
.U_~Q.U ____________ ~SuT~UuD~E~N~T~TUE~X~T~2~OwS~R~O~12~3~-~3
.~l C189-BUIC-ST

Computer Systems Department

BUIC III PROGRAMMER COMPILER LANGUAGE TEXT

April 1968

Keesler Technical Training Center
Keesler Air Force Base, Mississippi

--------- Designed For ATC Course Use ---------
ATe Keesler 9- 4102

ABOUT THE STUDENT TEXT

STUDENT TEXTS are authorized by the Air Training Command as
student training publications for use in training situations peculiar to
courses in this Command. They contain specific information required
by the student to achieve the learning objectives. It contains the
necessary information which is not suitable for student study in other
available publications.

STUDENT TEXTS are designed for ATC COURSE USE ONLY. Every
effort is. made to keep in-use student texts current with technical
orders and other directives. Students are cautioned not to use them
in preference to technical orders or other authorative documents.
When students are authorized to retain student texts they must keep
in mind that these publications will not remain current.

Computer Systems Department
Keesler Air Force Base, Mississippi

student Text 20SR0123-3
April 1968

BUIC III PROGRAMMER COMPILER LANGUAGE TEXT

TABLE OF CONTENTS

TITLE

INTRODUCTION TO JOVIAL

ELEMENTS OF THE LANGUAGE

1. Signs, Elements of the JOVIAL Alphabet
2. Symbols, the Words of JOVIAL
3. Primitive, Name, Loop Variable, Abbreviation, Ideogram, Comment
4. JOVIAL Format

ITEMS

1. Arithmetic Item

(1) Integer
(2) Floating Point
(3) Fixed Point

2. Literal Item

(1) Hollerith
(2) standard Transmission Code

3. status Item
4. Compaol Declarations
5. Presetting
6. Overlay of Simple Items

TABLES

1. Declaration
2. Tabular Items
3. Like Tables
4. Overlay Tables
5. Programmer-Designated Packing
6. Compaol Declaration
7. Presetting
8. Table structure Example

CONSTANTS

1. Arithmetic Constants
2. Literal Constants
3. status Constants

i

PAGE

1

2

3
3
4
5

6

6

6
6
6

6

7
7

7
7
8
8

9

9
10
10
11
11
12
12
13

15

15
15
15

PROGRAMMED STATEMENTS

1. statement Labels
2. Assignment statements
3. Unconditional Transfer statements (GOTO)
4. Program Termination statements (STOP)
5. Decision statements

(1) Conditional statements (IF)
(2) Alternative statements (IFEITH, ORIF, END)

6. Loop statements

(1) Loop Variables
(2) Control
(3) Nesting

7. CompoWld statements (BEGIN ••• END)

ARITHMETIC PROCESSES

MODIFIERS

1. BIT
2. BYTE

SWITCHES

1. Item Switch
2. Index Switch

'LOC AND DEFINE PRIMITIVES

1. Location (' LOC)
2. DEFINE Primitive

FUNCTIONS/PROCEDURES/ CLOSE ROUTINES

1. FWlctions (PROC)
2. Procedures (PROC)
3. Close Routines
4. 'Program
5. Termination (RETURN)

DIRECT CODING

1. Brackets (DIRECT, JOVIAL)
2. Assignment (ASSIGN)
3. Code
4. Card Format

DECK SETUP

ii

16

16
16
17
17
17

18
18

19

19
20
21

23

24

26

26
26

28

28
28

30

30
30

31

31
32
32
33
33

34

34
34
34
36

37

INTRODUCTION TO JOVIAL

JOVIAL is a language with which one
can write programs to solve problems on a
computer. A PROGRAM is a sequence of
instructions to a computer. A PROGRAM
contains the logic which is designed to sove
a particular problem.

Each type of computer is electrically
designed to be sensitive to a specific set of
computer instructions. These are usually
coded in the memory of the computer in
what is called the BINARY language. This
is a language consisting of combinations of
O's and 1 's. The binary language is called
a LOW LEVEL LANGUAGE.

Usually each type of computer has a
set of symbolic instructions corresponding to
the set of binary instructions. These are
coded us i ng alpha b eti c abbreviations
and are call e d SYMBOLIC MACHINE­
INSTRUCTIONS. This symbolic machine lan­
guage is called an INTERMEDIATE LEVEL
LANGUAGE.

A disadvantage of symbolic machine
language is that it is different for each make
of computer. Furthermore, a programmer
using symbolic machine language has to pay
close attention to details peculiar to his
machine. This detracts from his efforts to
form the logic connected with the solution of
the problem he is programming.

To overcome the aforementioned dis­
advantages of intermediate level languages,
HIGH LEVEL LANGUAGES have be en
developed.

A high level programming language is
one which m()re closely approaches the lan­
guage of English and mathematics. It permits
the programmer to be less concerned about
the individual peculiarities of the specific
computer involved and enables him to con­
centrate more conveniently on the logic
involved in the solution of a problem.

JOVIAL is a high level language. other
higher level languages are ALGOL, MAD,
FORTRAN, COBOL, NELLIAC, etc. JOVIAL

was developed by the System Development
Corporation to be used for programming
large scale command and control systems.
Work on the language began in 1959. Since
that time, many modifications and improve­
ments have been made to the language.

The name JOVIAL is an acronym which
is derived from Jules Own Version of the
International Al g e bra i c Language. Jules
Schwartz of the System Development Corpor­
ation was the scientist in charge of the
initial language development. Several col­
leagues of his supplied the name one time
when he was away on a business trip and the
name stuck. JOVIAL it is.

A computer program written in sym­
bolic machine language must be translated
to binary since the computer operates using
instructions coded in binary. A computer
program, called an ASSEMBLER, is used
to perform the translation from the inter­
mediate level language to the lower level
language.

Similarly a computer program written
in a higher level language must be trans­
lated to the binary language of the specific
machine involved. The computer program
which performs this translation is called a
COMPILER.

JOVIAL compilers are in existence for
several makes of computers, two of the
most well-known being the IBM 7090 com­
puter, and the AN/FSQ-31 V or DPC (Data
Processing Central).

Symbolic
Machine
Language'" I ASSEMBLER
for a spe-
cific computer

Lower Level
Language I ... (Binary for a

specific
computer

The diagram shown on the next page
is representative of the functions of assem­
blers and compilers. Usually a compiler
contains only one assembler. For example,
a JOVIAL compiler which translates JOVIAL
program statements to IBM 7090 binary

1

Symbolic Machine
Language for a
specific computer

Lower Level
-----... 1 ASSEMBLER~-----"~ Language (Binary)

