Burroughs

B 6700

TIMINGS

FOR SELECTED LANGUAGE CONSTRUCTS
 (RELATIVE TO MARK II. 6 RELEASE)

$\$ 4.00$

COPYRIGHT © 1975 BURROUGHS CORPORATION

Abstract

Burroughs believes that the information described in this manual is accurate and reliable, and much care has been taken in its preparation. However, no responsibility, financial or otherwise, is accepted for any consequences arising out of the use of this material. The information contained herein is subject to change. Revisions may be issued to advise of such changes and/or additions.

Section 1 CONSTRUCT TIMINGS

Construct timings do not, by themselves, convey a great deal of knowledge about performance. They represent only one set of characteristics out of many that must be considered. Nevertheless, they can be very useful.

They are more informative, for example, than the more primitive indicators such as clock rate or memory speed. and they are reasonably unambiguous. The "add time" of a computer may mean different things to different people. However, " $A=B+C$ " denotes an amount of work done, whether on a particular machine which involves a polish string or a three-address fixed-length instruction.

Construct timings should be useful to the programmer who wants to understand how to write more efficient code. Knowing the relative speeds involved when choices present themselves is of obvious benefit.

The data in this document are actual measured timings. They were obtained by means of programs especially designed for this purpose, taking into account the following:

1. Timing Method

FORTRAN:
The TIME (11) function was used to read the time of day register. Since this function in FORTRAN calls an MCP intrinsic, one must consider the time involved to do this (about 80μ s on a B $67005.0 /$ 10.0 processor, $1.2 \mu s$ memory). The construct was repeated N3 times in line within a DO loop of $N 2$ iterations with timer readings before and after the DO loop. The same loop was also timed "empty", i.e., with no constructs within it. This loop timing also includes the overhead for reading the timer. The difference in times (i.e., the time for the loop with constructs minus the time for the "empty" loop) divided by $N 3 * N 2$ represents the time for the construct. N3 is chosen so that the time for $N 3$ constructs is much larger than the

1. FORTRAN (Continued)
empty loop time. N2 is chosen to make the total DO loop time large in relation to the time to read the timer. This maximizes the accuracy of the timings.

ALGOL:
The timing in ALGOL was done in much the same way as in FORTRAN. The construct was repeated N3 times in line between two TIME (11) statements. The relatively small (about 6.4 us on a $\mathrm{B} 67005.0 / 10.0$ processor) time required to actually read and store the time of day register was later subtracted out. N3 was 100 in all cases. N2 does not apply.

COBOL:
The method is essentially the same as described for FORTRAN, using PERFORM N2 TIMES of N3 construcis. N2 and N3 were usually 100 and 50, respectively.
2. Perturbations

Should an interrupt occur at any time between timer readings, the timing will, of course, be distorted. Therefore, each timing loop was repeated to obtain a number, (N1), of observations. The few times which did not agree with the majority of observations were caused by such perturbations from interrupts and were discarded. N1 was usually 100 in the FORTRAN and ALGOL timings and 25 in the COBOL timings.
3. Code Alignment

For any construct, the generated code may occupy any one of six positions relative to word boundaries -- i.e., the string may start in syllable 0, 1,2 , etc. Some variations in timing will result from this, but they are of little consequence. For uniformity, all timings were done with code beginning in syllable zero.
4. Operands

Many of the constructs timed have a dependency on the actual values of the operands involved. For this reason, a variety of operands were used in the FORTRAN timings for these constructs to measure the extent of that dependency. For those cases, a "range" of times observed is quoted. This range is over those operands used and may or may not include the possible minimum and maximum.
5. Repeatability

All of the programs were run more than once - on different days, different processors, some on different systems - to establish the repeatability of the results.

What is sometimes seen is that there are two repeatable timings. This occurs because the timing is affected slightly by whether the code and operands are in the same memory module. The amount of the difference varies according to the construct involved, but is relatively minor (usually 10% or less).

But there are, in effect, two correct answers for each construct. Because of this, where different language constructs generate the same code, the timing reported may be the same or may vary slightly.
6. Hardware

One 5.0/10.0 processor was used with $1.2 \mu s$ memory (B6004-1) in one case and 1.6 us memory (B6005-1) in the other case.
7. Software

The software release level is noted for each set of timings. For some constructs, the timing could conceivably change from one release to the next, if different code is generated.

A sample FORTRAN timing program follows.

DIMENSION OBSV(1000)
$\mathrm{Nl}=100$
$\mathrm{N} 2=14$
$\mathrm{N} 3=100$
DO $30 \mathrm{I}=1$, N1
TBEG = TIME (11)
DO $10 \mathrm{~J}=1$, N2
$Z=X+Y$

C THE CONSTRUCT ABOVE IS REPEATED SO THAT IS APPEARS
C WITHIN THIS DO-LOOP A TOTAL OF N3 (N3 = 100) TIMES
C

10 CONTINUE
TEND = TIME(11)
OBSV (I) = TEND - TBEG
TBEG = TIME (11)
DO $20 \mathrm{~J}=1$, N2
CONTINUE
TEND = TIME (11)
$\operatorname{OBSV}(\mathrm{I})=2.4 *(\operatorname{OBSV}(\mathrm{I})-\mathrm{TEND}+\mathrm{TBEG}) /(\mathrm{N} 2 * \mathrm{~N} 3)$
CONTINUE
C
C SORT AND OUTPUT THE OBSERVATIONS (OBSV ARRAY)
C
STOP
END

Section 2

ALGOL CONSTRUCT TIMINGS

The following timings of certain ALGOL constructs were obtained using the MCP and ALGOL compiler from the Mark II. 6 systems software release. The timings of each construct for each memory speed (1.2us and 1.6 us) are displayed on the following pages. An asterisk appearing between the two columns of timings refers to a note on the last page of this section.

The variable names used and their data type definitions are:
REAL XREAL, YREAL, ZREAL;
INTEGER XINTGR,YINTGR,ZINTGR, I, J, K;
DOUBLE XDBL, YDBL, ZDBL ;
ARRAY ARAYI[0:9], BRAY1[0:9], ARAY2 $[0: 9,0: 9]$, BRAY2 [$0: 9,0: 9]$, ARAY3 $[0: 9,0: 9,0: 9], \operatorname{BRAY3}[0: 9,0: 9,0: 9] ;$

A range in timing for some of the constructs is due to the different operand values used in the execution of the construct. The pairs of operand values are:
$($ XREAL, YREAL $)=(1 @ 0,1 @ 0)$ and (6517, - 1740)
$(X I N T G R, Y I N T G R)=(1,1)$ and $(6517,-1740)$
$(\mathrm{XDBL}, \mathrm{YDBL})=(1 @ @ 0,1 @ @ 0)$ and (4632@@31, 8623@@27)
(ARAY..., BRAY...) $=(1 @ 0,1 @ 0)$ and (4631527@28, 8623355@24)
I, J and $K=1$
The constructs containing $A B S$ and DABS had an operand value of $\mathbf{- 1 2 3 4 5}$.

