmission.

Revised 3-29-71 by
PCN 1045481-001 2.14.01

CTCcC

The dummy characters used in each of the Format Registers are further defined: N

Character - Dummy Hexadecimal Value
AD1 80
AD2 , 81
AD3 (Group)t (8,2
These values must be ~TRI g8 b
- .used in a three (3) ‘ TR2 s .. 89
TR # system. . TR3 o " 8A°
Must be used in a two (2) ‘ TR1 ' 89"
TR # system. TR2 8A
Value in a one (1) TR # system. Lo TR1 8A

All of the actual characters to be transrrritted from each of the Format Registers have their normal
USASCII format with their parrty bits equal to zero (0) ‘Their correct parity bits are generated by
hardware as each character goes out on the line.)

The succeeding sections specify the formats of the individual pairs of Format Reglsters used with the
various line disciplines supported by the Central TC Controller.

a. Poll Format Registers
These two registers are the Poll Message Reglster and the Expected Header Register.

The Poll Message Register is located in word 1155 and consists of the actual (and dummy)
characters, right justified and in their proper sequence, that are used to poll the slave
terminal(s). The Data Character Counter (DCC) in character position eight (8) of the Poll
Register contains a value from zero (0) to six (6) depending on the number of characters in
the poll message. A poll message one (1) character in length would have a DCC value of zero
(0). A poll message seven (7) characters in length would have a DCC value of six (6).

EXAMPLE: Poll Message Register containing the standard TC polling characters.

Character Position 8 7 6 5 4 3 2 1
Word 1155 04 00 00 04 80 81 70 05
DCC EOT ADl1 AD2 POL ENQ

The Expected Header Register is located in word 1154 and consists of the actual (and
dummy) characters, right justified and in the sequence desired are in the header portion of the
remote terminals message. A comparison is made using only the first and last character of the
“actual received header against the first and last character of the expected header. The DCC in
character position eight (8) of the Expected Header Register again contains a value from zero
(0) to six (6) depending on the number of characters loaded into the register. The BCC is
computed, starting with the second significant character in the Expected Header Register.

2.14.01 (Cont’d-1)

CTCC

EXAMPLE: Expected Header Register containing the standard TC header for a three-digit
transmission number system.

Character Position 8 7 6 5 4 3 2 1
Word 1154 06 01 80 81 88 89 8A 02
DCC SOH AD1 AD2 TR1 TR2 TR3 STX

~ b. Select Format Registers
There are two select registers; the Select Message Register and the Header Format Register.

The Select Message Register is located in word 1157 and contains the characters (both actual
and dummy) that are used to select the slave terminai(s).

EXAMPLE: Select Message Register with standard TC select characters.

Character Position 8 7 6 5 4 3 2 1
Word 1157 04 00 00 04 80 81 71 05
DCC EOT AD1 AD2 SEL ENQ

The Header Format Register is located in word 1156. It contains the characters (actual and
dummy) that are in the header portion of the Central TC’s message. Depending on the number
of characters in the header, character position eight (8) of the Header Register contains one of
the following hexadecimal values for the DCC.

No. of Characters in Header DCC Value
1 08
2 09
3 0A
4 0B
5 04
6 05
7 06

The BCC is computed, starting with the second significant character in the Header Register.

EXAMPLE: Header Format Register containing the standard TC header for a no transmission
number system.

Character Position 8 7 6 5 4 3 2 1
Word 1156 OB 00 00 00 01 80 81 02
DCC SOH ' AD1 AD2 STX

c. Fast Select (FSL) Format Regsters
The characters used in implementing the fast select line discipline are defined as those

characters that precede the actual message text. They are further defined as consisting of a

Revised 3-29-71 b
PON 1045481001 2-14.01 (Cont’d-2)

CTCC

first ‘half (all characters up to and including the SOH) and a second half (all characters
following the SOH up to and including the STX). Each half of the fast select discipline has a
separate format register. :

The first half is located in word. 1159. Character position eight (8) of word 1159 contains
both the Data Character Counter (in digit position 14) and special information (digit position
15) peculiar to halved line discipline formats. Depending on the number of characters in the

first half register digit position 14 contains one of the following hexadecimal values for the
DCC. ’

No. of Characters in First Half DCC Value

N O B AW e
o wn A WP O ®

Digit position 15 contains one of three possible hexadecimal values. A hex 4 indicates there is
no second half. In this case, the actual message text is transmitted immediately after the first
half. A hex 8 indicates the characters in the first half register are not to be transmitted;
proceed to inspect the second half. Hex 0 implies normal (first and second half) fast select.

The BCC computation does not include any of the characters in the first half register.
EXAMPLE: Fast Select Format Register (first half) indicating no second half.

Character Position 8 7 6 5 4 3 2 1

Word 1159 /44 /00 /00 /04 /80 /81 /73 /Ol /
D EOT ADI AD2 FSL SOH
C
C

The second half of the fast select format is located in word 1158. Again character position
eight (8) contains both the DCC (digit position 14) and special information (digit position 15).
The possible hexadecimal values for the DCC are the same as those outlined for the first half
register. Digit position 15 of the second half register contains one of four possible values.

Hexadecimal 0 — Implies normal mode.

Hexadecimal 2 — Indicates the first half register'contains four (4) characters or less.
Hexadecimal 4 — Indicates there is no first half.

Hexadecimal 8 ~— The characters in this register are not to be transmitted; proceed to

actual message text.

2.14.01 (Cont’d-3)

cTce

The BCC is computed, starting with the first significant character in the second half register.

EXAMPLE: Fast Select Format Register (secondvhalf) indicating first half contained 4 characters
or less.

Character Position 8 7 6 5 4 3 2 1

Word 1158 /25/00/80/81 /88 /8 /8an /02 /

AD1 AD2 TR1 TR2 TR3 STX

C
C

d. Group Select (GSL) Format Registers
The GSL Format Registers also specify a first half and a second half. The first half is located
in word 1161, the second half in word 1160. Their structures are identical to those of the
first and second halves respectively, of the Fast Select Format Registers.

Broadcast (BSL)

The Broadcast Format Registers again specify a first half (located in word 1163) and a second
half (located in word 1162). Their structures are also identical to those of the first and second
halves, respectively, of the Fast Select Format Registers.

e. Summary
When the Central TC Controller firmware is first loaded into the machine, all format registers
become initialized to their corresponding standard (3 transmission numbers) TC line disci-
plines. These disciplines can be changed to meet most non-Burroughs standards by altering the
contents of the appropriate Format Register(s).

However, in spite of this scheme to seek flexibility, certain basic structures of line disciplines
have to be adhered to. Refer to charts 1, 2 and 3 at the end of this subject for illustrations of
the basic structures for polls, selects, fast selects, group selects, and broadcast selects.

2.14.02 DATA COMM PROCESSOR OPERATIONS

The operation of the Data Comm Processor of a Central TC is dictated by the contents of sixteen (16)
Control Registers. Since each terminal connected to a Central TC requires the use of only one (1)
Control Register, the CTCC firmware can handle up to sixteen (16) terminals at any one time.

These registers occupy memory words 1184-1199 in the DCP memory. Each register is one (1) word in
length and contains:

1. The address (AD1, AD2, and group address) of its associated ‘terminal. This information is
contained in character positions 8, 7 and 6 respectively.

2. The beginning transmission number of the outgoing message to this terminal in a three (3)
“transmission number system, character positions 5, 4 and 3 of the Control Register are used for the
TR numbers. In a two (2) TR number system, character positions 4 and 3 are used. A one (1) TR
number system uses character position 3. In a zero TR number system, character positions 5, 4 and
3 must be cleared. »

Revised 3-29-71 by
PCN 1045481001 2.14.02

CTCC

3. Operation Indicators to service this terminal. These are located in character position 1.

The Control Registers are placed in memory in the form of a list. The Data Comm Processor will
process this list of sixteen (16) Control Registers one at a time, in sequence, beginning at the top.
It will perform the function(s) indicated by the Operation Indicator(s) contained within the
Control Register. Thus, the terminals will be serviced in the sequence in which their corresponding
Control Register is placed. When the 16th Control Register is processed, operation will return to
the top of the list. Should less than sixteen terminals be connected to a Central TC, and AD1
hexadecimal value of 00 in the first un-used Control Register causes the Data Comm Processor to
return to the register at the top of the list. Any column 0 code from the USASCII chart (except
00) or any column 1 code used in place of ADI1, causes the current register to be skipped.
Operation then proceeds to the next Control Register in the list.

a. Operation Indication
As mentioned, Operation Indicators occupy the least significant character position of a
Control Register. Their individual bit allocations are shown:

Character 1 8 4 2 1 8 4 2 1
of Control] [)]) [& _poil Indicator
Regi

egister Select Indicator

Firmware use only

Fast Select Indicator

Group Select Indicator

Broadcast Indicator

Unassigned

2 wire/4 wire Indicator

If any of the above operations result in no response, strange response, or inability to transmit
a message, due to some condition at the remote terminal, the Data Comm Processor times out
and goes into an idle state. A special flag (D1) is set and the exact cause of the time out is
contained in a special Time Out Register. This register is available to the macroprogram. (See
section on Data Comm Processor Time Out.)

1. Poll Indicator ,
The Poll Indicator is normally reset. To poll a terminal, the Main Processor sets the
Poll Indicator of a Control Register, as specified by the macroprogram. The input
buffer of the Data Comm Processor should be empty and D2 should be reset. The
Processor will not poll any terminal unless D2 is reset. After a successful poll, the
Poll Indicator will be reset, and the Message Received Flag (D2) set. A special
register (called the Header Register) containing the received message header, right
justified, is available. This allows the macroprogram to retrieve the address of the
terminal from which the message came, and the transmission number of the message
received. By numbering the terminals sequentially, and organizing the Control
Register list in the same manner, the address in the Header Register serves as a
pointer to its corresponding Control Register. Upon completion of a poll procedure,

the Data Comm Processor will time out and assume the idle state. The other bits in
2.14.02 (Cont’d-1) , ,

CTCC

the Operation Indicators will be interrogated only when the macro programmer
releases the processor from its idle state. This is accomplished through the use of the
RESUME command.

Select Indicator

This indicator ‘is normally reset. To transmit a message to a terminal, the
macroprogram must transfer the message to the output buffer, set the Transmit
Ready Flag, and set the Select Indicator in the appropriate Control Register. The
Data Comm Processor then selects this terminal when its Control Register is
processed. The Select Indicator is reset by firmware after a successful Select.

Fast Select Indicator

This indicator is normally reset. To transmit a message to a terminal via Fast Select,
the macroprogram must set up the output message, set the Transmit Ready Flag,
and set the Fast Select Indicator in the appropriate Control Register. The Data
Comm Processor then Fast Selects this terminal when its Control Register is
processed. The FSL Indicator is reset by the CTCC after a successful Fast Select.

Group Select and Broadcast Indicators
Both of these indicators perform their respective functions in the identical manner
of the Fast Select Indicator.

2 Wire/4 Wire Indicator
This indicator must be set by the macroprogram for a 2 wire system. It must be
reset (0) for a 4 wire system.

The following example illustrates the initial format of the Control Register in a
three (3) terminal, 4 wire, network using a two-digit TR number.

Character Position 8 7 6 5 4 3 2 1

Word 1184 /31 /41 / 31/ 00/ 30 /30 /oo/ o1/
L

ADl1 AD2 GSL TR1 TR2 PO
Character Position 8 7 6 5 4 3 2 1

Word 1185 /31 /42/ 31 /oo / 30 /30 /oo / o1/

ADl AD2 GSL TRI TR2 POL
Character Position 8 7 6 5 4 3 2 1
Word 118 /31 /43 /31 /oo /30 /30 / 00/ 03/
AD1 AD2 GSL TR1 TR2 POL and
SEL

Character Position 8 7 6 5 4 3 2 1

Word 1187 /00 / 00 / 00 /00 / 00/ oo/ oo/ 00/

* AD1 AD2 GSL

* The AD1 hexadecimal value of 00 causes the Data Comm Processor to return to

word 1184,
Revised 3-29-71 by
PCN 1045481-001 2.14.02 (Cont’d-2)

CTCC

b. Data Comm Flags
Three Data Comm flags are defined to serve as communications between the Data Comm
Processor and the Main Memory Firmware:

D1 — This flag is set by the Data Comm Processor whenever it goes into an idle state.
An idle state occurs when either the Data Comm Processor times out or the
macroprogram issues an Idle Request. (See section on macro instructions under
MAIN MEMORY). D1 is reset when the macroprogram re-activates the Data
Comm Processor to bring it out of the idle state.

D2 — Message Received Flag
D3 — Transmit Ready Flag. It is set by the macroprogram to indicate that the output
buffer contains a message ready for transmission. However, this message will be

transmitted to a terminal only if the Select Indicator in the proper Control
Register is also set.

All three flags are available for interrogation through the regular Skip/Execute instructions.

c. Data Processor Time Out
The following situations cause the Data Comm Processor to time out:

1. The Central TC receives no response from a terminal to any of the following: poll,
select, fast select‘,_ group select, or broadcast.

2. The Central TC receives a strange response from a terminal to any of the following:
poll, select, fast select, group select, or broadcast.

3. Terminal NAKSs a select, fast select, group select or a broadcast.

4. Persistent parity error occurs between the Central TC and the terminal.

As previously discussed, while the Data Comm Processor is in the time out condition, D1 is
set and a register is available for interrogation. This register, called the Time Out Register, is
located in word 1169 and is a replica of the Control Register that is involved at the time,
supplemented by information stored in character position 2 as shown:

Character Position 8 7 6 5 4 3 2 1
Word 1169 | ADI1 [AD2 |GSL T
Transmission Il F Operation
Number Indicators
Persistent Parity Error « '

Terminal NAKs Message -
Strange Response =

No Response =

F=0000 POL
F=0001 SEL
F=0010 FSL
F=0011 GSL
F=0100 BSL

2.14.02 (Cont’d-3)

CTCC

When the Data Comm Processor times out and goes into an idle state due to one of the above
conditions, the macroprogram must retrieve the Time Out Register and, after examining its
contents, clear it. This must be done prior to re-initiating the Data Comm Processor to its
normal operation. Re-initiating the Processor also resets the D1 flag.

The Time Out Register serves no purpose if the idle state of the Data Processor is initiated by
the macroprogram as there is no indicator in the register to reflect such a condition.

d. Header Register

If a remote TC makes an affirmative response to a Poll Enquiry (data) the Header portion of
the remote TC’s message is stored in the Header Register (word 1166) for use by the
macroprogrammer.

If a sequencial numeric addressing scheme is utilized, the macroprogrammer can examine the
contents of the Header Register to determine which remote is responding to the POLL and
reload the appropriate control register. The data in the Header Register is right justified and
contains all of the header information up to and including the STX character.

EXAMPLE:

Character Position

8 7 6 5 4 3 2 1
/ / sou /ap1/ap2 /1R1 /TR2 / TR3 / 51X/

2.14.03 MAIN MEMORY PROCESSOR

Main Memory can not access Data Comm firmware unless the latter is in an idle state. However, the
Main Processor can cause an idle condition by issuing an idle request. A special macroinstruction, IDLE
REQUEST, is implemented to perform this function.

The operation of the IDLE REQUEST instruction involves the setting of the D1 flag. The Data Comm
Processor interrogates D1 at certain convenient points during its regular operation. Should the flag be
set, any Data Comm procedure previously initiated is allowed to terminate before the Processor goes
into the idle state. When the Processor is re-initiated, D1 is reset.

A situation can arise where the Data Comm Processor encounters one of the previously discussed
conditions that cause a time out after the Main Processor initiates an idle request and before the Data
Comm Processor actually goes into idle. Since the Main Processor was first in initiating the setting of D1,
the Time Out Register is left unchanged if no error conditions are encountered. If the Time Out Regis-
ter has been cleared everytime it was interrogated, the fact that the register is zero (0) is adequate
indication to the macroprogram that the idle state is due to the request and not to any error conditon.
However, since the idle request does leave the register unchanged, it must be cleared everytime so that it
will always reflect to the macroprogram the correct cause of the time out (i.e., error condition or idle
request).

Revised 3-29-71 by
PCN 1045481001 2.14.03

The Central TC Controller ﬁrmware will operate with any of the standard GP 300, Data Comm main
memory firmware sets that are supplemented by .the CTCC main memory add-on tape. This add-on
implements special macromstructlons described below: ‘ :

a. Resume

OP CODE LABEL
CODE | 1000

This command re-initiates the Data Comm Processor’s normal operation. It should only be
given when the Processor is in an idle state. If the DCP processor is not in an idle state, the
machine will hang on the instruction.

b. Idle Request

OP CODE : LABEL
' CODE 1100

This command allows the macroprogram to interrupt the normal operation of the Data Comm
Processor and cause an idle state.

c. Retrieve Header Register

OP CODE i LABEL
CODE e 3CSE

The actualf received header is placed into the Accumulator.
d. Retrieve Time Out ,Registef to Acoumulator'

OP CODE LABEL
CODE 3C91

e. Load Time Out Register from Accumulator

OP CODE LABEL
CODE , 3491
f. Retrieve Control Register
N OP CODE ~ LABEL | A
CODE o 3CA A ~ OF

The A-field spe01ﬁes whlch of the mxteen (16) Control Reglsters is to be placed into the
Accumulator.

g Load Con‘ti'ol Regiéter | |
OP CODE . LABEL
CODE \ 34A OF

|

2.14.03 (Cont’d-1)

CTCC

The A-field specifies which of the sixteen (16) Control Registers to load the contents of the
Accumulator into. ‘ -

Example of controlling one terminal in a normal TC Polling and Selecting environment.

LABEL OP CODE i _B_ _c_ REMARKS
LIR 2 0
CLM ADDR
LKBR ADDR
TKM 2 ENTER REMOTE’S ADDR
TRA ADDR LOAD INTO ACCUM
INK 0 1 - LOAD POL OP-INDICATOR
CODE 1100 IDLE REQUEST
CODE 34A0 LOAD 0 CONTROL REGISTER
CLA 0 0
CODE 34A1 . LOAD 1 CONTROL REGISTER
CODE 1000 RESUME
LISTEN EX D 1 1
. SRJ ERROR
SK B 3 1
BRU SELECT
EX D 2 1
BRU MSGE
BRU , LISTEN
ERROR IR 2 10 KEEP ERROR COUNT
CODE 3091 ‘ RETRIEVE ERROR REG
SKL 3 8 4 TEST FOR PARITY
AL 1
POS 50
PA PARMSG
LIR 2 0 RESET COUNTER
SK T I 4 ~ ,
CLA 0 0 CLEAR TIME OUT REG
CODE 3491 ‘ RELOAD TIME-OUT REG
CODE 1000 T RESUME
SRR 1
LIR 2 0 RESET COUNTER
AL 1
POS 50 |
EXL 3 2 2 CHECK FOR NO RESPONSE INDICATOR
" PA NOMSG : |
BRU - RTNE S
EXL 3 3 2 CHECK FOR A STRANGE RESPONSE
PA STRMSG o '
¢ BRU - RTNE S
EXL 3 4 2 CHECK FOR INVALID

Revised 3-29-71 by o
PCN 1045481-001 2.‘14.03 (Cont’d-2)

cTCcC

LABEL OP CODE

PA
BRU
EXL
PA
BRU
SKL
; PA
RTNE CLA
CODE
CODE
SRR
SELECT AL
POS
LKBR
TKM
EX
EX
SRJ
BRU
CODE
CODE
INK
CODE
TSB
CODE
SET
BRU
MSGE CODE
TRB
CODE
INK
CODE
CODE
RST
LRBR
AL
POS
PR
PAB
SK
AL
BRU
BRU
2.14.03 (Cont’d-3)

A

INDIC
RTNE
3
NAKMSG
RTNE
3 .
INDIC

0

3491
1000

L

2

10
SEND
150

D

D
ERROR
3

1100
3CA0

0

34A0
SEND
1000

R
LISTEN
1100
RECEIV
3CA0

0

34A0
1000

R
RECEIV
2

10

LISTEN

REMARKS

DIGIT IN INDICATOR

CHECK FOR NAK
LIMIT INDICATOR
CHECK FOR INVALID
DIGIT IN INDICATOR
CLEAR REGISTER
LOAD TIME OUT REG
RESUME

IDLE REQUEST

SET POL-SEL INDICATOR

LOAD CONTROL REG 0

RESUME

IDLE REQUEST

TRANSFER TO RECORD AREA
RETRIEVE CONTROL REG
SET POL INDICATOR

LOAD CONTROL REGISTER
RESUME

PRINT
MESSAGE

ROUTINE

CTCC

SIMULATOR TERMINAL

ANY SEQUENCE OF
POLL MESSAGE
1-7 CHARACTERS

READY
TO SEND

l

INVALID
OR
NO RESPONSE

Y
[ANY HEADER

-0 m «—

X - m

““+-—— OO W

'

PERSISTENT
PARITY
ERROR

1

TIME OUT -
MICROPROGRAM SHOULD
DETERMINE NATURE OF
TIMEOUT AND RE-INITIATE
OPERATION

UP TO

A0 >a

TIMES

— e — e e — — — — — — — — — — — ——

<“— R > 2 e
=

R

[[RE-TRANSMIT]]
t

l
E
0
T
Y

Vo

CONTINUE WITH NEXT
OPERATION SPECIFIED
IN THE CONTROL
REGISTER — ETC.

Chart 1. Poll

Revised 3-29-71 by
PCN 1045481-001 2.14.03 (Cont’d4)

CTCC

SIMULATOR | TERMINAL
I
ANY SEQUENCE OF |
SELECT MESSAGE |
1-7 CHARACTERS |
| NOT READY
READY
| ! I
INVALID N
OR A 2
| NO RESPONSE K K
¥ ¥
oy |
TIME OUT — l
MACROPROGRAM SHOULD |
DETERMINE NATURE OF
TIMEOUT AND RE-INITIATE l
OPERATION |
I
ANY HEADER E B
1.7 (TEXT) T ¢C |
CHARACTERS X C |
L l
| ' | 1
| N INVALID A
A OR
c
| ; NO RESPONSE K
:] |
RE-TRANSMIT AFTER |
n TIMES n
] TIMES I
Y [
\

CONTINUE WITH NEXT OPERATION
SPECIFIED IN THE CONTROL I

REGISTER — — ETC.
Chart 2. Select

2.14.03 (Cont’d-5)

SIMULATOR

FIRST HALF
MESSAGE
C-7 CHARACTERS

2ND HALF
MESSAGE
0-7 CHARACTERS

(TEXT)

X - m

OO0 w

cTCcC

. TERMINAL

INVALID
OR '
NO RESPONSE

l

L———‘—z:oz' -
20> a—I

v

TIME OUT —
MACROPROGRAM SHOULD
DETERMINE NATURE OF
TIMEOUT AND RE-INITIATE
OPERATION

'

CONTINUE WITH NEXT
OPERATION SPECIFIED
IN THE CONTROL
REGISTER — — ETC.

_ Chart 3. Fast Select, Group Select, and Broadcast Select »

Revised 3-29-71 by
PCN 1045481-001

2.14.03 (Cont’d-6)

2.15 — INPUT WITH PUNCHED PAPER TAPE/EDGE PUNCHED CARD READER

Instructions are provided to read punched paper tape or edge punched cards, using a Burroughs Style A
581 Paper Tape/Edge Card Reader as the input adjunct. All subsequent reference to ‘“‘paper tape”
applies both to punched paper tape and to edge punched cards, unless indicated otherwise.

Tape reading is serial, one character at a time, at a speed up to 40 characters per second (when no
printing accompanies it). When reading paper tape and printing, the reading speed is up to 20 characters
per second; when reading and punching only (no printing), reading speed is up to 40 cps.

The Series L/TC internal character code is USASCII; however, any 5, 6, 7, 8 channel paper tape code
can be read and interpreted by utilizing a Table of Input Code Assignments for conversion of the paper
tape code into the internal USASCII code. The functional codes in a code set may be used as field
identifier codes to terminate tape reading and set flag patterns, or may be ignored (refer to the Table of
Input Assignments in Appendix I). The scheme of character parity checking for a particular code set is
also a function of the Table of Code Assignments. Firmware for 5 channel code is different than that
for 6, 7, or 8 channel “table look-up” firmware or for USASCII No Table firmware.

2.15.01 PAPER TAPE READER INSTRUCTIONS

The Paper Tape Reader instructions are designed to function both as “read” instructions and as
“keyboard” instructions.

When all tape reading conditions exist, i.e., the reader is on, the photo-electric light is on, and media is
present, reading of the paper tape will occur according to the specifications of the instruction.

If any of the above conditions do not exist, then the reader is not operable (a “reader condition” has
occurred). The read instruction now reverts to its keyboard counterpart**, and the keyboard buffer is
cleared so that the operator may manually index that data required by the altered read instruction. Note
that any data resident in the keyboard buffer is lost when the read instruction fails to execute. It
follows that the read instruction must be reached before a manual entry is made in its place, because if
the operator anticipates this condition and indexes data before the program halts, the data will be lost.

The mnemonic representations of the read instructions are the same as selected keyboard instructions
with the addition of a prefix letter “R.”

Insiructions that involve punching paper tape along with reading of paper tape will inhibit the punch
part of the instruction if the tape perforator is turned off. In addition, the Punch Off Indicator light is
turned on and Punch Off Flag is set (refer to Subject 2.16.02) |

#* EXCEPTION: RNK reverts to a NKRCM (see Subject 2.02.01)

2.15.01

RTK

RTKM
REAM o
2.15.02 PAPER TAPE/EDGE PUNCHED CARD INPUT INSTRUCTIONS
OPCODE A
READ ALPHA AND PRINT RTK 0-150 15%” forms handler

RTK 0-255 26> forms handler

The RTK instruction reads from tape (i.e., paper tape or edge punched card) and prints the number of
alphanumeric characters specified by the “A” field. The instruction will be terminated upon reading a

field identifier code or after reading the number of alphanumeric characters as denoted by the “A”
parameter.

The flag patterns to be set by the field identifier codes are determined by the Table of Input Code
Assignments (see Appendix I).

When a “reader condition” exists, the RTK instruction reverts to a TK instruction and the keyboard
buffer is CLEARED in anticipation of manual input.

OP CODE A

READ ALPHA INTO MEMORY AND PRINT RTKM 0-150 15%” forms handler

RTKM 0-255 26” forms handler
The RTKM instruction reads from tape into memory and prints the number of alphanumeric characters
specified by the “A” field. The RTKM should be preceded by an LKBR instruction to indicate the
starting word location in memory for character storage. (See Subject 2.02.03.)

The LKBR is incremented to the next higher word after each eight characters have been read. The
instruction will be terminated upon reading a field identifier code or completion of reading the number
of alphanumeric characters specified in the “A” field. The flag patterns to be set by the field identifier
codes are determined by the table of input code assignments. (See Appendix I).

If a reader condition exists, the RTKM instruction will revert to a TKM instruction. (See RTK
instruction).

OP CODE A
READ ALPHA INTO MEMORY, NON-PRINT REAM 0-150 15%” forms handler
REAM 0-255 26” forms handler

The REAM instruction reads from tape into memory the number of alphanumeric characters specified in
the “A” parameter; no printing occurs. The REAM instruction should be preceded by an LKBR
instruction to denote the starting word location in memory for character storage. The LKBR is
incremented to the next higher order word after each set of eight characters has been read. The
instruction will be terminated upon reading a field identifier code or completion of reading the number
of alphanumeric characters specified in the “A” field. The flag patterns to be set by the field identifier
codes are determined by the Table of Input Code Assignments.

Revised 3-29-71 by
PCN 1045481-001 2.15.02

RXEAM RXTK

RXTKM RNK

if a reader condition exists, the REAM _instructioh reverts to an EAM instruction. (See RTK
instruction).

OPCODE A

READ ALPHA INTO MEMORY _AND PUNCH, NON-PRINT RXEAM 0-150 15%” forms handler
' 0-255 26” forms handler

The RXEAM instruction is the same as the REAM instruction, except that punching will also occur.

The RXEAM instruction can revert to an XEAM instruction if the tape reader is not operable, to an
REAM instruction if the tape perforator is turned off, or to an EAM instruction if neither the reader
nor the perforator is operable.

OPCODE A

READ ALPHA, PRINT AND PUNCH RXTK 0-150 15%” forms handle1
‘ RXTK 0-255 26” forms handler

The RXTK instruction reads from tape, and simultaneously prints and punches the number of characters
specified in the A parameter. The instruction is terminated after reading the specified number of
characters or upon reading a field identifier code.

The flag patterns to be set by the field identifier codes are determined by the Table of Input
Assignments. (See table in Appendix I).

The RXTK instruction can revert to an XTK instruction if the tape reader is not operable. If the paper
tape punch is off, the RXTK will revert to a RTK instruction; or to a TK instruction if both a reader
and perforator condition exist. (See RTK instruction).

OP CODE A
" READ ALPHA INTO MEMORY, PRINT AND PUNCH RXTKM 0-150 15%” forms handler

RXTKM 0-255 26” forms handler

The RXTKM instruction is the same as the RTKM instruction, except that tape punching occurs
' 51multaneously

The RXTKM instruction can revert to an XTKM instruction if the tape reader is not operable. If a
perforator condition exists, the RXTKM w1ll revert to a RTKM 1nstruct10n or to a TKM instruction if
both a reader and perforator condltlon exist. '

OP CODE A B
READ NUMERIC INTO ACCUMULATOR ‘ RNK 0-15 0-15

The RNK instruction reads from the tape into the Accumulator the total number of characters specified
by the sum (maximum of 15) of the A and B parameters. The instruction is terminated after the total
number of characters specified have been read (fixed field) or upon reading a field identifier code
(variable fields). The paper tape characters enter the Accumulator as digits, from low to high order digit
positions. NOTE: No printing occurs.

2.15.02 (Cont’d-1)

REL

PT

A number may be read into the Accumulator as either a fixed field or a variable field.

With a fixed field, the tape must contain as many codes as the total number of digits required by the
instruction. This may require that preceding zeros be included in the tape in order to obtain the fixed
field size. Because the codes enter the low order position, reading a decimal number into the
* Accumulator requires that the maximum number of decimal places to the right of the decimal point be

filled with digits or zeros. Note that the separation of the fields into whole and decimal digits is

provided to permit keyboard flexibility when a reader condition occurs (see use of NK, Subject
2.02.01).

Example 1: Read 12.25 into the Accumulator, allow for 3 decimal places, fixed field of 9.