. . for a specific
computer

COMPILER

/: 7090 Assembler --) Binary for IBM 7090 / L ____________ _

~~~~~~e;:! any ___ ---.. < _/ ~ __ [ ~ ~~~ ~:~~~i~~ ~~ ~ Binary for DPC 
computer in general 

" I 
"I Philco 2000 

I Assembler 
--t Binary for Philco 2000 

L _________ _ 

instructions, would contain in it only a 
FAP assembler (the 7090 assembler). 

often translated into many sym~lic machine 
instructions . 

It is probably apparent that functions 
in additiOJ'l to assembly' are performed by a 
compiler. This is because the compiler 
has to trans-late·the hlgller leve~ language 
into the symbolic machine. language of the 
assembler involved. AlBa each statement or 
instruction in a higher level language is 

2 

The above diagram also illustrates 
that a program written in a higher level 
language can be operated on different com­
puters by having the translation to binary 
performed using the appropriate compiler. 
This is a distinct advantage over writing at 
the intermediate language level, where the 
program can be operated ONLY on the com­
puter for which it was written. 



ELEMENTS OF THE LANGUAGE 

A program written in JOVIAL consists basically, of statements and declarations. The 
statements specify the computations to be performed with arbitrarily named data. There are 
both simple statements and complex statements which can be grouped together into compound 
statements. Among the declarations are data declarations and processing declarations. The 
data declarations name and describe the data on which the program is to operate, including 
inputs, intermediate results, and final results. The processing declarations generally contain 
statements and other declarations. They specify computations, but they differ from statements 
in that the computations must be performed only when the particular processing declaration 
is specifically invoked by name. In addition to statements and declarations there are directives 
by means of which the compiler is caused to change its interpretation of certain structures in 
the program. The statements, declarations, and directives are composed of symbols, which are 
the words of the JOVIAL language. These symbols are in turn composed of signs which comprise 
the JOVIAL alphabet. 

1. SIGNS, ELEMENTS OF THE JOVIAL ALPHABET 

SIGN means a letter, a numeral, or a mark. 

LETTER means one of the twenty-six letters of the English alphabet, written in the 
form of a roman capital. 

NUMERAL means one of the ten Arabic numerals ~, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

OCTAL NUMERAL means one of the following numerals: ~,1, 2, 3, 4, 5, 6, 7. 

MARK means one of the twelve marks, each associated with a name or names in 
parentheses, in the following list: 

(1) + 

(2) -

(3) # 

(4) / 

(5) (blank) 

(6) 

(7) , 

(8) = 

2. SYMBOLS, THE WORDS OF JOVIAL 

(9) ( 

(10) ) 

(11) , 

(12) $ 

The symbols or words of the JOVIAL language are composed of strings of signs, in some 
cases a single sign. Most symbols do not contain spaces. In fact, spaces serve to separate 
symbols from one another. In the definitions of symbols, the phrase "enclosed in parentheses," 
means having a left parenthesis on the left and a right parenthesis on the right without any 
intervening spaces. If the input medium is cards (or card-images or other "unit records") 
each symbol must be completely contained on one card. 

SYMBOL means one of the following expressions: 

(1) primitive 
(2) constant 
(3) loop variable 
(4) abbreviation 
(5) name 
(6) ideogram 
(7) comment 

3 



The above definition contains a categorical listing of all JOVIAL symbols, but primi­
tive and ideogram have reference to the way these symbols are written rather than their use 
in constructing programs. These two categories can be regrouped in ways that are more sug­
gestive of their roles in the language. 

Those symbols which are primitives or ideograms include the categories in the following 
list, which is not exhaustive: 

(1) arithmetic operator 
(2) relational operator 
(3) logical operator 
(4) functional modifier 
(5) bracket 

3. PRIMITIVE, NAME, LOOP VARIABLE, ABBREVIATION, IDEOGRAM, COMMENT 

The following list includes all the primitives of the JOVIAL language: 

ABS ENT 'LOC 'PROGRAM 
ALL ENTRY LQ RETURN 
AND EQ LS START 
ASSIGN FOR NENT STOP 
BEGIN GOTO NOT SWITCH 
BIT GQ NQ TABLE 
BYTE GR NWDSEN TERM 
CLOSE IF OR TEST 
DEFINE IFEITH ORIF 
DffiECT ITEM OVERLAY 
END JOVIAL PROC 

A primitive is a symbol consisting, usually, of two or more letters and having a specjfic 
meaning in the JOVIAL language. In the above list there are two primitives that begin with the 
prime. This is in accordance with a policy of requiring the spelling of any new primitive 
added to the language to begin with this mark. The purpose is to avoid outlawing any previously 
written programs by preventing the possibility of a new primitive being identical to any name. 

A NAME is a string of two through EIGHT LETTERS, numberals, and primes with the 
following characteristics: 

(1) It has no more Signs than will fit in a machine word. 
(2) It is not identical to any primitive. 
(3) It begins with (the leftmost sign is) a letter. 
(4) The rightmost sign is not a prime. 
(5) It does not contain two consecutive primes. 
(6) It is not identical to any of the words in the following list: 

ARRAY 
CHAR 

FILE 
INPUT 
MANT 

MODE 
ODD 
OPEN 

OUTPUT 
POS 
SHUT 
STRING 

The above twelve words are primitives-in the full JOVIAL language, but not in this sub­
set. Nevertheless, even in the subset, names must avoid these conflicts. 

4 



LOOP VARIABLE. Any single letter can be used as a loop variable. It is the context in 
which it is used that characterizes it as a loop variable. A loop variable is often called by 
other terms such as for-variable or single-letter subscript. 

ABBREVIATION. Several letters are used, standing alone, as abbreviations. The meaning 
of an abbreviation depends on context. Those letters which may be used as abbreviations will 
not be exhibited here, but will be shown and explained in connection with the forms in which 
they can occur. 

IDEOGRAM means a string of marks having meaning in JOVIAL. Each of the twelve 
marks except the space and the p rim e is a Iso an ideogram. Following are listed the 18 
ideograms. 

+ 

* 

/ 

" 

*) 

(/ 

/) 

** 

COMMENT means two primes followed by a string of signs followed by two primes. The 
string of signs between the two sets of doubled primes may contain spaces. It must not contain 
two primes in succession; the last sign before the second set of two primes must not be a 
prime; and the string of signs must not contain' except in the following two combinations: 

(~ 
$) 

4. JOVIAL FORMAT 

JOVIAL programs are compiled from a deck of punched cards either pre-stored on mag­
netic tape or read in via the on-line cardreader. Each JOVIAL program must be bracketed by 
two cards: the START card at the beginning of the program; and the TERM~ card at the end of 
the program. 

Each JOVIAL statement must be followed by a $. Blanks are used to separate words in a 
JOVIAL statement unless a unique character separates the words. For example: 

xx = AA + BB * 
may be written with spaces, as above, or without spaces. The deliminaters =, +, and ~ are 
unique and serve to separate XX, AA, and BB. 

More than one JOVIAL statement may be written on a card and a JOVIAL statement may 
continue from one card to another. The end of a card has no significance in JOVIAL except for 
direct coding. The first 64 columnS of a card image are normally the only ones interpreted by 
the compiler, unless otherwise directed by the control card. 

5 



ITEMS 

An item may be declared at any point in a JOVIAL program. However, an item which is not 
