
Unisys e-@ction

Application Development

Solutions

DCALGOL
Programming Reference Manual

ClearPath Release MCP 7.0

Printed in USA
November 2001 8600 0841–202

.

Unisys e-@ction

Application Development

Solutions

DCALGOL
Programming Reference Manual

UNISYS

© 2001 Unisys Corporation.
All rights reserved.

ClearPath Release MCP 7.0

Printed in USA
November 2001 8600 0841–202

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to Government End Users: This is commercial computer software or hardware documentation developed at
private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract data
rights clauses.

Correspondence regarding this publication can be e-mailed to doc@unisys.com.

Unisys, ClearPath, and e-@ction are registered trademarks of Unisys Corporation in the United States and other
countries.
All other brands and products referenced in this document are acknowledged to be the trademarks or registered
trademarks of their respective holders.

Unisys e-@ction
Application Development
Solutions

DCALGOL
Programming Reference
Manual

ClearPath Release
MCP 7.0

 Unisys e-@ction
Application
Development
Solutions

DCALGOL

Programming
Reference
Manual

ClearPath
Release
MCP 7.0

8600 0841–202 8600 0841–202

Bend here, peel upwards and apply to spine.

.

8600 0841–202

 Page Status

Page Issue

xii through xi –202
xii Blank
xiii –202
xiv Blank
1–1 through 1–13 –202
1–14 Blank
2–1 through 2–13 –202
2–14 Blank
3–1 through 3–48 –202
4–1 through 4–9 –202
4–10 Blank
5–1 through 5–107 –202
5–108 Blank
6–1 through 6–73 –202
6–74 Blank
A–1 through A–5 –202
A–6 Blank
B–1 through B–3 –202
B–4 Blank
C–1 through C–10 –202
D–1 through D–3 –202
D–4 Blank
Index–1 through 10 –202

Page Status

 8600 0841–202

Format these characters as “white” to force printing of blank page.

8600 0841–202 iii

Contents

Section 1. Declarations

About This Guide... 1–1
EPILOG PROCEDURE Declaration.. 1–3
EXCEPTION PROCEDURE Declaration... 1–5
MESSAGE and MESSAGE ARRAY Declarations 1–7
QUEUE and QUEUE ARRAY Declarations .. 1–11
QUEUE ARRAY REFERENCE Declaration .. 1–13

Section 2. Statements

ALLOCATE Statement .. 2–1
ATTACH Statement... 2–3
COMBINE Statement.. 2–4
DCKEYIN Statement ... 2–5
FLUSH Statement ... 2–7
INSERT Statement .. 2–8
ON Statement ... 2–10
RESIDENT Statement ... 2–11
STANDARDTODISPLAY Statement.. 2–13

Section 3. Functions

ATTACHSPOQ Function.. 3–1
CHECKGUARDFILE Function.. 3–2
CONTROLCARD Function... 3–4

WFL Card Image (Variant = 1).. 3–7
DCERRANALYSIS Function... 3–8
DCERRORLOGGER Function.. 3–10
DCSYSTEMTABLES Function ... 3–11
DCWRITE Function ... 3–15
DISPLAYTOSTANDARD Function... 3–16
GETSTATUS Function ... 3–20
INSERT_CLIENTQUEUE Function... 3–21
LINKLIB_CLIENTQUEUE Function.. 3–22
MAKEUSERCODE Function.. 3–31
MCSLOGGER Function ... 3–32
NULL Function .. 3–34
QUEUEINFO Function... 3–35
REMOVE Function .. 3–36
SETSTATUS Function.. 3–37

Contents

iv 8600 0841–202

SETUPINTERCOM Function ... 3–38
ODT-Simulating MCS .. 3–43

SIZE Function .. 3–44
SYSTEMSTATUS Function.. 3–45
USERDATAFREEZER Function ... 3–46
WRITESPO Function... 3–47

Section 4. Attributes

Queue Attributes... 4–1
QACTIVE.. 4–2
QBLOCKSIZE... 4–2
QDISKERROR.. 4–2
QHEADSIZE... 4–3
QINSERTEVENT .. 4–3
QMEMORYLIMIT .. 4–4
QMEMORYSIZE .. 4–4
QMESSAGECOUNT .. 4–4
QREMOVEWAIT.. 4–5
QROWSIZE.. 4–5
QSIZE... 4–5
QTANK... 4–6
QUSERCOUNT .. 4–6

Task Attributes .. 4–7
AUTOSWITCHTOMARC.. 4–7
BACKUPFAMILY.. 4–8
DESTSTATION... 4–8
DISPLAYONLYTOMCS.. 4–8
INHERITMCSSTATUS ... 4–8
MAXWAIT.. 4–8
ORGUNIT... 4–8
SOURCEKIND.. 4–9
SOURCESTATION ... 4–9
STATION.. 4–9
TANKING ... 4–9

Section 5. DCWRITE Information

General DCWRITE Information ... 5–1
DCWRITE Message Format .. 5–1

Type Field (MSG[0].[47:08]) .. 5–3
Variant Field (MSG[0].[39:16]) 5–3
LSN/FRSN/DLS Field (MSG[0].[23:24]) 5–3
Priority Output Field (MSG[1].[47:08])......................... 5–3
TOGGLE and TALLY Fields (MSG[1].[39:08]

and MSG[3].[23:24]).. 5–4
Retry Count Field (MSG[2].[47:08]) 5–4
Text Size Field (MSG[2].[39:16]) 5–4
Message Number Field (MSG[4].[47:24]) 5–4
Text (Beginning at MSG[6])... 5–4

MCS Calls on DCWRITE.. 5–4

 Contents

8600 0841–202 v

Summary of DCWRITE.. 5–6
Pseudostations and Fully Participating MCSs..................................... 5–16

Pseudostations .. 5–16
MCS Participation in Data Comm Functions (Full

Participation) .. 5–17
Specific DCWRITE Information ... 5–18

INITIALIZE PRIMARY QUEUE (DCWRITE Type = 0)......... 5–18
STATION ATTACH (DCWRITE Type = 1)........................... 5–21
INTERROGATE MCS (DCWRITE Type = 2)....................... 5–25

Indexing... 5–26
MSG[INX] := MSG[6].[07:08]..................................... 5–27
MSG[MSG[INX].[23:08]] .. 5–27
MSG[MSG[INX].[15:08]] .. 5–28

INTER-MCS COMMUNICATE (DCWRITE Type = 3) 5–30
INTERROGATE STATION ENVIRONMENT

(DCWRITE Type = 4) ... 5–32
ATTACH SCHEDULE STATION (DCWRITE Type =

5).. 5–36
Station Information.. 5–37
Terminal Information ... 5–37

CHANGE CURRENT QUEUE (DCWRITE Type = 32)......... 5–38
WRITE (DCWRITE Type = 33) ... 5–40
READ-ONCE ONLY (DCWRITE Type = 34) 5–42
ENABLE INPUT (DCWRITE Type = 35) 5–43
DISABLE INPUT (DCWRITE Type = 36) 5–44
MAKE STATION READY/NOT READY (DCWRITE

Type = 37).. 5–45
SET APPLICATION NUMBER (DCWRITE Type =

38).. 5–47
SET CHARACTERS (DCWRITE Type = 39)........................ 5–48
SET TRANSMISSION NUMBER (DCWRITE Type =

40).. 5–49
RECALL MESSAGE (DCWRITE Type = 41)....................... 5–50
STATION DETACH (DCWRITE Type = 42) 5–52
SET/RESET LOGICALACK (DCWRITE Type = 43)............. 5–56
ACKNOWLEDGE (DCWRITE Type = 44)........................... 5–57
TRANSFER STATION CONTROL (DCWRITE Type =

45).. 5–58
MSG[0].[31:01] = 0.. 5–61
MSG[0].[31:01] = 1.. 5–61
MSG[0].[27:01] = 0.. 5–61
MSG[0].[27:01] = 1.. 5–62

WRITE AND RETURN (DCWRITE Type = 46) 5–63
NULL STATION REQUEST (DCWRITE Type = 48)............ 5–64
SET/RESET SEQUENCE MODE (DCWRITE Type =

49).. 5–65
MSG[0].[39:16] = 1.. 5–65

WRITE TO TRANSFERRED STATION (DCWRITE
Type = 53).. 5–66

SEND MCS RESULT MESSAGE (DCWRITE Type =
55).. 5–68

Contents

vi 8600 0841–202

SET PSEUDOSTATION ATTRIBUTES (DCWRITE
Type = 56) ... 5–69

STATION ASSIGNMENT TO FILE (DCWRITE Type
= 64) .. 5–71

Output Tanking for Remote Files.............................. 5–73
MCS Participation in I/O.. 5–75
Stations without Line Assignments.......................... 5–76

WRITE TO OBJECT JOB (DCWRITE Type = 65) 5–77
STATION BREAK (DCWRITE Type = 66) 5–78
ADD STATION TO FILE (DCWRITE Type = 67) 5–79
SUBTRACT STATION FROM FILE (DCWRITE Type

= 69) .. 5–82
Line-Oriented Requests .. 5–83

MAKE LINE READY (DCWRITE Type = 96) 5–83
MAKE LINE NOT READY (DCWRITE Type = 97).............. 5–85
DIALOUT (DCWRITE Type = 98)....................................... 5–86
DISCONNECT (DCWRITE Type = 99) 5–89
INTERROGATE SWITCHED STATUS (DCWRITE

Type = 101) ... 5–90
SET/RESET AUTOANSWER (DCWRITE Type =

102).. 5–91
SET/RESET LINE TOGS-TALLYS (DCWRITE Type =

103).. 5–92
LINE INTERROGATE (DCWRITE Type = 104)................... 5–93
FORCE LINE NOT READY (DCWRITE Type = 105) 5–94

Reconfiguration Request DCWRITE Types .. 5–95
SWAP LINES (DCWRITE Type = 128)............................... 5–95
EXCHANGE LSPS (DCWRITE Type = 129) 5–97
MOVE/ADD/SUBTRACT STATION (DCWRITE Type

= 130) .. 5–99
MSG[0].[25:01] = 1 ... 5–100
Physical Attributes .. 5–101
Logical Attributes .. 5–102
DCWRITE Errors ... 5–103

UPDATE LINE ATTRIBUTES (DCWRITE Type =
131).. 5–105

DCWRITE Errors ... 5–107

Section 6. MCS Result Message Formats

General Result Message Format .. 6–1
Class Field (MSG[0].[47:08]) .. 6–2
Variant Field (MSG[0].[39:16]).. 6–3
LSN Field (MSG[0].[23:24]) .. 6–4
Result-byte Index Field (MSG[1].[47:08])............................. 6–4
Toggle Field (MSG[1].[39:08]) .. 6–4
Last Error Flag Set Field (MSG[1].[31:08]) 6–4
Error Flag Field (MSG[1].[23:24]) ... 6–4
Retry Count Field (MSG[2].[47:08])...................................... 6–6
Text Size Field (MSG[2].[39:16]) .. 6–6
Transmission Number Field (MSG[2].[23:24]) 6–6

 Contents

8600 0841–202 vii

Time Field (MSG[3].[47:24]) ... 6–6
TALLY[0], TALLY[1], and TALLY[2] 6–6
Message Number Field (MSG[4].[47:24]) 6–6
Original DCWRITE Type Field (MSG[4].[23:24])................... 6–7
Sequence Number Present Field (MSG[5].[27:01] 6–7
Sequence Number Field (MSG[5].[26:27]) 6–7
Text (beginning at MSG[6]) .. 6–7

Specific Result Message Formats .. 6–8
GOOD INPUT RECEIVED (Result Class = 0) 6–9
STATION EVENT (Result Class = 1) 6–10
FILE OPEN (Result Class = 2).. 6–12

Station Transfer File Open .. 6–14
OBJECT JOB OUTPUT (Result Class = 3)......................... 6–14
FILE CLOSE (Result Class = 4) .. 6–15

Station Transfer FILE CLOSE 6–16
GOOD RESULTS (Result Class = 5) 6–17

Variant Field in Response to RECALL
MESSAGE... 6–18

RECALLED MESSAGE (Result Class = 6) 6–19
SWITCHED STATUS RESULT (Result Class = 7) 6–20
LSP EXCHANGE RESULT (Result Class = 8)..................... 6–21
LINE STATUS CHANGE RESULT (Result Class = 9) 6–23
SWAP LINE RESULT (Result Class = 10) 6–24
MOVE/ADD/SUBTRACT STATION RESULT (Result

Class = 11)... 6–25
DLS UPDATE RESULT (Result Class = 12) 6–26
INTER-MCS COMMUNICATE RESULT (Result

Class = 13)... 6–27
STATION DETACHED (Result Class = 14)......................... 6–28
INTERROGATE STATION ENVIRONMENT RESULT

(Result Class = 15) .. 6–29
Explanation of Expanded Message Format 6–30
INX := MSG[6].[07:08] (First Entry Index) 6–32
MSG[MSG[INX].[47:08]] .. 6–32
MSG[MSG[INX].[39:08]] .. 6–32
MSG[MSG[INX].[31:08]] .. 6–32

First Word: MSG[MSG[INX].[31:08]] 6–33
Second Word:

MSG[MSG[INX].[31:08]+1] (NSP Line
Information Not Requested)......................... 6–34

Second Word:
MSG[MSG[INX].[31:08]+1] (NSP Line
Information Requested) 6–34

Third Word: MSG[MSG[INX].[31:08]+2]
(NSP Line Information Requested)............... 6–35

Fourth Word: MSG[MSG[INX].[31:08]+3]
(NSP Line Information Requested)............... 6–35

Fifth Word: MSG[MSG[INX].[31:08]+4]
(NSP Line Information Requested)............... 6–35

MSG[MSG[INX].[23:08]] .. 6–36
First Word: MSG[MSG[INX].[23:08]] 6–36

Contents

viii 8600 0841–202

Second Word:
MSG[MSG[INX].[23:08]+1] 6–36

MSG[MSG[INX].[15:08]].. 6–37
First Word: MSG[MSG[INX].[15:08]] 6–37
Second Word:

MSG[MSG[INX].[15:08]+1] 6–38
Third Word: MSG[MSG[INX].[15:08]+2]

(NSP Information Not Requested) 6–38
Third Word: MSG[MSG[INX].[15:08]+2]

(NSP Information Requested) 6–39
Fourth Word: MSG[MSG[INX].[15:08]+3] 6–39
Fifth Word: MSG[MSG[INX].[15:08]+4]............ 6–39
Sixth Word: MSG[MSG[INX].[15:08]+5]........... 6–39
Seventh Word:

MSG[MSG[INX].[15:08]+6] 6–40
Eighth Word: MSG[MSG[INX].[15:08]+7] 6–40
Ninth Word: MSG[MSG[INX].[15:08]+8] 6–40
Tenth Word: MSG[MSG[INX].[15:08]+9] 6–40
Eleventh Word.. 6–40

TRANSFER STATION CONTROL RESULT (Result
Class = 16) .. 6–41

INX := MSG[6].[47:12] (Index to the Station
Transfer Index Control Word) 6–42

INX := MSG[6].[32:09] (Header Word of
Information Area) .. 6–42

INX := MSG[6].[32:09] + 1 (First Word of
Information Area) .. 6–43

UINX := INX+MSG[INX+4].[31:16] (First Word
of Authentication Location)................................... 6–44

UINX := INX+MSG[INX+4].[15:16] (First Word
of Usercode Location) .. 6–44

AINX := INX+MSG[INX+5].[47:16] (First Word
of Accesscode Location) 6–45

CINX := INX+MSG[INX+5].[31:16] (First Word
of Chargecode Location)....................................... 6–45

WINX := INX+MSG[INX+5].[15:16] (First Word
of Window Information Location) 6–45

OINX := INX+MSG[INX+6].[15:16] (First Word
of Open Text Location) ... 6–45

ODT-TO-MCS RESULT (Result Class = 17)....................... 6–47
ODT-TO-STATION RESULT (Result Class = 18)................ 6–48
UPDATE LINE ATTRIBUTES RESULT (Result Class

= 19) .. 6–49
MESSAGE FROM CONTROLLER RESULT (Result

Class = 21) .. 6–50
LINE INTERROGATE RESULT (Result Class = 24) 6–57
OBJECT JOB INPUT REQUEST RESULT (Result

Class = 25) .. 6–58
INTERCEPTED MESSAGE RESULT (Result Class =

29).. 6–59
NSPINITIALIZED RESULT (Result Class = 30) 6–61
STATION REINITIALIZED (Result Class = 31)................... 6–62

 Contents

8600 0841–202 ix

POWER OFF PENDING RESULT (Result Class =
32).. 6–63

ODT MODE SWITCH NOTICE RESULT (Result
Class = 80)... 6–64

INPUT FROM AN ODT RESULT (Result Class = 81)......... 6–65
ERROR RESULT (Result Class = 99) 6–66

Line/Station Format of ERROR RESULT
Message ... 6–66

Error Results in Line/Station Format 6–66
Result Byte Index ... 6–67
Line Status Prior to Abort

(MSG[1].[39:06]) ... 6–68
NDLII LINE.TOG_1 and NDLII

LINE.TOG_0 ... 6–68
Switched Status Format of ERROR RESULT

Message ... 6–69
Error Results in Switched Status Format 6–70
Using Switched Status Format......................... 6–71
Switched Status Byte Values 6–71
Switched Status Format Flags after

DIALOUT.. 6–72
Switched Status Format Flags after

DISCONNECT... 6–72
Switched Status Format Flags after

INTERROGATE SWITCHED STATUS........... 6–73
Switched Status Format Flags

SET/RESET AUTOANSWER......................... 6–73
Switched Status Format Flags after

Automatic Switched Status.......................... 6–73

Appendix A. Sample MCS

Appendix B. Reserved Words

Type 1..B–1
Type 2..B–1
Type 3..B–2

Appendix C. Understanding Railroad Diagrams

Railroad Diagram Concepts ...C–1
Paths ..C–1
Constants and Variables...C–2
Constraints ...C–3

Following the Paths of a Railroad Diagram ...C–7
Railroad Diagram Examples with Sample InputC–8

Appendix D. Related Product Information

Contents

x 8600 0841–202

Index ..1

8600 0841–202 xi

Figures

5–1. INTERROGATE MCS Index Diagram ... 5–26

6–1. INTERROGATE STATION ENVIRONMENT RESULT Index Diagram............... 6–31
6–2. Interpretation of MSG[MSG[INX].[31:08]] .. 6–33

Figures

xii 8600 0841–202

8600 0841–202 xiii

Tables

3–1. Format 1 for SETUPINTERCOM Function Messages...................................... 3–39
3–2. Format 2 for SETUPINTERCOM Function Messages...................................... 3–41
3–3. Bits for Message Component Word .. 3–43

5–1. DCWRITE Message Format (General) ... 5–2
5–2. Summary of DCWRITE Types.. 5–6
5–3. Summary of DCWRITE Errors .. 5–7
5–4. Results from the DCWRITE Function .. 5–11
5–5. Dialing Sequence Operators... 5–87

6–1. General Message Format... 6–1
6–2. Message Classes ... 6–2
6–3. Error Flag Values .. 6–5
6–4. Error Result, Line/Station Format... 6–67
6–5. Result Byte Index Values ... 6–67
6–6. Line Status Prior to Abort Values ... 6–68
6–7. Error Result, Switched Status Format.. 6–70
6–8. Switched Status Byte Values ... 6–71

Tables

xiv 8600 0841–202

8600 0841–202 1–1

Section 1
Declarations

About This Guide

Purpose

The DCALGOL Programming Reference Manual provides information on the Data
Communications ALGOL (DCALGOL) language. The manual provides information on all
the constructs that have application in the control and implementation of a data
communications (data comm) environment. It also documents constructs that are useful
for interfacing or implementing specialized system programs, such as supervisor
programs and performance monitoring tools.

As of SSR 44.2, the following physical hardware terms are valid only as general
conceptual terms:

• Line Support Processor (LSP)

• Network Support Processor (NSP)

• Data Communications Data Link Processor (DCDLP)

This manual is intended to be used as a reference source, not as a task-based set of
instructions.

Scope

This manual applies to all Unisys computer systems. While DCALGOL is a high-level
language that includes the full syntax of the ALGOL language, only those constructs that
are directly connected with the writing of a message control system (MCS) to control a
data comm environment are included in this manual. These constructs control the
following activities:

• Creating messages

• Inserting messages into queues

• Removing messages from queues

• Combining, creating, and changing queues

• Controlling the data comm subsystem

About This Guide

1–2 8600 0841–202

This manual does not document the ALGOL language subset, the SYSTEMSTATUS or
MAKEUSER procedures, or the private procedures CANDEFILEHANDLER,
CANDEFILETTER, and ATTRIBSEARCHER. Refer to the appendix “Related Product
Information,” for a list of manuals that address these topics.

Audience

This manual is written for ALGOL-proficient data comm programmers who are familiar
with the following:

• General strategies for creating an MCS

• Data comm subsystem

• Logical input/output (I/O) operations

• Message and file manipulations

Installation managers should be aware of the power of DCALGOL. Although the language
has built-in user restrictions, inexperienced use of the DCALGOL language can cause
system failure, data disruption, and operational problems. A program that uses
DCALGOL constructs must have the following characteristics:

• Be privileged through use of the system command PP (Privileged Program)

• Be an MCS program

• Run under a privileged usercode or by a CONTROLCARD function

Installation managers can secure the DCALGOL compiler to prevent unauthorized use.
Because the DCALGOL compiler is created by compiling the ALGOL symbolic file with
the compiler generation option DCALGOL turned on, it might be wise to also protect the
ALGOL symbolic file.

Conventions

The following conventions are observed:

• Unless otherwise noted, all guides referred to in the text of this manual are for
ClearPath systems.

• The manual uses railroad diagrams to depict language constructs. A railroad diagram
is a way of graphically representing the syntax of a statement. It shows which items
are required and which are optional, the order in which items should appear, how
often you can repeat an item, and any punctuation required in a statement. For
information on reading and using railroad diagrams, refer to the appendix
“Understanding Railroad Diagrams.”

The standard arithmetic operators “+”, “-”, “*”, and “**” are used in this manual to
signify addition, subtraction, multiplication, division, and exponentiation, respectively.

 EPILOG PROCEDURE Declaration

8600 0841–202 1–3

 EPILOG PROCEDURE Declaration
The EPILOG PROCEDURE declaration allows you to designate a procedure that must be
executed before exiting the block in which the EPILOG PROCEDURE declaration is
contained. If an EPILOG PROCEDURE declaration exists for a block, the EPILOG
PROCEDURE is automatically executed before exiting the containing block. The EPILOG
PROCEDURE is not required to be invoked before exiting the containing block. However,
the program can explicitly invoke an EPILOG PROCEDURE during execution, if desired.

Ä EPILOG PROCEDURE Ä <epilog procedure identifier> Ä ; Ä <unlabeled statement>´

<epilog procedure identifier>

ÄÄ <identifier>; ÄÄÄ´

Explanation

The following restrictions apply to EPILOG PROCEDUREs:

• No parameters are allowed.

• No bad GO TOs are allowed. That is, any attempt to exit the procedure with a GO TO
to an outer block is flagged as a syntax error (if the compiler detects it) or a run-time
error (if the compiler did not detect it).

• An EPILOG PROCEDURE cannot return a value.

• An EPILOG PROCEDURE cannot contain an EPILOG PROCEDURE declaration. A
block or procedure cannot have more than one EPILOG PROCEDURE declaration (or
an EPILOG PROCEDURE declaration and an EXCEPTION PROCEDURE declaration).

• An EPILOG PROCEDURE cannot be declared as a formal parameter.

• Certain restrictions are placed on programs that contain EPILOG PROCEDURE
declarations. EPILOG PROCEDUREs cannot be declared as EXTERNAL. Only
replacement binding can be used. A block or procedure with an EPILOG
PROCEDURE declaration in its outer block cannot be used as the host code file
when running BINDER. No procedure in a block that has an EPILOG PROCEDURE
can be replaced by the BINDER.

• If a program that contains one or more EPILOG PROCEDURE declarations fails due
to a fatal stack overflow, the EPILOG PROCEDURES is not executed.

• If the outer block (or procedure) of a program contains an EPILOG PROCEDURE
declaration and the <statistics option> is TRUE, the EPILOG PROCEDURE is
executed at block exit time before the statistics wrap-up code.

• If certain Data Management System (DMS) functions such as DATABASE OPEN or
DATABASE CLOSE are called, it might not be possible to return to the EPILOG
PROCEDURE if the executing task is discontinued.

Every procedure with critical locking code or critical block exit code of some type should
have an EPILOG PROCEDURE declaration in it. All critical block exit code must be
contained in the EPILOG PROCEDURE. Whenever the procedure is exited (either
normally or abnormally), the EPILOG PROCEDURE is executed.

EPILOG PROCEDURE Declaration

1–4 8600 0841–202

Example

BEGIN
FILE OUT(KIND=DISK,MAXRECSIZE=14,AREASIZE=420,AREAS=5);
ARRAY A[0:13];
REAL I;
EPILOG PROCEDURE CLEANUP;
BEGIN
 %IF I=100 THEN PROGRAM TERMINATED NORMALLY
 %IF I<100 THEN PROGRAM TERMINATED ABNORMALLY
 REPLACE POINTER(A) BY " LAST RECORD, I=" ,I FOR 3 DIGITS;
 WRITE(OUT,14,A);
 LOCK(OUT,CRUNCH);
END CLEANUP;
 .
 .
 .

 EXCEPTION PROCEDURE Declaration

8600 0841–202 1–5

EXCEPTION PROCEDURE Declaration
The EXCEPTION PROCEDURE declaration allows you to designate a procedure that
must be automatically executed by the system whenever an abnormal exit occurs for the
block in which the EXCEPTION PROCEDURE declaration is contained.

ÄÄ EXCEPTION PROCEDURE ÄÄ <exception procedure identifier> ÄÄ ; ÄÄÄÄÄÄÄë

ëÄ <unlabeled statement> ÄÄ´

<exception procedure identifier>

ÄÄ <identifier> ÄÄÄ´

Explanation

An exception procedure is invoked when the block containing it terminates in any way
other than a normal exit. It is not automatically invoked on a normal exit of the block.
Abnormal exits include the following:

• A discontinue (DS) command

• A bad branch (GO TO) leading out of the block

• A branch to a global label in the block

• Any unhandled fault

An exception procedure can be invoked directly like any other procedure; it can be called,
passed as a parameter (with limitations), and so on. The use of a procedure as an
exception procedure is allowed only to the block that contains the procedure. A block or
procedure cannot contain more than one exception procedure declaration (or an
exception procedure declaration and an epilog procedure declaration).

The following restrictions apply to exception procedures:

• An exception procedure must be a named, untyped procedure without parameters,
and therefore cannot return a value.

• An exception procedure cannot contain parameters.

• An exception procedure cannot be specified as a formal parameter. However, an
exception procedure may be passed as an actual parameter, if the formal parameter
is an untyped procedure without parameters.

• An exception procedure cannot contain a bad GO TO statement. That is, any attempt
to exit the procedure via a GO TO to an outer block is flagged as a syntax error (if the
compiler detects it) or a run-time error (if the compiler could not detect it).

• An exception procedure cannot contain an EXCEPTION PROCEDURE declaration or
an EPILOG PROCEDURE declaration.

• An exception procedure cannot be declared as EXTERNAL. Only replacement binding
can be used. A subprogram cannot be bound to a block or procedure with an
exception procedure declaration in its outer block.

EXCEPTION PROCEDURE Declaration

1–6 8600 0841–202

Example

PROCEDURE P1;
 BEGIN
 REAL A, B;
FILE MYFILE (KIND=DISK);
 EXCEPTION PROCEDURE CLEANUP;
 BEGIN
 CLOSE (MYFILE, LOCK);
 END; % OF EXCEPTION PROCEDURE CLEANUP

 IF MYFILE.AVAILABLE THEN
 BEGIN
 OPEN (MYFILE);
 CLEANUP; %A DIRECT CALL TO THE EXCEPTION PROCEDURE
 END;
 A := 17* (B + 4);
 END; % OF PROCEDURE P1. THE PROCEDURE CLEANUP IS
 % INVOKED AUTOMATICALLY IF WE EXIT P1 ABNORMALLY.

 MESSAGE and MESSAGE ARRAY Declarations

8600 0841–202 1–7

MESSAGE and MESSAGE ARRAY Declarations
A MESSAGE declaration or a MESSAGE ARRAY declaration defines one or more
identifiers as messages or message arrays and defines their dimensions and bounds.

 ÚêÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ MESSAGE ÄÁÄ <message identifier> ÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<message identifier>

ÄÄ <identifier> ÄÄÄ´

<message array declaration>

ÄÄ MESSAGE ARRAY ÄÄë

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
ëÄÁÄÁÄ <message array identifier> ÄÁÄ [ÄÄ <bound pair list> ÄÄ] ÄÁÄÄÄ´

<message array identifier>

ÄÄ <identifier> ÄÄÄ´

Explanation

Essentially, messages are special forms of arrays and, with certain restrictions, can be
used in the same manner. The dimension of a message or message array equals the
number of given dimensions plus one “hidden” dimension with a lower bound of 0,
which is used to index a word in the message. This hidden dimension is used only when
working with the data inside the message. The number of words in the message is
determined by the ALLOCATE statement and can be determined by the SIZE function.

The hidden dimension of a message can be referenced explicitly only as a specific
element and not as a row that uses an asterisk (*) as a subscript in the low-order
position.

For example, the following is a valid statement that declares MESSAGEID to be a
message and assigns the value 1234 to word 5 in that message:

MESSAGEID[5] := 1234;

The following statement is not valid:

DCWRITE(MESSAGEID[*]);

The following statement is valid:

DCWRITE(MESSAGEID);

MESSAGE and MESSAGE ARRAY Declarations

1–8 8600 0841–202

Each designated dimension can be referenced by an asterisk (*) or an arithmetic
expression according to normal ALGOL rules. However, the hidden dimension cannot
have an asterisk.

The following example is valid:

MESSAGE ARRAY MSGARYID[0:2,0:7];
 REAL REALNUM;
 REALNUM := MSGARYID[1,2,3];

The following example is not valid:

ALLOCATE(MSGARYID[1,2,*],6);

The following is a correct form that would allocate one message of six words:

ALLOCATE(MSGARYID[1,2],6);

The following is a correct form that would allocate eight messages of six words each:

ALLOCATE(MSGARYID[1,*],6);

Messages cannot be declared as formal parameters to a procedure, although a word of a
message can be passed by a value to a procedure that expects an arithmetic actual
parameter. Globally declared messages can be referenced from within nested blocks by
using normal scope rules, but not from within nested procedures. Messages cannot be
declared in the declaration list of a structure block type declaration or a connection block
type declaration.

The application of messages is limited because they cannot be passed by name as
parameters to procedures. Therefore, with respect to procedures, messages are
explicitly local. By adhering to the defined syntax, array rows can be used anywhere
messages can be used (except in the DCWRITE function, the NULL function, and the
ALLOCATE statement). Because the entire message is copied into the new area instead
of a pointer being passed to the original message, it is slower to use array rows than
messages. However, the severe restrictions imposed on the use of messages frequently
mandate the use of array rows.

Messages are organized and maintained by a set of operating system procedures. These
procedures maintain a list of free space within the save memory pool and allocate this
space to processes requesting space by making and passing a descriptor for an area. The
procedures also accept space from processes that are finished with an area and then add
the space to the available list.

 MESSAGE and MESSAGE ARRAY Declarations

8600 0841–202 1–9

Examples

MESSAGE A,B,C;

MESSAGE ARRAY RSVP[0:5];

MESSAGE ARRAY FROM,TO[0:5], BACK,AHEAD[0:2,0:6];

MESSAGE ARRAY GREETINGS[0:5,0:5];

In the following examples, the hidden dimension is referenced explicitly and selects the
word in the message:

REAL REALID;
MESSAGE MESSAGEID;
MESSAGE ARRAY MESSAGEARRAYID[0:3];
REALID := MESSAGEID[3];
REALID := MESSAGEARRAYID[2,3];
MESSAGEID[3] := 0;
MESSAGEARRAYID[2,3] := 0;
MESSAGEID[3].[4:5] := 0;

Invalid examples of the hidden dimension are as follows:

MESSAGEID := 0;

MESSAGEARRAYID[*] := 0;

You can use a message or message array element within a pointer expression. However,
you cannot assign the pointer expression to another declared pointer. You cannot use a
pointer variable to reference a message. The following statements are valid:

REPLACE POINTER(MESSAGEID) BY POINTERID FOR 6;

REPLACE POINTERID BY POINTER(MESSAGEID[2],8) FOR COUNT;

REPLACE POINTERID BY POINTER(MESSAGEARRAYID[3],8) FOR COUNT;

The following statements show invalid usage of pointers:

REPLACE POINTERID:POINTER(MESSAGEID[3]) BY "INVALID" ;

POINTERID := POINTER(MESSAGEID);

A word of a message can be passed by value to a procedure that expects an arithmetic
actual parameter as shown in the following example:

PROCEDUREID (MESSAGEID[3]);

When the function causes a message to be removed, you cannot use the DCWRITE
function and the REMOVE function as part of a statement that acts on that message.

MESSAGE and MESSAGE ARRAY Declarations

1–10 8600 0841–202

The following examples show invalid usage of the DCWRITE function and the REMOVE
function:

MESSAGEID[4] := DCWRITE(MESSAGEID);

MESSAGEID[2] := REMOVE(MESSAGEID,QUEUEID);

The following example program illustrates the basic forms of MESSAGE usage that also
apply to MESSAGE ARRAYs. This example illustrates references only and not valid
DCWRITE forms.

BEGIN
ARRAY A[0:29]; % An extra real array.
MESSAGE MSG; % The GLOBAL MESSAGE variable.
POINTER MPTR; % A pointer to the real array.

PROCEDURE PPP(COMINGIN); % A nested procedure with an
 VALUE COMINGIN; % arithmetic actual parameter.
 REAL COMINGIN; %
 BEGIN
 MESSAGE PPPMSG; % A locally declared MESSAGE.
 ALLOCATE(PPPMSG,10);
 A[25] := COMINGIN;
 COMINGIN := " HELLO[|P]'; % From within procedure PPP:
 BEGIN % reference from within a
 POINTER APTR; % nested block is permitted
 PPPMSG[1] := COMINGIN; % for PPP's locally declared
 A[25] := PPPMSG[0]; % message PPPMSG, but not
 DCWRITE(PPPMSG); % permitted for the global
 END; % message MSG.
 END;

BEGIN % From within the scope rules
 % of the outer block:
MESSAGE ARRAY INNERMSG[0:3];
ALLOCATE(MSG,30); % Reference from within a nested
MPTR := POINTER(A[1],8); % block to the global message
MSG[1] := " *---->" ; % MSG is permitted.
A[0] := 0 & MSG[1] [47:48];
 BEGIN % Reference from within any further
 REAL AREAL; % nested blocks is also permitted
 ALLOCATE(INNERMSG[1],6); % Reference to a block declared
 MSG[29].[15:16] := " 00" ; % message is valid.
 PPP(MSG[1]); % A message element can be passed
 END; % as a parameter by value.
REPLACE MPTR BY " WELCOME TO UNISYS " ;
REPLACE POINTER(MSG) + 6 BY MPTR FOR 28 WORDS ; % Message used in
DCWRITE(MSG); % a pointer expression
REPLACE MPTR BY " " FOR 29 WORDS;
END;
END.

 QUEUE and QUEUE ARRAY Declarations

8600 0841–202 1–11

QUEUE and QUEUE ARRAY Declarations
A QUEUE declaration or a QUEUE ARRAY declaration defines one or more identifiers as
queues or queue arrays. The QUEUE ARRAY declaration also defines the subscript
bounds of the dimensions of the queue array.

The QUEUE declaration syntax follows.

 ÚêÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄ¿
ÄÄ QUEUE ÄÁÄ <queue identifier> ÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<queue identifier>

ÄÄ <identifier> ÄÄÄ´

The QUEUE ARRAY declaration syntax follows.

ÄÄ QUEUE ARRAY ÄÄë

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
ëÄÁÄÁÄ <queue array identifier> ÄÁÄ [ÄÄ <bound pair list> ÄÄ] ÄÁÄÄÄÄÄ´

<queue array identifier>

ÄÄ <identifier> ÄÄÄ´

Explanation

A DCALGOL queue is a linked list of messages. A queue array is an indexable array
having elements that are queues, not values. A queue array is not segmented. Queues
and queue arrays can be declared as parameters to procedures and can be passed by
name only. If a procedure is invoked by a RUN statement, queues and queue arrays
cannot be passed as actual parameters.

Each queue (a simple queue or a single element of a queue array) has a queue reference
word. If a queue is inactive, its queue reference word is a special data descriptor (with
the index bit turned on and an invalid character size field of seven) that identifies this
queue as inactive. When the queue is activated, the special data descriptor is replaced by
a stuffed indirect reference word (SIRW) that points to a data descriptor that represents
the physical queue in the DATACOM QUEUE stack.

The DATACOM QUEUE stack is a stack reserved for DCALGOL queues and contains a
data descriptor for each active physical queue. Each such data descriptor addresses an
array row in main memory. This array row, sometimes called a “hidden” message,
contains information about the physical queue such as the number of messages in the
queue, the amount of main memory used by the queue, the number of users of the
queue, and so forth. Some of this information is available to you through the use of
queue attributes.

A queue has no arithmetic properties. You cannot assign a value to it or use it as a value.

QUEUE and QUEUE ARRAY Declarations

1–12 8600 0841–202

Within a DCALGOL program structure, a simple queue is represented by its queue
reference word in the program working stack. A one-dimensional queue array is
represented by a data descriptor in the program working stack. This data descriptor
points to a set of queue reference words (one per queue array element). For higher
dimensional queue arrays, intermediate sets of data descriptors are constructed. A
subscripted queue (formed by subscripting a queue array) is represented by a queue
reference word accessed through one or more data descriptors.

Queues can be passed as actual parameters to procedures by name only. When a queue
is passed by name to a procedure, the formal parameter is represented by an SIRW that
points to the original queue reference word. A queue can also be passed as a parameter
to a library procedure.

The following conditions cause a queue to be activated implicitly:

• By inserting a message or an array row into it by using the INSERT statement or the
COMBINE statement

• By using the ATTACH statement

• By invoking the DCWRITE function to direct the Data Comm Controller (DCC) to
place messages in the queue

You can explicitly activate a queue by using the QACTIVE attribute.

When a queue becomes empty, it is not deactivated. A queue automatically becomes
inactive (and its messages are removed) when no processes refer to it.

Examples

QUEUE IN;

QUEUE IN,OUT,NEXT;

QUEUE ARRAY WAITING[0:5];

QUEUE ARRAY UP,DOWN[0:3,0:2];

QUEUE ARRAY LINEUP[0:5], CUP,PLATE,SPOON[0:50,0:33];

 QUEUE ARRAY REFERENCE Declaration

8600 0841–202 1–13

QUEUE ARRAY REFERENCE Declaration
A QUEUE ARRAY REFERENCE is an array reference variable used only to reference
queue arrays.

ÄÄ QUEUE ARRAY REFERENCE ÄÄë

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
ëÄÁÄÁÄ <queue array reference id> ÄÁÄ [ÄÄ <lower bounds> ÄÄ] ÄÁÄÄÄÄÄÄ´

<queue array reference identifier>

ÄÄ <identifier> ÄÄÄ´

Examples

QUEUE ARRAY REFERENCE ABC[3], XYZ[5];

QUEUE ARRAY REFERENCE ARY[2*5];

QUEUE ARRAY REFERENCE Declaration

1–14 8600 0841–202

8600 0841–202 2–1

Section 2
Statements

This section describes DCALGOL statements.

ALLOCATE Statement
The ALLOCATE statement causes an area of save memory <arithmetic expression>
words in length to be reserved for a message.

ÄÄ ALLOCATE ÄÄ (ÄÄ <message group designator> ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ <arithmetic expression> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<message group designator>

ÄÄÂÄ <message designator> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ <message array identifier> ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ <subarray selector> ÄÙ

<message designator>

ÄÄÂÄ <message identifier> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄ´
 ³ ÚêÄÄÄÄÄÄ , ÄÄÄÄÄ¿ ³
 ÀÄ <message array identifier> ÄÄ [ÄÁÄ <subscript> ÄÁÄ] ÄÙ

Explanation

When a row or subarray of a message array is allocated, repeated allocations are made
for each element of the array, reserving the number of words specified by the
<arithmetic expression> for each element. If a message area referenced by a message
group designator has already been allocated, the old message area is returned to the
system before a new area is allocated to the message group. If the value of the
arithmetic expression is less than or equal to zero, the message area, if any, is returned
to the system, making the message null. If the arithmetic expression does not yield an
integer value, it is rounded to an integer value.

The maximum size of a message that can be allocated is 2736 words. To determine the
size of a message perform one of the following tasks:

• View the result of the Initialize Primary Queue (Type 0) DCWRITE request

• Use the SYSTEMSTATUS call to retrieve Software Configuration (Type 17)
information

ALLOCATE Statement

2–2 8600 0841–202

Examples

ALLOCATE(MESSAGEID,SIZEINWORDS);

ALLOCATE(MESSAGEARRAYID[3],SIZEINWORDS);

ALLOCATE(MESSAGEARRAYID,SIZEINWORDS);

 ATTACH Statement

8600 0841–202 2–3

ATTACH Statement
The ATTACH statement is used to attach a process to a queue.

ÄÄ ATTACH ÄÄ (ÄÄ <new queue> ÄÄ , ÄÄ <old queue> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<new queue>

ÄÄ <queue designator> ÄÄÄ´

<queue designator>

ÄÄÂÄ <queue identifier> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ³ ÚêÄÄÄÄÄÄ , ÄÄÄÄÄ¿ ³
 ÀÄ <queue array name> ÄÄ [ÄÁÄ <subscript> ÄÁÄ] ÄÙ

<queue array name>

ÄÄÂÄ <queue array identifier> ÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ <queue array reference identifier> ÄÙ

Explanation

The ATTACH statement creates a stuffed indirect reference word (SIRW) that points to
the head-tail word referenced by the <old queue> construct and places the SIRW in the
stack location referenced by the <new queue>construct.

The ATTACH statement activates the old queue if it is not active. If the new queue is
active, the user count of the referenced queue is decreased by one and the new queue is
made inactive (detached from the physical queue it previously referenced). (Refer to the
queue attribute QUSERCOUNT under “Queue Attributes” in the “Attributes” section.)

The ATTACH statement causes the <new queue> construct to reference the same
physical queue as the <old queue> construct, and in this way the new queue is
activated. The user count of the physical queue, referenced by both the <new queue>
and the <old queue>constructs, is increased by one.

Examples

ATTACH(QUEUEID1,QUEUEID2);

ATTACH(QUEUEARRAYID1[3],QUEUEARRAYID2[3]);

COMBINE Statement

2–4 8600 0841–202

COMBINE Statement
The COMBINE statement combines two separate queues by changing the head-tail links
of the queues. The messages and their links are unchanged (except for the link of the
one-ended message).

ÄÄ COMBINE ÄÄ (ÄÄ <host queue> ÄÄ , ÄÄ <secondary queue> ÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄ) ÄÄ´
 ÀÄ , ÄÄ <priority> ÄÙ

<host queue>

ÄÄ <queue designator> ÄÄÄ´

<secondary queue>

ÄÄ <queue designator> ÄÄÄ´

<priority>

ÄÄ <Boolean expression> ÄÄÄ´

Explanation

The COMBINE statement empties the messages in the secondary queue into the host
queue if it is active; if the host queue is not active, it is activated.

If the secondary queue is inactive, the process that is executing the COMBINE
statement is terminated unless an ON statement has enabled the INACTIVEQUEUE
interrupt. If the secondary queue is empty, nothing is combined; however, the host
queue is activated if it is inactive.

If the priority has the value FALSE or is not designated, the messages from the
secondary queue are placed at the tail of the host queue. If the priority has the value
TRUE, the messages from the secondary queue are placed at the head of the host
queue. When the queues are combined, both queues remain active, but the secondary
queue is emptied.

Examples

COMBINE(QUEUEID1,QUEID2);

COMBINE(QUEID1,QUEID2,TRUE);

COMBINE(RESULTQARRAY[3],SUBQUEUE,FALSE);

 DCKEYIN Statement

8600 0841–202 2–5

DCKEYIN Statement
The DCKEYIN statement allows programs to send messages to the operating system
and to receive the corresponding system responses. To use this statement, a program
must be running under a privileged usercode or a systemuser usercode, or be running as
a privileged program.

ÄÄ DCKEYIN ÄÄ (ÄÄ <pointer expression> ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ <noncharacter array row> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<noncharacter array row>

An array row whose identifier is declared with a <type> construct.

Explanation

The first parameter must be an EBCDIC pointer expression that points to the first
character of the message to be sent. The following rules apply to these messages:

• You can send any system command, such as PD or RES.

• You can send WFL statements that the operator could enter from the ODT, such as
RUN and REMOVE.

• You cannot send primitive commands such as ??RJ.

• The message must be terminated by one or more null characters (4“00”).

• The maximum size for the message is 256 words (1536 bytes). If this size is
exceeded, the system displays an error message at runtime and terminates the task.

The second parameter is an array row to be used by the DCKEYIN statement to return
the response to the system message. The response is a series of logical lines each of
which is terminated by a null character (4“00”). The last line of the response is
terminated by an ETX character (4“03”).

The array row can have a minimum size of four words and a maximum size of
1,048,571 words. If the array row is less than four words long, DCKEYIN does not send
the message to the system. If the array row exceeds the maximum size, the system
displays an error message at run time and terminates the task. If the array row is too
small to contain a response, the response is truncated.

All responses are truncated to 255 lines or 1,048,576 bytes, depending on
circumstances.

If the DCKEYIN statement causes the execution of a WFL job or a system command, the
WFL job or the executor of the system command does not inherit the usercode or family
substitution specification of the process that executed the DCKEYIN statement. For
example, if a task is executing with a family substitution statement DISK = PACK ONLY,
and the task uses the DCKEYIN statement to send the command PD = ON DISK, the
response refers to the DISK family. As another example, the statement RUN
OBJECT/PROG sent through the DCKEYIN statement starts a job without a usercode, no
matter what the usercode is of the task that called the DCKEYIN statement.

DCKEYIN Statement

2–6 8600 0841–202

The DCKEYIN statement calls the DCKEYIN procedure in the GENERALSUPPORT
system library, which performs the following actions:

• Checks the parameters and the message

• Copies the message into the noncharacter array row

• Sends the message to the system and waits for a response from the system

• Exits

The DCKEYIN procedure does not send the message to the system if it detects the
following errors:

• The pointer expression is uninitialized or is not initialized as an 8-bit pointer
expression. This error returns the response NOT EIGHT BIT POINTER.

• The first nonblank character of the message is not an EBCDIC alphanumeric
character, or is a lowercase letter. This error returns the response ILLEGAL INITIAL
CHARACTER.

A segmented array fault can occur if the message does not terminate with a null
character or if the noncharacter array row is too small to contain the copy of the input
message.

If the noncharacter array row is too small to contain all the information requested, the
response is truncated and terminated with an end of text (ETX) character.

Example

This example demonstrates the use of a DCKEYIN statement to execute the system
command PD OBJECT/= ON PACK.

Because the response to a DCKEYIN statement is limited to 255 lines, the response to a
PD command submitted through DCKEYIN might not show all the files in the directory.

ARRAY SYSMSG [0:50]; % INPUT SYSTEM MESSAGE
ARRAY RESPONSE [0:10000]; % RESPONSE FROM SYSTEM

 POINTER PR;
FILE LINE (KIND = PRINTER);
 ARRAY PBUF [0:22];

REPLACE POINTER (SYSMSG) BY "PD OBJECT/= ON PACK", 48"00";
DCKEYIN (POINTER (SYSMSG), RESPONSE);

PR := POINTER (RESPONSE);
WHILE REAL (PR, 1) NEQ 48"03" DO % LOOP UNTIL ETX CHARACTER
 BEGIN
 REPLACE POINTER (PBUF) BY " " FOR 132;
 REPLACE POINTER (PBUF) BY PR:PR FOR 132 WHILE GTR 48"03";
 WRITE (LINE, 132, PBUF);
 IF PR LSS 48"03" THEN % END OF LINE?
 PR := PR + 1; % ADVANCE TO NEXT LINE
 END;

 FLUSH Statement

8600 0841–202 2–7

 FLUSH Statement
The FLUSH statement causes all messages in the queue to be discarded. The queue
remains active. Messages that have been flushed from the queue no longer exist in the
system.

ÄÄ FLUSH ÄÄ (ÄÄ <queue designator> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

If the queue designated by the <queue designator> construct is empty, the FLUSH
statement is ignored. The process executing the FLUSH statement is not terminated if
the queue designated by the <queue designator> construct is not active.

Examples

FLUSH(QUEUEID);

FLUSH(QUEUEARRAYID[3]);

INSERT Statement

2–8 8600 0841–202

INSERT Statement
The INSERT statement causes a message to be linked into the queue referenced by the
<queue designator>construct.

ÄÄ INSERT ÄÄ (ÄÄ <insert source part> ÄÄ , ÄÄ <queue designator> ÄÄÄÄÄë

ëÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄ) ÄÄ´
 ÀÄ , ÄÄ <priority> ÄÙ

<insert source part>
ÄÄÂÄ <message designator> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ <noncharacter array row> ÄÄ , ÄÄ <use size> ÄÙ

<use size>

ÄÄÂÄ * ÄÄÄÄÄÄÂÄÄÄ´
 ÀÄ <size> ÄÙ

<size>

ÄÄ <arithmetic expression> ÄÄ´

Explanation

If the insert source part is a message designator, the message area is linked into the
queue, which leaves the message designator null.

If the insert source part is a noncharacter array row and the use size is an asterisk (*), a
message is allocated that has a length equal to the length of the noncharacter array row.
If the use size includes the <size>construct, the length in words of the allocated
message area is specified by the <size> cosntruct. Therefore, if the use size is declared
as an asterisk, the noncharacter array row is copied into the allocated message area;
otherwise, the number of words of the noncharacter array row specified by the <size>
construct and starting with the first word are copied. If the declared size is not greater
than 0, a fatal run-time MESSAGE SIZE ERROR results. If the size construct does not
yield an integer value, it is rounded to an integer value. The message is linked into the
queue, leaving the original noncharacter array row intact.

If the referenced queue is inactive, an implicit activation is performed on the queue.
Inserting a null message in an inactive queue makes the queue active (but empty), while
inserting a null message in an active queue is ignored.

If the priority has the value FALSE or is not designated, the message is linked to the tail
of the queue; otherwise, the message is linked to the head of the queue. Linking a
message to the tail of a queue preserves the time order of the messages in that queue.
Linking a message to the head of the queue ensures that the message is the next one
removed from that queue, unless another message is linked to the head in the
meantime.

 INSERT Statement

8600 0841–202 2–9

Examples

INSERT(MESSAGEID,QUEUEID);

INSERT(MESSAGEID,QUEUEID,PRIORITYBIT);

INSERT(MESSAGEARRAYID[1],QUEUEARRAYID[1]);

INSERT(ARRAYID[*],3,QUEUEID);

INSERT(ARRAYID[*],*,QUEUEARRAYID[3],TRUE);

ON Statement

2–10 8600 0841–202

ON Statement
The ON statement is used to enable or disable an interrupt for one or more fault
conditions.

DCALGOL accepts the same syntax for the ON statement as ALGOL does, but
DCALGOL allows the use of the following additional fault name:

INACTIVEQUEUE

Explanation

The ON statement is documented in the ALGOL Programming Reference Manual,
Volume 1: Basic Implementation. The fault that is enabled or disabled by designating
INACTIVEQUEUE in the fault list is an attempt to use an inactive queue. The fault
number value for INACTIVEQUEUE is 6. Refer to the “FLUSH Statement” in this section
for information on what can cause an INACTIVEQUEUE interrupt. On ASD machines, a
process can never receive an INACTIVEQUEUE interrupt.

Examples

ON INACTIVEQUEUE, GO TO ERROREXIT; %ENABLE INTERRUPT

ON INACTIVEQUEUE,
 BEGIN
 WRITE(FILEID,<" I AM IN TROUBLE" >);
 GO TO EXITLABEL;
 END;

ON INACTIVEQUEUE; %DISABLE INTERRUPT

 RESIDENT Statement

8600 0841–202 2–11

RESIDENT Statement
The RESIDENT statement designates that certain data and code are to be resident at all
times in primary storage instead of being overlayed to secondary storage.

ÄÄ RESIDENT ÄÄ (ÄÄ <Boolean expression> ÄÄ , ÄÄ <resident list> ÄÄ) Ä´

<resident list>
 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄÁÄÂÄ * ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ <procedure identifier> ÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ <epilog procedure identifier> ÄÄÄÄ´
 ÃÄ <nondirect array name> ÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ <nondirect array row> ÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ <nondirect subscripted variable> Ä´
 ÃÄ <truthset identifier> ÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ <translatetable identifier> ÄÄÄÄÄÄ´
 ÃÄ <format identifier> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ <switch file identifier> ÄÄÄÄÄÄÄÄÄÙ

<nondirect array name>

ÄÄÂÄ <array identifier> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ <nondirect array reference identifier> Ä´
 ÀÄ <value array identifier> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

<nondirect array reference identifier>
An array reference identifier that is not declared to be DIRECT.

<nondirect array row>

ÄÄÂÄ <one-dimensional nondirect array name> ÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ <nondirect array name> ÄÄ <row selector> ÄÙ

<one-dimensional nondirect array name>
A nondirect array name whose identifier is declared with one dimension.

<nondirect subscripted variable>

 ÚêÄÄÄÄÄÄ , ÄÄÄÄÄ¿
ÄÄ <nondirect array name> ÄÄ [ÄÁÄ <subscript> ÄÁÄ] ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

If the Boolean expression has the value TRUE, the listed elements are made present in
primary storage and are marked as resident so that they reside in primary storage
whenever the program is active (until deallocated). If the Boolean expression has the
value FALSE, any listed elements marked as resident are unmarked and, thereafter, are
treated as normal, overlayable information.

When the resident element is an asterisk (*), the code segment that contains the
RESIDENT statement is affected.

RESIDENT Statement

2–12 8600 0841–202

For a procedure identifier or epilog procedure identifier, the code segment that contains
the entry point to that procedure is affected. Segments that contain other blocks within
that procedure are unaffected. Large procedures can have their entry point in a separate
stack-building segment; in this case, the segment that contains the actual body of the
procedure is unaffected.

For a nondirect array name or nondirect array row, the entire array or array row is
affected and includes all rows (if multidimensional) or segments (if segmented).

For a nondirect subscripted variable, only the row or segment that contains the element
is affected.

A truthset, translate table, format, or switch file is implemented as an array; the
appropriate identifier as a member of the resident list affects that array. Several
truthsets, translate tables, or formats can reside in the same array.

Redundant setting or resetting of residency is ignored.

If all the requested elements cannot be made present in primary storage, the system
issues an operator message and might wait for a response.

When an item named in a resident list is deallocated by a block exit or by an explicit
DEALLOCATE statement, storage is released and residency is forgotten. Residency is
also lost if an array is resized.

Resident storage is not the same as save storage; that is, the information can be moved
from one place to another within primary storage (or within the user's subspace) during
execution of the program. This property makes resident storage less disruptive to the
storage management algorithms because resident storage need not contribute to
“checkerboarding.” However, the RESIDENT statement must be used judiciously and
sparingly if overall system performance is not to be degraded by usurpation of resources.
An appropriate use might be to keep the critical tables and code segments resident in a
real-time application.

Resident storage is reported as save storage in the CU (Core Usage) system message.