OP CODE _A; E
RNK 6 3
Tape must contain: 000012250 (no field I.D. code)

Manual entry must be: 12250 (left to right)

Manual entry format: 1, 2, decimal, 2, 5, and O

Variable fields eliminate the “‘preceding zeros’ requirement of fixed fields. Instead, a “‘field identifier
code” immediately follows the number in the tape causing termination of the RNK. With variable fields,
the A parameter must be 1 greater than the maximum digits allowed for that quantity so that the field
identifier code may be read.

Example 2: Read 12.25 into the Accumulator, allow for 3 decimal places with maximum of 9 digits.

OP CODE A B
RNK 6+FS =7 3
Tape contains 12250 FS (FS denotes field I.D. code)
Example 3: Read 4000 into the Accumulator. Maximum of 4 digits.
OP CODE A E
RNK 5 0
Tape contains 4000FS
| OP CODE

RELEASE MEDIA CLAMP REL

The REL instruction will cause the media clamp for paper tape or edge punched cards to open, thus
halting any further reading until the operator places new material in the reader.

Revised 3-29-71 by
PCN 1045481001 2.15.02 (Cont’d-2)

Thisk instruction is useful when using edge punched cards, to release the card after necessary information
has been read, and to prevent any additional information on the card from enabling the read instruction
for the next entry.

2.15.02 (Cont'd-3)

XTK

PT

2.16 — OUTPUT WITH PAPER TAPE/EDGE PUNCHED CARD PERFORATOR

The instructions described in this section provide the means to output data into punched paper tape
and/or edge punched cards by using a Style A 562 Paper Tape/Edge Punched Card Perforator as the
output adjunct. All subsequent reference to ‘‘paper tape” applies both to punched paper tape and to
edge punched cards, unless indicated otherwise.

Tape punching is serial at a speed up to 40 characters per second when no printing accompanies it.
When printing accompanies punching paper tape, the punching speed is up to 20 characters per second.

The Series L/TC internal character code is USASCII and output to paper tape will normally be in this
code. However, any S5, 6, 7, or 8 channel paper tape code can be punched by utilizing a Table of
Output Code Assignments for conversion of the internal code into a different paper tape code (refer to
Appendix I). The firmware for 5 channel code is different than that for 6, 7, or 8 channel ‘“table
look-up” firmware or for USASCII No Table firmware.

The Paper Tape Punch Instructions provide the ability to print and punch data from the Accumulator,
print and punch alphanumeric data from memory, and to type or type into memory while punching. In
addition, a register is provided which counts the number of codes punched. This enables the use of
continuous edge punched cards by making it possible to determine when one continuous card has been
filled or when to fill any unused portion of a continuous card with feed codes before aligning the next
continuous card to the first sprocket hole.

The Paper Tape Punch Instructions are designed to function in three ways:

1. When proper tape punching conditions exist, punching will occur according to the
specifications of the instruction.

2. If the perforator is not connected or is turned off, the punch portion of the instruction is
inhibited and the instruction is executed in accordance with its counterpart keyboard or print
instruction. Thus, although the program may provide for punching, the perforator may be
turned off or discontinued without affecting the operation of the rest of the system.

3. If the perforator is turned on but does not have media loaded, execution of the punch
instruction is held up until the condition is corrected.

The mnemonic representations of the punch instructions are the same as selected keyboard and print
instructions with the addition of a prefix letter “X.”

2.16.01 PAPER TAPE/EDGE PUNCHED CARD OUTPUT INSTRUCTIONS

OPCODE A
TYPE, PUNCH XTK 0-150 15%” forms handler

XTK 0-255 26” forms handler

The XTK instruction allows typing, printing and punching up to the number of characters specified in
the A field. The instruction functions like a TK instruction except that punching occurs with it. The
termination of this instruction with an OCK or PK does not cause¢ a code to punch.

Revised 3-29-71 by
PCN 1045481-001 © 2.16.01

XTKM XPA

XEAM XA
, PT

Y

If the perforator is turned off or disconnected, the XTK instruction will operate only as a TK
instruction. ’

OP CODE A
TYPE INTO MEMORY, PUNCH AND PRINT XTKM 0-150 15%” forms handler
L . XTKM 0-255 26” forms handler .
The XTKM instruction allows typing into memory, printing and punching up to the maximum number

of characters specified in the A field. This instruction should be used in conjunction with the- LKBR
instruction to denote the entry position in memory for the characters typed (See Subject 2.02. 03)

The XTKM mstructlon functrons like a TKM instruction except that punchmg also occurs. The
termination of this instruction with an OCK or PK places an End Alpha code in memory but does not
cause a code punch. : .

If the perforator is turned off, or disconnected, the XTKM instruction functions as a TKM instruction.

OPCODE A
ENTER INTO MEMORY AND PUNCH XEAM 0-150 15%” forms handler.

XEAM 0-255 26 forms handler

The XEAM instruction functions exactly like the XTKM instruction except that printing does not occur.
If the perforator is turned off, or disconnected, XEAM will operate only as an EAM instruction.

OPCODE A
PRINT ALPHA AND PUNCH ‘ XPA LABEL

The XPA instruction prints and punches the alphanumeric data stored in the memory location
designated by the A field. The instruction is terminated upon reaching an End of Alpha code in the
data; the End of Alpha code is not punched. This instruction operates like a PA instruction in every
respect except that punching occurs.

With the perforator turned off or disconnected, the XPA will operate as a PA instruction.

‘ OP CODE _I_-__
PUNCH ALPHA FROM MEMORY, NON-PRINT XA ‘LAEEL

" The XA instruction functions exactly as an XPA instruction except that printing does not occur.

If the perforator is turned off or disconnected, the XA functions vas a No Operation (NOP) instruction. |
When using Data Comm P. T. I/O firmware the XA w1]1 termmate on any Col. 0 USASCII Code Codes
from either column will punch.

2.16.01 (Cont’d-1)

XC

XPN
PT
OP CODE A B
PUNCH CODE XC 0-15 0-15

The XC instruction punches into tape the bit pattern specified by the parameter fields. The A parameter
indicates the decimal value of the high order 4 bits (bg, by, bg, bg, having decimal values of 8, 4, 2, 1
respectively); the B parameter represents the decimal value of the low order 4 bits (by, b3, by, by,
having decimal values of 8, 4, 2, 1 respectively) in the bit configuration of the desired code. The parity
bit must be included in the appropriate bit position when applicable if a table look-up Firmware set is
being utilized. If the standard USASCII I/O firmware set is used, the parity bit will be automatically
inserted when applicable.

In the case of USASCII code the column number of the desired code in the table represents the A field
(parity bit must be added when applicable); the row number of the desired code represents the B field.

Printing does not occur with this instruction. If the perforator is turned off or disconnected, the XC will
function as a “No Operation” (NOP) instruction.

Example: Punch the USASCII code “RS”

bg b; bg bs by by by b

Bit pattern (“X” =hole in tape) 0 0 0 X X X X o
Decimal value 8 4 2 1 8§ 4 2 1
Parameter value A = (0+0+0+1) = 1

B = (8+4+2) = 14

This corresponds to the USASCII table location of RS in column 1, row 14.

OP CODE A B
PRINT AND PUNCH NUMERIC XPN 0-14 0-15

The XPN instruction prints and punches the contents of the Accumulater, beginning with the high order
digit position specified in the A parameter and with the print mask designated by the B parameter. The
print mask is relative to the mask table established by the last LPNR instruction. (See Subject 2.03.04.)

There will be no affect on the Accumulator flags position or any other data in Accumulator positions to
the left of the digit position specified by the A parameter.

This instruction functions like the PN instruction except that punching occurs.

If the perforator is turned off, or disconnected, the XPN instruction will operate only as a PN
instruction.

Revised 3-29-71 by
PCN 1045481-001 2.16.01 (Cont’d-2)

XPNS— XPNS+
XN LXC

PT

OP CODE A B
PRINT AND PUNCH NUMERIC, SHIFT RIBBON IF MINUS XPNS— 0-14 0-15

PRINT AND PUNCH NUMERIC, SHIFT RIBBON IF PLUS XPNS+ 0-14 0-15

The XPNS— instruction is the same as the XPN instruction except that the ribbon color is changed if
the Accumulator Sign Flag is set (minus). '

The XPNS+ instruction is the same as the XPN instruction except that the ribbon color is changed
(opposite to the normal operating color of black, is red) if the Accumulator Sign Flag is reset (plus).

If the perforator is turned off or disconnected, the XPNS— and XPNS+ function as PNS— and PNS+
instructions respectively.

OP CODE A B
PUNCH NUMERIC, NON-PRINT XN 0-14 . 015

The XN instruction is the same as the XPN instruction except that printing does not occur. A mask
word is used with this instruction since it controls the punching. (See Subject 2.03.05.) The mask word
selected may be the same as is used with other Print Numeric Instructions since-it would not affect the
non-print function of this instruction. ’ J

If the perforator is turned off or disconnected, the XN will operate as a “No Operation” (NOP)
instruction.

OP CODE A
LOAD PUNCH COUNT REGISTER LXC 0-255

The Punch Count Register is provided to count the number of holes punched. This enables the use of
continuous edge punched cards by making it possible to determine when one edge punched card has
been filled or to fill any unused portion of a continuous card with feed codes before aligning the next
continuous card to the first sprocket hole.

The. LXC instruction will load the number contained in the A field, into the punch count register. The
instruction is normally used at the start of each new continuous edge punched card to reset the count.

~ The punch count register is incremented by one for each code punched from any punching instruction.

If the register is equal to 255, incrementing causes the register to become 0.

2.16.01 (Cont’d-3)

XMOD XB

OP CODE

MODIFY BY PUNCH COUNT REGISTER XMOD

The XMOD instruction will modify the parameter field of the next instruction by the contents of the
punch count register. This modification occurs as in the MOD instruction. The XMOD cannot be
changed by the Index Register instructions. (i.e., IIR, ADIR, etc.)

op cone A
PUNCH FEED CODES XB 0-255

The XB instruction causes feed (sprocket) holes to be punched. The number of codes punched will be
the difference between the number in the A field and 255.

If the perforator is turned off, XB will operate as a “No Operation’’ (NOP) instruction.

When edge punched cards are the media present, punching of sprocket holes is inhibited. Therefore, the
card is just advanced without sprocket hole punching.

2.16.02 READER AND PUNCH FLAGS

Two reader flags are provided to enable program control over the tape reader.

Reader flag R1 is set when a reader condition exists. A reader condition exists if any of these
contingencies arise:

1. The Paper Tape Reader is not turned on.
Media (paper tape or an edge punched card) must be positioned in the reader.

2.
3. The media clamp must be closed.
4,

The photo-electric device must be illuminated.

When the reader condition exists, along with the R1 flag being set, the keyboard buffer is cleared, and
the instruction is held up from execution pending operator action. The action depends on two
conditions:

1. The reader is intended to be used: Turn on the reader and then depress the Read Key. This
reinitiates the read instruction and causes the media to be read. The R1 flag is reset.

2. The reader is not intended to be used: The operator may make an entry through the
keyboard. (At this point, remember, the reader instruction has reverted to its keyboard
instruction). The Reset Key will reinitiate the tape read instruction, but it must be indexed
prior to the use of an OCK or PK.

Once the operator has taken either course of action, the indicator light is turned off and reader flag R1
is reset.

NOTE: The keyboard buffer is cleared every time a reader instruction reverts to its keyboard
counterpart. If the operator has anticipated this and indexed data prior to the hait in the program when
the reader instruction becomes a keyboard instruction, then that data will be lost. The operator would
have to index the data again.

Revised 3-29-71 by
PCN 1045481-001 2.16.02

Reader flags R2, R3 are reserved for Data Communication operations.

Reader Flag R4 is set when an invalid tape code is read. Reading is not halted on the 1nva11d tape code.
The next read instruction will reset the R4 flag.

The Reader flag settings can be manipulated by use of the Flag instructions.

Four Punch Flags are provided to alert the operator of the perforator condition.

The Punch Flag P1 is set if media is not present in the perforator and the program attempts to execute
a punch instruction. The instruction is halted. Correction of the situation will cause the system to
resume execution of the punch instruction.

The Punch flag P2 is set if incorrect punching has occurred during a punch instruction. The echo check
indicator light is lit. The punching is not terminated; the flag remains set. ' :

The program should provide for checking flag P2 at least after each line of punching. When the flag is
set, a Skip or Execute instruction would enable performing the necessary instruction to sound the alarm,
punch a tape error code, or to take other corrective action. :

The Punch flag P3 is set if reel tape is being used and the supply is nearly exhausted (approximately 20
feet remaining). The Tape Supply indicator is lit. Placing a new roll of tape in the supply reel will turn
off the indicator and reset the flag on the next punch instruction. This condition does not halt program
execution nor inhibit punching.

The Punch Flag P4 is set if the paper tape perforator is “OFF.” The instruction will be executed, but
the punching will be inhibited. Switching the perforator to the ‘““ON’’ condition causes the P4 flag to be
reset on the next instruction. However, the data to be punched on the first “punch” instruction would
be missing from the output tape. Therefore, it is reccommended that a punch instruction be used during
the program initialization routine with subsequent testing of the Punch Flags (especially the P4 flag)
since the perforator condition is only apparent once a punch instruction is initiated. All punch flags may
be examined by use of the flag instructions.

2.16.02 (Cont’d)

LCD RCD

CRD

2.17 — 80-COLUMN PUNCHED CARD INPUT INSTRUCTIONS

With either the A 595 or A 596 80—colﬁmn Card Reader and the A 149 Card Punch used as peripherals
to either the Series L or TC, 80-column punched cards can be used as input and 80-column punched
cards can be punched as output. The programing instructions required to use these two peripherals as
part of a program will be explained in two sections. The first section will deal with card input
instructions, the second will explain card output instructions.

2.17.01 80-COLUMN CARD INPUT INSTRUCTIONS

OP CODE _:A_ B
LOAD MEMORY FROM CARD LCD 0-255

The LCD instruction causes the reading of object program cards and stores the new object program
instructions into memory locations specified in the program cards. The A parameter specifies the
number of cards to be read. This instruction utilizes and requires that the Card Reader Memory Load
Routine be present in the Utility Track.

LCD allows programmatic control of program overlays. After reading the designated number of program
cards, the program execution continues on’to the next instruction in accordance with the program
counter. Thus, caution must be exercised to ensure that a program does not overlay the same memory
area occupied by the LCD instruction. The program cards must be of the same format as required for
regular program loading with the Card Reader. (Refer to Appendix K for card format required to load
~object program by card.)

~ After execution of this instruction, a ‘“‘Hash Total” of the program data read in, is in the Accumulator.

If the specified number of program cards are not read, the instruction is held up, the Reader Condition
light is turned on and the R1 flag is set.

Placing the remaihing cards to read in the Card Reader and depressing the Restart switch on the Card
Reader, or depressing'the Ready push button to return the machine to Ready mode, are the only two
alternatives available to complete the LCD instruction.

A 595 OP CODE

READ CARD RCD

When an L/TC is used with an A 595 card reader, the RCD instruction reads a single 80-colum punched
card into words 1 through 10 of memory. All 80 columns are read and placed into memory including
blank card columns.

A 596 OP CODE A

READ CARD RCD 0-255

When an A 596 card reader is used as the input device for an L/TC, the RCD instruction reads a single
80-column punched card into the next 10 words of memory beginning with the word specified by the A
parameter. Data can be read into any word in Block 0 except word 0. A parameter of O defaults to
word 1. The L programmer may use the TRCA and TRCM instruction to access data in Track O only

Revised 7-23-71 by
PCN 1045481-002 2-17.01

(words 1-31). The TC programmer can use the data comm instructions used in processing messages
received to access data at any location in Block 0. If the TSB instruction is to be used, the data to be
transmitted must begin on a Track boundary (word 32, 64, 96, ...224) and should be contiguous
within the track.

In general, whenever a programmer attempts to force data to be read into memory above word 255, the
RCD instruction is terminated, the overflow flag is set, and all data following that which was placed in
word 255 is lost. The next read instruction automatically resets the overflow flag.

During the execution of each RCD instruction, the original contents of the Accumulator are destroyed
and the Accumulator is not cleared. Any number in the Accumulator prior to a RCD instruction which
is to be used ‘later in the program, should be transferred to a memory location to save it, as it will be
altered during the execution of the RCD instruction.

If a card is not present in the Card Reader, when a RCD instruction is to be executed, the Reader
Condition indicator light is turned on, flag R1 is set, and the instruction is held up.

i -23-71 b
R asaat00s 2.17.01 (Cont’d-1)

LCFR PBA

CRD

Placing a card in the Card Reader and depressing the Restart switch on the Card Reader will enable the
instruction to be completed and allow the program to continue to the next instruction. The other
alternative would be to depress the Ready push button, to return the machine to Ready mode.

OP CODE A

LOAD CARD FORMAT REGISTER LCFR LABEL

The LCFR instruction loads into the Card Format Register the word number associated with the Label
name. A Card Format Table may contain up to 16 different card field formats. If more than 16 are
required, another table location (i.e., another LCFR instruction with a different label) must be
established before any formats can be referenced in the second table. Only one table can be referenced
at one time, and that table referenced is dependent upon the last LCFR instruction.

The label in the A parameter must reference the beginning of a word. The Pseudo Instruction “WORD”
should be used preceding the label of the first CDF pseudo instruction, so that it starts at the beginning

of a word. (Refer to Subject 2.01.04 for explanation of CDF Pseudo Instructions.)

Example:
LABEL OP CODE i E

LCFR CRDTAB
WORD

CRDTAB CDF 1 2
CDF 3 5

OPCODE A
PRINT ALPHA FROM CARD READ AREA PBA 1-16

The PBA instruction prints from the card read area, the field, specified by the format number, as
alphanumeric data.

The format number, references the format table last identified by the LCFR instruction.

Example:
LABEL OP CODE i\. B
LCFR CRDTAB
PBA 2 Print second field on card.
NOTE Card cols. 3-10
CRDTAB CDF 1 2 Card cols. 1-2
CDF 8 Card cols. 3-10

2.17.01 (Cont’d-2)

XPBA XBA TRCA

CRD

OPCODE A

PRINT & PUNCH ALPHA FROM CARD READ AREA XPBA 1-16

The XPBA instruction prints from the card read area, the field specified by the format number, as
alphanumeric data, and punches the data into an output card in the A 149 Card Punch. The instruction
is terminated after printing and punching the number of characters specified by the field length in the
format. The status of OCK flags is not affected.

If the Punch is off, XPBA is executed as a PBA instruction.

If there are no cards in the card hopper and the Punch is on and on-line, the XPBA instruction will be
held up until cards are placed in the card hopper and the auto feed button depressed on the Punch.

OP CODE A

PUNCH ALPHA FROM CARD READ AREA, NON-PRINT XBA 1-16

The XBA instruction punches into an output card, from the card read area, the field specified by the
format number, as alphanumeric data. The data is not printed. The instruction is terminated after
punching the number of characters specified by the field length in the format.

If the Punch is off, XBA is executed as a NOP instruction.

If no cards are in the card hopper and the Punch is on line, the XBA instruction will be held up until
cards are placed in the card hopper and the auto feed button depressed on the Punch.

OP CODE A

TRANSFER CARD FIELD TO ACCUMULATOR AS TRCA 1-16
NUMERIC

The TRCA instruction transfers the field of data, specified by the format number in the A parameter,
from the Card Read Area into the Accumulator. The digits in that field are right justified when
transferred into the Accumulator. The instruction is terminated by transferring the number of card
columns specified in the format. The status of the OCK flags is not changed by this instruction.

If an “11” overpunch is present in any of ‘the card columns of the field being transferred (denoting a
negative field), the Minus Flag in the Accumulator is set.

If a “12” or “0” overpunch is present in any of the card columns of the field being transferred, the
Invalid Code Flag (R4) is set and the corresponding indicator light is turned on. An unknown digit will
be transferred to the Accumulator. The flag is reset and the indicator is turned off at the beginning of
the next Card Input Transfer instruction; therefore, this flag must be examined immediately in the
program (with the SK or EX instructions) when it is necessary to detect illegal codes in a given field.
The characters “+” (card codes 12,0) and “&” (card code 12) will not affect the Minus flag nor set the
Invalid Code flag, but will transfer as the digit “0” in accordance with their position in the field. The
hyphen character (minus sign) “—>’ (card code 11) and “X” (minus zero — card code 11,0) set the

Revised 7-23-71 by
PCN 1045481-002 2.17.01 (Cont’d-3)

Minus flag, do not set the Invalid Code flag, and are transferred as the digit “0” in accordance with
their position in the field. The letters A through I and S through Z, as well as all other special
characters, will set the Invalid Code flag and a digit will be transferred. The letters J through R are the

same as numerals with an “11” overpunch. The space code (blank card column) is treated as the
numeral “0”.

An invalid code can be used to advantage to indicate special conditions, such as the last card in an input
file. For example, a ““12” overpunch with a transaction type number would permit the program to
determine when to stop reading cards. This would not require a separate card column for this purpose,
and would not affect the usability of the transaction number.

The programing below is an example of minimizing the length of alpha print time by examining certain
positions of a description field in the card read area to determine the amount of significant data, and
selecting a field format length accordingly; thereby eliminating some of the trailing space codes in the
unused portion of the field when printing or transferring to memory.

The diagram below illustrates a card with a description field of 42 characters (col’s. 13 to 54). On the
premise that most descriptions are less than 21 characters, some are less than 29, only a few use the
maximum field capacity, and that no more than 6 consecutive space codes are permitted within the
description, then three formats are defined for the description field to permit the program to select the
shortest length; thus, considerably reducing print time and/or transfer time (42 characters require
approximately 2100 ms print time vs. approximately 1000 ms using a 20 character length format).

13 DESCRIPTION 54
ceeeen .8.|. .ol .1.6.: : 4= S .2.; 40; cene .4.8._:. ceeed. .i 5 4: g 2' e 8.0
I ! |

| ! 1 | ! ! | |
WORD 1 WORD 2 :WORD 3 iWORD 4 :WORD 5 ;WORD 6 iWORD 7 ;WORD 8 :WORD 9 iWORD 10
1 1

R N g e L e i S . S P Y i S W o ey

LABEL INSTR A B REMARKS

FIELDS CDF 13 20 SHORT DESCRIPTION
CDF 13 28 MEDIUM DESCRIPTION
CDF 13 - 42 MAXIMUM DESCRIPTION

For simplest programing, the positions in the field to be examined for space codes must be defined
taking into account the word boundaries of the card read area. The 21st through 28th positions in the
description field are card columns 32 to 40 and are in word 5 (base word +4). If word 5 contains all
zeros (8 space codes), then significant data is presumed to not extend beyond col. 32 (20th field
position). If word 5 contains any significance, then word 6 is examined. If word 6 has all zeros, then
data does not extend beyond col. 40 (28th position). If word 6 contains data, the infrequency of
occurrence suggests that no further tests should be made and a maximum field size is used. The card
read area is reserved with REG instead of CDB to permit a label for referencing specific words. (Refer
to Subject 2.01 for explanation of Pseudo Instructions.)

2.17.01 (Cont’d-4)

Program Segments:

LABEL INSTR A E REMARKS
START LPNR PMASKS
LPKR PKEYS
LLLR 51
BRU BEGIN
CARDIN REG 10 RESERVE CARD READ AREA
BEGIN _ Note that Card Read area is reserved

with REG to permit labeling; but
must be sequenced to assure assem-
—_— bly in words 1-10.

N’/\/\—/\/\/\/_\/\/\M

RCD READ A CARD
LCFR FIELDS SELECT FORMAT TABLE
LKBR DESCRP SELECT DESCRIP TANK
TRA CARDIN + 4 READ COLS 33 TO 40
SLROS 0 2 MOVE FLAG POSITION
EXZ 3 EXAMINE FOR SPACES
a PBA 1 PRINT SHORT FIELD
a TRCM 1 TRANSFER SHORT FLD
a BRU +9
b ¢ TRA CARDIN + 5 READ COLS 41 TO 48
b ¢ SLROS 0 2 MOVE FLAG POSITION
bc EXZ 2 EXAMINE FOR SPACES
b PBA 2 PRINT MEDIUM FIELD
b TRCM 2 TRANSFER MED FLD
b c SKZ 2 EXAMINE FOR DATA
c PBA 3 PRINT LONG FIELD
c TRCM 3 TRANSFER LONG FLD
——_——\—/I\—/\J\/-__/\/\/—\/\—‘_/—\

DESCRP REG 6 DESCRIPTION WORK AREA

Note: The key along the left margin indicates the program path selected depending on field size; “a’”’ =
short field, ““b’" = medium field, ‘“¢c’" = long field. Statements without a key are executed by all three
paths.

Revised 7-23-71 by
PCN 1045481-002 2.17.01 (Cont’d-5)

TRCM

CRD

OP CODE A

TRANSFER CARD COLUMNS TO MEMORY TRCM 1-16
AS ALPHA

The TRCM instruction transfers the field specified by the format number in the A parameter to a
memory location starting with the word designated by the prior use of the LKBR instruction. The
instruction is terminated after transferring the number of characters specified by the field length in the
format. An “End of Alpha” code is placed in memory following the last code transferred. The status of
OCK flags is not affected.

Space codes (blank columns) are transferred and translated as Space Codes; in subsequent printing of
this data from memory (not the card read area) with the PA instruction, the space characters will cause
the printer to escape rather than increment the position register. This condition would be common in
the unused portion of a description field such as name or address, when the card input data has to be
retained for further processing while additional cards are being read. Escaping through space codes can
- be reduced, by programmatically examining certain points in the card read field and using a smaller field
format when transferring the field to memory. This may be desirable when the field must be designed
with a large capacity to accommodate all transactions, but which may have many transactions with small
entries of data (see example, above).

An indication of Invalid Code is not provided if an incorrect combination of punches has been read into
the Card Read Area. Invalid Code indication is only included with the TRCA instruction.

2.17.02 INPUT INDICATOR LIGHTS AND FLAGS

The two Series L keyboard input indicator lights advise the operator as to whether the Card Reader is
operable, and, under certain conditions, whether invalid codes have been read. Also, the associated

Reader flags enable the program to provide alternate procedures in the event of a Reader Condition or
invalid code.

INPUT
INVALID READER MESSAGE TRANSMIT
CODE CONDITION RECEIVED READY P

O O O O

Input Indicator Lights

INVALID CODE INDICATOR — The Invalid Code Indicator is turned on and its associated flag (R4) is
set, when, during the execution of the TRCA (Transfer to Accumulator) instruction, a code is sensed
that represents an invalid combination as described in the TRCA instruction. This flag is reset and the
Indicator turned off at the beginning of the next transfer instruction.

2.17.02

READER CONDITION INDICATOR — The Reader Condition Indicator is illuminated and flag R1 set
when a card read instruction (RCD) is being executed and any of the following conditions exist:

1. The reader is not on
2. The reader is out of cards

3. Burned out bulb in reader

The read instruction is held up pending operator action as follows:

1. If the Reader is out of cards, the placing of cards ih the feed hopper and depression of the
Restart Switch on the reader will then cause the card read instruction to be executed.

2. If the Reader is not on, the Reader power on switch must first be turned on and then the
Restart switch depressed.

3. The use of the Ready push button, at this point will return the program to the READY
mode.

The R1 flag is set only while waiting to read a card, and is reset when the instruction is executed.
Therefore, only the Indicator light can be used to notify the operator of this condition.

The R2 and R3 flags are set or reset by Data Comm instructions and are not controlled by card
instructions.

FLAG INSTRUCTIONS (LOAD, SET, RESET, CHANGE) — The execution of a LOD, SET, RST, or
CHG Flag instruction involving the Reader Flags will also cause their associated indicator lights to either
be turned on or off depending on the instruction used.

2.17.03 PROGRAM KEYS

Program Keys that have been enabled prior to a Card Read instruction or any of the Card Transfer
instructions will be ignored during those instructions. If a Reader Condition occurs and the Card Read
instruction is held up, use of a PK will have no immediate affect except to place the PK code in the
keyboard buffer pending the next keyboard instruction where it will be recognized.

Revised 3-29-71 by
PCN 1045481-001 2.17.03

2.18 — 80-COLUMN CARD OUTPUT INSTRUCTIONS
2.18.01 PUNCHING ALPHANUMERIC DATA

The following instructions provide for punching alphanumeric data during keyboard entry or directly
from storage in memory. Each use of one of these instructions punches one field, or a portion thereof,
depending on the number of characters and the field size. Therefore the SKP (See Subject 2.18.03)
instruction should normally be used following each of these instructions to by-pass unused trailing
positions in the field and to position the card to the first column in the next field.

OP CODE i
TYPE AND PUNCH XTK 0-150 15%” forms handler

XTK 0-255 26” forms handler

The XTK instruction combines typing, printing and punching up to the maximum number of characters
specified in the A parameter. This instruction functions like a TK instruction in most respects with the
additional function of punching the data into an 80-column card. However, the use of the Backspace
Key is disabled, since a code would already have punched. The termination of this instruction with an
OCK or PK does not cause a code to punch.

If the punch is off-line, XTK will be executed only as a TK instruction.

The use of the Backspace Key has been prohibited; therefore, if it is depressed, an error state occurs
which requires depression of the Reset Key. Caution must be exercised with use of the Reset Key since,
if in the middle of a keyboard entry but not in an error state, use of the Reset Key re-initiates the
instruction and sets the LXC Register back to the start of the field. This puts the card out of step since
part of the field has already punched. These considerations also apply to XTKM and XEAM following.

OP CODE A
TYPE INTO MEMORY, PUNCH AND PRINT XTKM 0-150 15%” forms handler
XTKM 0-255 26” forms handler

The XTKM instruction combines typing, printing, entering the data into memory and punching up to
the maximum number of characters specified in the A parameter. The prior use of LKBR designates the
starting word for storing the data. The XTKM instruction functions like the TKM instruction in every
respect with the additional function of punching into an 80-column card. However, the use of the
Backspace Key is disabled (see XTK) since a code would already have punched. The termination of this
instruction with an OCK or PK does not cause a code to punch, but does place an End of Alpha code
in memory.

If the Punch is off-line, XTKM is executed only as a TKM instruction.

OPCODE A

ENTER ALPHA INTO MEMORY AND PUNCH, XEAM 0-150 15%” forms handler
NON-PRINT
XEAM 0-255 26> forms handler

The XEAM instruction functions exactly like the XTKM instruction except that printing does not occur.
If the Punch is off-line, XEAM is executed only as an EAM instruction.