a simple signed integer item must be declared prior to its use in the program; simple signed 
integer items need not be declared because the compiler automatically treats all undeclared 
simple items as 48 bit signed itegers. An item declaration has the following g.eneral format: 

ITEM item name item description 

There are three types of items: 

1. Arithmetic items: 

a. Integer 
b. Floating Point 
c. Fixed Point 

2. Literal items: 

a. Hollerith 
b. Standard Transmission Code 

3. Status items 

A simple item declaration reserves a full computer word for the item. No item can exceed 
one computer word in length. 

1. ARITHMETIC ITEM 

A U or S in an arithmetic item description indicates whether the item is unsigned or 
signed. If the item is Signed, the Sign bit is included in the number of bits specified. 

(1) INTEGER 

I number of bits U or S 

For example: 

ITEM DAY I 3 U 

(2) FLOATING POINT 

A floating point item always occupies a full computer word. 

F 

For example: 

ITEM SPEED F 

(3) FIXED POINT 

A number of bits U or S number of fractional bits. 

6 



For example: 

ITEM XPOS A 16 S 5 $ 

2. LITERAL ITEM 

Each character in a literal item will occupy 6 bits of a computer word. 

(1) HOLLERITH 

H number of characters 

For example: 

ITEM DAY H 3 

(2) STANDARD TRANSMISSION CODE 

T number of characters 

For example: 

ITEM NAME T 7 

3. STATUS ITEM 

S number of bits V(status identifier) V(status identifier) V(status identifier) etc 

For example: 

ITEM IDENT V(FRND) V(HOST) V(UNK) V(INT) V(FAKER) $ 

Note that the number of bits need not be specified. In the example cited, five statuses of 
identification have been specified. This indicates a range of values which requires three bits 
of a computer word. Each status specified is assigned a numerical value beginning with zero 
for the first status, one for the second, etc., up to the limit of a computer word. 

4. COM POOL DECLARATIONS 

Items of any type which are used by more than one computer program may be declared in 
a compool and referred to by computer programs using the compool. The use of a compool 
removes the neceseity for the repetition of item declarations by a number of computer programs 
when more than one computer program uses the same item at the same location. 

The Control Card provides the means by which the use of a compool is indicated and the 
particular compool desired is specified. If the same item name is defined both by the compool 
and by the computer program using the compool, the computer program's definition is used. 

Items defined in a compool are used by a computer program calling for the compool 
exactly as if the item had been declared by the computer program. All tabular items must be 
declared either in the compool or in the computer program before being used, or else an error 
will be diagnosed; all simple items common to more than one computer program must be 
similarly declared to establish communality; all simple items which are declared neither in 
the compool nor in the computer program will be treated as 48 bit signed integer items. 

7 



5. PRESETTING 

The value of a simple item may be preset at the time the item is declared. This may be 
done in two ways: 

(1) Add the preset value following the item description. 

For example: 

ITEM FIX A 24 S 5 P 12.5A5 

In this case, the letter P indicated that the following value is initially assigned to item 
FIX. 

(2) Use the preset value to both describe and preset the item. 

For example: 

ITEM YPOS 135.5A5 

In this case, item YPOS will be established as a fixed point item with 5 fractional bits 
and with a total number of bits sufficient to contain the preset value 135.5. However, caution 
should be exercised in presetting items in this way in case the preset value is smaller than 
the largest value the item is expected to attain. 

Some additional examples of this method are: 

ITEM 

ITEM 

NAME 

XPOS 

4H(EARL) 

135.5 $ 

6. OVERLAY OF SIMPLE ITEMS 

It is possible to specify that storage for simple items be allocated in particular sequences. 
This would not be useful except that it is also possible to specify that these sequences start in 
the same machine word. Thus an item may have more than one name, each name correspond­
ing to an entirely different description of the item. 

For example: 

where 

where 

OVERLAY TEMPI = TEMP2 TEMP3 

TEMPI could be treated as an integer variable 
TEMP2 could be a floating variable 
TEMP3 could be a literal variable 

OVERLAY xx, YY, zz 

xx, YY and ZZ will be assigned consecutive storage locations. 

A particular item name may be used no more than once in overlay declarations. Any item 
named in an overlay declaration must have been previously defined in the program or by the 
compool. 

8 



TABLES 

A table is a group of items organized as entries. The first entry of a table is defined as 
entry ~; that is, when a tabular item is subscripted with a value of zero, the first value for 
that item in the table is indicated. 

ENT and ENTRY are equivalent JOVIAL primitatives and may be used interchangeably 
to refer to all items of an entry of a table. 

For example: 

ENTRY {T ABI . ($ ~ '» = ~ $ 

or 

IF ENT {DATA (~INDEX.» GR ~ $ 

1. DECLARATION 

A table may be declared at any point in a program. However, a table must be declared 
prior to its use in the program. The items which make up a table must be declared as part of 
the table declaration. A table must have at least one item associated with it. 

TABLES 

A table declaration has the following format: 

TABLE table name R or V number of entries S or P Nor M or D 

Table name is optional. R or V indicates whether the table is of rigid length or variable 
length. 

The number of entries is obtained by determining the number of times the most 
frequently used item will appear in the table. For variable length tables, the maximum values 
of these numbers should be used. 

S or P is optional and indicates that the table format is serial or parallel. For example: 

SERIAL PARALLEL 

{ 
Item A 

1 
Item A } Entry ~ 

Entry ~ 
Item B Block ~ 

Item A 
Item C Item A 
Item D Item A 

Emry 1 1 -~11 
} Entry ~ Item A Item B 

Item B Item B 

Item C Item B 
Item D Item B 

etc. etc. 

If S or P is not specified, parallel format will be used. 

9 



N or M or D is optional and specifies the table packing. N means no packing, i.e., 
each item in the table will occupy a full computer word. M means medium packing. The 
compiler will make optimum use of 6-bit characters in assigning storage to items. D means 
dense packing. Each item in the table will immediately follow the previous item with no bits 
unused if possible. A single item will not be divided between two words. 

If no packing is specified, the compiler will assume an N. 

2. TABULAR ITEMS 

The items to be included in a table must be declared immediately following the table 
and must be preceded and followed by "brackets" formed by the JOVIAL primitives BEGIN 
and END. An example of a complete table declaration is as follows: 

TABLE TRACK V 5~ S M $ 

BEGIN 

ITEM XPOS A 16 S 5 f 
ITEM YPOS A 16 S 5 f 
ITEM IDENT S V(FRND) V(HOST) V(UNK) $ 

END 

3. LIKE TABLES 

Like table declarations are used to declare a table which is structurally similar to a 
previously declared table, without going through a lengthy table declaration. For example: 

TABLE TRACKA L 

This causes the JOVIAL compiler to reserve separate space for a table identical to the 
one referenced. The table description and the items within the like table will hve the same 
format as the referenced table. 

The like table declaration must follow the declaration of the referenced table and must 
