REPORT NO. 1346

BRLESC FORTRAN 1V

by
Lieyd W. Caimnpbell
Glenn A. Beck

P‘? F’\ f"w

October 1956 f ﬁﬁ

[Q
AR 20 1967 1]
L“..JLJL ,_, o uJ

Distribution of this document is unlimited.

&\\ﬁd@h{]lﬁ’ 1B LUJuP \1

U. S. ARMY MATERIEL COMMAND

BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as
an official Department of the Army position, unless
80 designated by other authorized dociments.

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1346

OCTOBER 1966

Distribution of this document is unlimited.

BRLESC FORTRAN IV

Lloyd W. Campbell
Glenn A. Beck

Computing laboratory

RDT & E Project No. 1PO14L501A14B

ABERDEEN PROVING GROUN D, MARYLAND

BALLISTIC RESEARCH LABORATORTIES

REPORT NO. 1346

LWCampbell/GBeck/saf
Aberdeen Proving Ground, Md.
October 1966

BRLESC FORTRAN IV

ABSTRACT

FORTRAN is a popular programning language that has been imple-
mented on many computers. It is now available on Ballistic Research
Laboratories' BERLESC computer. This report describes the FORTRAN
language in general and includes specific details about its imple-
mentation on BRLESC.

I,
IT1.
IIT.
Iv.

VI,

VII.

VIII.

TABLE OF CONTENTS

ABSTRACT +.vvvens et e e et eaaas
INTRODUCTION + v v evvsevnsennsennsennesnnesnneenncnnnsnns
THE CHARACTER SET ..vvveevvneeenns et re e eraeaa
SYMBOLIC NAMES AND CONSTANTS «.evveeuneennoren
ARITHMETIC EXPRESSIONS e e e et it
ARLTHMETIC FORMULAS + .+t vvvosnnnennnsennasosnocennonns
LOGICAL EXPRESSIONS +vvevenvecenneernnees e
LOGICAL ASSIGNMENT STATEMENTS e e
LOGICAL MASKING STATEMENTS +..vvvervvnnernnens Ceeeen
SPECIFICATION STATEMENTS e e eeraeeaas
DIMENSION +eveveneenncnnsenneen e Cereeenn
COMMON «revvnervnnen. et et teeaaaees ceees
EQUIVALENCE e e e
TYPE STATEMENTS ++vveervnenns e e
EXTERNAL STATEMENTS +.evvevneonns ceeeeas e .
FREQUENCY +vvevvnen. ceeenn e rre e, e
CONTROL STATEMENTS «.vvueeevneennen e e .

GOTO e st e e eI

GOTO (Computed) «ecvvennns Chieseereans ceeran ces
ASSIGN cveereevanasannss cive e coraaaarans cens
GOTO (ASSIigNed) teverensnvonsesnosienrosassennnennns
IF (Arithmetic) vevieerenienosnrnsennsesnananes .

IF (Logical) «vvvvunn . Cietecaetanaens Ceveens .

IF (Two Branch) «.vivviiennens Cerereeae e cees
0 testertassarenn . .

CONTINL’E L O I I I N I R I e B R BN B I RO A L R LI Y S5 4L 5880l BGa

Page

3

9
10
11
13
15
16
17
18
18
19
19
21
22
2k
2k
25
25
25
25
25
26
26
26
26
27
28
28
28

TABLE OF CONTENTS (Cont'd)
Page

IF (Sense Switch) and CALL SSWICH ..cvvivveovnsnecee 29
SENSE LIGHT and CALL SLITE «.eveeeveccereccnsasonass 29
1F (Sense Light) and CALL SLITET ¢.cevevevsccscesass 30
TF ACCUMULATOR OVERFLOW AND CALL OVERFL .e.ovvveeees 30

IF QUOTIENT OVERFIOW ...cvevecennnnnsecens teesereses 31

IF DIVIDE CHECK and CALL DVCHK cresecscscsaanan 31

IX. THE FOFMAT STATEMENT ...cc0cvveeveee G 1 1

X. DESCRIPTION OF INPUT-OUTPUT LISTS «eveeeeccevccvonns .. 38

XI. INPUT-OUTPUT STATEMENTS +.oeveveccesacns Chesessenesaaes Lo

READ ¢vivvnvsons Ceereesaans Ceteericaicectnasanenanne b1

PUNCH tevenenncasscnnnnass Cetetieiierearestrtiennans 41

PRINT cecvvennnnnnns searacens tereeceenaertetennanone b1

READ INPUT TAPE ..cvvvervcncsansoceascanssans cetesans L2

WRITE OUTPUT TAPE .ocovrvcecccncnesnnonas sescssecsnnns 42

READ TAPE tveeerennencacscnnsans senesssssensecans oo 43

WRITE TAPE +eeeeeroacnnososnssssssocsosasannnss ceees U3

END FILE i ivveenroncnensncsnnoancnnas N 4y

BACKSPACE ... ceierreteerssacnsoncsoscsassassnccnnens Lk

REWIND «ieoececannnnnns Ceseiieiatrrercoone Ceteesiane Ll

DEAD DRUM .ccveenene tecresesssanas trersesssananaan eve W4

WRITE DRUM .t vt inninnssatonnonecescssssassansannne Ly

ADDITIONAL NOTES ON INPUT-OUTPUT STATZMENTS bl
ADDITIONAL NOTES ON USAGE OF MACNETIC TAPE ON

BRIESC +ceevennnnrnn ittt etateanateat et aannn hs

XIX. DATA STATEMENT .. ecevonrocncnscscaansassnsnans Ceesens .. LB

XIIXI. SUBPROGRAM STATEMENTS Ceeiaeas Cherecaeranans «ve S0

SUBROUTINE and ADJUSTABLE DIMENSIONS Cetieas 50

FUNCTION .vvevvrvennnnnes Cerietetieana cetiiieians e 51

RETURN .. .,...c... Ceiseieisiatentieietanan tatsernes 52

EMD .iviiirinnincnnnans cetrreiiieraranans cetseanen oo 52

ENTRY «oviiininnnnninnnians Ceetetieaiietrienaenna ee. 53

BLOCK DATA .ccivviinnnnnnnnns cresencisansas Ceneenenn Sk

Y AL I 1 s £ £ S Y 3. Y 4 ey AR | T § TR AR iy

o S

XIv.

XVII.
XVIII.

XXVIII.

XXIX.

TABLE OF CONTENTS (Cont'd)

PREDEFINED FUNCTIONS AND ARITEMETIC STATEMENT
FUN@IONS.'..lll.Oll.l....l.........!l.."..l..l.‘....

PREDmNED SIJBROWINESOQ...lla.lIQlllll..l...l'o!l....

FORTRAN PROGRAM CARDS......

BRLESC CONTROL CARDS AND DICTIONARY PRINTING..

R I I N B BRI B NN Y N B B NE I A B BB I)

BRIESC ASSMBLY ORDERS.........-.-.c-c---o..oooaoo.o..

MAXTMUM TIME AND OUTPUT SPECIFICATIONS..

STATEMENT NUMBIR 98765.....
CHAIN JOBS....c0nevenn

CIC RN U R AR IR I O I B B R B NE BN IR BN 2R LR B B AN]

BRLESC COMPILER ERROR PRINTS.....cec0eeees cevresarseens

BRLESC RUN ERROR PRINTS....

PUNNING FORTRAN “ROGRAMS ON

PROGRAMS TO BRLESC FORTRAN.

ACKNOWLEDGEMENTS.....cevnns
REFERENCES....... ceenenan .o

BRLESC FORTRAN

LI IR B R N SR B R B B B B S S A I I I W) e

OPERATION OF THE BRLESC FORTRAN COMPILER.....
SPEED OF BRLESC FORTRAN COMPILING....vee0vveescassnses
MAJOR DIFFERENCES BETWEEN FORAST AND FORTRAN..........
CHECKLIST FOR CONVERTING OTHER COMPUTER FCORTRAN

..... LR I I R I N S B R R A I A B I A I

SUMMARY OF BRLESC FORTRAN IV STATEMENTS............

* e e

4 8 5 8 %000 E 0 EEOLOLEPEENL L

ooooo C e s e s N e Rt ROt EEN NS

APPENDIX A: LIST OF PREDEFINED FUNCTIONS FOR

e 88 EIEEIEEEE

APPENDIX B: THREE EXAMPLES OF FORTRAN PROGRAMS.......

DISTRIBUTION LIST .covevcecennn

@8 09 8 00 GO OEQESs LSRN

Page

55
58

59
61
66
69
T1
T2
73
76
78
79
9
80

82
86
92
93

95
97
98

I. INTRODUCTION

FORTRAN is a programming language that is widely used on a variety
of computers and carn be used on Ballistic Research Laboratories' BRLESC
computer. FORTRAN was designed primarily for programming of scilentific
problems and the evaluation of arithmetic formulas. It is basically
similar to the FORAST programning language *uat is currently used on
BRLESC but many of the details are different.

This manual is intended primarily for the programmars that are
familisr with FORAST and BRLESC; however, it includes a general
description of the FORTRAN language ard should prove helpful to anyone
who is interested in writing or reading FORTRAN programs. Additional
details and gcereral information can be obtained from other FORTRAN
marnuals and publications. The FORTRAN IV manusls [fur the TO90/7074
are suggested for those interested in using BRLESC FORTRAN cjince BRLESC
FORTRAN is more compatible with the T090/7094 version of FORTRAK <hen
with some versions that ure used on other computers. Some reader- may
be surprised to learn that FORTRAN is not the same for all computers.
Although the general rules are usually the same, differences in details
do exist and some of these diflerences are quite subtlc. It is rela-
tively easy to write FORTRAN programs which when executed on different
computers will yield different rasults, These differences may be due
to differences lun compll-r. or Jdifferences in the structures of tre
computerc. However, most FORTRAN programs require only mincr modifi-
cations to allow them to run on any given cauputer. The modifications
usually requirs much less effort ani time than would be required to

re-program the problem Iln another programming language.

There have been two praminent vercions of the FORTRAN language.
They are roforrad to as FORTRAN II amnd FORTRANI IV. FORTRAN 1V does nut
inalude everything that was in FORTRAN 1I. However, the BRLESC FORTRAN IV
zompller har retained escentislly all of FORTRAN II so that it wiil
accept statemcnts that are iefined in cither of these two versions of
the FORTRAN larn,uuge.

9

Pap—

enamimhrais s AR

SRy

R X R e e I i AL

C o e AL 8 . R b gy

II. THE CHARACTER SET

FORTRAN Allows the use of the twenty-six capital letters of the
alphabet, the decimal digits O to 9 and the special symbols + - () .

* /:=$-.

The cerd code for these characters is the same as normally used

for ZXIESC and other computers except for the following: (These ex-
ceptions will be removed in Janusry 1967.)

* FORTRAN BERL

(

%

Standard FORTRAN left parenthesis uses 0-4-8 punches
that represents % at BRL. Since FORTRAN does not
allow the 4-8 code (BRL left parenthesis) in programs,
BRLESC FORTRAN allows either code to mean left
perenthesis. (After January 1967, BRL will use the
standard 0-4-8 punches for left parenthesis and the
4.8 code will not be allowed.)

Standard FORTRAN ﬁses card codes for the signs that
are just the opposite of present ERL uéége (+ is x,
- is y at BRL). (BRL will change to standard
FORTRAN signs in January 1957.) A "CHANGE + AND -"
control card may be inserted in a FORTRAN program to
cause BRLESC to reverse these symbols. They are

initially set for BRL usage.

The 709/7090 FORTRAN and BRLESC FORTRAN also allow a
4.8 card code to be & minus sign on decimal input.

BRL signs are used for decimal input unless the SETMSI
subroutine is used to'change signs. A "CHANGE + AND-"

control card does not change signs used for input data.

This card code X-3-8 is allowed only in hollerith text
(H fields) in FORMAT statcments. (After January 1967,
the $ character wlll be used as an end of statement
mafk, instead of >, and will alsc replace the %
character on HRLESC assembly cards, both in column

one and between orders.)

10

s i st Wcn P et e e T LT ST

N

ITI. SYMBOLIC NAMES AND CONSTANTS

General Names

In FORTRAN, all symbolic names (other than statement names)
must begin with a letter and, for variables, the first letter
usually determines the type of number it represents. Names of
arithmetic variables that begin with I, J, K, L, M or N represent
integer numbers unless tuey are declared to be floating point in
a REAL statement. Names beginning with other letters represent
floating point rumbers unless they are declared to be integers in

an INTEGER statement. Names of 1ogical variables may begin with

any letter and must be declared in a LOGICAL statement.

The length of symbolic names is restricted to six characters

except subroutine names msy have a terminal F as a seventh character.

If names longer than six characters are used on BRLESC, the first
five characters and the last non-F character will be used as the
name. Arithmetic statement function names must not have more than

seven characters.

Statement Numbers

Locations of statements (cols. 1-5 of FORTRAN statement cards)
must be all decimal digits and thus look like integer numbers but
are reglly symbolic locations of statements. Leading zeros and
blank columns are ignored. (Statement numbers must be less than
32768 for T090/TO94 but not BRLESC.) They do not affect the
sequence of execution of the statements. On BRLESC, statement
numbers may be written in place of a variable name by writing an S

after the statement number.
Constants

1. Integer constants are written without a cecimal point. An
integer constant on BRLESC may consist of 1 to 17 decimal digits.
Some computers restrict integer constants to as few as four decimal
dé%its. The values of integer variables on BRLESC must be less than

2 in absolute value except the divisor and quotient of integer

divide operations must both be less than 23h in absolute value.

11

e SR s e N R N

' 2. Floating point constants must be written with a decimal
point. They may consist of a decimal point with 1 to 17 decimal
digits (on ERLESC) and may be followed by an E and a decimal
exponent. (BRLESC also allows a D instead of E to indicate an
exponent. The D indicates double precision constants on most

other computers.) The BRLESC range of floating point constants

-15
(and variables) is between 16*%° ana 107 approximately in
absolute value with zero also allowed. Most computers have a

more restricted range of numbers.
Examples: 1. , 4.2l , .2, 51.6 E2 , .1E-3 , 3.1 D-1

3. Alphanumeric constants cf six or less characters are
allowed on BRILESC. They nust be preceded by nH where n is the
number of characters in the constant. Blanks are not ignored

in the n columns after the H.

k., The logical constants allowed in FORTRAN IV are ".TRUE."
and ".FALSE.", Note the use of a period at both the beginning and

end of these constants.

5. Octal constants are written as twelve octal digits. If
less than twelve digits are written, zeros are added by the computer
to the left of the digits to make a total of twelve. Octal con-
stants are only allowed on FORTRAN II type boolean cards with a B
in column one and in DATA statements. In DATA statements only, the
octal digits must be preceded by the letter O.

Blocks of storage are referred to as arrays in FORTRAN and are
defined in DIMENSION,COMMON or TYPE statements. Subscripts ure
enclosed in parentheses in FORTRAN, e.g.»A(3) or B(I,J), and one,
two, or three dimensional arreys ™ay be used. Any subscript may
be variable and "indexing", as done in FORAST, is not allowed.

12

e

Subscription of variables is done by substitution rather than
addition and the lower bound of sll subscripts is one. Subscript
arithmetic is allowed; BRLESC FORTRAN allows any integer a;ith-
metic expression that does not itself involve any subscripted
variables, however, the most general expression allowed in
standard FORIRAN is C * V + C' where C and C' are integer con-

stants and V is an integer variable.

Symmetric arrays are not allowed in FORTRAN and there is no

provision for "interweaving" arrays.

Absolute Addresses

Absolute decimal or sexadecimal addresses are allowed only in

BRLESC assembly langusge instructions.

IV. ARITHMETIC EXPRESSIONS

The following symbols denote the following operations:

+ addition

- subtraction

¥ multiplication
division

** exponentiatiocn

The use of functions (subroutines with only one result) is also
allowed by writing the name of the function in front of parentheses
that enclose the arguments. (FORTRAN allows functions tc have more
than one argument and commas are used to separéte the arguments.)

The arguments may be arithmetic expressions.

The precedence of operations when not governed by the use of
parentheses is

functions (subroutines)
-

and /

+ and -

where the operations higher on the list will be performed before those

15

that afe lower on the 1list. Successive + and - operations or
successive * and / operations will be performed from the left to the
right. Parentheses may always be used to cause the operations to be
done in any desired sequence. Successive exponentiations must always
have parentheses to show the desired grouping.

The major difference between FORAST and FORTRAN arithmetic
expressions 1s the grouping of successive multiplications and
divisions. FORAST groups them from the right and FORTRAN groups them
from the left. Thus in the expression (A * B/C * D), D is in the
denominator for FORAST and is part of the numerator for FORTRAN.

Implied multiplication should not be used in FORTRAN (altnough
some versions do allow it and BRLESC FORTRAN allows it after a right
parenthesis).

Fixed point fractional arithmetic is not allowed in FORTRAN. All
arithmetic within an expression must be one mode (integer or fl.pt.)

except for integer subscripts and integer powers of exponentiation
in floating point expressions. The first letter of the names and

the use of the decimal point in numbers determines the mode rather
than preceding the expression with a declaration of the mode as is
done in FORAST.

Parentheses must not be omitted at the ends of an expression.
The number of left parentheses must be the same as the number of

right parentheses in each expression.

Two operations must not appear adjacent to each other in

formulas; €.g.,/ - or ¥ -,

Any operation cn integers which does nct yield an exact integer
result is truncated except negative integer results of ‘ivision on
BRLESC FORTRAN will give the greatest integer that does not exceed
the algebraic exact result. Thus -4.2 will give -5. This is prob-
ably different from resulte on the TO94 or other absolute value

machines.

