
Unisys e-@ction

ClearPath Enterprise

Servers

I/O Subsystem
Programming Guide

ClearPath MCP Release 7.0 SSP1

Printed in USA
March 2002 8600 0056–408

.

Unisys e-@ction

ClearPath Enterprise

Servers

I/O Subsystem
Programming Guide

UNISYS

© 2002 Unisys Corporation.
All rights reserved.

ClearPath MCP Release 7.0 SSP1

Printed in USA
March 2002 8600 0056–408

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to Government End Users: This is commercial computer software or hardware documentation developed at
private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract data
rights clauses.

Correspondence regarding this publication can be e-mailed to doc@unisys.com.

Unisys, ClearPath, and e-@ction are registered trademarks of Unisys Corporation in the United States and other
countries. All other brands and products referenced in this document are acknowledged to be the trademarks or
registered trademarks of their respective holders.

Unisys e-@ction
ClearPath Enterprise
Servers

I/O Subsystem
Programming Guide

ClearPath MCP
Release 7.0 SSP1

 Unisys e-@ction
ClearPath
Enterprise
Servers

I/O Subsystem

Programming
Guide

ClearPath MCP
Release 7.0
SSP1

8600 0056–408 8600 0056–408

Bend here, peel upwards and apply to spine.

.

8600 0056–408 iii

Contents

Section 1. Introduction and Understanding File Handling

About This Guide... 1–1
Files, Records and Directories .. 1–1
Physical and Logical Files .. 1–2
Naming a File in the MCP Environment .. 1–4
Identifying Files on Other Systems... 1–6
Understanding the Functions of the I/O Subsystem............................. 1–6
Understanding File Attributes ... 1–7

Section 2. Understanding Programming for Files

Naming the File ... 2–2
Specifying the Peripheral Device for the File .. 2–3
Specifying the Purpose of the File .. 2–3
Identifying How Data Is Transferred ... 2–4
Establishing a Record Format.. 2–5

Indicating the Record Size ... 2–5
Indicating the Size of the Blocks and Buffers 2–6
Indicating the Type of Variable-Length Record 2–6
Understanding Record Length When

BLOCKSTRUCTURE Equals EXTERNAL 2–7
Controlling the Size Field When

BLOCKSTRUCTURE Equals VARIABLE 2–8
Controlling the Size Field When

BLOCKSTRUCTURE Equals VARIABLEOFFSET 2–10
Writing on a File with Variable Length Records................. 2–10

Using Byte Files in a Program ... 2–11
Types of Byte Files .. 2–12

Using a Dummy File .. 2–21
Opening a File ... 2–21
Determining the Existence or Availability of a File 2–23
Moving Data to and from a File ... 2–24
Starting at a Particular Record... 2–26
Closing a File ... 2–27
Modifying an Attribute... 2–35
Interrogating an Attribute .. 2–36
Determining Attribute Conflicts .. 2–37
Limiting Code File Execution... 2–37

Contents

iv 8600 0056–408

Dealing with Translation.. 2–38
Double-Byte and Mixed Multi-Byte Character Sets........... 2–41

Understanding Logical File Visibility in the Multiple Stack
Situation.. 2–42

Section 3. Using Disk and CD-ROM Files in a Program

Files with a KIND Value of PACK or DISK... 3–1
Creating a New Disk File ... 3–3
Accessing an Existing Disk File ... 3–10
Obtaining Information about a Disk File 3–12
Locking a Disk File on a Record-by-Record Basis.............. 3–16
Securing Disk Files .. 3–17

Files with a KIND Value of CD .. 3–24
Accessing a CD-ROM File ... 3–24
Obtaining Information about a CD-ROM File..................... 3–25

I/O Timer Handling .. 3–26
Understanding Time Limit Values...................................... 3–27
Returning an I/O Request As Soon As Possible................ 3–31

Section 4. Using Tape Files in a Program

Creating a Tape File .. 4–3
Required Tasks .. 4–3
Security Tasks.. 4–5
Complex Record Tasks.. 4–6
Special Requirement Tasks ... 4–6

Reading a Tape File ... 4–10
Reading a File in Reverse.. 4–12
Creating an Unlabeled Tape .. 4–13
Creating a Tape with More Than One File .. 4–13

Naming Conventions ... 4–13
Searching Conventions.. 4–13

Accessing an Unlabeled Tape ... 4–14
Treating Labeled Tapes as Unlabeled Tapes 4–16

Section 5. Using Printer Files in a Program

Defining the Characteristics of a Printer File .. 5–2
Controlling the Printing of Lines and Pages.. 5–8
Direct Printing through a Transparent Printer (XLP) DLP.................... 5–10

Section 6. Using Remote Files in a Program

Identifying the Characteristics of a Remote File................................... 6–2
Opening Remote Files .. 6–4
Reading Information from a Station .. 6–5
Writing Information to a Station.. 6–6
Closing a Remote File ... 6–6

 Contents

8600 0056–408 v

Section 7. Using Card Files in a Program

Data Specifications.. 7–1

Section 8. Using Operator Display Terminal (ODT) Files

Section 9. Accessing and Creating Files Using Distributed File
Services

Using Host Services Logical I/O.. 9–2
Opening a File Using Host Services Logical I/O 9–3
Performing I/O Using Host Services Logical I/O.................. 9–5

Using FTAM .. 9–7
Creating a New File on a Remote OSI Host 9–8
Accessing a File on a Remote OSI Host............................ 9–15
Creating a File on the Local System to Be

Accessed through FTAM... 9–21
Accessing a File Created through FTAM on the

Local System ... 9–26
FTAM Features in the MCP Environment.......................... 9–31

Identifying Supported File Attributes .. 9–40

Section 10. Using Direct I/O Files

Defining the Characteristics of a Direct I/O File 10–2
Reading to and Writing from a Direct Array Buffer 10–3
Purging the I/O Queue .. 10–6
Understanding Direct I/O Disk Files .. 10–6

Physical Frame Size and Odd Frames 10–6
Areas, Blocks, Records, and Sectors................................. 10–7
End-of-File Pointers.. 10–9
Zero-Length I/O.. 10–9
Direct I/O Contrasted with Using Buffered Tape

Drives... 10–10
Optimizing Direct I/O Operations .. 10–10

Section 11. Using HYPERchannel (HY) Files

Understanding a HYPERchannel Network .. 11–1
Communicating between Systems 11–2
Constructing a Message Proper .. 11–3

Programming for a HYPERchannel Network....................................... 11–4
Defining the Characteristics of an HY File 11–5
Writing a HYPERchannel Message.................................... 11–5
Reading a HYPERchannel Message 11–8

Contents

vi 8600 0056–408

Adapter Command Codes... 11–9
Using I/O Buffer Attributes for HYPERchannel Files 11–9
Example Program.. 11–14

Section 12. Using Host Control (HC) Files

Defining the Characteristics of an HC File .. 12–2
Writing an HC Message.. 12–2
Reading an HC Message .. 12–3

Section 13. Understanding Port Files

Examples of a Requesting Program.. 13–4
Examples of a Server Program ... 13–6

Section 14. Using Subfile Indexes

Section 15. Using Attributes

Setting and Interrogating Attributes.. 15–1
Understanding the Difference between File and Subfile

Attributes .. 15–3
Setting Proper Attribute Values .. 15–5

Section 16. Understanding Port Statements

Section 17. Preparing Your Subfile for Dialogue Establishment

Section 18. Establishing a Subfile Dialogue

Using the OPEN Statement .. 18–1
Understanding the AVAILABLEONLY File Attribute

for OPEN ... 18–3
Understanding the OPEN Control Option Parameter 18–4
Understanding the OPEN CONNECTTIMELIMIT

Parameter.. 18–6
Using the AWAITOPEN Statement... 18–7

Understanding the AVAILABLEONLY File Attribute
for AWAITOPEN.. 18–8

Understanding the AWAITOPEN Control Option
Parameter.. 18–10

Understanding the AWAITOPEN
CONNECTTIMELIMIT Parameter................................ 18–12

 Contents

8600 0056–408 vii

Section 19. Exchanging Data

Reading Data ... 19–2
Understanding Nonselective READ Operations 19–3
Understanding the READ WAIT/DONTWAIT Option

Parameter .. 19–4
Determining Message Size for Message-Oriented

Services READ Operations.. 19–5
Understanding Data-Stream-Oriented Services

READ Operations .. 19–9
Understanding Event-Driven Input Techniques 19–10

Writing Data .. 19–11
Understanding Broadcast WRITE Operations.................. 19–12
Understanding the WRITE WAIT/DONTWAIT

Option Parameter .. 19–12
Determining Message Size for Message-Oriented

Services WRITE Operations .. 19–14
Understanding Message Size for Data-Stream-

Oriented Services WRITE Operations 19–17

Section 20. Closing a Dialogue

Understanding the CLOSE Disposition Parameter 20–2
Understanding the CLOSE Control Option Parameter........................ 20–3
Understanding Correspondent-Initiated Dialogue Termination 20–4
Understanding Service Provider-Initiated Dialogue Aborts 20–5
Using ABORT Termination for Orderly Release.................................. 20–6

Section 21. Understanding Port Services

Section 22. Using BASICSERVICE

File Attributes Supported by BASICSERVICE 22–1
Statements Supported by BASICSERVICE ... 22–2
File States Supported by BASICSERVICE ... 22–3
Preparing for Dialogue Establishment Using BASICSERVICE 22–5
Establishing a Dialogue Using BASICSERVICE................................... 22–6

Using the OPEN Statement with BASICSERVICE............. 22–6
Using the AWAITOPEN Statement with

BASICSERVICE.. 22–7
Exchanging Data Using BASICSERVICE ... 22–7
Closing a Dialogue Using BASICSERVICE .. 22–8

Contents

viii 8600 0056–408

Section 23. Using OSINATIVESERVICE

File Attributes Supported by OSINATIVESERVICE 23–1
Statements Supported by OSINATIVESERVICE................................. 23–3
Understanding the ASSOCIATEDDATA Parameter of

OSINATIVESERVICE... 23–4
File States Supported by OSINATIVESERVICE................................... 23–5
Preparing for Dialogue Establishment Using

OSINATIVESERVICE... 23–9
Establishing a Dialogue Using OSINATIVESERVICE......................... 23–10

Using the OPEN Statement with
OSINATIVESERVICE ... 23–10

Using the AWAITOPEN Statement with
OSINATIVESERVICE ... 23–12

Using the RESPOND Statement with
OSINATIVESERVICE ... 23–15

Understanding the Response Type Parameter 23–16
Understanding Negotiation during Dialogue

Establishment.. 23–17
Exchanging Data Using OSINATIVESERVICE................................... 23–19
Exchanging Large Messages Using OSINATIVESERVICE 23–21
Closing a Dialogue Using OSINATIVESERVICE 23–22

Using Orderly Dialogue Termination with
OSINATIVESERVICE ... 23–22

Sending Associated Data with a CLOSE Request........... 23–25

Section 24. Using OSISESSIONSERVICE

File Attributes Supported by OSISESSIONSERVICE 24–2
Statements Supported by OSISESSIONSERVICE 24–3
Understanding the ASSOCIATEDDATA Parameter of

OSISESSIONSERVICE.. 24–4
File States Supported by OSISESSIONSERVICE................................ 24–5
Preparing for Dialogue Establishment Using

OSISESSIONSERVICE.. 24–9
Establishing a Dialogue Using OSISESSIONSERVICE...................... 24–10

Using the OPEN Statement with
OSISESSIONSERVICE... 24–10

Using the AWAITOPEN Statement with
OSISESSIONSERVICE... 24–12

Using the RESPOND Statement with
OSISESSIONSERVICE... 24–14

Understanding the Response Type Parameter 24–16
Exchanging Data Using OSISESSIONSERVICE 24–17
Exchanging Large Messages Using OSISESSIONSERVICE............. 24–19
Closing a Dialogue Using OSISESSIONSERVICE 24–20

Using Orderly Dialogue Termination with
OSISESSIONSERVICE... 24–20

Sending Associated Data with a CLOSE Request........... 24–23

 Contents

8600 0056–408 ix

Section 25. Using BNANATIVESERVICE

File Attributes Supported by BNANATIVESERVICE............................ 25–1
Statements Supported by BNANATIVESERVICE................................ 25–2
File States Supported by BNANATIVESERVICE.................................. 25–3

Using Host Independent Matching (HIM).......................... 25–8
Establishing a Dialogue Using BNANATIVESERVICE 25–10

Using the OPEN Statement with
BNANATIVESERVICE .. 25–10

Using the AWAITOPEN Statement with
BNANATIVESERVICE .. 25–11

Understanding Negotiation during Dialogue
Establishment with BNANATIVESERVICE 25–11

Exchanging Data Using BNANATIVESERVICE.................................. 25–13
Closing a Dialogue Using BNANATIVESERVICE............................... 25–14

Section 26. Using TCPIPNATIVESERVICE

Port Support for TCPIPNATIVESERVICE... 26–2
Statements Supported by TCPIPNATIVESERVICE 26–3
File States Supported by TCPIPNATIVESERVICE 26–4
Preparing for Dialogue Establishment Using

TCPIPNATIVESERVICE ... 26–7
Establishing a Dialogue Using TCPIPNATIVESERVICE 26–10

Using the OPEN Statement with
TCPIPNATIVESERVICE.. 26–10

Using the AWAITOPEN Statement 26–10
Exchanging Data Using TCPIPNATIVESERVICE 26–10

Understanding Data-Stream-Oriented Data Transfer
Using TCPIPNATIVESERVICE...................................... 26–13

Using Urgent Data with TCPIPNATIVESERVICE 26–13
Closing a Dialogue Using TCPIPNATIVESERVICE 26–15

Section 27. Using TCPNATIVESERVICE

File Attributes Supported by TCPNATIVESERVICE............................. 27–1
Port Support for TCPNATIVESERVICE .. 27–2
Statements Supported by TCPNATIVESERVICE 27–3
File States Supported by TCPNATIVESERVICE 27–4
Preparing for Dialogue Establishment Using

TCPNATIVESERVICE .. 27–6
Establishing a Dialogue Using TCPNATIVESERVICE 27–9

Using the OPEN Statement with
TCPNATIVESERVICE ... 27–9

Using the AWAITOPEN Statement with
TCPNATIVESERVICE ... 27–9

Exchanging Data Using TCPNATIVESERVICE................................... 27–10
Understanding Data-Stream-Oriented Data Transfer

Using TCPNATIVESERVICE... 27–13
Using Urgent Data with TCPNATIVESERVICE................. 27–13

Closing a Dialogue Using TCPNATIVESERVICE................................ 27–15

Contents

x 8600 0056–408

Section 28. Using NETBIOSSESSIONSERVICE

Statements Supported by NETBIOSSESSIONSERVICE..................... 28–3
File States Supported by NETBIOSSESSIONSERVICE....................... 28–4
Preparing for Dialogue Establishment Using

NETBIOSSESSIONSERVICE... 28–6
Understanding the MYNAME and YOURNAME File Attributes 28–7
Establishing a Dialogue Using NETBIOSSESSIONSERVICE 28–9

Using the OPEN Statement with
NETBIOSSESSIONSERVICE ... 28–9

Using the AWAITOPEN Statement with
NETBIOSSESSIONSERVICE ... 28–9

Understanding NETBIOSNAMEINUSERSLT Errors.......................... 28–10
Exchanging Data Using NETBIOSSESSIONSERVICE....................... 28–11
Closing a Dialogue Using NETBIOSSESSIONSERVICE.................... 28–12
Example Applications Using NETBIOSSESSIONSERVICE 28–12

Section 29. Understanding Virtual Files

Using Virtual Files.. 29–2
Programming for Virtual Files .. 29–2

Virtual File IOHANDLER.. 29–14
Understanding the IOHANDLER 29–14
Common IOHANDLER Entry Point Parameters 29–15
Example IOHANDLER Library ... 29–26

Section 30. Using the REDIRSUPPORT IOHANDLER Library

Accessing REDIRSUPPORT IOHANDLER.. 30–1
Redirector File Structure ... 30–2
Locating a Network File .. 30–2

IOHSTRING Parameters .. 30–3
Uniform Naming Convention ... 30–6
Relative File Names... 30–7
NXSERVICES CONFIG Files .. 30–8

Credentials .. 30–8
MAKECREDENTIALS Utility .. 30–8
NXSERVICES CREDENTIALS Files.................................... 30–9

REDIRSUPPORT Considerations for Use ... 30–11
Networking Considerations ... 30–11
Declaring a Network File ... 30–13
File Attribute Considerations ... 30–15

Example Program.. 30–18
Directory Operations... 30–19

REDIRSUPPORT IOHANDLER Directory Semantics 30–19
Reading a Directory ... 30–20
Directory Programming Example..................................... 30–21

 Contents

8600 0056–408 xi

Section 31. Using the STREAMIOH IOHANDLER Library

Declaring the Record File to Use STREAMIOH IOHANDLER............. 31–1
Terminology Definitions ... 31–2

FILEKIND and File Extension Handling ... 31–3
STREAMIOH Parameters .. 31–5

Parameter Semantics... 31–7
Physical File Parameters .. 31–7
Conversion Parameters.. 31–9

File Attribute Considerations... 31–16
FRAMESIZE, UNITS, and Related Attributes................... 31–16
DEPENDENTSPECS and Related Attributes.................... 31–16
NEXTRECORD and RECORD Attributes.......................... 31–16
LASTRECORD and FILELENGTH Attributes.................... 31–16
CURRENTRECORDLENGTH Attribute 31–17

I/O Operation Semantics ... 31–17

Appendix A. Device Types and Associated File Attributes

Appendix B. Format of Pack Labels

Appendix C. Disk File Headers

User Interface Procedures ..C–2
CONVERTHEADER ..C–2

Disk File Header Versions ...C–12
Disk Families ..C–13
Library Maintenance Tapes..C–13

Version 6 Disk File Header Layout ..C–14
Area Address Words for Version 6 Headers......................C–21
Optional Attribute Words for Version 6 HeadersC–22
Header Data Area for Version 6 Headers...........................C–25
CHECKSUM for Version 6 HeadersC–26

Version 7 Disk File Header Layout ..C–27
Area Address Words for Version 7 Headers......................C–41
Optional Attribute Words for Version 7 HeadersC–42
Header Data Area for Version 7 Headers...........................C–49
CHECKSUM for Version 7 HeadersC–49

Appendix D. Format of Library Maintenance Tapes

Format of Library Maintenance Tapes with Standard Labels............... D–2
Format of Library Maintenance Tapes in Compact Form..................... D–4
Format of the Tape Directory ... D–6

Contents

xii 8600 0056–408

Appendix E. Standard Tape Formats

Unlabeled Tapes.. E–1
ANSI X3.27-1969 (ANSI69) Tapes... E–2
B 3500 USASI Tapes... E–9
ANSI87 Tapes ... E–10
B 5500 Tapes .. E–20

ALGOL Files... E–21
COBOL Files .. E–21

Appendix F. FORTRAN77 Programs

Appendix G. Controlling the Distribution of Application
Programs

Appendix H. Structure of Backup Files

Naming Conventions...H–1
Examples of Standard Names ...H–2
Overriding Standard Names ..H–2
Naming Tape Files ...H–2

File Format ..H–3
Control Record Word Descriptions ...H–5

Appendix I. Related Product Information

Index ..1

8600 0056–408 xiii

Figures

9–1. ISO 646 Coded Character Set .. 9–34
9–2. ISO 8859-1 Coded Character Set ... 9–35

11–1. Adapter Connections.. 11–2

22–1. BASICSERVICE Dialogue Establishment File State Transitions....................... 22–3
22–2. BASICSERVICE Probable File State Transitions during Data Transfer 22–4
22–3. BASICSERVICE Dialogue Termination File State Transitions........................... 22–4

23–1. OSINATIVESERVICE Dialogue Establishment File State Transitions............... 23–6
23–2. OSINATIVESERVICE Probable File State Transitions during Data

Transfer .. 23–6
23–3. OSINATIVESERVICE Dialogue Termination File State Transitions................... 23–7
23–4. OSINATIVESERVICE Orderly Termination File State Transitions..................... 23–8

24–1. OSISESSIONSERVICE Dialogue Establishment File State Transitions 24–6
24–2. OSISESSIONSERVICE Probable File State Transitions during Data

Transfer .. 24–6
24–3. OSISESSIONSERVICE Dialogue Termination File State Transitions................ 24–7
24–4. OSISESSIONSERVICE Orderly Termination File State Transitions 24–8

25–1. BNANATIVESERVICE Dialogue Establishment File State Transitions 25–4
25–2. BNANATIVESERVICE Probable File State Transitions during Data

Transfer .. 25–4
25–3. BNANATIVESERVICE Dialogue Termination File State Transitions 25–5

26–1. TCPIPNATIVESERVICE Dialogue Establishment File State Transitions 26–4
26–2. TCPIPNATIVESERVICE Probable File State Transitions during Data

Transfer .. 26–5
26–3. TCPIPNATIVESERVICE Dialogue Termination File State Transitions for

CLOSEREQUESTED .. 26–5
26–4. TCPIPNATIVESERVICE Dialogue Abnormal Termination File State

Transitions for OPEN ... 26–6
26–5. TCPIPNATIVESERVICE Dialogue Termination File State Transitions for

CLOSEREQUESTRECEIVED.. 26–6

27–1. TCPNATIVESERVICE Dialogue Establishment File State Transitions 27–4
27–2. TCPNATIVESERVICE Probable File State Transitions during Data

Transfer .. 27–5
27–3. TCPNATIVESERVICE Dialogue Termination File State Transitions 27–5

28–1. NETBIOSSESSIONSERVICE Dialogue Establishment File State

Transitions.. 28–4

Figures

xiv 8600 0056–408

28–2. NETBIOSSESSIONSERVICE Possible File State Transitions During
Data Transfer ... 28–5

28–3. NETBIOSSESSIONSERVICE Dialogue Termination File State Transition 28–5

C–1. Unsegmented Header..C–27
C–2. Segmented Header ..C–28

E–1. Unlabeled Single-File Volume and Unlabeled Multifile Volume Formats........... E–1
E–2. ANSI69 Single-File, Single-Volume Format .. E–2
E–3. ANSI69 Multivolume-File and Multifile-Volume Formats................................... E–3
E–4. ANSI69 Multifile, Multivolume Formats... E–4
E–5. ANSI69 Volume Header—Non-Scratch.. E–5
E–6. ANSI69 Volume Header—Scratch ... E–6
E–7. ANSI69 File Header 1 Format .. E–6
E–8. ANSI69 File Header 2 Format .. E–7
E–9. ANSI69 User Header and Trailer Label Formats .. E–8
E–10. ANSI69 Scratch Tape Format... E–8
E–11. B 3500 Volume Header Format ... E–9
E–12. B 3500 File Header 1 Format ... E–9
E–13. ANSI87 Multivolume-File Format... E–11
E–14. ANSI87 Multifile, Multivolume Format .. E–12
E–15. ANSI87 Volume Header 1 Format.. E–13
E–16. ANSI87 Volume Header 2–Non-Scratch... E–14
E–17. ANSI87 Volume Header 2–Scratch ... E–15
E–18. ANSI87 Volume Header 3–Non-Scratch... E–15
E–19. ANSI87 Volume Header 4–Non-Scratch... E–16
E–20. ANSI87 Volume Header 5 .. E–16
E–21. ANSI87 File Header 1 Format .. E–17
E–22. ANSI87 File Header 2 Format .. E–18
E–23. ANSI87 File Header 3 Format .. E–19
E–24. ANSI87 Scratch Tape Format... E–19

H–1. Structure of a Backup File ..H–3
H–2. Format of a Backup Block ..H–4
H–3. Diagram of Numbering Bits within a Word..H–5
H–4. Diagram of the Control Word (Word 0) ..H–6
H–5. Diagram of the Block Character Control Word (Word 1)....................................H–7
H–6. Diagram of the Logical File Kind Word (Word 2)..H–8
H–7. Diagram of the Path Control Word (Word 3)..H–9
H–8. Diagram of Word 10 of the Control Record ...H–11
H–9. Diagram of Word 11 of the Control Record ...H–12
H–10. Diagram of Word 12 of the Control Record ...H–12

8600 0056–408 xv

Tables

2–1. Mnemonic Values for the KIND Attribute .. 2–3
2–2. MAXRECSIZE Default and Maximum Values... 2–5
2–3. Possible BLOCKSTRUCTURE Values for Variable-Length Records 2–7
2–4. Size Field Information Based on INTMODE Value ... 2–8
2–5. COBOL85 CLOSE Statement Actions ... 2–29
2–6. COBOL85 CLOSE Statement Actions ... 2–29
2–7. COBOL74 CLOSE Statement Actions ... 2–30
2–8. COBOL74 CLOSE Statement Actions ... 2–30
2–9. Contents of Column 70 of the RPG File Description Specification 2–31
2–10. Contents of Column 70 of the RPG File Description Specification 2–31
2–11. Contents of the Result Field (Columns 43 through 48) of the RPG

Calculation Specification When CLOSE Is Present in Columns 28
Through 32 ... 2–32

2–12. FORTRAN77 CLOSE Statement Actions ... 2–32
2–13. FORTRAN77 CLOSE Actions without a CLOSE Statement 2–33
2–14. Pascal CLOSE Statement Actions.. 2–33
2–15. ALGOL CLOSE Statement Actions .. 2–33
2–16. ALGOL CLOSE Actions without a CLOSE Statement 2–34
2–17. Possible EXTMODE and INTMODE Combinations .. 2–38
2–18. Possible EXTMODE and INTMODE Combinations .. 2–39

3–1. Constant Information Attributes... 3–13
3–2. Changing Information Attributes .. 3–14
3–3. Attributes That Contain I/O Information ... 3–15
3–4. Information Attributes for CD-ROM ... 3–25
3–5. CD-ROM Attributes That Contain I/O Information ... 3–25

5–1. Tape Drive Density Values ... 5–7

9–1. FTAM Document Types ... 9–7
9–2. Document Type Selection .. 9–11
9–3. FTAM Parameters Used to Communicate Information in FTAM-1 File

Creation.. 9–13
9–4. FTAM Parameters Used to Communicate Information in FTAM-2 File

Creation.. 9–14
9–5. FTAM Parameters Used to Communicate Information in FTAM-3 File

Creation.. 9–14
9–6. FTAM Parameters Used to Communicate Information in INTAP-1 File

Creation.. 9–15
9–7. FTAM Parameters Used to Communicate Information in FTAM-1 File

Access.. 9–18
9–8. FTAM Parameters Used to Communicate Information in FTAM-2 File

Access.. 9–19

Tables

xvi 8600 0056–408

9–9. FTAM Parameters Used to Communicate Information in FTAM-3 File
Access ... 9–20

9–10. FTAM Parameters Used to Communicate Information in INTAP-1 File
Access ... 9–21

9–11. File Attribute Values Passed When an FTAM-1 File Is Accessed.................... 9–24
9–12. File Attribute Values Passed When an FTAM-2 File Is Accessed.................... 9–25
9–13. File Attribute Values Passed When an FTAM-3 File Is Accessed.................... 9–25
9–14. File Attribute Values Passed When an INTAP-1 File Is Accessed 9–26
9–15. File Attribute Values for an FTAM-1 File Created by a Remote Host 9–27
9–16. File Attribute Values for an FTAM-2 File Created by a Remote Host 9–29
9–17. File Attribute Values for an FTAM-3 File Created by a Remote Host 9–29
9–18. File Attribute Values for an INTAP-1 File Created by a Remote Host.............. 9–30
9–19. FTAM File Attribute Equivalents .. 9–31
9–20. Possible Character Sets ... 9–32
9–21. Possible Escape Sequences .. 9–33
9–22. Possible PERMITTEDACTIONS Values.. 9–36
9–23. Concurrency-Control Parameter Information Sent When the

EXCLUSIVE File Attribute Is FALSE .. 9–37
9–24. Concurrency-Control Parameter Information Sent When the

EXCLUSIVE File Attribute Is TRUE .. 9–38
9–25. Host Services Logical I/O and FTAM File Attributes.. 9–40

11–1. HY File IOERRORTYPE Values .. 11–9

13–1. Providers and Port Services ... 13–3

15–1. Port File Attributes and Associated Services... 15–7
15–2. Port File Attribute Characteristics .. 15–10

16–1. Port Statements Used with Port Services ... 16–2

22–1. Effects of File State on the READ Operation for BASICSERVICE 22–7
22–2. Effects of File State on the WRITE Operation for BASICSERVICE 22–8

23–1. Effects of File State on the READ Operation for OSINATIVESERVICE 23–19
23–2. Effects of File State on the WRITE Operation for OSINATIVESERVICE 23–20

24–1. Effects of File State on the READ Operation for OSISESSIONSERVICE 24–17
24–2. Effects of File State on the WRITE Operation for

OSISESSIONSERVICE ... 24–18

25–1. Effects of File State on the READ Operation for BNANATIVESERVICE........ 25–13
25–2. Effects of File State on the WRITE Operation for BNANATIVESERVICE 25–14

26–1. Effects of File State on the READ Operation for

TCPIPNATIVESERVICE .. 26–11
26–2. Effects of File State on the WRITE Operation for

TCPIPNATIVESERVICE .. 26–12

27–1. Effects of File State on the READ Operation for TCPNATIVESERVICE 27–11
27–2. Effects of File State on the WRITE Operation for TCPNATIVESERVICE....... 27–12

 Tables

8600 0056–408 xvii

28–1. Effects of File State on the READ Operation for
NETBIOSSESSIONSERVICE .. 28–11

28–2. Effects of File State on the WRITE Operation for
NETBIOSSESSIONSERVICE .. 28–12

29–1. IOHANDLER Library Attributes .. 29–3
29–2. Virtual File Format Attributes.. 29–5
29–3. IOHANDLER Entry Points .. 29–15

30–1. REDIRSUPPORT IOHANDLER Keywords.. 30–3
30–2. Returned Format of Directory Entries .. 30–20

31–1. File Extensions Recognized by STREAMIOH IOHANDLER Library 31–3
31–2. FOLDCHARACTER Values and Character Representations 31–10
31–3. TRIM Mnemonic Values and Semantics .. 31–14

A–1. Device Types and Associated File Attributes...A–1

B–1. Format of Pack Labels..B–1

C–1. Disk File Header Attributes ..C–6

E–1. BCL Characters for B 5500 Tape Labels ..E–20
E–2. B 5500 Tape Label for ALGOL Files...E–21
E–3. B 5500 Tape Label for COBOL Files ..E–21

H–1. Format of the Backup File Control Record .. H–5
H–2. Fields of the Control Word (Word 0) ... H–6
H–3. Fields of the Block Character Control Word (Word 1) H–7
H–4. Fields of the Logical File Kind Word (Word 2) ... H–8
H–5. Fields of the Path Control Word (Word 3) ... H–9
H–6. Fields of Words 4 through 9 of the Control Record .. H–10
H–7. Fields of Word 10 of the Control Record .. H–10
H–8. Fields of Word 11 of the Control Record .. H–11
H–9. Fields of Word 12 of the Control Record .. H–12

Tables

xviii 8600 0056–408

8600 0056–408 1–1

Section 1
Introduction and Understanding File
Handling

About This Guide
This guide explains what the I/O subsystem does and how file attributes interact with the
I/O subsystem to define a specific file type. Additionally, the guide describes how
language-specific I/O statements are used to manipulate file attributes in a program.

This guide also provides a general discussion of how file attributes and I/O statements
work together to define the characteristics of files, but it does not explain how to
manipulate a file in a specific language. Refer to the language programming reference
manual for specifics about I/O statements.

This guide is intended to be used by any programmer who needs to understand how to
describe the characteristics of a file in a program.

Use this guide in conjunction with the File Attributes Reference Manual and the
programming reference manual of the language that is to be used. This section through
Section 12 presents basic information about how the I/O subsystem and file attributes
work together, as well as information about basic programming techniques. Additionally,
information about how to describe a specific file in a program is presented. Sections 13
to 28 present information about programming for inter-process communication by using
port files.

About POSIX Files

POSIX files are declared and manipulated differently from standard files declared under
the master control program (MCP). Attribute descriptions in this manual refer to
non-POSIX files unless otherwise specified.

Files, Records and Directories
What Is a File?

Before considering basic programming for files, you need to understand the
characteristics of a file. A file is an ordered group of related records that exist apart from
the program. A file is defined in a program that uses that file, or at least the file
description is known to that program. A file description in the data division of a COBOL
program is an example of defining a file in a program.

Introduction and Understanding File Handling

1–2 8600 0056–408

What Is a Record?

Most files have a particular structure that the program can determine called a record. A
record is a group of logically related items of data in a file that are treated as a unit. A
record within a file contains data made up of characters, binary data, or both. The
I/O subsystem gives to the program or takes from the program one record at a time. The
program then handles the subdivisions of the record.

Records of a file can all be the same length, known as fixed-length records, or of varying
lengths, known as variable-length records. Length information must be declared or
implied by the program and made available to the I/O subsystem. If the length is variable,
the I/O subsystem must be able to obtain the actual length of each record so that it can
process one record at a time, regardless of length, either from the record itself, or from
the program processing the record. From the viewpoint of the program, records are
ordered in some way. In the simplest case, they follow each other sequentially until the
end of the file. In that case, the program is interested only in accessing the next record in
sequence.

Files that contain only streams of bytes are not structured with records.

What Is a Directory?

A directory is sometimes referred to as a folder that contains files. There are three types
of directories on the ClearPath NX servers and A Series systems. Refer to the System
Operations Guide for more information about directories.

Physical and Logical Files
A file is viewed in two ways: as a physical file and as a logical file.

Physical Files

A file that exists on a recording medium is known as a physical file.

Except for a disk file with a FILESTRUCTURE value of STREAM, a physical file contains a
group of physically adjacent records that are referred to as a block. Such a block can be
transferred to or from the physical file as a group.

Note: The term physical file is sometimes used in this manual to refer to the physical
device rather than the data stored on its recording medium. The context usually makes
clear which meaning is intended.

 Introduction and Understanding File Handling

8600 0056–408 1–3

In the case of disk files, a physical file can be either permanent or temporary. A
permanent file is visible to all running programs and to the system operator. Access to a
permanent file can be limited by security facilities. A permanent file remains visible until
it is deliberately purged or, if it resides on removable media, until the operator dismounts
the media from the system. A temporary file is one that exists only at the time of its
original creation—it is of no further interest to any program. An example of a temporary
file is a disk file that is used only as an intermediate step in a process. A temporary file is
private to the program that creates it, has no visibility to the general system, and exists
for the I/O subsystem only while the logical file that created it remains assigned. A newly
created file becomes a permanent file when a program requests that the file be saved by
closing the file with a disposition of lock, downsizearealock, or crunch, or by using the
PROTECTION file attribute. At such a time, the I/O subsystem enters the name of the
file in the disk directory. Refer to Section 2, “Understanding Programming for Files,” for
information about closing files and their associated dispositions.

Logical Files

A file that exists within a program is known as a logical file.

From the viewpoint of block-structured languages such as ALGOL and Pascal, a logical
file exists only within the program block where it is declared or within blocks to which it
has been passed as a formal parameter. A logical file has no inherent properties until it is
described by file attributes or until it is associated with a physical file. A physical file
inherits properties from the file attributes of the logical file that creates it. Multiple logical
files can be associated with one physical file, and the attributes of those logical files need
not be identical in all cases.

A logical file can be in one of four states:

• Open-assigned

• Closed-unassigned

• Closed-assigned (also known as closed-retained)

• Open-unassigned

Before data can be transferred between logical and physical files, the logical file must be
open and the physical file must be assigned to the logical file. This assignment can be
accomplished explicitly by opening the logical file with an OPEN statement, by means of
the AVAILABLE attribute, or, in some languages, by invoking an I/O statement.

Additional File Characteristics

A file can be identified as an optional file by using the syntax of some languages or by
assigning the OPTIONAL attribute a value of TRUE. When a file is identified as an
optional file, an OPEN operation can leave the logical file unassigned to a physical file and
proceed with processing.

A file can also be identified as a file that never executes physical I/O operations by
assigning the DUMMYFILE attribute a value of TRUE. This feature is helpful for debug
files or when the output of the program is not needed.

Introduction and Understanding File Handling

1–4 8600 0056–408

Finally, a file can be identified as an exclusive file by using the syntax of some languages
or by assigning the EXCLUSIVE attribute a value of TRUE. When a file is identified as an
exclusive file, an attempt to open a file that is currently in use results in the physical file
being attached to the logical file, the logical file waits and remains closed until the file can
be used only by your program. Similarly, if your program is using a file exclusively, other
programs that try to open it wait until your program closes the exclusive file.

Opening a file explicitly does not cause data to be transferred between the logical and
physical files, and the logical file can be closed without any I/O being performed upon it.
The logical file can be closed with retention, which leaves the physical file assigned, or it
can be closed with release, which severs the connection between the logical and
physical files.

Naming a File in the MCP Environment
The MCP environment supports two file-naming conventions: the traditional file naming
convention and the long file naming convention. This section describes the traditional
naming convention. Even on systems which have enabled long file names, you should
use traditional file names whenever possible.

You name a file in the MCP environment with a series of up to 12 nodes separated by
slashes (/). The file name can be preceded by a usercode enclosed in parentheses or can
be preceded by an asterisk (*). Each node can contain a 1- to 17-character identifier with
the following characteristics:

• Any combination of EBCDIC uppercase letters A through Z or EBCDIC digits
0 through 9. Additionally, a hyphen (-) or an underscore (_) can be included in the
identifier, but neither of those characters can be the first character.

• An identifier enclosed in quotation marks ('' ''). The EBCDIC characters can be any
character that has a hexadecimal code greater than or equal to a hexadecimal 4"40"
(space) and cannot be an EBCDIC character quotation mark.

• If the file is a disk file, a keyword that identifies a system-supplied character string
preceded by a displayable character that is specified with the UNIQUETOKEN file
attribute value. Refer to the FILENAME attribute in the File Attributes Reference
Manual for more information about valid keywords.

 The following are examples of valid file names in the MCP environment:

• ACCOUNTING/RECEIPTS/021689

• PERSONNEL/''EMPLOY.LIST''

• (KELLY)DOCUMENTS/CLIENT/6

• *SYSTEM/LOGANALYZER

• ACCOUNTING/''@MIXNO''/''@JOBNO''/RECEIVABLES (Disk files only)

 Introduction and Understanding File Handling

8600 0056–408 1–5

The MCP environment provides an optional long file name feature that allows greater
flexibility when naming disk files. When this feature is enabled, disk files can be named
using names of up to 20 nodes, each of which contains up to 215 characters. This
feature is primarily intended for use on ClearPath NX servers to allow interoperation with
workstation programs that create files with names longer than those supported by the
traditional MCP environment file system. Refer to the System Operations Guide for
information on the benefits and limitations of the long file names features.

For POSIX, a pathname attribute PATHNAME can be set to provide an alternate,
standards-based way of naming the system disk file. Refer to the System Operations
Guide for more information on disk file naming conventions using POSIX pathnames.

A tape file name in the MCP environment has the same characteristics as a file name in
the MCP environment, except that the I/O subsystem uses only the first and the last
nodes of the name. If more than one file resides on a tape, all the files must have the
same first node, known as the multiple file ID (MFID). The second node is known as the
file ID (FID). The following are examples of valid tape file names in the MCP environment:

• RECEIVABLES

• ACCOUNTS/MASTER

• STUDENTS/GRADES

• STUDENTS/CLASSES

A port file name has a single 1- to 17-character node. That node can contain an identifier
with the following characteristics:

• Any combination of EBCDIC uppercase letters A through Z or EBCDIC digits 0
through 9.

• An identifier enclosed in quotation marks ('' ''). The EBCDIC characters can be any
character that has a hexadecimal code greater than or equal to a hexadecimal 4"40"
(space) and cannot be an EBCDIC character quotation mark.

 The following are examples of valid port file names:

• RESERVATIONS

• RESERVATION_REQ

• ''RESERVATION_REQ''

Refer to the FILENAME attribute in the File Attributes Reference Manual for more
information about file names.

Introduction and Understanding File Handling

1–6 8600 0056–408

Identifying Files on Other Systems
When you are accessing a non MCP environment system through a network, enclose
the name in apostrophes ('). Before the MCP environment system sends the file name
information to the remote host, the apostrophes are removed and only the characters are
sent to the remote host. The name can be up to 250 EBCDIC characters long, but cannot
contain an EBCDIC apostrophe character or any EBCDIC character that has a
hexadecimal code less than 4"40". A pair of apostrophes can be used to specify a single
apostrophe in the file name.

The following are examples of valid foreign host file names:

• 'MY\FILE\031789'

• 'A:ACCOUNTS.PAY'

• '[Sys]<Sys>InstallSpl.Run'

• 'ACCOUNTING*PAYABLES.'

Understanding the Functions of the I/O Subsystem
In the MCP environment, you, as a programmer, do not need to handle the details of
controlling the peripheral devices, nor do you need to be concerned with the connections
to the peripheral units. The I/O subsystem handles those details for you and allows
dynamic file definition; that is, the precise nature of a file need not be fully defined in the
program using the file.

Some of the tasks the I/O subsystem is responsible for are

• Making a file assignment, namely, establishing a connection between the logical file
of a requesting program and the corresponding physical file

• When a new file is to be created, finding and providing storage space or providing the
address of a peripheral device of the requested or acceptable kind—for example,
connecting an available tape drive

• Acting as an intermediary between the logical file and the physical file associated
with it

• Using the disk subsystem to maintain the disk directory

• Reading and keeping track of all label information on physical files that have been
loaded by the operator

• Automatically writing the necessary labels when a new file is created, including the
external file name and other label information

• Checking for consistency between the specified attributes

• Checking the results of physical I/O operations, converting any errors to a standard
format, and communicating the results by means of file attributes

• Dealing with the program, one logical record at a time, and executing physical I/O
operations only when necessary

 Introduction and Understanding File Handling

8600 0056–408 1–7

• Using buffers to smoothly expedite the flow of I/O operations. A buffer is an
intermediate storage area, under control of the I/O subsystem, which is used to
store data in transit between the physical file and the user work area. Typically, two
buffers are used so that one can be dedicated to a peripheral transfer while the other
is available for logical record operations

Understanding File Attributes
The I/O subsystem can define files dynamically because of file attributes. File attributes
act as a communication channel between the program and the I/O subsystem.
Sometimes a program communicates to the I/O subsystem by modifying an attribute
value. At other times the program interrogates an attribute to determine the conditions
under which the I/O subsystem is operating.

File attributes allow the program to accomplish the following tasks:

• Identify a file

• Describe the structure of a file

• Identify the status of a file

• Specify the security level of a file

• Control a printer file

• Control the translation of character sets

• Determine the current status of a file

• Allow interprocess communication

• Access a file on a remote host

If you are using ALGOL, you are responsible for modifying and interrogating file
attributes. However, compilers for some languages, including COBOL74 or COBOL85,
set the attribute values for you. You are responsible for interrogating any attribute that
you might be interested in.

File attributes enable you to write a program that is not limited to a particular
configuration nor bound to any hardware device, because the file attribute values
declared in a program can be changed in any one of the following manners:

• The value is changed at compilation time

• Before the program is run, an operator changes the value by using the file equation
capability of WFL

• The value is changed by your program while it is executing

• The value is changed by using the FA (File Attributes) system command

Modifying an attribute value is referred to as attribute assignment. Interrogating an
attribute is referred to as attribute interrogation.

Introduction and Understanding File Handling

1–8 8600 0056–408

File equation is a mechanism for performing attribute assignment when a program is
initiated or compiled. For example, as a program is initiated, the KIND attribute can be
given a different value than the value already specified in the file declaration. A program
can be written to handle any file of a specific type, and then a user of the program can
indicate a particular file by file-equating the FILENAME attribute appropriately. For
information about file equation and task initiation, refer to the WFL Reference Manual,
and for information about the particular file attributes and their values, refer to the File
Attributes Reference Manual.

Example

The following example demonstrates the use of file attributes. In this example, the WFL
deck compiles and runs the ALGOL program and uses file equation in the process.

The ALGOL program symbolic whose file name on disk is FILE/PROGRAM is as follows:

BEGIN
FILE
 F(KIND=TAPE,MAXRECSIZE=90,BLOCKSIZE=360,NEWFILE=TRUE, (1)
 FILENAME="TEST.",FRAMESIZE=8);
ARRAY
 A[0:14];

F.KIND := VALUE(DISK); (4)
(4)
OPEN(F);
 (The entry of an FA (File Attribute) system command by the
 operator.) (5)
REPLACE POINTER(A) BY " " FOR 90;
REPLACE POINTER(A) BY "THIS FILE'S FILENAME IS: ", F.FILENAME;
F.SYNCHRONIZE:=VALUE(OUT); (6)
WRITE(F,90,A);
CLOSE(F,CRUNCH);
END.

The WFL job is as follows:

 ?BEGIN JOB FILE/EXAMPLE;
 COMPILE OBJECT/FILE/PROGRAM ALGOL LIBRARY;
 COMPILER FILE CARD(KIND=DISK,FILENAME=FILE/PROGRAM);
 FILE F(BLOCKSIZE=180,FILENAME=TEST2); (2)

 RUN OBJECT/FILE/PROGRAM;
 FILE F(BLOCKSIZE=2520,NEWFILE=FALSE,FILENAME=TEST1); (3)
 ?END JOB

 Introduction and Understanding File Handling

8600 0056–408 1–9

The following file attribute actions are taken in the preceding example code:

Notation
Number

Explanation

(1) The values assigned in this statement are stored in the file declaration of
the code file.

(2) The values assigned at compilation time are stored with the code file as a
compile-time file equation.

(3) The values assigned when the program is run are stored with the job
information.

(4) The file attribute values stored at (1), (2), and (3) are applied to the file,
with the values assigned in (2) superseding the values of BLOCKSIZE and
FILENAME assigned in (1) and the values assigned in (3) superseding the
values of BLOCKSIZE, FILENAME, and NEWFILE assigned in (1) and (2).
Finally, the value of DISK is assigned to the KIND file attribute.

(5) If an operator entered an FA system command because no file was
available with the correct name, the value or values of any attributes
included in the FA command override any values already assigned to
those attributes at that point.

(6) The SYNCHRONIZE file attribute value is changed to OUT as the program
is running.

After the program attribute assignment statement F.KIND := VALUE(DISK) is executed,
the following attributes take on the indicated values:

• The KIND attribute has a value of DISK.

• The MAXRECSIZE attribute has a value of 90 characters.

• The BLOCKSIZE attribute has a value of 2520 when the file is opened.

• The NEWFILE attribute has a value of FALSE.

• The FILENAME attribute has a value of TEST1.

• The FRAMESIZE attribute has a value of 8.

During execution of the OPEN statement, if the permanent physical file with the file
name of TEST1 does not exist on disk when the assignment to the physical file is
attempted, the program waits for an answer to the NO FILE message. In other words,
the program displays the message “NO FILE TEST1” and waits for a response from
either an operator or a programmer, or for the file with the file name TEST1 to be created
on or copied to the appropriate disk device.

If an FA FILENAME = TEST/FILE system command is entered for the program, all the file
attributes listed previously now have the values indicated in the previous list, except that
the FILENAME attribute value is now TEST/FILE. When a physical file with a file name of
TEST/FILE exists on disk, the OPEN process proceeds normally, assigning the logical file
F to the physical file TEST/FILE on disk, setting up the logical file, and marking the logical
file as open.

Introduction and Understanding File Handling

1–10 8600 0056–408

8600 0056–408 2–1

Section 2
Understanding Programming for Files

To read, write, and update information in a file, you specify file attribute values and
invoke I/O statements in your program. The various programming languages provide
ways of specifying file attribute information. If you do not explicitly specify file attribute
values, the system provides reasonable defaults for required file attribute values.
Additionally, each language has specific I/O statements that invoke the I/O actions.

You can modify most file attributes when the program is initiated from WFL. Since this is
true, your program only has to declare each file. All of the file attributes values that need
to have values other than default values can be modified when the program is initiated
from WFL. As flexible as this method is, it does make it harder for a new programmer to
understand the basic tasks of the program, so Unisys suggests that you declare the file
attributes in the program and modify the values when the program is initiated, if
necessary.

Throughout this section, examples for the ALGOL, COBOL74, and COBOL85 languages
are given. Refer to your language manual for in-depth information about appropriate
syntax. The following discussions identify the universal tasks that you should be
concerned with when programming. Information about tasks that must be accomplished
for a specific device type or for port files is provided in the appropriate device-type
section or in Sections 13 through 29.

The following tasks are described in this section:

• Naming the file

• Specifying the peripheral device for the file

• Specifying the purpose of the file

• Identifying how data is transferred

• Establishing a record format

• Controlling the size field of a variable-length record

• Using byte files in a program

• Using a dummy file

• Opening a file

• Determining if a file exists or is available

• Moving data to and from a file

• Starting at a particular record

Understanding Programming for Files

2–2 8600 0056–408

• Closing a file

• Modifying an attribute

• Interrogating an attribute

• Determining attribute conflicts

• Dealing with translation

Use the file declaration mechanism of your language to identify the characteristics of
your file. Such a declaration associates the name of the file declaration with the
INTNAME attribute and defines the logical file to be used by the program. Additionally, a
file declaration can be used to assign values to the attributes associated with the file.
Example file declarations in ALGOL, COBOL74, and COBOL85 follow:

ALGOL FILE(KIND=DISK,NEWFILE=FALSE,DEPENDENTSPECS=TRUE);

FILE OUTPUT_FILE;

COBOL74 and
COBOL85

FD IN-FILE.

FD UPDATE-FILE;
 VALUE OF DEPENDENTSPECS IS TRUE,
 FILENAME IS "MASTER/UPDATE.".

Naming the File
The file declaration is used to identify the name of the physical file to be used. In ALGOL,
the FILENAME or TITLE attribute is used to specify the name. Other languages might
use the same mnemonic or something quite similar, but each language provides a
mechanism to assign the FILENAME and TITLE attributes a value. If you do not assign
values to the FILENAME or TITLE attributes, the system uses the value of the INTNAME
attribute. By default the INTNAME value is the first 17 characters of the file identifier in
the program. As a consequence, all file identifiers in a program should be unique through
the first
17 characters.

The FILENAME and TITLE attributes are used to identify files on peripheral devices.
When the file is on disk, you can identify the name of the family, as distinguished from
the name of the file, by specifying a name to the FAMILYNAME attribute.

The FILENAME and TITLE attributes accept file names specified in the file name syntax
of the traditional MCP environment. You can also specify file names using POSIX
pathname syntax. Refer to the File Attributes Reference Manual for more information on
the PATHNAME attribute.

The LFILENAME and LTITLE attributes accept file names that don’t conform to the
traditional MCP environment naming convention. File name nodes greater than
17 characters are truncated when assigned to the FILENAME and TITLE attributes, but
not when assigned to LFILENAME and LTITLE. Refer to the File Attributes Reference
Manual for more information about these attributes.

 Understanding Programming for Files

8600 0056–408 2–3

Specifying the Peripheral Device for the File
One of the most important characteristics that a file has is the class of peripheral device
or devices associated with the logical file. The KIND attribute is used to identify the type
of device and has the mnemonic values listed in Table 2–1.

Table 2–1. Mnemonic Values for the KIND Attribute

Mnemonic Value Description

CD A CD-ROM optical disk is requested.

DISK A magnetic disk file is requested.

HC A Host Control file that can link several systems together for data
transfers is requested.

HY A HYPERchannel file that can link several systems together for
data transfers on a HYPERchannel network is requested.

ODT An operator display terminal (ODT) file that allows information to
be sent to an ODT or received from an ODT is requested.

PORT A port file that is capable of interprocess communication is
requested.

PRINTER A printer file is requested.

Note: The contents of this file are normally spooled by the
operating system rather than opening the device directly.

READER A card reader file is requested.

Note: The contents of this file are normally spooled by the
operating system rather than opening the device directly.

REMOTE A remote file that allows the program to communicate with a
remote device.

TAPE A tape file is requested.

VIRTUAL An abstract file supported by an IOHANDLER library.

Note: The contents and attributes of this file are defined and
manipulated by a library known as an IOHANDLER, which is
outside the operating system. With respect to language
constructs, program access is the same as for other devices.

Specifying the Purpose of the File
If you want to create a file, set the NEWFILE attribute to TRUE. It is not necessary to set
NEWFILE to TRUE for printer files, since either one of these files always causes a new
file to be created. If you want to ensure that the file is only written to, assign the
FILEUSE attribute a value of OUT.

Understanding Programming for Files

2–4 8600 0056–408

If you want to access an existing file, set the NEWFILE attribute to FALSE. If you want to
access that file by using the record format information that is stored with the permanent
file, such as record size, set the DEPENDENTSPECS attribute to TRUE. If the logical file
you are defining is capable of having information either written to or read from the file,
and you want to restrict the use of the logical file to one or the other, assign the FILEUSE
attribute a value of OUT or IN.

Identifying How Data Is Transferred
You control how data is transferred to and from the user data area by assigning the
FRAMESIZE attribute one of the following values:

Value Number of Bits Transferred

4 Data is transferred in units of 4 bits or as hexadecimal characters. The
INTMODE value must be HEX. This value is not supported by Host Services
logical I/O or FTAM.

8 Data is transferred in units of 8 bits. The INTMODE value must not be HEX,
BCL, or SINGLE because these INTMODE values do not have 8-bit characters.

48 Data is transferred in units of 48 bits or as full words. This value is compatible
with all values of INTMODE.

The following are the default values assigned to the INTMODE attribute by the language
compilers:

Language INTMODE Default Value

ALGOL EBCDIC

COBOL74 and
COBOL85

EBCDIC if the first 01-level entry of the file is USAGE DISPLAY. HEX if
the first 01-level entry of the file is USAGE COMP

Depends on the component type:

Component Type INTMODE Default Value

Pascal

Packed array with 4-bit elements

Packed array of characters

All other component types

HEX

EBCDIC or ASCII
depending on the setting
of the STRINGS compiler
control option

SINGLE

If you are programming for FTAM, refer to Section 9, “Accessing and Creating Files
Using Distributed File Services,” for information about assigning INTMODE values for an
FTAM file.

 Understanding Programming for Files

8600 0056–408 2–5

Establishing a Record Format
The following information does not apply to port files or virtual files. Refer to Sections 13
through 29 for information about port file data transfer and to Section 30, “Understanding
Virtual Files,” for information about virtual file data handling.

In the MCP environment, you can create a file with the following record formats:

• Fixed-length unblocked records

• Fixed-length blocked records (for tape and disk)

• Fixed-length records, no blocks (for disk)

• Variable-length unblocked records

• Variable-length blocked records (for tape and disk)

• Variable-length records, no blocks (for disk)

• Byte streams (for tape and disk)

The BLOCKSTRUCTURE, MINRECSIZE, MAXRECSIZE, and BLOCKSIZE attributes are
used to define the record format for a file.

Byte streams are a fixed length, blocked with MAXRECSIZE = 1, and ANYSIZEIO =
TRUE.

Indicating the Record Size

Use the MINRECSIZE and MAXRECSIZE attributes to indicate the possible range of the
record sizes. If you are defining a fixed length record, do not give a value to the
MINRECSIZE attribute.

Table 2–2 shows the default value and maximum value for each type of device for the
MAXRECSIZE attribute.

Table 2–2. MAXRECSIZE Default and Maximum Values

Device Type Default Value Maximum Value

DISK 30 words 65535 FRAMESIZE units

ODT 10 words 65535 FRAMESIZE units

REMOTE 12 words 1528 words

PRINTER 22 words

READER 14 words Same as default

TAPE 10 words

Understanding Programming for Files

2–6 8600 0056–408

Indicating the Size of the Blocks and Buffers

Grouping several physically adjacent records into one block reduces the I/O operation
time when reading and writing records, because a block of records is brought into
memory and then each record is made available to the program one at a time without
requiring a physical I/O operation. Because blocked disk files are handled differently from
other files, refer to Section 3, “Using Disk and CD-ROM Files in a Program,” for
information about handling blocks and buffering. To specify that you want to group your
records into a block, assign the BLOCKSIZE attribute a value that reflects a length that
can accommodate more than one record. Be aware that if the records are of variable
length, you can waste space if you do not give BLOCKSIZE a value larger than the
MAXRECSIZE value. When determining the block size, keep in mind that if you use large
blocks, the I/O operations are efficient, but your program is tying up a large amount of
main memory. On the other hand, if you use very small blocks, the I/O subsystem must
perform more I/O operations.

The BLOCKSIZE attribute value should be specified in terms of the FRAMESIZE attribute
value. If you are going to use Host Services logical I/O with this file, the BLOCKSIZE
attribute must be less than 65486 characters.

Indicating the Type of Variable-Length Record

In the MCP environment, there are five types of variable-length records. Each type
indicates the length of the record in a different way, and your program must have code
that supports the indicated type of variable-length record. You indicate the type of
variable-length record by using the BLOCKSTRUCTURE attribute.

Table 2–3 identifies the BLOCKSTRUCTURE mnemonics for the various types of
variable-length records, where or how the size information is stored or indicated, and
which distributed systems services (DSSs) support the type.

 Understanding Programming for Files

8600 0056–408 2–7

Table 2–3. Possible BLOCKSTRUCTURE Values for Variable-Length
Records

Mnemonic Value

Length Information
Distributed Systems

Services (DSSs)

EXTERNAL Neither the record itself nor the
structure of the file contains
information about the length of the
record. You must specify length
information externally in the I/O
statement, unless you are using
unblocked files. Refer to
“Understanding Record Length When
BLOCKSTRUCTURE Equals
EXTERNAL” later in this section for
information about using unblocked
files.

Host Services logical
I/O for unblocked files
and FTAM

LINKED FORTRAN linked records. The link
words are maintained by the I/O
subsystem and are not part of the
data. The INTMODE value of the file is
assumed to be SINGLE, and software
translation is never attempted.

None

VARIABLE The record size is contained in the first
four characters or first word of the
record. The I/O subsystem can
maintain the size field.

FTAM

VARIABLE2 The record size is contained in the first
two characters or first word of the
record.

None

VARIABLEOFFSET The record size is contained in a fixed
location in the record. You specify the
location.

None

Understanding Record Length When BLOCKSTRUCTURE Equals
EXTERNAL

If you select the EXTERNAL value for BLOCKSTRUCTURE, consider the following
information as you program:

• If your program reads unblocked tape files, port files, remote files, or ODT files, the
I/O subsystem determines the actual length of the record and returns the length
information through the CURRENTRECORDLENGTH and STATE attributes.

• If your program reads a blocked file and specifies a record length that is longer than
the remainder of the block, the record is truncated at the end of the block.

Understanding Programming for Files

2–8 8600 0056–408

• If your program writes to a blocked file and specifies a record length that is longer
than the remainder of the block, a new block is started. If the file is a tape file, the
previous block is written as a short block.

Controlling the Size Field When BLOCKSTRUCTURE Equals
VARIABLE

If you select the VARIABLE value for BLOCKSTRUCTURE, either your program or the
system can be responsible for maintaining the size field of the record. If you want the
system to be responsible for determining the size of the records, set the SIZEVISIBLE
attribute to FALSE. When SIZEVISIBLE is FALSE, the record size field is not visible to the
program. Files can be created with the SIZEVISIBLE attribute set to TRUE, and then they
can be read or updated with the SIZEVISIBLE attribute set to FALSE, and vice versa.

When your program is responsible for maintaining the size field of the record, the first
four characters or the first word of each record contains a decimal or binary number that
indicates the number of FRAMESIZE characters in the record, including the size field
itself. The INTMODE attribute value controls the size field characteristics and the
maximum and minimum record size that can be used. Table 2–4 shows the size field
characteristics and maximum and minimum values.

Table 2–4. Size Field Information Based on INTMODE Value

INTMODE

Value
Place in
Record

Numeric
Representation

Maximum
Value

Minimum
Value

SINGLE First word Binary MAXRECSIZE
value

MINRECSIZE
value

OCTETSTRING First four
octets

A decimal
number
represented in
EBCDIC
characters

9999 4

All others First four
characters

A decimal
number
represented in
INTMODE
characters

9999 4

You must increase the values of MAXRECSIZE, MINRECSIZE, and BLOCKSIZE to
accommodate the size fields when you declare the values for these attributes.

If you set the SIZEVISIBLE attribute to FALSE, the I/O subsystem maintains the size
field. The following information is important to know:

• When a WRITE operation is invoked, the size of the record is set to the length of the
data written.

 Understanding Programming for Files

8600 0056–408 2–9

• When a READ operation is invoked, the size of the record is returned in the logical
result descriptor and the CURRENTRECORDLENGTH attribute. Refer to the STATE
attribute in the File Attributes Reference Manual for the location of the information in
the logical result descriptor.

• The MAXRECSIZE attribute cannot be larger than 9995.

• The MAXRECSIZE, MINRECSIZE, and BLOCKSIZE you specified are adjusted upward
by the operating system to accommodate the record size field.

• If you interrogate the MINRECSIZE and MAXRECSIZE attributes, the original values
that your program specified are returned rather than the adjusted values.

• If you interrogate the BLOCKSIZE attribute, the adjusted block size is returned.

If you select the VARIABLE2 value for BLOCKSTRUCTURE, your program is responsible
for maintaining the size field of the record. Represent the size as a binary number. If the
INTMODE value is not SINGLE, the size information is in the first two characters of the
record. If the INTMODE value is SINGLE, the size information is in the first word of the
record.

Your program must define a record size that accommodates the size field.

Understanding Programming for Files

2–10 8600 0056–408

Controlling the Size Field When BLOCKSTRUCTURE Equals
VARIABLEOFFSET

If you select the VARIABLEOFFSET value for BLOCKSTRUCTURE, your program must
perform the following tasks:

• Specify how the size field information is recorded by assigning a value to the
SIZEMODE attribute. If the file you are defining is a disk or tape file, the value can be
different from the INTMODE value. For all other devices, the value cannot be
different from the INTMODE value.

The following mnemonic values are available for the SIZEMODE attribute:

Mnemonic Value Representation of Record Size

ASCII 8-bit decimal digits

EBCDIC 8-bit decimal digits

HEX 4-bit, packed decimal digits

SINGLE Binary

• Specify where the size field is stored in the record in SIZEMODE units by using the

SIZEOFFSET attribute. If you want the size field to start in the first position of the
record, you do not need to assign a value to the SIZEOFFSET attribute, because the
default is 0 (zero). For any other position, indicate how far into the record you want
the size field to be.

• Specify how long, in SIZEMODE units, the size field is by assigning a value to the
SIZE2 attribute. If you assign the SIZEMODE attribute a value of SINGLE, the SIZE2
value defaults to a value of 1. The size of the field has to be within the range defined
by the MINRECSIZE and MAXRECSIZE values.

Writing on a File with Variable Length Records

A program performing an update write on a file with variable length records that is either
blocked or has FILESTRUCTURE=STREAM will get a DATAERROR
(DIFFERENTLENGTHRECORDS error for COBOL85 programs) if the record being written
is not the same size as the record being replaced. The data in the file is not modified and
the current record pointer is moved to the next record. Therefore, the next serial read or
write operation is performed on the next record in the file. This behavior applies also to
COBOL85 rewrite operations to unblocked files.

 Understanding Programming for Files

8600 0056–408 2–11

Using Byte Files in a Program
The I/O subsystem supports byte-oriented files, which are often referred to as stream
files. These files can be generated by a number of softwares, including FTP, NetWare,
and NX/Services on behalf of workstation users, and are commonly produced by a C
program using POSIX interfaces.

Some attributes vary based on the exact requirements of the file but in general the
following attribute values are required for a permanent disk byte file:

• BLOCKSTRUCTURE is FIXED.

• EXTMODE is a value, which reflects 8-bit characters (SINGLE, HEX and BCL are not
allowed).

• FILESTRUCTURE is STREAM.

• FILEORGANIZATION is NOTRESTRICTED.

• MAXRECSIZE is 1.

• FRAMESIZE is 8.

It is possible for an ALGOL program to produce a byte file by setting file attributes to the
appropriate values. The following attribute settings are required to open a file. Note that
the value required for some of the attributes is the default value and need not be
specified in the file declaration.

• ANYSIZEIO is TRUE.

• BLOCKSTRUCTURE is FIXED.

• FILEORGANIZATION is NOTRESTRICTED (default).

• FILESTRUCTURE is STREAM.

• FRAMESIZE is 8, or UNITS is not WORDS.

• INTMODE and EXTMODE are values, which reflect 8 bit characters (SINGLE, HEX
and BCL are not allowed).

• MAXRECSIZE is 1.

• UPDATEFILE is FALSE (default).

Byte files differ in several ways from traditional files in the MCP environment (which are
record files). Record-files are traditional disk files. Record-files have MAXRECSIZE and
FRAMESIZE attributes that define their record layout. Examples of record files include
ALGOL source files, SEQDATA and DATA data files, and code files.

Byte files are randomly accessed sequences of bytes with no further structure imposed
upon them by the operating system. Byte-files are like the traditional file kinds on DOS
and UNIX machines. Byte-files do not have any record layout specified by file attributes.
They are sequences of bytes. The setting of MAXRECSIZE=1 and ANYSIZEIO=TRUE
enables I/O operations to be of any length.

Understanding Programming for Files

2–12 8600 0056–408

If you are not familiar with basic programming methods, review those methods in this
section. You can identify all the file attributes that can be used with a byte file by
reviewing the attributes shown for disk files in Table A–1. You can also find more
information about any of the mentioned attributes in the File Attributes Reference
Manual.

Types of Byte Files

There are three distinct types of byte files. They can exist as “normal” files, stored on
disk along with a header and associated data areas. In addition, byte files are used for
permanent directories and to provide special kinds of files based on the POSIX
specification, namely FIFO files and files with the semantics of the /dev/null file. These
files have no associated data storage areas on disk. They function only as a disk header
that describes the attributes of the file. These files are distinguished from other byte files
by their FILEKIND values. The FILEKIND values of 232 through 240 are reserved for
POSIX special files, with 238 = DEVNULL and 240 = FIFO. The FILEKIND value of 190 is
reserved for permanent directories. The other values are not currently used.

To treat a permanent disk file as one of the special files, it must include the following
attributes in addition to the required attributes listed earlier:

• FILEKIND is FIFO or DEVNULL or PERMDIR.

• LASTRECORD is –1.

The following attribute settings must be used for the logical file:

• ALLOWSPECIALFILE is TRUE. (for FIFO and DEVNULL)

• The declaration does not specify a DIRECT file.

Permanent Directory Files

Permanent directories are files having security attributes that govern that can access
sub-directories and files at the next directory level. Permanent directories have no data
records, only a disk file header. Permanent directories can exist only in the permanent
directory namespace consisting of files whose name starts with the node *DIR.

Permanent directories are created using the WFL MKDIR statement, logical I/O when
FILEKIND is set to PERMDIR, and by Client Access Services on behalf of a workstation
user doing a make directory operation in an MCP share. Read and write operations to
permanent directories are not allowed.

 Understanding Programming for Files

8600 0056–408 2–13

FIFO Files

FIFOs are files that have no data storage on disk. While a FIFO is open it will have a data
storage area in memory, which is used to implement a “first in first out” queue. Any
number of logical files may simultaneously have a given FIFO open. Each logical file may
have the FIFO open as read-only, write-only, or read/write.

Creating a FIFO

Most practical uses of a FIFO require that the FIFO be made permanent in the directory
before it can be used. This allows multiple independent processes to access the FIFO. If
you choose to do this, open a file with the required special byte file attribute values. In
addition, you must

• Set FILEKIND to FIFO.

• Set NEWFILE to TRUE.

• Set FILEUSE to IO.

• Create the FIFO as a permanent file, either by setting PROTECTION to SAVE, or by
closing the FIFO with LOCK.

The FIFO can also be created through use of the POSIX interface MKFIFO. See the
MCP/ AS ALGOL and MCP Interfaces to POSIX Features Programming Reference
Manual for more information on creating FIFOs.

Opening a FIFO

Perform the following tasks before you open the file:

• Specify the required special byte file attributes listed earlier in this section.

• Set the value of FILEKIND to FIFO.

• Specify whether you are going to use the FIFO for input only, output only, or both
input and output by setting the FILEUSE attribute to IN, OUT, or IO.

• Set the value of NONBLOCK to provide the desired I/O action. (See the following
information.)

The action taken when a program opens a FIFO depends upon the setting of the
NONBLOCK attribute.

• If NONBLOCK is FALSE, an open for read-only will mark the physical file as open for
reading, but the open will not finish (i.e. return control to the invoker) until the
physical file is also open for writing. Likewise, if NONBLOCK is FALSE, an open for
write-only will mark the physical file as open for writing, but the open will not finish
(i.e. return control to the invoker) until the physical file is also open for reading.

• If NONBLOCK is TRUE, an open for read-only will mark the physical file as open for
reading, and the open will finish (for example, a return control to the invoker) even if
the physical file is not open for writing. If NONBLOCK is TRUE, an open for write-
only will mark the physical file as open for writing if and only if the physical file is also
open for reading. Otherwise, a NOFIFOREADERRSLT open error will result.

Understanding Programming for Files

2–14 8600 0056–408

Perform the following tasks before you open the file:

• Set the value of FILEKIND to FIFO.

• Specify whether you are going to use the FIFO for input only, output only or both
input and output by setting the FILEUSE attribute to IN, OUT, or IO.

FIFOs provide a mechanism to queue arbitrary sequences of bytes of data. Only serial
reads and serial writes are permitted for FIFOs. Bytes of data are presented to read
statements in the same order in which they arrived via write statements. Data written to
a FIFO by any given write statement is never interleaved with data written by another
write statement.

The semantics of read and write operations depend on the setting of the NONBLOCK file
attribute and the size of the operation. POSIX defines a value called PIPE_BUF, which in
the MCP environment is currently a value of 6144 (this value is available
programmatically as _PC_PIPE_BUF, using the POSIX_PATHCONF function).

If NONBLOCK is FALSE:

• A write operation will not finish until all data has been written. If the number of bytes
to be written is less than or equal to PIPE_BUF, then the data will be placed into the
FIFO in a single operation. If the number of bytes to be written is greater than
PIPE_BUF, then the data will be placed into the FIFO in multiple pieces, which are
PIPE_BUF in length.

• A read operation will complete as soon as data is available. No more than the
requested amount of data is read. If less than the requested amount of data is read,
a short block logical result will be returned. Note that no more data than PIPE_BUF
bytes is ever available for a single read.

• If several programs are waiting to write to a FIFO, they will be serviced in the order
in which they were waiting. Likewise, if several programs are waiting to read from a
FIFO, they will be serviced in the order in which they were waiting. The exception is
that a program that is stopped by an operator “ST” or by a POSIX stop signal loses
its place in line.

• If all writers and readers of a given FIFO specify the same data length, and that
length is less than or equal to PIPE_BUF, then the reads will return data in the same
chunks in which it was written.

• Read and write operations are interruptible by POSIX signals while they are waiting
to transfer data (see the POSIX User’s Guide for a description of POSIX signals). In
that case the appropriate signal handler is invoked and the read or write operation
might return an exception. If no data has yet been transferred a CANCELED will be
returned; if data has been transferred then a short block logical result will be
returned. This action is dependent on the specifics of the defined action for the
signal; there are cases where signals will be ignored or where the task will resume
waiting to transfer data after handling the signal.

 Understanding Programming for Files

8600 0056–408 2–15

If NONBLOCK is TRUE:

• A write operation with a requested length less than or equal to PIPE_BUF finishes
immediately if there is room in the FIFO for all of the data. Otherwise, the write
operation will return a NOBUFFERFORWRITE error.

• A write operation whose requested data length is greater than PIPE_BUF finishes
immediately if there is room in the FIFO for any data at all. As much data as fits will
be written; if all data does not fit then a short block logical result will be returned.

• A read operation finishes immediately if any data is available. No more than the
requested amount of data is read. If less than the requested amount of data is read
then a short block logical result is returned. If no data is available, then the read will
return a NODATAFORREAD error.

A write operation will return an error (NOREADERS) if there are no readers. In addition, if
the invoking process is signal capable, a SIGPIPE signal will be sent to it. A read
operation will return an error (ENDOFFILE) if there are no writers.

The /dev/null File

The /dev/null file is a special kind of file intended primarily for use by POSIX programs.
This file has no storage on disk. It is created automatically when the DL ROOT ODT
command is entered.

The /dev/null file is used for file redirection. The POSIX semantics apply to the /dev/null
file. The data from any write to /dev/null is discarded, and any read from /dev/null will
return an ENDOFFILE error (no data is returned). The /dev/null file provides semantics
very similar to the logical file attribute DUMMYFILE.

Creating a File with /dev/null Semantics

A user can create a file with the same semantics as /dev/null. In addition to the required
special byte file attributes listed earlier, the FILEKIND must be set to DEVNULL.

Understanding Programming for Files

2–16 8600 0056–408

COBOL85 Sample

The following COBOL85 example reads a DISK file of fixed length records and then
writes it as a byte stream file. When writing the file, each record is terminated with a
carriage-return and linefeed (CR–LF). Next the program reads the resulting file, displaying
its records at the REMOTE.

 $$ RESET NOLIMITS
 IDENTIFICATION DIVISION.
 PROGRAM-ID. STREAM-EXAMPLE.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT IN-FILE ASSIGN TO DISK.
 SELECT OUT-FILE ASSIGN TO DISK.
 SELECT VF ASSIGN TO DISK.
 SELECT REM ASSIGN TO REMOTE.
 *
 DATA DIVISION.
 FILE SECTION.
 FD IN-FILE
 VALUE OF FILENAME IS "SOME/DISK/FILE"
 DEPENDENTSPECS IS TRUE.
 01 IN-REC.
 03 IN-DATA PIC X OCCURS 1 TO 3000 DEPENDING ON REC-SIZE.

 FD OUT-FILE
 RECORD CONTAINS 1 TO 3000 CHARACTERS
 VALUE OF FILENAME IS "SOME/STREAM/FILE"
 FILESTRUCTURE IS STREAM
 FILEORGANIZATION IS NOTRESTRICTED
 BLOCKSTRUCTURE IS FIXED
 FRAMESIZE IS 8
 MAXRECSIZE IS 1
 MINRECSIZE IS 1
 ANYSIZEIO IS TRUE
 NEWFILE IS TRUE
 EXTMODE IS ASCII.
 01 OUT-REC.
 03 OUT-REC-DATA PIC X OCCURS 1 TO 3000
 DEPENDING ON REC-SIZE-OUT.
 01 OUT-REC-X.
 03 OUT-REC-DATA-X PIC X OCCURS 1 TO 3000
 DEPENDING ON CHAR-CNT.

 FD VF
 VALUE OF FILENAME IS "SOME/STREAM/FILE"
 DEPENDENTSPECS IS TRUE
 ANYSIZEIO IS TRUE.

 Understanding Programming for Files

8600 0056–408 2–17

 01 VF-REC PIC X(3000).

 FD REM.
 01 REM-REC PIC X(80).

 WORKING-STORAGE SECTION.
 77 OUT-LEN REAL.
 77 FRM-SIZE REAL.
 77 REC-SIZE REAL.
 77 REC-SIZE-OUT REAL.
 77 REC-CNT REAL.
 77 CHAR-CNT PIC 999 COMP.
 77 EOF-INFILE PIC X VALUE "F".
 77 DISPLAY-FLAG PIC X VALUE "T".
 77 UNSTRING-CNT-OVERLAP REAL.
 77 NEXT-UNSTRING REAL.
 77 UNSTRING-START REAL.
 77 UNSTRING-CNT REAL.
 77 MOVED-CNT REAL.
 77 MSG-LEN REAL.
 77 DISPLAY-SIZE REAL VALUE 80.
 01 DUMMY-REC.
 03 DUMMY-REC-R PIC X OCCURS 3000.
 01 REC-ARRAY PIC X(3000).
 01 REM-ARRAY.
 03 REM-ARRAY-R PIC X OCCURS 80.
 *
 PROCEDURE DIVISION.
 MAIN-PARA.
 OPEN INPUT IN-FILE.
 MOVE ATTRIBUTE MAXRECSIZE OF IN-FILE TO REC-SIZE.
 MOVE ATTRIBUTE FRAMESIZE OF IN-FILE TO FRM-SIZE.
 IF FRM-SIZE = 48 THEN
 MULTIPLY REC-SIZE BY 6 GIVING REC-SIZE.

 PERFORM CREATE-STREAM-FILE THRU CREATE-STREAM-FILE-EXIT.
 * We now have a STREAM file version of the DISK file to read
 * and display.

 MOVE 0 TO REC-CNT.
 OPEN INPUT VF.
 OPEN OUTPUT REM.
 * Now read and display the STREAM file.
 PERFORM READ-AND-DISPLAY-VF THRU READ-AND-DISPLAY-VF-EXIT.

Understanding Programming for Files

2–18 8600 0056–408

 CLOSE VF.
 CLOSE REM.

 MAIN-PARA-EXIT.
 STOP RUN.

 CREATE-STREAM-FILE.
 OPEN OUTPUT OUT-FILE.
 COMPUTE REC-SIZE-OUT = REC-SIZE + 2.

 CREATE-STREAM-LOOP.
 PERFORM GET-NEXT-RECORD THRU GET-NEXT-RECORD-EXIT.
 IF EOF-INFILE = "F" THEN
 PERFORM FORMAT-FOR-STREAM THRU FORMAT-FOR-STREAM-EXIT
 PERFORM WRITE-STREAM-RECORD THRU WRITE-STREAM-RECORD-EXIT
 GO TO CREATE-STREAM-LOOP.

 CREATE-STREAM-FILE-EXIT.
 CLOSE OUT-FILE SAVE.

 GET-NEXT-RECORD.
 READ IN-FILE AT END MOVE "T" TO EOF-INFILE
 NOT AT END
 MOVE IN-REC TO DUMMY-REC.

 GET-NEXT-RECORD-EXIT.
 EXIT.

 FORMAT-FOR-STREAM.
 MOVE REC-SIZE-OUT TO CHAR-CNT
 * Trim any trailing blanks and mark the end with CR-LF.
 PERFORM UNTIL (CHAR-CNT = 0) OR
 (DUMMY-REC-R(CHAR-CNT) NOT = " ")
 SUBTRACT 1 FROM CHAR-CNT
 END-PERFORM
 MOVE @0D@ TO DUMMY-REC-R(CHAR-CNT + 1)
 MOVE @25@ TO DUMMY-REC-R(CHAR-CNT + 2)
 ADD 2 TO CHAR-CNT.

 FORMAT-FOR-STREAM-EXIT.
 EXIT.

 Understanding Programming for Files

8600 0056–408 2–19

 WRITE-STREAM-RECORD.
 * Now write the DISK file as a STREAM file.
 MOVE DUMMY-REC TO OUT-REC
 WRITE OUT-REC-X
 ADD 1 TO REC-CNT.

 WRITE-STREAM-RECORD-EXIT.
 EXIT.

 READ-AND-DISPLAY-VF.
 PERFORM GET-NEXT-STREAM-REC THRU GET-NEXT-STREAM-REC-EXIT.
 PERFORM REMOTE-DISPLAY THRU REMOTE-DISPLAY-EXIT.
 IF DISPLAY-FLAG = "T"
 GO TO READ-AND-DISPLAY-VF.

 READ-AND-DISPLAY-VF-EXIT.
 EXIT.

 GET-NEXT-STREAM-REC.
 READ VF
 AT END
 MOVE "F" TO DISPLAY-FLAG
 IF UNSTRING-CNT-OVERLAP > 0 THEN
 * Write any residue from previous overlap at end.
 WRITE REM-REC FROM REM-ARRAY
 MOVE 0 TO UNSTRING-CNT-OVERLAP
 END-IF
 NOT AT END
 MOVE ATTRIBUTE CURRENTRECORDLENGTH OF VF TO MSG-LEN.

 GET-NEXT-STREAM-REC-EXIT.
 EXIT.

 REMOTE-DISPLAY.
 IF DISPLAY-FLAG = "T" THEN
 MOVE VF-REC TO REC-ARRAY
 MOVE 1 TO NEXT-UNSTRING
 PERFORM WRITE-RECS-TO-REMOTE THRU
 WRITE-RECS-TO-REMOTE-EXIT UNTIL MSG-LEN <= 0.
 $$ SET OMIT = NOLIMITS
 * Limit the volume of displayed output.
 IF REC-CNT > 9 MOVE "F" TO DISPLAY-FLAG.
 $$ POP OMIT

Understanding Programming for Files

2–20 8600 0056–408

 REMOTE-DISPLAY-EXIT.
 EXIT.

 WRITE-RECS-TO-REMOTE.
 MOVE 0 TO UNSTRING-CNT.
 MOVE 0 TO MOVED-CNT.
 MOVE NEXT-UNSTRING TO UNSTRING-START.
 IF UNSTRING-CNT-OVERLAP > 0 THEN
 * The last time thru here we didn't write all the data,
 * because it was an incomplete record. Add new data to what
 * was left over for the next record we write.
 UNSTRING REC-ARRAY
 DELIMITED BY @0D25@
 INTO REM-ARRAY-R(UNSTRING-CNT-OVERLAP + 1)
 COUNT IN MOVED-CNT
 WITH POINTER NEXT-UNSTRING
 COMPUTE MOVED-CNT = MOVED-CNT + UNSTRING-CNT-OVERLAP
 MOVE 0 TO UNSTRING-CNT-OVERLAP
 ELSE
 MOVE SPACES TO REM-ARRAY
 UNSTRING REC-ARRAY
 DELIMITED BY @0D25@
 INTO REM-ARRAY
 COUNT IN MOVED-CNT
 WITH POINTER NEXT-UNSTRING.
 * MOVED-CNT characters have been moved to REM-ARRAY.
 * NEXT-UNSTRING is next position in source after UNSTRING,
 * following the delimiter(s).

 SUBTRACT UNSTRING-START FROM NEXT-UNSTRING
 GIVING UNSTRING-CNT.
 * Decrement input message length by what we just consumed.
 SUBTRACT UNSTRING-CNT FROM MSG-LEN.

 IF MSG-LEN = 0 AND
 MOVED-CNT < DISPLAY-SIZE THEN
 * This display record needs more data from the next READ to
 * make it complete.
 MOVE MOVED-CNT TO UNSTRING-CNT-OVERLAP
 ELSE
 WRITE REM-REC FROM REM-ARRAY
 ADD 1 TO REC-CNT.

 WRITE-RECS-TO-REMOTE-EXIT.
 EXIT.

 END PROGRAM STREAM-EXAMPLE.

 Understanding Programming for Files

8600 0056–408 2–21

Using a Dummy File
In certain situations you might want to test the logic of a program, but you do not want
to actually write to or read from a file. To identify such a file in your program, set the
DUMMYFILE attribute to TRUE. As a result, the logical file is not assigned to a
permanent file, no buffers are allocated, no I/O operations are performed, and all program
READ operations return an end-of-file indicator. You should not set DUMMYFILE to
TRUE if your program rereads records that have been written to the file in the current
program, because the records will not be there.

An alternative to using the DUMMYFILE attribute is available if you are using the POSIX
implementation. Disk files such as /dev/null, created by the DL ROOT system ODT
command with the FILEKIND attribute set to DEVNULL, have very similar properties to
logical files that specify a file with the DUMMYFILE value of TRUE.

Opening a File
Before a program can create data or access data contained in a physical file, an
association between the physical file and the program must be made. You make this
association by assigning a physical file to a logical file. An explicit OPEN statement does
not cause data to be transferred between logical and physical files, and the logical file
can be closed without any I/O operations being performed on the file.

Use the OPEN statement to accomplish the assignment task and to mark the logical file
as open. I/O statements such as READ and WRITE require the logical file to be open
before they can perform their functions. In some languages other than COBOL, a file can
be opened implicitly by the first I/O operation to the file. After the OPEN operation is
completed, the I/O statement is performed. In most cases, a physical file is assigned to
the logical file when the OPEN statement is performed.

You can use certain forms of the OPEN statement to conditionally open a file, so that a
logical file is opened only if a physical file satisfying specified matching criteria is found.
In addition, you can specify the initial positioning of the logical file.

In some languages, you can also request an OPEN statement to return a result indicating
that the OPEN operation was successful, or if the operation was unsuccessful, the
reason for the failure. For a listing of the possible OPEN results returned by the system,
refer to the File Attributes Reference Manual. If you do not request the result, the
system takes default actions for each result that would have been returned.

The following are examples of an OPEN statement in ALGOL, COBOL74, and COBOL85:

ALGOL OPEN(F);

I := OPEN(SOURCE_FILE,AVAILABLE);

COBOL74
and
COBOL85

OPEN INPUT IN-FILE.

OPEN EXTEND UPDATE-FILE.

Understanding Programming for Files

2–22 8600 0056–408

The rules of ALGOL require that you specify explicitly any necessary attribute values
before opening a file. In some other languages, compilers can generate object code that
assigns file attribute values without the programmer explicitly specifying them, in order
to accommodate the semantics of implicit or explicit OPEN statements for the file. This
is called an “implicit assignment.” The attributes commonly assigned implicitly are as
follows:

• MYUSE

• FILEUSE

• UPDATEFILE

• DIRECTION

• EXCLUSIVE

• NEWFILE

 In addition, when using FORTRAN77, the following attributes may be assigned implicitly:

• PROTECTION

• DEPENDENTSPECS

In languages that use implicit assignments for these attributes, the compiler generates
code based on the expectation that you will not change the attributes it has set. Explicitly
assigning values to these attributes in these languages can interfere in unpredictable
ways with the proper execution of the program.

If a file is opened implicitly, or the value returned by the OPEN function is discarded and
an open error occurs, the program is terminated with the following error message:

FILE <title> OPEN ERROR: <error message>

All open errors are fatal unless the program has an error-handling routine to handle the
result of the OPEN operation. The open error message numbers that appear in the error
message or in the system log are different from the OPEN result numbers that you
would have received if your program interrogated the OPEN result.

 Understanding Programming for Files

8600 0056–408 2–23

Determining the Existence or Availability of a File
In certain instances you might want to determine whether a file exists or is available
without causing your program to wait if the file is not present on the system. You can
use the following attributes for this task:

• Interrogate the AVAILABLE attribute to determine if a file is present or can be
opened. If the file cannot be opened, a reason is returned, the program is not
suspended, and an operator does not have to answer a “NO FILE” waiting message.

 The AVAILABLE attribute can be used as an option of the OPEN statement in some
languages.

• Interrogate the PRESENT attribute to determine if a file is open, and if the file is not
open, to try to open the file. If a disk file is open and is being used exclusively by
another program, the logical I/O subsystem waits until the disk file is closed and then
opens the file.

• Interrogate the RESIDENT attribute to determine if a permanent file exists or if a
physical unit is available. TRUE is returned if a permanent file exists or a physical unit
is available. Interrogating this attribute does not open the file.

Understanding Programming for Files

2–24 8600 0056–408

Moving Data to and from a File
You are now ready to read data from your file, write data to your file, or both. Use the
READ and WRITE statements of your language to accomplish this task.

There are two major types of READ operations: serial and random. Use a serial READ
operation to obtain the data from the next record in the file. Use a random READ
operation to obtain the data from a specific record.

In some languages, you can also request in a READ statement that a result be returned
that indicates if the READ operation was successful, or if the operation was
unsuccessful, the reason for the failure. Refer to the File Attributes Reference Manual for
a listing of the possible I/O result enumerated values. If you do not request a result, the
system takes default actions for each result that would have been returned.

All READ errors are fatal unless the program has an error-handling routine to handle the
result of the READ operation. Your program is terminated if a fatal READ error is not
handled, and the following message is displayed:

FILE <title> I/O ERROR: <error message>

The error message number in this message and the system log message number are
different from the result enumerated values that your program would have received if the
program had requested the result.

The following are examples of a serial READ statement and a random READ statement
in ALGOL, COBOL74, and COBOL85:

ALGOL READ(F,90,A);

B := READ(IN_FILE[REC_NUM],IN_RECORD_SIZE,
INPUT_POINTER);

COBOL74
and
COBOL85

READ IN-FILE.

MOVE NEXT-FILE-INDEX TO RANDOM-KEY.
READ RANDOM-FILE;
 INVALID KEY GO TO DISPLAY-KEY-ERROR.

When a READ operation is initiated, data is transferred to your program from the buffer
in memory. If no more records are found in the buffer, or, in the case of a random read, if
the desired record is not in the buffer, the operating system does a physical READ
operation to the I/O device.

There are two major types of WRITE operations: serial and random. Use a serial WRITE
operation to place the data in the next record in the file. Use a random WRITE operation
to place the data in a specific record in the file.

 Understanding Programming for Files

8600 0056–408 2–25

In some languages, the WRITE statement can request that a result be returned that
indicates if the WRITE operation was successful, or if the operation was unsuccessful,
the reason for the failure. Refer to the File Attributes Reference Manual for a listing of
the possible I/O results. If you do not request a result, the system takes default actions
for each result that would have been returned.

All WRITE errors are fatal unless the program has an error-handling routine to handle the
result of the WRITE operation. Your program is terminated if a fatal WRITE error is not
handled and the following message is displayed:

FILE <title> I/O ERROR: <error message>

The error message number in this message and the system log message number are
different from the result enumerated values that your program would have received if the
program had requested the result.

The following are examples of a serial WRITE statement and a random WRITE statement
in ALGOL, COBOL74, and COBOL85:

ALGOL WRITE(F,90,A);

B :=WRITE(OUT_FILE[REC_NUM],OUT_RECORD_SIZE,
OUTPUT_POINTER);

COBOL74
and
COBOL85

WRITE OUT-RECORD.

MOVE EMPLOYEE-NUMBER TO UPDATE-KEY.
WRITE UPDATE-DATA;
 INVALID KEY PERFORM HANDLE-INVALID-KEY.

When a WRITE operation is initiated, data is transferred from your program to the buffer
in memory. If the buffer is full, or in the case of a random WRITE, if the record does not
belong in the current buffer, the operating system does a physical WRITE operation to
the I/O device.

The I/O subsystem does extensive checking on physical I/O operations and translates
error and exception information into a result descriptor that you can interrogate. If the file
has more than one buffer, which is the usual case, and a logical I/O statement initiates a
physical I/O operation, the physical I/O operation is completed asynchronously with the
program. When a physical I/O operation is initiated, the buffers are rotated so that the
program can continue to use the next buffer. The error analysis for a physical WRITE
operation is performed when the buffer is rotated back to the top position, and therefore
is always behind the position of the logical file by the number of buffers the file has.
Because physical READ operations are initiated ahead of the logical file position in
anticipation of sequential reading, error analysis for physical READ operations matches
the logical file position.

The result descriptor is returned for each logical I/O operation and is directly accessible in
some of the languages. You can also interrogate the STATE attribute to obtain
information about the last I/O operation. If you do not request a result, the system takes
default actions for each result that would have been returned.

Understanding Programming for Files

2–26 8600 0056–408

If the SYNCHRONIZE attribute value is OUT or you use the SYNCHRONIZE option in a
WRITE statement, you can determine which I/O operations are causing the error.
Synchronous output causes the system to complete the I/O operation before going on;
thus, you can determine where the error is occurring. However, using synchronous I/O
processing is less efficient than using normal asynchronous buffer processing.

Certain styles of tape drives that have a long repositioning time (for example, the
HS8500) might experience a significant impact on performance when using synchronous
I/O.

Starting at a Particular Record
If you want to start processing records sequentially starting at a certain record without
transferring the information into your program at that time, use the SEEK statement. The
next serial I/O operation reads or writes that record. You can request that a result be
returned indicating that the SEEK operation was successful, or if the operation was
unsuccessful, the reason for the failure. The value is returned in the same format as that
returned by the STATE attribute. For a description of the information returned, refer to
the STATE attribute in the File Attributes Reference Manual. If you do not request that a
result be returned, the system takes default actions for each result that would have been
returned.

The following examples, in ALGOL, COBOL74, and COBOL85, show how to start at a
particular record:

ALGOL SEEK(F[0]);

R :=SEEK(F[SAVED_RECORD_NUMBER]);

SPACE(F,-1);

COBOL74
and
COBOL85

MOVE NEXT-KEY TO UPDATE-KEY.
SEEK UPDATE-FILE.

 Understanding Programming for Files

8600 0056–408 2–27

Closing a File
Use the CLOSE statement to mark a logical file as closed. Generally, the physical file is
disassociated from the logical file when the CLOSE statement is performed, although an
option is provided to allow the association to be retained. You can also change the
disposition of the physical file. Some languages require the file to be closed before the
program is exited.

You can request that a result be returned that indicates whether the CLOSE operation
was successful, or if the operation was unsuccessful, the reason for failure. Refer to the
File Attributes Reference Manual for a list of CLOSE results.

All close errors are fatal unless the program accepts responsibility for handling the error
by referencing the value returned by the CLOSE operation.

If you do not request a result, the system takes default actions for each result that would
have been returned. If a file is closed implicitly, or if the value returned by the CLOSE
operation is discarded, and a close error occurs, the system terminates the program and
displays the following error message:

FILE <title> CLOSE ERROR: <error message>

The error message number in this message and the system log message number are
different from the CLOSE error message numbers that your program would have
received if the program had requested the result.

The following examples show how to use the CLOSE statement in ALGOL, COBOL74,
and COBOL85:

ALGOL CLOSE(F);

CLOSE(F,CRUNCH);

CLOSE(F,REWIND);

COBOL74
and
COBOL85

CLOSE UPDATE-FILE.

CLOSE OUT-FILE WITH SAVE.

Understanding Programming for Files

2–28 8600 0056–408

When a CLOSE statement is invoked, the MCP initiates the actions to be taken. Those
actions are based on the CLOSE operation requested by the program. The MCP gives an
incoming CLOSE operation three different identifiers.

MCP
Identifier

Value

Description

Type Regular The file is closed.

 Reel The current reel is closed.

 Dontwait Control is returned to the program as soon as
possible after the port file or subport file has
been updated to CLOSED, CLOSEPENDING,
or CLOSEREQUESTED.

Association Retain Physical file remains assigned to logical file.
The MCP changes the association from retain
to release if the disposition is rewind for a
tape file that has a FILESECTION file attribute
value greater than 1 or that is making a reel
switch.

 Release Physical file is no longer assigned to logical
file.

 Reserve The unit can be only assigned to this stack.
This association gets special handling for
FORTRAN77 file declarations.

 Disable The logical file cannot be reassigned.

Disposition Rewind The file is rewound.

 Lock The file is locked.

 Save The MCP changes the disposition to lock for
disk files, and rewind for other files. For
foreign files, the disposition remains save, so
the foreign host can interpret the tape as it
wants.

 No Rewind The file is not rewound.

 Purge The file is purged.

 Crunch The file is crunched.

Downsizearea If the file consists of one area, the area size is
reduced and the unused portion is returned to
the system. In other ways this value behaves
like Rewind. See additional conditions in the
following text.

Downsizearealock The file’s behavior is the same as
downsizearea. The file is also locked.

 Understanding Programming for Files

8600 0056–408 2–29

The following conditions must be met to reduce the area size of a file. If one condition is
not true, the downsize action is not performed and the close operation continues.

• The file is a disk file.

• The file consists of the first area only.

• The file has at least one record.

• The file’s area size exceeds 60 sectors.

• The file is not crunched.

• The file’s unused space exceeds 10 percent of the area size.

• The file is not opened by another logical file. If the file is opened by another logical
file, the downsize action is delayed until the last logical file is closed. If the close of
any of the logical files specifies crunch, then a crunch is done instead of a down size
area.

The area is downsized to the file’s current size (last record) plus 10 percent or 60 sectors,
whichever is larger. If the file has a FILESTRUCTURE value of ALIGNED180 or
BLOCKED, then the area size is increased to be a multiple of the file’s block size.

Tables 2–5 through 2–16 identify the type of CLOSE requested by the specified language
and the type, association, and disposition the MCP associates with the requested CLOSE
operation. The CLOSE operations that are unique to port files are not identified.

Table 2–5. COBOL85 CLOSE Statement Actions

Statement Option Type Association Disposition

REEL FOR REMOVAL Reel Release Rewind

UNIT FOR REMOVAL Reel Release Rewind

REEL Reel Retain Rewind

UNIT Reel Retain Rewind

Note: These options can be used only with tapes.

Table 2–6. COBOL85 CLOSE Statement Actions

Statement Option Type Association Disposition

Default Regular Retain Rewind

Default (Multifileó) Regular Reserve No Rewind

LOCK Regular Disable Lock

SAVE Regular Release Save

Understanding Programming for Files

2–30 8600 0056–408

Table 2–6. COBOL85 CLOSE Statement Actions

Statement Option Type Association Disposition

NO REWIND (Multifile)

Note: The MULTIPLE FILE
clause is used in I-O Control.

Regular Reserve No Rewind

NO REWIND Regular Retain No Rewind

PURGE Regular Release Purge

RELEASE Regular Release Rewind

CRUNCH Regular Release Crunch

REMOVE Regular Release Save

REMOVE CRUNCH Regular Release Crunch

NO WAIT Dontwait Retain Rewind

Table 2–7. COBOL74 CLOSE Statement Actions

Statement Option Type Association Disposition

REEL FOR REMOVAL Reel Release Rewind

REEL Reel Retain Rewind

REEL (Multifile)

Note: The MULTIPLE FILE
clause is used in I-O Control.

Reel Reserve Rewind

SAVE FOR REMOVAL Regular Release Lock

REEL SAVE FOR REMOVAL Reel Release Lock

Note: These options can be used only with tapes.

Table 2–8. COBOL74 CLOSE Statement Actions

Statement Option Type Association Disposition

Default Regular Retain Rewind

Default (Multifile)

Note: The MULTIPLE FILE
clause is used in I-O Control.

Regular Reserve No Rewind

 Understanding Programming for Files

8600 0056–408 2–31

Table 2–8. COBOL74 CLOSE Statement Actions

Statement Option Type Association Disposition

REEL (Multifile)

Note: The MULTIPLE FILE
clause is used in I-O Control.

Reel Reserve Rewind

REEL LOCK Reel Disable Lock

LOCK Regular Disable Lock

SAVE Regular Release Save

NO REWIND (Multifile)

Note: The MULTIPLE FILE
clause is used in I-O Control.

Regular Reserve No Rewind

NO REWIND Regular Retain No Rewind

PURGE Regular Release Purge

RELEASE Regular Release Rewind

CRUNCH Regular Release Crunch

REMOVE Regular Release Save

REMOVE CRUNCH Regular Release Crunch

NO WAIT Dontwait Retain Rewind

Table 2–9. Contents of Column 70 of the RPG File Description
Specification

Identifier Type Association Disposition

R: Remove Regular Release Save

C: Crunch Regular Release Crunch

K: Crunch and remove Regular Release Crunch

Note: Can be used only with disks.

Table 2–10. Contents of Column 70 of the RPG File Description
Specification

Identifier Type Association Disposition

P: Purge Regular Release Purge

U: Unload Regular Release Lock

Understanding Programming for Files

2–32 8600 0056–408

Table 2–10. Contents of Column 70 of the RPG File Description
Specification

Identifier Type Association Disposition

N: No Rewind Regular Retain No Rewind

Note: Can be
used only with
tapes.

Blank: If input disk that does
not allow addition or deletion:
Regular

Regular Release Rewind

Blank: All other types of files:
Unspecified

Regular Release Save

Table 2–11. Contents of the Result Field (Columns 43 through 48) of
the RPG Calculation Specification When CLOSE Is Present in Columns

28 Through 32

Contents of Column 43
Through 48

Type

Association

Disposition

Blank Regular Release Rewind

CRUNCH Regular Release Crunch

LOCK Regular Release Lock

NORWND Regular Retain No Rewind

PURGE Regular Release Purge

REEL Reel Retain Rewind

REWIND Regular Retain Rewind

Table 2–12. FORTRAN77 CLOSE Statement Actions

Statement Option Type Association Disposition

"CRUNCH" Regular Release Crunch

"DELETE" Regular Release Purge

"KEEP" Regular Release Lock

None, but the PROTECTION file
attribute value is TEMPORARY

Regular Release Purge

 Understanding Programming for Files

8600 0056–408 2–33

Table 2–12. FORTRAN77 CLOSE Statement Actions

Statement Option Type Association Disposition

None, but the PROTECTION
value is SAVE or PROTECTED

Regular Release Lock

Table 2–13. FORTRAN77 CLOSE Actions without a CLOSE Statement

Statement Type Association Disposition

REWIND calls support library, which
does SEEK[0] if the file is a disk and
the BLOCKSTRUCTURE file attribute
value is not LINKED, otherwise the
file is closed with the identified type,
association, and disposition.

Regular Reserve Rewind

ENDFILE calls support library, which
opens the file if not already open and
the closes the file with the identified
type, association, and disposition.

Regular Reserve No Rewind

Table 2–14. Pascal CLOSE Statement Actions

Statement Option Type Association Disposition

Default Regular Release Rewind

CRUNCH Regular Release Crunch

NOREWIND Regular Retain No Rewind

PURGE Regular Release Purge

RESERVE Regular Reserve No Rewind

SAVE Regular Release Save

Table 2–15. ALGOL CLOSE Statement Actions

Statement Option Type Association Disposition

Default Regular Release Rewind

* Regular Retain No Rewind

CRUNCH Regular Release Crunch

LOCK Regular Release Lock

Understanding Programming for Files

2–34 8600 0056–408

Table 2–15. ALGOL CLOSE Statement Actions

Statement Option Type Association Disposition

PURGE Regular Release Purge

REEL Reel Retain Rewind

REWIND Regular Retain Rewind

DONTWAIT Dontwait Retain Rewind

DOWNSIZEAREA Regular Release Downsizearea

DOWNSIZEAREALOCK Regular Resease Downsizearealock

Table 2–16. ALGOL CLOSE Actions without a CLOSE Statement

Statement Type Association Disposition

LOCK (file name) Regular Release Lock

LOCK (file name, CRUNCH) Regular Release Crunch

REWIND (file name) Regular Retain Rewind

 Understanding Programming for Files

8600 0056–408 2–35

Modifying an Attribute
 You can modify the value of a file attribute, if allowed, for a particular purpose. You can
change the value under the conditions allowed for by any given file attribute. Some
attributes are not modifiable; they are read-only. Some attributes are modifiable only
while the file is closed, and some are modifiable only while the file is unassigned. The
attributes that are modifiable only while the file is closed are associated with the
structure of the logical file. The attributes that are modifiable only while the file is
unassigned are associated with the structure of the physical file or are used to specify
the matching criteria for assigning the physical file to the logical file.

You can use the following methods to modify an attribute in ALGOL, COBOL74, and
COBOL85:

ALGOL F.NEWFILE := TRUE;

REPLACE TEST_FILE.FILENAME BY "TEST/PROGRAM.";

TERM.BLOCKSTRUCTURE := VALUE(EXTERNAL);

REPLACE PORTFILE(5).YOURNAME BY "YOU.";

COBOL74
and
COBOL85

CHANGE ATTRIBUTE DEPENDENTSPECS OF
 IN-FILE TO VALUE TRUE.

CHANGE ATTRIBUTE FILENAME OF
 OUT-FILE TO "OUTPUT/MASTER.".

CHANGE ATTRIBUTE BLOCKSTRUCTURE OF
 TERMINAL-FILE TO VALUE EXTERNAL.

Understanding Programming for Files

2–36 8600 0056–408

Interrogating an Attribute
Many file attribute values are changed because of conditions that occur during an I/O
operation. You can find out the current value of any given attribute by interrogating that
attribute. Based on the current value, your program can then use a specific procedure to
handle the current condition. You can interrogate most attributes at any time. However,
you can interrogate other attributes only under the following conditions:

• While the file is open. These attributes report part of the current state of the logical
file.

• While the file is assigned. These attributes report part of the current state of the
physical file.

Keep in mind that certain state-related file attribute values, such as LASTSUBFILE,
STATE, and CURRENTRECORDLENGTH, change with every I/O operation performed on
the logical file. If the logical file is being accessed by more than one task, there is no
guarantee that the value of that file attribute when a given task interrogates the attribute
is the value resulting from the I/O operation that the task invoked.

If you want to perform an I/O operation and then obtain information about that operation,
you must establish a method of ensuring that no other task can perform an I/O operation
on the logical file in the time interval between the I/O operation and the interrogation of
one or more state-related file attributes.

One method you can use to request information about an I/O operation invoked by a task
is to request the information in the I/O statement. For example, the following statement
returns the subfile index (the value obtained by interrogating the LASTSUBFILE attribute)
in INX and the result descriptor (the value obtained by interrogating the STATE attribute)
in B. The current record length is found in field [47:20] of the result descriptor.

B := READ (PORTF[SUBFILE INX:0], 72, IOBUF)

The following table lists a few of the general purpose file attributes that you can
interrogate:

Attribute Information Obtained

BUFFERS The number of buffers currently being used

CURRENTBLOCKLENGTH The size, in FRAMESIZE units, of the block currently
being used

CURRENTRECORDLENGTH The number of FRAMESIZE units in the last record
read or written

FILEEQUATED Indication of whether one or more file attributes have
been modified by file equation

IOCLOCKS The accumulated I/O time for the file

NEXTRECORD The current position in the file

RESULTLIST A list of results caused by the most recent logical I/O
operation performed

 Understanding Programming for Files

8600 0056–408 2–37

The following examples show syntax that can be used to interrogate a file attribute value
in ALGOL, COBOL74, and COBOL85:

ALGOL I := F(2).CENSUS;

B := F.ATTERR;

REPLACE POINTER(TEST_FILENAME) BY
 TEST_FILE.FILENAME;

IF IN_FILE.BLOCKSTRUCTURE NEQ VALUE(FIXED) THEN
 HANDLE_VARIABLE_FILE;

COBOL74
and
COBOL85

MOVE ATTRIBUTE CRUNCHED OF IN-FILE TO
SAVE-CRUNCH.

MOVE ATTRIBUTE FILENAME OF OUT-FILE TO
 FILENAME-TEMP.

IF ATTRIBUTE BLOCKSTRUCTURE OF IN-FILE IS
 NOT EQUAL TO VALUE FIXED
 PERFORM HANDLE-VARIABLE-FILE.

Determining Attribute Conflicts
Sometimes you change attribute values to values that cannot be combined. As a result,
you receive an attribute error. You can detect attribute errors within your program by
using the ATTERR, ATTVALUE, and ATTYPE attributes.

Limiting Code File Execution
If you want only one copy of a code file to be executed, you can have the code within the
code file open a companion data file with the EXCLUSIVE attribute set to TRUE, or have
the code call a shared library that provides some form of exclusivity mechanism.

Understanding Programming for Files

2–38 8600 0056–408

Dealing with Translation
This guide uses the term translation to mean the process of replacing one data character
with a corresponding data character from another character representation, rather than
the process of expressing the meaning of a group of words written in one language in
another language.

When input data is, or output data must be, in a character set that cannot be processed
effectively by your program or cannot be manipulated efficiently by the system,
translation is necessary. The EXTMODE and INTMODE attribute values control whether
or not such translation occurs. If the two values identify different character sets, and if
the combination can be dealt with, translation is automatically initiated. Additionally,
translation can be requested if the EXTMODE and INTMODE values are the same.

The EXTMODE value represents the character set of the physical file, while the
INTMODE value represents the character set the program uses to manipulate the data.
Table 2–14 shows the acceptable translation combinations. If the EXTMODE value is
BINARY, translation can never occur.

Normally, when an existing physical file is opened, the EXTMODE value of the logical file
unconditionally assumes the EXTMODE value of the physical file. Using the
OVERRIDEEXTMODE attribute causes the logical file EXTMODE value to override the
EXTMODE of the physical file, thus causing the MCP to treat the physical file as though
it had the EXTMODE you specified. For more information on the effects of the
OVERRIDEEXTMODE attribute on file translation, see the File Attributes Reference
Manual.

Table 2–17. Possible EXTMODE and INTMODE Combinations

EXTMODE INTMODE

 0 2 3 4 5 7 8 9 10 11 n m mm

ISOGENERALSTRING 7 N – – – – N – – – – – – –

ISOGRAPHICSTRING 8 N – – – – – N – – – – – –

ISOVISIBLESTRING 9 N T – T T – – N T – T – –

IASTRING 10 N T – T T – – T N – T – –

OCTETSTRING 11 N – – – – – – – – N – – –

Note: FTAM-specific values.

 Understanding Programming for Files

8600 0056–408 2–39

Table 2–18. Possible EXTMODE and INTMODE Combinations

EXTMODE INTMODE

 0 2 3 4 5 7 8 9 10 11 n m mm

SINGLE 0 N N N N N N N N N N N – –

HEX 2 N N – Y Y – – T T – T – –

BCL 3 N – N – – – – – – – – – –

EBCDIC 4 N Y – N Y – – T T – T T –

ASCII 5 N Y – Y N – – T T – T – –

Other 8-bit sets n N T – T T – – T T – * T T

16-bit sets m – – – T T – – – – – T * T

Mixed multibyte sets mm – – – T T – – – – – T T *

Legend

– Invalid combination; an OPEN error is issued.

N Valid combination; no translation is performed.

Y Valid combination; translation occurs using the translate tables of the operating
system.

T Valid combination; translation is performed if the appropriate translation tables
are available in the CentralSupport library. If appropriate translation tables are
not available, an OPEN error is issued.

* If the INTMODE and EXTMODE values are the same, handled like an N;
otherwise, handled like a T.

For information about acceptable translation combinations for natural language character
sets identified as “Other 8-bit sets” in Table 2–14, refer to the MultiLingual System
Administration, Operations, and Programming Guide, and for information about
acceptable translation combinations for FTAM files, refer to “Using FTAM” in Section 9
of this guide.

Understanding Programming for Files

2–40 8600 0056–408

Translation cannot occur in the following situations:

• When the EXTMODE or INTMODE value is SINGLE.

• When the BLOCKSTRUCTURE value is LINKED or VARIABLEOFFSET, or the
FILETYPE value is 4 or 6.

• When the file is a direct I/O file.

• When a port file has a service other than BNANATIVESERVICE (Version 2 only).

• When either character set is mixed multi-byte (mixed 8-bit and 16-bit with
FRAMESIZE = 8).

If you are creating the file, you can assign values to both attributes, but if you are
accessing a permanent file, the logical file EXTMODE value is overwritten by the
EXTMODE value of the permanent file.

When translation is occurring, the values of the AREALENGTH, BLOCKSIZE,
CURRENTBLOCKLENGTH, CURRENTRECORDLENGTH, MAXRECSIZE, and
MINRECSIZE attributes are returned in terms of the logical units of the file as defined by
the FRAMESIZE attribute. Data are processed by the I/O subsystem in terms of logical
records, and both character- and word-oriented data transfers are allowed. In fact, the
whole process is transparent to the program.

When the character frame sizes differ between the internal mode and the external mode,
word-oriented data transfers require either contraction or expansion of the records;
hence, the logical and physical record and block sizes are not the same. For example, if a
file with an EXTMODE value of HEX were created with a physical record size of 5 words,
the translation of the 60 characters to 60 EBCDIC characters for a file with an INTMODE
value of EBCDIC would require 10 words in the logical record.

If you are a COBOL programmer, you should be aware that the value of the INTMODE
attribute is dependent on the order of the 01-level items under a File Description (FD)
entry. If two programs have the same record descriptions but the 01-level entries occur
in a different order, the compiler sets the INTMODE values differently and causes
translation to occur unexpectedly. For example, a first 01-level entry with USAGE
DISPLAY sets the INTMODE value to EBCDIC, and a first 01-level entry with USAGE
COMP sets the INTMODE value to HEX. Thus, make sure that the order of the 01-level
items is the same for all programs using a given file. The record descriptions can be
stored in a copy library file to ensure that all FD descriptions have the same order of
record declaration.

You can determine whether or not translation is occurring by interrogating the
TRANSLATING attribute. If the value is TRUE, translation is occurring. To specify that the
code in your program will perform any necessary translation, change the TRANSLATE
attribute value to USERTRANS. This action prevents the system from performing any
translation.

 Understanding Programming for Files

8600 0056–408 2–41

In some languages, you can cause translation to occur by using translation tables that
you provide and by performing the following tasks:

• Declare the appropriate translation table in your program. The table must be the first
table in a list of translation tables or the only table in the declaration.

• If the INTMODE and EXTMODE values are not forcing software translation to occur,
assign the TRANSLATE attribute a value of FORCESOFT.

• If the translation is to be done as the records are being read, assign the INPUTTABLE
attribute the name of the translate table.

• If the translation is to be done as the records are being written, assign the
OUTPUTTABLE attribute the name of the translate table.

Note: Each time the logical file is closed, the INPUTTABLE and OUTPUTTABLE values
are discarded.

Double-Byte and Mixed Multi-Byte Character Sets

Double-byte (16-bit) character sets and mixed multi-byte (mixed 8-bit and 16-bit with
FRAMESIZE = 8) character sets are implemented subject to the following rules and
restrictions:

• KIND must be DISK or PRINTER.

• If KIND = PRINTER, BACKUPKIND must be DISK or PACK, BLOCKSTRUCTURE
must be FIXED, and INTMODE must equal EXTMODE.

• FILEORGANIZATION must be NOTRESTRICTED.

• When either INTMODE or EXTMODE specifies a mixed multi-byte character set,
translation can occur only when the file is a character-stream disk file. A
character-stream disk file is a character-oriented file with FILESTRUCTURE =
STREAM, ANYSIZEIO = TRUE, and MAXRECSIZE = 1. This type of file is also
referred to as a FILECLASS = CHARACTERSTREAM file.

• For the purposes of mixed multi-byte translation, the entire character-stream disk file
is treated as a single character string. Any escape into or out of a sub-character set
takes place across individual I/O statements and applies to the file as a whole.

• When mixed multi-byte translation is in effect, only serial I/O operations are
permitted, and the file must be used only for input or only for output, but not for both
input and output.

• No individual WRITE statements can transfer more than 32,767 bytes from the
record area of a program; an attempt to do so causes a data error result to be
returned to the program.

• BLOCKSTRUCTURE must be FIXED, VARIABLE, or EXTERNAL

If BLOCKSTRUCTURE = VARIABLE, the file must be character oriented
(UNITS = CHARACTERS), and the file must have 8-bit EBCDIC-based, ASCII-based,
UCS2, or UCS2NT characters. Refer to the MultiLingual System Administration,
Operations, and Programming Guide for more information about these character
sets.

Understanding Programming for Files

2–42 8600 0056–408

• Host Services Logical (I/O) or FTAM File Services are not supported.

• Binary I/O is not supported.

• Synchronous I/O is not supported.

• Buffer sharing is not supported.

• User-defined translate tables are not supported.

Understanding Logical File Visibility in the Multiple
Stack Situation

In most cases, only one stack can perform an operation on a logical file at a time, and
other stacks that attempt simultaneous operations wait until the current operation is
finished.

Understanding this concept is especially important when the operation being performed
can take an indefinite period of time to complete. Examples of such operations are

• An OPEN or AWAITOPEN operation that can wait indefinitely for a file that is not
present or that is inaccessible for some other reason

• A WRITE operation that might result in a reel switch (for tape files) or flow control
action (for port files)

To avoid waiting indefinitely on an operation

• When opening files, use the AVAILABLE control option in your OPEN or
AWAITOPEN statement.

• For port files, use the DONTWAIT control option in your I/O statements in ALGOL, or
the NO WAIT control option in your I/O statements in COBOL74.

8600 0056–408 3–1

Section 3
Using Disk and CD-ROM Files in a
Program

In the MCP environment disk files and compact disk files have different KIND file
attribute values. Files that reside on magnetic disk files are identified with the PACK
value and files that reside on CD-ROM media are identified with the CD value.

Files with a KIND Value of PACK or DISK
Disk files are stored on devices that have a storage medium that is identified by a family
name of up to 17 characters. These family names are associated with the medium by
using the RC (Reconfigure Disk) or LB (Relabel Pack) system commands. Some family
names point to a group of disks that are logically grouped together as a multidisk family.
Multidisk families allow your site to group large amounts of information together.

As your program writes records to a file, the disk subsystem places the records on the
tracks of the disk that are physically divided into portions known as sectors. Each sector
contains 30 words (180 bytes) and has a unique address that the system uses to identify
the location of the sector. A sector is the smallest portion that can be read from or
written to a disk.

Because storing all the records of a file in one contiguous sequence of sectors is not
necessarily an efficient use of disk space, the disk space is allocated in pieces known as
areas, which are allocated by the system as needed. Areas are allocated anywhere on a
disk unit family or on any one of the disk units of a multidisk family. Allocation of areas is
done on a rotational basis for a multidisk family, but a program can indicate that the areas
of a file be allocated on a specific disk unit within the multidisk family when the file is
created. Refer to “AREAS,” “AREALENGTH,” “AREASIZE,” “FILESTRUCTURE,”
“FLEXIBLE,” “LASTACCESSIBLEAREA,” “MAXRECSIZE,” and “MINRECSIZE” in the
File Attributes Reference Manual for more information about understanding disk file size
limits.

When the file becomes a permanent file, a disk file header describing the file is placed in
the disk directory. A disk directory resides on the base unit of a multidisk family, unless
the duplicate directories have been requested by using the DD (Directory Duplicate)
system command. When duplicated directories exist, the base unit is the first member of
the family containing a directory that the system is aware of when the family becomes
available.

Using Disk and CD-ROM Files in a Program

3–2 8600 0056–408

A disk file can be differentiated from another disk file with the same file name by the
ANSI standard technique of recording a cycle and version for any file name. Different
iterations of a file that have the same cycle value are of the same genealogy.
Additionally, you can have multiple version numbers within a cycle. A file is said to have
the best genealogy when it has the highest cycle value and the highest version value
within the highest cycle. Only one file with the same name can be resident on a disk at
any one time, but other iterations can be saved on library maintenance tapes.

In the MCP environment, there are two methods of locating records on the physical disk.
One method groups records in blocks, whose size is defined by the program, and locates
these blocks on the disk at sector boundaries. Such a file is identified by a
FILESTRUCTURE attribute value of ALIGNED180 or BLOCKED. The other method allows
a continuous stream of records that are located on the disk without regard for sector or
area boundaries. Such a file is identified by a FILESTRUCTURE attribute value of
STREAM. The default value of the FILESTRUCTURE attribute is ALIGNED180.

Files with a FILESTRUCTURE value of STREAM make the best use of disk space and are
the easiest to use. However, they, as well as files with a FILESTRUCTURE value of
BLOCKED, do not support some of the features that are available for files with a
FILESTRUCTURE value of ALIGNED180. Refer to the discussion about the
FILESTRUCTURE attribute in “Creating a New Disk File” later in this section for
information about these restrictions.

A program should not assume that data written by a non-DIRECT WRITE operation has
successfully reached the disk unless one of the following is true:

• The WRITE operation was a synchronous operation and a good result descriptor was
returned.

• The WRITE operation was followed later by a synchronous WRITE operation and
good result descriptors were returned for all the READ, WRITE, and SEEK operations
to the logical file starting with the subject WRITE operation and ending with the
synchronous WRITE operation.

• The WRITE operation was followed later by a CLOSE operation and good result
descriptors were returned for the CLOSE operation and for all the READ, WRITE, and
SEEK operations to the logical file starting with the subject WRITE operation and
ending with the CLOSE operation.

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files,” before reading the following
procedures. You can identify all the file attributes that can be used with a disk file by
reviewing Table A–1. For more information about any of the file attributes, refer to the
File Attributes Reference Manual.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–3

Creating a New Disk File

The task of creating a new disk file has been broken down into the following groupings:

• Tasks that are required

• Tasks that ensure file security

• Tasks that define complex record structures

• Tasks that allow for special handling of the file

• Tasks that store information with the file

• Tasks that create the file

Note: You can create additional copies of a disk with the Mirrored Disk feature. Refer
to the System Administration Guide for information.

Required Tasks

You should perform all of the following tasks:

• Specify the KIND value as DISK. The default value is DONTCARE.

• Indicate that the file is being created by setting the NEWFILE attribute value to
TRUE.

• Determine on which family the new file should be placed.

• If you want the physical file to have a name that is different from the internal name
of the file, specify the physical file name by using the FILENAME or TITLE attribute.

• If you did not identify the family name of the disk that you want the file to reside on
in the TITLE attribute, identify the family by using the FAMILYNAME attribute. If you
did specify the family name by using the ON option, the KIND file attribute value is
now PACK. If you do not specify the family name, the I/O subsystem uses the
default value of DISK. If you use family substitution, the system can change the
family name to the family designated by the family specification.

• If you want to create a file that contains a continuous stream of records that is not
divided into blocks, assign the FILESTRUCTURE attribute a value of STREAM. Such
files are easier to use than files with a FILESTRUCTURE value of ALIGNED180 or
BLOCKED and make the most use of disk space, but they do not support the
following features:

− Update I/O with synchronization

− Binary I/O

− A BLOCKSTRUCTURE value of LINKED

− A FILEORGANIZATION value other than the NOTRESTRICTED value

− Checkpoint or restart capabilities

− Duplicated files

− CANDE work files

Using Disk and CD-ROM Files in a Program

3–4 8600 0056–408

The buffer size of a file with a FILESTRUCTURE value of STREAM is automatically
provided by the I/O subsystem. You can modify the buffer size by using the
BUFFERSIZE attribute, but doing so is not normally recommended.

• If you want to create a file that contains records that are grouped into a block of
records, assign the FILESTRUCTURE attribute a value of BLOCKED. The
FILESTRUCTURE default value is ALIGNED180. If you choose the BLOCKED value,
the following features are not supported:

− Update I/O with synchronization

− Binary I/O

− A BLOCKSTRUCTURE value of LINKED

− A FILEORGANIZATION value other than the NOTRESTRICTED value

− Checkpoint or restart capabilities

− Duplicated files

− CANDE work files

− Host Services logical I/O

• Identify how the data is going to be transferred by using the FRAMESIZE attribute.
Refer to “Identifying How Data Is Transferred” in Section 2.

• If you want an INTMODE attribute value other than the default value assumed by
your language, assign that value to INTMODE. Refer to “Identifying How Data Is
Transferred” in Section 2 for language default information. The INTMODE value is
assumed by the EXTMODE value. If the physical file must have a character encoding
set that is different from the INTMODE value, assign EXTMODE the appropriate
value. Refer to Table 2–14 for possible EXTMODE and INTMODE combinations.

• Identify the maximum size of any record by using the MAXRECSIZE attribute. You
should express the MAXRECSIZE value in terms of FRAMESIZE units. A disk file
defaults to 30 words.

• If you chose to have a FILESTRUCTURE value of BLOCKED or ALIGNED180, and if
you want more than one record to be placed in a block, use the BLOCKSIZE
attribute. The value you assign is dependent on the type of records and should be
expressed in terms of FRAMESIZE units. If the records are variable-length records,
the value should be greater than the MAXRECSIZE value. If the records are fixed-
length records, the value should be a multiple of the MAXRECSIZE value. If you do
not assign a value to BLOCKSIZE, BLOCKSIZE assumes the MAXRECSIZE value and
only one record is put in each block.

If you chose a FILESTRUCTURE value of BLOCKED, the buffer size in memory that
is used by the physical I/O operation is dependent on the BUFFERSIZE attribute
value. The default value for the BUFFERSIZE attribute is usually appropriate for most
users. You can choose a BLOCKSIZE value that groups a certain number of records
together, but be aware that more than one block of records can be read into the
buffer that is controlled by the BUFFERSIZE attribute.

If you chose a FILESTRUCTURE value of ALIGNED180 or accepted ALIGNED180 as
the default value and the file resides on VSS-2 disks, write operations to the file can
be optimized by setting the MAXRECSIZE or BLOCKSIZE attributes to span an even
number of 30-word disk sectors.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–5

If you chose to use the default FILESTRUCTURE value of ALIGNED180, the buffer
size in memory is dependent on the BLOCKSIZE value. Keep the following
information in mind as you determine what the BLOCKSIZE value should be:

− If you use large blocks, the I/O operations are efficient, but your program is tying
up a large amount of main memory.

− If you use very small blocks, the I/O subsystem must perform more I/O
operations.

− If you are going to use Host Services logical I/O with this file, the BLOCKSIZE
attribute must be less than 65486 characters.

• When a new disk file is created if the specified value of the AREAS file attribute
exceeds the number of areas occupied by a file with the largest possible end-of-file
and the same area length, the value of AREAS is reduced.

Use the LASTACCESSIBLEAREA attribute to determine the highest area number
accessible in an open disk file. Refer to “AREAS” and “LASTACCESSIBLEAREA” in
the File Attributes Reference Manual for more information.

If you want to control the size of an area rather than use the default size, specify a
value for the AREALENGTH attribute. This attribute should not be modified for files
with a FILESTRUCTURE value of STREAM or BLOCKED, unless the program has
special requirements. The value you specify should be in FRAMESIZE units and
cannot be larger than 16777215 sectors. When deciding the value for the
AREALENGTH attribute take into account the following:

− Areas that are too small limit the number of records in the file because of the
limit on the number of areas.

− Areas that are too large make it more difficult for the system to find the
contiguous disk sectors needed to store each area.

The following default values for the AREALENGTH attribute are based on the
FILESTRUCTURE value of the file:

FILESTRUCTURE Value AREALENGTH Default Value

ALIGNED180 The MAXRECSIZE value multiplied by 1000 and
rounded up so the value is also a multiple of the
BLOCKSIZE value.

BLOCKED A multiple of BLOCKSIZE closest to but not exceeding
184320 bytes, or BLOCKSIZE if BLOCKSIZE exceeds
184320.

STREAM A multiple of MAXRECSIZE closest to but not
exceeding 184320 bytes, or MAXRECSIZE if
MAXRECSIZE exceeds 184320 bytes.

Using Disk and CD-ROM Files in a Program

3–6 8600 0056–408

Complex Record Tasks

You should perform the following tasks if you want your file to have complex record
structures, such as variable-length records.

• To establish a complex record format, refer to “Establishing a Record Format” in
Section 2.

• If you want the file to be accessed in a certain manner, use the FILEORGANIZATION
attribute. The following are the mnemonic values that you can select from:

Mnemonic Value Meaning

KEYEDIOII The physical file is created as a KEYEDIOII data file, and it is
implemented through the KEYEDIOII library. For information
about KEYEDIOII, refer to the KEYEDIOII Reference Manual.

KEYEDIOIISET The physical file is created as a KEYEDIOII index file, and it is
implemented through the KEYEDIOII library. For information
about KEYEDIOII, refer to the KEYEDIOII Reference Manual.

NOTRESTRICTED No restrictions are applied. This is the default value.

RELATIVE The file has a relative file organization. This organization is
derived from COBOL74.

• You can indicate the internal structure of the records of a file by assigning a value to
FILEKIND. For example, files with a FILEKIND value of ALGOLSYMBOL are
expected to contain properly formatted ALGOL source program records. If you do
not specify a FILEKIND value, a value of DATA is used. Refer to the FILEKIND
attribute in the File Attributes Reference Manual for an entire list of values.

Special Requirement Tasks

Consider performing the following tasks if you have special requirements:

• If you want the system to assign a unique file name every time the file is opened, do
the following:

− Specify the displayable character that identifies the variable information in the file
name with the UNIQUETOKEN file attribute.

− Specify a FILENAME value that includes the displayable character followed by a
keyword that identifies the system-supplied character string that should be
inserted.

Refer to the FILENAME attribute in the File Attributes Reference Manual for more
information.

• If you want your logical file to share buffers with another logical file, refer to “Sharing
Buffers with Other Files” later in this section for instructions.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–7

• If you know that the file will require more than 20 areas, the default, indicate the
number of areas that the I/O subsystem can allocate by using the AREAS attribute.
You can specify up to 15000 areas. Normally, the system adds more areas to the file,
as they are needed. However, if you do not want the file to contain more areas than
you specified with the AREAS attribute, set the FLEXIBLE attribute to FALSE. The
FLEXIBLE attribute value is not stored with the file, so any updating programs that
use the file must have the FLEXIBLE attribute set to FALSE, also.

When the file is created, the number of areas you designated in the AREAS attribute
is not automatically allocated. Instead, the system leaves an empty entry in the disk
file header for each possible area. Then, as the system allocates an area to the file, it
places the address of the area in the header.

• If you want to specify whether POSIX or native MCP environment rules are to be
used in searching for an existing file or creating a new file, use the SEARCHRULE file
attribute. Refer to the File Attributes Reference Manual for details on the
SEARCHRULE file attribute.

• You can protect your disk file in two ways by using the PROTECTION attribute. The
following values are available:

Mnemonic Value Meaning

SAVE The file is entered into the disk directory immediately after
the file is opened, instead of when the file is closed with the
SAVE option.

PROTECTED The file is entered into the disk directory immediately after
the file is opened, and special action is taken to ensure that
the correct
end-of-file pointer is maintained across a system failure. If the
FILESTRUCTURE value of the file is STREAM, the end-of-file
marker is placed at the end of the disk sector that was last
written, even though the end of that sector might not be the
end of a record. Do not use this value if you have set the
SYNCHRONIZE attribute to OUT.

• If you want to ensure that your disk file cannot be removed or replaced after it is
entered into the disk directory, and that the name of the file cannot be changed, set
the LOCKEDFILE file attribute to TRUE. A permanent file with a LOCKEDFILE value
of TRUE cannot be closed with the PURGE option unless you or a privileged user
change the LOCKEDFILE value to FALSE.

• For multidisk families, the areas of the file are allocated on a rotating basis among
the members. You can modify this behavior in one of two ways:

− To place the file areas on a specific family member, identify the specific family
member number by using the FAMILYINDEX attribute. Be aware that restricting
allocation to a specific family member might make space more difficult to find.

− To place all the areas on a single family member selected by the system, set the
SINGLEUNIT attribute to TRUE.

Using Disk and CD-ROM Files in a Program

3–8 8600 0056–408

• If you want your program to force a physical WRITE operation to happen every time
a WRITE statement is invoked, and then to wait until the completion of the WRITE
operation to the physical file, assign the SYNCHRONIZE attribute a value of OUT.
Usually the data is written to disk in an asynchronous manner. Writing to a disk in a
synchronous manner ensures that data is written, but adds overhead. The
FILEORGANIZATION value of the file must be NOTRESTRICTED to use the
SYNCHRONIZE attribute. The value of the SYNCHRONIZE attribute is not stored
permanently with the file.