use the same table name plus any alphabetic character suffixed to the name. 

When referring to items within a like table, the suffix of the table must be added to the 
item name. Like table declarations may also have a different format from the previously 
declared table. For example, to set up a single entry table with the same item configuration 
as the table named TRACK, the following like table declaration may be used: 

TABLE TRACKA R 1 L 

A like table may also have different structure and packing from the original table by 
including appropriate variations in the like table declaration. 

10 



4. OVERLAY TABLES 

Tables may be assigned to share common storage space by use of the OVERLAY state­
ment. The tables must have been declared prior to their appearance in an OVERLAY statement. 
For example: 

OVERLAY TAB1 TAB2 $ 

This will cause the tables T AB1 and T AB2 to begin at the same storage location. It is the 
programmer's responsibility to determine which table's data is occupying the shared storage 
space at any given time. The OVERLAY statement may also be used to cause tables to occupy 
consecutive locations in the computer's storage space. For example: 

OVERLAY TAB1, TAB2 

will cause table T AB2 to follow T AB1 immediately. 

The two uses of the overlay statement may appear in combination: 

OVERLAY TAB1, TAB2 TAB3 

This will cause tables TAB1 and TAB2 to occupy consecutive locations in storage, and TAB3 
will begin at the same storage location as T AB1. 

If the overlay declaration contains a number or an octal constant, the common origin of 
the sequences will be the location identified by the value of the constant. For example: 

OVERLAY 
OVERLAY 

1024 
0(1000) 

TAB1 $ 
TAB2 $ 

The name of a data structure may appear no more than once in overlay declarations. 
Data structures named in an overlay must first be defined, either by COMPOOL or declaration 
in the program. COMPOOL-defined tables in the overlay declaration must precede all other 
names. Overlayed tables must not be provided with preset values. 

5. PROGRAMMER-DESIGNATED PACKING 

The packing of a table may be designated by the JOVIAL programmer as part of the 
table declaration. It will not be possible to preset the values of items in such tables. 

Example of designated packing: 

TABLE UFO V 5~~ S $ 

BEGIN 

ITEM IDE NT H 4 ~ ~ $ 
ITEM ALT I 24 ~ 24 

* ITEM LAT I 24 U 1 ~ $ 

ITEM LONG I 24 U 1 24 • END 

11 



The ~ ~ following the description of item IDE NT indicates that the item will be stored 
in the first word of each entry and will begin with the first bit of the word. For item AL T, the 
item will be stored in the first word of each entry and will start at bit 24. Items LAT and LONG 
will be stored in word 1, or the second word, of each entry and will start at bits ~ and 24, 
respectively. 

(IJ 
1 

IDE NT 
LAT 

48 
ALT 
LONG 

It will also be possible to overlay items in tables packed in this manner. For example, 
if the following item were added to the table UFO: 

ITEM SOURCE I 28 U 1 

This item would overlay the items LAT and LONG in word 1 of each entry. 

6. COMPOOL DECLARATION 

The same rules for compool declaration of items apply to tables. 

7. PRESETTING 

Items within a table are preset by specif~ng the preset values between BEGIN •.• END 
brackets immediately following the item declaration. The first value specified will be assigned 
to the item in entry ~, the second value to the item in entry 1, etc., for as many preset values 
as are specified. The maximum number of preset values is the same as the number of entries 
for the item. For example: 

12 

TABLE R 5~ M $ 

BEGIN 

END 

ITEM FIX A 24 S 5 $ 
BEGIN 

12.5A5 6~.3A5 27.4A5 

END 

ITEM NAME H 3 $ 

BEGIN 

3H(BOS)3H(PSM)3H(JAX)3H(NYC) 

3H(WDC )3H(ALB)3H( CHI) 

END 



The value of the fixed point item FIX in the first three entries of the unamed table will 
be preset to the values indicated. The values of the hollerith item NAME in the first seven 
entries of the table will be preset to the names indicated. 

8. TABLE STRUCTURE EXAMPLE 

An example of processing variable length tables with programmer designated structure: 

TABLE INFO V 400 S 2 $ 

BEGIN 

ITEM SHIP S V(CAR) V(TANK) V(SUB) 

V(DES) 0 0 $ 

ITEM SHIPID H 3 0 8 $ 

ITEM AmCFT I 16 U 1 16 ~ 
ITEM TORPED I 8 U 1 24 $ 

ITEM CAR CAP I 24 U 1 8 

* ITEM MAXRNG F 1 0 • 
END 

48 
0 

1 

0 

1 

0 

1 

0 

1 MAXRNG 

The preceding table INFO is designed to make more efficient use of storage space when 
the items AmCFT, TORPED, CARCAP, and MAXRNG apply to the statuses V(CAR), V(SUB), 
V(TANK), and V(DES) respectively, and to the statuses V(CAR), V(SUB), V(TANK), and V(DES) 
respectively, and are mutually exclusive. Thus, for a tanker, V(TANK), only the cargo capa­
city, CAR CAP, is of interest. Therefore, the other items do not apply and there is no need 
to reserve separate storage space for them in each entry of the table. 

13 



For example, to obtain the number of aircraft in a fleet composed of carriers, tankers, 
destroyers, and submarines using the above table: 

AIR = fj $ 

FOR I = ~, 1, NENT(INFO)-1 $ 

BEGIN 

END 

IF SHIP (~ 1$) EQ V(CAR) $ 

AIR = AIR + AIRCFT (f I ') ~ 

A similar table structure could be obtained by using an overlay statement instead of the 
programmer-designated structure. For example: 

OVERLAY TORPED = CARCAP = MAXRNG = AIRCFT ~ 

In this case, space would be reserved for the largest item (MAXRNG) and all the other 
items would be right justified within that space. 

14 



CONSTANTS 

A constant must be able to fit in a single machine word. 

1. ARITHMETIC CONSTANTS 

Integer 

Fixed Point 

Octal 

2. LITERAL CONSTANTS 

Hollerith 

standard Transmission Code 

3. STATUS CONSTANTS 

status 

Written as signed or unsigned decimal values with 
no decimal point, e.g., +10, 6, -20, 12E3. The 12E3 
signifies 12 multiplied by 1~3, or 12~~~. 12E-3 
would mean 12 x 10-3 • 

Written as signed or unsigned decimal values with 
a decimal point, followed by the letter A, followed 
by the number of fractional BITS desired, e.g., 
+1~.A~, 5.6Al, -3.18A5E3. Care should be used in 
specifying the number of fractional bits so that 
the desired accuracy is achieved. 

Written with the letter 0, followed by an octal 
number enclosed in parentheses, e.g., 0(3762). 
16 octal digits are the maximum permitted. 

Written as a decimal number, followed by the 
letter H, followed by hollerith characters enclosed 
in parentheses. The number of hollerith characters 
(including spaces) must be the same as the decimal 
number preceding the H, e.g., 

3H(MON) 

7H(JAN-DEC) 

8 letters are the maximum permitted. 

Written with the same format as hollerith but 
using the letter T, e.g., 

3T(MON) 

8 characters are the maximum permitted. 

Used to set an item equal to the value of a status, 
e.g., 

TAPSTAT = V(READY) 

where READY must have been declared as a 
status value for TAPSTAT previously. 

15 



PROGRAMMED STATEMENTS 

1. STATEMENT LABE LS 

A statement label may be the same as an item name and has the same restrictions des­
cribed for identifiers in Section 1.1c. statement labels must not be modified'arithmetically 
either in the labeled statement or in a statement referring to the labeled statement. The 
statement label must be followed by a period in the statement which it labels. The period is 
not used in statements referring the the labeled statement, for example: 

GOTO CHECK $ 

CHECK. XX YY + ZZ ~ 

A statement may have more than one label. Each label must be follwed by its own period. 

2. ASSIGNMENT STATEMENTS 

The assignment statement consists of a variable followed by equal sign (=) followed by a 
variable, a constant or a numeric formula. The assignment statement is written in the form of 
