
lor OS/2®

Programmer's Guide

Borland® C++
for OS/2®
Version 1.5

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1987, 1994 by Borland International. All rights reserved. All Borland products
are trademarks or registered trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249

PRINTED IN THE UNITED STATES OF AMERICA

1 EOR0294
9495969798-987654321
H1

Contents

Introduction 1 Scope 27
What's in this book 1 Name spaces 27
An introduction to the formal definitions 2 Visibility 28

Syntax and terminology 3 Duration 28

Chapter 1 Lexical elements 5
Static 29
Local 29

Whitespace 5
Line splicing with \ 6

Dynamic 29
Translation units 29

Comments 6
C comments 6
C++ comments 7
Nested comments 7

Linkage 30
Name mangling 31

Declaration syntax 32
Tentative definitions 32

Delimiters and whitespace 7 Possible declarations 32
Tokens 8 External declarations and definitions 34

Keywords 8
Identifiers 10

Naming and length restrictions 10
Case sensitivity 10
Uniqueness and scope 11

Constants 11
Integer constants 11

Type specifiers . 36
Type categories 36

Type void 37
The fundamental types 38

Integral types 38
Floating-point types 39
Standard conversions 39

Floating-point constants 14
Character constants 15

Special char, int, and enum conversions ... 40
Initialization 40

String constants 17
Enumeration constants 18

Arrays, structures, and unions 41
Declarations and declarators 42

Constants and internal representation 19
Constant expressions 20

Use of storage class specifiers 44
auto 44

Punctuators 21 extern 44
Brackets 21
Parentheses 21

register 44
static 44

Braces 21
Comma 22

typedef ~ 45
Modifiers 45

Semicolon 22 const 46
Colon 22 volatile 47
Ellipsis 22
Asterisk (pointer declaration) 23

Mixed-language calling conventions 47
Function modifiers 50

Equal sign (initializer) 23 Pointers 50
Pound sign (preprocessor directive) 24 Pointers to objects 51

Chapter 2 Language structure 25
Declarations 25

Pointers to functions 51
Pointer declarations 51

Objects 25
lvalues 26

Pointer constants 52
Pointer arithmetic 53

rvalues 26 Pointer conversions 54

Storage classes and types 26 C++ reference declarations 54

Arrays 54 Equality operators 87
Functions 56 Logical operators 89

Declarations and definitions 56 Conditional ?: 90
Declarations and prototypes 57 Assignment operators 90
Definitions 58 Comma operator 91
Formal parameter declarations 59 C++ operators 92
Function calls and argument conversions 60 The size of operator 93

Structures 61 Statements 94
Untagged structures and typedefs 61 Blocks 95
Structure member declarations 62 Labeled statements 95
Structures and functions 62 Expression statements 95
Structure member access 63 Selection statements 96
Structure word alignment 64 if statements 96
Structure name spaces 65 switch statements 97
Incomplete declarations 65 Iteration statements 98
Bit fields 66 while statements 98

Unions 67 do while statements 98
Anonymous unions (C++ only) 67 for statement 99
Union declarations 68 Jump statements 99

Enumerations 68 break statements 100
Expressions 71 continue statements 100

Expressions and C++ 73 goto statements 100
Evaluation order 74 return statements 100
Errors and overflows 75

Operator semantics 75
Operator descriptions 75

Primary expression operators 76
Postfix expression operators 78

Array subscript operator [] 78
Function call operators () 78
Member access operators. (dot) 79
Member access operator -> 79
Increment operator ++ 79
Decrement operator - - 79

Unary operators 79
Address operator & 80
Indirection operator * 81
Plus operator + 81
Minus operator - 81
Bitwise complement operator - 81
Logical negation operator! 81
Increment operator ++ 82
Decrement operator - - 82

Binary operators 82
Additive operators 83
Multiplicative operators 84
Bitwise logic operators 84
Bitwise shift operators 86
Relationaloperators 86

Chapter 3 C++ specifics 103
New-style typecasting 103

const_cast typecast operator 103
dynamic_cast typecast operator 104
reinterpret_cast typecast operator 105
static_cast typecast operator 106

Run-time type identification 107
The typeid operator ~ 108
The __ rtti keyword and the -RT option. . .. 109

The -RT option and destructors 110
Referencing 111

Simple references 111
Reference arguments 111

Scope resolution operator:: 113
The new and delete operators 113

Handling errors 114
The operator new with arrays 114
The operator delete with arrays 116
The ::operator new 116
Initializers with the new operator 116
Overloading new and delete 117

Classes . 119
Class names 119
Class types 119
Class name scope 120

Class objects : 120
Class member list 121
Member functions 121
The keyword this 121
Wine functions 121

Wine functions and exceptions 122
Static members 123
Member scope 125

Nested types 126
Member access control 127

Base and derived class access 128
Virtual base classes 130
Friends of classes 130

Constructors and destructors 132
Constructors 133

Constructor defaults 134
The copy constructor 135
Overloading constructors 135
Order of calling constructors 135
Class initialization 137

Destructors 140
Invoking destructors 140
atexit, #pragma exit, and destructors 140
exit and destructors 140
abort and destructors 140
virtual destructors 141

Operator overloading 142
Overloading operator functions 146

Overloaded operators and inheritance 146
Unary operators 146
Binary operators 147
Assignment operator= 147
Function call operator() 147
Subscript operator[] 147
Class member access operator-> 148

Polymorphic classes 148
virtual functions 148

virtual function return types 149
Abstract classes 150

C++ scope 152
Class scope 152
Hiding 152
C++ scoping rules summary 152

Templates 153
Function templates 154

Overriding a template function 155
Template function argument matching ... 156

Class templates 157
Arguments 159

iii

Angle brackets 159
Type-safe generic lists 159
Eliminating pointers 161

Template compiler switches 161
Using template switches 162

Chapter 4 Exception handling 165
C++ exception handling 165

Exception declarations 166
Throwing an exception 167
Handling an exception 168

Exception specifications 169
Constructors and destructors 172
Unhandled exceptions 172

C-based structured exceptions 172
Using C -based exceptions in C++ 173

Handling C-based exceptions 174

Chapter 5 The preprocessor 177
Null directive # 178
The #define and #undef directives 178

Simple #define macros 178
The #Undef directive 179
The -D and -U options 181
The Define option .. " 181
Keywords and protected words 181
Macros with parameters 181

File inclusion with #include 184
Header file search with <header_name> 185
Header file search with "header_name" 185

Conditional compilation 185
The #if, #elif, #else, and #endif conditional
directives 185

The operator defined 186
The #ifdef and #ifndef conditional
directives 187

The #line line control directive 188
The #error directive 189
The #pragma directive 190

#pragma argsused 190
#pragma codeseg 190
#pragma comment 190
#pragma exit and #pragma startup 191
#pragma hdrfile 191
#pragma hdrstop 192
#pragma inline 192
#pragma intrinsic 192
#pragma option 192

Predefined macros 194

__ BCOPT __ 194 Container directories 217
__ BCPLUSPLUS __ 194 The LIBS and BIN directories 217
__ BORLANDC __ 194 The INCLUDE directory 218
__ CDECL __ 194 The SOURCE directory 218
__ cplusplus 194 The EXAMPLES directory 218
__ DATE __ 194 Debugging containers 219
__ DLL_ _ 195 The persistent streams class library 219
__ FILE __ 195 What's new with streaming 220
__ LINE __ 195 Object versioning 220
__ MT __ 195 Reading and writing base classes 220
__ 052 __ 195 Reading and writing integers 221
__ PASCAL __ 195 Multiple inheritance and virtual base
__ STDC_ _ 195 support 222
__ TCPLUSPLUS __ 195 Creating streamable objects 222
__ TEMPLATES __ 195 Defining streamable classes : 223
__ TIME __ 196 Implementing streamable classes 224
__ TURBOC __ 196 The nested class Streamer 227

Chapter 6 Using C++ streams 197
What is a stream? 197

Writing the Read and Write functions 227
Object versioning 229

The iostream library 197 Chapter 8 Dynamic-link libraries 231
The streambuf class 197 Dynamic linking 231
The ios class 198 Creating DLLs 232

Stream output 199 DLL initialization and termination 232
Fundamentaltypes 200 DLL option on the command line 233
I/O formatting 200 The DLL setting in the IDE 233
Manipulators 200 OS/2 DLL system calls 233
Filling and padding 202 Loading a DLL 234

Stream input 203 Freeing a DLL 235
I/O of user-defined types 204 Getting a DLL name 236
Simple file I/O 204 Getting a DLL handle 236
String stream processing 205 Getting a DLL procedure address 237
Screen output streams 207 Getting a DLL application type 237

Chapter 7 Using Borland class libraries 209
Getting a DLL procedure type 239

The container class library 209 Chapter 9 Building OS/2 applications 241
Containers and templates 209 Resource script files 243
ADTs and FDSs 210 Module definition files 243

Choosing an FDS 210 Import libraries 245
Direct and indirect containers 211 Project files 245
Sorted containers 211 Setting project options 246
Memory management 212 Building applications within the IDE 246
Container naming conventions 213 Building the PMHELLO program 246
ADT /FDS combinations in the library 213 Building a DLL within the IDE 247
Container iterators 213 Building applications with the command-line
Object ownership 214 tools 248
Using containers 214 Building the PMHELLO program 248

A sorted array example 216 Compiling 248
A dequeue example 216 Linking 249

iv

Compiling and binding resources 250 Virtual memory and paging 261
Compiling and linking a DLL from Using as / 2 memory services 262
the command line 250 Private memory 262
Using MAKE 251 Shared memory 263

Linking with the Borland DLLs 251 Named shared memory 263
Linking with the multi-thread libraries 252 Give-get shared memory 264

Chapter 10 Mathematical operations 255 Chapter 12 Inline assembly 265
Floating-pointI/O 255 Inline syntax 266
Floating-point options 255 Inline assembly references to data and

Fast floating-point option 256 functions 267
Registers and the 80x87 256 Using C structure members 268
Disabling floating-point exceptions 256 Using jump instructions and labels 269

Using complex types , 257
Using bcd types 258

Converting bcd numbers 259

Appendix A ANSI implementation-specific
standards 271

Number of decimal digits 259 Index 283

Chapter 11 OS/2 memory management 261
Flat memory model 261

v

Tables

1.1 All Borland C++ keywords 9 2.11 Associativity and precedence of Borland C++
1.2 Borland C++ register pseudovariables 9 operators 71
1.3 Borland C++ keyword extensions 9 2.12 Borland C++ expressions 72
1.4 Keywords specific to C 10 2.13 Unary operators 80
1.5 Keywords specific to C++ 10 2.14 Binary operators 82
1.6 Constants-formal definitions 11 2.15 Bitwise operators truth table 85
1.7 Borland C++ integer constants without L 2.16 Borland C++ statements 94

or U 13 5.1 Borland C++ preprocessing directives
1.8 Borland C++ floating constant sizes syntax 178

and ranges 15 6.1 Stream manipulators 201
1.9 Borland C++ escape sequences 16 6.2 Console stream manipulators 207
2.1 Borland C++ declaration syntax 33 7.1 Borland containers and header files 210
2.2 Borland C++ declarator syntax 34 7.2 Container name abbreviations 213
2.3 Borland C++ class declaration syntax (C++ 7.3 ADT /FDS combinations 213

only) ," 35 8.1 DosLoadModule return values 234
2.4 Declaring types 37 8.2 DosFreeModule return values 235
2.5 Integral types 38 8.3 DosQueryModule return values 236
2.6 Methods used in standard arithmetic 8.4 DosQueryModuleHandle return values ... 236

conversions 40 8.5 DosQueryProcAddress return codes 237
2.7 Declaration syntax examples 43 8.6 pFlags Bits 0-2 238
2.8 Borland C++ modifiers 45 8.7 pFlags bits 3-15 238
2.9 Calling conventions 48 8.8 DosQuery AppType return values 238
2.10 External function definitions 59 8.9 DosQueryProcType return values 239

A.1 Identifying diagnostics in C++ 271

vi

Figures

1.1 Internal representations of numerical types. 20
6.1 Class streambuf and its derived classes ... 198

6.2 Class ios and its derived classes 199
9.1 Compiling and linking aPM program 242

vii

viii

To get an overview of
the Borland C++ doc-
umentation set, start

with the Users Guide.
Read the introduction
and Chapter 1 in that
book for information

on how to most
effectively use the

Borland C++
manuals.

Introduction

This manual contains materials for the advanced programmer. If you
already know how to program well (whether in C, C++, or another
language), this manual is for you. It is a language reference, and provides
you with programming information on C++ streams, object container
classes, converting from Microsoft C, floating point, inline assembly, and
ANSI implementation.

Typefaces and icons used in these books are described in the User's Guide.

What's in this book

Introduction

Chapters 1-5: Lexical elements, Language structure, C++ specifics,
Exception handling, and The preprocessor describe the Borland C++ lan
guage. Any extensions to the ANSI C standard are noted in these chapters.
These chapters provide a formal language definition, reference, and syntax
for both the C and C++ aspects of Borland C++. Some overall information
about Chapters 1 through 5 is included in the next section of this
introduction.

Chapter 6: Using C++ streams tells you how to program input and output
using the C++ stream library.

Chapter 7: Using Borland class libraries tells you how to use the Borland
C++ object container classes (including templates) in your programs.

Chapter 8: Dynamic-link libraries discusses DLL libraries and dynamic
linking.

Chapter 9: Building OS/2 applications explains how to use the Borland C++
tools to help you get started developing Presentation Manager (PM)
applications.

Chapter 10: Mathematical operations covers issues regarding floating-point
computation, and using complex and bcd numerical types.

Chapter 11 : OS/2 memory management describes the memory
management system used by OS/2 version 2.x where x is greater than or
equal to zero.

Chapter 12: Inline assembly tells how to write assembly language
programs so they work well when called from Borland C++ programs.

Appendix A: ANSI implementation-specific standards describes those
aspects of the ANSI C standard that have been left loosely defined or
undefined by ANSI, and how Borland has chosen to implement them.

An introduction to the formal definitions

2

Chapters 1-5 describe the C and C++ languages as implemented in Borland
C++. Together, they provide a formal language definition, reference, and
syntax for both the C++ and C aspects of Borland C++. They do not
provide a language tutorial. We use a modified Backus-Naur form notation
to indicate syntax, supplemented where necessary by brief explanations
and program examples. The chapters are organized in this manner:

• Chapter 1 : Lexical elements shows how the lexical tokens for Borland
C++ are categorized. It covers the different categories of word-like units,
known as tokens, recognized by a language.

• Chapter 2: Language structure explains how to use the elements of
Borland C++. It details the legal ways in which tokens can be grouped
together to form expressions, statements, and other significant units.

• Chapter 3: C++ specifics covers those aspects specific to C++.

• Chapter 4: Exception handling describes the exception-handling
mechanisms available to C and C++ programs.

• Chapter 5: The preprocessor covers the preprocessor, including macros,
includes, and pragmas, and many other easy yet useful items.

Borland C++ is a full implementation of AT&T's C++ version 3.0 with
exception handling, the object-oriented superset of C developed by Bjarne
Stroustrup of AT&T Bell Laboratories. This manual refers to AT&T's
previous version as C++ 2.1. In addition to offering many new features and
capabilities, C++ often veers from C in varying degrees. These differences
are noted. All the Borland C++ language features derived from C++ are
discussed in greater detail in Chapter 3.

Borland C++ also fully implements the ANSI C standard, with several
extensions as indicated in the text. You can set options in the compiler to
warn you if any such extensions are encountered. You can also set the
compiler to treat the Borland C++ extension keywords as normal identifiers
(see Chapter 6, "Command-line compiler," in the User's Guide).

There are also" conforming" extensions provided via the #pragma direc
tives offered by ANSI C for handling nonstandard, implementation
dependent features.

Borland C++ for OS/2 Programmers Guide

Syntax and
terminology

Introduction

Syntactic definitions consist of the name of the nonterminal token or
symbol being defined, followed by a colon (:). Alternatives usually follow
on separate lines, but a single line of alternatives can be used if prefixed by
the phrase" one of." For example,

external-definition:
function-definition
declaration

octal-digit: one of
01234567

Optional elements in a construct are printed within angle brackets:

integer-suffix:
unsigned-suffix <long-suffix>

Throughout this manual, the word" argument" is used to mean the actual
value passed in a call to a function. "Parameter" is used to mean the
variable defined in the function header to hold the value.

3

4 Borland C++ for OS/2 Programmers Guide

Whitespace

c H A p T E R

Lexical elements

This chapter provides a formal definition of the Borland C++ lexical
elements. It describes the different categories of word-like units (tokens)
recognized by a language.

The tokens in Borland C++ are derived from a series of operations per
formed on your programs by the compiler and its built-in preprocessor.

1

A Borland C++ program starts as a sequence of ASCII characters represent
ing the source code, created by keystrokes using a suitable text editor (such
as the Borland C++ editor). The basic program unit in Borland C++ is the
file. This usually corresponds to a named file located in RAM or on disk
and having the extension.C or .CPP.

The preprocessor first scans the program text for special preprocessor
directives (see the discussion starting on page 177). For example, the
directive #include <incJile> adds (or includes) the contents of the file incJile
to the program before the compilation phase. The preprocessor also
expands any macros found in the program and include files.

In the tokenizing phase of compilation, the source code file is parsed (that is,
broken down) into tokens and whitespace. Whitespace is the collective name
given to spaces (blanks), horizontal and vertical tabs, newline characters,
and comments. Whitespace can serve to indicate where tokens start and
end, but beyond this function, any surplus whitespace is discarded. For
example, the two sequences

int i; float f;

and

int i
float f· I

are lexically equivalent and parse identically to give the six tokens:

Chapter 1, Lexical elements 5

Line splicing
with \

Comments

Ccomments

6

See page 183 for a
description of token

pasting.

• int

.i

.;

• float

.f

•• ,
The ASCII characters representing whitespace can occur within literal
strings, in which case they are protected from the normal parsing process
(they remain as part of the string). For example,

char narne[] = "Borland International";

parses to seven tokens, including the single literal-string token "Borland
In terna tional" .

A special case occurs if the final newline character encountered is preceded
by a backslash (\). The backslash and new line are both discarded, allowing
two physical lines of text to be treated as one unit.

"Borland \
International"

is parsed as "Borland International" (see page 17, "String constants," for
more information).

Comments are pieces of text used to annotate a program. Comments are for
the programmer's use only; they are stripped from the source text before
parsing.

There are two ways to delineate comments: the C method and the C++
method. Both are supported by Borland C++, with an additional, optional
extension permitting nested comments. If you are not compiling for ANSI
compatibility, you can use any of these kinds of comments in both C and
C++ programs.

A C comment is any sequence of characters placed after the symbol pair /*.
The comment terminates at the first occurrence of the pair */ following the
initial /*. The entire sequence, including the four comment-delimiter
symbols, is replaced by one space after macro expansion. Note that some C
implementations remove comments without space replacements.

Borland C++ does not support the nonportable token pasting strategy using
/**/. Token pasting in Borland C++ is performed with the ANSI-specified
pair ##, as follows:

Borland C++ for OS/2 Programmers Guide

c++ comments

You can also use II to
create comments in C
code. This is specific

to Borland C++.

Nested comments

Delimiters and
whitespace .

#define VAR(i,j)
#define VAR(i,j)
#define VAR(i,j)

In Borland C++,

(i/**/j)
(i##j)
(i ## j)

1* won't work *1
1* OK in Borland ett *1
1* Also OK *1

int 1* declaration *1 i 1* counter *Ii

parses as these three tokens:

int i ;

c++ allows a single-line comment using two adjacent slashes (! j). The
comment can start in any position, and extends until the next new line:

class X { II this is a comment
. .. };

ANSI C doesn't allow nested comments. The attempt to comment out a line

1* int 1* declaration *1 i 1* counter *1; *1

fails, because the scope of the first 1* ends at the first *1. This gives

i i *1

which would generate a syntax error.

By default, Borland C++ won't allow nested comments, but you can over
ride this with compiler options. See the User's Guide, Chapter 4, "Settings
notebook," and Chapter 6, "Command-line compiler" for a description of
code-generation options.

In rare cases, some whitespace before 1* and II, and after *1, although not
syntactically mandatory, can avoid portability problems. For example, this
C++ code

int i = jll* divide by k*/ki
tID;

parses as int i = j tID; not as

int i = j/ki
tID;

as expected under the C convention. The more legible

int i = jl 1* divide by k*1 ki
tID;

avoids this problem.

Chapter 1, Lexical elements 7

Tokens

Keywords

8

Borland C++ recognizes six classes of tokens. Here is the formal definition
of a token:

token:
keyword
identifier
constant
string-literal
operator
punctuator (also known as separators)

As the source code is scanned, tokens are extracted in such a way that the
longest possible token from the character sequence is selected. For example,
external would be parsed as a single identifier, rather than as the keyword
extern followed by the identifier al.

See page 183 for a description of token pasting.

Keywords are words reserved for special purposes and must not be used as
normal identifier names. The following tables list the Borland C++ key
words. You can use options to select ANSI keywords only, UNIX key
words, and so on; see the User's Guide, Chapters 2 and 6, for information on
these options.

If you use non-ANSI keywords in a program and you want the program to
be ANSI compliant, always use the non-ANSI keyword versions that are
prefixed with double underscores. Some keywords have a version prefixed
with only one underscore; these keywords are provided to facilitate porting
code developed with other compilers. For ANSI-specified keywords there
is only one version.

Note that the keywords _ _ try and try are an exception to the discussion
above. The keyword try is required to match the catch keyword in the C++
exception-handling mechanism. try cannot be substituted by __ try. The
keyword _ _ try can only be used to match the _ _ except or _ _ finally
keywords. See the discussion of exception handling in Chapter 4 of this
book.

Borland C++ for OS/2 Programmers Guide

Table 1.1 __ asm else long __ syscalJ
All Borland C++ _asm enum new _syscalJ

keywords asm __ except operator struct
auto __ export _'-pascal switch
break _export '-pascal template
case extern pascal this
catch _Jar16 private throw
__ cdecl Jar16 protected __ try
_cdecl _Jastcall public try
cdecl Jastcall register typedef
char _Jinally return union
class float __ rtti unsigned
const for short virtual
continue friend signed void
default goto sizeof volatile
delete if static wchar_t
do inline __ stdcall while
double int stdcall

Table 1.2 _AH CL EAX ESP
Borland C++ register _AL _CS -EBP -FLAGS

pseudovariables _AX _CX - EBX FS
BH OH ECX GS - - -

-BL - 01 -EOI _51

-BP -OL -EOX _SP
BX - OS - ES _55

_CH _OX -ESI

Table 1.3 __ asm __ export Jastcall -stdcall
Borland C++ keyword _asm _export _.-pascal __ syscalJ

extensions __ cdecl _Jar16 '-pascal _syscalJ
_cdecl Jar16 pascal --rtti
cdecl _Jastcall __ stdcall __ try
__ except

Chapter 1, Lexical elements 9

Table 1.4 _Jinally __ try
Keywords specific

to C

Table 1.5
Keywords specific to

C++

Identifiers

Naming and length
restrictions

Case sensitivity

10

asm
catch
class
delete
friend

inline
new
operator
private
protected

public
template
this
throw

Here is the formal definition of an identifier:

identifier:
non digit
identifier nondigit
identifier digit

nondigit: one of

abcdefghijklmnopqrstuvwxyz_

ABC DE F G HIJ K L MNO P QR S TUVW XY Z

digit: one of

o 1 2 3 456 789

try
virtual
__ rtti
wchar_t

Identifiers are arbitrary names of any length given to classes, objects,
functions, variables, user-defined data types, and so on. Identifiers can
contain the letters a to z and A to 2, the underscore character 1/_", and the
digits 0 to 9. The only restriction is that the first character must be a letter or
an underscore.

Borland C++ identifiers are case sensitive, so that Sum, sum, and suM are
distinct identifiers.

Global identifiers imported from other modules follow the same naming
and significance rules as normal identifiers. However, Borland C++ offers
the option of suspending case sensitivity to allow compatibility when
linking with case-insensitive languages. With the case-insensitive option,
the globals Sum and sum are considered identical, resulting in a possible
"Duplicate symbol" warning during linking.

See the User's Guide, Chapter 4, "Settings notebook," for a description of
link settings. See also the Tools and Utilities Guide, Chapter 1, "TLINK: The
Turbo linker," for a description of case-sensitivity options.

Borland C++ for OS/2 Programmers Guide

Uniqueness and
scope

Constants

Integer constants

An exception to these rules is that identifiers of type _ -pascal are always
converted to all uppercase for linking purposes.

Although identifier names are arbitrary (within the rules stated), errors
result if the same name is used for more than one identifier within the same
scope and sharing the same name space. Duplicate names are legal for
different name spaces regardless of scope. The scope rules are covered on
page 27.

Constants are tokens representing fixed numeric or character values.
Borland C++ supports four classes of constants: integer, floating point,
character (including strings), and enumeration. Figure 1.1 shows how these
types are represented internally.

The data type of a constant is deduced by the compiler using such clues as
numeric value and the format used in the source code. The formal defini
tion of a constant is shown in Table 1.6.

Integer constants can be decimal (base 10), octal (base 8) or hexadecimal
(base 16). In the absence of any overriding suffixes, the data type of an
integer constant is derived from its value, as shown in Table 1.7. Note that
the rules vary between decimal and nondecimal constants.

Table 1.6: Constants-formal definitions

constant
floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant
fractional-constant <exponent-part> <floating-suffix>
digit-sequence exponent-part <floating-suffix>

fractional-constant
<digit-sequence> . digit-sequence
digit-sequence .

exponent-part:
e <sign> digit-sequence
E <sign> digit-sequence

sign: one of
+ -

Chapter 1, Lexical elements

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f I F L

integer-constant
decimal-constant <integer-suffix>
octal-constant <integer-suffix>
hexadecimal-constant <integer-suffix>

decimal-constant
nonzero-digit
decimal-constant digit

octal-constant
o
octal-constant octal-digit

11

Table 1.6: Constants-formal definitions (continued)

hexadecimal-constant
a x hexadecimal-digit

long-suffix: one of
I L

a x hexadecimal-digit
hexadecimal-constant hexadecimal-digit

enumeration-constant
identifier

nonzero-digit one of
123 4 5 6 7 8 9

octal-digit one of
a 1 234 5 6 7

character-constant
c-char-sequence

c-char-sequence:
c-char

hexadecimal-digit one of
a 1 234 5 6 7 8 9
abcdef
ABCDEF

c-char-sequence c-char

c-char.
Any character in the source character set except the
single-quote ('), backslash (\), or newline character
escape-sequence. integer-suffix:

unsigned-suffix <long-suffix>
long-suffix <unsigned-suffix>

escape-sequence: one of
\" \, \? \\

unsigned-suffix: one of
u U

12

\a \b \f
\0 \00 \000

\t \v \Xh ...

Decimal

\n
\r
\xh ...

Decimal constants from 0 to 4,294,967,295 are allowed. Constants exceeding
this limit are truncated. Decimal constants must not use an initial zero. An
integer constant that has an initial zero is interpreted as an octal constant.
Thus,

int i = 10; /*decimal 10 */
int i = 010; /*decimal 8 */
int i = 0; /*decimal 0 = octal 0 */

Octal
All constants with an initial zero are taken to be octal. If an octal constant
contains the illegal digits 8 or 9, an error is reported. Octal constants
exceeding 037777777777 are truncated.

Hexadecimal
All constants starting with Ox (or OX) are taken to be hexadecimal.
Hexadecimal constants exceeding OxFFFFFFFF are truncated.

Borland C++ for OS/2 Programmers Guide

Table 1.7
Borland C++ integer
constants without L

or U

long and unsigned suffixes
The suffix L (or I) attached to any constant forces the constant to be repre
sented as a long. Similarly, the suffix U (or u) forces the constant to be
unsigned. You can use both Land U suffixes on the same constant in any
order or case: ul, lu, UL, and so on.

Decimal constants
o to 2,147,483,647 int
o to 2,147,483,647 long

2,147,483,648 to 4,294,967,295 unsigned long

> 4294967295 truncated

Octal constants
00 to 017777777777 int

020000000000 to 037777777777 unsigned int
00 to 017777777777 long

020000000000 to 037777777777 unsigned long

> 037777777777 truncated

Hexadecimal constants
o to Ox7FFFFFFF int
o to Ox7FFFFFFF unsigned int
o to Ox7FFFFFFF long

Ox80000000 to OxFFFFFFFF unsigned long

> OxFFFFFFFF truncated

The data type of a constant in the absence of any suffix (U, u, L, or 1) is the
first of the following types that can accommodate its value:

Decimal

Octal

Hexadecimal

int, long int, unsigned long int

int, unsigned int, long int, unsigned long int

int, unsigned int, long int, unsigned long int

If the constant has a U or u suffix, its data type will be the first of unsigned
int, unsigned long int that can accommodate its value.

If the constant has an L or 1 suffix, its data type will be the first of long int,
unsigned long int that can accommodate its value.

If the constant has both u and I suffixes (ul, lu, UI, lU, uL, Lu, LU, or UL), its
data type will be unsigned long int.

Chapter 1, Lexical elements 13

Floating-point
constants

14

Table 1.7 summarizes the representations of integer constants in all three
bases. The data types indicated assume no overriding Lor U suffix has been
used.

A floating constant consists of:

• Decimal integer

• Decimal point

• Decimal fraction

• e or E and a signed integer exponent (optional)

• Type suffix: f or F or 1 or L (optional)

You can omit either the decimal integer or the decimal fraction (but not
both). You can omit either the decimal point or the letter e (or E) and the
signed integer exponent (but not both). These rules allow for conventional
and scientific (exponent) notations.

Negative floating constants are taken as positive constants with the unary
operator minus (-) prefixed.

Here are some examples:

Constant Value

23.45e6 23.45 x 106

.0 0

O. 0

1. 1.0 x 10° = 1.0

-1.23 -1.23

2e-5 2.0 x 10-5

3E+10 3.0 x 1010

.09E34 0.09 x 1034

In the absence of any suffixes, floating-point constants are of type double.
However, you can coerce a floating constant to be of type float by adding
an for F suffix to the constant. Similarly, the suffix 1 or L forces the constant
to be data type long double. The next table shows the ranges available for
float, double, and long double.

Borland eft for OS/2 Programmers Guide

Table 1.8
Borland C++ floating

constant sizes
and ranges

Character constants

To retain the old
behavior, use the -K2
command-line option
and Borland C++ 1.0

header files and
libraries.

Type Size (bits) Range

float 32 3.4 x 10.38 to 3.4 x 1038

double 64 1.7 x 10-308 to 1.7 x 10308

long double 80 3.4 x 10-4932 to 1.1 x 104932

A character constant is one or more characters enclosed in single quotes,
such as 'A', '=', or '\n'. In C, single-character constants have data type
int. The number of bits used to internally represent a character constant is
sizeof(int) with the upper byte is zero or sign-extended. In C++, a character
constant has type char. Multicharacter constants in both C and C++ have
data type int.

The three char types I

One-character constants, such as 'A', '\t', and' \007', are represented as
int values. In this case, the low-order byte is sign extended into the high bit;
that is, if the value is greater than 127 (base 10), the upper bit is set to -1
(=OxFF).

The three character types, char, signed char, and unsigned char, require an
8-bit (one byte) storage. In C and Borland C++ programs prior to version
Borland C++ 1.5, char is treated the same as signed char. The behavior of C
programs is unaffected by the distinction between the three character types.

In a C++ program, a function can be overloaded with arguments of type
char, signed char, or unsigned char. For example, the following function
prototypes are valid and distinct:

void func(char ch) i

void func(signed char Ch)i
void func(unsigned char Ch)i

If only one of the above prototypes exists, it will accept any of the three
character types. For example, the following is acceptable:

void func(unsigned char Ch)i
void main(void) {

signed char ch = 'X'i

func (ch) i

}

Escape sequences
The backslash character (\) is used to introduce an escape sequence, which
allows the visual representation of certain nongraphic characters. For
example, the constant \n is used for the single newline character.

Chapter 1, Lexical elements 15

Table 1.9
Borland C++ escape

sequences

The \\ must be used
to represent a real

ASCII backslash, as
used in operating

system paths.

16

A backslash is used with octal or hexadecimal numbers to represent the
ASCII symbol or control code corresponding to that value; for example, ,\
03 I for Ctrl-C or I \x3F I for the question mark. You can use any string of up
to three octal or any number of hexadecimal numbers in an escape
sequence, provided that the value is within legal range for data type char (0
to Oxff for Borland C++). Larger numbers generate the compiler error
Numeric constant too large. For example, the octal number \777 is larger
than the maximum value allowed (\377) and will generate an error. The
first nonoctal or nonhexadecimal character encountered in an octal or
hexadecimal escape sequence marks the end of the sequence.

Originally, Turbo C allowed only three digits in a hexadecimal es~ape
sequence. The ANSI C rules adopted in Borland C++ might cause problems
with old code that assumes only the first three characters are converted. For
example, using Turbo C l.x to define a string with a bell (ASCII 7) followed
by numeric characters, a programmer might write:

printf("\x0072.1A Simple Operating System");

This is intended to be interpreted as \x007 and I/2.lA Simple Operating
System". However, Borland C++ compiles it as the hexadecimal number
\x0072 and the literal string I/.lA Simple Operating System".

To avoid such problems, rewrite your code like this:

printf (" \x007" "2.1A Simple Operating System");

Ambiguities might also arise if an octal escape sequence is followed by a
nonoctal digit. For example, because 8 and 9 are not legal octal digits, the
constant \258 would be interpreted as a two-character constant made up of
the characters \25 and 8.

The next table shows the available escape sequences.

Sequence Value Char What it does

\a Ox07 BEL Audible bell

\b Ox08 BS Backspace

\f OxOC. FF Formfeed

\n OxOA LF Newline (Iinefeed)

\r OxOD CR Carriage return

\t Ox09 HT Tab (horizontal)

\v OxOB VT Vertical tab

\\ Ox5c \ Backslash

\ I Ox27 Single quote (apostrophe)

Borland C++ for OS/2 Programmers Guide

Table 1.9: Borland C++ escape sequences (continued)

\" Ox22 Double quote

\?

\0

\XH

\xH

Ox3F

Wide-character constants

?

any

any

any

Question mark

o = a string of up to three octal digits

H = a string of hex digits

H = a string of hex digits

Wide-character types can be used to represent a character that does not fit
into the storage space allocated for a char type. A wide character is stored
in a two-byte space. A character constant preceded immediately by an L is a
wide-character constant of data type wch~r _t.

-.. When wchar _t is used in a C program it is a type defined in stddef.h header
file. In a C++ program, wchar_t is a keyword that can represent distinct
codes for any element of the largest extended character set in any of the
supported locales. In C++, wchar_t is the same size, signedness, and
alignment requirement as an int type. For example:

String constants

wchar_t ch = L'AB';

A string preceded immediately by an L is a wide-character string. The
memory allocation for a string is two bytes per character. For example:

wchar_t str = L"ABCD";

Multi-character constants
Borland C++ also supports multi-character constants. Multi-character
constants can consist of as many as four characters. For example, ' An', ' \
n \ t' , and ' \ 006 \ 007\ 008 \ 009' are valid constants. These constants are
represented as 32-bit int values. These constants are not portable to other C
compilers.

String constants, also known as string literals, form a special category of
constants used to handle fixed sequences of characters. A string literal is of
data type array-of-char and storage class static, written as a sequence of
any number of characters surrounded by double quotes:

"This is literally a string!"

The null (empty) string is written"".

The characters inside the double quotes can include escape sequences (see
page 15). This code, for example,

Chapter 1, Lexical elements 17

Enumeration
constants

18

"\t\t\"Name\"\\\tAddress\n\n"

prints out like this:

"Name" \ Address

//Name" is preceded by two tabs; Address is preceded by one tab. The line
is followed by two new lines. The \ II provides interior double quotes.

If you compile with the -A option for ANSI compatibility, the escape char
acter sequence //\ \//, is translated to //\// by the compiler.

A literal string is stored internally as the given sequence of characters plus
a final null character ('\0'). A null string is stored as a single' \0' character.

Adjacent string literals separated only by whitespace are concatenated
during the parsing phase. In the following example,

#include <stdio.h>

int main() {
char *p;

p = "This is an example of how Borland C++"
" will automatically\ndo the concatenation for"
" you on very long strings, \nresulting in nicer"
" looking programs.";

printf (p);
return(O) ;
}

The output of the program is:

This is an example of how Borland C++ will automatically
do the concatenation for you on very long strings,
resulting in nicer looking programs.

You can also use the backslash (\) as a continuation character in order to
extend a string constant across line boundaries:

puts("This is really \
a one-line string");

Enumeration constants are identifiers defined in enum type declarations.
The identifiers are usually chosen as mnemonics to assist legibility.
Enumeration constants are integer data types. They can be used in any
expression where integer constants are valid. The identifiers used must be
unique within the scope of the enum declaration. Negative initializers are
allowed.

Borland C++ for OS/2 Programmers Guide

See page 68 for a
detailed look at enum

declarations.

Constants and
internal
representation

The values acquired by enumeration constants depend on the format of the
enumeration declaration and the presence of optional initializers. In this
example,

enum team { giants, cubs, dodgers };

giants, cubs, and dodgers are enumeration constants of type team that can be
assigned to any variables of type team or to any other variable of integer
type. The values acquired by the enumeration constants are

giants = 0, cubs = 1, dodgers = 2

in the absence of explicit initializers. In the following example,

enum team { giants, cubs=3, dodgers = giants + 1 };

the constants are set as follows:

giants = 0, cubs = 3, dodgers = 1

The constant values need not be unique:

enum team { giants, cubs = 1, dodgers = cubs - 1 };

ANSI C acknowledges that the size and numeric range of the basic data
types (and their various permutations) are implementation-specific and
usually derive from the architecture of the host computer. For Borland C++,
the target platform is the IBM PC family (and compatibles), so the
architecture of the Intel80x86 (where x >= 3) microprocessors governs the
choices of internal representations for the various data types.

The next table lists the sizes and resulting ranges of the data types for
Borland C++; see page 38 for more infor~ation on these data types.
Figure 1.1 shows how these types are represented internally.

Type Size (bits) Range Sample applications

unsigned char 8 o to 255 Small numbers and full PC character set

char 8 -128 to 127 Very small numbers and ASCII characters

short int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned int 32 o to 4,294,967,295 Larger numbers and loops

int 32 -2,147,483,648 to 2,147,483,647 Counting, small numbers, loop control

unsigned long 32 o to 4,294,967,295 Astronomical distances

enum 32 -2,147,483,648 to 2,147,483,647 Ordered sets of values

long 32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

float 32 3.4 x 10-38 to 3.4 x 1038 Scientific (7-digit preCision)

Chapter 1, Lexical elements 19

double 64

long double 80

Jar16 pointer 32

pointer

Figure 1.1
Internal

representations of
numerical types

Constant
expressions

20

32

1 .7 x 1 0-308 to 1 .7 x 1 0308 Scientific (15-digit precision)

3.4 x 10-4932 to 1.1 x 104932 Financial (19-digit precision)

Not applicable Making calls to functions in 16-bit DLLs

Not applicable Manipulating memory addresses

_ increasing significance

short int lsi magnitude I (2's complement)

15 0

int, long int lsi magnitude (2's complement)

31

significand

31 22

j 1

II
biased I double UsL-ex..;,.p_on_e_ntL-_____ S_ig_nif_ic_an_d _______ ---l

63 51

significand d II
biased 1'1' long ouble s exponent~

7·9~~~--~~63-----------------~

s = Sign bit (0 = positive, 1 = negative)

j = Position of implicit binary point

1 = Integer bit of significance:

Stored in long double
Implicit (always 1) in float, double

Exponent bias (normalized values):

float: 127 (7FH)
double: 1,023 (3FFH)
long double: 16,383: (3FFFH)

A constant expression is an expression that always evaluates to a constant
(and it must evaluate to a constant that is in the range of representable
values for its type). Constant expressions are evaluated just as regular
expressions are. You can use a constant expression anywhere that a
constant is legal. The syntax for constant expressions is

constant-expression:
Conditional-expression

Constant expressions cannot contain any of the following operators, unless
the operators are contained within the operand of a sizeof operator:

Borland C++ for OS/2 Programmers Guide

Punctuators

Brackets

Parentheses

Braces

• Assignment

• Comma

• Decrement

11 Function call

• Increment

The punctuators (also known as separators) in Borland C++ are defined as
follows:

punctuator: one of

[](){},;: ... *=#

[] (open and close brackets) indicate single and multidimensional array
subscripts:

char ch, str[]
int mat[3] [4] i

ch = str[3];

"Stan" ;
/* 3 x 4 matrix */
/* 4th element */

() (open and close parentheses) group expressions, isolate conditional
expressions, and indicate function calls and function parameters:

d = c * (a + b) i

if (d == z) ttX;

func()i
int (*fptr) () i

fptr = func;

void func2(int n) i

/* override normal precedence */

/* essential with conditional statement */

/* function call, no args */
/* function pointer declaration */
/* no () means func pointer */

/* function declaration with parameters */

Parentheses are recommended in macro definitions to avoid potential
precedence problems during expansion:

#define CUBE (x) ((x) * (x) * (x))

The use of parentheses to alter the normal operator precedence and associa
tivity rules is covered in the "Expressions" section starting on page 71.

{ } (open and close braces) indicate the start and end of a compound
statement:

Chapter 1, Lexical elements 21

Comma

Semicolon

Colon

22

if (d == z)

ttX;
func () ;

The closing brace serves as a terminator for the compound statement, so a ;
(semicolon) is not required after the }, except in structure or class
declarations. Often, the semicolon is illegal, as in

if (statement)
{};

else
/*illegal semicolon*/

The comma (,) separates the elements of a function argument list:

void func(int n, float f, char ch);

The comma is also used as an operator in comma expressions. Mixing the two
uses of comma is legal, but you must use parentheses to distinguish them:

func(i, j); /* call func with two args */
func((expl, exp2), (exp3, exp4, exp5)); /* also calls func with two args! */

The semicolon (;) is a statement terminator. Any legal C or C++ expression
(including the empty expression) followed by a semicolon is interpreted as
a statement, known as an expression statement. The expression is evaluated
and its value is discarded. If the expression statement has no side effects,
Borland C++ might ignore it.

a + b;
tta;

/* maybe evaluate a + b, but discard value *1
/* side effect on a, but discard value of t+a */
/* empty expression = null statement */

Semicolons are often used to create an empty statement:

for (i = 0; i < n; itt) {

Use the colon (:) to indicate a labeled statement:

start: x=O;

goto start;

Labels are discussed in the "Labeled statements" section on page 95.

The use of the colon in class initialization is shown in the section beginning
on page 137.

Borland C++ for OS/2 Programmers Guide

Ellipsis

Asterisk (pointer
declaration)

Equal sign
(initializer)

The ellipsis (...) is three successive periods with no whitespace intervening.
Ellipses are used in the formal argument lists of function prototypes to
indicate a variable number of arguments, or arguments with varying types:

void func(int n, char ch, ...);

This declaration indicates that June will be defined in such a way that calls
must have at least two arguments, an int and a char, but can also have any
number of additional arguments.

In C++, you can omit the comma preceding the ellipsis.

The * (asterisk) in a variable declaration denotes the creation of a pointer to
a type:

char *char-ptr; /* a pointer to char is declared */

Pointers with multiple levels of indirection can be declared by indicating a
pertinent number of asterisks:

int **int-ptr; /* a pointer to an integer array */
double ***double-ptr; /* a pointer to a matrix of doubles */

You can also use the asterisk as an operator to either dereference a pointer
or as the multiplication operator:

i = *int-ptr;
a = b * 3.14;

The = (equal sign) separates variable declarations from initialization lists:

char array[5] = { 1, 2, 3, 4, 5 };
int x = 5;

In C++, declarations of any type can appear (with some restrictions) at any
point within the code. In a C function, no code can precede any variable
declarations.

In a C++ function argument list, the equal sign indicates the default value
for a parameter:

int f(int i = 0) { ... } /* Parameter i has default value of zero */

The equal sign is also used as the assignment operator in expressions:

a = b + c;
float *ptr = (float *) malloc(sizeof(float) * 100);

Chapter 1, Lexical elements 23

Pound sign
(preprocessor
directive)

24

The # (pound sign) indicates a preprocessor directive when it occurs as the
first nonwhitespace character on a line. It signifies a compiler action, not
necessarily associated with code generation. See page 177 for more on the
preprocessor directives.

and ## (double pound signs) are also used as operators to perform token
replacement and merging during the preprocessor scanning phase.

Borland C++ for OS/2 Programmers Guide

Declarations

Objects

c H A p T E R

Language structure

This chapter provides a formal definition of Borland C++'s language
structure. It describes the legal ways in which tokens can be grouped
together to form expressions, statements, and other significant units.

2

This section briefly reviews concepts related to declarations: objects, storage
classes, types, scope, visibility, duration, and linkage. A general knowledge
of these is essential before tackling the full declaration syntax. Scope,
visibility, duration, and linkage determine those portions of a program that
can make legal references to an identifier in order to access its object.

An object is an identifiable region of memory that can hold a fixed or
variable value (or set of values). (This use of the word object is different
from the more general term used in object-oriented languages.) Each value
has an associated name and type (also known as a data type). The name is
used to access the object. This name can be a simple identifier, or it can be a
complex expression that uniquely "points" to the object. The type is used

1\'1 To determine the correct memory allocation required initially .

• To interpret the bit patterns found in the object during subsequent
accesses.

II In many type-checking situations, to ensure that illegal assignments are
trapped.

Borland C++ supports many standard (predefined) and user-defined data
types, including signed and unsigned integers in various sizes, floating
point numbers in various precisions, structures, unions, arrays, and classes.

The Borland C++ standard libraries and your own program and header
files must provide unambiguous identifiers (or expressions derived from
them) and types so that Borland C++ can consistently access, interpret, and
(possibly) change the bit patterns in memory corresponding to each active
object in your program.

Chapter 2, Language structure 25

Ivalues

rvalues

Storage classes
and types

26

Declarations establish the necessary mapping between identifiers and
objects. Each declaration associates an identifier with a data type. Most
declarations, known as defining declarations, also establish the creation
(where and when) of the object; that is, the allocation of physical memory
and its possible initialization. Other declarations, known as referencing
declarations, simply make their identifiers and types known to the compiler.
There can be many referencing declarations for the same identifier,
especially in a multifile program, but only one defining declaration for that
identifier is allowed.

Generally speaking, an identifier cannot be legally used in a program
before its declaration point in the source code. Legal exceptions to this rule
(known as forward references) are labels, calls to undeclared functions, and
class, struct, or union tags.

An lvalue is an object locator: an expression that designates an object. An
example of an lvalue expression is *P, where P is any expression evaluating
to a non-null pointer. A modifiable lvalue is an identifier or expression that
relates to an object that can be accessed and legally changed in memory. A
canst pointer to a constant, for example, is not a modifiable lvalue. A
pointer to a constant can be changed (but its dereferenced value cannot).

Historically, the I stood for "left," meaning that an lvalue could legally
stand on the left (the receiving end) of an assignment statement. Now only
modifiable lvalues can legally stand to the left of an assignment statement.
For example, if a and bare nonconstant integer identifiers with properly
allocated memory storage, they are both modifiable lvalues, and
assignments such as a = 1; and b = a + b are legal.

The expression a + b is not an lvalue: a + b = a is illegal because the
expression 'On the left is not related to an object. Such expressions are often
called rvalues (short for right values).

Associating identifiers with objects requires each identifier to have at least
two attributes: storage class and type (sometimes referred to as data type).
The Borland C++ compiler deduces these attributes from implicit or explicit
declarations in the source code.

Storage class dictates the location (data segment, register, heap, or stack) of
the object and its duration or lifetime (the entire running time of the
program, or during execution of some blocks of code). Storage class can be
established by the syntax of the declaration, by its placement in the source

, code, or by both of these factors.

Borland C++ for OS/2 Programmers Guide

Scope

Name spaces

The type determines how much memory is allocated to an object and how
the program will interpret the bit patterns found in the object's storage
allocation. A given data type can be viewed as the set of values (often
implementation-dependent) that identifiers of that type can assume,
together with the set of operations allowed on those values. The compile
time operator, sizeof,lets you determine the size in bytes of any standard
or user-defined type; see page 93 for more on this operator.

The scope of an identifier is that part of the program in which the identifier
can be used to access its object. There are five categories of scope: block (or
local),junction,junction prototype,file, and class (C++ only). These depend on
how and where identifiers are declared.

• Block. The scope of an identifier with block (or local) scope starts at the
declaration point and ends at the end of the block containing the declara
tion (such a block is known as the enclosing block). Parameter declara
tions with a function definition also have block scope, limited to the
scope of the block that defines the function.

• Function. The only identifiers having function scope are statement labels.
Label names can be used with goto statements anywhere in the function
in which the label is declared. Labels are declared implicitly by writing
labeCname: followed by a statement. Label names must be unique within
a function.

• Function prototype. Identifiers declared within the list of parameter
declarations in a function prototype (not part of a function definition)
have function prototype scope. This scope ends at the end of the function
prototype.

• File. File scope identifiers, also known as globals, are declared outside of
all blocks and classes; their scope is from the point of declaration to the
end of the source file.

• Class (C++). For now, think of a class as a named collection of members,
including data structures and functions that act on them. Class scope
applies to the names of the members of a particular class. Classes and
their objects have many special access and scoping rules; see pages
119-132.

Name space is the scope within which an identifier must be unique. C uses
four distinct classes of identifiers:

• goto label names. These must be unique within the function in which
they are declared.

Chapter 2, Language structure 27

Structures, classes,
and enumerations are

in the same name
space in C++.

Visibility

Visibility cannot
exceed scope, but
scope can exceed

visibility.

Duration

28

• Structure, union, and enumeration tags. These must be unique within the
block in which they are defined. Tags declared outside of any function
must be unique within all tags defined externally.

• Structure and union member names. These must be unique within the
structure or union in which they are defined. There is no restriction on
the type or offset of members with the same member name in different
structures.

• Variables, typedefs, functions, and enumeration members. These must be
. unique within the scope in which they are defined. Externally declared
identifiers must be unique among externally declared variables.

The visibility of an identifier is that region of the program source code from
which legal access can be made to the identifier's associated object.

Scope and visibility usually coincide, though there are circumstances under
which an object becomes temporarily hidden by the appearance of a
duplicate identifier: the object still exists but the original identifier cannot
be used to access it until the scope of the duplicate identifier is ended.

int ii char Chi

i = 3i

double ii
i = 3.0e3i

ch = 'A'i

i += 1i

II auto by default
II int i and char ch in scope and visible

II double i in scope and visible
II int i=3 in scope but hidden
II char ch in scope and visible

II double i out of scope
II int i visible and = 4

II char ch still in scope & visible = 'A'
}

II int i and char ch out of scope

Again, special rules apply to hidden class names and class member names:
C++ operators allow hidden identifiers to be accessed under certain
conditions:

Duration, closely related to storage class, defines the period during which
the declared identifiers have real, physical objects allocated in memory. We
also distinguish between compile-time and run-time objects. Variables, for

Borland C++ for OS/2 Programmers Guide

Static

Local

The Borland C++
compiler can ignore
requests for register
allocation. Register

allocation is based on
the compilers

analysis of how a
variable is used.

Dynamic

Translation units

instance, unlike typedefs and types, have real memory allocated during run
time. There are three kinds of duration: static, local, and dynamic.

Memory is allocated to objects with static duration as soon as execution is
underway; this storage allocation lasts until the program terminates. Static
duration objects usually reside in fixed data segments. All functions,
wherever defined, are objects with static duration. All variables with file
scope have static duration. Other variables can be given static duration by
using the explicit static or extern storage class specifiers.

Static duration objects are initialized to zero (or null) in the absence of any
explicit initializer or, in C++, constructor.

Don't confuse static duration with file or global scope. An object can have
static duration and local scope. .

Local duration objects, also known as automatic objects, lead a more
precarious existence. They are created on the stack (or in a register) when
the enclosing block or function is entered. They are deallocated when the
program exits that block or function. Local duration objects must be
explicitly initialized; otherwise, their contents are unpredictable. Local
duration objects must always have local or function scope. The storage class
specifier auto can be used when declaring local duration variables, but is
usually redundant, because auto is the default for variables declared within
a block. An object with local duration also has local scope, because it does
not exist outside of its enclosing block. The converse is not true: a local
scope object can have static duration.

When declaring variables (for example, int, char, float), the storage class
specifier register also implies auto; but a request (or hint) is passed to the
compiler that the object be allocated a register if possible. Borland C++ can
be set to allocate a register to a local integral or pointer variable, if one is
free. If no register is free, the variable is allocated as an auto, local object
with no warning or error.

Dynamic duration objects are created and destroyed by specific function
calls during a program. They are allocated storage from a special memory
reserve known as the heap, using either standard library functions such as
malloc, or by using the C++ operator new. The corresponding deallocations
are made usiI].gfree or delete.

The term translation unit refers to a source code file together with any
included files, but less any source lines omitted by conditional preprocessor

Chapter 2, Language structure 29

For more details, see
"External declarations

and definitions" on
page 34.

Linkage

30

directives. Syntactically, a translation unit is defined as a sequence of
external declarations:

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration
function-definition
declaration

The word external has several connotations in C; here it refers to
declarations made outside of any function, and which therefore have file
scope. (External linkage is a distinct property; see the following section,
"Linkage.") Any declaration that also reserves storage for an object or
function is called a definition (or defining declaration).

An executable program is usually created by compiling several indepen
dent translation units, then linking the resulting object files with pre
existing libraries. A problem arises when the same identifier is declared in
different scopes (for example, in different files), or declared more than once
in the same scope. Linkage is the process that allows each instance of an
identifier to be associated correctly with one particular object or function.
All identifiers have one of three linkage attributes, closely related to their
scope: external linkage, internal linkage, or no linkage. These attributes are
determined by the placement and format of your declarations, together
with the explicit (or implicit by default) use of the storage class specifier
static or extern.

Each instance of a particular identifier with external linkage represents the
same object or function throughout the entire set of files and libraries
making up the program. Each instance of a particular identifier with
internal linkage represents the same object or function within one file only.
Identifiers with no linkage represent unique entities.

Here are the external and internal linkage rules:

• Any object or file identifier having file scope will have internal linkage if
its declaration contains the storage class specifier static.

For C++, if the same identifier appears with both internal and external
linkage within the same file, the identifier will have external linkage. In
C, it will have internal linkage .

• If the declaration of an object or function identifier contains the storage
class specifier extern, the identifier has the same linkage as any visible
declaration of the identifier with file scope. If there is no such visible
declaration, the identifier has external linkage.

Borland C++ for OS/2 Programmers Guide

Name mangling

• If a function is declared without a storage class specifier, its linkage is
determined as if the storage class specifier extern had been used.

• If an object identifier with file scope is declared without a storage class
specifier, the identifier has external linkage.

The following identifiers have no linkage attribute:

• Any identifier declared to be other than an object or a function (for
example, a typedef identifier)

II Function parameters

• Block scope identifiers for objects declared without the storage class
specifier extern

When a C++ module is compiled, the compiler generates function names
that include an encoding of the function's argument types. This is known as
name mangling. It makes overloaded functions possible, and helps the
linker catch errors in calls to functions in other modules. However, there
are times when you won't want name mangling. When compiling a C++
module to be linked with a module that does not have mangled names, the
C++ compiler has to be told not to mangle the names of the functions from
the other module. This situation typically arises when linking with libraries
or .OBJ files compiled with a C compiler.

To tell the C++ compiler not to mangle the name of a function, declare the
function as extern "C", like this:

extern "C" void Cfune(int);

This declaration tells the compiler that references to the function Cfunc
should not be mangled.

You can also apply the extern "C" declaration to a block of names:

extern "C" {

};

void Cfune1(int);
void Cfune2(int);
void Cfune3(int);

As with the declaration for a single function, this declaration tells the
compiler that references to the functions Cfunc1, Cfunc2, and Cfunc3 should
not be mangled. You can also use this form of block declaration when the
block of function names is contained in a header file:

extern "e" {
#inelude "loeallib.h"

};

Chapter 2, Language structure 31

Declaration syntax

Tentative
definitions

Possible
declarations

32

All six interrelated attributes (storage classes, types, scope, visibility,
duration, and linkage) are determined in diverse ways by declarations.

Declarations can be defining declarations (also known as definitions) or
referencing declarations (sometimes known as nondefining declarations). A
defining declaration, as the name implies, performs both the duties of
declaring and defining; the nondefining declarations require a definition to
be added somewhere in the program. A referencing declaration introduces
one or more identifier names into a program. A definition actually allocates
memory to an object and associates an identifier with that object.

The ANSI C standard introduces a new concept: that of the tentative
definition. Any external data declaration that has no storage class specifier
and no initializer is considered a tentative definition. If the identifier
declared appears in a later definition, then the tentative definition is treated
as if the extern storage class specifier were present. In other words, the
tentative definition becomes a simple referencing declaration.

If the end of the translation unit is reached and no definition has appeared
with an initializer for the identifier, then the tentative definition becomes a
full definition, and the object defined has uninitialized (zero-filled) space
reserved for it. For example,

int Xi

int Xi

int Yi
int Y = 4i

int z = 5i
int z = 6 i

I*legal, one copy of X is reserved *1

1* legal, y is initialized to 4 *1.

1* not legal, both are initialized definitions *1

Unlike ANSI C, C++ doesn't have the concept of a tentative declaration; an
external data declaration without a storage class specifier is always a
definition.

The range of objects that can be declared includes

• Variables

• Functions

• Classes and class members (C++)

• Types

• Structure, union, and enumeration tags

Borland C++ for OS/2 Programmers Guide

Table 2.1
Borland C++

declaration syntax

• Structure members

• zUnion members

• Arrays of other types
II Enumeration constants

• Statement labels

• Preprocessor macros

The full syntax for declarations is shown in Tables 2.1 through 2.3. The
recursive nature of the declarator syntax allows complex declarators. You'll
probably want to use typedefs to improve legibility.

declaration:
<dec/-specifiers> <declarator-list>;
asm-declaration
function-declaration
linkage-specification

decl-specifier.
storage-class-specifier
type-specifier
function-specifier
friend (C++ specific)
typedef

decl-specifiers:
<dec/-specifiers> dec/-specifier

storage-class-specifier.
auto
register

. static
extern

function-specifier. (C++ specific)
inline
virtual

type-specifier.
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const
volatile

simple-type-name:
class-name
typedef-name
char
short
int
long
signed
unsigned
float
double
void

elaborated-type-specifier.
class-key identifier
class-key class-name
enum enum-name

class-key: (C++ specific)
class
struct
union

enum-specifier.
enum <identifier> { <enum-list> }

enum-list
enumerator
enumerator-list, enumerator

enumerator.
identifier
identifier = constant-expression

Chapter 2, Language structure 33

Table 2.1: Borland C++ declaration syntax (continued)

constant-expression:
conditional-expression

linkage-specification: (C++ specific)
extern string { <declaration-list> }
extern string declaration

declaration-list
declaration
declaration-list; declaration

In Table 2.2, note the restrictions on the number and order of modifiers and
qualifiers. Also, the modifiers listed are the only addition to the declarator
syntax that are not ANSI C or C++. These modifiers are each discussed in
greater detail starting on page 45.

Table 2.2: Borland C++ declarator syntax

declarator-list
init-declarator
declarator-list , init-declarator

init-declarator:
declarator <initializer>

declarator:
dname
modifier-list
pointer-operator declarator
declarator (parameter-declaration-list) <cv-qualifier-list>

(The <cv-qualifier-lisb is for C++ only.)
declarator [<constant-expression> 1
(declarator)

modifier-list
modifier
modifier-list modifier

modifier:
__ cdecl
_-pascal

pointer-operator:
* <cv·qualifier-list>
& <cv-qualifier-list> (C++ specific)
class·name:: * <cv-qualifier-list> (C++ specific)

cv-qualifier-list
cv-qualifier <cv-qualifier-list>

cv-qualifier
const
volatile

dname:
name

34

class·name (C++ specific)
~ class-name (C++ specific)
type-defined-name

type-name:
type-specifier <abstract-declarator>

abstract-declarator:
pointer-operator <abstract-declarator>
<abstract-declarator> (argument-declaration-list) <cv-qualifier-list>
<abstract-declarator> [<constant-expression> 1
(abstract-declarator)

argument-declaration-list
<arg-declaration-list>
arg-declaration-list, .. .
<arg-declaration-list> ... (C++ specific)

arg-declaration-list
argument-declaration
arg-declaration-list, argument-declaration

argument-declaration:
decl-specifiers dec/arator
decl-specifiers declarator = expression (C++ specific)
dec/-specifiers <abstract-declarator>
decl-specifiers <abstract-declarator> = expression (C++ specific)

function-definition:
<dec/-specifiers> declarator <ctor-initializer> function-body

function-body:
compound-statement

initializer:
= expression
= { initializer-list}
(expression-list) (C++ specific)

initializer-list
expression
initializer-list, expression
{ initializer-list <,> }

Borland C++ for OS/2 Programmers Guide

External
declarations and
definitions

The storage class specifiers auto and register cannot appear in an external
declaration (see page 29). For each identifier in a translation unit declared
with internal linkage, no more than one external definition can be given.