1k

- — e i . e <

Ffom FORTRAN II on the 7090/709&, boolean expressions are
allowed on cards with a B in column one. The symbols +,% , -
denote the logical operations of or (inclusive), and, and gomple-
ment respectively. BERLESC FORTRAN performs these operations only
on the rightmost 36 bits of a word so that it is compatible with
the 36 bit word length of the T090/TO94. The leading 32 bits of
a BRLESC word will be zeros after a logical operation. Note that
FORTRAN IV has provided a new way of writing these logical operations

as explained in Section VI below.

Double Precision arithmetic expressions are allowed (a D in
col. 1) but are done in BRLESC single precision which is as
accurate as T090/T094 double precision.

Complex arithmetic expressions are not presently allowed in
BRLESC FORTRAN. An T in column one will cause an error print.

V. ARITHMETIC FORMULAS

The general form of FORTRAN arithmetic formulas (arithmetic
statements) is

v = &ae

where v is a name of an arithmetic variable (it may be subscripted)
and ae 1is an arithmetic expression. An example would be

X(J +1) = A(J)y*2 - v/(T + 3.)

The arithmetic expression is evaluated and the result is
stored as the new value of the variable whose name is on the left

of the = symbol.

No arithmetic may be performed on the left of the = symbol
except for subscript arithmetic. Only ore = symbol is alloweada and
hence only one variable will have its value changed by an arithmetic
formula. If the type of this variable is different than the type

15

|f

o o

PRy

b terimat

of the expression on the right of the = symbol, the value of the
expression is automatically converted to agree with the type of the
variable cn the left of the = symbol before it is stored.

The arithmetic expression may be just & name of a variable or
constant, e.g.,X = A.

VI. LOGICAL EXPRESSIONS

FORTRAN IV permits the use of logical variables and expressions
that assume either the value .TRUE. or the value ,FALSE.. The
following three logical operations are defined using a and b to
represent logical variables or logical expressions:

.NOT.a is .TRUE. when s is .FALSE, and is .FALSE. when
a is .TRUE.

a.AND.b is .TRUE. when both a and b are .TRUE. and is
LFALSE. when either a or b or both are .FALSE,

8.0R.b is .TRUE. when either a or b or both are .TRUE,
and is .FALSE. only when both a and b are .FALSE.

Two adjacent logical operations may be used only when the
second one is .NOT.. Thus .AND..NOT. is legal but .NOT..AND. is
illegal.

A relational expression that consists of a comparison of two
arithmetic variables or expressions may be used to form logical
expressions. FORTRAN IV uses the following relational operators:
(x and y represent arithmetic variables or arithmetic expressions.)

x.EQ.y is .TRUE. only if x = y.
x.NE.y 15 .TRUE. oniy if x £ y.
x.GT.y ie .TRUE. only if x > y.
x.GE.y is .TRUE. only if x 2 y.
x.IT.y is .TRUE. only if x < y.

x.LE.y is .TRUE. only if x < vy.

16

Whenever the reletional expression is not .TRUE., it is
FALSE., The arithmetic quantities x and y must be of the same
type in any one relation, e.g..if I is integer in I.LT.J, then

J must also be integer.

On BRLESC, the operands for .EQ. and .NE., could be logical

variables but this is not true for most other coumputers.

It is illegal to use one arithmetic quantity as the operand

for more than one relation. Hence the mathematical expression
X <y <z must be written as X.ILT.Y.AND.Y.IT.Z and not as
X.LT.Y.LT.Z.

A logical expression is any legal combination of logical
operaticns and relational expressions. Parentheses may be used to
obtein any desired grouping of operations. In the absence of

parentheses, the operations are performed in the following order:

Arithmetic operations; Functions
*%
* and /
+ and -
Relations; .LT..LE..EQ..NE..GT..GE.
Logical operations; .NOT.
.AND.
.CR.

Note that all the relations have equal precedence which means
that they will normally be evaluated from left to right. Note also
that .NOT. has a higher precedence than .AND. and .OR. and hence
will be performed before the other two logical operations.

Logical Assignment Statements:

Logical expressions may be used in logical IF statements
(see Section VIII, item) and in logical assignment statements.
Logical assignment statements have the general form

a = le

17 1

i R el TR RSy

vhere a is the name of a logical variable and le is a logical
expression. The value stored in a will be .TRUE. or .FALSE, as
determined by the evaluation of the logical expression le.

Examples of logical assignment statements:

(1,J,X and ¥ represent arithmetic variables and A,B and C represent
logical variables.)

A = ,FALSE.

A.AND. .NOT.B

.NOT. (A.OR.B)

I.1E.3
I1.EQ.J.AND.(B.0OR.X.LE.Y)
3.1416.CT.X+Y.OR.T*J,GT. 1000

Q w > W Q
]

Logical Masking Statements:

To improve compatibility with CDC FORTRAN, BRLESC allows
logical masking statements. The operations .NOT,,AND., and .OR.
nay be used with arithmetic operands to accomplish bil-by-bit
logical operations using the last 36 bits of BRLESC words.

An example of a logical masking statement would be
T = X.AND..NOT.Y

where X and Y are arithmetic variables (real or integer) and T
mey be any type of variable. This example will do s bit-by-bit
product of X and the complzment of Y and will store this result

in T without any conversion.

VII. CSPECIFICATION STATEMENTS

This group of statements (DIMENSION, COMMON, EQUIVALENCE, TYPE,
EXTERNAL and FREQUENCY) provides information to the compiler and may
be used by the programmer to control the storage agsignment of some
or all of the variables. These statem. ts do not cause any machine
code to be generated for running the program; they only affect the
way it is compiled.

19

DIMENSION a(1i), b(11,12), c(i3,1k,15),..., where a,b,c

are array names and the i's are integer constants.

This statement is used to declare the names and max. .um sizes
of arrays. The maximum subscripts are enclosed in parentheses and
they must be decimal integer constants except integer dummy vari-
ables may be used in FORTRAN IV subprograms if the array being
defined is also a dummy variable. (See SUBROUTINE statement
description.) The minimum subscript is always taken to be one.

One, two, or three dimensional arrays may be defined in any sequence.

An array must be declared before its name is used in any other
statement. FORTRAN IV allows arrays to be declared in DIMENSION,
COMMON or TYPE statements with only one de~laration allowed for the

same array.
Example: DIMELSION T(41),X(10),E(4,4,4),A(3,T)

COMMON a,b,c,d,e , where a,b,c,d,e are the names of
variables of any type.

This statement allows the programmer to specify that certain
variables and arrays are the same in more than one program or sub-
program (subroutine or function). The storage assigned to those
items irn the COMMON statement in one subprogram is the same storage
assigned to the items in the COMMON statements in all of the other
subprograms (and also the main program)., Thus it also has an
equivalence effect between subprograms. All storsge used in each
subprogram is different than the storage in any other subprogram
except for the items that are listed in COMMON statemenats.

Within each subprogram, all COMMON variables are assigned
consecutivealy in the sequence in which they appeur. The starting
point for aull the subprograms within each total program is tne same.
Proper space is left for arrays.

COMMON statements are used to aveid listing many arguments
when using a subprogram. By forcing the main program and sub-
programs tc use the same storage “or some (and possibly all) of the

variables, the need for specifying and movinc variables {s removed.

19

ER R T Gt g e M KT ST S EAPRANIIRE TR g et b 4 T M ant | e -

If any COMMON variable also appears in an EQUIVALENCE
statement, the COMMON assigning has priority and is done first
in BRLESC FORTRAN. This is different from IOQQ[IQ& FORTRAN II
where EQUIVALENCE variables are assigned first and will change
the sequence of storage assigned to COMMON variables. BRLESC
FORTRAN handles the COMMON-EQUIVALENCE interaction as specified
for FORTRAN IV.

FORTRAN IV allows dimension information to be specified in
COMMON statements. However any one array must not be dimensioned
more than once in the same program or subprogram, i.e.,if an array
name in a COMMON statement contains dimension information, it must
not also be dimensioned in a DIMENSION or TYPE statement.

FORTRAN IV allows labeled COMMON blocks. A group of names
may be preceded by a siash, a label name and another slash to give
a name (label) to s section of the COMMON storage area. By using
labeled COMMON, it is no ionger necessary to think of COMMON as
one big block., Whenever the same label is used in different sub-
programs, the corresponding meﬁbers of the two labeled blocks will
be assigned the same storage positions regardless of their relative
position within their respective COMMON statements. The following
example will illustrate the meaning of labeled COMMON. if the
following COMMON statements each appear in a different subprogranm
within the same complete progranm,

COMMON A,X/LA/B,I,W/AA/P,M,N

COMMON A,Y/AA/P,ML,N1/LA/E,J,W//2

then the nhames A,P and W refer to the same quantity in both of the
subprograms. The names X,B,I,M and N within the first subprogram
refer to the same quantities respectively as the names Y,k,J Ml
and N1 in the second subprogram. In the second subprogram, the
blank COMMON consists of A,Y and Z because tvo consecutive slashes

20

Frona

cause the following quantities to be added to the blank COMMON
block. Blank COMMON blocks dc not have to be the same length in
each subprogram. However labeled COMMON blocks of the same label
must be the same length whenever they are used in different sub-
programs within the same complete program. (Length is defined as
the amount of memory space used.) Label names may be any legal
FORTRAN name except the names of subroutines and functions may not
be used. It is permissible to use the same name for a label and
a variable within the same subprogram.

A subprogram may have more than one COMMON statement. Addition-
al COMMON statements simply extend the list of COMMON variables. The
use of the same label again within the same subprogram simply extend$
the 1list of variables in that labeled block. Thus the two consecu-
tive statements

COMMON A,B,C/T/F,G
COMMON E/T/R,S//¥
is the same as the single statement
COMMON A,B,C,E,V/T/F,G,R,S

On BRLESC, the statements COMMON(USE MAIN) c: COMMON(USE
PREVIOUS) may be used instead of repeating long COMMON statements
in a subprogram when all of the COMMON variables are identical with
the main program or the previcus subprogran.

EQUIVALENCE (a,b,c,...),(d.e,f,...), vhere u,b,c,d,e,f
are names of any type of variable,

This statement causes different names to be assigned to the
same memory space. (It performs the sume function as SYN does in
FORAST.) All tha names within a set of parentheses are made
equivalent. Increments may be used if desired by enclousing them in

21

P 0y
B

[

T R T T O

e I

S e

farenﬁheaes immediately after the name. (No increment is the

same as an increment of one.) Increments on array names may be

ueiﬁher a single integer constant or FORTRAN IV allows the proper

number of integer constant subscripts to be used.

‘Whenever arrays are partially or completely overlapped, space
is always reserved for all of the arrays involved so that there is
no unexpectel overliapping of storage. However, EQUIVALENCE will
nnot re-arrange COMMON storage; so equivalencing a larger array with

a member of COMMON may cause additional overlapping of storage space.

It is illegal to use EQUIVALENCE to try to cause any impossible
arrangement of storage. It cannot be used to attempt to cause non-
consecutive spaces to be assigned to elements of an array, to
extend the beginning of the COMMON storage area or to equivalence
two variables that are both in COMMON. It is also illegal for
names of dummy variables to appear in an EQUIVAL®NCE statement.

On BRLIESC, it is illegal to equivalence anything to itseif,
either directly or indirectly. :

On BRLESC, any EQUIVALENCE statement that contains the names
of arrays and variables that are in COMMON statements must appear
after the DIMENSION and COMMON statements.

Frample: EQUIVALENCE (A,B),(F(2,1),C,H(1))

TYPE STATEMENTS

FORTRAN IV allows TYPE statements that declare specified
variable names to represent variables of a speéified type. If a
name does not appear in a TYPE statemeat, then its first letter
determines hether it represents an integer or a real (floating
point) number. However, a TYPE sta:ccment near the beginning of a

program may be used to overide the automat_c type assignment.

r

BRLESC allows the following TYPE statementcs:

INTEGER a,b,c,...

REAL a,b,c,...

DOUBLE PRECISION a,b,c,....
LOGICAL a,b,z,...

where a,b,c,... represents a list of variable and function names.
On BRLESC, DOUBLE PRECISION is used the same as REAL since double
precision on most other computers is the same as BRLESC's single

precision.

Some computers also allow a COMPLEX statement but this causes

an error print on BRIESC because complex aritimetic is not allowed.

Variable array names in TYPE statements may also contain
dimension information. However the same variable must not also be
dimensioned elsewhere, i.e. ,it must not also appear in a DIMENSION

statement or be dimensioned in a COMMON statement.

The names of all logical variables must be declared in a
LOGICAL statement as there is no other method of distinguishing

them from other wvariables.

The TYPE statements must precede any executable statement or
DATA statement that uses any variable or function mentioned in a
TYPE statement. Note that these TYPE statements are non-executable;
they cannot be used between executable statements to cause any

run-time data conversion.

BRLESC FORTRAN IV allows any of these type statements to be
preceded with the word TYPE because CDC PORTRAN allows this, It is
for this reason that the names TYPET, TYPER, TYPED, TYPEL and TYPEC
nust not be used as names of variables at the beginning of any
statement. (CDC and BRLIESC do not use the word PRECISION whern
DOUBLE is preceded by TYPE,)

23

.
{
o
.
3
|
i
i

Examples of some TYPE statements:

REAL MASS, N2,14(5,6),X
INTEGER A,F,I(15)

LOGICAL LV,T,WAY,LOW(18),NOW
TYPE REAL M1,M2

EXTERNAL STATEMENT

FORTRAN IV allows this statement to be used to specify the
names of subroutines and flunctions that are used as arguments for
other subroutines or functions. It serves the s 1e purpose as
the card with F in column one did in some FORTRAN II compilers.

The general form of the statement is
EXTERNAL a,b,c,...
where a,b,c,... represents & list of function and subroutine names.

For BNLESC, any arithmetic statement furiction names used as

arguments must also appear in an EXTERNAL statement.

If the name of a function appears in both a TYPE statement
and an EXTERNAL statement, the TYPE statement must precede the
EXTERNAL statement.

Example:
EXTERNAL SIN,COS,FUN

FREQUENCY

This statement is ignored by BRLESC FORTRAN. Its purpose in
7090/709h FORTRAN is to provide information that helps the compiler

to optimize the program.

2k

VIII. CONTROL STATEMENTS

This group of statements provides for controlling the
sequence in which statements are executed in the running program.
Unconditional transfer of control (sometimes called branching or f
jumping) is provided for by several types of GOTO statements and
conditional transfer of control is provided by several types of :
IF statements. A DO statement allows definition of a "loop" and
a CALL statement causes transfer of control to a subroutine with
a return to the next statement. There are two statements (STOP

and PAUSE) that cause the program to stop running.

1. GOTO s where s is a statement number,
This statement causes the statement numbered s to be done
next.
Example: GOTO 22

2. GOTO (sl,s2,s3,...),1 where sl,s2,s3 are statement numbers

and 1 1s a nonsubscripted integer variable.

This is referred to as a "computed GOTO" and the statement
done next depends on the value of i, If i1 =1, sl is done next;

if 1 = 2, s2 is done next; etc.
Example: GOTO(%4,19,462),K

3. ASSIGN s TO i where s is a statement number and i is a

nonsubscripted integer variable.

This statement causes the address of the statement
numbered s to be put into the integer variable i and this type of
statement is to be executed before the "assigned GOTO" statement

(as explained in the next paragraph) is executed.
Example: ASSIGN 64 to M

4, GOTO i, (sl,s2,s3,...) where 1 is a nonsubscripted integer

variable and sl,s2,s3, are statement numbers.

This statement transfers control to the statement that has
the number that was last assigned to i by means of an ASbiGN state-

ment. The (sl,s2,s3...) enumeration in this statement is not really

25

necessary but should be used to list the possible statement numbers
that this "assigned GOTO" statement may transfer control to.

Examples: ASSIGN L4 to N
GOT0 N, (16,29,44,192)

5. IF (ae) sl,s2,83 where ae is an arithmetic expression and

sl,82,83 are statement numbers.

This statement causes control to be transferred to statement
sl,s2, or s3 depending on whether the value of the arithmetic ex-

pression ae 1s negative, zero (exactly), or positive respectively.

Examples: IF(X)L4,T,22
IF(R * Vv - L.1#{U+V))16,244,16

6. IF (le)st where le is any logical expression and st is
any executable FORTRAN statement except IF and DG. The statement
st is done if the wvulue of the logical expression is .TRUE. and
control simply goes to the next sequential statement if the value
is .FALSE..

Examples: IF(L.AND.X.GE.Y)GOTO4L9
IF(X.1T.10.)X=X+.5
IF(I+J.EQ.14.0R.PRT)WRITE(2,16)A,B,C

7. IF (e) sl,s2 where e is either a logical or arithmetic
expression and sl and s2 are statement numbers. This statement is
not standard FORTRAN but is allowed on BRLESC and CDC computers.
Statement sl is done next if e is .TRUE. (or non-zero for arithmetic
expressions) and statemeat s2 ir done next if e is .FALSE. (or zero

for arithmetic expressions’.

Exanples: IF(X)22,471
IF(X.GT.0.AND.L)962,1075

8. DO s i =11, 12, i3 where s is a statement number, i is a
nonsubscripted integer variable and 11,i2,13 are positive integer

constants or nonsubscripted integer variables.