Examples

Given appropriate declarations, the following statement retains the procedure
HANDLETRANSACTION and the current segment:

RESIDENT(TRUE,HANDLETRANSACTION,*);

The following statement retains or releases (according to KEEPIT) an array and two rows
of a two-dimensional array:

RESIDENT(KEEPIT,HASHHEAD,INFO[0,*],INFO[1,*]);

The following statement releases all the rows of MATRIX and one row of NET:

RESIDENT(FALSE,MATRIX,NET[3,*]);

The following statement retains the first N segments of array WORKSPACE:

FOR I := 0 STEP 1 UNTIL N DO RESIDENT(TRUE,WORKSPACE[256*I]);

 STANDARDTODISPLAY Statement

8600 0841–202 2–13

STANDARDTODISPLAY Statement
The STANDARDTODISPLAY statement converts the standard form file title in the
<standard location> construct to display form and stores the result, followed by a period
(.), at the location specified by the display pointer. (Refer to the DISPLAYTOSTANDARD
Function in the “Functions” section for a description of standard and display form file
titles.)

ÄÄ STANDARDTODISPLAY ÄÄ (ÄÄ <standard location> ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ <display pointer> ÄÄ) ÄÄÄ´

<standard location>

<standard location>

ÄÄ <pointer expression> ÄÄÄ´

<display pointer>

ÄÄ <pointer identifier> ÄÄÄ´

Explanation

The display pointer is a call-by-name pointer parameter that is left updated to the
character following the period that terminates the file title.

The compiler control option INSTALLATION 1 must be assigned to allow the compiler to
access the required installation intrinsic.

Example

STANDARDTODISPLAY(PTRSTANDARD,PTRDISPLAY);

STANDARDTODISPLAY Statement

2–14 8600 0841–202

8600 0841–202 3–1

Section 3
Functions

This section describes the various DCALGOL functions. For information regarding the
USERDATA, USERDATALOCATOR and USERDATABUILD functions refer to the ALGOL
Programming Reference Manual, Volume 1: Basic Implementation.

ATTACHSPOQ Function
When used in conjunction with a DCALGOL queue, the ATTACHSPOQ function allows a
DCALGOL program to monitor much of the supervisory console message traffic. You
must be a privileged user to use this function.

ÄÄ ATTACHSPOQ ÄÄ (ÄÄ <queue designator> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

The queue designator is the destination for copies of various console-related messages.
The queue designator must designate an inactive DCALGOL queue. If the queue is
successfully attached, the Boolean function returns the value TRUE. Furthermore, copies
of messages generated by the procedure MESSER, messages sent to the
CONTROLLER, and CONTROLLER responses are inserted in the queue designated by
the <queue designator> construct and can be removed in the normal way. After it is
attached for console-related messages, the queue can be detached only by exiting the
block in which that queue is declared.

If the queue is already activated or if another queue is attached to receive console
messages, the invocation of the ATTACHSPOQ function is unsuccessful, the value
returned is FALSE, and the state of the indicated queue is unaffected.

Messages are received as EBCDIC characters starting in word 1. Word 0 of the message
contains the time of day in 2.4-microsecond units. Messages can contain nonprinting
characters that are used to control the console unit.

Examples

IF ATTACHSPOQ(QUEUEIDENTIFIER) THEN
 GO TO SUCCESSFUL________
ELSE
 GO TO UNSUCCESSFUL;

IF ATTACHSPOQ(QUEUEID[4]) EQV BOO THEN
 GO TO EXPECTED;

Functions

3–2 8600 0841–202

CHECKGUARDFILE Function
The CHECKGUARDFILE function checks access privileges based on whether the
CHECKDECLARER option of the SECOPT (Security Options) system command is TRUE
or FALSE. For information on the CHECKDECLARER option, refer to the Security
Administration Guide. You should be familiar with the security checking scheme of this
option before you invoke the CHECKGUARDFILE function.

ÄÄ CHECKGUARDFILE ÄÄ (ÄÄ <pointer expression> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

The pointer expression is passed by value and must point to a file title of a guardfile. This
title must be in display format, including any ON <familyname> clause. In addition, you
must enter the complete file title, which includes the usercode. The system does not
apply family substitution or usercode inheritance to search for the guard file.

The function returns a Boolean value. If all bits of the result are equal to 1, the guardfile
is not available. Otherwise, the result is interpreted as two masks. The first mask
describes actions relevant to files in general. The second mask describes actions
relevant only to databases. If a particular bit in the first mask is turned on, access to the
action associated with that bit is denied. If a particular bit in the second mask is turned
on, access to the action associated with that bit is allowed.

The following bits describe actions relevant to files in general:

Bit Meaning if Bit is Set

0 Writing to the file is not allowed.

1 Reading the file is not allowed.

2 Executing the file is not allowed.

41 Writing to a file opened EXTEND (as defined by the
ANSI74 COBOL standard) is not allowed.

45 No access is allowed.

Note: If bit 45 is set (meaning no access is allowed), the other permission bits
(0, 1, 2, and 41) are also set.

 Functions

8600 0841–202 3–3

The following bits describe actions relevant only to databases:

Bit Description

4 FIND

5 LOCK

6 OPEN INQUIRY

7 SECURE

16 ASSIGN

17 CREATESTORE

18 DELETE

19 GENERATE

20 INSERT

21 LOCKSTORE

22 REMOVE

23 OPEN UPDATE

32 CLOSELOCK

33 OPEN INITIALIZE

34 OPEN TEMPORARY

Examples

RSLT := CHECKGUARDFILE(PTRTOGUARDFILE);

IF REAL(CHECKGUARDFILE(USERGUARD)) IS REAL(NOT FALSE) THEN . . .

Functions

3–4 8600 0841–202

CONTROLCARD Function
The CONTROLCARD function provides a mechanism for a process to initiate the Work
Flow Language (WFL) compiler and to pass input records in the input originator.

ÄÄ CONTROLCARD ÄÄ (ÄÄ <input designator> ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ <arithmetic expression> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<input designator>

ÄÄÂÄ <nondirect file designator> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ <queue designator> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ <one-dimensional real array identifier> ÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ <one-dimensional real array reference identifier> ÄÄÄ´
 ÃÄ <real array identifier> ÄÄ <row selector> ÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ <real array reference identifier> ÄÄ <row selector> ÄÙ

<one-dimensional real array identifier>

An array identifier that is declared of type REAL and with one dimension.

<one-dimensional real array reference identifier>

An array reference identifier that is declared of type REAL and with one dimension.

<real array identifier>

An array identifier that is declared of type REAL.

<real array reference identifier>

An array reference identifier that is declared of type REAL.

 Functions

8600 0841–202 3–5

Explanation

The values and meanings associated with the arithmetic expression parameter are as
follows:

Field Description

[46:01] If messages from the calling process (for example, BOT, EOT, and
DISPLAY) are passed to an MCS for display at the originating station, the
job initiated by the call CONTROLCARD passes messages to the MCS. To
suppress this feature, set this field to TRUE.

[44:01] This is a START command (if TRUE).

[39:01] If TRUE, causes error messages to be written to the file ERRORFILE. By
default this file has a KIND of REMOTE, causing the messages to be
written back to the appropriate terminal, provided that the STATION task
attribute is nonzero. If the STATION task attribute is zero, the KIND must
be equated to a value other than REMOTE.

[38:01] This bit is applicable only to request type 4. If TRUE, the WFL job runs as a
dependent task before the controlcard function returns control to the
originating task. If FALSE, the WFL job is initiated as an independent
process. Note that if the WFL job runs as a dependent task, references to
MYJOB and inheritance of attributes normally inherited from a job (for
example, WAITLIMIT and PRINTLIMIT) might behave differently, since
they refer to the parent job of the task that called the controlcard function.

[37:01] If TRUE, the job number of the compiled job and the disposition of the job
are returned in the result of the CONTROLCARD function, unless bit 38 is
also TRUE.

[34:01] If TRUE, this job is compiled for syntax checking only. This field overrides
the disposition in the job.

[15:08] This field contains the character to be used as the invalid character. If the
field is 4" 00" , a question mark (?) is assumed.

[07:08] Request type 3 is ZIPped WITH file. Request type 4 is ZIPped WITH array.
Request type 7 is ZIPped WITH queue.

If request type 7 is used, control does not pass from the function until the following is
encountered as an insert in the queue:

<invalid character> END JOB.

For this reason, a procedure that contains the function should be processed
asynchronously.

Results are returned in the Boolean function value and in the TASKVALUE task attribute
of the process calling the CONTROLCARD function.

Functions

3–6 8600 0841–202

The job number of the job compiled by WFL is returned in bits [24:24] of the
TASKVALUE. If the WFL compilation had syntax errors, bit 0 of the TASKVALUE is also
set.

Bits 37 and 38 of the arithmetic expression passed to CONTROLCARD determine the
layout of the value returned by the function.

If bit 37 is set and bit 38 is not set, the following field values are returned:

Field Description

[46:01] Set if a failure occurred that prevented a job from being compiled (for
example, the file specified for a type 3 request did not have a FILEKIND of
JOBSYMBOL). If this bit is set, the remainder of the result determines the
type of failure.

[24:24] The job number associated with the job that was compiled as a result of
the CONTROLCARD call. The job number is present even if the
compilation had syntax errors.

[00:01] Set if the WFL compilation has syntax errors.

If bit 38 is set or bit 37 is not set, the following values are returned:

Value Description

2 Bit 38 was set and the job was successfully compiled and initiated as a
co-routine.

Other An error that prevented the job from being compiled occurred (the value is
zero if a syntax error occurred, and bit 0 of the taskvalue attribute is set).

Note: Some WFL jobs and constructs cause the WFL compiler to change and restore
the usercode under which the calling process is running. In some situations the
usercode privileges cannot be restored accurately. If the WFL job that is being compiled
is a single-statement START command, or contains a USER statement in the job
heading, it is appropriate for the calling process to initiate a separate task to call
CONTROLCARD.

 Functions

8600 0841–202 3–7

WFL Card Image (Variant = 1)

The message is passed to the WFL compiler with a DCALGOL queue that has been
used as the input designator in a CONTROLCARD function that uses the following
construct:

INSERT(<message designator>, <queue designator>);

The format of this message is as follows:

Word Field Value Description

0 [47:08] 21 Type.

 [39:08] 1 Variant.

 [23:24] Logical Station Number (LSN) of the
remote terminal.

1 Number of card images in the
message.

2 to end Card image text in EBCDIC with each
card image preceded by an 8-bit
length byte. Bit [07:01] of this length
byte is turned on if the first character
of the card is invalid and if field [06:07]
of the byte contains the length of the
card image in units of characters.

Examples

CONTROLCARD(ARAY[*],4 & 1 [39:1] & 1 [38:1]);

CONTROLCARD(AFILE,3 & COMPOK [38:6:1]);

B := CONTROLCARD(QUEUETOG,NUMBER);

Functions

3–8 8600 0841–202

 DCERRANALYSIS Function
The DCERRANALYSIS function allows an MCS to interpret error result messages in the
form of English text. This function can be used only in a data comm environment that is
initialized at the time of the use of this function. Only an MCS that previously initialized a
primary queue can use this function. The reason for this restriction is that the
DCERRANALYSIS function uses an INTERROGATE STATION ENVIRONMENT
DCWRITE.

ÄÄ DCERRANALYSIS ÄÄ (ÄÄ <single-precision array row> ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ <pointer expression> ÄÄ , ÄÄ <Boolean expression> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<single-precision array row>

An array row whose identifier is declared to be of type INTEGER or REAL.

Explanation

The first parameter is a single-precision array row that contains the error result message
(six words). The second parameter is a pointer into an array where the text that results
from the analysis of the error result message can be stored. The third parameter is a
Boolean expression that indicates the request for complete analysis of the error result
message (additional information such as NDLII flags and the original DCWRITE type).
The Boolean result returned by the DCERRANALYSIS function contains the following
information:

Field Description

[23:16] Character count field

[03:01] Error message invalid

[02:01] Error message array too small

[01:01] Text array too small

[00:01] Analysis unsuccessful

A successful analysis of an error result message returns a result with bit 0 equal to
FALSE and the length of the text (in number of characters) stored in the character count
field.

If the function is unable to successfully analyze an error result message (bit 0 equals
TRUE in the result), the reason is given in bits 1 through 3. Bit 1 is TRUE if the array
referenced by the pointer expression was too small to hold the analyzed text. Bit 2 is
TRUE if the single-precision array row is less than six words long. Bit 3 is TRUE if the
content of the error result message was contradictory or did not make sense (in this
case, a brief indication of the nature of the difficulty encountered can still be stored as
text and its length indicated by the character count field).

 Functions

8600 0841–202 3–9

The text returned is divided into four parts in the following order:

1. The time of day the error occurred according to the data communications controller
(DCC) timestamp.

2. The station name followed by the logical station number (LSN) in parentheses.

3. A description and diagnosis of the error.

4. Additional information, if the value of the Boolean expression is TRUE.

Contiguous entities in parts 3 and 4 are separated by semicolons.

An example of an error result message is as follows:

630000 00000A 010004 100010 000000 000000 380ED4 000000
000000 210000 000000 000000

Analysis of this error result message yields the following:

17:00:30 TD1314KV(10) TERMINATE ERROR: LASTFLAG=DISCONNECT,
FLAGS=STATION/LINE NOT RDY;

If a complete analysis is requested, the text returned would be as follows:

17:00:30 TD1314KV(10) TERMINATE ERROR: LASTFLAG=DISCONNECT,
FLAGS=STATION/LINE NOT RDY; LINE:NOT BUSY,READY, TOGS: 0=0 1=0;
DCWRITE TYPE=ENABLE INPUT ON STATION

Example

IF NOT RSLT := DCERRANALYSIS(ERRMSG,PTR,FALSE) THEN . . .

Functions

3–10 8600 0841–202

DCERRORLOGGER Function
The DCERRORLOGGER function allows an MCS to log data comm errors.

ÄÄ DCERRORLOGGER ÄÄ (ÄÄ <message group designator> ÄÄ , ÄÄ <size> ÄÄÄÄë

ëÄ) ÄÄ´

Explanation

The contents designated by the <message group designator> construct are entered in
the system log for the number of words designated by the <size> parameter, prefixed
by a 4-word header. If the <size> parameter does not yield an integer value, it is rounded
to an integer value. The MAJOR type assigned to this entry is 5, which is the network
support processor (NSP) maintenance record. The MINOR type has the value 4, which is
the MCS result message record.

If the given log record cannot be entered in the system log, the DCERRORLOGGER
function returns a negative result indicating the specific reason that the request was
denied. The values returned by the DCERRORLOGGER function are as follows:

Value Description

0 The log entry was made successfully.

-1 The <size> parameter was greater than the true size of the message group
designated.

-2 The caller is not a valid MCS or has not initiated the primary queue.

-3 A disk error occurred during an attempt to log the entry.

Examples

R := DCERRORLOGGER(MA[*],6);

DCERRORLOGGER(MA,4);

 Functions

8600 0841–202 3–11

DCSYSTEMTABLES Function
The DCSYSTEMTABLES function enables an ALGOL or DCALGOL program to obtain
information about the current data comm environment. The DCSYSTEMTABLES function
has a real value.

ÄÄ DCSYSTEMTABLES ÄÄ (ÄÄ <arithmetic expression> ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ <noncharacter array row> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

The information selected by the arithmetic expression is copied into the noncharacter
array row. If the value of the arithmetic expression is 3, 4, or 7, then the noncharacter
array row is resized to contain the requested information; the previous contents of the
noncharacter array row are lost. For all other values of arithmetic expression, the
noncharacter array row is resized only if the size of the array is insufficient for the
information to be returned.

The information selected when the value of the arithmetic expression is 0, 1, 2, or 4 is
intended for use only by system software, and is subject to change.

The noncharacter array row is referred to in the following tables as NCAR. The
information selected by the arithmetic expression is as follows:

Value Description

0 DCC tables.

1 NSP tables.

2 DCC station table

3 General information:

 NCAR[0]:

Specifies the bit mask of initialized NSPs. For example,
if NCAR[0].[3:1]=1, then relative NSP 3 has been
initialized.

 NCAR[1] through NCAR[3]:

Contains, in display form, the DATACOMINFO file
prefix (including familyname) terminated by a period (.)
The DATACOMINFO file prefix is truncated if it is
greater than 18 characters in length. See NCAR[6]
through NCAR[10] for additional information.

 NCAR[4]:

Specifies the bit mask of online NSPs.

 NCAR[5]:

Specifies the bit mask of NSPs configured in the
DATACOMINFO file.

Functions

3–12 8600 0841–202

Value Description

 NCAR[6] through NCAR[10]:

Contains, in display form, the DATACOMINFO file
prefix (including familyname) terminated by a period (.).

Note: As indicated, the DATACOMINFO file prefix
contained in NCAR[1] through NCAR[3] is truncated if it
is greater than 18 characters in length. The
DATACOMINFO file prefix contained in NCAR[6]
through NCAR[10] is not truncated under any
circumstances.

4 DATACOMINFO

 File station record

6 Provides interpretive text for DCWRITE errors.
NCAR[0] contains the DCWRITE error number as an
integer. On return, the function value is 0 if no errors
occurred. The first word of the array contains the text
length in characters; the second and subsequent
words contain an EBCDIC text string, followed by a null
character. If the NCAR contains fewer than 20 words,
it is resized.

7 If the first word of the array parameter contains 0:
Provides the NSP and line support processor (LSP)
hardware unit numbers for the entire network. The
format of each word of the returned array is as follows:

 [47:16]

The NSP hardware unit number.

 [31:16]

The LSP hardware unit number.

 [15:01]

If 1, and automatic initialization of the NSP is required,
the operating system automatically initializes the NSP.
If 0, the operating system has encountered an error
while communicating with the NSP, and the NSP is not
automatically initialized.

 [14:07]

The relative number of the NSP.

 [07:04]

The relative number of the LSP.

 [03:04]

Always 0.

 Functions

8600 0841–202 3–13

Value Description

 If the first word of the array parameter is other than 0:

Provides the NSP and LSP hardware unit numbers for a
specific DLS number designated by the value in the
first word of the array parameter. The DLS number is
made up of three components, which are separated by
colons (:). The first component is the relative network
support processor number (previously known as the
data communications processor number). The second
component is the line number. The third component is
the relative station number.

The array row is resized, if necessary, to hold the
information for all the LSPs on the network (one word
per LSP). The format of the first word of the returned
array row is as follows

 [47:16]

The NSP hardware unit number.

 [31:16]

The LSP hardware unit number, unless the relative LSP
number submitted in the DLS number does not
correspond to an LSP on that NSP, in which case this
field is 0.

 [15:16]

The DL part of the DLS number as given in the request
(in field [23:16]). If the NSP is not available, the DLS bit
(in field [15:01]) is changed to 0.

When information is successfully obtained, the DCSYSTEMTABLES function returns a
real value in the following format:

Field Description

[39:20] Size (in words) of the NCAR parameter after it is resized by the
DCSYSTEMTABLES function if applicable; otherwise, 0.

[19:20] Memory address of the table specified by the <arithmetic expression>
parameter if applicable; otherwise, 0.

If the information is not successfully obtained, the value returned by the function is
negative; that is, it contains a 1 in bit 46 and one of the following values in field [19:20].
Each value indicates a reason the information was not obtained.

Functions

3–14 8600 0841–202

Value Error Description

1 Data comm is not running, and the arithmetic expression is not equal to 3
or 6.

2 The value of the arithmetic expression is not valid input to the function.

3 An invalid LSN occurs in NCAR[0] (arithmetic expression equal to 4).

4 An invalid name occurs in NCAR (arithmetic expression equal to 4).

5 An unknown station exists (arithmetic expression equal to 4).

6 The relative NSP number is invalid.

7 No line information is available.

8 An invalid DLS number is designated.

11 A fault occurred while processing the request.

13 The information requested requires an array that is too large to be resized.
The required size of the array is returned in field [39:20]. The request can
be retried by using a segmented array of the indicated size for the NCAR
parameter.

20 A disk error occurred while accessing the data comm files.

When the arithmetic expression is equal to 4, you must designate the desired station
either by placing the station name in EBCDIC starting in NCAR[0] or by designating the
station LSN in NCAR[0].

Example

T := DCSYSTEMTABLES(3,A[I,*]);

 Functions

8600 0841–202 3–15

DCWRITE Function
The DCWRITE function causes the message specified by the message designator to be
passed to the data communications controller (DCC). The action taken by the DCC
depends on the type and variant fields of the message. For detailed information, refer to
the “DCWRITE Information” section.

ÄÄ DCWRITE ÄÄ (ÄÄ <message designator> ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄë
 ÀÄ , ÄÄ <queue designator> ÄÙ

ëÄ) ÄÄ´

Explanation

The queue designator is required for certain DCC actions. The value returned is an error
identification number. A zero indicates no error; other error values are given in the
“DCWRITE Information” section.

A stack that is not marked as an MCS can call the DCWRITE function, provided that the
procedure that calls the DCWRITE function is declared in a stack marked as an MCS.

Examples

ERRORNO := DCWRITE(MESSAGEID);

ERRORNO := DCWRITE(MESSAGEARRAYID[3],QUEUEID);

Functions

3–16 8600 0841–202

DISPLAYTOSTANDARD Function
The DISPLAYTOSTANDARD function is a Boolean function that converts a display form
file construct to standard form.

ÄÄ DISPLAYTOSTANDARD Ä (ÄÄ <display location> Ä , ÄÄ <standard location>Äë

ëÄ) ÄÄ´

<display location>

ÄÄ <pointer expression> ÄÄ´

Explanation

A display form file construct can be a file name, file title, file directory, directory name, or
a directory title. Refer to the section in the System Command Operations Reference
Manual titled “Basic Constructs” for the complete file construct syntax.

Example

In the following example, “(SMITH)REPORT/JULY ON ACCOUNTS” is a file title that
contains a usercode, two identifiers separated by a slash, and an ON <familyname>
clause.

"(SMITH)REPORT/JULY ON ACCOUNTS"

A standard form file construct, used internally by the operating system, has the following
form:

ÄÄ <total length> ÄÄ <qualification> ÄÄ <number of identifiers> ÄÄÄÄÄÄÄë

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄ /13\ ÄÄÄÄÄÄÄÄÄÄÄÄ¿
ëÄÁÄ <id length> ÄÄ <identifier> ÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

The <total length> parameter is an 8-bit binary number that represents the total length in
bytes of the standard form file construct and includes the <total length> parameter byte
itself.

 Functions

8600 0841–202 3–17

A qualification is a formatted, 8-bit byte that contains the following fields:

Field Value Description

[06:01] A name in the display form file construct was originally
surrounded by quotation marks because it contained
hyphens or underscores.

[02:01] Family name included. If this field is 1, the last identifier
represents the familyname in the ON <familyname>
clause. If this field is 0, no familyname is present.

[01:02] Usercode information. This field contains information
about the presence of an asterisk (*) or a usercode. The
possible values returned have the following meanings:

 1 The display form file construct is not preceded by an
asterisk or usercode.

 2 The display form file construct is preceded by an
asterisk.

 3 The display form file construct is preceded by a
usercode.

The <number of identifiers> parameter is an 8-bit binary number that represents the
total number of identifiers in the file construct.

The <id length> parameter specifies the length, in bytes, of the identifier that
immediately follows it.

The identifier is a usercode, a familyname, or one level of the file construct. In the file
title (SMITH)REPORT/JULY ON ACCOUNTS, four identifiers are included: SMITH,
REPORT, JULY, and ACCOUNTS. The DISPLAYTOSTANDARD function disallows blanks
embedded within an identifier and ignores nonembedded blanks. A familyname must
contain only uppercase alphanumeric characters. An identifier that represents one level
of the file construct or a usercode can include hyphens and underscores without quotes.
If other nonalphanumeric characters or lowercase characters are included, quotes are
required. All identifiers and usercodes that are longer than 17 characters are truncated. If
truncation occurs, the system issues a warning message and sets the warning bit [11:1].

A display form file construct must end with a period (.).

The result space in the array that follows the destination pointer and contains the
resulting file construct must be at least 255 characters long.

You must assign the compiler control option INSTALLATION 1 to allow the compiler to
access the required installation intrinsic.

Functions

3–18 8600 0841–202

The DISPLAYTOSTANDARD function returns a Boolean result that is FALSE if no errors
occur during the conversion. Otherwise, it returns the Boolean result TRUE. If TRUE, bit
0 of the result is 1, and one of the following bits also has the value 1 to identify the error:

Bit Description

47 A fault occurred while scanning the display form file construct.

10 A name node was expected between slashes, or either a name or an equal
sign was expected following the final slash.

9 More than 12 nodes occurred in the name portion of the file name.

8 A slash was expected between successive identifiers.

7 A usercode was expected after the left parenthesis.

6 No identifiers were found.

5 A nonalphanumeric character was found in the familyname.

4 The file construct did not terminate with a period(.).

3 An identifier that contains a nonalphanumeric character was not enclosed in
quotation marks.

2 A null quoted string is illegal as an identifier.

1 A right parenthesis was expected after the usercode.

Note: If the node name has more than 17 characters, only bit 11 is set to 1 and the
node name is truncated to 17 characters. This is not an error result.

 Functions

8600 0841–202 3–19

Examples

The following example converts the file title (SMITH)REPORT/JULY ON ACCOUNTS to
the standard form.

$SET INSTALLATION 1

. . .

REPLACE PTRDISPLAY BY "(SMITH)REPORT/JULY ON ACCOUNTS.";
ERRORFLAG := DISPLAYTOSTANDARD(PTRDISPLAY,PTRSTANDARD);

Functions

3–20 8600 0841–202

GETSTATUS Function
The GETSTATUS function gathers designated system information and places it in the
noncharacter array row.

ÄÄ GETSTATUS ÄÄ (ÄÄ <arithmetic expression> ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ <arithmetic expression> ÄÄ , ÄÄ <arithmetic expression> ÄÄ , ÄÄÄÄÄÄÄë

ëÄ <noncharacter array row> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

The information that you supply through four parameters designates the information that
is to be returned by the program. The parameters, their values, and the information
returned are described in the GETSTATUS/ SETSTATUS Programming Reference
Manual.

Example

BOOL := GETSTATUS(TYPE,SUBCLASS,MASK,ARRAYROW);

 Functions

8600 0841–202 3–21

INSERT_CLIENTQUEUE Function
The INSERT_CLIENTQUEUE function and the LINKLIB_CLIENTQUEUE function in
conjunction can be used in place of two-way connection library linkages to eliminate the
overhead of circular stack search graphs.

ÄÄ INSERT_CLIENTQUEUE ÄÄ (ÄÄ<noncharacter array row>ÄÄ , ÄÄ<use size>Äë

ëÄ , ÄÂÄ<connection library instance designator>ÄÂÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ<this intrinsic>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ<connection parameter>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Explanation

The first two parameters specify the data, which is to be sent in a message to the client
of the connection library instance specified by the third parameter.

The first two parameters have syntax and semantics identical to the first two parameters
of the array row variant of the DCALGOL INSERT statement.

In the third parameter, <this intrinsic> refers to a connection library instance from within
the connection control block, and <connection parameter> refers to a connection library
instance through the use of a CONNECTION reference variable.

The following table displays the procedure values that are returned:

Syntax Element Value Description

CLIENTQ_SUCCESS 1 The operation was successful.

CLIENTQ_NOQUEUE 2 The relevant library linkage was not established
by a successful invocation of
LINKLIB_CLIENTQUEUE.

CLIENTQ_QUEUEGONE 3 The queue supplied to LINKLIB_CLIENTQUEUE
when the relevant library linkage was
established has been deallocated, or it has been
the subject of a RETURN_QUEUE_TOKEN
invocation.

CLIENTQ_MSGINVALID 4 The length of the array row is less than the
specified size, or the specified size is outside
the permitted range of values.

Functions

3–22 8600 0841–202

LINKLIB_CLIENTQUEUE Function
The LINKLIB_CLIENTQUEUE function and the INSERT_CLIENTQUEUE function in
conjunction can be used in place of two-way connection library linkages to eliminate the
overhead of circular stack search graphs.

ÄÄ LINKLIB_CLIENTQUEUE ÄÄ (ÄÄ<queue designator>ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄÂÄ<library identifier>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÂÄ<indirect linkage>ÄÄÄÄÄÄÄÂÄÄÄë
 ÃÄ<connection library identifier>ÄÄÄ´ ÃÄ<process family linkage>Ä´
 ÃÄ< connection library designator >Ä´ ÀÄ<direct linkage>ÄÄÄÄÄÄÄÄÄÙ
 ÃÄ<this intrinsic>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ<connection parameter>ÄÄÄÄÄÄÄÄÄÄÄÄÙ

ëÄ) ÄÄ´

The queue designator specifies a queue by which the linked library might send
messages to this client. The linked library must be a connection library.

The syntax and semantics of the remaining parameters are documented in the
LINKLIBRARY description in the ALGOL Programming Reference Manual, Volume 1:
Basic Implementation.

The values returned by the LINKLIB_CLIENTQUEUE function are the same as those
returned by LINKLIBRARY, except for two additions and one semantic modification:

Value Description

12 Successful linkage was made to the library, but not all entry points were
provided. Also, the queue specified by queue designator cannot be associated
with the connection to the linked library, either because the linked library is not
a connection library, or because of MCP resource limitations.

11 Successful linkage was made to the library, and all entry points were provided.
Also, the queue specified by the queue designator cannot be associated with
connection to the linked library, either because the linked library is not a
connection library, or because of MCP resource limitations.

0 The program was already linked to the specified library at the time of the
LINKLIBRARY call. Also, the queue specified by the queue designator was not
associated with the connection to the linked library.

The program, library, procedure, or block that declared the queue can terminate at any
time without causing problems for the MCP. The MCP simply stops inserting
INSERT_CLIENTQUEUE messages in the queue.

RETURN_QUEUE_TOKEN must not be called on the queue while messages are being
inserted by INSERT_CLIENTQUEUE. (INSERT_CLIENTQUEUE starts to return the
CLIENT_QUEUEGONE result.)

LINKLIB_CLIENTQUEUE leaves the queue with an anonymous token assigned to it:
future invocations of GET_QUEUE_TOKEN on that queue return
TOKEN_ALREADYDONE. (TOKEN_ALREADYDONE=2.)

 Functions

8600 0841–202 3–23

For further information on RETURN_QUEUE_TOKEN, GET_QUEUE_TOKEN, and
TOKEN_ALREADYDONE, refer to the MCP Systems Interfaces Programming Reference
Manual.

The following examples illustrate the use of LINKLIB_CLIENTQUEUE and
INSERT_CLIENTQUEUE to establish two-way communication between a library and its
clients without the overhead associated with two-way connection libraries.

Examples

LIB is an EXPORTING connection library, which acts as a server. Two client programs are
also part of this example. CLIENT1 connects to LIB using traditional server library syntax
and CLIENT2 connects to LIB using an IMPORTING connection library.

LIB exports multiple connections, one for each client. For example, if three CLIENT1 tasks
and four CLIENT2 tasks are running, LIB has seven active connections.

LIB also illustrates the use of ISOLATED to prevent the DS of a client from interrupting
execution of a LIB procedure that uses global locks.

TEST/CLIENTQUEUE/LIB

BEGIN
 %---
 % Declaration of some simple (and not very efficient) structures
 % to track which connections are in use. This structure is
 % deliberately designed to require locking, to illustrate the use of
 % ISOLATED to protect the integrity of such a structure.

 INTEGER
 CLIENTS_ACTIVE;
 ARRAY
 CLIENTS_LIST[0:10];
 EVENT
 CLIENTS_INFO_LOCK;
 %---
 TYPE CONNECTION BLOCK CB;
 BEGIN
 INTEGER
 CONNECTION_INDEX,
 NREQUEST,
 NRESPONSE;
 BOOLEAN PROCEDURE ADDCLIENT;
 BEGIN [ISOLATED]
 %
 % This procedure uses ISOLATED to insure the integrety
 % of the structures protected by CLIENTS_INFO_LOCK.
 % If the stack running this procedure is DSED, ISOLATED
 % insures that either this procedure completes its work
 % or the entire library is terminated.
 PROCURE(CLIENTS_INFO_LOCK);
 CLIENTS_ACTIVE := *+1;

Functions

3–24 8600 0841–202

 IF SIZE(CLIENTS_LIST) LSS CLIENTS_ACTIVE THEN
 RESIZE(CLIENTS_LIST,CLIENTS_ACTIVE+50,RETAIN);
 CLIENTS_LIST[CLIENTS_ACTIVE-1] := CONNECTION_INDEX;
 LIBERATE(CLIENTS_INFO_LOCK);
 END ADDCLIENT;
 PROCEDURE REQUEST(A);
 ARRAY A[0];
 BEGIN
 % This procedure is to be invoked by the client when
 % it wants the library to do something, passing the
 % relevant data in this procedure's parameter(s).
 % For this example library, a message is displayed,
 % including text from the parameter.
 EBCDIC ARRAY
 MSG[0:200];
 NREQUEST := *+1;
 REPLACE MSG[0] BY
 "REQUEST ", NREQUEST FOR * DIGITS,
 " from connection ", CONNECTION_INDEX for * DIGITS,
 " ", POINTER(A) FOR MIN(30,SIZE(A)*6) UNTIL EQL 48"00";
 DISPLAY(MSG[0])
 END REQUEST;
 PROCEDURE REMOVECLIENT;
 BEGIN [ISOLATED]
 INTEGER
 MYINX,
 I;
 % This procedure uses ISOLATED to insure the integrety
 % of the structures protected by CLIENTS_INFO_LOCK.
 % If the stack running this procedure is DSED, ISOLATED
 % insures that either this procedure completes its work
 % or the entire library is terminated.
 %
 PROCURE(CLIENTS_INFO_LOCK);
 MYINX := -1;
 FOR I := 0 STEP 1 UNTIL CLIENTS_ACTIVE-1 DO
 BEGIN
 IF CLIENTS_LIST[I] EQL CONNECTION_INDEX THEN
 MYINX := I;
 END;
 IF MYINX GEQ 0 THEN
 BEGIN
 CLIENTS_ACTIVE := *-1;
 I := MYINX;
 WHILE I LSS CLIENTS_ACTIVE DO
 BEGIN
 CLIENTS_LIST[I] := CLIENTS_LIST[I+1];
 I := *+1;
 END;
 END;
 LIBERATE(CLIENTS_INFO_LOCK);
 END REMOVECLIENT;

 Functions

8600 0841–202 3–25

 PROCEDURE CB_CHANGE(CONN_INDEX, NEW_STATE, REASON, ACTOR, IMDSED);
 VALUE CONN_INDEX, NEW_STATE, REASON, IMDSED;
 INTEGER CONN_INDEX, NEW_STATE, REASON;
 TASK ACTOR;
 BOOLEAN IMDSED;
 BEGIN
 IF NEW_STATE EQL VALUE(LINKING) THEN
 BEGIN
 CONNECTION_INDEX := CONN_INDEX;
 NREQUEST := 0;
 NRESPONSE := 0;
 ADDCLIENT;
 END;
 IF NEW_STATE EQL VALUE(NOTLINKED) THEN
 REMOVECLIENT;
 END CB_CHANGE;
 EXPORT
 REQUEST;
 END CB;
 CB EXPORTING LIBRARY
 CL(INTERFACENAME = "INT.",
 CHANGE = CB_CHANGE);
 %---
 REAL
 RSLT,
 SEED;
 INTEGER
 I,
 CL_INX;
 ARRAY
 A[0:100];
 SEED := 123456789+TIME(11);
 RSLT := READYCL(CL);
 IF RSLT NEQ 0 THEN
 BEGIN
 DISPLAY("READYCL failed, rslt = " CAT STRING(RSLT,*));
 MYSELF.STATUS := VALUE(TERMINATED);
 END;
 % A real library would presumably do something useful at this point.
 %
 % For this example, the library simply tells random clients
 % to call GETRESPONSE, at random intervals.
 WHILE TRUE DO
 BEGIN
 WHEN(RANDOM(SEED)*3); % Wait 1.5 seconds on average.
 PROCURE(CLIENTS_INFO_LOCK);
 IF CLIENTS_ACTIVE GTR 0 THEN
 BEGIN
 I := MIN(INTEGERT(RANDOM(SEED)*CLIENTS_ACTIVE),
 CLIENTS_ACTIVE-1);
 CL_INX := CLIENTS_LIST[I];
 CL[CL_INX].NRESPONSE := *+1;

Functions

3–26 8600 0841–202

 REPLACE POINTER(A) BY
 "RESPONSE ", CL[CL_INX].NRESPONSE FOR * DIGITS,
 " for connection ", CL_INX for * DIGITS,
 48"00";
 RSLT := INSERT_CLIENTQUEUE(A,10,CL[CL_INX]);
 IF RSLT NEQ 1 THEN
 BEGIN
 DISPLAY("INSERT_CLIENTQUEUE failed, rslt = " CAT
 STRING(RSLT,*));
 MYSELF.STATUS := VALUE(TERMINATED);
 END;
 END;
 LIBERATE(CLIENTS_INFO_LOCK);
 END;
END.

 Functions

8600 0841–202 3–27

TEST/CLIENTQUEUE/CLIENT1

BEGIN

 % This client illustrates use of library TEST/CLIENTQUEUE/LIB.
 %
 % This program uses normal server library syntax to link
 % to the EXPORTING connection library in TEST/CLIENTQUEUE/LIB.
 %---
 LIBRARY
 CLIENTQLIB(LIBACCESS=BYTITLE,
 INTERFACENAME = "INT.",
 TITLE="OBJECT/TEST/CLIENTQUEUE/LIB.");
 PROCEDURE REQUEST(A);
 ARRAY A[0];
 LIBRARY CLIENTQLIB;
 %---
 DEFINE
 TICKSPERSECOND = INTEGER(1/(2.4@-6)) #;
 REAL
 RSLT,
 SEED,
 T14_DONE,
 T14_NEXTREQUEST;
 QUEUE
 CALLBACKQ;
 ARRAY
 A[0:100];
 INTEGER
 N;
 SEED := 123456789+TIME(11);
 RSLT := LINKLIB_CLIENTQUEUE(CALLBACKQ,CLIENTQLIB,WAITFORFILE);
 IF RSLT NEQ 1 THEN
 BEGIN
 DISPLAY("LINKLIBRARY failed, rslt = " CAT STRING(RSLT,*));
 MYSELF.STATUS := VALUE(TERMINATED);
 END;
 % A real program would presumably do something useful at this point.
 %
 % For this example, the program simply runs for about a
 % minute, occasionally calling REQUEST and displaying any
 % messages which appear in CALLBACKQ.
 T14_DONE := TIME(14)+(30+60*RANDOM(SEED))*TICKSPERSECOND;
 T14_NEXTREQUEST := TIME(14)+10*RANDOM(SEED)*TICKSPERSECOND;
 WHILE TIME(14) LSS T14_DONE DO
 BEGIN
 CASE WAIT((MAX(0.1,(T14_NEXTREQUEST-TIME(14))/TICKSPERSECOND)),
 CALLBACKQ.QINSERTEVENT) OF
 BEGIN
 1:
 REPLACE POINTER(A) BY
 "MIX = ", MYSELF.MIXNUMBER FOR * DIGITS, 48"00";

Functions

3–28 8600 0841–202

 REQUEST(A);
 T14_NEXTREQUEST := TIME(14)+10*RANDOM(SEED)*TICKSPERSECOND;
 2:
 N := REMOVE(A,CALLBACKQ);
 DISPLAY(POINTER(A));
 END;
 END;
END.

 Functions

8600 0841–202 3–29

TEST/CLIENTQUEUE/CLIENT2

BEGIN

 % This client illustrates use of library TEST/CLIENTQUEUE/LIB.
 %
 % This program uses IMPORTING connection library syntax to link
 % to the EXPORTING connection library in TEST/CLIENTQUEUE/LIB.
 %---
 TYPE CONNECTION BLOCK CB;
 BEGIN
 PROCEDURE REQUEST(A);
 ARRAY A[0];
 IMPORTED;
 END CB;
 CB SINGLE IMPORTING LIBRARY
 CLIENTQLIB(LIBACCESS=BYTITLE,
 INTERFACENAME = "INT.",
 TITLE="OBJECT/TEST/CLIENTQUEUE/LIB.");
 %---
 DEFINE
 TICKSPERSECOND = INTEGER(1/(2.4@-6)) #;
 REAL
 RSLT,
 SEED,
 T14_DONE,
 T14_NEXTREQUEST;
 QUEUE
 CALLBACKQ;
 ARRAY
 A[0:100];
 INTEGER
 N;
 SEED := 123456789+TIME(11);
 RSLT := LINKLIB_CLIENTQUEUE(CALLBACKQ,CLIENTQLIB,WAITFORFILE);
 IF RSLT NEQ 1 THEN
 BEGIN
 DISPLAY("LINKLIBRARY failed, rslt = " CAT STRING(RSLT,*));
 MYSELF.STATUS := VALUE(TERMINATED);
 END;
 % A real program would presumably do something useful at this point.
 %
 % For this example, the program simply runs for about a
 % minute, occasionally calling REQUEST and displaying any
 % messages which appear in CALLBACKQ.
 T14_DONE := TIME(14)+(30+60*RANDOM(SEED))*TICKSPERSECOND;
 T14_NEXTREQUEST := TIME(14)+10*RANDOM(SEED)*TICKSPERSECOND;
 WHILE TIME(14) LSS T14_DONE DO
 BEGIN
 CASE WAIT((MAX(0.1,(T14_NEXTREQUEST-TIME(14))/TICKSPERSECOND)),
 CALLBACKQ.QINSERTEVENT) OF
 BEGIN

Functions

3–30 8600 0841–202

 1:
 REPLACE POINTER(A) BY
 "MIX = ", MYSELF.MIXNUMBER FOR * DIGITS, 48"00";
 CLIENTQLIB.REQUEST(A);
 T14_NEXTREQUEST := TIME(14)+10*RANDOM(SEED)*TICKSPERSECOND;
 2:
 N := REMOVE(A,CALLBACKQ);
 DISPLAY(POINTER(A));
 END;
 END;
END.

 Functions

8600 0841–202 3–31

MAKEUSERCODE Function
The MAKEUSERCODE function uses the data in the noncharacter array row parameter
to create a usercode or to create a usercode and a password. The Boolean value
returned by the MAKEUSERCODE function is TRUE if the designated usercode (and
password, if designated) is created; otherwise, it is FALSE.

If a security administrator is authorized at your site, only a process running under the
security administrator usercode can use the MAKEUSERCODE function; otherwise, only
a process with privileged-user status can use this function.

You cannot use the MAKEUSERCODE function on a password-generating system.

ÄÄ MAKEUSERCODE ÄÄ (ÄÄ <noncharacter array row> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

The data in the noncharacter array row must have the following structure:

• The data must consist of an EBCDIC character string.

• The data must be in one of the three following forms:

<usercode>
<usercode> / <password>
(<usercode>)<password>

• The data must terminate with a period.

• Leading blanks, trailing blanks, and blanks separating pairs of items in the case of
usercode and password are acceptable.

• The usercode and password can be 17 or fewer characters, which exclude quotation
marks when the usercode or password is enclosed in quotation marks.

• Blanks are significant inside a usercode or a password that is enclosed in quotation
marks.

• Any of the 256 EBCDIC characters can be used (except the quotation marks) inside a
usercode or password that is enclosed in quotation marks.

• If the usercode is ELEPHANT and the password is BIG-ONE, then any one of the
following REPLACE statements is appropriate to fill the noncharacter array row:

P := POINTER (ARRAYID);
REPLACE P BY " ELEPHANT/" ," " BIG-ONE" ," " ." ;
REPLACE P BY " ELEPHANT/" " " BIG-ONE" " " ." ;
REPLACE P BY " ELEPHANT/ " " " BIG-ONE" " " ." ;

Examples

IF MAKEUSERCODE(A[*]) THEN GO TO NEXTONE;

MAKEUSERCODE(ARRAYID);

Functions

3–32 8600 0841–202

MCSLOGGER Function
The MCSLOGGER function allows an MCS to make entries into the system log primarily
for the purpose of billing and monitoring station users. The noncharacter array row
contains the information to be logged. The array format is described in the
“Understanding the System Log” section in the System Log Programming Reference
Manual.

ÄÄ MCSLOGGER ÄÄ (ÄÄ <noncharacter array row> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

With the exception of log-on entries, the contents of the passed array are not modified
and the first word of the noncharacter array row must contain a valid job number.

For log on, the MCSLOGGER function returns a unique job number in the first word of
the noncharacter array row. This job number must be used for all future logging for this
user.

If the given entry could not be entered in the log, the MCSLOGGER function returns a
negative result to indicate the specific reason that the request was denied. The
MCSLOGGER function returns the following values:

Value Description

0 The entry was logged successfully.

-1 Either the noncharacter array row is too small to contain the
information (length fields in link words were in error) or the
information required more than 256 words.

-2 The caller is not a valid MCS or has not initialized its primary
queue.

-3 A disk parity error occurred while the system was entering the
records in the log.

-4 Either the MAJOR type of entry was not 4 (MCS record), or the
MINOR type was invalid (less than or equal to 0 or greater than
4).

-5 The entry was not logged on, and the first word of the array did
not contain a valid job number.

-6 A job file cannot be made.

-7 The fixed part of the log entry was too small for the entry type.

-8 There were bad links pointing outside the variable part of the log
entry.

-9 Either the user code, access code, or charge code has a bad
length or an illegal number of names.

 Functions

8600 0841–202 3–33

Examples

MCSLOGGER(TEXT[A,B,*]);
RESULT := MCSLOGGER(JOBINFO[J,*]);
MCSLOGGER(BIGARRAY);

Functions

3–34 8600 0841–202

NULL Function
The NULL function returns a Boolean value of TRUE if the message designator does not
have any allocated area or if the queue designator has not been activated. Otherwise, it
returns a value of FALSE.

ÄÄ NULL ÄÄ (ÄÂÄ <message designator> ÄÂÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ <queue designator> ÄÄÄÙ

Examples

BOOLEANID := NULL(MESSAGEID);

BOOLEANID := NULL(MESSAGEARRAYID[3]);

BOOLEANID := NULL(QUEUEARRAYID[3]);

BOOLEANID := NULL(QUEUEID);

 Functions

8600 0841–202 3–35

QUEUEINFO Function
The QUEUEINFO function returns an integer value in response to the information
requested about the queue designator by the second parameter, <arithmetic
expression>.

ÄÄ QUEUEINFO ÄÄ (ÄÄ <queue designator> ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ <arithmetic expression> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

The values that are used in the arithmetic expression and the meanings of these values
are as follows:

Value Description

-1 Returns 0 and causes a memory dump.

0 Returns 0.

1 Returns the number of messages in the queue.

2 Returns the number of processes attached to the queue.

3 Returns the size, in words, of the message at the head of the
queue.

4 Returns the total number of words being used by all the messages
in the queue.

All other values return -1.

A value of 3 (the size of the message at the head of the queue) should not be used to
determine if truncation occurs with a remove to a noncharacter array row (or with any
similar function) unless care is taken to ensure that no other processes could possibly
remove that message between the time the size is checked and the time the message
is removed.

Examples

ANSWER := QUEUEINFO(QUEUEID,1);

ANSWER := QUEUEINFO(QUEUEARRAYID[3],NUMBER);

Functions

3–36 8600 0841–202

REMOVE Function
The REMOVE function takes the message at the head of the queue, delinks it from that
queue, and either inserts a descriptor that points to that message in the stack location
referenced by the message designator or copies the message into the designated
noncharacter array row. The value returned by the REMOVE function is the length of the
message, in words.

Because the queue must be active to remove a message from it, be careful when you
remove a message from a queue. If doubt exists, perform a test with the NULL function
(refer to the “NULL Function” in this section). If you attempt to remove a message from
an inactive queue, a run-time error occurs and INACTIVEQUEUE terminates the process
unless an enabled ON statement exists for this fault.

ÄÄ REMOVE ÄÄ (ÄÂÄ <message designator> ÄÄÄÄÄÂÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë
 ÀÄ <noncharacter array row> ÄÙ

ëÄ <queue designator> ÄÄ) ÄÄ´

Explanation

The REMOVE function delinks a message from the specified queue and causes the
message to be either referenced by the message designator or copied into the
noncharacter array row. If the latter occurs, the message area is returned to the system.
A value of 0 is returned if no messages are in the queue. Otherwise, the length (in
words) of the message removed is returned. If the message designator already
references a message, that message area is returned to the system before the removal.
If the noncharacter array row is smaller than the message removed, the message is
truncated and the length of the noncharacter array row is returned. If the queue
designator is not active, the program is terminated unless an ON statement has enabled
the INACTIVEQUEUE interrupt.

Examples

MESSAGESIZE := REMOVE(MESSAGEID,QUEUEID);

MESSAGESIZE := REMOVE(MESSAGEARRAYID[1],
 QUEUEARRAYID[1]);

MESSAGESIZE := REMOVE(ARRAYID[*],QUEUEID);

 Functions

8600 0841–202 3–37

SETSTATUS Function
The SETSTATUS function controls a variety of operating system functions. The user is
notified of invalid applications of the SETSTATUS function by error information coded
into certain fields of the noncharacter array row. The required parameters, their values,
and the information returned are described in the GETSTATUS/ SETSTATUS
Programming Reference Manual.

ÄÄ SETSTATUS ÄÄ (ÄÄ <arithmetic expression> ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ <arithmetic expression> ÄÄ , ÄÄ <arithmetic expression> ÄÄ , ÄÄÄÄÄÄÄë

ëÄ <noncharacter array row> ÄÄÄ´

Example

BOOL := SETSTATUS(TYPE,SUBTYPE,VAL,ARRAYROW);

Functions

3–38 8600 0841–202

SETUPINTERCOM Function
The SETUPINTERCOM function allows an MCS to communicate with other MCSs or
with the CONTROLLER. A message is sent to MCS number N by inserting a message in
queue array reference identifier[N]. Received messages are found in the queue specified
by the queue designator. The CONTROLLER implicitly has an MCS number of 0.

ÄÄ SETUPINTERCOM ÄÄ (ÄÄ <queue array reference identifier> ÄÄ , ÄÄÄÄÄÄë

ëÄ <queue designator> ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ , ÄÄ MLSCAPABLE ÄÙ

Explanation

The SETUPINTERCOM function also allows an MCS to specify whether or not it is able
to display messages sent by the operating system in multiple languages. Use the
optional third parameter MLSCAPABLE to indicate this capability. “MLS” stands for
multilingual system. The third parameter is a Type 2 reserved word.

If you include the MLSCAPABLE parameter, the operating system sends messages to
the MCS in the format of message number and message parameters, if there are any.
Because such a message is not in displayable form, the MCS should call the operating
system procedure MCPMESSAGESEARCHER to format and translate the message, in
the format described in “MESSAGE FROM CONTROLLER RESULT (Class=21)” in the
“MCS Result Message Formats” section. For more information on the MultiLingual
System, refer to the MultiLingual System (MLS) Administration, Operations, and
Programming Guide. For further information regarding the MCPMESSAGESEARCHER
procedure, refer to the MCP System Interfaces Programming Reference Manual.

If you do not include the MLSCAPABLE parameter, no special handling is done, and the
operating system sends translated and formatted messages to the MCS as described in
“MESSAGE FROM CONTROLLER RESULT (Class=21)” in the “MCS Result Message
Formats” section.

If the request could not be completed, the SETUPINTERCOM function returns a negative
result to indicate the specific reason for denying the request. The values returned by the
SETUPINTERCOM function and their respective meanings are as follows:

Value Description

N>0 The request completed without error. N is the MCS
number of the program invoking this function.

-1 The requesting program has not initialized its primary
queue.

-2 The <queue designator> parameter is already established
as an intercom queue.

 Functions

8600 0841–202 3–39

The information that follows describes the interface message that uses the
SETUPINTERCOM function to establish the communication link with the CONTROLLER.

You can cause a DCALGOL queue to pass to the operating system the designated
message and the one that follows it by using the following construct:

INSERT(<message designator>,INTERCOMQUEUES[0]);

In the above construct, INTERCOMQUEUES is a queue array reference identifier. Before
inserting a message in element 0 (the input queue of the CONTROLLER), you must
establish the communication links by using the following DCALGOL construct:

SETUPINTERCOM(INTERCOMQUEUES,MYINPUTQ);

You can use one of two formats to send the message to the CONTROLLER:

• Format 1, which you use if you do not include the MLSCAPABLE parameter, or if
you do not want to use the message attributes available in format 2. Format 1 is
shown in Table 3–1.

• Format 2, which you use if you do include the MLSCAPABLE parameter, or if you
want to use message attributes. Format 2 is shown in Table 3–2.

Table 3–1. Format 1 for SETUPINTERCOM Function Messages

Word Field Value Description

0 [47:08] 21 Type.

 [39:01] 0 Using format 1.

 [38:07] Variant field, as follows. Variants 7, 8, 9, and 10
are used only by Operator Display Terminal (ODT)-
simulating MCSs:

 2 Input request to the CONTROLLER for processing
the message.

 4 Request to the CONTROLLER to continue with
the earlier request. Refer to Continuation Call later
in this section.

 6 Request to the CONTROLLER for connection to
become an ODT-simulating MCS. Words 1, 2, 3,
and 4 must have all bits equal to 1.

 7 For an ODT-simulating MCS: request to the
CONTROLLER for disconnection. Words 1, 2, 3,
and 4 must have all bits equal to 1.

 8 For an ODT-simulating MCS: requests to the
CONTROLLER. The CONTROLLER discards all of
the requests waiting for an answer from this
dialogue and then proceeds as in Variant 2.

Functions

3–40 8600 0841–202

Table 3–1. Format 1 for SETUPINTERCOM Function Messages

Word Field Value Description

 9 For an ODT-simulating MCS: requests to the
CONTROLLER. The CONTROLLER discards all of
the requests waiting for an answer from this
dialogue and then proceeds as in Variant 4.

 10 For an ODT-simulating MCS: requests to the
CONTROLLER. The CONTROLLER discards all of
the requests waiting for an answer from this
dialogue and then proceeds as in Variant 4.

 [31:08] Number of the originating MCS.

 [23:09] Used by the sending MCS for internal purposes.
When a reply to this message is sent, this field is
included in the reply.

 [14:15] LSN of the remote terminal.

 1 [47:01] 1 If the reply is truncated at line width (see below).

 [46:01] 0 If the user is restricted to those commands
marked FREE in the input to the table generation.

 1 If the user can use any command.

 [45:01] ODT bit. When this bit is 1, the CONTROLLER
handles the message as if it came from an ODT.

 [43:23] Dialogue number (for an ODT-simulating MCS).
The dialogueCS number is untouched by the
CONTROLLER and is sent back to the MCS for
reference.

 [19:04] 1 No response to message.

 2 Concise response, OK.

 3 Expanded response.

 [15:08] Width of the line, where 2 < line width < 80

 [07:08] Number of lines on a page, where 0 < lines <= 24

2-4 Usercode. [2] . [47:08] contains the length of the
usercode (in [2] . [46:06]) and a usercode check bit
(in [2] . [47:01]). If the usercode check bit is set,
the usercode is used to restrict mix-related
commands, and for commands handled by
external agents (such as Print System and DSS). If
the usercode check bit is reset, the usercode is
used to restrict PD commands, for WFL jobs, and
for commands handled by external agents. If [2] .
[47:08] equals 0, no usercode is used.

5 Length of input string in units of characters.

6 to end Input string.

 Functions

8600 0841–202 3–41

Table 3–2. Format 2 for SETUPINTERCOM Function Messages

Word Field Value Description

0 [47:08] 21 Type.

 [39:01] 1 Using format 2.

 [38:07] Variant field, as follows (Variants 7, 8, 9, 10, 11, and 12 are used
only by ODT-simulating MCSs):

 2 Input request to the CONTROLLER for processing the message.

 4 Request to the CONTROLLER to continue with the earlier
request. Refer to Continuation Call, later in this section.

 6 Request to the CONTROLLER for connection to become an ODT-
simulating MCS. Words 1, 2, 3, and 4 must have all bits equal to
1.

 7 For an ODT-simulating MCS: request to the CONTROLLER for
disconnection. Words 1, 2, 3, and 4 must have all bits equal to 1.

 8 For an ODT-simulating MCS: requests to the CONTROLLER. The
CONTROLLER discards all of the requests waiting for an answer
from this dialogue and then proceeds as in Variant 2.

