
REPORT NO. 1346

BRLESC FORTRAN 1V

by

Lloyd W. Camrpbell
Glenn A. Beck

October 1966

MIPR 2 0 19C-7

Distribution of this document is unlimited.

U. S. ARMY MATERIEL COMMAND

BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed.
Do not return it to the originator.

gto

.• *ll..

The findings in this report are riot to be construed as
an official Department of the Army position, unless
so designated by other authorized dov., zents.

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1346

OCTOBER 1966

Distribution of this document is unlimited.

BRLESC FORTRAN IV

Lloyd W. Campbell
Glenn A. Beck

ComputLng Laboratory

RDT & E Project No. 1PO145OIAI4B

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1346

LWCampbell/GBeck/saf
Aberdeen Proving Ground, Md.
October 1966

BRLESC FORTRAN IV

ABSTRACT

FORTRAN is a popular programming language that has been imple-

mented on many computers. It is new available on Ballistic Research

Laboratories' BRLESC computer. This report describes the FORTMAN

language in general and includes specific details about its imple-

mentation on BRLESC.

3

TABLE OF CONTENTS

Page

ABSTRACT 3

I. INTRODUCTION 9

II. THE CHARACTER SET 10

III. SYMBOLIC NAMES AND CONSTANTS............. 11

IV. ARITHMETIC EXPRESSIONS 13

V. ARITHMETIC FORMULAS 15

VI. LOGICAL EXPRESSIONS 16

LOGICAL ASSIGNMENT STATEMENTS 17

LOGICAL MASKING STATEMENTS 18

VIIý SPECIFICATION STATEMENTS 18

DIMENSION .. 19

COMMON .. 19

EQUIVALENCE .. 21

TYPE STATEMENTS 22

EXTERNAL STATEMENTS 24

FREQUENCY .. 24

VIII. CONTROL STATEMENTS 25

GOTO.,..................................... 25

GOTO (Computed) 25

ASSIGN 25

Goro (Assigned) 25

IF (Arithmetic) 26

IF (Logical) 26

IF (Two Branch) 26

... 26

CONTINUE ... 27

STOP 28

PAUSLE 28

CALL 28

5

TABLE OF CONTENTS (Cont' d)

Page

IF (Sense Switch) and CALL SSWTCH 29

SENSE LIGHT and CAUL SLITE 29

IF (Sense Light) and CALL SLITET 30

IF ACCUMULATOR OVERFLiCW AND CALL OVEM 30
IF QUOTIENT OVERFIDW 31

IF DIVIDE CHEICKe nd CALL DVCHK 31
IX. THE FORAAT STATEMENT o**...... 31

X. DESCRIPTION OF INTf-OUTPFT LISTS 38

XI. INPUT-OUTPUT STATEMENTS 40

REA.D * *............................ 41

PUNCH 41

PRINT .. 41
READ INPUT TAPE 42

WRITE OUTPUT TAPE 42

READ TAPE 43

'WRITE TAPE 43

END FILE ... 44

BACKSPACE 44

RLEWIND 44

READ DRUM .. 44
WRITE DRUM ... 44

ADDITIONAL NOTES ON INPUT'-OUTPUT STATMENrS 44

ADDITIONAL NOTES ON USAGE OF MACNETIC TAPE ON
BRLESC ... 115

XII. DATA STATEMENT t....... 48

XIII. SUBPROGRAM STATEMENTS 50

SUBROTINE and ADJUSTABLE DIMENSIONS 50

FUNCTION ... 51

RETURN 52

END 52

ENIRY .. 5 3

BLOCK DATA ... 54

6

TABLE OF CONTENTS (Cont' d)

Page

XIV. PREDEFINED FUNCTIONS AND ARITHMTIC STAT4EMFUNCTIONS ... 55

XV. PREDETNEI SUBROUTINES 58

XVI. FORTRAN PROGRAM CARDS 59

XVII. BRLESC CONTROL CARDS AND DICTIONARY PRIDPTING 61

XVIII. BRLESC ASSEMBLY ORDERS 66

XIX. MAXIMUM TIME AND OUTPUT SPECIFICATIONS 69

XX. STATEMENT NUMB.-J 98765 71

XXOC . CHAIN JOBS 72

XXII. BRLESC C(IPILER ERROR PRINTS 73

XXIII. BRLESC RUN ERROR PRINTS 76

XXIV. OPERATION OF THE BLESC FORTRAN CCMPILER 78

XXV. SPEED OF BRLESC FORTRAN COMPILING 79

XxVI. PUNNING FORTRAN PRORAMS ON BRTiESC 79

XXVII. MAJOR DIFFERENCES BETWEEN FORAST AND FORTRAN 80

XXVIII. CHECKLIST FOR CONVERTING OTHER COMPUTER FORTRAN
PROGRAMS TO BIRLESC FORTRAN 82

XXIX. SUMMARY OF BRLESC FORTRAN IV STATEMENTS 86
ACKNOWLEDGEM N S 0.................0...... 92
REFERENCES .. 93

APPENDIX A: LIST OF PREDEFINED FUNCTIONS FOR
BRLESC FORTRAN , 95

APPENDIX B: THREE EXAMPLES OF FORTRAN PROGRAMS 97

DISTRIBUTION LIST 98

7

I. INTRODUCTION

FORTRAN is a programming language that is widely used on a variety

of computers and can be used on Ballistic Research Laboratories' BRLESC

"computer. FORTRAN was designed primarily for programming of scientific

problems and the evaluation of arithmetic formulas. It is basically

similar to the FORAST programming language +%at is currently used or.

BRLESC but many of the details are different.

This manual is intended primarily for the programxaers thzt are

familiar with FORAMT and BRLESC; however, it includes a general

description of the FORTRAN language and should prove helpful to anyone

who is interested in writing or reading FORTRAN programs. Additional

details and gcneral information can be obtained from other FORTRAN

manuals and publications. The FORTRAN IV manual fur tbe 7090/701C0

are suggested for those interested in using BRLESC FORTRAN since BRLESC

FORTRAN is more compatible with the 7090/7094 version of FORTRAN than

with some versions that are used on other computers. Some readerr may

be surprised to learn that FORTRAN is not the same for all computers.

Although the general rules art usually the same, differences in details

do exist and some of these difftrences are quite subtle. 't is rela-

tively easy to write FORTRAN programs which when executed on different

computers will yield different results, These differences may be due

to differonces In ýompil-+r. or differences in the structures of t.e

computero. Howo'ver, most FORTRAN progrsms require mnly minor modifi-

-rations to allow them to run on aay given cw.yut.r. The modifVieatiov:s

unaan y rquir_ -,uch ler eft'ort anu timr' than would be required to

r..'-progrun. th<v problem 'rn another pro rammIng language.

•.ero' lhviv bcen two prominent of t•w FOR¶i languag.

Th-y ar rc fu-d to ar. r RAN II ai FORTRAN IV. FOTRAN IV does nQt

,MnwluAe w-ry-thing, th•at waa in FORTRAN 11. Howener, the BRLMSC FORTRAM1 IV

:!ompiler ha;- rc'tirvun enlentially all of F(TRAM II so thett t wiil.

accept s+atemcnts that are Aefined in Zithe" of these two versions of A
the FORTRAN .a•e.

9

SFCRTRAN allows the use of the twenty-six capital letters of the

I alphabet, the decimal digits 0 to 9 and'the special symbols +

The card code for these characters is the same as normally used

for F•IESC and other computers except for the following: (These ex-

ceptions 1ill be removed in January 1967.)

FORTRAN BIL

% Standard FORTRAN left parenthesis uses 0-4-8 punches
that represents % at BRL. Since FORTRAN does not

allow the 4-8 code (BRL left parenthesis) in programs,

BRLESC FORTRAN allows either code to mean left

parenthesis. (After January 1967, BRL will use the

standard 0-4-8 punches for left parenthesis and the

4-8 code will not be allowed.)

+ - Standard FORTRAN uses card codes for the signs that

- + are just the opposite of present BRL usage (+ is x,

- is y at BRL). (BRL will change to standard

FORTRAN signs in January 1967.) A "CHANGE + AND -"

control card may be inserted in a FORTRAN program to

cause BRLESC to reverse these symbols. They are

initially set for BRL usage.

The 709/7090 FORTRAN and BRLESC FORTRAN also allow a

4-8 card code to be a minus sign on decimal input.

BRL signs are used for decimal input unless the SETMSI

subroutine is used to change signs. A "CHANGE + AND-"

control card does not change signs used for input data.

$ This card code X-3-8 is allowed only in hollerith text

(H fields) in FORMAT statements. (After January 1967,

the $ character will be used as an end of statement

mark, instead of > , and will also replace the %

character on BRLESC assembly cards, both in column

one and between orders.)

10

a.

III. SYMBOLIC NAMES AND CONSTANTS

General Names

In FORTRAN, all symbolic names (other than statement names)

must begin with a letter and, for variables, the first letter

usually determines the type of number it represents. Names of

arithmetic variables that begin with I, J, K, L, M or N represent

integer numbers unless ti-ey are declared to be floating point in

a REAL statement. Names beginning with other letters represent

floating point numbers unless they are declared to be integers in

an INTEGER statement. Names of logical variables may begin with

any letter and must be declared in a LOGICAL statement.

The length of symbolic names is restricted to six characters

except subroutine names may have a terminal F as a seventh character.

If names longer than six characters are used on BRLESC, the first

five characters and the last non-F character will be used as the

name. Arithmetic statement function names must not have more than

seven characters.

Statement Numbers

Locations of statements (cols. 1-5 of FORTRAN statement cards)

must be all decimal digits and thus look like integer numbers but

are really symbolic locations of statements. Leading zeros and

blank columns are ignored. (Statement numbers must be less than

32768 for 7 0 9 0 / 7 09 4 but not BRLESC.) They do not affect the

sequence of execution of the statements. On BRLESC, statement

numbers may be written in place of a variable name by writing an S

after the statement number.

Constants

1. Integer constants are written without a clecimal point. An

integer constant on BRLESC may consist of 1 to 17 decimal digits.

Some computers restrict integer constants to as few as four decimal

digits. The values of integer variables on BRLESC must be less than

264 in absolute value except the divisor and quotient of integer

divide operations must both be less than 234 in absolute value.

11i

• • - -. • •

2. Floating point constants must be written with a decimal

point. They may consist of a decimal point with 1 to 17 decimal

digits (on BRLESC) and may be followed by an E and a decimal

exponent. (BRLESC also allows a D instead of E to indicate an

exponent. The D indicates double precision constants on most

other computers., The BRLESC range of floating point constants
(and variables) is between 155 and l035 approximately in

absolute value with zero also allowed. Most computers have a

more restricted range of numbers.

Examples: 1. , 4.21 , .2 , 51.6 E2 , .lE-3 , 3.1 D-1

3. Alphanumeric constants of six or less characters are

allowed on BRLESC. They niust be preceded by nH where n is the

number of characters in the constant. Blanks are not ignored

in the n columns after the H.

4. The logical constants allowed in FORTRAN IV are ".TRUE."

and ".FALSE.". Note the use of a period at both the beginning and

end of these constants.

5. Octal constants are written as twelve octal digits. If

less than twelve digits are written, zeros are added by the computer

to the left of the digits to make a total of twelve. Octal con-

stants are only allowed on FORTRAN II type boolean cards with a B

in column one and in DATA statements. In DATA statements only, the

octal digits must be preceded by the letter 0.

Blocks of storage are referred to as arrays in FORTRAN and are

defined in DIMENSION,CMION or TYPE statements. Subscripts are

enclosed in parentheses in FORTRAN, e.g.,A(3) or B(I,J), and one,

two, or three dimensional arrays -ay be used. Any subscript may

be variable and "indexing", as done in FORAST, is not allowed.

12

U

Subscription of variables is done by substitution rather than

addition and the lower bound of all subscripts is one. Subscript

arithmetic is allowed; BRLESC FORTRAN allows any integer arith-

metic expression that does not itself involve any subscripted

variables, however, the most general expression allowed in

standard FORTRAN is C * V + C' -where C and C' are integer con-

stants and V is an integer variable.

Symmetric arrays are not allowed in FORTRAN and there is no

provision for "interweaving" arrays.

Absolute Addresses

Absolute decimal or sexadecimal addresses are allowed only in

BRLESC assembly language instructions.

IV. ARITHMETIC EXPRESSIONS

The following symbols denote the following operations:

+ addition

- subtraction

* multiplication

/ division

•--- exponentiation

The use of functions (subroutines with only one result) is also

allowed by writing the name of the function in front of parentheses

that enclose the argaments. (FORTRAN allows functions to have more

than one argument and commas are used to separate the arguments.)

The arguments may be arithmetic expressions.

The precedence of operations when not governed by the use of

parentheses is

functions (subroutines)

* and /
+ and -

where the operations higher on the list will be performed before those

that are lower on the list. Successive + and - operations or

successive * and / operations will be performed from the left to the

right. Parentheses may always be used to cause the operations to be

done in any desired sequence. Successive exponentiations must always

have parentheses to show the desired grouping.

The major difference between FORAST and FORTRAN arithmetic

expressions is the grouping of successive multiplications and

divisions. FORAST groups them from the right and FORTRAN groups them

from the left. Thus in the expression (A * B/C * D), D is in the

denominator for FORAST and is part of the numerator for FORTRAN.

Implied multiplication should not be used in FORTRAN (although

some versions do allow it and BRLESC FORTRAN allows it after a right

parenthesis).

Fixed point fractional arithmetic is not allowed in FORTRAN. All

arithmetic within an expression must be one mode (integer or fl.pt.)

except for integer subscripts and integer powers of exponentiation

in floating point expressions. The first letter of the names and

the use of the decimal point in numbers determines the mode rather

than preceding the expression with a declaration of the mode as is

done in FORAST.

Parentheses must not be omitted at the ends of an expression.

The number of left parentheses must be the same as the number of

right parentheses in each expression.

Two operations must not appear adjacent to each other in

formulas; e.g.,! - or • -

Any operation on integers which does not yield an exact integer

result is truncated except negative integer results of division on

BRLESC FORTRAN will give the greatest integer that does not exceed

the algebraic exact result. Thus -4.2 will give -5. This is prob-

ably different from resulte on the 709h or other absolute value

machines.

14

From FORTRAN II on the 7090/7094, boolean expressions are

allowed on cards with a B in column one. The symbols +,*, -

denote the logical operations of or (inclusive), and, and comple-

ment respectively. ERLESC FORTRAN performs these operations only

on the rightmost 36 bits of a word so that it is compatible with

the 36 bit word length of the 7090/7094. The leading 32 bits of

a 1RLESC word will be zeros after a logical operation. Note that

FORTRAN IV has provided a new way of writing these logical operations

as explained in Section VI below.

Double Precision arithmetic expressions are allowed (a D in

col. 1) but are done in BRLESC single precision which is as

accurate as 7090/7094 double precision.

Complex arithmetic expressions are not presently allowed In

BRLESC FORTRAN. An I in column one will cause an error print.

V. ARITHMIC FORMULAS

The general form of FORTRAN arithmetic formulas (arithmetic

statements) is

v = ae

where v is a name of an arithmetic variable (it may be subscripted)

and ae is an arithmetic expression. An example would be

X(J + 1) = A(J)*2 - V/(T + 3.)

The arithmetic expression is evaluated and the result is

stored as the new value of the variable whose name is on the left

of the = symbol.

No arithmetic may be performed on the left of the a symbol

except for subscript arithmetic. Only one = symbol is allowed and

hence only one variable will have its value changed by ax arithmetic

formula. If the type of this variable is different than the type

15

V

- --- -.-. ---- -~.-

of the expression on the right of the = symbol, the value of the

expression is automatically converted to agree with the type of the

variable on the left of the = symbol before it is stored.

The arithmetic expression may be just a name of a variable or

constant, e.g.,X A.

VI. LOGICAL EXPRESSIONS

FORTRAN IV permits the use of logical variables and expressions

that assume either the value .TRUE. or the value .FALSE.. The

following three logical operations are defined using a and b to

represent logical variables or logical expressions:

.NOT.a is .TRUE. when a is .FALSE. and is .FALSE. when

a is .TMUE.

a.AND.b is .TRUE. when both a and b are .TRUE. and is

.FALSE. when either a or b or both are .FALSE.

a.(R.b is .TRUE. when either a or b or both are .TRUE.

and is .FALSE. only when both a and b are .FALSE.

Two adjacent logical operations may be used only when the

second one is .NOT.. Thus .AND..NOT. is legal but .NOT..AND. is

illegal.

A relational expression that consists of a comparison of two

arithmetic variables or expressions may be used to form logical

expressions. FCRTRAN IV uses the following relational operators:

(x and y represent arithmetic variables or arithmetic expressions.)

x.EQ.y Is .TRUE. only if x - y.

x.NE.y is .TRUE. oniy if x y.

x.GT.y is .RUE. only if x > y.

x.GE.y is .TRUrE. only if x k y.

x.LT.y is .RUE. only if x < y.

x.LE.y is .TRUE. only if x ! y.