ALGOL Construct Timings

Proc Speed	$:$	$5.00 / 10.00$
MCP	\vdots	Mark II.6
ALGOL	$:$	Mark II.6

SINGLE PRECISION REAL CONSTRUCTS

$\begin{gathered} \text { ALGOL } \\ \text { Construct } \\ \hline \end{gathered}$	Timings in Microseconds	
	$1.2 u_{s}$ Memory	1.6 us Memory
ZREAL : $=$ XREAL + YREAL;	5.6-7.0	10.3-11.7
ZREAL : $=$ XREAL - YREAL;	6.0-7.2	10.7-11.9
ZREAL := XREAL * YREAL;	7.0-8.4	11.7-13.1
ZREAL := XREAL / YREAL;	11.8-13.0	16.5-17.7
ZREAL : = XREAL DIV YREAL;	6.6	
ZREAL : $=1$;	2.8	4.5
ZREAL : $=1.0$;	5.4	8.0
ZREAL : = 1@0;	5.4	8.0
ZREAL := 97;	3.2	5.1
ZREAL : = 9701;	3.6	5.6
ZREAL : = 99999;	4.6	7.6
ZREAL := 100000;	5.4	8.0
ZREAL := 100001;	4.6	7.6
ZREAL := 12345678;	4.6	7.6
ZREAL : $=$ XREAL;	3.8	6.8
ZREAL : $=$ XREAL + XREAL;	5.0	8.2
ZREAL : = XREAL + XREAL + XREAL;	6.6	11.6
ZREAL : = XREAL + XREAL + XREAL + XREAL;	8.8	14.9
$\begin{aligned} \text { ZREAL }:= & \text { XREAL + XREAL + XREAL } \\ & + \text { XREAL + XREAL; } \end{aligned}$	10.0	18.3
$\begin{aligned} \text { YREAL : }= & \text { YREAL + XREAL + XREAL } \\ & + \text { XREAL + XREAL + XREAL; } \end{aligned}$	10.8	
$\begin{aligned} \text { XREAL }:= & \text { XREAL + XREAL + XREAL } \\ & + \text { XREAL + XREAL + XREAL; } \end{aligned}$	11.8	21.6
$\begin{aligned} \text { ZREAL }:= & \text { XREAL + XREAL + XREAL + XREAL } \\ & + \text { XREAL + XREAL + XREAL; } \end{aligned}$	13.4	24.9
$\begin{aligned} \text { ZREAL }:= & \text { XREAL + XREAL + XREAL + XREAL } \\ & + \text { XREAL + XREAL + XREAL + XREAL } ; \end{aligned}$	15.2	
ZREAL : $=$ ABS (XREAL) ;	5.5	8.8
ZREAL : $=$ COSH (XREAL);	221.7	337.9
ZREAL := EXP (XREAL) ;	166.1	253.9

Proc Speed	$5.00 / 10.00$
MCP	Mark II.6
ALGOL	Mark II.6
SINGLE PRECISION REAL CONSTRUCTS (Cont)	

Timings in Microseconds
ALGOL
Construct
ZREAL : = SIN (XREAL);
ZREAL := SQRT (XREAL);
ZREAL : = XREAL + SQRT (XREAL) ;
ZREAL : = SQRT (ZREAL) ;
YREAL : = YREAL + SQRT (YREAL) ;

Timings in Microseconds		
$\frac{1.2 \text { us_Memory }}{145.1}$	$*$	1.6 us_Memory
171.5	$*$	221.5
174.4	$*$	252.3
171.5	$*$	252.3
169.6	$*$	252.3

INTEGER CONSTRUCTS

Timings in
Microseconds
ALGOL Construct

ZINTGR : = XINTGR + YINTGR;
ZINTGR : = XINTGR - YINTGR;
ZINTGR : = XINTGR * YINTGR;
ZINTGR : = XINTGR / YINTGR;
ZINTGR := 1 ;
ZINTGR := 97;
ZINTGR : = XINTGR;
ZINTGR : = ZINTGR;

$1.2 u_{S}$ Memory		$1.6 u s$ Memory
$6.1-6.5$		$10.9-11.3$
$6.1-6.5$		$10.9-11.3$
$7.5-7.9$		$12.3-12.7$
$14.9-15.5$		$19.7-20.3$
2.8	4.5	
3.2		5.1
4.5		7.8
3.0		4.8

ALGOL Construct Timings

Proc Speed	:	$5.00 / 10.00$
MCP	$:$	Mark II. 6
ALGOL	$:$	Mark II. 6

DOUBLE PRECISION REAL CONSTRUCTS

> Timings in Microseconds

ALGOL
Construct

```
ZDBL := XDBL + YDBL;
ZDBL := XDBL - YDBL;
ZDBL := XDBL * YDBL;
ZDBL := XDBL / YDBL;
ZDBL := 1@@0;
ZDBL := 8@@0;
ZDBL := XDBL;
ZDBL := DABS (XDBL);
ZDBL := DEXP (XDBL);
ZDBL := DSIN (XDBL);
ZDBL := DSQRT (XDBL);
```

$1.2 \mu_{S}$ Memory		$1.6 \mu_{S}$ Memory
$10.0-11.6$		$17.6-19.2$
$10.0-11.6$		$17.6-19.2$
16.6		24.2
$38.6-51.0$		$48.2-60.6$
6.6		10.6
6.6		10.6
6.4		11.4
8.2		13.4
571.7		836.3
382.9		576.7
237.3		344.5

Proc Speed	:	$5.00 / 10.00$
MCP	$:$	Mark II.6
ALGOL	$:$	Mark II.6

ARRAY CONSTRUCTS

Timings in Microseconds

$1.2 u_{s}$ Memory $1.6 u_{s}$ Memory
$5.6 \quad 9.9$
7.6
6.7
9.5
$11.2-12.6$
$11.6-12.8$
14.0
17.4
8.7
14.7
10.5
18.4
18.9-20.3
11.9
23.7
14.4
29.6
$33.5-35.1$
13.0
12.3
17.6
20.6-22.0
21.0-22.2
23.4
26.8
14.3
24.6
18.7
33.4
35.3-36.7
18.9
38.4
25.3
52.1
$59.2-60.6$

ALGOL Construct Timings

NOTE
These constructs call upon intrinsic routines of which each must be linked from the Dl stack prior to its first execution within a program. The first timing which includes intrinsic linkage will vary between 2 and 160 milliseconds, depending upon the presence or absence of certain MCP segments in main memory. The above timings were observed after the corresponding intrinsic was called once and linkage was thus established.

Section 3
 COBOL CONSTRUCT TIMINGS

The Mark II. 6 MCP and COBOL compiler were used in obtaining the following construct timings. Both 1.2 us and $1.6 \mu s$ memories were used, and the resultant timings for both memory speeds are listed beside each construct on the following pages.

The constructs have been grouped into twenty different "types" representing common data names and thus common data representations (pictures).

Two timings are given for each construct within each memory speed in the first ten construct types. The first timing corresponds with the operand values:
"X-..." $=+1$ and "Y-..." $=+1$.
The second timing resulted from using the operand values:
"X-..." $=+6517$ and "Y-..." $=-1740$.
The data names and their corresponding pictures and usages for the constructs timed are listed by type in the following WORKING-STORAGE SECTION.

COBOL Construct Timings

DATA DIVISION.
WORKING-STORAGE SECTION.
TYPES 1 AND 11

77	$\mathrm{X}-\mathrm{S} 7-\mathrm{CMP1}$
77	$\mathrm{Y}-\mathrm{S} 7-\mathrm{CMP1}$
77	$\mathrm{Z}-\mathrm{S} 7-\mathrm{CMP1}$

77 Z-S7-CMP1
TYPE 2
77 X-S5V2-CMP1
77 Y-S5V2-CMP1
77 Z-S5V2-CMP1
TYPE 3
$77 \quad \mathrm{X}-\mathrm{J} 7$
$77 \quad \mathrm{Y}-\mathrm{J7}$
77 Z-J7
TYPE 4
77 X-J5V2
77 Y-J5V2
77 Z-J5V2
TYPE 15 (PART 1)
77 X-S5-CMP1

77 Y-J5
TYPE 16 (PART 1)
77 X-S10-CMP1
77 Y-J8
TYPE 17

77	X-3-CMP1
77	Y-6-CMP1
77	Z-6-CMP2
77	W-J6-CMP2

TYPE 18
77 NUM-3-CMP1
TYPE 19 (PART 1)
77 SUB-2-CMP1
INXI
X-X5

PIC S9 (7)
PIC S9 (7)
PIC S9(7)

PIC S9 (5) V99
PIC S9(5) V99 PIC S9 (5) V99

PIC J9(7).
PIC J9(7).
PIC J9(7).

PIC J9 (5) V99.
PIC J9 (5) V99.
PIC J9 (5) V99.

PIC S9 (5)
COMP- 1
PIC J9(5).

PIC S9 (10)
PIC J9(8).

PIC 999	COMP-1.
PIC 9(6)	COMP-1.
PIC 9(6)	COMP-2.
PIC J9(6)	COMP-2.

PIC 999
COMP-1.

PIC 99
COMP-1.

TYPE 5
01 WS-OP-1.
03 X-S7-CMP
03 Y-S7-CMP
03 Z-S7-CMP

PIC S9(7)	COMP.
PIC S9(7)	COMP.
PIC S9(7)	COMP.

