
Burroughs m

PRICED ITEM

Printed in U.S.A. March, 1975 1057197

Printed in U.S.A.

Burroughs m

B 1700 Systems

COBOL

REFERENCE MANUAL

Copyright © 1966, 1968, 1969, 1970, 1972, 1974, 1975

Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

March, 1975 1057197

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/ or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Technical
Information Organization, TIO-Central, Burroughs Corporation, Burroughs Place, Detroit,
Michigan 48232

Section

1

2

3

TABLE OF CONTENTS

ACKNOWLEDGEMENT xi

INTRODUCTION•................... 1-1

Advantages of COBOL . • 1-1

Program Organization • • . • • 1-2

LANGUAGE FORMATION ...•.......•..•........•.........•......... 2-1

General . • . 2-1

Character Set

Characters Used for Words •.....•..........................

Punctuation Characters

Characters Used in Editing•.........................

Characters Used in Formulas

Characters Used in Relations•.......................

Definition of Words•..•..........••....•...••.........

Types of Words•....•....................•.............

Nouns

Verbs

Reserved Words•...•.•................................

Language Description Notation

Key Words ...•.....

Optional Words•..........•............

Generic Terms .•..............•.........•.......•..........

Braces

Brackets

Ellipsis

Period

COD I NG FORM•...•.•....•.........••.....•..•.........

2-1

2-1

2-2

2-2

2-2

2-2

2-3

2-3

2-3

2-s
2-9

2-10

2-10

2-10

2-10

2-10

2-10

2-ll

2-11

3-1

General . . . • • • . . • • . . • 3-1

Sequence Field (Card Columns 1-6)•..••.•.....•. 3-1

Continuation Indicator (Column 7)•..•.•..... ... 3-1

iii

TABLE OF CONTENTS (Cont)

Section Page

iv

3 CODING FORM (Cont)

4

5

6

Margin A (Columns 8 thru 11)••....................•.. 3-3

Margin B (Columns 12 thru 72) 3-3

Right Margin (Column 72) 3-3

Identification (Columns 73 thru 80) ~ 3-3

Punctuation ············•••t11••·····························••1• 3-4
Sample Coding " .. 3...,4

IDENTIFICATION DIVISION•........................ 4-1

General . • . 4-1

IDENTIFICATION DIVISION Structure 4-1

MONITOR . • . 4-2

Coding the IDENTIFICATION DIVISION........................... 4-3

ENVIRONMENT DIVISION .. . 5-1

General, ·. . . . S-1
ENVIRONMENT DIVISION Organization............................ 5-1

ENVIRONMENT DIVISION Structure............................... 5-1

CONFIGURATION SECTION 5-2

SOURCE-COMPUTER

OBJECT-COMPUTER

5-3

5-4

SPECIAL-NAMES • • . 5-6

INPUT-OUTPUT SECTION . 5-8

FILE-CONTROL tf ••••••••••••••••••••••••••••••• Et 5-9

I-O-CONTROL " . 5-14

Coding the ENVIRONMENT DIVISION.............................. 5-16

DATA DIVISION .. . 6-1

General .. " . 6-1

DATA DIVISION Organization................................... 6-1

DATA DIVISION Structure . • 6-2

File and Record Concepts 6-3

Physical Aspects of a File 6-3

Conceptual Characteristics of a File 6-3

Record Co11cepts • • 6~4

TABLE OF CONTENTS (Cont)

Section Page

6 DATA DIVISION (Cont)

Level Numbers Concept

Qualification

Tables ·-· .. .

Subscripting .. .

Indexing .. .

Identifier .. .

FILE SECTION .. .

FILE DESCRIPTION •••••••••.•••.••••••.••.•••.•....•..•........

BLOCK•...

DATA RECORDS •••••••••.••••••••••••••..•.••••••....•.......•.•

FILE CONTAINS •••••.•••••••••.••••.••••••••••.•.....•.•...•...

LABEL

RECORD•.....•..•......•..........................

RECORDING MODE .••••.••••••••••••••••.•••••.•••....•..•.....•.

VALUE OF ID ••••.•.••••••••••••.•.•....•..•..•.•..••.•...•....

RECORD Description •••••••••.•••....•.•..•.••.•...••.••..•....

BLANK WHEN ZERO . • • . • • • • • • • • • • • • . • . • • . • • • • • • . • . . . • • • •

Condition-Name .. .

Data-Name

JUSTIFIED : .. .

Leve I -Number .. .

PICTURE •• • .•.......•..•..••••.•..••..•...••.•..•••...........

Categories of Data .••.•••••••••.•••....••.•••...••.•..•.....•

Classes of Data

Function of the Editing Symbols .•••.•.•......•..•.•.......

Edi ting Rules ••........••.••.•.•••••..•..•........•....

I11sertion Edi ting .•.•..•••..••.....•.•..•.......•...•..

Simple Insertion Edi ting .•••.••.••.•.•.•.........•.....

Special Insertion Editing ...••••••.•.•......••.•.......

Fixed Insertion Editing .••....••••.•.......•...........

Floating Insertion Editing ..••••••.•.•••.....•.........

Suppress ion Editing ..•.•..•.•••....•...................

Replacement Edi ting •..•....••.•........................

Precedence of Symbols .•.•.........•.•.•.••••.•.•.......

6-5

6-8

6-11

6-12

6-14

6-15

6-16

6-16

6-19

6-21

6-22

6-23

6-26

6-27

6-28

6-32

6-35

6-36

6-39

6-40

6-42

6-48

6-48

6-49

6-50

6-54

6-54

6-54

6-54

6-55

6-56

6-56

6-57

6-58

v

TABLE OF CONTENTS (Cont)

Section Page

vi

6 DATA DIVISON (Cont)

7

REDEFINES ...•..

RENAMES•....................................

USAGE

VALUE

WORKING-STORAGE SECTION

Organization I) ••••••••••• *

Non-Contiguous WORKING-STORAGE

WORKING-STORAGE Records

Initial Values .. .

Condition-Names

Coding the WORKING-STORAGE SECTION

PROCEDURE DIVISION .. .

Genera 1

Rules of Procedure Formation

Execution of PROCEDURE DIVISION

Statements ,

Imperative Statements

Conditional Statements

Compiler-Directing Statements

Sentences

Imperative Sentences

Conditional Sentences

Compiler-Directing Sentences

Sentence Punctuation .. .

Execution of Imperative Sentences

Execution of Conditional Sentences

Execution of Compiler-Directing Sentences

Control Relationship Between Procedures .,

Paragraphs•.......................................

Sections .. .

Se gm en tat ion .. .

Program Segments .. .

Segment Class if ica tion

Priority Numbers

6-62

6-64

6-66

6-69

6-71

6-71

6-71

6-72

6-72

6-72

6-72

7-1

7-1

7-1

7-2

7-3

7-3

7-3

7-3

7-4

7-4

7-4

7-4

7-5

7-5

7-5

7-6

7-7

7-7

7-7

7-9

7-9

7-9

7-10

TABLE OF CONTENTS (Cont)

Section Page

7 PROCEDURE DIVISION (Cont)

Dec Iara ti ves .. .

USE Dec Iara ti ve•.•.••••..•.•..•....................

COPY Statement as a Declarative .•.........•..•............

Arithmetic Express ions ••.•.•.•..••......•....................

Arithmetic Opera tors ...•...........•.....•.....••.........

Formation and Evaluation Rules ...•..............•.........

Condit ions•............................•.•....•.....

Logical Opera tors ..•.........•........•...................

Relation Condition ...•.................•.........•........

Relational Opera tors•...•............................

Comparison of Operands•..........•.....

Sign Condition•.......•.....•...•...................

Class Condition ...•...................•......•............

Condition-Name Condition•...•..........•..............

Evaluation Rules ...•.•.....•...•..........................

Simple Conditions•....•.•.•...•.•....•........

Compound Conditions•......•..••.••.....•..........

Abbreviated Compound Conditions •••.•..•....•..............

Internal Program Switches ...•...•....•...................•.•.

Verbs .. e •••

Specific Verb Formats •.....•......•..•....•.....••...•....

ACCEPT .. .

ADD•...................

ALTER

CLOSE

COMPUTE ••••.•..••••.••••.•.•••••••.•.•..••••••...•........•..

COPY •••••••.••••••••.•.•.••••••••.•••..•••••...•...••.•..••••

DISPLAY

DIVIDE .. .

DUMP •.••••.•.•••••.•••••••.••••••.••..•.•.•.••••••.•..•.••••.

EXA.M INE •....•............•.•....•.........••.......••••...•.•

EXIT .. .

GO TO , .. .

IF .. .

7-13

7-13

7-13

7-14

7-14

7-15

7-17

7-17

7-17

7-19

7-19

7-20

7-20

7-21

7-21

7-22

7-22

7-24

7-26

7-27

7-28

7-29

7-30

7-33

7-34

7-39

7-40

7-44

7-45

7-47

7-48

7-50

7-51

7-53

vii

TABLE OF CONTENTS (Cont)

Section Page

7

8

viii

P~OCEDURE DIVISION (Cont)

MOVE

Elementary Moves

Legal Elementary Moves

Group Moves

Translation

Index Data Items

Valid MOVE Combinations

MULTIPLY

NOTE

OPEN

PERFORM

READ

RELEASE

RETURN

SEARCH

SEEK

SET

SORT

STOP

SUBTRACT

TRACE

USE

WRITE

ZIP

Coding the PROCEDURE DIVISION

B 1700 COBOL READER-SORTER

General

ENVIRONMENT DIVISION Requirements

FILE CONTROL

I-O CONTROL

DATA DIVISION Requirements

FILE SECTION

PROCEDURE DIVISION Requirements

MICR Character Types

7-54

7-54

7-55

7-56

7-56

7-56

7-57

7-59

1-60

7-61

7-65

7-71

7-74

7-75

7-76

1-80

1-s1

7-83

7-87

1-88

7-89

7-90

7-93

7-96

7-96

8-1

8-1

8-1

8-1

8-2

8-2

8-2

8-3

8-4

TABLE OF CONTENTS (Cont)

Section Page

8

9

10

11

B 1700 COBOL READER-SORTER (Cont)

Considerations After the Format Verb Has Been
Executed ..•..........

Programming Considerations

USE Routine

Main Line

Timing Requirements

Sample Program

DATA COMMUNICATIONS

General ...•.•........

Specific Verb Formats

INTER-PROGRAM COMMUNICATION

General

QUEUE Files

QUEUE in COBOL

FILE-CONTROL

FILE SECTION

PROCEDURE DIVISION

COBOL COMPILER CONTROL

General

Compilation Card Deck

?Compile Card

MCP Label Card

$Option Control Card

Source Data Card

Label Equation Card

Appendix A

Appendix B

Appendix C

Reserved Words

COBOL Syntax Summary

Compiler Error Messages

Index

S-6

s-s

s-s

s-9
s-10

s-11

9-1

9-1

9-1

10-1

10-1

10-1

l0-3

10-3

l0-3

10-4

11-1

11-1

11-1

11-2

11-2

11-3

11-6

11-7

A-1

B-1

c-1

.Index-I

ix

Figure

3-1

3-2

4-1

5-1

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

7-1

7-2

7-3

7-4

7-5

1-6

II-I

Table

x

6-1

6-2

6-3

6-4

6-5

7-1

7-2

LIST OF ILLUSTRATIONS

COBOL Coding Form ••.•..•••.•. ·t •••••••••••••••••••••••••••••••

Example of Continuation of Words and Literals ...•..•.........

IDENTIFICATION DIVISION Coding•..•.....•.................

ENVIRONMENT DIVISION Coding••.....•...•..•...............
Level Number Construction
Concept of Level Numbers ••.•..•..•••.••••........••..........

Coding of Multi-Dimensioned Table••.....

Coding of FD and DATA RECORDS .•••.•......•...................

Coding of Condition-Name ...•.•........••.•.......•.•.........
Relationship of Class and

Permissible Editing Types
Category fJ ••••••••••••

••••••••••••••••••••••• IJi ••••••••••••

Examples of RENAMES•..........•..

WORKING-STORAGE SECTION Coding•.....................

Valid MOVE Statement Combinations .•...............•...•......

PERFORM Statement Varying One Identifier

PERFORM Statement Varying Two Identifiers •••.................

Example of SEARCH Operation Relating to Option 1 .•...........

SET Statement Operand Combinations ..•........................

Coding of PROCEDURE DIVISION•.•..........................

Compilation Card Deck •...•...•.•••••.•••••••.••.....•.••..••.

LIST OF TABLES

Maximum Value of Integers •...................................

Recording Modes for Peripheral Devices•...............

Editing Symbols and Results

Order of Precedence ..
Editing Application of the PICTURE Clause

Combination of Symbols in Arithmetic Expressions

Relationship of Conditions, Logical Operators,
and Truth Values

••••••••• tt ••••••••••••••••••••••••••••••••

Combinations of Conditions and Logical Operators

3-2

3-5

4-4

5-17

6-6

6-7

6-13

6-18

6-38

6-50

6-54

6-65

6-73

7-58

7-69

7-69

7-79

7-82

7-97

11-I

6-20

6-27

6-55

6-59

6-61

7-14

7-18

ACKNOWLEDGEMENT

The information contained in this document is based on the COBOL language

initially developed in 1959 and the updated COBOL68.

COBOL is an industry language, and as such is not the property of any company

or group of companies, or of any organization or group of organizations.

The authors and copyright holders of the copyrighted material used in this

document,

FLOW-MATIC (trademark of Sperry Rand Corporation), programming

for the UNIVAC @ I and IL Data Automation Systems, copyrighted

1958, 1959 by Sperry Rand Corp.; IBM Commercial Translator, form

No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27 A5260-2760,

copyrighted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part,

in the COBOL specifications. This authorization extends to the reproduction

and use of COBOL specifications in programming manuals or similar publications.

Any organization interested in reproducing ·the COBOL report and specifications

in whole or part, using ideas taken from this report as the basis for an in

struction manual, or for any other purpose, is free to do so; however, all

such organizations are requested to reproduce this section as a part of the

introduction to the document. Those using a short passage, as in a book

review, are requested to mention COBOL in acknowledgement of the source, but

need not quote this entire section.

No warranty, expressed or implied, is made by any contributor or by the COBOL

committee as to the accuracy and functioning of the programming system and

language. Moreover, no responsibility is assumed by any contributor, or by

the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries con

cerning the procedure for proposing changes should be directed to the Executive

Committee of the Conference on Data Systems Languages.

xi

SECTION l
INTRODUCTION

This manual provides a complete description of COBOL (QOMMON ~USINESS QRIENTED

LANGUAGE) as implemented for use on the Burroughs B 1700 system. This concept

of COBOL embraces the adoption of the American National Standards Institute

(ANS I) 1968.

ADVANTAGES OF COBOL

The long list of COBOL advantages is derived chiefly from its intrinsic quality

of permitting the programmer to state the problem solution in English. The

programming language readb much like ordinary English prose, and can provide

automatic program and system documentation. When users adopt in-house standard

ization of elements within files, plus well-chosen data-names, before attempt

ing to program a system, they obtain maximum documentational advantages of the

language described herein.

To a computer user, the Burroughs COBOL offers the following major advantages:

a. Expeditious means of program implementation.

b. Accelerated programmer training and simplified retraining requirements.

c. Reduced conversion costs when changing from a computer of one manu-

facturer to that of another.

d. Significant ease of program modification.

e. Standardized documentation.

f. Documentation which facilitates non-technical management participation

in data processing activities.

g. Efficient object program code.

h. Segmentation capability which sets the maximum allowable program size

well in excess of any practical requirement.

i. Due to the incorporation of debugging language statements, a high de

gree of sophistication in program design is achieved.

j. A comprehensive source program diagnostic capability.

A program written in COBOL, called a source program, is accepted as input by

the COBOL compiler. The compiler verifies that all rules outlined in this

manual are satisfied, and translates the source program language into an ob-

1-1

ject program language capable of communicating with the computer and directing

it to operate on the desired data. Should source corrections become necessary,

appropriate changes can be made and the program recompiled. Thus, the source

deck always reflects the object program being operationally executed.

PROGRAM ORGANIZATION

Every COBOL program must contain these four divisions in the following order:

IDENTIFICATION

ENVIRONMENT

DATA

PROCEDURE

The IDENTIFICATION DIVISION identifies the program. In addition, the program

mer may include such optional pieces of information as the date compiled, and

programmer's name for documentation purposes. This division is completely ma

chine-independent and thus does not produce object code.

The ENVIRONMENT DIVISION specifies the equipment being used. It contains

computer descriptions and deals, to some extent, with the files the pro

gram will use.

The DATA DIVISION contains file and record descriptions describing the data

files that the object program is to manipulate or create, and the individual

logical records which comprise these files. The characteristics or properties

of the data. are described in relation to a standard data format rather than

an equipment-oriented format. Therefore, this division is to a large extent

computer-independent. While compatibility among computers cannot be absolutely

assured, careful planning in the data layout will permit the same data de

scriptions, with minor modification, to apply to more than one computer.

The PROCEDURE DIVISION specifies the steps that the user wishes the computer

to follow. These steps are expressed in terms of meaningful English words,

statements, sentences, and paragraphs. This division of a COBOL program is

often referred to as the "program" itself. In reality, it is only part of

the total program, and is insufficient by itself to describe the entire pro

gram. This is true because repeated references must be made (either explicitly

or implicitly) to information appearing in the other divisions. This division,

more than any other, allows the user to express his/her thoughts in meaningful

English. Concepts of verbs to denote actions, and sentences to describe pro

cedures, are basic, as is the use of conditional statements to provide alter

native paths of action.

1-2

A program written in COBOL is called the source program, and is accepted as in

put by the B 1700 COBOL compiler. The compiler will verify that the rules

presented in this manual have been followed and will generate an object pro

gram in machine code, ready to be executed. Due to the speed of compilation,

no object deck is supplied. Instead, the object program is placed on the

disk, and may be dumped on a magnetic tape for back-up storage. Should changes

become necessary, the source deck is corrected and a new compilation run made.

Thus, the source deck always reflects the object program being executed.

1-3

SECTION 2
LANGUAGE FORMATION

GENERAL

As stated in section 1, COBOL is a language based on English, and is composed

of words, statements, sentences, paragraphs, etc. The following paragraphs

define the rules to be followed in the creation of this language. The use of

the different constructs formed from the created words is covered in subsequent

sections of this document.

CHARACTER SET

The COBOL character set for this system consists of the following 53 char~

acters:

0 - 9

A - Z

blank or space

+ plus sign

minus sign or hyphen

* asterisk

I slash (virgule)

equal sign

$ currency sign

comma

Characters Used for Words

"
(

)

>

<

@

period or decimal point

semicolon

quotation mark

left parenthesis

right parenthesis

greater than symbol

less than symbol

colon

"at" sign

The character set for words consists of the following 37 characters:

0 - 9

A - Z

(hyphen)

2-1

Punctuation Characters

The following characters may be used for program punctuation:

@

"
(

)

"at" sign space or blank

quotation mark period

left

right

parenthesis comma (see note below)

parenthesis semicolon

NOTE

Commas may be used between statements,

at the programmer's discretion, for

enhanced readability of the source

program. Use of these characters

implies that a following statement is

to be included as a portion of an entire

statement.

Characters Used in Editing

The COBOL compiler accepts the following characters in editing:

$

*

B

0

currency sign

asterisk (check

comma

period

space or blank

zero insert

+ plus

protect) minus

CR credit

DB debit

insert z zero suppress

Characters Used in Formulas

The COBOL compiler accepts the following characters in arithmetic expressions:

+ addition ** exponentiation

subtraction (left parenthesis

* multiplication) right parenthesis

I div is ion

Characters Used in Relations

The COBOL compiler accepts the following characters in conditional relations:

[

equal sign

< less than symbol

> greater than symbol

2-2

DEFINITION OF WORDS

A word is created from a combination of not more than 30 characters, selected

from the following:

A through Z

0 through 9

- ~yphen

A word is ended by a space, or by a period, comma, or semicolon. A word may

not begin or end with a hyphen. (A literal constitutes an exception to these

rules, as explained later.)

Types of Words

COBOL contains the following word types:

a. Nouns.

b. Verbs.

c. Reserved words.

Nouns

Nouns are divided into ten special categories:

• File-name • Mnemonic-name

• Record-name • Index-name

• Data-name • Literal

• Condition-name • Figurative constant

• Procedure-name • Special registers

Since the noun is a word, its length may not exceed 30 characters (exception:

literals may not exceed 160 characters). For purposes of readability, a noun

may contain one or more hyphens. However, the hyphen may neither begin nor end

the noun (this does not apply to literals).

File-Name. A file-name is a name containing at least one alphabetic character

assigned to designate a set of data items. The contents of a file are divided

into logical records that in turn are made up of any consecutive set of data

items.

Record-Name. A record-name is a noun containing at least one alphabetic char

acter assigned to identify a logical record. A record can be subdivided in

to several data items, each of which is distinguishable by a data-name.

Data-Name. A data-name is a noun assigned to identify elements within a

record or work area and is used in COBOL to refer to an element of data, or

2-3

to a defined data area containing data elements. Each data-name must contain

at least one alphabetical character.

Condition-Name. A condition-name is the name assigned to a specific value,

set of values, or range of values, within the complete set of values that a

data item may assume. The data item itself is called a "conditional variable."

The condition-name must contain at least one alphabetic character and must

be unique, or be able to be referenced uniquely through qualification. A con

ditional variable may be used as a qualifier for any of its condition-names.

If references to a conditional variable require indexing, subscripting, or

qualification, then references to any of its condition-names also require the

same combination of indexing, subscripting, or qualification. A condition

name is used in conditions as an abbreviation for the relation condition; its

value is TRUE if the associated condition variable is equal to one of the set

values to which that condition-name is assigned.

Proc@dure-Name. A procedure-name is either a paragraph-name or section-name,

and is formulated according to noun rules. The exception is that a procedure

name may be composed entirely of numeric characters. Two procedure-names are

identical only if they both consist of the same character strings. For ex

ample: procedure-names 007 and 7 are not equivalent.

Mnemonic-Name. The use of mnemonic-names provides a means of relating certain

hardware equipment names to problem-oriented names the programmer may wish to

use. See the discussion of SPECIAL-NAMES in section 5.

Index-Name. An index-name is a word with at least one alphabetic character that

names an index associated with a specific table (refer to indexing in section 6).

An index is a register, the contents of which represent the character position

of the first character of an element of a table with respect to the beginning

of the table.

Literals. A literal is an item of data which contains a value identical to

the characters being described. There are three classes of a literal: numeric,

non-numeric, and undigit.

Numeric Literal

A numeric literal is defined as an item composed of characters chosen from

the digits 0 through 9, the plus sign (~) or minus sign (-), and the decimal

point. The rules for the formation of a numeric literal are:

2-4

a. Only one sign character and/or one or more one decimal point may be

contained in a numeric literal for use with Sterling. The leftmost

decimal determines the scale.

NOTES

A comma must be substituted for the decimal

point if the DECIMAL-POINT IS COMMA option

is used (see SPECIAL-NAMES in the ENVIRON

MENT DIVISION).

The implied USAGE of numeric literals is

COMPUTATIONAL except when used with the

verbs DISPLAY or STOP.

b. There must be at least one digit in a numeric literal.

c. The sign of a numeric literal must appear as the leftmost character.

If no sign is present, the literal is defined as a positive value.

d. The decimal point may appear anywhere within the literal except for

the rightmost character of a numeric literal. A decimal point with

in a numeric literal is treated as an implied decimal point. Absence

of a decimal point denotes an integer quantity. (An integer is a

numeric literal which contains no decimal point.)

e. A numeric literal used for arithmetic manipulations cannot exceed

160 digits. The following are examples of numeric literals.

Non-Numeric Literal

13247
.005

+1.808
-.0968

7894.54

A non-numeric literal may be composed of any allowable character. The begin

ning and end of a non-numeric literal are each denoted by a quotation mark. Any

character enclosed within quotation marks is part of the non-numeric literal.

Subsequently, all spaces enclosed within the quotation marks are considered

part of the literal. Two consecutive quotation marks within a non-numeric

literal cause a single quote to be inserted into the literal string. Four

consecutive quotation marks will result in a single '' literal.

A non-numeric literal cannot itself exceed 160 characters. Examples of non

numeric literals are:

2-5

Literal on Source Program Leyel

"ACTUAL SALES FIGURE"
"-1234. 567"
'""'LIMITATIONS"""

Literal Stored by Compiler

ACTUAL SALES FIGURE
-1234.567
"LIM !TAT IONS"

"ANNUAL DUES" ANNUAL DUES
" " " "
"A"" B"

"
A"B

NO'rE

Literals that are used for arithmetic com

putation must be expressed as numeric lit

erals and must not be enclosed in quotation

marks as non-numeric literals. For example,

"-7.7" and -7.7 are not equivalent. The

compiler stores the non-numeric literal as

-7.7, whereas the numeric literal would be

stored as 0077 if the PICTURE were S999V9

DISPLAY with the assumed decimal point lo

cated between the two sevens.

Undigit Literals

Binary 10 through 15 are represented as A through F and must be bounded by @

signs. For example, binary 11 would be expressed as @B@. An undigit literal

cannot exceed 160 digits. Undigit literals are treated like numeric literals

by the compiler.

Figurative Constant. A figurative constant is a particular value that has

been assigned a fixed data-name and must never be enclosed in quotation marks

except when the word, rather than the value, is desired. The figurative con

stant names and their meanings are:

2-6

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

Represents the value o, or one or more of the

character O, depending on the context.

Represents one or more spaces (blanks).

Represents the highest internal coding sequence

(i.e., 999) value. When HIGH-VALUES are moved to a

signed numeric computational field, the sign will

be changed to a plus sign.

Represents the lowest internal coding sequence (blanks)

value. When LOW VALUES are moved to a signed numeric

computational field, zeros will be moved into the field

and the sign will be changed to a plus.

QUOTE
QUOTES

ALL

ALL li:teral

ALL "ABC"
ALL II 3 II or
ALL "HI-LO"
ALL QUOTE
ALL SPACES

Represents one or more of the single character " (quotation

mark). The word QUOTE or QUOTES does not have the same

meaning in COBOL as the symbol " . For example, if "STANDARDS''

appears as part of the COBOL source program, STANDARDS is

stored in the object program. If, however, the full

"STANDARDS" is desired in a DISPLAY statement, it can be

achieved by writing QUOTE "STANDARDS" QUOTE, in which case

the object program will print "STANDARDS". The same

result can be obtained by writing """STANDARDS""" in the

source program. Only the latter method can be used in

MOVE statements and conditionals.

When followed by an integer numeric literal, a non-numeric

literal, or a figurative constant, the word ALL represents a

series of that literal. For example, if the COBOL statement

is MOVE. ALL literal TO ERROR-CODE, then the resultant ERROR-

CODE would take on the following values:

Size of EBROR-CODE Re~ulting value of
ERROR-CODE

7 characters ABCABCA
ALL 3 5 characters 33333

12 characters HI-LOH I-LOH I
3 characters II II 11

9 characters (nine spaces)

NOTE

The use of ALL with figurative constants,

as illustrated in the last two instances, is

redundant. MOVE ALL SPACES and MOVE SPACES

would yield the same result.

Special Registers. The B 1700 COBOL compiler provides the following five

special PROCEDURE DIVISION register names:

a. TALLY.

b. TODAYS-DATE (Calendar).

c. TODAYS-NAME.

d. DATE (Julian).

e. TIME.

Tally

The special register TALLY is automatically provided by the COBOL compiler and

has a defined length of five COMPUTATIONAL digits. The primary use of TALLY is

in conjunction with the EXAMINE statement; however, TALLY may be used as

temporary storage or an accumulative area during the interim when EXAMINE ..•

TALLYING •.• is not being executed in a program.

Todays-Date (Calendar)

This special register is included in each COBOL program and will contain the

current date whenever TODAYS-DATE is requested as the sending field in a MOVE

statement. Its format is made of three character pairs, each representing

the month, day and year. For example, if the current date is Dec. 13th, 1971,

the TODAYS-DATE register contains 121371. The function of TODAYS-DATE is to

provide the programmer with a means of referring to the current date during

program execution. TODAYS-DATE is maintained in COMPUTATIONAL form.

Todays-Name (Day of Week)

This special register is included in each COBOL program and will contain the

current day of the week whenever TODAYS-NAME is requested as the sending field

in a MOVE statement. TODAYS-NAME is returned left-justified in a nine-character

field.

Date (Julian)

This special register is included in each COBOL program and will contain the

current Julian date whenever DATE is requested as the sending field in a MOVE

statement. Its format is YYDDD. For example, if the current date were

January 1, 1975, the DATE register would contain 75001. The function of DATE

is to save programmatic evaluation of TODAYS-DATE when Julian dates are re

quired. DATE is maintained in COMPUTATIONAL form.

Time

Access to an internal clocking register reflecting the time of day is pro

grammatically available whenever TIME is requested as the sending field of a

MOVE statement. The contents of the TIME register will be maintained in hours,

minutes, seconds and 10th of seconds. Its format is HHMMSST. For example,

10:30:51:8 would be stored as 1030518.

Verbs

Another type of COBOL word is a verb. A verb in COBOL is a single word that

denotes action, such as ADD, WRITE, MOVE, etc. All allowable verbs in COBOL,

with the exception of the word IF, are truly English verbs. The usage of the

COBOL verbs takes place primarily within the PROCEDURE DIVISION.

2-8

Reserved \Yords

The third type of COBOL word is a reserved word. Reserved words have a specif!

function in the COBOL language and cannot be used out of context, or for any

purpose other than the one for which they were intended. Reserved words are

for syntactical purposes and can be divided into three categories:

a. Connectives.

b. Optional words.

c. Key words.

A complete list of reserved words in COBOL used by the compiler is included

in appendix A.

Connectives. Connectives are used to indicate the presence of a qualifier

or to form compound conditional statements. The ·connectives OF and IN are

used for qualification. The connectives AND, AND NOT, OR, or NOT are used

as logical connectives in conditional statements. The comma is used as a

series connective to separate two or more operands.

Optional Words. Optional words are included in the COBOL language to improve

the readability of the statement formats. These optional words may be inclu

ded or omitted, as the programmer wishes. For example, IF A IS GREATER THAN

B ... is equivalent to IF A GREATER B• Therefore, the inclusion or omission

of the words IS and THAN does not influence the logic of the statement.

Key Words. The third kind of reserved words is referred to as being a key

word. The category of key words includes the verbs and required words needed

to complete the meaning of statements and entries. The category also includes

words that have a specific functional meaning. In the example shown in the

previous paragraph, the words IF and GREATER are key words.

2-9

LANGUAGE DESCRIPTION NOTATION

COBOL reference manuals have almost universally adopted a particular form of

notation. This manual uses that notation as described in the paragraphs that

follow.

Key Words

All underlined upper case words are key words and are required when the

functions of which they are a part are utilized. Their omission will cause

error conditions at compilation time. An example of key words is as follows:

IF data-name IS [NOT] {
NUMERIC }
ALPHABETIC

The key words are IF, NOT, NUMERIC, and ALPHABETIC.

Optional Words

All upper case words not underlined are optional words and are included for

readability only and may be included or excluded in the source program. In

the example above, the optional word is IS.

Generic Terms

All lower case words represent generic terms which must be supplied in that

format position by the programmer. Integer-I and integer-2 are generic terms

in the following example:

FILE-LIMIT IS integer-I THRU integer-2

Braces

When words or phrases are enclosed in braces [}, a choice of one of the

entries mus~ be made. In reference to the key words example above, either

NUMERIC or ALPHABETIC .!!!1!§.t be included in the statement.

Brackets

Words and phrases enclosed in brackets [] represent optional portions of a

statement. If the programmer wishes to include the optional feature, he may

do so by including the entry shown between brackets. Otherwise, it may be

omitted. In terms of the example above, the word enclosed in brackets is op

tional. However, if the programmer wishes to distinguish between NUMERIC and

ALPHABETIC, he must choose one of the words enclosed in braces.

2-10

Ellipsis

The presence of three consecutive periods (...)within any format indicates

that the data immediately preceding the notation may be successively repeated,

depending upon the requirements of problem solving.

Period

When a single period is shown in a format, it must appear in the same position

whenever the source program calls for the use of that particular statement.

2-11

SECTION 3
CODING FORM

GENERAL

The format of the COBOL coding form (figure 3-1) has been defined by CODASYL,

by ANSI, and by common usage. The B 1700 COBOL compiler accepts this standard

format. Should program interchange be a major consideration, the user is

directed to the ASA standard.

The same coding form format is used for all four divisions of a COBOL program.

These divisions must appear in proper order: IDENTIFICATION, ENVIRONMENT,

DATA, and PROCEDURE.

SEQUENCE FIELD (CARD COLUMNS 1-6)

The sequence field may be used to sequence the source program. Normally, a

numeric sequence is used; however, the B 1700 compiler allows any combination

of characters. A warning message is given if there is a sequence error. The

B 1700 compiler provides for insertion or replacement of card images during

compilation, controlled by the sequence field. (See sect ion on "COBOL

COMPILER CONTROL," sect ion 11.)

CONTINUATION INDICATOR (COLUMN 7)

Column 7 has several functions as follows:

a. A $ symbol in column 7 is used for cards which specify options for

compiler operation. (See sect ion 11.)

b. If column 7 contains an asterisk (*), the rest of the card is con

sidered to be a comment and, hence, is not "compiled" to produce

object code.

c. If column 7 contains a slash (/), the listing, if any, is advanced

to channel 1 before printing, and the card is considered to be a com

ment card.

d. The letter L followed by a "library-name" entry causes all suc

ceeding source card data to be placed into the COBOL Library File

during compilation. Termination of the action takes place when an

L card is encountered followed by spaces.

3-1

w
I

l\j

,

PROGRAM

PROGRAMMER

"AG(LINE
NO. NO.

3 ..

l .l .J.

..1 .J. _J_

l J_ J_

J _l _J_

l J_ I

.l J_ _J_

l ..1 _J_

.l l J

l J_ J_

l l .l

.l I I

J_ .1 _J_

l .1 J_

.1 J_ _l

J_ _J_ l

J .1 I

_J l I

.J. .J. J

_l ...1 J

...1 .J. __l_

.l J_ I

...1 l l

.J. .1 I

.J. .J. l

..1 J_ _l

BURROUGHS COBOL CODING FORM
ADDITIONS, DELETIONS AND CHANGES

C090l. DIVISION PAGE ~

DATE IOENT 7S IC
_1 _l l _ l -1 l l I

A I z

15 1 • II 12 zz sz 42 ~z II 71

I I I I 1
J _l_ _J_ _J_ 1 l .1 1 l .l l ll I I I I I I J 1 I l_l_l_J__J_l_l_J_-1..1 l I I I I I IJ_J_l I 1.1 l I l I I I II I I l_J_ I I I I I

T I I I "T
l j 1 l I I l I I I I I I I I IJ_ IJ_ I I IJ__Jj__ilJJJ_J__J__l_lJ_J_J__J_J_j_JJ_j_lJLlllJ_J_J__J_J__l 11i 1-lJJ I

I .,. I I 1

L -1 1 I I I I I I I J l I 1 I I .I I I I I I I II I I II I I I I I I l_l__l_J_JJ_..1~ I l_l_...i_l_ I I I Ill I II I I I I I I
I 1 ,.

l I I j_ _l_ J__.l_J _J__l _lj_-+ I 1-1 J_ 1 l .L.L..l 1 I J_j_ .l .li il li .l i.l .l..l.l l I l.l J...l_l_l_l _J .l i..l I I I I I J. I I It I
.,- I 1. T

l _..L j_ .1 _l _..L .1 _l _J_ J_ .1 J_ _l _l J _J J_ l J I I l j_ 1 .1 .l .l .1 ..1 .1 .1 J_ _J_ _l I I J l_LI I I I I I I I I
T T

I I I I I I I I I I I I I I I

J _J_ _J_ .li-1.1.1.l_l__l___l__ll 11 l I I I llilJ.1.1.1.l.l_l_.1.11 I I l.l I 1111 LI IL I I I I I II I I I I I I I I I
T T 1 I T

l _l _J_ l I I I I I I Ill I I I I I 1 I I l I 1.1.1.1.l_l l_J__l_l_l_l.1.1..1.1 I I lll I I I I I I I I I I I I I I I I I I I
T T r T T

l .l ...l i 1 _l _l i i I I I I J I J I I I I I I I I I j I I I I 1.1..1..1II11 l iiiil I I l I I J 1.1.11 I l...iJJ__J_J__J_ I
I T T

l 1 _J_ 1 I I I l I I I I I j_ I I I I I I l
"T

I I i_lJ_J__lJ__lJ_J__J_J_J__l_J__J__.l_l_l_l_J_J_J_J_...iJI l_l_J_l I l_l__lJ_ I I I I
T T T 1 -

_l _l _l_ _l_ _l _ l __l _l_ _l_ 1 _ J I ii l l J 1 l 1 J J. -1
I T

' ' I I I I I I I I I ! I I I i I I I Ll-1JL.1.1JJ__J_J_J__l_J__l_J_J_J__lj_J_J_j__J_J_..1 I IJ_J__J_J_I II I I I I I I I I I
I I I ! T

J .1 J_ _l_ _l_ _l_ _l_ _l_ _l_ 1 ' . +..L._J_l___L_t_-1. I I I I I 1 l _l_ _L _L _l _L _l _l_ _l_ 1 1 _L _l i 1 l J l 1 I I I I I I I J l I I I I I I I _I l_ I
T T T T

l l I I __l__l _J_ ..l l. _J_ I ~+1-- I I I I I ___L_L.L.f- I I I I I I I I I I I I I I I I IJ.J__J__l I I I IJ_I I IJ_I I I I I I I I I I
I T

I _j_ j_ I I 1 I I I I I I I I I I I I I I I _L I 1111Jllll_l__l_

.l _l ...l ...l _J_ _l_ _l_ _l _l J_ _l_ _L _l_ _l_ I I I 1 I I I .J__I I _L .1 _L .1 _l_ _J_ _J_ .l. .1 .1 _L _l_ _l _l_ _J_ .1 _l .1 .1 .1 _l_ l __l _l_ _l _l_ _L _l_ _l_ __l _l_ _l_ _l_ .1 .1 _l_ _ _l_ _l_ I
I T. J l T-

I I I i _l i _l_ I Liiiii...i...i_l_ll I I I I I I I ii I I I I I I I J l
I I

j _l _l _l _L_L..1. I I I I I I I I I I I I I I I I I I I '- I I I I I I I I I I I l...LJ_l.1.ll 111 l I l_l.1-1 I 111 l l lJl
I I

j _J_ _l _l I Ill l l I l I I I I IJ_ I I I I l_l_!ll..l_l_ll

' 1
...1...111J_l_l_...1_l...1J_l' 1111l1111 I I I I I I I 1...1

' I .,-

l 1 ' 1IIIIlIJ.14i~1-l11l..11~-1ii.Jl_l_ll_l...1.11il_l__l_l...1...1..1_llI11 l l l_l...1-1 I I I Ill l.l...1
I I I ·

i _I l 1 I I I I I I I I I I I I I I I I II I l_l.l_l.1.l...1.l...1-1...1l_l_l.l...1.1...LII1...1 I I I I I I I I I I I I j I I I I I
I I .,- 1

_.1. _.1. _l _i_l 11~ l l l l JI I I I I I I I I I l_lll-1...Lll 1...1-1llJJ111...1~1 l I Ill l l l-11 I I I I l I I 1...1
I "T I ' I

J ...1 ...1 iiiii-1..1..l_l_l__J_ l l I Ill 1 l_l l_l_...1-1.1..1.1-1.l....1.lJ..l..l._l_.1...1...1...1...1_..L...1_..L__l__l...1...1 I I I I I I I I I I I I I
I T I I I

--1 _l ...l -1111_lllllll It I I It ltl_l__l__l...1.1..l__ll_l_l_ll lJ__l 111...L...1IIII11ll_l__lIlII11 ll.1

l_l_l_j_

I I I I

l!ll_J l ll l I I li...1 I l...1.liJ...1...1.1.lii.li JJJl l lliill..ll t l II l l 1 l.J....1 I I I JI I I lJ
I T I (I

_l _l _l __! 1 I l I 1...1 l_l_l_j_ l l L l J J 11 I !_l__lJ__lJ.1.1...1.l_l_i_l_...1.1...1.1.1.lJ.liJJ_lJ__l_J I II I I I I 1...11 I I

Figure 3-1. COBOL Coding Form

e. The presence of a hyphen (-) indicates that the last word or literal

on the previous card is not complete, but is continued on this card.

Words and numeric literals may be split at any point by placing a hyphen in

column 7 of the following card. Any rightmost blank spaces on a card are

ignored as are the leftmost blank spaces on the continuation card.

Non-numeric literals are split in a slightly different fashion. On the ini

tial card, starting from the quotation mark, all information through column 72

is taken as part of the literal, and on the next card a quote mark must be

used to indicate the start of the second part of the literal.

MARGIN A (COLUMNS 8 THRU 11)

DIVISION, SECTION, and PARAGRAPH headers must begin in margin A. A division

header consists of the division name (IDENTIFICATION, ENVIRONMENT, DATA, or

PROCEDURE), followed by a space, then the word DIVISION followed by a period.

A section header consists of the section-name, followed by a space and then

the word SECTION, followed by an optional priority number, followed by a period.

A paragraph header consists of the paragraph-name followed by a period. The

first sentence of the paragraph may appear on the same line as the paragraph

header.

Within the IDENTIFICATION and ENVIRONMENT divisions, the section and paragraph

headers are fixed and only the headers shown in this manual are permitted.

Within the PROCEDURE DIVISION, the section and paragraph headers are defined

by the user.

MARGIN B (COLUMNS 12 THRU 72)

All entries which are not DIVISION, SECTION, or PARAGRAPH headers should start

in margin B.

RIGHT MARGIN (COLUMN 72)

The text of the program must appear between columns 8 and 72, inclusive. A

word or statement may end in column 72.

IDENTIFICATION (COLUMNS 73 THRU 80)

rhe identification field may contain any information desired by the user. The

field is ignored but is reproduced on the output listing by the compiler. This

field normally contains the program name.

3-3

PUNCTUATION

The following rules of punctuation apply to the writing of COBOL programs

for the B 1700.

a. A sentence is terminated by a period followed by a space. A

period may not appear within a sentence unless it is within a

non-numeric literal or is a decimal point in a numeric literal or

PICTURE string.

b. Two or more names in a series may be separated by a space or by a

comma. If used, commas can appear only where allowed.

c. Semicolons (;) are used only for readability and are never required.

d. A space must never be embedded in a name; hyphens should be used in

stead. (A hyphen may not start or terminate a name.) For example:

NET-PAY

SAMPLE CODING

An extract sample from a source program, showing the continuation of both

words and non-numeric literals, is illustrated in figure 3-2.

3-4

w
I

CJ!

BURROUGHS COBOL CODING FORM
ADDITIONS, DELETIONS AND CHANGES

PROGRAM C090(DIVISION PAGE Of

PROGRAMMER ~A-M. DATE IOENT. 7S .,
PAG[I LINE I I A I!,, z

NO. I NO.

314 &1711 II 112 22 32 42 52 61 7t

6'R.V1E

I ._LI I I I I I I I I I I I I I I I I

IJ ••

"A.Lil· .e

I

_l_L.Ll II 11 I' Lo",,,, 1'''"'11 "''""''
I I I I I I I I I I I I I I I

tJ,.

-'i'.A.

Figure 3-2. Example of Continuation of Words and Literals

SECTION 4
IDENTIFICATION DIVISION

GENERAL

The first part or division of the source program is the IDENTIFICATION DIVISION

Its function is to identify the source program and the resultant output of its

compilation. In addition, the date the program was written, the date the com

pilation was accomplished, plus other pertinent information may be included

in the IDENTIFICATION DIVISION.

IDENTIFICATION DIVISION STRUCTURE

The structure of this division is as follows:

f MONITOR ...]

IDENTIFICATION DIVISION.

(PROGRAM-ID. Any COBOL word.]

[AUTHOR. Any entry.]

(INSTALLATION. Any entry.]

(DATE-WRITTEN. Any entry.]

(DATE-COMPILED. Any entry - appended with
current date and time as main
tained by the MCPJ

(SECURITY. Any entry.]

[REMARKS. Any entry. Continuation lines must
be coded in Area B of the coding formJ

The following rules must be observed in the formation of the IDENTIFICATION

DIVISION:

a. The IDENTIFICATION DIVISION must begin with the reserved words

IDENTIFICATION DIVISION followed by a period.

b. All paragraph-names within this division must begin in Area A

of the coding form.

c. An entry following a paragraph-name cannot contain periods, with the

exception that a period must be present to denote the end of that

entry.

4-1

When DATE-COMPILED is included, the compiler automatically inserts the time

of compilation in the form of HH:MM and the date of compilation in the form

of MM/DD/YY.

With the exception of the DATE-COMPILED paragraph, the entire division is

copied from the input source program by the compiler and listed on the output

listing for documentation purposes only.

MONITOR

This statement provides a debugging trace of specified data-names and/or

procedure-names.

The format of this statement is:

[MONITOR [DEPENDING) file-name

[{ ~cedure-·name ... }] 2]
~[data-name]

This statement must begin under Area A of the coding form. The parentheses

and colon are required as part of the source program statement.

Only one MONITOR statement per program :is allowed and must precede the

IDENTIFICATION DIVISION header card in the source program.

The file-name must be ASSIGNed to a line printer and is recognized by the com

piler as being the output media for the MONITORed data-names. When the ALL

option is used, the file-name must be opened in the first paragraph in the

program; otherwise, a run-time error will occur.

The data-name(s) may be any name(s) appearing in the DATA DIVISION except for

those which require subscripting or indexing.

Whenever a MONITOR~d elementary data-name is encountered as the receiving

field in a MOVE or arithmetic statement, the data-name and its current value

are listed.

If a group item appears in the data-name-list, it will be MONITORed only when

explicitly used as a receiving field.

If the DEPENDING option is present, SW6 will be tested for an ON-OFF condition.

Print of MONITORed items will depend upon the setting as being "ON".

All paragraph-names listed will be printed each time they are encountered,

along ~ith a total indicating the number of times that a paragraph-name has

been passed.

4-2

The use of the ALL option, instead of the procedure-name list, will cause all

section-names and paragraph-names to be MONITORed, thus providing a trace of

the entire program's control path during operation.

CODING THE IDENTIFICATION DIVISION

Figure 4-1 provides an example of how the IDENTIFICATION DIVISION may be

coded in the source program. Note that continued lines must be indented to

the B position of the form, or beyond.

4-3

~
I
~

BURROUGHS COBOL CODING FORM
ADDITIONS, DELETIONS AND CHANGES

PROGRAM
'l>ENT tF\c.A'TtoN n \.\J\!;:.\ON Co'l:),NG,..

COBO(DIVISION PAGE: OF

PROGRAMMER "'J)e-e
DAT'E IOENT 1S .,

l'AGI I LINE
NO. NO.

I A z

314 el TI 8 II 112 22 32 42 !12 61 7t

I I I I I . I I I I I I I I I I I I I I I P"'"' - I-·-· ,. .. JI I ='I" I I I I I I I • I I _LI I I I I I I I I I I I I I I I I

I I l I I I I I I I I _l I I II I I I I I I
I I I I I I I I I I ' I I I I I I I I I I I I I I

I I I II I I I ' I I
I

l I L I J I L__,__._...__....._~___._-+-__,_~_..__ _...___._-+-.-_--................... __.___._..-,_,__--.

---------~..__"-+__.__LL_L I I I I I ' I I I I I I I I I I I I I I I I I I I l I I I I I

l l l I l l l I l I

Figure 4-1. IDENTIFICATION DIVISION Coding

SECTION 5
ENVIRONMENT DIVISION

GENERAL

The ENVIRONMENT DIVISION is the second division of a COBOL source program.

Its function is to specify the computer being used for the program compilation,

to specify the computer to be used for object program execution, to associate

files with the computer hardware devices, and to provide the compiler with

pertinent information about disk storage files defined within the program.

Furthermore, this division is also used to specify input-output areas to be

utilized for each file declared in a program.

ENVIRONMENT DIVISION ORGANIZATION

The ENVIRONMENT DIVISION consists of two sections. The CONFIGURATION SECTION

contains the overall specifications of the computer. The INPUT-OUTPUT SECTION

deals with files to be used in the object program.

ENVIRONMENT DIVISION STRUCTURE

The structure of this division is as follows:

ENVIRONMENT DIVISION.

[[CONFIGURATION SECTION.]

[SOURCE-COMPUTER ...]

[OBJECT-COMPUTER ...]

[SPECIAL-NAMES ...]

[INPUT-OUTPUT SECTION.]

[FILE-CONTROL ...]

[I-O-CONTROL .]]

The following rules must be observed in the formulation of the ENVIRONMENT

DIVISION:

a. The ENVIRONMENT DIVISION must begin with the reserved words

ENVIRONMENT DIVISION followed by a period.

b. All entries other than the ENVIRONMENT DIVISION source line are op

tional but, when used, they must begin in Area A of the coding form.

5-1

I CONFIGURATION SECTIO~

CONFIGURATION SECTION

The CONFIGURATION SECTION contains information concerning the system to be

used for program compilation (SOURCE-COMPUTER), the system to be used for

program execution (OBJECT-COMPUTER), and the special-names paragraph, which

relates hardware names used by the B 1700 COBOL compiler to the mnemonic-names

in the source program.

5-2

I SOURCE-COMPUTER]

Source-Computer

The function of this paragraph is to allow documentation of the configuration

used to perform the COBOL compilation.

The format of this paragraph has the following two ,options:

Option. 1:

SOURCE-COMPUTER. COPY library-name

[• REPLACING word-I BY word-2

[• word-3 fil word-4] •••] .

Option 2:

SOURCE-COMPUTER. {
B-1700 }
any entry

This paragraph is for documentation only~

5-3

OBJECT-COMPUTER

Obied-Computer

The function of this paragraph is to allow a description of the configuration

used for the object program.

The format of this paragraph has the following two options:

Option 1:

OBJECT-COMPUTER. COPY library-name

[REPLACING· word-I BY word-2

[, word-3 BY word-4 J ...] .

Option 2:

OBJEQT-COMPUTER. [{~~~7~~try}]

f, [.§2!!!] MEMORY SIZE integer-! [CHARACTERS]]

[, DATA SEGMENT-LIMIT IS integer-2 CHARACTERS]

, SEGMENT-LIMIT IS priority number]

If section priority numbers are used in the PROCEDURE DIVISION, they must be

positive integers with a value from 0 through 99. The SEGMENT-LIMIT clause

signifies the limit for non-overlayable program segmentation of sections num

bered from 0 through 49. See SEGMENT CLASSIFICATION, PROGRAM SEGMENTS, and

PRIORITY NUMBERS.

The MEMORY SIZE clause is used to increase the amount of memory for overlayable

data or change the size of memory for the sort to use during a sort operation.

When the SORT MEMORY SIZE clause is used, the integer-I will reflect the

amount of memory the sort will use when the program is executed. If integer-I

is less than SK bytes, the sort will use SK bytes by default.

When the MEMORY SIZE clause is used without the SORT option, the compiler will

assign the amount of memory between the base and limit register to reflect the

size of integer-I, or the memory required for all of the overlayable data seg

ments when more than one segment is referenced in the same operation.

Both SORT MEMORY SIZE and MEMORY SIZE clauses may be used in the same OBJECT

COMPUTER paragraph.

OBJECT-COMPUTER

The use of the word CHARACTERS after integer-I specifies the number of bytes

to be used; otherwise, the specification is the number of digits to be used.

The DATA SEGMENT-LIMIT clause may be used to specify the size of the data

segments in the WORKING-STORAGE section. Integer-2 will reflect the number

of characters desired in each data segment. When the value of integer-2 is

zero, the WORKING-STORAGE section will not be segmented, and will reside in

memory as a contiguous block.

If the DATA SEGMENT-LIMIT clause is omitted, no data segmentation will take

place.

When data segmentation is specified each file record is placed in a separate

segment.

All 77 level entries are placed in data segment O (zero).

A record (01 level) that is greater in length than the DATA SEGMENT-LIMIT

will be placed in a segment by itself, and will not be split between segments.

If DATA SEGMENT-LIMIT has been declared larger than the defined record size,

the record will reside in the declared amount of memory, as well as succeeding

records to the limit of the defined segment.

5-5

I SPECIAL-NAMES]

Special-Names

The function of this paragraph is to allow the programmer to assign a signifi

cant character for all currency signs, to declare decimal points as being

commas and to provide a means of relating implementor hardware-names to user

specified mnemonic-names.

The format of this paragraph has the following two options:

Option 1:

SPECIAL-NAMES. COPY library-name

~EPMACING word-1 BY word-2

[' word-3 BY word-4 J ... J .

Option 2:

SPEC !AL-NAMES. [CURRENCY SIGN IS literal]

[, implementor-names IS mnemonic-name]

[, DECIMAL-POINT IS COMMA]

This paragraph is required if all decimal points are to be interchanged with

commas an~/or if all currency signs are to be represented by a character other

than a dollar sign ($).