16

Whenever the relational expression is not .TRUE., it is

.FALSE.. The arithmetic quantities x and y must be of the same

type in any one relation, e.g.,if I is integer in I.LT.J, then

J must also be integer.

On BRLESC, the operands for .EQ. and .NE. could be logical

variables but this is not true for most other computers.

It is illegal to use one arithmetic quantity as the operand

for more than one relation. Hence the mathematical expression

x < y < z must be written as X.LT.Y.AND.Y.LT.Z and not as

X.LT.Y.LT.Z.

A logical expression is any legal combination of logical

operaticns and relational expressions. Parentheses may be used to

obtain any desired grouping of operations. In the absence of

parentheses, the operations are performed in the following order:

Arithmetic operations; Functions

* and /
+ and -

Relations; .LT..LE..EQ..NE..GT..GE.

Logical operations; .NOT.

.AND.

Note that all the relations have equal precedence which means

that they will normally be evaluated from left to right. Note also

that .NOT. has a higher precedence than AND. and .MI. and hence

will be performed before the other two logical operations.

Logical Assignment Statements:

Logical expressiona may be used in logical IF statements

(see Section VIII, item 6) and in logical assignment statements.

Logiocal assignment statements have the general form

a =le

17

F ...• , .. •i•..

where a is the name of a logical variable and le is a logical

expression. The value stored in a will be .TRUE. or .FALSE. as

determined by the evaluation of the logical expression le.

Examples of logical assignment statements:

(I,J,X and Y represent arithmetic variables and AB and C represent

logical variables.)

A = .FALSE.

C = A.AND..NOT.B

B = .NOT.(A.OR.B)

A = I.LE.3

B = I.EQ..J.AND.(B.OR.X.LE.Y)

C = 3.4l6.GT.XfY.OR.I*J.GT.lo1o

Logical Masking Statements:

To improve compatibility with CDC FORTRAN, BRLESC allows

logical masking statements. The operations .NOT.,AND., and .OR.

may be used with arithmetic operands to accomplish biL-by-bit

logical operations using the last 36 bits of BRLESC words.

An example of a logical masking statement would be

T = X.AND..NOT.Y

where X and Y are arithmetic variables (real or integer) and T

may be any type of variable. This example will do a bit-by-bit

product of X and the complement of Y and will store this result

in T without any conversion.

VII. SPECIFICATION STATEMENTS

This group of statements (DIMENSIONO COWION, EQUIVALENCE, TYPE,

EXTERNAL and FREQUENCY) provides information to the compiler and may

be used by the programmer to control the storage aEsignment of some

or all of the variables. These statemints do not cause any machine

code to be generated for running the program; they only affect the

wny it is compiled.

1is;

DIMENSION a(i), b(il,i2), c(i3,i 4 ,i5),..., where a,b,c

are array names and the i's are integer constants.

This statement is used to declare the names and max...um sizes

of arrays. The maximum subscripts are enclosed in parentheses and

they must be decimal integer constants except integer dumny vari-

ables may be used in FORTRAN IV subprograms if the array being

defined is also a dummy variable. (See SUBBOJTINE statement

description.) The minimum subscript is always taken to be one.

One, two, or three dimensional arrays may be defined in any sequence.

An array must be declared before its name is used in any other

statement. FORTRAN IV allows arrays to be declared in DIMENSION,

COMMON or TYPE statements with only one deilaration allowed for the

same array.

Example: DIMENSION T(4l),X(lO),E(4,4,4),A(3J)

COMMON abc,de , where abc,d,e are the names of

variables of any type.

This statement allows the programmer to specify that certain

variables and arrays are the same in more than one program or sub-

program (subroutine or function). The storage assigned to those

items in the COMMON statement in one subprogram is the same storage

assigned to the items in the COMMON statements in all of the other

subprograms (and also the main program). Thus it also has an

equivalence effect between subprograms. All storage used in each

subprogram is different than the storage in any other subprogram

except for the items that are listed in COMMON statementa.

Within each subprogram, all COMMON variables are absigned

consecutively in the sequence in which they appe;•r. The starting

point for all the subprograms within each total program Is tne same.

Proper space is left for arrays.

COMMON statements are used to avcid listing many arguments

when using a subprogram. By forcing the main program and sub-

programs tc. use the same storage -or some (and possibly all) of the

variables, tlhe need for specifying and movinq variables is removed.

19

11
4

If any COMMCE variable also appears in an EQUIVALENCE

statement, the C WON assigning has priority and is done first

in BRLESC FORTRAN. This is different from 7090/7094 FORTRAN II

where EQUIVALENCE variables are assigned first and will change

the sequence of storage assigned to CCMMON variables. RLESC

FORTRAN handles the C•O4CN-EQUIVALENCE interaction as specified
S~for FORTRAN IV.

FORTRAN IV allows dimension information to be specified in

COMMON statements. However any one array must not be dimensioned

more than once in the same program or subprogram, i.e. ,if an array

name in a COMM0N statement contains dimension information, it must

not also be dimensioned in a DIMENSION or TYPE state-nt.

FORTRAN IV allows labeled CCOMMON blocks. A group of names

may be preceded by a slash, a label name and another slash to give

a name (label) to a section of the COMMON storage area. By using

labeled COMMON, it is no longer necessary to think of COMMON as

one big block. Whenever the same label is used in different sub-

programs, the corresponding members of the two labeled blocks will

be assigned the same storage positions regardless of their relative

position within their respective COMMON statements. The folloving

example will illwtrate the meaning of labeled COMMON. if the

following CCOMMO statements each appear in a different subprogram

within the same complete progr.am,

COMMON A,X/LA/B,IW/AA/PpMN

C04MON A,Y/AA/lPM1,N/LA/E,J,W//Z

then the names A,P and W refer to the same quantity in both of the

subprograms. The names X,BI,M and N within the first subprogram

refer to the same quantities respectively as the names Y,XJM

and N1 in the second subprogram. In the second subprogram, the

blank C.-MMON consists ;if A,Y and Z because two consecutive slashes

2O

ae-

cause the following quantities to be added to the blank C04M(H

block. Blank CH4MON blocks do not have to be the same length in

each subprogram. However labeled CCtMON blocks of the same label

must be the same length whenever they are used in different sub-

programs within the same complete program. (Length is defined as

the amount of memory space used.) Label names may be any legal

FORTRAN name except the names of subroutines and functions may not

be used. It is permissible to use the same name for a label and

a variable within the same subprogram.

A subprogram may have more than one COMMON statement. Addi tion-

al COOMMON statements simply extend the list of COMMON variables. The

use of the same label again within the same subprogram simply extendg

the list of variables in that labeled block. Thus the two consecu-

tive statements

C•M4ON A,B,C/T/F,G

CCHON E/T/RS//v

is the same as the single statement

COMMON A,B,C,EV/T/F, G,R,S

On BRLESC, the statements CCtO4C(USE MAIN) cr COCMOK(USE

PREVIOUS) may be used instead of repeating long C014MON statements

in a subprogram when all of the COCON variables are identical with

the main program or the previous subprogram.

EQUIVALENCE (a,b,c,...),(de,f,...), where a,b,c,d,ef

are names of any type of variable.

This atatement causes different names to be assigned to the

same memory space. (It performs the sume fmction as SYN does in

FRAST.) All tha names within a set of parentheses are made

equivalent. Increments may be used if desired by enclusing them in

21

pareeniheses immediately after the name. (No increment is the

same as an itLcrement of one.) Increments on ar.ay names may be

either a-single integer constant or FCRTRAN IV allows the proper

number of •integar constant subscripts to be used.

_ *enever arrays are partially or completely overlapped, space

"is always reserved for all of the arrays involved so that there is

no unexpectei overlapping of storage. Howevc-r, EQUIVALENCE will

not re-arrange CON4ON storage; so equivalencing a larger array with

a member of COMMON may cause additional overlapping of storage space-

It is illegal to use EQUIVALENCE to try to cause any impossible

arrangement of storage. It cannot be used to attempt to cause non-

consecutive spaces to be assigned to elements of an array, to

extend the beginning of the CC4MON s torage area or to equivalence

two variables that are both in COMMON. It is also illegal for

names of duimmy variables to appear in an EQUIVALTNCE statement.

On BRLESC, it is illegal to equivalence anything to itself,

either directly or indirectly.

On BRLES% any EQUIVALENCE statement that contains the names

of arrays and variables that are in COMMON statements must appear

Safter the DIMENSION and COMMON statemients.

S~F:ý-,aple: EQUIVAL~it-E (A,B), (F(2,1), C,H(1))

TYPE STATEMETS

FORTRAN IV allows TYPE 4tatements that declare specified

variable names to represent variables of a specified type. If a

name does not appear in a TYPE statement, then its first letter

determines -!hether it represents dn integer or a real (floating

point) number. However, a TYPE sta.enment near the beginning of a

program may be used to ov'eride the automat-c type assignment.

22

BRLESC allows the following TYPE statements:

INTEGER a,b,c,...

REAL a,b,c,...

DOUBLE PRECISION abc,

LOGICAL a,b,c,...

where a,b,c,... represents a list of variable and function names.

On BRLESC, DOUBLE PRECISION is used the same as REAL since double

precision on most other computers is the same as BRLESC's single

precision.

Some computers also allow a COMPLEX statement but this causes

an error print on BRIESC because complex aritlimetic is not allowed.

Variable array names in TYPE statements may also contain

dimension infornmation. However the same variable must not also be

dimensioned elsewhere, i.e.,it must not also appear in a DIMENSION

statement or be dimensioned in a COMMON statement.

The names of all logical variables must be declared in a

LOGICAL statement as there is no other method of distinguishing

them from other variables.

The TYPE statements must precede any executable statement or

DATA statement that uses any variable or function mentioned in a

TYPE statement. Note that these TYPE statements are non-executable;

they cannot be used between executable statements to cause any

run-time data conversion.

BRLESC FORTRAN IV allows any of these type statements to be

preceded with the word TYPE because CDC FORTRAN allows this. It is

for this reason that the names TYPE!, TYPER, TYPED, TZPEL and TYPEC

must not be ased as names of variables at the beginning of any

statement. (CDC and BRLESC do not use the word PRECISION when

DOUBLE is preceded by TYPE.)

23

Examples of some TYPE statements:

INTEGER A,F,I(15)

LOGICAL LV,T,WAY,LOW(l8),NOW

TYPE REAL M1,M2

:CTRNAL STATEMENT

FORTRAN IV allows this statement to be used to specify the

names of subroutines and functions that are used as arguments for

other subroutines or functionF. It serves the L. ie purpose as

the card with F in column one did in some FORTRAN II compilers.

The general form of the statement is

EXTERNAL ab,c,...

where a,b,c,... represents a list of function and subroutine names.

For BPLESC, any arithmetic statement function names used as

arguments must also appear in an EXTERNAL statement.

If the name of a function appears in both a TYPE statement

and an EXTERNAL statement, the TYPE statement must precede the

EXTERNAL statement.

Example:

EXTERNAL SIN, COS,FUN

FREQUENCY

This statement is ignored by BRLESC FORTRAN. Its purpose in

7090/7094 FORTRAN is to provide information that helps the compiler

to optimize the program.

24

- V• ' - ..

VIII. CONTROL STATeEMNTS

This group of statements provides for controlling the

sequence in which statements are executed in the running program.

Unconditional transfer of control (sometimes called branching or

jumping) is provided for by several types of GOTO statements and

conditional transfer of control is provided by several types of

IF statements. A DO statement allows definition of a "loop" and

"a CALL statement causes transfer of control to a subroutine with

"a return to the next statement. There are two statements (STOP

and PAUSE) that cause the program to stop running.

1. GOTO s where s is a statement number.

This statement causes the statement numbered s to be done

next.

Example: GOTO 22

2. GOTO (sl,s2,s3,...),i where sl,s2,s3 are statement numbers

and i is a nonsubscripted integer variable.

This is referred to as a "computed GOTO" and the statement

done next depends on the value of i. If i = 1, sl is done next;

if i = 2, s2 is done next; etc.

Example: GOT (4,19,462),K

3. ASSIGN s TO i where s is a statement number and i is a

nonsubscripted integer variable.

This statement causes the address of the statement

numbered s to be put into the integer variable i and this type of

statement is to be executed before the "assigned GOTO" statement

(as explained in the next paragraph) is executed.

Example: ASSIGN 64 to M

4. GOTO i, (sl,s2,s3,...) where i is a nonsubscripted integer

variable and sl,s2,s3, are statement numbers.

This statement transfers control to the statement that has

the number that was last assigned to i by means of an ASSIGN state-

ment. The (sl,s2,s3...) enumeration in this statement is not really

25

7

necessary but should be used to list the possible statement numbers

that this "assigned GOTO" statement may transfer control to.

Examples: ASSIGN 44 to N

GoTo N, (16,29,44,192)

5. IF (ae) sl,s2,s3 where ae is an arithmetic expression and

sl,s2,s3 are statement numbers.

This statement causes control to be transferred to statement

sl,s2, or s3 depending on whether the value of the arithmetic ex-

pression ae is negative, zero (exactly), or positive respectively.

Examples: IF(X)4,7,22

IF(R * V - 4.l*(u+v))16,244,16

6. IF (le)st where le is any logical expression and st is

any executable FORTRAN statement except IF and DO. The statement

st is done if the velue of the logical expression is .TRUE. and

control simply goes to the next sequential statement if the value

is .FALSE..

Examples: IF(L.AND.X.GE.Y)GOTo49

IF(X.LT.IO.)X=X+.5
IF(I+J.EQ.14.OR.PRT)WRITE(2,16)A,B,C

7. IF (e) sl,s2 where e is either a logical or arithmetic

expression and sl and s2 are statement numbers. ThIs statement is

not standard FORTRAN but is allowed on BRLESC and CDC computers.

Statement sl is done next if e is .TRUE. (or non-zero for arithmetic

expressions) and statement s2 is done next If e is .FALSE. (or zero

for arithmetic expressions•.

Exa nples: IF(X)22,471

IF(X.GT.O.AND.L)962,1o75

8. DO s I = il, 12, i3 where s is a statement number, I is a

nonsubscripted integer variable and ii,i2,i3 are positive integer

constants or nonsubscripted integer variables.

26

This statement causes the statements following this DO

statement down to and including the statement numbeled s, to be

executed repeatedly with the integer variable i initially assuming

the value of il. The variable i is incremented by i3 at the end

of the sequence of statements and tho sequence is repeated if the

value of i does not exceed i2. If il > i2 initially, CDC FORTRAN

"11 not execute the loop even once whereas BRLESC and most other

computers will always execute a DO loop at least once.

The specification of i3 is optiona.l. If i3 is not

specified, its value is taken as one (1).

A DO sequence of statements may itself contain a DO

sequence provided the entire inner DO sequence is contained in the

outer one. Several DO's may terminate on the same statement.

While most versions of FORTRAN have several other

restrictions concerning DO loops, BRLESC FORTRAN does not have any

other restrictions on the construction of the statements that are

included in DO loops. BRLESC FORTRAN does always set and use the

actual integer variable specified for i in a DO statement and its

final value (plus the increment for normal termination of the DO

loop) is always stored there.

Examples: DO 42 K = I,L

DO 3 JT = MIN, 55, NSTEP

9. CONTINUE

This is a diumny statement that generates no object cod-,

except when it is the last statement in a DO loop. Its statement

number is always used if it has one. It must be used as the last

statement in a DO loop whenever the last statement would have been

an arithmetic IF or GOTO type of statement that transfers control.

Whenever a CONTINUE statement is the last statement in a DO loop,

its statement number is the location of the machine instructions

that increment the DO variable and test it for its maximum value.

,7

10. STCP or STOP w where w is an octal constant that is ignored.

This statement causes the running program to be terminated

and should only be used to indicate that the program has run to

completion. This statement causes BRLESC F(RTRAN to empty the tape

output buffers, rewind all tapes used by the program that have not

been rewound, check for overflows and halt at N40. On BRLESC, the

program may also be terminated by reading a card or tape line that

has the first ten characters of either "ENDbTAPEbb" or "bbbbbbPROB"

where b represents a blank.

Examples: STOP

STOP 77

11. PAUSE or PAUSE w where w is an octal constant.

This statement causes the program to halt and display the

octal constant. (BRLESC displays it in the Q address of the halt

order.) If the computer is re-started manually by pressing the

proper button (initiate on ERLESC), the program will continue with

the next statement.

This statement should not be used without a very good

reason for using it.

Examples: PAUSE

PAUSE 421

12. CALL a(b,c,d,).

This -,tatement causes the subroutine named "a" to be

entered and executed with b,c,d,... as the arguments, parameters.

and store addresses. (Arithmetic expressions are allowed.) For

ELESC FCFTRAN, "a" could be the name of a function (a subroutine

with one result) and the subroutine being ralled must be one that

is a standard one on the compiler tape or one whose code is in-

clur,ý in the program as a SUBROUTINE (or FUNCTION).