If you want your program to occasionally ensure that a WRITE operation has
completed before going on to the next instruction in the program, use a WRITE
statement with the SYNCHRONIZE option each time you want this behavior.

• If you chose to set the FILESTRUCTURE value to STREAM and the
BLOCKSTRUCTURE value to FIXED, you might also want to indicate that the transfer
of any number of frames in a single I/O operation is not constrained by the
MAXRECSIZE attribute. To do so, set the ANYSIZEIO attribute to TRUE. The
ANYSIZEIO value is not stored permanently with the file.

• If your system is using cataloging and you want the file to be entered into the
system catalog, set the USECATALOG attribute to TRUE. If the USECATDEFAULT
system option is enabled, the default value of the USECATALOG attribute is TRUE.

• If you want the file to have cycle and version information other than the default
values of 1 and 0 (zero), respectively, specify the desired values by using the CYCLE
and VERSION attributes. If you specify a value of 0 for the CYCLE attribute, the
values of the CYCLE and VERSION attributes are changed to their default values.

• If you do not want your program to wait for disk space to become available when a
new area is allocated, set the NORESOURCEWAIT attribute to TRUE. The
NORESOURCEWAIT value is not stored permanently with the file. You should be
aware that the system waits, even if the value is TRUE, in the following situations:

− If the file is protected

− If a temporary file has been closed with a disposition of lock that causes sectors
to be required for the directory

− If the file is flexible, and directory sectors are required when increasing the
header

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–9

Information Storage Tasks

Consider performing the following tasks to store information that can be used by other
programs:

• If the data of the file should be processed according to a specific coded character
set, or language or cultural rules, assign the CCSVERSION attribute a value. For more
information about the CCSVERSION attribute, refer to the File Attributes Reference
Manual. For information about the rules refer to the MultiLingual System
Administration, Operations, and Programming Guide. The following values are
available:

Mnemonic Value Meaning

ARABIC20 Arabic ccsversion (previously known as
“Version 20”)

ASERIESNATIVE Default ccsversion

BRAZILIAN Brazilian ccsversion

CANADAEBCDIC CANALPHA1 ccsversion

CANADAGP CANASUPPL ccsversion

CZECHOSLOVAKIA Czechoslovakia ccsversion

FRANCE French ccsversion

HUNGARIAN Hungarian ccsversion

LATINGREEK Latin-Greek ccsversion

NORWAY Norwegian ccsversion

POLISH Polish ccsversion

ROMANIAN Romanian ccsversion

RUSSIAN Russian ccsversion

SPANISH Spanish ccsversion

SWEDISH1 Swedish ccsversion

SWISS Swiss ccsversion

TURKISH Turkish ccsversion

• If you want to store site- or application-specific information about the file in the file
header, use the USERINFO attribute.

• If you want a certain amount of information to be printed out when the file you are
creating is printed out, use the NOTE attribute. You can store up to 250 characters.

• If you want to store any software-release-specific information with the file, use the
RELEASEID attribute. You can store up to 250 characters.

Using Disk and CD-ROM Files in a Program

3–10 8600 0056–408

Creating the File

After you have finished the preceding tasks that assign the various file attributes, you can
open the file. When you open the file, the system creates a disk file header for the file
and stores the values of the various permanent file attributes in the header. The system
also enters values automatically for other file attributes such as CREATIONDATE and
CREATIONTIME. Then you can write records to the new file. When you have finished
processing the file, you can close it so that it becomes a permanent file. The system
then updates the values of certain file attributes such as the FILELENGTH attribute, and
places the header in the flat directory of the disk if the file is closed with a disposition of
lock or crunch. Refer to Section 2, “Understanding Programming for Files” for
information about closing files and their associated dispositions.

Accessing an Existing Disk File

Perform all or some of the following tasks, depending on the needs of your program:

• Assign the KIND attribute a value of DISK.

• Determine on which family the existing file resides.

• If the physical file name is different from the internal file name of the file, specify the
physical file name by using the FILENAME or TITLE attribute.

• If you did not identify the family name of the disk where the file resides in the TITLE
attribute, identify the name of the family where the file resides by using the
FAMILYNAME attribute. If you did specify the family name by using the ON option,
the KIND file attribute value is now PACK.

• Assign the NEWFILE attribute a value of FALSE.

• If you want your logical file to share buffers with another logical file, refer to “Sharing
Buffers with Other Files” later in this section for instructions.

• If you want to process the data in the character set of the physical file rather than
requesting translation to the character set of the logical file, assign the
DEPENDENTINTMODE attribute a value of TRUE. The default value is FALSE.

• It is recommended that you set the DEPENDENTSPECS attribute value to TRUE,
unless you have a special reason to manipulate the records differently than the
creation program intended.

If you do not set DEPENDENTSPECS to TRUE and you specify a BLOCKSIZE,
MAXRECSIZE, or MINRECSIZE value for a file with any FILESTRUCTURE value that
is inconsistent with the values the file was created with, an OPEN error results.

• If you want to access a specific cycle and version of the file, specify the appropriate
value in the CYCLE and VERSION attribute. If a file with the proper file name is not
online or does not exist, the system displays a “NO FILE” message on the ODT.

If a file with the proper file name but the wrong CYCLE and VERSION values is
online, the system displays an “UNMATCHED GENEALOGY” message on the ODT.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–11

If you specify CYCLE but not VERSION, the system locates the generation with that
exact CYCLE value and the VERSION value equal to 0. If the generation that is online
does not have that CYCLE and VERSION, the system displays an “UNMATCHED
GENEALOGY” message on the ODT.

If no generation of the file is online, the system displays a “NO FILE” message on
the ODT.

If you do not specify CYCLE and VERSION when you want to access the file, the
system locates the generation that is online. If no generation of the file is online, the
system displays a “NO FILE” message on the ODT.

• If you want the file to be used by your program exclusively, set the EXCLUSIVE
attribute to TRUE. If another program is currently using the desired file, the I/O
subsystem does not assign the file to your program until the other program closes
that file.

• If you want your program to force a physical WRITE operation to happen every time
a WRITE statement is invoked, and then wait until the completion of the WRITE
operation to the physical file, assign the SYNCHRONIZE attribute a value of OUT.
Usually the data is written to disk in an asynchronous manner. Writing to a disk in a
synchronous manner ensures that data is written, but adds overhead. The
FILEORGANIZATION value of the file must be NOTRESTRICTED to use the
SYNCHRONIZE attribute.

If you want your program to occasionally ensure that a WRITE operation has
completed before going on to the next instruction in the program, use a WRITE
statement with the SYNCHRONIZE option each time you want this behavior.

• If the FILESTRUCTURE value of the file is STREAM and the BLOCKSTRUCTURE
value is FIXED, you might also want to indicate that the transfer of any number of
frames in a single I/O operation is not constrained by the MAXRECSIZE attribute. To
indicate this, set the ANYSIZEIO attribute to TRUE.

• If you want a serial WRITE operation to rewrite the changes made to the record that
was just serially read, set the UPDATEFILE attribute to TRUE. If you set
UPDATEFILE to TRUE when the FILESTRUCTURE value is STREAM or BLOCKED,
you prevent synchronization. If UPDATEFILE is not set to TRUE, the next serial
WRITE operation writes the changes to the next sequential record.

• If your system uses cataloging, you can perform one or both of the following tasks.
Refer to the System Administration Guide for more information about cataloging.

− If you want the system catalog searched when the system is seeking a
permanent disk file, set the USECATALOG attribute to TRUE. If the
USECATDEFAULT system option is enabled, the value of USECATALOG defaults
to TRUE.

− If you want to select a copy of the file that does not have the latest time and
date, identify the copy by using the GENERATION attribute.

Using Disk and CD-ROM Files in a Program

3–12 8600 0056–408

• If you want to specify whether POSIX or native MCP environment rules are to be
used in searching for an existing file or creating a new file, use the SEARCHRULE file
attribute. Refer to the File Attributes Reference Manual for details on the
SEARCHRULE file attribute.

• If you do not want your program to wait for disk space to become available when a
new area is allocated or an old area is activated, set the NORESOURCEWAIT
attribute to TRUE. Your program must be prepared to handle the no space error. You
should be aware that the system waits, even if the value is TRUE, in the following
situations:

− The file is protected.

− The file is flexible, and directory sectors are required when the header is
increased.

Obtaining Information about a Disk File

When your file is open, you can interrogate several attributes to obtain information about
the file. Tables 3–1 through 3–3 identify these attributes.

Table 3–1 identifies some attributes that might be of interest to you that have
information that remains constant while the file is open. Most attributes can be
interrogated.

Certain file attributes have values that are expressed in terms of blocks or provide some
information about blocks. These attributes include BLOCK, BLOCKSIZE, and
CURRENTBLOCK. For files with variable-length records, the attributes include AREASIZE
and LASTRECORD.

Interrogating these attributes for a file with a FILESTRUCTURE value of STREAM
produces an attribute error, because such files are not composed of blocks. Because it is
possible for a file of any FILESTRUCTURE value to be opened when DEPENDENTSPECS
equals TRUE or when FILETYPE equals 7 or 8, it is possible that an attribute inquiry
might function successfully for some files that the program might open. However, the
attribute inquiry might also produce an attribute error for other files.

A program that interrogates block-related attributes should interrogate the
FILESTRUCTURE attribute after the file is assigned, and then the program should avoid
interrogating block-related attributes if the FILESTRUCTURE value is STREAM.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–13

Table 3–1. Constant Information Attributes

Attribute Information Received

ALTERDATE The date when the CLOSE operation was performed on the file
following some alteration to the data in the file.

ALTERTIME The time of day, in microseconds since midnight, when the
CLOSE operation was performed on the file following some
alteration to the data in the file.

AREALENGTH The number of FRAMESIZE units in each area.

AREAS The number of areas the physical file can have if the FLEXIBLE
value is FALSE. This value can change while the file is open if the
FLEXIBLE attribute value is TRUE.

AREASECTORS The number of physical disk sectors necessary to accommodate
one area of the file.

BUFFERSIZE The number of words in memory that each buffer area occupies.

CREATIONDATE The date when the file was created.

CREATIONTIME The time, in microseconds since midnight, when the file was
created.

CRUNCHED TRUE indicates that the disk file was closed with the CRUNCH
option. If the file was crunched to conserve space, the last
allocated area for the file was truncated.

FAMILYNAME The name of the family on which the file resides.

FILEKIND The internal structure and purpose of the records of the file.

FILELENGTH The length of the file in FRAMESIZE units at the time the file was
opened.

LOCKEDFILE TRUE indicates that the file cannot be removed or replaced, and
that its name cannot be changed.

RESTRICTED TRUE indicates that one of the following restrictions has been
placed on the file:

The unit on which the file resides was restricted by the RESTRICT
(Set Restrictions) system command.

The file itself was restricted by the RESTRICT system command.

The file is an existing file on a remote host, and the
HOSTSRESTRICTED option of the SECOPT system command is
set on the local host.

The file was created using Host Services logical I/O at a host with
the HOSTSRESTRICTED option of the SECOPT system command
set.

The file was copied from a restricted unit or volume.

The file was copied to a host that had SECOPT
HOSTSRESTRICTED set.

Using Disk and CD-ROM Files in a Program

3–14 8600 0056–408

Table 3–1. Constant Information Attributes

Attribute Information Received

SECTORSIZE The size in bytes of the physical disk sector on the disk family
where the file resides.

SERIALNO The serial number of the base member of the disk family where
the file resides.

USEDATE The date when the file was last read from or written to by a user
program or, in the case of a code file, when the file was last
executed.

USETIME The time of day, in microseconds since midnight, when the file
was last read from or written to by a user program or, in the case
of a code file, when the file was last executed.

Table 3–2 identifies some of the attributes you can interrogate that contain values that
can change while the file is open.

Table 3–2. Changing Information Attributes

Attribute Information Received

AREAALLOCATED TRUE indicates that the specified area has been allocated.

LASTRECORD In most cases, the record number of the last record in the file,
calculated in terms of the blocking of the logical file. In the
following cases, the number of the last block is returned:

FILESTRUCTURE has a value of either ALIGNED180 or
BLOCKED, and the BLOCKSTRUCTURE attribute value is not
FIXED.

FILESTRUCTURE has a value of either ALIGNED180 or
BLOCKED, and the FILETYPE attribute value is not 0 (zero).

POPULATION The number of functions currently using the disk file header of
the file.

AREAADDRESS The physical disk address of an area of the file.

AREASINUSE The number of areas allocated for the file.

TIMESTAMP The header timestamp.

TOTALSECTORS The number of physical disk sectors currently assigned to the
file.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–15

Table 3–3 identifies some of the attributes that you can interrogate after you invoke a
READ or WRITE statement to help you make decisions in your program.

Table 3–3. Attributes That Contain I/O Information

Attribute Information Received

BLOCK If the FILESTRUCTURE value is not STREAM, the number of the
block referenced in the last I/O statement.

RESULTLIST A list of results caused by the most recent logical I/O function
performed on the file.

IOINERROR TRUE indicates that a physical I/O error has occurred on the file.

In some instances, you might want a logical file in your program to share buffers with a
logical file or files in another program or programs that are accessing the same physical
file. This allows a change made by one member of the set of programs sharing buffers
for a given physical file to be immediately visible to other members of that set of
programs.

Notes:

• Direct files cannot share buffers.

• A checkpoint cannot be taken by a program that has an open file that is sharing
buffers.

The following steps enable you to accomplish this task:

• Specify a BUFFERSHARING file attribute value of SHARED or
EXCLUSIVELYSHARED. By specifying either of these values, you are indicating that
when this file is opened, you want the file to share a single set of buffers with other
logical files that are accessing the same physical file and have BUFFERSHARING
values of SHARED or EXCLUSIVELYSHARED.

If you specify SHARED, files with a BUFFERSHARING value of NONE can open the
same physical file, but those files each have unique buffers for their I/O operations.

If you specify EXCLUSIVELYSHARED, only files with a BUFFERSHARING value of
SHARED or EXCLUSIVELYSHARED can open the physical file when your program
has the file opened. If a file with a BUFFERSHARING value of NONE has the file
open before your program opens the file, the OPEN operation waits until that file is
closed before completing the OPEN operation in your program for the file. If you do
not want your program to wait to open the file, use the AVAILABLE option of the
OPEN statement or interrogate the AVAILABLE file attribute. If the file can be
opened, the OPEN operation proceeds. If the file cannot be opened, an OPEN result
OPENWITHOUTBUFFERSHARINGRSLT (252) is returned.

• Specify a BLOCKSTRUCTURE file attribute value of FIXED. Other values are not valid
when sharing buffers.

• Specify a FILEORGANIZATION file attribute value of NOTRESTRICTED. Other values
are not valid when sharing buffers.

Using Disk and CD-ROM Files in a Program

3–16 8600 0056–408

• Ensure that the BLOCKSIZE file attribute value is equal to the value stored in the disk
file header of the physical file.

Note: This condition is automatically true if a new file is being created or if the
DEPENDENTSPECS file attribute value is set to TRUE when an existing file is
opened.

• Ensure that the MAXRECSIZE file attribute value is equal to the value stored in the
disk file header of the physical file if the FILESTRUCTURE file attribute is BLOCKED.

Note: This condition is automatically true if a new file is being created or if the
DEPENDENTSPECS file attribute value is set to TRUE when an existing file is
opened.

• Set the APPEND file attribute to TRUE, if you want all WRITE operations to be
unconditionally appended to the end of the file. When APPEND is TRUE, the MCP
implicitly provides record locking on WRITE operations. This record locking ensures
that the WRITE operations are atomic with respect to WRITE operations done to the
same file by another task that has a file with the APPEND value set to TRUE, and the
BUFFERSHARING value set to SHARED or EXCLUSIVELYSHARED.

When a file is buffer sharing, unwritten file space added by writing beyond the end of the
file from the subject logical file is unconditionally scrubbed with zeros, as long as the
PROTECTION file attribute value is other than PROTECTED. As a result, setting the
CLEARAREAS file attribute to TRUE is not needed when buffer sharing, unless it is
required that unwritten file space added by, or in unwritten areas touched by, logical files
with a BUFFERSHARING value of NONE needs to be scrubbed with zeros.

Refer to the description of the BUFFERSHARING file attribute in the File Attributes
Reference Manual for more information.

Locking a Disk File on a Record-by-Record Basis

If more than one logical file is accessing and updating a single physical file, there is a
need to lock the file on a record basis. COBOL85 provides statement constructs to
invoke disk file locking, but ALGOL and other languages do not.

To lock a file on a record-by-record basis using ALGOL or other languages, perform the
following steps:

• Specify SHARED or EXCLUSIVELYSHARED as the BUFFERSHARING file attribute
value.

• Write code that uses the RECORDLOCKER procedure, which is a library entry point
exported from the MCP.

For information about the RECORDLOCKER procedure, refer to the MCP System
Interfaces Programming Reference Manual.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–17

Securing Disk Files

This section addresses how to manage disk file security using either the POSIX or
traditional security models of the MCP environment.

In both security models, only a privileged user (or process) or the owner can change the
security of an existing file.

File Ownership

In most of the MCP environment file system, ownership of files is determined by the
name of the file. If the name of a file contains a usercode node, the file is owned by that
usercode; otherwise, it is (in effect) owned by non-usercoded (“*”) processes.

The permanent directory namespace can be enabled on NX systems. This namespace
consists of the files named *DIR/=. Within this namespace, files can have an owner,
which is not part of the filename. You can determine the owner of a file by interrogating
the OWNER file attribute.

A non-usercoded process has substantially the same rights over non-usercoded (“*”)
files as a process running under a usercode has over files owned by that usercode.

Securing Files Using the Traditional Security Model of the MCP
Environment

In the traditional security model, file security is based on the owner of the file and on
specific security attributes of the file.

Traditional Security Attributes

In the traditional security model, files are secured from nonprivileged, non-owner users
by assigning values to the following file attributes:

• SECURITYTYPE

• SECURITYGUARD

• SECURITYUSE

Using Disk and CD-ROM Files in a Program

3–18 8600 0056–408

SECURITYTYPE

To specify the way nonprivileged users can access a file, assign one of the following
values to the SECURITYTYPE attribute:

Mnemonic Meaning

PRIVATE Only the owner can access the file.

PUBLIC All nonowner users can read, write, or execute the file, or do all three,
based on the value of the SECURITYUSE file attribute.

GUARDED Access by specific nonowner users is controlled by a guard file.

CONTROLLED Access by all users, including the owner, is controlled by a guard file.
(This value is invalid for Host Services logical I/O.)

SECURITYUSE

To specify how a file protected with a SECURITYTYPE value of PUBLIC can be accessed
by nonprivileged users, assign the SECURITYUSE attribute one of the following values:

Mnemonic Meaning

IN Users and programs have read-only access to the source file, data
file, or code file. Code files can also be executed.

IO Users and programs have read and write access to the source file,
data file, and code file. Code files can also be executed.

OUT Users and programs have write-only access to the source file, data
file, and code file. Codes file can also be executed.

SECURED The code file can be executed only.

SECURITYGUARD

An alternative to granting read, write, or execute rights to all nonowner users is to grant
or deny access to individual users or programs. The SECURITYGUARD attribute specifies
the guard file to be used to limit access. If you set SECURITYTYPE to CONTROLLED or
GUARDED, you must specify a guard file.

For more information about the use of guard files, see the Security Features Guide.

Additional Information about Traditional File Security

The traditional security model is a subset of the POSIX security model. See the
description of the SECURITYMODE attribute in the File Attributes Reference Manual for
more information.

For more information about the interaction of secured files and processes, see the
Security Administration Guide. For more information about a specific security attribute,
see the description of the attribute in the File Attributes Reference Manual.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–19

Securing Files Using the POSIX Security Model

The POSIX security model differs significantly from the traditional security model of the
MCP environment. The MCP environment provides security capabilities which are based
on the POSIX standards, but which extend it in various ways.

The traditional security model based file security on the file name and the
SECURITYTYPE, SECURITYUSE, and SECURITYGUARD attributes. POSIX file security is
based on the owner of the file and a series of file permission bits that are permanently
associated with the file.

The features of the POSIX security model apply to all files on the system; traditional file
security is implemented as a subset of the POSIX security model.

Note: Prior to the 44.2 release, any attempt to set the GROUP or SECURITYMODE
attributes while the ENABLEPOSIX system option is RESET resulted in a READONLY
attribute value. It is no longer necessary to set or reset the ENABLEPOSIX option to
control any functionality. The ENABLEPOSIX option will be deimplemented in a future
release.

A file can be associated with a group of users identified by a groupcode, as groups in
POSIX can also be granted or denied privileges to files. Thus, the ability of the user to
access a file depends not only on his or her own privileges, but the privileges granted to
any security groups to which the user belongs.

Determining Access to a File

When a file is opened, access to the file is determined by the owner, group, or other
security attribute:

• When the file is opened, the I/O subsystem first compares the value of the
USERCODE attribute of the process opening the file with the usercode of the owner
of the file. If they match (or if the file is a “*” file and the process is non-usercoded)
the OWNERRWX security subattribute is used.

• If the usercodes do not match, the GROUP and ALTERNATEGROUPS file attributes
of the file (if any) are compared to the GROUPCODE task attribute of the process
and to the list of groupcodes in the SUPPLEMENTARYGROUPS task attribute of the
process. If any of the groupcodes of the file matches any of the groupcodes of the
task, the GROUPRWX and ALTERNATEGROUPS permissions for matching
groupcodes are merged to determine the access permissions.

• If neither the usercodes nor the groupcodes match, the value of the OTHERRX
subattribute is used.

Using Disk and CD-ROM Files in a Program

3–20 8600 0056–408

File Permission Bits

The file permission bits in a file are stored in the SECURITYMODE attribute of the file.
The attribute is broken into subattributes so values can be assigned to the subattribute,
or so individual bits can be set directly.

The following table lists the name and description of the owner, group, and other
subattributes:

Name Description

OWNERRWX The read, write and execute permissions that are granted to
the owner of the file.

GROUPRWX The read, write, and execute permissions that are granted to
the group associated with the file.

OTHERRWX The read, write and execute permissions that are granted to
all other users of the system.

Four additional bits are defined for implementing features analogous to the traditional
security attributes SECURITYUSE and SECURITYGUARD:

Name Description

GUARDOWNER If TRUE when USEGUARDFILE is TRUE, the guard file also
applies to the owner of the file.

USEGUARDFILE If TRUE, the guard file also defines access privileges to the
file.

SETUSERCODE If TRUE for a code file, the code file executes with a
USERCODE of the owner of the file.

SETGROUPCODE If TRUE for a code file, the code file executes with a
GROUPCODE of the group of the file.

Note: The SETUSERCODE and SETGROUPCODE flags can cause programs to behave
unexpectedly since they execute under a USERCODE and/or GROUPCODE that might
be different from that of the initiator.

The subattributes listed in the preceding two tables, along with additional bit masking
subattributes, are explained fully in the description of the SECURITYMODE file attribute
in the File Attributes Reference Manual.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–21

The ALTERNATEGROUPS file attribute can be used to extend the capabilities of the
SECURITYMODE attribute by associating multiple groups with the file.

Caution

Mixing the use of the SECURITYTYPE and SECURITYUSE attributes with the
SECURITYMODE or ALTERNATEGROUPS attributes can produce unexpected
results and should be avoided.

Setting the SECURITYTYPE or SECURITYUSE attributes might cause the value of
SECURITYMODE to change.

Certain values of SECURITYMODE also do not map exactly back to SECURITYTYPE. For
example, the SECURITYMODE value of a file might have GROUPR and GROUPW set
(granting read and write permissions to the group), but no permissions set in
OTHERRWX. Interrogating SECURITYTYPE for this file would return a value of PUBLIC
even though the file is not accessible to all users of the system. In addition, the value of
SECURITYUSE that is returned would be IO even though execute permission is not
granted.

For detailed information about the interaction of the POSIX and traditional security
models, see the description of SECURITYMODE in the File Attributes Reference Manual.
For more information about the interaction of secured files and processes, see the
Security Administration Guide.

When to Use the POSIX Security Model

Use the capabilities of the POSIX security model for specific files that need to be
accessible by a specific group of users or otherwise controlled using the specific
capabilities of the model.

If you have programs that propagate the security of other files, consider using the POSIX
security model so that security is propagated accurately.

File Security Propagation

In order to facilitate conversion of programs that propagate security from one file to
another, an MCPSUPPORT interface is provided that returns security information about a
specified file, including an indication as to whether the SECURITYMODE attribute or the
SECURITYTYPE and SECURITYUSE attributes should be used to propagate security.

Using Disk and CD-ROM Files in a Program

3–22 8600 0056–408

Disk Files

The FILE_SECURITY procedure is declared as follows:

LIBRARY MCP (LIBACCESS=BYFUNCTION, FUNCTIONNAME="MCPSUPPORT");

INTEGER PROCEDURE FILE_SECURITY_INFO (F, MODE, TYPE, USE, GUARDED);
 FILE F;
 INTEGER MODE,
 TYPE,
 USE,
 GUARDED;
 LIBRARY MCP;

The parameter F is a file that must be assigned to a disk file.

The procedure returns the following information:

Information Meaning

Procedure Result Indicates SECURITYMODE and related attributes are fully
supported by the MCP and can be set. Releases HMP 3.0
and SSR 44.2 and later always return this result.

Indicates SECURITYMODE and related attributes are
READONLY

A negative value indicates an error condition.

MODE The F.SECURITYMODE value (returned even if the MCP
does not support the SECURITYMODE file attribute)

TYPE The F.SECURITYTYPE value

USE The F.SECURITYUSE value

GUARDED Indicates that the SECURITYGUARD attribute is set

Indicates that the SECURITYGUARD attribute is not set

When the procedure returns a value of 1, security should be propagated by setting the
SECURITYMODE attribute of the file to which security is being propagated to the value
returned in MODE; otherwise SECURITYTYPE and SECURITYUSE should be set.

In some cases where SECURITYMODE is to be propagated, it might also be necessary
to propagate the value of the GROUP attribute.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–23

Direct I/O Files

The FILE_SECURITY_INFO_DIRECT procedure is provided for Direct I/O files. The
procedure is identical to FILE_SECURITY_INFO except that it takes a DIRECT FILE rather
than a disk file as a parameter.

Refer to the MCP System Interfaces Programming Reference Manual for more
information on these procedures.

Securing Allocated and Deallocated Disk Space

The following paragraphs describe the security of allocated and deallocated disk space:

Initializing Allocated Disk Space

If the disk area of a file is to be set to all zeros when the area is allocated to the file, set
the CLEARAREAS file attribute to TRUE.

If you are using the Security Accountability Facility, instead of setting the CLEARAREAS
attribute to TRUE, you can set the DISKSCRUB option of the SECOPT system command
to ensure that any data remaining in a disk area is “scrubbed” (removed) before the area
is reused.

Returning Deallocated Disk Space

If the current data in a disk space is to be removed when disk space is returned to the
system, set the SENSITIVEDATA file attribute to TRUE. Doing so causes the file to be
entered into the directory when the file is opened as if the PROTECTION attribute were
set to SAVE or PROTECTED, and the disk space to be overwritten with an arbitrary
pattern before the space is returned to the system for reallocation.

Using Disk and CD-ROM Files in a Program

3–24 8600 0056–408

Files with a KIND Value of CD
Files that reside on a CD-ROM device have a KIND value of CD. The operating system
identifies the disk on a CD-ROM device by using the Volume Identifier of the disk that
was assigned by the creator of the disk.

All files that reside on a CD-ROM disk must be identified with a FILESTRUCTURE file
attribute value of STREAM.

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files,” before reading the following
procedures. You can identify all the file attributes that can be used with a disk file by
reviewing Table A–1. For more information about any of the file attributes, refer to the
File Attributes Reference Manual.

Accessing a CD-ROM File

Perform all or some of the following tasks, depending on the needs of your program:

• If the physical file name is different from the internal file name of the file, specify the
physical file name by using the FILENAME attribute.

• Specify where the file resides by using the FAMILYNAME attribute. If the file is on a
CD-ROM, use the Volume Identifier.

• Assign the KIND attribute a value of CD.

• Assign the NEWFILE attribute a value of FALSE.

• Because CD-ROM files always have an EXTMODE value of OCTETSTRING, which
requires the same value of INTMODE, assign the INTMODE attribute a value of
OCTETSTRING or assign the DEPENDENTINTMODE attribute a value of TRUE. The
default value is FALSE.

• Set the DEPENDENTSPECS attribute value to TRUE or assign the FILESTRUCTURE
attribute a value of STREAM.

Attempting to open a file with a FILESTRUCTURE value of STREAM with
inconsistent MAXRECSIZE values results in an OPEN error.

• Since most CD-ROM files have a MAXRECSIZE value of 1, set the ANYSIZEIO
attribute value to TRUE.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–25

Obtaining Information about a CD-ROM File

When your file is open, you can interrogate several attributes to obtain information about
the file. Tables 3–4 and 3–5 identify these attributes.

Table 3–4 identifies some attributes that might be of interest to you that have
information while the file is open. Most attributes can be interrogated.

Table 3–4. Information Attributes for CD-ROM

Attribute Information Received

BUFFERSIZE The number of words in memory that each buffer area occupies.

CREATIONDATE The date when the file was created.

CREATIONTIME The time, in microseconds since midnight, when the file was
created.

FAMILYNAME The name of the family on which the file resides.

FILELENGTH The length of the file in number of bytes.

LASTRECORD The record number of the last record in the file, calculated in
terms of the blocking of the logical file.

Table 3–5 identifies some of the attributes that you can interrogate after you invoke a
READ statement to help you make decisions in your program.

Table 3–5. CD-ROM Attributes That Contain I/O Information

Attribute Information Received

RESULTLIST A list of results caused by the most recent logical I/O function
performed on the file.

IOINERROR TRUE indicates that a physical I/O error has occurred on the file.

Using Disk and CD-ROM Files in a Program

3–26 8600 0056–408

I/O Timer Handling
The I/O timer handling feature enables you to improve control over the timing of disk I/O
operations. By making use of the interfaces for this feature, you can improve the I/O
response time of your applications when, for example, a disk malfunctions or excessive
I/O traffic induces unusually long queuing delays within a subsystem.

You might need to use I/O timer handling because of the characteristics of the high-
speed storage devices used on the system and the need for quick response time in a
time-critical, transaction-based environment. This feature is available only on channel-
based IOM systems, such as the ClearPath NX4600 and NX4800 systems and the A 11,
A 14, A 16, A 18, and A 19 systems.

The I/O timer handling feature provides your application with two interfaces to improve
control over the timing of disk READ and WRITE operations. The first interface specifies
the I/O time limit that is used for disk READ and WRITE operations. The second
interface directs the MCP to return direct disk I/Os to their requesters as soon as
possible. The combination of these interfaces enables your application to have more
control over the maximum amount of time an I/O request takes. By using these
interfaces, you can improve the application response time for I/O operations that take an
unusually long time to complete.

This section contains information on

• How I/O requests are processed

• Why the elapsed time in processing an I/O request varies and can exceed the value
set with the IOTIMER system command

• How to determine the length of time an application should wait for an I/O request

A variety of system software is involved in I/O timer handling, including

• IOCANCEL, IOMASK, and IORESULT attributes

• IOTIMER system command, which sets or queries time limit values

• SETSTATUS interface to set time limit values

• GETSTATUS and SYSTEMSTATUS interfaces, which query time limit values

• “OL” and “PER PK” system commands displays, which provide time limit
information

• “MOVE PK” and “MIRROR CREATE” system commands, which copy the time limit
from the source pack to the destination pack

• Logging, which provide the time limit in effect for a unit

• Status Change Message, which informs applications of a time limit change

• PTD I/O time limit, which does not exceed a user-specified value

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–27

Other aspects of I/O timer handling are explained in the manuals listed in the following
table:

For information on Refer to the

File attributes File Attributes Reference Manual

I/O TIMER and other system
commands

System Commands Reference Manual

GETSTATUS and SETSTATUS I/O timer
interfaces

GETSTATUS/SETSTATUS Reference Manual

SYSTEMSTATUS requests SYSTEMSTATUS Programming Reference
Manual

System log and LOGANALYZER reports System Log Programming Reference Manual
and the System Software Utilities Manual

Status change message in the
STATUS_CHANGE_REPORT entry point

MCP System Interfaces Programming
Reference Manual

Understanding Time Limit Values

The following background information explains how the system uses the time limit value.
The explanation includes references to various components of the system. If you are
interested in more information on these system components, refer to the appropriate
Capabilities Overview manual.

The I/O time limit value controls the amount of time that passes before the host decides
that an I/O operation will not complete. The I/O time limit value is specified in the
input/output control block (IOCB) that is associated with the operation. The I/O time limit
value determines how long the input/output unit (IOU) will time an I/O operation from
when it is removed from the IOU unit queue until the result is received from the channel.

The following steps provide a conceptual overview of the logic used when the IOM
system processes an I/O request:

1. An application issues a disk Read or Write operation. Then it waits for the completion
of an event associated with the direct I/O buffer.

2. The MCP builds an IOCB for the operation and passes the IOCB to the IOU for
normal execution. The IOU places the IOCB at the tail of the FIFO unit queue that is
maintained for the device. From this queue, IOCBs are executed one at a time for
the target device.

3. Once the IOCB reaches the head of its queue, the IOU promotes it to active status
and gives it to the appropriate channel manager unit (CMU) for outboard execution.

4. The CMU passes the active I/O request to the channel.

5. The channel passes the I/O request to the disk subsystem.

6. The disk subsystem processes the I/O request and informs the channel when
processing finishes.

Using Disk and CD-ROM Files in a Program

3–28 8600 0056–408

7. The channel informs the IOU when I/O processing finishes.

8. If the I/O request completes successfully without exception (including various
attention exceptions for MCP special action), the IOU

a. Promotes the next IOCB in the unit queue to active status

b. Applies a hardware finish action to the successful IOCB

Then processing continues.

9. If the I/O request completes as an exception, the IOU suspends processing of the
unit queue pending software resolution and returns the IOCB to the MCP for
appropriate exception handling. Exception handling can include retries of I/O
requests or special operations to condition the subsystem.

10. If an I/O is to be retried, the IOU inserts the IOCB at the head of the queue before
the device is restarted or before a special forced execution of the IOCB is requested.
In either case, steps 3 through 8 are repeated until a resolution is reached. Examples
of resolution are

• Successful I/O completion

• The occurrence of an irrecoverable exception

• Exceeding the retry limit for the I/O request

When a resolution is reached, the device is restarted and the IOCB is returned to the
IOU for hardware finish. Note that an irrecoverable error can result.

11. So that the application can detect that the operation completed, the task control unit
(TCU) causes the I/O completion event associated with the IOCB as part of hardware
finish action.

12. The application resumes when the completion event associated with the direct I/O
buffer occurs. The application program then looks at the logical result associated
with the I/O to determine if the I/O operation was successful.

13. The MCP sets a time limit value in the IOCB before passing the IOCB to the IOU.
The IOU uses this value to control the length of time the IOCB can be outstanding to
the I/O subsystem. The IOU begins timing the IOCB when the IOCB is passed to
the CMU. If a result is not returned to the IOU within the specified time limit, the
IOU forces the IOCB to complete, then returns the IOCB to the MCP with a
Timelimit Exceeded exception result.

In the I/O flow described in the previous list, the time limit specified in the IOCB controls
the time permitted to complete steps 3 through 7. The time limit does not include the
MCP initiation time or the IOU unit queue time. Each time the IOU passes an IOCB to
the CMU, it applies the time limit specified in the IOCB. This is the case whether the
IOCB time limit is applied to the original I/O request, an MCP retry of the I/O request, or
an MCP special operation to condition the subsystem.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–29

The time limit specified in the IOCB does not correspond to I/O elapsed time measured
by your application. In the I/O flow described previously, elapsed time refers to the time
needed to complete all 11 steps. Elapsed time for an I/O request begins when the
application issues the I/O request and ends when the application is notified that the I/O
has completed.

Elapsed time includes

• The time needed for the original I/O

• The sum of all retries

• The sum of all processing overhead. Overhead might include initiation delays or
delays because of MCP handling of specific errors that required operator
intervention. Examples of errors that might include operator intervention include not
ready, write lockout, or no path errors.

The time limit value that the MCP stores in an IOCB for disk READ and WRITE
operations applies to all read and write operations of the affected units, such as user I/O
requests and MCP I/O requests. The value specified is a global timer for the unit. No
interface exists that enables you to specify a time limit on an I/O request by I/O request
basis. This limit is used for each retry performed by the MCP when errors occur.

Default Time Limit Value

By default, the MCP specifies an 80-second time limit for all disk read and write
operations. If you do not use I/O timer handling, you cannot change this value. If you
use I/O timer handling, you can specify one of the following values:

5 seconds
10 seconds
20 seconds
40 seconds
80 seconds

If you select a time limit less than 80 seconds, you override the system default. You
should choose a lower limit only if the default value is unacceptably long.

The system assigns an 80-second time limit because 80 seconds was determined to be
the best available value that ensures that the I/O subsystem has done all it can to issue
the I/O request. If the 80-second time limit is exceeded, a part of the I/O path between
the IOU and the subsystem is experiencing a hardware problem. If you reduce the time
limit too much, the I/O request might have completed successfully if you had allowed
more time or you might prevent the system from detecting and handling the problem.

Effective use of the interface can shorten the elapsed time that an I/O, which will
eventually time out, takes to complete because the amount of time the IOU allows the
subsystem to process the operation is shorter. Depending on the configuration of the I/O
subsystem, your site might be able to determine with certainty that a hardware problem
exists if an I/O exceeds the shortened time limit. Therefore, shortening the time limit can
recognize a hardware problem early, thus reducing the maximum length of time the
system takes to handle the condition.

Using Disk and CD-ROM Files in a Program

3–30 8600 0056–408

Range of Time Limit Value

The IOU uses the time limit value in the IOCB to determine the length of time an active
I/O can be outstanding to the CMU. The IOU uses an internal clock, which checks for
IOCB timeouts every 1.2 seconds. If the time limit specified in one of the active IOCBs
will expire during the current 1.2 second interval, the IOU takes the necessary action to
time out the IOCB.

Because the IOU checks for timeouts every 1.2 seconds, the time limit value in the IOCB
represents a 1.2-second range, not an absolute value. The amount of time the IOU gives
an individual IOCB depends on when during the 1.2 second interval the IOCB becomes
active. If the IOCB becomes active at the start of a new time-out checking interval, the
IOCB is given almost 1.2 seconds longer than an IOCB that becomes active just before
the end of the same interval.

The following table shows the range of time-out times of an IOCB based on the time
limit specified in the IOCB:

IOCB Time
Limit

Minimum IOU
Timeout Range

Maximum IOU
Timeout Range

5 4.8 6.0

10 9.6 10.8

20 19.2 20.4

40 39.6 40.8

80 79.2 80.4

For example, if your site changes the disk read and write timeout to 10 seconds, the IOU
allows the active IOCB to be outstanding to the CMU from 9.6 to 10.8 seconds before
initiating a Timelimit Exceeded action.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–31

Limited Effect of Time Limit Value

Changing the time limit in the IOCB does not ensure that an I/O completes within a
predetermined length of time. The following list includes some of the factors that affect
the amount of time an I/O request takes, independent of the I/O time limit specified in an
IOCB:

• MCP initiation time

• IOU unit queue time

• Cumulative effect of time elapsed for MCP retries

• Delays due to MCP handling of errors that indicate that operator intervention is
required (for example, not ready, write lockout, no path errors)

• Delays caused by mirrored writes because of faulty set members

• System overhead, which occurs during the processing of a Timelimit Exceeded
exception

Returning an I/O Request As Soon As Possible

The I/O timer handling feature provides a direct I/O interface to instruct the MCP to
return disk I/O requests to their requesters as soon as possible. The return occurs even
when an I/O request would be successful if it was allowed to complete normally.
Because architectural factors can delay the return of the I/O request, the direct I/O
interface does not always return requests immediately.

The direct I/O programmatic interfaces include changes to the IOCANCEL, IOMASK, and
IORESULT attributes, which are described next.

Direct I/O Buffer Program Interface

The following direct I/O buffer attributes instruct the MCP to complete disk I/O requests
as soon as possible:

IOCANCEL Attribute

This attribute is enabled for disk files. If the IOCANCEL attribute is set to TRUE following
an I/O request to a disk unit and the I/O request is in progress, the MCP is instructed to
return the I/O request with a User Cancel Result (see IORESULT). Other I/O requests can
also be returned to their initiators as a result of setting IOCANCEL attribute to TRUE. See
the following description of the IOMASK attribute for details on the return of other I/O
requests.

Using Disk and CD-ROM Files in a Program

3–32 8600 0056–408

IOMASK Attribute

Mask bit 13 is defined for use by disk files. If a direct I/O application sets this bit and
another direct I/O buffer uses the IOCANCEL attribute, the MCP might return the I/O
request as user canceled. An I/O request that meets all the conditions required for
returning the I/O request is called a qualifying user-cancel-masked I/O request. The
following conditions must apply for the MCP to return the masked I/O request as user
canceled.

• The direct I/O buffer for the IOCANCEL target I/O request and the direct I/O buffer
for the masked I/O request must be declared by the same stack.

• Both I/O requests must be directed to the same disk unit.

• The masked I/O request must not be completed previously.

When an I/O request is user canceled, its requester receives a User Cancel Result. See
the following description of the IORESULT attribute for an explanation of User Cancel
Result.

IORESULT Attribute

A User Cancel logical result bit (13) is defined for disk files. If an I/O request is returned
because a direct I/O buffer set its IOCANCEL attribute, the IORESULT attribute has the
User Cancel (bit 13), Cancel (bit 2), and Exception (bit 0) bits set. This result, referred to
as the User Cancel Result, applies to the IOCANCEL target-I/O request and any qualifying
user-cancel-masked I/O request.

Effects of the Direct I/O Attribute Program Interface

The following text describes the effects of the IOCANCEL, IOMASK, and IORESULT
direct I/O buffer attributes when the IOCANCEL attribute is set to TRUE for a disk file
buffer.

Nonmirrored Units

When the IOCANCEL attribute is set to TRUE for a direct I/O request issued to a
nonmirrored unit, the following process occurs:

• The unit queue affected by the I/O request is suspended and recalled.

• The recalled queue is searched for qualifying user-cancel-masked I/O requests. By
definition, the IOCANCEL target-I/O request always qualifies.

• Each qualifying I/O request is returned and its IORESULT attribute is set to the User
Cancel Result.

• The unit queue is restarted.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–33

Mirrored Units

When the IOCANCEL attribute is set to TRUE for a direct I/O request issued to a
mirrored unit, the following process occurs:

• For each member of the mirrored set, the unit queue is suspended and recalled.

• Each recalled queue is searched for qualifying user-cancel-masked I/O requests. By
definition, the IOCANCEL target-I/O request always qualifies.

If an online set member has no qualifying IOCB queued, online members with a
qualifying IOCB queued are decommitted to audit.

If each of the online members has a qualifying IOCB queued, only the copy
determined to be best remains online; the remaining copies are decommitted to
audit. A copy is determined to be best if its topmost, qualifying IOCB has been
queued for the shortest amount of time.

Among the qualifying user operations, a mirrored WRITE operation is successfully
returned if completion occurs without exception to any set member remaining
online. Incomplete qualifying mirror READ operations, and qualifying mirror WRITE
operations that do not complete successfully to any member left online, are returned
with a User Cancel Result.

To restore set integrity as soon as possible, the MCP immediately begins to apply
audited write operations to the decommitted members. The MCP uses a visible
MIRROR_CREATE process for each member being restored.

• For each member of the mirrored set, the unit queue is restarted.

Once processing of the attribute completes, I/O activity resumes on the affected
logical unit, with the exception of any mirror that was placed in the offline mirror
state. I/O activity to these mirrors is automatically restarted after the audit is applied
by the MCP.

Using Disk and CD-ROM Files in a Program

3–34 8600 0056–408

Factors Affecting “As Soon As Possible”

The following text discusses the factors that determine the length of time the system
needs to process the IOCANCEL request. As previously noted, the IOCANCEL interface
does not always return the requested I/O requests immediately; it returns it “as soon as
possible.”

The MCP must have control over an I/O request before it can return the I/O request with
a User Cancel Result. When the IOCANCEL attribute for an active I/O request is set,
either the MCP or the IOU has control over the I/O request. The MCP does not have
control over the I/O request from the time that the MCP passes the IOCB to the IOU
until the IOU returns the IOCB. If the IOU has control over the I/O request, the MCP
issues these instructions to regain control of the I/O request from the IOU:

1. The MCP instructs the IOU to stop processing I/O requests to the target device
when the active I/O request completes.

2. The MCP instructs the IOU to return all the I/O requests for the device that are
currently on the unit queue.

The active I/O request from Step 1 is always given time to complete. Upon completion,
the I/O request has either completed successfully or by exception. The amount of time
given to the I/O request is determined by the time limit contained in the IOCB. Since the
IOU starts timing when the I/O request is passed to the CMU, the timer either could
expire immediately (if the I/O request is almost ready to time-out when Step 1 is
processed) or take the entire time limit specified in the IOCB (if the I/O request is passed
to the CMU just before Step 1 is processed).

If the IOU times out the active I/O request, a maximum of 2.4 additional seconds might
be needed for the hardware to cleanly return the IOCB to the MCP with a Timelimit
Exceeded exception (IORESULT value of Timelimit Exceeded (bit 15) and Exception (bit
1)). Additionally, the MCP requires 4 to 12 seconds to recover from the time-out
condition. Therefore, if the default 80-second time limit is specified and the IOCANCEL
attribute is set to TRUE, the system might need a maximum of 94.8 seconds to return
the I/O request.

You can shorten the length of time it takes the system to return a qualifying IOCANCEL
I/O request by reducing the time limit applied to the operation. You cannot affect the
time required by the IOU (up to 2.4 seconds) or the MCP (up to 12 seconds). Therefore,
under normal operating conditions, the maximum amount of time the system needs to
return the IOCANCEL target I/O request is equal to the sum of the time limit specified in
the IOCB for the active I/O request plus 14.4 seconds.

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–35

The following table shows the relationship between the IOCB time limit value and the
maximum wait time for a qualifying IOCANCEL I/O request.

IOCB Time
Limit

Maximum
IOU Timer

Possible IOU
Overhead

Possible MCP
Overhead

Maximum
Wait Time

 5 6 2.4 12 20.4

10 10.8 2.4 12 25.2

20 20.4 2.4 12 34.8

40 40.8 2.4 12 55.2

80 80.4 2.4 12 94.8

The Maximum Wait Time column represents the longest elapsed time an IOCANCEL
assignment statement can take to synchronously complete and return control to an
application. The value assumes a worst case for each of the timing windows applied to
the active I/O request. The actual time that an application waits could be much shorter.

Programming Considerations

The I/O timer handling interface enables a direct I/O application to user-cancel a disk
READ or WRITE operation. The decision to user-cancel the operation often occurs after
a specified period of time elapses. After the I/O request is initiated, a WAIT statement
can specify this time period and an event associated with the I/O request.

Your application must specify the length of time to wait before user-canceling the I/O
request. Several factors discussed earlier affect the amount of time an operation needs.
You must consider these four factors in deciding how long the application is to wait.

1. The maximum elapsed time that your application can tolerate.

2. The time limit contained in the IOCB of the active I/O request.

3. The IOU requirement of 0 to 2.4 seconds, and the MCP requirement of 4 to 12
seconds to recover from a time-out condition.

4. Application wait time before deciding to user-cancel the I/O request.

The relationship of these four timer values is outlined by the following equation:

<maximum I/O elapsed time> - <IOCB time limit> - 14.4 = <wait time>;
 (1) (2) (3) (4)

Using Disk and CD-ROM Files in a Program

3–36 8600 0056–408

Items 1, 2, and 4 are site specific. Item 3 is a constant value. You must set the
site-specific timer values to suit your needs. Consider the following examples:

Example 1

If your site requires that an I/O request is outstanding for 3 minutes or less (180
seconds), you can use the default IOCB time limit value and wait 85 seconds before
user-canceling the I/O request:

<maximum I/O elapsed time> - <IOCB time limit> - 14.4 = <wait time>
 180 - 80.4 - 14.4 = 85.2

Example 2

If your site requires that an I/O request is outstanding for 30 seconds or less, you must
reduce the IOCB time limit to either 5 or 10 seconds, which results in a program wait
time of no more than 9.6 and 4.8 seconds, respectively:

<maximum I/O elapsed time> - <IOCB time limit> - 14.4 = <wait time>
 30 - 6 - 14.4 = 9.6
 30 - 10.8 - 14.4 = 4.8

Notice that the greater the value permitted for maximum I/O elapsed time the more
flexible wait time and IOCB time limit can be (as in example 1). Whereas, the smaller the
value, the less flexible the other timers become (as in example 2).

If the WAIT statement completes because the time expires, the application can make
use of the IOCANCEL attribute to user cancel the I/O request. The actions taken as a
result of setting the IOCANCEL attribute are outlined in “Effects of the Direct I/O
Attribute Program Interface” earlier in this section.

The following sample pseudocode ensures that an I/O operation is returned within
30 seconds when the IOCB time limit is 10 seconds:

WRITE (<file>,<length>,<buffer>) [<event>];
RSLT := WAIT ((4.8),<event>);
IF RSLT EQL 1 THEN
 BEGIN
 <buffer>.IOCANCEL := TRUE;
 WAIT (<event>);
 IF BOOLEAN(<buffer>.IORESULT) THEN
 IF <buffer>.IORESULT.[13:1] THEN
 % I/O has been user-canceled.
 ELSE
 % Some other exception occurred.
 ELSE
 % The I/O completed successfully before
 % being user-canceled by the system.
 END;

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–37

The pseudocode in the previous example works well if your application serially processes
one I/O request at a time. It cannot be used, however, to ensure that more than one I/O
request is returned within the same time period. Consider the following:

WRITE (<file>,<length>,<buffer_1>) [<event_1>];
WRITE (<file>,<length>,<buffer_2>) [<event_2>];
RSLT := WAIT ((4.8),<event_1>,<event_2>);
IF RSLT EQL 1 THEN
 BEGIN
 <buffer_1>.IOCANCEL := TRUE;
 WAIT (<buffer_1>);
 IF BOOLEAN(<buffer_1>.IORESULT) THEN
 IF <buffer_1>.IORESULT.[13:1] THEN
 % I/O has been user-canceled.
 ELSE
 % Some other exception occurred.
 ELSE
 % The I/O completed successfully before
 % being user-canceled by the system.
 <buffer_2>.IOCANCEL := TRUE;
 WAIT (<buffer_2>);
 IF BOOLEAN(<buffer_2>.IORESULT) THEN
 IF <buffer_2>.IORESULT.[13:1] THEN
 % I/O has been user-canceled.
 ELSE
 % Some other exception occurred.

ELSE
 % The I/O completed successfully before
 % being user-canceled by the system.
END;

In the previous program example, neither buffer has the User Cancel IOMASK bit set, so
each IOCANCEL assignment statement affects only its own buffer. Since an IOCANCEL
assignment statement is handled synchronously by the system, the maximum elapsed
time of the I/O for buffer_2 can exceed 30 seconds. The maximum possible elapsed
time for buffer_2 is calculated as follows:

<maximum elapsed time> = <wait time> + <buffer_1 IOCB time limit> + 14.4
 + <buffer_2 IOCB time limit> + 14.4;

If you use the values from the example in the preceding text, the maximum elapsed time
is calculated as follows:

50.4 = 9.6 + 6 + 14.4 + 6 + 14.4; % <IOCB time limit> of 5 seconds
55.2 = 4.8 + 10.8 + 14.4 + 10.8 + 14.4; % <IOCB time limit> of 10 seconds

Using Disk and CD-ROM Files in a Program

3–38 8600 0056–408

The maximum elapsed time for buffer_2 exceeds 30 seconds because of the actions
taken for each IOCANCEL assignment statement. Each IOCANCEL assignment
statement results in the MCP recalling all I/O requests for this device from the IOU, user-
canceling the IOCANCEL target I/O request from the list of recalled I/O requests, and
reissuing the remaining I/O requests to the IOU. For each IOCANCEL statement
processed, the IOU does not return the outstanding I/O requests until after the active I/O
request completes.

If your application issues more than one I/O request and requires the I/O requests to be
completed in a specified length of time, the I/O requests must be issued with the User
Cancel IOMASK bit set (13). Setting the User Cancel IOMASK bit causes any qualifying
user cancel masked I/O request to be returned with the IOCANCEL target I/O request.

<buffer_1>.IOMASK := * & 1 [13:1];
<buffer_2>.IOMASK := * & 1 [13:1];
WRITE (<file>,<length>,<buffer_1>) [<event_1>];
WRITE (<file>,<length>,<buffer_2>) [<event_2>];
RSLT := WAIT ((4.8),<event_1>,<event_2>);
IF RSLT EQL 1 THEN
 BEGIN
 <buffer_2>.IOCANCEL := TRUE;
 WAIT (<buffer_1>);
 IF BOOLEAN(<buffer_1>.IORESULT) THEN
 IF <buffer_1>.IORESULT.[13:1] THEN
 % I/O request has been user-canceled.
 ELSE
 % Some other exception occurred.
 ELSE
 % The I/O completed successfully before being
 % user-canceled by the system.

 WAIT (<event_2>)
 IF BOOLEAN(<buffer_2>.IORESULT) THEN
 IF <buffer_2>.IORESULT.[13:1] THEN
 % I/O request has been user-canceled.
 ELSE
 % Some other exception occurred.
 ELSE
 % The I/O completed successfully before being
 % user-canceled by the system.
 END;

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–39

Because the User Cancel mask bit is set for both I/O requests before they are issued,
the IOCANCEL assignment statement can be made to either buffer. After the
IOCANCEL statement completes, the completion events associated with both I/O
requests occur, enabling both I/O requests to be processed within the 30 seconds
required by the application.

Your application must wait on each completion event following the IOCANCEL
assignment statement. In general, this WAIT statement completes immediately, but you
must take precautions in case the event has not yet occurred. Completion is delayed only
if some external portion of the system is not functioning properly. For example, an
asynchronous finish action to log a User Cancel, or other exception result, is sometimes
necessary when an IOCANCEL assignment is made. If the finish action is delayed
because the MCP is unable to write to the LOG because of LOG unit errors, then causing
the I/O completion event is also delayed.

Mirrored Disk Considerations

In general, all members of a mirrored set use the same time limit. If you change the time
limit of a unit that is also a member of a mirrored set, the change applies to all the other
members of the set.

MIRROR CREATE System Command

The disk added into the mirrored set is given the same time limit value as the current set
members. The time limit of the set applies to the new member as it is being created. If
an error prevents the disk from becoming an online member of the set, the original time
limit value of the disk is restored.

MIRROR RELEASE System Command

A MIRROR RELEASE system command has no effect on the time limit assigned to the
remaining or released members of a mirrored set.

Using Disk and CD-ROM Files in a Program

3–40 8600 0056–408

Logging Considerations

The system logs every request for a disk time-limit change. These requests appear in the
SUMLOG. The following examples show the format of log entries:

08:44:29 ->5993 OPERATOR ENTERED: IOTIMER PK 241-243 VALUE 10
08:44:30 ->5994 OPERATOR ENTERED: IOTIMER PK ALL VALUE DEFAULT
08:44:31 ->5995 OPERATOR ENTERED: IOTIMER PK SUBTYPE 50 VALUE 10

The Hardware Configuration report displays the read and write time-out value for each
disk contained in the report. The time-out values appear in the DISK R/W TIME-OUT
column. If the time-out value in effect is the default value, a lowercase d appears after
the time-out value. The following example show the format of the Hardware
Configuration report.

"d" AFTER DISK READ/WRITE TIME-OUT VALUE INDICATES MCP DEFAULT

UNIT TYPE (SUBTYPE & DENSITY) TIME-OUT
---- ------------------------ --------
100 419-1 SCSI PACK 10
200 805-1 SCSI PACK 80 d

The analysis provided for a Timelimit Exceeded exception includes the time limit used by
the IOU to time the I/O request. The analysis appears in maintenance log reports and in
I/O summary reports. The format of the report is as follows:

IO TIMED OUT (<value>)

where the value either can be the specified number of seconds (for example,
20 SECONDS) or the word UNTIMED, which indicates the I/O operation was issued as
an untimed I/O request.

In the following IOSUMMARY report example, pack 800 had two I/O requests that timed
out while the time limit was 10 seconds. Then it had one I/O request that timed out while
the time limit was 80 seconds.

ERROR UNIT RESULT . . .
COUNT TYPE UNIT # R/W ANALYSIS . . .

 2 PACK 800 W IO TIMED OUT (10 SECONDS) . . .
 1 PACK 800 W IO TIMED OUT (80 SECONDS) . . .

 Using Disk and CD-ROM Files in a Program

8600 0056–408 3–41

System Interface Considerations

A program can monitor when a change in a time limit for a disk occurs by making use of
the STATUS_CHANGE_REQUEST procedure in the MCPSUPPORT library. Message
number 34 applies to time-out information. The change occurs for any of the following
conditions:

• The IOTIMER system command or the corresponding SETSTATUS call changes the
time-limit value

• A disk is added to a mirrored set and the time limit in effect for the mirrored set
differs from that of the disk being added

• The disk is the destination pack of a MOVE PK command

Peripheral Test Driver (PTD) Considerations

The PACKSCAN PTD can be executed against an online pack. The I/O operations issued
by the PACKSCAN PTD are interleaved with the read and write operations issued by
other applications. In general, the time limit assigned to PACKSCAN I/O operations are
greater than the MCP default value for disk read and write operations.

The MCP checks whether a user-specified time limit is in effect for a disk before
assigning a time limit for a PTD I/O operation. The MCP checks only the PTD I/O
operations that do not require exclusive use of the disk (for example, the disk does not
have to be reserved.) If a user-specified time limit is in effect, the lower value between
the user-specified and the PTD-specified time limit is used.

Using Disk and CD-ROM Files in a Program

3–42 8600 0056–408

8600 0056–408 4–1

Section 4
Using Tape Files in a Program

The MCP systems support a wide range of tape devices such as reel-to-reel tapes and
half-inch cartridge tapes, 8mm and 4mm cartridge tapes. The I/O subsystem enables you
to read tapes of many different types, and to create both unlabeled and labeled tapes.

A single reel or cartridge is referred to as a volume. A volume can contain more than one
file, and a file can occupy more than one volume. A single-file single volume tape
contains one file on one volume, but the contents of a multivolume file are spread
across two or more volumes. As a programmer, you do not have to be concerned with
controlling when the file goes to another volume. The physical I/O subsystem and logical
I/O subsystem take care of the necessary tasks. Continuation volumes are assigned to a
medium that is compatible with the previous volume.

When two or more files reside on one volume, the tape is known as a multifile tape. A
multifile multivolume tape contains more than one file and part of a file that began on
another volume or begins on the current volume.

Although you can give a tape a file name of up to 12 nodes, ANSI standards allow only
two nodes to be placed in the tape label. If your file name has more than two nodes, the
I/O subsystem uses only the first and the last nodes. Thus, a tape file name of A/B/C/D is
stored in the tape label as A/D. When more than one file is on one volume, the first node
must be the same for all files on the volume, even if a file spans a number of physical
volumes. Additionally, no two files on a volume can have the same second node.

Any tape created has at least one tape mark to delimit the logical entities on the tape,
and the last valid data on a tape is followed by two tape marks.

A tape can be either labeled or unlabeled. A labeled tape has label records that contain
information needed to locate a specific file on the tape and a serial number that is initially
assigned by an operator using the SN (Serial Number) system command. Refer to the
System Operations Guide for information about using the SN command.

Each file on a labeled tape is preceded and followed by a set of label records. A tape
mark is used to separate the label records from the records of a file on the tape. Refer to
Appendix E, “Standard Tape Label Formats,” for information about the exact contents of
tape labels.

Using Tape Files in a Program

4–2 8600 0056–408

As a multifile multivolume tape is created, the creation date in HDR1 and EOF1 is
updated for each file on the volume. For example, FILE/1 is created on July 10, and it
goes to a second volume on July 11 where the file ends. FILE/2 is created and follows
FILE/1 on the second volume. FILE/1 (on reels one and two) has a creation date of July
10, and FILE/2 has a creation date of July 11.

An unlabeled volume has no label records and no serial number on the tape.

A file on the following tape drives cannot be accessed in the reverse direction, nor can a
block be rewritten in place:

• CLU9710-36T, CTS5136, CTS5236, and OST5136

• CLU9710-DLT4, CLU9710-DLT7, and CLU9710-DLT8

• CTS9840

• HS4400

• HS8500, HS8500C, HS8505

• ALP430

• ALP920

• FIPS 5073, USR5073 (only when compression is on)

Note: Extending a file whose last block is not full would require rewriting the last block,
and so cannot be done.

The steps needed to accomplish the following tasks are presented in this section:

• Creating a tape file

• Reading a tape file

• Reading a tape file in reverse

• Creating an unlabeled tape file

• Creating a tape with more than one file

• Accessing an unlabeled tape

• Treating labeled tapes as unlabeled tapes

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files,” before reading the following
information. You can identify all the file attributes that can be used with a tape file by
reviewing Table A–1. For more information about any of the file attributes, refer to the
File Attributes Reference Manual.

 Using Tape Files in a Program

8600 0056–408 4–3

Creating a Tape File
The task of creating a tape file has been broken down into the following groupings:

• Tasks that are required

• Tasks the ensure file security

• Tasks that define complex record structures

• Tasks that allow for special handling of the file

Required Tasks

You should perform all the following tasks:

• Specify the KIND value as TAPE. The default value is DONTCARE.

• To specify that this file is new, set the NEWFILE attribute to TRUE.

If you want to read the file after you create it, be sure to set the NEWFILE attribute
to FALSE before you reopen the file. Header labels overwrite the existing file on the
tape if the file is reopened without first changing the NEWFILE attribute to FALSE.

• If you want the physical file name to be different from the internal file name, specify
the physical file name by using the FILENAME attribute.

• Identify how the data is going to be transferred by using the FRAMESIZE attribute.
Refer to “Identifying How Data Is Transferred” in Section 2.

• If you want an INTMODE attribute value other than the default value assumed by
your language, assign that value to INTMODE. Refer to “Identifying How Data Is
Transferred” in Section 2 for language default information. The INTMODE value is
assumed by the EXTMODE value. If the physical file must have a character encoding
set that is different from the INTMODE value, assign EXTMODE the appropriate
value. Refer to Table 2–14 for possible EXTMODE and INTMODE combinations.

• Identify the maximum size of any record by using the MAXRECSIZE attribute. You
should express the MAXRECSIZE value in terms of FRAMESIZE units. A tape file
defaults to 10 words.

• To indicate that the file has more than one record in a block, specify the length of the
block by using the BLOCKSIZE attribute. You should express the BLOCKSIZE value
in terms of FRAMESIZE units. Because BLOCKSIZE defaults to the MAXRECSIZE
value, you must specify a value larger than MAXRECSIZE. In the case of a file with
fixed-length records, the value must be a multiple of MAXRECSIZE.

The minimum block size—that is, the physical record size—for tape files is six words
or 36 EBCDIC bytes. Blocks that are shorter than the block size are padded with
zeros, if necessary. You should be careful to ensure that each block written to the
tape—including the last block—is at least the minimum block size in length.

Using Tape Files in a Program

4–4 8600 0056–408

For instance, you might have a problem in the following situation:

− You write a file made up of fixed-length records that have a MAXRECSIZE of less
than 36 bytes long and have more than one record for each block, and the
BLOCKSIZE of the file is less than 36 bytes.

− You read the file, which can cause the I/O subsystem to pass the program one or
more records that are all zeros.

When you close such an input file, the I/O subsystem sometimes displays a record
count error message. Such an error does not occur if all the records are at least six
words or 36 EBCDIC bytes long—for example, if MAXRECSIZE is at least this long
and the file has fixed-length records.

The I/O subsystem pads blocks when the block size of the data is an odd number of
bytes. The I/O subsystem writes the tape in an even-numbered block size. If padding
occurs, the tape header contains the odd number for the block size of the data, and
the I/O subsystem writes the physical tape with a block size that is one greater than
the odd number. You can avoid these problems by specifying records that contain an
even number of bytes when you write the file.

Be aware that systems other than MCP systems might not be able to read a tape
that has been padded in this way.

Some tape drive models have maximum block-size restrictions. These restrictions
are described in the following table:

Tape Drive Model Maximum Block Size

2145 GCR/PE/NRZ, ALP430 65535 bytes

CLU9710-36T, CTS5136, CTS5236, CTS9840, OST5136 262144 bytes

FIPS 5073 half-inch cartridge 131068 bytes

HS8500, HS8505, HS8500C 245760 bytes

USR5073 half-inch cartridge 262139 bytes

HS4400 262139 bytes

All others 393210 Bytes

When connected to certain system types, such as the NX4200 and LX systems, and CS
servers that are delivered with Virtual Machine for ClearPath MCP software, the
maximum block size can be restricted to 65,535 bytes. You can check the block size
supported by a tape drive/system combination by checking the OL MT display for the
drive.

 Using Tape Files in a Program

8600 0056–408 4–5

Security Tasks

Consider performing the following tasks to secure your file if you use the Security
Accountability Facility on your system and if the SECOPT TAPECHECK form of the
SECOPT (Security Options) system command is set to AUTOMATIC.

If the SECURITYLABELS tape volume security option is TRUE, the values for the
FAMILYOWNER, SECURITYGUARD, SECURITYTYPE, and SECURITYUSE attributes are
stored in the tape label and the tape volume directory. Refer to WFL Reference Manual
for information about using SECURITYLABELS.

• Specify the owner of the tape volume by using the FAMILYOWNER attribute. Refer
to the Security Administration Guide for more information about security.

• If you want to restrict who can use the file, assign a mnemonic value to the
SECURITYTYPE attribute. All privileged users have access to all files regardless of
the SECURITYTYPE value. The following are the possible values you can specify:

Mnemonic Values Meaning for a Nonprivileged User

PRIVATE The owner can access the file.

PUBLIC Access by a nonowner is allowed.

GUARDED Access by nonowner users is controlled by a guard file.

CONTROLLED A guard file controls access by all users including the owner.
This value is not supported by Host Services logical I/O.

• If you chose the CONTROLLED or GUARDED values, specify the name of the guard
file by using the SECURITYGUARD attribute.

• To specify how a physical file protected with a SECURITYTYPE value of PUBLIC can
be accessed by nonprivileged users using nonprivileged programs, assign the
SECURITYUSE attribute one of the following values:

Mnemonic
Values

Meaning

IN Specifies read-only access to source files, data files, and code
files. Also, a code file can be executed.

IO Specifies read and write access to source files, data files, and
code files. Also, code files can be executed. The default value of
SECURITYUSE is IO for all disk files.

OUT Specifies write-only access to source files, data files, and code
files. Also, code files can be executed.

SECURED Specifies that nonprivileged users do not have access to source
files, code files, or data files, but they can execute a code file. For
example, a nonprivileged user cannot copy a secured code file,
but he or she can still execute it.

DLT3 Digital linear tape (DLTIII)

Using Tape Files in a Program

4–6 8600 0056–408

Mnemonic
Values

Meaning

DLT6 Digital linear tape (DLTIII)

DLT10 Digital linear tape (DLTIII or DLTIIIxt)

DLT20 Digital linear tape (DLTIV)

DLT35 Digital linear tape (DLTIV)

DLT40 Digital linear tape (DLTIV)

Complex Record Tasks

If you want to define variable-length records, refer to “Establishing a Record Format” in
Section 2.

Special Requirement Tasks

Consider performing the following tasks if you have special requirements:

• If you want to be able to read any data that was written to the tape, even if the file
creation process is interrupted by a halt/load, assign a value of PROTECTED to the
PROTECTION attribute.

• If you want to ensure that the tape file cannot be accidentally purged, set the
LOCKEDFILE file attribute to TRUE. Once you have set the value to TRUE, any
programmatic attempt to close and purge the file results in the file being closed, but
not purged. To purge the tape with a system command requires operator
confirmation.

• If you want tape reels unloaded after they are used, so that they can be put away or
made inaccessible to other files, your program can invoke a CLOSE operation that
results in a disposition of lock. Refer to Section 2, “Understanding Programming for
Files,” for information about closing a file.

Another method of controlling the unloading of tapes is to assign the AUTOUNLOAD
file attribute a value of ON. When the value is ON, any CLOSE operation that has a
disposition of purge or an association of release and a disposition of rewind or a
disposition of block exit causes the tape to unload, regardless of the automatic-
unload mode of the unit. Refer to Section 2, “Understanding Programming for Files,”
for information about CLOSE operations.

• If you do not want the tape to be identified as a scratch tape as soon as the tape is
released by your program, set the SAVEFACTOR attribute to the number of days that
you want the tape saved.

The operating system handles an expired tape based on the setting of the system
option TAPEEXPIRATION, which is controlled by using the
SYSOPS TAPEEXPIRATION system command. If the system option is set to TRUE,
an expired tape is handled as a scratch tape. If the system option is set to FALSE,
the expiration date is ignored.

 Using Tape Files in a Program

8600 0056–408 4–7

Note: A tape that is past its expiration date is identified as a scratch tape by the
operating system only if it is write-enabled. The data on the tape is not actually
purged. Thus, a tape that is past its expiration date can still be read if it is not write-
enabled. On reel-to-reel tape drives, a tape is
write-enabled if it has a write ring.

• If you have any of the following types of tape drives on your system, and the file you
are creating must be written to one of these tapes drives, use the appropriate
DENSITY attribute value to designate the particular tape drive. For the following tape
types, if the I/O subsystem cannot find a tape unit that supports that density, it
places the user task in the waiting state and issues a request for a tape unit that
does support that density.

Mnemonic
Value

Integer
Value

Media Type

Tape Subsystems

BPI800 0 9-track NRZ reel-to-
reel tape

2145, 4125

BPI1600 3 9-track PE reel-to-reel
tape

2145, 4125

BPI6250 4 9-track GCR reel-to-
reel tape

2145, 4125

BPI38000 5 18-track half-inch
cartridge tape and
4mm cartridge tape

RM5073, HS4400

Notes:

The HS4400 4mm emulates
a half-inch cartridge tape,
thereby inheriting the
density of the RM5073
tape.

18-track tapes are read-only
on subsystems supporting
36-track HIC media.

BPI1250 6 Quarter-inch cartridge
tape

QIC, QIC1000

BPI11000 7 8mm cartridge tape HS8500 (Exabyte)

FMT36TRK 8 36-track half-inch
cartridge tape

CTS5136, OST5136,
CTS5236, and
CLU9710-36T

FMTDDS2 9 DDS–2 cartridge tape HS4400 and ALP430

FMTQIC1000 10 Quarter-inch cartridge
tape

QIC1000

FMTDDS3 11 DDS–3 cartridge tape ALP430

FMTDLT3 13 Digital linear tape–
DLTIII

CLU9710-DLT4 and DLT7

Note: Tapes are read-only
on these subsystems.

Using Tape Files in a Program

4–8 8600 0056–408

Mnemonic
Value

Integer
Value

Media Type

Tape Subsystems

FMTDLT6 14 Digital linear tape–
DLTIII

CLU9710-DLT4 and DLT7

Note: Tapes are read-only
on these subsystems.

FMTDLT10 15 Digital linear tapes–
DLTIII or DLTIIIxt

CLU9710-DLT4, DLT7 and
DLT8

FMTDLT20 16 Digital linear tape–
DLTIV

CLU9710-DLT4, DLT7, and
DLT8

FMTDLT35 17 Digital linear tape–
DLTIV

CLU9710-DLT7 and DLT8

FMTST9840 18 High-capacity cartridge
tape

CTS9840

FMTDDS 19 DDS–1 cartridge tape HS4400 and ALP430

FMTAIT 21 Advanced intelligent
tape

ALP920

FMTAIT2 22 Advanced intelligent
tape

ALP920

FMTDLT40 23 Digital linear tape–
DLTIV

CLU9710-DLT8

• If you have a tape drive that allows compression and you want the data to be
compressed as it is written to tape, perform one of the following tasks:

− If you want compression to occur based on the compression flag maintained in
the tape label, specify SYSTEM as the COMPRESSIONCONTROL file attribute
value. The compression flag in the tape label can be controlled by an operator by
using the SN (Serial Number) or PG (Purge) system commands.

− If you want the program to control whether compression occurs or not, specify
USER as the COMPRESSIONCONTROL attribute value and set the
COMPRESSIONREQUESTED file attribute to TRUE if you want compression to
occur.

Note: Compression cannot be used for tasks that need to predict ahead of time
how much data can be written to the tape, nor can it be used for tape files that need
to be read in reverse.

• If you are not using direct I/O and you want to ensure that every WRITE operation
has completed before going on to the next instruction in the program, set the
SYNCHRONIZE attribute to the value OUT. This causes a separate block to be
written for each record even when the BLOCKSIZE value allows for more than one
record. That is, the I/O subsystem ignores the BLOCKSIZE and uses the record size
for WRITE operations.

 Using Tape Files in a Program

8600 0056–408 4–9

You should be aware that, for certain styles of tape drives having a long repositioning
time (such as the HS8500), setting the SYNCHRONIZE attribute to NO can avoid
significant performance degradation.

If you want your program to occasionally ensure that a WRITE operation has
completed before going on to the next instruction in the program (and you are not
using direct I/O), use a WRITE statement with the SYNCHRONIZE operation each
time you want this behavior.

Refer to Section 10, “Using Direct I/O Files,” for information about enabling buffering
mode when using direct I/O.

• If your site uses cataloging and the USECATDEFAULT system command is not set,
and you want the file to be entered into the system catalog, set the USECATALOG
attribute to TRUE. The physical tape that is to be used must have been added to the
tape volume directory by using the Work Flow Language (WFL) VOLUME ADD
statement.

• If you want to differentiate the file from a file that has the same file name, use the
CYCLE attribute. The value of the CYCLE attribute can be changed by the operator
each time the program is run by specifying a value for the CYCLE attribute in a FILE
statement that is included with the RUN statement of the program. Additionally, you
can use the VERSION attribute to differentiate the file from other versions of the file
within the cycle.

To request that the tape file be placed on a tape with a specific serial number, use
the SERIALNO attribute. If your file requires more than one physical volume, you can
specify the serial number of each volume by using the optional FILESECTION
number parameter of the SERIALNO attribute. The following ALGOL statements
would specify the serial numbers of the volumes of a three-volume file:

F(1).SERIALNO :="FIRST ";
F(2).SERIALNO :="SECOND";
F(3).SERIALNO :="THIRD ";

The system option SERIALNUMBER (option 27) controls the assignment of scratch
tapes when the SERIALNO and SCRATCHPOOL file attribute values are not
specified. The assignment of scratch tapes is controlled in the following ways:

Ä If the option is set, no file assignment automatically takes place and the “<file
name> REQUIRES” message is displayed. The operator can respond with a DS
(Discontinue) or OU (Output Unit) system command, or can specify a serial
number or scratch pool name with the FA (File Attribute) system command.

Ä If the option is reset, the system uses any available scratch tape that does not
have a scratch pool name.

 For further information about using the OP (Options), DS, OU, and FA system
commands, refer to the System Operations Guide.

If you choose to specify a serial number and that serial number matches the serial
number of the tape, the system assigns the file whether or not the file has expired or
the tape is a scratch tape, as long as the tape is write-enabled. Non-scratch volumes
are not assigned to output tapes if the TAPEOVERWRITE option of the SYSOPS
system command is set to FALSE.

Using Tape Files in a Program

4–10 8600 0056–408

To indicate that the serial number is not to be considered during file assignment, set
the SERIALNO attribute to all null characters; that is, a value in which all bits are
equal to 0 (zero).

• If you want the created file to be stored on a physical tape that is from a specific pool
of tapes, use the SCRATCHPOOL attribute. The name you use must be an identifier
of 1 to 17 EBCDIC characters, left-justified in a field of blanks (a hyphen or an
underscore is not permitted as the first character).

You can place a scratch tape in a specific pool by naming that pool when you use the
PG (Purge) or SN (System Number) system command.

If you request a printer backup tape with a specification of SCRATCHPOOL, the file
will be added on to any existing, mounted backup tape from that pool.

If the SERIALNO file attribute has been specified for a particular member of a single
volume or a multivolume set, the SCRATCHPOOL attribute is not taken into
consideration when that volume is assigned.

If a tape volume is closed with the PURGE option, and the SCRATCHPOOL value is
not a null string, the SCRATCHPOOL value is used as the pool name for the volume
in the resulting purge operation.

Reading a Tape File
Perform all or some of the following tasks, depending on the purpose of your program:

• If the tape has a physical file name that does not match the internal file name,
specify the physical tape name of the file by using the FILENAME attribute.

• Specify the KIND value as TAPE.

• Specify the NEWFILE attribute value as FALSE.

• You should set the DEPENDENTSPECS attribute value to TRUE, unless you have a
special reason to manipulate the records differently than the creation program
intended.

If you do not set the DEPENDENTSPECS attribute to TRUE and if you specify
BLOCKSIZE, MAXRECSIZE, and MINRECSIZE values that are inconsistent with the
physical file values, your program might not behave the way you expected it to. For
example, the program might not read all the data originally written to the file. If such
an inconsistency exists, a run-time warning is issued during the process of opening
the file.

If your program receives an inconsistent blocking warning, you should examine the
program to determine if the blocking of the logical file should be different from the
blocking of the physical file and if your program can function correctly with the values
you specified. If your program functions correctly, you can suppress the warning by
using the SUPPRESSWARNING task attribute. If the difference is not necessary, set
the DEPENDENTSPECS value to TRUE or change the three values of the logical file
to match the physical file values. For more information about the conditions that
cause warnings, refer to the BLOCKSIZE, MAXRECSIZE, and MINRECSIZE
descriptions in the File Attributes Reference Manual.

Certain tape drive models have block size restrictions as shown in the following list.
In addition, the type of connection to a tape unit might also impose a limit on the

 Using Tape Files in a Program

8600 0056–408 4–11

maximum BLOCKSIZE that can be used. An emulated SCSI DLP or an emulated
Native SCSI Channel limits the maximum BLOCKSIZE of any tape connected to it to
65,535 bytes.

− The 2145 GCR/PE/NRZ and ALP430 tape drives have a 65,535-byte maximum.

− The CTS5136, CTS5236, CLU9710-36T, CTS9840 half-inch cartridge tape drives
have a 262,144-byte maximum.

− The OTS5136 half-inch cartridge tape drive has a 262,144-byte maximum.

− The FIPS 5073 half-inch cartridge tape drive has a 131,068-byte maximum.

− The HS8500, HS8505, and HS8500C tape drives have a 245,760-byte maximum.

− The USR5073 half-inch cartridge tape drive and the HS4400 4mm cartridge tape
drive have a 262,139-byte maximum.

− All other tape drives have a 393,210-byte maximum.

Caution

The NX4200 and LX systems, and CS servers that are delivered with Virtual
Machine for ClearPath MCP software, use Windows NT as the underlying
operating system and cannot read or write a block of data from tape greater
than 65,535 bytes. This is a Microsoft limitation on I/O drivers. As a result,
any tape written on another system with a BLOCKSIZE greater than 65,535
bytes cannot be read by the NX4200, LX, and CS servers that are delivered
with Virtual Machine for ClearPath MCP software.

• If you want tape reels unloaded after they are used, so that they can be put away or
made inaccessible to other files, your program can invoke a CLOSE operation that
results in a disposition of lock. Refer to Section 2, “Understanding Programming for
Files” for information about closing a file.

Another method of controlling the unloading of tapes is to assign the AUTOUNLOAD
file attribute a value of ON. When the value is ON, any CLOSE operation that has a
disposition of purge or an association of release and a disposition of rewind or a
disposition of block exit causes the tape to unload, regardless of the automatic-
unload mode of the unit. Refer to Section 2, “Understanding Programming for Files,”
for information about CLOSE operations.

• If you want a particular cycle and version of the file, specify the particular cycle
number in the CYCLE attribute and the particular version number in the VERSION
attribute.

• If you are using cataloging at your site, you can do the following:

− If the USECATDEFAULT system option is not set and you want the system
catalog searched when the system assigns the permanent file, set the
USECATALOG attribute to TRUE.

− If you want a copy of the file that does not have the latest time and date, specify
the desired copy in the GENERATION attribute.

Using Tape Files in a Program

4–12 8600 0056–408

• If you want to read a tape file that resides on a tape that has a specific serial number,
use the SERIALNO attribute to identify the correct serial number. If you do so, the
I/O subsystem assigns the physical file only if the serial number of the tape on which
it resides matches the value you specified for the SERIALNO attribute and the file
meets the other selection criteria.

• If the file is split across volumes and you want information from a specific volume,
you can specify that volume by using the FILESECTION attribute.

• After you invoke READ statements, you can interrogate the following attributes to
obtain certain information. This is not a complete list. Remember that almost all
attributes for a tape file can be interrogated.

 The following table lists some attributes that can be interrogated and identifies what
information can be obtained:

Attribute Information Received

CREATIONDATE The creation date of the tape file.

EOF TRUE indicates that the end-of-file condition has been
reached.

IOINERROR TRUE indicates that a physical I/O error has occurred
on the file.

RECORDINERROR The record number or block number of the
information in the currently used buffer.

TAPEREELRECORD The logical record number relative to the beginning of
the current volume.

Reading a File in Reverse
You can read the file backwards if the tape is positioned at the end of the file and has
been closed if reverse READ operations are supported on the drive. Among those drives
that do not support reverse reading are the HS8500, HS4400, FIPS 5073, CTS5136, and
OST5136 tape drives. In addition, half-inch cartridge tapes that have been written in
EDRC format cannot read in reverse. You can verify whether a tape drive supports
reverse reading by checking the OL MT display for the drive.

To indicate that you want to read the file from back to front, assign the DIRECTION
attribute a value of REVERSE.

To indicate that you want to change the direction of the READ operation back to the
forward direction, assign the FORWARD value to DIRECTION. FORWARD is the default
value.

To specify that you need a read-reverse capable unit, use the READREVERSECAPABLE
attribute.

 Using Tape Files in a Program

8600 0056–408 4–13

When a tape is read in the reverse direction, the buffer is filled from the end to the
beginning so that the data are in the order in which they were written to the tape—the
forward direction. With this method, the buffer image is the same no matter in which
direction the tape is read, unless the length of the block on the tape is shorter or longer
than the length or size of the buffer. If the block is short, the last characters or words of
the buffer are filled with blanks, and they are the image of the tape in the forward
direction. The rest of the buffer is undisturbed. If the block is long, the buffer contains
the first characters or words of the tape block that are encountered as the block is read
backwards. Thus, the first data are missing from the buffer.

Direct I/O files allow you to change the direction of a READ operation at anytime.

Creating an Unlabeled Tape
To create an unlabeled tape, perform those tasks that are appropriate from the identified
tasks in “Creating a Tape File” in this section. In addition, assign the OMITTED value to
the LABEL attribute.

Creating a Tape with More Than One File
It is sometimes useful to put more than one file on a physical tape. To accomplish this
task, close the logical file, do not rewind the tape, and leave the unit assigned to the
program. The ALGOL statement CLOSE(F,*) and the COBOL statement CLOSE <file-ID>
WITH NO REWIND leave the logical file assigned to the physical file.

Naming Conventions

When you write more than one file to a physical tape, each file must have a two-node
tape file name. The first node should be the same for all files on the physical tape, even if
the physical tape includes a number of physical reels or volumes. Additionally, no two
files on the tape should have the same second node.

Searching Conventions

If two files have the same first and second nodes, the second file can be located only if it
is on a different physical volume of the logical tape file and if the different volume does
not begin with the continuation of the first file of the same name. You cannot locate two
files with the same name on the same tape volume by assigning different values to the
CYCLE and VERSION attributes.

The file search routines make extensive use of these name restrictions in order to reduce
the time taken to find a tape file. Files on tapes that do not meet these criteria might not
be found without operator intervention.

The following method is used to search for files on multifile tapes.

Using Tape Files in a Program

4–14 8600 0056–408

First, all units associated with the process attempting to open the file are searched. If the
file is on one of those units, the unit is assigned and the search terminates. If the file is
not on one of those units, all other tapes whose first-node names match that of the
required file, except those that are continuations of the required file, are searched. When
a unit is searched unsuccessfully, it is not locked; the serial number of the searched tape
is kept by the search routines to indicate that the tape has already been searched. If an
operator wants the system to search a tape with a serial number identical to a tape that
has already been searched, the IL (Ignore Label) system command should be used.

Logical I/O does not rewind tapes to search for files if it can determine that the file is not
on the tape. This determination is based on the first node of the file name or the file
section number it is seeking. Specifically, tapes that are online are rewound only if the
first node name of the first file on the tape and the file being sought match, and if the file
section number of the first file on the tape matches the one being sought, or if the one
being sought is 1. This means that searching for a continuation reel rarely causes the
tape to rewind.

Note: In some instances, when more than one task is trying to open tape files with the
same multifile ID, the right tape might not be found on the first pass if another task is
already searching the tape.

In ALGOL, you can space past the last file on a labeled tape by invoking the
OPEN(F);CLOSE(F,*) statement pair a sufficient number of times. When this has been
done, attributes that return actual values from the current physical file, such as
CREATIONDATE or LABELKIND, return information appropriate to an unlabeled tape.
Normally, the returned value is the value declared by the user. If the tape is positioned
past the last file on the tape, some file attributes such as CREATIONDATE return
attribute errors. The LABELKIND attribute returns a value of 1, which indicates that the
tape is unlabeled.

Accessing an Unlabeled Tape
You can access the data on an unlabeled tape by performing the following tasks:

1. Identify the file as a tape file by assigning the KIND attribute a value of TAPE.

2. Assign the NEWFILE attribute a value of FALSE.

3. Specify values for the MAXRECSIZE, BLOCKSIZE, INTMODE, EXTMODE attributes
and any other attributes you would normally assign a value to, such as
BLOCKSTRUCTURE. Do not assign DEPENDENTSPECS a value of TRUE.

4. Indicate that the I/O subsystem should treat the file as an unlabeled file by assigning
to the LABEL attribute one of the following values:

 Using Tape Files in a Program

8600 0056–408 4–15

Mnemonic Value Behavior When a Tape Mark Is Encountered

OMITTEDEOF An end-of-file action occurs.

OMITTED A volume switch is attempted. An operator can use the FR
(Final Reel) system command to indicate that the end of the
file has been reached. Refer to the System Operations Guide
for information about using the FR command.

5. When the file is opened by the program, the operating system suspends the
program and displays the following message:

 <mix number> NO FILE <file name> UL (UNLABELED MT)

The operator should identify the location of the unlabeled tape by entering the

following response:

 <mix number> UL MT <unit number>

6. To position the tape at the desired file on a multifile volume, you will need to know
the position of the file on the volume. Is it, for example, the first file or the third file
on the tape? For each file that must be bypassed, you must open and close the file
one time, and then you must open the file again to allow the data to be read.

 The following are appropriate open and close statements to bypass a file:

ALGOL OPEN(F);
CLOSE(F,*);
OPEN(F);

COBOL74
and
COBOL85

OPEN INPUT IN-FILE.
CLOSE IN-FILE WITH NO REWIND.
OPEN INPUT IN-FILE WITH NO REWIND.

Using Tape Files in a Program

4–16 8600 0056–408

Treating Labeled Tapes as Unlabeled Tapes
The operating system permits most tapes to be treated as if they were unlabeled. With
the exception of tape marks, no interpretation is placed on any data found on the tape.
The data contained on the tape is assumed to comprise one or more files. File
boundaries are delimited by tape marks. All such groupings of data can be read.

For example, to access a labeled tape as an unlabeled tape, perform the steps 1 through
5 in the procedure for “Accessing an Unlabeled Tape” earlier in this section.

To position the tape at the desired file, you must know the position of the file on the
tape. Is it the first file or the third file on the tape? For each file that must be bypassed,
you must open and close the file three times; once for the header label, once for the file
data itself, and once for the trailer label. Thus, if your file is the third file on the tape, you
must open and close the file seven times to position the tape at the data portion of the
third file—3 times for each of the first two files being bypassed and 1 more time to
bypass the header label of the third file—and then you must open the file one more time
to allow the data to be read. If your file is the first file on the tape, you must open and
close the file one time to position the tape at the data portion of the file, and then you
must open the file one more time to allow the data to be read.

The following are appropriate open and close statements to bypass a file:

ALGOL OPEN(F);
CLOSE(F,*);
OPEN(F);

COBOL74 and COBOL85 OPEN INPUT IN-FILE.
CLOSE IN-FILE WITH NO REWIND.
OPEN INPUT IN-FILE WITH NO REWIND.

8600 0056–408 5–1

Section 5
Using Printer Files in a Program

In the MCP environment, you can choose to print directly to a printer, or you can choose
to have a printer backup file created. Choosing to create a printer backup file saves your
program execution time, because the printer backup file is not dependent on the speed
or immediate availability of the printer. You can print the backup file at a convenient time.
Using printer backup files also allows you to take advantage of the flexibility of the print
subsystem. Following are some of the tasks that can be accomplished by the print
subsystem:

• Controlling when the print request is issued

• Aligning the appropriate forms

• Attaching a customized banner to the beginning of the print job

• Controlling where the print request is printed and how many copies are printed

• Identifying who is charged for the printing

• Controlling the name of the backup file

• Requesting that a checkpoint be taken while the file is printed

• Controlling the format of printed output

Note: You can create printer backup files with the EXTMODE file attribute set to HEX,
8-bit, 16-bit, or mixed multi-byte character. However, the Print System can only print
files with 8-bit characters.

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files,” before reading the following
information.

You can identify all the file attributes that can be used with a printer file by reviewing
Table A–1. For more information about any of the mentioned attributes, refer to the File
Attributes Reference Manual.

For information about the capabilities of the print subsystem, refer to the Print System
Guide.

Using Printer Files in a Program

5–2 8600 0056–408

Defining the Characteristics of a Printer File
Perform all or some of the following tasks, depending on the purpose of your program.

• Specify the KIND attribute value as PRINTER.

• Identify the structure of the file.

Printer files can be declared as blocked files. The most extreme case of blocking,
where the MAXRECSIZE value is 1, the BLOCKSIZE value is 132, and the
FRAMESIZE value is 8, can be useful in printing graphs. When a printer file is
blocked, a WRITE statement of zero length can be used to terminate the block.

• Decide if you want to print directly to the printer or create a printer backup file and
whether you want to control all aspects of printing or allow the Print System to
control printing.

To print directly to the printer and control all aspects of printing, set the
PRINTDISPOSITION file attribute to one of the following values:

− DIRECTDLP

− DIRECT, when the value of the DIRECTPRINTER option of the SYSOPS system
command is DIRECTDLP.

Notes:

• Setting the DIRECTDLP value works only on systems with printers directly
attached.

• If you set PRINTDISPOSITION to the value DIRECT, the system option SYSOPS
DIRECTPRINTER changes the PRINTDISPOSITION to DIRECTPS or DIRECTDLP,
depending on the value of DIRECTPRINTER.

To print directly to the printer but allow the Print System to control printing, set
PRINTDISPOSITION to one of the following values:

− DIRECTPS

− DIRECT, when the value of the DIRECTPRINTER option of the SYSOPS system
command is DIRECTPS.

− NOW

Notes:

• The DIRECTPS value is valid for both direct and non-direct I/O files. The NOW
value provides additional functionality from the Print System, but is valid only for
non-direct I/O files.

• If you set PRINTDISPOSITION to the value DIRECT, the system option SYSOPS
DIRECTPRINTER changes the PRINTDISPOSITION to DIRECTPS or DIRECTDLP,
depending on the value of DIRECTPRINTER.

 Using Printer Files in a Program

8600 0056–408 5–3

To create a printer backup file without printing the file, set PRINTDISPOSITION to
DONTPRINT.

To create a printer backup file and allow the Print System to print the file, set
PRINTDISPOSITION to one of the following values:

− EOJ

− EOT

− FILECLOSE

− FILEOPEN

• If you need to specify a specific print train, identify that print train by using the
TRAINID attribute. Refer to the TRAINID attribute in the File Attributes Reference
Manual for a list of possible values.

• If your job requires a specific type of paper or form, use the FORMID attribute to
notify the operator of this requirement. If no printer matches the value of the
FORMID attribute, the operator can assign a printer form request to the printer.
Refer to the System Commands Reference Manual for information about performing
this task.

• If your program is not creating a printer backup file, the system prints a standard
banner at the beginning and end of the file. If you do not want this standard banner
to print, set the LABEL attribute value to OMITTED or OMITTEDEOF. Be aware that
a top-of-page operation is performed when printing completes, regardless of the
value of the LABEL attribute.

Note: If you use the FORMID attribute and set the LABEL attribute to OMITTED or
OMITTEDEOF, no header and trailer pages print unless the HEADER and TRAILER
print modifiers of the PRINTDEFAULTS of your task are set to UNCONDITIONAL.
PRINTDEFAULTS is associated with your task, not the device configuration HEADER
and TRAILER characteristics.

• If you are creating a printer backup file and the INTMODE and EXTMODE attribute
values have a value of EBCDIC, you can save space on the backup medium by letting
the TRIMBLANKS value default to TRUE. This action causes the trailing blank
characters to be removed from the file as the file is written to the backup medium.
However, the processor time required to perform each WRITE operation is
increased.

Note: If you are creating a printer backup file with an EXTMODE value greater than
ASCII, the EXTMODE is no longer changed to EBCDIC. Therefore, EXTMODE values
other than EBCDIC, such as LATIN1EBCDIC, can be specified for printer back up
files.

When a logical file is assigned to an existing printer backup file, the value of
INTMODE takes on the EXTMODE value. Translation occurs if the TRANSLATE
attribute has a value of FORCESOFT. When the logical file is no longer assigned to
the physical file, INTMODE is restored to its original, pre-assignment value.

Using Printer Files in a Program

5–4 8600 0056–408

• If you are creating a printer backup file, you can specify the specific backup device by
using the BACKUPKIND attribute. You can choose among DISK, PACK, or TAPE.
This value can also be changed by using the SB (Substitute Backup) system
command or the LPBDONLY option of the OP (Options) system command. Refer to
the Print System Guide for information about using these commands.

Note: If you use the TAPE option and an OPEN or CLOSE operation causes a
volume switch to occur, the open or close errors could have values that are not
normally associated with an OPEN or CLOSE operation.

• You can also create a printer backup file as a delimited character-stream disk file.
Backup files in delimited form can be transferred to other operating systems with a
mechanism such as FTP.

To create a delimited backup file, set the FILESTRUCTURE attribute to STREAM. The
resulting disk file is created with the following attributes and values:

− FILECLASS = CHARACTERSTREAM

− EXTDELIMITER = CRCC

− FILEKIND = PRINTFILE

Although the printer backup disk file is a character-stream file, there is no change to
the structure of the logical printer file. The file continues to be record-oriented and
each block represents one print record. The MCP inserts the appropriate delimiters at
the end of each block based upon the carriage control specified when writing the file:

− Double spacing is represented in the printer backup file by an additional carriage
return-line feed pair after the delimiters at the end of the first print line.

− A channel skip is represented by a carriage return-form feed pair, regardless of
the destination channel.

Unlike a file with a FILEKIND attribute value of BACKUPPRINTER, there is no
embedded binary control information. Software translation is allowed and the
delimiters are inserted in the EXTMODE attribute character set. The EXTMODE value
must correspond to a character set that is EBCDIC-based, ASCII-based, UCS2, or
UCSNT. Refer to Appendix H, “Structure of Backup Files,” for more information
about printer backup files.

• If you want to ensure that your backup file cannot be removed or replaced and that
the name of the file cannot be changed, set the LOCKEDFILE file attribute to TRUE.
For a disk backup file, if the value is set to TRUE, the permanent file cannot be
purged unless you or a privileged user changes the LOCKEDFILE value to FALSE. For
a tape backup file, if the value is set to TRUE, the file cannot be purged
programmatically, but can be purged if an operator confirms that the purge request is
appropriate.

• If you are creating a printer backup file, you can use the file attributes AREAS,
AREASIZE, AREALENGTH, and FLEXIBLE. The values specified affect the printer
backup file created on disk and are interpreted in the context of the attributes of that
disk file. When calculating the size of an area, the MAXRECSIZE and BLOCKSIZE of
the resulting printer backup disk file are used. The default value of AREAS for a
printer backup file is 15 and the default value of AREASIZE is 150. Additional areas
can be added unless the value of the FLEXIBLE attribute is FALSE. Refer to

 Using Printer Files in a Program

8600 0056–408 5–5

Appendix H, “Structure of Backup Files,” for more information about printer backup
files.

• You can reduce the necessary I/O time to write rules by specifying that
FILESTRUCTURE = BLOCKED. Then the structure file is not different, but buffers
are greater than the 300-word block size. You can modify the default value of the
BUFFERSIZE file attribute if you set the BUFFERGOAL factor. Otherwise, the
system default value is used.

• If you assigned a value of CLOSE, EOJ, EOT, or FILEOPEN to the
PRINTDISPOSITION attribute and assigned a value of DISK or PACK to the
BACKUPKIND attribute, you can indicate to the print subsystem that you want to
print only a portion of the file by assigning a value to the PRINTPARTIAL attribute. If
the value of PRINTDISPOSITION is FILEOPEN, then PRINTPARTIAL is restricted to
only COLUMN selection phrases. The following example shows how to request that
only the text located in columns 1 through 72 on lines 100 through 900 be printed
instead of the entire file:

PRINT F1 (PRINTPARTIAL="COLUMN 1-72 SEQUENCE 100-900")

• If you are using certain data-comm-connected printers configured to use standard
device transforms supplied by Unisys, you can exercise considerable control over the
appearance of printed output by using the PAGECOMP attribute. Refer to the Print
System Guide for information about the many options of the PAGECOMP attribute.

• If you want the file to be printed on a printer with certain characteristics, assign the
appropriate mnemonic to the PRINTERKIND file attribute. Refer to the File Attributes
Reference Manual for the possible mnemonics that you can assign.

• If you want to secure the backup file, perform the following tasks for any disk backup
file. These tasks can also be performed for any tape backup file if you use the
Security Accountability Facility on your system and the SECOPT TAPECHECK form
of the SECOPT (Security Options) system command is set to AUTOMATIC.

− Specify the owner of the tape volume by using the FAMILYOWNER attribute.
Refer to the Security Administration Guide for more information about security.

− If you want to restrict access to the file, assign one of the following values to the
SECURITYTYPE attribute. All privileged users have access to all files regardless
of the SECURITYTYPE value.

Mnemonic Values Meaning for a Nonprivileged User

PRIVATE The owner can access the file.

PUBLIC Access by a nonowner is controlled by the SECURITYUSE
attribute.

GUARDED Access by nonowner users is controlled by a guard file.

CONTROLLED Access by all users including the owner is controlled by a
guard file. This value is not supported by Host Services
logical I/O.

Using Printer Files in a Program

5–6 8600 0056–408

− If you chose the CONTROLLED or GUARDED values, specify the name of the
guard file by using the SECURITYGUARD attribute.

− To specify how a physical file that is protected with a SECURITYTYPE value of
PUBLIC can be accessed by nonprivileged users using nonprivileged programs,
assign one of the following values to the SECURITYUSE attribute.

Mnemonic Values Meaning

IN Specifies read-only access to source files, data files, and code
files. Also, a code file can be executed.

IO Specifies read and write access to source files, data files, and
code files. Also, code files can be executed. The default value
of SECURITYUSE is IO for all disk files.

OUT Specifies write-only access to source files, data files, and
code files. Also, code files can be executed.

SECURED Specifies that nonprivileged users do not have access to
source or data files, but a code file can be executed. For
example, a nonprivileged user cannot copy a secured code
file, but can still execute it.

• If the backup file is to go to tape, and if you want to be able to read any data that is
written to the tape, even if the file creation process is interrupted by a halt/load,
assign the PROTECTION attribute a value of PROTECTED.

• If the backup file is to go to a disk, it is entered into the disk directory immediately
after the file is opened. You can also protect that file with the PROTECTION attribute
set to PROTECTED.

When the PROTECTION attribute is set to PROTECTED, the file is entered into the
disk directory immediately after the file is opened, and special action is taken to
ensure that the correct end-of-file pointer is maintained across a system failure. If the
FILESTRUCTURE attribute value of the file is STREAM, the end-of-file marker is
placed at the end of the disk sector that was last written, even though the end of
that sector might not be the end of a record.

If the PRINTDISPOSITION attribute value of the file is FILEOPEN, the file is always
PROTECTED.

• If you chose TAPE as the backup medium, consider the following tasks:

− If you want the backup file to go to a tape with a specific serial number, use the
SERIALNO attribute.

− If you want the backup file to go to a tape with a specific scratchpool
assignment, use the SCRATCHPOOL file attribute. Refer to the File Attributes
Reference Manual for more information on the SCRATCHPOOL file attribute.

If you have any of the following types of tape drives on your system (Table 5–1), and the
file you are creating must be written to one of these tapes drives, use the appropriate
DENSITY attribute value to designate the particular tape drive. If the I/O subsystem
cannot find a tape unit that supports that density, it places the user task in the waiting
state and issues a request for a tape unit that does support that density.

 Using Printer Files in a Program

8600 0056–408 5–7

Table 5–1. Tape Drive Density Values

Mnemonic
Value

Integer
Value

Media Type

Tape Subsystems

BPI800 0 9-track NRZ reel-to-reel
tape

2145, 4125

BPI1600 3 9-track PE reel-to-reel
tape

2145, 4125

BPI6250 4 9-track GCR reel-to-reel
tape

2145, 4125

BPI38000 5 18-track half-inch
cartridge tape and 4mm
cartridge tape

RM5073, HS4400

Note: The HS4400
4mm tape emulates a
half-inch cartridge tape,
thereby inheriting the
density of the RM5073
tape.

18-track tapes are
read-only on
subsystems supporting
36-track HIC media.

BPI1250 6 Quarter-inch cartridge
tape

QIC, QIC1000

BPI11000 7 8mm cartridge tape HS8500 (Exabyte)

FMT36TRK 8 36-track half-inch
cartridge tape

CTS5136, OST5136,
CTS5236, and
CLU9710-36T

FMTDDS2 9 DDS–2 cartridge tape ALP430 tape

FMTQIC1000 10 Quarter-inch cartridge
tape

QIC1000

FMTDDS3 11 DDS–3 cartridge tape ALP430 tape

FMTDLT3 13 Digital linear tape–DLTIII CLU9710-DLT4 and
DLT7

Note: Tapes are read-
only on these
subsystems.

FMTDLT6 14 Digital linear tape–DLTIII CLU9710-DLT4 and
DLT7

Note: Tapes are read-
only on these
subsystems.

FMTDLT10 15 Digital linear tapes–DLTIII
or DLTIIIxt

CLU9710-DLT4, DLT7,
and DLT8

Using Printer Files in a Program

5–8 8600 0056–408

Table 5–1. Tape Drive Density Values

Mnemonic
Value

Integer
Value

Media Type

Tape Subsystems

FMTDLT20 16 Digital linear tape–DLTIV CLU9710-DLT4, DLT7,
and DLT8

FMTDLT35 17 Digital linear tape–DLTIV CLU9710-DLT7 and
DLT8

FMTST9840 18 High-capacity cartridge
tape

CTS9840

FMTDDS 19 DDS–1 cartridge tape ALP430 tape

FMTAIT 21 Advanced intelligent tape ALP920 tape

FMTAIT2 22 Advanced intelligent tape ALP920 tape

FMTDLT40 23 Digital linear tape–DLTIV CLU9710-DLT8

Controlling the Printing of Lines and Pages
You can handle carriage control in two ways. The most common method is to use the
syntax of the programming language. Another method is to use the information in the
first character of the record. The CARRIAGECONTROL attribute allows you to specify
what information is contained in the first character of the record.

• The CTLASA option indicates that the first character contains a value that specifies a
given action. That action takes place before the line is printed.

• The CTL360 option indicates that the first character controls the paper motion by
using the various fields in the character itself.

Refer to the CARRIAGECONTROL attribute in the File Attributes Reference Manual for
the possible values.

 Using Printer Files in a Program

8600 0056–408 5–9

If you are using COBOL, Report Writer gives you a great amount of printing flexibility
without requiring a great amount of programming. However, if you need more control or
are programming in ALGOL, the I/O subsystem allows you to set the page size and then
keeps track of the lines that have been printed and the number of the current page. After
the last line on the page is printed, the end-of-page indicator is returned, and if you check
for that condition, you can code end-of-page routines to handle new page headings. To
use this capability, do the following:

• Set the PAGESIZE attribute to the number of lines that you want on a page.

• When you use a WRITE statement to print a line, check the WRITE result for the
end-of-page condition. Each time the end-of-page result is returned, the value of the
LINENUM attribute is returned to 1, and the PAGE attribute value is incremented by
1. If the end-of-page result has not been reached, LINENUM is incremented by 1.

The following table gives you information about how the LINE, SKIP, and SPACE options
of the WRITE statement affect the values of the LINENUM and PAGESIZE attributes.

Option Effect

LINE The action taken depends on the values of the arithmetic expression,
the PAGESIZE and LINENUM values, and the language being used.
When ALGOL is used and the WRITEAFTER compiler control option is
FALSE, and the LINE option is used, the usual action of spacing after
printing is temporarily suspended, and the printer is spaced forward
before printing to the logical line specified by the arithmetic expression.

An end-of-page exception is returned when the PAGESIZE attribute has
a value of 0 (zero)—in other words, when logical page accounting is not
being done. Otherwise, when the value of the arithmetic expression is
less than or equal to the PAGESIZE value and greater than or equal to
the LINENUM value, the page is spaced forward to the logical line
number of the arithmetic expression, and LINENUM is set to the value
of the arithmetic expression. If the value of the arithmetic expression is
less than the LINENUM value, printing begins on the next logical page;
the PAGE attribute is incremented by 1, but no skip to channel 1 is
performed. The page is spaced forward to the logical line number of the
arithmetic expression, and the LINENUM value is set to the value of the
arithmetic expression. Printing is done either before or after spacing,
depending on the value or values of the appropriate parameter or
parameters in the language.

When the arithmetic expression is less than 1, the LINENUM value is
set to 1, the PAGE value is incremented by 1, the line is printed without
spacing, and an end-of-page exception is returned to the program. A
similar action occurs if the arithmetic expression is greater than the
PAGESIZE value.

SKIP The action is equivalent to a skip-to-channel operation on the carriage
control tape. A skip-to-channel operation can affect the LINENUM value.
A skip to channel 1 changes the LINENUM value to 1 after the skip. A
skip to any other channel does not update the LINENUM value;
therefore, after such a skip, the LINENUM value might not indicate the
actual position on the page. The PAGE value is not incremented by skip-
to-channel actions.

Using Printer Files in a Program

5–10 8600 0056–408

Option Effect

SPACE When the number of lines specified is greater than or equal to 0, the
page is spaced forward the specified number of lines. If the number of
lines specified is less than 0, the page is spaced forward 1 line and an
end-of-page result is returned to the program. The LINENUM value is
incremented by the number of lines spaced, and if the sum is greater
than or equal to PAGESIZE value, the LINENUM value is set to 1, the
PAGE value is incremented by 1, and an end-of-page result is returned
to the program.

When you want to skip to another page before the page is full, change the LINENUM
value to a value equal to or greater than the PAGESIZE attribute. This causes the next
WRITE operation to return an end-of-page result, sets the LINENUM value to 1, and
increments the PAGE value by 1.

If you want to add more lines to a page, subtract the number of extra lines wanted from
the LINENUM value. Do not change the value of PAGESIZE.

Direct Printing through a Transparent Printer (XLP)
DLP

Direct printing is used when you want data from your program delivered to the printing
device rather than being spooled (usually to disk) by the MCP. The Print System normally
is responsible for details of device handling. However, when the print system is
bypassed, the programmer must take into account any idiosyncrasies of the device and
its connection.

Printers generally expect ASCII data, and MCP based programs generally emit EBCDIC
data. Because transparent printer (XLP) DLPs do not provide character translation, you
must ensure that the program translates all data to ASCII characters before sending the
data to the printer.

If your system has an OS/2 or UNIX environment and if the SPOOLER option is enabled
on the printer, the program must send a data block of ESC FF at the completion of
printing. The ESC FF command releases the print file and makes it possible for the OS/2
or UNIX environment to print the file on an actual printer.

8600 0056–408 6–1

Section 6
Using Remote Files in a Program

The I/O subsystem supports communication between a remote device and a program as
long as the remote device is attached to the system through an data communications
processor in the MCP environment.

Such communication is possible because your program regards the data being passed
between the remote device and your program as a file. Remote file communication is
comparable to the communication between a local peripheral device and your program.
Remote files have essentially the same degree of device independence as other
peripheral files.

Remote files work in conjunction with the message control system (MCS) that controls
the remote device station. Possible MCSs in the MCP environment are

• Command and Edit (CANDE)

• Unisys e-@ction Transaction Server

• Other MCS programs that have been installed at your site

The MCS is responsible for logging the user on, handling error situations, assigning the
station to logical files, and performing other functions required or desired by the MCS
designers.

When a program opens a remote file, the MCS might participate in I/O. By participating,
the MCS processes each I/O message and can selectively route each message to or
from particular programs, files in programs, or particular stations. The MCS and the
programs must use the same protocol so that the MCS can perform message switching
and the program can identify source and destination stations. Without MCS participation,
the I/O subsystem uses remote files to route the messages directly between the data
communications subsystem and a program.

To communicate with the remote devices, a list of valid stations must be maintained.
This is done through a DATACOMINFO file or through an MCS. This list of stations can
be dynamically changed by using the STATIONLIST attribute in your program, or by using
the Interactive Datacomm Configurator (IDC) or the commands of your MCS. Refer to
the IDC Operations Guide for information about using the Interactive Datacomm
Configurator.

Using Remote Files in a Program

6–2 8600 0056–408

When a family of stations is identified and the remote file is opened, a station list is
created. This station list has all the necessary information to distinguish the different
stations from each other.

When the station list is created, each station in the list is assigned a relative station
number (RSN), which serves as an index to the station list. If a station is removed from
this list, its RSN becomes invalid and points to an empty area in the station list, and the
STATIONCOUNT attribute value is decreased by 1. As a consequence, a valid RSN can
be larger than the value of the STATIONCOUNT attribute. When a station is added, it is
added to the end of the list and given an RSN one higher than the last station in the list.

Your program does not need to deal with an RSN if you always want to direct the output
to the terminal that sent the preceding input. However, if you want to change where the
output is sent, you can modify the value of the LASTSUBFILE attribute. Doing so
automatically modifies the WRITE statement to point to the station identified in the
LASTSUBFILE attribute. For file attributes that require an RSN parameter, you can use a
specific RSN number to point to the desired station.

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files.” You can identify all the file attributes
that can be used with a remote file by reviewing Table A–1. You can also find more
information about any of the mentioned attributes in File Attributes Reference Manual.

Identifying the Characteristics of a Remote File
The following tasks should be performed before opening the file:

• Specify the KIND value as REMOTE.

• Identify the structure of the file.

• Specify whether you are going to use the file for input only, output only, or both input
and output by setting the FILEUSE attribute to IN, OUT, or IO. If your remote file is
used for I/O and is opened with a WRITE statement, language permitting, set the
FILEUSE value to IO prior to the first I/O operation. You can set the value in the
program or by compile-time or run-time file equation.

• If you do not want an I/O operation to wait indefinitely, use the TIMELIMIT attribute
to specify how long, in seconds, the I/O subsystem should wait for an I/O operation
to occur. This value is used differently, depending on the I/O operation.

− When a READ operation is invoked and no input is received within the specified
number of seconds, the READ operation is terminated with a TIMELIMIT error.

− When a WRITE operation is invoked and no data can be buffered for output
within the number of seconds specified, the WRITE operation is terminated with
a TIMELIMIT error.

You can also modify the TIMELIMIT value at the time a READ or WRITE statement is
invoked if you are using ALGOL. The [TIMELIMIT <arithmetic expression>] form of
the [<record number or carriage control>] part of the I/O statement allows this
modification.

 Using Remote Files in a Program

8600 0056–408 6–3

• If you want to reduce the data communications line time, and the INTMODE and
EXTMODE attribute values have a value of EBCDIC, set the TRIMBLANKS attribute
to TRUE. The trailing blank characters or words are stripped from the outgoing
messages, but the processor time required to perform each WRITE operation
increases.

• If your program is writing to a station, and you either want the output to be held or
do not want the MCS to allow the output to be held at all, set the TANKING attribute
to one of the following values:

Mnemonic Value Meaning

ASYNC The output is tanked. When the file closes, the task can
proceed and even go to the end of the task. The output
continues to be transmitted until there is no more output.

NONE The output is not tanked.

SYNC The output is tanked. When the file closes, the task cannot
proceed until all tanked output has been transmitted.

UNSPECIFIED The MCS controls whether or not the output is tanked.

• Your program can open any number of remote files, and can specify the stations
with which these files can communicate by specifying a FILENAME file attribute
value for each remote file declared in your program. If a DATACOMINFO file name
with the same name exists in the DATACOMINFO file, the station or list of stations
is used to communicate with the specific remote file. If no DATACOMINFO file name
with the same name exists in the DATACOMINFO file, the system uses the
specified FILENAME value as the initial station name in the station list for the remote
file. Stations can be added or deleted from a station list by using the STATIONLIST
file attribute.

Note: If your program is run from CANDE or MARC, all the remote files
automatically communicate with the station that initiated the program, because
these MCSs set the STATION task attribute to the logical station number of the
station that initiated the program. If you prefer to let the FILENAME value select the
stations to be used, set the STATION task attribute to 0 (zero) before the remote
files are opened.

Using Remote Files in a Program

6–4 8600 0056–408

Opening Remote Files
When a program opens a remote file, a “FILE OPEN” message for each station in the file
is sent to the controlling MCS for the station. This message notifies the MCS that the
logical file is ready to communicate with the station. The MCS can allow, postpone, or
deny assignment of the station to the file.

• If the MCS allows assignment, the program can proceed to use the station and file,
unless the data communications subsystem overrules this assignment. A denial is
forced if the MCS did not participate, and either the station has no line assignment or
the assignment would result in more than one concurrent input-capable file for the
station.

• If the MCS postpones assignment, the file remains open and the station is not
assigned. A subsequent READ or WRITE operation causes an end-of-file action. The
field [26:10] in the result returned by the I/O operation contains the value
2 (ASSIGNMENTPOSTPONED).

• If the MCS denies assignment, which it might also do subsequent to having allowed
or postponed assignment, further READ operations — if the file is input-capable—or
WRITE operations to the station cause an end-of-file action. The field [26:10] in the
result returned by the I/O operation contains the value 1 (ASSIGNMENTDENIED).

When a program executes a READ or WRITE operation and one of the following
situations is true, an end-of-file action occurs, and the field [26:10] in the result returned
by the I/O operation contains the value 3 (ILLEGALFILEUSE).

• The program already has assigned a remote file that is input capable to the station,
and an MCS for the station is not participating in the I/O operations.

• The participating MCS indicated that an unacceptable FILEUSE value for the remote
file was used.

• The program assigned an input-capable remote file to a station that is not input
capable.

• The program assigned an output-capable remote file to a station that is not output
capable.

After the file is opened you might want to determine the following information about the
station or stations that are available for communication:

• If you are expecting more than one station to be assigned as the remote file opens,
you might want to know which stations are available and which stations are not.
Interrogate the STATIONSALLOWED attribute to determine the number of logical
stations assigned to the remote file. By comparing that value with the value you can
obtain from the STATIONCOUNT attribute, you can determine whether all the
stations are available. You can also interrogate the STATIONSDENIED attribute to
determine the number of the stations in a family that have been denied assignment
to the file by their controlling MCS.

• If, under certain conditions, your program requires a station or a set of stations to be
added to or subtracted from the remote file, use the STATIONLIST attribute. Then
interrogate the LASTSUBFILE attribute to determine the RSN of the added station.

 Using Remote Files in a Program

8600 0056–408 6–5

• If you need to know the specific name of a station or stations, you can index through
the station list by using the STATIONNAME attribute.

• If you want to know if a specific station is available for use, interrogate the
DISPOSITION attribute for the specific station.

• If the time the station was assigned is important to you, interrogate the
ASSIGNTIME value for the specific station.

• If your program needs to determine whether the station is a screen device,
interrogate the SCREEN attribute value for the specific station. A value of TRUE
indicates that the device is a screen device. Having determined that the device is a
screen device, you might want to know the number of lines for each page on the
screen and the number of characters in a logical line. Interrogate the SCREENSIZE
attribute value to determine the number of lines for each page on the screen and the
WIDTH attribute value to determine the number of characters in a logical line for the
specific station.

Reading Information from a Station
If your program reads information from a station or stations, it receives input from the
remote file in a first-in, first-out order. After a READ statement, the LASTSUBFILE
attribute contains the RSN of the station from which the input came. If you do not
change this value by modifying the LASTSUBFILE value or by using the STATION option
of the WRITE statement, the next output message is written to the same station the last
input was received from. Thus, there is no need to determine where the input came
from. A SEEK statement only changes the value of LASTSUBFILE; no information is
moved into the buffer.

Interrogate the STATE attribute to determine whether an end-of-file condition has been
encountered. A multistation remote file receives an end-of-file notification for each
station in the file. To determine which station is no longer assigned to the file after an
end-of-file notification, interrogate the LASTSUBFILE attribute. To determine the reason
for the end-of-file notification, such as the file was closed or access was denied,
interrogate the FILESTATE attribute for the specific station.

In a multistation situation, you might want to determine whether a specific station or any
station is enabled for input. If you interrogate the ENABLEINPUT attribute for the entire
remote file or for a specific subfile, you receive a value of TRUE when any file of the
remote file is capable of sending input or when a specific file is ready to send input.

To determine if a message has been queued, interrogate the INPUTEVENT attribute.
When the happened state of the INPUTEVENT value is TRUE, messages are queued.
The INPUTEVENT attribute can be useful as a parameter to a WAIT statement that waits
for more than one condition to occur.

To determine how many messages are queued, interrogate the CENSUS attribute.

In some instances, the transmission number of the last input received from a specific
station is important to your program. To determine the current number for the specific
station, use the TRANSMISSIONNO attribute. The DATACOMINFO file information for a
specific station can indicate that no transmission numbers are to be assigned by the data
communications subsystem. In such a case, a value of –1 is returned.

Using Remote Files in a Program

6–6 8600 0056–408

Writing Information to a Station
Your program can control the destination of the message in one of two ways:

• To broadcast the output to every station in the file, assign a 0 (zero) to the
LASTSUBFILE attribute. If there is only one station in the file, the result is the same
as for a WRITE operation directed to that station.

• To direct the output to a specific station in the file, identify an RSN by using the
LASTSUBFILE attribute.

In ALGOL, the LASTSUBFILE attribute can be set using the STATION <arithmetic
expression> form of the [<record number or carriage control>] part of the WRITE
statement.

Closing a Remote File
Before your program closes the remote file, it can gather some statistics about the
stations that were communicated with during the session. The following file attributes
can be interrogated to obtain statistic information:

• Interrogate the RECEPTIONS attribute to determine the number of messages
received from a specific station or from all the stations.

• Interrogate the TRANSMISSIONS attribute to determine the total number of output
messages sent to a specific station or to all the stations.

If you want to retain the current station list and its associated RSNs for use the next time
you open the remote file, close the file with an ALGOL CLOSE(<file name>,REWIND)
statement or the regular COBOL CLOSE statement.

If you want to use the station list of the system at the time you open the remote file,
close the file with a normal ALGOL CLOSE statement or a COBOL CLOSE WITH
RELEASE statement.

8600 0056–408 7–1

Section 7
Using Card Files in a Program

Data Specifications

Purpose

You can use a file whose KIND value is READER (KIND = READER) to read card images
from a data specification in a WFL job.

Explanation

A data specification in a WFL job supplies input data in the form of card images to a
particular task. The task reads from the data specification as if it were a file whose KIND
value is READER (KIND = READER). A task that attempts to read from a card reader file
will automatically read from a data specification. If there is no data specification then the
program receives a NO FILE condition. Tasks that read from other kinds of files can be
file-equated to cause them to read from a data specification instead.

Note: The default MAXRECSIZE value of a READER file is 14 words (84 characters),
but a record contains only 80 characters of valid data. Take this into consideration when
using a data specification, since a record in a file generated by CANDE with a FILEKIND
value of JOBSYMBOL (FILEKIND = JOBSYMBOL) contains data in columns 1 through
80, spaces in columns 81 and 82, and the sequence number in columns 83 through 90.
To avoid getting unwanted information, equate UNITS to CHARACTERS and set the
MAXRECSIZE value to 80 when reading the data specification.

The data images are records of EBCDIC data.

Direct I/O is not allowed for files whose KIND value is READER (KIND = READER).

Refer to “Global Data Specifications” in Section 4 or “Local Data Specifications” in
Section 5 of the WFL Reference Manual for more information.

When a task tries to open a card reader file, it searches among the data specifications
associated with that task for the first unread data specification with the correct file name
or no file name.

Using Card Files in a Program

7–2 8600 0056–408

If the local data specification cannot be located, the task searches for a global data
specification with the correct name. If no global data specification with the correct name
is located, the task receives a NO FILE condition. When a NO FILE condition occurs

• If the program called OPEN, logical I/O issues the RSVP, NO FILE <filename>(CR).

• If the program called AVAILABLE or RESIDENT, logical I/O returns an error to the
program.

Examples

The following WFL example shows the simplest use of a data specification. The program
(WALLY)OBJECT/COUNTUP reads data from a single card reader file. In this situation,
the data specification does not need to be named, and no file equations are required.

RUN (WALLY)OBJECT/COUNTUP;
DATA
 6
? % End of data

It is a good idea to give each data specification a title if more than one data specification
is being used by the task. This makes it obvious which data specification is being
substituted for which input file. The data specification should have the same title as the
input file it is replacing in the program, unless the input file has been file-equated to a
different title.

In the following WFL example, the program reads the data specification titled TERMIN1
and reads the data specification titled READDAT instead of the input file titled TERMIN2:

RUN (WALLY)OBJECT/COUNTTWO;
 FILE TERMIN1(KIND=READER);
 FILE TERMIN2(TITLE=READDAT,KIND=READER);
DATA TERMIN1
 3
 128
? % End of TERMIN1 data
DATA READDAT
 5
? % End of READDAT data

 Using Card Files in a Program

8600 0056–408 7–3

The following example shows a task that has more than one data specification. The data
specification that OPEN assigns to a file whose KIND value is READER
(KIND = READER) depends on several factors. Each time a task attempts to open a file
whose KIND value is READER (KIND = READER) the OPEN procedure

1. Searches through the data specifications for the task in the WFL job in the order they
are declared

2. Ignores any data specifications that already have been opened or read by the task

3. Ignores any data specification with a file name that does not match the file name of
the file to be opened

4. Selects the first unused data specification it encounters that does not have a file
name specified, or has a file name that matches the file name of the file to be
opened.

RUN PROG;
DATA ONE
 <card images>
?
DATA
 <card images>
?
DATA THREE
 <card images>
?

If PROG attempts to open a file that has KIND = READER and FILENAME = THREE
specified, the system assigns the second data specification (the one with no file name)
to the file.

If PROG then attempts to open a file that has KIND = READER and FILENAME = ONE
specified, the system would assign the first data specification to the file.

If PROG then attempts to open a file that has KIND = READER and FILENAME = ONE
specified, it receives a NO FILE ONE (CR) condition because the first two data
specifications have already been used and the third data specification has a file name
(THREE) which does not match the file name requested (ONE).

Using Card Files in a Program

7–4 8600 0056–408

8600 0056–408 8–1

Section 8
Using Operator Display Terminal (ODT)
Files

When you want a program to communicate directly with the ODT without using data
communications, define an ODT file. When the ODT file is opened, all input from the
ODT to the file must be preceded by the group separator (<GS> or <delta>) character
represented by the hexadecimal value 1D. To indicate that input is complete, enter
<GS>?END. Be aware that the automatic display mode (ADM) feature is suppressed on
an ODT when your program is communicating with it.

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files.” You can identify all the file attributes
that can be used with an ODT file by reviewing Table A-1. You will also find more
information about any of the mentioned attributes in the File Attributes Reference
Manual.

To use an ODT file, perform the following tasks:

1. Assign the KIND attribute a value of ODT.

2. Indicate the external recording mode by setting the EXTMODE attribute value to
EBCDIC.

3. Indicate the purpose of the file by using the FILEUSE attribute. If you choose the
OUT option, the file is assigned to any scratch ODT unit, unless the program was
initiated at an ODT. If the program was initiated at an ODT, the output is directed to
the initiating ODT if that unit is a scratch ODT unit. An ODT is considered a scratch
unit if it is not labeled. To control where the output is directed, you can set the
UNITNO attribute to the desired ODT unit number.

An ODT becomes a scratch unit when a labeled file assigned to the unit is closed, or
an operator uses the CL (Clear) system command. Refer to the System Operations
Guide for information about using the CL command.

If you choose the IN or IO option, the file is assigned to a labeled ODT. Set the
FILENAME attribute to the file name attached to the ODT. The file name is attached
to the ODT by using the LABEL (Label ODT) system command. Refer to the System
Commands Reference Manual for detailed information on the LABEL command.

4. For most uses, set the FRAMESIZE attribute value to 8 and the BLOCKSTRUCTURE
attribute value to EXTERNAL. These values define a character-oriented,
variable-length ODT file.

When a READ operation is requested, the READ operation uses the MAXRECSIZE
attribute value to determine the maximum number of characters that should be read.

Using Operator Display Terminal (ODT) Files

8–2 8600 0056–408

When the number of input characters transmitted is less than the MAXRECSIZE
value, the remaining character spaces are filled with blanks. The I/O result descriptor
size field ([47:20]) and the CURRENTRECORDLENGTH attribute value contain the
exact number of characters that were read into the buffer.

When a WRITE operation is requested, only the number of characters identified in
the WRITE statement are transferred to the ODT.

8600 0056–408 9–1

Section 9
Accessing and Creating Files Using
Distributed File Services

You can access and create files on a remote host by using

• Host Services logical I/O

• File Transfer, Access, and Management (FTAM)

If your system is running BNA, Host Services logical I/O enables programs to access and
create files on another ClearPath NX server, A Series system, or V Series system that is
running BNA. Host Services logical I/O can also be used with ClearPath NX servers and
A Series systems across an OSI network.

If your system is running OSI, FTAM allows a disk file to be accessed or created on
another OSI host.

When you access or create a file on a remote host, DSS Management determines which
service to use. When more than one service can be used, Host Services logical I/O is
always given priority over the other possible services, BNA is given priority over OSI and
FTAM, and OSI is given priority over FTAM.

WARNING

Both sending and destination hosts must have their SYSOPS
LONGFILENAMES option set (see System Commands Reference Manual,
SYSOPS command) when file transfer can involve file(s) with node names
exceeding 17 characters.

Accessing and Creating Files Using Distributed File Services

9–2 8600 0056–408

Using Host Services Logical I/O
Host Services logical I/O enables you to access and create the following files on a
remote host:

• A disk file

• A printer file

• A card reader file

• A remote file

• A tape file

To speed transmission of data between hosts, the data is compressed for all of the
preceding peripheral files, except disk files. Files that are disk files are compressed only if
one of the following FILEKIND values is specified:

ALGOLSYMBOL ESPOLSYMBOL PLISYMBOL

BASICSYMBOL FORTRANSYMBOL RPGSYMBOL

BINDERSYMBOL FORTRAN77SYMBOL SANSSYMBOL

COBOL74SYMBOL JOBSYMBOL SEQDATA

COBOL85SYMBOL JOVIALSYMBOL SFORTRANSYMBOL

CSEQDATA LCOBOLSYMBOL SORTSYMBOL

DASDLSYMBOL NDLIISYMBOL TEXTDATA

DATA NDLSYMBOL VFORTRANSYMBOL

DCALGOLSYMBOL NEWPSYMBOL XALGOLSYMBOL

DCPSYMBOL OHNESYMBOL XFORTRANSYMBOL

DMALGOLSYMBOL PASCALSYMBOL

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–3

Opening a File Using Host Services Logical I/O

Perform the following tasks, depending on the needs of your program:

1. Identify the name of the remote host where the file resides or is to be created by
using the HOSTNAME attribute. The identifier can be 1 to 17 characters long and can
contain uppercase alphanumeric characters.

2. Identify the device type of the file by using the KIND attribute.

3. If you want to determine if an open error occurred, check the results of the OPEN
statement. If the value BADHSFILERSLT (28) is returned, interrogate the ATTERR
and ATTYPE attributes to determine which attribute, if any, caused the open error.
An attribute error message is displayed whenever a value of 28 is returned. The
following message is displayed if an invalid INTMODE value was specified for a file
named F:

 ATTRIBUTE ERROR: F.INTMODE DSS DOES NOT SUPPORT THE VALUE OF
 THIS ATTRIBUTE
 DSS ABORT: FILE F AT BLUE OPEN ERROR: DSS CANT HANDLE THIS FILE

If a check of the results was not done, the following line of text would be attached to
the preceding message:

 FILE F AT BLUE OPEN ERROR: DSS CANT HANDLE THIS FILE

Examples

The following ALGOL code identifies E as the remote host where a file named THE/FILE
is stored on a disk:

 BEGIN
 FILE F(KIND=DISK,DEPENDENTSPECS=TRUE,FILENAME="THE/FILE.",
 HOSTNAME="E.");
 ARRAY A[0:12];
 LABEL EOF;
 WHILE TRUE DO
 BEGIN
 READ(F,12,A)[EOF];
 .
 .
 END;
 EOF:
 CLOSE(F);
 END.

Accessing and Creating Files Using Distributed File Services

9–4 8600 0056–408

The following ALGOL code identifies E as the remote host where a file named
OVER/THERE will be created on a disk:

 BEGIN
 FILE F(KIND=PACK,MAXRECSIZE=14,FILENAME="OVER/THERE.",
 NEWFILE=TRUE,
 HOSTNAME="E.");
 ARRAY A[0:12];
 BOOLEAN DONE;
 DO
 BEGIN
 .
 .
 WRITE(F,12,A);
 .
 .
 END
 UNTIL DONE;
 LOCK(F);
 END.