26

- oA s - Sv— < o R, oo, ts . ~an

This statement causes the statements following this DO
statement down to and including the statement numbered s, to be
executed repeatedly with the integer variable i initially assuming
the value of 11, The variable i is incremented by i3 at the end
of the sequence of statements and the sequence is repeated if the
value of i does not exceed i2. If il > 12 initially, CDC FORTRAN

"11 not execute the loop even once whereas BRLESC and most other

computers will always execute a DO loop at least once.

The specification of i3 is optional. If i3 is not
specified, its value is taken as one (1).

A DO sequence of statements may itself contain a DO
sequence provided the entire inner DO sequence is contained in the

outer one. Several DO's may terminate on the same statement.

While most wersions of FORTRAN have several other
restrictions concerning DO loops, BRLESC FORTRAN does not have any
other restrictions on the construction of the statements that are
included in DO loops. BRLESC FORTRAN does always set and use the
actual integer variable specified for i in a DO statement and its
final value (plus the increment for normal termination of the DO

loop) is always stored there.

Examples: DO 42K = 1,L
DO 3 JT = MIN, 55, NSTEP

9. CONTINUE

This is a dummy statement that generates no object codaz
except when it is the last statement in a DO loop. Its statement
number is always used if it has one. It must be used as the last
statement in a DO loop whenever the last statement would have been
an arithmetic IF or GOTO type of statement that transfers control.
Whenever & CONTINUE statcment is the last statement in a DO loop,
its statement number is the loca*ion of the machine irnstructions

that increment the DO variable and test it for its maximum value.

io. STOP or STOP w where w is an octal constant that is ignored.

This statement causes the running program to be terminated
and should only be used to indicate that the program has run to
completion. This statement causes BRLESC FORTPAN to empty the tape
output buffers, rewind all tapes used by the program that have not
been rewound, check for overflows and halt at N4O. On BRLESC, the
program may also be terminated by reading a card or tape line that
has the first ten characters of either "ENDbTAPELL" or "bbbbbbPROB"
vhere b represents a blank.

Examples: STOP
STOP TT

11. PAUSE or PAUSE w where w is an octal constant.

This statement causes the program to halt and display the
octal constant. (BRLESC displays it in the « address of the halt
order.) If the computer is re-started manually by preésing the
proper button (initiate on BRLIESC), the program will continue with
the next stata=ment.

This statement should not be used without a very good
reason for using it.
| Examples: PAUSE
PAUSE L21

12. CALL a(b,c,d,eee..).

This statement causes the subroutire named "a" o be
entered and executed with b,c¢,d,... as the arguments, parameters,
and store addresses. (Arithmetic expressions are allowed.) For
BRLESC FORTRAN, "a" couid be the name of a function (a subroutine
with one result) and the subroutine being ralled must be nne that
is a standard one on the compiler tape or one whosc code is in-
clud 2 in the program as a SUBROUTINE (or FUNCTION).

Th2 arguments used in a CALL statement must avree in type
with the type of the dummy variables that werz used when the sub-

- ‘\:\

LR

routine was defined. If there are no arguments, they may be
omitted.

CALL EXIT or CALL DUMP statements on BRLESC are the
same as a STOP statement and CALL PDUMP is ignored.

Alphanumeric arguments of six or less characters are
allowed in BRLESC FORTRAN.

Examples: CALL SUB3(X,Y,R)
CALL TOTAL

13. IF (SENSE SWITCH i) sl,s2.

This statement transfers control to statement cl or s2
if sense switch 1 (1 £ 1 < 6) is down or up respectively. (i
must be a constant.) On BRLESC, ithe manual read switches 15-20
are used as sense switches 1-6 resgpectively. However, these
switches may be "preset" by a program control card to be sither
"down" or "up" regardless of their actual position. (See SETSSW
in Section XVII.)

Example: IF (SENSE SWITCH 3)14,92

FORTRAN IV does not usually allew this stat-ment. In-
stead a subroutine SSWICH is predefine?. The general form of its
use 1is

CALL SSWTCH (i,3)

where 1 1s the number of the sense switch to be tested and § is
set to 1 if it is down and J is set to 2 if it is up.

ik, SENSE LIGHT i where i is 0,1,2,3, or L.

If 1 is 0, then all sense lights are turnci off. If
1< i b (actunlly 6 on BRLESC), uense light [only will be
turned on. The rightmost four (actually cix) bits ot ¢-11 002
on BRLFSC are uced as sense lights. Initially on BRLESC all of

them are off.

Example: SENSE LIGHT 2

29

g TT———

FORTRAN IV does not usually allow this statement. In-
stead a subroutine SLITE is predefined. The general form of its
use is

CALL SLITE(1)

vhere 1 is the number of the sense light tc be turned on. If
i = 0, all sense lights are turned off.

15. IF(SENSE LIGHT 1)sl,s2

If sense light i is on, it is turned off and statement
sl is done next;otherwise statement s2 is done next.

Example: IF (SENSE LIGHT 2)67,39

FORTRAN IV does not usually allow this statement. In-
stead a subroutine SLITET is predefined. The general form of its
use 1is

CALL SLITET(i,J)

where 1 is the number of the sense light to be tested and turned
off. If the light was on, j will be set to 1 and if the light was
off, J will be set to 2.

-

16. IF ACCUMULATOR OVERFLOW sl,s2

This statement checks for floating point exponent overflow
on BRLESC and does statement sl next if it has occurred. Otherwvise
statement s2 is done next. (The very last operation may not be
included in the check on BRLESC and this test turns the indicators

off if they were on before.)

FORTRAN IV does not usunlly allow this statement or the
IF QUOTIENT OVERFLOW statement. Instead a subroutine OVERFL is pre-
defined. The general form of its use is

CALL OVERFL(J)

where J is set to 1 if the overflow condition was on and } is sot
to 2 i{ it was off. The overflow condition is also turned off if
it was on.

30

17. 1IF QUOTIENT OVERFLOW sl,s2

This does exactly the same as the IF ACCUMULATOR OVERFLOW

statement explained above.
18. 1IF DIVIDE CHECK sl,s2

On BRLESC FORTRAN, this statement checks for floating
point division by zero {or unnormalized divisor) or fixed point
division overflow. If either has occurred in the program, state-
ment sl is done next; otherwise s2 is done next. (The very last
operation in the previous statement may not be included in this
test onn RRLESC and this test turns the indicators off if they were

on beforc.)

FORTRAN IV does not usually allow this statement. In-
stead a4 subroutine DVCHK is predefined. The general form of its
use 1is

CALL DVCHK(J)

where j 1s set to 1 on BRLESC if elther the floating or fixed point
divide overflow condition is on anda } is set to 2 if both are off.

Both conditions are turned off if they were on.

IX. THE FORMAT STATEMENT

FORMAT (Spocial Specifications)

Thi- statement is not executed but is used to specify the fiel’

longsthe, spacing and the form of the data for either the reading of
input data or the printing (or punching) of output cate. It is
alwaye used in conjunction with one of the input-output statements

and onn nothing by itcelf.,

It n = number of times to repeat this ficld. (n is optionai,

W an 3 L0 no% speeified.)

w = the width of the field (the number of colw:ns or

sharastars).

& = the numter of d-:imal places to the right of the

gorimal point. (d is used modulo 1¢ un TO9G/TO94 but not on BRLESC.)

31

—— e . o

Then the types of fields that may be specified are:

nlw for integer numbers.
nkEw.d for floating point numbers with exponents.
nFw.d for floating point numbers without exponents.

wX for spacing or blank columns.
nAw for alphanumeric fields.
wH for alphanumeric (Hollerith) fields w..-re the

characters are read into or printed from the w
characters following the H in the FORMAT state-
ment itself.

nOw for Octal numbers.
nlw for FORTRAN IV logical variables.
nDw for double precision numbers with exponents.

nGw.d for generalized floating point numbers.
nRw for right adjusted alphanumeric ficlds.

Consecutive field specifications are separated by commas, thus
"PORMAT (I6,3E14.6,F10.7)" is an example of a FORMAT statement.
Each complete FORMAT statement specifies the maximum length -f the
record (card or printer line) that will be read, printed or punched
when tliat FORMAT is used.

Two sets of parentheses are allowed in TO90/T094 FORTRAN and
four sets are allowed in BRLESC FORTRAN so that groups of specifi-
cations may be repeated within a FORMAT statement. A left parenthesis
may be preceded by an integer n to indicate the number of times to
repeat the specifications enclosed in parentheses. Thus FORMAT (E12.5,3
(16,F9.3)) would be a format where the I6,F9.3 portion would be re-

peatel three times.

If the input-output statement list contuins mere items than
specified by the FORMAT being used, then a n~vw card or llne is
vegun and the FORMAT {5 repeated from the left parenthesis that is
asscciated with the next to last right parenthesis. (If there {s
only one pair of parentheses, then the FORMAT is repeated from the

beginning.) 1f this pererthesis ic preceded by a repeat number,

it will be used on most computers including BRLESC. If the FORMAT
specifies more fields than required for an input-output list, the
rest of the FORMAT is ignored except an H rield that follows the
last number will be used. |

A slash "/" may be used in a FORMAT statement to indicate
that a new card or line should be started. Thus FORMAT (110/E15.6)
used for punching cards would cause a ten column integer to be on
one card and a Tifteen cclumn floating point number to be on the
next card. If a slash is used where & new line starts anyway, it
is ignored except N+l consecutive slashes will always cause N blank
lines or cards (or skip N cards for input). On some computers but
not BRLESC, N slashes at the beginning or end cof a FORMAT causes
(or ignores) N blank lines.

Scale factors may be used with F type specifications (and in
a limited way with E type specifications). An integer, s, specifies
the power of ten (scale factor) to multiply the internal number by to
obtain the external numbet, i.e., input numbers get divided by 10°
(not on BRLESC) and output numbers get multiplied by 10°. The
integer s is written in tront of the nFw.d specifications and the
letter P is used to separate s and n, e.g.,-2PhFlO.5 or -2FFl5.5
specify a scale factor 10'2. O BRLESC FORTRAN, either a + or a -

sign in iront of s is used as a minus sign. Therefore never write

+ signs in front of s. Once s has been specified, the scale factor
remains in effect for the rest of that FORMAT statement (including

repetitions) and will be used on subsequent E and F type fiells.

A OP specification may be used to reset it to O. For input, a
punched decimal point overides both the scale factor and the 4
aspecificd. For E fields, only a positive scale factor may be used
wail 1t woes not change the value of the number; it only indicates
that o ifrite chould be printed in front of the decimal point. (It
has no meaning for input E fields.) Thus the number 2 would normally
yoint 0,20E 01 for 5 = 0, but for s = 1, it would print 2.00E 0O

and ¢ = 2 would print 20,0CE-0l. '

33

PRIV -l

I Fields

Ingut:

E Fields

Input:

Most FCRTRAN compilers assume the integer to be
punched at the right end of the field without a
decimal point; however, BRLESC FORTRAN wilil azcept
it any place within the field and it may have a
decimai point. Any digits following a point are
ignored. o

The integer will be punched at the right end of the
field with a floating sign. (All output has a
floating sign which means that the sign is in the
column preceding the leftmost digit that is printed.

Leading zeros are not printed on I or F fields.)

Th~ number may or may not have an exponent. An E
or a sign, but not a blank, may be used to indicate
the starting of the exponent. The exponent may dbe
less than four columns. If a decimal point is
punched, it is used and overides the s and d speci-
fication. 1If no decimal point is punched, then it
is assumed to be after 4 digits (columns) left from
the start of the exponent. Most FORTRAN compilers
require that the number be punched at the right end
of the field, tut BRLESC FORTRAN allows it anywhere
within the field. Blank columns are used as zeros

(except after the exponent on BRLESC).

The floating point nuwaber wili be printed with a four
column exponent that includes an E, a sign, and two
digits for the value of the exponent. A decimal point
is printed d digits from the right end of the coef-
ficient and if s = 0, a zero is printed in front of
the decimal point. If s > 1, then s digits of the

3k

PSPPI

F Fields

Ingut:

Output:
e —

H Fields

Input:

—— . g

Output:

coefficient are printed to the left of the point.
The sigr immediately precedes the first digit
printed. The entire number is printed at the right

end of the field of w columns.

The same as E fields, see above. (This may not be
strictly true for other computers but will generally
give the desired result except possibly for the use

of a scale fa-tcr.)

The floating point number will be printed without an
exponent and the decimal point will b2 printed d digits
from the right end of the field. The actual number
printed is 10° times the number that is in the computer.
If the number is too large for the columns specified,
BRLESC will print the number with an exponent or as
much of the right portion of such a number as is

permitted by the field width.

The alphanumeric information is stored in the FORMAT
statement itself immediately following the H. No
transformation of characters is done ; the sign
option setting for numeric input on BRLESC has no

effect on H fields.

The w alphanumeric characters that immediately follow
the H are printed. Blanks are not ignored and there
is no transformastion of any of these characters.

Thus on RRLESC, "(+ - " characters may not be the
nres inteinded if the deck was punched vsing standard

FORTRAN characters at some other installation. (The

A Fields
Input:

:
Ia

=
Fg
&

"CHANGE + AND -" control card does not change the + and
- signs in H fields.) For tape output, if an H field
occurs at the beginning of a line, the first character
is used for vertical high speed printer format control
instead of actually getting printed.

If w <6, this causes w alphanumeric characters to be
stored in the variable name that is on the input list.
To be compatible with 7090/709&, BRLESC FORTRAN stores a
maximum of six characters per word at the right end of
the word. If w <6, the characters will be at the left
of the 36 bits with blanks to fill out the word. If

w > 6, then w - 6 columns will be ignored before storing
the rightmost six charactiers of the field. As with H
fields, no transformation of characters is done. This
can be used to read FORMAT specifications at run time.
This causes w alphanumeric characters to be printed from
the contents of the variable name that is on the output
list. The rules liéted above for A input are followed
so that whatever is read will be minted exactly the
same. When w > 6, w - 6 blank columns will be printed

to the left of the six characters that are printed.

This causes w columns to be skipped whether they are
blank or not.

Causes w hlank columns to be printed.

This allows octal numbers to be read and stored at the
right end of BRLESC words in the same manner as integers.
(There is no left normalization.) On BRLESC, if w > 12,
the leading columns will be used and may cause more than
36 bits to be stored if they are not blank.

36

OQutput: This allows integers (octal or decimal) to be printed in
octal form at the right end of the field with leading zeros
suppressed. If w > 12, w-12 blank columns are printed to
the left of the 12 octal digits. |

Input: If the first non-blank character is a T (or the digit 1
on BRLESC), the logical value .TRUE. is stored; otherwise
.FALSE. is stored.

Qutput: A T is printed in the rightmost column of the field if the
value of the logical variable is .TRUE.; otherwise an F

is printed in the rightmost column of the field.

D Fields

Input &
Output

This is allowed for those computers that use double pre-
cision variables. On BRLESC, it is used exaétly the

same as an E field.
G Fields:

Input &
Output

R Fields

BRLESC uses G fields exactly the same as F fields.

Input &

Catout: Only a few computers and BRLESC allow K fields. They are

exactly like A fields except when w < 6, the characters
are stored intc (or printed from) the right end of the

computer word.

FORMAT statements may be placed anywhere within a program (or sub-
program) except as the first statement within a DO loop. (This
restriction does not apply to BRLESC but should be followed. On BRLESC,
FORMAT statements are done as NOP instructions so it 1s best not to place
them where they will be done often.) FORMAT statements are kept as alpha-
nuneric information and decoded at run time, thus it is permissible to
use A fields to read FORMAT statements (without the word FORMAT) at run

time. The variable names ¢ such statements must be listed in a

DIMENSION statement for most computers but 1s not required for BRLESC.

57

ek .

If the 1ist in an output list is exhausted and the next item in
a FORMAT statement is an H field, the H field is printed. (If the end
of FORMAT and list occur at the same time and an H field follows the
lest left parenthesis, it will not be printed.) Note that a FORMAT
may contain rothing but one or more H fields.

Blank characters in a FORMAT statement sre ignored except within
H fields. The w count for an H field must include the blanks within
the H field.

The comma separating field specifications may be omitted when it
follows an H or X field specification or would precede or follow a
parenthesis or slash. (This rule may not hold for all computers but is
true for BRLESC.)

Examples: FORMAT(315,(E15.8))
FORMAT(2HX=,F10.4,4(1PE12.5))
FORMAT(6F10.4/4110//)

X. DESCRIPTION OF INPUT-OUTPUT LISTS

The names of the variables to be transmitted between the computer
and the input-output davices are specified on a list in the proper type of
input-output statement and the sequence of the names on the list determines
the sequence of transmission. Simple variable names, subscripted array
names where the subscript control is either specified in other statements
or within the input-output list, and array names without subscripts are
allowed. Array names without subscripts cause the entire array to be
transmitted and the elements must (for input) or will (for output) be
arranged in the same sequence that they have in the computer memory.
(BRLESC and most computers vary the subscripts from left to right, thus
two dimensional arrays are stored by columns; i.e, A(1,1), A(2,1), A(3,1)
etc. is the sequence of elements of the array A.) Commas are used to

separate the names on an input-output list.

38

e —————

s e e S 82 e 53T

S

Indexing information specified within the list is written after
the names of variables to which it applics and the names and the
indexing information are all enrlosed in parentheses. For example A,
(B(I), I = 1,10) would cause the transmission of A, B(1), B(2), ...
B(10). Note that the indexing information is written the same as in
a DO statement with the increment taken as one if it is not written.
It is permissible to nest these parentheses, e.g., ((A(I,J),I = 1,5),
d = 1,5). Note that commus are used to separate items on the list
and must be used after a right parenthesis except for the last ome.
The indexing within each set of parentheses is done to completion
before going on to the next indexing specification., On BRLESC, ther=
is a restriction that when indexes are controlled within an I/0 list,
they cannot be used in any subscript arithmetic expression that re-

ylires more than the addition or subtraction of a constant.