Thz arguments used in a CALL statement must a:ree in type

with the type of the duLny variables that were used when the sub-

routine was defined. If there are no arguments, they may be

omitted.

CALL EXIT or CALL DUMM statements on BRLESC are the

same as a STOP statement and CALL PDUMP is ignored.

Alphanumeric arguments of six or less characters are

allowed in BRLESC FORTRAN.

Examples: CALL SUB3(XY,R)

CALL TOTAL

13. IF (SENSE SWITCH i) sl,s2.

This statement transfers control to statement zl or s2

if sense switch i (1 < i • 6) is down or up respectivel5. (i

must be a constant.) On BRLESC, the manual read switches 15-20

are used as sense switches 1-6 respec+Wvely. However, these

switches may be "preset" by a program control card to be either

"down" or "up" regardless of their actual position. (See S3ETOSW

in Section XVII.)

Example: IF (SENSE SWITCH 3)14,92

FORTRAN IV does not usually allow thiO stat: ment. In-

stead a subroutine SSWTCH is predefintA. The general form of it.

use is

CALL SSWTCH (i,j)

where i is the number of the sense switch to be testod and 1j is

set to 1 if it is down and J is set to 2 if it is up.

14. SENSE LIGHT i where i is 0,1,2,3, or h.

If i is 0, then all sense lights are turne,i off. If

1 ! i tk (actually 6 on BRLESC), .ense light i onl-, w1L1 bo

turned on. The rightmost four (actually rix) bits u, c-,11 062

on BR•,IC ar,_c used as sense lights. Initially on BMLESC all •t'

them are off.

Example: SENSE LIGHT 2

29

FOaRA1 IV does not usually allow this statement. In-

stead a subroutine SLITE is predefined. The general form of its

use is

CALL SLITE(i)

where i is the number of the sense light to be turned on. If

i = 0, all sense lights are turned off.
*

15. IF(SENSE LIGHT i)sl,s2

If sense light i is on, it is turned off and statement

sl is done next;otherwise statement s2 is done next.

Example: IF (SENSE LIGHT 2)67,39

FORTRAN IV does not usually allow this statement. In-

stead a subroutine SLITET is predefined. The general form of its

use is

CALL SLITET(i,j)

where i is the number of the sense light to be tested and turned

off. If the light was on, j will be set to 1 and if the light was

off, j will be set to 2.

16. IF ACCUMULATOR OVERFLOW sl,s2

This statement checks for floating point exponent overflow

on BJRLESC and does statement sl next if it has occurred. Otherwise

statement s2 is done next. (The very last operation may not be

included in the check on BRLESC and this test turns the indicators

off if they were on before.)

FORTRAN IV does not usunlly allow this statement or the

IF UOTIMT OVERFLOW statement. Instead a subroutine OVEM is pre-

defined. The general form of its use is

CALL OVEPFL(j)

where J is set to I if the overflow condition was on and j is set

to 2 if it was off. The overflow condition iz also turned off if

it was on.

30

17. IF QUOTIENT OVERFLOW sl,s2

This does exactly the same as the IF ACCUMUTATOR OVERFLOW

statement explained above.

18. IF DIVIDE CHECK sl,s2

On BRLESC FOTRAN, this statement checks for floating

point division by zero (or unnormalized divisor) or fixed point

division overflow. If either has occurred in the program, state-

ment sl is done next; otherwise s2 is done next. (The very last

operation in the previous statement may not be included in this

test or; PRLESC and this test turns the indicators off if they were

on before.)

FORTRAN IV does not usually allow this statement. In-

stead u subroutine DV1hM is predefined. The general form of its

use is

CALL DVCHK(j)

where j is set to I on MLESC if either the floating or fixed point

divide overflow condition is on and j is set to 2 if both are off.

Both conditions are turned off if they were on.

IX. THE FORMAT STATEMNT

FORMAT (Spccial Specifications)

Thi- statement is not executed but is used to specify the fiel

, spacing and the form of the data for either the reading of

input data or the printing (or punching) of output data. It is

:iUw'iyS u.cd(in :u,:junction with one of the input-output statements

n.io nothing by itself.

D nt n umber ot times to repeat this fiid. (n is optional,

w the width of the field (the number of colxn•x. or
2L:fl':< ~terS) .

1. 1ihe numler of d& i.mal places to the right of the

,':Imal pjint. (d Is used modulo i on 7090/7094 but not on BRLESC.)

51

Then the types of fields that may be specified are:

nlw for integer numbers.

nEw.d for floating point numbers with exponents.

nFw.d for floating point numbers without exponents.

wX for spacing or blank columns.

hAw for alphanumeric fields.

wH for alphanumeric (Hollerith) fields u,.-re the

characters are read into or printed from the w

characters following the H in the FORMAT state-

ment itself.

nOw for Octal numbers.

nLw for FORTRAN IV logical variables.

nflw for double precision numbers with exponents.

nGw.d for generalized floating point numbers.

nRw for right adjusted alphanumeric fitlds.

Consecutive field specifications are separated by commas, thus

"FORMAT (16,3E14.6,FlO.7)" is an example of a FORMAT statement.

Each complete FORMAT statement specifies the maximum length of the

record (card or printer line) that will be read, printed or punched

when that FORMAT is used.

Two sets of parentheses are allowed in 7090/7094 FORTRAN and

four sets are allowed in EFLESC FORTRAN so that groups of specifi-

cations may be repeated within a FORMAT statement. A left parenthesis

may be preceded by an integer n to indicate the number of times to

repeat the specifi'ations enclosed in parentheses. Thus FORMAT (E12.5,3

(16,F9.3)) would be a format where the 16,F9.3 portion would be re-

peated three times.

If the input-output statement list contuins moe. items than

specified by the FORMAT being ujed, then a n-v card or line is

begun and the FORMAT is repeated from the left parenthesis that is

associated with the next to last right parenthesis. (If there is

only one pair 4f parentheses, then the FORMAT is repeated from the

begirning.) If this parerthc,1 i- proceied by a rep-at number,

it will be used on most computers including HRLESC. If the FCRMAT

specifies more fields than required for an input-oatput list, the

rest of the FORMAT is ignored except an H field that follows the

last number will be used.

A slash "/" may be used in a FORMAT statement to indicate

that a new card or line should be started. Thus FORMAT (ilO/E15.6)

used for punching cards would cause a ten column integer to be on

one card and a fifteen colimn floating point number to be on the

next card. If a slash is used where a new line starts anyway, it

is ignored except N+l consecutive slashes will always cause N blank

lines or cards (or skip N cards for input). On some computers but

not BRLESC, N slashes at the beginning or end of a FORMAT causes

(or ignores) N blank lines.

Scale factors may be used with F type specifications (and in

a limited way with E ty-pe specifications). An integer, s, specifies

the power of ten (scale factor) to multiply the internal number by to

obtain the external numbet, i.e., input numbers get divided by l0s

(not on BRLESC) and output numbers get multiplied by ls. The

integer s is written in front of the nFw.d specifications and the

letter P is used to separate s and n, e.g.,-2P4F10.5 or -2F715.5
-2specify a scale factor 10 . On BRLESC FORTRAN, either a + or a -

siz; in Iront of s is used as a minus sign. Therefore never write

+ signs in front of s. Once s has been specified. the scale factor

remains in effect for the rest of that FORMAT statement (including

repetitions) and will be used on subsequent E and F type fields.

A OP speciflfýation may be used to reset it to 0. For input, a

punolhed decimal point overides both the scale factuk. and the d

,peoificd. For E fields, only a positive scale factor may be used

:i I it ao(!o not change the value of the number; it only indlicates

tLi~t i. t Tnhou1d be printed in front of the decimal point. (It

has no m-nning for input F fields.) Thus the number 2 would normally

.iit 0.20E 0' for s = 0, but for s 1- 1, it would print 2.OOE 00

Had 2 _ would print 20.OCE-Ol.

33

I Fields

Input: Most FCIRTRAN compilers assume the integer to be

punched at the r end of the field without a

decimal point; however, BRLESC FCIErAN will a:cept

it any place within the field and it may have a

decimal point. Any digits following a point are

ignored. Q

Otp.•: The integer will be punched at the right end of the

field with a floating sign. (All output has a

floating sign w-hich means that the sign is in the

column preceding the lefthmost digit that is printed.

Leading zeros are not printed on I or F fields.)

E Field3

input: Th: number may or may not have an exponent. An E

or a sign- but not a blank, vay be used to indizate

the starting of the exponent. The exponent may be

less than four columns. If a decimal point is

punched, it is used and overides the s and d speci-

fication. If no decimal point is punched, then it

is assumed to be after d digits (columns) left from

the start of the exponent. Most FORIRAN compilers

require thift the number be punched at the right end

of the field, 'ut BRIESC FORTRAN allows it anywhere

within the field. Blank columns are used as zeros

(except after the exponent on BRLESC).

Output: The floating po.int ntuber will be printed with a four

column exponent that includes an E, a sign, and two

digits for the value of the exponent. A decimal point

is printed d digits from the right end of the coef-

ficient and if s = 0, a zero is printed in front of

the decimal point. If s t 1, then s digits of the

34

10

coefficient are printed to the left of the point.

The sign immediately precedes the first digit

printed. The entire number is printed at the right

end of the field of w columns.

F Fields

Input: The same as E fields, see above. (This may not be

strictly true for other computers but will generally

give the desired result except possibly for the use

of a scale factor.)

Output: The floating point number will be printed without an

exponent and the decimal point will be printed d digits

from the right end of the field. The actual number

printed is 10s times the number that is in the computer.

If the number is too large for the columns specified,

BRLESC will print the number ýith an exponent or as

much of the right portion of such a number as is

permitted by the field width.

H Fields

Input: Thp alphanumeric information is stored in the FORMAT

statement itself immediately following the H. No

transformation of characters is done ; the sign

option setting for numeric input on BRLESC has no

effect on H fields.

Output: The w alphanumeric characters that immediately follow

the H are printed. Blanks are not ignored and there

is no transformation of any of these characters.

Thus on BRLESC, "(+ - " characters may not be the

ones intended if the deck was punched 1Lsing standard

FORTRAN characters at somne other installation. (The

3,5

"CHANGE + AND -" control card does not change the + and

- signs in H fields.) For tape output, if an H field

occurs at the beginning of a line, the first character

is used for vertical high speed printer format control

instead of actually getting printed.

A Fields

Input: If w 5 6, this causes w alphanumeric characters to be

stored in the variable name that is on the input list.

To be compatible with 7090/7094,, BRLESC FORTRAN stores a

maximum of six characters per word at the right end of

the word. If w < 6, the characters will be at the left

of the 36 bits with blanks to fill out the word. If

w > 6, then w - 6 columns will be ignored before storing

the rightmost six characters of the field. As with H

fields, no transformation of characters is done. This

can be used to read FORMAT specifications at run time.

Output: This causes w alphanumeric characters to be printed from

the contents of the variable name that is on the output

list. The rules listed above for A input are followed

so that whatever is read will be rrinted exactly the

same. When w > 6, w . 6 blank columns will be printed

to the left of the six characters that are printed.

X Fields

Input: This causes w columns to be skipped whether they are

blan~k or not.

Output: Causes w hlank columns to be printed.

0 Fields

Input: This allows octal numbers to be read and stored at the

right end of BRLESC words in the same manner as integers.

(There is no left norbialization.) On BRLESC, if w > 12,

the leading columns will be used and may cause more than

36 bits to be stored if they are not blank.

36

output: This allows integers (octal or decimal) to be printed in

octal form at the right end of the field with leading zeros

suppressed. If w > 12, w-12 blank columns are printed to

the left of the 12 octal digits.

L Fields

Iu: If the first non-blank character is a T (or the digit 1

on BRLESC), the logical value .TRUE. is stored; otherwise

.FALSE. is stored.

Output: A T is printed in the rightmost column of the field if the

value of the logical variable is .TRUE.; otherwise an F

is printed in the rightmost column of the field.

D Fields

Input & This is allowed for those computers that use double pre-

cision variables. On BRLESC, it is used exactly the

same as an E field.

G Fields:

input & BRLESC uses G ftelds exactly the same as F fields.
Output

R Fields

Input & Only a few computers and BRLESC allow 1 fields. They are
Oxtput:

exactly like A fields except when w < 6, the characters

are stored into (or printed from) the rht end of the

computer word.

FORMAT statements may be placed anywhere within a, program (or sub-

program) except as the first statement within a DO loop. (This

restriction does not apply to BRLESC but should be followed. On BRLESC,

FORMAT statements are done as NOP instructions so it is best not to place

them where they will be done often.) FORMAT statements are kept as alpha-

numeric infoirmation and decoded at run time, thus it is permissible to

use A fields to read FORMAT statements (without the 4ord FORMAT) at run

time. The variable names c2 such statements must be listed in a

DIMENSION statement for most computers but is not required for BRLESC.

37

If the list in an output list is exhausted and the next item in

a FCFMAT statement is an H field, the H field is printed. (If the end

of FORMAT and list occur at the same time and an H field follows the

last left parenthesis, it will not be printed.) Note that a FORMAT

may contain nothing but one or more H fields.

Blank characters in a FORMAT statement ere ignored except within

H fields. The w count for an H field must include the blanks within

the H field,

The comma separating field specifications may be omitted when it

follows an H or X field specification or would precede or follow a

parenthesis or slash. (This rule may not hold for all computers but is

true for BRLESC.)

Examples: FORMAT(15i,(E15.8))

FORMAT(2C=,FlO.h4,4(lPEl2.5))

FORMAT(6FlO. 4/4no0/)

X. DESCRIPTION OF INPUT-OUTPUT LISTS

The names of the variables to be transmitted between the computer

and the input-output devices are specified on a list in the proper type of

input-output statement and the sequence of the names on the list determines

the sequence of transmission. Simple variable names, subscripted array

names where the subscript control is either specified in other statements

or within the input-output list, and array names without subscripts are

allowed. Array names without subscripts cause the entire array to be

transmitted and the elements must (for input) or will (for output) be

arranged in the same sequence that they have in the computer memory.

(BRLESC and most computers vary the subscripts from left to right, thus

two dimensional arrays are stored by columns; i.e. A(1,1), A(2,1), A(3,1)

etc. is the sequence of elements of the array A.) Commas ate used to

separateý the names on an input-output list.

38

Indexing information specified within the list is written after

the names of variables to which it applies and the names and the

indexing information are all enr!losed in parentheses. For example A,

(B(I), I = 1,10) Would cause the transmission of A, B(1), B(2), ...

B(lO). Note that the indexing information is written the same as in

a DO statement with the increment taken as one if it is not written.

It is permissible to nest these parentheses, e.g., ((A(I,J),I = 1,5),

J = 1,5). Note that commas are used to separate items on the list

and must be used after a right parenthesis except for the last one.

The indexing within each set of parentheses is done to completion

before going on to the next indexing specification. On BRLESC, therŽ

is a restriction that when indexes are controlled within an I/O list,

they cannot be used in any subscript arithmetic expression that re-

%uires more than the addition or subtraction of a constant.

All of the input-output statements that transfer alphanumeric

(not binary) data make use of a FORMAT statement to specify the field

types and lengths. The type (integer or floating point) of a name

specified on an input-output list must correspond to the type of field

specified in the FORMAT statement that is being used. All integer

variables must use I fields and all floating point variables must use

E or F fields. (BRLESC does allow integers to be printed as intejers- in

E or F fields.) The FORMAT controls the maximum length of each line.

A lin,? is shorter than specified in a FORMAT cnly when the end of' the

list is reached before the end of the FORMAT. Whenever the end of the

FORMAT is reached before the end of the list, the FORMAT is repeated from

theL left parenthesis that is associated with the next to last right

parcntlnsis and a new line (or carl) is started. (If there is only one

pair of parentheses, then the FORMAT is repeated from t1'e b,=tinning.)

(Se Soctlorl IX for more information about FO•RMAT 2tatcm-nts.)

Constants and arithmetic a- r. in ar.. not rmitt n input.-

o lists,,!xcept indexing information may contain constants and sub-

scripts may be constant or arithmetic r'rs ions.

It is prmilssible to read an integer variable And use it uz a sub-

a 9

script within the same input list if its name is separated from the

place it is used by at least two left parentheses. (This is counting

the one used to indicate a subscripted variable. Extra parentheses

may be used just to meet this requirement.) Thus J,(B(J)) is an

example where the value of the variable J just read will be used as
the subscript for B(J). (For ERLESC, the extra parentheses are not

required if two or more variables or any indexing information separates

the integer from where it is used.)

Examples: A, B, I

N, M, (BA(N)),P

((A(IJ), J = 1,10), I = 1,10), (R(K), K = 2,20,2)

XI. INPUT-OUTPUT STATENINTS

The following group of statements may be used in FORTRAN to

control the flow of information between the computer and input-output

devices or secondary storage. Card reading or punching, magnetic tapes

and, on some computers but not on BRLESC, drugs may be used to read or

record data. Most of the statements also use a FORMAT statement to con-

trol the conversion of data between computer form and printer or card

form. However, the READ TAPE or READ(t) and WRITE TAPE or WRITE(t) (and

the corresponding DRUM statements on computers that allow them) cause

the transfer of data without any conversion. This computer form of

data will be referred to as binary information and actually is binary

numbers for a binary computer such as BRLESC. The other statements

cause the reading or printing of data in alphanumerical form. There are

three statements, EMD FILE, REWIND and BACKSPACE that do nct transfer

data but can be used to manipulate the magnetic tape-s.