an equation, but it is not an equation. Any arithmetic indicated in the right- hand side of the 
statement is performed and the resulting value is assigned to the variable on the left-hand 
side. No arithmetic can be performed in the left-hand side. The left-hand side denotes a single 
variable value. Mixtures of item types (e.g., floating, integers, arithmetic) are permissible 
and any necessary conversions implied will be performed by the compiler. If the computed 
value of the right- hand side is not the same numeric form as the variable on the left, the value 
will be converted before it is assigned. For example: 

xx = yy , 

ZZ(~A$) = AA + BB - CC*DD $ 

Literal assignment is also possible. In executing literal assignment statements there will 
not be any conversion among hollerith, transmission code, and octal values. The value of the 
right-hand side must be the same length as the literal variable on the left-hand side. For 
example: 

STATE 

STATE 

5H(READY) $ 

5H(NO GO) ~ 

In a status assignment statement, if the right-hand side contains a status constant, it 
must be one of those previously declared for the variable in the left-hand side. Otherwise 
there is no way for the compiler to associate a value with the status constant. For example: 

WEATHER 

CARD 

16 

V(CLOUDY) , 

V(SPADE) $ 



3. UNCONDITIONAL TRANSFER STATEMENTS (GOTO) 

The unconditional transfer is generated by the JOVIAL primitive GOTO followed by a 
statement label, for example: 

GOTO CHECK 

The next instruction operated by the program will be the statement labeled CHECK. 

4. PROGRAM TERMINATION STATEMENTS (STOP) 

A machine halt is generated by the statement: 

STOP$ 

An additional use of this statement is: 

STOP XX$ 

where XX is a statement label. In this case, the program will continue at the statement labeled 
XX, when the computer is restarted. 

5. DECISION STATEMENTS 

Decision statements are used in decision-making processes where two or more alternatives 
are available. Decision statements are divided into" conditional statements (IF) and alternative 
statements (IFEITH, ORIF) and involve the use of relational operators and logical operators. 
A decision statement must not be followed immediately by another decision statement. 

RELATIONAL OPERATORS 

The JOVIAL relational operators are: 

EQ equal to 

NQ not equal to 

GR greater than 

LS less than 

GQ greater than or equal to 

LQ less than or equal to 

LOGICAL OPERATORS 

The JOVIAL logical operators are: 

AND 

OR 

NOT 

17 



(1) CONDITIONAL STATEMENTS (IF) 

Conditional statements are introduced by the JOVIAL primitive IF. If the relational 
expression following the IF is true, the next statement is executed. If it is false, the next 
statement is skipped. For example: 

IF XX. GR AA $ 

GOTO A1 , 

XX = XX +1 * 
If the value of XX is greater than that of AA, the GOTO statement will transfer 

operation to the statement labeled A1; otherwise XX will be incremented by 1, etc. 

An IF statement may include a string of relational and logical operators. For 
example: 

IF ABLE EQ BAKER AND TEMP EQ ~ , 

or 

IF ABLE LS BAKER LQ 

When using AND, each part of the statement must be true for the whole statement 
to be true. When using OR, if either expression is true, the whole statement is true. 

The JOVIAL system processes IF statements from right to left. If parentheses 
are used, they are interpreted first within any expression. For example: 

IF ABLE EQ BAKER AND (TEMP EQ ~ OR PRESS LS 14.7) , 

Arithmetic may also be performed in IF statements, for example: 

IF XX-3* TEMP**4 LS YY*2 , 

Expressions used with relational operators should be consistent in scaling. Float­
ing, fixed, integer, literal, etc., values should not be mixed, as opposed to normal arithmetic 
statements. 

(2) ALTERNATIVE STATEMENTS (IFEITH, ORIF, END) 

Alternative statements are introduced by the JOVIAL primitives IFEITH or ORIF. 
The IFEITH introduces a set of alternative statements which consists of the initial IFEITH 
followed by a non-decision statement, optionally followed by ORIFs alternating with non­
decision statements, and terminated by an END. For example: 

18 



IFEITH ALPHA LS BETA $ 

ALPHA = BETA ~ 

Al. ORIF ALPHA + BETA GR Ifj $ 
A2. BEGIN 

GAMMA (ALPHA + BETA) / 2 $ 

ALPHA GAMMA + 1 $ 
BETA = GAMMA + 1 $ 

END 

ORIF ALPHA EQ 1 $ 

GOTO ERROR $ 

END 

A3. ALPHA = fj , 
Each alternative is tested in turn; testing may start with the IFEITH or by branch to a 

labeled (AI) ORIF. The conditions expressed after the lFEITH or ORIF are tested and, if false, 
control passes to the next alternative. In the example, if the IFEITH is tested first and found 
false, the ORIF labeled Al would be tested next. If an alternative statement is tested and found 
true, the non-decision statement immediately following the true alternative statement is 
executed; if this execution does not cause control to pass out of the set of alternatives (in the 
example, see the compound statement labels A2), the remaining alternatives will be skipped 
when execution of the non-decision statement is complete and control will pass to the state­
ment following the terminating END (in the example, control would pass to the statement labeled 
A3). 

All rules for the evaluation of the conditions following the IFEITH and ORIF in the alter­
native statements are identical to those applying to IF statements. 

6. LOOP STATEMENTS (FOR) 

(1) LOOP VARIABLES 

A loop variable is a single letter variable which is preset by a FOR statement. 

For example: obtain the sum of all XX entries in a 7-entry table: 

SUM = fj $ 

FOR 1= fj, 1, 6 ~ 

SUM = SUM+XX($ I $) $ 

19 



The right term of the FOR statement defines the indexing of the value of I in 
the loop. That is, the initial value of I is ~; after each pass through the loop, I will be incre­
mented by 1, and the last pass through the loop will be made with I equal to 6. 

The reverse of the above procedure may also be used, for example: 

FOR I = 6, -1, ~ $ 

A numeric formula may be substituted for any of the three constants to the 
right of the =. 

When the number of entries in a table is not known or may change for subse­
quent compilation and the entire table is to be processed, the JOVIAL primitive NENT may 
be used. NENT followed by a table name or the name of a table item will automatically obtain 
the number of entries in the table or the number of entries of an item contained in the table, 
for example: 

NENT (TAB1) 

will give the number of entries in the table or the number of entries in the table containing 
TAB1, depending on whether TABl is declared as a table or an item. 

To process all entries in a table by using a loop variable, the number of 
entries must be reduced by 1 to account for the convention of starting a table with entry ~, 
for example: 

FOR I = ~, 1, NENT(TAB1) -1$ 

Another method of processing a complete table is to use the JOVIAL primitive 
ALL, for example: 

FOR I = ALL(T AB1) $ 

In this case, the initial value of I will be set to the number of entries minus 1, and will be 
decreased by 1 for each pass through the loop, down to and including entry ~. The same 
effect is achieved with ALL (item name). 

A similar use may be made of the JOVIAL primitive NWDSEN, signifying the 
number of words per entry, for example: 

NWDSEN (T AB1) for a table 

NWDSEN (XX) for a table item 

(2) CONTROL 

Loops are controlled by FOR statements primarily. However, the value of a 
loop variable (and therefore the control of the loop) may be altered by an assignment statement 
resetting the loop variable within the loop. The value of a loop variable assigned by a FOR state­
ment is only valid for the JOVIAL (compound) statement following the FOR statement. otherwise, 