An external definition is an external declaration that also defines an object
or function; that is, it also allocates storage. If an identifier declared with
external linkage is used in an expression (other than as part of the operand
of sizeof), then exactly one external definition of that identifier must be
somewhere in the entire program.

Borland C++ allows later re-declarations of external names, such as arrays,
structures, and unions, to add information to earlier declarations. Here's an
example:

int a[] i II no size
struct mystructi II tag only, no member dec1arators

int a[3] = {l, 2, 3}i II supply size and initialize
struct mystruct {

int i, j i
}i II add member declarators

Table 2.3 covers class declaration syntax. In the section on classes (begin
ning on page 118), you can find examples of how to declare a class. The
"Referencing" section on page 111 covers C++ reference types (closely
related to pointer types) in detail. Finally, see page 153 for a discussion of
template-type classes.

Table 2.3: Borland C++ class declaration syntax (C++ only)

class-specifier:
class-head { <member-list> }

class-head:
class-key <identifier> <base-specifier>
class-key class-name <base-specifier>

member-list
member-declaration <member-list>
access-specifier: <member-list>

member-declaration:
<decl-specifiers> <member-declarator-list> ;
function-definition <;>
qualified-name;

member-declarator-list
member-declarator
member-declarator-list, member-declarator

Chapter 2, Language structure

member-declarator:
declarator <pure-specifier>
<identifier> : constant-expression

pure-specifier:
=0

base-specifier:
: base-list

base-list
base-specifier
base-list, base-specifier

base-specifier:
class-name
virtual <access-specifier> class-name
access-specifier <virtual> class-name

35

Table 2.3: Borland C++ class declaration syntax (C++ only) (continued)

access-specifier.
private
protected
public

member-initializer.
class name (<argument-list>)
identifier (<argument-list>)

operator-function-name:
conversion-function-name: operator operator-name

operator conversion-type-name operator-name: one of
conversion-type-name:

type-specifiers <pointer-operator>
new delete sizeof typeid

+ % II

constructor-initializer. & = <>
: member-initializer-list += -= *= 1= %= 11=

member-initializer-list
member-initializer

&=
--

1= «
!= <=

» »= «=
>= && II

member-initializer, member-initializer-Iist ++ ->* -> ()
[]

Type specifiers

Type categories

36

The type specifier with one or more optional modifiers is used to specify the
type of the declared identifier:

int i; II declare i as a signed integer
unsigned char chl, ch2; II declare two unsigned chars

By long-standing tradition, if the type specifier is omitted, type signed int
(or equivalently, int) is the assumed default. However, in C++, a missing
type specifier can lead to syntactic ambiguity, so C++ practice requires you
to explicitly declare all int type specifiers_

The four basic type categories (and their subcategories) are as follows:

• Aggregate
• Array
• struct
• union
• class (C++ only)

• Function

• Scalar
• Arithmetic
• Enumeration
• Pointer
• Reference (C++ only)

• void (discussed in the next section)

Types can also be viewed in another way: they can be fundamental or derived
types_ The fundamental types are void, char, int, float, and double, together

Borland C++ for OS/2 Programmers Guide

Table 2.4
Declaring types

type& var, type &var,
and type & var are all

equivalent.

Type void

c++ handles func in a
special manner. See

page 57 and code
examples on

page 58.

with short, long, signed, and unsigned variants of some of these. The
derived types include pointers and references to other types, arrays of other
types, function types, class types, structures, and unions.

A class object, for example, can hold a number of objects of different types
together with functions for manipulating these objects, plus a mechanism
to control access and inheritance from other classes.

Given any nonvoid type type (with some provisos), you can declare
derived types as follows:

Declaration

typet,

type arrayf10j;

type *ptr,

type &ref= t,

type func(void);

void func1(type ~;

struct st {type t1; type t2};

Description

An object of type type.

Ten types: arrayfOj- arrayf9j.

ptr is a pointer to type.

ref is a reference to type (C++).

tunc returns value of type type.

tunc1 takes a type type parameter.

structure st holds two types.

void is a special type specifier indicating the absence of any values. It is
used in the following situations:

• When there is an empty parameter list in a function declaration:

int func(void}i II func takes no arguments

• When the declared function does not return a value:

void func(int n} i II return value

• As a generic pointer (a pointer to void is a generic pointer to anything):

void *ptri II ptr can later be set to point to any object

• In typecasting expressions:

extern int errfunc(}i II returns an error code

(void) errfunc(}i II discard return value

Chapter 2, Language structure 37

The fundamental
types

Integral types

Table 2.5
Integral types

These synonyms are
not valid in ett. See

page 15.

38

The fundamental type specifiers are built from the following keywords:

char
double
float

int
long
short

signed
unsigned

From these keywords you can build the integral and floating-point types,
which are together known as the arithmetic types. The modifiers long, short,
signed, and unsigned can be applied to the integral types. The include file
limits.h contains definitions of the value ranges for all the fundamental
types.

char, short, int, and long, together with their unsigned variants, are all
considered integral data types. Table 2.5 shows the integral type specifiers,
with synonyms listed on the same line.

char, signed char

unsigned char

char, unsigned char

signed char

int, signed int

unsigned, unsigned int

short, short int, signed short int

unsigned short, unsigned short int

long, long int, signed long int

unsigned long, unsigned long int

Synonyms if default char set to signed.

Synonyms if default char set to unsigned.

Only signed or unsigned can be used with char, short, int, or long. The
keywords signed and unsigned, when used on their own, mean signed int
and unsigned int, respectively.

In the absence of unsigned, signed is usually assumed. An exception arises
with char. Borland C++ lets you set the default for char to be signed or
unsigned. (The default, if you don't set it yourself, is signed.) If the default
is set to unsigned, then the declaration char ch declares ch as unsigned. You
would need to use signed char ch to override the default. Similarly, with a
signed default for char, you would need an explicit unsigned char ch to
declare an unsigned char.

Only long or short can be used with int. The keywords long and short used
on their own mean long int and short int.

Borland C++ for OS/2 Programmers Guide

Floating-point types

Standard
conversions

ANSI C does not dictate the sizes or internal representations of these types,
except to indicate that short, int, and long form a nondecreasing sequence
with "short <= int <= long." All three types can legally be the same. This is
important if you want to write portable code aimed at other platforms.

In a Borland C++ 32-bit program, the types int and long are equivalent,
both being 32 bits. The signed varieties are all stored in two's complement
format using the most significant bit (MSB) as a sign bit: 0 for positive, 1 for
negative (which explains the ranges shown on page 19). In the unsigned
versions, all bits are used to give a range of a - (2n -I), where n is 8, 16,
or 32.

The representations and sets of values for the floating-point types are
implementation dependent; that is, each implementation of C is free to
define them. Borland C++ uses the IEEE floating-point formats. Appendix
A tells more about implementation-specific items.

float and double are 32- and 64-bit floating-point data types, respectively.
long can be used with double to declare an 80-bit precision floating-point
identifier: long double test_case, for example.

The table on page 19 indicates the storage allocations for the floating-point
types.

When you use an arithmetic expression, such as a + b, where a and bare
different arithmetic types, Borland C++ performs certain internal conver
sions before the expression is evaluated. These standard conversions
include promotions of "lower" types to "higher" types in the interests of
accuracy and consistency.

Here are the steps Borland C++ uses to convert the operands in an
arithmetic expression:

1. Any small integral types are converted as shown in the next table. After
this, any two values associated with an operator are either int (including
the long and unsigned modifiers), or they are of type double, float, or
long double.

2. If either operand is of type long double, the other operand is converted
to long double.

3. Otherwise, if either operand is of type double, the other operand is
converted to double.

4. Otherwise, if either operand is of type float, the other operand is
converted to float.

Chapter 2, Language structure 39

Table 2.6
Methods used in

standard arithmetic
conversions

Special char, int,
andenum
conversions

The conversions
discussed in this

section are specific to
Borland C++.

Initialization

If the object has
automatic storage

duration, its value is
indeterminate.

40

5. Otherwise, if either operand is of type unsigned long, the other operand
is converted to unsigned long.

6. Otherwise, if either operand is of type long, then the other operand is
converted to long.

7. Otherwise, if either operand is of type unsigned, then the other operand
is converted to unsigned.

8. Otherwise, both operands are of type int.

The result of the expression is the same type as that of the two operands.

Type Converts to Method

char int Zero or sign-extended (depends on default char
type)

unsigned char int Zero-filled high byte (always)

signed char int Sign-extended (always)

short int Same value; sign extended

unsigned short unsigned int Same value; zero filled

enum int Same value

Assigning a signed character object (such as a variable) to an integral object
results in automatic sign extension. Objects of type signed char always use
sign extension; objects of type unsigned char always set the high byte to

. zero when converted to int.

Converting a longer integral type to a shorter type truncates the higher
order bits and leaves low-order bits unchanged. Converting a shorter
integral type to a longer type either sign-extends or zero-fills the extra bits
of the new value, depending on whether the shorter type is signed or
unsigned, respectively.

Initializers set the initial value that is stored in an object (variables, arrays,
structures, and so on). If you don't initialize an object, and it has static
duration, it will be initialized by default in the following manner:

• To zero if it is an arithmetic type

• To null if it is a pointer type

The syntax for initializers is as follows:

Borland C++ for OS/2 Programmers Guide

Arrays, structures,
and unions

initializer
= expression
= {initializer-list} <,>}
(expression list)

initializer-list
expression
initializer-list, expression
{initializer-list} <,>}

The rules governing initializers are

• The number of initializers in the initializer list cannot be larger than the
number of objects to be initialized.

• The item to be initialized must be an object (for example, an array) of
unknown size.

R For C (not required for C++), all expressions must be constants if they
appear in one of these places:

• In an initializer for an object that has static duration .

• In an initializer list for an array, structure, or union (expressions using
sizeof are also allowed).

• If a declaration for an identifier has block scope, and the identifier has
external or internal linkage, the declaration cannot have an initializer for
the identifier.

• If a brace-enclosed list has fewer initializers than members of a structure,
the remainder of the structure is initialized implicitly in the same way as
objects with static storage duration.

Scalar types are initialized with a single expression, which can optionally
be enclosed in braces. The initial value of the object is that of the
expression; the same constraints for type and conversions apply as for
simple assignments.

For unions, a brace-enclosed initializer initializes the member that first
appears in the union's declaration list. For structures or unions with
automatic storage duration, the initializer must be one of the following:

• An initializer list (as described in the following section).

• A single expression with compatible union or structure type. In this case,
the initial value of the object is that of the expression.

You initialize arrays and structures (at declaration time, if you like) with a
brace-enclosed list of initializers for the members or elements of the object
in question. The initializers are given in increasing array subscript or

Chapter 2, Language structure 41

Declarations and
declarators

42

member order. You initialize unions with a brace-enclosed initializer for the
first member of the union. For example, you could declare an array days,
which counts how many times each day of the week appears in a month
(assuming that each day will appear at least once), as follows:

int days[7] = { 1, 1, 1, 1, 1, 1, 1 }

The following rules initialize character arrays and wide character arrays:

• You can initialize arrays of character type with a literal string, optionally
enclosed in braces. Each character in the string, including the null
terminator, initializes successive elements in the array. For example, you
could declare

char name [] = { "Unknown" };

which sets up an eight-element array, whose elements are 'U' (for
name[OD, In' (for name[lD, and so on (and including a null terminator) .

• You can initialize a wide character array (one that is compatible with
wchar _t) by using a wide string literal, optionally enclosed in braces. As
with character arrays, the codes of the wide string literal initialize
successive elements of the array.

Here is an example of a structure initialization:

struct mystruct {
int i;
char str[21];
double d;
} s = {20, "Borland", 3.141};

Complex members of a structure, such as arrays or structures, can be
initialized with suitable expressions inside nested braces.

A declaration is a list of names. The names are sometimes referred to as
declarators or identifiers. The declaration begins with optional storage class
specifiers, type specifiers, and other modifiers. The identifiers are separated
by commas and the list is terminated by a semicolon.

Simple declarations of variable identifiers have the following pattern:

data-type var1 <=init1>, var2 <=init2>, ... ;

where var1, var2, ... are any sequence of distinct identifiers with optional
initializers. Each of the variables is declared to be of type data-type. For
example,

int x = 1, y = 2;

creates two integer variables called x and y (and initializes them to the
values 1 and 2, respectively).

Borland C++ for OS/2 Programmers Guide

See Table 2.1 on
page 33 for the

declarator syntax.
The definition covers

both identifier and
function declarators.

These are all defining declarations; storage is allocated and any optional
initializers are applied.

The initializer for an automatic object can be any legal expression that
evaluates to an assignment-compatible value for the type of the variable
involved. Initializers for static objects must be constants or constant
expressions.

In C++, an initializer for a static object can be any expression involving
constants and previously declared variables and functions.

The format of the declarator indicates how the declared name is to be
interpreted when used in an expression. If type is any type, and storage class
specifier is any storage class specifier, and if D1 and D2 are any two
declarators, then the declaration

storage-class-specifier type D1, D2;

indicates that each occurrence of D1 or D2 in an expression will be treated
as an object of type type and storage class storage class specifier. The type of
the name embedded in the declarator will be some phrase containing type,
such as "type," "pointer to type," "array of type," "function returning type,"
or "pointer to function returning type," and so on.

For example, in the following table of declarations each of the de clara tors
could be used as rvalues (or possibly lvalues insome cases) in expressions
where a single int object would be appropriate. The types of the embedded
identifiers are derived from their declarators as follows:

Table 2.7: Declaration syntax examples

Declarator
syntax Implied type of name Example

type name; type int count;

type name [] ; (open) array of type int count[];

type name[3] i Fixed array of three elements, all of type int count[3];
(name[OJ, name[1J, and name[2])

type *namei Pointer to type int *count;

type *name[] i (open) array of pointers to type int *count [J ;

type *(name[])i Same as above int * (count [J) ;

type (*name) [1 ; Pointer to an (open) array of type int (*count) [] ;

type &narnei Reference to type (C++ only) int &count;

type name () i Function returning type int count() i

Chapter 2, Language structure 43

Table 2.7: Declaration syntax examples (continued)

type *name () i

type * (name ()) ;

type (*name) () i

Use of storage
class specifiers

auto

extern

register

The Borland C++
compiler can ignore
requests for register
allocation. Register

allocation is based on
the compilers

analysis of how a
variable is used.

static

44

Function returning pointer to type

Same as above

Pointer to function returning type

int *count();

int *(count());

int (*count) () i

Note the need for parentheses in (*name)[] and (*name)O; this is because the
precedence of both the array declarator [] and the function declarator () is
higher than the pointer declarator *. The parentheses in *(name[D are
optional.

A storage class specifier (also called a type specifier) must be present in a dec
laration. The storage class specifiers can be one of the following: auto,
extern, register, static, or typedef.

The storage class specifier auto is used only with local scope variable
declarations. It conveys local (automatic) duration, but since this is the
default for all local scope variable declarations, its use is rare.

The storage class specifier extern can be used with function and variable
file scope and local scope declarations to indicate external linkage. With file
scope variables, the default storage class specifier is extern. When used
with variables, extern indicates that the variable has static duration.
(Remember that functions always have static duration.) See page 31 for
information on using extern to prevent name mangling when combining C
and C++ code.

The storage class specifier register is allowed only for local variable and
function parameter declarations. It is equivalent to auto, but it makes a
request to the compiler to allocate the variable to a register if possible. The
allocation of a register can significantly reduce the size and improve the
performance of programs in many situations. However, since Borland C++
does a good job of placing variables in registers, it is rarely necessary to use
the register keyword.

See the User's Guide, Chapters 4 and 6, for a description of optimizations.

The storage class specifier static can be used with function and variable file
scope and local scope declarations to indicate intemallinkage. static also
indicates that the variable has static duration. In the absence of constructors
or explicit initializers, static variables are initialized with 0 or null.

Borland C++ for OS/2 Programmers Guide

typedef

In C++, a static data member of a class has the same value for all instances
of a class. A static member function of a class can be invoked indepen
dently of any class instance.

The keyword typedef indicates that you are defining a new data type
specifier rather than declaring an object. typedef is included as a storage
class specifier because of syntactical rather than functional similarities.

static long int biggy;
typedef long int BIGGY;

The first declaration creates a 32-bit, long int, static-duration object called
biggy. The second declaration establishes the identifier BIGGY as a new type
specifier, but does not create any run-time object. BIGGY can be used in any
subsequent declaration where a type specifier would be legal. Here's an
example:

extern BIGGY salary;

has the same effect as

extern long int salary;

Although this simple example can be achieved by #define BIGGY long int,
more complex typedef applications achieve more than is possible with
textual substitutions.

Important! typedef does not create new data types; it merely creates useful mnemonic
synonyms or aliases for existing types. It is especially valuable in simpli
fying complex declarations:

typedef double (*PFD) ();
PFD array-pfd[10] ;
/* array-pfd is an array of 10 pointers to functions returning double */

You can't use typedef identifiers with other data-type specifiers:

unsigned BIGGY pay; /* ILLEGAL */

Modifiers
In addition to the storage class specifier keywords, a declaration can use
certain modifiers to alter some aspect of the identifier/object mapping. The
modifiers available with Borland C++ are summarized in Table 2.8 and
discussed in the following sections.

For a complete description of how to select code generation options (as well
as the Borland C++ defaults), see the User's Guide, Cnapters 4 and 6.

Chapter 2, Language structure 45

Table 2.8: Borland C++ modifiers

Modifier

const

volatile

Borland C++ extensions

__ cdecl

__ cdecl

_Jar16

_Jar16

_-pascal

_-pascal

__ export

__ tastcall

__ stdcallt

__ syscall

t This is the default.

const

46

The modifier const
used by itself is

equivalent to
const int.

Use with

Variables

Variables

Functions

Variables

Functions

Variables

Functions

Variables

Functions/classes

Functions

Description

Prevents changes to object.

Prevents register allocation and some optimization. Warns compiler that object
might be subject to outside change during evaluation.

Forces C argument-passing convention. Affects Linker and link-time names.

Forces global identifier case-sensitivity and leading underscores.

The function is in a 16-bit DLL.

The variable is accessible in either 16-bit DLL or 32-bit code.

Forces Pascal argument-passing convention. Affects Linker and link-time names.

Forces global identifier case-insensitivity with no leading underscores.

Tells the compiler which functions or classes to export.

Forces register parameter passing convention. Affects the linker and link-time
names.

Functions and Forces the standard OS/2 argument-passing convention.
global variables

Functions Function called is an OS/2 API.

The canst modifier prevents any assignments to the object or any other
side effects, such as increment or decrement. A canst pointer cannot be
modified, though the object to which it points can be. Consider the
following examples:

const float pi = 3.1415926;
const maxint = 32767;
char *const str = "Hello, world"; II A constant pointer
char const *str2 = "Hello, world"; 1* A pointer to a constant char *1

Given these, the following statements are illegal:

pi = 3.0;

i = maxint++;
str = "Hi, there!";

1* Assigns a value to a const *1
1* Increments a const *1
1* Points str to something else *1

Note, however, that the function call strcpy (str, "Hi, there!") is legal,
because it does a character-by-character copy from the string literal "Hi,
there!" into the memory locations pointed to by str.

Borland C++ for OS/2 Programmers Guide

volatile

Mixed-language
calling conventions

The section
beginning on page 30

tells how to use
extern, which allows

C names to be
referenced from a

C++ program.

In C++, const also hides the const object and prevents external linkage.
You need to use extern const. A pointer to a const can't be assigned to a
pointer to a non-const (otherwise, the const value could be assigned to
using the non-const pointer). Here's an example:

char *str3 = str2 /* disallowed */

Only const member functions can be called for a const object.

The volatile modifier indicates that the object can be modified; not only by
you, but also by something outside of your program, such as an interrupt
routine or an 110 port. Declaring an object to be volatile warns the com
piler not to make assumptions concerning the value of the object while
evaluating expressions containing it, because the value could change at any
moment. It also prevents the compiler from making the variable a register
variable.

In C++, volati Ie has a special meaning for class member functions. If you've
declared a volatile object, you can use only its volatile member functions.

Borland C++ allows your programs to easily call routines written in other
languages, and vice versa. When you mix languages like this, you have to
deal with two important issues: identifiers and parameter passing.

By default, Borland C++ saves all global identifiers in their original case
(lower, upper, or mixed) with an underscore" _" prep ended to the front of
the identifier. To remove the default, you have can select the -u
command-line option, or uncheck the compiler option setting in the IDE.

The following table summarizes the effects of a modifier applied to a called
function. For every modifier, the table shows the order in which the
function parameters are pushed on the stack. Next, the table shows
whether the calling program (the caller) or the called function (the callee) is
responsible for popping the parameters off the stack. Finally, the table
shows the effect on the name of a global function.

Chapter 2, Language structure 47

Table 2.9
Calling conventions

48

Push Pop Name
Modifier parameters parameters change

__ cdecl Right first Caller '_' prepended

_Jastcall Left first Callee '@' prepended

_-pascal Left first Callee Uppercase

__ stdcallt Right first Callee No change

__ syscall Right first Caller No change

t This is the default.

_Jar16
Use the keyword __ far16 to make calls to functions or to reference data in
a 16-bit DLL. When a 32-bit program references a function or data type that
was generated for a 16-bit architecture, any use of the segmented architec
ture must be resolved in terms of the 32-bit flat model. References to the
16-bit segmented architecture are indicated when the modifier __ far
precedes a function or variable name in code that is generated by a 16-bit
compiler. By substituting the keyword __ far16 in place of __ far, the
pointer is adjusted to the flat memory model by the 32-bit compiler.

A call to a function that uses 16-bit data types requires some adjustment if
the data is an integer type. Such an adjustment is made by changing the
function prototype specification of parameters. See the table of data-type
sizes on page 19 for a summary of data sizes.

The following are examples of prototype modifications to adjust function
and pointer references. Included is an example of a change of parameter
specification to adjust data-type sizes.

/* A 16-bit declaration. */
char __ far* func(char __ far* param);

/* Modify in order to call from a 32-bit architecture. */
char __ far16 * __ far16 func(char __ far16* param)i

With such a modification, your program can safely make references to the
function.

char *p;
p = func(p)i /* Will cast to __ far16. */

Here is an example of how to modify your data declarations in preexisting
16-bit code to access it from a 32-bit application:

Borland C++ for OS/2 Programmers Guide

maine) must be
declared as cdecl;
this is because the C
start-up code always

tries to call maine)
with the C calling

convention.

/* Data declared in a 16-bit declaration. */
int func(int, unsigned);

/* Modify in order to use in a 32-bit architecture. */
short __ far16 func(short, unsigned short);

Here's a final example for modifications to a structure:

/* Data declared in a 16-bit declaration. */
extern struct s {

char __ far* ptr;
int i;

struct s* sptr; /* sptr is a pointer to struct. */

/* Modify in order to use in a 32-bit architecture. */
extern struct s {

char __ far16* ptr;
short i;
}

struct s __ far16* sptr; /* sptr is a pointer to struct. */

__ cdecl
You might want to ensure that certain identifiers have their case preserved
and keep the underscore on the front, especially if they're C identifiers in a
separate file. You can do so by declaring those identifiers to be __ cdecl.
(This also has an effect on parameter passing for functions.)

Like __ pascal, the __ cdecl modifier is specific to Borland C++. It is used
with functions and pointers to functions. It overrides the compiler direc
tives and IDE options and allows a function to be called as a regular C
function. For example, if you were to compile the previous program with
the Pascal calling option set but wanted to use printf, you might do some
thing like this:

/* NOT REQUIRED IF YOU INCLUDE stdio.h */
extern __ cdecl printf(const char *format, ...);
void putnums(int i, int], int k);

void __ cdecl main()
putnums(l,4,9) ;
}

void putnums(int i, int], int k) {
printf("And the answers are: %d, %d, and %d\n",i,j,k);
}

If you compile a program with Pascal calling conventions, all functions
(except those with variable parameters) used from the run-time library will
need to use the __ stdcall modifier. Any function that uses variable
parameters must be declared with the __ cdecl modifier (such as main and

Chapter 2, Language structure 49

Function
modifiers

Pointers

See pages 80 and 92
for discussions of

referencing and
dereferencing.

50

printfin the example above). Every function in the Borland C++ run-time
libraries is properly defined in anticipation of this.

_-pascal
In Pascal, global identifiers are not saved in their original case, nor are
underscores prepended to them. Borland C++ lets you declare any identi
fier to be of type _ _ pascal; the identifier is converted to uppercase, and no
underscore is prepended.

The __ pascal modifier is specific to Borland C++; it is intended for func
tions (and pointers to functions) that use the Pascal parameter-passing
sequence. Also, functions declared to be of type _-pascal can still be called
from C routines, as long as the C routine sees that the function is of type
_-pascal.

_ -pascal putnurns(int i, int], int k)
{

printf("And the answers are: %d, %d, and %d\n",i,j,k);

Functions of type _ _ pascal cannot take a variable number of arguments,
unlike functions such as printj. For this reason, you cannot use an ellipsis
(...) in a _ _ pascal function definition.

The __ far16 modifier can also be used as a function modifier; that is, it can
modify functions and function pointers as well as data pointers. You can
also use __ export to modify functions. The __ far16 function modifier can
be combined only with __ cdecl or _ _ pascal.

The _fastcall modifier is documented in Appendix A, "The optimizer" in
the User's Guide.

Pointers fall into two main categories: pointers to objects and pointers to
functions. Both types of pointers are special objects for holding memory
addresses.

The two pointer classes have distinct properties, purposes, and rules for
manipulation, although they do share certain Borland C++ operations.
Generally speaking, pointers to functions are used to access functions and
to pass functions as arguments to other functions; performing arithmetic on

Borland C++ for OS/2 Programmers Guide

Pointers to
objects

Pointers to
functions

Pointer
declarations

See page 37 for
details on void.

Warning! You need
to initialize pointers
before using them.

pointers to functions is not allowed. Pointers to objects, on the other hand,
are regularly incremented and decremented as you scan arrays or more
complex data structures in memory.

Although pointers contain numbers with most of the characteristics of
unsigned integers, they have their own rules and restrictions for
assignments, conversions, and arithmetic. The examples in the next few
sections illustrate these rules and restrictions.

A pointer of type "pointer to object of type" holds the address of (that is,
points to) an object of type. Since pointers are objects, you can have a
pointer pointing to a pointer (and so on). Other objects commonly pointed
at include arrays, structures, unions, and classes.

A pointer to a function is best thought of as an address, usually in a code
segment, where that function's executable code is stored; that is, the
address to which control is transferred when that function is called.
A pointer to a function has a type called "pointer to function returning
type," where type is the functions return type. For example,

void (*func) ();

In C++, this is a pointer to a function taking no arguments, and returning
void. In C, it's a pointer to a function taking an unspecified number of
arguments and returning void. In this example,

void (*func) (int) ;

*June is a pointer to a function taking an int argument and returning void.

For C++, such a pointer can be used to access static member functions.
Pointers to class members must use pointer-to-member operators. See
page 92.

A pointer must be declared as pointing to some particular type, even if that
type is void (which really means a pointer to anything). Once declared,
though, a pointer can usually be reassigned so that it points to an object of
another type. Borland C++ lets you reassign pointers like this without type
casting, but the compiler will warn you unless the pointer was originally
declared to be of type pointer to void. And in C, but not C++, you can
assign a void* pointer to a non-void* pointer.

If type is any predefined or user-defined type, including void, the
declaration

type *ptr; /* Uninitialized pointer */

Chapter 2, Language structure 51

Pointer constants

52

declares ptr to be of type "pointer to type." All the scoping, duration, and
visibility rules apply to the ptr object just declared.

A null pointer value is an address that is guaranteed to be different from
any valid pointer in use in a program. Assigning the integer constant a to a
pointer assigns a null pointer value to it.

The mnemonic NULL (defined in the standard library header files, such as
stdio.h) can be used for legibility. All pointers can be successfully tested for
equality or inequality to NULL.

The pointer type "pointer to void" must not be confused with the null
pointer. The declaration

void *vptr;

declares that vptr is a generic pointer capable of being assigned to by any
"pointer to type" value, including null, without complaint. Assignments
without proper casting between a "pointer to type1" and a "pointer to
type2," where type 1 and type2 are different types, can invoke a compiler
warning or error. If type1 is a function and type2 isn't (or vice versa),
pointer assignments are illegal. If type1 is a pointer tovoid, no cast is
needed. Under C, if type2 is a pointer to void, no cast is needed.

A pointer or the pointed-at object can be declared with the canst modifier.
Anything declared as a canst cannot be have its value changed. It is also
illegal to create a pointer that might violate the nonassignability of a
constant object. Consider the following examples:

int i;

int * pi;

int * canst cp = &i;

canst int ci = 7;

canst int * pci;

1/ i is an int

II pi is a pointer to int (uninitialized)

II cp is a constant pointer to int

II ci is a constant int

II pci is a pointer to constant int

canst int * const cpc = &ci; II cpc is a constant pointer to a
II constant int

The following assignments are legal:

i = ci;

*cp = ci;

ttpci;

pci = cpc;

II Assign const-int to int

II Assign const-int to
II object-pointed-at-by-a-const-pointer

II Increment a pointer-to-const

II Assign a const-pointer-to-a-const to a
II pointer-to-const

Borland C++ for OS/2 Programmers Guide

Pointer arithmetic

The difference
between two pointers

has meaning only if
both pointers point

into the same array.

The following assignments are illegal:

ci = 0;

ci--;

*pci = 3;

cp = &ci;

CpCtt;

pi = pci;

II NO--cannot assign to a const-int

II NO--cannot change a const-int

II NO--cannot assign to an object
II pointed at by pointer-to-const

II NO--cannot assign to a const-pointer,
II even if value would be unchanged

II NO--cannot change const-pointer

II NO--if this assignment were allowed,
II you would be able to assign to *pci
II (a const value) by assigning to *pi.

Similar rules apply to the volatile modifier. Note that const and volatile can
both appear as modifiers to the same identifier.

Pointer arithmetic is limited to addition, subtraction, and comparison.
Arithmetical operations on object pointers of type "pointer to type" auto
matically take into account the size of type; that is, the number of bytes
needed to store a type object.

When performing arithmetic with pointers, it is assumed that the pointer
points to an array of objects. Thus, if a pointer is declared to point to type,
adding an integral value to the pointer advances the pointer by that
number of objects of type. If type has size 10 bytes, then adding an integer 5
to a pointer to type advances the pointer 50 bytes in memory. The differ
ence has as its value the number of array elements separating the two
pointer values. For example, if ptrl points to the third element of an array,
and ptr2 points to the tenth element, then the result of ptr2 - ptrl would
be 7.

When an integral value is added to or subtracted from a "pointer to type,"
the result is also of type "pointer to type."

There is no such element as "one past the last element," of course, but a
pointer is allowed to assume such a value. If P points to the last array
element, P + 1 is legal, but P + 2 is undefined. If P points to one past the last
array element, P -1 is legal, giving a pointer to the last element. However,
applying the indirection operator * to a "pointer to one past the last
element" leads to undefined behavior.

Informally, you can think of P + n as advancing the pointer by
(n * sizeof(type» bytes, as long as the pointer remains within the legal
range (first element to one beyond the last element).

Chapter 2, Language structure 53

Pointer
conversions

c++ reference
declarations

Arrays

54

Subtracting two pointers to elements of the same array object gives an
integral value of type ptrdiff_t defined in stddef.h. This value represents the
difference between the subscripts of the two referenced elements, provided
it is in the range of ptrdiff_t. In the expression PI - P2, where PI and P2 are
of type pointer to type (or pointer to qualified type), PI and P2 must point
to existing elements or to one past the last element. If PI points to the i-th
element, and P2 points to the j-th element, PI - P2 has the value (i - j).

Pointer types can be converted to other pointer types using the typecasting
mechanism:

char *stri
int *iPi
str = (char *)iPi

More generally, the cast (type*) will convert a pointer to type "pointer to
type." See page 103 for a discussion of C++ typecast mechanisms.

C++ reference types are closely related to pointer types. Reference types
create aliases for objects and let you pass arguments to functions by
reference. C passes arguments only by value. In C++ you can pass
arguments by value or by reference. See page 111 for complete details.

The declaration

type declarator [<constant-expression>]

declares an array composed of elements of type. An array consists of a
contiguous region of storage exactly large enough to hold all of its
elements.

If an expression is given in an array declarator, it must evaluate to a
positive constant integer. The value is the number of elements in the array.
Each of the elements of an array is numbered from 0 through the number of
elements minus one.

Multidimensional arrays are constructed by declaring arrays of array type.
The following example shows one way to declare a two-dimensional array.
The implementation is for three rows and five columns but it can be very
easily modified to accept run-time user input.

Borland C++ for OS/2 Programmers Guide

See the Library
Reference, Chapter

2, for a description of
cal/oc, free, and

printf.

Setup
rows

o 4 by1es

m-1 4 by1es

Setup columns
o 1

_ /10 by1es /10 by1es /

o 1

_/10 by1es/10 by1es/

n-1

... /10 by1es 1

n-1

... 110 by1es 1

/* DYNAMIC MEMORY ALLOCATION FOR A MULTIDIMENSIONAL OBJECT. */
#include <stdio.h>
#include <stdlib.h>

typedef long double TYPE;
typedef TYPE **OBJECT;

unsigned int rows = 3, columns 5;

void de_allocate (OBJECT) ;

int main (void) {
OBJECT matrix;
unsigned int i, j;

/* STEP 1: SET UP THE ROWS. */
matrix = (OBJECT) calloc(rows, sizeof(TYPE *));

/* STEP 2: SET UP THE COLUMNS. */
for (i = 0; i < rows; tti)

matrix[i] = (TYPE *) calloc(columns, sizeof(TYPE));

for (i = 0; i < rows; itt)
for (j = 0; j < columns; jtt)

matrix[i] [j] = i t j;

for (i = 0; i < rows; tti) {
printf("\n\n") ;
for (j = 0; j < columns; ttj)
printf("%5.2Lf", matrix[i] [j]);

}

de_allocate(matrix);
return 0;
}

void de_allocate(OBJECT x)
int i;

/* INITIALIZE */

for (i = 0; i < rows; itt)
free(x[i]) ;

/* STEP 1: DELETE THE COLUMNS. */

free (x) ; /* STEP 2: DELETE THE ROWS. */
}

Chapter 2, Language structure 55

Functions

Declarations and
definitions

In c++ you must
always use function

prototypes. We
recommend that you
also use them in C.

56

This code produces the following output:

0.00 1.00 2.00 3.00 4.00

1.00 2.00 3.00 4.00 5.00

2.00 3.00 4.00 5.00 6.00

In certain contexts, the first array declarator of a series might have no
expression inside the brackets. Such an array is of indeterminate size. This
is legitimate in contexts where the size of the array is not needed to reserve
space.

For example, an extern declaration of an array object does not need the
exact dimension of the array; neither does an array function parameter. As
a special extension to ANSI C, Borland C++ also allows an array of
indeterminate size as the final member of a structure. Such an array does
not increase the size of the structure, except that padding can be added to
ensure that the array is properly aligned. These structures are normally
used in dynamic allocation, and the size of the actual array needed must be
explicitly added to the size of the structure in order to properly reserve
space.

Except when it is the operand of a sizeof or & operator, an array type
expression is converted to a pointer to the first element of the array.

Functions are central to C and C++ programming. Languages such as
Pascal distinguish between procedure and function. For C and C++,
functions play both roles.

Each program must have a single external function named main marking
the entry point of the program. Functions are usually declared as proto
types in standard or user-supplied header files, or within program files.
Functions are external by default and are normally accessible from any file
in the program. They can be restricted by using the static storage class
specifier (see page 30).

Functions are defined in your source files or made available by linking
precompiled libraries. .

A given function can be declared several times in a program, provided the
declarations are compatible. Nondefining function declarations using the
function prototype format provide Borland C++ with detailed parameter

Borland C++ for OS/2 Programmers Guide

Declarations and
prototypes

In C++, this
declaration means
<type> func(void)

You can enable a
warning within the

IDE or with the
command-line

compiler: "Function
called without

a prototype."

information, allowing better control over argument number and type
checking, and type conversions.

Excluding C++ function overloading, only one definition of any given
function is allowed. The declarations, if any, must also match this
definition. (The essential difference between a definition and a declaration
is that the definition has a function body.)

In the Kernighan and Ritchie style of declaration, a function could be
implicitly declared by its appearance in a function call, or explicitly
declared as follows:

<type> juncO

where type is the optional return type defaulting to int. A function can be
declared to return any type except an array or function type. This approach
does not allow the compiler to check that the type or number of arguments
used in a function call match the declaration.

This problem was eased by the introduction of function prototypes with the
following declaration syntax:

< type> junc(parameter-declarator-list);

Declarators specify the type of each function parameter. The compiler uses
this information to check function calls for validity. The compiler is also
able to coerce arguments to the proper type. Suppose you have the
following code fragment:

extern long lmax(long vl, long v2); /* prototype */

foo ()
{

int limit = 32;
char ch = ' A' ;

long mval;

mval = lmax(limit,ch); /* function call */

Since it has the function prototype for Imax, this program converts limit and
ch to long, using the standard rules of assignment, before it places them on
the stack for the call to Imax. Without the function prototype, limit and ch
would have been placed on the stack as an integer and a character, respec
tively; in that case, the stack passed to 1m ax would not match in size or
content what Imax was expecting, leading to problems. The classic declara
tion style does not allow any checking of parameter type or number, so
using function prototypes aids greatly in tracking down programming
errors.

Chapter 2, Language structure 57

stdarg.h and
varargs.h contain

macros that you can
use in user-defined

functions with
variable numbers of

parameters.

58

Function prototypes also aid in documenting code. For example, the
function strcpy takes two parameters: a source string and a destination
string. The question is, which is which? The function prototype

char *strcpy(char *dest, const char *source);

makes it clear. If a header file contains function prototypes, then you can
print that file to get most of the information you need for writing programs
that call those functions. If you include an identifier in a prototype
parameter, it is used only for any later error messages involving that
parameter; it has no other effect.

A function declarator with parentheses containing the single word void
indicates a function that takes no arguments at all:

func (void) ;

In C++,juncO also declares a function taking no arguments.

A function prototype normally declares a function as accepting a fixed
number of parameters. For functions that accept a variable number of
parameters (such as printj), a function prototype can end with an ellipsis
(.. .), like this:

f(int *count, long total, ...)

With this form of prototype, the fixed parameters are checked at compile
time, and the variable parameters are passed with no type checking.

Here are some more examples of function de clara tors and prototypes:

int f () ;

int f () ;

int f (void) ;

int p(int,long);

int _ -pascal q(void);

/* In C, a function returning an int with no
information about parameters. This is the K&R
"classic style." */

/* In C++, a function taking no arguments */

/* A function returning an int that takes no
parameters. */

/* A function returning an int that accepts two
parameters: the first, an int; the seco~d, a
long. */

/* A pascal function returning an int that takes
no parameters at all. */

int printf(char *format, ...); /* A function returning an int and accepting a
pointer to a char fixed parameter and any
number of additional parameters of unknown
type. */

int (*fp) (int); /* A pointer to a function returning an int and
accepting a single int parameter. */

Borland C++ for OS/2 Programmers Guide

Definitions

Table 2.10
External function

definitions

You can mix
elements

from 1 and 2.

Formal parameter
declarations

Table 2.10 gives the general syntax for external function definitions.

file
external-definition
file external-definition

external-definition:
function-definition
declaration
asm-statement

function-definition:
<declaration-specifiers> declarator <declaration-list>

compound-statement

In general, a function definition consists of the following sections (the
grammar allows for more complicated cases):

1. Optional storage class specifiers: extern or static. The default is extern.

2. A return type, possibly void. The default is int.

3. Optional modifiers: _ .J)ascal, __ cdecl, __ far16, and __ export. The
defaults depend on the compiler option settings.

4. The name of the function.

5. A parameter declaration list, possibly empty, enclosed in parentheses. In
C, the preferred way of showing an empty list is func (void) . The old
style of June is legal in C but antiquated and possibly unsafe.

6. A function body representing the code to be executed when the function
is called.

The formal parameter declaration list follows a syntax similar to that of the
declarators found in normal identifier declarations. Here are a few
examples:

int func(void)

int func(Tl tl, T2 t2, T3 t3=1)

int func(Tl* ptrl, T2& tref)

int func(register int i) {

II no args

II three simple parameters, one
II with default argument

II A pointer and a reference arg

II Request register for arg

int func(char *str, ...) { 1* One string arg with a variable number of
other args, or with a fixed number of args with varying types *1

Chapter 2, Language structure 59

Function calls and
argument
conversions

60

In C++, you can give default arguments as shown. Parameters with default
values must be the last arguments in the parameter list. The arguments'
types can be scalars, structures, unions, or enumerations; pointers or
references to structures and unions; or pointers to functions or classes.

The ellipsis (...) indicates that the function will be called with different sets
of arguments on different occasions. The ellipsis can follow a sublist of
known argument declarations. This form of prototype reduces the amount
of checking the compiler can make.

The parameters declared all have automatic scope and duration for the
duration of the function. The only legal storage class specifier is register,
but it is ignored by the compiler.

The canst and volatile modifiers can be used with formal parameter
declarators.

A function is called with actual arguments placed in the same sequence as
their matching formal parameters. The actual arguments are converted as if
by initialization to the declared types of the formal parameters.

Here is a summary of the rules governing how Borland C++ deals with
language modifiers and formal parameters in function calls, both with and
without prototypes:

• The language modifiers for a function definition must match the
modifiers used in the declaration of the function at all calls to the
function .

• A function can modify the values of its formal parameters, but this has
no effect on the actual arguments in the calling routine, except for
reference arguments in C++.

When a function prototype has not been previously declared, Borland C++
converts integral arguments to a function call according to the integral
widening (expansion) rules described in the section "Standard
conversions," starting on page 39. When a function prototype is in scope,
Borland C++ converts the given argument to the type of the declared
parameter as if by assignment.

When a function prototype includes an ellipsis (...), Borland C++ converts
all given function arguments as in any other prototype (up to the ellipsis).
The compiler widens any arguments given beyond the fixed parameters,
according to the normal rules for function arguments without prototypes.

If a prototype is present, the number of arguments must match (unless an
ellipsis is present in the prototype). The types need to be compatible only to

Borland C++ for OS/2 Programmers Guide

the extent that an assignment can legally convert them. You can always use
an explicit cast to convert an argument to a type that is acceptable to a
function prototype.

Important! If your function prototype does not match the actual function definition,
Borland C++ will detect this if and only if that definition is in the same
compilation unit as the prototype. If you create a library of routines with a
corresponding header file of prototypes, consider including that header file
when you compile the library, so that any discrepancies between the
prototypes and the actual definitions will be caught. C++ provides type
safe linkage, so differences between expected and actual parameters will be
caught by the linker.

Structures

Structure initialization
is discussed on

page 40.

Untagged
structures and
typedefs

A structure is a derived type usually representing a user-defined collection
of named members (or components). The members can be of any type,
either fundamental or derived (with some restrictions to be noted later), in
any sequence. In addition, a structure member can be a bit field type not
allowed elsewhere. The Borland C++ structure type lets you handle
complex data structures almost as easily as single variables.

In C++, a structure type is treated as a class type with certain differences:
default access is public, and the default for the base class is also public. This
allows more sophisticated control over access to structure members by
using the C++ access specifiers: public (the default), private, and protected.
Apart from these optional access mechanisms, and from exceptions as
noted, the following discussion on structure syntax and usage applies
equally to C and C++ structures.

Structures are declared using the keyword struct. For example,

struct rnystruct { '" }; II rnystruct is the structure tag

struct rnystruct s, *ps, arrs[lO];
1* s is type struct rnystruct; ps is type pointer to struct mystruct;

arrs is array of struct rnystruct. *1

If you omit the structure tag, you can get an untagged structure. You can
use untagged structures to declare the identifiers in the comma-delimited
struct-id-list to be of the given structure type (or derived from it), but you
cannot declare additional objects of this type elsewhere:

Chapter 2, Language structure 61

Untagged structure
and union members

are ignored during
initialization.

Structure member
declarations

You can omit the
struct keyword in

C++.

Structures and
functions

62

struct { ... } s, *ps, arrs[10] i II untagged structure

It is possible to create a typedef while declaring a structure, with or without
a tag:

typedef struct mystruct { ... } MYSTRUCTi
MYSTRUCT S, *ps, arrs[101i II same as struct mystruct s, etc.
typedef struct { ... } YRSTRUCTi II no tag
YRSTRUCT y, *yp, arry[201i

Usually, you don't need both a tag and a typedef: either can be used in
structure declarations.

The member-ded-list within the braces declares the types and names of the
structure members using the declarator syntax shown in Table 2.2 on
page 34.

A structure member can be of any type, with two exceptions:

• The member type cannot be the same as the struct type being currently
declared:

struct mystruct { mystruct s } sl, S2i II illegal

However, a member can be a pointer to the structure being declared, as
in the following example:

struct mystruct { mystruct *ps } sl, S2i II OK

Also, a structure can contain previously defined structure types when
declaring an instance of a declared structure .

• Except in C++, a member cannot have the type" function returning ... ,"
but the type "pointer to function returning . .. " is allowed. In C++, a
struct can have member functions.

A function can return a structure type or a pointer to a structure type:

mystruct funcl(void)i II funcl() returns a structure
mystruct *func2(void)i II func2() returns pointer to structure

A structure can be passed as an argument to a function in the following
ways:

void funcl(mystruct S)i
void func2(mystruct *sptr) i
void func3(mystruct &sref) i

II directly
II via a pointer
II as a reference (Ctt only)

Borland C++ for OS/2 Programmers Guide

Structure member
access

Structure and union members are accessed using the following two
selection operators:

•. (period)

.-> (right arrow)

Suppose that the object s is of struct type s., and sptr is a pointer to S. Then
if m is a member identifier of type M declared in S, the expressions s.m and
sptr->m are of type M, and both represent the member object m in S. The
expression sptr->m is a convenient synonym for (*sptr) .m.

The operator. is called the direct member selector and the operator -> is
called the indirect (or pointer) member selector. For example:

struct mystruct
{

int i;
char str[21];
double d;

s, *sptr = &s;

s.i = 3;
sptr -> d = 1.23;

II assign to the i member of mystruct s
II assign to the d member of mystruct s

The expression s.m is an lvalue, provided that s is an lvalue and m is not an
array type. The expression sptr->m is an lvalue unless m is an array type.

If structure B contains a field whose type is structure A, the members of A
can be accessed by two applications of the member selectors:

struct A {
int j;
double x;

} ;

struct B {
int i;
struct A a;
double d;

s, *sptr;

s.i = 3;

s.a.j = 2;
sptr->d = 1.23;
(sptr->a).x = 3.14

II assign to the i member of B

II assign to the j member of A
II assign to the d member of B
II assign to x member of A

Chapter 2, Language structure 63

Structure word
alignment

V\brd alignment is off
by default.

64

Each structure declaration introduces a unique structure type, so that in

struct A {
int i,j;
double d;

a, al;

struct B {
int i,j;
double d;

} b;

the objects a and al are both of type struct A, but the objects a and b are of
different structure types. Structures can be assigned only if the source and
destination have the same type:

a = al; II OK: same type, so member by member assignment
a = b; II ILLEGAL: different types
a.i = b.i; a.j = b.j; a.d = b.d 1* but you can assign member-by-member *1

Memory is allocated to a structure member-by-member from left to right,
from low to high memory address. In this example,

struct mystruct {
int i;
char str[2l];
double d;

s;

the object s occupies sufficient memory to hold a 4-byte integer, a 21-byte
string, and an 8-byte double. The format of this object in memory is
determined by selecting the word alignment option. Without word
alignment, s will be allocated 33 contiguous bytes.

If you turn on word alignment, Borland C++ pads the structure with bytes
to ensure the structure is aligned as follows:

1. The structure boundaries are defined by 4-byte multiples.

2. For any non-char member, the offset will be a multiple of the member
size. A short will be at an offset that is some multiple of 2 ints from the
start of the structure.

3. One to three bytes can be added (if necessary) at the end to ensure that
the whole structure contains a 4-byte multiple.

For the Borland C++ compiler, with word alignment on, three bytes would
be added before the double, making a 36-byte object.

Borland C++ for OS/2 Programmers Guide

Structure name
spaces

Incomplete
declarations

See the User's Guide, Chapters 4 and 6, for a description of code-generation
options.

Structure tag names share the same name space with union tags and
enumeration tags (but enums within a structure are in a different name
space in C++). This means that such tags must be uniquely named within
the same scope. However, tag names need not differ from identifiers in the
other three name spaces: the label name space, the member name space(s),
and the single name space (which consists of variables, functions, typedef
names, and enumerators).

Member names within a given structure or union must be unique, but they
can share the names of members in other structures or unions. For example,

goto Si

s:
struct s

int Si
float Si

Si

union s
int Si
float fi

fi

struct t {
int Si

Si

II Label
II OK: tag and label name spaces different
II OK: label, tag and member name spaces different
II ILLEGAL: member name duplicated
II OK: var name space different. In ett, this can only
II be done if s does not have a constructor.

II ILLEGAL: tag space duplicate
II OK: new member space

II OK: var name space

II OK: different member space

II ILLEGAL: var name duplicate

A pointer to a structure type A can legally appear in the declaration of
another structure B before A has been declared:

struct Ai II incomplete
struct B { struct A *pa }i
struct A { struct B *pb }i

The first appearance of A is called incomplete because there is no definition
for it at that point. An incomplete declaration is allowed here, because the
definition of B doesn't need the size of A.

Chapter 2, Language structure 65

Bit fields

A structure can
contain any mixture
of bit-field and non

bit-field types.

You can declare signed or unsigned integer members as bit fields from 1 to
32 bits wide. You specify the bit-field width and optional identifier as
follows:

type-specifier <bitfield-id> : width;

where type-specifier is char, unsigned char, int, or unsigned int Bit fields are
allocated from low-order to high-order bits within a word. The expression
width must be present and must evaluate to a constant integer in the range

66

1 to 32.

If the bit field identifier is omitted, the number of bits specified in width is
allocated, but the field is not accessible. This lets you match bit patterns in,
say, hardware registers where some bits are unused. For example,

struct mystruct {

int i 2 ;
unsigned j : 5;
int 4;
int k : 1;
unsigned m : 4;

} a, b, c;

produces the following layout:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x x x x x x x x x x x x X

.6 .. ~ ~ <£ j>' ~6 .. , , ~

m k (unused) j i

Integer fields are stored in two's-complement form, with the leftmost bit
being the MSB (most significant bit). With int (for example, signed) bit
fields, the MSB is interpreted as a sign bit. A bit field of width 2 holding
binary 11, therefore, would be interpreted as 3 if unsigned, but as -1 if int.
In the previous example, the legal assignment a. i = 6 would leave binary
10 = -2 in a.i with no warning. The signed int field k of width 1 can hold
only the values -1 and 0, because the bit pattern 1 is interpreted as-l.

-.. Bit fields can be declared only in structures, unions, and classes. They are
accessed with the same member selectors (. and -» used for non-bit-field
members. Also, bit fields pose several problems when writing portable
code, since the organization of bits-wi thin-bytes and bytes-within-words is
machine dependent.

The expression &mystruct.x is illegal if x is a bit field identifier, because there
is no guarantee that mystruct.x lies at a byte address.

Borland C++ for OS/2 Programmers Guide

Unions

Unions correspond to
the variant record

types of Pascal and
Modula-2.

Anonymous
unions (C++ only)

Union types are derived types sharing many of the syntactical and
functional features of structure types. The key difference is that a union
allows only one of its members to be "active" at anyone time. The size of a
union is the size of its largest member. The value of only one of its members
can be stored at any time. In the following simple case,

union myunion {
int i;
double d;
char Chi

} mu, *muptr=μ

1* union tag = myunion *1

the identifier mu, of type union myunion, can be used to hold a 4-byte int, an
8-byte double, or a single-byte char, but only one of these at the same time.

sizeof(union myunion) and sizeof(mu) both return 8, but 4 bytes are unused
(padded) when mu holds an int object, and 7 bytes are unused when mu
holds a char. You access union members with the structure member
selectors (. and -», but care is needed:

mu.d = 4.016;
printf("mu.d = %f\n",mu.d); II OK: displays mu.d = 4.016
printf ("mu. i = %d\n", mu. i) ; I I peculiar result
mu.ch = 'A';
printf("mu.ch = %c\n",mu.ch); II OK: displays mu.ch = A
printf("mu.d = %f\n",mu.d); II peculiar result
muptr->i = 3;
printf("mu.i = %d\n",mu.i); II OK: displays mu.i = 3

The second printj is legal, since mu.i is an integer type. However, the bit
pattern in mu.i corresponds to parts of the double previously assigned, and
will not usually provide a useful integer interpretation.

When properly converted, a pointer to a union points to each of its
members, and vice versa.

A union that doesn't have a tag and is not used to declare a named object
(or other type) is called an anonymous union. It has the following form:

union { member-list };

Its members can be accessed directly in the scope where this union is
declared, without using the x.y or p->y syntax.

Chapter 2, Language structure 67

Union
declarations

Enumerations

68

Anonymous unions can't have member functions and at file level must be
declared static. In other words, an anonymous union cannot have external
linkage.

The general declaration syntax for unions is similar to that for structures.
The differences are

• Unions can contain bit fields, but only one can be active. They all start at
the beginning of the union. (Note that, because bit fields are machine
dependent, they can pose problems when writing portable code.)

• Unlike C++ structures, C++ union types cannot use the class access
specifiers: public, private, and protected. All fields of a union are public.

• Unions can be initialized only through their first declared member:

union loca187
int i;
double d;
} a = { 20 };

• A union can't participate in a class hierarchy. It can't be derived from any
class, nor can it be a base class. A union can have a constructor.

An enumeration data type is used to provide mnemonic identifiers for a set
of integer values. For example, the following declaration,

enum days { sun, man, tues, wed, thur, fri, sat} anyday;

establishes a unique integral type, enum days, a variable anyday of this
type, and a set of enumerators (sun, mon, ...) with constant integer values.

The Borland C++ compiler is free to store enumerators in a single byte or in
a 16-bit word-whichever is the smallest container that can hold all the
values. By default, enums are stored as ints. If the option is off and the
range of values permits, a smaller container is used, but it is always pro
moted to int when used. The identifiers used in an enumerator list are
implicitly of type unsigned char, unsigned short, or int, depending on the
values of the enumerators. If all values can be represented in an unsigned
char or unsigned short, that is the type of each enumerator.

In C, a variable of an enumerated type can be assigned any value of type
int-no type checking beyond that is enforced. In C++, a variable of an
enumerated type can be assigned only one of its enumerators. That is,

Borland C++ for OS/2 Programmers Guide

See page 18 for more
on enumeration

constants.

anyday = moni
anyday = 1i

II OK
II illegal, even though man == 1

The identifier days is the optional enumeration tag that can be used in
subsequent declarations of enumeration variables of type enum days:

enum days payday, holidaYi II declare two variables

In C++, you can omit the enum keyword if days is not the name of
anything else in the same scope.

As with struct and union declarations, you can omit the tag if no further
variables of this enum type are required:

enum { sun, man, tues, wed, thur, fri, sat} anydaYi
1* anonymous enum type *1

The enumerators listed inside the braces are also known as enumeration
constants. Each is assigned a fixed integral value. In the absence of explicit
initializers, the first enumerator (sun) is set to zero, and each succeeding
enumerator is set to one more than its predecessor (man = I, tues = 2,
and so on).

With explicit integral initializers, you can set one or more enumerators to
specific values. Any subsequent names without initializers will then
increase by one. For example, in the following declaration,

1* Initializer expression can include previously declared enumerators *1
enurn coins { penny = 1, tuppence, nickel = penny + 4, dime = 10,

quarter = nickel * nickel } smallchangei

tuppence would acquire the value 2, nickel the value 5, and quarter the
value 25.

The initializer can be any expression yielding a positive or negative integer
value (after possible integer promotions). These values are usually unique,
but duplicates are legal.

enum types can appear wherever int types are permitted.

enurn days { sun, man, tues, wed, thur, fri, sat} anydaYi
enum days paydaYi
typedef enum days DAYSi
DAYS *daysptri
int i = tuesi
anyday = moni II OK
*daysptr = anydaYi II OK
man = tuesi II ILLEGAL: man is a constant

Enumeration tags share the same name space as structure and union tags.
Enumerators share the same name space as ordinary variable identifiers:

Chapter 2, Language structure 69

70

int mon = 11;
{

enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
1* enumerator mon hides outer declaration of int mon *1
struct days { int i, j;}; II ILLEGAL: days duplicate tag
double sat; II ILLEGAL: redefinition of sat

mon = 12; II back in int mon scope

In C++, enumerators declared within a class are in the scope of that class.

In C++ it is possible to overload most operators for an enumeration. How
ever, because the =, [], (), and -> operators must be overloaded as member
functions, it is not possible to overload them for an enum. The following
example shows how to overload the postfix and prefix increment operators.

II OVERLOAD THE POSTFIX AND PREFIX INCREMENT OPERATORS FOR enum
#include <iostream.h>

enum _SEASON { spring, summer, fall, winter };

_SEASON operatortt(_SEASON &s) { II PREFIX INCREMENT
II DO MODULAR ARITHMETIC AND CAST THE RESULT TO _SEASON TYPE
s = _SEASON ((s t 1) % 4); II INCREMENT THE ORIGINAL
return s; II RETURN THE OLD VALUE

II UNNAMED int ARGUMENT IS NOT USED
_SEASON operatortt(_SEASON &s, int) { II POSTFIX INCREMENT

_SEASON tmp = s; II SAVE THE ORIGINAL VALUE
switch (s) {

case spring: s = summer; break;
case summer: s = fall;, break;
case fall: s = winter; break;
case winter: s = spring; break;

return (tmp);
}

int main(void) {
_SEASON season = fall;

cout « "\nThe season is " « season;
cout « "\nIncrement the season: " « ++season;
cout « "\nNo change yet when using postfix: " « season++;
cout « "\nFinally:" « season;
return 0;
}

This code produces the following output:

Borland C++ for OS/2 Programmers Guide

Expressions

Table 2.12 (on page
72) shows how
identifiers and
operators are

combined to form
grammatically legal

"phrases."
The standard

conversions are
detailed in Table 2.6

on page 40.

Table 2.11
Associativity and

precedence of
Borland C++

operators

The season is 2
Increment the season:
No change yet when using postfix:
Finally: 0

An expression is a sequence of operators, operands, and punctuators that
specifies a computation. The formal syntax,listed in Table 2.12, indicates
that expressions are defined recursively: sub expressions can be nested
without formal limit. (However, the compiler will report an out-of-memory
error if it can't compile an expression that is too complex.)

Expressions are evaluated according to certain conversion, grouping,
associativity, and precedence rules that depend on the operators used, the
presence of parentheses, and the data types of the operands. The way
operands and sub expressions are grouped does not necessarily specify the
actual order in which they are evaluated by Borland C++ (see "Evaluation
order" on page 74).

Expressions can produce an lvalue, an rvalue, or no value. Expressions
might cause side effects whether they produce a value or not.

The precedence and associativity of the operators are summarized in
Table 2.11. The grammar in Table 2.12 on page 72 completely defines the
precedence and associativity of the operators.

There are 16 precedence categories, some of which contain only one
operator. Operators in the same category have equal precedence with each
other.

Where duplicates of operators appear in the table, the first occurrence is
unary, the second binary. Each category has an associativity rule: left to
right, or right to left. In the absence of parentheses, these rules resolve the
grouping of expressions with operators of equal precedence.

The precedence of each operator category in the following table is indicated
by its order in the table. The first category (the first line) has the highest
precedence.

Operators

() [] -> ::

! - + - ++ -- & * (typecasO

sizeof new delete typeid

Associativity

Left to right

Right to left

Right to left

Chapter 2, Language structure 71

Table 2.11: Associativity and precedence of Borland C++ operators (continued)

.* ->* Left to right

* / %

+ -

« »

< <= > >=

-- !=

&
II

&&

II
?: (conditional expression)

= *= 1= %= += -= &= 11= 1= «= »=

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Right to left

Left to right

Table 2.12: Borland C++ expressions

primary-expression:
literal
this (C++ specific)
:: identifier (C++ specific)
:: operator-function-name (C++ specific)
::qualified-name (C++ specific)
(expression)
name

literal:
integer-constant
character-constant
floating-constant
string-literal

name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)
- class-name (C++ specific)
qualified-name (C++ specific)

qualified-name: (C++ specific)
qualified-class-name :: name

postfix-expression:

72

primary-expression
postfix-expression [expression 1
postfix-expression «expression-list»

simple-type-name «expression-list» (C++ specific)
postfix-expression . name
postfix-expression -> name
postfix-expression ++
postfix-expression --
consCcast < type-id> (expression) (C++ specific)
dynamic_cast < type-id> (expression) (C++ specific)
reinterpret_cast < type-id> (expression) (C++ specific)
static_cast < type-id> (expression) (C++ specific)
typeid (expression) (C++ specific)
typeid (type-name) (C++ specific)

expression-list
assignment-expression
expression-list , assignment-expression

unary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
allocation-expression (C++ specific)
deallocation-expression (C++ specific)

unary-operator. one of
& * + - - !