 9 For an ODT-simulating MCS: requests to the CONTROLLER. The
CONTROLLER discards all of the requests waiting for an answer
from this dialogue and then proceeds as in Variant 4.

 10 For an ODT-simulating MCS: requests to the CONTROLLER. The
CONTROLLER discards all of the requests waiting for an answer
from this dialogue and then proceeds as in Variant 4.

 11 For an ODT-simulating MCS: requests to the CONTROLLER.
Words 1, 2, 3, and 4 must have all bits equal to 1. On receiving
this request, the operating system starts sending security-related
messages, such as security violations or modifications to security
settings.

 12 For an ODT-simulating MCS: requests to the CONTROLLER.
Words 1, 2, 3, and 4 must have all bits equal to 1. On receiving
this request, the operating system stops sending security related
messages.

 [31:08] Number of originating MCS.

 [23:09] Used by the sending MCS for internal purposes. When a reply to
this message is sent, this field is included in the reply.

 [14:15] LSN of remote terminal.

Functions

3–42 8600 0841–202

Table 3–2. Format 2 for SETUPINTERCOM Function Messages

Word Field Value Description

1 [47:01] 1 If the reply is to be truncated at line width.

 [46:01] 0 If the user is to be restricted to those commands marked FREE in
the input to the table generation.

 1 If the user can use any command.

 [45:01] ODT bit. When this bit is 1, the CONTROLLER handles the
message exactly as if it came from an ODT.

 [43:23] Dialogue number (for an ODT-simulating MCS). The dialogue
number is untouched by the CONTROLLER and sent back to the
MCS for reference.

 [19:04] 1 No response to the message.

 2 Concise response, OK.

 3 Expanded response.

 [15:08] Width of the line, where 2 < line width < 80.

 [07:08] Number of lines on a page, where 0 < lines <= 24*80.

2 Not used.

3 Message component word. When turned on, the bits of this word
indicate the existence of different message components, as
shown in Table 3–3.

 [47:01] 1 Indicates the existence of a special action component word. If bit
0 of the corresponding special action word is turned on, the
usercode is used to restrict mix-related commands, and for
commands handled by external agents (such as Print System and
DSS). If this bit is reset or the special action component word is
not present, the usercode is used to restrict PD commands, for
WFL jobs, and for commands handled by external agents.

4 to
end

 For each specified component, a component information word
follows.

 If bits 0, 1, 2, or 5 of word 3 are turned on, each corresponding
component information word is composed of the following two
fields:

 [15:16] The length of the component, in bytes. For example, the length of
the command text.

 [31:16] The starting index, in words, of the component in the message
array.

 If bit 3 of word 3 is turned on, the corresponding session number
component information word contains the session number of the
requestor. This number is used for logging purposes.

 If bit 4 of word 3 is turned on, the corresponding return LSN
number component information word contains the value to be
returned in the LSN number field. This value can be different from
the LSN number of the input message.

 Functions

8600 0841–202 3–43

Continuation Call

An input request to the CONTROLLER might supply only the requested number of lines
of output, even though more output information is available. In this situation, the
CONTROLLER terminates the queue of messages with a continuation message
(variant 4). This message contains sufficient information to continue the input request.
To continue the input request, an MCS receiving this message must place this message
into the input queue of the CONTROLLER. The message must not be altered before
being returned to the CONTROLLER.

Table 3–3 presents the values of the message component word, which is word 3 of
format 2 of the SETUPINTERCOM function message.

Table 3–3. Bits for
Message Component

Word

Bit Component

0 Command text

1 Usercode

2 Language

3 Session number

4 Return LSN
number

5 Convention

47 Special action

ODT-Simulating MCS

When MARC is executed, it is automatically established as an ODT-simulating MCS.
Only one MCS in the system can be an ODT-simulating MCS. If you try to establish
another ODT-simulating MCS when MARC is running, the request is discarded. If you
have already established another MCS as the ODT-simulating MCS, and then you
execute MARC, you cannot enter ODT commands from MARC. It is strongly suggested
that you do not establish any other MCS as an ODT-simulating MCS, which reserves this
capability for use by MARC. You can supply ODT features to any MCS by setting the
ODT bit, which lets you enter ODT commands that are sent to the controller and handled
as though they came from an ODT.

Examples

R := SETUPINTERCOM(QUEUEARRAYREFID,QUEUEID);

R := SETUPINTERCOM(QUEUEARRAYREFID,QUEUEARRAY[2],MLSCAPABLE);

Functions

3–44 8600 0841–202

SIZE Function
The SIZE function can be used to find out the length of a message array.

ÄÄ SIZE ÄÄ (ÄÄ <message group designator> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

If the message group designator contains a <message designator>construct as in the
first and second examples below, the SIZE function returns the length of the message
designator. If the message is null, the SIZE function returns 0. If the message group
designator contains the construct <message array identifier> <subarray selector> as in
the third example, the size of the dimension represented by the leftmost asterisk is
returned. If the message group designator contains the construct <message array
identifier> as in the fourth example, the size of the leftmost dimension is returned.

Examples

LENGTH := SIZE(MESSAGEID);

LENGTH := SIZE(MESSAGEARRAYID[1,2,3]);

DIMENSIONSIZE := SIZE(MESSAGEARRAYID[1,*,*]);

DIMENSIONSIZE := SIZE(MESSAGEARRAYID);

 Functions

8600 0841–202 3–45

SYSTEMSTATUS Function
The SYSTEMSTATUS function gathers specified system information and places it in the
noncharacter array row.

ÄÄ SYSTEMSTATUS ÄÄ (ÄÄ <noncharacter array row> ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ <arithmetic expression> ÄÄ , ÄÄ <arithmetic expression> ÄÄ) ÄÄÄÄÄÄÄ´

Explanation

The second and third parameters specify the system information that is to be supplied.

The Boolean value returned is TRUE if, for any reason, the information requested is not
returned in the noncharacter array row. Field [11:08] of this value contains the coded
reason for failure. If the information requested is returned, the value of the function is
FALSE.

The SYSTEMSTATUS function is described in the SYSTEMSTATUS Programming
Reference Manual.

Examples

 IF SYSTEMSTATUS(A[*],X,Y) THEN
 GO TO TROUBLE;

SYSTEMSTATUS(B[S,*],N+2,Z);

IF SYSTEMSTATUS(ARRAYID,3,JOBNUMBER)
 AND SYSTEMSTATUS(B2[U,*],4,UNITNUMBER)
THEN
 GO TO BIGTROUBLE;

Functions

3–46 8600 0841–202

USERDATAFREEZER Function
The USERDATAFREEZER function freezes the SYSTEM/USERDATAFILE against
modification through the USERDATA operating system procedure. A description of the
parameters, results, and error codes of the function is found in the “MAKEUSER”
section of the Security Administration Guide.

ÄÄ USERDATAFREEZER ÄÄ (ÄÄ <Boolean expression> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

 Functions

8600 0841–202 3–47

WRITESPO Function
The WRITESPO function allows you to write data to an ODT. The function returns a
Boolean result to indicate that the write has been initiated successfully (FALSE) or that
the write could not be initiated (TRUE); if TRUE, the function result contains additional
information.

ÄÄ WRITESPO ÄÄ (ÄÄ <unit number> ÄÄ , ÄÄ <character count> ÄÄ , ÄÄÄÄÄÄë

ëÄ <noncharacter direct array row> ÄÄ , ÄÄ <event designator> ÄÄ) ÄÄÄÄ´

<unit number>

ÄÄ <arithmetic expression> ÄÄ´

<character count>

ÄÄ <arithmetic expression> ÄÄ´

<noncharacter direct array row>

A direct array row whose identifier is declared with a <type> construct.

Explanation

The function requires the following four parameters:

Parameter Description

<unit number> This parameter designates the external unit number
of the ODT to which the data is to be written.

<character count> This parameter designates the number of words
and characters of data to be transferred. The
number of words to be transferred is designated in
field [16:17]. The number of additional characters to
be transferred is designated in field [19:03] and
must be in the range 0 to 5, inclusive.

<noncharacter direct array row> This parameter contains the data to be transferred
to the ODT. If desired, the IOMASK of the array can
be made equal to an appropriate mask.

<event designator> This parameter designates the event to be caused
when the I/O is finished.

You must declare the noncharacter direct array row and the event designator in the
same block.

Functions

3–48 8600 0841–202

The WRITESPO function scans the direct array row from the first character either to an
end of text (ETX) character or for the number of words and characters indicated by the
<character count> parameter. Any occurrence of the character sequence ESC is
replaced by two blanks.

If there is not an ETX character within the number of characters specified by the
<character count> parameter, an ETX character is appended after the final character that
is to be transferred. If there is no room in the array to append the ETX, the last character
to be transferred is overwritten with an ETX. Only the characters from the beginning of
the array to the ETX are transferred to the ODT.

As mentioned previously, the WRITESPO function returns a Boolean result to indicate
that the operation was initiated successfully (FALSE) or could not be initiated (TRUE). If
the result is TRUE, field [11:08] of the result contains one of the following values:

Value Description

34 The <unit number> parameter did not designate an unreserved
ODT.

40 The third parameter was not a direct array row.

41 The noncharacter direct array row already has an I/O in progress.

42 The event designator and the noncharacter direct array row were
not declared in the same block.

You can obtain additional information about a particular WRITESPO operation by
interrogating the attributes of the direct array row passed as the third parameter. For
details about direct I/O buffer attributes, refer to the File Attributes Programming
Reference Manual.

Example

The following statement writes 30 words plus 4 characters (184 characters) of data from
the direct array OPMESSAGE to ODT 24. The event IOFIN is caused when the I/O is
complete.

ERRFLAG := WRITESPO(24,30 & 4 [19:03],OPMESSAGE,IOFIN);

ERRFLAG is assigned the value TRUE if the initiation of the transfer is not successful.

8600 0841–202 4–1

Section 4
Attributes

This section discusses the two types of DCALGOL attributes:

• Queue attributes

• Task attributes

Queue Attributes
The syntactical structure, use, and semantics of queue attributes are similar to those of
task attributes and file attributes. Illegal attribute references (such as attempts to assign
a read-only attribute) result in the display of a run-time error message on the console and
entry of this message in the system log. However, the program does not terminate.

ÄÄ <queue attributes> ÄÄ . ÄÄ <queue attribute name> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<queue attribute name>

ÄÄÂÄ QACTIVE ÄÄÄÄÄÄÄÂÄÄ´
 ÃÄ QBLOCKSIZE ÄÄÄÄ´
 ÃÄ QDISKERROR ÄÄÄÄ´
 ÃÄ QHEADSIZE ÄÄÄÄÄ´
 ÃÄ QINSERTEVENT ÄÄ´
 ÃÄ QMEMORYLIMIT ÄÄ´
 ÃÄ QMEMORYSIZE ÄÄÄ´
 ÃÄ QMESSAGECOUNT Ä´
 ÃÄ QREMOVEWAIT ÄÄÄ´
 ÃÄ QROWSIZE ÄÄÄÄÄÄ´
 ÃÄ QSIZE ÄÄÄÄÄÄÄÄÄ´
 ÃÄ QTANK ÄÄÄÄÄÄÄÄÄ´
 ÀÄ QUSERCOUNT ÄÄÄÄÙ

The following are descriptions of each of the queue attributes. Each description includes
the data type of the attribute (integer, Boolean, or event) and whether it can be changed
(read/write) or only queried (read-only).

Queue Attributes

4–2 8600 0841–202

QACTIVE

Boolean, read/write

The QACTIVE attribute returns the current active state of a queue. Making this attribute
equal to TRUE explicitly activates the queue. Making this attribute equal to FALSE
deactivates the queue and flushes any messages currently in the queue. The QACTIVE
attribute is initially FALSE.

QBLOCKSIZE

Integer, read/write

The QBLOCKSIZE attribute specifies the number of words per block in the tank file. The
default value is 6000. The value of this attribute is rounded up to a multiple of 30, if
necessary, with a minimum of 30 and a maximum of 65520. You cannot alter the
QBLOCKSIZE value when the QTANK attribute is set to TRUE.

If you increase the value of QBLOCKSIZE, you can reduce the amount of disk I/O time
for a queue. However, this action also increases memory requirements. Two buffers
QBLOCKSIZE-words long are allocated for each queue. Therefore, by default, 600 words
are required for buffer space.

If you use the COMBINE statement to combine two queues whose QBLOCKSIZEs
differ, there is a danger that these two values can be undefined in the host queue if
either queue is tanked and if the priority is equal to TRUE (combine to head of the host
queue). For more information about the COMBINE statement, refer to “COMBINE
Statement” in the “Statements” section.

QDISKERROR

Boolean, read/write

When the QDISKERROR attribute is interrogated, it returns a Boolean value that
indicates if any messages in the queue have been lost because of a tanking error.

In tanking messages to disk, the operating system usually recovers the data in a disk
write error. If a write error occurs, the operating system stops the tanking and leaves the
messages intact in memory.

However, if a read error occurs when detanking messages from disk, the operating
system is unable to recover the tanked messages. Because the messages in the disk
tank are linked, the entire disk tank of that queue must be flushed by the operating
system. To indicate that messages have been lost, the operating system displays the
following message:

<mixno> TANKING DISK ERROR

At the program level, the queue attribute QDISKERROR is given the value TRUE by the
operating system for the above situation.

 Queue Attributes

8600 0841–202 4–3

The program can interrogate or change the value of this attribute at any time. Making this
value equal to TRUE or FALSE has no effect on the queue; the operating system makes
this attribute equal to TRUE only when messages are lost because of a tanking disk
error.

QHEADSIZE

Integer, read-only

The QHEADSIZE attribute indicates the size of the first message in the queue. The value
of the attribute is 0 if the queue is empty.

QINSERTEVENT

Event, read-only

The QINSERTEVENT attribute is an event-valued attribute; therefore, it is an event
designator and can be used wherever an <event designator> construct is used in ALGOL
and DCALGOL.

This event is caused each time a message is inserted in a queue with the INSERT
statement or COMBINE statement. The QINSERTEVENT attribute is turned off when the
last message is removed from the queue by using the REMOVE function, COMBINE
statement, or FLUSH statement.

The following examples illustrate two ways to use QINSERTEVENT. In each example, the
assignment to L saves the message length.

The following example simply removes the next message from queue Q and waits if
there is no message in the queue:

WHILE (L:=REMOVE(MSG,Q)) = 0 DO
 WAIT(Q.QINSERTEVENT);

In the next example, program execution is suspended until one of the following occurs:

• Five seconds have elapsed.

• There is a message in Q1.

• Event EV has happened.

• There is a message in Q2.

The ellipses (. . .) represent code to handle each contingency. The entire program
fragment could be the body of a loop or the outer block of an MCS.

I := WAIT((5),Q1.QINSERTEVENT,EV,Q2.QINSERTEVENT);
CASE I OF
BEGIN
 1: % We have WAITed 5 seconds
 ...

Queue Attributes

4–4 8600 0841–202

 2: % There was a message in Q1
 WHILE (L:=REMOVE(MSG,Q1)) > 0 DO
 ...

 3: % Event EV has HAPPENED
 RESET(EV)
 ...

 4: % There was a message in Q2
 WHILE (L:=REMOVE(MSG,Q2)) > 0 DO
 ...

END;

Note that there is an implied priority in the WAIT statement. For example, all messages
are removed from Q1 before EV or Q2 is noticed. This priority is implicit in the WAIT
statement.

QMEMORYLIMIT

Integer, read/write

The QMEMORYLIMIT attribute defines the maximum value that the attribute
QMEMORYSIZE can achieve before disk tanking is invoked. The default value is
16384 words. The maximum value of this attribute is (2**16)--1 or 65,535. Giving this
attribute the value of 0 causes all messages to be tanked. You can change
QMEMORYLIMIT at any time with the following results:

• If you increase the value, the system does not attempt to detank messages in order
to raise QMEMORYSIZE to the new limit.

• If you decrease the value, the system tanks messages until QMEMORYSIZE is less
than or equal to the new limit.

QMEMORYSIZE

Integer, read-only

The QMEMORYSIZE attribute reflects the current size (in words) of the resident portion
of a queue. This size is the sum of the sizes for each complete message area in the
queue plus one word (a link word) for each message.

QMESSAGECOUNT

Integer, read-only

The QMESSAGECOUNT attribute is the total number of messages in the queue and
includes any that have been tanked.

 Queue Attributes

8600 0841–202 4–5

QREMOVEWAIT

Boolean, read/write

When equal to TRUE, the QREMOVEWAIT attribute causes a REMOVE function on an
empty queue to wait until a message is inserted. Note that the same value of
QREMOVEWAIT applies to all processes that see the same physical queue.

By making Q.QREMOVEWAIT equal to TRUE, the first example shown for
QINSERTEVENT could be replaced by the following:

L := REMOVE(MSG,Q);

QROWSIZE

Integer, read/write

The QROWSIZE attribute specifies the number of blocks in each row of the tank file. The
default value is 5. You cannot change the QROWSIZE value if the QTANK attribute is set
to TRUE.

Increasing QROWSIZE reduces the overhead involved in allocating tank space while
increasing the space requirements. If the default values for QROWSIZE and
QBLOCKSIZE are used, a tank row consists of 500 sectors.

Initially, two rows are allocated when tanking is invoked. Rows are allocated and
deallocated as the size of the queue increases and decreases. All disk space is returned
when the queue is no longer tanked. The tank file can contain a virtually unlimited
number of rows.

If you use the COMBINE statement to combine two queues whose QROWSIZEs differ,
there is a danger that these two values can be undefined in the host queue if either
queue is tanked and if the priority is equal to TRUE (combine to head of the host queue).
For more information on the COMBINE statement, refer to “COMBINE Statement” in
the “Statements” section of this manual.

QSIZE

Integer, read-only

The QSIZE attribute is the sum of the sizes of each message in the queue (both in
memory and on disk). This size includes the message area only and not the message link
words.

Queue Attributes

4–6 8600 0841–202

QTANK

Boolean, read/write

The QTANK attribute is TRUE if a portion of the queue is currently resident on disk and
FALSE if the entire queue is in memory. Making this attribute equal to TRUE causes all
messages currently in memory to be tanked to disk. Making QTANK equal to FALSE is
an error.

QUSERCOUNT

Integer, read/write

The QUSERCOUNT attribute represents the number of independent users of a queue.
QUSERCOUNT is increased by one when the queue is passed by value to a procedure
and is decreased by one when exiting the procedure. QUSERCOUNT can also be altered
by the ATTACH statement. For more information on the ATTACH statement refer to
“ATTACH Statement” in the “Statements” section of this manual.

For example, assume that Q1 references a queue whose physical existence is
referenced as QQ1. Assume also that Q2 references a queue (distinct from QQ1) whose
physical existence is referenced as QQ2. Finally, assume that the statement ATTACH
(Q1,Q2) is executed. After execution, both Q1 and Q2 reference the same physical
queue, QQ2. The user count of the physical queue QQ1 is decreased by one, and the
user count of the physical queue QQ2 is increased by one. Both Q1.QUSERCOUNT and
Q2.QUSERCOUNT equal the user count of the physical queue QQ2.

Example

IF (NOT OUTPUTQ.QACTIVE) OR (OUTPUTQ.QMESSAGECOUNT=0) THEN
 GO TO XIT;
CASE WAIT((2),Q.QINSERTEVENT,E)-1 OF
BEGIN
0: ;
1: S := REMOVE(MSG,Q);
2: GO TO XIT;
END;

 Task Attributes

8600 0841–202 4–7

Task Attributes
The task attribute names that are associated with a task designator are described in
alphabetical order in the following discussion. These task attribute names are pertinent to
data comm and are a subset of task attributes. These task attributes, as well as others
not pertinent to data comm, can be found in the Task Attributes Programming Reference
Manual.

ÄÄ <task designator> ÄÄ . ÄÄ <task attribute name> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<task attribute name>

ÄÄÂÄ AUTOSWITCHTOMARC ÄÂÄÄÄ´
 ÃÄ BACKUPFAMILY ÄÄÄÄÄ´
 ÃÄ DESTSTATION ÄÄÄÄÄÄ´
 ÃÄ DISPLAYONLYTOMCS Ä´
 ÃÄ INHERITMCSSTATUS Ä´
 ÃÄ MAXWAIT ÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ ORGUNIT ÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ SOURCEKIND ÄÄÄÄÄÄÄ´
 ÃÄ SOURCESTATION ÄÄÄÄ´
 ÃÄ STATION ÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ TANKING ÄÄÄÄÄÄÄÄÄÄÙ

The following are descriptions of each of the task attributes. Each description includes
the data type of the attribute (integer, Boolean, real, pointer, or identifier) and whether it
can be changed (read/write) or only queried (read-only).

AUTOSWITCHTOMARC

Boolean, read/write

The AUTOSWITCHTOMARC attribute affects only processes that are initiated by a
MARC session and that open a remote file. For these processes, this attribute specifies
whether or not the task status screen is automatically displayed when the process
terminates.

Task Attributes

4–8 8600 0841–202

BACKUPFAMILY

Identifier, read/write

The BACKUPFAMILY attribute specifies the family to which all print and punch backup
files generated by the task are to be allocated.

DESTSTATION

Integer, read/write

The DESTSTATION attribute allocates or returns the destination station. DESTSTATION
can be allocated only by an MCS. When DESTSTATION is allocated, the destination MCS
number also is made equal to the MCS number of the MCS currently controlling the
destination station.

DISPLAYONLYTOMCS

Boolean, read/write

The DISPLAYONLYTOMCS attribute controls the display of DISPLAY messages. If equal
to TRUE, messages generated by this task are not displayed at the ODT.

INHERITMCSSTATUS

Boolean, read/write

The INHERITMCSSTATUS attribute (if TRUE) causes a process to inherit the privileges of
the MCS. This task attribute enables an MCS to initiate an external code file that
performs some MCS functions.

MAXWAIT

Real, read/write

The MAXWAIT attribute specifies the maximum number of seconds a task can wait on a
specified system function.

ORGUNIT

Integer, read-only

The ORGUNIT attribute records the logical station number (LSN) or physical unit number
of the unit that initiated the process.

 Task Attributes

8600 0841–202 4–9

SOURCEKIND

Integer, read-only

The SOURCEKIND attribute returns an integer value equal to the unit type (that is, the
value of the KIND file attribute) associated with the unit that originated the task.

SOURCESTATION

Real, read/write

The SOURCESTATION attribute allocates or returns the originating station (LSN). This
attribute can be allocated only by an MCS.

STATION

Integer, read/write

The STATION attribute stores the LSN of the station to be assigned any remote files
used by the process. If STATION has a nonzero value, the TITLE file attribute does not
affect selection of a station for remote files. If the STATION value is 0, the TITLE file
attribute determines the station that is assigned a remote file.

TANKING

Mnemonic, read/write

The TANKING attribute designates the default tanking mechanism for remote files used
by the process. Tanking is a method that the system can use to temporarily store
messages that a process writes to a remote file.

Examples

REPLACE TSK.DESTNAME BY PB;

IF TSK.SOURCEKIND = VALUE(REMOTE) THEN
 MYLSN := TSK.SOURCESTATION;

Task Attributes

4–10 8600 0841–202

8600 0841–202 5–1

Section 5
DCWRITE Information

This section is structured as follows:

• General DCWRITE information, which applies to all DCWRITE types

• Specific DCWRITE information, listed in order of DCWRITE type number

General DCWRITE Information
A message control system (MCS) recognizes two general classes of messages:

• Messages constructed for use with the DCWRITE function by the MCS.

• Messages generated elsewhere within the data comm subsystem that eventually
appear in one of the queues of the MCS.

Messages constructed by the MCS for use with the DCWRITE function adhere to a
generally consistent format insofar as requirements for minimum message size and field
locations for certain types of information. For example, the type field for DCWRITE
messages is always located in MESSAGE [0].[47:08], but the value in this field varies
depending on the type of DCWRITE function to be performed.

DCWRITE Message Format

Messages constructed for use with the DCWRITE function are at least six words in
length. (Exceptions to this requirement are noted where applicable.) The general format
of messages used in conjunction with the DCWRITE function is presented in Table 5–1.
The following acronyms are used in Table 5–1:

Acronym Meaning

DLS A number made up of three components that are separated by colons
(:) (the NSP number, LSP number, and the station number).

FRSN File relative station number.

LSN Logical station number.

LSP Line support processor.

NSP Network support processor.

RSN Relative station number.

General DCWRITE Information

5–2 8600 0841–202

Table 5–1. DCWRITE Message Format (General)

Word Field Value Description

[0] [47:08] Type field.

 [39:16] Variant field.

 [23:24] LSN-FRSN-DLS number field

 [23:01] 0 [22:23] is an LSN or FRSN. If [22:23] is an
FRSN, then [23:10] is a file number, and [13:14]
is an RSN.

 1 [22:23] is a DLS number: [22:07] is the relative
NSP number, [15:08] is the line number (line
number=relative LSP number * 16 + adapter
number), and [07:08] is the station number.

[1] [47:08] Priority of output (0-127); otherwise, 0.

 [39:08] to
[32:01]

 TOGGLES: [39:01] is TOGGLE [8], [38:01] is
TOGGLE [7], and so on until [32:01] is TOGGLE
[1].

 [31:32] Not used.

[2] [47:08] Retry count field.

 [39:16] Text size field.

 [23:24] Not used.

[3] [47:24] Not used.

 [23:08] Tally [0].

 [15:08] Tally [1].

 [07:08] Tally [2].

[4] [47:24] Message number field.

 [23:24] Not used.

[5] [47:48] Not used (reserved for system use).

[6] Text

[n] Text

In many respects, messages resemble arrays when the information within a message is
manipulated. The ALLOCATE statement is used to obtain space for a message. The
ALLOCATE statement requires two parameters: a message or a message array
identifier, followed by an arithmetic expression that indicates the number of words the
message spans. For example, the following statement allocates a 6-word message and
places the data descriptor for it in the message variable MSG:

ALLOCATE(MSG,6);

 General DCWRITE Information

8600 0841–202 5–3

After being allocated, a simple message variable can be referred to as a one-dimensional
array. For example, the following construct illustrates a typical statement that appears in
conjunction with messages being constructed for use with the DCWRITE function:

MSG[0].[47:08] := DCWRITETYPEATTACH;

The hidden dimension of a message has a lower bound of 0. All words in a message are
equal to binary 0 when first allocated.

Interpretations of the fields within a message constructed for the DCWRITE function are
described in the following discussion.

Type Field (MSG[0].[47:08])

The type field contains one of a number of possible values to inform the DCWRITE
function which operation to perform. Specific values are discussed with each DCWRITE
type later in this section.

Variant Field (MSG[0].[39:16])

The variant field is used for qualification, variations, or additional information with certain
DCWRITE types (for example, carriage control in the WRITE DCWRITE function). The
specific meaning of the variant field is discussed with each applicable DCWRITE type.

LSN/FRSN/DLS Field (MSG[0].[23:24])

For most DCWRITE types, an LSN must be supplied to designate the station that is to be
affected by the particular DCWRITE function. LSNs can be obtained through several
mechanisms, one of which is the STATION ATTACH DCWRITE function. An extension
allows this field to contain the DLS number of a station, indicated by MSG[0].[23:01] = 1.
The format of the field in that case is as follows:

MSG[0].[22:07] = Relative NSP number
 [15:08] = Line number
 [07:08] = Station number

Some DCWRITE types require an FRSN instead of the customary LSN or DLS number.
An FRSN is obtained for a station at file-open time.

Priority Output Field (MSG[1].[47:08])

The priority of the message produced by the MCS is contained in this field. The MCS can
produce 128 levels of priority, with 0 as the lowest priority and 127 the highest. If the
priority level of the message is not zero, the DCC inserts the message into the station
queue following messages of higher or equal priority and preceding messages of lower
priority. In this way, the MCS messages are transmitted in a high-to-low priority
sequence, rather than the order in which the messages were received by the DCC.

General DCWRITE Information

5–4 8600 0841–202

TOGGLE and TALLY Fields (MSG[1].[39:08] and MSG[3].[23:24])

For certain DCWRITE types (WRITE and READ-ONCE ONLY), values can be supplied in
these fields for an NDLII-written algorithm that initializes its TOGGLEs and TALLYs by
using the INITIALIZE statement in the NDLII algorithm.

Retry Count Field (MSG[2].[47:08])

The value in the retry count field (supplied by the MCS) is used to determine the total
number of retries for any error conditions encountered by the NSP. If a value of 255
(decimal) is supplied for this field, the retry count designated for the station in the
DATACOMINFO file is used.

Text Size Field (MSG[2].[39:16])

The text size field specifies the number of bytes of meaningful text (beginning at MSG[6],
six EBCDIC characters per word) in the message. For some DCWRITE types, this field is
not applicable.

Message Number Field (MSG[4].[47:24])

An MCS can elect to assign message numbers to all messages that it allocates in the
system, thus providing some ability to audit the flow of its messages in the system. The
software system preserves the integrity of this field and does not use it for other
purposes.

If the MCS is participating in object job I/O for a station and the MCS receives an
OBJECT JOB OUTPUT (Class = 3) message from the object job, the message number in
this field in that message contains the FRSN. If the MCS chooses to forward this
message to the station, it can choose not to alter the message number field so that if the
MCS must later recall the message, it can determine the origin (for example, which file
and which station in the file) of the recalled message.

Text (Beginning at MSG[6])

Text is assumed to be EBCDIC characters (8-bit bytes) by the components of the data
comm system and is left justified starting in word 6 of the message. Some DCWRITE
types require no text. If translation for ASCII or other character sets is required for a
given station, the translation is accomplished at the NSP.

MCS Calls on DCWRITE

Depending on the specific type of DCWRITE function desired, one or two parameters are
supplied to the DCWRITE function, as follows:

DCWRITE (<message designator>) or
DCWRITE (<message designator>,<queue designator>)

 General DCWRITE Information

8600 0841–202 5–5

DCWRITE is a typed function and returns a value that indicates whether or not errors
occurred during the performance of the desired function.

All calls on the DCWRITE function require that a nonnull message of at least six words be
passed as the first (and possibly only) parameter. The exact minimum message size
depends on the particular DCWRITE function to be performed.

Except where noted in specific DCWRITE calls, on exit from the DCWRITE function, the
message passed as a parameter is null. The nonzero values returned from the DCWRITE
function denote error situations that cannot be overlooked and can indicate programming
errors in the calling MCS. In these error cases, the message that was passed as a
parameter to the DCWRITE function remains unaltered and is nonnull on exit from the
DCWRITE function.

In many cases, the task of the DCWRITE function can be properly accomplished only
with the cooperation of the NDLII algorithm. For example, a call on the WRITE DCWRITE
(DCWRITE Type = 33) function results in the transmission of the text only if the NDLII
algorithm performs the proper output action. This cooperation is especially crucial when
error conditions occur.

Summary of DCWRITE

5–6 8600 0841–202

Summary of DCWRITE
Table 5–2 shows a summary of the DCWRITE functions, and Table 5–3 lists the
DCWRITE errors in a summary format. The possible values returned by the DCWRITE
function are given in Table 5–4.

Table 5–2. Summary of DCWRITE Types

Category TypeNumber Function

ENVIRONMENT 0 INITIALIZE PRIMARY QUEUE

 1 STATION ATTACH

 2 INTERROGATE MCS

 3 INTER-MCS COMMUNICATE

 4 INTERROGATE STATION ENVIRONMENT

 5 ATTACH SCHEDULE STATION

STATION 32 CHANGE CURRENT QUEUE

 33 WRITE

 34 READ-ONCE ONLY

 35 ENABLE INPUT

 36 DISABLE INPUT

 37 MAKE STATION READY/NOT READY

 38 SET APPLICATION NUMBER

 39 SET CHARACTERS

 40 SET TRANSMISSION NUMBER

 41 RECALL MESSAGE

 42 STATION DETACH

 43 SET/RESET LOGICALACK

 44 ACKNOWLEDGE

 45 TRANSFER STATION CONTROL

 46 WRITE AND RETURN

 48 NULL STATION REQUEST

 49 SET/RESET SEQUENCE MODE

 53 WRITE TO TRANSFERRED STATION

 55 SEND MCS RESULT MESSAGE

 56 SET PSEUDOSTATION ATTRIBUTES

ATTRIBUTE 64 STATION ASSIGNMENT TO FILE

 65 WRITE TO OBJECT JOB

 Summary of DCWRITE

8600 0841–202 5–7

Table 5–2. Summary of DCWRITE Types

Category TypeNumber Function

 66 STATION BREAK

 67 ADD STATION TO FILE

 68 CHANGE TERMINAL ATTRIBUTES

 69 SUBTRACT STATION FROM FILE

LINE 96 MAKE LINE READY

 97 MAKE LINE NOT READY

 98 DIALOUT

 99 DISCONNECT

 100 ANSWER THE PHONE

 101 INTERROGATE SWITCHED STATUS

 102 SET/RESET AUTOANSWER

 103 SET/RESET LINE LOGS-TALLYS

 104 LINE INTERROGATE

105 FORCE LINE NOT READY

RECONFIGURATION 128 SWAP LINES

 129 EXCHANGE LSPS

 130 MOVE/ADD/SUBTRACT STATION

 131 UPDATE LINE ATTRIBUTES

Table 5–3. Summary of DCWRITE Errors

Value Description

064 MESSAGE MAY NOT BE NULL

065 MUST INITIALIZE PRIMARY QUEUE

066 MCS NOT DEFINED IN NDLII

067 QUEUE PARAMETER REQUIRED

068 INVALID DCWRITE TYPE

069 STATION IS NOT YOURS

070 STATION IS ALREADY YOURS

071 INVALID LSN

072 TEXT SIZE > ACTUAL MESSAGE SIZE

073 MESSAGE TOO SMALL

Summary of DCWRITE

5–8 8600 0841–202

Table 5–3. Summary of DCWRITE Errors

Value Description

074 PRIMARY QUEUE ALREADY INITIALIZED

075 DATACOM NOT INITIALIZED

076 UNKNOWN NSP

077 UNKNOWN LINE NUMBER

078 UNKNOWN STATION

079 BAD NAME FORMAT

080 INVALID FILE NUMBER

081 INVALID RELATIVE STATION NUMBER

082 STATION ALREADY IN FILE

083 STATION NOT ASSIGNED TO THE FILE

084 STATION MUST BE NOT READY

085 THIS LINE MAY NOT BE DIALED OUT

086 TYPE IS IN APPROPRIATE FOR LINE

087 NSP NOT INITIALIZED

088 STATION HAS NO LINE ASSIGNMENT

089 LINE CURRENTLY BEING CHANGED

090 STATION CURRENTLY BEING CHANGED

091 MCS DOES NOT CONTROL THE LINE

092 STATION/STATIONSET INFORMATION WAS NOT FOUND IN THE
DATACOMINFO FILE

093 DESIGNATED NSP CANNOT BE EXCHANGED

094 IMPROPER LSP MASK SUPPLIED

095 LINES MUST BE IN SAME NSP

096 LINE CANNOT BE SWAPPED (MAXSTATIONS = 0)

097 INVALID DESTINATION (MAXSTATIONS=0)

098 NO MORE ROOM ON LINE

099 STATION NOT CAPABLE OF SEQUENCE MODE

100 SEQUENCE NUMBER SIZE MUST BE 1 THROUGH 8

101 STATION MYUSE VALUE INVALID

102 MCS COULD NOT BE EXECUTED

103 MCS IS NOT RUNNING

104 INVALID APPLICATION NUMBER

105 MCS IS ALREADY IN EXECUTION

 Summary of DCWRITE

8600 0841–202 5–9

Table 5–3. Summary of DCWRITE Errors

Value Description

106 NSP IS NOT READY OR OFFLINE

107 NAME INDEX NOT WITHIN MESSAGE AREA

108 UNKNOWN TERMINAL NAME

109 DEFAULT TERMINALS NOT ALLOWED

110 UNKNOWN LINE NAME

111 STATION ADAPTER AND MODEM MISMATCHED

112 STATION ADAPTER AND TERMINAL MISMATCHED

113 STATION/LINE LINE CONTROL MISMATCHED

114 STATION/LINE ADAPTER TYPES MISMATCHED

115 LINE MODEM AND STATION ADAPTER MISMATCHED

116 ADAPTER TYPE OUT OF RANGE

121 STATION MUST BE ATTACHED

122 DLS REQUIRED (DLS.[23:01] = 1)

124 UNKNOWN LSP NUMBER

125 LINE ALREADY ATTACHED (MAINTENANCE)

126 LINE NOT ATTACHED (MAINTENANCE)

137 BOTH LINES MUST BE DIALOUT

138 SCHEDULE STATION CANNOT HAVE LINE

139 SCHEDULE STATION CANNOT BE TRANSFERRED

140 SCHEDULE STATION CANNOT BE ADDED TO FILE

141 IMPROPER VARIANT FIELD

143 STATION CANNOT BE ADDED TO FILE FOR SWAP JOB

144 INVALID OUTPUT TANKING SPECIFICATION

170 IOERROR ON DATACOMINFO FILE

171 DCRECON DSED AFTER IOERROR

173 DCRECON ERROR OCCURRED IN SUBTRACTING STATION

174 DCRECON ERROR OCCURRED IN ADDING STATION

175 LINE STATION ALREADY ASSIGNED

176 DCRECON ERROR OCCURRED IN SWAPPING LINES

177 NSP NOT FOUND FOR LSP

178 FILE HAS BEEN CLOSED DCWRITE=67

179 OUTPUT PRIORITY MUST BE IN THE 0 TO 127 RANGE

183 NOT IN NETWORK MODE

Summary of DCWRITE

5–10 8600 0841–202

Table 5–3. Summary of DCWRITE Errors

Value Description

184 ATTACH NOT VALID FOR LOCAL STATION

185 CONNECT TO LOCAL HOST NOT VALID

186 INVALID BNA STATION

187 COULD NOT INITIATE STATION TRANSFER

188 CANNOT ISSUE ON A PSEUDOSTATION

189 ALLOWED ONLY ON A PSEUDOSTATION

190 STATION ALREADY HAS A FULLY-PARTICIPATING MCS

191 STATION DOES NOT HAVE FULLY-PARTICIPATING MCS

192 ALLOWED ONLY BY FULLY-PARTICIPATING MCS

193 NO PSEUDOSTATIONS AVAILABLE

194 SWITCHED LINE MAY NOT BE SWAPPED WITH PRIVATE LINE

195 BIT-ORIENTED LINE MAY NOT BE SWAPPED WITH CHARACTER-ORIENTED
LINE

196 INCOMPATIBLE ORIGINAL DCWRITE TYPE AND RESULT CLASS

197 INVALID ODT UNIT NUMBER

198 ALLOWED ONLY BY THE ODT/DRIVER

199 INVALID PSEUDOSTATION NAME

200 DUPLICATE PSEUDOSTATION NAME

201 CANNOT SUBTRACT STATION FROM FILE

202 NO PATH TO LSP FROM DESTINATION NSP

203 DATACOMINFO FILE IN USE BY RECONFIGURATION

204 REQUEST WAS PREVIOUSLY DONE

205 STATION HAS BEEN PREPARED FOR DETACH

206 ONLY VALID FOR POSIX TTY FILES

207 UNKNOWN POSIX KEY CONTROL VARIANT

208 CANNOT TRANSFER LIMITED PSEUDO

209 FILE SIZE ON INITIALIZE PRIMARY QUEUE IS INVALID

210 STATION SIZE ON INITIALIZE PRIMARY QUEUE IS INVALID

211 FRSN VALUE GREATER THAN 24 BITS

212 MESSAGE EXCEEDS NSP MESSAGE SIZE

 Summary of DCWRITE

8600 0841–202 5–11

Table 5–4. Results from the DCWRITE Function

Value Description

0 The function was accomplished (no apparent errors).

64 The message parameter was null (message must be nonnull).

65 The primary queue was not yet initialized (for example, INITIALIZE
PRIMARY QUEUE DCWRITE not yet performed).

66 The calling MCS was not named in the DATACOMINFO file, or an invalid
MCS number was supplied.

67 A queue parameter was required for this DCWRITE function, but none was
supplied.

68 The type requested was not implemented (probably an incorrect value was
supplied in the type field).

69 The station name, LSN, or DLS number supplied to the DCWRITE function
is under control of a different MCS.

70 The station name, LSN, or DLS number supplied to the STATION ATTACH
DCWRITE was already attached to the calling MCS.

71 The LSN supplied was invalid.

72 The value specified in MSG[2].[39:16] (text size) exceeded the message
size.

73 The message parameter supplied did not meet the minimum size
requirements for the specific DCWRITE function called.

74 The INITIALIZE PRIMARY QUEUE DCWRITE was previously called (only one
call of this DCWRITE is allowed and necessary for the operation of the
MCS).

75 The data comm subsystem was not yet initialized.

76 An invalid or unknown relative NSP number was specified in the DLS
number.

77 An invalid or unknown line number was designated in the DLS number.

78 An invalid or unknown station number was specified in the DLS number.

79 An external standard-form identifier (for example, station name) had
improper form or was too long.

80 An invalid file number was specified in the FRSN. (This result might occur if
the file is valid but has CLOSED with retention.)

81 An invalid relative station number was specified in the FRSN.

82 The station supplied to the STATION ASSIGNMENT TO FILE DCWRITE was
already assigned to the file.

83 An MCS attempted to write to an object job before the station was assigned
to the file.

84 The type of DCWRITE attempted requires the station to be in the NOT
READY state.

Summary of DCWRITE

5–12 8600 0841–202

Table 5–4. Results from the DCWRITE Function

Value Description

85 An attempt was made to dial out on a line for which no automatic calling
unit was supplied.

86 An attempt was made to perform a switched-line function on a line that was
not switched.

87 An attempt was made to perform a data comm function that resulted in a
reference to an uninitialized NSP.

88 An attempt was made to perform a data comm function to/on a station line
that had no current hardware (line) assignment.

89 An attempt was made to perform a data comm function to/on a line that
was currently involved in reconfiguration.

90 An attempt was made to perform a data comm function to/on a station that
was currently involved in reconfiguration.

91 An attempt was made to perform a data comm function to/on a line over
which the requesting MCS had no control.

92 An attempt was made to perform a move/add/subtract station request when
the station information did not exist in the DATACOMINFO file.

93 An attempt to perform LSP-exchanging was made where the indicated LSP
was

was not known to be exchanged with any other NSP.

94 An attempt to perform LSP-exchanging was made where the LSP mask that
was supplied was inappropriate (for example, the indicated LSPs were
under control of the other NSP or did not exist).

98 An attempt to move a station was made in which the destination line had no
additional table space in which to accommodate the station.

99 An attempt was made to set/reset sequence mode for a station that was
not sequence-mode-capable.

100 The sequence number size supplied with set/reset sequence mode was
less than one or greater than eight.

101 A request to assign a station to a file was denied because of improper use
(for example, output-only device to the input file).

102 An MCS could not be initiated (either the program was not present in the
disk directly or it was not a code file).

103 An attempt was made to communicate with an MCS that was not
initiated/executing, and no automatic initiation was requested.

104 An invalid application number was supplied.

105 The MCS was already running.

106 The NSP designated as the recipient for an LSP exchange request was
either NOT READY, not initiated, or offline.

107 The name index was outside the message area.

 Summary of DCWRITE

8600 0841–202 5–13

Table 5–4. Results from the DCWRITE Function

Value Description

108 The terminal name was unknown.

109 A default terminal name was not acceptable as a terminal name.

110 The line name is unknown.

111 The adapter and modem were incompatible.

112 The adapter and terminal were incompatible.

113 The station and line control procedure were incompatible.

114 The station and line adapter were incompatible.

115 The modem and line adapter were incompatible.

116 An invalid adapter number was supplied.

121 The station was not attached to the requesting MCS.

122 A DLS number was required (DLS.[23:01] = 1).

124 The LSP was not defined in the NSP.

125 A line was already attached.

126 A line was not attached.

137 Both lines must be dial-out capable.

138 The schedule station might not have had a line assignment.

139 The schedule station might not have been transferred.

140 The schedule station might not have been added to a file.

141 The variant field was improper for this DCWRITE.

143 An invalid attempt was made to add a station to a file of a SWAP task.

144 The output tanking value was invalid.

170 An I/O error occurred reading from or writing to the DATACOMINFO file.

171 DCRECON failed to recover after an I/O error, or failed to link to the
DATACOMSUPPORT library.

173 A DCRECON error occurred in subtracting a station.

174 A DCRECON error occurred in adding a station.

175 The station is already assigned to a line.

176 A DCRECON error occurred in swapping lines.

177 The destination NSP was not found for the LSP.

178 The file has been closed (DCWRITE = 67).

179 Output priority must be in the 0 to 127 range.

180 This result is reserved.

181 This result is reserved.

Summary of DCWRITE

5–14 8600 0841–202

Table 5–4. Results from the DCWRITE Function

Value Description

182 This result is reserved.

183 Not in network mode.

184 Attach not valid for the local station.

185 Connect to local host not valid.

186 Invalid BNA station.

187 The station transfer MCS could not be initiated.

188 The type of DCWRITE attempted cannot be performed on a pseudostation.

189 The type of DCWRITE attempted can be performed only on pseudostations.

190 The station already has a fully participating MCS.

191 The station does not have a fully participating MCS.

192 The type of DCWRITE attempted can be performed only by a fully
participating MCS.

193 All pseudostations are in use.

194 A switched line cannot be swapped with a nonswitched line.

195 A bit-oriented line cannot be swapped with a character-oriented line.

196 The original DCWRITE type supplied in the message is incompatible with
the result type.

197 The ODT unit number given is not a valid ODT unit number.

198 The transfer of a pseudostation to represent a system ODT unit is permitted
only by COMS/ODT/DRIVER.

199 The pseudostation name is not properly formatted.

200 The pseudostation name is not unique.

201 The station could not be subtracted from the file specified in a SUBTRACT
STATION FROM FILE DCWRITE (Type = 69).

202 An attempt was made to transfer a Line Support Processor (LSP) from one
Network Support Processor (NSP) to another, but no path exists from the
LSP to the destination NSP.

203 The DATACOMINFO file is being modified; this request cannot be honored
at this time. The MCS can submit the request (Type = 1 or Type = 56) at a
later time.

204 A second “STATION DETACH” (DCWRITE type = 42) with a “Prepare For
Detach” indication (variant = 3) has been issued but a "Prepare For Detach"
is already pending for that station. The second request has been ignored.

205 Only an “INTERROGATE STATION ENVIRONMENT” (DCWRITE type = 4) or
a “STATION DETACH” (DCWRITE type = 42) is allowed while a “STATION
DETACH” with a "Prepare For Detach" (variant = 3) request is active.

206 Not applicable.

 Summary of DCWRITE

8600 0841–202 5–15

Table 5–4. Results from the DCWRITE Function

Value Description

207 Not applicable.

208 A limited pseudostation cannot be transferred.

212 An attempt was made to send a message to an NSP based station with
more than 9180 bytes of data.

Pseudostations and Fully Participating MCSs

5–16 8600 0841–202

Pseudostations and Fully Participating MCSs
The data comm subsystem supports a general implementation of pseudostations, and
full participation of an MCS with transferred pseudostations. A pseudostation can be
allocated to an MCS by the operating system and the MCS can then “participate” by
interposing itself between a data comm program and the pseudostation. Full participation
allows an MCS to participate in data comm functions, such as DCWRITE, performed on a
transferred pseudostation.

The following sections describe the features of full participation and pseudostations in
greater detail. The message formats of the DCWRITE types involved also detail the
action or result of the data comm features.

Pseudostations

A pseudostation is a virtual station that can be attached to, and controlled by, an MCS in
a manner similar to a “real” station, that is, one declared in the DATACOMINFO file.
However, unlike a real station, a pseudostation is not declared in the DATACOMINFO
file, has no line assigned, and need not have a corresponding physical terminal on the
local host.

To an application program, a pseudostation looks like any other station. An MCS can
send messages to, and receive messages from, a pseudostation through the standard
data comm interface procedures. Other programs can open a remote file to a
pseudostation and use the READ and WRITE verbs in the various languages. In addition,
one MCS can transfer control of a pseudostation to another MCS and can perform most
DCWRITE functions that do not require physical line assignment.

However, a pseudostation differs from a station defined in the DATACOMINFO file in
that it must have an MCS that is ultimately responsible for performing most DCWRITE
functions. Usually, this MCS is the one that initially requested allocation of the
pseudostation. The operating system controls the allocation and deallocation of
pseudostations and knows which MCS is controlling each station at any given time.
However, the operating system has no knowledge of any mapping from a pseudostation
to a process, physical terminal, or other entity. Such mappings must be made and
maintained solely by an MCS.

Pseudostations are useful for applications that require some form of virtual terminal
capability, yet need to remain compatible with existing MCSs and application programs.
A pseudostation can be allocated by one MCS and transferred to another, but the first
MCS can still exercise control over the data comm functions (such as DCWRITE)
performed on the station (see the description that follows on full participation). Thus, the
corresponding station might be located on a different host computer, but only the
allocating MCS would need to know that.

The MCP provides a second class of pseudostations that are referred to as limited
pseudostations; they provide the functionality described previously, but are not
transferable.

 Pseudostations and Fully Participating MCSs

8600 0841–202 5–17

MCS Participation in Data Comm Functions (Full Participation)

The data comm subsystem offers a feature called “participation” under which an MCS
can interpose itself between a station and a process that has a dialogue established with
that station. That process need not be informed that the MCS is actually participating in
the dialogue. The MCS can simply provide editing, translation, or message-switching
services in a transparent manner.

The full participation feature allows an MCS to participate in the remote-file operations
and the data comm functions (such as DCWRITE) performed on a station after control of
that station has been transferred to another MCS. In the following discussion of this
feature, the MCS that transfers control of a station is referred to as the fully participating
MCS, and the MCS that receives control of the transferred station is referred to as the
controlling MCS.

Under full participation, as with remote-file participation, an MCS can provide editing,
translation, or message-switching services for messages directed to a station. Full
participation, however, currently applies only to pseudostations. An error result is
returned to an MCS if it requests full participation when it transfers control of a station
declared in the DATACOMINFO file to another MCS.

After full participation has been requested, the fully participating MCS receives
notification when the MCS that controls the station performs certain DCWRITE functions
on that station. The request messages from these DCWRITE functions are intercepted
and placed in the primary queue of the fully participating MCS. That MCS can then
perform some action that emulates the requested function or can route the request to
another process that controls a physical terminal. In any event, the fully participating
MCS must be capable of generating MCS result messages and forwarding them to the
controlling MCS.

An MCS that elects to invoke full participation on a pseudostation must also be capable
of remote-file participation. Control of a pseudostation can be transferred, with full
participation requested, to any other MCS. The new controlling MCS can then start a task
that opens a remote file to the station. If the new controlling MCS has not requested
remote-file participation, the MCS that has requested full participation must also perform
remote-file participation in order to successfully open a remote file. Because of the
“virtual” nature of pseudostations, the data comm subsystem requires a destination to
send messages written to the file and to fulfill the requests of the task to read from the
file.

In the case just described, the fully participating MCS receives the OBJECT JOB
OUTPUT (Class = 3) result messages that would otherwise have been given to an MCS
that requested remote-file participation. In addition, the fully participating MCS is
responsible for generating WRITE TO OBJECT JOB (Type = 65) DCWRITE messages to
satisfy READ requests performed by the task that has opened the remote file.

Specific DCWRITE Information

5–18 8600 0841–202

Specific DCWRITE Information
The individual DCWRITE types are discussed in the information that follows. At least one
example is included with the description of each DCWRITE type.

The descriptions of the specific DCWRITE types are subdivided into the following topics:

• Required Parameters/Fields

• Explanation

• Examples

For all examples, the following declarations are assumed:

MESSAGE MSG,MSG1;
QUEUE PRIMARYQ,CURRENTQ,INFOQUE;
INTEGER RESULT,MCSNR,LSN,NSPNR,LINENR,STANR,FRSN,APPLNO;
INTEGER FILENR,DL,LSPMASK,TESTNR;

INITIALIZE PRIMARY QUEUE (DCWRITE Type = 0)

Required Parameters/Fields

The message parameter and the queue parameter are required, along with the following:

Word Field Value Description

0 [47:08] 0 Type

 [24:01] 1 Expanded Capacity MCS

Explanation

The primary queue is the first communication link established between an MCS and the
data comm portion of the operating system. This communication link distinguishes an
MCS from other DCALGOL programs. Therefore, when a DCALGOL program executes
an INITIALIZE PRIMARY QUEUE DCWRITE function in an attempt to establish the
desired link, several checks are made to guarantee the legitimacy of the DCALGOL
program to become an MCS. These checks are as follows:

• The title of the DCALGOL program must be one of those referenced as the title of an
MCS in the DATACOMINFO file.

• The DCALGOL program must not already be running under another job number as an
MCS.

• Normally, if an MCS is not running when it is required, the MCS is initiated by the
DCC; if neither the MCS nor the DCC is running, both are initiated if the AUTODC
option is equal to TRUE. However, if the MCS is a procedure with formal parameters,
the attempt by the DCC to initiate the MCS terminates abnormally with a parameter
mismatch. Thus, the only way such MCSs can be initiated is through a run invocation
by another program or a RUN control card where the parameters can be correctly
supplied.

 Specific DCWRITE Information

8600 0841–202 5–19

The INITIALIZE PRIMARY QUEUE DCWRITE function must be performed once (and only
once) during the course of the existence of the MCS in the system job mix (preferably as
one of the first things the MCS accomplishes). The first DCWRITE function performed by
the MCS must be an INITIALIZE PRIMARY QUEUE DCWRITE function.

In an NDLII source program, the title of an MCS is associated with each station defined
in the source program by designating the MCS station attribute. When data comm is
initialized, the operating system assigns MCS numbers sequentially based on the order in
which stations are examined in the DATACOMINFO file. The operating system examines
each station starting with the first station on the first line of the first LSP of the first NSP.
This process continues until all stations of every LSP and NSP have been examined.
Stations not assigned to a line are then examined.

Always set the variant specified with the code line MSG[0] . [24:1]. If the variant is not
set, some old format messages are returned that contain fields of insufficient size to hold
the related data.

The minimum acceptable message size for this DCWRITE type is six words. The
message is nonnull on return from the DCWRITE function. MSG[0] remains unaltered.
The functional value returned for the DCWRITE function is 0 if the primary queue is
initialized. In this case, MSG[1] contains the MCS number and MSG[2] contains the value
of the maximum logical station number (LSN), as determined from the DATACOMINFO
file in [23:24], and the number of schedule stations available for use in [47:08]. The level
of the SOURCENDLII from which the DATACOMINFO file was originally created is in
MSG[3]. This word is defined as follows:

MSG[3].[35:12] = Mark level
MSG[3].[23:12] = Cycle number
MSG[3].[11:12] = Patch number

MSG[4] contains the maximum number of pseudostations in the standard pseudostation
pool. In addition, the name of the current data comm file prefix is placed in EBCDIC
starting in MSG[6] in external standard form, and the length of the file prefix (in number
of characters) is stored in the text size field (MSG[2].[39:16]). The queue designator
supplied as the queue parameter is activated and references the primary queue. The
DATACOMINFO TIMESTAMP attribute is returned as a real value in MSG[11] and is
interpreted as follows:

MSG[11].[47:24] = Date as "MMDDYY"
MSG[11].[23:24] = Time as "HHMMSS"

The length of the longest data comm message allowed is returned in MSG[12]. Before
determining the value of this word the program should first check that the message
returned is at least 13 words long, because previous versions of the operating system
returned a message 12 words long.

The field MSG[14] . [47:24] of the input message is modified to return the current
maximum LSN allocated to a pseudostation in the expanded pool of station entries for
pseudostations. The field MSG[14] . [23:24] of the input message is modified to return
the current minimum LSN allocated to a pseudostation in the expanded pool of station
entries for pseudostations.

Specific DCWRITE Information

5–20 8600 0841–202

Nonzero functional values are returned if the primary queue is not initialized.