All of the input-output statements that transfer alphanumeric
(not binary) data make use of a FORMAT statement to specify the field
types and lengths. The type (integer or floating point) of a name
specified on an input-output list must correspond to the type cf field
specified in the FORMAT statement that is being used. All integer
variables must use I fields and all floating point variables must use
E or F fields. (BRLESC does allow integers to be printed as intererc in
E or I fields.) The FORMAT controls the maximum length of each line.
A 1in2 is shorter than specified in a FORMAT cnly when the end of the
list is reached before the end of the FORMAT. Whepever the end of the
FORMAT is reached before the end of the list, the FORMAT is recpeated from
the left parenthesis that is associated with the next to last right
parcntbesis and a1 new line (or cari) is started. (If there is only one
pair of parentheses, then the FORMAT is repeuted from the beginning.)
(Sec Seetion IX for more information about FCRMAT statements.)

Conctunts and urithmetic cxpressions are not permitted on input-

output lists,except indaxirg information may contein constants and sube

scripts may be constant or arithmetic ~wpresclons.

It is permissible to reaud an integer vuriable uand use it us a sub-

e e s < mcrme e - <t i

e e st e e T

R a8y S0mn e s

script ﬁithin the same input list if its name is separated from the
place it is used by at least two left parentheses. (This is counting
the one used to indicate a subscripted variable. Extra purentheses

may be used Just to meet this requirement.) Thus J,(B(J)) is an
example where the value of the variable J just read will be used as

the subscript for B(J). (For BRLESC, the extra pareutheses are not
required if two or more varisbles or any indexing information separates
the integer from where it is used.)

Examples: A, B, I
N, M, (BA(N)),P
((a(1,3), J = 1,10), I = 1,10), (R(K), K = 2,20,2)

XI. INPUT-OUTPUT STATEMENTS

The following group of statements may be used in FORTRAN to
control the flow of Information between the computer and input-output
devices or secondary storage. Card reading or punching, magnetic tapes
and, on some computers but not on BRIESC, druws may be used to read or
record data. Most of the statements also use a FORMAT statement to cou-
trol the conversion of data between computer form and printer or card
form. However, the READ TAPE or READ(t) and WRITE TAPE or WRITE(t) (and
the corresponding DRUM statements cn computers that allow them) cause
the transfer of data without any conversion. This computer form of
data wili be referred to as binary information and actually is binary
numbers for a binary computer such as BRLESC. The other statements
cause the reading or printing of data in alphanumerical tform. There are
three statements, END FILE, REWIND and BACKSPACE that do not transfer
data but can be used to manipulate the magnetic tapes.

In all of the input-output statements described below:

f is a FORMAT statement number or name.
"11st" is any allowable input-output list (Ser Section X).
t is a magnetic tap. number or integer variable.
(See BRLESC restrictions on t at cnd of this section.)

Lo

READ f, list

This statement causes decimal and alphanumeric data tc be read
frou cards (or tape 6 on BRLESC if the cards have been put on tape
off-ine and console switch 36 is up.) (BRLESC may use all 80
columns for either input or output cards.) If the list is omitted

on this statement, one card will be read and ignored on BRLESC.

PUNCH f, list

This statement causes decimal and alphanumeric data to be punched
on cards (or actual tape 8 if console switch 35 is up. The tape out-
put will be "formatted" for the high speed printcr by adding a 1
character at the beginning of each "card" and an end-of-line character
at the end of eack "card". The block length will be at least 1830
characters.) All 80 columns of a card may be usea on BRIESC and for

tape & output, the "card" may be up to 160 columns long.

PRINT f, list

For most computers, this statement means to print the data on an
on-line printer. Since BRLIESC does not have an on-line printer, the
data is put on actual tape 8 for orff-line printing. The maximum line
length for most computers is 132 characters and it is best to use 132
as maximum a.though BRL does currently have one printer that ha~ 16C

columns.

The following description gener«lly appliec only for BRLESC. If
the first character of a line comes from an H field, it will be used
for vertical format control (after a iransformation) and not printed.
"1 "

If the first character does not cone from an H field, an exlra

character (single space) is inserted at the beginning of the lina.

Ll

——il

In eithér case, the zone bits will be set to Ol so that it is possible
to print PRINT output separately from PUNCH output when both are on

tape 8. The end-of-line character jis automatically inserted at the end
of each line. The tape writing is parity cnecked and there is checking
for end of reel. The tape block length is at least 1830 characters and
this allows about T.5 million characters on 90,000 lines of 80 characters
each on a reel of BRLESC tape.

For BRLESC, a control card may be used to change all PRINT state-
ments to PUNCH statements.

READ INPUT TAPFE t, f, list
READ(t,f) 1ist (FORTRAN IV form.)

These statements cause decimal and alphanumeric input data to be
read from tape t. Each block of BRLESC tape may be as long ac 2000
characters and each line may be as long as 160 characters. If the
tape was previous FORTRAN output that has a vertical control character
at the beginning of each line, provision should be made in the FORMAT
for skipping that character., However on BELESC, the vertical control
character is ignored unless the FORMAT has an H field at the beginning
of the line. (If the tape was previous FORAST output, the vertical
control character is automatically ignored.)

The tape reading is parity checked and there 1s checking fur end

of reel.

If the "list" is omitted with this sta<ement, it will cause one
line to be read and ignored on BRLESC,

Just INPUT may be used instead of READ INPUT TAPE in this statement
on BRLESC.

WRITE OUTPUT TAPE t,f, list
WRITE (t,f) list (FORTRAN IV form.)

Theose staiements cause decimal and alphanumeric cutput data to bve
rocorded on tape t. Each line of data may nct exceed a total of 132
~haracters (160 on BRLESC). The first ~haracter will be used as a

RPN g urhy R =

T T TR e

vertical control character for the high-speed printer and is determined
in the same manner as for the PRINT statement described above except the
zone bits will be 00.

The tape writing is parity checked on BRLESC and there is checking
for the end of a reel. The number of lines per reel on BRLESC will
vary from about 60,000 to 200,000 as the length of each line varies

from 160 characters to 1 character.

Just OUTPUT may be used instead of WRITE OUTPUT TAPE in this state-
ment on BRLESC.

READ TAPE t, list
READ(t) list {(FORTRAN IV form.)

These statements cause binary information to be read from tape unit
t. It should be used only for rezding data that was previously put on
tape by the use of the WRITE TAPE statement described below. This state-
ment will not read more data than was specified on the list of the state-
ment that wrote the data. (Such a group of date is defined to be a
"logical record".) If less than the entire logical record is read, the
tape will move to the end of the record. (If the list is omitted
entirely, the tape still moves to the next logical recorld.) If an
attempt is made to read more data than is on one logical record, th-:

unuc2d vortion of the list will be Ignored.

“m BRLESC, binary logical records are subdivided into tape tlocks
o: 128 words cach., Within each logical record, the first word cof each
t1sck contains in the o address the number of words in the last block
(not counting tkis word) and in the y zddress, the total number of

blo:k: in the logical record.

WRITE TAPE t, list
WRITE(t) 1:ut (FORTRAN IV form.)

These statemonts cause all of the data specif.~d o the list to ve
written as binary information in one logicai record (se~ READ TAPE) on
taps uni* t. t is useful for temporarily recording data on tape that

o be rend back into the cumpa oo by uning 1 READ TAFE =tatemen® at a Ia

+3

tor

———

time. See the explanation of the READ TAPE statement for a
description of the way the information is "blocked" on the tape.

END FIIE t

This statement causes a file mark to be written on tape t.

BACKSPACE t

This statement causes tape t to be moved backward one "logical
record”. This is all of the data written by the WRITE TAPE statement
that wrote the record for a binary tape, or is one line (or "cara")
if it is an alphanumeric tape.

REWIND t

This statement causes tape t to be rewound without being inter-
locked.

READ DRUM i, j, list

This statement is not allowed on BRLESC and causes an error print.
For the 709/7090, it means to read data from drum i beginning .t the
Jth word. (Variable subscripts are not allowed on the list.)

WRITE IRUM i, J, list

This statement is not alloved on BRLESC and causes an error
print. For the 709/7090, it means to write data on drum i beginuing
at the jth word. (Variable subscripts are not allowed on the list.)

Additional Note= on Input-Output Statements

The f (FORMAT numb2r or name) may be omitted in READ, PUNCH or
FPRINT statements on BRLESC and this will cause a FORMAT (1P6E12.5) to
be used automatically.

The statement numbers 1 and 2 may be used to autamatically specify
FORMAT (5F1L4.5) and FORMAT (1PSE1L.5) respectively without including
them as part of the program. If 1 or 2 or both are used to refer to
these FORMATS, then that statement number must not be used in the pro-
gram for any other purpose. If either one i{s used as =z ctatement number
in a program, then the correspording automatic FORMAT cannot be used.

Lb

The omission of a "list" on any of the input statements will cause
one record (card, line, or logical binary tape record) to be read and
ignored on BRLEhL.. Some computers may allow the FORMAT specified to te
used to skip morz thair one record. Note that a FORMAT should be speci-
Tied when the list is omitted although it is not necessary to ao so on
BRLESC.

The number of print positions on one of BRL's printers is 160.
However it is best to restrict thc line length to 132 characters cor
less co that other printers may alsoc be used. BRLESC FORTRAN allows
at most a total of 170 characters for 2 line including the vertical

control and end-of-line characters

ADDITIONAL NOTES ON THE USAGE Or MAGNETIC TAPE ON BRLESC:

All of the tape reading and writing is parity checked. Rereading
erroneously ten consecutive times or rewriting wrong twice after each
of five consecutive "GAP instructions” cauces an error print and BRLESC

stops running ti.c programs.

There is checking for end-of-reel. At the e1 1 of a reel, ERLESC
halts at C8C and is ready to accept 2 new reel when re-started. A

single reel of BRLESC tape will hold about 90,000 lines.

The only restriction on switehine betwoen reading and writing of
tapes i that o REWIND or BACKSPACE statement must bt wone belfore ruadinug
a Lupe thut was Jjust written., Winencver a tape on BRLESC is switehed from
writing to reoading, & file mark and an extra one word block that vcays
"END TAPE" {5 -wtomatically writton on the tape before the final file
mirk ie written und then switching is done. (This extru olock is

fioerod Ly i RACKSPACE stut-oment.)

Ail FORTKAN <lphanuwmeric ifnput and output tapes . "buffor-i" ant
may contaln up to 2000 characters per blocek, T nceompllch thic
but'tris, onch tape unit used requiven the use of an oxtra 2010 wor

8 BRLEGC memory. This space (o assigned ac 1t io necded while the

program i bofne eooccuted and will not conilict with any other memory

49

UYL W AT LR R R T et w4 <

assigﬁment made in a normal FORTRAN program. Buffers are assizgned
backward from the subroutines as long as space is available there.
Otherwise they are assigned backward from the end of the memory.
(For "CHAIN jobs™, they are assigned so a5 to not conflict with any
link of the CHAIN.)

The tape uvnit number t may be either a decimal integer constant
or variable. I{ t is a variable, the integer value it has at the
time th> tape statement is executed is used as t. The following table
shows the correspondence between the value of t and the tape switch
on BRT¥SC. The actual tape handler used d=pends on the switch setting.

& Switeh
lorll 1

2 or 12 2

5or 13 5

L or 1k L

5 or 15 5

6 9

T 10

8 11

9 i2
10 7 (temporary or output only)

Note that 1 <t <15 and that t is used modulo ten for il <t < 15.

It is illegal to use both 1 and 11, or 2 and 12,...,or 5 and 15 within
the szme program. (If t > 15 is used, it will be used modulo 15 with
0 using Switch 13. PRINT (and PUNCH) tape output uses Switch 8, tue
compiler itself uses Switch 1k or 15 for its own program znd uses
Switch T for temporary storage while compiling, and card input put

on tape off-line uses Switch 6. (Usage of switches 6 and 7 are identi-
cal to FORAST.) When leaving problems to be run on BRLESC, the switch
number rather than the t number should be used in the instructions to

the computer operator.

Lé

All printer output is formatted for variable length lines for the
off-line high speed printer. PUNCH tape output automatically has a
single space character "1" inserted at the beginning of each line and
an end-of-iine character at the end cf each line. The same is true
of PRINT ancd WRITE OUTPUT TAPE output if the first field of the line
is not an H type field. If the first {ield is an H field, then the
first character of the field is used for vertical format control

after urdergoing the following transformation:

H Field Tape

+ or - blank (no space)

0 {zero) special blank iine with 1 on next line.
(is double space)

2 2 skip tc even numbered line.
(possiblie double space)

i or 8 8 (start new page)

otrers 1 (single space)

A blank control character should normaily be used to cbtain single
spaced iines. The zone bits of the format character will be 00

2Xcept PRINT cutput wili have OL. When reading previous FORTRAN
alphanumeric output, a 1 vertical control character is transformed

back to blank and the special blank line is ignored but causes the 1
control character on the following line to oe transformed tack to zero.

The special blank line is also ignored by the BACKSPACE statement.

FORTRAN programs are supposed to contain an END FILE statement
and a REWIND statement for each output tape used in the program and
a4 REWIND statement for each input tape. _f this is not done within
the program, BRLESC wiil rewind all tapes that were use” and not re-

wound by the program.

w7

e I A 18 WA, A

XII. DATA STATEMENT

The DATA statement of FORTRAN IV allcws initial values to be
stored for variables without writing an executabie formula. The
DATA statement allows a list of variable names to be foliowed by a
list of the constants that should be initially stored as the values
of the veriables. A slash is used to separate a list of variables
and a list of constants and commas are used to separate items within
both lists.

The general form of the DATA statement is
DATA v1,v2,v3,.../cl,c2,c3,.../,vh.v5,.../cl,e5,.../,......

vhere v1,v2,... represents pames of variables and cl,c2,... represents
constants. The variable list may contain DO-implying parentheses with
variable subscripts that take on specified integer constants. All
other subscripts must be constant, i.e.,the integer value >f all sub-
scripts must be completely defined within the DATA statement. The

name of an array may be used without subscripts tc specify a list of

the entire array.

The constant list may contain any standard FORTRAN constant and
may also contain octal constants by preceding the octal digits with
the letter C. T and TRUE are also allowed for .TRUE. and F and FALSE
are also allowed for .FALSE.. Any constant may be repeated k times
by preceding it with "K*" where k is the integer number of times that
the constant should be repeated.

Most computers will not allow the DATA statement to initialize a
variable that is in blank COMMON; however this is allowed on BRLESC.
Also most other computers allow variables in labeled COMMON to appear

in DATA statements only within a special BLOCK DATA subprogram.

L8

- -
= A i 2 e s e —

Some examples of DATA statements are:

DATA A,B/5.3,.6E-3/
DATA I,LOGIC,OCT/1k.,FALSE.,O7777/,ALPH/4HDONE/
DATA(C(I),1=1,10)/5%1.0,3%2.0,2%3.0/

Note the absence of a comma after DATA but the presence of a
comma before the beginning of any other list of variable names in

the same statement.

There must be a one-to-one correspondence between the number
of variables that are to be given initial values and the number of
constants within any one DATA statement. BRLESC gives an error

print when there 1s not a one-to-one correspondence.

The form of the constant determines the type of constant stored
ratner than the name of the variable. There is no check between the

type of constant and the type of variable.

To allow some compativpility with CDC FORTRAN, BRLESC also allows
the CDC form of the DATA statement which has the general form of:

\

/
DATA{vl = cl),(v2 = c2),
vhere vl is one variable name or one array name or one subscripted
name, which may have DO-implying subscript information, and cl is
one constant or enough constants, separated by commas, to satisfy

the requirements for vl. Repetition of one or mare constants k times

is allowed by "k(cl,c2,...)".
Some examples of CDC DATA statements are:

DATA(F=T7.2), (X=.003)
DATA((B(J),J=1,5)=1.0,2(5.%,8.1)), (LA=.TRUE.)

L9

XITI. SUBPROGRAM STATEMENTS

FORTRAN allows sections of a FORTRAN program to be designated ;
as subroutines that may be used at many different places in the main .
program. The SUBROUTINE, FUNCTION, RETURN and END statements allow
the programmer to define and namc portions of his program as sub-
programs and they provide information that allows the compiler to
provide for the substitution of variables at run time and standard

entry and exit methods used for subroutines.

Any subprogram may use any of the FORTRAN statements within
itself except SUBROUTINE and FUNCTION statements. Any subprogram
may use any other subprogram or subroutine of any type, including
arithmetic statement functions (See Section XIV) that are defined
at the beginning of the subprogram. Recursive subprograms (sub-

programs that use themselves) are not allowed.
SUBROUTINE AND ADJUSTABLE DIMENSIONS
SUBROUTINE a(b,c,d,e,...)

This statement marks the beginning of a subprogram that
we shall call a SUBROUTINE. The name of the SUBROUTINE is a and
b,c,d,e,... are the names of nonsubscripted dummy variables that
will be replaced at run time by the actual variables that are listed
in the CALL statement that causes this subroutine to be performed.
The subroutine consists of the FORTRAN statements that follow this
statement down to an END, FUNCTION or another SUBROUTINE statement.

The name of the SUBROUTINE does not indicate the type of

any result and hence any letter may be used as its first character.