This literal is limited to a single character and must not be one of the

following:

a. Numeric digits 0 through 9.

b. Alphabetic characters A, B, C, D, J, K, P, R, S, V, X, Z, or blank.

c. Special characters * + - ' . ' () "

The clause DECIMAL-POINT IS COMMA signifies that the functions of comma and

period are to be exchanged in the PICTURE character-string and in numeric

literals.

The implementor-name clause must be one of the allowable B 1700 COBOL hard

ware-names which may be specified in FILE-CONTROL paragraph. For example:

PUNCH IS CARD-PUNCH-EBCDIC

5-6

SPECIAL-NAMES I

The mnemonic named device can be directly referred to in the ASSIGN clause.

The SPECIAL~NAMES paragraph statement ends with a period as a delimiter.

Periods between clauses are not allowed.

5-7

~PUT-OUTPUT SECTION I
INPUT-OUTPUT SECTION

The INPUT-OUTPUT section contains information concerning files to be used

by the object program, the manner of recording used or to be used, and the

presence of any multiple-file tape or disk.

5-8

FILE-CONTROL]

PILE-CONTROL

The function of this pa~agraph is to name each file, to identify the file

medium, and to specify a particular hardware assignment. The paragraph also

specifies alternative input-output areas.

The format of this paragraph has the following three options:

Option 1:

FILE-CONTROL.

[REPLACING

library-name

[.
Opti<;>n 2:

{
word-I l
data-name-lJ

{
word-3 }
data-name-3

FILE-CONTROL.