For COBOL74 programs, you can identify the HOSTNAME attribute value by using the
VALUE OF clause of the file-description entry. To dynamically change the name of the
host, use the CHANGE statement.

The following WFL job identifies remote host D as the location of the file name S/PROG
that resides on a disk:

 ?BEGIN JOB FOREIGN/COMPILE;
 COMPILE PROG COBOL;
 COBOL FILE CARD(KIND=DISK,FILENAME=S/PROG,HOSTNAME=D);
 ?END JOB

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–5

Performing I/O Using Host Services Logical I/O

Programming for any given device type is the same as programming for that device on a
local MCP environment system. However, there are some limitations because some
logical I/O features are not supported by Host Services logical I/O. Before programming
for a given device, review Table 9–25 for information about which file attributes are
supported when you are using Host Services logical I/O.

As a programmer using Host Services logical I/O, be aware that a handler task named
FILE/HANDLER/<process-hostname> is initiated by Host Services logical I/O on the file
host, the host where the file resides. This task performs all I/O subsystem functions on
the file. Messages and responses pertaining to the file include the file host name and the
mix number of the handler task when displayed at the process host, the host where the
program is running. This handler mix number is used in the AT (AT Remote Host) system
command. Refer to the System Commands Reference Manual for a description of this
command.

When both the process host and the file host are ClearPath NX servers or A Series
systems, the following restrictions exist:

• The file must use appropriate values for the KIND, INTMODE, EXTMODE, and
BLOCKSIZE attributes. Refer to the File Attributes Reference Manual for Host
Services restrictions for these file attributes.

• A program accessing or creating a file at a remote host must be running under a
usercode.

• Direct I/O is not supported.

• Double-byte (16-bit) and mixed multi-byte (mixed 8-bit and 16-bit with
FRAMESIZE = 8) character sets are not supported.

• For disk files, the FILESTRUCTURE value must be ALIGNED180 or STREAM.

• The ANYSIZEIO file attribute is not supported.

• KEYEDIO is not supported. KEYEDIOII, however, is supported if the
KIIOIIHSSUPPORT library is properly installed. Refer to the KEYEDIOII Reference
Manual for details.

• Relative I/O is not supported.

• Compilers cannot create code files on remote hosts.

• USE routines for tape labels are not supported.

• The ALGOL ERASE statement is not supported.

• Update I/O action is not supported. COBOL programs cannot specify the I-O phrase
in an OPEN statement. The value of the UPDATEFILE attribute must be FALSE.

• Buffer sharing is not supported.

• When the AREASIZE file attribute of a disk file being accessed using Host Services
Logical I/O is interrogated, the value of AREALENGTH is returned.

• Error results for WRITE statements are reported one buffer later than normal.

Accessing and Creating Files Using Distributed File Services

9–6 8600 0056–408

• A privileged status, whether from a privileged usercode or from a privileged program,
is not carried across the network. As a result, actions that are allowed on the process
host—such as creating and removing disk files stored under another usercode,
reading and copying files of another user, and invoking certain operating system
control interfaces—are not allowed on the file host.

• A BLOCKSTRUCTURE value of VARIABLE is not supported for files on a remote Host
Services-capable host. Because of this, any file you declare using the COBOL74
phrase integer-1 TO cannot be opened if the file resides on a remote Host Services-
capable host. An attempt to open such a file results in an open error. A
BLOCKSTRUCTURE value of VARIABLE2 or VARIABLEOFFSET is not supported.

• If the FILESTRUCTURE value is ALIGNED180, a BLOCKSTRUCTURE value of
EXTERNAL is supported only for unblocked files.

• Binary I/O is not supported. For example, the ALGOL statement WRITE (FILE1,*,X) is
not supported.

• Files with partial last records and files created by PLISUPPORT ISAM intrinsics are
not supported.

• Host Services logical I/O rejects requests to create nondata files such as system
files, compilers, or code files if the host where the file is to be created has the
SECOPT HOSTSRESTRICTED attribute set and the user requesting the file creation

− Is not a privileged user or security administrator

− Is not assigned an alias to a privileged user or security administrator on the
receiving host

If the user is privileged, the file created is marked as a restricted file. This designation
means that the file cannot be executed and can be copied only by a privileged user.

For information about restrictions on files, units, volumes, and hosts, refer to the
Security Administration Guide.

To create a file on a host that is not a ClearPath NX server or A Series system, you must
make sure the value of the NEWFILE attribute is TRUE. If the value of the NEWFILE
attribute is modified to FALSE, Host Services logical I/O searches for an existing file.
Note that you cannot use the FA (File Attribute) system command to change the
NEWFILE value to TRUE if the program is suspended when no file can be found.

For COBOL74 or COBOL85 programs, the compiler modifies the value of the NEWFILE
attribute appropriately on an OPEN statement, so the programmer does not have to
consider this situation.

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–7

Using FTAM
If your system is running OSI, FTAM enables a disk file to be accessed or created on
another system running OSI. The information that is presented here is concerned only
with the topic of creating or accessing a file through a user-created program. For
information about copying a file, refer to the Distributed Systems Services Operations
Guide. For information about renaming, inquiring about, or removing a file, refer to the
System Commands Reference Manual.

FTAM uses document types to specify the following:

• The coded character set that is used

• The maximum string length or maximum record length

• Whether strings or records are of fixed or variable length

• Whether boundaries of strings are to be maintained after data transfer

• The actions that are allowed

The document type you select must be supported on both host systems.

Table 9–1 identifies the four FTAM document types supported by ClearPath NX and
A Series hosts for file access and creation. Additionally, the table identifies the types of
accesses that are possible.

Table 9–1. FTAM Document Types

Document Type Description Possible Access

FTAM-1 A file that contains alphanumeric data and
control characters

Sequential

FTAM-2 A file that contains alphanumeric data and
control characters

Random or
sequential

FTAM-3 A file that contains binary data Sequential

INTAP-1 A file that contains binary data Sequential

Accessing and Creating Files Using Distributed File Services

9–8 8600 0056–408

Before programming your FTAM application, you might want to review FTAM
implementation information for the MCP environment found in “FTAM Features in the
MCP Environment” later in this section.

The following restrictions should be noted before using FTAM:

• Random I/O for FTAM-1, FTAM-3, or INTAP-1 document types is not supported.

• Direct I/O is not supported.

• Binary I/O is not supported.

• The CRUNCH option of the CLOSE statement is supported, but it is treated as if a
LOCK option is invoked.

• KEYEDIO is not supported.

• Relative I/O is not supported.

• C programs cannot access or create files on remote hosts.

• Compilers cannot create code files on remote hosts.

• Double-byte (16-bit) and mixed multi-byte (mixed 8-bit and 16-bit with
FRAMESIZE = 8) character sets are not supported.

Additionally, you should scan Table 9–25 to determine what disk attributes are supported
by FTAM.

Creating a New File on a Remote OSI Host

Before you begin writing a program, you should answer the following questions:

• What is the host name of the system where the file resides or is to be created?

• What is your valid usercode on the remote system?

• What document type do you want the file to be?

• What character set do you want the file to have?

• What value should INTMODE have?

• What I/O actions do you want performed on the file?

The following procedure gives step-by-step instructions about how to create a file on
another remote OSI host from an MCP environment system using ALGOL.

1. Specify DISK as the KIND attribute value.

2. If you do not want the system to select the file service for you, specify FTAM as the
SERVICE attribute value.

3. Specify the name of the host where the file is to be created by using the
HOSTNAME attribute.

4. Use the FILEUSE attribute to specify how the file will be used by the program.

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–9

5. Specify a file name that is appropriate for the remote host by using the FILENAME
attribute. Enclose the file name in apostrophes (' ') if the file name does not conform
to rules of the MCP environment.

6. Specify the maximum size of a record by using the MAXRECSIZE attribute. You can
optimize FTAM performance by structuring a file to have a small number of large
records, rather than a large number of small records.

7. Specify the structure of the file and the format of the records by using the
BLOCKSTRUCTURE attribute.

Note: Some systems that are not native MCP systems cannot store an FTAM-1 or
FTAM-3 file that has a BLOCKSTRUCTURE value of FIXED or VARIABLE because
they do not support the String Significance value of Fixed or Variable for FTAM-1 and
FTAM-3 files. If you must create a file on such a system, do not assign a value of
FIXED or VARIABLE to BLOCKSTRUCTURE.

The following table shows the possible values that you can use:

Document Type Possible BLOCKSTRUCTURE Value

FTAM-1 FIXED, EXTERNAL, and VARIABLE

FTAM-2 FIXED, EXTERNAL, and VARIABLE

FTAM-3 FIXED, EXTERNAL, and VARIABLE

INTAP-1 FIXED and VARIABLE

8. Specify STREAM as the FILESTRUCTURE attribute value.

9. Set the NEWFILE attribute to TRUE.

10. Indicate a valid usercode, password, and account at the remote host by using the
USERCODE attribute.

11. Assign appropriate values to the EXTMODE and INTMODE attributes. Refer to
Table 9–20 for the possible EXTMODE character set names that can be used. Note
that the usage of a character set is limited by the document type of the file.

Notes:

• If you are creating an FTAM-1 or FTAM-2 file and you want to use the ISO 8859-1
coded character set, EXTMODE must have the value ISOGENERALSTRING or
ISOGRAPHICSTRING and each record must contain the appropriate escape
sequences. This is necessary to satisfy the ISO Presentation Layer standards
that allow GeneralStrings and GraphicStrings to contain multiple character sets
and to dynamically switch character sets. Refer to Table 9–21 for possible
escape sequences.

• If you are creating an FTAM-1 or FTAM-2 file, the Universal Class parameter
values supported by the remote system must be considered when you assign
INTMODE and EXTMODE values. Some systems that are not native MCP
systems support a subset of the allowable Universal Class parameter values.

Accessing and Creating Files Using Distributed File Services

9–10 8600 0056–408

• FTAM-1 and FTAM-2 files with a universal class of IA5 String or GeneralString
can contain control characters from the ISO 646 CO set. This category includes
all characters that have hexadecimal values 00 through 1F. Most MCP
environment systems software treats these control characters as data. Many
systems that are not native MCP systems give special significance to some of
these characters when they display or print files. For example, some systems
use a carriage return (CR)/line feed (LF) pair to indicate the end of a line of text.
When a file is sent from an MCP system to a system that is not an MCP system,
the file must contain the control characters necessary for the file to be
processed correctly on that system. When an MCP system receives control
characters in a file, the characters are stored in the file as data. MCP
environment OSI FTAM does not insert or delete control characters when it
sends or receives file data.

12. If you want automatic character set translation to occur, the INTMODE and
EXTMODE values must have one of the following combinations. Any other situations
where INTMODE and EXTMODE do not match result in an open error.

INTMODE Value EXTMODE Value

EBCDIC or ASCII IA5STRING or ISOVISIBLESTRING

ISOVISIBLESTRING IA5STRING

IA5STRING ISOVISIBLESTRING

13. Specify a value for the PERMITTEDACTIONS attribute if you do not want this value
negotiated for you. Refer to Table 9–22 for possible values for this attribute.

Be aware that this attribute value can never be changed once the file is created.
Thus, if you must control this value, specify the appropriate value before the file is
opened.

14. Specify a value for the DOCUMENTTYPE attribute if you do not want this value
negotiated for you. Refer to Table 9–1 for possible values for this attribute.

Be aware that this attribute value can never be changed once the file is created.
Thus, if you must control this value, specify the appropriate value before the file is
opened.

If you do not specify a DOCUMENTTYPE attribute value, a value is selected based on
the FILEKIND and EXTMODE values of the file according to the algorithm shown in
Table 9–2, as long as the document type is supported by both hosts.

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–11

Table 9–2. Document Type Selection

EXTMODE

FILEKIND

BLOCKSTRUCTURE

Resulting
Document

Type

EBCDIC, ASCII,
IA5STRING,
ISOGENERALSTRING,
ISOVISIBLESTRING,
ISOGRAPHICSTRING

Symbolic
values

FIXED, EXTERNAL FTAM-1

EBCDIC, ASCII,
IA5STRING,
ISOGENERALSTRING,
ISOVISIBLESTRING,
ISOGRAPHICSTRING

Symbolic
values

VARIABLE FTAM-2

EBCDIC, ASCII,
IA5STRING,
ISOGENERALSTRING,
ISOVISIBLESTRING,
ISOGRAPHICSTRING

Nonsymbolic
values

FIXED, EXTERNAL,
VARIABLE

FTAM-3

SINGLE,
OCTETSTRING

Any value FIXED, EXTERNAL,
VARIABLE

FTAM-3

If you want to create an INTAP-1 file, specify INTAP1 as the DOCUMENTTYPE value.

If a remote host does not support FTAM-2 documents, an FTAM-2 file is handled as
though it were an FTAM-1 document. Some file characteristics are not retained during
this process of simplification.

Note: All files with a FILEKIND of SEQDATA, CSEQDATA, TEXTDATA, or xSYMBOL
(where xSYMBOL represents a kind of compiler symbol file, such as ALGOLSYMBOL or
NDLSYMBOL) are considered symbolic files. Symbolic files normally contain only
displayable characters

Accessing and Creating Files Using Distributed File Services

9–12 8600 0056–408

Example

The following is an example of ALGOL code that creates a new file on a FTAM remote
host:

 BEGIN
 FILE DK(KIND=DISK,
 HOSTNAME="NODE3.",
 SERVICE=FTAM,
 DOCUMENTTYPE=FTAM3,
 EXTMODE=OCTETSTRING,
 INTMODE=OCTETSTRING,
 FILEUSE=OUT,
 BLOCKSTRUCTURE=FIXED,
 FILENAME="'A:ACCOUNTS.PAY'.",
 FILESTRUCTURE=STREAM,
 NEWFILE=TRUE,
 USERCODE="'VALID'/'USER'.",
 MAXRECSIZE=30,
 FRAMESIZE=8,
 .
 .
 .

 OPEN_RESULT:=OPEN (DK,AVAILABLE);
 .
 .
 .
 BEGIN
 .
 .
 .
 IO_RESULT :=WRITE (DK,30, DBUFF);
 .
 .
 .
 END;
 LOCK (DK);
 END.

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–13

FTAM Parameters Used for Communication When You Create an FTAM-1
File

If you created an FTAM-1 file, each record was mapped to an FTAM data element.
Table 9–3 identifies the FTAM parameters that were used to transport some of the file
attribute information to the remote host.

Table 9–3. FTAM Parameters Used to Communicate Information in
FTAM-1 File Creation

FTAM Parameter and Values

File Attribute and Values in the MCP
Environment

Maximum String Length MAXRECSIZE, FRAMESIZE

 MAXRECSIZE If FRAMESIZE = 8

 MAXRECSIZE * 6 If FRAMESIZE = 48

String Significance BLOCKSTRUCTURE

 Fixed FIXED

 Variable VARIABLE

 Not Significant EXTERNAL

Universal Class EXTMODE

 GeneralString ISOGENERALSTRING

 GraphicString ISOGRAPHICSTRING

 VisibleString ISOVISIBLESTRING

 IA5String IA5STRING

Accessing and Creating Files Using Distributed File Services

9–14 8600 0056–408

FTAM Parameters Used for Communication When You Create an FTAM-2
File

If you created an FTAM-2 file, each record was mapped to an FTAM File Access Data
Unit (FADU) containing one data element. Table 9–4 identifies the FTAM parameters that
were used to transport some of the file attribute information to the remote host.

Table 9–4. FTAM Parameters Used to Communicate Information in
FTAM-2 File Creation

FTAM Parameter and Values

File Attribute and Values in the MCP
Environment

Maximum String Length MAXRECSIZE, FRAMESIZE

 MAXRECSIZE If FRAMESIZE = 8

 MAXRECSIZE * 6 If FRAMESIZE = 48

String Significance is always set to
Not Significant

BLOCKSTRUCTURE is always Variable

Universal Class EXTMODE

 GeneralString ISOGENERALSTRING

 GraphicString ISOGRAPHICSTRING

 VisibleString ISOVISIBLESTRING

 IA5String IA5STRING

FTAM Parameters Used for Communication When You Create an FTAM-3
File

If you created an FTAM-3 file, each record was mapped to an FTAM data element.
Table 9–5 identifies the FTAM parameters that were used to transport some of the file
attribute information to the remote host.

Table 9–5. FTAM Parameters Used to Communicate Information in
FTAM-3 File Creation

FTAM Parameter and Values
File Attribute and Values in the MCP

Environment

Maximum String Length MAXRECSIZE, FRAMESIZE

 MAXRECSIZE If FRAMESIZE = 8

 MAXRECSIZE * 6 If FRAMESIZE = 48

String Significance BLOCKSTRUCTURE

 Fixed FIXED

 Variable VARIABLE

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–15

Table 9–5. FTAM Parameters Used to Communicate Information in
FTAM-3 File Creation

FTAM Parameter and Values
File Attribute and Values in the MCP

Environment

 Not Significant EXTERNAL

FTAM Parameters Used for Communication When You Create an INTAP-1
File

If you created an INTAP-1 file, each record was mapped to an FTAM record. Table 9–6
identifies the FTAM parameters that were used to transport some of the file attribute
information to the remote host.

Table 9–6. FTAM Parameters Used to Communicate Information in
INTAP-1 File Creation

FTAM Parameter and Values
File Attribute and Values in the MCP

Environment

Maximum Record Length MAXRECSIZE, FRAMESIZE

 MAXRECSIZE If FRAMESIZE = 8

 MAXRECSIZE * 6 If FRAMESIZE = 48

Record Significance BLOCKSTRUCTURE

 Fixed FIXED

 Variable VARIABLE

Accessing a File on a Remote OSI Host

Before you begin writing a program, you must answer the following questions:

• What is the host name of the system where the file resides?

• What is your valid usercode on the remote system?

The following procedure gives step-by-step instructions about how to access a file on
another remote OSI host from an MCP system using ALGOL. The remote OSI host could
be another MCP system or a system that is not an MCP system.

1. Set the DEPENDENTSPECS attribute value to TRUE.

2. To ensure that the EXTMODE and INTMODE attribute values are the same. This
action eliminates the possibility of translation and sets the DEPENDENTINTMODE
attribute value to TRUE. The INTMODE value assumes the EXTMODE value.

Accessing and Creating Files Using Distributed File Services

9–16 8600 0056–408

Notes:

• If you are accessing an FTAM-1 or FTAM-2 file and the Universal Class value is
GeneralString or GraphicString, escape sequences are contained in the data and
identify the coded character set that follows. This is done to satisfy the ISO
Presentation Layer standards that allow GeneralStrings and GraphicStrings to
contain multiple coded character sets and to dynamically switch coded character
sets. Refer to Table 9–21 for possible escape sequences.

• FTAM-1 and FTAM-2 files with a universal class of IA5 String or GeneralString
can contain control characters from the ISO 646 CO set. This category includes
all characters that have hexadecimal values 00 through 1F. Most MCP systems
software treats these control characters as data. Many systems that are not
MCP systems give special significance to some of these characters when they
display or print files. For example, some systems use a carriage return (CR)/line
feed (LF) pair to indicate the end of a line of text. When a file is sent from an
MCP system to a system that is not an MCP system, the file must contain the
control characters necessary for the file to be processed correctly on that
system. When an MCP system receives control characters in a file, the
characters are stored in the file as data. MCP environment OSI FTAM does not
insert or delete control characters when it sends or receives file data.

If you want automatic character set translation to occur, the INTMODE and
EXTMODE values must have one of the following combinations. Any other situations
where INTMODE and EXTMODE do not match result in an open error.

INTMODE Value EXTMODE Value

EBCDIC or ASCII IA5STRING or ISOVISIBLESTRING

ISOVISIBLESTRING IA5STRING

IA5STRING ISOVISIBLESTRING

3. Specify DISK as the KIND attribute value.

4. If you do not want the system to select the file service for you, specify FTAM as the
SERVICE attribute value.

5. Specify the name of the host where the file is to be accessed by using the
HOSTNAME attribute.

6. Use the FILEUSE attribute to specify if the file will be used for input, output, or both.

7. Specify the file name in the format appropriate for the remote host by using the
FILENAME attribute. Enclose the name in apostrophes (' ') if the file name does not
conform to MCP environment rules.

8. Specify a valid remote host usercode, password, and account by using the
USERCODE attribute. If the usercode, password, and account are not valid, the
remote host does not allow you to access the file.

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–17

9. When an existing file with any of the document types is opened with an OPEN
ATEND, OPEN AVAILATEND, or OPEN EXTEND operation, a serial WRITE operation
adds data to the file at the end of the file.

When an existing file with a DOCUMENTTYPE value of FTAM1, FTAM3, or INTAP1
is opened with any other form of the OPEN statement, a serial WRITE operation at
the beginning of the file destroys all previous file contents.

When an existing file with a DOCUMENTTYPE value of FTAM2 is opened with any
other form of the OPEN statement, a serial WRITE operation that overwrites an
existing record results in an I/O error.

10. If a file has a DOCUMENTTYPE of FTAM1, FTAM3, or INTAP1, switching from a
READ operation to a WRITE operation is allowed only at the beginning or the end of
the file. If FTAM is unable to determine that the current record position of the file is
the first record or is beyond the last record, the program is discontinued if an attempt
is made to write to the file.

Example

The following is an example of ALGOL code that accesses a file named TEST/DATA/OUT
on an FTAM remote host named NODE3:

 BEGIN
 FILE DK(KIND=DISK,
 HOSTNAME="NODE3.",
 SERVICE=FTAM,
 DEPENDENTSPECS=TRUE,
 DEPENDENTINTMODE=TRUE,
 FILEUSE=IN,
 FILENAME ="'A:ACCOUNTS.PAY'.",
 USERCODE="'VALID'/'USER'."),
 .
 .
 .

 OPEN_RESULT :=OPEN (DK,AVAILABLE);
 .
 .
 .

 IO_RESULT :=READ (DK,REC_SIZE,DBUFF);
 .
 .
 .

 END.

Accessing and Creating Files Using Distributed File Services

9–18 8600 0056–408

FTAM Parameters Used for Communication When You Access an FTAM-1
File

When you access an FTAM-1 file, an FTAM data element is used to transport each
record to and from the remote OSI host. Table 9–7 identifies FTAM attributes and
parameters that are used to transport information about the file to and from the remote
OSI host.

Table 9–7. FTAM Parameters Used to Communicate Information in
FTAM-1 File Access

FTAM Attribute or Parameter and Values

File Attribute and Values in the MCP
Environment

Filename attribute TITLE

Document Type Name parameter DOCUMENTTYPE

Permitted Actions attribute PERMITTEDACTIONS

String Significance parameter BLOCKSTRUCTURE

 Not Significant EXTERNAL

 Variable VARIABLE

 Fixed FIXED

Universal Class parameter EXTMODE

 GeneralString ISOGENERALSTRING

 GraphicString ISOGRAPHICSTRING

 VisibleString ISOVISIBLESTRING

 IA5String IA5STRING

Maximum String Length Parameter MAXRECSIZE

 Parameter Available Maximum string length parameter
value

 Parameter Not Available 9995, if the String Significance
parameter is Variable or the Universal
Class parameter is GeneralString or
GraphicString

64000, if the String Significance
parameter is Not Significant and the
Universal Class parameter is IA5String
or VisibleString

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–19

FTAM Parameters Used for Communication When You Access an FTAM-2
File

If the file is an FTAM-2 file, an FTAM FADU containing one data element is used to
transport each record to and from the remote OSI host. Table 9–8 identifies FTAM
attributes and parameters that are used to transport information about the file to and
from the remote OSI host. The String Significance parameter always has a value of Not
Significant.

Table 9–8. FTAM Parameters Used to Communicate Information in
FTAM-2 File Access

FTAM Attribute or Parameter and Values

File Attribute and Values in the MCP
Environment

Filename attribute TITLE

Document Type Name parameter DOCUMENTTYPE

Permitted Actions attribute PERMITTEDACTIONS

String Significance parameter BLOCKSTRUCTURE

 Not Significant EXTERNAL

Universal Class parameter EXTMODE

 GeneralString ISOGENERALSTRING

 GraphicString ISOGRAPHICSTRING

 VisibleString ISOVISIBLESTRING

 IA5String IA5STRING

Maximum String Length Parameter MAXRECSIZE

 Parameter Available Maximum string length parameter
value that does not exceed 9995

 Parameter Not Available 9995

Accessing and Creating Files Using Distributed File Services

9–20 8600 0056–408

FTAM Parameters Used for Communication When You Access an FTAM-3
File

If the file is an FTAM-3 file, an FTAM data element is used to transport each record to
and from the remote OSI host. Table 9–9 identifies FTAM attributes and parameters that
are used to transport information about the file to and from the remote OSI host.

Table 9–9. FTAM Parameters Used to Communicate Information in
FTAM-3 File Access

FTAM Attribute or Parameter and Values

File Attribute and Values in the MCP
Environment

Filename attribute TITLE

Document Type Name parameter DOCUMENTTYPE

Permitted Actions attribute PERMITTEDACTIONS

String Significance parameter BLOCKSTRUCTURE

 Fixed FIXED

 Variable VARIABLE

 Not Significant EXTERNAL

Maximum String length parameter MAXRECSIZE

 Parameter available Maximum string length parameter
value

 Parameter not available 9995, if the String Significance
parameter is Variable

64000, if the String Significance
parameter is Not Significant

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–21

FTAM Parameters Used for Communication When You Access an INTAP-1
File

If the file is an INTAP-1 file, an FTAM record is used to transport each record to and from
the remote OSI host. Table 9–10 identifies FTAM attributes and parameters that are used
to transport information about the file to and from the remote OSI host.

Table 9–10. FTAM Parameters Used to Communicate Information in
INTAP-1 File Access

FTAM Attribute or Parameter and Values

File Attribute and Values in the MCP
Environment

Filename attribute TITLE

Document Type Name parameter DOCUMENTTYPE

Permitted Actions attribute PERMITTEDACTIONS

Record Significance parameter BLOCKSTRUCTURE

 Fixed FIXED

 Variable VARIABLE

Maximum Record length parameter MAXRECSIZE

 Parameter available Maximum record length parameter
value

 Parameter not available 9995, if the Record Significance
parameter is Variable Record

Creating a File on the Local System to Be Accessed through
FTAM

To create a file on the local system that will be accessed through FTAM from a remote
host, you need to first answer the following questions:

• What document type is needed?

• What character string is expected?

The following procedure identifies the steps that must be taken to create a file that can
be accessed by an FTAM remote host.

1. Assign the KIND attribute a value of DISK.

2. Before opening the file, you must assign the EXTMODE attribute one of the
following mnemonic values:

• EBCDIC

• ASCII

• IA5STRING

Accessing and Creating Files Using Distributed File Services

9–22 8600 0056–408

• ISOGENERALSTRING

• ISOGRAPHICSTRING

• ISOVISIBLESTRING

• OCTETSTRING (for FTAM-3 and INTAP-1 files)

• SINGLE (for FTAM-3 and INTAP-1 files)

Notes:

• If you are creating an FTAM-1 or FTAM-2 file and you want to use the ISO 8859-1
coded character set, EXTMODE must have the value ISOGENERALSTRING or
ISOGRAPHICSTRING and each record must contain the appropriate escape
sequences. This is necessary to satisfy the ISO Presentation Layer standards
that allow GeneralStrings and GraphicStrings to contain multiple character sets
and to dynamically switch character sets. Refer to Table 9–21 for possible
escape sequences.

• Some systems that are not MCP systems cannot access an FTAM-1 or
FTAM-2 file that has an EXTMODE value of ASCII, EBCDIC, IA5STRING,
ISOGENERALSTRING, ISOGRAPHICSTRING, or ISOVISIBLESTRING because
not all the values of the Universal Class parameter are supported. If the
EXTMODE value is ASCII, EBCDIC, or IA5STRING, and the remote system does
not support the Universal Class parameter value of IA5STRING and does support
VisibleString, you can use the DUMPALL utility to change the EXTMODE
attribute value to ISOVISIBLESTRING before the file is accessed.

• FTAM-1 and FTAM-2 files with a universal class of IA5 String or GeneralString
can contain control characters from the ISO 646 CO set. This category includes
all characters that have hexadecimal values 00 through 1F. Most MCP
environment systems software treats these control characters as data. Many
systems that are not MCP systems give special significance to some of these
characters when they display or print files. For example, some systems use a
carriage return (CR)/line feed (LF) pair to indicate the end of a line of text. When a
file is sent from an MCP system to a system that is not an MCP system, the file
must contain the control characters necessary for the file to be processed
correctly on that system. When an MCP system receives control characters in a
file, the characters are stored in the file as data. MCP environment OSI FTAM
does not insert or delete control characters when it sends or receives file data.

3. Set the DOCUMENTTYPE and PERMITTEDACTIONS attribute values for your
specific needs. If you do not set these values, the values are set to the defaults
shown in Table 9–2 when the file is opened by an FTAM user. The default values are
not stored with the file. Refer to Tables 9–1 and 9–22 for possible values for these
attributes.

If you want the file to be accessed as an INTAP-1 file, specify INTAP1 as the
DOCUMENTTYPE attribute value.

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–23

4. Assign the BLOCKSTRUCTURE attribute an appropriate value from the following
table. You can optimize FTAM performance by structuring a file to have a small
number of large records, rather than a large number of small records.

 Note: Some systems that are not MCP systems cannot access an FTAM-1 or
FTAM-3 file that has a BLOCKSTRUCTURE value of FIXED or VARIABLE, because
they do not support the String Significance value of Fixed or Variable for FTAM-1 and
FTAM-3 files. If such a system must access such a file, you can use the DUMPALL
utility to change the value of BLOCKSTRUCTURE from FIXED or VARIABLE to
EXTERNAL prior to accessing the file.

Document Type Possible BLOCKSTRUCTURE Value

FTAM-1 FIXED, EXTERNAL, and VARIABLE

FTAM-2 FIXED, EXTERNAL, and VARIABLE

FTAM-3 FIXED, EXTERNAL, and VARIABLE

INTAP-1 FIXED and VARIABLE

5. Assign the FILEORGANIZATION attribute a value of NOTRESTRICTED.

6. Assign any of the FILESTRUCTURE attribute values; ALIGNED180, BLOCKED, or
STREAM.

Note: If an FTAM user accesses the created file later and does not specify a
usercode with the file name, such as (usercode)<file name>, the MCP environment
FTAM software searches for the file in the usercode directory of the accessing user,
which might be a LOCALALIAS usercode. If this search is unsuccessful, the FTAM
software searches for the file among the files without a usercode.

Accessing and Creating Files Using Distributed File Services

9–24 8600 0056–408

How File Attribute Values Are Passed for an FTAM-1 File

If an FTAM-1 file is accessed by a remote OSI host, each record is mapped to an FTAM
data element. Table 9–11 identifies how the file attribute values in the MCP environment
are mapped to the FTAM parameters.

Table 9–11. File Attribute Values Passed When an FTAM-1 File Is
Accessed

File Attribute and Values in the MCP
Environment

FTAM Parameter and Values

MAXRECSIZE, FRAMESIZE Maximum String Length

 If FRAMESIZE = 8 MAXRECSIZE

 If FRAMESIZE = 48 MAXRECSIZE * 6

BLOCKSTRUCTURE String Significance

 FIXED Fixed

 VARIABLE Variable

 EXTERNAL Not Significant

EXTMODE Universal Class

 ISOGENERALSTRING GeneralString

 ISOGRAPHICSTRING GraphicString

 ISOVISIBLESTRING VisibleString

 IA5STRING, ASCII, EBCDIC IA5String

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–25

How File Attribute Values are Passed for an FTAM-2 File

If an FTAM-2 file is accessed by a remote OSI host, each record is mapped to an FTAM
FADU containing one data element. Table 9–12 identifies how the file attribute values in
the MCP environment are mapped to the FTAM parameters.

Table 9–12. File Attribute Values Passed When an FTAM-2 File Is
Accessed

File Attribute and Values in the MCP
Environment

FTAM Parameter and Values

MAXRECSIZE, FRAMESIZE Maximum String Length

 If FRAMESIZE = 8 MAXRECSIZE

 If FRAMESIZE = 48 MAXRECSIZE * 6

BLOCKSTRUCTURE is always variable String Significance is always Not
Significant

EXTMODE Universal Class

 ISOGENERALSTRING GeneralString

 ISOGRAPHICSTRING GraphicString

 ISOVISIBLESTRING VisibleString

 IA5STRING, ASCII, EBCDIC IA5String

How File Attribute Values are Passed for an FTAM-3 File

If an FTAM-3 file is accessed by a remote OSI host, each record is mapped to an FTAM
data element. Table 9–13 identifies how the file attribute values in the MCP environment
are mapped to the FTAM parameters.

Table 9–13. File Attribute Values Passed When an FTAM-3 File Is
Accessed

File Attribute and Values in the MCP
Environment

FTAM Parameter and Values

MAXRECSIZE, FRAMESIZE Maximum String Length

 If FRAMESIZE = 8 MAXRECSIZE

 If FRAMESIZE = 48 MAXRECSIZE * 6

BLOCKSTRUCTURE String Significance

 FIXED Fixed

 VARIABLE Variable

 EXTERNAL Not Significant

Accessing and Creating Files Using Distributed File Services

9–26 8600 0056–408

How File Attribute Values are Passed for an INTAP-1 File

If an INTAP-1 file is accessed by a remote OSI host, each record is mapped to an FTAM
record. Table 9–14 identifies how the file attribute values in the MCP environment are
mapped to the FTAM parameters.

Table 9–14. File Attribute Values Passed When an INTAP-1 File Is
Accessed

File Attribute and Values in the MCP
Environment

FTAM Parameter and Values

MAXRECSIZE, FRAMESIZE Maximum Record Length

 If FRAMESIZE = 8 MAXRECSIZE

 If FRAMESIZE = 48 MAXRECSIZE * 6

BLOCKSTRUCTURE Record Significance

 FIXED Fixed

 VARIABLE Variable

Accessing a File Created through FTAM on the Local System

You can use any programming techniques that are possible for a disk file that has a
FILESTRUCTURE attribute value of STREAM if the file was created on the local host by a
program on a remote OSI host, or copied from a remote OSI host to the local host.

Note: When FTAM is transferring a file to an MCP system or is creating a new file on
an MCP system, the file is entered in the directory at the time the file is opened, instead
of when the file is closed. As a result, if an FTAM session is aborted, that is if an operator
terminated the job or the network failed, a partial file might remain on the disk. This
behavior is necessary in order to conform to the requirements of the FTAM International
Standard.

File Attribute Values Received for an FTAM-1 File

If the file is an FTAM-1 file, a record was created from each FTAM data element.
Table 9–15 shows how the file attributes in the MCP environment obtained their current
values from the FTAM attributes and parameters sent by the remote OSI host. FTAM
document type parameters are maintained in the disk file header for future use by FTAM,
in the event the file is transferred or accessed. Additionally, the FILEORGANIZATION
attribute was set to NOTRESTRICTED, the FILESTRUCTURE attribute was set to
STREAM, and the FRAMESIZE attribute was set to 8.

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–27

Notes:

• FTAM-1 files with a universal class of IA5 String or GeneralString can contain control
characters from the ISO 646 CO set. This category includes all characters that have
hexadecimal values 00 through 1F. Most MCP environment system software treats
these special characters as data. Many non-A Series systems give special
significance to some of these characters when they display or print files. For
example, some systems use a carriage return (CR)/line feed (LF) pair to indicate the
end of a line of text. When an MCP system receives control characters in a file, they
are stored in the file as data. MCP environment OSI FTAM does not insert or delete
control characters when it receives file data.

• If the Universal Class value is GeneralString or GraphicString, escape sequences are
stored as data and identify the character set that follow. This is done to satisfy the
ISO Presentation Layer standards that allow GeneralStrings and GraphicStrings to
contain multiple character sets and to dynamically switch character sets. Refer to
Table 9–21 for possible escape sequences.

Table 9–15. File Attribute Values for an FTAM-1 File Created by a
Remote Host

File Attribute and Values in the
MCP Environment

FTAM Attribute or Parameter

TITLE Filename attribute specified by remote host
initiator

DOCUMENTTYPE Document Type Name parameter specified by
remote host initiator

PERMITTEDACTIONS Permitted Actions attribute

BLOCKSTRUCTURE Depends on the values of the String Significance
and Universal Class parameters

 EXTERNAL If String Significance is Not Significant and
Universal Class is IA5String or VisibleString

 VARIABLE If Universal Class is IA5String or VisibleString and
String Significance is Variable, or if Universal
Class is GeneralString or GraphicString

 FIXED If String Significance is Fixed and Universal class
is IA5String or VisibleString

EXTMODE Universal Class parameter

 ISOGENERALSTRING GeneralString

 ISOGRAPHICSTRING GraphicString

 ISOVISIIBLESTRING VisibleString

 IA5STRING IA5String

MAXRECSIZE

Accessing and Creating Files Using Distributed File Services

9–28 8600 0056–408

Table 9–15. File Attribute Values for an FTAM-1 File Created by a
Remote Host

File Attribute and Values in the
MCP Environment

FTAM Attribute or Parameter

 9995 If Universal Class is GeneralString or
GraphicString or if the String Significance is
Variable and the maximum string length
parameter is not available

 Maximum String Length

 parameter value

If Universal Class is IA5String or VisibleString and
the maximum string length parameter is available

 64000 If Universal Class is IA5String or VisibleString, the
String Significance is Not Significant, and the
maximum string length parameter is not available

File Attribute Values Received for an FTAM-2 File

If the file is an FTAM-2 file, a record was created from each FTAM FADU and the
boundaries between the data elements within the FADU were not maintained.
Table 9–16 shows how the file attributes in the MCP environment obtained their current
values from the FTAM attributes and parameters sent by the remote OSI host. FTAM
document type parameters are maintained in the disk file header for future use by FTAM,
in the event the file is transferred or accessed. Additionally, the FILEORGANIZATION
attribute was set to NOTRESTRICTED, the FILESTRUCTURE attribute was set to
STREAM, the BLOCKSTRUCTURE attribute was set to VARIABLE, and the FRAMESIZE
attribute was set to 8.

Notes:

• FTAM-2 files with a universal class of IA5 String or GeneralString can contain control
characters from the ISO 646 CO set. This category includes all characters that have
hexadecimal values 00 through 1F. Most MCP environment system software treats
these special characters as data. Many non- Series systems give special significance
to some of these characters when they display or print files. For example, some
systems use a carriage return (CR)/line feed (LF) pair to indicate the end of a line of
text. When an MCP system receives control characters in a file, they are stored in
the file as data. MCP environment OSI FTAM does not insert or delete control
characters when it receives file data.

• If the Universal Class value is GeneralString or GraphicString, escape sequences are
stored as data and identify the character set that follow. This is done to satisfy the
ISO Presentation Layer standards that allow GeneralStrings and GraphicStrings to
contain multiple character sets and to dynamically switch character sets. Refer to
Table 9–21 for possible escape sequences.

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–29

Table 9–16. File Attribute Values for an FTAM-2 File Created by a
Remote Host

File Attribute and Values in the MCP
Environment

FTAM Attribute or Parameter

TITLE Filename attribute specified by the remote
host initiator

DOCUMENTTYPE Document Type Name parameter specified
by the remote host initiator

PERMITTEDACTIONS Permitted Actions attribute

EXTMODE Universal Class parameter

 ISOGENERALSTRING GeneralString

 ISOGRAPHICSTRING GraphicString

 ISOVISIBLESTRING VisibleString

 IA5STRING IA5String

MAXRECSIZE

 9995

File Attribute Values Received for an FTAM-3 File

If the file is an FTAM-3 file, a record was created from each FTAM data element.
Table 9–17 shows how the MCP environment file attributes obtained their current values
from the FTAM attributes and parameters sent by the remote OSI host. FTAM document
type parameters are maintained in the disk file header for future use by FTAM, in the
event the file is transferred or accessed. Additionally, the FILEORGANIZATION attribute
was set to NOTRESTRICTED, the FILESTRUCTURE attribute was set to STREAM, the
EXTMODE attribute was set to OCTETSTRING, and the FRAMESIZE attribute was set to
8.

Table 9–17. File Attribute Values for an FTAM-3 File Created by a
Remote Host

File Attribute and Values in the
MCP Environment

FTAM Attribute or Parameter

TITLE Filename attribute specified by remote host
initiator

DOCUMENTTYPE Document Type Name parameter specified by
the remote host initiator

PERMITTEDACTIONS Permitted Actions attribute

BLOCKSTRUCTURE String Significance parameter

 FIXED Fixed

Accessing and Creating Files Using Distributed File Services

9–30 8600 0056–408

Table 9–17. File Attribute Values for an FTAM-3 File Created by a
Remote Host

 VARIABLE Variable

 EXTERNAL Not Significant

MAXRECSIZE

 9995 If the String Significance parameter is Variable
and the Maximum String Length parameter is
not available

 64000 If the String Significance parameter is Not
Significant and the Maximum String Length
parameter is not available

 Maximum String Length
parameter value

If the Maximum String Length parameter is
available

File Attribute Values Received for an INTAP-1 File

If the file is an INTAP-1 file, a record was created from each FTAM record. Table 9–18
shows how the file attributes in the MCP environment obtained their current values from
the FTAM attributes and parameters sent by the remote OSI host. FTAM document type
parameters are maintained in the disk file header for future use by FTAM, in the event
the file is transferred or accessed. Additionally, the FILEORGANIZATION attribute was
set to NOTRESTRICTED, the FILESTRUCTURE attribute was set to STREAM, the
EXTMODE attribute was set to OCTETSTRING, and the FRAMESIZE attribute was set to
8.

Table 9–18. File Attribute Values for an INTAP-1 File Created by a
Remote Host

File Attribute and Values in the
MCP Environment

FTAM Attribute or Parameter

TITLE Filename attribute specified by remote host
initiator

DOCUMENTTYPE Document Type Name parameter specified by
the remote host initiator

PERMITTEDACTIONS Permitted Actions attribute

BLOCKSTRUCTURE Record Significance parameter

 FIXED Fixed

 VARIABLE Variable

MAXRECSIZE

 9995 If the Record Significance parameter is Variable
and the Maximum Record Length parameter is
not available

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–31

Table 9–18. File Attribute Values for an INTAP-1 File Created by a
Remote Host

File Attribute and Values in the
MCP Environment

FTAM Attribute or Parameter

 64000 If the Record Significance parameter is Fixed and
the Maximum Record Length parameter is not
available

 Maximum Record Length

 parameter value

If the Maximum Record Length parameter is
available

FTAM Features in the MCP Environment

The following information summarizes some important facts about the implementation of
FTAM in the MCP environment.

Mapping File Attributes in the MCP Environment to FTAM File
Attributes

Table 9–19 lists the FTAM file attributes and their file attribute equivalents in the MCP
environment.

Table 9–19. FTAM File Attribute Equivalents

FTAM File Attribute File Attribute in the MCP Environment

Filename FILENAME/TITLE

Permitted Actions PERMITTEDACTIONS

Document Type Name parameter of
Contents Type

DOCUMENTTYPE

Storage Account Not supported

Date and Time of Creation CREATIONDATE and CREATIONTIME

Date and Time of Last Modification ALTERDATE and ALTERTIME

Date and Time of Last Read Access Not supported

Date and Time of Last Attribute
Modification

Not supported

Identity of Creator Not supported

Identity of Last Modifier Not supported

Identity of Last Reader Not supported

Identity of Last Attribute Modifier Not supported

Accessing and Creating Files Using Distributed File Services

9–32 8600 0056–408

Table 9–19. FTAM File Attribute Equivalents

FTAM File Attribute File Attribute in the MCP Environment

File Availability Supported internally

Filesize FILELENGTH

Future Filesize Not supported

Access Control Not supported

Legal Qualifications Not supported

Private Use Not supported

Identifying Coded Character Sets

Table 9–20 identifies the five coded character sets that are available, the ISO coded
character sets that can be used, the document type that can use the character set, and
whether or not escape sequences are permitted. Double-byte (16-bit) and mixed multi-
byte (mixed 8-bit and 16-bit with FRAMESIZE = 8) character sets are not supported.

In Tables 9–20 and 9–21, C0 includes the hexadecimal values 4"00" through 4"1F", G0
includes the hexadecimal values 4"21" through 4"7E", and G1 includes the hexadecimal
values 4"A0" through 4"FF".

Table 9–20. Possible Character Sets

Character Set Name

ISO Coded Character Set

Document
Type

Escape
Sequence

IA5STRING

Refer to Figure 9--2
for a description of
this character set

A string of 8-bit frames
containing the ISO646 G0
and C0 sets (Refer to
Figure 9--2 for a
description of this
character set).

FTAM-1 and
FTAM-2

Not
permitted

ISOGENERALSTRING

Refer to Figure 9--2
for a description of
this character set

A string of 8-bit frames
containing the ISO646 G0
and C0 sets, (Refer to
Figure 9--2 for a
description of this
character set) by default,
or the ISO8859-1 G0 and
G1 sets (Refer to Figure 9-
-2 for a description of this
character set).

FTAM-1 and
FTAM-2

Permitted

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–33

Table 9–20. Possible Character Sets

Character Set Name

ISO Coded Character Set

Document
Type

Escape
Sequence

ISOGRAPHICSTRING A string of 8-bit frames
containing the ISO646 G0
set, (Refer to Figure 9--2
for a description of this
character set) by default,
or the ISO8859-1 G0 and
G1 sets (Refer to Figure 9-
-2 for a description of this
character set).

FTAM-1 and
FTAM-2

Permitted

ISOVISIBLESTRING A string of 8-bit frames
containing the ISO646 G0
set (Refer to Figure 9--2
for a description of this
character set).

FTAM-1 and
FTAM-2

Not
permitted

OCTETSTRING A string of 8-bit frames
each containing any binary
value from Hex 00 to Hex
FF.

FTAM-3 and
INTAP-1

Not
permitted

Escape sequences allow a program to switch from one ISO coded character set to
another in the same record. Table 9–21 identifies the escape sequences that are used to
introduce each coded character set.

Table 9–21. Possible Escape Sequences

Coded Character Set Hex Representation of Escape Sequence

ISO 646 C0 "1B" "21" "40"

ISO 646 G0 "1B" "28" "40"

ISO 8859-1 G0 "1B" "28" "42"

ISO 8859-1 G1 "1B" "2D" "41"

Figure 9–1 presents the ISO 646 coded character set.

Accessing and Creating Files Using Distributed File Services

9–34 8600 0056–408

b7

b6

b5

b4 b3 b2 b1

11
11 1 1

1

11

1 1 1

01 0302 04 05 06 07

P

A

B

C

D

E

Q

R

S

T

U

F

G

H

I

V

W

X

Y

ZJ

K

L

M

N

O?

>

=
<

1

2

3

4

5

6

7

8

9

:

;

#

$

%

&

'

(

)

*

,

.

/

+ [

\

]

^

_

a

b

c

d

e

f
g

h

i
j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

SO

SI IS1

IS2

IS3

IS4

1

1

1

1

1

1

1

111

1 1

1 1

1 11

1 1

1

1

1 1

1

1

1

1 1

1

1

1

1

00

0

0

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

!DC1

DC2

DC3

DC4

SYNACK

ETBBEL

BS CAN

ETX

EOT

STX

SOH

NUL DLE

LF

VT

FF

ESC

C0 Set G0 Set

ENQ NAK

HT EM

0

0
0 0

0
0 0

0 0

0

0 0

0 0

0

0

0

0

0

0

0 00 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

SUB

CR

Figure 9–1. ISO 646 Coded Character Set

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–35

Figure 9–2 presents the ISO 8859-1 coded character set.

b.

b. b. b. b.

b.
b.

b.
1 11 11 111

1 1 11 1

1

11

1 1 11
1 11 11 11

1 1 1 1 1 1 1 1

01 0302 04 05 06 0700

P

A

B

C

D

E

Q

R

S

T

U

F

G

H

I

V

W

X

Y

ZJ

K

L

M

N

O?

=

1

2

3

4

5

6

7

8

9

:

;

"

#

$

%

&

'

(

)

*

, ,

. .

/

+ [

\

]

^

_

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

0

1

1

1

1

1

1

1

1 1

1 1

1 1

1

1

1

1 1

1

1

1 1

1

1

1

1 1

1

1 1

1

1

00

01

02

03

04

05

06

07

08

09

10

10

11

11

12

12

13

13

14

14

15

1508 09

2

3

!

G0 Set G1 Set

0

0

0
0

0

0

0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0 0 0 0

0
0 0

00
0 0

0

0 0

00

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

Figure 9–2. ISO 8859-1 Coded Character Set

Accessing and Creating Files Using Distributed File Services

9–36 8600 0056–408

Specifying I/O Actions with the PERMITTEDACTIONS Attribute

The PERMITTEDACTIONS attribute is used to specify the I/O actions that can be
performed in a file through FTAM. The possible I/O actions that can be specified are
listed in Table 9–22.

Table 9–22. Possible PERMITTEDACTIONS Values

Action

Valid Document
Type

PERMITTEDACTIONS
Attribute Field

Read a record. FTAM-2 [00:01]

Read an entire file. FTAM-1, FTAM-3,
and INTAP-1

[00:01]

Add records at the end of the file. FTAM-2 [01:01]

Replace the contents of the file. FTAM-1, FTAM-3,
and INTAP-1

[02:01]

Add new data at the end of the
file.

FTAM-1, FTAM-3,
and INTAP-1

[03:01]

Delete the contents of the file. All [04:01]

Interrogate the attributes. All [05:01]

Modify the attributes. All [06:01]

Delete the file. All [07:01]

Traverse the file from beginning to
end by using one of the following
record identities:

• Begin

• First

• Next

• Last

• End

FTAM-2 [08:01]

Traverse the file from end to
beginning by using one of the
following record identities:

• Begin

• First

• Previous

• Last

• End

FTAM-2 [09:01]

Traverse the file randomly by
using one of the following record
identities:

• Current

• Node number

FTAM-2 [10:01]

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–37

Controlling the Concurrency-Control Parameter Information

When your program is accessing a file on a remote system, it can control whether the
Concurrency-Control parameter of the F-Create and F-Select Application Protocol Data
Units (APDUs) are sent by specifying an EXCLUSIVE file attribute value. The
Concurrency-Control parameter of the F-Open APDU is never sent. If the program does
not specify an EXCLUSIVE value, no information is sent.

If the program specifies an EXCLUSIVE attribute, the values of the DOCUMENTTYPE,
EXCLUSIVE, and FILEUSE attributes determine the information sent in the
Concurrency-Control parameter. Table 9–23 shows what Concurrency-Control
information is sent if the EXCLUSIVE value is FALSE.

Table 9–23. Concurrency-Control Parameter Information Sent When
the EXCLUSIVE File Attribute Is FALSE

FILEUSE Value
DOCUMENTTY

PE Value

Concurrency-Control Information Sent

Not specified Not specified Read Attributes, Change Attributes, and
Delete File are set to SHARED.

IN Not specified Read is set to SHARED. Insert, Replace,
Extend, and Erase are set to NOT
REQUIRED.

OUT Not specified Erase is set to SHARED. Read is set to NOT
REQUIRED.

OUT FTAM1 or
FTAM3

Replace and Extend are set to SHARED.
Insert is set to NOT REQUIRED.

OUT FTAM2 Replace and Extend are set to NOT
REQUIRED. Insert is set to SHARED.

IO Not specified Read and Erase are set to SHARED.

IO FTAM1 or
FTAM3

Replace and Extend are set to SHARED.
Insert is set to NOT REQUIRED.

IO FTAM2 Replace and Extend are set to NOT
REQUIRED. Insert is set to SHARED.

Accessing and Creating Files Using Distributed File Services

9–38 8600 0056–408

Table 9–24 shows what Concurrency-Control information is sent if the EXCLUSIVE value
is TRUE.

Table 9–24. Concurrency-Control Parameter Information Sent When
the EXCLUSIVE File Attribute Is TRUE

FILEUSE Value
DOCUMENTTY

PE Value

Concurrency-Control Information Sent

Not specified Not specified Read Attributes, Change Attributes, and Delete
File are set to EXCLUSIVE.

IN Not specified Read is set to EXCLUSIVE. Insert, Replace,
Extend, and Erase are set to NO ACCESS.

OUT Not specified Erase is set to EXCLUSIVE. Read is set to NO
ACCESS.

OUT FTAM1 or
FTAM3

Replace and Extend are set to EXCLUSIVE.
Insert is set to NO ACCESS.

OUT FTAM2 Replace and Extend are set to NO ACCESS.
Insert is set to EXCLUSIVE.

IO Not specified Read and Erase are set to EXCLUSIVE.

IO FTAM1 or
FTAM3

Replace and Extend are set to EXCLUSIVE.
Insert is set to NO ACCESS.

IO FTAM2 Replace and Extend are set to NO ACCESS.
Insert is set to EXCLUSIVE.

When MCP environment FTAM is the responding host, all valid values of the
Concurrency-Control parameter are supported for the F-Create, F-Select, and F-Open
PDUs.

Handling Waiting When No File Is Found

When a file is not present, the initiating host waits rather than the responding host.

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–39

Handling String Parameters

The FTAM protocol contains four string parameters that require special handling when
they are received by an MCP system. This special handling ensures that the contents of
the string parameters are properly mapped to the corresponding MCP environment
attributes. The following table names the string parameters and indicates to which
attributes they are mapped.

String Parameter Attribute Used

Initiator-Identify USERCODE

Account Not used

Filestore-Password PASSWORD

Filename TITLE

Initiator-Identify, Account, and Filename are all encoded in the ISOGRAPHICSTRING
character set. Filestore-Password can be encoded by systems other than MCP systems
either as ISOGRAPHICSTRING or OCTETSTRING. The actual character set used for
ISOGRAPHICSTRING encoding is the ISO 646 coded character set.

MCP environment FTAM translates incoming ISOGRAPHICSTRING-encoded parameters
to EBCDIC. All lowercase characters that are not enclosed in quotation marks (") are
converted to uppercase characters.

If MCP environment FTAM receives a Filestore-Password string parameter encoded in
OCTETSTRING, FTAM passes the data to the MCP without translating the data or
converting the characters to uppercase characters. If the characters in the character
string are not EBCDIC, a security violation results.

MCP environment FTAM sends all four parameters as ISOGRAPHICSTRING characters.
You can prevent FTAM from changing all the characters to uppercase characters by
enclosing the characters in apostrophes (' ') or quotation marks ('' '') when you specify
the FILENAME and USERCODE attributes. If you use apostrophes, no changes are
made, and the apostrophes are stripped from the character string before the data is sent.
If you use quotation marks, no changes are made, but the quotation marks are not
stripped from the character string before the data is sent.

Accessing and Creating Files Using Distributed File Services

9–40 8600 0056–408

Identifying Supported File Attributes
Table 9–25 identifies the attributes that can be used by Host Services logical I/O and
FTAM.

Table 9–25. Host Services Logical I/O and FTAM File Attributes

Attribute Host Services FTAM

ACCESSDATE Supported Not supported

ACCESSDATEUT Supported Not supported

ACCESSTZ Supported Not supported

ADAPTABLE Supported Not supported

AFTER Supported Not supported

ALIGNFILE Supported Not supported

ALIGNMENT Supported Not supported

ALTERDATE Supported Supported

ALTERDATEUT Supported Supported

ALTERNATEGROUPS Supported Not supported

ALTERTIME Supported Supported

ALTERTIMEUT Supported Supported

ALTERTZ Supported Not supported

APPEND Supported Not supported

AREAADDRESS Not supported Not supported

AREAALLOCATED Supported Not supported

AREALENGTH Supported Not supported

AREAS Supported Not supported

AREASECTORS Supported Not supported

AREASINUSE Not supported Not supported

AREASIZE Restricted usage Not supported

ATTERR Supported Supported

ATTMODIFYDATE Supported Not supported

ATTMODIFYDATEUT Supported Not supported

ATTMODIFYTIME Supported Not supported

ATTMODIFYTIMEUT Supported Not supported

ATTMODIFYTZ Supported Not supported

ATTVALUE Supported Supported

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–41

Table 9–25. Host Services Logical I/O and FTAM File Attributes

Attribute Host Services FTAM

ATTYPE Not supported Supported

AUTOUNLOAD Supported Not supported

AVAILABLE Supported Supported

BACKUPDATE Supported Not supported

BACKUPDATEUT Supported Not supported

BACKUPKIND Supported Not supported

BACKUPTIME Supported Not supported

BACKUPTIMEUT Supported Not supported

BACKUPTZ Supported Not supported

BLOCK Supported Not supported

BLOCKSIZE Restricted values Not supported

BLOCKSTRUCTURE Restricted values Restricted values

BUFFERS Supported Not supported

BUFFERSIZE Supported Not supported

CARRIAGECONTROL Supported Not supported

CCSVERSION Supported Not supported

CENSUS Supported Not supported

CHECKPOINT Supported Not supported

CLEARAREAS Supported Not supported

COMPRESSING Supported Not supported

COMPRESSIONCONTROL Supported Not supported

COMPRESSIONREQUESTED Supported Not supported

COPYDESTDATE Supported Not supported

COPYDESTDATEUT Supported Not supported

COPYDESTTIME Supported Not supported

COPYDESTTIMEUT Supported Not supported

COPYDESTTZ Supported Not supported

COPYSOURCEDATE Supported Not supported

COPYSOURCEDATEUT Supported Not supported

COPYSOURCETIME Supported Not supported

COPYSOURCETIMEUT Supported Not supported

COPYSOURCETZ Supported Not supported

Accessing and Creating Files Using Distributed File Services

9–42 8600 0056–408

Table 9–25. Host Services Logical I/O and FTAM File Attributes

Attribute Host Services FTAM

CREATEPASSWORD Not supported Supported

CREATIONDATE Supported Supported

CREATIONDATEUT Supported Supported

CREATIONTIME Supported Supported

CREATIONTIMEUT Supported Supported

CREATIONTZ Supported Not supported

CRUNCHED Supported Not supported

CURRENTBLOCKLENGTH Supported Not supported

CURRENTRECORDLENGTH Supported Supported

CYCLE Supported Not supported

DENSITY Supported Not supported

DEPENDENTINTMODE Supported Supported

DEPENDENTSPECS Supported Supported

DIRECTION Supported Not supported

DISPOSITION Supported Not supported

DOCUMENTTYPE Supported Supported

DUMMYFILE Supported Not supported

ESTIMATEDRECORDS Supported Not supported

EXCLUSIVE Not supported Supported

EXECUTEDATE Supported Not supported

EXECUTEDATEUT Supported Not supported

EXECUTETIME Supported Not supported

EXECUTETIMEUT Supported Not supported

EXECUTETZ Supported Not supported

EXTDELIMITER Supported Not supported

EXTMODE Restricted values Restricted values

FAMILYINDEX Supported Not supported

FAMILYNAME Supported Not supported

FAMILYOWNER Supported Not supported

FILECLASS Supported Not supported

FILEEQUATED Supported Supported

FILEKIND Restricted values Restricted values

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–43

Table 9–25. Host Services Logical I/O and FTAM File Attributes

Attribute Host Services FTAM

FILELENGTH Not supported Supported

FILENAME Supported Supported

FILEORGANIZATION Restricted values Restricted values

FILESECTION Supported Not supported

FILESTATE Supported Supported

FILESTRUCTURE Restricted values Restricted values

FILETYPE Restricted values Restricted values

FILEUSE Supported Supported

FLEXIBLE Supported Not supported

FORMID Supported Not supported

FRAMESIZE Restricted values Restricted values

GENERATION Supported Not supported

GROUP Supported Not supported

HOSTNAME Supported Supported

INPUTTABLE Supported Not supported

INTERACTIVEFILE Supported Not supported

INTMODE Restricted values Restricted values

INTNAME Supported Supported

IOHFUNCTIONNNAME Not supported Not supported

IOHINTERFACENAME Not supported Not supported

IOHLIBACCESS Not supported Not supported

IOHLIBPARAMETER Not supported Not supported

IOHPREFIX Not supported Not supported

IOHSTRING Not supported Not supported

IOHTITLE Not supported Not supported

KERBEROSACCESS Not supported Not supported

KIND Restricted values Restricted values

LABEL Supported Not supported

LABELKIND Supported Not supported

LASTACCESSIBLEAREA Supported Not supported

LASTRECORD Supported Not supported

LASTSUBFILE Supported Not supported

Accessing and Creating Files Using Distributed File Services

9–44 8600 0056–408

Table 9–25. Host Services Logical I/O and FTAM File Attributes

Attribute Host Services FTAM

LFILENAME Supported Supported

LICENSEKEY Restricted usage/value Not supported

LINENUM Supported Not supported

LOCATECAPABLE Supported Not supported

LOCKEDFILE Supported Not supported

LTITLE Supported Restricted values

MAXRECSIZE Restricted values Restricted values

MINRECSIZE Supported Supported

MYUSE Restricted usage Supported

NEWFILE Supported Supported

NEXTRECORD Supported Not supported

ODDBLOCKSIZE Not supported Not supported

OFFSITE Not supported Not supported

OFNOTIFICATION Supported Supported

OPEN Supported Supported

OPTIONAL Supported Supported

OUTPUTTABLE Supported Not supported

OVERRIDEEXTMODE Supported Not supported

PAGE Supported Not supported

PAGECOMP Supported Not supported

PAGESIZE Restricted usage Not supported

PARITY Supported Not supported

PATHNAME Supported Not supported

PERMITTEDACTIONS Supported Supported

PRINTDISPOSITION Supported Not supported

PRINTERBACKUPDATA Not supported Not supported

PRINTERKIND Supported Not supported

PRINTPARTIAL Supported Not supported

PRINTREQUEST Supported Not supported

PRODUCT Supported Not supported

PROTECTION Restricted usage Not supported

READDATE Supported Not supported

 Accessing and Creating Files Using Distributed File Services

8600 0056–408 9–45

Table 9–25. Host Services Logical I/O and FTAM File Attributes

Attribute Host Services FTAM

READDATEUT Supported Not supported

READREVERSECAPABLE Supported Not supported

READTIME Supported Not supported

READTIMEUT Supported Not supported

READTZ Supported Not supported

REDIRECTION Not supported Not supported

REINITIALIZE Supported Supported

RELEASEID Supported Not supported

RESTRICTED Supported Not supported

RESULTLIST Supported Supported

SAVEFACTOR Supported Not supported

SAVEPRINTFILE Not supported Not supported

SCRATCHPOOL Supported Not supported

SCREEN Supported Not supported

SCREENSIZE Supported Not supported

SEARCHRULE Supported Not supported

SECTORSIZE Supported Not supported

SECURITYADMIN Not supported Not supported

SECURITYGUARD Supported Not supported

SECURITYTYPE Restricted values Not supported

SECURITYUSE Supported Not supported

SENSITIVEDATA Supported Not supported

SERIALNO Restricted usage Not supported

SERVICE Supported Supported

SINGLEUNIT Supported Not supported

SIZEVISIBLE Not supported Supported

STATE Restricted values Supported

STATIONCOUNT Supported Not supported

STATIONLIST Supported Not supported

STATIONNAME Supported Not supported

STATIONSALLOWED Supported Not supported

STATIONSDENIED Supported Not supported

Accessing and Creating Files Using Distributed File Services

9–46 8600 0056–408

Table 9–25. Host Services Logical I/O and FTAM File Attributes

Attribute Host Services FTAM

TAPEREELRECORD Supported Not supported

TIMELIMIT Restricted values Not supported

TITLE Supported Restricted use

TOTALSECTORS Supported Not supported

TRAINID Supported Not supported

TRANSFORM Supported Not supported

TRANSLATE Restricted values Not supported

TRANSLATING Supported Not supported

TRANSMISSIONNO Supported Not supported

UNIQUETOKEN Supported Not supported

UNITS Restricted usage Supported

UPDATEFILE Restricted values Not supported

USECATALOG Supported Not supported

USEDATE Supported Not supported

USERCODE Not supported Supported

VERSION Supported Not supported

WARNINGS Supported Not supported

WIDTH Supported Not supported

YOURHOST Supported Supported

8600 0056–408 10–1

Section 10
Using Direct I/O Files

Direct I/O allows your program to do the following while preserving the integrity of the
operating system:

• Control the physical I/O activities, such as when a READ or WRITE operation actually
starts and stops.

• Handle I/O operations in an asynchronous manner.

• Handle your own error handling.

• Access all of the disk sectors that are assigned to the file if the DIOFILESTRUCTURE
value is SECTORSTREAM.

To accomplish this control, your program provides the I/O buffer in the form of a direct
array. Any desired mapping of the data in a buffer into records must be performed by the
program. Since the logical I/O function of the operating system provides minimal
intervention, you, the programmer, must consider the behavior and limitations of the
individual device with which your program is interacting.

For direct I/O operations, as for I/O operations in general, the file variable is protected by
the system. However, because you manage the direct arrays used as buffers in direct
I/O operations, you should avoid attempting multiple, simultaneous use of the direct
array in your program.

The following restrictions apply to direct I/O files:

• You cannot use direct I/O with port files.

• You cannot request translation.

• You cannot perform any WRITE operations if any of the following conditions exist:

− The file has been crunched and the logical BLOCKSIZE does not equal the
permanent BLOCKSIZE.

− The file is a copy of a duplicated file.

− The file is a code file and your program does not have a FILEKIND value of
COMPILERCODEFILE.

Using Direct I/O Files

10–2 8600 0056–408

Defining the Characteristics of a Direct I/O File
The following tasks need to be performed before a READ or WRITE statement is invoked
and in a language that supports direct I/O:

• Identify the name of the direct file with the FILENAME attribute.

• Ensure that the INTMODE and EXTMODE values are equal because translating is not
supported for direct I/O files.

• If you are defining a disk file and you set the BLOCKSTRUCTURE value to FIXED or
let it default to that value, you must specify the MAXRECSIZE value. The
MAXRECSIZE value is used to determine the logical length of the records.

If you choose any other BLOCKSTRUCTURE value for a disk file, you do not need to
specify a MAXRECSIZE value.

• Specify the FRAMESIZE value of the direct file, unless the file you are defining is a
disk file. In that case, the FRAMESIZE value is automatically set to 8 by the I/O
subsystem.

• If the file is a disk file, set the DIOFILESTRUCTURE value to indicate the
FILESTRUCTURE attribute values the program can deal with and the way the
program intends to access the file. Additionally, the value determines the semantics
of the READ and WRITE operations on the file. This attribute value cannot be
changed by file equation or a FA (File Attribute) system command.

Mnemonic Value Meaning

ALIGNED180, BLOCKED,
and STREAM

The program is capable of handling only files with a
matching FILESTRUCTURE value. An open error occurs
if an attempt is made to open an existing file with a
FILESTRUCTURE value that does not match the
DIOFILESTRUCTURE value. The value of the
DEPENDENTSPECS attribute has no effect on this
check.

DEPENDENT The program is capable of handling files with any
FILESTRUCTURE value and allowed to open an existing
file with any FILESTRUCTURE value, subject to the
normal rules for opening files. Such a program often
specifies the DEPENDENTSPECS value as TRUE, but
that specification is not required. In any case, the
FILESTRUCTURE value is changed to the
FILESTRUCTURE value of the permanent file. The
FILESTRUCTURE value governs the semantics of READ
and WRITE operations.

 Using Direct I/O Files

8600 0056–408 10–3

Mnemonic Value Meaning

SECTORSTREAM The program requests sector-oriented access to the file,
regardless of the FILESTRUCTURE value of the physical
file. The program can open an existing file with any
FILESTRUCTURE value. The DEPENDENTSPECS
attribute must have a value of TRUE. Regardless of the
FILESTRUCTURE value of the physical file, the
semantics of the READ and WRITE operations are the
same as those of a direct I/O file with a
FILESTRUCTURE value of STREAM, except that the
entire last sector of an area is visible to the program
when the data is being read.

• Specify the BLOCKSIZE value of the direct file. The following are value restrictions
for peripheral types:

Peripheral Value

Card reader Value cannot be larger than the card.

Printer Value cannot exceed the size of a print line.

Tape Value cannot be less than 6 words.

• Create a direct array that matches the FRAMESIZE value and has enough space to
contain a block.

• If you want to allow the direct array to be overlaid, set the OVERLAYABLE direct I/O
buffer attribute to TRUE.

Reading to and Writing from a Direct Array Buffer
The following tasks need to be accomplished when you are reading to or writing from a
direct array buffer:

• Invoke the I/O operation with an I/O statement that has one of the following
syntaxes:

 READ (<file name>,<arithmetic expression>,<direct array name>)

 WRITE (<file name>,<arithmetic expression>,<direct array name>)

You can also associate an event with the I/O operation.

For files that have a FILESTRUCTURE value of ALIGNED180 and all nondisk files, the
arithmetic expression must be constructed so that bits [15:16]contain the number of
full words to be transferred and bits [19:3] contain the number of additional
characters to be transferred. The character count is actually a physical frame count;
the frame size is usually eight bits but can be six bits for some devices on some
systems. The physical frame size is set by default by the operating system. In some

Using Direct I/O Files

10–4 8600 0056–408

cases, you can modify the physical frame size through the IOFRAMESIZE bit, [41:1],
in the direct buffer attribute I/O control word (IOCW).

The frame count can range from 0 (zero) through 5 for 8-bit frames, and from 0
through 7 for 6-bit frames; 0 is normally used in word-mode files. The I/O length is
always specified in the number of 48-bit words and the number of additional physical
frames, regardless of the values of the EXTMODE, FRAMESIZE or UNITS, and
INTMODE attributes.

If the file has a FILESTRUCTURE value of STREAM or BLOCKED, the arithmetic
expression is the number of FRAMESIZE units of data that are to be transferred.

Some peripheral controls require frames to be transmitted in pairs; attempts to
transmit an odd number of frames can cause a descriptor error.

When performing direct I/O along with the SPACE operation, the spacing limitation of
the device overrides any user-specified arithmetic expression part of the SPACE
operation. In the case of a line printer, the maximum spacing is 2; in the case of a
magnetic tape, the maximum is 99.

• Determine whether the I/O operation is complete by using one of the following
methods:

− Use a WAIT statement to wait on the buffer or the event associated with the
operation. You can place a WAIT statement directly after the WRITE statement,
or you can place the WAIT statement after other instructions that do not access
information from the direct array buffer.

− Interrogate the IOCOMPLETE and IOPENDING buffer attributes. The
IOCOMPLETE attribute returns TRUE when the I/O operation is complete, and
the IOPENDING attribute returns TRUE if the I/O operation is queued or in
process.

• If you want to be responsible for initiating recovery of some or all I/O exceptions, use
the IOMASK buffer attribute. When an I/O exception is masked out by using the
IOMASK attribute, the MCP bypasses any recovery or logging procedures if that
exception occurs for direct I/O files.

• Interrogate direct I/O buffer attributes to determine information about the WRITE
operation. The following is an ALGOL example for interrogating the IOERRORTYPE
buffer attribute for a direct array buffer named DIRECTARRAYID:

 ERR:= DIRECTARRAYID.IOERRORTYPE;

Buffer Attribute Information Obtained

IOCANCEL If TRUE, the I/O operation attempted on this buffer was
canceled and the IORESULT attribute value is 1.

IOCHARACTERS The number of characters read into the current buffer. If you
interrogate this attribute after a forward READ operation on a
tape file, the value returned indicates the actual size of the
tape block.

IOEOF If TRUE, the I/O operation on this buffer encountered an end-
of-file condition.

 Using Direct I/O Files

8600 0056–408 10–5

Buffer Attribute Information Obtained

IOERRORTYPE The value identifies the error, if any, that occurred as a result
of the I/O operation on this buffer. A value of NOERROR (0)
indicates that the I/O operation completed successfully

IORECORDNUM For disk files, the random address (record or sector number,
depending on the FILESTRUCTURE value) in the disk file that
the last I/O operation on this buffer took place. For remote
files, indicates the RSN associated with the last I/O operation
on this buffer.

IORESULT The logical result for the last I/O operation on this buffer.

IOTIME The time, in 2.4-microsecond units, elapsed for the I/O
operation.

IOWORDS The number of words read into a buffer. If you interrogate this
attribute after a forward READ operation on a tape file, the
value returned indicates the actual size of the tape block.

Using Direct I/O Files

10–6 8600 0056–408

Purging the I/O Queue
You can purge the I/O queue for a device that is not a disk or remote file by setting the
IOCANCEL buffer attribute for the direct array to TRUE. This action also cancels all the
outstanding I/O operations to the same unit that were initiated using direct arrays
declared in the same stack as the canceled direct array.

Understanding Direct I/O Disk Files
The use of direct I/O on disk files permits considerable flexibility but also involves some
fine distinctions. Direct I/O on most devices links the programmer very closely to the
input/output device. However, this connection is less direct for disk files, which exist on
devices that can be shared by many users. The normal disk file management system is
active in allocating regions of disk to temporary or permanent files. Direct I/O is a means
of accessing file data and can be used on any file, regardless of the method used to
create the file.

Physical Frame Size and Odd Frames

For disk files, the physical frame size is always 8 bits; any attempt to change the frame
size is ignored. Even in HEX or BCL files, where the unit size is 4 bits and 6 bits,
respectively, the direct I/O length for a file with a FILESTRUCTURE value of ALIGNED180
is specified by the number of 48-bit words plus the number of 8-bit frames. Refer to the
information about using the WRITE and READ statements with a direct I/O file in this
section for information about specifying the length of the data to be transferred. For disk
files, an odd number of frames can be requested, and the end-of-file reckoning is done
with the number specified. The I/O subsystem allows I/O length values other than in
30-word multiples, but the hardware always writes that many (using zero-filling), and
READ operations always begin at a sector boundary.

Only an even number of 4-bit units can be specified. One extra unit must be written in
any block containing an odd number of HEX records.

 Using Direct I/O Files

8600 0056–408 10–7

Areas, Blocks, Records, and Sectors

The BLOCKSIZE, FRAMESIZE (or INTMODE and UNITS), and MAXRECSIZE attributes
define the logical block and record size for the file. Because these attributes define the
way a file is handled with logical (nondirect) I/O, their application to direct I/O files
requires some explanation. Direct I/O files deal primarily with disk sectors, and
secondarily with blocks if the file has a FILESTRUCTURE value of ALIGNED180 or
BLOCKED.

The smallest unit of disk storage you can address is the sector, which holds 30 words
(180 8-bit bytes). Each I/O operation begins at a sector boundary and transmits one or
more contiguous sectors. On a WRITE operation, if the data runs out before the end of a
sector, the disk subsystem pads the last sector with nulls. For files with a
FILESTRUCTURE value of ALIGNED180 or BLOCKED, every block begins on a sector
boundary and occupies one or more contiguous sectors; if the block size is not a multiple
of 180 bytes, some wasted space remains at the end of each block. If the
BLOCKSTRUCTURE value is FIXED, the ratio of the BLOCKSIZE value to the
MAXRECSIZE value must be a fixed integer equal to the number of records in a block.

In ALGOL READ and WRITE statements, a [<I/O option or carriage control>] parameter,
containing some text in brackets, can appear immediately after the file name. If this
parameter is present, random I/O occurs; otherwise, the I/O is serial. In COBOL, the KEY
IS clause invokes random I/O. For ALIGNED180 and STREAM files, serial I/O begins at
the sector of the file just past the last sector read or written, regardless of any record
boundaries. For BLOCKED files, serial I/O begins at the next block boundary that follows
the block where the previous I/O operation ended.

For a file with a FILESTRUCTURE value of ALIGNED180, random I/O always begins at
the beginning of a block, and the random address is given as record number that is then
adjusted to (R DIV B) * B, where R is the random address and B is the number of records
for each block. If the BLOCKSTRUCTURE value is not FIXED, then for direct I/O for disk
files, the record is a synonym for block, so that records for each block always equals 1.

For a file with a FILESTRUCTURE value of BLOCKED, random I/O begins at the
beginning of a block, and the random address is given as a file-relative block number.

For a file with a FILESTRUCTURE value of STREAM, random I/O is sector oriented, and
the random address is given as a file-relative sector number.

Using Direct I/O Files

10–8 8600 0056–408

The [<I/O option or carriage control>] parameter specifying random I/O in ALGOL takes
several forms, the following of which apply to direct I/O disk files:

Parameters Meaning

[<arithmetic expression>] The usual syntax, where the value of <arithmetic
expression> denotes the random address

[SPACE <arithmetic
expression>]

Specifies the current random address plus the value
of <arithmetic expression> as the new random
address

[NO] Specifies the current random address as the new
random address, but does not update the file
position, so that a subsequent serial I/O occurs at
the same place

Any other form of the [<I/O option or carriage control>] parameter is ignored, and the
current record position is used.

Direct I/O permits transmission to begin at any sector in the file and to continue for any
length, bounded only by the buffer size and the end of the current area or the end of the
file. An area of a file with a FILESTRUCTURE value of ALIGNED180 or BLOCKED
consists of an integral number of blocks. The gaps, if any, between the end of the logical
block and the end of the sector are accessible with direct I/O. An area of a file with a
FILESTRUCTURE value of STREAM consists of exactly AREALENGTH FRAMESIZE units.
Unless the DIOFILESTRUCTURE value is SECTORSTREAM, an attempt to access the
unused space between the end of the area and the next sector boundary is truncated at
the area boundary, and a short block result is returned.

After a direct READ or WRITE operation, the IORECORDNUM buffer attribute reports the
random address (record, block, or sector number, depending on the FILESTRUCTURE
value) where the transmission began. The file attributes NEXTRECORD and RECORD
indicate the random address from which a subsequent serial transmission would
proceed. The RECORD attribute can be used only for a file with a FILESTRUCTURE value
of ALIGNED180. Neither of these points is necessarily at the beginning of a record if the
FILESTRUCTURE value is STREAM, or if a serial READ or WRITE operation is done with
lengths different from whole blocks.

Usually, writing to or beyond the end of the file simply extends the file and updates the
end-of-file pointer; no error is reported. The exceptions to this rule include crunched files,
files with the maximum number of areas, and files with FLEXIBLE equal to FALSE and
the number of allowed areas, as specified by the AREAS attribute, already allocated.

A crunched file cannot be extended past the end-of-file sector, and the other two types
of files cannot be extended beyond the last area. Attempts to write outside a
nonextendable file are treated just like other attempts to perform READ or WRITE
operations outside the file.

 Using Direct I/O Files

8600 0056–408 10–9

If I/O is attempted completely outside the file, end-of-file action is taken: no I/O takes
place, bits 9 and 0 are set in the logical result descriptor returned by the WAIT function or
by the buffer attribute IORESULT, and the buffer attribute IOERRORTYPE reports a
WLOOREOF (6). If I/O begins within the file but extends across the area boundary or
across the end of file, special action is taken: data transfer occurs with the length
truncated, the logical result descriptor has bits 10 and 0 set, and IOERRORTYPE reports
READPASTROW (7). Direct I/O can read from or write to the entire sector in which the
end of file is located, but only to the area boundary if the DIOFILESTRUCTURE value is
STREAM. When data is written, the end-of-file pointer is adjusted to the end of the
WRITE operation.

End-of-File Pointers

The end-of-file pointer in a disk file specifies the last bit that has been written in the file.
For direct disk files, the end pointer is set according to the starting position and length of
any WRITE operation beyond the previous end position. Because direct I/O length is
specified in 8-bit physical frames, the end-of-file pointer cannot always be placed at a
record boundary.

A similar situation can arise with 6-bit units, where the logical and physical frame
boundaries align only at whole-word and half-word boundaries.

When the end-of-file pointer is used by the logical I/O subsystem to determine the
number of records in the file, the following are discarded: any partial logical frames, any
partial second or subsequent record in a block, and any data in the last sector of a block
past the end of the logical block.

Zero-Length I/O

Because zero-length direct READ or WRITE statements transfers no data, zero-length
serial operations have no effect on the record pointer in the file. However, random
operations reassign the record pointer, thus affecting subsequent nonzero-length serial
operations.

Random READ or WRITE operations generate end-of-file action if the specified record
number is less than 0 (zero). No other end-of-file checking is done for zero-length READ
operations, but zero-length WRITE operations generate end-of-file action if the record
number is past the end of a crunched or otherwise nonextendable file.

If the addressed record is in a new area, a zero-length WRITE operation causes the disk
space to be allocated.

In summary, a zero-length random READ operation functions as a SEEK operation,
whereas a zero-length random WRITE operation functions as a SEEK operation but also
can allocate disk space.

Using Direct I/O Files

10–10 8600 0056–408

Direct I/O Contrasted with Using Buffered Tape Drives

With direct I/O, there is an assumption that when performing a WRITE, the data has
been physically transferred to the medium once the event of the I/O has occurred. Since
some tape drives have hardware buffering capability, the default for direct I/O is to have
buffering turned off.

However, it should be noted that there is a performance penalty when writing to a
buffered tape drive with buffering disabled. In fact, for some tape drives such as the
HS8500, which require a significant amount of time to reposition whenever tape motion
stops, the overall performance penalty can be severe.

It is possible with a buffered tape drive to toggle buffering off and on programmatically
when writing to a direct I/O tape file. You do this by setting the SYNCHRONIZE attribute
to NO (to enable buffering mode) and OUT (to disable buffering mode). Thus, if it is not
essential for all writes to be synchronized (that is, the I/O completion occurs only when
the record has been physically written to tape), you can set SYNCHRONIZE to NO for
less critical records, and then set SYNCHRONIZE to OUT just before writing any critical
records. This causes the MCP to change between buffering modes based on the
SYNCHRONIZE attribute.

Optimizing Direct I/O Operations
In certain cases, performance is improved for direct I/O READ and WRITE operations and
WAIT operations when an event or event array element is provided with the READ and
WRITE statements and then used in the WAIT statement.

There are several forms of I/O initiation statements that can be used with direct files. For
the following example, assume that DF is a direct file, DA is a direct array, and E is an
event or event array element.

The I/O initiation statements are as follows:

1. READ(DF, length, DA);
 WRITE(DF, length, DA);

2. READ(DF, length, DA) [E];
 WRITE(DF, length, DA) [E];

 Using Direct I/O Files

8600 0056–408 10–11

The following example places the same code in two positions in code:

BEGIN
DIRECT ARRAY DA[0:29];
DIRECT FILE F;
EVENT E;
PROCEDURE X (E); EVENT E;
 BEGIN
 READ (F, 30, DA) [E]; (B)
 END;
READ (F, 30, DA) [E]; (A)
X (E);
END.

The code line identified with (A) allows the compiler to ensure that E will never occur at a
lexical level higher than that of DA. The code line identified with (B) does not allow the
compiler to ensure this relationship.

In case B, the lexical level check is performed at run time by the MCP logical I/O READ or
WRITE procedure. Less processor time is used when the event or event array element
provided for use at initiation time is the same as the one used for the previous I/O on the
direct array. When more than a few I/O operations are done, the processor time used is
same as that in subcase 2A.

WAIT operations for completion of an I/O operation can also be divided into two cases:

1. WAIT(DA); % Used with a case 1 I/O initiation statement

2. WAIT(E); % Where E was supplied as a completion event in
 % an I/O initiation statement (Example A or B)

In general, a case 2 WAIT operation uses less processor time than a case 1 WAIT
operation.

Using Direct I/O Files

10–12 8600 0056–408

8600 0056–408 11–1

Section 11
Using HYPERchannel (HY) Files

A HYPERchannel network is a networking system that is used by MCP systems. MCP
systems support only the A223 adapter. A HYPERchannel link is a direct hardware
connection that can transfer data between independent systems, including mixed vendor
systems. The hardware connection between a host system and the HYPERchannel
network is through an adapter interface.

Also integrated into the system software is the NETEX software that is used with the
HYPERchannel network. This software enables two or more application programs, on
different host computers or the same host, to communicate with each other.

Understanding a HYPERchannel Network
A HYPERchannel network is made up of two components: the Network Systems
Corporation hardware and Unisys hardware.

A HYPERchannel network is composed of HYPERchannel adapters that are connected by
a coaxial trunk or trunks. The maximum speed of communication between adapters is
50 megabits per second.

Each adapter has a trunk side and a host side. The host side of the adapter distinguishes
one adapter from another, as the adapter is designed to interface to the specific host
system to which it is connected.

A HYPERchannel network can have from one to four trunks. Each adapter can be
connected to all trunks. For each transmission, two adapters and one trunk are used. For
example, using four trunks and eight adapters, four simultaneous transmissions are
possible, and using three trunks and six adapters, three simultaneous transmissions are
possible. Trunks are selected on a transmission-by-transmission basis. Two adapters can
use different trunks on successive transmissions. Trunk selection can be controlled by
the host system that initiates the transmission.

Using HYPERchannel (HY) Files

11–2 8600 0056–408

Figure 11–1 illustrates a possible configuration.

'30' '31' '40' '41' '50' '51'

Address Address Address Address Address Address

Host A Host B Host C

Adapter Adapter Adapter Adapter Adapter Adapter

0
1
2
3

T
R
U
N
K
S

Figure 11–1. Adapter Connections

The preceding figure shows six adapters interconnecting three host systems using four
trunks. Adapters 1, 3, and 5 communicate through trunks 0 and 1. Adapters 2, 4, and 6
communicate through trunks 2 and 3. Transmissions through the 1-3-5 set of adapters
are logically and physically disjointed from those on the 2-4-6 set.

In the MCP environment, an adapter is connected to the host system by a
HYPERchannel data link processor (HYDLP).

Communicating between Systems

To communicate between systems, the initiating host system writes a transmission to
the adapter in the form of a control message, referred to as a message proper, followed
by optional data of an arbitrary length, referred to as associated data. The message
proper is built by the application on the initiating host system and contains the
destination address of the receiving adapter, the address of the initiating adapter, the
trunk or trunks that can be used for the transmission, and a presence-of-data indicator.
The message proper and associated data are separate entities. Logically, however, a
single transmission consists of either a message proper alone or a message proper with
associated data.

Once the message proper has arrived at the destination, the application program is
responsible for interpreting the message proper and the possible data.

System-to-system communication occurs only when both host systems execute a
transmission through their respective adapters. The host system controls the adapter,
and through its adapter, can send data to a remote adapter. However, the remote host
system must read the data from the remote adapter; otherwise, the data is queued in
the adapter.

 Using HYPERchannel (HY) Files

8600 0056–408 11–3

The responsibility of an adapter that is connected to a host system is to determine if the
message proper is being sent to a remote host or being received by the host system.
The adapter then uses the information in the message proper to determine where to
send the message or what remote host sent the message. Finally, the adapter sends the
message proper and any associated data to the appropriate host, or places the message
proper and any associated data in the data buffer of the host system when a READ
operation is invoked.

The following requests are issued by the host system to the adapter to facilitate the
movement of messages:

Request Action

TRANSMIT MESSAGE Indicates that the message proper should be sent to
another adapter in the network.

TRANSMIT DATA Indicates that the associated data should be sent to
another adapter in the network.

INPUT MESSAGE Indicates that the message proper should be placed in the
data buffer.

INPUT DATA Indicates that the associated data should be placed in the
data buffer.

The command codes described in this documentation are not presented in their entirety.
Users intending to use the HYPERchannel network should refer to the Network Systems
Corporation documents identified in the bibliography of this guide.

Constructing a Message Proper

It is the responsibility of the software on the initiating system to build the message
proper, and the responsibility of the software on the receiving system to use this
information to perform a task and transmit a message proper back to the initiating
system, if needed.

One piece of information the message proper contains is the destination address,
referred to as the TOADDRESS. The TOADDRESS is unique within the network and is
made up of the following parts:

Physical TO address The trunk address of the receiving adapter. This trunk
address indicates a physical address on the coaxial
cable and is unique to the adapter. The address can
be a value of 1 through 255.

Logical TO address A logical device address within the receiving adapter.
This feature allows the support of multiple dialogs
with a single adapter. The adapter does not verify that
this value is valid. It is the responsibility of the host
software to use a valid logical TO address.

Using HYPERchannel (HY) Files

11–4 8600 0056–408

Another piece of information the message proper contains is the source address,
referred to as the FROMADDRESS. The FROMADDRESS is unique within the network
and is made up of the following parts:

Physical FROM address The trunk address of the sending adapter. This trunk
address indicates a physical address on the coaxial
cable and is unique to the adapter. The address can
be a value of 1 through 255.

Logical FROM address A logical device address within the sending adapter.

Additionally, the message proper must include the following information:

Field Name Purpose

SENDTRUNKS Specifies the trunk or trunks that can be used for
transmitting the message and any associated data.

RESPONSETRUNKS Specifies the trunk or trunks that can be used for
transmitting a response to the message.

ASSOCIATEDDATABIT Indicates the existence of a separate data transmission
associated with the message proper.

Programming for a HYPERchannel Network
Two methods of sending messages through the HYPERchannel network are available. If
you have purchased NETEX, you can use its capabilities or you can program with a direct
I/O HY file.

Both methods enable you to send messages through a HYPERchannel network that has
been defined in a HYPERchannel map. The HYPERchannel map associates an adapter
address with an adapter label. Refer to the System Configuration Guide for information
about using SYSTEM/CONFIGURATOR to define the HYPERchannel map.

If you choose to use NETEX, refer to the NETEX Software Reference Manual H330 for
information about programming with NETEX.

 Using HYPERchannel (HY) Files

8600 0056–408 11–5

Defining the Characteristics of an HY File

The following programming tasks must be performed before a READ or WRITE operation
is invoked and in a language that supports direct I/O:

• Identify the unit name of the adapter by using the TITLE attribute. The unit name is
specified in the configuration file of the system.

• Specify the KIND value as HY. Only one HY file can be assigned to a HYDLP.

• Specify the FILEUSE attribute value as IN, OUT, or IO.

• Define a direct array buffer that can contain the message proper as well as any
associated data. You can have a 10- to 64-byte long message proper, but the length
must be an even number of bytes. Usually the message proper is 12 bytes long in
order to align the associated data on a word boundary, although this is not required.

Any number of simultaneous READ and WRITE operations can be executed using a
single adapter. The number of requests in progress is determined by the number of
direct buffers defined by the program.

• Once the HY file is opened and the adapter is assigned to your HY file, a set of
logical addresses is assigned to the file. Your program is now an endpoint of one or
more logical dialogues, up to the maximum that your adapter can support.

Writing a HYPERchannel Message

Perform the following tasks to write a message to another remote host:

• Set the HYCOMMAND direct I/O buffer attribute for the direct array buffer to
22 (WRITE DATA). Once the HYCOMMAND attribute is set for any given direct array
buffer, it does not require subsequent changes if the selected operation does not
change.

If you invoke a READ statement for this direct array buffer, an IOERRORTYPE value
of 4 is issued when the READ statement is invoked, and the READ operation is not
initiated.

If you do not set the value of HYCOMMAND, a default HYCOMMAND is used by the
operating system. That default value is 23 (READ DATA) if the READ operation is
used and 22 (WRITE DATA) if the WRITE operation is used.

• Prepare the message proper and the associated data, if any. You cannot send a
message to a logical address of the initiating adapter.

The first 10 bytes of the message proper a standard format, but you can use the
remaining bytes for your own use. The following table describes the format of the
first 10 bytes and identifies possible values.

Using HYPERchannel (HY) Files

11–6 8600 0056–408

Word Field Name Possible Value

[0].[47:4] SENDTRUNKS Specifies which trunk or trunks can be
used to send the message. You can set
the field to the following values:

0 (zero), which indicates that the
MCP is to set the field equal to the
value corresponding to the trunk or
trunks connected to the adapter.

A value of 1 through 16 that
indicates which of the available four
trunks can be used.

SENDTRUNKS is a 4-bit field, where
47:1, 46:1, 45:1, and 44:1
correspond to trunks 0, 1, 2, and 3,
respectively. The message is sent
on the first available trunk of those
selected.

If you use an invalid trunk value, the
I/O operation is not initiated, and an
IOERRORTYPE value of 4 is issued.

[0].[43:4] RESPONSETRUNKS Indicates to the remote host, which
trunk or trunks are to be used to
respond to the message. You can set
this field to the following values:

0 (zero), which indicates that the
MCP is to set the field equal to the
value corresponding to the adapter.

A value of 1 through 16 that
indicates which of the available four
trunks can be used.

RESPONSETRUNKS is a 4-bit field,
where 43:1, 42:1, 41:1, and 40:1
correspond to trunks 0, 1, 2, and 3,
respectively.

If you use an invalid trunk value, the
I/O operation is not initiated, and an
IOERRORTYPE value of 4 is issued.

[0].[39:6] Not used.

[0].[33:1] BURST MODE This field is not used by the direct I/O
HY file implementation. This feature can
be used at the discretion of the user.
Refer to the Network Systems
Corporation (NSC) documentation listed
in the bibliography of this guide.

 Using HYPERchannel (HY) Files

8600 0056–408 11–7

Word Field Name Possible Value

[0].[32:1] ASSOCIATEDDATABIT If the message proper has associated
data, set this bit. If you do not set
ASSOCIATEDDATABIT and a WRITE
operation with associated data is
executed, an IOERRORTYPE value of 4
is issued. The direct array buffer logical
result descriptor (LRD) issues a
COMMAND REJECT condition.

[0].[31:16] ACCESS CODE This field is not used by the direct I/O
HY file implementation. This feature can
be used at the discretion of the user.
Refer to the Network Systems
Corporation (NSC) documentation listed
in the bibliography of this guide.

[0].[15:8] PHYSICAL TO ADDRESS Indicates the adapter address of the
receiving adapter.

You can set the field to any adapter
address.

If the specified adapter address
corresponds to the sending address,
the I/O operation is not initiated, and an
IOERRORTYPE of 4 is issued.

[0].[7:8] LOGICAL TO ADDRESS Indicates the logical address within the
receiving adapter.

You can set the field to any logical
address.

[1].[47:8] PHYSICAL FROM
ADDRESS

Indicates the address of the sending
adapter.

If a value of 0 (zero) is specified, the
MCP assigns the adapter address of the
sending adapter.

You can set the field to any adapter
address.

[1].[39:8] LOGICAL FROM
ADDRESS

Indicates the logical address with the
sending adapter.

You can set the field to any logical
address in the range from 0 (zero)
through 63.

If you use an invalid logical from
address—a value greater than 63—the
I/O operation is not initiated, and an
IOERRORTYPE of 4 is issued.

Using HYPERchannel (HY) Files

11–8 8600 0056–408

Word Field Name Possible Value

[1].[31:8] FUNCTION INDICATOR This field is not used by the direct I/O
HY file implementation. This feature can
be used at the discretion of the user.
Refer to the Network Systems
Corporation (NSC) documentation listed
in the bibliography of this guide.

[1].[23:8] FUNCTION This field is not used by the direct I/O
HY file implementation. This feature can
be used at the discretion of the user.
Refer to the NSC documentation listed
in the bibliography of this guide.

• Set the HYMPLENGTH attribute of the direct buffer being used to the length of the
message proper. If you set the length to 0 (zero), 12 is selected. Remember that the
value must be an even value between 10 and 64, inclusive.

• You must invoke a WRITE statement that has an arithmetic expression parameter
that reflects the length of the message proper and the associated data, if any. The
maximum number of words that can be written is 65536, including the message
proper.

The WRITE DATA operation is a composite function to the HYPERchannel DLP. For
this operation, the DLP automatically separates the buffer into the TRANSMIT
MESSAGE and TRANSMIT DATA operations for transfer to the adapter.

Reading a HYPERchannel Message

Perform the following tasks to read a message from another remote host:

• Set the value of the HYCOMMAND attribute for the direct array buffer to 23 (READ
DATA). If you issue a WRITE statement for this direct array buffer, the WRITE
operation is not initiated and an IOERRORTYPE value of 4 is issued. If you do not set
the value of HYCOMMAND, a default HYCOMMAND value is used by the operating
system. That default value is 23 (READ DATA) if the READ operation is used and
22 (WRITE DATA) if the WRITE operation is used.

• Invoke a READ statement for the direct buffer array. The HYMPLENGTH attribute for
the direct buffer array contains the length in bytes of the message proper received.
The direct array buffer logical result descriptor (LRD) contains the total number of
words and bytes received, message proper and associated data, in the format of the
IORESULT word. The IOCHARACTERS attribute returns the number of bytes
transmitted including both the message proper and any associated data.

The maximum number of words that can be received by a READ DATA request is
65536, including the message proper.

• Interrogate the IOERRORTYPE attribute to determine if the data you received is valid
information for your direct array buffer.

 Using HYPERchannel (HY) Files

8600 0056–408 11–9

Adapter Command Codes
Besides data transfer, HYPERchannel adapters also support statistics gathering, error
recovery, and error analysis. Each adapter command fits into one of the following four
categories: data transfer, adapter statistical inquiry, adapter or logical device address
clearing, and adapter maintenance.

Not all categories of commands are appropriate for use by all users. Thus, varying
interfaces exist to control the use of some commands.

Data transfer operations are the most accessible and have the least control.

Interfaces to GETSTATUS and SETSTATUS are defined to control access to commands
that can affect the entire adapter or produce information that is relative to the entire
adapter. Refer to the GETSTATUS/SETSTATUS Reference Manual for information on this
interface.

Adapter maintenance and error analysis commands are restricted to maintenance mode
access. These commands are documented with the information on peripheral test driver
(PTD) in the System Software Utilities Manual. Simultaneous READ and WRITE
operations can be invoked, and any READ or WRITE operation can be canceled.

Using I/O Buffer Attributes for HYPERchannel Files
The direct I/O buffer attributes IOCANCEL, IOCHARACTERS, IOCOMPLETE,
IOPENDING, IORESULT, IOTIME, and IOWORDS are valid for the direct I/O HY file and
have the same semantics as for any other device. Refer to the File Attributes Reference
Manual for descriptions of those attributes. The direct I/O buffer attributes IOCW and
IOMASK are not used for HY files.

Table 11–1 identifies the possible values that an HY file returns to your program.

Table 11–1. HY File IOERRORTYPE Values

Mnemonic Value Value Description

PARITYERRORTYPE 2 This value corresponds with the
LRDPARITYERRORF bit of the logical
result descriptor described in the
IORESULT attribute.

Using HYPERchannel (HY) Files

11–10 8600 0056–408

Table 11–1. HY File IOERRORTYPE Values

Mnemonic Value Value Description

DESCRIPTORERROR 4 When the device associated with the
buffer is a HYPERchannel unit, this error
can reflect either a software or hardware
error condition.

For a hardware-detected error, the logical
result descriptor reports a COMMAND
REJECT condition. This corresponds to the
LRDCOMMANDREJECTF bit in the logical
result descriptor described later in this
subsection with the IORESULT buffer
attribute.

A software-detected error can be the result
of one of the following:

An invalid command code was executed.

A WRITE-type command code was
executed with a READ statement.

A READ-type command code was
executed with a WRITE statement.

The trunk information provided in a WRITE
statement is not valid, when applicable.

An out-of-bounds value for the
HYMPLENGTH of a WRITE statement was
specified.

The message proper specified
ASSOCIATEDDATABIT, and no associated
data is in the buffer.

The message proper did not specify
ASSOCIATEDDATABIT, and the WRITE
statement attempts to transfer more than
HYMPLENGTH bytes.

WRITELOCKOUT 6 Because of the presence of messages in
the destination adapter, the adapter is
currently unable to receive new messages.
This message was not delivered.

OPERATIONABORT 22 This value corresponds with the
LRDABORTF bit in the logical result
descriptor described in the IORESULT
attribute.

REMOTEOPERATIONABORT 23 This value corresponds with the
LRDREMABORTF bit in the logical result
descriptor described in the IORESULT
attribute.

 Using HYPERchannel (HY) Files

8600 0056–408 11–11

Table 11–1. HY File IOERRORTYPE Values

Mnemonic Value Value Description

DEADMANTIMEOUT 24 This value corresponds with the
LRDDEADMANTIMEOUTF bit in the logical
result descriptor. This error specifies that
the associated data for the message has
been lost due to the failure of the host to
read the message within the amount of
time set in the deadman timer of the
adapter.

DATACONFLICT 25 This value corresponds with the
LRDTIMEOUTF and
LRDMSGINQORASSODATAF bits in the
logical result descriptor. This error
specifies that the WRITE operation cannot
be initiated due to data present within the
adapter that must first be read.

HYDATALOST 120 Reserved.

HYMESSAGEOVERFLOW 121 Reserved.

The IOERRORTYPE values for devices other than HYPERchannel devices are
documented in the File Attributes Reference Manual.

The IORESULT buffer attribute returns the logical result descriptor (LRD) as a Boolean
value, in its entirety, after a HYPERchannel operation. An error-free HYPERchannel
operation returns an LRD value of FALSE, while a HYPERchannel operation that has
caused an error returns an LRD value of TRUE.

Using HYPERchannel (HY) Files

11–12 8600 0056–408

The following table describes bit definitions in the LRD that are specific to HYPERchannel
operations:

Value Description

LRDWRITELOCKOUTF [6:1] A WRITE operation was aborted by the local
adapter because the destination adapter did
not respond. The most likely reason for this
error is that data was not being read by the
remote host from its adapter; consequently,
this adapter did not execute transfer requests
for additional messages.

LRDPARITYERRORF [7:1] An adapter memory parity error occurred on a
data transfer from the adapter to the host, or
a parity error was detected in data received at
the adapter from the host.

LRDABORTF [8:1] A trunk operation was aborted by the local
adapter. The message was undeliverable.
More specific information is available in the
maintenance log. The IOERRORTYPE
associated with this condition is an
OPERATIONABORT (22) error.

LRDCOMMANDRETRYF [10:1] A WRITE operation was not completed to the
local adapter due to a command retry
condition presented by the local adapter. This
condition occurred after the TRANSMIT
MESSAGE was delivered and the adapter
began a trunk reception, prior to executing
TRANSMIT DATA.

LRDDEADMANTIMEOUTF [11:1] Associated data has been lost due to the
failure of the host to perform a READ
operation within the time required by the
deadman timer of the adapter.

LRDCOMMANDREJECTF [12:1] An invalid command or command sequence
has been issued by the HYPERchannel DLP
(HYDLP) to the adapter that is inconsistent
with the state of the adapter. The
IOERRORTYPE associated with this condition
is a DESCRIPTORERROR (4) error.

LRDMSGINQORASSODATAF [13:1] A message proper has been received and is
being held, or a message proper queued at
the adapter has associated data. This
condition is not an error condition, except in
conjunction with LRDTIMEOUTF on a WRITE
operation. This bit can be set with any other
HYPERchannel specific bits in the logical
result descriptor.

 Using HYPERchannel (HY) Files

8600 0056–408 11–13

Value Description

LRDREMABORTF [14:1] A trunk operation was aborted by the remote
adapter. See the maintenance log for detailed
status information. The IOERRORTYPE
associated with this condition is a
REMOTEOPERATIONABORT (23) error.

LRDTIMEOUTF [15:1] The requested operation could not be
completed within the time limit set in the
HYDLP.

The IORESULT values for files other than HYPERchannel files are documented in the File
Attributes Reference Manual.

The LOGANALYZER system, documented in the System Software Utilities Manual,
includes analysis of HYPERchannel exceptions. For WRITE operations, this analysis
includes the first 10 bytes of the message proper.

Using HYPERchannel (HY) Files

11–14 8600 0056–408

Example Program
The following ALGOL program is an example program that uses direct I/O HY files. The
example does not include error-handling procedures for the direct I/O HY files.

Each endpoint process validates the received data. The HYPERchannel unit on the writer
system is labeled HY5C, and the HYPERchannel units on the reader systems are labeled
HY52 and HY53. The trunk addresses are 5C, 52, and 53, respectively.

WRITER PROGRAM

 BEGIN

 DIRECT FILE SHORTWRITE (KIND=HY,TITLE="HY5C.",FILEUSE=OUT);
 DIRECT ARRAY MSGPROPER1, MSGPROPER2 [0:10];
 REAL SZ;
 SZ := (64 DIV 6) & (64 MOD 6) [19:3];
 REPLACE POINTER (MSGPROPER1 [1],8)+4 BY "HI THERE"; % DATA
 REPLACE POINTER (MSGPROPER2 [1],8)+4 BY "HI THERE"; % DATA

 MSGPROPER1.HYCOMMAND := 22; % WRITE DATA
 MSGPROPER1 [0].[15:8] := 4"52"; % PHYSICALTO ADDRESS
 MSGPROPER1 [0].[7:8] := 14; % LOGICALTO ADDRESS
 MSGPROPER1 [0].[47:4] := 2; % USE TRUNK 2
 MSGPROPER1 [1].[47:8] := 4"5C"; % PHYSICAL-FROM ADDRESS
 MSGPROPER1 [1].[39:8] := 13; % LOGICAL-FROM ADDRESS
 MSGPROPER1.HYMPLENGTH := 64;
 WRITE (SHORTWRITE, SZ, MSGPROPER1); WAIT (MSGPROPER1);

 MSGPROPER2.HYCOMMAND := 22; % WRITE DATA
 MSGPROPER2 [0].[15:8] := 4"53"; % PHYSICALTO ADDRESS
 MSGPROPER2 [0].[7:8] := 13; % LOGICALTO ADDRESS
 MSGPROPER2 [1].[47:16]:= 4"5C0E"; % FROM ADDRESS
 MSGPROPER2 [0].[47:4] := 1; % USE TRUNK 3
 MSGPROPER2.HYMPLENGTH := 64;
 WRITE (SHORTWRITE, SZ, MSGPROPER2); WAIT (MSGPROPER2);
 END.

 Using HYPERchannel (HY) Files

8600 0056–408 11–15

READER PROGRAM ONE

 BEGIN

 DIRECT FILE SHORTREAD (KIND=HY, TITLE="HY52.", FILEUSE=IN);

 DIRECT ARRAY MSGPROPER1 [0:10];

 MSGPROPER1.HYCOMMAND := 23; % READ DATA
 READ (SHORTREAD, 11, MSGPROPER1);

 IF MSGPROPER1 [1].[47:8] EQL 4"5C" AND
 MSGPROPER1 [1].[39:8] EQL 13
 THEN
 % PROCESS MESSAGE
 ELSE
 %
 END.

READER PROGRAM TWO

 BEGIN

 DIRECT FILE SHORTREAD (KIND=HY, TITLE="HY53.", FILEUSE=IN);

 DIRECT ARRAY MSGPROPER1 [0:10];

 MSGPROPER1.HYCOMMAND := 23; % READ DATA
 READ (SHORTREAD, 11, MSGPROPER1);

 IF MSGPROPER1 [1].[47:8] EQL 4"5C" AND
 MSGPROPER1 [1].[39:8] EQL 14
 THEN
 % PROCESS MESSAGE
 ELSE
 %
 END.

Using HYPERchannel (HY) Files

11–16 8600 0056–408

8600 0056–408 12–1

Section 12
Using Host Control (HC) Files

For installations where the convenience and extra features of a BNA link are outweighed
by efficiency considerations, direct I/O HC files provide an alternative means of using an
intersystem control (ISC) link between two or more large systems for simple, high-speed
data transfers.

An ISC consists of a central hub, identified by its 16-bit HUBNUMBER, and its attached
HC units. Each HC unit occupies a unique HUBINDEX position, 0 through 15, on its hub,
and is one connection to a host system. For systems that use data link processors
(DLPs), a single HC connection permits bidirectional communication through a direct I/O
HC file with a MYUSE attribute value of IO. On other systems, two HCs and a pair of
direct I/O HC files, one with a MYUSE value of IN, the other with a MYUSE value of OUT,
are necessary. ISC hardware enforces the desired mode of use for an HC by using an
access mask register (AMR). The possible AMR modes are CLOSED (no communication
possible), IN, OUT, and IO. To effect a data transfer, a WRITE operation directed to a
specific HUBINDEX target from an HC with an AMR mode of OUT or IO is paired with a
READ request at the HC target with an AMR mode of IO or IN. A READ operation does
not require direction information. The information received includes the initiating WRITE
operation HUBINDEX information along with the data received.

A direct I/O HC file program dedicates an HC or HC pair for its exclusive use. Two or
more programs, controlling HCs attached to the same hub, communicate directly through
the ISC link. The controlling programs are responsible for the flow of data across an ISC
link, and for recovery from I/O errors occurring when READ and WRITE operations are
invoked.

For a direct I/O HC file to be used, an ISC hub must be given a name in the configuration
HUBMAP of each host. This is normally accomplished by running as configured groups,
with each group description containing the desired HUBMAP information. If a pair of HC
file programs is making permanent use of an ISC connection between two systems, the
READPARTNER and WRITEPARTNER options should be included in the HUBMAP
specifications. Refer to the System Configuration Guide for information about creating a
group.

Changes to the named HCs and ISCs of a system can be made without a reconfiguration
halt/load, using the LB (Host Control Unit), PG (Purge), and MODE (Unit Mode) system
commands. Refer to the System Commands Reference Manual for information about
these commands. If the running group of a system was not initially configured with
HUBMAP information, direct I/O HC file control of two ISC hubs is possible by using the
default HUBMAP that is created when HCs are named with the LB command and the
use of the HCs are specified with the MODE command.

Using Host Control (HC) Files

12–2 8600 0056–408

Defining the Characteristics of an HC File
The following programming tasks need to be performed before a READ or WRITE
operation is invoked and in a language that supports direct I/O:

• Specify the KIND value as HC.

• Set the FILENAME value to the proper hub name label. When an ISC hub has a name
specified in the configuration HUBMAP of its host, all online HC units connected to it
are either scratch units that have no label or are labeled with the hub name.

• Specify the MYUSE value as IO. If desired or necessary, a pair of direct I/O HC files
with MYUSE values of IN and OUT can be used instead.

• Define separate direct array buffers for the READ and WRITE operations. A less
convenient method is to switch use of a single direct array between READ and
WRITE operations. Each buffer can be any even length between 2 and the hardware
maximum of 65534 characters.

• When a direct I/O HC file is opened, the operating system attempts to find an
available HC whose label matches the FILENAME of the file, and whose logical mode
of use matches the MYUSE value of the file. If exactly one match is found, the HC is
assigned to the file; otherwise, a “DUP FILE” or “NO FILE” waiting message
results. The file OPEN request initializes the AMR for the selected HC to the proper
mode; IN, OUT, or IO. Regardless of the specified logical mode, the physical AMR
mode of any unassigned HC unit is CLOSED.

Writing an HC Message
The following tasks must be performed to write a message to another remote host:

• Prepare the message in the write buffer array.

• If a target WRITEPARTNER hubindex was not specified in the HUBMAP, set the
WRITEPARTNER buffer attribute to the appropriate integer value. If the
WRITEPARTNER buffer attribute is unspecified, a value of –1, and a WRITE operation
is attempted, a NOWRITEPARTNER (20) IOERRORTYPE error results. A WRITE
operation receives a PARTNERVIOLATION (19) IOERRORTYPE error result when the
WRITEPARTNER buffer attribute value is not –1 and a WRITEPARTNER was
specified in the hub map.

• Invoke a WRITE operation.

• Wait on the buffer completion event, or interrogate the IOCOMPLETE attribute of
the buffer until TRUE is returned. Once the message is initiated to the ISC hardware,
it can take up to 30 seconds for a WRITE operation to complete.

• Interrogate the IOERRORTYPE buffer attribute to determine whether the WRITE
operation has completed correctly. The WLOOREOF (6) IOERRORTYPE error result
indicates that WRITE access was denied because the target WRITEPARTNER
hubindex HC did not have an AMR mode of IN or IO. The HCWRITETIMEOUT (18)
IOERRORTYPE error result indicates that the WRITE operation timed out because no
corresponding READ operation was present at the target HC. Refer to I/O results in
the File Attributes Reference Manual for error values.

 Using Host Control (HC) Files

8600 0056–408 12–3

Reading an HC Message
Perform the following tasks to read a message from another remote host:

• If the READPARTNER option was not set in the hub map, and input is expected from
only a single hubindex source, set the appropriate integer value in the
READPARTNER buffer attribute. A READ operation receives a PARTNERVIOLATION
(19) IOERRORTYPE error result when the READPARTNER buffer attribute value is
not –1 and a READPARTNER was specified in the HUBMAP.

• Invoke a READ operation.

• Wait on the buffer completion event, or interrogate the IOCOMPLETE attribute of
the buffer until TRUE is returned. You must exercise care when waiting for a READ
operation to complete, since the operation remains active in the hardware indefinitely
while waiting for a corresponding WRITE operation to occur.

• Interrogate the IOERRORTYPE buffer attribute to determine if the input is from an
inappropriate hubindex. The WRONGREADPARTNER (21) IOERRORTYPE error result
is reported whenever input from the wrong sending hubindex is received. The
WRONGREADPARTNER (21) IOERRORTYPE error result takes precedence over the
SHORTRECORD (9) and PARITYERRORTYPE (2) IOERRORTYPE error results. The
SHORTRECORD result indicates a long block error occurred because the hubindex
HC that wrote the data sent more data than the READ buffer could hold. Refer to I/O
results in the File Attributes Reference Manual for error values.

• Interrogate the IORESULT buffer attribute to determine the sending hubindex, if
input from more than one source is allowed, or if a WRONGREADPARTNER error
was returned. IORESULT also indicates if SHORTRECORD or PARITYERRORTYPE
errors occurred on an input from the wrong sending hubindex
(WRONGREADPARTNER error).

• Interrogate the IOCHARACTERS buffer attribute to determine the number of data
characters written by the sending hubindex. Note that this can be longer than the
READ buffer length if a SHORTRECORD result occurred.

Using Host Control (HC) Files

12–4 8600 0056–408

8600 0056–408 13–1

Section 13
Understanding Port Files

Port files provide you with a mechanism through which a program in the MCP
environment can communicate within itself or with one or more other programs.

From the point of view of the programmer, port files appear to be just another type of
file. They can be opened, closed, read from, and written to. However, instead of
communicating with an I/O device as do other kinds of files, a program communicates
with another program when it uses a port file.

A port file is composed of one or more port subfiles. It is through these subfiles that
actual communication takes place.

Each subfile is an endpoint of communication. A port subfile must connect to a
corresponding port subfile in order for communication to take place. The other endpoint
of communication is called the correspondent endpoint, and the communication
established between the endpoints is called a dialogue. A dialogue is a single instance of
a two-way communication between two endpoints. A subfile supports one dialogue.

Dialogues can be either local or remote. For a local dialogue, both endpoints reside on
the same MCP system. For a remote dialogue, one endpoint resides on an MCP system
and the other endpoint is either on another MCP system or on a non-MCP system.

In order to establish a dialogue between two active endpoints, the system compares the
descriptions of the two endpoints. This process is called matching. If the descriptions
match, the system establishes the dialogue and marks the subfiles as opened. You can
use the subfiles in a port file to establish separate dialogues with the same
correspondent process, or with different correspondent processes. Thus, one program
using one port file with 10 subfiles can establish dialogues with 10 different programs.
Note that these correspondent programs need not be programs in the MCP
environment, and that the correspondent endpoints need not be port subfiles.

Understanding Port Files

13–2 8600 0056–408

As mentioned previously, you can perform the same operations on port files that you can
on files used with I/O devices: you can set attributes for port files, and you can open,
close, read from, and write to port files. However, because your port file is
communicating with another endpoint, you must understand the following:

• How to use a subfile index to reference a port file dialogue

• How to describe and monitor a subfile dialogue through file attributes

• How different environments can affect the service offered by a port file

• How the system matches port file descriptions and establishes dialogues

• How to manage communications between two endpoints once the dialogue is
established

• How to terminate a dialogue

There are several different environments, also known as providers, available on your
MCP system that provide the port file interprocess communication (IPC) capability. Some
of these providers support communication between port files that are located on

• The same MCP system

• Different MCP systems

• An MCP system and a non-MCP system

You can specify a provider for your port file or you can let the system select a provider
for you when the port file is opened. If you want to use a specific provider for a dialogue,
use the PROVIDERGROUP file attribute. Refer to the File Attributes Reference Manual
for information about the PROVIDERGROUP attribute.

A port service is a specific set of features and functions that a program can use for
subport dialogues. You can select the port service for your port file. If you want to
communicate with another endpoint using a minimum set of features or functions, set
the SERVICE file attribute of your port file to the BASICSERVICE value. The default value
for SERVICE is BNANATIVESERVICE. Refer to Section 21, “Understanding Port
Services,” for more information.

 Understanding Port Files

8600 0056–408 13–3

Table 13–1 shows the providers and port services that are available.

Table 13–1. Providers and Port Services

PROVIDERGROUP
Value

Network
Environment

Port Services Supported

*BNAV2 BNA Version 2 BASICSERVICE
BNANATIVESERVICE

*BNAOSI OSI BASICSERVICE
OSINATIVESERVICE
OSISESSIONSERVICE

*HLCN NetWare NETBIOSSESSIONSERVICE

*LPP None BASICSERVICE
BNANATIVESERVICE

*TCPIP TCP/IP TCPIPNATIVESERVICE
TCPNATIVESERVICE

The minimum port functions are supported by ALGOL, COBOL68, COBOL74, COBOL85,
FORTRAN77, Pascal, and Pascal83. Additional port functions required by OSI and TCPIP
are supported by ALGOL, COBOL74, and Pascal. Other languages in the MCP
environment that support files in the MCP environment also access port files; however,
for these languages, full support of port file statements might not be available.

Since BASICSERVICE is compatible with more than one service, it is used to illustrate
the common port file concepts presented in the following sections. Service-specific
information is presented in separate sections under the appropriate title.

Read the following sections for basic information on port file use. Read Section 21,
“Understanding Port Services,” for information on how the services work. Read the
service-specific sections for detailed information for each service.

Understanding Port Files

13–4 8600 0056–408

Examples of a Requesting Program
The following program calls up the WEATHERMAN port file to obtain and display the
weather forecast.

ALGOL Requesting Example

BEGIN
FILE
 MARINE_WEATHER(KIND=PORT,
 MYNAME="WEATHERST2.",
 SERVICE=BASICSERVICE,
 SECURITYTYPE=PUBLIC,
 REQUESTEDMAXRECSIZE=72,
 FRAMESIZE=8),
 OUTPUT(KIND=REMOTE,
 FRAMESIZE=8);
EBCDIC ARRAY
 IOBUF[0:71];

IF OPEN(MARINE_WEATHER[SUBFILE 1]) = VALUE(OKRSLT) THEN
 BEGIN
 REPLACE IOBUF[0] BY 48"00", "XYZ HARBOR AREA ";
 WRITE(MARINE_WEATHER[SUBFILE 1],72,IOBUF);
 WHILE NOT (READ(MARINE_WEATHER[SUBFILE 1],72,IOBUF) OR
 IOBUF = "##") DO
 WRITE(OUTPUT,72,IOBUF);
 CLOSE(MARINE_WEATHER[SUBFILE 1]);
 END;
END.

 Understanding Port Files

8600 0056–408 13–5

Example COBOL74 Requesting Program

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT MARINE-WEATHER ASSIGN TO PORT,
 ACTUAL KEY IS MARINE-WEATHER-SUB,
 FILE STATUS IS MARINE-WEATHER-FS.
DATA DIVISION.
FILE SECTION.
FD MARINE-WEATHER
 VALUE OF
 MYNAME IS "WEATHERST2",
 SECURITYTYPE IS PUBLIC,
 REQUESTEDMAXRECSIZE IS 72,
 FRAMESIZE IS 8.
 01 MARINE-WEATHER-REC PIC X(72).
 01 MARINE-WEATHER-AUX-REC.
 05 MARINE-72 PIC X(72).

WORKING-STORAGE SECTION.
01 MARINE-WEATHER-SUB PIC 9(5).
01 MARINE-WEATHER-FS PIC XX.
01 IOBUF.
 03 CODEF PIC XX.
 03 TEXTF PIC X(70).
01 FLAG PIC A(5).
77 FS-SUCCESSFUL-READ PIC XX VALUE "00".

PROCEDURE DIVISION.
DISPLAY-INFO SECTION.
MAIN SECTION.
BEGIN.
CHANGE ATTRIBUTE YOURNAME OF MARINE-WEATHER(1) TO "WEATHERMAN.".
CHANGE ATTRIBUTE YOURHOST OF MARINE-WEATHER(1) TO "<host>.".
CHANGE ATTRIBUTE AVAILABLEONLY OF MARINE-WEATHER(1) TO TRUE.
MOVE 1 TO MARINE-WEATHER-SUB.
OPEN I-O MARINE-WEATHER.

STRING @00@,"XYZ HARBOR AREA" FOR 17 INTO IOBUF
 MOVE 1 TO MARINE-WEATHER-SUB
 WRITE MARINE-WEATHER-AUX-REC FROM IOBUF
 READ MARINE-WEATHER RECORD INTO IOBUF.
 IF MARINE-WEATHER-FS IS EQUAL TO FS-SUCCESSFUL-READ AND
 CODEF IS NOT EQUAL TO "##" THEN
 MOVE "TRUE" TO FLAG
 ELSE
 MOVE "FALSE" TO FLAG.
 PERFORM DISPLAY-IOBUF UNTIL FLAG IS EQUAL TO "FALSE".
 MOVE 1 TO MARINE-WEATHER-SUB.

Understanding Port Files

13–6 8600 0056–408

 CLOSE MARINE-WEATHER.
 STOP RUN.
DISPLAY-IOBUF.
 DISPLAY IOBUF.
 MOVE 1 TO MARINE-WEATHER-SUB.
 READ MARINE-WEATHER RECORD INTO IOBUF.
 IF MARINE-WEATHER-FS IS EQUAL TO FS-SUCCESSFUL-READ AND
 CODEF IS NOT EQUAL TO "##" THEN
 MOVE "TRUE" TO FLAG
 ELSE
 MOVE "FALSE" TO FLAG.

Examples of a Server Program
The following program is a simple server program that issues dummy weather
information through an endpoint called WEATHERMAN.

ALGOL Server Example

BEGIN
FILE
 MARINE_WEATHER (KIND=PORT,
 MYNAME="WEATHERMAN.",
 SERVICE=BASICSERVICE,
 SECURITYTYPE=PUBLIC,
 MAXSUBFILES=10,
 REQUESTEDMAXRECSIZE=72,
 FRAMESIZE=8);
EBCDIC ARRAY
 RCVBUF[0:71],
 SENDBUF[0:23,0:71];
LABEL
 EXIT;

PROCEDURE HANDLE_INPUT (INX,INPUT);
% -----------
 VALUE INX;
 INTEGER INX;
 EBCDIC ARRAY INPUT[0];
BEGIN
INTEGER I;
% INPUT has code in first byte, location is in bytes 1-20
CASE REAL(INPUT,1) OF

 BEGIN
 0: % DUMMY MARINE FORECAST
 REPLACE SENDBUF[0,0] BY "Marine Forecast for ", INPUT[1] FOR 20,
 " Sat. November 18 ";
 REPLACE SENDBUF[1,0] BY " Light and variable winds,",

 Understanding Port Files

8600 0056–408 13–7

 " prevailing westerlies",
 " from noon to late ";
 REPLACE SENDBUF[2,0] BY " afternoon. Tomorrow gusty winds",
 " with a small chance of rain. ";
 REPLACE SENDBUF[3,0] BY "##";
 FOR I := 0 STEP 1 UNTIL 3 DO
 WRITE(MARINE_WEATHER[SUBFILE INX],72,SENDBUF[I,*]);
 1: % LAST 5 DUMMY BAROMETRIC READINGS
 REPLACE SENDBUF[0,0] BY "27 27 28 28 29";
 WRITE(MARINE_WEATHER[SUBFILE INX],72,SENDBUF[0,*]);

ELSE:
 REPLACE SENDBUF[0,0] BY "##";
 WRITE(MARINE_WEATHER[SUBFILE INX],72,SENDBUF[0,*]);
 END;

END OF HANDLE_INPUTEVENT;
PROCEDURE HANDLE_CHANGEEVENT (INX);
% ----------------
 VALUE INX;
 INTEGER INX;
BEGIN
CASE MARINE_WEATHER(INX).FILESTATE OF
 BEGIN
 VALUE(AWAITINGOFFER):
 VALUE(AWAITINGHOST):
 VALUE(OPENED):
 VALUE(BLOCKED):
 VALUE(CLOSEPENDING):
 VALUE(DEACTIVATIONPENDING):
 ;
 VALUE(SHUTTINGDOWN):
 CLOSE(MARINE_WEATHER[SUBFILE INX]);
 VALUE(CLOSED):
 REPLACE MARINE_WEATHER(INX).YOURNAME BY ".";
 REPLACE MARINE_WEATHER(INX).YOURHOST BY ".";
 AWAITOPEN(MARINE_WEATHER[SUBFILE INX],DONTWAIT);
 VALUE(DEACTIVATED):
 CLOSE(MARINE_WEATHER[SUBFILE INX]);
 REPLACE MARINE_WEATHER(INX).YOURNAME BY ".";
 REPLACE MARINE_WEATHER(INX).YOURHOST BY ".";
 AWAITOPEN(MARINE_WEATHER[SUBFILE INX],DONTWAIT);
 END;
END OF HANDLE_CHANGEEVENT;

Understanding Port Files

13–8 8600 0056–408

% Start program body. Await open requests from anyone.
REPLACE MARINE_WEATHER(0).YOURNAME BY ".";
REPLACE MARINE_WEATHER(0).YOURHOST BY ".";
AWAITOPEN(MARINE_WEATHER[SUBFILE 0],DONTWAIT);
DO
 BEGIN
 % Monitor port file events
 CASE WAIT((300), % 5 minute idle
 MARINE_WEATHER.CHANGEEVENT,
 MARINE_WEATHER.INPUTEVENT) OF

BEGIN
 1: DISPLAY ("WEATHERMAN idle. Bye");
 GO TO EXIT;
 2: HANDLE_CHANGEEVENT(MARINE_WEATHER.CHANGEDSUBFILE);
 3: READ(MARINE_WEATHER[SUBFILE 0],72,RCVBUF);
 HANDLE_INPUT(MARINE_WEATHER.LASTSUBFILE,RCVBUF);
 END;
 END
UNTIL FALSE;
EXIT:
END.

 Understanding Port Files

8600 0056–408 13–9

COBOL74 Server Example

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
 RESERVE WORDS IS NETWORK.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT MARINE-WEATHER ASSIGN TO PORT,
 ACTUAL KEY IS MARINE-WEATHER-SUB,
 FILE STATUS IS MARINE-WEATHER-FS.
DATA DIVISION.
FILE SECTION.
FD MARINE-WEATHER
 VALUE OF
 MYNAME IS "WEATHERMAN",
 SECURITYTYPE IS PUBLIC,
 MAXSUBFILES IS 10,
 REQUESTEDMAXRECSIZE IS 72,
 FRAMESIZE IS 8.
 01 MARINE-WEATHER-REC PIC X(72).

WORKING-STORAGE SECTION.
01 MARINE-WEATHER-SUB PIC 9(5).
01 MARINE-WEATHER-FS PIC XX.
01 RCVBUF PIC X(72).
01 SENDBUF PIC X(72).
01 HOLD-TIME PIC 999 VALUE 300.
01 WAIT-STATE PIC 9(5).
01 SUBFILE-STATE USAGE REAL.
01 INX PIC 9(5).
01 INPUT-RECORD.
 03 CODE-AREA PIC 9.
 03 LOCATION PIC 9(20).
 03 FILLER PIC 9(51).
01 INFINITE-LOOP PIC 9.
PROCEDURE DIVISION.
MAIN SECTION.
BEGIN.
CHANGE ATTRIBUTE YOURNAME OF MARINE-WEATHER(0) TO ".".
CHANGE ATTRIBUTE YOURHOST OF MARINE-WEATHER(0) TO ".".

MOVE 0 TO MARINE-WEATHER-SUB.
AWAIT-OPEN NO WAIT MARINE-WEATHER.
MOVE 1 TO INFINITE-LOOP.
PERFORM BODY-ROUTINE UNTIL INFINITE LOOP IS EQUAL TO 0.
STOP RUN.
HANDLE-INFO SECTION.
BODY-ROUTINE.
 WAIT HOLD-TIME
 ATTRIBUTE CHANGEEVENT OF MARINE-WEATHER

Understanding Port Files

13–10 8600 0056–408

 ATTRIBUTE INPUTEVENT OF MARINE-WEATHER
 GIVING WAIT-STATE.
 IF WAIT-STATE IS EQUAL TO 1 THEN
 PERFORM STOP-PROGRAM
 ELSE
 IF WAIT-STATE IS EQUAL TO 2 THEN
 PERFORM HANDLE-CHANGEEVENT
 ELSE
 IF WAIT-STATE IS EQUAL TO 3 THEN
 PERFORM HANDLE-INPUT.
STOP-PROGRAM.
 DISPLAY "WEATHERMAN idle. Bye".
 CLOSE MARINE-WEATHER WITH RELEASE.
 STOP RUN.
HANDLE-CHANGEEVENT.
 MOVE 0 TO MARINE-WEATHER-SUB.
 MOVE ATTRIBUTE CHANGEDSUBFILE OF MARINE-WEATHER TO INX.
 MOVE INX TO MARINE-WEATHER-SUB.
 MOVE ATTRIBUTE FILESTATE OF MARINE-WEATHER(INX) TO
 SUBFILE-STATE.
 IF SUBFILE-STATE IS EQUAL TO
 VALUE(SHUTTINGDOWN) THEN
 MOVE INX TO MARINE-WEATHER-SUB
 CLOSE MARINE-WEATHER
 ELSE IF SUBFILE-STATE IS EQUAL TO
 VALUE(CLOSED) THEN
 CHANGE ATTRIBUTE YOURNAME OF MARINE-WEATHER(INX) TO "."
 CHANGE ATTRIBUTE YOURHOST OF MARINE-WEATHER(INX) TO "."
 MOVE INX TO MARINE-WEATHER-SUB
 AWAIT-OPEN NO WAIT MARINE-WEATHER

ELSE IF SUBFILE-STATE IS EQUAL TO
 VALUE(DEACTIVATIONPENDING) THEN
 PERFORM HANDLE-INPUT
 ELSE IF SUBFILE-STATE IS EQUAL TO
 VALUE(DEACTIVATED) THEN
 MOVE INX TO MARINE-WEATHER-SUB
 CLOSE MARINE-WEATHER
 CHANGE ATTRIBUTE YOURNAME OF MARINE-WEATHER(INX) TO "."
 CHANGE ATTRIBUTE YOURHOST OF MARINE-WEATHER(INX) TO "."
 MOVE INX TO MARINE-WEATHER-SUB
 AWAIT-OPEN NO WAIT MARINE-WEATHER.
HANDLE-INPUT.
 MOVE 0 TO MARINE-WEATHER-SUB.
 READ MARINE-WEATHER RECORD INTO INPUT-RECORD.
 MOVE ATTRIBUTE LASTSUBFILE OF MARINE-WEATHER TO INX.
 IF CODE-AREA IS EQUAL TO 0 THEN
 STRING "Marine Forecast for ",
 LOCATION,
 " Sat. November 18 "
 FOR 72 INTO SENDBUF
 PERFORM WRITE-INX-SENDBUF

 Understanding Port Files

8600 0056–408 13–11

 STRING " Light and variable winds,",
 " prevailing westerlies",
 " from noon to late "
 FOR 72 INTO SENDBUF
 PERFORM WRITE-INX-SENDBUF
 STRING " afternoon. Tomorrow gusty winds",
 " with a small chance of rain. "
 FOR 72 INTO SENDBUF
 PERFORM WRITE-INX-SENDBUF
 STRING "##" FOR 72 INTO SENDBUF
 PERFORM WRITE-INX-SENDBUF
 ELSE IF CODE-AREA IS EQUAL TO 1 THEN
 MOVE "27 27 28 28 29" TO SENDBUF
 PERFORM WRITE-INX-SENDBUF
 ELSE
 MOVE "##" TO SENDBUF
 PERFORM WRITE-INX-SENDBUF.