Except for the COMMON storage, all variables within a
SUBROUTINE (or FUNCTION) are assigned storage that is unique and
not used by any other part of the program. Thus the variable X may
be used in several SUBRCUTINES within a program and each X will be
different unless it appears in the same relative position in COMMON
statements in each of the SUBROUTINES.

50

No storage is assigned to the dummy variables; on BRLESC,
DM will appear in the dictionary instead of an address. The type
of a dummy variable, as indicated Ly its first letter or within &
TYPE statement, must agree with the type of all actual argﬁments
that replace it. If a dummy variable is an arrsy name, then its
size must be defined-within the subroutine and the size must either
be identical with the size of any actual variable used to replace it
or else its size must be defined by other dummy variables. Dummy
variable array cubscripts in DIMENSION statements is a feature of
FORTRAN IV and is not allowed in other versions of FORTRAN. This

feature is commonly referred to as adjustable dimensions. It has

the restriction that the dimensions specified in the calling sequence
must actually be the maximum dimensions as declared in the calling
program. Thus if the array A is declared to be (lelO), but actually
has a (5x5) matrix stored there, then this 5x5 matrix cannot be used
as an argument for a subprogram. (Most FORTRAN manuals indicate

that it is legal to use less than the maximum dimensions as arguments
and indeed there is no error check for this, however a normal FORTRAN
subprogram will reference the wrong elements of the array when this
is done.) However it is true on BRLESC (and probably any other com-
puter that stores arrays by columns) that the last or rightmost

dimension of the array does not have to be the maximum. Thus for

the array A(10,10), the dimensions of (10x5) could be used as arguments

of a subprogram. In particular, the dimension argument for a one-

dimensional array does not have to be the maximum value.
Example: SUBROUTINE POGO(A,XX,I10)
FUNCTION a(b,c,d,...)

This statement is similar to the SUBROUTINE statement but
should be used whenever the subroutine has only one result. No
dummy variable should be listed for the result as it is intended that
the function will be used in an arithmetic expression and the result

is simply used in evaluating the rest of the expression.

51

A S A e e .

The name of the function is a and b,e¢,d,... represent
nonsubscripted dummy variables. The name of the function does
indicate the type of the result by its first letter and the final
character must not be F if there are more than three characters in
the name, For FORTRAN II, the first character of the name "a" must
be I,J,K,L,M or N if and only if the result is integer. For FORTRAN IV,
the type of the result may be declared before the word FUNCTION, e.g. ,
REAL FUNCTION, LOGICAL FUNCTION, etc. The type of other dummy vari-
ables can be specified in a TYPE statement within the subprogram.

Within the FUNCTION subprogram, some statement should
store a value in a variasble that has the same name as the name of the
function and this will be used as the result.

There must always be at least one dummy variable for
FUNCTION subprograms.

FExample: FUNCTION LOW(Q1,T)
LOGICAL FUNCTION FOUND (L,V,N)

RETURN

This statement may be used as often as desired within sube
programs (SUBROUTINE or FUNCTION) to indicate the point or points a
which execution of the subprogram should stop and control should
return to the program that is using the subprogram. It should always

be used at least once in every subprogram.

END

This statement may be used at the end of any subprogram or
at the end of the main program. It is not required on BRLESC. All
program decks on BRLESC do require the very last card of the entire
program deck to be a card that has an E in column 1 or an ¥ in
column 1 with DATA in the statement field.

The sense switch options allowed in END statements on some

computers will be ignored on BRLESC.

50

Most computers other than BRIESC compile each subprogram
as though it is a complete FORTRAN program and only provide a
binary card deck that must be assembled with other binary decks to
actually run the program. Hence they require an END statcment at

the end of each main program and each subprogram.

For BRLESC, the main program and all the gubprcgrams must be
compiled at the same time and thus can be run without the use of any
binary decks. BRLESC has a limit of 60 subprograms used in any one

program deck.
ENTRY a(b,c,d,e,...)

The purpose of this statement is to allow multiple entrv
points within subprograms. It is not a standard FORTRAN statement
but some form of it is allowed in a number of FORTRAN IV compilers.

The following description applies only to BRLESC.

The name of the entry point is a and b,c,d,e,.... are the
names of non-subscripted dummy variables. The name of the entry
point a is used in a CALL statement for ENTRY statements in SUB-
ROUTINES and is used in arithmetic expressions for ENTRY statements
in FUNCTION subprograms.

The dummy variables in an ENTRY statement do not have to be
the same as those in the SUBROUTINE or FUNCTION statement for the
subprogram in which the ENTRY statement appears. However, a dummy
argument may not appear in any statement (including DIMENSION)
unless it has previously been declared to be a dummy variable by
appearing in a SUBROUTINE, FUNCTION or ENTRY statement. On BRLESC,
the ENTRY statement must also physically precede all of the appearances
of any of the dummy variables that will actually be used in executable
statements for that entry to the subprogram. (This is the only
essential difference between 7090/709h FORTRAN and BRLESC ENTRY state-
ments. TO90/TO9H FORTRAN allows dummy variables to be used both
before and after the ENTRY statement.)

23

,...._.._...
!

e e et sapmmemrmesmrn e B

The name of the result in a FUNCTION subprogram cannot
be an ENTRY name. Only the name aprearing in the FUNCTION statement
is allowed as the name of the result.

ENTRY statements are non-executable and normal control
may pass through them without doing the initializing of the
arguments for that ENTRY.

BRLESC has a limit of 100 dummy variasbles and ENTRY names
in ENTRY statements within one complete program.

CDC FORTRAN 66 allows ENTRY statements without dummy

variables. It uses the original dumry variables automatically with
each ENTRY.

Example: ENTRY TRY2(V,R)

BLOCK DATA

Most FORTRAN compilers do not allow the DATA statement to
store constants into variables that are in li-.eled COMION unless an
extra subprogram that begins with a BLOCK DATA statement and contains
the necessary declarations and one or more DATA statements is used.
This subprogram must not contain any executable statements. It must
con*tain one or more COMMON statements that list all of the names that
are in any of the labeled COMMON groups that is to receive constants
from a DATA statement. It is not permissible on most computers for
any DATA statement to store into a blank COMMON variable; however
this is allowed on BRLESC.

The use of BLOCK DATA is not necessary on BRLESC but it
should be used to maintain compatibility with other computers. BLOCKD
will be used as the name of the BLOCK DATA subprogram in a BRLESC
dictionary.

54

Example: BLOCK DATA
DIMENSION A(6)
LOGICAL IA
COMMON/B1/R,A/B2/V,LA
DATA IA,A/.TRUE.,6%1.0/
END

XIV. FPREDEFINED FUNCTIONS AND ARITHMETIC STATEMENT FUNCTIONS

FORTRAN subroutines are separated into two classes, (1) functions
are those subroutines that have only one result and hence may be used
in arithmetical expressions; and (2) SUSROUTINE subprograms (See
Section XIII) or otker subroutines that may have more than one

number as a result and may be used only by CALL statements.
Functions
There are three methods of defining a function. They are

1. Predefined functions that may be used by using the
predefined name.

2. Arithmetic statement functions.

3, TFUNCTION subprograms. (See Section XIII)

Predefined Functions

Appendix A lists the predefined functions that are allowed on
BRLESC and most computers., Both the FCRTRAN II and IV names are

listed for each function and either name is allowed on BRLESC.

Neming Functions

For FORTRAN II, predefined function (and arithmetic statement
function)names must always end with F (a total of seven characters
are allowed) and must begin with X only if the result is an integer.
Variables must never be given a name that is the same as any of the
function or subroutine names either with or without the terminal F.
For BRLESC, the terminal F is not necessary when the initial ’ .tter
of the predefined functinn name indicates the precper type of result
but is necessafy in both the definition and use of arithmetic state-
ment functions.

For FORTRAN IV, all function names indicate the type of result
in the same manner as other variable names, i.e.,either the initial
letter determines the type or the type is declared in a TYPE or
FUNCTION statement. For both FORTRAN II and IV, the naming of
FUNCTION subprogram functions uses rules that are the same as for
uaming arrays. An initial letter of I,J,K,L,M or N indicates an
integer result and the last character must not be F if there are more
than three characters in the name. For FORTRAN IV, a type declaraticn
may precede tne word FUNCTION in a FUNCTION statement, e.g.» INTEGER
FUNCTION RAY(V).

Use of Funciions

Any of the three types of functions may be used in an arithmetic
expression by writing its name in front of a pair of parentheses that
enclose the list of arguments. The arguments must correspond in type
and number to the dwmmy variables used in defining the function. Suc-
cessive arguments are separated by commas and they may be arithmetic
expressions.

For BRLESC, any function may slso be used in a CALL statement
by including an extra variable name that specifies where to store the
result. '

56

R i A g

Arithmetic Statement Functions

Arithmetic statement functions are functions that can be and are
defined by one arithmetic statement at the beginning of a program
(or subprogram). The name of the function followed by the dummy
arguments enclosed in parentheses are written to the left of the
= symbol., The arithmetic expression that descrives the function
in terms of the dummy variables is written to right of the = symbcl.
The dummy variavles cannot be subgcceripted. Any variable used in
the expression that is not a dummy variable will be identical to
the variable of the same naue in the program (or subprogram) in
which the statement is contained. (An arithmetic statement function
definitici normally only applies end can be uc~d only in the program
or subprogram in which it Is located, howsver BRLESC allows them to

be used anywhere within the complete progran.)

an arithmetic statem nt function may use any of the other types

of functions and may also use other previously defined arithmetic

statement functions. All arithmetic statement fuanctions must pre-
cede the first statement that gets executed in the program or suo-

program.,

I the arithmetic statement function name doss not indicate the
proper type of result, then itvs name must appear in a TYPE statement.
When ar arithmetic statement function name appearc in a TYPE ctatement
en BRLESC, it muct also be put in an EXTERNAL statement th-t appears
after the TYPE statement znd this puir of statemantc must appesr in
cvery cubprogram that uses the arithmetic ctatement Tiuiction, et
that on BRLESC, an F as the bth,5%h,7i., or Tth and last character
in the aame causes a4 leading X cr its absence 10 lndicate intsger wrp
real result recspectively while the absenes of such a linul ¥ causes
the normal T-N check on ths lsuding character. Howevor the usage of

1 TYPE ntatement will cvorride both I these checge,

\N
~}

B e e
9 '
i e

Bt AR T B AR G YT 250 K) Nt e e . . " — S

The dumny variable names used must indicate the same type of
arithmetic that is required when the function is actually used.
¥hen the initial letter of a dummy variable does not indicate the
proper ‘type, it may appeé.r in a TYPE statement before the arithmetic
statement function. When this is done, the BRLESC dictionary will
not have the variable marked as a dummy variable, but the program will

be correct.
Example of defining an arithmetic statement function:
| FUN(A,B,C) = A2 - SIN(B*C)+C
Example of using this arithmetic statement function:

T = Q + FUN(X,S + EXP(W*2),1k.) e

XV. PREDEFINED SUBROUTINES

A subroutine may be predefined and exist on the compiler tape
_or it may be defined by a SUBROUTINE subprogram. (See Section XIII.).
‘Subroutines mybe given any valid name (no restrictions om the Pirst.
~or last letter) and may only be used by a CALL statement.

The following subroutines are predefined in BRLESC FORTRAN:

'SETMSI (j) Set minus sign for input.

SETPSI (j) Set plus sign for input. (Not necessary,
anything not minus is i)lus.)

SETMSO (j) Set minus sign feor output.

S4TPSO (3) Set plus sign for output.

where j is an integer constant:

O means blahk.
1 means y.(12) punch.
2 means x(11) punch.

3 means x or y punch.

SEXAPR(A,B) Sexadecimel print from A to B.
BINPUT Goes to binary input routine after saving a
return jump instruction in OT3.

58

L B i

e eetag e e

i A o A e P ot

POWERS(A,B,C)

SINCOS(A,B,C)

e s e A AR e 5 5

Computes C = A¥¥B where B may be
integer or fl.pt. ‘
Computes B = SIN(A) and C = COS(A).

Additional predefined subroutines may be added in the future.

XVI. FORTRAN PROGRAM CARDS

BRLESC FORTRAN uses the same card format for punching FORTRAN.
programs that is used by other computers.

Columns:

1-5
6

Stetement number (integer).

Continuation Card if not zero or blank.

One FORTRAN statement.

Identification.

The statement number must be a decimal integer. Leading~zeroé

are ignored. Tra;ling-blanks are also ignored on BRIESC'and>most

‘computers.

Column 1 is also used to indicate special types of cards. The

following list shows the special characters that indicate special cards:

Comment card.

Columns 2-80 may be used for comments.
T090/TO9% monitor card or BRLESC control card.

Double Precision statement card. (FCRTRAN IT)
(Not allowed on ERLESC.)

*

B Boolean statement card. (FORTRAN II)
D

I Complex Arithmetic statement card.

F

(FORTRAN ITI)

Used to specify nsmes of subroutines used as arguments.

$ BRLESC only, used for BRLESC assembly order cards and
some other special BRLESC cards. (% is used until

January 1967.)

7-8 End-file signel on T090/TO9%4, ignored on BRLESC.
E BRLESC only, is last card of program deck.

o

A
¢

——————

R P AR A b

COIumn 6 1s used to mark cards that are a continuation of the
previous card. It 15 used as a continuation if Column 6 contains
any character other than zero or blank except for an initial identi-
fication control card and all comment cards. BRLESC does not limit

) the number of continuation cards allowed for one - statement but some

other computers do have some limit.

- Columns T-T2 contains 1nfdrmation, one or more statements,
comments, control informetion, ete. devending on the type of cards
as indicéted'by Colurm 1. BRLESC will allow more than one statement
per card if the symbol $ (> until January 1967) is used to separate
the statements. A special program is available for compacting and

repunching a FORTRAN program so that it will have more than one state-
ment per card. ‘ '

Columns 73-80 are ignored by BRLESC and may contain any desired
identification. '

Blank columns are ignored except when they are in an H field in
a FORMAT statement or alphanumeric constants.

- Blank cards will be’ignored on BRIESC.

Note that it is permissible to use FORAST coding sheets tb write
FORTRAN programs. The key punchers must not use Column 6 as part of
tne statement number and must not allow a statement to go past Column

T2. It does not matter whether the statement starts in Column 7 or
11.

F Cards

If the name of a subroutine or function (either predefined or
defined by a subprogram) is used as an argument for another subroutine
or function, its name,usually without the terminal F, must appear on a
card with an F in Column 1. This F card must be in the program (or
subprogram) that uses the subroutine as an argument and may be anywhere
within that progranm.

60

wov s T ,_,]

et v ot = merome - et ety o e e

The names of the subroutines are to start in or beyond Column T

and are separated by commas.

Example: F SIN, EXP, FUN5, ATAN

On BRIESC, the terminal F is {> be cmitted from those function
names fhat have an initial letter that indicates the proper'typerof
result according to the I-N fulgs. It must be retained on those
names that do not indicate the proper type of result, e.g., LOGF ,
MAXOF. This same rule for the terminal F applies where .the name is
used as an argument for a subprogram. When programming a subprogram
to accept a function name as an argument, the dummy variable should

end with F only if the initial character does not indicate the proper-.

type of result. If a final F is used with at least three other
characters, then the result type is integer only if the name begins
with X.

For FORTRAN IV, the EXTERNAL statemenrt replaces the F card and

serves the same purpose.
XVII. BRLESC QONTROL CARDS AND DICTIONARY PRINTING

The use of certain control cards are allowed to affect the compi-
lation of FORTRAN programs. Most of these apply to BRLESC FORTRAN
only, although some are also used on T090/TO94. All of the control
cards are marked with an ¥ in Column 1 with the control information

starting in or after Column T.

* The first card of a program that has an * in Column 1
is used as identification and is printed in front of the
PUNCH output. Columns 2-80 may be used. (On all other
cards with * in Column 1, only Columns 7-T2 may be used.)
The first thing after the ¥ should be the official problem
number followed by & blank column and this should not

extend beyond column 20.

61

AT L M et

NN K

vt o e ke

I e b ST N

B

* CHANGE + AND - o

A Thig\card reverses the meaning of + and - signs in the
- -program deck, except in FORMAT statements. BRL signs are

used initially, (After January 1967, this card will not be

‘allowed and will cause an error print.)

* smsmi{gfm} D

This control "statement" allows sense switch i to be
"preset" either UP or DOWN. By using this control card,
the operator can be relieved of actually setting the sense
switches. B |

* PRTOPU
This control statement causes the compiler to translate

all following PRINT statements as though they were PUNCH
statements. (Allows card output instead of tape.)

* RTTORC
- This control statement causes the compiler to translate .
all following READ INPUT TAPE, INPUT or READ(t,f) statements
as though they were READ statements. (Use card input instead

of tape.)

* WITCPU
- This control statement causes the compiler to translate
all following WRITE OUTPUT TAFE, OUTPUT or WRITE(t,f) state-
ments as though they were PUNCh statements.

* WITOPR
This control card causes the compiler to translate all
following WRITE OUTPUT TAPE, OUTPUT or WRITE(t,f) statements
as though they were PRINT statements.