fil { ~~~~=~ame-21
literal-I

{
~~~~=~~me-41· ] ... 
literal-2 

SELECT (OPTIONAL] f ile-name-1 ASSIGN TO hardware-name-I 

[(oR) BACKUP [{iit~~lJ] [FORM] [FOR MULTIPLE .l:!Jml.] [SINGLE] 
[ALL-AT-OPEN] [WORK] 

[ ,R];§ERyE {~~teger-1} [ALTERNATE [{!~!s}J] 

r{FILE-LIMIT IS } 
t FILE-LIMITS ARE 

[, {li teral-m } 
data-name-m 

[ACCESS MODE IS 

{
literal-I } 
data- name-1 

{ THRU } 
THROUGH 

{RANDOM } ] 
SEQUENTIAL 

GACTUAL KEY IS data-name-3] 

[,PROCESS I;tiQ MODE IS SEQUENTIAL] 

{ l'1!!llI } THROUGH {
END. } literal-2 
data-name-2 

{literal-n }] . ·] data-name-n 
. 

. [SELECT] 

5-9 



FILE-CONTROL· 

Option 3: 

FILE-CONTROL. 

SELECT sort-file-name ASSIGN TO SORT DISK. 

Option 1 may be used when the system's l:ibrary contains the LIBRARY name entry. 

See COPY verb, section 7. 

The files used in a program must be the subject of only one SELECT statement. 

If it is to be OPENed INPUT-OUTPUT or I-O, it must be present in the MCP 

Disk Directory. 

The OPTIONAL clause is applicable to input files only. Its specification 

is required for input files that are not necessarily present each time the 

object program is executed. 

The ASSIGN clause must be used in order :for the MCP to associate the file 

with a hardware peripheral component. The allowable hardware-name entries 

are: 

CARD96 

DISK (or DISC) 

DISK-DFCl 

DISK-DFC2 

DISK-DPCl 

DISK-DPC2 

DISK-HPT 

DISKPACK 

MFCU 

PRINTER 

PT-PUNCH 

PT-READER 

PUNCH 

QUEUE 

READER 

READER-SORTER 

REMOTE 

SPO 

TAPE (7 or 9 channel MCP to assign) 

TAPE-MTCl 

TAPE-MTC2 

TAPE-MTC3 

TAPE-MTC4 

TAPE-MTC5 

TAPE-7 (7 channel only) 

TAPE-9 (9 channel only) 

The BACKUP option will cause printer output files to be placed on a printe~ 

backup tape or disk file for subsequent printing. The BACKUP option will 

cause punch output files to be placed on punch backup disk files for subsequent 

punching. 

When hardware-name-I is selected, without the backup option, the output file 

may be manually assigned to printer backup by the operator with an "OU" 

message. 

5-10 



FILE-CONTROL 

Use of the FORM option with printer or punch files will cause the program 

to halt and an MCP message to be printed declaring the need for special forms 

to be loaded in the Line Printer or Card Punch, as applicable. 

It is recommended that a STOP literal be executed just prior to a STOP RUN 

if the FORM option is used. This will allow the operator sufficient time to 

remove the special forms before the printer is released back to the MCP. 

Without a temporary halt, there is a possibility that another job in the mix 

may start printing on that same printer. 

With the exception of the ASSIGN clause which must follow the SELECT clause, 

the rest of the clauses in this paragraph may appear in any order. 

The MULTIPLE REEL clause is for documentation only. This function is per

formed by the MCP. 

When the SINGLE option is used, a file assigned to DISKPACK will not be 

assigned to a multi-file disk cartridge. 

The ALL-AT-OPEN option will cause the MCP to allocate all of the areas re

quested by th is file at the time the file is opened. 

When the WORK opt ion is used, the MCP wil.l insert a six digit job number 

(assigned to the program) into the file name starting in the second position 

from the left. This will allow a program with temporary work files to be 

multi-programmed. 

The RESERVE clause allows a variation of the number of input or output physical 

record buffers to be supplied by the MCP at the time the file is opened. Each 

alternate area reserved requires additional memory to be utilized, and will be 

the size of a physical record as defined in the FD statement of the DATA 

DIVISION for that specific file. Up to 63 alternate areas may be specified. 

No alternate areas are reserved when the NO option is specified or if the 

entire option is omitted. 

The MCP will keep track of record data being passed to or from the buffer and 

the record work area. 

The programmer can use the READ or WRITE statements without regard to the 

buffering action taking place, 

The FILE-LIMIT clause is invalid if specified for a sort file description 

(SD) entry. The FILE-LIMIT clause for input and output files associated with 

the SORT verb will not be effective during execution of the SORT unless an 

input/output procedure is declared. 

s-11 



I FILE-CONTROL I 
The FILE-LIMIT clause specifies the following: 

a. For SEQUENTIAL access, logical records are obtained from, or placed 

sequentially in, the disk storage file by the implicit progression 

from segment to segment. The AT END imperative statement of a READ 

statement is executed when the logical·end of the last segment of the 

file is reached and an attempt is made to READ another record. The 

INVALID KEY clause of a WRITE statement is executed when the end of 

the last segment is reached and an attempt is made to WRITE another 

record. The END option specifies that the compiler is to determine 
the upper limit of an existing file. No ACTUAL KEY entry is neces-

sary for the SEQUENTIAL mode. 

b. For RANOOM access, logical records are obtained from, or placed 

randomly in, the disk storage file within the specified FILE-LIMIT. 

The contents of ACTUAL KEY not within the specified limit will cause 

the execution of the INVALID KEY branch in the READ and the WRITE 

statements. The ACTUAL KEY entry must be specified. 

In the FILE-LIMIT clause, each pair of operands associated with the key word 

THRU represents a logical segment of a file. The logical beginning of a 

disk storage file is considered to be that address represented by the first 

operand of the FILE-LIMIT clause; the logical end is considered to be that 

address as specified by the last operand of the FILE-LIMIT clause. 

In a FILE-LIMIT series, SEQUENTIAL records are accessed in the order in which 

they are specified. For example: 

FILE-LIMITS 1 THRU 5, 10 THRU 12, 3 THRU 7 

This example will result in the sequential access of records 1, 2, 3, 4, 5, 

10, 11, 12, 3, 4, 5, 6 and 7 in that order. 

The data-names used with the FILE-LIMIT clause must be defined with a PICTURE 

of 9(8) COMPUTATIONAL. 

For the ACCESS MODE SEQUENTIAL clause, the disk storage records are obtained 

or placed sequentially. That is, the next logical record is made available 

from the file on a READ statement execution, or a specific logical record is 

placed into the file on a WRITE statement execution. The ACCESS MODE 

SEQUENTIAL clause is assumed if ACCESS MJDE RANOOM is not specified. 

Values of the ACTUAL KEY data-name-3 are controlled by the programmer, inclu

ding any execution of the USE FOR KEY CONVERSION statement. The value may 

range from 1 to n, where n equals the number of records in the file or as 



FILE-CONTROL 

reflected by the FILE-LIMITS clause. The ACTUAL KEY signifies the relative 

position of a record within the file and is equated to a data-name at any 

level which is defined with a PICTURE of 9(8) COMPUTATIONAL. ACTUAL KEY is 

not used for ACCESS MODE SEQUENTIAL files. 

The ACTUAL KEY specified for a queue file signifies the relative sub-queue 

position within the file and is equated to a data-name at any level which is 

defined with a PICTURE of 9(8) COMPUTATIONAL. If no KEY is specified, the 

relative queue number will be set to 1. 

The ACTUAL KEY specified for a remote file is defined as follows: 

01 REMOTE-KEY 

03 STATION-RSN PC 9(3) (As defined in NDL network controller) 

03 TEXT-LENGTH PC 9(4) (Actual length of current message) 

03 MSG-TYPE PC X(3) (0 = write 
1 = read) 

STATION-RSN refers to the relative station number within the file. TEXT

LENGTH defines the length of the message in characters, and should never be 

larger than the largest 01 record declared for the file. Otherwise, data 

would be truncated from the low-order position. 

MSG-TYPE defines a user-defined value to be treated appropriately by the user 

program. 

The ACTUAL KEY for remote file does not have to be defined at the 01 level; 

however, the group length must be 10 bytes. If ACTUAL KEY is omitted, message 

length will be taken from the message length being written. 

The PROCESSING l\tfODE IS SEQUENTIAL clause is for documentation only. 

All integers must be of positive values. 

File-name-I must be unique in the first ten characters if the use of an MCP 

Label Equation Card is anticipated. 

The sort-file-name in Option 3 is the SD level file-name to be used by the 

SORT verb. 

5-13 



11-0-CONTROL I 

1-0-Control 

The function of this paragraph is to specify memory area, to be shared by 

different files during object program execution and the point in time that a 

rerun procedure is to be established. 

The construct of this paragraph is: 

Option 1: 

I-O-CONTROL. COPY library-name 

[REPLACING word-1 BY word-2 

[• word-3 BY word-4] ... J . 

Option 2: 

I-O-CONTROL. 

(RECORD] AREA FOR file-name-2 [file-name-3] 

MULTIPLE FILE {
DISKPACK 
TAPE 

dispack-id } 
multi-file-id 

CONTAINS file-name-5 [POSITION integer-2] 

[, file-name-6 [PQSITION integer-3] J ... ] 

. .. ] 

The I-O-CONTROL paragraph name may be omitted from the program if the paragraph 

does not contain any of the clause entries. 

The SAME AREA clause in this COBOL compiler is used to assign the same address 

to the record work areas of all files named in the clause. This area will be 

in the overlayable data section of the program when data segmentation is used. 

Due to the Virtual Memory concept employed in the design of the system, a given 

file's file information block (FIB), buffer, and ALTERNATE AREAS will not exist 

5-14 



1-0-CONTROL 

in memory until an OPEN statement in the PROCEDURE DIVISION has been executed. 

At this time, to contain these areas the MCP allocates sufficient memory out

side of the limits of the Base and Limit registers. The Record Work area of 

the file is called into the overlayable data section of the program whenever 

it is referenced by the program. When the file is programmatically CLOSEd, the 

memory being used to contain the file's FIB, buffer and ALTERNATE AREAS will be 

returned to the MCP. 

COBOL restricts the OPENing of files defined as residing in the SAME AREA 

of memory to one file at a time. This system ignores that logic and the re

sult saves memory over the conventional intent by not using memory to contain 

FIB record area, buffers, or ALTERNATE AREAS until a file is actually OPENed 

by the program. 

When the RECORD option of the SAME AREA clause is used, only the record area 

is shared and the associated alternate areas for each file remain independent. 

In this case, any number of the files sharing the same record area may be 

OPEN at one time, but only one of the records can be processed at a time. 

The use of the RECORD option may decrease the physical size of a program as 

well as in.crease the speed of the object program. To illustrate this point, 

consider file maintenance. If the SAME RECORD AREA is assigned to both the 

old and new files, a MOVE will be eliminated which transfers each record from 

the input area to the output area. The records do not have to be defined in 

detail for both files. Definition of a record within one file and the simple 

inclusion of an 01 level entry for the other file will suffice. 

Because these are record areas, in fact, in the same memory location, one set 

of data-names is sufficient for all processing requirements, without requiring 

qualification. 

The MULTIPLE FILE clause specifies that disk files reside on a removable disk 

cartridge or disk pack, or two or more tape files are resident on one magnetic 

tape. All files resident on a multi-file (that are required in a program) 

must be represented in the source program by a SELECT statement and a FD entry 

for each file. 

For tape, the file-name entries do not have to be defined in the program 

sequence in which the files appear on the multi-file tape. However, the MCP 

will read the label of the next file on tape, check the label against the file 

request, and, if the next file is not the one requested, the MCP will rewind 

the multi-file tape and will start searching for it from the beginning of tape. 

5-15 



1-0-CONTROL 

When the MULTIPLE FILE clause is used to identify a file on a removable disk 

cartridge or disk pack, the MCP will use the specified diskpack-ID to locate 

that file. File-name list is a series of FD file-names in the program indi

cated as residing on the specified disk cartridge or disk pack. 

The "multi-file-id" is the file-name contained in the physical tape label 

of a magnetic tape containing multi-files, when file-name-list is a series 

of FD file-names in the program indicated as residing on the multi-file-tape. 

All files named in the MULTIPLE FILE TAPE clause have an implied SAME 

AREA clause. 

Multi-files, or any file contained with:in the file may be OPTIONAL. 

The POSITION clause is for documentation only. 

CODING THE ENVIRONMENT DIVISION 

An example of ENVIRONMENT coding is provided in figure 5-1. 

5-16 



CJl 
I 
I-' 
-..J 

BURROUGHS COBOL CODING FORM 
ADDITIONS, DELETIONS AND CHANGES 

PROGRAM 
~N 

C080C DIVISION PAGE OF 

PROGRAMMER DATE IOEN'T 7S IO 

PAGE I LINE 
NO. NO. 

z 

314 l!ITIB llllZ ZZ ~z 4Z !)Z 6Z 1t 

Figure 5-1. ENVIRONMENT DIVISION Coding 





SECTION 6 
DAT A DIVISION 

GENERAL 

The third part of a COBOL source program is the DATA DIVISION which describes 

all data that the object program is to accept as input, and to manipulate, 

create: or produce as output. The data to be processed falls into three cate

gories: 

a. Data which is contained in files and which enters or leaves the in

ternal memory of the computer from a specified area or areas. 

b. Data which is developed internally and placed into intermediate stor

age, or placed into a specific format for output reporting purposes. 

c. Constants which are defined by the programmer. 

DATA DIVISION ORGANIZATION 

The DATA DIVISION is subdivided into two sections: 

a. The FILE SECTION defines the contents of data files which are to 

be created or used by an external medium. Each file is defined 

by a file description, followed by a record description or a series 

of file-related record descriptions. 

b. The WORKING-STORAGE SECTION describes records, constants, and non

contiguous data items which are not part of an external data field, 

but which are developed and processed internally. 

6-1 



I DATA DIVISION STRUCTUR'EJ 

DAT A DIVISION STRUCTURE 

The general structure of the DATA DIVISION is as follows: 

DATA DIYISION. 

[
FILE SECTION. 

[
}file-description-entry} 

!sort-description-entry 
[record-description-entry] ... ] ··l 

[woRKING-STORAGE SECTION. 

[
77-level-description-entry] ···] 

record-description-entry 

Each section of the DATA DIVISION is optional and may be omitted from the 

source program if not needed. However, if a section is included, it must be 

incorporated in order of appearance shown above. These sections are described 

on the following pages. 

The file description defines information pertaining to the physical aspects 

of a file. Such items as number of records in a block, identification of 

records in the file, the presence or absence of labels, etc., are included 

to describe the entire file. 

The record description presents logical characteristics of each record. This 

includes the layout of items within each record type, size of various items 

in the record, indication of the range of values for each item, picture 

of the contents of each item, whether the item is signed or not, and the 

usage of an item within the program. All of these parameters may be utilized 

to define logical characteristics of each record. 

The WORKING-STORAGE SECTION is comprised of internal record descriptions and 

individual unrelated items, which are described as record entries, or parts 

of record entries. 

In summary, the DATA DIVISION contains information pertaining to the data to 

be used by the program: the files used, the records contained in each file, 

and items comprising each record; in addition, working storage and constants 

may be specified. 

6-2 



FILE AND RECORD CONCEPTS 

FILE AND RECORD CONCEPTS 

The approach taken in defining file information is to distinguish between the 

physical aspects of the file and the conceptual characteristics of the data 

contained within the file. 

Physical Aspects of a File 

The physical aspects of a file describe the data as it appears on the input 

or output media and include such features as the following: 

a. The mode in which the data file is recorded on the external medium. 

b. The grouping of logical records within the physical limitations of 

the file medium. 

c. The means by which the file can be identified. 

Conceptual Characteristics of a File 

The conceptual characteristics of a file explicitly define each logical entity 

within the file itself. In a COBOL program, the input or output statements 

refer to one logical record. 

It is important to distinguish between a physical record and a logical record. · 

For COBOL a logical record is a group of related information, uniquely identi

fiable, that is treated as a unit. 

A physical record is a physical unit of information whose size and recording 

mode are convenient to a particular computer for the storage of data on an 

input or output device. The size of a physical record is hardware-dependent 

and bears no direct relationship to the size of the file of information con

tained on a device. 

A logical record may be contained within a single physical unit; or several 

logical records may be contained within a single physical unit; or a logical 

record may require more than one physical unit to contain it. There are 

several source-language methods available for describing the relationship 

of logical records and physical units. Once the relationship has been 

established, the control of the accessibility of logical records as related 

to the physical unit is the responsibility of the operating system. In this 

manual, reference to records means to logical records, unless the term 

"physical record" is specifically used. 

The concept of a logical record is not restricted to files but may be applied 

to all sections of the DATA DIVISION. 

6-3 



I FILE AND RECORD CONCEPTS I 
Record Concepts 

The record description consists of a set of DATA DESCRIPTION entries which 

describe the characteristics of a particular record. Each DATA DESCRIPTION 

entry consists of a level-number followed by a data-name, followed by a 

series of independent clauses, as required. 

Example: 

01 ITEM-ONE PICTURE IS X(6). 

The maximum size of a record description (i.e., the sum of the maximum sizes 

of all the items subordinate to an 01 level item) is restricted to 65,535 

bits. 

6-4 



LEVEL NUMBERS CONCEPT 

LEVEL NUMBERS CONCEPT 

The concept of hierarchy is inherent in the structure of a logical record. 

This concept arises from the need to specify subdivisions of a record for 

the purpose of data reference. Once a subdivision has been specified, it 

may be further subdivided to permit more detailed data referral. In other 

words, level numbers define the interrelationship of the items comprising 

the record and allow the programmer to access individual items or groups 

of items. 

The most basic (least generic) subdivisions of a record, that is, those not 

further subdivided, are called elementary items; consequently, a record is 

said to consist of a sequence of elementary items, or the record itself may 

be an elementary item. 

In order to refer to a set of elementary items, the elementary items may 

be combined into groups. Each group consists of a named sequence of one or 

more elementary items. Groups, in turn, may be combined into groups of two 

or more groups, etc. Thus, an elementary item may belong to more than one 

group. 

In COBOL, the item relationship is specified by the use of a series of level 

numbers. These numbers may range from 1 thru 49. (Special level numbers 

of 66, 77, and 88 are discussed later.) 

Each record of a file begins with the level number 1 (which may also be 

written as 01). This number is reserved for the record name only, as the 

most generic grouping. Less inclusive groupings are given higher numbers 

(not necessarily successive) up to a limit of 49. Figure 6-1 illustrates a 

form of level construction. 

The smallest elements of the description are called elementary items. In 

figure 6-1, EMP-NO, EMP-COST-CENTER, EMP-LAST-NAME, EMP-FIRST-INITIAL, and 

EMP-M-INITIAL are all elementary items, as well as EMP-H-MONTH, EMP-H-DAY, 

EMP-H-YEAR, EMP-GROSS, EMP-HOSPITAL, EMP-LIFE, EMP-FICAT, EMP-STATE-TAX, 

EMP-WITHHOLDING, EMP-LMONTH and EMP-LDAY. None of these items are further 

subdivided; therefore, they are called elementary items. 

Each elementary item belongs to one or more groups. In the example, EMP

HOSPITAL is a part of the EMP-INSURANCE group. EMP-INSURANCE, in turn, is 

part of the EMP-DEDUCTIONS group, which is part of the EMP-PAY-DATA group. 

Therefore, a group is defined as being composed of all group and elementary 

items described under it, until a level number equal to or less than the 

6-5 



m 
I 

m BURROUGHS COBOL CODING FORM 
ADDITIONS. DELETIONS ANO CHANGES 

coeo( DIVISION 
r PROGRAM l \ c -j 

-------=L"""'e.=-z.v(:; 1,,.. f'..Ju.~R o~srr~~-rl..QN_____________ _ __ DAT£ ---t 1DENT--

P ROGRAMMER 'Bt11~ 

PAGE Of 

l --' ---~ 75 

l"AG[ 
NO. 

LINE I !A 
NO. 

3 I 4 6J TI 8 

I 

11 I 12 22 
-------~-------

z 

H 42 5 2 6Z 7t 

: I : i 1~ I' : l~P:LO~:~E:-1~1 - I I I LLL~ I I I I I I I I I I I I I I I I I I I ' I l J I I I I t ' I I I I I ' I I I 
: ' ' I J 1E1""1P1-:±Jt0 I I I I l I I I I I I I 1 _i__+~&iq I c Sj) , . I l I I I I I I I I I l I I I I I I l 1 

·; -= : -=·__L' I I I I I 1EiMi'?1-,c.p,s.;,-,-,c: ,E,N;-nEt'& I. I .- I I ,,_&:r;<; 1981 •I I I I I I I I I I I I I I I I I I I I I I 

I l ' I I iC1~1 I I .. LLL.LL_j6Mt>1-1Ni~1~ I I i I l i i i i J f--L-1 ! : ! I l I l ·+--Ll I I I l .LLy .. .L.Ll ' I I L ... LL.l. 

J I I I 

~ 
~,o,s , , , , , 

1
0Mf'1-1L1i'<1srr1-1N1AiME1 , , , , , , 

1 
1 i?1:i::&..-12<1C1 1:iµ,., ~.1 , , 1 , 

1 
1 1 1 1 1 1 1 , 1 • 

I I I I 1101S1 I I I I I 16Ml'1-1 Ei'X:i'Rt-SiT1-il:i.t0iJ:t'Ti:L1AiLi l 1 l 1 ;pl~l~ iXi •I I I I I I I I _j___J_ I I I I I I I I I ' I I I 

I 

I 

I I I 

J_ 

I , T- I I 

' 1 1 I 101Si' 1 1 1 1 1 1E1M..tR-ifv\-1::l:t.f\\il=i_T_;["_A1L.LL__l_ L_L _L_l____L __ LiPrijCi 1')(1_.__L_L_L_L.LL_l____l_ l___l_ __ .L___l___l__l____l______L_j__ I I I I I I T---- ---- -- ---- · r r-- ---- ----- - 1 

1 , 1 1 I 1oi3, , .L..J......-l..Ll.., 1c,M?i-,A1~~A-1L 1-1$&~,g'/, , -~-+-~-gric; ,9,Cec,)
1
v,9,9,., , .LL, 1 

1 
1 , _LL..L 1 , , , , f 

I 1 I I 1 1 101) , 1 , 1 1 , 1 \~-1f-'1- iDirn H1I: ~ 63>i • 1 1 1 ._1__.L_Lf--L 1 1 i 1 1 1 1 1 I 1 1 1 1 L 1 I 1 i I 1 -1 : : : : : : : : I 
I I I I ,o,s. I I I I I 1E1/v\~-,H,-,f-10,N,'1~1 I I I I I I I I I I ,'P,I:lc, 191"11 •I I I I I I LLLJ _ _l I ' I ' : 1 

'. ·~ 1 ,as; , 1 1~~8--::iJi..-.)>l\Li1 I , 1 1 , 1 1 , 1 1 1 , i'FifiCi ,'li'f1·1 1 , 1 , , LJ _ _l_LI 1 , , , , 1 , , , ; ; , 

I I I QS: i ----+E;~t~_J\/t~-1H1<'i1E1Ai'R1 I I I I 1._LI I ,?i:r;c; ,q,~ I I I I I I I ..LI I I I I I I I I I I ..L..l 

I -~- --$.t.M'R-1?iA~J?,rt~iAw_ ! I I I I I I I I I I I I I I I I I I I I I i I I I I I I I I I I I I I 

~~_J___ ~?.LL 1 1 1 , f1M1't>n Gt-~P1~1~-+ 1 , 1 , 1 1 1 1 1 
1 

1 it?:ie.., 19 :Ciec,)
1
Viq,q, -1 1 , 1 , 1 t-L 1 , 1 , , ' , , 1 

I I i l ' OS: I I 1E1~-:1>1Ei])1~~Ii01t-.l1~1•_L..L....J_ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I~ 

I ' I I I ' I I I LLJ.....<?B I I I I 1E1M1'P1-1'!=iN1S1LA..1'R1A(>lf- E:,. I I I 1 .. .l_Lf.....LL..L I I I I : I I I I I I l I I I I+ I I I I I I I I ! I 

---~--+-i -'-1____._1 ~''----+-f L.L LLLilil I I 16M?,- I l-+P1S1'P 1I1T1A1L I J.. __ '. .. J....J..._1-l...._J_ I : ,'BI,~<1l1tf.J I V88 I• I I 1-1. ... .L_J_t I I I I I I I I I I 

at
! I _L+--L__L_L..L__j_ 1111 I I 1EiMR-16"LF1E1 I I I I I I I I I I . .L ,'Bl;c; ,'t,G4)1V8.'L .. I I I I I : t I I I I I I I I I ..J. 

' I __l_ I P8 i I I 1£:M..1F!-1"TiA1)(1E1S1 • 1 I I I_ I I I I I I I I I I I i I I I I I I I I I I I I I I I I I I I I I I I 

~~ ....... 1~'11 ~6MPi-, Fi:IiciA., 1 
1 

, , 1 1 , .1 , , 1 1 1 ,?i.:z;c; 19,(L/,)1V,'1,9, -1 , 1 , 1 , 
1 

1 , , • , • , , , 1 

1£iM~-1s0, 1"is\iei-
1
Tif:\x; .L.L .. L, , 1 

1 
1 ,~.I;Ci ,:iC,40

1
v,'L:tr. 1 , 1 .J.......L.Y--L-1 , , , , , , , , 

....__..__. __ _.__....__....._.~~~ ....... _.....~...i.?,_,___-_~\j~lr\-1<==,L1°b1:t;NG, I I I I I I J~.:r;c; 1't1'1'181V1'11C~1)1•1 I I I I I I I I I I I I I I 

....__....___.--L.. __ ~ __ _,___.1_.......1 _JL-......Ll__.__1_~M._}'l._ ..... __L~-~tl_i_-:-J'21Ei'J J:",£,1..&..{~------L..L I I I I I LI 1 LL_.L__J J I I l I l l l LL_L_ L__l j__L__L_L___L L___L 

.L...L 

I I I a 

I I 0~ r6~:-:ti~1'l~H: : 1 1 1 1 1 ; 1__~_1_ (PiiiS 1~1q1 •1 I 1 1 1 1 1 1 l~-'-L 1 1 1 1 1 1 i-1 : : : : '.~i : : : : : '.~t;;Pi--'. ;y I I I I I I I I I 1?1J:A~ 81~1 "'! I I I I I I I I I I I I I I I I I I I I I 

Figure 6-1. Level Number Construction 

.... 
m 
< m .... 
z 
c 
~ 
GI 
m 

"' "' n 
0 z 
n 
m ,, .... 



I LEVEL NUMBERS CONCEPT] 

group level number is encountered. In the example, EMP-PAY-DATA group in

cludes all items to, but not including, EMP-LAST-REVIEW (which has an equal 

level number). Likewise, EMP-DEDUCTIONS group includes all subsequent items 

up to, but not including, EMP-LAST-REVIEW (which has a level number less than 

EMP-DEDUCTIONS). 

Level numbers used in defining successively smaller groupings, working toward 

an elementary item, are given in larger values. Although it is not necessary 

that they be consistent or consecutive, a level number must not exceed 49. A 

level number immediately following the last elementary item of a group must 

have a value of less than or equal to the level number for that group and equaJ 

to the level number of some previous group. An exception is that level number 

1 (or 01) is reserved exclusively for identifying the beginning of a record 

description. 

In the above example, the rule prohibits EMP-ANNUAL-SALARY from having a level 

number of 2 (or 02). Likewise, the entry name EMP-LAST-REVIEW could not have 

had a level number of 10 or 06 because, in the example, no previous group ap

pears with either of these levels. As a completely separate group, it could 

only have a level number the same as that of the major groups previously shown. 

Figure 6-2 illustrates another way to visualize the concept of level numbers 

by using the same example. 

Q 

EMPLOYEE IN FORMAT I ON 

0 
(>I 

c ::u r 
E 0 EMPLOYEE- PAY DATA IT1 J> 

~ en 
M N s NAME ~ -; 
p u T ~ 
L M NORMAL DEDUCTIONS 
0 B GROSS y E 
E R 0 
E INSURANCE TAXES 

--

1"11 (") r ~3: l> ~CJ~ z :r: G> ,, (f) ~ ~o 

~ 0 l> ::oc; z 0 J> l> 0 0 ::0 (") 
-; 0 l> ,, (f) U> z z-< ::0 :0 (f) 0 l> -; z -< Vlo l> -; :r: r -t -; -;, c -; ~ "'O c 1"11 :I: 

-; 
0 I I l> l> =t ,, :r: 
-< (") z I 1"11 r :r: r I 

I 0 
-1 l> -t r 1"11 ,.,., l> Z- I I c: r l> 2 1"11 z ~ -z (/) G> ;:::; "'T1 I -; IT1 
-i_ 

(:! ::0 x z -4 
~ 

1"11 z 1"11 "1>- 0 G) 
c ::0 rJ> l> (/) 

~ r ::0 (/) 0 
m -< z 
1"11 
::0 

Figure 6-2. Concept of Level Numbers 

6-7 



QUALIFICATION 

OUALIFICA TION 

Every user-defined name explicitly referenced in a COBOL source program must 

be uniquely referenced either because no other name has the identical spelling 

and hyphenation or because it is unique within the context of a REDEFINES 

clause, or because the name exists within a hierarchy of names such that 

reference to the name can be made unique by mentioning one or more of the 

higher-level names in the hierarchy. These higher-level names are called 

qualifiers and this process that specifies uniqueness is called qualification. 

Identical user-defined names may appear in a source program; however, unique

ness must then be established through qualification for each user-defined name 

explicitly referenced, except in the case of redefinition. All available 

qualifiers need not be specified so long as uniqueness is established. 

The hierarchy of qualification is as follows: names associated with a level 

indicator are the most significant; then names associated with level-number 

01, then those names associated with level-number 02, , 49. A section

name is the highest (and the only) qualifier available for a paragraph-name. 

Thus, the most significant name in the hierarchy must be unique and cannot 

be qualified. Subscripted or indexed data-names and conditional variables, 

as well as paragraph-names and data-names, may be made unique by qualifica

tion. The name of a conditional variable can be used as a qualifier for any 

of its condition-names. 

Regardless of the available qualification, no name can be both a data-name 

and a procedure-name. 

Qualification is performed by following a data-name or a paragraph-name by 

one or more phrases composed of a qualifier preceded by IN or OF. IN and 

OF are logically equivalent. 

The format for qualification consists of two options which are shown below: 

Option 1: ---·---,-------------------------------------------. 

{
data-name-I } 
condition-name 

6-8 

{ { ~~} 

l { ~~ l 

data-name-2 ... [ { ~~} file-name J 

file-name 



QUALIFICATION 

Option 2: 

[ paragraph-name section-name 

The rules for qualification are as follows: 

a. Each qualifier must be of a successively higher level and within 

the same hierarchy as the name it qualifies. 

b. The same name must not appear at two levels in a hierarchy so that 

the name would appear to qualify itself. 

c. If a data-name or a condition-name is assigned to more than one 

data item in a source program, the data-name or condition-name 

must be qualified each time it is referred to in the PROCEDURE 

DIVISION, ENVIRONMENT DIVISION, and DATA DIVISION (except REDEFINES 

where, by definition, qualification is unnecessary). 

d. A paragraph-name must not be duplicated within a section. When a 

paragraph-name is qualified by a section-name, the word SECTION must 

not appear. A paragraph-name need not be qualified when referenced 

within its own section. 

e. A data-name cannot be subscripted or indexed when it is being used 

as a qualifier. 

f. A name can be qualified, even though it does not need qualification: 

if there is more than one combination of qualifiers that ensures 

uniqueness, then any such set can be used. 

In the example below. all item descriptions (except the data-name PREFIX) 

are unique. In order to refer to either PREFIX item, qualification must be 

used. Otherwise, if reference is made to PREFIX only, the compiler would 

not know which of the two is desired. Therefore, in order to move the 

contents of one PREFIX into the other PREFIX, the PROCEDURE DIVISION must 

be coded with one of the following sentences: 

a. MOVE PREFIX IN ITEM-NO TO PREFIX OF CODE-NO. 

b. MOVE PREFIX OF ITEM-NO TO PREFIX IN MASTER-FILE. 

c. MOVE PREFIX OF TRANSACTION-TAPE TO PREFIX IN CODE-NO. 

d. MOVE PREFIX IN TRANSACTION-TAPE TO PREFIX IN MASTER-FILE. 

6-9 



I QUALIFICATION I 
Example: 

6-10 

01 TRANSACTION-TAPE . 

03 ITEM-NO . . . 

05 PREFIX 

05 CODE 

03 QUANTITY . 

01 MASTER-FILE . . . 

03 CODE-NO . . 

05 PREFIX . 

05 SUFFIX ... 

03 DESCRIPTION . . . 



TABLES 

TABLES 

Frequently, the need arises to describe data that appears in a table (i.e., 

array, list, etc.). For example, a master record might contain 16 total 

fields, and these might be described as TOTAL-ONE, TOTAL-TWO, etc. However, 

this requires 16 data-names·, and each total must be individually referenced 

in the PROCEDURE DIVISION. A more powerful way to describe the field is: 

TOTAL . . OCCURS 16 TIMES. 

Elements of a table are referenced thru the use of subscripting or indexing. 

An element of a table is represented by an occurrence number. 

The elements of a table may contain subordinate fields. For example: 

02 TOTAL 

03 TOTAL-A . . 

03 TOTAL-B . 

OCCURS 16 TIMES. 

. PICTURE 9 (6). 

. PICTURE 9(6) OCCURS 3 TIMES. 

Also, as shown above, OCCURS may be nested to describe tables of more than 

one dimension by applying an OCCURS clause to a subordinate name. Standard 

COBOL limits tables to three-dimensions. 

In the WORKING-STORAGE SECTION, initial values of elements within tables may 

be specified as follows. The table may be described as a record by a set of 

contiguous data description entries, each of which specifies the VALUE of an 

element, or part of an elemen~, of the table. In defining the record and its 

elements, any data description clause (USAGE, PICTURE, etc.) may be used to 

complete the definition, where required. This form is required when the 

elements of the table require separate handling due to synchronization, USAGE, 

etc. The hierarchical structure· of the table is then shown by use of the 

REDEFINES entry and its associated subordinate entries. The subordinate 

entries following the REDEFINES entry, which are repeated due to the OCCURS 

clause, must not contain VALUE clauses. 

Example: 

01 W-S-TOTS. 

03 FILLER PC X(24) VALUE IS ZEROS. 

03 CARDIMAGE-VALUES PC X(SO). 

01 R-TOTS REDEFINES W-S-TOTS. 

03 TOT PC 9(4) OCCURS 26 TIMES. 

6-ll 



I SUBSCRIPTING I 
SUBSCRIPTING 

Subscripts can be used only when reference is made to an individual element 

within a table of like elements that have not been assigned individual data

names. (Refer to the OCCURS clause.) 

The subscript can be represented by a numeric literal that is an integer, 

or by a data-name. The data-name must be a numeric elementary item that rep

resents an integer. The data-name may be qualified. 

The subscript may be signed and if signed must be positive. However, the sub

script cannot be computational-3 or J-signed. The lowest permissible subscript 

value is 1. This value points to the first element of the table. The next 

sequential elements of the table are pointed to by subscripts whose values are 

2, 3, .•.. The highest permissible subscript value, in any particular case, 

is the maximum number of occurrences of the item as specified in the OCCURS 

clause~ Violation of this rule will cause the object program to terminate 

with an INVALID SUBSCRIPT message. 

The subscript, or a set of subscripts, identifying the table element is en

closed in parentheses. The table element data-name appended with a subscript 

is called a subscripted data-name or an identifier. When more than one sub

script appears within a pair of parentheses, the subscripts may be separated 

by commas and are written in the order of successively less inclusive dimen

sions of the data organization. 

The general construct for subscripting is: 

{
data-name } 
condition-name (subscript [tsubscript] ... ) 

For example, in figure 6-3, to reference the first volume, EN-VOLUME (1) is 

written. If data-name N contains the number of the volume desired, EN-VOLUME 

(N) is written. If the data item PAGE-·NO contains the number of the page 

desired, then EN-HEADING (N, PAGE-NO) would reference the 12-character 

page heading. 

Where qualification and subscripting are both required, the qualification is 

shown first, followed by the subscripting. For example, EN-PAGE OF 

ENCYCLOPEDIA (N, PAGE-NO). EN-PAGE (N, 3) OF ENCYCLOPEDIA is incorrect. 

For further restrictions, refer to the discussion of identifiers in this 

section. 

G-12 



m 
I 

f--' 
w 

BURROUGHS COBOL COOING FORM 
ADDITIONS, DELETIONS ANO CHANGES 

fv\v.. L..L' -- D1~-~-!_$;;,-,-~--~--(A--~-B-L_E. -- --- ---- --- --- -- ------------f-~-:~-ISl-ON __ -_-__ ~-- ------'--=~------'---°' ___ {__ __ _ ----_:__~_,__... __ ----- -- - - --- -------- - DAT£ ---+IOE:NT 7! eD 

"l::>e: \J - --------- ... -:..::_-===-==---=--==-==--_::__---=-=-===-==-=---==---=------=-:-~. _::·_::- _ _-_=c... _J_ I I I I I I I ll 4 
I A I 1 

PROGRAM 

--
PROGRAMMER 

l'AG[ I LINE 

NO. NO -

4 
: : I : 
~I'. 
_l___Lf-1 

~ 
~ 

I _ 61711 II j '2 _ -:---:=:=-=----=--::-=-:---=2_-~=c=-----:=-=-=-===- 32 ---= c.=: _ 42 _ _ _ ~ 2 _ 6 z _ ------~~ 

jcp i I JEif.l£-~L,i9.E~L~A •. , _ . ..LL 1 , , ; _L_ __ l__J ___ J.__J__j___L~- : ___ L.L.L.L' I , , t_j---Li_L _ _L _ _l_J__L__L__f _ _l____L, , , , , _J_L_L---l 

~-+-'-' I ~,-'-0: : .. Lj_. +.l;;L~~~i I I I Q,C1~.~~i__frj:t;:M65'·1 ~-L.LLLL.L.L-f-L-1-L' I I I I I I 

. - - L.1. 1 1 16NnI:j.IVbt>E:"·)(.u_~ __ LLL.1 . ...L.J.._l_..L.f-J....__j_L_---'-.1._LL ... LLf~~Ci_~J..!'..' 1 • 1 1 1 1 1 1 LL.I.. 

_._. I I I l__L_j__.t_1 I A I L .. LLL.pg::1?.f.~LJJ.+1~~JJJ:i;ME61-l_f-L-LLLLL.LLLj I I I I I I ~~] 
I • , , r_l , , ,Sj , , , ~,-d-\iE,Ji.:.-j:b;c,~ , , . , , LJ_______l__L+-1--~--LLJ._LL.L. 1'f?;:I::jei ,~&__'>5l_~~L~-LLL ... L.L 

I I I 1jIj__L1l15i I I 1 J6N11f-?~RiA,Gre-A-f)1Hr 1Q('.__CJlA1'i?iS1 !Si 1"ITijM6S.1 .. 1 I I I I I I _j I I I -t-1----1---1-' I I I I Li 

I I I I I I I J__ I I ,;lo I 1~·=iTiE1XiTi I _· I I I I I I I I I I I _' .LL.L.L....L I I i 1'Pi':tt<; i)(,(,3,~_g)t•I '_ j -, I l ___ LL.L.l.-1 

I ! _,!_! I I I ----___J_~ __ ...L...L_J._~L.!__L I I I I ~l_j_j_..L_L. I I I I I I I I ' j_L_l__L__l+-1--l...-L .. LJ j.....l....J_~ 

: ~I I I I I -t--1---L_j__L __ l___l_ __ ,_L_ _ _;_---f---L I I I ...L..L.L-1.....+ I I I I __ _.L_J_j___ I I I I I I I I LL ... J I j I I I : I I I I j 
j_tti_ ' ~- : : I ~~-~I I I I I - : __ L__LL I I I I I I I I I I I I I L.LLL...L_+_L_L..Ll_LL_L__j_L-f I I I I I I I I I I 

1.. ~t- ___J_ __ __;_+ L___j_i...__L_L_'__ ~__j_ _ _L_ I i I I .LL I I I : _j___J__L__l__L! I I I I I I I I I I I I I I I i I ...L.L.l.. .. 

µ_i__tJ_+-+ ' __ ___J_ LL.' ---+~~_l__....L__L ' I I I I ....L I I I I I I I Ll........J..........L. I I I I I I I I I I +i I I i I I I I I I 

~-+---l_l_ ___L_L_j_ __ .__;___LL__;____ +-L _ _j_______j__L_ __l __ ~_L_Ll__ __ f __ L_J_ ___ [ i ! I - ! I I I I I I I I I I I I I I I I I I t I I ' I I I I I I I I L..l 

~~+-_j____J_ _ _:_ __ i___j___L_j____L_j_ I ! I I j_~ __ J_L.l_____J_ __;_-f_.L_____L_L_j__J__l..... I I I I I I I , I I ! I I I I r • _ _l__L_j_--f---L .. L..Ll. I I I I .L..J. 

~_j_J_-+1 ...... :~1~' - T ~- _L__J.__ __Lj__+-1-_LJ - L__l_L_.L_J _[_ t_L_-1.........L__J_l _ __L ____l_l.______L-t-L I I I I I I I I I ! I i I---~ I I I I I . ...LL~ 

I I : : : I ! I ' I i I L LL ' I I I I I I I ' i I I I Ll I I I _.l_J_i__l_LLt-1-L I I I I I ' I I I I I I I I J LLf I I I I I I I I I _.l 

I 
[ '. t : I - +- ' ___j_ + L l ' I I I I ' ' j ' L I I I • I ' L' ' ' I I I I I I I I I I I I I I • I ' ! I I I I I I I I .L I 

; i : ! :t·::___J__-: __ i-:-~~-L~_:_~~+J__ . -~ =L_L-~1-L~-~~~-; ; : ; I I 11 : : : -~--~:-~~~~~~-; ; : : ; ~~:J_ . 

µ...~~- -'-- _ ___L__+_j ___ LJ __ L_L_j___J___ _L___j __ +..--L-- ' I ' - L+-1___j__.!_..L I I I I I I I I I Lf--L-1-- ' I I I I I I I I I I I I I I I I ~] 

: : I : 
: ll _____j____L_L+___l___ L L.L_L _.___J__ l -L-j--'--1 _ _,__L_ ____ L~_j_---'---1.-~ I I I I I I I I I --L-LJ....__J,_ I I I I I I I _' I I I I I I I j .....L...l....J~ ...... 

....&.__..---+ ....... --' ....... --+-I ~ I , 

1 

, , , , , , ___ LJ._L+L---L ... ~· +-! I I , , , ~ , I , • , , , 1 .L......L...Ll__L_..L L , , 1 • , I , , • , • l__L, 

~ I I I I I I I I I I I I .L I I I I I I I I I I I I I j ___L_j_.L_LJ_ I I I I I I I I I I I I I I I I I I I I I I I I I 

I ~ : 11 I 4.L.LL.L.LL.L I I I I I I I I c I I I I ' I I I I I I I I I .L.LL I I I I I I I I I I I I I I I I I I I I I I I I , __ 

I I I 11 ' ..-:-~-+l"""'.'----t-+---'-:-L....L I I I I I I I I I I I I I ~...L_LLJ__~_.LLp I l I I I I I I j I I I I ! __ J_L.L..L I I I L I I I I I I I 

'. : I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I l__ 

Figure 6-3. Coding of Multi-Dimensioned Table 

.,, 
c 
alt .,, 
n 
~ .,, 
:::::! 
z 
0 



I INDEXING J 
INDEXING 

References can be made to individual elements within a table of like elements 

by specifying indexing for that reference. An index is assigned to that level 

of the table by using the INDEXED BY clause in the definition of a table. A 

name given in the INDEXED BY clau.se is known as an index-name and is used to 

refer to the assigned index. The value of an index corresponds to the occur

rence number of an element in the associated table. An index must be initial

ized before it is used as a table reference. An index can be given an initial 

value by either a SET or a PERFORM statement. 

Direct indexing is specified by using an index-name in the form of a subscript. 

Relative indexing is specified when an index-name is followed by the operator 

+ or-, followed by an unsigned integer numeric literal all delimited by the 

balanced pair of separators left parenthesis and right parenthesis following 

the table element data-name. The occurrence number resulting from relative 

indexing is determined by incrementing (where the operator+ is used) or 

decrementing (where the operator - is used), by the value of the literal, the 

occurrence number represented by the value of the index. When more than one 

index-name is required, they are written in the order of successively less

inclusive dimensions of the data organization. 

At the time of execution of a statement which refers to an indexed table ele

ment, the value contained in the index referenced by the index-name associated 

with the table element must neither correspond to a value less than one (1) 

nor to a value greater than the highest permissible occurrence number of an 

element of the associated table. This restriction also applies to the value 

resultant from relative indexing. 

The general construct for indexing is: 

index-name [{:} li teral-2] index-name[{: J literal-4] 

f data-name } ( 

lcondition-name 
... ) 

literal-I literal-3 

6-14 



IDENTIFIER 

IDENTIFIER 

An identifier is a term used to reflect that a data-name, if not unique in 

a progr~m, must be followed by a syntactically correct combination of quali

fiers, subscripts, or indices necessary to encure uniqueness. 

The construct for identifiers has two options which are as follows: 

Option 1: 

data-name-I 

Option 2: 

data-name-I 

[
( {index-name-I 

literal-I 

[{ ~~} 

[ { ~~} 
[{ ~} 

data-name-2] 

[C subscript-I[, subscript-n] ... )] 

da ta-name-2 J 

li teral-2]} 
[

' { index-name-2 

literal-3 

Restrictions on qualification, subscripting, and indexing are as follows: 

a. The commas as shown in both options are optional. 

b. The data-name-2 must not itself be subscripted nor indexed. 

c. Indexing is not permitted where subscripting is not permitted. 

d. An index may be modified only by the SET, SEARCH, and PERFORM 

statements. Data items described by the USAGE IS INDEX clause 

permit storage of the values of index-names as data without con-

version. Such data items are called index data items. 

e. Where more than one occurrence number is required for a data-name 

reference, it is illegal to use a data-name for one occurrence num

ber and an index-name for another. However, literals and index

names may be mixed. 

6-15 



FILE SECTION 

FILE SECTION 

This section contains descriptions of the files used by the object program. 

FILE DESCRIPTION 

The function of the FILE SECTION is to furnish information to the compiler 

concerning the physical structure, identification, and record names pertaining 

to a given file. 

The construct of this section contains four options: 

Opt ion 1: 

FD file-name COPY 

[REPLACING { 
word-1 } 
data-name-1 

[ { ~~~~=~ame-3} BY 

library-name 

BY 
1

. word-2 1 
da ta-name-2 ~ 

, literal-1 J 

{ ~~~~=~ame-4} ] . . . ] 
literal-2 

Option 2: 

6-16 

FD file-name-1 l; RECORDINQ; MODE IS ! ASCII l l STANDARD 
NON-STANDARD 

[
;FILE CONTAINS integer-1 [Ill: integer-2]1r~~?g~s l l 

Q!TEUES 
QUEUE 

[ ;BLOCK CONTAINS (integer-3 TO] integer-4 [RECORDS ] J 
-- CHARACTERS 

[ ;RECORD CONTAINS (integer-5 IQ.] integer-6 CHARACTERS J 

[
·LABEL {RECORD IS }·{OMITTED 
' RECORDS ARE •STANDARD [ data-name-1[, data-name-2 ... ]] } J 

~{~LUE} OF 
IS {[liter_al-1/] [literal-2] [/[literal-4]]} 

data-name-3 

(SAVE-FACTOR IS integer-1]] 

{
RECORD IS } 
RECOR_I>S ARE data-name-4 Ldata-name-5 ... J] 



FILE SECTION 

_OJ?t ion 3: 

SD sort-file-name COPY library-name 

[REPLACING BY 
{ 

word-2 } 
data-name-2 
literal-I 

{
word-I } 
data-name-I 

BY {
word-4 }] 
data-name-4 
literal-2 

[{
word-3 } 
data-name-3 

Option 4: 

SD sort-file-name 

FILE CONTAINS integer-I (BY integer-2] RECORDS 

~RECORD CONTAINS integer-4 CHARACTERS ] 

[;BLOCK CON TA INS integer-6 [ RECORDS J J 
CHARACTERS 

[;DATA { 
RECORD IS } 
RECORDS ARE data-name- I [ da ta-name-2 J ... ] 

... J . 

A level indicator of FD or SD identifies the beginning of a File Description 

or a Sort File Description and must precede the file statement. Both entries 

should commence under Area A of the coding form. Only one period is allowed 

in the entry and it must follow the last clause specified. 

Options 1 and 3 can be used when the Systems library contains the library

name entry: otherwise, Option 2 and/or Option 4 must be used. 

In many cases, the clauses within the File Description or Sort File Description1 

sentence are optional. Their order of appearance is immaterial. Each clause 

is discussed in detail. 

Figure 6-4 illustrates the use of the File Description sentence followed by 

data record entries. 

NOTE 

The three 01 levels implicitly redefine 

the record areag The DATA RECORDS clause 

is treated by the compiler as being for 

documentation purposes only and does not 

cause an explicit redefinition of the area. 

6-17 



CJ) 
I 

I-' 
00 

BURROUGHS COBOL CODING FORM 
ADDITIONS. DELETIONS AND CHANGES 

., I 

P~QGRAM ~-- - S> Ec::__-y-__l_Q_~ - - EJ(..P-..M.PL..& I COllOL DIVISION I .PAO£ OF 

Y~OGRAMMER t JV-L\~ D"T'E •DENT 75 

~ .... , • l I 
7t 1 "O. 31. "I~ I II 1· l2 

~:!I ~~J ~~~~-LI' I I'' ·~1 I I'~-~---~---~--~--~---~----~------
! 1 1 I 1 -H -;e<Ri-,F~~_L, 1BL~c;=~-rl':;L 

1
c.i0tN"TTbi:tiNL? 1 ,~ LgEJ~f>1 , 

1 
1 1 , , , , 1 , 1 

1 

4t ____ 22 H S2 61 

~' :v;Ft-,,L1lAiEi___QE1 J::tb· ,''15'i£11(j$,''1/1"iMAi~rner&''119A 1'\Js1:::iF1&c...CD:>t1<1 1 1.0,., 11 1 1 1 1 1 111111111 1 1 
L lEiMP1L1=i1<iE1C.1. I +-L' I I i I .Ll..-l. I I : I I : LL I I I I I I I I I I I I I I -L ... L . .J__._l _!.___._1__._t_...! --1~-A--...j,.__._...__ ........... ~_,_~ ..... 

fu.-_LL.l I I I 1EiM.P,L.1-1N11AiMBE1R1 I I I I I I I fPil:1C1 81(ii_;),_ I I I I I I I I I I I I I I I 

1
1 I_ 1 • i 1 _~ . , , rs-, , L.L....L, , , 11>1tP!Ti I , , , I , I , I , I , , , , 1rtt:,c1 88191-1 , , , , , I , , I I ...1- 1 , I I I I I I , I • 1 

J __ L .f-.Li .... -~ i p&_i_L! I I I 1F1I1yL1ElR1 I I I I I I ! ..... LLLl. I I 1'Riiy 1"'1Ci9,) .. , I I I I I I I I _LJ_+_L_L_l_...~_.__ ...................................... 
, I I --r-

I +1-+t- --- ; --L--P-~S°.L.....LL_;__.J__L_ I I iJP~~~..L-f-L-1.-L.-L. .... L-L.J_L I l'PiI:iC.. i}(,)(.,)(1)(1 • ! I I I I I l I I l I I I 

Lµ_: 
1 ~~-J. .... .L....L....LL.!.......~~...J::i.k~l., i 1 r J._L_J__J 1 1 1 l"PtLC. 1'6CbA)1~11 1 1 1 1 1 1 : I I' 1 1 1 1 

_ LL-f _ _i __ :---4--- ·~L-~w._1?..&C:.7JJ-,F~b_~ 1F~L1EL 1 ~0NTil'ost:t:1Np1 , , p100A 1!9EicoptbSt. 1 1 L...L..L-'--1 

Ll.-ti-li_ 1Chl.1~J:;.i;;:._gw,..J__l?..ei.C::,,. __ -J-.L.L~_._1 _._1 _~ __ ...__J_ _ _L+l I I I I I I I I I I I I I I I I I I I .LL....L.. I I t I I I I I I I I I I I I I I I 

Lt _ _l ___ :-t l....L....L.:.-fe, .L.:.._..__L.L ___ +~-:--.....:...~~,c:,oil::>,E 1 , , 1 , , , , , , 
1
-Pu, ,'?1xx1><, .. , 

1 
, , , , 1__._ _ _.__~ ......... __.._-.......... _.._. .......... __._~ ..... 

_4....L{-~--t-l-1..L-+~,J-~--'---'-_L-~--~~~lh.!_-=~~~, 11 11 1 1-Pir1c_1 ai<is-0,., 1 , I, 11 I 1 1, 1 ,, I,, 11 1 

~_i__~-t +-· ____ -•-f.LS.J.....__l_ __l_j __l_J.._ __ , _ _t_fiLLiLe~ __ LL .... .1...+..L..L.L.1 1 1 , 1 , 1Pu, 1Xi(rc<i;¥1), .. 1 1 , 1 1 , 1 , L-1+1-~_...__ .................... _._-6-....__. _ 

_ .LLi ... Ll_~ lf=)). ~- P-?.L~v:.~~§P~__Jyj_~--~~E.t-j:I:.i)), 1''1'P.EjR,S.i"1/1"i'8E1Ra1?rr1"1 I I I I ..L.J_I I I I I I I I I I I I I I I I 
I I . 

.l.__Lr--:------+_.~iJd~L11A. ~~1CQJ<P>1 iB0t1>N1-1 ~E,§ 1~1Ei~1:>1±:irJGi-1li._~~' • 

LLt-L+-~ ~Q \ L--~liE1~_:_::t±.N_Grt-1i..~t-JE,~1 1 iPiJ:,c!.._l~~)J_~LLL.....L 0---L-~ , 
1 

, , , , , ,_LL...Lt--L-L . .L~ r +T f.:>1LL.L +Ei.Q~a'"":-:..k~..1..9.st-!..L.L, , , , , , I , , • , , , , , , -'--f-.L....I....., , , i I , I 
1 

, . , , I I '--_..l___f-.l.-_l_l_.I , , I I , , • 

_Li---1--:....'. + -l~-j<::>,S1 ~ 1 " ,_J ~ 1'V>it:i-_i_(?<;li°l>1E1 I l~J:jC, ,=(i'l:) :~:(~~'-'.L.L.l. I I I I I I ' I I I I I I I I I I I I I I I I I I 
_j_t-l +~-! ' _ __. ~~: --- I "- LL_i~£U:::.C.!..~.J...~+...Ll.~~ ~_(Sf1 Ef,., I I~'~'~' ~'~1~1~1~1~1~1~1-~-~-~------~-................... -

....L L~-1 J-1 ~·~~~·- ~-"---' ,_i .yfi:r;i.,yei'R, · _ __L_,_ 1 1 ,-p;~ ,xJ,, ,, ,s:,),., ..L, 1 , , 1 , , , , L...L~ , I 1 1 1 1 1 , 1 

l __ l - Y-4--i-- ___ _:_ __ .._ t---- .LJ _j_ I : i I I I I I I I I I I ' .... L .. L.J_! I I I I .J..........LL .... LL I I I I I I I I I I I I I I I I I I I I I I 

I J __ .1.._t' _ i " L--t ' L LL l__.L_j__L__L_-t--L_;__l__L_ J___.J__j___.l. .:. --t- J..-l.~..___L__L.L.J_j_J~..J__l I I I '- I I I I I I I I I I I .L......f-1-~-------~-------. 
I I I 

LL--r-+-+-+-~-. .L.Lt-· L L __ ...L...L.L. .J-~---t-L .... L...L I I I I l l l 1-L..L__Ll_L.LL......1+..l__LL . .LL .. L I I I j l I J I J I __j__j_j 

_j_~~-~- I !llJIJ!l!lll! I •l!llll!lltllllll! !!llll!l!lllll!llllll 

Figure 6-4. Coding of FD and DATA RECORDS 

"Tl 

r-
m 

"' m 
n 
.~ 

0 

~ 



BLOCK 

The function of this clause is to specify the size of a physical record 

(block). 

The construct of this clause is: 

BLOCK CONTAINS [integer-I TO] integer-2 fRECORDS J 
[CHARACTERS 

Integer-I and integer-2 must be positive integer values. 

This clause is required if the block contains more than one logical record. 

When only integer-2 is used, it will represent logically blocked, fixed-length, 

records if its value is other than 1. When the integer-I TO integer-2 option 

is used, it will represent the minimum to maximum size of the physical record 

and indicates the presence of blocked variable-length records. Integer-I is 

for documentation purposes only. 

The maximum value of the integer used in this clause is shown in table 6-1 

and refers to the number of characters in a block. 

The word CHARACTERS is an optional word in the BLOCK clause. Whenever the 

key word RECORDS is not present, the integers represent characters. 

For object program efficiency, the use of blocked records is recommended. The 

physical size of the block should be as large as possible depending on memory 

availability. 

Blocks of records are read into the input buffer area by the MCP, and the 

delivery of each record to the record work-area of the program (required by 

an explicit READ statement) is completed. 

Blocking or deblocking of records is automatically performed by the MCP. 

NOTE 

If the file is assigned to an input disk 

file and this clause is omitted, the block

ing factor specified in the disk file header 

will be used by default. 

6-19 



Table 6-1. Maximum Value of Integers 

I/O MEDIUM MAXIMUM BLOCK SIZE - CHARACTERS 

READER 80/96 

PUNCH 80/96 

TAPE Limited only by the amount of 
memory available. 

DISK Limited only by the amount of 
memory available. 

PRINTER One print line. 

PT-READER Limited only by the amount of 
memory available. 

PT-PUNCH Limited only by the amount of 
memory available. 

Every explicit WRITE statement causes compiler-generated object code to notify 

the MCP that a write is to be done. The MCP accumulates the number of logical 

records necessary to create a specified block size and writes the block. When 

a file is CLOSEd, the records left in the output buffer area, if not a full 

block, will be written as a short block by the MCP before the file is physi

cally CLOSEd, The transfer of records to the buffer is automatic, and is a 

function of the MCP. 

The user must specify the actual size of variable-length records in the first 

four bytes of each record. This four-character indicator is counted in the 

physical size of each record. 

The BLOCK clause is not applicable to the READER, PT-PUNCH, or PT-READER 

peripherals. 

This clause may be omitted for unblocked files. 

When a file is assigned to disk, the user should be aware that the physical 

disk segment size is 180 bytes and that all READ and WRITE statements are, in 

effect, in multiples of this size. The hardware must write (or read) in seg

ments: therefore, it is preferred that the block size used be a multiple of 

180 bytes. 

6-20 



DATA RECORDS 

DATA RECORDS 

The function of this clause is to document the names of the logical record(s), 

actually contained within the file being described. 

The construct of this clause is: 

DATA { 
RECORD IS } 
RECORDS ARE data-name-1 [, da ta-name-2] ... 

This statement is only for documentation purposes. The compiler will obtain 

this information from 01 level record description entries. 

The presence of more than one data-name indicates that the file contains 

more than one type of data record. These records may be of differing sizes. 

different formats, etc. The order in which they are listed is not significant 

No syntax error will occur when a record declared for the file is not listed 

in the DATA RECORDS clause. 

6-21 



I FILE CONTAINS 

FILE CONTAINS 

The function of this clause is to indicate the number of logical records in 

a file. This statement is required for disk files, and optional for all 

other files. 

The construct of this clause is: 

CONTAINS [integer-I integer-2. I 
The indicated integers must be positive values. 

Integer-I may not exceed 105 when present. 

RECORDS l STATIONS 
STATION 
QUEUES 
QUEUE 

An entry of FILE CONTAINS 20 by 500 RECORDS will notify the MCP to allot 20 

separate areas of disk as each area is programmatically required. The size 

of each area would be 500 logical records in length. 

The above technique allows the MCP to efficiently assign file areas as needed, 

rather than to assign immediately one huge file area during the first operation 

of the program. 

Programmatic usage of the file can either enhance the area technique or defeat 

its purpose completely. For example, assume that a RANDOM file at some future 

date will require a maximum size of 40 x 1584 (126,720) logical records, and 

that no key conversion formula is used, due to the key being a six-digit num

ber running from 1 through 126,720, which exactly fills the key requirement, 

as is the case in auto license numbers in some states. It could happen that 

the first 40 records could open up an entire disk module, if they were in 

increments of 1584, which would negate the area technique completely and thus 

cause the MCP Disk Directory to recognize the file as being of maximum size, 

even though only 40 records were processed. 

FILE CONTAINS integer-I 8TATIONS must be specified if more than one station 

exists on this file. Otherwise, only one station will be enabled. 

6-22 



LABEL 

The function of this clause is to specify the presence or absence of file 

label information as the first and last record of an input or output file. 

The construct for this clause is: 

{ B.E.C..QRD. 1 S } { illllT.TED. } 
RECORD~ ARE STANDARD [data-name-1 [,data-name-2 ... ]) 

STANDARD specifies that labels exist for the file or device to which the file 

is assigned. It also specifies that output labels conform to the standards 

as implemented. 

STANDARD, when specified for disk files, indicates that the 20-character 

contents of the VALUE OF ID clause will be inserted into the disk file header. 

Should VALUE OF ID be omitted, the first 10 characters of the FD or SD file

name will be inserted into the second 10 characters of the disk file header. 

When the LABEL clause is not specified, LABEL RECORD STANDARD is assumed. 

Data-name-I, data-name-2, ... , are names of label records and must not appear 

in the DATA RECORDS clause, or be the subject of a record description asso

ciated with the file. 

OMITTED specifies that physical labels do not exist for the specific input 

file to which the file is ASSIGNed. During object program execution, the 

operator will be queried by the MCP as to which unit possesses the input data. 

The operator must reply with "mix-index" UL "unit-mnemonic" control message. 

OMITTED specifies that labels are not to be created for the specific output 

file ASS IGNed. 

6-23 



The Burroughs Standard label record serves as both the beginning ·and ending 

label record, and is comprised of the following parts: 

Position 

1 

2-8 

9 

10-16 

17 

18-24 

25-27 

28-32 

33-34 

35-39 

40 

41-45 

46-52 

53 

6-24 

Field Description 

Always blank. 

Always contains the literal "LABEL 

Always contains zero. 

" 

Contains zeros, unless the file is a multifile tape (that 
is, a tape which may contain more than one file), in which 
case the field will contain the value of the identification 
of the multi-file, from one to seven characters. 

Always contains zero. 

Contains the value of the identification of the file, from 
one to seven characters. In a COBOL program, this value is 
taken from the VALUE OF ID clause in the File Description, 
or from the first seven characters of the FILE-NAME in the 
File Description if the clause has been ommited. 

The value of the reel number is preset at "001" and incremented 
by 1 each time a subsequent reel is opened for this file. 

The value of this field is taken from the current date as 
maintained by the MCP. 

The value of cycle is preset to "00". This field may be used 
to distinguish between multiple runs of the same program, as 
controlled by a user program. 

The date at which the MCP will assume this tape to be a scratch 
tape. If this date is reached, and the tape is mounted with 
a write ring in place, it is a contender for selection by the 
MCP as an output tape file, and could be over-written. This 
date, by default, is one day after the file was created (as 
taken from the MCP current date filed). To assign a save
factor of more than one day, refer to the SAVE-FACTOR option 
of the File Description. 

Used only for ending labels, and enables the MCP to distin
guish between the physical end of a reel (indicating that a 
subsequent reel or reels follow) and the actual end of a file. 
0 = end-of-file. 
1 = end-of-ree 1. 

Used only in ending labels, and contains the number of blocks 
(physical records) written on the tape. 

Used only for ending labels, and contains the number of records 
(logical records) written on the tape. 

A value of 1 notifies the MCP to format the output into memory 
dump notation. This feature is not implemented. 



Position 

54-58 

59-63 

64-66 

67-69 

70-80 

Field Description 

Used to maintain a permanent serial number (usually a tape 
library reel number) for this reel. It may be assigned by 
the user, then permanently maintained by the MCP, regardless 
of the tape's status (in use, scratch, multifile reel, etc.). 

Identifies the system which created this tape. When created 
on the B 1700, this value will always be " B 1700 " 

File buffer size in binary; for use by MCP if the DEFAULT 
option is specified. · 

Record size in binary; for use by MCP if the DEFAULT option 
is specified. 

Reserved. 

6-25 



RECORD 

RECORD 

The function of this clause is to specify minimum and/or maximum variable 

record lengths. 

The construct of this clause is: 

RECORD CONTAINS [integer~l TO] integer-2 CHARACTERS 

Integer-1 and integer-2 must be unsigned non-zero integer values. 

If integer-I and integer-2 are specified, the variable-length record technique 

is utilized. 

If only integer-2 is specified, the compiler will treat the clause as being 

documented only. The record size will be determined by the structure of the 

record description. 

If integer-1 and integer-2 are specified, they refer to the minimum and maximum 

size of the variable records to be processed. At least one record description 

must reflect the maximum size record length as specified in the RECORD CONTAINS 

clause. 

The user must specify the actual size of variable-length records in the first 

four bytes of each record. The four-character variable-size indicator is 

counted in the physical size of each record. 

This clause is applicable to disk or magnetic tape files sequentially OPENed 

INPUT or OUTPUT. 



RECORDING MODE 

RECORDING MODE 

The function of this clause is to specify the recording mode for peripheral 

devices, where a choice can be made. 

The construct for this clause is: 

RECORDING MODE IS 
! STANDARD l 
) NON-STANDARD 
(ASCII 

STANDARD RECORDING MODE is assumed if this clause is absent from the FD 

sentence. The MCP automatically checks the parity of input magnetic tapes 

and will read the tape in the intelligent mode. For this reason. this clause 

is not required for input tapes. 

The MCP will automatically assign STANDARD RECORDING MODE on 9-channel magnetic 

tape drives if a SELECT clause indicates TAPE, even though the programmer has 

designated the unit as being NON-STANDARD. 

Binary files are read or written, with no possibility of translation. 

The recording modes for the peripheral devices are provided in table 6-2. 

Table 6-2. Recording Modes for Peripheral Devices 

DEVICE STANDARD NON-STANDARD 

TAPE-7 Odd Parity Even Parity 

TAPE-9 Odd Parity -
DISK Memory Image -
READER EBCDIC Binary 

PUNCH EBCDIC or BCD Binary 

PT-READER BCL Binary 

PT-PUNCH BCL Binary 

PRINTER BCL -

G-27 



I VALUE OF ID 

VALUE OF ID 

The function of this clause is to define the identification value assigned, or 

to be assigned, to a file of records and to declare the length of time that a 

file is to be saved. 

The construct of this clause is: 

(SAVE-FACTOR 

IS {[literal-I/] [literal-2] 
data-name-1 

IS integer-I] 

[/[literal-3]]} 

This clause may be used when the label records are present in the file being 

described, If this clause is not present, the compiler will take the VALUE OF 

ID from the first 10 characters of the file-name (FD or SD) and place that ID 

in the ID entry of the label where the value of the main directory entry would 

normally be found. The file-name must be uniquely constructed so that the MCP 

will be able to recognize the files. 

Exam:Qle: 

FD 

FD 

To make 

FD 

FD 

SCHEDULE-DI SKI 

SCHEDULE-DISK2 

them unique: 

DISKOUTPAY 

DISKOUTTAX 

Would create a VALUE OF ID as 

SCHEDULE-D for both files and 

cause a dup file action by the MCP. 

Would create a VALUE OF ID as 

DISKOUTPAY and one of DISKOUTTAX, 

thus causing no MCP confusion 

during object program execution. 

The first name for a magnetic tape file is a common name of a multi-file tape 

and the second name will be the name of a file within the multi-file. The 

first name of a magnetic tape file will be taken from the multi-file clause in 

the I-o-CONTROL paragraph. The second name will be taken from the value of 

literal-2. Non-disk files are limited to two names. 

The pack-id name of a disk file will be taken either from the multi-file clause 

in the I-O-CONTROL paragraph, or from the value of literal-I. The main di

rectory (family) name will be taken from literal-I (in the case of systems 

disk or if I-O-CONTROL is used to specify user disk), from literal-2 (in the 

case of user disk without I-O-CO~TROL or if literal-2 is followed by a slash 

(/) ). The sub-directory entry (file-name) will be taken from the value of 

literal-3. Literal-3 cannot be used when literal-I and literal-2 are both 

6-28 



I VALUE OF ID I 
blank. When using the literal option, if three literals are used, they repre

sent pack-id, main directory (family), and sub-directory (file-name), respec

tively. If two literals are used they represent main directory and sub

directory. If only one literal is used it represents the main directory entry. 

PACK-ID 

literal-I I ] 
can be specified in 
I-O-CONTROL and forces 
literal-2 to be speci
fied 

Exam12les: 

MAIN DIRECTORY 

[ literal-2 ] 

can come from FD pr 
SD name 

SUB-DIRECTORY 

[ I [ literal-3 ] 

forces literal-I I and 
literal-2 to be speci
fied 

VALUE OF ID IS "USER!" /"PAYROLL" /"DEDUCTS". 

VALUE OF ID IS 11 WORKPACKl"/"TRANS"/. 

VALUE OF ID IS "PAYROLL"/"MASTER". 

VALUE OF ID IS "ITEMS". 

VALUE OF ID IS "MSTTAPE" SAVE-FACTOR IS 031. 

The data-name-1 option should only be used if file names are to be built under 

program control, as this option overrides file equates and I-O-CONTROL name as

signments for that file. When data-name-I is used it must be defined as being 

30 characters in length and alphabetic or alphanumeric. 

When the data-name-I option is used for disk files, the disk-pack-id must be 

included in the description. The compiler will use the first 10 characters of 

the data-name as the disk-pack-id each time the file is opened. If the file 

is on or is to be created on systems disk, the first 10 characters must be 

blank. 

01 DATA-NAME-I, 

03 PACK-ID PC X(lO). 

03 MAIN-DIRECTORY PC X(lO). 

03 SUB-DIRECTORY PC X(lO). 

Overrides I-O-CONTROL or use of 

FD or SD name for that file. 

Pack-id name for user disk must be 

blank for system disk or non-disk 

files. 

Cannot be blank at open time. 

A non-blank entry here requires a 

non-blank entry for MAIN-DIRECTORY. 

6-29 



I VALUE OF ID I 
Examples: 

01 FILE-IDENTIFICATION. 

03 PACK-ID PC X(lO) VA "USER! J6J6J6)fW'. 

03 MAIN-DIRECTORY PC X(lO) VA "PAYROLL J6J6J6". 

03 SUB-DIRECTORY PC X(lO) VA "DEDUCTS J6J6J6." 

01 DATA-NAME-I. 

03 PACK-ID PC X(lO) VA 

03 MAIN-DIRECTORY PC X(lO) VA 

03 SUB-DIRECTORY PC X(lO) VA 

01 FILE-ID. 

03 PACK-ID PC X(lO) VA 

03 MAIN-DIRECTORY PC X(lO) VA 

03 SUB-DIRECTORY PC X(lO) VA 

01 VA-NAME. 

03 PACK-ID PC X(lO) VA 

03 MAIN-DIRECTORY PC X(lO) VA 

03 SUB-DIRECTORY PC X(lO) VA 

01 SOME-DATA-NAME. 

03 BACKUP-PACK-NAME PC X(lO) VA 

03 WHICH-SYSTEM PC X(lO) VA 

03 FOR-WHAT-DAY PC X(lO) VA 

NOTE 

"WORKPACK1J6". 

"TRANSJ6J6J6J6J6" . 

SPACES. 

SPACES. 
11 PAYROLLJ6J6J6". 

"MASTERJ'J6J6J6" . 

SPACES. 

"ITEMSJ6J6J6J6J6" . 

SPACES. 

SPACES. 

SPACES. 

SPACES. 

Names must be moved in prior to OPEN. 

A file with one name (main directory name) will be placed in the main di

rectory by means of a scramble technique. The address following the name in 

the directory will point to the disk file header. A file with two names adds 

another level to the directory. The first name is the family or main direc

tory name. The main directory name will be scrambled to a directory with the 

file-type set to "2". The "2" designates that the address following the name 

is the address of a sub-directory. The second name or sub-directory name is 

then placed in this additional directory. The address in the sub-directory 

now points to the disk file header of the file. The sub-directory entry will 

not be scrambled into the directory, as is the main directory entry which has 

the location of the sub-directory. When the MCP finds the sub-directory, it 

must search for the sub-directory file-name. 

6-30 



VALUE OF ID I 

The VALUE OF ID declared for OUTPUT disk files will cause up to 20 characters 

to be inserted into the disk file _header. Inversely, up to 20 characters will 

be checked against the MCP Disk File Directory to obtain the physical disk 

location of the file when declared as being INPUT or INPUT-OUTPUT disk files. 

The (PACK-ID) is carried in the file parameter block FPB or in the INPUT

OUTPUT disk files. 

When SAVE-FACTOR is specified for output magnetic tape files integer-I repre

sents the number of days the file is to be saved before it can be purged and 

used for other purposes by the system; integer-I is limited to an unsigned 

integer not to exceed three digits in length with values from 001 to 999. 

SAVE-FACTOR, when declared for a disk file, is for documentational purposes~ 

due to the fact that files residing on disk should only be purged by mutual 

consent within an EDP organization and can only be performed as a physical 

action by the systems operator on the automatic RMOV option of MCP. 

If SAVE-FACTOR is not specified, tapes are automatically assigned a SAVE-FACTOR 

of one day to preclude expiration action when the system is being operated 

during the period just prior to midnight or thereafter. 

NOTE 

For magnetic tape file names, the names 

must be unique in the first seven char

acters of each name. 

6-31 



I RECORD DESCRIPTION I 
RECORD DESCRIPTION 

This portion of a COBOL source program :follows the file description entries 

and serves to completely identify each data element within a record of a 

given file. 

The construct of these entries contain the following four options: 

Option 1: 

01 data-name-1; COPY library-name 

[REPLACING 

Option 2: 

level-number 

· PIC 
[ {

PC } 

' PICTURE 

;[USAGE IS J 

[; { g§CURS } 

6-32 

{
word-! } 
data-name-2 { 

word-2 } 
data-name-3 
literal-! 

BY 

IS 

BY 
{

word-4 } J data-name-5 
literal-2 

... J . 

{
FILLER } [;REDEFINES da ta-name-2 ] 
data-name-! 

(allowable PICTURE characters) J 
DISPLAY 
CMP 
CMP-1 
CMP-3 
COMP 
COMP-I 
COMP-3 
COMPUTATIONAL 
COMPUTATIONAL-I 
COMPUTATIONAL-3 
INDEX 
ASCII 

1 

[integer-2 TO] integer-3 TIMES [DEPENDING ON data-name-3] 



RECORD DESCRIPTION 

[ { 
ASCENDING } 
DESCENDING KEY IS data-name-4 [,data-name-5] ... J 

[ INDEXED BY index-name-I [, index-name-.2] J ... J 

; SYNC [ l SY } 

l :sYNCHRONIZED 
{ LEFT } ] 

RIGHT 

[ . { ~~ST } 
' JUSTIFIED 

JHQ!!'.!'. ] 

Option 3: 

66 data-name-1 RENAMES data-name-2 [{ 
THRU } 
"'TiliiOUGH data-name-3] 

Option 4: 

{ 
VA 1 fIS ] 
VALUE ~ 'ARE literal-I 

J '-

literal-2 J [ { 
THRU } 
THROUGH 88 condition-name 

[,literal-3 [{ 
THRU } 
THROUGH 1itera1-4 J J 

The optional clauses shown may occur in any order, with the exception that if 