In all of the Input-output statements described below:

f is a FCRMAT statement number or name.
"llst" is any allowable input-output list (Se! Section X).

t is a magnetic tap-: number or integer variable.

(See BRLESC restrictions on t at end of this section.)

40o

READ f, list

This statement causes decimal and alphanumeric data to be read

from cards (or tape 6 on BRLESC if the cards have been put on tape

off-I.ine and console switch 36 is up.) (BRLESC may use all 80

columns for either input or output cards.) If the list is omitted

on this statement, one card will be read and ignored on BRLESC.

PUNCH f, list

This statement causes decimal and alphanumeric data to be punched

on cards (or actual tape 8 if console switch 35 is up. The tape out-

put will be "formatted" for the high speed printer by adding a 1

character at the beginning of each "card" and an end-of-line character

at the end of each "card". The block length will be at least 1830

characters.) All 80 columns of a card may be useu on BRLESC and for

tape 8 output, the "card" may be up to 160 columns long.

PRINT f, list

For most computers, this statement means to print the data on an

on-line printer. Since BRLESC does not have an on-line printer, the

data is put on actual tape 8 for off-line printing. The maximum line

length for most computers is 132 characters and it is best to use 132

as maximutm although BRL does currently have one printer that ha- 160

columns.

The following description gener-ti.y applies only for BRLESC. If

the first character of a line comes from an H field, it will be used

for vertical format control (after a Lransformation) and not printed.

If the first character does not come from an H field, an extra "1"

character (single space) is inserted at the beginning of the line.

41

II

In either case, the zone bits will be set to 01 so that it is possible

to print PRINT output separately from PUNCH output when both are on

tape 8. The end-of-line character is automatically inserted at the end

of each line. The tape writing is parity cnecked and there is checking

for end of, reel. The tape block length is at least 1850 characters and

this allows about 7.5 million characters on 90,000 lines of 80 characters

each on a reel of BRLESC tape.

For MLESC, a control card may be used to change all PRINT state-

ments to PUNCH statements.

READ INPUT TAPE t, f, list

READ(t,f) list (FORTRAN IV form.)

These statements cause decimal and alphanumeric input data to be

read from tape t. Each block of BRLESC tape may be as long ac _000

characters and each line may be as long as 160 characters. If the

tape was previous FRTRMAN output that has a vertical control character

at the beginning of each line, provision should be made in the FORMAT

for skipping that character. However on BELESC, the vertical control

character is ignored unless the FORMAT has an H field at the beginning

of the line. (If the tape was previous FORAST output, the vertical

control character is automatically ignored.)

The tape reading is parity checked and there is checking for end

of reel.

If the "list" is omitted with this otawýement, it will cause one

line to be read and ignored on BRLESC.

Just INPUT may be used instead of READ INPUT TAPE in this statement

on BRLSC.

WRITE OUTPUT TAPE tf, list

WRITE (tf) list (FORTRAN IV form.)

Tho!se stasiements cause decimal and alphnnumv.ric output data to be

r-corded on tape t. Each line of data 'nay not exceed a total of i12

Tharacters (160 on EPLESC). The first Tharacter will be used as a

vertical control character for the high-speed printer and is determined

in the same manner as for the PRINT statement described above except the

zone bits will be 00.

The tape writing is parity checked on BRLESC and there is checking

for the end of a reel. The number of lines per reel on BRLESC will

vary from about 60,000 to 200,000 as the length of each line varies

from 160 characters to 1 character.

Just OUTPUT may be used insLead of WRITE OUTPUT TAPE in this state-

ment on BRLESC.

READ TAPE t, list

READ(t) list (FORTRAN IV form.)

These sta.tements cause binary information to be read from tape unit

t. It should be used only for reading data that was previously put on

tape by the use of the WRITE TAPE statement described below. This state-

ment will not read more data than was specified on the list of the state-

ment that wrote the data. (Such a group of data is defined to be a

"logical record".) If less than the entire logical record is read, the

tape will move to the end of the record. (If the list is omitted

entirely, the tape still moves to the next logical record.) If an

attempt is made to read more data than is on one logical record, th:

wL1uru:) Doorti-ni of the list will be -gnorod.

'ýn BRLESC, binary logical records are subdividcd into tape blocks

o. 1_8 words each. Within each logical record, the first word of each

I] Iok contains in the y address the number of words in the last block

(not counting this word) and in the Y a--dre.ss, the total number of

blok.- in the logical record.

1ITE TAPE t1 1ist

IWRITEk) !:.t (FORTRAN IV for-.)

Th-es, tazt.,mont't caurse all of thc dAata specif'*d or" the li.t to be

wril trcn a- bluary infojzrmatio.n in on1e logical recordi (sc- READ TAPE) :n

ta;vý unit+ t. It is useful for tcmporarily recortirng data on tape that

-,ack int_ th,, x•mp,. ,, b ':-iny i RKAD TAFE atatel.e::. at a iter

time. See the explanation of the READ TAPE statement for a

description of the way the information is "blocked" on the tape.

END FIIM t

This statement causes a file mark to be written on tape t.

BACKSPACE t

This statement causes tape t to be moved backward one "logical

record". This is all of the data written by the WRITE TAPE statement

that wrote the record for a binary tape, or is one line (or "card")

if it is an alphanumeric tape.

REWIND t

This statement causes tape t to be rewound without being inter-

locked.

READ DBUM i. A. list

This statement is not allowed on BRLESC and causes an error print.

For the 709/t090, it means to read data from drum. i beginning _t the

jth word. (Variable subscripts are not allowed on the list.)

WRITE IRUM i, J, list

This statement is not alloyed on BRLESC and causes an error

print. For the 709/7090, it means to write data on drum i beginn..ng

at the jth word. (Variable subscripts are not allowed on the lit.)

Additional Note, on Input-Output Statements

The f (FO MAT number or name) may be omitted in READ, PUNCH or

PRINT statements on BRLESC and this will cause a fORMAT (lP6El2.5) to

be used automaticaliy.

The jtatement numbers 1 and 2 may be used to automatically specify

FORMAT (5F14.5) and FRMAT (lP5EI4.5) rea;pectively without including

them as part of the program. If 1 or 2 or both are used to refer to

these FOM1ATS, then that statement number must not be used in the pro-

gram for a-iy other purpose. If either one is used as r- statement number

in a program, then the corresponding automatic FRMWAT cannot be us,-!.

I

The omission of a "list" on any of the input statements will cause

one record (card, line, or logical binary tape record) to be read and

ignored on BRLEo,1 Some computers may allow the FORMAT specified to be

used to skip more thain one record. Note that a FORMAT should be speci-

fied when the list is omitted although it is not necessary to ao so on

BRLESC.

The number of print positions on one of BRL's printers is 160.

However it is best to restrict the line length to 132 characters or

less so that other printers may also be used. BRLESC FORTRAN allows

at most a total of 170 characters for a line including the vertical

control and end-of-line characters

ADDITIONAL NOTES ON THE USAGE OF MAGNETIC TAPE ON BRLESC:

All of the tape reading and writing is parity checked. Rereading

erroneously ten consecutive times or rewriting wrong twice after each

of five consecutive "GAP instructions" causes an error print and BRLESC

stops running tio programs.

There is checking for end-of-reel. At the e I of a reel, BRLESC

halts at 080 and is ready to accept a new reel when re-started. A

single reel of BRLESC tape will hold about 90,000 lines.

The only restriction on switchin- between reading -and writing of

tapes is that a REWIND or BACKSPACE statement :iust [-V nione befo•'e rlaýu,.I16

:h _t,. that was just written. W2henever a tape en BRLESC is -witched.._d from

writit.6 to reading, a file mark and an extra one word block th-it says

"EN, TAPE" .is ',utomatically writto.n on the tape before the final file

mLrk is written uri then switching i'. done. (This extra oiuck is

"; • .re' b,,!" a RACKSPACE stat..,re:zit.)

A i FOF'11AN ailphanumeric input and output t-Ipe.- ,•i "buf rfr<.i" an

m:Lay C;iita!n.: on to 20(: :hurar'ctcr'. •,T block. T c (n.ccq.pi :h tLis

-- t-11~ t ~ a ttpQ Unit us-eci urqu)f anw.

•f FR[ESC ":..'"or$. T`hiS 5DW I, [t., inc s it n1 ,nde1 whil, th,

],:'xa:x• I,:ig ,": 'cuted ain.i will not czni`1 .rt with anv; othe" mcmory

45

cssigrtent made in a normal F(RTRAN program. Buffers are assigned

backward from the sabroutines as long as space is available there.

Otherwise they are assigned aeckward from the end of the memory.

(For "CHAIN jobs", they are assigned so a! to not conflict with any

link of the CHAIN.)

The tape unit number t may be either a decimal integer constant

or variable. If t is a variable, the integer value it has at the

time the -ape statement is executed is used as t. The following table

shows the correspondence between the value of t and the switch

on ER9-1SC. The actual tape handler used d-jends on the switch setting.

t Switch

1 or 1i 1

2 or 12 2

5or15 1

4or 14 4

5 or 15 5

6 9

7 10

8 ll

9 12

10 7 (temporary or output orny)

Note that 1 - t -< 15 and that t is usedi modulo ten for 11 ! t • 15.

It is illegal to use both 1 and 11, or 2 and 12,...,or 5 and 15 within

the same program. (If t > 15 is used; it will be used modulo 16 with

0 using Switch 13. PRINT (and PUNCH) tape output uses Switch 8, tue

compiler itself uses Switch 14 or 15 for its own program and uses

Switch 7 fo2 temporary storage while compiling, and card input put

on tape off-line uses Switch 6. (Usage of switches 6 and 7 are identi-

cal to FORAST.) When leaving problems to be run on BRLESC, the switch

number rather than the t number should be used in the instructions to

the computer operator.

46

All printer output is formatted for variable length lines for the

off-line high speed printer. PUNCH tape output automatically has a

single space character "1" inserted at the beginning of each line and

an end-of-line character at the end cf each line. The same is true

of PRINT and WRITE OUTPUT TAPE output if the first field of the line

is not an H type field. If the first field is an H field, then the

first character of the field is used for vertical format control

after undergoing the following transformation:

H Field Tape

+ or - blank (no space)

0 (zero) special blank line with 1 on next line.

(is double space)

2 2 skip to even numbered line.

(possible double space)

I or 8 8 (start new page)

others 1 (single space)

A blank control zharacter should normally be used to obtain single

spaced lines. The zone bits of the for2at character will be 00

except PRIN-T output will have 01. When reading previous FORTRAN

alphanumieric output, a 1 vertical control character is transformed

back to bl--an and t1he special blank line is ignored but causes the 1

control character on the following line to oe transformed back to zero.

The special blarn line is also ignored by the BA!CKSPACE statement.

FORTMLN programs are supposed to contain cn END FILE statement

and a REWTND statement for each output tape used in the program and

L RFWIND statement for each input tape. _-f this is not done within

the program, BRLESC will rewind all tapes that were use' and not re-

wounJ by the program.

47

XII. DATA STATEMENT

The DATA statement of FORPRAN IV allows initial values to be

stored for variables witbout writing an executable formula. The

DATA statement allows a list of variable names to be followed by a

list of the constants that should be initially stored as the values

of the variables. A slash is used to separate a list of variables

and a list of constants qnd comnas are used to separate items within

both lists.

The general form of the DATA statement is

DATA vlv2,v3,.../cl,c2,c3,.../,v4,v5,.../ce4,c5,.../Y

where vl,v2,... represents names of variables and cl,c2,... represents

constants. The variable list may contain DO-implying parentheses with

variable subscripts that take on specified integer constants. All

other subscripts must be constant, i.e. ,the integer value Mf all sub-

scripts must be completely defined within the DATA statement. The

name of an array may be used without subscripts to specify a list of

the entire array.

The constant list may contain any standard FORTRAN constant and

may also contain octal constants by preceding the octal digits with

the letter 0. T and TRUE are also allowed for .TRUE. and F and FALSE

are also allowed for .FALSE.. Any constant may be repeated k times

by preceding it with "k*" where k is the integer number of times that

the constant should be repeated.

Most computers will not allow the DATA statement to initialize a

variable that is in blank COMMON; however this is allowed on BRLESC.

Also most other computers allow variables in labeled C0MMON to appear

in DATA statements only within a special BLOCK DATA subprogram.

48

Some examples of DATA statements are:

DATA A,B/5.3, .6E-3/

DATA I, LOGICOCT/14.,FALSE.,o7777/,ALPH/4hDONE/
DATA(C(I), I=1., i0)/5Iq~. 01 •.0, 2"•. 0/

Note the absence of a comma after DATA but the presence of a

comma before the beginning of any other list of variable names in

the same statement.

There must be a one-to-one correspondence between the number

of variables that are to be given initial values and the number of

constants within any one DATA statement. BRLESC gives an error

print when there is not a one-to-one correspondence.

The form of the constant determines the tye of constant stored

rather than the name of the variable. There is no check between the

type of constant and the type of variable.

To allow some compatibility with CDC FORTRAN. BRLESC also allows

the CDC form of the DATA statement which has the general form of:

DATA(vl -' l),(v2 = c2).....

where vl is one variable name or one array name or one subscripted

name, which may have DO-implying subscript information, and cl is

one constant or enough constants, separated by commas, to satisfy

the requirements for vl. Repetition of one or mcre constants k times

is allowed by "k(c!,c2,...)".

Some examples of CDC DATA statements are:

DATA(F=7.2), (X=.OO0)
DATA((B(J),J=l,5)=l.O,2(5. 5,8.)), (LA=. TRUE.)

49

XIII. SUBPROGRAM STATEMENTS

FORTRAN allows sections of a FORTRAN program to be designated

as subroutines that may be used at many different places in the main

program. The SUBROUTINE, FUNCTION, RETURN and END statements allow

the programmer to define and namcd portions of his program as sub-

programs and they provide information that allows the compiler to

provide for the substitution of variables at run time and standard

entry and exit methods used for subroutines.

Any subprogram may use any of the FORTRAN statements within

itself except SUBROUTINE and FUNCTION statements. Any subprogram

may use any other subprogram or subroutine of any type, including

arithmetic statement functions (See Section XIV) that are defined

at the beginning of the subprogram. Recursive subprograms (sub-

programs that use themselves) are not allowed.

SUBROUTINE AND ADJUSTABLE DIMENSIONS

SUBROUTINE a(b,c,d,e,...)

This statement marks the beginning of a subprogram that

we shall call a SUBROUTINE. The name of the SUBROUTINE is a and

b,c,d,e,... are the names of nonsubscripted dumy variables that

will be replaced at run time by the actual variables that are listed

in the CALL statement that causes this subroutine to be performed.

The subroutine consists of the FORTRAN statements that follow this

statement down to an END, FUNCTION or another SUBROUTINE statement.

The name of the SUBROUTINE does not indicate the type of

any result and hence any letter may be used as its first character.

Except for the COMMON storage, all variables within a

SUBROUTINE (or FUNCTION) are assigned storage that is unique and

not used by any other part of the program. Thus the variable X may

be used in several SUBROUTINES within a program and each X will be

different unless it appears in the same relative position in COMMON

statements in each of the SUBROUTINES.

50

No storage is assigned to the dummy variables; on BRLESC,

DM will appear in the dictionary instead of an address. The type

of a dummy variable, as indicated by its first letter or within a

TYPE statement, must agree with the type of all actual arguments

that replace it. If a dummy variable is an array name, then its

size must be defined-within the subroutine and the size must either

be identical with the size of any actual variable used to replace it

or else its size must be defined by other dummy variables. Dummy

variable array subscripts in DIMENSION statements is a feature of

FORTRAN IV and is not allowed in other versions of FORTRAN. This

feature is commonly referred to as adjustable dimensions. It has

the restriction that the dimensions specified in the calling sequence

must actually be the maximum dimensions as declared in the calling

program. Thus if the array A is declared to be (lOxlO), but actually

has a (5x5) matrix stored there, then this 5x5 matrix cannot be used

as an argument for a subprogram. (Most FORTRAN manuals indicate

that it is legal to use less than the maximum dimensions as arguments

and indeed there is no error check for this, however a. normal FORTRAN

subprogram will reference the wrong elements of the array when this

is done.) However it is true on BRLESC (and probably any other com-

puter that stores arrays by columns) that the last or rightmort

dimension of the array does not have to be the maximum. Thus for

the array A(lO,lO), the dimensions of (lOx5) could be used as arguments

of a subprogram. In particular, the dimension argument for a one-

dimensional array does not have to be the maximum value.

Example: SUBROUTIIE POGO(A,XXLO)

FUNCTION a(b,c,d,...)