2.18.01

XPA XA

CRD

OP CODE A

PRINT ALPHA AND PUNCH XPA LABEL

The XPA instruction prints and punches the alphanumeric data stored in the memory location
designated by the A parameter. The instruction is terminated upon reaching an End of Alpha code in
the data: the End of Alpha code does not punch. This instruction functions like a PA instruction in
every respect with the additional function of punching into an 80-column card. If the Punch is off-line,
the XPA instruction is executed only as a PA instruction.

OP CODE A

PUNCH ALPHA FROM MEMORY, NON-PRINT XA LABEL

The XA instruction functions exactly like the XPA instruction except that printing does not occur. If
the Punch is off-line, XA is executed as a NOP instruction.

2.18.02 PUNCHING NUMERIC DATA FROM THE ACCUMULATOR

The following instructions provide for printing and punching, or just punching, numeric data from the
Accumulator. The Pointer designates the high order digit position of the Accumulator at which printing
and punching begin; the printing format and punching are controlled by the Mask word selected. The
instruction is terminated after punching and printing through digit position zero or when an “E” (End)
Mask code is encountered in the Mask word. A Mask word is used for all punch numeric instructions
even though printing may not be a function of a given instruction. It serves to right justify the numeric
data in the card field, filling in preceding zeros or blank columns. Therefore, a fixed field length results
and the use of SKP subsequently is not needed. ‘

The Punch Flag (P) in the Mask word, when set, causes leading zeros to punch even though leading zero
suppression Mask codes (Z,Z) prevent their printing. If the Punch Flag is not set, a blank card column
results for each leading zero suppressed by a Z (or Z,) Mask code; however, if the Punch Flag is not set
and if an Unconditional Print Mask code is used (D D, etc.), all leading zeros will punch into the card
(refer to the following table). The Punch Flag has no effect on the print characteristics of the Mask
codes.

Revised 3-29-71 by
PCN 1045481-001 2.18.02

'MASK CODE " PRINTING PUNCHING
F Print $ -~ No Effect
+ Suppress Punctuation No Effect
P No Effect Leading zeros punch if P
flag set, blank card column
~if reset
D
D, Print Character regardlesé
of significance
.D
D:
X Trailing zero suppression Punch Character regardles
T of significance ‘
X
C Leading zero & trailing
’ Zero suppression
.C
Z Print if: Punch if:
(1) Accum digit not (1) P is Set ‘
Z, Zero. (2) Accum digit not
(2) A non-zero digit zero
Z: has been printed (3) A non-zero digit
- , “has been punched
S Print only if Accum digit
not zero
I Ignore Ignore
E Terminate, Non-print Te:minate, Non-punch

If an Ignore (I) Mask code is used, the corresponding digit in the Accumulator does not print or punch.
If the End (E) Mask code is used, the corresponding digit neither prints nor punches and the instruction

TABLE

is terminated. All other Mask codes cause the corresponding digit to punch.

The punctuation provided by some of the Mask codes during printing does not punch.

2.18.02 (Cont’d-1)

XPN
XPNS—

CRD

In a numeric field on the butput card, if only significant digits are to be ihterpreted along the top of
the card, then leading zeros of the numeric word in the Accumulator must be represented by blank card
columns in the output card (P Flag must be reset and “Z”° mask codes used in order for this to occur).

OP CODE A B
PRINT & PUNCH NUMERIC XPN 0-14 0-15

The XPN instruction prints and punches the contents of the Accumulator, starting at the high order
digit position designated by the A parameter, in accordance with the print mask designated by the B
parameter. The print mask value is relative to the mask table base word established by the last LPNR
instruction. This instruction functions like a PN instruction in every respect with the additional function
of punching.

If the Accumulator Minus Flag is set, an ““11”° overpunch is punched with the least significant digit of
the Accumulator (digit 0); if minus, and if the mask word terminates printing/punching prior to digit 0
(with- an “E”) or ignores digit 0 (with an “I’’), an “11” overpunch does not punch. If the “11”
overpunch is not desired in the field, the Minus flag must first be reset.

All Accumulator digits of a higher order position than the A parameter are ignored.

IR 4]

When it is necessary to punch a plus “+” or minus sign into a separate card column, or when the
value of the other Accumulator flags (S, C, M) must be punched, this can be accomplished by testing
the individual flag settings (SK or EX) and punching an appropriate code in the card column(s) with the
XC (Punch Code) instruction prior to or after punching the numeric field with the XPN instruction. If
the sign column must follow the numeric field, a set Minus flag must first be reset before punching the
data; this usually requires separate program paths, after testing for a minus condition, to both punch the
data and punch the correct sign code.

If the Punch is off-line, XPN is executed only as a PN instruction.

OP CODE A B
PRINT & PUNCH NUMERIC, SHIFT RIBBON IF MINUS , " XPNS— 0-14 0-15

The XPNS— instruction is the same as the XPN instruction except that the ribbon color is changed if
the Accumulator Sign Flag is set (Mmus) If the Punch is off-line, XPNS— is executed only as a PNS—
mstructlon

Revised 3-29-71 by
PCN 1045481-001 2.18.02 (Cont’d-2) -

XPNS+ XN ey

= CRD 0 A
Jg ,
\
OP CODE A B
PRINT & PUNCH NUMERIC, SHIFT RIBBON IF PLUS XPNS+ 0-14 0-15

- The XPNS+ instruction is the same as the XPN instruction except that the ribbon color is changed if the
Accumulator Sign Flag is reset (Plus). If the punch is off-line, XPNS+ is executed only as a PNS+
instruction.

Punch Numeric Data, Non-print
OP CODE A B

PUNCH NUMERIC, NON-PRINT XN 0-14 0-15

The XN instruction is the same as the XPN instruction except that no printing occurs. A mask word is
used with this instruction since it controls punching, and may be the same mask word used with other
Print Numeric instructions as there would be no affect on the non-print characteristic of XN. If the
punch is off-line, XN is executed as a NOP instruction.

OPCODE A B
PUNCH CODE XC 0-15 0-15

The XC instruction permits outputting any desired single card code (without it being resident in
memory) or any special punch pattern in a card column (except only one punch can be created in rows
1 to 7 in a card column although any punch combination in the other rows can be obtained). The A
parameter controls punching in card rows 12, 11, 0, and 9; the B parameter controls punching in card
rows 1 through 8.

Printing does not occur with this instruction. If the Punch is off, XC is executed as a NOP instruction.

ROWS . , ROWS
12,11, 0,9 - 1-8
- AN —_
A Parameter Value 8 421
B Parameter Value noo .18
To punch an “A” (Row 12, 1) the XC instruction would be
OP CODE A B
XC 8 1
To punch Rows 12, 11, 0, 8, 6 the XC instruction would be
OP CODE i-_ _B_
XC . 14 14

Refer to Appendix H to find A and B parameter values of various characters to be punched.

2.18.02 (Cont’d-3)

LXC

SKP
CRD

2.18.03 CARD COLUMN SYNCHRONIZATION WITH THE PUNCH COUNT REGISTER

A Punch Count Register is used by firmware to count the card columns either punched or escaped in
order to control the location of the card and maintain synchronization. When the system is turned on,
the value in this register is indeterminable, and therefore it must be loaded with the value “1”° at the
start of a program.

OP CODE A

LOAD PUNCH COUNT REGISTER LXC 1

The LXC instruction loads the value specified in the A parameter into the Punch Count Register. The
parameter value must be ““1” to synchronize the register with the card in the punch station (card must
be registered in the punch station at card column one).

The LXC instruction is normally used only once in a program, during the initialization routine. Once
into the program, firmware resets the Punch Count Register to 1 whenever a card is released in the
punch and another card registered at column 1. However, it is recommended that a provision be
included in the program for the operator to reset the register to 1 in the event a card becomes out of
step. This condition could occur from the improper use of the keyboard Reset Key during a keyboard
entry, or from inadvertent manipulation of the control keys on the card punch (which should not be
necessary once a program is in operation). Note that if the keyboard Reset Key is used during a
keyboard entry and the system is not in an error state, the keyboard instruction is re-initiated
(repositioning the printer and permitting a complete new entry) and the Punch Count Register is set
back to the beginning column of that field. The card containing the incorrect data should be released
and duplicated to the beginning column of the reset field. The new entry may then be made without
losing synchronization between the L/TC and the card punch. Backspacing will generally result in new
data being punched over incorrect data producing incorrect cards.

OP CODE A

SKIP TO COLUMN SKP 1-80

The SKP instruction causes the card to skip to the card column specified in the A parameter. A skip to
card column 1 causes the card to be released and a new card registered at column 1. This is the
prescribed manner in which the Series L program releases a card. If the card is presently on the card
column specified by the SKP instruction, no skipping occurs. An exception to this is a skip to 1 when
the card is already on column 1; this results in the card being released and another card registered.

Revised 8/9/71 by
PCN 1045481-003 2-18.03

DupP

CRD

Once the skip function has been initiated, the program resumes execution while the skipping is being
completed, except for skips of up to 3 columns. If the program reaches another punch instruction while
skipping is occurring, the program is held up until skipping has been completed. Skips of 3 columns or
less are actually treated as Punch Blanks (XC 0 0, blank card columns), and in this situation, program
execution is held up until the skip is completed.

A skip to a lesser numbered column than the present card location will cause the release of the card and
the registration of a new card; however, the count register will be in error for the newly registered card.

If the punch is off-line, the SKP instruction is executed as a NOP instruction.

The SKP instruction should normally be used after each punch instruction where unused card columns
could remain, such as with XTK, XTKM, XPA, etc. It is normal for these instructions to be terminated
before punching the total number of characters specified in the parameter; therefore, a SKP instruction
must be used to ensure that the card is properly positioned to the start of the next field.

OPCODE A

DUPLICATE THROUGH COLUMN - ~ DUP 1-80

The DUP instruction causes data from the card in the Read Station to be punched (duplicated) into the
corresponding columns of the card in the punch station. The duplication function starts at and includes
the card column at which it is initiated, and-continues through the card. column specified in the A
parameter. A DUP through 80 will cause the card to be duplicated through column 80, released, and a
new card registered at column 1. A DUP through the same card column nuniberv as the present location
of the card results in no duplication.

Once the dup]icationrfunction has been initiated, the program resumes execution while the duplication is
being. completed. If the program reaches another punch instructioh while duplication is occurring, the
program is held up until the duplication has been completed.

A DUP through a lesser numbered card column than the present location of the card will cause a
duplication through column 80, release of the card and registration of a new card; however, the count
register will be in error for the newly reglstered card.

If the punch is off-line, the DUP instruction is executed as a NOP instruction.

Cards are released from the punch statlon by the Series L program with the use of a Skip to Column 1
instruction (SKP 1) or a Duplicate Through Column 80 instruction (DUP 80). Use of the ‘card punch
manual controls, during program operation, or any other type of program release will m most cases
cause the newly registered card to be out of synchromzatlon with the Punch Count Regmter

2.18.03 (Cont’d-1)

ALTP

CRD

.

The Regular Card Stacker is selected ‘automatically if the program has not specified otherwise for the
card being released. The Alternate Stacker is selected by executing the following instruction:

OP CODE

ALTERNATE STACKING POCKET ALTP

The ALTP instruction causes the card in the Punch Station to be routed to the Alternate Stacking
Pocket after it has been released from both the Punch Station and the Read Station. The ALTP
instruction must be executed while the card is still in the Punch Station, and prior to any instruction
that will cause the card to be released from the Punch Station, in order to affect that card when it is
finally released from the Read Station.

This instruction can be used to advantage in many ways, such as to segregate two groups of transactions,
or to out-sort special information cards from standard transaction cards (such as low quantity alerts,
etc.) or to collect reject cards from error entries.

If the punch is off-line, the ALTP instruction is executed as a NOP instruction.
2.18.04 OUTPUT INDICATOR LIGHTS AND FLAGS

Three of the Output Indicator Lights on the Series L keyboard are used to advise the operator of the
operating status of the card punch.

OUTPUT

. PUNCH
OFF , MEDIA ERROR

O O O O

Output Indicator Lights

The Punch Off Indicator Light is turned on and Punch Flag P4 is set if the card punch ‘“On-Line”
switch is not on, or if the On/Off switch is not on while a card punching instruction is attempted. The
punch portion of the instruction is inhibited and the instruction is executed in the manner of its
counterpart keyboard or print instruction. The program does not halt. An instruction involving no other
functions but punching is executed as a NOP instruction. The correction of the condition by turning on
the punch and placing it in the On-Line mode will cause the indicator to be turned off and Punch Flag
P4 to be reset on the next punch instruction.

To avoid the possibility of the operator failing to turn on the punch when beginning an operation, it is
recommended that during tyhe" program initialization a card be released (SKP 1) and the Punch Off Flag
P4 be examine'dv.‘ If P4 is set, the program can warn the operator (with the Alarm or by printing a
warning message) and in addition may prohibit further processing or halt to allow an operator decision
as to whether the following group of transactions requires card output.

Revised 3-29-71 by
PCN 1045481001 2.18.04

If the program attempts to execute a punch instruction and a card is not registered in the punch station,
the instruction is held up, the Media Indicator light is turned on, and Punch Flag P1 is set. Correction
of the condition by registering a card in the punch station permits the instruction to be exccuted, at
which time the Indicator light is turned off and Punch Flag P1 is reset. Only the Indicator light can be
used to notify the operator that a card is not present in the punch station since the P1 flag is set only
while the punching instruction is held up and is reset after the punching instruction is executed. ‘

. The Error Indicator Light is turned on and Punch Flag P2 is set if a card punch malfunction or
misoperation occurs. If this condition occurs, the card punch is not operative, the RESET key
(switch-light) on the card punch is turned on, and the program is held up on the punch instruction. A
depression of the RESET key removes the error condition and permits execution of that instruction to
be completed and the program to continue; Punch Flag P2 and the Indicator light are turned off.

Depression of the RESET key does not change the fact that mis-punching may have occurred,or that a
newly registered card may be out of synchronization with the punch count register.

The execution of a LOD, SET, RST, or CHG Flag instruction involving the Punch Flags will also cause
their associated indicator lights to either be turned on or off depending on the instruction used.

Program keys that have been enabled prior to a card punch instruction involving a keyboard entry
(XTK, XTKM, XEAM) may be used to terminate that instruction. If the instruction is terminated with
an OCK, such PK’s as were enabled will be disabled.

2.18.04 (Cont’d-1)

LSFR

MUR

SUBJECT 2.19 — MAGNETIC UNIT RECORD INSTRUCTIONS

The Magnetic Unit Record (MUR) Instructions provide the ability to read data from or write data on, a
single magnetic record on a magnetic record card. These instructions apply to a unit record handling
mechanism integrated into the console of the system with the magnetic unit record option, or an option
magnetic record handling Auto Reader. All reading and writing is from a 22-word section of main
memory used as an input/output buffer. Input Instructions provide the ability to read data from the
magnetic record, to transfer the variable length data fields from the buffer into either memory or the
accumulator, and to process data directly from the buffer. Output Instructions provide the ability to
transfer both numeric and alpha data to the buffer and to write the contents of the buffer on the
magnetic record. The location of the buffer is dependent upon, and specified by the type of firmware
used.

A maximum of 349 digits of data, plus 2 line-find digits, and a block check digit, may be stored on the
magnetic record of a standard 11 magnetic unit record. The data is read from, or written on, the
magnetic record in one continuous motion of the record mechanism past the read/write heads. There are
no separation digits or characters written on, or read from, the magnetic record. All data field
formatting is accomplished after the data has been read from the magnetic record into the buffer,
following the read or input mode, and upon entry of data into the buffer prior to the write or output
mode. Formatting of data is accomplished by values stored in a stripe format table.

2.19.01 MAGNETIC UNIT RECORD FORMATS

The Magnetic Record Format specifies the starting digit location and the length of a data field within
the magnetic record input/output area. This allows variable length data fields to be moved from, or
inserted into, the input/output buffer. The values that describe these fields are contained in a Stripe
Format Table. A Stripe Format Register is used to contain the memory location of the first word of the
Stripe Format Table, and it must be loaded in the program before any fields are accessed.

OP CODE A B
LOAD STRIPE FORMAT REGISTER LSFR LABEL

The LSFR instruction provides the ability to establish the location of a Stripe Format Table in memory.
The format instruction loads the Stripe Format Register with the memory location of the label
contained in the A parameter. The Stripe Format Register establishes the base address of the Stripe
Format Table. A format table for the magnetic record is 16 words in length, and may contain up to 64
formats. More than 1 table may be used; however, when replacing a table currently in use, the base
address of the replacement table must be initialized by an LSFR (Load Stripe Format Register)
instruction.

Example:
PARAMETER
o : + OR- 2 <
OP. CODE GTH LABEL INC/REL

22)23|24 | 25| 26|27 (28| 2930131/ 32|33|34 | 35|36 |37(38(39 |40 |41{42| 43 {4445 ja6 |47
LLSIF IRJ | ?r:‘le'l\-lh |s [1 1] L1 1
| N I (N T T Y Y O N T 0 IO B A Lot 1]

Revised 3-29-71 by) :
PCN 1045481-001 - 2.19.01

SLF

MUR

OP CODE A B REMARKS

LSFR FIELDS LOAD THE STRIPE FORMAT REGISTER WITH FIELDS,
THE BASE ADDRESS OF THE STRIPE FORMAT TABLE.

2.19.02 MAGNETIC UNIT RECORD PSEUDO INSTRUCTIONS

The Pseudo instructions allow the programmer to communicate both with the assembler program and
the system. These Pseudo instructions do not directly produce machine language instructions for the
object program. They do, however, control the manner of assembly, determine the interpretation of data
input to the assembler and exert control over the system such as forms control and word-syllable
counter control.

OP CODE A B

MAGNETIC RECORD FORMAT (PSEUDO) SLF 1-349 1-15 (numeric)
1-63 (alphanumeric)

The SLF instruction is used to format the magnetic record data (read from the unit record) during a
transfer from the input area into either memory or the accumulator, or is used to format data transfer
to the output area prior to a magnetic record write instruction.

The A parameter specifies the starting digit location of a data field; the B parameter specifies the length
of that data field within the magnetic record input/output area. Signs for signed numeric data require a
digit. Alpha characters require two digits. The values entered are assembled into one syllable as part of
the Stripe Format Table which begins at the location designated by the use of the LSFR “instruction
(Load Stripe Format Register). The table may contain up to 64 field formats if more than 64 are
required, another table must be designated with LSFR. The table must begin with syllable O of the
designated word; therefore, it should be preceded with the “WORD” pseudo instruction to assure proper
assembly. ~

Example:
PARAMETER
, feD A : B |c

LABEL op. coDE |GTH | LasEL TNg?R'EL
16 {17 (18] 19|20]|21 {22 23]24 25(26127|28(29(30{31{32|33|34|35|36(37|38|39 |40 |41|42| .43 |44 (45 W46 (47
L1 MSER | PRS0 L
I | I’DI I | I T | L1 11| L1
TN N N U N YA AN NN N A A ST NI A N 11
111 1 1 11] ‘I I B | L1 1 .|
| A N N | wl¢lalvl | [N U | | S | { P4
CEELDSSMN® NV BN L 11

L BN e A L]

L] lgl‘-n“: Ll N N L 11
Ll g (=% 4 | A&y TN Lo
AR L\ \ SO T BT | Y — TR R AN A A YO L

2.19.02

WL

MUR
LABEL OP CODE A B REMARKS
LSFR FIELDS LOAD STRIPE FORMAT REGISTER
- o~ —~— 0
WORD
FIELDS SLF 1 31 i—-ACCOUNT NAME
SLF 63 4 2—CHECK COUNT
SLF 67 7 3—ACCOUNT NUMBER
SLF 74 11 4-BALANCE + SIGN
SLF 85 11 5—LOW MONTHLY BAL. + SIGN

2.19.03 MAGNETIC UNIT RECORD FLAG

Three flags (the S’ group) are included in the system with the Magnetic Record option: the Read
Error Flag (R), the Filled Sheet Flag (F), and the Write Error Flag (W).

READ ERROR FLAG (R) — The Read Error Flag is set if a read error occurs during the record-read
process. Read errors occur because of the following conditions:

1. The data encoded on the magnetic unit record has become corrupted.
2. There is a blank magnetic record in the magnetic unit record mechanism.
3. The magnetic record is prematurely removed from the mechanism.

The “R” flag may be interrogated by the Skip'and Execute instructions, but is reset by the initiation of
the next read or write instruction.

FILLED SHEET FLAG (F) — The Filled Sheet Flag is set when the Stripe Count Register is
incremented to a value of 1 greater than the contents of the Stripe Limit Register. The “F*’ flag may be
interrogated by the Skip and Execute instructions, but it is reset by the initiation of the next read or
write instruction.

WRITE ERROR FLAG (W) — The Write Error Flag is set if a write error occurs during the record-write
process. Write errors occur because of the following conditions:

1. The magnetic record in the mechanism is improperly coded.
2. There is no unit record in the mechanism.
‘3. The magnetic unit record is prematurely removed from the mechanism.

The “W” flag may be interrogated by the Skip and Execute instructions, but is reset by the initiation of
the next read or write instruction. '

2.19.04 WRITE INSTRUCTIONS

1 OP CODE
WRITE RECORD WL

The WL instruction writes the data from the Magnetic Record Buffer onto the magnetic record on the
unit record. The line number contained in the Stripe Count Register is written in the line-find-digits area
of the magnetic record.

Revised 3-29-71 by
PCN 1045481001 2.,19.04

The initial phase of execution will open the handler if closed. The data is written while the magnetic
record is being ejected.

If a write error occurs, the W (write error) flag is set. All error recovery routines are programmatic.

Example: PARAMETER
aol : = |
LABEL OP. CODE | GTH LABEL e REL
16 [17]18|19 (20|21 2223l24 25|26|27|28| 29|30|31| 32| 33|34 | 35| 36 |37| 38|39 |40 [a1| 42| 43 |44 |45 a6 |47
N I N ig1ﬁﬂ'.sl | 1 1*‘.’1\' L1 1 L1l L1 1
| VO T T l gl T | L1] Lt | |
Y T T TN I T T 1 i | L 1| L | [
M‘ﬂ“lel h\'f - | 3| [Ll O L1 1
I O B | |x| J 1 TR N N | L1 | kﬂ 1| 2 11|
I N T 1“1“! 1 1 ‘n 1 1 | 1 1 11 1 1 1 1
Lot 1 OO |y By L1
TN b L 11
I U IGP‘u | 1 ‘I I | I wﬁ | 3 It 1
I . IP A, LB L1 11| 1 1|
L Ihflcl Ll Pxey 3 = BRG wAETe
L1 TS o L O s g gy L1
L) OANe | M Ry L1
I I k19‘}“1 1] \l | L 11 11| Il 11
1 1 | 1 1 1 | | | S I | | [| [
LABEL OP CODE A #1- B C REMARKS
S%{J WRITEL GO TO WRITE RECORD
WRITE RL g 0 NON-READ AND ALIGN RECORD
EX S R 2 EX IF JAM/READ ERROR
PKA 1 ENABLE RECONSTRUCT PK
BRU -3 GO RETRY
WRITEL WL WRITE MAGNETIC RECORD
EX S w 3 EXECUTE IF WRITE ERROR
PKA 3* PKA 3—WRITE ERROR ROUTINE
TK 0 HALT FOR PK SELECTION
BRU -2 GO TO SELECT PK.

*PKA 3 — BRU WRITE

2.19.04 (Cont’d)

RL

MUR

2.19.05 READ INSTRUCTION
OP CODE A B

READ RECORD RL 0-5 0-15

The RL instruction provides the ability to read the magnetic record on a unit record either from the
console mechanism, or from the auto reader. This instruction is comprised of two operational phases.
Phase one is a numeric keyboard operation and phase two is a read and/or align operation. (There is not
a numeric phase on a read from auto reader instruction.)

The A parameter specifies the type of read and/or alignment. It also specifies the input device. The
possible entries for the A parameter are:

0 — Read and align to the line number on the magnetic record.

1 — Read and align to the line number contained in the Stripe Count Register.

2 — Read and align to posting line 1 (the first posting line).

3 — Non-read and align to the line number contained in the Stripe Count Register.
4 — Read and eject record.

5 — Read from auto reader.

Parameter O — Reads the magnetic record and loads the line number contained on the magnetic record,
automatically, incremented by one by firmware because it is the last posting line number,
into the Stripe Count Register, and aligns the ledger to thecontents of the Stripe Count
Register.

Parameter 1 — Reads the magnetic record, ignores the line-find digits, and aligns the unit record to the
number contained in the Stripe Count Register.

Parameter 2 — Reads the magnetic unit record and aligns the record to posting line 1, the first posting
line. The line-find number read from the magnetic record is incremented by one, since it
is the number of the last posting line, and loaded into the Stripe Count Register. The unit
record may be posted in its current position, or may be aligned to the contents of the
Stripe Count Register, or may be aligned after reloading the register.

Parameter 3 — This parameter provides the ability to insert either a striped or non-striped record and
align it to the number contained in the Stripe Count Register. Since this parameter does
not attempt to read the stripe, the contents of the Striped Record Buffer are not
affected.

Parameter 4 — Reads the contents of the magnetic record into the buffer and ejects the unit record.

Parameter 5 — This parameter specifies an auto reader read. the contents of the magnetic unit record are
read into the buffer. If the auto reader is turned off, or is not connected to the system,
the instruction will change control to the console mechanism and perform a Read and
Eject as described for parameter 4.

The B parameter specifies the number of numeric digits which may be entered into the Accumulator
during the numeric keyboard phase of the RL instruction. This is a standard keyboard operatlon except

that the 00,000, Decimal Fraction, RE, C and M keys are not valid.

Revised 11-8-71 by
PCN 1045481-004 2.19.05

RL

MUR

When the instruction is initiated, the numeric keyboard indicator is turned on and the number of digits
specified by the “B’ parameter may be entered. If this number is exceeded, a keyboard error results.
The use of the Reset Key will clear the Accumulator and reinitiate the instruction. PK’s may be enabled
prior to the RL instruction, so the entry may be terminated by depressing an activated PK. The entry
may also be terminated by any OCK which will also set the appropriate OCK flag. If the keyboard entry
is in error and has been terminated by an OCK, the depressing of the Ready Button will return the
system to the Ready Mode. When the system is in the Ready Mode, the use of the Reset Key will
reinitiate the RL instruction; however, any PK’s that were enabled, when the RL was originally initiated,
have been eliminated by the OCK termination.

If the numeric keyboard phase of the RL instruction is terminated by a PK, a jump to some specific
subroutine takes precedence.

If the numeric keyboard phase of the RL instruction is terminated by an OCK, the read phase is
initiated, and the system idles waiting for the insertion of a unit record. The insertion of a magnetic
unit record will execute the read phase of the instruction.

The numeric keyboard phase may also be terminated by the insertion of a magnetic record, without
depressing any OCK. It is possible to initiate the RL instruction, enter numeric digits not exceeding the
number specified by the B parameter, and insert a unit record which terminates the numeric keyboard
phase and initiates execution of the read phase. This type of termination of the keyboard phase resets
all OCK flags.

The forms handler is automatically opened during the initiation of the instruction. It is closed by the
first print instruction or a close instruction.

In the read phase, data is transferred to the unit record buffer, destroying the prior contents.

If a magnetic record from a previous operation remains in the mechanism when an RL instruction is
initiated, the “presence” sensor logic requires that it be removed and reinserted, even if it is intended as
the media for the current read operation.

If a read error occurs, either in the console mechanism or the auto reader, the R (read error) flag is set
and magnetic record is ejected. All error recovery routines are programmatic for either reader; however,
provision is made in the presence sensor logic, for the console mechanism, to allow the unit record to be
pushed from the eject position for a programmatic retry of the RL. instruction. If a read error occurs
when the auto reader has been selected, the unit record must be moved from the stacking hopper back
to the feed hopper for the programmatic retry of the RL instruction.

If a Filled Sheet is detected during the execution of an RL instruction, the unit record is automatically
ejected and the Filled Sheet Flag is set. Detection of the filled sheet condition, and error recovery, must
be programmatic.

2.19.05 (Cont’d-1)

Example 1:

OP CODE

RL
EX
PKA
BRU

EX
PKA
TK
BRU

RL

MUR

PARAMETER |

B c
4+ OR —

INC/REL)

35|36 |37|38|39 a0 |a1|a2| 43 |aa|as a6 |a7
[ql J| L1 1
L™ R
L1 | L | 1|

=) 13 [[
L1 P1 N b 3 IR
L1 L1 11
[L1t L1

= AR L 11

o

REMARKS

INDEX 4-DIGIT NUMBER AND INSERT RECORD
IF READ ERROR OR JAM
PKA 1-RECONSTRUCT ROUTINE

BRANCH BACK IF “R” FLAG IS SET AND
ATTEMPT TO READ AGAIN, UNTIL PKA 1 IS
SELECTED.

IF FILLED SHEET
PKA 2-FILLED SHEET ROUTINE
HALT FOR ENFORCED PK SELECTION

BRANCH BACK IF “F” FLAG IS SET TO ENSURE
DEPRESSION OF PKA 2.

If a Filled Sheet is detected during the posting procedure, that is, if during the posting procedure an
OCK or a PK was selected which would advance the magnetic unit record to a line below the last
available posting line (or if the Stripe Count Register is incremented to a value of 1 greater than the
contents of the Stripe Limit Register), the Filled Sheet Flag is set. (The automatic ejection of the record
can be suppressed if desired.) Detection of the filled sheet condition and error recovery, must be

programmatic.