REDEFINES is used it must follow data-name-I. 

The record description must be terminated by a period. 

Level-numbers in Option 2 may be any number from 1-49 or 77. The optional 

clauses may be written in any order, with two exceptions: the data-name-I or 

FILLER clause must immediately follow the level-number; the REDEFINES clause, 

when used. must immediately follow the data-name-I clause. 

6-33 



RECORD DESCRIPTION 

The clauses PICTURE, BLANK WHEN ZERO, JUSTIFIED, and SYNCHRONIZED must occur 

on elementary item level only. 

The PICTURE clause must be specified for every elementary item except an index 

data item, in which case use of the clause is prohibited. 

Option 1 can be used when the COBOL library contains the record description 

entry. Otherwise, one of the other options must be used. 

In Option 4, there is no practical limit to the number of literals in the 

condition-name series. 

The SYNCHRONIZED clause is for documentation only. 

6-34 



BLANK WHEN ZERO 

BLANK WHEN ZERO 

The function of this clause permits the blanking of an item when its value 

is zero. 

The construct of this clause is: 

{ MANK WHEN ZERO } 

BLANK WHEN ZERO may be abbreviated BZ. 

This clause overrides the zero-suppress float-sign functions in a PICTURE. 

If the value of a field is all zeros, the BZ clause will cause the field to 

be edited with spaces. However, it does not override the check protect 

function (zero suppression with asterisks) in a PICTURE. 

The BZ clause can only be used in conjunction with an item on an elementary 

level. 

BLANK WHEN ZERO may be associated only with PICTUREs describing numeric or 

numeric edited fields. 

The category of the item is considered to be numeric edited. 

6-35 



CONDITION-NAME 

CONDITION-NAME 

Condition-name is a special name which the user may assign to a value or 

values within a data element. This value may then be referred to by the 

specified condition-name. 

The construct of. this clause is: 

88 condition-name {~LUE} mEJ literal-1 [{=UGH} literal-2 J 

[literal-3 [{
THRU } 
THROUGH li tera 1-4 1 J 

Since the testing of data is a common data processing practice, the use of 

conditional variables and condition-names supplies a shorthand method which 

enables the writer to assign meaningful names (condition-names) to particular 

code values that may appear in a data-field (conditional variable). 

A condition-name can be associated with any item containing a level-number, 

except the following: 

a. Another condition-name. 

b. A level 66 item. 

c. A group containing items with descriptions including JUSTIFIED, or 

USAGE (other than USAGE IS DISPLAY). 

d. An index data-item. 

When defining condition-names, the following rules must be observed: 

6-36 

a. If reference to a conditional variable requires subscripting, then 

references to its condition-names also require subscripting. 

b. A conditional variable may be used as a qualifier for any of its 

condition-names. 

c. Condition-names can only appear in conditional statements. 

d. Whenever the THRU phrase is used, literal-I must be less than 

literal-2, literal-3 less than literal-4, etc. 



CONDITION-NAME 1 · 

e. The characteristics of a condition-name are implicitly those of its 

conditional variable. 

The following example illustrates a conditon-name. If THIS-YEAR identi

fies the 12 months of a year, whereas its subordinate data items are defined 

as JANUARY, FEBRUARY, etc., and the values assigned to each month range from 

01 to 12, then it follows that JUNE would have the assigned value of 06. Using 

the condition-name JUNE, the programmer can utilize it in conditional state

ments as follows: 

IF JUNE GO TO . . . . 

which is logically equivalent to the statement: 

IF THIS-YEAR IS EQUAL TO 06 GO TO . . . . 

6-37 



6-38 



DATA-NAME 

DATA-NAME 

The purpose of this mandatory clause is to specify the name of each data 

element to be used in a program. If a data element requires a definite label. 

a data-name is assigned. Otherwise, the word FILLER can be used in its 

place. 

The construct of this clause is: 

{
FILLER } 
data-name-1 

The word FILLER can be used to name a contiguous description area that does 

not require programmatic reference. 

This entry must immediately follow a level-number other than an 88 level. 

FILLER is only applicable to elementary levels. 

A data-name need not be unique if it can be made unique through qualification 

by use of data-names on higher levels than itself. 

6-39 



I JUSTIFIED 

JUSTIFIED 

The JUSTIFIED clause specifies non-standard positioning of data within a 

receiving data item. 

The format for the JUSTIFIED clause is as follows: 

{
JUSTIFIED} RIGHT 
JUST 

The JUSTIFIED clause cannot be specified for a numeric-edited data item or 

for an item described as numeric. The JUSTIFIED clause cannot be specified 

for an item whose size is variable, for group items or for an index-data-name. 

The following are the standard rules for positioning within an area: 

a. Numeric data is aligned by decimal point (either implicit or explicit), 

with zeros filling any unused positions on either end, as required. 

In the absence of an explicit decimal point indication, the decimal 

point is assumed to be in the next position to the right of the units 

digit. Edited numeric data items are aligned by decimal point, with 

zero fill or truncation at either end as required within the receiv

ing character positions of the data item, except where editing require

ments cause replacement of the leading zeros. 

b. Alphabetic or alphanumeric receiving data items are aligned at the 

leftmost character position in the data item, with space fill or 

truncation to the right. 

When the receiving data items are described with the JUSTIFIED clause and it 

is larger than the sending item, the data is aligned at the rightmost char

acter position in the data item, with leading space fill. 

Example: 

SENDING RECEIVING 

PIC X( 5) I A I 1 I 2 I 3 I c I PIC X( 7) I A I 1 I 2 I 3 I c I 
When the receiving item is described with the JUSTIFIED clause and it is 

smaller than the sending item, the left-·most characters are truncated. 

Example: 

SENDING RECEIVING 

PIC x ( 7) I A I 1 I 2 I 3 I c I D I E I PIC X(5) 12 I 3 I c I D I E I 
If JUSTIFIED RIGHT is specified for an alphabetic or alphanumeric item, data 

is placed into the area, with space fill to the left. 

6-40 



JUSTIFIED 

If JUSTIFIED RIGHT is specified for an alphabetic or alphanumeric item and the 

receiving field is smaller than the sending field, truncation will occur from 

the left. 

When standard justification is desired, the JUSTIFIED clause is not required. 

Justification is considered only when data is moved into an area. 

6-41 



LEVEL-NUMBER 

LEVEL-NUMBER 

The function of this clause is to show the hierarchy of data within a logical 

record. Its further function is to identify entries for condition-names, non

contiguous constants, working-storage items, and for re-grouping. 

The construct of this clause is: 

level-number {
FILLER } 
data-name-I 

A level-number is the first required element of each record and data-name 

description entry. 

Level-numbers may be as follows: 

a. 01 to 49 - record description and WORKING-STORAGE entries. 

b. 66 

c. 77 

d. 88 

- RENAMES clause used as a record description or WORKING

STORAGE entry. 

- applicable to WORKING-STORAGE only as non-contiguous 

items and must precede all other level-numbers. 

- condition names clause used as a record description or 

WORKING-STORAGE entry. 

Level-numbers 01 through 49 are used for record or WORKING-STORAGE descriptions. 

Level number 01 is reserved for the first entry within a record description. 

Level-number 66 is reserved for RENAMES entries. Level-number 77 is used for 

miscellaneous elementary items in the WORKING-STORAGE SECTION when these items 

are unrelated to any record. They are called non-contiguous items since it 

makes no difference as to the order in which they actually appear. Level

number 88 is used to define the entries relating to condition-names in record 

descriptions or WORKING-STORAGE entries. 

For additional information on level-numbers, see LEVEL NUMBER CONCEPT. 

6-42 



I OCCURS I 
OCCURS 

The OCCURS clause eliminates the need for separate entries for repeated data, 

and it supplies information required for the application of subscripts and 

indices. 

The construct for this clause has the following two options: 

Option I: 

{'§§cuRs} integer-2 TIMES 

[{
ASCENDING } DESCENDING KEY IS data-name-2 (,data-name-3] 

[INDEXED BY index-name-I [,index-name-2] ... ] 

Option 2: 

... J ... 

{§§cuRs} integer-I TO integer-2 TIMES (DEPENDING ON data-name-I] 

[{ ASCENDING} KEY IS data-name-2 (,data-name-3] ... J ... 
. DESCENDING 

[INDEXED BY index-name-I [,index-name-2] ... ] 

Integer-I and integer-2 must be positive integers. If both are used, the value 

of integer-I must be less than in~eger-2. The value of integer-I may be zero, 

but integer-2 cannot be zero. 

The data description of data-name-I must describe a positive integer. 

Data-name-2 must either be the name of the entry containing the OCCURS clause 

or the name of an entry subordinate to the entry containing the OCCURS clause. 

Data-name-3, etc., must be the name of an entry subordinate to the group item 

which is the subject of this entry. 

Data-name-I, data-name-2, and data-name-3 may be qualified. 

The OCCURS clause cannot be specified in a data description that: 

a. Has an 01, 66, 77, or 88 level-number. 

b. Describes an item whose size is variable. The size of an item is 

variable if its data description, or any item subordinate to it, 

contains option 2 of the OCCURS clause. 

6-43 



OCCURS 

The OCCURS clause is used in defining tables and other homogeneous sets of 

repeated data. Whenever the OCCURS clause is used, the data-name which is the 

subject of this entry must be either subscripted or indexed whenever it is re

ferred to in a statement other than SEARCH. Further, if the data-name asso

ciated with the OCCURS clause is the name of a group item, then all data

names belonging to the group must be subscripted or indexed whenever they 

are used as operands. 

Except for the OCCURS clause i tse,lf, all data description clauses associated 

with an item whose description includes an OCCURS clause applies to each oc

currence of the item described. 

In option 1, the value of integer-2 represents the exact number of occurrences 

of items within the table. 

In option 2, the value of integer-1 represents the minimum number of oc

currences, and integer-2 represents the maximum number of occurrences. This 

does not imply that the length of the table is variable but that the number 

of occurrences is variable. When option 2 is specified in a data description 

entry, only items subordinate to the data item described with the option 2 

OCCURS may follow in the Record Description. Thus, the following is illegal: 

01 DATA-1. 

05 TAB-1 OCCURS 1 TO 50 DEPENDING ON CNT. 

10 TAB-2 PIC 9(5). 

05 TAB-3 PIC 9(5). 

Any unused character positions resulting from the DEPENDING option will appear 

in the external media. 

The DEPENDING option is for documentation and serves only to document the end 

of the occurrences of data items. The value of data-name-1 is the count of 

the number of occurrences of items, and its value should not exceed integer-2. 

The user must employ his own tests to determine how many occurrences of the 

item are actually valid and present in the record. 

If data-name-1 in the DEPENDING option is an entry in the same record as the 

current data description entry, data-name-1 should not be the subject of, or 

be subordinate to, an entry whose description includes option 2 of an OCCURS 

clause. 



OCCURS 

An entry which contains option 2, or has a subordinate entry which contains 

option 2, cannot be the object of the REDEFINES clause. For example, the 

following is illegal: 

01 w-s-TABLE. 

02 TAB-SIZE 5 OCCURS 1 TO 5 TIMES DEPENDING ON DEP-NAME. 

02 RED-TAB REDEFINES TAB. 

When integer-2 and integer-3 are both specified, variable length records are 

implied and the user must specify the actual size of variable-length records 

in the first four bytes of each record. The four-character variable size 

indicator is counted in the physical size of each record. 

The KEY IS option is used to indicate that the repeated data is arranged in 

ascending or descending order according to the values contained in data-name-

2, data-name-3, and so on. The data-names are listed in descending order of 

their significance. 

If data-name-2 is not the subject of this entry, then the following applies: 

a. All of the items identified by the data-names in the KEY IS phrase 

must be within the group item which is the subject of the OCCURS 

entry. 

b. None of the items identified by data-names in the KEY IS phrase can 

be described by an entry which either contains an OCCURS clause or is 

subordinate to an intervening entry which contains an OCCURS clause. 

The following example illustrates a use of the OCCURS clause to provide nested 

descriptions. A reference to ITEM-4 requires the use of three levels of sub

scripting; e.g., ITEM-4 (2, 5, 4). A reference to ITEM-3 requires two sub

scripts; e.g., ITEM-3 (I,J). 

2 ITEM; OCCURS 2 TIMES; ... 

3 ITEM-I; ... 

3 ITEM-2; OCCURS 5 TIMES; ... 

4 ~TEM-3; ... 

4 ITEM-4; OCCURS 5 TIMES; ... 

5 ITEM-5; ... 

5 ITEM-6; 

In the example above, there are 50 ITEM-4 quantities. 

6-45 



OCCURS 

The following example shows another use of the OCCURS clause. Assume that 

the user wishes to define a record cons:Lsting of five AMOUNT items, followed 

by five TAX items. Instead of the record being described as containing 10 

individual data items, it could be described in the following manner: 

1 TABLE; ... 

2 AMOUNT; OCCURS 5 TIMES; ... 

2 TAX; OCCURS 5 TIMES; ... 

The above definition would result in memory allocated for five AMOUNT fields 

and five TAX fields. Any reference to these fields is made by addressing 

the field by name AMOUNT or TAX followed by a subscript denoting the parti

cular occurrence desired. (See the discussion on subscripts, page 6-12.) 

An INDEXED BY clause is required if the subject of this entry 7 or an item 

within it, is to be referred to by indexing. If indexing is to be used, each 

table dimension must contain an INDEXED BY clause. The index-names identified 

by the clause must not be defined elsewhere in the program and must be unique. 

The ASCENDING/DESCENDING KEY option is for documentation only. 

The operands in the INDEXED BY option are index-names or indices. The operands 

of an INDEXED BY option must appear in association with an OCCURS clause and 

are usable only when referencing that level of the table. In the use of three

level indexing, each level must have an INDEXED BY option and in a given 

indexing operation, only one operand from each option may be used. 

Other than its use as an index into an array, an index-name may be referred 

to only in a SET, SEARCH, PERFORM, or in a relation condition. All index-names 

must be unique. Index-names have an assumed construction of PC S9{6) 

COMPUTATIONAL. 

Using an index-name associated with one row of a table for indexing into 

another row of a table will not cause a syntax error, but will, in most 

cases, cause incorrect object-time results, since it is the index-name that 

contains the information pertinent to the element sizes. 

When using an index-name series (e.g., INDEXED BY A, B, C): 

a. The indexes should be used only when referencing the associated row. 

b. All "assumed" references are to the first index-name in a series. 

Others in the series are affected only during an explicit reference. 

6-46 



OCCURS 

Indexing into a table follows much the same logic as subscripting. There is 

a limit of three indexes per operand (e.g., A (INDEX-I, INDEX-2, INDEX-3)). 

The use of a relative index allows modification of the index-name without 

actually changing the value of the index-name. 

Example: 

A (INDEX-I + 3, INDEX-2 - 4, INDEX-3) 

An index-name followed by a + or - integer indicates relative indexing, which 

causes the affected index to be incremented or decremented by that number of 

elements within the table. 

A data-name whose USAGE is defined to be INDEX is an index-data-name. 

Condition-names, PICTURE, VALUE, SYNCHRONIZED, or JUSTIFIED cannot be associated 

with an index-data-name. 

The COBOL compiler will assign the construction of a PCS9(6) COMPUTATIONAL 

area for each index-data-name specified. 

It is not permissible to relationally compare an index-data-name against a 

literal or against a regular data-name. 

6-47 



(PICTURE 

PICTURE 

The PICTURE clause describes the general characteristics and editing require

ments of an elementary item. 

The general construct for the PICTURE clause is as follows: 

{ 

PICTURE } 
PIC 

·"PC"""" 
IS character-string 

The following are rules for the PICTURE clause: 

a. A PICTURE clause can only be used at the elementary item level. 

b. A character-string consists of certain allowable combinations of 

characters in the COBOL character set used as symbols. The allowable 

combinations determine the category of the elementary item. 

c. The maximum number of symbols allowed in the character-string is 30. 

When an unsigned integer enclosed in parentheses immediately follows 

a symbol, the integer specifies the number of consecutive occurrences 

of that symbol. This may not be used for those symbols limited to 

one occurrence per picture. 

d. A PICTURE clause must appear in every elementary item except those 

i terns whose USAGE is dee lared as INDEX. 

Record descriptions do not have to conform to the physical characteristics 

of an ASSIGNed hardware-name. The flow of input-output data will terminate 

at the end of the prescribed PICTURE size. For example: 

READER (can read 80 columns) description can be PICTUREd 
from 1 through 80. 

PUNCH (can punch 80 columns) description can be PICTUREd 
from 1 through 80. 

CARD96 (can read or punch 96! columns) description can be 
PICTUREd from 1 through 96. 

PRINTER (120/132 character lines) description can be 
PICTUREd from 1 through maximum. 

Categories of Data 

There are five categories of data that can be described with a PICTURE clause: 

alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric edited. 

These categories are described as follows: 

6-48 



PICTURE 

ALPHABETIC 

To define an item as alphabetic, its PICTURE character-string can only contain 

the symbol A, and its contents, when represented externally, must be any com

bination of the 26 letters of the alphabet and the space from the COBOL charac• 

ter set. 

NUMERIC 

To define an item as numeric, its PICTURE character-string can only contain 

the symbols 9, P, S, J, K, and V. Its contents, when represented externally, 

must be a combination of the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The 

item may include one operational sign. 

ALPHANUMERIC 

To define an item as alphanumeric, its PICTURE character-string is restricted 

to certain combinations of the symbols A, X, 9, and the item is treated as if 

the character-string contained all X's. Its contents, when represented exter

nally, are any of the allowable characters in the COBOL character set. A 

PICTURE character-string which contains all 9's or all A's does not define an 

alphanumeric item. 

ALPHANUMERIC EDITED 

To define an item as alphanumeric edited, its PICTURE character-string is 

restricted to certain combinations of the symbols A, X, 9, B, and 0 (zero) 

given by the following rules: 

a. The character-string must contain at least one B and one X, or at 

least one 0 (zero) and one X, or 

b. The character-string must contain at least one 0 (zero) and one A. 

NUMERIC EDIT:§_D 

To define an item as numeric-edited, its PICTURE character-string is restricted 

to certain combinations of the symbols B, P, V, Z, 0, 9, , (comma), . (period), 

*, +, -, CR, CB, and the currency sign ($). The PICTURE character string must 

contain at least one symbol other than V and 9. The allowable combinations 

are determined from the order of precedence of symbols and the editing rules. 

Classes of Data 

The five categories of data items are grouped into three classes: Alphabetic, 

Numeric, and Alphanumeric. For Alphabetic and Numeric, the classes and cate

gories are synonymous. The Alphanumeric class includes the categories of 

Alphanumeric Edited, Numeric Edited and Alphanumeric (without editing). Every 

6-49 



PICTURE 

elementary item belongs to one of the classes and further to one of the cate

gories. The class of a group item is treated at object time as Alphanumeric 

regardless of the class of elementary items subordinate to that group item. 

Figure 6-6 depicts the relationship of the class and categories of data items. 

LEVEL OF ITEM CLASS CATEGORY 

Alphabetic Alphabetic 

Elementary Numeric Numeric 

Numeric-editied 
Alphanumeric Alphanumeric-edited 

Alphanumeric 

Alphabetic 
Numeric 

Non-elementary Alphanumeric Numeric-edited 
(Group) Alphanumeric-edited 

Alphanumeric 

Figure 6-6. Relationship of Class and Category 

Function of the Editing Symbols 

An unsigned non-zero integer which is enclosed in parentheses following the 

symbols A, X~ 9, P, Z, *, B, 0, +, - the comma, or the currency sign ($) 

indicates the number of consecutive occurrences of the symbol. Note that the 

following symbols may appear only once in a given PICTURE clause: S, J, V, K, 

(period), CR, and DB. 

The functions of the symbols used to describe an elementary item are explained 

as follows: 

6-50 

A The symbol A in the character-string represents a character position 

which can contain only a letter of the alphabet or a space. 

B Each symbol B in the character-string represents a character position 

into which the space character will be inserted. 

J The symbol J indicates an operational sign appearing as an overpunch 

in the least-significant position for DISPLAY or as a trailing digit 

in CMP. J is not allowed for CMP-3. J is not counted in the size 

for DISPLAY but is counted in CMP. Only one operational sign may be 

present in each PICTURE. J and S are mutually exclusive. See the S 

sign discussion for the exact bit configuration of signs. 



ETURE I 
NOTE 

If J appears as other than the leftmost character in a 

PICTURE character string, it no longer performs as an oper

ational sign but serves to reinitiate zero suppression. J 

represents a character position and is counted in the length 

of the elementary item. 

P The letter P indicates an assumed decimal scaling position and is 

used to specify the location of an assumed decimal point when the 

point is not within the number that appears in the data item. The 

scaling position character P is not counted in the length of the 

data item. Scaling position characters are counted in determining 

the maximum number of digit positions (160) in numeric edited items 

or NUMERIC items which appear as operands in arithmetic statements. 

The scaling position character P can appear only to the left or right 

as a continuous string of P's within a PICTURE description. Since 

the scaling position character P implies an assumed decimal point 

(to the left of P if P's are leftmost PICTURE characters, and to 

the right of P if P's are rightmost PICTURE characters), the assumed 

decimal point symbol V is redundant as either the leftmost or right

most character within such a PICTURE description. The character P 

and the insertion character"." (decimal point) cannot both occur in 

the same PICTURE character string. 

S The letter S is used in a character-string to indicate the presence 

of an operational sign and must be written as the leftmost character 

in the PICTURE. The S is not counted in determining the length of 

the elementary item unless USAGE is CMP. If USAGE is DISPLAY, S in

dicates the sign is carried as an overpunch in the most-significant 

position. J and S are mutually exclusive. For CMP, S indicates the 

sign is carried in the leading digit of the field. The four zone bits 

in EBCDIC and CMP are set to a "D", for negative, and to a "C'' for po

sitive. Wherever possible, PICTURE S should be used rather than J or K. 

NOTE 

Any value other than D will be assumed positive. 

K The letter K in the character string indicates the presence of an 8-

bi t (byte) sign appearing in the leftmost character position of an 

item when USAGE is implicitly or explicitly DISPLAY and is counted 

in the length of the item. If USAGE IS COMPUTATIONAL, the letter K 

6-51 



PICTURE 

6-52 

becomes the same as an S. Data elements requiring a K PICTURE clause 

may not be described by a VALUE clause with a signed literal. 

V The letter V is used in a character-string to indicate the location 

of the assumed decimal point and may only appear once in a character

string. The V does not represent a character position and, therefore, 

is not counted in the length of the elementary item. When the assumed 

decimal point is to the right of the rightmost symbol in the string} 

the V is redundant. 

X Each letter X in the character-string is used to represent a charac

ter position which contains any allowable character from the computer's 

character set. 

Z Each letter Z in a character-string may only be used to represent the 

leftmost leading numeric character posit ions which will be repla.ced 

by a space character when the contents of the character position is 

zero. Each Z is counted in the· length of the item. Zero suppression 

is terminated with the first non-zero numeric character in the data. 

Insertion characters are also replaced by spaces while suppression is 

in effect. Z can also appear to the right of J, when the J symbol is 

used to reinitiate zero suppression. For additional information on 

zero suppression, see the BLANK WHEN ZERO clause. 

9 Each 9 in the character-string represents a character position which 

contains a numeral and is counted in the length of the item. If 

USAGE is explicitly or implicitly DISPLAY, the data will be operated 

on as 8-bit (BYTE) characters. If USAGE is CMP, it will be operated 

on as 4-bit digits. 

0 Each 0 (zero) in the character-string represents a character position 

into which the numeral zero will be inserted. When that item is re

ceiving field, the 0 is counted in the length of the item. 

Each comma in the character-string represents a character position 

into which the comma character will be inserted~ This character posi

tion is counted in the length of the item. See DECIMAL-POINT 

IS COMMA.) 

When the character period appears in the character-string, it is an 

editing symbol which represents the decimal point for alignment 

purposes; in addition, it represents a character position into which 

the period character will be inserted. The period character is 

counted in the length of the item. For a g~ven program, the functions 



I PICTURE]. 

of the period and comma are exchanged if the clause DECIMAL-POINT IS 

COMMA is stated in the SPECIAL-NAMES paragraph. In this exchange, the 

rules for the period apply to the comma and the rules for the comma 

apply to the period whenever they appear in a PICTURE clause. V and 

(.)are mutually exclusive. 

The symbols+, -, CR, and CB are used as editing sign control symbols. 

When used, they represent the character position(s) into which the 

editing sign control symbol will be placed. The symbols are mutually 

exclusive in any one character-string, and each character used in the 

symbol is counted in determining the length of the data-item. (Note 

that the symbols CR and DB are two character symbols, and any other 

use of C or D constitutes an error.) 

* Each * symbol in the character-string represents a leading numeric 

character position into which an asterisk will be placed when the 

contents of that position is zero. Each * is counted in the length 

of the item. Asterisk replacement is disabled when the first non-zero 

character is encountered, or when the decimal point (implicit or ex

plicit) is reached. When the PICTURE character string specifies only 

asterisks (*), and the value of the item is zero, the entire output 

item will consist of asterisks and the decimal point, if present. 

BLANK WHEN ZERO does not override the insertion of asterisks. 

$ The currency symbol ($) in the character-string represents a character 

position into whic~ a currency symbol is to be placed. The currency 

symbol in a character-string is represented by either the dollar sign 

($) symbol or by the single character specified in the CURRENCY SIGN 

clause in the SPECIAL-NAMES paragraph. The currency symbol is counted 

in the length of the item. 

The symbol - when not the leftmost or rightmost character, is treated 

as a fixed insertion hyphen. This feature is valid only to the left 

of the decimal if the preceding character is not the symbol Z. 

NOTE 

Any other character which is not a defined 

picture character appearing in the PICTURE 

is assumed to be an insert character. 

Example 

99/99/99 could be a date mask and 

999-99-999 could represent a social 

security number mask. 

6-53 



PICTURE 

Editing Rules 

There are two general methods of performing editing in the PICTURE clause: 

by insertion or by suppression and replacement. 

Floating insertion edit:ing and editing by zero suppression and replacement are 

mutually exclusive in a PICTURE clause. Only one type of replacement may be 

used with zero suppression in a PICTURE clause. 

The type of editing which may be performed upon an item is dependent upon the 

category to which the item belongs. Figure 6-7 specifies which type of editing 

may be performed upon a given category. 

CATEGORY TYPE OF EDITING 

Alphabetic None 

Numeric None 

Alphanumeric None 

Alphanumeric Edited Simple Insert ion, 0 and B 

Numeric Edited All, Subject to Note Above 

Figure 6-7. Permissible Editing Types 

Insertion Editing. The following are the four types of insertion editing avail

able: 

a. Simple Insertion. 

b. Special Insertion. 

c. Fixed Insertion. 

d. Floating Insertion. 

Simple Insertion Editil\g,. The comma (,), B (space), and O (zero) are used as 

the insertion characters. The insertion characters are counted in the length 

of the item and represent the position in the item into which the character 

will be inserted. 

Spe~ial_!.nser~ioq Editt.ng. The period (.) is used as the insertion character. 

In addition to being an insertion character, it also represents the decimal point 

for alignment purposes. The insertion character used for the actual decimal 

point is counted in the length of the item. The use of the assumed decimal point 

(represented by the symbol V) and the actual decimal point represented by the 

insertion character) in the same PICTURE character-string is prohibited. If the 

5-54 



PICTURE 

insertion character is the last symbol in the character-entry, the character

string must be immediately followed by the semicolon punctuation character, 

and then followed by a space. If the PICTURE clause is the last clause of that" 

DATA DIVISION entry, and the insertion character is the last symbol in the 

character-string, the insertion character must be immediately followed by a 

period punctuation character followed by a space. This results in two con

secutive periods (or ",." if DECIMAL POINT IS COMMA has been specified) appear-' 

ing in the data description entry. The result of special insertion editing is 

the appearance of the insertion character in the item in the same position as 

shown in the character-string. 

Fixed Insertion Editing. The currency sign ($) and the editing sign control 

symbols"+", "-", CR, and DB are the insertion characters. Only one currency 

symbol and only one of the editing sign control symbols can be used in a given 

PICTURE character-string. When the symbols CR or DB are used, they represent 

two character positions in determining the length of the item, and they must 

represent the rightmost character positions that are counted in the size of the 

item. The character "-" may be used as a fixed or floating sign insertion char• 

acter. When this character appears to the left of the decimal point, its use 

as either a sign or a hyphen is determined as follows: if the character cannot: 

be legally used as a sign according to the usual rules, then it is interpreted 

as a hyphen. To the right of the decimal point, it is only interpreted as a 

sign. The symbol"+", when used, must be the leftmost or rightmost character 

position to be counted in the size of the item. The currency symbol must be 

the leftmost character position to be counted in the size of the item except 

that it can be preceded by either a + or a - symbol. Fixed insertion editing 

results in the insertion character occupying the same character position in 

the edited item as it occupied in the PICTURE character-string. Depending upon 

the value of the data item, editing sign control symbols produce the results 

indicated in table 6-3. 

Table 6-3. Editing Symbols and Results 

EDITING SYMBOL IN DATA ITEM DATA ITEM 
PICTURE CHARACTER-STRING POSITIVE NEGATIVE 

+ + -
- SPACE -
CR 2 SPACES CR 

DB 2 SPACES DB 

6-55 



PICTURE 

FloatiruL.-LQ.serti~q~qitiug,. The currency symbol and editing sign control 

symbols + or - are the insertion characters, and they are mutually exclusive 

as floating insertion characters in a given PICTURE character-string. 

Floating insertion editing is indicated in a PICTURE character-string by using 

a string of at least two of the allowable insertion characters to represent the 

leftmost numeric character positions into which the insertion characters can be 

floated. Any of the simple insertion characters embedded in the string of 

floating insertion characters or to the immediate right of this string are part 

of the floating string; however, they represent themselves rather than numeric 

character positions. 

In the PICTURE character-string, there are only two ways of representing float

ing insertion editing. One way is to represent any or all of the leading num

eric character positions to the left of the decimal point by the insertion char

acter. The other way is to represent all of the numeric character positions 

in the PICTURE character-string by the insertion character. 

The result of floating insertion editing depends upon the representation in 

the PICTURE character-string. If the insertion characters are only to the left 

of the decimal point, the result is a single insertion character that will be 

placed into the character position immediately preceding the decimal point, or 

the first non-zero digit in the data represented by the insertion symbol string, 

whichever is further to the left in the PICTURE character-string. 

If all numeric character positions in the PICTURE character-string are repre

sented by the insertion character, the result depends upon the value of the 

data. If the value is zero, the entire data item will contain spaces. If the 

value is not zero, the result is the same as when the insertion character is 

only to the left of the decimal point. 

To avoid truncation, the minimum size of the PICTURE character-string for the 

receiving data item must be the number of characters in the sending data item, 

plus the number of fixed insertion characters being edited into the receiving 

data item, plus one for the floating insertion character. 

Suppression Ed~ting. The suppression of leading zeros in numeric character 

positions is indicated by the use of the character Z or the character * 
(asterisk) as suppression symbols in a PICTURE character-string. These symbols 

are mutually exclusive in a given PICTURE character-string. Each suppression 

symbol is counted in determining the length of the item. If Z is used, the 

replacement will be the space, and if the asterisk is used, the replacement 

character will be the * 

6-56 



I PICTURE l 
Zero suppression and replacement are indicated in a PICTURE character-string 

by using a string of one or more of the allowable symbols to represent leading 

numeric character positions which are to be replaced when the associated char

acter position in the data contains a zero. Any of the simple insertion char

acters embedded in the string of symbols or to the immediate right of this 

string are part of the string. 

In a PICTURE character-string, there are only two ways of representing zero 

suppression. One way is to represent by suppression symbols, any or all of 

the leading numeric character positions to the left of the decimal point. Th~ 

other way is to represent all of the numeric character positions in the PICTURE 

character-string by suppression symbols. 

If the suppression symbols appear only to the left of the decimal point, any 

leading zero in the data which corresponds to a symbol in the string is re

placed by the replacement character. Suppression terminates at the first non

zero digit in the data represented by the suppression symbol string or at the 

decimal point, whichever is encountered first. 

If all numeric character positions in the PICTURE character-string are repre

sented by suppression symbols and the value of the data is not zero, the re

sult is the same as if the suppression characters were only to the left of the 

decimal point. If the value is zero, the entire data item will be spaces if 

the suppression symbol is Z or all asterisks (*), except for the actual decimal 

point, if the suppression symbol is *· 
When the asterisk is used as the zero suppression symbol and the clause BLANK 

WHEN ZERO also appears in the same entry, the zero suppression editing overrides 

the function of BLANK WHEN ZERO. 

ReplaQement Editing,. Symbols+, - *, z, and the currency symbol, when 

used as floa ti.ng replacement characters, are mutually exclusive within a 

given character string. At least two floating replacement characters must 

appear as the leftmost characters in the PICTURE. 

6-57 



PICTURE ] 

Precedence of Symbols 

Table 6-4 shows the order of precedence when characters are used as symbols 

in a character string. An X at an intersection indicates that the symbol(s) 

at the top of the column may precede, in a given character string, the 

symbol(s) at the left of the row. Arguments appearing in braces indicate 

that the symbols are mutually exclusive. The currency symbol is indicated 

by the symbol "cs". 

At least one of the symbols "A", ''X", "Z", "9", or "*", or at least two of 

the symbols"+", 11
-

11 or "cs" must be present in a PICTURE string. 

When "+" or +-+ is to be the rightmost printable character in a PICTtJRE char-

acter(s) P, if any, must follow, instead of preceded, the "+" or 

fore, PICTURE 99+PPP is valid, and PICTURE 99PPP+ is invalid. 

There-

Non-floating insertion symbols"+" and"-", floating insertion symbols "Z", 

"*", "+", 11
-

11
, and "cs", and other symbol "P" appear twice in the PICTURE 

character precedence chart. The leftmost column and uppermost row for each 

symbol represent its use to the left of the decimal point position. The 

second appearance of the symbol in the chart represents its use to the right 

of the decimal point position. 

6-58 



PICTURE 

Table 6-4. Order of Precedence 

First Non-Floating Floating 
Other Symbols 

Symbol Insertion Symbols Insertion Symbols 

Second 

i:rn:i i::i l:! l:! l] )]I 
A 

B a , cs cs cs 9 s v p p 
Symbol x 

B x x x x x x x x I x 1x x x x x x x 
--!---+- --I--

Ill 0 x x x x x x x x x x x x x x x x 
r-1 --I 

~ _g x x x x x x x I x x x x I x x x x 
c:: e 

, 
l -P"i >-+.I ti) 

"' x x x x x x x x x 
0 c 

r-1 0 I fl. ·P"i (+ -) 1 I +J c 
'"' 0 ('J 

( + - ) I ix I z (/) x x x x x x x x x x x x 
c 
H l x ~x (CR DB) x x x x x x x x x x 

l 
1 

~ 

cs x 

( z *) x x x x x x _t Ill 
r-1 

\x 0 ( z *) x x x x x x x x I x 
.0 

°' e I 
--r-·-- --i------< 

c ~ (+ -) 

I 
-..-4 x x x x x 
+.I c 
"' 0 
0 ..... 

(+ -) l r-1 ~ x x x x x x !xi r -~ Cz.. M 
Q) I I Ill cs x x x x x 
i:: 
H 

cs x x x x x x x x x 

9 x x x x x I x ~ x x x x x x x 
Ill 

r-1 A X I 
0 x x ! I x x 
.0 I ---e r~ )-., s 
ti) 

I 
---1 !-----

M 
Q) v x x x x x x X1 x x x x 

..c: .., 
0 p x x x x x x x x x x x 

p x x x x 1 ~-4 

6-59 



PICTURE 

The following examples illustrate some of the ways a PICTURE clause may be 

coded: 

6-60 

ALPHABETIC ITEMS; 

AA 

A(25) 

ALPHANUMERIC ITEMS: 

xx 
X(l5) 

A(5)9(4) 

99A99XX 

NUMERIC ITEMS: 

9 

99999 

9V99 

S99V99 

999PPP 

J99 

EDITED NUMERIC ITEMS (CLASS IS ALPHANUMERIC): 

9.99 

zzzzz 
$$.99CR 

B(4)9 

$**,***.99 

-----9 
++,++9.999 

$**,***.99DB 

999,999 

99-99-99 

("-" IS A MINUS SIGN) 

("-" IS A HYPHEN) 



I PICTURE I 
Table 6-5 demonstrates the editing function of the PICTURE clause. 

Table 6-5. Editing Application of the PICTURE Clause 

SOURCE AREA RECEIVING AREA 

EDITING 
PICTURE DATA PICTURE EDITED DATA 

9(5) 12345 $ZZ,ZZ9.99 $12,345.00 
V9(5) 12345 $$$,$$9.99 $0.12 
V9(5) 12345 $ZZ,ZZ9.99 $ 0.12 

9(5) 00000 $$$,$$9.99 $0.00 
9(3)V99 12345 $ZZ,ZZ9.99 $ 123.45 
9 (5) 00000 $$$,$$$.$$ 
9 (5) 01234 $**,**9.99 $*1,234.00 
9 (5) 00000 $**,***·** *******·** 
9 ( 5) 00123 $**,**9.99 $***123.00 
9(3)V99 00012 $ZZ,ZZ9.99 $ 0.12 
9(3)V99 12345 $$$,$$9.99 $123.45 
9(3)V99 00001 $ZZ,ZZZo99 $ .01 
9 (5) 12345 $$$,$$9.99 $12,345.00 
9(5) 00000 $ZZ,ZZZ.ZZ 
9(3)V99 00001 $$$,$$$.$$ $.01 

S9(5) (+) 12345 ZZZZ9. 99+ 12345. 00+ 
S9 (5) (-) 00123 --99999.99 -00123.00 

9(3)V99 12345 999.00 123. 00 
S9 (5) (-) 12345 ZZZZ9.99- 12345. oo-
S9(5) (+) 12345 ZZZZ9.99- 12345. 00 

9 (5) 12345 BBB99.99 45.00 
S9(5)V (-) 12345 -ZZZZ9.99 -12345.00 
S9(5) (-) 12345 $$$$$$.99CR $12345.00CR 

S99V9(3) (-) 12345 ------.99 -12.34 
S9(5) . (+) 12345 $$$$$$.99CR $12345.00 

9(3)V99 12345 999.BB 123. 
9 (5) 12345 00999.00 00345.00 
9(7) 0012003 ZZ99JZ9 12 3 

6-61 



REDEFINES 

REDEFINES 

The function of this clause is to allow an area of memory to be referred to 

by more than one data-name with different formats and sizes. 

The construct of the REDEFINES clause is: 

level-number data-name-I REDEFINES data-name-2 

The REDEFINES clause, when specified, must immediately follow data-name-I. 

The level-numbers of data-name-I and data-name-2 must be identical and must 

not be 66 or 88. 

This clause must not be used in 01 level entries of the FILE SECTION, as an 

implicit REDEFINES is assumed when multiple 01 level entries within a file 

description are present. The size of the record(s) causing implicit redefini

tion does not have to be equal to that of the record being redefined. The 

various sizes of implicitly redefined record descriptions create no restriction 

as to which description is to be coded first, second, third, etc., in the 

source program. The size of the largest 01 level entry determines the size of 

the storage area. 

Redefinition starts at data-name-2 and ends when a level-number less than or 

equal to that of data-name-2 is encountered in the source program. 

When the level-number of data-name-I is other than 01 (in the WORKING-STORAGE 

SECTION), it must specify a storage area of the same size as specified by data-

name-2. It is important to observe that the REDEFINES clause specifies the 

redefinition of a storage area, not simply of the data items occupying that 

area. Redefined 01 levels do not have to be the same size. 

Multiple redefinitions of the same storage area are permitted. The entries 

giving the new descriptions of the storage area must follow the entries defin

ing the area being redefined, without intervening entries that define new 

storage areas. Multiple redefinitions of the same storage area may all use 

the data-name of the originally defined area or the data-name of the.area 

defined just prior to the new area description. 

The data description entry being redefined cannot contain an OCCURS clause, 

nor can it be subordinate to an entry which contains an OCCURS clause. 

The entries giving the new description of the storage area must not contain 

VALUE clauses, except in condition-name entries. 

Data-name-2 need not be qualified. 

6-62 



An example of REDEFINES entries follows: 

01 WORK!. 

03 PART-ONE PC X(60). 
03 PART-TWO REDEFINES PART-ONE. 

0 5 X PC X ( 40) • 

05 Y PC X(20). 

03 PART-THREE REDEFINES PART-TWO PC 9(60). 

I REDEFINES 

6-63 



RENAMES 

RENAMES 

The RENAMES clause permits alternative, and possibly overlapping grouping of 

elementary items. 

The construct of this clause is: 

[{
THROUGH} 66 data-name-I RENAMES data-name-2 .I!!fill data-name-3] 

One or more RENAMES entries can be written for a logical record. All RENAMES 

entries associated with a given logical record must immediately follow its 

last record description entry. It is not possible to "chain" RENAMES; i.e., 

it is illegal to rename data item "A" to "B" and then rename "B" to "C". How

ever, multiple RENAMES of a data-name are permitted. (See figure 6-8.) 

Data-name-2 and data-name-3 must be names of elementary items or groups of 

elementary items of the same logical record and cannot be the same data-name. 

A 66 level entry cannot rename another 66 level entry nor can it rename a 77, 

88, or 01 level entry. 

When data-name-3 is specified, data-name-I is a group item which includes all 

elementary items starting with data-name-2 (if data-name-2 is an elementary 

item) or the first elementary item in data-name-2 (if data-name-2 is a group 

item), and concluding with data-name-3 (if data-name-3 is an elementary item) 

or the last elementary item in data-name-3 (if data-name-3 is a group item). 

When data-name-3 is not specified, data-name-2 can be either a group or an 

elementary item; when data-name-2 is a group item, data-name-I is treated as 

a group item; and when data-name-2 is an elementary item, data-name-I is 

treated as an elementary item. 

The beginning of the area described by data-name-3 must not be to the left of 

the beginning of the area described by data-name-2. The end of the area des

cribed by data-name-3 must not be to the left of the end of the area described 

by data-name-2. Data-name-3 cannot be contained within data-name-2. Data-name-

2 and data-name-3 may be qualified. 

Data-name-I cannot be used as a qualifier, and can only be qualified by the 

names of the level 01, SD, or FD entries. Neither data-name-2 nor data-name-3 

may have an OCCURS clause in its record description entry or be subordinate 

to an item that has an OCCURS clause in its record description entry. 

6-64 



RENAMES 

When data-name-3 is specified, none of the elementary items within the range, 

including data-name-2 and data-name-3, can be variable-occurrence items. 

Data-name-I will assume the USAGE of the item being renamed. If the THRU 

option is used, all items within the RENAMES range must have the same 

USAGE. 

01 TAB. 

03 A. 

05 Al PIC x. 
05 A2 PIC xxx. 
05 A3 PIC xx. 
05 A4 PIC xx. 

03 x. 
05 Xl PIC xx. 
05 X2 PIC X(6). 

05 X3 PIC X(S). 

66 B RENAMES A. (i.e., Al THRU A4) 

66 c RENAMES A. (i.e., Al THRU A4) 

66 D RENAMES Al THRU A3. 

66 E RENAMES A4 THRU X2 

66 F RENAMES A2 THRU X. (i.e., A2 THRU X3) 

66 G RENAMES A THROUGH X. (i.e.' Al THRU X3) 

Figure 6-8. Examples of RENAMES 

6-65 



USAGE 

USAGE 

The function of this clause is to specify the format of a data item in computer 

storage. 

The construct of this clause is: 

(USAGE IS] 

DISPLAY 
CMP 
CMP-1. 
CMP-3. 
COMP 
.QQ.MP-1 
COMP-3 
COMPUTATIONAL 
COMPUTATIONAL-I 
COMPUTATIONAL-3 
INDEX 
ASCII. 

The USAGE clause can be written at any level. If USAGE is written on group 

level, it applies to each elementary item in that group. 

The USAGE of an elementary item cannot contradict the USAGE of a group to 

which the item belongs. 

COMPUTATIONAL-I and CMP-1 are acceptable substitutes for, and are equivalent 

to, COMPUTATIONAL, COMP, or CMP entries. 

A warning message of POSSIBLE CMP GROUP USAGE ERROR will appear whenever the 

receiving field is a group CMP item. This message indicates that the resultant 

contents during object-program execution of the group CMP item may not contain 

expected results. 

Group moves are performed whenever the sending or receiving field is a group 

item, and both will be treated as alphanumeric (byte) data. The appropriate 

conversion takes place when a translation occurs from ASCII to EBCDIC or 

EBCDIC to ASCII. 

USAGE is a declaration for the EBCDIC internal representation of the system 

and is defined as follows: 

a. When USAGE IS DISPLAY, the data item consists of 8-bit (byte) -- -characters. 



I USAGE I 
b. When USAGE IS COMPUTATIONAL, the data item consists of 4-bit coded 

digits and must be numeric. If a group item is described as compu-
$22 

tational, the elementary items in the group are computational. The 

group item itself is not computational (cannot be used in computa

tions). 

c. When USAGE IS INDEX, a PICTURE may not be specified. For example, 

"77 ABC USAGE IS INDEX." An elementary item described with the USAGE 

IS INDEX clause is called an index data item. An index data item can 

be referred to directly only in a PERFORM, SEARCH, or SET statement 

or in a relational condition. A PICTURE may not be specified. 

d. When USAGE IS COMPUTATIONAL-3 or CMP-3 it specifies the data item 

consists of 4-bit coded digits with the low-order digit (LSD) contain

ing the sign. If the data item is unsigned, the LSD position will 

contain a filler. A COMPUTATIONAL-3 or CMP-3 data item will always 

end on a byte boundary and its length will be a multiple of a byte 

adding filler to the left, if necessary. 

e. 

For example: PC S9999 CMP-3 VALUE +1234 IN MEMORY l:Sl234C 

PC S9999 CMP-3 VALUE -1234 IN MEMORY l'.Sl234D 

PC 9999 CMP-3 VALUE + 1234 IN MEMORY l11234}S 

PC 9999 CMP-3 VALUE -1234 IN MEMORY .tS1234l:S 

}S indicates that one digit of filler has been added. 

The USAGE IS ASCII clause can only be used for 77 level or 01 level 

data-names in the WORKING-STORAGE SECTION. A file with recording mode 

of ASCII will be ASCII USAGE by default. 

The PICTURE of a COMPUTATIONAL item can contain only 9's, the operational sign 

character S, J, the decimal point character V, and one or more P's. 

COMPUTATIONAL items may be declared for 9-channel magnetic tape files (TAPE-9), 

disk file (DISK), Supervisory Printer, paper tape files (PT-READER or PT-PUNCH), 

or for WORKING-STORAGE SECTION items. 

A DISPLAY item is automatically converted to its 4-bit equivalent whenever the 

receiving area is defined as COMPUTATIONAL, except when the receiving area is 

a group item. A CMP item is automatically converted to its 8-bit equivalent 

whenever the receiving area is declared DISPLAY, except when the sending CMP 

item is a group item. 

6-67 



USAGE 

If the USAGE clause is not specified for an elementary item, or for any group 

to which the item belongs, the usage is assumed to be DISPLAY. 

For the most efficient use of hardware storage and internal record storage 

areas, records should be devised so as to avoid intermixing of odd-length 

COMPUTATIONAL items with DISPLAY items. This rule is due to the compiler auto

matically placing the machine addresses of DISPLAY areas to a character bound

ary. 

When the USAGE IS ASCII is used, it specifies that the data item consists of 

ASCII coded data. A DISPLAY or COMPUTATIONAL item will be automatically con

verted to its ASCII equivalent whenever the receiving area is defined as 

ASCII. An ASCII item will be automatically converted to its numeric or-EBCDIC 

equivalent when the receiving field is COMPUTATIONAL or DISPLAY. 

6-68 



I VALUE ] 

VALUE 

The function of this clause is to declare an initial value to WORKING-STORAGE 

items, or the value associated with a condition-name. 

The construct of this clause is: 

{~LUE} IS literal-I [ {=UGH} literal-2 ] 

[ literal-3 [{ 
THRU } 
THROUGH literal-~ J 

The VALUE clause cannot be stated for any item whose size, explicitly or im

plicitly, is variable. 

Abbreviation VA can be used in lieu of VALUE. 

Literals may consist of Figurative Constants; e.g., ZEROS, QUOTES, etc. 

Literals may be replaced by the reserved word DATE-COMPILED. If DATE-COMPILED 

is used in the VALUE clause, the date that the program was compiled will be 

placed in the data-name in the JULIAN form of YYDDD. 

In the FILE SECTION, the VALUE clause is allowed only in condition-name (88 

level) entries. VALUE entries in other data descriptions in the FILE SECTION 

are considered as being for documentation purposes only. 

The entire VALUE clause may be used with condition-name entries. All levels 

other than 88 are restricted to the use of literal-I only. 

The VALUE clause must not be stated in a Record Description entry with an 

OCCURS clause, or in an entry which is subordinate to an entry containing an 

OCCURS clause. This rule does not apply to condition-name entries. 

The VALUE clause must not conflict with other clauses in the data description 

of an item or in a data description within the hierarchy of the item. The 

following rules apply: 

a. If a category of an item is numeric, all literals in the VALUE clause 

must be numeric literals; e.g., VA 1, 3 THRU 9, 12, 16 THRU 20, 25 

THRU 50, 51, 56. 

b. If the category of the item is alphabetic, all literals in the VALUE 

clause must be specifically stated as non-numeric literals; e.g., VA IS 

"A"' 
11

B
11

' II C
11

' II F
11

' II M
11

' II N
11

' II 0
11

' II P
11

' "Q"' II Z
11

• 

6-69 



VALUE 1 

c. All literals in a VALUE clause of an item must have a value which 

requires no editing to place that value in the item as indicated by 

the PICTURE clause. 

d. The function of any editing clause or editing characters in a PICTURE 

clause is ignored in determining the initial appearance of the item 

described. However, editing characters are included in determining 

the length of the item. 

In a condition-name entry, the VALUE clause is required and is the only clause 

permitted in the entry. The characteristics of a condition-name are explicitly 

those of its conditional variable. 

Whenever the THRU phase is used, literal-I must be less than literal-2, 

literal-3 less than literal-4, etc. 

If this clause is used in an entry at the group level, the literal must be a 

figurative constant or a non-numeric literal (byte characters). The group 

area is initialized without consideration for the USAGE of the individual ele

mentary items. Subordinate levels within the group cannot contain VALUE 

clauses. 

The VALUE clause must not be specified for a group containing items that require 

separate handling due to the USAGE clause. 

In a VALUE clause, there is no practical limit to the number of literals in a 

series. VALUE cannot be associated with an index-data-name. 

All numeric literals in a VALUE clause of an item must have a value which is 

within the range of values indicated by the PICTURE clause, and must not have 

a value which would require truncation of non-zero digits. Non-numeric items 

in a VALUE clause of an item must not exceed the size indicated by the PICTURE 

clause. 

6-70 



I WORKING-STORAGE SECTION J 
WORKING-STORAGE SECTION 

The WORKING-STORAGE SECTION is optional and is that part of the DATA DIVISION 

set aside for intermediate processing of data. The difference between 

WORKING-STORAGE and the FILE SECTION is that the former deals with data 

that is not associated with an input or output file. All clauses which 

are used in normal input or output record descriptions can be used in a 

WORKING-STORAGE record description. 

Organization 

Whereas the FILE SECTION is composed of file description (FD or SD) entries 

and their associated record description entries, the WORKING-STORAGE SECTION 

is composed only of record description entries and non-contiguous items. The 

WORKING-STORAGE SECTION begins with a section-header and a period, followed by 

item description entries for non-contiguous WORKING-STORAGE items, and then by 

record description entries for WORKING-STORAGE records, in that order. The 

format for WORKING-STORAGE SECTION is as follows: 

WORKING-STORAGE SECTION. 
77 data-name-I 

88 condition-name-I 

77 data-name-n 
01 data-name-2 

02 data-name-3 

66 data-name-m RENAMES data-name-3 
01 data-name-4 

02 data-name-5 
03 data-name-n 

88 condition-name-2 

Non-Contiguous WORKING-STORAGE 

Items in WORKING-STORAGE which bear no relationship to one another need not be 

grouped into records, provided they do not need to be further subdivided. In

stead, they are classified and defined as non-contiguous items. Each of these 

items is defined in a separate record description entry which begins with the 

special level-number 77. The following record description clauses are requir~ 

in each entry: 

a. Level-number.-

b. Data-name. 

c. PICTURE clause. 

6-71 



I WORKING-STORAGE SEcnoN-J 

The OCCURS clause is not meaningful on a 77 level item and will cause an error 

at compilation time if used. Other record description clauses are optional 

and can be used to complete the description of the item if necessary. 

All level 77 items must appear before any 01 levels in WORKING-STORAGE. 

WORKING-STORAGE Records 

Data elements in WORKING-STORAGE which bear a definite relationship to one 

another must be grouped into records according to the rules for the formation 

of record descriptions. All clauses wh:ich are used in normal input or output 

record descriptions can be used in a WORKING-STORAGE record description, in

cluding REDEFINES, OCCURS, and COPY. Each WORKING-STORAGE record-name (01 

level) must be unique since it cannot be qualified by a file-name. Subordinate 

data-names need not be unique if they can be made unique by qualification. 

Initial Values 

The initial value of any item in the WORKING-STORAGE SECTION is specified by 

using the VALUE clause of the record description. If VALUE is not specified, 

the initial values are set to 4-bit zeros (COMPUTATIONAL). The initial value 

of any index data item is unpredictable. 

Condition-Na mes 

Any WORKING-STORAGE item may be a conditional variable with which one or more 

condition-names are associated. Entries defining condition-names must immed

iately follow the cond:itional variable entry. Both the conditional variable 

entry and the associated condition-name entries may contain VALUE clauses. 

Coding the WORKING-STORAGE SECTION 

Figure 6-9 illustrates the coding of the WORKING-STORAGE SECTION. 



Q') 

I 
-..J 
c.J 

BURROUGHS COBOL CODING FORM 
ADDITiONS. DELETIONS AND CHANGES 

PROGRAM t \ c._ c._ /'"' C~ DIVISION PAGE ! OF 

~OR~\~- ~\OR..Ac.E ..:::>sC-.~tOl'l ~~ ' 
PROGRAMMER V DAT£ IOENT 75 IO 

f"-.tM.€>SR.J •• 'i_ _l_ _l_ _t .J. _l_ .J. .J. .J. 

PAGE LINE A I Z 
NO. NO. 

I 3 4 & 'T I II 12 22 32 42 ~ 2 61 7t 

;'" I ' I 1 
l. l. .l IW01<..~l:t-~~·-.l!>TORAA-iE1 1!SiE1<::...iT13:lON,. I I I I I I I I I I I I I I I I I I I I I ..l .J. .1 .J. .1 _l_ _1 l_ 1 + .1 .1 .1 .1. .1 .1 l. l. .1 ~ 
l_ _1_ _l_ l1i"h ..l t'h_:X:i~..l't(,-1<:..Qi_NiT1RiOL.1 i'Pi::t:.iC:.iTi~~1E:1 .B.i(.~ili ,c..._0Mt.Bt.Ai:nAJ.TUJ0111..'1@-iL_l • .1. l. .1 .1 _i_ i _l_ _l_ 1. i i _l_ l. .1 .1 _! .i .1. _i_ _i .i 

r l r 1 J 

l .1 j_ l1.i1.l _j_ ITC-11..! ""''L...l-.~AL ·~"' _l ~ _8,(,, 1' v I 1V1P.L.LAtEi ¢=i6EO- I I I I I I f I I I I I l. _l _j .1+1 _j_ _l _j_ 1 l _l_ _l .1 .1 

_l_ _J_ .l. b3i ..l 1s_l~_J_L11S1~-1~U..OT1~· I I 'Bri.c...i ~~ I I I I I I I I I I I I I I I I l I I _L_J__j_ J. l_ _l_ _l_ J. + i _l _l l _l .l _l_ j .l. J. 

l_ J_ j_ _l_ _l_ _l _l _l _l _l I _l_ _l_ _l _l + _l L _l_ _l _l l. .1 l l_ _l _l _l_ _j_ .1 _l_ _l _l _l ..l + _l_ _l ..l _l .1_!_ I I I I I I I I I I I I I I I I I _l l. _l_ _l_ _l_ _l_ _j_ 

.1 .l _l_ 101.l. l !S.ij_f..-_iTi_E-_i"Ti~LiE'1_.t.1 _j_ _l .1 .i .l. _1_ _j_ _l _j J I I I I I I I I I I I I I I I I I I I I I I I I I I I I _l ..l .1..1 _l_ ..1.1..l .1 j_ 
T T . 

l .l .1. .l. -1. ..l IGS.i ..l I I I I I I 1.SiT1AcTE611 I I i I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ..l _l l. 

.i .i 1- _L _l _1' ,o _l _L , , , 1 cP\1Li'l:lF1~4J:.Lc, ,q,q.q,9, .. , I , , , , 1 , , , , I , , , 1 1 , , , , 
1 

, L ..l ..l j_ 1 _i _l .i .i 

.1 J _l .l ..l I l d10 l .l l J. J. ..it:!Ej_ VLAJ>.A LL i 1'P1J:ili ,q, (,If,),, I I I I I J_ .1 _l l_ l j_ J_ l_ j_ j_ l_ _l _l l. l_ _l j_ _l l ..l .1 l. ..l _l J. l. l. 
T I I 

j_ _l_ j_ _j_ _j_ _l • _j_1.o j_ . j_ .l l_ ~ ..l ..l ..L_L • , 
1
E:ric., ,q, c.q.u ... , 

1 
, , , , , , i , , 

1 
• , , , , , , , , J_ l_ l_ _l _l l. j_ .1 j_ .l l. 

T , T 

.i .i .i I ..l -1. .l lo.5i .i.SiTi.&TiEi-4EiYJ~_E.F1r1~kE1.S1 J.~i"riAtT1ES.1 10t.S.~s.i 1:!. ._i l. ii .i .i J. J. j_ j_ i _i_ l_ l_ _l i .i .i _l_ J. _l 1 
I T T I T 

~~- ..l j_ .l '.1 1d.iS .l. _j_ .l ' -4SiloAiTE.L'c..pjb,E1 I ,"PJ:i<:..i ,q,c:z,., I I I I I I I I I I I I I I I I I I I I I I I _1 _l _l_ j_ -1.1-1 _l_ 

j_ _J_ .i 1 
_L _L l_ , :J.,~ _l l_ • _ ,,, .o iUi"-'1Ti'f. i LL __ l. , e::r:q ,9 , , , , 1 , , , , , , , .l j_ _l _L _l _l _l 1 _l l_ j_ l l l_ j_ _l _l .1 _l _l l_ _l _1 1 ·f-C'- - -, T T 

_l_ _l_ _1 i ' ..!. .l I 1';2+S- I __i_i__i__ I ,ei:t:.jTiYLLLL-1_1_-f _ _i 1f'tr1Ci ,Cf,• I I I I I I I I I ; I I I I I I I J I I I '--f--LL-1 _l_ l. _1 .l. j_ 1 l 

_l_ _1 j_ : [Q l_i_ .l ~~_lGr.l-.i.b_:i_}J.1£..lLl + _l _l L-1 J I I I __ LI I I I I I I I I I I I I I I ' I I I I I I I I I I I I .1 .1 t .1 l. .l. .l l. .1 _1 _l .J. _1 

_l .l .l · . , _l b1~ 1 j_ i , , , , , 1Fj:t:1L· L1Ei"R1 °-Pi:n~ ,A.Csu.,), 1V1~141u.EL.J..Si.R8-C::E,St -+ _i_ _j_ _j_ _l _l_ i _L _L _j_ =r _l_ _l_ .1 _l_ _l_ _j_ .1 _l _l _l 

L1 .1 T -1..L b3-1 LLJ__u,, 
1
Fi::c,i.i'-4se. ·'PoIJc1 ,t\Gt.n.LrV,A i'',.s,A,L.i6s, ;fie;E1£0B-iMif\NC,Ei",.

1
,,.,,.,,. l 

_l _l _l ii .l b2>1 l__l__l_LL.l , 
1
Fi.r,LL.J6Ri ,-e:Ij~ ,x. G5i1i), ,v,~ .

1
s,P,A<:..iE.s,., , , 1 , . , , , , , , , 1 , , , , • , .1 _l_ j_ _l_ 

_l .l _l_ -t--L~_L-L.L.Ll__l I I I I I I I I I I I I I I I I I I l. _L _l ..l .l t ..l .1 .l J. l. .l. _1 .1 ..l t .l ..l I ..l j_ l_ j_ .l _l_ + l_ .l _l_ .l. j_ ..l _l _1 1 _1 

l. _l _l_ I I I I I I L.L.L.L I I I I j__l___l__L I I I I I I I i I _l_j__l_i I I I I I I I I I I I I I I I I I I I I I I I + ..L ..l .l .l. ..J. _l_ l. j_ _1 .J.. 

l. .1 .1 _l _L _l _j_ _L _l J._l_L __ L_L J_~ I I I I I I I I I I I I _l_ .1 .1 j_ .l .1 .l .l .1 j_ l. j_ l. .l. 1 _1 _1 .l .l .l. .1 .1 .l .l l. _j_ .l _1 1 l_ .1 1. _j_ .l. 
-------,----- T I T 

.11 l -1.l.l. _J__l__l_L_L_j__l__l_ll I I I I I I I I I I I !-1.l.-1-1.L.l.1.l._1_1__1_1_.l..l._l.l._1.l._l_l__j__L.l__l_..l._j__l.J..l..l..J..l..l..1.l..l.1.J. 
I I I 

_l_i ~ .J..-1 _l.l_i_l__i_i.lL1-1.l.~.l.1..l..l.l..1.~-11_l_'_i.J.j__l__L1--11_l__l__l_l.l..l._l.11_l .l11..l_l_l_l__l__l_l__l_l__l__l..1...1..l._l 

l 
T T T I T 

.1.1 _j_ _j__l_.J.. _L_L_lj__l_j__L_j_ f.l l_j__l_l_ I I I I I I: I I I I I I I I I I I II I I I I I I I I I I I I I I I' I l_l_i__l__l_j__j__l 

.1.1 _l i.l..J.. _L_L_l_j__l__l_l__l_ll.1.1.1.1.ll..1.l..lJ.J.j_j_j__l__l_lj_j__l_l.l_l_..ll..ll..l.1J.J._j_J.J..1.1J.J.j__l__l_l_j__ll_l_l_.1_l_l_ 

Figure 6-9. WORKING-STORAGE SECTION Coding 

~ 
0 
;:ig 

~ 

z 
c:> 
I 
en 
~ 

0 
;:ig 

> 
c:> 
m 
en 
m 
n 
~ 
0 
z 





SECTION 7 
PROCEDURE DIVISION 

GENERAL 

The fourth part of the COBOL source program is the PROCEDURE DIVISION. This 

division contains the procedures needed to solve a given problem. These pro

cedures are written as sentences which may be combined to form paragraphs, 

which in turn may be combined to form sections. The purpose of the following 

discussion is to explain this division and its elements. 

RULES OF PROCEDURE FORMATION 

A procedure is composed of a paragraph, a group of successive paragraphs, a 

section, or a group of successive sections within the PROCEDURE DIVISION. If 

declaratives are specified, then sections must be used in the remainder of 

the PROCEDURE DIVISION. A procedure-name i~ either a paragraph-name or a 

section-name. 

The end of the PROCEDURE DIVISION (the physical end of the program) is that 

physical position in a COBOL source program after which no further procedures 

appear. 

A section consists of a section header followed by one or more successive 

paragraphs. A section ends immediately before the next section-name, at 

the end of the PROCEDURE DIVISION, or in the Declaratives portion of the 

PROCEDURE DIVISION at the key words END DECLARATIVES. 

A paragraph consists of a paragraph-name followed by one or more successive 

sentences. A paragraph ends immediately before the next paragraph-name or 

section-name or at the end of the PROCEDURE DIVISION. 

A sentence consists of one or more statements and is terminated by a period 

followed by a space. 

A statement is a syntactically valid combination of words and symbols begin

ning with a COBOL verb. 

The term "identifier" is defined as the word or words necessary to make 

unique reference to a data item. 



EXECUTION OF PROCEDURE DIVISION 

Execution begins with the first statement of the PROCEDURE DIVISION, excluding 
declaratives. Statements are then executed in the order in which they are pre

sented for compilation, except where the rules in this section indicate some 

other order. 

The body of the PROCEDURE DIVISION must conform to the following format: 

PROCEDURE DIYISION. 

[DECLARATIVES. 

section-name SECTION. declarative-statement. 

paragraph-name. [statement.] 

[paragraph-name. [statement.] ... ] 

·-section-name SECTION. declarative-statement. 

paragraph-name. [statement.] 

[paragraph-name. [statement.] ... ] ... J 
END DECLARATIVES.] 

[[section-name ~ECTION [priority-number] . J 
paragraph-name. [statement.] ... 

[[paragraph-name.] 

[END-OF-JOB.] 

[ s ta temen t . ] . . . J . . . ] ... 



I ST A TEMENTS I 

STATEMENTS 

There are three types of statements: imperative statements, conditional 

statements, and compiler-directing statements. 

Imperative Statements 

An imperative statement is any statement that is neither a conditional state

ment nor a compiler-directing statement. An imperative statement may consist 

of a sequence of imperative statements, each possibly separated from the next 

by a separator. A single imperative statement is made up of a verb followed by 

its operand. A sequence of imperative statements may contain either a GO TO 

statement or a STOP RUN statement which, if present, must appear as the last 

imperative statement of the sequence. Some of the imperative statements are: 

ACCEPT DISPLAY MOVE SEEK 

ADD(l) DIVIDE(!) MULTIPLY( 1) SET 

ALTER EXAMINE OPEN SORT 

CLOSE EXIT PERFORM STOP 

COMPUTE(!) GO READ(3) SUBTRACT( 1) 

WRITE(2) (4) 

Conditional Statements 

A conditional statement specifies that a truth value of a condition is to be 

determined and that the subsequent action of the object program is dependent on 

this truth value. A conditional statement is (1) an IF or SEARCH statement, (2) 

a READ or RETURN statement that specifies the AT END phrase, (3) a READ or WRITE 

statement that specifies the INVALID KEY phrase, (4) a WRITE statement that 

specifies the END-OF-PAGE phrase or (5) _the arithmetic statements ADD, SUBTRACT, 

COMPUTE, DIVIDE, or MULTIPLY that specify the optional phrase ON SIZE ERROR. 

For example, the IF statement syntax is as follows: 

. . {statement-I } r. {statement-2 }] 
IF conditional ,liE.XT SENTENCE ~~ li~'I-§.ENTENCE 

Statement-I or statement-2 can be either imperative or conditional statements. 

If conditional, the statement can, in turn, contain conditional statements to 

a depth of 15. Also, if statement-I or statement-2 is conditional, then the 

conditions within the conditional statement are considered to be "nested". 

Compiler-Directing Statements 

A compiler-directing statement is one that consists of a compiler-directing 

verb (COPY and NOTE) and its operand(s). 

1 
2 

Without the SIZE ERROR Option. 
Without the INVALID KEY Option. 

3 
4 

Without the AT END Option. 
Without the EOP Option. 

7-3 



SENTENCES 

SENTENCES 

There are three types of sentences: imperative sentences, conditional sen

tences, and compiler-directing sentences. A sentence consists of a sequence 

of one or more statements, the last of which is terminated by a period. 

Imperative Sentences 

An imperative sentence is one or more imperative statements terminated by a 

period. An imperative sentence can contain either a GO TO statement or a STOP 

RUN statement which, if present, must be the last statement in the sentence. 

The following are examples of an imperative sentence. 

ADD MONTHLY-SALES TO TOTAL-SALES, THEN GO TO PRINT-TOTAL. 

or 

DISPLAY "PGM-END11 THEN STOP RUN. 

Conditional Sentences 

A conditional sentence is a conditional statement which may optionally contain 

an imperative statement and must always be terminated by a period. 

Examples: 

IF HEIGHT IS GREATER THAN SIX-FEET-NINE GO TO 

TALL-MEN, ELSE ADD 1 TO SOME-OTHER, GO GET-ANOTHER

RECORD. 

IF SALES IS EQUAL TO BOSSES-QUOTA THEN MOVE SALESMAN 

TO HONOR-ROLL OTHERWISE MOVE SALESMAN TO QUOTA

LIST. 

Compiler-Directing Sentences 

A compiler-directing sentence is a single compiler-directing statement termin

ated by a period. 

Example: 

SCAN. COPY SCANER. 



SENTENCES 

SENTENCE PUNCTUATION 

The following rules apply to the punctuation of sentences: 

a. A sentence is terminated by a period followed by a space. 

b. A separator is a word or character used for the purpose of enhancing 

readability. The use of a separator (other than a space) is optional. 

c. The allowable separators are spaces, the semicolon(;), the comma 

(,), and the reserved word THEN. 

d. Separators may be used in the following places: 

1. Between statements. 

2. In a conditional statement. 