Value Description

64 The message parameter is null.

66 The calling DCALGOL program is not named as
an MCS in the current DATACOMINFO file.

67 The queue parameter is not supplied.

73 The message parameter supplied does not meet
the minimum size required.

74 The INITIALIZE PRIMARY QUEUE DCWRITE
was previously executed.

75 The data comm subsystem is not initialized
(AUTODC is equal to FALSE or the data comm
subsystem files are not on disk).

105 The MCS is already in execution.

Example

ALLOCATE(MSG,6);
MSG[0].[47:08] := 0;
MSG[0].[24:01] := 1;
RESULT := DCWRITE(MSG,PRIMARYQ);
MCSNR := MSG[1];

 Specific DCWRITE Information

8600 0841–202 5–21

STATION ATTACH (DCWRITE Type = 1)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 1 Type.

 [34:01] 0 Standard pseudostation.

 1 Limited pseudostation.

 [32:01] 0 Reserved for use by SYSTEM/COMS.

 [31:01] 0 Regular station attach: The MCS provides either
the DLS number, LSN, or station name.

 1 Allocate pseudostation: The MCS gets the LSN
and station name from the operating system.
The DLS number does not apply to
pseudostations.

 [29:06] Variant field (description follows):

 [29:01] 0 If a station is assigned to the file of an object
job, all input from that station is sent directly to
the file port and all output from the file port is
sent directly to the station without intervention
required by the MCS.

 1 If a station is assigned to the file of an object
job, all input from that station is sent directly to
the file port and all output from the file port is
sent to the current queue of the station.

 [28:01] 0 All STATION EVENT (Class = 1) messages,
exclusive of the control message, are placed in
the primary queue of the controlling MCS.

 1 All STATION EVENT (Class = 1) messages,
exclusive of the control message, are placed in
the current queue of the station.

 [27:01] 0 All NOT READY results are placed in the
primary queue.

 1 All NOT READY results are placed in the current
queue of the station.

 [26:01] 0 All control messages from the station are
placed in the primary queue of the controlling
MCS.

 1 All control messages from the station are
placed in the current queue of the station.
Control messages are messages from a station
that contains the control character of that
station (as set forth in the DATACOMINFO file
or allocated by the MCS).

Specific DCWRITE Information

5–22 8600 0841–202

Word Field Value Description

 [25:01] 0 All ERROR RESULT (Class = 99) messages for
the station are placed in the primary queue of
the controlling MCS.

 1 All ERROR RESULT (Class = 99) messages for
the station are placed in the current queue of
the station.

 [24:01] 0 All GOOD RESULTS (Class = 5) messages,
except any for NULL STATION REQUEST
(DCWRITE Type = 48), DCWRITE and all LINE
CHANGE RESULT (Class = 9) messages for the
station, are discarded.

 1 All GOOD RESULTS (Class = 5) messages and
all LINE STATUS CHANGE RESULT (Class = 9)
messages for the station are placed in the
current queue of the station.

 [23:24] LSN-FRSN-DLS field (description follows):

 [23:01] 0 If MSG[0].[22:23] is not 0, then MSG [0].[22:23]
designates the LSN.

 1 MSG[0].[22:23] contains the relative NSP, line,
and station number (DLS number). Also, if
MSG[0].[23:24] = 0, then the station name (as
given in the DATACOMINFO file) in display form
(for example, TTY/ONE) is contained in MSG[6],
the text portion of the message.

Explanation

One of the mechanisms through which an MCS can gain control of a station is the
STATION ATTACH DCWRITE function (refer also to “STATION EVENT Class = 1” and
“FILE OPEN Class = 2” messages in the “MCS Result Message Formats” section). The
MCS is allowed to use the physical location of the station (DLS number), the name of the
station (as declared in the DATACOMINFO file of the installation), or its logical station
number (LSN). In any case, the STATION ATTACH DCWRITE function verifies that the
calling MCS is the one named in the DATACOMINFO file for that station or that control of
the station has been passed to the MCS by another MCS through use of the TRANSFER
STATION CONTROL (DCWRITE Type = 45) DCWRITE function.

When using a DLS number for attachment, the relative NSP number must appear in
MSG[0].[22:07], the line number in MSG[0].[15:08], and the station number in
MSG[0].[07:08]. MSG[0].[23:01] must equal 1 so that the DCWRITE routine understands
that attachment is being performed with a DLS number.

 Specific DCWRITE Information

8600 0841–202 5–23

Attachment by station name is accomplished by ensuring that MSG[0].[23:24] equals 0
and that the station name in external standard form is placed as text in the allocated
message, starting at MSG[6]. Use of station attachment by name (or by LSN) removes
the necessity for the MCS to know about the physical location of the station.

The station is not required to have a line assignment if attachment is performed by LSN
or station name.

On exit from the DCWRITE routine, the message is nonnull and MSG[0].[22:23] contains
the LSN if no errors occurred. The LSN must be used by the MCS for all further
DCWRITE calls that affect or reference that station except for two cases in which the file
relative station number (FRSN) is used. (Refer to “STATION ASSIGNMENT TO FILE
(DCWRITE Type = 64)” and “WRITE TO OBJECT JOB (DCWRITE Type = 65)” in this
section.) MSG[1].[23:24] contains the DLS number. MSG[1].[31:08] contains switched
status for the line with which the station is associated. (Refer to the discussion of the
“SWITCHED STATUS RESULT (Class = 7)” message in the “ MCS Result Message
Formats” section). The remainder of the message has the format of an INTERROGATE
STATION ENVIRONMENT (Class = 15) result and returns station, terminal, and line
information, plus the station name.

If the station for which attachment is desired does not belong to the calling MCS or if the
station is currently controlled by another MCS, the value returned by the DCWRITE
intrinsic function is 69. At this point, the calling MCS must perform an INTER-MCS
COMMUNICATE (DCWRITE Type = 3) DCWRITE function requesting the other MCS to
relinquish or allow control of that station to the calling MCS. If the name or number of the
controlling MCS is unknown, it can be obtained through use of the INTERROGATE
STATION ENVIRONMENT (DCWRITE Type = 4) DCWRITE function.

GOOD INPUT RECEIVED (Class = 0) messages from a station go to the current queue of
the station. Disposition of other kinds of results is controlled by the variant field specified
in MSG[0].[29:06].

The STATION ATTACH DCWRITE function makes the current queue of the attached
station point to the primary queue of the MCS. (Refer to “CHANGE CURRENT QUEUE
(DCWRITE Type = 32)” in this section.)

The minimum message size required for this function is six words if attachment by DLS
number or LSN is being performed; seven words (or some additional number of words
sufficient to contain the station name) are required if attachment by station name is
being performed.

The STATION ATTACH DCWRITE function can be used by an MCS to request allocation
of a pseudostation from the pseudostation pool. This is designated by setting
MSG[0].[31:01] to a value of 1.

If the pool of pseudostations is exhausted and the system is allowed to allocate
additional pseudostations, this request can be delayed by up to 5 seconds to allow for
the allocation of new pseudostations. To prevent this delay set MSG[0].[33:1] to a value
of 1.

Specific DCWRITE Information

5–24 8600 0841–202

When an MCS requests allocation of a pseudostation (that is, MSG[0].[31:01] = 1),
MSG[0].[23:24] is ignored. Usually, this field is used by an MCS to designate (by name,
LSN, or DLS number) which station to attach. An MCS cannot determine the name or
LSN of a pseudostation before it is allocated. Pseudostations do not have DLS numbers.

The type of pseudostation allocated can be further qualified. Normally, a standard
pseudostation is allocated with MSG[0] . [34:01] = 0. However, a limited pseudostation
can also be allocated by setting MSG[0] . [34:01] to a value of 1. A limited pseudostation
cannot be requested if the variant MSG[0] . [24.1] was not set in the Initialize Primary
Queue DCWRITE request—the field is ignored and a standard pseudostation is attached.
Limited pseudostations are not transferable and always have LSNs greater than 16383
assigned to them.

Upon exiting the DCWRITE routine, if no errors occurred, MSG[0].[22:23] contains the
LSN of the pseudostation that has been assigned to the requesting MCS. The rest of the
message has the same format as the result message of a regular STATION ATTACH
request (that is, it has the format of an INTERROGATE STATION ENVIRONMENT result
message).

If all pseudostations in the pool have previously been allocated, a DCWRITE error
(value = 193) is returned. If the expansion of the pseudostation pool requires more than
5 seconds or the MCS prohibits the delay, a DCWRITE error (value = 203) is returned.

The STATION ATTACH DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Examples

ALLOCATE(MSG,6);
MSG[0] := 0 & 1 [47:8] & 1 [23:1] & NSPNR [22:7]
 & LINENR [15:8] & STANR [7:8];
RESULT := DCWRITE(MSG);
LSN := MSG[0].[22:23];

ALLOCATE(MSG,8);
MSG[0] := 0 & 1 [47:8] & 63 [29:6];
REPLACE POINTER(MSG[6],8) BY "TTY/ONE.";
RESULT := DCWRITE(MSG);
LSN := MSG[0].[22:23];

 Specific DCWRITE Information

8600 0841–202 5–25

INTERROGATE MCS (DCWRITE Type = 2)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 2 Type.

 [23:24] not 0 The field is assumed to be an
MCS number (MCS numbers
are values in the range 1
through N inclusive, where N
depends on the number of
unique MCSs identified in a
given DATACOMINFO file.

 0 The MCS name is assumed to
start in MSG[6]. Six EBCDIC
characters per word are in
external standard form (for
example, SYSTEM/CANDE).

Explanation

The INTERROGATE MCS DCWRITE function allows an MCS access to certain
information concerning any other MCSs in the data comm environment.

The information returned is largely status information, that informs the interrogating MCS
of, at least, the following:

• Whether the MCS in question was initiated or is in execution

• If being executed, the mix number of the MCS

• Whether or not the MCS was discontinued with the DS system command

• The MCS number

• The name of the MCS

The result of an MCS INTERROGATE function call appears in the message variable that
was passed as a parameter to the DCWRITE intrinsic. The same general format as that
for the INTERROGATE STATION ENVIRONMENT RESULT is used with an expanded
message format so that the MCS can request additional information with minimal effort.

Specific DCWRITE Information

5–26 8600 0841–202

Indexing

Figure 5–1 illustrates the path through index words to obtain additional MCS information.

Figure 5–1. INTERROGATE MCS Index Diagram

 Specific DCWRITE Information

8600 0841–202 5–27

Word 6 of INTERROGATE MCS holds the index to the first word of the first entry of this
message. This first word is referenced as the index word, MSG[INX], in the diagram and
in the message format. MSG[INX] holds the indexes to several first words of MCS
information, the name, or the index to the first word of the next entry. The bit fields of
the words referenced by the indexes provide details of status and information requested.
They are listed in the following message format:

Word Field Description

0-5 Appear as originally presented to the
DCWRITE function

6 [23:08] Contains the total size of this
message (in words)

 [15:08] Contains the number of entries in this
message

 [07:08] Contains the index to the first word of
the first entry

MSG[INX] := MSG[6].[07:08]

This field is as follows:

Word Field Description

[INX] [47:08] Contains the index to the first word of
the next entry (0 indicates that this
entry is the last entry)

 [23:08] Contains the index to the first word of
the MCS name (this entry)

 [15:08] Contains the index to the first word of
MCS information (this entry)

MSG[MSG[INX].[23:08]]

This field contains the first six EBCDIC characters (or less) of the MCS name in external
standard form (carrying over into successive words, if necessary) and ends with a period.

Specific DCWRITE Information

5–28 8600 0841–202

MSG[MSG[INX].[15:08]]

This field contains the first words of MCS information as follows:

Field Value Description

Word n

[47:01] 1 The MCS has diagnostic capabilities.

[46:01] 1 The MCS is initiated/running.

[45:01] 1 The MCS was discontinued with the DS system
command (abnormally terminated).

[44:01] 1 The MCS required message was displayed for this
MCS.

[43:01] 1 DCRECON has a message for you.

[42:01] 1 MCS expanded capacity flag

[41:18] <reserved>

[23:08] MCS number

[15:16] not 0 MCS mix number

Word n+1 MCS mix number

Word n+2 MCS stack number

Word n+3

[47:24] Number of bits representing file number

[23:24] Number of bits representing RSN

 If the variant MSG[0] . [24:1] was not set in the Initialize Primary Queue DCWRITE
request, then the field MSG[[MSG[INX].[15:08]].[15.16] contains the mix number. Also,
the MCS information words n+1 through n+3 are not returned.

If the LSN of the station being interrogated is greater than 16383 and the MCS neither
owns or controls that station, error 71 is returned.

 Specific DCWRITE Information

8600 0841–202 5–29

Examples

The following example illustrates an INTERROGATE MCS in which the number of the
MCS is used for the reference:

ALLOCATE(MSG,6);
MSG[0] := MCSNR & 2 [47:8];
RESULT := DCWRITE(MSG);

The following example illustrates an INTERROGATE MCS in which the name of the MCS
is used for the reference:

ALLOCATE(MSG,9);
MSG[0] := 0 & 2 [47:8];
REPLACE POINTER(MSG[6],8) BY "SYSTEM/CANDE.";
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–30 8600 0841–202

INTER-MCS COMMUNICATE (DCWRITE Type = 3)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 3 Type.

 [39:16] Variant field (description follows):

 [25:01] 0 Do not override DSed status of target MCS.

 1 Override the DSed status of the target MCS, if
initiation was requested.

 [24:01] 0 No initiation is attempted.

 1 The system automatically initiates the recipient
MCS if it is not currently initiated or running and
was not DSed.

 [23:24] MCS number of recipient MCS.

Explanation

The INTER-MCS COMMUNICATE DCWRITE function allows an MCS to establish a
communication link to any other MCS.

The calling MCS need only supply the MCS number of the recipient MCS. The MCS
number can be obtained through the invocation of the INTERROGATE MCS (DCWRITE
Type = 2) DCWRITE function that supplies the name of the desired MCS.

The text portion of the message, if any, can contain any type of formatted information
that, through prior arrangement and convention, conveys or represents meaningful
information to the recipient MCS. No attempt is made to act on or otherwise interpret
the textual portion of these messages by the data comm system.

The calling MCS can be set bit 24 to cause initiation of the recipient MCS in the event
that the recipient is not initiated or running at the time. If the recipient MCS is not
running due to having been DSed, the calling MCS can be set to bit 25 to override the
DSed status of the recipient MCS and cause the initiation of the recipient MCS.

Nonzero functional values are returned if the message cannot be delivered to the primary
queue of the recipient MCS.

Value Description

102 MCS could not be executed.

103 MCS is not running.

If the codefile for the recipient MCS is not present, this DCWRITE causes a message,
MCS REQUIRED, to be displayed and delivers the message into a pending queue for the
MCS. A zero functional value is returned.

 Specific DCWRITE Information

8600 0841–202 5–31

The recipient MCS receives the result of an INTER-MCS COMMUNICATE as a message
in its primary queue. (Refer to the “INTER-MCS COMMUNICATE RESULT (Class = 13)”
message in the “MCS Result Message Format” section for format information.)

Example

ALLOCATE(MSG,8);
MSG[0] := MCSNR & 3 [47:8] & 1 [24:1];
REPLACE POINTER(MSG[6],8) BY "HERE I AM";
MSG[2].[39:16] := 10;
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–32 8600 0841–202

INTERROGATE STATION ENVIRONMENT (DCWRITE Type = 4)

Required Parameters/Fields

The minimum message length is seven words. A message parameter and the following
are required:

Word Field Value Description

0 [47:08] 4 Type.

 [39:16] Variant field (description follows):

 [31:01] 1 A terminal name is desired.

 [30:01] 1 NSP station information is desired.

 [29:01] 1 NSP line information is desired.

 [28:01] 1 A station name is desired.

 [27:01] 1 Line information is desired.

 [26:01] 1 Terminal information is desired.

 [25:01] 1 Station information is desired.

 [24:01] 1 Return information for all stations under
control of calling MCS is desired.

 0 Interrogate a specific station (see the
LSN-FRSN-DLS field description that follows).

 [23:24] LSN-FRSN-DLS field (only if [24:01] = 0) (a
description follows):

 [23:01] 1 MSG[0].[22:23] is assumed to be a DLS
number.

 0 If MSG[0].[22:23] is not 0, then MSG[0].[22:23]
is an LSN. If MSG[0].[22:23] = 0, then MSG[6]
is assumed to be the first word of a station
name expressed in external display form (for
example "TWXO.") with six EBCDIC characters
per word.

 Specific DCWRITE Information

8600 0841–202 5–33

Optional Parameters/Fields

The queue parameter is optional.

If only line information is desired, the DLS number (NSP in line) is the only required
parameter; this information is as follows:

Word Field Value Description

0 [23:01] 1 Only line information is desired.

 [22:07] Relative NSP number.

 [15:08] Line number; the line number equals the relative
LSP number times 16 plus the adapter number.

In this case, either of the corresponding bits for NSP [29:01] and/or DCC [27:01]
information can be turned on in the variant field; the information is returned.

Explanation

The INTERROGATE STATION ENVIRONMENT DCWRITE function enables an MCS to
gain access to certain information concerning the stations that are described in a data
comm configuration.

The general flexibility of this function affords an MCS one or more of the following:

• Access to station information (logical attributes) such as the specified retry count,
control character, and so forth, of the station.

• Access to terminal information (physical attributes) such as the terminal width, page
size, terminal type (a screen device or not), and so forth, of the station.

• Access to line information concerning the line with which the station is associated
(for example, whether or not the line is switched and, if it is, whether or not it is
connected), and so forth.

• Access to the name of the station.

• Access to the above items either for a specific station or for all stations currently
under control of the calling MCS.

• Access to station information that indicates whether or not a station is a
pseudostation. It also indicates whether or not the station currently has a fully
participating MCS.

• Optional designation of a queue into which the desired information is to be inserted.

The variant field (MSG[0].[39:16]) contains the MCS-specified options that determine the
type or types of information to be returned. A special bit ([24:01]) is set aside to be used
to designate whether the desired information (designated by the remaining bits in the
variant field) is to be returned for one specific station or for all stations currently under
control of the calling MCS.

Specific DCWRITE Information

5–34 8600 0841–202

The result information can be returned in the message parameter, placed in the primary
queue of the MCS, or placed in the optional queue parameter. When results are placed in
a queue, word 6 of the message parameter to the DCWRITE function equals the number
of stations for which information was inserted in the queue. All result messages placed
in the queue have the format of an INTERROGATE STATION ENVIRONMENT RESULT
(Class = 15).

If MSG[0].[24:01] is 0 (interrogate a specific station), the result is returned by the
message parameter that was supplied for the call on the DCWRITE function, unless a
queue parameter was supplied for the call on the DCWRITE function. (The size of the
message on return from the DCWRITE routine might not necessarily be the size of the
originally supplied message.) If a queue parameter was supplied for the call on the
DCWRITE function, the result is inserted in that queue, activating the queue if necessary.
In the case of interrogation of a specific station, the calling MCS can be an MCS other
than the controlling MCS.

If MSG[0].[24:01] is 1 (interrogate all stations for the MCS), the result is placed, as one or
more messages (Class = 15), in the primary queue of the MCS unless a queue parameter
was supplied for the call on the DCWRITE function. The result messages are inserted in
the queue, which activates the queue if necessary.

If MSG[0].[39:15] is not equal to 0, the type of information is determined according to
which bits are turned on. That is, if a given bit is turned on, the information associated
with the meaning of the bit is returned for the interrogated station. These bits can be
used in any combination desired. Requests that call for the return of station names
should be judiciously invoked because at least one disk access is required for each
station name retrieved.

If MSG[0].[39:15] is 0, then by default, only station information is returned. That is,
making MSG[0].[39:15] equal to 0 is identically equivalent to making MSG[0].[25:01] equal
to 1 and MSG[0].[39:14] equal to 0.

Additionally, if an MCS issues a blanket interrogation and has no station assigned, no
Class = 15 messages are returned, and MSG[6] contains 0 to indicate this.

The INTERROGATE STATION ENVIRONMENT DCWRITE function executes in series
rather than in parallel with the execution of the calling MCS. Frequent calls on the
function, particularly for the purpose of performing blanket interrogations
(MSG[0].[24:01] = 1) are not recommended and could significantly impair the total
throughput capability of an MCS.

If the variant MSG[0].[24:01] was not set in the Initialize Primary Queue DCWRITE
request, then the conditions under which error 71, INVALID LSN, occurs are expanded. If
the LSN of the station being interrogated is greater than 16383 and the MCS neither
owns or controls that station, error 71 is returned.

 Specific DCWRITE Information

8600 0841–202 5–35

Examples

The following example illustrates an interrogate invocation that returns the station,
terminal, and line information for a specific station whose name is “A/B.”. The
interrogate result appears in the message parameter that was passed to the DCWRITE
intrinsic.

ALLOCATE(MSG,7);
MSG[0] := 0 & 4 [47:8] & 1 [25:1]
 & 1 [26:1] & 1 [27:1];
REPLACE POINTER(MSG[6],8) BY "A/B.";
RESULT := DCWRITE(MSG);

The following example illustrates a blanket interrogate invocation that returns the station,
terminal, and line information as well as the name for each of the stations under the
control of the calling MCS. Interrogation result messages are returned by a queue
declared as INFOQUE.

ALLOCATE(MSG,7);
MSG[0] := 0 & 4 [47:8] & 31 [39:16];
RESULT := DCWRITE(MSG,INFOQUE);

Specific DCWRITE Information

5–36 8600 0841–202

ATTACH SCHEDULE STATION (DCWRITE Type = 5)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 5 Type

Explanation

Schedule stations have no predefined MCS assignment and are available for use by any
MCS. Before using a schedule station, the MCS must explicitly attach the station. Briefly,
a schedule station is defined to have the following attributes:

• A schedule station has no line assignment.

• A schedule station has no predefined, dedicated MCS assignment.

• When used for a remote input (or I/O) file, the controlling MCS must participate in all
I/O operations. Additionally, when an object job requests input from a schedule
station, a message is sent to the controlling MCS to request that input be sent to the
remote file.

After the call on the DCWRITE routine, MSG[0].[23:24] contains the LSN of the assigned
schedule station. The LSN is 0 if no schedule stations are available, which indicates that
all such stations are currently assigned.

Attachment of a schedule station implicitly turns on the MCS PARTICIPATES option
(normally bit [39:01] in the variant field) for the station.

An attached schedule station can be detached (and thereby returned to the system for
subsequent assignment to an MCS) by the STATION DETACH (DCWRITE Type = 42)
DCWRITE function.

Any DCWRITE functions permissible for stations without a line assignment are allowed
for schedule stations, with the following exceptions:

• A schedule station cannot be assigned to a line by a reconfiguration request.
Attempting to do so results in DCWRITE error 138 (SCHEDULE STATION MAY NOT
HAVE LINE ASSIGNMENT).

• A schedule station cannot be transferred to another MCS. Attempting to do so
results in DCWRITE error 139 (SCHEDULE STATION MAY NOT BE TRANSFERRED).

• A schedule station cannot be added to a file by an ADD STATION TO FILE (DCWRITE
Type = 67) DCWRITE function. Attempting to do so results in DCWRITE error 140
(SCHEDULE STATION MAY NOT BE ADDED TO A FILE).

 Specific DCWRITE Information

8600 0841–202 5–37

When a STATION INTERROGATE (DCWRITE Type = 4) DCWRITE function is performed
for a schedule station, the following pertinent information is returned, if requested:

Station Information

Information Value

Enabled TRUE

MCS number Number of the current controlling
MCS

(0 if not currently assigned to an
MCS)

Width 72

Terminal Information

Information Value

Screen FALSE

In/out 3 (I/O)

Width 72

Maximum input 72

Page size 0

Maximum
output

72

In addition, the name of any interrogated schedule station is of the form SCHED#nnn
where nnn is the sequential number of the station, beginning at 1. Because schedule
stations are not explicitly declared in the DATACOMINFO file, attempting to interrogate a
schedule station by name results in the station not being found.

When a schedule station is assigned to a remote file, the following restrictions apply:

• The controlling MCS must participate in I/O.

• A schedule station cannot be a member of a multistation file.

• Only one input or input/output file can be assigned to a schedule station at a time.

Example

ALLOCATE(MSG,6);
MSG[0] := 0 & 5 [47:8];
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–38 8600 0841–202

CHANGE CURRENT QUEUE (DCWRITE Type = 32)

Required Parameters/Fields

A message parameter, a queue parameter, and the following are required:

Word Field Value Description

0 [47:08] 32 Type.

 [29:06] Variant, as detailed in the STATION ATTACH
(DCWRITE Type = 1) DCWRITE.

 [23:24] LSN or DLS number.

2 [39:16] If text is to be transmitted to the station, this field
must contain a byte count.

6 to
end

 Optional text.

Explanation

By default, all messages pertaining to a station are returned in the primary queue of the
MCS. (The primary queue of the MCS is established through the INITIALIZE PRIMARY
QUEUE (DCWRITE Type = 0) DCWRITE function.)

An MCS can elect (optionally) to have all station-related messages other than errors
placed in a different queue through use of the CHANGE CURRENT QUEUE DCWRITE
function.

By using the variant bits with this DCWRITE type, the controlling MCS is allowed to
override the set of default options as outlined in the STATION ATTACH (DCWRITE
Type = 1) DCWRITE function.

If MSG[2].[39:16] is not equal to 0, on completing the CHANGE CURRENT QUEUE task,
the DCWRITE routine attempts to send the textual portion of the message, subject to
any constraints imposed by the WRITE (DCWRITE Type =33) DCWRITE function. After
the bit values in the variant field have been noted, the variant field is zeroed so that no
conflict exists with the variant field of the WRITE (DCWRITE Type = 33) DCWRITE
function, which this DCWRITE function now simulates. Also, the type field is changed to
the value 33 before placing this message in the request queue of the appropriate NSP.
Thus, in this case, the original DCWRITE type field (MSG[4].[23:24]) in either the GOOD
RESULT (Class = 5) message or the ERROR RESULT (Class = 99) message contains the
value 33 rather than the value 32. If no text is to be written to the station, the GOOD
RESULT message returns the original DCWRITE type value of 32.

On exit from the DCWRITE routine (if all operations were successful and proper), the
message is null. If the only objective of the MCS is to change default options (the station-
related messages are to continue being placed into the primary queue or a previously
established current queue), then the desired options can be turned on or off by naming
the queue, which is now in use, as the queue parameter.

 Specific DCWRITE Information

8600 0841–202 5–39

If the queue parameter that was passed is inactive, the CHANGE CURRENT QUEUE
DCWRITE function activates the queue.

You must supply the LSN or DLS number for the station for this DCWRITE call.

The station specified by LSN does not require a line assignment; however, if text size is
not zero and the station has no line assignment, error 88 is returned.

The CHANGE CURRENT QUEUE DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,13);
MSG[0] := LSN & 32 [47:8] & 1 [25:1];
REPLACE POINTER(MSG[6],8) BY
 "YOU ARE ON-LINE TO SYSTEM D.";
MSG[2].[39:16] := 37;
RESULT := DCWRITE(MSG,CURRENTQ);

Specific DCWRITE Information

5–40 8600 0841–202

WRITE (DCWRITE Type = 33)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 33 Type.

 [39:16] Carriage control fields (description follows):

 [39:08] The channel number to skip to or the number
of lines to skip (NDLII SKIPCOUNT).

 [31:01] 1 The tabulation to be done (NDLII TAB).

 [30:01] 1 Carriage control should be done before text is
transmitted (NDLII MOTIONBEFORE).

 [29:01] 1 More blocks to follow this one (NDLII
BLOCKED).

 [28:01] 1 The value stored in MSG[0].[39:08] is the
number of vertical lines that should be skipped
(NDLII SPACE).

 [27:01] 1 The value stored in MSG[0].[39:08] is the
channel number to skip to (NDLII SKIPLINE).

 [26:01] 1 A new page is required for the output device
(NDLII NEWPAGE).

 [25:01] 1 Carriage return is suppressed (NDLII
NOCARRIAGERETURN).

 [24:01] 1 Line feed is suppressed (NDLII NOLINEFEED).

 [23:24] LSN or DLS number.

1 [46:07] Priority of output.

2 [39:16] Text size field.

4 [47:24] The message number field or, optionally, the
file relative station number (FRSN).

6 to end Optional text (If text is to be transmitted to the
station, a byte count must be supplied in the
text size field MSG[2].[39:16]).

Explanation

The WRITE DCWRITE function allows output to be sent to the station indicated by the
supplied LSN or DLS number. Carriage control is performed as specified by the variant-
field bits if it is implemented in the NDLII algorithm and editor request of the station. If
the text size field (MSG[2].[39:16]) is 0, only the carriage control is affected. If the text
size field is greater than 0, the text is written to the station.

 Specific DCWRITE Information

8600 0841–202 5–41

MSG[1].[46:07] contains the priority of the message. If this field is not zero, the DCC
inserts the message into the station queue after any other messages of higher or equal
priority but before messages of lower priority. In this way, an MCS causes messages to
be transmitted in a different sequence from that given to the DCC. The MCS can produce
128 different levels of priority, with 0 the lowest priority and 127 the highest priority.

Field MSG[4].[47:24] is the message number field. An MCS can elect to assign message
numbers to all messages that it allocates in the system, thus providing some ability to
audit the flow of its messages in the system. The software system preserves the
integrity of this field and does not use it for other purposes. If the MCS receives an
OBJECT JOB OUTPUT (Class = 3) message, this field contains the FRSN. The MCS can
elect to forward this message to the intended station by using the WRITE DCWRITE
function without altering this field. In this case, the LSN or DLS number is still required.
The FRSN that this field would contain could be useful to the MCS itself in identifying the
file from which the message originated when the MCS is participating in I/O for the
station and does a RECALL MESSAGE (DCWRITE Type = 41) DCWRITE function.

The WRITE DCWRITE function is intercepted when performed on a pseudostation that
has a fully participating MCS. The DCWRITE function must be performed by the MCS
that currently controls the station. The intercepted messages are placed in the primary
queue of the fully participating MCS.

Example

ALLOCATE(MSG,9);
MSG[0] := LSN & 33 [47:8] & 1 [26:1];
MSG[2].[39:16] := 14;
REPLACE POINTER(MSG[6],8) BY "THIS IS OUTPUT";
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–42 8600 0841–202

READ-ONCE ONLY (DCWRITE Type = 34)

Required Parameters/Fields

The minimum message size for the READ-ONCE ONLY DCWRITE function is seven
words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 34 Type.

 [23:24] LSN or DLS number.

2 [39:16] Number of bytes of text area available for
accumulating input.

6 to
5+N

 A number of words of text area, where N must
satisfy N > (MSG[2].[39:16]+5) DIV 6.

Explanation

The READ-ONCE ONLY DCWRITE function allows an MCS to request the NSP to accept
an input for the station indicated by the LSN or DLS number. The main purpose of this
DCWRITE type is to ease the transition from NDL (DCP-based) systems to NDLII (NSP-
based) systems.

The first spontaneous input from the station satisfies the READ-ONCE ONLY DCWRITE
function. When accumulating input from the station for this particular read, the number
of bytes indicated in MSG[2].[39:16] is collected and returned. If the station sends more
characters than indicated in this size field, the extra characters are ignored. The station
must be enabled for input to satisfy the READ-ONCE ONLY DCWRITE request. After this
request is satisfied, subsequent inputs are handled as spontaneous inputs of varying
sizes.

The READ-ONCE ONLY DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,21);
MSG[0] := LSN & 34 [47:8];
MSG[2].[39:16] := (21-6)*6;
RESULT := DCWRITE(MSG);

 Specific DCWRITE Information

8600 0841–202 5–43

ENABLE INPUT (DCWRITE Type = 35)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 35 Type.

 [39:16] Variant field (description follows):

 [31:08] Value to be stored in the NDLII variable
STATION.FREQUENCY. Making this field equal to
255 causes STATION.FREQUENCY to have the
default value designated in the DATACOMINFO
file.

 [23:24] LSN or DLS number.

Explanation

The ENABLE INPUT DCWRITE function causes the NDLII variable STATION.ENABLED to
equal TRUE, and the value of MSG[0].[31:8] to be stored into the NDLII variable
STATION.FREQUENCY. The initial value of STATION.ENABLED is determined from the
DATACOMINFO file. Thereafter, only the ENABLE INPUT DCWRITE function can turn on
STATION.ENABLED and only the DISABLE INPUT (DCWRITE Type = 36) DCWRITE
function can turn off STATION.ENABLED. Unless STATION.ENABLED is turned on or an
outstanding read request exists (READ-ONCE ONLY (DCWRITE Type = 34) DCWRITE) at
the head of the station request queue, no input from the station can be received.

When an NDLII algorithm performs a SENDHOST INPUT, the input message is either
routed to the controlling MCS, or routed to an object job if the station is attached to a file,
no errors are encountered, the input does not constitute a station event (for example,
WRU character received), and the MCS is not participating in object job I/O. The NDLII
algorithm has the responsibility for ensuring that input is received whenever the station is
enabled and READY.

An NDLII algorithm can use STATION FREQUENCY in any way it is written. However,
the intended use of the variable is to influence the rate at which a station is polled.

The ENABLE INPUT DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,6);
MSG[0] := LSN & 35 [47:8] & 1 [39:16];
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–44 8600 0841–202

DISABLE INPUT (DCWRITE Type = 36)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 36 Type.

 [23:24] LSN or DLS number.

Explanation

The DISABLE INPUT DCWRITE function is the opposite of the ENABLE INPUT DCWRITE
function. Following a DISABLE INPUT request, if the station is a polled station, polling
ceases. In any event, unless an outstanding READ request exists, no subsequent input
messages are received from the station.

The DISABLE INPUT DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,6);
MSG[0] := LSN & 36 [47:8];
RESULT := DCWRITE(MSG);

 Specific DCWRITE Information

8600 0841–202 5–45

MAKE STATION READY/NOT READY (DCWRITE Type = 37)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 37 Type.

 [39:16] 0 Make station NOT READY.

 1 Make station READY.

 [23:24] LSN or DLS number.

Explanation

The MAKE STATION READY/NOT READY DCWRITE function allows the MCS to control
the readiness of a station. For example, if a station is being polled because of a READ-
ONCE ONLY or ENABLE INPUT DCWRITE function and the MCS desires to have polling
or input temporarily suspended, it can issue a MAKE STATION READY/NOT READY
request with MSG[0].[39:16] = 0. The station, if operating under an ENABLE INPUT
DCWRITE function, ceases to be polled by the NSP until a MAKE STATION READY/NOT
READY request with MSG[0].[39:16] = 1 is issued by the MCS.

Because of error recovery requirements, the MCS can be required to perform a MAKE
STATION READY/NOT READY request. Refer to “ERROR RESULT (Class = 99)” in the
“MCS Result Message Formats” section for messages that use the line/station format.
These errors cause the station to become NOT READY.

For example, if the result message from the NSP implies a station error, the MCS must
perform a MAKE STATION READY/NOT READY request with MSG[0].[39:16] = 1. This
action is required because the NSP makes a station NOT READY if an irrecoverable error
is encountered for a station. The execution of a SENDHOST ERROR statement in an
NDLII-written algorithm constitutes an irrecoverable error situation. Making the station
NOT READY allows the MCS to decide whether to abandon all retry attempts or to allow
the station another chance.

If the LINE.BUSY variable is TRUE when a MAKE STATION NOT READY request is
issued, the request is deferred until LINE.BUSY is given the value FALSE in the NDLII
algorithm. The GOOD RESULT message is generated and delivered to the MCS when
the NOT READY action is performed.

The MAKE STATION READY/NOT READY DCWRITE function is intercepted when
performed on a pseudostation that has a fully participating MCS. The DCWRITE function
must be performed by the MCS that currently controls the station. The intercepted
messages are placed in the primary queue of the fully participating MCS.

Specific DCWRITE Information

5–46 8600 0841–202

Example

ALLOCATE(MSG,6);
MSG[0] := LSN & 37 [47:8] & 1 [39:16];
RESULT := DCWRITE(MSG);

 Specific DCWRITE Information

8600 0841–202 5–47

SET APPLICATION NUMBER (DCWRITE Type = 38)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 38 Type.

 [39:16] Application number (must be one of the numbers
designated for this section in the DATACOMINFO
file).

 [23:24] LSN or DLS number.

Explanation

The SET APPLICATION NUMBER DCWRITE function allows the MCS to change the
editor that the NSP algorithms invoke for editing input and output for a station indicated
by the LSN or DLS number. The DCWRITE routine verifies that the application number
specified by the MCS is a legal and otherwise meaningful value for the station.

The SET APPLICATION NUMBER DCWRITE function is intercepted when performed on
a pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

The SET APPLICATION NUMBER DCWRITE function causes a CHANGE STATION
EDITOR request to be issued to the NSP that uses the editor designated for that
application number in the application list. Application numbers are associated with editors
in the application list for the station. In addition, if an EXTERNAL station variable called
APPLICATION is declared in NDLII, a SET EXTERNAL VARIABLE request is issued to the
NSP to make STATION.APPLICATION equal to the application number specified in the
DCWRITE request.

Example

ALLOCATE(MSG,6);
MSG[0] := LSN & 38 [47:8] & APPLNO [39:16];
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–48 8600 0841–202

SET CHARACTERS (DCWRITE Type = 39)

Required Parameters/Fields

The minimum message size required for the SET CHARACTERS DCWRITE function is
seven words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 39 Type.

 [31:08] 0 The control character is turned on.

 1 The end of message character is turned on.

 2 The backspace character is turned on.

 3 The line delete character is turned on.

 4 The address characters are turned on.

 [32:01] 1 The character is reset to the default from
the DATACOMINFO file.

 [23:24] LSN or DLS number.

6 The character or characters, right-justified. If
address characters are to be turned on, then
MSG[6].[47:24] contains the receive address
characters, right-justified, and
MSG[6].[23:24] contains the transmit
address characters, right-justified.

Explanation

The SET CHARACTERS DCWRITE function allows an MCS to change or restore certain
characters used for polling, end of message, backspacing, and so forth. The NDLII
algorithm must use these variables in order for them to have an effect. The control
character is always dynamic, and the address characters, if any, are always changeable.

Rather than specifying a new value for the character, the MCS can request that the
character be restored to its initial value in the DATACOMINFO file by making
MSG[0].[32:01] equal to 1. In that case, MSG[6] does not contain the new value; rather, it
is obtained by reading the DATACOMINFO file station record.

The SET CHARACTERS DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,7);
MSG[0] := LSN & 39 [47:8] & 1 [31:8];
MSG[6] := 4"0D";
RESULT := DCWRITE(MSG);

 Specific DCWRITE Information

8600 0841–202 5–49

SET TRANSMISSION NUMBER (DCWRITE Type = 40)

Required Parameters/Fields

The minimum message size required for the SET TRANSMISSION NUMBER DCWRITE
function is seven words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 40 Type.

 [25:01] 1 The transmit transmission number is turned
on.

 [24:01] 1 The receive transmission number is turned
on.

 [23:24] LSN or DLS number.

6 [47:24] Transmit transmission number value (if it is
to be turned on).

 [23:24] Receive transmission number value (if it is
to be turned on).

Explanation

The SET TRANSMISSION NUMBER DCWRITE function allows an MCS to reinitialize the
transmit or receive transmission number (or both) for a particular station. The numbers
must be represented as EBCDIC digits, and, for terminals with transmission numbers of
one or two digits in length, the numbers must be placed, right-justified, in the appropriate
fields.

The SET TRANSMISSION NUMBER DCWRITE function is intercepted when performed
on a pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,7);
MSG[0] := LSN & 40 [47:8] & 1 [24:1];
MSG[6] := "000";
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–50 8600 0841–202

RECALL MESSAGE (DCWRITE Type = 41)

Required Parameters/Fields

The station or line must be in a NOT READY state. A DCWRITE result value of 84 is
returned if the station is READY. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 38 Type.

 [39:16] Application number (must be one of the numbers
designated for this section in the DATACOMINFO
file).

 [23:24] LSN or DLS number.

Explanation

The RECALL MESSAGE DCWRITE function allows an MCS to request the NSP to return
either the first message or all messages in the station queue for a specific station (LSN
or DLS number). The station or line must be in a NOT READY state at the time the
request is made. Thus, the MCS must have explicitly requested that the station be made
NOT READY (with the MAKE STATION READY/NOT READY DCWRITE function), or the
station must be in a NOT READY state as the result of a previous station or line error. If
the MCS desires to have only the first message in the station queue returned, then
MSG[0].[39:16] must be equal to 0. If all messages in the station queue are to be
returned, then MSG[0].[39:16] must be equal to 1.

If the MCS has established that it is to receive all GOOD RESULTS (Class = 5) messages
through one of the following, then the MCS receives, in the current queue of the station,
a GOOD RESULTS (Class = 5) message acknowledging the RECALL MESSAGE
DCWRITE function:

• The variant field of the STATION ATTACH (DCWRITE Type = 1) DCWRITE function

• The CHANGE CURRENT QUEUE (DCWRITE Type = 32) DCWRITE function

• The STATION ASSIGNMENT TO FILE (DCWRITE Type = 64) DCWRITE function that
it is to receive all GOOD RESULTS (Class = 5) messages

If no message was in the station queue, the GOOD RESULTS (Class = 5) message
contains a value of 0 in MSG[0].[39:16]. If any message was to return (and is returned),
the GOOD RESULTS (Class = 5) message contains a value of 1 in MSG[0].[39:16] and the
message is returned in the current queue of the station as a RECALL MESSAGE (Class =
6) message. The original DCWRITE type and variant are found in MSG[4].[23:24] of each
returned message.

The RECALL MESSAGE DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

 Specific DCWRITE Information

8600 0841–202 5–51

Example

ALLOCATE(MSG,6);
MSG[0] := LSN & 41 [47:8] & 1 [39:16];
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–52 8600 0841–202

STATION DETACH (DCWRITE Type = 42)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 42 Type

 [39:16] 0 Detach Station

 1 Retract Station

 2 Retract Station and Reset Name

 3 Prepare for Detach

 [23:24] LSN or DLS number

Explanation

The STATION DETACH DCWRITE function allows an MCS to detach from a station to
which it is currently attached. The STATION DETACH message can also be used by an
MCS to detach a pseudo station.

Four variants of the STATION DETACH command are available:

• Detach Station

• Retract Station

• Retract Station and Reset Name

• Prepare for Detach

For each variant there are three cases. In each case, the calling message control system
(MCS) is one of the following:

• Both the controlling and the originating MCS

• The controlling but not the originating MCS

• The originating but not the controlling MCS

The controlling MCS is the MCS associated with the primary queue of the station. The
originating MCS is the MCS that either originally owned (as defined in the
DATACOMINFO file) a physical station or originally allocated a pseudo station.

If an MCS requesting detachment is neither controlling nor originating, the DCWRITE
error STATION NOT YOURS (69) is returned.

The following paragraphs explain the possible STATION DETACH variant:

 Specific DCWRITE Information

8600 0841–202 5–53

Standard Detach

The following paragraphs describe the possible cases for the standard Detach variant.

Controlling and Originating

In this case, the station is marked unattached and no longer has a current or primary
queue. If the station is a pseudo station, the pseudostation is deallocated and returned to
the pool of available pseudo stations.

If the station is in use by a remote file when the detachment is requested, the DCWRITE
error STATION ALREADY IN FILE (82) is returned.

Controlling but not Originating

In this case, control of the station is returned to the originating MCS. The originating
MCS is notified by the Transfer Station DCRESULT (class = 16).

If the station is in use by a remote file when the detachment is requested, the DCWRITE
error STATION ALREADY IN FILE (82) is returned.

Not Controlling but Originating

In this case, the station is marked unattached and no longer has a current or primary
queue. If the station is a pseudo station, the pseudostation is deallocated and returned to
the pool of available pseudo stations. The controlling MCS is notified by the NSP
Terminated DCRESULT (class = 14) with the Detached by Fully-participating MCS variant
(value = 1).

If the station is in use by a remote file when the detachment is requested, the remote
file is closed and the next I/O operation to the station causes an end-of-file action.

Retract Station

The following possible cases are for the Retract Detach variant.

Controlling and Originating

In this case, the DCWRITE error STATION ALREADY YOURS (70) is returned.

Controlling but not Originating

This case is the same as Standard Detach.

Not Controlling but Originating

In this case, control of the station is returned to the originating MCS. The controlling
MCS is notified by the network support processor (NSP) Terminated DCRESULT
(class = 14) with the Detached by Fully-participating MCS variant (value = 1). The
originating MCS is notified by the Transfer Station DCRESULT (class = 16).

If the station is in use by a remote file when the detachment is requested, the remote
file is closed and the next I/O operation to the station causes an end-of-file action.

Specific DCWRITE Information

5–54 8600 0841–202

Retract and Reset Pseudostation Name

The following paragraphs describe the possible cases for the Retract and Reset
Pseudostation Name variant.

Controlling and Originating

Although this case returns an error, if the station is a pseudostation then the
pseudostation name is reset to its initial value of PSEUDO0<XXXX>, where <XXXX> is
the relative pseudo number of the pseudo station.

The DCWRITE error STATION ALREADY YOURS (70) is returned.

Controlling but not Originating

This case is the same as Standard Detach.

Not Controlling but Originating

In this case, control of the station is returned to the originating MCS. If the station is a
pseudo station, the pseudostation name is reset to its initial value of PSEUDO0<XXXX>,
where <XXXX> is the relative pseudo number of the pseudo station. The controlling
MCS is notified by the NSP Terminated DCRESULT (class = 14) with the Detached by
Fully-participating MCS variant (value = 1). The originating MCS is notified by the
Transfer Station DCRESULT (class = 16).

If the station is in use by a remote file when the detachment is requested, the remote
file is closed and the next I/O operation to the station causes an end-of-file action.

Prepare for Detach

The Prepare for Detach variant of the Detach DCWRITE marks the station as detach
pending. An MCS requesting detachment when the station is marked detach pending
must use the Standard Detach variant (value = 0). If an MCS requests detachment with
either the Retract Station variant (value = 1) or the Retract and Reset Pseudostation
Name variant (value = 2) and the station is marked detach pending, the DCWRITE error
IMPROPER VARIANT FIELD (141) is returned. If an MCS requests detachment with the
Prepare for Detach variant (value = 3) and the station is marked detach pending, the
DCWRITE error ALREADY DONE (204) is returned.

Only the Station Detach and Interrogate Station Environment DCWRITE functions are
allowed for stations that are marked detach pending. All other DCWRITE functions fail
with the DCWRITE error STATION IS DETACHING (205).

 Specific DCWRITE Information

8600 0841–202 5–55

The following paragraphs describe the possible cases for the Prepare for Detach variant:

Controlling and Originating

If the station is a pseudo station, the station name is reset to its initial value of
PSEUDO0<XXXX>, where <XXXX> is the relative pseudo number of the pseudo station.
The station is marked detach pending. The NSP Terminated DCRESULT (class = 14) with
the Detached by Prepare variant (value = 3) is queued in the caller’s primary queue.

If the station is in use by a remote file when the detachment is requested, the remote
file is closed and the next I/O operation to the station causes an end-of-file action.

Controlling but not Originating

In this case, the DCWRITE error IMPROPER VARIANT FIELD (141) is returned. Not
Controlling but Originating Control of the station is returned to the originating MCS. If the
station is a pseudo station, the pseudostation name is reset to its initial value of
PSEUDO0<XXXX>, where <XXXX> is the relative pseudo number of the pseudo station.
The station is marked detach pending. The controlling MCS is notified by the NSP
Terminated DCRESULT (class = 14) with the Detached by Fully-participating MCS variant
(value = 1). The originating MCS is also notified by the NSP Terminated DCRESULT (class
= 14) except the variant field is Detached by Prepare (value = 3).

If the station is in use by a remote file when the detachment is requested, the remote
file is closed and the next I/O operation to the station causes an end-of-file action.

Example

ALLOCATE(MSG,6);
MSG[0] := LSN & 42 [47:8];
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–56 8600 0841–202

SET/RESET LOGICALACK (DCWRITE Type = 43)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 43 Type.

 [24:01] 0 Turn off LOGICALACK.

 1 Turn on LOGICALACK.

 [23:24] LSN or DLS number.

Explanation

This DCWRITE type allows an MCS to modify the station variable INPUTACTION in the
NSP, opting (or not) for the following action by the NSP. After input is successfully
received from the station, the execution of an NDLII SENDHOST INPUT statement (if
INPUTACTION = SENDANDWAIT) delivers that input to the system, with the TO BE
ACKNOWLEDGED flag (MSG[1].[15:01]) turned on. This input is in the form of the GOOD
INPUT RECEIVED (Class = 0) message. All further action is suspended on the line until
an ACKNOWLEDGE (DCWRITE Type = 44) DCWRITE request is presented to the NSP.

The LOGICALACK capability requires MCS participation. Thus, if a station has
INPUTACTION equal to SENDANDWAIT, and if the station is attached to an object job
file, the MCS must participate in I/O for that object job file.

The SET/RESET LOGICALACK DCWRITE request is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,6);
MSG[0] := LSN & 43 [47:8] & 1 [24:1];
RESULT := DCWRITE(MSG);

 Specific DCWRITE Information

8600 0841–202 5–57

ACKNOWLEDGE (DCWRITE Type = 44)

Required Parameters/Fields

The line and station must be in a to-be-acknowledged state. A message parameter and
the following are required:

Word Field Value Description

0 [47:08] 44 Type.

 [39:16] Variant field, not used.

 [23:24] LSN or DLS number.

Explanation

The ACKNOWLEDGE DCWRITE function causes the NSP to resume execution of the
NDLII algorithm for the line and its station where execution had been suspended as the
result of a SENDHOST INPUT statement with INPUTACTION SENDANDWAIT. If the line
and station are not in a to-be-acknowledged state, an ERROR RESULT (Class = 99)
message is generated with a value of 13 in the result byte index field (MSG[1].[47:08]).

The ACKNOWLEDGE DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,6);
MSG[0] := LSN & 44 [47:8];
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–58 8600 0841–202

TRANSFER STATION CONTROL (DCWRITE Type = 45)

Required Parameters/Fields

The minimum message size is seven words. A message parameter and the following are
required:

Word Field Value Description

0 [47:08] 45 Type.

 [39:16] Variant field, as follows:

 [31:01] BNA transfer bit.

 0 The station is transferred to the designated MCS.

 1 The station is transferred to the BNA station
transfer MCS, SYSTEM/STATION/TRANSFER.
The host name must be supplied and the MCS
name is optional. Word 6.[47:12] supplies the
index to the Station Transfer Index Control Word
(INX = MSG[6].[47:12]). The host name and
MCS name are indexed by MSG[INX].[11:12] and
MSG[INX].[23:12] respectively.

 [30:01] 0 No information is to be passed in the station
transfer control result to the MCS to which the
station is to be transferred.

 1 Information is to be passed in the station transfer
control result to the MCS to which the station is
to be transferred.

 [29:01] 1 The station being transferred is a pseudostation
that represents an ODT. The ODT unit number
must be present in MSG[6].[47:24]. Control is to
be maintained over any output to that station.
This transfer is allowed only by the MCS that is
designated as the COMS/ODT/DRIVER.

 [28:01] 0 Full participation is not requested.

 1 Full participation is requested: The MCS elects to
receive intercepted DCWRITE requests as they
are issued by the MCS to which control is being
transferred.

 [27:01] Old BNA transfer bit. This is supported for
migration only and will be deimplemented.

 0 The station is transferred to the designated MCS.

 1 The station is transferred to the BNA station
transfer MCS, SYSTEM/STATION/TRANSFER.
The host name must be supplied, and the MCS
name is optional. The host name and MCS name
are indexed by MSG[6].[07:08] and
MSG[6].[15:08], respectively.

 Specific DCWRITE Information

8600 0841–202 5–59

Word Field Value Description

 [26:01] 1 Allows an MCS to transfer a station to another
MCS and still maintain control over any output to
that station.

 [25:01] 1 Allows an MCS to transfer a station under its
control to the original controlling MCS defined in
the DATACOMINFO file.

 [24:01] 0 No initiation is attempted for the recipient MCS.

2 [39:16] The size in bytes of the information to be passed
(if word 0 field [30:01] = 1).

Explanation

The TRANSFER STATION CONTROL DCWRITE function allows an MCS to transfer any
of the stations under its control to any other MCS.

The station to be transferred must be attached to its MCS at the time of its transfer. The
recipient MCS need not be currently in execution for the transfer to take place. If the
recipient MCS has been initiated or is in execution at the time of the transfer, the
recipient receives a result message that serves to inform that MCS that it has inherited a
new station. If the recipient MCS is not initiated or running at the time of the transfer, the
station is marked as detached (not attached). Whether or not the recipient MCS is
running or initiated at the time of the transfer, the current status of the station remains
unaltered (if the station is NOT READY before the transfer, it remains NOT READY after
the transfer).

The result message received by the recipient MCS (in its primary queue) has the same
essential form as the INTERROGATE STATION ENVIRONMENT RESULT (Class = 15)
message. (Refer to “TRANSFER STATION CONTROL RESULT (Class = 16)” in the
“MCS Result Message Formats” section for details.)

A variant of this function allows the calling MCS to cause initiation of the recipient MCS
in the event that the recipient is not initiated or running at the time of the transfer. The
TRANSFER STATION CONTROL RESULT (Class = 16) message is placed in the primary
queue of the recipient if the variant form is employed.

Another variant permits the MCS to transfer the station to its original controlling MCS
specified in the DATACOMINFO file without knowing which MCS that is. However, if this
variant is used to attempt a station transfer by the original controlling MCS specified in
the DATACOMINFO file, then no action occurs.

In case of errors, the station remains assigned to the calling MCS.

Transferring a station from one MCS to another while maintaining partial control is
allowed. This variant is invoked by turning on bit 26 in word 0 of the message. The
number of the MCS making the request is stored in word 2 of the station table at
PSEUDOMCSNRF ([41:06]). The number of the transferred MCS is stored in word 0 at
STAMCSNRF ([37:08]).

Specific DCWRITE Information

5–60 8600 0841–202

If the station is transferred a second time by the new controlling MCS, the
PSEUDOMCSNRF field contains the original controlling MCS number, allowing transfers
to be made from one remote MCS to another without returning to the original controlling
remote MCS each time. If the station is transferred back to the original controlling MCS,
the PSEUDOMCSNRF is returned to its initial value of 0. Output that is directed to this
station by either a program using a remote station or by the controlling MCS (the one to
which the station was transferred, whose MCS number is contained in the STAMCSNRF
field) is intercepted and delivered to the MCS whose number is contained in the
PSEUDOMCSNRF field as an INTERCEPTED MESSAGE (Class = 29) result.

Transfer of station control to another MCS is not maintained over a halt/load or through a
complete shut-down and subsequent reinitialization of data comm. In either case, the
control of any stations that were transferred reverts to the MCSs originally designated in
the DATACOMINFO file.

The TRANSFER STATION CONTROL DCWRITE function can also be used by an MCS to
transfer control of a pseudostation to another MCS. At the time of the transfer, the
transferring MCS can request full participation.

Under full participation, the first MCS (the fully participating MCS) can take part in the
data comm functions performed on the pseudostation by the second MCS (the
controlling MCS). Whenever the controlling MCS issues certain DCWRITE requests, the
request messages are intercepted, transformed to INTERCEPTED MESSAGE
(Class = 29) results, and placed in the primary queue of the fully participating MCS.

Full participation can be requested only for a pseudostation. If requested for an ordinary
station, a DCWRITE error is returned.

Full participation can be requested by only one MCS for each pseudostation. If full
participation is requested by an MCS but another MCS has already requested full
participation, a DCWRITE error is returned.

If an attempt is made to transfer a limited pseudostation, a DCWRITE error is returned.

When control of a station is transferred to an MCS, that MCS receives a TRANSFER
STATION CONTROL (Class = 16) result message in its primary queue. That message has
the same form as the STATION ENVIRONMENT (Class=15) result message. Fields in the
message can be used by the controlling MCS to determine whether or not the station is
a pseudostation and whether or not the station has a fully participating MCS.