Borland C++ for OS/2 Programmers Guide

Table 2.12: Borland C++ expressions (continued)

allocation-expression: (C++ specific)
<::> new <placement> new-type-name <initializer>
<::> new <placement> (type-name) <initializer>

placement (C++ specific)
(expression-list)

new-type-name: (C++ specific)
type-specifiers <new-declarator>

new-declarator: (C++ specific)
ptr-operator <new-declarator>
new-declarator [<expression> 1

deallocation-expression: (C++ specific)
<::> delete cast-expression
<::> delete [1 cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

pm-expression:
cast-expression
pm-expression.* cast-expression (C++ specific)
pm-expression ->* cast-expression (C++ specific)

multiplicative-expression:
pm-expression
mUltiplicative-expression * pm-expression
multiplicative-expression 1 pm-expression
multiplicative-expression % pm-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression» additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression

relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
equality expression == relational-expression
equality expression != relational-expression

AND-expression:
equality-expression
AND-expression & equality-expression

exclusive-OR-expression:
. AND-expression

exclusive-OR-expression A AND-expression

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression I exclusive-OR-expression

logical-A NO-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression II logical-AND-expression

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *= 1=
«= »= &=

expression:
assignment-expression

%= +=
A= 1=

expression, assignment-expression

constant-expression:
conditional-expression

-=

Expressions and
C++

c++ allows the overloading of certain standard C operators, as explained
starting on page 146. An overloaded operator is defined to behave in a
special way when applied to expressions of class type. For instance, the
equality operator == might be defined in class complex to test the equality of

Chapter 2, Language structure 73

Evaluation order

74

two complex numbers without changing its normal usage with non-class
data types.

An overloaded operator is implemented as a function; this function
determines the operand type,lvalue, and evaluation order to be applied
when the overloaded operator is used. However, overloading cannot
change the precedence of an operator. Similarly, C++ allows user-defined
conversions between class objects and fundamental types. Keep in mind,
then, that some of the C language rules for operators and conversions
might not apply to expressions in C++.

The order in which Borland C++ evaluates the operands of an expression is
not specified, except where an operator specifically states otherwise. The
compiler will try to rearrange the expression in order to improve the
quality of the generated code. Care is therefore needed with expressions in
which a value is modified more than once. In general, avoid writing
expressions that both modify and use the value of the same object. For
example, consider the expression

i = v[ittl; II i is undefined

The value of i depends on whether i is incremented before or after the
assignment. Similarly,

int total = 0;
sum = (total = 3) t (tttotal); II sum = 4 or sum = 7 ??

is ambiguous for sum and total. The solution is to revamp the expression,
using a temporary variable:

int temp, total = 0;
temp = tttotal;
sum = (total = 3) t temp;

Where the syntax does enforce an evaluation sequence, it is safe to have
multiple evaluations:

sum = (i = 3, itt, itt); II OK: sum = 4, i = 5

Each sub expression of the comma expression is evaluated from left to right,
and the whole expression evaluates to the rightmost value.

Borland C++ regroups expressions, rearranging associative and commuta
tive operators regardless of parentheses, in order to create an efficiently
compiled expression; in no case will the rearrangement affect the value of
the expression.

Borland C++ for OS/2 Programmers Guide

Errors and
overflows

See matherr and
signa/Tn the Library

Reference.

You can use parentheses to force the order of evaluation in expressions.
For example, if you have the variables a, b, c, and f, then the expression
f = a + (b + c) forces (b + c) to be evaluated before adding the result to a.

Table 2.11 (on page 71) summarizes the precedence and associativity of the
operators. During the evaluation of an expression, Borland C++ can
encounter many problematic situations, such as division by zero or out-of
range floating-point values. Integer overflow is ignored (C uses modulo 2 n

arithmetic on n-bit registers), but errors detected by math library functions
can be handled by standard or user-defined routines.

Operator semantics

The Borland C++
operators described

here are the standard
ANSI C operators.

Unless the operators are overloaded, the following information is true in
both C and C++. In C++ you can overload all of these operators with the
exception of . (member access operator), ?: (conditional operator), :: and .*
(scope access operators).

If an operator is overloaded, the discussion might not be true for it
anymore. Table 2.12 on page 72 gives the syntax for all operators and
operator expressions.

Operator descriptions

Overloading is
discussed starting on

page 142.

Operators are tokens that trigger some computation when applied to
variables and other objects in an expression. Borland C++ is especially rich
in operators, offering not only the common arithmetical and logical
operators, but also many for bit-level manipulations, structure and union
component access, and pointer operations (referencing and dereferencing).

C++ extensions offer additional operators for accessing class members and
their objects, together with a mechanism for overloading operators.
Overloading lets you redefine the action of any standard operators when
applied to the objects of a given class. In this section, the discussion is
confined to the standard operator definitions.

After defining the standard operators, data types and declarations are
discussed and an explanation is provided about how these affect the
actions of each operator. Then the syntax for building expressions from
operators, punctuators, and object is provided.

Chapter 2, Language structure 75

The operators # and
are used only by

the preprocessor (see
page 177).

Primary
expression
operators

76

The operators in Borland C++ are defined as follows:

operator: one of

[] () -> ++
& * +
sizeof % « » <
> <= >= -- != II.

I && II ?: = *=
1= %= += -= «= »=
&= 11.= 1= # ##

The following operators are specific to C++:

* ->* ..
Except for [], (), and ?:, which bracket expressions, the multicharacter
operators are considered as single tokens. The same operator token can
have more than one interpretation, depending on the context. For example,

A * B
*ptr

A & B
&A
int &

label:
a ? x : y

void func(int n);
a = (btc) *d;

a, b, c;
func (a, b, c) i

a = -bi
-func() {delete ai}

Multiplication
Dereference (indirection)

Bitwise AND
Address operation
Reference modifier (C++)

Statement label
Conditional statement

Function declaration
Parenthesized expression

Comma expression
Function call

Bitwise negation (one's complement)
Destructor (C++)

For ANSI C, the primary expressions are literal (also sometimes referred to
as constant), identifier, and (expression). The C++ language extends this list
of primary expressions to include the keyword this, scope resolution
operator ::, name, and the class destructor (tilde).

The Borland C++ primary expressions are summarized in the following list.
The complete list of expressions and operators is shown in Table 2.12 on
page 72.

Borland C++ for OS/2 Programmers Guide

primary-expression:
literal
this (C++ specific)
:: identifier (C++ specific)
:: operator-Junction-name (C++ specific)
:: qualified-name (C++ specific)
(expression)
name

literal:
integer-constant
character-constant
floating-constant
string-literal

name:
identifier
operator-Junction-name (C++ specific)
conversion-Junction-name (C++ specific)
.... dass-name (C++ specific)
qualified-name (C++ specific)

qualified-name: (C++ specific)
qualified-dass-name :: name

For a description of literals, see page 17.

For a discussion of the primary expression this, see the section beginning
on page 121. The keyword this cannot be used outside a class member
function body.

The discussion of the scope resolution operator :: begins on page 112. The
scope resolution operator allows reference to a type, object, function, or
enumerator even though its identifier is hidden.

The discussion of :: identifier and :: qualified-Junction-name begins on
page 127. You can find a summary on the use of operator:: on page 152.

The parenthesis surrounding an expression do not change the unadorned
expression itself.

The primary expression name is restricted to the category of primary
expressions that sometimes appear after the member access operators.
(dot) and -> . Therefore, name must be either an lvalue or a function (see
page 26). See also the discussion of member access operators beginning on
page 79.

Chapter 2, Language structure 77

Postfix
expression
operators

See the "New-style
typecasting" section

beginning on page
103 for a description

of these operators.

Array subscript
operator []

Function call
operators ()

78

An identifier is a primary expression, provided it has been suitably declared.
The description and formal definition of identifiers is shown on page 10.

The discussion on how to use the destructor operator..., (tilde), begins on
page 132 and continues on page 140.

The six postfix expression operators [] () . -> ++ and - - are used to
build postfiX expressions as shown in the expressions syntax table (Table
2.12 on page 72). Postfix expression operators group from left to right.

The following postfix expressions let you make safe, explicit typecasts in a
C++ program.

const_cast < T> (expression)
dynamic_cast < T> (expression)
reinterpret_cast < T> (expression)
static_cast < T> (expression)

To obtain run-time type identification (RTTI), use the typeidO operator. The
syntax is as follows:

typeid(expression)
typeid(type-name)

In the expression

postfix-expression [expression]

either postfix-expression or expression must be a pointer and the other an
integral type.

In C, but not necessarily in C++, the expression expl[exp2J is defined as

* ((expl) + (exp2))

where either expl is a pointer and exp2 is an integer, or expl is an integer
and exp2 is a pointer. The punctuators [], *, and + can be individually
overloaded in C++.

The expression

postfix-expression(<arg-expression-list»

is a call to the function given by the postfix expression. The arg-expression
list is a comma-delimited list of expressions of any type representing the
actual (or real) function arguments. The value of the function call
expression, if any, is determined by the return statement in the function
definition. See page 60 for more information on function calls.

Borland C++ for OS/2 Programmers Guide

Member access
operators. (dot)

Ivalues are defined
on page 26.

Member access
operator->

Increment operator
++

Decrement operator

Unary operators

In the expression

postfix-expression. name

the postfix expression must be of type structure or union; the identifier
must be the name of a member of that structure or union type. The
expression designates a member of a structure or union object. The value of
the expression is the value of the selected member; it will be an lvalue if
and only if the postfix expression is an lvalue. Detailed examples of the use
of. (dot) and -> for structures are given starting on page 63.

In the expression

postfix-expression -> name

the postfix expression must be of type pointer to structure or pointer to
union; the identifier must be the name of a member of that structure or
union type. The expression designates a member of a structure or union
object. The value of the expression is the value of the selected member; it
will be an lvalue if the selected member is an lvalue.

In the expression

postfix-expression ++

the postfix expression is the operand; it must be of scalar type (arithmetic
or pointer types) and must be a lvalue (see page 26 for more on modifiable
lvalues). The postfix ++ is also known as the postincrement operator. The
value of the whole expression is the value of the postfix expression before
the increment is applied. After the postfix expression is evaluated, the
operand is incremented by 1. The increment value is appropriate to the
type of the operand. Pointer types are subject to the rules for pointer
arithmetic.

The postfix decrement, also known as the postdecrement, operator follows
the same rules as the postfix increment, except that 1 is subtracted from the
operand after the evaluation.

The unary operators are described in the following table. Each operator is
described in more detail in the sections following the table.

Chapter 2, Language structure 79

Table 2.13
Unary operators

Address operator &

The symbol & is also
used in C++ to

specify reference
types; see page 111.

80

Unary
operator

&

+

Description

Address operator
Indirection operator
Unary plus
Unary minus
Bitwise complement (one's complement)
Logical negation

++ Prefix: preincrement; Postfix: postincrement
Prefix: predecrement; Postfix: postdecrement

The syntax is

unary-operator cast-expression

cast -expression:
unary-expression
(type-name) cast-expression

In C++, an explicit type cast can also be accomplished with cast operators.
See page 103.

The & operator and * operator (the * operator is described in the next
section) work together as the referencing and dereferencing operators. In the
expression

& cast-expression

the cast-expression operand must be either a function designator or an lvalue
designating an object that is not a bit field and is not declared with the
register storage class specifier. If the operand is of type T, the result is of
type pointer to T.

Some non-Ivalue identifiers, such as function names and array names, are
automatically converted into "pointer to X" types when appearing in
certain contexts. The & operator can be used with such objects, but its use is
redundant and therefore discouraged.

Consider the following extract:

T t1 = 1, t2 = 2;
T *ptr = &t1;
*ptr = t2;

II initialized pointer
II same effect as t1 = t2

T *ptr = &t1 is treated as

T *ptr;
ptr = &ti;

Borland C++ for OS/2 Programmers Guide

Indirection
operator It

Plus operator +

Minus operator -

Bitwise complement
operator ..

Logical negation
operator!

so it is ptr, not *ptr, that gets assigned. Once ptr has been initialized with the
address &t1, it can be safely dereferenced to give the lvalue *ptr.

In the expression

* cast-expression

, the cast-expression operand must have type "pointer to T," where Tis any
type. The result of the indirection is of type T. If the operand is of type
"pointer to function," the result is a function designator; if the operand is a
pointer to an object, the result is an lvalue designating that object. In the
following situations, the result of indirection is undefined:

• The cast-expression is a null pointer .

• The cast-expression is the address of an automatic variable and execution
of its block has terminated.

In the expression

+ cast-expression

the cast-expression operand must be of arithmetic type. The result is the
value of the operand after any required integral promotions.

In the expression

- cast-expression

the cast-expression operand must be of arithmetic type. The result is the
negative of the value of the operand after any required integral promotions.

In the expression

.... cast-expression

the cast-expression operand must be of integral type. The result is the bitwise
complement of the operand after any required integral promotions. Each 0
bit in the operand is set to I, and each 1 bit in the operand is set to O.

In the expression

! cast-expression

the cast-expression operand must be of scalar type. The result is of type int
and is the logical negation of the operand: 0 if the operand is nonzero; 1 if
the operand is zero. The expression IE is equivalent to (0 == E).

Chapter 2, Language structure 81

Increment operator
++

Decrement operator

Binary operators

82

Table 2,14
Binary operators

In the expressions

++ unary-expression
unary-expression ++

the unary expression is the operand; it must be of scalar type and must be a
modifiable lvalue. The first expression shows the syntax for the prefix
increment operator, also known as the preincrement operator. The operand is
incremented by 1 before the expression is evaluated; the value of the whole
expression is the incremented value of the operand. The 1 used to incre
ment is the appropriate value for the type of the operand. Pointer types
follow the rules of pointer arithmetic.

The second expression shows the syntax for the postfix increment operator
(also known as the postincrement operator). The operand is incremented by
1 after the expression is evaluated.

The following expressions show the syntax for prefix and postfix decre
mentation. The pr'efix decrement is also known as the predecrement; the
postfix decrement is also known as the postdecrement.

- - unary-expression
unary-expression - -

The operator follows the same rules as the increment operator, except that
the operand is decremented by 1.

This section presents the binary operators, which are operators that require
two operands.

Type of
operator

Additive

Multiplicative

Shift

Bitwise

Binary
operator

+

%

«
»

&
II

Description

Binary plus (addition)
Binary minus (subtraction)

Multiply
Divide
Remainder

Shift left
Shift right

Bitwise AND
Bitwise XOR (exclusive OR)
Bitwise inclusive OR

Borland C++ for OS/2 Programmers Guide

Additive operators

Table 2.14: Binary operators (continued)

Logical && Logical AND
II Logical OR

Assignment = Assignment
*= Assign product
1= Assign quotient
%= Assign remainder (modulus)
+= Assign sum
-= Assign difference
«= Assign left shift
»= Assign right shift
&= Assign bitwise AND
"= Assign bitwise XOR
1= Assign bitwise OR

Relational < Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Equality -- Equal to
!= Not equal to

Component Direct component selector
selection

-> Indirect component selector

C++ operators .. Scope access'resolution
Dereference pointer to class member

->* Dereference pointer to class member
Class initializer

Conditional a? x:y "if a then x; else Y'
Comma Evaluate; for example, a I b ,ei from left to

right

The operator functions, as well as their syntax, precedences, and
associativities, are covered starting on page 71.

There are two additive operators: + and -. The syntax is

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Addition +
The legal operand types for opl + op2 are

Chapter 2, Language structure 83

Multiplicative
operators

Rounding is always
toward zero.

84

• Both opl and op2 are of arithmetic type .
• opl is of integral type, and op2 is of pointer to object type .

• op2 is of integral type, and opl is of pointer to object type.

In the first case, the operands are subjected to the standard arithmetical
conversions, and the result is the arithmetical sum of the operands. In the
second and third cases, the rules of pointer arithmetic apply. (Pointer
arithmetic is covered on page 53.)

Subtraction -
The legal operand types for opl - op2 are

• Both opl and op2 are of arithmetic type.

• Both opl and op2 are pointers to compatible object types. The unqualified
type type is considered to be compatible with the qualified types canst
type, volatile type, and canst volatile type .

• opl is of pointer to object type, and op2 is integral type.

In the first case, the operands are subjected to the standard arithmetic
conversions, and the result is the arithmetic difference of the operands. In
the second and third cases, the rules of pointer arithmetic apply.

There are three multiplicative operators: * / and %. The syntax is

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

The operands for * (multiplication) and / (division) must be of arithmetical
type. The operands for % (modulus, or remainder) must be of integral type.
The usual arithmetic conversions are made on the operands (see page 39).

The result of (opl * op2) is the product of the two operands. The results of
(opl / op2) and (opl % op2) are the quotient and remainder, respectively,
when opl is divided by op2, provided that op2 is nonzero. Use of / or % with
a zero second operand results in an error.

When opl and op2 are integers and the quotient is not an integer, the results
are as follows:

• If opl and op2 have the same sign, opl /op2 is the largest integer less than
the true quotient, and opl % op2 has the sign of opl.

• If opl and op2 have opposite signs, opl /op2 is the smallest integer greater
than the true quotient, and opl % op2 has the sign of opl.

Borland C++ for OS/2 Programmers Guide

Bitwise logic
operators

There are three bitwise logical operators: &, A and I.

AND&
The syntax is

AND-expression:
equal i ty-expression
AND-expression & equality-expression

In the expression E1 & E2, both operands must be of integral type. The
usual arithmetical conversions are performed on E1 and E2, and the result
is the bitwise AND of E1 and E2. Each bit in the result is determined as
shown in Table 2.l5.

exclusive-OR -expression:
AND-expression
exclusive-OR-expression A AND-expression

In the expression E1 A E2, both operands must be of integral type. The
usual arithmetic conversions are performed on E1 and E2, and the result is
the bitwise exclusive OR of E1 and E2. Each bit in the result is determined
as shown in Table 2.l5.

Inclusive OR I
The syntax is

inclusive-OR -expression:
exclusive-OR -expression
inclusive-OR-expression 1 exclusive-OR-expression

In the expression E1 1 E2, both operands must be of integral type. The usual
arithmetic conversions are performed on E1 and E2, and the result is the

Chapter 2, Language structure 85

Bitwise shift
operators

The constants
ULONG MAX and

UINrMAX are
defined In limits.h.

Relational operators

86

bitwise inclusive OR of El and E2. Each bit in the result is determined as
shown in Table 2.15.

There are two bitwise shift operators: « and ». The syntax is

shift -expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

Shift «< and »)
In the expressions El « E2 and El » E2, the operands El and E2 must be
of integral type. The normal integral promotions are performed on El and
E2, and the type of the result is the type of the promoted El. If E2 is
negative or is greater than or equal to the width in bits of El, the operation
is undefined.

The result of El « E2 is the value of El left-shifted by E2 bit positions,
zero-filled from the right if necessary. Left shifts of an unsigned long El are
equivalent to multiplying El by 2E2, reduced modulo ULONG_MAX + 1;
left shifts of unsigned ints are equivalent to multiplying by 2E2 reduced
modulo UINT_MAX + 1. If El is a signed integer, the result must be
interpreted with care, because the sign bit might change.

The result of El » E2 is the value of El right-shifted by E2 bit positions. If
El is of unsigned type, zero-fill occurs from the left if necessary. If El is of
signed type, the fill from the left uses the sign bit (0 for positive, 1 for
negative El). This sign-bit extension ensures that the sign of El » E2 is the
same as the sign of El. Except for signed types, the value of El »E2 is the

. integral part of the quotient El/2E2.

There are four relational operators: < > <= and >=. The syntax for these
operators is

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression> shift-expression
relational-expression <= shift-expression _
relational-expression >= shift-expression

Less-than <
In the expression El < E2, the operands must conform to one of the
following sets of conditions:

Borland e++ for OS/2 Programmers Guide

Qualified names are
defined on page 125.

• Both El and E2 are of arithmetic type.

• Both El and E2 are pointers to qualified or unqualified versions of
compatible object types.

• Both El and E2 are pointers to qualified or unqualified versions of
compatible incomplete types.

In the first case, the usual arithmetic conversions are performed. The result
of El < E2 is of type int. If the value of El is less than the value of E2, the
result is 1 (true); otherwise, the result is zero (false).

In the second and third cases, in which El and E2 are pointers to
compatible types, the result of El < E2 depends on the relative locations
(addresses) of the two objects being pointed at. When comparing structure
members within the same structure, the "higher" pointer indicates a later
declaration. Within arrays, the "higher" pointer indicates a larger subscript
value. All pointers to members of the same union object compare as equal.

Normally, the comparison of pointers to different structure, array, or union
objects, or the comparison of pointers outside the range of an array object
give undefined results; however, an exception is made for the "pointer
beyond the last element" situation as discussed in the "P ointer arithmetic"
section on page 53. If P points to an element of an array object, and Q points
to the last element, the expression P < Q + 1 is allowed, evaluating to 1
(true), even though Q + 1 does not point to an element of the array object.

Greater-than>
The expression El > E2 gives 1 (true) if the value of El is greater than the
value of E2; otherwise, the result is 0 (false), using the same interpretations
for arithmetic and pointer comparisons as are defined for the less-than
operator. The same operand rules and restrictions also apply.

Less-than or equal-to <=
Similarly, the expression El <= E2 gives 1 (true) if the value of El is less
than or equal to the value of E2. Otherwise, the result is 0 (false), using the
same interpretations for arithmetic and pointer comparisons as are defined
for the less-than operator. The same operand rules and restrictions also
apply.

Greater-than or equal-to >=
Finally, the expression El >= E2 gives 1 (true) if the value of El is greater
than or equal to the value of E2. Otherwise, the result is 0 (false), using the
same interpretations for arithmetic and pointer comparisons as are defined
for the less-than operator. The same operand rules and restrictions also
apply.

Chapter 2, Language structure 87

Equality operators

88

There are two equality operators: == and !=. They test for equality and
inequality between arithmetic or pointer values, following rules very
similar to those for the relational operators.

Notice that == and != have a lower precedence than the relational operators
< and >, <=, and >=. Also, == and != can compare certain pointer types for
equality and inequality where the relational operators would not be
allowed.

The syntax is

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Equal-to ==
In the expression E1 == E2, the operands must conform to one of the
following sets of conditions:

• Both E1 and E2 are of arithmetic type.

• Both E1 and E2 are pointers to qualified or unqualified versions of
compatible types.

• One of E1 and E2 is a pointer to an object or incomplete type, and the
other is a pointer to a qualified or unqualified version of void.

• One of E1 or E2 is a pointer and the other is a null pointer constant.

If E1 and E2 have types that are valid operand types for a relational
operator, the same comparison rules just detailed for E1 < E2, E1 <= E2, and
so on, apply.

In the first case, for example, the usual arithmetic conversions are per
formed, and the result of E1 == E2 is of type int.1f the value of E1 is equal to
the value of E2, the result is 1 (true); otherwise, the result is zero (false).

In the second case, E1 == E2 gives 1 (true) if E1 and E2 point to the same
object, or both point II one past the last element" of the same array object, or
both are null pointers.

If E1 and E2 are pointers to function types, E1 == E2 gives 1 (true) if they
are both null or if they both point to the same function. Conversely, if
E1 == E2 gives 1 (true), then either E1 and E2 point to the same function, or
they are both null.

Borland C++ for OS/2 Programmers Guide

Logical operators

In the fourth case, the pointer to an object or incomplete type is converted
to the type of the other operand (pointer to a qualified or unqualified
version of void).

Inequality !=
The expression El != E2 follows the same rules as those for El == E2, except
that the result is 1 (true) if the operands are unequal, and 0 (false) if the
operands are equal.

There are two logical operators: && and II.

AND&&
The syntax is

logical-AND-expression:
inclusive-OR -expression
logical-AND-expression && inclusive-OR-expression

In the expression El && E2, both operands must be of scalar type. The
result is of type int, and the result is 1 (true) if the values of El and E2 are
both nonzero; otherwise, the result is 0 (false).

Unlike the bitwise & operator, && guarantees left-to-right evaluation. El is
evaluated first; if El is zero, El && E2 gives 0 (false), and E2 is not
evaluated.

OR II
The syntax is

logical-OR -expression:
logical-AND-expression
logical-OR-expression Illogical-AND-expression

In the expression El II E2, both operands must be of scalar type. The result
is of type int, and the result is 1 (true) if either of the values of El and E2 are
nonzero. Otherwise, the result is 0 (false).

Unlike the bitwise I operator, II guarantees left-to-right evaluation. El is
evaluated first; if El is nonzero, El II E2 gives 1 (true), and E2 is not
evaluated.

Chapter 2, Language structure 89

Conditional? :

In CH, the result is
an Ivalue.

Assignment
operators

90

The syntax is

conditional-expression
logical-DR -expression
logical-DR-expression ? expression: conditional-expression

In the expression El ? E2 : E3, the operand El must be of scalar type. The
operands E2 and E3 must obey one of the following rules:

• Rule 1: Both are of arithmetic type.

• Rule 2: Both are of compatible structure or union types.

• Rule 3: Both are of void type.

• Rule 4: Both are of type pointer to qualified or unqualified versions of
compatible types.

• Rule 5: One operand is of pointer type, the other is a null pointer
constant.

• Rule 6: One operand is of type pointer to an object or incomplete type,
the other is of type pointer to a qualified or unqualified version of void.

First, El is evaluated; if its value is nonzero (true), then E2 is evaluated and
E3 is ignored. If El evaluates to zero (false), then E3 is evaluated and E2 is
ignored. The result of El ? E2 : E3 will be the value of whichever of E2 and
E3 is evaluated.

In rule 1, both E2 and E3 are subject to the usual arithmetic conversions,
and the type of the result is the common type resulting from these conver
sions. In rule 2, the type of the result is the structure or union type of E2
and E3. In rule 3, the result is of type void.

In rules 4 and 5, the type of the result is a pointer to a type qualified with
all the type qualifiers of the types pointed to by both operands. In rule 6,
the type of the result is that of the nonpointer-to-void operand.

There are 11 assignment operators. The = operator is the simple assignment
operator; the other 10 are known as compound assignment operators.

The syntax is

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *= 1= %= += -=
«= »= &= 1\= 1=

Borland C++ for OS/2 Programmers Guide

Simple assignment =
In the expression El = E2, El must be a modifiable lvalue. The value of E2,
after conversion to the type of El, is stored in the object designated by El
(replacing El's previous value). The value of the assignment expression is
the value of El after the assignment. The assignment expression is not itself
an lvalue.

In C++, the result is The operands El and E2 must obey one of the following rules:
an Ivalue.

Comma operator

In C++, the result is
an Ivalue.

• Rule 1: El is of qualified or unqualified arithmetic type and E2 is of
arithmetic type.

• Rule 2: El has a qualified or unqualified version of a structure or union
type compatible with the type of E2 .

. • Rule 3: El and E2 are pointers to qualified or unqualified versions of
compatible types, and the type pointed to by the left has all the qualifiers
of the type pointed to by the right.

• Rule 4: One of El or E2 is a pointer to an object or incomplete type and
the other is a pointer to a qualified or unqualified version of void. The
type pointed to by the left has all the qualifiers of the type pointed to by
the right.

• Rule 5: El is a pointer and E2 is a null pointer constant.

Compound assignment
The compound assignments op=, where op can be anyone of the 10 operator
symbols * / % + - « » & A I, are interpreted as follows:

El op= E2

has the same effect as

El = El op E2

except that the lvalue El is evaluated only once. (For example, El += E2 is
the same as El = El + E2.)

The rules for compound assignment are therefore covered in the previous
section (on the simple assignment operator =).

The syntax is

expression:
assignment-expression
expression, assignment-expression

In the comma expression

El,E2

Chapter 2, Language structure 91

c++ operators

See page 112 for
information on the

scope access
operator ::. See also

page 137 for a
discussion of : class

initializer.

92

the left operand El is evaluated as a void expression, then E2 is evaluated
to give the result and type of the comma expression. By recursion, the
expression

El, E2, ... , En

results in the left-to-right evaluation of each Ei, with the value and type of
En giving the result of the whole expression. To avoid potential ambiguity
(which might arise from the commas being used in both function
arguments and in initializer lists), parentheses must be used. For example,

func (i , (j = 1, j + 4), k);

calls June with three arguments, not four. The arguments are i, 5, and k.

The operators specific to C++ are as follows:

• .. (scope resolution)

•. * (dereference pointer)

• ->* (dereference pointer)

• : (class initializer)

The syntax for the .* and ->* operators is as follows:

pm-expression
cast-expression
pm expression .* cast-expression
pm expression ->* cast-expression

The . * operator dereferences pointers to class members. It binds the cast
expression, which must be of type "pointer to member of class type", to the
pm-expression, which must be of class type or of a class publicly derived
from class type. The result is an object or function of the type specified by
the cast-expression.

The ->* operator dereferences pointers to pointers to class members (this
isn't a typographical error; it does indeed dereference pointers to pointers).
It binds the cast-expression, which must be of type "pointer to member of
type," to the pm-expression, which must be of type pointer to type or of type
"pointer to class publicly derived from type." The result is an object or
function of the type specified by the cast-expression.

If the result of either of these operators is a function, you can only use that
result as the operand for the function call operator (). For example,

#include <iostrearn.h>

class B {

pUblic:

Borland C++ for OS/2 Programmers Guide

The sizeof
operator

The amount of space
that is reserved for
each type depends

on the machine.

Source

void g(int i = 0) { cout « n\nInput = n « ii }i

}i

int main(void)
B Binsti II Instantiate class B

1* pf is a pointer to a B member function that takes an integer and returns
void *1

void (B::*pf) (int)i

pf = B: :gi
(Binst. *pf) (21) i

return Oi
}

II Initialize pf to the B::g() member function.
II Call g() and give it the argument 21.

The sizeof operator has two distinct uses:

sizeof unary-expression
sizeof (type-name)

The result in both cases is an integer constant that gives the size in bytes of
how much memory space is used by the operand (determined by its type,
with some exceptions). In the first use, the type of the operand expression is
determined without evaluating the expression (and therefore without side
effects). When the operand is of type char (signed or unsigned), sizeof
gives the result 1. When the operand is a non-parameter of array type, the
result is the total number of bytes in the array (in other words, an array
name is not converted to a pointer type). The number of elements in an
array equals sizeof array/sizeof array[O].

If the operand is a parameter declared as array type or function type, sizeof
gives the size of the pointer. When applied to structures and unions, sizeof
gives the total number of bytes, including any padding.

sizeof cannot be used with expressions of function type, incomplete types,
parenthesized names of such types, or with an lvalue that designates a bit
field object.

The integer type of the result of sizeof is size_t, defined as unsigned int in
stddef.h.

You can use sizeof in preprocessor directives; this is specific to Borland
C++.

In C++, sizeof(classtype), where classtype is derived from some base class,
returns the size of the object (remember, this includes the size of the base
class).

1* USE THE sizeof OPERATOR TO GET SIZES OF DIFFERENT DATA TYPES. */
#include <stdio.h>

Chapter 2, Language structure 93

Output

struct st {
char *name;
int age;
double height;
};

1* 4 BYTES *1
1* 4 BYTES *1
1* 8 BYTES *1

struct st St_Array[]= { 1* AN ARRAY OF structs *1
{ "Jr.", 4, 34.20}' 1* ST_Array[O] *1
{"Suzie", 23, 69.75}, 1* ST_Array[l] *1
};

int main() {
long double LD_Array[] = { 1.3, 501.09, 0.0007, 90.1, 17.08 };

printf("\nNumber of elements in LD_Array = %d",
sizeof(LD_Array) I sizeof(LD_Array[O]));

1**** THE NUMBER OF ELEMENTS IN THE ST_Array. ****1
printf("\nSLArray has %d elements",

sizeof(St_Array)/sizeof(St_Array[O]));

1**** THE NUMBER OF BYTES IN EACH ST_Array ELEMENT. ****1
printf("\nSt_Array[O] = %d", sizeof(St_Array[O]));

1**** THE TOTAL NUMBER OF BYTES IN ST_Array. ****1
printf (" \nSt_Array= %d", sizeof (St_Array)) ;

return 0;
}

Number of elements in LD_Array =
St_Array has 2 elements
St_Array[O] = 16
St_Array= 32

Statements

Statements specify the flow of control as a program executes. In the absence
of specific jump and selection statements, statements are executed
sequentially in the order of appearance in the source code. The following
table shows the syntax for statements.

Table 2.16: Borland C++ statements

statement:

94

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
asm-statement
declaration (C++ specific)

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

compound-statement:
{ <declaration-list> <statement-list> }

Borland C++ for OS/2 Programmers Guide

Table 2.16: Borland Ctt statements (continued)

declaration-list:
declaration

selection-statement:
if (expression) statement

declaration-list declaration if (expression) statement else statement
switch ,(expression) statement

statement-list:
statement
statement-list statement

expression-statement:
<expression> ;

asm-statement
a5m tokens newline
asm tokens;

iteration-statement:
while (expression) statement
do statement while (expression);
for (for-init-statement <expression> ; <expression» statement

for-init-statement
expression-statement
declaration (Ctt specific)

asm {tokens; <tokens;>=
<tokens;>

jump-statement
goto identifier;
continue;
break;

}

Blocks

Labeled
statements

Expression
statements

return <expression>;

A compound statement, or block, is a list (possibly empty) of statements
enclosed in matching braces ({ D. Syntactically, a block can be considered to
be a single statement, but it also plays a role in the scoping of identifiers.
An identifier declared within a block has a scope starting at the point of
declaration and ending at the closing brace. Blocks can be nested to any
depth.

A statement can be labeled in two ways:

• label-identifier : statement
The label identifier serves as a target for the unconditional goto
statement. Label identifiers have their own name space and have
function scope. In C++ you can label both declaration and non
declaration statements .

• case constant-expression : statement
default: statement

Case and default labeled statements are used only in conjunction with
switch statements.

Any expression followed by a semicolon forms an expression statement:

<expression>;

Borland C++ executes an expression statement by evaluating the expres
sion. All side effects from this evaluation are completed before the next
statement is executed. Most expression statements are assignment
statements or function calls.

Chapter 2, Language structure 95

The null statement is a special case, consisting of a single semicolon (;). The
null statement does nothing, and is therefore useful in situations where the
Borland C++ syntax expects a statement but your program does not need
one.

Selection
statements

Selection or flow-control statements select from alternative courses of
action by testing certain values. There are two types of selection statements:
the if. .. else and the switch.

if statements The basic if statement has the following pattern:

96

The parentheses
around cond

expression are
essential.

if (cond-expression) t-st <else f-st>

The cond-expression must be of scalar type. The expression is evaluated. If
the value is zero (or null for pointer types), cond-expression is false;
otherwise, it is true.

If there is no else clause and cond-expression is true, t-st is executed;
otherwise, t-st is ignored.

If the optional else f-st is present and cond-expression is true, t-st is executed;
otherwise, t-st is ignored and f-st is executed.

_ Unlike Pascal, for example, Borland C++ does not have a specific Boolean
data type. Any expression of integer or pointer type can serve a Boolean
role in conditional tests. The relational expression (a > b) (if legal) evaluates
to int 1 (true) if (a> b), and to int 0 (false) if (a <= b). Pointer conversions are
such that a pointer can always be correctly compared to a constant
expression evaluating to O. That is, the test for null pointers can be written
if (!ptr) ... or if (ptr == 0)

The j-st and t-st statements can themselves be if statements, allowing for a
series of conditional tests nested to any depth. Care is needed with nested
if ... else constructs to ensure that the correct statements are selected. There
is no endif statement: any" else" ambiguity is resolved by matching an else
with the last encountered if-without-an-else at the same block level. For
example,

if (x == 1)
if (y == 1) puts("x=l and y=l");

else puts("x != 1");

draws the wrong conclusion. The else matches with the second if, despite
the indentation. The correct conclusion is that x = 1 and y!= 1. Note the
effect of braces:

Borland C++ for OS/2 Programmers Guide

switch statements

It is illegal to have
duplicate case

constants in the same
switch statement.

if (x == 1) {
if (y == 1) puts("x = 1 and y = 1");

else puts("x ,!= 1"); II correct conclusion

The switch statement uses the following basic format:

switch (sw-expression) case-st

A switch statement lets you transfer control to one of several case-labeled
statements, depending on the value of sw-expression. The latter must be of
integral type (in C++, it can be of class type, provided that there is an
unambiguous conversion to integral type available). Any statement in case
st (including empty statements) can be labeled with one or more case labels:

case const-exp-i : case-st-i

where each case constant, const-exp-i, is a constant expression with a unique
integer value (converted to the type of the controlling expression) within its
enclosing switch statement.

There can also be at most one default label:

default: default-st

After evaluating sw-expression, a match is sought with one of the const-exp-i.
If a match is found, control passes to the statement case-st-i with the
matching case label.

If no match is found and there is a default label, control passes to default-st.
If no match is found and there is no default label, none of the statements in
case-st is executed. Program execution is not affected when case and
default labels are encountered. Control simply passes through the labels to
the following statement or switch. To stop execution at the end of a group
of statements for a particular case, use break.

1* THIS ILLUSTRATES THE USE OF KEYWORDS switch, case, AND default. *1
#include <stdio.h>

int main(void) {
int Chi

printf("\tpRESS a, b, OR c. ANY OTHER CHOICE WILL"
"TERMINATE THIS PROGRAM.");

for (1* FOREVER *1; ((ch = getch(stdin)) != EOF);)
switch (ch) {

case' a' : 1* THE CHOICE OF a HAS ITS OWN ACTION. *1
printf("\nOption a was selected.\n");
break;

case 'b' : 1* BOTH b AND c GET THE SAME RESULTS. *1

Chapter 2, Language structure 97

Iteration
statements

while statements

The parentheses are
essential.

do while statements

98

case 'c' :
printf("\nOption b or c was selected.\n");
break;

default :
printf("\nNOT A VALID CHOICE! Bye ... ");
return(-l) ;

return(O);
}

Iteration statements let you loop a set of statements. There are three forms
of iteration in Borland C++: while, do while, and for loops.

The general format for this statement is

while (cond-exp) t-st

The loop statement, t-st, is executed repeatedly until the conditional
expression, cond-exp, compares equal to zero (false).

The cond-exp is evaluated and tested first (as described on page 96). If this
value is nonzero (true), t-st is executed; if no jump statements that exit from
the loop are encountered, cond-exp is evaluated again. This cycle repeats
until cond-exp is zero.

As with if statements, pointer type expressions can be compared with the
null pointer, so that while (ptr) ... is equivalent to while (ptr ! = NULL)

The while loop offers a concise method for scanning strings and other null
terminated data structures:

char str[lOl="Borland";
char *ptr=&str[Ol;
int count=O;

while (*ptr++) II loop until end of string
count++;

In the absence of jump statements, t-st must affect the value of cond-exp in
some way, or cond-exp itself must change during evaluation in order to
prevent unwanted endless loops.

The general format is

do do-st while (cond-exp);

The do-st statement is executed repeatedly until cond-exp compares equal to
zero (false). The key difference from the while statement is that cond-exp is

Borland C++ for OS/2 Programmers Guide

for statement

tested after, rather than before, each execution of the loop statement. At
least one execution of do-st is assured. The same restrictions apply to the
type of cond-exp (scalar).

The for statement format in C is

for «init-exp>; <test-exp>; <increment-exp» statement
For C++, dnit-exp>

can be an expression
or a declaration. The sequence of events is as follows:

Jump statements

1. The initializing expression init-exp, if any, is executed. As the name
implies, this usually initializes one or more loop counters, but the
syntax allows an expression of any degree of complexity (including
declarations in c++)-hence the claim that any C program can be
written as a single for loop. '

2. The expression test-exp is evaluated following the rules of the while
loop. If test-exp is nonzero (true), the loop statement is executed. An
empty expression here is taken as while (1); that is, always true. If the
value of test-exp is zero (false), the for loop terminates.

3. increment-exp advances one or more counters.

4. The expression statement (possibly empty) is evaluated and control
returns to step 2.

If any of the optional elements are empty, appropriate semicolons are
required:

for (;;) { I I same as for (; 1;)
II loop forever

The C rules for for statements apply in C++. However, the init-exp in C++
can also be a declaration. The scope of a declared identifier extends through
the enclosing loop. For example,

for (int i = 1; i < 3; Hi) {
if (i ...)

for (int x = 0;;;)

if (i ...)

if (x ...)

II ok to refer to i here

II do nothing

1/ legal
// illegal; x is now out of scope

A jump statement, when executed, transfers control unconditionally. There
are four such statements: break, continue, goto, and return.

Chapter 2, Language structure 99

break statements

continue statements

goto statements

return statements

100

The syntax is

break;

A break statement can be used only inside an iteration (while, do, and for
loops) or a switch statement. It terminates the iteration or switch statement.
Because iteration and switch statements can be intermixed and nested to
any depth, you must ensure that your break exits from the correct loop or
switch. The rule is that a break terminates the nearest enclosing iteration or
switch statement.

The syntax is

continue;

A continue statement can be used only inside an iteration statement; it
transfers control to the test condition for while and do loops, and to the
increment expression in a for loop.

With nested iteration loops, a continue statement is taken as belonging to
the nearest enclosing iteration.

The syntax is

goto label;

The goto statement transfers control to the statement labeled label (see
page 95), which must be in the same function.

In C++, it is illegal to bypass a declaration having an explicit or implicit
initializer unless that declaration is within an inner block that is also
bypassed.

Unless the function return type is void, a function body must contain at
least one return statement with the following format:

return return-expression;

where return-expression must be of type type or of a type that is convertible
to type by assignment. The value of the return-expression is the value
returned by the function. An expression that calls the function, such as
func (actual-arg-list), is an rvalue of type type, not an lvalue:

t = func (arg) i

func(arg) = ti
II OK
1* illegal in Ci legal in Ctt if return type of func is a

reference *1

Borland C++ for OS/2 Programmers Guide

(func (arg)) ++i /* illegal in Ci legal in Ctt if return type of func is a
reference */

The execution of a function call terminates if a return statement is
encountered; if no return is met, execution continues, ending at the final
closing brace of the function body.

If the return type is void, the return statement can be written as

returni

with no return expression; alternatively, the return statement can be
omitted.

Chapter 2, Language structure 101

102 Borland C++ for OS/2 Programmers Guide

See Chapter 4 for
details on compiling

C and C++ programs
'with exception

handling.

c H A p T E R 3

c++ specifics

c++ is an object-oriented programming language based on C. Generally
speaking, you can compile C programs under C++, but you can't compile a
C++ program under C if the program uses any constructs specific to C++.
Some situations require special care. For example, the same function June
declared twice in C with different argument types invokes a duplicated
name error. Under C++, however,June will be interpreted as an overloaded
function; whether or not this is legal depends on other circumstances.

Although C++ introduces new keywords and operators to handle classes,
some of the capabilities of C++ have applications outside of any class
context. This chapter reviews the aspects of C++ that can be used
independently of classes, then describes the specifics of classes and class
mechanisms.

New-style typecasting

const cast
typecast operator

Chapter 3, C++ specifics

This section presents a discussion of alternate methods for making a type
cast. The methods presented here augment the earlier cast expressions
available ill the C language.

Types cannot be defined in a cast.

Use the const_cast operator to add or remove the const or volatile
modifier from a type.

In the statement, const_cast< T > (arg), T and arg must be of the same type
except for const and volatile modifiers. The cast is resolved at compile
time. The result is of type T. Any number of const or volatile modifiers can
be added or removed with a single const_cast expression.

A pointer to const can be converted to a pointer to non-const that is in all
other respects an identical type. If successful, the resulting pointer refers to
the original object.

103

dynamic_cast·
typecast operator

This program must be
compiled with the

-RT (Generate RTII)
option.

104

A const object or a reference to const cast results in a non-const object or
reference that is otherwise an identical type.

The const_cast operator performs similar typecasts on the volatile
modifier. A pointer to volatile object can be cast to a pointer to non-volatile
object without otherwise changing the object's type. The result is a pointer
to the original object. A volatile-type object or a reference to volatile-type
can be converted into an identical non-volatile type.

In the expression dynamic_cast< T > (ptr), T must be a pointer or a
reference to a defined class type or void*. The argument ptr must be an
expression that resolves to a pointer or reference.

If Tis void* then ptr must also be a pointer. In this case, the resulting
pointer can access any element of the class that is the most derived element
in the hierarchy. Such a class cannot be a base for any other class.

Conversions from a derived class to a base class, or from one derived class
to another, are as follows: if T is a pointer and ptr is a pointer to a non-base
class that is an element of a class hierarchy, the result is a pointer to the
unique subclass. References are treated similarly. If Tis a reference and ptr
is a reference to a non-base class, the result is a reference to the unique
subclass.

A conversion from a base class to a aerived class can be performed only if
the base is a polymorphic type. See page 148 for a discussion of
polymorphic types.

Run-time type identification (RTTI) is required for dynamic_cast. See the
description of class Type_info in the Library Reference, Chapter 9. See also the
discussion of RTTI on page 107.

The conversion to a base class is resolved at compile time. A conversion
from a base class to a derived class, or a conversion across a hierarchy is
resolved at run time.

If successful, dynamic_cast< T > (ptr) converts ptr to the desired type. If a
pointer cast fails, the returned pointer is valued O. If a cast to a reference
type fails, the Bad_cast exception is thrown.

II HOW TO MAKE DYNAMIC CASTS
#include <iostream.h>
#include <typeinfo.h>

class Basel

II For the RTTI mechanism to function correctly,
II a base class must be polymorphic.

Borland C++ for OS/2 Programmers Guide

reinterpret_cast
typecast operator

Chapter 3, C++ specifics

virtual void f(void) { 1* A virtual function makes the class polymorphic *1 }
};

class Base2 { };
class Derived: public Basel, public Base2 { };

int main(void) {
try {

Derived d, *pd;
Basel *b1 = &d;

II Perform a downcast from a Basel to a Derived.
if ((pd = dynamic_cast<Derived *>(b1)) != 0) {

cout « "The resulting pointer is of type "
« typeid(pd) .name() « endl;

else throw Bad_cast();

II Attempt cast across the hierarchy. That is, cast from
II the first base to the most derived class and then back
II to another accessible base.
Base2 *b2;
if ((b2 = dynamic_cast<Base2 *>(b1)) != 0) {

cout « "The resulting pointer is of type "
« typeid(b2) .name() « endl;

else throw Bad_cast();
}

catch (Bad_cast) {
cout « "dynamic_cast failed" « endl;
return 1;
}

catch (...) {
cout « "Exception handling error." « endl;
return 1;
}

return 0;

In the statement reinterpret_cast< T > (arg), T must be a pointer, reference,
arithmetic type, pointer to function, or pointer to member.

A pointer can be explicitly converted to an integral type.

An integral arg can be converted to a pointer. Converting a pointer to an
integral type and back to the same pointer type results in the original value.

A yet undefined class can be used in a pointer or reference conversion.

105

static cast
typecast operator

106

A pointer to a function can be explicitly converted to a pointer to an object
type provided the object pointer type has enough bits to hold the function
pointer. A pointer to an object type can be explicitly converted to a pointer
to a function only if the function pointer type is large enough to hold the
object pointer.

II Use reinterpret_cast<Type>(expr) to replace (Type)expr casts
II for conversions that are unsafe or implementation dependent.

void func(void *v) {
II Cast from pointer type to integral type.
int i = reinterpret_cast<int> (v) ;

void main()
II Cast from an integral type to pointer type.
func(reinterpret_cast<void *>(5));

II Cast from a pointer to function of one type to
II pointer to function of another type.
typedef void (* PFV) ();

PFV pfunc = reinterpret_cast<PFV> (func) ;

pfunc() ;
}

In the statement static_cast< T > (arg), T must be a pointer, reference,
arithmetic type, or enum type. The arg-type must match the T-type. Both T
and arg must be fully known at compile time.

If a complete type can be converted to another type by some conversion
method already provided by the language, then making such a conversion
by using static_cast achieves exactly the same thing.

Integral types can be converted to enum types. A request to convert arg to a
value that is not an element of enum is undefined.

The null pointer is converted to itself.

A pointer to one object type can be converted to a pointer to another object
type. Note that merely pointing to similar types can cause access problems
if the similar types are not similarly aligned.

You can explicitly convert a pointer to a class X to a pointer to some class Y
if X is a base class for Y. A static conversion can be made only under the
following conditions:

• If an unambiguous conversion exists from Y to X

• If X is not a virtual base class

Borland C++ for OS/2 Programmers Guide

See page 130 for a discussion of virtual base classes.

An object can be explicitly converted to a reference type X& if a pointer to
that object can be explicitly converted to an X*. The result of the conversion
is an lvalue. No constructors or conversion functions are called as the result
of a cast to a reference.

An object or a value can be converted to a class object only if an appropriate
constructor or conversion operator has been declared.

A pointer to a member can be explicitly converted into a different pointer
to-member type only if both types are pointers to members of the same
class or pointers to members of two classes, one of which is unambiguously
derived from the other.

When T is a reference the result of static_cast< T > (arg) is an lvalue. The
result of a pointer or reference cast refers to the original expression.

Run-time type identification

Chapter 3, C++ specifics

The recent addition of run-time type identification (RTTI) into the ANSI/
ISO C++ working paper makes it possible to write portable code that can
determine the actual type of a data object at run time even when the code
has access only to a pointer or reference to that object. This makes it
possible, for example, to convert a pointer to a virtual base class into a
pointer to the derived type of the actual object. See page 104 for a
description of the dynamic_cast operator, which uses run-time type
identification.

The RTTI mechanism also lets you check whether an object is of some
particular type and whether two objects are of the same type. You can do
this with typeid operator, which determines the actual type of its argument
and returns a reference to an object of type const Type_info, which describes
that type. You can also use a type name as the argument to typeid, and
typeid will return a reference to a const Type_info object for that type. The
class Type_info provides an operator== and an operator!= that you can use
to determine whether two objects are of the same type. Class Type_info also
provides a member function name that returns a pointer to a char array that
holds the name of the type. See the Library Reference, Chapter 9, for a
description of class Type_info.

107

The typeid
operator

To use the typeid
operator you must

include the typeinfo.h
header file.

Example

Program output

108

You can use typeid to get run-time information about types or expressions.
A call to typeid returns a reference to an object of type const Type_info. The
returned object represents the type of the typeid operand.

If the typeid operand is a dereferenced pointer or a reference to a poly
morphic type, typeid returns the dynamic type of the actual object pointed
or referred to. If the operand is non-polymorphic, typeid returns an object
that represents the static type.

You can use the typeid operator with fundamental data types as well as
user-defined types.

II HOW TO USE typeid, TYpe_info::before(), and TYpe_info::name().
#include <iostream.h>
#include <string.h>
#include <typeinfo.h>

class A { } i
class B : A { };
char *true = "true";
char *false = "false";

void main ()
char C;
float X;

if (typeid(C) == typeid(X))
cout « "C and X are the same type." « endl;

else cout « "C and X are NOT the same type." « endl;

cout « typeid(int) .name();
cout « " before " « typeid (double) . name () « ": " «

(typeid(int) .before(typeid(double)) ? true: false) « endli

cout « typeid(double) .name();
cout « " before " « typeid (int) . name () « ": " «

(typeid(double) .before(typeid(int)) ? true: false) « endl;

cout « typeid(A) .name();
cout « " before " « typeid (B) . name () « ": " «

(typeid(A) .before(typeid(B)) ? true: false) « endl;

C and X are NOT the same type.
int before double: false
double before int: true
A before B: true

Borland C++ for OS/2 Programmers Guide

The rtti
keyword and the
-RToption

Chapter 3, C++ specifics

If the typeid operand is a dereferenced NULL pointer, the Bad_typeid
exception is thrown. See the Library Reference, Chapter 9, for a description of
Bad_typeid.

RTTI is enabled by default in Borland C++. You can use the -RT
command-line option to disable it (-RT-) or to enable it (-RT). If RTTI is
disabled, or if the argument to typeid is a pointer or a reference to a non
polymorphic class (see page 148 for a discussion of polymorphic classes),
typeid returns a reference to a const Type_info object that describes the
declared type of the pointer or reference, and not the actual object that the
pointer or reference is bound to.

In addition, even when RTTI is disabled, you can force all instances of a
particular class and all classes derived from that class to provide polymor
phic run-time type identification (where appropriate) by using the Borland
C++ keyword __ rtti in the class definition.

When you use the -RT - compiler option, if any base class is declared. __ rtti,
then all polymorphic base classes must also be declared __ rtti.

struct __ rtti 81 { virtual slfunc()i}i II Polymorphic
struct __ rtti 82 { virtual s2func() i}i II Polymorphic
struct X : 81, 82 { }i

If you turn off the RTTI mechanism (by using the -RT- compiler option),
RTTI might not be available for derived classes. When a class is derived
from multiple classes, the order and type of base classes determines
whether or not the class inherits the RTTI capability.

When you have polymorphic and non-polymorphic classes, the order of
inheritance is important. If you compile the following declarations with
-RT -, you should declare X with the __ rtti modifier. Otherwise, switching
the order of the base classes for the class X results in the compile-time error
Can't inherit non-RTTI class from RTTI base 'Sl'.

Note that the class X is explicitly declared with __ rtti. This makes it safe to
mix the order and type of classes.

struct __ rtti 81 { virtual func() i }i

struct 82 { }i

struct __ rtti X : 81, 82 { }i

II Polymorphic class
II Non-polymorphic class

In this example, class X inherits only non-polymorphic classes. Class X
does not need to be declared __ rUi.

struct __ rtti 81 }i II Non-polymorphic class
struct 82 { }i

struct X : 82, 81 }i II The order is not essential

109

Example

Program output

The -RT option and
destructors

Example

110

Applying either __ rtti or using the -RT compiler option will not make a
static class into a polymorphic class. See page 148 for a discussion of poly
morphic classes.

II HOW TO GET RUN-TIME TYPE INFORMATION FOR POLYMORPHIC CLASSES.
#include <iostream.h>
#include <typeinfo.h>

class __ rtti Alpha { II Provide RTTI for this class and all classes derived
from it

}i

virtual void func() {}i II A virtual function makes Alpha a polymorphic
class.

~lass B : public Alpha {}i

int main(void)
B Binsti
B *Bptri
Bptr = &Binsti

try {

II Instantiate class B
II Declare a B-type pointer
II Initialize the pointer

II THESE TESTS ARE DONE AT RUN TIME
if (typeid(*Bptr) == typeid(B))

II Ask "WHAT IS THE TYPE FOR *Bptr?"
cout « "Name is " « typeid(*Bptr) .name() i

if (typeid (*Bptr) ! = typeid (Alpha))
cout « "\nPointer is not an Alpha-type."i

return 0 i

catch (Bad_typeid)
cout « "typeid() has failed."i
return Ii

Name is B
Pointer is not an Alpha-type.

When -xd is enabled, a pointer to a class with a virtual destructor can't be
deleted if that class is not compiled with -RT. The -RT and -xd options are
on by default.

II Compiled with -RT- -xd
class A {
pUblic:

virtual -A() {}
}i

void func(A *Aptr) {
delete Aptri II Error. 'A' is not a polymorphic class type
}

Borland C++ for OS/2 Programmers Guide

Referencing

c++ specific pointer
referencing and
dereferencing is

discussed on
page 92.

Simple references

Note that type& var,
type &var, and type &
var are all equivalent.

Reference
arguments

Chapter 3, C++ specifics

While in C, you pass arguments only by value; in C++, you can pass
arguments by value or by reference. C++ reference types, closely related to
pointer types, create aliases for objects and let you pass arguments to func
tions by reference.

The reference declarator can be used to declare references outside
functions:

int i = 0;
int &ir = i; II ir is an alias for i
ir = 2; II same effect as i = 2

This creates the lvalue ir as an alias for i, provided the initializer is the same
type as the reference. Any operations on ir have precisely the same effect as
operations on i. For example, ir = 2 assigns 2 to i, and &ir returns the
address of i.

The reference declarator can also be used to declare reference type
parameters within a function:

void funcl (int i);
void func2 (int &ir);

int sum=3;
funcl(sum) ;
func2 (&sum) ;

II ir is type "reference to intO

II sum passed by value
II sum passed by reference

The sum argument passed by reference can be changed directly by func2.
On the other hand, func1 gets a copy of the sum argument (passed by
value), so sum itself cannot be altered by func1.

When an actual argument x is passed by value, the matching formal
argument in the function receives a copy of x. Any changes to this copy
within the function body are not reflected in the value of x itself. Of course,
the function can return a value that could be used later to change x, but the
function cannot directly alter a parameter passed by value.

The C method for changing x uses the actual argument &x, the address of x,
rather than x itself. Although &X is passed by value, the function can access
x through the copy of &x it receives. Even if the function does not need to
change x, it is still useful (though subject to potentially dangerous side
effects) to pass &x, especially if x is a large data structure. Passing x directly
by value involves wasteful copying of the data structure.

111

Implementation 1

Implementation 2

Implementation 3

112

Compare the three implementations of the function treble:

int treble_1(int n)
return 3 * n;

int x, i = 4;
x = treble_1 (i) ;

void treble_2(int* np)
*np = (*np) * 3;

treble_2(int& i);

void treble_3(int& n)
n = 3 * n;

// x now = 12, i = 4

// i now = 12

// n is a reference type

// i now = 36

The formal argument declaration type& t (or equivalently, type& t)
establishes t as type "reference to type." So, when treble_3 is called with the
real argument i, i is used to initialize the formal reference argument n. n
therefore acts as an alias for i, so n = 3 *n also assigns 3 * i to i.

If the initializer is a constant or an object of a different type than the
reference type, Borland C++ creates a temporary object for which the
reference acts as an alias:

int& ir = 6; /* temporary int object created, aliased by ir, gets value 6 */
float f;
int& ir2 = f; /* creates temporary int object aliased by ir2; f converted

before assignment */
ir2 = 2.0 // ir2 now = 2, but f is unchanged

The automatic creation of temporary objects permits the conversion of
reference types when formal and actual arguments have different (but
assignment-compatible) types. When passing by value, of course, there are
fewer conversion problems, since the copy of the actual argument can be
physically changed before assignment to the formal argument.

Borland C++ for OS/2 Programmers Guide

Scope resolution operator ::

This code also works
if the global i is a file

level static.

The scope access (or resolution) operator :: (two colons) lets you access a
global (or file duration) name even if it is hidden by a local redeclaration of
that name (see page 27 for more on scope):

int i;

void func(voidl
int i=O;
i = 3;
: : i = 4;
printf ("%d",il;
}

II global i

II local i hides global i
II this i is the local i
II this i is the global i
II prints out 3

The :: operator has other uses with class types, as discussed throughout
this chapter.

The new and delete operators

Chapter 3, C++ specifics

The new and delete operators offer dynamic storage allocation and
deallocation, similar but superior to the standard library functions malloc
and free. See the Library Reference for information on malloe and free.

Syntax for a new-expression is one of the following:

<::> new <new-args> type-name «initializer»
<::> new <new-args> (type-name) «initializer»

Syntax for a delete-expression is one of the following:

<::> delete cast-expression
<::> delete [] cast-expression

The new operator must always be supplied with a data type in place of
type-name. Items surrounded by angle brackets are optional. The optional
arguments can be as follows:

• The :: operator invokes the global version of new.
• new-args can be used to supply additional arguments to new. You can use

this syntax only if you have an overloaded version of new that matches
the optional arguments.

• initializer, if present, is used to initialize the allocation.

A request for non-array allocation uses the appropriate operator new()
function. Any request for array allocation calls the appropriate operator

113

Arrays of classes
require the default

constructor.

Handling errors

The operator new
with arrays

114

new[]O function. The selection of an operator with which to allocate class
Type is done as follows:

Allocation of arrays of Type:

1. Attempts to use a class-specific array allocator:
Type::operator new[]O

2. If the class-specific array allocator is not defined, the global version is
used:
: :operator new[]O

Allocation of non-arrays:

1. Memory for a non-array object of Type is allocated using Type: :operator
newO

2. If the above is not defined, the global : :operator newO is used

new tries to create an object of type Type by allocating (if possible)
sizeof(Type) bytes in free store (also called the heap). new calculates the size
of Type without the need for an explicit sizeof operator. Further, the pointer
returned is of the correct type, "pointer to Type," without the need for
explicit casting. The storage duration of the new object is from the point of
creation until the operator delete destroys it by deallocating its memory, or
until the end of the program.