WRITE-INX-SENDBUF.
 MOVE INX TO MARINE-WEATHER-SUB.
 WRITE MARINE-WEATHER-REC FROM SENDBUF.

Understanding Port Files

13–12 8600 0056–408

8600 0056–408 14–1

Section 14
Using Subfile Indexes

You access subfiles of a port file by applying an index to the file. If your port file has only
one subfile, you need not specify a subfile index. Otherwise, the subfile index is
mandatory. To perform an operation on the entire port file (on all the subfiles of a port
file), use a subfile index of 0 (zero).

Note that an exception to this rule is that if you invoke a READ or WRITE statement on a
port file that has more than one subfile, and do not specify a subfile index, the READ or
WRITE operation does not fail. Instead, an index of 0 (zero) is assumed. It is preferred
syntax to explicitly specify an index of 0 (zero), however.

You can specify the number of subfiles in your port file with the MAXSUBFILES port file
attribute. By default, the value of MAXSUBFILES is 1.

The valid range of values to use as a subfile index is from 0 (zero) to the value of the
MAXSUBFILES attribute. Using a value outside this range causes a run-time error on the
file operation.

The following examples illustrate the use of subfile indexes:

Example 1

ALGOL PORTF(3).MAXCENSUS := 10;

COBOL74 CHANGE ATTRIBUTE MAXCENSUS OF PORTF(3) TO 10.

Some port attributes, like MAXCENSUS, are subfile attributes. (File attributes are
discussed in Section 15, “Using Attributes.”) Example 1 shows how you access
MAXCENSUS for subfile 3 of the port file PORTF (3 is the subfile index). In Example 1,
the attribute MAXCENSUS of subfile 3 is set to the value 10.

Using Subfile Indexes

14–2 8600 0056–408

If the subfile index 3 is outside the valid range 0 (zero) to the value of MAXSUBFILES, a
run-time error occurs and the following message is displayed:

ATTRIBUTE ERROR: PORTF.MAXCENSUS ILLEGAL SUBFILE INDEX @ (line number)

Example 2

ALGOL PORTF(0).MAXCENSUS := 10;

COBOL74 CHANGE ATTRIBUTE MAXCENSUS OF PORTF(O) TO 10.

Example 2 shows how you set the subfile attribute MAXCENSUS for all the subfiles of
the port file PORTF to the value 10.

Example 3

ALGOL I := PORTF(INX).ACTUALMAXRECSIZE;

COBOL74 MOVE ATTRIBUTE ACTUALMAXRECSIZE OF PORTF(INX) TO I.

Example 3 shows how you interrogate the value of the subfile attribute
ACTUALMAXRECSIZE for subfile INX of the port file PORTF. The value of INX must be in
the valid range of subfile index values for PORTF; otherwise, a run-time error occurs and
the message mentioned in Example 1 is displayed.

Note that you cannot use the subfile index 0 (zero) when interrogating the value of a
subfile attribute; 0 (zero) is an invalid value for subfile attribute interrogation.

Example 4

ALGOL OPEN (PORTF[SUBFILE 3]);

COBOL74 FILE-CONTROL.
 SELECT PORTF
 ASSIGN TO PORT,
 ACTUAL KEY IS PORTF-SUB.
.
.
.
PROCEDURE DIVISION.
 .
 .
 MOVE 3 TO PORTF-SUB.
 OPEN I-O PORTF.

 Using Subfile Indexes

8600 0056–408 14–3

This example shows how you open subfile 3 of the port file PORTF. If 3 is not in the valid
subfile range of 0 (zero) to the value of MAXSUBFILES, a run-time error occurs and your
program is terminated with the following error message:

FILE PORTF OPEN ERROR: INVALID SUBFILE @ (line number)

Example 5

ALGOL OPEN (PORTF[SUBFILE 0]);

COBOL74 FILE_CONTROL.
 SELECT PORTF
 ASSIGN TO PORT,
 ACTUAL KEY IS PORTF-SUB.
.
.
.
PROCEDURE DIVISION.
 .
 .
 MOVE 0 TO PORTF-SUB.
 OPEN I-O PORTF.

Example 5 shows you how to open all subfiles of the port file PORTF that are presently in
a closed state. This procedure is called an OPEN ALL SUBFILES operation.

Example 6

ALGOL RSLT := OPEN (PORTF[SUBFILE INX]);

COBOL74 FILE-CONTROL.
 SELECT PORTF ASSIGN TO PORT,
 ACTUAL KEY IS PORTF-SUB,
 FILE STATUS IS PORTF-FS.
 .
 .
77 FS-SUBPORT-NOT-OPENED PIC XX VALUE "81".
 .
 .
PROCEDURE DIVISION.
 DECLARATIVES.
 ERR-HANDLING SECTION.
 USE AFTER STANDARD EXCEPTION PROCEDURE ON PORTF.
 BEGIN-ERR.
 MOVE ATTRIBUTE SUBFILEERROR OF PORTF(INX) TO TEMP.
 IF PORTF-FS IS EQUAL FS-SUBPORT-NOT-OPENED
 PERFORM ERROR-PROC.
 END DECLARATIVES.
 .
 .
 .
 MOVE INX TO PORTF-SUB.
 OPEN I-O PORTF.

Using Subfile Indexes

14–4 8600 0056–408

If you interrogate the result of the OPEN operation as shown in Example 6, your program
is not terminated if the OPEN operation returns an error. If INX is not in the valid subfile
range of 0 (zero) to the value of MAXSUBFILES, RSLT is set to equal
VALUE(BADSUBFILEINDEXRSLT) and your program continues. Note that not all
languages can return file operation results.

Example 7

ALGOL CLOSE (PORTF[SUBFILE INX]);

COBOL74 MOVE INX TO PORTF-SUB.
CLOSE PORTF.

Subfile indexes for other file operations are handled in the same way as the OPEN case
described in Example 6. In Example 7, subfile INX of the port file PORTF is being closed.

As with OPEN, you can also interrogate the result of a CLOSE operation with some
languages like ALGOL, and your program is not terminated if an error is returned.

Example 8

ALGOL WRITE (PORTF[SUBFILE 0],72,DATA);
READ (PORTF[SUBFILE 0],72,DATA);

COBOL74 MOVE 0 TO PORTF-SUB.
WRITE PORTF-RECORD-NAME FROM DATA.
MOVE 0 TO PORTF-SUB.
READ PORTF RECORD INTO DATA.

When you index PORTF by 0 (zero) on a WRITE operation, DATA is sent on all opened
subfiles of PORTF. This particular kind of WRITE operation is called a broadcast WRITE.

When you index PORTF by 0 (zero) on a READ operation, the next available input from a
subfile of PORTF is read in. This particular kind of READ operation is called a nonselective
READ. Refer to Section 19, “Exchanging Data” for more information about a
nonselective READ.

8600 0056–408 15–1

Section 15
Using Attributes

Just as with other kinds of files, you describe and monitor your port file through file
attributes. Before you open a dialogue on a subfile, you need to describe both dialogue
endpoints through attributes. Attributes also allow you to perform some dialogue
configuration before and during the dialogue connection. Information about dialogue
activity such as incoming messages and changes in dialogue state are also passed to you
through attributes.

This section discusses how to use port file attributes, rather than discussing the
attributes themselves in detail. For detailed descriptions of the attributes, refer to the File
Attributes Reference Manual.

Setting and Interrogating Attributes
You set and interrogate attributes for port files in much the same way as for other types
of files. Subfile attributes are accessed by applying a subfile index on the port file. You
can change the default setting or the current value of a file attribute in the following
ways:

• In a file declaration statement

• In an attribute assignment statement

• At run time, through file equation

The following examples illustrate the various ways to set and interrogate port file
attributes.

Example 1

ALGOL INX :=PORTF.LASTSUBFILE;

COBOL74 MOVE ATTRIBUTE LASTSUBFILE OF PORTF TO INX.

Using Attributes

15–2 8600 0056–408

You interrogate port file attributes in the same way you would other kinds of files. This
example gets the value of the LASTSUBFILE attribute of PORTF and puts it in INX.

Example 2

ALGOL FILE PORTF (KIND=PORT,
 SECURITYTYPE=PRIVATE,
 MAXSUBFILES=1024);

COBOL74 DATA DIVISION.
FILE SECTION.
FD PORTF
 VALUE OF
 SECURITYTYPE IS "PRIVATE",
 MAXSUBFILES IS 1024.

You can change the default values of attributes in your file declaration statement. In this
example, the file PORTF is declared with its KIND attribute set to PORT, its
SECURITYTYPE attribute set to PRIVATE, and its MAXSUBFILES attribute set to 1024.
The attributes KIND and SECURITYTYPE are mnemonic-type attributes, and
MAXSUBFILES is an integer-type attribute.

Example 3

ALGOL PORTF(0).SECURITYTYPE=PRIVATE;

COBOL74 CHANGE ATTRIBUTE SECURITYTYPE OF PORTF(0) TO VALUE
PRIVATE

You can change the default values of port subfile attributes by setting them with a subfile
index of zero. In this example, the SECURITYTYPE attribute of the file PORTF is set with
a subfile index of zero specified. This sets the value of the SECURITYTYPE attribute for
all the allocated subfiles and for any new subfiles that are allocated later, even after
MAXSUBFILES is increased.

Example 4

ALGOL PORTF.SECURITYTYPE := VALUE(PUBLIC);
PORTF.MAXSUBFILES := 100;

COBOL74 CHANGE ATTRIBUTE SECURITYTYPE OF PORTF TO VALUE PUBLIC.
CHANGE ATTRIBUTE MAXSUBFILES OF PORTF TO 100.

You can set attribute values in assignment statements. This example sets the value of
the SECURITYTYPE attribute to PUBLIC, and the value of the MAXSUBFILES attribute to
100.

 Using Attributes

8600 0056–408 15–3

Example 5

ALGOL PORTF (SECURITYTYPE=PUBLIC,MAXSUBFILES=100);

Some languages, like ALGOL, have a multiple attribute assignment statement. The
statement in this example is equivalent to the attribute assignments in Example 3.

Example 6

CANDE,
MARC,
or WFL

RUN SERVER; FILE
PORTF(SECURITYTYPE=PUBLIC,REQUESTEDMAXRECSIZE=80)

When you run your program through CANDE, MARC, or WFL, you can change the value
of file attributes through file equation. In Example 5, SERVER has a file whose INTNAME
(internal name) attribute is PORTF. The example syntax changes the PORTF
SECURITYTYPE attribute to PUBLIC, and its REQUESTEDMAXRECSIZE attribute to 80.
These values override the values of SECURITYTYPE and REQUESTEDMAXRECSIZE at
file declaration time.

Understanding the Difference between File and
Subfile Attributes

Port attributes can be file attributes, subfile attributes, or both. A port file attribute
applies to the file in general. A port subfile attribute applies on a per-subfile basis so that
each subfile has its own value for the subfile attribute.

Certain attributes are both file and subfile attributes because their meaning or function
can be applied to the file in general, or to each subfile individually. To reference these
attributes as a file attribute, access the attribute without using a subfile index. To
reference these attributes as a subfile attribute, access the attribute with a subfile index.
You can use the subfile index of 0 (zero) to modify the subfile attributes of all the subfiles
of a port file at once, but you cannot obtain information about a subfile attribute for all the
subfiles of a port file at once.

Table 15–2 indicates whether a port attribute is a file attribute, a subfile attribute, or both.
For attributes that are not both file and subfile attributes, referencing a file attribute as a
subfile attribute, or referencing a subfile attribute as a file attribute, is a syntax error and
is flagged at compilation time.

Using Attributes

15–4 8600 0056–408

Example 1

ALGOL REPLACE PORTF.MYNAME BY "SERVER.";

COBOL74 CHANGE ATTRIBUTE MYNAME OF PORTF TO "SERVER.".

In this example, the value “SERVER.” of the MYNAME attribute applies to the entire port
file. MYNAME is a port file attribute; you cannot assign a different MYNAME value for
each subfile.

Example 2

ALGOL REPLACE PORTF(10).YOURNAME BY "SITE21LAX.";

COBOL74 CHANGE ATTRIBUTE YOURNAME OF PORTF(10) TO "SITE21LAX.".

The attribute YOURNAME is a port subfile attribute that identifies the correspondent
endpoint. You can assign a different YOURNAME value to each subfile. In this example,
the value “SITE21LAX.” is assigned to the YOURNAME attribute of subfile 10 of PORTF.

Example 3

ALGOL IF PORTF.CENSUS = 0 THEN FINISH;

COBOL74 IF ATTRIBUTE CENSUS OF PORTF IS EQUAL TO ZERO
 PERFORM FINISH.

The attribute CENSUS is both a file and subfile attribute. When you access CENSUS as a
file attribute, as in this example, it returns the number of input messages queued for the
file. This example checks whether the CENSUS value of the file PORTF is 0 (zero).

Example 4

ALGOL IF PORTF(10).CENSUS = O THEN FINISH_DIALOG(10);

COBOL74 IF ATTRIBUTE CENSUS OF PORTF(10) IS EQUAL TO ZERO
 MOVE 10 TO DIALOG-INX
 PERFORM FINISH-DIALOG.

When you access CENSUS as a subfile attribute, it returns the number of input
messages queued for the specified subfile. This example checks whether the CENSUS
value of subfile 10 of PORTF is 0 (zero).

 Using Attributes

8600 0056–408 15–5

Setting Proper Attribute Values
You can avoid errors when you are using port file attributes if you consider what checks
are made at compile time and what checks are made at run time.

The following checks are made on port files at compile time:

• Whether the attribute is a file attribute or a subfile attribute (or both).

• What type the attribute is (for example, integer, event, mnemonic, Boolean, or
string).

• Whether the attribute is read-only, write-only, or read/write. This characteristic
determines if you can modify an attribute, interrogate it, or both.

All other checks are made at run time. To avoid attribute errors, you need to know the
following information:

• The default value for the attribute.

• The file states in which the attribute can be interrogated and modified. All port
attributes can be interrogated at any time, but the file states in which an attribute can
be modified are attribute-dependent.

• For subfile attributes, the valid range for the subfile index.

• The range of valid values for the attribute.

• Whether the attribute is a port file attribute, and whether the attribute is supported
by the port file service you are using. If an attribute is not applicable to the service of
the port file, the only valid value for the attribute is the default value.

This type of range checking and consistency checking across all attributes is
performed by the system when the subfile is activated through an OPEN or
AWAITOPEN statement.

If an attribute error is detected during attribute interrogation or modification, your
program is flagged with an attribute error message specifying the line number of the
error. Attribute errors related to event-valued attributes are always fatal; all others are
nonfatal.

You can obtain much of the necessary information mentioned in the preceding two lists
from Tables 15–1 and 15–2 later in this section.

Using Attributes

15–6 8600 0056–408

Example 1

ALGOL PORTF.REQUESTEDMAXRECSIZE := 100;

COBOL74 CHANGE ATTRIBUTE REQUESTEDMAXRECSIZE OF PORTF TO 100.

All subfiles of PORTF must be closed when you modify the value of the
REQUESTEDMAXRECSIZE attribute. If PORTF was not closed, the preceding example
would cause your program to be flagged with the following attribute error message:

ATTRIBUTE ERROR : PORTF.REQUESTEDMAXRECSIZE FILE MUST BE CLOSED @
(line number)

If an attribute error is detected during an OPEN, AWAITOPEN, or RESPOND operation,
the operation fails with a specified error. If an attribute warning is detected during these
operations, the operation continues with a warning.

A warning is generated when the attribute that is modified to an improper value might
not affect the correct operation of the program. No error warning is generated if the
attribute with the improper value does not affect the program at all. An example of such
an attribute is the SAVEFACTOR attribute, which has no effect on port file operation.

When an attribute error or warning occurs, you may interrogate the attributes ATTERR,
ATTYPE, and ATTVALUE to obtain diagnostic information about the error. ATTERR is a
Boolean-type attribute that returns TRUE if an attribute error occurred. ATTYPE contains
the attribute number of the last attribute that was incorrectly used. ATTVALUE contains a
diagnostic code that might aid you in diagnosing the error.

Example 2

ALGOL PORTF.REQUESTEDMAXRECSIZE := 100;
IF PORTF.ATTERR THEN
 HANDLE_ATT_AND_XIT (1, PORTF.ATTYPE,
 PORTF.ATTVALUE);

COBOL74 CHANGE ATTRIBUTE REQUESTEDMAXRECSIZE OF PORTF TO 100.
IF ATTRIBUTE ATTERR OF PORTF IS EQUAL TO VALUE TRUE
 PERFORM HANDLE_ATT_AND_XIT.

This version of the Example 1 code handles the result of the attribute assignment. In this
example, it is assumed that HANDLE_ATT_AND_XIT is a procedure declared earlier in
the program to handle attribute diagnostic information.

Table 15-1 contains the port services that support each attribute. If an attribute is not
applicable to a service, the only valid value for that attribute is the default value. Note that
this table does not contain nonpreferred attributes. Table 15–2 contains additional
information you might need when using port files.

 Using Attributes

8600 0056–408 15–7

Table 15–1. Port File Attributes and Associated Services

Attribute BASIC BNA NETBIOS OSIN OSIS TCPIPN TCPN

ACTUALMAX
RECSIZE

X X X X X X X

APPLICATION
CONTEXT

 X

APPLICATION
GROUP

Xò X X X

ATTERR X X X X X X X

ATTVALUE X X X X X X X

ATTYPE X X X X X X X

AVAILABLE X X X X X X X

AVAILABLE
ONLY

X X X X X

BLANK X

BLOCKEDTIME
OUT

X X X X X X

BLOCKSTRUC
TURE

X X X X X

BUFFERS X X

CENSUS X X X X X

CHANGEDSUB
FILE

X X X X X X X

CHANGE
EVENT

X X X X X X X

COMPRESSING X X X X X

COMPRESSION X X

COMPRESSION
CONTROL

X X

COMPRESSION
REQUESTED

X X

CURRENTRE
CORDLENGTH

X X X X X X X

DIALOGCHECK
INTERVAL

 X X X

DIALOGPRIO
RITY

 X X

DONOTSEARC
HNETWORK

 X

Using Attributes

15–8 8600 0056–408

Table 15–1. Port File Attributes and Associated Services

Attribute BASIC BNA NETBIOS OSIN OSIS TCPIPN TCPN

EXTDELIMITER X X X X X X X

EXTMODE X

FILECLASS X X X X X X X

FILEEQUATED X X X X X X X

FILENAME X X X X

FILESTATE X X X X X X X

FRAMESIZE X X X X X X X

FRAMESIZE
CENSUS

 X X

INPUTEVENT X X X X X X X

INTERACTIVE
FILE

X X X X X X X

INTMODE X

INTNAME X X X X X X X

KIND X X X X X X X

LASTSUBFILE X X X X X X X

LFILENAME X X X X

LTITLE X X X X X X X

MAXCENSUS X X X X X

MAXFRAMESI
ZECENSUS

 X X

MAXSUBFILES X X X X X X X

MYDOMAIN
NAME

 X X

MYHOST X X X X X X

MYHOST
GROUP

 X

MYIPADDRESS X X

MYNAME X X X X X X X

NETACCESS
POINT

 X

OUTPUTEVENT X X X X X X X

PASSIVEOPEN X X X

PATHNAME X X X X X X X

 Using Attributes

8600 0056–408 15–9

Table 15–1. Port File Attributes and Associated Services

Attribute BASIC BNA NETBIOS OSIN OSIS TCPIPN TCPN

PORTSEGMEN
TIO

 X X

PROVIDER
GROUP

X X X X X X X

REINITIALIZE X X X X X X X

REQUESTED
MAXRECSIZE

X X X X X X

RESULTLIST X X X X X X X

SECURITY
TYPE

X X X X X

SERVICE X X X X X X X

STATE X X X X X X X

SUBFILEERROR X X X X X X X

TRANSLATE X

TRANSLATING X

YOURDOMAIN
NAME

 X X

YOURHOST X X X X X X

YOURHOST
GROUP

 X

YOURIPADD
RESS

 X X

YOURNAME X X X X X X X

YOURNSAPA X X

YOURPRESENT
ATIONSEL

 X

YOURSESSION
SEL

 X X

YOURTRANS
PORTSEL

 X X

YOURUSER
CODE

 X

Note

ò For BNA Version 2 and BNAOSI only.

Using Attributes

15–10 8600 0056–408

Legend

BASIC BASICSERVICE

BNA BNANATIVESERVICE

NETBIOS NETBIOSSESSIONSERVICE

OSIN OSINATIVESERVICE

OSIS OSISESSIONSERVICE

TCPIPN TCPIPNATIVESERVICE

TCPN TCPNATIVESERVICE

Use Table 15–2 for quick reference information when programming with port files. For
more extensive descriptions of port file characteristics, see the File Attributes Reference
Manual.

Table 15–2. Port File Attribute Characteristics

Attribute No. F,S Type Default Modify

ACTUALMAXRECSIZE 201 S Integer N/A Never

APPLICATIONCONTEXT 237 S String Null CLOSED,
OPEN
RESPONSE
PLEASE

APPLICATIONGROUP 202 F String Null CLOSED

ATTERR 74 F Boolean N/A Never

ATTVALUE 76 F Real N/A Never

ATTYPE 75 F Mnemonic N/A Never

AVAILABLE 48 F Mnemonic N/A Never

AVAILABLEONLY 203 S Boolean FALSE CLOSED

BLANK 180 S Mnemonic NULL Anytime

BLOCKEDTIMEOUT 204 S Integer 0 When
CLOSED,
or when
OPEN has
completed

BLOCKSTRUCTURE 165 F Mnemonic FIXED CLOSED

BUFFERS 26 S Integer ò CLOSED

CENSUS 108 F,S Integer N/A Never

CHANGEDSUBFILE 158 F Integer N/A Never

 Using Attributes

8600 0056–408 15–11

Table 15–2. Port File Attribute Characteristics

Attribute No. F,S Type Default Modify

CHANGEEVENT 154 F,S Event N/A Never

COMPRESSING 205 S Boolean N/A Never

COMPRESSION 156 S Boolean FALSE When
CLOSED,
or when
OPEN has
completed

COMPRESSIONCONTROL 206 S Mnemonic USER When
CLOSED,
or when
OPEN has
completed

COMPRESSIONREQUESTED 207 S Boolean FALSE When
CLOSED,
or when
OPEN has
completed

CURRENTRECORDLENGTH 168 F,S Integer N/A Never

DIALOGCHECKINTERVAL 208 S Integer 0 When
CLOSED,
or when
OPEN has
completed

DIALOGPRIORITY 209 S Integer 0 When
CLOSED,
or when
OPEN has
completed
(BNA V2
only)

DONOTSEARCHNETWORK 210 S Boolean FALSE CLOSED

EXTDELIMITER 418 F Mnemonic CRCC or
UNSPECIFIED

When file
is
unassigned
, or when
file is
assigned to
a
permanent
disk and is
closed

EXTMODE 10 S Mnemonic Value of
INTMODE

CLOSED

FILECLASS 416 F Mnemonic N/A Never

Using Attributes

15–12 8600 0056–408

Table 15–2. Port File Attribute Characteristics

Attribute No. F,S Type Default Modify

FILEEQUATED 215 F Boolean N/A Never

FILENAME 162 F String Value of
INTNAME

CLOSED

FILESTATE 170 S Mnemonic N/A Never

FRAMESIZE 161 F Integer Value of
UNITS

CLOSED

FRAMESIZECENSUS 245 F,S Integer N/A Never

INPUTEVENT 152 F,S Event N/A Never

INTERACTIVEFILE 427 F Boolean FALSE Never

INTMODE 29 F Mnemonic ò CLOSED

INTNAME 72 F String Declared in
program

When
unassigned

KIND 8 F Mnemonic DONTCARE CLOSED

LASTSUBFILE 106 F Integer N/A Never

LFILENAME 430 F String INTNAME, if
TITLE is not
set

For disk
files,
anytime.
For port
files, when
all subfiles
are closed.
For all
other files,
when
unassigned
.

MAXCENSUS 157 F,S Integer 63 When
CLOSED,
or when
OPEN has
completed

MAXFRAMESIZECENSUS 246 F,S Integer ò When
CLOSED,
or when
OPEN has
completed

MAXSUBFILES 150 F Integer 1 ò

MYDOMAINNAME 284 F String Local
hostname

Never

MYHOST 151 F String Local
hostname

Never

 Using Attributes

8600 0056–408 15–13

Table 15–2. Port File Attribute Characteristics

Attribute No. F,S Type Default Modify

MYHOSTGROUP 211 F String Hostgroup of
local host

Never

MYIPADDRESS 286 S String Null CLOSED

MYNAME 140 F String Null CLOSED

NETACCESSPOINT 56 S String Null CLOSED

OUTPUTEVENT 153 S Event N/A Never

PASSIVEOPEN 234 S Boolean FALSE CLOSED

PATHNAME 379 F String FILENAME or
TITLE

Anytime
(disk);
When
CLOSED
(other
devices)

PORTSEGMENTIO 289 S Boolean FALSE CLOSED

PROVIDERGROUP 240 S String Null CLOSED

REINITIALIZE 55 F Boolean N/A When
assigned

REQUESTEDMAXRECSIZE 212 F Integer 320 words CLOSED

RESULTLIST 243 F,S String N/A Never

SECURITYTYPE 80 F Mnemonic ó CLOSED

SERVICE 235 F Mnemonic ó CLOSED

STATE 35 F,S Word N/A Never

SUBFILEERROR 169 S Mnemonic N/A Never

TRANSLATE 91 F Mnemonic NOTRANS CLOSED

TRANSLATING 92 S Boolean N/A Never

YOURDOMAINNAME 283 S String Null CLOSED

YOURHOST 143 S String Value of
MYHOST

CLOSED

YOURHOSTGROUP 213 S String Null CLOSED

YOURIPADDRESS 285 S String Null CLOSED

YOURNAME 141 S String Null CLOSED

YOURNSAPA 297 S String Null CLOSED

YOURPRESENTATIONSEL 294 S String Null CLOSED

YOURSESSIONSEL 295 S String Null CLOSED

YOURTRANSPORTSEL 296 S String Null CLOSED

Using Attributes

15–14 8600 0056–408

Table 15–2. Port File Attribute Characteristics

Attribute No. F,S Type Default Modify

YOURUSERCODE 155 S String Value of
MYSELF.
USER CODE

CLOSED

Notes

ò See the File Attributes Reference Manual for information pertaining to this cell.

ó Depends on the value the site manager set the default to by using the
NW NS MIGRATETOTBASICSERVICE system command.

Legend

No. The number of the file attribute

F,S Whether the attribute is a file attribute, subfile attribute, or both

Type The attribute type (see the File Attributes Reference Manual for an
explanation of the types)

Default The default attribute value. ("N/A" means that there is no applicable default
value, because the attribute is not modifiable.)

Modify The file state or states in which you can modify the attribute

8600 0056–408 16–1

Section 16
Understanding Port Statements

You act on your port file or subfile by invoking port file statements. For example, you
open a port subfile dialogue by invoking the OPEN statement. As mentioned previously in
Section 14, “Using Subfile Indexes,” you can specify a subfile index of 0 (zero) to invoke
the statement on all the subfiles of a port file, or you can invoke the statement on a
specific subfile. An exception is the RESPOND statement, which currently cannot accept
a 0 (zero) subfile index.

The minimum port functions are supported by ALGOL, COBOL74, COBOL85,
FORTRAN77, Pascal, and Pascal83. Additional port functions required by OSI and TCPIP
are supported by ALGOL, COBOL74, and Pascal. Other languages in the MCP
environment that support MCP environment files also access port files; however, for
these languages, full support of port file statements might not be available.

All port I/O operations return a result. If you want to obtain the result on a subfile basis,
you can interrogate an appropriate subfile attribute.

The READ and WRITE operations return a Boolean result. The format of this result is
identical to the format of the STATE attribute. You can obtain a READ or WRITE result on
a subfile basis by interrogating the STATE file or subfile attribute. While the READ or
WRITE result of the STATE attribute provides faster access, there can be additional
information than that included in this value. If you want to obtain the complete list of
results, including those returned by the STATE attribute, you can interrogate the
RESULTLIST file or subfile attribute.

All other port I/O operations return a mnemonic (integer) result. The mnemonics for the
OPEN, CLOSE, and RESPOND results and their integer values are documented in the
File Attributes Reference Manual. You can obtain the result of an operation on a subfile
basis by interrogating the SUBFILEERROR subfile attribute. The SUBFILEERROR
attribute also returns a mnemonic (integer) result. The list of values returned by the
SUBFILEERROR attribute is consistent with, but not identical to, the values returned by a
port I/O operation.

As a port subfile goes through dialogue establishment, data transfer, or dialogue
termination, the subfile transits through file states. The subfile attribute FILESTATE
reflects the current file state of the subfile.

Understanding Port Statements

16–2 8600 0056–408

Your program is notified of correspondent-initiated actions that cause a change in file
state (a correspondent-initiated OPEN operation, for example) through the
CHANGEEVENT attribute. CHANGEEVENT is both a file and a subfile attribute. When
accessed as a subfile attribute, CHANGEEVENT is in the happened state when there is
any change in the FILESTATE attribute for the subfile. CHANGEEVENT is reset when
FILESTATE is interrogated. When accessed as a file attribute, CHANGEEVENT is in the
happened state if any subfile of the port file has a CHANGEEVENT in the happened state.

Note that the file state of a subfile might have changed more than once between the
time CHANGEEVENT arrives at the happened state and the time you interrogate the
FILESTATE attribute. If the logical file is shared by more than one process and any
process interrogates the FILESTATE file attribute, none of the processes subsequently
receive the CHANGEEVENT in the happened state.

Correspondent-initiated actions are discussed more fully in the following sections. An
example showing how you might poll on the CHANGEEVENT and INPUTEVENT
attributes is found in “Understanding Event-Driven Input Techniques” in Section 19.

Table 16-1 lists the port statements and their parameters as well as the port services
that support them. The exact syntax of the port statements are language-dependent and
are documented in the reference manual of each programming language. For
completeness, the table includes attribute interrogation and modification statements.

Table 16–1. Port Statements Used with Port Services

 BASIC BNA NETBIOS OSIN OSIS TCPIPN TCPN

Attribute Interrogation X X X X X X

Attribute Modification X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X

 X

X X X X X X X

OPEN

 WAIT Option

 DONTWAIT Option

 AVAILABLE Option

 OFFER Option

 CONNECTTIMELIMIT

 Associated Data
 X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X

X X X X X X X

AWAITOPEN

 WAIT Option

 DONTWAIT Optionó

AVAILABLE Option

 CONNECTTIMELIMIT

 PARTICIPATE
 X X

 Understanding Port Statements

8600 0056–408 16–3

Table 16–1. Port Statements Used with Port Services

 BASIC BNA NETBIOS OSIN OSIS TCPIPN TCPN

X X X X X X X READ

 WAIT/DONTWAITó X X X X X X X

X X X X X X X

X X X X X X X

 X X

WRITE

 WAIT/DONTWAITó

 MOREDATA

 URGENT X X

X X X X X X X

X X X X X X X

 X X X X

X X X X X X X

X X X X X X X

CLOSE

 Abort Disposition

 Orderly Disposition

 WAIT Option

 DONTWAIT Optionó

 Associated Data
 X X

 X X

 X X

 X X

 X X

RESPOND

 ACCEPTOPEN

 REJECTOPEN

 ACCEPTCLOSE

 Associated Data X X

Note

ó NO WAIT in COBOL74

Legend

BASIC BASICSERVICE

BNA BNANATIVESERVICE

NETBIOS NETBIOSSESSIONSERVICE

OSIN OSINATIVESERVICE

OSIS OSISESSIONSERVICE

TCPIPN TCPIPNATIVESERVICE

TCPN TCPNATIVESERVICE

Understanding Port Statements

16–4 8600 0056–408

8600 0056–408 17–1

Section 17
Preparing Your Subfile for Dialogue
Establishment

You need to prepare your port file before establishing a dialogue. This preparation
involves setting file attributes to configure the dialogue. Some attributes must be set
before a subfile is opened.

Port attributes that describe the endpoints of the dialogue are called matching attributes.
The set of matching attributes depends upon the service you have chosen for your port
file. The specific set of matching attributes used by a service is discussed in the section
for that service.

For any port service, you must always identify the possible endpoint or endpoints that
your subfile could connect to. You must also identify your own endpoint to the potential
correspondent. The following attributes are included in the list of attributes used for
identifying or naming endpoints:

Matching
Attribute

Description

MYHOST The name of the host system on which your program is running. The
value of the MYHOST attribute must match the YOURHOST value of
the correspondent endpoint. MYHOST is always the name of the local
host.

MYNAME The name you are using for the dialogue. It must match the
YOURNAME value of the correspondent endpoint. MYNAME can have
a null value, but then the value of YOURNAME at the correspondent
endpoint must also be null. The default value is null.

YOURHOST The host name of the system where the correspondent endpoint is
located. The value of YOURHOST must match the MYHOST value of
the correspondent endpoint. A null value for YOURHOST matches to
any host during dialogue establishment. The default value for this
attribute is the value of MYHOST (a local dialogue).

YOURNAME The name of the correspondent port subfile. YOURNAME must match
the correspondent's MYNAME value. A null value for YOURNAME
matches any MYNAME value. The default value of YOURNAME is null.

Note that these four attributes are the matching attributes common to all port services.
Refer to the discussion of a specific service for the full set of matching attributes used by
that service.

Preparing Your Subfile for Dialogue Establishment

17–2 8600 0056–408

When your program opens a subfile, a dialogue request is issued, and an attempt is
made to match your subport to a correspondent endpoint using the matching attributes.
You can find more information about how your subfile is matched with a correspondent
endpoint, and about how a dialogue is established, in Section 18, “Establishing a Subfile
Dialogue.”

In addition to the matching attributes, certain other attributes also must be configured
prior to dialogue establishment. You do not necessarily have to set them, however, as all
configurable attributes have default values. You should be aware of the default values so
that you can determine if the defaults apply to your needs. The default values of the port
file attributes are listed in Table 15–2, “Port File Attribute Characteristics.”

The following are examples of attributes that you would configure while the subfile is still
closed:

• AVAILABLEONLY. This attribute, when set to TRUE, causes dialogue establishment
to fail instead of suspend when the correspondent endpoint is not currently
reachable.

• SECURITYTYPE. This attribute can have the value PUBLIC or PRIVATE. When set to
PRIVATE, your subfile matches only to a correspondent endpoint whose task is
running under the usercode you have specified in the YOURUSERCODE attribute. If
you are not using BNANATIVESERVICE, the value of this attribute must be PUBLIC.
Your site manager can control the setting of the default with the
NW NS SET MIGRATETOBASICSERVICE system command.

8600 0056–408 18–1

Section 18
Establishing a Subfile Dialogue

To initiate dialogue establishment on a subfile, invoke the OPEN statement. When you
invoke an OPEN statement, a request for dialogue establishment is sent to the
correspondent endpoint of the subfile.

To allow a subfile to await a request for dialogue establishment from its potential
correspondent endpoint, invoke the AWAITOPEN statement. When you invoke the
AWAITOPEN statement, no dialogue request is sent to the correspondent endpoint; your
subfile is simply made7 available to receive incoming dialogue requests.

A dialogue request must be sent by at least one communication endpoint before a
dialogue can be established. If both endpoints send dialogue requests at the same time,
the colliding requests might be resolved into one dialogue, or they might be considered
as two separate requests, depending on the service of the subfile.

Also, an OPEN or AWAITOPEN on a BNANATIVESERVICE or BASICSERVICE subport
with the YOURHOST attribute set to “.” may result in a small delay before the open
action completes. This delay is often long enough to cause the NO MATCHING PORT
message to be displayed.

Since YOURHOST = “.” implies a server program that offers a subport and waits for a
client, the way to avoid the delay is to offer more subports so one is always available
when an open from a client comes in regardless if it comes through LPP or BNA.

Using the OPEN Statement
Use the OPEN statement to initiate dialogue establishment. When your program invokes
an OPEN operation, a request for a dialogue is sent to the correspondent endpoint
specified by the matching attributes.

An OPEN statement can only be invoked on a subfile when its FILESTATE value is
CLOSED. The OPEN operation returns a FILENOTCLOSEDRLST (40) OPEN error when a
subfile has a FILESTATE value other than CLOSED.

When your program invokes an OPEN statement, the FILESTATE value of the subfile is
changed to OFFERED. If the request is accepted by the correspondent endpoint, the
operation succeeds and the FILESTATE value changes to OPENED. When this happens,
data transfer can begin. If the OPEN operation fails because the dialogue request was
rejected or an abort occurred, the FILESTATE value changes from OFFERED to CLOSED.

Establishing a Subfile Dialogue

18–2 8600 0056–408

Exactly how the OPEN statement works is determined by the value of the
AVAILABLEONLY file attribute, and by how the OPEN control options are set. The
effects of the AVAILABLEONLY attribute and the control options are discussed following
the examples of OPEN statement syntax. Refer to the specific port service discussions
for additional information about using the OPEN statement.

Your program should always request that the OPEN statement return a result indicating
whether the OPEN operation was completed successfully, or if the operation was
completed unsuccessfully, the reason for the failure. For a listing of the possible OPEN
results, refer to the File Attributes Reference Manual.

Example Syntax

ALGOL OPEN (<file name>[SUBFILE <subfile index>],<control
option>,
 <connect time limit option>)

COBOL74 MOVE <subfile index> TO <file subfile control>
OPEN <control option> <file name>
 USING <connect time limit option>.

The syntax elements of the OPEN statement are as follows:

Element Purpose

File name Identifies the port file whose subfile (or subfiles) is to be opened.

Subfile index Specifies the subfile (or subfiles) for which the OPEN operation is to
be performed.

Control option Indicates when process control should be returned to the program.
This option can have the values DONTWAIT (NO WAIT in
COBOL74), WAIT, and AVAILABLE. The control option is discussed
later in this section under “Understanding the OPEN Control Option
Parameter.”

Connect time
limit option

Specifies how long (in minutes) the system is to allow for dialogue
establishment. The connect time limit option is explained later in
this section under “Understanding the OPEN CONNECTTIMELIMIT
Parameter.”

Additional parameters or parameter values that might be supported by a particular port
service are defined in the description of that service.

 Establishing a Subfile Dialogue

8600 0056–408 18–3

Understanding the AVAILABLEONLY File Attribute for OPEN

The AVAILABLEONLY attribute specifies whether the OPEN operation fails or suspends
when a dialogue cannot currently be established with the correspondent endpoint.

If AVAILABLEONLY is set to TRUE, the OPEN operation fails when a dialogue cannot be
established with the correspondent endpoint. For example, if no matching endpoint is
found, a NOFILEFOUND (4) SUBFILEERROR is returned. If a correspondent host is not
reachable, an UNREACHABLEHOST (5) SUBFILEERROR is returned.

If AVAILABLEONLY is set to FALSE, the OPEN operation is suspended when a dialogue
cannot currently be established with the correspondent endpoint. The subfile is
suspended if the FILESTATE value is either OFFERED or AWAITINGHOST. If a
correspondent host was specified but is not reachable, the FILESTATE value is set to
AWAITINGHOST. In this situation, the FILESTATE value might switch between
OFFERED and AWAITINGHOST. If the host should become unreachable during the
opening of the subfile, the OPEN operation fails with an UNREACHABLEHOST (5)
SUBFILEERROR.

The AVAILABLEONLY attribute defaults to FALSE. For detailed information about the
AVAILABLEONLY file attribute for each port service, see the specific service sections.

Example 1

ALGOL PORTF(1).AVAILABLEONLY := TRUE;
RSLT := OPEN(PORTF[SUBFILE 1];

COBOL74 77 FS-SUBPORT-NOT-OPENED PIC XX VALUE "81".
.
.
.
CHANGE ATTRIBUTE AVAILABLEONLY OF PORTF(1) TO TRUE.
MOVE 1 TO PORTF-SUB.
OPEN NO WAIT PORTF.
IF PORTF-FS IS EQUAL TO FS-SUBPORT-NOT-OPENED
 IF ATTRIBUTE SUBFILEERROR OF PORTF(1) IS EQUAL TO
 VALUE(NOFILEFOUND)...

In this example, the system fails to establish a dialogue if the correspondent of subfile 1
of PORTF is not currently reachable. RSLT contains the result of the OPEN operation.
The SUBFILEERROR attribute of subfile 1 is also set to the appropriate value.

Establishing a Subfile Dialogue

18–4 8600 0056–408

Example 2

ALGOL PORTF(1).AVAILABLEONLY :=FALSE;
RSLT := OPEN(PORTF[SUBFILE 1]);

COBOL74 77 FS-SUBPORT-NOT-OPENED PIC XX VALUE "81".
 77 FS-AWAITINGOFFER PIC XX VALUE "13".
 77 FS-OFFERED PIC XX VALUE "02".
 77 FS-OPENED PIC XX VALUE "03".
 77 FS-AWAITINGHOST PIC XX VALUE "01".
.
.
.
CHANGE ATTRIBUTE AVAILABLEONLY OF PORTF(1) TO FALSE.
MOVE 1 TO PORTF-SUB.
OPEN NO WAIT PORTF.
IF PORTF-FS IS EQUAL TO FS-SUBPORT-NOT-OPENED
 IF ATTRIBUTE FILESTATE OF PORTF(1) IS EQUAL TO
FS-AWAITINGOFFER
 OR
 IF ATTRIBUTE FILESTATE OF PORTF(1) IS EQUAL TO FS-
OFFERED
 PERFORM WAIT-FOR-OPEN
 IF ATTRIBUTE FILESTATE OF PORTF(1) IS EQUAL TO
FS-AWAITINGHOST
.
.
.

In this example, the system attempts to reach the correspondent of subfile 1 of PORTF
until a dialogue can be established.

Understanding the OPEN Control Option Parameter

Your program does not have to wait for an OPEN operation to complete. The control
option parameter of the OPEN statement specifies when the system returns control to
your program.

Control Option When Control Is Returned to the Program

DONTWAIT (NO
WAIT in COBOL74)

Control is returned to your program as soon as possible after the
OPEN operation is invoked and the subfile is in the OFFERED,
AWAITINGHOST, or CLOSED file state.

WAIT Control is returned to your program when the OPEN operation is
complete and the subfile is in either the OPENED or CLOSED file
state. WAIT is the default.

AVAILABLE The OPEN operation is treated as if an OPEN WAIT operation
was requested with AVAILABLEONLY set to TRUE. Use of the
AVAILABLE control option is not recommended. Using the
AVAILABLEONLY attribute instead is recommended.

 Establishing a Subfile Dialogue

8600 0056–408 18–5

The OPEN control option defaults to WAIT if unspecified. Other OPEN control options
might be available with other port services.

When the system returns control to your program before the OPEN operation completes,
the result returned by the OPEN operation, as well as the value in the SUBFILEERROR
attribute, reflects only what the result of the OPEN operation is at the time control is
returned to your program. When the OPEN operation completes and the subfile is in the
OPENED or CLOSED file state, your program is signaled through the CHANGEEVENT,
FILESTATE, and SUBFILEERROR attributes.

If you did not specify DONTWAIT (NO WAIT in COBOL74) and your program is
suspended in the OPEN operation for any reason, an RSVP message is issued for your
program. For example, if your program invokes an OPEN WAIT statement and no
matching endpoint can be found, your program suspends at the OPEN statement with a
“NO MATCHING PORT” message. Remember that this would occur only if
AVAILABLEONLY is FALSE. If AVAILABLEONLY is TRUE, the OPEN operation fails
immediately if dialogue establishment is not possible when the dialogue request is made,
regardless of the value of the control option.

Example 1

ALGOL PORTF(1).AVAILABLEONLY := FALSE;
RSLT := OPEN(PORTF[SUBFILE 1],WAIT);

COBOL74 CHANGE ATTRIBUTE AVAILABLEONLY OF PORTF TO FALSE.
MOVE 1 TO PORTF-SUB.
OPEN WITH WAIT PORTF.

If AVAILABLEONLY is FALSE (it defaults to FALSE), and the OPEN operation on subfile 1
of PORTF is suspended for any reason, the program is suspended with an RSVP
message. When the OPEN operation continues and completes, the program can
interrogate RSLT or the SUBFILEERROR attribute to determine the success or failure of
the OPEN operation.

Example 2

ALGOL RSLT := OPEN(PORTF[SUBFILE 1],DONTWAIT);

COBOL74 MOVE 1 TO PORTF-SUB.
OPEN WITH NO WAIT PORTF.

In this example, control is returned to the program as soon as possible, and the OPEN
operation continues in parallel with the program. RSLT contains the result of the OPEN
operation at the point when control is returned. If RSLT is equal to OKRSLT (1), the
program is signaled that the OPEN operation completed through the CHANGEEVENT
attribute. The program can find out the final result of the OPEN operation through the
SUBFILEERROR and FILESTATE attributes.

Establishing a Subfile Dialogue

18–6 8600 0056–408

Understanding the OPEN CONNECTTIMELIMIT Parameter

The CONNECTTIMELIMIT parameter of the OPEN statement specifies the maximum
number of minutes that the program allows for the system to establish a dialogue with
the subfile.

If the subfile does not move to the OPENED file state in the number of minutes specified
in CONNECTTIMELIMIT, an implicit CLOSE ABORT operation is performed on the
subfile, and the OPEN operation fails with a TIMELIMITEXCEEDED (27) SUBFILEERROR.

If the CONNECTTIMELIMIT parameter is not specified or is set to 0 (zero), the time limit
is indefinite.

Example 1

ALGOL RSLT := OPEN(PORTF[SUBFILE 1],
 WAIT, CONNECTTIMELIMIT = 10);

COBOL74 MOVE 1 TO PORTF-SUB.
OPEN WITH WAIT PORTF USING CONNECT-TIME-LIMIT OF HOLD-
TIME.
 where
 WORKING-STORAGE had
 01 HOLD-TIME PIC 99 VALUE 10.

In this example, control is returned to the program after the OPEN operation either
completes successfully or fails. The program has specified a time limit of 10 minutes in
which the OPEN operation is to complete. If the operation exceeds 10 minutes, the
operation fails.

Example 2

ALGOL RSLT := OPEN(PORTF[SUBFILE 1],
 DONTWAIT, CONNECTTIMELIMIT = 10);

COBOL74 MOVE 1 TO PORTF-SUB.
OPEN WITH NO WAIT PORTF USING CONNECT-TIME-LIMIT OF HOLD-
TIME.
 where
 WORKING-STORAGE had
 01 HOLD-TIME PIC 99 VALUE 10.

In this example, control is returned to the program as soon as possible. RSLT reflects the
result of the OPEN operation only at the point when control is returned. The OPEN
operation then continues in parallel with the program and must complete within 10
minutes. The program is notified of the final result of the OPEN operation through the
CHANGEEVENT, FILESTATE, and SUBFILEERROR attributes.

 Establishing a Subfile Dialogue

8600 0056–408 18–7

Using the AWAITOPEN Statement
Use the AWAITOPEN statement to direct your program to wait for requests for dialogue
establishment. AWAITOPEN differs from OPEN in that AWAITOPEN does not attempt to
establish a dialogue; it merely makes a subfile available to accept dialogue requests from
other programs.

When an AWAITOPEN statement is invoked, the local system is searched for an
outstanding dialogue request that matches the subfile. If no matching dialogue request
has already been received, the AWAITOPEN operation either fails or is saved for
matching with future dialogue requests, depending upon the value of the
AVAILABLEONLY attribute.

AWAITOPEN can be invoked on a subfile only when its FILESTATE value is CLOSED.
The AWAITOPEN operation returns a FILENOTCLOSEDRLST (40) OPEN error when a
subfile has a FILESTATE value other than CLOSED.

When you invoke an AWAITOPEN statement on a subfile, the subfile moves from the
CLOSED to the AWAITINGOFFER file state. When a matching dialogue request is
received, the subfile moves from the AWAITINGOFFER to the OPENED file state. If an
error or abort occurred during the establishment procedure, the subfile is moved to the
CLOSED file state.

Exactly how the AWAITOPEN statement works is determined by the value of the
AVAILABLEONLY file attribute, and by how the AWAITOPEN control options are set. The
effects of the AVAILABLEONLY attribute and the control options are discussed in the
following subsections.

Example Syntax

ALGOL AWAITOPEN (<file name>[SUBFILE <subfile index>],<wait
option>,
 <connect time limit option>)

COBOL74 MOVE <subfile index> TO <file subfile control>.
AWAIT-OPEN <control option> <file name>
 USING <connect time limit option>.

Establishing a Subfile Dialogue

18–8 8600 0056–408

The syntax elements of the AWAITOPEN statement are as follows:

Element Purpose

File name Identifies the port file whose subfile (or subfiles) is to be made available
for dialogue establishment.

Subfile index Specifies the subfile (or subfiles) for which the AWAITOPEN operation is
to be performed.

Control
option

Indicates when process control should be returned to the program. This
option can have the values DONTWAIT (NO WAIT in COBOL74), WAIT,
and AVAILABLE. The control option is discussed later in this section
under “Understanding the AWAITOPEN Control Option Parameter.”

Connect time
limit option

Specifies how long (in minutes) the system is to allow for dialogue
establishment. The connect time limit option is explained later in this
section under “Understanding the AWAITOPEN CONNECTTIMELIMIT
Parameter.”

Additional parameters or parameter values that might be supported by a particular port
service are defined in the description of that service.

Understanding the AVAILABLEONLY File Attribute for
AWAITOPEN

The AVAILABLEONLY file attribute controls whether the system suspends or terminates
the AWAITOPEN operation when no matching dialogue request already exists at the local
host.

If AVAILABLEONLY is set to TRUE, the local host is searched for an outstanding dialogue
request that matches the subfile. If no matching dialogue request has been received, the
AWAITOPEN operation fails with a NOFILEFOUNDRSLT (2) OPEN result and a
NOFILEFOUND (4) SUBFILEERROR.

If AVAILABLEONLY is FALSE, the subfile OPEN request is saved until a matching
dialogue request is received.

The default value for AVAILABLEONLY is FALSE.

Note that some services do not maintain a list of incoming dialogue requests that could
not be matched when received. For these services, the AVAILABLEONLY attribute
should be set to FALSE. Otherwise, the window in which a dialogue can be established
is very small. Refer to the section that pertains to the service you are interested in to
determine if the service maintains a list of incoming requests.

 Establishing a Subfile Dialogue

8600 0056–408 18–9

Example 1

ALGOL PORTF(1).AVAILABLEONLY := TRUE;
RSLT := AWAITOPEN(PORTF[SUBFILE 1]);

COBOL74 CHANGE ATTRIBUTE AVAILABLEONLY OF PORTF(1) TO TRUE.
MOVE 1 TO PORTF-SUB.
AWAIT-OPEN NO WAIT PORTF.
IF PORTF-FS IS EQUAL TO FS-SUBPORT-NOT-OPENED
 IF ATTRIBUTE SUBFILEERROR OF PORTF(1) IS EQUAL TO
NOTFILEFOUND
 .
 .
 .

If no matching dialogue request is available at the local host, the AWAITOPEN operation
fails and RSLT contains the reason for the failure. For example, if the correspondent host
is reachable but no dialogue request has been received, then RSLT contains the value
NOFILEFOUNDRSLT (2).

Example 2

ALGOL PORTF(1).AVAILABLEONLY := FALSE;
RSLT := AWAITOPEN(PORTF[SUBFILE 1]);

COBOL74 CHANGE ATTRIBUTE AVAILABLEONLY OF PORTF(1) TO FALSE.
MOVE 1 TO PORTF-SUB.
AWAIT-OPEN NO WAIT PORTF.
IF PORTF-FS IS EQUAL TO FS-SUBPORT-NOT-OPENED
 IF ATTRIBUTE FILESTATE OF PORTF(1) IS EQUAL TO
FS-AWAITINGOFFER
 OR
 IF ATTRIBUTE FILESTATE OF PORTF(1) IS EQUAL TO FS-
OFFERED
 PERFORM WAIT-ON-OPEN.
IF ATTRIBUTE FILESTATE OF PORTF(1) IS EQUAL TO FS-
AWAITINGHOST
.
.
.

If no matching dialogue request is available at the local host, the AWAITOPEN operation
suspends until a match is received.

Establishing a Subfile Dialogue

18–10 8600 0056–408

Understanding the AWAITOPEN Control Option Parameter

The control option parameter of the AWAITOPEN statement allows you to specify when
control is to be returned to your program. If control is returned to your program before
the AWAITOPEN operation is complete, the AWAITOPEN operation continues in parallel
with your program, and your program is informed of the result of the operation through
the CHANGEEVENT, FILESTATE, and SUBFILEERROR file attributes.

The control option parameter has the following values:

Control Option When Control Is Returned to the Program

DONTWAIT (NO
WAIT in COBOL74)

Control is returned to your program as soon as possible and the
subfile is in either the AWAITINGOFFER or the CLOSED file
state.

WAIT Control is returned to your program only after the subfile is
matched or the AWAITOPEN operation fails. Control is returned
to your program when the FILESTATE value of the subfile is
either OPENED or CLOSED. WAIT is the default value.

AVAILABLE The AWAITOPEN operation is treated as if you requested an
AWAITOPEN WAIT operation with AVAILABLEONLY set to
TRUE. Unisys recommends that you do not use the AVAILABLE
option. Use the AVAILABLEONLY attribute instead.

The default value for the control option parameter is WAIT.

Example 1

ALGOL RSLT :=AWAITOPEN(PORTF[SUBFILE 1],WAIT);

COBOL74 MOVE 1 TO PORTF-SUB.
AWAIT-OPEN WAIT PORTF
IF PORTF-FS IS NOT EQUAL TO "00"
.
.
.

If the control option of the AWAITOPEN operation is WAIT, execution control is returned
to the program after dialogue establishment either fails or succeeds. RSLT returns the
result of dialogue establishment. The duration of the AWAITOPEN operation depends on
the AVAILABLEONLY attribute. If AVAILABLEONLY is TRUE, the AWAITOPEN operation
fails immediately if the subfile cannot currently be matched.

 Establishing a Subfile Dialogue

8600 0056–408 18–11

Example 2

ALGOL PORTF(1).AVAILABLEONLY := FALSE;
RSLT := AWAITOPEN(PORTF[SUBFILE 1],DONTWAIT);

COBOL74 CHANGE ATTRIBUTE AVAILABLEONLY OF PORTF(1) TO FALSE.
MOVE 1 TO PORTF-SUB.
AWAIT-OPEN NO WAIT PORTF.
IF PORTF-FS NOT EQUAL TO "00"
.
.
.

If AVAILABLEONLY is FALSE (the default), the AWAITOPEN operation is suspended until
the subfile can be matched to an incoming dialogue request. The AWAITOPEN
DONTWAIT statement or AWAITOPEN NO WAIT statement in COBOL74 returns control
to the program as soon as possible, and the AWAITOPEN operation continues in parallel
with the program. RSLT contains the result of the AWAITOPEN operation at the time
control is returned. You can obtain the final result by using the CHANGEEVENT,
FILESTATE, and SUBFILEERROR attributes.

Example 3

ALGOL PORTF(1).AVAILABLEONLY := TRUE;
RSLT := AWAITOPEN(PORTF[SUBFILE 1],DONTWAIT);

COBOL74 CHANGE ATTRIBUTE AVAILABLEONLY OF PORTF(1) TO TRUE.
MOVE 1 TO PORTF-SUB.
AWAIT-OPEN NO WAIT PORTF.
IF PORTF-FS IS NOT EQUAL TO "00"
.
.
.

If AVAILABLEONLY is TRUE, the AWAITOPEN operation fails immediately if the subfile
cannot currently be matched to an available dialogue request. The AWAITOPEN
DONTWAIT statement or the AWAITOPEN NO WAIT statement in COBOL74 returns
control to the program as soon as possible, and the AWAITOPEN operation continues in
parallel with the program. RSLT contains the result of the AWAITOPEN operation at the
time control is returned. You can obtain the final result by using the CHANGEEVENT,
FILESTATE, and SUBFILEERROR attributes.

Establishing a Subfile Dialogue

18–12 8600 0056–408

Understanding the AWAITOPEN CONNECTTIMELIMIT Parameter

The CONNECTTIMELIMIT parameter of the AWAITOPEN statement specifies the
maximum number of minutes that the program allows for the system to match the
subfile to an incoming dialogue request.

If the subfile does not move to OPENED in the number of minutes specified in
CONNECTTIMELIMIT, an implicit CLOSE ABORT is performed on the subfile, and the
AWAITOPEN operation fails with a TIMELIMITEXCEEDED (27) SUBFILEERROR.

The default for this parameter is indefinite.

Example 1

ALGOL RSLT := AWAITOPEN(PORTF[SUBFILE 1],
 WAIT, CONNECTTIMELIMIT = 10);

COBOL74 MOVE 1 TO PORTF-SUB.
AWAIT-OPEN WITH WAIT PORTF USING CONNECT-TIME-LIMIT OF
HOLD-TIME.
 where
 WORKING-STORAGE had
 01 HOLD-TIME PIC 99 VALUE 10.

In this example, control is returned to the program after the AWAITOPEN operation
either completes successfully or fails. The program has specified a time limit of 10
minutes in which the AWAITOPEN operation is to complete. If the operation exceeds 10
minutes, the operation fails.

Example 2

ALGOL RSLT := AWAITOPEN(PORTF[SUBFILE 1],
 DONTWAIT, CONNECTTIMELIMIT = 10);

COBOL74 MOVE 1 TO PORTF-SUB.
AWAIT-OPEN WITH NO WAIT PORTF USING CONNECT-TIME-LIMIT OF
HOLD-TIME.
 where
 WORKING-STORAGE had
 01 HOLD-TIME PIC 99 VALUE 10.

In this example, control is returned to the program as soon as possible. RSLT reflects the
result of the AWAITOPEN operation only at the point when control is returned. The
AWAITOPEN operation then continues in parallel with the program and must complete
within 10 minutes. The program is notified of the final result of the AWAITOPEN
operation through the CHANGEEVENT, FILESTATE, and SUBFILEERROR attributes.

8600 0056–408 19–1

Section 19
Exchanging Data

Once your program has established a dialogue with a correspondent endpoint, it can
begin exchanging data. Data transfer is performed on subfiles through the READ and
WRITE statements.

There are two general types of data transfer: message-oriented and data-stream-
oriented. Most services offer message-oriented data transfer, as does BASICSERVICE,
which is used to illustrate the information about exchanging data. Data-stream data
transfer is described separately under “Reading Data” and “Writing Data” in this section.

Message-oriented services maintain message boundaries during transfer. On a READ or
WRITE operation, data is delivered to and received from the program in message units
(although message truncation can occur for long messages). Data-stream-oriented
services do not maintain message boundaries during data transport. All data is
considered as a sequence of bytes that are relayed in the network in implementation-
dependent fragments. TCPIPNATIVESERVICE is an example of a data-stream-oriented
service.

Exchanging Data

19–2 8600 0056–408

Reading Data
All input data passed through subfiles are retrieved from the READ queue. You can use
the same READ techniques on port files as you use on other kinds of files, although only
array-row I/O is supported for port files. Aside from the subfile specification and the
control option, the port file READ syntax is the same as with other kinds of files:

Example Syntax

ALGOL READ (<file name>[SUBFILE<subfile
index>,DONTWAIT],<arithmetic
 expression>, <array row>)

COBOL74 MOVE <subfile index> TO <file actual key>.
READ <file name> RECORD
 WITH NO WAIT INTO <array row>.

The syntax elements of the READ statement are as follows:

Element Purpose

File name Identifies the port file whose subfile is to be read.

Subfile index Identifies the index number of the subfile. A subfile index of 0
indicates a nonselective READ operation.

Note that if you omit the subfile specification and your port file has
more than one subfile, the READ operation fails with an invalid
subfile error.

DONTWAIT (NO
WAIT in
COBOL74)

An optional parameter. When specified, as in the example, your
program is not suspended at the READ statement when no input
data is currently available. If you do not specify DONTWAIT or NO
WAIT in COBOL74, the default WAIT is assumed, in which case
your program is suspended at the READ statement until input is
available.

Arithmetic
expression

Indicates the number of data units to be read. (The data units are
words if the FRAMESIZE attribute value is 48, and bytes if the
FRAMESIZE value is 8.)

Array row Represents a row in an array in your program. This array acts as the
buffer area for your program.

Example

ALGOL READ (PORTF[SUBFILE 1,DONTWAIT], 72, IOBUF);

COBOL74 MOVE 1 TO PORTF-SUB.
READ PORTF RECORD WITH NO WAIT INTO IOBUF.

 Exchanging Data

8600 0056–408 19–3

Understanding Nonselective READ Operations

You can invoke a READ operation on a specified subfile, or you can invoke the READ
operation on the whole port file by specifying a subfile index of 0 (zero). When you
invoke a READ operation with a subfile index of 0 (zero), you are invoking what is called a
nonselective READ.

On a nonselective READ, the system returns the next available input for the port file. You
can determine which subfile the input came from by interrogating the LASTSUBFILE
attribute after the READ statement.

Example 1

ALGOL CASE WAIT(PORTF.INPUTEVENT, ...) OF
 BEGIN
 1: READ (PORTF[SUBFILE 0],72,IOBUF);
 INX := PORTF.LASTSUBFILE;
 .
 .
 .
 END;

COBOL74 WAIT ATTRIBUTE CHANGEEVENT OF PORTF
 ATTRIBUTE INPUTEVENT OF PORTF GIVING WAIT-STATE.
 GO TO HANDLE-CHANGEEVENT, HANDLE-INPUT DEPENDING ON
WAIT-STATE.

ALGOL also allows you to retrieve the value of LASTSUBFILE in the following manner. In
this example, the value of LASTSUBFILE is placed in INX. If you use this syntax, another
program that shares the logical file cannot change the value of LASTSUBFILE before your
program obtains the LASTSUBFILE value.

Example 2

ALGOL READ (PORTF[SUBFILE INX:0],72,IOBUF);

Exchanging Data

19–4 8600 0056–408

Understanding the READ WAIT/DONTWAIT Option Parameter

Normally, the READ statement waits until input is available. If you specify the
DONTWAIT (NO WAIT in COBOL74) option, the READ operation returns immediately
with a NODATAFORREAD (53) I/O result if the READ queue is empty. The default option
is WAIT.

Regardless of the option, a READ operation always returns EOF when the READ queue
is empty and the subfile is in a file state where no data can be received. Note that an
exception to this is a READ operation on a subfile in a CLOSED file state, which causes
an implicit OPEN operation to be performed. In this case the OPEN parameters are
assigned all the default OPEN options.

Example 1

ALGOL READ (PORTF[SUBFILE 1, DONTWAIT],72,IOBUF);

COBOL74 MOVE 1 TO PORTF-SUB.
READ PORTF RECORD WITH NO WAIT INTO IOBUF.

This READ DONTWAIT statement or READ NO WAIT statement in COBOL74 causes
your program to terminate with the following error if no input data is available for reading:

FILE PORTF I/O ERROR; NO AVAILABLE MESSAGE @ <line number>

Example 2

ALGOL RSLT: = READ(PORTF[SUBFILE 1, DONTWAIT],72,IOBUF);
IF RSLT THEN
 NO_INPUT(1) % NO INPUT ON SUBFILE 1
ELSE
 HANDLE_INPUT(1,IOBUF); % PROCESS SUBFILE 1 INPUT

COBOL74 MOVE 1 TO PORTF-SUB.
READ PORTF RECORD WITH NO WAIT INTO IOBUF AT END
PERFORM
EOF-SECT.

If you interrogate the result of the READ DONTWAIT statement or READ NO WAIT
statement in COBOL74, as in the preceding example, your program is not terminated if a
READ operation failure should occur. You can use RSLT or interrogate the value of the
STATE or RESULTLIST attribute for the subfile (in the previous NO_INPUT routine) to
determine if the READ DONTWAIT operation or READ NO WAIT operation failed
because of a no input condition.

 Exchanging Data

8600 0056–408 19–5

Determining Message Size for Message-Oriented Services READ
Operations

Three file attributes affect the size of messages read through port files when
message-oriented services are used:

Attribute Purpose

FRAMESIZE Specifies the data unit size used for the port file

REQUESTEDMAXRECSIZE Specifies the maximum I/O length allowed for the port
subfile

BLOCKSTRUCTURE Specifies whether the message length is fixed or
variable

Setting the Data Unit Size for READ Operations

Use the FRAMESIZE file attribute to set the size of the unit of data used for I/O
operations in the port file. FRAMESIZE can have the value 8 when the data unit is a byte,
or 48 when the data unit is a word. The REQUESTEDMAXRECSIZE,
ACTUALMAXRECSIZE, and CURRENTRECORDLENGTH attributes are all expressed in
FRAMESIZE units. So, for example, ACTUALMAXRECSIZE refers to bytes if FRAMESIZE
is set to 8, and refers to words if FRAMESIZE is set to 48. The default value for
FRAMESIZE is 48.

Setting the Maximum Message Length for READ Operations

The ACTUALMAXRECSIZE attribute value is derived from the value of the
REQUESTEDMAXRECSIZE file attribute, which is an attribute you configure while the
port file is closed. REQUESTEDMAXRECSIZE is the maximum message length that you
would like to handle on a READ or a WRITE operation. The default value of
REQUESTEDMAXRECSIZE is 1920 bytes or 320 words. When the subfile is opened, you
can use the ACTUALMAXRECSIZE subfile attribute to determine the actual maximum
data length allowed on a READ or a WRITE operation.

ACTUALMAXRECSIZE might be lowered from REQUESTEDMAXRECSIZE because of
record size restrictions of the subfile service provider. If the underlying network is BNA,
ACTUALMAXRECSIZE is lowered to the lowest REQUESTEDMAXRECSIZE value of the
two endpoints.

Exchanging Data

19–6 8600 0056–408

Other factors could result in the READ length being less than the maximum specified by
ACTUALMAXRECSIZE. The length of the message returned by the READ is the smallest
of the following:

• The length specified in the READ statement

• The length of the I/O buffer, although you would normally declare the length of the
buffer to be at least ACTUALMAXRECSIZE long

• The ACTUALMAXRECSIZE attribute of the subfile

• The actual length of the data received (if BLOCKSTRUCTURE is EXTERNAL)

CURRENTRECORDLENGTH is both a file and a subfile attribute. When interrogated as a
file attribute, the CURRENTRECORDLENGTH value reflects the value as of the last I/O
operation for the file. When interrogated as a subfile attribute, the
CURRENTRECORDLENGTH value reflects the value as of the last I/O operation on the
specified subfile. The CURRENTRECORDLENGTH attribute returns either the
ACTUALMAXRECSIZE value if the BLOCKSTRUCTURE value is FIXED, or the length of
the message received from the correspondent endpoint if the BLOCKSTRUCTURE value
is EXTERNAL. CURRENTRECORDLENGTH is not necessarily indicative of the amount of
data actually given to the user.

If the length of the actual message received from the correspondent endpoint is greater
than the smallest value from the previous list, then the message is truncated when it is
passed to your program and the MESSAGETRUNCATEDWARNING (79) I/O result is
returned by the READ operation. A READ operation that is given a
MESSAGETRUNCATIONWARNING, as a result of the receiving I/O buffer not being large
enough, experiences some performance overhead.

Since the factors described in the previous paragraphs can make the actual length of the
messages sent to your program different than the length you specified, you can reduce
message truncation (and loss of data and loss of performance) by checking the
ACTUALMAXRECSIZE value for a subfile after the dialogue is established. The port
service determines the value during dialogue establishment and sets
ACTUALMAXRECSIZE. Check this value and use it in your READ statements and when
declaring the size of your I/O buffer.

 Exchanging Data

8600 0056–408 19–7

Example

ALGOL MSGSIZE[1] := PORTF(1).ACTUALMAXRECSIZE;
RSLT := READ (PORTF[SUBFILE 1], MSGSIZE[1], IOBUF);

COBOL74 FILE SECTION.
FD PORTF.
 01 PORTF-REC PIC X(1920).
 01 PORTF-AUX-REC.
 03 PORTF-INDEXED PIC X(1920) INDEXED BY IO-SUB-A.
 .
 .
 .
WORKING STORAGE.
 77 IO-SUB PIC 9999.
 01 IO-BUF PIC X(1920).
 01 IO-AUX REDEFINES IO-BUF.
 03 IO-INDEXED PIC X(1920) INDEXED BY IO-SUB-B.
 .
 .
 .
PROCEDURE DIVISION.
 .
 .
 .
 MOVE ATTRIBUTE ACTUALMAXRECSIZE OF PORTF(1) TO MSGSIZE.
 READ PORTF RECORD.
 PERFORM MOVE-DATA
 VARYING IO-SUB-A FROM 0 BY 1 UNTIL IO-SUB-A IS EQUAL
TO
 MSGSIZE.
 .
 .
 .
MOVE-DATA.
 SET IO-SUB-B TO IO-SUB-A.
 MOVE PORTF-INDEXED(IO-SUB-A) TO IO-INDEXED(IO-SUB-B).

Note that this method does not prevent truncation if the correspondent program sends a
message with a data length longer than ACTUALMAXRECSIZE. The only way to
guarantee that no message truncation occurs is by prior agreement with the
correspondent program. You can check to see if RSLT has the value
MESSAGETRUNCATEDWARNING (79) in field [26:10].

Exchanging Data

19–8 8600 0056–408

Setting Message Length to Variable or Fixed

You can use the BLOCKSTRUCTURE attribute to indicate whether port file messages are
to be fixed or variable in length. This attribute affects only READ statements.

For port files, the following values are valid:

Mnemonic Value Meaning

FIXED Messages are supposedly all the same length: the value of
ACTUALMAXRECSIZE. Messages read that are shorter than the
maximum allowed by ACTUALMAXRECSIZE are increased to the
fixed size by the addition of blanks to the right of the last character
in the message. This process is called blank filling. The
CURRENTRECORDLENGTH attribute always returns the value of
ACTUALMAXRECSIZE.

EXTERNAL Messages are not blank filled. The actual length of the message
that was available for a program to read is indicated by the
CURRENTRECORDLENGTH attribute value.

Notes:

• The actual length of the message in the program buffer, including blanks, might be
less than the CURRENTRECORDLENGTH value. Refer to “Setting the Maximum
Message Length for READ Operations” earlier in this section.

• The READ operation performance is somewhat slower when the
BLOCKSTRUCTURE file attribute value is FIXED, because of the blank-filling process.

FIXED is the default value for this attribute.

 Exchanging Data

8600 0056–408 19–9

Understanding Data-Stream-Oriented Services READ Operations

The TCPIPNATIVESERVICE and the TCPNATIVESERVICE are data-stream-oriented
services. No message boundaries are maintained during the transmission of data in the
network. As a result, all data that the provider delivers is received by the port program,
because the next READ operation returns the next series of available bytes. If you
request more bytes of information than exist, the READ operation returns only the
existing information and does not wait to receive additional bytes of information. The
READ operation does wait for data, if 0 (zero) bytes are available and a READ WAIT
operation was invoked.

The FRAMESIZE attribute specifies the data unit size used for the port file and must be
set to 8 (8 bits).

The ACTUALMAXRECSIZE file attribute value is the maximum segment size, in
FRAMESIZE units, transmitted by the TCP provider.

Data-stream-oriented services use the FRAMESIZECENSUS and
MAXFRAMESIZECENSUS attributes as opposed to the message-oriented attributes,
CENSUS and MAXCENSUS.

Notes:

• If you use TCPNATIVESERVICE, the REQUESTEDMAXRECSIZE file attribute value is
used to calculate the ACTUALMAXRECSIZE value.

• Refer to “Setting the Maximum Message Length for READ Operations” earlier in
this section for information about the REQUESTEDMAXRECSIZE and
ACTUALMAXRECSIZE attributes and how to ensure that the entire message has
been read.

• The value of FRAMESIZE can be either 8 or 48 if you are using TCPNATIVESERVICE;
however, Unisys recommends 8.

Exchanging Data

19–10 8600 0056–408

Understanding Event-Driven Input Techniques

Your program is made aware of the presence of data in the READ queue by the
INPUTEVENT attribute. For programs that poll on input, you can include this attribute as
one of the events in your WAIT statement.

INPUTEVENT is an event-typed attribute that is in the happened state if there is data in
the READ queue. The system resets INPUTEVENT when the READ queue is empty.
INPUTEVENT is both a file and a subfile attribute. When you interrogate it as a file
attribute, INPUTEVENT indicates if there is any input for the port file. If you interrogate
INPUTEVENT as a subfile attribute, INPUTEVENT indicates whether there is any input for
the specified subfile.

Typically, your WAIT statement also includes the attribute CHANGEEVENT as well as a
timeout specification. CHANGEEVENT is both a file and subfile attribute, and it notifies
the program when there is a change of state in any of the port subfiles. The timeout
specification prevents your program from being infinitely suspended in the WAIT
statement.

If you are using multiple WAIT statements, CHANGEEVENT should come before
INPUTEVENT.

Although the CENSUS attribute for message-oriented service and the
FRAMESIZECENSUS attribute for data-stream-oriented service can be used, Unisys
recommends that INPUTEVENT be used to detect the presence of data.

Example

ALGOL DO
 BEGIN
 CASE WAIT((60),PORTF.CHANGEEVENT,PORTF.INPUTEVENT) OF
 BEGIN
 1: HANDLE_TIMEOUT;
 2: HANDLE_CHANGEEVENT
 (PORTF.CHANGEDSUBFILE);
 3: READ(PORTF[SUBFILE 0],72,IOBUF);
 HANDLE_INPUT(PORTF.LASTSUBFILE,IOBUF);
 END;
 END
UNTIL TERMINATE;

COBOL74 WAIT HOLD-TIME
 ATTRIBUTE CHANGEEVENT OF PORTF
 ATTRIBUTE INPUTEVENT OF PORTF
 GIVING WAIT-STATE.
GO TO HANDLE-TIMEOUT
 HANDLE-CHANGEEVENT
 HANDLE-INPUT DEPENDING ON WAIT-STATE.

 Exchanging Data

8600 0056–408 19–11

Writing Data
Use the WRITE statement to send out data on a subfile dialogue. You can use the same
write techniques on port files as you use on other kinds of files, although only array-row
I/O is supported with port files. Aside from the subfile specification, the port file WRITE
syntax is the same as with other kinds of files:

Example Syntax

ALGOL WRITE (<file name>[SUBFILE <subfile
index>,DONTWAIT],<arithmetic
 expression>,<array row>);

COBOL74 MOVE <subfile index> TO <file actual key>.
WRITE <file name>-REC WITH NO WAIT FROM <array row>.

The syntax elements of the WRITE statement are as follows:

Element Purpose

File name Identifies the port file whose subfile (or subfiles) is to be written to.

Subfile index Specifies the subfile for which the WRITE operation is to be
performed. A subfile index of 0 indicates a broadcast WRITE
operation.

Note that if you omit the subfile specification and your port file has
more than one subfile, the WRITE operation fails with an invalid
subfile error.

DONTWAIT (NO
WAIT in
COBOL74)

An optional parameter. If you specify DONTWAIT, your program is
not suspended at the WRITE statement when no output buffers are
available.

Arithmetic
expression

Indicates the number of data units to be written. This expression is
interpreted by the system as the length of the output data being
written. You can avoid truncating messages by setting this equal to
the ACTUALMAXRECSIZE value.

Array row Identifies a row in an array in your program. This array contains the
output data for your program.

Example

ALGOL WRITE (PORTF[SUBFILE 1], 72, IOBUF);

COBOL74 FILE SECTION.
 FD PORTF.
 01 PORTF-REC PIC X(1920).
 01 PORTF-AUX-REC.
 05 PORTF-72 PIC X(72).
 05 FILLER PIC X(1848).
.
.
.
MOVE 1 TO PORTF-SUB.
WRITE PORTF-AUX-REC FROM IOBUF.

Exchanging Data

19–12 8600 0056–408

Understanding Broadcast WRITE Operations

You can invoke a WRITE operation on a specified subfile, or you can invoke the WRITE
on the whole port file by specifying a subfile index of 0 (zero). When you invoke WRITE
with a subfile index of 0 (zero), you are invoking what is called a broadcast WRITE. For a
broadcast WRITE, the system sends the data you specify on all opened subfiles of the
port file.

Example

ALGOL WRITE (PORTF[SUBFILE 0],72,IOBUF);

COBOL74 MOVE 0 TO PORTF-SUB.
WRITE PORTF-AUX-REC FROM IOBUF.

Understanding the WRITE WAIT/DONTWAIT Option Parameter

When you invoke a WRITE operation on a specified subfile without using the DONTWAIT
(NO WAIT in COBOL74) option, your program waits while the system looks for an
available buffer. If a buffer is available, the I/O subsystem transmits the data to the
correspondent subfile and returns control to your program. The program doing the READ
operation on the subfile queues the transmitted data as an input message to be read.

If no buffers are available, your program waits until a system buffer is available.

System buffers can become unavailable when the CENSUS—FRAMESIZECENSUS for
message-oriented services—attribute value of the correspondent endpoint reaches the
MAXCENSUS—MAXFRAMESIZECENSUS for message-oriented services—attribute
value of the correspondent endpoint. System buffers become available again when
enough messages have been read by the correspondent endpoint to lower the CENSUS
or FRAMESIZECENSUS value several numbers below the MAXCENSUS or
MAXFRAMESIZECENSUS value.

System buffers can also become unavailable because of other flow control situations in
the underlying network protocol. For example, buffers can become unavailable when the
network processor runs out of memory for remote dialogues.

Regardless of the option, a WRITE operation always returns EOF if the subfile is in a file
state where output is not allowed. Note that if you perform a WRITE on a subfile in a
CLOSED file state, an implicit OPEN is performed. In this case, the OPEN parameters are
assigned all the default OPEN options.

If you want your program to continue executing without waiting until buffers are
available, you should specify the DONTWAIT (NO WAIT in COBOL74) option in the
WRITE statement and then interrogate the result of the WRITE operation. Your program
can determine if a buffer is unavailable either by

• Interrogating the STATE attribute value for the subfile. If buffers are unavailable, bits
[8:1] and [0:1] are set.

• Interrogating the RESULTLIST attribute. If buffers are unavailable, the value is
NOBUFFERFORWRITE (55).

 Exchanging Data

8600 0056–408 19–13

Once your program has determined that no buffer is available, your program can wait on
the value of the OUTPUTEVENT attribute to determine when to attempt the next WRITE
operation.

When the OUTPUTEVENT happened state is TRUE, buffers are available for transmitting
the data specified in the WRITE statement. Once your program detects this new
condition, it can invoke another WRITE statement. However, your program still needs to
determine if buffers still are available, since it is possible for the happened state of the
OUTPUTEVENT attribute to be reset between the time your program interrogated it and
the time your program actually attempts a WRITE operation.

Example 1

ALGOL WHILE NOT DONE DO
 BEGIN
 .
 .
 .
 IF RSLT :=WRITE (PORTF [SUBFILE 1,DONTWAIT],72,IOBUF)
THEN
 BEGIN
 WAIT (PORTF(1).OUTPUTEVENT);
 % Can attempt the next write

 .
 .
 .
 END;
 .
 .
 .
 END WHILE;

COBOL74 * In this example, PORTF-SUB is the ACTUAL KEY and
* PORTF-FS is the FILE STATUS key.
*
 MOVE 1 PORTF-SUB.
 PERFORM WRITE-DATA VARYING INDX FROM 1 BY 1 UNTIL INDX
IS EQUAL TO
 100.

 WRITE-DATA.
.
.
.
 WRITE PORTF-AUX-REC WITH NO WAIT FROM IOBUF.
 IF PORTF-FS NEQ 0 THEN
 IF PORTF-FS EQUAL TO 95 THEN
* No buffers condition
 WAIT ATTRIBUTE OUTPUTEVENT OF PORTF.
* Can proceed with the write
 .
 .
 .

Exchanging Data

19–14 8600 0056–408

Example 1 shows how to use the DONTWAIT or NO WAIT option of the WRITE
statement. The code also interrogates bit [8:1] of the STATE attribute value to determine
if a buffer is available. If a buffer is unavailable, the program waits on the value of the
OUTPUTEVENT attribute before it invokes another WRITE statement.

Example 2

ALGOL WRITE (PORTF[SUBFILE 1, DONTWAIT],72,IOBUF);

COBOL74 MOVE 1 TO PORTF-SUB.
WRITE PORTS-AUX-REC WITH NO WAIT FROM IOBUF.

This WRITE DONTWAIT statement or WRITE WITH NO WAIT statement in COBOL74
causes the program to terminate with the following error if no system buffer is available
for processing the WRITE data:

FILE PORTF I/O ERROR: NO AVAILABLE BUFFER @ <line number>

Determining Message Size for Message-Oriented Services
WRITE Operations

Two file attributes affect the size of messages written through port files for
message-oriented services:

Attribute Use

FRAMESIZE Use FRAMESIZE to specify the data unit size used for
the port file.

REQUESTEDMAXRECSIZE For all services except TCPIPNATIVESERVICE, use
REQUESTEDMAXRECSIZE to specify the maximum
message length allowed for the port file.

Note: The file attribute BLOCKSTRUCTURE has no effect on WRITE operations.

Setting the Data Unit Size for WRITE Operations

Use the FRAMESIZE file attribute to set the size of the unit of data used for I/O
operations in the port file. FRAMESIZE can have the value 8 when the data unit is a byte,
or 48 when the data unit is a word. The REQUESTEDMAXRECSIZE,
ACTUALMAXRECSIZE, and CURRENTRECORDLENGTH attributes are all expressed in
FRAMESIZE units. So, for example, ACTUALMAXRECSIZE refers to bytes if FRAMESIZE
is set to 8, and refers to words if FRAMESIZE is set to 48. The default value for
FRAMESIZE is 48.

 Exchanging Data

8600 0056–408 19–15

Setting the Message Length for WRITE Operations

The ACTUALMAXRECSIZE is derived from the value of the REQUESTEDMAXRECSIZE
file attribute, which is a value you assign when the port file is closed.
REQUESTEDMAXRECSIZE is the maximum message length that you would like to
handle on a READ or a WRITE operation. The default value of REQUESTEDMAXRECSIZE
is 1920 bytes or 320 words. When the subfile is opened, you can use the
ACTUALMAXRECSIZE subfile attribute to determine the actual maximum data length
allowed on a READ or a WRITE operation. ACTUALMAXRECSIZE might be lowered from
REQUESTEDMAXRECSIZE because of service provider record size restrictions. If the
underlying network is BNA, ACTUALMAXRECSIZE is lowered to the lower of the two
REQUESTEDMAXRECSIZE endpoint values.

Other factors could result in the WRITE length being less than the maximum specified by
ACTUALMAXRECSIZE. The length written is the smallest of the following:

• The length specified in the WRITE statement

• The length of the I/O buffer

• The ACTUALMAXRECSIZE value of the subfile

The length specified in the WRITE statement is assumed to be the data length that you
want the program to transmit. If the actual WRITE length is smaller than this message
length, the message is truncated when it is transmitted and the
MESSAGETRUNCATEDWARNING (79) I/O result is returned.

The length, written in FRAMESIZE units, is returned by the CURRENTRECORDLENGTH
attribute. CURRENTRECORDLENGTH is both a file and a subfile attribute. When
interrogated as a file attribute, CURRENTRECORDLENGTH returns the length of the last
I/O operation for the file. When interrogated as a subfile attribute,
CURRENTRECORDLENGTH returns the length of the last I/O operation on the specified
subfile.

Since these factors can make the actual length of the messages written from your
program different than the length you specified, prevent truncation of messages (and
loss of data) by checking the ACTUALMAXRECSIZE value for a subfile after the dialogue
is established. The system determines the value during dialogue establishment and sets
ACTUALMAXRECSIZE. Check this value and ensure that the length you use in your
WRITE statements is not longer than ACTUALMAXRECSIZE.

Exchanging Data

19–16 8600 0056–408

Example

ALGOL MSGSIZE[1] := COMFILE(1).ACTUALMAXRECSIZE;
RSLT := WRITE(COMFILE[SUBFILE1],MSGSIZE[1],IOBUF);

COBOL74 WORKING-STORAGE SECTION
 01 TEMP-REAL1 USAGE REAL.
 01 TEMP-REAL2 USAGE REAL.
 01 TEMP-REAL3 USAGE REAL.
.
.
.
MOVE 1 TO PORTF-SUB.
WRITE PORTF-SMALL FROM IOBUF
IF PORTF-FS NOT EQUAL TO ZERO.
.
.
MOVE ATTRIBUTE STATE OF PORTF TO TEMP-REAL1.
MOVE TEMP-REAL1 TO TEMP-REAL2 [26:9:10].
MOVE PORTF-FS TO TEMP-REAL3.
IF TEMP-REAL2 IS EQUAL TO TEMP-REAL3
.
.
.

You can check to see if truncation has occurred (or verify that it has not) by interrogating
the result of the WRITE statement. If a message has been truncated, the WRITE
operation returns the value MESSAGETRUNCATEDWARNING (79) in field [26:10].

 Exchanging Data

8600 0056–408 19–17

Understanding Message Size for Data-Stream-Oriented Services
WRITE Operations

Since no message boundaries are maintained during transmission of data in a network
with data-stream-oriented messages, all data bytes are transmitted unless a WRITE
DONTWAIT operation is invoked and the provider cannot handle the number of bytes
identified for transmission. Refer to Section 26, “Using TCPIPNATIVESERVICE” for
more information.

The FRAMESIZE file attribute value specifies the data unit size. You must set the
FRAMESIZE value to 8 when you are using TCPIPNATIVESERVICE.

For TCPIPNATIVESERVICE, the ACTUALMAXRECSIZE file attribute value is the optimum
segment size, in FRAMESIZE units, transmitted by the TCP provider. You can use this
information to maximize the utilization of the underlying transmission mechanisms. If
your program delivers data through the WRITE operation to the provider in multiples of
ACTUALMAXRECSIZE bytes, the performance of the program might increase.

Notes:

• If you use TCPNATIVESERVICE, the ACTUALMAXRECSIZE file attribute value
controls the size of the WRITE operation. Refer to “Setting the Message Length for
WRITE Operations” earlier in this section for information about using
ACTUALMAXRECSIZE.

• It is recommended that you set the FRAMESIZE value to 8 when you are using
TCPNATIVESERVICE.

Exchanging Data

19–18 8600 0056–408

8600 0056–408 20–1

Section 20
Closing a Dialogue

A program terminates dialogues through the CLOSE statement. Dialogue termination is
also caused if your program exits the block where the port file is declared without closing
the port file explicitly.

Your program is informed of correspondent-initiated and provider-initiated dialogue
termination through the CHANGEEVENT and FILESTATE attributes.

Two types of dialogue termination are available: orderly termination and abort
termination. Note that only OSINATIVESERVICE, OSISESSIONSERVICE, and
TCPIPNATIVESERVICE currently support orderly termination.

When orderly termination is used, the system steps the endpoints through a
handshaking process so that no data is lost. All data sent during the dialogue is
guaranteed to be delivered by the service provider. The dialogue is not terminated by a
service provider until a confirmation request is received from the correspondent—that is,
both sides must agree that no more data is to be sent when either endpoint terminates
the dialogue.

Abort termination does not guarantee transmission of all data; the service provider might
terminate the dialogue before all data is delivered. When an ABORT statement is issued
by either endpoint, the service provider might or might not wait for confirmation of the
ABORT before it terminates the dialogue. Service providers return a DATALOST (2)
SUBFILEERROR if data might be lost during dialogue termination. Note that your
program can take steps to ensure that no data is lost even though the service provider
does not support orderly termination. See “Using ABORT Termination for Orderly
Release” later in this section for more information.

If a subport close takes longer than 60 seconds to complete, the message

<filename> WAITING FOR CLOSE RESPONSE FROM HOST(s) : <host list>

is displayed. The reason for the delay depends on the service but is generally related to
network congestion or failure.

Closing a Dialogue

20–2 8600 0056–408

Example Syntax

ALGOL CLOSE (<file name>[SUBFILE <subfile index>],
 CLOSEDISPOSITION=<close disposition>,<control
option>)

COBOL74 MOVE <subfile index> TO <file subfile control>
CLOSE <file name> WITH <control option>
 USING CLOSE-DISPOSITION OF <close disposition>

The syntax elements of the CLOSE statement are as follows:

Element Purpose

File name Identifies the port file on which the CLOSE operation is to be done.

Subfile index Specifies the subfile or subfiles on which the CLOSE is to be done.

Close disposition Identifies the type of termination. Either the ABORT or ORDERLY
value can be used. ABORT is the default.

Control option Specifies when the system returns control to the program. Either
the WAIT or DONTWAIT (NO WAIT in COBOL74) value can be used.

Additional parameters or parameter values that might be supported by a particular port
service are defined in the description of that service.

Understanding the CLOSE Disposition Parameter
The CLOSE disposition parameter of the CLOSE statement specifies the type of dialogue
termination to be performed: orderly or abort. The default disposition is ABORT.

The CLOSE disposition parameter can have the following values:

Value Meaning

ABORT Termination of the subfile is immediate. A CLOSE ABORT is
destructive; all pending input and output data are purged.

When a CLOSE ABORT is invoked, the subfile moves to a
CLOSEPENDING or CLOSED file state. In a CLOSEPENDING file
state, the dialogue is considered closed, but the CLOSE operation is
still ongoing. You cannot read from or write to a subfile in this file
state. When the CLOSE operation completes, the subfile moves to
the CLOSED file state.

If a CLOSE ABORT is invoked on a subfile already in a
CLOSEPENDING or CLOSED file state, a FILENOTOPENRSLT (30)
CLOSE result is returned.

 Closing a Dialogue

8600 0056–408 20–3

Value Meaning

ORDERLY An orderly termination procedure is performed on the subfile. The
specific file states that a subfile moves through during orderly
release are dependent on the dialogue termination procedure of the
service. The file eventually goes to either CLOSED or back to an
opened state (OPENED, BLOCKED, SHUTTINGDOWN, or
URGENTDATAWAITING, for example). Note that some port services
do not support orderly CLOSE operations.

CLOSE ABORT is the default disposition.

Understanding the CLOSE Control Option
Parameter

Your program does not have to wait for a CLOSE operation to complete. The control
option parameter of the CLOSE statement determines when control is returned to your
program. The control option can have the values WAIT or DONTWAIT (NO WAIT in
COBOL74). The default control option value is WAIT.

The effects of the control option are as follows:

Control Option When Control Is Returned to the Program

WAIT When control is returned is dependent on the disposition
parameter. If the disposition is ABORT, control is returned to the
program when the file state is CLOSED for all the subfiles being
closed. If the disposition is ORDERLY, control is returned to the
program after the correspondent endpoint has acknowledged the
CLOSE request or when program participation is required to
complete orderly release.

DONTWAIT (NO
WAIT in COBOL74)

Control is returned to the program as soon as possible and after
the file state has been updated to either CLOSED,
CLOSEPENDING, or CLOSEREQUESTED (for orderly
termination).

When your program exits the block in which a port file is declared before its subfiles are
either CLOSED or CLOSEPENDING, an implicit CLOSE ABORT operation with a WAIT
control option is performed on these subfiles.

Example 1

ALGOL CLOSE(PORTF[SUBFILE 1]);

COBOL74 MOVE 1 TO PORTF-SUB.
CLOSE PORTF USING CLOSE-DISPOSITION OF ABORT.

This example closes subfile 1 of PORTF with a default CLOSE disposition of ABORT and
a default control option of WAIT. Control is returned to the program when the CLOSE
operation is complete and subfile 1 is in the CLOSED file state.

Closing a Dialogue

20–4 8600 0056–408

Example 2

ALGOL CLOSE (PORTF[SUBFILE 1],DONTWAIT);

COBOL74 MOVE 1 TO PORTF-SUB.
CLOSE PORTF WITH NO WAIT USING CLOSE-DISPOSITION OF ABORT.

This example closes subfile 1 of PORTF with a default CLOSE disposition of ABORT and
a control option of DONTWAIT (NO WAIT in COBOL74). Control is returned to the
program as soon as possible, and the CLOSE operation continues in parallel with the
program. The program is notified that the CLOSE operation is complete and the subfile is
in a CLOSED file state through the CHANGEEVENT and FILESTATE attributes.

Understanding Correspondent-Initiated Dialogue
Termination

Your program must be able to monitor and handle dialogue termination from the
correspondent endpoint. Your program is informed of a correspondent-initiated CLOSE
on a subfile through the FILESTATE and CHANGEEVENT file attributes.

When a CLOSE ABORT indication is received on a subfile from the correspondent
endpoint after a dialogue has been established, the subfile moves to the
DEACTIVATIONPENDING or DEACTIVATED file state. It moves to
DEACTIVATIONPENDING if the subfile still has data in the READ queue. When the READ
queue is empty, the subfile moves to the DEACTIVATED file state.

When the file state of a subfile changes to DEACTIVATED, your program must
acknowledge by performing a CLOSE ABORT operation on the subfile. A CLOSE ABORT
operation on a subfile in the DEACTIVATIONPENDING file state purges any data in the
READ queue and closes the subfile.

When a CLOSE ABORT indication is received from the correspondent endpoint during
dialogue establishment (the file state is OFFERED, AWAITINGOFFER, or
OPENRESPONSEPLEASE, for example), dialogue establishment terminates with a
DISCONNECTEDDURINGOPEN (17)SUBFILEERROR and the subfile is moved to the
CLOSED file state.

Note: Not true of a passive open.

 Closing a Dialogue

8600 0056–408 20–5

Example

ALGOL DO
 BEGIN
 CASE WAIT(TIMEOUT,
 PORTF.CHANGEEVENT,
 PORTF.INPUTEVENT) OF
 BEGIN
 1: HANDLE_TIMEOUT;
 2: INX := PORTF.CHANGEDSUBFILE;
 CASE PORTF(INX).FILESTATE OF
 BEGIN
 .
 .
 .
 DEACTIVATED:
 END_TRANS(INX);
 CLOSE(PORTF[SUBFILE INX]);
 END;
 3: HANDLE_INPUT;
 END;

COBOL74 WAIT HOLD-TIME, ATTRIBUTE CHANGEEVENT OF PORTF,
 ATTRIBUTE INPUTEVENT OF PORTF GIVING WAIT-STATE.
GO TO HANDLE-TIMEOUT,
 HANDLE-ERROR,
 HANDLE-INPUT DEPENDING ON WAIT-STATE.

HANDLE-ERROR.
 IF ATTRIBUTE FILESTATE OF PORTF(INX) IS EQUAL TO
VALUE DEACTIVATED
 PERFORM END-TRANS
 CLOSE PORTF.

The program waits on CHANGEEVENT and INPUTEVENT. If a subfile transits to the
DEACTIVATED file state, the procedure END-TRANS is called and the subfile is closed if
END_TRANS does an explicit CLOSE; otherwise, the subfile stays in the DEACTIVATED
file state.

Understanding Service Provider-Initiated Dialogue
Aborts

A service provider can also abort a dialogue. Your program is notified of a
provider-initiated abort through the FILESTATE and CHANGEEVENT file attributes. Your
program handles service provider-initiated aborts in the same way as correspondent-
initiated aborts.

Closing a Dialogue

20–6 8600 0056–408

Using ABORT Termination for Orderly Release
Not all services offer an orderly dialogue release mechanism. If the port file service you
are using does not, your program must exchange handshakes with the correspondent
endpoint before your program invokes a CLOSE ABORT operation in order to release the
dialogue in an orderly manner.

Your program can ensure orderly release in the same way that the orderly release
mechanism of some port services can guarantee data delivery. Your program, however,
exchanges handshakes using data transfer operations instead of orderly release
operations.

By agreeing that nothing is to be sent after a handshake is complete, your program can
invoke a CLOSE ABORT operation to terminate the dialogue without destructive effect
since there are no more data or primitives that can be disrupted. If the handshake is
completed successfully prior to the ABORT operation, then the processes can determine
that no data loss occurred.

Examples

ALGOL REPLACE IOBUF BY "ORDER_END ";
% ORDER_END IS LAST MESSAGE FROM THIS SUBFILE
WRITE(PORTF[SUBFILE 1],20,IOBUF);
ERR := READ(PORTF[SUBFILE 1],20,IOBUF);
IF ERR THEN
 % SUBFILE GOT DEACTIVATED?
 HANDSHAKE_ERR
ELSE
 % ORDER_ACKNOWLEDGE IS LAST MESSAGE FROM OTHER SIDE
 IF IOBUF = "ORDER_ACKNOWLEDGE " THEN
 BEGIN
 DISPLAY "ORDER OK";
 CLOSE(PORTF[SUBFILE 1]);
 END
 ELSE
 PROGRAMDUMP;

 Closing a Dialogue

8600 0056–408 20–7

COBOL74 PROCEDURE DIVISION
DECLARATIVES.
ERR-HANDLING SECTION.
 USE AFTER STANDARD EXCEPTION PROCEDURE ON PORTF.
BEGIN-ERR.
 PERFORM HANDSHAKE-ERR.
END DECLARATIVES.
 .
 .
 .
 MOVE "ORDER-END" TO IOBUF.
 WRITE PORTF-REC FROM IOBUF.
 READ PORTF RECORD INTO IOBUF.
 IF IOBUF IS EQUAL TO "ORDER-ACKNOWLEDGE"
 DISPLAY "ORDER OK"
 MOVE 1 TO PORTF-SUB
 CLOSE PORTF
 ELSE
 CALL SYSTEM DUMP.

In this example, the calling program opens a session to a warehouse program that takes
item orders. After opening the dialogue and making its orders, the program commences
with the termination handshake procedure (the code shown above). Only the calling
program is allowed to release the dialogue. If the warehouse program or the system
terminates the dialogue before the handshake procedure, the order is void. If the
dialogue terminates during the handshake, the calling program needs to reopen a session
to verify the order. If the handshake completes, no data is lost and the calling program
can close the subfile.

Closing a Dialogue

20–8 8600 0056–408

8600 0056–408 21–1

Section 21
Understanding Port Services

A port service is a specific set of features and functions that a program can use in
communicating with another program. Use the SERVICE file attribute to specify the port
service you would like to use with your port file. Port services differ in the following
ways:

• The types of control operations used for the port file. Control operations manage the
port file. For example, a port service might offer additional dialogue establishment
features.

• The types of data transfer operations performed with the port file.

• The set of file attributes used for the port file. Some port services support additional
file attributes or additional values for file attributes.

The service provided by a port file is dependent on the underlying interprocess
communications (IPC) environment or environments that support it. A port provider
represents an IPC environment.

Although providers fulfill the same purpose, they vary from one another. One provider
can offer IPC functions that another provider cannot provide identically, or cannot provide
at all because of differences in an underlying network or lack of an underlying network.
The SERVICE attribute value you select should reflect what provider environment or
environments you plan to use. If you select a port service that can be provided by
different IPC environments, the system selects the provider to use for each subfile when
an OPEN or AWAITOPEN operation is invoked. If you want to use a specific provider for
a subfile, identify the specific provider with the PROVIDERGROUP file attribute. Refer to
the File Attributes Reference Manual for a detailed description of the PROVIDERGROUP
attribute.

If you do not care which provider will be used for the dialogue, you can set the SERVICE
file attribute value of your port file to BASICSERVICE, which contains a set of service
functions supported by most providers. A program can use, or can potentially use, more
than one port provider for interprocess communication.

The service and provider environment used by a subfile for the dialogue cannot change
during the lifetime of the dialogue. You can modify the SERVICE attribute only when all
subfiles of a port file are closed. The default value of SERVICE is BNANATIVESERVICE.
The default value can be changed by a network operator command.

Understanding Port Services

21–2 8600 0056–408

It is important to note that the SERVICE attribute is not a matching attribute. For
example, if your subfile is a BASICSERVICE subfile, this does not imply that the matching
endpoint will also be a BASICSERVICE subfile. In fact, the matching endpoint might not
be an MCP environment subfile at all.

The SERVICE attribute merely specifies the set of functions and features your endpoint
requires over the IPC environment you plan to use. If the IPC environment offers
additional features to the service you are using, you should make a prior agreement with
your correspondent to restrict feature use. Otherwise, an unsuccessful match can result,
or your subfile dialogue can be aborted by the local system with a subfile error.

The following are brief descriptions of each port service:

• BASICSERVICE

BASICSERVICE is a message-oriented port service. It provides basic dialogue
establishment and termination, and READ and WRITE capabilities. Currently
BASICSERVICE is supported by BNA Version 2, BNAOSI, and Local Port Provider
(LPP).

• BNANATIVESERVICE

BNANATIVESERVICE is a message-oriented port service. BNANATIVESERVICE is
the service native to the BNA network environment. Currently BNANATIVESERVICE
is supported by BNA Version 2, and LPP.

• NETBIOSSESSIONSERVICE

NETBIOSSESSIONSERVICE is a message-oriented service offered over Novell
NetWare local area networks (LANs) by way of the HLCN provider.

• OSINATIVESERVICE

OSINATIVESERVICE offers a basic full-duplex, message-oriented service.
OSINATIVESERVICE is the service native to the OSI network environment. It is
provided by the BNA OSI network implementation.

• OSISESSIONSERVICE

OSISESSIONSERVICE is a subset of the OSINATIVESERVICE that includes service
functions up to the Session layer only. As with OSINATIVESERVICE,
OSISESSIONSERVICE offers a basic full-duplex, message-oriented service; however
application context and Presentation Layer functions do not apply.

• TCPIPNATIVESERVICE

TCPIPNATIVESERVICE is the service native to the TCP network environment. This
port service is a data-stream-oriented service.

• TCPNATIVESERVICE

TCPNATIVESERVICE is the service native to the TCP network environment. This port
service is a data-stream-oriented service.

Note: This service will be deimplemented in a future release.

Tables 15–1 and 15–2 summarize the port attributes and port statements available with
each service.

8600 0056–408 22–1

Section 22
Using BASICSERVICE

BASICSERVICE is a message-oriented service that is provided by the BNA Version 2,
Local Port Provider (LPP), and MCP environment OSI implementations. You should use
BASICSERVICE for your port file if you want a set of features and functions that are
common to most providers.

File Attributes Supported by BASICSERVICE
The following file attributes are supported by BASICSERVICE:

ACTUALMAXRECSIZE APPLICATIONGROUP ATTERR

ATTVALUE ATTYPE AVAILABLE

AVAILABLEONLY BLOCKEDTIMEOUT BLOCKSTRUCTURE

CENSUS CHANGEDSUBFILE CHANGEEVENT

COMPRESSING COMPRESSION COMPRESSIONREQUESTED

COMPRESSIONCONTROL CURRENTRECORDLENGTH FILEEQUATED

FILENAME FILESTATE FRAMESIZE

INPUTEVENT INTERACTIVEFILE INTNAME

KIND LASTSUBFILE LFILENAME

LTITLE MAXCENSUS MAXSUBFILES

MYHOST MYNAME OUTPUTEVENT

PATHNAME PROVIDERGROUP REINITIALIZE

REQUESTEDMAXRECSIZE RESULTLIST SECURITYTYPE

SERVICE STATE SUBFILEERROR

YOURHOST YOURNAME

If an attribute is invalid for this service, the only value of the attribute considered valid is
the default value. Invalid values are handled as described under “Setting Proper Attribute
Values” in Section 15.

BASICSERVICE attributes that do not apply to a provider are ignored by that provider.
Refer to Table 15–1 to identify the attributes that are not valid for a specific provider.

Using BASICSERVICE

22–2 8600 0056–408

The attribute ACTUALMAXRECSIZE has the following restrictions for each provider
implementation:

Provider Range Allowed

BNA Version 2 remote dialogue 1 through 20000

BNA Version 2 local dialogue 1 through 65513

LPP 1 through 65513

MCP environment OSI 1 through 64512

Statements Supported by BASICSERVICE
Of the set of language statements pertaining to port files, the following are supported by
BASICSERVICE:

• Attribute interrogation

• Attribute modification

• OPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)/AVAILABLE

− CONNECTTIMELIMIT

• AWAITOPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)/AVAILABLE

− CONNECTTIMELIMIT

• READ

− Message

− READ length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

• WRITE

− Message

− WRITE length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

• CLOSE

− Close disposition: ABORT

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)

If you use a port statement not included in the preceding list, an
UNSUPPORTEDPRIMITIVERSLT (168) result and an UNSUPPORTEDPRIMITIVE (41)
SUBFILEERROR are returned. If you use a statement parameter or a statement
parameter value not included in the previous list, an UNSUPPORTEDPARAMETERRSLT
(128) result and an UNSUPPORTEDPARAMETER (18) SUBFILEERROR are returned.

 Using BASICSERVICE

8600 0056–408 22–3

File States Supported by BASICSERVICE
The following is a list of all the possible file states a port file can have using
BASICSERVICE:

CLOSED OFFERED

AWAITINGHOST AWAITINGOFFER

OPENED BLOCKED

SHUTTINGDOWN CLOSEPENDING

DEACTIVATIONPENDING DEACTIVATED

Figures 22–1 through 22–3 illustrate the file state transitions during the dialogue
establishment phase, the data transfer phase, and the dialogue termination phase for
BASICSERVICE. Note that a subfile could make multiple file state transitions between
FILESTATE and CHANGEEVENT interrogations.

In the figures that follow, the following conventions apply:

• All user-initiated primitives, such as CLOSE ABORT, are in capital letters.

• Other events, such as dialogue not established, are enclosed in square brackets.

Figure 22–1. BASICSERVICE Dialogue Establishment File State Transitions

If the provider is BNAv2 and the BNAv2 command NW VALIDATE has been set to HOST
STRICT (see the Networking Operations Reference Manual), and if the remote host has
not been declared to BNAv2 with a NW ADD HOST command, then the FILESTA will not
stay in AWAITINGHOST state, but will transit back to closed instead (via OFFERED).

Using BASICSERVICE

22–4 8600 0056–408

Figure 22–2. BASICSERVICE Probable File State Transitions during Data Transfer

Figure 22–3. BASICSERVICE Dialogue Termination File State Transitions

 Using BASICSERVICE

8600 0056–408 22–5

If the provider is BNAv2 and the BNAv2 command NW VALIDATE has been set to HOST
STRICT, and the remote host has not been declared to BNAv2 with an NW ADD HOST
command, the FILESTATE will not stay in an AWAITINGHOST state. Instead, the
FILESTATE transits back to the CLOSED state by way of the OFFERED state. Refer to
the Networking Operations Reference Manual for more information on the NW
VALIDATE command.

If the remote host becomes unreachable, the file state is marked as BLOCKED. The file
state becomes OPENED if the remote host becomes reachable within a specific time. If
the remote host does not become reachable within that time period, the system initiates
deactivation of the dialogue.

Use the BLOCKEDTIMEOUT attribute to control the length of time that the subport is to
remain blocked before the system initiates deactivation of the dialogue.

Preparing for Dialogue Establishment Using
BASICSERVICE

The SECURITYTYPE attribute value must be PUBLIC and can default to PRIVATE if the
default setting has not been changed by using the NW NS SET
MIGRATETOBASICSERVICE system command.

BASICSERVICE uses the following matching attributes:

MYNAME
MYHOST
YOURNAME
YOURHOST
FILENAME
APPLICATIONGROUP

MYNAME, MYHOST, YOURNAME, and YOURHOST are matched as described earlier in
Section 17, “Preparing Your Subfile for Dialogue Establishment.” The FILENAME and
APPLICATIONGROUP values of your subfile must match the FILENAME and
APPLICATIONGROUP values of the correspondent endpoint.

The Local Port Provider (LPP) does not service dialogues when YOURHOST is set to
foreign hosts. In this case, LPP returns an UNSUPPORTEDFUNCTION subfile error.

BNA 4.3 does not service dialogues when YOURHOST is set to local host (for example,
local ports). In this case, BNA 4.3 returns an UNSUPPORTEDFUNCTION subfile error.

When you use BASICSERVICE over an OSI network environment, values for these
attributes are associated with OSI endpoint addresses through the
NW ADD ENDPOINTNAME or the NW ADD OSIENDPOINTNAME operator command.
The endpoint addresses can be a full OSI address or an OSI Session user address.
Communicating OSI endpoints must, however, use the same OSI layer.

Using BASICSERVICE

22–6 8600 0056–408

Note that currently the BNA OSI network implementation can associate only one OSI
address for each attribute set. Endpoints that are reachable through more than one OSI
address must have an attribute set for each address. Matching is also affected by OSI
parameters used for negotiating user message formats. See “Exchanging Data Using
BASICSERVICE” in this section for more information.

Establishing a Dialogue Using BASICSERVICE
BASICSERVICE follows the dialogue establishment procedures described earlier in
Section 18, “Establishing a Subfile Dialogue.”

Dialogue establishment can be locally initiated through the OPEN statement or be
correspondent-initiated through the AWAITOPEN statement. If both endpoints send
dialogue requests, the provider attempts to resolve the colliding requests into one
dialogue. The colliding requests might not result in a match.

Using the OPEN Statement with BASICSERVICE

The OPEN statement works as described under “Using the OPEN Statement” in
Section 18, although the effects of the AVAILABLEONLY attribute vary slightly when
used with different network environments.

The network-specific effects of the AVAILABLEONLY attribute on the dialogue
establishment procedure for the OPEN operation for each network environment are as
follows:

Network Effect on Dialogue Establishment

BNA The value of the AVAILABLEONLY attribute is transmitted with the
dialogue request. If AVAILABLEONLY is FALSE, the OPEN operation is
suspended until the correspondent host is reachable and the dialogue
request can be sent. The receiving BNA host then saves the request if it
cannot be matched with a subfile.

If AVAILABLEONLY is TRUE, the OPEN operation fails if the dialogue
request cannot be sent immediately, or if it cannot be matched by the
receiving BNA host when the request is received.

OSI When your port file is establishing a dialogue with another port file on a
remote host, the AVAILABLEONLY attribute has no effect.

 Using BASICSERVICE

8600 0056–408 22–7

Using the AWAITOPEN Statement with BASICSERVICE
Refer to “Using the AWAITOPEN Statement” in Section 18 for an explanation of the
AWAITOPEN statement.

Exchanging Data Using BASICSERVICE
BASICSERVICE follows the procedures for READ and WRITE operations described earlier
in Section 19, “Exchanging Data,” with the following considerations if you are using
BASICSERVICE in an OSI network environment.

In an OSI network environment, the format of user messages is negotiated during
dialogue establishment. The BASICSERVICE provider negotiates on behalf of the subfile
an octet string format. On an OPEN operation, the provider proposes and must negotiate
successfully the following values for OSI dialogue request parameters:

• Default Context. This defaults to null.

• Presentation Context Set. This defaults to

− ACSE-1 abstract syntax, object ID {2 2 1 0 1}

− NIST Octet String abstract syntax, object ID {1 3 14 8 2 1} (as defined by the
National Institute of Science and Technology OSI Implementors' Agreements)

On an AWAITOPEN operation, the provider matches the BASICSERVICE subfile only to
an incoming call that proposes these values for these parameters.

The way a READ operation is handled by the port service depends upon the file state of
the subfile. Table 22–1 describes the way a READ operation is handled on a subfile in
each file state supported by BASICSERVICE.

Table 22–1. Effects of File State on the READ Operation for
BASICSERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGOFFER EOF

AWAITINGHOST EOF

OPENED If the value of CENSUS is greater than 0, returns input
data; otherwise depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

SHUTTINGDOWN If the value of CENSUS is greater than 0, returns input
data; otherwise depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

BLOCKED If the value of CENSUS is greater than 0, returns input
data; otherwise depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

Using BASICSERVICE

22–8 8600 0056–408

Table 22–1. Effects of File State on the READ Operation for
BASICSERVICE

File State Action

DEACTIVATIONPENDING Returns input data; when READ queue is empty, subfile
moves to DEACTIVATED

CLOSEPENDING EOF

DEACTIVATED EOF

The result of the WRITE operation depends upon the file state of the subfile you are
writing to. Table 22–2 explains the results of the WRITE operation on a subfile in each of
the file states supported by BASICSERVICE.

Table 22–2. Effects of File State on the WRITE Operation for
BASICSERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGOFFER EOF

AWAITINGHOST EOF

OPENED If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

SHUTTINGDOWN If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

BLOCKED If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

DEACTIVATIONPENDING EOF

DEACTIVATED EOF

CLOSEPENDING EOF

Closing a Dialogue Using BASICSERVICE
BASICSERVICE does not support orderly dialogue release. BASICSERVICE provides abort
termination through the CLOSE ABORT statement, as described earlier in Section 20,
“Closing a Dialogue.”

8600 0056–408 23–1

Section 23
Using OSINATIVESERVICE

OSINATIVESERVICE is the interprocess communication service native to the OSI
network environment. You send OSI request or response messages on the port subfile
dialogue by invoking port statements like OPEN, and you are notified of incoming OSI
messages through the CHANGEEVENT and INPUTEVENT attributes.
OSINATIVESERVICE offers a basic full-duplex, message-oriented service.

The fields on OSI protocol messages are made accessible to you through port statement
parameters and attributes. Not all fields, however, are currently supported. Fields that are
not available to you are sent without values when the OSI protocol message is
transmitted. If these fields contain values when an OSI protocol message is received
from a correspondent, the system discards the values.

The following subsections summarize the port file attributes and port statements
supported by OSINATIVESERVICE.

File Attributes Supported by OSINATIVESERVICE
The following file attributes are supported by OSINATIVESERVICE. Table 15–1 contains
the list of attributes supported by each network service.

ACTUALMAXRECSIZE APPLICATIONCONTEXT APPLICATIONGROUP

ATTERR ATTVALUE ATTYPE

AVAILABLE AVAILABLEONLY BLOCKEDTIMEOUT

BLOCKSTRUCTURE CENSUS CHANGEDSUBFILE

CHANGEEVENT COMPRESSING CURRENTRECORDLENGTH

FILEEQUATED FILENAME FILESTATE

FRAMESIZE INPUTEVENT INTERACTIVEFILE

Using OSINATIVESERVICE

23–2 8600 0056–408

INTNAME KIND LASTSUBFILE

LFILENAME LTITLE MAXCENSUS

MAXSUBFILES MYHOST MYNAME

OUTPUTEVENT PATHNAME PROVIDERGROUP

REINITIALIZE REQUESTEDMAXRECSIZE RESULTLIST

SECURITYTYPE SERVICE STATE

SUBFILEERROR YOURHOST YOURNAME

In addition, the following file attributes are supported by OSINATIVESERVICE:

PORTSEGMENTIO YOURNSAPA YOURPRESENTATIONSEL

YOURSESSIONSEL YOURTRANSPORTSEL

If an attribute is invalid for this service, the only value of the attribute considered valid is
the default value. Invalid values are handled as described under “Setting Proper Attribute
Values” in Section 15. Be aware that the SECURITYTYPE attribute value must be
PUBLIC and can default to PRIVATE if the default setting has not been changed by using
the NW NS SET MIGRATETOBASICSERVICE system command.

If the attributes YOURHOST and YOURNAME are null strings on an OPEN operation, the
operation fails with a BADATTRIBUTESFOROPEN (13) SUBFILEERROR. If the MYNAME
attribute is a null string on an OPEN or AWAITOPEN operation, the operation fails with
either a BADATTRIBUTESFOROPEN (13) or BADATTRIBUTESFORAWAITOPEN (34)
SUBFILEERROR.

The ACTUALMAXRECSIZE attribute can have a value of 1 through 64512 for the
BNA OSI network implementation.

 Using OSINATIVESERVICE

8600 0056–408 23–3

Statements Supported by OSINATIVESERVICE
Of the set of language statements pertaining to port files, the following are supported by
OSINATIVESERVICE:

• Attribute interrogation

• Attribute modification

• OPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)/AVAILABLE

− CONNECTTIMELIMIT

− Associated data

− Associated data length specification

• AWAITOPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)/AVAILABLE

− CONNECTTIMELIMIT

− PARTICIPATE

• READ

− Message

− READ length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

• WRITE

− Message

− WRITE length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

− MOREDATA

• RESPOND

− Respond type: ACCEPTOPEN/REJECTOPEN/ACCEPTCLOSE

− Associated data

− Associated data length specification

• CLOSE

− Close disposition: ABORT/ORDERLY

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)

− Associated data

− Associated data length specification

Using OSINATIVESERVICE

23–4 8600 0056–408

If you use a port statement not included in the preceding list, an
UNSUPPORTEDPRIMITIVERSLT (168) result and an UNSUPPORTEDPRIMITIVE (41)
SUBFILEERROR are returned. If you use a statement parameter or a statement
parameter value not included in the previous list, an UNSUPPORTEDPARAMETERRSLT
(128) and an UNSUPPORTEDPARAMETER (18) SUBFILEERROR are returned.

Understanding the ASSOCIATEDDATA Parameter
of OSINATIVESERVICE

Your program can send user data with control messages exchanged during dialogue
establishment and dialogue termination. Your program can do this through the
ASSOCIATEDDATA parameter of the OPEN, CLOSE, and RESPOND statements.

Your program receives associated data through the READ queue. The result of your
READ statement tells you if the data returned by the READ operation is associated data.

The maximum length of ASSOCIATEDDATA that can be sent primarily depends upon the
implementation restrictions of both network providers, as well as the number of bytes
needed to encode certain dialogue parameters. The OSINATIVESERVICE provider can
guarantee support for 7K bytes of associated data. A correspondent OSI implementation
might support a protocol version that can guarantee only up to 200 bytes of associated
data and no data at all on an abort. The lesser restriction applies.

Associated data lengths greater than these limits can be sent and received by your
program. However, they are not guaranteed by the MCP environment OSI provider. It is
the responsibility of an application using OSI to specify its requirements for maximum
associated data length, and hence its requirements on OSI network implementations, to
other applications that want to communicate with it.

The preceding limits can be guaranteed only if the application context object ID has

• At most, 6 components

• Each component in the range 0 through 127 characters

If the associated data is too long, the OPEN, CLOSE ORDERLY, or RESPOND operation
fails with an ASSOCIATEDDATATOOLONGRSLT (156) result and an
ASSOCIATEDDATATOOLONG (32) SUBFILEERROR. If the associated data is too long on
a CLOSE ABORT operation, the ABORT operation continues with the warning
WARNABORTDATAIGNOREDRSLT (17) and a WARNABORTDATAIGNORED (48)
SUBFILEERROR, and the ABORT is sent without associated data.

 Using OSINATIVESERVICE

8600 0056–408 23–5

File States Supported by OSINATIVESERVICE
The following is a list of all the possible file states a port file can have using
OSINATIVESERVICE:

CLOSED CLOSEREQUESTED

OFFERED CLOSERESPONSEPLEASE

AWAITINGHOST CLOSEDINPUTPENDING

AWAITINGOFFER CLOSECOLLRESPONSEPLEASE

OPENRESPONSEPLEASE DEACTIVATIONPENDING

OPENED DEACTIVATED

SHUTTINGDOWN

CLOSEPENDING

Figures 23–1 through 23–4 illustrate the file state transitions during the dialogue
establishment phase, the data transfer phase, and the dialogue termination phase for
OSINATIVESERVICE. Note that a subfile can have multiple file state transitions between
CHANGEEVENT and FILESTATE interrogations.

In the figures that follow, the following conventions apply:

• All user-initiated primitives, such as CLOSE ABORT, are in capital letters.

• Other events, such as dialogue not established, are enclosed in square brackets.

Using OSINATIVESERVICE

23–6 8600 0056–408

Figure 23–1. OSINATIVESERVICE Dialogue Establishment File State Transitions

[Local network
shutdown in progress]

OPENED SHUTTINGDOWN

Figure 23–2. OSINATIVESERVICE Probable File State Transitions during Data

Transfer

 Using OSINATIVESERVICE

8600 0056–408 23–7

CLOSE ABORT

CLOSED

CLOSEPENDING

CLOSE ABORT

DEACTIVATED

DEACTIVATIONPENDING

All file states
after dialogue
establishment

except
CLOSEPENDING

and CLOSED

OFFERED
or

AWAITINGOFFER
or

AWAITINGHOST

[Close complete]

[READ queue
empty]

[Received dialogue
abort; READ
queue not empty]

[Received dialogue
abort; READ
queue empty]

Figure 23–3. OSINATIVESERVICE Dialogue Termination File State Transitions

If the remote host becomes unreachable, the file state is marked as BLOCKED. The file
state becomes OPENED if the remote host becomes reachable within a specific time. If
the remote host does not become reachable within that time period, the system initiates
deactivation of the dialogue.

Use the BLOCKEDTIMEOUT attribute to control the length of time that the subport is to
remain blocked before the system initiates deactivation of the dialogue.

Using OSINATIVESERVICE

23–8 8600 0056–408

OPENED
or

SHUTTINGDOWN

CLOSEREQUESTED CLOSERESPONSEPLEASE

CLOSECOLLRESPONSEPLEASE

CLOSEDINPUTPENDING

CLOSED

RESPOND
ACCEPTCLOSE

[Subfile is initiator
of the dialogue]

RESPOND
ACCEPTCLOSE

[Subfile is
responder

of the dialogue]

[Received
orderly

close
message]

[Received orderly
close accept

message]

[Received orderly
close message]

CLOSE
ORDERLY

[READ queue
empty]

[READ queue
empty]

[READ queue
not empty]

RESPOND
ACCEPTCLOSE

Figure 23–4. OSINATIVESERVICE Orderly Termination File State Transitions

 Using OSINATIVESERVICE

8600 0056–408 23–9

Preparing for Dialogue Establishment Using
OSINATIVESERVICE

The following OSI dialogue-establishment fields are used for matching:

OSI Dialogue
Request/Response

Fields
Attribute for OSI 1.2 or

3.0 Release
Attribute for OSI 3.1 and

Later Releases

OSI address
(your subfile)

MYNAME
MYHOST
FILENAME
APPLICATIONGROUP

MYNAME
MYHOST
FILENAME
APPLICATIONGROUP

OSI address
(correspondent)

YOURNAME
YOURHOST
FILENAME
APPLICATIONGROUP

YOURNAME
YOURHOST
FILENAME
APPLICATIONGROUP
YOURNSAPA
YOURPRESENTATIONSEL
YOURSESSIONSEL
YOURTRANSPORTSEL

Presentation Context Set See “Exchanging Data
Using
OSINATIVESERVICE”
later in this section.

See “Exchanging Data Using
OSINATIVESERVICE” later in
this section.

Default Context See “Exchanging Data
Using
OSINATIVESERVICE”
later in this section.

See “Exchanging Data Using
OSINATIVESERVICE” later in
this section.

OSI endpoint addresses, both local and remote, are statically declared to the system
through the NW ADD ENDPOINTNAME operator command. Through this command, an
OSI endpoint address is declared and mapped into a NAME, HOST, FILENAME, and
APPLICATIONGROUP attribute set. If your application program is using the OSI 3.1 or
later release, you can use the YOURNSAPA, YOURPRESENTATIONSEL,
YOURSESSIONSEL, and YOURTRANSPORTSEL file attributes to directly identify the
network end-point addresses of the correspondent application that might not be declared
in the static network configuration.

If your application program is using the OSI 1.2 or 3.0 release, the network environment
matches MYNAME, MYHOST, YOURNAME, and YOURHOST as described earlier in
Section 17, “Preparing Your Subfile for Dialogue Establishment.” The FILENAME and
APPLICATIONGROUP values of your subfile must match the FILENAME and
APPLICATIONGROUP values of the correspondent endpoint.

If your application program is using the OSI 3.1 or later release and you specify
YOURPRESENTATIONSEL, YOURSESSIONSEL, YOURTRANSPORTSEL, and
YOURNSAPA values, these attributes are matched even if you specify values for the
YOURNAME, YOURHOST, FILENAME, and APPLICATIONGROUP values. If you do not
specify YOURPRESENTATIONSEL, YOURSESSIONSEL, YOURTRANSPORTSEL, and

Using OSINATIVESERVICE

23–10 8600 0056–408

YOURNSAPA values, YOURNAME, YOURHOST, FILENAME, and APPLICATIONGROUP
values are matched.

Note that currently the BNA OSI network implementation associates only one OSI
address for an endpoint for each NAME, HOST, FILENAME, and APPLICATIONGROUP
attribute set. Endpoints that are reachable through more than one OSI address (because
of multiple network addresses, for example) must have an attribute set for each address.

Establishing a Dialogue Using OSINATIVESERVICE
An OSI dialogue request is transmitted when you invoke an OPEN operation on a subfile.
When you invoke an AWAITOPEN operation, your subfile is made available to be
matched to an incoming dialogue request. If both endpoints send dialogue requests, the
colliding dialogue requests are considered as two separate requests for dialogue. That is,
incoming dialogue requests are not matched to subfiles on which you have invoked an
OPEN operation.

Using the OPEN Statement with OSINATIVESERVICE

When you invoke an OPEN statement, a dialogue request is sent to the OSI endpoint
address named by the YOURNAME, YOURHOST, FILENAME, and APPLICATIONGROUP
attributes. You can send additional dialogue parameters with the request, by using
attributes or parameters of the OPEN statement. Some dialogue parameters are
negotiated by the dialogue endpoints. The values of other dialogue parameters, like
associated data, are merely exchanged. See “Understanding Negotiation during Dialogue
Establishment” later in this section for more information on this topic.

Example Syntax

ALGOL OPEN (<file name>[SUBFILE <subfile index>],<control
option>,
 <connect time limit option>,<associated data
option>)

COBOL74 MOVE <subfile index> TO <file subfile control>.
OPEN <control option> <file name> USING
 <connect time limit>
 <associated data option>

In addition to the file name, subfile index, control option, and connect time limit option,
OSINATIVESERVICE also supports the associated data option. That option enables you to
send user data with the dialogue request and consists of the following two elements:

Element Purpose

ASSOCIATEDDATALENGTH Specifies the length of the user data to be sent

ASSOCIATEDDATA Specifies the user data to be sent

 Using OSINATIVESERVICE

8600 0056–408 23–11

Understanding the AVAILABLEONLY File Attribute Using
OSINATIVESERVICE

As discussed in “Understanding the AVAILABLEONLY File Attribute for OPEN” in
Section 18, the AVAILABLEONLY attribute specifies whether the OPEN operation fails or
suspends when a dialogue cannot currently be established with the correspondent
endpoint.

If your port file is communicating with another port file on the local system, the following
actions will occur depending on the value of the AVAILABLEONLY attribute:

• If AVAILABLEONLY is set to FALSE, the OPEN operation is suspended until a
dialogue is established, or until the CONNECTTIMELIMIT value is exceeded.

• If AVAILABLEONLY is set to TRUE and no match is found, the OPEN operation fails,
your program resumes, and a NOFILEFOUND (4) SUBFILEERROR is returned and
the subfile is not available for subsequent matching.

When your port file is communicating with another port file on a remote host, the
AVAILABLEONLY attribute has no effect.

Understanding the OPEN Control Option Parameter for
OSINATIVESERVICE

OSINATIVESERVICE allows the following values for the control option parameter of the
OPEN statement:

• WAIT

• DONTWAIT (NO WAIT in COBOL74)

• AVAILABLE

These control options function as described earlier under “Understanding the OPEN
Control Option Parameter” in Section 18.

Understanding the CONNECTTIMELIMIT Parameter for
OSINATIVESERVICE

This parameter functions the same as described earlier under “Understanding the OPEN
CONNECTTIMELIMIT Parameter” in Section 18.

Using OSINATIVESERVICE

23–12 8600 0056–408

Understanding the OPEN ASSOCIATEDDATA Parameter for
OSINATIVESERVICE

You can send user data with a dialogue request when using OSINATIVESERVICE. You
can do so through the ASSOCIATEDDATA parameter of the OPEN statement.

No user data is sent if the associated data parameter is absent or if the associated data
length is 0 (zero).

Example 1

ALGOL OPEN(PORTF[SUBFILE 1],ASSOCIATEDDATA="MYDATA");

COBOL74 MOVE 1 TO PORTF-SUB.
OPEN I-O PORTF USING ASSOCIATED-DATA OF "MYDATA".

This example opens subfile 1 of PORTF. When the dialogue request is sent, the
information "MYDATA" is sent to the correspondent process as user data.

Example 2

ALGOL OPEN(PORTF[SUBFILE 1],
 ASSOCIATEDDATALENGTH=14,
 ASSOCIATEDDATA=PTR);

COBOL74 MOVE 1 TO PORTF-SUB.
OPEN I-O PORTF USING
 associated-DATA-LENGTH OF 14
 ASSOCIATED-DATA OF PORTF-MSG.

This example opens subfile 1 of PORTF. When the dialogue request is sent, the data
pointed to by PTR for 14 characters is sent to the correspondent process as user data.

Using the AWAITOPEN Statement with OSINATIVESERVICE

Invoke an AWAITOPEN statement to make a subfile available to accept dialogue
requests from other programs. When an AWAITOPEN is invoked, the local system is
searched for an outstanding dialogue request that matches the subfile. If no matching
dialogue request has already been received, the AWAITOPEN fails or is saved for future
matching, depending upon the value of the AVAILABLEONLY attribute.

When the system receives a dialogue request, it matches the request to a subfile that
invoked an AWAITOPEN statement. If the system cannot match the request, it keeps
the request for future matching.