This statement is similar to the SUBROUTIINE statement but

should be used whenever the subroutine has only one result. No

dummy variable should be listed for the result as it is intended that

the function will be used in an arithmetic expression and the result

is simply used in evaluating the rest of the expression.

51

The name of the function is a and b,c,d,... represent

nonsubscripted dummy variables, The name of the function does

indicate the type of the result by its first letter and the final

character must not be F if there are more than three characters in

the name. For FORTRAN II, the first character of the name "a" must

be I,J,K,L,M or N if and only if the result is integer. For FORTAN IV,

the type of the result may be declared before the word FUNCTION, e.g.

REAL FUNCTION, LOGICAL FUNCTION, etc. The type of other dummy vari-

ables can be specified in a TYPE statement within the subprogram.

Within the FUNCTION subprogram, some statement should

store a value in a variable that has the same name as the name of the

function and this will be used as the result.

There must always be at least one dummy variable for

FUNCTION subprograms.

Example: FUNCTION LOW(Ql,,T)
LOGICAL FUNCTION FOUND (L,VN)

RETURN

This statement may be used as often as desired within sub-

programs (SUBROUTINE or FUNCTION) to indicate the point or points at

which execution of the subprogram should stop and control should

return to the program that is using the subprogram. It should always

be used at least once in every subprogram.

END

This statement may be used at the end of any subprogram or

at the end of the main program. It is not required on BRLESC. All

program decks on BRLESC do require the very last card of the entire

program deck to be a card that has an E in column 1 or an * in

column 1 with DATA in the statement field.

The sense switch options allowed in END statements on some

computers will be ignored on BRLESC.

52

Most computers other than BRLESC compile each subprogram

as though it is a complete FORTRAN program and only provide a

binary card deck that must be assembled with other binary decks to

actually run the program. Hence they require an END statement at

the end of each main program and each subprogram.

For BRLESC, the main program and all the subprcgrams must be

compiled at the same time and thus can be run without the use of any

binary decks. BRLESC has a limit of 60 subprograms used in any one

program deck.

ENTRY a(b~cde,...)

The purpose of this statement is to allow multiple entry

points within subprograms. It is not a standard FORTRAN statement

but some form of it is allowed in a number of FORTRAN IV compilers.

The following description applies only to BRLESC.

The name of the entry point is a and bc,d,e, are the

names of non-subscripted dummy variables. The name of the entry

point a is used in a CALL statement for ENTRY statements in SUB-

ROUTINES and is used in arithmetic expressions for ENTRY statements

in FUNCTION subprograms.

The durmmy variables in an ENTRY statement do not have to be

the same as those in the SUBROUTINE or FUNCTION statement for the

subprogram in which the ENTRY statement appears. However, a dummy

argument may not appear in any statement (including DIM-NSION)

unless it has previously been declared to be a dummy variable by

appearing in a SUBROUTINE, FUNCTION or ENTRY statement. On BRLESC,

the ENTRY statement must also physically precede all of the appearances

of any of the dummy variables that will actually be used in executable

statements for that entry to the subprogram. (This is the only

essential difference between 7090/7094 FORTRAN and BRLESC ENTRY state-

ments. 7090/7094 FORTRAN allows dummy variables to be used both

before and after the ENTRY statement.)

53

The name of the result in a FUNCTION subprogram cannot

be an ENTRY name. Only the name aplearing in the FUNCTION statement

is allowed as the name of the result.

rENY statements are non-executable and normal control

may pass through them without doing the initializing of the
arguments for that ENR.

inSC has a limit of 100 dummy variables and ENTRY names

in ENTRY statements within one complete program.

CDC FORTRAN 66 allows ENTRY statements without dummy

variables. It uses the original dumiry variables automatically with

each ENY.

Example: ENTRY TRY2(V,R)

BLOCK DATA

Most FORTRAN compilers do not allow the DATA statement to

store constants into variables that are in l eled C0PtON unless an

extra subprogram that begins with a BLOCK DATA statement and contains

the necessary declarations and one or more DATA statements is used.

This subprogram must not contain any executable statements. It must

contain one or more COMON statements that list all of the names that

are in any of the labeled COMMON groups that is to receive constants

from a DATA statement. It is not per-Missible on most computers for

any DATA statement to store into a blank COMMON variable; however

this is allowed on BRLESC.

The use of BLOCK DATA is not necessary on EPLESC but it

should be used to maintain compatibility with other computers. BLOCKD

will be used as the name of the BLOCK DATA subprogram in a BRLESC

dictionary.

54

I

Example: BLOCK DATA

DIMENSION A(6)

LOGICAL LA

C IMON/Bl/R , A/B2/V,LA

DATA LA,A/.TRuE.,6*l.o/

END

XIV. PREDEFINED FUNCTIONS AND ARITHMETIC STATEMENT FUNCTIONS

FORTRAN subroutines are separated into two classes, (1) functions

are those subroutines that have only one result and hence may be used

in arithmetical expressions; and (2) SUROUTINE subprograms (See

Section XIII) or other subroutines that may have more than one

number as a result and may be used only by CALL statements.

Functions

There are three methods of defining a function. They are

1. Predefined functions that may be used by using the

predefined name.

2. Arithmetic statement functions.

5. FUNCTION subprograms. (See Section XIII)

Predefined Functions

Appendix A lists the predefined functions that are allowed on

BRLESC and most computers. Both the FCRTRAN II and IV names are

Listed for each function and either name is allowed on ERLESC.

55

rt
Naming Functions

For FORTRAN II, predefined function (and arithmetic statement

function)names must always end with F (a total of seven characters

are allowed) and must begin with X only if the result is an integer.

Variables must never be given a name that is the same as any of the

function or subroutine names either with or without the terminal F.

For RIESC, the terminal F is not necessary when the initial 7 .tter

of the predefined function name indicates the proper type of result

but is necessary in both the definition and use of arithmetic state-

ment functions.

For FORTRAN IV, all function names indicate the type of result

in the same manner as other variable names, i.e.,either the initial

letter determines the type or the type is declared in a TYPE or

FUNCTI(O statement. For both FORTRAN II and IV, the naming of

FUNCTION subprogram ftnictions uses rules that are the same as for

Laming arrays. An initial letter of I,J,K,L,M or N indicates an

integer result and the last character must not be F if there are more

than three characters in the name. For FORTRAN IV, a type declaration

may precede the word FUNMTION in a FUNCTION statement, e.g.,INTEGER

FUNCTION RAY(V).

Use of Functions

Any of the three types of functions may be used in an arithmetic

expression by writing its name in front of a pair of parentheses that

enclose the list of arguments. The arguments must correspond in ty-pe

and number to the duimmy variables used in defining the function. Suc-

cessive arguments are separated by commas and they may be arithmetic

expressions.

For BRLESC, any function may also be used in a CALL statement

by including an oxtra variable name that specifies where to store the

result.

56

Arithmetic Statement Functions

Arithmetic statement functions are functions that can be and are

defined by one arithmetic statement at the beginning of a program

(or subprogram). The name of the function followed by the dummy

arguments enclosed in parentheses are written to the left of the

= symbol. The arithmetic expressic'-, that dcsrlbes the function

in terms of the dummy variables is written to right of the = symbol.

The dummy variables cannot be subscripted. Any .,ariable used in

the expression that is not a dummy ,,ariable will be identical to

the variable of the same name in the program (or subprogram) in

which the statement is contained. (An arithmetic statement function

definitii:_ normally only applies cnd can be ustd only in the program

or subprogram in which It is located, hovwver BRLESC allows them to

be used anywhere within the complete program.)

An arithmetic statem nt function may use any of the other types

of functions and may also use other previously defined arithmetic

statement functions. All arithmetic statement functions must pre-

cede the first statement that gets executed in the program or suD-

program.

If the arithmetic statement function name does not indicate the

proper type of result, then iTs name must appear in a TYPE statement.

When an arithmetic statement function name appearz in a TYPE .-tatemcnt

on BHLESC, it must also be put in an EXTERNAL statement t°-t appears

aft'er the TYPE statement %nd this. pair of ztatem-:4 to must app-,cr i•

every subprogram that uses the arithmetic statemcnt %';.ct.on. :>.<

that on BRULSC, an F as the tht,5 , -r 7tpi and last character

in the name causes a leraing X cV 1ts absence to inaicate integ'er or

real r:salt roe-pectivcly whilP' the -Absencl u: such a Cinai F cuszes

thc normnLi I-U check on the I-,zadine character. vt',,r the U uag of

"7 TYPE nt-tement W1l c-ve.rridc both o2 thcze :hc .

57

The dummy variable names used must indicate the same type of

arithmetic that is required when the function is actually used.

When the initial letter of a dummy variable does not indicate the

proper ,ype, it may appear in a TYPE statement before the arithmetic

statement function. When this is done, the HTESC dictionary will

not have the variable marked as a dummy variable, but the program will

be correct.

Example of defining an arithmetic statement function:

FUN(ABC) = A**2 - SIN(B*C)+C4

Example of using this arithmetic statement function:

'I T =Q+ FUri(X,s + EXP(V**2),,P.)

XV. PREDEFINED SUBROUTINES

A subroutine may be predefined and exist on the compiler tape

or it may be defined by a SU(ROUTINE subprogram. (See Section XIII.)

Subroutines may be given axny valid name (no restricdions othe Irst

or last letter) and may only be used by a CALL statement.

The following subroutines are predefined in ERLESC FORTRAN:

SETMSI (J) Set minus sign for input.

SETPSI (J) Set plus sign for input. (Not necessary,

anything not minus is plus.)

SETMSO (J) Set minus sign for output.

SITPSO (J) Set plus sign for output.

where J is an integer constant:

0 means blank.

1 means y.(12) punch.

2 means x(l1) punch.

3 means x or y punch.

SEXAPR(A,B) Sexadecimal print from A to B.

BINPUT Goes to binary input routine after saving a

return jump instruction in 073.

58

I
POMERS(A,BC) Computes C = A**B where B may be

integer or fl.pt.

SINCOS(AB,C) Computes B = SIN(A) and C = COS(A).

Additional predefined subroutines may be added in the future.

XVI. FORTRAN PROGRAM CARDS

BRLESC FCRTRAN uses the same card format for punching FORTRAN

programs that is used by other computers.

Columns:

1 - 5 Statement number (integer).

6 Continuation Card if not zero or blank.

7 - 72 One FORTRAN statement.

73 - 80 Identification.

'The statement number must be a decimal integer. Leading -zeros

are ignored. Trailing blanks are also ignored on BRIESC and most

computers.

Column 1 is also used to indicate special types of cards. The

folloVing list shows the special characters that indicate special cards:

C Comment card. Columns 2-80 may be used for comments.

* 7090/7094 monitor card or BRLESC control card.

B Boolean statement card. (FORTRAN II)

D Double Precision statement card. (FORTRAN II)

I Complex Arithmetic statement card. (Not allowed on PRLESC.)

F Used to specify names of subroutines used as arguments.

(FORTRAN II)

$ BRLESC only, used for BRLESC assembly order cards and

some other special BRLESC cards. (% is used until

January 1967.)

7-8 End-file signal on 7090/7094, ignored on BRLESC.

E BRLESC only, is last card of program deck.

59

-Column 6 is used to mark cards that are a continuation of the
previous card. It is used as a continuation if Column 6 contains

any character other tban zero or blank-~except for an initial identi-

I fication control card and all comment cards. BR•ESC does not limit
o the number of continuation cards allowe4 for one statement but some

other computers do have some limit.

1Columns T-T2 contains information, one or more statements,
comments, control information, etc. depending on the type of cards

as indicated by Column 1. BRLESC will allow more than one statement

per card if the symbol $ (> until January 1967) is used to separate

the statements. A special program is available for compacting and

repunching a FORTRAN program so that it will have more than one state-

ment per card.

Columns 73-80 are ignored by BRLESC and may contain any desired

identification.

Blank columns are ignored except when they are in an H field in

a FC1•MAT statement or alphanumeric constants.

Blank cards will be ignored on 3RLESC.

Note that it is permissible to use FORAST coding sheets to write

FORTRAN programs. The key punchers must not use Column 6 as part. of

the statement number and must not allow a statement to go past Column

72. It does not matter whether the statement starts in Column 7 or

F Cards

If the name of a subroutine or function (either predefined or

defined by a subprogram) is used as an argument for another subroutine

or futnction, its nameusually without the terminal F, must appear on a

card with an F in Column 1. This F card must be in the program (or

subprogram) that uses the subroutine as an argument and may be anywhere

within that program.

60

4 1•l •••••••

The names of the subroutines are to start in or beyond Column 7

and are separated by commas.

Example: F SIN, EXP, PFrN3, ATAN

On BRLESC, the terminal F is t.D be omitted from those function

names that have an initial letter that indicates the proper type of

result according to the I-N rules. It must be retained on those

names that do not indicate the proper type of result, e.g., LOGF ,

MAXOF. This same rule for the terminal F applies where .the name is

used as an argument for a subprogram. When programming a subprogram

to accept a function name as an argument, the dummy variable should

end with F only if the initial character does not indicate the proper-

type of result. If a final F is used with at least three other

characters, then the result type is integer only if the name begins

with X.

For FORTRAN IV, the EXTERNAL statement replaces the F card and

serves the same purpose.

XVII. BRLESC CONTROL CARDS AND DICTIONARY PRINTING

The use of certain control cards are allowed to affect the compi-

lation of FORTRAN progtams. Most of these apply to BRLESC FORTRAN

only, although some are also used on 7090/7094. All of "The control

cards are marked with an * in Column 1 with the control information

starting in or after Column 7.

*• The first card of a program that has an * in Column 1

is used as identification and is printed in front of the

PUNCH output. Columns 2-80 may be used. (On all other

cards with * in Column 1, only Columns 7-72 may be used.)

The first thing after the * should be the official problem

number followed by a blank column and this should not

extend beyond column 20.

61

* CHOWGEAND-

This card reverses the meaning of + and - signs in the

S.proramdek, except in FORMAT statements.]L signs are

used initially. (After January 1967, this card will not be

allowed and will cause an error print.)

""* SI]ESSW i

This control "statement" allows sense switch i to be
F "preset" either UP or DOWN. By using this control card,

i the operator can be relieved of actually setting the sense

switches.

• PRTOPU

This control statement causes the compiler to translate

all following PRINT statements as though they were PUNCH

statements. (Allows card output instead of tape.)

• RTTORC

This control statement causes the compiler to translate

all following R-AD INPUT TAPE, INPUT or READ(t,f) statements

as though they were READ statements. (Use card input instead

of tape.)

-* IWTOPU

This control statement causes the compiler to translate

all following WRITE OUTPUT TAPE, OUTPUT or WRITE(t,f) state-

ments as though they were PUNCU1 statements.

• •WTT0PR

This control card causes the compiler to translate all

following WRITE OUTPUT TAPE, OUTPUT or WRITE(t,f) statements

as though they were PRINT statements.

62

S* LIST

S* SYMBOL TABLE

Either of these causes the storage dictionary to be

printed. The asterisk in Column 1 is not required on the

LIST card.

The dictionary is printed with names of variables

arranged in alphabetical order within each subprogram.

Function and subroutine names will be-preceded by two

asterisks. Main program names will be preceded only by

:two blanks and subprogram names will be preceded by one

character and one asterisk or period. The character pre-

ceding each subprogram name will be 1,2,...,9,A,B,...T

corresponding to the sequence in which the subprograms

appeared in the program deck. The name of each subprogram

will appear on a separate line before the dictionary for

that subprogram. If more than 30 subprograms are used,

some dictionaries for two subprograms will be mixed to-

gether with both subprogram names preceding that section

of the complete dictionary. When this occurs, those names

preceded with an asterisk are from the subprogram whose

name appears on the left side of the subprogram name card

and those names preceded with a period are from the sub-

program whose name appears on the right.

Following each name will be the sexadecimal memory

address that has been assigned to the name.. Following

this address, any of the following letters may appear:

A indicates an array name.

I indicates an integer variable.

L indicates a logical variable. (FCatmAN IV)

C indicates the name was in a COMMON statement.

E indicates the name was in an EQUIVALENCE statement.

U indicates the name was used only once.

63

Statement numbers are printed at the right end of the

six character name position and therefore always precede

the names of the variables in any subprogram. The compiler

usually adds a few names to the dictionary to indicate

temporary storage and special subroutines. The name $SUBS.

is printed usually at the end of the dictionary to indicate

the length of the predef-ned subroutines. The subroutines

extend from this address down through 0103L and includes all

of the input-output storage andl subroutines. The $NOS. name

printed usually as the next to last name in the dictionary-

indicates the length of the "constant pool". This storage,

from OSO down to but not including the address printed after

$NOS., is used to store the constants and the "array words"

required by the program. The $LAST entry printed with the

dictionary indicates the largest address used by the program

with the possible exception of some tape buffers at the end of

the memory.

For array names, the address printed in the dictionary is

the initial address of the array.

The names of all the COMMON variables used within a
subprogram may not appear in the dictionary for that subprogram.