If successful, new returns a pointer to the new object. By default, an alloca
tion failure (such as insufficient or fragmented heap memory) results in the
predefined exception xalloc being thrown. Your program should always be
prepared to catch the xalloc exception before trying to access the new object
(unless you use a new-handler; see the following section for details).

A request for allocation of 0 bytes returns a non-null pointer. Repeated
requests for zero-size allocations return distinct, non-null pointers.

You can define a function to be called if the new operator fails. To tell the
new operator about the new-handler function, use set_new_handler and
supply a pointer to the new-handler. If you want new to return null on
failure, you must use set_new_handler(O). See the Library Reference,
Chapter 9, for discussions of set_new_handler, _new_handler, and the
predefined exception xalloc.

If Type is an array, the pointer returned by operator new[]O points to the
first element of the array. When creating multidimensional arrays with
new, all array sizes must be supplied (although the leftmost dimension
doesn't have to be a compile-time constant):

Borland C++ for OS/2 Programmers Guide

See the Library
Reference, Chapter

9, for a description of
xalloc.

Chapter 3, C++ specifics

matJ)tr = new int [3] [10] [12] i
matJ)tr = new int[n] [10] [12]i
matJ)tr = new int[3] [] [12]i
matJ)tr = new int[] [10] [12]i

II OK
II OK
II illegal
I I illegal

Although the first array dimension can be a variable, all following
dimensions must be constants.

The following example shows you one way to allocate and delete memory
for a two-dimensional array. The order of operations taken to allocate the
space must be reversed when you delete the space.

Setup
rows

o 4 bytes

m-1 4 bytes

Setup columns
o 1 n-1

_110 bytes 1 10 bytes 1 ... 110 bytes 1

o 1 n-1

_110 bytes 1 10 bytes 1 ... 110 bytes 1

1* ALLOCATE A TWO-DIMENSIONAL SPACE, INITIALIZE, AND DELETE IT. *1
#include <except.h>
#include <iostream.h>

void display(long double **) i
void de_allocate(long double **)i

int m = 3i
int n = 5i
int main (void)

long double **datai

try {
data = new long double*[m]i
for (int j = Oi j < mi j++)

data[j] = new long double[n]i

II THE NUMBER OF ROWS.
II THE NUMBER OF COLUMNS.

II TEST FOR EXCEPTIONS.
II STEP 1: SET UP THE ROWS.

II STEP 2: SET UP THE COLUMNS

catch (xalloc) { II ENTER THIS BLOCK ONLY IF xalloc IS THROWN.
II YOU COULD REQUEST OTHER ACTIONS BEFORE TERMINATING
cout « "Could not allocate. Bye ... "i
exit(-l)i
}

for (int i = Oi i < mi iff)
for (int j = Oi j < ni j++)

data[i][j] = i + ji

display (data) i
de_allocate(data)i
return Oi
}

II ARBITRARY INITIALIZATION

115

The operator
delete with arrays

The : :operator
new

Initializers with
the new operator

116

void display(long double **data) {
for (int i = 0; i < ill; itt)

for (int j = 0; j < n; jtt)
cout« data[i][j]« n n;

cout « endl;

void de_allocate(long double **data)
for (int i = 0; i < ill; itt)

delete[] data[i];
delete [] data;
}

produces this output:

01234
1 2 3 4 5
2 3 456

II STEP 1: DELETE THE COLUMNS
II STEP 2: DELETE THE ROWS

Arrays are deleted by operator delete[]O. You must use the syntax delete
[] expr when deleting an array. After C++ 2.1, the array dimension should
not be specified within the brackets:

char * p;

void func ()
p = new char[10];
delete [] p;

II allocate 10 chars
II delete 10 chars

C++ 2.0 code required the array size. To allow 2.0 code to compile, Borland
C++ issues a warning and ignores any size that is specified. For example, if
the preceding example reads delete [10] p and is compiled, the warning is:

Warning: Array size for 'delete' ignored in function func()

By default, if there is no overloaded version of new, a request for dynamic
memory allocation always uses the global version of new, ::operator newO.
A request for array allocation calls ::operator new[]O. With class objects of
type name, a specific operator called name::operator newO or name::operator
new[]O can be defined. new applied to class name objects invokes the
appropriate name: :operator new if it is present; otherwise, the global
: :operator new is used.

Only the operator newO function accepts an optional initializer. The array
allocator version, operator new[]O, does not accept initializers. In the
absence of explicit initializers, the object created by new contains unpredict-

Borland C++ for OS/2 Programmers Guide

Overloading new
and delete

The type size_t is
defined in stdlib.h

Chapter 3, C++ specifics

able data (garbage). The objects allocated by new, other than arrays, can be
initialized with a suitable expression between parentheses:

int-ptr = new int(3);

. Arrays of classes with constructors are initialized with the default construc
tor (see page 134). The user-defined new operator with customized initial
ization plays a key role in C++ constructors for class-type objects.

The global ::operator newO and ::operator new[]{) can be overloaded. Each
overloaded instance must have a unique signature. Therefore, multiple
instances of a global allocation operator can coexist in a single program.

Class-specific new operators can also be overloaded. The operator new can
be implemented to provide alternative free storage (heap) memory
management routines, or implemented to accept additional arguments. A
user-defined operator new must return a void* and must have a size_t as its
first argument. To overload the new operators, use the following
prototypes:

• void * operator new(size_t Type_size); II For non-array

• void * operator new[] (size_t Type_size); II For arrays

The Borland C++ compiler provides Type_size to the new operator Any
data type can be substituted for Type except function names (although a
pointer to function is permitted), class declarations, enumeration declara
tions, const, and volatile.

The global operators ::operator delete{) and ::operator delete[]O cannot be
overloaded. However, you can override the default version of each of these
operators with your own implementation. Only one instance of the global
delete function can exist in the program.

The user-defined operator delete must have a void return type and void* as
its first argument; a second argument of type size_t is optional. A class T
can define at most one version of each of T::operator delete[]O and
T::operator deleteO. To overload the delete operators, use the following
prototypes:

• void operator delete(void *Type-ptr, [size_t Type_size]); II For non-array

• void operator delete[] (size_t Type-ptr, [size_t Type_size]); II For arrays

For example,

#include <stdlib.h>

class X

117

Destructors are called
only if you use the

-xd compiler option
and an exception is

thrown.

118

public:
void* operator new(size_t size) { return newalloc(size);}
void operator delete(void* p) { newfree(p); }
X() { 1* initialize here *1 }
X(char ch) { 1* and here *1 }

-X() { 1* clean up here *1 }

};

The size argument gives the size of the object being created, and newalloc
and newfree are user-supplied memory allocation and deallocation
functions. Constructor and destructor calls for objects of class X (or objects
of classes derived from X that do not have their own overloaded operators
new and delete) invoke the matching user-defined X::operator newO and
X::operator deleteO, respectively.

The X::operator newO, X::operator new[]O, X::operator deleteO and
X::operator delete[]O operator functions are static members of X whether
explicitly declared as static or not, so they cannot be virtual functions.

The standard, predefined (global) newO, new[]O, deleteO, and delete[]O
operators can still be used within the scope of X, either explicitly with the
global scope operator (::operator newO, ::operator new[]O, ::operator
deleteO, and ::operator delete[]O), or implicitly when creating and
destroying non-X or non-X-derived class objects. For example, you could
use the standard new and delete when defining the overloaded versions:

void* X::operator new(size_t s)
{

void* ptr = new char[s]; II standard new called

return ptr;

void X::operator delete(void* ptr)
{

delete (void*) ptr; II standard delete called

The reason for the size argument is that classes derived from X inherit the
X::operator newO and X::operator new[]O. The size of a derived class object
might differ from that of the base class.

Borland C++ for OS/2 Programmers Guide

Classes

Class names

Class types

Chapter 3, C++ specifics

C++ classes offer extensions to the predefined type system. Each class type
represents a unique set of objects and the operations (methods) and
conversions available to create, manipulate, and destroy such objects.
Derived classes can be declared that inherit the members of one or more
base (or parent) classes.

In C++, structures and unions are considered as classes with certain access
defaults.

A simplified, "first-look" syntax for class declarations is

class-key <class-name <: base-list> <type-info> { <member-list> };

class-key is one of class, struct, or union.

The optional type-info indicates a request for run-time type information
about the class. You can compile with the -RT compiler option, or you can
use the __ rtti keyword. See the discussion of class Type_info in the Library
Reference, Chapter 9.

The optional base-list lists the base class or classes from which the class
class-name will derive (or inherit) objects and methods. If any base classes
are specified, the class class-name is called a derived class (see page 128).
The base-list has default and optional overriding access specifiers that can
modify the access rights of the derived class to members of the base classes
(see page 127).

The optional member-list declares the class members (data and functions) of
class-name with default and optional overriding access specifiers that can
affect which functions can access which members.

class-name is any identifier unique within its scope. With structures, classes,
and unions, class-name can be omitted. See page 61 for discussion of
untagged structures.

The declaration creates a unique type, class type class-name. This lets you
declare further class objects (or instances) of this type, and objects derived
from this type (such as pointers to, references to, arrays of class-name, and
so on):

class X { ••• } i
X x, &xr , *xptr , xarray[lOli
1* four objects: type X, reference to X, pointer to X and array of X*I

119

Class name scope

Class objects

120

struct Y { ... } i
Y y, &yr, *yptr, yarray[lOl i

II C would have
II struct Y y, *yptr, yarray[lOli

union z { ... } i
Z z, &zr, *zptr, zarray[lOl i
II C would have
II union Z z, *zptr, zarray[lOli

Note the difference between C and C++ structure and union declarations:
The keywords struct and union are essential in C, but in C++, they are
needed only when the class names, Y and Z, are hidden (see the following
section).

The scope of a class name is local. There are some special requirements if
the class name appears more than once in the same scope. Class name
scope starts at the point of declaration and ends with the enclosing block. A
class name hides any class, object, enumerator, or function with the same
name in the enclosing scope. If a class name is declared in a scope
containing the declaration of an object, function, or enumerator of the same
name, the class can be referred to only by using the elaborated type specifier.
This means that the class key, class, struct, or union, must be used with the
class name. For example,

struct S { ... }i

int S(struct S *Sptr)i

void func(void)
S ti
struct S Si

S (&s) i

II ILLEGAL declaration: no class key and function S in scope
II OK: elaborated with class key
II OK: this is a function call

C++ also allows an incomplete class declaration:

class Xi II no members, yet!

Incomplete declarations permit certain references to class name X (usually
references to pointers to class objects) before the class has been fully
defined. See the discussion of structure member declarations beginning
page 62. Of course, YOlJ must make a complete class declaration with
members before you can define and use class objects.

Class objects can be assigned (unless copying has been restricted), passed
as arguments to functions, returned by functions (with some exceptions),
and so on. Other operations on class objects and members can be user-

Borland C++ for OS/2 Programmers Guide

Class member list

Member functions

The keyword this

Inline functions

defined in many ways, including definition of member and friend functions
and the redefinition of standard functions and operators when used with
objects of a certain class. Redefined functions and operators are said to be
overloaded. Operators and functions that are restricted to objects of a certain
class (or related group of classes) are called member functions for that class.
C++ offers the overloading mechanism that allows the same function or
operator name can be called to perform different tasks, depending on the
type or number of arguments or operands.

The optional member-list is a sequence of data declarations (of any type,
including enumerations, bit fields and other classes), function declarations,
and definitions, all with optional storage class specifiers and access
modifiers. The objects thus defined are called class members. The storage
class specifiers auto, extern, and register are not allowed. Members can be
declared with the static storage class specifiers.

A function declared without the friend specifier is known as a member
function of the class. Functions declared with the friend modifier are called
friend functions.

The same name can be used to denote more than one function, provided
they differ in argument type or number of arguments.

Nonstatic member functions operate on the class type object they are called
with. For example, if x is an object of class X andj() is a member function of
X, the function call x. f () operates on x. Similarly, if xptr is a pointer to an X

, object, the function call xptr->f () operates on *xptr. But how does fknow
which instance of X it is operating on? C++ providesfwith a pointer to x
called this. this is passed as a hidden argument in all calls to nonstatic
member functions.

this is a local variable available in the body of any nonstatic member
function. this does not need to be declared and is rarely referred to
explicitly in a function definition. However, it is used implicitly within
the function for member references. If x.j(y) is called, for example, where
y is a member of X, this is set to &x and y is set to this->y, which is
equivalent to x.y.

You can declare a member function within its class and define it elsewhere.
Alternatively, you can both declare and define a member function within its
class, in which case it is called an in line function.

Chapter 3, C++ specifics 121

The Borland C++
compiler can ignore

requests for in line
expansion.

Inline functions and
exceptions

Destructors are called
by default. See the

Users Guide, Chapter
6, for information
about exception

handling switches.

122

Borland C++ can sometimes reduce the normal function call overhead by
substituting the function call directly with the compiled code of the
function body. This process, called an inline expansion of the function body,
does not affect the scope of the function name or its arguments. Inline
expansion is not always possible or feasible. The inline specifier indicates to
the compiler you would like an inline expansion.

Explicit and implicit inline requests are best reserved for small, frequently
used functions, such as the operator functions that implement overloaded
operators. For example, the following class declaration of June:

int ii

class X {
pUblic:

II global int

char* func(void) { return ii} II inline by default
char* ii

}i

is equivalent to:

inline char* X::func(void) { return ii }

June is defined outside the class with an explicit inline specifier. The i
returned by June is the char* i of class X (see page 125).

An inline function with an exception-specification will never be expanded
inline by Borland C++. For example,

inline void fl() throw(int)
{

II Warning: Functions with exception specifications are not expanded inline
}

The remaining restrictions (those listed below) apply only when destructor
cleanup is enabled.

An inline function that takes at least one parameter that is of type 'class
with a destructor' will not be expanded inline. Note that this restriction
does not apply to classes that are passed by reference. Example:

struct foo
foo () i
-fOO()i
}i

inline void f2(foo& x)
II no warning, f2() can be expanded inline
}

Borland C++ for OS/2 Programmers Guide

Static members

Chapter 3, C++ specifics

inline void f3(foo x) {
II Warning: Functions taking class-by-value argument(s) are
II not expanded inline in function f3(foo)
}

An inline function that returns a class with a destructor by value will not be
expanded inline whenever there are variables or temporaries that need to
be destructed within the return expression:

struct foo
foo () i

-foo () i

}i

inline foo f4 ()
return fOO()i
II no warning, f4() can be expanded inline
}

inline foo f5() {
foo Xi
return fOO()i II Object X needs to be destructed
II Warning: Functions containing some return statements are
II' not expanded inline in function f5()
}

inline faa f6 () {
return (foo(), fOO())i II temporary in return value
II Warning: Functions containing some return statements are
II not expanded inline in function f6()
}

The storage class specifier static can be used in class declarations of data
and function members. Such members are called static members and have
distinct properties from nonstatic members. With nonstatic members, a
distinct copy "exists" for each instance of the class; with static members,
only one copy exists, and it can be accessed without reference to any
particular object in its class. If x is a static member of class X, it can be
referenced as X::x (even if objects of class X haven't been created yet). It is
still possible to access x using the normal member access operators. For
example, y.x and yptr->x, where y is an object of class X and yptr is a pointer
to an object of class X, although the expressions y and yptr are not
evaluated. In particular, a static member function can be called with or
without the special member function syntax:

123

124

class X {
int member_inti

pUblic:
static void func(int i, X* ptr)i

}i

void g(void)i {
X obji
func(l, &Obj)i

X::func(l, &Obj)i

obj.func(l, &Obj)i

II error unless there is a global func()
II defined elsewhere

II calls the static func() in X
II OK for static functions only
II so does this (OK for static and
II nonstatic functions)

Because static member functions can be called with no particular object in
mind, they don't have a this pointer, and therefore cannot access nonstatic
members without explicitly specifying an object with. or ->. For example,
with the declarations of the previous example, June might be defined as
follows:

void X::func(int i, X* ptr) {
member_int = ii II which object does member_int

II refer to? Error
ptr->member_int = ii II OK: now we know!

Apart from inline functions, static member functions of global classes have
extemallinkage. Static member functions cannot be virtual functions. It is
illegal to have a static and nonstatic member function with the same name
and argument types.

The declaration of a static data member in its class declaration is not a
definition, so a definition must be provided elsewhere to allocate storage
and provide initialization.

Static members of a class declared local to some function have no linkage
and cannot be initialized. Static members of a global class can be initialized
like ordinary global objects, but only in file scope. Static members, nested to
any level, obey the usual class member access rules, except they can be
initialized.

class X {
static int Xi
class inner {

static float fi
void func (void) i
}i

II nested declaration

Borland C++ for OS/2 Programmers Guide

Member scope

Chapter 3, C++ specifics

};

int X::x = 1;
float X::inner::f = 3.14;
X::inner::func(void} {

II initialization of nested static
1* define the nested function *1

The principal use for static members is to keep track of data common to all
objects of a class, such as the number of objects created, or the last-used
resource from a pool shared by all such objects. Static members are also
used to

• Reduce the number of visible global names

• Make obvious which static objects logically belong to which class

• Permit access control to their names

The expression X: : func () in the example in the "Inline functions" section on
page 122 uses the class name X with the scope access modifier to signify
that Junc, although defined" outside" the class, is indeed a member
function of X and exists within the scope of X. The influence of X:: extends
into the body of the definition. This explains why the i returned by Junc
refers to X::i, the char* i of X, rather than the global int i. Without the X::
modifier, the function Junc would represent an ordinary non-class function,
returning the global int i.

All member functions, then, are in the scope of their class, even if defined
outside the class.

Data members of class X can be referenced using the selection operators
. and -> (as with C structures). Member functions can also be called using
the selection operators (see page 121). For example,

class X {

public:
int i;

};

char name [20 1 ;
X *ptr1;
X *ptr2;
void Xfunc(char*data, X* left, X* right}; II define elsewhere

void f(void}; {
X xl, x2, *xptr=&xl;
x1. i = 0;
x2. i = x1. i;
xptr->i = 1;
x1.Xfunc("stan", &x2, xptr};

125

Nested types

126

If m is a member or base member of class X, the expression X::m is called a
qualified name; it has the same type as m, and it is an lvalue only if m is an
lvalue. It is important to note that, even if the class name X is hidden by a
non-type name, the qualified name X::m will access the correct class
member, m.

Class members cannot be added to a class by another section of your
program. The class X cannot contain objects of class X, but can contain
pointers or references to objects of class X (note the similarity with C's
structure and union types).

Tag or typedef names declared inside a class lexically belong to the scope of
that class. Such names can, in general, be accessed only by using the
xxx::yyy notation, except when in the scope of the appropriate class.

A class declared within another class is called a nested class. Its name is local
to the enclosing class; the nested class is in the scope of the enclosing class.
This is a purely lexical nesting. The nested class has no additional
privileges in accessing members of the enclosing class (and vice versa).

Classes can be nested in this way to an arbitrary level. Nested classes can be
declared inside some class and defined later. For example,

struct outer

typedef int ti II 'outer::t' is a typedef name
struct inner II 'outer: :inner' is a class

static int Xi
}i

static int Xi
int f () i

class deepi II nested declaration
}i

int outer: :Xi II define static data member

int outer:: f ()
t Xi II 't' visible directly here
return Xi

int outer::inner::xi
outer::t Xi
class outer::deep { }i

II define static data member
II have to use 'outer: :t' here
II define the nested class here

With C++ 2.0, any tags or typedef names declared inside a class actually
belong to the global (file) scope. For example,

Borland C++ for OS/2 Programmers Guide

Member access
control

Friend function
declarations are not
affected by access

specifiers (see
page 130).

The access specifiers
can be listed and

grouped in any
convenient sequence.

You can save typing
effort by declaring all
the private members
together,. and so on.

Chapter 3, C++ specifics

struct foo

}i

enum bar { X}i II 2.0 rules: 'bar' belongs to file scope
II 2.1 rules: 'bar' belongs to 'foo' scope

bar Xi

The preceding fragment compiles without errors. But because the code is
illegal under the 2.1 rules, a warning is issued as follows:

Warning: Use qualified name to access nested type 'foo: :bar'

Members of a class acquire access attributes either by default (depending
on class key and declaration placement) or by the use of one of the three
access specifiers: public, private, and protected. The significance of these
attributes is as follows:

public

private

The member can be used by any function.

The member can be used only by member functions and
friends of the class it's declared in.

protected Same as for private. Additionally, the member can be used by
member functions and friends of classes derived from the
declared class, but only in objects of the derived type. (Derived
classes are explained in the next section.)

Members of a class are private by default, so you need explicit public or
protected access specifiers to override the default.

Members of a struct are public by default, but you can override this with
the private or protected access specifier.

Members of a union are public by default; this cannot be changed. All three
access specifiers are illegal with union members.

A default or overriding access modifier remains effective for all subsequent
member declarations until a different access modifier is encountered. For
example,

class X {
int ii
char Chi

public:
int ji
int ki

protected:
int li

}i

II x::i is private by default
Iisoisx::ch

II next two are public

II X::l is protected

127

Base and derived
class access

Since a base class
can itself be a derived

class, the access
attribute question is

recursive: you
backtrack until you
reach the basest of

the base classes,
those that do not

inherit.

Unions cannot have
base classes, and
unions cannot be

used as base
classes.

128

struct Y {
int i;

private:
int j;

public:
int k;

};

union z {

II Y::i is public by default

II Y::j is private

II Y::k is public

int i; II public by default; no other choice
double d;

} ;

When you declare a derived class D, you list the base classes Bl, B2, ... in a
comma-delimited base-list:

class-key D : base-list { <member-list> }

D inherits all the members of these base classes. (Redefined base class
members are inherited and can be accessed using scope overrides, if
needed.) D can use only the public and protected members of its base
classes. But, what will be the access attributes of the inherited members as
viewed by D? D might want to use a public member from a base class, but
make it private as far as outside functions are concerned. The solution is to
use access specifiers in the base-list.

When declaring D, you can use the access specifier public, protected, or
private in front of the classes in the base-list:

class D : public BI, private B2, ... {

These modifiers do not alter the access attributes of base members as
viewed by the base class, though they can alter the access attributes of base
members as viewed by the derived class.

The default is private if D is a class declaration, and public if D is a struct
declaration.

The derived class inherits access attributes from a base class as follows:

• public base class: public members of the base class are public members of
the derived class. protected members of the base class are protected
members of the derived class. private members of the base class remain
private to the base class .

• protected base class: Both public and protected members of the base
class are protected members of the derived class. private members of the
base class remain private to the base class.

Borland C++ for OS/2 Programmers Guide

Chapter 3, C++ specifics

• private base class: Both public and protected members of the base class
are private members of the derived class. private members of the base
class remain private to the base class.

Note that private members of a base class are always inaccessible to
member functions of the derived class unless friend declarations are
explicitly declared in the base class granting access. For example,

1* class X is derived from class A *1
class X : A { II default for class is private A

1* class Y is derived (multiple inheritance) from Band C
B defaults to private B *1

class Y : B, public C { II override default for C

1* struct S is derived from D *1
struct S : D { II default for struct is public D

1* struct T is derived (multiple inheritance) from D and E
E defaults to public E *1

struct T : private D, E { II override default for D
II E is public by default

The effect of access specifiers in the base list can be adjusted by using a
qualified-name in the public or protected declarations of the derived class.
For example,

class B {
int aj

pUblic:
int b, Ci

int Bfunc (void) j

} i

class X : private B
int dj

II private by default

II a, b, c, Bfunc are now private in X
II private by default, NOTE: a is not
II accessible in X

129

Virtual base
classes

Friends of classes

130

public:
B: :c; II c was private, now is public
int e;
int Xfunc(void);

};

int Efunc(X& x); II external to B and X

The function EfuncO can use only the public names c, e, and XfuncO.

The function XfuncO is in X, which is derived from private B, so it has
access to

• The lIadjusted-to-public" c

• The IIprivate-to-X" members from B: band BfuncO
• X's own private and public members: d, e, and XfuncO

However, XfuncO cannot access the "private-to-B" member, a.

With multiple inheritance, a base class can't be specified more than once in
a derived class:

class B { ... };
class D : B, B { ... }; II Illegal

However, a base class can be indirectly passed to the derived class more
than once:

class X : public B { ... }
class Y : public B { ... }
class Z : public X, public Y { ... } II OK

In this case, each object of class Z will have two sub-objects of class B. If this
causes problems, the keyword virtual can be added to a base class specifier.
For example,

class X virtual public B { .. , }
class Y : virtual public B { ... }
class Z : public X, public Y { .. .

B is now a virtual base class, and class Z has only one sub-object of class B.

A friend F of a class X is a function or class, although not a member
function of X, with full access rights to the private and protected members
of X. In all other respects, F is a normal function with respect to scope,
declarations, and definitions.

Borland C++ for OS/2 Programmers Guide

Chapter 3, C++ specifics

Since F is not a member of X, it i.s not in the scope of X, and it cannot be
called with the x.F and xptr->F selector operators (where x is an X object
and xptr is a pointer to an X object).

If the specifier friend is used with a function declaration or definition
within the class X, it becomes a friend of X.

friend functions defined within a class obey the same inline rules as
member functions (see page 121). Friend functions are not affected by their
position within the class or by any access specifiers. For example,

class X {
int ii II private to X
friend void friend_func{X*, int) i

1* friend_func is not private, even though it's declared in the private section
*1

pUblic:
void member_func{int) i

}i

1* definitionsi note both functions access private int i */
void friend_func{X* xptr, int a) { xptr->i = ai }
void X::member_func{int a) { i = ai }

X xobji

1* note difference in function calls *1
friend_func{&xobj, 6)i

xobj.member_func(6) i

You can make all the functions of class Y into friends of class X with a
single declaration:

class Yi

class X {
friend Yi

int ii
void member_funcX{)i

}i

class Yi {.

} i

void friend_Xl{X&)i
void friend_X2{X*) i

II incomplete declaration

II complete the declaration

The functions declared in Yare friends of X, although they have no friend
specifiers. They can access the private members of X, such as i and
member JuncX.

131

It is also possible for an individual member function of class X to be a
friend of class Y:

class X {

void member_funcX();

class Y {
int i;
friend void X::member_funcX();

};

Class friendship is not transitive: X friend of Yand Y friend of Z does not
imply X friend of Z. Friendship is not inherited.

Constructors and destructors

132'

There are several special member functions that determine how the objects
of a class are created, initialized, copied, and destroyed. Constructors and
destructors are the most important of these. They have many of the
characteristics of normal member functions-you declare and define them
within the class, or declare them within the class and define them outside
but they have some unique features:

• They do not have return value declarations (not even void).

• They cannot be inherited, though a derived class can call the base class's
constructors and destructors.

• Constructors,like most C++ functions, can have default arguments or
use member initialization lists.

• Destructors can be virtual, but constructors cannot. (See page 141.)

• You can't take their addresses.

int main (void)
{

void *ptr = base::base; II illegal

• Constructors and destructors can be generated by Borland C++ if they
haven't been explicitly defined; they are also invoked on many occasions
without explicit calls in your program. Any constructor or destructor
generated by the compiler will be public.

Borland C++ for OS/2 Programmers Guide

Constructors

Chapter 3, C++ specifics

• You cannot call constructors the way you call a normal function.
Destructors can be called if you use their fully qualified name.

x *p;

p->X: :-X();

x: :X();

II legal call of destructor
II illegal call of constructor

• The compiler automatically calls constructors and destructors when
defining and destroying objects.

• Constructors and destructors can make implicit calls to operator new and
operator delete if allocation is required for an object.

• An object with a constructor or destructor cannot be used as a member of
a union.

• If no constructor has been defined for some class X to accept a given
type, no attempt is made to find other constructors or conversion
functions to convert the assigned value into a type acceptable to a con
structor for class X. Note that this rule applies only to any constructor
with one parameter and no initializers that use the "=" syntax.

class X { 1* *1 X(int); };
class Y { 1* * I Y (X); };
Y a = 1; II illegal: Y(X(l)) not tried

If class X has one or more constructors, one of them is invoked each time
you define an object x of class X. The constructor creates x and initializes it.
Destructors reverse the process by destroying the class objects created by
constructors.

Constructors are also invoked when local or temporary objects of a class are
created; destructors are invoked when these objects go out of scope.

Constructors are distinguished from all other member functions by having
the same name as the class they belong to. When an object of that class is
created or is being copied, the appropriate constructor is called implicitly.

Constructors for global variables are called before the main function is
called. When the #pragma startup directive is used to install a function
prior to the main function, global variable constructors are called prior to
the startup functions.

Local objects are created as the scope of the variable becomes active. A
constructor is also invoked when a temporary object of the class is created.

133

Constructor
defaults

134

class X {
public:

XI); II class X constructor
};

A class X constructor cannot take X as an argument:

class X {
public:

XIX) ;
};

II illegal

The parameters to the constructor can be of any type except that of the class
it's a member of. The constructor can accept a reference to its own class as a
parameter; when it does so, it is called the copy constructor. A constructor
that accepts no parameters is called the default constructor. The default
constructor and the copy constructor are discussed in the following
sections.

The default constructor for class X is one that takes no arguments; it
usually has the form X: : X () • If no user-defined constrl;lctors exist for a class,
Borland C++ generates a default constructor. On a deClaration such as X x,
the default constructor creates the object x.

Like all functions, constructors can have default arguments. For example,
the constructor

X::X(int, int = 0)

can take one or two arguments. When presented with one argument, the
missing second argument is assumed to be a zero int. Similarly, the
constructor

X: :X(int = 5, int = 6)

could take two, one, or no arguments, with appropriate defaults. However,
the default constructor X: : X () takes no arguments and must not be confused
with, say, X: :X(int = 0), which can be called with no arguments as a default
constructor, or can take an argument.

You should avoid ambiguity in calling constructors. In the following case,
the two default constructors are ambiguous:

class X

public:
XI) ;
Xlint i = 0);

};

Borland C++ for OS/2 Programmers Guide

The copy
constructor

Overloading
constructors

Chapter 3, C++ specifics

int main() {
x one(10)i II OKi uses x: :X(int)
x tWOi

return Oi

II illegali ambiguous whether to call X::X() or
I I x: :X(int = 0)

A copy constructor for class X is one that can be called with a single
argument of type x, as follows:

x: :X (const X&)
or

x: :X(const X&, int = 0)

Default arguments are also allowed in a copy constructor. Copy construc
tors are invoked when initializing a class object, typically when you declare
with initialization by another class object:

X Xli

X x2 = Xli
X x3(x1)i

Borland C++ generates a copy constructor for class X if one is needed and
no other constructor has been defined in class X. The copy constructor that
is generated by the Borland C++ compiler lets you safely start program
ming with simple data types. You need to make your own definition of the
copy constructor only if your program creates aggregate, complex types
such as class, struct, and arrays.

See also the discussion of member-by-member class assignment beginning
on page 147. You should define the copy constructor if you overload the
assignment operator.

Constructors can be overloaded, allowing objects to be created, depending
on the values being used for initialization. .

class X {
int integer-parti
double double-parti

public:
X(int i) integer-part = ii
X(double d) double-part = di }

}i

int main() {
X one(10) i II invokes x: :X(int) and sets integer-part to 10
X one(3.14)i II invokes X::X(double) setting double-part to 3.14
return Oi

135

Order of calling
constructors

In the case where a class has one or more base classes, the base class
constructors are invoked before the derived class constructor. The base
class constructors are called in the order they are declared.

For example, in this setup,

class Y { ... }
class X : public Y { ... }
X one;

the constructors are called in this order:

Y(); II base class constructor
X(); II derived class constructor

For the case of multiple base classes,

class X : public Y, public Z
X one;

the constructors are called in the order of declaration:

Y(); II base class constructors corne first
Z();
X();

Constructors for virtual base classes are invoked before any nonvirtual base
classes. If the hierarchy contains multiple virtual base classes, the virtual
base class constructors are invoked in the order in which they were
declared. Any nonvirtual bases are then constructed before the derived
class constructor is called.

If a virtual class is derived from a nonvirtual base, that nonvirtual base will
be first so that the virtual base class can be properly constructed. The code

class X : public Y, virtual public Z
X one;

produces this order:

Z(); II virtual base class initialization
Y(); II nonvirtual base class
X(); II derived class

Or, for a more complicated example:

class base;
class base2;
class levell public base2, virtual public base;

136 Borland e+t for OS/2 Programmers Guide

Class initialization

Chapter 3, C++ specifics

class level2 : public base2, virtual public base;
class toplevel : public levell, virtual public level2;
toplevel view;

The construction order of yiew would be as follows:

base () ;

base2 () ;

level2();
base2();
levell () ;
toplevel() ;

II virtual base class highest in hierarchy
II base is constructed only once
II nonvirtual base of virtual base level2
II must be called to construct level2
II virtual base class
II nonvirtual base of levell
II other nonvirtual base

If a class hierarchy contains multiple instances of a virtual base class, that
base class is constructed only once. If, however, there exist both virtual and
nonvirtual instances of the base class, the class constructor is invoked a
single time for all virtual instances and then once for each nonvirtual
occurrence of the base class.

Constructors for elements of an array are called in increasing order of the
subscript.

An object of a class with only public members and no constructors or base
classes (typically a structure) can be initialized with an initializer list. If a
class has a constructor, its objects must be either initialized or have a
default constructor. The latter is used for objects not explicitly initialized.

Objects of classes with constructors can be initialized with an expression
list in parentheses. This list is used as an argument list to the constructor.
An alternative is to use an equal sign followed by a single value. The single
value can be the same type as the first argument accepted by a constructor
of that class, in which case either there are no additional arguments, or the
remaining arguments have default values. It could also be an object of that
class type. In the former case, the matching constructor is called to create
the object. In the latter case, the copy constructor is called to initialize the
object.

class X {
int i;

public:

}i

X() ;

X(int x);
X(const X&);

void main ()
X one;

II function bodies omitted for clarity

II default constructor invoked

137

Base class
constructors must be

declared as either
public or protected

to be called from a
derived class.

138

x two(l); II constructor X::X(int) is used
X three = 1; II calls X::X(int)
X four = one; II invokes X::X(const X&) for copy
X five(two); II calls X::X(const X&)

The constructor can assign values to its members in two ways:

• It can accept the values as parameters and make assignments to the
member variables within the function body of the constructor:

class X

int a, b;
pUblic:

X(int i, int j) { a = i; b = j }
};

• An initializer list can be used prior to the function body:

class X

int a, b, &c; II Note the reference variable.
pUblic:

X(int i, int j) : a(i), b(j), c(a) {}
};

The initializer list is the only place to initialize a reference variable.

In both cases, an initialization of X x (1, 2) assigns a value of 1 to x::a and 2
to x::b. The second method, the initializer list, provides a mechanism for
passing values along to base class constructors.

class basel
{

int Xi

public:
basel (int i) { X = i; }

};

class base2
{

int X;
public:

base2 (int i) : x(i) {}
};

class top : public basel, public base2
{

int a, b;
public:

top(int i, int j) base1(i*5), base2(j+i), a(i) { b = j;}
};

Borland C++ for OS/2 Programmers Guide

Chapter 3, C++ specifics

With this class hierarchy, a declaration of top one (1, 2) would result in the
initialization of basel with the value 5 and base2 with the value 3. The
methods of initialization can be intermixed.

As described previously, the base classes are initialized in declaration order.
Then the members are initialized, also in declaration order, independent of
the initialization list.

class X
{

int a, bi
public:

X(int i, j) : a(i), b(a+j) {}
}i

With this class, a declaration of X x(l, 1) results in an assignment of 1 to x::a
and 2 to x::b.

Base class constructors are called prior to the construction of any of the
derived classes members. If the values of the derived class are changed,
they will have no effect on the creation of the base class.

class base

int Xi

public:
base (int i) : X (i) {}

}i

class derived : base
{

int ai

public:

}i

derived(int i) a(i*10), base(a) { } II Watch out! Base will be
II passed an uninitialized a

With this class setup, a call of derived d (1) will not result in a value of 10 for
the base class member x. The value passed to the base class constructor will
be undefined.

When you want an initializer list in a non-inline constructor, don't place the
list in the class definition. Instead, put it at the point at which the function
is defined.

derived::derived(int i) : a(i)
{

139

Destructors

Invoking
destructors

atexit, #pragma exit,
and destructors

exit and destructors

abort and
destructors

140

The destructor for a class is called to free members of an object before the
object is itself destroyed. The destructor is a member function whose name
is that of the class preceded by a tilde (....). A destructor cannot accept any
parameters, nor will it have a return type or value declared.

#include <stdlib.h>
class X

pUblic:
-X() {}i II destructor for class X

}i

If a destructor isn't explicitly defined for a class, the compiler generates
one.

A destructor is called implicitly when a variable goes out of its declared
scope. Destructors for local variables are called when the block they are
declared in is no longer active. In the case of global variables, destructors
are called as part of the exit procedure after the main function.

When pointers to objects go out of scope, a destructor is not implicitly
called. This means that the delete operator must be called to destroy such
an object.

Destructors are called in the exact opposite order from which their
corresponding constructors were called (see page 135).

All global objects are active until the code in all exit procedures has
executed. Local variables, including those declared in the main function, are
destroyed as they go out of scope. The order of execution at the end of a
Borland C++ program is as follows:

• atexitO functions are executed in the order they were inserted.

• #pragma exit functions are executed in the order of their priority codes.

• Destructors for global variables are called.

When you call exit from within a program, destructors are not called for
any local variables in the current scope. Global variables are destroyed in
their normal order.

If you call abort anywhere in a program, no destructors are called, not even
for variables with a global scope.

Borland C++ for OS/2 Programmers Guide

virtual destructors

Chapter 3, C++ specifics

A destructor can also be invoked explicitly in one of two ways: indirectly
through a call to delete, or directly by using the destructor's fully qualified
name. You can use delete to destroy objects that have been allocated using
new. Explicit calls to the destructor are necessary only for objects allocated
a specific address through calls to new.

#include <stdlib.h>
class X {
public:

-X () {} i

}i

void* operator new(size_t size, void *ptr)
{

return ptri

char buffer[sizeof(X)li

void rnain() {
X* pointer = new Xi
X* exact-pointeri

exact-pointer = new(&buffer) Xi II pointer initialized at
II address of buffer

delete pointeri
exact-pointer->X::-X()i

II delete used to destroy pointer
II direct call used to deallocate

A destructor can be declared as virtual. This allows a pointer to a base class
object to call the correct destructor in the event that the pointer actually
refers to a derived class object. The destructor of a class derived from a
class with a virtual destructor is itself virtual.

class color

pUblic:
virtual -color()i

}i

class red : public color
{

II virtual destructor for color

public:
-red() i II destructor for red is also virtual

}i

class brightred: public red

141

public:
-brightred() i

}i

II brightred's destructor also virtual

The previously listed classes and these declarations:

color *palette[3]i

palette[O] = new redi
palette[l] = new brightredi
palette[2] = new colori

produce these results:

delete palette[O]i
II The destructor for red is called, followed by the
II destructor for color.

delete palette[l]i
II The destructor for brightred is called, followed by -red
II and -color.

delete palette[2]i
II The destructor for color is invoked.

However, if no destructors are declared as virtual, delete palette[O], delete
palette[l], and delete palette[2] would all call only the destructor for class
color. This would incorrectly destruct the first two elements, which were
actually of type red and brightred.

Operator overloading

142

c++ lets you redefine the actions of most operators, so that they perform
specified functions when used with objects of a particular class. As with
overloaded C++ functions in general, the compiler distinguishes the
different functions by noting the context of the call: the number and types
of the arguments or operands.

The keyword operator followed by the operator symbol is called the
operator function name; it is used like a normal function name when defining
the new (overloaded) action of the operator.

All the operators listed on page 75 can be overloaded except for:

.. * :: ?:

The preprocessing symbols # and ## also cannot be overloaded.

Borland C++ for OS/2 Programmers Guide

Chapter 3, C++ specifics

The =, [], (), and -> operators can be overloaded only as nonstatic member
functions. These operators cannot be overloaded for enum types. Any
attempt to overload a global version of these operators is a compile-time
error.

A function operator called with arguments behaves like an operator work
ing on its operands in an expression. The operator function can't alter the
number of arguments or the precedence and associativity rules (see
Table 2.11 on page 71) applying to normal operator use.

The following example extends the class complex to create complex-type
vectors. Several of the most useful operators are overloaded to provide
some customary mathematical operations in a natural syntax.

Some of the issues illustrated by the example are

.. The default constructor is defined. This is provided by the compiler only
if you have not defined it or any other constructor .

.. The copy constructor is defined explicitly. Normally, if you have not
defined any constructors, the compiler will provide one. You should
define the copy constructor if you are overloading the assignment
operator .

.. The assignment operator is overloaded. If you do not overload the
assignment operator, the compiler calls a default assignment operator
when required. By overloading assignment of cvector types, you specify
exactly the actions to be taken .

.. The subscript operator is defined as a member function (a requirement
when overloading) with a single argument. The const version assures the
caller that it will not modify its argument-this is useful when copying
or assigning. This operator should check that the index value is within
range-a good place to implement exception handling .

.. The addition operator is defined as a member function. It allows addition
only for cvector types. Addition should always check that the operands'
sizes are compatible .

.. The multiplication operator is declared a friend. This lets you define the
order of the operands. An attempt to reverse the order of the operands is
a compile-time error .

.. The stream insertion operator is overloaded to naturally display a cvector.
Large objects that don't display well on a limited size screen might
require a different display strategy.

143

Source

See the Library
Reference, Chapter

7, for a description of
class complex.

144

/* HOW TO EXTEND THE complex CLASS AND OVERLOAD THE REQUIRED OPERATORS. */
#pragrna warn -inl // IGNORE not expanded inline WARNINGS.
#include <complex.h> // THIS ALREADY INCLUDES iostream.h

// COMPLEX VECTORS
class cvector {

int size;
complex *data;

pUblic:
cvector() { size = 0; data = NULL; };
cvector(int i = 5) : size(i) { // DEFAULT VECTOR SIZE.

data = new complex[sizel ;
for (int j = 0; j < size; jtt)

data[jl = j t (0.1 * j); // ARBIT~RY INITIALIZATION.
};

/* THIS VERSION IS CALLED IN main() */
complex& operator [1 (int i) {return data[il; };
/* THIS VERSION IS CALLED IN ASSIGNMENT OPERATOR AND COpy THE CONSTRUCTOR */
const complex& operator [1 (int i) const { return data[il; };

cvectar operator t(cvector& A) { // ADDITION OPERATOR
cvector result(A.size); // DO NOT MODIFY THE ORIGINAL
for (int i = 0; i < size; itt)

result[il = data[il t A.data[il;
return result;
} ;

/* BECAUSE scalar * vector MULTIPLICATION IS NOT COMMUTATIVE, THE ORDER OF
THE ELEMENTS MUST BE SPECIFIED. THIS FRIEND OPERATOR FUNCTION WILL ENSURE
PROPER MULTIPLICATION. */

friend cvector operator *(int scalar, cvector& A) {
cvector result(A.size); // DO NOT MODIFY THE ORIGINAL
for (int i = 0; i < A.size; itt)

result.data[il = scalar * A.data[il;
return result;
}

/* THE STREAM INSERTION OPERATOR. */
friend ostream& operator «(ostream& out_data, cvector& C) {

for (int i = 0; i < C.size; itt)
out_data« "[" «i« "1=" «C.data[il «" ";

cout « endl;
return out_data;
};

cvector(canst cvector &C) { // COPY CONSTRUCTOR
size = C.size;

Borland C++ for OS/2 Programmers Guide

Output

data = new complex[size];
for (int i = 0; i < size; itt)

data [i] = C [i] ;

cvector& operator =(const cvector &C) { II ASSIGNMENT OPERATOR.
if (this == &C) return *this;

};

delete[] data;
size = C.size;
data = new complex[size];
for (int i = 0; i < size; itt)

data[i] = C[i];
return *this;

virtual -cvector() { delete[] data; }; II DESTRUCTOR
};

int main(void) { 1* A FEW OPERATIONS WITH complex VECTORS. *1
cvector cvector1(4) , cvector2(4) , result(4);

II CREATE complex NUMBERS AND ASSIGN THEM TO complex VECTORS
cvector1[3] = complex(3.3, 102.8);
cout « "Here is cvector1:" « endl;
cout « cvector1;

cvector2[3] = complex(33.3, 81);
cout « "Here is cvector2:" « endl;
cout « cvector2;

result = cvector1 t cvector2;
cout « "The result of vector addition:" « endl;
cout « result;

result = 10 * cvector2;
cout « "The result of 10 * cvector2:" « endl;
cout « result;
return 0;
}

Here is cvector1:
[0] = (0, 0) [1] = (1.1, 0) [2] = (2 .2, 0) [3]=(3.3, 102.8)
Here is cvector2:
[0] = (0, 0) [1]=(1.1, 0) [2] = (2 .2, 0) [3]=(33.3, 81)
The result of vector addition:
[0]=(0, 0) [1]=(2.2, 0) [2]=(4.4, 0) [3]=(36.6, 183.8)
The result of 10 * cvector2:
[0]=(0, 0) [1]=(11, 0) [2]=(22, 0) [3]=(333, 810)

Chapter 3, C++ specifics 145

Overloading operator functions

Overloaded
operators and
inheritance

Unary operators

146

Operator functions can be called directly, although they are usually
invoked indirectly by the use of the overload operator:

c3 = cl.operator t (c2); II same as c3 = cl t c2

Apart from new and delete, which have their own rules (see page 117), an
operator function must either be a nonstatic member function or have at
least one argument of class type. The operator functions =, (), [] and->
must be nonstatic member functions.

With the exception of the assignment function operator =() (see the section
beginning on page 147), all overloaded operator functions for class X are
inherited by classes derived from X, with the standard resolution rules for
overloaded functions. If X is a base class for Y, an overloaded operator
function for X could be further overloaded for Y.

You can overload a prefix or postfix unary operator by declaring a non
static member function taking no arguments, or by declaring a nonmember
function taking one argument. If @ represents a unary operator, @x and
x@ can both be interpreted as either x.operator@O or operator@(x),
depending on the declarations made. If both forms have been declared,
standard argument matching is applied to resolve any ambiguity.

Beginning with C++ 2.1, when an operatoH+ or operator- - is declared as a
member function with no parameters, or as a nonmember function with
one parameter, it only overloads the prefix operator++ or operator- -. You
can only overload a postfix operator++ or operator- - by defining it as a
member function taking an int parameter or as a nonmember function
taking one class and one int parameter. The int parameter is used by the
compiler only to distinguish operator prototypes-it is not used in the
operator definition. See page 70 for an example of postfix and prefix
increment operator overloading.

When only the prefix version of an operator++ or operator- - is overloaded
and the operator is applied to a class object as a postfix operator, the
compiler issues a warning and calls the prefix operator. If a function June
calls the postfix operator the compiler issues the following warnings:

Warning: Overloaded prefix 'operator tt' used as a postfix operator in function
func ()

Warning: Overloaded prefix 'operator --' used as a postfix operator in function
func ()

Borland C++ for OS/2 Programmers Guide

Binary operators

Assignment
operator=

Function call
operator()

Subscript
operator[]

Chapter 3, C++ specifics

You can overload a binary operator by declaring a nonstatic member
function taking one argument, or by declaring a nonmember function
(usually friend) taking two arguments. If @ represents a binary operator,
x@y can be interpreted as either x.operator@(y) or operator@(x,y)
depending on the declarations made. If both forms have been declared,
standard argument matching is applied to resolve any ambiguity.

The assignment operator=(} can be overloaded by declaring a nonstatic
member function. For example,

class String {

String& operator = (String& str);

String (String&);
-String () ;

This code, with suitable definitions of String::operator =0, allows string
assignments strl = str2 just like other languages. Unlike the other operator
functions, the assignment operator function cannot be inherited by derived
classes. If, for any class X, there is no user-defined operator =, the operator
= is defined by default as a member-by-member assignment of the
members of class X:

X& X::operator = (const X& source)
{

II rnernberwise assignment

The function call

primary-expression (<expression-list>)

is considered a binary opera tor with operands primary-expression and
expression-list (possibly empty). The corresponding operator function is
operatorO. This function can be user-defined for a class X (and any derived
classes) only by means of a nonstatic member function. A call X(argl, arg2),
where X is an object of class X, is interpreted as X.operatorO(argl,arg2).

Similarly, the subscripting operation

primary-expression [expression]

147

Class member
access operator->

is considered a binary operator with operands primary-expression and
expression. The corresponding operator function is operator[]; this can be
user-defined for a class X (and any derived classes) only by means of a
nonstatic member function. The expression X[y], where X is an object of
class X, is interpreted as x.operator[](y).

Class member access using

primary-expression - > expression

is considered a unary operator. The function operator-> must be a nonstatic
member function. The expression x->m, where x is a class X object, is
interpreted as (x.operator->O)->m, so that the function operator->O must
either return a pointer to a class object or return an object of a class for
which operator-> is defined.

Polymorphic classes

virtual functions

See the following
section for a

discussion of pure
virtual functions.

148

Classes that provide an identical interface, but can be implemented to serve
different specific requirements, are referred to as polymorphic classes. A
class is polymorphic if it declares or inherits at least one virtual (or pure
virtual) function. The only types that can support polymorphism are class
and struct.

virtual functions allow derived classes to provide different versions of a
base class function. You can use the virtual keyword to declare a virtual
function in a base class. By declaring the function prototype in the usual
way and then prefixing the declaration with the virtual keyword. To declare
a pure function (which automatically declares an abstract class), prefix the
prototype with the virtual keyword, and set the function equal to zero.

virtual int functl(void); II A virtual function declaration.
virtual int funct2(void) = 0; II A pure function declaration.

virtual void funct3(void) = 0 { II This is a valid declaration.
II Some code in here.
};

When you declare virtual functions, keep these guidelines in mind:

• They can be member functions only.

• They can be declared a friend of another class.

• They cannot be'a static member.

Borland C++ for OS/2 Programmers Guide

virtual function
return types

Chapter 3, C++ specifics

A virtual function does not need to be redefined in a derived class. You can
supply one definition in the base class so that all calls will access the base
function.

To redefine a virtual function in any derived class, the number and type of
arguments must be the same in the base class declaration and in the
derived class declaration. (The case for redefined virtual functions differing
only in return type is discussed below.) A redefined function is said to
override the base class function.

You can also declare the functions int Base:: Fun (int) and int
Deri ved: : Fun (int) even when they are not virtual. In such a case, int
Deri ved: : Fun (int) is said to hide any other versions of Fun (int) that exist in
any base classes. In addition, if class Derived defines other versions of FunO,
(that is, versions of FunO with different signatures) such versions are said
to be overloaded versions of FunO.

Generally, when redefining a virtual function, you cannot change just the
function return type. To redefine a virtual function, the new definition (in
some derived class) must exactly match the return type and formal
parameters of the initial declaration. If two functions with the same name
have different formal parameters, C++ considers them different, and the
virtual function mechanism is ignored.

However, for certain virtual functions in a base Class, their overriding
version in a derived class can have a return type that is different from the
overridden function. This is possible only when both of the following
conditions are met:

• The overridden virtual function returns a pointer or reference to the base
class .

• The overriding function returns a pointer or reference to the derived
class.

If a base class B and class D (derived publicly from B) each contain a virtual
function vf, then if vf is called for an object d of D, the call made is D: : vf () ,
even when the access is via a pointer or reference to B. For example,

struct X {};
struct Y : X {};

struct B {
virtual void vfl();
virtual void vf2();
virtual void vf3();

II Base class.
II Derived class.

149

150

void f () ;
virtual X* pf(); II Return type is a pointer to base. This can

II be overridden.
};

class D : public B {
pUblic:

virtual void vfl(); II Virtual specifier is legal but redundant.
void vf2(int); II Not virtual, since it's using a different

II char vf3 () ;
void f();
Y* pf () ;

};

void extf ()

II arg list. This hides B: :vf2().
II Illegal: return-type-only change!

II Overriding function differs only
II in return type. Returns a pointer to
II the derived class.

D d; II Instantiate D
B* bp = &d; II Standard conversion from D* to B*

II Initialize bp with the table of functions
II provided for object d. If there is no entry for a
II function in the d-table, use the function
II in the B-table.

bp->vfl(); II Calls D::vfl
bp->vf2(); II Calls B::vf2 since D's vf2 has different args
bp->f(); II Calls B::f (not virtual)

X* xptr = bp->pf(); II Calls D: :pf() and converts the result
II to a pointer to X.

D* dptr = &d;
Y* yptr = dptr->pf(); II Calls D::pf() and initializes yptr.

II No further conversion is done.

The overriding function vf1 in D is automatically virtual. The virtual
specifier can be used with an overriding function declaration in the derived
class. If other classes will be derived from D, the virtual keyword is
required. If no further classes will be derived from D, the use of virtual is
redundant.

The interpretation of a virtual function call depends on the type of the
object it is called for; with nonvirtual function calls, the interpretation
depends only on the type of the pointer or reference denoting the object it is
called for.

virtual functions exact a price for their versatility: each object in the derived
class needs to carry a pointer to a table of functions in order to select the
correct one at run time (late binding).

Borland C++ for OS/2 Programmers Guide

Abstract classes

Chapter 3, C++ specifics

An abstract class is a class with at least one pure virtual function. A virtual
function is specified as pure by setting it equal to zero.

An abstract class can be used only as a base class for other classes. No
objects of an abstract class can be created. An abstract class cannot be used
as an argument type or as a function return type. However, you can declare
pointers to an abstract class. References to an abstract class are allowed,
provided that a temporary object is not needed in the initialization. For
example,

class shape
point center;

II abstract class

public:
where() { return center; }
move(point p) { center = p;
virtual void rotate(int) =
virtual void draw() = 0;
virtual void hilite() = 0;

draw(); }
0; II pure virtual function

II pure virtual function
II pure virtual function

shape X;
shape* sptr;
shape f () ;

II ERROR: attempt to create an object of an abstract class
II pointer to abstract class is OK
II ERROR: abstract class cannot be a return type

int g(shape s);
shape& h(shape&);

II ERROR: abstract class cannot be a function argument type
II reference to abstract class as return
II value or function argument is OK

Suppose that D is a derived class with the abstract class B as its immediate
base class. Then for each pure virtual function pvfin B, if D doesn't provide
a definition for pvf, pvfbecomes a pure member function of D, and D will
also be an abstract class.

For example, using the class shape previously outlined,

class circle: public shape { II circle derived from abstract class
int radius; II private

pUblic:
void rotate (int) { }

void draw();

II virtual function defined: no action
II to rotate a circle
II circle::draw must be defined somewhere

Member functions can be called from a constructor of an abstract class, but
calling a pure virtual function directly or indirectly from such a constructor
provokes a run-time error.

151

c++ scope

Class scope

Hiding

c++ seoping rules
summary

152

The lexical scoping rules for C++, apart from class scope, follow the general
rules for C, with the proviso that C++, unlike C, permits both data and
function declarations to appear wherever a statement might appear. The
latter flexibility means that care is needed when interpreting such phrases
as "enclosing scope" and "point of declaration."

The name M of a member of a class X has class scope "local to X"; it can be
used only in the following situations:

• In member functions of X
• In expressions such as x.M, where x is an object of X

• In expressions such as xptr->M, where xptr is a pointer to an object of X

• In expressions such as x: : M or D: : M, where D is a derived class of X

• In forward references within the class of which it is a member

Names of functions declared as friends of X are not members of X; their
names simply have enclosing scope.

A name can be hidden by an explicit declaration of the same name in an
enclosed block or in a class. A hidden class member is still accessible using
the scope modifier with a class name: X: : M. A hidden file scope (global)
name can be referenced with the unary operator :: (for example, ::g). A
class name X can be hidden by the name of an object, function, or
enumerator declared within the scope of X, regardless of the order in which
the names are declared. However, the hidden class name X can still be
accessed by prefi.xing X with the appropriate keyword: class, struct, or
union.

The point of declaration for a name x is immediately after its complete
declaration but before its initializer, if one exists.

The following rules apply to all names, including typedef names and class
names, provided that C++ allows such names in the particular context
discussed:

• The name itself is tested for ambiguity. If no ambiguities are detected
within its scope, the access sequence is initiated.

• If no access control errors occur, the type of the object, function, class,
typedef, and so on, is tested. '

Borland C++ for OS/2 Programmers Guide

Templates

Chapter 3, C++ specifics

• If the name is used outside any function and class, or is prefixed by the
unary scope access operator ::, and if the name is not qualified by the
binary :: operator or the member selection operators. and ->, then the
name must be a global object, function, or enumerator.

• If the name n appears in any of the forms X::n, x.n (where x is an object of
X or a reference to X), or ptr->n (where ptr is a pointer to X), then n is the
name of a member of X or the member of a class from which X is
derived.

• Any name that hasn't been discussed yet and that is used in a static
member function must either be declared in the block it occurs in or in an
enclosing block, or be a global name. The declaration of a local name n
hides declarations of n in enclosing blocks and global declarations of n.
Names in different scopes are not overloaded.

• Any name that hasn't been discussed yet and that is used in a nonstatic
member function of class X must either be declared in the block it occurs
in or in an enclosing block, be a member of class X or a base class of X, or
be a global name. The declaration of a local name n hides declarations of
n in enclosing blocks, members of the function's class, and global
declarations of n. The declaration of a member name hides declarations
of the same name in base classes.

• The name of a function argument in a function definition is in the scope
of the outermost block of the function. The name of a function argument
in a nondefining function declaration has no scope at all. The scope of a
default argument is determined by the point of declaration of its
argument, but it can't access local variables or nonstatic class members.
Default arguments are evaluated at each point of call.

• A constructor initializer (see ctor-initializer in the class declarator syntax
in Table 2.3 on page 35) is evaluated in the scope of the outermost block
of its constructor, so it can refer to the constructor's argument names ..

Templates, also called generics or parameterized types,let you construct a
family of related functions or classes. This section introduces the basic
concept of templates, then provides some specific points. The template
syntax is shown below:

Template-declaration:
template < template-argument-list > declaration

153

Function
templates

154

template-argument-list:
template-argument
template-argument-list, template argument

template-argument:
type-argument
argument-declaration

type-argument:
class identifier

template-class-name:
template-name < template-arg-list >

template-arg-list:
template-arg
template-arg-list , template-arg

template-arg:
expression
type-name

Consider a function max(x, y) that returns the larger of its two arguments. x
and y can be of any type that has the ability to be ordered. But, since C++ is
a strongly typed language, it expects the types of the parameters x and y to
be declared at compile time. Without using templates, many overloaded
versions of max are required, one for each data type to be supported even
though the code for each version is essentially identical. Each version com
pares the arguments and returns the larger. For example, the following
code could be followed by yet other versions of max:

int max(int x, int y) {
return (x > y) ? x : Yi
}

long max(long x, long y) {
return (x > y) ? x : Yi

One way around this problem is to use a macro:

#define max(x,y) ((x> y) ? x : y)

However, using the #define circumvents the type-checking mechanism that
makes C++ such an improvement over C. In fact, this use of macros is
almost obsolete in C++. Clearly, the intent of max(x, y) is to compare
compatible types. Unfortunately, using the macro allows a comparison
between an int and a struct, which are incompatible.

Borland C++ for OS/2 Programmers Guide

Function template
definition

Overriding a
template function

Chapter 3, C++ specifics

Another problem with the macro approach is that substitution will be
performed where you don't want it to be:

class Compare
{

public:

}i

int max(int, intji II Results in syntax errori
II this gets expanded!!!

By using a template instead, you can define a pattern for a family of related
overloaded functions by letting the data type itself be a parameter:

template <class T> T max(T x, T y)
{

return (x > y) ? x : Yi

}i

The data type is represented by the template argument <class T>. When
used in an application, the compiler generates the appropriate function
according to the data type actually used in the call:

int ii
Myclass a, bi

int j = max(i,O) i II arguments are integers
Myclass m = max(a,b)i II arguments are type Myclass

Any data type (not just a class) can be used for <class T>. The compiler
takes care of calling the appropriate operator>(), so you can use max with
arguments of any type for which operator>() is defined.

The previous example is called a junction template (or generic junction). A
specific instantiation of a function template is called a template junction.
Template function instantiation occurs when you take the function address,
or when you call the function with defined (nongeneric) data types. You
can override the generation of a template function for a specific type with a
nontemplate function:

#include <string.h>

char *max(char *x, char *y)
{

return (strcmp (x,y) >0) ?X:Yi

If you call the function with string arguments, it's executed in place of the
automatic template function. In this case, calling the function avoided a
meaningless comparison between two pointers.

155

Template function
argument matching

Explicit template
function

156

Only trivial argument conversions are performed with compiler-generated
template functions.

The argument type(s) of a template function must use all of the template
formal arguments. If it doesn't, there is no way of deducing the actual
values for the unused template arguments when the function is called.