62

1IsT
SYMBOL TABLE

Either of these causes the storage dictionary to he
printed. The asterisk in Column 1 is not required on the
LIST card. ' : ‘

The dictionary is printed with names of variables .
arranged in alphabetical order within each subprogram.
Function and subroutine names will be preceded by two
asterisks. Main program names will be preceded only by
‘two blanks and subprogram nemes will be preceded by one
character and one asterisk or period. The character pre-
ceding each subprogram name will be 1,2,...,9,A,B;...T
corresponding to the segquence in which the subprograms
appeared in the program deck. The name of each subprogram
" will appear on a separate line before the dictionary‘for
that subprogram. If more than 30 subprograﬁs are used,
some diétionaries for two subprograms will be mixed to-
gether with both Subprogram names preceding that section
of the complete dictionary. When this occurs, those names
preceded with an asterisk are from the subprogram whose
name appears on the left side of the subprogram name éard
and those names preceded ﬁith a period are from the sub-

program whose name appears o the right.

Following each name will be the sexadecimal memory
address that has been assigned to the name. Following
this address, any of the following letters may appear:

indicates an array name.

indicates an integer variable.

indicates a logical variable. (FORTRAN IV)
indicates the name was in a COMMON statement.
indicates the name was in an EQUIVALENCE statement.
indicates the name was used only once.

a H Q pH >

63

PP

e

& TECeE

o S R

£ e e et s e . s e osae

e

“,=Stat¢ment numbers are priﬁted at the right end of the
 gix charactgr,name'position and therefore always precede

‘the names of the variables in any subprogram. The compiler
usually adds a few names to the dictionary to indicate
temporary étorége and special subroutines. The name $SUBS.
is printed uéually at the end of the dietionary to indicate
the length of the predef*ned subroutines. The subroutines
extend from this address down through 0103L and includes all
of the input-output storage and subroutines. The $KOS. name
printed usually as the next to last name in the dictionary:
indicates the length of the "constant pool". This storage,
from 0SO down to but not including the address printed after
$NOS., is used to store the constants and the "array words"
required by the program. The $LAST entry printed with the
dictionary indicates the largest address used by the program
with the possible exception of some tape buffers at the end of

the memory.

For array names, the address printed in the dictionary is

the initial address of the array.

The names of all the COMMON variables used within a
subprogram may not appear in the dictiorary for that subprogram.
When the common statements of a subprogram are processed, a
check is made to determine if the names and required storage
are the same as those for the main program. All of the names
up to the point of the first disagreement in name or storage
are deleted from the subprogram dictionary. If the subprogram
common statements are identical to the main common statements the
then the words MAIN COMMON are printed preceding the subprogram
dictionary. If the first common name of the subprogram disa-
grees with the first common name of the main program, then the
check and deletion explained ébove is made with the common

statements of the previous subprogram.

6l

If the subprogram common statements are identical to the
previous subprogram common statements then the name of the

previous subprogram foliowed by COMMON is printed preceding
the subprogram dictionary.

Nemes in COMMON are assigned last, so the last name in
the COMMON assignment within the subprogram that has the
most COMMON storage will mark the end of all the storage
used by the program. The instructions for the program and
all the subprograms are stored first, then all the variables
not in COMMON are assigned storage immediately afier the
instructions and this is followed by those variables in COMMON.

LIST8
LIST (S.CODE)

Either of these control cards causes the dictionary and
the sexadecimal code for the entire program to be printed.
Four instructions are printed on & line with the address
of the first one printed at the beginning of the llne.

The * in Column 1 of LIST (S.CODE) may be omitted unless
LIST is the name of an array.

LIST (B.CONE)

This control card causes the entire program and the
subroutines it uses to be punched on binary cards with
absolute add."esses. To use this deck to run the program,
it must be preceded by a binary input routine and followed
by the standard set of FORTRAN input-output routines and a

Jump to OT3. The * in Column 1 may be omitted unless LiST
is the name of an array.

65

S ?M&”ﬁ;‘:‘f i e ;

sk e b S 4t e o s e bt

XVIII. BERLESC ASSEMBLY ORDERS
 BRLESC mmm allows BRLESC assembly orders to be written on

- carde that have & $ in column 1 (¥ is used instead of $ until

January 1967). The same general form as used in FORAST is allowed,

but not the special processing of addresses, formulas, etec. FORTRAN
_statements must not be put on the same card with assembly orders,
‘but more than one assembly order may be put in columns 7-T2 by.

geparating them with a $ symbol. The general form of each order s
like FORAST, i.e.,O0P(A)B)C$ where "(" after ")" is optional, the
last ") and the last $ are optional and less than three addresses
is permitted. omments may follow $$.

Por BRLEGC assembly orders:

Col.l $ (% is used until January 1967)

Cols.2-5 Blank, statement number ar symbolic name
is allowed.

Col.6 Normal FORTRAN continuation column., ($ in

col.l not required on continue cards.)
Cols.T=T2 One or more BRIESC assembly orders.
Cols.T3-80 Identification only.

The following symbolic order types are the only ones allowed:

A B SET J- JC M
S CB 51 TAPE NOP by |
M CEQ INC CARD RSW RCL
D CNB II ZERO MMF

c CNEQ LP Cing IPI

SQRT PMA J 13 NGB

SH IT Js EA JNA

P HALT J+ JA JIC

The syumbolic parameters of X,F,A or +,V,R, are alloved vith
the same meaning as used in FORAST. The X and F cannot de written
before the order type and a minus sign is lgnored uxcept for the
J- order type. ‘

oL 66

A decimal parameter is also allowed. All arithmetic orders,
including SHift, are floating point unless X parameter is used.

A GOTO statement with one address is allowed but none of the
other general FORAST statements are allowed.

No assembly order may have more than three addresses including
SET and INC and they cannot include & GOTO. However any of the
orders that set or increase index registers may be written with an
= 1ike FORAST allows. Index registers cannot be increased by a
negative amount.

A comma is used to indicate indexing in tlie same manner as
FORAST. Constant increments (and decrements on symbolic addrecses)
are allowed. All index addresses must be absolute, decimal or sexa-
decimal. Addresses 13-23(0J-O1N) and 48-55(030-03T) are not pre-
sently used for anything in FORTRAN compiled programs. Inmmy variables must
never be ip“exed and variables that might be assigned to a "large
address" must not be indexed. "large Addresses” may be used anywhere
as long as they are not indexed. (FORTRAN allows large addressing by
using indexing automatically on all lafge addresses.)

FORTRAN srray subscripting is not allowed in any BRLESC assembly
orders. When an array name is used by itselfl, it references the
"array word", not the first element o the array.

Deciunl addresses are allowed and sexadecimsl addres -es must have
& leading zero. Statement nuibers used for an address must 2ither Le
preceded by "S/" or followed bty an S. Decimal numbers must be pre-
ceded by an * end may be sither s FORTRAN integer or floating point
coustant, Fixed point fractiions are not allowed, Sexadecimal cone-
stants may be written following a leading "/ ard may use M,A and 2

ns allowed {1 FORAST.

mm i

[r—

-

[1

A daten st 4 4 et

There is no special processing of any addresses like there
is in FORASD for B of SH,JA,JMA,JC,JNC and y of 1/0 arders. These

a.ddreeses snould normlly be written in sexadecimal.

Rames of subroutines may be used as an address only by pre-
ceding each one with "F/" or 1ncludmg each one in an EXTERNAL

statement or on an "F card".

Decimal increments and decrements are allowed on symbolic
addresses and may be written either before or after the index name,
e.g., A+2,1l or A,14+2. SELF is also allowed to refer to an order's

own address.

Symbolic names may be assiguned absolute addresses by using a
SYN statement on a $ card. SYN may be followed by any number of
pairs of pai'entheses that enclose one symbolic address and one

absolute address separated by "=". An example is:

$ sm(A=oao)m29h2)(01.oo=2.1)$

Note that "("after")" is optional and that $ at the end indicates
that the rest of this card will not be used.

A group of sexadecimal or decimal constants may be stored by
using a SEXA or DEC statement on a $ card. Any number of constants
may be put on one card but no other statements or assembly orders
are allowed on the same card.- Constants are separcted by parentheses
with "(" after ")" being optional. For sexadecimal constants, Z
indicates a string of zeros, A a string of five ‘sexadecimal zeros
and M a string of five ‘sexadecimal L's. Any legal FORTRAN decimal

constant may be written on a DEC card.

el s s

IR e e e et e« i e

SO P R

EJcan;ples: $ SEXA(L)08Z)(10Kz82)4r$
$ DEC(1k)3.)6.1E-3)$

Some examples of BRLESC FORTRAN assembly orders are:

AV(F)*7.1)T1$ SHX(Q,2)0286)0$
TAPE(SS2B)360)017 $ SET(15=0)3=1$
ING(2=2+1)21=21+4)$ CNEQ(W)/2a)k2S$
B12(R-1,4))TT$ TP10)12)/M)SELF+2$
-J8(A)A+50)(F/SEXAPR)$ GOTO(TEST)$ ~ ;
029(07000)s, 243)IT$ MMF(1,6)300)08000$

B A i R i s e i .z B B ot L

LA £ S R H

XIX., MAXTVUM TME AND OUTPUT SPECIFICATIONS

BRLESC FORYRAN allows tie programmer to control the maximum
amount of time a3 program wilil be allowed to run and the maxinum
amount of output it will be allowed to print. If the programmer
does not specify these maximums, BRIESC will set them at five
minutes and 1200 lines. Whenever either one of the specified
maximums is Qxceeded, BRLESC will stop the execution of the program

after the appropriate error print.

Maximum Time

The maximum time specification is of the form
$ MAXT(integer number MINS.

where the initial $ is in column l'(% instead of $ is uged until

January 1967) and the rest of the specif? ation is in columns T-T2.
"MINS." may be replaced with "HRS." or "SECS." to specify hours or
seconds instead of minutes. DNote that fractions of time units are

not allowed.

The time begins when this card is encountered by the compilér g
and hence some compilation time must be included when estimatin; the t%a

maximum time.

69

ST R MR I it T T S o bt W s O T 8 Sl R vy L

gt .

If the statement number 98765 has been used, BRLESC jumps to
thet statement when the maximuwr iime has been exceeded. If 98765
has nqt been used as a statement number, BRLESC gives the following

" error print:

EXCEFDED MAXT. Il= s OCTAL AR.REFS.= a b ¢ CIK= cr

where s is the octal contents of index register 1, a,b, and ¢ ere

v the octal contents of indexes 10,11 and 12 respectively which are

- the last array addresses referénced, and cr is the clock reading

at the time of the error print. This clock reading contains six
digits, two each for hour:, minutes and hundredths of minutes.

This same errcr print is obtained if BRLESC stops for some reason

during execution of a FORTRAN programand tiae clock reading can be
compared with the initial time to determine how long the program
ran before it stopped.

Fxamples:
' $ MAXT(3)MINS.
$ MAY(90)SwuCS.
$ MAXT(2)HRS.

Maximum Output

The maximum output specification is of the form
$ MAXO(integer number)LINES

where the initisl $ is in column 1 (% instead of $ is used until
January 1067) end the res* of tko syecification is in columns T-T2.

.Blank lines caused by sleashes in formats count as lines; however

any lines skipped by ucirg variical control characters do not count.
All tape or card alphanumeric output is inciud.d in the counting of
lines but binary tape output is not included.

Note that MAXO ends with the letter O, not zero.

70

"i

RN e s

When the specified amount of output has been exceeded, BRLESC
will not go to statement number 98765. It gives an error print of:

EXCEEDED MAXO AT s OCTAL AR.REFS.= a b ¢ CIK= cr

where s is the octal address of the statement that caused the output
maximum to be exceeded, a,b and c are octal addresses of the last
array elements referenced and cr is the clock reading at the time of

this error print.

Examples: »
$ MAXO(500)LINES
$ MAX0(20000)LINES

It is permissible for MAXO and MAXT specifications to be on the

~same card with each other or with BRLESC assembly orders.

XX. STATEMENT NUMBER 98765

The statement number 98765 may be used to obtain some extra
printing after a program fails to run to completion or exceeds the
maximum time. When an unexpected machine halt occurs, the operator
manually causes BRLESC to go to statement 98765 if this statement
number»was used. At 98765, the program should do a limited amount of
printing that could be helpful in determining where and why the pro-
gram stopp=d and then should do a STOP statement.

Each link of a CHAIN job may have its own 98765 statement.

Tl

RN 1

P
i
X
&
A
o
MO
&
G4
3
|3

i amrm e v o min e ‘e b

[ROPIURTRIPRI R SO Y S S

XXI. CHAIY JOBS

BRIESC FORTRAN ailows segmentation of large programs by using
CHAIN control cards and a CHAIN subroutine. BRLESC is esséntially
compatible with T09/7090 FORTRAN in the way this is done. Each
"1ink" of the chain must be preceded by a control card of

% CHAIN(R,T)

where R is an identifying integer number (less than 32768 on T09/T090)
and T is a tape unit designation of any two alphanumeric characters
(must be B2,B3,Ak or Bl on T09/7090). BRLESC always uses tape T

for storing links. Each link.consists of a complete FORTRAN program
with a msin program and all of its subprograms.

Any link may during execution begin execution of any other link
by executing a CALL CHAIN(R,T) statement where R and T both are used
to identify the link that is to be executed next.

Data may be passed from one link to the next one through COMMON
storage only. 'No program should assume any other storage is pre-
served from one link to the next. There is a chance of incompati-
bility between BRLESC and cther computers if links that have short
programs with long COMMON are mixed with links that have long pro-
grams with short COMMON. When this incompatibility arises, an error
print of CH.COM.BIF occurs.

Sense switches that are preset with BRLESC control cards will
remain preset in all following links unless the link .contains a new
preset card. Other control cards will not aftf'ect following links
except a LIST cerd will cause dictionary printing in all following
links.

DATA statements may not be used in chain jobs.

When labeled common is used in chain jobs each link must contain

all of the labels. The labels must appear in the same order in each link.

T2

et - e, R R B R PR TR SRR

XXTI. BRLESC COMPILFR ERROR PRINTS

The BRLESC FORTRAN compiler checks for a limited number of
types of errors in the program it is compiling. It definitely will

not find all possible errors, but some errors will cause one of the

error prints listed below. The type of error can be recognized
either by the number that follows the word ERROR and precedes the

comma or by the "error word" that is printed. The form of the

error print is

FORTRAN ERROR t,m Error Word Ident. W First 30 cols. of *Ident.Card

where }
t =
m : =

Error word =

Ident. =
W =
TYPE ERRCR WORD
1 ILL.CHAR.
2 SYM.ST.NO
3 MIXED EXPR
L INT**FLT
5 IL.RETURN
6 NO = IN DO
T SUBPRS.>60
8 BIG ADD.ID
9 NO, CP.GOTO
10 ILL.STAT.
11 FLT.INDEX
12 ILL.DIM.

type or error »
ten col, field at which error was detected; m=0,1,...,T
ten alphanumeric characters that describe the type

of error as listed below.

cols.T3-80 of card at which error was detected.

rest of the mth field on the card at time of

error detection.

DESCRIPTION
Illegal character on program card.
Symbolic statement number, not all decimal digits.
Mixed expression, integer and fl.pt. arithmetic.
Integer rsised to fl.pt. power is illegal.
Jllegal RETURN statement, used in main program.
No equals symbol at proper place in DO statement.
Tried to compile more than 60 subprograms.
Big address is indexed. Program is too big.
No comma at proper place in computed GOTO statement.
Illegal statement.
Subscript involves a fl.pt. rnumber.
Number of subscripts is not same as dimensionality

of the array.

T3

'TYPE ERROR WORD | DESCRIPTION

13 . ILL.COMMA Comma is used improperly in an arithmetic
' , expression.
14 ASD.ST.NO Assigned statement number; same. statement

‘ , nuﬂber used twice.
15 COMPLEX AR Complex arithmetic cards (I in Column l) not
| allowed on BRLESC.
16 EQU. TABLE EQUIVALENCE table is full.
17 COM. ASGND COMMON name was previously assigned.

18 ARRAY .REW Array name used before it was defined.

19 DICT.FULL Dictionary is full. |

20 COL.T NO. Statement begins with a decimal digit.

21 SENSE >6 Sense light or Sense Switch number greater than 6.
22 DO NO END Statement number used in DO never appeared.

(It may have been missed due to another error.)
2l IL.EQUALS Illegal = symbol or arithmetic was specified on
the left of the = symbol.

OV PO~ S

BAD TAPE T Temporary tape T gives persistent parity errors.

25 IL. - BOOL Illegal "not" operation on boolean card.
26 IL. /BOOL Boolean division is undefined.

; % 28 IL.**BOOL Boolean exponentiation is undefined.
§ é 29 DRUM STAT. Drum statements not allowed on BRLESC.
. 20 I1.I0 LIST Tllegal input-output list.
; 31 TAP CODE An * FAP card is not allowed on BRIESC,
: 32

33

NO IDENT * No identification card «t beginning of program.

2l N>6 IN NH Alphanumeric constant of more than six characters.
35 CONST POOL The constant pool is full.

=6 LABEL COMM More than 32 different COMMON labels.

57 COM. TABLE The COMMON table is full.

38 STP FULL - More than 800 dummy veriable references.
39 DOT FULL More than 63 nested DO loops.
40 ATP FULL More than 64 dummy variable references in an

arithmetic statement function.

Th

)

TYPE ERROR WORD - DESCRIPTION

b1 ARG FULL More then 100 subprogram afgﬁments;

Lz FTB FULL More than 50 subroutine names on F cards.

L3 I>32 IN AE Arithmetic expression has too many operatiohs

grouped to the right.

Ly ILL.EQUIV Illegal EQUIVALENCE statement.

ks NON-SEXA. Illegal character in a sexadecimal word or address.
L6 IL.AS.O.T. Illegal BRLESC assembly order type.