The following fields from the dialogue request received from the correspondent endpoint
are used by the OSINATIVESERVICE provider when it matches the request to a subfile:

• The calling endpoint address

• The called endpoint address

• The presentation context set

• The default presentation context

 Using OSINATIVESERVICE

8600 0056–408 23–13

The addresses are looked up on the local system to retrieve matching values for the
NAME, HOST, FILENAME, and APPLICATIONGROUP attributes. These values are used
to match to the attributes of the subfile. The subfile is matched as described in
“Preparing for Dialogue Establishment Using OSINATIVESERVICE” earlier in this section.

Example Syntax

ALGOL AWAITOPEN (<file name>[SUBFILE <subfile index>],
 <control option>, <participate option>,
 <connect time limit option>)

COBOL74 MOVE <subfile index> TO <file subfile control>.
AWAIT-OPEN <control option> <file name> USING
 <participate option>
 <connect time limit option>.

In addition to the file name, subfile index, control option, and connect time limit
parameters of the general port AWAITOPEN statement, OSINATIVESERVICE also
supports the PARTICIPATE option. This parameter enables you to conditionally or
unconditionally establish a dialogue when the subfile is matched to an incoming dialogue
request. See “Understanding the AWAITOPEN PARTICIPATE Parameter for
OSINATIVESERVICE” later in this section for more information.

Understanding the AWAITOPEN Control Option Parameter for
OSINATIVESERVICE

OSINATIVESERVICE allows the following values for the AWAITOPEN control option:

• WAIT

• DONTWAIT (NO WAIT in COBOL74)

• AVAILABLE

These options function as described earlier under “Understanding the AWAITOPEN
Control Option Parameter” in Section 18.

Using OSINATIVESERVICE

23–14 8600 0056–408

Understanding the AWAITOPEN PARTICIPATE Parameter for
OSINATIVESERVICE

OSINATIVESERVICE provides you with the ability to conditionally establish a dialogue on
an AWAITOPEN operation. The PARTICIPATE option of the AWAITOPEN statement
specifies if the program uses conditional or unconditional dialogue establishment when a
dialogue request is received. The PARTICIPATE option can be either TRUE or FALSE.

If PARTICIPATE is FALSE when a request for dialogue establishment is received, the
request is accepted and the subfile is moved to an OPENED file state. The values of
negotiable attributes are unconditionally accepted and no user data is sent with the
response.

If PARTICIPATE is TRUE when a request for dialogue establishment is received, the
subfile is moved to the OPENRESPONSEPLEASE file state. In this state, the program
can interrogate or modify certain attributes for negotiation or for transmission on the
response. The program accepts or rejects the call through the RESPOND
ACCEPTOPEN/REJECTOPEN statement.

If there is user data in the READ queue that came with the dialogue request
(OPENDATA), the program can read the data before it responds. If you want to send user
data with the response, use the associated data parameter of the RESPOND statement.
If the program accepts the request, the subfile moves to the OPENED file state. If the
program rejects the request, the subfile moves to the CLOSED or
CLOSEDINPUTPENDING file state.

PARTICIPATE defaults to FALSE.

Example

ALGOL AWAITOPEN(PORTF[SUBFILE 1],PARTICIPATE=TRUE);

COBOL74 MOVE 1 TO PORTF-SUB.
AWAIT-OPEN PORTF USING PARTICIPATE.

When subfile 1 of PORTF is matched to an incoming dialogue request, the subfile
transits to the OPENRESPONSEPLEASE file state. In this file state, the program can
interrogate attributes of the matching dialogue request, set negotiable attributes, and
READ any associated data that might have arrived with the request.

 Using OSINATIVESERVICE

8600 0056–408 23–15

Using the RESPOND Statement with OSINATIVESERVICE

OSINATIVESERVICE allows a program to respond positively or negatively to a request
indication received from a correspondent endpoint. The nature of the request is
contained in the FILESTATE attribute. The program uses the RESPOND statement to
respond to dialogue establishment requests (OPENRESPONSEPLEASE file state) and
dialogue termination requests (CLOSERESPONSEPLEASE and
CLOSECOLLRESPONSEPLEASE file states) from the correspondent endpoint. The
RESPOND statement returns a RESPOND result.

Example Syntax

ALGOL RESPOND (<file identifier>[SUBFILE<subfile index>],
 RESPONDTYPE=<response type>,<associated data
option>)

COBOL74 MOVE <subfile index> TO <file subfile control>.
RESPOND <file name> WITH RESPONSE-TYPE OF <response type>
 USING <associated data option>.

The syntax elements are as follows:

Element Purpose

File identifier Specifies the name of the port file on which the RESPOND
operation is to be performed.

Subfile index Indicates the subfile that the response is for. A subfile index of 0
(zero) is currently not allowed.

Response type Specifies the type of response with one of the following values:
ACCEPTOPEN, REJECTOPEN, or ACCEPTCLOSE. The response
type is described under “Understanding the Response Type
Parameter” in this section.

Associated data
option

Specifies that data is being sent with the response. This option
consists of two elements:

ASSOCIATEDDATALENGTH. This element specifies the length of
user data to be sent.

ASSOCIATEDDATA. This element specifies the user data to be
sent.

See “Understanding the ASSOCIATEDDATA Parameter of
OSINATIVESERVICE” earlier in this section for more information.

Example 1

ALGOL RESPOND(PORTF[SUBFILE 1], RESPONDTYPE=ACCEPTOPEN);

COBOL74 MOVE 1 TO PORTF-SUB.
RESPOND PORTF WITH RESPONSE-TYPE OF ACCEPT-OPEN.

In this example the program is responding to an offer for subfile 1 on port file PORTF by
accepting the offer.

Using OSINATIVESERVICE

23–16 8600 0056–408

Example 2

ALGOL RESPOND(PORTF[SUBFILE 1],
 RESPONDTYPE=ACCEPTOPEN,
 ASSOCIATEDDATA="INFO");

COBOL74 MOVE 1 TO PORTF-SUB.
RESPOND PORTF WITH RESPONSE-TYPE OF ACCEPT-OPEN
 USING ASSOCIATED-DATA OF "INFO".

The program is responding to an offer for subfile 1 of port file PORTF by accepting the
offer. The information "INFO" is sent as user data with the positive response to the
dialogue request.

Understanding the Response Type Parameter

You can assign the response type parameter the value ACCEPTOPEN, REJECTOPEN, or
ACCEPTCLOSE.

Your program can respond to a dialogue establishment request if your program invoked
an AWAITOPEN operation with PARTICIPATE set to TRUE. When a dialogue
establishment request is received, the file state moves to OPENRESPONSEPLEASE.
Your program can agree to the dialogue by assigning the value ACCEPTOPEN to the
response type parameter of the RESPOND statement. Your program can reject the
dialogue request by assigning the value REJECTOPEN to the RESPOND response type
parameter.

Your program can respond to a dialogue orderly close request when the subfile file state
is CLOSERESPONSEPLEASE or CLOSECOLLRESPONSEPLEASE. Your program can
agree to the close request by assigning the value ACCEPTCLOSE to the response type.
Note that a response type of REJECTCLOSE is not yet supported.

Example 1

ALGOL RESPOND(PORTF[SUBFILE 1],RESPONDTYPE=ACCEPTOPEN);

COBOL74 MOVE 1 TO PORTF-SUB.
RESPOND PORTF WITH RESPONSE-TYPE OF ACCEPT-OPEN.

In this example, subfile 1 of PORTF is in the file state OPENRESPONSEPLEASE. The
program is responding to the OPEN request by accepting the offer.

Example 2

ALGOL RESPOND(PORTF[SUBFILE 1],RESPONDTYPE=REJECTOPEN);

COBOL74 MOVE 1 TO PORTF-SUB.
RESPOND PORTF WITH RESPONSE-TYPE OF REJECT-OPEN.

In this example, subfile 1 of PORTF is in the file state OPENRESPONSEPLEASE. The
program is responding to the OPEN request by rejecting the offer.

 Using OSINATIVESERVICE

8600 0056–408 23–17

Example 3

ALGOL RESPOND(PORTF[SUBFILE 1],RESPONDTYPE=ACCEPTCLOSE);

COBOL74 MOVE 1 TO PORTF-SUB.
RESPOND PORTF WITH RESPONSE-TYPE OF ACCEPT-CLOSE.

In this example, subfile 1 of PORTF is in the file state CLOSERESPONSEPLEASE or
CLOSECOLLRESPONSEPLEASE. The program is positively responding to the request for
an orderly close.

Understanding Negotiation during Dialogue Establishment

The initiator of a dialogue can propose values for negotiable dialogue parameters in an
OSI dialogue request. The correspondent can negotiate the values of dialogue
parameters in its response to the dialogue request.

If the subfile is awaiting a dialogue request, it can participate in negotiation only if your
program invoked the AWAITOPEN statement with PARTICIPATE set to TRUE. The
program can then modify the negotiable parameters when the subfile is in the
OPENRESPONSEPLEASE file state before invoking the RESPOND statement. If
PARTICIPATE is FALSE, all negotiable dialogue parameters of a matching dialogue
request are automatically accepted.

Currently, the only dialogue parameter that you can negotiate is the application context
parameter. See “Exchanging Data Using OSINATIVESERVICE” in this section for
information on default context and presentation context set handling.

The application context is an explicitly defined set of application service elements,
options, and any other information necessary for two endpoints to interact in a particular
dialogue. Application context is a mandatory dialogue parameter.

A dialogue application context is proposed on a dialogue request. The responder can
respond with the same context, or can counter-propose another application context. The
final application context is that picked by the responding program.

When your program invokes an OPEN statement, the APPLICATIONCONTEXT attribute
contains the context that your program proposes in its dialogue request. If
APPLICATIONCONTEXT is null (the default value), the application context defined by the
National Institute of Science and Technology (NIST), “Nil Application Context,” is
proposed for your program, with the object ID {1 3 14 8 1 1}. When your program
receives the response to the dialogue request, APPLICATIONCONTEXT contains the
context proposed by the correspondent program. If APPLICATIONCONTEXT was
changed in the response, the OPEN operation returns a WARNCONTEXTCHANGED (37)
SUBFILEERROR.

Using OSINATIVESERVICE

23–18 8600 0056–408

When your program invokes an AWAITOPEN statement, the system sets
APPLICATIONCONTEXT to a null string. If it was not already a null string, the
SUBFILEERROR attribute is set to the WARNCONTEXTIGNORED (47) warning and the
AWAITOPEN operation continues. When your program receives a dialogue request,
APPLICATIONCONTEXT contains the context proposed by the correspondent program. If
your program invoked the AWAITOPEN operation with PARTICIPATE set to TRUE, your
program has the opportunity to counter-propose an application context by interrogating
and setting the value of APPLICATIONCONTEXT while in the OPENRESPONSEPLEASE
file state. This value is then sent by the service provider when your program invokes the
RESPOND operation.

Examples

ALGOL REPLACE PORTF(1).APPLICATIONCONTEXT
 BY "1 3 14 8 1 1.";
CASE OPEN(PORTF[SUBFILE 1]) OF
 BEGIN
 .
 .
 .
 WARNCONTEXTCHANGEDRSLT:
 IF PORTF(1).APPLICATIONCONTEXT
 NEQ "1 3 14 8 1 1." THEN
 CLOSE(PORTF[SUBFILE 1]);
 .
 .
 .
 END;

COBOL74 CHANGE ATTRIBUTE APPLICATIONCONTEXT OF PORTF(1)
 TO "1 3 14 8 1 1.".
MOVE 1 TO PORTF-SUB.
OPEN I-O PORTF.
IF PORTF-FS IS NOT EQUAL TO "00"
 IF ATTRIBUTE SUBFILEERROR OF PORT(1) IS EQUAL TO
 VALUE (WARNCONTEXTCHANGED)
 IF ATTRIBUTE APPLICATIONCONTEXT OF PORTF(1) IS NOT
EQUAL TO
 "1 3 14
8 1 1."
 MOVE 1 TO PORTF-SUBF.
CLOSE PORTF.

In this program example, the application can support only the application context defined
by the object identifier "1 3 14 8 1 1.".

 Using OSINATIVESERVICE

8600 0056–408 23–19

Exchanging Data Using OSINATIVESERVICE
When using an OSI network environment, the format of user messages is negotiated
during dialogue establishment. The OSINATIVESERVICE provider negotiates an octet
string format for the subfile.

On an OPEN operation, the provider proposes and must negotiate successfully the
following values for OSI dialogue request parameters:

• Default context. This must be null.

• Presentation context set. This must contain:

− ACSE-1 abstract syntax, object ID {2 2 1 0 1}.

− NIST Octet String abstract syntax, object ID {1 3 14 8 2 1} (as defined by the
National Institute of Science and Technology OSI Implementors' Agreements).

On an AWAITOPEN operation, the provider matches the OSINATIVESERVICE subfile
only to an incoming call that proposes these values for these parameters.

Any associated data received from the correspondent is placed in the READ queue.
When you invoke a READ statement, the result of the READ operation tells you if the
data returned by the READ operation is associated data—for example, OPENDATA or
OPENRESPONSEDATA.

The way a READ operation is handled by the port service depends upon the file state of
the subfile. Table 23–1 describes the way a READ operation is handled on a subfile in
each file state supported by OSINATIVESERVICE.

Table 23–1. Effects of File State on the READ Operation for
OSINATIVESERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGOFFER EOF

AWAITINGHOST EOF

OPENRESPONSEPLEASE If the value of CENSUS is greater than 0, returns
dialogue request user data; otherwise, returns EOF

OPENED If the value of CENSUS is greater than 0, returns
input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

SHUTTINGDOWN If the value of CENSUS is greater than 0, returns
input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

Using OSINATIVESERVICE

23–20 8600 0056–408

Table 23–1. Effects of File State on the READ Operation for
OSINATIVESERVICE

File State Action

CLOSEREQUESTED If the value of CENSUS is greater than 0, returns
input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

CLOSERESPONSEPLEASE If the value of CENSUS is greater than 0, returns
input data; otherwise EOF

CLOSECOLLRESPONSEPLEASE If the value of CENSUS is greater than 0, returns
input data; otherwise EOF

DEACTIVATIONPENDING Returns input data; when READ queue is empty,
subfile moves to DEACTIVATED

CLOSEDINPUTPENDING Returns input data; when READ queue is empty,
subfile moves to CLOSED

CLOSEPENDING EOF

DEACTIVATED EOF

The result of the WRITE operation depends upon the file state of the subfile you are
writing to. Table 23–2 explains the results of the WRITE operation on a subfile in each of
the file states supported by OSINATIVESERVICE.

Table 23–2. Effects of File State on the WRITE Operation for
OSINATIVESERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGOFFER EOF

AWAITINGHOST EOF

OPENRESPONSEPLEASE EOF

OPENED If OUTPUTEVENT is in the happened state, then
WRITE (OK); otherwise, depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

SHUTTINGDOWN If OUTPUTEVENT is in the happened state, then
WRITE (OK); otherwise, depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

CLOSERESPONSEPLEASE If OUTPUTEVENT is in the happened state, then
WRITE (OK); otherwise, depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

CLOSEREQUESTED EOF

 Using OSINATIVESERVICE

8600 0056–408 23–21

Table 23–2. Effects of File State on the WRITE Operation for
OSINATIVESERVICE

File State Action

CLOSECOLLRESPONSEPLEASE EOF

DEACTIVATIONPENDING EOF

DEACTIVATED EOF

CLOSEDINPUTPENDING EOF

CLOSEPENDING EOF

Exchanging Large Messages Using
OSINATIVESERVICE

If you need to exchange messages of unlimited size, you can send or receive data in
segments. To use this functionality, set the PORTSEGMENTIO attribute to TRUE and set
the BLOCKSTRUCTURE file attribute value to EXTERNAL. If BLOCKSTRUCTURE is set
to FIXED, the segments are blank filled, which makes message reassembly difficult.

After you set PORTSEGMENTIO to TRUE, the following statements are true when your
program is writing or reading a segmented message:

• The ACTUALMAXRECSIZE value is set to the value of the
REQUESTEDMAXRECSIZE file attribute when the subport is opened.

• Message segmentation is allowed only for normal data transfer and is not allowed for
associated data sent with OPEN, CLOSE, and RESPOND statements.

• The CENSUS attribute value indicates the number of segments that are in the queue
to be read by the program.

• The MAXCENSUS attribute value indicates the maximum number of segments that
can be queued before the service provider requests that the correspondent dialogue
endpoint stop sending messages.

To write segmented messages, perform the following tasks:

• Define the largest possible segment by using the MAXRECSIZE file attribute. The
value you specify cannot be greater than 63K.

• Indicate to the network provider that more segments are going to be written by
using the MOREDATA option of the WRITE statement in ALGOL, COBOL74, or
Pascal.

• Indicate to the network provider the length of the segment by using the normal
length indicator of the WRITE statement.

• When you write the last segment of the message, omit the MOREDATA option from
the WRITE statement.

Using OSINATIVESERVICE

23–22 8600 0056–408

To read segmented messages, perform the following tasks:

• Define the largest possible segment by using the MAXRECSIZE file attribute. The
value you specify cannot be greater than 63K.

• Use the READ statement to receive all partial messages. Unisys recommends that
the size of the buffer used in the READ statement and the length used in the READ
statement should be equal to or greater than the ACTUALMAXRECSIZE value.

If you do not follow this recommendation and the available message size is greater
than the buffer size in the READ statement, a BUFFERLESSTHANASEGMENT
(125)I/O error is returned and no data is returned in the buffer.

• Interrogate the [47:20] field of the STATE attribute to determine the length of the
data read.

• Interrogate the [26:10] field of the STATE attribute to determine if more segments
need to be read. If this field contains MOREDATA (78), then more segments of the
messages must be read.

Closing a Dialogue Using OSINATIVESERVICE
In addition to ABORT dialogue termination, discussed in Section 20, “Closing a
Dialogue,” OSINATIVESERVICE supports orderly dialogue termination.
OSINATIVESERVICE also allows for associated data to be sent with the CLOSE
statement.

Example Syntax

ALGOL CLOSE (<file name>[SUBFILE <subfile index>],<close
disposition>,
 <control option>,<associated data option>)

COBOL74 MOVE <subfile index> TO <file subfile control>.
CLOSE <file name> WITH <control option> USING CLOSE-
DISPOSITION OF
 <close disposition>
 <associated data>.

For a description of the orderly close disposition, see “Using Orderly Dialogue
Termination with OSINATIVESERVICE” in this section. For a description of the
associated data parameter, see “Sending Associated Data with a CLOSE Request” in
this section.

Using Orderly Dialogue Termination with OSINATIVESERVICE

Orderly dialogue termination can be initiated by your program or by the correspondent
endpoint. In both cases, the program can abort the termination procedure by invoking a
CLOSE ABORT operation at any time during release. Receiving an ABORT during the
termination procedure moves the subfile to the DEACTIVATIONPENDING or
DEACTIVATED file state. The subfile moves to DEACTIVATIONPENDING if there is still
data in the READ queue.

 Using OSINATIVESERVICE

8600 0056–408 23–23

If you have set the PORTSEGMENTIO file attribute value to TRUE, all segments of the
message must be written before your program attempts an orderly dialogue termination.

Understanding a Locally-Initiated Orderly CLOSE

You request orderly dialogue termination through the CLOSE statement. When a CLOSE
ORDERLY operation is invoked on a subfile, the subfile moves to the
CLOSEREQUESTED file state.

If an accept response is received from the correspondent endpoint for the CLOSE
ORDERLY request, the subfile moves to CLOSEDINPUTPENDING as long as the READ
queue of the subfile is not empty. When the READ queue is empty, the subfile moves to
CLOSED. Note that rejection of orderly release requests is not yet supported.

If, instead of a response, a correspondent-initiated orderly termination request is
received, a close collision has occurred. In this case, the subfile moves to the
CLOSECOLLRESPONSEPLEASE file state. The action taken next depends on whether or
not your subfile initiated the dialogue. Your program gets either a
WARNCLOSECOLLINITIATOR (38) or a WARNCLOSECOLLRESPONDER (39)
SUBFILEERROR.

If your program initiated the dialogue, the program must first respond with the
RESPOND ACCEPTCLOSE statement to the CLOSE request of the other endpoint. Your
subfile then returns to the CLOSEREQUESTED file state, and waits for the other
endpoint to respond to the CLOSE request. When it receives this response, the subfile
goes to either the CLOSED or CLOSEDINPUTPENDING file state.

If your program is the responder in the dialogue, the subfile does not go to
CLOSECOLLRESPONSEPLEASE until the initiator of the dialogue has responded to the
CLOSE request of your program. When the initiating program has responded and the
subfile is in CLOSECOLLRESPONSEPLEASE, your program must then respond to the
correspondent CLOSE request. Your subfile goes to either CLOSED or
CLOSEDINPUTPENDING when your program performs a RESPOND ACCEPTCLOSE
operation.

If the CLOSE control option is WAIT, control is returned to your program when the file
state is either CLOSED, CLOSEDINPUTPENDING, or CLOSECOLLRESPONSEPLEASE.
Control also returns to your program if it receives an ABORT during an orderly close and
the subfile is in either the DEACTIVATED or DEACTIVATIONPENDING file state.

If the CLOSE control option is DONTWAIT (NO WAIT in COBOL74), control is returned to
your program as soon as the CLOSE ORDERLY operation is checked for semantic
correctness and the file state is CLOSEREQUESTED.

Using OSINATIVESERVICE

23–24 8600 0056–408

Example 1

ALGOL RSLT := CLOSE(PORTF[SUBFILE 1],
 CLOSEDISPOSITION=ORDERLY);
 CASE RSLT OF
 BEGIN
 OKRSLT:
 DIALOG_COMPLETE(1);
 ELSE:
 DUMP_DIALOG(1);
 CLOSE(PORTF[SUBFILE 1],
 CLOSEDISPOSITION=ABORT);
 END;

COBOL74 MOVE 1 TO PORTF-SUB.
CLOSE PORTF USING CLOSE-DISPOSITION OF ORDERLY.
IF PORTF-FS IS NOT EQUAL TO "00"
 PERFORM DUMP-DIALOG
 CLOSE PORTF USING CLOSE-DISPOSITION OF ABORT.

This program example initiates orderly release and waits for completion. For the protocol
of these applications, only the dialogue initiator is allowed to request an orderly close. If
the release could not complete because of a close collision or for any other reason, the
subfile is closed with an ABORT.

Example 2

ALGOL RSLT := CLOSE(PORTF[SUBFILE 1],
 CLOSEDISPOSITION=ORDERLY);
CASE RSLT OF
 BEGIN
 OKRSLT:
 DIALOG_COMPLETE(1);
 WARNINGCLOSECOLLINITIATORRSLT:
 WARNINGCLOSECOLLRESPONDERRSLT:
 IF RESPOND(PORT[SUBFILE 1],
 RESPONDTYPE=ACCEPTCLOSE)
 NEQ OKRSLT THEN
 DUMP_DIALOG(1)
 ELSE
 DIALOG_COMPLETE(1);
 ELSE:
 DUMP_DIALOG(1);
 CLOSE(PORTF[SUBFILE 1],
 CLOSEDISPOSITION=ABORT);
 END;

 Using OSINATIVESERVICE

8600 0056–408 23–25

COBOL74 MOVE 1 TO PORTF-SUB.
CLOSE PORTF USING CLOSE-DISPOSITION OF ORDERLY.
IF PORTF-FS IS EQUAL TO "00"
 PERFORM DIALOG-COMPLETE
ELSE
 IF ATTRIBUTE SUBFILEERROR OF PORTF(1) IS EQUAL TO
 VALUE (WARNCLOSECOLLINITIATOR)
 OR
 IF ATTRIBUTE SUBFILEERROR OF PORTF(1) IS EQUAL TO
 VALUE (WARNCLOSECOLLRESPONDER)
 RESPOND PORTF WITH RESPONSE-TYPE OF ACCEPT-
CLOSE
 IF PORTF-FS IS EQUAL TO FS-SUBPORT-NOT-
RESPONDING
 PERFORM DUMP-DIALOG
 ELSE
 PERFORM DIALOG-COMPLETE
 ELSE
 PERFORM DUMP-DIALOG
 CLOSE PORTF USING CLOSE-DISPOSITION OF ABORT.

The program initiates orderly release in the previous example and waits for completion. If
the release could not complete because of a close collision, the program accepts the
correspondent's orderly close request and the orderly release continues.

Understanding a Correspondent-Initiated Orderly CLOSE

When your program receives a correspondent-initiated request for an orderly close, the
subfile moves to the CLOSERESPONSEPLEASE file state. In this file state, your program
can continue to write and to read any queued input that arrived before the CLOSE
request. When it is ready to release the connection, your program invokes a RESPOND
ACCEPTCLOSE operation, and the subfile moves to either the CLOSEDINPUTPENDING
or CLOSED file state.

Sending Associated Data with a CLOSE Request

Your program can send user data with a CLOSE ORDERLY request, with an ABORT, or
with a response to an CLOSE ORDERLY request when using OSINATIVESERVICE. It can
do so through the ASSOCIATEDDATA parameter of the CLOSE and RESPOND
statements.

Example 1

ALGOL CLOSE(PORTF[SUBFILE 1],ASSOCIATEDDATA="SESSIONDATA");

COBOL74 MOVE 1 TO PORTF-SUB.
CLOSE PORTF USING
 ASSOCIATED-DATA OF "SESSIONDATA".

The program is sending SESSIONDATA with its abort message.

Using OSINATIVESERVICE

23–26 8600 0056–408

Example 2

ALGOL CLOSE(PORTF[SUBFILE 1],
 CLOSEDISPOSITION=ORDERLY,
 DONTWAIT,
 ASSOCIATEDDATALENGTH=14,
 ASSOCIATEDDATA=PTR);

COBOL74 MOVE 1 TO PORTF-SUB.
CLOSE PORTF WITH NO WAIT USING
 CLOSE-DISPOSITION OF ORDERLY
 ASSOCIATED-DATA-LENGTH OF 14
 ASSOCIATED-DATA OF PORTF-MSG.

The program is sending 14 characters of user data, starting from PTR, with its orderly
close request message. Control returns to the program as soon as possible.

For more information on associated data, see “Understanding the ASSOCIATEDDATA
Parameter of OSINATIVESERVICE” earlier in this section.

8600 0056–408 24–1

Section 24
Using OSISESSIONSERVICE

OSISESSIONSERVICE is a subset of OSINATIVESERVICE, which includes service
functions up to the Session layer only. Like OSINATIVESERVICE, OSISESSIONSERVICE
currently offers basic full-duplex message transfer, except the APPLICATIONCONTEXT
attribute is not supported, and default context and presentation context set do not apply.

OSISESSIONSERVICE supports the kernel and duplex functional units of the OSI Session
Layer.

The fields on OSI protocol messages are made accessible to you through port statement
parameters and attributes. Not all fields, however, are currently supported. Fields that are
not available to you are sent without values when the OSI protocol message is
transmitted. If these fields contain values when an OSI protocol message is received
from a correspondent, the system discards the values.

The following text summarizes the file attributes and port statements supported by
OSISESSIONSERVICE. The information about OSISESSIONSERVICE in this section
describes the functions and features specific to this service, because they differ from the
general functions and features discussed in the general sections.

Using OSISESSIONSERVICE

24–2 8600 0056–408

File Attributes Supported by OSISESSIONSERVICE
The following file attributes are supported by OSISESSIONSERVICE. Table 15–1 contains
the attributes supported by each network service.

ACTUALMAXRECSIZE APPLICATIONGROUP ATTERR

ATTVALUE ATTYPE AVAILABLE

AVAILABLEONLY BLOCKEDTIMEOUT BLOCKSTRUCTURE

CENSUS CHANGEDSUBFILE CHANGEEVENT

COMPRESSING CURRENTRECORDLENGTH FILEEQUATED

FILENAME FILESTATE FRAMESIZE

INPUTEVENT INTERACTIVEFILE INTNAME

KIND LASTSUBFILE LFILENAME

LTITLE MAXCENSUS MAXSUBFILES

MYHOST MYNAME OUTPUTEVENT

PATHNAME PROVIDERGROUP REINITIALIZE

REQUESTEDMAXRECSIZE RESULTLIST SECURITYTYPE

SERVICE STATE SUBFILEERROR

YOURHOST YOURNAME

In addition, the following file attributes are supported by OSISESSIONSERVICE:

PORTSEGMENTIO YOURNSAPA YOURSESSIONSEL

YOURTRANSPORTSEL

If an attribute is invalid for this service, the only value of the attribute considered valid is
the default value. Invalid values are handled as described under “Setting Proper Attribute
Values” in Section 15. Be aware that the SECURITYTYPE attribute value must be
PUBLIC and can default to PRIVATE if the default setting has not been changed by using
the NW NS SET MIGRATETOBASICSERVICE system command.

If the attributes YOURHOST and YOURNAME are null strings on an OPEN operation, the
operation fails with a BADATTRIBUTESFOROPEN (13) SUBFILEERROR. If the MYNAME
attribute is a null string on an OPEN or AWAITOPEN operation, the operation fails with
either a BADATTRIBUTESFOROPEN (13) or BADATTRIBUTESFORAWAITOPEN (34)
SUBFILEERROR.

The ACTUALMAXRECSIZE attribute value can be 1 through 64512 for the BNA OSI
network implementation.

 Using OSISESSIONSERVICE

8600 0056–408 24–3

Statements Supported by OSISESSIONSERVICE
Of the set of language statements pertaining to port files, the following are supported by
OSISESSIONSERVICE:

• Attribute interrogation

• Attribute modification

• OPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)/AVAILABLE

− CONNECTTIMELIMIT

− Associated data

− Associated data length specification

• AWAITOPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)/AVAILABLE

− CONNECTTIMELIMIT

− PARTICIPATE

• READ

− Message

− READ length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

• WRITE

− Message

− WRITE length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

− MOREDATA

• RESPOND

− Respond type: ACCEPTOPEN/REJECTOPEN/ACCEPTCLOSE

− Associated data

− Associated data length specification

• CLOSE

− Close disposition: ABORT/ORDERLY

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)

− Associated data

− Associated data length specification

Using OSISESSIONSERVICE

24–4 8600 0056–408

If you use a port statement not included in the preceding list, the system does not invoke
the statement and an UNSUPPORTEDPRIMITIVERSLT (168) result and an
UNSUPPORTEDPRIMITIVE (41) SUBFILEERROR are returned. If you use a statement
parameter or a statement parameter value not included in the previous list, the system
does not invoke the statement and an UNSUPPORTEDPARAMETERRSLT (128) result
and an UNSUPPORTEDPARAMETER (18) SUBFILEERROR are returned.

Understanding the ASSOCIATEDDATA Parameter
of OSISESSIONSERVICE

Your program can send user data with control messages exchanged during dialogue
establishment and dialogue termination. You program can do this through the
ASSOCIATEDDATA parameter of the OPEN, CLOSE, and RESPOND statements.

Your program receives associated data through the READ queue. The result of your
READ statement tells you if the data returned by the READ operation is associated data.

The maximum length of ASSOCIATEDDATA that can be sent primarily depends upon the
implementation restrictions of both network providers, as well as the number of bytes
needed to encode certain dialogue parameters. The OSISESSIONSERVICE provider can
guarantee support for 7K bytes of associated data. A correspondent OSI implementation
might support a protocol version that can guarantee only up to 200 bytes of associated
data and no data at all on an abort. The lesser restriction applies.

Associated data lengths greater than these limits can be sent and received by your
program. However, they are not guaranteed by the MCP environment OSI provider. It is
the responsibility of an application using OSI to specify its requirements for maximum
associated data length, and hence its requirements on OSI network implementations, to
other applications that want to communicate with it.

The preceding limits can be guaranteed only if the application context object ID has

• At most, 6 components

• Each component in the range 0 through 127 characters

If the associated data is too long, the OPEN, CLOSE ORDERLY, or RESPOND operation
fails with an ASSOCIATEDDATATOOLONGRSLT (156) result and an
ASSOCIATEDDATATOOLONG (32) SUBFILEERROR. If the associated data is too long on
a CLOSE ABORT operation, the ABORT operation continues with the warning
WARNABORTDATAIGNOREDRSLT (17) and a WARNABORTDATAIGNORED (48)
SUBFILEERROR, and the ABORT is sent without associated data.

 Using OSISESSIONSERVICE

8600 0056–408 24–5

File States Supported by OSISESSIONSERVICE
The following is a list of all the possible file states a port file can have using
OSISESSIONSERVICE:

CLOSED CLOSEREQUESTED

OFFERED CLOSERESPONSEPLEASE

AWAITINGHOST CLOSEDINPUTPENDING

AWAITINGOFFER CLOSECOLLRESPONSEPLEASE

OPENRESPONSEPLEASE DEACTIVATIONPENDING

OPENED DEACTIVATED

SHUTTINGDOWN

CLOSEPENDING

Figures 24–1 through 24–4 illustrate the file state transitions during the dialogue
establishment phase, the data transfer phase, and the dialogue termination phase for
OSISESSIONSERVICE. Note that a subfile can have multiple file state transitions
between CHANGEEVENT and FILESTATE interrogations.

In the figures that follow, the following conventions apply:

• All user-initiated primitives, such as CLOSE ABORT, are in capital letters.

• Other events, such as dialogue not established, are enclosed in square brackets.

Using OSISESSIONSERVICE

24–6 8600 0056–408

Figure 24–1. OSISESSIONSERVICE Dialogue Establishment File State Transitions

Figure 24–2. OSISESSIONSERVICE Probable File State Transitions during Data
Transfer

 Using OSISESSIONSERVICE

8600 0056–408 24–7

Figure 24–3. OSISESSIONSERVICE Dialogue Termination File State Transitions

If the remote host becomes unreachable, the file state is marked as BLOCKED. The file
state becomes OPENED if the remote host becomes reachable within a specific time. If
the remote host does not become reachable within that time period, the system initiates
deactivation of the dialogue.

Use the BLOCKEDTIMEOUT attribute to control the length of time that the subport is to
remain blocked before the system initiates deactivation of the dialogue.

Using OSISESSIONSERVICE

24–8 8600 0056–408

Figure 24–4. OSISESSIONSERVICE Orderly Termination File State Transitions

 Using OSISESSIONSERVICE

8600 0056–408 24–9

Preparing for Dialogue Establishment Using
OSISESSIONSERVICE

The following OSI dialogue-establishment fields are used for matching:

OSI Dialogue
Request/Response Fields

Attribute for OSI 1.2 or
3.0 Release

Attribute for OSI 3.1 and
Later Releases

OSI address (your subfile) MYNAME
MYHOST
FILENAME
APPLICATIONGROUP

MYNAME
MYHOST
FILENAME
APPLICATIONGROUP

OSI address
(correspondent)

YOURNAME
YOURHOST
FILENAME
APPLICATIONGROUP

YOURNAME
YOURHOST
FILENAME
APPLICATIONGROUP
YOURNSAPA
YOURSESSIONSEL
YOURTRANSPORTSEL

OSI endpoint addresses, both local and remote, are statically declared to the system
through the NW ADD ENDPOINTNAME operator command. Through this command, an
OSI endpoint address is declared and mapped into a NAME, HOST, FILENAME, and
APPLICATIONGROUP attribute set. There is a current restriction that only direct Session
Layer users can access OSISESSIONSERVICE. That is, the OSI addresses must be
Session Layer user addresses. If a full OSI endpoint address is used, the OPEN or
AWAITOPEN operation fails with an ENDPTINCOMPATIBLESERVICERSLT (166) result
and an ENDPOINTINCOMPWITHSERVICE (40) SUBFILEERROR.

If your application program is using the OSI 3.1 or later release, you can use the
YOURNSAPA, YOURSESSIONSEL, and YOURTRANSPORTSEL file attributes to directly
identify the network end-point addresses of the correspondent application that might not
be declared in the static network configuration.

If your application program is using the OSI 1.2 or 3.0 release, the network environment
matches MYNAME, MYHOST, YOURNAME, and YOURHOST as described earlier in
Section 17, “Preparing Your Subfile for Dialogue Establishment.” The FILENAME and
APPLICATIONGROUP values of your subfile must match the FILENAME and
APPLICATIONGROUP values of the correspondent endpoint.

If your application program is using the OSI 3.1 or later release and you specify
YOURSESSIONSEL, YOURTRANSPORTSEL, and YOURNSAPA values, these attributes
are matched even if you specify values for the YOURNAME, YOURHOST, FILENAME,
and APPLICATIONGROUP values. If you do not specify YOURSESSIONSEL,
YOURTRANSPORTSEL, and YOURNSAPA values, YOURNAME, YOURHOST,
FILENAME, and APPLICATIONGROUP values are matched.

Using OSISESSIONSERVICE

24–10 8600 0056–408

Note that currently the BNA OSI network implementation associates only one OSI
address for an endpoint for each NAME, HOST, FILENAME, and APPLICATIONGROUP
attribute set. Endpoints that are reachable through more than one OSI address (because
of multiple network addresses, for example) must have an attribute set for each address.

Establishing a Dialogue Using OSISESSIONSERVICE
An OSI dialogue request is transmitted when you invoke an OPEN operation on a subfile.
When you invoke an AWAITOPEN operation, your subfile is made available to be
matched to an incoming dialogue request. If both endpoints send dialogue requests, the
colliding dialogue requests are considered as two separate requests for dialogue. That is,
incoming dialogue requests are not matched to subfiles on which you have invoked an
OPEN operation.

Using the OPEN Statement with OSISESSIONSERVICE

When you invoke an OPEN statement, a dialogue request is sent to the OSI endpoint
address named by the YOURNAME, YOURHOST, FILENAME, and APPLICATIONGROUP
attributes. You can send additional dialogue parameters with the request by using
attributes or parameters of the OPEN statement. Some dialogue parameters are
negotiated by the dialogue endpoints. The values of other dialogue parameters, like
associated data, are merely exchanged. See “Understanding Negotiation during Dialogue
Establishment” in Section 23, for more information on this topic.

Example Syntax

ALGOL OPEN (<file name>[SUBFILE <subfile index>],<control
option>,
 <connect time limit option>,<associated data
option>)

COBOL74 MOVE <subfile index> TO <file subfile control>.
OPEN <control option> <file name> USING
 <connect time limit>
 <associated data option>

In addition to the file name, subfile index, control option, and connect time limit option,
OSISESSIONSERVICE also supports the associated data option. This option consists of
two elements:

• ASSOCIATEDDATALENGTH. This element specifies the length of the user data to be
sent.

• ASSOCIATEDDATA. This specifies the user data to be sent.

 Using OSISESSIONSERVICE

8600 0056–408 24–11

Understanding the AVAILABLEONLY File Attribute Using
OSISESSIONSERVICE

As discussed in “Understanding the AVAILABLEONLY File Attribute for OPEN,” in
Section 18, the AVAILABLEONLY attribute specifies whether the OPEN operation fails or
suspends when a dialogue cannot currently be established with the correspondent
endpoint.

If your port file is communicating with another port file on the local system, the following
actions will occur depending on the value of the AVAILABLEONLY attribute:

• If AVAILABLEONLY is set to FALSE, the OPEN operation is suspended until a
dialogue is established, or until the CONNECTTIMELIMIT value is exceeded.

• If AVAILABLEONLY is set to TRUE and no match is found, the OPEN operation fails,
your program resumes, and a NOFILEFOUND (4) SUBFILEERROR is returned, and
the subfile is not available for subsequent matching.

When your port file is communicating with another port file on a remote host, the
AVAILABLEONLY attribute has no effect.

Understanding the OPEN Control Option Parameter for
OSISESSIONSERVICE

OSISESSIONSERVICE allows the following values for the control option parameter of the
OPEN statement:

• WAIT

• DONTWAIT (NO WAIT in COBOL74)

• AVAILABLE

These control options function as described earlier under “Understanding the OPEN
Control Option Parameter” in Section 18.

Understanding the CONNECTTIMELIMIT Parameter for
OSISESSIONSERVICE

This parameter functions the same as described earlier under “Understanding the OPEN
CONNECTTIMELIMIT Parameter” in Section 18.

Using OSISESSIONSERVICE

24–12 8600 0056–408

Understanding the OPEN ASSOCIATEDDATA Parameter for
OSISESSIONSERVICE

You can send user data with a dialogue request when using OSISESSIONSERVICE. You
can do so through the ASSOCIATEDDATA parameter of the OPEN statement.

No user data is sent if the associated data parameter is absent or if the associated data
length is 0 (zero).

Example 1

ALGOL OPEN(PORTF[SUBFILE 1],ASSOCIATEDDATA="MYDATA");

COBOL74 MOVE 1 TO PORTF-SUB.
OPEN I-O PORTF USING ASSOCIATED-DATA OF "MYDATA".

This example opens subfile 1 of PORTF. When the dialogue request is sent, the
information "MYDATA" is sent to the correspondent process as user data.

Example 2

ALGOL OPEN(PORTF[SUBFILE 1],
 ASSOCIATEDDATALENGTH=14,
 ASSOCIATEDDATA=PTR);

COBOL74 MOVE 1 TO PORTF-SUB.
OPEN I-O PORTF USING
 ASSOCIATED-DATA-LENGTH OF 14
 ASSOCIATED-DATA OF PORTF-MSG.

This example opens subfile 1 of PORTF. When the dialogue request is sent, the data
pointed at by PTR for 14 characters is sent to the correspondent process as user data.

Using the AWAITOPEN Statement with OSISESSIONSERVICE

Invoke an AWAITOPEN statement to make a subfile available to accept dialogue
requests from other programs. When an AWAITOPEN is invoked, the local system is
searched for an outstanding dialogue request that matches the subfile. If no matching
dialogue request has already been received, the AWAITOPEN fails or is saved for future
matching, depending upon the value of the AVAILABLEONLY attribute.

When the system receives a dialogue request, it matches the request to a subfile that
invoked an AWAITOPEN statement. If the system cannot match the request, it keeps
the request for future matching.

The following fields from the dialogue request received from the correspondent endpoint
are used by the OSISESSIONSERVICE provider when it matches the request to a subfile:

• The calling endpoint address

• The called endpoint address

 Using OSISESSIONSERVICE

8600 0056–408 24–13

The addresses are looked up on the local system to retrieve matching values for the
NAME, HOST, FILENAME, and APPLICATIONGROUP attributes. These values are used
to match to the attributes of the subfile. The subfile is matched as described in
“Preparing for Dialogue Establishment Using OSISESSIONSERVICE” in this section.

Example Syntax

ALGOL AWAITOPEN (<file name>[SUBFILE <subfile index>],
 <control option>, <participate option>,
 <connect time limit option>)

COBOL74 MOVE <subfile index> TO <file subfile control>.
AWAIT-OPEN <control option> <file name> USING
 <participate option>
 <connect time limit option>

In addition to the file name, subfile index, control option, and connect time limit
parameters of the general port AWAITOPEN statement, OSISESSIONSERVICE also
supports the PARTICIPATE option. This parameter allows you to conditionally or
unconditionally establish a dialogue when the subfile is matched to an incoming dialogue
request. See “Understanding the AWAITOPENPARTICIPATE Parameter for
OSISESSIONSERVICE” later in this section for more information.

Understanding the AWAITOPEN Control Option Parameter for
OSISESSIONSERVICE

OSISESSIONSERVICE allows the following values for the AWAITOPEN control:

• WAIT

• DONTWAIT (NO WAIT in COBOL74)

• AVAILABLE

These options function as described earlier under “Understanding the AWAITOPEN
Control Option Parameter” in Section 18.

Understanding the AWAITOPEN PARTICIPATE Parameter for
OSISESSIONSERVICE

OSISESSIONSERVICE provides you with the ability to conditionally establish a dialogue
on an AWAITOPEN operation. The PARTICIPATE option of the AWAITOPEN statement
specifies if the program uses conditional or unconditional dialogue establishment when a
dialogue request is received. The PARTICIPATE option can be either TRUE or FALSE.

If PARTICIPATE is FALSE when a request for dialogue establishment is received, the
request is accepted and the subfile is moved to an OPENED file state. The values of
negotiable attributes are unconditionally accepted and no user data is sent with the
response.

Using OSISESSIONSERVICE

24–14 8600 0056–408

If PARTICIPATE is TRUE when a request for dialogue establishment is received, the
subfile is moved to the OPENRESPONSEPLEASE file state. In this state, the program
can interrogate or modify certain attributes for negotiation or for transmission on the
response. The program accepts or rejects the call through the RESPOND
ACCEPTOPEN/REJECTOPEN statement.

If there is user data in the READ queue that came with the dialogue request
(OPENDATA), the program can read the data before it responds. If you want to send user
data with the response, use the associated data parameter of the RESPOND statement.
If the program accepts the request, the subfile moves to the OPENED file state. If the
program rejects the request, the subfile moves to the CLOSED or
CLOSEDINPUTPENDING file state.

PARTICIPATE defaults to FALSE.

Example

ALGOL AWAITOPEN(PORTF[SUBFILE 1],PARTICIPATE=TRUE);

COBOL74 MOVE 1 TO PORTF-SUBF.
AWAIT-OPEN PORTF USING PARTICIPATE.

When subfile 1 of PORTF is matched to an incoming dialogue request, the subfile
transits to the OPENRESPONSEPLEASE file state. In this file state, the program can
interrogate attributes of the matching dialogue request, set negotiable attributes, and
READ any associated data that might have arrived with the request.

Using the RESPOND Statement with OSISESSIONSERVICE

OSISESSIONSERVICE allows a program to respond positively or negatively to a request
indication received from a correspondent endpoint. The nature of the request is
contained in the FILESTATE attribute. The program uses the RESPOND statement to
respond to dialogue establishment requests (OPENRESPONSEPLEASE file state) and
dialogue termination requests (CLOSERESPONSEPLEASE and
CLOSECOLLRESPONSEPLEASE file states) from the correspondent endpoint. The
RESPOND statement returns a result value.

Example Syntax

ALGOL RESPOND (<file identifier>[SUBFILE<subfile index>],
 RESPONDTYPE=<response type>,<associated data
option>)

COBOL74 MOVE <subfile index> TO <file subfile control>
RESPOND <file name> WITH RESPONSE-TYPE OF <response type>
 USING <associated data option>.

 Using OSISESSIONSERVICE

8600 0056–408 24–15

The syntax elements are as follows:

Element Purpose

File identifier Specifies the name of the port file on which the RESPOND
operation is to be performed.

Subfile index Indicates the subfile that the response is for. A subfile index of 0
(zero) is currently not allowed.

Response type Specifies the type of response by using one the following values:
ACCEPTOPEN, REJECTOPEN, or ACCEPTCLOSE. The response
type is described under “Understanding the Response Type
Parameter” later in this section.

Associated data
option

Identifies data to be sent with the RESPOND statement. This option
consists of two elements:

ASSOCIATEDDATALENGTH. This element specifies the length of
user data to be sent.

ASSOCIATEDDATA. This element specifies the user data to be
sent.

See “Understanding the ASSOCIATEDDATA Parameter of
OSISESSIONSERVICE” earlier in this section for more information.

Example 1

ALGOL RESPOND(PORTF[SUBFILE 1], RESPONDTYPE=ACCEPTOPEN);

COBOL74 MOVE 1 TO PORTF-SUB.
RESPOND PORTF WITH RESPONSE-TYPE OF ACCEPT-OPEN.

In this example, the program is responding to an offer for subfile 1 on port file PORTF by
accepting the offer.

Example 2

ALGOL RESPOND(PORTF[SUBFILE 1],
 RESPONDTYPE=ACCEPTOPEN,
 ASSOCIATEDDATA="INFO");

COBOL74 MOVE 1 TO PORTF-SUB.
RESPOND PORTF WITH RESPONSE-TYPE OF ACCEPT-OPEN
 USING ASSOCIATED-DATA OF "INFO".

The program is responding to an offer for subfile 1 of port file PORTF by accepting the
offer. The information INFO is sent as user data with the positive response to the
dialogue request.

Using OSISESSIONSERVICE

24–16 8600 0056–408

Understanding the Response Type Parameter

You can assign the response type parameter the values ACCEPTOPEN, REJECTOPEN,
and ACCEPTCLOSE.

Your program can respond to a dialogue establishment request if the program invoked an
AWAITOPEN operation with PARTICIPATE set to TRUE. When a dialogue establishment
request is received, the file state moves to OPENRESPONSEPLEASE. Your program can
agree to the dialogue by assigning the value ACCEPTOPEN to the response type
parameter of the RESPOND statement. Your program can reject the dialogue request by
assigning the value REJECTOPEN to the RESPOND response type parameter.

Your program can respond to a dialogue orderly close request when the subfile file state
is CLOSERESPONSEPLEASE or CLOSECOLLRESPONSEPLEASE. Your program can
agree to the close request by assigning the value ACCEPTCLOSE to the response type.
Note that a response type of REJECTCLOSE is not yet supported.

Example 1

ALGOL RESPOND(PORTF[SUBFILE 1],RESPONDTYPE=ACCEPTOPEN);

COBOL74 MOVE 1 TO PORTF-SUB.
RESPOND PORTF WITH RESPONSE-TYPE OF ACCEPT-OPEN.

In this example, subfile 1 of PORTF is in the file state OPENRESPONSEPLEASE. The
program is responding to the OPEN request by accepting the offer.

Example 2

ALGOL RESPOND(PORTF[SUBFILE 1],RESPONDTYPE=REJECTOPEN);

COBOL74 MOVE 1 TO PORTF-SUB.
RESPOND PORTF WITH RESPONSE-TYPE OF REJECT-OPEN.

In this example, subfile 1 of PORTF is in the file state OPENRESPONSEPLEASE. The
program is responding to the OPEN request by rejecting the offer.

Example 3

ALGOL RESPOND(PORTF[SUBFILE 1],RESPONDTYPE=ACCEPTCLOSE);

COBOL74 MOVE 1 TO PORTF-SUB.
RESPOND PORTF WITH RESPONSE-TYPE OF ACCEPT-CLOSE.

In this example, subfile 1 of PORTF is in the file state CLOSERESPONSEPLEASE or
CLOSECOLLRESPONSEPLEASE. The program is positively responding to the request for
orderly close.

 Using OSISESSIONSERVICE

8600 0056–408 24–17

Exchanging Data Using OSISESSIONSERVICE
Any associated data received from the correspondent is placed in the READ queue.
When you invoke a READ statement, the result of the READ operation tells you if the
data returned by the READ operation is associated data (for example, OPENDATA,
OPENRESPONSEDATA).

The way a READ operation is handled by the port service depends upon the file state of
the subfile. Table 24–1 describes the way a READ operation is handled on a subfile in
each file state supported by OSISESSIONSERVICE.

Table 24–1. Effects of File State on the READ Operation for
OSISESSIONSERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGOFFER EOF

AWAITINGHOST EOF

OPENRESPONSEPLEASE If the value of CENSUS is greater than 0, returns
dialogue request user data; otherwise, returns EOF

OPENED If the value of CENSUS is greater than 0, returns
input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

SHUTTINGDOWN If the value of CENSUS is greater than 0, returns
input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

CLOSEREQUESTED If the value of CENSUS is greater than 0, returns
input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

CLOSERESPONSEPLEASE If the value of CENSUS is greater than 0, returns
input data; otherwise EOF

CLOSECOLLRESPONSEPLEASE If the value of CENSUS is greater than 0, returns
input data; otherwise EOF

DEACTIVATIONPENDING Returns input data; when READ queue is empty,
subfile moves to DEACTIVATED

CLOSEDINPUTPENDING Returns input data; when READ queue is empty,
subfile moves to CLOSED

CLOSEPENDING EOF

DEACTIVATED EOF

Using OSISESSIONSERVICE

24–18 8600 0056–408

The result of the WRITE operation depends upon the file state of the subfile you are
writing to. Table 24–2 explains the results of the WRITE operation on a subfile in each of
the file states supported by OSISESSIONSERVICE.

Table 24–2. Effects of File State on the WRITE Operation for
OSISESSIONSERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGOFFER EOF

AWAITINGHOST EOF

OPENRESPONSEPLEASE EOF

OPENED If OUTPUTEVENT is in the happened state, then
WRITE (OK); otherwise, depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

SHUTTINGDOWN If OUTPUTEVENT is in the happened state, then
WRITE (OK); otherwise, depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

CLOSERESPONSEPLEASE If OUTPUTEVENT is in the happened state, then
WRITE (OK); otherwise, depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

CLOSEREQUESTED EOF

CLOSECOLLRESPONSEPLEASE EOF

DEACTIVATIONPENDING EOF

DEACTIVATED EOF

CLOSEDINPUTPENDING EOF

CLOSEPENDING EOF

 Using OSISESSIONSERVICE

8600 0056–408 24–19

Exchanging Large Messages Using
OSISESSIONSERVICE

If you need to exchange messages of unlimited size, you can send or receive data in
segments. To use this functionality, set the PORTSEGMENTIO attribute to TRUE and set
the BLOCKSTRUCTURE file attribute value to EXTERNAL. If BLOCKSTRUCTURE is set
to FIXED, the segments are blank filled, which makes message reassembly difficult.

After you set PORTSEGMENTIO to TRUE, the following statements are true when your
program is writing or reading a segmented message:

• The ACTUALMAXRECSIZE value is set to the value of the
REQUESTEDMAXRECSIZE file attribute when the subport is opened.

• Message segmentation is allowed only for normal data transfer and is not allowed for
associated data sent with OPEN, CLOSE, and RESPOND statements.

• The CENSUS attribute value indicates the number of segments that are in the queue
to be read by the program.

• The MAXCENSUS attribute value indicates the maximum number of segments that
can be queued before the service provider requests that the correspondent dialogue
endpoint stop sending messages.

To write segmented messages, perform the following tasks:

• Define the largest possible segment by using the MAXRECSIZE file attribute. The
value you specify cannot be greater than 63K.

• Indicate to the network provider that more segments are going to be written by
using the MOREDATA option of the WRITE statement in ALGOL, COBOL74, or
Pascal.

• Indicate to the network provider the length of the segment by using the normal
length indicator of the WRITE statement.

• When you write the last segment of the message, omit the MOREDATA option from
the WRITE statement.

To read segmented messages, perform the following tasks:

• Define the largest possible segment by using the MAXRECSIZE file attribute. The
value you specify cannot be greater than 63K.

• Use the READ statement to receive all partial messages. Unisys recommends that
the size of the buffer used in the READ statement and the length used in the READ
statement should be equal to or greater than the ACTUALMAXRECSIZE value.

If you do not follow this recommendation and the available message size is greater
than the buffer size in the READ statement, a BUFFERLESSTHANASEGMENT (125)
I/O error is returned and no data is returned in the buffer.

Using OSISESSIONSERVICE

24–20 8600 0056–408

• Interrogate the [47:20] field of the STATE attribute to determine the length of the
data read.

• Interrogate the [26:10] field of the STATE attribute to determine if more segments
need to be read. If this field contains MOREDATA (78), then more segments of the
messages must be read.

Closing a Dialogue Using OSISESSIONSERVICE
In addition to ABORT dialogue termination, discussed in Section 20, “Closing a
Dialogue,” OSISESSIONSERVICE supports orderly dialogue termination.
OSISESSIONSERVICE also allows for associated data to be sent with the CLOSE
statement.

Example Syntax

ALGOL CLOSE (<file name>[SUBFILE <subfile index>],<close
disposition>,
 <control option>,<associated data option>)

COBOL74 MOVE <subfile index> TO <file subfile control>.
CLOSE <file name> WITH <control option> USING CLOSE-
DISPOSITION OF
 <close disposition>
 <associated data>.

For a description of the orderly close disposition, see “Using Orderly Dialogue
Termination with OSISESSIONSERVICE” in this section. For a description of the
associated data parameter, see “Sending Associated Data with a CLOSE Request” later
in this section.

Using Orderly Dialogue Termination with OSISESSIONSERVICE

Orderly dialogue termination can be initiated by your program or by the correspondent
endpoint. In both cases, the program can abort the termination procedure by invoking a
CLOSE ABORT operation at any time during release. Receiving an ABORT during the
termination procedure moves the subfile to the DEACTIVATIONPENDING or
DEACTIVATED file state. The subfile moves to DEACTIVATIONPENDING if there is still
data in the READ queue.

If you have set the PORTSEGMENTIO file attribute value to TRUE, all segments of the
message must be written before your program attempts an orderly dialogue termination.

 Using OSISESSIONSERVICE

8600 0056–408 24–21

Understanding a Locally-Initiated Orderly CLOSE

You request orderly dialogue termination through the CLOSE statement. When a CLOSE
ORDERLY operation is invoked on a subfile, the subfile moves to the
CLOSEREQUESTED file state.

If an accept response is received from the correspondent endpoint for the CLOSE
ORDERLY request, the subfile moves to CLOSEDINPUTPENDING as long as the READ
queue of the subfile is not empty. When the READ queue is empty, the subfile moves to
CLOSED. Note that rejection of ORDERLY release requests is not yet supported.

If, instead of a response, a correspondent-initiated orderly termination request is
received, a close collision has occurred. In this case, the subfile moves to the
CLOSECOLLRESPONSEPLEASE file state. The action taken next depends on whether or
not your subfile initiated the dialogue. Your program gets either a
WARNCLOSECOLLINITIATOR (38) or a WARNCLOSECOLLRESPONDER (39)
SUBFILEERROR.

If your program initiated the dialogue, the program must first respond with the
RESPOND ACCEPTCLOSE statement to the CLOSE request of the other endpoint. Your
subfile then returns to the CLOSEREQUESTED file state, and waits for the other
endpoint to respond to the CLOSE request. When it receives this response, the subfile
goes to either the CLOSED or CLOSEDINPUTPENDING file state.

If your program is the responder in the dialogue, the subfile does not go to
CLOSECOLLRESPONSEPLEASE until the initiator of the dialogue has responded to the
CLOSE request of your program. When the initiating program has responded and the
subfile is in CLOSECOLLRESPONSEPLEASE, your program must then respond to the
correspondent CLOSE request. Your subfile goes to either CLOSED or
CLOSEDINPUTPENDING when your program performs a RESPOND ACCEPTCLOSE
operation.

If the CLOSE control option is WAIT, control is returned to your program when the file
state is either CLOSED, CLOSEDINPUTPENDING, or CLOSECOLLRESPONSEPLEASE.
Control also returns to your program if it receives an ABORT during an orderly close and
the subfile is in either the DEACTIVATED or DEACTIVATIONPENDING file state.

If the CLOSE control option is DONTWAIT (NO WAIT in COBOL74), control is returned to
your program as soon as the CLOSE ORDERLY operation is checked for semantic
correctness and the file state is CLOSEREQUESTED.

Using OSISESSIONSERVICE

24–22 8600 0056–408

Example 1

ALGOL RSLT := CLOSE(PORTF[SUBFILE 1],
 CLOSEDISPOSITION=ORDERLY);
 CASE RSLT OF
 BEGIN
 OKRSLT:
 DIALOG_COMPLETE(1);
 ELSE:
 DUMP_DIALOG(1);
 CLOSE(PORTF[SUBFILE 1],
 CLOSEDISPOSITION=ABORT);
 END;

COBOL74 MOVE 1 TO PORTF-SUB.
CLOSE PORTF USING CLOSE-DISPOSITION OF ORDERLY.
IF PORTF-FS IS NOT EQUAL TO "00"
 PERFORM DUMP-DIALOG
 CLOSE PORTF USING CLOSE-DISPOSITION OF ABORT.

This program example initiates orderly release and waits for completion. For the protocol
of these applications, only the dialogue initiator is allowed to request orderly CLOSE. If
the release could not complete because of a close collision or for any other reason, the
subfile is closed with an ABORT.

Example 2

ALGOL RSLT := CLOSE(PORTF[SUBFILE 1],
 CLOSEDISPOSITION=ORDERLY);
CASE RSLT OF
 BEGIN
 OKRSLT:
 DIALOG_COMPLETE(1);
 WARNINGCLOSECOLLINITIATORRSLT:
 WARNINGCLOSECOLLRESPONDERRSLT:
 IF RESPOND(PORT[SUBFILE 1],
 RESPONDTYPE=ACCEPTCLOSE)
 NEQ OKRSLT THEN
 DUMP_DIALOG(1)
 ELSE
 DIALOG_COMPLETE(1);
 ELSE:
 DUMP_DIALOG(1);
 CLOSE(PORTF[SUBFILE 1],
 CLOSEDISPOSITION=ABORT);
 END;

 Using OSISESSIONSERVICE

8600 0056–408 24–23

COBOL74 MOVE 1 TO PORTF-SUB.
CLOSE PORTF USING CLOSE-DISPOSITION OF ORDERLY.
IF PORTF-FS IS EQUAL TO "00"
 PERFORM DIALOG-COMPLETE
ELSE
 IF ATTRIBUTE SUBFILEERROR OF PORTF(1) IS EQUAL TO
 VALUE (WARNCLOSECOLLINITIATOR)
 OR
 IF ATTRIBUTE SUBFILEERROR OF PORTF(1) IS EQUAL TO
 VALUE (WARNCLOSECOLLRESPONDER)
 RESPOND PORTF WITH RESPONSE-TYPE OF ACCEPT-
CLOSE
 IF PORTF-FS IS EQUAL TO FS-SUBPORT-NOT-
RESPONDING
 PERFORM DUMP-DIALOG
 ELSE
 PERFORM DIALOG-COMPLETE
 ELSE
 PERFORM DUMP-DIALOG
 CLOSE PORTF USING CLOSE-DISPOSITION OF ABORT.

The program initiates orderly release in the example above and waits for completion. If
the release could not complete because of a close collision, the program accepts the
correspondent's ORDERLY CLOSE request and the orderly release continues.

Understanding a Correspondent-Initiated Orderly CLOSE

When your program receives a correspondent-initiated request for an orderly close, the
subfile moves to the CLOSERESPONSEPLEASE file state. In this file state, your program
can continue to write and to read any queued input that arrived before the CLOSE
request. When it is ready to release the connection, your program invokes a RESPOND
ACCEPTCLOSE operation, and the subfile moves to either the CLOSEDINPUTPENDING
or CLOSED file state.

Sending Associated Data with a CLOSE Request

Your program can send user data with a CLOSE ORDERLY request, with an ABORT, or
with a response to an CLOSE ORDERLY request when using OSISESSIONSERVICE. It
can do so through the ASSOCIATEDDATA parameter of the CLOSE and RESPOND
statements.

Example 1

ALGOL CLOSE(PORTF[SUBFILE 1],ASSOCIATEDDATA="SESSIONDATA");

COBOL74 MOVE 1 TO PORTF-SUB.
CLOSE PORTF USING
 ASSOCIATED-DATA OF "SESSIONDATA".

The program is sending "SESSIONDATA" with its abort message.

Using OSISESSIONSERVICE

24–24 8600 0056–408

Example 2

ALGOL CLOSE(PORTF[SUBFILE 1],
 CLOSEDISPOSITION=ORDERLY,
 DONTWAIT,
 ASSOCIATEDDATALENGTH=14,
 ASSOCIATEDDATA=PTR);

COBOL74 MOVE 1 TO PORTF-SUB.
CLOSE PORTF WITH NO WAIT USING
 CLOSE-DISPOSITION OF ORDERLY
 ASSOCIATED-DATA-LENGTH OF 14
 ASSOCIATED-DATA OF PORTF-MSG.

The program is sending 14 characters of user data, starting from PTR, with its orderly
close request message. Control returns to the program as soon as possible.

For more information on associated data, see “Understanding the ASSOCIATEDDATA
Parameter of OSISESSIONSERVICE” earlier in this section

8600 0056–408 25–1

Section 25
Using BNANATIVESERVICE

BNANATIVESERVICE is the port service native to the BNA network and is provided by
the BNA version 2, and Local Port Provider implementations. This port service offers a
message-oriented service.

File Attributes Supported by BNANATIVESERVICE
The following file attributes are supported by BNANATIVESERVICE. Table 15–1 contains
the attributes supported by each port service.

ACTUALMAXRECSIZE APPLICATIONGROUP ATTERR

ATTYPE ATTVALUE AVAILABLE

AVAILABLEONLY BLANK BLOCKEDTIMEOUT

BLOCKSTRUCTURE BUFFERS CENSUS

CHANGEDSUBFILE CHANGEEVENT COMPRESSING

COMPRESSION COMPRESSIONCONTROL COMPRESSIONREQUESTED

CURRENTRECORDLENGTH DIALOGCHECKINTERVAL DIALOGPRIORITY

DONOTSEARCHNETWORK EXTMODE FILEEQUATED

FILENAME FILESTATE FRAMESIZE

INPUTEVENT INTERACTIVEFILE INTMODE

INTNAME KIND LASTSUBFILE

LFILENAME LTITLE MAXCENSUS

MAXSUBFILES MYHOST MYHOSTGROUP

MYNAME OUTPUTEVENT PATHNAME

PROVIDERGROUP REINITIALIZE REQUESTEDMAXRECSIZE

RESULTLIST SECURITYTYPE SERVICE

STATE SUBFILEERROR TRANSLATE

TRANSLATING YOURHOST YOURHOSTGROUP

YOURNAME YOURUSERCODE

Using BNANATIVESERVICE

25–2 8600 0056–408

If an attribute is invalid for this service, the only value of the attribute considered valid is
the default value. Invalid values are as described under “Setting Proper Attribute Values”
in Section 15.

BNANATIVESERVICE attributes that do not apply to a provider are ignored by that
provider. Refer to Table 15–1 to identify the attributes that are not supported by specific
providers.

The attribute ACTUALMAXRECSIZE has the following restrictions for each provider
implementation:

Provider Range Allowed

BNA Version 2 remote dialogue 1 through 20000

BNA Version 2 local dialogue 1 through 65513

LPP 1 through 65513

Statements Supported by BNANATIVESERVICE
Of the set of language statements pertaining to port files, the following are supported by
BNANATIVESERVICE:

• Attribute interrogation

• Attribute modification

• OPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74) /OFFER/AVAILABLE

− CONNECTTIMELIMIT

• AWAITOPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)/AVAILABLE

− CONNECTTIMELIMIT

• READ

− Message

− READ length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

• WRITE

− Message

− WRITE length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

 Using BNANATIVESERVICE

8600 0056–408 25–3

• CLOSE

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)

− Close disposition: ABORT

• WAIT

If you use a port statement not included in the preceding list, the system does not invoke the
statement and an UNSUPPORTEDPRIMITIVERSLT (168) result and an UNSUPPORTEDPRIMITIVE
(41) SUBFILEERROR are returned. If you use a statement parameter or a statement parameter
value not included in the preceding list, the system does not invoke the statement and an
UNSUPPORTEDPARAMETERRSLT (128) result and an UNSUPPORTEDPARAMETER (18)
SUBFILEERROR are returned.

File States Supported by BNANATIVESERVICE
The following is a list of all the possible file states a port file can have using
BNANATIVESERVICE:

CLOSED OFFERED

AWAITINGHOST AWAITINGOFFER

OPENED BLOCKED

SHUTTINGDOWN CLOSEPENDING

DEACTIVATIONPENDING DEACTIVATED

Using BNANATIVESERVICE

25–4 8600 0056–408

Figures 25–1 through 25–3 illustrate the file state transitions during the dialogue
establishment phase, the data transfer phase, and the dialogue termination phase for
BNANATIVESERVICE. Note that a subfile can have multiple file state transitions between
CHANGEEVENT and FILESTATE interrogations.

In the figures that follow, the following conventions apply:

• All user-initiated primitives, such as CLOSE ABORT, are in capital letters.

• Other events, such as dialogue not established, are enclosed in square brackets.

Figure 25–1. BNANATIVESERVICE Dialogue Establishment File State Transitions

If the provider is BNAv2 and the BNAv2 command NW VALIDATE has been set to HOST
STRICT (see the Networking Operations Reference Manual), and if the remote host has
not been declared to BNAv2 with a NW ADD HOST command, then the FILESTA will not
stay in AWAITINGHOST state, but will transit back to closed instead (via OFFERED).

Figure 25–2. BNANATIVESERVICE Probable File State Transitions during Data
Transfer

 Using BNANATIVESERVICE

8600 0056–408 25–5

Figure 25–3. BNANATIVESERVICE Dialogue Termination File State Transitions

If the remote host becomes unreachable, the file state is marked as BLOCKED. The file
state becomes OPENED if the remote host becomes reachable within a specific time. If
the remote host does not become reachable within that time period, the system initiates
deactivation of the dialogue.

Use the BLOCKEDTIMEOUT attribute to control the length of time that the subport is to
remain blocked before the system initiates deactivation of the dialogue.

When a program invokes an OPEN operation, a dialogue request is issued to the
endpoint addressed by YOURNAME and YOURHOST attribute values of the program.
When a dialogue request is received by your system, it is matched by the
BNANATIVESERVICE provider to a subfile that has invoked an OPEN or AWAITOPEN
statement.

If the incoming dialogue request cannot be matched, and the AVAILABLEONLY attribute
is FALSE for the request, the system keeps the request for future matching. If the
AVAILABLEONLY attribute is TRUE for the incoming request, and the request cannot be
immediately matched, it is rejected.

Using BNANATIVESERVICE

25–6 8600 0056–408

BNANATIVESERVICE uses the following matching attributes to match dialogue requests:

Matching Attribute Description

MYNAME The name your program uses for the dialogue.

YOURNAME The name the correspondent endpoint uses for the dialogue.

MYHOST The name of the host on which your program is running. This
is a read-only attribute.

YOURHOST The name of the host where the correspondent endpoint is
located. A null YOURHOST value matches any incoming
MYHOST value.

MYHOSTGROUP The name of the group of hosts to which the host executing
your program belongs. This is a read-only attribute.

YOURHOSTGROUP The name identifying the host group of the correspondent
endpoint.

FILENAME This is the name of the port file of your program. FILENAME
cannot be null, and must match the FILENAME of the
correspondent endpoint.

APPLICATIONGROUP This identifies the user community to which your port
belongs. The value of APPLICATIONGROUP must match
that of the correspondent endpoint. A null
APPLICATIONGROUP matches only other null
APPLICATIONGROUP values.

INTMODE Specifies the internal character size of records used in the
port file. For a match to occur, it must be possible for the
two endpoints to agree on a character set for the dialogue. If
the INTMODE values of the endpoints do not match, they
must not both have the attribute TRANSLATE set equal to
NOTRANS.

YOURUSERCODE Specifies the usercode under which the correspondent
endpoint must be running when the SECURITYTYPE
attribute value for your subfile is PRIVATE. If the
SECURITYTYPE value for your subfile is PUBLIC,
YOURUSERCODE is not used.

 Using BNANATIVESERVICE

8600 0056–408 25–7

The BNANATIVESERVICE provider obtains the value of the matching attributes for the
correspondent endpoint through protocol exchanged during dialogue establishment.

The following information explains the matching criteria for the MYNAME/YOURNAME
and the MYHOST/YOURHOST attribute couples, and the YOURUSERCODE attribute.

MYNAME/YOURNAME

In order to match, the YOURNAME attribute value for your endpoint must match the
MYNAME attribute value of the correspondent endpoint. If you set the YOURNAME
value of your subfile to null, it matches the MYNAME value of any correspondent
endpoint. The MYNAME value of your subfile must also match the YOURNAME value of
the correspondent endpoint. If the MYNAME value of your subfile is null, it can match
only null YOURNAME values for correspondent endpoints.

MYHOST/YOURHOST

The YOURHOST value of your subfile must match the MYHOST value of the
correspondent endpoint. A null YOURHOST value matches any MYHOST value.

Two port subfiles that reside on separate hosts and have null YOURHOST values do not
match unless the application is using the host independent matching (HIM) feature.

The Local Port Provider (LPP) does not service dialogues when YOURHOST is set to
foreign hosts. In this case, LPP returns an UNSUPPORTEDFUNCTION subfile error.

BNA does not service dialogues when YOURHOST is set to local host (for example, local
ports). In this case, BNA returns an UNSUPPORTEDFUNCTION subfile error.

YOURUSERCODE

Whether or not YOURUSERCODE is used in dialogue matching depends upon the value
of the SECURITYTYPE attribute.

SECURITYTYPE restricts the correspondent endpoints that can match with your subfile.
Each host performs security checking for its own subfile as follows:

• If the SECURITYTYPE value of your port file is PUBLIC, security checking is
immediately successful, and YOURUSERCODE does not influence matching. After
the open action, YOURUSERCODE holds the usercode of the task that declared the
correspondent subport so that the application can perform its own security checking.

• If the SECURITYTYPE value of your port file is PRIVATE, the YOURUSERCODE value
of the correspondent port must match the usercode of the program offering the
correspondent endpoint, or the dialogue is not matched.

Using BNANATIVESERVICE

25–8 8600 0056–408

Using Host Independent Matching (HIM)

Host independent matching enables a BNA subport to find the endpoint of the
complementary subport without the initiating application knowing the name of the other
host.

HIM applies only to subports on an enterprise server host with BNA service and requires
one additional code module that must be entered into the system with the SL (Support
Library) system command. An example of the code module follows:

SL HIMSUPPORT = SYSTEM/HIM/SUPPORT : ONEONLY, LINKCLASS = 1

The FILENAME attribute of a subport is defined as the RESOURCENAME. The ADD
RESOURCE command maps a resource to a list of possible BNA hosts. An application
invokes the HIM feature by setting the subport file attribute APPLICATIONCONTEXT to
the string “him”. When the application opens the subport, BNA checks if HIM is running
and proceeds as follows:

• If HIM is not running, the OPEN operation continues with the normal matching
methods.

• If HIM is running, the FILENAME value is passed to the Service Resolver library
(HIMSUPPORT).

The library returns a list of resource or host names previously defined in the ADD
RESOURCE command. The Port Level Manager (PLM) directs an offer to the first host
on the list and proceeds as follows:

• If the OPEN operation fails, or no matching subport exists at the other host, then the
next host is tried.

• If the subport fails to open after trying all the hosts on the list, the OPEN operation
continues with the normal matching methods.

Operations Interface Networking Commands

The following Operations Interface (OI) commands support the HIM feature.

NW ADD RESOURCE

Builds a library of the host names currently providing specific resources or applications.
BNA uses this library during subport matching when the port file declaration specifies the
HIM feature.

NW MODIFY RESOURCE

Updates a library of the host names currently providing specific resources or applications.
A specified resource must already exist in the library. The hosts listed in the command
replace those in the library.

NW DELETE RESOURCE

Deletes a resource from the table maintained by the library.

 Using BNANATIVESERVICE

8600 0056–408 25–9

NW RESOURCE

Enables you to inquire on all resource names in the library or on a specific resource.

Refer to the Networking Operations Reference Manual for more information.

Example

The following command is entered before running the program:

NW ADD RESOURCE PORTTEST AT (HOSTA, HOSTB)

The following is an example of a port file declaration in a program:

FILE PORTF (KIND = PORT

 ,FILENAME = "PORTTEST."
 ,MYNAME = "LOCAL."
 ,YOURNAME = "REMOTE."
 ,APPLICATIONCONTEXT = "HIM."
 ,YOURHOST = ".")
 ;

When the program executes an OPEN operation statement for PORTF, BNA determines
whether HIM is running and proceeds as follows:

• If HIM is running, an offer for this subport is directed to the first host in the
ADDRESOURCE list, HOSTA.

− If HOSTA does not have a matching candidate available, the offer is refused and
the OPEN operation is sent to the second host, HOSTB.

− If the OPEN operation is also refused at HOSTB, then the OPEN operation is
added to the local host’s candidate list with the YOURHOST attribute set to null.

• If HIM is not running at the time the OPEN operation is executed, the offer is
immediately put on the local candidate list with the YOURHOST attribute set to null.

Using BNANATIVESERVICE

25–10 8600 0056–408

Establishing a Dialogue Using BNANATIVESERVICE
Dialogue establishment is initiated through the OPEN statement. An OPEN operation
causes a dialogue request to be issued. When an AWAITOPEN operation is invoked, the
subfile waits for a matching dialogue request to be received. Colliding OPEN requests are
resolved into one dialogue in BNANATIVESERVICE.

Dialogue establishment works for BNANATIVESERVICE as described in Section 18,
“Establishing a Subfile Dialogue.” Additional functionality provided by
BNANATIVESERVICE is described in the following subsections.

Using the OPEN Statement with BNANATIVESERVICE

The OPEN statement functions for BNANATIVESERVICE as described in Section 18,
“Establishing a Subfile Dialogue.” In addition to the functionality described in Section 18,
BNANATIVESERVICE also allows the OFFER control option, which is described in this
subsection. The OPEN statement syntax is included again here for easy reference.

Example Syntax

ALGOL OPEN (<file name>[SUBFILE <subfile index>],<control
option>,
 <connect time limit option>);

COBOL74 MOVE <subfile index> TO <file subfile control>.
OPEN <control option> <file name> USING
 <connect time limit>.

In addition to the WAIT, DONTWAIT (NO WAIT in COBOL74), and AVAILABLE control
options, BNANATIVESERVICE allows the OFFER control option. OFFER indicates that
control is returned to your program after the availability of the host specified by the
YOURHOST attribute has been determined. Dialogue establishment then continues in
parallel with the execution of your program. When an OPEN operation specifies all
subfiles, control is returned only after host availability has been determined for all
affected subfiles.

Note that determining host availability can cause a significant delay. If your program
cannot afford such a delay, you should use the DONTWAIT control option or NO WAIT
control option in COBOL74.

The result of the offer is shown through changes in the FILESTATE and SUBFILEERROR
attributes for each subfile being opened. If the specified host is available, FILESTATE is
set to OFFERED before control is returned to your program. If the specified host is
unavailable, the action taken depends upon the value of the AVAILABLEONLY attribute.
If AVAILABLEONLY is FALSE, FILESTATE is set to AWAITINGHOST before control is
returned.

 Using BNANATIVESERVICE

8600 0056–408 25–11

If AVAILABLEONLY is TRUE and the host specified by YOURHOST is unreachable, then
the OPEN operation fails, your program resumes, and an UNREACHABLEHOST (5)
SUBFILEERROR is returned. If AVAILABLEONLY is TRUE and no match is found, the
OPEN operation fails, your program resumes, and a NOFILEFOUND (4) SUBFILEERROR
is returned.

Example

ALGOL RSLT := OPEN (PORTF[SUBFILE 1], OFFER);

COBOL74 MOVE 1 TO PORTFX.
OPEN OFFER PORTFX.
IF ATTRIBUTE FILESTATE OF PORTF(1) IS EQUAL TO VALUE
OPENED...

Using the AWAITOPEN Statement with BNANATIVESERVICE

Refer to “Using the AWAITOPEN Statement” in Section 18 for an explanation of the
AWAITOPEN statement.

Understanding Negotiation during Dialogue Establishment with
BNANATIVESERVICE

BNANATIVESERVICE negotiates the following file attributes during dialogue
establishment:

Attribute Description

ACTUALMAXRECSIZE This attribute determines the maximum data length in
FRAMESIZE units that can be handled on READ and
WRITE operations.

EXTMODE This attribute determines the physical character encoding
of the records in the port file.

COMPRESSING This attribute determines whether compression is currently
being performed by the dialogue.

ACTUALMAXRECSIZE

ACTUALMAXRECSIZE is negotiated to be the lesser of the REQUESTEDMAXRECSIZE
values of the two endpoints.

EXTMODE

EXTMODE is negotiated based upon the values of the INTMODE and TRANSLATE
attributes for the correspondent endpoints. If the two values of INTMODE are the same,
EXTMODE takes the value of INTMODE and TRANSLATING becomes FALSE. If the two
values of INTMODE are different, the result depends upon the values of the TRANSLATE
attribute.

Using BNANATIVESERVICE

25–12 8600 0056–408

If both endpoints specify the NOTRANS value, no match is made and the OPEN
operation fails. If either endpoint specifies the USERTRANS or FULLTRANS values, the
dialogue match is made. The provider of this service assigns translation responsibility to
the endpoint or endpoints that it deems appropriate. For instance, the provider might
choose the endpoint with the greatest translation capability. FULLTRANS is assumed to
be more capable than USERTRANS, which in turn is assumed to be more capable than
NOTRANS.

If one of the endpoints specifies FULLTRANS, TRANSLATING becomes TRUE for that
endpoint and FALSE for the correspondent endpoint, and the value of EXTMODE for that
endpoint becomes the value of INTMODE for the correspondent endpoint. In this case,
the endpoint that has TRANSLATING set to TRUE becomes responsible for the
translation. If both subfiles specify FULLTRANS, the assignment of translation
responsibility is arbitrary.

If neither endpoint specifies FULLTRANS, but one of the endpoints specifies
USERTRANS, TRANSLATING becomes FALSE, and the value of EXTMODE for that
endpoint becomes the value of the INTMODE attribute for the correspondent endpoint.
In this case, the subfile in which INTMODE is not equal to EXTMODE (that is, the subfile
that specifies USERTRANS) is responsible for performing user-level translation of any
data read or written. If both subfiles specify USERTRANS, the assignment of translation
responsibility is arbitrary.

COMPRESSING

Whether compression of data is possible or not is dependent on the port provider. The
COMPRESSING file attribute can be interrogated to determine whether compression is
currently in effect for the dialogue.

If compression of data is possible for a provider, use the COMPRESSIONCONTROL
attribute to specify whether your program or the provider controls stripping of contiguous
characters. If the COMPRESSIONCONTROL value is USER, the default, compression is
controlled by the value of the COMPRESSIONREQUESTED file attribute. In this case, the
COMPRESSING attribute value reflects the COMPRESSIONREQUESTED value.

The Local Port Provider (LPP) does not compress data. The COMPRESSING attribute is
always FALSE for this provider.

For providers that use the BNA network, data compression can be performed on the
local host if the network characteristic Port Compression Allowed is TRUE. Port
Compression Allowed defaults to TRUE, but can be set to FALSE by using the NW PCA
operator command. If Port Compression Allowed is TRUE, the final decision to compress
data is made at dialogue establishment time.

For providers that use the BNA network, if the COMPRESSIONCONTROL value is
SYSTEM and compression is supported on both hosts, the router manager controls
whether compression is performed. The router manager determines if there is to be
compression by considering the resistance factors of the network against the
compression threshold. The compression threshold can be manipulated by using the
NW COMPRESSION THRESHOLD operator command. The default of the threshold is
50. In general, compression does not occur on fast connections, but does occur on
slower connections.

 Using BNANATIVESERVICE

8600 0056–408 25–13

Exchanging Data Using BNANATIVESERVICE
BNANATIVESERVICE follows the procedures for READ and WRITE operations described
in Section 19, “Exchanging Data.”

If your program is using BNA Version 2, use the DIALOGPRIORITY file attribute to
specify the priority of transmissions from the port subfile relative to the other port
subfiles. Your program should specify the 0 (zero) default value for the DIALOGPRIORITY
attribute, because the value 1 or 2 causes competition with the BNA Version 2 system
software and network management functions.

Tables 25–1 and 25–2 contain the results of the READ or WRITE operation as related to
the file state of the subfile on which the operation is being performed.

The way a READ operation is handled by the port service depends upon the file state of
the subfile. Table 25–1 describes the way a READ operation is handled on a subfile in
each file state supported by BNANATIVESERVICE.

Table 25–1. Effects of File State on the READ Operation for
BNANATIVESERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGHOST EOF

OPENED If the value of CENSUS is greater than 0, returns input
data; otherwise depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

BLOCKED If the value of CENSUS is greater than 0, returns input
data; otherwise depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

SHUTTINGDOWN If the value of CENSUS is greater than 0, returns input
data; otherwise depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

CLOSEPENDING EOF

DEACTIVATIONPENDING Returns input data; when READ queue is empty, file state
moves to DEACTIVATED

DEACTIVATED EOF

Using BNANATIVESERVICE

25–14 8600 0056–408

The result of the WRITE operation depends upon the file state of the subfile you are
writing to. Table 25–2 explains the results of the WRITE operation on a subfile in each of
the file states supported by BNANATIVESERVICE.

Table 25–2. Effects of File State on the WRITE Operation for
BNANATIVESERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGHOST EOF

OPENED If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

BLOCKED If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

SHUTTINGDOWN If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

CLOSEPENDING EOF

DEACTIVATIONPENDING EOF

DEACTIVATED EOF

Closing a Dialogue Using BNANATIVESERVICE

BNANATIVESERVICE provides ABORT dialogue termination, described in Section 20,
“Closing a Dialogue.” BNANATIVESERVICE does not support orderly dialogue
termination; see “Using ABORT Termination for Orderly Release” in Section 20.

8600 0056–408 26–1

Section 26
Using TCPIPNATIVESERVICE

TCPIPNATIVESERVICE is a data-stream-oriented service offered over the TCP network
environment and is provided by the TCP/IP network environment.

File Attributes Supported by TCPIPNATIVESERVICE

The following file attributes are supported by the TCPIPNATIVESERVICE. Table 15–1
contains the attributes supported by each service.

ACTUALMAXRECSIZE ATTERR ATTVALUE

ATTYPE AVAILABLE BLOCKEDTIMEOUT

CHANGEDSUBFILE CHANGEEVENT CURRENTRECORDLENGTH

DIALOGCHECKINTERVAL DIALOGPRIORITY FILEEQUATED

FILESTATE FRAMESIZE FRAMESIZECENSUS

INPUTEVENT INTNAME KIND

LASTSUBFILE MAXFRAMESIZECENSUS MAXSUBFILES

MYDOMAINNAME MYHOST MYIPADDRESS

MYNAME OUTPUTEVENT PASSIVEOPEN

PROVIDERGROUP RESULTLIST SERVICE

STATE SUBFILEERROR YOURDOMAINNAME

YOURHOST YOURIPADDRESS YOURNAME

Note: Using the AWAITOPEN statement is preferable to setting the PASSIVEOPEN
attribute to TRUE. Refer to “Using the AWAITOPEN Statement” in Section 18 for more
information.

If an attribute is not supported by this service, the only value of the attribute considered
valid is the default value. An exception is the attribute FILENAME, which can have the
value null string.

Using TCPIPNATIVESERVICE

26–2 8600 0056–408

The following attributes have restrictions on the range of valid values for this service:

Attribute Valid Range

FRAMESIZE 8. Note that FRAMESIZE defaults to 48.

MYNAME Null or "0." through "65535."

YOURNAME Null or "0." through "65535."

Setting attributes to values invalid for this service is handled as described earlier under
“Setting Proper Attribute Values” in Section 15.

The ACTUALMAXRECSIZE value is the optimum segment size, in FRAMESIZE units,
transmitted by the TCP provider to its peer. Your program can use this information to
maximize the utilization of the underlying transmission mechanisms. If your program
delivers data to the provider in multiples of ACTUALMAXRECSIZE bytes, the
performance of your program might increase.

Port Support for TCPIPNATIVESERVICE
In a TCP/IP network, a port number and an IP address are used to uniquely identify an
endpoint. Port numbers are 16-bit positive integers and are partitioned into several
ranges. The first range is for reserved ports—numbers less than 1024 are typically used
by servers for listening. The reserved ports are further broken down so that the first 255
are used by well-known services. The TCP protocol uses source and destination port
numbers to create a TCP dialogue. The source and the destination port numbers must be
unique for a new dialogue to be created.

The following combinations are used to define the IP address and port number on MCP
systems:

• MYNAME port file attribute and MYIPADDRESS subport file attribute,
MYDOMAINNAME port file attribute, or MYHOST port file attribute

• YOURNAME subport file attribute and YOURIPADDRESS subport file attribute,
YOURDOMAINNAME subport file attribute, or YOURHOST subport file attribute

For other restrictions on the specification of these attributes for opening a TCP dialogue,
refer to “Preparing for Dialogue Establishment Using TCPIPNATIVESERVICE” later in
this section. You can also refer to the MYDOMAINNAME, MYHOST, MYIPADDRESS,
MYNAME, YOURDOMAINNAME, YOURHOST, YOURIPADDRESS, and YOURNAME
attributes in the File Attributes Reference Manual.

 Using TCPIPNATIVESERVICE

8600 0056–408 26–3

Statements Supported by TCPIPNATIVESERVICE
Of the set of language statements pertaining to port files, the following are supported by
TCPIPNATIVESERVICE:

• GETATTRIBUTE

• SETATTRIBUTE

• OPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)

− CONNECTIMELIMIT

• AWAITOPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)

− CONNECTTIMELIMIT

• READ

− Data

− READ length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

• WRITE

− Data

− WRITE length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

− URGENT

• CLOSE

− Close disposition: ABORT/ORDERLY

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)

If you use a port file statement not included in the preceding list, the system does not
invoke the statement and an UNSUPPORTEDPRIMITIVERSLT (168) result is returned. If
you use a statement parameter or a statement parameter value not included in the
preceding list, the system does not invoke the statement and an
UNSUPPORTEDPARAMETERRSLT (128) result is returned.

Using TCPIPNATIVESERVICE

26–4 8600 0056–408

File States Supported by TCPIPNATIVESERVICE
The following table lists all the possible file states a port file can have when it is using
TCPIPNATIVESERVICE:

AWAITINGHOST AWAITINGOFFER

BLOCKED CLOSED

CLOSEDINPUTPENDING CLOSEPENDING

CLOSEREQUESTED CLOSEREQUESTRECEIVED

DEACTIVATED DEACTIVATIONPENDING

OFFERED OPENED

URGENTDATAWAITING

Figures 26–1 through 26–5 illustrate the file state transitions of TCPIPNATIVESERVICE.

In the figures that follow, the following conventions apply:

• All user-initiated primitives, such as CLOSE ABORT, appear in uppercase letters.

• Other events, such as dialogue not established, are enclosed in square brackets.

Figure 26–1. TCPIPNATIVESERVICE Dialogue Establishment File State Transitions

 Using TCPIPNATIVESERVICE

8600 0056–408 26–5

Figure 26–2. TCPIPNATIVESERVICE Probable File State Transitions during Data
Transfer

OPENED

CLOSEREQUESTED

CLOSE
ABORT

CLOSE
ABORT

CLOSE
ABORT

CLOSEDINPUTPENDING DEACTIVATIONPENDING

CLOSED

DEACTIVATEDCLOSEPENDING

[FSC equal to 0]

FSC=FRAMESIZECENSUS

PROTOCOL
FINISHED

PROTOCOL
FINISHED

and
[FSC equal

to 0]

PROTOCOL
not

FINISHED
and

[FSC equal
to 0]

[Rcvd RESET, FSC
greater than 0]

[Rcvd RESET FSC
equal to 0]

[Rcvd FIN, FSC
greater than 0]

[Rcvd FIN, FSC
equal to 0]

Figure 26–3. TCPIPNATIVESERVICE Dialogue Termination File State Transitions
for CLOSEREQUESTED

Using TCPIPNATIVESERVICE

26–6 8600 0056–408

Figure 26–4. TCPIPNATIVESERVICE Dialogue Abnormal Termination File State
Transitions for OPEN

Figure 26–5. TCPIPNATIVESERVICE Dialogue Termination File State Transitions
for CLOSEREQUESTRECEIVED

 Using TCPIPNATIVESERVICE

8600 0056–408 26–7

If no data is being exchanged over a connection, you can specify that a “keep-alive”
packet be sent to verify that the connection is still open by setting the
DIALOGCHECKINTERVAL file attribute value to a nonzero value. If no response is
received from the keep-alive packet, the connection goes to the blocked state and
remains in that state for the time defined by the BLOCKEDTIMEOUT file attribute value.

The connection terminates after no response to the keep-alive packet is received in the
time defined by the BLOCKEDTIMEOUT value. If a response to the keep-alive packet is
received, the connection returns to an open state.

Keep-alive packets are sent only when the dialogue is in the open and blocked states.

Preparing for Dialogue Establishment Using
TCPIPNATIVESERVICE

TCPIPNATIVESERVICE uses the following matching attributes:

Matching Attribute Description

MYNAME The name you are using for the dialogue, which is mapped into
the TCP source port address.

MYIPADDRESS The IP address of the subfile. This must be one of the valid IP
addresses for the local host or null.

MYDOMAINNAME The domain name of the host on which the program is running.
This is a read-only attribute. Associated with this name are
statically-defined IP addresses.

MYHOST The name of the host on which your program is running. This is
a read-only attribute. Associated with this name are statically-
defined IP addresses.

YOURNAME The name of the correspondent port, which is mapped into the
TCP destination port address.

YOURIPADDRESS The IP address of the correspondent endpoint of the subfile.

YOURDOMAINNAME The domain name of the host on which the correspondent
endpoint is located. This name is used by the MCP
environment Resolver to determine the actual location of the
host in the network.

YOURHOST The name of the host on which the correspondent endpoint is
located, which is mapped into the destination IP address.

Using TCPIPNATIVESERVICE

26–8 8600 0056–408

During an OPEN operation, the YOURNAME and MYNAME values of the two endpoints
must match. In addition, one of the following values of the two endpoints must match:

• YOURHOST and MYHOST

• YOURIPADDRESS and MYIPADDRESS

If you specify a YOURDOMAINNAME or a YOURHOST value, the IP address
associated with the YOURDOMAINNAME value is obtained as follows:

TCPIPSUPPORT inquires on its mapping table for an IP address that is mapped to
that DOMAINNAME. If a match does not exist in the mapping table, then
TCPIPSUPPORT invokes the Resolver to obtain the IP address associated with the
specified DOMAINNAME.

When a TCPIP connection is opened, the TCPIPSUPPORT maps a hostname and
domain name to the remote IP address by default. If the IP address is not in the
TCPIPSUPPORT internal table, it calls into the Resolver to find the hostname and
domain name associated with the IP address. It sends requests to the configured
Domain Name Server(s). If a hostname is found before the open completes,
YOURHOSTNAME and YOURDOMAINNAME subfile attributes are updated. If the
application does not have these attributes updated, you can suppress them by
setting DoNotSearchNetwork to TRUE.

When you open the file with an OPEN statement (or PASSIVEOPEN = true), you must at
a minimum specify a value for the YOURNAME attribute, and specify a value for one of
the following attributes: YOURIPADDRESS, YOURDOMAINNAME, or YOURHOST. If you
specify a YOURIPADDRESS value, the YOURDOMAINNAME and YOURHOST values
might still be null after the OPEN operation is complete. If you specify a
YOURDOMAINNAME or a YOURHOST value, the YOURIPADDRESS value contains the
appropriate information after the OPEN operation is complete.

Note: If your application has a port file open, and the YOURHOST, YOURIPADDRESS,
and YOURDOMAINNAME values are all specified, or two are specified, the TCP provider
uses the values in the following order: YOURIPADDRESS, YOURDOMAINNAME, and
YOURHOST.

When you open the file with an AWAITOPEN statement, you can assign a null string to
the YOURHOST, YOURDOMAINNAME, or YOURIPADDRESS attribute and the
YOURNAME attribute. In this case, your port file matches any calling endpoint address
when the YOURNAME value of the calling endpoint matches the MYNAME attribute
value of your port file.

When a file is opened actively, the following results are true:

Situation Result

YOURHOST, YOURIPADDRESS, and
YOURDOMAINNAME values are null
strings.

The OPEN operation fails and the
BADATTRIBUTESFOROPEN (13)
SUBFILEERROR is returned.

YOURNAME is a null string. The OPEN operation fails and the
BADATTRIBUTESFOROPEN (13)
SUBFILEERROR is returned.

 Using TCPIPNATIVESERVICE

8600 0056–408 26–9

Situation Result

YOURHOST value equals the MYHOST
value.

The OPEN operation is successful if the
YOURDOMAINNAME and
YOURIPADDRESS values are null. If either
of those values are specified, YOURHOST
is not used for matching.

The MYNAME attribute value is a null
string.

The OPEN operation continues and TCP/IP
software assigns a port address.

The OPEN operation is requested with
values for MYNAME, YOURNAME, and
YOURIPADDRESS that are already in use
by a connection in use by an existing
application on the local host.

The OPEN operation fails and the
CONNECTIONINUSE (59)
SUBFILEERROR is returned.

When a file is opened passively, the following results are true:

Situation Result

The YOURHOST attribute value is not a
null string, and the YOURNAME attribute
value is a null string.

The OPEN operation continues.

The YOURHOST attribute value is a null
string, and the YOURNAME attribute value
is not a null string.

The OPEN operation continues.

The MYNAME attribute value is a null
string.

The OPEN operation fails and the
BADATTRIBUTESFOROPEN (13)
SUBFILEERROR is returned.

Using TCPIPNATIVESERVICE

26–10 8600 0056–408

Establishing a Dialogue Using
TCPIPNATIVESERVICE

A dialogue is established in the same manner as described in Section 18, “Establishing a
Subfile Dialogue,” except that the AVAILABLEONLY attribute does not affect TCP.

Using the OPEN Statement with TCPIPNATIVESERVICE

The OPEN statement functions for TCPIPNATIVESERVICE as described in Section 18,
under “Using the OPEN Statement,” except that the AVAILABLEONLY file attribute is
ignored.

Using the AWAITOPEN Statement

TCPIPNATIVESERVICE supports the AWAITOPEN statement.

The AWAITOPEN statement functions for TCPIPNATIVESERVICE as described in
Section 18, under “Using the AWAITOPEN Statement,” except that the
AVAILABLEONLY file attribute value is ignored and TCPIPNATIVESERVICE functions as
though AVAILABLEONLY is FALSE.

Exchanging Data Using TCPIPNATIVESERVICE
The methods used to exchange data using TCPIPNATIVESERVICE are the same as those
described earlier for data-stream-oriented services in Section 19, “Exchanging Data.”

Use the DIALOGPRIORITY attribute to specify the priority of transmissions from the
current port subfile relative to other port subfiles. User programs can use the values 0
(zero) through 2. These values have the following significance:

• 0—Routine

• 1—Priority

• 2—Immediate

Some additional considerations are described in this subsection. These considerations
involve dealing with data-stream information, using the MAXFRAMESIZECENSUS and
FRAMESIZECENSUS attributes, and using the urgent message capability of
TCPIPNATIVESERVICE. Note also that the CENSUS and MAXCENSUS attributes do not
apply to TCPIPNATIVESERVICE.

Tables 26–1 and 26–2 contain the results of the READ or WRITE operation as related to
the file state of the port file on which the operation is being performed.

The way a READ operation is handled by the port service depends upon the file state of
the port file. Table 26–1 describes the way a READ operation is handled in each file state
supported by TCPIPNATIVESERVICE.

 Using TCPIPNATIVESERVICE

8600 0056–408 26–11

Table 26–1. Effects of File State on the READ Operation for
TCPIPNATIVESERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGHOST EOF

AWAITINGOFFER EOF

OPENED If the value of FRAMESIZECENSUS is greater than 0,
returns input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

BLOCKED If the value of FRAMESIZECENSUS is greater than 0,
returns input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

URGENTDATAWAITING If the value of FRAMESIZECENSUS is greater than 0,
returns input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

CLOSEREQUESTRECEIVED Returns input data or EOF

CLOSEREQUESTED Returns input data or EOF

CLOSEPENDING EOF

DEACTIVATIONPENDING Returns input data; when READ queue is empty, port file
moves to DEACTIVATED

CLOSEDINPUTPENDING Returns data; when READ queue is empty, port file is
CLOSED or CLOSEPENDING

DEACTIVATED EOF

Using TCPIPNATIVESERVICE

26–12 8600 0056–408

The result of the WRITE operation depends upon the file state of the port file you are
writing to. Table 26–2 explains the results of the WRITE operation on a port file in each of
the file states supported by TCPIPNATIVESERVICE.

Table 26–2. Effects of File State on the WRITE Operation for
TCPIPNATIVESERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGHOST EOF

AWAITINGOFFER EOF

OPENED If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

BLOCKED If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

URGENTDATAWAITING If OUTPUTEVENT is in the happened state, then WRITE
(OK);otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

CLOSEREQUESTRECEIVED If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

CLOSEREQUESTED EOF

CLOSEPENDING EOF

DEACTIVATIONPENDING EOF

CLOSEDINPUTPENDING EOF

DEACTIVATED EOF

 Using TCPIPNATIVESERVICE

8600 0056–408 26–13

Understanding Data-Stream-Oriented Data Transfer Using
TCPIPNATIVESERVICE

As mentioned before, data-stream-oriented data transfer uses the same methods as
message-oriented data transfer. With data-stream-oriented transfer, however, the data is
not sent and received in message-size chunks. The amount of data read or written is
specified by the data length parameter in the READ or WRITE statement.

Also, TCPIPNATIVESERVICE uses the MAXFRAMESIZECENSUS and the
FRAMESIZECENSUS attributes instead of the MAXCENSUS and CENSUS attributes.

For TCPIPNATIVESERVICE, FRAMESIZE must be set to 8; otherwise, the
BADATTRIBUTESFOROPEN (13) SUBFILEERROR is returned.

Unlike message-oriented port services, if a TCPIPNATIVESERVICE READ operation does
not read the entire data buffer, the data buffer is not deallocated, and the next READ
operation starts where the previous one left off. The data buffer is deallocated once all its
data has been read.

If a READ operation requests more data than the current data buffer contains, the
operation attempts to satisfy the READ request from subsequent data buffers of the port
file until the request is satisfied. If the READ operation runs out of data before the
request has been fulfilled, the operation is terminated with the data read to that point. It
is the responsibility of the program to track the amount of data read.

The following actions occur if a WRITE DONTWAIT operation requests that more data be
sent than can be sent by the provider at the moment:

• The number of bytes of data that can be handled are sent.

• The INSUFFICIENTBUFFERS (132) I/O result is returned.

• The [47:20] Field of the STATE file attribute and the CURRENTRECORDLENGTH file
attribute value are set to the number of bytes sent by the provider.

To ensure that all data is sent, your program should determine if all the data has been
sent. If all the data was not sent, your program must issue another WRITE statement
that points to the remaining data to be sent.

Using Urgent Data with TCPIPNATIVESERVICE

TCPIPNATIVESERVICE gives you the ability to indicate that a port file has urgent data
that needs to be read from the file.

The value of the FILESTATE attribute of the port file remains URGENTDATAWAITING
until all of the urgent data has been read. When all of the urgent data has been read, the
FILESTATE value returns to the appropriate state.

Using TCPIPNATIVESERVICE

26–14 8600 0056–408

Reading Urgent Data with TCPIPNATIVESERVICE

The READ result informs your program that the data received in a READ operation
contains urgent data. The READ result is a copy of the STATE file attribute value. If the
READ result contains a zero (0) in the [01:01] field and a 42 (URGENT flag) in the [26:10]
field, urgent data has been read. The URGENT flag remains on as long as there is urgent
data in the user’s buffer. When the last byte of urgent data has been read, the READ
operation returns to the program without appending nonurgent data even though more
data might have been requested with the READ operation.

Data marked as urgent is not given special treatment by TCPIPNATIVESERVICE; it is the
responsibility of your program to handle urgent data.

Example 1

ALGOL DEFINE URGENTDATAREAD(RSLT)=
 (NOT RSLT.[01:01] AND (REAL(RSLT.[26:10])=42))#;
RSLT := READ(PORTF,72,IOBUF[*]);
IF URGENTDATAREAD (RSLT) THEN
 PROCESS_URGENT_DATA
ELSE
 .
 .
 .

COBOL74 01 TEMP1 USAGE REAL.
01 TEMP2 USAGE REAL.
01 URGENT-DATA USAGE REAL.
.
.
.
MOVE 42 TO URGENT-DATA.
READ PORTF RECORD.
MOVE PORTF-72 TO IOBUF.
MOVE PORTF-FS TO TEMP1.
MOVE TEMP1 TO TEMP2[26:9:10].
IF TEMP2 IS EQUAL TO URGENT-DATA
 PERFORM PROCESS_URGENT_DATA
ELSE
 DISPLAY "NOT URGENT DATA".
STOP RUN.

This example shows the way to determine whether incoming data must be checked for
the presence of urgent data.

 Using TCPIPNATIVESERVICE

8600 0056–408 26–15

Writing Urgent Data with TCPIPNATIVESERVICE

Your program can indicate the presence of urgent data by using the URGENT parameter
of the WRITE statement that is available with TCPIPNATIVESERVICE. Data marked
urgent by your program is not given special treatment by the TCPIPNATIVESERVICE
provider. When the WRITE operation is invoked, the data is placed in the outgoing byte
stream and sent following the windowing rules of the protocol. Urgent data is not placed
ahead of any previously written data waiting to be sent.

Example 2

ALGOL WRITE (PORTF[URGENT],72,IOBUF);

COBOL74 WRITE PORTF-AUX-REC WITH URGENT FROM IOBUF.

This example shows the way to indicate that urgent data is present. The syntax simply
includes the URGENT specification.

Closing a Dialogue Using TCPIPNATIVESERVICE
TCPIPNATIVESERVICE provides ABORT and ORDERLY dialogue release.
TCPIPNATIVESERVICE provides ABORT termination through the CLOSE ABORT
statement. The CLOSE ABORT statement causes the application to stop reading and
writing data and does not guarantee that all data is sent or received. The application
receives the following warning message if the provider is aware that data has not been
delivered:

FILE <port file> AT <host name> CLOSE WARNING: DATA MAY HAVE BEEN LOST

TCPIPNATIVESERVICE provides ORDERLY termination through the CLOSE ORDERLY
statement. This CLOSE ORDERLY statement causes the application to stop writing data,
but allows the application to continue to read data and guarantees the delivery of all data.

Note: If you are converting a program from TCPNATIVESERVICE to
TCPIPNATIVESERVICE and want to retain the same CLOSE operation behavior, use the
ORDERLY close disposition instead of the ABORT close disposition.

Using TCPIPNATIVESERVICE

26–16 8600 0056–408

8600 0056–408 27–1

Section 27
Using TCPNATIVESERVICE

TCPNATIVESERVICE is a data-stream-oriented service offered over the TCP/IP network.

Note: This service will be deimplemented in a future release. It is being replaced by
TCPIPNATIVESERVICE.

File Attributes Supported by TCPNATIVESERVICE
Table 15–1 contains the list of attributes supported by each service.

The following file attributes are supported by TCPNATIVESERVICE.

ACTUALMAXRECSIZE ATTERR ATTVALUE

ATTYPE AVAILABLE BLOCKEDTIMEOUT

CHANGEDSUBFILE CHANGEEVENT CURRENTRECORDLENGTH

DIALOGCHECKINTERVAL FILEEQUATED FILESTATE

FRAMESIZE FRAMESIZECENSUS INPUTEVENT

INTERACTIVEFILE INTNAME KIND

LASTSUBFILE LTITLE MAXFRAMESIZECENSUS

MAXSUBFILES MYDOMAINNAME MYHOST

MYIPADDRESS MYNAME OUTPUTEVENT

PASSIVEOPEN PATHNAME PROVIDERGROUP

REINITIALIZE REQUESTEDMAXRECSIZE RESULTLIST

SERVICE STATE SUBFILEERROR

YOURDOMAINNAME YOURHOST YOURIPADDRESS

YOURNAME

Note: Using the AWAITOPEN statement is preferable to setting the PASSIVEOPEN
attribute to TRUE. Refer to “Using the AWAITOPEN Statement” in Section 18 for more
information.

If this service does not support an attribute, the only valid value of the attribute is the
default value, except the attribute FILENAME, which can have the value null string.

Using TCPNATIVESERVICE

27–2 8600 0056–408

Also, the following attributes have restrictions on the range of valid values for this
service:

Attribute Valid Range

ACTUALMAXRECSIZE 1 through 65535

FRAMESIZE 8 or 48. A value of 8 is recommended.

MYNAME Null or "0." through "65535."

SECURITYTYPE IGNORED

YOURNAME Null or "0." through "65535."

Note that SECURITYTYPE can default to PRIVATE. You can change the SECURITYTYPE
default setting by using the NW NS SET MIGRATETOBASICSERVICE system command.

Setting attributes to values invalid for this service is handled as described earlier under
“Setting Proper Attribute Values” in Section 15.

Port Support for TCPNATIVESERVICE
In a TCP/IP network, a port number and an IP address are used to uniquely identify an
endpoint. Port numbers are 16-bit positive integers and are partitioned into several
ranges. The first range is for reserved ports. Numbers less than 1024 are typically used
by servers to listen on. The first 255 reserved ports are used by well-known services.
The TCP protocol uses source and destination port numbers to create a TCP dialogue.
The source and the destination port numbers must be unique for a new dialogue to be
created.

The following attribute values are used to define the IP address and port number on MCP
systems:

• MYNAME port file attribute and MYIPADDRESS subport file attribute,
MYDOMAINNAME port file attribute, or MYHOST port file attribute

• YOURNAME subport file attribute and YOURIPADDRESS subport file attribute,
YOURDOMAINNAME subport file attribute, or YOURHOST subport file attribute

For other restrictions on the specification of these attributes for opening a TCP dialogue,
refer to “Preparing for Dialogue Establishment Using TCPNATIVESERVICE” later in this
section. You can also refer to the MYDOMAINNAME, MYHOST, MYIPADDRESS,
MYNAME, YOURDOMAINNAME, YOURHOST, YOURIPADDRESS, and YOURNAME
attributes in the File Attributes Reference Manual.

 Using TCPNATIVESERVICE

8600 0056–408 27–3

Statements Supported by TCPNATIVESERVICE
Of the set of language statements pertaining to port files, the following are supported by
TCPNATIVESERVICE:

• GETATTRIBUTE

• SETATTRIBUTE

• OPEN—Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)

• AWAITOPEN

− You can use the AWAITOPEN statement.

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74) are valid.

− CONNECTTIMELIMIT

• READ

− Data

− READ length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

• WRITE

− Data

− WRITE length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

− URGENT

• CLOSE

− Close disposition:

ο ABORT is valid.

ο ORDERLY is valid, but the action taken is the same as ABORT.

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)

If you use a port statement not included in the preceding list, the system does not invoke
the statement and an UNSUPPORTEDPRIMITIVERSLT (168) result is returned. If you use
a statement parameter or a statement parameter value not included in the preceding list,
the system does not invoke the statement and an UNSUPPORTEDPARAMETERRSLT
(128) result is returned.

Using TCPNATIVESERVICE

27–4 8600 0056–408

File States Supported by TCPNATIVESERVICE
The following list shows all possible port-file states.

AWAITINGOFFER BLOCKED

CLOSED CLOSEPENDING

DEACTIVATED DEACTIVATIONPENDING

OFFERED OPENED

URGENTDATAWAITING

You can use all the file states in the previous list except AWAITINGHOST and
SHUTTINGDOWN.

Figures 27–1 through 27–3 illustrate the file state transitions of TCPNATIVESERVICE. The
following conventions apply for these figures:

• All user-initiated primitives, such as CLOSE ABORT, appear in uppercase letters.

• Other events, such as dialogue not established, are enclosed in square brackets.

Figure 27–1. TCPNATIVESERVICE Dialogue Establishment File State Transitions

 Using TCPNATIVESERVICE

8600 0056–408 27–5

Figure 27–2. TCPNATIVESERVICE Probable File State Transitions during Data
Transfer

URGENTDATAWAITING
or

OPENED
or

BLOCKED

OFFERED
or

AWAITINGOFFER

DEACTIVATIONPENDING

DEACTIVATED

CLOSED

CLOSEPENDING

Close

[Close
complete]

Close

Close

[Received dialog
abort; READ
queue empty]

[Received dialogue
abort; READ
queue not empty]

[READ
queue
empty]

Figure 27–3. TCPNATIVESERVICE Dialogue Termination File State Transitions

Using TCPNATIVESERVICE

27–6 8600 0056–408

If no data is being exchanged over a connection, you can specify that a “keep-alive”
packet be sent to verify that the connection is still open by setting the
DIALOGCHECKINTERVAL file attribute value to a nonzero value. If no response is
received from the keep-alive packet, the connection goes to the blocked state and
remains in that state for the time defined by the BLOCKEDTIMEOUT file attribute value.

The connection terminates after no response to the keep-alive packet is received in the
time defined by the BLOCKEDTIMEOUT value. If a response to the keep-alive packet is
received, the connection returns to an open state.

Keep-alive packets are sent only when the dialogue is in the open and blocked states.

Preparing for Dialogue Establishment Using
TCPNATIVESERVICE

TCPNATIVESERVICE uses the following matching attributes:

Matching Attribute Description

MYNAME The name you are using for the dialogue, which is mapped into
the TCP source port address.

MYIPADDRESS The IP address of the subfile. This must be one of the valid IP
addresses for the local host.

MYDOMAINNAME The domain name of the host on which the program is running.
This is a read-only attribute. Associated with this name is a
dynamically-defined IP address.

MYHOST The name of the host on which your program is running. This is
a read-only attribute. Associated with this name is a statically-
defined IP address.

YOURNAME The name of the correspondent port, which is mapped into the
TCP destination port address.

YOURIPADDRESS The IP address of the correspondent endpoint of the subfile.

YOURDOMAINNAME The domain name of the host on which the correspondent
endpoint is located. This name is used by the MCP
environment Resolver to determine the actual location of the
host in the network.

YOURHOST The name of the host on which the correspondent endpoint is
located, which is mapped into the destination IP address.

 Using TCPNATIVESERVICE

8600 0056–408 27–7

During an OPEN operation, the following attribute values of the two endpoints must
match:

• YOURNAME and MYNAME and YOURIPADDRESS and MYIPADDRESS

• YOURHOST, MYHOST, and YOURDOMAINNAME are resolved to IP addresses at
the TCP provider level. The IP address value is accessible to the application through
the YOURIPADDRESS or MYIPADDRESS attribute, or through both of these
attributes.

All OPEN operations fail with a BADATTRIBUTESFOROPEN (13) SUBFILEERROR when
the PASSIVEOPEN attribute is TRUE and the MYNAME value is a null string.

If you are programming an application and you are opening the file with an OPEN
statement, you must at a minimum specify a value for the YOURNAME attribute, and
specify a value for one of the following attributes: YOURIPADDRESS,
YOURDOMAINNAME, or YOURHOST. If you specify a YOURIPADDRESS value, the
YOURDOMAINNAME and YOURHOST values might still be null after the OPEN
operation is complete. If you specify a YOURDOMAINNAME or a YOURHOST value, the
YOURIPADDRESS value contains the appropriate information after the OPEN operation
is complete.

Note: If your application has a port file open, and the YOURHOST, YOURIPADDRESS,
and YOURDOMAINNAME values are all specified, or two are specified, the TCP provider
uses the values in the following order: YOURIPADDRESS, YOURDOMAINNAME, and
YOURHOST.

If you are programming an application and you are opening the file with an AWAITOPEN
statement, the YOURHOST, YOURDOMAINNAME, or YOURIPADDRESS attribute value
and the YOURNAME attribute value of your port file can be null strings. In this case, your
port file matches any calling endpoint address when the YOURNAME value of the calling
endpoint matches the MYNAME attribute value of your port file.

When a port file is opened actively, the following results are true:

Situation Result

YOURHOST and YOURNAME
values are null strings.

If the YOURDOMAINNAME and YOURIPADDRESS
values are null, the OPEN operation fails and the
BADATTRIBUTESFOROPEN (13) SUBFILEERROR is
returned.

YOURIPADDRESS and
YOURNAME values are null
strings.

If the YOURDOMAINNAME and YOURHOST values
are null, the OPEN operation fails and the
BADATTRIBUTESFOROPEN (13) SUBFILEERROR is
returned.

YOURDOMAINNAME and
YOURNAME values are null
strings.

If the YOURIPADDRESS and YOURHOST values are
null, the OPEN operation fails and the
BADATTRIBUTESFOROPEN (13) SUBFILEERROR is
returned.

Using TCPNATIVESERVICE

27–8 8600 0056–408

Situation Result

YOURHOST value equals the
MYHOST value.

The OPEN operation is successful if the
YOURDOMAINNAME and YOURIPADDRESS values
are null. If those values are specified, YOURHOST is
not used for matching.

The MYNAME attribute value is
a null string.

The OPEN operation continues.

When a port file is opened passively, the following results are true:

Situation Result

The YOURHOST attribute value is not a
null string, and the YOURNAME
attribute value is a null string.

The OPEN/AWAITOPEN operation continues.

The YOURHOST attribute value is a null
string, and the YOURNAME attribute
value is not a null string.

The OPEN/AWAITOPEN operation continues.

The MYNAME attribute value is a null
string.

The OPEN/AWAITOPEN operation fails and
the BADATTRIBUTESFOROPEN (13)
SUBFILEERROR is returned.

The MYNAME value is supplied for an
OPEN operation and conflicts with an
existing application on the local host.

The OPEN/AWAITOPEN operation fails and
the CONNECTIONINUSE (59)
SUBFILEERROR is returned.

 Using TCPNATIVESERVICE

8600 0056–408 27–9

Establishing a Dialogue Using TCPNATIVESERVICE
A dialogue request is issued when an OPEN operation is invoked on a port file. When the
AWAITOPEN statement is invoked or the PASSIVEOPEN file attribute is set to TRUE
before an OPEN operation is invoked, no dialogue request is sent; the port file waits to
receive a matching dialogue request.

Using the OPEN Statement with TCPNATIVESERVICE

The OPEN statement functions for TCPNATIVESERVICE as described in Section 18,
under “Using the OPEN Statement,” except that the AVAILABLEONLY file attribute is
ignored.

Using the AWAITOPEN Statement with TCPNATIVESERVICE

If you want to direct your program to wait for requests for dialogue establishment, you
can use the AWAITOPEN statement in your program.

Refer to “Using the AWAITOPEN Statement” in Section 18 for information about the
AWAITOPEN statement. Note that the AVAILABLEONLY file attribute cannot be used
with TCPNATIVESERVICE.

The following ALGOL example uses the PASSIVEOPEN attribute and shows the
appropriate code that opens the passive port file on one host and the active port file on
another host:

Passive Port File

FILE TCPPORT(KIND = PORT,
 SERVICE = TCPNATIVESERVICE,
 MYNAME = "2010.", % Numeric string
 YOURNAME = "2010.", % Numeric string
 YOURHOST = "MPA3H.",
 PASSIVEOPEN = TRUE,
 FRAMESIZE = 8, % Byte oriented
 SECURITYTYPE = PUBLIC);

 .
 .
 .

OPEN(TCPPORT,WAIT); % Port now open

Using TCPNATIVESERVICE

27–10 8600 0056–408

Active Port File

FILE TCPPORT(KIND = PORT,
 SERVICE = TCPNATIVESERVICE,
 MYNAME = "2010.", % Numeric string
 YOURNAME = "2010.", % Numeric string
 YOURHOST = "MPA3I.",
 PASSIVEOPEN = FALSE,
 FRAMESIZE = 8, % Byte oriented
 SECURITYTYPE = PUBLIC);

 .
 .
 .

RSLT := OPEN(TCPPORT,WAIT); % Port now open

Exchanging Data Using TCPNATIVESERVICE
The methods used to exchange data using TCPNATIVESERVICE are the same as those
described earlier for data-stream-oriented services in Section 19, “Exchanging Data.”
There are some additional considerations, however, which are described in this
subsection. These considerations involve dealing with data-stream information, using the
MAXFRAMESIZECENSUS and FRAMESIZECENSUS attributes, and using the urgent
message capability of TCPNATIVESERVICE. Note also that the CENSUS and
MAXCENSUS attributes do not apply to TCPNATIVESERVICE.

Tables 27–1 and 27–2 contain the results of the READ or WRITE operation as related to
the file state of the port file on which the operation is being performed.

The way a READ operation is handled by the port service depends upon the file state of
the port file. Table 27–1 describes the way a READ operation is handled in each file state
supported by TCPNATIVESERVICE.

 Using TCPNATIVESERVICE

8600 0056–408 27–11

Table 27–1. Effects of File State on the READ Operation for
TCPNATIVESERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGOFFER EOF

OPENED If the value of FRAMESIZECENSUS is greater than 0,
returns input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

BLOCKED If the value of FRAMESIZECENSUS is greater than 0,
returns input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

URGENTDATAWAITING If the value of FRAMESIZECENSUS is greater than 0,
returns input data; otherwise depends on
WAIT/DONTWAIT (NO WAIT in COBOL74)

CLOSEPENDING EOF

DEACTIVATIONPENDING Returns input data; when READ queue is empty, port file
moves to DEACTIVATED

DEACTIVATED EOF

Using TCPNATIVESERVICE

27–12 8600 0056–408

The result of the WRITE operation depends upon the file state of the port file you are
writing to. Table 27–2 explains the results of the WRITE operation on a port file in each of
the file states supported by TCPNATIVESERVICE.

Table 27–2. Effects of File State on the WRITE Operation for
TCPNATIVESERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGOFFER EOF

OPENED If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

BLOCKED If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

URGENTDATAWAITING If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise, depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

CLOSEPENDING EOF

DEACTIVATIONPENDING EOF

DEACTIVATED EOF

 Using TCPNATIVESERVICE

8600 0056–408 27–13

Understanding Data-Stream-Oriented Data Transfer Using
TCPNATIVESERVICE

As mentioned before, data-stream-oriented data transfer uses the same methods as
message-oriented data transfer. With data-stream-oriented transfer, however, the data is
not sent and received in message-size chunks. The amount of data read or written is
specified by the data length parameter in the READ or WRITE statement. Note that the
data length cannot exceed ACTUALMAXRECSIZE, and the amount of data read or
written can be less than that specified in the READ or WRITE statement, because of
system or network limitations.

Also, TCPNATIVESERVICE uses the MAXFRAMESIZECENSUS and the
FRAMESIZECENSUS attributes instead of the MAXCENSUS and CENSUS attributes.

For TCPNATIVESERVICE, FRAMESIZE should be set to 8. Note that FRAMESIZE defaults
to 48.

Unlike message-oriented port services, if a TCPNATIVESERVICE READ operation does
not read the entire data buffer, the data buffer is not deallocated, and the next READ
operation starts where the previous one left off. The data buffer is deallocated once all its
data has been read.

If a READ operation requests more data than the current data buffer contains, the
operation attempts to satisfy the READ request from subsequent data buffers of the port
file until the request is satisfied. If the READ operation runs out of data before the
request has been fulfilled, the operation is terminated with the data read to that point. It
is the responsibility of the programmer to track the amount of data read.

Using Urgent Data with TCPNATIVESERVICE

TCPNATIVESERVICE gives you the ability to indicate that a port file has urgent data that
needs to be read from the file.

The value of the FILESTATE attribute of the port file remains URGENTDATAWAITING
until all of the urgent data has been read. When all of the urgent data has been read, the
FILESTATE value returns to the appropriate state.

Reading Urgent Data with TCPNATIVESERVICE

The READ result informs your program that the data received in a READ operation
contains urgent data. The READ result is a copy of the STATE file attribute value. If the
READ result contains a zero (0) in the [01:01] field and a 42 (URGENT flag) in the [26:10]
field, urgent data has been read. The URGENT flag remains on as long as there is urgent
data in the user’s buffer. When the last byte of urgent data has been read, the READ
operation returns to the program without appending nonurgent data even though more
data might have been requested with the READ operation.

Data marked as urgent is not given special treatment by TCPNATIVESERVICE; it is the
responsibility of your program to handle urgent data.

Using TCPNATIVESERVICE

27–14 8600 0056–408

Example 1

ALGOL DEFINE URGENTDATAREAD(RSLT)=
 (NOT RSLT.[1:1] AND (REAL(RSLT.[26:10])=42))#;
RSLT := READ(PORTF,72,IOBUF[*]);
IF URGENTDATAREAD (RSLT) THEN
 PROCESS_URGENT_DATA
ELSE
 .
 .
 .

COBOL74 01 TEMP1 USAGE REAL.
01 TEMP2 USAGE REAL.
01 URGENT-DATA USAGE REAL.
.
.
.
MOVE 42 TO URGENT-DATA.
READ PORTF RECORD.
MOVE PORTF-72 TO IOBUF.
MOVE PORTF-FS TO TEMP1.
MOVE TEMP1 TO TEMP2[26:9:10].
IF TEMP2 IS EQUAL TO URGENT-DATA
 PERFORM PROCESS_URGENT_DATA
ELSE
 DISPLAY "NOT URGENT DATA".
STOP RUN.

This example shows the way to determine whether incoming data must be checked for
the presence of urgent data.

Writing Urgent Data with TCPNATIVESERVICE

Your program can indicate the presence of urgent data by using the URGENT parameter
of the WRITE statement that is available with TCPNATIVESERVICE. Data marked urgent
by your program is not given special treatment by the TCPNATIVESERVICE provider.
When the WRITE operation is invoked, the data is placed in the outgoing byte stream and
sent following the windowing rules of the protocol. Urgent data is not placed ahead of
any previously written data waiting to be sent.

Example 2

ALGOL WRITE (PORTF[URGENT],72,IOBUF);

COBOL74 WRITE PORTF-AUX-REC WITH URGENT FROM IOBUF.

This example shows the way to indicate that urgent data is present. The syntax simply
includes the URGENT specification.

 Using TCPNATIVESERVICE

8600 0056–408 27–15

Closing a Dialogue Using TCPNATIVESERVICE
TCPNATIVESERVICE provides ABORT and ORDERLY dialogue releases. However, when
using ABORT, the action taken is the same as ORDERLY.

The default disposition of a CLOSE statement is ABORT.

Using TCPNATIVESERVICE

27–16 8600 0056–408

8600 0056–408 28–1

Section 28
Using NETBIOSSESSIONSERVICE

NETBIOSSESSIONSERVICE is a message-oriented service that enables applications in
the MCP environment to communicate with PC applications on Novell NetWare local
area networks (LANs).

NETBIOSSESSIONSERVICE makes use of the NetBIOS interface definition, a
communications protocol that is supported by NetWare. This section includes some
information about how programming constructs in the MCP environment map onto
NetBIOS fields and commands. However, this section does not explain how to write PC
applications that can communicate with NETBIOSSESSIONSERVICE applications in the
MCP environment.

Using NETBIOSSESSIONSERVICE

28–2 8600 0056–408

File Attributes Supported by NETBIOSSESSIONSERVICE

The following port file attributes are supported by NETBIOSSESSIONSERVICE:

ACTUALMAXRECSIZE ATTERR ATTVALUE

ATTYPE AVAILABLE AVAILABLEONLY

BLOCKSTRUCTURE BUFFERS CENSUS

CHANGEDSUBFILE CHANGEEVENT COMPRESSING

CURRENTRECORDLENGTH FILEEQUATED FILENAME

FILESTATE FRAMESIZE INPUTEVENT

INTNAME INTERACTIVEFILE KIND

LASTSUBFILE LTITLE MAXCENSUS

MAXSUBFILES MYNAME NETACCESSPOINT

OUTPUTEVENT PASSIVEOPEN PATHNAME

PROVIDERGROUP REINITIALIZE REQUESTEDMAXRECSIZE

RESULTLIST SECURITYTYPE SERVICE

STATE SUBFILEERROR YOURNAME

If an attribute is not supported by this service, the only value of the attribute considered
valid is the default value.

NETBIOSSESSIONSERVICE imposes restrictions on the range of valid values for the
following supported attributes:

Attribute Valid Range

COMPRESSING Always returns FALSE.

MYNAME Refer to “Understanding the MYNAME and
YOURNAME File Attributes” later in this section.

NETACCESSPOINT Identifier, Null or *NONE.

REQUESTEDMAXRECSIZE 65435.

SECURITYTYPE PUBLIC.

YOURNAME Refer to “Understanding the MYNAME and
YOURNAME File Attributes” later in this section.

Note that NETBIOSSESSIONSERVICE does not use the FILENAME attribute for subfile
matching. However, you can assign a value to FILENAME, and this value appears in
system log entries and in the output from the NW HLCN SHOW SUBPORT system
command.

 Using NETBIOSSESSIONSERVICE

8600 0056–408 28–3

Note that SECURITYTYPE defaults to PRIVATE if the default setting has not been
changed by using the NW NS SET MIGRATETOBASICSERVICE system command.

Setting these attributes to values invalid for this service is handled as described under
“Setting Proper Attribute Values” in Section 15. For a complete list of the attributes
supported by each port service, refer to Table 15–1 in Section 15, “Using Attributes.”

Statements Supported by
NETBIOSSESSIONSERVICE

Of the set of language statements pertaining to port files, the following are supported by
NETBIOSSESSIONSERVICE:

• GETATTRIBUTE

• SETATTRIBUTE

• OPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)/AVAILABLE

− CONNECTTIMELIMIT

• AWAITOPEN

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)/AVAILABLE

− CONNECTTIMELIMIT

• READ

− Message

− READ length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

• WRITE

− Message

− WRITE length specification

− WAIT/DONTWAIT (NO WAIT in COBOL74)

• CLOSE

− Close disposition: ABORT

− Control option: WAIT/DONTWAIT (NO WAIT in COBOL74)

If you use a port statement that is not included in the preceding list, the system does not
invoke the statement, and an UNSUPPORTEDPRIMITIVERSLT (168) result and an
UNSUPPORTEDPRIMITIVE (41) SUBFILEERROR are returned. If you use a statement
parameter or a statement parameter value that is not included in the preceding list, the
system does not invoke the statement, and an UNSUPPORTEDPARAMETERRSLT (128)
and an UNSUPPORTEDPARAMETER (18) SUBFILEERROR are returned.

Using NETBIOSSESSIONSERVICE

28–4 8600 0056–408

File States Supported by NETBIOSSESSIONSERVICE
The following is a list of all the possible file states a port file can have using
NETBIOSSESSIONSERVICE:

CLOSED

OFFERED

AWAITINGHOST

AWAITINGOFFER

OPENED

SHUTTINGDOWN

CLOSEPENDING

DEACTIVATIONPENDING

DEACTIVATED

Figures 28–1 through 28–3 illustrate the file state transitions for
NETBIOSSESSIONSERVICE. The following conventions apply for these figures:

• All user-initiated primitives, such as CLOSE ABORT, are in capital letters.

• Other events, such as [Dialogue not established], are enclosed in square brackets.

Figure 28–1. NETBIOSSESSIONSERVICE Dialogue Establishment File State
Transitions

 Using NETBIOSSESSIONSERVICE

8600 0056–408 28–5

Figure 28–2. NETBIOSSESSIONSERVICE Possible File State Transitions During
Data Transfer

Figure 28–3. NETBIOSSESSIONSERVICE Dialogue Termination File State Transition

Using NETBIOSSESSIONSERVICE

28–6 8600 0056–408

Preparing for Dialogue Establishment Using
NETBIOSSESSIONSERVICE

During an OPEN operation, NETBIOSSESSIONSERVICE uses the following attributes for
subfile matching:

Matching Attribute Description

MYNAME The name you are using for this dialogue. The MYNAME
value must match the value of the YOURNAME attribute of
the correspondent endpoint, or the value of the
YOURNAME attribute of the correspondent endpoint must
be null.