When the common statements of a subprogram are processed, a

check is made to determine if the names and required storage

are the same as those for the main program. All of the names

up to the point of the first disagreement in name or storage

are deleted from the subprogram dictionary. If the subprogram

common statements are identical to the main common statements the

then the words MAIN COtMC are printed preceding the subprogram

dictionary. If the first common name of the subprogram disa-

grees with the first common name of the main program, then the

check and deletion explained above is made with the common

ii statements of the previous subprogram.

I-i4

If the subprogram common statements are identical to the

previous subprogram common statements then the name of the

previous subprogram foliowed by COMMON is printed preceding

the Eubprogram dictionary.

Names in COMMON are assigned last, so the last name in

the COMMON assignment within the subprogram that has the

most COMMON storage will mark the end of all the storage

used by the program. The instructions for the program and

all the subprograms are stored first, then all the variables

not in COMMON are assigned storage immediately after the

instructions and this is followed by those variables in COMMON.

* LIST8

* LIST (S.CODE)

Either of these control cards causesthe dictionary and

the sexadecimal code for the entire program to be printed.

Four instructions are printed on a line with the address

of the first one printed at the beginning of the I'ne.

The * in Column 1 of LIST (S.CODE) may be omitted unless

LIST is the name of an array.

* LIST (B.CODE)

This control card causes the entire program and the

subroutines it uses to be punched on binary cards with

absolute add.-esses. To use this deck to run the program,

it must be preceded by a binary input routine and followed

by the standard set of FORTRAN input-output routines and a

Jump to 073. The * in Column 1 may be omitted unless LIST

is the name of an array.

65

3BRLEMC ?(R11mA allow BLESC assembly orders to be written on

carde that have a $ in column 1 (%_ is used instead of $ until

Januart 1967). The same general form as used in FCPAST is allowed,
Sbut not hoeiaprcsigoadrse.fomlsecFCM

statements must not be put on the same card with assembly orders,

but more than one assembly order may be put in columns 7-72 by.

separating them with a $ symbol. The general form of each order is

like FMAST, i.e.,OT(A)B)C$ where "(" after ")" is optional, the

last "Y• and the last $ are optional and less than three addresses

is permitted. cuments may follow $$.

For BHRtEC assembly orders:

Col.l (% is used until January 1967)

Cols.2-5 Blank, statement number cr symbolic name

is allowed.

col.6 Normal FCRTRAN continuation column. ($ in

col.l not required on continue cards.)

Cols.T-T2 One or more RLESC assembly orders.

Cols.T3-80 Identification only.

The following symbolic order types are the only ones allowed:

A B SET J- JC HI

S CB 8I TAPE NOP IM

x CEQ INC CARD RSW RCL

D CHB II ZoO ýW

C CnQ LP SI LPI

Sq"~ PKA .7 W 1

3H IT is EA JNA

TP HALT J+ JA JNC

The symbolic parameters of XFA or +,V4R, are allowed with

the same meaning as used in FA . The X and F cannot be vitten

before the order type and a minus sign is iglnored mxept for the

J- order type.
41 • 66

ai

A decimal parameter is also allowed. All arithmetic orderb,

including SHift, are floating point unless X parameter is used.

A GOTO statement with one address is allowed but none of the

other general FORASTT statements are allowed.

No assembly order may have more than three addresses including

SET and INC and they cannot include a GOTO. However any of the

orders that set or increase index registers may be written with an

= like F(AST allows. Index registers cannot be increased by a

negative amount.

A comma is used to indicate indexing in the same rnanner as

FORAST. Constant increments (and decrements on symbolic addresses)

are alloyed. All index addresses must be absolute, decimal or sexa-

decimal. Addresses 13-23(OJ-OIN) and 48-55(050-057) are not pre-

sently used for anything in FCRTRA1 compiled programs. Dtmmy variables must

never be iia'exed and variables tbat might be assigned to a "large

address" must not be indexed. "Large Addresses' may be used anywhere

as long as they are not indexed. (FCRMA allows large addressing by

using indexing automatically on all large addresses.)

FCiRAN 4array subscripting is not allowed in any BLESC assembly

orders. When an array name is used by itself) it references the
"tarray word", not the first element of the array.

Dec•iaal addresses are allowed -A4d .exadecimal addrer •es must have

a leading zero. Statement nv:rters used for an address must -.ither be

preceded by "S/" or followec t~y an S. Decimal numbers must be pre-

ceded by an * and may be tither a FORTRAN integer or floating point

colistant. Fixed point fractions are not alloved. Sexadecimal con-

nt4-nta may' be w-itten followlzv a learcng "g " aN may use MA and Z

is all)ed £'& FtMAS

There is no special processing of any addresses like there

is in FQaM2 for 3 of SH,JA,JNA,,JC,JNC and y of I/0)rders. These

addresses should normally be written in sexadeciml.

Names of subroutines may-be used as an address only by pre-

ceding each one with "F/" or including each one in an EXTERNAL

statement or on an "F card".

Decimal increments and decrements are allowed on symbolic

addresses and may be written either before or after the index name,

e.g., A+2,14 or A,14I+2. SELF is also allowed to refer to an order's

own address.

Symbolic names my be assigned absolute addresses by using a

SYN statement on a $ card. SYN may be followed by any number of
pairs of parentheses that enclose one symbolic address and one

* absolute address separated by "=". An example is:

$ SY(A=O8o)BT=9 1l2)(OUo=Zl)$

Note that "("after")" is optional and that $ at the end indicates

that the rest of this card will not be used.

A group of sexadecimal or decimal constants may be stored by

using a SEXA or DEC statement on a $ card. Any number of constants

may be put on one card- but no other statements or assembly orders

are allowed on the same card. Constants are separated by parentheses

with "(" after ")" being optional. For sexadecimal constants, Z

indicates a string of zeros, A a string of five sexadecimal zeros

and M a string of five sexadecimal L's. Any legal FORTRAN decimal

constant may be written on a DEC card.

68

Examples: $ SEXA(L)o8Z)(ioKz82)4A$

$ DEc(ll)3.)6.aE-3)$

Some examples of BRLESC FCRTRAN assembly orders are:

$ AV(F)*E7.l)Tl$ SHX(Q,2)O286)0$

* TAPE(SS2B)560)017 $ sE.T(5--o)3=15

$ iNC(2=aI.2+:,.L)=21+4)$ CNEQ(W)/2.A)42S$

$ BI2(R-I,1 4))TT$ TPIO)12)/M)SELF+2$

*$ JS(A)A+50)(F/sExAI¶)$ GOTO(TEST)$

$ 029(o7ooo)s,24--1i)iI$ 4w(1,6Y0oo)o8ooo$

XIX. MAXPU1, TE AND) PM O=IPUT SPECIFICATIONS

BRLESC FORrAN allows the programmer to control the maximum

amount of time a program will be allowed to run and the maximum

amount of output it will be allowed to print. If the programmer

does not specify these maximums, BRLESC will set them at five

minuttes and 1200 lines. Whenever either one of the specified

maxim-ums is ,xceeded, BRLESC will stop the execution of the program

after the appropriate error print.

Maximwn Time

The maximum time specification is of the form

$ I4AXT(integer number)MUNS.

where the initial $ is in column 1 (% instead of • is used until

January 1967) and the rest of the specif" :ation is in columns 7-72.
"1INS." may be replaced with "HRS." or "SECS." to specify hours or

seconds instead of minutes. Note that fractions of time units are

not allowed.

The time begins when this card is encountered by the compiler

and hence some compilation time must be included when estimatinL the

maximum time.

69

- -- ~ -a--

If the statement number 98765 has been used, MIESC jumps to

that statement when the maiximm time has been exceeded. If 98765

V has not been used as a statement number, BRLESC gives the following

error print:

XECE!.,DD MAXT. Ii= s OCTAL AR.REFS.= a b c CLK= cr

where s is the octal contents of index register 1, a,b, and c are
theOctal contents of-indexes 10,ii and 12 respectively which are

the last array addresses referenced, and c r is the clock reading

at the time of the error print. This clock reading contains six

digits, two each for hourf, minutes and hundredths of minutes.

This same error print is obtained if BRLESC stops for some reason

during execution of a FCITRAN program and the clock reading can be

compared with the initial time to determine how long the program

ran before it stopped.

Examples:

$ MAXT(3)MINS.

$ MAXT(90)SECS.

Maximum Output

The maximum output specif'Lcation is of the form

$ MAXO(integer number)LINES

where the initial $ is in column 1 (% instead of $ is used until

January 1967) end the rest of thL! sieclfication is in columns 7-72.

Blank lines caused by slashes in formats count as lines; however

any lines skipped by ucir.g vw3rtical control characters do not count.

All tape or card alphanumeric output is inciuc¢id in the counting of

lines but binary tape output Is not included.

Note that MAXO ends with the letter 0, not zero.

70ý

When the specified amount of output has been exceeded, BRMESC

will not go to statement number 98765. It gives an error print of:

EXCEEDED MAXO AT s OCTAL AR.REFS.= a b c CLK= cr

where s is the octal address of the statement that caused the output

maximum to be exceeded, a,b and c are octal addresses of the last

array elements referenced and cr is the clock reading at the time of

this error print.

Examples:

$ MAXO(500)LINLSD
$ MAxO(2oooo)LINES

It is permissible for MAXO and NMXT specifications to be on the

same card with each other or with BRLESC assembly orders.

XX. STATEMET NUMBER 98765

The statement number 98765 may be used to obtain some extra

printing after a program fails to run to completion or exceeds the

maximum time. When an unexpected machine halt occurs, the operator

manually causes BRLESC to go to statement 98765 if this statement

number was used. At 98765, the program should do a limited amount of

printing that could be helpful in determining where and why the pro-

gram stopped and then should do a STOP statement.

Each link of a CHAIN job may have its own 98765 statement.

71

MXa. CHAIN JOBS

MIESC FC1TRAN allows segmentation of large programs by using

CHAIN control cards and a CHAIN subroutine. MLESC is essentially

compatible with 709/7090 FORMAN in the way this is done. Each

"link" of the chain must be preceded by a control card of

*CHAIN(R.,T)

where R is an identifying integer number (less than 52768 on 709/7090)
and T is a tape unit designation of any two alphanumeric characters

(must be B2,B3,A4 or Bl on 709/7090). BRLESC always uses tape 7

for storing links. Each link consists of a complete FORTRAN program

with a main program and all of its subprograms.

Any link may during execution begin execution of any other link

by executing a CALL CHAIN(R,T) statement where R and T both are used

to identify the link that is to be executed next.

Data may be passed from one link to the next one through CMON

storage only. No program should assume any other storage is pre-

served from one link to the next. There is a chance of incompati-

bility between BRLESC and other computers if links that have short

programs with long COMMON are mixed with links that have long pro-

grams with short CadMON. When this incompatibility arises, an error

print of CH.COM.BIF occurs.

Sense switches that are preset with BRLESC control cards will

remain preset in all following links unless the link contains a new

preset card. Other control cards will not affect following links

except a LIST cerd will cause dictionary printing in all following

links.

DATA statements may not be used in chain jobs.

When labeled common is used in chain jobs each link must contain

all of the labels. The labels must appear in the same order in each link.

72

XXII. BRLESC COMPILER ERROR PRINTS

The ELESC FORMAN compiler checks for a limited number of

types of errors in the program it is compiling. It definitely will

not find all possible errors, but some errors will cause one of the

error prints listed below. The type of error can be recognized

either by the number that follows the word ERROR and precedes the

comma or by the "error word" that is printed. The form of the

error print is

FORTRAN ERROR t,m Error Word Ident. W First 30 cols. of *Ident.Card

where

t = type or error

m = ten col. field at which error was detected; m=O,1,...,T

Error word = ten alphanumeric characters that describe the type

of error as listed below.

Ident. = cols.73-80 of card at which error was detected.

W = rest of the mth field on the card at time of

error detection.

TYPE ERROR WORD DESCRIPTION

1 ILL.CHAR. Illegal character on program card.

2 SYM.ST.NO Symbolic statement number, not all decimal digits.

3 NIXED EXPR Mixed expression, integer and fl.pt. arithmetic.

4 INT**FLT Integer raised to fl.pt. power is illegal.

5 IL.RETURN Illegal RETURN statement, used in main program.

6 NO = IN DO No equals symbol at proper place in DO statement.

7 SUBPRS.>60 Tried to compile more than 60 subprograms.

8 BIG ADD.ID Big address is indexed. Program is too big.

9 NO, CP.GOTO No comma at proper place in computed GOTO statement.

10 ILL.STAT. Illegal statement.

11 FLT.INDEX Subscript involves a fl.pt. number.

12 ILL.DIM. Number of subscripts is not same as dimensionality

of the array.

73

TYPE ERRCR WORD DESCRIPTION

13 ILL,,C(c"A Comma is used improperly in an arithmetic

expression.

14 ASD.ST.NO Assigned statement number; same statement

number used twice.

15 COMPLEX AR Complex arithmetic cards (I in Column 1) not

allowed on BRLESC.

16 EQU. TABLE EQUIVALENCE table is full.

17 COM. ASGND COMMON name was previously assigned.

18 ARRAY.REF Array name used before it was defined.

19 DICT.FULL Dictionary is full.

20 COL.7 NO. Statement begins with a decimal digit.

21 SENSE > 6 Sense light or Sense Switch number greater than 6.

22 DO NO END Statement number used in DO never appeared.

(It may have been missed due to another error.)

24 IL.EQUALS Illegal = symbol or arithmetic was specified on

the left of the = symbol.

25 IL. - BOOL Illegal "not" operation on boolean card.

26 IL. / BOOL Boolean division is undefined.

28 IL.**BOOL Boolean exponentiation is undefined.

29 DRUM STAT. Drum statements not allowed on BRLESC.
70 IL.10 LIST Illegal input-output list.

31 `AP CODE An * FAP card is not allowed on BRLESC.

32 BAD TAPE 7 Temporary tape 7 gives persistent parity errors.

53 NO IDENT * No identification card dt beginning of program.

4 N>6 Im NH Alphanumeric constant of more than six characters.

35 CONST POOL The constant pool is full.
36 LABEL COMM More than 32 different COMMON labels.

37 CON. TABLE The CCMMON table is full.

58 STP FULL More than 800 dummy variable references.

39 DOT, FULL More than 65 nested DO loops.

40 ATP FULL More than 64 dummy variable references in an

arithmetic statement function.

74

TYPE ERROR WORD DESCRIPTION

41 ARG FULL More than 100 subprogram arguments.

42 FTB FULL More than 50 subroutine names on F cards.

45 1>52 IN AE Arithmetic expression has too many operations

grouped to the right.

44 ILL.EQUIV Illegal EQUIVALENCE statement.

45 NON-SEXA. Illegal character in a sexadecimal word or address.

46 IL.AS.O.T. Illegal BRLESC assembly order type.

47 IL.AS.ADD Illegal BRLESC assembly address.

48 NO $ AS.O. No $ symbol at end of BRLESC assembly order.

49 NON-DEC Improper character in a decimal number.

50 IL.AS SYN Illegal SYN statement.

51 DM VAR ID. Dummy variable was indexed in assembly order.

52 NOT , OR) Improper punctuation.

53 STPE FULL More than 600 ENTRY dummy variable references.

54 SEL FULL More than 100 ENTRY names and dummy variables.

55 DIM. COMMA Missing comma in DIMENSION.

56 LONG I NO. Integer constant of more than 17 digits.

57 DUPL. COM. Duplicated name in COMMON.

58 MAXTO NO I Number on MAXT or MAXO card is not an integer.

59 EXTRA PUNC Extra punctuation symbol.

60 BAD L.NAME Bad logical operation or relation name or

illegal period.

61 DATA BAD = Equal symbol at illegal place in DATA statement.

62 DAT.IL.NO. Illegal number in a DATA statement.

63 DATA FULL Too much data in DATA statements.

64 HUNG UP Computer stopped during compilation.

ERR(R. DATA STAT. NOT ONE TO ONE C(ORESPONDENCE BETWEEN NAMES AND

NUMBERS. (Self explanatory)

FORTRAN ERR(P, INDEED LARGE ADDRESS. 5 PRV. (RDS. + PART CIRDE ON

NEXT LINE. An assembly order address larger than 16585 vas also indexed.

TAPE 7 REACHED END OF TAPE DURING CHAIN CCMPILATIOt PLEASE IRY AGAIN.

(Self explanatory.)

75

I______...._III II___

ERROR TAPE 7 FORTEN

.. .. . i t-e right end of this error print line says "PARITY ERROR",

it was caused by a persistent error on temporary tape 7. If the

line ends with anything else, it is a name that cannot be found in

the dictionary and this usually indicates a machine error.

It must be remembered that the above mentioned cause is only

the probable error. Sometimes some type of undetected error later

causes one of the detected error prints at a point where no error

exists. It also happens that some errors are not detected until the

next card has been read. (W = m = 0 when this happens.)