it is undefined. A compound statement bracketed by BEGIN .... END primitives is frequently 
used following a FOR statement, for example: 

20 



FOR I = 0. 1, 499 $ 

BEGIN 

END 

XX(~ I ') = 0 , 

yy($ I~) = 0 $ 

This loop sets the first 500 values of items XX and yy to zero. 

If several FOR statements precede a loop, the first of these controls the 
loop, for example: 

FOR A = 0, 2, 10.0 $ 

FOR B = 12, 3 ~ 

FOR C = 60, -1, 25 $ 

FOR D = 7 

BEGIN 

END 

This loop will operate until the test value for A equals 10.0. However, each 
time a pass is made through the loop, the values of A, B, and C will be incremented. The value 
of D will remain at 7 since no increment has been specified. The test value specified for C 
will be ignored since the first FOR statement controls the loop. 

If the first FOR statement does not contain a test value, no automatic test will 
be made for the loop and some other means, such as a GQTO statement, must be used to termi­
nate the loop. 

Similarly, a FOR statement may have a single factor, for example: 

FOR 1=.0 $ 

In this case, incrementing must b accomplished by some other means such as an assignment 
statement. 

(3) NESTING 

Nested FOR statements generate loops within loops, for example: 

21 



SAMPLE = ~. 

FOR I = ~, 1~, 49 $ 

BEGIN 

FOR J = I, 1, 1+9 $ 

BEGIN 

END 

SAMPLE = SAMPLE + ABLE(~ I ') ~ 

END 

In this case, the values of ABLE are set to the values of BAKER, in groups of 
ten. The value of SAMPLE is the sum of every 1~h value of ABLE, beginning with the first 
value of ABLE, then the eleventh, 21st, etc. Note that the BEGIN ••• END brackets of the internal 
loop are not necessary since there is only one statement in the loop. 

In some cases, it may be desirable to exit from an inner to an outer loop, or 
to increment a loop variable, if some condition occurs before a complete pass has been made. 
This is accomplished by using the JOVIAL primitive TEST, for example: 

FOR I = ~, 1~, 49 $ 

BEGIN 

FOR J = I, 1, 1+9 , 

BEGIN 

IF BAKER(~ J $) EQ ~ $ 

TEST I. 

ABLE($ J ;) = BAKER(. J ~) $ 

END 

SAMPLE = SAMPLE + I $ 

END 

Whenever the value of BAKER($ J $) is equal to ti, the TEST I statement will 
nperate and will cause the program to skip to the end of the loop controlled by I, whereupon I 
will be incremented and, if I has not exceeded 49, another pass made. If a loop variable is not 
specified after TEST, the program will increment the loop variable of the innermost loop 
containing the TEST statement. 

22 



Note that the value of aloop variable is always incremented BEFORE making 
the test at the end of the loop. 

7. COMPOUND STATEMENTS (BEGIN ..• END) 

A compound statement is a group of JOVIAL statements bracketed by the JOVIAL 
primitive BEGIN and END. The compound statement is treated as if it were a single JOVIAL 
statement. A co~mon use for the compound statement is to perform a series of calculations if 
an IF statement is true, for example: 

IF ABLE EQ 7 $ 

BEGIN RST = 6 $ 

XYZ = 3 $ 

GOTO Al ~ 

END 

RST = 7 $ 

XYZ = 4 $ 

AI. STOP $ 

In this case, the three statements following BEGIN will be executed if the IF statement is 
true. Otherwise, the statements following END will not be executed following the IF statement. 
Note that BEGIN and END are not followed by the ,. 

Another example of a compound statement: 

IF PLANE EQ V(HOSTILE) $ 

BEGIN 

ALARM = V(ON) $ 

GOTOXX, 

END 

ALARM = V(OFF) ~ 

XX. STOP $ 

23 



ARITHMETIC PROCESSES 

JOVIAL arithmetic is performed using arithmetic operators and variables. Parentheses 
may be used within a JOVIAL arithmetic expression (also called a numeric formula), for 
example: 

AA*(CC+EE) + GG 

Arithmetic operators of the same level are processed from left to right. When paren­
theses are used, the expressions within them are processed in order, starting at the innermost 
parentheses. 

The levels of JOVIAL arithmetic, in descending order of processing priority, are: 

(1) Negation 

(2) Exponentiation 

(3) Multiplication 

(4) Division 

(5) Addition 

(6) Subtraction 

Negative exponents are legal. Negative roots and division by zero will give unpredicable 
results. Each arithmetic operation involving a floating point value is performed in floating point. 

24 

ARITHMETIC OPERATORS 

The following arithmetic operators are used in JOVIAL: 

+ add 

subtract 

* multiply 

I divide 

** or (* *) exponentiation 

ABS ( ) or (/ I) absolute value 

Examples of JOVIAL arithmetic: 

2 
(1) a -4bc + 2c-8ab 

c c 

may be written as 

(AA**2-4*BB*CC) Icc + 2*CC' - 8*AA*BB/cc 



432 
(2) ax + bx + cx + dx + e 

may be written as 

AA*XX**4+BB*XX**3+CC*XX**2*DD*XX+EE 

or, by factoring, 

( ( (AA*XX+BB)*XX+CC)*XX+DD)*XX+EE 

Factoring of an algebraic expression usually reduces the amount of coding 
produced by a JOVIAL statement. 

25 



MODIFIERS 

1. BIT 

In order to extract one or more bits from an item, the JOVIAL primitive BIT is used. 
The starting bit of a group of bits, the number of bits to be extracted, and the item all must 
be specified. If only a single bit is to be extracted, the number of bits need not be specified. 

For example: 

BIT($ 0 $) (NUM($ I $» 

This expression will extract the first bit of item NUM(, I ~). 

For example: 

BIT($ 0, 4 $) (AMOUNT) 
I 

This expression will extract the first four bits of item AMOUNT. 

For example: 

BIT($ 7, 3 $) (NAME) 

This expression will extract three bits starting at the eight bit (bit #7) of item NAME. 

The starting bit is relative to the high order bit of the item specified, not of the word in 
which the item is stored. 

If more than one bit is extracted, no check is made by the compiler to determine that all 
the bits are within the item specified or that the end of the word is not exceeded. 

An example of extracting bits from one item and depositing them in another item: 

BIT(, 0, 4 $) (AMOUNT) = BIT(* 0, 4 .) (NUM(~ I '» * 

2. BYTE 

The BYTE modifier is used in exactly the same way as the BIT modifier except that the 
first number indicates character position and the second indicates number of characters. The 
BYTE modifier causes 6-bit bytes to be extracted from the item specified. BYTE modifiers 
are treated as literal constants when used in arithmetic expressions. 

For example: 

BYTE ($ 0, 2 $) (IDENT(* I $» 

This expression will extract the first twelve bits of IDENT(~ IS). 

26 



For example: 

IF BYTE (~ ~~) (NAME($ J $)) EQ 1H(B) $ 

GOTO READ $ 

GOTO SKIP $ 

For example, conversion of a hollerith number to a decimal number: 

DEC = ~ $ 

FOR J = ~, 1, 3 $ 

DEC = DEC+BYTE('3-J~) (NUM)*1~**J~ 

Note that any arithmetic performed in the BYTE modifier (e.g., ($3-J$) above) must 
have a positive value. Any fractional values will be truncated to give an integer. 

27 



SWITCHES 

A JOVIAL switch is used in cases where multiple branching is desired. For example, 
a switch could be used instead of the following sequence: 

IF ABLE EQ ~ $ 

GOTOXX $ 

IF ABLE EQ 1 $ 

GOTO YY ~ 

IF ABLE EQ 2 $ 

GOTO ZZ * 
1. ITEM SWITCH 

An item switch is declared by specifying the primitive SWITCH, the switch name, the 
item to switch on, the item values to be tested, and the statement labels associated with the 
item values. For example, a switch to accomplish the above multiple branching sequence would 
be written: 

SWITCH BACK (ABLE) = (~=XX, 1=YY, 2=ZZ) ~ 

where BACK is the switch name. 

Whenever it is desired to branch to one of the specified statement label locations based 
on the value of able, the statement GOTO BACK $ is used. If none of the conditions of the 
switch are met, the program will continue at the statement following the GOTO statement. 