When doing overload resolution (following the steps of looking for an exact
match), the compiler ignores template functions that have been generated
implicitly by the compiler.

template<class T> T max(T a, T b)
{

return (a > b) ? a : b;

void f(int i, char c)

II calls max(int ,int)
II calls max(char,char)

max (i, i);
max(c, c);
max (i, c);
max(c, i);

II no match for max(int,char)
II no match for max(char,int)

This code results in the following error messages:

Could not find a match for 'max(int,char), in function f(int,char)
Could not find a match for 'max(char,int)' in function f(int,char)

If the user explicitly declares a template function, however, this function,
participates fully in overload resolution. For example,

template<class T> T max(T a, T b)
{

return (a > b) ? a : b;

int max (int, int) ; II declare max(int,int)

void f(int i, char c)

max(i, i) ; II calls max(int ,int)
max(c, c) ; II calls max(char,char)
max(i, c) ; II calls max(int,int)
max(c, i) ; II calls max(int,int)

explicitly

When searching for an exact match for template function parameters trivial
conversions are considered to be exact matches. For example:

Borland C++ for OS/2 Programmers Guide

Chapter 3, C++ specifics

template<class T> void func(const T a)

func(O)i II This is illegal under ANSI ett: unresolved func(int).
II However, Borland ett now allows func(const int) to be called.

Template functions with derived class pointer or reference arguments are
permitted to match their public base classes. For example:

template<class T> class B
{

}i

template<class T> class D public B<T>
{

} i

template<class T> void func(B<T> *b)
{

func(new D<int»; II This is illegal under ANSI ett:
II unresolved func(D<int> *).
II However, Borland ett calls func(B<int> *).

The conversion from derived class to base class is allowed only for template
parameters, non-template parameters still require exact matches. For
example:

class B

} ;

class D public B

}i

template<class T> void bar(T ignored, B *b)
{

} i

bartO, new D)i II Illegal under CFRONT 3.0, ANSI Ctt and Borland Ctt:
II unresolved external bar(int, D *), D * -> B *
II is not considered an exact match.

157

Class templates

158

Class template
definition

A class template (also called a generic class or class generator) lets you define
a pattern for class definitions. Generic container classes are good examples.
Consider the following example of a vector class (a one-dimensional array).
Whether you have a vector of integers or any other type, the basic
operations performed on the type are the same (insert, delete, index, and so
on). With the element type treated as a Tparameter to the class, the system
will generate type-safe class definitions on the fly:

#include <iostream.h>

template <class T> class Vector
{

T *data;
int size;

public:
Vector (int) ;
-Vector() {delete[] data;}
T& operator[] (int i) {return data[i];}

} ;

II Note the syntax for out-of-line definitions:
template <class T> Vector<T>: :Vector(int n)
{

};

data = new T[n];
size = ni

int main ()
{

Vector<int> x(5);11 Generate a vector of ints

for (int i = 0; i < 5; ++i)
xli] = i;

for (i = 0; i < 5; ++i)
cout « xli] « I ';

cout « I \n';
return 0;

II Output will be: 0 1 2 3 4

As with function templates, an explicit template class definition can be
provided to override the automatic definition for a given type:

class Vector<char *> { ... };

The symbol Vector must always be accompanied by a data type in angle
brackets. It cannot appear alone, except in some cases in the original
template definition.

Borland eft for OS/2 Programmers Guide

Arguments

Angle brackets

This is a compile-time
error if you compile

with -A option.

Type-safe generic
lists

Chapter 3, C++ specifics

For a more complete implementation of a vector class, see the file vectimp.h
in the container class library source code, found in the BCOS2\INCLUDE\
CLASS LIB subdirectory. Also see Chapter 7.

Although these examples use only one template argument, multiple argu
ments are allowed. Template arguments can also represent values in addi
tion to data types:

template<class T, int size = 64> class Buffer { ... };

Nontype template arguments such as size can have default values. The
value supplied for a nontype template argument must be a constant
expression:

const int N = 128;
int i = 256;

Buffer<int, 2*N> b1;// OK
Buffer<float, i> b2;// Error: i is not constant

Since each instantiation of a template class is indeed a class, it receives its
own copy of static members. Similarly, template functions get their own
copy of static local variables.

Be careful when using the right angle-bracket character upon instantiation:

Buffer<char, (x > 100 ? 1024 : 64» buf;

In the preceding example, without the parentheses around the second
argument, the> between x and 100 would prematurely close the template
argument list.

Nested templates also require careful use of angle brackets. It is a common
error to omit a space between multiple I>' closing delimiters of a nested
template class name.

Note the use of delimiters in the following example:

template <class T> struct foo{};
foodoo<int» x;

The Borland C++ compiler allows such a construct with the following
warning:

Warning myfile.cpp: Use '> >' for nested templates instead of '»'

In general, when you need to write lots of nearly identical things, consider
using templates. The problems with the following class definition (a generic
list class) are that it isn't type-safe and common solutions need repeated

159

Type-safe generic list
class definition

160

class definitions. Since there's no type checking on what gets inserted, you
have no way of knowing what results you'll get:

class GList
{

public:

};

void insert(void *);
void *peek();

You can solve the type-safe problem by writing a wrapper class:

class FooList : public GList

public:

};

void insert (Foo *f) { GList::insert(f); }
Foo *peek() { return (Foo *)GList::peek(); }

This is type-safe. insert will only take arguments of type pointer-to-Foo or
object-derived-from-Foo, so the underlying container will hold only
pointers that in fact point to something of type Foo. This means that the cast
in FooList::peekO is always safe, and you've created a true FooList. To do the
same for a BarList, a BazList, and so on, you need repeated separate class
definitions. To solve the problem of repeated class definitions and be type
safe, you can once again use templates:

template <class T> class List : public GList
{

pUblic:

};

void insert(T *t) { GList::insert(t);
T *peek() { return (T *)GList::peek(); }

List<Foo> fList; II create a FooList class and an instance
named fList.

List<Bar> bList; II create a BarList class and an instance
named bList.

List<Baz> zList; II create a BazList class and an instance
named zList.

By using templates, you can create whatever type-safe lists you want, as
needed, with a simple declaration. Because there's no code generated by the
type conversions from each wrapper class, there's no run-time overhead
imposed by this type safety.

Borland C++ for OS/2 Programmers Guide

Eliminating pointers

Template definition
that eliminates

pointers

Template
compiler switches

See the Users Guide,
Chapter 6, for a

summary of template
options and switches.

Chapter 3, C++ specifics

Another design technique is to include actual objects, making pointers
unnecessary. This can also reduce the number of virtual function calls
required, since the compiler knows the actual types of the objects. This is
beneficial if the virtual functions are small enough to be effectively inlined.
It's difficult to inline virtual functions when called through pointers,
because the compiler doesn't know the actual types of the objects being
pointed to.

template <class T> aBase
{

private:
T buffer;

};

class anObject : public aSubject, public aBase<aFilebuf>
{

};

All the functions in aBase can call functions defined in aFilebuf directly,
without having to go through a pointer. And if any of the functions in
aFilebuf can be inlined, you'll get a speed improvement, because templates
allow them to be inlined.

The -Jg family of switches control how instances of templates are
generated by the compiler. Every template instance encountered by the
compiler will be affected by the value of the switch at the point where the
first occurrence of that particular instance is seen by the compiler. For
template functions the switch applies to the function instances; for template
classes, it applies to all member functions and static data members of the
template class. In all cases, this switch applies only to compiler-generated
template instances and never to user-defined instances. It can be used,
however, to tell the compiler which instances will be user-defined so that
they aren't generated from the template.

-Jg Default value of the switch. All template instances first encountered
when this switch value is in effect will be generated, such that if
several compilation units generate the same template instance, the
linker will merge them to produce a single copy of the instance. This
is the most convenient approach to generating template instances
because it's almost entirely automatic. Note, though, that to be able to
generate the template instances, the compiler must have the function

161

Using template
switches

162

body (in case of a template function) or bodies of member functions
and definitions for static data members (in case of a template class).

-Jgd Instructs the compiler to generate public definitions for template
instances. This is similar to -Jg, but if more than one compilation
unit generates a definition for the same template instance, the linker
will report public symbol redefinition errors.

-Jgx Instructs the compiler to generate external references to template
instances. Some other compilation unit must generate a public
definition for that template instance (using the -Jgd switch) so that
the external references can be satisfied.

When using the -Jg family of switches, there are two basic approaches for
generating template instances:

The first approach is to include the function body (for a function template)
or member function and static data member definitions (for a template
class) in the header file that defines the particular template, and use the
default setting of the template switch (-Jg). If some instances of the
template are user-defined, the declarations (prototypes, for example) for
them should be included in the same header but preceded by #pragma
option -Jgx. This lets the compiler know it should not generate those
particular instances.

Here's an example of a template function header file:

II Declare a template function along with its body

template<class T> void sort(T* array, int size)
{

body of template function goes here

II Sorting of 'int' elements done by user-defined instance

#pragma option -Jgx

extern void sort(int* array, int size);

II Restore the template switch to its original state

#pragma option -Jg.

If the preceding header file is included in a C++ source file, the sort
template can be used without worrying about how the various instances
are generated (with the exception of sort for int arrays, which is declared as

Borland C++ for OS/2 Programmers Guide

Chapter 3, C++ specifics

a user-defined instance, and whose definition must be provided by the
user).

The second approach is to compile all of the source files comprising the
program with the -Jgx switch (causing external references to templates to
be generated); this way, template bodies don't need to appear in header
files. To provide the definitions for all of the template instances, add a file
(or files) to the program that includes the template bodies (including any
user-defined instance definitions), and list all the template instances needed
in the rest of the program to provide the necessary public symbol
definitions. Compile the file (or files) with the -Jgd switch.

Here's an example:

II vector.h

template <class elem, int size> class vector
{

elem * value;

public:

vector();

elem & operator[] (int index) { return value[index]; }
};

II MAIN.CPP

#include "vector.h"

II Tell the compiler that the template instances that follow
II will be defined elsewhere.

#pragma option -Jgx

II Use two instances of the 'vector' template class.

vector<int,lOO> int_100;
vector<char,lO> char_10;

int main()
{

return int_100[O] + char_10[O];

II TEMPLATE.CPP

#include <string.h>

#include "vector.h"

163

164

II Define any template bodies

template <class elem, int size> vector<elem, size>::vector()
{

value = new elem[size]i
memset(value, 0, size * sizeof(elem))i

II Generate the necessary instances

#pragma option -Jgd

typedef vector<int,lOO> fake_int_100i
typedef vector<char,lO> fake_char_10;

Borland C++ for OS/2 Programmers Guide

c H A p T E R 4

Exception handling

This chapter describes the Borland C++ error-handling mechanisms
generally referred to as exception handling. The Borland C++ imple
mentation of C++ exception handling is consistent with the proposed ANSI
specification. The exception-handling mechanisms that are available in C
programs are referred to as structured exceptions. Borland C++ provides full
compiling, linking, and debugging support for C programs with structured
exceptions. See the section "C-based structured exceptions" on page 172,
and the User's Guide, Chapter 6, for a discussion of compiler options for
programming with exceptions.

c++ exception handling

c++ exceptions can
be handled only in a
try/catch construct.

The catch and throw
keywords are not

allowed in a C
program.

The C++ language defines a standard for exception handling. The standard
ensures that the power of object-oriented design is supported throughout
your program.

In accordance with the specifications of the ANSI/ISO C++ working paper,
Borland C++ supports the termination exception-handling model. When an
abnormal situation arises at run time, the program could terminate.
However, throwing an exception lets you gather information at the throw
point that could be useful in diagnosing the causes that led to failure. You
can also specify in the exception handler the actions to be taken before the
program terminates. Only synchronous exceptions are handled, meaning
that the cause of failure is generated from within the program. An event
such as Ctrl-C (which is generated from outside the program) is not
considered to be a synchronous exception.

Syntax:

try-block:
try compound-statement handler-list

handler-list:
. handler handler-list opt

Chapter 4, Exception handling 165

Exception
declarations

166

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-list declarator
type-specifier-list abstract-declarator
type-specifier-list

throw-expression:
throw assignment-expression opt

The try-block is a statement that specifies the flow of control as the program
executes. The try-block is designated by the try keyword. Braces after the
keyword surround a program block that can generate exceptions. The
language structure specifies that any exceptions that occur should be raised
within the try-block. See page 94 for a discussion about statements.

The handler is a block of code designed to handle an exception. The C++
language requires that at least one handler be available immediately after
the try-block. There should be a handler for each exception that the
program can generate.

When the program encounters an abnormal situation for which it is not
designed, you can transfer control to some other part of the program that is
designed to deal with the problem. This is done by throwing an exception.

The exception-handling mechanism requires the use of three keywords: try,
catch, and throw. The try-block specified by try must be followed immedi
ately by the handler specified by catch. If an exception is thrown in the try
block, program control is transferred to the appropriate exception handler.
The program should attempt to catch any exception that is thrown by any
function. Failure to do so could result in abnormal termination of the
program.

Although C++ allows an exception to be of almost any type, it is useful to
make exception classes. The exception object is treated exactly the way any
object would be treated. An exception carries information from the point
where the exception is thrown to the point where the exception is caught.
This is information that the program user will want to know when the
program encounters some anomaly at run time.

Predefined exceptions, specified by the C++ language, are documented in
the Library Reference, Chapter 9. Borland C++ provides additional support
for exceptions. These extensions are documented in the Library Reference,

Borland C++ for OS/2 Programmers Guide

Throwing an
exception

Chapter 3. See also page 114 for a discussion of the new operator and the
predefined xalloc exception.

A block of code in which an exception can occur must be prefixed by the
keyword try. Following the try keyword is a block of code enclosed by
braces. This indicates that the program is prepared to test for the existence
of exceptions. If an exception occurs, the program flow is interrupted. The
sequence of steps taken is as follows:

1. The program searches for a matching handler

2. If a handler is found, the stack is unwound to that point

3. Program control is transferred to the handler

If no handler is found, the program will call the terminate function. If no
exceptions are thrown, the program executes in the normal fashion.

A throw expression is also referred to as a throw-point. You can specify
whether an exception can be thrown by using one of the following syntax
specifications:

1. throw throw_expression;

2. throw;

3. void my_funcl() throw (A, B)
{

II Body of function.
}

4. void my _func2 () throw ()
{

II Body of this function.
}

The first case specifies that throw_expression is to be passed to a handler.

The second case specifies that the exception currently being handler is to be
thrown again. An exception must currently exist. Otherwise, terminate is
called.

The third case specifies a list of exceptions that myJunc1 can throw. No
other exceptions should propagate out of myJunc1. If an exception other
than A or B is generated within myJuncl, it is considered to be an
unexpected exception and program control will be transferred to the
unexpected function. By default, the unexpected function ends with a call to
abort but it can throw an exception. See the Library Reference, Chapter 9, for
a description of unexpected.

Chapter 4, Exception handling 167

Handling an
exception

168

The final case specifies that myJunc2 should throw no exceptions. If some
other function (for example, operator new) in the body of myJunc2 throws
an exception, such an exception should be caught and handled within the
body of myJunc2. Otherwise, such an exception is a violation of myJunc2
exception specification. The unexpected function is then called.

When an exception occurs, the throw expression initializes a temporary
object of the type T (to match the type of argument arg) used in throw(T arg).
Other copies can be generated as required by the compiler. Consequently, it
can be useful to define a copy constructor for the exception object.

The exception handler is indicated by the catch keyword. The handler must
be placed immediately after the try-block. The keyword catch can also
occur immediately after another catch. Each handler will only handle an
exception that matches, or can be converted to, the type specified in its
argument list. The possible conversions are listed after the try-block
syntaxes.

The following syntaxes, following the try-block, are valid:

try {

II Include any code that might throw an exception

1. catch {T Xl
{

II Take some actions
}

2. catch { ... 1
{

II Take some actions
}

The first statement is specifically defined to handle an object of type T. If
the argument is T, T&, canst T, or canst T&, the handler will accept an
object of type X if any of the following are true:

• T and X are of the same type

• Tis an accessible base class for Xin the throw expression

• T is a pointer type and X is a pointer type that can be converted to Tby a
standard pointer conversion at the throw point

The statement catch (...) will handle any exception, regardless of type.
This statement, if used, must be the last handler for its try-block.

Borland C++ for OS/2 Programmers Guide

Exception
specifications

Every exception thrown by the program must be caught and processed by
the exception handler. If the program fails to provide an exception handler
for a thrown exception, the program will call terminate.

Exception handlers are evaluated in the order that they are encountered.
An exception is caught when its type matches the type in the catch state
ment. Once a type match is made, program control is transferred to the
handler. The stack will have been unwound upon entering the handler. The
handler specifies what actions should be taken to deal with the program
anomaly.

A goto statement can be used to transfer program control out of a handler
or try-block but such a statement can never be used to enter a handler or
try-block. .

After the handler has executed, the program can continue at the point after
the last handler for the current try-block. No other handlers are evaluated
for the current exception.

The C++ language makes it possible for you to specify any exceptions that a
function can throw. This exception specification can be used as a suffix to the
function declaration. The syntax for exception specification is as follows:

exception-specification:
throw (type-id-list opt)

type-id-list:
type-id
type-id-list, type-id

The function suffix is not considered to be part of the function's type.
Consequently, a pointer to a function is not affected by the function's excep
tion specification. Such a pointer checks only the function's return and
argument types. Therefore, the following is legal:

void f2(void) throw()i
void f3(void) throw (BETA) i
void (* fptr)()i
fptr = f2i
fptr = f3 i

II Should not throw exceptions
II Should only throw BETA objects
II Pointer to a function returning void

Extreme care should be taken when overriding virtual functions. Again,
because the exception specification is not considered part of the function
type, it is possible to violate the program design. In the following example,
the derived class BETA::vfunc is defined so that it throws an exception-a
departure from the original function declaration.

Chapter 4, Exception handling 169

Example

See also the example
in BCOS2\

EXAMPLES\
XCPTCPP.

170

class ALPHA {
public:

virtual void vfunc(void) throw () {}; II Exception specification
};

class BETA : public ALPHA {
struct BETA_ERR {};
void vfunc(void) throw (BETA_ERR) {}; II Exception specification is changed

}i

The following are examples of functions with exception specifications.

void f1 () i

void f2() throw()i

II The function can throw any exception

II Should not throw any exceptions

void f3() throw (A, B*); II Can throw exceptions publicly derived from A,

II or a pointer to publicly derived B

The definition and all declarations of such a function must have an excep
tion specification containing the same set of type-id's. If a function throws
an exception not listed in its specification, the program will call unexpected.
This is a run-time issue-it will not be flagged at compile time. Therefore,
care must be taken to handle any exceptions that can be thrown by
elements called within a function.

II HOW TO MAKE EXCEPTION-SPECIFICATIONS AND HANDLE ALL EXCEPTIONS
#include <iostream.h>

class ALPHA { }; II EXCEPTION DECLARATION
ALPHA 3;

void f3(void) throw (ALPHA) { II WILL THROW ONLY TYPE-ALPHA OBJECTS
cout « "f3 () was called" « endl i
throw(_a);
}

void f2(void) throw() {
try {

II SHOULD NOT THROW EXCEPTIONS
II WRAP ALL CODE IN A TRY-BLOCK

cout « "f2() was called" « endl;
f3 ();
}

1* IF MORE FUNCTIONS ARE ADDED, ANY OF WHICH THROW EXCEPTIONS, THE FOLLOWING
HANDLER WILL CATCH ALL OF THEM. *1

catch (.. ,) { II TRAP ALL EXCEPTIONS
cout « "An exception was caught in f2()!" « endl;

Borland C++ for OS/2 Programmers Guide

Output

Program behavior
when a function is

registered with
set unexpected()

Program behavior
when no function is

registered with
setunexpected() but

there is a function
registered with
setterminate()

int main (void)
try {

f2 () ;
return 0;

catch ('")
cout « "Need more handlers!";
return 1;
}

f2 () was called
f3 () was called
An exception was caught in f2()!

If an exception is thrown that is not listed in the exception specification, the
unexpected function will be called. The following diagrams illustrate the
sequence of events that can occur when unexpected is called. See the Library
Reference, Chapter 9, for a description of the set_terminate, set_unexpected,
and unexexpected functions. The chapter also describes the
terminateJunction and unexpectedJunction types.

unexpected 0 / / CALLED AUTOMATICALLY

/ / DEFINE YOUR UNEXPECTED HANDLER
unexpected functioniliViilei§!ioiQiititil(void)
{ -

/ / DEFINE ACTIONS TO TAKE
/ / POSSIBLY MAKE ADJUSTMENTS

/ / REGISTER YOUR HANDLER
set_unexpected (UWiie!¥ioi§'ititil);

my_unexpected 0 ;

unexpectedO / / CALLED AUTOMATICALLY
I

termi na te ()

/ / DEFINE YOUR TERMINATION SCHEME
terminate functionM'g;uil'€II":l(void)

{ -
/ / TAKE ACTIONS BEFORE TERMINATING
/ / SHOULD NOT THROW EXCEPTIONS
exit (1); / / MUST END SOMEHOW.
}

/ / REGISTER YOUR TERMINATION FUNCTION
set_terminate(my_terminate)

my terminateO
/ rPROGRAM ENDS.

Chapter 4, Exception handling 171

Constructors and
destructors

Destructors are called
by default. See the

Users Guide, Chapter
6, for information
about exception

handling switches.

Unhandled
exceptions

Default program
behavior for

un handled exceptions

When an exception is thrown, the copy constructor is called for the thrown
value. The copy constructor is used to initialize a temporary object at the
throw point. Other copies can be generated by the program. See page 3 for
a discussion of the copy constructor.

When program flow is interrupted by an exception, destructors are called
for all automatic objects that were constructed since the beginning of the
try-block was entered. If the exception was thrown during construction of
some object, destructors will be called only for those objects that were fully
constructed. For example, if an array of objects was under construction
when an exception was thrown, destructors will be called only for the array
elements that were already fully constructed.

When a C++ exception is thrown, the stack is unwound. By default, during
stack unwinding, destructors are called for automatic objects. You can use
the -xd- compiler option to switch the default off.

If an exception is thrown and no handler is found it, the program will call
the terminate function. The following diagram illustrates the series of events
that can occur when the program encounters an exception for which no
handler can be found. See the Library Reference, Chapter 9, for a description
of the functions named in the diagram.

terminateO;

I
abort 0;
/ / PROGRAM ENDS.

C-based structured exceptions

For portability, you
can use the try and

except macros
defined in excpt.h.

172

Borland C++ provides support for program development that makes use of
structured exceptions. You can compile and link a C source file that
contains an implementation of structured exceptions. In a C program, the
keywords used to implement structured exceptions are __ except,
__ finally, and __ try. Note that the __ finally and __ try keywords can
appear only in C programs.

For try-except exception-handling implementations the syntax is as follows:

try-block:
__ try compound-statement (in a C module)
try compound-statement (in a c++ module)

Borland C++ for OS/2 Programmers Guide

Using C-based
exceptions in C++

Example

See also the example
in BCOS2\

EXAMPLES\xCPTC.

handler:
__ except (expression) compound-statement

For try-finally termination implementations the syntax is as follows:

try-block:
__ try compound-statement

termination:
__ finally compound-statement

Borland C++ supports substantial interaction between C and C++ error
handling mechanisms. The Borland C++ implementation of exception
handling mechanisms lets you port code across platforms. The following
interactions are supported:

• C structured exceptions can be used in C++ programs.

• C++ exceptions cannot be caught in a C module because C++ exceptions
require that their handler be specified by the catch keyword, and catch is
not allowed in a C program.

• The use of exception-handling keywords that support C-based
exceptions is optional (but recommended) on OS/2. The optional
keywords are __ try, __ except, and __ finally.

To generate an exception from within your program, YOllcan use the OS/2
API DosRaiseException function. An exception generated by a call to the
DosRaiseException function can be handled by your function registered with
the OS/2 API DosSetExceptionHandler function. On non-OS/2 platforms, the
exception must be handled by a try / __ except or __ try / __ except block.
On the OS/2 platform, the use of these keywords is optional. The optional
keywords allow you to develop well-structured programs that can be
ported between platforms. All handlers of try / catch blocks are ignored
when DosRaiseException is called.

/* An example of how to use DosRaiseException() */
EXCEPTIONREPORTRECORD exceptionReCordj

exceptionRecord.ExceptionNum
exceptionRecord.fHandlerFlags
exceptionRecord.cParameters

int i;

= exceptionNumj
= exceptinTypej
= nArgsj

for (i = OJ i < nParamsj itt)
exceptionRecord.ExceptionInfo[il = exceptionArgs[ilj

DosRaiseException(&exceptionRecord)j

Chapter 4, Exception handling 173

Example

Handling C-based
exceptions

174

The implementation of structured exception handling depends on excpt.h
and bsedos.h header files. These header files include support function
prototypes, compiler dependent intrinsics, and keywords.

The following C exception support functions can be used in C and C++
programs:

• Get Exception Code
The GetExceptionCode function returns a code that identifies the exception
that was caught.

• GetExceptionlnformation
The GetExceptionlnformation function returns a structure with two
pointers. The first pointer references an exception record that contains
fields that are identical on all platforms.

The second pointer, which points to a context record, is different under
OS/2 when compared to other platforms. Under OS/2 the pointer
references CONTEXTRECORD'structure. On other platforms, it is a
CONTEXT structure.

Because of these platform dependencies, you should compile your code
conditionally. See Chapter 5 for information on preprocessing directives.

1* An example of how to design exception handling for multiple platforms *1
EXCEPTION_RECORD exceptionRecord;
#if defined(__ 082 __)

CONTEXTRECORD contextRecord;
#else

CONTEXT
#endif

try
{

contextRecord;

II Raise the exception here.
}

__ except (exceptionRecord= * (GetExceptionInformation() ->ExceptionRecord),
EXCEPTION_EXECUTE_HANDLER)

{ II This is the handler block

}

#if defined(__ 082 __)
II Access CONTEXTRECORD-specific contextRecord fields here.

#else
II Access CONTEXT-specific contextRecord fields here.

#endif

The full functionality of an __ except block is allowed in C++. If an
exception is generated in a C module, it is possible to provide a handler-
block in a separate calling C++ module. '

Borland C++ for OS/2 Programmers Guide

If a handler can be found for the generated structured exception, the
following actions can be taken:

• Execute the actions' specified by the handler

• Ignore the generated exception and resume program execution

• Continue the search for some other handler (regenerate the exception)

These actions are consistent with the design of structured exceptions. The
following example shows how to mix C and C++ exceptions. Note that the
C mechanism uses the try and __ except keywords. The C++ mechanism
uses the required try and catch keywords.

1* In PROG.C *1
void func(void) {

1* generate an exception *1
DosRaiseException(1* specify your arguments *1)i

II In CALLER.CPP
II How to test for Ctt or C-based exceptions.
#include <excpt.h>
#define INCL_DOSEXCEPTIONS
#include <os2.h>
#include <iostream.h>

int main(void)
try

Chapter 4, Exception handling

{ II test for Ctt exceptions
try
{ II test for C-based structured exceptions

func () i

__ except (1* filter-expression *1)
{

cout « "A structured exception was generated."i

1* specify actions to take for this structured exception *1
return -li

return 0 i

175

Destructors are called
by default. See the

Users Guide, Chapter
6, for information
about exception

handling switches.

176

catch (...)
{

II handler for any ett exception
cout « "A ett exception was thrown.";
return 1;
}

Structured exceptions also allow you to program a termination handler.
The termination handler can be used only in a C module and is specified by
the __ finally keyword. The termination handler ensures that the code in
the __ finally block is executed no matter how the flow within the __ try
exits. The __ finally keyword is not allowed in a C++ program.
Consequently the __ try / __ finally block is not supported in a C++
program.

Even though the __ try / __ finally block is not supported in a C++ program,
a C-based exception generated by the operating system or the program will
still result in proper stack unwinding of objects with destructors. You can
use this to emulate a __ finally block by creating a local object whose
destructor does the necessary cleanup. Any module compiled with the -xd
compiler option(this option is on by default) will have destructors invoked
for all objects with auto storage. Stack unwinding occurs from the point
where the exception is thrown to the point where the exception is caught.

Borland C++ for OS/2 Programmers Guide

The preprocessor
detects preprocessor

directives (also
known as control

lines) and parses the
tokens embedded in

them.

Preprocessor direc
tives are usually

placed at the
beginning of your

source code, but they
can legally appear at

any point in a
program.

c H A p T E R 5

The preprocessor

Although Borland C++ uses an integrated single-pass compiler for its IDE
and command-line versions, it is useful to retain the terminology associated
with earlier multipass compilers.

With a multipass compiler, a first pass of the source text pulls in any
include files, tests for any conditional compilation directives, expands any
macros, and produces an intermediate file for further compiler passes.
Since the IDE and command-line versions of the Borland C++ compiler
perform this first pass with no intermediate output, Borland C++ provides
an independent preprocessor, CPP.EXE, that produce such an output file.
The independent preprocessor is useful as a debugging aid because it lets
you see the net result of include directives, conditional compilation direc
tives, and complex macro expansions.

.~

The following discussion, therefore, applies both to the CPP preprocessor
and to the preprocessor functionality built into the Borland C++ compiler.

The Borland C++ preprocessor includes a sophisticated macro processor
that scans your source code before the compiler itself gets to work. The pre
processor gives you great power and flexibility in the following areas:

II Defining macros that reduce programming effort and improve your
source code legibility. Some macros can also eliminate the overhead of
function calls.

II Including text from other files, such as header files containing standard
library and user-supplied function prototypes and manifest constants.

II Setting up conditional compilations for improved portability and for
debugging sessions.

Any line with a leading # is taken as a preprocessing directive, unless the #
is within a string literal, in a character constant, or embedded in a
comment. The initial # can be preceded or followed by whitespace
(excluding new lines).

The full syntax for Borland C++'s preprocessor directives is given in the
next table.

Chapter 5, The preprocessor 177

Table 5.1: Borland ett preprocessing directives syntax

preprocessing-file:
group

group:
group-part
group group-part

group-part:
<pp-tokens> newline
if-section
control-line

if-section:
if-group <elif-groups> <else-group> endif-line

if-group:
#if constant-expression newline <group>
#ifdef identifier newline <group>
#ifndef identifier newline <group>

elif-groups:
elif-group
elif-groups elif-group

elif-group:
#elif constant-expression newline <group>

else-group:
#else newline <group>

endif-line:
#endif newline

control-line:
#include pp-tokens newline
#define identifier replacement-list newline
#define identifier Iparen <identifier-list» replacement-list newline
#undef identifier newline
#line pp-tokens newline
#error <pp-tokens> newline
#pragma <pp-tokens> newline

Null directive #

#pragma warn action abbreviation newline
#pragma Inline newline '
newline

action: one of
+ - .

abbreviation:
nondigit nondigit nondigit

Iparen:
the left parenthesis character without preceding whitespace

replacement-list:
<pp-tokens>

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

preprocessing-token:
header-name (only within an #include directive)
identifier (no keyword distinction)
constant
string-literal
operator
punctuator
each non-whitespace character that cannot be one of the preceding

header-name:
<h-char-sequence>

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any character in the source character set except the newline 0n) or greater
than (» character

newline:
the newline character

The null directive consists of a line containing the single character #. This
directive is always ignored.

The #define and #undef directives

178

The #define directive defines a macro. Macros provide a mechanism for
token replacement with or without a set of formal, function-like
parameters.

Borland C++ for OS/2 Programmers Guide

Simple #define
macros

The#undef
directive

In the simple case with no parameters, the syntax is as follows:

#define macro_identifier <token_sequence>

Each occurrence of macro_identifier in your source code following this
control line will be replaced in the original position with the possibly
empty token_sequence (there are some exceptions, which are noted later).
Such replacements are known as macro expansions. The token sequence is
sometimes called the body of the macro.

Any occurrences of the macro identifier found within literal strings,
character constants, or comments in the source code are not expanded.

An empty token sequence results in the effective removal of each affected
macro identifier from the source code:

#define HI "Have a nice day!"
#define empty
#define NIL

puts (HI) i /* expands to puts ("Have a nice day!") i * /
puts(NIL}i /* expands to puts(""} i */
puts("empty"} i /* NO expansion of empty! */
/* NOR any expansion of the empty within comments! */

After each individual macro expansion, a further scan is made of the newly
expanded text. This allows for the possibility of nested macros: the expanded
text can contain macro identifiers that are subject to replacement. However,
if the macro expands into what looks like a preprocessing directive~ such a
directive will not be recognized by the preprocessor:

#define GETSTD #include <stdio.h>

GETSTD /* compiler error */

GETSTD will expand to #include <stdio.h>. However, the preprocessor
itself will not obey this apparently legal directive, but will pass it verbatim
to the compiler. The compiler will reject #include <stdio.h> as illegal input.
A macro won't be expanded during its own expansion (so #define A A
won't expand indefinitely).

You can undefine a macro using the #undef directive:

#undef macro_identifier

Chapter 5, The preprocessor 179

180

This line detaches any previous token sequence from the macro identifier;
the macro definition has been forgotten, and the macro identifier is
undefined.

No macro expansion occurs within #undef lines.

The state of being defined or undefined is an important property of an
identifier, regardless of the actual definition. The #ifdef and #ifndef
conditional directives, used to test whether any identifier is currently
defined or not, offer a flexible mechanism for controlling many aspects of a
compilation.

After a macro identifier has been undefined, it can be redefined with
#define, using the same or a different token sequence.

#define BLOCK_SIZE 512

buff = BLOCK_SIZE*blksi 1* expands as 512*blks *

#undef BLOCK_SIZE
1* use 'of BLOCK_SIZE now would be illegal "unknown" identifier *1

#define BLOCK_SIZE 128 1* redefinition *1

buf = BLOCK_SIZE*blksi 1* expands as 128*blks *1

Attempting to redefine an already defined macro identifier results in a
warning unless the new definition is exactly the same token-by-token
definition as the existing one. The preferred strategy where definitions
might exist in other header files is as follows:

#ifndef BLOCK_SIZE
#define BLOCK_SIZE 512

#endif

The middle line is bypassed if BLOCK_SIZE is currently defined; if
BLOCK_SIZE isn't currently defined, the middle line is invoked to define it.

No semicolon (;) is needed to terminate a preprocessor directive. Any
character found in the token sequence, including semicolons, will appear in
the macro expansion. The token sequence terminates at the first non
backslashed new line encountered. Any sequence of whitespace, including
comments in the token sequence, is replaced with a single-space character.

Assembly language programmers must resist the temptation to write:

#define BLOCK_SIZE = 512 1* ?? token sequence includes the = *1

Borland C++ for OS/2 Programmers Guide

The-D and-U
options

The Define option

Keywords and
protected words

Note the double
underscores, leading

and trailing.

Macros with
parameters

Any comma within
parentheses in an

argument list is
treated as part of the
argument, not as an
argument delimiter.

Identifiers can be defined and undefined using the command-line compiler
options -0 and -U. See the User's Guide, Chapter 6.

The command line

Bec -Ddebug=li paradox=Oi x -Urnysyrn rnyprog.c

is equivalent to placing

#define debug 1
#define paradox 0
#define X
#undef rnysyrn

in the program.

Identifiers can be defined, but not explicitly undefined, from the IDE. Use
the Define option to explicitly define a macro.

See the User's Guide, Chapter 4, "Settings notebook," for a description of
code-generation options.

It is legal but not recommended to use Borland C++ keywords as macro
identifiers:

#define int long
#define INT long

/* legal but probably catastrophic */
/* legal and possibly useful */

The following predefined global identifiers cannot appear immediately
following a #define or #undef directive:

__ DATE __
__ TIME __

The following syntax is used to define a macro with parameters:

#define macro _identifier(<arg_Iist» token_sequence

Note there can be no whitespace between the macro identifier and the (.
The optional arg_Iist is a sequence of identifiers separated by commas, not
unlike the argument list of a C function. Each comma-delimited identifier
plays the role of a formal argument or placeholder.

Such macros are called by writing

macro _identifier<whitespace>(<actuaCarg_list»

Chapter 5, The preprocessor 181

182

in the subsequent source code. The syntax is identical to that of a function
call; indeed, many standard library C "functions" are implemented as
macros. However, there are some important semantic differences, side
effects, and potential pitfalls (see page 184).

The optional actuaCarg_list must contain the same number of comma
delimited token sequences, known as actual arguments, as found in the
formal arg_list of the #define line: there must be an actual argument for
each formal argument. An error will be reported if the number of
arguments in the two lists is different.

A macro call results in two sets of replacements. First, the macro identifier
and the parenthesis-enclosed arguments are replaced by the token
sequence. Next, any formal arguments occurring in the token sequence are
replaced by the corresponding real arguments appearing in the
actuaCarg_Iist. For example,

#define CUBE (x) ((x) * (x) * (x))

int n,y;
n = CUBE(y);

results in the following replacement:

n = ((y) * (y) * (y));

Similarly, the last line of

#define SUM (a,b) ((a) t (b))

int i, j I sum;
sum = SUM(i,j);

expands to sum = ((i) + (j)). The reason for the apparent glut of parentheses
will be clear if you consider the call

n = CUBE(ytl);

Without the inner parentheses in the definition, this would expand as
n = y+l*y+l *y+l, which is parsed as

n = y t (l*y) t (l*y) t 1; II!= (ytl) cubed unless y=O or y = -3!

As with simple macro definitions, rescanning occurs to detect any
embedded macro identifiers eligible for expansion.

Note the following points when using macros with argument lists:

• Nested parentheses and commas. The actuaCarg_list can contain nested
parentheses provided that they are balanced; also, commas appearing
within quotes or parentheses are not treated like argument delimiters:

Borland C++ for OS/2 Programmers Guide

#define ERRMSG(x, str) showerr(IError",x,str)
#define SUM(x,y) ((x) + (y))

ERRMSG(2, "Press Enter, then Esc");
1* expands to showerr("Error",2, "Press Enter, then Esc");
return SUM(f(i,j), g(k,l));
1* expands to return ((f(i,j)) + (g(k,l))); *1

• Token pasting with ##. You can paste (or merge) two tokens together by
separating them with ## (plus optional whitespace on either side). The
preprocessor removes the whitespace and the ##, combining the separate
tokens into one new token. You can use this to construct identifiers; for
example, given the definition

#define VAR(i,j) (i##j)

the call VAR(x, 6) would expand to (x6). This replaces the older
(nonportable) method of using (i/** /j).

• Converting to strings with #. The # symbol can be placed in front of a
formal macro argument to convert the actual argument to a string after
replacement. So, given the following macro definition:

#define TRACE(flag) printf(#flag "=%d\n",flag)

the code fragment

int highval = 1024;
TRACE (highval) ;

becomes

int highval = 1024;
printf("highval" "= %d\n", highval);

which, in turn, is treated as

int highval = 1024;
printf ("highval=%d\n", highval);

• The backslash for line continuation. A long token sequence can straddle
a line by using a backslash (\). The backslash and the following newline
are both stripped to provide the actual token sequence used in
expansions:

#define WARN "This is really a single-\
line warning"

puts (WARN) ;
1* screen will show: This is really a single-line warning *1

• Side effects and other dangers. The similarities between function and
macro calls often obscure their differences. A macro call has no built-in
type checking, so a mismatch between formal and actual argument data

Chapter 5, The preprocessor 183

Final value of b
depends on what

your compiler does to
the expanded

expression.

types can produce bizarre, hard-to-debug results with no immediate
warning. Macro calls can also give rise to unwanted side effects,
especially when an actual argument is evaluated more than once.
Compare CUBE and cube in the following example:

int cube(int x) {
return x*x*x;

#d~fine CUBE (x) ((x) * (x) * (x))

int b = 0, a = 3;
b = cube (a tt) ;
/* cube() is passed actual arg = 3; so b = 27; a now = 4 */
a = 3;
b = CUBE (att) ;
/* expands as ((a++)*(a++)*(a++)); a now = 6 */

File inclusion with #include

The angle brackets
are real tokens, not

metasymbols that
imply header_name

is optional.

184

The #include directive pulls in other named files, known as include files,
header files, or headers, into the source code. The syntax has three versions:

#include <header_name>
#include "header_name"

#include macro_identifier

The first and second versions imply that no macro expansion will be
attempted; in other words, header _name is never scanned for macro
identifiers. header _name must be a valid file name with an extension
(traditionally .h for header) and optional path name and path delimiters.

The third version assumes that neither < nor" appears as the first non
whitespace character following #include. Further, it assumes the existence
of a macro definition that will expand the macro identifier into a valid
delimited header name with either of the <header _name> or "header _name"
formats.

The preprocessor removes the #include line and replaces it with the entire
text of the header file at that point in the source code. The source code itself
isn't changed, but the compiler "sees" the enlarged text. The placement of
the #include can therefore influence the scope and duration of any
identifiers in the included file.

If you place an explicit path in the header _name, only that directory will be
searched.

Borland C++ for OS/2 Programmers Guide

Header file search
with
<header_name>

Header file search
with
"header_name"

The difference between the <header _name> and "header _name" formats lies in
the searching algorithm employed in trying to locate the include file; these
algorithms are described in the following two sections.

The <header _name> version specifies a standard include file; the search is
made successively in each of the include directories in the order they are
defined. If the file isn't located in any of the default directories, an error
message is issued.

The "header _name" version specifies a user-supplied include file; the file is
sought first in the current directory (usually the directory holding the
source file being compiled). If the file isn't found there, the search continues
in the include directories as in the <header _name> situation.

The following example clarifies these differences:

#include <stdio.h>
/* header in standard include directory */

#define myinclud "C:\BCOS2\INCLUDE\MYSTUFF.H"
/* Note: Single backslashes OK here; within a C statement you would

need "C: \\BCOS2\\INCLUDE\\MYSTUFF .H" * /

#include myinclud
/* macro expansion */

incl ude "myincl ud. h"
/* no macro expansion */

After expansion, the second #include statement causes the preprocessor to
look in C: \BCOS2\INCLUDE\MYSTUFF.H and nowhere else. The third
#include causes it to look for MYINCLUD.H in the current directory, then
in the default directories.

Conditional compilation

Borland C++ supports conditional compilation by replacing the appropri
ate source-code lines with a blank line. The lines thus ignored are those
beginning with # (except the #if, #ifdef, #ifndef, #else, #elif, and #endif
directives), as well as any lines that are not to be compiled as a result of the
directives. All conditional compilation directives must be completed in the
source or include file in which they are begun.

Chapter 5, The preprocessor 185

The #if, #elif,
#else, and #endif
conditional
directives

The operator
defined

186

The conditional directives #if, #elif, #else, and #endif work like the normal
C conditional operators. They are used as follows:

#if constant-expression-I
<section-I>
<#elif constant-expression-2 newline section-2>

<#elif constant-expression-n newline section-n>

<#else <newline> final-section>

#endif

If the constant-expression-I (subject to macro expansion) evaluates to
nonzero (true), the lines of code (possibly empty) represented by section-I,
whether preprocessor command lines or normal source lines, are
preprocessed and, as appropriate, passed to the Borland C++ compiler.
Otherwise, if constant-expression-I evaluates to zero (false), section-I is
ignored (no macro expansion and no compilation).

In the true case, after section-I has been preprocessed, control passes to the
matching #endif (which ends this conditional sequence) and continues with
next-section. In the false case, control passes to the next #elif line (if any)
where constant-expression-2 is evaluated. If true, section-2 is processed, after
which control moves on to the matching #endif. Otherwise, if constant
expression-2 is false, control passes to the next #elif, and so on, until either
#else or #endif is reached. The optional #else is used as an alternative
condition for which all previous tests have proved false. The #endif ends
the conditional sequence.

The processed section can contain further conditional clauses, nested to any
depth; each #if must be carefully balanced with a closing #endif.

The net result of the preceding scenario is that only one section (possibly
empty) is passed on for further processing. The bypassed sections are
relevant only for keeping track of any nested conditionals, so that each #if
can be matched with its correct #endif.

The constant expressions to be tested must evaluate to a constant integral
value.

The defined operator offers an alternative, more flexible way of testing if
combinations of identifiers are defined. It is valid only in #if and #elif
expressions.

Borland C++ for OS/2 Programmers Guide

The #ifdef and
#ifndef
conditional
directives

The expression defined(identifier) or defined identifier (the parentheses are
optional) evaluates to 1 (true) if the symbol has been previously defined
(using #define) and has not been subsequently undefined (using #undef);
otherwise, it evaluates to 0 (false). The following two directives are
therefore the same:

#if defined (mysym)

#ifdef mysym

The advantage is that you can use defined repeatedly in a complex
expression following the #if directive; for example,

#if defined (mysym) && ldefined(yoursym)

The #ifdef and #ifndef conditional directives let you test whether an
identifier is currently defined or not; that is, whether a previous #define
command has been processed for that identifier and is still in force. The line

#ifdef identifier

has exactly the same effect as

#if 1

if identifier is currently defined, and the same effect as

#if 0

if identifier is currently undefined.

#ifndef tests true for the "not-defined" condition, so the line

#ifndef identifier

has exactly the same effect as

#if 0

if identifier is currently defined, and the same effect as

#if 1

if identifier is currently undefined.

The syntax thereafter follows that of the #if, #elif, #else, and #endif given in
the previous section.

An identifier defined as NULL is considered to be defined.

Chapter 5, The preprocessor 187

The #line line control directive

The inclusion of
stdio.h means that

the preprocessor
output will be

somewhat large.

Most of the stdio.h
portion has been

eliminated.

188

You can use the #line command to supply line numbers to a program for
cross-reference and error reporting. If your program consists of sections
derived from some other program file, it is often useful to mark such
sections with the line numbers of the original source rather than the normal
sequential line numbers derived from the composite program. The syntax

#line integer _constant <''filename''>

indicates that the following source line originally came from line number
integer _constant of filename. Once the filename has been registered,
subsequent #line commands relating to that file can omit the explicit
filename argument.

1* TEMP.C: An example of the #line directive *1

#include <stdio.h>

#line 4 "junk.c"
void main ()
{

print f (" in line %d of %s", __ LINE __ , __ FILE __) ;
#line 12 "temp.c"

printf (" \n") ;
printf (" in line %d of %s", __ LINE __ ,_]ILE __);

#line 8
printf ("\n") ;
printf (" in line %d of %s", __ LINE __ ,_]ILE __) i

If you run TEMP.C through CPP (cpp temp. c), you'll get an output file
TEMP.!; that looks something like this:

temp. c 1:
C:\BCOS2\INCLUDE\STDIO.H 1:
C:\BCOS2\INCLUDE\STDIO.H 2:
C:\BCOS2\INCLUDE\STDIO.H 3:

C:\BCOS2\INCLUDE\STDIO.H 212:
C:\BCOS2\INCLUDE\STDIO.H 213:
temp.c 2:
temp.c 3:
junk.c 4: void main()
junk. c 5: {
junk.c 6: printf(" in line %d of %8",6, "junk.c");
junk.c 7:
temp.c 12: printf("\n");

Borland eft for OS/2 Programmers Guide

temp.c 13: printf(" in line %d of %s",13,"temp.c");
temp.c 14:
temp.c 8: printf("\n")i
temp.c 9: printf(" in line %d of %s",9, "temp.c");
temp.c 10: }
temp. ell:

If you then compile and run TEMP.C, you'll get this output:

in line 6 of junk.c
in line 13 of temp.c
in line 9 of temp.c

Macros are expanded in #line arguments as they are in the #include
directive.

The #line directive is primarily used by utilities that produce C code as
output, and not in human-written code.

The #error directive

The #error directive has the following syntax:

#error errmsg

This generates the message:

Error: filename line# : Error directive: errmsg

This directive is usually embedded in a preprocessor conditional statement
that catches some undesired compile-time condition. In the normal case,
that condition will be false. If the condition is true, you want the compiler
to print an error message and stop the compile. You do this by putting an
#error directive within a conditional statement that is true for the undesired
case.

For example, suppose you #define MYV AL, which must be either 0 or l.
You could then include the following conditional statement in your source
code to test for an incorrect value of MYV AL:

Chapter 5, The preprocessor

#if (MYVAL != 0 && MYVAL != 1)
#error MYVAL must be defined to either 0 or 1
#endif

189

The #pragma directive

#pragma
argsused

#pragma codeseg

#pragma
comment

190

The #pragma directive permits implementation-specific directives of the
form:

#pragma directive-name

With #pragma, Borland C++ can define the directives it wants without
interfering with other compilers that support #pragma. If the compiler
doesn't recognize directive-name, it ignores the #pragma directive without
any error or warning message.

Borland C++ supports the following #pragma directives:

• #pragma argsused • #pragma inline

• #pragma codeseg • #pragma intrinsic

• #pragma comment • #pragma option

• #pragma exit • #pragma saveregs

• #pragma hdrfile • #pragma startup

• #pragma hdrstop • #pragma warn

The argsused pragma is allowed only between function definitions, and it
affects only the next function. It disables the warning message

"Parameter name is never used in function func-name"

The codeseg directive lets you name the segment, class, or group where
functions are allocated.

The syntax is as follows:

#pragma codeseg <seg_name> <" seg_class"> <group>

If the pragma is used without any of its optional arguments, the default
code segment is used for function allocation.

The comment directive lets you write a comment record into an OBJ file. A
library module that is not specified in the linker's response-file can be
specified by the comment LIB directive.

Use the following syntax to make comment records:

#pragma comment(LIB, "lib_module_name")

This causes the linker to include the lib_module_name module as the last
library.

Borland e++ for OS/2 Programmers Guide

#pragma exit and
#pragma startup

Priorities from 0 to 63
are used by the C

libraries, and should
not be used by the

user.

Note that the function
name used in

pragma startup or
exit must be defined
(or declared) before

the pragma line is
reached.

#pragma hdrfile

See Appendix C in
the Users Guide for

more details.

These two pragmas allow the program to specify function(s) that should be
called either upon program startup (before the main function is called) or
upon program exit (just before the program terminates through _exit).

The syntax is as follows:

#pragma startup function-name <priority>
#pragma exit function-name <priority>

The specified function-name must be a previously declared function taking
no arguments and returning void:

void func(void);

The optional priority parameter should be an integer in the range 64 to 255.
The highest priority is O. Functions with higher priorities are called first at
startup and last at exit. If you don't specify a priority, it defaults to 100. For
example,

#include <stdio.h>
#include <windows.h>

void startFunc(void)
printf("Startup function.\n");

#pragma startup startFunc 64
/* priority 64 --> called first at startup */

void exitFunc(void) {
printf ("Wrapping up execution. \n");

#pragma exit exitFunc
/* default priority is 100 */

void main(void) {
printf("This is main.\n");

This directive sets the name of the file in which to store precompiled
headers. The syntax is

#pragma hdrfile "FILENAME.CSM"

If you aren't using precompiled headers, this directive has no effect. You
can use the command-line compiler option -H=filename to change the name
of the file used to store precompiled headers.

Chapter 5, The preprocessor 191

#pragma hdrstop

#pragma inline

#pragma intrinsic

#pragma option

The command-line
compiler options are
defined in Chapter 6
in the Users Guide.

192

See also the User's Guide, Chapter 4, for a description of code-generation
options.

This directive terminates the list of header files eligible for precompilation.
You can use it to reduce the amount of disk space used by precompiled
headers. See the User's Guide, Appendix C for more on precompiled
headers.

This directive is equivalent to the -8 command-line compiler option or the
IDE inline option. It tells the compiler there is inline assembly language
code in your program (see Chapter 12). The syntax is

#pragma inline

This is best placed at the top of the file, because the compiler restarts itself
with the -8 option when it encounters #pragma inline.

#pragma intrinsic is documented in Chapter 6 of the User's Guide.

Use #pragma option to include command-line options within your program
code. The syntax is

#pragma option [options ...]

options can be any command-line option (except those listed in the follow
ing paragraph). Any number of options can appear in one directive. Any of
the ,toggle options (such as "':::a or -K) can be turned on and off (as on the
command line). For these toggle options, you can also put a period follow
ing the option to return the option to its command-line, configuration file,
or option-menu setting. This lets you temporarily change an option, then
return it to its default, without having to remember (or even needing to
know) what the exact default setting was.

Options that cannot appear in a pragma option include

-8 -H -Q
-c -I filename -s
-dname -Lfilename -T
-Dname = string -Ixset -Uname
-efilename -M -V
-E -0 -X
-Fx -p -y

You can use #pragmas, #includes, #define, and some #ifs in the following
cases:

Borland C++ for OS/2 Programmers Guide

The options can
appear followed by a

dot (.) to reset the
option to its

command-line state.

Note

• Before the use of any macro name that begins with two underscores (and
is therefore a possible built-in macro) in an #if, #ifdef, #ifndef or #elif
directive. .

• Before the occurrence of the first real token (the first C or C++
declaration) .

Certain command-line options can appear only in a #pragma option
command before these events. These options are

-Efilename -m * -u
-f* -npath -z*
-i# -0 filename

Other options can be changed anywhere. The following options affect the
compiler only if they get changed between functions or object declarations:

-3 -G -p
-4 -h -r
-5 -k -rd
-a -N -v
-ff -0 -y

-z
The following options can be changed at any time and take effect
immediately:

-A (see Note) -gn -zE
-b -jn -zF
-c -K -zH
-d -wxxx

The #pragma option -A statement isn't equivalent to the command-line
option -A. The command-line option recognizes only ANSI-specified key
words. The #pragma option -A prefixes non-ANSI keywords with double
underscores. In effect, this causes such keywords to comply with ANSI
requirements.

The warn pragma lets your program override specific warning options that
have been set elsewhere.

For example, if your source code contains the directives

#pragma warn tXXX

#pragma warn -yyy
#pragma warn .zzz

Chapter 5, The preprocessor 193

the xxx warning will be turned on, the yyy warning will be turned off, and
the zzz warning will be restored to the value it had when compilation of the
file began.

A complete list of the three-letter abbreviations and the warnings to which
they apply is given in Chapter 6 in the User's Guide. Note that you must use
only the three letters that identify warning; do not use the prefix -W, which
is intended for the command-line option.

Predefined macros

Borland C++ predefines certain global identifiers, each of which is
discussed in this section. These predefined macros are also known as
manifest constants. Except for __ cplusplus, each of the global identifiers
starts and ends with two underscore characters (__).

This macro is defined (to the string 1/1") in any compiler that has an
optimizer.

This macro is specific to Borland's C and C++ family of compilers. It is
__ BCPLUSPLUS __ defined for C++ compilation only. If you've selected C++ compilation, it is

__ BORLANDC __

__ CDECL __

__ cplusplus

194

defined as Ox0330, a hexadecimal constant. This numeric value will increase
in later releases.

This macro is specific to Borland's C and C++ family of compilers. It is
defined as Ox0460, a hexadecimal constant. This numeric value will increase
in later releases.

This macro is specific to Borland's C and C++ family of compilers. It signals
that the Pascal calling convention isn't being used. The macro is set to the
integer constant 1 if calling was not used; otherwise, it is undefined.

This macro is defined as 1 if in C++ mode; otherwise it is undefined. This
lets you write a module that will be compiled sometimes as C and
sometimes as C++. Using conditional compilation, you can control which C
and C++ parts are included.

This macro provides the date the preprocessor began processing the
current source file (as a string literal). Each inclusion of __ DA TE __ in a
given file contains the same value, regardless of how long the processing
takes. The date appears in the format mmm dd yyyy, where mmm equals the

Borland eft for OS/2 Programmers Guide

LINE -- --

month (Jan, Feb, and so forth), dd equals the day (1 to 31, with the first
character of dd a blank if the value is less than 10), and yyyy equals the year
(1990, 1991, and so forth).

This macro is specific to Borland's C and c++ family of compilers. It is
defined as 1 if you compile a module to generate code for PM DLLs;
otherwise it remains undefined.

This macro provides the name of the current source file being processed (as
a string literal). This macro changes whenever the compiler processes an
#include directive or a #Iine directive, or when the include file is complete.

This macro provides the number of the current source-file line being
processed (as a decimal constant). Normally, the first line of a source file is
defined as I, though the #line directive can affect this. See page 188 for
information on the #line directive.

This macro is available only for the 32-bit compiler. The macro is defined as
1 if -WM option is used. It specifies that the multithread library is to be
linked.

This macro is specific to Borland's C/C++ family of compilers. It provides
the integer constant 1 for all compilations.

This macro is specific to Borland's family of compilers. It signals that the
Pascal calling convention has been used. The macro is set to the integer
constant 1 if used; otherwise, it remains undefined.

This macro is defined as the constant 1 if you compile for ANSI
compatibility; otherwise, it is undefined.

__ TCPLUSPLUS __ This macro is specific to Borland's family of compilers. It is defined for C++
compilation only. If you've selected C++ compilation, it is defined as
Ox0330, a hexadecimal constant. This numeric value will increase in later
releases.

__ TEMPLATES __ This macro is specific to Borland's family of compilers. It is defined as 1 for
C++ files (meaning that Borland C++ supports templates); otherwise, it is
undefined.

Chapter 5, The preprocessor 195

196

This macro keeps track of the time the preprocessor began processing the
current source file (as a string literal).

As with __ DATE_ -' each inclusion of __ TIME __ contains the same value,
regardless of how long the processing takes. It takes the format hh:mm:ss,
where hh equals the hour (00 to 23), mm equals minutes (00 to 59), and 55

equals seconds (00 to 59).

This macro is specific to Borland's C and c++ family of compilers. It is
defined as Ox0460, a hexadecimal constant. This numeric value will increase
in later releases.

Borland C++ for OS/2 Programmers Guide

c H A p T E R 6

Using C++ streams

This chapter provides a brief, practical overview of how to use c++ stream
I/O. For specific details on the C++ stream classes and their member
functions, see the Library Reference.

Stream input/ output in C++ (commonly referred to as iostreams, or just
streams) provide all the functionality of the stdio library in ANSI C.
Iostreams are used to convert typed objects into readable text, and vice
versa. Streams can also read and write binary data. The C++ language lets
you define or overload I/O functions and operators that are then called
automatically for corresponding user-defined types.

What is a stream?

A stream is an abstraction referring to any flow of data from a source (or
producer) to a sink (or consumer). We also use the synonyms extracting,
getting, and fetching when speaking of inputting characters from a source;
and inserting, putting, or storing when speaking of outputting characters to a
sink. Classes are provided that support console output (constrea.h),
memory buffers (iostream.h), files (fstream.h), and strings (strstrea.h) as
sources or sinks (or both).

The iostream library

The streambuf
class

The iostream library has two parallel families of classes: those derived from
streambuf, and those derived from ios. Both are low-level classes, each doing
a different set of jobs. All stream classes have at least one of these two
classes as a base class. Access from ios-based classes to streambuf-based
classes is through a pointer.

The streambuf class provides an interface to memory and physical devices.
streambuf provides underlying methods for buffering and handling streams
when little or no formatting is required. The member functions of the

Chapter 6, Using C++ streams 197

Figure 6.1
Class streambuf and

its derived classes

The ios class

198

streambuf family of classes are used by the ios-based classes. You can also
derive classes from streambuf for your own functions and libraries. The
buffering classes conbuf, filebuf, and strstreambuf are derived from streambuf

The class ios (and hence any of its derived classes) contains a pointer to a
streambuf It performs formatted I/O with error-checking using a streambuf

An inheritance diagram for all the ios family of classes is found in
Figure 6.2. For example, the ifstream class is derived from the istream and
fstreambase classes, and istrstream is derived from istream and strstreambase.
This diagram is not a simple hierarchy because of the generous use of
multiple inheritance. With multiple inheritance, a single class can inherit
from more than one base class. (The C++ language provides for virtual
inheritance to avoid multiple declarations.) This means, for example, that all
the members (data and functions) of iostream, istream, ostream,fstreambase,
and ios are part of objects of the fstream class. All classes in the ios-based tree
use a streambuf (or a filebuf or strstreambuf, which are special cases of a
streambuj) as its source and/or sink.

c++ programs start with four predefined open streams, declared as objects
of withassign classes as follows:

extern istream_withassign cin:
extern ostream_withassign cout:
extern ostream_withassign cerr:
extern ostream_withassign clog:

II Corresponds to stdin; file descriptor O.
II Corresponds to stdout: file descriptor 1.
II Corresponds to stderr: file descriptor 2.
II A buffered cerr: file descriptor 2.

Borland C++ for OS/2 Programmers Guide

Figure 6.2
Class ios and its
derived classes

By accepted practice,
the arrows point from

the derived class to
the base class.

Stream output

ostream_withassign

Stream output is accomplished with the insertion (or put to) operator, «.
The standard left shift operator, «, is overloaded for output operations. Its
left operand is an object of type ostream. Its right operand is any type for
which stream output has been defined (that is, fundamental types or any
types you have overloaded it for). For example,

cout « "Hello!\n";

writes the string "Hello!" to cout (the standard output stream, normally
your screen) followed by a new line.

The« operator associates from left to right and returns a reference to the
ostream object it is invoked for. This allows several insertions to be cascaded
as follows:

Chapter 6, Using C++ streams 199

Fundamental .
types

1/0 formatting

Manipulators

Parameterized
manipulators must be

called for each
stream operation.

