
BiiN

Object

Computing

Rev. 1.0
Biitl~

FJP ,
Foil 1

Object Computing Benefits

Rev. 1.0
FJP
Foil 2

And

• Productivity

- Reusability

- Maintainability

- Extensibility

• Reliability

Biill~

Object Computing Benefits

Rev. 1.0
FJP
Foil 3

I • To Store Knowledge I
But

And

· as File Structures and Relational DBMS are Inadequate

• Purely Software-based Persistent Object Support
- is inefficient, and
- does not address multi-user access

Biill1M

Object Computing Benefits

Rev. 1.0
FJP
Foil 4

I- To Construct Secure Systems I

But

• Requires Run-time Enforcement

• Current Hardware Architectures do not Support Efficient
Fine-Grained Protection

BiillTM

Topics

Rev. 1.0
FJP
FoilS

• Object Addressing and Protection

• Computational Model

• Type Manager Based Protection

• Inheritance

• Object Persistence

VLSI-Based
Object Addressing and Protection

• Object is a Typed Memory Segment
- From 64 to 4 gigabytes
- If >4K bytes, then paged
- up to 64M objects in virtual address space

Tag-Bit Access Descriptor

GJ Object Index Rights

• Object Accessed through Access Descriptor
- AD is unforgeable (33rd bit)

Rev. 1.0
FJP
Foil 6

- AD is used just like a pointer - Access type in Ada

• Rights Determine Allowed Operations

Object
Representation

Virtual Addressing

66-bit
Virtual Address

Access Descriotor

Object Index Rights

Object Index Object Table

• Object Table Maps Virtual Addresses
to Physical Addresses

Rev. 1.0
FJP
Foil 7

I Offset

Object Representation

-
!OffS:t

L~",** 64 bytes -
4 gigabytes

Biill~

Object Structure

Rev. 1.0
FJP
FoilS

Tag-Bit Access Descriptor Object Table

[2J Object Index Rights

.....

• Object Defined by Object Table Entry
- Used for virtual to physical address translation
- Visible to just as memory manager
- On-chip TLB (MMU) caches mapping information

• Translation is Independent of Execution Context
- TLB not flushed on process switch