TYPE 6
01 WS-OP-2.
03 X-S5V2-CMP
$03 \mathrm{Y}-\mathrm{S} 5 \mathrm{~V} 2-\mathrm{CMP}$
03 Z-S5V2-CMP
PIC S9(5) V99
PIC S9(5) V99
PIC S9(5) v99
COMP.
COMP. COMP.

TYPE 7
01 WS-OP-3.
$03 \quad \mathrm{x}-03-\mathrm{J7}$
$03 \mathrm{Y}-03-\mathrm{J7}$
03 z-03-J7
PIC J9(7).
PIC J9(7).
PIC J9(7).
TYPE 8
01 WS-OP-4.
03 x-03-J5V2
03 Y-03-J5V2
$03 \mathrm{z}-03-\mathrm{J} 5 \mathrm{~V} 2$
PIC J9(5) V99.
PIC J9(5) V99.
PIC J9(5) V99.
TYPE 9
01 WS-OP-5.
03 X-S7-CMP2
03 Y -S7-CMP2
03 z-S7-CMP2
PIC S9(7)
PIC S9(7)
PIC S9(7)
COMP-2.
COMP-2. COMP-2.

TYPE 10

01 WS-OP-6.
03 X-J7-CMP2
03 Y-J7-CMP2
03 Z-J7-CMP2
PIC J9(7)
PIC J9(7)
PIC J9(7)
COMP-2
COMP-2. СомР-2.

TYPE 12
01 WS-OP-7.
03 X1
03 X6
PIC X .
03 X25
03 X132
PIC X (6).
PIC X(25).
PIC X(132).

COBOL Construct Timings

TYPE 13

01 WS-OP-8.

03 X-7-CMP
03 Y-5V2-CMP
03 Z-z7
03 W-Z5P2
TYPE 14
01 WS-OP-9.
03 X-S7-C0MP
03 Y-S7-COMP
03 Z-S7-COMP
03 A-J7
03 B-J7
$03 \quad$ C-J7
TYPE 15 (PART 2)
01 WS-OP-10.
03 S-S5-CMP
03 T-S5
03 U-J5
03 v-S5-CMP2
03 W-J5-CMP2
TYPE 16 (PART 2)
01 WS-Op-11.
03 U-S6-CMP
03 V-J4
03 W-J9-CMP2
03 A-X8
03 B-X4
88 B88 VALUE "YES"
01 WS-OP-12 DISPLAY-I.
03 C-X4-DISP1
TYPE 19 (PART 2)
01 WS-OP-13.
03 SUB-X5-OC-10
01 WS-OP-14.
03 IDX-X5-OC-10

TYPE 20
01 WS-OP-15.
03 XX-X25

PIC 9(7) COMP.
PIC 9(5) V99 COMP.
PIC $\mathrm{Z}(7)$.
PIC Z(5).99.

PIC S9(7) COMP.
PIC S9(7) COMP.
PIC S9(7) COMP.
PIC J9(7).
PIC J9(7).
PIC J9(7).

PIC S9(5) COMP. PIC S9(5).
PIC J9(5).
PIC S9(5) COMP-2.
PIC J9(5) COMP-2.

PIC S9(6) COMP.
PIC J9(4).
PIC J9(9) COMP-2.
PIC X(8).
PIC X(4).

PIC X(4) DISPLAY-1.

PIC X(5) OCCURS 10 TIMES.
PIC $X(5)$ OCCURS 10 TIMES INDEXED BY INX2.

PIC X OCCURS 25 TIMES.

Proc Speed	$:$	$5.00 / 10.00$
MCP	$:$	Mark II.6
COBOL	$:$	Mark II.6

TYPE 1 CONSTRUCTS

COBOL

Construct

ADD X-S7-CMP1, Y-S7-CMP1 GIVING Z-S7-CMP1. COMPUTE Z-S7-CMP1 = X-S7-CMP1 $+\mathrm{Y}-\mathrm{S7}$-CMP1. SUBTRACT Y-S7-CMP1 FROM X-S7-CMP1 GIVING Z-S7-CMP1.

COMPUTE Z-S7-CMP1 = X-S7-CMP1 - Y-S7-CMP1. MULTIPLY X-S7-CMP1 BY Y-S7-CMP1 GIVING Z-S7-CMP1.
COMPUTE Z-S7-CMP1 = X-S7-CMP1 * Y-S7-CMP1. DIVIDE X-S7-CMP1 BY Y-S7-CMP1 GIVING Z-S7-CMP1.
COMPUTE Z-S7-CMP1 = X-S7-CMP1 / Y-S7-CMP1.

Timings in Microseconds

1.2 us Memory	1.6 us Memory
5.6 - 6.0	10.3-10.7
$8.0-8.4$	14.7-15.1
$6.3-6.7$	11.2-11.6
$8.0-8.4$	14.7-15.1
10.5-10.9	17.5-17.9
10.0-10.4	16.9-17.3
17.5-17.9	24.5-24.9
17.0-17.4	23.9-24.3