200

int i = 8i
double d = 2.34;

cout « "i = " « i « ", d = " « d « "\n"i

This will write the following to standard output:

i = 8, d = 2.34

The fundamental data types directly supported are char, short, int, long,
char* (treated as a string), float, double, long double, and void*. Integral
types are formatted according to the default rules for printf (unless you've
changed these rules by setting various ios flags). For example, the following
two output statements give the same result:

int ii
long 1;
cout « i « " " « Ii
printf("%d %ld", i, l)i

The pointer (void *) inserter is used to display pointer addresses:

int ii
cout « &ii II display pointer address in hex

Read the description of ostream in the Library Reference for other output
functions.

Formatting for both input and output is determined by various format state
flags contained in the class ios. The flags are read and set with the flags, self,
and unsetf member functions.

Output formatting can also be affected by the use of the fill, width, and
precision member functions of class ios.

The format flags are detailed in the description of class ios in the Library
Reference.

A simple way to change some of the format variables is to use a special
function-like operator called a manipulator. Manipulators take a stream
reference as an argument and return a reference to the same stream. You
can embed manipulators in a chain of insertions (or extractions) to alter
stream states as a side effect without actually performing any insertions (or
extractions). For example,

#include <iostream.h>
#include <iomanip.h> II Required for parameterized manipulators.

int main (void) {
int i = 6789, j = 1234, k = 10i

Borland C++ for OS/2 Programmers Guide

Table 6.1
Stream manipulators

cout « setw(6) « i « j « i « k « j;
cout « "\n";
cout « setw(6) « i « setw(6) « j « setw(6) « k;
return(O) ;
}

produces this output:

678912346789101234
6789 1234 10

setw is a parameterized manipulator declared in iomanip.h. Other
parameterized manipulators, setbase, setfill, setprecision, setiosflags and
resetiosflags, work in the same way. To make use of these, your program
must include iomanip.h. You can write your own manipulators without
parameters:

#include <iostream.h>

II Tab and prefix the output with a dollar sign.
ostream& money(ostream& output) {

return output « "\t$";
}

int main(void) {
float owed = 1.35, earned = 23.1;
cout « money « owed « money « earned;
return(O);
}

produces the following output:

$1.35 $23.1

The non-parameterized manipulators dec, hex, and oct (declared in
iostream.h) take no arguments and simply change the conversion base (and
leave it changed):

int i = 36;
cout « dec « i « " " « hex « i « " " « oct « i « endl;
cout «dec; II Must reset to use decimal base.
II displays 36 24 44

Manipulator

dec
hex
oct
ws
endl

Action

Set decimal conversion base format flag.
Set hexadecimal conversion base format flag.
Set octal conversion base format flag.
Extract whitespace characters.
Insert newline and flush stream.

Chapter 6, Using C++ streams 201

Filling and
padding

202

Table 6.1: Stream manipulators (continued)

ends Insert terminal null in string.
flush Flush an ostream.
setbase(int n) Set conversion base format to base n (0, 8, 10, or 16). ° means the

resetiosflags(long ~
setiosflags(long ~
setfil/(int c)
setprecision(int n)
setw(int n)

default: decimal on output, ANSI C rules for literal integers on input.
Clear the format bits specified by f.
Set the format bits specified by f.
Set the fill character to c.
Set the floating-point precision to n.
Set field width to n.

The manipulator endl inserts a newline character and flushes the stream.
You can also flush an ostream at any time with

ostream « flush;

The fill character and the direction of the padding depend on the setting of
the fill character and the left, right, and internal flags.

The default fill character is a space. You can vary this by using the function
fill:

int i = 123;
couto fill (, *,) ;

couto width (6) ;
cout « i; II display ***123

The default direction of padding gives right-alignment (pad on the left).
You can vary these defaults (and other format flags) with the functions self
and unsetj:

int i = 56;

cout .width(6);
couto fill (, #') ;
cout.setf(ios::left,ios::adjustfield) ;
cout « i; II display 56####

The second argument, ios::adjustfield, tells self which bits to set. The first
argument, ios::left, tells setfwhat to set those bits to. Alternatively, you can
use the manipulators setfill, setiosflags, and resetiosflags to modify the fill
character and padding mode. See ios data members in the Library Reference
for a list of masks used by self.

Borland C++ for OS/2 Programmers Guide

Stream input

Stream input is similar to output but uses the overloaded right shift
operator, », known as the extraction (get from) operator or extractor. The
left operand of» is an object of type class istream. As with output, the
right operand can be of any type for which stream input has been defined.

By default, » skips whitespace (as defined by the isspace function in
ctype.h), then reads in characters appropriate to the type of the input object.
Whitespace skipping is controlled by the ios::skipws flag in the format
state's enumeration. The skipws flag is normally set to give whitespace
skipping. Clearing this flag (with self, for example) turns off whitespace
skipping. There is also a special "sink" manipulator, ws, that lets you
discard whitespace.

Consider the following example:

int ii
double di
cin » i » di

When the last line is executed, the program skips any leading whitespace.
The integer value (i) is then read. Any whitespace following the integer is
ignored. Finally, the floating-point value (d) is read.

For type char (signed or unsigned), the effect of the » operator is to skip
whitespace and store the next (non-whitespace) character. If you need to
read the next character, whether it is whitespace or not, you can use one of
the get member functions (see the discussion of istream in the Library
Reference) .

For type char* (treated as a string), the effect of the » operator is to skip
whitespace and store the next (non-whitespace) characters until another
whitespace character is found. A final null character is then appended. Care
is needed to avoid "overflowing" a string. You can alter the default width
of zero (meaning no limit) using width as follows:

char array[SIZE]i
cin.width(sizeof(array)) i
cin » arraYi II Avoids overflow.

For all input of fundamental types, if only whitespace is encountered,
nothing is stored in the target, and the istream state is set to fail. The target
will retain its previous value; if it was uninitialized, it remains
uninitialized.

Chapter 6, Using C++ streams 203

1/0 of user-defined types

Simple file 1/0

204

To input or output your own defined types, you must overload the
extraction and insertion operators. Here is an example:

#include <iostream.h>

struct info {
char *name;
double val;
char *units;
};

II You can overload « for output as follows:
ostream& operator « (ostream& s, info&'m) {

s « m.name « " " « m.val « " " « m.units;
return s;
};

II You can overload » for input as follows:
istream& operator » (istream& s, info& m) {

s » m.name » m.val » m.units;
return s;
};

int main (void)
info X;
x.name = new char[15];
x.units = new char[lO]i

cout « "\nlnput name, value and units:";
cin » Xi

cout « "\nMy input:" « Xi

return(O);
}

The class of stream inherits the insertion operations from ostream, while
ifstream inherits the extraction operations from istream. The file-stream
classes also provide constructors and member functions for creating files
and handling file I/O. You must include fstream.h in all programs using
these classes.

Consider the following example that copies the file FILE.IN to the file
FILE. OUT:

Borland C++ for OS/2 Programmers Guide

#include <fstream.h>

int main(void) {
char Chi
ifstream f1 ("FILE. IN") ;
ofstream f2("FILE.OUT");

if (!fl) cerr « "Cannot open FILE.IN for input";
if (!f2) cerr « "Cannot open FILE.OUT for output";
while (f2 && fl.get(ch))

f2 .put (ch) ;
return(O);
}

Note that if the ifstream or afstream constructors are unable to open the
specified files, the appropriate stream error state is set.

The constructors let you declare a file stream without specifying a named
file. Later, you can associate the file stream with a particular file:

of stream ofile; II creates output file stream

ofile.open("payroll"); II ofile connects to file "payroll"
II do some payrolling ...

ofile. close () ; II close the ofile stream
ofile.open("employee"); /I ofile can be reused ...

By default, files are opened in text mode. This means that on input,
carriage-return/linefeed sequences are converted to the '\n' character. On
output, the '\n' character is converted to a carriage-return/linefeed
sequence. These translations are not done in binary mode. The file-opening
mode is set with an optional second parameter to the apen function or in
some file-stream constructors. The file opening-mode constants can be used
alone or they can be logically ORed together. See the description of class ios
data members in the Library Reference.

String stream processing

The functions defined in strstrea.h support in-memory formatting, similar
to sscanf and sprintf, but much more flexible. All of the istream member
functions are available for class istrstream (input string stream). This is the
same for output: ostrstream inherits from astream.

Chapter 6, Using C++ streams 205

206

Given a text file with the following format:

101 191 Cedar Chest
102 1999.99 Livingroom Set

Each line can be parsed into three components: an integer ID, a floating
point price, and a description. The output produced is

1: 101 191.00 Cedar Chest
2: 102 1999.99 Livingroom Set

Here is the program:

#include <fstream.h>
#include <strstrea.h>
#include <iomanip.h>
#include <string.h>

int main(int argc, char **argv) {
int id;
float amount;
char description[411;

if (argc == 1) {
cout « "\nlnput file name required.";
return (-1);

}

ifstream inf(argv[1]);

if (inf) {
char inbuf[811;
int lineno = 0;

II Want floats to print as fixed point
cout.setf(ios::fixed, ios::floatfield);

II Want floats to always have decimal point
cout.setf(ios::showpoint);

while (inf.getline(inbuf,81)) {
II 'ins' is the string stream:
istrstream ins(inbuf,strlen(inbuf));
ins » id » amount »ws; .
ins.getline(description,41); II Linefeed not copied.
cout « ++lineno « ": "

« id« '\t'
« setprecision(2) « amount « '\t'
« description « "\n";

return(O) ;

Borland C++ for OS/2 Programmers Guide

Note the use of format flags and manipulators in this example. The calls to
setJ coupled with setprecision allow floating-point numbers to be printed in a
money format. The manipulator ws skips whitespace before the description
string is read.

Screen output streams

The functions
declared in conio.h
and constrea.h are

not available for PM
applications.

Table 6.2
Console stream

manipulators

Typical use of
parameterized

manipulators. See the
Library Reference for
a description of class

constream.

The class constream, derived from ostream and defined in constrea.h,
provides the functionality of conio.h for use with C++ streams. This lets
you create output streams that write to specified areas of the screen, in
specified colors, and at specific locations.

Console stream manipulators are provided to facilitate formatting of
console streams. These manipulators work in the same way as the
corresponding function provided by conio.h. For a detailed description of
the manipulators' behavior and valid arguments, see the Library Reference.

Manipulator conio function

clreo/ clreo/
del/ine del/ine
high video high video
insline insline
/owvideo /owvideo
norm video norm video
setatt~int) textattr
setbk(int) textc%r
setcl~int) textc%r
setcrsrtype(int) _ setcursortype
setxy(int, int) gotoxy

#include <constrea.h>

int main (void) {
constream winl;

Action

Clears to end of line in text window.
Deletes line in the text window.
Selects high-intensity characters.
Inserts a blank line in the text window.
Selects low-intensity characters.
Selects normal-intensity characters.
Sets screen attributes.
Sets new character color.
Sets the color.
Selects cursor appearance.
Positions the cursor at the specified position.

winl.window(l, 1, 40, 20); II Initialize the desired space.
winl.clrscr(); II Clear this rectangle.

II Use the parameterized manipulator to set screen attributes.
winl « setattr((BLUE«4) I WHITE)

« "This text is white on blue.";

Chapter 6, Using C++ streams 207

You can create
multiple constreams,

each writing to its
own portion of the
screen. Then, you

can output to any of
them without having
to reset the window

each time.

208

II Use this parameterized manipulator to specify output area.
win1 « setxy(10, 10)

« "This text is in the middle of the window.";
return(O) ;
}

#include <constrea.h>

int main(void) {
constream demo1, demo2;

demol.window(1, 2, 40, 10);
demo2.window(1, 12, 40, 20);

demol. clrscr () ;
demo2.clrscr();

demol « "Text in first window" « endl;
demo2 « "Text in second window" « endl;
demol « "Back to the first window" « endl;
demo2 « "And back to the second window" « endl;
return(O);
}

Borland C++ for OS/2 Programmers Guide

c H A p T E R

Using Borland class libraries

This chapter describes Borland's container class library and persistent
streams class library. Reference material for each of these classes can be
found in the Library Reference.

7

The container class library

Containers and
templates

See Chapter 3 for a
description of

templates.

This section describes the Borland International Data Structures (BIDS),
also known as the container class library.

Containers are objects that implement common data structures, offering
member functions for adding and accessing each container's data elements
while hiding the inner details from the user. Containers can hold integers,
real numbers, strings, structures, classes, user-defined types, or any C++
object.

Borland containers are implemented using templates. This means you pass
in to the template the type of the object you want the container to hold. For
example, an array container that holds floats would be instantiated like
this:

TArrayAsVector<float> FloatArray(lO);

FloatArray can hold 10 floats. The TArrayAsVector template class describes
the member functions for accessing and maintaining the array. Most
containers have Add and Detach member functions, and the array classes
also have the usual [] operators for indexing into the array.

Here's another example of an array container that holds a class object:

class Myclass {

II class description

};

TArrayAsVector<MyClass> MyClassArray(lO);

Chapter 7, Using Borland class libraries 209

AOTs and FOSs

Table 7.1
Borland containers

and header files

Choosing an FDS

210

The container class library can be divided into two categories: Fundamental
Data Structures (FDS) and Abstract Data Types (ADT).

Container Header file

Borland FOSs

Binary tree binimp.h
Hashtable hashimp.h
Linked list listimp.h
Double-linked list dlistimp.h
Vector vectimp.h

Borland AOTs

Array arrays.h
Association assoc.h
Dequeue deques.h
Dictionary dict.h
Queue queues.h
Set sets.h
Stack stacks.h

FDSs are lower-level containers that implement storage constructs. Each
FDS has fundamental add and detach member functions. ADTs (for
example T ArrayAs Vector) are commonly used data-processing constructs.
They are higher-level containers that implement more abstract constructs
than lists and vectors, such as stacks and sets. Each ADT has operations
(methods) that are particular to that ADT; for example, the stack containers
have Push and Pop member functions.

Each AUT is based on an FDS. For example, T ArrayAs Vector implements an
array, using a vector as the underlying FDS. Here is an example of a stack
ADT implemented with a linked-list FDS:

TStackAsList<int> IntStack(lO);

Here, a stack ADT is implemented using a vector FDS:

TStackAsVector<int> IntStack(lO);

ADT containers use the storage characteristics of the underlying FDS, and
add the specific access methods that make each ADT unique (for example
Push and Pop for stacks).

A vector-based stack is appropriate when the maximum number of
elements to be stored on the stack is known in advance, and when speed is
critical. A vector allocates space for all its elements when it is created, and

Borland C++ for OS/2 Programmers Guide

Direct and indirect
containers

Sorted containers

the operations on a vector-based stack are simple and fast. The list-based
stack is appropriate when there is no reasonable upper bound to the size of
the stack, and speed is not as critical.

Containers can store copies of objects (direct containers) or pointers to
objects (indirect containers). TArrayAsVector<char> is a direct array that
stores a copy of a character. The following container is an indirect array that
stores pointers to floats:

TIArrayAsVector<float> FloatPtrArray(lO) i

The I in a template name indicates an indirect container.

The type of object you need to store helps determine whether you need to
use a direct or indirect container. A stack of floats, for example, would
probably use a direct container. A stack of large structs would probably use
an indirect container to reduce copying time. This choice, though, is not
often easy. Performance tuning requires the comparison of different con
tainer implementations. Traditionally this entails drastic recoding. Using
containers makes it much easier.

For direct object storage, the contained type must have a valid == operator,
a default constructor, and a valid assignment operator. Indirect containers
also need a valid == operator and a default constructor; because indirect
containers hold pointers to objects, and pointers always have good copy
semantics, indirect containers also always have a valid assignment
operator. This means that indirect containers can contain objects of any
type.

Several containers keep their contents in sorted order. For example,

TSArrayAsVector<MyClass> SortMyClassArray(lO) i

instantiates a sorted array of MyClass objects, with a vector as the
underlying FDS.

Sorted containers (both direct and indirect) require that the type of object
passed into the container must have a valid < operator so that the
containers' add functions can determine the ordering of the elements. These
operations are provided for predefined types; for user-defined types, such
as classes, you must provide this operator. Here's a simple example of a
class with the == and < operators overloaded:

class MyClass

private:
int ai

Chapter 7, Using Borland class libraries 211

Memory
management

212

/ / ...
public:

/ / ...
//overloaded operators necessary for use with a sorted container

int operator«const MyClass& me) const {
return a < mC.a ? 1 : 0;

int operator==(const MyClass& me) const {
return a == mC.a ? 1 : 0;

};//end MyClass

For indirect containers the objects are sorted, not the pointers the container
holds.

Containers have versions that give you control over memory management.
Here is a container that lets you pass in a memory-management object of
your choice:

TMQueueAsVector<MyClass, MyMernManage> MyQueue(lOO);

TMQueueAsVector takes two type parameters. One is the type of object that
the queue will hold (MyClass), the other is the name of a memory
management class (MyMemManag) that you want to use. The M in a
template name means that you must specify a memory manager to
implement that container. Container template names without the M use the
standard memory allocator TStandardAllocator found in alloctr.h. The
following two container declarations are equivalent:

TMQueueAsVector<MyClass, TStandardAllocator> MyQueue(lOO);

TQueueAsVector<MyClass> MyQueue(lOO);

Both use TStandardAllocator to manage memory. TStandardAllocator
provides operators new, new[], delete, and delete[], which call their global
counterparts. No specialized behavior is provided.

User-supplied memory management must provide a class-specific new and
new[] operators, a placement new operator that takes a void * argument as
its second parameter. Class-specific delete and delete[] operators should
also be defined. Use the allocators in alloctr.h as an example for building
your own.

Borland C++ for OS/2 Programmers Guide

Container naming
conventions

Table 7.2
Container name

abbreviations

ADT/FDS
combinations in
the library

Table 7.3
ADT/FDS

combinations

Container
iterators

The characteristics of each container class are encoded in the container
name. For example, TMIArrayAsVector is a "managed, indirect array
implemented as a vector." That is, this template takes a memory
management scheme as a parameter, is an indirect container, and is
implemented using a vector. TDequeAsDoubleList is a direct container that
uses the system memory-management scheme and which is implemented
as a double-linked list. Table 7.2 summarizes these abbreviations.

Abbreviation

T
M
I
C
S

Description

Borland class library prefix
User supplied memory-management container
Indirect container
Counted container
Sorted container

The BIDS libraries do not contain all possible combinations of ADT /FDS
combinations. Table 7.3 lists the ADT /FDS combinations supplied.

ADT Sorted
FDS Stack Queue Dequeue Bag Set Array Array Dictionary

Vector x x x x x x x
List x
DoubleList x x
Hashtable x
Binary tree

You can use the template classes to develop your own ADT /FDS imple
mentations.

Each container class has a corresponding container iterator class, which are
classes dedicated to iterating over a particular kind of container. For
example, TArrayAsVector has a corresponding iterator called
TArrayAsVectorlterator that is responsible for iterating over all the items in
the array.

Container iterators implement the ++ pre- and post-increment operators for
that container. They also implement the Current member function (which
returns the current object) and the Restart member function (which restarts
iteration).

Chapter 7, Using Borland class libraries 213

Object ownership

Using containers

214

Here is an iterator example:

#include <iostream.h>
#include <classlib\arrays.h>

typedef TArrayAsVector<float> floatArray;
typedef TArrayAsVectorIterator<float> floatArrayIterator;

int main (void) {

const ArraySize = 10j
Ilcreate an array of integers
floatArray FloatArray(ArraySize)j

int count = OJ

Iladd items to the array using Add member function
while (count <= ArraySize)

FloatArray.Add(float(count++)) j

Ilcreate an iterator - the constructor takes the array name as a parameter
floatArrayIterator nextFloat(FloatArray) j

cout « "FloatArray contents:" « endlj

while (nextFloat !=O) {
cout « nextFloat.Current() «" "j

cout « endl j
ttnextFloatj

Indirect containers inherit the OwnsElements member function from
TShouldDelete (shddel.h). OwnsElements lets you indicate whether the
default action of the container is to delete objects when using member
functions Detach and Flush and the destructor. Detach and Flush each take a
parameter that indicates whether or not they should delete the object, use
the default.

Using templatized containers lets you develop a stack-based application
(for example, using vectors as the underlying structure) that you can
change to a linked-list implementation without major recoding. Often it
involves only a change to a typedef.

For example:

IICreate a stack of integers, load the stack, and output contents
#include <classlib\stacks.h>
#include <iostream.h>

Borland C++ for OS/2 Programmers Guide

liThe recommended way of declaring container types
typedef TStackAsVector<int> IntStack;

int main ()
{

IntStack intStack;
for (int i = 0; i < 10; itt

intStack.Push(i);
while (!intStack.IsEmpty())

cout « intStack.Pop()« ";
cout « endl;
return(O);

}

Output
987 654 3 2 1 0

This implements a stack of ints using a vector as the underlying FDS. If you
later determine that a list would be a more suitable implementation for the
stack, you can replace the typedef with the following:

typedef TStackAsList<int> IntStack;

After recompiling, the stack implementation is changed from a vector to a
linked list. With only the typedef changed, the code continues to work
properly.

When changing to an indirect container, a few more changes are required:

IICreate a stack of integer pointers, load the stack, and output Ilcontents
#include <classlib\stacks.h>
#include <iostream.h>

IIChanged typedef as usual
typedef TIStackAsVector<int> IntStack;

int main ()
{

IntStack intStack;

for (int i = 0; i < 10; itt)
IIIndirect Push takes pointer arg
intStack. Push (new int(i));

while (!intStack.IsEmpty()) {
int tip = intStack.Pop();
cout « tip « " ";
delete ip;
}

Chapter 7, Using Borland class libraries 215

A sorted array
example

If you used
TIArray As Vector <String>,

the elements would
appear in the order
they were added to

the array.

A deqLleue example

216

cout « endl;
return (0) i

}

Output
987 6 5 4 3 2 1 0

The following example uses a sorted, indirect array containing strings.

#include <iostream.h>
#include <strstrea.h>
#include <classlib\arrays.h>
#include <cstring.h>

int main ()
{

typedef TISArrayAsVector<string> lArraYi
lArray a(2);
for (int i = a.ArraySize()i ii i--)
{

char buffer[641;
ostrstream os(buffer, sizeof buffer);
os « "string " « (10 - i) « ends;
a.Add(new string(buffer));

cout « "array elements:\n";

IIIn the sorted array container, the index of a particular array
Ilelement depends on its value, not on the order it was entered

for (i = Oi i < a.ArraySize(); iii)
cout« *a[il « endl;

return(O) ;

Output
array elements:
string 7
string 8
string 9

The following example illustrates an indirect dequeue, implemented as a
double-linked list.

#include <iostream.h>
#include <strstrea.h>
#include <classlib\deques.h>
#include <cstring.h>

Borland C++ for OS/2 Programmers Guide

Pointers to string
objects in the

dequeue container
must be dereferenced
when extracting from

the dequeue.

Container
directories

To use the BIDS
libraries you must
explicitly add the

appropriate library file
to your project or

makefile.

typedef TIDequeAsDoubleList<string> lDeque;

int main ()
{

lDeque d;
for (int i = 1; i < 5; itt)
{

char buffer[641;
ostrstream os(buffer, sizeof buffer};
os « "string" « i « ends;
II use alternating left, right insertions
if(i&l}

d.PutLeft(new string (buffer }};
else

d.PutRight(new string(buffer }};

cout « "Dequeue Contents:" « endl;
while (!d.lsEmpty(})
{

string *sp = d.GetLeft(};
cout « *sp « endl;
delete sp;

return(O} ;

Output
Dequeue Contents:
string 3
string 1
string 2
string 4

The libraries for the template-based container classes are distinguished by
the prefix BIDS.

Container class support includes directories containing:

• Header files

• Libraries

• Source files
• Examples

The following sections describe the directories containing each.

Chapter 7, Using Borland class libraries 217

The LlBS and BIN
directories

The INCLUDE
directory

The SOURCE
directory

The EXAMPLES
directory

218

The following table lists the container libraries:

File name

BIDS2.LlB
BIDSDB2.LlB
BIDS21.LlB
BIDS402.DLL
BIDS40D2.DLL

Description

Static library
Static library, diagnostic version
Import static library
Dynamic link library
Dynamic link library, diagnostic version

The INCLUDE\CLASSLIB directory contains the header files necessary to
compile a program that uses container classes. For each ADT or FDS there
is a corresponding header file in this directory. Make sure the INCLUDE
directory is on your include path, and then reference header files with an
explicit CLASSLIB. For example:

#include <classlib\stacks.h>

The SOURCE\CLASSLIB directory contains the source files that implement
many of the member functions of the classes in the library. You will need
these source files if you want to build a library. The supplied MAKE FILE
builds a class library of the specified memory model and places that library
in the LIB directory.

The EXAMPLES\CLASSLIB directory has several example programs that
use container classes. Here is a list of the example programs and the classes
they use:

• LABELS: Updates and displays the contents of a mailing list. The
example makes use of TISListimp, string, TDate, ipstream, and opstream
classes.

• LOOKUP: An intermediate hash table example using
TDictionaryAsHashTable and TDDAssociation.

• QUEUETST: An intermediate example using TQueue (an alias for
TQueueAsVector) and a nonhierarchical class, TTime.

• REVERSE: An intermediate example that takes strings as input and then
prints them in reverse order. The example uses TStack (an alias for
TStackAsVector) and string.

• STRNGMAX: A string collating example. Uses the string class.

• TESTDIR: An sorted container example that uses TISArrayAsVector.

Borland C++ for OS/2 Programmers Guide

Debugging
containers

• XREF: A text cross-referencing example that uses string class, and
containers TBinarySearchTreelmp, TIBinarySearchTreelmp, and
TSVectorlmp.

Borland provides macros for debugging classes. Chapter 8 of the Library
Reference describes how to use these class diagnostic macros.

The persistent streams class library

See Chapter 5 of the
Library Reference for

more on persistent
streams.

This section describes Borland's object streaming support, then explains
how to make your objects streamable.

Objects that you create when an application runs-windows, dialog boxes,
collections, and so on-are temporary. They are constructed, used, and
destroyed as the application proceeds. Objects can appear and disappear as
they enter and leave their scope, or when the program terminates. By
making your objects streamable you save these objects, either in memory or
file streams, so that they persist beyond their normal lifespan.

There are many applications for persistent objects. When saved in shared
memory they can provide interprocess communication. They can be trans
mitted via modems to other systems. And, most significantly, objects can be
saved permanently on disk using file streams. They can then be read back
and restored by the same application, by other instances of the same
application, or by other applications. Efficient, consistent, and safe stream
ability is available to all objects.

Building your own streamable classes is straightforward and incurs little
overhead. To make your class streamable you need to add specific data
members, member functions, and operators. You also must derive your
class, either directly or indirectly, from the TStreamableBase class. Any
derived class is also streamable.

To simplify creating streamable objects, the persistent streams library
contains macros that add all the routines necessary to make your classes
streamable. The two most important are

• DECLARE_STREAMABLE

.IMPLEMENT_STREAMABLE

These macros add the boilerplate code necessary to make your objects
streamable. In most cases you can make your objects streamable by adding
these two macros at appropriate places in your code, as explained later.

Chapter 7; Using Borland class libraries 219

What's new with
streaming

Object versioning

Reading and writing
base classes

220

Object streaming has been significantly changed from Borland's earlier
implementation to make it easier to use and more powerful. These changes
are compatible with existing code developed with Borland's
ObjectWindows and Turbo Vision products.

The new streaming code is easier to use because it provides macros that
relieve the programmer of the burden of remembering most of the details
needed to create a streamable class. Its other new features include support
for multiple inheritance, class versioning, and better system isolation. In
addition, the streaming code has been reorganized to make it easier to
write libraries that won't force streaming code to be linked in if it isn't
used.

There have been several additions to the streaming capabilities. These
changes are intended to be backward compatible, so if you compile a
working application with the new streaming code, your application should
be able to read streams that were written with the old code. There is no
provision for writing the old stream format, however. We assume that
you'll like the new features so much that you won't want to be without
them.

The following sections describe the changes and new capabilities of
streaming. Each of these changes is made for you when you use the
DECLARE_STREAMABLE and IMPLEMENT_STREAMABLE macros.

Objects in streams now have a version number associated with them. An
object version number is a 32-bit value that should not be o. Whenever an
object is written to a stream, its version number will also be written. With
versioning you can recognize if there's an older version of the object you're
reading in, so you can interpret the stream appropriately.

In your current code, you might be reading and writing base classes
directly, as shown here:

void Derived::write(opstream& out
{

Base::write(out);
I I ...
}

void *Derived::read(ipstream& in)
{

II
}

Base::read(in);

Borland C++ for OS/2 Programmers Guide

Reading and writing
integers -

Use of these four
functions is preferred.

This method will continue to work, but it won't write out any version
numbers for the base class. To take full advantage of versioning, you
should change these calls to use the new template functions that
understand about versions:

void Derived::Write(opstream& out) {
WriteBaseObject((Base *)this, out)i

II .. ,
}

void *Derived: :Read(ipstream& in, uint32 ver) {
ReadBaseObject((Base *)this, in)i

II ...
}

The cast to a pointer to the base class is essential. If you leave it out your
program may crash.

Old streams wrote int and unsigned data types as 2-byte values. To move
easily to 32-bit platforms, the new streams write int and unsigned values as
4-byte values. The new streams can read old streams, and will handle the
2-byte values correctly.

The old streams provide two member functions for reading and writing
integer values:

void writeWord(unsigned)i

unsigned readWord()i

These have been changed in the new streams:

void writeWord(uint32) i

uint32 readWord()i

Existing code that uses these functions will continue to work correctly if it
is recompiled and relinked, although calls to readWord will generate
warnings about a loss of precision when the return value is assigned to an
int or unsigned in a 16-bit application. But in new code all of these
functions should be avoided. In general, you probably know the true size of
the data being written, so the streaming library now provides separate
functions for each data size:

void writeWord16 (uint16) i

void writeWord32 (uint32) i

uint16 readWord16()i

uint32 readWord32()i

Chapter 7, Using Borland class libraries 221

Multiple inheritance
and virtual base
support

222

The streaming code now provides four function templates that support
virtual base classes and multiple inheritance. The following sections
describe these functions.

The ReadVirtualBase and WriteVirtualBase function templates
Any class that has a direct virtual base should use the new ReadVirtualBase
and Write VirtualBase function templates:

void Derived::write(opstrearn& out)
{

WriteVirtualBase((VirtualBase *)this, out)i

I I ...
}

void *Derived::Read(ipstrearn& in, uint32 ver)
{

ReadVirtualBase((VirtualBase *)this, in)i

II ...
}

A class derived from a class with virtual bases does not need to do
anything special to deal with those virtual bases. Each class is responsible
only for its direct bases.

The ReadBaseObject and WriteBaseObject function templates
Object streams now support multiple inheritance. To read and write
multiple bases, use the new WriteBaseObject and ReadBaseObject function
templates for each base:

void Derived::Write(opstrearn& out)
{

WriteBaseObject((Basel *)this, out)i

WriteBaseObject((Base2 *)this, out):
I I ...
}

void *Derived::Read(ipstrearn& in, uint32 ver)
{

II
}

ReadBaseObject((Basel *)this, in) i
ReadBaseObject((Base2 *)this, in) i

Borland C++ for OS/2 Programmers Guide

Creating
streamable
objects

Defining streamable
classes

The easiest way to make a class streamable is by using the macros supplied
in the persistent streams library. The following steps will work for most
classes:

1. Make TStreamableBase a virtual base of your class, either directly or
indirectly.

2. Add the DECLARE_STREAMABLE macro to your class definition.

3. Add the IMPLEMENT_STREAMABLE macro to one of your source
files. Adding the IMPLEMENT_CAST ABLE macro is also
recommended.

4. Write the Read and Write member function definitions in one of your
source files.

The following sections provide details about defining and implementing
streamable classes.

To define a streamable class you need to

• Include objstrm.h

• Base your class on the TStreamableBase class

• Include macro DECLARE_STREAMABLE into your class definition. For
example,

#include <objstrm.h>

class Sample : public TStreamableBase
{

public:
II member functions, etc.

private:
int i;

DECLARE_STREAMABLE(IMPEXPMACRO, Sample, 1);
};

Header file objstrm.h provides the classes, templates, and macros that are
needed to define a streamable class.

Every streamable class must inherit, directly or indirectly, from the class
TStreamableBase. In this example, the class Sample inherits directly from
TStreamableBase. A class derived from Sample would not need to explicitly
inherit from TStreamableBase because Sample already does. If you are using
multiple inheritance, you should make TStreamableBase a virtual base
instead of a nonvirtual base as shown here. This will make your classes
slightly larger, but won't have any other adverse affect on them.

Chapter 7, Using Borland class libraries 223

Implementing
streamable classes

224

In most cases the DECLARE_STREAMABLE macro is all you need to use
when you're defining a streamable class. This macro takes three
parameters. The first parameter is used when compiling DLLs. This
parameter takes a macro that is meant to expand to either _ _ export or
nothing, depending on how the class is to be used in the DLL. See Chapters
5 and 8 of the Library Reference for further explanation. The second
parameter is the name of the class that you're defining, and the third is the
version number of that class. The streaming code doesn't pay any attention
to the version number, so it can be anything that has some significance to
you. See the discussion of the nested class Streamer for details.

DECLARE_STREAMABLE adds a constructor to your class that takes a
parameter of type Streamablelnit. This is for use by the streaming code; you
won't need to use it directly. DECLARE_STREAMABLE also creates two
inserters and two extractors for your class so that you can write objects to
and read them from persistent streams. For the class Sample (shown earlier
in this section), these functions have the following prototypes:

opstream& operator « (opstream&, const Sample&)i

opstream& operator « (opstream&, const Sample*)i

ipstream& operator » (ipstream&, Sample&) i
ipstream& operator » (ipstream&, Sample*&)i

The first inserter writes out objects of type Sample. The second inserter
writes out objects pointed to by a pointer to Sample. This inserter gives you
the full power of object streaming, because it understands about poly
morphism. That is, it will correctly write objects of types derived from
Sample, and when those objects are read back in using the pointer extractor
(the last extractor) they will be read in as their actual types. The extractors
are the inverse of the inserters.

Finally, DECLARE_STREAMABLE creates a nested class named Streamer,
based on the TStreamer class, which defines the core of the streaming code.

Most of the members added to your class by the DECLARE_STREAMABLE
macro are inline functions. There are a few, however, that aren't inline;
these must be implemented outside of the class. Once again, there are
macros to handle these definitions.

The IMPLEMENT_ CASTABLE macro provides a rudimentary typesafe
downcast mechanism. If you are building with Borland C++ 1.5 you don't
need to use this because Borland C++ 1.5 supports RTTI. However, if you
need to build your code with a compiler that does not support RTTI, you
will need to use the IMPLEMENT_CAST ABLE macro to provide the
support that object streaming requires. Although it isn't necessary to use
IMPLEMENT_CASTABLE when using Borland C++ 1.5, you ought to do

Borland C++ for OS/2 Programmers Guide

so anyway if you're concerned about being able to compile your code with
another compiler. See Chapter 3 for a discussion of RTTI.

IMPLEMENT_CASTABLE has several variants:

IMPLEMENT_CASTABLE(cls)
IMPLEMENT_CASTABLE1(cls, basel)
IMPLEMENT_CASTABLE2(cls, basel, base2
IMPLEMENT_CASTABLE3(cls, basel, base2, base3
IMPLEMENT_CASTABLE4(cls, basel, base2, base3, base4
IMPLEMENT_CASTABLES(cls, basel, base2, base3, base4, baseS)

At some point in your source code you should invoke this macro with the
name of your streamable class as its first parameter and the name of all its
streamable base classes other than TStreamableBase as the succeeding
parameters. For example,

class Basel : public virtual TStreamableBase
{

I I ...
DECLARE_STREAMABLE(IMPEXPMACRO, Basel, 1)i

}i

IMPLEMENT_CASTABLE(Basel)i II no streamable bases

class Base2 : public virtual TStreamableBase
{

1/ ...
DECLARE_STREAMABLE(IMPEXPMACRO, Base2, 1) i
}i

IMPLEMENT_CASTABLE(Basel) i II no streamable bases

class Derived: public Basel, public virtual Base2
{

1/ ...
DECLARE_STREAMABLE(IMPEXPMACRO, Derived, 1)i

}i

IMPLEMENT_CASTABLE2(Derived, Basel, Base2) i Iitwo streamable bases

class MostDerived : public Derived
{

DECLARE_STREAMABLE(IMPEXPMACRO, MostDerived, 1) i
}i

IMPLEMENT_CASTABLE1(MostDerived, Derived) i Iione streamable base

The class Derived uses IMPLEMENT_CASTABLE2 because it has two
streamable base classes.

In addition to the IMPLEMENT_CAST ABLE macros, you should invoke
the appropriate IMPLEMENT_STREAMABLE macro somewhere in your

Chapter 7, Using Borland class libraries 225

226

code. The IMPLEMENT _STREAMABLE macro looks like the
IMPLEMENT_ CASTABLE macros:

IMPLEMENT_STREAMABLE(cls)
IMPLEMENT_STREAMABLEl(cls, basel)
IMPLEMENT_STREAMABLE2(cls, basel, base2
IMPLEMENT_STREAMABLE3(cls, basel, base2, base3
IMPLEMENT_STREAMABLE4(cls, basel, base2, base3, base4
IMPLEMENT_STREAMABLE5(cls, basel, base2, base3, base4, base5

The IMPLEMENT _STREAMABLE macros have one important difference
from the IMPLEMENT_CASTABLE macros: when using the
IMPLEMENT_STREAMABLE macros you must list all the streamable base
classes of your class in the parameter list, and you must list all virtual base
classes that are streamable. This is because the
IMPLEMENT_STREAMABLE macros define the special constructor that
the object streaming code uses; that constructor must call the
corresponding constructor for all of its direct base classes and all of its
virtual bases. For example,

class Basel : public virtual TStreamableBase
{

II ...
DECLARE_STREAMABLE(IMPEXPMACRO, Basel, 1);
};

IMPLEMENT_CASTABLE(Basel); II no streamable bases
IMPLEMENT_STREAMABLE(Basel); II no streamable bases

class Base2 : public virtual TStreamableBase
{

I I ...
DECLARE_STREAMABLE(IMPEXPMACRO, Base2, 1);
};

IMPLEMENT_CASTABLE(Basel); II no streamable bases
IMPLEMENT_STREAMABLE(Basel); II no streamable bases

class Derived: public Basel, public virtual Base2
{

I I ..
DECLARE_STREAMABLE(IMPEXPMACRO, Derived, 1);
} ;

IMPLEMENT_CASTABLE2(Derived, Basel, Base2);
IMPLEMENT_STREAMABLE2(Derived, Basel, Base2);

class MostDerived : public Derived
{

I I ...

Borland C++ for OS/2 Programmers Guide

The nested class
Streamer

Writing the Read
and Write functions

DECLARE_STREAMABLE(IMPEXPMACRO, MostDerived, 1)j

}j

IMPLEMENT_CASTABLE1(MostDerived, Derived) j

IMPLEMENT_STREAMABLE2(MostDerived, Derived, Base2)j

The nested class Streamer is the core of the streaming code for your objects.
The DECLARE_STREAMABLE macro creates Streamer inside your class. It
is a protected member, so classes derived from your class can access it.
Streamer inherits from TNewStreamer, which is internal to the object
streaming system. It inherits the following two pure virtual functions:

virtual void Write(opstream&) const = OJ

virtual void *Read(ipstream&, uint32) const = OJ

Streamer overrides these two functions, but does not provide definitions for
them. You must write these two functions: Write should write any data that
needs to be read back in to reconstruct the object, and Read should read that
data. Streamer::GetObject returns a pointer to the object being streamed. For
example,

class Demo : public TStreamableBase

int ij
int jj

pUblic:
Demo (int ii, int jj) : i(ii), j(jj) {}

DECLARE_STREAMABLE(IMPEXPMACRO, Demo, 1) j
}j

IMPLEMENT_CASTABLE(Demo) j

IMPLEMENT_STREAMABLE(Demo)j

void *Demo::Streamer::Read(ipstream& in, uint32) canst
{

in » GetObject()->i » GetObject()->jj
return GetObject();

void Demo: :Streamer::Write(opstream& out) canst
{

out « GetObject()->i « GetObject()->jj

It is usually easiest to implement the Read function before implementing the
Write function. To implement Read you need to

II Know what data you need in order to reconstruct the new streamable
object.

Chapter 7, Using Borland class libraries 227

228

• Devise a sensible way of reading that data into the new streamable
object.

Then implement Write to work in parallel with Read so that it sets up the
data that Read will later read. The streaming classes provide several
operators to make this easier. For example, opstream provides inserters for
all the built-in types, just as ostream does. So all you need to do to write out
any of the built-in types is to insert them into the stream.

You also need to write out base classes. In the old ObjectWindows and
Turbo Vision streaming, this was done by calling the base's Read and Write
functions directly. This doesn't work with code that uses the new streams,
because of the way class versioning is handled.

The streaming library provides template functions to use when reading and
writing base classes. ReadVirtualBase and Write VirtualBase are used for
virtual base classes, and ReadBaseObject and WriteBaseObject are used for
nonvirtual bases. Just like IMPLEMENT_CAST ABLE, you only need to
deal with direct bases. Virtual bases of your base classes will be handled by
the base class, as shown in this example:

class Basel : public virtual TStrearnableBase
{

int i;
DECLARE_STREAMABLE(IMPEXPMACRO, Basel, 1);
} ;

IMPLEMENT_CASTABLE(Basel); II no strearnable bases
IMPLEMENT_STREAMABLE(Basel); II no strearnable bases
void Basel: :Strearner::Write(opstrearn& out) const
{

out « GetObject()->i;

class Base2 : public virtual TStrearnableBase

int j;
DECLARE_STREAMABLE(IMPEXPMACRO, Base2, 1);
};

IMPLEMENT_CASTABLE(Basel); II no strearnable bases
IMPLEMENT_STREAMABLE(Basel); II no strearnable bases
void Base2: :Strearner::Write(opstrearn& out) const
{

out « GetObject()->j;

Borland C++ for OS/2 Programmers Guide

Object versioning

class Derived public Basel, public virtual Base2

int ki
DECLARE_STREAMABLE(IMPEXPMACRO, Derived, 1) i
}i

IMPLEMENT_CASTABLE2(Derived, Basel, Base2)i

. IMPLEMENT_STREAMABLE2(Derived, Basel, Base2)i

void Derived::Streamer::Write(opstream& out) canst
{

WriteBaseObject((Basel *)this, out)i

WriteVirtualBase((Base2 *)this, out)i
out « GetObject()->k;

class MostDerived : public Derived
{

int mi

DECLARE_STREAMABLE(IMPEXPMACRO, MostDerived, 1)i

}i

IMPLEMENT_CASTABLE1(MostDerived, Derived) i
IMPLEMENT_STREAMABLE2(MostDerived, Derived, Base2)i

void MostDerived::Streamer::Write(opstream& out) canst
{

WriteBaseObject((Derived *)this, out)i

out « GetObject()->mi

When you're writing out a base class, don't forget to cast the this pointer.
Without the cast, the template function will think it's writing out your class
and not the base class. The result will be that it calls your Write or Read
function rather than the base's. This results in a lengthy series of recursive
calls, which will eventually crash.

You can assign version numbers to different implementations of the same
class as you change them in the course of maintenance. This doesn't mean
that you can use different versions of the same class in the same program,
but it lets you write your streaming code in such a way that a program
using the newer version of a class can read a stream that contains the data
for an older version of a class. For example: -

class Sample : public TStreamableBase
{

int ii
DECLARE_STREAMABLE(IMPEXPMACRO, Sample, 1)i

}i

IMPLEMENT_CASTABLE(Sample) i

IMPLEMENT_STREAMABLE(Sample)i

Chapter 7, Using Borland class libraries 229

230

void Sample::Streamer::Write(opstream& out) canst
{

out « GetObject()->ii

void *Sample::Streamer::Read(ipstream& in, uint32) canst
{

in » GetObject()->ii
return GetObject()i

Suppose you've written out several objects of this type into a file and you
discover that you need to change the class definition. You'd do it
something like this:

class Sample : public TStreamableBase
{

int ii
int ji II new data member
DECLARE_STREAMABLE(IMPEXPMACRO, Sample, 2) ill new version number
}i

IMPLEMENT_CASTABLE(Sample)i
IMPLEMENT_STREAMABLE(Sample) i
void Sample::Streamer: :write(opstream& out) canst
{

out « GetObject()->ii
out « GetObject()->ji

void *Sample::Streamer: :Read(ipstream& in, uint32 ver) canst
{

in » GetObject()->ii
if (ver > 1)

in » GetObject()->ji
else

GetObject()->j = Oi
return GetObject()i

Streams written with the old version of Sample will have a version number
of 1 for all objects of type Sample. Streams written with the new version will
have a version number of 2 for all objects of type Sample. The code in Read
checks that version number to determine what data is present in the
stream.

Earlier versions of the streaming library don't support object versioning. If
you use the new library to read files created with that library, your Read
function will be passed a version number of o. Other than that, the version
number has no significance to the streaming library, and you can use it
however you want.

Borland C++ for OS/2 Programmers Guide

OS/2 supports both
dynamic and static

linking.

c H A p T E R 8

Dynamic-link libraries

This chapter briefly discusses dynamic-link libraries (DLLs), and dynamic
linking. Descriptions of OS/2 DLL system calls follow these discussions.

DLLs are libraries linked to your program at load time or run time. This is
different from linking for MS-DOS, where copies of routines from static
link libraries are bound to your .EXE file at link time. OS/2 supports both
of these types of linking. '

When a DLL is loaded by OS/2, the DLL can be shared among multiple
applications; one loaded copy of the DLL is all that's necessary.

DLLs provide the following benefits:

• They reduce .EXE file size.

• They allow applications to be changed, extended, or upgraded without
recompiling and relinking (which gives you more flexibility when
providing application upgrades to customers).

• They conserve system memory.

Dynamic linking

Dynamic linking resolves your program's external references at load time
or run time. Resolving external references at load time is called load-time
dynamic linking; resolving external references at run time is called run-time
dynamic linking. Load-time dynamic linking resolves references to DLL
functions that you call when your application is loaded by the system.
Run-time dynamic linking uses OS /2 system calls that enable you to
explicitly load DLLs while executing.

Dynamic linking does not include the code for a library function in your
.EXE file, as in static linking. Dynamic linking occurs in two steps:

1. At link time, dynamic linking binds import records containing DLL and
procedure location information to your .EXE. This temporarily satisfies

Chapter 8, Dynamic-link libraries 231

See Chapter 1 ,
"TLlNK: The Turbo
linker," in the Tools

and Utilities Guide for
more information on

module definition
files.

Creating DLLs

DLL initialization
and termination

232

any external references to DLL routines in your code. These import
records are supplied by module definition files, or by import libraries.

2. At load time or run time, OS/2 uses information in the import records
to locate the DLL and the routines within it, and binds them to your
program. Only the portion of the DLL that you are using is actually
loaded into physical memory.

To make your DLL functions accessible to other applications (.EXEs or
other DLLs) the function names must be exported. Borland C++ lets you
export names in either of two ways:

• Precede the name with the keyword _export in the function or class
definition.

• Enter the function name into the EXPORTS section of the module
definition file for the DLL.

To import a function from a DLL to your application, you can either

• Enter the function name in the IMPORTS section of your application's
module definition file, or

• Link with an import library for the DLL.

Remember, you can use (import) only a DLL function that has been made
available for use (exported). .

You can dynamically link DLLs you've created yourself, or system DLLs;
DLLs compose a large part of the OS/2 operating system. For more
information on exporting and importing functions see Chapter 4 in the
Tools and Utilities Guide.

DLLs are created like .EXEs; source files containing your code are
compiled, then the .0BJs are'linked together. DLLs, though, are linked
differently, and supplying a DLL main function Cdllmain) is optional.

Borland C++ provides a function called _dllmain that, if used, is called by
the start-up code, and performs any initialization or termination work after
any RTL initialization. The prototype for this function is

ULONG _dllmain(ULONG termflag, HMODULE modhandle)

If termflag is 0, DLL initialization is performed. If termflag is I, DLL
termination is performed. modhandle is the module handle assigned by the
operating system to this DLL.

Borland C++ for OS/2 Programmers Guide

DLL option on the
command line

The DLL setting in
the IDE

See Chapter 5,
"Managing multi-file

projects," in the
Users Guide for more

information on
projects.

The _dllmain return code tells the loader if initialization or termination was
successful. A non-zero return code indicates the function was successful. A
return code of 0 indicates failure.

For compilation only, your command line might look like this:

bee -e fool.epp foo2.epp foo3.epp

The -c option tells Bee to compile only. The compiler puts out .OBJ files
the same way for .EXEs and DLLs, so nothing different is done when
compiling .0BJs for .EXEs or DLLs.

To link a DLL requires giving the linker a special option:

tlink /Tod fool.obj foo2.obj foo3.obj

The /Ted switch tells the linker that you want a DLL, not an .EXE file. To
use Bee to compile and link in one step, you would invoke Bee like this:

bee -sd fool.epp foo2.epp foo3.cpp

The -sd switch tells Bee that you want to produce a DLL. After invoking
the compiler, Bee will then invoke the linker with the /Ted switch in order
to produce a DLL. This command will compile and link a DLL called
fool.dll.

To build a DLL within the Borland IDE,

1. Open a new project file by selecting Project I Open Project from the IDE
main menu. Enter the file names for building your DLL, then select the
OK button.

2. Open the settings notebook by selecting Project I View Settirigs. Open to
the Target section of the notebook by clicking on the Target tab at the
right side of the settings notebook.

3. Select OS/2 DLL on the Target page of the notebook. Now the linker
knows to build a DLL. elose the notebook.

4. Select Build on the main menu.

OS/2 DLL system calls

OS/2 system calls are commonly referred to as the application program
interface (API), and are defined in OS2.H. OS/2's DLL API consists of
several system calls that provide for

Chapter 8, Dynamic-link libraries 233

Loading a DLL

Table 8.1
DosLoadModule

return values

234

• Loading DLLs.

• Unloading DLLs.

• Retrieving a DLL handle.
• Retrieving a DLL procedure's address.

• Retrieving a DLL procedure's name.

• Detecting an executable's type.

• Detecting a procedure's type.

The OS/2 system calls have a return type of APIRET, which is an unsigned
long. The values returned are described under each system call.

The calling convention is denoted APIENTRY. This specifies that

• Case is to be preserved (case sensitivity).

• No underscores are prepended.

• The caller pushes parame~ers on the stack from right to left.

• The caller pops the stack on return.

The system call DosLoadModule loads a specified DLL and any other needed
modules or resources into memory at run time. This system call returns a
DLL handl~ to the loading process if the load is successful. The syntax for
this call is

APIRET APIENTRY DosLoadModule(PSZ pszname, ULONG cbName,
PSZ pszModname, PHMODULE phmod)

where

• pszname is the address of a buffer into which the name of an object that
contributed to the failure of this call is to be placed.

• cbName is the length, in bytes, of the buffer pszModname.

• pszModname is the address of the ASCII string containing the DLL name.

• phmod is the address of a doubleword containing the DLL handle.

Table 8.1 lists the DosLoadModule return values and definitions.

Value Definition

0 NO_ERROR

2 ERROR]ILE_NOT _FOUND

3 ERROR_PATH_NOT_FOUND

4 ERROR300_MANY _ OPEN]ILES

5 ERROR_ACCESS _ DEN I ED

8 ERROR_NOT_ENOUGH_MEMORY

Borland C++ for OS/2 Programmers Guide

Freeing a DLL

Table 8.2
DosFreeModule

return values

Table 8.1: DosLoadModule return values (continued)

11 ERROR_BAD JORMAT

26 ERROR_NOT _DOS_DISK

32 ERROR_SHARING_ VIOLATION

33 ERROR_LOCK_ VIOLATION

36 ERROR_SHARING_BUFFER_EXCEEDED

95 ERRORJNTERRUPT

108 ERROR_DRIVE_LOCKED

123 ERRORJNVALID _NAME

127 ERROR_PROC_NOT_FOUND

180 ERRORJNVALID _SEGMENT_NUMBER

182 ERRORJNVALID _ORDINAL

190 ERRORJNVALID _MODULETYPE

191 ERRORJNVALlD_EXE_SIGNATURE

192 ERROR_EXE_MARKED JNVALID

194 ERRORJTERATED _DATA_EXCEEDS _ 64K

195 ERRORJNVALID _MINALLOCSIZE

196 ERROR_DYNLlNKJROMJNVALlD_RING

198 ERRORJNVALlD_SEGDPL

199 ERROR_AUTODATASEG_EXCEEDS_64K

201 ERROR_RELOCSRC_CHAIN_EXCEEDS_SEGLIMIT

206 ERRORJILENAME_EXCED _RANGE

295 ERRORJNIT_ROUTINE_FAILED

The handle returned at the address that phmod points to is used for getting
procedure addresses (entry points) within the DLL, and freeing the DLL.

DosFreeModule notifies the system that your process no longer needs to use
a DLL. The DLL's handle is made invalid.

APIRET APIENTRY DosFreeModule(HMODULE hmodl

where hmod is a valid DLL module handle.

, Table 8.2 lists the DosFreeModule return values and definitions.

Value

o
6

Definition

NO_ERROR

ERRORJNVALID _HANDLE

Chapter 8, Dynamic-link libraries 235

Getting a DLL
name

Table 8.3
DosQueryModule

return values

Getting a DLL
handle

Table 8.4
DosQueryModuleHandle

Table 8.2: DosFreeModule return values (continued)

12 ERROR-,NVALlD_ACCESS

95 ERROR-,NTERRUPT

DosQueryModuleName uses a valid DLL module handle to return the fully
qualified DLL file name. Fully qualified means that the drive name, path,
and extension are included. The syntax is

APIRET APIENTRY DosQueryModuleName(HMODULE hmod, ULONG cbName,
PCHAR pch)

where

• hmod is a valid DLL module handle.

• cbName is the maximum length, in bytes, of the buffer for storing the
module name.

• pch is the address of the buffer for storing the module name.

Table 8.3 lists DosQueryModuleName return values, and definitions.

Value

o
6

Definition

NO_ERROR

ERROR-,NVALID _HANDLE

DosQueryModuleHandle takes a loaded DLL name, and returns that DLL's
handle. The syntax is

APIRET APIENTRY DosQueryModuleHandle(PSZ pszModname, PHMODULE phmod)

where

• pszModname is the address of a string containing the DLL name.

• phmod is the address of a DWORD in which the DLL handle will be
returned.

Table 8.4 lists the DosQueryModuleHandle return values and definitions.

Value Definition
return values --O----N-O-_E-R-R-O-R---------------------

123 ERROR-'NVALlD_NAME

236 Borland C++ for OS/2 Programmers Guide

Getting a DLL
procedure
address

Table 8.5
DosQueryProcAddress

return codes

Getting a DLL
application type

DosQueryProcAddress will return the address of a specific procedure
address with a OLL. The address can be requested via the procedure's
name, or by the procedure's ordinal number. The call syntax is

APIRET APIENTRY DosQueryProcAddress(HMODULE hmod, ULONG ordinal,
PSZ pszname, PFN *ppfn)

where

• hmod is a valid handle for the OLL containing the procedure.

• ordinal specifies the needed procedure's ordinal number. If this is non
zero pszname is ignored.

• pszname is the address of the string containing ~he procedure's name.

• *ppjn is the address of the OWORO where the procedure's address will be
returned (a pointer to the pointer to the procedure).

If the procedure is requested by name, ordinal should be zero. Some OLL
procedures, like the OOSCALLS procedures, can be requested only by
ordinal number. DosQueryProcAddress return values and definitions are
listed in Table 8.5.

Value

o
6

Definition

NO_ERROR

ERRORJNVALID _HANDLE

123 ERRORJNVALlD_NAME

65079 ERROR_ENTRYJS_CALLGATE

DosQueryAppType returns the application type of an executable file. The
syntax is

APIRET APIENTRY DosQueryAppType(PSZ pszName, PULONG pFlags)

where

• pszName is a string containing the file name of the executable file for
which the flags are to be returned. This can be a fully qualified name,
containing drive and path information, or just the file name. If only a file
name is given, then either the current directory is searched, or the current
environment's path is searched for the file. Any extension (.xxx) is
acceptable, and if none is given .EXE is assumed.

Chapter 8, Dynamic-link libraries 237

Table 8.6
pFlags Bits 0-2

Table 8.7
pFlags bits 3-15

Table 8.8
DosQueryAppType

return values

238

• pFlags is a pointer to a doubleword that will contain flags denoting the
application type. Application type is determined by reading the
executable file header.

Bits 2, I, and 0 of pFlags are reserved to indicate the application type, as
specified in the executable file header. Table 8.6 lists these bit settings, and
their definitions and meanings.

Value Definition Meaning

000 FAPPTYP_NOTSPEC Application type is not specified.

001 FAPPTYP _NOTWINDOWCOMPAT Application is not window compatible.

010 FAPPTYP _WINDOWCOMPAT Application is window compatible.

011 FAPPTYP _WINDOWAPI Application is a window API.

Table 8.7 lists bits 3-15 and their definitions and meanings.

Value Definition Meaning

Bit 3 FAPPTYP _BOUND Set to indicate Family API binding information. Bits 0-2 still
apply.

Bit4 FAPPTYP_DLL Set to indicate the executable is a DLL. Bits 0, 1, 2, 3, and 5
will be zero.

Bit5 FAPPTYP _DOS Set to indicate a DOS executable; bits 0-4 are set to zero.

Bit6 FAPPTYP _PHYSDRV Set if executable is a physical device driver.

Bit? FAPPTYP _VIRTDRV Set if executable is a virtual device driver.

Bit8 FAPPTYP _PROTDLL Set if executable is a protected-memory DLL.

Bits 9-13 Reserved.

Bit 14 FAPPTYP _32bit Set if 32-bit executable. .

Bit 15 Reserved.

Table 8.8 lists the DosQueryAppType return values and their definitions.

Value Definition

0 NO_ERROR

2 ERROR_FILE_NOTJOUND

3 ERROR_PATH_NOT JOUND

4 ERROR_ TOO_MANY _OPEN_FILES

11 ERROR_BAD JORMAT

15 ERRORJNVALlD_DRIVE

32 ERROR_SHARING_ VIOLATION

Borland C++ for OS/2 Programmers Guide

Getting a DLL
procedure type

Table 8.9
DosQueryProcType

return values

Table 8.8: DosQueryAppType return values (continued)

108 ERROR_DRIVE_LOCKED

110 ERROR_OPEN_FAILED

191 ERRORjNVALlD_EXE_SIGNATURE

192 ERROR_EXE_MARKEDjNVALID

Application type is specified at link time in the module definition file. OS/2
uses this function to determine the type of application it is executing.

Use DosQueryProcType to determine whether a DLL procedure is a 16-bit or
a 32-bit procedure. The syntax is

API RET APIENTRY DosQueryProcType(HMODULE hmod, ULONG ordinal,
PSZ pszName, PULONG pulproctype)

where

• hmod specifies a valid DLL handle .

.. ordinal is the ordinal number of the procedure whose type is desired .

.. pszname is the address of the string containing the procedure name .

.. pulproctype is the address of a doubleword into which the procedure type
is returned. The value in the doubleword iseither a (PT_16BIT) or 1
(PT_32BIT), indicating whether the procedure is 16-bit or 32-bit.

Table 8.9 lists the DosQueryProcType return values and their definitions.

Value Definition

0 NO_ERROR

6 ERRORjNVALlD_HANDLE

123 ERRORjNVALlD_NAME

182 ERRORjNVALlD_ORDINAL

Chapter 8, Dynamic-link libraries 239

240 Borland C++ for OS/2 Programmers Guide

The intricacies of
designing OS/2

applications, and how
to program under

OS/2, go beyond the
scope of this chapter.

c H A p T E R

Building OS/2 applications

This chapter explains how to use Borland C++ tools to build OS/2
applications. The first part of the chapter describes some important files
you frequently need to use, then shows you step-by-step how to build
applications using either the Borland C++ Integrated Development
Environment (IDE) or the command-line tools.

9

OS/2 applications can be either text-based applications, or graphical
applications. Text-based applications run under full-screen OS/2, or within
an OS/2 window running under Presentation Manager (PM), the OS/2
graphical user interface (GUI). PM provides the windowed work
environment for OS/2.

Two simple applications from the EXAMPLES directory are used to
illustrate the building process. PMHELLO is a window version of the
familiar "hello world" program. This application runs under PM.
BLACKBOX is a text-based application that uses a dynamic-link library.
This application runs in full-screen OS/2, or within an OS/2 window
under PM.

Figure 9.1 illustrates the process of building a PM application.

Chapter 9, Building OS/2 applications 241

Figure 9.1
Compiling and linking

a PM program

242

The following list describes each step required to compile and link a
PM program. The step numbers correspond to the numbers shown in
Figure 9.1.