A check of the BNA transfer bits is performed to determine whether one of the following
bits is on:Word 0.[27:01]This is supported for migration only and will be deimplemented.
When this bit is on, a host name and an MCS name index is supplied in word 6.[7:08] and
word 6.[15:08] respectively. A string value located at MSG[INX], where INX is the value
of the host name or MCS name index, is terminated by a period (.).The host name must
be supplied, and the MCS name is optional.Word 0.[31:01]When this bit is on, an index to
a Station Transfer Index Control Word is supplied in word 6.[47:12]
(INX = MSG[6].[47:12]). MSG[INX].[11:12] contains the index to the host name structure
and MSG[INX].[23:24] contains the index to the MCS name structure.

The host name must be supplied, and the MCS name is optional. A value of 0 in the MCS
name index field indicates that no MCS name was supplied.

 Specific DCWRITE Information

8600 0841–202 5–61

MSG[0].[31:01] = 0

If MSG[0].[31:01] = 0, the following information is valid:

Word Value Description

6 [11:12] MCS number of the recipient MCS.

7 The first word of information to be
passed (if word 0 field [30:01] = 1).

MSG[0].[31:01] = 1

If MSG[0].[31:01] = 1, the following information is valid:

Word Value Description

6 [47:12] INX: = Index to station transfer index
control word.

MSG[INX] [23:12] Index to MCS name.

 @[23:12].[47:16] - Length of MCS
name in bytes.

 @[23:12].[32:08] - First character of
MCS name.

MSG[INX] [11:12] Index to host name.

 @[11:12].[47:16] - Length of host
name in bytes.

 @[11:12].[32:08] - First character of
host name.

7 The first word of information to be
passed (if word 0 field [30:01] = 1).

MSG[0].[27:01] = 0

If MSG[0].[27:01] = 0, the following information is valid:

Word Value Description

6 [07:08] MCS number of the recipient MCS.

7 The first word of information to be
passed (if word 0 field [30:01] = 1).

Specific DCWRITE Information

5–62 8600 0841–202

MSG[0].[27:01] = 1

If MSG[0].[27:01] = 1, then the setting of MSG[0].[30:01] is ignored, and the following
information is valid:

Word Value Description

6 [15:08] Index to the program name. The
program name must terminate with a
period (.).

 [07:08] Index to the host name. The host
name must terminate with a period
(.).

Example

ALLOCATE(MSG,7);
MSG[0] := LSN & 45 [47:8] & 1 [24:1];
MSG[6] := MCSNR;
RESULT := DCWRITE(MSG);

 Specific DCWRITE Information

8600 0841–202 5–63

WRITE AND RETURN (DCWRITE Type = 46)

Required Parameters/Fields

The required parameters are identical to those for the WRITE (DCWRITE Type = 33)
DCWRITE function, except that Type (MSG[0].[47:08]) has the value 46.

Explanation

The WRITE AND RETURN DCWRITE function is exactly the same as the WRITE
(DCWRITE Type = 33) DCWRITE function except that the result message for the output
request is unconditionally returned to the current queue of the MCS. This DCWRITE type
can be used instead of the NULL STATION REQUEST (DCWRITE Type = 48) DCWRITE
function to limit the number of output messages sent at one time. The format of the
message parameter is identical to that for the WRITE DCWRITE function except that
MSG[0].[47:8] = 46.

The priority of the message produced by the MCS is contained in this field. The MCS can
produce 128 levels of priority, with 0 as the lowest priority and 127 the highest. If the
priority level is not zero, the NSP inserts the message into the station queue following
messages of higher or equal priority and preceding messages of lower priority. In this
way, MCS messages are transmitted in a high-to-low priority sequence rather than the
order in which the messages were received by the NSP.

The WRITE AND RETURN DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,8);
MSG[0] := LSN & 46 [47:8] & 1 [26:1];
MSG[2] := 0 & 8 [39:16];
REPLACE POINTER(MSG[6],8) BY "LAST ONE";
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–64 8600 0841–202

NULL STATION REQUEST (DCWRITE Type = 48)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 48 Type.

 [39:16] 0 This message is to be returned to the current
queue for the station.

 1 This message is to be returned to the primary
queue of the MCS.

 [23:24] LSN or DLS number.

Explanation

The NULL STATION REQUEST DCWRITE function causes a message to be placed in the
appropriate station queue so that, on encountering this message, the DCC performs no
other action than to return the message to the primary or current queue of the station as
a GOOD RESULT (Class = 5) message with an original DCWRITE type of 48. This
message is returned to the primary or current queue of the station regardless of whether
or not the MCS has indicated that it is to receive Class = 5 and Class = 9 messages. This
DCWRITE type allows the MCS to insert a marker to signal the end of a series of outputs
or a batch within a series of outputs to a station.

The NULL STATION REQUEST DCWRITE request is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,6);
MSG[0] := LSN & 48 [47:8] & 1 [39:16];
RESULT := DCWRITE(MSG);

 Specific DCWRITE Information

8600 0841–202 5–65

SET/RESET SEQUENCE MODE (DCWRITE Type = 49)

Required Parameters/Fields

The minimum message size required for the SET/RESET SEQUENCE MODE DCWRITE
function is eight words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 49 Type.

 [39:16] 0 The sequence mode is to be turned off.

 1 The sequence mode is to be turned on.

 [23:24] LSN or DLS number.

MSG[0].[39:16] = 1

If MSG[0].[39:16] = 1, the following information is valid:

Word Value Description

2 [39:16] Maximum number of digits allowed for
sequence number 0 < MSG[2].[39:16] < 9.

6 [26:27] Base (starting) sequence number value.

7 [26:27] Increment value.

Explanation

The SET/RESET SEQUENCE MODE DCWRITE function allows an MCS to request the
NSP to turn the SEQUENCE toggle on or off for use in NDLII algorithms and to provide
the base (or starting) sequence number, increment value, and maximum number of digits
allowed for the sequence number.

DCWRITE error 99 is returned if the station is not capable of performing automatic
sequencing.

The SET/RESET SEQUENCE MODE DCWRITE function is intercepted when performed
on a pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,8);
MSG[0] := LSN & 49 [47:8] & 1 [39:16];
MSG[2].[39:16] := 8;
MSG[6] := 1000;
MSG[7] := 1000;
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–66 8600 0841–202

WRITE TO TRANSFERRED STATION (DCWRITE Type = 53)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 53 Type.

 [39:16] 0 A GOOD INPUT RECEIVED (Class
= 0) message is forwarded to the
MCS (STAMCSNRF) in control of
the requested LSN.

 1 A STATION EVENT (Class = 1)
message is forwarded to the MCS
(STAMCSNRF) in control of the
requested LSN.

 2 The result of a write from the
transferred station is to be
returned either to the controlling
MCS or to logical I/O by a call on
DCIOFINISH.

 3 The message to DCWRITE is
turned into a GOOD RESULTS
(Class = 5) message.

 [23:24] LSN or DLS number.

6 to end If MSG[0].[39:16] = 2, these
words contain the 6-word result
message to be forwarded.

Explanation

The WRITE TO TRANSFERRED STATION DCWRITE function allows an MCS that has
partially transferred control of a station to direct result messages to either the transferred
station or its controlling MCS.

If the variant field (MSG[0].[39:16]) contains a value of 0 or 1, the message is forwarded
with the MSG[0] word modified to reflect either a GOOD INPUT RECEIVED (Class = 0) or
a STATION EVENT (Class = 1) result, a variant of 0, and the requested LSN in
MSGUNITF.

If the variant field contains a value of 2, the message forwarded is in the text portion of
the WRITE TO TRANSFERRED STATION (DCWRITE Type = 53) DCWRITE function
message and is 6 words in length. If the original message was of type
OBJECTJOBOUTPUT, this result is returned to logical I/O or it is returned to the MCS in
control of the transferred station.

If the variant field contains a value of 3, the message is turned into a GOOD RESULTS
message by changing the Type field. If the STATION ATTACH (DCWRITE Type = 1)

 Specific DCWRITE Information

8600 0841–202 5–67

DCWRITE function that attached the station included a results request, or if the original
DCWRITE request was a WRITE AND RETURN (DCWRITE Type = 46) DCWRITE
function, then the message is placed in either the primary or current queue; otherwise, it
is deallocated.

Example

ALLOCATE(MSG,7);
MSG[0] := LSN & 53 [47:8] & 1 [39:16];
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–68 8600 0841–202

SEND MCS RESULT MESSAGE (DCWRITE Type = 55)

Required Parameters/Fields

The minimum message size for this request is six words.

Word Field Value Description

0 [47:08] 55 Send MCS result message.

 [22:23] LSN.

3 [47:24] Original result type.

6 to end Text (if any) of original MCS result
message.

Explanation

An MCS uses the SEND MCS RESULT MESSAGE DCWRITE function to forward an MCS
result message to another MCS. When this DCWRITE request is received, the data
comm subsystem removes the header and places the specified result (word 6 through
the end of the message), without alteration, in the primary queue of the MCS that
currently controls the specified station.

This DCWRITE request has been designed to allow an MCS that has requested full
participation for a pseudostation to forward MCS result messages to the MCS that is
currently controlling that station. After receiving an intercepted DCWRITE request in its
primary queue, the fully participating MCS normally sends a corresponding result
message back to the controlling MCS.

This DCWRITE request is valid only on a transferred pseudostation that has a fully
participating MCS. If the station is not a pseudostation, or the station has no fully
participating MCS, a DCWRITE error is returned. If the MCS that issues this request is
not the fully participating MCS, a DCWRITE error is returned.

 Specific DCWRITE Information

8600 0841–202 5–69

SET PSEUDOSTATION ATTRIBUTES (DCWRITE Type = 56)

Required Parameters/Fields

The minimum message size for this request is eight words, and the maximum size is
52 words if the pseudostation title is updated.

Word Field Value Description

0 [47:08] 56 Type.

 [39:16] Variant field, as follows:

 [39:01] 1 SCREEN to be updated.

 [38:01] 1 MYUSE to be updated.

 [37:01] 1 WIDTH to be updated.

 [36:01] 1 PAGE to be updated.

 [35:01] 1 MAXINPUT to be updated.

 [34:01] 1 MAXOUTPUT to be updated.

 [33:01] 1 SEQUENCEMODECAPABLE to be
updated.

 [32:01] 1 WRAPAROUNDCAPABLE to be
updated.

 [31:01] 1 Pseudostation title to be updated.

 [22:23] LSN.

6 [47:01] SCREEN attribute, as follows:

 0 Terminal is not a screen device
(CRT).

 1 Terminal is a screen device (CRT).

 [46:02] MYUSE attribute, as follows:

 1 IN.

 2 OUT.

 3 I/O.

 [44:05] Not in use: filler to byte boundary.

 [39:16] LINEWIDTH attribute: bytes per
line.

 [23:16] PAGESIZE attribute: lines per page.

7 [47:16] MAXINPUT.

 [31:16] MAXOUTPUT.

 [15:01] SEQUENCEMODECAPABLE.

 [14:01] WRAPAROUNDCAPABLE.

8to50 Pseudostation title in display form.

Specific DCWRITE Information

5–70 8600 0841–202

Explanation

The SET PSEUDOSTATION ATTRIBUTES DCWRITE function can be used by an MCS to
turn on certain attributes of a pseudostation.

This request is designed to be used by the allocating MCS before it transfers control of
the pseudostation to another MCS. The new controlling MCS can determine the
attributes of the station either by examining the TRANSFER STATION CONTROL (Class
= 16) result message it receives or by issuing an INTERROGATE STATION
ENVIRONMENT (DCWRITE Type = 4) request. That is, the values turned on by the SET
PSEUDOSTATION ATTRIBUTES request are stored by the data comm subsystem and
are made available to other MCSs.

This DCWRITE type is valid only for a pseudostation and can be issued only by the MCS
that has allocated the station. This DCWRITE type cannot be issued on a station that has
a fully participating MCS; that is, the allocating MCS must have exclusive control over the
pseudostation. If any of these rules are violated, a DCWRITE error is returned.

Example

ALLOCATE(MSG,8);
MSG[0] := LSN & 56 [47:8] & 1 [38:1];
MSG[6].[46:2] := 3;
RESULT := DCWRITE(MSG);

 Specific DCWRITE Information

8600 0841–202 5–71

STATION ASSIGNMENT TO FILE (DCWRITE Type = 64)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 64 Type.

 [39:16] Variant, as follows:

 [35:02] Tanking value, as follows:

 0 Unspecified.

 1 None.

 2 Synchronous.

 3 Asynchronous.

 [33:02] 0 MCS allows assignment to file.

 1 The station is not available for
assignment.

 2 The station is in use (the MCS
might or might not assign it later).

 3 Invalid use of station (for
example, open input on an
output-only device).

 [29:06] As detailed in STATION ATTACH
(DCWRITE Type = 1) DCWRITE.

 [23:24] FRSN (as received in the FILE
OPEN (Class = 2) message for
this station).

2 [39:16] Text size. If not zero, the text in
MSG[6] is sent to the station if
the assignment is allowed and
the file MYUSE is OUT or IO.

6 to end See text for MSG[2].[39:16].

Explanation

When an object job opens a remote file, the operating system procedure DCOPEN is
called to create the station list of the remote file. DCOPEN generates a FILE OPEN
(Class = 2) message for each station in the file and sends this message to the controlling
MCS of the station. The “FILE OPEN (Class = 2)” message is described in the “MCS
Result Message Formats” section of this manual. Receipt of the FILE OPEN message is
interpreted by the MCS as a request by the DCOPEN procedure for the MCS to grant
permission for the remote file to communicate with the station. On receipt of a FILE
OPEN message for one of its stations, the controlling MCS replies with a STATION
ASSIGNMENT TO FILE DCWRITE function. This DCWRITE type allows the MCS to
determine the actual status of the assignment of the station in regard to the file.

Specific DCWRITE Information

5–72 8600 0841–202

With an appropriately assigned value in the variant field (MSG[0].[33:02]), the MCS can do
one of the following:

• Allow assignment of the station to the file (MSG[0].[33.02] = 0).

• Unconditionally deny assignment of the station to the file (MSG[0].[33:02] = 1).

• Mark the station as being currently in use, with the possibility of assignment allowed
at a later time (MSG[0].[33:02] = 2).

• Notify the operating system that the intended use of the station by the file is invalid
(MSG[0].[33:02] = 3).

The system can override a request from the MCS to assign a station to the file if the
intended use of the station is invalid. In this case, the DCWRITE function returns the
value 101.

The object program in which the file is declared can interrogate the file DISPOSITION
attribute to discover whether or not the station has been assigned.

When the MCS sends the STATION ASSIGNMENT TO FILE DCWRITE message with the
variant equal to 0 (assignment allowed), the DCWRITE function checks to see if the
requested use of the station is compatible with its description in the DATACOMINFO file.
If, for example, the DATACOMINFO file defines the station to be an output-only device
and the open request is for an input file, the DCWRITE function changes the
DISPOSITION attribute of the station to illegal use (6), places an end of file message for
the station in the input queue of the file, and returns a BAD DCWRITE RESULT value of
101.

If an object job opens a remote file (input only or I/O), the DCWRITE function verifies that
the station whose assignment is requested is not already assigned to another input or
I/O file unless the MCS is participating in I/O. An object job is not restricted in the
number and types of remote files it can use, but a station can be assigned to only one
input or I/O file at any given time without the cooperation of the MCS. After a station has
been assigned to an input or I/O file, the DCWRITE function denies the request to assign
the station to another one, and gives the same response as described above for illegal
use, if the MCS is not participating. If the DCWRITE function does not find that the
assignment allowed is an illegal use, the DCWRITE function does the following:

• Updates the DISPOSITION attribute of the station

• Requests the station to be enabled for input (if the station is not already enabled and
the MCS is not participating in I/O)

• Raises the file POPULATION attribute count by one

If the MCS postpones assignment by sending the STATION ASSIGNMENT TO FILE
DCWRITE message with the variant set to 2 (assignment postponed), the DCWRITE
function updates the DISPOSITION attribute of the station.

 Specific DCWRITE Information

8600 0841–202 5–73

If the MCS denies assignment (variant value of 1 or 3, which it can also do after allowing
or postponing assignment), the DCWRITE function does the following:

• Updates the DISPOSITION attribute of the station

• Decreases the file POPULATION count (if assignment had previously been allowed)

• Places an end of file message in the input queue of the file

Subsequent attempts to communicate with this station cause an end of file action for the
file.

The STATION ASSIGNMENT TO FILE DCWRITE function is intercepted when performed
on a pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Output Tanking for Remote Files

The data comm I/O subsystem supports disk tanking for remote output files. This feature
is available only for nondirect files and for those stations for which the controlling MCS
does not elect to participate in I/O.

The four states for tanking are UNSPECIFIED, NONE, SYNC, and ASYNC.

UNSPECIFIED is the default state. A file with an UNSPECIFIED tanking value is not
tanked unless told to do so by an MCS at file assignment time.

NONE causes a file not to be tanked and prevents an MCS from designating tanking at
file assignment time.

SYNC causes a file to be tanked. When the file is closed, the task does not resume
execution until all tanked output has been completed. The controlling MCS for stations in
a file for which the user designates a tanking value of SYNC cannot change this value at
file assignment time.

ASYNC also causes a file to be tanked, but, unlike SYNC, the task continues execution
after closing the file without waiting for all tanked output to be completed. This task can
go to EOT while its output continues to be sent. The controlling MCS for stations in a file
for which the user designates a tanking value of ASYNC cannot change this value at file
assignment time.

If output is still queued when the file is closed with ASYNC tanking, the controlling MCS
for each station in the file receives two file-close messages. The first is identical to the
normal file-close message except that MSG[0].[24:01] equals 1. The MCS can then
expect to receive a second file-close message indicating that all output to that station
from that file has finished. The second file-close message does not contain such
information as the INTNAME and TITLE of the remote file, the task name, or the mix
number. Such information can be saved, if necessary, from the first file-close message.
MSG[0].[25:01] equals 1 if it is the final, skeletal, file-close message.

Specific DCWRITE Information

5–74 8600 0841–202

Tanking can be invoked in three ways:

• By the task attribute TANKING

• By the file attribute TANKING

• By an MCS using a variant of the ASSIGNMENT TO FILE DCWRITE
(DCWRITE Type = 64)

The TANKING task attribute is described in the Task Attributes Programming Reference
Manual. The TANKING file attribute is described in the I/O Subsystem Programming
Reference Manual. An MCS can also designate tanking at file assignment time.
MSG[0].[25:02] of the file-open message contains the user-indicated tanking value (as
determined by the TANKING task attribute or the TANKING file attribute). If the MCS
does not wish to allow a file to be opened with the tanking value supplied to it, it can
deny assignment. If MSG[0].[25:02] is 0 (UNSPECIFIED), the MCS can determine the
tanking value for the file.

The format for the STATION ASSIGNMENT TO FILE DCWRITE message is as follows:
MSG[0].[33:02] contains the file disposition, and MSG[0].[35:02] contains the tanking
value that the MCS wishes for the file. If the value that the MCS designates is not
compatible with the value that the user designates or with the value it or another MCS
has designated for another station in the file, it produces a DCWRITE error 144, INVALID
OUTPUT TANKING SPECIFICATION.

If the user causes a break-on-output action for a remote file that has been tanked, all
tanked output from that file to that station is discarded until the break is handled by the
user task. If the task has already closed the file, all tanked output to that station is
discarded. The output to other stations in the file continues. This condition could result in
a great deal of discarded output but does allow unwanted output for a task that can no
longer be running to be stopped. Tanked output is not returned to an MCS if it performs a
RECALL MESSAGES (DCWRITE Type = 41) DCWRITE function.

Tanked output is separate from output that is directly queued for a station. Queued
output for a station can contain output from several files and can contain messages from
an MCS. As the amount of queued output from the particular tanked file is completed,
more of the tanked output is detanked and queued. Therefore, output from different
remote files from the same task can be received by the station in a different order than
that in which it was sent. All output from the same file is received in the order it was
sent.

If a task is run in a swapspace, it is not swapped out for remote output if its remote files
are tanked. If a task is not run in swapspace, it is not suspended remote output if its
remote files are tanked. This situation means that some tasks that do a large amount of
remote output (or do bursts of remote output) remain on the processor longer and have
their performance improved.

 Specific DCWRITE Information

8600 0841–202 5–75

MCS Participation in I/O

The MCS can also designate those options under which the station message traffic is to
be handled by turning on the desired option bits in MSG[0].[29:06]. (Refer to the
“STATION ATTACH (DCWRITE Type = 1)” DCWRITE function in this section for the
option bit interpretations.) If MSG[0].[29:01] = 1, the MCS indicates its desire to
participate in the I/O functions for the station and the file. Participation in I/O means that
the MCS acts as arbiter for messages to and from the file. Specifically, the MCS receives
all input messages directly from the station and decides whether the input is to be acted
on by itself or forwarded to the object program file. Any input to the object job file is
forwarded through the use of the WRITE TO OBJECT JOB (DCWRITE Type = 65)
DCWRITE function. Output to the station from the object job file (writes executed by the
object job) is sent directly to the MCS in the current queue of the station in the form of
an OBJECT JOB OUTPUT (Class= 3) message. Output to the station is forwarded with
the customary WRITE (DCWRITE Type = 33) DCWRITE function.

The ability of the MCS to interpose between the object job file and the station allows it to
perform pre-editing of output records to a station from an object job, message switching
functions (such as direct input from a station to any one of several files), or other
extended functions are required. The MCS allows the station to be assigned to one or
more files at any given time in situations in which the MCS is involved in the I/O
functions.

If MSG[0].[29:01] = 0, the MCS relinquishes all responsibility for control of functions
related to the handling of I/O. In this situation, all GOOD INPUT RECEIVED (Class = 0)
messages from the station are forwarded to the object program file, and all OBJECT JOB
OUTPUT (Class = 3) messages from the object program are forwarded directly to the
station.

The MCS can allow a station to be assigned to one or more files, but a station can be
assigned to only one input file at a time without the participation of the MCS in I/O for
the station. Therefore, a station can be opened for output using one file and opened for
input using another (for example, in the same program) so that the object job appears to
read one file and write to another, although the physical terminal is the same in both
cases.

When a station is assigned to an input file and the MCS has elected not to participate in
I/O, the DCWRITE function automatically enables the station for input if it is not already
enabled. However, if the MCS participates in I/O, it is responsible for enabling or
disabling the station.

Whether or not the MCS elects to participate in I/O, it receives all ERROR RESULT (Class
= 99) messages, STATION EVENT (Class = 1) messages, and FILE CLOSE (Class = 4)
messages of the station.

Also, the MCS could choose to participate in I/O functions for some of the stations in the
file and not to participate for other stations, because stations are assigned to files on a
station by station basis.

Specific DCWRITE Information

5–76 8600 0841–202

The STATION ASSIGNMENT TO FILE DCWRITE function requires the use of an FRSN
rather than the customary LSN. The MCS must retain the FRSNs given to it by the FILE
OPEN message and maintain the correspondence between LSN and FRSN. This
maintenance of correspondence is particularly significant if the MCS participates in I/O
functions where a station is a member of (assigned to) more than one file and the MCS is
to perform functions such as message switching. When a station is a member of more
than one file at a time, an LSN can have several related FRSNs. If MSG[2].[39:16] is not
zero, the MCS allows the file assignment; if the MYUSE of the file is OUT or IO, the
DCWRITE function generates an output to the station of the text starting in MSG[6].

Stations without Line Assignments

Stations declared in the DATACOMINFO file without line assignments can be included as
FAMILY members in the FILE section of the DATACOMINFO file. If an object program
opens a remote file containing one of these stations, the controlling MCS of the station is
restricted in its response to the FILE OPEN message unless it is participating in I/O for
the station. If the MCS is not participating in I/O for the station and attempts to allow the
STATION ASSIGNMENT TO FILE, the DCWRITE function returns the result value of 88
(the station has no line assignment), and the disposition of the station in the file remains
unknown (0). If the program tries to write to the station (or does a broadcast write), the
program waits in the write statement until the disposition of the station becomes known
(assignment was allowed, denied, or postponed, or an invalid use was attempted).
Therefore, the MCS should either deny or postpone the assignment of the station to the
file.

If the MCS does participate in I/O for the station without line assignment, it must
perform message switching. Because the MCS is participating in I/O, every output from
the program to the station without a line assignment is placed in the current queue of the
station. The MCS must change the class field of the message from OBJECT JOB
OUTPUT (Class = 3) to WRITE (DCWRITE Type = 33) and the LSN/FRSN field to the LSN
of the station actually communicating with the program. The MCS must then pass the
message on using the DCWRITE function.

In the case of input when the MCS is participating, the MCS must do the following:

• Change GOOD INPUT RECEIVED (Class = 0) messages from the station that is
actually communicating with the program to WRITE TO OBJECT JOB (DCWRITE
Type = 65) messages

• Change the LSN/FRSN field to the FRSN of the station without line assignment

• Pass the message to the object job by using the function DCWRITE

The MCS must be participating in I/O for both the real and the dummy station to capture
and switch input messages.

Example

ALLOCATE(MSG,6);
MSG[0] := 0 & 64 [47:8] & 0 [39:10] & 0 [29:6]
 & FRSN [23:24];
RESULT := DCWRITE(MSG);

 Specific DCWRITE Information

8600 0841–202 5–77

WRITE TO OBJECT JOB (DCWRITE Type = 65)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 65 Type.

 [39:16] Variant, not used.

 [23:24] FRSN.

2 [39:16] Number of bytes of meaningful text supplied,
starting at MSG[6].

6 to
end

 The number of words of text area, consistent with
the number of bytes specified in MSG [2].[39:16].
(For example, n must satisfy n > (MSG[2].[39:16]
+ 5) DIV 6.)

Explanation

The WRITE TO OBJECT JOB DCWRITE function allows an MCS to forward input records
to an object job file. If the MCS elects to participate in I/O handling for a station, all inputs
from the station are sent directly to the MCS; the MCS is then responsible for
transferring the input to the file. By allowing the MCS to participate in I/O, the MCS can
perform preediting of input or output data records, message switching functions, and so
forth.

The MCS must maintain the correlation between the LSN of a station and any FRSNs so
that this DCWRITE type can be invoked with the desired results.

This DCWRITE can also be used after the STATION ASSIGNMENT TO FILE (DCWRITE
Type = 64) DCWRITE function, whether or not the MCS has elected to participate in the
I/O handling.

Example

ALLOCATE(MSG,16);
MSG[0] := FRSN & 65 [47:8];
MSG[2].[39:16] := 57;
REPLACE POINTER(MSG[6],8) BY
 "THE OBJECT JOB WILL RECEIVE THIS TEXT AS AN INPUT",
 "RECORD.";
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–78 8600 0841–202

STATION BREAK (DCWRITE Type = 66)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 66 Type.

 [39:16] Variant field, not used.

 [23:24] FRSN.

Explanation

The STATION BREAK DCWRITE function allows the MCS to inform an object job that a
break-on-output occurred at a station. Any subsequent attempt at output to the station
from that file results in break error action.

In addition, if output is tanked for the file and all output-capable stations in the file with
line assignments have break conditions, all tanked output for the file is discarded.

Example

ALLOCATE(MSG,6);
MSG[0] := FRSN & 66 [47:8];
RESULT := DCWRITE(MSG);

 Specific DCWRITE Information

8600 0841–202 5–79

ADD STATION TO FILE (DCWRITE Type = 67)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 67 Type.

 [39:16] As detailed in the STATION ASSIGNMENT
TO FILE (DCWRITE Type = 64) DCWRITE.

 [23:10] File number.

1 [23:24] LSN of the station to be added.

2 [39:16] Text size of the output text.

6 to end Output text.

Explanation

The ADD STATION TO FILE DCWRITE function allows an MCS to perform the equivalent
of the following ALGOL construct:

REPLACE FILEID.FAMILY BY * + "STATIONNAME"

This DCWRITE type permits an MCS to spontaneously add a new station to an open
remote file currently under control of the MCS and to simultaneously perform the
necessary assignment of the file as would otherwise be required by the STATION
ASSIGNMENT TO FILE (DCWRITE Type = 64) DCWRITE function. Although similar in
function to the Type = 64 DCWRITE function, this DCWRITE type cannot be used in
response to a FILE OPEN (Class = 2) result message.

The station to be added is designated by an LSN in MSG[1].[23:24] and must be currently
attached to the MCS. The file to which the station is to be added is designated in
MSG[0].[23:10]. Refer to the description of the “FILE OPEN (Class = 2)” result message
in the “MCS Result Message Formats” section for the meaning and origin of the file
number.) If the specified station is already a member of the file, error 82 (STATION
ALREADY IN FILE) is returned. MSG[0].[33:02] indicates the disposition to be assigned to
the station. (Refer to the semantics of the STATION ASSIGNMENT TO FILE (DCWRITE
Type = 64) DCWRITE function for the meaning of this field.)

If no errors are detected by the DCWRITE function, the content of MSG[0].[13:14] is the
RSN that has been assigned to the new station within the file.

Notification of the action performed by this DCWRITE type is not given to the object
program owning the file. In particular, the LASTSTATION file attribute is not altered. The
MCS can elect to inform the object program by issuing a WRITE TO OBJECT JOB
(DCWRITE Type = 65) DCWRITE function with the RSN value returned. If MSG[2].[39:16]
is not zero, the station is successfully added to the file. If the file MYUSE is OUT or IO,
this DCWRITE type sends the text starting in MSG[6] to the station.

Specific DCWRITE Information

5–80 8600 0841–202

The ADD STATION TO FILE DCWRITE function is intercepted only if it contains text and
is performed on a pseudostation that has a fully participating MCS. The DCWRITE
function must be performed by the MCS that currently controls the station. The
intercepted messages are placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,8);
MSG[0] := 0 & 67 [47:8] & FILENR [23:10];
MSG[1] := LSN;
RESULT := DCWRITE(MSG);
CHANGE TERMINAL ATTRIBUTES (DCWRITE Type = 68)

Required Parameters/Fields

The minimum message size for this DCWRITE type is seven words. A message
parameter and the following are required:

Word Field Value Description

0 [47:08] 68 Type.

 [39:16] Variant, as follows:

 [26:01] 1 Screen to be updated.

 [25:01] 1 Width to be updated.

 [24:01] 1 Page size to be updated.

 [23:24] FRSN.

6 As follows:

 [24:01] New screen value.

 [23:12] New width value.

 [11:12] New page size value.

Explanation

This FRSN-oriented DCWRITE function is used to change the PAGESIZE, WIDTH, or
SCREEN file attributes of a remote file. These three attributes are initially equal to values
given from the corresponding station attributes in the DATACOMINFO file. On receipt of
a FILE OPEN message, the MCS can choose to override the declared values by using the
CHANGE TERMINAL ATTRIBUTES DCWRITE function. These three attributes are
accessible to the object program when the remote file is opened. Because the object
program and the MCS operate asynchronously, a small period can exist between the
time the file is marked open and the time the MCS performs the above DCWRITE
function; during this time, the object program can interrogate these attributes and obtain
the default values from the DATACOMINFO file. Thus, the MCS should perform this
DCWRITE type before it performs the STATION ASSIGNMENT TO FILE (DCWRITE
Type = 64) DCWRITE function; the latter DCWRITE type allocates the DISPOSITION
attribute, which can be used by the object program to determine the validity of other
remote attributes.

 Specific DCWRITE Information

8600 0841–202 5–81

The CHANGE TERMINAL ATTRIBUTES DCWRITE function can be used any time the
remote file is open. The changes effected by this DCWRITE function are not permanent;
the update terminal attribute values are discarded by the system when the file is closed.

The CHANGE TERMINAL ATTRIBUTES DCWRITE function is intercepted when
performed on a pseudostation that has a fully participating MCS. The DCWRITE function
must be performed by the MCS that currently controls the station. The intercepted
messages are placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,7);
MSG[0] := FRSN & 68 [47:8] & 1 [25:1];
MSG[6] := 0 & 72 [23:12];
RESULT := DCWRITE(MSG);

Specific DCWRITE Information

5–82 8600 0841–202

SUBTRACT STATION FROM FILE (DCWRITE Type = 69)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 69 Type.

 [23:10] File number.

1 [23:24] LSN of station to be subtracted.

Explanation

The SUBTRACT STATION FROM FILE DCWRITE function allows an MCS to perform the
equivalent of the following ALGOL construct:

REPLACE FILEID.FAMILY BY * - "STATIONNAME.";

This DCWRITE type permits an MCS to spontaneously subtract a station from an open
remote file currently under the control of the MCS.

 Line-Oriented Requests

8600 0841–202 5–83

Line-Oriented Requests
The following DCWRITE types are line-oriented requests. The additional requirements
that apply to all line-oriented DCWRITE types are as follows:

• The minimum acceptable message size is 8 words.

• MSG[0].[23:24] can contain one of the following:

− An LSN for any station on the desired line, provided that the requesting MCS
controls that station

− A relative NSP number and line number in the following form and hereafter
referred to as DL:

MSG[0].[23:01] = 1, not an LSN
MSG[0].[22:07] = Relative NSP number
MSG[0].[15:08] = Line number

The MCS must control at least one station on the designated line when using the DL
number (except for the INTERROGATE LINE DCWRITE function).

MAKE LINE READY (DCWRITE Type = 96)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 96 Type.

 [39:16] Variant, not used.

 [23:24] LSN or DL number.

Explanation

The MAKE LINE READY DCWRITE function allows an MCS to resume execution of the
NDLII algorithm that had been suspended because of a MAKE LINE NOT READY
DCWRITE function.

A LINE STATUS CHANGE RESULT (Class = 9) message is always generated by the NSP
as a part of its response to the MAKE LINE READY DCWRITE function (even if the line is
already READY). The Class = 9 message is generated only for the lowest-numbered valid
station on the line and is routed to the current queue of that station if the controlling
MCS indicates that it is to receive Class = 9 messages. Otherwise, the message is
discarded by the operating system.

The MAKE LINE READY DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE must be performed by
the MCS that currently controls the station. The intercepted messages are placed in the
primary queue of the fully participating MCS.

Line-Oriented Requests

5–84 8600 0841–202

Example

ALLOCATE(MSG,8);
MSG[0] := LSN & 96 [47:8];
RESULT := DCWRITE(MSG);

 Line-Oriented Requests

8600 0841–202 5–85

MAKE LINE NOT READY (DCWRITE Type = 97)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 97 Type.

 [39:16] Variant field, not used.

 [23:24] LSN or DL number.

Explanation

The MAKE LINE NOT READY DCWRITE function allows an MCS to make a line NOT
READY. If the LINE.BUSY variable is TRUE when this request is presented to the NSP,
the LINE STATUS CHANGE RESULT (Class = 9) message is not generated until the line
has actually become NOT READY.

A LINE STATUS CHANGE RESULT (Class = 9) message is generated by the NSP as a
part of its response to the MAKE LINE NOT READY DCWRITE function if, and only if, the
line was READY prior to the MAKE LINE NOT READY DCWRITE function. The Class = 9
message is generated only for the lowest-numbered valid station on the line and is
routed to the current queue of that station if the controlling MCS indicates that it is to
receive Class = 9 messages. Otherwise, the message is discarded by the operating
system.

The MAKE LINE NOT READY DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,8);
MSG[0] := 0 & 97 [47:8] & 1 [23:1] & NSPNR [22:7]
 & LINENR [15:8] & STANR [7:8];
RESULT := DCWRITE(MSG);

Line-Oriented Requests

5–86 8600 0841–202

DIALOUT (DCWRITE Type = 98)

Required Parameters/Fields

The minimum size message size for the DIALOUT DCWRITE function is eight words. A
message parameter and the following are required:

Word Field Value Description

0 [47:08] 98 Type.

 [39:16] Variant field, not used.

 [23:24] LSN or DL.

2 [39:16] Number of digits of the
telephone number (in bytes).

6 to end The telephone number to be
dialed, represented as a
dialing sequence, which is a
left-justified EBCDIC numeric
string. The dialing sequence is
a string of operators, each one
byte long. The operators and
their corresponding EBCDIC
codes are shown in Table 5–5.

Table 5–5 presents the values that are used to control telephone dialing. These values
must be used in the telephone number field, which begins in word 6 of the DIALOUT
DCWRITE message.

 Line-Oriented Requests

8600 0841–202 5–87

Table 5–5. Dialing Sequence Operators

Operator Code Operator Code

Dial 0 1111 0000 EON 1111 1100

Dial 1 1111 0001 WFSDT 1111 1101

Dial 2 1111 0010 Delay 1 sec. 1100 0001

Dial 3 1111 0011 Delay 2 sec. 1100 0010

Dial 4 1111 0100 Delay 3 sec. 1100 0011

Dial 5 1111 0101 Delay 4 sec. 1100 0100

Dial 6 1111 0110 Delay 5 sec. 1100 0101

Dial 7 1111 0111 Delay 6 sec. 1100 0110

Dial 8 1111 1000 Delay 7 sec. 1100 0111

Dial 9 1111 1001 Delay 8 sec. 1100 1000

Dial * 1111 1010 Delay 9 sec. 1100 1001

Dial # 1111 1011 Delay 10 sec. 1100 1010

Explanation

The DIALOUT DCWRITE function allows a remote station to be called through the
telephone switching network. The line involved must have been declared in the
DATACOMINFO file to have dialout capability and must be READY, disconnected, and
neither ringing nor SWITCHEDBUSY.

The NSP always retries a dialout operation five times. If the dialout operation fails with an
ABANDON-CALL-RETRY error, no further retries are attempted.

Telephone numbers of any reasonable length can be used to call an in-house station with
an extension number or an outside line with or without an area code. Provided that the
number can be reached properly, the DCC releases the dialout logic only after a proper
“handshake” between the data sets involved has been made and the system data set is
in data mode. Normal operation can then proceed.

Some automatic calling units (ACUs) are equipped with an optional feature that requires
the phone number supplied to be terminated by an end of number (EON) character. The
DATACOMINFO file designates which ACUs have this requirement by use of the
ENDOFNUMBER attribute. The DCALGOL programmer is not required to terminate
phone numbers for such ACUs with the EON character. Instead, the DCC supplies this
character when it is required.

The Wait For Supplementary Dial Tone (WFSDT) operator causes the ACU to wait until it
detects a supplementary dial tone before signaling the NSP to proceed. Not all ACUs
support this feature.

Line-Oriented Requests

5–88 8600 0841–202

The delay operators cause the NSP to wait the specified number of seconds before it
continues the dialout operation.

Example

ALLOCATE(MSG,8);
MSG[0] := LSN & 98 [47:8];
MSG[2].[39:16] := 10;
REPLACE POINTER(MSG[6],8) BY "2135556521";
RESULT := DCWRITE(MSG);

 Line-Oriented Requests

8600 0841–202 5–89

DISCONNECT (DCWRITE Type = 99)

Required Parameters/Fields

The minimum message size required for the DISCONNECT DCWRITE function is eight
words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 99 Type.

 [39:16] Variant, not used.

 [23:24] LSN or DL number.

Explanation

The DISCONNECT DCWRITE function causes the system to “hang up” on a line
connected through a telephone switchboard or switching network. The line must have
been declared in the DATACOMINFO file with the SWITCHED line attribute equal to
TRUE, and the line must be READY, CONNECTED, and not BUSY.

Example

ALLOCATE(MSG,8);
MSG[0] := 0 & 99 [47:8] & 1 [23:1] & NSPNR [22:7]
 & LINENR [15:8] & STANR [7:8];
RESULT := DCWRITE(MSG);

Line-Oriented Requests

5–90 8600 0841–202

INTERROGATE SWITCHED STATUS (DCWRITE Type = 101)

Required Parameters/Fields

The minimum message size required for the INTERROGATE SWITCHED STATUS
DCWRITE function is eight words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 101 Type.

 [39:16] Variant, not used.

 [23:24] LSN or DL.

Explanation

The INTERROGATE SWITCHED STATUS DCWRITE function is allowed only for a station
on a line declared in the DATACOMINFO file with the SWITCHED line attribute equal to
TRUE. In response to the DCWRITE function, the DCC generates a SWITCHED STATUS
RESULT (Class = 7) message which, if the DL number is used, it places in the current
queue of the lowest-numbered valid station on the line. If LSN is used, it places the
message in the current queue of the indicated station.

Example

ALLOCATE(MSG,8);
MSG[0] := LSN & 101 [47:8];
RESULT := DCWRITE(MSG);

 Line-Oriented Requests

8600 0841–202 5–91

SET/RESET AUTOANSWER (DCWRITE Type = 102)

Required Parameters/Fields

The minimum message size required for the SET/RESET AUTOANSWER DCWRITE
function is eight words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 102 Type.

 [39:16] 0 AUTOANSWER has the value FALSE.

 1 AUTOANSWER has the value TRUE.

 [23:24] LSN or DL.

Explanation

The SET/RESET AUTOANSWER DCWRITE function is allowed for stations on lines
declared in the DATACOMINFO file with the SWITCHED line attribute equal to TRUE,
regardless of the status of the line. For all lines so declared that are in a normal
disconnected state, the NSP monitors the data set lead ring indicator (RI) for incoming
calls. When AUTOANSWER is TRUE and ringing is detected, the NSP answers the phone
automatically. If AUTOANSWER is FALSE, the phone is not answered.

The SET AUTOANSWER DCWRITE function causes the NDLII variable
LINE.DISCONNECTACTION have the value AUTOANSWER. The RESET AUTOANSWER
DCWRITE function causes LINE.DISCONNECTACTION to have the value NONE and the
ring indication to be ignored.

Example

ALLOCATE(MSG,8);
MSG[0] := LSN & 102 [47:8] & 1 [39:16];
RESULT := DCWRITE(MSG);

Line-Oriented Requests

5–92 8600 0841–202

SET/RESET LINE TOGS-TALLYS (DCWRITE Type = 103)

Required Parameters/Fields

The minimum message for this DCWRITE type is eight words. A message parameter
and the following are required:

Word Field Value Description

0 [47:08] 103 Type.

 [39:16] Variant, not used.

 [23:01] 1 MSG[0].[23:24] contains DL.

 [23:24] DL or LSN.

6 [23:01] 1 Enable setting of LINE(TOG[1]).

 [22:01] 1 Enable setting of LINE(TOG[0]).

 [21:01] 1 Enable setting of
LINE(TALLY[1]).

 [20:01] 1 Enable setting of
LINE(TALLY[0]).

 [17:01] Setting of LINE(TOG[1]).

 [16:01] Setting of LINE(TOG[0]).

 [15:08] Setting of LINE(TALLY[1]).

 [07:08] Setting of LINE(TALLY[0]).

Explanation

The SET/RESET LINE TOGS-TALLYS DCWRITE function allows an MCS to dynamically
turn on or off any or all line TOGs or line TALLYs for a given line.

The SET/RESET LINE TOGS-TALLYS DCWRITE function is intercepted when performed
on a pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,8);
MSG[0] := DL & 1 [23:1] & 103 [47:8];
MSG[6] := 0 & 1 [22:1] & 1 [21:1] & 0 [16:1] & 100 [15:8];
RESULT := DCWRITE(MSG);

 Line-Oriented Requests

8600 0841–202 5–93

LINE INTERROGATE (DCWRITE Type = 104)

Required Parameters/Fields

The minimum message size is 16 words. A message parameter and the following are
required:

Word Field Value Description

0 [47:08] 104 Type.

 [39:16] Variant, not used.

 [23:24] LSN or DLS number.

Explanation

The LINE INTERROGATE DCWRITE function requests information about current line
status. Refer to the “LINE INTERROGATE RESULT (Class = 24)” message in the “MCS
Result Message Formats” section for a description of the result indication of the
contents.

An MCS can use this DCWRITE function to determine the status of any line in the data
comm network, whether or not it controls any stations on the line.

The LINE INTERROGATE DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages are
placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,16);
MSG[0] := LSN & 104 [47:8];
RESULT := DCWRITE(MSG);

Line-Oriented Requests

5–94 8600 0841–202

FORCE LINE NOT READY (DCWRITE Type = 105)

Required Parameters/Fields

The minimum message size for this DCWRITE function is eight words. A message
parameter and the following are required:

Word Field Value Description

0 [47:08] 105 Type.

 [23:24] LSN or DLS number.

Explanation

The FORCE LINE NOT READY DCWRITE function is identical to that of the MAKE LINE
NOT READY (DCWRITE Type = 97) DCWRITE function.

Example

ALLOCATE(MSG,8);
MSG[0] := LSN & 105 [47:8];
RESULT := DCWRITE(MSG);

 Reconfiguration Request DCWRITE Types

8600 0841–202 5–95

Reconfiguration Request DCWRITE Types
Reconfiguration requests allow the data comm environment to be dynamically modified.
Reconfiguration has been implemented in such a fashion as to allow all data comm
functions not directly affected by any reconfiguration request to continue in parallel with
that request and to allow resumption of activities for LSPs, lines, and stations that were
directly affected after completion of the request. Reconfiguration requests cause the
NSP and operating system tables to be updated in memory and the same changes to be
reflected in the DATACOMINFO file on disk, so that subsequent reinitialization of data
comm accurately reflects the new configuration. A request for reconfiguration invokes
DCRECON as an independent runner (if it is not already running) and enqueues the
request for the reconfiguration routine. Multiple requests for reconfiguration are
processed serially, although in parallel with other data comm activity wherever possible.
No initialization of NSPs occurs during the processing of a given request; the initialization
remains pending until the completion of the request in progress.

All message control systems affected by any reconfiguration request (whether the
request for reconfiguration was issued by that MCS or not) are notified of any
successfully completed reconfiguration. An affected MCS is determined to be any MCS
currently attached to one or more stations whose relative NSP number, line number, or
station number was changed as a result of a reconfiguration request. Affected message
control systems receive an exact copy of the LSP EXCHANGE RESULT (Class = 8)
message, the SWAP LINE RESULT (Class = 10) message, or the MOVE/ADD/SUBTRACT
STATION (Class = 11) message sent to the original requesting MCS, as well as one or
more DLS UPDATE RESULT (Class = 12) messages pertinent to the stations known to
each MCS.

SWAP LINES (DCWRITE Type = 128)

Required Parameters/Fields

The minimum message size required for the SWAP LINES DCWRITE function is eight
words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 128 Type.

 [39:16] 0 Lines are left NOT READY after
reconfiguration is completed.

 1 Lines are left READY after
reconfiguration is completed.

 [23:24] LSN or DL number of the first
line.

7 [23:24] DL number of the second line.

Reconfiguration Request DCWRITE Types

5–96 8600 0841–202

Explanation

The SWAP LINES DCWRITE function allows an MCS to logically swap two lines and
includes any and all stations contained on each of the lines. The requesting MCS receives
a SWAP LINES RESULT (Class = 10) message in its primary queue, which signifies
completion of processing of the request. If no errors occurred, one or more DLS
UPDATE RESULT (Class = 12) messages can have been issued to the primary queue of
the MCSs owning stations on the lines.

If the first line has stations on it, the MCS must control at least one of them. If either line
is DIALOUT, both must be DIALOUT.

Example

ALLOCATE(MSG,8);
MSG[0] := LSN & 128 [47:8] & 1 [39:16];
MSG[7] := 0 & 1 [23:1] & DL [22:15];
RESULT := DCWRITE(MSG);

 Reconfiguration Request DCWRITE Types

8600 0841–202 5–97

EXCHANGE LSPS (DCWRITE Type = 129)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 129 Type.

 [39:16] Variant field, as follows:

 [26:01] 0 The target NSP can be
uninitialized, but paths to LSPs
being exchanged onto that
NSP are tested for availability.

 1 If the target NSP is
uninitialized, paths to LSPs
being exchanged onto it are to
be tested for availability. The
value of this field is ignored if
MSG[0].[25:01] = 1.

 [25:01] 0 The target NSP can be
uninitialized.

 1 The target NSP is initialized if
required.

 [24:01] 0 Lines on LSPs are left NOT
READY after reconfiguration.

 1 Lines on LSPs are left READY
after reconfiguration.

 [22:07] Relative NSP number.

 [15:16] LSP mask.

Explanation

The EXCHANGE LSPS DCWRITE function allows an MCS to transfer control of any or all
LSPs specified in the LSP alternates declaration to another NSP that has an I/O path to
the LSPs being exchanged.

Receipt of an LSP EXCHANGE RESULT (Class = 8) message signifies that processing of
the request has completed. The LSP mask in MSG[0].[15:16] is updated in the LSP
EXCHANGE RESULT (Class = 8) message to reflect any LSPs that failed to initialize
successfully after the transfer to the recipient NSP. One or more DLS UPDATE RESULT
(Class = 12) messages could be issued to the primary queue of the MCS as a
consequence of this DCWRITE type.

If [0].[25:01] = 0, the LSP exchange occurs regardless of the state of the target NSP.

If [0].[25:01] = 1, the target NSP is initialized if it is not running. If initialization is required
and fails because of a hardware condition, error 87 (uninitialized NSP) is returned.

Reconfiguration Request DCWRITE Types

5–98 8600 0841–202

The value in the field [0].[26:01] is tested. If [0].[25:01] = 1, the value in [0].[26:01] is
ignored.

If [0].[26:01] = 0 and the target NSP is uninitialized, the availability is tested of a path to
each LSP that is to be exchanged onto that NSP.

If [0].[26:01] = 1 and the target NSP is uninitialized, the path tests are overridden, and the
subject NSP does not have I/O requests issued to it.

Example

ALLOCATE(MSG,8);
MSG[0] := LSPMASK & 129 [47:8] & 1 [39:16] & NSPNR [22:7];
RESULT := DCWRITE(MSG);

 Reconfiguration Request DCWRITE Types

8600 0841–202 5–99

MOVE/ADD/SUBTRACT STATION (DCWRITE Type = 130)

Required Parameters/Fields

The minimum message size for the MOVE/ADD/SUBTRACT STATION DCWRITE
function is eight words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 130 Type.

 [39:16] Variant field, as follows:

 [25:01] 0 Station attributes are not
updated.

 1 Station attributes are
updated as specified.

 [24:01] 0 The station is left NOT
READY after reconfiguration
is completed.

 1 The station is left READY
after reconfiguration is
completed.

 [23:24] The current LSN or DLS
number.

7 [23:01] 0 The station is to be
subtracted. MSG[7].[22:15]
is irrelevant.

 1 The station is to be added
or moved. MSG[7].[22:15] is
the receiving DL number.

Reconfiguration Request DCWRITE Types

5–100 8600 0841–202

MSG[0].[25:01] = 1

The following optional information is required if MSG[0].[25:01] = 1:

Word Field Description

8 New line attributes.

 [39:08] NDLIITERMINX is the index
within MSG of the name of the
terminal with the required logical
station attributes.

 [31:08] NDLIILINEINX is the index within
MSG of the name of the line with
the required physical line
attributes.

MSG[NDLIITERMINX] The name of the terminal with the
required logical station attributes
for the station that is being
moved or added.

MSG[NDLIILINEINX] The name of the line that has
declared physical attributes for
the empty line to which the
station is being moved or added.

Explanation

The MOVE/ADD/SUBTRACT STATION DCWRITE function allows an MCS to do one of
the following:

• Move stations from one line to another

• Assign a station to a line where it had no prior line assignment

• Remove a station from a line (thus, leaving it with no line assignment)

If MSG[7].[23:01] is equal to 0, MSG[7].[22:23] does not contain a DL number and a
subtraction of the station from a line is indicated, which leaves the station with no line
assignment. In the event of such a pure subtraction, if any requests are queued for the
station, they are returned in the current message queue of the station as RECALL
MESSAGE (Class = 6) messages, as though a RECALL MESSAGE (DCWRITE Type = 41)
DCWRITE function had been performed by the requesting MCS. Receipt of a
MOVE/ADD/SUBTRACT STATION (Class = 11) message in the primary message queue
of the requesting MCS signifies completion of the request. A DLS UPDATE RESULT
(Class = 12) message could also be placed in the primary message queue of the MCS as
a consequence of the MOVE/ADD/SUBTRACT STATION DCWRITE function.

If MSG[0].[25:01] is equal to 1 and MSG[7].[23:01] is not equal to 0, the line attributes
designated in MSG[8] are applied to the new line. In a particular attribute field in MSG[8]
is 0, the current line attribute is not modified. Name attributes must be designated in
EBCDIC and must terminate with a period. These name attributes must correspond to
valid nondefault names in the DATACOMINFO file.

 Reconfiguration Request DCWRITE Types

8600 0841–202 5–101

The maximum number of stations per line is 255.

If MSG[0].[25:01] = 1, a line cannot be named (that is, the index NDLIILINEINX must be
0) if the target line has stations on it. A line can be named only if the target line is empty.

Physical Attributes

The physical attributes of the target line can be mapped from those of the source line
from which a station is being moved if the following requirements are met:

• MSG[0].[25:01] = 1.

• There are no stations on the target line.

• The target line is different from the source line.

• No line is named in the request (the index NDLIILINEINX is 0).

The changes made to the physical connection characteristics of the target line must be
within the scope of the hardware settings of the line adapter and electrical interface (EI).
Thus, a character-oriented line cannot be changed to a bit-oriented line and vice versa, a
private line cannot be changed to a switched line and vice versa, and an autodial line
cannot be changed to an autoanswer line and vice versa. However, a single line adapter
can be used alternately with asynchronous and synchronous modems if they are
character-oriented and of similar switching characteristics.

The following is a list of physical attributes copied from the named line (or source line) to
the target line:

• CRC polynomial

• CRC polynomial initial setting

• CRC polynomial final setting

• Mode (async, sync, or bit-sync)

• Vertical parity (mode = async or sync)

• Horizontal parity (mode = async or sync)

• BCS type (mode = async or sync)

• Stop bits (mode = async)

• Bit rate (that is, line speed)

• Sync character (mode = sync)

• DLE character (mode = sync)

• Address mode (mode = bit-sync)

• Control mode (mode = bit-sync)

• CLASS number

• Translate table

• Receive delay

Reconfiguration Request DCWRITE Types

5–102 8600 0841–202

• Transmit delay

• Receive timeout

• DPR delay for ACU

• Set digit delay for ACU

• Secondary address (mode = bit-sync)

• Function (mode = bit-sync)

• Disconnect action on loss of DSR

• Receive ready

• End of number for ACU

Whether MSG[0].[25:01] = 1 or 0, the transmit delay associated with the station being
added or moved is imposed on the target line if that delay is longer than that already in
use on the target line.

Logical Attributes

If MSG[0].[25:01] = 1, the station is being moved or added, and there is a terminal named
in the request (NDLIITERMINX is not zero), then logical characteristics of the station are
altered to match those associated with the named terminal.

The following is a list of logical attributes that are copied from the named terminal to the
station being moved or added:

• MAXINPUT message size

• MAXOUTPUT message size

• SCREEN

• WRAPAROUND

• LINEWIDTH

• PAGESIZE

• PAGECOUNT

 Reconfiguration Request DCWRITE Types

8600 0841–202 5–103

DCWRITE Errors

The following DCWRITE errors can be reported for the MOVE/ADD/SUBTRACT STATION
request when MSG[0].[25:01] = 1:

Number Meaning

 73 The message was less than or equal to nine words in length although
MSG[0].[25:01] = 1.

 79 The line name or terminal name was submitted in a bad format or without
a terminating period.

 92 During the reconfiguration, the station information was not found in the
DATACOMINFO file.

 98 There was no room on the target line for the station being moved or
added.

107 The MSG[8].[31:08] (NDLIILINEINX) value or the MSG[8].[39:08]
(NDLIITERMINX) value indicated a word outside the request message.

108 The terminal specified by the terminal name was not found.

110 The line specified by the line name was not found.

113 The algorithm identities associated with the station, the named line (if
present), the source line (if appropriate), and the target line were not the
same.

114 The switchable attributes (PRIVATE, DIALOUT, and AUTOANSWER) of the
target line do not conform to those of the named line (if present), or to
those of the source line in the case of a station move with no named line.

125 The ADD STATION or MOVE STATION request included a named line
when the target line was already supporting stations.

126 The SUBTRACT STATION request included a terminal name and
MSG[0].[25:01] = 1. (The change of station logical attributes is appropriate
only when not making a null line assignment.)