TYPE 2 CONSTRUCTS

	Timings in Microseconds	
COBOL Construct	1.2 us Memory	$1.6{ }^{1} \mathrm{~s}$ Memory
$\begin{aligned} & \text { ADD X-S5V2-CMP1, Y-S5V2-CMP1 GIVING } \\ & \text { Z-S5V2-CMP1. } \end{aligned}$	$5.6-6.0$	10.3-10.7
$\begin{aligned} & \text { COMPUTE Z-S5V2-CMP1 }=\mathrm{X}-\mathrm{S} 5 \mathrm{~V} 2-\mathrm{CMP1}+ \\ & \text { Y-S5V2-CMP1. } \end{aligned}$	$8.0-8.4$	14.7-15.1
SUBTRACT Y-S5V2-CMP1 FROM X-S5V2-CMP1 GIVING Z-S5V2-CMP1.	$6.3-6.7$	11.2-11.6
$\begin{aligned} & \text { COMPUTE Z-S5V2-CMP1 }=\mathrm{X}-\mathrm{S} 5 \mathrm{~V} 2-\mathrm{CMP1}- \\ & \text { Y-S5V2-CMP1. } \end{aligned}$	$8.0-8.4$	14.7-15.1
```MULTIPLY X-S5V2-CMP1 BY Y-S5V2-CMP1 GIVING Z-S5V2-CMP1.```	20.6-21.0	28.0-28.4
$\begin{aligned} & \text { COMPUTE Z-S5V2-CMP1 }=\mathrm{X}-\mathrm{S} 5 \mathrm{~V} 2-\mathrm{CMP1} * \\ & \text { Y-S5V2-CMP1. } \end{aligned}$	20.1-20.5	27.2-27.6
$\begin{aligned} & \text { DIVIDE X-S5V2-CMP1 BY Y-S5V2-CMP1 GIVING } \\ & \text { Z-S5V2-CMP1. } \end{aligned}$	21.1-21.5	28.7-29.1
$\begin{aligned} & \text { COMPUTE Z-S5V2-CMP1 }=\mathrm{X}-\mathrm{S} 5 \mathrm{~V} 2-\mathrm{CMP1} / \\ & \text { Y-S5V2-CMP1. } \end{aligned}$	20.8-21.2	28.2-28.6

COBOL Construct Timings

Proc Speed	:	5.00/10.00
MCP	$\vdots$	Mark II.6
COBOL	$:$	Mark II.6

## TYPE 3 CONSTRUCTS

Timings in

Microseconds

COBOL
Construct
ADD X-J7, Y-J7 GIVING Z-J7.
COMPUTE $\mathrm{Z}-\mathrm{J} 7=\mathrm{X}-\mathrm{J} 7+\mathrm{Y}-\mathrm{J} 7$.
SUBTRACT Y-J7 FROM X-J7 GIVING Z-J7.
COMPUTE Z-J7 = X-J7 - Y-J7.
MULTIPLY X-J7 BY Y-J7 GIVING Z-J7.
COMPUTE $\mathrm{Z}-\mathrm{J} 7=\mathrm{X}-\mathrm{J} 7$ * $\mathrm{Y}-\mathrm{J} 7$.
DIVIDE X-J7 BY Y-J7 GIVING Z-J7.
COMPUTE $\mathrm{Z}-\mathrm{J} 7=\mathrm{X}-\mathrm{J} 7 / \mathrm{Y}-\mathrm{J} 7$.

$1.2 \mu_{s}$ Memory	$1.6 u_{s}$ Memory
$169.0-169.4$	$235.4-235.8$
$166.2-166.7$	$230.6-231.1$
$167.2-169.2$	$233.4-235.4$
$164.2-166.2$	$228.6-230.6$
$172.9-173.3$	$241.4-241.7$
$167.6-168.0$	$232.1-232.4$
$178.0-178.4$	$244.8-245.2$
$175.1-175.5$	$239.6-240.0$

Timings in

COBOL
Construct
ADD X-J5V2, Y-J5V2 GIVING Z-J5V2.
COMPUTE Z-J5V2 $=\mathrm{X}-\mathrm{J} 5 \mathrm{~V} 2+\mathrm{Y}-\mathrm{J} 5 \mathrm{~V} 2$.
SUBTRACT Y-J5V2 FROM X-J5V2 GIVING Z-J5V2.
COMPUTE Z-J5V2 $=\mathrm{X}-\mathrm{J} 5 \mathrm{~V} 2-\mathrm{Y}-\mathrm{J} 5 \mathrm{~V} 2$.
MULTIPLY X-J5V2 BY Y-J5V2 GIVING Z-J5V2. COMPUTE Z-J5V2 $=\mathrm{X}-\mathrm{J} 5 \mathrm{~V} 2 * \mathrm{Y}-\mathrm{J} 5 \mathrm{~V} 2$. DIVIDE X-J5V2 BY Y-J5V2 GIVING Z-J5V2. COMPUTE Z-J5V2 = X-J5V2 / Y-J5V2.

## Microseconds

$1.2 \mu_{S}$ Memory	$\underline{1.6} \mu_{S}$ Memory
$169.0-169.4$	$235.4-235.8$
$166.2-166.6$	$230.6-231.0$
$166.9-169.0$	$233.4-235.4$
$164.2-166.2$	$228.6-230.6$
$183.2-183.6$	$252.0-252.4$
$177.7-178.1$	$242.5-242.8$
$181.4-181.8$	$248.8-249.2$
$179.0-179.5$	$244.1-244.5$

## Burroughs - B 6700 System Timings

COBOL Construct Timings

Proc Speed	$5.00 / 10.00$
MCP	Mark II.6
COBOL	Mark II.6

## TYPE 5 CONSTRUCTS

Timings in Microseconds

COBOL

## Construct

ADD X-S7-CMP, Y-S7-CMP GIVING Z-S7-CMP.
COMPUTE Z-S7-CMP $=\mathrm{X}-\mathrm{S7}$-CMP $+\mathrm{Y}-\mathrm{S7}$-CMP. SUBTRACT Y-S7-CMP FROM X-S7-CMP GIVING Z-S7-CMP.
COMPUTE Z-S7-CMP $=\mathrm{X}-\mathrm{S7} 7-\mathrm{CMP}-\mathrm{Y}-\mathrm{S7}-\mathrm{CMP}$. MULTIPLY X-S7-CMP BY Y-S7-CMP GIVING Z-S7-CMP.
COMPUTE Z-S7-CMP $=\mathrm{X}-\mathrm{S7}$-CMP * Y-S7-CMP. DIVIDE X-S7-CMP BY Y-S7-CMP GIVING Z-S7-CMP.
COMPUTE Z-S7-CMP $=\mathrm{X}-\mathrm{S7}-\mathrm{CMP} / \mathrm{Y}-\mathrm{S7}-\mathrm{CMP}$.

## TYPE 6 CONSTRUCTS

Timings in Microseconds
1.6 HS Memory
20.7 - 21.1
24.2-24.6
20.7-21.1
24.2-24.6
13.8 - 14.2
27.2-27.6
$38.9-39.3$
$25.9-26.3$
36,7-37.1
27.2-27.6
$38.9-39.3$
26.6-27.0
$37.7-38.1$

COBOL Construct Timings

Proc Speed	$5.00 / 10.00$
MCP	Mark II.6
COBOL	Mark II.6

TYPE 7 CONSTRUCTS
Timings in
Microseconds

COBOL Construct

ADD X-03-J7, Y-03-J7 GIVING Z-03-J7.
COMPUTE Z-03-J7 $=\mathrm{X}-03-\mathrm{J} 7+\mathrm{Y}-03-\mathrm{J} 7$.
SUBTRACT Y-03-J7 FROM X-03-J7 GIVING Z-03-J7. COMPUTE $\mathrm{Z}-03-\mathrm{J} 7=\mathrm{X}-03-\mathrm{J7}-\mathrm{Y}-03-\mathrm{J} 7$. MULTIPLY X-03-J7 BY Y-03-J7 GIVING Z-03-J7. COMPUTE Z-03-J7 $=\mathrm{X}-03-\mathrm{J} 7 * \mathrm{Y}-03-\mathrm{J} 7$. DIVIDE X-03-J7 BY Y-03-J7 GIVING Z-03-J7. COMPUTE Z-03-J7 = X-03-J7 / Y-03-J7.

## Microseconds

1.2 us Memory	1.6 us Memory
168.0-168.3	234.3-234.8
165.2-165.6	229.6-230.0
169.3-171.3	237.1-239.1
163.2-165.2	227.6-229.6
171.9-172.3	240.3-240.8
166.6-167.0	231.1-231.4
177.0-177.4	243.7-244
174.1-174.5	238.6-239.0

## TYPE 8 CONSTRUCTS

	Timings in Microseconds	
COBOL   Construct	$1.2 \mu_{S}$ Memory	$1.6 \mu_{s}$ Memory
ADD X-03-J5V2, Y-03-J5V2 GIVING Z-03-J5V2.	168.0-168.3	234.3-234.8
COMPUTE Z-03-J5V2 $=$ X-03-J5V2 $+\mathrm{Y}-03-\mathrm{J} 5 \mathrm{~V} 2$.	165.2 - 165.6	229.6-230.0
SUBTRACT Y-03-J5V2 FROM X-03-J5V2 GIVING Z-03-J5V2.	165.9-167.9	232.4-234.3
COMPUTE Z-03-J5V2 $=\mathrm{X}-03-\mathrm{J} 5 \mathrm{~V} 2-\mathrm{Y}-03-\mathrm{J} 5 \mathrm{~V} 2$.	$163.2-165.2$	227.6-229.6
MULTIPLY X-03-J5V2 BY Y-03-J5V2 GIVING Z-03-J5v2.	182.2-182.6	251.0-251.5