After each error print, the entire card that the compiler

currently has in the memory will also be printed. (If W = m = 0, the

error was probably on the previous card, otherwise it probably is the

card that contains the error.)

XXIII. BRLESC RUN ERROR PRINTS

Some of the predefined FORTRAN subroutines used on BRLESC detect

certain errors in the data they prccess. When such an error is

detected, a RUN ERROR line is printed and the program is not allowed

to continue to run. The error print consists of one line of infor-

mation of the following form:

RUN ERROR "Error word" Date Cols.l-O0 of Ident.Card LE No.

where "Error word" is an alphabetic word that identifies the type of

error.

Date is the date.

LE is the location (in decimal) of the entry to the

subroutine that detected the error.

No. is a number that in some cases was an illegal argument.

76
42

Run Error List: (X and Y represent arguments.)

ERROR WORD SUBROUTINE REASON NO.

LOG X NEG LOGF or ALOG X < 0 X

EXP BIG X EXPF or EXP X > 354.89 X/Loge2

ARCSIN 1+ ARCSINF or ARCSIN X > i+-49 Xli
ARCCOSF or ARCCOS

SINCOS NS SINF or COSF jXj/ai 1 61 X/1
or SINCOSF
SIN or COS

POWER OTO- POWERS X =0 and Y -f 0 ZeroS~(iýxponentiation)

CVFTOI BIG XINTF or XFIXF IxI • 16I X
INT or IFIX

ERROR WORD EXPLANATION

END TAPE t Tried to read beyond information written on tape t.

TAPE TKA u Persistent tape error on trunk A where u is actual

tape switch number and "no." is total number of tape

errors.

TAPE TKB u Same as TAPE TKA u except error is on tape trunk B.

BAD FORMAT Illegal character in a FORMAT statement.

NO(FORMAT More right parentheses than left parentheses in a

FORMAT statement.

LONG LINE Output line is more than 170 characters.

MACH TAPE- Machine tape error of setting negative sign bits when

there wan' t any parity error.

CH.CON.BIG Illegal combination of large and small CMONMC in

CHAIN links.

CHAIN ID. A CHAIN l2ik called is not on the tape.

CHAIN PAR. Persistent tape 7 parity error when reading a CHAIN link.

EXC•EDED MAXT Exceeded maximum execution time or did not run to normal

completion. (See Section XIX)

EXCEEIgD MAXO Exceeded maximum amount of output. (See Section XIX)

77

u1

SmV. OPtMMOK OF TO BEL= FOIWW COMPILER

The BRimC FORA compiler exists on magnetic tape in much the

same manner as the YQEAST compiler and operates in a very similar

I I manner. Mkny copies of +he compiler and the predefined subroutines

are on one tape and the tape reading is arranged so that it is

SI/ ,checked and automatically corrected by using the next copy on the

tape. The tape automatically backs up twenty copies after the las.

copy on the tape is used. Normally, successive copies are used for

compiling successive programs.

Wi~ch of the translation is done concurrently with the reading

of the program cards (or tape). The partially translated code is

put on a temporary tape and the dictionary and constant pool are

ept in the memory. After the last card of the program is read

(E in Column 1 or * DATA), all unassigned symbols in the dictionary

are aasigned storage. The memory that will be used by a program is

cleared to zeros and then the temporary tape is read, the translation

of each instraction is completed and it is stored in the memory for

ru-nning. Programs are storeO from 01040 and may extend to the end

of the memory. Next, the subroutines are read from the compiler tape

and the ones needed are stored backwards from 0840. (The standard

input-output routines occupy 0860-103L.)

The effi.ciency of the generated code is good except for the

referencing of arrays with variable subscripts. Such one dimensional

referencing causes one extra order to be done,two dimensional referenc-

ing causes two extra orders to be done and three dimensional referenc-

ing causes four extra orders to be done. These orders are extra in the

sense that they would not be needed in the corresponding FORAST or hand-

coded programs. Subscripv expressione and other arithmetic expressions

are evaluated as they are written except that instructions involving

only constants will be done at compile time. The compiler does not

presently make use of the "accumulate" option allowed on BR=C in-

structions.

78

XXV. SPEED OF 3LESC FCREIRAN C(CHLING

The MEW F(OTRAN compiler is very fast and hence is designad

for "load and go" operation. Programmers are encouraged to kef-,?

their FORTRAN programs in symbolic form and translate them each time

they are run. This wastes very little if any computer time. and is

most convenient for the programmer.

Most of the translation is done concurrently with reading the

program cards at the present maximum speed of 800 cexds per minute.

The total time required for translating a program consisting of

C cards can be approximated by the formula:

time in secs. = 2 + C/13 + C/T5

The 2 seconds is compiler tape time, the C/13 is card real time and

C/75 allows time for reading the temporary tape and completing the

translation. If the program to be translated is put on tape off-line,

the C/13 term can be reduced by at least one-half. So the translation

rate is about 700 statements per minute from cards or about 1500

statements per minute from tape. (The tape rate will vary consider-

ably with the complexity and length of the statements being translated.)

XXVI. RUNNING FORTRAN PROMML ON MUM

The following list summarizes the steps for compiling ani running

FORTRAN programs on BRLESC.

1. Have FORTRAN compiler tape on tape Switch 15 (i4 if FPAST

Is on 15.)

2. Have tape switth 7 set to a temporary tape.

5. If have card input, be sure manual read switch 36 is down.

4. If have tape input (program on tape), set manual read switch

56 up and set tape switch 6 to input tape unit.

5. If want all tape output, set manual read switch 55 up and

set tape switch 8 to output unit. Also put manual read

switch 94 up if this output tape should be rewoind at the

end of this problem.

79

6. If programmer specifies any other input or output tapes,

mount proper tapes and set proper tape switches. (The

programmer may also specify 8-as an output tape without

manual read switch 35 being up.)

7T Use "tape start" button to initiate compiling the program.

Halts:

a. N40; End of problem. Initiate only if problems

are stacked. Compiler found program error

if 0 address of halt order is ILL.

b. 080; End of output tape reel. Tape unit number

is 0 of halt order. Change reel and initiate.

c. O81; End of input tape reel. Tape unit number is [

of halt order. Change reel and initiate.

d. All other halts or cycles; note PO and NI registers

and do a jump to 058. It should soon get to N40.

XXVII. MAJOR DIFFERENCES BETWEENf FORAST AND FORTRAN

The following list of some of the basic differences between

these two programming languages should. be useful to anyone who knows

one language and is interested in learning the other one.

1. Statement numbers in FORTRAN must be integer numbers that

are used as symbolic names whereas the location field in

FORAST may contain any symbolic name and a decimal integer

is used as an absolute address.

2. The initial character of a variable name must be alphabetic

in FORTRAN and may indicate the type of variable. In

FOWAST, the initial character may be a decimal digit and

has no special significance.

5, The type of names used in FORTRAN arithmetic expressions

determines the type of arithmetic performed. In FORAST,

the type of arithmetic performed is floating point unless

changed by a MODE card or by preceding the formula by "FIX"

or "INT".

4. The type of a constant is determined in FORTRAN by the

presence or absence of a decimal point. In FORAST, con-

stants assume the same type as the type of the statement

they are written in.

5. In FORTRAN arithmetic formulas, automatic conversion from

one type of variable to another is provided when the type

of variable on the left of the = symbol is different from

the type of the variables used on the right of the = symbol.

In FORAST, this converion must be accomplished by the ex-

plicit use of the appropriate subroutine when it is desired.

6. FORAST allows the use of many = symbols to indicate more

than one result address in an arithmetic formula while

FORTRAN allows only one variable name for a result address.

T. Constant subscripts are enclosed in parentheses in FORTRAN

but not in FORAST.

8. All subscripts have an initial value of one in FORTRAN.

In FORAST, the initial value may be specified as zero or any

positive integer for each array individually.

9. Variable subscripts are allowed in FORTRAN but not in FORAST.

FORAST accomplishes the same thing more efficiently by

allowing any address to be indexed by a single index regizter.

10. Three dimensional arrays are allowed in FORTRAN but not in

FORAST.

81

!i
ii

-1. FORMAN allows a multiply and an add or subtract in a

subscript expression while FORAST allows only the

addition or subtraction of a constant in an indexing.

expression.

12. FORTRAN usually allows only one statement per card and

FORAST allows more than one. The statement field is

columns 7-72 for FORTRAN and columns 11-76 for FORAST.

13. Functions in arithmctic expressions may have more than

one argument in FORTRAN but not in FORAST.

14. Implied multiplication is allowed in FORAST but not in

FORTRAN (although it does work ini some FORTRAN compilers).

15. Absolute addresses are not allowed in FORTRAN but are

allowed in FORAST. (They are allowed in BRLESC FORTRAN

assembly orders.)

XXVIII. CHECKLIST FOR CONVERTING OTHER COMPUTER
FORTRAN PROGRAMS TO BELESC FORTRAN

1. The first card should be an identification card with an

asterisk in Column 1. Columns 2-20 should contain a

valid BRLESC problem number.

2. If the signs used in the programs are reversed to BRL usage,

insert a "CHANGE + AND -" control card after the identifi-

cation card.

3. If the signs punched on the input data do not agree with

BRL signs, the use of a CALL SETMSI(i) statement is re-

quired where i = 1 means y punch is minus, i = 2 means x

punch is minus and i 3 allows either x or y to indicate

minus. (The CHANGE + AND - contrcl card does not change

input data signs.)

82

i. DIMENSION, COtIMON and EQUIVALENCE statements must be

arranged in that order whenever any variable name appears

in more than one of these statements. Also a variable

cannot be made equivalent to itself, either directly or

indirectly.

5. If there isn't an * DATA card between the program and the

input data, insert such a card. (A card with an E in

column 1 may be used instead of the * DATA card on BRLESC.)

6. If the program uses sense switches, it is best to insert

control cards to preset them. (* SETSSW i UP or DOWN)

7. If tapes are u'sed, make sure the tape unit numbers used

are compatible with BRLESC. (Those over 9 may need to be

changed.)

8. If desired, change tape output to card output or vice versa

by inserting control cards. Since HRLESC does not have

an on-line printer, PRINT statements cause output on

tape 8 unless changed by control cards.

9. Arays cannot have more than three dimensions and each

reference to an array element must use the same number

of subscripts as declared in the array definition.

10. A nonsubscripted array name cannot be used to represent

oUX the first element of the array.

11. An array argument for a subprogram must have the same

number of dimensions as the corresponding array dummy

variable within the subprogram. Such array arguments

must not have anj subscripts, i.e. the argument must be

Just the name of the array. For example, it is illegal

to try to use a column of a twro dimensional array as an

argument for a one dimensional array dummy variable.

i
I

In i

12. FORMAT statements should not have any + signs on scale

factors; BRLESC will use them as minus signs.

15. Alphanumeric constants are restricted to a maximum of

six characters except in FaRMAT statements. (Also the

CHANGE + AND - control card does not interchange sign

characters in any alphanumeric constants.)

14. Some computers will skip n lines when n slashes occur at

the beginning or end of a FORMAT statement but BRLESC

will always skip n-i lines for n consecutive slashes.

15. When indexing information is specified within an I/0 list,

BRLESC does not allow these index variables to be involved

in arithmetic subscript operations except for the addition

or subtraction of a constant. Indexing control within

I/O lists does also actually use the variable named

rather than just an unnamed index register as happens

on some computers.

16. DO indexing variables do actually get used for counting

within the DO loop. Some computers may use an unnamed

index register instead.

17. The program needs to be modified if it contains any of the

following: (1) DRUM statements,(2) I cards (complex

arithmetic), (3) assembly instructions for some other

computer or, (4) more memory or tape units than available

on BRLESC.

1i. If the beginning of an assignment statement is the same

as the beginning of some other FORTRAN statement, ERLESC

may erroneously assume that it is the other statement.

One of the error prints will usually occur when this

happens. It is best not to use statement names, such as

IF, DO, READ, ctc., as variable names, especially arrays.

84

Also TYPER, TYPEI, TYPEL, TYPED and TYPEC must not be

used as the first five letters of any statement except

a TYPE statement.

19. ENTRY statements may have to be moved closer to the beginning

of a subprogram if any of its dummy variables will actually

be used in a statement that precedes the ENTRY statement.

For CDC FORTRAN programs, a list of dummy vari&,bles may

need to be added to the ENTRY stetemeni.

20. Non-standard subprogram axits are not allowed. (Indicated

by an * instead of a name on an argument list and integer

numbers after RETURN in RETURN statements.)

21. Arithmetic statement functions are made availablc to a whole

program rather than just the subprogram in which they appear.

This shouldn't cause any difficulty unless the same name has

been used for two different arithmetic statement functions.

22. If possible, ask the original programmer if any special

characteristics of a particular computer or FORTRAN compiler

were assumed when writing the program.

25. If possible, run a test case that has been run on another

computer.

In addition to the above general comments, programs that were

written for CDC computers -an have a number of other ir.compatibiiities.

Such programs should be checked for the following items:

1. Assignment statements with more than one = symbol.

2. Mixed type arithmetic expressions.

5. DO loops that will not be done at least once.

4. ENCODE, DECODE, BUFFER IN, BUFFER OUT, IF(EOF~t),

IF(IOCHECK,t) and IF(UNIT,t) statements.

-- •.. • • • • • • • m m um 5

5. Executable DATA statements that have statement numbers.

6. Numbers as CC4MON labels.

S7. Octal constants with a B at the end.

8. ENTRY statements without dummy variables. CDC automatically

uses the subprogram dummy variables with each ENTRY statement.

S9. Alphanumeric constants with R instead of H preceding the

constant.

10. TYPE statements of non-standard form that declare unusual

data structures and operations.

XXIX. SUMMARY OF BRLESC FORTRAN IV STATEMENTS

Notations:

s,sl,s2,..... are statement numbers (look like integer numbers).

i,ili2, are integer variable names.

m,ml,m2,.... are integer variable names or integer constants.

ae represents an arithmetic expression.

le represents a logical expression.

b,c,d,e,f represent any variable names or constants.

t represents a tape ur-.t number.

f represents the statement number or variable name

of a FORMAT statement.

v,vl,v2 represent variable names.

86

Specification Statements:

DIMENSION v,vl,v2, Defines array names and

maximum dimensions of each.

EQUIVALENCE (v,vl,..),(v2,v3,..) Defines synonymous names.

COMMON vvl,.../a/v2,.../ b/v5, . Defines names common between

subprograms. a and b are

optional labels.

FREQUENCY s(m,ml,..),sl(m2,..) Provides optimization in-

formation. Ignored by BRLESC.

REAL v,vlv2,... Defines real (fl.pt.)

variable names.

INTEGER v,vl,v2,... Defines integer variable names.

LOGICAL v,vl, v2,... Defines logical variable names.

DOUBLE PRECISION v,vl,... Same as REAL on BRLESC.

COMPLEX v,vl,v2,.... Not allowed on BRLESC.

TYPE REAL v, vl,v2,... Same as REAL.

TYPE INTEGER vvlv2,... Same as INTEGE.

TYPE LOGICAL v,vl,v2,... Same as LOGICAL.

TPE DOUBLE v,vlv2,... Same as DOUBLE PRECISION.

TYPE COMPLEX vvlv2,... Not allowed on BRLESC.

EXTERNAL namel,name2,... Specifies names of functions

or subroutines that are used as

arguments for other functions

or subroutines.

87 "

Assignment Statements:

v -e Evaluates expressions ae and

stores result in v.

anf(vvl,...). ae Arithmetic statement function

where asf represents its name

and v,vl,.., are the dxy

variables.

v =le Evaluates logical expression le

and stores .RUE. or .FALSE. in

v. (v must be a logical variable.)

(If the operands for the logical

operations in le are arithmetic

variables, then the operation is

performed on all bits of the word

(36 bits on RILESC). This is a

CDC statement.)

Control Statements:

GO TO s DO statement s next.

ASSIGN s TO i Put address of s into i.

GO TO i., (sl,s2,...) Do next the statement whose number

was last assigned to i by an ASSIGN

statement.

GO TO (sl,s2,...),i Do statement si next.

DO s i = mlm2,m3 Repeat statements to and including
s with i = ml~ml + m3, ml + 2m%...

until i > m2.

88

DO s i =mlm2 Same as above with m3 =.

IF(ae)sl,s2,s5 Do statement sl next if ae is

negative; s2 next if ae is zero

and s5 next if ae is positive.

IF(le)st where st is any executable state-

ment except IF and DO. Statement

st is done only if le has value

.TRUE.

IF(ae or le)sl,s2 Statement sl is done next if the

expression is not zero or .TRUE.

and statement s2 is done next if

the expression is zero or .FAISE.

(Is CDC statement.)

CONTINUE Dummy statement.

STOP or STOP w End of execution of main program.

(w is octal no.)

PAUSE or PAUSE w Computer halts. (Displays octal

no. w.)

CALL name (v,vl,v2,...) Perform the subroutine specified by

name.

IF(SENSE SWIM r)sl,s2 Do statement sl next if switch r

is down, do s2 next if it is up.