Biillf

Address Translation

~~~~t 1-1 _D_I---LI ~P_I ~I _p_o~1 Offset 
Object . 
Representation 

Rev. 1.0 
FJP 

31 21 11 0 (.: ~ 

:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.L: :'-':--~-~11~p~o~ 64 B -
O"N"~'- ~. 4 KB 

Page Table 

64 B-
4 KB 

;:: ~.~ 
.:~ 

I PO 4 KB 

4 ..... _ ... 

Foil 9 backup 

• Simple 
- 64 bytes to 4K bytes 
- 64 byte increments 

• Paged 
- 4K bytes to 4M bytes 
- 4K byte increments 

• Bipaged 
- 4M bytes to 4G bytes 
- 4K byte increments 



Object Typing 

Rev. 1.0 
FJP 
Foil 10 

• Object Types are Defined by Type 
Definition Objects (TDO) 

• Each Object Descriptor Contains an 
AD Pointing to the TDO of itsType 

• HIW recognized types: 
- Semaphores 
- Ports 
- Processes 
- Domains 
- TDOs 

Object Table 

Base address 

Type Definition 
Object (TOO) 

" 

Object 
Representation 



Representation Rights 

Rev. 1.0 
FJP 
Foil 11 

Tag-Bit Access Descriptor 

~ I RJp Object Index Ltsage 
Fligh1s Rights 

~~ ~~ II 

1 

32 31 4 3 2 1 0 

• Representation Rights Control Direct Access to Object 
- Read rights checked on Load instructions 
- Write rights checked on Store Instructions 

• Rights Checking Occurs in Parallel with Address Translation 



Topics 

Rev. 1.0 
FJP 
Foil 12 

• Object Addressing and Protection 

• Computational Model 

• Type Manager Based Protection 

• Inheritance 

• Object Persistence 

Biill~ 



Simple Program Model 

Region 
Offset Selection 

..... .... 

Process State 
Address Space 

ADs 

31 30 29 o 

Rev. 1.0 
FJP 
Foil 13 

• Conventional Programs See Flat 32-bit Linear 
Address Space 

• Each of 3 Regions is an Object 

• Regular Call-Return Used for Procedure Calls 

• Reserved Region is Processor-specific 

0000000016 

40000000 16 

80000000
16 

C000000016 



Extended Program Model 

Rev. 1.0 
FJP 
Foil 14 

Objects 

• Linear Address Space Can be Root of an Object Network 
- Interconnected by ADs 
- ADs used just like pointers 



Multiple Address Spaces Per Process 

D Domain Object EJ 
Call Domain t-------I~ I stack I 

subprogram number ~ entry points 

Rev. 1.0 
FJP 
Foil 15 

• Destination Address Space Defined by Domain Object 

• Interdomain Call/Return Instructions 
- Linkage kept in process object 
- No implicit access between address spaces 
- Parameters may include ADs 
- Performance comparable to other architectures' supervisor calls 

• No Limit on Number of Address Spaces per Process 

code 

Biill~ 



Closer Look At 
Call Domain 

Rev. 1.0 
FJP 
Foil 16 backup 

Subsystem 10 

Entry Points 

Process 
Hash Table 

code 

data 

• Subsystem_ID Selects Stack from Process Object 
- Null: use caller's stack 
- World: use the default program stack 
- 10: A unique (named) stack is selected per process 



Subsystem Based Protection 

D Protected 
Subsystem 
(address space) 

,(D\ Public 
~ Interface 

(domain object) 

o Private 
Modules 

Rev. 1.0 
FJP 
Foil 17 

BiiN/OS 
Comm. 
Service 

Library 
Servioe 



Subsystem Based Protection 
Benefits 

Rev. 1.0 
FJP 
Foil 18 

• Reliability, Maintainability, and Extensibility Without 
Compromising Performance 

• Increased Productivity in Integration and Test 
- Decompose application into protected subsystems 
- Since each subsystem is linked independently, turnaround time 

(recompile/relink) is faster 
- Since errors confined to subsystem, they are easier to find 

• Increased Performance Without Compromising Security 
- Services can safely execute in user's process 
- Other architectures require separate process, which results in: 

- higher invocation overhead 
- potential bottlenecks in symmetric multiprocessors 

Biill~ 



Topics 

Rev. 1.0 
FJP 
Foil 19 

• Object Addressing and Protection 

• Computational Model 