Caution should be used in locating a switch declaration within a JOVIAL program. Since 
the declaration causes the generation of code, it should be located so that control cannot 
"fall" into it during normal execution of the program. 

A switch name may be subscripted if the item to switch on is a table item. The switch 
declaration format is the same as that referencing a simple item (see last example). For 
example: 

FOR I = ~, 1, 1~, ~ 

GOTO BACK (+ I $) ~ 
In this case, the test will be made on ABLE (~ I.). 

2. INDEX SWITCH 

An index switch is declared using the primitive SWITCH, the switch name, and a list 
of statement labels, for example: 

SWITCH BACK = (AA, BB, CC, DD, XX) , 

28 



An index value is assigned to each statement label, beginning with ~ and increasing by 1 
for each label specified. Thus, in the example above, the index value of AA is ~, BB is 1, XX is 
4. This switch is referenced using a GOTO statement containing the index switch name, 
for example: 

GOTO BACK (~ I $) ~ 

If the value of I is 2, then, in the above example, the program would branch to the statement 
labeled CC. 

The value of the index must not exceed the index values contained in the switch declaration: 
if it does, the results are unpredictable. 

Index values without associated statement labels may be included in a switch declaration 
by omitting the statement label but including the comma. Such index values will cause the pro­
gram to return to the statement following the statements which referenced for the switch, for 
example: 

SWITCH BACK = (AA"CC"DD) + 
If this switch is entered by the statement 

GOTO BACK ($ I f) , 
then, for the cases when I has a value of 1 or 3, the program will return to the statement 
following the GOTO statement. 

29 



'LOC AND DEFINE PRIMITIVES 

1. LOCATION ('LOC) 

The JOVIAL location function, 'LOC gives the address of a table, item, statement label 
or program when declared using the format: 

'LOC (NAME) 

Note that the address is the absolute core address. 

Program names and statement labels must be followed by a period. The 'LOC function 
for a table will give the address of the first word of the table (excluding any control words) • 
. The 'LOC function for a subscripted variable will give the address of the first occurrence 
of the variable in the table. 

The 'LOC function may be used in any numeric formula. 

2. DEFINE PRIMITIVE 

The JOVIAL primitive, DEFINE, is used to set the value of an item. Once defined, an 
item may be redefined by a new DEFINE statement but may not be "undefined." A JOVIAL 
primitive may not be redefined. A DE FINE statement equates a name with a numerical value 
bracketed by double primes ("). The name may then be used for the value in subsequent 
statements. 

For example: 

DEFINE PI "3.14159" $ 

which might then be used as 

, 30 \ ,,-----J 

C=2* PI*RAD~ 



FUNCTIONS/PROCEDURES/CLOSE ROUTINES 

1. FUNCTIONS (PROC) 

A function is used to obtain a single output value from a compound JOVIAL statement. 
Functions simplify JOVIAL programs by permitting frequently used subroutines to be specified 
once and to be called using the function name. 

A function is declared using the JOVIAL primitive PROC, followed by the function name 
and a dummy parameter. Following the PROC statement is a list of items and a compound 
statement which is the body of the function. The item list must include the function name. 
Functions may be declared externally to the computer program in compools and libraries. 
There is no difference in their use when externally declared from their use when internally 
declared. The Control Card provides the means to make external declarations available to 
computer programs. 

For example, a square root function could be declared in the following way: 

PROC SQRT(SQUAR) ~ 

ITEM SQRT F $ 

ITEM SQUAR F * 
BEGIN 

SQRT = .5*SQUAR , 

A2. IF(/SQRT**2 - SQUAR/) GR .~~~1 ~ 

BEGIN 

SQRT = .5*(SQRT + SQUAR/SQRT) ~ 

GOTO A2 ~ 

END 

END 

A function is called by the function name followed by the input parameters. The function 
call must be within a JOVIAL statement. The above SQRT function would be called by the follow­
ing statement: 

HYPOT = SQRT(LSIDE**2) , 

The function would be entered with the value in the parentheses used as the value for the 
dummy parameter SQUAR in the function. When execution of the function has been completed, 
the program returns to the statement which called the function. In the example cited, the value 
obtained from the SQRT function would then be entered into the 1ocation of HYPOT. 

31 



2. PROCEDURES (PROC) 

A procedure is the general case of JOVIAL closed subroutines. A procedure if; defined 
by the primitive PROC, followed by input parameters, output parameters, an item list, and a 
compound statement. The item list must not contain the procedure name. Procedures may be 
declared externally to the computer program in compools and libraries. There is no difference 
in their use when externally declared from their use when internally declared. The Control 
Card provides the means to make external declarations available to computer programs. 

A procedure can have multiple input and output parameters, or it may have input only, 
output only, or no parameters at all. The last case may be represented by empty parentheses 
following the procedure name or by the absence of parentheses. For example: 

PROC SQRT(SQUARE = SQT) $ 

ITEM SQT F $ 

ITEM SQUARE F $ 

BEGIN 

END 

A procedure is called by a statement beginning with the procedure name and followed by 
the input and output parameters, if any. For example: 

2 2 
c = a + b 

might be represented by 

SQRT(LSIDE($ I ~)**2 + RSIDE (~ ~ $)**2 = HYPOT (~ 1$» $ 

The return from a procedure is to the statement following that which called the procedure. 

3. CLOSE ROUTINE 

CLOSE 

This type of JOVIAL subroutine, declared by a CLOSE statement, is a parameterless 
closed subroutine, for example: 

CLOSE BLANK $ 

BEGIN 

FOR Z = 14, -1, ~ $ 

WRITE($ Z $) = 8H( )' 

END 

32 



The above CLOSE routine would be used to set a table to all blanks, as follows: 

TABLE IMAGE R 15 $ 

BEGIN 

. ITEM WRITE H 8 + 
END 

GOTO BLANK $ 

Control should be passed to the closed subroutine only by a GOTO statement; if control 
reaches a closed subroutine by other means, the results are unpredictable. Return from the 
CLOSE subroutine is to the statement following the calling GOTO. 

The CLOSE routine must be compiled as a part of the symbolic deck of the program by 
which it is called. 

4. 'PROGRAM 

Another type of JOVIAL closed subroutine is that referenced by the' PROGRAM declara­
tion. This type of subroutine is also called by a GOTO statement and return is to the statement 
following GOTO. The declaration has the following format: 

'PROGRAM Name Optional Core Location + 
The 'PROGRAM subroutine must not be compiled as a part of the symbolic deck of the 

program by which it is called; if a core location does not appear in the declaration, a core 
location must be assigned to the 'PROGRAM name in the compool. 

5. TERMINATION (RETURN) 

The RETURN operator may be used in any function, procedure or closed subroutine to 
terminate operation and return control to the calling program from any point within the 
function, procedure or closed subroutine. 

33 



DffiECT CODING 

Direct coding permits the programmer to include AN/GSA-51 or AN/GSA-51A machine 
language coding within a JOVIAL language program (see CGTM2387A, Volume II, Chapter I). 

1. BRACKETS (DIRECT, JOVIAL) 

Machine language coding must be preceded by the JOVIAL primitive DffiECT and is 
terminated with the JOVIAL primitive JOVIAL, each of which must be contained alone on sepa­
rate cards. 

2. ASSIGNMENT (ASSIGN) 