YOURNAME The name of the correspondent endpoint. The YOURNAME
value must match the value of the MYNAME attribute of
the correspondent endpoint.

NETACCESSPOINT The name of the network access point used to establish
the dialogue. The NETACCESSPOINT subfile attribute must
name a network access point that is directly attached to
the system. The correspondent endpoint must be
reachable by way of the specified network access point.

During an AWAITOPEN operation, NETBIOSSESSIONSERVICE uses the following
attributes for subfile matching:

Matching Attribute Description

MYNAME The name you are using for the dialogue. The value of the
MYNAME attribute must match the value of the
YOURNAME attribute of the correspondent endpoint.

YOURNAME The name of the correspondent endpoint. The value of the
YOURNAME attribute must either be null or must match
the value of the MYNAME attribute of the correspondent
endpoint. If the YOURNAME value is null, the system sets
the value to the actual MYNAME value of the matching
endpoint when the file state becomes OPENED.

NETACCESSPOINT The name of the network access point used to establish
the dialogue. The NETACCESSPOINT attribute must either
be null or must name a network access point that is
directly attached to the system. If the NETACCESSPOINT
attribute is null, the system sets the value to the actual
network access point used when the file state changes to
OPENED.

 Using NETBIOSSESSIONSERVICE

8600 0056–408 28–7

NETBIOSSESSIONSERVICE does not support the YOURHOST and YOURHOSTGROUP
attributes, because all endpoints on a NetBIOS network are directly accessible regardless
of the host they are on. NETBIOSSESSIONSERVICE also does not use the FILENAME or
APPLICATIONGROUP attributes for subfile matching.

For further information about the subfile matching attributes used by
NETBIOSSESSIONSERVICE, refer to “Understanding the MYNAME and YOURNAME
File Attributes” and “Understanding NETBIOSNAMEINUSERSLT Errors” later in this
section.

Understanding the MYNAME and YOURNAME File
Attributes

The MCP environment system software maps the value of the MYNAME attribute to the
NCB_NAME field of the network control block (NCB) in NetBIOS. Similarly, the
YOURNAME attribute is mapped to the NCB_CALLNAME field of the NCB.
NETBIOSSESSIONSERVICE supports unusual restrictions and enhancements to the
MYNAME and YOURNAME attribute syntax to ensure that these values can be mapped
directly to the corresponding NetBIOS field names.

In NETBIOSSESSIONSERVICE, the values assigned to the MYNAME and YOURNAME
attributes are considered to be byte strings rather than character strings. These values
are not required to be made up of EBCDIC or ASCII characters and can include
hexadecimal 4"00" (EBCDIC null) values, hexadecimal 4"4B" (EBCDIC period) values, and
other unusual values.

NETBIOSSESSIONSERVICE enforces the following restrictions on the syntax of the
MYNAME and YOURNAME values:

• The value cannot exceed 16 bytes in length.

Note: If you assign MYNAME or YOURNAME values that are shorter than
16 bytes, the system pads the corresponding NCB_NAME and NCB_CALLNAME
fields with trailing null characters. Some PC applications might pad these fields with
trailing blanks instead of trailing null characters. This difference could cause two
endpoints of a subfile to fail to match. You can prevent this possibility by always
assigning full 16-byte values in both the PC and mainframe applications.

• The leading byte should not be hexadecimal 4"00" (EBCDIC null). This value is
reserved for use by system software.

• If the MYNAME value has a zero length or begins with a hexadecimal 4"2A" (ASCII
asterisk), the system replaces the MYNAME value with a permanent node name.
The permanent node name is a system-generated name that is guaranteed to be
unique.

The following is an example of a situation in which the permanent node name can be
useful. Suppose there is a port file application that serves many clients. This server
application uses a MYNAME value that is known to all the clients, and uses a null
YOURNAME value for all its subfiles. To match with these subfiles, the client
applications need only open an endpoint with a YOURNAME value equal to the
MYNAME of the server, and a unique MYNAME value (the permanent node name).

Using NETBIOSSESSIONSERVICE

28–8 8600 0056–408

Note: An application cannot interrogate its own permanent node name. If the
application interrogates the MYNAME attribute, the system returns the value
originally assigned by the program (rather than the permanent node name). However,
the matching application can determine the permanent node name by interrogating
the YOURNAME attribute after the subfile is opened.

When a program assigns a value to a character string valued attribute, the system
normally copies the characters only until a hexadecimal 4"4B" (EBCDIC period) or a
hexadecimal 4"00" (EBCDIC null) occurs. However, NETBIOSSESSIONSERVICE allows
these byte values to be embedded within the MYNAME and YOURNAME attribute
values. To make the use of these values possible, NETBIOSSESSIONSERVICE supports
a special encoded form for the MYNAME and YOURNAME attributes.

In most cases, your use of this special encoded form is optional. However, you must use
the special encoded form if you assign the MYNAME or YOURNAME attribute a value
that includes a hexadecimal 4"4B" (EBCDIC period) or hexadecimal 4"00" (EBCDIC null), or
a value that begins with hexadecimal 4"7F" (EBCDIC quotation mark). You must first
encode such a value in the following way:

• Add a hexadecimal 4"7F" (EBCDIC quotation mark) at the beginning and the end of
the value.

• If any hexadecimal 4"7F" (EBCDIC quotation mark) bytes occur within the string
value, you must repeat the byte so that it appears as hexadecimal 4"7F7F".

Various mechanisms exist in programming languages to construct a value containing
quotation marks and nonprintable characters. For example, the following ALGOL program
fragment assigns the YOURNAME attribute a byte string consisting of the ASCII
characters that spell out ASCIINAME:

ARRAY TEMPATTR [0:3];
REPLACE TEMPATTR[0] BY """, 7"ASCIINAME", """".";
REPLACE PORTF.YOURNAME BY POINTER(TEMPATTR[0]);

The following COBOL74 program fragment assigns YOURNAME the same value as that
assigned by the preceding ALGOL example. The ASCII letters for ASCIINAME are
represented by their hexadecimal codes, enclosed between at sign (@) characters.

WORKING-STORAGE SECTION.
01 TEMP-VALUE PIC X(17).
PROCEDURE DIVISION.
ONLY-HEADER.
STRING """" FOR 1,
 @41534349494E414D45@ FOR 9,
 """." FOR 2
 INTO TEMP-VALUE.
CHANGE ATTRIBUTE YOURNAME OF MYFILE TO TEMP-VALUE.

When a program interrogates MYNAME or YOURNAME, the system returns the value in
the encoded form if and only if the value includes one or more of the hexadecimal values
that require special encoding.

 Using NETBIOSSESSIONSERVICE

8600 0056–408 28–9

Note: If the MYNAME or YOURNAME attribute was originally assigned in encoded
form, but the value did not actually require special encoding, the system does not return
the value in encoded form.

Establishing a Dialogue Using
NETBIOSSESSIONSERVICE

When an application in the MCP environment initiates an OPEN operation on a subfile,
the system issues a NetBIOS CALL command. If an application in the MCP environment
initiates an AWAITOPEN operation on a subfile, the system issues a NetBIOS LISTEN
command.

For two endpoints to match, one endpoint must first issue a NetBIOS LISTEN command,
and the other endpoint must then issue a NetBIOS CALL command. For example, an
application in the MCP environment can initiate an AWAITOPEN operation and the
matching PC application can then issue a NetBIOS CALL command. Alternatively, the PC
application could issue a NetBIOS LISTEN command and the matching application in the
MCP environment could then initiate an OPEN operation.

If both endpoints send CALL commands, the system treats them as separate requests.
That is, PC applications that issue NetBIOS CALL commands are not matched to
applications in the MCP environment that initiate OPEN operations.

Using the OPEN Statement with NETBIOSSESSIONSERVICE

The OPEN statement works as described under “Using the OPEN Statement” in
Section 18, although the effects of the AVAILABLEONLY file attribute vary slightly from
that description.

If AVAILABLEONLY is set to TRUE, the system makes a single attempt to establish a
connection with the corresponding endpoint. However, the NetBIOS protocol includes
several delays and retries even for this single attempt. If the AVAILABLEONLY attribute
is TRUE and the OPEN option is DONTWAIT (NO WAIT in COBOL74), the file state is set
to OFFERED and control is returned to the program. If no connection can be made, the
file state changes to CLOSED.

If AVAILABLEONLY is set to FALSE, the system repeatedly attempts to establish a
connection with the corresponding endpoint until either a connection is made and the file
state is set to OPENED or the CONNECTTIMELIMIT expires.

Using the AWAITOPEN Statement with
NETBIOSSESSIONSERVICE

The AWAITOPEN statement works as described under “Using the AWAITOPEN
Statement” in Section 18, although the effect of the AVAILABLEONLY file attribute is
different. If AVAILABLEONLY is set to TRUE, the AWAITOPEN statement always fails
with a NOFILEFOUNDRSLT(2) OPEN result and a NOFILEFOUND (4) SUBFILEERROR.
This limitation results from the fact that the HLCN software in the MCP environment
does not keep a list of unmatched incoming offers.

Using NETBIOSSESSIONSERVICE

28–10 8600 0056–408

Understanding NETBIOSNAMEINUSERSLT Errors
One type of error that is unique to NETBIOSSESSIONSERVICE can occur during an
OPEN or AWAITOPEN operation. When this error occurs, an open error of 228
(NETBIOSNAMEINUSERSLT) is returned and the SUBFILEERROR attribute returns the
value 54 (NETBIOSNAMEINUSE).

The usual meaning of this error is that another application on the LAN is already
attempting to open an endpoint with a MYNAME file attribute value equal to the
MYNAME value specified by your application. If this is the case, then you can remedy
the situation by changing your application to use a different MYNAME value, and
changing the matching application to use a different YOURNAME value.

If this remedy does not resolve the error, then you must consider whether the error is
caused by an overlap in the network access point definitions.

A network access point is the combination of a local area network (LAN) and a particular
network processor that is used to access that LAN. Network access points are defined
by the network administrator with the NW HLCN ADD NETACCESSPOINT <identifier>
(NP = <np#>) system command. In this command, the <identifier> construct specifies
the name of the network access point. You can specify this name as the value of the
NETACCESSPOINT subfile attribute.

The system treats each network access point as if it accessed a separate LAN. However,
the network administrator can define different network access points that access the
same physical LAN. The same MCP system can have multiple network access point
definitions that overlap in this way. In this case, each network access point accesses the
LAN through a different network processor. Such an overlap in network access point
definitions can be desirable in some cases, for performance or configuration reasons.

However, suppose that an application on the MCP host attempts to open a port subfile
with NETBIOSSESSIONSERVICE, using the AWAITOPEN operation and with the
NETACCESSPOINT attribute set to a null string. In this case, the system notifies all
network access points of the AWAITOPEN request. However, if two network access
points use the same physical LAN, then that physical LAN receives two concurrent offers
of an endpoint with the same MYNAME value. The NetBIOS protocol treats these as
separate requests, and returns the error.

One way you can solve this problem is by assigning a specific network access point
name to the NETACCESSPOINT attribute. In this case, the LAN receives only one subfile
open offer.

Alternatively, the network administrator could solve the problem by dividing the LAN into
separate physical LANs that are each accessed through a separate network processor
and a separate network access point definition.

 Using NETBIOSSESSIONSERVICE

8600 0056–408 28–11

Exchanging Data Using NETBIOSSESSIONSERVICE
The methods used to exchange data using NETBIOSSESSIONSERVICE are the same as
those described in Section 19, “Exchanging Data.”

The following two tables contain the results of the READ or WRITE operation as related
to the file state of the port subfile on which the operation is being performed.

The way a READ operation is handled by the port service depends on the file state of the
port subfile. Table 28–1 describes the way a READ operation is handled in each file state
supported by NETBIOSSESSIONSERVICE.

Table 28–1. Effects of File State on the READ Operation for
NETBIOSSESSIONSERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGOFFER EOF

OPENED If the value of CENSUS is greater than 0, returns input
data; otherwise depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

SHUTTINGDOWN If the value of CENSUS is greater than 0, returns input
data; otherwise depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

CLOSEPENDING EOF

DEACTIVATIONPENDING Returns input data; when READ queue is empty, port
subfile moves to DEACTIVATED

DEACTIVATED EOF
(The STATE attribute or READ result stores a value of 46
(ENDOFFILE)in field [26:10], and the end-of-file bit [9:1]
and exception [0:1] bit are each set to 1.)

Using NETBIOSSESSIONSERVICE

28–12 8600 0056–408

The way a WRITE operation is handled by the port service depends on the file state of
the port subfile. Table 28–2 describes the way a WRITE operation is handled in each file
state supported by NETBIOSSESSIONSERVICE.

Table 28–2. Effects of File State on the WRITE Operation for
NETBIOSSESSIONSERVICE

File State Action

CLOSED Implicit OPEN

OFFERED EOF

AWAITINGOFFER EOF

OPENED If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

SHUTTINGDOWN If OUTPUTEVENT is in the happened state, then WRITE
(OK); otherwise depends on WAIT/DONTWAIT (NO WAIT
in COBOL74)

CLOSEPENDING EOF

DEACTIVATIONPENDING EOF

DEACTIVATED EOF
(The STATE attribute or WRITE result stores a value of 46
(ENDOFFILE) in field [26:10],and the end-of-file bit [9:1]
and exception [0:1] bit are each set to 1.)

Closing a Dialogue Using
NETBIOSSESSIONSERVICE

NETBIOSSESSIONSERVICE does not support orderly dialogue release.
NETBIOSSESSIONSERVICE provides ABORT termination through the CLOSE ABORT
statement, as described in Section 20, “Closing a Dialogue.”

Example Applications Using
NETBIOSSESSIONSERVICE

Refer to the system software release media (tape or CD-ROM) for sample port file
applications using NETBIOSSESSIONSERVICE. Corresponding PC applications using the
NetBIOS interface are also included on system software release diskettes.

8600 0056–408 29–1

Section 29
Understanding Virtual Files

The virtual file feature provides a mechanism through which a program in an MCP
environment can access features provided outside the MCP by using native language
constructs such as OPEN, CLOSE, READ, and WRITE. The MCP provides integrated
generic support for linking to libraries by implementing various program requested file
operations. This library is referred to as the IOHANDLER for the virtual file.

The need for a virtual file becomes most apparent when an application needs to access a
resource using traditional I/O intrinsics, like READ and WRITE, but the I/O subsystem
does not support access to the resource. The developer can build a library that contains
the implementation for accessing the resource, but the application needs the virtual file
mechanism to gain access to this library through the I/O intrinsics. The virtual file
mechanism provides the MCP support that enables the application to access and use the
implementation residing transparently in the developer’s external library.

Instead of declaring the library and entry points in the application, the IOHANDLER library
is accessed by opening a logical file with the appropriate attributes specified. Once the
open routine is performed successfully, the application utilizes the library through normal
READ, WRITE, and attribute modification statements.

Because the virtual file feature allows access to user-developed IOHANDLER libraries,
new capabilities can be provided without modification of the MCP. Examples of these
capabilities include

• Handling a new network protocol

• Accessing database management systems

• Accessing user transformation of data

This section describes how to use a virtual file in an application program, and provides
details about the IOHANDLER library and examples. Section 30, “Using the
REDIRSUPPORT IOHANDLER Library,” describes how to use virtual files with the Unisys
provided Redirector IOHANDLER library to access files on shares available to network
users.

Understanding Virtual Files

29–2 8600 0056–408

Using Virtual Files
From the programmer’s point of view, virtual files appear to be just another type of file.
The file attributes can be set and the files can be opened, read, written to, and closed.
However, instead of communicating with an I/O device, the program communicates with
a user-developed or a Unisys provided IOHANDLER library. Because the IOHANDLER
implements the semantics of a virtual file, this section provides only a general overview
of virtual file concepts. For details, refer to “Understanding the IOHANDLER” later in this
section.

Programming for Virtual Files

Virtual files are generally used in a program as described in Section 2, “Understanding
Programming for Files,” except that the virtual file feature does not support DIRECT I/O.
The following concepts are specific to using virtual files.

While virtual files are handled by the IOHANDLER library rather than the I/O subsystem,
there are well-defined semantics for programs using virtual files. To describe these
semantics, it is useful to think of the IOHANDLER as the “physical” file that corresponds
to the “logical” virtual file declared in the program. The IOHANDLER uses attributes
specified on the logical file to locate or create the physical file, and returns attributes for
use by the MCP and program by processing operations on the logical file.

For example, when the “logical” virtual file specifies the attributes NEWFILE=FALSE and
DEPENDENTSPECS=TRUE, the open routine for the IOHANDLER library returns values
corresponding to the physical file. These attributes are then set on the virtual file in a
manner similar to other file implementations.

 Understanding Virtual Files

8600 0056–408 29–3

Virtual File Library Attributes

Setting the KIND attribute of a file to VIRTUAL enables the IOHANDLER library to provide
the functionality for the OPEN, CLOSE, READ, and WRITE intrinsics. It is necessary for
the MCP to be able to locate the IOHANDLER and its entry points to service the file
operation.

Table 29–1 lists the attributes that are used in the virtual file declaration to specify the
location and characteristics of the IOHANDLER library. Except for IOHSTRING and
IOHPREFIX, these attributes specify the form of library linkage to be used when linking
to the IOHANDLER library as part of opening a virtual file. These attributes are consistent
with their LIBRARY attribute counterparts and are defined to provide a comprehensive
set of library functionality. For details about each attribute, refer to the File Attributes
Reference Manual.

Table 29–1. IOHANDLER Library Attributes

Attribute Description

IOHLIBACCESS Specifies the form of library access, such as BYTITLE,
BYFUNCTION, and BYINITIATOR. Consistent with the
LIBACCESS library attribute.

IOHFUNCTIONNAME Specifies the library function name when library access is
set to BYFUNCTION. Consistent with the
FUNCTIONNAME library attribute.

IOHTITLE Specifies the library title when library access is set to
BYTITLE. Consistent with the TITLE library attribute.

IOHINTERFACENAME Corresponds to the INTERFACENAME library attribute.

IOHLIBPARAMETER Corresponds to the LIBPARAMETER library attribute.

IOHPREFIX Specifies the prefix string to be used when specifying the
actual name of the entry points before linking to the
IOHANDLER library.

IOHSTRING Provides an Inter-Program Communication (IPC)
mechanism between the application using the virtual file
and the IOHANDLER library. This mechanism can be useful
for propagating information in and out of the library.

Understanding Virtual Files

29–4 8600 0056–408

Examples

The following file declarations show how the IOHANDLER library attributes can be used
in a program to specify a virtual file:

FILE VF1 (KIND=VIRTUAL, IOHLIBACCESS = BYTITLE,
 IOHTITLE = "OBJECT/MYIOHANDLER.",...);

FILE VF2 (KIND=VIRTUAL, IOHLIBACCESS = BYFUNCTION,
 IOHFUNCTIONNAME = "MYIOHSUPPORT.",...);

The link to the IOHANDLER library is accomplished by transferring the library attributes
declared on the virtual file to the internal library (“IOHANDLER”) declared for the file. For
example, the IOHFUNCTIONNAME attribute becomes the FUNCTIONNAME attribute
name of the internal library. The link is the same as if the program declaration included a
LIBRARY IOHANDLER and used some or all default values for the library’s attributes.

The only exception in this linking scheme is the specification of LIBACCESS to
BYFUNCTION instead of BYTITLE for the internal library defaults when the
IOHFUNCTIONNAME attribute has been specified instead of IOHTITLE. This action
simplifies setting the virtual file library attributes by making it unnecessary to set
IOHLIBACCESS to BYFUNCTION when the IOHFUNCTIONNAME is specified.

Also, when the IOHPREFIX attribute is unspecified, the entry points are assumed to have
a prefix of IOH_. That is, the entry points are named IOH_OPEN, IOH_CLOSE, and so
forth. For example, consider the following file declarations:

FILE VF3 (KIND=VIRTUAL);

FILE VF4 (KIND=VIRTUAL, IOHLIBACCESS=BYFUNCTION);

FILE VF5 (KIND=VIRTUAL, IOHPREFIX = "MYDISK.");

For file VF3, library linkage is performed using a library access value of BYTITLE and a
code file title of IOHANDLER. For file VF4, library linkage is performed using a library
access value of BYFUNCTION and a function name of IOHANDLER. In either case, the
entry point names are the default names described previously. For file VF5, library linkage
is the same as that of file VF3 except that the library entry points are named
MYDISKOPEN, MYDISKCLOSE, MYDISKREAD, and MYDISKWRITE.

 Understanding Virtual Files

8600 0056–408 29–5

Virtual File Structure Considerations

Virtual files support only a subset of file format attributes as summarized in Table 29–2.
Attributes that are not specified in the table are either ignored as being irrelevant to
virtual files, such as AREASIZE, or all values are supported, such as FRAMESIZE. Values
specified in the virtual file for the following attributes are passed to the IOHANDLER
library’s open procedure. A discussion of these attributes is presented later in this
section.

Table 29–2. Virtual File Format Attributes

Attribute Value

FILEORGANIZATION The only supported value is NOTRESTRICTED.

FILESTRUCTURE The value of FILESTRUCTURE is ignored when set on a
virtual file.

BLOCKSTRUCTURE The valid values are FIXED and EXTERNAL. When specified
on a virtual file, the value returned by the IOHANDLER
library open procedure must match this value.

FILETYPE Only values of 0 and 3 are supported, corresponding to
BLOCKSTRUCTURE values of FIXED and EXTERNAL,
respectively.

MINRECSIZE A MINRECSIZE value set on a virtual file is ignored. Set the
value to MAXRECSIZE for BLOCKSTRUCTURE=FIXED and
to 0 for BLOCKSTRUCTURE=EXTERNAL.

MAXRECSIZE The IOHANDLER library’s open procedure returns its
MAXRECSIZE value in IOHMODE characters. If
DEPENDENTSPECS is TRUE for the virtual file, the
MAXRECSIZE value is adjusted to match the IOHANDLER
value, depending on the INTMODE value of the virtual file.

EXTMODE The IOHANDLER returns a value of IOHMODE that
corresponds to the mode that the library is operating in for
this virtual file. The IOHMODE attribute of the IOHANDLER
is compared with the EXTMODE attribute of the virtual file
for compatibility during the open procedure, adjusting for
any OVERRIDEEXTMODE specification.

The interface between the MCP Logical I/O module and the IOHANDLER library dictates
some of the restrictions in Table 29–2. For details, refer to “Understanding the
IOHANDLER” later in this section.

Understanding Virtual Files

29–6 8600 0056–408

Explanation

The IOHANDLER library’s READ and WRITE routines are random record-oriented
interfaces. That is, the IOHANDLER library’s READ and WRITE entry points always
expect a record offset and a length. The MCP, on behalf of the program, converts any
serial access into an appropriate random access based upon the current record pointer.
Because there is no blocking of records, the FILESTRUCTURE value that corresponds to
the interface is inherently STREAM. Since the I/O subsystem is not handling the physical
file, the FILESTRUCTURE value specified on the logical virtual file can be ignored.

The IOHANDLER library is interfaced from the MCP. The interface is based on
EXTMODE character units , and the IOHRECSIZE value is used as a parameter. The
IOHRECSIZE value returned from the IOHANDLER library’s open routine is expressed as
a number of EXTMODE characters, and the length parameter to the READ and WRITE
entry points always refers to the number of characters to be transferred. The MCP, on
behalf of the program, also converts the length of the request into characters if required.

For example, if the FRAMESIZE attribute value of the logical file is 48 (words) and the
EXTMODE attribute is set to EBCDIC, the length passed into the IOHANDLER is
adjusted by a multiple of 6. Similarly, the result returned by the IOHANDLER after a
successful READ or WRITE procedure is converted back into words when expressing the
length in the result descriptor. The MCP maintains the file state of the logical virtual file
consistent with its specified MAXRECSIZE value after each I/O operation.

As part of the OPEN process for a file, the MCP ensures that the IOHANDLER library’s
interpretation of logical record size is the same as the program’s interpretation of logical
record size, based on the following expression:

Virtual File: MAXRECSIZE * BITS PER EXTFRAME =

IOHANDLER: IOHRECSIZE * BITS PER IOHMODE CHARACTER

A BLOCKSTRUCTURE value of either FIXED or EXTERNAL is supported and it is the
IOHANDLER library’s responsibility to return a proper BLOCKSTRUCTURE value as part
of the open routine. If the IOHANDLER returns any value other than FIXED or
EXTERNAL, or if there is a mismatch between the logical and virtual files, the result is an
open error.

 Understanding Virtual Files

8600 0056–408 29–7

The differences between the BLOCKSTRUCTURE FIXED and EXTERNAL values for
virtual files are

• For BLOCKSTRUCTURE = FIXED, all requests to the IOHANDLER library are rounded
up to the nearest record boundary.

− For a read request, the length passed to the IOHANDLER is rounded up to the
nearest record boundary. Only the amount actually requested by the program is
transferred into the user’s buffer on return from the IOHANDLER library’s READ
routine.

− For a write request, the request is padded with zeroes to the end of the record
and the request length is adjusted to the record boundary before calling the
IOHANDLER library’s WRITE routine. The length is returned in the logical result
descriptor for the request and stored in the logical file STATE attribute. The
length is always adjusted to a record boundary.

• For BLOCKSTRUCTURE = EXTERNAL, requests are not rounded up to the next
record and the READ or WRITE request made to the IOHANDLER matches the
length specified by the program. The length returned in the logical result descriptor
(STATE) is not adjusted to a record boundary and matches the actual requested
length. However, the record pointer in the file information block (FIB) is always
adjusted to the next record consistent with the MAXRECSIZE value. Note that, unlike
DISK files, the MINRECSIZE value is always set to 0 when BLOCKSTRUCTURE is
set to EXTERNAL.

The ANYSIZEIO attribute is supported for virtual files when the value for
BLOCKSTRUCTURE is FIXED, enabling multiple records to be transferred in a single
request. When BLOCKSTRUCTURE is set to EXTERNAL, setting ANYSIZEIO to TRUE
results in an error in the open routine unless ADAPTABLE is also TRUE. As with other
files, when ANYSIZEIO is FALSE, read or write requests that exceed the MAXRECSIZE
value are truncated to fit. The partial portion of any request that is not a multiple of the
MAXRECSIZE value is treated in the same manner for each BLOCKSTRUCTURE value.

Understanding Virtual Files

29–8 8600 0056–408

Virtual File Attributes

File attributes are set and interrogated on virtual files in the same manner as for any
other file. Before the file is opened, the attributes are applied and returned from the
unopened file structure. After the file is opened, the file attributes supported for virtual
files are handled by calling the IOHANDLER library. The IOHANDLER supports the
following attributes for virtual files. For details about each attribute, refer to the File
Attributes Reference Manual.

ACCESSDATE EXTDELIMITER OWNER

ACCESSTIME FILEKIND SECURITYGUARD

ALTERDATE FILENAME
(and related LFILENAME,
TITLE, LTITLE and
PATHNAME)

SECURITYMODE
(and all related
sub attributes)

ALTERNATEGROUPS FILELENGTH SECURITYTYPE

ALTERTIME GROUP SECURITYUSE

CCSVERSION IOHSTRING SYNCHRONIZE

CREATIONDATE LASTRECORD USERINFO

CREATIONTIME NOTE

Virtual File Translation

Translation can be provided by Logical I/O when the INTMODE value of a file differs from
the EXTMODE value of that file. Refer to “Dealing with Translation” in Section 2,
“Understanding Programming for Files.” Translation is also provided for virtual files in
this manner, but requires coordination with the IOHANDLER library. The IOHANDLER
library is interfaced from the MCP and the IOHMODE value is used as a parameter in
that interface. During the opening of a file, the IOHANDLER open routine returns the
IOHMODE value corresponding to the EXTMODE value of a physical file. Because the
IOHANDLER adds a third value to the mix, such as virtual file INTMODE, EXTMODE, or
library IOHMODE, there is some additional complexity.

The IOHANDLER open routine returns the IOHMODE value that represents the character
encoding and the FRAMESIZE value that was used to interpret the IOHRECSIZE value,
which is also returned at open time. Normally, when an existing physical file is opened,
the EXTMODE value of the logical file unconditionally assumes the EXTMODE value of
the physical file. This is the same for virtual files, such that the EXTMODE value of the
logical virtual file is set to the IOHMODE value returned from the library. Also, the
EXTMODE value of the logical file is normally used when creating a new file. For virtual
files, however, the library might return an IOHMODE value that differs from the
EXTMODE value specified on the logical file. Due to this possibility, the EXTMODE value
of the virtual file is set to the IOHMODE value that is returned from the library, even
when new file creation is requested.

 Understanding Virtual Files

8600 0056–408 29–9

Logical I/O also supports the OVERRIDEEXTMODE file attribute to permit the EXTMODE
value of the logical file to differ from the EXTMODE value of the physical file, perhaps to
avoid or to cause translation. OVERRIDEEXTMODE is also supported for virtual files with
the restriction that the character size of the IOHMODE value must match the character
size of the EXTMODE value of the virtual file. This restriction is consistent with the native
MCP implementation.

Once the EXTMODE value of the virtual file is determined, the value is compared for
compatibility with the INTMODE value specified on the virtual file. This comparison is
described in Table 2–14, “Possible EXTMODE and INTMODE Combinations.” Note that
the DEPENDENTINTMODE attribute is also supported for virtual files. When the attribute
is set to TRUE, the INTMODE value is set to the EXTMODE value of the logical file. By
using DEPENDENTINTMODE, translation is not done regardless of the EXTMODE value
specified or the IOHMODE value returned from the library.

Opening a Virtual File

The virtual file open routine supports all the various open mechanisms, such as OPEN(F),
F.AVAILABLE, and implicit open on read or write. For details about the results of opening
a file, refer to the File Attributes Reference Manual.

Opening a virtual file initiates the first link with the desired IOHANDLER library. Validation
of a successful open routine consists of

• MCP checks before calling the IOHANDLER library

• Checks made by the IOHANDLER

• Verification of attribute compatibility with the virtual file after values are returned by
the IOHANDLER

The checks made by the MCP before calling the IOHANDLER involve verifying the values
of the attributes described in “Virtual File Structure Considerations” earlier in this
section. Other checks that occur for all file types also are performed during the open
routine.

Once these checks are made, the MCP attempts to link to the IOHANDLER based on the
virtual file library attributes. A structure containing a subset of file attributes either set
explicitly or by default is passed to the IOHANDLER library’s OPEN entry point. These file
attributes are documented in “Understanding the IOHANDLER” later in this section.
Because the IOHANDLER library implements the bulk of the virtual file, the library’s use
of file attributes can vary from other file kinds managed by the MCP. The requirements
of each IOHANDLER library should be documented by the writer of the library.

After a successful return from the OPEN procedure, compatibility with the virtual file
structure is performed. The OPEN result is returned to the application.

Understanding Virtual Files

29–10 8600 0056–408

Virtual File I/O Requests

Virtual file I/O requests are identical to those used for accessing DISK files with a
FILESTRUCTURE value of STREAM. For details about the result values returned for I/O
requests, refer to the File Attributes Reference Manual.

ANYSIZEIO access is supported for BLOCKSTRUCTURE = FIXED. UPDATEFILE access
is supported, but as with DISK files, ANYSIZEIO must be FALSE.

The SYNCHRONIZE directive is valid for the WRITE intrinsic, but it is up to the
IOHANDLER library to interpret the request and act accordingly.

BUFFERSHARING is not supported for virtual files. Any BUFFERSHARING attribute is
passed to the IOHANDLER open routine, but does not cause the MCP to reject the open
request. The MCP allocates a single buffer for the file to process the I/O request;
however, the BUFFERS value is also passed to the IOHANDLER library.

ALGOL Example

The following program demonstrates the use of KIND = VIRTUAL in an ALGOL program
and utilizes the IOHANDLER library defined by the IOHFUNCTIONNAME attribute as
“DISKIOHANDLER.”

The program reads an existing ASCII stream file, MYMACS.TXT, which has logical
records delimited by carriage-return line feed (CRLF) characters. The data is read from
the file VF, translated from ASCII to EBCDIC, and written to a new EBCDIC stream file
VFNEW. Each logical record as delimited by a CRLF is displayed on the remote file RMT.
The IOHLIBACCESS and IOHPREFIX attributes are set to default values. The VFNEW file,
although not specifying IOHLIBACCESS or IOHPREFIX, is linked by the IOHANDLER
library in an identical fashion.

BEGIN
FILE RMT(KIND=REMOTE,
 UNITS=CHARACTERS,
 MYUSE=IO);

FILE VF (KIND=VIRTUAL
 ,FILENAME=""MYMACS.TXT"""."
 ,NEWFILE=FALSE
 ,DEPENDENTSPECS
 ,EXTMODE=ASCII
 ,INTMODE=EBCDIC
 ,FILEUSE=IN
 ,UNITS=CHARACTERS
 ,ANYSIZEIO
 ,IOHPREFIX="IOH_."
 ,IOHLIBACCESS=BYFUNCTION
 ,IOHFUNCTIONNAME="DISKIOHANDLER."
);

FILE VFNEW(KIND=VIRTUAL

 Understanding Virtual Files

8600 0056–408 29–11

 ,IOHFUNCTIONNAME="DISKIOHANDLER."
 ,NEWFILE=TRUE
 ,FILEUSE=OUT
 ,FILESTRUCTURE=STREAM
 ,FRAMESIZE=8
 ,MAXRECSIZE=1
 ,ANYSIZEIO
);

EBCDIC ARRAY EA, EB [0:2999];
POINTER P, PA;
BOOLEAN BRD;
REAL I, J, R, RD=BRD;
DEFINE CR=48"0D"#,
 LF=48"25"#;
TRUTHSET CRLF (CR OR LF);

OPEN (VF);
OPEN (VFNEW);
WHILE NOT BRD DO
BEGIN
 BRD := READ (VF, 3000, EA);
 I := RD.[47:20];
 IF NOT BRD THEN
 BEGIN
 WRITE (VFNEW [J], I, EA);
 J := * + I;
 PA := EA[0];
 DO BEGIN
 REPLACE P:EB[0] BY PA:PA FOR I:I UNTIL IN CRLF;
 WRITE (RMT, OFFSET(P), EB);
 SCAN PA:PA FOR I:I WHILE IN CRLF;
 END
 UNTIL I LEQ 0;
 END;
END;
CLOSE (VFNEW, LOCK);
CLOSE (VF);
END.

Understanding Virtual Files

29–12 8600 0056–408

COBOL85 Example

The following COBOL85 program performs the equivalent function of the ALGOL
example that precedes it.

 IDENTIFICATION DIVISION.
 *
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 * The ASCII stream file we want to read.
 SELECT VF ASSIGN TO VIRTUAL.
 * The new EBCDIC stream file we want to write VF.
 SELECT VFNEW ASSIGN TO VIRTUAL.
 * The REMOTE by which we view VF's content.
 SELECT REM ASSIGN TO REMOTE.
 *
 DATA DIVISION.
 FILE SECTION.
 FD VF
 VALUE OF
 FILENAME IS """MYMACS.TXT"""
 NEWFILE IS FALSE
 DEPENDENTSPECS IS TRUE
 EXTMODE IS ASCII
 INTMODE IS EBCDIC
 ANYSIZEIO IS TRUE
 IOHPREFIX IS "IOH_."
 IOHLIBACCESS IS BYFUNCTION
 IOHFUNCTIONNAME IS "DISKIOHANDLER.".
 01 VF-REC PIC X(3000).

 FD VFNEW
 RECORD CONTAINS 1 TO 3000 CHARACTERS
 VALUE OF
 IOHFUNCTIONNAME IS "DISKIOHANDLER."
 NEWFILE IS TRUE
 FILESTRUCTURE IS STREAM
 FRAMESIZE IS 8
 MAXRECSIZE IS 1
 BLOCKSTRUCTURE IS FIXED
 ANYSIZEIO IS TRUE.
 01 VFNEW-REC.
 03 REC-GUTS PIC X OCCURS 1 TO 3000 DEPENDING MSG-LEN.

 FD REM.
 01 REM-REC PIC X(80).
 *
 WORKING-STORAGE SECTION.
 01 REC-ARRAY PIC X(3000).

 Understanding Virtual Files

8600 0056–408 29–13

 01 REM-ARRAY PIC X(80).
 77 UNSTRING-NEXT REAL.
 77 SAVED-START REAL.
 77 UNSTRING-CNT REAL.
 77 MSG-LEN REAL.
 *
 PROCEDURE DIVISION.
 MAIN-PARA.
 OPEN INPUT VF.
 OPEN OUTPUT VFNEW.
 OPEN I-O REM.
 PERFORM PROCESS-LOOP THRU PROCESS-LOOP-EXIT.
 CLOSE REM.
 CLOSE VFNEW SAVE.
 CLOSE VF.
 STOP RUN.

 PROCESS-LOOP.
 READ VF
 AT END GO TO PROCESS-LOOP-EXIT.
 MOVE ATTRIBUTE CURRENTRECORDLENGTH OF VF TO MSG-LEN.
 * Write a variable amount, up to 3000 characters.
 MOVE VF-REC TO VFNEW-REC
 WRITE VFNEW-REC
 PERFORM REMOTE-DISPLAY
 GO TO PROCESS-LOOP.

 PROCESS-LOOP-EXIT.
 EXIT.

 REMOTE-DISPLAY.
 MOVE VF-REC TO REC-ARRAY.
 MOVE 1 TO UNSTRING-NEXT.
 PERFORM WRITE-RECS-TO-REMOTE THRU
 WRITE-RECS-TO-REMOTE-EXIT UNTIL MSG-LEN <= 0.

 WRITE-RECS-TO-REMOTE.
 MOVE 0 TO UNSTRING-CNT.
 MOVE UNSTRING-NEXT TO SAVED-START.
 MOVE SPACES TO REM-ARRAY.

 UNSTRING REC-ARRAY
 DELIMITED BY ALL @0D25@
 INTO REM-ARRAY
 COUNT IN UNSTRING-CNT
 WITH POINTER UNSTRING-NEXT.

Understanding Virtual Files

29–14 8600 0056–408

 * UNSTRING-CNT is the number of characters moved to REM-ARRAY.
 * UNSTRING-NEXT is the next position in source after UNSTRING,
 * including the delimiter(s).
 WRITE REM-REC FROM REM-ARRAY.

 SUBTRACT SAVED-START FROM UNSTRING-NEXT GIVING UNSTRING-CNT.
 SUBTRACT UNSTRING-CNT FROM MSG-LEN.

 WRITE-RECS-TO-REMOTE-EXIT.
 EXIT.

Virtual File IOHANDLER
The functionality of a virtual file is provided by a library called an IOHANDLER that is
linked to the user program’s file. Logical I/O provides generic support to enable a virtual
file declared in a program access to a particular IOHANDLER library. When a virtual file is
opened, a link to the appropriate IOHANDLER library is established and control is passed
to the IOHANDLER library’s OPEN entry point. Similarly, when a READ or WRITE
procedure is performed by the application, control is passed from Logical I/O to the
IOHANDLER library’s READ or WRITE entry points. When the virtual file is closed, the
CLOSE entry point is invoked and the file is de-linked from the IOHANDLER library.

The following paragraphs describe how to create an IOHANDLER library.

Understanding the IOHANDLER

The IOHANDLER library is expected to export entry points that adhere to a well-defined
protocol consistent with normal device handling. Each entry point is called from Logical
I/O as part of processing a native language I/O statement on the program-declared virtual
file, such as a read request or an attribute modification request.

The invocation of each IOHANDLER entry point by the virtual file results in an important
side effect. Logical I/O ensures the integrity of a file that is visible to more than one
process, such as a program with offspring, by securing a lock in the file description
before acting on the file. Because Logical I/O provides this insurance, the IOHANDLER
programmer does not need to lock the structures associated with a particular virtual file.
This concept, along with common IOHANDLER entry point parameters, is intended to
simplify the creation of an IOHANDLER library that requires only a single instantiation, as
in a SHAREDBYALL library.

The IOHANDLER entry points and the functions they are called for are described in
Table 29–3. The definitions and descriptions of each of these entry points are provided
later in this section.

 Understanding Virtual Files

8600 0056–408 29–15

Table 29–3. IOHANDLER Entry Points

Entry Point Language Function Required

IOH_OPEN OPEN, PRESENT, AVAILABLE, and RESIDENT
functions, and implicit open

Yes

IOH_CLOSE Explicit CLOSE and block exit close Yes

IOH_READ Serial or random READ request No

IOH_WRITE Serial or random WRITE request No

IOH_GETATTRIBUTE Interrogation of supported attributes No

IOH_SETATTRIBUTE Setting supported attributes No

IOH_ERASEFILE ALGOL ERASE and MCP ERASEFILE functions No

IOH_FSYNC POSIX FSYNC and MCP FILESYNC functions No

A link to the IOHANDLER library occurs when an attempt is made to open a virtual file.
Not all IOHANDLER entry points are required during linkage to the library on behalf of a
virtual file. However, if all of the required entry points are not exported by the
IOHANDLER, the linkage from the virtual file to the specified IOHANDLER library fails
and an open error on the virtual file is returned to the program. Alternatively, if an optional
entry point is not provided by a particular IOHANDLER library, an error result is produced
only if an action on the virtual file requires the optional entry point. The one exception to
this result is for the IOH_FSYNC attribute, which returns a good result.

Common IOHANDLER Entry Point Parameters

Each entry point exported by an IOHANDLER library has two common parameters,
declared as the first two entries in the parameter list. The following paragraphs describe
the declaration of each of the IOHANDLER entry points and their parameters.

The IOHANDLER parameters are a file and a two-dimensional array declared in Logical
I/O. These parameters are referred to as F and IOH_DATA, respectively. While Logical
I/O has visibility to each of these parameters, they are provided solely for the use of the
library and are never referenced by Logical I/O. As such, they can be used by the library if
necessary. In particular, since these parameters are passed to all IOHANDLER entry
points, they can be used to hold state information about a particular virtual file without
storing global state information in the library. This handling of the F and IOH_DATA
parameters, coupled with the file locking as described in “Understanding the
IOHANDLER” earlier in this section, is intended to make it easy for an IOHANDLER
library to be written as a stateless, shared library. Such a library is included in the
example IOHANDLER library later in this section.

Understanding Virtual Files

29–16 8600 0056–408

The states of the two parameters on the initial library linkage are as follows:

• The IOH_DATA parameter is a non-present, touched multi-dimensioned array
declared with 4 rows. The array rows can be resized with minimal overhead
according to the needs of the IOHANDLER library.

• The file parameter F is an unassigned file descriptor with default file attributes. File
equation from the program declaring the virtual file is not applied when the file is
initialized.

IOH_OPEN

The required IOH_OPEN entry point is invoked when the virtual file is opened. It is
expected to return an open result along with values for the by-reference parameters. This
entry point must be exported to be compatible with the following procedure template:

REAL PROCEDURE IOH_OPEN (F, IOH_DATA, IOH_INFO, IOHRECSIZE,
 IOHMODE, IOHMAXXMTRECS, IOHACCESS,
 IOHBLOCKSTRUCTURE);
 FILE F;
 ARRAY IOH_DATA [0,0], IOH_INFO [0];
 REAL IOHRECSIZE, IOHMODE, IOHMAXXMTRECS,
 IOHACCESS, IOHBLOCKSTRUCTURE;

Results

The result returned as the procedure value is defined in the File Attributes Reference
Manual. These values are supported by the compilers, so that the mnemonic values can
be used. For example, the following statements return the appropriate values of a good
result and a no file condition, respectively:

IOH_OPEN := VALUE(OKRSLT);
IOH_OPEN := VALUE(NOFILEFOUNDRSLT);

Parameters

IOHRECSIZE

The value returned by the OPEN entry point is MAXRECSIZE in units of IOHMODE
characters of the virtual file.

IOHMODE

The value returned by the OPEN entry point is the character encoding and size expected
in the READ and WRITE entry points; that is, the length of the data and the pointer
passed to those entry points are sized according to the IOHMODE value returned.

 Understanding Virtual Files

8600 0056–408 29–17

IOHMAXXMTRECS

The value returned by the OPEN entry point is the maximum number of records that can
be transferred in and out of the library on a single call to its read or write routine.

IOHACCESS

The value returned by the OPEN entry point is the number of access permissions that
have been granted. This parameter has the following layout:

SEC_RF = [2:1] # % Read permitted
SEC_WF = [1:1] # % Write permitted
SEC_XF = [0:1] # % Execute/search permitted
 % (Not currently used but defined
 % for completeness.)

IOHBLOCKSTRUCTURE

This parameter, when returned by the OPEN entry point, contains the
BLOCKSTRUCTURE value of the virtual file. The BLOCKSTRUCTURE attribute must be
set to either VALUE (FIXED) or VALUE (EXTERNAL). For details about
BLOCKSTRUCTURE semantics, refer to “Virtual File Structure Considerations” earlier in
this section.

IOH_INFO

This array, when passed into the OPEN entry point, contains information from the logical
virtual file as defined in the example that follows. Each of the defines corresponds to the
file attribute value that it carries. For instance, the INFO_ANYSIZEIO define contains the
ANYSIZEIO attribute setting in the virtual file.

Pointer-valued attributes are passed using an index and length define. For example,
INFO_FILENAMEINX and INFO_FILENAMECHRS are the index defines in the IOH_INFO
attribute and the length defines in the virtual file FILENAME attribute. Note that pointer
attributes are terminated with a period, which is included in the length defines.

DEFINE
 INFO_ITEMP (INFO,X) = POINTER(INFO[X]) #
 ,INFO_WORDS (INFO) = INFO [0].[47:24] #
 ,INFO_FIXED_WORDS (INFO) = INFO [0].[23:24] #
 ,INFO_VERSION (INFO) = INFO [1].[07:08] #
 ,INFO_VERSIONV = 1 #
 ,INFO_OPENATTRIBUTE (INFO) = INFO [2].[36:01] #
 ,INFO_OPENIMPLICIT (INFO) = INFO [2].[32:01] #
 ,INFO_OPENTYPE (INFO) = INFO [2].[31:08] #
 ,INFO_NEWFILE (INFO) = INFO [2].[23:01] #
 ,INFO_EXCLUSIVE (INFO) = INFO [2].[22:01] #
 ,INFO_FILEUSE (INFO) = INFO [2].[21:02] #
 ,INFO_FLEXIBLE (INFO) = INFO [2].[19:01] #
 ,INFO_NORESOURCEWAIT (INFO) = INFO [2].[18:01] #
 ,INFO_SENSITIVEDATA (INFO) = INFO [2].[17:01] #
 ,INFO_DEPENDENTINTMODE(INFO) = INFO [2].[16:01] #
 ,INFO_DEPENDENTSPECS (INFO) = INFO [2].[12:01] #
 ,INFO_PROTECTION (INFO) = INFO [2].[11:02] #

Understanding Virtual Files

29–18 8600 0056–408

 ,INFO_SYNCHRONIZE (INFO) = INFO [2].[09:02] #
 ,INFO_FILEKIND (INFO) = INFO [2].[07:08] #
 ,INFO_FILEORGANIZATION(INFO) = INFO [3].[47:04] #
 ,INFO_FILESTRUCTURE (INFO) = INFO [3].[43:08] #
 ,INFO_BLOCKSTRUCTURE (INFO) = INFO [3].[35:04] #
 ,INFO_TRANSLATE (INFO) = INFO [3].[31:04] #
 ,INFO_EXTMODEBITS (INFO) = INFO [3].[27:08] #
 ,INFO_OVERRIDEEXTMODE (INFO) = INFO [3].[19:04] #
 ,INFO_EXTMODE (INFO) = INFO [3].[15:16] #
 ,INFO_INTMODE (INFO) = INFO [4].[47:16] #
 ,INFO_CCSVERSION (INFO) = INFO [4].[31:16] #
 ,INFO_EXTDELIMITER (INFO) = INFO [4].[15:08] #
 ,INFO_FRAMESIZE (INFO) = INFO [4].[07:08] #
 ,INFO_BLOCKSIZE (INFO) = INFO [5].[47:16] #
 ,INFO_MINRECSIZE (INFO) = INFO [5].[31:16] #
 ,INFO_MAXRECSIZE (INFO) = INFO [5].[15:16] #
 ,INFO_ANYSIZEIO (INFO) = INFO [6].[44:01] #
 ,INFO_ADAPTABLE (INFO) = INFO [6].[40:01] #
 ,INFO_UNITS (INFO) = INFO [6].[36:01] #
 ,INFO_BUFFERSHARING (INFO) = INFO [6].[33:02] #
 ,INFO_BUFFERS (INFO) = INFO [6].[31:08] #
 ,INFO_BUFFERSIZE (INFO) = INFO [6].[23:24] #
 ,INFO_AREAS (INFO) = INFO [7].[47:16] #
 ,INFO_AREALENGTH (INFO) = INFO [7].[31:32] #
 ,INFO_AREASIZE (INFO) = INFO [8].[47:24] #
 ,INFO_SECURITYTYPE (INFO) = INFO [8].[23:04] #
 ,INFO_SECURITYUSE (INFO) = INFO [8].[19:04] #
 ,INFO_SECURITYMODE (INFO) = INFO [8].[15:16] #
 ,INFO_FILESNR (INFO) = INFO [9] #
 ,INFO_FILEMIX (INFO) = INFO [10] #

% Variable Length Attributes
 ,INFO_ATT_LINKF = [47:24] #
 ,INFO_ATT_LENF = [23:24] #
 ,INFO_FILENAMEINX (INFO) = INFO [11].INFO_ATT_LINKF #
 ,INFO_FILENAMECHRS (INFO) = INFO [11].INFO_ATT_LENF #
 ,INFO_FAMILYNAMEINX (INFO) = INFO [12].INFO_ATT_LINKF #
 ,INFO_FAMILYNAMECHRS (INFO) = INFO [12].INFO_ATT_LENF #
 ,INFO_STRINGINX (INFO) = INFO [13].INFO_ATT_LINKF #
 ,INFO_STRINGCHRS (INFO) = INFO [13].INFO_ATT_LENF #
 ,INFO_FILEUCINX (INFO) = INFO [14].INFO_ATT_LINKF #
 ,INFO_FILEUCCHRS (INFO) = INFO [14].INFO_ATT_LENF #
 ,INFO_NOTEINX (INFO) = INFO [15].INFO_ATT_LINKF #
 ,INFO_NOTECHRS (INFO) = INFO [15].INFO_ATT_LENF #
 ,INFO_GUARDFILEINX (INFO) = INFO [16].INFO_ATT_LINKF #
 ,INFO_GUARDFILECHRS (INFO) = INFO [16].INFO_ATT_LENF #
 ,INFO_GROUPINX (INFO) = INFO [17].INFO_ATT_LINKF #
 ,INFO_GROUPCHRS (INFO) = INFO [17].INFO_ATT_LENF #
 ,INFO_ALTGROUPSINX (INFO) = INFO [18].INFO_ATT_LINKF #
 ,INFO_ALTGROUPSCHRS (INFO) = INFO [18].INFO_ATT_LENF #
 ,INFO_OWNERINX (INFO) = INFO [19].INFO_ATT_LINKF #
 ,INFO_OWNERCHRS (INFO) = INFO [19].INFO_ATT_LENF #

 Understanding Virtual Files

8600 0056–408 29–19

 ,INFO_INTNAMEINX (INFO) = INFO [20].INFO_ATT_LINKF #
 ,INFO_INTNAMECHRS (INFO) = INFO [20].INFO_ATT_LENF #
 ,INFO_HOSTNAMEINX (INFO) = INFO [21].INFO_ATT_LINKF #
 ,INFO_HOSTNAMECHRS (INFO) = INFO [21].INFO_ATT_LENF #
 ,INFO_FIRSTINFO = 22 #

IOH_CLOSE

The required IOH_CLOSE entry point is invoked when the virtual file is closed, either
explicitly or due to block exit action. This entry point must be exported to be compatible
with the following procedure template:

REAL PROCEDURE IOH_CLOSE (F, IOH_DATA, ASSOCIATION,
 DISPOSITION);
 VALUE ASSOCIATION, DISPOSITION;
 FILE F;
 ARRAY IOH_DATA [0:0];
 REAL ASSOCIATION, DISPOSITION;

Results

The result returned as the procedure value is defined in the File Attributes Reference
Manual. These values are supported by the compilers, so that the mnemonic values can
be used. For example, the following statement returns the appropriate good result value
for the close request:

IOH_CLOSE := VALUE(OKRSLT);

Parameters

When passed into the CLOSE entry point, the ASSOCIATION and DISPOSITION
parameters indicate the type of close procedure and correspond to the compiler-
generated values passed to Logical I/O.

ASSOCIATION

Close Operation Value

RELEASE 1

RETAIN 2

RESERVE 3

DISABLE 4

Note: Although all values of ASSOCIATION are listed, the IOH_CLOSE entry point
currently is called only for a value of RELEASE.

Understanding Virtual Files

29–20 8600 0056–408

DISPOSITION

Close Operation Value

REWIND 1

NOREWIND 2

SAVE 3

LOCK 4

PURGE 5

CRUNCH 6

HERE 7

BLOCKEXIT 8

ABORT 9

ORDERLY 10

DOWNSIZEAREA 11

DOWNSIZEAREALOCK 12

 IOH_READ

The IOH_READ entry point is optional, but necessary to service a read request on the
virtual file. If exported, this entry point must be compatible with the following procedure
template:

REAL PROCEDURE IOH_READ (F, IOH_DATA, FEATUREMASK, REC, LEN,
 PDATA);
 VALUE FEATUREMASK, REC, PDATA;
 FILE F;
 ARRAY IOH_DATA [0:0];
 REAL FEATUREMASK, REC, LEN;
 POINTER PDATA;

Results

The result returned as the procedure value is defined in the File Attributes Reference
Manual. These values are supported by the compilers, so that the mnemonic values can
be used. For example, the following statement returns the appropriate good result value
for the read request:

IOH_READ := VALUE(NOERROR);

 Understanding Virtual Files

8600 0056–408 29–21

Parameters

FEATUREMASK

The FEATUREMASK parameter contains an indication in the following field whether the
read request was serial or random:

SERIAL_REQUESTF = [1:1] # % Indicates Serial read/write

REC

The REC parameter is the record offset for the read request.

LEN

The LEN parameter is the length of the request in terms of IOHMODE characters. The
value returned in LEN indicates how much data was actually transferred. The LEN value
returned from the entry point must be less than or equal to the requested value or a
DATAERROR result is returned to the program.

If the LEN value is less than requested, the MCP builds a result descriptor based on the
IOHBLOCKSTRUCTURE returned from the open routine. For details about
BLOCKSTURCTURE semantics, see “Virtual File Structure Considerations” earlier in this
section.

PDATA

The PDATA parameter points to the internal Logical I/O buffer that is used to hold the
user data during the I/O request. The pointer size is set based on the IOHMODE value
returned from the IOH_OPEN entry point. The PDATA, REC, and LEN parameters are
used to move data out of the library.

IOH_WRITE

The IOH_WRITE entry point is optional, but necessary to service a write request on the
virtual file. If this entry point is exported, it must be compatible with the following
procedure template:

REAL PROCEDURE IOH_WRITE (F, IOH_DATA, FEATUREMASK, REC, LEN,
 PDATA);
 VALUE FEATUREMASK, REC, PDATA;
 FILE F;
 ARRAY IOH_DATA [0:0];
 REAL FEATUREMASK, REC, LEN;
 POINTER PDATA;

Understanding Virtual Files

29–22 8600 0056–408

Results

The result returned as the procedure value is defined in the File Attributes Reference
Manual. These values are supported by the compilers, so that the mnemonic values can
be used. For example, the following statement returns the appropriate good result value
for the write request:

IOH_WRITE := VALUE(NOERROR);

Parameters

FEATUREMASK

The FEATUREMASK parameter contains an indication whether the requested read
procedure was serial or random and whether SYNCHRONIZE was specified. The layout
of this parameter is as follows:

SERIAL_REQUESTF = [1:1] # % Indicates Serial read/write
WRITE_SYNCF = [0:1] # % Write [SYNCHRONIZE]

REC

The REC parameter is the record offset for the write request.

LEN

The LEN parameter is the length of the request in terms of IOHMODE characters. The
value returned in LEN indicates how much data was actually transferred. The LEN value
returned from the entry point must be equal to the requested value or a DATAERROR
result is returned to the program.

The LEN value might be adjusted by Logical I/O to a record boundary based on the
IOHBLOCKSTRUCTURE value returned from the open routine. For details about
BLOCKSTURCTURE semantics, refer to “Virtual File Structure Considerations” earlier in
this section.

PDATA

The PDATA parameter points to the internal Logical I/O buffer that is used to hold the
user data during the I/O request. The pointer size is set based on the IOHMODE value
returned from the IOH_OPEN entry point. The PDATA, REC, and LEN parameters are
used to move data in to the library to service the write request.

 Understanding Virtual Files

8600 0056–408 29–23

IOH_FSYNC

The IOH_FSYNC entry point is optional, but necessary to service a POSIX_FSYNC or
FSYNC request on the virtual file. The function normally is called to flush outstanding
write requests. If FSYNC is requested for a virtual file, and the entry point has not been
exported from the IOHANDLER library, the program receives a good result. If this entry
point is exported, it must be compatible with the following procedure template:

REAL PROCEDURE IOH_FSYNC (F, IOH_DATA, VARIANT);
 VALUE VARIANT;
 FILE F;
 ARRAY IOH_DATA [0:0];
 REAL VARIANT;

Results

The result returned as the procedure value is defined in the File Attributes Reference
Manual. These values are supported by the compilers, so that the mnemonic values can
be used. For example, the following statement returns the appropriate good result value
for the FSYNC request:

IOH_FSYNC := VALUE(NOERROR);

Parameters

VARIANT

The VARIANT parameter corresponds to the POSIX_FSYNC variables when defined as
follows:

FSYNC_SV = 1
FDSYNC_SV = 2

Understanding Virtual Files

29–24 8600 0056–408

IOH_ERASEFILE

The IOH_ERASEFILE entry point is optional, but necessary to service an ALGOL ERASE
or ERASEFILE procedure for the virtual file. If this entry point is exported, it must be
compatible with the following procedure template:

REAL PROCEDURE IOH_ERASEFILE (F, IOH_DATA);
 FILE F;
 ARRAY IOH_DATA [0:0];

Results

The result returned as the procedure value is defined in the File Attributes Reference
Manual. These values are supported by the compilers, so that the mnemonic values can
be used. For example, the following statement returns the appropriate good result value
for the erase request:

IOH_ERASEFILE := VALUE(NOERROR);

IOH_GETATTRIBUTE

The IOH_GETATTRIBUTE entry point is optional, but necessary to service file attribute
interrogation for the attributes listed in “Virtual File Attributes” earlier in this section. If
this entry point is not exported, an attribute error is returned to the program doing the
interrogation. If the entry point is exported, it must be declared to be compatible with the
following procedure template:

REAL PROCEDURE IOH_GETATTRIBUTE (F, IOH_DATA, ATTNUM, ATTVALUE,
 ATTPOINTER);
 VALUE ATTNUM;
 FILE F;
 ARRAY IOH_DATA [0:0];
 REAL ATTNUM, ATTVALUE;
 POINTER ATTPOINTER;

Results

The result returned as the procedure value is expected to be 0 for a good result. If a non-
zero result is returned, the MCP returns a generic attribute error.

Parameters

ATTNUM

The ATTNUM parameter is the attribute number used to select the attribute for
interrogation. Attribute numbers are defined in the File Attributes Reference Manual.
Attribute mnemonics also can be referred to in the program, as in VALUE(FILEKIND).

 Understanding Virtual Files

8600 0056–408 29–25

ATTVAL

The ATTVAL parameter returns the non-pointer valued attributes.

ATTPOINTER

The ATTPOINTER parameter points to the array in which pointer-valued attributes are
returned.

IOH_SETATTRIBUTE

The IOH_SETATTRIBUTE entry point is optional, but necessary to service file attribute
modification for the attributes listed in “Virtual File Attributes” earlier in this section. If
the entry point is not exported, an attribute error is returned to the program doing the
modification. If the entry point is exported, it must be declared to be compatible with the
following procedure template:

REAL PROCEDURE IOH_SETATTRIBUTE (F, IOH_DATA, ATTNUM, ATTVALUE,
 ATTPOINTER);
 VALUE ATTNUM, ATTVALUE, ATTPOINTER;
 FILE F;
 ARRAY IOH_DATA [0:0];
 REAL ATTNUM, ATTVALUE;
 POINTER ATTPOINTER;

Results

The result returned as the procedure value is expected to be 0 for a good result. If a non-
zero result is returned, the MCP returns a generic attribute error.

Parameters

ATTNUM

The ATTNUM parameter is the attribute number used to select the attribute for
modification. Attribute numbers are defined in the File Attributes Reference Manual.
Attribute mnemonics also can be referred to in the program, as in VALUE(FILEKIND).

ATTVAL

The ATTVAL parameter passes the value for setting the non-pointer valued attributes.

ATTPOINTER

The ATTPOINTER parameter points to the array holding the data for setting the pointer-
valued attributes.

Understanding Virtual Files

29–26 8600 0056–408

Example IOHANDLER Library

The following ALGOL program is an example IOHANDLER library that uses much of the
virtual file functionality. The IOHANDLER acts as a surrogate disk file handler, using the
entry parameter file F to create a disk file from a virtual file program. The IOHANDLER
library corresponds to the DISKIOHANDLER function used in the example ALGOL and
COBOL85 programs earlier in this section.

 $SET SHARING=SHAREDBYALL
BEGIN

 DEFINE
 INFO_ITEMP (INFO,X) = POINTER(INFO[X(INFO)]) #
 ,INFO_WORDS (INFO) = INFO [0].[47:24] #
 ,INFO_FIXED_WORDS (INFO) = INFO [0].[23:24] #
 ,INFO_VERSION (INFO) = INFO [1].[07:08] #
 ,INFO_VERSIONV = 1 #
 ,INFO_OPENATTRIBUTE (INFO) = INFO [2].[36:01] #
 ,INFO_OPENIMPLICIT (INFO) = INFO [2].[32:01] #
 ,INFO_OPENTYPE (INFO) = INFO [2].[31:08] #
 ,OPENWAITV = 1 #
 ,AVAILABLEV = 2 #
 ,OFFERV = 3 #
 ,RESIDENTV = 4 #
 ,PRESENTV = 5 #
 ,PBTREELSWITCHOPENV = 6 #
 ,STKASSIGNEDOPENREVERSEV = 7 #
 ,F77BACKSPACEV = 8 #
 ,UNCONDITIONALV = 9 # % EVEN IF EXCLUSIVE
 ,SERVERREOPENV = 10 #
 ,CONDITIONALV = 11 # % POSIX OPEN CONDITIONAL
 ,MUSTBENEWV = 12 # % POSIX OPEN MUSTBENEW
 ,INFO_NEWFILE (INFO) = INFO [2].[23:01] #
 ,INFO_EXCLUSIVE (INFO) = INFO [2].[22:01] #
 ,INFO_FILEUSE (INFO) = INFO [2].[21:02] #
 ,INFO_FLEXIBLE (INFO) = INFO [2].[19:01] #
 ,INFO_NORESOURCEWAIT (INFO) = INFO [2].[18:01] #
 ,INFO_SENSITIVEDATA (INFO) = INFO [2].[17:01] #
 ,INFO_DEPENDENTINTMODE(INFO) = INFO [2].[16:01] #
 ,INFO_DEPENDENTSPECS (INFO) = INFO [2].[12:01] #
 ,INFO_PROTECTION (INFO) = INFO [2].[11:02] #
 ,INFO_SYNCHRONIZE (INFO) = INFO [2].[09:02] #
 ,INFO_FILEKIND (INFO) = INFO [2].[07:08] #
 ,INFO_FILEORGANIZATION(INFO) = INFO [3].[47:04] #
 ,INFO_FILESTRUCTURE (INFO) = INFO [3].[43:08] #
 ,INFO_BLOCKSTRUCTURE (INFO) = INFO [3].[35:04] #
 ,INFO_TRANSLATE (INFO) = INFO [3].[31:04] #
 ,INFO_EXTMODEBITS (INFO) = INFO [3].[27:08] #
 ,INFO_OVERRIDEEXTMODE (INFO) = INFO [3].[19:04] #
 ,INFO_EXTMODE (INFO) = INFO [3].[15:16] #

 Understanding Virtual Files

8600 0056–408 29–27

 ,INFO_INTMODE (INFO) = INFO [4].[47:16] #
 ,INFO_CCSVERSION (INFO) = INFO [4].[31:16] #
 ,INFO_EXTDELIMITER (INFO) = INFO [4].[15:08] #
 ,INFO_FRAMESIZE (INFO) = INFO [4].[07:08] #
 ,INFO_BLOCKSIZE (INFO) = INFO [5].[47:16] #
 ,INFO_MINRECSIZE (INFO) = INFO [5].[31:16] #
 ,INFO_MAXRECSIZE (INFO) = INFO [5].[15:16] #
 ,INFO_ANYSIZEIO (INFO) = INFO [6].[44:01] #
 ,INFO_ADAPTABLE (INFO) = INFO [6].[40:01] #
 ,INFO_UNITS (INFO) = INFO [6].[36:01] #
 ,INFO_BUFFERSHARING (INFO) = INFO [6].[33:02] #
 ,INFO_BUFFERS (INFO) = INFO [6].[31:08] #
 ,INFO_BUFFERSIZE (INFO) = INFO [6].[23:24] #
 ,INFO_AREAS (INFO) = INFO [7].[47:16] #
 ,INFO_AREALENGTH (INFO) = INFO [7].[31:32] #
 ,INFO_AREASIZE (INFO) = INFO [8].[47:24] #
 ,INFO_SECURITYTYPE (INFO) = INFO [8].[23:04] #
 ,INFO_SECURITYUSE (INFO) = INFO [8].[19:04] #
 ,INFO_SECURITYMODE (INFO) = INFO [8].[15:16] #
 ,INFO_FILESNR (INFO) = INFO [9] #
 ,INFO_FILEMIX (INFO) = INFO [10] #

 % Variable Length Attributes
 ,INFO_ATT_LINKF = [47:24] #
 ,INFO_ATT_LENF = [23:24] #
 ,INFO_FILENAMEINX (INFO) = INFO [11].INFO_ATT_LINKF #
 ,INFO_FILENAMECHRS (INFO) = INFO [11].INFO_ATT_LENF #
 ,INFO_FAMILYNAMEINX (INFO) = INFO [12].INFO_ATT_LINKF #
 ,INFO_FAMILYNAMECHRS (INFO) = INFO [12].INFO_ATT_LENF #
 ,INFO_STRINGINX (INFO) = INFO [13].INFO_ATT_LINKF #
 ,INFO_STRINGCHRS (INFO) = INFO [13].INFO_ATT_LENF #
 ,INFO_FILEUCINX (INFO) = INFO [14].INFO_ATT_LINKF #
 ,INFO_FILEUCCHRS (INFO) = INFO [14].INFO_ATT_LENF #
 ,INFO_NOTEINX (INFO) = INFO [15].INFO_ATT_LINKF #
 ,INFO_NOTECHRS (INFO) = INFO [15].INFO_ATT_LENF #
 ,INFO_GUARDFILEINX (INFO) = INFO [16].INFO_ATT_LINKF #
 ,INFO_GUARDFILECHRS (INFO) = INFO [16].INFO_ATT_LENF #
 ,INFO_GROUPINX (INFO) = INFO [17].INFO_ATT_LINKF #
 ,INFO_GROUPCHRS (INFO) = INFO [17].INFO_ATT_LENF #
 ,INFO_ALTGROUPSINX (INFO) = INFO [18].INFO_ATT_LINKF #
 ,INFO_ALTGROUPSCHRS (INFO) = INFO [18].INFO_ATT_LENF #
 ,INFO_OWNERINX (INFO) = INFO [19].INFO_ATT_LINKF #
 ,INFO_OWNERCHRS (INFO) = INFO [19].INFO_ATT_LENF #
 ,INFO_INTNAMEINX (INFO) = INFO [20].INFO_ATT_LINKF #
 ,INFO_INTNAMECHRS (INFO) = INFO [20].INFO_ATT_LENF #
 ,INFO_HOSTNAMEINX (INFO) = INFO [21].INFO_ATT_LINKF #
 ,INFO_HOSTNAMECHRS (INFO) = INFO [21].INFO_ATT_LENF #
 ,INFO_FIRSTINFO = INFO [22] #

Understanding Virtual Files

29–28 8600 0056–408

 ,INFO_STRINGP(INFO) = INFO_ITEMP(INFO,INFO_STRINGINX) #
 ,INFO_FILENAMEP(INFO) = INFO_ITEMP(INFO,INFO_FILENAMEINX) #
 ,INFO_FAMILYNAMEP(INFO)=INFO_ITEMP(INFO,INFO_FAMILYNAMEINX)#
 ,INFO_FILEUCP(INFO) = INFO_ITEMP(INFO,INFO_FILEUCINX) #
 ,INFO_NOTEP(INFO) = INFO_ITEMP(INFO,INFO_NOTEINX) #
 ,INFO_GROUPP (INFO) = INFO_ITEMP(INFO,INFO_GROUPINX) #
 ,INFO_ALTGROUPSP(INFO) = INFO_ITEMP(INFO,INFO_ALTGROUPSINX)#
 ,INFO_GUARDFILEP(INFO) = INFO_ITEMP(INFO,INFO_GUARDFILEINX)#
 ,INFO_INTNAMEP (INFO) = INFO_ITEMP(INFO,INFO_INTNAMEINX) #
 ,INFO_HOSTNAMEP (INFO) = INFO_ITEMP(INFO,INFO_HOSTNAMEINX) #
 ;
DEFINE FILE_RECSIZE = IOHSTATE [0] #,
 FILE_CHARSIZE = IOHSTATE [1] #,
 FILE_FRAMESIZE = IOHSTATE [2] #,
 FILE_UNITS = IOHSTATE [3] #,
 IOH_STATE_WORDS= 4 #;

DEFINE BITSPERBYTE = 8 #,
 BITSPERWORD = 48 #,
 BITSPERUNIT(M) =
 (IF M > 6 THEN
 IF M=VALUE(UCS2NT) THEN 16
 ELSE 8
 ELSE
 (0 & 48 [0:6] % CASE (M) OF (48
 & 48 [6:6] % ,48
 & 4 [12:6] % ,4
 & 6 [18:6] % ,6
 & 8 [24:6] % ,8
 & 8 [30:6] % ,8
 & 0 [36:6]).[(M)*6:6])#;% ,0)

DEFINE COVQ (V, D) = (((V) + (D) - 1) DIV (D)) #,
 COVER (V, D) = ((D) * (COVQ ((V), (D)))) #;

REAL PROCEDURE IOH_OPEN (F,IOHDATA,IOHINFO,RECSIZE,MODE,
 MAXXMT,ACCESS,BLOCKSTRUCT);
 FILE F;
 ARRAY IOHDATA [0,0], IOHINFO [0];
 REAL RECSIZE,MODE,MAXXMT,ACCESS,BLOCKSTRUCT;
 BEGIN
 REAL OPENRSLT,
 FILE_USE;
 BOOLEAN CREATEFILE,
 DEPENDENT_SPECS;
 ARRAY REFERENCE
 IOHSTATE [0];

 Understanding Virtual Files

8600 0056–408 29–29

ON ANYFAULT, PROGRAMDUMP(ALL,TODISK);

 IOHSTATE := IOHDATA [0,*];
 IF SIZE(IOHSTATE) < IOH_STATE_WORDS THEN
 RESIZE(IOHSTATE,IOH_STATE_WORDS);
 CREATEFILE := BOOLEAN(INFO_NEWFILE(IOHINFO));
 DEPENDENT_SPECS := BOOLEAN(INFO_DEPENDENTSPECS(IOHINFO));
 IF INFO_FILENAMECHRS(IOHINFO) > 0 THEN
 REPLACE F.LFILENAME BY INFO_FILENAMEP(IOHINFO);
 IF INFO_FAMILYNAMECHRS(IOHINFO) > 0 THEN
 REPLACE F.FAMILYNAME BY INFO_FAMILYNAMEP(IOHINFO);
 IF INFO_HOSTNAMECHRS(IOHINFO) > 0 THEN
 REPLACE F.HOSTNAME BY INFO_HOSTNAMEP(IOHINFO);

 IF INFO_BUFFERS(IOHINFO) > 0 THEN
 F.BUFFERS := INFO_BUFFERS(IOHINFO);
 IF INFO_BUFFERSIZE(IOHINFO) > 0 THEN
 F.BUFFERSIZE := INFO_BUFFERSIZE(IOHINFO);
 IF INFO_BUFFERSHARING(IOHINFO) NEQ VALUE(NONE) THEN
 F.BUFFERSHARING := INFO_BUFFERSHARING(IOHINFO);
 F (KIND = DISK
 ,NEWFILE = CREATEFILE
 ,FILEUSE = INFO_FILEUSE(IOHINFO)
 ,EXCLUSIVE = BOOLEAN(INFO_EXCLUSIVE(IOHINFO))
 ,ANYSIZEIO = BOOLEAN(INFO_ANYSIZEIO(IOHINFO))
 ,SYNCHRONIZE = INFO_SYNCHRONIZE(IOHINFO)
 ,ADAPTABLE = BOOLEAN(INFO_ADAPTABLE(IOHINFO))
 ,DEPENDENTSPECS = DEPENDENT_SPECS
 ,DEPENDENTINTMODE = TRUE % Translation already done.
);
 IF CREATEFILE OR NOT DEPENDENT_SPECS THEN
 BEGIN
 FILE_CHARSIZE := INFO_EXTMODEBITS(IOHINFO);
 FILE_UNITS := IF INFO_FRAMESIZE(IOHINFO) = 0 THEN
 INFO_UNITS(IOHINFO)
 ELSE
 IF INFO_FRAMESIZE(IOHINFO) = 48 THEN
 VALUE(WORDS)
 ELSE
 VALUE(CHARACTERS);
 FILE_FRAMESIZE := IF FILE_UNITS = VALUE(WORDS) THEN 48
 ELSE FILE_CHARSIZE;
 IF FILE_UNITS = VALUE(WORDS) THEN % convert to words
 RECSIZE := RECSIZE DIV
 (BITSPERWORD DIV FILE_CHARSIZE);

Understanding Virtual Files

29–30 8600 0056–408

F (MAXRECSIZE = RECSIZE
 ,FRAMESIZE = FILE_FRAMESIZE
 ,INTMODE = MODE
 ,EXTMODE = MODE
 ,BLOCKSTRUCTURE = BLOCKSTRUCT
 ,FILEKIND = INFO_FILEKIND(IOHINFO)
 ,FILESTRUCTURE = INFO_FILESTRUCTURE(IOHINFO)
 ,FILEORGANIZATION = INFO_FILEORGANIZATION(IOHINFO)
 ,SECURITYMODE = INFO_SECURITYMODE(IOHINFO)
 ,PROTECTION = INFO_PROTECTION(IOHINFO)
);

 IF INFO_FILESTRUCTURE(IOHINFO) NEQ VALUE(STREAM) AND
 INFO_BLOCKSIZE(IOHINFO) > 0 THEN
 F.BLOCKSIZE := INFO_BLOCKSIZE(IOHINFO);
 IF INFO_AREAS(IOHINFO) > 0 THEN
 F.AREAS := INFO_AREAS(IOHINFO);
 IF INFO_AREASIZE(IOHINFO) > 0 THEN
 F.AREASIZE := INFO_AREASIZE(IOHINFO);
 IF INFO_AREALENGTH(IOHINFO) > 0 THEN
 F.AREALENGTH := INFO_AREALENGTH(IOHINFO);
 IF INFO_NOTECHRS(IOHINFO) > 0 THEN
 REPLACE F.NOTE BY INFO_NOTEP(IOHINFO);
 IF INFO_STRINGCHRS(IOHINFO) > 0 THEN
 REPLACE F.IOHSTRING BY INFO_STRINGP(IOHINFO);
 IF INFO_GROUPCHRS(IOHINFO) > 0 THEN
 REPLACE F.GROUP BY INFO_GROUPP(IOHINFO);
 IF INFO_ALTGROUPSCHRS(IOHINFO) > 0 THEN
 REPLACE F.ALTERNATEGROUPS BY INFO_ALTGROUPSP(IOHINFO);
 IF INFO_SECURITYTYPE(IOHINFO) = VALUE(GUARDED) AND
 INFO_GUARDFILECHRS(IOHINFO) > 0 THEN
 REPLACE F.SECURITYGUARD BY INFO_GUARDFILEP(IOHINFO);
 END;

 OPENRSLT := IF INFO_OPENTYPE(IOHINFO) = RESIDENTV THEN
 IF F.RESIDENT THEN VALUE(OKRSLT)
 ELSE VALUE(NOFILEFOUNDRSLT)
 ELSE
 F.AVAILABLE;

 IF OPENRSLT = VALUE(OKRSLT) THEN
 IF INFO_OPENTYPE(IOHINFO) NEQ RESIDENTV OR
 (NOT CREATEFILE AND INFO_DEPENDENTSPECS(IOHINFO)=1)THEN
 BEGIN
 FILE_RECSIZE := F.MAXRECSIZE;
 FILE_FRAMESIZE := F.FRAMESIZE;
 FILE_UNITS := F.UNITS;
 MODE := F.INTMODE;
 FILE_CHARSIZE := BITSPERUNIT(MODE);

 Understanding Virtual Files

8600 0056–408 29–31

 % Return the RECSIZE in MODE Character Size.
 RECSIZE := FILE_RECSIZE*FILE_FRAMESIZE DIV
 FILE_CHARSIZE;
 MAXXMT := IF BOOLEAN(INFO_ANYSIZEIO(IOHINFO)) THEN
 IF INFO_BUFFERSIZE(IOHINFO) > 0 THEN
 INFO_BUFFERSIZE(IOHINFO)
 ELSE
 65535
 ELSE
 RECSIZE;
 MAXXMT := MAX (1, MAXXMT DIV RECSIZE);% in records
 FILE_USE := F.FILEUSE;
 ACCESS := 0 & REAL(FILE_USE NEQ VALUE(OUT)) [2:1]
 & REAL(FILE_USE NEQ VALUE(IN)) [1:1];
 BLOCKSTRUCT := F.BLOCKSTRUCTURE;
 END;
 IOH_OPEN := OPENRSLT;
 END IOH_OPEN;

REAL PROCEDURE IOH_CLOSE (F, IOHDATA, ASSOCIATION, DISPOSITION);
 VALUE ASSOCIATION, DISPOSITION;
 FILE F;
 ARRAY IOHDATA [0,0];
 REAL ASSOCIATION, DISPOSITION;

 BEGIN
 DEFINE
 % ASSOCIATION
 RELEASEV = 1 #
 ,RETAINV = 2 #
 ,RESERVEV = 3 #
 ,DISABLEV = 4 #

 % DISPOSITION
 ,REWINDV = 1 #
 ,NOREWINDV = 2 #
 ,SAVEV = 3 #
 ,LOCKV = 4 #
 ,PURGEV = 5 #
 ,CRUNCHV = 6 #
 ,HEREV = 7 # % (ASSOCIATION MUST BE RETAINV)
 ,BLOCKEXITV = 8 #
 ,ABORTV = 9 #
 ,ORDERLYV = 10 #
 ,DOWNSIZEAREAV =11 #
 ,DOWNSIZEAREALOCKV = 12 #
 ;

Understanding Virtual Files

29–32 8600 0056–408

ON ANYFAULT, PROGRAMDUMP(ALL,TODISK);

 IF NOT F.OPEN THEN
 IOH_CLOSE := VALUE(OKRSLT)
 ELSE
 CASE DISPOSITION.[3:4] OF
 BEGIN
 REWINDV:
 IOH_CLOSE := CLOSE (F,REWIND);
 LOCKV :
 SAVEV :
 IOH_CLOSE := CLOSE (F,LOCK);
 CRUNCHV:
 IOH_CLOSE := CLOSE (F,CRUNCH);
 PURGEV:
 IOH_CLOSE := CLOSE (F,PURGE);

 DOWNSIZEAREAV:
 IOH_CLOSE := CLOSE (F,DOWNSIZEAREA);
 DOWNSIZEAREALOCKV:
 IOH_CLOSE := CLOSE (F,DOWNSIZEAREALOCK);
 ELSE:
 IOH_CLOSE := CLOSE (F);
 END;
 END IOH_CLOSE;

REAL PROCEDURE IOH_READ (F, IOHDATA, FEATUREMASK, REC, LEN, PDATA);
 VALUE FEATUREMASK, REC, PDATA;
 FILE F;
 ARRAY IOHDATA [0,0];
 REAL FEATUREMASK, REC, LEN;
 POINTER PDATA;
 BEGIN
 REAL RD;
 BOOLEAN BRD = RD;
 ARRAY REFERENCE IOHSTATE [0];
 ON ANYFAULT, PROGRAMDUMP(ALL,TODISK);
 IOHSTATE := IOHDATA [0,*];
 BRD := READ (F [REC],
 LEN*FILE_CHARSIZE DIV FILE_FRAMESIZE, PDATA);
 LEN := RD.[47:20]*FILE_FRAMESIZE DIV FILE_CHARSIZE;
 IOH_READ := IF BRD THEN RD.[26:10] ELSE VALUE(NOERROR);
 END IOH_READ;

REAL PROCEDURE IOH_WRITE (F, IOHDATA, FEATUREMASK, REC, LEN, PDATA);
 VALUE FEATUREMASK, REC, PDATA;
 FILE F;
 ARRAY IOHDATA [0,0];
 REAL FEATUREMASK, REC, LEN;
 POINTER PDATA;
 BEGIN
 REAL RD;

 Understanding Virtual Files

8600 0056–408 29–33

 BOOLEAN BRD = RD;
 ARRAY REFERENCE IOHSTATE [0];
 ON ANYFAULT, PROGRAMDUMP(ALL,TODISK);
 IOHSTATE := IOHDATA [0,*];
 BRD := IF BOOLEAN(FEATUREMASK) THEN
 WRITE (F [REC],
 LEN*FILE_CHARSIZE DIV FILE_FRAMESIZE, PDATA)
 ELSE
 WRITE (F [REC],
 LEN*FILE_CHARSIZE DIV FILE_FRAMESIZE, PDATA);
 LEN := RD.[47:20]*FILE_FRAMESIZE DIV FILE_CHARSIZE;
 IOH_WRITE := IF BRD THEN RD.[26:10] ELSE VALUE(NOERROR);
 END IOH_WRITE;

LIBRARY MCPSUPPORT (LIBACCESS=BYFUNCTION);

BOOLEAN PROCEDURE FILESYNC(F,FORCEHEADERWRITE);
 VALUE FORCEHEADERWRITE;
 FILE F;
 BOOLEAN FORCEHEADERWRITE;
 LIBRARY MCPSUPPORT;

REAL PROCEDURE IOH_FSYNC (F, IOHDATA, VARIANT);
 VALUE VARIANT;
 FILE F;
 ARRAY IOHDATA [0,0];
 REAL VARIANT;
 BEGIN
 BOOLEAN FSYNC;
 FSYNC := FILESYNC (F, BOOLEAN(VARIANT));
 IOH_FSYNC := REAL(FSYNC).[26:10];
 END IOH_FSYNC;

REAL PROCEDURE IOH_ERASEFILE (F, IOHDATA);
 FILE F;
 ARRAY IOHDATA [0,0];
 BEGIN
 IOH_ERASEFILE := REAL(ERASE (F));
 END IOH_ERASEFILE;

REAL PROCEDURE IOH_GETATTRIBUTE (F, IOHDATA, ATTNUM, ATTVAL, ATTPTR);
 VALUE ATTNUM;
 FILE F;
 ARRAY IOHDATA [0,0];
 REAL ATTNUM, ATTVAL;
 POINTER ATTPTR;

Understanding Virtual Files

29–34 8600 0056–408

 BEGIN
 BOOLEAN BATTVAL = ATTVAL;
 ON ANYFAULT, PROGRAMDUMP(ALL,TODISK);
 CASE ATTNUM OF
 BEGIN
 VALUE(ACCESSDATE):
 ATTVAL := F.ACCESSDATE;
 VALUE(ACCESSTIME):
 ATTVAL := F.ACCESSTIME;
 VALUE(ALTERDATE):
 ATTVAL := F.ALTERDATE;
 VALUE(ALTERTIME):
 ATTVAL := F.ALTERTIME;
 VALUE(CREATIONDATE):
 ATTVAL := F.CREATIONDATE;
 VALUE(CREATIONTIME):
 ATTVAL := F.CREATIONTIME;
 VALUE(SYNCHRONIZE):
 ATTVAL := F.SYNCHRONIZE;
 VALUE(SECURITYTYPE):
 ATTVAL := F.SECURITYTYPE;
 VALUE(SECURITYUSE):
 ATTVAL := F.SECURITYUSE;
 VALUE(SECURITYMODE):
 ATTVAL := F.SECURITYMODE;
 VALUE(OWNERRWX):
 ATTVAL := F.OWNERRWX;
 VALUE(GROUPRWX):
 ATTVAL := F.GROUPRWX;
 VALUE(OTHERRWX):
 ATTVAL := F.OTHERRWX;
 VALUE(OWNERR):
 BATTVAL := F.OWNERR;
 VALUE(OWNERW):
 BATTVAL := F.OWNERW;
 VALUE(OWNERX):
 BATTVAL := F.OWNERX;
 VALUE(GROUPR):
 BATTVAL := F.GROUPR;
 VALUE(GROUPW):
 BATTVAL := F.GROUPW;
 VALUE(GROUPX):
 BATTVAL := F.GROUPX;
 VALUE(OTHERR):
 BATTVAL := F.OTHERR;
 VALUE(OTHERW):
 BATTVAL := F.OTHERW;
 VALUE(OTHERX):
 BATTVAL := F.OTHERX;
 VALUE(USEGUARDFILE):
 BATTVAL := F.USEGUARDFILE;

 Understanding Virtual Files

8600 0056–408 29–35

 VALUE(GUARDOWNER):
 BATTVAL := F.GUARDOWNER;
 VALUE(SETUSERCODE):
 BATTVAL := F.SETUSERCODE;
 VALUE(SETGROUPCODE):
 BATTVAL := F.SETGROUPCODE;
 VALUE(GROUP):
 REPLACE ATTPTR:ATTPTR BY F.GROUP;
 VALUE(OWNER):
 REPLACE ATTPTR:ATTPTR BY F.OWNER;
 VALUE(ALTERNATEGROUPS):
 REPLACE ATTPTR:ATTPTR BY F.ALTERNATEGROUPS;
 VALUE(IOHSTRING):
 REPLACE ATTPTR:ATTPTR BY F.IOHSTRING;
 VALUE(NOTE):
 REPLACE ATTPTR:ATTPTR BY F.NOTE;
 VALUE(FILELENGTH):
 ATTVAL := F.FILELENGTH;
 VALUE(LASTRECORD):
 ATTVAL := F.LASTRECORD;
 VALUE(CCSVERSION):
 ATTVAL := F.CCSVERSION;
 VALUE(EXTDELIMITER):
 ATTVAL := F.EXTDELIMITER;
 VALUE(FILEKIND):
 ATTVAL := F.FILEKIND;
 VALUE(USERINFO):
 ATTVAL := F.USERINFO;
 ELSE:
 IOH_GETATTRIBUTE := 1;
 END;
 END IOH_GETATTRIBUTE;

 REAL PROCEDURE IOH_SETATTRIBUTE (F, IOHDATA, ATTNUM, ATTVAL, ATTPTR);
 VALUE ATTNUM, ATTVAL, ATTPTR;
 FILE F;
 ARRAY IOHDATA [0,0];
 REAL ATTNUM, ATTVAL;
 POINTER ATTPTR;
 BEGIN
 POINTER P;
 BOOLEAN BATTVAL = ATTVAL;
 ON ANYFAULT, PROGRAMDUMP(ALL,TODISK);
 CASE ATTNUM OF
 BEGIN
 VALUE(SYNCHRONIZE):
 F.SYNCHRONIZE := ATTVAL;
 VALUE(SECURITYTYPE):
 F.SECURITYTYPE := ATTVAL;
 VALUE(SECURITYUSE):
 F.SECURITYUSE := ATTVAL;

Understanding Virtual Files

29–36 8600 0056–408

 VALUE(SECURITYMODE):
 F.SECURITYMODE := ATTVAL;
 VALUE(OWNERRWX):
 F.OWNERRWX := ATTVAL;
 VALUE(GROUPRWX):
 F.GROUPRWX := ATTVAL;
 VALUE(OTHERRWX):
 F.OTHERRWX := ATTVAL;
 VALUE(OWNERR):
 F.OWNERR := BATTVAL;
 VALUE(OWNERW):
 F.OWNERW := BATTVAL;
 VALUE(OWNERX):
 F.OWNERX := BATTVAL;
 VALUE(GROUPR):
 F.GROUPR := BATTVAL;
 VALUE(GROUPW):
 F.GROUPW := BATTVAL;
 VALUE(GROUPX):
 F.GROUPX := BATTVAL;
 VALUE(OTHERR):
 F.OTHERR := BATTVAL;
 VALUE(OTHERW):
 F.OTHERW := BATTVAL;
 VALUE(OTHERX):
 F.OTHERX := BATTVAL;
 VALUE(GROUP):
 REPLACE F.GROUP BY ATTPTR;
 VALUE(OWNER):
 REPLACE F.OWNER BY ATTPTR;
 VALUE(ALTERNATEGROUPS):
 REPLACE F.ALTERNATEGROUPS BY ATTPTR;
 VALUE(TITLE):
 REPLACE F.TITLE BY ATTPTR;
 VALUE(LTITLE):
 REPLACE F.LTITLE BY ATTPTR;
 VALUE(FILENAME):
 REPLACE F.FILENAME BY ATTPTR;
 VALUE(LFILENAME):
 REPLACE F.LFILENAME BY ATTPTR;
 VALUE(IOHSTRING):
 REPLACE F.IOHSTRING BY ATTPTR;
 VALUE(NOTE):
 REPLACE F.NOTE BY ATTPTR;
 VALUE(CCSVERSION):
 F.CCSVERSION := ATTVAL;
 VALUE(EXTDELIMITER):
 F.EXTDELIMITER := ATTVAL;
 VALUE(FILEKIND):
 F.FILEKIND := ATTVAL;

 Understanding Virtual Files

8600 0056–408 29–37

 VALUE(USERINFO):
 F.USERINFO := ATTVAL;
 ELSE:
 ;
 END;
 END IOH_SETATTRIBUTE;

EXPORT
 IOH_OPEN
 ,IOH_CLOSE
 ,IOH_READ
 ,IOH_WRITE
 ,IOH_FSYNC
 ,IOH_ERASEFILE
 ,IOH_GETATTRIBUTE
 ,IOH_SETATTRIBUTE
 ;

FREEZE (PERMANENT);

END.

Understanding Virtual Files

29–38 8600 0056–408

8600 0056–408 30–1

Section 30
Using the REDIRSUPPORT IOHANDLER
Library

In conjunction with the new virtual file implementation, the REDIRSUPPORT
IOHANDLER library provides access to network resources by utilizing Server Message
Block (SMB) protocol redirection. REDIRSUPPORT IOHANDLER supports access to
Printer, Disk, and CD shares in a Microsoft Networking (TCP/IP) environment. The
REDIRSUPPORT IOHANDLER feature can be used only on ClearPath NX and LX
systems. For details about the MCP implementation of TCP/IP, refer to the TCP/IP
Distributed System Services Operations Guide.

This section describes how to use the REDIRSUPPORT IOHANDLER library for normal
file access as well as for directory manipulation.

For information on the print redirection capabilities of the REDIRSUPPORT feature, refer
to Unisys e-@ction ClearPath Enterprise Servers Installing a Printer for MCP Print System
Use.

For details on any of the attributes referenced in this section, refer to the File Attributes
Reference Manual.

Accessing REDIRSUPPORT IOHANDLER
Programmatic access to files on network shares is provided through the virtual file
mechanism, using the REDIRSUPPORT IOHANDLER library. There are two methods to
identify a file that is requesting service by REDIRSUPPORT IOHANDLER, as follows:

• Set the REDIRECTION file attribute to TRUE. The following attributes are implicitly
set:

KIND = VIRTUAL

IOHLIBACCESS = BYFUNCTION

IOHFUNCTIONNAME = REDIRSUPPORT

• Set the attributes KIND, IOHLIBACCESS, and IOHFUNCTIONNAME explicitly as part
of the file declaration or file equation.

Using the REDIRSUPPORT IOHANDLER Library

30–2 8600 0056–408

Redirector File Structure
The REDIRSUPPORT IOHANDLER library supports access to a class of files described as
byte-stream files. The REDIRSUPPORT file structure corresponds to a disk file with the
following physical attributes:

• FRAMESIZE = 8

• MAXRECSIZE = 1

• BLOCKSTRUCTURE = FIXED

• FILESTRUCTURE = STREAM

• FILEORGANIZATION = NOTRESTRICTED

• EXTMODE = ASCII

In order to open a file on a network share using REDIRSUPPORT IOHANDLER, the
declared file must be compatible with the preceding attributes. For existing files, setting
the DEPENDENTSPECS attribute to TRUE guarantees this compatibility. When creating a
file (NEWFILE = TRUE) or when DEPENDENTSPECS is not TRUE, you must explicitly set
the file attributes to these values for the open procedure to succeed.

In addition to the physical attributes of the file, byte-stream files are normally accessed
with ANYSIZEIO set to TRUE to permit I/O requests of more than one character at a
time.

For additional information about programming for REDIRSUPPORT IOHANDLER access
to network files, refer to “REDIRSUPPORT IOHANDLER Considerations for Use” later in
this section.

For general information on accessing byte-stream files, refer to “Using Byte Files in a
Program” in Section 2, “Understanding Programming for Files.”

Locating a Network File
Before a file can be opened and accessed, its location must be specified through an
appropriate attribute or combination of attributes. The following paragraphs describe the
various mechanisms that can be used to identify a network file to the REDIRSUPPORT
IOHANDLER library.

Several pieces of information must be conveyed to REDIRSUPPORT IOHANDLER to
locate and access a network file. In many cases, this information can be conveyed using
a naming convention defined expressly for REDIRSUPPORT IOHANDLER. However, it is
not always possible to locate and successfully open a network file from the MCP
environment simply by naming the file.

 Using the REDIRSUPPORT IOHANDLER Library

8600 0056–408 30–3

IOHSTRING Parameters

To provide additional information for controlling access to a network file,
REDIRSUPPORT IOHANDLER supports use of the new virtual file string attribute
IOHSTRING. The IOHSTRING attribute is used for passing information between a virtual
file program and the IOHANDLER library associated with the virtual file. The
REDIRSUPPORT IOHANDLER library defines keywords to be contained in the
IOHSTRING attribute for passing information about the network file to be opened.
Table 30–1 lists the keywords described in this section.

Table 30–1. REDIRSUPPORT IOHANDLER Keywords

Keyword Description Example

DOMAINNAME Domain name services (DNS)
name

TAD.FROG.POND.COM

IPADDRESS Internet protocol (IP) address 201.63.228.29

SERVERNAME Computer server (NETBIOS)
name

EAST-SVR

SHARENAME Server-defined share name PUBLIC

CREDENTIALS Account name and password on
server

ABC/PW

USERDOMAIN User domain used to verify
CREDENTIALS

CORP_SEC

TIMEOUT Length of time to wait for
network resources

Time in seconds

SMBTRACE Diagnostic tool used to trace
SMB traffic

TRUE/FALSE

The syntax and usage of each of the keywords are described in the following paragraphs.
The shortest abbreviation for each keyword is always shown in capital letters.

DOMAINNAME

The DOMAINNAME keyword specifies the server domain name used by RESOLVER to
locate the destination system. The general syntax of a domain name is shown below. For
a complete description of domain names, refer to the TCP/IP Distributed Systems
Services Operations Guide.

Syntax

ÄÄ<node 1>ÄÄ . ÄÄ<node 2>ÄÄ . ÄÄ<node n>ÄÄ . ÄÄ<root node>ÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Using the REDIRSUPPORT IOHANDLER Library

30–4 8600 0056–408

A node must be structured as follows:

• The name must begin with a numeral or letter.

• The name must end with a numeral or letter.

• Internal characters can be a letter, numeral, hyphen (-), or an underscore (_).

• The entire node cannot contain more than 63 characters.

• The entire domain name string cannot contain more than 255 characters, including
the separating periods.

Example

DOMAINNAME = TADPOLE.FROG.POND.COM

IPADDRESS

The IPADDRESS keyword specifies the IP address of the destination server when normal
name resolution fails.

Syntax

ÄÄ<number>ÄÄ . ÄÄ<number>ÄÄ . ÄÄ<number>ÄÄ . ÄÄ<number>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Example

IPADDRESS = 128.63.224.12

SERVERNAME

The SERVERNAME keyword specifies the name of the destination server. This keyword
must be used with SHARENAME.

Syntax

ÄÄ /16 ÄÄ<alphanumeric," Ä ", " _ ", " $ " >ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Example

SERVERNAME = REGION1SVR

 Using the REDIRSUPPORT IOHANDLER Library

8600 0056–408 30–5

SHARENAME

The SHARENAME keyword specifies the name of the share on the remote system. This
keyword must be used with SERVERNAME.

Syntax

ÄÄ /16 ÄÄ<alphanumeric," Ä ", " _ ", " $ " >ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Example

SHARENAME = MYSHARE
SHARENAME = C$

CREDENTIALS

The CREDENTIALS keyword explicitly specifies a username and password.

Syntax

ÄÄ<username>ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ / ÄÄ<password>ÄÙ

Examples

CREDENTIALS = USER1/FROG

A user name of USER1 and a password of FROG are used.

CREDENTIALS = USER1

A user name of USER1 and a password of GUEST are used.

CREDENTIALS = /FROG

A null user name and a password of FROG are used.

USERDOMAIN

The USERDOMAIN attribute is used to specify the name of the Windows NT domain to
be used when authenticating the login request. This information is advisory only; it
cannot be guaranteed that the server will honor it.

Syntax

ÄÄ /16 ÄÄ<alphanumeric," Ä ", " _ ", " $ " >ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Example

USERDOMAIN = A_SERVER

Using the REDIRSUPPORT IOHANDLER Library

30–6 8600 0056–408

TIMEOUT

The TIMEOUT keyword specifies the timeout value in seconds used by the SMB
IOHANDLER library when timing out SMB responses.

Syntax

ÄÄ<integer>ÄÄ´

Example

TIMEOUT = 30

SMBTRACE

The SMBTRACE keyword causes all SMB requests and responses to be written to an
appropriate trace file for diagnostic analysis.

Syntax

ÄÄ SMBTRACE ÄÄÄ´

Uniform Naming Convention

In a Microsoft networking environment, the location of a file is specified with the Uniform
Naming Convention (UNC) as defined in the X/OPEN Standard for PC Interworking.

An UNC name has the following general syntax:

\\<host>\<share>\<path>\<filename>

In the following example, the UNC name refers to the file doc1.doc in the temp directory
within the PUBLIC share on the computer named TR-PRESTIJC:

\\TR-PRESTIJC\PUBLIC\temp\doc1.doc

In the PC environment, files are usually located by mapping a network share as a device
and specifying the location of the file as being within a path on the mapped device. The
mapping process requires the name of the computer and the name of the share, as in
the \\<host>\<share> portion of the UNC name.

In the MCP environment, however, there is no equivalent device mapping mechanism.
The format of the \<path>\<file name> portion of the UNC name does not conform to
the MCP naming convention of <directory>/<file name>. Therefore, the REDIRSUPPORT
IOHANDLER supports a specific naming convention for locating a network file by its
name. This syntax is as follows:

*UNC/<host>/<share>/<path>/<filename>

 Using the REDIRSUPPORT IOHANDLER Library

8600 0056–408 30–7

When the FILENAME attribute starts with the node *UNC, the REDIRSUPPORT
IOHANDLER assumes it has been given a typical UNC name following the *UNC node.
The REDIRSUPPORT IOHANDLER converts the *UNC variant of a standard MCP file into
a typical UNC name as part of opening the file. The conversion strips the quotes around
the file name nodes and changes the slashes to back slashes. The REDIRSUPPORT
IOHANDLER requires that a host name, share name, and at least one file name node
appear in the name following the *UNC node or an open error is generated.

This naming convention is applied to the previous example in the following manner:

*UNC/TR-PRESTIJC/PUBLIC/"temp"/"doc1.doc"

The <host> portion of the UNC name can be in any of several forms. These forms
correspond to the SERVERNAME, DOMAINNAME, and IPADDRESS keywords described
in “IOHSTRING Parameters,” earlier in this section.

The last two nodes are quoted as required by MCP file naming rules for lowercase and
special characters. *UNC is a naming convention that is interpreted by the
REDIRSUPPORT IOHANDLER only for redirected files; it has no effect or meaning
outside this usage.

Relative File Names

As a second way of locating a file on a remote system, you can use the IOHSTRING
attribute in conjunction with a “relative” file name. A “relative” file name is a name that
does not specify the host name and share name, and so does not begin with *UNC. In
this case, you specify the server and share name as part of the IOHSTRING attribute,
using the SERVERNAME and SHARENAME parameters. The file name used in the
previous examples corresponds to the following file attribute specification as follows:

FILE VF (...
 ,IOHSTRING = "SERVER=TR-PRESTIJC SHARE=PUBLIC."
 ,FILENAME = ""temp"""/"""doc1.doc"""."
 ...
);

As with the *UNC variant of a standard MCP file name, the MCP converts the file name
into a PC-style relative file name by stripping the quotes around the file name nodes and
changing the slashes to back slashes.

If you specify a full UNC name and also specify a server and share in the IOHSTRING
attribute, the server and share specified within the UNC name take precedence.

Using the REDIRSUPPORT IOHANDLER Library

30–8 8600 0056–408

NXSERVICES CONFIG Files

An additional mechanism for locating a network file combines a naming convention with
the IOHSTRING parameter keywords stored in a configuration file. The naming
convention is

*NXCONFIG/<config name>/<path>/<file>

The *NXCONFIG node indicates to the REDIRSUPPORT IOHANDLER that IOHSTRING
keyword parameters are maintained in a file with the name

NXSERVICES/CONFIG/<config name>

Normal usercode and family substitution is applied when searching for configuration files.
Normal MCP security governs a user’s access to an NXSERVICES/CONFIG file.

The REDIRSUPPORT IOHANDLER permits the use of configuration files with printer
shares as described for TEMPLATE printers in Installing a Printer for Print System Use.

Credentials
Credentials are needed to specify the username and password to be used on the remote
host. Typically, these credentials do not coincide with their MCP counterparts and are not
handled in the same way. For example, in the PC environment, credentials can be
provided as part of the Connect Network Drive operation or as a member of a trusted
domain. Or, credentials can be omitted, resulting in guest access to a share that has
been defined for guest access. For resources like shared printers, omitting credentials
and permitting guest access to all users is adequate.

It is possible to use the IOHSTRING CREDENTIALS keyword to supply the user name
and password for the network resource. However, these credentials are stored and
passed in clear text and can be discovered by unauthorized persons. As a result, the
REDIRSUPPORT IOHANDLER supports an encrypted mechanism for specifying the
credentials to be used when accessing the remote system.

MAKECREDENTIALS Utility

The MAKECREDENTIALS utility provides a method of encrypting credentials, eliminating
the need to specify explicit credentials as part of the IOHSTRING attribute, and creates a
credentials file for each system for which the user has remote access.

MAKECREDENTIALS is a simple command mode utility that expects the following login
credentials for a network host:

• <host>

• <username>

• <password>

• <user domain> (optional)

 Using the REDIRSUPPORT IOHANDLER Library

8600 0056–408 30–9

These four pieces of information correspond to the IOHSTRING keywords as follows:

• SERVER = <host>

• CREDENTIALS = <username>/ <password>

• USERDOMAIN = <user domain>

Examples

The following example shows how the MAKECREDENTIALS utility is run from the
CANDE terminal emulator for a host of TR-PRESTIJC, a username of JCP, and a
password of FROG:

U *SYSTEM/NXSERVICES/MAKECREDENTIALS TR-PRESTIJC JCP FROG

As with the Uniform Naming Convention, the <host> portion can be specified as a
domain name, an IP address, or a NETBIOS name. Modifying the previous example to
use an IP address results in

U *SYSTEM/NXSERVICES/MAKECREDENTIALS 192.63.228.29 JCP FROG

The file created by MAKECREDENTIALS is named using the <host> portion of the
command information.

NXSERVICES CREDENTIALS Files

The MAKECREDENTIALS utility creates credentials files with the usercode and on the
primary family of the MAKECREDENTIALS task. The credentials file has the following
naming convention:

NXSERVICES/CREDENTIALS/<host>

The <host> portion of the name is derived from the <host> parameter to the
MAKECREDENTIALS utility. When the host is an IP address or domain name, the
embedded periods are replaced by the underscore (_) character. For the previous
examples described in “MAKECREDENTIALS Utility,” the credentials files are created as
follows:

CREDENTIALS/TR-PRESTIJC

CREDENTIALS/192_63_229_28

When the MAKECREDENTIALS task is run without a usercode, the file is created as a
global file named *CREDENTIALS/<host>. Whether the credentials file is created with or
without a usercode is important, as credentials files are useful only if accessed during a
file open routine under the appropriate usercode.

Using the REDIRSUPPORT IOHANDLER Library

30–10 8600 0056–408

The credentials file contains the following information:

• MCP usercode of the MAKECREDENTIALS task when the file was created

• Username on the remote system

• Password on the remote system

• User log-on domain name (optional)

When you want to open a file on a remote server, you can determine which credentials
are used in the following manner:

• If CREDENTIALS is explicitly specified as part of the IOHSTRING attribute, then it is
used.

• If CREDENTIALS is not explicitly specified, the usercode and family associated with
the process that declared the logical file is used. This convention preserves the
declarer model when locating the appropriate credentials file. If the file is found, the
information is extracted.

If the MCP usercode stored as part of the credentials file does not match the usercode
of the credentials file itself, the file is not used and an open error is generated. The MCP
usercode is stored and compared with the MCP usercode of the physical credentials file,
preventing one user from using a credentials file created by another user.

A global credentials file, such as that created by an unusercoded run of
MAKECREDENTIALS, is supported and contains a special usercode to match against the
* usercode of the global credentials file. This special usercode prevents a credentials file
created by a specific user from being installed and used as a global credentials file or a
global credentials file from being used as the credentials file for a specific user.

Global credentials permit

• Unusercoded tasks to access a remote system using the credentials file mechanism

• A default credentials file to be used for a set of users

The normal MCP file security rules govern whether the credentials file can be opened. In
the first case, the unusercoded task is the owner of the file and access is granted based
upon the owner's privileges. In the second case, the security state of the file governs
whether a particular user can open the file, as the file could be PUBLIC or GUARDED. In
either case, a usercoded task first attempts to locate a credentials file under the
appropriate usercode. If the file is not found, the search looks for a global file, using the
normal MCP file search semantics.

The REDIRSUPPORT IOHANDLER library permits the use of credentials files with printer
shares as described in Installing a Printer for Print System Use.

If an optional user domain value is specified in the credentials file, this value is used
when establishing the user login. The user domain name corresponds to the Domain field
on the Windows NT Logon screen.

 Using the REDIRSUPPORT IOHANDLER Library

8600 0056–408 30–11

If the user domain is specified in both the credentials file and in the IOHSTRING attribute,
the value specified in the credentials file takes precedence. If the credentials file is being
used and the file contains a user domain, the value from the credentials file overrides the
value specified in the IOHSTRING attribute.

REDIRSUPPORT Considerations for Use
The following paragraphs describe how to access files from an MCP program using the
REDIRSUPPORT IOHANDLER library, including information about establishing the
connection through a file open operation, resolving problems, and buffer size
considerations that can affect performance.

Networking Considerations

The REDIRSUPPORT IOHANDLER uses the Server Message Block (SMB) protocol to
redirect file handling requests to SMB servers in a Microsoft networking environment.
The SMB servers are located using various addressing and domain name services as
described in the TCP/IP Distributed Systems Services Operations Guide and the TCP/IP
Implementation and Operations Guide. These manuals describe the underpinnings of the
networking environment; however, this information is not required to use the
REDIRSUPPORT IOHANDLER library.

To establish a connection to an SMB server, the REDIRSUPPORT IOHANDLER ultimately
opens a PORT file with the TCP/IP and requests a NetBIOS session. To locate the server
when opening the port, TCP/IP requires an IP address. The required NetBIOS name and
IP address are determined using information provided to the REDIRSUPPPORT
IOHANDLER through file attribute specification. Because you can specify the required
information in several ways, the REDIRSUPPORT IOHANDLER follows conventions
when evaluating the information provided at file open time.

First, the NetBIOS name is determined from the server or domain name as described in
the examples below. Second, the IP address is either explicitly set in the file attributes,
or is discovered using name services from WINS with the NetBIOS name or from DNS
(provided by RESOLVER) using the domain name. For WINS name resolution to be used,
the server name must be a simple identifier, and neither a domain name nor an IP
address may be specified.

Using the REDIRSUPPORT IOHANDLER Library

30–12 8600 0056–408

Examples

Consider a file FYL in the share PUB residing on the server CCK. The IP address of the
server is 195.56.10.24 and the full domain name is CCK.CHADDS.FORD.COM. The
addressing information for the SMB server can be provided to the REDIRSUPPORT
IOHANDLER as either a domain name or an IP address. The address can be derived
explicitly when set with the DOMAINNAME or IPADDRESS keywords in the IOHSTRING
file attribute or by specifying the full domain name in the <host> portion of a *UNC name
as follows:

FILE VF (FILENAME = "*UNC/CCK/PUB/FYL.",

IOHSTRING = ""IP=195.56.10.24""".",

or

IOHSTRING = ""DOMAINNAME=CCK.CHADDS.FORD.COM""".",

FILE VF(FILENAME = "*UNC/"""CCK.CHADDS.FORD.COM"""/PUB/FYL."

The address can also be derived utilizing the WINS and/or DNS name services when an
IP address or domain name is not explicitly set as in the previous example. In this case,
the name from the SERVERNAME keyword in the IOHSTRING file attribute or from the
<host> portion of the *UNC name is treated as the NetBIOS name of the server. This
name is first passed to WINS to find the IP address. If a value is returned, it is applied to
the port file. If the name cannot be resolved, the port domain name is set as a partial
domain name based on the server name.

In each of the following examples, the NetBIOS name is set to CCK. The name CCK is
then passed to WINS for resolution. If an IP address is returned, it is set on the port file.
If the name cannot be resolved, the port file domain name is set to CCK.

FILE VF(IOHSTRING= "SERVER=CCK SHARE=PUB");

FILE VF(FILENAME = "*UNC/CCK/PUB/FYL.");

Finally, if the NetBIOS name cannot be determined from the SERVERNAME keyword of
the IOHSTRING attribute, or the <host> node of the *UNC name, and a full domain
name has been specified, the NetBIOS name is implicitly set with the first node of the
domain name.

FILE VF(FILENAME = "*UNC/"""CCK.CJADDS.FORD.COM"""/PUB/FYL.");

The NETBIOS name is explicitly set with either the SERVERNAME keyword of the
IOHSTRING attribute or the <host> node of the *UNC name, or is implicitly set with the
first node of an explicit domain name. In each of the previous examples, the NETBIOS
name is set to CCK.

 Using the REDIRSUPPORT IOHANDLER Library

8600 0056–408 30–13

The default buffer size specified on the REDIRSUPPORT IOHANDLER port file is
16K bytes. When the default 16K setting is not optimal, you can use the BUFFERSIZE file
attribute for the virtual file to specify a larger buffer size. The SMB server, however,
might negotiate the new buffer size to a smaller value. The program must interrogate the
attribute after the file is opened to see the actual size that is in effect.

Declaring a Network File

The file structure for network files accessed with the REDIRSUPPORT IOHANDLER
library corresponds to an ASCII byte stream file accessed with the ANYSIZEIO attribute
set to TRUE. The following paragraphs describe how to create and access network files
with redirected file declarations.

Creating a File

The following example shows a redirected file declaration for creating a network file:

FILE VFOUT (REDIRECTION,

 FILENAME = "*UNC/TR-PRESTIJC/PUBLIC/"""JIM.TXT"""."

 NEWFILE = TRUE,

 FILEUSE = OUT,

 FRAMESIZE = 8,

 MAXRECSIZE = 1,

 ANYSIZEIO = TRUE,

 INTMODE = EBCDIC,

 EXTMODE = ASCII);

The attributes indicate that the file JIM.TXT is to be created in the PUBLIC share on the
computer named TR-PRESTIJC (FILENAME) using a virtual file with the SL function
REDIRSUPPORT (REDIRECTION). The program using VFOUT can only write data to the
file (FILEUSE) and the data written is translated from EBCDIC to ASCII (INTMODE,
EXTMODE). The units for an I/O request are 8-bit characters (FRAMESIZE) and any
number of characters can be transferred on a single WRITE (ANYSIZEIO) request.

As in the example, programs using byte-stream files generally set the ANYSIZEIO
attribute to TRUE, enabling I/O requests of multiple records (characters) to be performed.
If ANYSIZEIO is not set to TRUE, I/O requests are for a single character at a time. Any
request for more than one character is truncated to one character by the MCP. Due to
these restrictions, it is recommended that ANYSIZEIO be set to TRUE when using the
REDIRSUPPORT library.

Using the REDIRSUPPORT IOHANDLER Library

30–14 8600 0056–408

By convention, the FILESTRUCTURE attribute of redirected files is set to STREAM and is
not needed in the declaration. The BLOCKSTRUCTURE attribute is not specified and
defaults to the required FIXED value. Similarly, the FILEORGANIZATION attribute is not
specified and defaults to the required NOTRESTRICTED value.

Accessing an Existing File

As with most MCP files, the created file can be accessed for input with a corresponding
file declaration such as

FILE VFIN (REDIRECTION,

 FILENAME = "*UNC/TR-PRESTIJC/PUBLIC/"""JIM.TXT"""."

 NEWFILE = FALSE,

 FILEUSE = IN,

 DEPENDENTSPECS = TRUE,

 ANYSIZEIO = TRUE,

 INTMODE = EBCDIC);

The file that was created from the VFOUT example is declared for input. The
DEPENDENTSPECS attribute indicates that the FRAMESIZE, MAXRECSIZE,
BLOCKSTRUCTURE, FILESTRUCTURE, FILEORGANIZATION, and EXTMODE attributes
are to be assigned by the MCP from values returned by the REDIRSUPPORT
IOHANDLER after a successful open routine. The values of these attributes correspond
to those in the VFOUT example.

If used, the BLOCKSTRUCTURE and FILEORGANIZATION values must be set as in the
preceding example. These two values are the default values, however, and need not be
explicitly set. The FILESTRUCTURE attribute can be any valid value as it is ignored by the
REDIRSUPPORT IOHANDLER.

The default EXTMODE value for files supported by the REDIRSUPPORT IOHANDLER
library is ASCII, representing the EXTMODE value of the physical file. As for files with
other values of the KIND attribute, the EXTMODE value of the logical file is set to the
EXTMODE value of the physical file (ASCII) when the file is opened. The
OVERRIDEEXTMODE attribute can be used to modify the EXTMODE value of the virtual
file, as long as the new EXTMODE value represents an 8-bit or a 16-bit character.

When the INTMODE value of the virtual file does not match the EXTMODE value,
translation is attempted as described in “Dealing with Translation” in Section 2,
“Understanding Programming for Files.” To avoid translation, you can set the file
attribute DEPENDENTINTMODE. Alternatively, you can set the INTMODE attribute
explicitly to ASCII without overriding the ASCII mode returned from the REDIRSUPPORT
IOHANDLER.

 Using the REDIRSUPPORT IOHANDLER Library

8600 0056–408 30–15

File Attribute Considerations

The following paragraphs describe how the REDIRSUPPORT IOHANDLER handles
supported attributes while a file is opened and assigned. For general information on any
of these attributes, refer to the File Attributes Reference Manual.

ACCESSDATE, ACCESSTIME, ALTERDATE, ALTERTIME,
CREATIONDATE, and CREATIONTIME

These read-only timestamp attributes are returned from the SMB server and correspond
to the file properties shown in various PC graphics displays.

ALTERNATEGROUPS, GROUP, OWNER, and SECURITYGUARD

These attributes are ignored by the REDIRSUPPORT IOHANDLER when assigned and
return null strings (“.”) upon interrogation.

CCSVERSION, EXTDELIMITER, IOHSTRING, and NOTE

These attributes are managed for the REDIRSUPPORT IOHANDLER in the same manner
as FILEKIND. That is, the virtual file values are saved, modified, and returned from the
virtual file state maintained by the REDIRSUPPORT IOHANDLER. Note that the
CCSVERSION attribute cannot be modified when assigned.

These attributes are not permanent network attributes. If they are modified on the open
virtual file, the values are not stored in the FIB and are lost at file close.

FILEKIND

The FILEKIND value of a virtual file is saved during the file open routine in the virtual file
state maintained for the REDIRSUPPORT IOHANDLER and is returned when
interrogated. FILEKIND is not a permanent network attribute. If the FILEKIND value is
modified on the open virtual file, the new value is not set in the FIB and is lost when the
file is closed. In support of directory operation, attempting to change the FILEKIND value
to or from PERMDIR for an open redirected file is not allowed.

Using the REDIRSUPPORT IOHANDLER Library

30–16 8600 0056–408

FILENAME, LFILENAME, LTITLE, PATHNAME, and TITLE

Interrogation of the various file name attributes is handled by Logical I/O when returning
the value from the FIB. Assignment of the various FILENAME attributes is supported
through calls to the REDIRSUPPORT IOHANDLER library, with a successful result
causing the name to be stored in the FIB for future interrogation.

Assignment of the file name to an open file, as in renaming the file, is somewhat
problematic for the REDIRSUPPORT IOHANDLER. The network protocol requires that
the file be closed before renaming. That is, the file must be closed, renamed, and
reopened under the new name. This closing and reopening of a file is inconsistent with
the concept of exclusive file use, in that once the file is closed for renaming, another
process might be able to open the file, causing the subsequent renaming or EXCLUSIVE
reopen operation to fail. Since the opening of the file with the EXCLUSIVE attribute
precedes the requested name change, an attempt to rename the exclusively opened file
fails with an attribute error.

Any attempt to change the name of a file to one in which either the share or server differ
from the original file name is not allowed. A file cannot be moved from one network
share to another by changing its file name attribute.

While each of the preceding file naming attributes can be used to name a virtual file, the
use of an ON <family> part in the title is restricted. In fact, as with any other file KIND,
the specification of a family for a file causes the KIND attribute to be set to DISK.

FILELENGTH, LASTRECORD

The attributes LASTRECORD and FILELENGTH are read-only on an opened assigned file,
but the values must be returned from the REDIRSUPPORT IOHANDLER to get an
accurate value for the current size of the file. When these attributes are interrogated, the
REDIRSUPPORT IOHANDLER retrieves the values from the SMB server.

SECURITYMODE, SECURITYTYPE

Because MCP security differs from the network security model, these attributes do not
directly map from the MCP to the SMB server and are managed as follows:

• For interrogation, SECURITYTYPE always returns VALUE (PRIVATE) and
SECURITYMODE always returns 3"700", which is a security mode mask that
corresponds to a SECURITYTYPE value of PRIVATE. Programs do not experience
spurious attribute errors when interrogating security. The value used when an
application propagates the security value from one file to a new file results in the
creation of a private file.

• Assignment of the SECURITYTYPE and SECURITYMODE attributes is not supported
and fails without an error being generated.

 Using the REDIRSUPPORT IOHANDLER Library

8600 0056–408 30–17

SECURITYUSE

SECURITYUSE is supported for both interrogation and assignment as follows:

• When interrogated, the REDIRSUPPORT IOHANDLER returns a value that is
consistent with the DOS read-only file attribute. If the target file is marked as a
read-only file, then a value of IN is returned; otherwise, the value of IO is returned.

• On assignment, a value of IN causes the target file's read-only file attribute to be set.
Similarly, a value of IO causes the target file's read-only file attribute to be reset. Any
other value results in an attribute error.

SYNCHRONIZE

The SYNCRONIZE attribute is used to cause the REDIRSUPPORT IOHANDLER to flush
all WRITE requests to the server.

USERINFO

The USERINFO attribute is used to both interrogate and modify the basic DOS-related
attributes. USERINFO has the following format:

Readonly flag = [0:1]

Hidden file flag = [1:1]

System file flag = [2:1]

Volume Id Flag = [3:1]

Directory Flag = [4:1]

File Changed flag = [5:1]

Note: The Volume Id and Directory flags cannot be modified. Attempts to change these
flags fail without an attribute error.

Using the REDIRSUPPORT IOHANDLER Library

30–18 8600 0056–408

Example Program
The following ALGOL program uses the REDIRSUPPORT IOHANDLER library to create a
file on a workstation in a Microsoft networking environment and read that file, comparing
the data read to the original data written to the file. The program demonstrates the use
of the IOHSTRING attribute to specify a domain name when that name differs from the
server name contained in the *UNC file name. The program also gives examples of new
and existing file handling, attribute interrogation and propagation, and file removal.

BEGIN
FILE
 VFOUT (REDIRECTION,
 FILENAME = "*UNC/PRESTIJC/PUBLIC/"""JIM.TXT""".",
 IOHSTRING = ""DOMAIN=JCP.PA.USA.COM""".",
 NEWFILE = TRUE,
 FILEUSE = OUT,
 FRAMESIZE = 8,
 MAXRECSIZE = 1,
 ANYSIZEIO = TRUE,
 INTMODE = EBCDIC,
 EXTMODE = ASCII),

 VFIN (REDIRECTION,
 NEWFILE = FALSE,
 FILEUSE = IN,
 DEPENDENTSPECS = TRUE,
 ANYSIZEIO = TRUE,
 INTMODE = EBCDIC);

EBCDIC ARRAY
 EA, EB [0:299];
POINTER
 P;
REAL
 LEN1, LEN2;

 OPEN (VFOUT);
 REPLACE P:EA [0] BY "Now is the time for all good men to ",
 "come to the aid of their country.";
 LEN1 := OFFSET(P);
 WRITE (VFOUT, LEN1, EA);
 REPLACE EB [0] BY VFOUT.FILENAME;
 REPLACE VFIN.FILENAME BY EB [0];
 REPLACE EB [0] BY VFOUT.IOHSTRING;
 REPLACE VFIN.IOHSTRING BY EB [0];
 CLOSE (VFOUT);
 OPEN (VFIN);
 LEN2 := VFIN.FILELENGTH;
 READ (VFIN, LEN2, EB[0]);
 IF LEN1 = LEN2 AND EA [0] = EB [0] FOR LEN2 THEN
 DISPLAY (EA)

 Using the REDIRSUPPORT IOHANDLER Library

8600 0056–408 30–19

 ELSE
 PROGRAMDUMP (ALL, TODISK);
 CLOSE (VFIN, PURGE);
END.

Directory Operations
Basic directory operations are supported by the REDIRSUPPORT IOHANDLER, providing
the capability to create, delete, and rename directories in a network share. In addition,
the REDIRSUPPORT IOHANDLER provides the capability to read the contents of a
directory, that is, to obtain the names of the files and directories along with the attributes
immediately subordinate to those directories.

REDIRSUPPORT IOHANDLER Directory Semantics

A program manipulates directories with the REDIRSUPPORT IOHANDLER by assigning
the FILEKIND value to the PERMDIR option for the redirected (virtual) file. A directory can
then be opened in the same way as any other file with the following semantics:

• If NEWFILE = FALSE and the directory exists, a good open result is returned to the
program.

• If NEWFILE = TRUE, the directory is created. If the directory already exists, an open
error is returned.

Once a directory has been successfully opened the following actions are possible:

• Changing the file name through the LFILENAME/FILENAME attribute of the virtual
file causes the directory to be renamed.

• Closing the virtual file with a PURGE operation, such as CLOSE(PURGE), causes the
directory to be deleted.

• Reading the file returns the directory in a format described later in this section.

Attempting to change the FILEKIND value to or from PERMDIR for an open redirected
file is not allowed. In addition, an error results if a WRITE request is attempted on a
redirected file with the PERMDIR option set.

Using the REDIRSUPPORT IOHANDLER Library

30–20 8600 0056–408

Reading a Directory

After a directory has been opened, the READ intrinsic can be used to read the contents
of the directory. Reading the directory causes the names of the directory entries along
with their attributes to be returned in a structured format suitable for programmatic
processing. Because the information returned contains a mixture of binary and character
data, you should open the file with DEPENDENTINTMODE to disable any unwanted
translation.

The reading of directory data using the REDIRSUPPORT IOHANDLER follows the byte
stream mechanism used for other network files. The amount of data requested by the
virtual file program is returned to the program as a stream of bytes. Access to the
directory information must be in a serial fashion. The format of the data returned is such
that each entry starts at a word boundary and contains fixed attribute information
followed by the variable length name of the directory stub. This format is shown in
Table 30–2, where NEXTIX is the word offset in the DIRINFO array of a directory entry.

Table 30–2. Returned Format of Directory Entries

Entry Word/Field Description

DIRINFO [NEXTIX].[47:16] Size of entry in words

DIRINFO [NEXTIX].[31:32] Reserved

DIRINFO [NEXTIX+1].[47:16] DOS file attributes

DIRINFO [NEXTIX+1].[31:32] File length in bytes

DIRINFO [NEXTIX+2] Creation date (YYYDDD)

DIRINFO [NEXTIX+3] Creation time (time of day in tics)

DIRINFO [NEXTIX+4] Access date

DIRINFO [NEXTIX+5] Access time

DIRINFO [NEXTIX+6] Modify date

DIRINFO [NEXTIX+7] Modify time

DIRINFO [NEXTIX+8].[47:8] Length of directory node

POINTER(DIRINFO [NEXTIX+8])+1 Null terminated EBCDIC name

 Using the REDIRSUPPORT IOHANDLER Library

8600 0056–408 30–21

Directory Programming Example

The following program illustrates how the directory information returned is processed
when a REDIRSUPPORT IOHANDLER directory file is read. The program reads the
directory named in the FILENAME for F and displays the contents on the remote file.

BEGIN
FILE RMT (KIND=REMOTE, UNITS=CHARACTERS, MYUSE=IO),

 F (REDIRECTION,
 FILEKIND=PERMDIR,
 NEWFILE=FALSE,
 DEPENDENTSPECS,
 DEPENDENTINTMODE,
 FILEUSE=IN,
 ANYSIZEIO,
 FILENAME="*UNC/CCK2/SHARED.");

REAL REC,LEN,RD,NAMES,TOTALSYZE,LINES;
BOOLEAN BRD = RD;
ARRAY A [0:9999];
EBCDIC ARRAY EA [0] = A, EDISP[0:299];
POINTER P;
TRUTHSET LETTERS ("ABCDEFGHIJKLMNOPQRSTUVWXYZ"),
 NUMBERS ("0123456789"),
 LETTERSORNUMBERS (LETTERS OR NUMBERS),
 VALIDCHRS (LETTERSORNUMBERS OR "_-");

PROCEDURE INSERTDATE (P, DATE);
VALUE P, DATE;
POINTER P;
REAL DATE;
BEGIN
LABEL AWAY;
REAL M,D,Y,T;
 Y := DATE DIV 1000;
 D := DATE MOD 1000;
 FOR T := 0, 31,
 IF (Y MOD 4)=0 AND ((Y MOD 400)=0 OR (Y MOD 100) NEQ 0)
 THEN 29 ELSE 28,
 31, 30, 31, 30, 31, 31, 30, 31, 30 DO
 IF D GTR T THEN
 BEGIN
 D := D - T;
 M := M + 1;
 END ELSE GO AWAY;
AWAY:
 REPLACE P:P BY M FOR 2 NUMERIC, "/",
 D FOR 2 DIGITS, "/",
 Y FOR 2 DIGITS;
END INSERTDATE;

Using the REDIRSUPPORT IOHANDLER Library

30–22 8600 0056–408

PROCEDURE INSERTTIME (P, TYME);
VALUE P, TYME;
POINTER P;
REAL TYME;
BEGIN
IF ABS(TYME := TYME*2.4@-6) > 4"007FFFFFFFFF" THEN
 REPLACE P:P BY "Integer Overflow"
ELSE
 BEGIN
 TYME := INTEGERT(TYME); % SECONDS
 REPLACE P:P BY TYME DIV 3600 FOR 2 DIGITS, ":",
 TYME MOD 3600 DIV 60 FOR 2 DIGITS, ":",
 TYME MOD 60 FOR 2 DIGITS;
 END;
END INSERTTIME;

PROCEDURE DISPDIR(EA,L);
 REAL L;
 EBCDIC ARRAY EA[0];
BEGIN
 ARRAY REFERENCE A[0];
 REAL CHRS, IDCHRS, ATTR, CDATE, CTIME, ADATE, ATIME, MDATE, MTIME,
 SYZE, IX, QUOTED;
 BOOLEAN DONE;
 POINTER P;
 A := EA;
 WHILE NOT DONE DO
 BEGIN
 CHRS := A[IX].[47:16];
 IF NOT DONE := CHRS = 0 OR IX*6 + CHRS > L THEN
 BEGIN
 ATTR := A[IX+1].[47:16];
 SYZE := A[IX+1].[31:32];
 CDATE := A[IX+2];
 CTIME := A[IX+3];
 ADATE := A[IX+4];
 ATIME := A[IX+5];
 MDATE := A[IX+6];
 MTIME := A[IX+7];
 IDCHRS := A[IX+8].[47:8];
 P := POINTER(A[IX+8]) + 1;
 IF NOT P IN VALIDCHRS FOR 1 THEN
 QUOTED := 1
 ELSE
 BEGIN
 SCAN P FOR QUOTED:IDCHRS WHILE IN VALIDCHRS;
 QUOTED := MIN(QUOTED,1);
 END;
 REPLACE EDISP[0] BY " " FOR 132;
 REPLACE EDISP[0] BY """ FOR QUOTED,
 P FOR IDCHRS,
 """ FOR QUOTED;

 Using the REDIRSUPPORT IOHANDLER Library

8600 0056–408 30–23

 REPLACE P:EDISP[IDCHRS+2*QUOTED] BY " : ";
 IF ATTR.[4:1] = 1 THEN
 REPLACE P:P BY "Directory"
 ELSE
 BEGIN
 REPLACE P:P BY "DATA";
 INSERTDATE (EDISP[30],CDATE);
 REPLACE EDISP [39] BY "@";
 INSERTTIME (EDISP[41],CTIME);
 INSERTDATE (EDISP[52],ADATE);
 REPLACE P:EDISP[64] BY SYZE FOR * NUMERIC, " bytes";
 END;
 WRITE(RMT,OFFSET(P),EDISP);
 IX := * + (CHRS DIV 6);
 NAMES := * + 1;
 TOTALSYZE := * + SYZE;
 IF NAMES MOD LINES = 0 THEN READ(RMT);
 DONE := IX*6 GEQ L;
 END;
 END;
 L := IX*6;
END DISPDIR;
OPEN(RMT);
LINES := RMT(1).SCREENSIZE - 1;
IF F.AVAILABLE = VALUE(OKRSLT) THEN
BEGIN
 WHILE NOT BRD := READ(F[REC],2000,EA) DO
 BEGIN
 LEN := RD.[47:20];
 DISPDIR(EA,LEN);
 REC := * + LEN;
 END;
 REPLACE P:EDISP[0] BY "Total Names = ",
 NAMES for * DIGITS;
 WRITE(RMT,OFFSET(P),EDISP);
 REPLACE P:EDISP[0] BY "Total Bytes = ",
 TOTALSYZE FOR * DIGITS;
 WRITE(RMT,OFFSET(P),EDISP);
END;
END.