COMPUTE Z-03-J5V2 $=\mathrm{X}-03-\mathrm{J} 5 \mathrm{~V} 2 \times \mathrm{Y}-03-\mathrm{J} 5 \mathrm{~V} 2$.	176.8-177.1	241.5-241.9
DIVIDE X-03-J5V2 BY Y-03-J5V2 GIVING Z-03-J5v2.	180.4-180.8	247.8-248.3
COMPUTE Z-03-J5V2 $=$ X-03-J5V2 / Y-03-J5V2.	178.1-178.5	243.1-243.5


Proc Speed	$:$	$5.00 / 10.00$
MCP	$:$	Mark II.6
COBOL	$:$	Mark II.6

TYPE 9 CONSTRUCTS
Timings in Microseconds

COBOL
Construct
ADD X-S7-CMP2, Y-S7-CMP2 GIVING Z-S7-CMP2. COMPUTE Z-S7-CMP2 $=\mathrm{X}-\mathrm{S} 7-\mathrm{CMP2}+\mathrm{Y}-\mathrm{S7}-\mathrm{CMP2}$. SUBTRACT Y-S7-CMP2 FROM X-S7-CMP2 GIVING Z-S7-CMP2.
COMPUTE Z-S7-CMP2 = X-S7-CMP2 - Y-S7-CMP2.
MULTIPLY X-S7-CMP2 BY Y-S7-CMP2 GIVING
Z-S7-CMP2.
COMPUTE Z-S7-CMP2 = X-S7-CMP2 * Y-S7-CMP2.
DIVIDE X-S7-CMP2 BY Y-S7-CMP2 GIVING Z-S7-CMP2.

$1.2 \mu_{s}$ Memory	$1.6 \mu s$ Memory
$94.6-95.0$	$125.3-125.7$
$91.8-92.2$	$120.3-120.7$
$92.6-94.6$	$123.3-125.3$
$89.8-91.8$	$118.3-120.3$
$98.5-98.9$	$131.3-131.7$
$93.2-93.6$	$121.7-122.1$
$103.6-104.0$	$134.5-134.9$
$100.9-101.3$	$129.5-130.1$

TYPE 10 CONSTRUCTS
Timings in Microseconds
COBOL
Construct
ADD X-J7-CMP2, Y-J7-CMP2 GIVING Z-J7-CMP2. COMPUTE Z-J7-CMP2 = X-J7-CMP2 + Y-J7-CMP2. SUBTRACT Y-J7-CMP2 FROM X-J7-CMP2 GIVING Z-J7-CMP2.
COMPUTE Z-J7-CMP2 = X-J7-CMP2 - Y-J7-CMP2. MULTIPLY X-J7-CMP2 BY Y-J7-CMP2 GIVING Z-J7-CMP2.

COMPUTE Z-J7-CMP2 = X-J7-CMP2 * Y-J7-CMP2.
DIVIDE X-J7-CMP2 BY Y-J7-CMP2 GIVING Z-J7-CMP2.
COMPUTE Z-J7-CMP2 = X-J7-CMP2 / Y-J7-CMP2.

$1.2 u_{s}$ Memory	1.6 us Memory
$138.5-139.1$	$187.5-188.1$
$135.7-136.3$	$182.6-183.2$
$136.5-138.7$	$185.5-187.7$
$133.7-135.9$	$180.6-182.8$
$144.9-145.4$	$197.8-198.4$
$139.5-140.1$	$188.4-189.0$
$147.5-148.0$	$196.8-197.4$
$144.7-145.2$	$191.7-192.3$

COBOL Construct Timings

Proc Speed	:	M.00/10.00
MCP	$\vdots$	Mark II.6
COBOL	$:$	Mark II.6

## TYPE 11 CONSTRUCTS

Timings in
Microseconds
COBOL
Construct
$1.2 u s$ Memory $1.6 u s$ Memory

ADD 1 TO X-S7-CMP1.
COMPUTE X -S7-CMPI $=\mathrm{X}-\mathrm{S7}-\mathrm{CMP1}+1$.
ADD 1, X-S7-CMP1 GIVING Z-S7-CMP1.
COMPUTE Z-S7-CMP1 $=\mathrm{X}-\mathrm{S7}-\mathrm{CMP1}+1$.
ADD 1, X-S7-CMP1, Y-S7-CMP1 GIVING Z-S7-CMP1.
4.7
8.0
6.7
12.1
4.5
7.8
6.7
12.1
$6.2-6.6$
8.7 - 9.1
11.2-11.6

COMPUTE Z-S7-CMP1 $=\mathrm{Y}-\mathrm{S7} 7-\mathrm{CMP1}+\mathrm{X}-\mathrm{S7}-\mathrm{CMP1}+1$. MULTIPLY 1 BY X-S7-CMP1.

$$
9.6-10.0
$$

15.7-16.1

MULTIPLY 1 BY X-S7-CMP1 GIVING Z-S7-CMP1.
DIVIDE 1 INTO X-S7-CMPI.
DIVIDE 1 INTO X-S7-CMP1 GIVING Z-S7-CMP1. DIVIDE X-S7-CMP1 BY 2 GIVING Z-S7-CMP1 REMAINDER Y-S7-CMP1.
9.6-10.0
15.7
16.6
$44.4-46.2$
$66.5-68.3$

NOTE
Where there are two timings for a construct within a memory speed above, the first
timing represents operand values

$$
\mathrm{X}-\mathrm{S} 7-\mathrm{CMP} 1=+1 \text { and } \mathrm{Y}-\mathrm{S} 7-\mathrm{CMP} 1=+1
$$

and the second timing represents operand values

$$
\mathrm{X}-\mathrm{S} 7-\mathrm{CMP} 1=+6517 \text { and } \mathrm{Y}-\mathrm{S} 7-\mathrm{CMP} 1=-1740
$$

Proc Speed	$5.00 / 10.00$
MCP	Mark II. 6
COBOL	Mark II. 6

TYPE 12 CONSTRUCTS

Timings in Microseconds
$1.2 \mu_{s}$ Memory $1.6 \mu_{s}$ Memory
20.1
30.6
25.9
37.7
79.1
69.4
162.8
18.1
35.9
48.9
27.2
38.8
66.0
62.4
34.4
37.7
52.7
122.6
111.6
243.7
24.6
49.3
69.1
39.4
54.0
93.4
90.2
49.2

TYPE 13 CONSTRUCTS
Timings in Microseconds

## COBOL <br> Construct

MOVE 0 TO X-7-CMP.
MOVE 0 TO Y-5V2-CMP.
MOVE 0.00 TO Y-5V2-CMP.
. 6

MOVE 2 TO X-7-CMP.
MOVE 97 TO X-7-CMP.
MOVE 9.7 TO Y-5V2-CMP.
MOVE 12345 TO X-7-CMP.
MOVE 123.45 TO Y-5V2-CMP.
MOVE X-7-CMP TO Y-5V2-CMP.
MOVE Y-5V2-CMP TO X-7-CMP.
MOVE X-7-CMP TO Z-Z7.
MOVE Y-5V2-CMP TO W-Z5P2.
$1.2 \mu_{s}$ Memory 1.6 us Memory

4.8	8.2
4.6	
4.6	
5.2	8.4
5.2	18.6
13.0	8.9
5.5	8.9
5.5	22.4
14.6	24.9
17.0	53.4
37.4	118.5

COBOL Construct Timings

Proc Speed	$5.00 / 10.00$
MCP	Mark II.6
COBOL	Mark II. 6

TYPE 14 CONSTRUCTS

Timings in Microseconds


* These constructs call upon intrinsic routines of which each must be linked from the DI stack prior to its first execution within a program. The first timing, which includes intrinsic linkage, will vary between 2 and 160 milliseconds, depending upon the presence or absence of certain MCP segments in main memory. The timings shown for these constructs were observed after the corresponding intrinsic was called once and linkage was thus established.

Proc Speed	$5.00 / 10.00$
MCP	Mark II.6
COBOL	Mark II.6

## TYPE 15 CONSTRUCTS

NOTE: All conditions below are satisfied (equal)

		$\begin{array}{r} \text { Timi } \\ \text { Micro } \end{array}$	$\begin{aligned} & s \text { in } \\ & \text { conds } \end{aligned}$
	$\begin{gathered} \text { COBOL } \\ \text { Construct } \end{gathered}$	$1.2 u_{s}$ Memory	$1.6 \mu \mathrm{Smemory}$
Pl10.	IF X -S5-CMP1 $=\mathrm{Y}-\mathrm{J} 5$ GO TO P210.	56.2	78.9
P210.	IF X-S5-CMP1 $=$ S-S5-CMP GO TO P310.	7.6	12.9
P310.	IF X-S5-CMP1 $=$ T-S5 GO TO P410.	34.1	47.7
P410.	IF X-S5-CMP1 $=\mathrm{U}-\mathrm{J} 5 \mathrm{GO}$ TO P510.	56.5	79.5
P510.	IF X -S5-CMP1 $=\mathrm{V}-\mathrm{S5} 5$-CMP2 GO TO P610.	36.2	50.8
P610.	IF X -S5-CMP1 $=W-\mathrm{J} 5-\mathrm{CMP2}$ GO TO P710.	51.6	71.3
p710.	IF Y-J5 $=$ S-S5-CMP GO TO P810.	55.7	77.2