Within a direct coding section of a program, tables, items, NENT or 'LOC may be 
referred to only by the use of an ASSIGN statement. 

DffiECT ~ 

ASSIGN A(4) = XX $ 

ASSIGN YY{S II S} = H { $ 

JOVIAL $ 

The first ASSIGN statement causes the value of XX to be loaded into the stack. The A 
preceding the parenthses indicates normal stack. An H would indicate hold stack and an N 
would also indicate normal stack. However, the normal or hold position of the stack is not 
guaranteed. The number within the parentheses indicates the number of fractional bits if Xx 
is a fixed point constant. If a zero appears within the parentheses, then XX must be an integer 
or a non-numberic item. A blank within the parentheses indicates that XX is a floating point 
number. The second ASSIGN statement causes the contents of the stack to be loaded into item 
YY, without moving the stack. 

3. CODE 

All of the codes below are described in SDC TM-1350/004 except LBL; all are also des­
cribed in MITRE SR-91 except LBL, SSS (which is identical in function to SSD), and SSF (which 
is identical in function to SSU). 

LBL is used to assign a symbolic tag to the code associated with a JOVIAL card or an 
ASSIGN card. For example: 

Cols 8-12 14-18 19-ff 

SETA LBL 

ASSIGN AA = H{+4} $ 

UCT SETA 

34 



will allow another portion of the program to branch to the ASSIGN statement which sets item AA. 

The following machine codes are legal: 

ACE BSU FDV LOR SRR 

ACG CBF FMU LSR STF 

ACL CEF FSU LTF SSD 

AIF CEQ HLT LXF SSF 

BAD CGF IRR LXR SSS 

BAF CGR LAF NOP SSU 

BDV CLA LAN RPT TIO 

BMU CLF LCF RVS TRM 

BRB CLS LCM SAF TRS 

BRC CSE LOF SER UCT 

BSF FAD SRJ XLC 

The following declarative code is legal: 

OCT 

The following pseudo codes are legal: 

ALC ARS FLSD 

ALCD ARSD FRC 

ALS CYC FRCD 

ALSD FLC FRS 

ARC FLCD FRSD 

ARCD FLS 

The following control codes are legal: 

blank 

LBL 

SET (BPR, only) 

35 



4. CARD FORMAT 

Columns 8-12 are reserved for location tags. If these columns are blank, the operation 
code of the instruction may be assigned to anyone of four positions (bits 1-12, 13-24, 25-36, 
37-48) in the 48-bit word generated by the compiler. If these columns al'e not blank, the 
operation code will lie in bits 1-12; if these columns contain an *, symbolic tag is associated 
with the instruction, and if they contain a location tag, the instruction may be symbolically 
referenced elsewhere in the direct code area by the location tag. 

Columns 14-18 are reserved for machine codes, declarative codes, pseudo codes, and 
control codes. 

Columns 19 and ff are reserved for operands. All operands are coded as described in 
TM-1350/004 with the following exceptions for the memory syllable: 

(1) R-C words do not include D( ). A Decimal integer is coded A <±*). A fixed 
point number with a fractional part is coded with a sign, a set of numbers, a decimal point 
and the letter "A" followed by an integer specifying the desired number of binary bits to the 
right of the binary point. The fixed point number is enclosed in parentheses and preceded by 
an "A". A(+5.7A8) 

(2) A Hollerith R-C word is coded ,*H( ) with,* equal to number of characters 
inside the parentheses. 

(3) No indirect addressing is allowed on system tables (index applied because of 
compool definition). 

(4) No increments or decrements are allowed in indirectly addressed tables or 
items. 

36 



DECK SETUP 

The statements and. declarations described in the preceding paragraphs provide for the 
construction of programs, except for the definition of the beginning and end. This definition is 
provided by the JOVIAL primitives START and TERM S. Except for the control card a card 
beginning with 

START 

must be the first card of a JOVIAL program deck, and a card ending with 

TERM optional statement label $ 

must be the last card of the deck. If the optional statement label is omitted, execution of the 
program will begin with the first executable statement which is not part of a procedure/ 
function/ close1 routine declaration. The presence of the optional statement label causes execu­
tion of the program to begin with the statement bearing the indicated label. For example: 

START 

ITEM COUNT I 1~ U • 

COUNT = ~ $ 
FOR I = ~, 1, 99 ~ 

COUNT = COUNT + 1 $ 
STOP $ 

TERM , 

and its equivalent 

START 

ITEM COUNT I 1~ U ~ 

AA.STOP , 

BB. COUNT = ~ , 

FOR I = ~, 1, 99 * 
COUNT = COUNT + 1 ~ 

GOTO AA + 
TERM BB ~ 

Symbolic decks mayor may not be headed by a Control Card. The compiler will accept 
decks which have been prestored on tape, in which case a Control Card is required with the 
keyword INPUT identifying the tape drive, as well as accepting decks input directly through 
the card reader. 

1Note that only close routines declared by CLOSE must be compiled in the calling program, 
and that those declared by 'PROGRAM must be compiled separately. 

37 



NOTES 



NOTES 



SAVE A LIFE 

If you observe an accident involving electrical shock, 
DON'T JUST STAND THERE - DO SOMETHINGI 

RESCUE OF SHOCK VICTIM 
The victim of electrical shock is dependent upon you to give him prompt first aid. 

Observe these precautions: 
1. Shut off the high voltage. 
2. If the high voltage cannot be turned off without delay, free the victim from the 

live conductor. REMEMBER: 
a, Protect yourself with dry insulating material. 
b. Use a dry board, your belt, dry clothing, or other non-conducting material to 

free the victim. When possible PUSH - DO NOT PULL the victim free of 
the high voltage source. 

c. DO NOT touch the victim with your bare hands until the high voltage circuit 
is broken. 

FIRST AID 
The two most likely results of electrical shock are: bodily injury from falling, and 

cessation of breathing. While doctors and pulmotors are being sent for, DO THESE 
THINGS: • 

1. Control bleeding by use of pressure or a tourniquet. 
2. Begin IMMEDIATELY to use artificial respiration if the victim is not breathing 

or is breathing poorly: 

a. Turn the victim on his back. 

b. Clean the mouth, nose, and throat. (If they appear clean, start artificial 
respiration immediately. If foreign matter is present, wipe it away quickly 
with a cloth or your finge rs). 

c. Place the victim's head in the IIsword-swallowing" 
position. (Place the head as far back as possible so 
that the front of the neck is stretched). 

d. Hold the lower jaw up. (Insert your thumb between the 
victim's teeth at the midline - pull the lower jaw force­
fully outward so that the lower teeth are further forward 
than the upper teeth. Hold the jaw in this position as 
long as the victim is unconscious). 

e. Close the victim's nose. (Compress the nose between 
your thumb and forefinger). 

f. Blow air into the victim's lungs. (Take a deep breath 
and cover the victim's open mouth with your open 
mouth, making the contact air-tight. Blow until the 
chest rises. If the chest does nbt rise when you blow, 
improve the pOSition of the victim's air passageway, 
and blow more forcefully. Blow forcefully into adults, 
and gently into children. 

g. Let air out of the victim's lungs. (After the chest rises, quickly separate lip 
contact with the victim allowing him to exhale). 

h. Repeat steps' f. and g. at the rate of 12 to 20 times per minute. Continue 
rhythmically without interruption until the victim starts breathing or is 
pronounced dead. (A smooth rhythm is deSirable, but split-second timing is 
not essential). 

DON'T JUST STAND TH~RE - DO SOMETHING! 


	Cover
	Table of Contents
	Introduction to Jovial
	Elements of the Language
	Items
	Tables
	Constants
	Programmed Statements
	Arithmetic Exercises
	Modifiers
	Switches
	'Loc and Define Primitives
	Functions/Procedures/Close Routines
	Direct Coding
	Deck Setup