Using the REDIRSUPPORT IOHANDLER Library

30–24 8600 0056–408

8600 0056–408 31–1

Section 31
Using the STREAMIOH IOHANDLER
Library

The STREAMIOH IOHANDLER library allows ALGOL, NEWP, COBOL, and other
primarily record-oriented programs to create and access delimited character-stream files
as record files. The access is provided by file-equating the record file to a virtual file and
using the IOHSTRING attribute to pass parameters to the STREAMIOH IOHANDLER
library.

Declaring the Record File to Use STREAMIOH
IOHANDLER

The delimited lines in a character-stream file are converted to fixed-length records and
fixed-length records are converted to the delimited lines by the STREAMIOH
IOHANDLER library. Because the STREAMIOH IOHANDLER library is a virtual file
library, the program logical file must have KIND=VIRTUAL specified, and an
IOHFUNCTIONNAME attribute or IOHTITLE attribute indicating the linkage mechanism
to the library.

Examples

FILE RECF (KIND = VIRTUAL
 IOHFUNCTIONNAME = "STREAMIOH.",...);

FILE RECF (KIND = VIRTUAL
 IOHTITLE = "*SYSTEM/STREAMIOH.",...);

In naming the physical delimited file, one of the various forms of the TITLE attribute
might be used. However, when specifying a DISK file title including an ON part, the
FAMILYNAME attribute must be specified separately. Otherwise, the KIND=VIRTUAL
file equation is overridden and forced to KIND=DISK.

Using the STREAMIOH IOHANDLER Library

31–2 8600 0056–408

For example, the file equation for the existing file SOMEFILE on the FAMILY “HI” would
be as follows:

FILE RECF (KIND = VIRTUAL
 IOHFUNCTIONNAME = "STREAMIOH."
 NEWFILE = FALSE
 DEPENDTSPECS = TRUE
 FILENAME = "SOMEFILE."
 FAMILYNAME = "HI."

For more information on virtual files, refer to Section 29, “Understanding Virtual Files.”

Terminology Definitions

The following terms are used throughout this section:

• Character-stream file

A file consisting of a sequence of characters. Character-stream disk and CD-ROM
files can be addressed randomly at the character level. A byte-stream file is a
character-stream file in which the character size is 8 bits.

• Conversion

The process of presenting a character-stream physical file to a program as a record
file.

• Delimited file

A character-stream file that is divided into variable-length records or lines by delimiter
characters.

• Delimiter or delimiter character

A character or characters that mark the end of records in delimited files. The most
common delimiters are

UNIX new line (NL)
DOS/Windows carriage return followed by line feed (CRLF)
Macintosh carriage return (CR)

The characters are generally encoded in ASCII. The UNIX new line character is the
same as the ASCII line-feed character.

• Record file

A file consisting of a sequence of fixed- or variable-length records. Most existing
MCP files are record files.

• Record-oriented program

A program that expects to deal only with record files. Traditionally, MCP-based
programs have been record oriented.

 Using the STREAMIOH IOHANDLER Library

8600 0056–408 31–3

FILEKIND and File Extension Handling
In the MCP environment, default record formats have been defined based on the
FILEKIND value of the file. These record formats define the default record size for the
FILEKIND as well as TEXT, SEQUENCE, and MARKID offsets and lengths in the record.

The STREAMIOH IOHANDLER library uses a FILEKIND specified for the record file to
perform a conversion from the physical delimited file. The FILEKIND might be explicitly
equated on the record file, included in the parameters for the virtual file, or implied from
a PC-type file extension. The delimited file conversion is performed based on the
defaults for the FILEKIND determined for the file. That is, once a FILEKIND value is
determined, the TEXT, SEQUENCE, and MARKID fields are predetermined. Extending
the example from the previous topic, the file equation is modified as follows:

FILE F (KIND = VIRTUAL
 IOHFUNCTIONNAME = "STREAMIOH."
 NEWFILE = FALSE
 DEPENDENTSPECS = TRUE
 FILENAME = "SOMEFILE.TXT."
 FAMILYNAME = "HI.");

The FILEKIND is omitted since the .TXT extension implies that the expected FILEKIND is
TEXTDATA.

The file extensions recognized by STREAMIOH IOHANDLER library are the same as
those defined for the Editor and Programmer’s Workbench products. However, for
Programmer’s Workbench files, the extension has an _M added to the extension. For
example, while Editor recognizes .ALG as an ALGOLSYMBOL file extension,
Programmer’s Workbench recognizes .ALG_M.

Table 31–1 lists base extensions and their associated FILEKIND values.

Table 31–1. File Extensions Recognized by
STREAMIOH IOHANDLER Library

Base Extension FILEKIND Value

ALG ALGOLSYMBOL

BAS BASICSYMBOL

BND BINDERSYMBOL

C CCSYMBOL

H CCSYMBOL

CCC CCSYMBOL

CDT CDATA

COB COBOLSYMBOL

C74 COBOL74SYMBOL

Using the STREAMIOH IOHANDLER Library

31–4 8600 0056–408

Table 31–1. File Extensions Recognized by
STREAMIOH IOHANDLER Library

Base Extension FILEKIND Value

C85 COBOL84SYMBOL

CPP CPPSYMBOL

CSD CSEQDATA

DAS DASDLSYMBOL

DAT DATA

DCA DCALGOLSYMBOL

DMA DMALGOLSYMBOL

FOR FORTRANSYMBOL

F77 FORTRAN77SYMBOL

JAV JAVASYMBOL

JAVA JAVASYMBOL

NWP NEWPSYMBOL

PAS PASCALSYMBOL

P83 PASCAL83SYMBOL

RPG RPGSYMBOL

ATX TEXTDATA

TXT TEXTDATA

SEQ SEQDATA

WFL JOBSYMBOL

Programmer’s Workbench maintains files in the MCP record file format within the
delimited character-stream file. That is, the delimited character-stream file contains
fixed-length records and includes the SEQUENCE and MARKID fields as appropriate for
the FILEKIND. This format corresponds to parameters of TRIM = NONE and FOLDING
= ID, as described further under “STREAMIOH Parameters” later in this section.

 Using the STREAMIOH IOHANDLER Library

8600 0056–408 31–5

STREAMIOH Parameters
The STREAMIOH parameters are specified for the IOHSTRING parameter of the virtual
file. The IOHSTRING pointer-valued parameter is passed to the virtual file IOHANDLER
when the parameter is set, or it is retrieved from the IOHANDLER virtual file when the
parameter is interrogated. As a pointer-valued parameter, the parameter is assigned
using string or pointer operands.

The allowable IOHSTRING parameters fall into two basic categories. The first category
provides the STREAMIOH with information regarding the location and characteristics of
the physical file, while the second category controls the conversion of delimited lines
into logical records and logical records into delimited lines. The remainder of this topic
describes the IOHSTRING parameters and their semantics.

Syntax

<IOHSTRING parameters>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄÁÄÂÄ<physical file parameters>ÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ<conversion parameters>ÄÄÄÄÙ

 <physical file parameters>

ÄÄÂÄ/1\ÄÂÄÂÄÄÄÄÄÄÄÄÂÄ = ÄÂÄ CDROM ÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄ´
 ³ ³ ÀÄ KIND ÄÙ ÃÄ DISK ÄÄÄÄ´ ³
 ³ ³ ÀÄ VIRTUAL ÄÙ ³
 ³ ÃÄ REDIRECTION ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ³ ³ ÚêÄÄÄÄÄ , ÄÄÄÄÄ¿ ³
 ³ ÃÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄÂÄ<IOH>ÄÄÄÄÂÄÁÄÙ
 ³ ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄ VIRTUAL ÄÄ , ÄÙ ÀÄ<IOHSTR>ÄÙ ³
 ³ ³ ÀÄ KIND ÄÄ = ÄÙ ³ ³
 ³ ÀÄ REDIRECTION ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
 ÀÄ EXTMODE ÄÄ = ÄÄ<extmode>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

<IOH>

ÄÄÂÄ IOHTITLE ÄÄ = ÄÄ<file title>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ IOHFUNCTIONNAME ÄÄ = ÄÄ<SL function name>ÄÙ

Using the STREAMIOH IOHANDLER Library

31–6 8600 0056–408

<conversion parameters>

ÄÄÂÄ/1\Ä FILEKIND ÄÄ = ÄÄ<filekind>ÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ/1\Ä EXTDELIMITER ÄÄ = ÄÂÄ UNSPECIFIED ÄÂÄÄÄ´
 ³ ÃÄ CR ÄÄÄÄÄÄÄÄÄÄ´ ³
 ³ ÃÄ LF ÄÄÄÄÄÄÄÄÄÄ´ ³
 ³ ÃÄ NL ÄÄÄÄÄÄÄÄÄÄ´ ³
 ³ ÃÄ CRCC ÄÄÄÄÄÄÄÄ´ ³
 ³ ÀÄ CRLF ÄÄÄÄÄÄÄÄÙ ³
 ÃÄ/1\Ä FOLDCHARACTER ÄÄ = ÄÂÄ NONE ÄÄÄÄÄÄÄÄÄÂÄ´
 ³ ÃÄ AMPERSAND ÄÄÄÄ´ ³
 ³ ÃÄ ATSIGN ÄÄÄÄÄÄÄ´ ³
 ³ ÃÄ BACKSLASH ÄÄÄÄ´ ³
 ³ ÃÄ DOLLARSIGN ÄÄÄ´ ³
 ³ ÃÄ NUMBERSIGN ÄÄÄ´ ³
 ³ ÃÄ PERCENTSIGN ÄÄ´ ³
 ³ ÃÄ SLASH ÄÄÄÄÄÄÄÄ´ ³
 ³ ÀÄ VERTICALLINE ÄÙ ³
 ÃÄ/1\Ä FOLDING ÄÄ = ÄÂÄ NONE ÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄ´
 ³ ÃÄ SEQUENCE Ä´ ³
 ³ ÃÄ ID ÄÄÄÄÄÄÄ´ ³
 ³ ÃÄ BLIND ÄÄÄÄ´ ³
 ³ ÃÄ SPACE ÄÄÄÄ´ ³
 ³ ÀÄ TRUNCATE ÄÙ ³
 ÃÄ/1\Ä FORMFEEDISDELIMITER ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄ´
 ³ ÀÄ = ÄÂÄ TRUE ÄÄ´ ³
 ³ ÀÄ FALSE ÄÙ ³
 ÃÄ/1\Ä MARKID ÄÄ = ÄÄ<string parameter>ÄÄÄÄÄÄÄ´
 ÃÄ/1\Ä SEQBASE ÄÄ = ÄÄ<sequence number>ÄÄÄÄÄÄÄ´
 ÃÄ/1\Ä SEQINCREMENT ÄÄ = ÄÄ<sequence number>ÄÄ´
 ÃÄ/1\Ä TABINTERVAL ÄÄ = ÄÄ<tab number>ÄÄÄÄÄÄÄÄ´
 ÀÄ/1\Ä TRIM ÄÄ = ÄÂÄ NONE ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ BLANKS ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ SEQUENCE ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ ID ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ ALL ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Explanation

• A sequence number is a non-negative integer between 0 and 99999999.

• The string parameter (n) is a string of n or fewer characters surrounded by quotation
marks. This convention makes the input string simpler to enter and simpler for the
STREAMIOH IOHANDLER library to handle.

• The tab number is a non-negative value that does not exceed the length of the
record ultimately set for the file.

 Using the STREAMIOH IOHANDLER Library

8600 0056–408 31–7

Parameter Semantics

When the logical record file is declared as a virtual file with an IOHANDLER of
STREAMIOH and is opened, the STREAMIOH is invoked and requested to open the
physical character-stream file. The STREAMIOH has to locate the file and determine the
following characteristics of the underlying delimited file:

• The KIND attribute of the delimited file; for example, DISK or CDROM

• The IOH attributes for the delimited file if the KIND is VIRTUAL; for example,
IOHFUNCTIONNAME

• The FILEKIND attribute of the delimited file

Once the physical file is located and the FILEKIND is determined, the remaining
parameters are used to control the conversion process.

Physical File Parameters

KIND

The physical file is located using the FILENAME and FAMILYNAME attributes of the
logical file. However, because the KIND attribute of the logical file is set to VIRTUAL, it
cannot be used to indicate the KIND attribute of the delimited file. Therefore, the KIND
information for the delimited file might optionally be provided in the IOHSTRING
parameter.

By default, the STREAMIOH assumes that the KIND attribute of the delimited file is
DISK, and uses the FAMILYNAME attribute specified for the logical record file to locate
the delimited file. When the file does not reside locally on DISK, the IOHSTRING
parameters associated with KIND must be used, as in the following ALGOL examples.

For CD-ROM files:

FILE RECF (KIND = VIRTUAL
 IOHFUNCTIONNAME = "STREAMIOH."
 FILENAME = "CDFILE."
 FAMILYNAME = "SOMECD."
 IOHSTRING = "KIND = CDROM.",...);

Using the STREAMIOH IOHANDLER Library

31–8 8600 0056–408

If the file resides on a network share accessed using the MCP REDIRECTOR, the
delimited file must be specified to use the REDIRECTION attribute (that is,
REDIRECTION implies KIND=VIRTUAL, IOHFUNCTIONNAME= ”REDIRSUPPORT”).
Therefore, the IOHSTRING parameter of the record file should indicate REDIRECTION.
In addition, because REDIRSUPPORT might require IOHSTRING parameters, these
might also be passed by way of the parameters to the record file. To help clarify this
arrangement, the record file parameters are passed at run time by setting the
IOHSTRING attribute in an attribute assignment statement (REPLACE). Quotation marks
are used to delimit the internal IOHSTRING passed to REDIRSUPPORT.

FILE RECF (KIND = VIRTUAL
 IOHFUNCTIONNAME = "STREAMIOH."
 FILENAME = "PCFILE.");

REPLACE RECF.IOHSTRING BY

 REDIRECTION,
 IOHSTRING = "SERVER = APC, SHARE = ASHARE".;

Similarly, if the physical file is to be accessed using another IOHANDLER, the
KIND=VIRTUAL and IOHFUNCTION or IOHTITLE parameters are used in place of
REDIRECTION:

 REPLACE RECF.IOHSTRING BY

 VIRTUAL,
 IOHFUNCTION = "SOMEIOHANDLER.";

EXTMODE

The STREAMIOH operates using the EBCDIC character set. The logical virtual file
cannot override this setting. The EXTMODE parameter is provided to allow the program
to override the physical file EXTMODE. See the File Attributes Reference Manual for the
list of valid EXTMODE values.

 Using the STREAMIOH IOHANDLER Library

8600 0056–408 31–9

Conversion Parameters

FILEKIND

A FILEKIND parameter might be specified on the record file IOHSTRING to override a
default value implied by a file extension, or in lieu of specifying the FILEKIND on the
logical record file. The FILEKIND is key to the conversion process in that it is used to
determine the record size and format of the record file.

When the FILEKIND parameter is specified, it overrides both the file-equated value and
the file extension. When the parameter is not set, a FILEKIND explicitly set for the file
overrides the file extension.

The MCP FILEKIND values are documented in the File Attributes Reference Manual.

The default value of FILEKIND is SEQDATA.

EXTDELIMITER

The EXTDELIMITER mnemonic parameter identifies the delimiter character, if any, that
separate records in the delimited file. The allowed values are

Value

Hexadecimal Representation

UNSPECIFIED N/A

NL 4825"

CR 48"0D"

LF 48"25"

CRLF 48"0D25"

CRCC 48"0D0C"

When the value is UNSPECIFIED, the FILEKIND is used to determine the record length,
and fixed-length records are read from the character-stream file.

The default value of EXTDELIMITER is CRLF.

Using the STREAMIOH IOHANDLER Library

31–10 8600 0056–408

FOLDCHARACTER

The FOLDCHARACTER mnemonic parameter has the following values and
corresponding character representations (Table 31–2).

The default value for FOLDCHARACTER is BACKSLASH.

Table 31–2. FOLDCHARACTER Values and
Character Representations

Value Character

NONE No fold character

AMPERSAND &

ATSIGN @

BACKSLASH \

DOLLARSIGN $

NUMBERSIGN #

PERCENTSIGN %

SLASH /

VERTICALLINE |

The semantics of the FOLDCHARACTER parameter are described with the semantics for
the FOLDING parameter under “FOLDING” earlier in this section.

FOLDING

The FOLDING mnemonic parameter controls the handling of delimited file records that
exceed the size of the record text area. The size of the text area is a function of the
FILEKIND of the record file.

The parameter also controls how unfolding of trailing fold characters is handled during
record-to-delimited conversion; for example, when writing a record to the delimited file.

The default value of FOLDING is TRUNCATE.

 Using the STREAMIOH IOHANDLER Library

8600 0056–408 31–11

When you review the FOLDING semantics, remember that

• The TRIM parameter controls the trimming of blank characters from a delimited
record before the FOLDING is applied.

• The FOLDING IO values of ID and SEQUENCE indicate that the delimited record
contains sequence and mark ID fields in addition to text data—implying that folding
is not expected to take place.

• Some values of TRIM and FOLDING are inconsistent and might cause an open error
at run time.

Folding during Record-to-Delimited Conversion

During record-to-delimited conversions (read I/O operations), folding might occur
depending on the FOLDING parameter:

• NONE

An I/O error (DATAERROR) is reported if, after any blank trimming, the delimited
record exceeds the size of the record file record text area. If the program ignores
the I/O error on a read operation, a subsequent sequential I/O operation begins at the
character following the next delimiter in the physical file.

• SEQUENCE

A FOLDING value of SEQUENCE implies that the delimited lines are a fixed-record
size and contain sequence number fields. An I/O error (DATAERROR) is reported if
the delimited record is not exactly the size of the text and sequence fields of the
record file record. If the program ignores the I/O error on a read operation, a
subsequent sequential I/O operation begins at the character following the next
delimiter in the physical file.

• ID

A FOLDING value of ID implies that the delimited lines are a fixed-record size and
contain sequence number and mark ID fields. An I/O error (DATAERROR) is
reported if the delimited record is not exactly the size of the record file record. If the
program ignores the I/O error on a read operation, a subsequent sequential I/O
operation begins at the character following the next delimiter in the physical file.

• BLIND

If, after any blank trimming, the delimited record exceeds the size of the record file
record text area, the character specified by FOLDCHARACTER, if any, is inserted as
the last character in the record text area. A subsequent sequential read operation
begins at the character following the last character transferred in the delimited file.
Subsequent records might also be folded if the remainder of the folded record
exceeds the size of the record text area.

Using the STREAMIOH IOHANDLER Library

31–12 8600 0056–408

• SPACE

The handling of a FOLDING value of SPACE is identical to that of BLIND except that
instead of inserting the character specified by FOLDCHARACTER as the last
character in the text area, the fold character is inserted in place of the last blank
character in the text area, and the remainder of the text area is blank.

If no last blank character exists, or if the data consists solely of blank characters, the
handling of SPACE is identical to that of BLIND.

• TRUNCATE

If, after any blank trimming, the delimited record exceeds the size of the record file
record text area, extra data in the delimited record is discarded. After truncation on a
read operation, a subsequent sequential I/O operation begins at the character
following the next delimiter in the physical file.

Unfolding during Record-to-Delimited Conversion

During record-to-delimited conversion (write I/O operations), unfolding might occur
depending on the value of the FOLDING and FOLDCHARACTER parameters. When
unfolding occurs, neither the fold character nor a delimiter is inserted into the delimited
record, thus in effect reversing a folding operation that was done during
delimited-to-record conversion. The actions for each value are described as follows:

• NONE

 Unfolding never occurs.

• SEQUENCE

 Unfolding never occurs.

• ID

 Unfolding never occurs.

• TRUNCATE

 Unfolding never occurs.

• BLIND

If FOLDCHARACTER is not NONE, and the last character position in the record file
record text area contains the fold character, unfolding occurs.

• SPACE

If FOLDCHARACTER is not NONE, and the last nonblank character in the record file
record text area contains the fold character, unfolding occurs.

 Using the STREAMIOH IOHANDLER Library

8600 0056–408 31–13

FORMFEEDISDELIMITER

The FORMFEEDISDELIMITER Boolean parameter, when set, indicates that FORMFEED
character (48”OC”) is also to be considered as a delimiter. If the EXTDELIMITER value
is CRCC, a CR-FF pair in the delimited file is treated as a single delimiter. Otherwise, the
CR-FF pair is considered to be two delimiters, and a second blank record is returned for
the FF character.

MARKID

The MARKID string parameter is only applicable when the FILEKIND of the record file
has a defined ID field. When MARKID is set, the value of the parameter is inserted into
the ID field, truncated or blank-filled on the right as necessary. If MARKID is not set, the
ID field is blank-filled.

By default, MARKID is set to the null string, and any ID field is blank-filled.

SEQBASE

The SEQBASE integer parameter is only applicable when the FILEKIND of the record file
has a defined sequence number field and the SEQINCREMENT parameter is set to a
non-zero value. In this case, the record number inserted into the record sequence
number of the current record retrieved is determined based on the logical record number
in the delimited file. That is, for record N of the file, the sequence number inserted is
SEQBASE + (N–1)*SEQINCREMENT. When the value determined exceeds the capacity
of the sequence number field, the value is set to 0 (zero).

The default value of SEQBASE is 100.

SEQINCREMENT

The SEQINCREMENT integer parameter is only applicable when the FILEKIND of the
record file has a defined sequence number field. If the SEQINCREMENT value exceeds
the capacity of the sequence number field, the SEQINCREMENT value is set to 1 when
the file is opened. SEQINCREMENT is used as SEQBASE is used. Refer to SEQBASE
earlier in this section.

 The default value for SEQINCREMENT is 100.

Using the STREAMIOH IOHANDLER Library

31–14 8600 0056–408

TABINTERVAL

When the TABINTERVAL integer parameter is set to non-zero value, tab characters
appearing in the data are replaced by sufficient space characters to advance the
destination pointer to a character offset (counting from 1) space—that is, one beyond the
next multiple of the tab interval.

For example, given a delimited record starting with the string "ABCDEF<tab>G<tab>H",
tab expansion would result in the following:

 11111111112
12345678901234567890
ABCDEF G H if TABINTERVAL = 5

ABCDEF G H if TABINTERVAL = 8

It is possible for tab expansion to cause the destination pointer to be advanced beyond
the end of the destination record. If this happens, folding as specified by the FOLDING
parameter occurs.

Tab expansion is a nonreversible operation. Once tab characters have been converted to
spaces, no automatic way exists to convert them to tab characters.

The default value of TABINTERVAL is 0 (zero). When the TABINTERVAL parameter is set
to the number 0, tab characters appearing in the data are treated like ordinary data
characters.

TRIM

TRIM is a mnemonic parameter used to control record trimming, primarily during
record-to-delimited conversion (write requests).

Table 31–3 lists the mnemonic values of TRIM and the TRIM semantics. The default
value of TRIM is ALL.

Table 31–3. TRIM Mnemonic Values and Semantics

Value Result

NONE No trimming

BLANKS Trim blanks

SEQUENCE Trim sequence field

ID Trim mark ID field

ALL Trim blanks, sequence and mark ID fields

 Using the STREAMIOH IOHANDLER Library

8600 0056–408 31–15

Trimming during Delimited-to-Record Conversion

During delimited-to-record conversion (read I/O operations), if TRIM has a value of
NONE, the record is not examined for trimming. For TRIM values other than NONE, if a
delimited line exceeds the size of the data portion of the record file record and the
excess characters consist solely of blank characters, the excess blanks are discarded
instead of folding the line.

Trimming during Record-to-Delimited Conversion

During record-to-delimited conversion (write operations), the value of TRIM indicates the
fields that are to be discarded. In addition to causing the specified information to be
discarded during conversion, the values BLANKS, SEQUENCE, and ID also cause
subsequent, adjacent record fields to be discarded during conversion. For example, for a
FILEKIND ALGOLSYMBOL file, specifying SEQUENCE would cause both the sequence
number and mark ID fields to be discarded.

Using the STREAMIOH IOHANDLER Library

31–16 8600 0056–408

File Attribute Considerations
The function of STREAMIOH is to convert character-stream physical files into logical
record files, and logical record files into character-stream physical files. Because of the
two views of a single file, and the operation of the STREAMIOH on behalf of logical I/O,
the handling of the following attributes needs explanation.

FRAMESIZE, UNITS, and Related Attributes

FRAMESIZE and UNITS, along with all attributes that are measured in frame size units,
are handled as defined on the logical file.

DEPENDENTSPECS and Related Attributes

If DEPENDENTSPECS is set to TRUE, conversion is based on the FILEKIND of the
character-stream file or the IOHSTRING parameter, with the parameter taking
precedence. Actual record size and layout is set to match those defined in the MCP
FILERECFORMAT procedure for the FILEKIND. If a default record size is not defined for
the FILEKIND, a value of 80 characters or 15 words is assigned depending on the UNITS
attribute of the file being opened.

If DEPENDENTSPECS is set to FALSE or a file is being created, the FILEKIND of the
physical file is set from that of the logical file or from the IOHSTRING parameter, with
the parameter taking precedence. The MAXRECSIZE is set from the logical file
MAXRECSIZE. If the program MAXRECSIZE value is inconsistent with the FILEKIND
record length, records are right-truncated or extended to the right to match the
MAXRECSIZE value.

As a virtual file, the FILESTRUCTURE is always ignored. If interrogated, it is reported as
STREAM.

BLOCKSTRUCTURE is set to FIXED when DEPENDENTSPECS is TRUE, and allowed to
be FIXED or EXTERNAL when DEPENDENTSPECS is FALSE or when creating a
character-stream file.

NEXTRECORD and RECORD Attributes

NEXTRECORD and RECORD are reported from the logical record file and do not provide
information relative to the character offset in the physical file.

LASTRECORD and FILELENGTH Attributes

LASTRECORD and FILELENGTH are reported based on the logical record size for the
FILEKIND of the file. Using these attributes might result in sequentially reading the file
to determine these values.

 Using the STREAMIOH IOHANDLER Library

8600 0056–408 31–17

CURRENTRECORDLENGTH Attribute

CURRENTRECORDLENGTH and the length returned in I/O results reflect the size of the
converted record, not the physical file delimited record.

I/O Operation Semantics
You should understand the following I/O semantics unique to the STREAMIOH
conversion. Additional semantics are described in Section 29.

General Considerations

The following statements clarify various read/write semantics with respect to
STREAMIOH:

• Unless unfolding occurs, each user write request causes exactly one
delimiter-terminated record to be written to the physical file.

• If a user write request specifies a size value that is less than the size of the logical
file record while taking into account any requested trimming, only as much data as
was requested is written to the physical file.

• If a user write request specifies a size value that is greater than the size of the logical
file record, the request is truncated.

• Unless folding occurs, each user read request causes exactly one record (zero or
more characters followed by a delimiter) to be read from the physical file. The
delimiter is always discarded.

• If a user read request specifies a size value that is less than the logical file record
size, the program receives only as much data as requested. A subsequent sequential
read or write operation begins following the next delimiter character in the physical
file.

• If a user read request specifies a size value that is greater than the logical file record
size, the request is truncated.

• If, during the transfer of data for a user read request, end-of-file is reached before
the text portion of the user record has been filled, conversion continues as though
the physical file contained sufficient space characters to fill the text area and an
error-free result is returned. Assuming the file is not expanded in the interim, a
subsequent sequential read operation returns an end-of-file result.

Using the STREAMIOH IOHANDLER Library

31–18 8600 0056–408

Random Access

Random access is provided by using a record file version of the stream file. Serial
access is assumed until a nonserial operation is encountered. At this time, the stream
file is read in total to create the record file used for random access. When the logical file
is closed, the physical file is rewritten (if necessary) to apply the updates, and the
temporary record file is discarded.

Note: Requesting the LASTRECORD or FILELENGTH file attributes is considered a
random access. If such a request is the first random access, it causes the physical file to
be read completely and a temporary record file to be created.

Translation

The STREAMIOH is implemented as an EBCDIC program. Translation of data to EBCDIC
as required for the STREAMIOH is performed by logical I/O. Translation does not occur
in the STREAMIOH. Specifically, if the EXTMODE of the physical file is not EBCDIC,
logical I/O translates the data when read or written from the physical file by
STREAMIOH. Similarly, if the INTMODE of the logical file is not EBCDIC, translation
occurs between the STREAMIOH and the user program.

If an EXTMODE other than EBCDIC is specified on the virtual file, and
OVERRIDEEXTMODE is set to ALWAYS, an open error occurs. To override the physical
file EXTMODE, use the EXTMODE parameter on the IOHSTRING. For new file creation,
however, the EXTMODE of the virtual file is honored if it differs from EBCDIC and the
EXTMODE parameter is not specified on the IOHSTRING parameter.

Example Program

The ALGOL utility program (CONVERTSTREAM) listed in the following example creates a
record file from a character-stream file using the STREAMIOH library. The input file, FIN,
is a logical record file and a physical delimited character-stream file. The conversion is
provided by declaring FIN with KIND = VIRTUAL and IOHFUNCTIONNAME =
STREAMIOH. The output file, FOUT, is created using attributes that are the defaults for
the FILEKIND that is being created. The parameters to the utility are the STREAMIOH
parameters that are applied to the FIN.IOHSTRING attribute. The main loop of the
program is simply “WHILE NOTE READ(FIN..) DO WRITE(FOUT..);”, as the conversion is
done in the IOHANDLER.

An example of a CANDE use of the utility is listed before the program. The FIN file
extension of .TXT is used to set the FILEKIND of the output file.

RUN CONVERTSTREAM("SEQBASE = 1000 SEQINCR = 100");%
FILE FIN = "TEXTFILE.TXT";%
FILE FOUT = TEXTFILE
#RUNNING 23634
SEQBASE = 1000 SEQINCR = 100
Converting: "TEXTFILE.TXT"
FILEKIND = TEXTDATA, MAXRECSIZE = 90 characters
Creating: TEXTFILE

 Using the STREAMIOH IOHANDLER Library

8600 0056–408 31–19

FILEKIND = TEXTDATA, MAXRECSIZE = 15 words
File Locked:TEXTFILE
#ET = 0.8 PT = 0.2 IO = 0.6

PROCEDURE CONVERTSTREAM (INPUT);
ARRAY INPUT[*];
BEGIN
FILE
 FIN (KIND = VIRTUAL,
 IOHFUNCTIONNAME = "STREAMIOH.",
 NEWFILE = FALSE,
 DEPENDENTSPECS,
 FILEUSE = IN),

 FOUT(KIND = DISK,
 NEWFILE = TRUE,
 FILEUSE = OUT),

 RMT (KIND = REMOTE,
 FRAMESIZE = 8,
 MAXRECSIZE = 1920,
 FILEUSE = OUT);

REAL
 N,
 R,
 FIN_FILEKIND,
 FIN_RECSIZE,
 FIN_FRAMESIZE,
 FOUT_FILEKIND,
 FOUT_RECSIZE,
 FOUT_FRAMESIZE,
 FOUT_BLOCKSIZE;

POINTER
 P,
 PINPUT;

EBCDIC ARRAY
 EA [0:255];

ARRAY
 A [0:0];

DEFINE
 COMMA = , #,
 ABORT (S) = BEGIN
 REPLACE P:EA BY S;
 WRITE(RMT,OFFSET(P),EA);
 MYSELF.STATUS := -1;
 END #;

Using the STREAMIOH IOHANDLER Library

31–20 8600 0056–408

PINPUT := POINTER(INPUT);
IF PINPUT NEQ 48"00" THEN
BEGIN
 REPLACE P:EA[0] BY """;
 REPLACE P:P BY PINPUT FOR REMAININGCHARS(P)-2
 UNTIL = 48"00";
 REPLACE P:P BY "".";
 REPLACE FIN.IOHSTRING(R) BY EA;
 WRITE(RMT,OFFSET(P)-3, EA[1]);
 IF BOOLEAN(R) THEN
 ABORT("IOHSTRING attribute error" COMMA
 PINPUT FOR OFFSET(P)-3);
END;
R := FIN.AVAILABLE;
IF R NEQ VALUE(OKRSLT) THEN
 ABORT("Input file not available (" COMMA
 R FOR * DIGITS COMMA ")");
FIN_FILEKIND := FIN.FILEKIND;
FIN_RECSIZE := FIN.MAXRECSIZE;
FIN_FRAMESIZE := FIN.FRAMESIZE;
FOUT_FRAMESIZE :=
 IF NOT FOUT(FRAMESIZE).FILEEQUATED THEN
 48
 ELSE
 FOUT.FRAMESIZE;
FOUT_RECSIZE :=
 IF NOT FOUT(MAXRECSIZE).FILEEQUATED THEN
 FIN_RECSIZE*FIN_FRAMESIZE DIV FOUT_FRAMESIZE
 ELSE
 FOUT.MAXRECSIZE;
FOUT_FILEKIND :=
 IF NOT FOUT(FILEKIND).FILEEQUATED THEN
 FIN_FILEKIND
 ELSE
 FOUT.FILEKIND;
FOUT_BLOCKSIZE :=
 IF NOT FOUT(BLOCKSIZE).FILEEQUATED THEN
 FOUT_RECSIZE*30
 ELSE
 FOUT.BLOCKSIZE;
FOUT (FRAMESIZE = FOUT_FRAMESIZE,
 MAXRECSIZE = FOUT_RECSIZE,
 BLOCKSIZE = FOUT_BLOCKSIZE,
 FILEKIND = FOUT_FILEKIND);
REPLACE P:EA BY "Converting: ", FIN.TITLE;
WRITE (RMT, OFFSET(P)-1, EA);
REPLACE P:EA BY "FILEKIND = ";
ATTRIBINFORMER (EA, 8, P, N, R, FIN_FILEKIND,
 2 & 1[11:4] & 0[43:2] & 1[47:4]);
REPLACE P:P+N BY ", MAXRECSIZE = ", FIN_RECSIZE FOR * DIGITS;
 IF FIN_FRAMESIZE = 48 THEN REPLACE P:P BY " words"
 ELSE REPLACE P:P BY " characters";

 Using the STREAMIOH IOHANDLER Library

8600 0056–408 31–21

WRITE (RMT, OFFSET(P), EA);
REPLACE P:EA BY "Creating: ", FOUT.TITLE;
WRITE (RMT, OFFSET(P)-1, EA);
REPLACE P:EA BY "FILEKIND = ",
N := 0;
R := 0;
ATTRIBINFORMER (EA, 8, P, N, R, FOUT_FILEKIND,
 2 & 1[11:4] & 0[43:2] & 1[47:4]);
REPLACE P:P+N BY ", MAXRECSIZE = ", FOUT_RECSIZE FOR * DIGITS;
IF FOUT_FRAMESIZE = 48 THEN REPLACE P:P BY " words"
 ELSE REPLACE P:P BY " characters";
WRITE (RMT, OFFSET(P), EA);
RESIZE (A,MAX(FIN_RECSIZE*FIN_FRAMESIZE DIV 48,
 FOUT_RECSIZE*FOUT_FRAMESIZE DIV 48));
WHILE NOT READ(FIN,FIN_RECSIZE,A) DO
 WRITE(FOUT,FIN_RECSIZE,A);
LOCK(FOUT);
REPLACE P:EA BY "File Locked:", FOUT.TITLE;
WRITE (RMT, OFFSET(P)-1, EA);

END CONVERTSTREAM.

Using the STREAMIOH IOHANDLER Library

31–22 8600 0056–408

8600 0056–408 A–1

Appendix A
Device Types and Associated File
Attributes

Use Table A–1 to identify the general file attributes that can be used with each device
type.

Table A–1. Device Types and Associated File Attributes

Attribute Disk CD Printer Remote Tape Other Port

ACCESSDATE X X

ACCESSDATEUT X

ACCESSTIME X X

ACCESSTIMEUT X

ACCESSTZ X

ACTUALMAXRECSIZE X

ADAPTABLE X

AFTER X

ALIGNFILE X

ALIGNMENT X

ALLOWSPECIALFILE X

ALTERDATE X X

ALTERDATEUT X

ALTERNATEGROUPS X

ALTERTIME X X

ALTERTIMEUT X

ALTERTZ X

ANYSIZEIO X X

APL X X

APPEND X

APPLICATIONCONTEXT X

Device Types and Associated File Attributes

A–2 8600 0056–408

Table A–1. Device Types and Associated File Attributes

Attribute Disk CD Printer Remote Tape Other Port

APPLICATIONGROUP X

AREAADDRESS X X

AREAALLOCATED X X

AREALENGTH X X

AREAS X X

AREASECTORS X X

AREA
SINUSE

X X

AREASIZE X X

ASSIGNTIME X

ASSOCIATEDFILENAME X

ATTERR X X X X X X X

ATTMODIFYDATE X

ATTMODIFYDATEUT X

ATTMODIFYTIME X

ATTMODIFYTIMEUT X

ATTMODIFYTZ X

ATTVALUE X X X X X X X

ATTYPE X X X X X X X

AUTOUNLOAD X

AVAILABLE X X X X X X X

AVAILABLEONLY X

BACKUPDATE X

BACKUPDATEUT X

BACKUPKIND X

BACKUPTIME X

BACKUPTIMEUT X

BACKUPTZ X

BANNER X

BLANK X X X X X X

BLOCK X X X X

BLOCKEDTIMEOUT X

 Device Types and Associated File Attributes

8600 0056–408 A–3

Table A–1. Device Types and Associated File Attributes

Attribute Disk CD Printer Remote Tape Other Port

BLOCKSIZE X X X X X

BLOCKSTRUCTURE X X X X X X X

BUFFERS X X X X X X X

BUFFERSHARING X

BUFFERSIZE X X X X X

CARRIAGECONTROL X

CCSVERSION X

CENSUS X X

CHANGEDSUBFILE X

CHANGEEVENT X

CHECKPOINT X

CLEARAREAS X

COMPRESSING X X

COMPRESSION X

COMPRESSIONCONTROL X X

COMPRESSIONREQUESTED X X

COPYDESTDATE X

COPYDESTDATEUT X

COPYDESTTIME X

COPYDESTTIMEUT X

COPYDESTTZ X

COPYSOURCEDATE X

COPYSOURCEDATEUT X

COPYSOURCETIME X

COPYSOURCETIMEUT X

COPYSOURCETZ X

CREATEPASSWORD X

CREATIONDATE X X X

CREATIONDATEUT X

CREATIONTIME X X

CREATIONTIMEUT X

CREATIONTZ X

Device Types and Associated File Attributes

A–4 8600 0056–408

Table A–1. Device Types and Associated File Attributes

Attribute Disk CD Printer Remote Tape Other Port

CRUNCHED X X

CURRENTBLOCKLENGTH X X X X X

CURRENTRECORDLENGTH X X X X X X X

CYCLE X X

DENSITY X

DEPENDENTINTMODE X X X X X X

DEPENDENTSPECS X X X X X X

DESTINATION X

DIALOGCHECKINTERVAL X

DIALOGPRIORITY X

DIOFILESTRUCTURE X X

DIRECTION X

DISPOSITION X

DOCUMENTTYPE X X

DONOTSEARCHNETWORK X

DONTCLEARAREASBYDE
FAULT

X

DUMMYFILE X X X X X

ENABLEINPUT X

EOF X

ESTIMATEDRECORDS X X

EXCLUSIVE X

EXECUTEDATE X

EXECUTEDATEUT X

EXECUTETIME X

EXECUTETIMEUT X

EXECUTETZ X

EXTDELIMITER X X X X X X X

EXTMODE X X X X X X X

FAMILYINDEX X X

FAMILYNAME X X X

FAMILYOWNER X

 Device Types and Associated File Attributes

8600 0056–408 A–5

Table A–1. Device Types and Associated File Attributes

Attribute Disk CD Printer Remote Tape Other Port

FILECLASS X X X X X X X

FILEEQUATED X X X X X X X

FILEKIND X X X

FILELENGTH X X

FILENAME X X X X X X X

FILEORGANIZATION X X

FILESECTION X

FILESTATE X X X X X X X

FILESTRUCTURE X X X

FILETYPE X X X X X X X

FILEUSE X X X X X X

FLEXIBLE X

FORMID X

FRAMESIZE X X X X X X X

FRAMESIZECENSUS X

GENERATION X X

GROUP X X

HOSTNAME X X X X X X X

HSFILECOPY X

INPUTEVENT X X

INPUTTABLE X X X X X X

INTERACTIVEFILE X X X X X X X

INTMODE X X X X X X X

INTNAME X X X X X X X

IOCLOCKS X X X X X X X

IOHFUNCTIONNAME X

IOHINTERFACENAME X

IOHLIBACESS X

IOHLIBPARAMETER X

IOHPREFIX X

IOHSTRING X

IOHTITLE X

Device Types and Associated File Attributes

A–6 8600 0056–408

Table A–1. Device Types and Associated File Attributes

Attribute Disk CD Printer Remote Tape Other Port

IOINERROR X X X

KERBEROSACCESS X

KIND X X X X X X X

LABEL X X X X X X

LABELKIND X

LASTACCESSIBLEAREA X

LASTRECORD X X

LASTSUBFILE X

LFILENAME X X X X X X X

LIBMAINTAPPEND X

LIBMAINTDIR X

LICENSEKEY X

LINENUM X

LOCATECAPABLE X

LOCKEDFILE X X X

LTITLE X X X X X X X

MAXCENSUS X

MAXFRAMESIZECENSUS X

MAXRECORDNUMBER X

MAXRECSIZE X X X X X X X

MAXSUBFILES X

MINRECSIZE X X X X X X

MYDOMAINNAME X

MYHOST X

MYHOSTGROUP X

MYIPADDRESS X

MYNAME X

MYUSE X X X X X X

NETACCESSPOINT X

NEWFILE X X X X X X

NEXTRECORD X X X X X

NONBLOCK X

 Device Types and Associated File Attributes

8600 0056–408 A–7

Table A–1. Device Types and Associated File Attributes

Attribute Disk CD Printer Remote Tape Other Port

NORECOVERY X

NORESOURCEWAIT X

NOTE X X

ODDBLOCKSIZE X

OFFSITE X

OFNOTIFICATION X X X X X

OPEN X X X X X X X

OPTIONAL X X X X X

OUTPUTEVENT X

OUTPUTTABLE X X X X X X

OWNER X

OVERRIDEEXTMODE X X X

PAGE X

PAGECOMP X

PAGESIZE X

PARITY X

PASSIVEOPEN X

PATHNAME X X X X X X X

PENDINGPROTECTEDFILE X

PERMITTEDACTIONS X X

POPULATION X X

PORTSEGMENTIO X

PRESENT X X X X X X

PRINTCHARGE X

PRINTCOPIES X

PRINTDISPOSITION X X

PRINTERBACKUPDATA X

PRINTERKIND X

PRINTPARTIAL X

PRINTREQUEST X X

PRODUCT X

Device Types and Associated File Attributes

A–8 8600 0056–408

Table A–1. Device Types and Associated File Attributes

Attribute Disk CD Printer Remote Tape Other Port

PROPAGATESECURITYTO
DIRS

X

PROPAGATESECURITYTO
FILES

X

PROTECTION X X X

PROVIDERGROUP X

READDATE X

READDATEUT X

READREVERSECAPABLE X

READTIME X

READTIMEUT X

READTZ X

RECEPTIONS X

RECORD X X X X

RECORDINERROR X X X

RECORDLEVELLOCK X

REDIRECTION X

REINITIALIZE X X X X X X X

RELEASEID X

REQUESTEDMAXRECSIZE X

RESIDENT X X X X X X

RESTRICTED X X

RESULTLIST X X X X X X X

ROWADDRESS X X

ROWSINUSE X X

SAVEBACKUPFILE X

SAVEFACTOR X X

SAVEPRINTFILE X X

SCRATCHPOOL X

SCREEN X

SCREENSIZE X

SEARCHRULE X

 Device Types and Associated File Attributes

8600 0056–408 A–9

Table A–1. Device Types and Associated File Attributes

Attribute Disk CD Printer Remote Tape Other Port

SECTORSIZE X X

SECURITYADMIN X

SECURITYGUARD X X Xò X

SECURITYMODE X X

SECURITYTYPE X X Xò X X

SECURITYUSE X X Xò X

SENSITIVEDATA X X

SERIALNO X X

SERVICE X X

SINGLEUNIT X

SIZEMODE X X X X X X

SIZEOFFSET X X X X X X

SIZEVISIBLE X X X X X X

SIZE2 X X X X X X

STATE X X X X X X X

STATIONCOUNT X

STATIONLIST X

STATIONNAME X

STATIONSALLOWED X

STATIONSDENIED X

SUBFILEERROR X

SYNCHRONIZE X X X

TANKING X

TAPEREELRECORD X

TIMELIMIT X

TIMESTAMP X X

TITLE X X X X X X X

TOTALSECTORS X X

TRAINID X

TRANSFORM X

TRANSLATE X X X X X X X

TRANSLATING X X X X X X X

Device Types and Associated File Attributes

A–10 8600 0056–408

Table A–1. Device Types and Associated File Attributes

Attribute Disk CD Printer Remote Tape Other Port

TRANSMISSIONNO X

TRANSMISSIONS X

TRIMBLANKS X X

UNIQUETOKEN X

UNITNO X X X X X

UNITS X X X X X X X

UPDATEFILE X

USECATALOG X X

USEDATE X X

USERBACKUPNAME X

USERCODE X

USERINFO X X

USETIME X X

VERSION X X

WARNINGS X

WIDTH X

YOURDOMAINNAME X

YOURHOST X X X X X X X

YOURHOSTGROUP X

YOURIPADDRESS X

YOURNAME X

YOURNSAPA X

YOURPRESENTATIONSEL X

YOURSESSIONSEL X

YOURTRANSPORTSEL X

YOURUSERCODE X

ò Applies to backup files only.

8600 0056–408 B–1

Appendix B
Format of Pack Labels

Table B–1 describes the format and contents of pack labels.

Table B–1. Format of Pack Labels

Position Length (Bytes) Contents

000–003 004 VOL1 identifier

004–-009 006 Pack serial number

010 001 Reserved

011–027 017 Pack identification (FAMILYNAME)

028–-029

002

System-Interchange code

Native Mode = 67

030 001 Reserved

031–-036 006 Reserved

037–-050 014 Owner's identification

051–-056 006 Mirrored disk date/time stamp

057 001 Relative index of pack within set

058 001 Mask of online mirrored copies

059

001

Recovery option

D = DMS

Blank = DISCARD

060

1

Auditing marker

V = Set closed

C = Creation or audit application

061 001 Mirrored Disk Pooling Facility (MDPF) spare disk
pool marker

0 = not a spare

1 = free spare

2 = in-use spare

Format of Pack Labels

B–2 8600 0056–408

Table B–1. Format of Pack Labels

Position Length (Bytes) Contents

062–-078 027 Reserved

079 001 Reserved

080–-083 004 VOL2 identifier

084–-088 005 Initialization date

089–-094

006

Initializing system.

Native = 67MC <mark digit> <level no>

095–102 008 Directory link. Native mode links to pack master
header directory block.

103–110 008 Master available table link

111–118

008

Available table link

Native mode unused

119 001 Integrity flag

120–125 006 Reserved

126–131 006 Reserved

132–179 048 Reserved

180–359 180 Reserved for security information

8600 0056–408 C–1

Appendix C
Disk File Headers

Disk file headers contain the attributes that define disk files, including such information
as file title, actual location of each area of the file, maximum and minimum record sizes,
block size, title of the security guard file, if any, and so on. This information is used
primarily by the master control program (MCP) directory-management and logical-I/O
routines. The system stores the disk file headers for permanent disk files in disk
directory files located on the base unit or units of each disk family. Disk file headers are
also found on the Library Maintenance system tapes.

Disk file headers vary in size. The first portion of the header is the header fixed data area.
It contains attributes that are fixed in size and pertain to most files. It also contains items
used by the MCP to maintain the headers of open files. The size of the fixed data area is
given by HDRFIXEDSIZEF.

The fixed data area is followed by zero or more area address words that contain the
address information for the data areas assigned to the file.

The area address words are followed by zero or more optional attribute words. The
optional attribute words define attributes that pertain to only a limited number of files.
Depending on the type of attribute, an optional attribute word either contains the value of
the attribute or points to an area in the header data area where the value of the attribute
is stored.

The optional attribute words are followed by an optional header data area. If the header
data area is present, it contains the file title and the values of those optional attributes
whose values cannot be stored in the optional attribute words.

The last word in the header is a checksum word.

Note: Changes to the layout of the disk file header can be made without notice, and
occasionally, changes can be inadvertently omitted from the documentation.
Consequently, the operation of user programs that use disk file headers should be
verified whenever the MCP release levels are changed.

Disk File Headers

C–2 8600 0056–408

There are various methods to obtain disk file header information that is independent of
changes to the structure of the disk file header. One method is to use GETSTATUS.
Refer to the GETSTATUS/SETSTATUS Reference Manual for information about Request
Type 3 (Directory Calls). Another method, if a disk file header is already available, is to
use the GETHEADERATTRIBUTE procedure documented later in this section. If neither
of the preceding methods are used, defines should be used to describe the location of all
words and fields to be accessed. The correctness of these defines should be verified at
every software release by examining the declaration of the disk file header in the MCP
symbol code.

User Interface Procedures
Two interface procedures are available as MCP support library procedures:
CONVERTHEADER and GETHEADERATTRIBUTE. Programs using these procedures can
extract header information independent of the header layout.

CONVERTHEADER

A disk file header can be converted to the Version 7 format for transparency of disk file
header formats to utility programs. The conversion is done by calling CONVERTHEADER
and passing the header as a parameter. The conversion is done in place so that the
header will be modified when the call completes.

This interface procedure is available in both ALGOL and Pascal.

The declarations within the user (ALGOL) program should be as follows:

LIBRARY MCP (FUNCTIONNAME = "MCPSUPPORT.",
 LIBACCESS = BYFUNCTION
);

INTEGER PROCEDURE CONVERTHEADER (HDR);
ARRAY HDR [*];
 LIBRARY MCP;;

HDR contains the input disk file header to be converted.

The procedure converts HDR to the current format and returns the result of the
operation. The following are the values returned:

Value Meaning

> 0 Successful conversion. HDR contains the converted header. Its new size in
words is returned.

–1 A fault occurred during conversion. A program dump can be obtained by
running the calling program with the task FAULT option set.

–2 A bad header was passed as input.

–3 The header passed has an incorrect version; it is not 3, 4, 5, 6, or 7.

 Disk File Headers

8600 0056–408 C–3

Notes:

• HDR is converted to the current header version, if it is not in that format, and
crunched. That is, no unused space will remain in the header. The length of the
header might increase or decrease. If the length of the converted header increases, it
might exceed the length of the array passed in. In this case, CONVERTHEADER
resizes the header array so it is large enough to hold the converted header.

Be aware that Pascal programmers must be sure to pass a large enough array,
because RESIZE does not work properly for Pascal arrays. In Pascal, the length of
the HDR parameter should be at least 30 words longer than the size of the header
contained in it.

• The ORIGHEADERVERSIONF field in word 35 of HDR is set to the version number of
the header passed to CONVERTHEADER.

• If a fault occurs during conversion, the contents of HDR are undefined.

• The procedure returns a “bad header” error if a header obtained using the DCALGOL
DISKHEADER READ operation is passed to it as a parameter, since these headers
have a special format.

The GETHEADERATTRIBUTE procedure is used to interrogate disk file header attributes.

This interface procedure is available in ALGOL and Pascal.

The declarations within the user (ALGOL) program should be as follows:

LIBRARY MCP (FUNCTIONNAME = "MCPSUPPORT.",
 LIBACCESS = BYFUNCTION
);

INTEGER PROCEDURE GETHEADERATTRIBUTE(HDR,WHICH,AREA,VAL,A);
VALUE WHICH, AREA;
INTEGER WHICH, AREA;
REAL VAL;
ARRAY HDR[*], A[*];
LIBRARY MCP;

HDR contains the input header from which the requested attribute is to be extracted.

WHICH specifies the attribute being interrogated (Table C-1 shows the attributes and
their corresponding mnemonics). In general, only attributes can be interrogated, not
fields that are used for the maintenance of the header. However, certain fields that are
useful in the analysis of the header are also accessible. An attribute is specified in
ALGOL by VALUE (<attribute name mnemonic>) and in Pascal by DFHVALUE (<attribute
name mnemonic>).

AREA contains the area number for area-address relative attributes. It is not used for
nonarea-relative attributes. The AREA number is zero relative.

Disk File Headers

C–4 8600 0056–408

VAL receives the value of the attribute if a word, integer, or a Boolean-valued attribute is
being interrogated. For Boolean-valued attributes, 0 (zero) is returned if the attribute is
false; otherwise, 1 is returned. Zero is returned in VAL if the attribute being interrogated
is not set.

For list-valued attributes like TITLE, RELEASEID, and so forth, the length of the attribute
value in the units in which it is stored is returned in VAL. Zero is returned in VAL if the
list-valued attribute is not set.

 “A” is an array in which list-type attributes are returned.

The following values are returned for the GETHEADERATTRIBUTE procedure:

Value Meaning

0 Operation successful. For word, integer, or Boolean-valued attributes, VAL
receives the value of the attribute. For list-type attributes, VAL receives the
length of the attribute in the units in which it is stored, or 0 (zero) if the
attribute is not set. Array A contains the list-type attribute.

–1 A fault has occurred. A program dump can be obtained by running the calling
program with the task FAULT option set.

–2 A bad header was passed as input.

–3 The header passed has an incorrect version; it is not 3, 4, 5, 6, or 7.

–4 The attribute specified by the user is unknown to the system.

–5 The area number specified by the user is invalid.

–6 The attribute specified by the user has been deimplemented (is no longer
supported by the operating system).

Notes:

• Except when GETHEADERATTRIBUTE is called for the DFHHDRBLOCKLENGTH and
DFHHDRLENGTH attributes, GETHEADERATTRIBUTE converts the HDR to the
current header version, if it is not in that format, and crunches the HDR. That is, no
unused space will remain in the header. If the length of the converted header
increases, it might exceed the length of the array passed in. In this case,
CONVERTHEADER resizes the header array so it is large enough to hold the
converted header.

You can call GETHEADERATTRIBUTE with the DFHHDRLENGTH attribute in order to
determine the size of the header in words. Calls for DFHHDRLENGTH do not cause
the header to be converted, so you only need to pass the first three words of the
header when you call GETHEADERATTRIBUTE for the DFHHDRLENGTH attribute.
You need to know the size of the header so that you can be sure that you put all the
words of the header into the array before you make other calls on
GETHEADERATTRIBUTE or CONVERTHEADER.

 Disk File Headers

8600 0056–408 C–5

Be aware that Pascal programmers must be sure to pass a large enough array,
because RESIZE does not work properly for Pascal arrays. In Pascal, the length of
the HDR parameter should be at least 30 words longer than the size of the header
contained in it.

• The COREINDEXF field in word 35 of HDR is set to 0 (zero).

• If a fault occurs during conversion the contents of HDR are undefined.

• The procedure returns a “bad header” error if a header obtained using the DCALGOL
DISKHEADER READ operation is passed to it as a parameter, since these headers
have a special format. The DCALGOL DISKHEADER ATTRIBUTES must be used to
obtain the attributes from such headers.

Examples

In ALGOL the following call returns 0 (zero) in X if the operation is successful, and returns
the field contained in bits [15:16] of word 3 of HDR in VAL.

X :=GETHEADERATTRIBUTE(HDR, VALUE(DFHMAXRECSIZE),
 0, VAL, A);

Similarly, the following call returns 0 (zero) in X if the operation is successful, extracts the
file name from HDR and stores it in A in standard form, and returns the length, in bytes,
of the standard-form name in VAL.

X := GETHEADERATTRIBUTE(HDR, VALUE(DFHTITLE),
 0, VAL, A);

Similarly, the following call returns 0 (zero) in X if the operation is successful, and returns
in VAL the field contained in bits [32:33] of the area address word corresponding to area
10.

X :=GETHEADERATTRIBUTE(HDR, VALUE(DFHSECTORADDRESS),
 10, VAL, A);

In Pascal the following call returns 0 (zero) in X if the operation is successful, and returns
the field contained in bits [15:16] of word 3 of HDR in VAL.

X := GETHEADERATTRIBUTE(HDR, DFHVALUE(DFHMAXRECSIZE),
 0, VAL, A);

Table C–1 lists the attributes that can be interrogated and the type of information
returned in each case. Note that the GETHEADERATTRIBUTE procedure returns the
values of attributes as they are stored in the header; no conversion or translation is done.
For example, the file name is stored as a standard form name within the header, but
never includes the disk family name. GETHEADERATTRIBUTE returns this name in
standard form without conversion, whereas the TITLE file attribute returns the name in
display form. Similarly, the SECURITYUSE file attribute has values different from the
ones reported for DFHSECURITYUSE. In all cases, the interface procedure returns data
in disk file header format.

Disk File Headers

C–6 8600 0056–408

Table C–1. Disk File Header Attributes

Attribute Mnemonic

Field Name or Item in

Header

Row
Number
Required

Type

DFHACCESSTIMESTAMP Access Time Stamp No Word

DFHACCESSTZ ACCESSTZF No Integer

DFHACTIVEROW ACTIVEROWF Yes Boolean

DFHALIGNFILE ALIGNFILE attribute No Std
Form

DFHALIGNMENT ALIGNMENT attribute No Boolean

DFHALLOCATEDROW ALLOCATEDROWF Yes Boolean

DFHALTERNATEGROUPS Alternate Groups list No Alternate
Groups
Standard
Formí

DFHALTERTIMESTAMP Alter Time Stamp No Word

DFHALTERTZ ALTERTZF No Integer

DFHAPLFILE APLMAF No Boolean

DFHATTMODIFYTIMESTAMP Attribute Modify Timestamp No Word

DFHATTMODIFYTZ ATTMODIFYTZF No Integer

DFHBACKUPTIMESTAMP Backup Timestamp No Word

DFHBACKUPTZ BACKUPTZF No Integer

DFHBADINFO BADINFO information No Byte list

DFHBANNER BANNER attribute No Boolean

DFHBLOCKLENGTH HDRBLOCKLENGTHF No Integer

DFHBLOCKSIZE BLOCKSIZEF No Integer

DFHCATALOGED HDRCATF No Boolean

DFHCCSVERSION CCSVERSION No Integer

DFHCCSVERSIONSET Returns TRUE if header
CCSVERSION is set.

No Boolean

DFHCHECKEOF CHECKEOFF No Boolean

DFHCLEARAREAS CLEARAREASF No Boolean

DFHCODEFILEHANDLING CODEFILE handling No Word

DFHCODEFILEINFO CODEFILE information No Word list

DFHCODEFILESECURITY CODEFILE security No 2-word
list

 Disk File Headers

8600 0056–408 C–7

Table C–1. Disk File Header Attributes

Attribute Mnemonic

Field Name or Item in

Header

Row
Number
Required

Type

DFHCOPYDESTTIMESTAMP Copy Destination
Timestamp

No Word

DFHCOPYDESTTZ COPYDESTTZF No Integer

DFHCOPYNUMBER COPYNUMBERF No Integer

DFHCOPYSOURCETIMESTAMP Copy Source Timestamp No Word

DFHCOPYSOURCETZ COPYSOURCETZF No Integer

DFHCREATIONTIMESTAMP Creation Time Stamp No Word

DFHCREATIONTZ CREATIONTZF No Integer

DFHCRUNCHED CRUNCHEDF No Boolean

DFHCYCLE CYCLE No Integer

DFHDELETEDROW DKDELETEDF Yes Boolean

DFHDMLOCKBITS DMLOCKBITSF Yes Integer

DFHDMREADLOCK DMREADLOCKF Yes Boolean

DFHDMWRITELOCK DMWRITELOCKF Yes Boolean

DFHDOCUMENTTYPE DOCUMENTTYPE No Word

DFHDOCUMENTTYPEPARAMS DOCUMENTTYPE
parameters

No Byte list

DFHDUPLICATED DUPLICATEDBIT No Boolean

DFHEOFLASTBITS EOFU No Integer

DFHEOFSCRUBBED EOFSCRUBBEDF No Boolean

DFHEOFSECTOR EOFV No Integer

DFHEXECUTETIMESTAMP Execute Timestamp No Word

DFHEXECUTETZ EXECUTETZF No Integer

DFHEXTMODE EXTMODEò No Integer

DFHFILEFAMILYINDEX FILEFAMILYINDEXF No Integer

DFHFILEKIND FILEKINDF No Integer

DFHFILELENGTH FILELENGTH attribute No Word

DFHFILEORGANIZATION FILEORGANIZATIONF No Integer

DFHFILESTRUCTURE FILESTRUCTUREF No Integer

DFHFILESTRUCTURESOURCE FILESTRUCTURE_SOURCF No Integer

DFHFLATHDRLENGTH FLATHDRLENGTHF No Integer

Disk File Headers

C–8 8600 0056–408

Table C–1. Disk File Header Attributes

Attribute Mnemonic

Field Name or Item in

Header

Row
Number
Required

Type

DFHFORMID FORMID attribute No Std
Form

DFHGENEALOGY GENEALOGYF No Integer

DFHGRANULATEDPRIVILEGES Granulated privilege
information

No 2-word
list

DFHGROUP Group Usercode No Byte
listô

DFHHDRLENGTH HDRLENGTHF No Integer

DFHHEADERVERSION VERSIONF No Integer

DFHIADORWLOROW DKIADORWLOF Yes Boolean

DFHIDENTITY IDENTITY No Byte
listó

DFHINDEXWASSET INDEXWASSETF Yes Boolean

DFHKEYEDIOINFO KEYEDIOINFO No Byte list

DFHLABEL LABEL attribute No Integer

DFHLICENSEKEY LICENSEKEY No Byte
list¬

DFHLOCATION HDRLOCATIONF No Integer

DFHLOCKEDFILE LOCKEDFILEF No Boolean

DFHMAXRECSIZE MAXRECSIZEF No Integer

DFHMINRECSIZE MINRECSIZEF No Integer

DFHMULTIUSEWORD Multiuse Word No Word

DFHNFTCSUM NFT check sum No Word

DFHNFTFILEKIND NFT file kind No Integer

DFHNFTREC NFT record number No Integer

DFHNOTE NOTE No Byte
listó

DFHNUMBEROFROWS NUMROWSF No Integer

DFHORIGHEADERVERSION ORIGHEADERVERSIONF No Integer

DFHOWNER Owner Usercode No Byte
listí

DFHPAGECOMP PAGECOMP attribute No Std
Form

 Disk File Headers

8600 0056–408 C–9

Table C–1. Disk File Header Attributes

Attribute Mnemonic

Field Name or Item in

Header

Row
Number
Required

Type

DFHPERMANENCY PERMANENCYF No Boolean

DFHPERMITTEDACTIONS PERMITTEDACTIONS No Word

DHFPHYSICALMODESIZEF PHYSICALMODESIZEF No Integer

DFHPRINTERBACKUPDATA PRINTERBACKUPDATA
attribute

No Word list

DFHPRINTERKIND PRINTERKIND attribute No Integer

DFHPRIVILEGEDFILE PRIVUSERF No Boolean

DFHPRODUCT PRODUCT No Byte
listô

DFHPROPAGATESECURITYTODIRS Propagate security to
directories

No Integer

DFHPROPAGATESECURITYTOFILES Propagate security to files No Integer

DFHPROTECTED PROTECTIONF No Boolean

DFHPUBLICRWX PUBLICRWXF No Word

DFHREADTIMESTAMP Read Timestamp No Word

DFHREADTZ READTZF No Integer

DFHRECORDFORMAT RECORDFORMATINFOF No Integer

DFHRECORDTYPE RCRDTYPE No Integer

DFHRELEASEID RELEASEID No Byte
listó

DFHRESTRICTIONMASK Access Restriction Mask No Word

DFHROWADDRESSWORD Area Address Word Yes Word

DFHROWFAMILYINDEX FAMILYINDEXF Yes Integer

DFHROWSIZE ROWSIZEF No Integer

DFHROWTAIL ROWTAILF No Integer

DFHSAVEFACTOR SAVEFACTORF No Integer

DFHSECTORADDRESS SEGADDRESSF Yes Integer

DFHSECTORSIZE SECTORSIZEF No Integer

DFHSECURITYGUARD SECURITYGUARD No Byte
list¬

DFHSECURITYMODE SECURITYMODEF No Word

DFHSECURITYTYPE SECURITYCODEF þ No Integer

Disk File Headers

C–10 8600 0056–408

Table C–1. Disk File Header Attributes

Attribute Mnemonic

Field Name or Item in

Header

Row
Number
Required

Type

DFHSECURITYUSE READWRITEF þ No Integer

DFHSENSITIVEDATA SENSITIVEDATAF No Boolean

DFHSERVICELIST SERVICELISTì No Byte
listõ

DFHSINGLEPACK SINGLEF No Boolean

DFHSIZEMODE SIZEMODE No Integer

DFHSIZEOFFSET SIZEOFF No Integer

DFHSIZE2 SIZESZ No Integer

DFHSUSPICIOUSEOF SUSPICIOUSEOFF No Boolean

DFHSYSTEMFILE SYSTEMFYLEF No Boolean

DFHTIMESTAMP Time Stamp No Word

DFHTITLE File Name No Byte
list¬

DFHTOBECRUNCHED WILLCRUNCHF No Boolean

DFHTOTALSECTORS TOTALSECTORS
information

No Word

DFHTRAINID TRAINID attribute No Integer

DFHTRANSINPUT Transform parameters No Std
Form

DFHTRANSLIB Transform library No Std
Form

DFHTRANSLIBSL Transform SL library No Boolean

DFHTRANSNAME Transform name No Std
Form

DFHUNITS RCDUNTS No Boolean

DFHUSERINFO USERINFO No Word

DFHVERSION GENVERSN No Integer

DFHWARNINGS WARNINGS No 16-bit
byte list

DFHWROTELASTROW WROTELASTROWF No Boolean

ò The physical mode optional attribute is returned if it is set; otherwise
 PHYSICALMODEF is returned.

ó Special standard form name is returned. Special standard form names have a single name
node that can have a length of up to 251 characters.

 Disk File Headers

8600 0056–408 C–11

¬ Standard form name is returned. Refer to Appendix D for a description of the
standard form name.

ô The first byte of the list is a binary number indicating the number of bytes that follow.
In the case of a usercode, the following bytes are the usercode name. In cases where the
attribute was set by a process not running under a usercode, the two bytes that follow the
length byte are 48"00" 8"*" or 48"005C".

õ The first two bytes (bytes 0, 1) of the list are a version signature of 4 "0227". The next two
bytes (bytes 2, 3) of the list are a binary number indicating the number of bytes in the list,
including these header bytes. The next two bytes (bytes 4, 5) are a filler with the value 0
(zero). The next byte (byte 6) of the list is a binary number indicating the number of names in
the list. The following bytes (bytes 7 . . n) form a list of names in substandard form.

þ This field exists in version 6 headers only. For version 7 headers the value is derived from
SECURITYMODEF.

ì For more information on the SERVICELIST header attribute, see the MP (Mark Program)
system command in the System Commands Reference Manual.

í The Alternate Groups Standard Form is structured as follows:

Character Description

1 Total number of characters in the whole string (self-inclusive)

2 Version byte (currently 0)

3 Number of Alternate Group identifiers

4 Group identifiers, each preceded with one permission character
followed by a length character (not self-inclusive)

Permission Character values:
[2:1] read permission
[1:1] write permission
[0:1] execute permission

For example, the Alternate Groups string

"GROUP1 : RW, GROUP2 : RWX"

would have the following standard form:

48"130002" 48"0606" 8"GROUP1" 48"0706" 8"GROUP2"

Disk File Headers

C–12 8600 0056–408

Disk File Header Versions
Prior to the SSR 42.1 release, the system used disk file headers that were in version 6
format. In the SSR 42.1 release, a new version 7 disk file header format was introduced.

Version 7 disk file headers contain some additional information that is not contained in
version 6 headers. This information includes:

• Six new Timestamp Words:

− Read Timestamp

− Execute Timestamp

− Attribute Modify Timestamp

− Copy Source Timestamp

− Copy Destination Timestamp

− Backup Timestamp

• Time zone valued attributes for the nine header Timestamps:

− ACCESSTZ

− ALTERTZ

− ATTMODIFYTZ

− BACKUPTZ

− COPYDESTTZ

− COPYSOURCETZ

− CREATIONTZ

− EXECUTETZ

− READTZ

• GROUP usercode

• SECURITYMODEF and related information

You will find a complete description of version 6 and version 7 disk file headers later in
this appendix.

 Disk File Headers

8600 0056–408 C–13

Disk Families

Each disk family has a family header version, which controls the format of the disk file
headers written to that family. The MCP currently supports only families with a family
header version of 7.

Note: Under some circumstances, the system operator can use the
CONVERTHEADERS system utility to change the family header version of a family. Refer
to the ClearPath MCP Migration Guide for more information about using the
CONVERTHEADERS system utility.

Library Maintenance Tapes

The system can create library maintenance tapes that contain either version 6 or version
7 disk file headers. The version of the disk file headers written to a specific tape is
version 7 by default. Use SW6 to create version 6 disk file headers.

When a disk file header is written to a library maintenance tape in version 6 format, the
values of the new version 7 header attributes are discarded. Consequently, the values
returned by these attributes may not be reliable for files that have been copied from
library maintenance tapes that have version 6 disk file headers.

Notes:

• A “long file name” refers to a file name that has more than 12 nodes (excluding the
user code and family name) or that has a node with more than 17 characters
(excluding quotes (“ ”)).

• If you are copying a file with a long file name to tape, library maintenance marks the
header as being version 8. Version 8 disk file headers are in version 7 format except
that they can not be copied from tape by MCPs prior to SSR 44.2.

• If you are copying a file with a long file name from one host to another with network
file transfer, the source host marks the disk file header as version 8. The file will fail
to copy if the destination host’s MCP level is prior to SSR 44.2.

Disk File Headers

C–14 8600 0056–408

Version 6 Disk File Header Layout
This subsection describes the word layouts of the Version 6 disk file header. The
comments included with each field definition are a general description of the usage of
the field and should not be taken as exact definitions. Additionally, many of the fields
related to the maintenance of disk file headers by the MCP are valid only under limited
circumstances. In general, user programs should use only those header fields that
describe the header itself (for example, HDRBLOCKLENGTHF, HDRFIXEDSIZEF,
VERSIONF, and so on) or that correspond to file attributes.

WORD 0 All Directory Records - Validity, Location, and Size

Name Field Description

MARKERF

 INUSEMARK

 AVAILMARK

 BADAREAMARK

 MCPUSEMARK

[47:16]

 4'3F3F'

 4'3C3C'

 4'3A3A'

 4'3939'

Validity marker

 Header or catalog block

 Available record

 Bad record

 MCPINFO and other records

HDRBLOCKLENGTHF [31:11] Total size of record in words. (In memory,
this field has the current header size.)

HDRLOCATIONF [20:21] Directory location (record number)

WORD 1 Header Information

Name Field Description

OPENCOUNTF [47:12] Number of logical files using header

FILEKINDF [35:12] FILEKIND attribute

PERMANENCYF

[23:01]

0 = Temporary file

1 = File header is in the directory

WRITTENONF [22:01] 1 = File written on

WROTELASTROWF [21:01] 1 = Last allocated area of a protected file
has been written to

HEADERCHANGEDF [20:01] 1 = Header has been altered but not
written to the directory

HDRFIXEDSIZEF [19:08] Size in words of fixed part of header

HDRAVAILSPACEF [11:12] Number of available words in the header
data area

 Disk File Headers

8600 0056–408 C–15

WORD 2 Record Format and Miscellaneous Information

Name Field Description

Reserved [47:01]

PROTECTIONF [46:01] 1 = Protected file

CHECKEOFF [45:01] 1 = Must find EOF of protected file

SYSTEMFYLEF [44:01] 1 = Nonremovable file

APLMAF [43:01] 1 = APL file control

PHYSICALMODEF [42:03] EXTMODE at creation. If this field has the value
5 (ASCII) and the physical mode optional
attribute is set, the physical mode optional
attribute contains the actual EXTMODE value.

RECORDFORMATINFOF

RCDUNTS

RCRDTYPE

SIZEMODE

SIZEOFF

SIZESZ

[39:40]

[39:01]

[38:04]

[34:03]

[31:16]

[15:16]

Record layout information

UNITS attribute

FILETYPE attribute

SIZEMODE attribute

SIZEOFFSET attribute

SIZE2 attribute

WORD 3 Disk Blocking Information

Name Field Description

BLOCKSIZEF [47:16] Physical BLOCKSIZE

MINRECSIZEF [31:16] Physical MINRECSIZE

MAXRECSIZEF [15:16] Physical MAXRECSIZE

Disk File Headers

C–16 8600 0056–408

WORD 4 Timestamp; Time(6) Format

WORD 5 Area Information and Miscellaneous Information

Name Field Description

VERSIONF

 HDRLEVEL3

 HDRLEVEL4

 HDRLEVEL5

 HDRLEVEL6

[47:04]

 3

 4

 5

 6

Header format version

Releases 2.7 through 3.2

Releases 3.3 through 3.5

Release 3.6

Release 3.6 and later

PRIVUSERF [43:01] 1 = Privileged file

SENSITIVEDATAF [42:01] 1 = Must scrub areas before disk space is
returned

SECURITYCODEF

 SEC_PUBLICV

 SEC_GUARDEDV

 SEC_CONTROLLEDV

 SEC_PRIVATEV

[41:02]

 0

 1

 2

 3

Class of security; SECURITYTYPE file attribute;
attribute values differ from header values

 Attribute value = 1

 Attribute value = 2

 Attribute value = 3

 Attribute value = 0

READWRITEF

 SEC_IOV

 SEC_INV

 SEC_OUTV

 SEC_SECUREDV

[39:02]

 0

 1

 2

 3

Read/write security; SECURITYUSE file
attribute; attribute values differ from header
values

 Attribute value = 3

 Attribute value = 1

 Attribute value = 2

 Attribute value = 0

Reserved [37:01]

INRESERVEF [36:01] 1 = Reserve or squash in process for this
header

MODEF

 SHARED

 EXCLUSIVE

[35:02]

 0

 1

Access mode for the file

NUMROWSF [33:10] Number of area address words

ROWSIZEF [23:24] Sectors in each area

 Disk File Headers

8600 0056–408 C–17

WORD 6 Genealogy Information

Name Field Description

SAVEFACTORF [47:10] Save factor

GENEALOGYF [37:22] Genealogy information

 CYCLE [37:14] CYCLE attribute

 GENVERSN [23:08] VERSION attribute

FILEFAMILYINDEXF [15:08] FAMILYINDEX attribute for entire file
(nonzero if set by user)

FILEORGANIZATIONF

 NOTRESTRFO

 RELATIVEFO

 INDEXEDFO

 INDEXEDNOTRESTRFO

 PLIISAMFO

 KEYEDIOIIFO

 KEYEDIOIISETFO

[07:03]

 0

 1

 2

 3

 4

 5

 6

FILEORGANIZATION attribute

ISAM file with relative keys

DUPLICATEDBIT [04:01] 1 = File is duplicated

Note: Duplicated files are not supported
by 46.1 and later releases.

COPYNUMBERF [03:04] Number of this copy

Note: Duplicated files are not
supported by 46.1 and later
releases.

WORD 7 Disk Pack Information

Name Field Description

Reserved [47:01]

HDRCATF [46:01] 1 = File is cataloged

WILLCRUNCHF [45:01] 1 = File will be crunched when open count
is 0

CRUNCHEDF [44:01] 1 = File is crunched

TIMESTAMPSYNCF [43:01] 0 = MCP will timestamp the catalog block
the next time the file or header is changed
to specify that the file has changed since it
was last backed up

NUMOPTIONALATTSF [42:11] Number of optional attribute words

EOFSCRUBBEDF [31:01] 1 = EOF area has been scrubbed

Disk File Headers

C–18 8600 0056–408

Name Field Description

FLATHDRLENGTHF [30:11] For permanent files, size in words of
header in the directory (valid only while
header is in memory)

KRBRESF [19:01] RESTRICT KERBEROS restricted file
access

KRBMPF [18:01] MP + KERBEROS privileged program

JOBORDERF [19:20] Job files only (maintained by controller)

CPJOBFILEIBF [19:01] Saved value of job file header IB field
(FILEKIND=CPJOBFILE only)

WORD 8 Title Information

Name Field Description

INTERCHANGEF [47:01] INTERCHANGE file attribute; not
supported by Mark 4.1 and later releases,
but might be set in headers created by an
operating system that has a release level
earlier than the Mark 4.1 release

SINGLEF [46:01] 1 = All areas must be on the same pack

Reserved [45:01] Unused

CYLMODEHDRF [44:01] CYLINDERMODE file attribute; not
supported by the Mark 3.9 release, but
might be set in headers created by an
operating system that has a release level
earlier than the Mark 3.9 release

HDRTITLESIZEF [43:08] Size of title in bytes

HDRTITLEINDEXF [35:12] Word index of title from start of header
(title is in header data area)

BASEUNITF [23:12] Unit number of family base unit

LASTF [11:12] Used by GETUSERDISK

 Disk File Headers

8600 0056–408 C–19

WORD 9 EOF Information

Name Field Description

EOFU [47:20] Number of bits (0 or more) in use in any
partial in-use sector following the last full
sector in the file

EOFV [27:28] Number of full sectors in the file; all areas,
up to and including the one containing the
EOF, are counted as though they are
allocated areas

WORD 10 Creation TIMESTAMP; TIME(6) Format

Name Field

CREATIONDATEF [47:16]

CREATIONTIMEF [31:32]

WORD 11 Alter TIMESTAMP; TIME(6) Format

Name Field

ALTERDATEF [47:16]

ALTERTIMEF [31:32]

WORD 12 Access TIMESTAMP; TIME(6) Format

Name Field

ACCESSDATEF [47:16]

ACCESSTIMEF [31:32]

WORD 13 Multiuse Word

BD Information Word for Backup Files

Name Field Description

BDSTKNUMF [11:12] Stack number of stack with which the BD
file is to be associated

DM TIMESTAMP for Unisys e-@ction Enterprise Database Server for ClearPath MCP Data
Files

TIME(6) format

Disk File Headers

C–20 8600 0056–408

Next Area Word for System Directory Files

Name Field Description

ALLOCATINGF

[47:01]

[39:10]

[29:10]

[19:10]

[09:10]

1 = GETAROW running for this directory
header

Next FASTIOV area

Next VSIOV area

Next CATIOV area

Next FLATIOV or VOLIOV area

WORD 14 Core Index Word (Memory Only)

Name Field Description

ASYNCHEADERWRITEF [47:01] 1 = Header will be written to disk
asynchronously

INHEADERCACHEF [46:01] 1 = Header is in the disk file header
memory cache

WASPERMF [45:01] 1 = Header has been, and might still be, in
the directory

Reserved [44:01]

ORIGHEADERVERSIONF [43:04] Original version of this header

CONTENDORSF [39:12] Number of programs waiting for exclusive
file

HEADERCACHESLOTF [27:12] Index in header cache table

COREINDEXF [15:16] Index of header in DISKFILEHEADERS
array in memory

WORD 15 File Structure

Name Field Description

FILESTRUCTURE_SOURCEF

[47:02]

0 = File was created before the
FILESTRUCTURE attribute was
introduced

1 = File was created with direct I/O

2 = File was not created with direct
I/O and the FILESTRUCTURE value
was not explicitly specified

3 = File was not created with direct
I/O and the FILESTRUCTURE value
was explicitly specified

 Disk File Headers

8600 0056–408 C–21

Name Field Description

ROWTAILF [45:18] Number of unused bytes in the last
sector of each area of a file with the
FILESTRUCTURE value of STREAM

SECTORSIZEF [27:20] Sector size in bytes (A value of 0
implies 180)

FILESTRUCTUREF

 ALIGNED180FS

 STREAMFS

 BLOCKEDFS

[07:08]

 0

 1

 5

FILESTRUCTURE attribute

ALIGNED180

STREAM

BLOCKED

WORD 16 DRC System Header Information (Memory Only)

Name Field Description

DRCUSERCOUNTF [47:12] Number of MCP DRC functions using the
header

TEMPFILEOWNERSNRF [35:12] For temporary files, stack number charged
for sectors controlled by the file

FAMILYLOCF [23:24] For permanent files, family locator of
family entry charged for the file

WORD 17 Miscellaneous

Name Field Description

LOCKEDFILEF [47:01] 1 = File has a LOCKEDFILE value of TRUE

CLEARAREASF [46:01] 1 = File has a CLEARAREAS value of TRUE

Reserved [46:46] Unused

Area Address Words for Version 6 Headers

The area address words follow the fixed data area; one word for each area (no more than
1000). NUMROWSF in the fixed data area gives the total number of area address words
that the header has (zero or more). ALLOCATEDROWF in each area address word
indicates if space has been allocated to an area.

Name Field Description

DMLOCKBITSF

 DMREADLOCKF

 DMWRITELOCKF

[47:02]

[47:01]

[46:01]

DMS usage

Disk File Headers

C–22 8600 0056–408

Name Field Description

DKIADORWLOF [45:01] 1 = Write lock-out

DKDELETEDF [44:01] 1 = Family member on which the area
resides has been deleted by an RC

ALLOCATEDROWF [43:01] 1 = Space allocated for the area

INDEXWASSETF [42:01] 1 = Family index was set

FAMILYINDEXF [41:08] Family index of family member on which
the area is or will be located

ACTIVEROWF

[33:01] 1 = Family member on which the area
resides is online

SEGADDRESSF [32:33] Sector address

Optional Attribute Words for Version 6 Headers

The optional attribute words (zero or more) follow the area address words. Depending on
the size of the attribute value, an optional attribute word either contains the value of the
attribute or points to an area in the header data area where the attribute value can be
found. The number of optional attribute words in the header is given by
NUMOPTIONALATTSF in the header fixed data area. The optional attribute words area
can contain unused words (unused words have HAAVAILF set). The unused words are
included in the value stored in NUMOPTIONALATTSF.

Name Field Description

HAAVAILF [47:01] 1 = Word is available

HAHOWSTOREDF

 HAFIELDV

 HAWORDLISTV

 HABYTELISTV

 HA16BITBYTELISTV

[46:05]

 0

 1

 2

 3

How ATTRIBUTE is stored

Field; value in HAVALUEF

Word list; size in words in
HASIZEF

Byte list; size in bytes in
HASIZEF

16-bit byte list; size in units of
16 bits in HASIZEF

 Disk File Headers

8600 0056–408 C–23

Name Field Description

HANUMF

 HASECGUARDV

 HAUSERINFOV

 HANOTEV

 HAWARNINGSV

 HAACCESSRESTRICTIONV

 HALICENSEKEYV

 HARELEASEIDV

 HANAMEDATTRIBUTESV

 HAPHYSICALMODEV

[41:10]

 2

 3

 4

 5

 6

 7

 8

 9

 10

Attribute number

Security guard (byte list)

USERINFO attribute (field or
one-word list)

NOTE attribute (byte list)

WARNINGS attribute (16-bit
byte list)

File access restriction mask
(field or one-word list). Refer to
the Header Data Area for
further information.

LICENSEKEY attribute (byte
list)

RELEASEID attribute (byte list)

User-defined disk file attributes
(UDDFAs) (byte list). Refer to
the Header Data Area for
further information.

New physical mode
(EXTMODE attribute) (field)

Disk File Headers

C–24 8600 0056–408

Name Field Description

 HANFTRECV

 HANFTFILEKINDV

 HADOCUMENTTYPEV

 HAPERMITTEDACTIONSV

 HADOCUMENTTYPEPARAMSV

 HANFTCSUMV

 HACODEFILEINFOV

 HACODFILESECURITYV

 HACODEFILEHANDLINGV

 HAIDENTITY V

 HACCSVERSIONV

 HAKEYEDIOINFOV

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

30-sector record number that a
Native File Transfer (NFT) copy
has reached (field or one word
list)

For NFT, original FILEKIND
(field or one word list)

DOCUMENTTYPE attribute
(field)

PERMITTEDACTIONS attribute
(field)

Document type optional
parameters (byte list)

Checksum for NFT (one word
list)

Copy of code file SEG0 record
(word list)

Code file security information
(word list). Refer to Header
Data Area for further
information.

Special handling information
for code files (field or one-word
list). Refer to Header Data Area
for further information.

Code file identity (byte list)

CCSVERSION file attribute
(field)

KEYEDIOII information (byte
list)

HAVALUEF [31:32] Attribute value for field type

HASIZEF [31:16] Number of entries in list for list
type attributes;
HOWSTOREDF gives the
units.

HAINDEXF [15:16] Word index of the start of the
list in the header data area for
list type attributes (the index is
from the start of the header)

 Disk File Headers

8600 0056–408 C–25

Header Data Area for Version 6 Headers

The header data area (which might not be present) contains the values for those optional
attributes whose values do not fit into the attribute words themselves. Additionally, the
TITLE attribute, if present, is stored in this area. Attributes can appear in any order and
are not necessarily in the same order that their attribute words appear in the optional
attribute area. The area can contain unused words. If so, they will be the last words in
the area. The number of unused words is given by HDRAVAILSPACEF in the header
fixed data area.

The layouts of selected optional attribute values that are stored in the header data area
follow.

ACCESSRESTRICTION Optional Attribute

Reserved [47:45]

READONLYFILEF [02:01] File is read-only.

RESTRICTEDFILEF [01:01] File is restricted.

MUSTBESECURITYADMINF [00:01] Access is restricted to security
Administrator.

User-Defined Disk File Attributes (UDDFAs)

Count Number of UDDFAs plus 1 (2 bytes)

UDDFA structure

Length of UDDFA (2 bytes)

Characteristics (2 bytes)

 [13:1] WasRead
 [12:2] Read access
 [10:1] WasWritten
 [09:2] Write access
 [07:1] HasDefault
 [06:4] DataType
 [02:1] Boolean value
 [01:1] Default Boolean value
 [00:1] Unused

Length of the attribute name (1 byte)

Name of attribute (number of bytes specified by name length)

Default value length (2 bytes, if any)

Default value (if any)

Value length (2 bytes, if any)

Value (number of bytes specified by value length, if any)

Additional UDDFA
structures (if any)

End marker Value = 0 (2 bytes)

Disk File Headers

C–26 8600 0056–408

For additional information about the preceding fields and how to use UDDFAs, refer to
the File Attributes Reference Manual.

CODEFILESECURITY Optional Attribute

WORD 0

 Reserved

 HDRTASKINGPROGRAMF

 HDRSECADMINPROGRAMF

 HDRPRIVILEGEDPROGRAMF

[47:46]

[02:01]

[01:01]

[00:01]

Unused

1 = Program has tasking
privileges.

1 = Program has security
administrator privileges.

1 = Program is privileged.

WORD 1

 Reserved

 HDRTASKINGTRANSPARENTF

 HDRSECADMINTRANSPARENTF

 HDRTRANSPARENTPRIVF

[47:46]

[02:01]

[01:01]

[00:01]

Unused

1 = Program has tasking with
transparent privileges.

1 = Program has transparent
security administrator privileges.

1 = Program has transparent
privileges.

CODEFILEHANDLING Optional Attribute

Reserved [47:41] Unused

HDRONEONLYIF [06:01] 1 = Program has been marked as
ONEONLY.

HDRCONTROLPROGRAMF [05:01] 1 = Program is a control program.

HDRAUTOSUPPRESSF [04:01] 1 = Automatically suppress program
MIX display.

HDRRESIDENTPROGRAMF [03:01] 1 = Program is a resident program.

HDRSDIHALTF [02:01] 1 = A code file is targeted for a gamma
SDI halt.

HDRLOCKPROGRAMF [01:01] 1 = Program should be locked when
initiated.

CODEFILETODFHF [00:01] 1 = Code file handling bits move to
header from SEG0.

CHECKSUM for Version 6 Headers

The last word in disk file headers (HDR[HDRBLOCKLENGTH(HDR) –1]) contains the
header CHECKSUM. It is valid only for headers on disk.

 Disk File Headers

8600 0056–408 C–27

Version 7 Disk File Header Layout
This subsection describes the word layouts of the version 7 disk file header.

Version 7 disk file headers have a maximum size of 65,536 words.

Regardless of its size, a disk file header being used by the system in memory is a
monolithic data structure. Similarly, a header is always returned by GETSTATUS directory
requests as a monolithic structure.

However, a version 7 disk file header larger than 2,048 words is segmented into multiple
directory records when it is written to a disk directory file, including directory files
created by certain GETSTATUS directory requests.

Refer to the GETSTATUS/SETSTATUS Reference Manual for information about Request
Type 3 (Directory Calls).

When a header is segmented, additional words of control information are added at
segment boundaries. These words are discarded when a segmented header is
reassembled into a monolithic structure.

Figure C–1 illustrates the structure of an unsegmented header in memory and in a disk
directory.

Figure C–1. Unsegmented Header

Disk File Headers

C–28 8600 0056–408

Figure C–2 shows the structure of a segmented header in memory and in a disk
directory.

Figure C–2. Segmented Header

Disk file headers larger than 2,048 words are written as multiple records to library
maintenance tapes, but without the additional words of control information used for
segmented headers.

In the following layouts, comments included with each field definition are a general
description of the usage of the field and should not be taken as exact definitions.
Additionally, many of the fields related to the maintenance of disk file headers by the
MCP are valid only under limited circumstances. In general, user programs should use
only those header fields that describe the header itself (for example,
HDRBLOCKLENGTHF, HDRFIXEDSIZEF, VERSIONF, and so on) or that correspond to file
attributes.

 Disk File Headers

8600 0056–408 C–29

WORD 0 All Directory Records - Validity, Location, and Size

Name Field Description

MARKERF

 INUSEMARK

 AVAILMARK

 BADAREAMARK

 MCPUSEMARK

 CONTMARK

[47:16]

 4'3F3F'

 4'3C3C'

 4'3A3A'

 4'3939'

 4'3737'

Validity marker

Header, FAST entry, or catalog block

Available record

Bad record

MCPINFO and other records

Continuation segment of a header

HDRBLOCKLENGTHF [31:11] Total size of record in words; must NOT
be used to obtain the total size of a
header. (See HDRLENGTHF and
FLATHDRLENGTHF)

HDRLOCATIONF [20:21] FLAT location of this record (file relative
sector number).

WORD 1 Segmented Header Control 1

This contains information that links to next segment and only exists in header in memory
for first segment.

Name Field Description

HDRCYCLEF [47:04] Incremented modulo 16 each time
header is written so that READER, etc.
can detect cases where not all segments
of a header were successfully written to
disk.

HDRSEGMENTSF [43:08] First header segment only - Total number
of segments in header.

HDRSEGMENTNUMBERF [43:08] Continuation segments only - The
segment number of this segment.

 [35:04] Reserved for future use

NEXTSEGLENGTHF [31:11] Length of next segment in words.

NEXTSEGLOCF [20:21] FLAT location of next segment (file
relative sector number).

Disk File Headers

C–30 8600 0056–408

WORD 2 Segmented Header Control 2

First Header Segment

Name Field Description

HDRTYPEF

 FLATTYPE

 JOBFILETYPE

 DIRSTUBTYPE

 REDIRECTTYPE

[47:08]

 0

 1

 2

 3

Type of header

 Header for file in FLAT

 Job file header in JOBDESC file

 POSIX directory stub

 POSIX redirection header

 [39:07] Reserved for future use

FLATHDRLENGTHF [32:17] For permanent files, HDRLENGTHF is the
length in words of the header the last time
it was read from disk or from a library
maintenance tape or written to disk.

HDRLENGTHF [15:16] Size of header in words. For segmented
headers this is the size of the assembled
header and excludes the intermediate
control and checksum words. This field is
valid for headers in memory, in FLAT
directories, and on Library Maintenance
tapes.

Continuation Header Segments

This information does not exist in header in memory.

Name Field Description

 [47:27] Reserved for future use

HDRSEG0LOCF [20:21] Back pointer to first segment of header
(file relative sector number).

WORD 3 Disk Blocking Information

Name Field Description

BLOCKSIZEF [47:16] Physical BLOCKSIZE

MINRECSIZEF [31:16] Physical MINRECSIZE

MAXRECSIZEF [15:16] Physical MAXRECSIZE

WORD 4 Timestamp; Time(6) Format Currently Not Used.

 Disk File Headers

8600 0056–408 C–31

WORD 5 Header Version and Structure Information

Name Field Description

VERSIONF

 MCPHDRLEVEL

[47:04]

 7

Header format version

The header used in memory by this MCP

NUMOPTIONALATTSF [43:12] Number of optional attribute words

DATAAREAIXF [31:16] Word index of start of header data area

HDRAVAILSPACEF [15:16] Number of available words in header data
area

WORD 6 Header Fixed Size and Title Pointer

Name Field Description

HDRFIXEDSIZEF

 HDRFIXEDSIZEV

[47:08]

 36

Size in words of fixed part of header

Current fixed size

NUMBEROFTITLESF [39:08] Number of TITLEs or links in header

HDRTITLESIZEF [31:16] Size of title area in words

HDRTITLEIXF [15:16] Word index from start of header of title
area

WORD 7 Permanent Disk File Information

Name Field Description

FILESTRUCTURE_SOURCEF

 FSS_PREIMPLEMENTATION

 FSS_DIRECT

 FSS_NONDIRECT_DEFAULT

 FSS_NONDIRECT_EXPLICIT

[47:02]

 0

 1

 2

 3

Used to determine if the file
was created with a changeable
default FILESTRUCTURE. (For
files that were not created with
direct I/O, the default value of
FILESTRUCTURE varies by MCP
release.)

File was created before
FILESTRUCTURE_SOURCE was
recorded.

File was created with direct I/O.

File was not created with direct
I/O and a FILESTRUCTURE
value was not explicitly
specified.

File was not created with direct
I/O and a FILESTRUCTURE
value was explicitly specified.

Disk File Headers

C–32 8600 0056–408

Name Field Description

FILESTRUCTUREF

 ALIGNED180FS

 STREAMFS

 BLOCKEDFS

[45:06]

 0

 1

 5

FILESTRUCTURE attribute value
(SECTORSTREAMFS and
DEPENDENTFS are used by
direct I/O and are never found in
headers).

BLOCKSTRUCTUREF [39:08] BLOCKSTRUCTURE attribute.
Note that catalog blocks still
store FILETYPE.

FILEORGANIZATIONF

 NOTRESTRFO

 RELATIVEFO

 INDEXEDFO

 INDEXEDNOTRESTRFO

 PLIISAMFO

 KEYEDIOIIFO

 KEYEDIOIISETFO

 KEYEDIOIISFFO

[31:08]

 0

 1

 2

 3

 4

 5

 6

 7

FILEORGANIZATION attribute

HDR_RCDUNTSF [23:01] UNITS attribute

0 = WORDS

1 = CHARACTERS

BITSPERMODEF [22:07] Number of bits in a
PHYSICALMODE (EXTMODE)
frame

PHYSICALMODEF [15:16] EXTMODE attribute

 Disk File Headers

8600 0056–408 C–33

WORD 8 Expiration, Genealogy, and File Kind Information

Name Field Description

SAVEFACTORF [47:14] SAVEFACTOR attribute. (Not
enforced by the MCP.)

HDR_GENEALOGYF

 HDR_CYCLE

 HDR_GENVERSN

[33:22]

[33:14]

[19:08]

Corresponds to GENEALOGYF
in the LEB GEN1 word.

CYCLE attribute

VERSION attribute

FILEKINDF [11:12] FILEKIND attribute

WORD 9 Security Information

Name Field Description

SYSTEMFILEF [47:01] 1 if nonremovable, and so forth, system
file.

LOCKEDFILEF [46:01] 1 if nonremovable user file. (LOCKEDFILE
attribute)

PRIVUSERF [45:01] 1 if system file with special restrictions on
CHANGE, REMOVE, and so forth, and on
some file attribute operations.

NONPRIVJOBF [44:01] 1 if initiating MCS forbids privileged user or
security administrator status for job.

NONSYSTEMUSERJOBF [43:01] 1 if initiating MCS forbids system user
status for job.

SENSITIVEDATAF [42:01] 1 if must scrub rows before disk space is
returned to the system.

EOFSCRUBBEDF [41:01] 1 if the row in which EOF lies has been
scrubbed.

PERMITTEDACTIONSF [40:11] PERMITTEDACTIONS attribute.

PUBLICWXF [29:03] Read, write, execute, search permissions
from which SECURITYUSE attribute value
is derived.

KRBRESF [26:01] RESTRICTED KERBEROS restricted file
access

KRBMPF [25:01]

[24:09]

MP + KERBEROS privileged program

Reserved

SECURITYMODEF

 GUARDOWNERF

[15:16]

[15:02]

[13:01]

SECURITYMODE attribute.

Reserved

Guard file also applies to owner.

Disk File Headers

C–34 8600 0056–408

Name Field Description

 USEGUARDFILEF

 SETUSERCODEF

 SETGROUPCODEF

 OWNERRWXF

 OWNERRF

 OWNERWF

 OWNERXF

 GROUPRWXF

 GROUPRF

 GROUPWF

 GROUPXF

 OTHERRWXF

 OTHERRF

 OTHERWF

 OTHERXF

[12:01]

[11:01]

[10:01]

[09:01]

[08:03]

[08:01]

[07:01]

[06:01]

[05:03]

[05:01]

[04:01]

[03:01]

[02:03]

[02:01]

[01:01]

[00:01]

Check Guard file permission.

Set USERCODE of Task to the OWNER
value of the file on execution.

Set GROUPCODE of Task to the GROUP
value of the file on execution.

Reserved

Owner read, write, execute, or search
permissions.

Owner read permission.

Owner write permission.

Owner execute or search permission.

Group read, write, execute, or search
permissions.

Group read permission.

Group write permission.

Group execute or search permission.

Other read, write, execute, or search
permissions.

Other read permission.

Other write permission.

Other execute or search permission.

WORD 10 Creation Timestamp; TIME(6) Format

Name Field Description

CREATIONDATEF [47:16] yyyyddd - 1970000

CREATIONTIMEF [31:32] Time of day in 2.4 microseconds DIV 16

WORD 11 Alter Timestamp; TIME(6) Format

Name Field Description

ALTERDATEF [47:16] yyyyddd - 1970000

ALTERTIMEF [31:32] Time of day in 2.4 microseconds DIV 16

 Disk File Headers

8600 0056–408 C–35

WORD 12 Access Timestamp; TIME(6) Format

Name Field Description

ACCESSDATEF [47:16] yyyyddd - 1970000

ACCESSTIMEF [31:32] Time of day in 2.4 microseconds DIV 16

WORD 13 Read Timestamp; TIME(6) Format

Name Field Description

TS_TIME6_DATEF [47:16] yyyyddd - 1970000

TS_TIME6_TIMEF [31:32] Time of day in 2.4 microseconds DIV 16

WORD 14 Execute Timestamp; TIME(6) Format

Name Field Description

TS_TIME6_DATEF [47:16] yyyyddd - 1970000

TS_TIME6_TIMEF [31:32] Time of day in 2.4 microseconds DIV 16

WORD 15 Attribute Modify Timestamp; TIME(6) Format

Name Field Description

TS_TIME6_DATEF [47:16] yyyyddd - 1970000

TS_TIME6_TIMEF [31:32] Time of day in 2.4 microseconds DIV 16

WORD 16 Copy Source Timestamp; TIME(6) Format

Name Field Description

TS_TIME6_DATEF [47:16] yyyyddd - 1970000

TS_TIME6_TIMEF [31:32] Time of day in 2.4 microseconds DIV 16

WORD 17 Copy Destination Timestamp; TIME(6) Format

Name Field Description

TS_TIME6_DATEF [47:16] yyyyddd - 1970000

TS_TIME6_TIMEF [31:32] Time of day in 2.4 microseconds DIV 16

Disk File Headers

C–36 8600 0056–408

WORD 18 Backup Timestamp; TIME(6) Format

Name Field Description

TS_TIME6_DATEF [47:16] Yyyyddd - 1970000

TS_TIME6_TIMEF [31:32] Time of day in 2.4 microseconds DIV 16

WORD 19 through 21 Currently Not Used

WORD 22 Miscellaneous Fields

Name Field Description

PHYSICALMODESIZEF [47:06] Size of PHYSICALMODE unit in bits

[41:42] Reserved

WORD 23 Miscellaneous Booleans and Row Size Information

Name Field Description

 [47:01] Reserved

WILLDOWNSIZEAREAF [46:01] 1 if closed with DOWNSIZEAREA option.

HDRCATF [45:01] 1 if file is cataloged.

APLMAF [44:01] 1 if APL attribute is set.

SINGLEF [43:01] 1 if all rows must be on the same family
member.

PROTECTIONF [42:01] 1 if PROTECTION attribute value is
PROTECTED.

CHECKEOFF [41:01] 1 if the EOF must be found for a protected
file.

WROTELASTROWF [40:01] 1 if the last allocated row of a protected
file has been written to. Set to 0 by
RELEASEHEADER when the file is closed
properly. It is also set to 0 when the file is
crunched or when CHECKEOFF is set.

CRUNCHEDF [39:01] 1 if the file is crunched.

WILLCRUNCHF [38:01] 1 if the file will be crunched when the last
user releases the header.

AREASIZESETF [37:01] 1 if user explicitly set the AREASIZE and
AREALENGTH file attributes.

PERMANENCYF [36:01] 0 = Temporary file

1 = File header is in the directory

CLEARAREASF [35:01] 1 = To force scrubbing for the file

 Disk File Headers

8600 0056–408 C–37

Name Field Description

SUSPICIOUSEOFF [33:01] A value of 1 indicates that the end-of-file
position should be treated with suspicion,
because the file might have been closed
improperly when created or last updated.

ROWSIZEF [32:33] Number of sectors in each area

WORD 24 Duplicated File Information, and Row Tail and Sector Size
Information

Name Field Description

DUPLICATEDBIT [44:01] 1 if file is duplicated (DUPLICATE attribute)

COPYNUMBERF [43:04] If duplicated, copy number of this file

ROWTAILF [39:20] Number of unused bytes at the end of the
last sector of each full row for files with a
STREAM value for FILESTRUCTURE.

SECTORSIZEF [19:20] For files on disk, the actual sector size, in
bytes.

On library tapes, the sector size in bytes
for which the file is oriented.

WORD 25 Family Index, Number of Areas, and EOF Information

Name Field Description

FILEFAMILYINDEXF [47:08] FAMILYINDEX attribute for entire file
(nonzero if set by user).

NUMROWSF [39:16] Number of row address words.

EOFU [23:24] Bit offset of EOF in any partial last sector
(zero if EOFU is at a sector boundary; see
also EOFV).

WORD 26 EOFV

Number of full sectors in the file assuming that all rows up to and including the row
containing EOF are allocated. Stored as an integer; see also EOFU.

Disk File Headers

C–38 8600 0056–408

WORD 27 Reserved for POSIX File Serial Number

WORD 28 Time Zones

Name Field Description

ACCESSTZF [47:08] Time zone for Access timestamp

ALTERTZF [39:08] Time zone for Alter timestamp

ATTMODIFYTZF [31:08] Time zone for Attmodify timestamp

BACKUPTZF [23:08] Time zone for Backup timestamp

COPYDESTTZF [15:08] Time zone for Copy destination timestamp

COPYSOURCETZF [07:08] Time zone for Copy source timestamp

WORDS 29 Time Zones

Name Field Description

CREATIONTZF [47:08] Time zone for Creation timestamp

EXECUTETZF [39:08] Time zone for Execute timestamp

READTZF [31:08] Time zone for Read timestamp

WORDS 30 through 32 Owner Usercode

Usercode of the OWNER of the file or 48"02005C" for files without an OWNER.

WORD 33 Currently Not Used

WORD 34 Multiuse Word

BD Information Word for Backup Files

Name Field Description

DESTCONTROLF [45:22] See PIB path control word.

BDNAMEDF [23:01] Backup file explicitly named flag

BDSTKNUMF [20:20] Stack number of job

 Disk File Headers

8600 0056–408 C–39

Job Information Word For Job Files

Name Field Description

JOBVALIDITYF [47:01] 0 if from MAKEJOBFILE
1 if from WFL

JFBIT [46:01] 1 if there is a job file to print

PBBITS [45:06] The location of the backup files for the job;
relative bit positions must match those in
BDPBBITS.

 LPWHEREF [45:03] 45->LPDK, 44->LPSRPK, 43-
>LPNAMEDPK

PBREMF [39:01] 1 If a REMLP file was opened.

WFLFLAGSF [38:03] Flags returned by WFL COMPILER and its
task attribute value

 RESF [38:01] 1 if RESOURCE attribute set for job

 BF [37:01] 1 if job has INSTRUCTION statement

 FSF [36:01] 1 if job has FETCH statement

JOBSUMF

 DEFAULT

 CONDITIONAL

 SUPPRESSED

 UNCONDITIONAL

 ABORTONLY

[35:04]

 0

 1

 2

 3

 4

JOBSUMMARY value

NOJOBSUMMARYIOF [31:01] 1 if NOJOBSUMMARYIO is set.

NOSUMMARYOVRDF [30:01] 1 if any of tasks of the job terminated
when HISTORY is not equal to
NORMALEOT.

JSTITLESETF [29:01] 1 if JOBSUMMARYTITLE is set.

JFPNOPDF [28:01] 1 if the job file print should not use print
defaults to disk.

CPRESTARTF [27:01] 1 if there is a checkpoint that reflects
current state of job.

JFCOPIEDF [26:01] 1 if a CPJOBFILE has been created for job

CCRESTARTF [25:01] 1 if job is being rerun with the RERUN
statement.

MANRESTARTF [24:01] 1 if job is to be restarted as the result of a
RESTART system command.

Disk File Headers

C–40 8600 0056–408

Name Field Description

JOBPHASEF

 INJOBQPHASE

 RESTARTPHASE

 RUNPHASE

 PRINTPHASE

[23:04]

 0

 1

 2

 3

Current job phase

JOBMIXNOF [19:20] Mix number of job

Pbit I/O Count For Code Files

Name Field Description

SLCOUNTF [38:08] Count of support libraries references to the
file

D1STACKLINKF [30:15] SNR of first D1 stack (code files).

PBITIOHIATUSF [15:01] Set to 0 when decrement PBITIOCOUNT
to 0.

PBITIOCOUNTF [14:15] Count of pbit I/Os in process against file.

Next Row Word For Directory Files

Name Field Description

 [39:10] Next FASTIOV row

 [29:10] Next VSIOV or ARCIOV row

 [19:10] Next CATIOV row

 [09:10] Next FLATIOV or VOLIOV row

 NOROWV 1023 Flag to indicate row needed

WORD 35 Memory-Only Items

This word contains fields used by the MCP to maintain headers in memory that, for
various reasons, must be in the header and not in the parallel structure used for memory-
only header related items.

 Disk File Headers

8600 0056–408 C–41

This word is zeroed before the header is written to the directory or returned to users.

Name Field Description

ORIGHEADERVERSIONF [35:04] Original version of header read from disk
or tape

BASEUNITF [31:16] Unit number of family base unit

COREINDEXF [15:16] Index of header in DISKFILEHEADERS

Area Address Words for Version 7 Headers

The area address words follow immediately after the fixed portion of the header, one
word per area. FIRSTROWINDEX(HDR) gives the index of the first area address word.

Name Field Description

DMLOCKBITSF [47:02] DMS usage

 DMREADLOCKF [47:01]

 DMWRITELOCKF [46:01]

DKWLOF [45:01] 1 if area is write locked-out

DKDELETEDF [44:01] 1 if family member was deleted by an RC
system command

ALLOCATEDROWF [43:01] 1 if space has been allocated for the area

INDEXWASSETF [42:01] 1 if family index was explicitly set

FAMILYINDEXF [41:08] Index of family member on which space is
(or will be) allocated

ACTIVEROWF [33:01] 1 if family member on which the area
resides is online

SEGADDRESSF [32:33] Sector address of start of area

Disk File Headers

C–42 8600 0056–408

Optional Attribute Words for Version 7 Headers

The optional attribute words (zero or more) follow the area address words. Depending on
the size of the attribute value, an optional attribute word either contains the value of the
attribute or points to an area in the header data area where the attribute value can be
found. The number of optional attribute words in the header is given by
NUMOPTIONALATTSF in the header fixed data area. The optional attribute words area
can contain unused words (unused words have HAAVAILF set). The unused words are
included in the value stored in NUMOPTIONALATTSF. All maintenance of optional
attribute words is done by SETHEADERATTRIBUTE. Additional information about
optional attributes is contained in the description of the WHICH parameter of
GET/SETHEADERATTRIBUTE that follows:

Name

Attribute Number
or Field

Description

HAAVAILF [47:01] 1 if word is available

HAHOWSTOREDF

 HAFIELDV

 HAWORDLISTV

 HABYTELISTV

 HA16BITBYTELISTV

[46:05]

 0

 1

 2

 3

How the attribute is stored

Field; value in HAVALUEF

Word list; size in words in HASIZEF

Byte list; size in bytes in HASIZEF

16-bit byte list; size in units of 16 bits
in HASIZEF

HANUMF [41:10] Attribute number; see “Optional
Attribute Numbers” later in this
description.

HAVALUEF [31:32] Attribute value for field type

HASIZEF [31:16] Number of entries in list for list type
attributes; HOWSTOREDF gives the
units.

HAINDEXF [15:16] Word index in header data area of
start of list for list type attributes

Optional Attribute Numbers

The following are used as values for HANUMF. Where appropriate, the layout of an
optional attribute value is given following its optional attribute number.

Name
Attribute

Number or Field Description

HASECGUARDV 2 SECURITYGUARD attribute
(byte list)

HAUSERINFOV 3 USERINFO attribute (field or
one-word list)

 Disk File Headers

8600 0056–408 C–43

Name
Attribute

Number or Field Description

HANOTEV 4 NOTE attribute (byte list)

HAWARNINGSV

5

WARNINGS attribute (16-bit
byte list)

HAACCESSRESTRICTIONV

 KERBEROSACCESSF

 READONLYFILEF

 RESTRICTEDFILEF

 MUSTBESECURITYADMINF

6

[03:01]

[02:01]

[01:01]

[00:01]

File access restriction mask
(field or one-word list)

Value of KERBEROSACCESS
file attribute

1 if file is read only

1 if file is restricted

1 if access is restricted to the
security administrator

HALICENSEKEYV 7 LICENSEKEY attribute (byte
list)

HARELEASEIDV 8 RELEASEID attribute (byte
list)

HANAMEDATTRIBUTESV 9 User-defined disk file
attributes (UDDFAs) (byte
list)

HAPHYSICALMODEV 10 EXTMODE attribute (field)
(Version 6 header only)

HANFTRECV 11 30-sector record number that
a Native File Transfer (NFT)
copy has reached (field or
one-word list)

HANFTFILEKINDV 12 Original value of FILEKINDF
(NFT COPY usage only) (Field
or one-word list)

HADOCUMENTTYPEV 13 DOCUMENTTYPE attribute
(field)

HAPERMITTEDACTIONSV 14 PERMITTEDACTIONS
attribute (field) (Version 6
header only)

HADOCUMENTTYPEPARAMSV 15 Parameters associated with
DOCUMENTTYPE (byte list)
(FTAM usage only)

HANFTCSUMV 16 Checksum for NFT COPY &
VERIFY (one word list)

HACODEFILEINFOV 17 Copy of code file SEG0
record (word list)

Disk File Headers

C–44 8600 0056–408

Name
Attribute

Number or Field Description

HACODEFILESECURITYV

 CODEFILESECURITYSIZEV

 Word 0

 HDRKERBEROSMPF

 HDRTASKINGPROGRAMF

 HDRSECADMINPROGRAMF

 HDRPRIVILEGEDPROGRAMF

 Word 1

 HDRTASKINGTRANSPARENTF

HDRSECADMINTRANSPARENTF

 HDRTRANSPARENTPRIVF

18

 2

[04:01]

[02:01]

[01:01]

[00:01]

[02:01]

[01:01]

[00:01]

Code file security information
(word list)

Size of attribute value in
words.

1 = Program is marked with
MP + KERBEROS privilege.

1 = Program has tasking
privileges.

1 = Program has security
administrator privileges.

1 = Program is privileged.

1 = Program has tasking with
transparent privileges.

1 = Program has transparent
security administrator
privileges.

1 = Program has transparent
privileges.

HACODEFILEHANDLINGV

 HDRONEONLYF

 HDRCONTROLPROGRAMF

 HDRAUTOSUPPRESSF

 HDRRESIDENTPROGRAMF

 HDRSDIHALTF

 HDRLOCKPROGRAMF

 CODEFILETODFHF

19

[06:01]

[05:01]

[04:01]

[03:01]

[02:01]

[01:01]

[00:01]

Code file handling
information (field or one-word
list)

HAIDENTITYV 20 Identity of code file (byte list)

HACCSVERSIONV 21 CCSVERSION file attribute
(field)

Values for CCSVERSION
attribute are defined as
mnemonics. Refer to
CCSVERSION in the File
Attributes Reference Manual.

 Disk File Headers

8600 0056–408 C–45

Name
Attribute

Number or Field Description

HAKEYEDIOINFOV 22 KEYEDIOII information (byte
list)

HASIZEINFOV

 HDR_SIZEMODE

 HDR_SIZEOFF

 HDR_SIZESZ

23

[47:16]

[31:16]

[15:16]

Information when
BLOCKSTRUCTURE value is
VARIABLEOFFSET (one-word
list)

SIZEMODE attribute

SIZEOFFSET attribute

SIZE2 attribute

HAJOBORDERV

 JOBORDERF

24

[19:20]

Used by CONTROLLER to
order JOBTABLE during
JOBDESC file complement
(field)

HAJOBORGUNITV 25 Originating unit of job (field)

HACHECKPOINTNUMV 26 Checkpoint number (field)

HAJOBFILEPPBV 27 For job file, PPB with job
attributes (word list)

HAUSERCODESV 28 Usercodes for OWNER and
GROUP (word list - obsolete)

HABADINFOV 29 Sector and row information
about errors that occurred
when library maintenance
copied file from tape to disk
(word list)

There are separate formats
for 24-byte and 12-byte
attributes.

If the size of the attribute is 24 bytes, then the format is as follows:

Word 0 Total number of errors library maintenance
encountered

Word 1 Total number of sectors that were not copied to disk
correctly

Word 2 Number of the area in which the first error occurred

Word 3 Sector number relative to start of area where the first
error occurred

Disk File Headers

C–46 8600 0056–408

If the size of the attribute is 12 bytes, then the format is described as follows:

 Word
[47:24]

[23:24]

Count of errors

Count of sectors in error

 Word 1
[47:16]

[31:32]

Row number of row with first
error

Sector number within row of
first error

Name
Attribute

Number or Field Description

HAGROUPV 31 GROUP usercodes (or
48"02005C" for files without a
group usercode)

HAPRODUCTV 32 PRODUCT attribute (byte list)

HASYSTEMTYPEV 33 System type (byte list)

HACAPABILITYV 34 Capability list (word list)

HASMBLIMITSV 35 SMB access limits (field)

HAMIXEDCASEIDV 36 SMB mixed case id (byte list)

HAGRANULATEDPRIVV 37 Code file granulated privilege
information (2-word list).

 Disk File Headers

8600 0056–408 C–47

Name
Attribute

Number or Field Description

 GRANULATEDPRIVSIZEV

 Word 0

2

[47:1]

[46:1]

[45:1]

[44:1]

[43:1]

[42:1]

[41:1]

[40:1]

[39:1]

[38:1]

[37:1]

[36:1]

[35:1]

[34:1]

[33:1]

[32:1]

Size of attribute in words

Granulated privilege

1 = Program has the
LOCALCOPY privilege.

1 = Program has the
CREATEFILE privilege.

1 = Program has the
REMOVE privilege.

1 = Program has the WRITE
privilege.

1 = Program has the READ
privilege.

 1 = Program has the
EXECUTE privilege.

1 = Program has the
CHANGE privilege.

1 = Program has the
CHANGESEC privilege.

1 = Program has the
USERDATA privilege.

1 = Program has the
GETSTATUS privilege.

1 = Program has the
SETSTATUS privilege.

1 = Program has the
LOGINSTALL privilege.

1 = Program has the
LOGOTHERS privilege.

1 = Program has the
SYSTEMUSER privilege.

1 = Program has the IDC
privilege.

1 = Program has the
GSDIRECTORY privilege

 Word 1 Granulated privilege
transparency (same layout as
word 0.)

Disk File Headers

C–48 8600 0056–408

Name
Attribute

Number or Field Description

HASERVICELISTV 38 SERVICELIST attribute (byte
list) format:

byte 0,1: Version
signature =
4"0224".

byte 2, 3: Length in
bytes
(inclusive).

byte 4, 5: Filler =
4"0000".

byte 6 Number of
service
names.

Byte 7. .n: List of names
using
substandard
form.

HAALTERNATEGROUPSV

42 Alternate Groups attribute in
Alternate Groups Standard
Form (byte list)

HAPROPSECTOFILESV

43

[31:32]

PropagateSecurityToFiles
attribute (field)

0=Don’t propagate
1=Propagate

HAPROPSECTODIRSV

44

[31:32]

PropagateSecurityToDirs
attribute (field)

0=Don’t Propagate
1=Propagate

HAPBDATAV 50 Printerbackupdata attribute
(word list)

 Disk File Headers

8600 0056–408 C–49

Header Data Area for Version 7 Headers

The header data area contains the value of those optional attributes whose values do not
fit into their attribute words. Attribute values can appear in any order in this area and are
not necessarily in the same order in which their attribute words appear in the optional
attribute area. The area can contain unused words. If so, they will be the last words in
the area. The number of unused words is given by HDRAVAILSIZEF in the fixed portion
of the header. Unused words are always zero. DATAAREAIXF points to the start of the
data area. The header data area is maintained by SETHEADERATTRIBUTE.

A file with a version 7 disk file header cannot be converted to a version 6 disk file header
if the end-of-file exceeds the end-of-file permissible for a version 6 disk file header.

CHECKSUM for Version 7 Headers

The last word in directory records contains the record checksum. The only exception is
available records, which have their checksums in Word 1. For segmented headers, the
checksum word exists in the header in memory only for the last segment. Checksums
are valid only for headers on disk or Library Maintenance tapes. The procedure WRITER
has an example of how the checksum is computed.

Disk File Headers

C–50 8600 0056–408

8600 0056–408 D–1

Appendix D
Format of Library Maintenance Tapes

Library maintenance tapes are created in compact form. Library maintenance can read
two forms: standard tape label form and compact form. The standard tape label form has
ANSI69 or ANSI87 multi-file, multi-volume labels. The compact form does not comply
with the ANSI multi-file label standards.

For both forms of library maintenance tapes, the first file on the tape is the tape
directory. This tape directory has a file name of the form <tapename>/FILE000 and is
always written with standard ANSI69 or ANSI87 labels.

The first word of all blocks except the label records (that is, directory blocks, disk file
header blocks, fixed blocks, and disk file data blocks) written to library maintenance tapes
contains a bit code to indicate which form the tape was written in. If bit 45 of the first
word of the first block of the tape directory is OFF, the tape was written completely with
standard labels. If bit 45 of the first word of the first block of the tape directory is ON, the
tape was written in compact form.

The format of a library maintenance tape can also be determined from the value stored in
the USYST (tape type) field of the VOL1 (volume header) label.

Value Meaning Type of Tape

3 The tape is a library maintenance
tape with standard labels.

Open-reel previous to Mark 4.1
release

6 The tape is a library maintenance
tape in compact form.

Half-inch cartridge, 8-mm,
open-reel, or digital linear tape
(DLT)

7 The tape is a fixed-block library
maintenance tape in compact
form.

Quarter-inch cartridge tape

For library maintenance tapes, the BLOCKSIZE file attribute value in words is located in
the HDR2 label of the tape file that follows the tape directory. When library maintenance
is writing to a tape, the BLOCKSIZE value it uses depends on three things:

• If you specify a BLOCKSIZE value for that tape in the WFL “COPY” statement then
library maintenance uses that value.

• If the installation has used the SYSOPS LMBLOCKSIZE system command to
establish a non-zero default blocksize then library maintenance uses that value.

• Library maintenance uses a BLOCKSIZE value depending on the density of the tape.

Format of Library Maintenance Tapes

D–2 8600 0056–408

Any specified BLOCKSIZE value that is not a multiple of 900 will be rounded up to the
next multiple of 900. The BLOCKSIZE value actually used will be the rounded value plus
one. This BLOCKSIZE value is stored in the HDR2 label of the tape file that follows the
tape directory. However, if that value is 901 words, a value of 1024 is stored in the label.

The following table lists the densities and their corresponding default BLOCKSIZE values:

Density Default
Value

BLOCKSIZE Value in Label

800 BPI (Reel) 900 1024

1250 BPI (Quarter-inch cartridge) 2700 2701

1600 BPI (Reel) 900 1024

6250 BPI (Reel) 2700 2701

11000 BPI (8-millimeter) 4500 4501

38000 BPI (Half-inch cartridge) 4500 4501

FMT36TRK (Half-inch cartridge) 4500 4501

FMTAIT 4500 4501

FMTAIT2 4500 4501

FMTDLT10 4500 4501

FMTDLT20 4500 4501

FMTDLT35 4500 4501

FMTDLT40 4500 4501

FMTST9840 4500 4501

FMTDDS 4500 4501

FMTDDS2 4500 4501

FMTDDS3 4500 4501

FMTDDS4 4500 4501

The contents of volume header labels are illustrated in Appendix E, “Standard Tape Label
Formats.”

Note: The format of the library maintenance tapes can be changed without notice. You
should not rely on these specifications to read or duplicate the library maintenance tapes.

Format of Library Maintenance Tapes with Standard
Labels

The basic format of a library maintenance tape with standard labels is an ANSI multifile
file of n + 1 files, where n is the number of files copied. If the tape name is MTA, the
files are named MTA/FILE000, MTA/FILE001, and so forth, with MTA/FILE000 being the
tape directory.

 Format of Library Maintenance Tapes

8600 0056–408 D–3

The format of a library maintenance tape with standard labels is as follows:

Volume label or labels

Header labels

 tapemark

Tape directory (one or more blocks of 901 words or less)

 tapemark

End-of-file labels

 tapemark

Header labels

 tapemark

First copied file. The first block contains the disk header.
The file data follows in 901-word or 2701-word blocks, except
that blocks corresponding to the ends of disk rows (areas)
might be shorter.

tapemark

End-of-file labels

 tapemark
 .
 .
 .

More copied files.
 .
 .
 .

EOV1 (if going to another volume)

 tapemark

 tapemark

The first word in all records is a transaction number. In the tape directories, the number
in the first record is –1. In each succeeding record, the number is decremented by 1. The
first record (the disk file header) in each of the copied files has a transaction number of 1.
In each succeeding record, the number is incremented by 1.

Format of Library Maintenance Tapes

D–4 8600 0056–408

Format of Library Maintenance Tapes in Compact
Form

The beginning of a library maintenance tape in compact form is similar to that of a library
maintenance tape with standard labels. The tape directory has standard labels, and the
first disk file copied is preceded by standard HDR labels with the file name in the form
<tapename>/FILE001.

However, the remaining files copied to the tape (except the last one) are separated only
by a single tapemark; EOF and HDR labels do not appear. The last file on the tape is
terminated by either EOV or EOF labels, depending on whether or not another volume is
needed.

If a tape is a fixed-block tape and the disk file header is longer than 84 words (504 bytes),
two bytes of filler are written between bytes 504 and 505 of the header (where the bytes
of the header are numbered starting with 1).

The format of a library maintenance tape in compact form is as follows:

Volume labels

Header labels

 tapemark

Tape directory (one or more blocks of 901 words or less)

 tapemark

End-of-file labels

 tapemark

Header labels

 tapemark

First copied file. The first block contains the disk file
header, and can be up to 2049 words long. The remaining blocks
(if any) contain the data for the file. These blocks range in
size from 31 words up to the maximum BLOCKSIZE indicated in the
HDR2 label for FILE001.

 tapemark

Next copied file (header and data)

 tapemark

Next copied file (header and data)

 Format of Library Maintenance Tapes

8600 0056–408 D–5

 .
 .
 .

(More copied files and tapemarks)
 .
 .
 .

 tapemark

End-of-file labels if no more volumes, otherwise end-of-volume
label

 tapemark

 tapemark

The first word of all directory, disk file header, and disk file data blocks is a code word. Bit
46 has the value 1 if the block is from the tape directory, or the value 0 if the block is not
from the tape directory. Bit 45 has the value 1 if the tape is written in the compact
format, or the value 0 if the tape is written with standard labels.

The field [44:20] contains a file number code. In directory blocks, the file number code is
one less than the number of the file that follows the directory. This field always has the
value 0 in the directory on the first reel or volume of library maintenance tapes. In disk
file header and disk file data blocks, this field contains the file number corresponding to
nnn in the file name <tapename>/FILEnnn for standard label library maintenance tapes.

The field [24:25] contains the block number of the block in that file or directory. The block
numbers for the directory and for each file start from 1.

Note: A program can read the tape directory of a library maintenance tape as a labeled
tape file. However, the data files or their disk file headers on a library maintenance tape
in the compact form can be read only if the program assigns the LABEL attribute a value
of OMITTEDEOF.

Format of Library Maintenance Tapes

D–6 8600 0056–408

Format of the Tape Directory
The tape directory consists of one or more records. Each record is up to 901 words long
and consists of a one-word block number and one word of link information, followed by
up to 899 words of file names in standard form. All records are completely packed; a file
name can be split across directory records. The link word is used only for multivolume
library copies and is described later in this appendix.

The external file name is written in standard form, which is structured as follows:

Character Description

1 Total number of characters in the whole string (self-inclusive)

2 Security byte

Bits [1:2]:

 2 System file (“*” specified)

 3 Usercode specified

 (The first identifier is the usercode.)

3 Number of identifiers in external file name

4 Identifiers, each preceded by one character giving the length of that
identifier (not self-inclusive)

For example, the external file name SYMBOL/MCP becomes the following in standard
form, where 48 means to construct the following string from 4-bit input, but treat the
results as 8-bit:

48"0E020206" 8"SYMBOL" 48"03" 8"MCP"

The end of the file names in the directory is flagged by a name character count field of
0 (zero).

The tape directory of library maintenance tapes produced by the Mark 4.1 release and
later System Software Releases (SSRs) also contains a list of disk family names that
indicate the original disk families from which the files are copied. This list of family
names starts in Word 1 of the directory record that follows the file name list. The family
name list consists of one or more four-word entries. The family name list is terminated
by a word of all zeroes. Each family name entry is formatted as follows:

Word Meaning

0 Count of files copied from the named family.

1–3 Name of family in substandard form. If the name is all zeroes, the
original family name is unknown—the file was copied to this tape by
Native File Transfer, or from a CD-ROM, or from a tape which was
created by a Mark 4.0 or earlier MCP.

 Format of Library Maintenance Tapes

8600 0056–408 D–7

The order and counts in the family name list correspond to the file names appearing at
the beginning of the directory. For example, if files A and B were copied from DISK, R
was copied from PACK, and X was copied from DISK, the file names would appear in the
order A, B, R, X, 0 (zero), and the family name list would appear as 2 DISK, 1 PACK,
1 DISK, 0 (zero).

To optimize reloading of specified files, each new volume contains a partial copy of the
tape directory, which contains entries for those files not copied on the preceding reels.
Thus, a COPY of a file copied to the third volume, for example, can be started on the
third volume because library maintenance can determine where the requested file is
from the partial directory on the third volume.

The link information word in Word 1 of the first block in the directory contains two fields,
as follows:

CHARCNT [47:16]
SKIPF [25:10]

CHARCNT and SKIPF are needed because the directories of the succeeding volumes are
copied from the pertinent records of the master directory. That means that the first
record in any but the first directory begins, in general, with some names not pertinent to
this volume. CHARCNT indicates how many characters to jump over (because the
directory records are often split in the middle of a standard form external file name) to
get to the beginning of the first complete file name. SKIPF specifies how many complete
file names to skip over to access the name of the first complete file copied to this
volume.

This next example is for a multivolume COPY operation with the following conditions:

• The COPY operation copied n files.

• Two volumes were used.

• The (k–-1)th file was being written at the time of volume change.

• Two directory records were used—one for the name list and one record for the
family name list.

• File k is the third complete name in the second directory record, but there are six
characters ending the last standard form name in the first directory record before the
first complete name.

 Reel 1

 file 0

 1st directory record Names: 1 through start of k-3
 2nd directory record Names: end of k-3 through n
 3rd directory record Family name list

 file 1
 .
 .
 .

Format of Library Maintenance Tapes

D–8 8600 0056–408

 file k-1 (start)
 Reel 2

 file k-1 (end)

 2nd directory record Names: end of k-3 through n
 3rd directory record Family name list (excludes family
 names for files on first reel).

 file k
 .
 .
 .
 file n

Note that the tape directory on any but the first volume is never the first tape file on that
volume. Reel switch is sensed within a file, and the remainder of that file is written onto
the new volume before the tape directory for that volume. The split file is logically
considered to be on the volume on which it was begun.