P810.	IF Y-J5 $=$ T-S5 GO TO P910.	81.5	110.8
P910.	IF Y-J5 $=$ U-J5 GO TO Q110.	105.7	145.2
Q110.	IF Y-J5 = V-S5-CMP2 GO TO Q210.	83.6	113.9
Q210.	IF $\mathrm{Y}-\mathrm{J} 5=\mathrm{W}-\mathrm{J} 5-\mathrm{CMP} 2 \mathrm{GO}$ TO Q310.	99.4	135.0
Q310.	IF S-S5-CMP $=$ T-S5 GO TO Q410.	36.0	50.8
Q410.	IF S-S5-CMP = U-J5 GO TO Q510.	59.6	84.3
Q510.	IF S -S5-CMP $=\mathrm{V}$-S5-CMP2 GO TO Q610.	38.0	53.8
Q610.	IF $\mathrm{S}-\mathrm{S5}$-CMP $=\mathrm{W}-\mathrm{J} 5-\mathrm{CMP} 2 \mathrm{GO}$ TO Q710.	53.6	74.5
Q710.	IF $\mathrm{T}-\mathrm{S} 5=\mathrm{U}-\mathrm{J} 5 \mathrm{GO}$ TO Q810.	83.8	114.4
Q810.	IF T-S5 $=\mathrm{V}-\mathrm{S5}-\mathrm{CMP2}$ GO TO Q910.	61.6	82.7
Q910.	IF T-S5 $=$ W-J5-CMP2 GO TO R110.	77.3	103.8
R110.	IF U-J5 $=\mathrm{V}-\mathrm{S} 5-\mathrm{CMP2}$ GO TO R210.	85.7	117.3
R210.	IF U-J5 $=\mathrm{W}-\mathrm{J} 5-\mathrm{CMP2}$ GO TO R310.	101.4	138.3
R310.	IF V-S5-CMP2 = W-J5-CMP2 GO TO R410.	79.3	106.8
R410.	IF X-S5-CMP1 $=+1$ GO TO R510.	5.3	8.6
R510.			

COBOL Construct Timings

Proc Speed	:	$5.00 / 10.00$
MCP	$:$	Mark II. 6
COBOL	$:$	Mark II.6

## TYPE 16 CONSTRUCTS

NOTE: All conditions below are satisfied (equal)

		$\begin{array}{r} \text { Tim } \\ \text { Micr } \\ \hline \end{array}$	$\begin{aligned} & s \text { in } \\ & \text { conds } \end{aligned}$
	$\begin{gathered} \text { COBOL } \\ \text { Construct } \\ \hline \end{gathered}$	$\underline{1.2} \mu_{\text {S Memory }}$	1.6 us Memory
P120.	IF X-S10-CMP1 $=$ Y-J8 GO TO P220.	56.0	79.6
P220.	IF X -S 10-CMP1 $=\mathrm{U}$-S6-CMP GO TO P320.	7.7	13.0
P320. I	IF X -S10-CMP1 $=\mathrm{V}-\mathrm{J} 4$ GO TO P420.	55.0	77.4
P420.	IF X-S10-CMP1 $=W-\mathrm{J} 9-\mathrm{CMP2}$ GO TO P520.	55.0	76.0
P520.	IF $\mathrm{Y}-\mathrm{J} 8=\mathrm{U}-\mathrm{S6}$-CMP GO TO P620.	55.6	78.2
P620.	IF Y-J8 $=\mathrm{V}-\mathrm{J} 4$ GO TO P720.	102.8	142.4
P720.	IF $\mathrm{Y}-\mathrm{J} 8=\mathrm{W}-\mathrm{J} 9-\mathrm{CMP2}$ GO TO P820.	102.1	139.7
P820.	IF U-S6-CMP $=\mathrm{V}-\mathrm{J} 4$ GO TO P920.	56.8	80.5
p920.	IF U-S6-CMP $=\mathrm{W}-\mathrm{J} 9-\mathrm{CMP2}$ GO TO Q120.	56.6	78.5
Q120.	IF V-J4 $=\mathrm{W}-\mathrm{J} 9-\mathrm{CMP2}$ GO TO Q220.	101.5	138.3
Q220.	IF $\mathrm{A}-\mathrm{X8}=\mathrm{B}-\mathrm{X4}$ GO TO Q320.	78.4	116.4
Q320.	IF $\mathrm{A}-\mathrm{X8}=$ "YES" GO TO Q420.	35.3	51.2
Q420.	IF A-X8 $=$ "YES " GO TO Q520.	35.3	51.2
Q520.	IF B-X4 = "YES" GO TO Q620.	27.7	37.8
Q620.	IF B88 GO TO Q720.	27.7	37.8
Q720.	IF $A-X 8=$ "XXX" OR $A-X 8=$ "YES" GO TO Q820.	69.5	100.2
Q820.	IF A-X8 = "XXX" OR "YES" GO TO Q920.	69.5	100.2
Q920.	```IF A-X8 = "XXX" OR B-X4 = "YES" GO TO R120.```	60.8	84.6
R120.	IF $A-X 8=$ "XXX" OR B88 GO TO R220.	60.8	84.6
R220.	IF $A-X 8=$ "YES" $A N D B-X 4=$ "YES" GO TO R320.	61.0	84.8
R320.	IF A-X8 = "YES" AND B88 GO TO R420.	61.0	84.8
R420.	IF A-X8 $=$ "XXX" GO TO P120 ELSE   IF A-X8 = "YES" GO TO R520.	69.5	100.2
R520.	IF $\mathrm{B}-\mathrm{X} 4=\mathrm{C}-\mathrm{X4}-\mathrm{DISP1}$ GO TO R620.	65.9	97.7
R620.			


Proc Speed	$5.00 / 10.00$
MCP	Mark II. 6
COBOL	Mark II. 6

TYPE 17 CONSTRUCTS
Timings in
Microseconds

COBOL
Construct
P130. IF X-3-CMP1 $=0$ GO TO P230.
P230. IF X-3-CMP1 EQUAL 0 GO TO P330.
P330. IF X-3-CMP1 $=1$ GO TO P430.
P430. IF Y-6-CMP1 $=1$ GO TO P530.
P530. IF $\mathrm{Z}-6$-CMP2 $=1$ GO TO P630.
P630. IF W-J6-CMP2 $=1$ GO TO P730.
P730. IF X-3-CMP1 $=2$ GO TO P830.
P830. IF X-3-CMP1 $=3$ GO TO P930.
P930. IF $X-3-C M P 1=10$ GO TO Q130.
Q130. IF $X-3-C M P 1=97$ GO TO Q230.
Q230. IF X-3-CMP1 $=100$ GO TO Q330.
Q330. IF $\mathrm{Y}-6$-CMP1 $=9701$ GO TO Q430.
Q430. IF Y-6-CMP1 $=99999$ GO TO Q530.
Q530. IF $\mathrm{Y}-6$ - CMP1 $=100000$ GO TO Q630.
Q630. IF Y-6-CMP1 $=100001$ GO TO Q730.
Q730. $\mathrm{IF} \mathrm{X}-3-\mathrm{CMP1}=0$ OR $\mathrm{X}-3-\mathrm{CMP1}=1$ GO TO Q830.
Q830. IF X-3-CMP1 $=0$ OR 1 GO TO Q930.
Q930. IF $\mathrm{X}-3-\mathrm{CMP1}=1$ AND $\mathrm{Y}-6-\mathrm{CMP1}=1$ GO TO R130.
R130. IF X-3-CMP1 $=0$ GO TO P130 ELSE IF $\mathrm{Y}-6$-CMP1 $=1$ GO TO R230.

R230

## $1.2 \mu \mathrm{~s}$ Memory <br> 1.6 us Memory

4.8
8.0
4.9
8.2
5.3
8.6
5.3
8.6
32.1
42.1
49.2
65.8
5.5
8.8
5.5
8.8
5.5
8.8
5.4
8.7
5.4
8.7
6.2
10.1
7.7
13.2
7.7
13.2
7.7
13.2
9.1
14.6
8.9
14.4
9.5
15.0
8.9
14.3

COBOL Construct Timings

Proc Speed	$5.00 / 10.00$
MCP	Mark II.6
COBOL	Mark II.6

TYPE 18 CONSTRUCTS

# Timings in Microseconds 

COBOL	NUM
Construct	VALUE

ALTER PARG-GOTO TO PROCEED TO PARG-NOP.

PERFORM PARG-NOP.
PERFORM PARG-NOP NUM-3-CMP1 TIMES. 10
PERFORM PARG-NOP NUM-3-CMP1 TIMES. 100
PERFORM PARG-NOP VARYING NUM-3-CMP1
FROM 1 BY 1 UNTIL NUM-3-CMP1 $>10$.
PERFORM PARG-NOP VARYING NUM-3-CMP1
FROM 1 BY 1 UNTIL NUM-3-CMP1 $>100$.
P140. GO TO P141, P142, Pl43, P144 DEPENDING ON NUM-3-CMP1. 0

P140. GO TO P141, P142, P143, P144 DEPENDING ON NUM-3-CMP1. 1
P140. GO TO P141, P142, P143, P144 DEPENDING ON NUM-3-CMP1. 2
P140. GO TO P141, P142, P143, P144 DEPENDING ON NUM-3-CMP1. 3
21.6

P140. GO TO P141, P142, P143, P144 DEPENDING ON NUM-3-CMP1. 4
21.8
34.6

P140. GO TO P141, P142, P143, P144 DEPENDING ON NUM-3-CMP1. 5

GO TO
NOTE: This GO TO has been altered