1. Source code is compiled or assembled, producing .OBJ files.

2. Module definition files (.DEF) tell the linker what kind of executable
you want to produce.

3. Linking produces an intermediate .EXE file, one without bound
resources.

4. Resource Workshop (or some other resource editor) creates resources,
like icons or bitmaps. A resource file (.RC) is produced. See the
Resource Workshop documentation for more information on using
Resource Workshop.

5. The .RC file is compiled by a resource compiler or Resource Workshop,
and a binary .RES file is output.

6. The .RES file is linked to the intermediate .EXE file, producing the final
.EXE file. This step binds your resources to the executable.

The section "Building applications within the IDE", on page 246, steps you
through building OS/2 applications in the Borland c++ IDE. If you use the
command-line tools or the make utility, then read "Building applications
with the command line tools," later in this chapter. The following sections

Borland C++ for OS/2 Programmers Guide

describe important files you will have to use when building your
application.

Resource script files

See Chapter 5,
"Resource tools," in

the Tools and Utilities
Guide for a complete

discussion of
resource tools.

PM is the window-based, graphical user interface for OS/2. PM
applications typically use resources. Resources are icons, menus, dialog
boxes, fonts, cursors, bitmaps, or other user-defined resources. Resources
are defined in a file called a resource script file, also known as a resource
file. These files have the file name extension .RC.

To make use of resources, you must use the Borland Resource Compiler
(BRCC), or the OS/2 resource compiler (RC) to compile your .RC file into a
binary format. Resource compilation creates a .RES file. RC can then bind
the .RES file to the .EXE file output by the linker. This process also marks
the .EXE file as a PM executable.

Module definition files

Module definition files
are described in

detail in Chapter 1 ,
"TLlNK: The Turbo
linker," in the Tools
and Utilities Guide.

A module definition file provides information to the linker about the
contents and system requirements of an OS/2 application. This information
includes heap and stack size, and code and data characteristics. Module
definition files list functions that are to be made available for other modules
(export functions), and functions that are needed from other modules
(import functions). Because TLINK and the IDE linker have other ways of
finding out the information contained in a module definition file, module
definition files are not required for Borland C++'s linker to create a PM
application.

Here's the module definition file for the PMHELLO example:

NAME prnhello WINDOWAPI
DESCRIPTION 'Borland Ctt for OS/2 Hello App'
STUB 'OS2STUB.EXE'
DATA MULTIPLE
STACKSIZE 4096
PROTMODE

Let's inspect this file, statement by statement:

• NAME specifies a name for a program. If you want to build a DLL
instead of a program, you would use the LIBRARY statement. Every
module definition file should have either a NAME statement or a
LIBRARY statement, but never both. The name specified must be the

Chapter 9, Building OS/2 applications 243

The 3xport keyword
should immediately

precede the function
name.

244

same name as the executable file. WINDOW API identifies this program
as a PM executable.

• DESCRIPTION lets you specify a string that describes your application
or library.

• The STUB statement specifies an executable to be invoked when the
executable cannot be loaded by OS/2. Borland C++ uses a built-in stub
for PM applications. The built-in stub simply checks to see if the
application was loaded under PM, and, if not, terminates the application
with a message that PM is required. If you want to write and include a
custom stub, specify the name of that stub with the STUB statement.

• DATA defines the default attributes of data segments. The MULTIPLE
option ensures that each instance of the application has its own data
segment.

• STACKSIZE specifies the size of the application's local stack. You can't
use the STACKSIZE statement to create a stack for a DLL.

• PROTMODE specifies that this application runs in protected mode.
TLINK ignores this statement, since all OS/2 applications run in
protected mode.

Two important statements not used in this .DEF file are the EXPORTS and
IMPORTS statements.

The EXPORTS statement lists functions in a program or DLL that will be
called by other applications or by PM. In other words, the EXPORTS
statement is a list of functions you want to make available to other
applications or the operating system. These functions are known as export
functions, callbacks, or callback functions. Functions listed in the EXPORTS
statement are identified by the linker and entered into an export table.

To help you avoid the necessity of creating and maintaining long EXPORTS
sections in your module definition files, Borland C++ provides the _export
keyword. Functions flagged with _export will be identified by the linker
and entered into the export table for the module. This is why the
PMHELLO example has no EXPORT statement in its module definition file.

This application doesn't have an IMPORTS statement either because the
only functions it calls from other modules are those from the PM
Application Program Interface (API); those functions are imported via the
automatic inclusion of the OS2.LIB import library. When an application
needs to call other external functions, these functions must be listed in the
IMPORTS statement, or included via an import library.

Borland C++ for OS/2 Programmers Guide

Import libraries

Project files

When you use DLLs, you must give the linker definitions of the functions
you want to import from DLLs. This information temporarily satisfies the
external references to the functions put out by the compiler, and tells the
system where to find the functions at load or run time.

There are two ways to tell the linker about import functions:

• You can add an IMPORTS section to the module definition file and list
every DLL function that the module will use, or

• You can include an import library for the DLLs when you link the
module.

An import library contains import definitions for some or all of the
exported functions for one or more DLLs. A utility called IMPLIB creates
an import library for DLLs. IMPLIB creates an import library directly from
DLLs or from a DLL's module definition files, or a combination of the two.
See Chapter 4, "Import library tools," in the Tools and Utilities Guide for an
explanation of how to use this tool.

Import libraries can be substituted for all or part of the IMPORTS section of
a module definition file.

Project files automate the process of building OS/2 applications when
using the Borland C++ IDE. Project files contain information about how to
build a particular application, and have the file name extension .PRJ. Using
a tool called the Project Manager, you can create and maintain project files
that describe each of the applications you are developing, and that build
the projects into applications. Project files contain a list of the files to be
processed, and the switch settings for each tool used. This information is
used by the Project Manager to automatically build the application. Project
files and the Project Manager are the IDE equivalent of makefiles and the
make utility, but project files are easier to maintain and use than makefiles.

For example, if you enter HELLO.CPP, HELLO.RC, and HELLO.DEF into a
project file, the Borland C++ Project Manager will

• Create HELLO.OBJ by compiling HELLO.CPP with the C++ compiler.

• Create HELLO.RES by compiling HELLO.RC with the Resource
COJ;llpiler.

Chapter 9, Building OS/2 applications 245

Setting project
options

• Create HELLO.EXE by linking HELLO.OBJ with appropriate libraries,
using information contained in HELLO.DEF.

• Create the final HELLO.EXE by compiling and binding the resources
contained in HELLO.RES to HELLO.EXE.

Each project has an associated notebook, accessed through the Project I
View Settings menu item. The project notebook is divided into sections,
each of which have one or more pages. Each page contains different setting
options for IDE tools and the environment.

The project notebook records the specific compiler, linker, and other
settings for a project. When you create a project, the project's associated
notebook initially contains default settings. When you change these settings
they are recorded in that project's .PRJ file. Thereafter, when you build that
project those settings will be used.

The project notebook settings are fully described in Chapter 3, "Menus and
options reference," in the User's Guide, but here are brief descriptions of
some important notebook contents:

• The Target section of the project notebook sets the output target, for
example EXEs or DLLs.

• The Compiler section of the project notebook sets compiler switches that
control code generation, optimizations, and debug information.

• The Linker section of the project notebook sets linker switches that
control case sensitivity, warnings, libraries, and mapfiles.

• The Directories section sets paths for include files, libraries, source files,
and object files.

Building applications within the IDE

IDE commands and
options are described

in Chapter 2, "IDE
basics," in the Users

Guide.

Building the
PMHELLO
program

246

This section explains how to use the Borland Project Manager to build EXEs
and DLLs with the IDE. You will produce a simple PM executable called
PMHELLO.EXE, and a simple DLL called BLACKBOX.DLL. Assuming you
have installed Borland C++ in C: \, the files for these examples are located
in \BCOS2\EXAMPLES\PMHELLO and \BCOS2\EXAMPLES\
BLACKBOX.

The Borland C++ example program PMHELLO can be built into a PM
application by taking the following steps:

1. Open the project file PMHELLO.PRJ.

Borland C++ for OS/2 Programmers Guide

See Chapter 5,
"Managing multi-file

projects," in the
Users Guide for

information on using
the Project Manager.

Building a DLL
within the IDE

Select Project I Open Project. Use the Directory Name box to move to
BCOS2\EXAMPLES\PMHELLO. Click PMHELLO.PRJ when it appears
in the File box to open the project.

2. Set or verify options. Select Project I View Settings to open the project
notebook. Click the Target tab, and verify that WORD PM Exe is
selected in the Program Target box. Close the notebook.

3. Build the project. Select Compile I Build All to build the project.

4. Run the application. Select Run I Run to run the PMHELLO application.

This process can be generalized into the following steps you can follow to
build and run a PM application with Borland C++:

1. Create a project.

2. Add the source files, resource script files, import libraries (if necessary),
and the module definition file (if necessary) to the project.

3. Establish the compiler, linker, and other tool environment settings in the
project notebook.

4. Build the project.

5. Run the application.

In this section you will build both the DLL BLACKBOX and an .EXE file,
USEBLACK, that uses the DLL.

To build BLACKBOX.DLL, follow these steps:

1. Open the project file BLACKBOX.PRJ. Select Project I Open Project. Use
the Directory Name box to move to \BCOS2\EXAMPLES\BLACKBOX.
Click BLACKBOX.DLL when it appears in the File box to open the
project.

2. Set or verify options. Select Project I View Settings to open the project
notebook. Click the Target tab of the notebook, and verify that OS/2
DLL is selected in the Target box. Close the notebook.

3. Build the project. Select Compile I Build All to build BLACKBOX.DLL.

To produce USEBLACK.EXE, which uses BLACKBOX.DLL, follow these
steps:

1. Open the project file USEBLACK.PRJ. Select Project I Open Project. Click
USEBLACK.PRJ to open the project.

2. Set or verify options. Select Project I View Settings to open the project
notebook. Click the Target tab of the notebook, and verify that OS/2
EXE is selected in the Target box. Close the notebook.

Chapter 9, Building OS/2 applications 247

3. Build the project. Select Compile I Build All to build USEBLA CK.EXE.

4. Run the application. Select Run I Run to run USEBLACK.EXE.

The DLL building process can be generalized into the following steps:

1. Create the DLL source files. Optionally, create the resource script file
and the module definition file.

2. Select Project I Open Project to start a new project.

3. Select Project I Add Item, and add the source and resource script files for
the DLL. If you have created a module definition file for the DLL, add it
to the project. Remember that Borland C++ can link without one. To
link without a module definition file for the DLL, you must have
flagged every function to be exported in the DLL with the keyword
_export.

4. Select Project I View Settings. In the Target section of the project
notebook select OS/2 DLL. Make any other changes you might want,
then close the notebook.

5. Select Compile I Build All.

Building applications with the command-line tools

Building the
PMHELLO
program

Each command is
described in the

following sections.

Compiling

248

This section explains how to use the Borland command-line tools to build
EXEs and DLLs. You will produce a simple PM executable called
PMHELLO.EXE, and a simple DLL called BLACKBOX.DLL. Assuming you
have installed Borland C++ in C:\, the files for these examples are located
in \BCOS2\EXAMPLES\PMHELLO and \BCOS2\EXAMPLES\
BLACKBOX.

To build the example program PMHELLO using the command-line tools,
enter:

BCC -c pmhello.cpp
TLINK /Toe faa /c /LC:\BORLANDC\LIB c02 pmhello, pmhello, , c2 os2,

pmhello
BRCC -r pmhello.rc
BRCC pmhello.res pmhello.exe

Given the command line

BCC -c prnhello.cpp

Borland C++ for OS/2 Progr:ammers Guide

Linking

Borland C++ compiles PMHELLO.CPP into PMHELLO.OBJ. The -e option
suppresses the link phase. This switch could just as well have been left out,
and the following link step would have been done automatically. To
include debugging information, add the -v option.

The general form for invoking the command-line compiler is

BCC [options] files

See Chapter 6, "Command-line compiler," in the User's Guide for a complete
description of command-line compiler options.

The command

TLINK IToe laa Ie ILC:\BORLANDC\LIB c02 prnhello, prnhello, , c2 os2, prnhello

links PMHELLO.OBJ with the correct libraries and startup code. The
TLINK command line is composed of options followed by five file names
or groups of file names, with each group separated by a comma.

The /Toe option tells TLINK to create an .EXE (the /Tod option creates
DLLs). The faa switch specifies that a PM windowing API application will
be created. The fe switch forces case to be significant in public and external
symbols. fL followed by a path name tells TLINK where to look for library
files and for the startup .OBJ code.

The object files to link are listed next in the command line. C02.0BJ is the
initialization module for PM programs (C02D.OBJ is the initialization
module for PM DLLs), and PMHELLO.OBJ is the program module for this
application. The .OB} extension is assumed for these files.

The next file on the command line, PMHELLO, is the name you want
TLINK to give the executable file. The .EXE extension is assumed when you
create a PM application, and the .DLL extension is assumed when you
create a DLL.

The next place on the command line is where you name the map file. If no
name is given, as in this example, TLINK gives the map file the name of the
executable and adds the .MAP extension. After you run this command,
PMHELLO.MAP appears in the examples directory.

The library files to link with are listed after the map file. C2 is the static link
C run-time library, OS2 is the import library that provides access to the PM
application program interface (API) functions. The .LIB extension is
assumed for all library files.

The last file name on the TLINK command line is the module definition file,
PMHELLO.DEF (the .DEF extension is assumed). Module definition files

Chapter 9, Building OS/2 applications 249

Compiling and
binding resources

Compiling and
linking a DLL from
the command line

250

are described briefly on page 243, and in detail in Chapter I, "TLINK: The
Turbo linker," in the Tools and Utilities Guide.

The general form for invoking TLINK is:

TLINK options objfiles, exefile, mapfile, libfiles, deffile

TLINK can also be invoked using a response file:

TLINK @respfile

See Chapter 1 in the Tools and Utilities Guide for a complete description of
TLINK command-line options.

Once the PMHELLO application is compiled and linked, you must compile
the resource script file to a binary form, and then use this binary form of the
resource file to bind the resources to the executable. First, compile the
PMHELLO.RC file with the command

BRCC -r pmhello.re

This produces a PMHELLO.RES file (-r instructs RC not to add the result to
the executable of the same name). Now, invoke RC again to add the binary
resource file to the executable:

BRCC pmhello.res pmhello.exe

Actually, RC makes it easier than we've shown here, because it can compile
an .RC file into a .RES file and then add it to the executable all in one step.
Furthermore, if the executable file has the same first name as the resource
file, then you don't need to specify the executable file on the command line
at all. So, the previous two commands can be rewritten like this:

BRCC pmhello

To compile and link the DLL BLACKBOX, change directory to BCOS2\
EXAMPLES\BLACKBOX, and then type the following:

BCC -sd blaekbox.e

This will compile and link the DLL. BCC takes care of linking in the correct
startup code and libraries. The -sd option tells the compiler to build a DLL.

To compile and link BLACKBOX.DLL in separate steps use BCC and
TLINK like this:

BCC -e blaekbox.e

TLINK /Tod /e /LC:\BORLANDC\LIB e02d blaekbox, blaekbox, , e2 os2,
blaekbox

Borland C++ for OS/2 Programmers Guide

Using MAKE

For complete
information on using

MAKE see Chapter 2,
"Managing programs

with MAKE," in the
Tools and Utilities

Guide.

The /Tad linker option indicates that a DLL will be produced, and Ie forces
case to be significant in public and external symbols. The IL option specifies
a library and startup file search path.

The c02d .OBJ file is the DLL start-up code.

You can use the MAKE utility to save time when building applications. The
two main benefits of using MAKE are:

• MAKE automatically invokes tools.

• MAKE recompiles or relinks only when necessary. For example, a source
file will be compiled only if it has changed since the last time it was
compiled.

MAKE takes a makefile as input. The invocation syntax is

MAKE [options] [make files]

where options are make options, and makefiles are zero or more files
containing lists of rules for MAKE to evaluate.

When MAKE is invoked without any arguments, it looks for a file called
makefile in the current directory. When you want to give MAKE a specific
makefile name, then you must use the -f option.

To build the examples PMHELLO and BLACKBOX using MAKE, make
sure you are in either of their respective directories, and type

make

Linking with the Borland DLLs

Borland c++ provides DLL versions of its run-time libraries. These DLLs
and their import libraries are:

• C2.DLL, a DLL version of the run-time library C2.LIB.

• C2LLIB, the import library for C2.DLL.

• C2MT.DLL, a DLL, multi-thread version of C2.LIB.

• C2MTLLIB, the import library for C2MT.DLL.

The next three sections describe how to link C2.DLL using the IDE, BCC,
and TLINK, respectively. The section following that describes how to link
with the multi-thread libraries.

Chapter 9, Building OS/2 applications 251

IDE

Bee

TLiNK

To link an .EXE with C2.DLL when using the IDE, you must make a change
in a project's settings notebook. Here are the steps for making that change:

1. Open your project file.

2. Open the settings notebook via menu item Project I View Settings.

3. Tab to the Linker section, then tab to the Libs page .

. 4. Under Standard Run-Time Libraries, select Dynamic.

This causes the import lib C2I.LIB to be used in the link, instead of the
static-link library C2.LIB.

To link an .EXE with C2.DLL, invoke BCC like this:

bee rnyobjl rnyobj2 e2i.lib

This causes C2.DLL's import lib, C2I.LIB, to be linked in ahead of any other
libraries. Add the -sd switch when linking a DLL.

To link an .EXE with C2.DLL using TLINK, enter the following command:

tlink IToe Ie c02 rnyobjl rnyobj2, rnyexe, rnyrnap, e2i.lib otherlibs, deffile

Replace the /Toe switch with /Tod, and c02 with c02d when linking a DLL.

Linking with the multi-thread libraries

252

Borland C++ provides several libraries that support OS/2's multi-thread
capabilities. These libraries are

• C2MT.LIB, the multi-thread version of C2.LIB.

• C2MTX.LIB, the exported version of C2MT.LIB; all user accessible
functions have the _export attribute. This library is useful for creating
DLLs that have exportable Borland run-time library functions.

• C2MT.DLL, the DLL version of C2MT.

• C2MTI.LIB, the import library for C2MT.DLL.

Borland C++ for OS/2 Programmers Guide

IDE

Bee

TLiNK

To link with C2MT.LIB using the IDE, follow these steps:

1. Open your project file.

2. Open the settings notebook via Project I View Settings

3. Tab to the Target section of the settings notebook.

4. Under Thread Options choose Multi-thread.

To link with C2MT.DLL, add the following steps:

5. Tab to the Linker section of the settings notebook; tab to the Libs page
of the Linker section.

6. Under Standard Run-time Libraries, select Dynamic

This causes the import library C2MTLLIB to be used in the link.

To link with the multi-thread export library C2MTX.LIB using the IDE,
follow these steps: .

1. Open your project file.

2. Open the settings notebook via Project I View Settings

3. Tab to the Linker section of the notebook; tab to the Libs page of the
Linker section.

4. Under Standard Run-time Libraries select None.

5. Close the settings notebook.

6. Add the library C2MTX.LIB to the project via Project I Add Item.

To link with C2MT.LIB using BCC, use this command line:

bee -sm myobjl myobj2

If you are linking with C2MT.DLL, the command line would look like this:

bee -sm -sd myobjl myobj2

This causes the import library C2MTLLIB to be used in the link.

To link an .EXE file with C2MT.LIB using TLINK, use this command line:

tlink /toe c02 myobjl, myobj2, myexename, mymap, e2mt.lib otherlibs

To link a DLL with C2MT.DLL, the command line would look like this:

tlink /tod e02d myobjl, myobj2, myexename, mymap, e2mti.lib otherlibs

Chapter 9, Building OS/2 applications 253

254 Borland C++ for OS/2 Programmers Guide

c H A p T E R 10

Mathematical operations

This chapter describes the floating-point options and explains how to use
complex and bed numerical types.

Floating-point I/O

Floating-point output requires linking of conversion routines used by
printf, scanf, and any variants of these functions. To reduce executable size,
the floating-point formats are not automatically linked. However, this
linkage is done automatically whenever your program uses a mathematical
routine or the address is taken of some floating-point number. If neither of
these actions occur, the missing floating-point formats can result in a run
time error.

The following program illustrates how to set up your program to properly
execute.

/* PREPARE TO OUTPUT FLOATING-POINT NUMBERS. */
#include <stdio.h>

#pragma extref _floatconvert

void main() {
printf("d = %f\n", 1.3);

Floating-point options

There are two types of numbers you work with in C: integer (int, short,
long, and so on) and floating point (float, double, and long double). Your
computer's processor can easily handle integer values, but more time and
effort are required to handle floating-point values.

Chapter 10, Mathematical operations 255

If you have an 80486
or Pentium processor,

the numeric
coprocessor is

probably already built
in.

Fast floating-point
option

Registers and the
80x87

Disabling
floating-point
exceptions

256

The 80x87 is a special hardware numeric processor that can be installed in
your PC. It executes floating-point instructions very quickly. If you use
floating point a lot, you'll probably want a coprocessor. The CPU in your
computer interfaces to the 80x87 via special hardware lines.

Borland C++ has a fast floating-point option (the -ff command-line
compiler option). It can be turned off with -ff- on the command line. Its
purpose is to allow certain optimizations that are teclmically contrary to
correct C semantics. For example,

double x;
x= (float) (3.5*x);

To execute this correctly, x is multiplied by 3.5 to give a double that is
truncated to float precision, then stored as a double in x. Under the fast
floating-point option, the long double product is converted directly to a
double. Since very few programs depend on the loss of precision in passing
to a narrower floating-point type, fast floating point is the default.

If you are mixing floating point with inline assembly, you might need to
take special care when using 80x87 registers. Unless you are sure that
enough free registers exist, you might need to save and pop the 80x87
registers before calling functions that use the coprocessor.

By default, Borland C++ programs abort if a floating-point overflow or
divide-by-zero error occurs. You can mask these floating-point exceptions
by a call to _controlS7 in main, before any floating-point operations are
performed. For example,

#include <float.h>
main () {

_contro187 (MCW_EM,MCW_EM) ;

You can determine whether a floating-point exception occurred after the
fact by calling _statusS7 or _clearS7. See the Library Reference entries for these
functions for details.

Certain math errors can also occur in library functions; for instance, if you
try to take the square root of a negative number. The default behavior is to
print an error message to the screen, and to return a NAN (an IEEE not-a
number). Use of the NAN is likely to cause a floating-point exception later,

Borland C++ for OS/2 Programmers Guide

which will abort the program if unmasked. If you don't want the message
to be printed, insert the following version of _matherr into your program:

#include <math.h>
int _matherr(struct _exception *e)
{

return 1; 1* error has been handled *1

Any other use of _matherr to intercept math errors is not encouraged; it is
considered obsolete and might not be supported in future versions of
Borland C++.

Using complex types

See the Library
Reference, Chapter

7, for more
information.

Complex numbers are numbers of the form x + yi, where x and yare real
numbers, and i is the square root of -1. Borland C++ has always had a type

struct complex
{

double x, y;
};

defined in math.h. This type is convenient for holding complex numbers,
because they can be considered a pair of real numbers. However, the limita
tions of C make arithmetic with complex numbers rather cumbersome.
With the addition of C++, complex math is much simpler.

A significant advantage to using the Borland C++ complex numerical type is
that all of the ANSI C Standard mathematical routines are defined to
operate with it. These mathematical routines are not defined for use with
the C struct complex.

To use complex numbers in C++, all you have to do is to include
complex.h. In complex.h, all the following have been overloaded to handle
complex numbers:

• All of the binary arithmetic operators.

• The input and output operators, » and «.
• The ANSI C math functions.

The complex library is invoked only if the argument is of type complex.
Thus, to get the complex square root of -1, use

sqrt(complex(-l))

Chapter 1 0, Mathematical operations 257

and not

sqrt (-1)

The following functions are defined by class complex:

double arg(complex&); II angle in the plane
complex conj(complex&); II complex conjugate
double imag(complex&); II imaginary part
double norm(complex&); II square of the magnitude
double real(complex&); II real part
II Use polar coordinates to create a complex.
complex polar(double mag, double angle = 0);

Using bed types

See the Library
Reference, Chapter

7, for more
information.

258

Borland C++, along with almost every other computer and compiler, does
arithmetic on binary numbers (that is, base 2). This can sometimes be
confusing to people who are used to decimal (base 10) representations.
Many numbers that are exactly representable in base la, such as 0.01, can
only be approximated in base 2.

Binary numbers are preferable for most applications, but in some situations
the round-off error involved in converting between base 2 and 10 is
undesirable. The most common example of this is a financial or accounting
application, where the pennies are supposed to add up. Consider the
following program to add up 100 pennies and subtract a dollar:

#include <stdio.h>
int i;
float x = 0.0;
for (i = 0; i < 100; ++i)

x += 0.01;
x -= 1.0;
printf("100*.01 - 1 = %g\n",x);

The correct answer is 0.0, but the computed answer is a small number close
to 0.0. The computation magnifies the tiny round-off error that occurs when
converting 0.01 to base 2. Changing the type of x to double or long double
reduces the error, but does not eliminate it.

To solve this problem, Borland C++ offers the C++ type bcd, which is
declared in bcd.h. With bcd, the number 0.01 is represented exactly, and the
bed variable x provides an exact penny count.

#include <bcd.h>
int i;
bcd x = 0.0;

Borland C++ for OS/2 Programmers Guide

Converting bcd
numbers

Number of
decimal digits

for (i = 0; i < 100; tti)
x t= 0.01;

x -= 1.0;
ciout « "100*.01 - 1 = " « x « "\n";

Here are some facts to keep in mind about bed:

II bed does not eliminate all round-off error: A computation like 1.0/3.0 will
still have round-off error.

a bed types can be used with ANSI C math functions .

• bed numbers have about 17 decimal digits precision, and a range of about
1 x 10-125 to 1 X 10125.

bed is a defined type distinct from float, double, or long double; decimal
arithmetic is performed only when at least one operand is of the type bed.

The bed member function real is available for converting a bed number back
to one of the usual formats (float, double, or long double), though the
conversion is not done automatically. real does the necessary conversion to
long double, which can then be converted to other types using the usual C
conversions. For example, a bed can be printed using any of the following
four output statements with eout and printj.

1* PRINTING bcd NUMBERS *1
1* This must be compiled as a ett program. *1
#include <bcd.h>
#include <iostream.h>
#include <stdio.h>

void main(void) {
bcd a = 12.1;
double x = real(a); II This conversion required for printf().

printf("\na = %g", x);
printf("\na = %Lg", real(a));
printf (" \na = %g", (double) real(a)) ;
cout « "\na = " « a; II The pref~rred method.
}

Note that since print! doesn't do argument checking, the format specifier
must have the L if the long double value real(a) is passed.

You can specify how many decimal digits after the decimal point are to be
carried in a conversion from a binary type to a bed. The number of places is
an optional second argument to the constructor bed. For example, to
convert $1000.00/7 to a bed variable rounded to the nearest penny, use

bcd a = bcd(1000.00/7, 2)

Chapter 10, Mathematical operations 259

This method of
rounding is specified

by IEEE.

260

where 2 indicates two digits following the decimal point. Thus,

1000.00/7 = 142.85714 ...
bed(1000.00/7, 2) = 142.860
bed(1000.00/7, 1) 142.900
bed (1000.00/7, 0) 143.000
bed(1000.00/7, -1) 140.000
bed(1000.00/7, -2) 100.000

The number is rounded using banker's rounding, which rounds to the
nearest whole number, with ties being rounded to an even digit. For
example,

bed(12.335,2)
bed(12.345, 2)
bed(12.355, 2)

= 12.34
12.34
12.36

Borland C++ for OS/2 Programmers Guide

c H A p T: E R 1 1

OS/2 memory management

This chapter describes the memory management system used by OS/2
version 2.x. It includes discussions of

• The flat memory model

• Virtual memory and paging

• Using OS /2 memory services

The OS/2 32-bit virtual memory scheme frees you from 16-bit memory
management complexity and constraints, has a 512MB virtual address
space for each running application, and is transparent to the user.

Flat memory model

In the flat memory model, the programmer sees a large single array of
memory. Memory is a large linear address space, rather than a collection of
segments. This makes programming easier, and makes code written for
OS/2 portable. In the flat model, the unit of memory allocation and sharing
is called a memory object instead of a segment as in OS/2 version l.x.

Each application has its own distinct zero-based linear address space, as
opposed to a collection of segments. When OS/2 loads the segment
registers with selectors for descriptors that encompass the entire 32-bit
linear address space, this has the effect of disabling segmentation. Once
loaded by the system, the segment registers don't need to be changed. The
32-bit offsets used by the 80386 instructions are adequate to address the
entire linear address space.

Virtual memory and paging

OS/2 is a paged, virtual memory system. Each application is given a region
of physical memory when run. The size of this physical memory region
depends on the amount of RAM you have in your machine. The physical
memory region might not be big enough for the system to load your

Chapter 11, OS/2 memory management 261

OS/2 page size is
4KB.

application, but this is no problem for a virtual memory system like OS/2.
A virtual system divides your application into pieces called pages, then
loads only those pages necessary to begin executing your application.

As your application runs, a page of your application that hasn't been
loaded into your physical memory region will be needed. That is, some of
your application is still out on your hard disk, and it needs to be in RAM to
execute. If there is enough space in your physical memory region, the
system will load this needed page into physical memory; if not, the system
has to swap out a page already in your physical memory region to make
room for the needed page, swap in the needed page, and then continue
executing.

An executing application is known as a process. Each process has a 512MB
virtual address space under OS/2 version 2.x, which is known as the process
virtual address space. To maintain 16-bif compatibility, only 512MB of the
4GB address space is usable at this time.

There is also a system virtual address space that addresses the entire linear
address space, 4GB. This allows the system to address all processes, and is
the address space used when the kernel is executing.

Using OS/2 memory services

Private memory

262

This section describes the most important OS/2 API calls for memory
services. You can use these calls in place of standard C and C++ memory
calls in your code. You can allocate memory as either private to a process,
or shared among processes. Each process virtual address space has separate
private and shared virtual memory areas.

The system call DosAllocMem allocates a private memory object within a
process virtual address space. The syntax for this call is

APIRET APIENTRY DosAllocMern(PPVOID ppb, ULONG cb, ULONG flags)

where

• APIRET stands for API return, and is an unsigned long.

• APIENTRY specifies case preservation, no prepended underscore, and that
the caller pushes parameters from right to left and cleans the stack (the C
convention).

• ppb is a pointer that receives the base address of the allocated private
memory object.

Borland C++ for OS/2 Programmers Guide

Shared memory

Named shared
memory

• cb is the size, in bytes, of the memory object. The size is rounded up to
the next page-size boundary.

• flags is a set of allocation flags describing the allocation attributes, and
access protection for the private memory object.

The system call DosFreeMem deallocates private memory objects. The base
address of a valid memory object is the only valid parameter. The syntax is

APIRET API ENTRY DosFreeMem(PVOID pb)

The system call DosAllocSharedMem allocates a shared memory object
within a process virtual address space. The syntax for this call is

APIRET APIENTRY DosAllocSharedMem(PPVOID ppb, PSZ pszname, ULONG cb,
ULONG flag)

where

• ppb is a pointer to a variable that receives the base address of the shared
memory object.

• pszname is an optional address of the name string associated with the
shared memory object. The name is an ASCII string in the form of an
OS/2 file name.

• cb is the size, in bytes, of the memory object, rounded up to the next
· page-size boundary.

• flags is a set of allocation flags describing the allocation attributes, and
access protection for the shared memory object.

OS/2 uses two methods of sharing memory: named shared memory, and
give-get shared memory. Both types are allocated using
DosAllocSharedMem. Shared memory is also freed using DosFreeMem.

Named shared memory shares memory based on a globally known name.
Named shared memory enters the named object, given in the pszname
parameter to DosAllocSharedMem, under the \SHAREMEM directory.
Named shared-memory objects are accessed by processes other than the
creator process by a call to DosGetNamedSharedMem. The syntax is

APIRET APIENTRY DosGetNamedSharedMem(ppb, pszName, flag)

where

• ppb is a pointer that receives the base address of the allocated shared
memory object.

Chapter 11, OS/2 memory management 263

Give-get shared
memory

264

• pszname is the address of the name string associated with the shared
memory object. The name is an ASCII string in the form of an OS/2 file
name.

• flags sets access protection for the shared memory object.

The name of the shared memory object must include the prefix
\SHAREMEM\.

Give-get shared memory is allocated with the giveable and getable flags set
in the flag parameter. Giveable shared objects are given to other processes
by a call to DosGiveSharedMem. Getable shared objects can be mapped into a
requesting process's virtual address space by a call to DosGetSharedMem.

The syntax for DosGiveSharedMem is

APIRET APIENTRY DosGiveSharedMem(PVOID pb, PID pid, ULONG flag)

where

• pb is the base virtual address for a giveable memory object as assigned by
DosAllocSharedMem.

• pid identifies the target process that is to be given access to the shared
memory object.

• flag sets the desired access protection for the shared memory object.

DosGiveSharedMem gives a specific process access to a shared memory
object. This call allocates the virtual address of the shared memory object
within the virtual address space of the target process. The virtual address
of the giveable object is identical to the base address returned by the
DosGiveSharedMem call. The creating and receiving processes must use
some form of InterProcess communication (IPC) to exchange this value.

The syntax for DosGetSharedMem is

APIRET APIENTRY DosGetSharedMem(PVOID pb, ULONG flag)

where

• pb is the base virtual address for a giveable memory object as assigned by
DosAllocSharedMem.

• flag sets the desired access protection for the shared memory object.

DosGetSharedMem obtains access to a shared memory object. Getting access
to a shared object means allocating the virtual address of the object in the
virtual address space of the requesting process. This virtual address is the
same as the memory object's base address returned by DosAllocSharedMem
when it was created. Getable share memory objects are mapped at the same
virtual address in all processes that have access to the object.

Borland C++ for OS/2 Programmers Guide

By default,-8
invokes TASM. You
can override it with

-Exxx, where xxx is
another assembler.

See Chapter 6,
"Command-line
compiler," in the
Users Guide for

details.

c H A p T E R 12

Inline assembly

This chapter explains how to embed assembly instructions in your C or
C++ code. This technique is called inline assembly. The assembly
instructions are assembled and inserted in the instruction stream generated
by the compiler.

Borland C++ also supports linking C or C++ .OB} files with separate
assembler .OB} files. Read the Turbo Assembler (TASM) manuals for more
information on using assembly language in this way. In particular, see
"Interfacing Turbo Assembler with Borland C++" in the Turbo Assembler
User's Guide.

There are four ways to tell the compiler that you are using assembly
instructions:

• The keyword asm.

• The -8 command-line compiler option.

• The #pragma inline preprocessor statement.

• In the IDE, the Project settings notebook (select the Compile via
assembler option of the compiler code generation section of the
notebook).

The asm keyword must preface any assembler instruction you want
embedded in your code. When the compiler discovers asm in your code,
the compiler emits assembly instructions, then calls T ASM. A warning is -
issued by the compiler if it finds asm in your code and you haven't used
either the -8 switch or the -S switch (which produce the .ASM file), or
#pragma inline.

The -8 command-line compiler switch informs the compiler that you want
to produce an .OB} file via T ASM, regardless of embedded assembly
instructions. When -8 is used, the compiler produces assembly
instructions, then invokes T ASM to assemble them.

#pragma inline tells the preprocessor that assembly language instructions
are contained within the module. The -8 compiler option is then enabled.

Chapter 12, Inline assembly 265

Inline syntax

The initial brace must
appear on the same

line as the 8sm
keyword.

With these options, the compiler first generates an assembly file, then
invokes TASM on that file to produce the .OBJ file.

The keyword asm introduces inline assembly language instructions. The
format is

asm apcade operands; or newline

where

• apcade is a valid 80386, 80486, 80387, 80487, or Pentium instruction .

• operands contains the operand(s) acceptable to the apcade, and can
reference C constants, variables, and labels .

• ; or newline is a semicolon or a new line, either of which signals the end of
the asm statement.

A new asm statement can be placed on the same line, following a
semicolon, but no asm statement can continue to the next line.

To include a number of asm statements, surround them with braces:

asm {
pop eaXi pop ds
iret

Semicolons are not used to start comments (as they are in TASM). When
commenting asm statements, use C-style comments, like this:

asm mov eax,dSi
asm {pop eaXi pop dSi ireti}
asm push ds

/* This comment is OK */
/* This is legal too */

iTHIS COMMENT IS INVALID!!

The assembly language portion of the statement is copied straight to the
output, embedded in the assembly language that Borland C++ is
generating from your C or C++ instructions. Any C symbols are replaced
with appropriate assembly language equivalents.

Each asm statement counts as a C statement. For example,

myfunc ()
{

int ii
int Xi

if (i > 0)
asm mov x,4

266 Borland C++ for OS/2 Programmers Guide

else
i = 7;

This construct is a valid C if statement. Note that no semicolon was needed
after the mov x /4 instruction. asm statements are the only statements in C
that depend on the occurrence of a new line. This is not in keeping with the
rest of the C language, but this is the convention adopted by several UNIX
based compilers.

An assembly statement can be used as an executable statement inside a
function, or as an external declaration outside of a function. Assembly
statements located outside any function are placed in the data segment, and
assembly statements located inside functions are placed in the code
segment.

Inline assembly references to data and functions

You can use C symbols in your asm statements; Borland C++ automatically
converts them to appropriate assembly language operands and appends
underscores onto identifier names. You can use any symbol, including
automatic (local) variables, register variables, and function parameters.

In general, you can use a C symbol in any position where an address
operand would be legal. Of course, you can use a register variable
wherever a register would be a legal operand.

If the assembler encounters an identifier while parsing the operands of an
inline assembly instruction, it searches for the identifier in the C symbol
table. The names of the 80x86 registers are excluded from this search. Either
uppercase or lowercase forms of the register names can be used.

Inline assembly code can freely use ESI, EDI, or EBX, or their component
registers SI, DI, BX, BL, or BH as scratch registers. If you use ESI or EDI in
inline assembly code, the compiler won't use these registers for register
variables.

When programming, you don't need to be concerned with the exact offsets
of local variables. Simply using the name will include the correct offsets.

However, it might be necessary to include appropriate WORD PTR, BYTE
PTR, or other size overrides on assembly instructions.

Chapter 12, Inline assembly 267

Using C structure members

268

You can reference structure members in an inline assembly statement in the
usual way (that is, variable.member). In such a case, you are dealing with a
variable, and you can store or retrieve values. However, you can also
directly reference the member name (without the variable name) as a form
of numeric constant. In this situation, the constant equals the offset (in
bytes) from the start of the structure containing that member. Consider the
following program fragment:

struct myStruct
int a3i
int a_bi
int a_Ci

} my A i

myfunc ()
{

asm {may eax, myA.a_b
mav ebx, [edi] .a_c

We've declared a structure type named myStruct with three members, a_a,
a_b, and a_c. We've also declared a variable my A of type myStruct. The first
inline assembly statement moves the value contained in myA.a_b into the
register EAX. The second moves the value at the address [ediJ + offset(a_c)
into the register EBX (it takes the address stored in EDI and adds to it the
offset of a_c from the start of myStruct). In this sequence, these assembler
statements produce the following code:

mav eax, DGROUP : -myAt4
mav ebx, [editS]

Why would you want to do this? If you load a register (such as EDI) with
the address of a structure of type myStruct, you can use the member names
to directly reference the members. The member name can then be used in
any position where a numeric constant is allowed in an assembly statement
operand.

The structure member must be preceded by a dot (.) to signal that a
member name, rather thana normal C symbol, is being used. Member
names are replaced in the assembly output by the numeric offset of the
structure member (the numeric offset of a_c is 8), but no type information is
retained. Thus members can be used as compile-time constants in assembly
statements.

Borland C++ for OS/2 Programmers Guide

However, there is one restriction. If two structures you are using in inline
assembly have the same member name, you must distinguish between
them. Insert the structure type (in parentheses) between the dot and the
member name, as if it were a cast. For example,

asm mov bx, [dij . (struct tm) tm_hour.

Using jump instructions and labels

You can use any of the jump instructions, plus the loop instructions, in
inline assembly. They are valid only inside a function. Since no labels can
be defined in the asm statements, jump instructions must use C goto labels
as the object of the jump. If the label is too far away, the jump will be
automatically converted to a long-distance jump. Direct far jumps cannot
be generated. In the following code, the jump goes to the C goto label a.

int x()

a: 1* This is the goto label "a" */

asrn jrnp a 1* Goes to label "a" *1

Indirect jumps are also allowed. To use an indirect jump, you can use a
register name as the operand of the jump instruction.

Chapter 12, Inline assembly 269

270 Borland CH for OS/2 Programmers Guide

A p p E N o

ANSI implementation-specific
standards

x

Certain aspects of the ANSI C standard are not defined exactly by ANSI.
Instead, each implementor of a C compiler is free to define these aspects
individually. This chapter tells how Borland has chosen to define these
implementation-specific standards. The section numbers refer to the
February 1990 ANSI Standard. Remember that there are differences
between C and C++; this appendix addresses Conly.

A

2.1.1.3 How to identify a diagnostic.

Table A.1
Identifying

diagnostics in C++

When the compiler runs with the correct combination of options, any
messages it issues beginning with the words Fatal, Error, or Warning are
diagnostics in the sense that ANSI specifies. The options needed to ensure
this interpretation are as follows:

Option

-A

-C-

Action

Enable only ANSI keywords.

No nested comments allowed.

-i32 At least 32 significant characters in identifiers.

-p- Use C calling conventions.

-w- Turn off all warnings except the following.

-wbei Turn on warning about inappropriate initializers.

-wbig Turn on warning about constants being too large.

-wcpt Turn on warning about nonportable pointer comparisons.

-wdcl Turn on warning about declarations without type or storage class.

-wdup Turn on warning about duplicate nonidentical macro definitions.

-wext Turn on warning about variables declared both as external and as static.

-wfdt Turn on warning about function definitions using a typedef.

-wrpt Turn on warning about nonportable pointer conversion.

Appendix A, ANSI implementation-specific standards 271

272

Table A.1: Identifying diagnostics in C++ (continued)

-wstu Turn on warning about undefined structures.

-wsus Turn on warning about suspicious pointer conversion.

-wucp Turn on warning about mixing pointers to signed and unsigned char.

-wvrt Turn on warning about void functions returning a value.

The following options cannot be used:

-zGxx The BSS group name cannot be changed.
-zSxx The data group name cannot be changed.

Other options not specifically mentioned here can be set to whatever you
want.

2.1.2.2.1 The semantics of the arguments to main.

The value of argv[O] is a pointer to the program name.

The remaining argv strings point to each component of the OS/2
command-line arguments. Whitespace separating arguments is removed,
and each sequence of contiguous non-whitespace characters is treated as a
single argument. Quoted strings are handled correctly (that is, as one string
containing spaces).

2.1.2.3 What constitutes an interactive device.

An interactive device is any device that looks like the console.

2.2.1 The collation sequence of the execution character set.

The collation sequence for the execution character set uses the signed value
of the character in ASCII.

2.2.1 Members of the source and execution character sets.

The source and execution character sets are the extended ASCII set
supported by the IBM PC. Any character other than /\Z (Control-Z) can
appear in string literals, character constants, or comments.

2.2.1.2 Multibyte characters.

No multibyte characters are supported in Borland C++.

2.2.2 The direction of printing.

Printing is from left-to-right, the normal direction for the PC.

2.2.4.2 The number of bits in a character in the execution character set.

There are 8 bits per character in the execution character set.

Borland C++ for OS/2 Programmers Guide

3.1.2 The number of significant initial characters in identifiers.

The first 32 characters are significant, although you can use a command
line option (-i) to change that number. Both internal and external identifiers
use the same number of significant characters. (The number of significant
characters in C++ identifiers is unlimited.)

3.1.2 Whether case distinctions are significant in external identifiers.

The compiler will normally force the linker to distinguish between
uppercase and lowercase. You can use a command-line option (-I-c) to
suppress the distinction.

3.1.2.5 The representations and sets of values of the various types of integers.

Type Minimum value

signed char -128

unsigned char a
signed short -32,768

unsigned short a
signed int -2,147,483,648

unsigned int a
signed long -2,147,483,648

unsigned long a

All char types use one 8-bit byte for storage.

All short types use 2 bytes.

All long and int types use 4 bytes.

Maximum value

127

255

32,767

65,535

2,147,483,647

4,294,967,295

2,147,483,647

4,294,967,295

If alignment is requested (-a), all nonchar integer type objects will be
aligned to multiple 4-byte boundaries. ~haracter types are never aligned.

For any non-char member, the offset will be a multiple of the member size.
A short will be at an offset that is a multiple of 2 bytes from the start of the
structure. Offset of ints is a multiple of 4 bytes from the start of the
structure.

One to three bytes may be added (if necessary) at the end to ensure that the
whole structure contains a 4-byte multiple.

Appendix A, ANSI implementation-specific standards 273

274

3.1.2.5 The representations and sets of values of the various types of floating
point numbers.

The IEEE floating-point formats as used by the Intel 8087 are used for all
Borland C++ floating-point types. The float type uses 32-bit IEEE real
format. The double type uses 64-bit IEEE real format. The long double type
uses 80-bit IEEE extended real format.

3.1.3.4 The mapping between source and execution character sets.

Any characters in string literals or character constants will remain
unchanged in the executing program. The source and execution character
sets are the same.

3.1.3.4 The value of an integer character constant that contains a character or
escape sequence not represented in the basic execution character set or
the extended character set for a wide character constant.

Wide characters are not supported. They are treated as normal characters.
All legal escape sequences map onto one or another character. If a hex or
octal escape sequence is used that exceeds the range of a character, the
compiler issues a message.

3.1.3.4 The current locale used to convert multibyte characters into
corresponding wide characters for a wide character constant.

Wide character constants are recognized, but treated in all ways like
normal character constants. In that sense, the locale is the "C" locale.

3.1.3.4 The value of an integer constant that contains more than one character, or
a wide character constant that contains more than one multibyte
character.

Character constants can contain one or two characters. If two characters are
include~, the first character occupies the low-order byte of the constant,
and the second character occupies the high-order byte.

3.2.1.2 The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented.

These conversions are performed by simply truncating the high-order bits.
Signed integers are stored as two's complement values, so the resulting
number is interpreted as such a value. If the high-order bit of the smaller
integer is nonzero, the value is interpreted as a negative value; otherwise, it
is positive.

Borland C++ for OS/2 Programmers Guide

3.2.1.3 The direction of truncation when an integral number is converted to a
floating-point number that cannot exactly represent the original value.

The integer value is rounded to the nearest representable value. Thus, for
example, the long value (231 -1) is converted to the float value 231. Ties are
broken according to the rules of IEEE standard arithmetic.

3.2.1.4 The direction of truncation or rounding when a floating-point number is
converted to a narrower floating-point number.

The value is rounded to the nearest representable value. Ties are broken
according to the rules of IEEE standard arithmetic.

3.3 The results of bitwise operations on signed integers.

The bitwise operators apply to signed integers as if they were their
corresponding unsigned types. The sign bit is treated as a normal data bit.
The result is then interpreted as a normal two's complement signed integer.

3.3.2.3 What happens when a member of a union object is accessed using a
member of a different type.

The access is allowed and will simply access the bits stored there. You'll
need a detailed understanding of the bit encodings of floating-point values
in order to understand how to access a floating-type member using a
different member. If the member stored is shorter than the member used to
access the value, the excess bits have the value they had before the short
member was stored.

3.3.3.4 The type of integer required to hold the maximum size of an array.

The type is unsigned int.

3.3.4 The result of casting a pointer to an integer or vice versa.

When converting between integers and pointers of the same size, no bits
are changed. When converting from a longer type to a shorter type, the
high-order bits are truncated. When converting from a shorter integer type
to a longer pointer type, the integer is first widened to an integer type the
same size as the pointer type. Thus signed integers will sign-extend to fill
the new bytes. Similarly, smaller pointer types being converted to larger
integer types will first be widened to an integer type as wide as the pointer
type.

3.3.5 The sign of the remainder on integer division.

The sign of the remainder is negative when only one of the operands is
negative. If neither or both operands are negative, the remainder is
positive.

Appendix A, ANSI implementation-specific standards 275

276

3.3.6 The type of integer required to hold the difference between two pOinters to
elements of the same array, ptrdiff_t.

The type is signed int. The type of ptrdiff_t is int.

3.3.7 The result of a right shift of a negative signed integral type.

A negative signed value is sign extended when right shifted.

3.5.1 The extent to which objects can actually be placed in registers by using
the register storage-class specifier

The compiler ignores requests for register allocation.

3.5.2.1 Whether a plain int bit-field is treated as a signed int or as an unsigned int
bit field.

Plain int bit fields are treated as signed int bit fields.

3.5.2.1 The order of allocation of bit fields within an int.

Bit fields are allocated from the low-order bit position to the high-order.

3.5.2.1 The padding and alignment of members of structures.

By default, no padding is used in structures. If you use the word alignment
option (-a), structures are padded to 4-byte multiple size.

For any non-char member, the offset will be a multiple of the member size.
A short will be at an offset that is a multiple of 2 bytes from the start of the
structure. Offset of ints is a multiple of 4 bytes from the start of the
structure.

One to three bytes may be added (if necessary) at the end to ensure that the
whole structure contains a 4-byte multiple.

3.5.2.1 Whether a bit-field can straddle a storage-unit boundary.

When alignment (-a) is not requested, bit fields can straddle word
boundaries, but are never stored in more than four adjacent bytes.

3.5.2.2 The integer type chosen to represent the values of an enumeration type.

If all enumerators can fit in an unsigned char, that is the type chosen. Next,
signed char, unsigned short, signed short are each tried. Finally, int is
tried.

3.5.3 What constitutes an access to an object that has volatile-qualified type.

Any reference to a volatile object will access the object. Whether accessing
adjacent memory locations will also access an object depends on how the
memory is constructed in the hardware. For special device memory, such as

Borland C++ for OS/2 Programmers Guide

video display memory, it depends on how the device is constructed. For
normal PC memory, volatile objects are used only for memory that might
be accessed by asynchronous interrupts, so accessing adjacent objects has
no effect.

3.5.4 The maximum number of declarators that can modify an arithmetic,
structure, or union type.

There is no specific limit on the number of declarators. The number of
de clara tors allowed is fairly large, but when nested deeply within a set of
blocks in a function, the number of declarators will be reduced. The
number allowed at file level is at least 50.

3.6.4.2 The maximum number of case values in a switch statement.

There is no specific limit on the number of cases in a switch. As long as
there is enough memory to hold the case information, the compiler will
accept them.

3.8.1 Whether the value of a single-character character constant in a constant
expression that controls conditional inclusion matches the value of the
same character constant in the execution character set. Whether such a
character constant can have a negative value.

All character constants, even constants in conditional directives, use the
same character set (execution). Single-character character constants will be
negat~ve if the character type is signed (default and -K not requested).

3.8.2 The method for locating includable source files.

For include file names given with angle brackets, if include directories are
given in the command line, then the file is searched for in each of the
include directories. Include directories are searched in this order: first,
using directories specified on the command line, then using directories
specified in TURBOC.CFG. If no include directories are specified, then only
the current directory is searched.

3.8.2 The support for quoted names for includable source files.

For quoted file names, the file is first searched for in the current directory. If
not found, Borland C++ searches for the file as if it were in angle brackets.

3.8.2 The mapping of source file name character sequences.

Backslashes in include file names are treated as distinct characters, not as
escape characters. Case differences are ignored for letters.

3.8.8 The definitions for __ DATE __ and __ TIME __ when they are unavailable.

The date and time are always available and will use the operating system
date and time.

Appendix A, ANSI implementation~specific standards 277

278

4.1.1 The decimal point character.

The decimal point character is a period (.).

4.1.5 The type of the sizeof operator, size_to

The type size_t is unsigned int.

4.1.5 The null pointer constant to which the macro NULL expands.

NULL expands to an int zero or a long zero. Both are 32-bit signed
numbers.

4.2 The diagnostic printed by and the termination behavior of the assert
function.

The diagnostic message printed is "Assertion failed: expression, file filename,
line nn", where expression is the asserted expression which failed, filename is
the source file name, and nn is the line number where the assertion took
place.

abort is called immediately after the assertion message is displayed.

4.3 The implementation-defined aspects of character testing and case
mapping functions.

None, other than what is mentioned in 4.3.1.

4.3.1 The sets of characters tested for by the isalnum, isalpha, iscntrl, islowe~
isprint and isupper functions.

First 128 ASCII characters.

4.5.1 The values returned by the mathematics functions on domain errors.

An IEEE NAN (not a number).

4.5.1 Whether the mathematics functions set the integer expression errno to the
value of the macro ERANGE on underflow range errors.

No, only for the other errors-domain, singularity, overflow, and total loss
of precision.

4.5.6.4 Whether a domain error occurs or zero is returned when the fmod function
has a second argument of zero.

No; frnod (x, 0) returns O.

4.7.1.1 The set of signals for the signal function.

SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM.

Borland C++ for OS/2 Programmers Guide

4.7.1.1 The semantics for each signal recognized by the signal function.

See the description of signal in the Library Reference.

4.7.1.1 The default handling and the handling at program startup for each signal
recognized by the signal function.

See the description of signal in the Library Reference.

4.7.1.1 If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of
a signal handler, the blocking of the signal that is performed.

The equivalent of signal(sig, SIG_DFL) is always executed.

4.7.1.1 Whether the default handling is reset if the SIGILL signal is received by a
handler specified to the signal function.

No, it is not.

4.9.2 Whether the last line of a text stream requires a terminating newline
character.

No, none is required.

4.9.2 Whether space characters that are written out to a text stream immediately
before a newline character appear when read in.

Yes, they do.

4.9.2 The number of null characters that may be appended to data written to a
binary stream.

None.

4.9.3 Whether the file position indicator of an append mode stream is initially
positioned at the beginning or end of the file.

The file position indicator of an append-mode stream is initially placed at
the beginning of the file. It is reset to the end of the file before each write.

4.9.3 Whether a write on a text stream causes the associated file to be truncated
beyond that point.

A write of 0 bytes might or might not truncate the file, depending on how
the file is buffered. It is safest to classify a zero-length write as having
indeterminate behavior.

4.9.3 The characteristics of file buffering.

Files can be fully buffered, line buffered, or unbuffered. If a file is buffered,
a default buffer of 512 bytes is created upon opening the file.

Appendix A, ANSI implementation'specific standards 279

280

4.9.3 Whether a zero-length file actually exists.

Yes, it does.

4.9.3 Whether the same file can be open multiple times.

Yes, it can.

4.9.4.1 The effect of the remove function on an open file.

No special checking for an already open file is performed; the responsibility
is left up to the programmer.

4.9.4.2 The effect if a file with the new name exists prior to a call to rename.

rename will return a -1 and errno will be set to EEXIST.

4.9.6.1 The output for %p conversion in fprintf.

Eight hex digits (XXXXXXXX).

4.9.6.2 The input for %p conversion in fscanf.

See 4.9.6.1 ..

4.9.6.2 The interpretation of a - (hyphen) character that is neither the first nor the
last character in the scan list for a %[conversion in fscanf.

See the description of scanf in the Library Reference.

4.9.9.1 The value the macro errno is set to by the fgetpos or ftell function on
failure.

EBADF Bad file number

4.9.10.4 The messages generated by perror.

Arg list too big
Attempted to remove current

directory
Bad address
Bad file number
Block device required
Broken pipe
Cross-device link
Error 0
Exec format error
Executable file in use
File already exists
File too large
Illegal seek
Inappropriate I/O control

operation

Inputbutput error
Interrupted function call
Invalid access code
Invalid argument
Invalid data
Invalid environment
Invalid format
Invalid function number
Invalid memory block address .
Is a directory
Math argument
Memory arena trashed
Name too long
No child processes
No more files
No space left on device

Borland C++ for OS/2 Programmers Guide

No such device
No such device or address
No such file or directory
No such process
Not a directory
Not enough memory
Not same device
Operation not permitted
Path not found

Permission denied
Possible deadlock
Read-only file system
Resource busy
Resource temporarily unavailable
Result too large
Too many links
Too many open files
Too many open files

4.10.3 The behavior of calloc, malloc, or realloc if the size requested is zero.

ealloe and malloe will ignore the request. realloe will free the block.

4.10.4.1 The behavior of the abort function with regard to open and temporary
files.

The file buffers are not flushed and the files are not closed.

4.10.4.3 The status returned by exit if the value of the argument is other than zero,
EXIT_SUCCESS, or EXIT_FAILURE.

Nothing special. The status is returned exactly as it is passed. The status is a
represented as a signed char.

4.10.4.4 The set of environment names and the method for altering the
environment list used by getenv.

The environment strings are those defined in OS/2 with the SET command.
putenv can be used to change the strings for the duration of the current
program, but the SET command must be used to change an environment
string permanently.

4.10.4.5 The contents and mode of execution of the string by the system function.

The string is interpreted as an operating system command. CMD.EXE is
executed and the argument string is passed as a command to execute. Any
operating system built-in command, as well as batch files and executable
programs, can be executed.

4.11.6.2 The contents of the error message strings returned by strerror.

See 4.9.10.4.

4.12.1 The local time zone and Daylight Saving Time.

Defined as local PC time and date.

Appendix A, ANSI implementation-specific standards 281

282

4.12.2.1 The era for clock.

Represented as clock ticks, with the origin being the beginning of the
program execution.

4.12.3.5 ' The formats for date and time.

Borland C++ implements ANSI formats.