L7 IL.AS.ADD Illegal BRLESC assembly address.

48 NOo $ AS.O. No $ symbol at end of BRIESC assembly order.
kg NON-DEC Improper character in a decimal number.

50 IL.AS SYN Illegal SYN statement.

51 DM VAR ID. Dummy variable was indexed in assembly order.
52 NOT , OR) Improper punctuation.

53 STPE FULL More than 600 ENTRY dummy variable references.
54 SEL FULL More than 100 ENTRY names and dummy variables.
55 DIM. COMMA Missing comma in DIMENSION.

56 LONG I NO. Integer constant of more than 17 digits.

57 DUPL. COM. Duplicated neme in COMMON.

58 MAXTO NO I Number on MAXT or MAXO card is not an integer.
59 EXTRA PUNC Extra punctuation symbol.

60 BAD L.NAME Bad logical operation or relation name or

illegal period.

61 DATA BAD = Equsl symbol at illegal place in DATA statement.
62 DAT.IL.NO. Illegal number in a DATA statement.

€3 DATA FULL Too much data in DATA statements.

64 HUNG UP Computer stopped during compilation.

ERROR. DATA STAT. NOT ONE TO ONE CORRESPONDENCE BETWEEN NAMES AND %
NUMBERS. (Self explanatory) o :
FORTRAN ERROR, INDEXED LARGE ADDRESS. 3 PREV., ORDS. + PART ORDER ON

NEXT LINE. An assembly order address larger than 16383 was also indexed.
TAPE 7 REACHED END OF TAPE DURING CHAIN COMPILATION PLEASE TRY AGAIN.
(Self explanatory.)

i
i
3

75

ERROR TAPE T FORTRAN

- -If the rignt end of this error print line says "PARITY ERROR",

" it was caused by & persistent error on temporary tape 7. If the

line ends with anything else, it is a name that cannot be found in
the dictionary and this usually indicates a machine error.

‘ It must be remembered that the sbove mentioned cause is only
the probable error. Sometimes some type of undetected error later
causes one of the detected error prints at a point where no error
exists. It also happens that some errors are not detected until the
next card has been read. (W = m = O when this happens.)

After each error print, the entire card that the compiler
currently has in the memory will also be printed. (If W=m = O, the
error was probably on the previous card, otherwise it probably is the
card that contains the error.)

X{III. EBERLESC RUN ERROR PRINTS

Sore of the predefined FORTRAN subroutines used on BRLESC detect
certain errors in the dats they prccess. When such an error is
detected, a RUN ERROR line is printed and the program is not allowed
to continue to run. The error print consists of one line of infor-

mation of the following form:

RUN ERROR "Error word" Date Cols.l-30 of Ident.Card LE No.

where "BError word" is an alphabetic word that identifies the type of

error.

Date is the date.

LE is the location (in decimal) of the entry to the
subroutine that detected the error.

No. is a number that in some cases was an illegal argument.

76

. 'ﬁ e AN 1 Mot e s .+ -+ oo i s AR 15 S~ o 2t et b NI i S, 3 T b v o

Run Error List: (X and Y represent arguments.)

ERROR WORD SUBROUTINE REASON NO.

LCG X NEG LOGF or ALOG X<0 X

EXP BIG X EXPF or EXP X s 354,89 X/Loge2

ARCSIN i+ ARCSINF or ARCSIN X > 1+2-49 x|
ARCCOSF or ARCCOS

SINCOS NS SINF or COSF Ix|/2x » 16%0 X/ 2n
or SINCOSF
SIN or COS

POWER OTO- POWERS X=0and ¥ <0 Zero
(xponentiation)

CVFTOI BIG XINTF or XFIXF Ix|= 161 X
INT or IFIX

FRROR WORD EXPLANATION

END TAPE t Tried to read beyond information written on tape t.

TAPE TKA u Persistent tape error on trunk A where u is actual
tape switch number and "no." is total number of tape
errors.

TAPE TKB u Same as TAPE TKA u except =rror is on tape trunk B.

BAD FORMAT Illegal character in a FORMAT statement.

NO(FCRMAT More right parentheses than left parentheses in a
FORMAT statement.

LONG LINE Output line is more than 170 characters.

MACH TAPE- Machine tape error of setting negative sign bits when
there wasn't any parity error.

CH.COM.BIG Illegal combination of large and small COMMON in
CHAIN links.

CHAIW ID. A CHAIN lInk called is not on the tape.

CHAIN PAR. Persistant tape T parity error when reading a CHAIN link.

EXCLEDED MAXT Exceeded maximum execution time or did not run to normal

completion. (See Section XIX)

EXCEEDED MAXO Exceeded maximum amount of output. (See Section XIX)

71

RO

i
i
£
|
¥

XXIV. OPERATION OF THE BRLESC FORTRAN COMPILER
The BRLESC FORTRAN compiler exists on magnetic tape in much the

same manner as the FORAST compiler and operates in a very similar

manner. Meny copies of +the compiler and the predefined suuroutines
are on one tape and the tape reading is arranged so that it is
checked and automatically corrected by using the next copy on the
tape. The tape automatically backs up twenty copies after the las.
copy on the tepe is used. Normally, successive copies are used for
coapiling successive programs.

Mich of the translation is done concurrently with the reading
of the program cards (or tape). The partially translated code is
put on a tewporary tape and the dictionary and constant pool are
kept in the memory. After the last card of the program is read
(B in Column 1 or * DATA), all unassigned symbels in the dictionary
are assigned ctorage. The memory that will be used by a program is
cleared to zeros and then the temporary tape is read, the translation
of each instruction is completed and it iz stored in the memory for
running. Progrems are stored from 01040 and may extend to the end
cof the memory. Next, the subroutines are read from the campiler tape
ard the ones needed are stored backwards from 0840. (The standard
input-output routines occupy 0860-103L.)

The efficiency of the generated code is good except for the
referencing of arra&s with variable subscripts. Such one dimensional
referencing causes one extra order to be done,two dimensional reference-
ing causes two extra orders to be done and three dimensional referenc-
ing causes four extra orders to be done. These orders are extra in the
sense that they would not be needed in the corresponding FORAST or hand-
coded programs. Subscripu expressionc and other arithmetic expressions
are evaluated as they are written except that instructicns involving
only constants will be done at compile time, The compiler does not
presently make use of the "accumulate" option allowed on BRLESC in-
structions.

78

XXV. SPEED OF BRLESC FORTRAN COMPILING

The BRLESC FORTRAN compiler is very fast and hence is desigrad
for "load and go" operation. Programmers are encouraged to kee
their FORTRAN programs in symbolic form and translate them each time
they are run. This wustes very little if any computer time and is
most convenient for the programmer.

Most of the translation is done concurrently with reading the
program cards at the present maximum speed of 800 cerds per minute.
The total time required for translating a program consisting of
C cards can be approximated by the formula:

time in sees. = 2 + /13 + C/75

The 2 seconds is compiler tape time, the C/13 is card read time and

C/T5 allows time for reading the temporary tape and completing the
translation, If the program ©o be translated is put on tape off-line,
the C/13 term can be reduced by at least one-half. So the translation
rate is about TOO statements per minute from cards or abvout 1500
statements per minute from tape. (The tape rate will vary consider-
ably with the complexity and length of the statements being translated.)

XXVI. RUNNING FORTRAN PROGRAMS ON BRIESS

The following list summarizes the steps for compiling ani running
FORTRAN programs on BRLESC.

1., Have FORTRAN compiler tape on tape switch 15 (14 if PORAST
is on 15.)

2. Have tape switcn T set to & temporary tape,

3., If have card input, be sure manual read switch 36 is dowm.

L., If have tape input (program on tape), set manual read switch
5 up and set tape switch 6 to input tape unit.

5. If want all tape output, set manual read swiich 35 up and
set tape svitch 8 to output unit. Aleso put manual read
switch 34 up if this output tape shouwlé be rewound at the
end of this problem.

19

T BTy

s b bl s 3. e o e e

S R

. v
© LTS ad o AT AR MMt) Nl B Rt

mioama b e 5 o B S 2 T . R ST Y, =W SNl o b e L

Sl Ao T

1.

-

If programmer specifies any other input or output tapes,
mount proper tapes and set proper tape switches. (The
programrer may also specify 8 as an output tape without
manual read switch 55 being up.) /

'Use "tape start" button to initiate ccmpiling the program.

Halts:

a. NLO; End of problem. Initiate'only if problems
\ are stacked. Compiler found program error -
if B address of halt order is LLL.

b. 080; End of output tape reel. Tape unit number
is B of halt crder. Change reel and initiate.

c. 081; Erd of input tape reel. Tape unit number is B
of halt order. Change reel and initiate.

d. All other halts or cycles; note PO and NI registers
and do a jump to 058. It should soon get to N4O.

XXVII. MAJOR DIFFERENCES BETIWEEN FORAST AND FORTRAN

The following list of some of the basic differences between

these two programming languages should be useful to anyone who knows

one language and is interested in learning the other one.

1.

Statement numbers in FORTRAN must be integer numbers that
are used as symbolic names whereas the location field in
FORAST may contain any symbolic name and a decimal integer

is used as an absolute address.

The initial character of a variable name must be alphabetic
in FORTRAN and may indicate the type of variatle. In
FORAST, the initial character may be a decimai digit and

has no special significance.

«0

et s

TR i e

EXW ammere gt s

3,

10.

The type of names used in FORTRAN arithmetic expressions

determines the type of arithmetic performed. In FORAST,
the type of arithmetic performed is floating point unless
changed by a MODE card or by preceding the formula by "FIX"
or "INT".

The type of & constant is determined in FORTRAN by the
presence or absence of a decimal point. In FORAST, con-
stants assume the same type as the type of the statement

they are written in.

In FORTRAN arithmetic formulas, automatic conversion from
one type of variéﬁle to another is provided when the type
of variable on the left of the = symbol is different from
the type of the variables used on the right of the = symbol.
In FCRAST, this converion must be accomplished by the ex-

plicit use of the appropriate subroutine when it is desired.

FORAST allows the use of many = symbols to indicate more
than one result address in ar arithmetic formula while

FORTRAN allows only one variesble name for a result address.

Constant subscripts are enclosed in parentheses in FORTRAN
but not in FORAST.

A1l subscripts have an initial value of one in FORTRAN.
In FORAST, the initial value may be specified as zero or any

positive integer for each array individually.

Variable subscripts are allowed in FORTRAN but not in FORAST.
FORAST accomplishes the same thing more efficiently oy
allowing any address to be indexed by a single index regicter.

Three dimensional arrays are allowed in FORTRAN but not in
FORAST. ' '

61

-—-ﬂzg T

A e . o it

SRR WA L e T R T, IR e S

130

1L,

15.

BRI EI i s D raa b R AT B G 1 R T e B P

FORTRAN sllows & multiply and an add or subtract in a

subscript expression while FORAST allows only the
addition or subtraction of a conestant in an indexing.
expression.

FORTRAN usually allows only one statement per card and
FORAST allows more than one. The statement field is
colums T-T2 for FORTRAN and columns 11-T6 for FORAST.

Functions in arithmetic expressions may have more than
one argument in FORTRAN but not in FORAST.

Implied multiplication is allowed in FORAST but not in
FORTRAN (although it does work in some FORTRAN compilers).

Absolute addresses are not allowed in FORTRAN but are
allowed in FORAST. (They are allowed in BRLESC FORTRAN
assembly orders.)

XXVIII. CHECKLIST FOR CONVERTING OTHER COMPUTER
FORTRAN PROGRAMS TO BRLESC FORTRAN
The first card should be an identification card with an
asterisk in Column 1. Columns 2-20 should contain a
valid BRLESC problem number.

If the signs used in the programs are reversed to BRL usage,
insert a "CHANGE + AND -" control card after the identifi-
cation card.

If the signs punched on the input date do not agree with
BRL signs, the use of & CALL SETMSI(1) statement is re-
quired where i = 1 means y punch is minus, i = 2 means x
punch is minus and i = 3 allows either x or y to indicate
minus, (The CHANGE + AND - contrcl card does not change
input data signs.)

82

BsEte TS

10,

ll.

DIMENSION, COMMON and EQUIVALENCE statements must be
arranged in that order whenever any variable name appears

in more than one of these statements. Also a variable

cannot be made equivalent to itself, either directly or
indirectly.

If there isn't an * DATA card between the program and the
input data, insert such a card. (A card with an E in
column 1 may be used instead of the * DATA card on ERLESC.)

If the program uses sense switches, it 1s best to insert ;
control cards to preset them. (* SETSSW i UP or DOWN)

If tapes are vsed, make sure the tape unit numbers used
are compatible with BRLESC. (Those over 9 may need to be
changed.)

If desired, change tape output to card output or viée versa
by inserting control csards. Since BRLESC does not have

an on-line printer, PRINT statements cause output on

tape 8 unless changed by control cards.

Arrays cannot have more than three dimensions and each
reference to an array element must use the same number

of subscripts as declaured in the array definition.

A nonsubscripted array name cannct be used to represent
only the first element of the array.

An array argument for a subprogram must have the same
number of dimensions as the corresponding array dummy
variable within the subprogram. Such array arguments
nust not have any subscripts, i.e. the argument must be
Just the name of the array. For example, it is illegal
to try to use a column of a two dimensional array as an

argument for a one dimensional array dummy variable,

N3

12,

13.

1k,

16.

17.

18.

FORMAT statements should not have any + signs on scale
factors; BRLESC will use them as minus signs.

Alphanumeric constants are restricted to a maximum. of
six characters except in FORMAT statements. (Also the
CHANGE + AND - control card dces not interchange sign
characters in any alphanumeric constants.)

Some computers will skip n lines when n slashes occur at
the beginning or end of a FORMAT statement but BRLESC
will always skip n-l lines for n consecutive slashes.

When indexing information is specified within an I/0 list,
BRIESC does not allow these index variables to be involved
in arithmetic subscript operations except for the addition
or subtraction of a constant. Indexing control within
I/0 lists does also actually use the variable named
rather than just an unnamed index register as happens

on some computers.

DO indexing variables do actually get used for counting
within the DO loop. Some computers may use an unnamed
index register instead.

The program needs to be modified if it contains any of the
following: (1) DRUM statements,(2) I cards (complex
arithmetic), (3) assembly instructions for some other
computer or, (4) more memory or tape units than available
on BRLESC.

If the beginning of an assignment statement is the same
as the beginning of some other FORTRAN statement, BRLESC
nmay erroneously assume that it is the other statement.
(ne of the errcr prints will usually occur when this
happens. It is best not to use statement names, such as

IF, DO, READ, ctc., as variable names, especially arrays.

Also TYPER, TYPEIL, TYPEL, TYPED and TYPEC must not be

used as the first five letters of any statement except
a TYPE statement.

19. ENTRY statements may have to be moved closer to the beginning
of a subprogram if any of its dummy variables will actually
be used in a statement that precedes the ENTRY statement.

For CDC FORTRAN programs, a list of dummy variebles may
need to be added to the ENTRY stetemenz,

20. Non-standard subprogram :xits are not allowed. (Indicated
by an * instead of a name on an argument list and integer
numbers after RETURN in RETURN statements.)

21. Arithmetic statement functions are made availablc to a whole
program rather than just the subprogram in which they appear.
This shouldn't cause any difficulty unless the same name has

been used for two different arithmetic statemert functions.

22, 1If possible, ask the original programmer if any special

characteristics of a particular computer or FORTRAN compiler
were assumed when writing the program.

23, 1If possible, run a test case that has been run on another
computer.

In addition to the sbove general comments, programs that were
written for CDC computers .an have a number of other ircompatibiiities.
Such programs should be checked for the following items:

1. Assignment statements with more than one = symbol.
2. Mixed type arithmetic expressions.
3., DO loops that will not be done at least once,

4. ENCODE, DECODE, BUFFER IN, BUFFER OUT, IF(EOF,t),
IF(IOCHECK,t) and IF(UNIT,t) statements.

85

e e s e nen iR

10.

Executable DATA statements that have statement numbers.
Numbers as COMMON labels.
Octal constants with a B at the end.

ENTRY statements without dummy variables. CDC automatically
uses the subprogram dummy variables with each ENTRY statement.

Alphanumeric constants with R instead of H preceding the
constant.

TYPE stotements of non-standard form *hat declare unusual

data structures and operations.

XXIX. SUMMARY OF BRLESC FORTRAN IV STATEMENTS

Notations:

5,61,52,..... &are statement numbers (look like integer numbers).

i,11,i2,..... are integer varisble names,

m,ml,m2,..... are integer varisble names or integer constants.

ae represents an arithmetic expression.

le represents a logical expression.

b,c,d,e,f represent any variable names or constants.

(1 represents a tape uriti number,

T represents the statement number or variable name
of a FORMAT statement.

v,vl,v2 represent variable names.

86

AT o

Specification Statements:

DIMENSION v,vl1,v2,....

EQUIVALENCE (v,vl,..),(v2,v3,..)

COMMON v,vl,.../ 8/v2,.../ b/v3,..

o

FREQUENCY s(m,ml,..),s1(m2,..)
REAL v,vl,v2,...

INTEGER v,vl,v2,...
LCGICAL v,v1,v2,...
DOUBLE PRECISION v,vl,...
COMPLEX v,vl,va; N

TYPE REAL v,vl1,v2,...
TYPE INTEGER v,vl,v2,...
TYPE LOGICAL v,vl,v2,...
TYPE DOUBLE v,vl,v2,...
TYPE COMPLEX v,vl,v2,...

EXTERNAL namel,name2,...