```
Proc Speed : 5.00/10.00
MCP : Mark II.6
COBOL : Mark II.6
```


## TYPE 19 CONSTRUCTS

## Timings in Microseconds

COBOL
Construct
MOVE 5 TO SUB-2-CMP1.
MOVE X-X5 TO SUB-X5-0C-10 (SUB-2-CMP1).
SET INX1 TO INX2.
SET INX2 TO INXI.
SET INX2 TO 5.
MOVE X-X5 TO IDX-X5-0C-10 (INX2).
SET INX2 UP BY 1.
SET INX2 TO 1.
SET INX2 TO 1. SEARCH IDX-X5-0C-10; WHEN IDX-X5-0C-10 (INX2) $=" H * I * T "$ NEXT SENTENCE.
30.8
44.8

NOTE: IDX-X5-0C-10(1) $=" H * I * T "$.
SET INX2 TO 1. SEARCH IDX-X5-0C-10; WHEN IDX-X5-0C-10(INX2) $=" H * I * T "$
NEXT SENTENCE.
173.0
248.6

NOTE: IDX-X5-0C-10(5) = "H*I*T".
SET INX2 TO 1. SEARCH IDX-X5-0C-10; WHEN IDX-X5-0C-10(INX2) $=" H * I * T "$ NEXT SENTENCE.
348.2
498.9

NOTE: IDX-X5-0C-10(10) $=" H * I * T "$.
SET INX2 TO 1. SEARCH IDX-X5-0C-10; WHEN IDX-X5-0C-10 (INX2) $=$ " $\mathrm{H} * \mathrm{I} * \mathrm{~T} "$ NEXT SENTENCE.
354.4
508.2

NOTE: IDX-X5-0C-10(INX2) NOT $=" H * I * T "$.

COBOL Construct Timings

Proc Speed	$5.00 / 10.00$
MCP	Mark II.6
COBOL	Mark II.6

TYPE 20 CONSTRUCTS

		Timings in Microseconds	
	$\begin{gathered} \text { XX } \\ \text { VALUE } \end{gathered}$	1.2 us Memory	1.6 us Memory
EXAMINE WS-OP-15 TALLYING UNTIL FIRST "X".	1st POS="X'	33.4	49.1
EXAMINE WS-OP-15 TALLYING UNTIL FIRST " X ".	2nd POS="X"	33.8	49.1
EXAMINE WS-OP-15 TALLYING UNTIL FIRST "X".	5th POS $=$ " X "	35.0	49.7
EXAMINE WS-OP-15 TALLYING UNTIL FIRST "X".	10th POS="X'	37.4	52.1
EXAMINE WS-OP-15 TALLYING UNTIL FIRST "X".	$25 t h$ POS $=$ " $\mathrm{X}^{\prime \prime}$	44.6	60.3
EXAMINE WS-OP-15 TALLYING ALL " X ".	NO $\mathrm{X'}^{\prime \prime}$	42.9	57.8
EXAMINE WS-OP-15 TALLYING ALL " X ".	1 " ${ }^{\prime}$ "	82.5	119.1
EXAMINE WS-OP-15 TALLYING ALL " X ".	5 "X"	241.4	365.9
EXAMINE WS-OP-15 TALLYING ALL " X ".	10 " ${ }^{\text {P" }}$	439.6	673.6
EXAMINE WS-OP-15 TALLYING ALL " X ".	25 X'	1033.8	1594.6
EXAMINE WS-OP-15 REPLACING ALL "X" BY "Y".	NO " ${ }^{\text {' }}$	40.0	53.1
EXAMINE WS-OP-15 REPLACING ALL "X" BY "Y".	1 "X"	82.6	118.7
EXAMINE WS-OP-15 REPLACING ALL " X " BY " Y ".	5 ' X'	253.5	382.7
EXAMINE WS-OP-15 REPLACING ALL "X" BY "Y".	10 X''	465.7	709.9
EXAMINE WS-OP-15 REPLACING ALL "X" BY "Y".	25 X'	1102.1	1689.3

## Section 4 <br> FORTRAN CONSTRUCT TIMINGS

The following measurements were performed on various FORTRAN constructs using the Burroughs Mark II. 6 release FORTRAN Compiler. Both $1.2 \mu \mathrm{~s}$ and 1.6 us memories were utilized, and the timings of a particular construct for each memory are shown side-by-side on the following pages. The asterisk(s) between the timing results refer to notes which are located on page 4-6.

Ranges in times for a given construct are simply differences due to the operand values used in the execution of the construct.

Certain variables are used exclusively for each general type of construct. These are:

Single Precision Real $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
Integer L, M, N
Double Precision Real D, E, F
Complex A, B, C
The permissible combinations of operand values (limited by overflow, underflow, division by zero, etc.) with which the timings were taken are given in the following table. Constructs which contain both variables were timed using all possible combinations of the operand values given. Thus, the construct " $Z=X+Y$ " was timed using 25 different pairs of operand values for $X$ and $Y$. Constructs containing only one variable were timed using those operand values beneath that variable in the table. Hence, the construct " $Z=A B S$ ( $Y$ )" was timed using 5 different operand values for $Y$.

## Burroughs - B 6700 System Timings

SINGLE PRECISION REAL

$X$	$Y$
$0.0000000 \mathrm{E}+00$	$-.1740000 \mathrm{E}-32$
$0.1000000 \mathrm{E}+01$	$0.0000000 \mathrm{E}+00$
$0.4000000 \mathrm{E}+01$	$0.1000000 \mathrm{E}+01$
$0.4631527 \mathrm{E}+35$	$0.4000000 \mathrm{E}+01$
$0.6517000 \mathrm{E}-33$	$0.8623355 \mathrm{E}+31$

DOUBLE PRECISION REAL

$E$	$F$
$0.0000 \mathrm{D}+00000$	$-.1740 \mathrm{D}-00032$
$0.1000 \mathrm{D}+00001$	$0.1000 \mathrm{D}+00001$
$0.4000 \mathrm{D}+00001$	$0.3778 \mathrm{D}+04095$
$0.4632 \mathrm{D}+00035$	$0.4000 \mathrm{D}+00001$
$0.6517 \mathrm{D}-00033$	$0.8623 \mathrm{D}+00031$

INTEGER

$M$	$N$
0	0
1	1
4	4
6517	-1740
4631527	8623355

COMPLEX

A	B
$(0.00000 \mathrm{E}+00,0.00000 \mathrm{E}+00)$	$(-.46315 \mathrm{E}+35,-.65170 \mathrm{E}-13)$
$(0.10000 \mathrm{E}+01,0.10000 \mathrm{E}+01)$	$(-.86234 \mathrm{E}+17,0.17400 \mathrm{E}-32)$
$(0.15000 \mathrm{E}+01,0.15000 \mathrm{E}+01)$	$(0.10000 \mathrm{E}+01,0.10000 \mathrm{E}+01)$
$(0.65170 \mathrm{E}+13,0.65170 \mathrm{E}-13)$	$(0.15000 \mathrm{E}+01,0.15000 \mathrm{E}+01)$
$(0.86234 \mathrm{E}+17,0.86234 \mathrm{E}-17)$	$(0.40000 \mathrm{E}+01,0.40000 \mathrm{E}+01)$


Proc Speed	$5.00 / 10.00$
MCP	Mark II.6
FORTRAN	Mark II.6
SINGLE PRECISION REAL CONSTRUCTS	


		Rang $\text { in } \mathrm{M}$	of T	imes conds