Borland C++ for OS/2 Programmers Guide

Index

/* * / (comments) 6
/** / (token pasting) 6
< > (angle brackets), in syntax 184
/ / (comments) 7
\ "escape sequence (display double quote) 16
\ ' escape sequence (display single quote) 16
? : operator (conditional expression) 90
- - operator (decrement) 79,82
.* and ->* operators (dereference pointers) 92
\ \ escape sequence (backslash character) 16
\? escape sequence (question mark) 17
: (initializer list) 138
: (labeled statement) 22
« operator

put to
stream output 199

shift bits left 86
== operator

equal to 87, 88
relational operators vs. 88

» operator
get from 257

stream input 203
shift bits right 86

>= operator (greater than or equal to) 87
++ operator (increment) 79,82,213
<= operator (less than or equal to) 87
&& operator (logical AND) 89
I I operator (logical OR) 89
!= operator (not equal to) 87,89

relational operators vs. 88
:: operator (scope resolution) 113, 116, 152
-> operator (selection) 83

member access 67, 79, 125
overloading 148

* (pointer declarator) 23
; (semicolon), null statements 95
\ (string continuation character) 18
##symboI76

overloading 142
token pasting 6, 183

~ (tilde), in syntax 140

Index

% operator
modulus 84
remainder 84

& operator
address 80
bitwise AND 85
declarations 37

* operator
indirection 53, 81
multiplication 84

+ operator
addition 83
unary plus 81

, operator
evaluation 91
function argument lists and 22

- operator
. subtraction 84

unary minus 81
= operator

assignment 90, 91
compound 91
overloading 147

initializer 23
A operator

bitwise XOR 82
exclusive OR 85

I operator
bitwise inclusive OR 85

~ operator (bitwise complement) 81
/ operator (division) 84
> operator (greater than) 87
< operator (less than) 86
! operator (logical negation) 81
& operator (reference declarator) 111
. operator (selection) 83

member access 67, 125
l's complement (~) 81
; semicolon

null statement 22
statement terminator 22

symbol 76
conditional compilation 185

283

converting strings 183
null directive 178
overloading 142
preprocessor directives 24, 177

80x87 coprocessors 256, 274

A
-a Bee option (align integers) 276
-A compiler option (ANSI keywords) 18, 193
\a escape sequence (audible bell) 16
abbreviations, container names 213
abort (function)

destructors and 140
open and temporary files and 281

abstract classes 148, 150, See also classes
Abstract Data Types (ADT) 210
access

base classes 128
by converted pointers 106
class members 104

controlling 127
friends 129, 130
nested classes and 126
nonstatic 124
operator 148
static 123, 124

derived classes 128
functions 50
memory regions 25, 27, 28
scope 113
stack, maximizing 210
streams 197

persistent 224
structures 61

default 128
members 63, 79

unions 127
members 79
objects 275

visibility vs. 28
volatile objects 276

access specifiers 61
classes 119, 127

base 128, 129
restrictions 127
unions and 68

accounting applications 258

284

addition operator (+) 83
address operator (&) 80
addresses

iostreams, pointers to 200
addresses, memory See memory addresses
aggregate data types 36, 135, See data types
alert (\a) 16
algorithms, search (#include directive) 185
aliases See referencing and dereferencing
alignment

bit fields and 276
default, iostreams 202
structure members 276
word 64,276

allocation, memory See memory, allocation
alloctr.h (header file) 212
ancestors See classes, base
AND operator (&) 85
AND operator (&&) 89
angle brackets « » 184
anonymous unions 67
ANSI

e standard
Borland C++ and 2

date and time formats 282
diagnostics 271
extended character sets 272
implementation-specific items 271-282
integer values 273
main function, semantics of arguments to 272
multibyte characters 272

ANSIC
internal representations 38
keywords 18

pragma directives and 193
primary expressions 76
__ STDC __ macro 195
stdio library 197
string literals 18
tentative definitions 32

API (application program interface) 233
APIENTRY (API calling convention) 234
APIRET (API return type) 234
application program interface (API) 233
argsused pragma directive 190
argument-passing convention

OS/246

Borland C++ for OS/2 Programmers Guide

arguments See also parameters
actuaC calling sequence 60
class pointer 157
class reference 157
command line See command-line compiler
constructors 134, 137

default 134
delete operator 113, 117
directives

conditional 186
#define 1 79, 181
#include 184
#line 188

fmod function and 278
functions as 15, 50, 143
functions taking no 37, 51, 58
macros 179, 181, 182
matching number of 60
members 121, 128

nonstatic 121
new operator 113
parameters vs. 3
primary expressions 77
references 111
templates 155, 159
type checking 57, 58
variable number of 22, 58

pascal keyword and 50
predefined macros 58

arithmetic, pointers See pointers, arithmetic
arithmetic data types 38
arithmetic expressions 39, 40

equality linequality 87
operators 83, 84
pointers and 50, 53

array declarator [] 44, 54
arrays

allocation 113, 114, 116
failing 116

character 42
classes 209, 216

initializing 11 7
converting to pointers 56
declaring 54
deleting 116
elements 54

comparing 87

Index

constructors 137
exception handling 172
indeterminate 56
initializing 41
integer types for 275

pointers to 276
memory allocation 55, 115
multidimensional 114

creating 54
one-dimensional 158
pointers 114
sizeof operator and 93
subscripts 21, 78

overloading 147
templates and 209

example 216
ASCII codes, extended character sets 272
asm (keyword) 95,266

braces and 266
.ASM files See assembly language
assembly language

directives 192
defining 180

identifying in source code 192
inline 265

braces and 266
C structure members and 268

restrictions 268
calling functions 267
commenting 266
floating point in 256
go to in 269
jump instructions 269
opcodes 266
option (-B) 265
referencing data in 267
register variables in 267
semicolons and 267
size overrides in 267
syntax 266
variable offsets in 267

syntax 95
assert (function), message and behavior 278
assignment operators 73,90

compound 91
overloading 147
simple 91

285

assignment statements 95
associativity 71, See also precedence
asterisk (*) 23
atexit (function) 140
attributes

class, access 127
recursive 128

identifiers 26
linkage 30
screen, setting 207

auto (keyword) 29, 44, 121
external declarations 34
register keyword vs. 44

automatic objects See objects, automatic
classes, exception handling 172
memory regions 29, 43

automatic sign extension 40
automatic storage duration 40, 41, 44

B
\b (backspace character) 16
-B BeC option (inline assembler code) 265
-B compiler option (inline assembler) 192
backslash characters (\) 16

hexadecimal and octal numbers 15
line continuation 183

backspace characters (\b) 16
Bad3ast (exception) 104
Bad_typeid (exception) 109
banker's rounding 260
base class initialization See also classes, base
base classes 128-130

access specifiers 128, 129
constructors 135, 138, 139
converting to derived 104
declaring 119, 198
derived classes vs. 148
hierarchies 128, 136, 137
inheritance 128, 130, 198, 222
multiple instances and 135, 136, 137
redefining 128
unions and 128
virtual keyword and 130

bcd (class) 258
converting 259
number of decimal digits 259
output 259

286

range 259
rounding errors and 259

__ BCOPT __ macro 194
__ BCPLUSPLUS __ macro 194
bell (\a) 16
binary coded decimal See bcd
binary data 197
binary operators 82, See operators

overloading 147
binary streams, null characters and 279
bit fields 66, 68

alignment and 276
allocation 66
how treated 276
omitting identifiers 66
order of allocation 276

bits, shifting 86
bitwise

operators, signed integers and 275
bitwise operators

complement 81
logical 84
relational 86
shift 86
truth table 85

block
local duration and 29
scope, identifiers 27

declarations and 41
linkage and 31

statements 95
exception handling 166

Boolean data types 96
Borland C++

ANSI implementation-specific items 271-282
Borland International Data Structures (BIDS) 209
__ BORLANDC __ macro 194
braces 21

asm keyword and 266
nesting 42

brackets 21
angle, in syntax 184
arrays and 56, 78, 116
templates 159

break statements 100
buffered files 279
buffered streams 197

Borland C++ for OS/2 Programmers Guide

buffers, memory 197

c
c++

classes See classes
complex numbers See complex numbers
constants See constants
constructors See also constructors
conversions See conversions, C++
data members See data members
declarations See declarations
destructors See destructors
enumerations See enumerations
file operations See files
for loops See loops, for, C++
formatting See formatting, C++
functions

inline See functions, inline
inheritance See inheritance
member functions See member functions
members See data members; member functions
operators See operators, C++; overloaded

operators
parameters See parameters
referencing and dereferencing See referencing

and dereferencing
scope See scope
streams See streams, C++
structures See structures
unions See unions
visibility See visibility

C language
C++ declarations vs. 120
conditional operators 186
expressions 74
keywords specific to 10
linking programs 30
modules 194
parameter passing 46, 54
prototypes 56
variables, enumerated types 68

calling conventions See also parameters, passing;
Pascal
APIENTRY 234

calloc (function), zero-size memory allocation and
281

Index

carriage returns
literal 16
opening files 205

case
sensitivity

external identifiers and 273
statements See switch statements

case (keyword) 97
case sensitivity 10

pascal keyword and 10, 50
preserving 49

cast expressions 72, 73, 103
address 80
bitwise complement 81
indirection 81
logical 81
restrictions 103
unary 80, 81

catch (keyword) 166, 168
__ CDECL __ macro 194
cdecl (keyword) 46, 49

function modifiers and 50
char (keyword) 38
character arrays 42
characters

char data type See data types, char
constants See constants, character
decimal point 278
fill, setting 202
internal representation 15
literal, escape sequences 16
multibyte 272
newline (\n)

text streams and 279
null, binary stream and 279
sets

execution 272
collation sequence 272
number of bits in 272
source and 274

extended 272
for character constants 277
testing for 278

storing copies 211
wide 274

class (keyword) 120
polymorphic classes 148

287

class generator 157
class scope 27
class templates

as arguments 157
classes 119-132, See also individual class names;

inheritance
abstract 148, 150
arrays 209, 216

initializating 117
container See container class library
data types 37
default constructors 134
defining 157

repeatedly 160
with no constructors 134, 135, 137

exporting 46
global vs. local 124
hidden 120, 126
identical interfaces and 148
initialization See initialization, classes
member functions See member functions
members, defined 121
naming 119, 120, See identifiers
nested 126
pointers 104, 106

members 107
polymorphic 148
referencing 104, 105
related 153
returning runtime information on 119
scope See scope, classes
sizeof operator and 93
structures vs. 61
syntax 119

base-list argument 128
member-list argument 121

undefined 105
wrapper 160

_clear87 (function), floating point exceptions and
256

clock (function), era 282
clreol (manipulator) 207
code segment

naming and renaming 190
codeseg pragma directive 190
colons 22
comma operator 91

288

comma separator 22, 42
nested, macros and 181, 182

command-line compiler
compiling and linking with, PM applications
249
directives, overriding 49
DLLs and 250
inline expansion and 121, 122
options

alignment (-a)
bit fields and 276

ANSI
diagnostics and 271

ANSI compliant 18
assembly language and 265
-B (inline assembler code) 265
floating point, fast (-ff) 256
including in source code 192
inline assembler code (-B) 265
PM applications (-W) 249

PM and 248
comment pragma directive 190
comments 6-7, 179

inline assembly language code 266
nested 7
token pasting and 6
as whitespace 5, 7

compilation 31, 177
ANSI C compliant 195
conditional 185

macros, predefined 194
container class libraries 218
controlling 180
defaults 132
PM applications 249
predefined macros 194, 195, 196
prototypes and 61
speeding up 191, 192
templates and 161, 162
terminating 189

compilation, dynamic-link libraries 233
complement, bitwise 81
complex data types 135

pointers and 51
complex.h (header file), complex numbers and 257
complex numbers

«and» operators and 257

Borland C++ for OS/2 Programmers Guide

c++ operator overloading and 257
header file 257
using 257

complex vectors, example 143
component selection See operators, selection

(. and -»
compound assignment operators 91
concatenating strings 18, See strings,

concatenating
conditional directives 185, 189

nesting 186
conditional operator (? :) 90
conditional tests 96
conforming extensions 2
console stream manipulators 207
const (keyword) 46

pointers and 52
removing from types 103

const_cast operator 103
constant expressions 20
constants 11,46, See also numbers

assigning to pointers 26, 52, 103
Borland C++ 17
character 12, 15

character set 277
extending 15
multi-character 17
values 274
wide 17,274

conditional directives 186
data types 13

with no suffixes 13
decimal 11, 12

suffixes 13
enumerated types 69
enumerations See enumerations
floating point 11, 14, 15
fractional 11
hexadecimal 12
integer 11
internal representations of 19
macros and 179
manifest 194
null pointer, NULL macro and 278
octal 11, 12
string 17, See strings, literal
suffixes and 13

Index

switch statements, duplicate 97
syntax 11
ULONG_MAX and UINT_MAX 86
volatile qualifiers 34

constrea.h (header file) 197,207
constructors 132-139, See also initialization

arguments 134, 137
arrays 114

order of calling 137
base classes 135

calling 139
from derived class 138

calling 133, 134, 135
defaults 134
defining 132, 133
derived classes 135, 139
exception handling 168, 172
global variables 133
inheritance 132
initializer lists and 137
naming 133
non-inline 139
not defined 134, 135, 137
overloading 135
referencing 134
streams 224

ifstream 205
of stream 205

unions 68
virtual classes 136, 137

consumer (streams) 197
container class libraries 209-219

building 218
categories 210
compiling 218
example programs 218
predefined combinations 213

container classes 209
controlling memory with 212
debugging 219
declaring 211
direct 211
generic 157
indirect 211

implementing 215, 216
iterator class 213
member functions 214

289

implementing 218
naming 213
object types 211

sorting 211
ownership 214
prefixes 213
stack 210
templates 209, 214

continue statements 100
continuing lines 6, 18, 183
_control87 (function), floating point exceptions and

256
control lines See directives
conversions 112

argument See arguments, conversions
arguments 60

to strings 183
arrays 56
bed 259
data types 39, 40

integers 106
iostreams 197, 201
setting base for 202
sign extension and 40
typecasting 103

floating point, to smaller floating point 275
identifiers, restrictions 80
integers

to floating point 275
to pointers 275

of class arguments 157
of template arguments 156
pointers 54, 103, 105

to integers 275
reference types 104, 107
runtime 104
template functions 155
when value can't be represented 274

coprocessors See numeric coprocessors
copy constructor 134, 135

defaults 135
defining 135
exception handling 168, 172
object initialization and 137

copy constructors See constructors, copy
__ cplusplus macro 194
CPP32.EXE (preprocessor) 177

290

CPP.EXE (preprocessor) 177
current position, files See also file-position

indicator
cv-qualifier 34

D
_dllmain 232
-D compiler option (define identifier) 181
data

pointers, modifying 50
tracking 125

data members See also member functions
adding 126
assigning values to 138
default 127

base classes 128
overriding 127

defining 124, 127
dereferencing 92
freeing 140
hidden 152
in nested class 124
naming 125, 129
static 44, 123, 124

linkage 124
data segments

fixed, static duration and 29
data structures 210, See structures

implementing 209
null-terminated 98

da~a types 25, 36, See also constants; floating point;
mtegers; numbers
aggregate 36, 135
arithmetic 38
bcd Seebcd
Boolean 96
char 15,38

range 19
signed 15
unsigned 15, 19

complex 135
pointers and 51

conversions See conversions
default 36

overriding 38
defining

cast expressions 103

Borland C++ for OS/2 Programmers Guide

new 45
derived 36
enumerations See enum (keyword)
fundamental 36, 38-40

ranges 38
identifiers and 26
initializing 40, 41
integers See integers
internal representations 38
iostreams

input 203
output 200
redefining 204

new, defining 45
parameterized See templates
pointers 23, 211
referencing 45
scalar 36, 41
size_t 93
sizeof operator 278
sizes 19

adjusting 48
streamable classes 221
table of 19
user-defined 25, 204
void 37
wchar_t 17,42

date See also time
formats 282
local, how defined 281

__ DATE __ macro 181, 194
availability 277

dates 194
deallocation, memory See memory, allocation
debugging 177

container classes 219
dec (manipulator) 201
decimal

constants 11, 12
suffixes 13

conversions 201
decimal constants See constants, decimal
decimal point, how displayed 278
declarations 25, 32

arrays 44, 54
classes 119

base 119

Index

container 211
derived 128, 130
friends 129, 130, 131
incomplete 120
members 119, 121, 127

inline functions and 121
multiple 126
nonstatic 121
static 123, 124

nested 126
streamable 225, 226, 228
virtual functions 148, 151

complex 45
examples 43

constructors 134
default arguments 134, 135
objects 137
order of calling 136

data types 26, 36
derived 37
syntax 43

defining 32, 42
definitions vs. 32, 56
destructors 140, 141
enumerations 68, 69

within classes 70
exception handling 166
expressions 72
external 28, 29, 32, 34
formal parameters 59, 60
forward references and 26
function See functions, declaring
functions 56, 111, 152

as arguments 50
declarator 44, 57
explicit 57
external 111, 125
multiple 56
pascal keyword and 50
precedence 44
register keyword and 44
return statements and 100
with no arguments 37, 51, 58

identifiers 53
attributes 26
block scope and 41
classes of 27

291

external 28, 32
iostreains 201

manipulators 200
mixed language conventions 47
modifiers 34, 45, 60
multiple 35

avoiding 126, 198
nested 126
pointers 44, 51, 52

indirection operator and 53
portability 120
prototypes 27
qualifiers 34
referencing 32

simple 32
restrictions 100
scope and 27, 41, 152
simple 42
storage class specifiers 34, 44

extern keyword and 30
static keyword and 30
syntax 43

structures 61, See structures, declaring
incomplete 65
members 62

syntax 32, 33
tentative definitions and 32
translation units and 29, 32
unions 68
variables 29

asterisks in 23
default, local scope 44
register keyword and 44
volatile keyword and 47

de clara tors 42
number of 277

DECLARE_STREAMABLE macro 223, 227
decrement 46, 51
decrement operator (- -) 79, 82
default (keyword) 97
default constructors 134, See constructors, default
default data types 36

overriding 38
default labels 97
default statements 97
#define directive 178, 181

arguments 179, 181

292

keywords and 181
redefining macros 180
testing for 187
with no parameters 178

defined operator 186
defining declarations 25, See declarations, defining
definitions 56, See declarations, defining

declarations vs. 32
external 35

functions 59
function See functions, definitions
tentative 32

delete (function) 117
delete operator 29, 113

constructors and 133
destructors and 133, 140
overloading 117

prototypes 11 7
syntax 113, 116

delline (manipulator) 207
dereferencing See referencing and dereferencing
derived classes 128-130, See classes

constructors 135, 139
converting to base 104
declaring 119, 128, 130
inheritance 128
streamable 198

I/O 204
consoles 207
formatted 198, 199

libraries 197
values, changing 139
virtual bases and 222
virtual functions and 148

derived data types 36, See data types
descendants See classes, derived
destructors 132, 140-142, See also initialization

calling 133, 140, 141
explicitly 140

defining 132
delete operator vs. 140
exception handling 172
exit procedures and 140
global variables 140
inheritance 132
initializer lists and 137
inline expansion and 122, 123

Borland C++ for OS/2 Programmers Guide

local variables 140
virtual 141

Detach (function) 214
devices 197
diagnostic messages, ANSI 271
digits

nonzero 12
direct member selector See operators, selection (.

and-»
directives 177-196, See also individual directive

names; macros
##symboI76

overloading 142
symbol 24, 76

overloading 142
compiler, overriding 49
conditional 185, 189

nesting 186
error messages 189
ignored 179
implementation-specific 190-194
keywords and 181
line control 188
null 178
placing 177
pragmas See pragma directives
sizeof operator and 93
syntax 178
terminating 180

directories
include files, how searched 277

division operator (/) 84
__ DLL __ macro 195
DLLs

application type 237
benefits of 231
compiling 233
compiling and linking 247
compiling and linking (-sd) 233
creating 232
entry points 237
freeing 235
functions

calling 46, 48
handles 236
import libraries and 245
initialization and termination 232

Index

linking 233
linking with Borland 251
loading 234
module names 236
procedure addresses 237
procedure type 239
system calls 233, 233-239
Windows applications 195

do while loops See loops, do while
domain errors, mathematics functions and 278
DosFreeModule (system call) 235
DosLoadModule (system call) 234
DosQuery AppType (system call) 237
DosQueryModuleHandle (system call) 236
DosQueryModuleName (system call) 236
DosQueryProcAddress (system call) 237
DosQueryProcType (system call) 239
dot operator (selection) See operators, selection (.

and-»
double (keyword) 39
double quote character, displaying 16
duplicate case constants 97
duplicate identifiers 28
duration 25, 26, 28

automatic storage 40, 41, 44
dynamic 29
local 29
static 29, 40, 44

extern keyword and 44
dynamic_cast operator 104
dynamic duration 29
dynamic-link libraries See DLLs
dynamic linking 231

load-time 231
run-time 231

dynamic memory allocation See memory,
allocation

E
_export (keyword) 232
elaborated type specifiers 120
elements

parsing 5
#elif directive 185

defined operator and 186
ellipsis (...) 22

function definitions 60

293

Pascal 50
prototypes and 58, 60

#else directive 185
empty statements 95

loops 99
empty strings 17
enclosing blocks 27

local duration and 29
#endif directive 185
endl (manipulator) 201,202
ends (manipulator) 201
enum (keyword)

cast expressions 106
constants 12, 18

default values 19
int keyword and 69
omitting 69
range 19
values 276

enumerations 28,68-70, See enum (keyword)
class names and 120
declaring 68, 69

within classes 70
initializing 69
overloaded operators and 70, 143
scope 27,70

members 28
tags 65, 69

omitting 69
variables, C vs. C++ 68

equal-to operator (==) 87,88
relational operators vs. 88

equal-to or greater-than operator (>=) 87
equal-to or less-than operator «=) 87
equality expressions 73
equality operators See operators, equality
era, clock function and 282
#error directive 189
errors

domain, mathematics functions and 278
expressions 75
floating point, disabling 256
math, masking 256
messages 189

294

assert function 278
perror function 280
strerror function 281

reporting 188
underflow range, mathematics functions and

278
escape sequences 12, 15

source files and 277
evaluation operators 91
evaluation order See precedence
example programs, container class libraries 218
__ except (keyword) 174
exception handler 166, 169

missing 172
setting 114, 168

exception handling 165
C source files 172
constructors 168
CONTEXTRECORD 174
declarations 166
destructors 172
disabling 167, 169
DosRaiseException (function) 173
GetExceptionCode (function) 174
GetExceptionInformation (function) 174
inline functions 122
specifications 169

prototypes 170
violations 171

statements 166
catch 168
throw 167

syntax 165, 167
exceptions

Bad_cast 104
Bad_typeid 109
catching 169
defined 166
delimiting 167
terminating 169, 171, 172
testing for 167
throwing 167, 168, 171

copy constructor and 172
turning off 167, 169
unexpected 167, 171
unhandled 172
xalloc 114

exclusive OR operator (/\) 85
exclusive XOR operator (/\) 82
executable programs 30

Borland C++ for OS/2 Programmers Guide

execution character sets See characters, sets,
execution

exit (function), destructors and 140
exit (functions) 281
exit functions 140
exit pragma directive 191
exit procedures 140, 191
explicit typecasting 78, 80
exponents 11
export (keyword) 46
exporting

classes 46
functions 46

exporting functions 232
expressions 22, 53, 71-75, 95

arrays 54, 56
constant 20
decrementing 82
defined 71
empty (null statement) 22
equality 73
errors and overflows 75
evaluating 39, 71, 74,95
grouping 21
incrementing 82
literal 77
lvalues and 26
nesting 71
precedence, operators 71, 74
prefix 77
primary 76

arguments 77
restrictions 93
syntax 72

typeid 78
values, modifying 74
with no parentheses 71

extensions 9
extent See duration
extern (keyword) 31,44, 121, See also identifiers,

external
arrays and 56
const keyword and 46
duration 29
header files and 31
linkage 30

Index

external
identifiers See identifiers, external
linkage See linkage

external declarations 28,29,35
tentative definitions and 32

external definitions 35, 59
external functions 30

calling 111, 125
declaring 44
definitions 59

extraction operator (») See overloaded operators,
» (get from)

extractors 203

F
\f escape sequence (formfeed) 16
__ far16 (keyword) 46, 48
_fastcall (keyword) 50
-ff command-line compiler option (fast floating

point) 256
fgetpos (function), errno value on failure of 280
field width See formatting, width
__ FILE __ macro 181, 195
file-position indicator, initial position 279
file scope See scope

external linkage and 44
identifiers 27
internal linkage and 44

files 197, See also individual file-name extensions
appending, file-position indicator and 279
.ASM See assembly language
buffering 279
creating 204
current, processing 195
dating 194
header See header files
I/O, handling 204
include See include files
including in source code 184
names, searching for 277
open

abort function and 281
remove function and 280

opening
default mode 205
multiple times 280

printing 58

295

renaming, preexisting file name and 280
scope See scope
source, escape sequences and 277
temporary, abort function and 281
time stamp 196
tracking 195

• truncation while writing to 279
zero-length 280

fill (member function) 200, 202
fill characters 202
__ finally (keyword) 174
financial applications 258
flags

format state 200, 201, See formatting, C++
ios class 200, 203

setting 202
flags (member function) 200
flat memory model 261
float (keyword) 39
floating point 255, See also data types; integers;

numbers
constants See constants
conversions See conversions
decimal point character 278
exceptions, disabling 256
fast 256
format specifiers 274
formats 255
1/0255
identifiers 39
libraries 255
numbers

range 19,20
pointers 211
precision, setting 202
registers and 256
types

building 38, 39
flow-control statements 96, See if statements;

switch statements
Flush (function) 214
flush (manipulator) 202
fmod (function), second argument of zero 278
for loops Seeloops,for
formal parameters See parameters, formal
format state flags 200, 201, See formatting, C++

296

formatting 205
C++

I/O See also manipulators
width functions See also manipulators

1/0200
classes 198
console streams 207
field width, setting 202
fill character 202
padding 202
variables, changing 200

streams, clearing 202
formfeed characters (\f) 16
forward references 26
fprintf (function), %p conversion output 280
free (function) 113

dynamic duration and 29
friend (keyword) 121, 130

base classes and 129
functions and See C++, functions, friend

fscanf (function), %p conversion input 280
fstream.h (header file) 197, 204
ftell (function), errno value on failure of 280
function call operator See parentheses
function calls

to an OS/2 API 46
function declarator () 44,57
function operators See overloaded operators
function prototype scope, identifiers 27
function scope, identifiers 27
function template 155
functions 56-61

accessing 50
calling 27,60,95, See also parentheses

external 111, 125
function declarator and 57
in inline assembly code 267
operators () 78
priority 191
reducing overhead 121
type checking 57
undeclared 26

cdecl keyword and 49
class names and 120
comparing 88
defining 56
exception specification 169

Borland C++ for OS/2 Programmers Guide

exporting 46
friend See C++, functions, friend
generic 155
hidden 120
initializing 112

new operator and 116
inline

assembly language See assembly language,
inline

main 49,56
mathematical

domain errors 278
underflow range errors 278

member See member functions
memory allocation/ de allocation 29
not returning values 37
operators See overloaded operators
overloaded See overloaded functions
parameters 48

and modifiers 48
prototypes See prototypes
redefining 120
return statements and 57, 62, 100
scope See scope
sizeof operator and 93
startup 133, 191
static 3D, 44
type

checking 57
type, modifying 50
undeclared 26, 60
user-defined 58
with no arguments 37, 51, 58
with variable number of arguments 50, 58

Fundamental Data Structures (FDS) 210
fundamental data types See data types

G
generic class 157
generic functions 155
generic pointers 37, 52
generic types 153
get from operator (») See also overloaded

operators, » (get from)
stream input 203

getenv (function), environment names and methods
281

Index

GetExceptionCode (function) 174
GetExceptionInformation (function) 174
global allocation operator 117
global identifiers See identifiers, global
global variables See also variables
globals, scope 27
goto

exceptions and 169
go to (keyword) 95
go to statements 27, 100

assembly language and 269
exception handling 169
labels, name space 27

grammar, tokens See tokens
greater-than operator (» 87
greater-than or equal to operator (>=) 87

H
-H compiler option (precompile header file) 191
hardware registers, bit fields and 66
hdrfile pragma directive 191
hdrstop pragma directive 192
header files 25, 162, 163, See also include files

complex numbers 257
extern keyword and 31
including in source code 184
iostreams 197,205

manipulators 201
non-parameterized 201

precompiled 191, 192
prototypes 58, 61
user-defined functions 58

heap 29
memory, fragmented 114
new operator and 117
objects See objects, heap

hex (manipulator) 201
hexadecimal

constants See constants, hexadecimal
conversions 201
digits 12

displaying 17
numbers, backslash characters and 15

hidden objects, memory regions 28
hiding See scope, C++
hierarchies See classes, hierarchies

accessing class elements 104

297

base classes 128, 136, 137
members 125

friends 131
streamable classes 198, 199
virtual classes 136

highvideo (manipulator) 207
horizontal tabs 5

literal 16

IDE
DLLsand247
identifiers and 181
options

inline assembler 192
overriding 49

PM and 246
identifiers 10, 25, 42

Borland C++ keywords as 2
case sensitivity 47

preserving 49
suppressing 10

cdecl keyword and 49
container class 213
creating 10
defining 180, 183

command-line options 181
from the IDE 181
restrictions 181

definitions
multiple 26
testing for 180, 186, 187

duplicate 28
duration 28
enumeration constants 18
external 31, See also extern (keyword)

case sensitivity and 273
floating-point 39
global 47, 50

accessing 113
predefined 181, 194

integers 68
labels 95
length 273
linkage 30

no linkage attributes 31

298

mixed languages 47
modifying 45
name spaces See name spaces
non-Ivalue, converting 80
null 187
omitting 119
pascal (keyword) and 10, 50
scope See scope
significant characters in 273
undefining 180

command-line options 181
from the IDE 181

unique 30
warning 194

IEEE
floating-point formats 39,274
rounding 260, 275

#if directive 185
defined operator and 186

if statements 96
nested 96

#ifdef directive 180, 187
#ifndef directive 180, 187
ifstream (class) 204

constructors 205
IMPLEMENT_CASTABLE macro 224
IMPLEMENT_STREAMABLE macro 225
implementation-specific ANSI items 271-282
import libraries 245
importing functions 232
include files See also header files

including in source code 184
searching for 185,277

#include directive 184
search algorithm 185

inclusive OR operator (I) 85
incomplete declarations 65

classes 120
increment 46, 51
increment operator (++) 79, 82
indeterminate arrays, structures and 56
indeterminate values 40
~d~rect member selector See operators, selection
mdlrection, undefined 81
indirection operator (*) 53, 81
inequality operator (!=) 87, 89

relational operators vs. 88

Borland C++ for OS/2 Programmers Guide

inheritance See also classes
base classes 128, 130, 198
constructors and destructors 132
derived classes 128
friends 132
multiple 130, 198, 222
overloaded operators 146, 147
RTTI and 109
streamable classes 198, 204, 223

virtual bases 222
virtual 198

initialization 29, See also constructors; destructors
arrays 41
classes 137-139
declarations and 25
enumerations 69
functions 112

new operator and 116
initial values, setting 40
memory allocation 113
memory regions 43
objects 137
operator 23
pointers 51
structures 41, 137

example 42
untagged 62

unions 41, 62, 68
variables, static 44

initializers 40
(:) 137

inline
assembly language code See assembly language,
inline
functions See functions, inline
pragma265

inline (keyword) 122
inline expansion 121, 122

friends and 131
inline pragma directive 192
inline statements 192
input 197,203

formatting 198, 200
streams, data types 203

redefining 204
inserters 199, See output, C++

types, iostreams 200

Index

insertion operator «<) See overloaded operators,
«(put to)

ins line (manipulator) 207
instances See classes, objects
instantiation

member functions 121
templates 155, 159

int (keyword) 38
integers 38, See also data types; floating point;

numbers
arrays and 275
casting to pointer 275
constants See constants
conversions See conversions
division, sign of remainder 275
enumerations and 276
long 39

range 19
memory use 39
pointers and 276
right shifted 276
setting values 68, 69
short 39

range 19
signed 39
signed, bitwise operators and 275
sizes 39
streams 200, 221
suffix 12
unsigned 39

range 19
values 273

integral data types See characters; integers
integrated development environment See IDE
internal linkage See linkage
internal representations of data types 38
interprocess communication 219
interrupts

routines 47
intrinsic pragma directive 192
I/O

floating-point formats linking 255
floating-point numbers 255

ios (class) 197, 198
derived classes 199
flags 200, 203

setting 202

299

iostream.h (header file) 197,201
iostream library 197
iostreams

binary, null characters and 279
classes 197, 198, 204

memory buffers 197
clearing 202
data types 200, 203
declarations 200, 201
default alignment 202
error-checking 198, 205
fl ushing 201, 202
format state flags 201
input 203
manipulators and See manipulators
output 199
predefined file descriptors 198
referencing and dereferencing 200
text, newline character and 279

isalnum (function) 278
is alpha (function) 278
iscntrl (function) 278
islower (function) 278
isprint (function) 278
istream (class) 205

derived classes 204
istrstream (class) 205
isupper (function) 278
iteration 98

container classes 213
continue statements and 100
restarting 213

iteration statements See loops
iterator class (containers) 213

J
-Jgxxx compiler options (templates) 161, 162
~ump instructions, inline assembly language 269
Jump statements See break statements; continue

statements; goto statements; return statements

K
keywords 8, See also individual keyword names

Borland C++, using as identifiers 2
fundamental data types 38
macros and 181

300

L

making ANSI compliant 193
specific to C 10
specific to C++ 10
table of 9

labeled statements 22, 27, 95
transferring control to 97, 100

labels 27
creating 22
default 97
forward references and 26
identifiers 95
in inline assembly code 269

language extensions, conforming 2
languages

mixing 47
late binding 150
less-than operator «) 86
less-than or equal-to operator «=) 87
lexical grammar See elements
libraries 25, 31, 61

container class See container class library
floating point, using 255
iostream 197
linking 56
multi-thread 252
multithread 195
precompiled 56
streamable classes

predefined macros 219, 223
restrictions 230

streams 197
template-based, using 217

limits.h (header file) 38,86
__ LINE __ macro 181, 195
#line directive 188
linefeed characters

literal 16
opening files 205

lines
continuing 6, 18, 183
ignored during compilation 185
numbering 188

linkage 25, 30,31
external 3D, 41

anonymous unions 68

Borland C++ for OS/2 Programmers Guide

c vs. c++ 30
declaring 35, 44
preventing 46

internal 30, 35, 41
Cvs.C++ 30
declaring 44

libraries
multithread 195
precompiled 56

no attribute 30, 31
static members 124
storage class specifiers 3Q
type-safe 157, 160

linking
dynamic-link libraries (lTod) 233
multi-thread libraries with 252

list-based stack 211, 215
example 216

literal expressions 77
literal strings 6, 17, See strings, literal

arrays and 42
load-time dynamic linking 231
local duration 29
local scope

auto keyword and 44
external linkage and 44
identifiers 27

static duration and 29
internal linkage and 44

logical operators 89
bitwise 84
negation 81

long (keyword) 38
assignment 38, 39

long integers See integers, long
loops 98

break statements 100
continue statements 100
do while 98
for 99
while 98

lowvideo (manipulator) 207
lvalues 26, 43, See also rvalues

example 111
expressions and 71, 74
modifiable 26

Index

M
macro processor 177
macros 177, See also directives

argument lists 179, 181, 182
calling 181

precautions 183
defining 178, 181

conflicts 180
keywords and 181
with no parameters 178

expansion 179, 180, 182
#include directives 184, 185
#line directives 189
#Undef directives 180.

identifiers, removing 179
nested 179
NULL, expansion 278
precedence in, controlling 21
predefined 194-196, See also individual macro

names
compilation 194, 195, 196

conditional 194
container class libraries 219, 223
current file 195
current line number 195
multithread library 195
Pascal calling conventions 195
preprocessing

date 194
time 196

templates 195
user-defined functions 58

redefining 180
templates vs. 154
undefining 179

main (function) 56
calling 49
semantics of arguments to 272

MAKE (program manager)
makefiles, OS/2 applications and 251

malloc (function) 113
duration and 29
zero-size memory allocation and 281

mangled names 31
disabling 31

manifest constants 194

301

manipulators 200, See also formatting, C++,
individual manipulator names
embedding 200
example using 207
I/O 200, 201

console streams 207
table of 201

text windows 207, 208
without parameters 201

math
bcd Seebcd
coprocessors See numeric coprocessors
errors, masking 256
functions

domain errors and 278
underflow range errors and 278

_matherr (function) 257
member access operators 79
member functions 121, 132, See also data members

abstract classes and 151
adding 126
assigning values to 138
calling 125

external 125
const keyword and 47
constructors See constructors
declaring 119, 121, 126, 130
default 127

base classes 128
overriding 127

defined 121
defining 121, 127
destructors See destructors
freeing 140
friends 121, 130-132

base classes and 129
hidden 152
in nested class 124
inline 121, 161, See functions, inline, C++

exception handling 122
limitations 122

naming 121, 124, 125, 129
nonstatic 121, 124, 142
pure 148, 150
referencing 121, 125
related 153
static 44, 123, 159

302

linkage 124
pointers 51

structures 62
this keyword and 121, 124
type, modifying 127
volatile keyword and 47

members
classes See data members; member functions
structures See structures, members

memory 197, See also memory addresses
addresses 50
allocation 25, 29, 32, 113

arrays 55
containers 212, 213
data types 26
duration 28
dynamic 116
example 115, 118
failing 114
global operator 117
initializing 113
non-array 113, 114
objects 133
structures 64

buffers 197
controlling 212
deallocation 29, 113, 176

example 115, 118
heap 29
management routines 117
paging 262
private 262
regions 25, 26

accessing 25, 27, 28
automatic objects 29, 43
const keyword and 46
default 40
designating 26
hidden 28
ini tializing 43
object locator 26
volatile keyword and 47

shared 263
give-get 264
named 263

size of operator and 93
structures, word alignment and 64

Borland C++- for OS/2 Programmers Guide

swapping 262
virtual 261

memory addresses See also memory
memory models

large 218
memory object 261
messages

error, creating 189
methods See member functions
modifiable Ivalues 26, See lvalues
modifiable objects See objects
modifiers

function type 50
modifiers, declarations 34, 45, 60

functions 50
Modula-2, variant record types 67
module definition files 243

defined 243
import libraries and 245

modules
C language 194
compiling 31

modulus operator (%) 84
__ MT __ macro 195
multi-thread libraries 252
multibyte characters 272
multicharacter constants 15
multicharacter operators 76
multidimensional arrays 114, See arrays

creating 54
multiple inheritance 198, 222, See inheritance
multiplication operator (*) 84
multithread libraries 195

macros, predefined 195

N
\n (newline) 16

opening files 205
name spaces 27

enumerations 69
structures 65

names 25, 42, See also identifiers
accessing 113
constructors 133
data members 125, 129
defining 77

Index

labels 27
mangled 31
member functions 121, 125
nested classes and 126
reducing 125
structures 28
unions 28

negation, logical 81
nested

classes 126
comments 7
conditional directives 186
declarators 277
expressions 71
macros 179
statements 95, 96, 100
templates 159
types 126

new operator 113, 116
arrays 114
constructors and 133
destructors and 133, 141
duration and 29
optional initializers and 116
overloading 114, 117

prototypes 11 7
returning errors 114
size of operator vs. 114
syntax 113

newlines 5
ignored 6
inserting 16, 201
opening files 205

no linkage See linkage
no linkage attribute 3D, 31
non-array memory allocation 113, 114
non-inline constructors 139
nondefining declarations See declarations,

referencing
nonstatic member functions 121

accessing 124
static vs. 123

nonzero digits 12
normvideo (manipulator) 207
not equal to operator (!=) 87,89

relational operators vs. 88
NOT operator (!) 81

303

NULL
macro 278

null 29
characters, binary stream and 279
directives 178
identifiers 187
inserting in strings 201
pointer constant 278
pointers 52

testing for 96, 98
typecasting 106

statements 22,95
loops 99

strings 17
NULL (mnemonic) 52
numbers See also constants; data types; floating

point; integers
base, setting for conversion 202
bcd Seebcd
converting See conversions
large 19
line, adding 188
lines See lines, numbers

numeric coprocessors

o

built in 256
floating-point format 274
registers and 256

\0 escape sequence (display octal digits) 17
object, memory regions 25

initialization and 40
objects 119, 120, See also C++

accessing 123
aliases 111, 112
automatic 172
const keyword and 47
converting to reference types 107
copying 133

restricted 120
current, returning 213
data types 37
deleting 214
duration 114
exception handling 166, 168, 1 72
exit procedures and 140
hidden 120

304

initializing 133, 137
new operator and 116

local 133
memory allocation 133
nonstatic members and 121, 123
persistent 219
pointers 51, 105, 106,211

functions pointers vs. 50
referencing 120, 123
restoring 219
saving 219
static members and 123, 125
storing 211
temporary 112, 133
unions and 133
volatile

accessing 276
volatile keyword and 47

objstrm.h (header file) 223
oct (manipulator) 201
octal

conversions 201
digits 12

backslash characters and 15
displaying 17

escape sequence 16
octal constants See constants, octal
of stream (class) 204

constructors 205
one-dimensional arrays 158
opcodes See assembly language
open mode See files, opening, C++
open mode, default 205
operands 71

arithmetic expressions 39
binary operators 82
bitwise complement 81
evaluating 74
logical negation 81
memory use 93
returning values 81
types, overloaded operators and 74

operands (assembly language) 266
operating system environment, strings, changing perman

281
operator (keyword) 142
operator function name, defined 142

Borland C++ for OS/2 Programmers Guide

operator functions 143, See overloaded operators
calling 146, 147

operators 71, 76
l's complement (-) 81
addition (+) 83
additive 83
address (&) 80
AND (&) 85
AND (&&) 89
assignment 73, 90

compound 91
overloading 147

binary 82
overloading 147

bitwise
complement (-) 81
logical 84
relational 86
shift 86
signed integers and 275
truth table 85

c++
delete See delete (operator)
new See new (operator)
pointer to member See operators, C++,
dereference pointers

conditional (? :) 90
decrement (- -) 79, 82
dereference pointers 92
division (/) 84
equal to (==) 87,88

relational operators vs. 88
equal-to «=) 87
equal-to or greater-than (>=) 87
evaluation (comma) 91
exclusive OR (/\) 85
exclusive XOR (/\) 82
function call () 78
greater-than (» 87
greater-than or equal to (>=) 87
hidden identifiers and 28
inclusive OR (I) 85
increment (++) 79,82
indirection (*) 53, 81
inequality (!=) 87, 89

relational operators vs. 88
less-than «) 86

Index

less-than or equal-to «=) 87
logical 89

bitwise 84
negation (!) 81

manipulators See manipulators
modulus (%) 84
multicharacter 76
multiplication (*) 84
operator defined 186
OR (/\) 85
OR(I) 85
OR (I I) 89
overloading 75, See overloaded operators
postfix 78

arrays 78
decrement 79, 82
function calls 78
increment 79,82
member access 79

precedence 71, 74
prefix

decrement 82
increment 82

redefining 75, 120, 142
referencing and dereferencing 80
relational 86

equality I inequality operators vs. 88
remainder (%) 84
scope resolution (::) 113, 116, 152
selection (. and -» 83

member access 67, 79, 125
shift bits «< and ») 86
sizeof 27, 67, 93

data type 278
restrictions 93

specific to C++ 76, 92
subscripting 116
subtraction (-) 84
truth table 85
typeid

syntax 78
unary 79-82

scope access 152
syntax 80

option pragma directive 192
OR operator

bitwise inclusive (I) 85

305

logical (I I) 89
OS/2

applications, Resource Compiler and 241
argument-passing convention 46
memory management 261

__ OS2 __ macro 195
ostream (class) 205

derived classes 204
flushing 202

ostrstream (class) 205
output 197, 199

console 207
formatting 198, 200
inserters 200
padding 202
screen 207
streams

data types 200
redefining 204

overflows, expressions and 75
overloaded constructors 135, See constructors,

overloaded
overloaded functions 31, 197

arguments 15
creating 146
defined 121
related 155
templates 155

overloaded operators 73, 142-148
» (get from)

complex numbers and 257
streams 203

«(put to)
complex numbers and 257
streams 199

arrays 114
assignment 147
binary 147
complex numbers and 257
creating 122
defined 121
enumeration 70
functions and 74
global 142
inheritance 146, 147
operator keyword and 142
postfix increment 70, 146, 213

306

p

precedence 74
prefix increment 70, 146, 213
restrictions 75, 142
selection (-» 148
subscripts 147
syntax 147
unary 146, 148
warnings 146

padding
output, default direction 202
structures 56, 64

paging 262
parameterized

manipulators See manipulators
types See also templates

parameterized types 153
parameters See also arguments

arguments vs. 3
default values and 59
ellipsis and 22
empty lists 37, 51
fixed 58
formal 59

actual arguments and 60
function calls and 27
passing 46, 47

by reference 54, 111, 122
by value 111, 112
functions as arguments 50

priority 191
stream manipulators 200, 201
variable 58

parentheses 21,44
as function call operator 78
commas and 92, 181
expressions 74, 77

with no 71
nested, macros and 182
overloading 147

parsing 5,6
Pascal

calling conventions 49
functions 50

compiling 195
identifiers, case sensitivity 10, 50

Borland C++ for OS/2 Programmers Guide

parameter-passing sequence 50
forcing 46

variant record types 67
__ P ASCAL __ macro 195
pascal (keyword) 46,50

function type modifiers and 50
pass-by-address, pass-by-value, and pass-by-var

See parameters; referencing and dereferencing
period as an operator See operators, selection

(. and -»
perror (function), messages generated by 280
persistent streams

accessing 224
class library

predefined macros 219, 223
restrictions 230

objects 219
phrase structure grammar See elements
PMHELLO (PM program) 246

compiling and linking 246
PM (presentation manager)

command-line compiler 248, 249
IDE and 246
modules, compiling and linking 241
PMHELL0246

pointer declarator *
indirection operator and 53

pointer declarator (*) 44
pointer-to-member operator 92
pointer-to-member operators See operators, C++,

dereference pointers
pointers 25, 50, See also referencing and

dereferencing
abstract classes 151
address, displaying 200
advancing 53
arrays 56, 114

elements, one past the last 53
assignment 52
casting to integer 275
classes 104, 106, 211
comparing 87,88,96,98
constants 26, 46, 52

typecasting 103
conversions See conversions
data, modifying 50
data types 23

Index

floating point 211
declaring 51, 52
dereferencing 26
derived class 157
eliminating 161
equality linequility 87
function

modifying 50
functions 49, 51

exception handling 169
modifying 50
object pointers vs. 50
typecasting 105
void 51, 52

generic 37, 52
illegal 52
initializing 51
integer type for 276
internal arithmetic 53
members 107

dereference 92
static 51
this keyword and 121, 124

non-null, returning 114
null 52, 106

NULL macro and 278
testing for 96, 98

objects 105, 106, 120, 141,211
destroying 140

pointers to 51
range 20
reassigning 51
reference types 104
referencing vs. 111
streams 198, 200
structures 62, 79

incomplete declarations and 65
members as 62

testing 52
typecasting 54
unions 67, 79
virtual functions and 149, 150

polymorphic classes 148
postfix expressions 72
postfix operators 78

arrays 78
decrement 79, 82

307

function calls 78
increment 79,82,213
member access 79
overloading 70, 146

pragma directives 190-194
command-line options 192
exit functions 191
exit procedures 140
ignored 190
intrinsic 192
precompiled headers 191, 192
startup functions 133, 191
templates and 162
warnings

disabling 190
#pragma directives

inIine 265
. precedence 71, 74

controlling 21 ,
declarators 44
operator functions 143
overloaded operators 74, 199

precision (member function) 200
precompiled headers 191

reducing disk space for 192
predefined macros See macros, predefined
prefix expressions 77
prefix operators

decrement 82
increment 82, 213
overloading 70, 146

prefixes
container classes 213

preprocessor
output 177

preprocessor directives See directives
primary expressions 76

arguments 77
printers, printing direction 272
printing

files 58
priority parameters 191
private (keyword) 127

base classes and 128
derived classes and 128
unions 68

private members 127

308

procedures See functions
exit 140, 191

producer (streams) 197
Programmer's Platform See Integrated

Development Environment
programs 5

annotating 6
creating 25

executable 30
debugging 177
entry point 56
executing 94
exiting 140
flow, interrupting 167, 172
improving performance 44
reducing size 44
terminating 140

exception handling 165
termination 176 '

promotions See conversions
protected (keyword) 127

base classes and 128
derived classes and 128
unions 68

protected members 127
prototypes 57-58

delete operator, overloading 117
examples 57, 58
exception specifications 170
fixed parameters 58
function 56, 57

definitions not matching 61
undeclared 60

header files and 58, 61
identifiers and 27
libraries and 61
new operator, overloading 117
scope See scope
templates and 162
typecasting and 60

pseudovariables, register 9
public (keyword) 127

base classes and'128
derived classes and 128
unions 68

public members 127
punctuators 71

Borland C++ for OS/2 Programmers Guide

pure specifiers 35
put to operator «<) See overloaded operators, «

(put to)
stream output 199

putenv (function), environment names and methods
281

Q
qualified names 125, 129

defining 77
qualifiers, declarations 34
question mark

character, displaying 17
condi tiona I opera tor 90

quotation marks, displaying 16

R
\r (carriage returns) 16
ranges

data types 19
floating-point constants 15

Read (function), streams, compatibility 227
ReadBaseObject (member function) 222
ReadVirtualBase (function) 222,228
readWord (function) 221
realloc (function), zero-size memory allocation and

281
records See structures
reference types 54

converting objects to 107
pointers 104
specifying 80

referencing and dereferencing 25, 111, See also
pointers
32-bit executable programs and 48
& operator and 37
abstract classes 151
asterisk and 23
classes 104, 105
constructors and destructors 134
conversions 112
data types 45, 103
declarator 23
forward references 26
functions 111, 112

external 111

Index

incomplete declarations and 120
iostreams 200
members 92, 121, 125
objects 120, 123
operators 80
pointers 26, 92
simple 111
templates 162
variables 138
virtual functions and 149

referencing data in inline assembly code 267
referencing declarations 25, See declarations
register (keyword) 29, 44, 121

external declarations 34
registers 29

allocation 44,47
Dl, assembly language and 267
hardware, bit fields and 66
numeric coprocessors and 256
objects and 276
pseudovariables 9
SI, assembly language and 267
variables

in inline assembly code 267
variables in 44, 47

reinterpret_cast operator 105
relational operators 86, See operators, relational

equality /inequality operators vs. 88
remove (function), open files and 280
rename (function), preexisting file name and 280
resetiosflags (manipulator) 201, 202
Resource Compiler

invoking 250
OS/2 and 241
PM applications and 243

resources
adding 250
defined 243

return statements 100
rounding

banker's 260
direction, division 84
errors 258
rules 275

routines
calling 47
interrupt 47

309

routines, assembly language See assembly
language

-RT compiler option (runtime type) 119
__ rtti (keyword) 119
RTTI (run-time type information)

obtaining 78
RTTI (runtime type information) 104
run-time dynamic linking 231
rvalues 26, 43, 71, See also lvalues

s
scalar data types 36, See data types

initializing 41
scope 25, 27-28, 152-153, See also visibility

categories 27
classes 28, 70, 120

friends 130
members 125-128
nested 126

duration and 28, 29
enclosing 152
enumerations 27, 28, 70
functions 28

external 30
identifiers 11,27

duplicate, and 28
loops 99
statements and 95

inline expansion and 122
local 27, 44

external linkage and 44
internal linkage and 44
static duration and 29

names 120
hiding 152

resolution operator (::) 113, 152
new operator and 116, 117

structures 27
unions 27

members 28
variables 28, 133
visibility and 28

screens
attributes, setting 207
writing to 207

searches, #include directive algorithm 185

310

segments
controlling 190

selection
operators See operators, selection
statements See if statements; switch statements

semicolons 22, 42, 95
sequence, classes See classes, sequence
seCnew _handler 114
setattr (manipulator) 207
setbase (manipulator) 201, 202
setbk (manipulator) 207
setclr (manipulator) 207
setcrsrtype (manipulator) 207
setf (member function) 200, 202
setfill (manipulator) 201, 202
setiosflags (manipulator) 201,202
setprecision (manipulator) 201,202
setw (manipulator) 201,202
setxy (manipulator) 207
\SHAREMEM directory 263
shddel.h (header file) 214
shift bits operators «< and ») 86
short (keyword) 38

assignment 38
short integers See integers, short
sign 11

extending 15, 40
automatic 40

signal (function) 279
signed (keyword) 38, 40

declaring as bit fields 66
single-character constants 15
single quote character, displaying 16
sink (streams) 197
size overrides in inline assembly code 267
size_t (data type) 93
sizeof (operator)

data type 278
sizeof operator 27, 67, 93

new operator vs. 114
restrictions 93

source (streams) 197
source code 5

adding line numbers 188
documenting 57
including files 184
portability 7

Borland eft for OS/2 Programmers Guide

bit fields and 66
internal representations, types 39

processing 195
type-safe lists 160

specifiers See type specifiers
splicing lines 6, 18
stack 47

containers 210
exception handling 169, 176
list-based 211, 215

example 216
local duration and 29
maximizing access 210
unwinding 169, 172, 176
vector-based 210, 214

standard conversions See conversions
startup functions 133, 191
startup pragma directive 191
statements 94-101, See also individual statement

names
assignment 26
block 95

marking start and end 21
default 97
do while See loops, do while
empty 95, 99
exception handling

catch 168
throw 167
try-block 166

expression 22, 95
for See loops, for
if See if statements
iteration See loops
jump See break statements; continue statements;

goto statements; return statements
labeled 22, 27, 95

transferring control to 97, 100
lvalues and 26
nested 95, 96, 100
null 95, 99
selection 96
while See loops, while

static
members See data members, static; member
functions, static
objects See objects, static

Index

static (keyword) 44, 121, 123
duration 29
linkage 30

static_cast operator 106
static duration 29,40,44

extern keyword and 44
static functions 30, 44
static members 123, 159

linking 124
pointers 51
unions 67

_status87 (function), floating point exceptions and
256

__ STDC __ macro 181, 195
stdcall (keyword) 46, 48
stdio.h (header file) 188
stdio library 197
storage

allocation 35, 113
floating-point types 39

automatic duration 40, 41, 44
deallocation 113

storage class
specifiers

register, objects and 276
storage class specifiers 121, 123

declarations 43, 44
external 34

duration 29
linkage 30
local scope 44
typedef keyword and 45
types 44

storage classes 26
streamable classes

base 220
declaring 228
reading/writing 228

building 219
constructors 224
creating 219, 222, 227
data types 221
declaring 225, 226, 228
defining 223
hierarchies 198, 199
I/O

consoles 207

311

formatted 198, 199,204
inheritance 198, 204, 223

virtual bases 222
libraries 197
member functions 221, 222, 227

adding 224
new features 220
Streamer 227
templates 221, 222, 228
version numbers 220, 229
virtual functions 227, 228

streamable objects 219
creating 222, 227

streambuf (class) 197
derived classes 198

Streamer class 227
streams 197, See iostreams

buffering 197
error states 205
field width, setting 202
fill character 202
flushing 201,202
open, predefined 198
persistent 224

class library
predefined macros 219, 223
restrictions 230

objects 219
pointers 198
states, altering 200

strerror (function), messages generated by 281
strings 197

concatenating 18
constants 17
continuing across line boundaries 18
converting arguments to 183
empty 17
I/O streams 205

default width, changing 203
overflowing 203

inserting terminal null into 201
literal 6, 17

ANSI compliant 18
arrays and 42

macros and 179
null 17
scanning 98

312

wchar_t 17
strstrea.h (header file) 197,205
struct (keyword) 61, 120, See also structures

omitting 62
polymorphic classes 148

structured exceptions 172
structures 61-66, 119

accessing 61, 128
arrays and 56
assignment 64
bit fields See bit fields
classes vs. 61
complex 257
data 210

implementing 209
declarations 61, 120

incomplete 65
defined 61
functions returning 62
initializing 41, 137

example 42
member functions and 62
members 62

accessing 63, 79
as pointers 62
comparing 87
in inline assembly code 268

restrictions 268
naming 65
padding and alignment 276

memory allocation 64
modifying 48
naming 119
padding 56, 64
pointers 62

incomplete declarations and 65
scope 27
tags 61, 65

nested classes and 126
omitting 61

typedef keyword and 62
unions vs. 67
untagged 61, 62
within structures 62
word alignment 64

subscripting operator 116, See brackets
subscripts for arrays 21, 78

Borland C++ for OS/2 Programmers Guide

overloading 147
subtraction operator (-) 84
switch (keyword) 97
switch statements 95, 97

case values, number of allowed 277
default label 97
restrictions 97

symbolic constants See constants
syntax

C-based exceptions 172
classes 119

base-list argument 128
member-list argument 121

data types 43
declarations 32, 33
delete operator 113

arrays 116
directives 178
exception handling 165, 167

specifications 169
expressions 72

typeid 78
external functions 59
formal parameters 59
initializers 40
inline assembly language 266

. new operator 113
notation 2
overloaded operators 147
statements 94
storage class specifiers 43
templates 153, 159

syscall (keyword) 46, 48
system (function) 281
system calls, dynamic-link libraries 233

T
\ t (horizontal tab character) 16
tab characters 5

literal 16
tags 28

declaring inside classes 126
enumerations 69

omitting 69
forward references and 26
structure See structures, tags

TArrayAsVector (template class) 209,211

Index

iterator 213
TASM266
__ TCPLUSPLUS __ macro 195
TDequeAsDoubleList (container class) 213
TEMP.C 188
template

function
argument conversions 156
arguments 156

templates 153-164, See also syntax
arguments 155, 159
arrays 209

example 216
class 157

overriding 158
compile errors 159
compiler switches 161, 162
container classes 209, 214
data types 155
dequeues, example 216
external references 162
function 154

arguments 155
explicit 156
implicit 156
instantiation 155, 159

syntax 159
overloaded 155
overriding 155

including objects in 161
instances, generating 161, 162
macros, predefined 195
macros vs. 154
nested 159
streamable classes 221, 222, 228
user-defined 162
Vector symbol 158
with class arguments 157

__ TEMPLATES __ macro 195
temporary objects 112
tentative definitions 32
terminate (function) 169, 171, 172
terminate_function (type) 171
text, streams, writing, truncation and 279
text windows, manipulators 207,208
this (keyword) 121

static member functions 124

313

streamable classes and 229
threads 252
throw (keyword) 166
throw expressions 167

violations 171
throw-point 167
tildes (-), in syntax 140
time 196, See also date

formats 282
local, how defined 281

__ TIME __ macro 181, 196
availability 277

TLINK (linker), PM applications and 249
TMIArrayAsVector (container class) 213
TMQueueAsVector (container class) 212
tokens 5

continuing long lines of 183
kinds of 8
macro expansion and 179, 180, 182
multicharacter operators 76
pasting 6, 183
replacing and merging 24, 178
sequence 179

empty 179
translation units 29, 32
true! false conditions 96
truth table, bitwise operators 85
__ try (keyword) 8, 174
try (keyword) 166, 167
try-block statements (exceptions) 166
TShouldDelete (container class) 214
TStandardAllocator (container class) 212
TStreamable (streamable class) 219
TStreamableBase (streamable class) 223
__ TURBOC __ macro 196
type checking 58

function calls 57
macros and 183
reducing 60

type-safe linkage 157, 160, See linkage, type-safe
type-safe lists 160
type specifiers

bit fields 66
declaring 36, 44
elaborated 120
integers 38
missing 36

314

pure 35
typedef keyword and 45
undefined 133
void 37

typecasting
alternative methods 103
const keyword and 103
dynamic 104
enum keyword and 106
explicit 78, 80
new operator and 114
pointers and 51, 52, 54
prototypes 60
reference types 104, 107
static 106
void keyword and 37, 104
volatile keyword and 104

typed constants See constants
typedef (keyword) 28, 33, 45

nested classes and 126
structures 62

typeid operator
syntax 78

types See data types

u
-U compiler option (undefine identifier) 181
UINT_MAX constant 86
ULONG_MAX constant 86
unary operators 79-82

overloading 146, 148
scope resolution (::) 152
syntax 80

undeclared functions 60
calling 26

#Undef directive 179
global identifiers and 181

undefined classes 105
underbars See underscores
underflow range errors, mathematics functions and

278
underscores

generating 49
ignoring 46

unexpected exceptions 167, 171
unexpected_function (type) 171
union (keyword) 120

Borland C++ for OS/2 Programmers Guide

unions 27, 67, 119
accessing 275
anonymous 67
base classes and 128
bit fields and See bit fields
declaring 68, 120
initializing 41, 62, 68
members 67, 133

accessing 67, 79, 127
initializing 41, 62
scope 28

naming 119
objects and 133
pointers 67
structures vs. 67
tags 65

unsetf (member function) 200, 202
unsigned (keyword) 38,40
unsigned data types

declaring as bit fields 66
range 19

untagged structures 61, See structures, untagged
user-defined functions 58
user-defined templates 162
user-defined types 25

iostreams 204

v
\ v (vertical tab character) 16
value, passing by See parameters
values 25, 26

assigning to class members 138
changing, derived classes and 139
comparing 86
enumerations 68, 69
expressions 71

modifying 74
indeterminate 40
parameters with default 59
setting initial 40
templates 156, 159
testing 96
void keyword and 37
volatile keyword and 47

var, passing by See parameters
variable number of arguments 22, 50, 58

predefined macros 58

Index

variables 45
assignment 40
automatic See auto (keyword)
creating 42
declaring 29, 44, 47

default, local scope 44
enumerated types, C vs. C++ 68
extemal28

duration 44
global See global variables

constructors 133
destructors 140

I/O, formatting 200
initializing 44
local 159

destroying 140
offsets in inline assembly code 267
pseudo See pseudovariables
referencing 138
register 44, 47, See registers, variables
scope 28
static 44

variant record types See unions
vectimp.h 159
Vector (symbol) 158
vector-based stack 210, 214
vectors 210

class 158
complex, example 143

version numbers
streamable classes 229
streamable objects 220

vertical tabs 5
literal 16

virtual
base classes See classes, base, virtual
destructors See destructors, virtual

virtual (keyword) 148
abstract classes and 148, 150
base classes and 130
destructors and 141

virtual address space 262
virtual classes 130

constructors 136, 137
hierarchies 136
inheritance 222

virtual destructor 141

315

virtual functions
calling 150

reducing number of 161
declaring 148, 151
exception handling 169
inline 161
overriding 149, 169
polymorphic classes 148
redefining 148
restrictions 124
return types 149
streamable classes 227, 228
Streamer 227

virtual inheritance 198
virtual memory 261
visibility 25, 28, See also scope
void (keyword) 37, 58

cast expressions 37
pointers and 51, 52
return statements and 101

volatile (keyword) 46,47,53
removing from types 103

volatile qualifiers 34

w
warnings

audible bell 16
disabling 190

wchar_t (wide character constants) 17,42,274
whar_t (keyword) 17
whar_t (typedef) 17
while loops See loops, while
whitespace 5, 181

comments as 5, 7
discarding 203
extracting 201
skipping 203

316

tokens and 180, 183
wide character arrays 42
wide character constants 17
wide character constants (wchar_t) 274
wide character strings 1 7
width (member function) 200, 203
WIN32

argument-passing convention 46
Windows

applications
32-bit executable 46

declarations 48.
modules 195

compiling and linking
predefined macros 195

windows, text, manipulating 207, 208
withassign (class) 198
word

alignment 64
bit fields 66

word alignment 276
wrapper classes 160
Write (function), streams, compatibility 227
WriteBaseObject (member function) 222
WriteVirtualBase (function) 222, 228
writeWord (function) 221
ws (manipulator) 201, 203

X
xalloc (exception) 114
-xd compiler option (calling destructors) 118, 176
\XH (display hexadecimal digits) 17
\xH (display hexadecimal digits) 17
XOR operator (/\) 82

z
zero-length files 280

Borland C++ for OS/2 Programmers Guide

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Canada,
Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore,
Spain, Sweden, Taiwan, and United Kingdom· Part # BCP1415WW21771 • BOR 7001