171 During the reconfiguration, an I/O error occurred or the link to the
DATACOMSUPPORT library failed.

173 During the move or subtract, the station could not be made NOT READY,
and the line/LSP could not be cleared.

174 During the reconfiguration, the target NSP did not respond correctly while
structures were being added to it.

195 A bit-oriented line cannot be changed into a character-oriented line and vice
versa.

Reconfiguration Request DCWRITE Types

5–104 8600 0841–202

Examples

ALLOCATE(MSG,8);
MSG[0] := LSN & 130 [47:8] & 1 [39:16];
MSG[7] := 0 & 1 [23:1] &89L [22:15];
RESULT := DCWRITE(MSG);

ALLOCATE(MSG,11);
MSG[0] := LSN & 130 [47:8] & 3 [39:16];
MSG[7] := 0 & 1 [23:1] & DL [22:15];
MSG[8] := 0 & 20 [23:8] % NEW ADAPTER TYPE
 & 9 [15:8]; % NEW TERMINAL NAME INDEX
REPLACE POINTER(MSG[9],8) BY "TERMINAL29.";
RESULT := DCWRITE(MSG);

 Reconfiguration Request DCWRITE Types

8600 0841–202 5–105

UPDATE LINE ATTRIBUTES (DCWRITE Type = 131)

Required Parameters/Fields

The minimum message size for the UPDATE LINE ATTRIBUTES DCWRITE function is
nine words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 131 Type.

7 [23:24] DL number, as follows:

 [23:01] 1

 [22:07] Relative NSP number.

 [15:08] Line number.

8 [31:08] NDLIILINEINX is the index
within MSG of the name of the
line.

The word MSG[NDLIILINEINX] is the name of the line.

Explanation

The UPDATE LINE ATTRIBUTES DCWRITE function allows an MCS to modify operations
parameters for a particular line. The line update is performed for the specified line, and if
any stations exist on the line, the line is left READY.

The only field in MSG[8] that is not ignored is [31:08] (NDLIILINEINX). If this field contains
0, error 107 is returned to indicate that the request was incomplete. The use of the line
name referenced by NDLIILINEINX allows the requestor to modify the connection
characteristics of a line in a manner consistent with the hardware strappings on the line
adapter.

The following is a list of physical attributes copied from the named line to the target line:

• CRC polynomial

• CRC polynomial initial setting

• CRC polynomial final setting

• Mode (async, sync, or bit-sync)

• Vertical parity (mode = async or sync)

• Horizontal parity (mode = async or sync)

• BCS type (mode = async or sync)

• Stop bits (mode = async)

• Bit rate (that is, line speed)

• Sync character (mode = sync)

Reconfiguration Request DCWRITE Types

5–106 8600 0841–202

• DLE character (mode = sync)

• Address mode (mode = bit-sync)

• Control mode (mode = bit-sync)

• CLASS number

• Translate table

• Receive delay

• Transmit delay

• Receive timeout

• DPR delay for ACU

• Set digit delay for ACU

• Secondary address (mode = bit-sync)

• Function (mode = bit-sync)

• Disconnect action on loss of DSR

• Receive ready

• End of number for ACU

 Reconfiguration Request DCWRITE Types

8600 0841–202 5–107

DCWRITE Errors

The following DCWRITE errors can be returned:

Number Meaning

73 The message was less than or equal to nine words in length.

76 The value of the DLS number indicated an invalid NSP-relative number.

77 The value of the DLS number indicated an invalid line number.

79 The line name was submitted in a bad format or without a terminating period.

91 The target line had stations on it, and none of them were associated with the
requestor MCS. None of these stations has to be attached to the requestor
MCS: the MCS number associated with a station has to be the same as that
of the requestor MCS for at least one of the stations on the target line.

107 The value in MSG[8].[31:08] (NDLIILINEINX) was 0 or indicated a word
outside the message.

110 The line specified by the line name was not found.

113 The algorithms associated with the target line and the named line were not
the same.

114 There was a mismatch between switch attributes of the named line and of
the target line: both must be either PRIVATE, DIALOUT, or AUTOANSWER.

171 During the reconfiguration, an I/O error occurred or the link to the
DATACOMSUPPORT library failed.

176 There was an incompatibility found between the named line and the target
line other than those reported specifically.

195 A bit-oriented line cannot be changed into a character-oriented line and vice
versa.

Example

ALLOCATE(MSG,11);
MSG[0] := 0 & 131 [47:8];
MSG[7] := 0 & 1 [23:1] & DL [22:15];
MSG[8] := 0 & 2 [22:7] & 9 [7:8];
REPLACE POINTER(MSG[9],8) BY "NEWMODEM.";
RESULT := DCWRITE(MSG);

Reconfiguration Request DCWRITE Types

5–108 8600 0841–202

8600 0841–202 6–1

Section 6
MCS Result Message Formats

This section contains the following topics:

• General result message formats

• Specific result message formats

• Error result message format

General Result Message Format
Result messages generated by the data comm system can be inserted periodically into
the primary queue or current queue of an MCS. The class of each message is identified
by a unique value in the class field of the message. In most cases, the class indicates the
meaning of the result message and the format of the message. In one case (Result
Class = 99), the class is supplemented by the result-byte index to indicate the meaning
and format of the message.

In many cases, a result message is generated when the operating system or the NSP
merely modifies certain fields within the original DCWRITE request message. In other
cases, the result message is created spontaneously.

The format of these result messages varies somewhat from class to class, but generally
appears as in Table 6–1.

Table 6–1. General Message Format

Word Field Description

[0] [47:08] Class field.

 [39:16] Variant field.

 [23:24] LSN-DLS number field.

[1] [47:08] Result-byte index field.

 [39:08] to [32:01]

TOGGLES: [39:01] = TOGGLE [7], [38:01] =
TOGGLE [6], and so on until [32:01] = TOGGLE [0].

 [31:08] Last error flag set in MSG[1].[23:24] (might not
always be turned on).

 [23:24] Error flag field.

Class Field (MSG[0].[47:08])

6–2 8600 0841–202

Table 6–1. General Message Format

Word Field Description

[2] [47:08] Retry count field.

 [39:16] Text size field.

 [23:24] Transmission number field.

[3] [47:24] Time field.

 [23:08] Tally [0].

 [15:08] Tally [1].

 [07:08] Tally [2].

[4] [47:24] Message number field.

 [23:24] Original DCWRITE type (the original value in
MSG[0].[47:24] when the DCWRITE function was
called).

[5] [27:01] 1 = Sequence number present.

 [26:27] Sequence number.

[6] to [N] Text

The meanings of the fields listed in Table 6–1 follow. These meanings apply to the
general case. Meanings that differ in particular result messages are presented in the
discussions of the individual result messages later in this section.

Class Field (MSG[0].[47:08])

The class field determines the way in which the remainder of the message is interpreted.
For example, if MSG[0].[47:08] = 0, the message contains “good” (error-free) input from
the NSP. The values for this field are presented in Table 6–2.

Table 6–2. Message Classes

Class Meaning

00 GOOD INPUT

01 STATION EVENT

02 FILE OPEN

03 OBJECT JOB OUTPUT

 Variant Field (MSG[0].[39:16])

8600 0841–202 6–3

Table 6–2. Message Classes

Class Meaning

04 FILE CLOSE

05 GOOD RESULT

06 RECALLED MESSAGE

07 SWITCHED LINE STATUS RESULT

08 LSP EXCHANGE RESULT

09 LINE STATUS RESULT

10 LINE SWAP RESULT

11 MOVE/ADD/SUBTRACT STATION RESULT

12 DLS UPDATE RESULT

13 MESSAGE FROM ANOTHER MCS

14 NSP TERMINATED

15 INTERROGATE STATION RESULT

16 TRANSFER STATION CONTROL RESULT

17 SEND TO MCS RESULT

18 SEND TO STATION RESULT

19 UPDATE LINE ATTRIBUTES

21 MESSAGE FROM CONTROLLER

24 LINE INTERROGATE RESULT

25 OBJECT JOB INPUT REQUEST

29 INTERCEPTED MESSAGE RESULT

30 NSPINITIALIZED RESULT

32 POWER OFF PENDING RESULT

80 ODT MODE SWITCH NOTICE RESULT

81 INPUT FROM AN ODT RESULT

99 ERROR MESSAGE

Variant Field (MSG[0].[39:16])

The variant field is used for qualification, variations, or additional information concerning
certain message types. Specific values or interpretations of the variant field are
presented in this section wherever applicable.

LSN Field (MSG[0].[23:24])

6–4 8600 0841–202

LSN Field (MSG[0].[23:24])

Most result messages received by an MCS contain an LSN in this field, but some can
contain a DLS number or other quantity depending on the type of result message.

Result-byte Index Field (MSG[1].[47:08])

Most nonerror messages received by an MCS have a result-byte index value equal to 0.
A nonzero value usually implies an error detected by the NSP (see interpretation of this
field for the Class = 99 error result message). Deviations from this practice are described
in this section wherever applicable.

Toggle Field (MSG[1].[39:08])

An NDLII algorithm can store information in this field by setting the REQUEST.TOGS
attribute. The interpretation of these bits by the MCS is determined by programming
convention and agreement between the MCS author and the NDLII algorithm author.

Last Error Flag Set Field (MSG[1].[31:08])

In most cases, the last error flag set field contains the bit number of the bit most recently
turned on in the error flag field (MSG[1].[23:24]) as a binary value. That is, if bit 6 was the
last bit turned on by the NSP in the error flag field, MSG[1].[31:08] = 6.
MSG[1].[31:08] = 4FF if MSG[1].[23:24] = 0.

Error Flag Field (MSG[1].[23:24])

The error flag field indicates any errors or situations encountered by the NSP while
attempting to honor this particular request (often, but not necessarily, as the result of an
MCS-requested DCWRITE). Depending on several factors, bits can be turned on in this
field even in messages that are not error messages. For example, an error situation
might have occurred, but the NDLII algorithm was able to achieve recovery with
subsequent retry measures, or the NDLII algorithm might have decided to perform a
SENDHOST input instead of a SENDHOST error on encountering an irrecoverable error
condition. (This practice can be useful in debugging NDLII algorithms, but is not
recommended for final code.) The interpretation of the error flag field is shown in
Table 6–3.

Note that the ERROR RESULT message (class = 99) also has an error result field.

 Error Flag Field (MSG[1].[23:24])

8600 0841–202 6–5

Table 6–3. Error Flag Values

Bit Value Description

0 1 A timeout occurred (NDLII TIMEOUT).

1 1 A stop-bit error occurred (NDLII STOPBIT).

2 1 An LSP-buffer overflow occurred (NDLII OVERRUN).

3 1 A break-on-input occurred (NDLII FRAMEABORT).

4 1 A disconnect occurred (NDLII DISCONNECT).

5 1 A break-on-output occurred (NDLII FRAMEABORT).

6 1 A vertical character parity error occurred (NDLII PARITY).

7 1 A horizontal parity (BCC or CRC) error occurred (NDLII
BCSERROR).

8 1 An address-character error occurred (NDLII
ADDRESSERROR).

9 1 A transmission-number error occurred (NDLII
TRANSERROR).

10 1 A format error on input occurred (NDLII FORMATERROR).

11 1 An output was not acknowledged (NDLII NAKFLAG).

12 1 The first character of the message contains the control
character of the station (as defined in NDLII or NDLII bit-
variable CONTROLMESSAGE, or set by MCS).

13 1 A WRU (who-are-you) was received (NDLII WRUFLAG).

14 1 A sequence number overflow occurred (NDLII
SEQUENCEERROR).

15 1 The message is to be acknowledged (ACK).

16 1 A NAK-ON-SELECT occurred (NDLII NAKONSELECT).

17 1 An END-OF-BUFFER (message overflow) occurred (NDLII
ENDOFBUFFER).

18 1 A LOSS-OF-CARRIER occurred (NDLII LOSSOFCARRIER).

20 1 A station or line is NOT READY.

21 1 An idle condition was detected on a bit-oriented line
(NDLII IDLEDETECT).

22 (Reserved for expansion.)

23 (Reserved for expansion.)

Retry Count Field (MSG[2].[47:08])

6–6 8600 0841–202

Retry Count Field (MSG[2].[47:08])

The retry count field contains the number of retries that remain at the time the NSP
finished the request. The validity and value of this field rest on the programming
conventions employed by the author of the NDLII algorithm. Normally, the NDLII
programmer decreases the retry count by 1 for each unsuccessful attempt at an
operation in the NDLII algorithm until RETRY equals 0; a SENDHOST error or
FINISHREQUEST statement is then performed.

Text Size Field (MSG[2].[39:16])

The text size field is valid for messages that constitute input (implied or otherwise). This
field contains the number of bytes of meaningful text stored as input by the NDLII
algorithm (starting in the left character position of MSG[6], 6 characters per word).

Transmission Number Field (MSG[2].[23:24])

The transmission number field is valid for messages that constitute input (implied or
otherwise) from the NSP (a station) where the station in question uses transmission
number conventions. The transmission number received with this input is stored as three
EBCDIC numeric characters.

Time Field (MSG[3].[47:24])

The time field, if 0 initially, contains the time (in 60ths of a second) at whichthe NSP
returned the result or at which the central system received this message from the NSP.
The form of this value is equivalent to that obtained as TIME(1) by the ALGOL TIME
function intrinsic. (Refer to “Arithmetic Intrinsic Names” in the ALGOL Programming
Reference Manual, Volume 1: Basic Implementation.)

TALLY[0], TALLY[1], and TALLY[2]

These tally fields are MSG[3].[23:08], MSG[3].[15:08], andMSG[3].[07:08], respectively.
The interpretation of these fields is analogous to that for the togglefield (MSG[1].[39:08]).

Message Number Field (MSG[4].[47:24])

The message number field is discussed in “DCWRITE Message Format” in the
“DCWRITE Information” section. The values in this field for messages other than those
generated by an MCS by use of the DCWRITE function are undefined except for the
OBJECT JOB OUTPUT (Result Class = 3) message or the RECALLED MESSAGE (Result
Class = 6) message that corresponds to a (Result Class = 3) message; in those cases,
the message number field contains the FRSN of the originating file.

 Original DCWRITE Type Field (MSG[4].[23:24])

8600 0841–202 6–7

Original DCWRITE Type Field (MSG[4].[23:24])

If this message originally came from an MCS by use of the DCWRITE function (or as a
result of object job output, where the MCS elected not to participate in object job I/O),
the original DCWRITE type field (MSG[0].[47:08]) and DCWRITE variant field
(MSG[0].[39:16]) appear in this field. Input messages obtained because a station was
enabled have the ENABLE INPUT type value (35) in [23:08] of this field.

Sequence Number Present Field (MSG[5].[27:01]

A value of 1 in this field indicates that there is a valid value in the sequence number field.

Sequence Number Field (MSG[5].[26:27])

The sequence number field is set from the sequence-result field in the result message
from the NSP, if the result class is equal to SEQUENCE RESULT.

Text (beginning at MSG[6])

Text appears in EBCDIC character form, left justified, starting in relative word 6 of the
message, six characters per word. For input if translation is necessary, the NSP and LSP
perform the translation.

Text (beginning at MSG[6])

6–8 8600 0841–202

Specific Result Message Formats
The following describes the ways in which the formats and meanings of the various
result message classes differ from the general case. Refer to the beginning of this
section for the description of the general case.

The current queue of a station is, by default, the primary queue of the controlling MCS
until (or unless) a CHANGE CURRENT QUEUE (Type = 32) DCWRITE is performed that
names a queue other than the primary queue of the MCS. Also, in the case in which the
current queue of the station and the primary queue of the MCS are not the same, the
settings of the option bits MSG[0].[39:16] in the STATIONATTACH (Type = 1), CHANGE
CURRENT QUEUE (Type = 32), and STATIONASSIGNMENT TO FILE (Type = 64)
DCWRITE types assume an important role in the determination of ultimate queue
destinations for the various types of result messages that an MCS can receive.

In the following descriptions of specific result message formats, this important
information is not restated except in cases of special interest. As an aid to clarification
and understanding of the following material, you should occasionally review the option
bits (refer to “STATION ATTACH (DCWRITE Type = 1)” in the “DCWRITE Information”
section). It is also important to realize that an MCS might never see result messages of
certain classes for a given station because the MCS might have elected to have the
messages discarded and not returned.

DCALGOL is a constantly changing language; changes are made primarily through the
addition of new functions, new statements, new DCWRITE types, and new result
message classes. The new DCWRITE types cannot cause a problem with an old MCS.
However, each MCS should be written so that new result message classes do not cause
problems. That is, if an MCS encounters a result message in a current queue or its
primary queue with a message class that is unrecognized by the MCS, the MCS should
discard the result message and continue processing.

 GOOD INPUT RECEIVED (Result Class = 0)

8600 0841–202 6–9

GOOD INPUT RECEIVED (Result Class = 0)

Message format

Word Field Value Description

0 [47:08] 0 Class.

 [29:01] 1 More blocks to follow this one.

 [23:24] LSN.

Explanation

Receipt of a message of Class = 0 in the current queue of the station is a direct result of
an NDLII algorithm performing a SENDHOST input. The input might have been initiated
because of a READ-ONCE ONLY (Type = 34) DCWRITE (in which case, MSG[4].[23:08] =
34) or because the station has been enabled (in which case, MSG[4].[23:08] = 35). In the
former case, the GOODINPUT RECEIVED message space is the same as presented in
the READ-ONCE ONLY DCWRITE. If the station is not enabled for input and no
outstanding READ-ONCE ONLY requests exist in the station queue of the station, all
further input information received from a station is discarded until the station is enabled
or another READ-ONCE ONLY request is issued for the station.

Text, if any, appears in MSG[6] through MSG[N] and is valid information for a total-of-text
size field (MSG[2].[39:16]) characters.

STATION EVENT (Result Class = 1)

6–10 8600 0841–202

STATION EVENT (Result Class = 1)

Message format

Word Field Value Description

0 [47:08] 1 Class.

 [39:16] 0 Input event.

 3 New station activity.

 [23:24] LSN.

1 [31:08] The switched status of the line (if this message is a
new station activity result).

 [23:24] The error flag field if this MESSAGE is an input event
result, or the DLS number if this message is a new
station activity result.

6 to
end

 The input text is contained in these fields if the
message is an input event. The station name is
contained in these fields in display form (for example,
TTY/ONE) if the message is caused by new station
activity.

Explanation

When an MCS receives a STATION EVENT message from the system, a noteworthy
event has occurred on one of the stations that this MCS controls.

An input event (MSG[0].[39:16] = 0) result message signifies to the MCS that at least one
of the following four cases must have occurred:

1. A station break on input occurred. Bit 3 is turned on in the error flag field
(MSG[1].[23:24]).

2. A station break on output occurred. Bit 5 is turned on in the error flag field
(MSG[1].[23:24]).

3. The NSP received the station NDLII-defined (or established by the MCS) control
character as the first character of the input text. Bit 12 is turned on in the error flag
field (MSG[1].[23:24]).

4. The station was disconnected.

Usually, more than one of these four conditions can be flagged in the error flag field for
any given input event message; however, this capability is determined to some extent by
the NDLII programmer.

The action that the MCS can take when it receives an input event message depends on
individual installation requirements. For example, if the MCS receives an input event
message in which MSG[1].[12:01] = 1 (the message contains the station control
character as the first character), the MCS might choose to treat the message text in a
different manner than other input messages.

 STATION EVENT (Result Class = 1)

8600 0841–202 6–11

If MSG[2].[39:16] does not equal 0, text exists in the message.

A new station activity (MSG[0].[39:16] = 3) message signifies to the MCS that a station it
controls has become active and attached where it had previously been neither active nor
attached. Receipt of the new station activity message is an announcement of implicit
station attachment. (Refer to “STATION ATTACH (DCWRITE Type = 1)” in the
“DCWRITE Information” section and “FILE OPEN (Result Class = 2)” in this section.)
Therefore, a subsequent STATION ATTACH DCWRITE is unnecessary unless options
other than the default options are to be exercised (refer to the variant in “STATION
ATTACH (Result Type = 1)” in the “DCWRITE Information” section). The name of the
station in display form appears beginning in MSG[6] and is left-justified. The DLS number
of the station appears in MSG[1].[23:24], the switched status for the line with which the
station is associated appears in MSG[1].[31:08], andthe LSN of the station appears in
MSG[0].[23:24]. The MCS then proceeds to deal with the station in the same way that
the MCS would deal with a station for which a successful STATION ATTACH DCWRITE
had been performed.

The message for new station activity is generated by the operating system when it
receives a message for a station that was previously unrecognized. Both messages are
then placed in the primary operating system queue. The new station activity message
appears first in the queue.

FILE OPEN (Result Class = 2)

6–12 8600 0841–202

FILE OPEN (Result Class = 2)

Message Format

Word Field Value Description

0 [47:08] 2 Class.

 [26:01] 1 File is a direct file.

 [25:02] File output tanking specification.

 0 Unspecified.

 1 None.

 2 SYNC.

 3 ASYNC.

 [23:24] LSN.

1 [47:08] Switched line status.

2 [39:16] Text size field.

3 [47:24] Time of day field.

6 [45:14] Program mix number of the object job. This field is 0 if
the controlling MCS is an expanded capacity MCS.
Since this field is obsolete, refer to word 8, field
[15:08].

 [25:02] File MYUSE attribute value.

 1 Input.

 2 Output.

 3 IO.

 [23:24] FRSN, broken down as follows:

 [23:10] File number (created at file open time).

 [13:14] RSN in the file.

7 [47:08] MCS number of the current controlling MCS.

 [39:16] Record index into the DATACOMINFO file for the
station.

 [23:24] DLS number.

 [23:01] 0 The station name has no current line assignment.

8 [47:08] The word index into MSG where the station name
(title) is found.

 [39:08] The word index into MSG where the file INTNAME is
found.

 [31:08] The word index into MSG where the title of the
program opening the file is found.

 [23:08] The word index into MSG where the file title is found.

 FILE OPEN (Result Class = 2)

8600 0841–202 6–13

Word Field Value Description

 [15:08] The word index into MSG where the job number of
the program that opens the remote file is contained.
Word index + 1 contains the mix number of the object
job.

9 to
end

 The station name, file INTNAME program title, file
title, and job number are contained in these words.

Explanation

Receipt of a FILE OPEN message by an MCS indicates the opening of an object job file
that contains one of the stations controlled by the MCS. The MCS receives a FILE OPEN
message for each station contained in the file over which it has control. The MCS then
performs a STATIONASSIGNMENT TO FILE (Type = 64) DCWRITE. In some cases such
as a broadcast write, the object program can be held up until a STATIONASSIGNMENT
TO FILE (Type = 64) DCWRITE has been received for each station in the file.

The value of the MYUSE file attribute informs the MCS that the file is opened either
input-only, output-only, or I/O. The job number occupies an entire word in binary format.
The station name, the file INTNAME, and the program title begin at word boundaries in
MSG and appear in display form (for example, “TTY/ONE.”) as a left-justified character
string. Thus, a pointer expression that points to the first character of the station name
would appear as follows:

POINTER(MSG[MSG[8].[47:8]],8)

The text size field message is defined to be the number of characters from the beginning
of MSG[6] to the end of MSG[N], although this field usually is not a string of legitimate
characters. This practice allows a consistent calculation of message size based on the
textsize field. The station name (title), the file INTNAME, the program title, and the file
title are terminated by a period followed by a fill of hexadecimal zeros, if necessary, up to
the next word boundary.

OBJECT JOB OUTPUT (Result Class = 3)

6–14 8600 0841–202

Station Transfer File Open

A FILE OPEN message is generated and sent to the MCS referenced by
PSEUDOMCSNRF when stations are transferred and are performing logical I/O.

Message Format

Word Field Value Description

0 [47:08] FILEOPENMSG.

 [26:01] 1 Flag for audit and debugging use.

 [23:24] LSN of transferred station.

2 [39:16] 3 Text size.

6 [23:24] FRSN of the LSN.

OBJECT JOB OUTPUT (Result Class = 3)

Message Format

Word Field Value Description

0 [47:08] 3 Class.

 [39:16] Carriage control bits.

 [23:24] LSN.

2 [39:16] Number of bytes of text to be sent to the
station.

4 [47:24] FRSN.

6 to end Text (if any).

Explanation

Receipt of the OBJECT JOB OUTPUT message class by an MCS is a direct result of an
object job performing a WRITE statement directed to a station under the control of the
MCS. An MCS does not receive messages of this class unless bit 29 in the variant field
was allocated by the MCS in the most recent CHANGE CURRENT QUEUE (Type = 32),
or a STATIONASSIGNMENT TO FILE (Type = 64) DCWRITE was performed for this
station to indicate that the MCS wishes to participate in I/O for the station. The format of
this message is identical to the WRITE (Type = 33) DCWRITE message format. Changing
the type to WRITE (DCWRITE Type = 33) and passing the message to DCWRITE causes
the output to be sent to the station.

 FILE CLOSE (Result Class = 4)

8600 0841–202 6–15

FILE CLOSE (Result Class = 4)

Message Format

Word Field Value Description

0 [47:08] 4 Class.

 [23:24] LSN.

 [25:01] 1 The second close result for asynchronous
tanking.

 [24:01] 1 The task has executed CLOSE but output is
tanked; the second CLOSE result is sent
when all output has been completed.

6 [23:24] FRSN.

The rest of the format is identical to that of FILE OPEN (Result Class = 2) result.

Explanation

Receipt of the FILE CLOSE message by an MCS constitutes notification of the closing of
an object job file that included this station. The MCS receives a FILE CLOSE message for
each station in the file. The FRSN for the station in this file is no longer valid; however,
the station remains attached to the MCS. The FILE CLOSE message contains all the
information about the station that is contained in the FILE OPEN (Result Class = 2)
message.

Action by the MCS is a matter of program convention. Unlike the FILE OPEN message,
the data comm system software neither expects nor requires any particular DCWRITE
response on the part of the MCS. However, if an MCS has postponed opening other files
on this station, the MCS can use the close result to signal itself that another file can now
be opened.

FILE CLOSE (Result Class = 4)

6–16 8600 0841–202

Station Transfer FILE CLOSE

A FILE CLOSE message is generated and sent to the MCS referenced by
PSEUDOMCSNRF when stations are transferred and performing logical I/O.

Message Format

Word Field Value Description

0 [47:08] FILECLOSEMSG.

 [26:01] 1 Flag for audit and debugging use.

 [23:24] LSN of the transferred station.

2 [39:16] 3 Text size.

6 [23:24] FRSN of LSN.

 GOOD RESULTS (Result Class = 5)

8600 0841–202 6–17

GOOD RESULTS (Result Class = 5)

Message Format

Word Field Value Description

0 [47:08] 5 Class.

 [23:24] LSN.

4 [23:24] The original contents of MSG[0].[47:24] of the
DCWRITE request prior to the presentation of
the message to the NSP are contained in this
word.

Explanation

If an MCS chooses to receive all results from the NSP for a station, the results are
returned with a Class of 5 in the current queue (refer to the variant field in the “STATION
ATTACH (DCWRITE Type = 1)” in the “DCWRITE Information” section). The type and
variant fields (MSG[0].[47:24]) of the original DCWRITE message are found in each result
message in MSG[4].[23:24]. If the original DCWRITE type (found in MSG[4].[23:08]) is
one of the following switched line requests, the message result returned is the
SWITCHED STATUS (Type = 101) message:

• DIALOUT (DCWRITE Type = 98)

• DISCONNECT (DCWRITE Type = 99)

• ANSWER THE PHONE (DCWRITE Type = 100)

• INTERROGATE SWITCHED STATUS (DCWRITE Type = 101)

However, if the original DCWRITE type (found in MSG[4].[23:08]) is the particular
switched line request SET/RESET AUTOANSWER (DCWRITE Type = 102), the message
result returned is the GOOD RESULTS (Result Class = 5) message.

The error flag field can have one or more bits turned on in a result message, but the
request itself was honored by the NSP. That is, the NSP recovered successfully from any
conditions that it encountered. Results from OBJECT JOB OUTPUT (Result Class = 3)
messages are also returned to the MCS, even if the MCS chooses not to participate in
object job I/O but chooses to receive all results.

GOOD RESULTS messages are interpreted as the assurance that the operation
requested of the NSP was successfully completed. Examples are the MAKE STATION
READY (Type = 37) DCWRITE or the ENABLE INPUT (Type = 35) DCWRITE. DCWRITE
types that cause the creation of a GOOD RESULTS (Result Class = 5) message are as
follows:

• CHANGE CURRENT QUEUE (Type = 32) DCWRITE (if the text is not empty)

• WRITE (Type = 33) DCWRITE

• ENABLE INPUT (Type = 35) DCWRITE

• DISABLE INPUT (Type = 36) DCWRITE

GOOD RESULTS (Result Class = 5)

6–18 8600 0841–202

• MAKE STATION READY/NOT READY (Type = 37) DCWRITE

• SET APPLICATION NUMBER (Type = 38) DCWRITE

• SET CHARACTERS (Type = 39) DCWRITE

• SET TRANSMISSION NUMBER (Type = 40) DCWRITE

• RECALL MESSAGE (Type = 41) DCWRITE

• STATION DETACH (Type = 42) DCWRITE

• SET/RESET LOGICALACK (Type = 43) DCWRITE

• ACKNOWLEDGE (Type = 44) DCWRITE or WRITE AND RETURN (Type = 46)
DCWRITE

• NULL STATION REQUEST (Type = 48) DCWRITE

• SET/RESET SEQUENCE MODE (Type = 49) DCWRITE

• SET/RESET AUTOANSWER (Type = 102) DCWRITE

Variant Field in Response to RECALL MESSAGE

If the original DCWRITE was RECALL MESSAGE (Type = 41), the variant field
MSG[0].[39:16] indicates whether or not any RECALLED MESSAGE (Result Class =6)
messages are recalled, as follows:

Word Field Value Description

0 [39:16] 0 No messages exist to be recalled.

 1 One or more messages that exist in the
station queue have been recalled. These
messages are next in the current queue of the
station.

 RECALLED MESSAGE (Result Class = 6)

8600 0841–202 6–19

RECALLED MESSAGE (Result Class = 6)

Message Format

Word Field Value Description

0 [47:08] 6 Class.

 [39:16] 0 This message is the last of those recalled by the
RECALL MESSAGE (Type = 41) DCWRITE.

 1 This message is not the last of those recalled by
the RECALL MESSAGE (Type = 41) DCWRITE.

 [23:24] LSN.

4 [23:24] The original contents of MSG[0].[47:24] of the
DCWRITE request prior to the presentation of
the message to the NSP. If the original content
of MSG[0].[47:08] prior to the presentation of
the message to the NSP was OBJECT JOB
OUTPUT (Result Class = 3), MSG[4].[47:24]
contains the FRSN.

Explanation

If an MCS decides to discontinue output to a station (for example, because of an
excessively large number of errors) but decides to save all outstanding requests queued
for the station, the MCS can perform a RECALL MESSAGE (Type = 41) DCWRITE. The
queued requests are removed from the station queue on a first-in, first-out basis and are
placed in the current message queue of the station with the result type equal to 6, thus
preserving the integrity of time-ordered sequencing.

SWITCHED STATUS RESULT (Result Class = 7)

6–20 8600 0841–202

SWITCHED STATUS RESULT (Result Class = 7)

Message Format

The format for this message is included in the description under “SWITCHED STATUS
FORMAT” in “ERROR RESULT (Result Class = 99)” in this section.

Explanation

The origin of the SWITCHED STATUS RESULT message one of the following:

• The result of the DIALOUT (Type = 98) DCWRITE, the DISCONNECT (Type = 99)
DCWRITE, the ANSWER THE PHONE (Type = 100) DCWRITE, or the
INTERROGATESWITCHED STATUS (Type = 101) DCWRITE

• An unrequested change of (switched) status automatically reported by the NSP such
as an unexpected disconnect or connection by the autoanswer capability

 LSP EXCHANGE RESULT (Result Class = 8)

8600 0841–202 6–21

LSP EXCHANGE RESULT (Result Class = 8)

Message Format

Word Field Value Description

0 [47:08] 8 Class.

 [39:16] As originally presented to the EXCHANGE
LSPS (Type = 129) DCWRITE function.

 [22:07] Relative number from which the LSPs were
transferred.

 [15:16] Mask of the LSPs that were transferred and
that initialized successfully.

1 [47:08] 0 LSP exchange successfully completed.

 not 0 Interpreted as for DCWRITE error values.

6 [31:08] NSPLSPINX is the index within MSG of the
list of new NSP/LSP hardware unit numbers
and DLS numbers.

 [23:08] The exchanged relative NSP number.

 [15:08] The number of LSPs exchanged and
number of additional words, starting with
MSG[7].

 [07:08] The MCS number of the requesting MCS.

7 and on

 Contains the following for each LSP:

 [39:08] The relative LSP number.

 [31:16] The mask of prior READY-made status for
each line (adapter) on LSP (0 = READY, 1 =
NOT READY); bit number = line (adapter)
number + 16.

 [15:16] The mask of valid lines (adapters) for the
LSP; bit number = line (adapter) number.

NSPLSPINX
to end

 Contains the following for each LSP
exchanged:

 [47:16] The NSP hardware unit number on which
the LSP is now located.

 [31:16] The LSP hardware unit number.

 [15:01] 1 The NSP is available.

 0 The NSP is not initialized.

LSP EXCHANGE RESULT (Result Class = 8)

6–22 8600 0841–202

Word Field Value Description

 [14:07] The relative number of the NSP.

 [07:04] The relative number of the LSP.

 [03:04] 0

These words are presented in the same order as those beginning at MSG[7]. The LSP
numbers in those words represent the LSP-relative numbers of the LSPs before the
exchange.

Explanation

All MCSs affected as a result of LSP exchanging are sent a Class = 8 result message. If
LSP exchanging cannot be accomplished for any reason, only the requesting MCS
receives a Class = 8 result message and MSG[1].[47:08] is nonzero. (The interpretation of
this error value can be derived from the DCWRITE error values.) If MSG[1].[47:08] is 0,
the LSP exchange was successfully accomplished and information concerning the actual
LSPs involved in the exchange is found in MSG[6] through MSG[N] (where N = 6 +
MSG[6].[15:08]). Line numbers, as indicated by the L in the DL number or the DLS
number, are actually 8-bit concatenations of 4-bit adapter numbers (where the relative
LSP number field comprises the four high-order bits, and the adapter number comprises
the four low-order bits).

The Class = 8 result information (from EXCHANGE LSPS (Type = 129) DCWRITE) can be
noted or discarded at the discretion of an MCS.

 LINE STATUS CHANGE RESULT (Result Class = 9)

8600 0841–202 6–23

LINE STATUS CHANGE RESULT (Result Class = 9)

Message Format

Word Field Value Description

0 [47:08] 9 Class.

 [23:24] LSN.

1 [20:01] 0 The line is READY.

 1 The line is NOT READY.

7 [23:24] DL number.

Explanation

A LINE STATUS CHANGE RESULT message is always generated by the NSP as a part of
its response to the MAKE LINE READY DCWRITE (even if the line is READY). A LINE
STATUS CHANGE RESULT message is generated by the NSP as a part of its response to
the MAKE LINE NOT READY DCWRITE if, and only if, the line was READY prior to the
MAKE LINE NOT READY DCWRITE.

Only one Class = 9 result message is generated. If the result was generated by a MAKE
LINE NOT READY (Type = 96) DCWRITE that specified a DL number rather than an LSN,
the result is returned to the MCS that controls the lowest-numbered valid station on the
line (not necessarily the MCS that performed the original DCWRITE). The result is routed
by the operating system to the current queue of that station if the controlling MCS
indicated that it is to receive Class = 9 result messages. Otherwise, the operating
system discards the message.

SWAP LINE RESULT (Result Class = 10)

6–24 8600 0841–202

SWAP LINE RESULT (Result Class = 10)

Message Format

Word Field Value Description

0 [47:08] 10 Class.

 [39:40] As originally presented to SWAP LINE
(Type = 128) DCWRITE.

1 [47:08] 0

The line swap successfully completed.

 not 0

Interpreted as for DCWRITE error
values.

6 The MCS number of the requestor.

7 [47:24] The DL number of the first or source
line.

 [23:24] The DL number of the second or target
line as presented in the original request.

8 [47:16] The NSP hardware unit number of the
source line.

 [31:16] The LSP hardware unit number of the
source line.

9 [47:16] The NSP hardware unit number of the
target line.

 [31:16] The LSP hardware unit number of the
target line.

Explanation

All MCSs affected as a result of line swapping receive a SWAP LINE RESULT message.
If line swapping cannot be accomplished for any reason, only the requesting MCS
receives this message and MSG[1].[47:08] is not zero. If MSG[1].[47:08] = 0, the line
swap was successfully accomplished.

In addition, all affected MCSs receive DLS UPDATE (Result Class = 12) result messages
for all stations that have had their DLS number changed as a result of the line swap.

 MOVE/ADD/SUBTRACT STATION RESULT (Result Class = 11)

8600 0841–202 6–25

MOVE/ADD/SUBTRACT STATION RESULT (Result Class = 11)

Message Format

Word Field Value Description

0 [47:08] 11 Class.

 [39:40] As originally presented to the
MOVE/ADD/SUBTRACT (Type = 130)
DCWRITE.

1 [47:08] 0 MOVE/ADD/SUBTRACT successfully
completed.

 not 0 Interpreted as for DCWRITE error values.

6 The MCS number of the requestor.

7 [47:24] The DLS number of the station after the
MOVE or ADD; 0 for SUBTRACT.

 [23:24] The DLS number of the station before
reconfiguration; 0 for an ADD.

8 [47:16] If a MOVE or an ADD, the NSP hardware
unit number of the new location of the
station.

 [31:16] If a MOVE or an ADD, the LSP hardware
unit number of the new location of the
station.

9 [47:16] If a MOVE or a SUBTRACT, the NSP
hardware unit number of the old location
of the station.

 [31:16] If a MOVE or a SUBTRACT, the LSP
hardware unit number of the old location
of the station.

Explanation

Unlike the LSP EXCHANGE RESULT (Result Class = 8) messages and the SWAPLINE
RESULT (Result Class = 10) messages, only the requesting MCS sees the
MOVE/ADD/SUBTRACT STATION RESULT message (since it is the only MCS affected
by this type of reconfiguration).

Receipt of this message with MSG[1].[47:08] = 0 signifies that the
MOVE/ADD/SUBTRACT request was successfully completed. IfMSG[1].[47:08] is not
zero, an error was discovered and the interpretation of this field is the same as that for
DCWRITE error values.

DLS UPDATE RESULT (Result Class = 12)

6–26 8600 0841–202

DLS UPDATE RESULT (Result Class = 12)

Message Format

Word Field Value Description

0 [47:08] 12 Class.

 [00:01] 0 More Class = 12 messages are to follow.

 1 The last or only Class = 12 message.

6 [47:48] The number of entries in the following words.

7 to
end

 Station information, as follows:

 [37:14] LSN.

 [23:01] 0 The station has no line assignment.

 1 The DLS number for a station with a line
assignment.

 [22:23] The new DLS number (if [23:01] = 1).

Explanation

All MCSs (including the requesting MCS) affected by any reconfiguration request receive
one or more DLS UPDATE RESULT messages that contain information pertinent to
stations to which the MCS is currently attached and whose relative NSP number, line
number, or station number is altered during processing of a reconfiguration request. The
maximum number of entries for any given DLS UPDATE RESULT message is 128. If
MSG[0].[00:01] = 1 for a given DLS UPDATE RESULT message, this value signifies that
this message is the last (and, perhaps, only) message of its class for the current
reconfiguration request. An MCS can note or discard at its discretion the information
given in a DLS UPDATE RESULT message. However, if an MCS is DLS-number-oriented
(for any of a variety of reasons), this information is of particular interest and should be
noted.

 INTER-MCS COMMUNICATE RESULT (Result Class = 13)

8600 0841–202 6–27

INTER-MCS COMMUNICATE RESULT (Result Class = 13)

Message Format

Word Field Value Description

0 [47:08] 13 Class.

 [23:24] MCS number of the communicating MCS.

Explanation

Receipt of this message class in the primary queue of an MCS signifies the attempt of
another MCS to communicate with the recipient MCS through an INTER-MCS
COMMUNICATE (Type = 3) DCWRITE.

The interpretation of, and action taken in, receipt of this message type depends on
mutually established conventions between the communicator and the recipient MCSs.

STATION DETACHED (Result Class = 14)

6–28 8600 0841–202

STATION DETACHED (Result Class = 14)

Message Format

Word Field Value Description

0 [47:08] 14 Class.

 [39:16] 0 The station was detached because the NSP
terminated.

 1 The station was detached because of the
action of the fully-participating MCS.

 2 The station was detached as a result of a
modification to the configuration made using
the Interactive Datacomm Configurator (IDC).

 [23:24] LSN.

1 [23:24] DLS number.

Explanation

Receipt of a STATION DETACHED result message signifies that the station is detached
from the MCS. Further attempts to work with the station result in error values returned
from calls on DCWRITE.

If word 0 [39:16] equals 0, the station is detached, because the NSP to which it was
connected terminated. In this case, a STATION DETACHED result message is sent for
each station on the NSP that is attached to an MCS.

If word 0 [39:16] equals 1, the station is detached by the fully-participating MCS. The
fully-participating MCS is the MCS that transferred the station to the current owning
MCS. If the former detaches the station or terminates, the current owning MCS receives
a Class = 14 result message for the station.

If word 0 [39:16] equals 2, the station is detached because someone used the IDC to
modify the running configuration. In this case, it is possible that the station is now under
the control of a different MCS. This result is generated if an IDC modification causes the
station to no longer have a valid DLS number, or if IDC is used to transfer the station to
another MCS. Examples of IDC commands that may have these effects are SUBTRACT
STATION, SUBTRACT LINE, MOVE STATION, MOVE LINE, MODIFY STATION, and
MODIFY LINE. Refer to the IDC Operations Guide for descriptions of these commands.

 INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

8600 0841–202 6–29

INTERROGATE STATION ENVIRONMENT RESULT
(Result Class = 15)

Message Format

Word Field Value Description

0 [47:08] 15 Class.

0-5 Interpretations applicable to the general
message format.

6 [23:08] The size of this message (in words).

 [15:08] The number of entries in this message.

 [07:08] The index to first word of the first entry.

Explanation

The INTERROGATE STATION ENVIRONMENT RESULT message is returned in response
to an INTERROGATE STATION ENVIRONMENT (Type = 4) DCWRITE request.

An MCS can issue an INTERROGATE STATION ENVIRONMENT request to inquire about
the attributes of any station. The result indicates whether or not the station is a
pseudostation. The response also indicates whether an MCS has requested full
participation for the station.

Blanket interrogations can cause one or more Class = 15 message results to be
generated; each message contains one or more entries. An entry can consist of one or
more of the following types of information:

• Three or four words of station (logical) information from the operating system tables
and eight words of NSP station table information

• Two words of terminal (physical) information

• Two words of line information from the operating system tables, and four optional
words of NSP line table information

• One or more words of the station name

• One or more words of the terminal name

• An index word that provides pointers to the locations of each of the present
information types and an index to index word for the next entry in the message
(if any)

This particular message format was chosen so that when additional, desirable
information becomes available, MCSs that wish to use the additional information can do
so with minimal effort and MCSs that do not wish to use the new data are not forced
into reprogramming.

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

6–30 8600 0841–202

Explanation of Expanded Message Format

The expanded message format of the INTERROGATE STATION ENVIRONMENT
RESULT message is used because of the variety and quantity of information that can be
returned in this message.

This result message is an indexed structure. Figure 6–1 illustrates the path through index
words to obtain additional station, line, or terminal information.

MSG[6] always contains (among other items) the index of the index word of the first
entry. Each entry unconditionally has an index word that contains indexes for its entry to
the requested information contained in the entry. The index word of an entry also
contains the index of the word in the entry. In the special case in which the value of the
index word (of the next index of the entry) is 0, no further entries beyond the current
entry in that message exist.

For the remaining index fields within the index word of an entry that contain 0, the
interpretation must be that the information was not originally requested and therefore is
not supplied. (Refer to “INTERROGATE STATION ENVIRONMENT (DCWRITE Type = 4)”
in the “DCWRITE Information” section to determine the method of requesting the
various types of information.)

Word 6 of the INTERROGATE STATION ENVIRONMENT RESULT message contains the
index to the first word of the first entry of the message. This first word is referenced as
the index word, MSG[INX], in Figure 6–1 and in the message format. MSG[INX] holds the
indexes to several first words of terminal, station, or line information. The bit fields of the
words referenced by the indexes provide details of status and information requested.

 INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

8600 0841–202 6–31

The format of the message is illustrated in Figure 6–1. The format and meaning of each
bit field is explained following the figure.

.

Figure 6–1. INTERROGATE STATION ENVIRONMENT RESULT Index Diagram

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

6–32 8600 0841–202

INX := MSG[6].[07:08] (First Entry Index)

MSG[6].[07:08] has the following format:

Word Field Description

MSG[INX]

[47:08] The index to the terminal name, if not zero.

 [39:08] The index to the station name, if not zero.

 [31:08] The index to the first word of line information (if 0, no
entry).

 [23:08] The index to the first word of terminal information (if 0,
no entry).

 [15:08] The index to the first word of station information (if 0,
no entry).

 [07:08] The index to the first word (index word) of next entry
(if 0, this is the last entry of the message).

The format of this word remains the same for the first word (index word) of each
subsequent entry, if any.

MSG[MSG[INX].[47:08]]

If the terminal name is requested, MSG[MSG[INX].[47:08]] is represented in display form
as six or fewer EBCDIC characters per word terminated by a period (for example,
“TD830E.”).

MSG[MSG[INX].[39:08]]

If the station name is requested, MSG[MSG[INX].[39:08]] is represented in display form
as six or fewer EBCDIC characters per word terminated by a period (for example,
“STATION/ONE.”).

MSG[MSG[INX].[31:08]]

If the station has line assignment and line information is requested,
MSG[MSG[INX].[31:08]] consists of a 2-word or 5-word entry that comprises several bit-
fields. The interpretation varies depending on whether NSP line information was
requested.

 INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

8600 0841–202 6–33

Figure 6–2 illustrates the format of the INTERROGATE STATION ENVIRONMENT
RESULT message that is returned when NSP line table information was, and was not,
requested.

Status Word

Word 0 of NSP Line Table

Status Word

NSP Line Desriptor

Word 1 of NSP Line Table

Word 0 of NSP Line Table

Hardware Unit Number Word

Figure 6–2. Interpretation of MSG[MSG[INX].[31:08]]

The words contained in MSG[MSG[INX].[31:08]] are explained in the following discussion.

First Word: MSG[MSG[INX].[31:08]]

This is the status word and has the following format.

Field Value Description

[46:01] 1 The line is NOT READY.

[45:01] 1 A line change is in progress (reconfiguration in
progress).

[38:01] 1 A switched line error is encountered.

[36:01] 1 The line status is currently changing.

[35:01] 1 The line is connected.

[34:01] 1 Autoanswer is in force.

[33:01] 1 The line has an associated automatic calling unit
(ACU); that is, it can be dialed out.

[32:01] 1 The line is a switched line.

[31:08] The current number of stations on this line.

[23:08] The maximum number of stations allowed for this
line.

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

6–34 8600 0841–202

Second Word: MSG[MSG[INX].[31:08]+1] (NSP Line Information Not Requested)

If NSP line information is not requested, this is word 0 of the NSP line table and is the
last word of the field. Word 0 of the NSP line table has the following format:

Field Description

[47:01] The line is NOT READY.

[43:01] The line is not connected.

[41:01] Line TOG[1].

[40:01] Line TOG[0].

[31:08] The maximum number of stations on this line.

[23:08] Line TALLY[1].

[15:08] Line TALLY[0].

Second Word: MSG[MSG[INX].[31:08]+1] (NSP Line Information Requested)

If NSP line information is requested, this word is the NSP line descriptor and is followed
by words 0 and 1 for the NSP line table and a word for the hardware unit number. The
NSP line descriptor has the following format:

Field Description

[31:01] The line is in a NOT READY PENDING state.

[30:01] The line is in a SWITCHED ERROR state.

[28:01] The line is busy in a switched request.

[27:01] The line is connected.

[26:01] AUTOANSWER is in force.

[25:01] The line has an associated ACU.

[24:01] The line is a switched line.

[21:01] The line is invalid.

[20:01] The line is a synchronous line.

 INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

8600 0841–202 6–35

Third Word: MSG[MSG[INX].[31:08]+2] (NSP Line Information Requested)

This is word 0 of the NSP line table and has the following format:

Field Description

[47:01] The line is NOT READY.

[43:01] The line is not connected.

[41:01] Line TOG[1].

[40:01] Line TOG[0].

[31:08] The maximum number of stations on
this line.

[23:08] Line TALLY[1].

[15:08] Line TALLY[0].

Fourth Word: MSG[MSG[INX].[31:08]+3] (NSP Line Information Requested)

This is word 1 of the NSP line table. It is not used.

Fifth Word: MSG[MSG[INX].[31:08]+4] (NSP Line Information Requested)

This is the hardware unit number word and has the following format:

Field Value Description

[47:16] The NSP hardware unit number if the station
has a line assignment; otherwise, 0.

[31:16] The LSP hardware unit number if the station
has a line assignment; otherwise, 0.

[15:16] 0

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

6–36 8600 0841–202

MSG[MSG[INX].[23:08]]

If terminal information is requested, MSG[MSG[INX].[23:08]] consists of a 2-word entry
comprising several bit-fields that are interpreted as follows:

First Word: MSG[MSG[INX].[23:08]]

Field Value Description

[43:01] 1 The terminal is a screen device.

[42:01] 0 This is a regular station or a schedule
station.

 1 This is a pseudostation.

[41:02] MYUSE attribute (1 = IN, 2 = OUT, 3 = IO).

[31:16] The terminal line width.

[15:16] The terminal buffer size (MAXINPUT value).

Second Word: MSG[MSG[INX].[23:08]+1]

Field Description

[47:16] Terminal PAGESIZE value.

[31:16] Terminal MAXOUTPUT value.

 INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

8600 0841–202 6–37

MSG[MSG[INX].[15:08]]

If station information is requested, MSG[MSG[INX].[15:08]] is an entry of at least four
words comprising several bit-fields that are interpreted as follows:

First Word: MSG[MSG[INX].[15:08]]

Field Value Description

[47:01] 1 Station LOGIN=TRUE.

[46:01] 1 Station WRAPAROUND=TRUE.

[45:01] 1 Station SPO=TRUE.

[44:01] 1 Station is ENABLED.

[43:01] 1 Station is NOT READY.

[42:01] 1 Station is ATTACHED.

[41:01] 1 Station change is in progress.

[40:01] 1 Station has been prepared for detach.

[39:01] 0 No MCS has requested full participation for this station.

 1 An MCS has requested full participation for this station.

[38:01] 1 The station is capable of automatic sequence mode.

[37:08] The MCS number of the controlling MCS.

[29:14] The LSN. If the LSN is a pseudostation and its value is
greater than 16383, then the value of this field is zero.
In this case, the LSN can be found in
MSG[MSG[INX] . [15:08] +1] . [[23:24].

[15:16] The line width of the station.

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

6–38 8600 0841–202

Second Word: MSG[MSG[INX].[15:08]+1]

Field Value Description

[47:08] The control character of the station (EBCDIC).

[39:01] 1 The MCS participates in object I/O.

[38:01] 1 Station event messages are sent to the current queue.

[37:01] 1 Station NOT READY results are sent to the current
queue.

[36:01] 1 Messages beginning with the control character of the
station are sent to the current queue.

[35:01] 1 Errors are sent to current queue.

[34:01] 1 The MCS wants all results.

[33:01] 1 The station is transferred to another MCS.

[32:01] 1 Schedule station.

[31:08] The RETRY count as specified in the DATACOMINFO
file.

[23:24] The DLS number of the station. If [23:01] = 0, the
station has no current line assignment. If the station is
a pseudostation and the LSN is greater than 16393,
this field contains the LSN number of that station.

Third Word: MSG[MSG[INX].[15:08]+2] (NSP Information Not Requested)

If NSP station information is not requested, the third word contains the receive and
transmit address characters. The format of this word is as follows:

Field Description

[47:24] Receive address characters.

[23:24] Transmit address characters.

 INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

8600 0841–202 6–39

Third Word: MSG[MSG[INX].[15:08]+2] (NSP Information Requested)

If NSP station information is requested, the third word contains the NSP station
descriptor. The format of this word is as follows:

Field Description

[47:08] Station priority.

[39:01] Station acknowledge.

[31:08] Station TALLY.

[23:01] Station is queued.

[22:01] Station is enabled.

[21:01] Station is not ready.

[20:01] Station is invalid.

Fourth Word: MSG[MSG[INX].[15:08]+3]

If NSP station information is not requested, the fourth word is reserved.

If NSP station information is requested, the fourth word contains the first word of the
NSP station table. The format of this word is as follows:

Field Description

[47:08] Station control character.

[39:08] Station end of text character.

[31:08] Station backspace character.

[23:08] Station line delete character.

[15:08] Station WRU (who are you)
character.

[07:08] Station application number.

Fifth Word: MSG[MSG[INX].[15:08]+4]

This word is reserved.

Sixth Word: MSG[MSG[INX].[15:08]+5]

This word is reserved.

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

6–40 8600 0841–202

Seventh Word: MSG[MSG[INX].[15:08]+6]

Field Description

[47:48] Transmit or receive
transmission number
characters.

Eighth Word: MSG[MSG[INX].[15:08]+7]

Field Description

[47:24] Receive station address
characters.

[23:24] Transmit station address
characters.

Ninth Word: MSG[MSG[INX].[15:08]+8]

This word is reserved.

Tenth Word: MSG[MSG[INX].[15:08]+9]

This word is reserved.

Eleventh Word

This word is reserved.

 TRANSFER STATION CONTROL RESULT (Result Class = 16)

8600 0841–202 6–41

TRANSFER STATION CONTROL RESULT (Result Class = 16)

Message Format

Word Field Value Description

0 [47:08] 16 Class.

 [26:01] BNA transfer bit.

 0 The station is transferred to the designated MCS.

 1 Word 6.[47:12] supplies the index to the Station
Transfer Index Control Word (INX =
MSG[6].[47:12]). The host name and MCS name are
indexed by MSG[INX].[11:12] and MSG[INX].[23:12]
respectively.

 The station is transferred to the BNA station
transfer MCS, SYSTEM/STATION/TRANSFER.

 The host name must be supplied, and the MCS
name is optional. A 0 in the MCS name index field
indicates that no MCS name was supplied.

 [25:02] 0 This is the result of a Transfer Station Control (Type
= 45) DCWRITE.

 1-3 This is the result of a Station Detach (Type = 42)
DCWRITE.

 [23:24] The LSN of the station that has been transferred.

1 [23:24] The MCS number of the MCS that performed the
transfer.

4 [47:24] The ODT unit number, if the variant field of the
original DCWRITE type (MSG[4].[23:24]) indicates
that a pseudostation that represents one of the
system ODT units is being transferred by the
COMS/ODT/DRIVER.

6 [47:12] Index to the Station Transfer Index Control Word.

 [32:09] The index to the information to be passed by the
Transfer Station Control (Type = 45) DCWRITE, only
if Word[0].[30:01] is set in DCWRITE.

 [23:24] Indexes to station interrogate information.

TRANSFER STATION CONTROL RESULT (Result Class = 16)

6–42 8600 0841–202

Explanation

The TRANSFER STATION CONTROL RESULT message is received by an MCS in its
primary queue when another MCS uses the TRANSFER STATION CONTROL (Type = 45)
DCWRITE request to give it control over a station.

The MCS that receives this message can check it to see if the transferred station is a
pseudostation and if the MCS that sent the message has requested full participation for
the station. MSG[1].[23:24] contains the MCS number of the MCS that transferred
control. Whenever desired, the MCS that receives control of the station can return
control back to the MCS that transferred the station.

This message can be used to pass session information from a controlling MCS to
another MCS acting as a subordinate application. The subordinate MCS can use the
session information passed by the controlling MCS rather than requesting it from the
user.