• Type Manager Based Protection 

• Inheritance 

• Object Persistence 

BiiN~ 



Object-Oriented Design 

Rev. 1.0 
FJP 
Foil 20 

• Define Abstract Data Type 

• Define Set of Operations on Type 

• Set of Operations form a Module 

• Module Hides Implementation 

- Representation of data type 

- Operations (Algorithms) on data types 

BiilNf 



Mapping to Ada 

Object-oriented Design 

• Define Abstract Data Type 

• Define Set of Operations on Type 

• Set of Operations form a Module 

• Module Hides Implementation 
- Representation of data type 

- Operations (Algorithms) on data types 

Rev. 1.0 
FJP 
Foil 21 

Maps to Ada Package 

package Library_Service is 

type library_object is limited private; 

type library is access library_object; 

function Create_library return library; 

procedure Store(Lib: library; 

• • • • 

Name: string; 
Data: text} ; 

end Library_Service; 

package body Library_Service is 

-- Contains Implementation 

-- Hidden from users of package 



Mapping To Architecture 

package Library_Service is 
type library_object is limited private; 
type library is access library_object; 
function Create_library return library; 
procedure Store(Lib: library; 

• • • • 

Name: string; 
Data: text} ; 

end Library_Service; 

Rev. 1.0 
FJP 
Foil 22 

• Runtime Protection of 
- Package body 
- Representaion of library objects 

D Protected 
Subsystem 
(address space) 

,{l/\ Public 
~ Interface 

(domain object specified 
Ada package specification) 

o Private 
Modules 
(internal Ada 
packages) 

Application 

Library 
Service 



Principles Of 
Type Manager Based Protection 

• Objects are Typed 

• The X Service is the Type Manager (TM) for 
Objects of Type X . 

• Only TM X Can Access Representation of X Objects 

• Applications Can Pass Around ADs (without 
Representation Rights) for X objects 

• Anyone Can Create a New Object Type and TM 

• BiiN/OS Provides Object Management Service 

Rev. 1.0 
FJP 
Foil 23 

":::::" Service ;::::: 
·"::t~~:::::::::::::::::;::::::::;:;:::::::::;:::::::::::::::~J" 

BiilNf 



Usage Rights 
Tag-Bit . Access Descriptor 

~----------------~~~~~~~~~ 

Jsade RJP 

Rev. 1.0 
FJP 
Foil 24 

1 Object Index 

32 31 

Usage Rights are Interpreted 
and Checked By Object's TM 

Fligh1s Rights 
.~.::.: ~ ~ ... ~ 

4 3 2 1 o 

TYPE USE 

FILE READ 

TOO CREATE 

DIRECTORY LIST 

PROGRAM EXECUTE 

LIBRARY LOOKUP 

Examples 

MODIFY CONTROL 

WRITE DELETE 

AMPLIFY -

STORE CHANGE A-LIST 

DEBUG DESTROY 

STORE LOCK 

BiiNTM 



A TM Example Using Libraries 

Rev. 1.0 
FJP 
Foil 25 

Outline 

• Creation of the Library Type 

• Creating an Object of Type Library 

• User-Level Protection on Library Objects 

• Invoking the Lookup Procedure on a Library Object 



Type Creation 

• To Define a New Data Type, TM Creates a 
Type Definition Object (TOO) 

- AD to TDO is never given out 
- Usage Rights of that AD have TM_rights semantics 

Rev. 1.0 
FJP 
Foil 26 

Create ( use) right 

Amplify (modify) right 
Library Service 

Library 
TOO 

Biill~ 



Object Creation 

Rev. 1.0 
FJP 
Foil 27 

Application 

"CALL" 
Create_Lib 

• Application Cannot Create Library Object Directly 
- It cannot get AO with create rights for Library TOO 

• Application Must Call Create_Library Subprogram 

• Call Requires AD for Library Service Domain Object 

Biitl~ 



Object Creation (cont'd) 

• Library Service Calls BiiN/OS Object Service 
- AD for Library TOO is passed 
- Object service checks for create_rights in AD 

• Object Service Allocates Library Object 
- Returns AD with all rights to Library TM 

Rev. 1.0 
FJP 
Foil 28 

Library 
TOO 

Service 

Object 
Service 

Allocate 

I ,AD 
I 

,t 
New 
Library 
Object 

I 



Object Creation (cont'd) 

• Library Service Then 