Revised 3-29-71 by
PCN 1045481001 2.19.05 (Cont’d-2)

RL

_MUR
Example 2: ao APARAMETER - -
S LABEL OP. CODE | GTH LABEL A :
16 (17 (18| 19]20|21|22]|23|24 |25|26(27|28|29|30|31{32|33({34|35|36(37|38|39 (40 (41|42 43 |44|45 46 |47
ENETANS® | | AS | || L1
I I | | [L1 1 L1 L1 |
SRS N B A R RN T AU I L1
L1 AR | \11111 L1 | T L1
L1y Mo LS L & N
L1 B8 | SR | | L L1
Ll e | NEE de =S| Ad-A NCE
L1 1 PRS | || FerwARR —E=NE L1
Ll o PeS o sa~ Ly L1
L1l o1 ‘?hl L |1 AT | L1
Lo Sy | f@~eEN]] Lol
L 1 NS | B o b N L1
i PNSe - L1
lnnnl'l‘il@'rnn LS o | !
o Ry el L1
LABEL OP CODE A +/- B Cc REMARKS
INITAL L{SLR 4; LOAD MA;G REC LII%HT REGISTER
AR 1 ALIGN TO NEXT LINE
SK S F 1 TEST LAST LINE
BRU POST GO TO POST NEXT LINE
DOC LINE 46 IS BALANCE
DOC FORWARD LINE
POS BAL POSITION TO BALANCE
PA BALFWD - TYPE BALANCE FWD MSG
POS BALCOL : POSITION TO BALANCE COLUMN
TSBA 6 1 READ BALANCE
PNS- 4 PRINT BALANCE
SRJ FILLIN GO TO FILLED SHEET
BRU POST GO POST NEXT ENTRY

2.19.05 (Cont’d-3)

PAS

MUR

In this example, when the AR instruction advances the record to line 46 (Limit Register value +1) the
Filled Sheet Flag (F) is set and the system displays a notification message and the Balance. The program
then jumps to a filled sheet routine for heading up the next record and returns to the correct posting
routine.

2.19.06 PRINT ALPHA FROM MAGNETIC RECORD AREA INSTRUCTION
OP CODE A
PRINT ALPHA FROM MAGNETIC RECORD AREA PAS 1-64

The PAS instruction prints alpha characters from the Magnetic Record Read-In Area. The number of
characters printed, and their location in the Magnetic Record Buffer, is determined by the format
selected by the A parameter.

The PAS instruction is terminated by the printing of the number of characters specified by the selected
format, or by the presence of NUL (0,0) codes in the data field.

Example:

FELD PARAMETER

[LABEL OP. CODE t'?:l- LABEL ; TNgj‘R'EL : -

16 |17 11811920 (21 |22|23]|24(25|26|27|28{ 29 (30|31 32(33{34|35{36|37|38|39(40|41|42] 43 |44|45 [46 |47
Ly MSFR FEEeLdS| RN b L1
N AN R BN AR SN D~ B B AR A i B AT L1
I | L1] Z | [L1 [
| | Pl“lsl | 1 \I [| 11| | L1 1
| I T T N | P 1 - ! %l | I | 1 (| L1 1 { L1
| I Y I I | | R O | | - | | 11 1 L1 1
L) MBS Ll b L1

EVSSEONT | N b PN L1
L1 S\ L e® Ay L1
Ll 11 SM% 1 l‘T\l I B B A YR L1
L S oA g g VA L1
Lo SR L es o I L

Revised 3-29-71 by
PCN 1045481-001 2.19.06

~ADB SuB

MUR
LABEL OP CODE A B REMARKS
4 LSFR FIELDS LOAD STRIPE FORMAT REGISTER
PAS 1 PRINT 31 ALPHA CHARACTERS FROM THE

MAGNETIC RECORD READ-IN AREA.

WORD | | B
FIELDS SLF 1 31 1-ACCOUNT NAME
SLF 63 4 2-CHECK COUNT
SLF 67 7 3_ACCOUNT NUMBER
SLF 74 11 4-BALANCE ANDSIGN
SLF 85 11 5—-LOWMONTHLY BALANCE AND SIGN

2.19.07 ARITHMETIC INSTRUCTIONS

OP CODE A B

ADD FROM MAGNETIC RECORD AREA ADB 164 O
TO ACCUMULATOR | | o o
SUBTRACT MAGNETIC RECORD AREA SUB 164 0l

FROM ACCUMULATOR
The ADB instruction adds ‘the number of digits specified by the format, which is selected by the A
parameter, to the Accumulator. o ' ’ Y

The B parameter of the ADB instruction, if 0, specifies an unsigned data field; if 1, a signed data field.
If the field is signed, the least significant digit contains the sign (all Accumulator flags).

The SUB instruction subtracts the number of digits specified by the format, which is selected by the A
parameter, from the Accumulator. The B parameter specifications are identical to those described for
the ADB instruction above. -

Example: This example utilizes the Stripe Format Table as defined in the PAS instruction example.

PARAMETER
FIELD A 5 c
LEN- + OR -

OP. CODE | GTH | LABEL

INC/REL

22)23|24 |125|26127 (28| 29(30{31| 32| 33(34 | 35|36|37|38|39 |40 {41|42| 43 |44 |45 [46 |47

A DY PRy b e L1

I N N N N O T (OO NN N A T [[I

2.19.07

TSBA TSBM

MUR

OP CODE A B REMARKS

ADB 2 0 ADD 4 DIGITS (UNSIGNED) TO THE ACCUMULATOR.

2.19.08 TRANSFER INSTRUCTIONS

OP CODE A B
TRANSFER NUMERIC FROM MAGNETIC TSBA 1-64 0-1
AREA TO ACCUMULATOR

TRANSFER ALPHA FROM MAGNETIC TSBM 1-64

AREA TO MEMORY

The TSBA instruction transfers the number of digits specified by the format, which is selected by the A
parameter, into the Accumulator.

The B parameter of the TSBA instruction, if 0, specifies that the field is unsigned. If the B parameter is
1, the field is signed. The sign digit is contained in the least significant digit position of the data field
defined by the format. It is inserted into the sign position of the Accumulator during the transfer
process. The sign digit is considered to occupy a digit position in the field defined by the format. All
Accumulator flags (— S C M) will be transferred.

The TSBM instruction transfers the number of alpha characters, specified by the format selected by the
A parameter, into memory. An LKBR instruction must precede this instruction, since the value
contained is the memory location of the first word of the transfer.

The TSBM instruction is terminated by the transfer of the number of characters specified by the
selected format. NUL -(0,0) codes will be inserted into memory following the last character of the
transfer. If the data does not completely occupy the last word of memory addressed in the transfer
process, the balance of the word is filled with NUL (0,0) codes. If data completely fills the last word of

memory addressed in the data transfer process, the next sequential memory word is filled with NUL
(0,0) codes.

Example 1: This example utilizes the Stripe Format Table as defined in the PAS instruction example.

PARAMETER
FIELD
g : + OR . <
. GTH -
OVP CODE LABEL INC/REL

22|23|24 |25|26 (27 {28| 29 30|31 3233343536373839404142 43 |44 |45 @6 |47

TIS|$,QI | 4l | I | \ L1 L1]
| |] [I L1 L. 11| L1
OP CODE _&_ 3_ REMARKS
TSBA 4 , 1 TRANSFER 11 DIGITS (INCLUDING THE SIGN) TO THE
ACCUMULATOR.

Revised 3-29-71 by
PCN 1045481001 2.19.08

TASB TMSB LA

MUR

OP CODE A B
TRANSFER FROM ACCUMULATOR TO TASB 1-64 0-1
MAGNETIC RECORD AREA
TRANSFER ALPHA FROM MEMORY TO TMSB 1-64

MAGNETIC RECORD AREA

The TASB instruction transfers the number of digits specified by the format, which is selected by the
A parameter, from the Accumulator into a data field in the Magnetic Record Buffer. The location of the
data field within the buffer is also specified by the format.

If the B parameter of the TASB instruction is 0, the sign of the Accumulator is ignored. If the
B parameter is 1, the sign of the Accumulator is transferred into the least significant digit position of
the data field. If the sign is included, it is considered a digit transfer. (All Accumulator flags are
transferred.) :

The TMSB instruction transfers the number of alpha characters, specified by the format, which is
selected by the A parameter, from memory to a data field in the Magnetic Record Buffer. The location
of the data field within the buffer is also specified by the format. The memory location of the starting
word of the transfer is contained in the Keyboard Base Register. To specify an intended memory
location the TMSB instruction must be preceded by an LKBR instruction. The instruction is terminated

by transferring the number of characters specified by the selected format or upon recognizing an end of
alpha code.

Example 2: This example utilizes the Stripe Format Table as described in the PAS instruction example.

PARAMETER
FIELD
A) c
LEN- + OR -
H
OP. CODE Gf LABEL INC/REL

22123|24 |25|26]27|28] 29|30|31} 32} 33{34 | 35|36 |37|38|39 |40.|141|42| 43 |44|45 |46 |47

TASR, | S TR A VIR L1
[| (I I T [S I L1
OP CODE A_ _B_ REMARKS
TASB 5 1 TRANSFER 11 DIGITS (INCLUDING THE SIGN) FROM
: THE ACCUMULATOR TO THE MAGNETIC RECORD
BUFFER.

2.19.09 UNIT RECORD ALIGNMENT INSTRUCTIONS

The Unit Record Alignment instructions provide the ability to control record movement and alignment
in the console mechanism.

OP CODE
RECORD ALIGN ' LA

The record align instruction provides the ability to move the handling mechanism from its current
position to the line number contained in the Stripe Count Register. The Record Alignment Errors,
“jam” indications, and error recovery procedures are discussed under subject 2.19.10.

2.19.09

EL

MUR
Example 1:
PARAMETER
FIELD
LEn- . + OR — > <
OP. CODE GTH LABEL INC/REL

22|23|24 |25| 26|27 (28| 29(30|31{ 32| 33|34 |35|36(37|38|39 |40 |41|42| 43 |44 |45 46 |47

WSCR | AS, |]

\P\l [| I I 11 N [
N 1O N W | [T O T U N SO U [[T .
OP CODE é B REMARKS
LSCR 45 LOAD STRIPE COUNT REGISTER
LA ALIGN RECORD TO LINE 45
OP CODE
EJECT RECORD EL

The EL instruction ejects the unit record that is in the handling mechanism. This is the only operation
performed. The Magnetic Record Buffer is not affected. See subject 2.19.10 for error conditions and
recovery procedures. If the handler is closed, it is open for the execution of the EL instruction.

Example 2:

PARAMETER
FIELD
o A S B c
OP. CODE GTH LABEL INC/REL
22123(24 |25|2627(28{ 2930|131/ 32| 33|34 |35|36|37|38|39 (40 |41|42] 43 |44|45 46 |47
€ w Ll Lo L L1
[N T B B Loy L1
OP CODE A B REMARKS
EL EJECT RECORD

Revised 11-8-71 by s
PCN 1045481004 2.19.09 (Cont’d-1)

RET LSCR

-~ MUR

OP CODE
RETRACT RECORD RET

The magnetic unit record handler travels down and to the rear of the console until a fixed limit is
reached. The RET instruction moves the handler to this fixed limit, with the handler open, to permit
the insertion and manual alignment of a record or form. See subject 2.19.10 for error conditions and
recovery procedures. The handler will remain retracted until an EL, LA, or RL instruction moves it back
to its forward limit. If the handler is in the retracted position when the power is turned on, the
power-on routine will move it to the forward position.

Example 3:
PARAMETER
i‘g—_" A B c
OP. CODE | GTH LABEL Tng?n—;l
22(23|24 (25| 26 |27|28| 20 |30{31| 32| 33(34 | 35|36 |37| 38| 39 |a0 |a1] 42| 43 |44 |as las |27
RET | T L L1 L1
I T R I S O 1N U O N T A O ol T
OP CODE A_ E REMARKS N
RET RETRACT RECORD MECHANISM
| OP CODE A
LOAD STRIPE COUNT REGISTER LSCR 1-46

The LSCR instruction loads the Stripe Count Register with the value stored in the “A” parameter. The

“A” parameter value may vary from 1 to 46 (46 is maximum number of posting lines on an 117
Magnetic Record).

The Stripe Count Register and the appropriate Forms Count Register are incremented by the AR, ALR,
and ARTO instruction if a Magnetic Record is in handler. If a Magnetlc Record is not present, only the
appropriate Forms Count Register is incremented.

The Stripe Count Register must be reset to its initial value by the programmer when a filled sheet
condition is detected. If the Stripe Count Register is not reset it will continue being bumped by every
AR, ALR, and ARTO instruction until it reaches a value of 255. It is then reset to zero. The filled sheet

flag is set only when the stripe count register is incremented one beyond the stripe limit register. At all
other times the filled sheet ﬂag is reset.

When a Write Magnetic Record (WL) 1nstruct10n is executed, the contents of the Stnpe Count Register
are written on the magnetic record in the area reserved for the line-find number, ‘

In a Read and Align operation the contents of the Line-Find number on the magnetic record are
incremented by one and stored in the Stripe Count Register.

2.19.09 (Cont’d-2)

LSCR LSLR

MUR
Example 4:
PARAMETER.
Tg—o A B c
+ OR —
OP. CODE GTH LABEL INC/REL

22123]24 1252627 |28]29(30|31]32|33{34|35|36(37|38}|39
LW | N

[T T Y T T N N A B B o |

OPCODE A

B REMARKS
LSCR 1 LOAD THE STRIPE COUNT REGISTER WITH
A VALUE OF 1.
OF CODE A
LOAD STRIPE COUNT REGISTER LSCR 1-46

The LSLR instruction loads the Stripe Limit Register with the value contained in the A parameter.
Example 5:

PARAMETER
FIELD)
FIELD A _) c
OP. CODE | GTH - LABEL TN(??REL
22| 23|24 |25| 26 |27|28| 20|30 31| 32{ 33|34 | 35 {36 {37| 38|39 |a0 |4 1] 42| 43 |aa|as a6 |47
SR | |AS Ly L1
[I I [R T PO I (N O T N A R O i
oP CODE A B REMARKS
LSLR 45

LOAD THE STRIPE LIMIT REGISTER WITH A
VALUE OF 45.

2.19.10 RECORD ALIGNMENT ERRORS AND FLAG INDICATIONS

Record Alignment Errors occur because of the following conditions:

1. The “gripper” jaws in the handler mechanism are not moving or are not at proper speed when

the handler has been activated.

When the total number of lines, from the line-find operation, plus the number of program-

matic line advances, does not equal the number of lines the form moves when it travels back
to the limit to prepare for an eject or write operation.

If either of the above conditions occur, a “jam” condition is probable. A jam can also be caused by a
torn or accordioned form. The jam condition will result in the following indications:

Revised 3-29-71 by
PCN 1045481-001 2.19.10

LSCR LSLR

MUR

1. The execution of the instruction in process when the alignment error occurred will not be
terminated.

2. PKA 1 is enabled. Its indicator and the Error indicator are turned on. All other PK’s are
disabled. All keyboard indicators, other than PKA 1 and the Error indicator are turned off.
The alarm is sounded.

Error recovery consists of clearing the alignment condition or record jam by pressing PKA 1 and by
removing the unit record from the handler. The depression of PKA 1 clears the error condition,
terminates the execution of the instruction in process when the error occurred, turns off the PKA 1
indicator and the Error indicator, sets both the R and W flags, and returns to sequential execution of
the program.

It is essential since the instruction in process when the error occurred was terminated, that the Record
Align (AL), Eject Record (EL), Write Record (WL), Read Record (RL), and the line advance
instructions (AR, ALR, ARTO) each are followed by flag interrogation instructions to allow program-
matic recovery from an error condition.

Example:
PARAMETER
OP. CODE Eng? LABEL : [- :
222324:252627%2&31323334355373839404142 43 44145 647‘
SSE® | N L1
O B e L1
=2 ST T TR I SSNENEN . BYETEN - § AR
e A Lo /IS | \I [L1 | L1 1
/R, Cloce e L1
OPCODE A +- B C REMARKS
LSCR 1 LOAD STRIPE COUNT REGISTER
RL 3 0] NON-READ AND ALIGN RECORD
EX S R 2 IF READ ERROR OR JAM
PKA 1 PKA 1-RECONSTRUCT ROUTINE
BRU -3 BRANCH BACK IF “R” FLAG IS SET AND

ATTEMPT TO READ AGAIN, UNTIL PKA 1
IS SELECTED.

2.19.10 (Cont’d)

2.20 — MESSAGE UNPACKING ROUTINE
2.20.01 GENERAL DESCRIPTION

The message unpacking microstring is used for unpacking numeric information after it has been
transferred from the Data Communications buffer to the accumulator. The use of this macro, as
opposed to a user written routine to accomplish the same results, will on some applications result in a
considerable reduction in the time it takes for the TC to process the data. The message unpack macro
should be used when the following conditions exist: The number and types of data elements in the
message are variable; and like elements in the message are to be grouped for printing, totaling or storing.
Up to 32 different numeric elements may be stored. :

To use this Macro the Programmer must set up a Position Table and a Storage Area. The element to be
unpacked is programmatically transferred to the accumulator from the receive buffer. The last two digits
in the accumulator make up the data element code that directs the microstring to a position table which
in turn determines the particular word of the storage area to transfer the item to.

2.20.02 POSITION TABLE

The position table must occupy words 11-14. Its function is to determine whether or not the contents
of the accumulator will be transferred to the storage area and if so, into which word. Each word of the
table contains 8 hexadecimal indicator codes, ending in digit positions 0, 2, 4, 6, 8, 10, 12, 14
respectively.

DigitPosition | 15 14 |13 12 |11 10 | 9
Word II | E E|F Flo 6|0 Alo 410

817 6|5 4|3 2
3lo 7]l0 2

In the position table, each indicator code is referenced by its least significant digit position. For
instance, the code in digit position 4 and 5 is referenced by a 4; the code in digits 2 and 3 is referenced
by the 2; etc. There are three different types of codes:

1. A code that indicates which word of the storage area the data is to be transferred to. In the
diagram, indicator code 6 (the two digit values in digit position 6 and 7) would cause the data
to be transferred to word 4 of the storage area. Indicator code 8 would transfer the data to
word 10 of the storage area.

2. FF is a code that indicates the numeric data transmitted to the TC is invalid. The Special (S)
flag of the accumulator is set by this code. FF would be most useful when first developing
and debugging the on-line system.

3. A code of EE indicates that the data in the accumulator is to be ignored. If the central processor
sends a fixed format message to all remotes, some of the fields in that message may pertain to
only certain remotes and should be ignored by all others. In this type situation, the EE code
proves to be most helpful.

2.20.03 DATA ELEMENT CODES

After the data element is transferred to the accumulator from the buffer, the last two digits, which
make up the data element code supplied by the data center, are in accumulator digit positions 1 and 0.
The hexadecimal value in digit position 1 refers to a particular position table word i.e., actual position

Revised 3-29-71 by
PCN 1045481-001 2.20.03

table words 11, 12, 13 and 14 are referenced by numbers 0, 1, 2 and 3 respectively. The hexadecimal
value in digit position 0 of the accumulator indicates which code of the position table word is to be
accessed. For example, to reference indicator code 2 in word 11 of the position table, a data element
code of 02 is used.

2.20.04 STORAGE AREA

The storage area starts in word 15. Word 1 of the storage area would be word 15; 2, word 16, etc. The
number of areas used in the program is determined by the programmer, up to a maximum of 32 areas
or words.

2.20.05 ERROR CONDITIONS

If the microstring detects an error the data will not be stored and the accumulator S flag will be set.
The following will result in an error condition:

1. The word designation given in accumulator digit position 1 for the position table is other than
0,1, 2or 3.
2. The digit designation given in accumulator digit position O of the word in the position table is
other than 0, 2, 4, 6, 8, A, C, or E.
3. An illegal indicator code in the position table. The only valid entries are FF, EE and
hexadecimal values 1 to 20.
2.20.06 DELIMITER

The delimiter is a character transmitted to the TC which is used to determine the status of the message
being transmitted. For example, DC1 may indicate the end of a print line; DC2 may indicate the end of
a buffer but not the end of a message; ETX is used to indicate the end of a message. Each delimiter will
set its appropriate K or Y flags.

2.20.07 PROGRAMING REQUIREMENTS

The instruction B40B accesses the unpacking routine. The data element is transferred to the accumulator
from the buffer by the application program.

Also, the K and Y flags must be reset by the programmer for each data element, since delimiters which
set the flags are used to indicate when to stop unpacking and begin to print the message. The following
group of instructions demonstrate how the message unpacking routine is used.

SYM opP A B Cc

Loc. CODE PAR PAR PAR REMARKS
NEWFLD RST K 1 RESET K FLAGS BEFORE MOVING DATA TO THE
ACCUMULATOR.

TRBA 15

CODE B40B ACCESS UNPACKING ROUTINE.

EX A S 1 CHECK FOR INVALID DATA ELEMENT CODE.

BRU ERROR

SK K 1 1 IFK1IS SET UNPACKING IS FINISHED.

BRU NEWFLD NOT SET SO CONTINUE UNPACKING.

(PRINT ROUTINES)

When printing from the storage area, it is necessary to examine each word to determine whether or not
it contains a numeric value. If an area does contain numeric information, it should be cleared by the

programmer after printing.

2.20.04

2.21 — TRANSACTION CODE TRANSLATOR
2.21.01 GENERAL DESCRIPTION

The Transaction Code Translator is a Firmware Add-On Micro string used for interpreting typewriter
keyboard depressions. As a result, a 2-character abbreviation is stored in memory for printing and a
transaction code is stored in a designated location of the Accumulator for transmission to the Data
Center. The 2-character abbreviation and the transaction code and its location in the accumulator are
determined by a table which is stored in main memory. The Translation table can be of any length;

however, it must be located entirely within block 0 (words 0-255).

The Transaction Code Transtator also provides for the automatic insertion of a predetermined (modular)
2-character abbreviation and transaction code when a key is not depressed in Row 2 of the typewriter
keyboard.

The Transaction Code Translator is primarily designed for use with the TC 700 in a financial application
environment. However, versions of the Transaction Code Translator are available which are compatible
with most GP 300 firmware sets.

2.21.02 TRANSLATION TABLE FORMAT:

a. Work Area
The First five words of the table are reserved as a work area and must be located entirely
within a Track in Block O (words 0-31 of a track). The Five word work area is used in the
following manner:

Word 0: The First word of the table must contain the keyboard codes before executing the
Translation instruction. (Maximum of 4 codes, one for each typewriter keyboard
TOW.)

Words 1-4: After executing the instruction the 2-character abbreviation for the key depressed is
stored in the 4 high order positions of words 1-4 of the 5-word work area. The
exact location of the abbreviation is determined by a code stored in the Translation
Table entry for the key depressed. (See factor 4 below).

One key from each row can be translated each time the instruction is executed;
Multiple key depressions in the same row will cause an error condition.

b. Translation Area:
The Translation area of the table must immediately follow the work area and it can be of any
length depending on the number of key codes being translated. Each word in the translation
area contains the factors necessary for translating 2 keyboard characters. These factors are as
follows:

1. 2-digit hexadecimal USASCII value for key indexed.
2. 4-digit hexadecimal USASCII value of the 2-character abbreviation to be printed.

3. One-digit hexadecimal value (0-F) of transaction code to be stored in the accumu-
lator for later transmission to the data center.

4, One-digit decimal value (0-3) representing the Accumulator digit position where the
transaction code is to be stored and the location in the work area where the

Revised 3-29-71 by
PCN 1045481-001 2.21.02

TCT

abbreviation codes are stored. The location of the abbreviation code in the work area can be determined
by the following chart.

FACTOR 4 ACCUMULATION ABBREVIATION
VALUE DIGIT POSITION TABLE LOCATION
0 0 1
1 1 2
2 2 3
3 3 4

The above factors are located within a table word in the following manner:

Character 1 Character 2
Digit Position 15 14 13 12 11 10 9 8 7.6 5 4 3 2 1 0
Factor No. 2 1 4 3 2 1 4 3
(See Above)
Example:
Character 1 Character 2
Digit Positions 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Table Entry 4 5 4 8 4 s L 2 5 3 5 4 5 7 2 3
Value E H E 1 2 S T w 2 3
Factor No. 2 1 4 3 2 1 4 3
Character 1 Character 2
Key Depressed E W
Stored For Print EH ’ ST
Transaction Code 2

Digit Position in Accum.

The last entry in the translation table must be 0000FF00. Upon recognizing an FF code, the
search routine halts and the results can be processed by the user program.

The microstring searches the table sequentially beginning with the character stored in digit
position 15-8 of the first table entry following the work area. The table entries can be in any
order within the table. However, since the microstring searches sequentially, the most
frequently used entries should be at the beginning of the table.

2.21.03 AUTOMATIC CODES

The Transaction Code Translator instruction will automatically insert an SV abbreviation into word 4 of
the work area and a transaction code of 1 into Accumulator digit position 3, when a typewriter key in
row 2 is not depressed. Also, when a typewriter key in row 4 is not depressed a transaction code of 9 is
2.21.03

TCT

stored in Accumulator digit position 1. An automatic abbreviation is not provided. These automatic
abbreviations and the transaction codes can be modified as required by the application.

The values which determine what abbreviation and/or transaction codes are to be generated in the
absence of a key depression in Row 2 and/or Row 4 (Transaction Code only), are stored within the
instruction microstring. Hence, care must be taken to ensure that only the desired values in the
microstring are modified.

Since the instruction microstring will be located in various tracks depending on which main memory
firmware set is implemented, all memory locations are relative to the base word of the track (first word
of the track) in which the microstring is stored. The microstring is stored in the highest available track
provided by the main memory firmware set being utilized.

2.21.04 CODE MODIFICATION

Modification of the various ‘‘automatic” codes is accomplished by changing the desired codes using the
Memory Modify utility and then punching out the modified firmware using one of the Memory Punch
utility routines.

The bit configuration of the desired abbreviation characters to be printed is determined by each
character’s row (upper bits) and column (lower bits) location in the USASCII chart. The abbreviation
characters are stored in memory in the following manner. (Addresses are relative to the base address of
the microstring).

1st Print Character
1. The lower 4 bits of the first print character are stored in digit position 6 of word 3.

2. The upper 4 bits of the first print characters are stored in digit position 14 of word 3.

2nd Print Character
1. The lower 4 bits of the second print character are stored in digit position 10 of word 5.

2. The upper 4 bits of the second print character are stored in digit position 2 of word 6.

The transaction code which is stored in the Accumulator when a key in row 2 is not depressed is
located in digit position 6 of word 24.

The transaction code which is stored in the accumulator when a key in row 4 is not depressed is located
in digit position 10 of word 31.

Example: The Firmware configuration used is:

Main Memory 2-1021-001 (384 words of user memory), CDC-CDV Firmware Add-On.
Using this configuration, the transaction code translator microstring would be in words
320-351 (Block 1, Track 2). The base word of the microstring is word 320. (CDC-CDV
would occupy words 352 to 383).

The automatic abbreviation to be printed is DR and a transaction code of 4 is to be inserted
in the Accumulator. The keyboard row 4 automatic transaction code is to remain the same

).

Revised 3-29-71 by
PCN 1045481-001 2.21.04

TCT

USASCII Column and Row locations are:
D=44 R =54,

The upper and lower digits of the first print character (D) are stored in word 3 digit position
14 & 6 respectfully of the microstring. The actual memory location is word 323. (Base word
is 320 + 3 = 323).

The printout of the TC using Memory Modify would be as follows:

323 2(5]A2 4FE?2 F|3]|E2 CC38 14 4A24FE2F4
2141A2 4FE?2 F [4|E2 CC38
The lower digit (4) of the second print character (R) is located in word 5 digit position 10
(word 325)
Printout:
325 40E2 816 |E2 AAl6 9F5B 10 4
40E2 8|4|E2 AAl6 9F5B
The upper digit (5) of the second print character (R) is located in word 6 digit position 2.
(word 326)
Printout:
326 TF14 A140 B1E1 D|5]|A2 2 5
TF 14 Al40 B1E1 D|5]|A2

The Row 2 transaction code is located in word 24 digit position 6. (word 344)

Printout:

344 235B 5042 3[1|E2 9751 6 4
235B 5042 3[4|E2 9751
When the modification of the microstring is complete, the new microstring is punched out
using one of the Memory Punch utility routines. It is recommended that all firmware
extensions which are used in an installation be incorporated on one tape with the main

memory firmware set. In the above example this would be accomplished by punching words
320-575 and words 608-1023,

2.21.05 ERROR CONDITIONS

The Transaction Code Translator instruction will detect the following two types of errors.

1. No Table entry for the keyboard character depressed.

2. Multiple depressions on the same typewriter keyboard row.
When one of the above errors is detected, the instruction will set all of the accumulator flags.

2.21.05

TCT

2.21.06 MACHINE CODE FOR TRANSACTION CODE TRANSLATION INSTRUCTION

This instruction is executed by using a machine language code of 104A. This machine language code is
incorporated into the object program by use of a CODE psuedo instruction with an A parameter value

of 104A.

2.21.07 WORD 576

Word 576 of the utility track is used as a link address between the MACRO instruction (104A) and the
microstring. Since the location of the microstring is variable, the content of word 576 will also vary
depending on the location of the microstring. The content of word 576 for the various possible
locations of the microstring can be determined by the following chart.

MICROSTRING LOCATION CONTENTS OF WORD

BLOCK TRACK 576
1 0 F244 0000 31F1 0000
1 1 F344 0000 31F1 0000
1 2 F254 0000 31F1 0000
1 3 F354 0000 31F1 0000
1 4 F264 0000 31F1 0000
1 5 F364 0000 31F1 0000
1 6 F274 0000 31F1 0000
1 7 F374 0000 31F1 0000

2.21.08 USER PROGRAM REQUIREMENTS

1.

Set word 576 during the initialize portion of the user program.

In addition to one track in user memory, the Transaction Code Translator also uses Syllables 1
and 3 of Word 576. Since various Utility Routines also use word 576, the User Program
should set word 576 during the initialize phase of the program.

Clear words 1 and 3 of the work area. These words must be cleared prior to executing the
microstring to ensure that the abbreviation codes from the previous entry are not printed
twice. Words 2 and 4 of the table are cleared automatically.

Set the keyboard base register (LKBR) to the first word of the work area and enter the
keyboard codes to be translated into the first word of the work area using the EAM macro
instruction.

Execute the Translation Instructions: (Code 104A).

NOTE: The Code 104A instruction MUST be executed immediately after the EAM
instruction.

Test for an error condtion (all Accumulator flags set) immediately after executing the

instruction.

Set the LKBR to the Send Buffer or Work area. Revised 3-29-71 by
PCN 1045481-001 2.21.08

TCT

7. Transfer the‘ transaétion codes stored in Accumulator into the send buffer or send record area.
8. Print the abbreviation codes stored in words 1-4 of the work area.

2.21.09 PROGRAMING EXAMPLE

Transaction Code Translator could be incorporated into the user Program and utilized in the following
manner.