Defines array names and
maximum dimensions of each.

Defines synonymous names,

Defines names common between
subprograms. & and b are
optional labels.

Provides optimization in-
formation. Ignored by BRLESC.

Defines real (fl.pt.)

variable names,

Defines integer wvariable names.
Defines logical veriable names.
Same as REAL on BRILESC.

Not allowed on ERLESC.

Same as REAL,

Same as INTEGER.

Same as LOGICAL.

Same as DOUBLE PRECISION.

Not allowed on BRLESC,

Specifies names of functions

or subroutines that are used as
arguments for other functions
or sutroutines.

Assigmnment Statements:

vV = 8

aaf(v,V]., oee)' ae

v = le

Control Staten=znts:
GO TO s
ASSIGN s TO 1

GC 10 1, (s1,s2,...)

6o T0 (s1,82,...),1

DOs ! = ml,maymj

e Sttt

AR AP » Ty g VEL L e 2 o bt 3, A AT B T, 2

Evaluates expressions ae and
storea result in v,

Arithmetic statement function
wvhere asf represents its name
and v,vl,... are the dummy

variebles.

Evaluates loglcal expression le
and stores .TRUE. or .FALSE. in

v. (v must be a logical variable.)
(If the operands for the logical
operations in le are arithmetic
variables, then the operation is
performed on all bits of the word
(36 bits on BRIESC). This is a
CDC statement.)

DO statement s next.

Put address of s into i.

Do next the statement whose number
was last assigned to i by an ASSIGN
statement.

Do statement si next.

Repeat statements to and including
s with { = ml,ml + m3, ml + 2nj,...
until 1 > m2.

B RN, oot

D0s 1=ml,m

IF(ae)sl,s2,83

IF(le)st

IF(ae or le)sl,s2

CONTINUE

STOP or STOP w

PAUSE or PAUSE w

CALL name (v,vl,v2,...)

IF(SENSE SWITCH r)sl,s2

SENSE LIGHT r

(o2}

Same as above with m3 = 1.

Do statement sl next if ae 1s
negative; 82 next if ae is zero
and s3 next if ae is positive.
where st 1s any executable state-
ment except IF and DO. Statement

st is done only if le has value

.TRUE.

Statement sl is done next if the
expression is not zero or .TRUE.
and statement s2 is done next if
the expression is zero or .FAISE.
(Is CDC statement.)

Dummy statement.

End of execution of main program.
(v 1s octal no.)
Computer halts. (Displays octal
no. w.)

Perform the subroutine specified by
"name .

Do statemen. sl next i{f switch r

is down, do 82 next if it is up.

For r = 0 turn all sense lights off.

For r = 1,2,3, or 4, turn light r on.

IF(SENSE LIGHT r)sl,s2

IF ACCUMULATCR OVERFLOW sl,s2
IF QUOTIENT OVERFLOW sl,s2
IF DIVIDE CHECK sl,s2

Subprogram Statements:
SUBROUTINE name (v,v1,v2,...)

FUNCTION name (v,vl,v2,...)

ENTRY name (v,vl,v2,...)

BLOCK DATA

R R Y e s g

Do statement 8l or s2 next if
sense light r is on or off
respectively. Turn light r
off if it was on.

These are special statements to
check certain overflow indicators.
Statement sl or s2 is done next
if indicator is on or off
respectively.

Nefines the name and beginning
of a subroutine.

v,vl,v2,... are the dummy variables.

Defines the name and beginning
of a function subprocgram.

Define the name and dummy
variables of extra entry pointe
for subprograms.

Indicates an execution exit of
8 subprogram.

Marks the end of a subprogram.

Special subprogram statement
to allow DATA statements to
store into labeled COMMON.

o et A Y 3 A - i

s

T o T

Input-Output Statementsn:

FORMAT (Special Specifications)

READ f, list
PUNCH £, 1ist

PRINT f, list

READ(t,f) 1list

READ INPUT TAPE t,f,list
INPUT t,f, iis.
WRITE(t,f) list

WRITE OUTPUT TAPE t,f,list
OUTPUT t,f,list
READ(t)1list

READ TAPE t,list
WRITE(t)list

WRTTE TAFE t,list

END FILE +

BACKSPACE t

REWIND ¢

READ IRUM m,ml,list
WRITE [RUM m,ml,list

91

Duscribes the fields for
input-output data.

Read cards.

Punch cards.

Print data, (on-line on some
computers, off line on ERIESC).
Read alphanumeric tape.

Read alphanur ::c tape.

Read alphanumeric tape.

Write alphanumeric tape.

Write alphanumeric tape.

Write alphanumeric tape.

Read blnary tape.

Read binary tape.

Write bLinary tape.

Write binary tépe.

Write end-of-file mark on tape.
Move tape back one record.
Rewind tape.

Read drum. (Illegil on BRLESC.)

Write drum. (Illegal on BRIESC.)

1
i
H
5
i
H
H

Y |

Ay

DATA v,v1,.../c,cl:.../ Stores initial values for
variables. c,cl,... represeuts
- constants.
~ DATA (v=c),(vl=cl),... This is CDC form of the DATA
- _statement.
ACKNOWLEDGEMENT'S

Mr. Alfred Anderson reviewed the text and programmed the subroutine
that reads and prints decimal numbers in the object programs. Messrs

Michsel Romanelli and George Francis also reviewed the text and offered

constructive criticism.

LLOYD W. CAMPBELL

. GLENN A. BECK

92

oy

REFERENCES

Campbell, L. and Beck, G. The Instruction Code for the BRL
Electronic Scientific Computer (BRLESC), Ballistic Regesrch
Laboratories Memorandum Report No. 1379, November 1961.

Camptell, L. and Beck, G. The FORAST Programming Language for
CRDVAC and BRLESC, Ballistic Research Laboratories Report No.
1275, March 1965.

IRM 7090/709h Programming Systems FORTRAN II Programming
(Form C28-6054-5), 1963.

IBM General Information Msnual, FORTRAN (Form F28-80Tk-1), 1961.

IBM Reference Manual, 709/7090 FORTRAN Operations (Form C28-6066-5), -

1963.

IM 7090/709h Programming Systems FORTRAN IV ILanguage
(Form C28-627L4-2), 1963.

FORTRAN vs Basic FORTRAN, Communications of ACM, October 196k.
FORTRAN 63/Reference Manual, CDC, 196k.

FORTRAN 66, CDC 6600 Programming System, Volume 2, 196k,

95

APPENDIX A
LIST OF PREDEFINED FUNCTIONS FOR BRLESC

(F indicates fl.pt. and I indicates integer)

IT v Number of

NAME NAME ~ ARGUMENT RESULT ARGUMENTS DEFINITION
ABSF ABS F F 1 Absolute value.
XABSF IABS I I 1 Absolute value.
INTF AINT F ¥ 1 Truncation to whole number.
XINTF INT F I 1 Convert fl.pt. nc. to integer.
MODF AMOD F F 2 Arg.1(mod Arg.2).
XMODF MOD I I 2 Arg.1(mod Arg.2).
MAXOF AMAXO I F > 2 Chooses largest argument.
MAX1F AMAX1 F F > 2 Chooses largest argument.
XMAXOF MAXO I I >2 Chooses largest argument.
XMAX1F MAX1 F I > 2 Chooses largest argument.
MINOF AMINO I F > 2 Chooses smallest argument.
MIN1F AMIN1 F F > 2 Chooses smallest argument.
XMINOF MINO I I > 2 Chooses smallest argument.
XMINIF MIN1 F I > 2 Chooses smallest argument.
FLOATF FLOAT I F 1 Convert integer to fl.pt.
XFIXF IFIX F I 1 Couvert fl.pt. tc integer.
SIGNF SIGN F F 2 Transfer sign of Arg.2 to Arg.l.
XSIGNF ISIGN I T 2 Transfer simn of Arg.2 to Arg.l.

< DIMF DIM F F 2 Arg.l - minimum (Ars.l,Ar:.2).
XDIMF IDIM 1 I 2 Arg.l - minimum (Arg.l,Arz.2)
OSQRTF SORT F F 1 Square root.
SINF SIN F F 1 Sine (argument in radians)

‘ COSF cos F F 1 Cosine (arpument in ra.ians)
LOGF ALOG F F 1 Natural loparithm,
XPF EXP F ¥ 1 Exponentlal.
ATANF ATAN F F 1 Arctanzent (result in radians)
TANHF TANH F F 1 Hyperbolie tenrment,
ALOC10 F F 1 Base ten loparithm,
ATAN2 F F 2

Arctangent of (Arg.l/Ar:.2)

| -

e ar e A4

1T IV Number of
NAME NAME ARGUMENT RESULT ARGUMENTS DEFINITION

Non-Standard functions allowed on BRLESC:

XLOCF Foril I 1 Stores the address of the Arg.
ATANL F F 2 Same as ATANZ.

ARCSINF ARCSIN F F 1 Arcsine.

ARCCOSF ARCCOS F F 1 Arcosine.

ARCTANF ARCTAN F F 1 Arctangent (same ac ATANF).

96

APPENDIX B. THREE EXAMPLES OF FORTRAN PROGRAMS

END

(PROGRAM, INPUT DATA, AND OUTPUT ARE LISTED)

EXAMPLE | MULTIPLY TWO VECTORS Aep LeWe CAMPBELL
DIMENSION A(10)+B(10),C(10)

READ 2,A,8

DO 3 1=],10

Cll)=A(I)=BLI])

PUNCH 4,C

sTOoP

FORMAT (L 4HVECTOR PRODUCT/(5EL14.7))

ENV

(THIS CA%D REQUIRED ONLY ON BRLESC.)

le.] 60435 22.8 91.7
16.¢ 193.44 83.61 2.648
4.2) 8.23 15.9 7.77
24 3.0 B.1118 19.1

0CT.25+63 BRLESC FORTRAN 2

»

EXAMPLE | MULTIPLY TWO VECTORS AeB Lewe CAMPBELL

VECTOR PRODUCT

374.18

9.8

RAR.1

42.44

0.95936100t 02 0.4966805t 03 0.3625200€ 03 0.7125090€ 03 0.3¢96526€ 05

0.9774000€ 02 0.5803200E 03 0.6782276E 03 0.5057680F 02 0.4159120F C)

(e}
-~

. EXAMPLE 2 FIND SMALLEST NUMBER IN ARRAY F, L.CAMPBELL

OIMENSION Fi20)
READ 2,F
SMALL=sF(1)
D0 9 J=2,20
IF(SMALL-F(J))9,9,8

8 SMALL=F(J)

9 CONTINUE
PUNCH 3,SMALL
stop

3 FORMAT(1LIHSMALLEST F=F13,6)

END
END
16.1 60.35 22.8 91.7 374.18
36.2 193.44 83.61 2.648 9.8
.21 8.23 15.9 T.77 88.1
2.7 3.0 8.1118 19.1 42.44

00T7.25463 BRLESC FORTRAN 2

o EXAMPLE 2 FIND SMALLEST NUMBER IN ARRAY Fy, L.CAMPBELL

SMALLESY F= 2.648000

O

EXAMPLE 22 FROM BRL REPORT 1209 CODED IN FORTRAN-L.CAMPBELL

USE BISECTION METHOD TO FIND ROOT OF F(X)=Xee3=X~-]

IN

INTERVAL (1,2)

EXAMPLE 22 FROM BRL REPORT 1209 CODED IN FORTRAN-L.CAMPBELL

C
L1 FORMAT(S5X,1HXLO0X4HF(X)//)
21 FORMAT(1P2E15.7)
31 FORMAT(24HCONDITIONS NOT SATISFIED)
x='-.
Xl=2.
EPS=,00001
ASSIGN |1 T0 K
PUNCH 11
44 F=Xe(XeX~1l.)~1,
PUNCH21 ¢ XoF
COTOKs(1,4,7)
1 FO=¥ .
IF(F)2,15,15
15 XP=x
GOTO0 3
2 XN=X
3 X=X1
ASSIGN 4 10 K
GOT0 44
4 Fl=F
IF(F)5,45,45
45 XP=X
GOTO 6
5 XN=X
6 ASSIGN 7 TO K
IF(FO®F1)66,65,65
65 PUNCH 31
67 STOP
66 X={XN+XP)/2.
GOTO 44
T IF{ABSF(F)=EPS)6T 11,71
71 IF({F)8,T2,72
72 XP=X
GOYO0 64
B Xri=X
GOTO 66
END
END
NCT.29,63 BRLESC FORTRAN 2
w
X FIX)
1.0000000E 00 ~-1.0000000€ 00
2.0000000€ 00 S.0C00C0000E 00
1.500000Mr€ Q0 8.7500000€E-01
1.2500000c 00 -2.9687500&-0]
1.375000CE 00 2.2460938€E~0]
1.3125000€ 00 -5.1513672€E-02
1.3437500E 00 R,2611084E-02
13281250 00 1,4575958€~-02
1.3203125€ 00 -1.8710613€E-02
1.32642167€ 00 ~-2,1279454E-03
1.3261719E 00 6,20008296€-0)
1.32%1953 00 2.0366507€~0)
1.324T070E 00 ~4,.6594883%E~-05
1.3249512€ 00 9.94790°7E-0¢
1.3248291E 00 4.74030882E-0¢
1.3247681E 00 2.1370716€-04
1.3247375€ 00 8.3552438E-05
1.3247223%€ 00 1.8477852€-09
1.3247147€ 00 ~1.4058747¢€-05

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classilication of title, body of abstract and indexing annotetion must be entered when the overall report is classified)

t. ORIGINATIN G ACTIVITY (Corporate author) 28. REPORT SECURITY C LASSIFICATION
J.S. Army Ballistic Research Laboratories Unclassified
Aberdeen Proving Ground, Maryland 25 arour

3. REPORT TITLE

BRLESC FORTRAN IV

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

5 AUTHOR(S) (Last name, first name, initial)

Campbell, Lloyd W. and Beck, Glenn A.

6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
October 1966 108 2
88 CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)
b prosscT no. ROT&E 1POL4501A14B Report No. 1346
c. 0. OTHER n}ponr NO(S) (A ny other numbers that may be assigned
this report,
d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

1. SUPFLEMENTARY NOTES 12. SPONSORING MiLITARY ACTIVITY

U.S. Army Materiel Command
Weshington, D.C.

13. ABSTRACT

FORTRAN is popular programming language that has been implemented on many computer.
It is now available on Ballistic Research Laboratories' BRLESC computer. This
repcrt describes the FORTRAN language in general and includes specific details
about its implementation on BRLESC.

DD .';?ﬂ- '473 Unclassifiad

Security Classification

————————— vy |

I A ST

Unclassified

Security Classification

- wwme T a:f*'a]

i S (b L 11 et

KEY WORDS

LINK A
ROLE wT

LINK B
ROLE wT

LINK C
ROLE wT

Programming Language
Digital Computer
BRLESC Computer
Compiler

FORTRAN

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the repont.

2a. REPORT SECURTY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
‘‘Restricted Data’’ is included. Marking is to be in accord
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
gm:iuu have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete repozt title in all
capital letters. Titles in all cases should be unclassified.
If « meaningful title cannot be selectad without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If sppropriate, enter the type of
report, e.g,, interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S):: Enter the name(s) of suthor(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principsai suthor is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or manth, year. If more than one date appears
on the report, use date of publication.

7. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information

70. NUMBER OF REFERENCES Enter the totsl number of
teforences cited in the report,

8a. CONTRACT OR GRANT NUMBER: If sppropriste, enter
the spplicable number of the contrect or gramt under which
the report was weritten

82, &k, & 8d. PROJECT NUMBER. Enter the approprinte
military department identificstion, such as project number,
subproject number, system numbers, task number. etc.

Oe. ORIGINATOR'S REPORT NUMBER(S): Emer the offi-
cial report number by which the document will be identified
and controllied by the origineting ectivity. This number must
be unique to this report.

9b. CTHER REPORT NUMBER{S): If the roport has been
assigned any other report numbera {either by the originetor
ot by the sponsor), also enter thin rumber(s’.

13 ARSTRACT: Enter an ubatruct giving a briel and factual

10, AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) **Qualified requesters may obtain copies of this
report from DDC.’”’

(2) “Foreign announcement and digssemination of this
report by DDC is not author:zed.’’

(3) *U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

11
.

(4) **U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

(3) *All distribution of this report is controlled Qual-
ified DDC uners shall requeat through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known -

11. SUPPLEMENTARY NOTZ=ZS: Use for additional explans-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or 1aboratory sponsoring (pas~
ing for) the research and development. Include sddress.

summary of the document indicative of the report, even though
it may also appear eleewhere in the body of the technical re:
port. If wdditional space ix required. 8 continuation sheet
shall he attached.

It 1x highly desirable that the abstract of clansified te-
porte he unctananified. Each psragraph of the abatract shall
cnd with an indication of the military security classification
of the formation in the parapraph, repreaented an (TS). (S).
(C), ar ().

There in no limitation on the leagth of the shatract. How.
ever, the suggented length (s [rom 150 to 228 words.

14. KEY WORDS: Key wordn are technically meaningful terms
or short phrases tha! characterize a8 repont and may bhe usned as
index onteien for catsloging the repart. Key words muat be
selected xn that ne aecuvity classification is required. lden.
fiers, auch at equipment model dexignation, trade name. =ili-
tary project code name, geogeaphic location, may tw used as
ey words hut will be followed by an 1ndication of techaical
~ontext. The asnignment of hinke, rulea, and weighta in
sptannal

Unclagsified
Security Clsssilication

"

= S