If the station is a pseudostation that has been retracted by means of the Station Detach
DCWRITE (that is, the field [25:02] of word 0 has a non-zero value), this message
indicates to the receiving MCS that the retraction is complete.

Refer to the Transaction Server for ClearPath MCP Configuration Guide for more
information.

The following are the contents and formats of the bit fields in the expanded format of
this result.

INX := MSG[6].[47:12]
(Index to the Station Transfer Index Control Word)

Word Field Description

MSG[INX] [23:12] Index to MCS name.

@[23:12].[47:16] - Length of MCS name in bytes.

@[23.12].[32:08] - First character of MCS name.

 [11:12] Index to host name.

@[11:12].[47:16] - Length of host name in bytes.

@[11:12].[32:08] - First character of host name.

INX := MSG[6].[32:09] (Header Word of Information Area)

Word Field Description

MSG[INX] [15:16] The number of bytes of MCS information passed from
the Transfer Station Control (Type = 45) DCWRITE.

 TRANSFER STATION CONTROL RESULT (Result Class = 16)

8600 0841–202 6–43

INX := MSG[6].[32:09] + 1 (First Word of Information Area)

Word Field Value Description

MSG[INX] [47:24] Reserved.

 [23:24] The LSN of the real station that the controlling
MCS associates with the pseudostation being
transferred.

MSG[INX+1] [47:32] To be used for the identification of the
controlling MCS.

 [15:16] 1 The format version number.

MSG[INX+2] [47:37] Reserved.

 [10:01] 0 No authentication information is passed.

 1 Authentication information is passed.

 [09:01] 0 No open text information is passed.

 1 The open text information is passed.

 [08:01] 0 No single window is requested.

 1 The single window is requested.

 [07:01] 0 No window information is passed.

 1 The window information is passed.

 [06:01] 0 No chargecode information is passed.

 1 The chargecode information is passed.

 [05:01] 0 No accesscode information is passed.

 1 Accesscode information is passed.

 [04:01] 0 No system user information is passed.

 1 System user information is passed.

 [03:01] 0 Privileged access is not allowed by the
controlling MCS (valid if word [INX+2] field
[02:01] equals 1).

 1 Privileged access is allowed by the controlling
MCS (valid if word [INX+2] field [02:01] equals
1).

 [02:01] 0 No privileged information is passed.

 1 The privileged access capability is passed by
the controlling MCS in word [INX+2] field
[03:01].

 [01:01] 0 No usercode is passed.

 [01:01] 1 The usercode of the controlling MCS session
is passed.

 [00:01] 0 The controlling MCS session is not control
capable.

TRANSFER STATION CONTROL RESULT (Result Class = 16)

6–44 8600 0841–202

Word Field Value Description

 [00:01] 1 The controlling MCS session is control
capable.

MSG[INX+3] Reserved.

MSG[INX+4] [47:16] Reserved.

 [31:16] The relative index in MSG of the
authentication information (valid if word
[INX+2] field [10:01] equals 1).

 [15:16] The relative index in MSG of usercode (valid if
word [INX+2] field [01:01] equals 1).

MSG[INX+5] [47:16] The relative index in MSG of the accesscode
information (valid only if Accesscode
Information Passed flag is set).

 [31:16] The relative index in MSG of the chargecode
information (valid only if Chargecode
Information Passed flag is set).

 [15:16] The relative index in MSG of the window
information (valid only if Window Information
Passed flag is set).

MSG[INX+6] [47:32] Reserved.

 [15:16] The relative index in MSG of the open
notification text (valid only if Open Text
Passed flag is set).

UINX := INX+MSG[INX+4].[31:16]
(First Word of Authentication Location)

Word Field Description

MSG[AUTHINX] [47:08] The type of authentication. (A value of 1 indicates
GSS Authentication.)

 [39:08] The length of the authentication information (in
bytes).

 [31:08] The first byte of the authentication information.

UINX := INX+MSG[INX+4].[15:16] (First Word of Usercode Location)

Word Field Description

MSG[UINX] [47:08] The length of the usercode (in bytes).

 [39:08] The first byte of the usercode.

 TRANSFER STATION CONTROL RESULT (Result Class = 16)

8600 0841–202 6–45

AINX := INX+MSG[INX+5].[47:16] (First Word of Accesscode
Location)

Word Field Description

MSG[AINX] [47:08] The length of the accesscode (in bytes).

 [39:08] The first byte of the accesscode.

CINX := INX+MSG[INX+5].[31:16] (First Word of Chargecode
Location)

Word Field Description

MSG[CINX] [47:08] The length of the chargecode (in bytes).

 [39:08] The first byte of the chargecode.

WINX := INX+MSG[INX+5].[15:16] (First Word of Window Information
Location)

Word Field Description

MSG[WINX] [47:08] The window dialog number.

 [39:08] The first byte of the usercode.

 [31:08] The first byte of the window name.

OINX := INX+MSG[INX+6].[15:16] (First Word of Open Text Location)

Word Field Description

MSG[OINX] [47:08] The length of the open text (in bytes).

 [39:08] The first byte of the open text.

TRANSFER STATION CONTROL RESULT (Result Class = 16)

6–46 8600 0841–202

The remainder of the message is formatted as in the INTERROGATE STATION
ENVIRONMENT RESULT (Result Class = 15) message for which station, terminal, line,
and station name are given.

Additional information about the station that was transferred is included in the same
message. The format of the information is identical to that of the INTERROGATE
STATION ENVIRONMENT RESULT (Result Class = 15) message. The types of
information supplied are station name, station (logical) information, terminal (physical)
information, and line information.

The recipient MCS is responsible for all error recovery for the station from the time of the
transfer one of the following actions occurs:

• The MCS transfers control of the station to some other MCS.

• A halt/load sequence is initiated.

• A complete shutdown of data comm is performed.

At the time of transfer, all subsequent message traffic associated with the transferred
station appears in the primary queue of the recipient MCS. If necessary, the CHANGE
CURRENT QUEUE (Type = 32) DCWRITE function can be invoked by the recipient MCS
to establish a different current queue or to establish a different set of option bits (for
example, MCS wants all results and errors sent to the current queue).

 ODT-TO-MCS RESULT (Result Class = 17)

8600 0841–202 6–47

ODT-TO-MCS RESULT (Result Class = 17)

Message Format

Word Field Value Description

0 [47:08] 17 Class.

2 [39:16] Number of characters of text.

6 to
end

 Text.

Explanation

Receipt of an ODT-TO-MCS RESULT message (in the primary queue of the MCS) is the
direct result of the input of an SM (Send to MCS) system message from the ODT. The
text appears exactly as it was presented following the colon in the SM system message.
The interpretation of, and action taken on, this message class by an MCS is solely the
responsibility of the receiving MCS.

ODT-TO-STATION RESULT (Result Class = 18)

6–48 8600 0841–202

ODT-TO-STATION RESULT (Result Class = 18)

Message Format

Word Field Value Description

0 [47:08] 18 Class.

 [23:24] LSN.

2 [39:16] Number of characters of text.

6 to end Text.

Explanation

Receipt of an ODT-TO-STATION RESULT message is the direct result of the input of an
SS (Send to Station) system message from the ODT. The message text appears exactly
as it was presented following the colon in the SS message. Action taken on, and
interpretation of, this message class is the responsibility of the receiving MCS. The
CONTROLLER inserts this result in the current queue of the station.

 UPDATE LINE ATTRIBUTES RESULT (Result Class = 19)

8600 0841–202 6–49

UPDATE LINE ATTRIBUTES RESULT (Result Class = 19)

Message Format

Word Field Value Description

0 [47:08] 19 Class.

1 [47:08] The error value (corresponds to the
DCWRITE result).

Explanation

The UPDATE LINE ATTRIBUTES RESULT message is the result of the UPDATE LINE
ATTRIBUTES (Type = 131) DCWRITE. Except as specified, the format of this message is
the same as the message supplied in the UPDATE LINE ATTRIBUTES (Type = 131)
DCWRITE that caused this result message.

MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

6–50 8600 0841–202

MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

Message Format

Word Field Value Description

0 [47:08] 21 Class.

 [39:16] Variant field, as follows:

 [39:08] Message types, as listed below:

 1 WFL card (outgoing only); refer to the
CONTROLCARD function (WFL Card Image).

 2 CONTROLLER command (outgoing only); refer to
the SETUPINTERCOM function (Operator
Request).

 3 Reply to CONTROLLER keyin (ODT). Refer to the
SETUPINTERCOM function (Operator Request).

 4 Next message. Refer to the SETUPINTERCOM
function (Operator Request).

 5 Translated MESSER messages. Used only when
the MCS is a nonexpanded capacity MCS, where
variant MSG[0] . [24:01] is not set on Initialize
Primary Queue.

 6 Backup notice or job queue insertion notice.

 7 EOT/EOJ notice.

 8 BOT/BOJ notice. Used only when the MCS is a
nonexpanded capacity MCS, where variant
MSG[0] . [24:01] is not set on Initialize Primary
Queue.

 9 The job or task is scheduled. Used only when the
MCS is a nonexpanded capacity MCS, where
variant MSG[0] . [24:01] is not set on Initialize
Primary Queue.

 10 The job or task is awakened. Used only when the
MCS is a non-expanded capacity MCS, where
variant MSG[0] . [24:01] was not set on Initialize
Primary Queue.

 11 The system security options have changed. Word
[1] contains the current value of the MCP Security
Option Word.

 25 Security MESSER messages.

 250 For an ODT-simulating MCS: a message from the
CONTROLLER to indicate a message that is
displayed under the command C. The format of the
message depends on the operating system.

 MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

8600 0841–202 6–51

Word Field Value Description

 251 For an ODT-simulating MCS: a message from the
CONTROLLER to indicate a message that is
displayed under the command MSG. The format of
the message depends on the operating system.

 252 For an ODT-simulating MCS: a message from the
CONTROLLER to indicate that the CONTROLLER
has too many dialogues waiting for an answer.

 253 Reply to an operator request from an
ODT-simulating MCS. The format of the message
is the same as that of Type 3.

 254 Next message from an ODT-simulating MCS. The
format of the message is the same as that of Type
4.

 255 For an ODT-simulating MCS: a message from the
CONTROLLER to indicate that all the lines of the
request have been sent.

 [31:08] Information about message types in
MSG[0].[39:08].

 1 Type 6 contains the job queue insertion notice.

 2 Type 6 contains the job backup notice.

 0-255 Type 3 contains the value inserted and defined by
MCS. Refer to the SETUPINTERCOM function.

 N Types 4, 5, 7, 8, 9, and 10 contain the MCS
number.

 [23:24] Types 5, 9, and 10 contain the LSN of remote
terminal.

 Types 250, 251, 252, 253, 254, and 255 contain
the dialogue number.

 [23:09] Type 3 is used by the sending MCS.

 0 Types 6, 7, and 8 are not used.

 [14:15] Types 3, 6, 7, and 8 contain the LSN of the remote
terminal.

1 Information about message types in
MSG[0].[39:08]:

 Type 3 contains the text length in characters.

 Type 4 contains the terminal information word.

 Type 5 contains the job serial word.

 Type 6 contains the job number.

 Type 7. If MSG[1].[47:01] = 1, the usercode
follows the message plus 1 word.
If MSG[1].[39:01] = 1, the EOT is for a remote task.
MSG[1].[11:12] is the text length in characters.

MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

6–52 8600 0841–202

Word Field Value Description

 Types 8, 9, and 10 contain the job serial word.

 Type 11 contains the current value of the MCP's
Security Option Word.

 Type 252 : MSG[1].[47:16] contains the index of
the first waiting entry. MSG[1].[46:07] contains the
number of entries.

2 Information about message types in
MSG[0].[39:08]:

 Types 3 and 7 contain text through MSG[N].

 Type 4 contains the contents set up by the
operating system (through MSG[N]).

 Type 5: Contains the MCP message number

 Type 6 contains the queue number (job queue
insertion notice.

 Type 8 contains the priority of the job.

 Types 9 and 10 contain the usercode (through
MSG[4]). If MSG[2].[47:01] = 1, the length of the
simple form usercode is in MSG[2].[46:07].

 1 Type 6 contains the printer backup (backup notice).

 2 Type 6 contains the punch backup (backup notice).

3 Type 5 contains a message code that indicates the
type of MCP message.

 [15:16] SUMLOG minor type, which indicates the type of
message, FATAL, RSVP, etc. For details, see the
System Log Programming Reference Manual.

 [27:12] SUMLOG major type 3, which indicates that this is
a display message.

 Type 6 contains the simple form usercode (through
MSG[5]), and MSG[3].[47:08] contains the length
of the name. This entry appears only if this result
has been returned by Print Job File -- that is, by a
WFL job, and word [0].[31:8] is equal to 2.

4 Information about the message types in
MSG[0].[39:08]:

 Type 5 contains the text length in characters.

 Type 8 contains the simple form usercode (through
MSG[6]); MSG[4].[47:08] contains the length of the
name.

5 Information about the message types in
MSG[0].[39:08]:

 Type 5 contains the text (through MSG[N]).

6

 MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

8600 0841–202 6–53

Word Field Value Description

7 Information about the message types in
MSG[0].[39:08]:

 Type 8 contains the simple form compiler name
(through MSG[9]); MSG[7].[47:08] contains the
length of the name.

10 Information about the message types in
MSG[0].[39:08]:

 Type 8 contains the start of the standard form task
name (through MSG[N]).

Subtypes 14, 17, 18, and 19 are used when the MCS is registered as an expanded
capacity MCS, where variant MSG[0].[24:1] is set on Initialize Primary Queue. These
subtypes correspond to the following previously used types:

• Subtype 14 = Type 5

• Subtype 17 = Type 8

• Subtype 18 = Type 9

• Subtype 19 = Type 10

MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

6–54 8600 0841–202

 Class 21, Subtype 14

Word Field Value Description

0 [47:08] 21 Class

 [39:08] 14 Subtype

 [31:08] MCS number

 [23:24] LSN

1 [39:40] Stack number

2 [39:40] Job number

3 [39:40] Task number

4 <Reserved>

5 MCP message number

6 <Reserved>

7 Message code that indicates the type of MCP
message.

8 [47:01] If 1, this indicates that a usercode exists.

 [31:16] If [47:01] is 1, this contains the offset of the
usercode from word 0.

 [15:16] Message length in characters

9 - n Variable length information, with the message text
beginning at word 9 and followed by the usercode,
if it exists.

 MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

8600 0841–202 6–55

Class 21, Subtype 17

Word Field Value Description

0 [47:08] 21 Class

 [39:08] 17 Subtype

 [31:08] MCS number

 [23:24] LSN

1 <Reserved>

2 <Reserved>

3 <Reserved>

4 [39:40] Stack number

5 [39:40] Job number

6 [39:40] Task number

7 <Reserved>

8 Contains the priority of the job.

9 <Reserved>

10 <Reserved>

11 <Reserved>

12 Contains the word offset from word 0 of the
simple form usercode. If the field [47:8] of the
word pointed to is nonzero, it contains the length
of the usercode.

13 Contains the word offset from word 0 of the
standard form compiler name. If field [47:8] of the
word pointed to is nonzero, it contains the length
of the compiler name.

14 <Reserved>

15 <Reserved>

16 <Reserved>

17 <Reserved>

18 <Reserved>

19 <Reserved>

20 Contains the word offset from word 0 of the
standard form task name.

n - end Variable length information that the above offsets
point to.

MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

6–56 8600 0841–202

 Class 21, Subtypes 18 and 19

Word Field Value Description

0 [47:08] 21 Class

 [39:08] 18 or
19

Subtypes

 [31:08] MCS number

 [23:24] LSN

1 [39:40] Stack number

2 [39:40] Job number

3 [39:40] Task number

4 <Reserved>

5 [15:16] If a usercode exists, contains the offset from
word 0 of the usercode.

n Simple form usercode

 [47:01] If 1, length of usercode is in field [46:07]

 [46:07] Length of simple form usercode.

Explanation

This message is received by or sent to the queue designated using the
SETUPINTERCOM function. The types of messages received are determined by the
functions performed by the MCS, such as initiating tasks that cause task activity.

 LINE INTERROGATE RESULT (Result Class = 24)

8600 0841–202 6–57

LINE INTERROGATE RESULT (Result Class = 24)

Message Format

Word Field Value Description

0 [47:08] 24 Class.

 [23:24] LSN.

7 DLS number.

8 Line descriptor and LSP information (primary line).

 [30:07] Switched status.

 [23:01] 1 LOSSOFCARRIER = DISCONNECT option.

 [21:01] 1 Line is invalid.

 [20:01] 0 Asynchronous line.

 1 Synchronous line.

9 First control word for line.

10 First line table word.

 [47:06] Line status. This field is the same as MSG[1].[39:06]
in an error result message.

 [40:01] Value of LINE(TOG[0]).

 [31:08] Value of MAXSTATIONS.

 [23:08] Value of LINE(TALLY[1]).

 [15:08] Value of LINE(TALLY[0]).

11 Station descriptor for the station.

 [47:08] Value of STATION(FREQUENCY).

 [22:01] Value of STATION(ENABLED).

 [21:01] 0 Station is READY.

 [20:01] 0 Station is valid.

Explanation

The LINE INTERROGATE RESULT returns information about the line and the station
specified in the original LINE INTERROGATE (Type = 104) DCWRITE.

OBJECT JOB INPUT REQUEST RESULT (Result Class = 25)

6–58 8600 0841–202

OBJECT JOB INPUT REQUEST RESULT (Result Class = 25)

Message Format

Word Field Value Description

0 [47:08] 25 Class.

 [23:24] LSN of the schedule station.

4 [47:24] FRSN.

Explanation

When an object job requests input from a schedule station (by a READ) and no input is
currently queued for the station, an OBJECT JOB INPUT result message is constructed
and sent to the current queue of the controlling MCS.

 INTERCEPTED MESSAGE RESULT (Result Class = 29)

8600 0841–202 6–59

INTERCEPTED MESSAGE RESULT (Result Class = 29)

Message Format

The minimum length of this result is six words.

Word Field Value Description

0 [47:08] 29 Class.

 The following description of the variant field (the
next 16 bits) applies only if the originating
DCWRITE is a WRITE (Type = 33); otherwise, the
header is identical to the original DCWRITE request
message.

 [39:16] Carriage control fields.

 [39:08] The channel number to skip to or the number of
lines to skip (NDLII SKIPCOUNT).

 [31:01] 1 The tabulation to be done (NDLII TAB).

 [30:01] 1 Carriage control should be done before text is
transmitted (NDLII MOTIONBEFORE).

 [29:01] 1 More blocks to follow this one (NDLII BLOCKED).

 [28:01] 1 The value stored in MSG[0].[39:08] is the number
of vertical lines that should be skipped (NDLII
SPACE).

 [27:01] 1 The value stored in MSG[0].[39:08] is the channel
number to skip to (NDLII SKIPLINE).

 [26:01] 1 A new page is required for the output device (NDLII
NEWPAGE).

 [25:01] 1 Carriage return is suppressed (NDLII
NOCARRIAGERETURN).

 [24:01] 1 Line feed is suppressed (NDLII NOLINEFEED).

 [23:24] LSN or DLS number.

1 [47:08] Priority of output.

2 [39:16] Text size field.

4 [47:24] The message number field or the FRSN.

 [23:24] Original DCWRITE Type Field: contains
MSG[0].[47:24] from the original message.

6 to
end

 Text (if any) from the original DCWRITE request. If
text is to be transmitted to the station, a byte count
must be given in the text size field MSG[2].[39:16].

INTERCEPTED MESSAGE RESULT (Result Class = 29)

6–60 8600 0841–202

Explanation

The INTERCEPTED MESSAGE RESULT is received by an MCS, in its primary queue,
when it has requested full participation for a station that it transferred to another MCS.

The fully participating MCS receives an INTERCEPTED MESSAGE RESULT in its primary
queue every time the MCS that controls the station performs certain DCWRITE requests
on that station. The data comm subsystem intercepts each request, converts it to the
INTERCEPTED MESSAGE RESULT format, and places the result message in the primary
queue of the fully participating MCS. The fully participating MCS can reconstruct the
original DCWRITE request from the information in the result.

An INTERCEPTED MESSAGE RESULT message informs an MCS that the operating
system has intercepted an attempt by another MCS or program to send output to a
station it controls as a pseudo-MCS. Refer to the description of station control transfer
under “TRANSFER STATION CONTROL (DCWRITE Type = 45)” in the “DCWRITE
Information” section.

 NSPINITIALIZED RESULT (Result Class = 30)

8600 0841–202 6–61

NSPINITIALIZED RESULT (Result Class = 30)

Message Format

Word Field Value Description

0 [47:08] 30 Class.

 [23:01] 1 DLSNOTLSN.

 [22:07] NSP number.

Explanation

The NSPINITIALIZED RESULT indicates when an NSP has completed initialization and is
ready for use. One copy of this message is issued to each MCS that has initialized its
primary queue at the time the initialization takes place.

STATION REINITIALIZED (Result Class = 31)

6–62 8600 0841–202

STATION REINITIALIZED (Result Class = 31)

Message Format

Word Field Value Description

0 [47:08] 31 Class.

 [24:01] 1 The line was also
reinitialized.

 0 Only the station
was reinitialized.

 [23:24] LSN.

1 [23:24] DLS number.

Explanation

Receipt of a STATION REINITIALIZED result indicates that the station is deleted from the
NSP and then added again. This process causes all NSP station variables to be
reinitialized. In addition, the values of any of the station attributes or station terminal
attributes can be modified. If bit 24 of word 1 is turned on, the NSP line variables have
also been reinitialized for the line to which the station is attached. In addition, any of the
line attributes can be altered.

This result is issued when a line or station in the configuration is modified with the IDC.
For information about IDC, refer to the IDC Operations Guide.

 POWER OFF PENDING RESULT (Result Class = 32)

8600 0841–202 6–63

POWER OFF PENDING RESULT (Result Class = 32)

Message Format

Word Field Value Description

0 [47:08] 32 Class.

6 [47:24] Pointer to text.

 [23:24] Number of characters of text.

7 Number of minutes until power off.

8 Type of message, as follows:

 1 Scheduled power off.

 2 Unscheduled due to thermal overload.

 3 Thermal overload warning.

 4 Unscheduled power off (request for immediate power
off).

 5 Canceled power off.

Word MSG[MSG[6].[47:24]] to end is text.

Explanation

A POWER OFF PENDING RESULT (Result Class = 32) message (in the primary message
queue of the MCS) is a notification of a pending power-off operation, cancellation of a
pending power off, or warning of a possible power-off operation. The text contains the
information regarding the type of power-off message, such as the time left in minutes or
the type of warning. The handling of this message class by an MCS is solely the
responsibility of the receiving MCS.

ODT MODE SWITCH NOTICE RESULT (Result Class = 80)

6–64 8600 0841–202

ODT MODE SWITCH NOTICE RESULT (Result Class = 80)

Message Format

Word Field Value Description

0 [47:08] 80 Class.

 [39:16] Variant field, as follows:

 [24:01] 0 The ODT has been switched to communicate with
the CONTROLLER.

 1 The ODT has been switched to communicate through
the COMS/ODT/DRIVER.

 [23:24] The ODT unit number.

3 [47:24] The timestamp.

6 2 The ODT is a TD804.

 6 The ODT is a TD831.

7 MCS number to which the transfer is desired.

Explanation

An ODT MODE SWITCH NOTICE RESULT message is placed in the INTERCOMQUEUE
of the COMS/ODT/DRIVER when someone enters either ??MARC or ??ODT at an ODT.
This message is formatted by the operating system. MSG[6] and MSG[7] are valid only if
MSG[0].[24:01] = 1.

 INPUT FROM AN ODT RESULT (Result Class = 81)

8600 0841–202 6–65

INPUT FROM AN ODT RESULT (Result Class = 81)

Message Format

Word Field Value Description

0 [47:08] 81 Class.

 [23:24] ODT unit number.

2 [39:16] Number of characters of text.

3 [47:24] Timestamp.

6 to end Text (if MSG[2].[39:16] > 0).

Explanation

An INPUT FROM AN ODT RESULT message is placed in the INTERCOMQUEUE of the
COMS/ODT/DRIVER when input is entered at an ODT that has been placed under the
jurisdiction of the COMS/ODT/DRIVER by an ODT switch primitive.

ERROR RESULT (Result Class = 99)

6–66 8600 0841–202

ERROR RESULT (Result Class = 99)

The ERROR RESULT message is used by the data comm subsystem to report errors on
lines and stations over which the MCS has control. The ERROR RESULT message is
recognized by the value 99 in the class field.

The class message has two formats that are described in the information that follows.

• The line/station format

• The switched status format

Line/Station Format of ERROR RESULT Message

Message Format

Word Field Value Description

0 [47:08] 99 Class.

 [23:24] LSN.

1 [47:08] Result byte index.

 [39:06] Line status prior to abort.

 [33:01] NDLII LINE (TOG [1]).

 [32:01] NDLII LINE (TOG [0]).

 [31:08] Last flag set in MSG[1].[23:24]. Refer to the
“General Result Message Format” earlier in this
section.

 [23:24] Error flag field. Refer to the “General Result
Message Format” earlier in this section.

4 [23:24] Original DCWRITE type (the original contents of
MSG[0].[47:24] prior to presentation of the
message to the NSP).

Explanation

This format is used to return error results that occur during data transmission. The
RESULT BYTE INDEX (MSG[1].[47:08]) can have the value 1, 2, 3, 6, or 7. This format can
be returned on an error on input from a terminal.

Error Results in Line/Station Format

Table 6–4 lists the error results returned in the line/station format of the ERROR RESULT
message.

Note that the general result message format also has an error flag field.

 ERROR RESULT (Result Class = 99)

8600 0841–202 6–67

Table 6–4. Error Result, Line/Station Format

ResultField Value

MSG[0].[47:08] 99

MSG[0].[39:16] 0

MSG[0].[39:08] 0

MSG[0].[31:08] 0

MSG[0].[23:24] LSN

MSG[1].[47:08] Result byte index

MSG[1].[39:08] 0

MSG[1].[39:06] 0

MSG[1].[33:01] 0

MSG[1].[32:01] 0

MSG[1].[31:08] First flag set (from FIRSTERROR)

MSG[1].[23:24] Error flag field (from NSP errors)

MSG[4].[23:24] 35 (ENABLE INPUT)

Result Byte Index

Table 6–5 lists the values and definitions of the result byte index field MSG[1].[47:08] in
the line/station format of the ERROR RESULT message.

Table 6–5. Result Byte Index Values

Value Description

1 An error was detected; the NDLII algorithm performed a SENDHOST ERROR
statement.

2 A no-label error occurred; an error condition for which no provision was made
was encountered while executing NDLII-written code.

3 This request was not applicable to the station; the NSP was requested to
perform an operation on a station or line that makes no sense for the station or
line (for example, a disconnect request for a direct-connect line).

6 An adapter fault caused an abort; an adapter fault was encountered by an NSP.

9 The station does not support this option. This result is applicable to the SET
TRANSMISSION NUMBER (Type = 40) and SET/RESET SEQUENCE MODE
(Type = 49) DCWRITE types.

10 The line structure was not present, which causes the request to be rejected.

11 The station structure was not present, which causes the request to be
rejected.

ERROR RESULT (Result Class = 99)

6–68 8600 0841–202

Table 6–5. Result Byte Index Values

Value Description

13 The line or station was not in the proper state for the requested action, which
causes the request to be rejected.

14 A switched line error occurred.

If the result byte index value is 1, 2, or 3, the station is placed in a NOT READY state; the
MCS must perform a MAKE STATION READY/NOT READY (Type = 37) DCWRITE to
ready the station if the NSP is to resume work for that station.

Line Status Prior to Abort (MSG[1].[39:06])

Table 6–6 lists the values of the Line Status Prior To Abort field of the ERROR RESULT
message. This field comes from the line table word of the NSP for the line in question
and describes the NSP line status prior to the abort condition.

Table 6–6. Line Status Prior to Abort Values

Field Value Description

[39:01] 1 The line is NOT READY.

[35:01] 1 The line is not connected.

NDLII LINE.TOG_1 and NDLII LINE.TOG_0

The NDLII variables LINE.TOG_1 and LINE.TOG_0 that are controlled by the line control
procedure for the line are stored in this field. The meanings of these two bits are
determined through convention between the NDLII programmer and the DCALGOL
programmer.

 ERROR RESULT (Result Class = 99)

8600 0841–202 6–69

Switched Status Format of ERROR RESULT Message

Message Format

Word Field Value Description

0 [47:08] 5 Class (for GOOD RESULT Class = 5).

 7 Class (for SWITCHED STATUS RESULT
Class = 7).

 99 Class (for ERROR RESULT Class = 99).

 [23:24] LSN.

1 [47:08] Result byte index.

 00 For SWITCHED STATUS RESULT Class = 7.

 13 The connection cannot be completed because
of the current status for ERROR RESULT
Class = 99.

 4 The message cannot be completed for
ERROR RESULT (Result Class = 99).

 [39:08] The termination reason for the ERROR
RESULT (Result Class = 99) of a DIALOUT
(Type = 98) DCWRITE.

 TOGGLES; otherwise, one of the following:

 [30:07] Switched status byte.

 [30:01] SWITCHEDERROR.

 [28:01] SWITCHEDBUSY.

 [27:01] CONNECTED.

 [26:01] AUTOANSWER.

 [25:01] DIALOUT.

 [24:01] DIALIN (= 1).

4 [23:08] Original DCWRITE type.

 98 For DIALOUT.

 99 For DISCONNECT.

 101 For INTERROGATE SWITCHED STATUS.

 102 For SET/RESET AUTOANSWER. This field
contains the value 101 if no original DCWRITE
causes the result, that is, a spontaneous
result.

ERROR RESULT (Result Class = 99)

6–70 8600 0841–202

Explanation

This format is used to return error results in response to the following:

• The DIALOUT (Type = 98) DCWRITE

• The DISCONNECT (Type = 99) DCWRITE

• The ANSWER THE PHONE (Type = 100) DCWRITE

The result byte index (MSG[1].[47:08]) has the value 13 or 14.

Error Results in Switched Status Format

Table 6–7 lists the error results returned in switched status format.

Note that the general result message format also contains an error flag field.

Table 6–7. Error Result, Switched Status
Format

ResultField Value

MSG[0].[47:08] 99

MSG[0].[39:16] 0

MSG[0].[39:08] 0

MSG[0].[31:08] 0

MSG[0],[23:24] LSN

MSG[1].[47:08] Result byte index

MSG[1].[39:08] Termination reason or 0

MSG[1].[30:07] Switched status

MSG[4].[23:08] Original DCWRITE type

 ERROR RESULT (Result Class = 99)

8600 0841–202 6–71

Using Switched Status Format

Messages that have the switched status format occur in the four cases that follow:

• If any of the following DCWRITE types are initiated and succeed without failure, the
system generates a SWITCHED STATUS RESULT (Result Class = 7) message with
the switched status format:

- DIALOUT (Type = 98) DCWRITE

- DISCONNECT (Type = 99) DCWRITE

- INTERROGATE SWITCHED STATUS (Type = 101) DCWRITE

• A SWITCHED STATUS RESULT (Result Class = 7) message with the switched status
format is generated by the NSP whenever an unrequested change of (switched)
status occurs. For example, the NSP automatically reports all unexpected
disconnects and all connections made by the autoanswer capability.

• An ERROR RESULT (Result Class = 99) message with the switched status format is
generated by the NSP whenever an error condition arises while the NSP is
attempting to satisfy any of the following DCWRITE types:

- DIALOUT (Type = 98) DCWRITE

- DISCONNECT (Type = 99) DCWRITE

• The SET/RESET AUTOANSWER (DCWRITE Type = 102) DCWRITE generates a
GOOD RESULT (Result Class = 5) message of the switched status format. The MCS
can elect to receive the message or to have the system discard it.

Switched Status Byte Values

The switched status byte contains five switched status flags as listed in Table 6–8.

Table 6–8. Switched Status Byte Values

Field Description

[28:01] SWITCHEDBUSY: The bit is turned on whenever the NSP is in the
process of changing its connect state (disconnecting if connected,
answering if not connected, or dialing if not connected).

[27:01] CONNECTED: The bit is turned on whenever the NSP is connected to a
station on a dial network.

[26:01] AUTOANSWER flag: This flag is an option by which the NSP can decide
whether or not to answer incoming calls.

[25:01] DIALOUT: A line is dialout (1) if its data set is connected to the
telephone switching network (and has a telephone number that can be
called by, and connected to, any of many remote stations); and (2) if its
data set is associated with an auxiliary data set (an automatic calling
unit) by which the system can dial up other remote stations.

ERROR RESULT (Result Class = 99)

6–72 8600 0841–202

Table 6–8. Switched Status Byte Values

Field Description

[24:01] DIALIN: DIALIN = 1 for all lines for which the MCS might receive a
message with the switched status format. A line is DIALIN if its data
set is connected to the telephone switching network and has a
telephone number that can be called by, and connected to, one of many
remote stations.

Switched Status Format Flags after DIALOUT

In the case in which the original DCWRITE is DIALOUT (Type = 98), the switched status
flags are as follows:

• If the message Class = 07 (SWITCHED STATUS RESULT), the result byte index = 00
(GOOD RESULT), SWITCHEDBUSY = 0, CONNECTED = 1, and DIALOUT = 1. The
newly connected state, as this combination reports, also involves an automatic
initiation of READY stations on the line.

• If the message class = 99 (ERROR RESULT) and if the result byte index = 13 (unable
to initiate), the reason is that SWITCHEDBUSY = 1, or CONNECTED = 1. Because
the NSP and an MCS are asynchronous from one another, a DCWRITE function that
is known by the MCS to be consistent with the line status can be found not so by
the NSP. For example, an MCS can present the DIALOUT (TYPE = 98) DCWRITE
before having a chance to remove a SWITCHED STATUS RESULT showing
connected, especially if the NSP was constructing it at the same time.

• If the message Class = 99 and if the result byte index = 14 (unable to complete), the
reason is that the station called was busy, failed to answer in a reasonable amount of
time, and so forth. Therefore, the status flags are as for an original DISCONNECT
(Type = 99) DCWRITE with the result byte index = 00 or 14. (Refer to “Switched
Status Format Flags after DISCONNECT” in this section.)

Switched Status Format Flags after DISCONNECT

In the case in which the original DCWRITE is DISCONNECT (Type = 99), the switched
status flags are as follows:

• If the message class = 07 (SWITCHED STATUS RESULT), the result byte index = 00
(GOOD RESULT), SWITCHEDBUSY = 0, and CONNECTED = 0.

• If the message class = 99 (ERROR RESULT) and if the result byte index = 13 (unable
to initiate), the reason is that CONNECTED = 0 (already disconnected), or
CONNECTED = 1 and SWITCHEDBUSY = 1 (already busy disconnecting).

 ERROR RESULT (Result Class = 99)

8600 0841–202 6–73

Switched Status Format Flags after INTERROGATE SWITCHED STATUS

If the original DCWRITE is INTERROGATE SWITCHED STATUS (Type = 101), the
message class of the result message is always 07 for switched status result (no ERROR
RESULT is possible), the result byte index = 00 (GOOD RESULT), and any of the possible
combinations of flags described in the previous or subsequent cases of this section are
possible.

Switched Status Format Flags SET/RESET AUTOANSWER

If the original DCWRITE is SET/RESET AUTOANSWER (Type = 102), the message class
is always 05 for GOOD RESULTS (no error result is possible), the result byte index = 00
(GOOD RESULT), the autoanswer flag is turned on or off appropriately, and all other
switched status flags are returned as for an INTERROGATE SWITCHED STATUS
(Type = 101) DCWRITE.

Switched Status Format Flags after Automatic Switched Status

In the case in which no original DCWRITE exists and an automatic switched status result
is generated by the NSP because of a change of state, the switched status flags have
the following values:

• The message class = 07 (SWITCHED STATUS result)

• The result byte index = 00 (GOOD RESULT)

• The original DCWRITE type field equals 101 (for INTERROGATE SWITCHED
STATUS) although no original DCWRITE existed.

Thus, messages that arise from the automatic message generation of the NSP because
of a change of the state are indistinguishable from message results arising from an
INTERROGATE SWITCHED STATUS (Type = 101) DCWRITE.

ERROR RESULT (Result Class = 99)

6–74 8600 0841–202

8600 0841–202 A–1

Appendix A
Sample MCS

The following is a sample of a simple MCS. The MCS can be transferred to, or a station
can be assigned in the DATACOMINFO file.

BEGIN
FILE LINE(KIND=DISK,MAXRECSIZE=15,BLOCKSIZE=450,NEWFILE,
 PROTECTION=SAVE);
MESSAGE MSG,ERRMSG;
QUEUE PRIMQ,CURRQ;
QUEUE ARRAY REFERENCE INTERCOMQUEUES[0];
REAL MYNUM,RSLT,LSNR,FRSN,MSGSIZE,COUNT;
ARRAY DATA,ZIPARRAY[0:30];
POINTER PTEMP;
LABEL ABORT,ENDCURRQ;
TASK ARRAY TSK[0:6];
PROCEDURE PROX(A);
 ARRAY A[*]; EXTERNAL;
DEFINE
 TYPEF = [47:8] #,
 VARF = [39:8] #,
 VARIANTF= [39:16] #,
 LFSNF = [22:23] #,
 LENGTHF = [23:24] #;
ALLOCATE(MSG,8);
MSG[0]:=0;
IF (RSLT:=DCWRITE(MSG,PRIMQ)) > 63 THEN
 GO TO ABORT;
MYNUM:=MSG[1];
SETUPINTERCOM(INTERCOMQUEUES,PRIMQ);

ON ANYFAULT,
 GO TO ABORT;
WHILE TRUE DO
 CASE WAIT(PRIMQ.QINSERTEVENT,CURRQ.QINSERTEVENT)-1 OF
 BEGIN
 (0):
 BEGIN % INPUT IN PRIMARY QUEUE
 MSGSIZE:=REMOVE(MSG,PRIMQ);
 LSNR:=MSG[0].LFSNF;
 IF (MSG[0].TYPEF = 1 AND % STATION EVENT
 MSG[0].VARIANTF = 3) % NEW STATION ACTIVITY
 OR MSG[0].TYPEF = 16 % STATION TRANSFER
 THEN

Sample MCS

A–2 8600 0841–202

 BEGIN
 ALLOCATE(MSG,18);
 MSG[0]:=LSNR & 32 TYPEF; % CHANGE CURRENT QUEUE AND
 MSG[2].VARIANTF:=26; % GIVE GREETING
 REPLACE POINTER(MSG[6],8)
 BY "WELCOME TO B6000",
 "DATA COMM";
 IF (RSLT:=DCWRITE(MSG,CURRQ)) > 63 THEN
 GO TO ABORT;
 END
 ELSE
 IF MSG[0].TYPEF = 1
 AND MSG[0].VARIANTF = 0 AND MSG[1].[12:1] = 1
 THEN % STATION EVENT AND ? COMMAND
 BEGIN
 ALLOCATE(ERRMSG,6+((MSG[2].VARIANTF+5) DIV 6));
 % GIVE TO CONTROLLER
 ERRMSG[0]:=0 & 21 TYPEF & 2 VARF
 & 1 [46:1] & MYNUM [31:8] & LSNR LENGTHF;
 ERRMSG[5]:=MSG[2].VARIANTF-1;
 REPLACE POINTER(ERRMSG[6]) BY POINTER(MSG[6])+1
 FOR MSG[2].VARIANTF-1;
 INSERT(ERRMSG,INTERCOMQUEUES[0]);
 MSG[0]:=MSG[0].LFSNF & 33 TYPEF;
 % REFLECT THE COMMAND
 IF (RSLT:=DCWRITE(MSG)) > 63 THEN
 GO TO ABORT;
 END

 ELSE
 IF MSG[0].TYPEF = 21 AND MSG[0].VARF = 3 THEN
 BEGIN % CONTROLLER RESPONSE
 ALLOCATE(ERRMSG,6+((MSG[1]+5) DIV 6));
 ERRMSG[0]:=0 & 33 TYPEF
 & REAL(MSG[0].[14:15]) LENGTHF;
 ERRMSG[2].VARIANTF:=MSG[1];
 REPLACE POINTER(ERRMSG[6])
 BY POINTER(MSG[2]) FOR MSG[1];
 IF (RSLT:=DCWRITE(ERRMSG,CURRQ)) > 63 THEN
 GO TO ABORT;
 END
 ELSE
 IF MSG[0].TYPEF = 99 THEN
 BEGIN % ERROR MESSAGE
 ALLOCATE(ERRMSG,6);
 ERRMSG[0]:=LSNR & 37 TYPEF & 1 VARIANTF;
 IF (RSLT:=DCWRITE(ERRMSG)) > 0 THEN
 GO TO ABORT;
 IF MSG[1].TYPEF GEQ 4 AND MSG[1].TYPEF LEQ 6 THEN
 BEGIN
 ALLOCATE(ERRMSG,8);
 ERRMSG[0]:=LSNR & 96 TYPEF;

 Sample MCS

8600 0841–202 A–3

 IF (RSLT:=DCWRITE(ERRMSG)) > 63 THEN
 GO TO ABORT;
 END;
 END
 ELSE
 IF MSG[0].TYPEF = 2 THEN
 BEGIN % FILE OPEN
 LSNR:=MSG[0].LFSNF;
 FRSN:=MSG[6].LFSNF;
 ALLOCATE(MSG,6);
 MSG[0]:=FRSN & 64 TYPEF;
 IF (RSLT:=DCWRITE(MSG)) > 63 THEN
 GO TO ABORT;
 ALLOCATE(MSG,12);
 MSG[0]:=LSNR & 33 TYPEF;
 REPLACE POINTER(MSG[6],8) BY
 "STATION ATTACHED TO FILE" FOR 24;
 MSG[2].VARIANTF:=24;
 IF (RSLT:=DCWRITE(MSG)) > 63 THEN
 GO TO ABORT;
 END

 ELSE
 IF MSG[0].TYPEF = 4 THEN
 BEGIN % FILE CLOSE
 ALLOCATE(MSG,12);
 MSG[0]:=LSNR & 33 TYPEF;
 REPLACE POINTER(MSG[6],8)
 BY "FILE CLOSED" FOR 11;
 MSG[2].VARIANTF:=11;
 IF (RSLT:=DCWRITE(MSG)) > 63 THEN
 GO TO ABORT;
 END
 ELSE
 BEGIN
 REPLACE POINTER(DATA) BY POINTER(MSG) FOR 48;
 WRITE(LINE,<6(H12,X1)>,DATA[*]);
 END;
 END OF PRIMQ CASE;
 (1):
 BEGIN % INPUT INTO CURRENT QUEUE
 MSGSIZE:=REMOVE(MSG,CURRQ);
 REPLACE PTEMP:POINTER(DATA,8) BY POINTER(MSG[6],8)
 FOR (COUNT:=MSG[2].VARIANTF);
 SCAN PTEMP:PTEMP FOR COUNT:COUNT UNTIL NEQ " ";
 IF PTEMP = "QUIT" THEN
 GO TO ABORT;
 IF PTEMP = "ZIP" FOR 3 THEN
 BEGIN
 PTEMP:=PTEMP+3;
 REPLACE POINTER(ZIPARRAY) BY 4"6F" FOR 1,
 PTEMP FOR COUNT-3,"; END." FOR 6;

Sample MCS

A–4 8600 0841–202

 ZIP WITH ZIPARRAY[*];
 END
 ELSE
 IF PTEMP = "ACCOUNT" THEN
 BEGIN
 REPLACE TSK[0].NAME
 BY "OBJECT/ACCOUNT/STATUS/REPORT ON LEDGER.";
 REPLACE TSK[0].FILECARDS
 BY "FILE LINE(KIND=REMOTE);";
 TSK[0].SOURCESTATION:=LSNR;
 TSK[0].STATION:=LSNR;
 REPLACE POINTER(ZIPARRAY) BY PTEMP+4 FOR COUNT-4;
 PROCESS PROX(ZIPARRAY) [TSK[0]];
 END;
 MSG[0]:=MSG[0].LFSNF & 33 TYPEF;
 IF (RSLT:=DCWRITE(MSG)) > 63 THEN
 GO TO ABORT;

ENDCURRQ:
 END OF CURRENT QUEUE CASE;
 END OF CASE STMT;
ABORT:
WRITE(LINE,<"MCS ABORTED ON DCWRITE ERROR NO." ,R10.0>,RSLT);
ALLOCATE(MSG,7);
MSG[0]:=LSNR & 45 TYPEF & 1 [25:1];
RSLT:=DCWRITE(MSG);
END.

The following is another sample of a simple MCS.

 BEGIN
 MESSAGE MSG;
 QUEUE PRIMARYQ;
 INTEGER RESULT;
 REAL LOC;
 LABEL ABORT;
%
% The following code segment initializes the primary queue.
%
 ALLOCATE(MSG,6);
 MSG[0].[47:8] := 0;
 IF (RESULT := DCWRITE(MSG,PRIMARYQ)) > 0 THEN
 GO TO ABORT;
%
% The following code segment extracts the COMS mix number using its
% MCS number, 1 in this case (MCS numbers are assigned in the order
% they are declared in the DATACOMINFO file).
%
 ALLOCATE(MSG,6);
 MSG[0] := 1 & 2[47:08];
 IF (RESULT := DCWRITE(MSG)) > 0 THEN
 GO TO ABORT;

 Sample MCS

8600 0841–202 A–5

 LOC := MSG[MSG[MSG[6].[07:08]].[15:08]].[15:16];
 DISPLAY("COMS MIX NUMBER IS: " CAT STRING(LOC,*));
%
% The following code segment extracts the COMS mix number using its
% MCS name as declared in the DATACOMINFO file.
%
 ALLOCATE(MSG,9);
 MSG[0] := 0 & 2[47:08];
 REPLACE POINTER(MSG[6],8) BY "SYSTEM/COMS.";
 IF (RESULT := DCWRITE(MSG)) > 0 THEN
 GO TO ABORT;
 LOC := MSG[MSG[MSG[6].[07:08]].[15:08]].[15:16];
 DISPLAY("COMS MIX NUMBER IS: " CAT STRING(LOC,*));
%
% The following code segment extracts the CANDE mix number using
% its MCS number, 2 in this case, and then using its name as declared
% in the DATACOMINFO file.
%
 ALLOCATE(MSG,6);
 MSG[0] := 2 & 2[47:08];
 IF (RESULT := DCWRITE(MSG)) > 0 THEN
 GO TO ABORT;
 LOC := MSG[MSG[MSG[6].[07:08]].[15:08]].[15:16];
 DISPLAY("CANDE MIX NUMBER IS: " CAT STRING(LOC,*));
%
 ALLOCATE(MSG,9);
 MSG[0] := 0 & 2[47:08];
 REPLACE POINTER(MSG[6],8) BY "SYSTEM/CANDE.";
 IF (RESULT := DCWRITE(MSG)) > 0 THEN
 GO TO ABORT;
 LOC := MSG[MSG[MSG[6].[07:08]].[15:08]].[15:16];
 DISPLAY("CANDE MIX NUMBER IS: " CAT STRING(LOC,*));
%
ABORT:
 DISPLAY ("DCWRITE ERROR " CAT STRING(RESULT,*));
END.

Sample MCS

A–6 8600 0841–202

8600 0841–202 B–1

Appendix B
Reserved Words

Three types of reserved words are defined:

Type Description

Type 1 Reserved words are words that cannot be used as identifiers
anywhere in the source program.

Type 2 Reserved words are words that can be declared to be identifiers
(overriding their reserved meaning) but, if undeclared, have a well-
defined meaning.

Type 3 Reserved words are words that can be declared to be identifiers
but, where used in the language as specified by the syntax, have
the reserved meaning.

Type 1
DCALGOL Type 1 reserved words consist of the ALGOL Type 1 reserved words plus the
following:

• EPILOG

• EXCEPTION

• MESSAGE

• QUEUE

Type 2
DCALGOL Type 2 reserved words consist of the ALGOL Type 2 reserved words plus the
following:

• ALLOCATE

• ATTACHSPOQ

• CHECKGUARDFILE

• COMBINE

• CONTROLCARD

• DCERRANALYSIS

Reserved Words

B–2 8600 0841–202

• DCERRORLOGGER

• DCKEYIN

• DCSYSTEMTABLES

• DCWRITE

• FLUSH

• GETSTATUS

• INSERT

• MAKEUSER

• MCSLOGGER

• MLSCAPABLE

• NULL

• QUEUEINFO

• REMOVE

• RESIDENT

• SETSTATUS

• SETUPINTERCOM

• SNR

• SYSTEMSTATUS

• USERDATA

• USERDATAFREEZER

• USERDATALOCATOR

• USERDATAREBUILD

• WRITESPO

Type 3
DCALGOL Type 3 reserved words consist of the ALGOL Type 3 reserved words plus the
following:

• QACTIVE

• QBLOCKSIZE

• QDISKERROR

• QHEADSIZE

• QINSERTEVENT

• QMEMORYLIMIT

• QMEMORYSIZE

• QMESSAGECOUNT

 Reserved Words

8600 0841–202 B–3

• QREMOVEWAIT

• QROWSIZE

• QSIZE

• QTANK

• QUSERCOUNT

Reserved Words

B–4 8600 0841–202

8600 0841–202 C–1

Appendix C
Understanding Railroad Diagrams

This appendix explains railroad diagrams, including the following concepts:

• Paths of a railroad diagram

• Constants and variables

• Constraints

The text describes the elements of the diagrams and provides examples.

Railroad Diagram Concepts
Railroad diagrams are diagrams that show you the standards for combining words and
symbols into commands and statements. These diagrams consist of a series of paths
that show the allowable structures of the command or statement.

Paths

Paths show the order in which the command or statement is constructed and are
represented by horizontal and vertical lines. Many commands and statements have a
number of options so the railroad diagram has a number of different paths you can take.

The following example has three paths:

ÄÄ REMOVE ÄÂÄÄÄÄÄÄÄÄÄÄÂÄÄ´
 ÃÄ SOURCE Ä´
 ÀÄ OBJECT ÄÙ

The three paths in the previous example show the following three possible commands:

• REMOVE

• REMOVE SOURCE

• REMOVE OBJECT

A railroad diagram is as complex as a command or statement requires. Regardless of the
level of complexity, all railroad diagrams are visual representations of commands and
statements.

Understanding Railroad Diagrams

C–2 8600 0841–202

Railroad diagrams are intended to show

• Mandatory items

• User-selected items

• Order in which the items must appear

• Number of times an item can be repeated

• Necessary punctuation

Follow the railroad diagrams to understand the correct syntax for commands and
statements. The diagrams serve as quick references to the commands and statements.

The following table introduces the elements of a railroad diagram:

The diagram element... Indicates an item that...

Constant Must be entered in full or as a specific abbreviation

Variable Represents data

Constraint Controls progression through the diagram path

Constants and Variables

A constant is an item that must be entered as it appears in the diagram, either in full or
as an allowable abbreviation. If a constant is partially boldfaced, you can abbreviate the
constant by

• Entering only the boldfaced letters

• Entering the boldfaced letters plus any of the remaining letters

If no part of the constant is boldfaced, the constant cannot be abbreviated.

Constants are never enclosed in angle brackets (< >) and are in uppercase letters.

A variable is an item that represents data. You can replace the variable with data that
meets the requirements of the particular command or statement. When replacing a
variable with data, you must follow the rules defined for the particular command or
statement.

In railroad diagrams, variables are enclosed in angle brackets.

 Understanding Railroad Diagrams

8600 0841–202 C–3

In the following example, BEGIN and END are constants, whereas <statement list> is a
variable. The constant BEGIN can be abbreviated since it is partially boldfaced.

ÄÄ BEGIN ÄÄ<statement list>ÄÄ END ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Valid abbreviations for BEGIN are

• BE

• BEG

• BEGI

Constraints

Constraints are used in a railroad diagram to control progression through the diagram.
Constraints consist of symbols and unique railroad diagram line paths. They include

• Vertical bars

• Percent signs

• Right arrows

• Required items

• User-selected items

• Loops

• Bridges

A description of each item follows.

Vertical Bar

The vertical bar symbol (|) represents the end of a railroad diagram and indicates the
command or statement can be followed by another command or statement.

ÄÄ SECONDWORD ÄÄ (ÄÄ<arithmetic expression>ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates the
command or statement must be on a line by itself.

ÄÄ STOP ÄÄÄ%

Understanding Railroad Diagrams

C–4 8600 0841–202

Right Arrow

The right arrow symbol (>)

• Is used when the railroad diagram is too long to fit on one line and must continue on
the next

• Appears at the end of the first line, and again at the beginning of the next line

ÄÄ SCALERIGHT ÄÄ (ÄÄ<arithmetic expression>ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ<arithmetic expression>ÄÄ) ÄÄÄ´

Required Item

A required item can be

• A constant

• A variable

• Punctuation

If the path you are following contains a required item, you must enter the item in the
command or statement; the required item cannot be omitted.

A required item appears on a horizontal line as a single entry or with other items.
Required items can also exist on horizontal lines within alternate paths, or nested (lower-
level) diagrams.

In the following example, the word EVENT is a required constant and <identifier> is a
required variable:

ÄÄ EVENT ÄÄ<identifier>ÄÄ´

 Understanding Railroad Diagrams

8600 0841–202 C–5

User-Selected Item

A user-selected item can be

• A constant

• A variable

• Punctuation

User-selected items appear one below the other in a vertical list. You can choose any
one of the items from the list. If the list also contains an empty path (solid line) above the
other items, none of the choices are required.

In the following railroad diagram, either the plus sign (+) or the minus sign (–) can be
entered before the required variable <arithmetic expression>, or the symbols can be
disregarded because the diagram also contains an empty path.

ÄÄÂÄÄÄÄÄÂÄ<arithmetic expression>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ + Ä´
 ÀÄ Ä ÄÙ

Loop

A loop represents an item or a group of items that you can repeat. A loop can span all or
part of a railroad diagram. It always consists of at least two horizontal lines, one below
the other, connected on both sides by vertical lines. The top line is a right-to-left path that
contains information about repeating the loop.

Some loops include a return character. A return character is a character—often a comma
(,) or semicolon (;)—that is required before each repetition of a loop. If no return character
is included, the items must be separated by one or more spaces.

 ÚêÄÄÄÄÄÄ ; ÄÄÄÄÄ¿
ÄÄÁÄ<field value>ÄÁÄÄ´

Understanding Railroad Diagrams

C–6 8600 0841–202

Bridge

A loop can also include a bridge. A bridge is an integer enclosed in sloping lines (/ \) that

• Shows the maximum number of times the loop can be repeated

• Indicates the number of times you can cross that point in the diagram

The bridge can precede both the contents of the loop and the return character (if any) on
the upper line of the loop.

Not all loops have bridges. Those that do not can be repeated any number of times until
all valid entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two
times. In the second bridge example, you can enter LINKAGE or RUNTIME no more than
three times.

 ÚêÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄ¿
ÄÄÁÄ/2\ÄÂÄ LINKAGE ÄÂÄÁÄÄ´
 ÀÄ RUNTIME ÄÙ

 ÚêÄ/2\ÄÄÄÄÄÄÄÄÄÄ¿
ÄÄÁÄÂÄ LINKAGE ÄÂÄÁÄÄ´
 ÀÄ RUNTIME ÄÙ

In some bridges an asterisk (*) follows the number. The asterisk means that you must
cross that point in the diagram at least once. The maximum number of times that you
can cross that point is indicated by the number in the bridge.

 ÚêÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄ¿
ÄÄÁÄÂÄ/2*\Ä LINKAGE ÄÂÄÁÄÄÄ´
 ÀÄ RUNTIME ÄÄÄÄÄÄÙ

In the previous bridge example, you must enter LINKAGE at least once but no more than
twice, and you can enter RUNTIME any number of times.

 Understanding Railroad Diagrams

8600 0841–202 C–7

Following the Paths of a Railroad Diagram
The paths of a railroad diagram lead you through the command or statement from
beginning to end. Some railroad diagrams have only one path; others have several
alternate paths that provide choices in the commands or statements.