SENSE LI(HT r For r a 0 turn all sense lights off.

For r * 1,2,3, or 4, turn light r on.

89

IF(SENSE LIOHT r)sl,s2 Do statement sl or s2 next if

sense light r is on or off

respectively. Turn light r

off if it was on.

IF ACCUMULAT C OVERFLOW sl, s2 These are special statements to

IF QUOTIENT OVERFL•W sl, s2 check certain overflow indicators.

IF DIVIDE CHECK sl,s2 Statement sl or s2 is done next

if indicator is on or off

respectively.

Subprogram Statements:

SUCROUTINIE name (vlvl,v2,...) P-0ines the rAme and beginining

of a subroutine.

v,vlv2, ... are the dummy variables.

FUNCTICON name (vvl,v2,...) Defines the name and beginning

of a function subprogram.

ENY name (vvl,v2,...) Define the name and dummy

variables of extra entry points

for subprograms.

RETURN Indicates an execution exit of

a subprogram.

0D Marks the end of a subprogram.

BLOCK DATA Special subprogram statement

to allow DATA statements to

store into ýabeled CO4ON.

90

Input-0Oatput Statementn:

FORMAT (Special Specifications) Describes the fields for

input-output data.

READ f, list Read cards.

PUNCH f, list Punch cards.

PRINT f, list Print data, (on-line on some

computers, off line on BRLESC).

READ(t,f) list Read alphanumeric tape.

READ INPUT TAPE t,f,list Read alphanum i•c tape.

INPUT t,f, Lis. Read alphanumeric tape.

WRITE(t,f) list Write alphanumeric tape.

WRITE OUTPUT TAPE t,f,list Write alphanumeric tape.

OUTPUT tf, list Write alphanumeric tape.

READ(t)list Read binary tape.

READ TAPE tlist Read binary tape.

WRITE(t)list Write binary tape.

WRYTE TAPE t,list Write binary tape.

END FILE t Write end-ofrfile mark on tape.

BACKSPACE t Move tape back one record.

REWIND t Rewind tape.

READ DRUM mml,list Read drum. (Illegil on BRLESC.)

WRITE MUM t ,ml,list Write drum. (Illegal on IM.ESC.)

913

• •• mmmmL

F-

DATA v,vl,... /c,cl...../ Stores initial values for

variables. c,cl,... represents

constants.

DATA (v=c),(vl=cl),... This is CDC form of the DATA

statement.

ACKNOWLEDGvO-IS

Mr. Alfred Anderson reviewed the text and progTammed the subroutine

that reads and prints decimal numbers in the object programs. Messrs

Michael Romanelli and George Francis also reviewed the text and offered

constructive criticism.

LLOYD W. CAMPBELL

GLENN A. BECK

92

REFERENCES

1. Campbell, L. and Beck, G. The Instruction Code for the BRL
Electronic Scientific Computer (BELESC), Ballistic Research
Laboratories Memorandum Report No. 1379, November 1961.

2. Campbell, L. and Beck, G. The FORAST Programming Language for
ORDVAC and BRLESC, Ballistic Research Laboratories Report No.
1275, March 1965.

3. IBM 7090/7094 Programming Systems FORTRAN II Programming
(Fcrm C28-6054-5), 1963.

4. IBM General Information Manual, FORTRAN (Form F28-8074-1), 1961.

5. IBM Reference Manual, 709/7090 FORTRAN Operations (Form C28-6066-5),
196.

6. IBM 7090/7094 Programming Systems FORTMAN IV Language
(Form C28-6274-2), 1963.

7. FORTRAN vs Basic FORTRAN, Communications of ACM, October 1964.

8. FORTRAN 63/Reference Manual, CDC, 1964.

9. FORTRAN 66, CDC 6600 Programming System, Volume 3, 1964.

93

APPENDIX A

LIST OF PREDEFINED FUNCTIONS FOR BRLESC

(F indicates fl.pt. and I indicates integer)

TI IV Number of
NAME NAM'E ARGUMENT RESULT ARGUMENTS DEFINITION

ABSF ABS F F 1 Absolute value.

XABSF IABS I I i Absolute value.

INTF AINT F F 1 Truncation to whole number.

XINTF INT F I 1 Convert fl.pt. no. to integer.

MODF AMOD F F 2 Arg.1(rood Arg.2).

)(MODF MOD I I 2 Arg.l(mod Arg.2).

MAXOF AMAXO I F _> 2 Chooses largest argument.

YAXIF AMAX1 F F > 2 Chooses largest argument.

X)AXOF MAXO I I > 2 Chooses largest argument.

K4AXlF YMXI F I > 2 Chooses largest argument.

MINOF AMINO I F > 2 Chooses smallest argument.

MINIF AMINI F F > 2 Chooses smallest argunment.

"(MINOF MINO I I _ 2 Chooses smallest argument.

)9-.NlF MINl F I 2 Chooses smallest argument.

FLOATF FLOAT I F 1 Convert integer to fl.pt.

XFIXF IFIX F I 1 Convert f2.pt. to integer.

SIGNF SIGN F F 2 Transftr sign of Arg.2 to Arg.1.

XSICNF 'ISTN I T 2 Transfer si,,rn of Arg.2 to Argi..

PTI 1fl' DIM F F 2 Arg.! - minimlum (Ar-g.l,Ar,1 .2).

XIDiMF IT)TM I 1 2 Arg.l - ininirriu (Arg.1,Ar:,.2)

S-QTF SORT F F 1 Square root.

111NF SIN F F 1 Sine (argument in radians)

COSF COS F F 1 Cosine (argulment in ra-Lans)

LOGF ALOG F F I Natural logarithm.

i'LXF EXP F F 1 Exponential.

ATANF ATAN F F 1 Arctanment (result in radians)

TANHF TANM{ F F 1 Hyperbol (! tan!ýent.

ALOGIO F F I Bas ten logarlthm.

ATAN, F F 2 Aretangent tf (Arg.1/'Ar'.2)

95 i

II IV Number of

NAME NAME ARGUMENT RESULT ARGUMENTS DEFINITION

Non-Standard functions allowed on BRLESC:

XLOCF F or I i 1 Stores the address of the Arg.

ATANl F F 2 Same as ATAN2.

ARCSINF ARCSIN F F 1 Arcsine.

ARCCOSF ARCCOS F F 1 Arcosine.

ARCTANF ARCTAN F F 1 Arctangent (same as ATANF).

96

APPENUIX B. THREE EXAMPLES OF FORTRAN PROGRAMS

(PROGRAM#INPUT DArAt AND OUTPUT ARE LISTED)

EXAMPLE I MULTIPLY TWO VECTORS A*B L.W. CAMPBELL

DIMENSION Al1O)tB(OlpC(1O)

READ 2,AtB

DO 3 1=1910

3 C(I)=A(I)*B(I)

PUNCH 49C

STOP

4 FORMAT(14HVECTOR PRODUCT/(5EI4.7))

ENO

END (THIS CAmD REQUIRED ONLY ON BRLESC.)

14.1 60.35 22.8 91.7 374.18

Ah.l 193.44 83.61 2.64R 9.8

4.21 8.23 15.9 7.77 9.1,

2. 3.0 8.1118 19.1 42.44

(JCI.25963 URLESC FORTRAN 2

SEXAMPLE I MULTIPLY TWO VECTORS AeB L.W. CAMPBELL

VECTOR PRODUCT

O.ý4161OE 02 0.4966805E 03 0.362520OE 03 0.712SO90E 03 O.3i96526E 05

O.9774000E 02 0.5803200E 03 0.6T82276E 03 0.5057680E 02 O.415912OF 03

ITT

* EXAMPLE 2 FIND SMALLEST NUMBER IN ARRAY Fe L.CAMPBELL

DIMENSION F12O)

READ 29F

SMALL-F1I)

DO 9 Ju2Z20

IFISMALL-F(J))g9,98

SSMALLnF(J)

Y CONTINUE

PUNCH 3,SMALL

STOP

3 FORMAT(IIHSMALLEST FaF13.6)

END

"* END

14.1 60.3S 22.8 91.7 374.18

36.2 193.44 83.61 2.648 9.8

4.21 8.23 15.9 7.77 88.1

2.7 3.,0 8.1118 19.1 42.44

OCT.2563 RRLESC FORTRAN 2

* EXAMPLE 2 FIND SMALLEST NUMBER IN ARRAY F, L.CAMPBELL

SMALLEST Fs 2.648000

* EXAMPLE 22 FROM BRL REPORT 1209 CODED IN FOatRAN-L.CAMPBELL
C USE BISECTION METHOD TO FIND ROOT OF F(X)zX**3-X-1 IN INTERVAL (1192)
11 FORMATiSX,1HX1OX4HF(X)//)
21 FORMAT(1P2E15.7)
3L FOKMAT(24HCONDITIONS NOT SATISFIED)

X=t.
K 1=2.
EPS=.OOOO1
ASSIGN I TO K
PUNCH IL

44, F=X*(X.X-i.)-l.
PUNCH21tXtF
60OTOK, (1 ,4971

I FO=F
IF (F)2, 5,15

15 XP=X
GOTO 3

2 XN=X
3 X=XL

ASSIGN 4 TO K
GOTO 44

4 FI=F
IHF F5945t45

45 XP=X
corO 6

5 XN=X
6 ASSIGN 7 TO K

IF(FO'F1)66,65,65
65 PUNCH 31
67 STOP
66 X=!XN+XP)/2.

GOTO 44
7 IF(ARSF(F)-EPS)679*1,971

71 IFIF)8t72,72
72 XP=X

GOTO 61ý
8 X(4- X

GOTO 66

EEND

flCT.25963 BRLESC FORTRAN 2

EXAMPLE 22 FROM BRI REPORT 1209 COOED IN FORTRAN-L.CAMPBELL

X FIX)

1.000OOCDOE 00 -1.0000000E 00
d.ocoonoE 00 5.OOOOOOOE 00
L.5OO0OOrnP 00 8,7500000E-01
1.2500000t 00 -2o968?S00E-01
1.37S000CE 00 2.Z*60938E-Ol
1.3125000E 00 -5*15136?2E-02
1.3'.37S00E 00 8*2611OS4E-02
1.3281150E 00 1.'.575958E-02
1.320312SE 00 -1.8710613f-02
1.3Z'2&4217 00 -2.1?794'4f-03
1.3261719E 00 6oiOflS296E-O3
1.32514513E 00 2e3l66S01E-03
1.32'4707OE 00 -4.6S94&S)E-OS
1.3249512F 00 9*94?9091E-04
1.3248291E 00 4..740O3862E-04
I.3247681E 00 Z.13?0?16E-04
1.3247375E 00 6.3SSZ43SE-OS
1.324.?223E 00 1.S*?7M5E-05
1.124?14?E 00 --.40SS141E-OS

Unclassified
Security Classification

DOCUMENT CONTROL DATA- R&D
(Security classliication of title, body of abstract and indexing mnmotetion must be entered when the overall report Is classlifed)

I OqRItINATIN G ACTIVITY (Corporate author) - 'O
U.S. A.L*W Ballistic Research Laboratories[Unclassified

Aberdeen Proving Ground, Maryland 12b GRouP

3, REPORT TITLE

BRLESC FORTRAN IV

4. DESCRIPTIVE NOTES (Type of report and Inclusive dEtee)

S AUTHOR(S) (Last name, first name. Initial)

Campbell, Lloyd W. and Beck, Glenn A.

6. REPORT DATE TOTAL. NO. OF PAGES NO. or maps

October 1966 108_ 9_
81s. CONTRACT OR GRANT NO. 9&. ORIGINATOR'S REPORT NUMBIR(S)

b. pRoJEcT No. RDT&E IPOI4501AI4B Report No. 1346

c 9b. OTH, a"sPORT NOMS (Any othenumb.ra that may be &@staed

d.

10. AVA ILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

II. SUPFLEMFNTARY NOTES 12. SPONSORING !ZLITARY ACTIVITY

U.S. ArrW Materiel Command
Washington, D.C.

13. ABSTRACT

FORTRAN is popular programming language that has been implemented on many computer
It is now available on Ballistic Research Laboratories' BRLESC computer. This
report describes the FORTRAN language in general and includes specific details
about its implementation on BRLESC.

,e ,, A ,, -nlassii-d

DD IJAN 64 14 3UIAClessfld
Secvity Cleasfficado

______Unclassified___

Security Chussification _______

K14. LINK A LINKS0 LINK C
KE OD ROLE WY ROLE WT ROLE WT

FDigital Computer

BELKC Computer
Compiler
FORTRAN

1. ORIGINATING ACTIVITY: Enter the name and address 10. AVAILABILITY/LIMITATION NOTICE&: Enter any lrn-

of the contractor, subcontractor, grantee, Department of De- itations on further dissemination of the report, other than those
fense activity or other organization (corporate auothor,) iSsuing imposed by security classification, using standard statements
the report. such as:

2&. REPORT SECUIJITY CLASSIFICATION: E~nter the over- (1) "Qualified requesters may obtain copies of this
all security classification of the report. Indicate whetherreotfm D.
"Restricted Data" is included& Marking is to be in accord-reotfmDD.
aon with appropriate security regulations. (2) "Foreign announcement andl dissemination of this

2b. GROUP: Automatic downgrading is specified in DoD Di- report by DDC is not authotized."
rective S20O. 10 and Armed Forces Industrial Manual. Enter (3) 11U. S. Government agencies may obtain copies of
the group number. Also, when applicable, show that optional this report directly from DDC. Other qualified DDC
markings have been used for Group 3 and Group 4 as author. users shall request through
iged.

3. REPORT TITLL_ Enter the complete report title in all (4) "tU.3 S, military agencies may obtain copies of this
capital letters. Titles in all cases should be unclassified, report directly from DDC. Other qualified users
If a meaningful title cannot be selected without classifica-shlreut roh
tion, show title classification in all capitalst in parenthesissalreutthoh
immediately following the title. ______________________

4. DESCRIPTIVE NOTES: If appropriate, enter the type of (5) "All distribution of this report is controlled. Qual-
report. e.g.. interim, progress, summary, annual, or final. ified DDC users shoill request through
Give the inclusive dates when a specific reporting period is
covered.

If the report has been furnished to the Office of Technical
5. AUTHOR(S) Enter the name(s) of author(s) as shown on Services, Department of Commerce. for sale to the public, indi-
or in the report. Enter last name. first name, middle Initial. cate this fact and enter the price, if known.
If military, show ranki and branch of service. The name of
the principoi author is an absolute minimum requirement. I1I. SUPPLEMENTARY NOTE& Use for addition&: explana-

6. REPORT DATE-~ Enter the date of the report as day, tory notiis.
month, year. or month. year. If more than one date appears 12. SPONSORING MILITARY ACTIVITY: Enter the name of
on the report, use date of publication, the despartmental project office or laboratory sponsoring epa,-
7a. TOTAL NUMBER OF PAGE&- The total page count in# for) the research and development. Include address.
should follow normal pagination procedures. La., enter the 13. A11STRACT: Enter an aibstraict ugiving a brief and factual
number of pagtes containing inforciationm, summary of the dtwumo.nt indicative of the rep~ort. even thougth

76. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i NUMob OFRFRECS ntrte oe ume f*~ appearf elsewhere in the body of the technical re.
76. UM~R OFREFRENC& Eter he otalnumer o rort. If additional space i-4 rrquired. a continuation sheret

references cited in the report. %hall he attached.

Ga. CONTRACT OR GRANT NUMBER: If appropriate, enter It is highly d. .,tohle that the abstract cof classified tv-
the applicablet number of the contract or grant undtr which prts Ie .,rFsuid ach paragraph of the abstract %halt
the report was written. irod with an indication of the mIlitary security classification

6b. 1k. & 11d. PROJECT NUMSER. Enter the appropriite of 0'w "'formation in the 195rarWpsh. reprvasented as (TS). (S),
prilitary doepa ortmn Identification, such as project number, (C), ar (u).
subproject number, system numbers, task number, etc. Thvre is not limitation on the length of the otabttrat. How-

go. ORIGINATOR'S REPORT WUMBER(S): Enter the offi- ever, the suggested vlengh is ftrnm 150 to 225 words.
cial report number by which the document will be Identified 14. KEY WRODS: Key words are technically meaningful terms
and controlled by the originat ing activity. This number must or short phrasoot th-e! ttaraclorilte a report arnd ma-/ he used as
be unique to 1'tis report. indox gntries lot cataloging the report. Key words mnust be

96. orWER REPORT NUMBER(S): If the report has been swleit44in Iso ht no viecuvat ilaoisificst ion is required. lden.
assigned any other report numbers (atother by the origlinator 'ter%. suh a. etquir'-ent model destignation, trade, name. -tili-

o b th spnso), lsoentr tis ~u~er~ 1.tar%9 project Cnod namfe. gre4.tarphiC locatioln. maok tW. Used as
t bythe ~nso). lto nterthi rume~s' ev work,% but will tbe fotll.wed ov an iodication of technic~al

- ontext. The atinigflmet o.f links. rules, and wripthfiL is

Unclassifie