(a) Between the condition and statement-I. 

(b) Between statement-I and ELSE. 

e. A separator(other than a space) should be followed by at least one 

space but is not required. 

EXECUTION OF IMPERATIVE SENTENCES 

An imperative sentence is executed in its entirety and control is passed to 

the next applicable procedural sentence. 

EXECUTION OF CONDITIONAL SENTENCES 

In the conditional sentence: 

l.E condition statement-I {
OTHERWISE} 
~ 

statement-2. 

the condition is an expression which is TRUE or FALSE. If the condition is 

TRUE, then statement-I is executed and control is then implicitly transferred 

to the next sentence unless statement-I causes some other transfer of control. 

If the condition is FALSE, statement-2 is executed and control passes to the 

next sentence unless statement-2 causes some other transfer of control. 

If statement-I is conditional, then the conditional statement must be the last 

(or only) statement comprising statement-I. For example, the conditional sen

tence would then have the form: 

.!E condition-I imperative-statement-I .IE condition-2 

statement-3 { 
OTHERWISE } 
ELSE statement-4 {

OTHERWISE} 
~ 

statement-2. 



SENTENCES 

If condition-I is TRUE, imperative-statement-I is executed. If condition-2 

is TRUE, statement-3 is executed and control is transferred to the next sen

tence. If condition-2 is FALSE, statement-4 is executed and control is trans

ferred to the next sentence. If condit.ion-1 is FALSE, statement-2 is executed 

and control is transferred to the next sentence. Statement-3 can in turn be 

either imperative or conditional and, if conditional, can in turn contain con

ditional statements to an arbitrary depth. In an identical manner, statement-4 

can either be imperative or conditional, as can statement-2. The execution of 

the phrase NEXT SENTENCE causes a transfer of control to the next sentence 

written in order, except when it appears in the last sentence of a procedure 

being PERFORMed, in which case control is passed to the return control. 

EXECUTION OF COMPILER-DIRECTING SENTENCES 

The compiler-directing sentences direct activities during compilation time. 

On the other hand, procedural sentences denote action to be taken by the object 

program. Compiler-directing sentences may result in the inclusion of routines 

into the source program. They do not directly result in either the transfer 

or passing bf control. The routines themselves, which the compiler-directing 

sentences may have included in the source program, are subject to the same 

rules for transfer or passing of control as if those routines had been created 

from procedural sentences only, 

7-6 



CONTROL RELATIONSHIP BETWEEN PROCEDURES 

CONTROL RELATIONSHIP BETWEEN PROCEDURES 

In COBOL, imperative and conditional sentences describe the procedure that is 

to be accomplished. The sentences are written successively, according to the 

rules of the coding form (section 3) , to establish the sequence i.n which the 

object program is to execute the procedure. In the PROCEDURE DIVISION, names 

are used so that one procedure can reference another by naming the procedure 

to be referenced. In this way, the sequence in which the object program is 

to be executed may be varied simply by transferring control to a named pro

cedure. 

In procedure execution, control is transferred only to the beginning of a 

paragraph or section. Control is passed to a sentence within a paragraph only 

from the sentence written immediately preceding it. If a procedure is named, 

control can be passed to it from any sentence which contains a GO TO or PERFORM, 

followed by the name of the procedure to which control is to be transferred. 

PARAGRAPHS 

So that the source programmer may group several sentences to convey one idea 

(procedure), paragraphs have been included in COBOL. In writing procedures 

in accordance with the rules of the PROCEDURE DIVISION and the requirements 

of the coding form (section 3), the source programmer begins a paragraph with 

a name. The name consists of a word followed by a period, and the name pre

cedes the paragraph it names. A paragraph is terminated by the next paragraph

name. The smallest grouping of the PROCEDURE DIVISION which is named is a 

paragraph. The last paragraph in the PROCEDURE DIVISION is the optional special 

paragraph-name END-OF-JOB, which will be the last card in the source program the 

compiler will use to generate code for the-object program. 

Programs may contain identical paragraph-names, provided they are resident in 

different sections. If such paragraph-names are not qualified when used, the 

current section is assumed. Paragraph-names may be used in GO, PERFORM, and 

ALTER statements. 

SECTIONS 

A section consists of one or more successive paragraphs and must be named when 

designated. The section-name is followed by the word SECTION, a priority num

ber which is optional, and a period. If the section is a DECLARATIVE section, 

then the DECLARATIVE sentence (i.e., USE or COPY) follows the section header 

and begins on the same line. Under all other circumstances, a sentence may 

not begin on the same line as a section-name. The section-name applies to all 

7-7 



I CONTROL RELATIONSHIP BETWEEN PROCEDURES I 
paragraphs following it until another section-name is found. It is not re

quired that a program be broken into sections, but this technique is exception

ally useful in trimming down the physical size of object programs by stating a 

priority number to declare overlayable program storage (see SEGMENT CLASSIFI

CATION). 

Since paragraph-names and section-names both have the same designated position 

on the reference format (i.e., position A), section-names, when specified, are 

written on one line followed by a paragraph name on a subsequent line. When 

PERFORM is used in a non-DECLARATIVE procedural section to call another section, 

the same rules apply as when PERFORM is used in a DECLARATIVE section. 

1-s 



SEGMENTATION 

SEGMENTATION 

COBOL segmentation is a facility that provides a means to specify object pro

gram overlay requirements. COBOL segmentation deals only with segmentation 

of procedures. As such, only the PROCEDURE DIVISION and the ENVIRONMENT 

DIVISION are considered in determining segmentation requirements for an ob

ject program. 

PROGRAM SEGMENTS 

Although it is not mandatory, the PROCEDURE DIVISION for a source program may 

be written as a consecutive group of sections, each of which are operations 

that are designed to collectively perform a particular function. Each section 

must be classified as belonging either to the fixed portion or to one of the 

independent segments of the object program. Segmentation in no way affects 

the need for qualification of procedure-names to ensure uniqueness. 

The object program is composed of two types of segments: a fixed segment and 

overlayable segments. 

a. The fixed segment is the main program segment and may be overlaid in 

the same manner'as if it were an overlayable segment. 

b. An overlayable segment is a segment which, although logically treated 

as if it were always in memory, can be overlaid, if necessary, to 

optimize memory utilization- However, such a segment, if called for 

by the program, is always made available in its "initial" state when 

the segment priority-number is 50 or greater. When the segment prior

ity-number is 49 or less, the segment will be made available in its 

last-used state. 

In addition, depending on availability of memory, the number of permanent seg

ments in the fixed and overlayable portions can be varied by changing the 

SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph. 

Segment Classification 

Sections which are to be segmented are classified by means of a system of 

priority numbers and the following criteria: 

a. Logic requirements: sections with priority numbers from 00 through 

49 in a program may reside in the fixed segment, depending on the 

value specified in SEGMENT-LIMIT. Sections containing a priority 

number lower than that specified in SEGMENT-LIMIT, regardless of 

their physical location in the program, will be assigned to the fixed 

7-9 



SEGMENTATION 

segment; all other sections will be assigned as overlayable segments. 

"Fall-through" control from one SECTION to another SECTION is accom

plished in their order of appearance in the source program. 

b. Relationship to other sections: sections coded within the SEGMENT

LIMIT range will become the fi4ed segment and can communicate freely 

with each other. Those coded outside the stated SEGMENT-LIMIT range 

fall into the overlayable categ;ory and can also communicate from one 

to the other. 

The compiler will create one program segment which will include all 

sections with priority numbers below the value specified in SEGMENT

LIMIT. The overlayable sections will be called into memory as needed 

by the program. When memory is available, more than one overlayable 

section will be tn memory at the same time. This will reduce the 

number of disk accesses, which in turn will cause the program to have 

a shorter run time. 

Priority Numbers 

Section overlay classifications are accomplished by means of a system of 

priority numbers. The priority number is included in the section header. The 

general construct of a section header is as follows: 

section-name SECT IQ~ priority-number. 

The priority number must be an integer ranging in value from 00 through 99 

(also 0, 1, 2, etc., are permissible priority numbers). If the priority num

ber is omitted from the section header, the priority number is assumed to be 0. 

Segments with priority numbers ranging from 0 up to, but not including, the 

value specified in the SEGMENT-LIMIT clause (or 50 if no SEGMENT-LIMIT clause 

has been specified) are considered as being located in the fixed portion of the 

object program. Segments with priority number equal to or higher than the 

value specified in SEGMENT-LIMIT (but not exceeding 99) are independent seg

ments and fully ALTERable; however, segments with priority numbers greater 

than 49 will be made available in their "initial" state each time they are 

referenced. A GO TO paragraph in a section whose priority is greater than or 

equal to 50 must not be referred to by an ALTER statement in a section with a 

different priority. Sections in DECLARATIVES are assumed to be 00 and must 

not contain priority numbers in their section headers. Priority numbers may 

be stated in any sequence and need not be in direct sequence. The fixed seg

ment does not end when the first priority number equal to or greater than 

SEGMENT-LIMIT is encountered. 

7-10 



I SEGMENTATION I 

All segments, regardless of their physical location in the source program, 

whose priority number is less than that which is specified in SEGMENT-LIMIT 

will be 11 gathered" into a single segment. All other segments equal to or 

greater than that which is specified in SEGMENT-LIMIT will be "gathered" in

to overlayable segments according to equal priority number, regardless of 

their physical location in the source program. 

The use of the "gathering" technique will allow programmers to create tailored 

segments which will reduce disk access times. For example: 

Program A: SEGMENT-LIMIT equals 17. 

Segment 

00-16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Segment 

00-16 

17 

18 

19 

20 

17 

19 

17 

20 

20 

Non-Gathered 

Description 

Main body of the program 

Used frequently 

Used frequently 

Used infrequently 

Used at EOJ only 

Used frequently 

Used at BOJ only 

Used frequently 

Used for infrequent test 

Used infrequently 

Gathered 

Description 

Main body of the program 

Use.ct frequently 

Used infrequently 

Used infrequently 

Used at EOJ 

Used frequently (was segment 21) 

Used at BOJ (was segment 22) 

Used frequently (was segment 23) 

Used for infrequent test (was segment 24) 

Used infrequently (was segment 25) 

Size in Digits 

20,000 

1,000 

5,000 

4,000 

500 

2,000 

1,000 

500 

1,500 

3,000 

Size in Digits 

20,000 

1,000 

5,000 

4,000 

500 

2,000 

1,000 

500 

1,500 

3,000 



SEGMENTATION 

Results of Gathering 

Segmen:t Descr i:Q:t ion Size in Digi:ts 

00-16 Main body of the program 20,000 

17 Used frequently 3,500 

18 Used infrequently 5,000 

19 Used infrequently 5,000 

20 Used infrequently 5,000 

"Fall through" will be performed in the sequence as outlined in the above 

"Non-Gathered" example~ and not as they appear in the "Results of Gathering" 

example above, therefore preserving the logical integrity of the original 

program. 

The COBOL interpreter will automatically check to see if an overlay being 

called for by an object program is already present in memory. If it is 

present, no disk access is required and the program is not interrupted. If it 

is not present, the COBOL interpreter interrupts the program and will access 

the disk for the desired overlayable portion of the program. The COBOL inter

preter uses overlay segments directly from the program library where the ob

ject program was compiled to and is called in as an overlay in its ini~ial 

generated code each and every time it is required by the operating program. 

Although the initial code is retrieved each time, the latest addresses of 

ALTERed exits are still applicable and are in force by the use of an automatic 

ALTER table for segments with a priority number of 49 or less. 



DECLARATIVES 

DECLARATIVES 

Declaratives are procedures which operate under the control of the input

output system. Declaratives consist of compiler-directing sentences and their 

associated procedures. Declaratives, if used, must be grouped together at the 

beginning of the PROCEDURE DIVISION. The group of declaratives must be pre

ceded by the key word DECLARATIVES, and must be followed by the words END 

DECLARATIVES. Each DECLARATIVE consists of a single section and must conform 

to the rules for procedure formation. There are two statements that are 

called declarative statements in the COBOL compiler. These are the USE and 

the COPY statements. The next source statement following the END DECLARATIVES 

statement must be a section-name or paragraph-name. 

Use Declarative 

A USE declarative is used to supplement the standard procedures provided by 

the input-output system. The USE sentence immediately following the section

name, identifies the condition calling for the execution of the USE procedures. 

Only the PERFORM statements may reference all or part of a USE section. The 

USE sentence itself is never executed. Within a USE procedure, there must be 

no reference to the main body of the PROCEDURE DIVISION. The construct for the 

USE declarative is as follows: 

section-name SECTION. USE ............... . 

paragraph-name. First procedure-statement ... 

Complete rules for writing the formats for USE are stated under the USE verb. 

COPY Statement os a Declarative 

A COPY declarative is used to incorporate a DECLARATIVE library routine in 

the source program, that is, a routine which is a USE declarative. The con-

struct of the COPY declarative is: 

section-name SECTION. COPY library-name 

Complete rules for writing the format for COPY are stated under the COPY verb. 

7-13 



I ARITHMETIC EXPRESSION~ 

ARITHMETIC EXPRESSIONS 

An arithmetic expression is an algebraic expression which is defined as: 

a. An identifier of a riumeric elementary item. 

b. A numeric literal. 

c. Such identifiers and literals separated by arithmetic operators. 

d. Two arithmetic expressions separated by an arithmetic operator. 

e. An arithmetic expression enclosed in parentheses. 

Any arithmetic expression may be preceded by a unary+ or -. The permissible 

combinations of identifiers, literals, and arithmetic operators are given in 

table 7-1. Those identifiers and literals appearing in an arithmetic expres

sion must represent either numeric elementary items or numeric literals on 

which arithmetic operation may be performed. 

Table 7-1. Combination of Symbols in Arithmetic Expressions 

First 
Symbol 

Variable 

*/** 
+-

( 

) 

Arithmetic Operators 

-
Second S}mbol 

Variable */** +- ( ) 

- p p - p 

p - p p -
p - - p -
p - p p -
- p p - p 

NOTE 

In the above table, the letter "P" represents 

a permissible pair of symbols. The character 

"-" represents an invalid character pair. Vari

able represents an identifier or literal. 

There are five arithmetic operators that may be used in arithmetic expressions. 

These operators, listed below, are reprE~sented by specific characters which 

must be preceded by a space and followed by a space. 

7-14 



Character 

+ 

* 
I 
** 

Formation and Evaluation Rules 

ARITHMETIC EXPRESSIONS 

Meaning 

addition 

subtraction 

multiplication 

division 

exponentiation 

Parentheses may be used in arithmetic expressions to specify the order in 

which elements are to be used. Expressions within parentheses are evaluated 

first and, within a nest of parentheses, evaluation proceeds from the least 

inclusive set to the most inclusive set. When parentheses are not used or 

parenthesized expressions are at the same level of inclusiveness, the follow

ing hierarchical order of operations is implied: 

Unary + or -

** 
* and I 
+ and -

The symbols + and -, if used without parenthesizing, may only follow one of the~ 

arithmetic operators **, *, /, or appear as the first symbol in a formula. 

Parentheses have a precedence higher than any of the operators and are used 

to eliminate ambiguities in logic where consecutive operations of the same 

hierarchical level appear, or to modify the normal hierarchical sequence of 

execution in formulas where it is necessary to have some deviation from the 

normal precedence. When the sequence of execution is not specified by paren

theses, the order of execution of consecutive operations of the same hierarchi

cal level is from left to right. Thus, expressions ordinarily considered to 

be ambiguous, e.g., A I B * C, A I BI C, and A**B**C are permitted in COBOL. 

They are interpreted as if they were written (A I B) * C, (A I B) / C, and 

(A**B) **C, respectively. Without parenthesizing, the following example: 

A + B / C + D ** E * F - G 

would be interpreted as: 

A + (B / C) + ( (D ** E) * F) - G 

with the sequence of operations working from the innermost parentheses toward 

the outside, i.e., first exponentiation, then multiplication and division, and 

finally addition and subtraction. 



[A°RttHMETIC EXPRESSIONS I 
The way in which operators, variables, and parentheses may be combined in an 

arithmetic expression is summarized in table 7-1. 

An arithmetic expression may only begin with the symbols (, +, -, or a 

variable and may only end with a ) or a variable. There must be a one-to-one 

correspondence between left and right parentheses of an arithmetic expression 

such that each left parenthesis is to the left of its corresponding right 

parenthesis. 

7-16 



CONDITIONS 

CONDITIONS 

A condition causes the object program to select between alternate paths of 

control, depending upon the truth value of a test. Conditions are used in IF 

and PERFORM statements. A condition is one of the following: 

a. Relation condition. 

b. Class condition. 

c. Condition-name condition. 

d. Sign condition. 

e. NOT condition. 

f. Condition { ~~D} condition. 

The construction NOT condition is not permitted if the condition itself con

tains NOT. 

Logical Operators 

Conditions may be combined by logical operators. The logical operators must 

be preceded by a space and followed by a space. The meaning of the logical 

operators is as follows: 

Logical Operator 

OR 

AND 

NOT 

Meaning 

Logical Inclusive OR 

Logical Conjunction 

Logical Negation 

Table 7-2 indicates the relationships between the logical operators and condi

tions A and B. Table 7-3 indicates the way in which conditions and logical 

operators may be combined. 

Relation Condition 

A relation condition causes comparison of two operands, each of which may be 

a data-name, a literal, or an arithmetic expression (formula). Comparison 

of two elementary numeric items is permitted, regardless of the individual 

USAGE clauses. However, for all other comparisons, the operands must have 

the same USAGE. Group numeric items are defined to be alphanumeric. It is 

not permissible to compare an index-data-name to a literal or a data-name. 



I CONDITIONS I 
Table 7-2. Relationship of Conditions, 

Logical Operators, and Truth Values 

CONDITION CONDITION AND VALUES 

A B A AND B A OR B NOT A 
--

TRUE TRUE TRUE TRUE FALSE 

FALSE TRUE FALSE TRUE TRUE 

TRUE FALSE FALSE TRUE FALSE 

FALSE FALSE FALSE FALSE TRUE 

Table 7-3. Combinations of Conditions 
and Logical Operators 

SECOND 
SYMBOL 

FIRST 
SYMBOL CONDITION OR AND NOT ( 

CONDITION p p 

OR 

AND 

NOT 

( 

) 

p p 

p - p 

*P 
p p 

p p 

NOTE 

The letter "P" represents a permitted pair 

of symbols, and the character "-" repre

sents an invalid character pair. 

The general format for a relation condition is as follows: 

p 

p 

p 

p 

) 

p 

p 

{

data-name-1 } 
literal-I 
arithmetic-expression-I 

relational-operator {~~~:~~~~~-2 
} 

arithmetic-expression-2 

The first operand, data-name-I, literal-I, or arithmetic expression-I is 

called the subject of tfie condition. The second operand, data-name-2, 

literal-2, or arithmetic expression-2 is called the object of the condition. 

The object and the subject may not both be literals. 

* Permissible only if the condition itself is not a "NOT condition". 

7-18 



CONDITIONS 

Relational Operators 

The relational operators specify the type of comparison to be made in a rela

tion condition. The relational operators must be preceded by a space and 

followed by a space. Relational operators are: 

IS [NOT] GREATER THAN. 

IS [NOT] LESS THAN. 

IS [NOT] EQ_"QA1= TO. 

IS [liQ.T J >. 

IS [NOT] <· 

IS [NOT] 

EQUALS. 

Comparison of Operands 

Non-Numeric. For non-numeric (byte) operands, a comparison will result when 

determination is made that one operand is less than, equal to, or greater than 

the other with respect to a specified internal collating sequence of characters. 

The size of an operand is the total number of characters in the operand. Non

numeric operands may be compared only when their USAGE is the same, implicitly 

or explicitly. There are two cases to consider: 

a. If the operands are of equal size, characters in corresponding 

character positions of the two operands are compared starting from 

the high-order end through the low-order end. If all pairs of char

acters compare equally through the last pair, the operands are con

sidered equal when the low-order end is reached. The first pair of 

unequal characters to be encountered is compared to determine their 

respective relationship. The operand that contains the character 

that is positioned higher in the internal collating sequence is con

sidered to be the greater operand. 

b. If the operands are of unequal size, the comparison of characters 

proceeds from high-order to low-order positions until a pair of un

equal characters is encountered, or until one of the operands has no 

more characters to compare. If the end of the shorter operand is 

reached and the remaining characters in the longer operand are spaces~ 

the two operands are considered to be equal. 

Numeric. For operands that are numeric, a comparison results in the deter

mination that one of them is less than, equal to, or greater than the other 

with respect to the algebraic value of the operands. The length of the oper-

7-19 



[C"ONon10Ns I 
ands, in terms of number of digits, is not significant. Zero is considered 

a unique value regardless of the sign. Comparison of these operands is per

mitted regardless of the manner in which their usage is described. Unsigned 

numeric operands are considered positive for purposes of comparisons. 

The signs of signed numeric operands will be compared as to their algebraic 

value of being plus (highest) or minus (lowest). 

Sign Condition 

The sign condition determines whether or not the algebraic value of a numeric 

operand is less than, greater than, or equal to O. The general construct for 

a sign condition is as follows: 

arithmetic-expression 
{

POSITIVE} 
IS [NOT] NEGATIVE 

ZERO 

An operand is positive if its value is greater than zero, negative if its 

value is less than zero, and zero if its value is equal to zero. 

Class Condition 

The class condition determines whether the operand is numeric; that is, 

consists entirely of the characters O, 1, 2, 3, ..• , 9, with or without an 

operational sign, or alphabetic, that is, consists entirely of the characters 

A, B, C, ... , Z, and space. The general construct for the class condition is 

as follows: 

The usage of the operand being tested must be described, implicitly or ex

plicitly, as DISPLAY or DISPLAY-I. 

The NUMERIC test cannot be used with an item whose record description de

scribes the item a~ alphabetic. If the record description of the item being 

tested does not contain an operational sign, the item being tested is de

termined to be numeric only if the contents are numeric and an operational 

sign is not present. 

The ALPHABETIC test cannot be used with an item whose record description 

describes the item as numeric. The item being tested is determined to be 

alphabetic only if the contents consist of any combination of the alpha

betic characters A thru Z and the space. 



CONDITIONS 

Condition-Name Condition 

In a condition-name condition, a conditional variable is tested to determine 

whether or not its value is equal to one of the values associated with a 

condition-name. The general construct for the condition-name condition is as 

follows: 

[NOT] condition-name 

If the condition-name is associated with a range or ranges 9f values, then 

the conditional variable is tested to determine whether or not its value 

falls in this range, including the end values. 

The rules for comparing a conditional variable with a condition-name value 

are the same as those specified for relation conditions. 

The result of the test is TRUE if one of the values corresponding to the 

condition-name equals the value of its associated conditional variable. 

Evaluation Rules 

The evaluation rules for conditions are analogous to those given for arith

metic expressions, except that the following hierarchy applies: 

a. Arithmetic expressions (formulas). 

b. All relational operators. 

c. NOT. 

d. AND. 

e. OR. 



~DITIONs I 
Simple Conditions 

Simple conditions, as distinguished from compound conditions, are subdivided 

into four general families of conditional tests: Relation Tests, Relative 

Value Tests, Class Tests, and the Condi.tional Variable Tests. A detailed ex

planation of each of these can be found under the IF verb discussion. 

Compound Conditions 

The most common construct of a compound. condition is: 

simple-condition-I { Afil}OARN } simple-condition-2 

[ {~} {~D} simple-condition-n J 
Simple conditions can be combined with logical operators, according to speci

fied rules, to form compound conditions. The logical operators AND, OR, and 

NOT are shown in table 7-2, where A and B represent simple conditions. Thus, 

if A is TRUE and B is FALSE, then the expression A AND B is FALSE, while the 

expression A OR B is 'I'RUE. 

The following are illustrations of compound conditions: 

a. AGE IS LESS THAN MAX-AGE AND AGE IS GREATER THAN 20. 

b. AGE IS GREATER THAN 24 OR MARRIED. 

c. STOCK-ON-HAND IS LESS THAN DEMAND OR STK-SUPPLY IS 

GREATER THAN DEMAND + INVENTORY. 

d. A IS EQUAL TO B, AND C IS NOT EQUAL TO D, OR E IS NOT 

EQUAL TO F, AND G IS POSITIVE, OR H IS LESS THAN I * J. 

e. STK-ACCT IS GREATER THAN 72 AND (STK-NUMBER IS LESS 

THAN 100 OR STK-NUMBER EQUAL TO 76920). 

Note that it is not necessary to use the same logical connective throughout. 

The rules for determining the logical (i.e., truth) value of a compound condi

tion are as follows: 

7-22 

a. If AND is the only logical connective used, then the compound 

condition is TRUE if, and only if, each of the simple conditions is 

TRUE. 

b. If OR is the only logical connective used, then the compound 

condition is TRUE if, and only if, one or more of the simple condi

tions is TRUE. 



CONDITIONS 

c. If both logical connectives are used, then the conditions are grouped 

first according to AND, proceeding from left to right, and then by OR, 

proceeding from left to right. 

Parentheses may be used to indicate grouping as specified in the examples 

below. Parentheses must always be paired the same as in algebra, i.e., the 

expressions within the parentheses will be evaluated first. In the event that 

nested parenthetical expressions are employed, the innermost expressions within 

parentheses are handled first. Examples of using parentheses to indicate 

grouping are: 

a. To evaluate Cl AND (C2 OR NOT (C3 OR C4)), use the first part of 

rule c above and successively reduce this by substituting as follows: 

Let C5 equal ''C3 OR C4", resulting in 

Cl AND (C2 OR NOT C5) 

Let C6 equal "C2 OR NOT C5", resulting 

in Cl AND C6 

This can be evaluated by referencing table 7-2. 

b. To evaluate Cl OR C2 AND C3, use the second part of rule c and 

reduce this to Cl OR (C2 AND C3), which can now be reduced as in 

example a. 

c. To evaluate Cl AND C2 OR NOT C3 AND C4, group first by AND from left 

to right, resulting in: 

(Cl AND C2) OR (NOT C3 AND C4) 

which can now be evaluated as in example a. 

d. To evaluate Cl AND C2 AND C3 OR C4 OR C5 AND C6 AND C7 OR CS, group 

from the left by AND to produce: 

((Cl AND C2) AND C3) OR C4 OR ((C5 AND C6) 

AND C7) OR CS 

which can now be evaluated as in example a. 

e. The following uses a condition-name as part of the statement. 

IF CURRENT-MONTH AND DAY= 15 OR 30 ... would 

be treated as: 

IF (CURRENT-MONTH AND DAY 

actual test desired is: 

IF CURRENT-MONTH AND (DAY 

15) OR 30. . . the 

15 OR 30) ... 



CONDITIONS 

The required result is that CURRENT-MONTH must be true and DAY must 

contain either 15 or 30. 

Without the parentheses as shown, the conditions are: 

1. DAY == 30 or 

2. CURRENT-MONTH is true AND DAY 15. 

Abbreviated Compound Conditions 

Any relation condition other than the first that appears in a compound condi

tional statement may be abbreviated as follows: 

a. The subject, or the subject and relational operator, may be omitted. 

In these cases, the effect of the abbreviated relation condition is 

the same as if the omitted parts had been taken from the nearest 

preceding complete relation condition within the same condition; 

that is, the :first relation is a condition and must be complete. 

b. If, in a consecutive sequence of relation conditions (separated by 

logical operators) the subjects are identical, the relational oper

ators are identical and the logical connectors are identical, the 

sequence may be abbreviated as follows: 

1. Abbreviation 1: when identical subjects are omitted in a con

secutive sequence of relation conditions. An example of abbre

viation 1 would be: 

IF A = B A.ND = C. 

This is equivalent to IF A = B AND A = C. 

2. Abbreviation 2: when identical subjects and relational operators 

are omitted in a consecutive sequence of relation conditions. 

An example of abbreviation 2 is: 

IF A = B AND C. 

This is equivalent to IF A = B AND A = C. 

c. As indicated in the previous paragraphs, compound conditions can be 

abbreviated by having implied subjects, or implied subjects and re

lational operators, providing the first simple condition is a full 

relation. The missing term is obtained from the last stated relation 



CONDITIONS 

in the sentence. The following examples further illustrate the abbre

viated compound conditions: 

1. IF A B OR C is equivalent to IF A = B OR A c. 

2. IF A < B OR C OR D is equivalent to IF A < B OR 

A = C OR A = D. 

7-25 



INTERNAL PROGRAM SWITCHES 

INTERNAL PROGRAM SWITCHES 

Every compiled object program contains eight automatically provided program

matic switches. Switches SWl through SW8 are composed of one unsigned digit 

in length and are located in memory locations 0 through 7 of data segment O. 

These switches can be referred to in the PROCEDURE DIVISION by the use of the 

reserved words SWl, SW2 ... SW8. During execution, each individual switch 

setting can be changed by a MOVE, ADD, SUBTRACT, etc .. For example: 

MOVE 0 TO SWl. 

ADD 1 TO SW2. 

SUBTRACT 1 FROM SW3. 

Note that SW6 has an effect on the MONITOR DEPENDING ...• requirement if the 

statement is present. 

The switch memory locations are reserved and operate identically to those of 

the reserved TALLY locations. 

7-26 



VERBS 

VERBS 

The verbs available for use with the COBOL Compiler are categorized below. 

Although the word IF is not a verb in the English language, it is utilized 

as such in the COBOL language. Its occurrence is a vital feature in the 

PROCEDURE DIVISION. 

a. Arithmetic: 

ADD 

COMPUTE 

DIVIDE 

MULTIPLY 

SUBTRACT 

b. Compiler Directing: 

COPY 

MONITOR 

NOTE 

USE 

c. Data Manipulations: 

EXAMINE 

FORMAT 

MICR-EDIT 

MOVE 

d. Ending: 

STOP 

e. Input-output: 

ACCEPT 

CLOSE 

CONTROL 

DISPLAY 

OPEN 

READ 

SEEK 

WRITE 

f. Logical Control: 

IF 

7-27 



VERBS 

g. Procedure Branching: 

ALTER 

EXIT 

GO 

PERFORM 

ZIP 

h. Sort: 

RELEASE 
RETURN 
SORT 

i. Table Manipulation: 

SEARCH 
SET 

j. Debugging: 

DUMP 

TRACE 

Specific Verb Formats 

The specific verb formats, together with a detailed discussion of the restric

tions and limitations associated with each, appear on the following pages in 

alphabetic sequence. 



ACCEPT l· 

ACCEPT 

The function of this verb is to permit the entry of low-volume data from the 

console typewriter. 

The construct of this verb is: 

ACCEPT identifier [FROM { ~~monic-name} ] 
This statement causes the operating object program to halt and wait for appro-· 

priate data to be entered on the console printer (SPO). The SPO entry will 

replace the contents of memory specified by the identifier. The systems 

operator answers an ACCEPT halt by keying in the following message: 

mix-index AXdata-required 

If a blank appears between the AX and data-required, the blank character will 

be included in the data-stream. 

The MCP will space fill to the right if the number of characters entered is 

less, or truncate to right if the number of characters entered is more. 

If mnemonic-name is used, it must appear in the SPECIAL-NAMES paragraph and 

be equated to the hardware-name SPO. 

The receiving identifier may be a group level entry and cannot be subscripted. 

The maximum number of characters per ACCEPT statement is unlimited. 

ACCEPT responses of greater than 60 characters must be entered through the SPO 

in exact groups of 60 characters, except for the last group, which can be of 

any size up to 60. 

Because of the inefficiency of entering data through the keyborad, this tech

nique of data transmission should be restricted solely to low-volume input 

data. 

NOTE 

The "<" is a backspace character and is 

not passed by the MCP. 



ADD 

The function of this verb is to add two or more numeric data items and adjust 

the value of the receiving field(s) accordingly. 

The construct of this verb has three options. 

{
literal-I } [ { literal-2 } 
identifier-I identif ier-2 .. . J 

TO identifier-m [ROUNDED] [ identifier-n LR!ll!lill!ID.] ... J 
[;ON SIZE ERBQR statement-I[;~ statement-2] J 

Option 2: 

{ 
1 it er a 1- 1 } { 1 it er a·1- 2 } [ { 1 it er a 1-3 } J 
identifier-I identifier-2 identifier-3 ··· 

GIVING identifier-m [ROUNDED] [,identifier-n [ROIJN.DEQ]] 

[;ON SIZE ERROR statement-I [;ELSE sh.tement-2]] 

Opt ion 3: 

{
CORR } 

AQ.n CORRESPONDING identif ier-1 .IQ identifier-2 

[ROUNDED] GoN SIZE ERROR statement-I [;ELSE statement-2] ] 

With Option 1, the value(s) of the operand(s) preceding the word TO will be 

added together and the sum will be added to the existing value(s) of operand(s) 

following the word TO. A resummation does not occur if the value of one of 

the identifiers changes in the process. 

For example, the result of the statement 

ADD A, B, c TO C, D(C), E 

is equivalent to 

ADD A, B, c GIVING TEMP 

ADD TEMP TO c 
ADD TEMP TO D(C) 

ADD TEMP TO E 

where TEMP is an intermediate result item provided by the compiler. 

7-30 



ADD 

In Option 2, the sum of the operands preceding the word GIVING will be in

serted as a replacement value of identifier(s) following the word GIVING. 

In Options 1 and 2, the identifiers must refer to elementary numeric items only, 

except that identifiers appearing only to the right of the word GIVING may refer 

to elementary numeric-edited items. 

An ADD statement must have at least two operands .. 

The composite of operands, which is that data item resulting from the super

imposition of all operands, excluding the data· item that follows the word 

GIVING, aligned on their decimal points, must not contain more than 125 digits 

or characters. 

The internal format of operands referred to in an ADD statement may differ 

among each other. Any necessary format transformation and decimal point align

ment are automatically supplied throughout the calculation. 

Each literal must be a numeric literal. 

If, after point alignment with the receiving data item, the calculated result 

extends to the right of the receiving data item (i.e., an identifier whose 

value is to be set equal to the sum), truncation will occur. Truncation is 

always in accordance with the size associated with the resultant identifier. 

When the ROUNDED option is specified, it causes the resultant identifier to 

have its absolute value increased by 1 whenever the most-significant digit of 

the truncated portion is greater than or equal to 5. 

Whenever the magnitude of the calculated result exceeds the largest magnitude 

that can be contained in a resultant data-name, a size error condition arises. 

In the event of a size error condition, one of two possibilities will occur, 

depending on whether or not the ON SIZE ERROR option has been specified. The 

testing for the size error condition occurs only when the ON SIZE ERROR option 

has been specified. 

a. In the event that ON SIZE ERROR is not specified and size error con

ditions arise, the value of the resultant identifier is unpredictable. 

b. If the ON SIZE ERROR option has been specified and size error condi

tions arise, then the value of the resultant identifier will not be 

altered. After it has been determined that there is a size error 

condition, the "any imperative-statement" associated with the ON SIZE 

ERROR option will be executed. 

If Option 3 is used multiple operations are performed. The operations are exe

cuted by the pairing of identical data-names of -numeric elementary items subor-

7-31 



dinate in hierarchy to identifier-I and identifier-2. Data-names match if they, 

and all their possible qualifiers up to, but not including identifier-I and 

identifier-2, are the same. All general rules pertaining to the ADD verb apply 

to each individual ADD operation. For instance, if the size of matched data

names does not correspond, in that the decimal point is out of alignment or 

the sizes differ, the decimal point alignment or truncation takes place accord

ing to the rules previously discussed. 

In the process of pairing identical data-names, any data-name with the 

REDEFINES clause is ignored. Similarly, data-names which are subordinate to 

the subordinate data-names with the REDEFINES clause are ignored. 

NOTE 

This restriction does not preclude 

identif ier-1 or identif ier-2 from having 

REDEFINES clauses or from being sub

ordinate to data-names with REDEFINES 

clauses. 

If the CORR or CORRESPONDING option is used, any item in the group referred 

to which contains an OCCURS clause will be ignored. Any items subordinate to 

such an item will also be ignored. 

In Option 3, if either identifier-I or identifier-2 is a group item which con

tains RENAMES entries, the entries are not considered in the matching of names. 

In Option 3, identifier-I and identifier-2 must not have a level number of 66, 

77, or 88. 

If corresponding data-names are not elementary numeric items, the ADD operation 

will be ignored. 

In Option 3, CORR is an acceptable substitute for CORRESPONDING. 

7-32 



ALTER 

ALTER 

The function of this verb is to modify a predetermined sequence of operations 

by changing the operand of a labeled GO TO paragraph. 

The construct of this verb is: 

ALTER procedure-name-! TO [PROCEED .IQ] procedure-name-2 

[ procedure-name-3 .T.Q[PROCEED .'.IQ] procedure-name-4 ... J 

Procedure-name-I, procedure-name-3, ... are names of paragraphs, each of 

which contains a single sentence consisting of only a GO TO statement as 

defined under Option 1 of the GO TO verb. Procedure-name-2, procedure-name-4 . 

... are not subject to the same restrictions and they may be either paragraph

names or section-names. 

When control passes to procedure-name-I, control is immediately passed to 

procedure-name-2 rather than to the procedure-name referred to by the GO TO 

statement in procedure-name-I, Procedure-::ame-1 is therefore a "gate" which 

remains set until again referenced by another ALTER statement. 

A GO TO statement in a section whose priority is greater than or equal to 50 

must not be referred to by an ALTER statement in a section with a different 

priority. 

All other uses of the ALTER statement are valid and are performed even if the 

GO TO which the ALTER refers to is in an overlayable section, as long as the 

section priority number is less than 50. 

7-33 



I CLOSE I 
CLOSE 

The function of this verb is to communicate to the MCP that the designated 

file-name being operated on or created is programmatically completed, and also 

to fulfill the stated action requirements. 

The construct of this verb is: 

CLOSE f ile-name-1 [REEL] [WITH 

[f ile-name-2 ... J 

(~ ]] PURQE 
RELEASE 
.NQ REWIND 
REMOVE 

File-names must not be those defined as being SORT files. A file must have 

been OPENed previously before a CLOSE statement can be executed for the file. 

File space in memory will not be allocated until the file has been OPENed. 

When a file is programmatically CLOSEd and the assigned unit is released, the 

memory allocated for that file will be returned to the MCP. The MCP I/O as

signment table reflects any unit which remains assigned to the program after 

the file on that unit has been CLOSEd. 

The above statement applies to the following categories of input and output 

f il~s. 

a. Files whose input and output media involve print files, card files, 

etc. 

b. Files which are contained entirely on one reel of magnetic tape 

and are the only files on that reel. 

c. Files which may be contained on more than one physical reel of 

magnetic tape. Furthermore, the number of reels might possibly be 

higher than the number of physical tape units provided on the system. 

d. Disk files. 

To show the effects of the CLOSE options, each type of file will be discussed 

separately. 

a. Card Input. 

1. CLOSE - does not release the input memory areas or the reader. 

2. CLOSE WITH NO REWIND - same as CLOSE. 

7-34 



CLOSE 

3. CLOSE WITH RELEASE - releases the input memory areas and returns 

the reader to the MCP. 

4. CLOSE WITH LOCK - same as CLOSE WITH RELEASE. 

5. CLOSE WITH PURGE - same as CLOSE WITH RELEASE. 

6. CLOSE WITH REMOVE - same as CLOSE. 

b. Card Output. 

1. CLOSE - punches the trailer label (if any) and does not release 

the output memory areas or the punch. 

2. CLOSE WITH NO REWIND - same as CLOSE. 

3. CLOSE WITH RELEASE - releases the output memory areas and 

returns the punch to the MCP. 

4. CLOSE WITH LOCK - same as CLOSE WITH RELEASE. 

5. CLOSE WITH PURGE - same as CLOSE WITH RELEASE. 

6. CLOSE WITH REMOVE - same as CLOSE. 

c. Magnetic Tape Input. 

1. CLOSE - rewinds the tape and does not release the input memory 

areas. The unit remains assigned to the program. 

2. CLOSE WITH NO REWIND - same as CLOSE except the tape is not 

rewound. 

3. CLOSE WITH LOCK - releases the input memory areas, rewinds the 

tape, and the MCP marks the unit not ready. 

4. CLOSE WITH RELEASE - releases the memory input areas, rewinds 

the tape, and returns the unit to the MCP. 

5. CLOSE WITH PURGE - releases the input memory areas, rewinds the 

tape, and if a write ring is in the reel, over-writes the label, 

making the tape a scratch tape which becomes a candidate for use 

by the MCP. The unit is returned to the MCP. 

6. CLOSE WITH REMOVE - same as CLOSE. 

d. Magnetic Tape Output. 



7-36 

1. CLOSE - does not release the output memory areas, writes the 

trailer label (if any), and rewinds the tape& The unit remains 

assigned to the program. 

2. CLOSE W rrH NO REWIND - doies not re lease the output memory areas, 

writes the trailer label (if any). The tape remains positioned 

beyond the trailer label (or tape mark if there is no trailer 

label). The unit remains assigned to the program. 

3. CLOSE WITH LOCK - releases the output memory areas, writes the 

trailer label (if any), rewinds the tape, and the MCP marks the 

unit not ready. 

4. CLOSE WITH RELEASE - releases the output memory areas, writes 

the trailer label (if any), rewinds the tape, and returns th~ 

unit to the MCP. 

5. CLOSE WITH PURGE - releases the output memory areas, writes the 

trailer label (if any), rewinds the tape, returns the unit to 

the MCP, and the MCP overwrites the label, making it a scratch 

tape and a candidate for use by the MCP. 

6. CLOSE wrrH REMOVE - same as CLOSE. 

e. Printer Output. 

1. CLOSE - prints the trailer label (if any) and does not release the 

output memory areas or the printer. 

2. CLOSE wrrtt NO REWIND - same as CLOSE. 

3. CLOSE WITH RELEASE - releases the output memory areas and 

returns the printer to the MCP. 

4. CLOSE WITH LOCK - same as CLOSE WITH RELEASE. 

5. CLOSE WITH PURGE - same as CLOSE WITH RELEASE. 

6. CLOSE WITH REMOVE - same as CLOSE. 

f. Disk Files. The actions taken on files ASSIGNED to DISK will be 

discussed in terms of old files and new files. An old file is one 

that already exists on disk and appears in the MCP Disk Directory. 

A new file is one created by the program and does not appear in the 

Directory. A new file may only be referenced by the program which 

creates it. 

1. CLOSE - does not release the input/output memory areas. 



CLOSE 

(a) For an old file, the file is left in the Directory and is 

available to other programs. 

(b) For a new file, the file is not entered in the Directory; 

however, it remains on the disk and may be OPENed again by 

this program. 

2. CLOSE WITH NO REWIND - not permitted on disk files. 

3. CLOSE WITH RELEASE - releases the input/output memory areas. 

(a) For an old file, the file is left in the directory and is 

available to other programs. 

(b) For a new file, the file is entered in the directory and 

is available to other programs. 

4. CLOSE WITH LOCK - releases the input/output memory areas. 

(a) For an old file, the file remains in the Directory and is 

made available. 

(b) For a new file, the file is entered in the Directory and 

is available to other programs. 

5. CLOSE WITH PURGE - releases the input/output memory areas. 

(a) An old file is immediately removed from the disk and 

deleted from the Directory. 

(b) A new file will be immediately removed from the disk. 

6. CLOSE WITH REMOVE - releases the input/output memory areas. 

This option will cause the MCP to REMOVE a file from the disk 

directory that has the same file-id as the file being closed. 

This acticn will take place prior to entering the closing files 

file-id in the disk directory. Use of this option will eliminate 

the DUPLICATE FILE condition and reduce operator intervention. 

If the REMOVE option is not used, the "RM" SPO input message will 

accomplish the same results. 

If a file has been specified as being OPTIONAL, the standard end-of-file pro

cessing is permitted whenever the file is not present. 

If a CLOSE statement without the REEL option has been executed for a file, a 

READ, WRITE, or SEEK statement for that file must not be executed unless an 

intervening OPEN statement for that file is executed. 



I CLOSE I 
The CLOSE REEL option signifies that the file-name being CLOSEd is a multi

reel magnetic tape input or output file. The reel will be CLOSEd when the 

CLOSE REEL statement is encountered and an automatic OPEN of the next se

quential reel of the multi-reel file is then performed by the MCP. 

7-38 



COMPUTE 

COMPUTE 

The function of this verb is to assign to a data item the value of a numeric 

data item, literal, or arithmetic expression. 

The construct of this verb is: 

COMPUTE identifie~-1 (ROUNDED] 
{

identifier-2 } 
literal 
arithmetic expression 

[;ON SIZE E.RRQR statement-I [;ELSE statement-2) 

The literal must be a numeric literal. 

Identifier-2 must refer to an elementary numeric item. Identifier-I may describe 

an elementary edited item. 

The arithmetic expression option permits the use of any meaningful combination 

of identifiers, numeric literals, arithmetic operators, and parenthesization, 

as required. 

All rules regarding ON SIZE ERROR, ROUNDED options, truncation and editing are 

the same as for ADD. 

If numeric-literal exponents are used, the results are accurate up to 18 

digits in length or to as many decimal places. 



I cop!] 

COPY 

The function of this verb is to allow library routines contained on a source 

language library file to be incorporated into the program. 

The construct of this verb contains the following two options: 

Option 1: 

COPY library-name 

Option 2: 

COPY library-name 

[ REPLACING {
word-I } 
data-name-I { 

word-2 1 
identif ier-2 
literal-I 

[ {
word-3 } 
data-name-3 {

word-4 } 
identif ier-4 
literal-2 

... ] 
The COPY statement may refer only to one library entry in the library. Library

name is the value placed in a library entry bounded by quotes or a procedure

name type word. The library entry can contain up to three IO-character non

numeric literals each separated by a slash(/), following normal naming 

conventions for disk files. 

The library file is inserted in the source program immediately after the COPY 

statement at compilation time. The result is the same as if the library data 

were actually a part of the source program. 

Library data can encompass an entire procedure, which may be any number of 

statements, paragraphs, or entire source program divisions (or parts thereof). 

Library files may not contain COPY statements. 

No statement may appear to the right of the COPY statement on the same source 

card. 

COPY during the PROCEDURE or ENVIRONMENT divisions must follow a SECTION or 

paragraph-name, and all information contained in the library file is included 

and can be fully referenced. 

7-40 



I COPY I 
On a COPY during the DATA DIVISION, the FD file-name, or the level 01 data-name 

preceding the COPY is saved and the relative constructs from the library file 

are discarded. For example, the statement 

FD MASTER-INPUT COPY "MASTER". 

will cause the library file titled MASTER to be inserted into the source 

program immediately following the COPY statement. The source program must 

refer to the FD file-name as MASTER-INPUT, not as MASTER. The library FD 

file-name will appear on the output listing, but cannot be referenced in the 

source program. 

Library texts copied from the library are flagged on the output listing by an 

"L" preceding the sequence number. 

In Option 2, a word is defined as being any COBOL word that is not a COBOL 

reserved word. For example, the following statement reflects non-reserved 

COBOL words AAA,BBB and 1234, where AAA and BBB are data-names and 1234 is a 

COBOL word: 

MULTIPLY AAA BY BBB, THEN GO TO 1234. 

If the COPY REPLACING option is specified, each word-I or data-name-I stipulated 

will be replaced by the word-2 or data-name-2 entries specified in the option. 

Data-names may not be subscripted, indexed, or qualified. 

Use of the COPY REPLACING option requires that the "library-name" COBOL source 

image file be present on disk, prior to compilation of the source program con

taining the COPY REPLACING option. The use of this option will not cause 

alteration of the library file residing on disk. 

In Option 2, literals contained in a library file cannot be replaced by liter

als, words, or data-names. If an integer is used for a word and it is the 

last entry in a replacing list, it must be followed by a blank and then a 

period. For example: 

COPY BERMAN REPLACING AAA BY HOURS, 

BBB BY PAY-SCALE, 1234 BY 58b. 

The COPY REPLACING option is exceptionally useful for conversion of generalized 

COBOL source-language library routines into specific and well-named routines 

within a given program. For example, a generalized COBOL source-language 

library routine may use the following data-names for the purposes shown. 

7-41 



COPY 

Data-name 

AAA 

BBB 

CCC 

DDD 

EEE 

FFF 

GGG 

1234 

Purpose 

Monthly hours worked per employee. 

Employee pay-rate. 

Employee social security number. 

Employee income tax rate. 

Employee year to date gross income. 

Employee year to date net income. 

Employee gross pay for month. 

Employee net pay for the month. 

Specifies a GO TO exit from the routine. 

A program calling upon the above generalized routine can replace the non

descript data-names with descriptive names as defined in the program's record 

description or WORKING-STORAGE area. For example: 

COPY ... REPLACING AAA BY HOURS-WORKED 
COPY ... REPLACING BBB BY RATE-OF-PAY 
COPY ... REPLACING CCC BY SOC-SEC-NR 
COPY ... REPLACING DDD BY INC-TAX-RATE 
COPY ... REPLACING EEE BY YR-TO-DATE-GROSS 
COPY ... REPLACING FFF BY YR-TO-DATE-NET 
COPY ... REPLACING GGG BY THIS-MONTHS-GROSS 
COPY ... REPLACING HHH BY THIS-MONTHS-NET 

COPY ... REPLACING 1234 BY WRITE-EMPLOYEE-DRAFT. 

The specified source program data-names and exit points will be inserted into 

the library file routine at every occurrence of the assigned generalized names 

within the routine. 

Library Creation. A library file will be created only during a COBOL compila

tion each time a source card is encountered that contains an "L" in column 7 

followed by a library-name on that same card. A library-file may contain up 

to a maximum of 20,000 card images. 

Each library file in the source program will be terminated when a card contain

ing an "L" in column 7 followed by all blanks or another library-name is en

countered. 

Once a file has been created, it may be COPYed by other programs, or by the 

creating program in succeeding FD, 01, or procedure COPY statements. 

'7-42 



COPY 

The source data used to create an original library file will also be compiled 

into the object program at the point of appearance. 

All assigned library-names must be unique to other library-names contained in 

the library, to preserve the integrity of the COBOL library system. 

Library files to be used with the COPY verb can be created by a user program 

which creates a card image file on disk. The compiler will automatically 

accept any blocking the user may desire. 

7-43 



I DISPLAY I 
DISPLAY 

The function of this verb is to provide for the printing of low-volume data, 

error messages, and operator instructions on the console typewriter. 

The construct of this verb is: 

DISPLAY {
literal-I } 
identif ier-1 

{~:manic-name}] 

[ { 
li.teral-2 1 

' identifier-2, 

Each literal may be any figurative constant except ALL, 

... J 

All special registers (DATE, TIME, TALLY, SW1 ... SWn' etc.) may be DISPLAYed. 

The DISPLAY statement causes the contents of each operand to be written on the 

supervisory printer (SPO), from the MCP SPO queue, to ensure that a program is 

not operationally deterred while a message is printing. 

If a figurative constant is specified as one of the operands, only a single 

character of the figurative constant is displayed. 

The data-names may be subscripted or indexed and can be COMPUTATIONAL or 

DISPLAY i terns. 

An infinite amount of characters may be displayed with one statement. The 

compiler will supply automatic carriage returns and line feeds, if appro

priate. 

The DISPLAY series option will cause the literals or identifiers to be printed 

on one line and, if required, the compiler will cause automatic carriage re

turns and line feeds for information extending to other lines of print. The 

compiler will format each line so that a partial word at an end of a line will 

not be printed on that line and continued on the following lines. 

When mnemonic-name is used, it must appear in the SPECIAL-NAMES paragraph 

equated to the hardware-name SPO. 

7-44 



DIVIDE 

DIVIDE 

The function of this verb is to divide one numerical data-item into another 

and set the value of an item equal to the result. 

The construct of this verb contains the following two options: 

Option 1: 

DIVIDE [MOD] {
literal-I } INTO 
identif ier-1 ~~ 

identif ier-2 

(;ON SIZE ERROR statement-I [;ELSE statement-2] J 

Opt ion 2: 

(ROUNDED] 

DIVIDE (MOD] {
literal-1 } 
identif ier-1 { ~~ro} {

literal-2 } 
identif ier-2 

GIVING identifier-3 ·[ROUNDED] 

[ REMAINDER identif ier-4 r ROUNDEDj J 
~ON SIZE ERROR statement-I [ ;~ statement-2] ] 

Identif ier-3 and identif ier-4 of Option 2 may refer to elementary numeric

edi ted items. 

Each literal must be a numeric literal. 

Division by zero is not permissible and, if executed, will result in a size 

error indication. This can be handled programmatically, either by doing a 

zero test prior to the division or by the use of the SIZE ERROR clause. If 

SIZE ERROR is not written, an attempt to divide by zero will result in pro

gram termination. 

All identifiers must refer to elementary numeric items. 

In Option 1, the value of the operand preceding the word INW will be divided 

into the operand following INTO and the resulting quotient stored as the new 

value of the latter. 

The use of the BY option will cause literal-I, identifier-I to be divided .hY. 

literal-2, identifier-2, whereas the INTO option will cause literal-I, 

identifier-I to be divided into literal-2, identifier-2. 

In Option 2, the resulting quotient will be stored as the new value of 

identifier-3. The value of the operands immediately to the left of the word 

GIVING will remain unchanged. 



I DIVI~ 
The ROUNDED option and ON SIZE ERROR clause and truncation are the same as 

those discussed for the ADD statement. 

The size of the operands is determined by the sum of the divisor and the 

quotient. The sum of the two cannot exceed 99 digits. 

The use of the MOD option will cause the remainder to be placed in identif ier-2 

of Option 1 and identifier-3 of Option 2. The remaind•:n· will be carried to the 

same degree of accuracy as defined in the PICTURE of the quotient, and all extra 

positions will be filled with zeros. 

Literals cannot be used as dividends. 

The use of the REMAINDER option will cause the remainder to be placed in 

identifier-4, and identifier-3 will contain the quotient, unless the MOD option 

is also included. If the MOD option is included, both identifier-3 and 

identifier-4 will contain the remainder. 

7-46 



DUMP 

The DUMP statement causes messages to be displayed on the line printer in

stead of the console printer. The syntax is as follows: 

DUMP (H.st] 

where [list] is a list of data-names, literals, and blanks (for spacing). 

The DUMP statement must ha used in conj·anction with the MONITOR declaration 

because it uses the same WRITE routine. 

7-47 



EXAMINE 

EXAMINE 

The function of this verb is to replace a specified character, and/or to count 

the number of occurrences of a particular character in a data item. 

The construct of the verb contains the following two options: 

Option 1: 

EXAMINE identif ier-1 

{~iter~l~l } [REPLACING BY 
1dent1f1er-2 ~~-~---~ { li teral-2 l J 

identif.ier-3 J 

Option 2: 

identifier-I RE.~~Q.lNG LEADING {
ALL } 

{
li teral-3 } 
identifier-4 BY 

[UNTIL,] FIRST 

{
li teral-4 } 
identif ier-5 

The description of identifier-I must be such that USAGE is DISPLAY explicitly 

or implicitly. 

Each literal used in an EXAMINE statement must consist of a single DISPLAY 

character. Figurative constants will automatically represent a single DISPLAY 

character. 

Examination proceeds as follows: 

a. For items that are not numeric, examination starts at the 

leftmost character and proceeds to the right. Each 8-bit character 

in the item specified by the data-name is examined in turn. Any 

reference to the first character means the left-most character. 

b. If an item referenced by the EXAMINE verb is numeric, it must consist 

of numeric characters and may possess an operational sign. 

Examination starts at the leftmost character (excluding the sign) 

and proceeds to the right. Each character except the sign is 

examined in turn. Regardless of where the sign is physically located, 

it is completely ignored by the EXAMINE verb. Any reference to the 

:first character means the leftmost numeric character. 

The TALLYING option creates an integral count (i.e., a tally) which replaces 

the value of a special register called TALLY. The count represents the num

ber of: 

7-48 



EXAMINE 

a. Occurrences of literal-I or identifier-2 when the ALL option is used. 

b. Occurrences of literal-I or identifier-2 prior to encountering a 

character other than literal-I or identif ier-2 when the LEADING 

option is used. 

c. Characters not equal to literal-I or identifier-2 encountered before 

the first occurrence of literal-I or identifier-2 when the UNTIL 

FIRST option is used. 

When either of the REPLACING options is used (i.e., with or without TALLYING), 

the replacement rules are as follows: 

a. When the ALL option is used, then literal-2 or identifier-3 or 

literal-4 or identifier-5 is substituted for each occurrence of 

literal-I or identifier-2 or literal-3 or identifier-4. 

b. When the LEADING option is used, the substitution of literal-2 or 

identifier-3 or literal-4 or identifier-5 terminates as soon as a 

character other than literal-I or identifier-2 or literal-3 or 

identifier-4 or the right-hand boundary of the data item is en

countered. 

c. When the UNTIL FIRST option is used, the substitution of literal-2 

or identifier-3 or literal-4 or identifier-5 terminates as soon as 

literal-I or identifier-2 or literal-3 or identifier-4 or the right

hand boundary of the data item is encountered. 

d. When· the FIRST option is used, the first occurrence of literal-3 

or identifier-4 is replaced by literal-4 or identifier-5. 

The field called TALLY is a 5-digit field provided by the compiler. Its 

usage is COMPUTATIONAL and will be reset to zero automatically when the 

EXAMINE ... TALLY option is encountered. 

7-49 



EXIT 

The function of this verb is to provid(~ a terminating point for a PERFORM 

loop, whenever required. 

The construct of this verb is: 

If the EXIT statement is used, it must be preceded by a paragraph-name and 

appear as a single one-word paragraph. EXIT is documentational only, but if 

used, must follow the rules of COBOL. 

The EXIT is normally used in conjunction with conditional statements contained 

in procedures referenced by a PERFORM statement. This allows branch paths 

within the procedures to rejoin at a common return point. 

If control reaches an EXIT paragraph and no associated PERFORM or USE state

ment is active, control passes through the EXIT point to the first sentence 

of the next paragraph. 



GO TO 

The function of this verb is to provide a means of interrupting out of the se

quential, sentence by sentence, execution of code, and to permit continuation 

at some other location indicated by the procedure-name(s). 

The construct of this verb has the following two options: 

Option 1: 

.QQ. TO [procedure-name] 

Option 2: 

.Q.Q. TO procedure-name-I [, procedure-name-2] ••• , procedure-name-3 

DEPENDING ON identifier 

Each procedure-name is the name of a paragraph or section in the PROCEDURE 

DIVISION of the program. 

Whenever a GO TO statement (represented by Option 1) is executed, control is 

unconditionally transferred to a procedure-name, or to another procedure

name if the GO TO statement has been changed by an ALTER statement. 

A GO TO statement is unrestricted as to where it branches to in a segmented 

program. It can call upon any segment at either the section level or para

graph levels. 

In Option 1, when the GO TO is referred to by an ALTER statement, the follow

ing rules apply, regardless of whether or not procedure-name is specified: 

a. The GO TO statement mtist be the only statement in the paragraph. 

b. If the procedure-name is omitted, and if the GO TO statement is not 

referenced by an ALTER statement prior to the first execution of the 

GO TO statement, the MCP will cause the job to be terminated. 

If a GO TO statement represented by Option 1 appears in an imperative state

ment, it must appear as the only or the last statement in a sequence of im

perative statements. 

7-51 



GOTO 

In Option 2, GO TO ... DEPENDING ... may specify up to 1023 procedure-names 

in a single statement. The data-name in the format following the words 

DEPENDING ON must be a numeric elementary item described without any positions 

to the right of the assumed decimal point. Furthermore, the value must be 

positive in order to pass control to the procedure-names specified. Control 

will be transferred to procedure-name-I if the value of the identifier is 1, 

to procedure-name-2 if the value is 2, etc. If the value of the identifier is 

anything other than a positive integer, or if its value is zero, or its value 

is higher than the number of procedure-names specified, control will be passed 

to the next statement in normal sequence. For example: 

GO TO MFG, RE-SALE, STOCK, DEPENDING ON S-O. 

~ 

VALUE OF s-o GO TO PROCEDURE-NAME 

-1 next statement 

0 next statement 

1 MFG 

2 RE-SALE 

3 STOCK 

4 next statement 

7-52 



IF 

The IF statement causes a condition to be evaluated. The subsequent action of 

the object program depends on whether the value of the condition is true or 

false. 

The construct for the IF statement is as follows: 

IF condition-I; {
statement-I } [ 
NEXT SENTENCE ' ELSE {

statement-2 }] 
NEXT SENTENCE 

Statement-I and statement-2 represent either a conditional statement or an im

perative statement, and either may be followed by a conditional statement. 

The semicolons are optional. 

The phrase ELSE NEXT SENTENCE may be omitted if it immediately precedes the 

terminal period of the sentence. 

When an IF statement is executed, the following action is taken: 

a. If the condition is true, the statements immediately following the 

condition (represented by statement-I) are executed, and control then 

passes implicitly to the next sentence unless statement-I causes some 

other transfer of control. 

b. If the condition is false, either the statements following ELSE are 

executed or, if the ELSE clause is omitted, the next sentence is 

executed. 

When an IF statement is executed and the NEXT SENTENCE phrase is present, con

trol passes explicitly to the next sentence, depending on the truth value of 

the condition and the placement of the NEXT SENTENCE phrase in the statement. 

IF statements within IF statements may be considered as paired IF and ELSE 

combinations, proceeding from left to right; thus, any ELSE encountered is 

considered to apply to the immediately preceding IF that has not already 

been paired with an ELSE. 

When control is transferred to the next sentence, either implicitly or ex

plicitly, control passes to the next sentence as written or to a return 

mechanism of a PERFORM or a USE statement. 

The method of evaluating conditional expressions allows early exit, once the 

truth value of the expression has been determined. If the expression contains 

procedure calls on user intrinsics or makes use of implied subjects, the ex

pression is evaluated fully. 



MOVE 

MOVE 

The MOVE statement transfers data, in accordance with the rules of editing, 

to one or more data areas. 

The construct for the MOVE statement consists of the following two options: 

Option 1: 

Option 2: 

{ 
ident if ier-1 t 
literal ( 

{ CORRESPONDING} 
CORR 

ident if ier-2 [ , ident if ier-3] .•• 

identifier-I TO ident if ier-2 

Identifier-I and literal represent the sending field; identifier-2, 

identifier-3 represent the receiving fields. Literal may be any literal 

or figurative constant consistent with the class of the receiving field. 

Option 1 provides for multiple receiving fields. The data designated by 

the literal or identifier-I will be moved first to identifier-2, then to 

identifier-3, etc. Subscripting or indexing associated with identifier-I is 

evaluated only once, immediately before data is moved to the first receiving 

field. The notes referencing identifier-2 also apply to the other areas. 

The result of the statement: 

MOVE A(SUB) TO SUB, B(SUB) 

would produce the same result as: 

MOVE A(SUB) TO TEMP. 

MOVE TEMP TO SUB. 

MOVE TEMP TO B(SUB). 

Elementary Moves. Any more in which the sending and receiving items are both 

elementary items is an elementary move.. All other moves are defined as group 

moves. Every elementary item belongs to one of these five categories: 

a. Numeric. 

b. Numeric Edited. 

c. Alphabetic. 

ct. Alphanumeric. 