LABEL INST A B REMARKS
INITIL CLM MCHTOT CLR DAILY TOTAL
CLM OFLNTT CLR OFF-LINE TOTAL
LPNR PMASKS LD PRT MASK REGISTER
LPKR PKEYS LD PK REGISTER
BRU START
NOTE THE FOLLOWING TABLE IS USED BY THE
NOTE MICRO-STRING TO TRANSLATE KEYBOARD
NOTE ' ENTRIES.
TABLE REG 5 5 WORD WORK AREA
CODE 4134 KB=A, TRANS CODE =4 COL 3
CODE 4D4F | ABBV = MO
CODE 3101 KB =1, TRANS CODE =1 COL 0
CODE 2031 ABBV =1
CODE 5527 KB = U, TRANS CODE =7 COL 2
CODE 5452 ABBV =TR
CODE 4637 KB = F, TRANS CODE =7 COL 3
CODE 5353 ABBV =S8

CODE 0000
CODE 0000

CODE FFO00 END OF
CODE 0000 TABLE

START PKA 13 ENABLE PK KEYS

TRANS LKBR TABLE SET BASE REG POINTER TO TABLE
CLM TABLE +1 CLEAR WORK WORD 1
CLM TABLE +3 CLEAR WORK WORD 3
EAM 4 ENTER KEYBOARD CODES
CODE 104A TRANSLATE CODES
EXE A -SCM2 TEST FOR INVALID ENTRY
ALARM SIGNAL OPERATOR
RST A -SCM2

2.21.09

TCT

LABEL INST A B REMARKS

BRU TRANS BRANCH TO RE ENTER
LKBR SENBUF SET SCP TO SENBUF
TRAB 3 0 STORE TRANSACTION CODE
AL 1 ALIGN FOR M
POS 10 POSITION PRINTER
PA TABLE +1 PRINT ABBREVIATION 1
POS 14 POSITION PRINTER
PA TABLE +2 PRINT ABBV 2
POS 18 POSITION PRINTER
PA TABLE +3 PRINT ABBV 3
POS 22 POSITION PRINTER
PA TABLE +4 PRINT ABBV 4
MCHTOT REG 1 DAILY TOTAL
OFLNTT REG | OFF LINE TOTAL
PKEYS BRU RECV PK1-TO PROCESS MSG
NOP
BRU SEND TO TRANSMIT MSG

Revised 3-29-71by - -
PCN 1045481-001 2.21.09 (Cont’d)

SECTION
SYMBOLIC PROGRAMING PROCEDURES

PROGRAM DEFINITION

A program definition is a set of specifications used for the efficient development of the application
software needed for a machine-oriented data processing system. The program definition procedure is:

1. Systems Analysis.
Defining the output.
Defining the processing.
Defining the input.

Evaluating the system and,

S v AW

Defining for programing — or — reanalyzing and repeating the procedure.

When the program definition procedure is used to design an acceptable system, the system specifications
are recorded in the form of:

1. A general systems flow chart of the complete data processing system.

2. Completed Program Definition Worksheets, MKTG 2366, illustrating the required output from
each program in the system.

3. Complete Program Definition Charts, MKTG 2402, explaining the input, processing, and
output requirements of each program in the system.

The necessary applicational software will then be developed from this information.
PROGRAM WRITING

After the program definition specifications are completed and given to the programmer, the process of
writing the program begins.

The first step the programmer should take, is to thoroughly analyze the program definition
specifications. This will serve two basic purposes. First, it will enable the programmer to ask questions
about any area or steps in the definition, that are unclear. This can save later reprograming on steps the
programmer incorrectly understood. Second, it will give the programmer an opportunity to develop a
general idea of what the program will contain when completed, how much memory it is going to take
(this evaluation becomes more accurate with experience) and to look for possible use of any routines,
already written, which can be used in the program.

After the definition is thoroughly analyzed and all questions answered, the writing of symbolic
instruction begins.

Every program generally has three separate sections, initialize, main body, and definition section. Coding
forms should be set aside for each section. This enables the programmer to add pages to any section
without interrupting the order.

An explanation of each section using the programing example in Section 4 follows.

Revised 3-29-71 by
PCN 1045481-001 3-1

The initialize portion of a program is generally the shortest portion of a program (in terms of numbers
of instructions). In its narrowest sense, this portion will be executed before an NK or TK instruction,
halts the internal program execution for the first operator action. In the example Seq. No.’s 20, 30, 40
loads the base register for the PK table, the print mask table, and the line limit register for the form
being used in the machine. Even though its instructions are few in number, without them the
programmer could not control the program. For example program execution stops at Seq. 90, if the
operator selected PKA 5 without having the LPKR instruction at Seq. No. 20, the base register for the
PK Table would contain the word number for the LPKR instruction of the previous program in the
machine. Therefore selecting PKA 5 would not have caused the execution of the BRU INCOST
instruction.

A broader description of the initialize section would be to include routines in the program which are
not part of the main program. Seq. steps 1 through 5 on the Program Definition Chart in Section 4
could be included under this broader definition. These sequence steps are not concerned with the
mainline function, i.e., creating the invoice, but rather prepare the system for invoice writing.

The second section of a program, the main body, is the area of the program which accomplishes the
task assigned to the program. In the programing example, sequence steps 6 through 32, are concerned
with creating an invoice. Each sequence step should be completely programed before going to the next.
In the example, sequence steps 8 through 14, are accomplished by Sequence Numbers 430 to 570. Since
these sequence steps are concerned with the ribbon line on the invoice, the programmer has labeled
Sequence No. 430 RIBBON. The use of descriptive labels gives the program added readability. This
enables others who read the program documentation to follow the logic with a better understanding.
Using the REMARKS field on each instruction to explain the purpose of the instruction also increases
the readability of a program. These comments in the REMARKS field also help the programmer when
debugging the program.

While programing the sequence steps from the Program Definition Chart, the programmer will generally
make use of three techniques, straight line, loops, and subroutines. The straight line method is exactly as
its name implies, it is a series of instructions, without any branches which solves the given problem.
Sequence numbers 110 through 230 are an example of this method. This sequence accomplishes the task
of storing the page number, positioning the printer, printing the customer name, storing it, advancing
the form, etc., without the use of loops or subroutines. The looping technique uses a counter to execute
the same series of instructions a desired number of times. The routine which clears 11 words of memory
labeled CLRMEN uses the looping technique. An index register value is incremented each time the loop
is executed, up to a maximum number of times, when this limit is reached the program branches out of
the loop. The subroutine technique is like the straight line method except that in the series of
instructions we branch out to execute another series of instructions and when finished with these the
program returns to the instruction following where we left the series. This allows writing a routine,
which is to be executed a number of times during a program, only once; and going to it any time and
returning to where it branched from. An example is sequence number 560 where we leave the straight
line to print the date and invoice number and when finished, return to sequence number 570.

The last section of the program, the define section, is actually written along with the initialize and main
body. This area contains all PK Tables, Print Masks, storage regions, numeric constants, alpha constants,
etc. An example of how this section is completed would be to look at Sequence Number 30. The LPNR
instruction has in its A parameter the label MASKTB. Right after this instruction is written, the
programmer codes the first MASK instruction with the label MASKTB in the definition section. This
process is repeated for all storage locations, numeric constants, alpha descriptions, etc., as the program is

written.

3-2

After the program is written, the last step is to assemble it and debug the program when it is loaded in
the machine.

PROGRAM DEBUGGING

Generally, program debugging is completed in two steps. The first step is to correct Assembler errors,
these are invalid conditions which the Assembler finds in the symbolic instructions, these errors are
corrected by removing the invalid conditions in the symbolic instructions. The second step is to find the
logic errors, i.e., areas of the program which are not giving the desired results.

When the Assembler detects an error in the source program, the invalid instruction is replaced by a
NO-OP instruction. Thus the object program contains the correct instructions and the Assembler inserted
NO-OP’s. It is possible to load the object program and replace the NO-OP’s with the correct machine
language code for the desired instruction, through the use of the Memory Modify service routine.

Logic errors can be found by analyzing the sequence of instructions or by using one of three available
Trace service routines. When a logic error is found, its proposed solution should be tested before
re-assembly. This is accomplished by inserting the appropriate machine language codes for the symbolics
in place of the incorrect codes. If the new solution cannot be placed within the area of the incorrect
codes, a branching out of that area to an area not used by the program (usually starting at the word
location following the last word of the program) placing the rest of codes and then branching back into
the program at the appropriate place. If the new solution is correct, then it can be written in symbolics
and inserted in the program before re-assembly. Once debugging is completed, the corrected program can
be obtained, by the Punch from Memory service routine.

As mentioned before, during debugging the Trace routines will sometimes be used. In general they are
useful for (1) reading the program execution sequence (especially for conditional branches), (2) to check
when the flags are being set or reset, (3) to read the values of the index registers (especially when used
as counters in loops), (4)to read the value in the Accumulator (to debug shift and arithmetic
instructions).

DATA COMM DEBUGGING

Debugging a TC 500 on-line program can be expensive if a central processor remains on demand while
the TC 500 operator is detecting and correcting errors on the TC. It is possible to debug off-line by
using the memory modify utility routine, especially the selective start feature.

The first word of the receive buffer in Data Comm Memory is located in word 1247. The second word
is 1216 and the remaining words follow serially to word 1246. Knowing this, it is possible to access
these words using memory modify and index from the keyboard the USASCII code representation of
the characters of any message the operator is anticipating, thus doing the work of data comm memory
by placing the message in the receive buffer. Then, using the selective start feature of memory modify,
access the word and syllable of the instruction immediately after the receive flag (R2) has been
interrogated and determined to be set. The object program will begin executing from that word and
syllable. This routine allows the operator to proceed as if a message had been received from the central
processor and allows testing of those parts of the object program that unpack messages.

Likewise, the transmission of messages can be tested off-line. The first word of the transmit buffer is
located in word 1249 and the next 30 words proceed serially to word 1279. The last word is 1248.
After programmatically packing a message into the transmit buffer, the operator should depress the

Revised 3-29-71 by
PCN 1045481-001 3-3

program halt bugton after the transmit ready flag (R3) is set (evidenced by the transmit ready light
being on) and then use memory modify to read these words and determine if the message was assembled
in the buffer correctly.

The word locations of transmit or receive record work areas are determined by the Assembler and would

be accessed accordingly.

MODIFICATIONS NECESSARY TO THIS MANUAL FOR PROGRAMING
THE 40 TRACK STYLE SERIES L

Previously presented information in this manual applies only to 32 Track Styles of the Series L except

for Assembler VI which utilizes the 40 track styles of the Series L. This section details all the additional

information needed to utilize this assembler manual when programing the Extended Memory Styles.
Styles.

An object program which was assembled for a 32 track system will operate on a 40 track system using
40 track firmware, except for the REM instruction. An object program which was assembled for a 40
track system will operate only on a 40 track system.

GP 300 OPERATION CODE MODIFICATIONS

Forty track systems allow the use of any GP 300 instruction explained in this manual except for the

Data Communications Message Handling instructions. All user memory may contain program data or any
other desired data. However, certain instructions do not permit referencing memory locations above
word 511. These instructions are listed in Table 1 below:

INSTRUCTIONS
ADA
CLM

"CPA
DIV
MUL

MULR
SUA

XA

Table 1

Instructions which only can reference words 0 to 511 of user memory

It is essential that the instructions contained in Table 1 be borne in mind when moving or accumulating
data in memory. Generally, the machine language codes are the same for either 32 track or 40 track
systems. Examine Appendix B, for the machine language codes of both 32 track and 40 track systems.

PROGRAMING CONSIDERATIONS

Due to the fact that some instructions cannot reference user memory locations above word 511, it is
necessary that all. constant data and working data be assembled 1n memory locations below word 511.
The remaining memory is then used for program instructions.

3-4

SYMBOLIC
PROGRAMING PROCEDURES

The following example illustrates a generally used programing principle

Example:

The three rectangles above illustrate a technique to have the working and storage area of the program
assembled below memory word 511.

Rectangle 1 represents word 0. The first three syllables (0, 1, 2) contain programing. Syllable 4 contains
a branch around rectangle 2 to rectangle 3.

Rectangle 2 contains the working-storage area.
Rectangle 3 contains further programing as required for data ménipulation.

The following sample program illustrates the technique described above.

LABEL OP CODE _&_ __B_ L
LLLR 35
LRLR 15
LPKR PKEYS
Bl?U BEGIN

TOTALS REG 200

ZERO NUM 0o

STORE REG 150

" BEGIN NK 5 1

With the expanded memory size it may become necessary to clear a memory area larger than 255 words.

This cannot be accomplished, easily, in a single loop since Index Registers have a maximum value of
255.

Revised 3-29-71 by
PCN 1045481-001 3-5

SYMBOLIC
PROGRAMING PROCEDURES

The following technique is recommended:

 OP CODE A +/— INCREMENT B ‘ c
LIR 1 ' 0
MOD 1
CLM TOTAL
MOD 1
CLM TOTAL + 200 ¢ ‘
IIR 1 199
SK T | 1
BRU) ‘

The above programing clears 400 words of memory beginning with the word number referenced by
TOTAL.

Example:

This example illustrates a method to reference an array of memory larger than 255 words. Controlling
such an array of memory must be accomplished by examining the indexing value and changing the base
address for values over 255.

Problem: Accumulate sales by 500 product codes (in words 1 to 500).

The programing segment below utilizes the fact that Index Registers have a cap’aCity of 255. When a
value transferred to an Index Register exceeds 255, only the difference between that value and 256
remains in the Index Register. *

LABEL OP CODE A B C_ REMARKS
SRJ CLEAR
LPNR PMASKS
BRU BEGIN
TOTAL 1 REG 255
TOTAL 2 REG 245
BEGIN AL 1
- POS 10
- NK 3 0 Enter Product Code
SKL 2 5 2 Valid Code 0-499
ALARM
BRU -3
TRM CODE : ‘ Store Valid Code
PN 2 0 Print Code
POS 16 ‘ ;)
NKR ‘ 8 ‘ 0 : Enter Amount
PNS— 7 : 1 Print Amount
TRM AMOUNT ‘ Store Amount
TRA CODE ‘

TAIR]
3-6 :

LABEL

OP CODE

SUA
EX

TRA
MOD
ADM

BRU
TAIR
TRA
MOD
ADM
BRU

A

LIMIT

A
AMOUNT
1

TOTAL 1

BEGIN

1
AMOUNT
1

TOTAL 2
BEGIN

SYMBOLIC
PROGRAMING PROCEDURES

REMARKS
Compare Code to 256

Under 256

Reset I.R.

Use Base of 257

Revised 3-29-71 by »
PCN 1045481-001 ~ 3-7

SECTION
GP 300 PROGRAMING EXAMPLE

PROBLEM

Examine the Program Definition Chart and Worksheet located on pages 4-3 through 4-6.

SOLUTION

The proposed solution is located from page 4-7 to page 4-32.

SOLUTION INDEX

General Systems FIOWCHATTooeiiviieiiiiiiieee et cceree e e s 4-2
Program Definition WOrksheet.........ccovvveeeeiieeieiieriiiceeeeeeeeeeeeeveeerneeeeeeesennnes 4-3
Program Definition ChartS.........cccoieeeeeeiemeniiieeeeremnenisiieeeseeseseserseanmsssseessessssnnns 4-4
Sample Coding FOIMS.....cuuuiviiiiiiiiiieiieiiiriinierieieeeeeereeeeeereieeee e seseseesssssssssssassanes 4-7
Assembler III Program LiStingcccccccvveueeereemmeerereemmrereeeeerreeeeeeeereeereeseeeeseeaens 4-33
SaAMPIE OULPUL....evvreieirireeiiierreeeesecrrreereeeeesereerereeeesesesesesbreaasesesssnsrenasasasanss 4-69

Cross Reference between Assembler III Output and
Program Definition Chartccocoviveeiieiiiieiiieeiiiirceeniceeeeeeeeserennneeeseenens 4-70

4-1

SAMPLE BILLING PROGRAM
GENERAL SYSTEMS FLOWCHART

4-2

TV ~

> _>r<

20
-
o

~T0

- L 2000

o)
5. %
Q
-

c
>»~0
\"‘

INVOICE
SALES
REPORT

133HSHHOM NOILINIZ3A AVHOO0Hd

L
I
{ EEEE S5
{0 L iiddhiih
FECAVARARRRRaz st
A T T &8]
i -%&-__::______ ianinaiN ,
i) gl AR ANR AR i (0%
| l!IL%ﬂI T N
i o aiiai ey || il N
(VLo Aoessssnss i ‘
& AENARNRN niaiane _ T\ |
{ i igARRNRNARAAA istaiia monary T = T S
I | rmw m. r.|/ i ¥ 7
&) il QB 1y
@ __:_:___lJ T oo oot | i Saaki D AmmARANRE
/ ~_~———L—|_r- ‘ll‘ﬁ.ii* ryYY T T b i of $ i
N [
= [1
i lv. by AEEERY > [N - i
N- 1 ~IRVS Y 3
] - TR EET
3 " A
b \ , BEN nE
s =
R (B
666666 |
N \|\|‘rr
M
11 d N3 aval |3
N)
H |
g9 91 LR e 18 (B 48 148 g'sr e1 <31 (48 S1I 184 L0 ¢ o1 g6 6 a8 8 oL L <9 9 q'g 8 2 g ez a1

4-3

b

INPUT | PROCESSING OUTPUT
: By sy s B T [}
8 DATA DgiCRIP‘HON 2 : 'E‘ FlELDll');ﬂ:nTION "WI.OSK‘ :::‘ m'm :::im REQUIREMENTS : 5 F!EL% 35::;!‘“0” Prm‘;!’ ﬁﬂ:mm . ‘E I
& OPERATION N Punched Card (PC); Formulas; ol & Punch: _Spacify Adjunct, Forme, U
c M | (N) dge Punched Card (EPC). Extensions; LIER P Wi fosgs yl
E E | . : wru«{snd' Store for later ve " ' i Striped Ledger: E
v v é.: - %ﬁ%ﬁ Meory (M); Data Com Receive. Formatting for output :": Mh"":‘"‘. Data Com Transmit. 8
L|INVOICE NUMBER N olel5| KB |STORE FOR AUTOMATIC PRINT || | |o|6]5
e INDEX ZERO IF NOT AUTOMATIC
2.| DATE A e2lul kB sma&mummmg,ﬂmm V| | lel2il
TAX RATE N| |lolal2 KB __ __ _[STORE FOR CALCULATION |/ ol4i2
4| cLEAR DAILY TOTALS PK SELECTION o -
CHOICE OF INVOICE P .
A) COST AND SELL 4l JCOMPUTE AND PRINT COST EXT _
B)STANDARD (SELL B N ___ISELL EXTENSION ONLY | | |_
6./SOLD-TO INFORMATION | A og) KB |4 LINES, STORE NAME |/ 0|31
. MM N - .
_____ICONT o
7. |SHIP-TO IN A QB3I KB. _,J-_u.xm-:s OR AUTOMATIC |
____ |'SAME" SELECTED BY OCK | _ N
, IN *6 . N
8! TERMS A o1 1l KB rgn o\ |
ORDER NUMBER A 1 |10)10 KB) Ve 1 |lojo N
CUSTOMER NUMBER A 9 KB __ . vl lile B
SoLD BY A o2 KB B 7l oli2 1
12| SHIP _VIA A_ 1|9 __ KB Ve 1|9 1
DATE M vl 61211 o B
4] INVOICE NUMBER N o I 065 |
A) IF STORED M I e ole|5]
. | B)IF NOT STORED | A 065 KB e R
PRODUCT NUMBER N 044 KB |MUST BE LESS THAN 5000 | | |0/4|4 L
i - (PROVIDE ERROR INDICATION) i .
16] QUANTITY N | o7 KB __ __ |[ENABLE RE KEY ; OPTION | ED AND *-* IF MINUS | |
__|oF DISCOUNT OR NO DISCOUNT]
1Z/PRODUCT DESCRIPTION A 2315 KB W | |0oR315 23 CHARACTER MAXIMUM | |
PER LINE ;,_Ai
- CUSTOMER APPLICATION ' T
EQUIPMENT » .
s - @ PROGRAM DEFINITION CHART
Printed in U. S. Americs 389 1040060

Sv

INPUT : PROCESSING : OUTPUT
: By L . gmroenan 4]
a mnogicmmou " : € FIELD'I'J‘;F;;‘WION mhog.: ',;:" mm ::woim fasoumsuems BIF FuEL%SET:m_moN 'fm&’"d':m;m I !
& OPERATION R Punched Cerd (PC); Formules; N8 Punch: Specify Adjunct, Format, gl
H ¥ Puched Tape TY: | Seove for et use Y sﬂﬁ‘ ,_::’ e T
2 | Fixed Varisble s‘&’m”‘] Earmerting ior outpt. Fixed Varisble Data Com Transmit. S
(&) | [Swe|Min[Max[Norm Memory (M); Data Com Recsive. Size | Min | Max [Norm| s
ELL PRICE N olr|3 KB _|ENABLE *c*,*M"_KEYS |V 2|73
|DISPLAY EITHER CENTS | | |
_ JoR _CENTS AND MILLS | |
- __|PROVIDE TEST TO SELECT
_|MASK AND SCALE ARITHMETIC
, ACCORDINGLY ~
UNIT
__la) IF *c”,*M",*EA" M . _|AUTOMATIC PRINT ¥ ol2|l ['c",*M" or *EA" PRINT
PRICING S _ ol
E_Bl_m:umwrss A ol42 KB Vv ol42 _
GROSS M__ __I|GR0OSS = PRICE XQUANTITY |/ 2/8 |5 |[RED AND *-" IF MINUS
| DISCO UNT (IF SELECTED e |
T ®)6) N 11411 KB ISCALE AT 88.99 i'd 041
ET AMOUNT M |NET=26R0SS ~[DISCOUNT*GROSSv"| RED AND =" IF MINUS
o PRICE o :
IF SELECTEDAT #*5) [N 0|73 KB _|CENTS oR CENTS AND MILLS || | |2|7|3
FisgsL AMOUNT ,]
(IF APPLICABLE) I o N o = x TY|v| . 285
UBTOTAL o
) SELL M vl | |2/&|5 |RED AND *="IF MINUS
B) coST (IF APPLIES) | M Ve 2 /8|5 |RED AND *~"IF MINUS
TAX % (OPTIONAL) _ _)
| A) AUTOMATIC S : 5
B)INDE XED N 041 KB | V! | o4 ;]
Z|TAX AMOUNT . o
(IF_APPLICABLE) ' M -_ITAX_AMOUNT =SUBTOTALX TAX % _|v~ 2815 _
DDONS (OPTIONAL) . _|INDEFINITE NUMBER | | | R
A) DESCRIPTION A 0186 KB v ollg|6
B) AMOUNT N 086 KB v 0|84 |RED AND ‘=" IF MINUS | |
29 COST ADDON AMOUNT | N 0|55 KB v ol5|5 B
d — - 'V~I
CUSTOMER o APPLICATION .
EQUIPMENT
toure - Q PROGRAM DEFINITION CHART

Printed in U.'S, Americe 369

9-v

:

| PROCESSING OUTPUT
) T u INPUT SOURCE 1]
% DATA DESCRIPTION 4 | E|rELoDErINmon | Kovbomd (KB, Soety e PROCESSING REQUIREMENTS P | P | FIELD DEFINITION , :’um?us::;::: nter and Format v
v OR AR ! i particular one required; Accumulations; L] ouTPUT Console (CP),, Line Printer (LP); IS
N OPERATION 0 :(ﬁ, Edge Punched Card (EPC); bokiutredl LA %M.:w nct, Format, ¢ f
€ E Punched Taps (FT); Store for later usa; Wit Stiped Lodem: T
. 11 F Varisble %m : mfwwmt Fixed Varisble Data Com Ti Q
. &1 [See Wi [wax Memory (M): Date Com Recsive. ‘ e T om Tranamit. 8
B30I INVOICE TOTAL - B - o
A) SELL M TOTAL =SUBTOTAL *TAX+ADDONS | | [|
PPLICABLE) M. . JCOST TOTAL = SUBRTOTAL +ADDONS | |. R
ONTINUATION ' L E IS BEYOND ONE | _
PAGES OW_FOR INDEFINITE
__INnumBER -
D TO NAME 0|3 11 M
R M__ .. |AUTOMATIC INCREMENT OF |
C) INVOICE NUMBER o o .
1) STORED] . M
ii)NOT STORED A olris KB . .
PROFIT M __|PROFIT=NET -COST AMOUNT | _
I-’G{_DAILX_IQIALi M :_:EEHI&EELLWITH PK, IDENTIFY
I RIC FIGURES WITH |
—-__|ALPHA MESSAGE
| -
PLUS COST ADDONS | N |
ADD ' N] . i SR R
TAXES : e .
_DISCOUNTS . o L oy
NET - ‘ - R _*J'
ET_COSTS : SR
: ——
B L]

CUSTOMER APPLICATION
EQUIPMENT

P prove pre ' :3 PROGRAM DEFINITION CHART

Printed in U. S. Americs 368 .

BURROUGHS ASSEMBLER CODING FORM

PAGE l OF .ﬁ_Q_

el Te

SAMPLE BRANCH

cooe] sEquence LABEL OP. CODE ‘(_:':- LABEL TN(CI)/RR-EL . < REMARKS

I 11] 12] |3]14l 1516 li7||a| 19[121 22'23]2115]26 27|28 alm‘3|] 32[33J34 35]$J37|38 J ’ I 43 MI45 |46|47 48]4;'50'5‘[52 53'54|55l55 |57|53I59I8)154‘l€2163|64|65}65]67. 68169]”'71]72]73 |74I75l78]'77
1.0, b v INGTIE | b L b BIASINIG Bl LiG (PROGRAM 1 1
101,920) 4y 0 LPKR |1 IPKTA NI RO Lol oADE 1PK RBASE REGLSTER 114
010,30 1 v JLPNR L IMASKTIB v 0 |1 Lot b@AD PRINT NUML . BASIE REGL.
Ol'lolulo | T T | LILJl_IR | 5l|l j I) .| 14] 11 | I | LJ@A’DI ILIEI—JII ILII]M[l-rl lRlElGl lSlTIDR
Ol‘ |ol510 I'N.L[_l TJA].L PlKlAl 1 14 l I2|5|8| 1 1 1 1 P31] 1 P11 1 JNIAIBI—L' lPlKIAlI | lLI@AlDl lDIA‘TltJ | |
01,060 4 1 INGTWE |y v e gy caa b JTINVI |MQ_._1LAJ&L,_1__|ELK|A|QJ_ELBLLINJI|_
Q11070 o INETIE L e b g Lo ey PALLY T@OTALS, PKAS ST |
O0i810] 1 1 1 IN@GTE Lo v vy e b Lo s TINV@DICIE, PnKM\:& CLBEAR (TATA
Q110,900 1 1 1 INK 0 [O O Lo L1 |AJNMQ|M_J§ALA.RL_L[JNM&L@_
oL ool 1 SET L Y e b B L o SIET GSIDANDARD DNV CE FLAG
ol L WOIBEGINVGC 1 | ISIDT@iLh 1 a7 il ADMVANGE (T@ LIDINE 3O o110
o200l o IRST s Lo Y v b Lo g 1SET Yl CONTL L PAGED 1000
olinaol t g 1 JCACL L O v e 2i 1 Lo o ICLEAR ACGG . INSERTE o010
Ol %ol 1 1y [TRM |1 JIPAGEND 10 | 11 Lol ISIT@RE FOR PAGE N®@.L 2 1y 1]
oLinsiol i PKAC L7 e Lol RRANCH (T@ N TLALDEE 001
ol heo o JLKBR T IGUST) AR B L o LaAD OKBEYB@ARD BASE REGH 1
oL nzol 11 [P@S | DRl L Lo PASHTIIGON T SALD T 1 111
ohnsol o TIKM o Lo B b e g Lo g XITYWRE GQUST@MER INAME: 1+ 1 1
ol 9ol v AL v P e e L Lo o ADMANCGE (LEFET @NE L TNE 3 1
Q112000 41 WLICR T ISILDITELS 100 r g Lt oo J@AD WLHTIH S@ALD T@ A LNEr 1

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR_PRINT MASK

1,2,3,8,5,6]7,8,9,10]11,12,13,14] 15 | 16,17 1819|2021 22/23| 24

[T

D oD D e 2 E R S S B B 2 B 3 0 e e e e e e @ e

PRINTED IN U S. AMERICA

FORM MK TG - 2206 (7/68)

ALPHANUMERIC DATA OR PRINT MASK

BURROUGHS ASSEMBLER CODING FORM pace 2. or 26

PROGRAM 1D CUSTOMER

5 sl7i8e o BRANCH

SIAMPILIE

S APARAMETER - . PROGRAMMER
cooe] sEquENCE LABEL OP. CODE I&E:-. LABEL TN27R'EL REMARKS CoT
' |‘J}2]£l14| 15{16 |17||3l19'm|2| 22]23124L5125 27|25 8]3)131J 32133]34 35l$[37l38 39[40[41[42 43 44|45J“6]47 45‘49'50]5‘! 53|54|55[55]57l5§]59|8)|G‘lel64&|§]@lG7lm|]70171 172]73|74|75|75l77
gotol v LR 10 Lol BEGIINGTIYWRILING (L@DP 4 1 L
02020 | 111 LIRS L Y I A o I Lol L@ AD G DINDEX REGISITER 131 414 |
Q20,30 1111 RSTiv | I BRI T Lol RESIET X FLAG 011y
102,04 0SHLPTEIPAS, + |+ NMAD-Pl + 1| L] g PE@SITI@N (T8 PRINT 01 1010
Ouanol‘:HOllillTllei 13;'1'111 L1 11 1 [[|T|Y|P| 1IN]E(glllllllllllllll
QBIOIGIO B I T | |L.| 11 | 'l I | [| 111 .| | AIDIVIAJN&MMX_MLJJJ_‘
020,70 1 1 g JDIDR o M i e 2 lo oo v [WESTLE OHLRD O TIME 10 00
02080 1 EX o Lo Xl 4l iy ENTERODE SHITPT@ 0000
02100900 v JDIDIR L 1B by 13 Lol MEST F@BR CSMPLETLGN 1+ 1 0 10
O o0 v ISIK v I Ty b e s b b MERMINATE WL@GIP 1 a1
O L Ol 1+ BRW [SHLPTE 0 |0 Lol i IREPEAT L s
021,20 v v BRU L RIBBANG 0 |0 ol JUMP T RORBON AREA 1011
230 L ISk L T b o e b ITMERMINATE L@ASR 1 1 00 a1
O %Ol 1+ 1 BRW | ISHIPTE 0 |y Lo gl i1 REPEATI @GP 1 0 4 v 10 v 101
2 s s i EX o o r e B3 e e BRANCIH (T PIRDINTE SIAME 111
w2 16O L BRW e o4 Lol BXDT L@@ o v ey
eI {e I Y =1 f) (O I A TR Lo e SIETTE |l:nMILEIBI;ﬁ1H1,LLEIIIQ_Il.@@|.EI_
o2 s0l v A LR f L ADVIANCGE (T LDINES 0 0 10 1
o2 v BRW L ISHIDPT 10 L Lo by IRETURN TS L@SBP 1000 11
QEiZIOg AR EREN N . N N B < B A AR A A NI B A A Lol ADVIAINCIE TW@ LDINES) 43y 5y 1
CONSTANT DATA (NUMERIC)