The directory on succeeding volumes is again called MTA/FILE000, but the subsequent
files are numbered sequentially, continuing where the preceding volume left off.

Note: Files contained entirely on a succeeding volume have an indication in their label
records that this is their first FILESECTION. Only files actually split over two volumes
have a FILESECTION 2 designation in their label records.

8600 0056–408 E–1

Appendix E
Standard Tape Formats

This appendix presents the standard tape formats used on MCP systems.

The figures in this appendix use the following notations:

Notation Meaning

* Tape mark

** Double tape mark separated by an interrecord gap

EOF End-of-file code

EOV End-of-volume code

RFE Reserved for expansion

RFS Reserved for standard

Unlabeled Tapes
Figure E–1 shows the formats of an unlabeled single-file tape and an unlabeled multifile
tape.

Figure E–1. Unlabeled Single-File Volume and Unlabeled Multifile Volume Formats

Standard Tape Formats

E–2 8600 0056–408

ANSI X3.27-1969 (ANSI69) Tapes
Figures E–2 through E–9 show the formats of the following types of ANSI X3.27-1969
(ANSI69) tape labels:

• Single-file, single-volume tape

• Multivolume-file and multifile-volume tape

• Multifile, multivolume tape

• Volume header

• File header 1

• File header 2

• User header and trailer labels

Figure E–10 illustrates the format of an ANSI69 scratch tape.

User header labels can appear immediately after HDR2, and user trailer labels can appear
after either EOF2 or EOV1.

ANSI69 tapes are written in EBCDIC code.

Figure E–2. ANSI69 Single-File, Single-Volume Format

 Standard Tape Formats

8600 0056–408 E–3

Figure E–3. ANSI69 Multivolume-File and Multifile-Volume Formats

Standard Tape Formats

E–4 8600 0056–408

Figure E–4. ANSI69 Multifile, Multivolume Formats

 Standard Tape Formats

8600 0056–408 E–5

Figure E–5. ANSI69 Volume Header—Non-Scratch

Note: The four characters of the SSR digit and SSR level number fields combine to
identify the SSR level of the MCP that was active when the tape was created. For
example, a tape created on a system running a 41.2 MCP stores the following values in
characters 32 through 35 of its volume header: “0 4 0 1”.

Standard Tape Formats

E–6 8600 0056–408

Figure E–6. ANSI69 Volume Header—Scratch

Note: The MCP determines whether a tape is a scratch tape by examining character 80
of the volume header. If character 80 is “0,” the MCP treats the tape as a scratch tape.
In non-scratch ANSI69 volume headers, the character 80 is “1.”

Figure E–7. ANSI69 File Header 1 Format

 Standard Tape Formats

8600 0056–408 E–7

A first end-of-file label is the same as a first file header, except that the first four
characters contain the letters EOF1 and the block and record count contain meaningful
information.

An end-of-volume label is the same as the first end-of-file label, except that the first four
characters contain the letters EOV1 and the block and record counts contain meaningful
information.

Figure E–8. ANSI69 File Header 2 Format

Standard Tape Formats

E–8 8600 0056–408

A second end-of-file label is the same as the second file header, except that the first four
characters contain the letters EOF2.

Figure E–9 illustrates the formats of user header and trailer labels on ANSI69 tapes. User
header labels can appear immediately after the HDR2 label record and before the tape
mark, and user trailer labels can appear after either EOF2 or EOV1 and before the tape
mark.

Figure E–9. ANSI69 User Header and Trailer Label Formats

Figure E–10 shows the format of an ANSI69 scratch tape.

ANSI69 SCRATCH TAPE FORMAT

VOL1

Figure E–10. ANSI69 Scratch Tape Format

 Standard Tape Formats

8600 0056–408 E–9

B 3500 USASI Tapes
Figures E–11 and E–12 show the volume header format and the file header 1 format for
B 3500 USASI tape labels.

Figure E–11. B 3500 Volume Header Format

FILE HEADER1

'HDR1' SPACES FILE IDENTIFIER
SET IDENTIFIER

[MULTIFILE
IDENTIFIER]

FILE SECTION
NUMBER

(VOLUME NUMBER)

NAME OR
'X0' FOR17
FORSCRATCH TAPES

FILE SEQUENCE
NUMBER('0001')

GENERATION
NUMBER

(OPTIONAL)

GENERATION
VERSION

(OPTIONAL)

CREATION
DATE

(bYYDDD)

EXPIRATION
DATE

(bYYDDD)

ACCESSIBILITY
(SPACE)

BLOCK COUNT
'OOOOOO'

RECORD CODE
(OPTIONAL)

'BURbbb'
(OPTIONAL) SPACES

1 5 14 22 28 32

32 36 40 42 48

48 54 55 61 68 74 80

Figure E–12. B 3500 File Header 1 Format

Standard Tape Formats

E–10 8600 0056–408

ANSI87 Tapes
Figures E–13 through E–24 show the ANSI87 formats of the following types of tape
labels:

• Multivolume file

• Multifile volume

• Volume header 1

• Volume header 2

• Volume header 3

• Volume Header 4

• Volume Header 5

• File header 1

• File header 2

• File header 3

• Scratch Tape

 Standard Tape Formats

8600 0056–408 E–11

Figure E–13. ANSI87 Multivolume-File Format

Standard Tape Formats

E–12 8600 0056–408

Figure E–14. ANSI87 Multifile, Multivolume Format

 Standard Tape Formats

8600 0056–408 E–13

1 5 11 12 25 38

38 52 80

RF S
(SPACES)

RF S
(SPACES)

VOLUME 1 HEADER

'VOL1'
VOLUME
SERIAL

NUMBER

'4'
OWNER

IDENTIFIER

NOT IMPLEMENTED
(SPACES)

4 ANSI87

IMPLEMENTATION
IDENTIFIER

ACCESSIBILITY
0 SCRATCH
E SCRATCH, DATA,

SECURITY ERASED
SPACE NON SCRATCH

25:6 'MCP/ AS'
31:2 LABEL LEVEL=4
33:2 FIRST TWO DIGITS OF SSR
35:3 CYCLE

Figure E–15. ANSI87 Volume Header 1 Format

Standard Tape Formats

E–14 8600 0056–408

Figure E–16. ANSI87 Volume Header 2–Non-Scratch

 Standard Tape Formats

8600 0056–408 E–15

Figure E–17. ANSI87 Volume Header 2–Scratch

Note: If the FAMILY OWNER LENGTH field (characters 32 and 33) of volume header 2
contains spaces or a zero, the MCP ignores the FAMILY OWNER field (characters 34–
50).

1 5 80

'VOL3' SECURITYGUARD

Figure E–18. ANSI87 Volume Header 3–Non-Scratch

Note: If characters 51–53 of the volume 2 label are 0 but the system needs to store
information in subsequent volume labels, such as the volume 5 label, then the volume 3
label will contain 76 blank characters. A tape includes a volume-header-3 label if a
nonzero value appears in the SECURITYGUARD LENGTH field (characters 51–53) of
volume header 2. A volume-header-3 label can vary in length from a minimum of 80
characters to a variable maximum number of characters that depends on the length of
the SECURITYGUARD field. The length of the SECURITYGUARD field varies to
accommodate the number of characters in the guard file title specified with the
SECURITYGUARD file attribute.

Standard Tape Formats

E–16 8600 0056–408

1 5 23 80

'VOL4' SPACESGROUP

Figure E–19. ANSI87 Volume Header 4–Non-Scratch

Note: If characters 9-10 of the volume 2 label are 0 but the system needs to store
information in subsequent volume labels, such as the volume 5 label, then the volume 4
label will contain 76 blank characters. A tape includes a volume-header-4 label if a
nonzero value appears in the GROUP LENGTH field (characters 9–10) of volume
header 2. The tape includes an empty volume-header-3 label when a volume-header-4
label is required and the optional information contained in the volume-header-4 label is
not set. This occurs when the GROUP attribute of the Tape volume is set but the
SECURITYGUARD attribute has been specified.

Figure E–20. ANSI87 Volume Header 5

Note: If a library maintenance tape has a LIBMAINTDIR tape directory disk file
associated with it or a non-library maintenance tape has an ASSOCIATEDFILENAME disk
file associated with it, the name of that disk file in display form appears in the volume 5
label of that tape and any subsequent tape volumes in the case of multivolume library
maintenance tapes.

 Standard Tape Formats

8600 0056–408 E–17

Figure E–21. ANSI87 File Header 1 Format

Notes:

• A first end-of-file label is the same as a first file header, except that the first four
characters contain the letters EOF1 and the block count contains meaningful
information.

• A first end-of-volume label is the same as the first end-of-file label, except that the
first four characters contain the letters EOV1.

Standard Tape Formats

E–18 8600 0056–408

F FIXED LENGTH
(BLOCK STRUCTURE=FIXED)

D VARIABLE LENGTH
INTMODE=ASCII and
UNITS=CHARACTERS
(BLOCKSTRUCTURE=VARIABLE)

S NOT IMPLEMENTED

V VARIABLE LENGTH
(BLOCKSTRUCTURE=VARIABLE2)

U UNDEFINED
(BLOCKSTRUCTURE=EXTERNAL)

I VARIABLE LENGTH
(BLOCKSTRUCTURE=VARIABLEOFFSET)

Z VARIABLE LENGTH
(BLOCKSTRUCTURE=LINKED)

1 VARIABLE LENGTH
INTMODE=NEQ.ASCII or
UNITS=WORDS
(BLOCKSTRUCTURE=VARIABLE)

0–48
1–4
2–8

FILE HEADER2

1 5 6 11 16 24 25

'HDR2'
RECORD
FORMAT

BLOCK LENGTH
(BYTES)

MAXIMUM
RECORD LENGTH

(BYTES)

RF E
(SPACES)

FRAMESIZE
CODE

25 26 36 37 40

40 41 50 51 53 80

0-NOT PROTECTED
1-PROTECTED

MEANINGFUL ONLY IF
RECORD FORMAT=I
(BLOCKSTRUCTURE=
VARIABLEOFFSET)

PROTECTED SIZEOFFSET SIZE2 SIZEMODE
RF E

(SPACES)

RF E
(SPACES)

RF E
(SPACE)

BLOCKING
UNIT

RECORD
COUNT

OFFSET
(ZEROS)

0-WORDS
1-CHARACTERS

0 IN HDR2
MEANINGFUL VALUE
IN EOF2 AND EOV2

NOT IMPLEMENTED

Figure E–22. ANSI87 File Header 2 Format

Notes:

• A second end-of-file label is the same as a second file header, except that the first
four characters contain the letter EOF2 and the record count contains meaningful
information.

• A second end-of-volume label is the same as the second end-of-file label, except that
the first four characters contain the letters EOV2.

 Standard Tape Formats

8600 0056–408 E–19

Figure E–23. ANSI87 File Header 3 Format

Notes:

• A third end-of-file label is the same as a third file header, except that the first four
characters contain the letter EOF3.

• A third end-of-volume label is the same as the third end-of-file label, except that the
first four characters contain the letters EOV3.

There are user header and trailer labels on ANSI87 tapes. User header labels can appear
immediately after the HDR3 label record and before the tape mark, and user trailer labels
can appear after either EOF3 or EOV3 and before the tape mark.

Figure E–24 shows the format of an ANSI87 scratch tape.

Figure E–24. ANSI87 Scratch Tape Format

Standard Tape Formats

E–20 8600 0056–408

B 5500 Tapes
Table E–1 describes the BCL characters that are common to all B 5500 tape labels.

Table E–1. BCL Characters for B 5500 Tape Labels

Word

Character
(Word)

Character
(Record)

Field (Description)

1 1–8 1–8 Must contain the word LABEL in upper case
letters.

2 1 9 Must be 0.

2 2–8 10–16 Multifile ID.

3 1 17 Must be 0.

3 2–8 18–24 File ID.

4 1–3 25–27 Reel number (within file).

4 4–-8 28–32 Date written (creation date).

5 1–2 33–34 Cycle number (to distinguish among identical
runs on the same day).

5 3–7 35–39 Purge date (date this file can be destroyed).

5 8 40 Sentinel.

 1 = end-of-volume.

 0 = end-of-file.

6 1–5 41–45 Block count.

6–7 6–8 1–4 46–52 Record count.

7 5 53 Memory dump key. If value is 1 the memory
dump follows the label.

7–8 6–8 1–2 54–58 Physical tape number.

 Standard Tape Formats

8600 0056–408 E–21

ALGOL Files

Table E–2 describes the remaining information that is contained in a B 5500 tape label
when the file is an ALGOL file.

Table E–2. B 5500 Tape Label for ALGOL Files

Word

Character
(Word)

Character
(Record)

Field (Description)

8 3 59 Blocking indicator

 3 = blocked

 0 = not blocked

8 4–8 60–64 Buffer size (number of words)

9 1–5 65–69 Maximum record size (number of words)

9 6–8 70–72 Zeros

COBOL Files

Table E–3 describes the remaining information that can be contained in a B 5500 tape
label for a COBOL file.

Table E–3. B 5500 Tape Label for COBOL Files

Word

Character
(Word)

Character
(Record)

Field (Description)

8 3–8 59–64 Reserved for file-control routine. Not
currently used.

9–end 1–end 65–end Users' portion. Can be of any format
desired by user and can be up to 8120
characters in length for tape files, up to 16
characters in length for card files, and up to
56 characters in length for printer files.

Standard Tape Formats

E–22 8600 0056–408

8600 0056–408 F–1

Appendix F
FORTRAN77 Programs

FORTRAN77 programs behave slightly differently from programs written in other
languages.

The following rules for the TITLE attribute are implemented only for FORTRAN77
programs (FORTRAN77 refers to this attribute as FILE):

• If an attempt is made to set the file name with the TITLE attribute, then an implicit
close is performed if the file is already open and the name of the file is different from
the current name.

• If the name of the file remains the same and the file is open, then no error is given.

An implicit CLOSE operation results in the closing of the physical file and a title change in
the logical file. Any subsequent OPEN operation creates a new physical file with the new
file TITLE.

An attribute error is suppressed if the following attributes are modified by a FORTRAN77
program while the file is open, and if the resulting action does not change the value of
the attribute:

• MAXRECSIZE

• NEWFILE

• PROTECTION

• UNITS

FORTRAN77 Programs

F–2 8600 0056–408

8600 0056–408 G–1

Appendix G
Controlling the Distribution of
Application Programs

Your company can protect files that are sent to your customers by using the
LICENSEKEY file attribute. If a file is assigned a LICENSEKEY value and that file is copied
to a conditioned tape, the recipients of the tape must have the correct key and password
combination in the SYSTEM/KEYSFILE on their systems before that file can be copied
from the tape.

The SYSTEM/KEYSFILE file contains the keys associated with the software that your
installation has purchased from Unisys. If a COPY operation is executed for a directory of
files by using the “=” syntax, files that are guarded by keys that do not have matching
keys in the SYSTEM/KEYSFILE file are not copied. If all files in the directory are not
copied, an error message is issued. The SYSTEM/KEYSFILE file can be copied using the
library maintenance ADD and COPY commands, and can be removed using the REMOVE
command. The SYSTEM/KEYSFILE file can be accessed only by the operating system
and resides on the halt/load unit.

The following procedure identifies the tasks you must perform to protect a file with a
key:

1. Assign a disk file a license key by using the LICENSEKEY attribute. To make this
assignment, the process performing the assignment must be privileged or must be
run under a privileged usercode.

The following ALGOL program extract assigns the 39-MYPRODUCT key to the file F,
as well as associating a password of PASSWORDFORKEY with the key:

 FILE F(KIND=DISK,TITLE = "MY/PROGRAM.");
 F.OPEN:=TRUE
 REPLACE F.LICENSEKEY BY "39-MYPRODUCT:PASSWORDFORKEY.";
 CLOSE(F);

The key before the colon (:) can consist of one or more alphanumeric fields that
contain no embedded blanks; each field can be separated by a hyphen (-). The
password after the colon can consist of 10 to 17 characters with no embedded
blanks. The total length of the key, the colon, and the password cannot exceed 150
characters.

Note: Use caution when assigning a key. If the password is forgotten or incorrectly
entered, it cannot be changed and the file cannot be copied from a conditioned tape
to disk.

Controlling the Distribution of Application Programs

G–2 8600 0056–408

2. Copy the keyed file to a conditioned tape by entering the following WFL statement:

 COPY <file name> TO <tape name>; SW8=TRUE;

The SW8=TRUE syntax makes the tape a conditioned tape.

3. Add the key to the SYSTEM/KEYSFILE by entering the following command:

 IK ADD <key>:<password>

If you were adding the key assigned in the previous ALGOL example, you would use
39-MYPRODUCT:PASSWORDFORKEY.

8600 0056–408 H–1

Appendix H
Structure of Backup Files

Naming Conventions
The system assigns file names to backup files on disk according to the following default
naming conventions. For printer backup files, the standard naming format is

*BD/<job number>/<task number>/<modified file name>

The standard prefix is *BD (backup disk). The asterisk is replaced by the usercode of the
process that created the backup file if either of the following conditions is true:

• The PRINTDISPOSITION file attribute has a value of DONTPRINT.

• The system security option USERCODEDBACKUP has a value of TRUE. This option
is controlled by the SECOPT (Security Options) system command.

The job number node records the mix number of the originating job or the session
number of the originating CANDE or MARC session. The number is padded with zeros on
the left to bring the total length to 7 digits.

The task number node records the mix number of the task that created the backup file.
The number is padded with zeros on the left to bring the total length to 7 digits. The task
number node is omitted if the backup file has been created directly by a job.
Alternatively, multiple task number nodes appear if the backup file was created by a task
at two or more levels removed from its ancestor job.

The format of the modified file depends on the setting of the system option
MOREBACKUPFILES as follows:

• If MOREBACKUPFILES is FALSE, the modified file name is a single node consisting
of 3 digits, ranging from 000 through 999, followed by the file name of the program
output file. The 3-digit number is incremented each time a task or subtask opens a
backup file and is intended to prevent duplicate file names.

• If MOREBACKUPFILES is TRUE, the modified file name is two nodes

− The first node is a 12-digit number that is incremented each time a task or
subtask opens a backup file and is intended to prevent duplicate file names.

− The second node is the file name of the program output file.

Structure of Backup Files

H–2 8600 0056–408

Examples of Standard Names

The following example shows the standard backup file names generated by a job
consisting of one task that produces three printer output files having the internal names
LINE, PRNT, and OUT:

*BD/0004567/0002983/000LINE

*BD/0004567/0002983/001PRNT

*BD/0004567/0002983/002OUT

In the next example, the standard backup file names have been generated by a job
consisting of four tasks, each of which produce one printer output file with the internal
file name of LINE:

*BD/0002468/0005551/000LINE

*BD/0002468/0005552/000LINE

*BD/0002468/0005553/000LINE

*BD/0002468/0005554/000LINE

Overriding Standard Names

You can override the standard backup file-naming convention by using either the
BDNAME task attribute to change the default prefix, or by using the
USERBACKUPNAME file attribute and either the FILENAME or TITLE file attribute to
rename the backup file entirely.

For example, the BDNAME task attribute is commonly used to make file identification
easier; that is, you might want to replace the *BD prefix with a prefix such as the name
of the program, a usercode, or a department or section name.

The most common use of the USERBACKUPNAME and FILENAME or TITLE file
attributes is to rename a backup file when you save it. For more information, refer to the
discussions of the BDNAME task attribute, and the USERBACKUPNAME, FILENAME,
and TITLE file attributes in Section 5.

Naming Tape Files

Backup files created on magnetic tape are labeled as BACKUP/<file name>, where the
file name is the name of the file as declared in the program that created it.

 Structure of Backup Files

8600 0056–408 H–3

File Format
The following file format applies only to backup files with a FILEKIND value of
BACKUPPRINTER and not to backup files with a FILEKIND value of PRINTFILE.

A backup file is constructed of fixed-length records, each of which is considered a
backup block. Each backup block consists of a variable number of variable-length backup
records. All but the first of these backup records represent the printer file records written
by the program that created the backup file. The first record of the first block is the
backup file control record. Only the first block of the file begins with a control record. The
last two words of each backup block contain the number of printer records in the block
and the number of the first record in the block. A backup file logical record, including the
control word, must not exceed 256 words in length.

From the point of view of the I/O subsystem, each backup block is a record of a FIXED
BLOCKSTRUCTURE file with a FRAMESIZE of 48 and a FILESTRUCTURE of
ALIGNED180 or BLOCKED. Currently, the values of the MAXRECSIZE and BLOCKSIZE
file attributes for a backup file are both 300, but either might change in the future. A
program is insulated from changes to these attributes if it opens the backup file with
DEPENDENTSPECS = TRUE and interrogates the MAXRECSIZE attribute to determine
the size of a backup block.

Each backup record, including the control record, begins with a control word that
contains information about the record and a pointer to the next record. The information in
the control word cannot be printed. The control word is optionally followed by one or
more words of data. The data portion of a block ends with a terminal control word
composed entirely of binary zeros, which indicates that no more valid records appear in
that block.

Records cannot be split over a backup block boundary, so a backup block can have
unused words. For instance, if a record ends at word 290 of a block and the next record
is 12 words long, the 12-word record is written as the first record of the next block.
Word 291 becomes the terminal record.

Figure H–1 shows the typical structure of a backup file. In the diagram, CR means control
record, R1 and so on mean data records, and W means a word. The rows of asterisks are
unused words, and the number signs (#) indicate the division between blocks. Note that
only the first block contains a control record.

 BLOCK 1 BLOCK 2 // BLOCK N
+---\\-----------------
| | | | |***|L|R|#| | | | |L|R|#//| | =>
| | | | |***|I|E|#| | | | |I|E|#\\| | =>
|C| R1 |R2 | R3 |***|N|C|#| R1 |R2|R3| R4 |N|C|#//| R1 | R2 =>
|R| | | |***|E|O|#| | | | |E|O|#\\| | =>
| | | | |***|S|R|#| | | | |S|R|#//| | =>
| | | | |***| |D|#| | | | | |D|#\\| | =>
+---//-----------------
 \\

Figure H–1. Structure of a Backup File

Structure of Backup Files

H–4 8600 0056–408

Figure H–2 shows the structure of a backup block. The block shown is Block 1 of a
backup file; all other backup blocks in the backup file begin with a data record.

| Control | First Data
|--------------- Record -------------->|---------- Record --------->
Control		Control
Word		Word
+--------+--------+---------\ \---------+---------+---------+--------\		
		\ \
Word 0	Word 1	/ / Word N
		/ /
+--------+--------+--------/ /----------+---------+---------+-------+

<--- Last Data --		LINEINFO	PAGEINFO
Record		(integer)	
+---------+---------+---------+-----------------+-----------------+
 \ | | | | |
 / | |Unused |Word |Word |
/ | |Words |(MAXRECSIZE - 4) |(MAXRECSIZE - 3) |
+---------+---------+---------+-----------------+-----------------+

Print Lines	Number of
in Block	First Record
(integer)	(integer)
+-----------------+-----------------+	
Word	Word
(MAXRECSIZE - 2)	(MAXRECSIZE - 1)
+-----------------+-----------------+

Figure H–2. Format of a Backup Block

The LINEINFO word contains the number of lines required to print the contents of the
backup file through the current block. An overprinted record is counted as a single print
line.

The PAGEINFO word contains two fields. Field [47:09] contains the maximum number of
lines required between two skip-to-channel-1 operations (through the current block), and
field [38:39] contains the number of skip-to-channel-1 operations encountered so far.

The backup file control record (the first record in the file) is at least 13 words long. The
control record stores the values of the permanent file attributes and other information
about the file. Table H–1 shows the format of the backup file control record.

 Structure of Backup Files

8600 0056–408 H–5

Table H–1. Format of the Backup File Control Record

Word Contents

0 Control word

1 Block character control word

2 Logical file kind word

3 Path control word

4 TRAINID file attribute

5 EXTMODE file attribute

6 Label type

7 I/O mask

8 Job number

9 Level

10 TRIMBLANKS file attribute

11 NOTE, FORMID, and TRANSFORM file attributes

12 –N Values of variable-length attributes

Control Record Word Descriptions
A word can consist of one or more fields. Each field in a word is described by two
numbers separated by a colon and enclosed in brackets. The first number specifies the
starting bit of the field and the second number specifies the number of bits composing
the field.

The diagram in Figure H–3 shows how bits are numbered within a word.

 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 47| 43| 39| 35| 31| 27| 23| 19| 15| 11| 7 | 3 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 46| 42| 38| 34| 30| 26| 22| 18| 14| 10| 6 | 2 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 45| 41| 37| 33| 29| 25| 21| 17| 13| 9 | 5 | 1 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 44| 40| 36| 32| 28| 24| 20| 16| 12| 8 | 4 | 0 |
 +---+---+---+---+---+---+---+---+---+---+---+---+

Figure H–3. Diagram of Numbering Bits within a Word

For example, assume you have the field [43:03]. The starting bit of the field is 43, and the
field is comprised of three bits. Using the diagram in Figure H–3, you find that the field
extends from bit 43 to bit 41.

Structure of Backup Files

H–6 8600 0056–408

Each word in a backup file control record is described on the following pages. Each word
description contains the fields that are used and their locations, the possible values for
each field (if applicable), and an explanation of the contents of each field. In the diagrams
of each word, areas filled with reverse slashes (\) are reserved.

Table H–2 and Figure H–4 describe the control word (word 0). This word contains
information that cannot be printed.

Table H–2. Fields of the Control Word (Word 0)

Field Value Contents

[43:01] (A)

0

1

Data is transferred from memory.

Data is not transferred from memory.

[40:01] (B)

0

1

Data is to be sent to the printer.

Data represents a dynamic change to the PAGECOMP file
attribute.

[35:04] (C) Contains the channel number to skip to after printing.

[31:02] (D) The number of blank lines to add after printing.

[19:03] (E)

0

nonzero

The record to be printed consists of complete words.

Character count residue of the current record. Value
range is 1 through 5.

[16:17] Word count for data in the current record in full words,
not counting the control word.

 +---+---+---+---+---+---+---+---+---+---+---+---+
 |\\\| A |\\\| | |\\\\\\\| | |
 +\\\+---+\\\| | D |\\\\\\\| | Record +
 |\\\\\\\\\\\| | |\\\\\\\| E | |
 +\\\\\\\\\\\| C |---+\\\\\\\| | Length +
 |\\\\\\\\\\\| |\\\\\\\\\\\| | |
 +\\\+---+\\\| |\\\\\\\\\\\+---+ (in words) +
 |\\\| B |\\\| |\\\\\\\\\\\| |
 +---+---+---+---+---+---+---+---+---+---+---+---+

Figure H–4. Diagram of the Control Word (Word 0)

 Structure of Backup Files

8600 0056–408 H–7

Table H–3 and Figure H–5 describe a block character control word (word 1) of the control
record.

Table H–3. Fields of the Block Character Control Word (Word 1)

Field Value Contents

[47:08]

nonzero

0

Index to FORMID file attribute

No FORMID

[39:08] Index to NAME task attribute

[31:08] Index to CHARGECODE task attribute

[23:08] Index to USERCODE task attribute. This is the USERCODE
value of the process that created the backup file. This value
could be different from the USERCODE of the originating
job or session. This value could also be different from the
usercode of the print request that this backup file is part of.

[03:01] (S)

1

0

The file is a backup disk file, and the label type of the file is
STANDARD.

Label entries are not present.

[02:01] (J)

1

0

A JOBNUMBER is to be printed.

A JOBNUMBER is not to be printed.

[01:01] (R)

1

0

The origin is remote.

The origin is not remote.

[00:01] (V)

1

0

This control word is valid.

This control word is not valid.

 +---+---+---+---+---+---+---+---+---+---+---+---+
 | | | | |\\\\\\\\\\\| S |
 + | | | |\\\\\\\\\\\+---+
 | FORMID| NAME | CHARGE| USER |\\\\\\\\\\\| J |
 + Index | Index | CODE | CODE |\\\\\\\\\\\+---+
 | | | Index | Index |\\\\\\\\\\\| R |
 + | | | |\\\\\\\\\\\+---+
 | | | | |\\\\\\\\\\\| V |
 +---+---+---+---+---+---+---+---+---+---+---+---+

Figure H–5. Diagram of the Block Character Control Word (Word 1)

Structure of Backup Files

H–8 8600 0056–408

Table H–4 and Figure H–6 describe the logical file kind word (word 2) of the control
record.

Table H–4. Fields of the Logical File Kind Word (Word 2)

Field Value Contents

[47:16] The value of the PRINTERKIND file attribute.

[16:01] (T) 1

0

Transform is BYFUNCTION.

Transform is BYTITLE.

[15:01] (a)

1

0

Validity bit for ALIGNMENT file attribute:

ALIGNMENT attribute is explicitly set at file creation.

ALIGNMENT attribute was never set.

[14:01] (b)

1

0

Validity bit for BANNER file attribute:

BANNER attribute was explicitly set at file creation.

BANNER attribute was never set.

[13:01] (A)

1

0

The value of the ALIGNMENT file attribute:

The file requires alignment at printing time.

The file does not require alignment at printing time.

[12:01] (B)

1

0

The value of the BANNER file attribute:

Banner is printed before the file.

Banner is not printed.

[11:04](P) Formerly used for the value of the PRINTERKIND file
attribute. See field [47:16] for new location.

[07:08]

7

The unit type of the backup file:

Line printer.

 +---+---+---+---+---+---+---+---+---+---+---+---+
 | |\\\\\\\\\\\\\\\| a | | |
 + |\\\\\\\\\\\\\\\+---+ + +
 | |\\\\\\\\\\\\\\\| b | | Unit |
 + PRINTERKIND |\\\\\\\\\\\\\\\+---+ P + Type +
 | |\\\\\\\\\\\\\\\| A | | |
 + |\\\\\\\\\\\+---+---+ + +
 | |\\\\\\\\\\\| T | B | | |
 +---+---+---+---+---+---+---+---+---+---+---+---+

Figure H–6. Diagram of the Logical File Kind Word (Word 2)

 Structure of Backup Files

8600 0056–408 H–9

Table H–5 and Figure H–7 describe the path control word (word 3) of the control record.

Table H–5. Fields of the Path Control Word (Word 3)

Field Value Contents

[45:06] DESTMCSF. The number of the destination message control
system (MCS).

[39:01] (D) DESTISREMOTEF. Destination is a remote unit.

[38:15] DESTUNITF. Destination unit number/Logical Station
Number (LSN).

[21:06] The number of the MCS controlling the originating LSN, if
the origin was a remote unit.

[15:01] (R)

1

0

The originating unit is a remote unit.

The originating unit is not a remote unit.

[14:15] The number of the originating unit of the job that created the
file. If the origin was a remote terminal, the number is an
LSN. Otherwise, the number is a logical unit number.

 +---+---+---+---+---+---+---+---+---+---+---+---+
 |\\\| | D | |\\\| | R | |
 +\\\| +---+ |\\\| +---+ +
 |\\\| | |\\\| | |
 +---+ | +---+ | Unit +
 | DEST | DESTUNITF | MCS | number |
 + MCSF | | number| +
 | | | | |
 +---+---+---+---+---+---+---+---+---+---+---+---+

Figure H–7. Diagram of the Path Control Word (Word 3)

Structure of Backup Files

H–10 8600 0056–408

Table H–6 describes words 4 through 9 of the control record.

Table H–6. Fields of Words 4 through 9 of the Control Record

Word Field Value Contents

4

Whole
word

Nonzero

0

The value of the TRAINID file attribute,
which specifies a train-printer character set

The file is generated as if for a drum
printer.

5 Whole
word

 The value of the EXTMODE file attribute

6 Whole
word

 The value of the LABEL file attribute

7

Whole
word

[09:01]

[00:01]

1

0

The I/O mask for page specifications, with
bits [09:01] and [00:01] being of interest.
(Setting the PAGESIZE attribute changes
this word to a nonzero value.)

Suppress end-of-page (EOP) or end-of-file
(EOF) handling.

Handle EOP or EOF.

Exception bit

8 Whole
word

 Job number of the job being printed

9 Whole
word

 The level number of the backup file format.
On SSR 45.1 the level is 9. If the format
changes, the level number is incremented.

Table H–7 and Figure H–8 describe word 10 of the control record.

Table H–7. Fields of Word 10 of the Control Record

Field Value Contents

[47:08] Index to the input string of the transform function

[39:16] MAXRECSIZE of the backup file, in EXTMODE characters

[23:08]

nonzero

0

Index to the SOURCENAME task attribute, stored in
standard form

Either the task did not have a specified SOURCENAME, or it
could not fit in block zero

[00:01] (T)

0

Value of the TRIMBLANKS file attribute:

TRIMBLANKS file attribute was FALSE when the backup file
was created.

 Structure of Backup Files

8600 0056–408 H–11

Table H–7. Fields of Word 10 of the Control Record

Field Value Contents

 1 TRIMBLANKS file attribute was TRUE when the backup file
was created. Trailing blank words are omitted.

 +---+---+---+---+---+---+---+---+---+---+---+---+
 | | | |\\\\\\\\\\\\\\\|
 + TRANS | | |\\\\\\\\\\\\\\\+
 | FORM | | SOURCE|\\\\\\\\\\\\\\\|
 + Input | MAXRECSIZE | NAME |\\\\\\\\\\\\\\\+
 | String| | Index |\\\\\\\\\\\\\\\|
 + Index | | |\\\\\\\\\\\+---+
 | | | |\\\\\\\\\\\| T |
 +---+---+---+---+---+---+---+---+---+---+---+---+

Figure H–8. Diagram of Word 10 of the Control Record

Table H–8 and Figure H–9 describe word 11 of the control record.

Table H–8. Fields of Word 11 of the Control Record

Field Value Contents

[47:08]

nonzero

0

Index to the value of the NOTE file attribute

The NOTE file attribute value was not specified when the file
was created.

[39:08] Index to the value of the ALIGNFILE file attribute

[31:08]

nonzero

0

Index to the value of the ACCESSCODE task attribute

The ACCESSCODE task attribute was not specified when
the file was created.

[23:08]

nonzero

0

Index to the value of the FORMID file attribute. This index
points to the full FORMID. If the FORMID is less than or
equal to three words long, the FORMID at this index is the
same as the FORMID at the index specified in word 1. If the
FORMID is greater than three words long, the FORMID at
the index in word 1 is truncated to the first three words.

A FORMID was not specified when the file was created.

[15:08]

nonzero

0

Index to the TRANSFORM entry point name

A TRANSFORM was not specified when the file was
created.

[07:08]

nonzero

0

Index to the name of the TRANSFORM library

The TRANSFORM library name was not specified when the
file was created.

Structure of Backup Files

H–12 8600 0056–408

 +---+---+---+---+---+---+---+---+---+---+---+---+
 | | | | | | |
 + | | | | TRANS | TRANS +
 | NOTE | ALIGN | ACCESS| FORMID| FORM | FORM |
 + Index | FILE | CODE | Index | Entry |Library+
 | | Index | Index | | Point | Index |
 + | | | | Index | +
 | | | | | | |
 +---+---+---+---+---+---+---+---+---+---+---+---+

Figure H–9. Diagram of Word 11 of the Control Record

Word 12 of the control record is the beginning of the area that contains the values of the
variable-length file and task attributes FORMID, NAME, CHARGECODE, USERCODE,
NOTE, TRANSFORM, and so on. The actual locations of these are indicated by words 1
and 11. All these are stored in standard form.

Table H–9 and Figure H–10 describe word 12 of the control record.

Table H–9. Fields of Word 12 of the Control Record

Field Value Contents

[16:01 0

1

CCSVERSION value is positive.

CCSVERSION value is negative.

[15:16} The value of the CCSVERSION file attribute.

 +---+---+---+---+---+---+---+---+---+---+---+---+
 |\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\| |
 +\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\| +
 |\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\| |
 +\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\| CCSVERSION +
 |\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\| |
 +\\\\\\\\\\\\\\\\\\\\\\\\\\\+---+ +
 |\\\\\\\\\\\\\\\\\\\\\\\\\\\| T | |
 +---+---+---+---+---+---+---+---+---+---+---+---+

Figure H–10. Diagram of Word 12 of the Control Record

8600 0056–408 I–1

Appendix I
Related Product Information

The following documents provide information that is directly related to the primary
subject of this guide.

MCP/AS Interactive Datacomm Configurator (IDC) Operations Guide
(8600 1880)

This guide explains how to use IDC, a menu-driven utility used to define and modify data
communications networks. It provides information on configuring a data communications
network using the IDC menu system and basic constructs, and provides reference
information about the commands and attributes. This guide is written for individuals who
have a basic knowledge of data communications concepts, but who might not know the
physical characteristics of hardware devices in the network.

MCP/AS KEYEDIOII Programming Reference Manual (8600 0684)

This manual describes the KEYEDIOII software. KEYEDIOII is the Unisys indexed
sequential access method (ISAM) software for COBOL74 and Report Program Generator
(RPG) programming languages. This manual is designed for applications programmers
and analysts.

MCP/AS Networking Operations Reference Manual, Volume 2: Reports
and Log Messages (3787 7925)

This manual describes in reference format the Operations Interface (OI) reports and log
messages for CNS, BNA, NCF, OSI, TCP/IP, and SNMP entities.

MCP/AS POSIX User’s Guide (7011 8328)

This guide describes the basic concepts of the POSIX interface, including process control
and file management. It also describes specifically how the POSIX.1 interface is
implemented and used on the enterprise server. This guide is written for programmers
and any user who wants to understand the POSIX interface.

MCP/AS Security Features Operations and Programming Guide
(8600 0528)

This guide describes the security features available to users and provides instructions for
their use. This guide is written for users who are responsible for maintaining the security
of their individual programs and data.

Related Product Information

I–2 8600 0056–408

MCP/AS System Administration Guide (8600 0437)

This guide provides the reader with information required to make decisions about system
configuration, peripheral configuration, file management, resource use, and other matters
related to system administration. This guide is written for users with some, little, or no
experience who are responsible for making decisions about system administration.

Unisys e-@ction ClearPath Enterprise Servers Distributed Systems
Services Operations Guide (8600 0122)

This guide describes the capabilities and features of distributed systems services and
how to use them. It is intended for system operators, system administrators, and general
computer users.

Unisys e-@ction ClearPath Enterprise Servers File Attributes Programming
Reference Manual (8600 0064)

This manual contains information about each file attribute and each direct I/O buffer
attribute. The manual is written for programmers and operations personnel who need to
understand the functionality of a given attribute. The I/O Subsystem Programming Guide
is a companion manual.

Unisys e-@ction ClearPath Enterprise Servers GETSTATUS/SETSTATUS
Programming Reference Manual (8600 0346)

This manual explains how to use the various GETSTATUS and SETSTATUS calls in the
Data Comm ALGOL programming language. This manual is written for experienced
ALGOL programmers.

Unisys e-@ction ClearPath Enterprise Servers ClearPath MCP Migration
Guide (8999 9197)

This guide provides a detailed overview of some of the new features and enhancements
available with the ClearPath systems. Specifically, it describes the new features and
enhancements that are installed in the MCP environment. It also describes changes in
software behavior between the last software release and the current release. The
document includes information on software migration, feature matrixes, special
installation instructions for specific products, deimplementations and deimplementation
warning messages, and known problems. This document is written for people who want
to know how upgrading to the new release will affect their existing software.

Unisys e-@ction ClearPath Enterprise Servers MCP System Interfaces
Programming Reference Manual (8600 2029)

This manual describes selected library objects exported from the MCPSUPPORT library,
and describes the ARCHIVESUPPORT, BILLINGSUPPORT, and TAPEMANAGER libraries.
This manual is written for system programmers who want to write programs that
interface with the system software.

 Related Product Information

8600 0056–408 I–3

Unisys e-@ction ClearPath Enterprise Servers MultiLingual System
Administration, Operations, and Programming Guide (8600 0288)

This guide describes how to use the MLS environment, which encompasses many
products. The MLS environment includes a collection of operating system features,
productivity tools, utilities, and compiler extensions. The guide explains how these
products are used to create application systems tailored to meet the needs of users in a
multilingual or multicultural business environment. It explains, for example, the
procedures for translating system and application output messages, help text, and user
interface screens from one natural language to one or more other languages; for
instance, from English to French and Spanish. This guide is written for international
vendors, branch systems personnel, system managers, programmers, and customers
who wish to create customized application systems

Unisys e-@ction ClearPath Enterprise Servers Print System and Remote
Print System Administration, Operations, and Programming Guide
(8600 1039)

This guide describes the features of the Print System and provides a complete
description of its command syntax. This guide is written for programmers, operators,
system administrators, and other interactive users of Menu-Assisted Resource Control
(MARC) and CANDE.

Unisys e-@ction ClearPath Enterprise Servers Security Administration
Guide (8600 0973)

This guide describes system-level security features and suggests how to use them. It
provides administrators with the information necessary to set and implement effective
security policy. This guide is written for system administrators, security administrators,
and those responsible for establishing and implementing security policy.

Unisys e-@ction ClearPath Enterprise Servers System Commands
Operations Reference Manual (8600 0395)

This manual gives a complete description of the system commands used to control
system resources and work flow. This manual is written for systems operators and
administrators.

Unisys e-@ction ClearPath Enterprise Servers System Configuration Guide
(8600 0445)

This guide describes how to organize a complex computer system into different
hardware configurations. It also describes the steps required to dynamically change the
system from one configuration to another. This guide is written for experienced system
administrators and system operators.

Unisys e-@ction ClearPath Enterprise Servers System Log Programming
Reference Manual (8600 1807)

This manual describes the format and contents of all the Major Type and Minor Type
entries of the system log. It also contains information about controlling the log contents
and about writing log analysis programs.

Related Product Information

I–4 8600 0056–408

Unisys e-@ction ClearPath Enterprise Servers System Operations Guide
(8600 0387)

This guide describes concepts and procedures required to operate most Unisys systems.
Sections 1 and 2 contain information and procedures that can be done by novice
operators. Section 3 contains operations and procedures that require more advanced
operations experience. This guide is written for operators responsible for operating the
enterprise server, especially operators with little or no experience.

Unisys e-@ction ClearPath Enterprise Servers System Software Utilities
Operations Reference Manual (8600 0460)

This manual provides information on the system utilities BARS, CARDLINE, CDFORMAT,
COMPARE, DCAUDITOR, DCSTATUS, DUMPALL, DUMPANALYZER, FILECOPY,
FILEDATA, HARDCOPY, INTERACTIVEXREF, ISTUTILITY, LOGANALYZER, LOGGER,
PATCH, PCDRIVER, PRINTCOPY, RLTABLEGEN, SORT, XREFANALYZER, and the
V Series conversion utilities. It also provides information on KEYEDIO support, Peripheral
Test Driver (PTD), and mathematical functions. This manual is written for applications
programmers, system support personnel, and operators.

Unisys e-@ction ClearPath Enterprise Servers SYSTEMSTATUS
Programming Reference Manual (8600 0452)

This manual documents the SYSTEMSTATUS intrinsic of the master control program.
The SYSTEMSTATUS intrinsic provides information that can be used to efficiently
monitor the performance of a running system. This manual is written for systems
programmers.

Unisys e-@ction ClearPath Enterprise Servers TCP/IP Distributed Systems
Services Operations Guide (8807 6385)

This guide explains how to use most of the TCP/IP services provided by the DSS
products. These products include File Transfer Protocol (FTP), Telnet, Domain Name
Services (DNS), and Time Synchronization. The guide also explains how to use the
TCP/IP DSS debugging tools. This guide is written for system planners, system
programmers, application programmers, and computer operators who use TCP/IP DSSs.

Unisys e-@ction ClearPath Enterprise Servers TCP/IP Implementation and
Operations Guide (3787 7693)

This guide provides procedures for configuring a TCP/IP network using the NAU.
Included is information on how to operate and troubleshoot a TCP/IP network.

Unisys e-@ction ClearPath Enterprise Servers Work Flow Language (WFL)
Programming Reference Manual (8600 1047)

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform
library maintenance such as copying files. This manual is written for individuals who have
some experience with programming in a block-structured language such as ALGOL and
who know how to create and edit files using CANDE or the Editor.

8600 0056–408 Index–1

Index

A

ABORT CLOSE disposition parameter, 20-2
ABORT termination, 20-1

using for orderly release, 20-6
ACCEPTCLOSE response type

using with OSINATIVESERVICE, 23-16
using with OSISESSIONSERVICE, 24-16

ACCEPTOPEN response type
using with OSINATIVESERVICE, 23-16
using with OSISESSIONSERVICE, 24-16

access mask register (AMR), 12-1
ACCESSDATE attribute, 30-15
ACCESSTIME attribute, 30-15
ACTUALMAXRECSIZE attribute, 19-5

OSINATIVESERVICE value restriction, 23-2
OSISESSIONSERVICE value

restriction, 24-2
TCPNATIVESERVICE requirement, 27-2
using with a port file, 19-15
using with BNANATIVESERVICE, 25-11
using with PORTSEGMENTIO

attribute, 23-21, 24-19
value restrictions by network, 22-2

adapter, 11-3
command codes, 11-9
identifying, 11-5

ADM (automatic display mode), 8-1
ALGOL example for using virtual files, 29-10
ALTERDATE attribute, 30-15

using with a disk file, 3-13
alternate groups standard form,

structure, C-11
ALTERNATEGROUPS attribute, 30-15
ALTERTIME attribute, 30-15

using with a disk file, 3-13
AMR (access mask register), 12-1
ANSI69 tape file formats, E-2
ANSI87 tape formats, E-10
ANYSIZEIO attribute, 3-8, 3-11
APPEND attribute, using, 3-16
application programs, controlling the

distribution of, G-1
APPLICATIONCONTEXT attribute, 23-17

APPLICATIONGROUP attribute
subfile matching

NETBIOSSESSIONSERVICE, 28-7
using with BASICSERVICE, 22-5
using with OSINATIVESERVICE, 23-9
using with OSISESSIONSERVICE, 24-9

area address words
version 6 headers, C-21
version 7 headers, C-41

AREAALLOCATED attribute
using with a disk file, 3-14

AREALENGTH attribute
default values, 3-5
interrogating for a disk file, 3-13
specifying, 3-5

areas, 3-1
determining

if specific area is allocated, 3-14
location, 3-7
number, 3-13
number of sectors to an area, 3-13

for disk direct I/O files, 10-7
restricting the number, 3-7
specifying

number of, 3-7
size, 3-5

when allocated, 3-7
AREAS attribute, 3-5, 3-7

using with a disk file, 3-13
AREASECTORS attribute

using with a disk file, 3-13
AREASIZE attribute, Host Services logical I/O

restriction, 9-5
assigning, tapes to scratch pools, 4-10
ASSIGNTIME attribute, 6-5
associated data, 11-2

sending with CLOSE using
OSINATIVESERVICE, 23-25

sending with CLOSE using
OSISESSIONSERVICE, 24-23

sending with OPEN using
OSINATIVESERVICE, 23-10

sending with OPEN using
OSISESSIONSERVICE, 24-10

Index

Index–2 8600 0056–408

ASSOCIATEDDATA parameter, 23-12
CLOSE statement

using with OSINATIVESERVICE, 23-25
using with OSISESSIONSERVICE, 24-23

using with OSINATIVESERVICE, 23-4
using with OSISESSIONSERVICE, 24-4

ASSOCIATION parameter, 29-19
AT Remote Host system command, 9-5
ATTERR attribute, 2-37
ATTNUM parameter, 29-24, 29-25
ATTPOINTER parameter, 29-25
attributes

combining, 2-37
port file (See port file attributes)

ATTVAL parameter, 29-25
ATTVALUE attribute, 2-37
ATTYPE attribute, 2-37
automatic display mode (ADM), 8-1
AUTOUNLOAD attribute

using when creating a tape file, 4-6, 4-11
AVAILABLE attribute, 1-3, 2-23

use in controlling indefinite waits, 2-42
using with the OPEN statement, 18-4

AVAILABLE control option
using with the AWAITOPEN

statement, 18-10
AVAILABLEONLY attribute, 17-2

and NETBIOSSESSIONSERVICE
with AWAITOPEN statement, 28-9
with OPEN statement, 28-9

effect on the OPEN operation, 18-2
explanation of, 18-3
using with AWAITOPEN statement, 18-8
using with BASICSERVICE, 22-6
using with BNANATIVESERVICE, 25-5,

25-10
using with OSINATIVESERVICE, 23-11
using with OSISESSIONSERVICE, 24-11
using with TCPIPNATIVESERVICE, 26-10

AWAITOPEN statement, 18-1, 18-7
and NETBIOSSESSIONSERVICE, 28-9
CONNECTTIMELIMIT parameter, 18-12
using control option parameters, 18-10
using the PARTICIPATE parameter for

OSINATIVESESSION, 23-14
using with BASICSERVICE, 22-7
using with BNANATIVESERVICE, 25-11
using with OSINATIVESERVICE, 23-12
using with TCPIPNATIVESERVICE, 26-10
valid control options for

OSINATIVESERVICE, 23-13

B

B 3500 USASI tape formats, E-9
B 5500 tape formats, E-20
backup files, 5-1

backup block format, H-4
conserving space, 5-3
control record

format of, H-4
word descriptions, H-5

diagram of structure, H-3
format, H-3
naming conventions, H-1
securing, 5-5
specifying

device, 5-4
tape serial number, 5-6
type of security, 5-5
type of tape drive, 5-6
type of user, 5-6

standard title, H-2
structure, H-1

BACKUPKIND attribute
using with a printer backup file, 5-4

BASICSERVICE
attribute value restrictions, 22-1
definition, 21-2
establishing a dialogue, 22-6
FILE state handling

READ operation, 22-7
WRITE operation, 22-8

file states supported by, 22-3
introduction, 22-1
list of valid attributes, 22-1
preparing for dialogue establishment, 22-5
statements supported by, 22-2
using AWAITOPEN statement with, 22-7
using the OPEN statement with, 22-6
valid matching attributes, 22-5

binary I/O
FTAM restriction, 9-8
Host Services logical I/O restriction, 9-6

blank filling, 19-8
block, 1-2

for disk direct I/O files, 10-7
BLOCK attribute, 3-15
block size, specifying, 2-6
BLOCKEDTIMEOUT attribute

using with TCPIPNATIVESERVICE, 26-7
using with TCPNATIVESERVICE, 27-6

 Index

8600 0056–408 Index–3

BLOCKSIZE attribute, 2-6
adjustment when SIZEVISIBLE is

FALSE, 2-9
library maintenance tapes, D-1
maximum for Host Services logical I/O, 3-5
maximum for Host Services logical I/O, 2-6
relationship to MAXRECSIZE, 2-6
restriction with direct I/O files, 10-1
tape drive maximum, 4-4
tape file minimum, 4-3
using with a disk file, 3-4
using with a printer file, 5-2

BLOCKSTRUCTURE attribute, 2-6
Host Services logical I/O restriction, 9-6
using with a port file, 19-8
using with an FTAM file, 9-9
using with an ODT file, 8-1

BNANATIVESERVICE
closing a dialogue, 25-14
compressing data, 25-12
definition, 21-2
establishing a dialogue, 25-10
exchanging data, 25-13
file attributes supported by, 25-1
file state handling

READ operation, 25-13
WRITE operation, 25-14

file states supported by, 25-3
introduction, 25-1
list of matching attributes, 25-6
negotiation of parameters during dialogue

establishment, 25-11
preparing for dialogue establishment, 25-5
statements supported by, 25-2
using AWAITOPEN statement with, 25-11
using OPEN statement with, 25-10
using the OFFER control option with the

OPEN statement, 25-10
breaking up large messages

using OSINATIVESERVICE, 23-21
using OSISESSIONSERVICE, 24-19

broadcast write, 14-4, 19-12
broadcast WRITE statement, 19-12
buffer, 1-7

control of direct I/O attributes, 10-4
sharing between files, 3-15

buffered tape drives versus direct I/O,
description of, 10-10

BUFFERSHARING attribute, using, 3-15
BUFFERSIZE attribute, 3-4

using with a CD-ROM file, 3-25
using with a disk file, 3-4, 3-13

byte files

types of, 2-12
use of, 2-11

C

CALL command, in NetBIOS
equivalent to OPEN, 28-9

card images
data specification, 7-1
input data form, 7-1

carriage control
by line, 5-9
skipping, 5-9
spacing, 5-9

CARRIAGECONTROL attribute, 5-8
cataloging

specifying
entry into system catalog, 3-8
system catalog search, 3-11

CCSVERSION attribute, 3-9, 30-15
CD-ROM

determining
buffer size, 3-25
I/O information, 3-25
if a physical I/O occurred, 3-25
last record number, 3-25
length of the file, 3-25
time when file was created, 3-25
when file was created, 3-25
where file resides, 3-25

files
accessing, 3-24

indicating the use of an existing file, 3-24
specifying, 3-24

name, 3-24
CENSUS attribute, 6-5, 19-10

using with PORTSEGMENTIO
attribute, 23-21, 24-19

CHANGEEVENT attribute
using with a port file, 16-2, 20-1
using with OSINATIVESERVICE, 23-1

character sets
coded, 9-32
double-byte, 2-40, 2-41, 9-5, 9-8, 9-32
mixed multi-byte, 2-40, 2-41, 9-5, 9-8, 9-32
rules and restrictions, 2-41

character sets, for FTAM, 9-32
character size, controlling, 2-4
character translation, automatic, 2-40
character-stream disk file, 2-41

Index

Index–4 8600 0056–408

CHECKSUM
version 6 headers, C-26
version 7 headers, C-49

CL (CLEAR) system command
to remove ODT label, 8-1

CLEARAREAS attribute, 3-23
CLOSE statement, 2-27

close disposition parameter, 20-2
control option, 20-3
operation

error, 2-27
fatal, 2-27

sending associated data with using
OSINATIVESERVICE, 23-25

sending associated data with using
OSISESSIONSERVICE, 24-23

using with OSINATIVESERVICE, 23-22
using with OSISESSIONSERVICE, 24-20
value returned (See AVAILABLE attribute)

CLOSE WITH CRUNCH, restriction, 9-8
closing a dialogue, 20-1
COBOL, INTMODE default value, 2-40
COBOL74, INTMODE default value, 2-40
COBOL85

example for using virtual files, 29-12
INTMODE default value, 2-40

code file execution, limiting, 2-37
COMPRESSING attribute, 25-12
compression

using with a tape file, 4-8
using with BNANATIVESERVICE, 25-12

COMPRESSIONCONTROL attribute
using with a tape file, 4-8
using with BNANATIVESERVICE, 25-12

COMPRESSIONREQUESTED attribute
using with a tape file, 4-8
using with BNANATIVESERVICE, 25-12

Concurrency-Control parameter, controlling
information, 9-37

CONNECTTIMELIMIT parameter
of the OPEN statement, 18-6
using with the AWAITOPEN

statement, 18-12
constructs (See statements)
continuation volumes, 4-1
control option

for the AWAITOPEN statement, 18-10
for the OPEN statement, 18-4
for the WRITE statement, 19-12

control record in backup file
format of, H-4
word descriptions, H-5

CONVERTHEADER procedure, C-2

COPY
multivolume operation, D-7

correspondent endpoint, 13-1
correspondent-initiated dialogue

termination, 20-4
correspondent-initiated port file actions

introduction, 16-2
creation date

multifile volume handling, 4-2
CREATIONDATE attribute, 30-15

using with a CD-ROM file, 3-25
using with a disk file, 3-10, 3-13
using with a tape file, 4-12

CREATIONTIME attribute, 3-10
using with a CD-ROM file, 3-25
using with a disk file, 3-13

credentials
using with REDIRSUPPORT IOHANDLER

library, 30-8
CREDENTIALS keyword, 30-5
CRUNCHED attribute

using with a disk file, 3-13
CURRENTRECORDLENGTH attribute

using with a port file, 19-6, 19-15
using with an ODT file, 8-2

CYCLE attribute
using with a disk file, 3-8, 3-10
using with a tape file, 4-9, 4-11

D

data
compressing, 4-8, 25-12
protecting disk space, 3-23
reading with port files, 19-2
specifying type for transfer, 2-4
writing with port files, 19-11

data length, restrictions for
OSISESSIONSERVICE, 24-4

data specifications, 7-1
declaration order, 7-3
examples in WFL jobs, 7-2
titles, 7-2

data transfer
between logical and physical files, 1-3
buffers, use of, 1-7
caused by READ statement, 2-24
using a buffer to read, 2-24

data truncation, preventing, 19-6, 19-15
data, associated

sending with OSINATIVESERVICE, 23-4

 Index

8600 0056–408 Index–5

sending with OSISESSIONSERVICE, 24-4
data-stream READ operations, 19-9
data-stream-oriented port service,

definition, 19-1
data-stream-oriented transfer,

explanation, 26-13, 27-13
delimited backup files, creating, 5-4
DENSITY attribute, 4-7

using with a backup tape file, 5-6
DEPENDENTINTMODE attribute

using with an FTAM file, 9-16
DEPENDENTSPECS attribute, 2-4

using with a CD-ROM file, 3-24
using with a disk file, 3-10
using with a tape file, 4-10
using with an FTAM file, 9-15
using with STREAMIOH, 31-16

descriptor error, frame transmission, 10-4
device types and associated file

attributes, A-1
devices, specifying, 2-3
DEVNULL value of FILEKIND attribute, use

of, 2-21
diagnosis, attributes, 2-37
DIALOGCHECKINTERVAL attribute

using with TCPIPNATIVESERVICE, 26-7
using with TCPNATIVESERVICE, 27-6

dialogues, 13-1
ending, 20-1
establishing using BASICSERVICE, 22-6
establishing using

BNANATIVESERVICE, 25-10
establishing using

OSINATIVESERVICE, 23-10
establishing using

OSISESSIONSERVICE, 24-10
establishing using

TCPIPNATIVESERVICE, 26-10
establishing using

TCPNATIVESERVICE, 27-9
local, 13-1
matching using BASICSERVICE, 22-5
matching using BNANATIVESERVICE, 25-5
matching using OSINATIVESERVICE, 23-9
matching using

OSISESSIONSERVICE, 24-9
matching using

TCPIPNATIVESERVICE, 26-7
matching using TCPNATIVESERVICE, 27-6
negotiation using

OSINATIVESERVICE, 23-17
opening, 18-1

orderly termination using
OSINATIVESERVICE, 23-22

orderly termination using
OSISESSIONSERVICE, 24-20

preparing for dialogue establishment, 17-1
preparing for using BASICSERVICE, 22-5
preparing for using

BNANATIVESERVICE, 25-5
preparing for using

OSINATIVESERVICE, 23-9
preparing for using

OSISESSIONSERVICE, 24-9
preparing for using

TCPIPNATIVESERVICE, 26-7
preparing for using

TCPNATIVESERVICE, 27-6
remote, 13-1
terminating

correspondent-initiated, 20-4
service provider-initiated, 20-5
using ABORT for orderly release, 20-6

DIOFILESTRUCTURE attribute, 10-2
direct array buffers

using with a direct file, 10-1
using with an HC file, 12-2
using with an HY file, 11-5

direct I/O buffer program interface, 3-31
effects of, 3-32

direct I/O files
allowing direct array overlay, 10-3
controlling I/O exception handling, 10-4
determining

current position of a file, 10-8
disk file random address, 10-4
elapsed time of the last I/O

operation, 10-4
end-of-file condition, 10-4
I/O status of a buffer, 10-4
logical result of the last I/O

operation, 10-4
number of characters read, 10-4
number of words read, 10-4
type of I/O error, 10-4

restrictions
FTAM, 9-8
Host Services logical I/O, 9-5, 9-8, 9-32

specifying the intention of the
program, 10-2

WAIT operations, 10-11
zero-length random operations, 10-9

Index

Index–6 8600 0056–408

direct I/O versus buffered tape drives,
description of, 10-10

direct printing
DIRECTDLP value, 5-2
DIRECTPS value, 5-2

direct READ or WRITE statements
zero-length, 10-9

DIRECTDLP value, 5-2
DIRECTION attribute, 4-12
directories, 1-2
DIRECTPS value, 5-2
disk families

family header version, C-13
names

contained in tape directory, D-6
disk file headers, C-1

attributes, C-5
converting versions, C-49
segmented and unsegmented, C-27
structure, C-27
version 6, C-14
version 7, C-27
versions, C-12

library maintenance tapes, C-13
disk files

accessing, 3-10
controlling

file name changes, 3-7
file removal, 3-7
file replacement, 3-7

creating, 3-3
determining

area location, 3-7
buffer size, 3-13
creation date, 3-10
creation time, 3-10
date when last altered, 3-13
date when last read from or written

to, 3-14
disk address of an area, 3-14
header timestamp, 3-14
I/O results, 3-15
if a physical I/O occurred, 3-15
if restrictions exist, 3-13
if specific area allocated, 3-14
if the file is crunched, 3-13
last record number, 3-14
length of the file, 3-13
number of allocated areas, 3-14
number of functions currently using the

disk file header, 3-14
number of last block referenced, 3-15

number of physical sectors
assigned, 3-14

physical disk sector size, 3-14
purpose of the file, 3-13
serial number, 3-14
size of an area, 3-13
the lock file status, 3-13
time when last altered, 3-13
time when last read or written to, 3-14
when file was created, 3-13
where file resides, 3-13

direct I/O (See direct I/O files)
ensuring exclusive use of a file, 1-4
genealogy, 3-10
indicating the use of an existing file, 3-10
limiting use, 3-11
locking, 3-16
locking a record, 3-16
protecting, 3-7
protecting disk space, 3-23
restricting the number of areas, 3-7
scrubbing, 3-23
securing, 3-17
securing using the POSIX security

model, 3-19
securing using traditional model, 3-17
sharing buffers between files, 3-15
specifying, 3-10, 3-12

accessing method, 3-6
ccsversion rules, 3-9
changing file name, 3-6
cycle number, 3-8, 3-10
internal encoding, 3-4
internal structure and purpose, 3-6
maximum record length, 3-4
name, 3-3, 3-10
number of areas, 3-7
physical file character encoding, 3-4
POSIX or native A Series rules, 3-7
specific copy, 3-10
transfer of any number of frames, 3-8,

3-11
update mode, 3-11
version number, 3-8, 3-10

specifying
family through a program, 2-2
POSIX or native MCP rules, 2-2

storing
information to be printed with a file, 3-9
release specific information, 3-9
site or application information, 3-9

 Index

8600 0056–408 Index–7

types of file structures, 3-2
disk scrubbing, 3-23
DISPOSITION attribute, 6-5
DISPOSITION parameter, 29-20
disposition parameter of CLOSE

statement, 20-2
DL ROOT command, 2-21
document types, 9-7
DOCUMENTTYPE attribute, 9-10

relationship to FILEUSE value, 9-16
DOMAINNAME keyword, 30-3
DONTWAIT control option, 18-4

CLOSE operation, 20-3
use in controlling indefinite waits, 2-42
using with the AWAITOPEN

statement, 18-10
WRITE operation, 19-12

double-byte character sets, 2-41
DUMMYFILE attribute, 1-3

alternative to, 2-21
use of, 2-21

duplicated files
deimplementation, 3-3

E

ENABLEINPUT attribute, 6-5
encoded values

MYNAME and YOURNAME
attributes, 28-8

ending a dialogue, 20-1
correspondent-initiated termination, 20-4
service provider-initiated, 20-5
using ABORT for orderly release, 20-6

end-of-file label, E-7, E-8
end-of-file notification, determining for

remote files, 6-5
end-of-file pointer, disk files, 10-9
end-of-volume label, E-7
endpoint, 13-1
EOF attribute, 4-12
error handling

attribute consistency, 2-37
errors

determining occurrence of physical
I/O, 4-12

escape sequence, 9-33
establishing a dialogue, 18-1
establishing dialogues

using BASICSERVICE, 22-6
using BNANATIVESERVICE, 25-10

using NETBIOSSESSIONSERVICE, 28-9
using OSINATIVESERVICE, 23-10
using OSISESSIONSERVICE, 24-10
using TCPIPNATIVESERVICE, 26-10
using TCPNATIVESERVICE, 27-9

event-driven techniques when using a READ
statement, 19-10

exchanging data with port files, 19-1
EXCLUSIVE attribute, 1-4, 3-11
EXTDELIMITER, 31-9
EXTDELIMITER attribute, 30-15

using with STREAMIOH, 31-9
external file name

library maintenance tapes, as described
in, D-6

EXTERNAL mnemonic, for
BLOCKSTRUCTURE attribute, 2-7

EXTMODE attribute
using with a disk file, 3-4
using with a tape file, 4-3
using with an FTAM file, 9-15
using with an ODT file, 8-1
using with BNANATIVESERVICE, 25-11

F

FA (File Attribute) system command
Host Service logical I/O restriction, 9-6

FADU (File Access Data Unit), 9-14
family header version, C-13
FAMILYINDEX attribute, 3-7
FAMILYNAME attribute, 2-2

using with a CD-ROM file, 3-25
using with a disk file, 3-3, 3-10, 3-13

FAMILYOWNER attribute, 4-5, 5-5
FEATUREMASK parameter, 29-21, 29-22
FID (See files, ID)
FIFO files

description of, 2-12
File Access Data Unit (FADU), 9-14
file attribute

AREAS, 3-5
BLOCKSIZE, 2-5
BLOCKSTRUCTURE, 2-5
ENABLEPOSIX, 3-19
EXTMODE, 2-38
MAXRECSIZE, 2-5
MINRECSIZE, 2-5
OWNER, 3-17
PATHNAME, 1-5

Index

Index–8 8600 0056–408

SECURITYGUARD, 3-17
SECURITYTYPE, 3-17
SECURITYUSE, 3-17

file attributes
example of use, 1-8
for device types, A-1
for port files (See port file attributes)
FTAM, 9-40
functionality, 1-7
Host Service logical I/O, 9-40
supported by BASICSERVICE, 22-1
supported by BNANATIVESERVICE, 25-1
supported by OSINATIVESERVICE, 23-1
supported by OSISESSIONSERVICE, 24-2
supported by TCPIPNATIVESERVICE, 26-1

file states
supported by BASICSERVICE, 22-3
supported by BNANATIVESERVICE, 25-3
supported by OSINATIVESERVICE, 23-5
supported by OSISESSIONSERVICE, 24-5
supported by TCPIPNATIVESERVICE, 26-4
supported by TCPNATIVESERVICE, 27-4

File Transfer, Access, and Management
attributes, 9-40

File Transfer, Access, and Management files
accessing on an FTAM remote host, 9-15
actions when no file is present, 9-38
causing character set translation, 9-10,

9-16
controlling Concurrency-Control parameter

information, 9-37
controlling the EXTMODE value, 9-16
creating on an FTAM remote host, 9-8
documents types, 9-7
mapping FTAM file attributes to A Series

file attributes, 9-31
optimizing performance, 9-9
optimizing performance, 9-23
possible actions, 9-36
possible character sets, 9-32
restrictions, 9-8
specifying, 9-8, 9-16

actions that can be performed, 9-10
maximum size of a record, 9-9
name, 9-9
structure of a file, 9-9
type of document, 9-10
use, 9-8
user identification, 9-9

string parameter handling, 9-39
using, 9-7

FILE/HANDLER/<process-hostname>, 9-5
FILEKIND, 31-9

FILEKIND attribute, 30-15
possible value for Host Services logical

I/O, 9-2
restriction with direct I/O files, 10-1
uses for STREAMIOH, 31-3
using with a disk file, 3-6, 3-13
using with STREAMIOH, 31-9

FILELENGTH attribute
using with a CD-ROM file, 3-25
using with a disk file, 3-13

FILENAME attribute, 2-2, 30-16
in file equation, 1-8
subfile matching

NETBIOSSESSIONSERVICE, 28-7
using with a CD-ROM file, 3-24
using with a disk file, 3-3, 3-10
using with a remote file, 6-3
using with a tape file, 4-3, 4-10
using with an FTAM file, 9-9
using with an HC file, 12-2
using with BASICSERVICE, 22-5
using with OSINATIVESERVICE, 23-9
using with OSISESSIONSERVICE, 24-9

FILEORGANIZATION attribute, 3-6
relationship to SYNCHRONIZE

attribute, 3-8, 3-11
files

/dev/null, creation of, 2-21
accessing on other hosts, 9-1
as defined by programs, 1-1
assignment, 1-3, 2-21

as mediated by I/O subsystem, 1-6
ended, file closed, 2-27
explicit, by opening logical file, 1-3

attribute
changing, 1-8
defined, 1-6
interrogating, 2-36
modifying, 2-35

cataloged as nonresident, 2-21
creating

/dev/null file, 2-15
declaration, 2-2
definition, 1-1
determining

availability of, 2-23
existence of, 2-23
number of characters read, 8-2

disk (See disk files)
equation, 1-8

WFL, use of with, 1-7
establishing record format, 2-5

 Index

8600 0056–408 Index–9

format, for backup files, H-3
FTAM (See File Transfer, Access, and

Management files)
genealogy, does not match, 2-21
handling, understanding, 1-1
host, 9-5
ID, 1-5
identifying on other systems, 1-6
KIND value, 7-1
kinds, 2-3
label, 1-3
limiting code file, 2-37
logical (See logical file)
MCP environment tape name, 1-5
name, 1-3

external, 1-3, 2-2
identifying, 2-2
internal, 1-3, 2-2

naming conventions, 1-4
naming long file names, 1-5
ODT (See ODT files)
opening, 2-23
permanent

not available, 2-21
visibility, 1-3

physical (See physical file)
port (See port files)
port file name, 1-5
POSIX, 1-5
printer (See printer files)
reducing the area size, 2-29
remote (See remote files)
security

using POSIX model, 3-17
using traditional model, 3-17

serial number, does not match, 2-21
specifying

/dev/null file, 2-12, 2-15
byte files, 2-11
device, 2-3
dummy file, 2-21
FIFO files, 2-12
optional file, 1-3
purpose, 2-3
size of a block, 2-6
stream files, 2-11
variable-length records, 2-6

starting at a particular record, 2-26
structure, as seen by programs, 1-2
tape (See tape files)
tape file name, 4-1
temporary, 1-3
types of byte files, 2-12

understanding programming, 2-1
using host control files, 12-1
writing on variable length records, 2-10

FILESECTION attribute, 4-12
FILESIZE attribute, 30-16
FILESTATE attribute

using with a port file, 16-1, 16-2, 20-1
using with a remote file, 6-5
using with a RESPOND statement, 23-15
using with BNANATIVESERVICE, 25-10
using with OSISESSIONSERVICE, 24-14
using with TCPIPNATIVESERVICE, 26-13
using with TCPNATIVESERVICE, 27-13
when opening a port file, 18-1, 18-7

FILESTRUCTURE attribute, 3-2, 3-24
relationship to AREALENGTH attribute, 3-5
using with a CD-ROM file, 3-24
using with a disk file, 3-3
using with an FTAM file, 9-9

FILEUSE attribute, 2-3
FTAM restriction, 9-16
using with a remote file, 6-2
using with an FTAM file, 9-8, 9-16
using with an HY file, 11-5
using with an ODT file, 8-1

first-level name, multifile tapes, 4-1
fixed message length, setting for port file

I/O, 19-8
fixed-length records, 1-2
FLEXIBLE attribute, 3-7
flow control, 19-12
FOLDCHARACTER parameter, 31-10

values and representations, 31-10
FOLDING parameter, 31-10
format

for backup files, H-3
of pack labels, B-1

FORMFEEDISDELIMITER parameter, 31-13
FORMID attribute

using with a printer file, 5-3
FORTRAN77

CLOSE operation, F-1
OPEN operation, F-1
TITLE attribute, F-1

frame count, ranges of, 10-4
frame size, changing, 10-6
FRAMESIZE attribute, 2-4

possible values, 2-4
relationship to AREALENGTH, 3-5
relationship to SIZEVISIBLE attribute, 2-8
using with a port file, 19-5, 19-14
using with a printer file, 5-2

Index

Index–10 8600 0056–408

using with an ODT file, 8-1
using with STREAMIOH, 31-16

FRAMESIZECENSUS attribute, 19-10, 26-10,
27-10

FTAM (See File Transfer, Access, and
Management)

FTAM-1, 9-7
FTAM-2, 9-7
FTAM-3, 9-7

G

genealogy, of disk, 3-10
GENERATION attribute

using with a tape file, 4-11
graphics, 5-2
GROUP attribute, 30-15
GROUP subattribute, using, 3-20
GUARDOWNER subattribute, using, 3-20

H

handler task
processing files on file host, 9-5

HC files (See host control files)
header data area

version 6 headers, C-25
version 7 headers, C-49

host control files
data flow control, 12-1
determining if WRITE operation

complete, 12-2
mode, 12-2
opening, 12-2
reading, 12-3
specifying

hubindex source, 12-3
receiving hubindex, 12-2

using, 12-1
using access mask register, 12-1
using MYUSE attribute, 12-1
writing, 12-2

Host Independent Matching (HIM)
O/I networking commands, 25-8
using with BNANATIVESERVICE, 25-8

Host Services logical I/O
attributes, 9-40
maximum block size, 3-5
maximum block size, 2-6
restrictions, 9-5

using, 9-2
HOSTNAME attribute, 9-3

using with an FTAM file, 9-8, 9-16
hubindex, 12-1, 12-3
HUBMAP, 12-1
HY files

determining
length of a message proper, 11-8
number of bytes transmitted, 11-8
validity of data received, 11-8

specifying
a read, 11-8
a write, 11-5
length of message proper, 11-8

HYCOMMAND direct I/O buffer
attribute, 11-5, 11-8

HYMPLENGTH direct I/O buffer
attribute, 11-8

HYPERchannel
adapter, 11-3
adapter command codes, 11-9
associated data, 11-2
constructing a message proper, 11-3
direct I/O buffer attributes, 11-9
example program, 11-14
message proper, 11-2
sending messages, 11-4
using, 11-1

I

I/O devices, programming for, 1-1
I/O initiation statements, 10-10
I/O operation

behavior in a multiple stack situation, 2-42
checking, 2-25
discarding error descriptor, 2-24, 2-25
fatal, 2-24, 2-25
frequency of execution, 1-6

I/O statement
file attributes, manipulation of, 1-6

I/O subsystem
function of, 1-6
objectives, 1-6
record handling, 1-2

I/O timer handling, 3-26
IL (Ignore Label) system command, 4-14
indefinite file operation waits, avoiding, 2-42
indexes, subfile, 14-1
initiating a dialogue

 Index

8600 0056–408 Index–11

using BASICSERVICE, 22-5
using BNANATIVESERVICE, 25-5
using OSINATIVESERVICE, 23-9
using OSISESSIONSERVICE, 24-9
using TCPIPNATIVESERVICE, 26-7
using TCPNATIVESERVICE, 27-6

INPUTEVENT attribute, 6-5
using with a port file, 19-10
using with OSINATIVESERVICE, 23-1

INPUTTABLE attribute, 2-41
INTAP-1, 9-7
intersystem control (ISC), 12-1
INTMODE attribute

relationship to SIZEVISIBLE attribute, 2-8
using with a disk file, 3-4
using with a tape file, 4-3
using with BNANATIVESERVICE, 25-11

INTNAME attribute, 2-2
IOCANCEL direct I/O buffer attribute, 10-4
IOCHARACTERS direct I/O buffer

attribute, 10-4, 11-8, 12-3
IOCOMPLETE direct I/O buffer attribute, 10-4
IOEOF direct I/O buffer attribute, 10-4
IOERRORTYPE direct I/O buffer

attribute, 10-4
using with an HC file, 12-2, 12-3
using with an HY file, 11-5, 11-8
values returned by HY files, 11-9

IOH_CLOSE entry point, 29-19
parameters, 29-19

IOH_ERASEFILE entry point, 29-24
IOH_FSYNC entry point, 29-23

parameters, 29-23
IOH_GETATTRIBUTE entry point, 29-24

parameters, 29-24
IOH_INFO parameter, 29-17
IOH_OPEN entry point, 29-16

parameters, 29-16
IOH_READ entry point, 29-20

parameters, 29-21
IOH_SETATTRIBUTE entry point, 29-25

parameters, 29-25
IOH_WRITE entry point, 29-21

parameters, 29-22
IOHACCESS parameter, 29-17
IOHANDLER library, 29-1

creating, 29-14
entry point parameters, 29-15
entry points, 29-14

IOH_CLOSE, 29-19
IOH_ERASEFILE, 29-24
IOH_FSYNC, 29-23
IOH_GETATTRIBUTE, 29-24

IOH_OPEN, 29-16
IOH_READ, 29-20
IOH_SETATTRIBUTE, 29-25
IOH_WRITE, 29-21

example, 29-26
file attributes, 29-3
file attributes supported for virtual

files, 29-8
IOHBLOCKSTRUCTURE parameter, 29-17
IOHMAXXMTRECS parameter, 29-17
IOHMODE parameter, 29-16
IOHRECSIZE parameter, 29-16
IOHSTRING attribute, 30-3, 30-15

using with STREAMIOH, 31-1
IOINERROR attribute

using with a CD-ROM file, 3-25
using with a disk file, 3-15
using with a tape file, 4-12

IOM systems
I/O timer handling feature, 3-26

IOMASK direct I/O buffer attribute, 10-4
IOPENDING direct I/O buffer attribute, 10-4
IORECORDNUM direct I/O buffer

attribute, 10-4, 10-8
IORESULT direct I/O buffer attribute, 10-4,

11-11, 12-3
IOTIME direct I/O buffer attribute, 10-4
IOTIMER handling

as soon as possible requests, 3-31
default time limit, 3-29
logging considerations, 3-40
mirrored disk, 3-39
peripheral test driver (PTD), 3-41
process overview, 3-27
programming considerations, 3-35
system interface, 3-41
time limit limitations, 3-31
time limit range, 3-30

IOWORDS direct I/O buffer attribute, 10-4
IPADDRESS keyword, 30-4
ISC (intersystem control), 12-1

K

keep-alive packet
using with TCPIPNATIVESERVICE, 26-7
using with TCPNATIVESERVICE, 27-6

KEYEDIO
FTAM restriction, 9-8
Host Services logical I/O restriction, 9-5

KEYEDIOII, 3-6

Index

Index–12 8600 0056–408

KEYEDIOIISET, 3-6
KIND attribute, 2-3

in file equation, 1-8
using with a CD-ROM file, 3-24
using with a disk file, 3-3, 3-10
using with a printer file, 5-2
using with a remote file, 6-2
using with a tape file, 4-3, 4-10
using with an FTAM file, 9-8, 9-16
using with an HC file, 12-2
using with an HY file, 11-5
using with an ODT file, 8-1
using with STREAMIOH, 31-7

L

LABEL attribute
using with a printer file, 5-3

labeled tape files, 4-1
labeled tapes

handling as an unlabeled tape, 4-16
LABELKIND attribute, value after spacing

past last tape file, 4-14
labels

tape files, 4-1
tape, serial number, 4-2

LANs (See local area networks)
LASTRECORD attribute, 30-16

using with a CD-ROM file, 3-25
using with a disk file, 3-14

LASTSUBFILE attribute, 6-2, 6-4
setting of

remote file I/O operations, 6-6
using when writing to a remote file, 6-6

LB (Host Control Unit) system
command, 12-1

LEN parameter, 29-21, 29-22
lexical level check, 10-11
LFILENAME attribute, 30-16
library maintenance tapes

disk file header versions, C-13
library maintenance tapes, C-13

BLOCKSIZE, D-1
compact form, D-1
compact form, D-4
densities, D-2
format

compact form, D-4
standard label, D-2

format, D-1
standard tape label form, D-1

tape directory, D-1
LICENSEKEY attribute, G-1
LINENUM attribute, 5-9

affect of WRITE statement, 5-9
LINKED mnemonic, for BLOCKSTRUCTURE

attribute, 2-7
LISTEN command, in NetBIOS

equivalent to AWAITOPEN, 28-9
local area networks (LANs)

and NETBIOSSESSIONSERVICE, 28-1
and network access points, 28-10
duplicate MYNAME error, 28-10

local dialogue, 13-1
locally-initiated dialogue termination, 20-1
locked files, 3-13

creating, 3-7, 4-6, 5-4
restriction on the CLOSE statement, 3-7,

4-6, 5-4
LOCKEDFILE attribute

using when creating a disk file, 3-7
using when creating a printer backup

file, 5-4
using when creating a tape file, 4-6
using with a disk file, 3-13

locking
a disk file, 3-16
a disk file record, 3-16

logical file, 1-3
as file variable, 1-3
attributes, 1-3
closed with retention, 1-4
in block-structured languages, 1-3
marked as closed, 2-27
marked as open, 2-21
multiple assignments, 1-3
open and unassigned, 1-4
opening, 2-23
protecting, 1-3
specifying the initial position, 2-21
states, 1-3

logical file in multiple stack situation, 2-42
logical result descriptor (LRD), 11-11
long file name feature, 1-5
long file names

library maintenance, C-13
naming conventions, 2-2

LPBDONLY MCP option
relationship to BACKUPKIND attribute, 5-4

LRD (logical result descriptor), 11-11
LTITLE attribute, 30-16

 Index

8600 0056–408 Index–13

M

MAKECREDENTIALS utility, 30-8
MARKID parameter, 31-13
matching, 13-1

attributes
BASICSERVICE uses for, 22-5
BNANATIVESERVICE uses for, 25-5
OSINATIVESERVICE uses for, 23-9
OSISESSIONSERVICE uses for, 24-9
TCPIPNATIVESERVICE uses for, 26-7
TCPNATIVESERVICE uses for, 27-6

file attributes involved, 17-1
MAXCENSUS attribute

using with PORTSEGMENTIO
attribute, 23-21, 24-19

MAXFRAMESIZECENSUS attribute, 26-10,
27-10

MAXRECSIZE
of a READER file, 7-1

MAXRECSIZE attribute, 2-5
adjustment when SIZEVISIBLE is

FALSE, 2-9
default and maximum values, 2-5
relationship to BLOCKSIZE, 2-6
restriction when SIZEVISIBLE is

FALSE, 2-9
using with a disk file, 3-4
using with a printer file, 5-2
using with a tape file, 4-3
using with an FTAM file, 9-9
using with PORTSEGMENTIO

attribute, 23-21, 23-22, 24-19
MAXSUBFILES attribute, 14-1
MCS (See message control system)
message control system (MCS)

messages from remote file, 6-4
relationship to remote files, 6-1

message length
restrictions by network, 22-2
setting for port file WRITE, 19-15
setting to variable or fixed, 19-8

message oriented port service,
definition, 19-1

message proper, 11-2
constructing, 11-3

message size
determining for port file I/O, 19-5
determining for port file WRITE

statements, 19-14
messages, exchanging large messages with

OSINATIVESERVICE, 23-21

messages, exchanging large messages with
OSISESSIONSERVICE, 24-19

MFID (multiple file ID), 1-5
MINRECSIZE attribute, 2-5

adjustment when SIZEVISIBLE is
FALSE, 2-9

mirrored disk
IOTIMER handling, 3-39

mixed multi-byte character sets, 2-41
MODE (Unit Mode) system command, 12-1
MOREDATA option of the WRITE

statement, 23-21, 24-19
multi-byte character sets, 2-41
multifile (See tape files)

multivolume tape, 4-1
multifile tape, 4-1
multifile volume

creation date handling, 4-2
multiple file ID (MFID), 1-5
multireel tape, 4-1
multivolume tape, 4-1
MYHOST attribute, 17-1

using with BNANATIVESERVICE, 25-7
using with OSINATIVESERVICE, 23-9

MYNAME attribute, 17-1
in NETBIOSSESSIONSERVICE, 28-7
permanent node name, 28-7
special encoded values, 28-8
subfile matching

NETBIOSSESSIONSERVICE, 28-6
TCPIPNATIVESERVICE requirement, 26-2
TCPNATIVESERVICE requirement, 27-2
using with BNANATIVESERVICE, 25-7
using with OSINATIVESERVICE, 23-2, 23-9
using with OSISESSIONSERVICE, 24-2

MYUSE attribute, 12-1

N

name
MCP environment, 1-4
MCP environment tape name, 1-5
port file, 1-5
POSIX files, 1-5

names of standard backup files, H-2
naming a backup file

conventions, H-1
NAPs (network access points), 28-10
NCB (network control block), 28-7
NCB_CALLNAME field

in NetBIOS, 28-7

Index

Index–14 8600 0056–408

NCB_NAME field
in NetBIOS, 28-7

negotiation
of dialogue parameters using

BNANATIVESERVICE, 25-11
of dialogues using

OSINATIVESERVICE, 23-17
NETACCESSPOINT attribute

and network access points, 28-10
subfile matching

NETBIOSSESSIONSERVICE, 28-6
values permitted by

NETBIOSSESSIONSERVICE, 28-2
NetBIOS

CALL command
equivalent to OPEN, 28-9

call in NETBIOSSESSIONSERVICE, 28-9
error for duplicate MYNAME values, 28-10
LISTEN command

equivalent to AWAITOPEN, 28-9
NCB_CALLNAME field, 28-7
NCB_NAME field, 28-7
NETBIOSSESSIONSERVICE, 28-1
network control block (NCB), 28-7
retries with AVAILABLEONLY set, 28-9

NETBIOSNAMEINUSE subfile error, 28-10
NETBIOSNAMEINUSERSLT open

error, 28-10
NETBIOSSESSIONSERVICE

definition, 21-2
dialogue release, 28-12
establishing a dialogue, 28-9
example applications, 28-12
exchanging data, 28-11
file attributes supported by, 28-2
file states supported by, 28-4
introduction, 28-1
READ operation

effects of FILESTATE on, 28-11
special syntax for MYNAME attribute, 28-7
special syntax for YOURNAME

attribute, 28-7
supported statements, 28-3
using the OPEN statement with, 28-9
WRITE operation

effects of file state on, 28-12
NetWare

and NETBIOSSESSIONSERVICE, 28-1
network access points (NAPs), 28-10
network control block (NCB), 28-7
NEWFILE attribute, 2-3

Host Services logical I/O restriction, 9-6
using with a CD-ROM file, 3-24

using with a disk file, 3-3, 3-10
using with a tape file, 4-3
using with an FTAM file, 9-9

NEXTRECORD attribute, 10-8
NO FILE condition, 7-2
NO WAIT CLOSE control option, 20-3
NO WAIT control option, 18-4

use in controlling indefinite waits, 2-42
using with the AWAITOPEN

statement, 18-10
nonselective read, 14-4, 19-3
NORESOURCEWAIT attribute, 3-8, 3-12
NOTE attribute, 3-9, 30-15
Novell NetWare

and NETBIOSSESSIONSERVICE, 28-1
NW ADD RESOURCE command, 25-8
NW DELETE RESOURCE command, 25-8
NW MODIFY RESOURCE command, 25-8
NW RESOURCE command, 25-9
NXSERVICES CONFIG files, 30-8
NXSERVICES CREDENTIALS files, 30-9

O

ODT (See operator display terminal (ODT))
ODT files, 8-1

entering data, 8-1
reading, 8-2
removing labels, 8-1
specifying, 8-1

recording mode, 8-1
unit number, 8-1
using of the file, 8-1

variable-length records, 8-1
writing, 8-2

OFFER control option
using with BNANATIVESERVICE, 25-10

OPEN procedure
file whose KIND = READER, 7-3

OPEN statement, 2-21
and NETBIOSSESSIONSERVICE, 28-9
ASSOCIATEDDATA parameter

using with OSINATIVESERVICE, 23-10
using with OSISESSIONSERVICE, 24-10

conditional forms, 2-21
CONNECTTIMELIMIT parameter, 18-6
control option, 18-4
operation

conditional, 2-21
error, 2-22
explicit, 2-21

 Index

8600 0056–408 Index–15

fatal, 2-22
implicit, 2-21
language availability, 2-21
successful, 2-21

using the OFFER control option with
BNANATIVESERVICE, 25-10

using with a port file, 18-1
using with BASICSERVICE, 22-6
using with BNANATIVESERVICE, 25-10
using with OSINATIVESERVICE, 23-10
using with OSISESSIONSERVICE, 24-10
valid control options for

OSINATIVESERVICE, 23-11
values, 2-21

Open Systems Interconnections (OSI)
message format negotiation, 22-7

open, implicit, 2-21
opening a dialogue, 18-1

using BASICSERVICE, 22-5
using BNANATIVESERVICE, 25-5
using OSINATIVESERVICE, 23-9
using OSISESSIONSERVICE, 24-9
using TCPIPNATIVESERVICE, 26-7
using TCPNATIVESERVICE, 27-6

operator display terminal (ODT)
entering data for a program, 8-1
writing to and from a program, 8-1

OPTIONAL attribute, 1-3
optional attribute words

version 6 headers, C-22
version 7 headers, C-42

ORDERLY CLOSE
disposition parameter, 20-2

orderly dialogue termination
using OSINATIVESERVICE, 23-22
using OSISESSIONSERVICE, 24-20

orderly termination, 20-1
OSINATIVESERVICE

attribute value restrictions, 23-2
closing a dialogue, 23-22
controlling the connection time limit, 23-11
definition, 21-2
dialogue negotiation, 23-17
establishing a dialogue, 23-10
exchanging data, 23-19
file state handling during a READ

operation, 23-19
file state handling during a WRITE

operation, 23-20
filestates supported by, 23-5
getting ready to accept a dialogue

request, 23-12
introduction, 23-1

maximum length of associated data, 23-4
naming the host and subfile, 23-2
orderly termination, 23-22
preparing for dialogue establishment, 23-9
responding to a request, 23-15
segmenting messages, 23-21
sending data with a close request, 23-25
sending user data with a dialogue

request, 23-12
specifying type of dialogue

establishment, 23-14
specifying what occurs when a dialogue

cannot be established, 23-11
statements supported by, 23-3
using ASSOCIATEDDATA parameter

with, 23-4
using RESPOND statement with, 23-15
valid file attributes, 23-1
valid OPEN statement control

options, 23-11
OSISESSIONSERVICE

attribute value restrictions, 24-2
closing a dialogue, 24-20
controlling the connection time limit, 24-11
definition, 21-2
establishing a dialogue, 24-10
exchanging data, 24-17
file state handling during a READ

operation, 24-17
file state handling during a WRITE

operation, 24-18
file states supported by, 24-5
indicating the type of response, 24-16
introduction, 24-1
list of valid file attributes, 24-2
making a dialogue ready to receive

requests, 24-12
opening a dialogue, 24-10
performing an orderly dialogue

termination, 24-20
preparing for dialogue establishment, 24-9
receiving a correspondent-initiated orderly

close, 24-23
requesting a locally initiated orderly

close, 24-21
responding to a request, 24-14
segmenting messages, 24-19
sending associated data, 24-10
sending data when closing a

dialogue, 24-23
sending data with an OPEN

statement, 24-12

Index

Index–16 8600 0056–408

specifying the way dialogue establishment
is handled, 24-13

specifying what occurs when a dialogue
cannot be established, 24-11

statements supported by, 24-3
using ASSOCIATEDDATA parameter

with, 24-4
using the YOURHOST and YOURNAME

attributes, 24-2
valid control option of the OPEN

statement, 24-11
OTHER subattribute, using, 3-20
OUTPUTTABLE attribute, 2-41
OVERLAYABLE direct I/O buffer

attribute, 10-3
OWNER attribute, 30-15
OWNER subattribute, using, 3-20

P

pack labels, format, B-1
page

positioning, 5-9
specifying size, 5-9

PAGE attribute, 5-9
PAGESIZE attribute, 5-9

affect of WRITE statement, 5-9
parameters

negotiation of using
BNANATIVESERVICE, 25-11

PARTICIPATE parameter, using with
OSINATIVESERVICE, 23-14

path names, POSIX files, 1-5
PATHNAME attribute, 2-2, 30-16

use of, 1-5
PDATA parameter, 29-21, 29-22
performance improvement, use of event

elements, 10-10
peripheral device, specifying, 2-3
peripheral test driver (PTD), 11-9
permanent

file attributes, H-4
task attributes, H-7

permanent directories, 2-12
permanent file, 1-3

finding status, 2-23
permanent node name

MYNAME file attribute, 28-7
YOURNAME file attribute, 28-8

PERMITTEDACTIONS attribute, 9-10, 9-36
PG (Purge) system command, 12-1

physical file, 1-2
as defined by logical file attributes, 2-21
as device, 1-2
name, 1-3
structural elements, 1-2

physical I/O error
determining occurrence for tape file, 4-12

PLISUPPORT, restriction, 9-6
pointer modification, using the SEEK

statement, 2-26
POPULATION attribute, 3-14
port dialogues

establishing with BASICSERVICE, 22-6
establishing with

BNANATIVESERVICE, 25-10
establishing with

NETBIOSSESSIONSERVICE, 28-9
establishing with

OSINATIVESERVICE, 23-10
establishing with

OSISESSIONSERVICE, 24-10
establishing with

TCPIPNATIVESERVICE, 26-10
establishing with

TCPNATIVESERVICE, 27-9
port file attributes, 15-1

avoiding errors, 15-5
examples of subfile attributes, 15-3
examples of use, 15-1
methods of changing, 15-1
setting and interrogating, 15-1
setting the proper values, 15-5

port file statements, understanding, 16-1
port files

ABORT termination, 20-1
BASICSERVICE (See also BASICSERVICE)
BNANATIVESERVICE (See also

BNANATIVESERVICE)
closing a dialogue, 20-1
controlling

amount of time for dialogue
establishment, 18-12

dialogue establishment, 17-2, 18-3
if a READ statement waits for

input, 19-4
if a WRITE statement waits for a

buffer, 19-12
priority of a subfile, 26-10
security of a subfile, 17-2
when a dialogue is established, 18-8

 Index

8600 0056–408 Index–17

when control is returned to a
program, 19-12, 20-3

write length of data, 19-15
determining

existence of a message, 19-10
if a correspondent subfile initiated a

close, 20-4
if a service provider initiated a

close, 20-5
if the correspondent dialogue requested

termination, 20-1
if the service provider requested

termination, 20-1
length of last message read, 19-6
length of written data, 19-15
maximum I/O length, 19-5
message size, 19-5

exchanging data with, 19-1
file attributes, 15-3
identifying a file state change, 16-2
implicitly closing a file, 20-3
introduction, 13-1
introduction to correspondent-initiated

actions, 16-2
message format negotiation, 22-7
message length restrictions by

network, 22-2
naming

a dialogue, 17-1
the corresponding dialogue, 17-1
the host system, 17-1
the remote host, 17-1

NETBIOSSESSIONSERVICE (See also
NETBIOSSESSIONSERVICE)

opening all subfiles, 14-3
orderly termination, 20-1
OSINATIVESERVICE (See also

OSINATIVESERVICE)
OSISESSIONSERVICE (See also

OSISESSIONSERVICE)
overview, 13-1
performing a broadcast write, 14-4
performing a nonselective read, 14-4
preparing for dialogue establishment, 17-1
preventing data truncation, 19-6, 19-15
reading data with, 19-2
requesting an orderly close, 20-6
sending data to all subfiles, 14-4
setting attribute values, 15-5
specifying

amount of time for dialogue
establishment, 18-6

data unit size, 19-5

maximum I/O length, 19-5
number of subfiles, 14-1
service, 21-1
service provider, 21-1
type of dialogue termination, 20-2
type of message, 19-8
unit of data, 19-14

subfile attributes, 15-3
subfiles, 13-1
TCPIPNATIVESERVICE (See also

TCPIPNATIVESERVICE)
using attributes with, 15-1
using indexes, 14-1
writing data, 19-11
writing for data-stream-oriented

data, 19-17
writing to all subfiles at once, 19-12

port service
definition of data-stream oriented, 19-1
definition of message oriented, 19-1

port service provider
BNANATIVESERVICE, 25-1
OSINATIVESERVICE, 23-1
OSISESSIONSERVICE, 24-1
TCPIPNATIVESERVICE, 26-1

port services
overview, 21-1

port subfiles (See subfiles)
PORTSEGMENTIO attribute

using with OSINATIVESERVICE, 23-21
using with OSISESSIONSERVICE, 24-19

PRESENT attribute, 2-23
print subsystem, 5-1
printer backup file

assigning a logical file, 5-3
creating, 5-3

printer files
backing up to tape, 5-6
backup files, 5-1
canceling standard banner, 5-3
controlling

backup file name changes, 5-4
backup file removal, 5-4
backup file replacement, 5-4
carriage, 5-8
page size, 5-9

for graphics, 5-2
positioning on output page, 5-9
specifying, 5-2

content of first character of the
record, 5-8

number of lines on a page, 5-9

Index

Index–18 8600 0056–408

paper or form, 5-3
print train, 5-3

using, 5-1
process host, 9-5
programming, using file attributes, 2-1
programs

debugging attribute values in, 2-37
protecting, G-1

PROTECTION attribute
using with a disk file, 3-7
using with a tape file, 4-6

PROVIDERGROUP attribute, 13-2, 21-1
providers, 13-2
PTD (peripheral test driver), 11-9

R

random I/O, FTAM restrictions, 9-8
random READ operation, 2-24
random WRITE operation, 2-24
READ operation

and NETBIOSSESSIONSERVICE
effects of FILESTATE on, 28-11

BASICSERVICE
action taken in given file state, 22-7

default actions, 2-24
random (See random READ operation)
serial (See serial READ operation)

READ statement, 19-2
data transfer, 2-24
event-driven techniques for port

files, 19-10
example syntax, 19-2
examples, 19-2
explanation of control option for port

files, 19-4
nonselective for port files, 19-3
operation

fatal, 2-24
reading data with port files, 19-2
READPARTNER direct I/O buffer

attribute, 12-3
REC parameter, 29-21, 29-22
RECEPTIONS attribute, 6-6
RECORD attribute, 10-8
record formats, 2-5

using stored format, 2-4
record size

defining for a VARIABLE2 type file, 2-9
defining the location of the size field, 2-10
specifying, 2-5

RECORDINERROR attribute
determining occurrence for tape fileusing

with a tape file, 4-12
recording mode, specifying for ODT file, 8-1
records, 1-2

determining record number on
volume, 4-12

establishing format, 2-5
for direct I/O files, 10-7
sequential access, 1-2
types, 1-2
variable length

size information, 2-6
specifying, 2-6

redirector file structure, 30-2
REDIRSUPPORT IOHANDLER library, 30-1

accessing, 30-1
accessing an existing file, 30-14
considerations for use, 30-11
credentials, 30-8
declaring a network file, 30-13
directory operations, 30-19

semantics, 30-19
directory programming example, 30-21
example program, 30-18
file attributes supported, 30-15
identifying network files, 30-2
NXSERVICES CONFIG files, 30-8
parameters to IOHSTRING attribute, 30-3
redirector file structure, 30-2
relative file names, 30-7
returned format of directory entries, 30-20

REJECTOPEN response type
using with OSINATIVESERVICE, 23-16
using with OSISESSIONSERVICE, 24-16

relative I/O
FTAM restriction, 9-8
Host Services logical I/O restriction, 9-5

relative station number (RSN)
in the station list, 6-2

RELEASEID attribute, 3-9
remote dialogue, 13-1
remote files, 6-1

adding stations, 6-4
determining

current transmission number, 6-5
end-of-file condition, 6-5
if a station is available, 6-5
if a station is enabled, 6-5
if messages are queued, 6-5
names of stations, 6-5

 Index

8600 0056–408 Index–19

number of characters in a line, 6-5
number of lines for each screen, 6-5
number of messages queued, 6-5
number of messages received, 6-6
number of messages sent, 6-6
number of stations, 6-4
number of stations denied, 6-4
reason for end-of-file condition, 6-5
RSN of added station, 6-4
time station assigned, 6-5
type of station, 6-5
what stations are available, 6-4
where message came from, 6-2

directing a message to a station, 6-2
identifying

station, 6-3
valid stations, 6-1

opening, 6-4
reading, 6-5
reducing data communication line time, 6-3
specifying, 6-2

amount of time to wait on an I/O
operation, 6-2

file use, 6-2
tanking, 6-3

subtracting stations, 6-4
using, 6-1
using a SEEK statement, 6-5
using relative station number (RSN), 6-2
writing to, 6-6

remote host
accessing, 9-1
specifying, 9-8

remote station, 6-1
REQUESTEDMAXRECSIZE attribute, 19-5

using the PORTSEGMENTIO
attribute, 23-21, 24-19

using with a port file, 19-15
using with BNANATIVESERVICE, 25-11

RESIDENT attribute, 2-23
RESPOND statement

response types used with
OSINATIVESERVICE, 23-16

response types using
OSISESSIONSERVICE, 24-16

using with OSINATIVESERVICE, 23-15
using with OSISESSIONSERVICE, 24-14

RESTRICTED attribute
using with a disk file, 3-13

result descriptor, using with I/O
operation, 2-25

RESULTLIST attribute
using with a CD-ROM file, 3-25

using with a disk file, 3-15
using with a port file, 16-1

retention, closing remote files, 6-6
row (See also areas), 3-1
ROWADDRESS attribute

using with a disk file, 3-14
ROWSINUSE attribute

using with a disk file, 3-14
RSN (See relative station number)

S

SAVEFACTOR attribute, 4-6
SB system command, relationship to

BACKUPKIND attribute, 5-4
scratch pools, assigning tapes to, 4-10
scratch unit, 8-1
SCRATCHPOOL attribute

using with a backup tape file, 5-6
SCRATCHPOOL file attribute, 4-10
SCREEN attribute, 6-5
SCREENSIZE attribute, 6-5
search algorithm, 4-13
SEARCHRULE attribute, 3-7

using with a disk file, 3-12
second-level name, multifile tapes, 4-1, 4-13
SECOPT (Security Options) system

command, 4-5, 5-5
sector, 3-1

for disk direct I/O files, 10-7
SECTORSIZE attribute

using with a disk file, 3-14
securing files

using POSIX model, 3-17
using traditional model, 3-17

security
backup disk

specifying type, 5-5
specifying type of user, 5-6

backup tape
specifying type, 5-5
specifying type of user, 5-6

limiting access to files, 1-3
of disk files, 3-17, 3-19
tape

specifying a guard file, 4-5, 5-6
specifying type, 4-5
specifying type of user, 4-5

using the POSIX security model, 3-19
using the SECURITYMODE attribute, 3-20
using traditional security model, 3-17

Index

Index–20 8600 0056–408

Security Accountability Facility
using with a tape file, 4-5, 5-5

security models
POSIX, 3-17
traditional, 3-17

SECURITYGUARD attribute, 30-15
using with a tape file, 4-5, 5-6

SECURITYLABELS tape volume security
option, 4-5

SECURITYMODE attribute, 30-16
subattributes, 3-20
using, 3-20

SECURITYTYPE attribute, 30-16
BASICSERVICE restriction, 22-1
controlling the default value, 17-2
OSINATIVESERVICE restriction, 23-2
OSISESSIONSERVICE restriction, 24-2
TCPNATIVESERVICE requirement, 27-2
using with a backup file, 5-5
using with a port file, 17-2
using with a tape file, 4-5
using with BNANATIVESERVICE, 25-7

SECURITYUSE attribute, 30-17
using with a backup file, 5-6
using with a tape file, 4-5

SEEK statement, 2-26
using with a remote file, 6-5

segment, 3-1
segment (See also sector), 3-1
segmented headers, C-27
segmenting messages

using OSINATIVESERVICE, 23-21
using OSISESSIONSERVICE, 24-19

SENSITIVEDATA attribute, 3-23
SEQBASE parameter, 31-13
SEQINCREMENT parameter, 31-13
serial READ operation, 2-24
serial WRITE operation, 2-24
SERIALNO attribute

using with a backup tape file, 5-6
using with a disk file, 3-14
using with a tape file, 4-9, 4-12

Server Message Block (SMB) protocol
redirection, 30-1

SERVERNAME keyword, 30-4
SERVICE attribute

using with a port file, 21-1
using with an FTAM file, 9-8, 9-16

service provider-initiated dialogue
termination, 20-5

services, port, 13-2
SETGROUPCODE subattribute, using, 3-20
SETUSERCODE subattribute, using, 3-20

SHARENAME keyword, 30-5
simplification, 9-11
single-file single volume tape, 4-1
SINGLEUNIT attribute, 3-7
size of message, determining for port file

I/O, 19-5
SIZE2 attribute, 2-10
SIZEMODE attribute, 2-10
SIZEOFFSET attribute, 2-10
SIZEVISIBLE attribute, 2-8
SKIP carriage control, 5-9
SMBTRACE keyword, 30-6
SPACE carriage control, 5-9
special encoding

MYNAME and YOURNAME
attributes, 28-8

standard backup file title, H-2
STATE attribute, 2-25

using with a port file, 16-1
using with TCPIPNATIVESERVICE, 26-14
using with TCPNATIVESERVICE, 27-13

statements
port file, understanding, 16-1
supported by BASICSERVICE, 22-2
supported by BNANATIVESERVICE, 25-2
supported by OSINATIVESERVICE, 23-3
supported by OSISESSIONSERVICE, 24-3
using AWAITOPEN with

BASICSERVICE, 22-7
using AWAITOPEN with

BNANATIVESERVICE, 25-11
states, file (See file states)
station, identifying a remote file, 6-3
STATIONCOUNT attribute, 6-2, 6-4
STATIONLIST attribute, 6-1, 6-4
STATIONNAME attribute, 6-5
STATIONSALLOWED attribute, 6-4
STATIONSDENIED attribute, 6-4
stream files

use of, 2-11
STREAMIOH

declaring the record file, 31-1
definitions, 31-2
I/O semantics, 31-17
parameter, 31-5

EXTDELIMITER, 31-9
FILEKIND, 31-9
FOLDCHARACTER, 31-10
FOLDING, 31-10
FORMFEEDISDELIMITER, 31-13
KIND, 31-7
MARKID, 31-13

 Index

8600 0056–408 Index–21

SEQBASE, 31-13
SEQINCREMENT, 31-13
TABINTERVAL, 31-14
TRIM, 31-14

using FILEKIND, 31-3
structure of backup files, H-1
subfile

controlling priority, 26-10
overview, 13-1

subfile attributes, 15-3
examples of use, 15-3

subfile indexes, 14-1
examples of use, 14-1

SUBFILEERROR attribute, 16-1
possible values when dialogue

established, 18-3
using with BNANATIVESERVICE, 25-10

SYNCHRONIZE attribute, 30-17
using to determine an error, 2-26
using with a disk file, 3-8, 3-11

SYSOPS system command, 4-6
system option

TAPEEXPIRATION, 4-6

T

TABINTERVAL parameter, 31-14
TANKING attribute, 6-3
tape

file name, 4-1
scratch, 4-6

tape directory, D-1
disk family names, D-6
format, D-6

tape files
BLOCKSIZE attribute maximum, 4-4
conditioning, G-2
controlling

accidental purging, 4-6
unloading of the tape, 4-6, 4-11

creating multifile tapes, 4-13
determining

creation date, 4-12
end-of-file condition, 4-12
occurrence of physical I/O error, 4-12
record number on a volume, 4-12
record or block number, 4-12

handling labeled tapes as unlabeled
tapes, 4-16

labeled, 4-1
making files unavailable, 4-6, 4-11

multifile
creating, 4-13
multivolume tape, 4-1
name requirements, 4-1, 4-13
search algorithm, 4-13
tape, 4-1

multireel tape, 4-1
protecting, 4-6
reading backward, 4-12
securing, 4-5
single-file volume tapes, 4-1
spacing past last file, 4-14
specifying, 4-3

copy, 4-11
cycle number, 4-9, 4-11
expiration time, 4-6
guard file, 4-5, 5-6
internal encoding, 4-3
maximum record length, 4-3
name, 4-3, 4-10
new file, 4-3
owner of the tape volume, 4-5, 5-5
physical file character encoding, 4-3
serial number, 4-9, 4-12
system catalog entry, 4-9
system catalog search, 4-11
type, 4-7
type of security, 4-5
type of user, 4-5
version number, 4-9, 4-11
volume, 4-12

tape densities, D-2
tape formats, E-1

ANSI volume header 5, E-16
ANSI69 file header 1 format, E-6
ANSI69 file header 2, E-7
ANSI69 scratch tape, E-8
ANSI69 user header and trailer label, E-8
ANSI69 volume header - scratch, E-6
ANSI87 file header 1, E-16
ANSI87 file header 1 format, E-17
ANSI87 file header 2 format, E-18
ANSI87 file header 3 format, E-19
ANSI87 multifile multivolume, E-11
ANSI87 multivolume file, E-10
ANSI87 scratch tape format, E-19
ANSI87 volume header 2-scratch, E-15
ANSI87 volume header 1, E-12, E-13
ANSI87 volume header 2-non-scratch, E-14
ANSI87 volume header 3-non-scratch, E-15
B 3500 file header 1, E-9

Index

Index–22 8600 0056–408

B 5500, E-20
library maintenance, D-1
library maintenance compact form, D-4
library maintenance standard form, D-2
unlabeled, E-1

tape mark, 4-1
TAPEEXPIRATION system option, 4-6
TAPEREELRECORD attribute, 4-12
TCPIPNATIVESERVICE

closing a dialogue, 26-15
definition, 21-2
definition of data-stream-oriented

reads, 19-9
establishing a dialogue, 26-10
exchanging data, 26-10
file attributes supported by, 26-1
file state handling during a READ

operation, 26-10
file state handling during a WRITE

operation, 26-12
file states supported by, 26-4
increasing performance, 19-17
introduction, 26-1
preparing for dialogue establishment, 26-7
reading urgent data, 26-14
sending urgent data, 26-15
supported statements, 26-3
using the AWAITOPEN statement, 26-10

TCPNATIVESERVICE
closing a dialogue, 27-15
definition, 21-2
establishing a dialogue, 27-9
exchanging data, 27-10
file state handling during a WRITE

operation, 27-12
file states supported by, 27-4
preparing for dialogue establishment, 27-6
reading urgent data, 27-13
sending urgent data, 27-14
supported statements, 27-3

temporary files, 1-3
terminating a dialogue, 20-1

correspondent-initiated, 20-4
service provider-initiated, 20-5
using ABORT for orderly release, 20-6

TIMELIMIT attribute, 6-2
TIMEOUT keyword, 30-6
TIMESTAMP attribute

using with a disk file, 3-14
TITLE attribute, 2-2, 30-16

using with a disk file, 3-3, 3-10
using with an HY file, 11-5

TOTALSECTORS attribute

using with a disk file, 3-14
TRAINID attribute, 5-3
TRANSLATE attribute

using FORCESOFT value, 2-41
using USERTRANS value, 2-40
using with BNANATIVESERVICE, 25-11

TRANSLATING attribute, 2-40
using with BNANATIVESERVICE, 25-11

translation, 2-38
using a specific table, 2-41
with BNANATIVESERVICE, 25-12
with FTAM files, 9-10, 9-16

translation table, 2-41
transmission, start of

for direct I/O, 10-8
TRANSMISSIONNO attribute, 6-5
TRANSMISSIONS attribute, 6-6
transparent printer DLPs, 5-10
TRIM parameter, 31-14
TRIMBLANKS attribute

using with a printer backup file, 5-3
using with a remote file, 6-3

U

uniform naming convention, 30-6
UNIQUETOKEN attribute, 3-6
UNITNO attribute

using with an ODT file, 8-1
unlabeled tape formats, E-1
unsegmented headers, C-27
UPDATEFILE attribute, 3-11

Host Services logical I/O restriction, 9-5
USECATALOG attribute

using with a disk file, 3-8, 3-11
using with a tape file, 4-9, 4-11

USECATDEFAULT system option
relationship to USECATALOG attribute, 3-8

USEDATE attribute
using with a disk file, 3-14

USEGUARDFILE subattribute, using, 3-20
User Cancel Result, 3-32
USERCODE attribute, 9-9, 9-16
user-defined disk file attributes, C-25
USERDOMAIN keyword, 30-5
USERINFO attribute, 3-9, 30-17
USETIME attribute

using with a disk file, 3-14
USYST field

used to determine library maintenance
tape format, D-1

 Index

8600 0056–408 Index–23

V

variable message length, setting for port file
I/O, 19-8

VARIABLE mnemonic
for BLOCKSTRUCTURE attribute, 2-7
relationship to SIZEVISIBLE attribute, 2-8

VARIABLE2 mnemonic, for
BLOCKSTRUCTURE attribute, 2-7

variable-length records, 1-2
writing on files, 2-10

VARIABLEOFFSET mnemonic
for BLOCKSTRUCTURE attribute, 2-7
relationship to SIZE2 attribute, 2-10
relationship to SIZEMODE attribute, 2-10
relationship to SIZEOFFSET attribute, 2-10

variant parameter, 29-23
version 6 headers, C-14

area address words, C-21
CHECKSUM, C-26
header data area, C-25
optional attribute words, C-22

version 7 headers
additional information contained in, C-12
area address words, C-41
CHECKSUM, C-49
converting to version 6, C-49
disk file header layout, C-27
header data area, C-49
optional attribute words, C-42
size of, C-27

version 8 disk file headers
library maintenance, C-13

VERSION attribute
using with a disk file, 3-8, 3-10
using with a tape file, 4-9, 4-11

virtual files
capabilities, 29-1
file attributes supported by IOHANDLER

library, 29-8
file format attributes, 29-5
I/O requests, 29-10
IOHANDLER library, 29-14
IOHANDLER library attributes, 29-3
opening, 29-9
programming concepts, 29-2
translation, 29-8
used within ALGOL example, 29-10

volume, 4-1

W

WAIT CLOSE control option, 20-3
WAIT control option, 18-4

using with the AWAITOPEN
statement, 18-10

WAIT operations, with direct I/O files, 10-11
WFL jobs

data specification use, 7-2
WIDTH attribute, 6-5
word descriptions, for backup file control

record, H-5
WRITE operation

and NETBIOSSESSIONSERVICE
effects of file state on, 28-12

BASICSERVICE
action taken in given file state, 22-8

default action, 2-24
random (See random WRITE operation)
serial (See serial WRITE operation)

WRITE statement
control option for port files, 19-12
explanation of control option for port

files, 19-12
operation

fatal, 2-25
setting message length for port files, 19-15
understanding broadcast writes, 19-12
using the MOREDATA option, 23-21, 24-19
using with a port file, 19-11
using with an ODT file, 8-2

WRITEPARTNER direct I/O buffer
attribute, 12-2

writing data, using port files, 19-11

X

XLP DLPs, 5-10

Index

Index–24 8600 0056–408

Y

YOURHOST attribute, 17-1
subfile matching

NETBIOSSESSIONSERVICE, 28-7
using with BNANATIVESERVICE, 25-5,

25-7
using with OSINATIVESERVICE, 23-2, 23-9
using with OSISESSIONSERVICE, 24-2

YOURHOSTGROUP attribute
subfile matching

NETBIOSSESSIONSERVICE, 28-7
YOURNAME attribute, 17-1

in NETBIOSSESSIONSERVICE, 28-7
permanent node name, 28-8
special encoded values, 28-8
subfile matching

NETBIOSSESSIONSERVICE, 28-6
TCPIPNATIVESERVICE requirement, 26-2
TCPNATIVESERVICE requirement, 27-2
using with BNANATIVESERVICE, 25-5,

25-7
using with OSINATIVESERVICE, 23-2, 23-9
using with OSISESSIONSERVICE, 24-2

YOURNSAPA attribute
using with OSINATIVESERVICE, 23-9
using with OSISESSIONSERVICE, 24-9

YOURPRESENTATIONSEL attribute
using with OSINATIVESERVICE, 23-9

YOURSESSIONSEL attribute
using with OSINATIVESERVICE, 23-9
using with OSISESSIONSERVICE, 24-9

YOURTRANSPORTSEL attribute
using with OSINATIVESERVICE, 23-9
using with OSISESSIONSERVICE, 24-9

YOURUSERCODE attribute, 17-2
using with BNANATIVESERVICE, 25-7

Z

zero-length random operations, 10-9

.

86000056-408
8 6 0 0 0 0 5 6 - 4 0 8

	Documentation Notes
	Table of Contents
	Table of Figures
	Table of Tables
	Section 1. Introduction and Understanding File Handling
	About This Guide
	Files, Records and Directories
	Physical and Logical Files
	Naming a File in the MCP Environment
	Identifying Files on Other Systems
	Understanding the Functions of the I/O Subsystem
	Understanding File Attributes

	Section 2. Understanding Programming for Files
	Naming the File
	Specifying the Peripheral Device for the File
	Specifying the Purpose of the File
	Identifying How Data Is Transferred
	Establishing a Record Format
	Indicating the Record Size
	Indicating the Size of the Blocks and Buffers
	Indicating the Type of Variable-Length Record
	Understanding Record Length When BLOCKSTRUCTURE Equals EXTERNAL
	Controlling the Size Field When BLOCKSTRUCTURE Equals VARIABLE
	Controlling the Size Field When BLOCKSTRUCTURE Equals VARIABLEOFFSET
	Writing on a File with Variable Length Records

	Using Byte Files in a Program
	Types of Byte Files

	Using a Dummy File
	Opening a File
	Determining the Existence or Availability of a File
	Moving Data to and from a File
	Starting at a Particular Record
	Closing a File
	Modifying an Attribute
	Interrogating an Attribute
	Determining Attribute Conflicts
	Limiting Code File Execution
	Dealing with Translation
	Double-Byte and Mixed Multi-Byte Character Sets

	Understanding Logical File Visibility in the Multiple Stack Situation

	Section 3. Using Disk and CD-ROM Files in a Program
	Files with a KIND Value of PACK or DISK
	Creating a New Disk File
	Accessing an Existing Disk File
	Obtaining Information about a Disk File
	Locking a Disk File on a Record-by-Record Basis
	Securing Disk Files

	Files with a KIND Value of CD
	Accessing a CD-ROM File
	Obtaining Information about a CD-ROM File

	I/O Timer Handling
	Understanding Time Limit Values
	Returning an I/O Request As Soon As Possible

	Section 4. Using Tape Files in a Program
	Creating a Tape File
	Required Tasks
	Security Tasks
	Complex Record Tasks
	Special Requirement Tasks

	Reading a Tape File
	Reading a File in Reverse
	Creating an Unlabeled Tape
	Creating a Tape with More Than One File
	Naming Conventions
	Searching Conventions

	Accessing an Unlabeled Tape
	Treating Labeled Tapes as Unlabeled Tapes

	Section 5. Using Printer Files in a Program
	Defining the Characteristics of a Printer File
	Controlling the Printing of Lines and Pages
	Direct Printing through a Transparent Printer (XLP) DLP

	Section 6. Using Remote Files in a Program
	Identifying the Characteristics of a Remote File
	Opening Remote Files
	Reading Information from a Station
	Writing Information to a Station
	Closing a Remote File

	Section 7. Using Card Files in a Program
	Data Specifications

	Section 8. Using Operator Display Terminal (ODT) Files
	Section 9. Accessing and Creating Files Using Distributed File Services
	Using Host Services Logical I/O
	Opening a File Using Host Services Logical I/O
	Performing I/O Using Host Services Logical I/O

	Using FTAM
	Creating a New File on a Remote OSI Host
	Accessing a File on a Remote OSI Host xe "File Transfer, Access, and Management files: accessing on an FTAM remote host"
	Creating a File on the Local System to Be Accessed through FTAM
	Accessing a File Created through FTAM on the Local System
	FTAM Features in the MCP Environment

	Identifying Supported File Attributes

	Section 10. Using Direct I/O Files
	Defining the Characteristics of a Direct I/O File
	Reading to and Writing from a Direct Array Buffer
	Purging the I/O Queue
	Understanding Direct I/O Disk Files
	Physical Frame Size and Odd Frames
	Areas, Blocks, Records, and Sectors
	End-of-File Pointers
	Zero-Length I/O
	Direct I/O Contrasted with Using Buffered Tape Drives

	Optimizing Direct I/O Operations

	Section 11. Using HYPERchannel (HY) Files
	Understanding a HYPERchannel Network
	Communicating between Systems
	Constructing a Message Proper

	Programming for a HYPERchannel Network
	Defining the Characteristics of an HY File
	Writing a HYPERchannel Message
	Reading a HYPERchannel Message

	Adapter Command Codes
	Using I/O Buffer Attributes for HYPERchannel Files
	Example Program

	Section 12. Using Host Control (HC) Files
	Defining the Characteristics of an HC File
	Writing an HC Message
	Reading an HC Message

	Section 13. Understanding Port Files
	Examples of a Requesting Program
	Examples of a Server Program

	Section 14. Using Subfile Indexes
	Section 15. Using Attributes
	Setting and Interrogating Attributes
	Understanding the Difference between File and Subfile Attributes
	Setting Proper Attribute Values

	Section 16. Understanding Port Statements
	Section 17. Preparing Your Subfile for Dialogue Establishment
	Section 18. Establishing a Subfile Dialogue
	Using the OPEN Statement
	Understanding the AVAILABLEONLY File Attribute for OPEN
	Understanding the OPEN Control Option Parameter
	Understanding the OPEN CONNECTTIMELIMIT Parameter

	Using the AWAITOPEN Statement
	Understanding the AVAILABLEONLY File Attribute for AWAITOPEN
	Understanding the AWAITOPEN Control Option Parameter
	Understanding the AWAITOPEN CONNECTTIMELIMIT Parameter

	Section 19. Exchanging Data
	Reading Data
	Understanding Nonselective READ Operations
	Understanding the READ WAIT/DONTWAIT Option Parameter
	Determining Message Size for Message-Oriented Services READ Operations
	Understanding Data-Stream-Oriented Services READ Operations
	Understanding Event-Driven Input Techniques

	Writing Data
	Understanding Broadcast WRITE Operations
	Understanding the WRITE WAIT/DONTWAIT Option Parameter
	Determining Message Size for Message-Oriented Services WRITE Operations
	Understanding Message Size for Data-Stream-Oriented Services WRITE Operations

	Section 20. Closing a Dialogue
	Understanding the CLOSE Disposition Parameter
	Understanding the CLOSE Control Option Parameter
	Understanding Correspondent-Initiated Dialogue Termination
	Understanding Service Provider-Initiated Dialogue Aborts
	Using ABORT Termination for Orderly Release

	Section 21. Understanding Port Services
	Section 22. Using BASICSERVICE
	File Attributes Supported by BASICSERVICE
	Statements Supported by BASICSERVICE
	File States Supported by BASICSERVICE
	Preparing for Dialogue Establishment Using BASICSERVICE
	Establishing a Dialogue Using BASICSERVICE
	Using the OPEN Statement with BASICSERVICE
	Using the AWAITOPEN Statement with BASICSERVICE

	Exchanging Data Using BASICSERVICE
	Closing a Dialogue Using BASICSERVICE

	Section 23. Using OSINATIVESERVICE
	File Attributes Supported by OSINATIVESERVICE
	Statements Supported by OSINATIVESERVICE
	Understanding the ASSOCIATEDDATA Parameter of OSINATIVESERVICE
	File States Supported by OSINATIVESERVICE
	Preparing for Dialogue Establishment Using OSINATIVESERVICE
	Establishing a Dialogue Using OSINATIVESERVICE
	Using the OPEN Statement with OSINATIVESERVICE
	Using the AWAITOPEN Statement with OSINATIVESERVICE
	Using the RESPOND Statement with OSINATIVESERVICE
	Understanding the Response Type Parameter
	Understanding Negotiation during Dialogue Establishment

	Exchanging Data Using OSINATIVESERVICE
	Exchanging Large Messages Using OSINATIVESERVICE
	Closing a Dialogue Using OSINATIVESERVICE
	Using Orderly Dialogue Termination with OSINATIVESERVICE
	Sending Associated Data with a CLOSE Request

	Section 24. Using OSISESSIONSERVICE
	File Attributes Supported by OSISESSIONSERVICE
	Statements Supported by OSISESSIONSERVICE
	Understanding the ASSOCIATEDDATA Parameter of OSISESSIONSERVICE
	File States Supported by OSISESSIONSERVICE
	Preparing for Dialogue Establishment Using OSISESSIONSERVICE
	Establishing a Dialogue Using OSISESSIONSERVICE
	Using the OPEN Statement with OSISESSIONSERVICE
	Using the AWAITOPEN Statement with OSISESSIONSERVICE
	Using the RESPOND Statement with OSISESSIONSERVICE
	Understanding the Response Type Parameter

	Exchanging Data Using OSISESSIONSERVICE
	Exchanging Large Messages Using OSISESSIONSERVICE
	Closing a Dialogue Using OSISESSIONSERVICE
	Using Orderly Dialogue Termination with OSISESSIONSERVICE
	Sending Associated Data with a CLOSE Request

	Section 25. Using BNANATIVESERVICE
	File Attributes Supported by BNANATIVESERVICE
	Statements Supported by BNANATIVESERVICE
	File States Supported by BNANATIVESERVICE
	Using Host Independent Matching (HIM)

	Establishing a Dialogue Using BNANATIVESERVICE
	Using the OPEN Statement with BNANATIVESERVICE
	Using the AWAITOPEN Statement with BNANATIVESERVICE
	Understanding Negotiation during Dialogue Establishment with BNANATIVESERVICE

	Exchanging Data Using BNANATIVESERVICE
	Closing a Dialogue Using BNANATIVESERVICE

	Section 26. Using TCPIPNATIVESERVICE
	Port Support for TCPIPNATIVESERVICE
	Statements Supported by TCPIPNATIVESERVICE
	File States Supported by TCPIPNATIVESERVICE
	Preparing for Dialogue Establishment Using TCPIPNATIVESERVICE
	Establishing a Dialogue Using TCPIPNATIVESERVICE
	Using the OPEN Statement with TCPIPNATIVESERVICE
	Using the AWAITOPEN Statement

	Exchanging Data Using TCPIPNATIVESERVICE
	Understanding Data-Stream-Oriented Data Transfer Using TCPIPNATIVESERVICE
	Using Urgent Data with TCPIPNATIVESERVICE

	Closing a Dialogue Using TCPIPNATIVESERVICE

	Section 27. Using TCPNATIVESERVICE
	File Attributes Supported by TCPNATIVESERVICE
	Port Support for TCPNATIVESERVICE
	Statements Supported by TCPNATIVESERVICE
	File States Supported by TCPNATIVESERVICE
	Preparing for Dialogue Establishment Using TCPNATIVESERVICE
	Establishing a Dialogue Using TCPNATIVESERVICE
	Using the OPEN Statement with TCPNATIVESERVICE
	Using the AWAITOPEN Statement with TCPNATIVESERVICE

	Exchanging Data Using TCPNATIVESERVICE
	Understanding Data-Stream-Oriented Data Transfer Using TCPNATIVESERVICE
	Using Urgent Data with TCPNATIVESERVICE

	Closing a Dialogue Using TCPNATIVESERVICE

	Section 28. Using NETBIOSSESSIONSERVICE
	Statements Supported by NETBIOSSESSIONSERVICE
	File States Supported by NETBIOSSESSIONSERVICE
	Preparing for Dialogue Establishment Using NETBIOSSESSIONSERVICE
	Understanding the MYNAME and YOURNAME File Attributes
	Establishing a Dialogue Using NETBIOSSESSIONSERVICE
	Using the OPEN Statement with NETBIOSSESSIONSERVICE
	Using the AWAITOPEN Statement with NETBIOSSESSIONSERVICE

	Understanding NETBIOSNAMEINUSERSLT Errors
	Exchanging Data Using NETBIOSSESSIONSERVICE
	Closing a Dialogue Using NETBIOSSESSIONSERVICE
	Example Applications Using NETBIOSSESSIONSERVICE

	Section 29. Understanding Virtual Files
	Using Virtual Files
	Programming for Virtual Files

	Virtual File IOHANDLER
	Understanding the IOHANDLER
	Common IOHANDLER Entry Point Parameters
	Example IOHANDLER Library

	Section 30. Using the REDIRSUPPORT IOHANDLER Library
	Accessing REDIRSUPPORT IOHANDLER
	Redirector File Structure
	Locating a Network File
	IOHSTRING Parameters
	Uniform Naming Convention
	Relative File Names
	NXSERVICES CONFIG Files

	Credentials
	MAKECREDENTIALS Utility
	NXSERVICES CREDENTIALS Files

	REDIRSUPPORT Considerations for Use
	Networking Considerations
	Declaring a Network File
	File Attribute Considerations

	Example Program
	Directory Operations
	REDIRSUPPORT IOHANDLER Directory Semantics
	Reading a Directory
	Directory Programming Example

	Section 31. Using the STREAMIOH IOHANDLER Library
	Declaring the Record File to Use STREAMIOH IOHANDLER
	Terminology Definitions

	FILEKIND and File Extension Handling
	STREAMIOH Parameters
	Parameter Semantics
	Physical File Parameters
	Conversion Parameters

	File Attribute Considerations
	FRAMESIZE, UNITS, and Related Attributes
	DEPENDENTSPECS and Related Attributes
	NEXTRECORD and RECORD Attributes
	LASTRECORD and FILELENGTH Attributes
	CURRENTRECORDLENGTH Attribute

	I/O Operation Semantics

	Appendix A. Device Types and Associated File Attributes
	Appendix B. Format of Pack Labels
	Appendix C. Disk File Headers
	User Interface Procedures
	CONVERTHEADER

	Disk File Header Versions
	Disk Families
	Library Maintenance Tapes

	Version 6 Disk File Header Layout
	Area Address Words for Version 6 Headers
	Optional Attribute Words for Version 6 Headers
	Header Data Area for Version 6 Headers
	CHECKSUM for Version 6 Headers

	Version 7 Disk File Header Layout
	Area Address Words for Version 7 Headers
	Optional Attribute Words for Version 7 Headers
	Header Data Area for Version 7 Headers
	CHECKSUM for Version 7 Headers

	Appendix D. Format of Library Maintenance Tapes
	Format of Library Maintenance Tapes with Standard Labels
	Format of Library Maintenance Tapes in Compact Form
	Format of the Tape Directory

	Appendix E. Standard Tape Formats
	Unlabeled Tapes
	ANSI X3.27-1969 (ANSI69) Tapes
	B 3500 USASI Tapes
	ANSI87 Tapes
	B 5500 Tapes
	ALGOL Files
	COBOL Files

	Appendix F. FORTRAN77 Programs
	Appendix G. Controlling the Distribution of Application Programs
	Appendix H. Structure of Backup Files
	Naming Conventions
	Examples of Standard Names
	Overriding Standard Names
	Naming Tape Files

	File Format
	Control Record Word Descriptions

	Appendix I. Related Product Information
	Index
	Master Glossary