e. Alphanumeric Edited. 



MOVE 

See the PICTURE clause description in section 6 for a detailed discussion of 

these categories. Group items, non-numeric literals, and all figurative con

stants, except ZEROS and SPACES, are classed as alphanumeric. Numeric 

literals and the figurative constant ZEROS are classed as numeric. The 

figur~tive constant SPACES is classed as alphabetic. 

Illegal Elementary_ Moves. The rules governing illegal elementary moves are 

as follows: 

1. A numeric-edited item, alphanumeric edited item, SPACES, or an 

alphabetic item cannot be moved to a numeric or numeric edited item. 

2. A numeric literal, ZEROS, a numeric data item, or a numeric edited 

item cannot be moved to an alphabetic data item. 

3. A non-integer numeric literal or a non-integer numeric data item can

not be moved to an alphanumeric or alphanumeric edited data item. 

Legal Elementary Moves. The rules governing legal elementary moves are as 

follows: 

4. When an alphanumeric or alphanumeric edited item is a receiving 

field, justification and any necessary space filling takes place 

as defined under the JUSTIFIED clause. If the size of the sending 

field is greater than the size of the receiving field, the excess 

characters are truncated on the right after the receiving item is 

filled. 

If the sending field is described as being signed numeric, the 

operational sign will not be moved. If the sign occupies a separate 

character position (KSIGN), that character will not be moved and the 

size of the sending field will be considered to be one less than its 

actual size. 

For example: 

Given these data descriptions: 

77 S PIC K9999. 

77 R PIC X(6). 

Then the statements: 

MOVE -124 TO S. 

MOVE S TO R. 

will result in R being equal to "0124 " 

7-55 



I MOV~ 
5. When a numeric or numeric edited item is the receiving field in an 

elementary move, data is moved algebraically (that is, values are 

moved, characters are not moved). Therefore, if the data in the 

sending field is not numeric, zone bits will be stripped and the 

data will be modified. Alignment by decimal point and any neces

sary zero-filling takes place as defined under the JUSTIFIED clause, 

except where zeros are replaced because of editing requirements. 

When a signed numeric item is the receiving field, the sign of the 

sending field is placed in the receiving field. Conversion of the 

sign representation takes place as necessary. If the sending field 

is unsigned, a positive sign is generated for the receiving field. 

When an unsigned numeric item is the receiving item, the absolute 

value of the sending item is moved and no operational sign is gen

erated for the receiving item. 

When an alphanumeric item is the sending field, data is moved as if 

the sending item was described as an unsigned numeric integer. 

6. When the receiving field :is alphabetic, justification and any neces

sary space filling takes .place as defined under the JUSTIFIED clause. 

If the size of the senditig field is greater than the size of the re

ceiving field, the excess characters are truncated on the right, 

after the receiving field is filled. 

Group Moves. A group move is any move in which either the sending field or the 

receiving field is a group item. Group moves are handled as alphanumeric to 

alphanumeric moves, regardless of the class of the receiving field and without 

consideration for the individual elementary or group items contained within 

either the sending or receiving area. 

Translation. Any necessary translation of data from one form of internal repre

sentation to another, i.e., ASCII to EBCDIC, EBCDIC to hexadecimal, etc., will 

be done for any elementary or group move in which data is moved non~algebraically. 

The type of translation depends on the usages of the sending and receiving 

data items. Data items declared within the sending or receiving fields are 

not considered. 



MOVE 

For example, moving an elementary numeric item of type integer to an alpha

numeric item causes the absolute value of the elementary item to be converted 

to characters of the same size as their destination. Then they are placed in 

their destination, left-justified, with spaces in any character positions to 

the right. 

INDEX DAT A ITEMS 

An index data item cannot be used'*as an operand in a MOVE statement. The 

SET statement must be used to move index data items. 

VALID MOVE COMBINATIONS 

Figure 7-1 shows the valid combinations of sending and receiving fields per

mitted in COBOL. 

When Option 2 is used, selected items within identifier-I are moved, with any 

required editing, to selected areas within identifier-2. Identifier-I and 

identifier-2 must be group items. Items are selected by matching the data

names of items defined within identifier-I with like data-names of areas de

fined within identifier-2, according to the rules specified in the discussion 

of the CORRESPONDING option. The resulting operation on each of the sets of 

matched data items proceeds as if an Option 1 MOVE had been specified. 



'! 
I 

CJ1 
00 

~ AN AE DISPLAY NUMERIC CMP NUMERIC NE ALPHABETIC 

GROUP ELEM INTEGER REAL INTEGER REAL G 

00 
ALPHABETIC 0 0 0 © * * * * * 

GROUP 0 CD 0 CD CD @ 0 ® CD AN 
CD CD 0 © ® ® ® ® 0 ELEM 

AE CD CD CD © * * * * * 
DISPLAY INTEGER * CD I CD © ® ® ® ® 0 NUMERIC 

0 0 ® ® ® 0 (DN OR LIT) REAL * * * 
INTEGER * ® ® © ® ® ® ® 0 CMP 

NUMERIC REAL * CD * * ® ® ® ® .0 
NE * 0 0 © * * * * * 
HEX LIT 

* CD CD © ® 0 ® 0 0 (TREATED AS INTEGER LIT) 

I NON-NUM LIT I CD I 0 I 0 I © i ® I ® i ® i . ® i 0 i 

ZERO ZERO ANY SENDING PROPER ZONES 
NON-NUMERIC NUMERIC LEFT JUST. BY SPACE FILL ON FILL ON NECESSARY ZONES STRIPPED OR EDITING 
MOVE MOVE JUST. DECIMAL FILL RIGHT LEFT TRANSLATION STRIPPED SUPPLIED BY PERFORMED 

INTERPRETER 

CD I I j I 

® I j j I 

® ../ I I I 

0 / ./ j I ,/ I 

@ J I I I 

© I ./ ,/ j I 
(i) ./ 

... 
I j I 

*ILLEGAL 

Figure 7-1. Valid MOVE Statement Combinations 



MULTIPLY 

MULTIPLY 

The function of this verb is to multiply two operands and store the results 

in the last-named field (which must be a numeric data-name). 

The construct of this verb is: 

{
literal-I } 

MQLTIPLY identif ier-1 BY {literal -2 } 
identif ier-2 

[GIVING identifier-3] [ROUNDED J 
[;ON SIZE ERROR statement-I [;~ statement-2] 

All rules specified under the ADD statement regarding the presence of editing 

symbols in operands, the ON SIZE ERROR option, the ROUNDED option, the GIVING 

option, truncation, and the editing results apply to the MULTIPLY statement, 

except the maximum operand size is 125 digits for the sum of two operands. 

The identifiers must be elementary item references. If GIVING is used, 

identifier-3 may be an elementary edited numeric item. In all other cases, 

the identifiers used must refer to elementary numeric items only. 

If the GIVING option is used, the result of the multiplication replaces the 

contents of identifier-3; otherwise, it replaces the contents of identifier-2. 

If GIVING is not used, literal-2 is not permitted, i.e., identifier-2 must 

appear. 



I NOTE] 

NOTE 
The function of this statement is to allow the programmer to write explanatory 

statements in his program which are to be produced on the source program list

ing for documentation purposes. 

The constructs of this statement are: 

Option 1: Paragraph NOTE: 

paragraph-name. NOTE any comment. 

Option 2: Paragraph NOTE: 

NOTE any comment. 

Option 3: Sentence NOTE: 

NOTE any comment. 

Any combination of the characters from the allowable character set may be 

jncluded in the character string of a NOTE statement. 

If a NOTE sentence is the first sentence of a paragraph, the entire paragraph 

is considered to be commentary. Either Option 1 or Option 2 may be used as 

N0TE state~ents on a paragraph level. 

If a NOTE statement appears as other than the first sentence of a paragraph, 

only the sentence constitutes a commentary. After the word NOTE is encountered, 

the first period followed by a space will cause the compiler to resume compi

lation unless the new sentence commences with the word NOTE. 

Refer to the paragraph entitled CONTINUATION INDICATOR (section 3) for an ex

planation of comments (* or I in column 7) appearing anywhere within the 

source program. 



I OPEN 

OPEN 

The function of this verb is to initiate the processing of both input and 

output files. The MCP performs checking or writing, or both, of labels and 

other input-output operations. 

The construct of this verb is: 

Option 1: 

[INPUT file-name-1 

[ouTPUT file-name-3 

[{
WITH LOCK [ACCESS]{] ~ 
REVERSED j [file-name-2 .. J ... 
WITH NO REWIND 

[WITH NO REWIND] [file-name-4 ..• J] 
[ {~UT-OUTPUT} f ile-name-5 r file-name-6 ••• ] J 
[ O-I file-name-7 [f ile-name-8 .•. ] J ... 

Option 2: 

{ OUTPUT ) 
) I-O l 
~INPUT-OUTPUT j 

file-name 

[WITH PUNCH] [WITH j PRINT128 } J f J ) WITH STACKERS 
~ INTERPRET 

More than one of the options in Option 2 may be specified in the OPEN state

ment; for example, OPEN OUTPUT file-name WITH PUNCH INTERPRET STACKERS. When 

the PUNCH option is used, it implies a 96-character PUNCH operation. 

When the PRINT 128 is used, it will require a work area of 96 + 128, or 224 

characters. The first 96 will be for the punch output. The next 128 posi

tions will be for printing on the card. 

When the INTERPRET option is used, the output area need only be 96 characters 

to cause the punch data to be printed on the card. 

When the STACKERS option is used alone, it will cause a write with no data 

transfer to the stacker selected. If used in conjunction with the other op

tions, data will be transferred also. When the STACKERS option is not used, 

the cards will be selected to the default stacker on a READ or WRITE. 

7-61 



OPEN 

File-names must not be those defined as being SORT files. 

At least one of the options must be specified before a file can be read. 

The I-O, INPUT-OUTPUT, and o-I options pertain to disk storage files. 

The OPEN statement must be executed prior to the first SEEK, READ, or WRITE 

statement for that file. 

A second OPEN statement for a file cannot be executed prior to the execution 

of a CLOSE statement for that file. 

A file area will not exist in memory until an OPEN statement is executed, 

which in turn, causes the MCP to allocate memory for the file work area, and 

any alternate areas or buffers. The MCP will obtain the needed information 

from the File Parameter Block to determine the file's characteristics. Once 

the file has been OPENed, memory will remain allocated until the file is 

programmatically CLOSEd. 

The OPEN statement does not obtain or release the first data record. A READ 

or WRITE statement must be executed to obtain or release, respectively, the 

first data record. 

When the first label is to be checked or written, the user's beginning label 

subroutine is executed if it is specified by a USE statement. 

The REVERSED and the NO REWIND options can only be used with sequential, 

single-reel tape files. 

If the peripheral ASSIGNed to the file permits rewind action, the following 

rules apply: 

7-62 

a. When neither the REVERSED nor the NO REWIND option is specified, 

execution of the OPEN statement for the file will cause the file to 

be positioned ready to read the first data-record. 

b. When either the REVERSED or the NO REWIND option is specified, 

execution of the OPEN statement does not cause the file to be po-• 
sitioned. When the REVERSED option is specified, the file must be 

positioned at its physical end. When the NO REWIND option is speci

fied, the file must be positioned at its physical beginning. 

c. When the NO RE:WIND option is specified, it applies only to sequential, 

single-reel files stored on magnetic tape units. 



OPEN 

When the REVERSED option is specified, the subsequent READ statements for the 

file makes the data-records available in reverse record order starting with 

the last record. Each record will be read into its record-area, and will 

appear as if it has been read from a forward-moving file. 

If an input file is designated with the OPTIONAL clause in the FILE-CONTROL 

paragraph of the ENVIRONMENT DIVISION, the object program causes an interroga

tion to the MCP, for the presence or absence of a pertinent file. If this file 

is not present, the first READ statement for this file causes the imperative 

statement in the AT END clause to be executed only when the operator has re

sponded with an optional file "mix index OF" message. 

The I-O or INPUT-OUTPUT option permits the OPENing of a disk file for input 

and/or output operations. This option demands the existence of the file to 

be on the disk and cannot be used if the file is being initially created; 

that is, the file to be OPENed must be present in the MCP disk directory, or 

has been previously created and CLOSEd in the same run of the program. 

When any input file option is used, the MCP immediately checks the MCP disk 

directory to see if the file is present, or if it has been created and CLOS Ed 

in the same program run. The system operator will be notified in its absence, 

and the file can then be loaded if it is available or the program can be DSed 

(discontinued). If the decision is to load the file, the operator does so 

and then notifies the MCP to proceed with the program, by means of a "mix

index OK" message. 

The O-I option is identical to OPEN I-O, with the exception that with the o-I 

option the file is assumed to be a new file to the disk directory. The OPEN 

o-I option will short cut the usual method of initially creating I-o work 

files within a program, e.g., OPEN OUTPUT, WRITE record(s), CLOSE WITH RELEASE, 

OPEN I-O, etc. The o-I option does not, nor was it intended to, replace the 

OPEN I-O option, since the use of OPEN o-I assumes that a new file is to be 

created each time. 

During processing of mass storage files for which the ACCESS MODE is 

SEQUENTIAL, the OPEN statement supplies the initial address of the first 

record to be accessed. 

The contents of the data-names specified in the FILE-LIMIT clause of the 

FILE-CONTROL paragraph (at the time the file is OPENed) are used for all 

checking operations while that file is OPEN. The FILE-LIMIT clause is dynamic 

only to this extent. 

7-63 



When an OPEN OUTPUT statement is executed for a magnetic tape file, the MCP 

searches the assignment table for an ava~lable scratch tape, writes the label 

if specified by the program, and executes any USE declaratives for the file. 

If no scratch tape is available, a message to the operator is typed and the 

program is suspended until the operator mounts such a tape or one becomes 

available due to the termination of a multiprogramming program. 

OPENing of subsequent reels of multi-reel tape files is handled automatically 

by the MCP and requires no special consideration by the programmer. 



PERFORM 

PERFORM 

The function of this verb is to depart from the normal sequence of execution 

in order to execute one or more procedures, either a specified number of times 

or until a specified condition is satisfied. Following this departure, con

trol is automatically returned to the normal sequence. 

The construct of this verb has the following four options: 

Option 1: 

PERFORM procedure-name-I 

Option 2: 

PERFORM procedure-name-I 

{ in teger-1 } 
identifier-IO TIMES 

Option 3: 

PERFORM procedure-name-I 

UNTIL condition-I 

Option 4: 

PERFORM procedure-name-I 

VARYING {
index-name-I } 
identifier-I. 

[{ THRU } 
THROUGH procedure-name-2 J 

[{=UGH} procedure-name-2] 

[{ 
THRU } 
THROUGH procedure-name-2] 

[{ THRU } procedure-name-2] 
THROUGH 

{

index-name-2} 
FROM identifier-2 

literal-2 

{ 
identifier-3} 
literal-3 UNTIL condition-I [AFTER { 

index-name-4 } 
identif ier-4 

{
index-name- 5} 

FROM identifier-5 
Ii teral-5 

{ identif ier-6} 
literal-6 

7-65 



I PERFORM J 

UNTIL condition-2] 

) index-na.me-8 } 
)identifier-8 
\literal-8 

UNTIL condition-3] 

[AFTER { 
index-name-7} 
identifier-7 

{ 
identifier-9} 
literal-9 

PERFORM is the means by which subroutines are executed in COBOL. The sub

routines may be executed once, or a number of times, as determined by a 

variety of controls. A given paragraph may be PERFORMed by itself, in con

junction with another paragr,aph, control may pass through it in sequential 

operation, and it may be the object of :a GO statement, all in the same pro

gram. 

Each identifier represents a numeric elementary item. Identifier-IO must be 

described as an integer. 

Each literal represents a numeric literal. 

When the PERFORM statement is executed, control is transferred to the first 

statement of procedure-name-I. An automatic return to the statement following 

the PERFORM statement is established as follows: 

a. If procedure-name-I is a paragraph-name and procedure-name-2 is 

not specified, then the return occurs after the last statement of 

procedure-name-I. 

b. If procedure-name-I is a section name and procedure-name-2 is not 

specified, then the return occurs after the last statement of the last 

paragraph in procedure-name-I. 

c. If the procedure-name-2 is specified and it is a paragraph name, then 

the return occurs after the last statement of the paragraph. 

d. If the procedure-name-2 is specified and it is a section name, then 
• the return occurs after the last sentence of the last paragraph in the 

section. 

There is no necessary relationship between procedure-name-I and procedure

name-2, except that a consecutive sequence of operations is to be executed 

beginning at the procedure named procedure-name-I and ending with the execu

tion of the procedure named procedure-name-2. In particular, GO TO and 

PERFORM statements may occur between procedure-name-I and the end of 

7-66 



PERFORM 

procedure-name-2. If there are two or more direct paths to the return point, 

then procedure-name-2 may be the name of a paragraph consisting of the EXIT 

statement, to which all of these paths must lead. 

If control passes to these procedures by means other than a PERFORM statement, 

control passes thru the last statement of the procedure to the following 

statement, unless a PERFORM statement is executed during execution of these 

procedures. 

If a statement within procedure-name-I or procedure-name-2 contains a nested 

PERFORM, object program control will pass to the procedure-name contained in 

the nested statement, and the procedure will be accomplished. Program control 

will automatically return to the next sentence following the executed PERFORM 

statement. Nested PERFORM statements are allowed to any reasonable depth. 

However, the procedure named must return to the statement following the pre

viously executed PERFORM and cannot contain a GO TO out of range of procedure

name-1 or procedure-name-2. 

A PERFORM statement is not restricted by overlayable segment boundaries and 

may reference a procedure-name anywhere within the PROCEDURE DIVISION. 

Option 1 is the basic PERFORM statement. A procedure referred to by this 

type of PERFORM statement is executed once, and then control passes to the 

statement following the PERFORM statement. 

Option 2 is the TIMES option and, when used, the procedures are performed the 

number of times specified by identifier-IO or integer-I. The value of 

identifier-IO or integer-I must be positive. Control is transferred to the 

statement following the PERFORM statement. If the value is zero, control 

passes immediately to the statement following the PERFORM sentence. Once the 

PERFORM statement has been initiated, any reference to, or manipulation of, 

identifier-IO will not affect the number of times the procedures are executed. 

Option 3 is the UNTIL option. The specified procedures are performed until 

the condition specified by the UNTIL condition is TRUE. At this time, control 

is transferred to the statement following the PERFORM statement. If the con

dition is TRUE at the time that the PERFORM statement is encountered, the 

specified procedure is not executed. 

In option 4, when one identifier is varied, identifier-I is set equal to the 

current value of identifier-2, or literal-2. If the condition is false, 

the sequence of procedures, procedure-name-I thru procedure-name-2, is 

executed once. The value of identifier-I is augmented by the specified incre

ment or decrement (identifier-3), and condition-I is evaluated again. The 



PERFORM 

cycle continues until this expression is true; at thi~ point, control passes 

to the statement following the PERFORM statement. If the condition is true at 

the beginning of execution of the PERFORM, control passes directly to the 

statement following the PERFORM statement. Figure 7-2 illustrates the logic 

of the PERFORM statement when one identifier is varied. 

In option 4, when two identifiers are varied, identifier-I and identifier-4 

are set to the current value of identifier-2 and identifier-5, respectively. 

At the start of the PERFORM statement, condition-I is evaluated; if ture, 

control is passed to the statement following the PERFORM statement; if false, 

condition-2 is evaluated. If condition-2 is false, procedure-name-I thru 

procedure-name-2 is executed once, after which identifier-4 is augmented by 

identifier-6, and condition-2 is evaluated again. The cycle of execution and 

augmentation continues until this condition is ture. When condition-2 is 

true, identifier-4 is set to the current value of identifier-5; identifier-I 

is augmented by identifier-3, and condition-I is re-evaluated. The PERFORM 

statement is completed if condition-I is ture; if not, the cycles continue 

until condition-I is true. 

Figure 7-3 illustrates the logic of the PERFORM statement when two identifiers 

are varied. 

During the execution of the procedures associated with the PERFORM statement, 

any change to the VARYING variable (identifier-I and index-name-1), the BY 

variable (identifier-3), the AFTER variable (identifier-4 and index-name-4), 

of the FROM variable (identifier-2, index-name-2, identifier-5 and index-name-

5) will be taken into consideration and will affect the operation of the PER

FORM statement. 

When two identifiers are varied, identifier-4 goes thru a complete cycle 

(FROM, BY, UNTIL) each time identifier-·! is varied. 

At the termination of the PERFORM statement, identifier-4 contains the current 

value of identifier-5. Identifier-I has a value that exceeds the last used 

setting by an increment or decrement, as the case may be, unless condition-I 

was true when the PERFORM statement was entered, in which case identifier-I 

contains the current value of identifier-2. 

7-68 



ENTRANCE 

SET IDENTIFIER-I EQUAL TO 
CURRENT FROM VALUE 

~_T_R_U_E __ --i., EX IT 

EXECUTE PROCEDURE-NAME-I 
THRU PROCEDURE-NAME-2 

AUGMENT IDENTIFIER-I WITH 
.___ ______ ~~----~ CURRENT BY VALUE 

PERFORM 

Figure 7-2. PERFORM Statement Varying One Identifier 

----~ 

ENTRANCE 

SET IDENTIFIER-I AND 
IDENTIFIER-4 TO 

CURRENT FROM VALUES 

~ ___ TR_UE ____________ ~ EXIT 

EXECUTE PROCEDURE-NAME-I 
THRU PROCEDURE-NAME-2 

AUGMENT IDENTIFIER-4 WITH 
CURRENT BY VALUE 

TRUE 

SET JDENTIFIER-4 TO ITS 
CURRENT FROM VALUE 

AUGMENT IDENTIFIER-! WITH 
CURRENT BY VALUE 

Figure 7-3. PERFORM Statement Varying Two Identifiers 

7-69 



~FORM I 

In Option 4 where three conditions are required to control the number of 

iterations that a given procedure is to be PERFORMed, the mechanism is the 

same as for two-conditional control except that identifier-7 goes through a 

complete cycle each time that identifier-6 is added to identifier-4, which in 

turn goes through a complete cycle each time that identifier-I is varied. 

After the completion of option 4, identifier-4 and identifier-7 contain the 

current value of identifier-5 and identifier-8, respectively. Identifier-I 

has a value that exceeds its last used setting by one increment or decrement 

value, unless condition-I is true when the PERFORM statement is entered, in 

which case identifier-I contains the current value of identifier-2. 

Since the return control information is placed in the stack rather than being 

directed through instruction address modification, a PERFORM statement exe

cuted within the range of another PERFORM is not restricted in the range of 

paragraph names it may include. The examples shown below are permitted and 

will execute correctly. 

x PERFORM a THRU m 

a 

d PERFORM f THRU j 

f 

j 

m 

x PERFORM a THRU m 

a 

d PERFORM f THRU j 

f IF condition THEN~ 

PERFORM a THRU m 

m 

j 

x PERFORM a TERU m x PERFORM a THRU m 

a a 

d PERFORM f THRU j f------. 

m 

f 

j 

j 

d PERFORM f THRU j 

x PERFORM a THRU m 

a 

d IF condition THEN 

PERFORM a THRU m 

m 



READ 

READ 

The functions of this verb are twofold, namely: 

a. During processing of sequential input files, a READ statement will 

cause the next sequential logical record to be moved from the input 

buffer area to the record work area, thus making the record available 

to the program. 

All sequential records will be physically read into the buffer area 

of the file. Physical READs are performed as a function of the MCP. 

The READ statement permits the performance of a specified statement 

when an end-of-file condition is detected by the MCP. 

b. For random file processing, the READ statement communicates with the 

MCP to explicitly cause the reading of a physical record from a disk 

file, and also allows performance of a specified imperative statement 

if the contents of the associated ACTUAL KEY data item is found to 

be invalid. 

The construct of this verb is: 

[ ] [. { AT END } READ file-name RECORD INTO identifier , INVALID KEY statement-I 

[;ELSE statement-2]] 

The AT END of file clause is used for non-disk files or for disk files 

being processed in the sequential access mode. If no AT END or INVALID KEY 

clause is stated, and one of these conditions occurs, the program will be 

terminated with a DS or DP message. 

If, during execution of a READ statement with AT END, the logical end-of-file 

is reached and an attempt is made to READ that file, the statement specified 

in the AT END phrase is executed. After the execution of the imperative 

statement of the AT END phrase, a READ statement for that file must not be 

given without prior execution of a CLOSE statement and an OPEN statement for 

that file. 

When the AT END clause is specified in a conditional sentence, all exits 

within the sentence are controlled by using the rules pertaining to the 

matching of IF .•• ELSE pairs. For example: 

IF AAA = BBB THEN READ FILE-A, AT END 

GO TO WRAP-UP, ELSE NEXT SENTENCE, ELSE STOP RUN. 



READ 

a. When AAA does not equal BBB, control will be passed to STOP RUN. 

b. When AAA equals BBB, FILE-A is read, end-of-file is tested and if 

the result is TRUE program control will be transferred to the 

WRAP-UP procedure; however, a result of FALSE will cause program 

control to be transferred to the next sentence. 

The INVALID KEY applies to files that are ASSIGNed to disk. The access of 

the file is controlled by the value contained in ACTUAL KEY. 

An AT END or INVALID KEY clause must be specified when reading a file de

scribed as containing FILE-LIMITS. 

An OPEN statement must be executed for a file prior to the execution of the 

first READ statement for that file. 

When a file consists of more than one type of logical record, these records 

automatically share the same storage area and are equivalent to an implicit 

redefinition of the area. Only the information that is present in the cur

rent record is available. 

If the INTO option is specified, the current record is MOVEd from the input 

area to the area specified by identifier according to the rules for the MOVE 

statement without the CORRESPONDING option. 

When the INTO option is used, the record being read is available in both the 

data area associated with data-name and the input record area. 

If a file described with the OPTIONAL clause is not present, the imperative 

statement in the AT END phrase is executed on the first READ. The standard 

End-of-File procedures are not performed. (See the OPEN and USE statements, 

and the FILE-CONTROL paragraph in the ENVIRONMENT DIVISION.) 

If the end of a magnetic tape file is recognized during execution of a READ 

statement, the following operations are carried out: 

a. The standard ending reel label procedure and the user's ending reel 

label procedure, if specified by the USE statement, are performed. 

The order of execution of these two procedures is specified by the 

USE statemenL 

b. A tape swap is performed. 



READ 

c. The standard beginning reel label procedure and the user's beginning 

label procedure, if specified, are executed. The order of execution 

is again specified by the USE statement. 

d. The first data record on the new reel is made available. 

READ with INVALID KEY is used for disk files in the random access mode. The 

READ statement implicitly performs the functions of the SEEK statement, ex

cept for the function of the KEY CONVERSION option for a specific disk file. 

If the contents of the associated ACTUAL KEY data item is out of the range 

indicated by FILE LIMITS, the INVALID KEY phrase will be executed. 

For random disk files, the sensing of an INVALID KEY does not preclude further: 

READs on that file, nor must the file be closed and reopened before such READs 

are performed. 



I RELEASE I 
RELEASE 

The function of this verb is to cause records to be transferred to the initial 

phase of a SORT operation. 

The construct of this verb is: 

RELEASE record-name [!!!QM identifier] 

A RELEASE statement may only be used within the range of an input procedure 

associated with a SORT statement. 

Record-name and data-name must name different memory areas when specified. 

The RELEASE statement causes the contents of record-name to be released to 

the initial phase of a sort. Record-name will be transferred to the speci

fied sort-file (SD) and becomes controlled by the sort operation. 

In the FROM option, the contents of data-name are MOVEd to record-name, then 

the contents of record-name are released to the initial phase of a sort. 

Moving takes place according to the rules specified for the MOVE statement 

without the CORRESPO~DING option. 

When control passes from the input procedure, the SD file consists of all 

records placed in it by the execution of RELEASE statements. 



RETURN 

RETURN 

The function of this verb is to obtain sorted records from the final phase 

of a SORT operation. 

The construct of this verb is: 

RETURN file-name RECORD [INTO identifie~] 

; AT END statement-I [;ELSE statement-I] 

File-name must be a sort file with a Sort File Description (SD) entry in the 

DATA DIVISION. 

A RETURN statement may only be used within the range of an output procedure 

associated with a SORT statement for file-name. 

Records automatically share the same area when a file consists of more than 

one type record and only the information pertinent to the current record is 

available. 

The execution of the RETURN statement causes the next record, in the order 

specified by the keys listed in the SORT statement, to be made available for 

processing in the record area associated with the SORT file (SD). 

Moving is performed according to the rules specified for the MOVE statement 

without the CORRESPONDING option. 

When the INTO option is specified, the sorted data is available in both the 

input-record area and the data-area specified by data-name. 

RETURN statements may not be executed within the current SORT output procedure 

after the AT END clause has been executed. 



SEARCH 

SEARCH 

The function of this verb is to cause a search of a table to locate a table

element that satisfies a specific condition and, in turn, to adjust the as

sociated index-name to indicate that table-element. 

The construct of this verb has the following two options: 

Option 1: 

[ {
index-name-I} 

~EARCH identif ier-1 VARYING identif ier-2 J 
[;AT END imperative-statement-I] 

;WHEN condition-I 

EWHEN condition-2 

Option 2: 

a imperative sta tement-2 } 
\NEXT SENTENCE 

{ 
imperative sta tement-3 } 
NEXT SENTENCE ... J 

.SEARCH ALL identifier-I [;AT END imperative-statement-4] 

;WHEN condition-3 {
imperative statement-5} 
NEXT SENTENCE 

Identifier-I must not be subscripted or indexed, but its description in the 

DATA DIVISION must contain an OCCURS clause and an INDEXED BY clause. 

When Option 2 is specified, the description of identifier-3 may optionally 

contain the ASCENDING/DESCENDING KEY clause. 

When the VARYING option is used, identifier-2 must be described as USAGE IS 

INDEX, or as the name of a numeric elementary item described without any po

sitions to the right of the assumed dec:Lmal point. Identifier-2 will be in

cremented at the same time as the occurrence number (and by the same amount) 

represented by the index-name associated with identifier-I. 

When Option 1 is used, condition-I, condition-2, etc., may be comprised of any 

conditional as described by the IF verb. 

When Option 2 is used, condition-3 may consist of a relational condition in

corporating the relation EQUAL, or a condition-name condition where the VALUE 

clause that describes the condition-name contains only a single literal. 

Condition-3 may be a compound condition formed from simple conditions of the 

type just mentioned, with AND being the only acceptable connective. 



I SEARCH 

When Option 2 is used, any data-name that appears in the KEY option of 

identifier-3 may appear as the subject or object of a test, or be the name of 

the conditional variable with which the tested condition-name is associated. 

When Option 1 is used, a serial type search operation takes place, starting 

with the current index setting. The search is immediately terminated if, at 

the start of execution of the statement, the index-name associated with data

identifier-1 contains a value that corresponds to an occurrence number that is 

greater than the highest permissible occurrence number for identifier-I. Then, 

if the AT END option is specified, statement-I is executed; if AT END is not 

specified, control passes to the NEXT SENTENCE. 

When Option 1 is used, if at the start of execution of the SEARCH statement, the 

index-name associated with identifier-I contains a value that corresponds to an 

occurrence number that is not greater than the highest permissible occurrence 

number for identifier-I, the SEARCH statement will begin evaluating the con

ditions in the order that they are written, making use of index settings 

wherever specified, to determine the occurrences of those items to be tested. 

If none of the conditions are satisfied, the index-name for identifier-I 

is incremented to obtain a reference to the next occurrence. The process is 

repeated using the new index-name setting for identifier-I, which corresponds 

to a table element which exceeds the last setting by one more occurrence, 

until such time as the highest permissible occurrence number is exceeded, in 

which case the SEARCH terminates as indicated in the previous paragraph. 

When Option 1 is used, if one of the conditions is satisfied upon its evaluation 

the SEARCH terminates immediately and the imperative statement associated with 

that condition is executed; the index-name remains set at the occurrence which 

caused the condition to be satisfied. 

In Options 1 and 2, if the specified imperative statements do not terminate 

with a GO statement, then program control will pass to the next sentence, after 

the execution of the imperative statement. 

In the VARYING option, if index-name-I appears in the INDEXED BY option of 

identifier-I, then that index-name will be used for the SEARCH; otherwise, the 

first index-name given in the INDEXED BY option of another table entry, the 

occurrence number represented by index-name-I is incremented by the same 

amount as, and at the same time as, the occurrence number represented by the 

index-name associated with identifier-I is incremented. 



lsEAR"'CHJ 

In Option 2, the initial setting of the index-name for data-name-3 is ignored, 

the effect being the same as if it were SET to 1. 

In Options 1 and 2, if identifier-I and identifier-3 constitute an item in a 

group, or a hierarchy of groups, whose description contains an OCCURS clause, 

then each of these groups must also havB an index-name associated with it. The 

settings of these index-names are used throughout the execution of the SEARCH 

statement to refer to data-names-I and 3, or to items within its structure. 

These index settings are not modified by the execution of the SEARCH state

ment (unless stated as index-name-I), and only the index-name associated with 

identif ier-1 and identifier-3 (and identif ier-2 or index-name-I) is incremented 

by the SEARCH. Figure 7-4 provides an example of SEARCH operation as related 

to Option 1. 



START 

AT END* 

GREATER THAN ACCOMPLISH 
">----------........ IMPERATIVE 

STATEMENT-I 

LESS THAN OR EQUAL 

FALSE 

INCREMENT INDEX
NAME FOR IDENTI
FIER-I OR INDEX-

NAME IF APPLICABLE 

INCREMENT INDEX
NAME (FOR A DIFF

ERENT TABLE) OR 
IDENTIFIER-2* 

TRUE ACCOMPLISH 
~----------t._ IMPERATIVE 

STATEMENT-2 

TRUE ACCOMPLISH 
>-~---~-----ti~ IMPERATIVE 

STATEMENT-3* 

SEARCH 

see ** 

* These operations are only included when called for in the SEARCH statement. 
** Each of the control transfers is to NEXT SENTENCE unless the imperative 

statement ends with a GO statement. 

Figure 7-4. Example of Option 1 SEARCH Statement 



SEEK 

SEEK 

The function of this verb is to initiate the accessing of a disk file record 

for subsequent reading and/or writing. The construct of this verb is: 

SEEK file-name RECORD (WITH KEY CONVERSION] 

The specification of the KEY CONVERSION clause indicates that the user

provided USE FOR KEY CONVERSION section in the DECLARATIVE SECTION is to be 

executed prior to the execution of the SEEK statement. If there are no 

DECLARATIVES for KEY CONVERSION in a SEEK statement, then the KEY CONVERSION 

clause will be ignored. 

A SEEK statement pertains only to disk storage files in the random access mode 

and may be executed prior to the execution of each READ and WRITE statement. 

The SEEK statement uses the contents of the dat·a-name in the ACTUAL KEY clause 

as the location of the record to be accessed. At the time of execution, the 

determination is made as to the validity of the contents of the ACTUAL KEY 

data item for the particular disk storage file. If the key is invalid, the 

imperative statement in the INVALID KEY clause of the next executed READ or 

WRITE statement for the associated file is executed. 

Two SEEK statements for a disk storage file may logically follow each other. 

Any validity check associated with the first SEEK statement is negated by the 

execution of a second implicit or implied SEEK statement. 

An implied SEEK is executed by the MCP whenever an explicit SEEK is missing 

for the specified record. An implied SEEK never executes any USE KEY CON

VERSION Declaratives. 

If a READ/WRITE statement for a file ASSIGNed to DISK is executed, but an 

explicit SEEK has not been executed since the last previous READ or WRITE 

for the file, then the implied SEEK statement is executed as the first step 

of the READ/WRITE statement. 

An explicit alteration of ACTUAL KEY after the execution of an explicit SEEK 

has been performed, but prior to a READ/WRITE, will cause the initiation of 

an implied SEEK of the initial record in the sequence. For example, 

a. If ACTUAL KEY is IO, then 

b. READ record IO, then 

c. MOVE 50 to ACTUAL KEY, then 

d. WRITE record 50. 

An implied SEEK of record 50 will be performed between actions c and d, above. 

1-so 



SET 

The SET statement establishes reference points or offsets operations by set

ting index-names associated with table elements. 

The construct of this verb has the following two options: 

Option 1: 

Option 2: 

SET 

{
identifier-!} [ 
index-name-I ' { ~dentif ier-2}] 

i.ndex-name-2 

index-name-4 [, index-name-5) 

{ 

identif ier-3} 
index-name-3 
integer-I 

{
UP BY } 
DOWN BY { 

identif ier-4} 
integer-2 

All references to identif ier-1 and index-name-I apply equally to identif ier-2 

and index-name-2, respectively. 

All identifiers must name either index data items, or elementary items des

cribed as an integer, except that identifier-4 must not name an index data 

item. When integer-I is used, it must be a positive integer. Index-names 

are considered related to a given table and are defined by being specified 

in the INDEXED BY phrase of the OCCURS clause. 

If index-name-3 is specified, the value of the index before the execution of 

the SET statement must correspond to an occurrence number of an element in 

the associated table. 

If index-name-I, index-name-2 is specified, the value of the index after the 

execution of the SET statement must correspond to an occurrence number of an 

element in the associated table. The value of the index associated with an 

index-name after the execution of a SEARCH or PERFORM statement may be un

defined. 

In option 1, the following action occurs: 

a. Index-name-I is set to a value causing it to refer to the table ele

ment that corresponds in occurrence number to the table element ref

erenced by index-name-3, identifier-3, or integer-I. If identifier-3 

is an index data item, or if index-name-3 is related to the same 

table as index-name-I, no conversion takes place. 

7-81 



b. If identif ier·-1 is an index data i tern, it may be set equal to either 

the contents of index-name-3 or identifier-3 where identif ier-3 is 

also an index data item; no conversion takes place in either case. 

c. If identifier-I is not an index data item, it may be set only to an 

occurrence number that corresponds to the value of index-name-3. 

Neither identifier-3 nor integer-I can be used in this case. 

d. The process is repeated for index-name-2, identifier-2, etc., if 

specified. Each time, the value of index-name-3 or identifier-3 

is used as it was at the beginning of the execution of the statement. 

Any subscripting or indexing associated with identifier-I, etc., is 

evaluated immediately before the value of the respective data item 

is changed. 

In option 2, the contents of index-name-4 are incremented (UP BY) or decre

mented (DOWN BY) by a value that corresponds to the number of occurrences 

represented by the value of integer-2 or identifier-4; thereafter, the process 

is repeated for index-name-5, etc. Each time the value of identifier-4 is 

used as it was at the beginning of the execution of the statement. 

Data in the figure 7-5 represents the validity of various operand combinations 

in the SET statement. The parenthetical comment references the lettered para

graphs above. 

RECEIVING ITEM 

SENDING ITEM INTEGER DATA ITEM INDEX-NAME INDEX DATA ITEM 

Integer Literal No (c) Valid (a) No (b) 

Integer Data Item No (c) Valid (a) No (b) 

Index-Name Valid (c) Valid (a) Valid (b) * 

Index Data Item No (c) Valid (a)* Valid (b)* 

*No conversion takes place. 

Figure 7-5. SET Statement Operand Combinations 

7-82 



SORT 

SORT 

The function of this verb is to sort an input file of records by transferring 

such data into a disk sort-file (work file) and sorting those records on a 

set of specified keys. The final phase of the sort operation makes each 

record available from the sort-file, in sorted order, to an output procedure 

or to an output file. 

The construct of this verb is: 

TAG-KEY] . 
~ INPL C f ile-name-1 

ON ERROR J 
ON {DESCENDING} KEY data-name-I [, da ta-name-2] ••• ] 

ASCENDING 

[ON{~~~~~!~} KEY data-name-3 [,data-name-4] .•• J 

(INPUT PROCEDURE IS section-name-I 

) [~ J lUSING file-name-2 PURGE 

[{ THRU } 
THROUGH section-name-2] l 

(oUTPUT PROCEDURE IS 

lGIVING file-name-3 

RELEASE 

section-name-3 

[~ J RELEASE 

[ {=UGH} sec tion-name-4] l 
j 

When the TAG-KEY option is used, sorting is performed on keys rather than on the 

entire record. The record numbers are placed in sorted order in the GIVING 

file-name, which must specify a record size of 8 digits and should be blocked 

45. The TAG-KEY option prohibits use of INPUT or OUTPUT procedures. 

When the INPLACE option is used, the amount of disk space used for sorting is 

minimized. The record sizes for f ile-name-2 and f ile-name-3 must be the same 

as file-name-1. 

File-name-I must be described in a Sort File Description (SD) entry in the 

DATA DIVISION, and file-name-2 and file-name-3 must be described in a File 

Description (FD) entry. 

Section-name-I specifies the name of the input procedure to be used before 

each record is passed to the sort-file, and section-name-3 specifies the out

put procedure to be used to obtain each sorted record from the sort-file. 

7-83 



Each data-name must represent data-items described in records associated 

with file-name-I. Data-names following the word KEY are listed from left 

to right, in the order of decreasing significance, without regard to their 

division into optional KEY clauses. 

The PROCEDURE DIVISION of a source program may contain more than one SORT 

statement appearing anywhere in the program, except in the DECLARATIVES por

tion or in the input/output procedures associated with a SORT statement. 

The input procedure must consist of one or more sections that are written 

consecutively and which do not form a part of an output procedure. The in

put procedure must include at least one RELEASE statement in order to trans

fer records to the sort-file after the object program has accomplished the 

required input data manipulation specified in the procedure. Input procedures 

can select, create and/or modify records, one at a time, as specified by the 

programmer. 

There are three restrictions placed on procedural statements within an input 

or output procedure: 

a. The procedure must not contain any SORT statements. 

b. The input or output procedures must not contain any transfers of 

program control outside the range of the procedure; ALTER, GO and 

PERFORM statements within the procedure are not permitted to refer 

to procedure-names outside of the input or output procedure. 

c. The remainder of the PROCEDURE DIVISION must not contain any transfers 

of program control to points within the input or output procedure; 

ALTER, GO, and PERFORM statements in the remainder of the PROCEDURE 

DIVISION must not refer to procedure-names within the range of the 

input or output procedure. 

The output procedure must consist of one or more sections that are written 

consecutively and which do not form a part of an input procedure. The output 

procedure must include at least one RETURN statement in order to make each 

sorted record available for processing. Output procedures can select, create, 

and/or modify records, one at a time, as they are being returned from the sort

file. 

When the ASCENDING clause is specified, the sorted sequence of the affected 

records is from the lowest to the highest value, according to the binary 

EBCDIC collating sequence. 

7-84 



SORT 

When the DESCENDING clause is specified, the sorted sequence of the affected 

records is from the highest to the lowest value according to the binary EBCDIC 

collating sequence. 

The SD record description of the sort-file must contain fully defined data

name KEY items in the relative positions of the record, as applicable. A rule 

to follow when using these KEY items is that when a KEY item appears in more 

than one type of record, the data-names must be relatively equivalent in each 

record and may not contain, or be subordinate to, entries containing an OCCURS 

clause. 

When an INPUT procedure is specified, object-program control will be passed to 

that procedure automatically as an implicit function of encountering the gen

erated SORT verb object code compiled into the program. The compiler will in

sert a "return-to-the-sort" mechanism at the end of the last section in the in

put procedure, and when program control passes the last statement of the input 

procedure, the records that have been RELEASED to file-name-I are sorted. 

If the USING option is specified, all records residing in file-name-2 will be 

automatically transferred to file-name-I, upon encountering the generated SORT 

verb object code. At the time of execution of the SORT statement, file-name-2 

must not be OPEN. The SORT statement automatically performs the function ne

cessary to OPEN, READ, USE and CLOSE file-name-2. If file-name-2 is a disk 

file, it must be in the Disk Directory before the SORT intrinsic is called. 

If an output procedure is specified, object-program control will be passed 

to that procedure automatically as an implicit function when all records have 

become sorted. The compiler will insert a "return-to-the-object program" me

chanism at the end of the last section in the output procedure; and when pro

gram control passes the last statement of the output procedure, the object 

program will execute the next statement following the pertinent SORT statement. 

If the GIVING option is specified, all sorted records residing in file-name-I 

are automatically transferred to the OUTPUT file as specified in file-name-3. 

At the time of execution of the SORT statement, file-name-3 must not be OPEN. 

File-name-3 will be automatically OPENed before the sorted records are trans

ferred from the sort-file and, in turn, will be automatically CLOSEd after the 

last record in the sort-file has been transferred. 

The ON ERROR option is provided to allow programmers some control over ir

recoverable parity errors when input output procedures are not present in a 

program. PURGE will cause all records in a block containing an irrecoverable 

parity error to be dropped, and processing will be continued after a SPO mes

sage has been printed that gives the relative position in the file of the bad 

7-85 



SORT 

block. This option is always assumed if no other has been defined. RUN will 

cause the faulty block to be used by the program and will provide the same 

console printer message as defined for PURGE. END will cause the usual DS or 

DP console printer message. 

The PURGE, LOCK,. and RELEASE options may be used to specify the type of file 

close on file-name-2 and file-name-3. Refer to description of CLOSE verb in 

this section. The options only apply to the USING/GIVING options. 

Example: 

SORT file-name-1 ASCENDING KEY data-name-I 

USING f ile-name-3 PURGE 

GIVING f ile-name-3 LOCK. 

Beginning and ending label USE procedures are provided as follows when input/ 

output procedures are present in the SORT statement: 

7-86 

a. 

b. 

c. 

OPEN INPUT file-name. 

USE. . . (The programmer's USE procedure will be invoked). 

OPEN OUTPUT file-name. 

USE. . . (The programmer's USE procedure will be invoked). 

CLOSE INPUT file-name. 

USE ••. (The programmer's USE procedure will be invoked; however, 

the contents of the ending input label will not be available to the 

USE procedure). 

d. CLOSE OUTPUT file-name. 

USE ... (The programmer's USE procedure will be invoked; however, 

the ending label will have beE!n written prior to execution of the 

USE procedure) . 

NOTE 

The above action provide label USE pro

cedures at beginning and ending of files, 

but not during switching of reels of 

multi-reel files. 



STOP 

STOP 

The function of this verb is to halt the object program temporarily or to 

terminate execution. 

The construct of this verb is: 

STOP { ~~eral} 

If the word RUN is used, then all files which remain OPEN will be CLOSED 

automatically. New files ASSIGNED to DISK will be CLOSED WITH PURGE and all 

others will be CLOSED WITH RELEASE. All storage areas for the object pro

gram are returned to the MCP and the job is then removed from the MCP mix. 

The STOP RUN is not used for temporary stops within a program. STOP RUN 

must be the last statement of the program execution sequence. 

If the literal option is used, the literal will be DISPLAYed on the console 

printer and the program will be suspended. When the operator enters the MCP 

continuation message mix-index AX, program execution resumes with the next 

sequential operation. This option is normally used for operational halts to 

cause the system's operator to physically accomplish an external action. 

7-87 



I SUBTRACT I 
SUBTRACT 

The function of this verb is to subtract one data item, or the sum of two or 

more, numeric data items from another item, and set the value of an item equal 

to the result(s). 

The construct of this verb has the follbwing three options: 

Option 1: 

SUBTRACT f literal-1 } 
\identifier-I [{ 

li teral-2 l J 
identif ier-2 j • • • FROM 

identifier-m [ROUNDED] [identif ier-·n [ROUNDED] ... J 
[;ON SIZE ERROR statement-I [;ELSE statement-2]] 

Option 2: 

SUBTRACT {
literal-I ~ 
identifier-If [{

literal-2 l J 
identifier-21 ··· 

{ ~iter~~~m } GIVING identifier-n [ROUNDEDJ~ [,identifier-a [ROUNDED]] ••• 
identif ier-m 

[;ON SIZE ERROR statement-I [ ;.fil&E statement-2]] 

Option 3: 

{
CORR } 

SUBTRACT CORRESPONDING identif ier-1 FROM identif ier-2 

[ROUNDED J (;ON SIZE ERROR statement-I [;ELSE statement-2]] 

In Options 1 and 2, the identifiers used must refer only to elementary numeric 

items. If Option 2 is used, the data-description of identifier-n and identifier

o may be an elementary numeric edited item. 

All rules specified under the ADD statement with respect to the operand size, 

presence of editing symbols in operands, the ON SIZE ERROR option, the ROUNDED 

option, the GIVING option, truncation, the editing results, the handling of 

intermediate results, and the CORR or CORRESPONDING option apply to the SUB

TRACT statement. 

When the GIVING option is not used, a literal may not be specified as the minuend. 

When dealing with multiple subtrahends, the effect of the subtraction will be as 

if the subtrahends were first summed, and then the sum subtracted from the 

minuends. 



TRACE 

TRACE 

The function of this verb is to create documentation of all normal and/or 

control mode processing events and to ouyput this data on a line printer. 

The construct of this verb is: 

TRACE ~ 

When a TRACE statement is encountered during object-program execution, the 

following actions will take place at that point in the program: 

The 20 option will cause a memory dump to be taken of lGcations that are base 

relative to the program's memory assignment. Processing will continue after 

the memory "snapshot." 

7-89 



USE 

The function of this verb is to specify procedures for any input/output 

error and/or label handling which are in addition to the standard procedures 

supplied by the MCP, and to calculate the ACTUAL KEY for files assigned to 

DISK. 

The construct of this verb has the following three options: 

OptioJL.1.: 

USE AFTER STANDARD ERROR PROCEDURE ON l 
file-name-1 [,file-name-2] 
INPUT 
OUTPUT 
INPUT-OUTPUT 

Option 2: 

{
AFTER } 
BEFORE STANDARD { B~GINNING} ENDING 

1.::Q. 
0-I 

[ { ~~~i } J LABEL PROCEDURE ON .INPUT \ 
{

file-name-1 [,file-name-2] •o• ) 

OUTPUT j 

Option 3: 

USE FOR KEY CONVERSION ON file-name-I [,file-name-2 ... J. 

A USE statement, when present, must immediately follow a section header in 

the DECLARATIVE portion of the PROCEDURE DIVISION and must be followed by a 

period followed by a space. The remainder of the section must consist of one 

or more procedural paragraphs that define the procedures to be used. 

If the file-name option is used as part of Option 2, the File Description 

entry for the file-name must not specify a LABEL RECORDS ARE OMITTED clause. 

A USE statement specified for input and/or output files associated with the 

SORT verb will not be executed when executing the SORT unless an INPUT and/or 

OUTPUT PROCEDURE has been included in the program. 

The USE statement itself is never executed rather, it defines the conditions 

calling for the execution of the USE procedures. 



If neither REEL nor FILE is included in Option 2, the designated procedures 

are executed for both REEL and FILE labels. The REEL option is not applicable 

to mass storage files. 

Within a given format, a file-name must not be referred to implicitly or 

explicitly in more than one USE statement. 

USE procedures will be executed by the MCP: 

a. After completion of the standard I/O error retry routine (this applies 

only to option 1), the record in error has been read; therefore, another 

READ cannot appear in the USE section, since the MCP is performing 

the section because of a previous READ which has been completed. 

Upon completion of the USE procedure, control is returned to the 

statement following the READ which detected the error condition. In 

the case of blocked or unblocked magnetic tape input, the tape will 

be ready to read the next record as soon as the Option 1 procedure 

is completed. 

b. The USE AFTER STANDARD BEGINNING clause designates that the pro

cedure following the clause must be called upon to check data on 

input magnetic tape beginning-file-labels, or to insert data as 

an output magnetic tape beginning-file-label before it is 

written. 

c. When the USE BEFORE STANDARD ENDING clause designates that a follow

ing ·procedure must be called upon to check user created data contained 

on input magnetic tape ending file labels or to insert data onto the 

user's portion of an output magnetic tape ending file label before 

it is written. 

d. Prior to any SEEK WITH KEY CONVERSION statement on files named in 

the USE FOR KEY CONVERSION statement. 

References to common label items need not be qualified by a file-name within 

a USE statement. A common label item is defined as being an elementary data 

item that appears in every magnetic tape beginning and/or ending file-label 

record, but does not appear in any data record of the program. 

A common label item must have the same name, description, and relative po

sition in every magnetic tape file-label record and may only be referenced 

while in a USE ••• LABEL PROCEDURE for that file. 

If the INPUT or OUTPUT option is specified, the USE ••• LABEL PROCEDUREs do not 

apply when files are described as having LABEL RECORDS OMITTED. 

7-91 



There must not be any reference to non-declarative procedures within a USE 

procedure. Conversely, in the non-declarative portion there must be no 

reference to procedure-names that appear in the declarative portion, except 

that a PERFORM statement may refer to a USE declarative or to the procedures 

associated with such USE declaratives. 

Option 2 is not applicable to disk files. 

NOTE 

USE AFTER STANDARD ENDING and USE BEFORE 

STANDARD BEGINNING are both illegal entries 

in B 1700 COBOL. 



[WRITE I 
WRITE 

The function of this verb is to release a logical record for an output file. 

It is also used to vertically position forms in the printer. For mass 

storage files, the WRITE statement also allows the performance of a speci

fied imperative statement if the contents of the associated ACTUAL KEY item 

are found to be invalid. 

The construct of this verb has the following two options: 

Option 1: 

WRITE record-name [FROM identifier-I] 

{
integer-I } 

~ identif ier-2 

[{ AFTER } 
BEFORE ADVANCING l 

~AT {
END-OF-PAGE } 
EOP 

TO CHANNEL 

imperative-statement] 

[TO {
ERROR } 
AUXILIARY 
STACKER { li teral-1 } J 

identif ier-4 

Option 2: 

WRITE record-name [FROM identifier] 

[;INYALID KEY statement-I [;ELSE statement-2]] 

An OPEN statement for a file must be executed prior to execution of the first 

WRITE statement for that file. 

The record-name must be defined in the DATA DIVISION by means of an 01 level 

entry under the FD entry for the file. The record-name and identifier-I must 

not be the same name, or be in two files that have the same record area. 

The ADVANCING option allows the control of vertical positioning of each 

record on the printed page. The options are as follows: 

a. When LINES is used, identifier-2 must be declared as PC 99 COMPUTATIONAl 

or integer-I must be a positive integral value of 00 thru 99. 

b. WRITE BEFORE ADVANCING is more efficient than AFTER ADVANCING. 



c. When CHANNEL is used, identifier-3 or integer-2 must contain a posi-

tive integral value of 01 11. Identifier-3 must be declared as 

PC 99 COMPUTATIONAL. The MCP will advance the line printer's carriage 

to the carriage control channel specified. 

The END-OF-PAGE option applies to a file that has been assigned to a printer. 

When the END-OF-PAGE punch in the carriage control tape on the printer is de

tected, the END-OF-PAGE branch will occur. 

Option 2 must be used for writing on disk files. 

If the FROM option is specified, the data is moved from the areas specified 

by identifier-I in option 1, to the output area, according to the rules 

specified for the MOVE statement without the CORR or CORRESPONDING op

tion. After execution of the WRITE statement is completed, the informa

tion in identifier-I is available, even though that record-name is not 

available. 

When the WRITE statement is executed at object time, the logical record is 

released for output and is no longer available for referencing by the object 

program. Instead, the record area is ready to receive items for the next 

record to be written. If blocking is called for by the COBOL program, the 

records will be automatically blocked by the MCP. 

Short blocks of records which were written during EOF or EOJ will be of no 

programmatic concern to the user when using the file as input at a later 

time. 

If a write error is detected during a magnetic tape write operation, the tape 

record in error will be erased and a rewrite will be attempted further down 

the tape until the record is finally written correctly. A punch or printer 

write error will result in a message to the operator. The COBOL programmer 

need not include any USE procedures to handle write errors. 

The shortest allov·able blocks which can be written on 7 and 9 channel mag

netic tape units ~re 7 and 16 bytes respectively. 

If a CLOSE statement has been executed for a file, any attempt to WRITE on 

the file until it is OPENed again will result in an error termination. 

For files which are being accessed in a SEQUENTIAL manner, the INVALID KEY 

clause is executed when the end of the last segment of the file (last record) 

has been reached and another attempt is made to WRITE into the file. The last 

segment of a file is specified in the FILE-LIMITS clause or the FILE CONTAINS 

clause. Similarly, for files being accessed in a RANDOM manner, the INVALID 



WRITE 

KEY clause will be executed whenever the value of the ACTUAL KEY is outside 

the defined limits. An INVALID KEY entry must be specified when writing to 

a file described as containing FILE-LIMITS. 

Records will be written onto DISK in either a SEQUENTIAL or RANDOM manner 

according to the rules given under ACCESS MODE. For RANDOM accessing, SEEK 

statements may be explicitiy used for record determination as defined under 

ACCESS MODE, SEEK, and READ. 

If the size and blocking of records being accessed in a RANDOM manner is such 

that a WRITE statement must place a record into the middle of a block without 

disturbing the other contents of the block, then an implicit SEEK will be 

given to load the block desired (provided that an explicit SEEK has not been 

given). If the file is being processed for INPUT-OUTPUT, then either an ex

plicit or implicit SEEK for a READ statement will suffice to load the block 

between the READ and WRITE statements. 

If the value of the ACTUAL KEY is changed after a SEEK statement has been 

given and prior to the WRITE statement, an implied SEEK will be performed 

and the WRITE will use the record area selected by the implied SEEK as the 

output record area. The value contained in the ACTUAL KEY will not be af

fected. 

For RANDOM access, when records are unblocked, the use of a SEEK statement 

related exclusively to WRITE is unnecessary, and may result in an extra 

loading of the record from disk, because the compiler is, in general, unable 

to distinguish between SEEK statements that are intended to be related to a 

READ and those intended to be related to a WRITE. 

The card record being written will be selected to the ERROR or to the 

AUXILIA~Y stackers if indicated in the particular WRITE being executed. 

7-95 



ZIP 

The function of this verb is to cause the MCP to execute a control instruction 

contained within the operating object program. 

The construct of this verb is: 

ZIP data-name 

Data-name (any level) must be assigned a value equivalent to the information 

contained in the MPC control card. ZIP may be used for programmatic scheduling 

of subordinate object programs contained in the Systems Program Library or to 

accomplish any of the MCP control functions as performed through the console 

printer or card reader. 

In the statement ZIP TO-CALL-PGM2, the DATA DIVISION of the source program 

could contain the following entry: 

01 TO-CALL-PGM2 PIC X(l2), VALUE IS "EXECUTE PGM2". 

The MCP will be called upon when the object program encounters the ZIP state

ment and will reference data-name (TO-CALL-PGM2 in the above example) to find 

out which control function is being called for. Using the above example, the 

MCP will schedule PGM2. When the time comes and the priority for PGM2 is 

recognized and memory space becomes available, the MCP will retrieve PGM2 from 

the program library and place it in the MIX for subsequent operation. The 

program containing the ZIP verb will proceed to the next sequential instruc

tion following the ZIP. 

CODING THE PROCEDURE DIVISION 

Figure 7-6 illustrates the manner in which the PROCEDURE DIVISION can be coded. 

7-96 



-..J 
I 
U) 
-..J 

BURROUGHS COBOL CODING FORM 
ADDITIONS, DELETIONS AND CHANGES 

PROGRAM 

?~~e.~D,v\_~\ON Co'b1~ 
COaOL DIVISION PAGE OF 

PROGRAMMER 

J.~~\N 
DAT'£ ---f-IOENT 15 10 

I I l l l I l ! 

P'AGl I LINE I I A I 

NO. I NO. 

1 3 • H 42 5 2 .!_I 1t 

_l___l___J_j_ 

..LLLJ. 

.L.L.L1. 
~-__L_J 

.L.L.L1. 

..1 I ...1 

LL...LJ. 

L.L..L.l 
j_J__l_j_ 

L.LJ__i 

j_J__l_j_ 

I -----

1 I I I I I I I I i I : I I I I I I I I I I I I I I I I I I 1-1 I I I I I I I I I 

~=..-i.;~......:O"""--J....L.;;;;_.A;:>...._<=-=--=-"-F=oz.....:;....=.'--'----L__.__...___.1.__-+l--'-1 ~I _1.___.!__..I _.....I ........_! _,I____.!_, __._I _.__I. _,!..__.!__._I _1.___.1.___..I ~L-- I I I I I I ! I I I I I I I I I I I I I I 

+--'---''--'---+-.=.;..~~_,__.__~__,__._-+-......._......._...__'--'...____.__.__.__~ .............. 1__._1 _1..._.1__..1_......1 _._I _.1.._..1.._, __._1 ~I .J__I I I I I I 1 I I l__Ll_ I I I I I I I I I I I I I I I 

1B'i9WjI1-C1l.~j"Ti· I I I Lf-L.Ll... I I I 1 I I I I I I I I I I I L_, 

.......__,__'--+--"--'-'--'--==...l-~...__.L-'-'L..;;..i.-f'==---=~~.,___;:::>.=~-'-L.=f'~.....:......._ .... 1 _._1 _,,!___..!__._!_,_I -11~1___..1__._1 _._I _._I -LLL._!_f I I I I I I I I I I I I I I I I I i I I 

I I I (__J_ I I I I I _____l____l_____l__l____l_ L__l____J___J_____l__l____L__l___L___l____j____l_ I I I I I I !___l_____J_ 

---~-----------.------ ---- ----- I I 

l -- ~------------ I --------r l 

IEE, A-1>1:I; NtGri, I I I I I I I I I I I I I I I l l I i I I l 1 1 I L__l___J__ _L_J__L I I I I I I I I I I I I I I : L__l_______L_I I I I I I I 

7l>i=GS.~1-tRAiJSTi •I I I I I I I I I I I I I I I I I i I I I ' I l I I I I ..L....L...Ll. 

I I I I I I I II ! I I I I I I I I I I I I I I I I I I I I I 

_L_.L..J~~~..J:;;.LJUl::~~ql...!:1J~~.LLlJ~_t:~~illl:::J:~~~9~-.+-.LL.JL.l__L_L_.l___JL.l_+I _JIL_ll _LI _l_LL.LJ_L.4-L 1 i I I I I I I I 

_i__....___,'-+~--........ .i..=_;_.=..;~--~~~'Bit>i l~I .~ ,5,,f])1Ci'F/'1 ,Gig 1FiJ:1N'I::iSt!::\-: .. I I I I I I I I I I I I I I I I I I I I I I I I 

I I I £.L f;.-A\-"if\l1T~~n.:_ M01V iE I I \ I ITA 1C.Ol.ANj1E1Ri I I &A J""P 151K1:P RRE1R1 .. I I I I I I I I I I I 

-----+-"--.....+-+--_.___.___.._-+~"6~~+u--:-RiE~1 ~~1E1 l~~\/,ANtC..,JiNG-1 1?t 1Lil:iN6S1-1 I I I I I I I I I I I I I I I I I I .i. 

--~~-+~i 1"5 Ctjt';)i f:f'Ui.N~_L 1691 iTCt 1¥-i§~"bj=t:-1~1 ~I I I ; I I I I I I I ! I I I '--+-1- I I I I I I I I i 

_._~~-.....__-i-=:.u=~-+'--P_._~""--L.L._.l_L I I I I _LL I J I I I -.Li I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

_L_LJ_j_ 113'Ri+i~-~51C::..1 15FA'; ,NSW-iR~t.l!rj- I L I I I I I I I I I i I I I I I I I I I I I I I I I I I 1 

l r 1 I• 1'J:;E!F.L-~~· iTfi 1RE~Ai'1>U:.1/J1fu· i i 1 1 1 1 1 1 1 I 1 1 1 , 1-L...L1 1 I 1 1 1 1 1 1 1 1 ..L.1.-

m,t.Q!~~L!::R~-.l I I ' I I I I I I I I I I I I I I I I I I I 1.._i. I I I I I I I I I ..L..l I I I ' I I I I I I i I I I I I I I I I i I 

: : I
' : f ..'11$_l_J~~.A,c.,9.:. m:::. iP1R.5N"T(Ri_ec,.1 .w~LljEi 1B~NT,--,i<,E 1 c, ,B.t.Fio&E. 1c: 1HA~N.e,L, •' •·1 , 

- :: :: ! :-+--- _J_~~Tie.i_ __ J3R~t:.~fTi-R1Ef:-1 1F1'2Q1M1 i\i:t:1TiL1Ei ~1E1FfiR_1E.1 .~,'\/,,;:.,- ~C::.f1N~1 I~ ,LjJ:NEf' • 1 I I I I I I I 

I I __j____l_JM.Q_LV__Ei_ _l~l .iIO ~U."1il1EiK.1. j j I l I I I I___[_ - l__L___l___L__l_ L___l___l___L__l_____l__L_L _1 I I I I _l _J___j______L_ I I I I I I I I I I I I 

_L__l__J..1 

LLl.J. I "T -- ------------ -----------,----- r -- --- - -------,---- - T 

I I ..LL.! I I I I I I I I I I I ! I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

~>-+_...--'---L.-+--::0"--=:==""""4-...:=:;.L;:=.!!!"""'-':+-~---=_..__,,.p_J_~Tj-p,u.~. I I I I I I I I-~ I I I I I I I I I I I I I I I I I I I I I I I I ~ 
~~~-~4~~~~~=~~~~~~~~~-L.~~~~~_...~~l~!~I~ I I I I II I II I I I I II I I LI I I I I I II I I I 