1,2,3,4,5,6]7,8,9,10][11,12,13,18] 15 [16)17 18 18] 20{21,22)23|24

0D e e e 0 E E e N D e E D S O S e E a B R A D e e A S S WD A e e

PRINTED IN U S. AMERICA

FORM MK TG - 2206 (7/68)

BURROUGHS ASSEMBLER CODING FORM PAGE 3 or 26
PROGRAM 1D CUSTOMER
A LARALILEL BRANCH
S PILIE
1e0 APARAMETER - - PROGRAMMER
copd] sequence LABEL OP. CODE 'f:-:- LABEL ':'N‘c)'/‘R'EL REMARKS ‘
l ||I |2||3|14] 15(16 I‘?IlB[ISJZ) 21 22'23!24 Islx 27|28 8|wl31132l33]34 35]$|37I38 39 |40l4||42 43 M]“F|47 43]49150'5";2 53]54'55'55‘57'56‘59'83 !6‘]62]63]54‘65I&[ﬁ7|5&]691m|7|]72|73 |74lﬁlﬁ|77
O:S;OIHO'a‘an@«Sn: 1 PPl L1 P E AN I ST NN SN N N S NN N U N O T T N O N U N U T Y T T
030920 i IPA G LI ISIAME v Loty PIRINT ALPHA MESSIAGE! 11110]
Q30,3 0RILBBGNALTG | RIBBRL [Ll Lol ADVANCIE (T RILBBON LLINE 1 |
(03,0,4,0) I P@AS: 1 L MERM=Pl 1 | L1 11 MMMBM&_J_J_‘_J_]_J_J_
030,50 1 1, 0 TR 1 i S P L1 L L1 o IWOYPE TERMS v 0t
03060 100 PBS | FRDONGP] 1 L1 Lol PRSIOTI@EN, T8 SRDER N@.i 144 |
030,720 1 0 TR o Lo e b L Ll ITMYIPE GRDER NGt o000y
(030,810 1+ 11 14 |P@S | ICUSNGP| 10 |1 Lo g PeSIhTiII@N T CUS TSGMER NG, |
50,900 v v ITK v L S v b g Lo b IWTIYRPE GUSITIOMER NUMBER 1 1 4 |
Q3000 111 P@Si [ISILDBYIPL L | Loy vy PESIETIIEN (T SbD BiYr o101
O3 LA v v Tk v b i2s v b Lol XTYZWPE SIALES NAMESE 1000 1]
Q301,20 a0 IP@Sc L ISHPVIPL o Lol P@SIIITII@N (T@ (SHLP VLA 110]
O3 13 1 Tk s L S v e b Lot WTYPE SHIPVIDAC 1)
O3 LW 1 M L JDINVINEITT o Lo bt ICILEAR DNV TCE NET, T@TALL 1
O3 s o) 1 L JDNVIGISITE o e Lot CILEAR I DINVIBTIGE, (C@SiTI (T@iTiAL
O3 16O 1 1 ISIRT | IDATE-GT] o |y L PRONTC DIATIEL & (LINVAILCE NG
O3 L7 v BB Ly P 2 L L BRUGSIKDP LDNE (TINCGREMENT o |
03 180BSDYIIVISRT 1 |1 JCKILIINE] 10 |11 Lo oo [DNCGREMENT & (CHEICK L IINE ICT
O39S v EX o o e v b ea a2t o ITEST F@R CANT I PAGE 1110
0320 111 ISRT L L ISUBT@T 10 1 Lt PRINT SUB-T@TAL 0 v a1 11)
CONSTANT DATA (NUMERIC)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4,5,6]7,8,9,10[11,12,1314] 15 [1617 18,19 [20,21,22/23| 24

[T

o DD D D aE e S e D D e e e e A P g e S e

A

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

ol-v

BURROUGHS ASSEMBLER CODING FORM pace __4 or 26
PROGRAM 1D CUSTOMER
s s171819 110 BRANCH
SIAMPILIE
e APARAMETER -~ . PROGRAMMER
SEQI{ENCE LABEL OP. CODE ‘éra’:- LABEL TN(O:/RR-EL REMARKS ‘
I |1J|2]:|3J14| 1516]17]‘8‘19'@]21 22|23l24 IEIE Z7|a Blm|31|32|33J34 35]*]37[35 39]40|4|l42 43 44|45l45]47 48]49|50l5‘|52 53!54'55[56[57]55 59 w]6|]52l63|54|55 |66|67168|59170|7I l72|73 [74[75'76J77
O40, 0 iy SLBLJ-I LI ICBINTIPG] Lol PEGTIN (CENTLDINUWATION PAGE |
04920 0y RST L a e b [34 Lol g RESET DLSCGUNT, FILAG 11110
40,3 1 11 TE Lol v vy v b v b L bt IADD@ING FLAGE a1
Q404 L PIKRAC LB e e L o g ENABILE SUB-T@@TIAL PK o000]
C)4IOI5IO | T N | P|¢|S| I 1 P|R|D|ClD|P 11 1 11 1 [| i | PIQISJLTAL@LM_I@_M‘
0406 0MAX 1 INKK v L M i O L e JDINDIEDXS iNE - ESS TIHAN 15000, |
0410070 1111 ICPA L TEST o L cra vy ICHECK (LE VALTDE v
0408 1 1 1 INAP Lol b na Lo g B T
0,90 1 11 R 1 AN I« RN T~ B R 11y L JDINVIAIED CADE 0 g
O4 10 11 BIRM L e e a3y Lo ey VALDDE PRINT v v v v 01100
O v ALARME s b L poer g IDNVALGDD D@ N@T PRINT 1 1
O4 1,20 1 v BIRUE L MAXE 1 L1 Lo by M@ DiNDEX INIEX T (C@BDIE 1 411
O3] ot EXe o e v e i I3 v g [TEST F@R A CONTL L PAGE, | 1|
O O 1 ISIRT L SIVBT@IT] L e et PRINT SUBT@TIAL v 10 v 10010
O 51O 11110 (SIRT | JOBNTIPG] L | a1 dea oo BEGHN CONT INUATILE@N PAGE |
O ne a1 BRU L B@DYIWIWNVHR L6 L |BRANGH (T8 11.1N|D|L|X| PIRGD- NG, ;|
O4u7C s AL b v L by Lo e JADIVIAG = = INIE,
O el 1 1 SRS T U v Lo O Lo i1 |H|I;I‘1T| F@R PRINTING 1 111
O 19 1o PN P W L 13 Log g IPREONT PRAGDVCT IN@L 1 10 1 111
04200 1o INKR L M o Lt JONDEX QUANTIDTY o 00000114
CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5,6]7,8,9,10]11,12,13,14] 15 [16)17,18 19 [20,21,22/23|24

I Y)) e O S Y D B e D B e) B R e e e R R e R R T

A

PRINTED IN U S. AMERICA

FORM MK TG:- 2296 (7/68)

ALPHANUMERIC DATA OR PRINT MASK

BURROUGHS ASSEMBLER CODING FORM PAGE 2 or 26
PROGRAM ID CUSTOMER
A LIRARALE LY BRANCH
SIAMPILIE]
i PARAMETER PROGRAMMER
7_'3.‘? A B c
SEQUENCE LABEL OP. CODE | GTH | LABEL Tng;‘;ﬂ REMARKS
l 11!‘2113JI4J|5 16J17J18119]m]21 22[23]24]5‘26 2;[8 8]&!31]32[33'34 35]%’37J33 39'40l41|42 43 44]45"6]47 48|;9[50l ’I 53[54 55|55157L58k9|mls‘l62I63I64|55 157]68]69'”[71[n[[74]75]7577
05000 v IEX K s b v e b by v TMSITE FEIRODILSICE @CHKIL NG DILSC
05920 o ISET I Xe b B0 NI B AT S!ElTI X3 NG DILSICAUNT, FLLAG o |
52030 s PSR- P L WA A P@SLTION T8 QUANTTY 111
O50%0 oy IPNSS LD s Lty PRINT WHOLE NA., QUANTITY, |
050,850 1+ v PG [T B Lol L1 R Lo PRINT & G LE MINUS, | [T I I
05060 v 1 SRS |0 vy by O Lol REPOSTTIIEN F@R GEXTIN 31|
9079 s TRM G L QT v b L Lol SITORE QUANTITY o0 v 1t 1 11
Q50,80 TIKDEISCIPAS, 1+ | DESC=P] + 11 | 111 Lo i P@SLTIL@N (T@ DESCRIPTIIBN | |
G50,900 | 1 T s L 2B g Lot XTYPIE DESCRILTIAN 1+ 10 0 11
OS5 100 v SK e K s e 14 o g MESTALE @CHK USED 11110
O L Ol v a ISKRT g L JOKLDINIE] 3 0 0]y L JDINCORIEMENT daINE CAUNT, 1 11
Q9 L20 a a SK b Y s b a2t e s g MEST O LIE LASITI O LINV@ATICGE LT INE]
O5 130 o AL s e v e g Lo oo ADVANGE LEFT @NE LINE) 1 1]
OS5 uL%ol v BRW L ITIKDESICL o1 |0 Lo o1 IBRANCH T0O TYIRPE DESC.1 111
OS5 LWsIOMPRIICEP@S 1 | 1 SPRCPl 10 1 Lo a1 IP@GSIDTII@N 1 T@ SELL PRICE 11 |
Q5160 1 L U INIKCM L S e 8 L b NDINDEXE PRLICE: « 1 0 0 11111y
OS L7l 1y JEXEL L | e b IOM 2 s b TEST GDF BSTH G M USED 1
OS5 L8O 1 10 JALARML v Ly v v b f Lo e WARNL PRICE ERRBR 1+ 11 1111
QS U0l 4 BRIRWLL L | PRICE] 1 0 Ly Lol BRANGH 1T IINDIEX PIRICE: 1 1 1 |
05200 3 0 3 ISIRT L IOTMIl) oy gy L by DIEMERMINE (DIE MDLLS JDINDIEN
CONSTANT DATA (NUMERIC)

1,2,3,4,5 67,8 9 10]11,12,1314] 15 [16/1718 18] 20,21,22/23|24

I 2 o e)

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

cl-v

BURROUGHS ASSEMBLER CODING FORM

- D ﬁ
PAGE b OF

ALPHANUMERIC DATA OR PRINT MASK

PROGRAM 1D CUSTOMER

s[e]7] 89 [10

S LE BRANCH

e APARAMETER - C PROGRAMMER

cood] sequence LABEL OP. CODE ’;:-. LABEL Tngjn—lzL REMARKS

I 1'J 12113]14] 15 16‘ 117118119 Z)lz‘l 22!23]24 lslx 27]8 aTml31[32[33l34 35]$I37|38 39]40’41[42 43 44145]46!47 48 l49|50|'5‘152 53"54 5%55];7]53]59@'21%534[64 55‘#6'67]55,59]”‘[7‘]’72—[73 l74l75|75|77
060, LS v v BN o LA e e e ca e IMEST O DiE MIDINGS (FLIAGE SIET 1
06024 10, IBRU L MPRDCGET 1 13] 100 L [BRANCIHE T@ (DINDEXT IPIRILICIE 11
06030 i SRS G PTERRC L bl b PRONT SIELL PRICE (110101
06101"10 | S N B B | P@l-Sl | | PlEanUI"lP 111 [11 I T | R@Ibif ITlI T £
O&oISIO B I N T | EIXI [1 Ar [N | /| Cl [4 L4 | | TlElSlTl LhFl ICJ LFILI/‘\!GI ISIEITI | I T I I
0606 v 3 PG vy 11 v b bl PRINT Gy vyt v 1
060,70 1111 [DRAL L L QT o b a1 Lol TRANSFER QUANIDITY: o0 1010 41
06089 SR L O e e o v SIGET FOR PER G PRICE 10|
0610,9C 11 [THIBMO P TYs by L1 doa gl rra g ISITARE QUANTTY 0 b0 000 313y
Qoo 4 1 EX v o A s b ™Moo e Ml b TESTI LR M KEY USIED o1
CoOLLO 1t r i PG b ™M b g Lol i PRDNT M 00 bt
Q6 L2000 1 TTRAV T IRTY v o ol ITRANSEFER QUANTY! o0 1011 |
OO 130l 1 ISILRG L O 1 Lot ISHIET FOR PER M PRICE 11
Qo Lo v 1 TIRM L JQITIYS 1y L b 1 ISITORE QUANTITY: v v v v a1 |
06 11510 1 11 1 TIRAL Y 1 IPRIDCIE |0 |1 Lot ITRANSIFER (SELL PROCE 1+ 1111
o6 60! L IEX 0 o deaqcleMm b by TESTOLFE ELTHER M USED 1]
o701 IBRW L) IGRSAMTL 0 L e f e BRANCH T60 (GRS1SIST AMGUINITI 11 |
061810l 1 BEX K c e b e (3 L ITEST (LIF @BCIKG USIED o 1
Qo9 1 PIC v b B s e b Lol PRINT B o v b
06200 1 PC o b AL e e b g Lt o1 PRIMNTCA L i1

CONSTANT DATA (NUMERIC)

1,2,3,85 ,s|7 8,9 ,10]11,12 13114| 15 [16)17 18 119]20|21,22/23) 24

[R

D020 Ez 00 ga e aNE e Ol 0 O Oy D S dE e I Bey S B S B B G AL R EEE

PRINTED IN U S. AMERICA

FORM MK TG - 2206 (7/68)

el-v

PAGE T OF 26
BURROUGHS ASSEMBLER CODING FORM

el Tes

SIAMPILIE

. o APARAMETER - C PROGRAMMER
SEQUENCE LABEL OP. CODE Ic:'f':- LABEL ‘:‘Ng';;& REMARKS

I 11]12] |3|1‘i 1516 117'18'19J20,21 22|23!24 |§l25 27}& Elwt31l32'33|34 35]5!37!38 39]40‘{11 42} 43 44145 145]47 48L4Q|50I5‘{52 53!54!55156 |57158]59lm]6116215‘3164|65IEJ67!58}69]7017‘]72[73'74|75'73l77
o7 b v BRUG L GRSAMTL Lo |BIRANICH ITQA__\QLB@LSJ&_LAMIMIL_LJ.
O0%29 1y T s e b L Lol XmyiRE PER OUNIT CGHARACTER
Q7O0B3OGRSAMTILSR 1+ [19 v v b v |aa caoa g L@AD SHIFET REGISTER 1+ 1014
OL0MOL o MULR L RTY o b e L cad g MULT PRICE Xi QUANTITY) 1111
Q7|0l5|o | I S T N | | @JSI 1] 6JRISI- |Pl 1 11 |] 1 1 1 | N T N | MM_‘&BIMM
07060 1 o ISR L IPNUMRC] 00 |0 Lol PRINT GRESST AMBIUNT 1 1 111
Q7070 1 111 TIRM 1 | WRKREG] 11 111 Ll ISTARE GREOSST AMOUNTE 111111
O008 S 1 ADM L TIGR@SS! 0 | Lo oo JADD T GRAND GRGSS T@hTAL |
Q709 1 EX Ly K b s B Ml b WEST G LE DILSIC@GUNT APPLCARBIL
O7 0100 1 11 BRW L INETAMT 0 1y Do gl IBRANGCH T@ NE T AMBUNTL 11 |

ornnol v P@S L PILSCEP Ll P@SHLLGON (T8 DILSC@UNT: 14 11]
Q720 v NKC v b 8 v e b @ o b INDIEX DILSICAUINTG 0 110 1
QT30 v EXE Lo v e b Lo Lo o TEST UF AERG (INDEXED 111 |

O Lol oy BRU L INESTAMITE Lo | Lol BRANGH (T NET AMBUNT 1y o |
QTbsCl 11 1 PINC o LT e b (3 Lo 0 PIRDNTL DILSIC@UNT ASE SAC L 17 o
O7L6C T PG L P b Lol i PRIONTE M%7 0 0 i1
O L7l v SR v o b b ca b L@ADE SIHDET REGLSITER 11111
QT L8Ol 11 MR [WRIKREG]E + 1 |1 L fe g MULT DILSCGUNT, Xi (GR@GISISE 11
O 9 1 [SIUM] WRKREIG 1+ 10 g Lo i JSUBT IDILSICAUNT: FRGIM GREiSIS |
Q7200 0 ADM L TDILSCIT] et JADIDE T TDTAL DILSCHUNTIS |

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5 6|7 ,8,9,10]11,1213;14] 15 [16)1718,19[20,21,22/2324

I DO O R E E e e N A E D D D DR Ay A e A e e S e S A S D e A

71 I?z]nTnPslnlnl

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

vi-v

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5 ,6]7,8,9,10]11,12,13,1a] 15 [16/1718 ;19 [20,21,22/23| 24

BURROUGHS ASSEMBLER CODING FORM PAGE & or 26

PROGRAM 1D | ' CUSTOMER

LIRALILEL BRANCH

S Ll ,

a0 PARAMETER ; PROGRAMMER
oooe! SEQUENCE LABEL OP. CODE 'é;!:.. LABEL . Tng/Ra—EL = . . REMARKS
. I I1J32l|3l14l 15 15]17]}51191@'21 2]23]24]5‘5 Z7Ia Blwl;1|32|33|34 35[5!37‘38 39l40]41[42 43 44145#5}47 48J49I50| ‘{52 53!54'55‘56|57l5;|59mls‘]szls;[ujss166|67[68|69]7DI7I]72]73J74|75'76|77

080, LONETAMTITRA « | WRKREG] + 1 | 11 Lol TIRANSEFER NET AMGUNT 1 4 L1
08020 11 PGS LA INETSR L L Lo o P@SITTIIAN T8 NET AMIUNT 1 |
Q80,3 1 11 ISRI L IPNUMRC] 00 |1 o e PRENT NET AMGUNT 0 100 101y
O&0%S v JADM Gy O IDNVINGET 4 0 by ol JADID GLTINE NET T@ T2TAL NET

- Q&lOISIO) S T T | IDIMI'| 1 TINIEITI 1 1 | | I | | I .| - i N |D|Dl ITIQ_IIIQI'MLEII‘_‘,&IALLLELSJ_L]_
08060 1 11 EX o Lo Y v e 13000 Lol WESTT GLIE CaST ARPPLILCABLE |
080,70 1 111 BRUW 1| B@BDYINV 1o]y ool BRANCH (T@ NEXT L IMNE 1100
00800 1 11 WSRO v L i L Lo L@ADCOSHIET REGLSTER 1+ 4 1
O80,9C 1 PBS L L ICPRCEPE Lo i P@SLTIEN (T8 CasST PRICE | |
O& LOOICASTILIVINK. 0 La 130 v o | oy 12s Ll JTINDEX CsST PRICIE o001 g]
Q& 1 O 1 11 QBRI L IGTMIdl v L v b PIETERMDNE (TE MLLLS (LINDEX |
081,20 v EBXeor o i b = Pl b IMESTOLE CaST PRICE ERROR
O30 v 1 BRUG L ICBSTING Ly | Lol oy RRANCH (T@ (INDIEX CST 1111
Q& Lol 1y 1 ISR [PTERPRCH 30 L Ll PRINT CAST PRLICE vy 0 001
Q& LSOl 1 INBTE | Lo b iy Lo be vy ISIHDIEM F@R MLLaSE o v g

Q& L0l oy MULIR T QT o b |y by MULTE CASTE X QUANLTIY 1111
Q& 170l 10 1 1 IP@S L [IGSTIX=PL 0 1 Lol P@SILTIL @GN (T CRSITI AMDIUINITL |
3 80l 11 (SRT [IPNUMRC L | L Jr g PRINT CASTI AMBUNT 1 4 1 111
Q& 190 1 0 JADM | [TICDSITIS 1 10 | a1 Lo by JADD aDINE (CSIT (T 1 TAT CnsSiT]
G&12:000 1 1 1 ADME L IDINVICISTE 40 | gy Lty ADID T DINVIITICIE (C@,SiT) TSTIAIL

CONSTANT DATA (NUMERIC)

[T

O R B e e a e e D D S e D N A S T R S e e A e B e S P e e D D

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

Si-v

BURROUGHS ASSEMBLER CODING FORM

PAGE 9 OF _ﬁ_@_

PROGRAM 1D CUSTOMER
. ['s]e[7]8]s [0
S :LE BRANCH
PARAMETER PROGRAMMER
f_‘g‘{’ A B c
cooe] sequence LABEL OP. CODE | GTH LABEL Tng?n—sx. REMARKS

l !‘]‘2]‘3]‘4]15 16117]18]‘9|m121 2!23]ZGTET$ 2715 813)[31]32[33[34 35]'5]37[35 39[40'41142 43 44I45|45I47 45[49!50|5l|52 53|54l55|56l57|$|59|m|5116q63164|65|&—|'67] I]70|71]72[73[74]75JEJ77)
090,00 0 BRUVG L IBBDYIWV] caa o BRANCH (T NEXT L TINIE 3 3000

1090 2O IINMITOTIPKAL | 121460 v 1 0 Lo | Lo o1 ENABLE I TAXE & TATIAL PK 110
090,31 1 CiM o]I WRKREG] 1] Lo ot ICLIBAR WOIRKITNG, MEMGIRIY: 111 1]
O|9|0.‘hO 11 1 1 1 LlSan | 1 41 | [11| L1l ‘4 1 4 1 QQ]AM&LEJL_LBLE_@IIJ&LLLBLJ_J_J_JJ_
90,590 1,y SRT ISUBT@T] 0 L1 L1 L IPRIONT SUBT@TALL 01 101 111y
0906, 1 1, POS L AD@N-PL L L1 L PSS TI@N T8 AP TAXe L 1]
020,720 1 111 ISIRT 0 | CKILEINE] Lo | L b JDNCREMENT JLILINE (CAUNT 4 04 1]
4O9080 ¢ ¢ INKC s v i P Loy OTINDEIXe MISIC TAX PERCGENT 1 |
090,90 1 1 EXZi oy el v by v | Lo e TiESTE G LIE AERS (IINDIEXRED 41
OS0! 1 1 1 BRW L ADDGINS! o g tia i BRANCEH (T2 ADDSNSI » 1011141
O L v EX s Y e b e Py Py TEST FGOR LAST L IINES 1y 10 1]
O 1,20 (111 WJr 1 | ICONTPG 1+ 11 | 1 Ll BEGTiN C@ONTIDNUATILEN (PAGE 1 |
O30 1t EXev e Y v ber e e e b (TESTE F@RGLASIT SIDixe (LDINES 1|
OSSO, v 1 WOIRT | JADNGIK] -] Lo et JTINCREMENT: JuINE CAUNTE 10 o |
OO LSO L JSIET o L DX e f o 4 L SIET X F@R ADDAMNS L1 1]
00 1160 1 1 v A v P e fe o b L VANCIE (LEFT GNE L LNE 11y
O 7ol 1 IP@SE L ADBNC-IP g] o pr) PESSIHTITEGN (T ALE TAXE 1+ 1111
{oueol t v PG s Ly T e P fg Lol IPRINT STAX L b v 111
09190l 1 PG f A e e AV YT T U YT A T T T 0 B N T B I
QQ_QJOIOJ,lulpﬁLLL T . TH O Y Y O I B B O I T I T T U T N T N N A A0 A0 Y S A0 N O A

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5,6]7,8,9,10]11,12.13,1a] 15 | 16,17 1819 [20121 22,23 24

1 'IZI 13] 14]15

D 2 2 e e e

PRINTED IN U S. AMERICA

FORM MK TG - 22968 (7/68)

9-p

BURROUGHS ASSEMBLER CODING FORM

pace __ | © or 26

5 GoiRA: |9° 10

SM‘PLE BRANCH
i PARAMETER PROGRAMMER
FIiELD A B c

cobe] SEQUENCE LABEL OP. CODE '&?:.' LABEL Tng?n—sn. REMARKS .)

l I|I1ZI13F4| 15{16 I;I;FQI;[Zl 22]2;'24 [25‘26 27|28 E!m[‘l 321733[34 35|$|37]38 39 ‘40[41!42 43 44[45 |46l47 48 l49150‘5‘152 53|54 |55!56 }57 Ealssle) |61[GZ‘63|“‘§J&I67168l69170|7']72’]r73 ‘74|75l75177
G0 L v i a PNc v L e e b 1300 L PIRDNT OTIAX ASE A DPERCENT 1
00920 i PCG B b g Lt g PRONTE 10 00 Ll 111y
1100,3)0 1 1 1 PGS L INETEWR |] Lol PES T NET C@UMNE 1111410
OoM%O 4oy IMULR T ITINVINIET) 4 g |y el ra g MULT TAX e % NET o1 o]
100,53 + vy 0 3 ISRT [IPNUMRCE 0 00 Ly L1 Lo PRINT OTAYX D@LLARSE 10 0 11 1
1100,6,0] 1 11 0 1 A b L ITTDAXES! v v g Lo b ADIDE T TATAL TIAX D@GLILARS, |
1G0ZO 1 1 JADIME g L IDINVINET] 10 |0 pra by JADIDE T T INET G LINVITICIE 4 1
10G0.80 1 11 1 ITRM s | WRKIREGE v 11 | 11 Paa ey IST@GRE TAX DOLLARS v 00404 |
11009 + 1y ISIRT L CGKIIDINE] v v sy L1 L IDINGREMENT L INE COUNT 1|
Qo0 vty EX o oY e e v b v e g 1l e [TEST O LE G LAST DNV TCE TN
LG 1 ISBRT L SUBT@T] e Ll PRINT. SUR-T@TAL 1 1Lt |
LSO 1L 20ARDDOINSPKAL «+ [6 00 v b L Lo b IENABRLE O TEGTAL ITINV@GTCE PK
O30l 1 PGS L AD@GNCPL L 1 Lol P@SILITIegNg (T ADDGN ALF 11 |
1oL v ISk s X s v bra e v de b c g b TESTLALE FELIRST ADD@IN 1 1 10
OS] 1t EX o e dYr v by e b e e IMEST DB G LASIT G DINVIGLCE (L LINE]
QL6 111 1 ISRT | ICANTIPG o |1 L BEGLN (CONTILNUATLAN PAGE | |
LOuzol v Sk L DX o M4 v L IDEST DR RLRST ADDGING 1 11 1
onsol r o c EX o b v o 4 Tt TESDH L BSTTOM GFE (INVOLICE]
oo v ISRIT | JADILNCIKLE 0 g L o JOINCREMENT LIINET CEIUNT 111 |
ha2zod o SIETE e b X e b 4 Ll b SIEM X4 DINVIBILCE (HAS ADDIBINS

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3;45 16]7,8,910]11,12)1318] 15 [16/17 1819|2021 222324

[el

PR R EE R R = FeF R FREFERRERRRER

JooagEg

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

I
—
N

BURROUGHS ASSEMBLER CODING FORM

PAGE l l OF _E.Q_

5 P:OiRA: ;D i BRANCH
SIAMIPILIE
PARAMETER PROGRAMMER
‘:‘g—_" A B c

cooe] sequence LABEL OP. CODE | GTH LABEL "!‘Ng;‘ﬂ'& REMARKS

| "Ilzl |3I14115 16 l17||8[191m]21 22]23‘24!5]% 27 |28 ﬂw‘3:[32‘|’33[34 %J37L38 39 le‘”l“z 43 44,45]46!47 43149]50]57{52 5;’54'55[56 I5715;159]w|s1lszls3l54'65#lﬁ7l68|69‘l’ml7l172]73l74|75]'5177
Lot v v EBEX o b WY s e b b de b o b miEST Db ASIT G DINVIGTHCIES b DINE
000920 g SRS L |SUBRTIGT] 0 |1 Lol IPRINT SIUBT@TAL 111 v 111y
1203030 1 i 1 ISRT [JCONTIRG] 1 1) Loal i1 BEGTIN CONTINUATIGN PAGE |
P00 v AL o L e v s b Lo g JADMAINGE JLEFE T @GNE (LIINE o0
11,0500 4, PGS L JAD@N-PL L | Ly @S LTI LQLNJ_LLQ__LAJDLD@N_LALLLEL_I__LJ_
10000060 0 v o K v o W8 v L | Pl XTYPE ADD@INI DIESICIPer 111 q g
1150070 v 1 1 PGS [INETERP L L Lol i P@SILTII@GN (T@ NET, CALUMN 1 |
10000080 1 4 1 INKR G L I v v o by 0 1000 L bt XWTYWRPE ADD@ING C@S T AMAUNT: o+ |
13100:90] 4 4y 4 ISR L IPNUMRIC] 3 0 |1 Lol PRLNT ADD@GN AMOUNT 1+ 1 4 4 3
0O v WX v P A e b e e MEST LE MINUSE o b g
bbb v JADME L L [TAD@INME 0 0 | a1 i e IADID TS ADD@NST MINWSE o010 |
L2 vy WSK o b A s b = b s fa s TEST GDE PRS0
il v JADM 1 | [TAD@INIP] 1 10 | 11 Ll JADD T AADD@ING PILIUSISIES: |11]
L Lo, 0y DM L DINWINEIT] 1 L1l L1 Ll DD T T NET JLINV@ITICE 4 |
LbowsiOl v B e LY ce e (300 L r o MESTODF SIMANDARDE G LINV@ITICIE
bdiyeOf vy BRU f fa Ra9 Lr o BRANCH (T@ CHECK (LDINE 1ICiTI
L7010 PGS L ICSITIXEP] coc e P@SILLION T@ (CASITI (CAHLUMN |
L8O g 0 INKR L S v g 10 Lo e ENDEX ADD@IN CAISIT AMBUNIT) |
P90l 1y 1 JSIRT L PNUMRC] g Lol PRINT ADID@N: CEST AMOUNT 1
186200f ¢ ¢ ¢ 1 JADM 0 L JENVCISITE 1100 g1 Lt ADD (T T T DNV (T T (CSIT) o