The following railroad diagram indicates only one path that requires the constant
LINKAGE and the variable <linkage mnemonic>:

ÄÄ LINKAGE ÄÄ<linkage mnemonic>ÄÄ´

Alternate paths are provided by

• Loops

• User-selected items

• A combination of loops and user-selected items

More complex railroad diagrams can consist of many alternate paths, or nested (lower-
level) diagrams, that show a further level of detail.

For example, the following railroad diagram consists of a top path and two alternate
paths. The top path includes

• An ampersand (&)

• Constants that are user-selected items

These constants are within a loop that can be repeated any number of times until all
options have been selected.

The first alternative path requires the ampersand and the required constant ADDRESS.
The second alternative path requires the ampersand followed by the required constant
ALTER and the required variable <new value>.

 ÚêÄÄÄÄÄÄ , ÄÄÄÄÄ¿
ÄÄ & ÄÂÄÁÄÂÄ TYPE ÄÄÄÄÂÄÁÄÄÄÄÂÄÄÄ´
 ³ ÃÄ ASCII ÄÄÄ´ ³
 ³ ÃÄ BCL ÄÄÄÄÄ´ ³
 ³ ÃÄ DECIMAL Ä´ ³
 ³ ÃÄ EBCDIC ÄÄ´ ³
 ³ ÃÄ HEX ÄÄÄÄÄ´ ³
 ³ ÀÄ OCTAL ÄÄÄÙ ³
 ÃÄ ADDRESS ÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ ALTER ÄÄ<new value>ÄÙ

Understanding Railroad Diagrams

C–8 8600 0841–202

Railroad Diagram Examples with Sample Input
The following examples show five railroad diagrams and possible command and
statement constructions based on the paths of these diagrams.

Example 1

<lock statement>

ÄÄ LOCK ÄÄ (ÄÄ <file identifier> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Sample Input Explanation

LOCK (FILE4) LOCK is a constant and cannot be altered. Because no part of
the word is boldfaced, the entire word must be entered.

 The parentheses are required punctuation, and FILE4 is a
sample file identifier.

Example 2

<open statement>

ÄÄ OPEN ÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄ<database name>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ INQUIRY Ä´
 ÀÄ UPDATE ÄÄÙ

Sample Input Explanation

OPEN DATABASE1 The constant OPEN is followed by the variable DATABASE1,
which is a database name.

 The railroad diagram shows two user-selected items, INQUIRY
and UPDATE. However, because an empty path (solid line) is
included, these entries are not required.

OPEN INQUIRY
DATABASE1

The constant OPEN is followed by the user-selected constant
INQUIRY and the variable DATABASE1.

OPEN UPDATE
DATABASE1

The constant OPEN is followed by the user-selected constant
UPDATE and the variable DATABASE1.

 Understanding Railroad Diagrams

8600 0841–202 C–9

Example 3

<generate statement>

ÄÄ GENERATE ÄÄ<subset>ÄÄ = ÄÂÄ NULL ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ<subset>ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ AND ÄÂÄ<subset>ÄÙ
 ÃÄ OR ÄÄ´
 ÃÄ + ÄÄÄ´
 ÀÄ Ä ÄÄÄÙ

Sample Input Explanation

GENERATE Z = NULL The GENERATE constant is followed by the variable Z,
an equal sign (=), and the user-selected constant NULL.

GENERATE Z = X The GENERATE constant is followed by the variable Z,
an equal sign, and the user-selected variable X.

GENERATE Z = X AND B The GENERATE constant is followed by the variable Z,
an equal sign, the user-selected variable X, the AND
command (from the list of user-selected items in the
nested path), and a third variable, B.

GENERATE Z = X + B The GENERATE constant is followed by the variable Z,
an equal sign, the user-selected variable X, the plus sign
(from the list of user-selected items in the nested path),
and a third variable, B.

Example 4

<entity reference declaration>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ ENTITY REFERENCE ÄÁÄ<entity ref ID>ÄÄ (ÄÄ<class ID>ÄÄ) ÄÁÄÄÄÄÄÄÄÄÄ´

Sample Input Explanation

ENTITY REFERENCE ADVISOR1
(INSTRUCTOR)

The required item ENTITY REFERENCE is
followed by the variable ADVISOR1 and
the variable INSTRUCTOR. The
parentheses are required.

ENTITY REFERENCE ADVISOR1
(INSTRUCTOR), ADVISOR2
(ASST_INSTRUCTOR)

Because the diagram contains a loop, the
pair of variables can be repeated any
number of times.

Understanding Railroad Diagrams

C–10 8600 0841–202

Example 5

 ÄÄ PS ÄÄ MODIFY ÄÄë

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ëÄÂÄÁÄÂÄ<request number>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë
 ³ ÀÄ<request number>ÄÄ Ä ÄÄ<request number>ÄÙ ³
 ÀÄ ALL ÄÂÄÄÄ´
 ÀÄ EXCEPTIONS ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

 ëÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÀÄÁÄÂÄÄÄÄÄÂÄ<file attribute phrase>ÄÂÄÁÄÙ
 ÃÄ Ä ÄÙ ³
 ÃÄÄÄÄÄÂÄ<print modifier phrase>ÄÙ
 ÀÄ Ä ÄÙ

Sample Input Explanation

PS MODIFY 11159 The constants PS and MODIFY are followed by the
variable 11159, which is a request number.

PS MODIFY
11159,11160,11163

Because the diagram contains a loop, the variable 11159
can be followed by a comma, the variable 11160,
another comma, and the final variable 11163.

PS MOD 11159–11161
DESTINATION = "LP7"

The constants PS and MODIFY are followed by the user-
selected variables 11159–11161, which are request
numbers, and the user-selected variable DESTINATION
= “LP7”, which is a file attribute phrase. Note that the
constant MODIFY has been abbreviated to its minimum
allowable form.

PS MOD ALL EXCEPTIONS The constants PS and MODIFY are followed by the user-
selected constants ALL and EXCEPTIONS.

8600 0841–202 D–1

Appendix D
Related Product Information

The following documents provide information that is directly related to the primary
subject of this publication.

MCP/AS Data Communications Protocols Installation and Implementation
Guide (8600 0486)

This guide describes the purpose of protocols and procedures for installing protocols. It
also provides reference material useful in interpreting dumps associated with data
communications data link processors (DCDLPs), enhanced data communications data link
processors (EDCDLPs), and data communications adapters (DCAs).

MCP/AS Interactive Datacomm Configurator (IDC) Operations Guide (8600
1880)

This guide explains how to use IDC, a menu-driven utility used to define and modify data
communications networks. It provides information on configuring a data communications
network using the IDC menu system and basic constructs, and provides reference
information about the commands and attributes. This guide is written for individuals who
have a basic knowledge of data communications concepts, but who might not know the
physical characteristics of hardware devices in the network.

MCP/AS Network Definition Language II (NDLII) Programming Reference
Manual (8807 7011)

This manual documents the high-level programming and definition language used to
describe a data communications network. It gives a brief overview and functional
description of the data comm system and provides a complete description of the syntax
and semantics of all language components and compiler options of NDLII.

Unisys e-@ction Application Development Solutions ALGOL Programming
Reference Manual, Volume 1: Basic Implementation (8600 0098)

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for programmers who are familiar with programming
concepts.

Related Product Information

D–2 8600 0841–202

Unisys e-@ction ClearPath Enterprise Servers File Attributes Programming
Reference Manual (8600 0064)

This manual contains information about each file attribute and each direct I/O buffer
attribute. The manual is written for programmers and operations personnel who need to
understand the functionality of a given attribute. The I/O Subsystem Programming Guide
is a companion manual.

Unisys e-@ction ClearPath Enterprise Servers GETSTATUS/SETSTATUS
Programming Reference Manual (8600 0346)

This manual explains how to use the various GETSTATUS and SETSTATUS calls used in
the DCALGOL programming language. The manual is written for experienced ALGOL
programmers who are involved with data communications.

Unisys e-@ction ClearPath Enterprise Servers MCP System Interfaces
Programming Reference Manual (8600 2029)

This manual describes selected library objects exported from the MCPSUPPORT library,
and describes the ARCHIVESUPPORT, BILLINGSUPPORT, and TAPEMANAGER libraries.
This manual is written for system programmers who want to write programs that
interface with the system software.

Unisys e-@ction ClearPath Enterprise Servers MultiLingual System
Administration, Operations, and Programming Guide (8600 0288)

This guide describes how to use the MLS environment, which encompasses many
products. The MLS environment includes a collection of operating system features,
productivity tools, utilities, and compiler extensions. The guide explains how these
products are used to create application systems tailored to meet the needs of users in a
multilingual or multicultural business environment. It explains, for example, the
procedures for translating system and application output messages, help text, and user
interface screens from one natural language to one or more other languages; for
instance, from English to French and Spanish. This guide is written for international
vendors, branch systems personnel, system managers, programmers, and customers
who wish to create customized application systems.

Unisys e-@ction ClearPath Enterprise Servers Security Administration
Guide (8600 0973)

This guide describes systems-level security features and suggests how to use them. It
provides administrators with the information necessary to set and implement effective
security policy. This guide is written for system administrators, security administrators,
and those responsible for establishing and implementing security policy.

Unisys e-@ction ClearPath Enterprise Servers System Commands
Operations Reference Manual (8600 0395)

This manual gives a complete description of the system commands used to control
system resources and work flow. This manual is written for systems operators and
administrators.

 Related Product Information

8600 0841–202 D–3

Unisys e-@ction ClearPath Enterprise Servers System Log Programming
Reference Manual (8600 1807)

This manual describes the format and contents of all the Major Type and Minor Type
entries of the system log. It also contains information about controlling the log contents
and about writing log analysis programs.

Unisys e-@ction ClearPath Enterprise Servers SYSTEMSTATUS
Programming Reference Manual (8600 0452)

This manual documents the SYSTEMSTATUS intrinsic of the Master Control Program
(MCP). The SYSTEMSTATUS intrinsic provides information that can be used to efficiently
monitor the performance of a running system. This manual is written for systems
programmers.

Unisys e-@ction ClearPath Enterprise Servers Task Attributes
Programming Reference Manual (8600 0502)

This manual describes all of the task attributes that are available. It also give examples of
statements for reading and assigning task attributes in various programming languages.
The Task Management Programming Guide is a companion manual.

Unisys e-@ction Transaction Server for ClearPath MCP Configuration
Guide (8600 0312)

This guide provides an overview of the basic concepts and functions of COMS. It
includes instructions for creating a working COMS configuration and information on how
to monitor and fine-tune COMS system performance. This guide is written for installation
analysts, systems analysts, programmers, administrators, and performance analysts.

Related Product Information

D–4 8600 0841–202

8600 0841–202 Index–1

Index

A

ACKNOWLEDGE DCWRITE (DCWRITE Type
= 44), 5-57

ADD STATION TO FILE DCWRITE (DCWRITE
Type = 67), 5-79

ALLOCATE statement, 2-1
<arithmetic expression>, 2-1

in <character count>, 3-47
in <size>, 2-8
in <unit number>, 3-47
in ALLOCATE statement, 2-1
in CONTROLCARD function, 3-4
in DCSYSTEMTABLES function, 3-11
in GETSTATUS function, 3-20
in QUEUEINFO function, 3-35
in SETSTATUS function, 3-37
in SYSTEMSTATUS function, 3-45

<array identifier>, 2-11
<array reference identifier>, 2-11
<array row>

in <noncharacter array row>, 2-5
in <single-precision array row>, 3-8

ATTACH SCHEDULE STATION DCWRITE
(DCWRITE Type = 5), 5-36

ATTACH statement, 2-3
attachment queues, 6-8
ATTACHSPOQ function, 3-1
attributes, 4-1

logical line, 5-102
physical line, 5-101
queue, 4-1

AUTOSWITCHTOMARC task attribute, 4-7

B

BACKUPFAMILY task attribute, 4-8
<Boolean expression>

in <priority>, 2-4
in DCERRORANALYSIS function, 3-8
in USERDATAFREEZER function, 3-46

<bound pair list>

in MESSAGE ARRAY declaration, 1-7

C

calls, intrinsic (See functions)
CHANGE CURRENT QUEUE DCWRITE

(DCWRITE Type = 32)
required fields, 5-38

CHANGE TERMINAL ATTRIBUTES DCWRITE
(DCWRITE Type = 68), 5-80

<character count>, 3-47
CHECKGUARDFILE function, 3-2
COMBINE statement, 2-4

in QUEUE declarations, 1-12
CONTROLCARD function, 3-4

WFL card image (Variant = 1), 3-7
current attachment queues, 6-8

D

DCERRANALYSIS function, 3-8
DCERRORLOGGER function, 3-10
DCKEYIN

statement, 2-5
DCSYSTEMTABLES function, 3-11
DCWRITE errors, 5-103
DCWRITE function, 1-9, 3-15, 5-3

ACKNOWLEDGE, 5-57
ADD STATION TO FILE, 5-79
ATTACH SCHEDULE STATION, 5-36
CHANGE CURRENT QUEUE, 5-38
CHANGE TERMINAL ATTRIBUTES, 5-80
DIALOUT, 5-86
DISABLE INPUT, 5-44
DISCONNECT, 5-89
ENABLE INPUT, 5-43
errors, 5-103, 5-107

(table), 5-7
EXCHANGE LSPS, 5-97
FORCE LINE NOT READY, 5-94
general discussion of, 5-1
general format

Index

Index–2 8600 0841–202

LSN/FRSN/DLS field, 5-3
message number field, 5-4
priority output field, 5-3
retry count field, 5-4
TALLY field, 5-4
text, 5-4
text size field, 5-4
TOGGLE field, 5-4
type field, 5-3
variant field, 5-3

general format
(table), 5-1

in QUEUE declarations, 1-12
index WRITE, 5-40
INTER-MCS COMMUNICATE, 5-30
INTERROGATE MCS, 5-25
INTERROGATE STATION

ENVIRONMENT, 5-32
INTERROGATE SWITCHED STATUS, 5-90
LINE INTERROGATE, 5-93
line-oriented requests, 5-83
MAKE LINE NOT READY, 5-85
MAKE LINE READY, 5-83
MAKE STATION READY/NOT

READY, 5-45
MCS calls on, 5-4
MOVE/ADD/SUBTRACT

errors, 5-103
MOVE/ADD/SUBTRACT STATION, 5-99
NULL STATION REQUEST, 5-64
READ-ONCE ONLY, 5-42
RECALL MESSAGE, 5-50
reconfiguration requests, 5-95
SEND MCS RESULT MESSAGE, 5-68
SET APPLICATION NUMBER, 5-47
SET CHARACTERS, 5-48
SET PSEUDOSTATION ATTRIBUTES, 5-69
SET TRANSMISSION NUMBER, 5-49
SET/RESET AUTOANSWER, 5-91
SET/RESET LINE TOGS-TALLYS, 5-92
SET/RESET LOGICALACK, 5-56
SET/RESET SEQUENCE MODE, 5-65
specific types, 5-18
STATION ASSIGNMENT TO FILE, 5-71
STATION ATTACH, 5-21
STATION BREAK, 5-78
STATION DETACH, 5-52
STATION INTERROGATE

information returned, 5-37
SUBTRACT STATION FROM FILE, 5-82
SWAP LINES, 5-95
TRANSFER STATION CONTROL, 5-58
type = 1, 5-21

type = 101, 5-90
type = 102, 5-91
type = 103, 5-92
type = 104, 5-93
type = 105, 5-94
type = 128, 5-95
type = 129, 5-97
type = 130, 5-99
type = 131, 5-105
type = 2, 5-25
type = 3, 5-30
type = 32, 5-38
type = 33, 5-40
type = 34, 5-42
type = 35, 5-43
type = 36, 5-44
type = 37, 5-45
type = 38, 5-47
type = 39, 5-48
type = 4, 5-32, 5-37
type = 40, 5-49
type = 41, 5-50
type = 42, 5-52
type = 43, 5-56
type = 44, 5-57
type = 45, 5-58
type = 46, 5-63
type = 48, 5-64
type = 49, 5-65
type = 5, 5-36
type = 53, 5-66
type = 55, 5-68
type = 56, 5-69
type = 64, 5-71
type = 65, 5-77
type = 66, 5-78
type = 67, 5-79
type = 68, 5-80
type = 69, 5-82
type = 96, 5-83
type = 97, 5-85
type = 98, 5-86
type = 99, 5-89
types, (table), 5-6
UPDATE LINE ATTRIBUTES, 5-105
WRITE AND RETURN, 5-63
WRITE TO OBJECT JOB, 5-77
WRITE TO TRANSFERRED STATION, 5-66

declarations
EPILOG PROCEDURE, 1-3
EXCEPTION PROCEDURE, 1-5
MESSAGE, 1-7
MESSAGE ARRAY, 1-7

 Index

8600 0841–202 Index–3

QUEUE, 1-11
QUEUE ARRAY, 1-11
QUEUE ARRAY REFERENCE, 1-13

DESTSTATION task attribute, 4-8
DIALOUT DCWRITE (DCWRITE Type =

98), 5-86
<direct array row>, 3-47
DISABLE INPUT DCWRITE (DCWRITE Type

= 36), 5-44
DISCONNECT DCWRITE (DCWRITE Type =

99), 5-89
display form file title, 3-16
<display location>, 3-16
<display pointer>, 2-13
DISPLAYONLYTOMCS task attribute, 4-8
DISPLAYTOSTANDARD function, 3-16
DLS UPDATE MCS RESULT (Class =

12), 6-26
DLS.[23:01], 5-9, 5-13

E

ENABLE INPUT DCWRITE (DCWRITE Type =
35), 5-43

EPILOG PROCEDURE declaration, 1-3
example of, 1-4
restrictions, 1-3

<epilog procedure identifier>, 1-3
in <resident list>, 2-11
in EPILOG PROCEDURE declaration, 1-3

error flag field (MSG.[1].[23:24]), 6-4
ERROR MCS RESULT (Class = 99), 6-66
errors

DCWRITE, 5-103, 5-107
<event designator>, 3-47
EXCEPTION PROCEDURE, 1-5

declaration, 1-5
example, 1-6
restrictions, 1-5
when it is called, 1-5

EXCHANGE LSPS DCWRITE (DCWRITE Type
= 129), 5-97

F

FILE CLOSE MCS RESULT (Class = 4), 6-15
FILE OPEN (Class = 2), 6-12
file relative station number, 5-3
file title

display form, 3-16

standard form, 3-16
FLUSH statement, 2-7
FORCE LINE NOT READY DCWRITE

(DCWRITE Type = 105), 5-94
<format identifier>, 2-11
FRSN (file relative station number), 5-3
full participation, 5-17
functions, 3-1

ATTACHSPOQ, 3-1
CHECKGUARDFILE, 3-2
CONTROLCARD, 3-4
DCERRANALYSIS, 3-8
DCERRORLOGGER, 3-10
DCSYSTEMTABLES, 3-11
DCWRITE, 3-15
DISPLAYTOSTANDARD, 3-16
GETSTATUS, 3-20
MAKEUSERCODE, 3-31
MCSLOGGER, 3-32
NULL, 3-34
REMOVE, 3-36
SETSTATUS, 3-37
SETUPINTERCOM, 3-38
SIZE, 3-44
SYSTEMSTATUS, 3-45
USERDATAFREEZER, 3-46
WRITESPO, 3-47

G

GETSTATUS function, 3-20
GOOD INPUT RECEIVED MCS RESULT

(Class = 0), 6-9
GOOD RESULTS MCS RESULT (Class =

5), 6-17

H

hidden dimension of a message array, 1-7
hidden message, 1-11
<host queue>, 2-4

I

<identifier>, 1-11
in <epilog procedure identifier>, 1-3
in <message array identifier>, 1-7
in <queue array reference identifier>, 1-13
in message identifier, 1-7

Index

Index–4 8600 0841–202

in QUEUE ARRAY declarations, 1-11
in QUEUE declarations, 1-11

indexing, 5-27
INHERITMCSSTATUS task attribute, 4-8
<input designator>, 3-4
INPUT FROM AN ODT MCS RESULT (Class

= 81), 6-65
<insert source part>, 2-8
INSERT statement, 2-8

in QUEUE declarations, 1-12
INSERT_CLIENTQUEUE function, 3-21
INTERCEPTED MESSAGE MCS RESULT

(Class = 29), 6-59
INTER-MCS COMMUNICATE DCWRITE

(DCWRITE Type = 3), 5-30
INTER-MCS COMMUNICATE MCS RESULT

(Class = 13), 6-27
INTERROGATE MCS DCWRITE (DCWRITE

Type = 2), 5-25
INTERROGATE STATION ENVIRONMENT

DCWRITE (DCWRITE Type = 4), 5-32
INTERROGATE STATION ENVIRONMENT

MCS RESULT (Class = 15), 6-30
INTERROGATE SWITCHED STATUS

DCWRITE (DCWRITE Type =
101), 5-90

intrinsic calls (See functions)

L

line assignments, stations without, 5-76
line attributes

logical, 5-102
physical, 5-101

LINE INTERROGATE DCWRITE (DCWRITE
Type = 104), 5-93

LINE INTERROGATE MCS RESULT (Class =
24), 6-57

LINE STATUS CHANGE MCS RESULT (Class
= 9), 6-23

line status prior to abort (MCS Error result
message field), 6-68

line/station format (MCS Error result message
format), 6-66

fields, 6-66
line-oriented DCWRITE requests, 5-83
LINKLIB_CLIENTQUEUE function, 3-22
logical line attributes, 5-102
<lower bounds>, 1-13
LSP EXCHANGE MCS RESULT (Class =

8), 6-21

M

MAKE LINE NOT READY DCWRITE
(DCWRITE Type = 97), 5-85

MAKE LINE READY DCWRITE (DCWRITE
Type = 96), 5-83

MAKE STATION READY/NOT READY
DCWRITE (DCWRITE Type =
37), 5-45

MAKEUSERCODE function, 3-31
MAXWAIT task attribute, 4-8
MCS (See message control system)
MCS information, indexing, 5-27
MCS result messages, 6-1

FILE CLOSE (Class = 4), 6-15
general format, 6-1

class field, 6-2
error flag field, 6-4
last error flag set field, 6-4
LSN field, 6-4
message number field, 6-6
original DCWRITE type field, 6-7
result-byte index field, 6-4
retry count field, 6-6
sequence number field, 6-7
TALLY fields, 6-6
text field, 6-7
text size field, 6-6
time field, 6-6
toggle field, 6-4
transmission number field, 6-6
variant field, 6-3

general format (table), 6-1
input message classes,(table), 6-2
specific message formats, 6-8

DLS UPDATE (Class = 12), 6-26
ERROR (Class = 99), 6-66
FILE OPEN (Class = 2), 6-12
GOOD INPUT RECEIVED (Class =

0), 6-9
GOOD RESULTS (Class = 5), 6-17
INPUT FROM AN ODT (Class =

81), 6-65
INTERCEPTED MESSAGE (Class =

29), 6-59
INTER-MCS COMMUNICATE (Class =

13), 6-27
INTERROGATE STATION

ENVIRONMENT (Class =
15), 6-30

LINE INTERROGATE (Class = 24), 6-57

 Index

8600 0841–202 Index–5

LINE STATUS CHANGE (Class =
9), 6-23

LSP EXCHANGE (Class = 8), 6-21
MESSAGE FROM CONTROLLER (Class

= 21), 6-50
MOVE/ADD/SUBTRACT STATION

(Class = 11), 6-25
NSPINITIALIZED (Class = 30), 6-61
OBJECT JOB INPUT REQUEST (Class =

25), 6-58
OBJECT JOB OUTPUT (Class = 3), 6-14
ODT MODE SWITCH NOTICE (Class =

80), 6-64
ODT-TO-MCS (Class = 17), 6-47
ODT-TO-STATION (Class = 18), 6-48
POWER OFF PENDING (Class =

32), 6-63
RECALLED MESSAGE (Class = 6), 6-19
STATION DETACHED (Class = 14), 6-28
STATION EVENT (Class = 1), 6-10
STATION REINITIALIZED (Class =

31), 6-62
SWAP LINE (Class = 10), 6-24
SWITCHED STATUS (Class = 7), 6-20
TRANSFER STATION CONTROL (Class

= 16), 6-41
UPDATE LINE ATTRIBUTES (Class =

19), 6-49
MCSLOGGER function, 3-32
MESSAGE ARRAY declaration, 1-7
<message array identifier>, 1-7

in <message designator>, 2-1
in <message group designator>, 2-1
in MESSAGE ARRAY declaration, 1-7

message array, hidden dimension, 1-7
message control system (MCS)

error result message formats, 6-66
participation in data comm functions, 5-17
participation in I/O, 5-75
sample, A-1, A-4

MESSAGE declaration, 1-7
<message designator>

in <insert source part>, 2-8
in <message group designator>, 2-1
in DCWRITE function, 3-15
in NULL function, 3-34
in REMOVE function, 3-36

MESSAGE FROM CONTROLLER MCS
RESULT (Class = 21), 6-50

<message group designator>, 2-1
in ALLOCATE statement, 2-1
in DCERRORLOGGER function, 3-10
in SIZE function, 3-44

<message identifier>
in <message designator>, 2-1
in MESSAGE declaration, 1-7

messages, result
general format (table), 6-1

MLSCAPABLE parameter
in SETUPINTERCOM function, 3-38

MOVE/ADD/SUBTRACT STATION DCWRITE
(DCWRITE Type = 130), 5-99

errors, 5-103
MOVE/ADD/SUBTRACT STATION MCS

RESULT (Class = 11), 6-25
MSG[0], 5-19
MSG[0].[13:14]

in DCWRITE 67, 5-79
MSG[0].[15:08]

in DCWRITE 4, 5-33
MSG[0].[15:16]

in DCWRITE 129, 5-97
MSG[0].[22:07]

in DCWRITE 129, 5-97
MSG[0].[22:23]

in DCWRITE 4, 5-32
in DCWRITE 55, 5-68
on exit from DCWRITE, 5-23
on exiting DCWRITE, 5-24

MSG[0].[23:01]
in DCWRITE 1, 5-22
in DCWRITE 103, 5-92
in DCWRITE 4, 5-33

MSG[0].[23:10]
in DCWRITE 67, 5-79
in DCWRITE 69, 5-82

MSG[0].[23:24], 5-3, 5-19
and pseudostations, 5-24
in DCWRITE 1, 5-22
in DCWRITE 2, 5-25
in DCWRITE 3, 5-30
in DCWRITE 5, 5-36
in DCWRITE 64, 5-71
in DCWRITE 65, 5-77
in DCWRITE 66, 5-78
in DCWRITE 67, 5-79
in DCWRITE 68, 5-80
in DCWRITE 69, 5-82
on exit from DCWRITE, 5-23

MSG[0].[24:01]
in DCWRITE 1, 5-22
in DCWRITE 3, 5-30
in DCWRITE 40, 5-49
in DCWRITE 43, 5-56
in DCWRITE 64, 5-73

MSG[0].[25:01], 5-100

Index

Index–6 8600 0841–202

in DCWRITE 1, 5-22
in DCWRITE 40, 5-49
in DCWRITE 64, 5-73

MSG[0].[25:02]
in DCWRITE 64, 5-74

MSG[0].[26:01]
in DCWRITE 1, 5-21

MSG[0].[27:01], 5-61, 5-62
in DCWRITE 1, 5-21

MSG[0].[27:07]
in DCWRITE 4, 5-33

MSG[0].[28:01]
in DCWRITE 1, 5-21

MSG[0].[29:01]
in DCWRITE 1, 5-21

MSG[0].[29:06]
and disposition of results, 5-23
in DCWRITE 1, 5-21
in DCWRITE 32, 5-38
in DCWRITE 64, 5-71, 5-75

MSG[0].[31:01], 5-61
and pseudostations, 5-23
in DCWRITE 1, 5-21

MSG[0].[31:08]
in DCWRITE 39, 5-48
on exit from DCWRITE, 5-23

MSG[0].[32:01]
in DCWRITE 39, 5-48

MSG[0].[33:02]
in DCWRITE 64, 5-72, 5-74
in DCWRITE 67, 5-79

MSG[0].[35:02]
in DCWRITE 64, 5-74

MSG[0].[39:01]
in DCWRITE 5, 5-36

MSG[0].[39:16], 5-3, 5-65
in DCWRITE 102, 5-91
in DCWRITE 108, 5-95
in DCWRITE 129, 5-97
in DCWRITE 130, 5-99
in DCWRITE 3, 5-30
in DCWRITE 32, 5-38
in DCWRITE 33, 5-40
in DCWRITE 34, 5-42
in DCWRITE 35, 5-43
in DCWRITE 37, 5-45
in DCWRITE 38, 5-47, 5-50
in DCWRITE 4, 5-32
in DCWRITE 42, 5-52
in DCWRITE 44, 5-57
in DCWRITE 45, 5-58
in DCWRITE 48, 5-64
in DCWRITE 49, 5-65

in DCWRITE 53, 5-66
in DCWRITE 56, 5-69
in DCWRITE 64, 5-71, 5-76
in DCWRITE 65, 5-77
in DCWRITE 67, 5-79
in DCWRITE 68, 5-80

MSG[0].[47:08], 5-3, 5-19
example, 5-20

MSG[1], 5-19
MSG[1].[39:08], 5-4
MSG[1].[47:08], 5-3

in DCWRITE 44, 5-57
MSG[11].[23:24], 5-19
MSG[11].[47:24], 5-19
MSG[12], 5-19
MSG[2], 5-19
MSG[2].[39:16], 5-4, 5-11

in DCWRITE 33, 5-40
in DCWRITE 45, 5-59
in DCWRITE 49, 5-65
in DCWRITE 98, 5-86

MSG[2].[47:08], 5-4
MSG[3], 5-19
MSG[3].[23:24], 5-4
MSG[3].[47:24]

in DCWRITE 55, 5-68
MSG[4].[47:24], 5-4
MSG[6], 5-4

in DCWRITE 2, 5-25
in DCWRITE 68, 5-80

MSG[6].[07:08]
in DCWRITE 2, 5-27
in DCWRITE 45, 5-61, 5-62

MSG[6].[14:01=]
in DCWRITE 56, 5-69

MSG[6].[15:01]
in DCWRITE 56, 5-69

MSG[6].[15:08]
in DCWRITE 2, 5-27
in DCWRITE 45, 5-62

MSG[6].[23:08]
in DCWRITE 2, 5-27

MSG[6].[23:16]
in DCWRITE 56, 5-69

MSG[6].[23:24]
in DCWRITE 40, 5-49

MSG[6].[26:27]
in DCWRITE 49, 5-65

MSG[6].[31:16]
in DCWRITE 56, 5-69

MSG[6].[39:16]
in DCWRITE 56, 5-69

MSG[6].[44:05]

 Index

8600 0841–202 Index–7

in DCWRITE 56, 5-69
MSG[6].[46:01]

in DCWRITE 56, 5-69
MSG[6].[46:02]

in DCWRITE 56, 5-69
MSG[6].[47:16]

in DCWRITE 56, 5-69
MSG[6].[47:24]

in DCWRITE 39, 5-48
in DCWRITE 40, 5-49

MSG[6]]
in DCWRITE 103, 5-92

MSG[7]
in DCWRITE 45, 5-61, 6-41

MSG[7].[23:01]
in DCWRITE 130, 5-99

MSG[7].[23:24]
in DCWRITE 108, 5-95
in DCWRITE 131, 5-105

MSG[7].[26:27]
in DCWRITE 49, 5-65

MSG[8].[31:08]
in DCWRITE 130, 5-100
in DCWRITE 131, 5-105

MSG[8].[39:08]
in DCWRITE 130, 5-100

MSG[INX], 5-27
MSG[INX].[15:08]

in DCWRITE 2, 5-27
MSG[INX].[23:08]

in DCWRITE 2, 5-27
MSG[INX].[47:08]

in DCWRITE 2, 5-27
MSG[MSG[INX].[15:08]

in DCWRITE 2, 5-28
MSG[MSG[INX].[15:08]], 5-28
MSG[MSG[INX].[23:08]

in DCWRITE 2, 5-27
MSG[MSG[INX].[23:08]], 5-27
MSG[NDLIILINEINX]

in DCWRITE 130, 5-100, 5-105
MSG[NDLIITERMINX]

in DCWRITE 130, 5-100

N

NDLII LINE.TOG_1 and NDLII.TOG_0 (MCS
error result message format), 6-68

<new queue>, 2-3
<noncharacter array row>, 2-5

in <insert source part>, 2-8

in DCKEYIN statement, 2-5
in DCSYSTEMTABLES function, 3-11
in GETSTATUS function, 3-20
in MAKEUSERCODE function, 3-31
in MCSLOGGER function, 3-32
in REMOVE function, 3-36
in SETSTATUS function, 3-37
in SYSTEMSTATUS function, 3-45

<noncharacter direct array row>, 3-47
<nondirect array name>, 2-11

in <nondirect array row>, 2-11
in <nondirect subscripted variable>, 2-11
in <resident list>, 2-11

<nondirect array reference identifier>, 2-11
<nondirect array row>, 2-11

in <resident list>, 2-11
<nondirect file designator>

in <input designator>, 3-4
<nondirect subscripted variable>, 2-11

in <resident list>, 2-11
NSPINITIALIZED MCS RESULT (Class =

30), 6-61
NULL function, 3-34
NULL STATION REQUEST DCWRITE

(DCWRITE Type = 48), 5-64

O

OBJECT JOB INPUT REQUEST MCS
RESULT (Class = 25), 6-58

OBJECT JOB OUTPUT MCS RESULT (Class
= 3), 6-14

ODT MODE SWITCH NOTICE MCS RESULT
(Class = 80), 6-64

ODT-TO-MCS MCS RESULT (Class =
17), 6-47

ODT-TO-STATION MCS RESULT (Class =
18), 6-48

<old queue>, 2-3
ON statement, 2-10
<one-dimensional real array identifier>, 3-4

in <input designator>, 3-4
<one-dimensional real array reference

identifier>, 3-4
in <input designator>, 3-4

ORGUNIT task attribute, 4-8

P

participating MCS, 5-17

Index

Index–8 8600 0841–202

physical line attributes, 5-101
<pointer expression>, 1-9

in <display location>, 3-16
in <standard location>, 2-13
in CHECKGUARDFILE function, 3-2
in DCERRORANALYSIS function, 3-8
in DCKEYIN statement, 2-5
in USERDATALOCATOR function, 3-46

<pointer identifier>, 2-13
<pointer variable>, 1-9
POWER OFF PENDING MCS RESULT (Class

= 32), 6-63
primary attachment queues, 6-8
<priority>, 2-4

in COMBINE statement, 2-4
in INSERT statement, 2-8

<procedure identifier>, 2-11
PSEUDOMCSNRF, 5-59
pseudostations, 5-16

DCWRITE error, 5-24

Q

QACTIVE queue attribute, 4-2
QBLOCKSIZE queue attribute, 4-2
QDISKERROR queue attribute, 4-2
QHEADSIZE queue attribute, 4-3
QINSERTEVENT queue attribute, 4-3
QMEMORYLIMIT queue attribute, 4-4
QMEMORYSIZE queue attribute, 4-4
QMESSAGECOUNT queue attribute, 4-4
QREMOVEWAIT queue attribute, 4-5
QROWSIZE queue attribute, 4-5
QSIZE queue attribute, 4-5
QTANK queue attribute, 4-6
queue

current attachment, 6-8
DCALGOL, 1-11
primary attachment, 6-8

QUEUE ARRAY declaration, 1-11
<queue array identifier>

in <queue array name>, 2-3
<queue array name>, 2-3
QUEUE ARRAY REFERENCE

declaration, 1-13
<queue array reference identifier>, 1-13

in <queue array name>, 2-3
in QUEUE ARRAY REFERENCE

declaration, 1-13
in SETUPINTERCOM function, 3-38

<queue attribute name>, 4-1

<queue attribute>, 4-1
queue attributes, 4-1

QACTIVE, 4-2
QBLOCKSIZE, 4-2
QDISKERROR, 4-2
QHEADSIZE, 4-3
QINSERTEVENT, 4-3
QMEMORYLIMIT, 4-4
QMEMORYSIZE, 4-4
QMESSAGECOUNT, 4-4
QREMOVEWAIT, 4-5
QROWSIZE, 4-5
QSIZE, 4-5
QTANK, 4-6
QUSERCOUNT, 4-6

QUEUE declarations, 1-11
<queue designator>, 2-3

in <host queue>, 2-4
in <input designator>, 3-4
in <new queue>, 2-3
in <old queue>, 2-3
in <secondary queue>, 2-4
in ATTACHSPOQ function, 3-1
in DCWRITE function, 3-15
in FLUSH statement, 2-7
in INSERT statement, 2-8
in NULL function, 3-34
in QUEUE attribute, 4-1
in QUEUEINFO function, 3-35
in REMOVE function, 3-36
in SETUPINTERCOM function, 3-38

<queue identifier>, 1-11
in <queue designator>, 2-3
in QUEUE declaration, 1-11

queue reference word, 1-11
QUEUEINFO function, 3-35
QUSERCOUNT queue attribute, 4-6

R

railroad diagrams, explanation of, C-1
READ-ONCE ONLY DCWRITE (DCWRITE

Type = 34), 5-42
<real array identifier>, 3-4

in <input designator>, 3-4
<real array reference identifier>, 3-4

in <input designator>, 3-4
RECALL MESSAGE DCWRITE (DCWRITE

Type = 41), 5-50
RECALLED MESSAGE MCS RESULT (Class

= 6), 6-19

 Index

8600 0841–202 Index–9

reconfiguration DCWRITE requests, 5-95
remote files, output tanking for, 5-73
REMOVE function, 1-9, 3-36
reserved words, B-1

type 1, B-1
type 2, B-1
type 3, B-2

<resident list>, 2-11
RESIDENT statement, 2-11
result messages

general format (table), 6-1
<row selector>

in <input designator>, 3-4
in <nondirect array row>, 2-11

S

<secondary queue>, 2-4
SEND MCS RESULT MESSAGE DCWRITE

(DCWRITE Type = 55), 5-68
SET APPLICATION NUMBER DCWRITE

(DCWRITE Type = 38), 5-47
SET CHARACTERS DCWRITE (DCWRITE

Type = 39), 5-48
SET PSEUDOSTATION ATTRIBUTES

DCWRITE (DCWRITE Type =
56), 5-69

SET TRANSMISSION NUMBER DCWRITE
(DCWRITE Type = 40), 5-49

SET/RESET AUTOANSWER DCWRITE
(DCWRITE Type = 102), 5-91

SET/RESET LINE TOGS-TALLYS DCWRITE
(DCWRITE Type = 103), 5-92

SET/RESET LOGICALACK DCWRITE
(DCWRITE Type = 43), 5-56

SET/RESET SEQUENCE MODE DCWRITE
(DCWRITE Type = 49), 5-65

SETSTATUS function, 3-37
SETUPINTERCOM function, 3-38

operator request (variant = 2), 3-39
<single-precision array row>, 3-8
SIZE function, 3-44
<size>, 2-8

in <use size>, 2-8
in DCERRORLOGGER function, 3-10

SOURCEKIND task attribute, 4-9
SOURCESTATION task attribute, 4-9
STAMCSNRF, 5-59
standard form file title, 3-16
<standard location>, 2-13

in DISPLAYTOSTANDARD function, 3-16

in STANDARDTODISPLAY statement, 2-13
STANDARDTODISPLAY statement, 2-13
statements, 2-1

ALLOCATE, 2-1
ATTACH, 2-3
COMBINE, 2-4
DCKEYIN, 2-5
FLUSH, 2-7
INSERT, 2-8
ON, 2-10
RESIDENT, 2-11
STANDARDTODISPLAY, 2-13

STATION ASSIGNMENT TO FILE DCWRITE
(DCWRITE Type = 64), 5-71

STATION ATTACH DCWRITE (DCWRITE
Type = 1), 5-21

STATION BREAK DCWRITE (DCWRITE Type
= 66), 5-78

STATION DETACH DCWRITE (DCWRITE
Type = 42), 5-52

STATION DETACHED MCS RESULT (Class =
14), 6-28

STATION EVENT MCS RESULT (Class =
1), 6-10

STATION INTERROGATE DCWRITE
(DCWRITE Type = 4), 5-37

STATION REINITIALIZED (Class = 31), 6-62
STATION task attribute, 4-9
stations without line assignments, 5-76
<string literal>, 3-46
<subarray selector>, 2-1
<subscript>

in <message designator>, 2-1
in <nondirect subscripted variable>, 2-11
in <queue designator>, 2-3

SUBTRACT STATION FROM FILE DCWRITE
(DCWRITE Type = 69), 5-82

SWAP LINE MCS RESULT (Class = 10), 6-24
SWAP LINES DCWRITE (DCWRITE Type =

128), 5-95
<switch file identifier>

in <resident list>, 2-11
switched status format (MCS error result

message format), 6-70
DISCONNECT, flags after, 6-72
fields, 6-69
INTERROGATE SWITCHED STATUS, flags

after, 6-73
switched status byte, 6-71
using, 6-71

switched status format (MCS Error result
message format)

Index

Index–10 8600 0841–202

automatic switched status, flags
after, 6-73

SET/RESET AUTOANSWER, flags, 6-73
switched status format (MCS error result

message format) DIALOUT
flags after, 6-72

SWITCHED STATUS MCS (Class = 7), 6-20
SYSTEMSTATUS function, 3-45

T

tables
DCWRITE errors, 5-7
DCWRITE message formats (general), 5-1
DCWRITE types, 5-6
input message classes, 6-2
MCS result messages format (general), 6-1

tanking output for remote files, 5-73
TANKING task attribute, 4-9
<task attribute name>, 4-7
<task attribute>, 4-7
task attributes

AUTOSWITCHTOMARC, 4-7
BACKUPFAMILY, 4-8
DESTSTATION, 4-8
DISPLAYONLYTOMCS, 4-8
INHERITMCSSTATUS, 4-8
MAXWAIT, 4-8
ORGUNIT, 4-8
SOURCEKIND, 4-9
SOURCESTATION, 4-9
STATION, 4-9
TANKING, 4-9

<task designator>
in <task attribute>, 4-7

TRANSFER STATION CONTROL DCWRITE
(DCWRITE Type = 45), 5-58

TRANSFER STATION CONTROL MCS
RESULT (Class = 16), 6-41

<translatetable identifier>, 2-11
<truthset identifier>, 2-11

U

<unit number>, 3-47
<unlabeled statement>, 1-3
UPDATE LINE ATTRIBUTES DCWRITE

(DCWRITE Type = 131), 5-105
UPDATE LINE ATTRIBUTES MCS RESULT

(Class = 19), 6-49
<use size>, 2-8
USERDATAFREEZER function, 3-46

V

<value array identifier>, 2-11

W

WFL card image (in CONTROLCARD
function), 3-7

WRITE AND RETURN DCWRITE (DCWRITE
Type = 46), 5-63

WRITE DCWRITE (DCWRITE Type =
33), 5-40

WRITE TO OBJECT JOB DCWRITE
(DCWRITE Type = 65), 5-77

WRITE TO TRANSFERRED STATION
DCWRITE (DCWRITE Type =
53), 5-66

WRITESPO function, 3-47

.

86000841-202
8 6 0 0 0 8 4 1 – 2 0 2

	Documentation Notes
	Table of Contents
	Table of Figures
	Table of Tables
	Section 1. Declarations
	About This Guide
	EPILOG PROCEDURE Declaration
	EXCEPTION PROCEDURE Declaration
	MESSAGE and MESSAGE ARRAY Declarations
	QUEUE and QUEUE ARRAY Declarations
	QUEUE ARRAY REFERENCE Declaration

	Section 2. Statements
	ALLOCATE Statement
	ATTACH Statement
	COMBINE Statement
	DCKEYIN Statement
	FLUSH Statement
	INSERT Statement
	ON Statement
	RESIDENT Statement
	STANDARDTODISPLAY Statement

	Section 3. Functions
	ATTACHSPOQ Function
	CHECKGUARDFILE Function
	CONTROLCARD Function
	WFL Card Image (Variant = 1)

	DCERRANALYSIS Function
	DCERRORLOGGER Function
	DCSYSTEMTABLES Function
	DCWRITE Function
	DISPLAYTOSTANDARD Function
	GETSTATUS Function
	INSERT_CLIENTQUEUE Function
	LINKLIB_CLIENTQUEUE Function
	MAKEUSERCODE Function
	MCSLOGGER Function
	NULL Function
	QUEUEINFO Function
	REMOVE Function
	SETSTATUS Function
	SETUPINTERCOM Function
	ODT-Simulating MCS

	SIZE Function
	SYSTEMSTATUS Function
	USERDATAFREEZER Function
	WRITESPO Function

	Section 4. Attributes
	Queue Attributes
	QACTIVE
	QBLOCKSIZE
	QDISKERROR
	QHEADSIZE
	QINSERTEVENT
	QMEMORYLIMIT
	QMEMORYSIZE
	QMESSAGECOUNT
	QREMOVEWAIT
	QROWSIZE
	QSIZE
	QTANK
	QUSERCOUNT

	Task Attributes
	AUTOSWITCHTOMARC
	BACKUPFAMILY
	DESTSTATION
	DISPLAYONLYTOMCS
	INHERITMCSSTATUS
	MAXWAIT
	ORGUNIT
	SOURCEKIND
	SOURCESTATION
	STATION
	TANKING

	Section 5. DCWRITE Information
	General DCWRITE Information
	DCWRITE Message Format
	Type Field (MSG[0].[47:08])
	Variant Field (MSG[0].[39:16])
	LSN/FRSN/DLS Field (MSG[0].[23:24])
	Priority Output Field (MSG[1].[47:08])
	TOGGLE and TALLY Fields (MSG[1].[39:08] and MSG[3].[23:24])
	Retry Count Field (MSG[2].[47:08])
	Text Size Field (MSG[2].[39:16])
	Message Number Field (MSG[4].[47:24])
	Text (Beginning at MSG[6])

	MCS Calls on DCWRITE

	Summary of DCWRITE
	Pseudostations and Fully Participating MCSs
	Pseudostations
	MCS Participation in Data Comm Functions (Full Participation)

	Specific DCWRITE Information
	INITIALIZE PRIMARY QUEUE (DCWRITE Type = 0)
	STATION ATTACH (DCWRITE Type = 1)
	INTERROGATE MCS (DCWRITE Type = 2)
	Indexing
	MSG[INX] := MSG[6].[07:08]
	MSG[MSG[INX].[23:08]]
	MSG[MSG[INX].[15:08]]

	INTER-MCS COMMUNICATE (DCWRITE Type = 3)
	INTERROGATE STATION ENVIRONMENT (DCWRITE Type = 4)
	ATTACH SCHEDULE STATION (DCWRITE Type = 5)
	Station Information
	Terminal Information

	CHANGE CURRENT QUEUE (DCWRITE Type = 32)
	WRITE (DCWRITE Type = 33)
	READ-ONCE ONLY (DCWRITE Type = 34)
	ENABLE INPUT (DCWRITE Type = 35)
	DISABLE INPUT (DCWRITE Type = 36)
	MAKE STATION READY/NOT READY (DCWRITE Type = 37)
	SET APPLICATION NUMBER (DCWRITE Type = 38)
	SET CHARACTERS (DCWRITE Type = 39)
	SET TRANSMISSION NUMBER (DCWRITE Type = 40)
	RECALL MESSAGE (DCWRITE Type = 41)
	STATION DETACH (DCWRITE Type = 42)
	SET/RESET LOGICALACK (DCWRITE Type = 43)
	ACKNOWLEDGE (DCWRITE Type = 44)
	TRANSFER STATION CONTROL (DCWRITE Type = 45)
	MSG[0].[31:01] = 0
	MSG[0].[31:01] = 1
	MSG[0].[27:01] = 0
	MSG[0].[27:01] = 1

	WRITE AND RETURN (DCWRITE Type = 46)
	NULL STATION REQUEST (DCWRITE Type = 48)
	SET/RESET SEQUENCE MODE (DCWRITE Type = 49)
	MSG[0].[39:16] = 1

	WRITE TO TRANSFERRED STATION (DCWRITE Type = 53)
	SEND MCS RESULT MESSAGE (DCWRITE Type = 55)
	SET PSEUDOSTATION ATTRIBUTES (DCWRITE Type = 56)
	STATION ASSIGNMENT TO FILE (DCWRITE Type = 64)
	Output Tanking for Remote Files
	MCS Participation in I/O
	Stations without Line Assignments

	WRITE TO OBJECT JOB (DCWRITE Type = 65)
	STATION BREAK (DCWRITE Type = 66)
	ADD STATION TO FILE (DCWRITE Type = 67)
	SUBTRACT STATION FROM FILE (DCWRITE Type = 69)

	Line-Oriented Requests
	MAKE LINE READY (DCWRITE Type = 96)
	MAKE LINE NOT READY (DCWRITE Type = 97)
	DIALOUT (DCWRITE Type = 98)
	DISCONNECT (DCWRITE Type = 99)
	INTERROGATE SWITCHED STATUS (DCWRITE Type = 101)
	SET/RESET AUTOANSWER (DCWRITE Type = 102)
	SET/RESET LINE TOGS-TALLYS (DCWRITE Type = 103)
	LINE INTERROGATE (DCWRITE Type = 104)
	FORCE LINE NOT READY (DCWRITE Type = 105)

	Reconfiguration Request DCWRITE Types
	SWAP LINES (DCWRITE Type = 128)
	EXCHANGE LSPS (DCWRITE Type = 129)
	MOVE/ADD/SUBTRACT STATION (DCWRITE Type = 130)
	MSG[0].[25:01] = 1
	Physical Attributes
	Logical Attributes
	DCWRITE Errors

	UPDATE LINE ATTRIBUTES (DCWRITE Type = 131)
	DCWRITE Errors

	Section 6. MCS Result Message Formats
	General Result Message Format
	Class Field (MSG[0].[47:08])
	Variant Field (MSG[0].[39:16])
	LSN Field (MSG[0].[23:24])
	Result-byte Index Field (MSG[1].[47:08])
	Toggle Field (MSG[1].[39:08])
	Last Error Flag Set Field (MSG[1].[31:08])
	Error Flag Field (MSG[1].[23:24])
	Retry Count Field (MSG[2].[47:08])
	Text Size Field (MSG[2].[39:16])
	Transmission Number Field (MSG[2].[23:24])
	Time Field (MSG[3].[47:24])
	TALLY[0], TALLY[1], and TALLY[2]
	Message Number Field (MSG[4].[47:24])
	Original DCWRITE Type Field (MSG[4].[23:24])
	Sequence Number Present Field (MSG[5].[27:01]
	Sequence Number Field (MSG[5].[26:27])
	Text (beginning at MSG[6])

	Specific Result Message Formats
	GOOD INPUT RECEIVED (Result Class = 0)
	STATION EVENT (Result Class = 1)
	FILE OPEN (Result Class = 2)
	Station Transfer File Open

	OBJECT JOB OUTPUT (Result Class = 3)
	FILE CLOSE (Result Class = 4)
	Station Transfer FILE CLOSE

	GOOD RESULTS (Result Class = 5)
	Variant Field in Response to RECALL MESSAGE

	RECALLED MESSAGE (Result Class = 6)
	SWITCHED STATUS RESULT (Result Class = 7)
	LSP EXCHANGE RESULT (Result Class = 8)
	LINE STATUS CHANGE RESULT (Result Class = 9)
	SWAP LINE RESULT (Result Class = 10)
	MOVE/ADD/SUBTRACT STATION RESULT (Result Class = 11)
	DLS UPDATE RESULT (Result Class = 12)
	INTER-MCS COMMUNICATE RESULT (Result Class = 13)
	STATION DETACHED (Result Class = 14)
	INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)
	Explanation of Expanded Message Format
	INX := MSG[6].[07:08] (First Entry Index)
	MSG[MSG[INX].[47:08]]
	MSG[MSG[INX].[39:08]]
	MSG[MSG[INX].[31:08]]
	First Word: MSG[MSG[INX].[31:08]]
	Second Word: MSG[MSG[INX].[31:08]+1] (NSP Line Information Not Requested)
	Second Word: MSG[MSG[INX].[31:08]+1] (NSP Line Information Requested)
	Third Word: MSG[MSG[INX].[31:08]+2] (NSP Line Information Requested)
	Fourth Word: MSG[MSG[INX].[31:08]+3] (NSP Line Information Requested)
	Fifth Word: MSG[MSG[INX].[31:08]+4] (NSP Line Information Requested)

	MSG[MSG[INX].[23:08]]
	First Word: MSG[MSG[INX].[23:08]]
	Second Word: MSG[MSG[INX].[23:08]+1]

	MSG[MSG[INX].[15:08]]
	First Word: MSG[MSG[INX].[15:08]]
	Second Word: MSG[MSG[INX].[15:08]+1]
	Third Word: MSG[MSG[INX].[15:08]+2] (NSP Information Not Requested)
	Third Word: MSG[MSG[INX].[15:08]+2] (NSP Information Requested)
	Fourth Word: MSG[MSG[INX].[15:08]+3]
	Fifth Word: MSG[MSG[INX].[15:08]+4]
	Sixth Word: MSG[MSG[INX].[15:08]+5]
	Seventh Word: MSG[MSG[INX].[15:08]+6]
	Eighth Word: MSG[MSG[INX].[15:08]+7]
	Ninth Word: MSG[MSG[INX].[15:08]+8]
	Tenth Word: MSG[MSG[INX].[15:08]+9]
	Eleventh Word

	TRANSFER STATION CONTROL RESULT (Result Class = 16)
	INX := MSG[6].[47:12] (Index to the Station Transfer Index Control Word)
	INX := MSG[6].[32:09] (Header Word of Information Area)
	INX := MSG[6].[32:09] + 1 (First Word of Information Area)
	UINX := INX+MSG[INX+4].[31:16] (First Word of Authentication Location)
	
	UINX := INX+MSG[INX+4].[15:16] (First Word of Usercode Location)
	AINX := INX+MSG[INX+5].[47:16] (First Word of Accesscode Location)
	
	CINX := INX+MSG[INX+5].[31:16] (First Word of Chargecode Location)
	WINX := INX+MSG[INX+5].[15:16] (First Word of Window Information Location)
	OINX := INX+MSG[INX+6].[15:16] (First Word of Open Text Location)

	ODT-TO-MCS RESULT (Result Class = 17)
	ODT-TO-STATION RESULT (Result Class = 18)
	UPDATE LINE ATTRIBUTES RESULT (Result Class = 19)
	MESSAGE FROM CONTROLLER RESULT (Result Class = 21)
	LINE INTERROGATE RESULT (Result Class = 24)
	OBJECT JOB INPUT REQUEST RESULT (Result Class = 25)
	INTERCEPTED MESSAGE RESULT (Result Class = 29)
	NSPINITIALIZED RESULT (Result Class = 30)
	STATION REINITIALIZED (Result Class = 31)
	POWER OFF PENDING RESULT (Result Class = 32)
	ODT MODE SWITCH NOTICE RESULT (Result Class = 80)
	INPUT FROM AN ODT RESULT (Result Class = 81)
	ERROR RESULT (Result Class = 99)
	Line/Station Format of ERROR RESULT Message
	Error Results in Line/Station Format
	Result Byte Index
	Line Status Prior to Abort (MSG[1].[39:06])
	NDLII LINE.TOG_1 and NDLII LINE.TOG_0

	Switched Status Format of ERROR RESULT Message
	Error Results in Switched Status Format
	Using Switched Status Format
	Switched Status Byte Values
	Switched Status Format Flags after DIALOUT
	Switched Status Format Flags after DISCONNECT
	Switched Status Format Flags after INTERROGATE SWITCHED STATUS
	Switched Status Format Flags SET/RESET AUTOANSWER
	Switched Status Format Flags after Automatic Switched Status

	Appendix A. Sample MCS
	Appendix B. Reserved Words
	Type 1
	Type 2
	Type 3

	Appendix C. Understanding Railroad Diagrams
	Railroad Diagram Concepts
	Paths
	Constants and Variables
	Constraints

	Following the Paths of a Railroad Diagram
	Railroad Diagram Examples with Sample Input

	Appendix D. Related Product Information
	Index
	Master Glossary