Figure 7-6. Coding of PROCEDURE DIVISION

SECTION 8
B 1700 COBOL READER-SORTER

GENERAL

This section defines the B 1700 COBOL language facilities for handling reader

sorter files.

ENVIRONMENT DIVISION REQUIREMENTS

File Control
Each reader-sorter being used must have a file assigned to it by means of the

following:
SELECT file-name ASSIGN TO READER-SORTER

RESERVE literal ALTERNATE AREAS,

ACTUAL KEY IS data-name.

Generally, a minimum of nine alternate areas should be specified to prevent any

documents from going to the reject pocket. The precise number is dependent on

the size of documents being read and the type of reader-sorter being used.

The ACTUAL KEY specifies the data area where document information is placed by

the MCP for use in a specified COBOL USE routine. This area must be in the

WORKING-STORAGE SECTION and the length must be a multiple of 112 characters.

The first 24 numeric computational digits of the ACTUAL KEY contain result

descriptor information for the document just read. The rest of the field

contains the data read from the document, right justified, with no blank-fill.

This field should be USAGE DISPLAY UNSIGNED. Document information is available

in the ACTUAL KEY area during the time control is in the USE routine. At any

other time,. the area is undefined. The format of the result descriptor is:

s-1

NOTE

If a numeric value of 1 appears :in result descriptor digits 1 through

17, the condition is considered true; otherwise, the condition is con

sidered false and will contain a numeric value of zero.

DIGIT DESCRIPTION

1 OPERATION COMPLETE
2 EXCEPTION CONDITION
3 NOT READY (*)
4 UNENCODED DOCUMENT NEED TO

POCKET SELECT
5 RESERVED
6 CAN'T READ CHARACTER IN DOCUMENT
7 RESERVED
8 RESERVED
9 RESERVED

10 DOUBLE DOCUMENT (*)

DIGIT DESCRIPTION

11 TOO LATE TO READ (*)
12 JAM (*)
13 MIS SORT (*)
14 BATCH TICKET - NEED TO POCKET

SELECT
15 HALT - NO ITEMS BEING READ
16 RESERVED
17 TOO LATE TO POCKET SELECT (MAIN

LINE ONLY)
18-20 RESERVED
21-24 POCKET NUMBER (**) (MAIN LINE ONLY)

* Implies an invalid pocket must be selected if the condition is true.
** This pocket field is defined as USAGE DISPLAY.

Example:

01 THE-ACTUAL-KEY.
02 THE-RESULT-DE:S.

03 IOCOMPLE'l~ PC 9 CMP.
03 AN-EXCEPT ION PC 9 CMP.
03 NOT-READY PC 9 CMP.
03 THE-REST PC 9 (21) CMP.

02 THE-DOCUMENT PC x (100).

1-0-Control

The APPLY clause is required and specifies the specific reader-sorter read

station(s) to be used. The construct of this verb is:

APPLY
{

MICR
OCR [2] [~~iR]} f He-name (,file-name] ...

Presently, only a single read station reader-sorter is implemented, so the

clause is limited to:

\ MICR I
l OCR \

file-name

DATA DIVISION REQUIREMENTS

File Section

[,file-name] ...

The FILE SECTION must contain an FD for each reader-sorter file selected. The

record area(s) for these files should be the same type and length as the actual

key data area specified for that file. The same information available in the

actual key data area during pocket select is available again to the programmer

8-2

in the file record area, after each READ of that sorter file is executed during

main-line processing. ("Main-line" refers to PROCEDURE DIVISION code not with

in a USE routine.) It is suggested that the ACTUAL KEY data area and the

reader-sorter record area be formatted identically, since document information

(result descriptor and data) will appear in the record area exactly as it ap

peared in the key area.

PROCEDURE DIVISION REQUIREMENTS

A USE procedure must be specified for each reader-sorter, or a run time error

will occur. The construct of this verb is:

File-name refers to the reader-sorter file. The USE verb must immediately

follow a section header in the DECLARATIVE portion of the PROCEDURE DIVISION.

The USE procedure is entered when the MCP realizes a need for pocket selection.

The USE procedure must contain a CONTROL verb which will cause the document to

be pocketed. The construct of this verb is:

file-name {
literal }
data-name

File-name refers to the reader-sorter file. Data-name must be declared

PICTURE 99 COMPUTATIONAL and contains the pocket number selected. A data-name

value of 31 re.presents a valid reject pocket selection. A value of @FF@ in

data-name represents an invalid pocket selection of the reject pocket. Certain

exception conditions (see result descriptor format) require this invalid pocket.

The STOP-FLOW option will stop the reader-sorter after that document is pocketed.

Since the pocket selection may be required at any pain in time, the main-line

code may be interrupted at any time and control transferred to the USE proce

dure, i.e., the USE procedure is executed on an "as-needed" basis, and the

main-line code is executed on an "as-time-is-available" basis.

There may not be any code outside the USE procedure that would cause a

CONTR0L ... POCKET to be executed.

No I/O verb other than CONTROL ... STOP-FLOW ... POCKET may be executed during

the USE procedure

Other variations of the CONTROL verb may be used in the MAIN-LINE portion of

the program. These constructs are:

identifier

8-3

Identifier must be an unsigned integer.

BATCH-COUNT causes the batch counter on the reader-sorter to be advanced by 1.

POCKET-LIGHT causes the MCP to issue a pocket light op.

MICR CHARACTER TYPES

MICH control characters are:

EBCDIC

0111 1011

0111 llOO

0111 1010

0111 1101

0101 1100

Desgri};2tiQ.n

Amount

Transit

On-Us

End of Document

Can't Read

Printer
Graphic

@

*
MICH §l?§~ial characters include the control characters plus the hyphen.

MICR _£haraQ.t.ers include MICR special characters plus the numeric 0 through 9.

The FORMAT verb is used to break up document information jnto subfields, based

on MICR CONTROL characters. The construct of this verb is:

FORMAT identifier-I INTO identif ier-2 ON SIZE ERROR statement

Both identifiers must be USAGE DISPLAY. Identifier-2 is to be composed of nine

fields and each field must be 20 characters in length. Data movement from low

to high order. Beginning with the last character of identifier-1:

a. Move to the least significant position of a 20-character subfield

of ident if ier-2,

1. the source field character if it is a MICR control, and use the

next source character in step b, (delimiter found); otherwise,

2. a space and use the source character in step b (legal delimiter)

for transaction code field)

b. Continue to move data until

1. a MICR control character (excluding"cant't reads") is found, or

2. the 20th character subfield is exceeded.

c. If a control character was found in step b, then

1. if it is equal to the character placed in the least-signifi

cant position of the subfield, then it is moved to the next

position of the same subfield, the rest of the subfield is

space-filled and the next source character is to be used in

step a (complete field found, ~ 20 characters); otherwise,

2. the rest of the subfield is space-filled and the control

character is used in step a (field delimiters not equal).

d. If the subfield size was exceeded in step b,

1. The ON SIZE ERROR statement is executed and the contents of

identif ier-2 are undefined if document subfield is longer than

20 characters.

e. Steps a through c are repeated until

l. an end-of-document character is found in identifier-I and is

moved as in step a,

2. identifier-I is exhausted, in which case an end of document is

moved as in step a.

3. identifier-2 is exhausted, in which case the ON SIZE ERROR state

ment is executed. The contents of identifier-2 are undefined.

The COBOL source FORMAT statement will cause a FORMAT S-OP to be generated

MCF COPXl, COPX2

COPXl corresponds to identifier-I

COPX2 corresponds to identifier-2

Example 1: (b = blank)

Identifier-I

':654321:@8765-4321@:765-4321:97#0987654321#

Identifier-2

bbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb'

bbbbbbbbbbbb:654321:

bbbbbbbbb@8765-4321@

bbbbbbbbbb:7G5-4321:

bbbbbbbbbbbbbbbbb97b

bbbbbbbb#0987654321#

Example 2:

Identifier-I

'654321:8765-4321@*765-4321*97#*98765432**

8-5

!dent if ier-2

bbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb'

bbbbbbbbbbbbb654321:

bbbbbbbbbb8765-4321@

bbbbbbb*765-4321*97#

bbbbbbbb*98765432**b

The FORMAT verb may be used in both the USE routine and in main line code.

The ON SIZE ERROR path will be taken (1) when the subfield on the document

being formatted exceeds 20 characters in length, (2) when the document being

formatted was non-encoded (as indicated by digit 4 of the result descriptor),

(3) when the total number of MICR characters plus "can't read" characters in

identifier-! exceeds the length of identifier-2.

Considerations After the Format Verb Has Been Exticuted

If a CANT.READ (*) character is placed into any subfield, the most significant

character of that subfield will be set to a -1 (@Dl@), and if there are no

CANT.READ characters in a subfield, the most-significant character will be

set to a blank (@40@).

If the first (least-significant) character of a subfield is sensed as a

CANT.READ, it is treated as a non-control character and stored into the sub

field after a blank (@40@) is stored as the least-significant character.

The MICH-EDIT verb is used to edit document subfields and also to count the

number of MICR characters in the field. The construct of the verb is:

MI CR-EDIT ident if ier-1 INTO ident i:f ier-2

Identifier-I and identif ier-2 must be alphanumeric. The MICR-EDIT verb may

appear anywhere in the PROCEDURE division.

'rhis verb moves identifier-I to identifier-2, right-justified, deleting all

MICR special characters (except "can't reads") and spaces. Each deleted charac

ter of identifier-I causes the remaining unmoved portions to be shifted right

one position in the identifier-2. Identifier-2 is left zero-filled, if neces

sary. A count of all characters, except CANT READ, moved from identifier-I is

provided in the COBOL special register TALLY.

8-6

The COBOL source MICR-EDIT statement will cause a MICR-EDIT s-oP to be

generated

MCE COPXl, COPX2, COPX3 is generated.

COPXl corresponds to identif ier-1 (Source)

COPX2 corresponds to identif ier-2 (Receiving)

COPX3 corresponds to TALLY

Source and receiving:

Source:

Receiving:

TALLY

EXAMPLE 1:

Picture PC X(20)

bbbbbbbbbbl2-345678@

00000000000012345678

8

EXAMPLE 2:

PC X(20)

bbbbbbbbbbl2-345678*

0000000000012345678*

8

b

where,

blank and * can't read.

The READ verb can only appear in the PROCEDURE DIVISION main-line code, and is

used to retrieve document information for processing. The construct of this

verb is:

READ file-name [INTO identifier-I]

The result descriptor for the READ will be placed in the first 24 digit posi

tions of file-name's record area. The data that is read is stored following

the descriptor; consequently, the file record size declared should be large

enough to handle the maximum length of data expected. (There is no blank

fill if the data length is less than that declared.)

If INTO is specified, data will be moved from the file record area into

identifier-I, according to the rules for COBOL moves. Note that in all cases,

this READ will retrieve information on a document that has already been

pocket-selected. The MCP, however, keeps track of how far behind the main

line processing is from the USE routine pocket-selecting,and issues a STOP

FLOW to the reader-sorter to allow main-line to catch up. Presently, a

difference of six documents will cause a STOP-FLOW.

8-7

Programming Considerations

USE Routine

8-8

a. The pocket selection command must be the last instruction executed

in the USE ROUTINE. If any instructions follow the POCKET command,

they will not be executed.

b. If the exception digit is turned on in the result descriptor, the

following exceptions should be tested until the problem area is located:

NOT READY (*)

UNENCODED DOCUMENT

CAN'T READ

DOUBLE DOCUMENT (*)

TOO LATE TO READ (*)

JAM (*)

MISSORT (*)

BATCH TICKET

If the above exceptions are not true, then the document was read

correctly and should be processed normally.

* Implies an invalid pocket must be selected if the condition is true,

@FF@

c. When a NOT READY, DOUBLE DOCUMENT, TOO LATE TO READ, JAM, or MISSORT

is encountered in the USE ROUTINE, the result descriptor will reflect

that condition or multiple conditions, and the programmer must pocket

select an invalid pocket, @FF@. In addition, the invalid data is re

ceived by the USE ROUTINE and should not be processed by the pro

grammer.

d. When an UNENCODED DOCUMENT is detected in the USE ROUTINE, the docu

ment should be pocket-selected to the reject pocket, @31@, also the

data is invalid and should not be processed by the program. Also, the

result descriptor will reflect this condition.

e. When the programmer exceeds the time allotted to pocket-select that

document, the result descriptor will reflect the "too late to pocket

condition," which can be tested in main memory but not in the USE

ROUTINE.

f. When the programmer desires to issue either a POCKET-LIGHT or a BATCH

COUNT command in main-line code, the USE ROUTINE must have the follow

ing statement:

CONTROL file-name (STOP-FLOW) POCKE'J' { ~~!~~~~ ier }

g. Only the STOP-FLOW and POCKET commands may be used in the USE ROUTINE

as communicates to the READER-SORTER.

h. If the MICR FORMAT or MICR-EDIT statements are used in the USE

ROUTINE, those work areas must not be the same areas used in MAIN

LINE.

i. If both MAIN LINE and the USE ROUTINE use the EXAMINE statement, the

TALLY register must be saved at the beginning of the USE ROUTINE and

restored at the end of the USE ROUTINE (before the pocket selection

command is executed). This is required because the Main Line may be

interrupted at any time to service the READER-SORTER.

Main Line

a. Only the POCKET-LIGHT and BATCH-COUNT statements may be issued in

MAIN LINE.

b. All result descriptors and checks or exception conditions received in

the USE ROUTINE will also be received by MAIN LINE.

c. If the exception digit is turned on in the result descriptor, the

following exceptions should be tested:

NOT READY

UNENCODED DOCUMENT

CAN'T READ

DOUBLE DOCUMENT

TOO LATE TO READ

TOO LATE TO POCKET SELECT

JAM

MISSOR.T

BATCH TICKET

If the above exceptions are not ture, then the document was read

correctly and should be processed normally.

d. When a NOT READY, UNENCODED DOCUMENT, DOUBLE DOCUMENT, TOO LATE TO

READ, JAM, or MISSORT is encountered in the MAIN LINE ROUTINE, the

condition(s) will be reflected by the result descriptor. Also, the

data that is received by the MAIN LINE is invalid and should not be

processed by the programmer.

8-9

e. Before a POCKET-LIGHT or BATCH-COUNT statement is issued in MAIN LINE,

the 15th digit of the result descriptor must be tested to ensure that

the READER-SORTER is not in flow mode. Also, a counter should be kept

in the USE ROUTINE and compared against in MAIN LINE to ensure that

this is the document to act on.

f. When the MICR FORMAT or MICR-EDI'r statements are used in MAIN LINE,

those work areas must not be the same area as used in the USE ROUTINE.

g. The last two bytes of the result descriptor contain the pocket number

to which that item was pocket-selected. Examples:

1. FIFO - the document was pocketed in pocket 10.

2. F3Fl - the document was pocketed in the REJECT POCKET.

If the USE ROUTINE selected the invalid pocket, @FF@, the MCP will

return a value greater than 32 in the pocket number of the result

descriptor.

TIMING REQUIREMENTS

After a document starts through the reader-sorter, there is a time span

(dependent on the type of sorter being used), during which the device must re

ceive pocket-select information. If the time limit is exceeded, the document

will be rejected, the result descriptor will reflect this condition, and pro

cessing will continue. The programmer therefore must ensure that minimal time

is spent in the USE ROUTINE.

The following sample program reads, checks, and prints out the check image,

along with the result descriptor for that check. A running total is kept of

the check amount fields, and is printed at the end.

NOTE
No MICR-EDIT verbs are required in this

program.

8-10

USE ROUTINE

DETERMINE
POCKET

YES

SAMPLE PROGRAM

BEGIN
DECLARATIVES

SECTION

FORMAT
THE

CHECK

NO

PROCESS
CHECK

POCKET
THE
ITEM

DETERMINE
POCKET

8-ll

MAIN LINE

NO

8-12

SET UP
AND

OPEN FILES

READ
DOCUMENT

NO

FORMAT
CHECK

PROCESS
ITEM

PRINT
OUTPUT

YES

YES

PRINT
JAM

LIST

CLOSE
FILES
PRINT
TOTALS

SECTION 9
DATA COMMUNICATIONS

GENERAL

This section deals with the COBOL constructs of the PROCEDURE DIVISION required

to activate the data communications equipment as defined by the ASSIGN to

hardware-name clause.

SPECIFIC VERB FORMATS

The following differences exist in READ, WRITE, and USE when I/O is to be

performed on remote files.

The READ statements will wait for a message and suspend program execution if no

messages are queued for that program.

AT END will be executed when the datacom network controller receives a QC

message, or when the MCS (if one exists) does an MCS.COMMUNICATE with

MESSAGE.TYPE set to 1 and MESSAGE.VARIANT s·et to 3.

WRITE requires MESSAGE-TYPE to be set to 0 if an actual key is used, as well

as TEXT-LENGTH set to the actual message length, and STATION-HSN to be set to

the correct relative station number of the terminal to which the message is to

be sent.

USE AFTER STANDARD ERROR PROCEDURE ON file-name must be specified to avoid a

DS or DP condition when library request sets in NDL are used. (This is not a

problem but is a standard procedure to follow.) The execution of TERMINATE

ERROR by the Network Controller will always invoke the USE procedure in the

associated application program.

9-1

SECTION 10
INTER-PROGRAM COMMUNICATION

GENERAL

This section describes the COBOL inter-program communication (core-to-core

transfer), which is achieved by means of "message queues" in memory. (A

queue is treated by the MCP and compilers almost exactly as if it were a normal

file.) A discussion on the implementation of queues is followed by the syntax

for COBOL queues.

QUEUES FILES

A queue file or queue file family may consist of one or several queues called

subqueues. The number of queues is primarily constrained by memory, since there

is a resident queue dictionary entry for each queue. With each queue file that

belongs to a queue family, there must be associated a number, zero-relative, by

which it is referenced. This number is provided in the key part of the read or

write communicate. The messages in the queues are considered blocks of data

which are transferred to and from the MCP I/O buffer according to the specif ica

tions in the communicate and the File Parameter Block (FPB). The MCP will han

dle the blocking and deblocking of the buffer.

In the case of single queues, the MCP accesses the queue by a pointer in the

file's File Information Block (FIB). The name of that queue is supplied in the

FPB as a multi-file ID and file ID.

In the case of multiple queues (queue family) the file name for a queue is

created from the FPB entry for the multi-file ID and from the key passed in the

read or write communicate.

During OPEN, the MCP associated an FIB with one or several queues. The number

of queues that a user wishes to associate with an FIB is determined by the con

tents of the "number-of-buffers-requested" field within the FIB. Note that

this does not mean the user sets the field by assigning buffers. See the

appropriate syntax in this discussion. With each new queue, a dictionary

entry and a buffer are created for each queue in the file. The queue diction

ary contains the name of the queue, a pointer to the first message, a pointer

to the last message (all messages are linked), a user count, and a link to the

10-1

next and previous dictionary entries. The size of the buffer· is determined, in

the usual manner, from the requested record size and number of records per block.

For a family of n subqueues, the MCP creates a dictionary entry for queues of

the following name: family ID/ ##NNNNNNNN, where NNNNNNNN ranges from 0 to n.

On a write communicate, the logical record in the work area is transferred to

the queue file's write buffer. If the buffer is full, the MCP attempts to

transfer the buffer to the appropriate queue. If a buffer is transferred to

the queue, then any programs awaiting the queue are notified. The length

of the message in the queue will be the block size of the file that wrote it

to the queue, but the length of the message as delivered to a program is depen

dent on the block size of the file that reads it.

On a read communicate from multiple queues, it is possible to request a block

of data from a specific subqueue, or to request a block of data from any queue.

In the latter case, the message associated with that queue family for the

longest period of time will be delivered. If the key passed in the read com

municate is o, the oldest message in the queue family is transferred to the

work area from the appropriate buffer; otherwise, the top (first-in) message

from the subqueue corresponding to the key is delivered. The buffer is then

checked; if it is empty, the MCP transfers a queue entry to the buffer. If it

is successful, a logical record is transferred from the buffer to the work area.

(If the present key is different from that of the previous key, the MCP trans

fers a message from the appropriate queue to the buffer.) The logical record .
is then transferred to the work area. The buffer is checked and, if empty, a

message from the queue is transferred to the buffer. The logical record is

then transferred to the work area. Note that when the message is transferred

from a queue to a buffer, it is transferred as a character string. All rules

for the handling of character strings are followed.

The read and write communicates may request the status of two conditions:

invalid key number (a queue number greater than the number in the queue family

or file contains clause) and end of file. The queue number passed dynamically

as part of the communicate (KEY) has the potential for being out of range of

the number of queues requested at OPEN time. If requested, the MCP will report

the condition; otherwise, the MCP will terminate the issuing program with an

invalid key message. On a read communicate, the user may also request a report

of end of file. EOF for a queue file means that at the time a user program

issued the read, the buffer was empty and there was no message in the queue.

If no EOF reporting is requested, the MCP will place the process reading the

queue in a wait state.

10-2

NOTE

A message does not get placed in the queue

until a write buffer associated with that

queue becomes full. Hence, it is possible

to do several logical writes to a queue,

in the case of a blocked queue file, yet the

reading process is receiving EOF conditions.

During CLOSE, the MCP will flush all write buffers to the appropriate queue.

The user count for the queue will be decremented, and when it is equal to O,

the queue directory, message list, and other associated space are released.

QUEUES IN COBOL

As with other files, queue files must be selected, described in the File

Section, opened, read, written and closed in the PROCEDURE DIVISION. The

compiler will generate the communicates and control information necessary for

the MCP. Inter-program communication may be utilized together with, or in

dependently from, NDL, or any other Data Communications functions.

File-Control

file-name ASSIGN TO { .Q!l~} ACTUAL KEY IS data-name-I

QUEUE is used for inter-program communication in general. Optionally, each

type may specify an ACTUAL KEY. If specified for QUEUE files, the KEY must be

described as PC 9(8) CMP.

File Section

11!
FILE CONTAINS integer

VALUE OF ..!QENTIFICATION IS {
data-name}
literal

The FILE CONTAINS clause specifies the number of queues and must be specified

if the number is greater than 1. The FILE clause determines the queue family

size (single or multiple). The literal of the VALUE clause is of the for

"multi-file-name". or "multi-file-name"/"file-name". For QUEUE files, the

first 10 characters of the multi-file-name are used to identify the QUEUE.

BLOCK and RECORD clauses do apply, as with other files.

10-3

Procedure Division

(INPUT l
) I NPUT-O UTPU..I
) OU_'.!_E!IT- INPUT (
l OU_'.!PQ.T)

file-name.

WRITE file-record [FROM data-name]

READ file-name [INTO data-name] AT END any-statement

If the AT END is specified, the statement will be executed when no data is

available; otherwise, the program is suspended until data is available. On a

WRITE to a queue, the KEf must have the value set before the WRITE is issued.

On the READ from a queue, the value of the KEY must be set before the READ is

issued. If the KEY value is O, it means a READ for the oldest message in

the queue.

On a READ, if exception conditions are to be handled, they must be handled

by a ''USE AFTER STANDARD ERROR" procedure.

{queue-file}

When the queue file is closed and the user count is equal to O, the queue

space is released. None of the options of the CLOSE verb apply to queue files.

10-4

SECTION 11
COBOL COMPILER CONTROL

GENERAL

The COBOL compiler, in conjunction with the Master Control Program, allows for

various types of actions during compilation and is explained in the text that

follows.

COMPILATION CARD DECK

Control of the COBOL source-language input is derived from presenting the

compilation card deck, illustrated in figure 11-1, to the MCP.

{?END

_{_souRCE DATA [L<WTioNcoNTROLCAiD _______ l

_{_SOURCE DATA
($0PTIONCoNTROL CARD _______ l

CARD

{_?DATA CARDS

{_?LABEL EQUATION CARD

/?COMPILE CARD

Figure 11-1. Compilation Card Deck

I
I
I
I
I
I

I
I
I
I

L
1-_J

11-1

The compilation card deck is comprised of several cards; th~se cards, along

with a detailed discussion of their function, are presented in the paragraphs

that follow.

?COMPILE CARD

The first input control card instructs the MCP to call the COBOL compiler and

to compile the indicated program-name (P-N) by means of one of the following

options:

a. To compile and run the resultant object program, the card is coded:

?COMPILE P-N WITH COBOL

b. To compile for a syntax check only, the card is coded:

?COMPILE P-N WITH COBOL SYNTAX

c. To compile and place the resultant object code into the Systems

Library, the card is coded:

?COMPILE P-N WITH COBOL LIBRARY

d. To compile and place the resultant object code into the Systems

Library, and then run the object program, the card is coded:

?COMPILE P-N WITH COBOL SAVE

NOTE

The word WITH is for readability only and

may be excluded from the above statements.

The absence of the ?COMPILE card will cause the System Operator to manually

execute one of the above options through the SPO, using the MCP's CC nota

tion in place of the invalid character("?").

MCP LABEL CARD

The second control card, excluding Label Equation cards, is the MCP LABEL

Card and is formatted in the following form:

?DATA CARDS (indicates EBCDIC or BCD source language input).

The absence of the MCP LABEL card will cause the message

**NO FILE file-name program-name = mix-index

to be displayed on the SPO. The System Operator will not know the proper IL

message to give the MCP (because of the options involved), without specific

instructions by the programmer.

11-2

$OPTION CONTROL CARD

The third card, excluding Label Equation Cards, is the COBOL compiler option

control card ($sign in column 7). This card is used to notify the compiler

as to which options are required during the compilation. If this card is

omitted, $CARD LIST CHECK SINGLE will be assumed. There must be at least one

space between each item on the control card. The options may be in any order.

Columns 1 through 6 of the $ card are used for sequence numbers. Any number of

$ cards may be used and may appear anywhere in the source deck. The options

specified will become either active or inactive from that point on. The op

tions available for the COBOL compiler option control cards are as follows:

ANSI

CARD

CHECK

CODE

CONTROL

DOUBLE

HEX CODE

LIST

LISTP

MERGE

Causes the compiler to inhibit certain non-ANSI

ext ens ions.

This option is for documentation only. The

input is from the source language cards or from

paper tape •.

Causes the compiler to check for sequence errors

and print a warning message for each sequence

error. The CHECK option is set, by decault, at

the beginning of each compile, but may be ter

minated with the NO option.

Lists the object code following each line of

source code from the point of insertion.

Prints the $ Option Control Cards on the output

listing. The LIST option must be set.

Causes the output listing to be printed in a

double-spaced format.

Causes all addresses on the CODE listing to be

in hexadecimal format. If this option is omitted,

the addresses will be in decimal format.

Creates a single-spaced output listing of the

source language input, with error and warning

message (or both), where required.

This option causes the compiler to force listing

of source images and to print errors as they occur.

Primary input is from a source other than a card

reader and may be merged with a patch deck in the

11-3

11-4

NEW

NO

NO DEBUG

NO SEQ

NO COP

Non-numeric
literal

card reader. It is assumed to be from a disk file,

with a file-ID of COBOLW/SOURCE, by default. If

it is desirable to change the input file-ID or

change the input device from disk to tape, a

label equation card must be used. The NEW option

may be used with the MERGE option to create a new

output source file plus changes.

Creates a NEW output source file with changes, if

any, entered through the use of the MERGE option,

but does not include the compiler option cards,

if any, which must be merged in from the card

reader when the compilation is from disk or tape. The

output file will be created on disk, by default,

with the file-ID of COBOLW/SOURCE. If it is

desirable to change the output file-ID device

from disk to tape, a label equation card must be

used.

When the NO option precedes one of the above op

tions (with the exception of MERGE which cannot be

terminated) , it will terminate the function of that

opt ion.

When this option is specified, the compiler will

not generate monitor object code even though the

statements are left in the source program. This

permits the user to approximate a conditional

compile for the debugging facilities.

Terminates the SEQ option and resumes using the

sequence number in the source statement as it is

read in.

This option causes the compiler to generate

current operand table entries in-line in the

code. This option requires more memory in order

to run, but it will increase execution speed by ap

proximately 2 per cent.

Inserted in columns 73-80 of all following card

image for creation of a new source file and/or

listing. This option can be reset or

REFERENCE

SEQ

SEQ nnnnnn

SEQ + nnnnnn

SEQ nnnnnn+nnnnnn

SINGLE

SPEC

set by a subsequent control card, with the

area between the quote marks containing blank

characters.

Provides monitoring of data-names specified in

the MONITOR declaration and referenced in the

program, even if the data-name values are un

changed. This option must be used in conjunc

tion with the MONITOR statements.

Starts resequencing the output listing and the

new source file, if applicable, from the last se

quence number read in and it increments the se

quence number by 10 or by the last increment

presented in a previous $ option card. When

resequencing starts at the beginning of the

program source statements, the sequence will

start with 000010.

Starts resequencing the output listing and new

source file, if applicable, from the sequence num

ber specified by nnnnnn, incrementing the sequence

numbers by 10.

Starts resequencing the output listing and new

source file, if applicable, from the last se

quence number read in, incrementing by the num

ber specified by +nnnnnn. When resequencing

starts at the beginning of the program source

statements, the sequence will start with 000010.

Starts resequencing the output listing and new

source file, if applicable, from the sequence

number specified by nnnnnn, incrementing by the

value of +nnnnnn.

Causes the output listing to be printed in a

single-spaced format.

This option negates the CONTROL and LIST options

and causes only the syntax errors and associated

source code to be printed if syntax errors occur.

Otherwise, the CONTROL and LIST options remain in

effect.

11-5

SUPPRESS Suppresses all warning messages except sequence

error messages. The sequence error message can

be suppressed with the NO CHECK option.

The NEW option does not have to be included when operating with a tape or

disk source input, thus allowing temporary source language alterations without

creating a new source output file.

The MERGE option without the NEW option allows a disk or tape input file to

be referenced and to have external source images included from the card

reader on the output listing and in the object program. A new output file

will not be created.

Columns 1-6 of the compiler option control card may be left blank when compila

tion is from cards. A sequence number is required when compilation is from tape

or disk, if the insertion of the $ option is requested within the source input.

SOURCE DATA CARD

Source data cards follow the $ option control cards. The following source

cards are used to create an updated version of the source input file or to

cause temporary changes to the tape or disk source language input:

a. VOID nnnnnn Patch Card. The punch sequence number in card columns 1-6

is followed by a$ in column 7, and -then the word VOID. This will de

lete the source records from the sequence number in the first six posi

tions of the VOID card through the sequence number specified by nnnnnn.

If "n" is left blank only the source record identified by the sequence

number in the VOID card will be deleted from the compilation and the

output listing, tape or disk files.

b. Change or Addition Patch Card. Punch sequence number in card columns

1-6 and changed or added source language data in applicable card

columns. These cards must be in the proper sequence for the source

input file in order to be properly merged into that file.

The COBOL compiler has the capability of merging inputs from two sources

(punched cards or paper tape, either of which may be merged with magnetic

tape or disk) on the basis of the sequence numbers.

When merging inputs, the output compilation listing will indicate all inserts

and replacements (or both).

All of the $ options may be inserted at any point within the source language

input data. Once an option has been set it will remain set until reset with

the NO option is another $ option card. In the case of the non-numeric

literal it must be reset by coding a non-numeric literal with blanks.

11-6

LABEL EQUATION CARD

This card may be used to change a compiler file-name in order to avoid duplica

tion of file-names when operating in a multiprogramming environment.

The label equation card must be used in conjunction with the MERGE and NEW

options when the primary input or output is from magnetic tape, the input

disk file does not have a file-ID of SOURCE, or when a file-ID other than

COBOLW/SOURCE is desired for the new disk output file.

The format for the LABEL EQUATION CARD is:

?FILE internal file-name

users choice of file-IDs, file-attributes ..• ;

The label equation card (or cards), if used, must end with a semicolon, must

immediately follow the ?COMPILE ... control card, and precede the MCP LABEL

control card (refer to figure 11-1).

The internal file-names and external file-ids of the COBOL compiler are used

for label equation as follows:

INTERNAL FILE-NAME

CARDS

SOURCE

NEWSOURCE

LINE

EXTERNAL FILE-ID

CARDS

COBOLW/SOURCE

COBOLW/SOURCE

LINE

DESCRIPTION

Input file from the card

reader. If $ MERGE is used

this file will be merged

with the input file on disk

or tape. The default input

is from the card reader.

Input file from disk or

tape when the MERGE option

is used. The default input

is from disk.

Output file to disk or tape

for a NEW source file when

the NEW option is used. The

default output is to disk.

Source output listing to

the line printer.

The following are examples of the label equation uses.

ll-7

Example 1:

To compile a COBOL program from the card reader and create a copy of the

source program blocked five on a disk file with the file-ID of COBOL/TESTl,

the following Label Equation (FILE) cards could be used:

? COMPILE P-N WITH COBOL SYNTAX

? FILE NEWSOURCE NAME COBOL/TESTl RECORDS.BLOCK 5;

? DATA CARDS

$ CARD LIST DOUBLE NEW

•.. SOURCE PROGRAM DECK .••

? END

To create the same program file on magnetic tape, use the following FILE card:

? FILE NEWSOURCE NAME COBOL/TESTl TAPE RECORDS.BLOCK 5;

Example 2:

To compile a COBOL program from a disk file which had been created by the de

fault option of the $ NEW option and to create a new source file on disk with

the file-ID of TEST2, the following FILE card could be used:

? COMPILE P-N WITH COBOL SYNTAX

? FILE NEW SOURCE NAME = TEST2;

? DATA CARDS

$ MERGE NEW

. • . PATCH CARDS IF ANY ..•

? END

If the input file had a file-ID of COBOL/TEST!, in place of the default file-ID

of SOURCE the following FILE card should have also been used in the above

example.

? FILE SOURCE NAME COBOL/TESTl;

ll-8

ABOUT
ACCEPT
ACCESS
ACTUAL
ADD

ADVANCING
AFTER
ALL
ALL-AT-OPEN
ALPHABETIC

ALTER
ALTERNATE
ALTERNATING
AND
APPLY

ARE
AREA
AREAS
ASCENDING
ASCII

ASSIGN
AT
AUTHOR
AUXILIARY
BACKUP

BATCH-COUNT
BEFORE
BEGINNING
BINARY
BLANK

BLOCK
BY
BZ
CARD96
CASSETTE

APPENDIX A
RESERVED WORDS

This appendix lists all the reserved words

recognized by the B 1700 COBOL compiler.

CHANNEL DECIMAL-POINT
CHARACTERS DECLARATIVES
CLOCK-UNITS DELETE
CLOSE DEMAND
CMP DEPENDING

CMP-1 DESCENDING
CMP-3 DISC
CODEFILE DISK
COMMA DISK-DFCl
COMP DISK-DFC2

COMP-1 DISK-DPCl
COMP-3 DISK-DPC2
COMPUTATIONAL DISK-HPT
CX>MPUTATIONAL-1 DISKPACK
COMPUTATIONAL-3 DISK-PPC2

COMPUTE DISPLAY
CONFIGURATION DIVIDE
CONTAINS DIVISION
CONTROL DM-STATUS
CONVERSION DOWN

COPY DUMP
CORR ELSE
CORRESPONDING ENABLE
CREATE END
CRUNCH END-OF-JOB

CURRENCY
END-OF-PAGE CURRENT

CYLINDER END-TRANS IT

DATA ENDING

DATA-BASE ENVIRONMENT

DATASET EOP

DATE EQUAL
DATE-COMPILED EQUALS
DATE-WRITTEN ERROR
DB EVERY
DDL-NUMBER EXAMINE

A-1

Appendix A (Cont)

EXCEPTION LAST PC
EXIT LEADING PERFORM
FD LEFT PIC
.FILE LESS PICTURE
FILE-CONTROL LIBRARY POCKET

FILE-LIMIT LINES POCKET-LIGHT
FILE-LIMITS LOCK POSITION
FILL LOW-VALUE POSITIVE
FILLER LOW-VALUES PRINTER
FIND MEMORY PRINT128

FIRST MFCU PRIOR
FLOW MICR PROCEDURE
FOR MI CR-EDIT PROCEED
FORM MI CR-OCR PROCESSING
FORMAT MOD PROCESSOR

FREE MODE PROGRAM-ID
FROM MODIFY PT-PUNCH
GIVING MODULES PT-READER
GO MONITOR PUNCH
GREATER MOVE PURGE

HARDWARE-MONITOR MULTIPLE
Q-EMPTY
Q-FULL HERE MULTIPLY QUEUE HIGH-VALUE NEGATIVE QUEUES HIGH-VALUES NEXT QUOTE I-O NO QUOTES

I-O-CONTROL NO-ERRORS RANDOM
ID NO-FORMAT READ
IDENTIF !CAT ION NON-STANDARD READER
IF NOT READER- SORTER
IN NOT-READY RECEIVE

INC-EU NOTE RECORD
INDEX NULL RECORDING
INDEXED NUMERIC RECORDS
IN PLACE O-I RECREATE
INPUT OBJECT-COMPUTER REDEFINES

INPUT-·OUTPUT oc REEL
INQUIRY OCCURS RELEASE
INSERT OCR REMAINDER
INSTALLATION OF REMARKS
INTERPRET OMITTED REMOTE

INTO ON REMOVE
INVALID OPEN RENAMES
INVALID-REQUEST OPTIONAL REPLACING
INVOKE OR RERUN
IS ORDERING RESERVE

JS OTHERWISE RETRIEVAL
JUST OUTPUT RETURN
JUSTIFIED OUTPUT-INPUT REVERSED
KEY PACK REWIND
LABEL PAGE RIGHT

A-2

Appendix A (Cont)

ROLLO UT STOP-FLOW TIME
ROUNDED STORE TIMES
RUN STREAM TO
SAME SUB-QUEUE TODAYS-DATE
SAVE SUB-QUEUES TODAYS-NAME

SAVE-FACTOR SUBSET TOP
SD SUBTRACT TRACE
SEARCH SWl TRANSLATION
SECTION SW2 UNLOCK
SECURITY SW3 UNTIL

SEEK SW4 UP
SEGMENT-LIMIT SW5 UPDATE
SELECT SW6 UPON
SEND SW7 USAGE
SENTENCE sws USE

SEQUENTIAL SY USING
SET SYMBOLIC VA
SIGN SYNC VALUE
SINGLE SYNCHRONIZED VALUES
SIZE TAG VARYING

SORT TAG-KEY VIA
SORTER TALLY WHEN
SOURCE-COMPUTER TALLYING WITH
SPACE TAPE WORDS
SPACES TAPE-MTCl WORK

SPEC !AL-NAMES TAPE-MTC2 WORKING-STORAGE
SPO TAPE-MTC3 WRITE
STACKER TAPE-MTC4 ZERO
STA CKE RS TAPE-MTC5 ZEROES
STALEMATE TAPE-7 ZEROS

STANDARD TAPE-9 ZIP
START-FLOW THAN
STATION THEN
STATIONS THROUGH
STOP THRU

A-3

APPENDIX B
COBOL SYNTAX SUMMARY

IDENTIFICATION DIVISION

[MONITOR ...]

IDENTIFIQ.~TION DIVJ_S.ION.

[PROGRAM-ID. Any COBOL word.]

[AUTHOR. Any entry.]

[INSTA~ATIQN. Any entry.]

[DATE-WRITTEN. Any entry.]

[DATE-COMPI~ED. Any entry - appended with
current date and time as
maintained by the MCP.]

[SECURITY. Any entry.]

[REMARKS. Any entry. Continuation lines must
be coded in Area B of the coding form.]

MONITOR

bMONITOR [DEPENDING] file-name ([data-name] ~

[{~~~cedure-name ... }Jl ·]
ENVIRONMENT DIVISION

ENVIRONMENT DIVISlON.

[[COJi:[_IGTlBATION SJ1Q.TlON.]

[SOURC~:_QOMPUTER ...]

[OBJECT-COMPUTER ...]

[SPECIAL-N&_MES ...]

[INPUT-OUTPUT SECTION.]

[FILE-CONTROL ...)

[1-0-coNTROL ···U
B-1

Appendix B (Cont)

.QQNFlGURATION SECTION.

Option 1:

SOURCE-COMPUTER. .QQ.£X. library-name

[, REei.,,~NG word-I BY word-2

[, word-3 BY word-4] ···]·

.,..___ ---------· -------- ------ ---·- ------ __ ____.
Option 2:

SOURCE-COMPUTER. {
B 1700 }
any entry ·

Option 1:

OBJECT:.Q.QM.PUTER. COPY library-name

[, REPLACIJ;!Q: word-I fil word-2
[, word-3 BY word-4] ...].

Option 2:

QBJECT-CQMPUTER. [{B l 7 00 }] any entry.

[, [SQRT] MEMORY SIZE integer-I [CHARACTERS]]

[, DATA SEGMENI.:lJIMIT IS integer-:~ CHARACTERS]

[, SEGMENT-LIMIT IS priority-number].

Option 1:

SPECIAL-NAME~. CQPY library-name

[REPLACING word-I BY word-2

[, word-3 BY word--4] ... J .
--------------------- ---- -------- ---- ----

Option 2:

SPECIAL-NAMES. [CURRENCY SIGN IS literal]

[, implementor-name IS mnemonic-name]

[, DECIMAL-PQINT IS CQMMA].

B-2

Appendix B (Cont)

INPUT-Q.Q.TPUT SECTIQN.

Option 1:

.F.lL,E-CONTRQL.. COPY library-name

[} {
word-2 }

REPLACING {~o~d=l _1 BY data-name-2
a a name literal-1

f { ~o~d=3 _3 } BY {~~~~=!ame-4 t J .. ·]. r a a name literal-2 ~

Option 2:

SELECT [OPTIONAL] file-name ASSIGN TO hardware-name-1

[coR] BACKUP [{~~~~}]][FORM] [FOR MULTIPLE REEL] [SINGLE]

[ALJ_,-AT-OPEN] [WQRK]

[RESERVE {~~ teger-1} [ALTERNATE [!:~!s J] J
[{

FILE-LIMIT IS } {literal-!) {THRU } {E:r:m }
' fit&:.J-,JMIIS, ARE data-name-If Ti'iRQUGH ~~ ~=:~!~;_2

[{literal-m }
' data-name-m {TH!lll } THROUGH

{literal -n }]
data-name-n ...]

[, ACCESS {RANDOM }] MODE IS SEQUENTIAL

[, ACTUAL KEY IS data-name-3]

[' PROC~S~ING MODE IS ~EQUENTIAL] [~E;bECT] ...

B-3

Appendix B (Cont)

Option 1:

I-O-CONTROL. COPY library-name

[REPLACING word-1 BY word~2

[, word-3 BY word-4] ... J.
Option 2:

[SAME [RECORD] AREA FOR file-name-2 [, file-name-3] ··]

l MULTIPLE FILE {DISKPACK diskpack-id}
TAPE multi-file-id

CONTAINS file-name-5 [POSITION integer-2]

[, f ile-name-6 [POSITION in.teger-3] J ... J
~APPLY {~iR(2] [~~iR]}file-name [file-name] ···] .

DATA DIVISION

B-4

DATA DIVISION.

[FILE-SECTION.

[{ file-description-entry } [record-description-entry] ... J ...]
sort-merge-description-entry

[woRKING-STORAGE SECTION.

[
77-level-description-entryJ]
record-description-entry

Appendix B (Cont)

Option 1:

FD file-name COPY library-name

[
REPLACING {~o~d=l _1 ·} BY {~~~~=~ame-2}

a a name literal-I

[
' {~~~~=~ame-3 } BY {~~~~=!ame-4 }] · . ·] .

literal-2

Option 2:

FD file-name l RECORDING MODE IS STANDARD {
ASCII ']

NON-STANDARDf

[
I ~~~~~g~ l]

; FILE CONTAINS integer-I [BY integer-2] lSTATIONS)
QUEUE
QUEUES

~ BLOCK CONTAINS [integer-3 :IQ] integer-4 [~~~~~ERs]]

[;

[
[;

RECORD CONTAINS (integer-5 TO] integer-6 CHARACTERS]

{
RECORD IS } {OMITTED

LABEL RECORDS ARE filANDARD [data-name-I [, data-name-2]

{
VA } {[literal-I/] [literal-2] [! [literal-3]]}
YALUE OF ID IS data-name-3

[sAVE-FACTOR IS integer-1]]

[{ RECORD IS } _ [] J ; DATA RECORDS ARE data-name 4 , data-name-5... .

...] }

B-5

Appendix B (Cont)

Option 3:

.fill sort-file-name COPY library-name

[
REPLACING {wdortd=l -i} BY {~~~~=~ame-2}

a a name literal-I

[{ ~~~~=~ame-3} BY m~:;;~~;-4}]. . .] .
..,..__ __ ----------------------- ---- ---- --- -

Option 4:

SD sort-file-name

.E!L.li CONTAINS inte:;er-1 [fil integer-2] RECORDS

[; RECORD CONTAINS integer-3 CHARACTERS]

[; BLOCK CONTAINS integer-4 rn~~g~ERsJ]

[; {
RECORD IS } [J ~ RECORDS ARE data-name-1 , data-name-2 ...]