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5 6[7,8,9,10]11,12,13,14] 15 [16/17,18 19 |20|21,22/23| 24

[T

00 8 0E D e D e e e e B S O R e e e Y R e S P P e

TR

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

8I-v

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5 6]7,8,9,10][11,12,13,14] 15 [16171819 [20|2122/23|24

BURROUGHS ASSEMBLER CODING FORM Pace |2 or 26

PROGRAM 1D CUSTOMER

S LIRALILEL BRANCH

SIAMPLIE

PARAMETER PROGRAMMER
f_'g;? A B c

cood| sEQuENCE LABEL OP. CODE | GTH LABEL TNg'/‘R;L REMARKS

I 11I1Zl|3|14| 1516 I17|18|19|ml2| 22]23'24 IEIE 27|28 Bl!)l31|32|33|34 35[5[37[38 39]4014']42 43 I Fﬁl 7148 l49‘l$0!5‘| 53]54'55,%]57FI59|&)|61162]63164|65 lﬁé,s?lﬁﬂlsslmI71]72]73]74|75|76‘[77
1206 v v EXe b A s v e P e b g TESIT DE MINGSE
12920 v 100 ADM | [TADNCM 1 31] 10 Ll oo JADD T C@OSIT T TAL MUNMS: | |
1620030 1 a1 IS e A b s = P e iy JTEST IR PLUSE
1020%0 1 v JADM gy L ITIADNCP] 0 | Lot o JADDL T CoST TATAL PLUS 1
'la_lolslo 111 [| SlRlJl 1 1 Cll(lL-IIINLE 1 1 1 | | 1 L1 1 11 1 IlNIClRIEII llt‘-llgl Il |L|I liJIE! IQIQ]UII JI]I] l | 1
h&O.G.O | I | BIRIUI 1 1 AnDlDI@INlS [L1 1.1 1 L 11 1‘ lRIAlNlClHL 1T|Q| IISIIEIXIII IAJDID|Z|N| |
1207 OT@ATAILTIEX s o X by MW b s faa gy [mEST LiE ADDGNS AN (IINVE@ITCIE]
10208C 1010 SR Ly ISUBT@T] 0 00 | a0 Lo PRIONT O T@TALS L v v a0y 1y
20090, v s EX v f s Yo o b B e b MESTUODE OSITTANDARD G ITINVIGILCE |
L2100l 1 11 BRUW T BEGINV] 10 |1 Lot o BRUGT@ NEX T JIINVE@TCE 10y |
b2 bl v TIRAC L IIINVINEST L1y RANSFER T@&TAL NET TNV
101,20 1 v 1 ISUAL L | WRIKREG] 00 | Lo o ISUBT O TAX FIRGM NET 100 00
L2130l v SWAC L IDINVCISITE Lo |1y Lo e ISUBT WC@ST FIRGM O NET 1 110
L2 Lol 1111 P@BIS L PIRTZ-1P] 1 11 L1l Lol PBSIOTIEN (T PRINT PRAOFEITT |
L2 510l 1t JSIRT 0 | PINUMRICT o1 a1 L bt PRINT PROEIITT AMGUNT 1 111
12160, 11 BRUG L BEGIMNV] 00 |y tr L BRANCH (T@& NEXT JIINV@TCIE 1
12 L7 OIDINVI - IN@ISIRTT 1+ |1 AIR-IPEISE v 1 1 | 11 cea bt ADIVAINKGIEL F@IRM P@ISIDITILGING 11
e sl 11 a1 IPAC s L ERSTIONE G Lo b PRINT ALEA FRSTIING 11001
20090 v v g AR @i v b g Lo e ADIVAINICIE IRIDIGHIT: G TW@i L TINIEIST
1212000 ¢ 1 1 PSS L 2o g |1 Lt g P@STITT@ON F@R PRINTL L1 1111

CONSTANT DATA (NUMERIC)

I D 0 D D D e T DO S O D e a e o e e e e 20 S B R N e

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

611

15 o« 26

BURROUGHS ASSEMBLER CODING FORM PAGE

PROGRAM ID CUSTOMER

s|6]17|8(9 |10

S MPLE BRANCH

ieLo APARAMETER - n PROGRAMMER

cooe] sEquence LABEL OP. CODE 'c.s?:c- LABEL TN27R—EL REMARKS

I ||l’21|3[|4! 15{16 ll7||8]19[m|21 22|23]24J5|25 27'28 8[”'31[32]33'34 35[%'37[38 39 l40[4||42 43 44'45P6|47 48[49]50[5"52 53|54|55r];7l$8j59] IG']GZIGa[MLGS]GGIG",G;r]70!71]72[73 |74I75|75I77
L300 bl v vy Ny L B 0 Lo by OTINDIEX DINVIITICIE) N 01441y
139020, i PNCa B o o Lo oo PIRONT G DNV@ITCE; NUMBIER 1101 |
1030,3:/ 1+ 1 1 [TIRM e | ITINIVND | gy Lol a1 ISIT@RE IINVITCE NV v 110101
L30%C v 1 ISRT 0 1 JAREPSE 0 | Lot ADVIANGE FoRM PRSITTIEN 1 1 |
130,50 00y PA DALT |4 4 L1 L1 Lo PRINT ALFEA DATLTE 00 004110
11306 1 111, R oo a2 v by L1 L1 L JAIDVAINGE RILGHT (Twe daLINEIS o |
133007, v 1 1 P@BSc s L i o b | Lol P@SIOTI@ON F@iR PRINTE v 131
1130,81C 1 1 LIKBIR DATIE | v 11] 134 Lo g L@AD IDATE BASEL MaAey 10y 1
10310,900 v 0y ITKM Ly i@ v 1 Py g Lo i TYWPE DATIE 0 v v e
L3000l v 1 SIRT 1 ARP@S] a1 Lo oo IADVIANCE F@IRM PASILTI@ON 1 1o |
L3nud o PA 0 ITXRT o Lt |PRINT ALEA TXRT 10 1104101
1330 0,20 0 P@Sca Lo 2O o o | Lot P@SIOTI@N F@iR PRINT 11111
13030t AR v el s e Lo oo IADVIAINKCET RIGHT (TWE (LITINEIS |
L3Ol v v 1 N L@ et e 120 Lo bt ODINDIEX TAX RATE v v v 000
DA LSO v PN L e 1 BB L1 L PRINTC A TAX RATEL 001100
130669 110 1 ITIRM o 1 ITTAXCISIT] v | L b ISITEIRE FJRSIT TAXs RATE 1114
306720 vy 0 BROU L JDINGGTALL o] Lo i1 Z
13 L8iICPDILNT@ITIP@S: | P2 1o Ly g Loa g P -
L3 09C v JAR L S e L g Lo b JADMANCE RILGHT, FLVIE (LiLINEIS
13200 v i PAL 1 L HEADNGE 110 | 1 Lie gy PRENT ALIFA MESSAGE: 11 1111

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5,6[7,8,9,10[11,12,131a] 15 [16)17 18 19 [20)21,22/23)24

2 D 2) 2 2 e e i el

A

PRINTED IN U S. AMERICA

FORM MK TG - 2206 (7/68)

0+

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5,6[7,8,9,10 [11,12,13 18] 15 [16)17 18 ;19 [20|21)22/23| 24

BURROUGHS ASSEMBLER CODING FORM e |4 o 26

PROGRAM 1D CUSTOMER

2lejrieple BRANCH

SIAMPILIE

. . APARAMETER - - PROGRAMMER

cone] SEQUENCE LABEL OP. CODE ’:'?l:- LABEL Tng?n-a REMARKS

I 11‘[121’13['4] 1516]T7|18‘19[20l21 22[23]24 lzslﬁ 27|7$ 8[3)[31!3213;[; 35|£|37|38 39 ‘40 l41|42 43 44'45]46!47 48|49ISO{5‘l52 53J54|55[56 |57|58[59|®]6“62153'64|55lé€167[68|69]70|71 I72I73 |74|75|75|77
L4000l v v IP@S s Lo @ L N T O T T A Y 0 T Y M A
14920 1 RR ca J b g Ll Lo o PRLNT DAME LN REIDE 10

4030l o PA L DATE L b g bt PRINTOICGURRENT DATE 10141
40%0 4 vy v AR v b vy by i by te b IADVANGE RIDGH T (Twd, (LILINES) |
140,50 1, |PBS - o N AR R L1 L P@STITIEGN FER PRIMNTG o 411
14060 14 0 PA L L IT-GRAS! 0 | Lol PRDNT ALEA MESSAGE! 1 110
1400700 1 AR e e e b Lo b JADVANKCE RLEGHT @NE (LIDLINE 1
1141080 | 1 1 14 Pl@cS| 1 L1361 1 1 l‘ | L1 1 L 11 L L1 PIGISIIITIMMTI I I T VO |
1141090 + v 4y [TIRAL L | ITGR@GSS] 10 |14 Lo TIRANSIFER G T@TAL GRASS 1 1
40100 1 1 11 J1SIRT 0 | IPINUMRCT 0 |1 Lol oo PRINT TATAL GRASS 11 111
O] o kiR oo b g IS Ll @ADL GDINDEX REGLSITIER 1 1 111
4,20 0 v DR e 2 v f O Lo e @ADL (DINDEX (REGLSTER 131 100 |
L4 oD WLYINETIDER L 8 e g 2180 Lot TEST F@iR G TiHE (7 LGP 1 1
Lol v IEX s o T b s P b EXECUTIE JIE L@@P (T
4 w50l v v c BRUW o c IBLINAL L Lo frr 1 ENDIT @@ s L
L4 160l 1 0 1 JADIDIR |2 o Lo (81 L JDINGREMENT BY: F@UR 10 0 111
70l o AR L M c e g cea o r o ADIVAINCGE RDGHT F@UR LITINES
L4 180 110 1 PGS L 120 1 AR A Lol PeSILTIGN F@R PRINT 1111
L4 ol 1 M@D | RN AR AR Lo Lo M@DILEY BY REGLSTER #2011
14200 4 0 PAL L T TING 11 = e L by g IPRONT ALEA MESSAGE: 11 1 11

CONSTANT DATA (NUMERIC)

DD O D00 EEE g s s e S DR e N E e S S e e D e R e T a s

AR

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

| X%

w

ALPHANUMERIC DATA OR PRINT MASK

BURROUGHS ASSEMBLER CODING FORM PAGE L5 or_ 2O

PROGRAM 1D CUSTOMER

567|189 |10 BRANCH

SIAMPILIE

e PARAMETER PROGRAMMER

copd] sequence LABEL oP. CODE '&E:-. LABEL : TNg/RR-EL . : REMARKS

l |1|121|31141 1516 li?l!BlIQl l 22|23|24 |25]$ 27[23 ?Iml31|32| 33!34 35[%[37!38 39 IaolillAZ 43 44}45};6|47 48]49]50]5‘-‘52 53'54'55]56 |57l53|59]w161|62]63l64]65|56!G7|66]59]n]711n1n l74l75'75l77
1500 1 vy MDD b il MeDILEY. BY, REGLSTER Hl 1.
15020 0 TRAC LI INET L i | aas Lo MRANSIFIEIRE NE T, 1 CIST AMOUNT]
1350830 4 v JAR v e v b Lo e JADVAINCIE RTGHT (TW@n LiILINEST o+
[Sowel v oy PAS L U360 L L Lia gy PoSITIoN F@R PRINT 10110
1,500 Sim = N Lo b L1 e SHIET GDE MINUSE
||510|6|O | I T P|C|-| 1 T T B 11 Ly 111 1l 111 PIRIIIMEJJZLLINMLSLJ_J_J_I_I_I_I_A_
[590070 v JADIER T v b e [g Lo e [DNCREMENT: JINDEX REGE B 1l
15080 ;v 1 BRU [DILYINETE 00 |0 Lol REPEAT L@DP 1 1 v v v v 101
150, 90F IINAL AR 0 o8 v L Lol ADIVANCE RILGHT FAOURE LITINES, |
LS00l v 1 1 P@S | 2 o g Lia i P@SIOTII@N FOR PRINTG 11101
LSSl v vy PAC s L ITTIDESCE o (RN AT VU N Y T N T T T T O S U A AT W DO
ISi20f v v AR e e b vt ADVIANCE RIGHT @NEr LiLINE) ¢ 1 |
Sa0l v a PDS Ly 38 0 o | Ll PegsS hTlaN F@R PRIMNTG 4 010
LSOl 0 [TIRA G | ITDISCIT o | Lo o TonAL DISC@UNTS 1+ 0 101
LSnsiel v SR 0 [IPINUMRICE o |y Lol PRINT G TOTALL DILSCAUNTS 11 1 |
1Sl v AR R b L Ll JADMANGCIE RIDGHT TW ILTNIEISE 4 |
L7000 P@S L @O i aa fa i pa i P@STTIION F@GR PRDNT 4110
LSusel v 1 IPA L IAGT 1 N Lo vy WLIEA MESSAGE 1 11
Sneel v AR e b v e f o Lo b JADIVANCE RILGHT @NEr LLINE) 1
152000 1y ADALL L TAD@GIN®ME 1 1 g Ly Lt A MINUS ADDGINS 1 110

CONSTANT DATA (NUMERIC)

1,2,3,84,5 ,6]7,8,9 10[11,12,13,14] 15 [16/17 18 19 [2021,22/23) 24

L]

!2]13

A EFERFE R PR R R EFE EFFE ER PR EERF FFRERT

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

wy

BURROUGHS ASSEMBLER CODING FORM Prce 1O or_20
PROGRAM 1D CUSTOMER
LTI L BRANCH
1SIAMIPILIE]
) PARAMETER PROGRAMMER
) - i f_‘g{’ A B c ;
cone] sequence LABEL OP. CODE. | GTH - LABEL TNeTREL ‘ REMARKS
l g N] ‘2] '3] 14| 15|16 I"7l|a|19|m|2jl 22[23'24 l5|25 27]” 29]35‘31]32'33'34 35]%'37|38 39]40]41'42 43 ‘4]45]46|47 48 |49|50|S452 53'5‘4'55'55 |57l58159 3)161]62]63164‘65 lGS|67|53I59Im|7|]72|73 l74l75|75}77
1,60,01,0 v 11 ADAL L | [TADGNPL | 4 Lo b ADDE o PSS ADDGINS v
169200 4 1y 00 JADA L L TNET L] Lol o ADDL PIRSDUCT NET 10 3 11 111
1060300 4 4+ 11 1 |SIRJ | IPINUMRC] 01 | 1 toe e PIRINT ACCT REC NET 10 1 010
60Ol 1 v AR | AT N TR TR vty g JADMVIANCE RIDGHT (TWS (L DINES o |
L6050 | 1 IPOS, | 20 | 14 L1 L1 1@|u|[|TIWD I e
16060 + 11 PA o L TING e | Lot PRIENT ALEA MESSAGE: 10000]
16070 1 v JAR L e r v b g daa L JADMANCE RIDGHT, @NE (LLINE 1 |
16080 1 111 P@S | 11360 AN B Lol PaSITIIoN F@QR PRINT 10 10
160,90 1114 [TRAI | TLC@IS!TIS NN BN AT Lo e TIRANSEER TOTAL CASTIS 1 110
1L eeo 1o IADAL L L ITADNCIPL 0 by Lia b oo WADID |P|L|U|S| CDSIT ADDGINSI 1+ 1 1 |
1S Lol v 1 JADAL L L TADNCM] o | o et b JADIDE IMDNUS CSITE ADIDBINGI 1 1
10,200 v v 1 (SRI L IPNIUMRICE 10 |11 gl i ag PRINT G T@OTAL INET CDSTS 00 |
&30 v 0 JAR v L 20 s s g Lot JADMAINKCIE 20 INES v v 1
N6Lwol | v BRUG L IDNTTA o Lo Lo a1 IBIRW (T IIN]_[JI_LLJA_LL_LLZLEJ_J_L_]_J_]_]__L_
LE LSIOAR-IPOSIAR v @ v v L Loy Lo b1 ADVIANCE, RIDGHT (Tw@ (LilLINIES: |
10160 1011 IP@ASI G L ISMEHDP] Lt v POSLUPRINT v v v
1670l 10 SRR L e v b g ce b ISUBRGUTITINE RETAWRNG 1144010
6 LsiolPINUMRCIPNS = |4 & v g o Lea g PRINT MBNITIERY: MALUE 111
L6 1190l 1 100 1 PG T o Y Y ANV Lo ooy PRINT — alFE MINUS 0 11
161200 1 1 G JISRR L v v b L Ll a1 SUBRAUTIINE RETURN 1 1 1 11 1
. CONSTANT DATA 1NUMER|.C)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4,5,6]7,8,9,10 11,12 13,1a] 15 [16,1718 19 [20,21,22/23]24

e [T e e e o = e e R R P R T

oERERE

PRINTED IN U S. AMERICA

FORM MK TG - 2206 (7/68)

BURROUGHS ASSEMBLER CODING FORM

| T 26
PAGE OF

STelsTeTs
AlMIPILIE!
. APARAMETER - c PROGRAMMER
SEQUENCE | LABEL OP. CODE Ig;:- LABEL TN27R—EL REMARKS
11I‘2| 13'14' 1516 [17'13,‘9‘[@'21 22,23'24 |25[$ 27]8 SJ!J'MI.%ZISBI:M 35[5!37[35 39}40’41,42 43 MJEPG |47 48'49'50]5‘[52 53!54]55]55 IS‘/ISBISQI@ |G1}62I63|64|55l66l67l68169170J71]72l73l74,75|75177
AL LORPT-PRCP@S: [SPIRC-PL 0 Ly NI B PI@ISIIITLIM_L&LCJLLLLLELBLLJ&ELJ_L
7020 p v Sk A b S 2l b MESTPRICE F@AR MILLSE 11
L7030 4 v IPNC v L T v b Dot PRONT WLITH GENTS MASIKE 111
OO, v SR | 2 o L 100 Lo g SHDET LERT (TWe PASITITILANS |
'17101510‘1 [_|X| [LA [. SI [H|] Lt [| TltlSJTl |P|H|I|C||:| l]-lQR MI ILILA..,I I |
00600 4 0 PN L [T IR AN Laa b IPRIONT WLTH MILLS MASK 1,
1170070 1 11 1 [TIRM 1 | P|P|[|CJLJ Ll oo TRANSFER (SELL PRICE 141
170080 oy SRR L W v b Gaa s SUBRGUTINE RETURN v 1001y]
1,70, 90CANTRPGTRM 1 | WRKREGH 1+] 1., Lo oo [TEMP@GRARY STERE AMBUNT, 1 1 |
LOnoo v 00 S o | ISILDT@i i a7 Lo Lo INDMANCE (T& CUSTGMER NAME; |
Iy I i v . AR I o IR I N AN AN o A Lol CHANGE INV@GICE 10 0 1y
L2000 00 P@SI L INMADEPL 0 | Lol P@SDTIAN T8 PRINT 0101101
LWhuae v PA 1 L ICUSITINME v |1 Lol PRENT GUSTOMER NAME + 101
Vbl o JLCR P SILDT@I 0 Lol LAD SELD (T LINE NG 11
WOusiol v AT | SHPT@IL, 0 | 11 Lol IADVANCE, T@ SHLP (T8 (LIINE |
el v 1 PSS L ICNTPEP o Lol POSTTI@AN T80 PRINT o011
Wzl i PGl P o L L 1 PIRINT MPAGE s a1
LWnsol v o PCSov o b A e b SN T U N T N O U T A Y A T U U T M O
LTneol v PG v @ e e [SVERIN T T O T YT U T O Y B
1370200 i PC i Ly B v b b I TR AT SN AR S A AN A A AN BN AN A A AR A O B A AR A
- 1 CONSTANT DATA(NUMERl.C) _
o T3 500,8,6]7,8,8 olirse] 1 [e s mE e
I E J“ llz]‘3]14|15|16¥'7l18]‘Q]m]21]2:2]3[24 IEIE 127|23|8l3) l3‘]3433l34]35[$137]33]39|40]41[42] 43 |44I45 |46]47]48|49|50 |5‘|52 153I54 l551$l57]55 I59|60|5‘ |52l63l“’55|66|67I65|69|70 71 ,72]73’74175!76]77'

PRINTED IN U S.

€T

AMERICA

FORM MK TG - 2206 (7/68)

(%%

N

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5 ,6]7,8,9,10]11,12/13,1a] 15 [16,17 18,19 [20,21,22/23)28

BURROUGHS ASSEMBLER CODING FORM Pace __1& or 06
s P:W:A: l: 2 BRANCH
SIAMPILIE :
oo APARAMETER - - PROGRAMMER
cooe] sEquENcE LABEL OP. CODE :.;:—v LABEL TNg/RR'EL REMARKS
I 1‘|12| 13|‘4I 15 16|17|15[19]a)|21 22|23|24|5‘25 27|28 B]w’31l32|33]34 35]5'37‘38 39|40|41I42 43 44]45 l45|47 48|49|50] ‘l 53’54'55[56!57]58{5960lG1|62|53|64'55|66|67|68[69[m]71lnln[74|ﬁ]m|ﬁ
[80010 v v TRA G [V PAGENG] o 0 | 11 Lo TIRANSIEER EJAI@IE_! NUMBER 1+ 1 14
189020 g PN @i v fa i 01 Lot i PRINT PAGE NBiy 110 01111y
&0,30 4 1 1 ADIKE L O v b e Lo e JADD 1T PAGE NGy 10011
1,60%C | v 0 TIRM 1 |1 PAGEND + 1 | 1y Lol g ISTBRE PAGE NG 10 v 0 11 111
llglolle | I T U | le?ll‘\l 1 1 I lNlVINDI] | | S | | I 1 11 1 1 TlRl/‘\ll\IlSl'-]ElRl IJ. 'l 4|!|QII|C‘t| lI JIQ!.I J I i
10&060 v v JSKZE L L2 v b b Lol i JDEST IR AERG o v v v a1
18070 v 1 1 1 ISUK L L IO c b [Lt 1SUB L FIROM DINVEAICE NGy 1 1 |
18080 v v v 1 [TWIRM v | IINVING | 1y |40y Lol IST@GRE DINV@ITCE NGy 000
l [0610,9C] v vy v ALTEG | IRTBBIL | o0 |1y Lol ADVIANGE (T8 RIBBEN, LINE |
L& oo, 1 v ISIRT [DATE-T] 00 |11y Laa oo PRINT DATE & (IINV@BLCE NG |
L& el v 1 TiRAC | WRIKREGHH 1+] 10 L TIRANSFEER SIT@ORED (AMOUNT 1
L& 120 v ISIRR b e e g Lo by ISIUBRGUITIDNE RETURNG 1 1111
L& 13 olSIUBRTATITRM 1+ |+ WRKREGH: 1] 11, Lo o [THEMP@RARLLY (STORE AMOUNT |
&S LWOl v PSS L NIETP 13 IR B PMNi@BLMMQEmu_
L& usiol v 10 PAL 1 L JUNDIERSE L |1 Lol PRINT UNDERSC@IRE 1001111
& 6o, v v ISk Y v e e Be a2l HLT&:TI II-QBLJLNMQIJQLEJ_;QQM&_
e 7ol 0 P@S 1 ICSTIX=P] L 3] 1 [B B A SiL I L
L& 8ol 111 IPAC oy L WUNDERSE 0 | Lol PRINT UNDERSCERE 131111
& heol v oo ALy v L U e e b b Lo b ADVANCE (LEFT @NE I INE 110
L&1200f 15 0y 1 IP@SL L NET=RP b 1 Lt by P@STTITIL@GN T INET AMGIINT | 1
CONSTANT DATA (NUMERIC)

[T R R R R R R = e R R R R RRR

T

PRINTED IN

U S. AMERICA

FORM MK TG - 2296 (7/68)

St

BURROUGHS ASSEMBLER CODING FdRM

PAGE l 9 OF _3_6_

s P:OG;“: ;D 9 BRANCH
SIAMPILIE
o PARAMETER PROGRAMMER

SEQUENCE LABEL OP. CODE E_ra':- LABEL : TN(CI)?R‘EL . . REMARKS

I "'|12I|3}14I15 |6||7|181|9|m|21 22|23l24|5l$ 27‘3 Elm|3ll32‘33l34 35]5'37]38 39140}51]42 43 MT“}S]}7 [49[5015‘{52 53'54|55|5§|57|53l59lwls‘lszls?l“lsslﬁﬁlﬁ7|55!69|7o|ﬂnl73}74'75'75]77
19010 1 TRAL LV IINYNET 00y L TIRANSIEER nTn@tTtAlL.J NE T AMGUNT
190,20 1 111 SIRT [IPNUMRCE 00 |10 Lot PRINTOT@GTALL NET AMOUNT o |
190,30 v ISIK o Ys v g s B B b TEST FOR G DINV@GTCE COSTII NG |
||9|0.‘hO [T T P‘Z)15|] I_ClSlTlXI'IP 11 11| 11| I | PI@ISIIIT{I@(NW
l19I°|5|O | I N O T | TIR’AI 1 1 INIVICIS‘IT | I | 11 l’ | .| | I | TlRlAIN.IS FlE‘Rl 'TIQTLA_L]le]_‘AMmuiNlI
19060 + 10 ISRT [IPNUMRC v Ly o Lo o PRINT O TOTAL CASTI AMBUNT: |, |
190,70 1+ 1111 [TIRAL L | 1 WRKIREGH 1 ib] 11 Lo TRANSFER (ST@GRED AMGUNT: 4 |
19080 1 v 13 SRR Lo e v v b g | Lo b SUBRGUTIENE RETURNG 01 0 1
|90, 9O ADILNCKIADIR [v 4 v v Loy 1200y L Lo JADD 20 T L IINE COUNTE 0y 1
Qo0 v v Exe v e T P v ety oy MESTE FOR LGAST L INE 0010
IS0 v SR] ICONTIPG 0] Lia o PRINT T@TAL & CAONTL1L PAGE:

HS20 v v v SRR by Py taa by SURBRGUTINE RETURN 1 0 1 11y |
1913 v DR Ly f o 2302 Lot ISBRT 0 FRGM LIINE CAOUNT 141 |
[0LOl v ISIRR L e L Lo o ISIUBRGUTIINE RETURN 00 1
LS usiIOCLRMEMILILIR o+ {0 13 v v a {1 001 Lo LIGAD ll-l(ZhRn LCJ@IL!LNJILELBI_I__L_A_I_L_I_I_I_
1160 1 11 Do Lo 3 e b b Ll iy
L0701 M o (DINVINET 0 o1y Lol o FAR MEMGIRY, :Lt@CiAITII@Nj L1
IS8 1 IDDR L B v o i o Lol Clmﬂﬂdﬂﬁuwm
1Qnod v vy JEBX v b s P (D A b by RIEST G DIF (LASIT TGTALL 0 11
19200 v lCAL b o v b o | Lo by CLEAR ACCUMULATGR 11 111 1

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,8,5,6]7,8,9,10][11,12,1314] 15 [1617 18 19 [20)21,22/23)24

11 |1z] 13] MIIS

leWI'B]19 }zo lz1 |22|?2|24 |25].5 lz7 128 I&Iw |31]3433|34 |35l36|37|38|39|4ﬂ4! |42! 43 'MIa;PSIa?148149"50]51152[5454]55]56 ls’l Isa lsslaolm |62]63I64|65l66[67l68169170 |7‘l ,?2.'73I74I75I7Gl7z|

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

9T¥

BURROUGHS ASSEMBLER CODING FORM e 20 or 260
s PZO?A: ;D 10 BRANCH
S PLE ‘
S APARAMETER - - PROGRAMMER

con4 SEQUENCE LABEL OP. CODE ‘(-;E:- LABEL TNCC"/‘R'EL REMARKS

| 1|||2| |3||4l 15{16 l‘7|16l|9|a|21 ?2[23]24 lslzﬁ 27|28 BJ?|3||32I33'I34 35|$|37|38 39'40'41'42 43 MI“S‘PG l47 45]49'50!5“; 53,54'55,%]57[58[59]& IS'ISZIS?I“'GS |66167|68|69170|7IJ72[73 |74|75|75I77
2000 v SR LV ARSP@SE L Ly Lo b JADIVIAINCE F@BRM P@SIDITII@ING 1
2-01012|O I I I T N [| P NI | REA || [| IRlIINITI lZIFlRl@l S Y N A O T T Y T T
20030 v BRI VIDNDTALL v 0 ol BRW T INTTIALTLZEE 0000010
el LYo NI RU T ICLRMEM+A il 000 Lot BRU TS CGULEAR NEXT TOTAL o |
2,.00,5 ATE-JPBS, DATE-Pl 1 Ll L) L1 PI@ISIIlTJI@lNUI@L_]D_AJLE]_L_‘_J_‘_J__I_I_]_
200,60 1141 PA 1 L DATE L1l L1 11 Lo PRONT, CGURRENT, DATE 1 1100
200,700 1 1101 P@S 0 L IINVINGPL @ 0 oy oot POSTTION T INVALCE Ny o1 |
008 1, 1 TRA L [IINVING | 00 | 100 Lol TRANSFER (DINV@BICE NG 01y |
20090 ;0 SKZ LB b L Lol [TEST F@OR ZERG v 1 0 1 10011
20000 i PN Lo O v o Q0 Lol ooy IPRINTCINVOICE NUMBER 1 11|
20000 o a JADIKE G L I e b e e ADDE TG DINVTCE NG ey 10100
201,20 001 [TRM I I:NlVlNLQﬁl I B! Loa iy IST@RE IINVAILCE NG 10 100 1]
2O N30l 111 EXE | A 11 [[L ILEST) |F|(ZZB; 12|E|B|Q| I T N O T N W N |
2O LWOL 1 JTIK 1 L0 11 L1 L1 L XITYPE INV@GICE NS v 00000
20050 v WIIR B e L (243 Lo ey WAADE F@GR L DINE, COUNTE 1 111
Oued v RS L Y e b 14l tr gy RESET Y 4 GAND by o0 a1
2O 170l v AT [IB@GDYb | coa e JADMVIANCGE (T (IINVIBTICE B@DY) |
2O 0u80l v SRR L e v e b 11 ||1|SIUIBLBIQ1LMIILLNJEL_1BLEJIIMB|NLJ|I|III
20 19O INEISK v Lo Y v Lo s e M4l L TESTGDFE WWAST ST LI NES 1
20200 IR L B v b 12148 tra b IINCREMENT, F@AR LINE COUNT: |