- Initializes library object 
- Removes representation rights in 

AD (using restrict rights instruction) 
- Returns AD to application 
- Does NOT keep AD to library object 

• Application Cannot Access 
Representation 

• Application Controls Usage 
Rights to Just its Library Object 

Rev. 1.0 
FJP 
Foil 29 

Application 

"CALL" 
Create_Lib 

New 
Library 
Object 

Biitl~ 



Authority-List Determines Usage Rights 

Rev. 1.0 
FJP 
Foil 30 

User ID 
bob 

Identities 

bob 

finance 

contracts 

world 

Group ID 

finance 

members "Sales" 
Library 
Object 

" Authority List 

joe umc 

susan -m-

finance u - -

sales urn -

BiiN~ 



Type Specific Operations 

• Application has AD for Library Object 
with Just Use (Lookup) Rights 

• Application Invokes List Subprogram 
Passing AD 

Rev. 1.0 
FJP 
Foil 31 

Library 
Object 

--, , , , 
'r 

Library 
TOO 



Type Specific Operations (cont'd) 

Rev. 1.0 
FJP 
Foil 32 

• Application has AD for Library Object with Just 
use (lookup) Rights 

• Application Invokes List Subprogram Passing AD 

• Library Service Executes Amplify 
Instruction 

- Takes AD to-be-amplified and 
AD with Amplify (modify) rights 
for a TOO 

- Verifies type match 
- Adds representation rights 

Library 
Object 

Library 
TDO 



Type Specific Operations (cont'd) 

Rev. 1.0 
FJP 
Foil 33 

• Application has AD for Library Object with Just 
use (lookup) Rights 

• Application Invokes List Subprogram Passing 
AD 

• Library Service Executes Amplify Instruction 
- Takes AD to-be-amplified and AD with 

Amplify (modify) rights for a TDO 
- Verifies type match 
- Adds representation rights 

• Library Service Can Now Access 
Representation of Library Object 

Library 
Object 

Library 
TDO 



Relationship To Security 

Rev. 1.0 
FJP 
Foil 34 

"The TCB shall be designed and structured to use a complete, 
conceptually simple protection mechanism with precisely defined 
semantics. This mechanism shall playa central role in enforcing the 
internal structuring of the TCB and the system. The TCB shall 
incorporate significant use of layering. abstraction and data hiding. " 

From the Orange Book (DOD 5200.28-STD) section 3.3.3.1.1 , System 
Architecture for B3 level security 



Relationship to Security (cont'd) 

Rev. 1.0 
FJP 
Foil 35 

Corresponds to SA T Type Enforcement 
• Secure Ada Target 

• Extends Bell and LaPadula Model Beyond A 1 

• NCSC/Honeywell Research 

"Domains are essentially a mechanism for encapsulating managers for 
different data types and transformations between data types. This 
provides a way to decompose the proof of security for the system into 
manageable pieces and to tailor the security policy for a system in an 
application dependent fashion. . .. Thus, type enforcement is more 
than a mere convenience. It provides a way to unify the treatment of 
trusted subjects with that of generic untrusted subjects." 

From "Extending the Noninterference Version of MLS for SAT", IEEE 
Transactions on Soft. Eng. Feb. 1987. 

Biill~ 



Topics 

Rev. 1.0 
FJP 
Foil 36 

• Object Addressing and Protection 

• Computational Model 

• Type Manager Based Protection 

• Inheritance 

• Object Persistence 



Behavior Inheritance 

Rev. 1.0 
FJP 
Foil 37 

• Multiple Implementations for Same Behavior 

• Example 
Behavior 

Byte-Stream Access Method 

Implementations 
File, Pipe, Magtape, Terminal 

• Implementation is Selected in Call Instruction Based on 
Type of Object 



Application Independent of Implementation 

Rev. 1.0 
FJP 
Foil 38 

Behavior Specification 

Byte Stream AM 

Record AM 

·1· Terminal AM 
INDEPENDENCE '1~';:':: • 

l:l~~i~~~ 

BSAM 
open 
read 
write 

Record AM 
open 
read 
write 

• Ada Package Specification Specifies Behavior 