Option 1:

01 d:1ta-name-1; mn library-name

rREPLACING {~o~d=l _ 2} BY {~~~~=~ame-3} t a a name literal-I

[{~~~~=!ame-4 } BY [~~~~=!ame-sU.. ·].
fliteral-2 fl

--------- ---- ---- ---

B-6

Option 2:

level-number {~!~~~~ame-i} [, REDEFINES data-name-2]

[; f ~ic } 1.§. (allowable PICTURE characters)]
lPICTURE

[; { ~ANK WHEN ZERO } J

[
[;
[;

{ g~ST } RIGHT J
JUSTIFIED

{

SY)
SYNC l
SYNCHRONIZED'

'RIGHT} J
\LEFT

[integer-2 TO] integer-3 TIMES

[DEPENDING ON data-name-3]

Appendix B (Cont)

[{~~~~:~~~~G} KEY IS data-name-4 [, data-name-5] ...] ...

~INDEXED BY index-name..,l [, index-name-2] •••]]

DISPLAY

[USAGE IS]

CMP
CMP-1
CMP-3
COMP
COMP-I
COMP-3
COMPUTATIONAL
COMPUTATIONAL-I
COMPUTATIONAL-3
INDEX
ASCII

B-7

Appendix B (Cont)

Option 3:

66 data-name-I RENAMES data-name-2 [{i:gUGH } data-name-3 J.
-------- --- -~- -------

Option 4:

88 condition-name {*LUE}[~~E] literal-I [{~UGH} literal-2] .

~ li teral-3 [{~UGH} literal-4]] • . . .

PROCEDURE DIVISION

PROCEDURE DIVISION.

[DECLARATIVES.

section-name SECTION. declarative-statement.

paragraph-name. [statement.]

[paragraph-name. [s ta temen t.] ... J ...
[section-name SECTION. declarative-statement.

paragraph-name. [statement.] ...

[paragraph-name. [statement.] .• •] ... J ...
END DECLARATIVES.]

[[section-name SECTI~ [priority-~mberJ].
para.graph-name. [statement.] ...

[[paragraph-name.] ... [statement.]···]···]···

[END-OF-JOB.]

Verb Formats:

ACCEPT identifier [FROM {SPO }]
-- mnemonic-name

B-8

Appendix B (Cont)~

Option 1:

{
literal -1 }

ADD identif ier-1

TO identifier-m

~ ON SIZE ERROR

i-----

Option 2:

[{li teral-2 } J
identifier-2 ···

[ROUNDED] [identifier-n [ROUNDED]

statement-I [; ELSE statement-2]]

ADD {literal-I } {literal-2 } [{literal-3 } J
~- identifier-I identifier-2 identifier-3 ···

... J

GIVING identifier-m [ROUNDED] [, identifier-n [ROUNDED] J
[; ON SIZE ERROR statement-I [; ELSE statement-2]]

1---- --·--- --------- --------- --------- --- __

Option 3:

ADD {~ESPONDING} identifier-I TO identifier-2

[ROUNDED] [;ON SIZE ERROR statement-I [;ELSE statement-2]]

ALTER procedure-name-I .IQ [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4 ...]

CLOSE f ile-name-1 (REEL]
PURGE { [!LOCK)]

WITH RELEASE j
NO REWIND
REMOVE

[, file-name-2 ...]

COMPUTE identifier-I (ROUNDED] [, identifier-n (ROUNDED] J
Jidentifier-2 }

= literal-I
{arithmetic-expression

[;ON SIZE ERROR statement-I [;ELSE statement-2]]

B-9

Appendix B (Cont)

Option 1:

CONTROL file-name [STOP-FLOW] POCKE'I.: {~~!~~~~ier}
----------------------- --- ---------- --- -----i

Option 2:

CONTROL f . l { BATCH-COUNT } . d t . f . 1 e-name POCKET-LIGHT 1 em 1 ier

Option 1:

COPY library-name.
I----------------------------------- ------i

Option 2:

.QQEX. library-name

[REPLACING {word-l } BY jidentifier-1
~ word-·2 }

.data-name-1 \literal-I

~ {~o~d=3 _3} BY }~~~~~ifier-2jf ... J .]
~ a a name l11tera1-2

DISPLAY {
literal-1 }
identif ier-1

[uPQN {~monic-name)]
Option 1:

{li teral-2 }
iden t :if ier-2 ...]

DIVIDE [MOD] {i~!~~~~~!r-l} 1.li1:Q. identifier-2 [ROUNDED]

[;ON SIZE ERROq statement-I [; ~ statement-2]]
t----- . --- ---------- -Option 2:

{ li teral-1 }
DIVIDE [MOD] identif ier-1 {Nm} {

literal-2 }
identif ier-2

GIVING identifier-3 [ROUNDED]

[REMAINDER identif ier-5 [ROVNDE~]J
[; ON SIZE ERRQR statement-I [; ~ statement-2]]

DUMP [file-name)

B-lo

Appendix B (Cont)

Option 1:

EXAMINE identifier-I TALLING {~DING }
[UNTIL] FIRST

[{
li teral-2 }]

REPLACING BY identif ier-3

{
literal-I }
identif ier-2

t------------------ _____ ...,.... ___ ----------
Option 2:

EXAMINE identif ier-1 REPLACING {~DING }
[UNTIL] FIRST

EXIT.

{
literal-2 }
identif ier-3

fli teral-1 }
lidentif ier-2

FORMAT identifier-I .ll!I.Q. identifier-2 ON SIZE ERROR statement

Option 1:

GO TO [procedure-name]

,.__ -------------- - ----------------- --- ____,
Option 2:

QQ. TO procedure-name-I [, procedure-name-2] ...

, procedure-name-n DEPENDING ON identifier

IF condition-I; {
sentence-I }
NEXT SENTENCE

MICR-EDIT identif ier-1 INTO identif ier-2

Option 1:

{
sentence-2 }]
NEXT SENTENCE

{
identifier-I}
literal-I TO identifier-2 [, identifier-3] ...

1------------------------------ -------------

Option 2:

JCORR }
MOVE \CORRESPONDING identif ier-1 TO identif ier-2

B-11

Appendix B (Cont)

MULTIPLY {li teral-·l }
identif ier-1 BY {

literal-2 }
identif ier-2

[GIVING identifier-3) [ROUNDED)

[; ON SIZE ERROR statement-! [; ELSE statement-2)]

Option 1 Paragraph NOTE:

Paragraph-name. NOTE any comment.
t---- --- --- ---- --- ---------- --- -

Option 2 Paragraph NOTE:

.NQ.'.!%. Any comment.
~ ----------------- --- ------ ---1

Option 3 Sentence NOTE:

NOTE. Any comment.

Option 1:

OPEN
r

~ [
)WITH LOCK [ACCESS)']]

INPUT file-name-I REVERSED [file-name-2 ...)
l WITH NQ REWIND

tOUTPUT file-name-3 [WITH NO REWIND) (file-name-4 ...)] ... > •••

[{~UT-OUTPUT} file-name- 5 (file-name-6 ..•] J .. .
[o-I file-name-7 [file-name~S ... J] ...

' f------- ------------------- ------------ ---------
Option 2:

OPEN
'OUTPUT l
\ l.:.Q
~INPUT-OUTPUT)

[WITH PUNCH)

file-name

[WITH {
PRINT128 }]
INTERPRET (WITH STACKERS)

..,_----~--------------------------·---...

Option 1:

PERFORM procedure-name-I [{~UGH} procedure-name-2]

~----------- ---- ----------------------- ---;

B-12

Appendix B (Cont)

--------- --- ---- ---- ------------------------ --I
Option 2:

PERFORM procedure-name-I [{~UGH} procedure-name-2]

{
in teger-1 }
identif ier-10 TIMES

Option 3:

PERFORM procedure-name-I [{~UGH} procedure-name-2]

VARYING {index-name-1} FROM
identifier-! {

index-name-2}
identif ier-2 BY
literal-2

{
identif ier-3} UNTIL condition-I literal-3

r (index-name-4}
lAFTER ~identif ier-4

{
index-name-5}
identif ier-5
literal-5

{
index-name-6}
literal-6

UNTIL condition-2 J [AFTER {
index-name-7} FROM
identifier-7

{

index-name-8}
identif ier-8
literal-8

Option 1:

{
identif ier-9}
literal-9

READ file-name [INTO identifier]

UNTIL condition-3]

.__ _____ ----------------------------------
Option 2:

READ file-name RECORD [INTO identifier]

[; {~~v!~~D KEY} statement-I [; ELSE statement-2]]

RELEASE record-name [FROM identifier]

RETURN file-name RECORD [INTO identifier]

~ AT END statement-I [; ELSE statement-2]

B-I3

Appendix B (Cont)

Option 1:

SEARCH identif ier-1 [VARYING {~ndex~n~me-1}]
1dent1f 1er-2

[; AT END impera tive-sta tement-(1

; WHEN condition-I

[; WHEN condition-2

{
imperative-statement-2}
NEXT SENTEKQE.

{
imperative-statement-3}1
NEXT SENTENCE

1------------· ---------------------------_,__.
Option 2:

SEARCH ALL identifier-3 [; AT END imperative-statement-4]

; WHEN condition-3 {
imperative-statement-5}
NEXT•SENTENCE

SEEK file-name RECORD (WITH KEY CONVERSION]

Option 1:

SET {
index-name- I }
identifier-I [{index-name-2}

' identif ier-2 ... J TO {
index-name-3}
identif ier-3
literal-I

i------------------------------ -------------
Option 2:

SET index-name-4 [, index-name-5 ...]

B-14

{ UP fil }
DOWN BY {

identif ier-4}
literal-2

Appendix B (Cont)

[
TAG-KEY]
INPLACE file-name

[{i~r} ON ERROR]

ON {
DESCENDING}
ASCENDING KEY data-name-1 [, data-name-2]

[oN { DESCENDING}
ASCENDING KEY data-name-3 [, data-name-4] ...] ...

!
INPUT PRQCEDURE IS section-name-I

USING file-name-2 [~E J
RELEASE

!OUTPUT PROCEDURE IS s[::~:on-n]ame-3
GIVING f ile-name-3 RELEASE

{
RUN }

STOP literal

Option 1:

[{ ~:gUGH} section-name-2] I
m::gUGH } section-name-4] I

SUBTRACT {~~!~~~~~!r-l} [, {~~!~~~~~;r_2 } ...] FROM

identifier-m [ROUNDED] G identifier-n [ROUNDED] ...]

[; ON SIZE ERROR statement-I [; ELSE statement-2]]

Option 2:

SUBTRACT {
literal-I }
identif ier-1 [{li teral-2 } J {li teral-m }

' identifier-2 ··· FROM identifier-m

GIVING identifier-n [ROUNDED] G identifier-a [ROUNDED] J ...
[; ON SIZE ERROR statement-I [; ELSE statement-2]]

~·-------------------------------------- ----t

B-15

Appendix B (Cont)

i-------------------------------------- ---
Option 3:

SUBTRACT {
CORR }
CORRESPONDING identif ier-1 FROM identif ier-2

[ROUNDED] [; ON SIZE ERROR statement-I [; ~ statement-2] J
TRACE 20

Option 1:

USE AFTER STANDARD ERROR PROCEDUR~ ON

file-name-I [, file-name-2]
INPUT
OUTPUT
INPUT-OUTPUT
1.:..Q
o-I

i--------------------- -------------- --- ---1

Option 2:

{AFTER }
. BEFORE STANDARD {

BEGINNING.}
ENDING .

8~~~~}] LABBL PROCEDURE ON {
file-name-I [, f i le-name-2 l ... } .
J.NPUrf
OUTPUT

Option 3:

USE FOR KEY CONVERSION ON file-name-·l [, f ile-name-2 ...]

------------ ---------------------------------
Option 4:

USE FOR READER-SORTER POCKET file-name.

Option 1:

WRITE record-name [FROM identifier-I]

LAFTER }
l\BEFORE

ADVANCING identif ier-2 !{
iriteger-·l }

{
ERROR
AUXILIARY
STACKER

TO CHANNEL

{literal-I }t]
identif ier-·l ~

[{END-OF-PAGE } J ; AT EOP imperative-statement

------------ --- --- ------------- ---- ---- ---

B-16

Appendix B (Cont)

Option 2:

WRITE record-name [FROM identifier-I]

[; INVALID KEY any statement [; ELSE any statement]]

ZIP data-name

B-17

ERROR NO.
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

APPENDIX (

COMPILER ERROR MESSAGES

FILE-NAME EXPECTED
INTEGER LITERAL REQUIRED
INVALID LITERAL
RESERVED WORD REQUIRED

MESSAGE

PARAGRAPH HEADER EXPECTED IN AREA A (COL. 8-11)
MISSING DIVISION
DOLLAR CARD ERROR
"DIVIS ION" REQUIRED
COMPILER ERROR
MISSING PERIOD
RESERVED WORD OR DATA NAME REQUIRED
COPY REPLACING OR MNEMONIC LIST OVERFLOW
DUPLICATE MNEMONIC NAME
UNIDENTIFIED ITEM
IMPROPER LABEL RECORD(S) DECLARATION
ILLEGAL NESTED COPY
ILLEGAL COPY OPERAND
STANDARD OR NON-STANDARD OR ASCII REQUIRED
DUPLICATE REPLACING
ILLEGAL SUBSCRIPTING
ILLEGAL LIBRARY NAME
ILLEGAL TYPE
ILLEGAL QUALIFICATION
ILLEGAL PROGRAM ID
"SECTION" REQUIRED
MISSING FILE NAME
A PARENTHESIS WAS EXPECTED HERE
MISSING LABEL QUALIFICATION •.• MONITOR
NO FD OR SD
INVALID FD
ILLEGAL LEVEL
ILLEGAL DATA NAME
RELATIONAL OPERATOR REQUIRED
PICTURE SIZE ERROR
"PROCEDURE" EXPECTED
ILLEGAL FD OR SD IN WORKING-STORAGE
PRIORITY NUMBER ERROR
MISSING IMPLIED LABEL OR LABEL QUALIFICATION
MISS ING SECT ION
NO "USE"
PARAGRAPH-NAME OR SECTION-NAME REQUIRED
VERB OR PARAGRAPH-NAME OR SECTION-NAME REQUIRED
MISSING FILE NAME
ILLEGAL LABEL RECORD REFERENCE OUTSIDE DECLARATIVES
ILLEGAL ARITHMETIC OPERAND
MISSING "=" OR "FROM"
NO VALID CORRESPONDING OPERANDS

c-1

Appendix C (Cont)

ERROR NQ.

047

c-2

048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065'
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

094
095
096
097
098
099
100

MESSAGE

COMPOSITE ARITHMETIC SIZE> 125 ... MAY USE LARGE AMOUNT OF
CORE

MISSING "END DECLARATIVES''
MISSING "DECLARATIVES"
ILLEGAL MOVE OPERAND
"TO" REQUIRED
AN ALPHABETIC ITEM CANNOT BE MOVED TO A NUMERIC ITEM
ILLEGAL GROUP TO ELEMENTARY MOVE
ILLEGAL "ALL" LITERAL
ILLEGAL SUBSCRIPTING OF A SUBSCRIPT
SUBSCRIPT NOT S-SIGN OR UNSIGNED
SUBSCRIPT NOT NUMERIC I~TEGER
SUBSCRIPT NOT ELEMENTARY ITEM
ILLEGAL MIXING OF INDEX AND SUBSCRIPT
EXPLICIT DATA NAME TABLE OVERFLOW
THIS DATA NAME IS NOT DESCRIBED IN THE DATA DIVISION
QUALIFIER ARRAY TABLE OVERFLOW
ILLEGAL QUALIFIER
INSUFFICIENT QUALIFICATION
OVERLAPPING CORRESPONDI~G OPERANDS
NO MATCHING CORRESPONDING OPERANDS
CORRESPONDING NAMES ARE THE SAME
FD NAME ILLEGAL FOR CORRESPONDING
CORRESPONDING DATA NAME NOT GROUP ITEM
DUPLICATE PARAGRAPH OR SECTION NAME
LABEL NOT UNIQUE
LABEL QUALIFICATION NOT A SECTION
ALTER TABLE OVERFLOW
QUALIFIER LABEL TABLE OVERFLOW
REFERENCED PARAGRAPH OR SECTION DOES NOT EXIST
LABEL QUALIFIER IS NOT UNIQUE
LABEL RECORD IS NOT AN 01 LEVEL
ILLEGAL CONDITIONAL STATEMENT
ILLEGAL DOUBLE NEGATIVE
INVALID IMPLIED SUBJECT OR MISSING RELATIONAL OPERATOR
PICTURE TABLE FULL : RECOMPILE
PICTURE SPECIFIED ON A GROUP ITEM
RENAMES OPERAND OUT OF HANGE
RENAMES OPERAND LEVEL CANNOT BE 01 OR 66 OR 77 OR 88
RENAMES OPERAND IS SUBSCRIPTED
DUPLICATE NAME
"RENAMES" REQUIRED
GROUP RENAMES ITEM ADDRESS OR LENGTH NOT 0 MOD 2
BLANK WHEN ZERO SPECIFIED FOR NON NUMERIC CLASS
JUSTIFIED SPECIFIED FOR NUMERIC OR EDITED NUMERIC CLASS
UNSIGNED INTEGER EXPECTED
"OCCURS" SPECIFIED FOR LEVEL 01 OR 77
VARIABLE LENGTH DISK FILE MUST HAVE SEQUENTIAL ACCESS AND

NO FILE LIMITS
NON-ZERO VALUE EXPECTED
DUPLICATE "VALUE" CLAUSE
ILLEGAL "VALUE" LITERAL
DATA CLAUSE EXPECTED
ILLEGAL DATA CLAUSE FOR GROUP ITEM
ILLEGAL 4 BIT SPECIFICATION FOR HARDWARE DEVICE
"ZERO" EXPECTED

ERROR NO.

101

102
103
104
105
106
107
108
109
llO
lll
ll2
113
114
ll5
116
117
ll8
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155

Appendix C (Cont)

MESSAGE

ASCII MAY BE SPECIFIED ON ONLY WORKING-STORAGE LEVEL
01 OR 77

MISSING "OCCURS" FOR INDEX-NAME
INDEX NAME EXPECTED
LEVEL NUMBER EXPECTED
LEVEL NOT 01 THRU 49, 66, 77, OR 88
LEVEL 77 MUST FOLLOW ONLY WORKING-STORAGE SECTION
PICTURE REQUIRED FOR ELEMENTARY DATA NAME
NO DATA CLAUSE FOR INDEX DATA ITEM
COMPUTATIONAL ITEM NOT NUMERIC
COMPUTATIONAL SIGN NOT S OR J
IMPROPER REDEFINED NAME
LEVEL NUMBER NEQ REDEFINED LEVEL NUMBER
REDEFINED OPERAND IS SUBSCRIPTED
REDEFINED GROUP ADDRESS IS ODD
VALUE CANNOT BE SPECIFIED FOR SUBSCRIPTED ITEM
VALUE CANNOT BE SPECIFIED FOR REDEFINED AREA
VALUE CONFLICTS WITH GROUP VALUE
FILLER ADDED TO PREVIOUS ITEM
REDEFINED AREA NEQ REDEFINING AREA
USAGE CONFLICTS WITH GROUP USAGE
SUBSCRIPT MAXIMUM IS 3
INCONSISTENT LEVEL NUMBER
01 LEVEL NUMBER EXPECTED
"SELECT" EXPECTED
FILE PREVIOUSLY SELECTED
FILE NOT SELECTED
FILE INFO TABLE FULL
HARDWARE NAME EXPECTED
SD FILE NOT ASSIGNED TO DISK
UNIDENTIFIED WORD
WORD EXCEEDS 30 CHARACTERS
INVALID NUMERIC OR UNDIGIT LITERAL
ZERO SIZE LITERAL
MISSING RIGHT QUOTE
WORD ENDS IN A HYPHEN
NO ALPHA CHARACTER IN NAME
MISSING LEFT QUOTE
TABLE OVERFLOW IN MERGE: RECOMPILE
MISSING "BY" OR II INTO"
MISSING "GIVING"
"MOD" AND "REMAINDER" ARE MUTUALLY EXCLUSIVE
MISSING "ERROR"
ILLEGAL PERFORM OPERAND
ILLEGAL PERFORM "TIMES" OPERAND OR MISS ING "TIMES"
MISS ING "UNTIL"
ILLEGAL PERFORM "VARY ING" OPERAND
ILLEGAL PERFORM "FROM" OPERAND OR MISS ING "FROM"
ILLEGAL PERFORM "BY" OPERAND OR MISSING "BY"
ILLEGAL SET OPERAND
FILE-LIMITS SPECIFICATION GIVEN FOR SD FILE
ACTUAL KEY MUST BE PC 9(8) COMP (DISK/QUEUE),PC X(ll2)

(SORTER),PC 9(10) (REMOTE)
PICTURE REPEAT ERROR
PICTURE FLOAT ERROR
PICTURE SIGN ERROR
PICTURE "P" SPECIFICATION ERROR

C-3

Appendix C (Cont)

ERROR NQ.

156
157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

C-4

MESSAQE

PICTURE SIZE SPECIFICATION ERROR
PICTURE DECIMAL POINT ERROR
PICTURE ERROR ••. IMPROPER CHARACTER PRECEDING FLOAT, ZERO

SUPPRESS,OR CHECK PROTECT
PICTURE CLASS ERROR
PICTURE MASK SIZE (100) EXCEEDED
VALUE OF ID CATEGORY IS NUMERIC
FILE-LIMIT MUST BE PC 9(8) COMP
"THRU" EXPECTED
DATA NAME OR INTEGER EXPECTED
"RANDOM" OR "SEQUENTIAL" EXPECTED
SD FILE MUST BE SEQUENTIAL
ACTUAL KEY REQUIRED
"BACKUP" EXPECTED
FILE-CONTROL CLAUSE EXPECTED
BACKUP FOR LINE PRINTER OR PUNCH ONLY
ILLEGAL USE OF FILE-NAME OR CONDITION-NAME
"MULTI-FILE-ID" EXPECTED
FILE NOT ASSIGNED TO TAPE OR DISK
I-O CONTROL CLAUSE OR " .. " EXPECTED
APPLY CLAUSE NOT IMPLEMENTED
FILE NOT ASSIGNED TO HAHDWARE DEVICE
DECLARATIVES NOT lST ITEM IN PRO.DIV. OR USE NOT BETWEEN

SECTION & PARAGRAPH
CONDITION-NAME LITERAL HEQUIRED
"VALUE" REQUIRED
VALUE THRU ••• lST LITERAL GEQ 2ND LITERAL
I/O OPERAND MUST BE 01 RECORD OF A FILE
I/O OPERAND CANNOT BE LABEL RECORD
I/O OPERAND MUST BE SOR~r FILE
I/O OPERAND MUST BE FILE
I/O "OPERAND CANNOT BE WORKING-STORAGE 01 RECORD
I/O OPERAND CANNOT BE SORT FILE
CAN MONITOR ONLY ON FILE
SORT KEY NOT WITHIN SCOPE OF SORT FILE
SORT STATEMENT NOT PERMITTED IN DECLARATIVES SECTION
MISSING "ASCENDING" OR "DESCENDING"
SORT KEY CANNOT BE SUBSCRIPTED
MISSING SORT KEY
NUMBER OF SORT KEYS GREATER THAN 40
SIZE OF KEY TOO LARGE
MISSING "INPUT" /"OUTPUT'' /"USING" /"GIVING"
USING/GIVING FILE REC SIZE NEQ SORT REC SIZE
MISSING SORT INPUT/OUTPUT PROCEDURE NAME
SORT THRU PROCEDURE APPEARS BEFORE BEGINNING POINT
GO TO DEPENDING OPERAND MUST BE ELEMENTARY DATA-NAME INTEGER
MORE THAN 1 ACCEPT OPERAND
MISSING WORD OR LITERAL
NOT READABLE/WRITEABLE HARDWARE
GO TO DEPENDING LABEL LIMIT (1022) EXCEEDED
FILE-LIMITS REQUIRE "AT END" OR "INVALID KEY"
ILLEGAL READER-SORTER OPERAND
MISSING "DEPENDING" IN GO TO
READ/WRITE/SEEK ON SD OH RELEASE/RETURN ON FD
SEEK FILE NOT RANDOM DISK
ILLEGAL ADVANCING/STACKER OPERAND
INVALID I/O OPERAND

ERRQB NO.

211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257
258'
259

260
261
262
263
264

Appendix C (Cont)

MINUS SIGN NOT ALLOWED
MISSING GO TO LABEL

MESSAGE

GO TO MUST BE TERMINATED BY "." OR "ELSE"
ILLEGAL OPTION FOR I/O DEVICE
INVALID OR MISSING OPEN TYPE
ATTEMPTED ALTER OF NON-GOTO PROCEDURE-NAME
CHANNEL NUMBER GTR 11
RESERVED WORD (VERB) REQUIRED
CURRENT SECTION MUST HAVE SAME PRIORITY AS REFERENCED GOTO

PROC
TAPE FILE CANNOT HAVE 2 NAMES
EXPECTED A FILE DECLARATION CLAUSE
MISSING FILE CONTAINS
RECORDS PER AREA MADE MULTIPLE OF RECORDS PER BLOCK
DATA DICTIONARY FULL : RECOMPILE
REDEFINES NOT ALLOWED ON 01 RECORD OF FILE
MISSING FILE RECORD DESCRIPTION
BLOCK SIZE NOT MULTIPLE OF MAXIMUM RECORD SIZE
ARITHMETIC OPERAND MUST BE ELEMENTARY ITEM
ARITHMETIC OPERAND CANNOT BE INDEX ITEM
ARITHMETIC OPERAND MUST BE NUMERIC
ARITHMETIC LITERAL OPERAND MUST BE NUMERIC
FILE LABEL RECORDS OMITTED
DUPLICATE USE PROCEDURE
MONITOR ALLOWED ONLY ON FILE
CANNOT MONITOR ON SORT FILE
MONITOR ALLOWED ON LINE PRINTER ONLY
OBJECT OF SEARCH MUST BE INDEX
MISSING ALTER LABEL
DATA-NAME REQUIRED
DATA-NAME OR INDEX-NAME REQUIRED
WHEN CLAUSE REQUIRED
ILLEGAL USE OF RESERVED WORD
ITEM NOT DISPLAY
DATA LENGTH EXCEEDS 1 CHARACTER
ILLEGAL USE OF FIRST IN EXAMINE
MISSING FIRST IN EXAMINE
SIGN CONDITION OPERAND MUST BE ELEMENTARY NUMERIC OR

ARITHMETIC EXPRESSION
CLASS TEST OPERAND CANNOT BE ARITHMETIC EXPRESSION
CLASS TEST OPERAND MUST BE DISPLAY
NUMERIC VERSUS ALPHA COMPARE IS ILLEGAL
VIOLATION OF ANSI RULES FOR PERFORMING OVERLAYABLE SEGMENTS
RECEIVING FIELD TRUNCATION
FIELD TREATED AS 8 BIT DISPLAY
SEQUENCE ERROR
LITERAL EXCEEDS 160 CHARACTERS
CLASS TEST OPERAND CANNOT BE ASCII
MISSING SUBSCRIPT
DUPLICATE CONDITION SEND/RECEIVE
COMPARISON OF INDEX DATA ITEM MUST BE AGAINST INDEX DATA

ITEM OR INDEX NAME
COMPARISON OPERANDS MUST HAVE SAME USAGE
ILLEGAL USE OF "NEXT SENTENCE"
CANNOT COMPARE LITERALS
CANNOT COMPARE INDEX-NAME VS ZERO OR - LITERAL
SORTER FILE RECORD NOT MOD 112 IN LENGTH

c-5

Appendix C (Cont)

ERROR NO.

265
266
267
268
269
270
271
272
273
274
275
276
277

278

279

280

281

282
283
284
285

286

287

288
289
290

291
292
293
294
295
296
297
298
299

C-6

MESSAGE

CANNOT BLOCK SORTER FILE
GROUP NAME CANNOT BE "FILLER"
IF STATEMENT MUST BE TERMINATED BY"." OR "WHEN"
LITERAL SUBSCRIPT CAUSES OUT OF BOUNDS ERROR
HARDWARE MUST BE READER-SORTER
READER-SORTER ACTUAL KEY NOT IN DATA SEGMENT ZERO
RECORDING MODE BINARY NOT ALLOWED
MISSING MONITOR DECLARATION (TO DECLARE DUMP FILE)
MULTI RECEIVING FIELDS ILLEGAL WITH.CORRESPONDING OPTION
TAG-KEY GIVING FILE MUST HAVE 01 RECORD OF PC 9(8) CMP
TAG-KEY SORT REQUIRES USING FILE AND GIVING FILE OPTIONS
COMPILER ERROR IN CODEGEN GET [(<._&$*) ;-/ ,%=]#@:>+f**...-<*>$
COMPILER ERROR IN CODGEN GET.TRASH [(<~&$*);-/,%=]#@:>+f**&

$**<-<*>$
COMPILER ERROR IN CODEGEN GET.POOL [(<t-&$*);-/,%=]#@:>+f**

&$** -<*>$
COMPILER ERROR IN CODEGEN CONTROL [(<<-&$*) ;--/, %=]#@:>+f**

&$** ... <*>$
COMPILER ERROR IN CODEGEN ARITH.EXP [(<~$*) ;-/,%=]#@:>+;1

&$<-<*>$
COMPILER ERROR IN CODEGEN OPND.OVER [(<._&$*) ;~/,%=]#@:>+;1

&$.-<*>$
COMPILER ERROR IN PROSYN GET[(<._&$*) ;-/,%=]#@:>+f**&$**,_<*>$
USAGE DECLARED FOR AN ASCII FILE
BLOCK SIZE MADE EQUAL TO MAXIMUM RECORD SIZE
CURRENT COMPILER DATA SEGMENT LIMIT OF 000 EXCEEDED ••

TEMPORARY SOLUTION=RESEGMENT
COMPILER ERROR •• COLUMN 100 LARGE .. DOES NOT AFFECT COMPILATION

[« ._&$*) : - I , %=] #© : >+ f * * &$ * * +-< *> $
A ROUTINE IN CODEGEN HAS ENCOUNTERED AN UNEXPECTED TOKEN ..

COMPILER ERROR[(<._&$*) ;-/,%=]#@:>+f**&$**,_<*>$
CANNOT COMPARE ALPHA VS REAL
MINIMUM OF 2 OPERANDS MLST PRECEDE THE WORD GIVING IN AN ADD
SUBSCRIPT NOT INTEGER (SPACE REQUIRED BEFORE LIT IF DECIMAL-

POINT IS COMMA
INVOKED DATASET NAME IS NOT A WORD
EXPECTED "DB" AS A LEVEL INDICATOR
INVALID DB NAME
EXPECTED A DDL-NUMBER
DATA-BASE DECLARATION NOT EXPECTED IN THIS SECTION
"DATASET" EXPECTED
WORKING-STORAGE SECTION OR PROCEDURE DIVIS ION EXPECTED
DATA MANAGEMENT LEVEL 01 DATASET NAME REQUIRED
DATA BASE NAME REQUIRED

Item

abbreviated compound conditions

ACCEPT

ACCESS

RANDOM

SEQUENTIAL

ACTUAL KEY

ADD

ALL

ALL-AT-OPEN

alphabetic items

alphanumeric edit

alphanumeric items

ALTER

ALTERNATE

AREA

items

arithmetic expressions

formation and evaluation rules

arithmetic operators

ari thmeti.c verbs

ADD

COMPUTE

DIVIDE

MULTIPLY

SUBTRACT

ASCENDING

ASCII

ASSIGN

ASSIGN,

AT END

AUTHOR

BACKUP

READER-SORTER

INDEX

5-9,

6-33,

.......
..........

Page

7-24

7-29

5-9' 5-12

5-12

5-12

5-9, 5-12, 5-13

4-2,

5-9'

5-11,

6-43,

6-16,

5-9,

4-3,

7-30

7-48

5-9' 5-11

6-49

6-49

6-49 -

7-33, 7-51

5-11, 5-15

5-14' 5-15

6-46,

6-32,

5-10,

5-9,

7-14

7-14

7-14

7-27

7-30

7-39

7-45

7-59

1-88

7-84

6-68

5-11

s-1
7-71

4-1

5-10

Index-1

INDEX (Cont)

Item Page

BLANK WHEN ZERO

BLOCK

braces

brackets

character set

characters

editing

formulas

MICR

relational

word

punctuation

class conditions

CLOSE

COBOL compiler control

coding form

COMMA

comparison of operands

compilation card deck

compile card

compiler-directing sentence

compiler-directing statement

compiler-directing verbs

COPY

MONITOR

NOTE

USE

compound conditions

COMPUTATIONAL

COMPUTATIONAL-I

COMPUTATIONAL-3

COMPUTE

concepts

file

record

level-number

Index-2

6-33, 6-34,

6-16,

6-35,

6-17,

6-32,

6-32,

.. '

6-52

6-19

2-10

2-10

2-1

2-1

2-2

2-2

S-4

2-2

2-1

2-2

7-20

7-34

11-1

3-1

5-6

7-19

11-1

11-2

7-4

7-3

7-27

7-40

4-2

7-60

7-90

7-22

6-67

6-32

6-67

7-39

6-3

6-3

6-4

6-5

INDEX (Cont)

Item Page

condition-name

condition-name condition

conditional sentence

conditional statement

conditional verb

IF

conditions

abbreviated compound

class

compound

condition-name

evaluation rules

relation

sign

simple

CONFIGURATION SECTION

connectives

constant, figurative

continuation indicator

CONTROL

control cards

control relationship between procedures

COPY......... 5-3, 5-4, 5-6, 5-8,

CORRESPONDING

CURRENCY SIGN

data, classes of

data communications

DATA DIVISION

DATA DIVISION, structure

data maniputation, verbs

EXAMINE

FORMAT

MICR-EDIT

MOVE

data-name

DATA RECORDS

2-4, 6-33,

• fl •

5-14, 6-16, 6-17,

.....

6-36,

6-32,

7-30,

6-72,

5-1,

7-13,

7-32,

5-6,

2-3,

6-16, 6-17,

7-21

7-21

7-4

7-3

7-27

7-53

7-17

7-24

7-20

7-22

7-21

7-21

7-21 -
·1-20

7-22

5-2

2-9 -

2-6

3-1

8-3

11-1

7-7

7-40

7-88

6-53

6-49

9-1

6-1

6-2

7-27

7-48

8-4

8-6

7-54.

6-39

6-21

Index-3

INDEX (Cont)

DATE, julian 2-s
DATE-COMPILED•...............•................ 4-1, 4-2

DA.TE-WRITTEN 4-I

debugging verbs . 7-28

DUMP . • • . • • . . • • • • . . • . . • . • 7-4 7

TRACE . . . • • • . . • • • • • . . • . . • • • . • • • • • . • . . . • . . . • . • • • 7-89

DECIMAL-POINT ,, • . • . • . • . . . • . • • • • • • . . • • . • • . • . . • . . . 5-6, 6-52

DECLA.RATIVES• ,, •..•......•......•..•...•..•....•.••..•. 7-1, 7-7, 7-13

def ini tio11 of words .. ,, • . . . • . . . • . • 2-3

DEPENDING•....•.....•.......••..•.•..• 4-2, 6-32, 6-43, 6-44, 7-51

DESCENDING . . . • • . • • • • . . • • • • • • . . 6-33, 6-43, 6-46

DISPLAY ...•........•. ,, . . • • . . . • • . • . • • • . . . • • 6-32, 6-52, 6-66, 7-44

DIVIDE JI • • • • • • • • • • .. • 7-45

DIVISIONS • • • • . . • • • . . . • • . . • . • . . • . . . • . . 1-2

DATA , ... 1-2, 6-1

ENVIRONMENT • • . . . • • . • • . . . • . . • . • . • . • . • . • . • • . • • • . . . 1-2, 5-1

IDENTIFICATION . • • • • . • • . • • • • . • • . . • • • • • • • . • . . . • • • • • . • • 1-2, 4-1

PROCEDURE • • . . • . • . . . • • • . • . • • • 1-2 , 7-1

DUMP • . • • . . • • . . • . • 7-47

editing ... 6-50

floating insertion•...•..•.........•••.••.•.••••..••..•....•. 6-56

fixed insert ion • • . • . • • . • . • • • . . • • • 6- 54

insertion 0 •• 6-54

replacement . . • . • • . • . . . • • • • • . . • • • • . • . • • • • • • . • . . 6- 57

simple insertion•••...•..•...•.•.••.•......•.•...•..•...• 6-54

special insertion•.......••....•••.•.•••••.•••••.•.••.••.•••• 6-54

suppress ion • • . • • . . • . . • • . • • . • • • • • . . • • . . . • 6- 56

editing characters • • . • • . • • • • • . • • . • • • . • • • . . . • • . • • . • . . • . . . • . . • . • • • . . 2-2

editing rules , 6-54

editing symbols ...•.....•.•.•..•...••.....•....•..•......•..••.......... 6-50

elementary i terns • • • • • . • . • • . • • • • . . . 6-5

elementary MOVE •................•..........••••......................... 7-54

ellipsis••..••.....•..•.....•.....•...... 2-11

END•......•................•.................•..............•• 5-9, 5-12

Index-4

INDEX (Cont)

ending verb . 7-27

STOP 9 • 7-87 _

END-OF-PAGE 7-93.

ENVIRONMENT DIVISION • . • • • • . . • . • • • • • . • • • . • • • . • • • . • • . • . • • • • • • • • . 5-1 _

ENVIRONMENT DIVISION, structure •••.••••••••••.••••••.•••.•.•••.••...••.• 5-1_

evaluation of conditions . . • • • • • • • • . . • . . • . . • • • • • • • . • . • • . • • • . • • • . . • • 7-21 _

EXAMINE ., . • . 7-48

execution of PROCEDURE DIVISION . • . • . • • . . . • • . • . . • . . • • • • • • • • • • • . • • • • • • • • • . 7-2,

execution, sentence • • . • • • • • • . • . • . • . . • • • • • . • • . . • • • • • • . . • • . . • • • 7-5_

EXIT • . . . • . • . • • • • • • . . . • • • • • • • • • • • • . . . • . . • • • • • • • • . • . . . • . • • • • • • . • . . . • • • 7- 50 ,

FD 6-16

f igura ta.ve constant e e a e e e • e • • a e • e • • e e e e • e e e • e • e e e e e e e a • e • a e e e e e e e e e • e I e e 2-s
file concept . . . • . . • • . . . • • • • . • . • . . • . • • . . • . . . • • • . . 6-3 ,.

FILE-CONTROL • . . • • . . • • • • • • . • • • . • • . . • 5-1, 5-9

FILE-CONTROL, READER-SORTER • . • • . . • . • • . • . • • • • . . • . • . • . . • . • 8-1 ,,

file description•..•.••.........•••••.....•.••.•••..•......•. 6-2, 6-16

FILE-LIMIT • • . . . • • . . . • . . • • . • . . • • . . . • . 5-9, 5-11, 5-12

file-name . 2-3

FILE SECTION . . . • • . . • . • • • . . . • . • • • • . . • . • . . • • • • 6-1, 6-2, 6-16

F I LL ER • . . . • • . • . . • • . • • . • • . • . . • • . . . • 6-3 2 , 6-3 9 .

fixed insert ion editing • . . . • . . • • • . . . • • . • . . • • • . . . • • . . 6- 54 _

floating insertion editing ..•......•.•...•......••..•..•.........••..•.. 6-56_

FORM . . • • . . • . . . • • • . • • . . . • . • • . . • • • • . • • . • . • . . . • . • • . . . 5- 9 , 5-11

FORMA. T • • . • • • . • • . • . • • • • . . • . • • . • • • • • • . . . • . • . . • • . . S-4

FROM 7-74
generic terms • • . . . • . • . • • . . • • . • • . . . • • • • • . • . • . • • • • • • • 2-10 .

GIVING•...••...•.........•.•..•••••.. 7-30, 7-31, 7-45, 7-·59, 7-83, 7-88

GO··~··· 7-33
group i terns . . . • • . • . • • . • • • . • • . . • . • . • • • • • • • • . • . . • . . • • . • 6- 5 ,

group MOVE • • . • . • • • • . • • . • • . • . • . • • • • • . . . • • . . . • • . . 7-56 .

IDENTIFICATION DIVISION . . . • . . • • • • • • . . • . . • • . • • . . . • . . • • 4-1

IDENTIFICATION DIVISION, structure .•.•...•.•.•...•••.•••....•........•.. 4-1

identification field • • • . . • . • • • • . . • . • • . • . • • . . 3-3

identifier••...••.•......•....•...•..•............ 6-15, 7-1:

IF • • . • . • • . . • • • . • . • . . • • • . . • • . . . • 7-53 ,

imperative sentence . • • • • • . . . • • . . • . • . • . . . • . • . . • . • • 7-4

imp era ti 're s ta temen t • • . . • . • . . • • 7-3

Index-5

INDEX (Cont)

Item Page

INDEX
index data items,

index-name

INDEXED BY
indexing

initial value

INPLACE

MOVE

INPUT, OPEN
INPUT-OUTPUT, OPEN
INPUT-OUTPUT SECTION
INPUT PROCEDURE
input-output verbs

ACCEPT
CLOSE
CONTROL
DISPLAY
OPEN
READ
SEEK
WRITE

insertion editing

INSTALLATION
internal program switches

inter-program communication

INTERPRET, OPEN
INTO
INVALID KEY
items

alphabetic

alphanumeric

alphanumeric edit

numeric

numeric edit

I-O-CONTROL
JUSTIFIED
key words

LABEL

Index-6

6-14, 6-33,

2-4,

6-43,

6-14,

5-1,

6-32

7-57

6-15

6-46

6-15

6-72

7-83

7-61

7-61

5-8

7-83

1-21

7-29

7-34

8-3

7-44

7-61

7-71

1-80

7-93

6-54

4-1

7-26

10-1

7-61

7-72

5-12, 1-11, 1-93

6-48

6-49

5-1, 5-14,

6-33, 6-34,

2-9,

6-16,

6-49

6-49

6-49

6-49

6-28

6-40

2-10

6-23

INDEX (Cont)

Item Page

label equation card

language description notation

language formation

LEADING

level-number

level-number concept

literals

numeric

non-numeric

undigi t

LOCK, CLOSE

LOCK, OPEN

logical control verbs

IF ..•..•••..

logical operators

... • ..

logical record

margin A

margin B

MCP label card

MEMORY

MICR character type

MICR-EDIT

mnemonic-name

MOD

MONITOR

MOVE

elementary

group

index data items

MOVE, valid statement combinations

MSG-TYPE

MULTIPLE

MULTIPLE FILE

MULTIPLE REEL

MULTIPLY

NEXT SENTENCE

NO

5-14,

5-13'

7-45,

5-9,

5-15,

5-9'

11-1

2-10

2-1

7-48

6-42

6-5

2-4

2-4

2-5

2-6

7-34

7-61

7-27

7-53

7-17

6-3

3-3

3-3

11-2

5-4

8-4

8-6

2-4

7-46

4-2

7-54

7-54

7-56

7-57

1-5s

5-13

5-14

5-16

5-11

7-59

7-53

5-11 5-9,

Index-7

INDEX (Cont)

NO REWIND, CLOSE . . • • • . • . . • • • • • • • . • 7-34

NO REWIND, OPEN • • • • • • • • • • • • • . • • • • • • • • • • . • . • . • • . • • 7-61

non-contiguous WORKING-STORAGE ••••.••••••.•••••••••••••••••••••••••••••• 6-71

non-numeric literal . 2-5

NON-STANDARD • . • • • • • • • • • • • • • . • • . • • • • • • • . • • . . • 6-16, 6-27

NOTE • . . . • • • • • • • • • . • • • • • • • • • • • • • • • . . . • 7-60

nouns . 2-3

condition-name . 2-4

data-name . 2-3

figurative cons ta.n t . 2-6

file-name . 2-3

i11dex-name . 2-4

literals . 2-4

mnemonic-name . 2-4

procedure-name . • . 2-4

record-name . 2-3

special registers . 2-7

numeric edited i terns . 6-49

numeric i terns . 6-49

numeric literal

OBJECT-COMPUTER . . • • • . • . . • • • • • • • • • • • . • . . . • • • • • • • • • • • • • • • • • . • • • • • . • • • • 5-1, 5-4

object program . 1-3

OCCURS ••••.. • . • . . • • . • • • • • • . • • • • . . . • . • • • • • • • • 6-32, 6-43

o-I, OPEN .•.••.•••.••••••••••••••••.•••••••••••••••••••••••••••••••••••• 7-61

OMITTED . . • . • . • • . • • • . • • • • . • • . • • • . • • . . . • • • • • • • • . • • • • • . • . • . • . . • . • . . • . 6-16, 6-23

OPEN • . • • • . . • • • • . • • • • • . • • • • • • • • . • • • • • • • • • • • . • • . • . • • • • • • • • 5-10, 5-15, 7-61

option control card . 11-3

OPTIONAL . . • • . . • . . • . • • . . • • . • . • • • • • • . . • 5-9, 5-10, 5-16

optional words . 2-9, 2-10

OUTPUT, OPEN • • • . • • . . • . . . • • • • • • . • . • • • • • • • • . • • 7-61

OUTPUT PROCEDURE • • • • • • • . . • • • • • . • • • • • . • • . • • . • • • • • . . • • • . . • • 7-83

paragraph, definition .. .

structure

paragraph NOTE •....•.••••.•••.•..••.•••••••••••••••••••••..•••••.••••••• 7-60

PERFORM • . • . • • • . . • • • • • • • • • • . • • . • . . • . • • . • • • . . • • • . • . . • • • . • • . . • • . • • • • . • 7-65

period . 2-11

physical record . 6-3

Index-8

INDEX (Cont)

Item Page

PICTURE

precedence

POSITION ..

precedence

PICTURE

PRINT128, OPEN

priority number

procedure branching verbs

ALTER

EXIT

GO ...

PERFORM

ZIP .

PROCEDURE DIVISION

PROCEDURE DIVISION, body

PROCEDURE DIVISION, execution

PROCEDURE DIVISION, READER-SORTER

procedure formation, rules

procedure-name

PROGRAM-ID

program organization- ..

program segments

punctuation

punctuation characters

punctuation, sentence

PURGE, CLOSE

qualification

qualifier

QUEUE .

QUEUE, files

RANDOM

READ ...

READER-SORTER

ENVIRONMENT DIVISION

DATA DIVISION

PROCEDURE DIVISION

RECORD ·

of

5-7, 6-32,

2-4,

10-1,

5-14, 5-15, 6-16, 6-17,

6-48

6-58

5-14

6-58

6-58

7-61

7-10

7-28

7-33

7-50

7-51

7-65

7-96

7-1

7-2

7-2

8-3

7-1

7-1

4-1

1-2

7-9

3-4

2-2

7-5

7-34

6-8

2-9

6-16

l0-3

5-12

7-71

8-1

8-1

8-2

8-3

6-26

Index-9

INDEX (Cont)

Item Page

record concept

record description

record-name

RECORDING

REDEFINES

REEL, CLOSE

relation characters

relation condition

relational operators

RELEASE
RELEASE, CLOSE

REMARKS
REMOVE, CLOSE
RENAMES
replacement editing

9 • ".

6-4

6-2, 6-32

6-16,

6-32, 6-33,

7-34,

2-3

6-27

6-62

7-38

2-2

1-11

7-19

7-74

7-34

4-1

7-34

6-33, 6-42, 6-64

6-57

REPLACING

RERUN

5-3, 5-4, 5-6, 5-8, 5-14, 6-16, 6-17, 7-32, 7-40, 7-41, 7-48

RESERVE

reserved words

RETURN

REVERSED, OPEN

right margin

ROUNDED

SAME

SAVE-FACTOR

SD

SEARCH

SECTION

CONFIGURATION

definition

FILE

INPUT-OUTPUT

structure

WORKING-STORAGE

SECURITY

SEEK

segmentation

Index-IO

7-30, 7-31, 7-39,

5-9,

7-45, 7-59,

5-14

5-11

2-9

7-75

7-61

3-3

7-88

5-14, 5-15, 5-16

6-16, 6-28, 6-31

6-17, 7-83

7-76

7-1, 7-7

5-2

....... 7-1

6-16

5-8

7-7

6-72

4-1

........ 7-80

...... 7-9

Item

segment classification

SEGMENT-LIMIT

SELECT
SELECT, READER-SORTER
sentence,
sentence

definition

compiler-directing

condit:i,onal
imperative

sentence NOTE
sentence punctuation
sequence field

SEQUENTIAL
SET
sign condition
simple conditions
simple insertion editing
SINGLE
SIZE ERROR

SORT
sort verbs

RELEASE
RETURN

SORT
SOURCE-COMPUTER
source data card
source program
special insertion editing
SPECIAL-NAMES
special registers

DATE, julian
TALLY
TIME
TODAYS-DATE
TODAYS-NAME

STANDARD

• ...

INDEX (Cont)

5-4,

5-9,

......

7-1,

......

5-12,

5-9,

7-30, 7-31, 7-39, 7-45, 7-59,

5-4, 5-10, 5-11, 5-13,

5-1,

5-1,

.......

6-16, 6-23,

Page

7-9

7-9

5-10

8-1

7-1

7-4

7-4

7-4

7-4

7-60

7-5

3-1

5-13

·1-81

7-20

7-22

6-54

5-11

7-88

7-83

7-28

7-74

7-75

7-83

5-3

11-6

1-3

6-54

S-6

2-7

2-8

2-7

2-8

2-8

2-8

6-27

lndex-11

INDEX (Cont)

s ta temen t .. 7-1, 7-3

compiler-directir1g 7-3

conditional 7-3

imperative 7-3

STATION • .. • 6-22

STATION-RSN • . • 5-13

STOP

STOP RUN

SUBTRACT

7-87

7-87

1-88

subscripting . 6-12

suppression editing . 6-56

switches, internal program . 7-26

SYNCIIRONIZED • . • 6-33, 6-34

tables . 6-11, 6-43

table manipllla t ion verbs . 7-28

SEARCH • . • 7-76

SET • 7-81

TAG-KEY • . • . • 7-83

TALLY ••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••• _2-7

'rALL YING • . • 7-48

TEXT-LENGTH • 5-13

TIIROUGH • 6-33, 6-36

TIME • 2-8

timing requirements, READER-SORTER •••••••••••••••••••••••••••••••••••••• 8-10

TODAYS-DATE . • 2-8

TODA.YS-NAME • 2-8

TRACE • 7-89

translation of d;1 ta, MOVE ••• 7-56

types of words . 2-3

nouns . 2-3

verbs . 2-8

reserved . 2-9

undigit literal . 2-6

UNTIL FIRST •..•• 7-48

USAGE ••• • •••••••••••••• • 6-32, 6-66

USE dee Iara ti ve . 7-13, 7-90

VALUE •••••••••••••.•••.••••••••••••••••••• 6-16, 6-23, 6-28, 6-33, 6-36, 6-69

Index-12

INDEX (Cont)

Item Page

verb formats, data communication

verbs

verbs, arithmetic

ADD

COMPUTE

DIVIDE

MULTIPLY

SUBTRACT

verbs, compiler-directing

COPY

MONITOR

NOTE

USE

verbs, conditional

IF

verbs, data manipulation

EXAMINE

FORMAT

MICR-EDIT

MOVE

verbs, debugging

DUMP

TRACE

verbs, ending

STOP

verbs, input-output

ACCEPT

CLOSE

CONTROL

DISPLAY

OPEN

READ

SEEK

WRITE

verbs, logic control

IF

2-8,

9-1

7-27

7-27

7-30

7-39

7-45

7-59

1-88

7-27

7-40

4-2

7-60

7-90

7-27

7-53

7-27

7-48

8-4

8-6

7-54

7-28

7-47

7-89

7-27

7-87

7-27

7-29

7-34

8-3

7-44

7-61

7-71

1-80

7-93

7-27

7-53

Index-13

INDEX (Cont)

verbs, procedure branching . 7-28

ALTER • • • • • • • • • • . • 7-33

EXIT • 7-50

GQ ••••••e••G• 7-51

PERFORM • • • . • 7-6 5

ZIP •• 7-96

verbs, SORT • 7-28

RELEASE ... 7-74

RETURN It ••• ' • • 7-7 5

SORT • • • • 7-83

verbs, table manipulation . 7-28

SEA.RCH •. • 7-76

SET . 7-81

words ... e • 2-3

definition . 2-3

key A.; • • • • • • .. • 2-9

optional

reserved

2-9

2-9

types . 2-3

nouns 2-3

reserved ... ,, . . 2-9

verbs . 2-8, 7-27

WORK • • • • • • • • • • • • • • • • • . • 5-9, 5-11

WORKING-STORAGE • • • • • • • • • • • • • • • • • • . • 6-1, 6-2, 6-42, 6-71

WRITE • 7-93

ZIP • . • • • • • • • • • • • • • 7-96

Index-14

Q)
c ·-
] -0
""O
C)
c

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: B 1700 SYSTEMS
COBOL Reference Manual

CHECK TYPE OF SUGGESTION:

0ADDITION 0DELETION 0REVISION

FORM: 1051191
DA TE: March, 1975

0ERROR

~ 1----~~~~~~--~~~~~~~~~~~~~~~~~~~~~~
0 -;:::) u

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME
TITLE
COMPANY----------
ADDRESS

DATE _______ _

STAPLE

FOLD DOWN SECOND FOLD DOWN

--------·--------------------------------,---

attn: Systems Documentation

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
Burroughs Place
Detroit, Michigan 48232

Technical Information Organization, TIO-Central

FOLD UP FIRST FOLD UP

Printed in U.S.A March, 1975 1057197