	FORTRAN Construct	1.2 us Memory		1.6 us Memory
	IF (Y) 10000, 10000,20000	4.0 - 5.1	*	6.3 - 8.1
10000	CONTINUE			
20000	CONTINUE			
	W1(N2) $=\mathrm{Y}$	8.3	**	13.9
	W1(N1,N2) = Y	21.3	**	30.1
	$Z=+.6517 \mathrm{E}-33$	4.6		7.6
	$\mathrm{z}=-.1740 \mathrm{E}-32$	5.0		8.0
	$\mathrm{z}=\mathrm{ABS}(\mathrm{Y})$	5.7		8.9
	$\mathrm{Z}=\mathrm{ALOG}(\mathrm{X})$	128.5-173.5	***	211.3-262.5
	$\mathrm{Z}=\operatorname{Amaxl}(\mathrm{X}, \mathrm{Y})$	$19.2-20.7$		31.1 - 33.2
	$\mathrm{Z}=\operatorname{AMIN1}(\mathrm{X}, \mathrm{Y})$	19.2-20.7		31.1 - 33.2
	$\mathrm{Z}=\operatorname{EXP}(\mathrm{X})$	125.3-165.7	***	210.3-248.7
	$\mathrm{z}=\mathrm{N} 2$	4.0		6.8
	$\mathrm{Z}=\operatorname{SIN}(\mathrm{Y})$	86.5-192.1	***	145.5-291.1
	$\mathrm{Z}=\operatorname{SQRT}(\mathrm{X})$	58.5-170.1	***	97.1-246.1
	$\mathrm{Z}=\mathrm{X}+\mathrm{Y}$	$5.6-7.0$		10.3-11.7
	$\mathrm{Z}=\mathrm{X} * \mathrm{Y}$	5.6-8.4		$10.3-13.1$
	$\mathrm{Z}=\mathrm{X}-\mathrm{Y}$	$5.6-7.2$		10.3 - 11.9
	$\mathrm{Z}=\mathrm{X} / \mathrm{Y}$	5.9-13.7		10.3-18.1
	$\mathrm{z}=0.0$	2.9		4.5
	$\mathrm{z}=1.0$	2.9		4.5
	$\mathrm{z}=97.01$	4.6		7.6

FORTRAN Construct Timings

Proc Speed	$5.00 / 10.00$
MCP	Mark II.6
FORTRAN	Mark II.6

## INTEGER CONSTRUCTS

Range of Times in Microseconds
FORTRAN
Construct
CALL CONT
DO $10001 \mathrm{I}=1, \mathrm{M}$
1.2 us Memory
33.5
$(9 * M)+2.9$
$\frac{1.6 \mu \mathrm{~s} \text { Memory }}{54.0}$
(15*M)+3.8
10001 CONTINUE
GO TO 10002
1.6

10002 CONTINUE
IF (N) 10003, 10003, 20003
4.1 -
5.1
$6.3-$
8.1

10003 CONTINUE 20003 CONTINUE
$L=\operatorname{IABS}(\mathrm{N})$
$\mathrm{L}=\operatorname{ISIGN}(\mathrm{M}, \mathrm{N})$
$\mathrm{L}=\mathbf{M}+\mathbf{N}$
$\mathrm{L}=\mathrm{M} * \mathrm{~N}$
$\mathrm{L}=\mathrm{M}-\mathrm{N}$
$\mathrm{L}=\mathrm{M} / \mathrm{N}$
$\mathrm{L}=\operatorname{MAXO}(\mathrm{M}, \mathrm{N})$
$L=\operatorname{MINO}(M, N)$
$\mathrm{L}=\mathrm{N} * * \mathrm{M}$
$\mathrm{L}=0$
$\mathrm{L}=1$
$L=100$
$L=2$
$\mathrm{L}=97$
$\mathrm{L} 1(\mathrm{~N} 2)=\mathrm{M}$
$\mathrm{L} 2(\mathrm{~N} 1, \mathrm{~N} 2)=\mathrm{M}$
5.7
7.6
6.1 - 6.5
6.1 - 7.9
6.5 - 6.9
6.5 - 11.9
19.2 - 20.0
18.8 - 19.8
80.7 - 198.6
2.9
2.9
3.2
3.2
3.2
7.9
21.3
12.5
$11.0-11.4$
$11.0-12.8$
$11.0-11.4$
$11.0-16.4$
31.2 - 32.0
$31.2-32.2$
135.1 - 318.7
4.5
5.1
5.1
5.1
13.9
30.1

Proc Speed	$:$	$5.00 / 10.00$
MCP	Mark II.6	
FORTRAN	$:$	Mark II.6

## DOUBLE PRECISION REAL CONSTRUCTS

FORTRAN Construct
$\mathrm{D}=\mathrm{DABS}(\mathrm{F})$
$\mathrm{D}=\mathrm{DEXP}(\mathrm{E})$
$\mathrm{D}=\mathrm{DLOG}(\mathrm{F})$
$\mathrm{D}=\mathrm{DMAXI}(\mathrm{E}, \mathrm{F})$
$\mathrm{D}=\mathrm{DMINI}(\mathrm{E}, \mathrm{F})$
$\mathrm{D}=\mathrm{DSIGN}(\mathrm{E}, \mathrm{F})$
$\mathrm{D}=\mathrm{DSIN}(\mathrm{E})$
D = DSQRT (E)
$\mathrm{D}=\mathrm{E}+\mathrm{F}$
$\mathrm{D}=\mathrm{E} * \mathrm{~F}$
$\mathrm{D}=\mathrm{E}-\mathrm{F}$
$\mathrm{D}=\mathrm{E} / \mathrm{F}$
$\mathrm{D}=1 \mathrm{DO}$
$\mathrm{D}=511 \mathrm{D} 511$
D = 8D0

## Range of Times

 in Microseconds| $1.2 \mu \mathrm{~s}$ Memory |  | 1.6 us Memory |
| :---: | :---: | :---: |
| 8.3 |  | 13.4 |
| 375.6-570.6 | *** | 632.6-829.6 |
| 405.2-412.0 | *** | 653.4-660.2 |
| $30.2-32.1$ |  | $51.0-53.5$ |
| $30.2-32.1$ |  | $51.0-53.5$ |
| 11.4 |  | 19.2 |
| 268.8-442.0 | *** | 458.8-672.0 |
| 78.2-256.2 | *** | 129.4-358.6 |
| $10.3-12.7$ |  | 17.6-20.0 |
| 9.7-18.7 |  | $17.0-26.0$ |
| $10.3-12.9$ |  | 17.6-20.2 |
| $9.7-57.9$ |  | 17.0-67.2 |
| 5.0 |  | 7.8 |
| 9.6 |  | 15.6 |
| 5.2 |  | 8.2 |

## COMPLEX CONSTRUCTS

## Range of Times in Microseconds

FORTRAN Construct
$C=A+B$
$\mathrm{C}=\mathrm{A} * \mathrm{~B}$
$\mathbf{C}=\mathrm{A}-\mathrm{B}$
$\mathbf{C}=\mathrm{A} / \mathrm{B}$

$1.2 \mu \mathrm{~s}$ Memory	$1.6 \underline{\text { u }}$ Memory
$27.5-30.7$	45.1 - 48.1
130.3-145.3	222.5-235.3
$28.3-31.1$	45.8 - 48.6
159.6-190.6	271.8-300.6

## Burroughs - B 6700 System Timings

FORTRAN Construct Timings

## NOTES

* The longer timing if the operand is positive (greater than zero)
** After the array is present in memory.
*** These constructs call upon intrinsic routines of which each must be linked from the Dl stack prior to its first execution within a program. The first timing, which includes intrinsic linkage, will vary between 2 and 160 milliseconds, depending upon the presence or absence of certain MCP segments in main memory. The timings shown for these constructs were observed after the corresponding intrinsic was called once and linkage was thus established.
**** CONT is a subroutine which consists of the following code:
SUBROUTINE CONT
10 CONTINUE
RETURN
END


# Burroughs Corporation Publications Remarks Form <br> <br> B 6700 TIMINGS FOR SELECTED LANGUAGE CONSTRUCTS 

 <br> <br> B 6700 TIMINGS FOR SELECTED LANGUAGE CONSTRUCTS}

Form No. 5000854, February 1975

From:		
	Name	Date
	Title	Company
	Address	