• Provides Semantic Definition to Interface 

• Services Provide Implementation (package body) 

• New Behaviors can be Added 



Call Vectoring 

Behavior Specification 

I Byte Stream AM III 
;It 

Record AM 

New AM 

Service 
Implementation 

o 

Type of First Parameter Selects Implementation 

Rev. 1.0 
FJP 
Foil 39 

BlltI~ 



Implementation Selected by Object's Type 

Rev. 1.0 
FJP 
Foil 40 

Application 

Call Domain 
as_AM. Read 
(DevXAD, 
.... ) 

as_AM Behavior Domain 
as_AM_ID 

TM Service 
Implementation 

X's Domain 
Object 

Type XTDO 



Behavior Inheritance Summary 

Rev. 1.0 
FJP 
Foil 41 

• Dynamic Binding on Every Call Based on Type 

• Old Program Binaries Work with New Implementations Without 
Even Relinking 

• Call Behavior Instruction Same as Call Domain 
- Different effect due to difference in domain objects 
- Thus, invokable from any language 

• Service Can Dynamically Add Implementations for New Behaviors 



Topics 

Rev. 1.0 
FJP 
Foil 42 

• Object Addressing and Protection 

• Computational Model 

• Type Manager Based Protection 

• Inheritance 

• Object Persistence 



Object States 

Rev. 1.0 
FJP 
Foil 43 

• Two object states: Passive and Active 

• A Passivated Object is 
- Stored in permanent storage (disk) 
- Managed by Passive Store Management 
- Protected by Authority List 

• An Activated Object is . 
- Stored in virtual memory 
- Managed by object service 
- Protected by VLSI-based object addressing 



Activation 

• Implicit 
- Similar to VM fault 

- Rights in AD determined by authority-list 

• Object Networks Can Cross Node 
Boundaries 

Rev. 1.0 
FJP 
Foil 44 

Object 
Activation 

~< if Activated ::~t. 

,~~I 

Authority 
List 

Referenced 

Biill~ 



Passivation 

Rev. 1.0 
FJP 
Foil 45 

• Explicit 
- Transaction-based for synchronization 

and recovery 
- Controlled by type manager to assure 

consistency 

Start_Transaction; 

Store("Foo", A_AD); 

Update(A_AD ); 

Update(B_AD ); 

Update(C_AD ); 

Commit_Transaction; 

Current Directory 

A AD "Foo" -. 
\ , 
~-

Default 
m 
f~ 
i ~ 

Authority 
List 



Transaction Concepts 

Properties 

Rev. 1.0 
FJP 
Foil 46 

- Atomicity 
- Synchronization 
- Integrity 
- Recoverability • 

Updates in 
Transition 

START 

Obj.ects Participate 
In a Transaction 

Undo 

m 

COMMIT ABORT 

t~, 

m ~ 

Other 
Access 

Attempts 



Transaction Service 
Embedded in BiiN/OS 

Rev. 1.0 
FJP 
Foil 47 

• Transaction Service Acts as Coordinator 

• Multiple Services Can Participate in Same Transaction 
- Files 
- Directories 
- Libraries 

• Extendable to New Services 

• Distributed 
- using 2-phase commit protocol 

BiiN~ 



Distributed Optismitic Concurrency 

Time 

Rev. 1.0 
FJP 
Foil 48 

Passive 

CD 

CD 

CD 

Active 

Agent X 

CD Access A 
A is activated 

Change. A 

CD Update(A_AD) 

Agent Y 

Access A 
A is activated 

Change A 

Update (A_AD) 
Fails, Exception Raised 
Outdated object version 

Reset Active Version - -
(~AD) 

Change A 
Update (A_AD) 

CD 

CD 



Distributed Pessimistic Concurrency 

Rev. 1.0 
FJP 
Foil 49 

Start_Transaction; 

Reserve(A_AD); 
Synchronizes. Does Reset, if necessary. 

Change A 

Update(A_AD) ; 

Commit Transaction; 

BiitilM 



Persistent Object Summary 

Rev. 1.0 
FJP 
Foil SO 

• Supports a Permanent Network of Distributed Typed Objects 
- Network can cross disk and node boundaries 
- Accessible independent of location 

• Supports Concurrent Distributed Access 
- Based on transactions for synchronization and data integrity 
- Both optimistic and pessimistic synchronization are supported 

• Activation is Implicit for Ease-of-use 

• Passivation is Explicit for Data Integrity 



Summary 

Rev. 1.0 
FJP 
Foil 51 

Security 