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5,6]7,8,9,10[11,12,1314] 15 [1617 18 18] 20,21,22/23| 24

0 O e N 0D a e 0 20 s e D S e e e DR R o e e B S S g 2 e e S EC e A AN e

PRINTED IN U

S. AMERICA

FORM MK TG - 2206 (7/68)

LTV

BURROUGHS ASSEMBLER CODING FORM

PAGE a l OF _i_ﬁ_

CONSTANT DATA (NUMERIC)

5 PGROG7RA: ;D 0 BRANCH
SIAMPILIE
PARAMETER PROGRAMMER
f_‘;-? A B c

SEQUENCE LABEL oP. CODE | GTH | LABEL ‘:‘Ng?;ﬂ_ REMARKS

I 11‘12'13]14] 1516 |!7l18[19]2)|21 22|23I24 1515 27|28 3Jw|3|l32|33|34 35]5]37'38 39 le“|l42 43 44|45 |46|47 48!49'50]5‘!52 53’54'55[55 l57 ISS[SSI@]G"SZIG;I“IGS]65‘67'63]59Im|7|Inln'74,75'%!77
S0y S T e b T 1 ol MEST F@GR W OTH L IINES oy
|l|°|2.0 I | SIRIRI 1 | N A 1 11 [111 111 SIUBIEJQMIILL]NIE]_BEIIIQIBIN_I_I_I_LJ_I_I_‘
2:100,30f ¢ vy INGTHEY | b v b by o L SET Y FGROLAST 6 LI INES (DN
20Ol v ISET Y v L 8 Ca o |B@DY. @F GINVGICE REAGHED: o |
21,050 0 [LLIR M o 255 | b INCREMENT, GLINE CAGUNT 01 o |
211,060 1 1,1, LAR T T N | L1 L1 L WAIRNL |QELELB|A11@BL__IBJQIIIIQIM_JIML._
211070 v g IEX o b D e b e b e praag [DEST F@RCLAST L INES v
2d08¢ 3 0 3 SET LY v e e Lo o SET YL F@ROCONT. PAGE 1 4]
21110090 ;4 0 SRR e v b b Lo oy ISUBROUTIIINE RETURN 1 10
o OICOTMILLTRM | WRKREG + 11 |11 Lol ITRANSFER PRICE T@ M.oiAl: 1
Sl Ol o 1SRG [B 1 a1 O Ll LET @OFF D@LLARS & CENTS|
20000200 o EXFA o e b3 e Lo o TEST LE ZER@ MILS 1011
230 1 JTIRAL L | WRKREG] 1] 110 Lol o MRANSFER PRIGE 10 000 1111
2L 0Ol SILIR@ O I i I B SN <A N I RlElPIQIS!IITI[:%N]_JE@IBl_&EJNLLiL@LNM

L Riawsiol v g SRR e e b g Lo i SUBRGUTINE RETURN 101001
2011600 1 TRA | WRKREGE + 10 |01 Loty MRANSFEFER PRICE v v v v 0000]
270l v ISILRG 1O e L (T o fc SHILET @FE G DI TS
2000080 11 1 NOTE L b b g Lo o MEST JIFE M@RE (THAN SEMEN | |
9ol v SIKE LB o b Lo b DILGLTS WERE: (I NDEXED 1 1111
20200 g ISET I A s by L MBS SET T FILAGE a1

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5 ,6]7,8,9,10]11,12,13/14] 15 [16)17 18 18[20(21,22/23| 24

1 |12113|14|15

D)) D O o e i

PRINTED IN U S. AMERICA

FORM MK TG - 2208 (7/68)

8ty

 BURROUGHS ASSEMBLER CODING FORM

PAGE a, a or_aﬁ___

| ALPHANUMERIC DATA OR _PRINT MASK

" CUSTOMER
» s|e|7}8[9 [0
1 ‘1 BRANCH
SIAIMIPILIE] ‘ — R
; B i PARAMETER -) PROGRAMMER
IR L f_'g‘-‘_’ A . - c ’ . ’)]
" |eood] ssoumcs LABEL op.cooe |GTH | Lase | RS ! . . REMARKS
' l|l‘2}l3l'4l15"6'17!13‘19[2)]21 }23‘25'8]5 27|$ 3;[3)‘31]32[33!34 35{5'37 33'39140F1I42 43 44'45]‘6]47 4849|50|5'| lS3l§4|55l56|5 [59]59'@]61!52]53[64'65]53|57|69169l l71r] I74|75|75‘l77
:r‘EnO ||Oiy 111 L |L1[~\1Rl | TR EEENEE A - | "'|¢/. Lo o
ol 1 111 SiRan‘n' 1 Ly bt Lo L I R UIUWMML] T L1 |
r A LU TRAL | 1"»W1R1KAR|'E,| " r:,';';f 1 L1 L i i 11t] . (BS L
,2.2{0 I“l()r;l'lvl L NQT:EI Ll v v by gy ’v:"l L [T PR I
. '224055{) | b i SET] |'3A.’ IR \,v T YR LY gy v ’
2201600 4 1y \,.' L 2R L e e R T |: R TR SlU RN a1
,,;..&2101710LV}C@Sl’TRIS]Tr'|" L Y 1 Lo 1 A3 I B SR ' |
12208100 111 ' L BEGLINM v IR N R
_"/,2121019@' S ST G I S A I A
O (220100 AKTIABL el ITINVENSE e e £l
S B =N M TTe) B L BRWE | DLYT@T 11 | Ll Lo L
2;’2.1.2&01_).' ca o BRU G aNnVuT;@lT SR R AT BT A
'a@ns.Ol‘u craor [TIRAL T | TAXCST! 1 by AR CE BB NS
L ,‘Zt&lnlho o1 |BRU L HVICSITE v Lo b1 BanU:v
e nsioly i BIRIUR o Tl@(TnAlLlIf' FRTI AT AT NS B RRER SN AN N '
L leeneol v T BRUG L IDNGTALY v 0 v SRR IS B
. 220070 0 BRU L CLRMEM a0 L b BIRIUI'; -
,?|P|'l|'8|C> S |A’16:Er"~| . r’r.l'i’ﬁ.yiy ST T O O O S S 1|:|'|||1|J:|||||11111|| ‘
_ 22 11910 WAIS;KITBMWSM.W t‘§7.?aZ- ZIZZ, 2 Zi, ZZZ L g UlMEIPI[lCI T Tt T I T L
J:&&MO L IMASK ez, ZZZ, Ejllir. ZfZ.Zl JD, DL Loy BEIT PRINT 4
. ' CONSTANT DATA (NUMERIC) - Lo

1,2,3,4,5,6]7,8,9,10]11,12/13]1 15Irs,wna.rs]gmz”zzlzz]z-t

| I"I*ZI"’I“L el lelolo el oo 433{3‘*!35I*l”|*|3°|‘°l“l42|“ I“l“I‘Gl‘*’l“l"lﬂ’Is'|52|5315‘|55|56IS’F°]59l“ls'l“l&lﬂlﬁI“IS’I“ISSI”I"I’ZI”I"I’SI’GI”]

PRINTED IN U S. AMER|

ICA

FORM MK TG - 2208 (7/88)

BURROUGHS ASSEMBLER CODING FORM

PAGE a > i OF_,EL

62

PROGRAM 1D CUSTOMER
5 §171819 10 BRANCH
SIAMPILE
PARAMETER PROGRAMMER
FIELD A 8 <
CO# SEQUENCE LABEL OP. CODE ‘G-Ta’:— LABEL TNg?R—EL REMARKS
' ‘ll‘zl 13‘14‘ 15}16]17]13“9'@]21 2{&!24 i%ls z7|25 Elm‘3|‘32l33‘34 35[$|37|38 39‘40{41]42 43 44|45I‘6|47 49l49|50]5‘l§2 53I54|55|55 k7‘55l59|@ls1‘62]63|64|55F157|68I$lml71]n]73‘74|ﬁlﬁl77
230000 L 0y | < ' 22 CCCIC | v o 4y 1 T Tk
239,20 11, Sk N6ZZzizz2EZIZZ22Z1ZZZ0 xS 0 0100 HUNDREDIS: PERCENT & NSt 14|
230 30IVRKREGIREG + | v 2y v v v g Lol GENERALL WORK REGLSITIER 1 14]
21350, 4,01 T INVINE EG v v v v v e v b b g JDINVBILICE NUMBER + v v v v 01010
2.3,0, 50| PAGE NSIREG, | c e NN B Lt L1 IPAGE, 4N|UjM|_B,|E!R| [N I E N D A N O O e S
2131.0|6|OD|A1T1E| 1 RIE(JI 1 | 21 111 [[| 11 1 1 1 11 CIUIRIRElNlTI DATIE v 0y 010
12307 OCUSTINMREG + [+ M v by f oy caa g ICGUSITEGMER NAME 1 v v v 1 11000
230,80 TAXCSTIREG v v b v v v v by by P d g AKX CONSTANT + 40 0y v 03 331
2:310,9013TYs 4 IREG . | o o v o by i Laag caa e IINVITICE QUANDTY: 1o 00000 10|
2310 0PRICE REG [v v v v v o |y Lol IINVGLCE PRICE v v v 00111]
L RIS WO INVINETIREG ¢ [v v o |y Lt L 11y v LCE NET TATAL v v 041
23 L2 INVCSTIREG + o e vv v v L g Lo o (IINVRICE CAST TOTALL 1 10110]
23 NAOTTNET REGE L Pev v v g Ly Ll ToTAL NET SALES 0001
23 LWOITAD@NPIREG o+ | i e v v 1 o] Lo i [TTAL PLUS ADDDNS: «+ 1 1 v 14y
213 WSIGTADGNMRES | e v v Lo Lo e T -
CALGCTADNCPIREG | o e v v v o Lo b L b DAL PLUS COST ADDGINISI 1
23 L7TOTADNCMRIEG o | o Pv o v Lo Jrig L p 1 [TRTAL MENUS ADIDRING 1101114
23 LBOMTAXESIREG + [+ W v v vy fvv by [B R =
23 OITCHSTSIREGE [v v v v b g Lol TTAL CRASTS 1 a1 11
23200 TORGSISIREGE [[l g a1 I Lre o TSTAL 1IGR&SST SIALES 11 11
CONSTANT DATA (NUMERIC)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4,5,6]7,8,9,10][11,12,13,14] 15 [16117 1819 [20,21,2223) 24

I D 2 e e M

PRINTED IN U S. AMERICA FORM MK TG - 2296 (7/68)

0€+¥

ISILDITEIL

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR - PRINT MASK

1,2,3,4,5,6]7,8,9,10]11,12.13,1a] 15 [1617 18,19]20,21,22/23| 24

BURROUGHS ASSEMBLER CODING FORM Proe 24 or 06
erooram 101 = CUSTOMER
s{e|7]a]s |10] SRANCH
_[SIAMIPILIE]
o " . PARAMETER PROGRAMMER
o : _ k ‘ ':_'g—? A B c
- SEQUENCE LABEL © | OP. CODE | GTH | LABEL TNgl/RR—EL REMARKS)
l; 11]12'13|'|4[]5T5"|1;|15|lSIlel 22]23124'5]25 27I23 3J3)I3‘]32|?3l34~ 35'%'37]38 39'40[41}42 43 “Jisk&l47 43«’49’50!5452 53I54I55I55]57l58|59|@I61|62|63|6ﬂ|35IGG]57|58I59|nI7l]7é]73l74l'ﬁ'zs[77
121410, "nUI‘TuDaLSlC[T REG Lo v v o by coa by MemAL DESCOUNTS v v 01041y
L 124020 TEST + INUM 1 | 450001 |40 |1y Lo g MEST VALWLE SIO0O0 11311011
' Zu‘h13JOS|I-\J"LE|1'-\|‘L'|‘F|J ASAME |] RSN NN NI N AN AU NN U AN NN S N A NS Y N N S N A AN O
240 MOUNDEIRISIAILE 1 L= 5T il R t 1l gy WUNDERSC@GIRE + v v v v v v g v g
24-0}5! ";— J A,[_L.IFI L g4 DAI lLIY‘ JBTIALS IFBR e v b vy v v v v v e b a1
7214;016@ALIT| o ALFE L 2l ACS RIEC INIET, | TRRTIN T Y SN N T T T T T Y SN ST S S Y B A B B A B B
{2407 OITNC 11 IALE) 116 LT@TAL NEIT €IS v Lo L v v v g
L 12408 0TNS 10 JALF L RATETAL NET ISALEIS v v v b v v vy L1 1
124100900 4 JALFE G RPATETALL PLUS] ADDIG@INS | v v Lo v b
'L.l‘hhﬂjoil’llll LF o 24 TATALL MINUS ADID BINS | R O N T S N S N AU Y A M AN N K N N Y S B O
2 e o JALE L RAT@TALL PLUS| CASIT AAD@N:& [ST TN U W U N Y Y N N N N AN OO S S B A Y M O
241,200 1 ALEL >ATGTAL MINUIS CASITI ADDG@NS, | 1 100 v e et b o a1
2 a0l o ALFL REAT@TAL [TIAXES | I T T U N U U U U S A Y WO WO A A B Y AR R O A
2.’4./1[14.0 S I I | ILIFI 1 |4TIQ5|T|A|LI COSITIS, L1 1 11 L1 1 [N N O VO T T TN Y O N I Y O T S S N Y I B
e s o T GRASIALIE - [1é] 1 TETAL GRBSS | | oo Loy b i v it e iy
24 uﬁiO‘lJDthL_l ALF, P4 TATAL]! DILSICGUNITIS o b o b i b b L1y
24 L 7,elFIRSTLI |NA1L1F’1 L e STARTING INVEIT ICE NG | e st 111y
R4 usioTXRT 1 JALF 1 124 TAX RIATE | 4 Lo b b e 11y
4 Dll‘\lIlTlJ ILtFI'I2.|4 ICIUB[B_E_NTIID-IT!E! L1t 11 1 1 NN N T T T N T S T T T T N T Y T o I Y
DEF 1 L 8 v b oy ce by JS@LD T W DINE s a1

L I"l'zl'sl"I'SI’sI"['°l's}mlz'lnlﬂlz“lzlslﬂlﬁI=’|3°Ia'l e)l) B B 0 R 0 2) B B S D R B DR R

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

BURROUGHS ASSEMBLER CODING FORM

PAGE ;J . ‘2 OF _ai_

5 P:O(;R‘A: IQD 10 BRANCH
slaMlpl]e
PARAMETER PROGRAMMER

coos’ SEQUENCE LABEL OP. CODE ‘é:-‘i LABEL TNg?R—EL REMARKS

I ‘|l|21|3|14J 15}16 ll7]l&|19‘20|21 ?2|23124 25]25 27|28 E[ml3||32l33|34 35[*]37[38 39 |40‘41l42 43 44[45]46|47 48|49[50I5‘152 5;'57'55]56_|;7]58l596)|5||62]63I64[65]65lG7|GaI;9]m]le72|73174J75I7Bl77
250 LOISHPT@LIDEF « | 1 v [0 |0 Ll (SR TE L EINE vy
25020RIBRBL DEF + | 12O v 1ol |1 Lol RIBB@NG L INE -0 i 111y
2150,30B@DYIL DEF |1 2020 0 vl | Lol IBaby @ IINVALTIGE aINEr 101y
215.0.4.ON|MAD|'|PDIEFL | i l n3| L1 11| [11| | | |®|Sl | th/‘\mlEj_uALDLDIBLEL\AiI_J_I_L_l_J_I_
2:5:015|OT|E|RM‘|PD|E|F1 1 1 61 14 14 111 114 [[PI@ISI |T| lRlMlSl S S NN S NN NN AU N Y Y B |
EISIOIGIq@LBIMP EF 1 U9 RN B Lol PAS @RDIER NUMBEIR 000100 1
2150, 7,CCUUSNGPIDIEF « | 3 1o g Lol PESE QUSIT@BMER NUMBER 1 4 11 |
121510, 8 QOISILDBYPIDEF &+ | 20 v 0 L | Lol IP@S Sl BYe s NAME v
250,90 SHPVIPDEF 1 | 1560 v v o 110 | 11 Lo P@S SHIP MIAC s 1
25 HoOOIDATE=PDEF: 1+ | 1 66 v 0 1 | 1y Lia a1 PSS DATE vt 1y
25 L LWOIINVINGPDEF + | 180 v v 0 L0 |y Ll IP@S IINV@GTICE NIUMBER 10 0011]
2,5 1,2, 0PRDCDPIDEF, | | | YRR IREN NI AR AN U R Lol i, P@S PRODUCT NUMBER 1 1 111 |
25 130QTYi—P DIEF o | T v g g Lo v PSS QUANDTY: v v v v i1
25 LwOoIDIESC-PDEF » |3 202 v 1 b Lo g P@S DESCRIPTI@N 1 011
25 1sOSPRC-PDEF 1+ |1 @431 0 01 i | Ll P@S SIELL PRICE 1001101
25 L6 OPERU-IPDEF | 55 v v b b Ll PRS IPER O UNIT) |C|@|L.JU|M|N1 L1
25 1 70GRS-P DEF [B0 L Lt PSS GRGSS AMOUNTE 1 11
23 LsODIESC-PIRDEF o | & v L i Lo i PasS Dnsc GUNT, E;t.R.Q.I_JNJI Ll
S NOINET =P IDIEF v |1 1780 0 00 L |oaa Lol P@S NET AMOUNT 1 g 11
2:51200CPRC=-PDEF 1 [190 ¢ 1o b1 |1 L vl PSS C@aST PRGE 0 1 111

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

N

1,2,3,4,5,6[7,8,9 10]11,12,1314] 15 1617 18 19 20,21 2223) 24

I Y) e e e e @ M e i

PRINTED IN U S. AMERICA

LEv

FORM MK TG - 2296 (7/68)

(A5%%

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

BURROUGHS ASSEMBLER CODING FORM Proe 260 o 6
PROGRAMV D) CUSTOMER
5|6|7|8(9 |10
SAMPLE BRANCH |
e PARAMETER PROGRAMMER _ -
COD4 SEQUENCE LABEL OP. CODE | Lé'?‘:- LABEL . TNgﬁR—EL . < REMARKS
l |1l|2!13[14115 16[17|18ii9 Z)lZI 22|23l24|5‘26 27|ZB alaol31!32]33|34 35[5|37|38 39]40]11]42 43 44]45!46l47 48]49]50'5‘15253!54!55]56[57'58’59@ls1|62|6§[64]55166|67:|68|69ﬁ]‘76:‘[71l72I73?I7:4|7’5I7G77
, 2601 olCSTX-PDEF 1 v B& v Lo b b b b PM&L_;AM@]QLNJT; A
2,692 AD@BN-PIDEF 1 [11591 v f o f Ll P@S ALPHA ADDDNSI 111 S
2100 30PRTZ~PDEF 1+ |+ 8T v | o1 |1 Lo PeS PRFELTV/ALGSS, 7 1 L1
26040 CUNTP-PDEF, |1 164 v 1 v o] A B PWL_.J_LBAQIB Lil1u 1
216|0|5|QS|M|;|H1D|PD:E1‘:1 1 1 llalQ 11 l:l 1 1 v | I .| | I T | P]@l&] |] LL|51Q| |E|IJ[!I] §|I|E|51 l|§|&|l lll |/] |
26060SM-CTPDEF, |+ 1360 1 | 1 Lt Lol PSS OSUMMARY CEOSTE w0 10100
207,00 1 v NSTHE Lol b b Pl X3 N&_MMQ@QN}II_LL[_LNLE!_J_I__LJ_
26080 111 INGTE vl b o Lo XA ADID@NS, I LIINVTCGE 0y
260,90 1 111y]ngEl] I I T | L1 1 111 1+l ~' L1 Ylll |S|T|A1RLTL 1CL@1NJ_L-_L_LEIAJ§L!:LJ_1_I_L_L_
261000 1 1 INGTE Lo v ber e by Lol Y3 O STANDARD (INV@ILCE |
26 L0001y TE ooy b b coa o Y4 LIAST 6 INVRITCGE INES |
261,20 1111 DT | | Pl [N Lo G DINDIDICATES oMAlNlLLA_LL,J_JI_MLELXL_ :
260130 1 BEND [Lo b by Lol JEND @F TR e g
EEILY L1yl I N T T T T T T N O T T AR I T T T Y T T T G Y O W NN SO N O T A N 0
11 L5l I I T T Y T Y [I T S I T T O T T O O A B R B A
1 1116 [| IO TN N NN Y T OO N O M N Y I N 1 T N T N T O N T T T T T T N T O '
L1 b7y)| I T T T T T Y Y T T T N T N T T T T T O T T I O I I I A
1 11181 I I L 11 IS I T T T I | L1t | (| NN N TN N O O I T T T P O T T e s O
L9 L1 L1 1| I T O A O I A I B I T N AU T U N U OO NN N NN I N TSN U (Y[P O N NN SO NS N O
£ 12101 | 4y AN 1 O T T A A A Y A T T T T O I 0 T S A A I A

1,2,3,4,5,6]|7 ,s@uo]n,zz,m,u! 15 [16)17 118 19] 20,21 22,23 24

O 2 o e e R

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

PROGRAM D, =

WORD

SyL

fEMORY STIZE NOT ENTERED

€ey

0

B O)

w N~ o w

W N = D

FCé69
FA6B
E433

F693

AK00

6758

EROF
6552

8F02

3072
 FA40
FO7s

EROC

ADLF
gEnol

"EO00R

5000
5300

SEQ
NU.

NATE RUN

SYM,
Loc.

(512 A?SgMED)

2

V> w

® N

10
11

12

13
14
15
16

18
19
20

0
-0
0
0

2 O 2 9 © 5 5 5 o o o

2 O O O

21 0

22

INITAL

REGINV

3726/70

ne
COBE .

NOTE
LPKR
LPNR
LLLR
PKA

NOTE
NOTE
NOTE
NK
SET
nc
RST

CLA
TRM
PKA
LKBR

POS
TKM
AL
LLCR

LTR
LIR

TIME = 12348

D, A=PARAMETER
N, NC

E
L LAREL 1

PKTABL
MASKTR
51

4 1258

0

Y
SLNTOL + . 7
g

0
- PAGENQ
17
CHSTNM
NMAD=P
31
1
- SLhTOL

VERSINN 02=01=70

8 ¢ LABEL
PAR PAR DEC EQU

105
107

15

114

117

13

PAGE 001
RFMARKS

BASIC BILLING PRNGRAM
LOAD PK BASE REGISTER
LOAD PRINT NUM, BASE REG,
LOAD LEFT LIMIT REGISTER
ENABLE PKA 1 LOAD DATE

INV, NO. TAX, PKA2 PRINT
DAILY TOTALS, PKAS COST

INVOICEs, PKAS CLEAR TOTL
XANY NCK TO START INVOICE

SET STANDARD INVOICE FLAG

ADVANCE TO LINE 10

- SFT Y 1 CONT, PAGE

CLEAR ACC, INSERT 2
STORE FOR PAGE ND, 2
BRANCH TO INITIALIZE
LOAD KEYRNARD BASE REG,

POSITION TO $NLD TO
XTYPE CUSTOMER NAME
ADVANCE LFFT ONE LINE
LOAD WITH SOLD TO LINE

REGIN TYPING LOOP
LNAD INDEX REGISTER 3

£ PROGRAM 1D, = NATE RUN 3/26/70 TIME = 12348 VERSION 02=01=70 : PAGE 002

(_'A)
'PWORD ORJECT SEG, SYHM, ne FD, A=PARAMETER B c LARFL RF MARKS
sYL CNDE NO, Loc. CNDE LN, LAREL INC PAR PAR DEC EQU
2 6544 23 0 RST X 2 RESET X FLAG
EROC 24 0 SHIPTOD POS NMAD =P 13 POSTTION TO PRINT
5 0 ACLF 25 0 TK 31 XTYPE INFN
1 ENO1 26 0 AL 1 ADVANCF LEFT ONE LINE
2 5802 27 0 TIR 4) ; TEST IF THIRD TIME
3 naba 28 0 EX X 2 4 ENTER IF SHIPTO
6 0 5803 29 0 1IR 3 3 TFST FOR COMPLETION
1 4184 30 0 SK T 1 1 TERMINATE LOOP
2 7C04 31 0 RRU SHTPTN 4 3 REPEAT
3 7809 32 0 BRU RTRAON 9 2 “JUMP TO RIBBNON AREA
70 4184 33 0 SK T 1 1 TERMINATE LOOP
1 7c04 34 0 BRU SHIPTOD 4 3 RFPEAT LOOP
2 4599 35 0 FX K 34 1 BRANCH TN PRINT SAME
3 7C08 36 0 BRU F— 8 3 EXIT LODP
8 0 6744 37 0 SET X ? SET Tn ENTER SHIPTO LOOP
1 EN02 38 0 AL 2 ADVANCE TWO LINES
2 7004 39 0 BRU SHIPTN 4 3 RETURN TO LONP
3 ENO2 40 0 AL 2 7 : ADVANCE TWO LINES
: 9 0 EROC 41 9 POS NMAD=P 13
1 CR88 42 0 PA SAME 136 PRINT ALPHA MESSAGE
2 £914 43 0 RIBRON ALTH RTRBL 20 ADVANCE TN RTBBON LINE
3 EROS 44 0 PNS TERM=p 6 POSTTION TO TERMS

PROGRAM ID, = DATE RUN 3/26/70 TIME = 12:48 VERSINN 0?2=01-70 PAGE 003

[]
WORD OBJECT SEQ, SYM, 0P FD, A=PARAMETER B C LAREL RFMARKS
SYL CODE NO . LocC. CODE LN. LARFL INC PAR PAR DFC FQU
10 0 ACOB 45 0 TK 11 XTYPE TERMS
1 ERL1? 46 0 POS ORDNDP 19 "PNSITION TO DRDER NO,
2 ACOA 47 0 TK 10 TYPE NRDFR N0,
3 ER1E 48 0 pPNS cysSNDP 3 PNSITION TO CUSTOMER NO,
11 0 ACO9 49 0 TK 9 XTYPE CUSTOMER NUMBER
1 ER29 50 0 POS SLDBYP 4?2 POSITION TN SOLD BY
2 ACOC 51 0 TK 12 , XTYPE SALES NAMES
3 ER37 52 0 POS SHPVIP 56 POSTTION TO SHIP VIA
12 0 ACO9 53 0 TK 9 XTYPE SHIPVIA
1 DR7C 54 0 CLM INVNET 124 CLEAR INVOICE NET TOTAL
2 DA7D 55 0 CLM INVEST 125 CLEAR INVONICF COST TNTAL
3 2R85F 56 0 SRJ DATE=J 94 ? PRINT DATE & INVNICE NO
13 0 780D 57 0 BRU + 2 13 ? BRU SKIP LINE INCREMENT
1 2062 58 0 BODYTV SRJ CKL INF 98 0 INCREMENT & CHECK LINE CT
2 4652 59 0 X v 1 2 TEST FNOR CONT, PAGE
3 2856 60 0 SRJ SURTNT 86 ? PRINT SUB=TOTAL
14 0 2850 61 0 SRJ CANTPG 80 2 BFGIN CONTINUATION PAGE
6549 62 0 RST X 4 RFSET DISCOUNT FLAG
63 0 NNTE ADDON FLAG
F&O4 64 0 PKA 1 3 ENABLE SUB=TNTAL PK
ERO4 65 0 POS PRNCDP 5 PNSITION TO PRODUCT CODE
15 0 AKRUO 66 0 MAX NK 4 0 INDEX NO. LESS THAN S000

Sev

+PROGRAM 1D, =
w : :

S WORD
s

16

17

18

19

20

w N = O

WN R S W N

w N = o

=

70

gl
72
73

74
15
76
77

78
79
80
a1

82
83
B4
85

DATE RUN

S5 o o o D o 0O D

D D O O

86 0
87 0

88

‘é 2 o O

TKDESC

3726/70

OP F{) .
CODE LN,

CPA
NOP
BRU

BRU
ALARM
RRU
EX

SRJ
SR.J
BRU
AL

SLRO
PN
NKR
EX

SET
PDS
PNS~
PCm=

SLRO
TRM
P0S

TIME = 12148

A=PARAMETER
LAREL INC

TEST

MAX

Y

SURTOT

CANTPG
BADYIV + 6

1

11
14

QTY
DESC=P

- O W D

VERSION 02=01=70

A _LABEL
PAR PAR DEC EQU

¢

135

16

16

15

86

80

14

w

PAGE 004
REMARKS

CHECK IF VALID
EQUAL TO, NO OPERATINN
INVALID CNDE

VALID PRINT
INVALTD DO NOT PRINT
TN INDEX NEXT CODE

TFST FOR A CONTY, PAGF

PRINT SUBTOTAL

BEGIN CONTINUATION PAGE
BRANCH TO INDEX PROD=NO,
ADVANCE LEFT ONE LINF

SHIFT FOR PRINTING

PRINT PRONDUCT NO,

INDEX QUANTITY

TST FNR DISC OCK1 NOD DISC

SET X3 N0 DISCOUNT FLAG
PASITION TO QUANTITY
PRINT WHOLE NOD, QUANTITY
PRINT = IF MINUS

REPOSTTION FOR EXTN
STORE QUANTITY |
POSITION TO DESCRIPTION

PROGRAM 1D, =~

WORD
SYL

LEY

21

22

23

24

25

w N - O w N - O

N - O

W

w N == O

w N - O

0BJEC
CNDE

AC17

4092
2062
4252
EDO1

7814
ER2A
A?252
4eCC

0980
7416
2864
45C1

7017
2R4E
ER36
44C4

Co43
3874
0202
3074

T

SEQ,
NOD .

89

90
91
92
93

94
95
96
97

98
99
100
101

102
103
104
105

106
107
108
109

NATE RUN

jo e e "]

o O O 2D

SYM,
LOC,

MPRICE

3/26/70

np
CNDE

TK

SK
SRJ
SK
AL

BRU
POS
NKCM
EXE

ALARM
BRU
SRJ
EX

BRU
SRJ
PNS
EX

PC
TRA
SLRO
TRM

¢
L

TIME = 12348

0,
N,

A=PARAMETER
LAREL INC

23

K
CKI INE
Y
1

TKDESC
SPRC=p
5
A

MPRICE
CTMILL
A

MPRICE + 3
PT«PRC(
PERU=pP

A

OTY
0

QTYy

B c LAREL
PAR PAR DEC EQU

')

VERSION 02=01=70

98

20
43

22
100

23
78
55

122

122

PAGE 005
REMARKS

XTYPE