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Preface 

SNOBOL4 is a computer programming language containing many features not 
commonly found in other programming languages. It evolved from SNOBOL [1,2,3]1, 
a language for string manipulation, developed at Bell Telephone Laboratories, 
Incorporated, in 1962. Extensions to SNOBOL through various versions have made 
it a useful tool in such areas as compilation techniques, machine simulation, 
symbolic mathematics, text preparation, natural language translation, linguis
tics, and music analysis. 

The basic data element of SNOBOL4 is a string of characters, such as this 
line of printing. The language has operations for joining and separating 
strings, for testing their contents, and for making replacements in them. If a 
string is a sentence, it can be broken into phrases or words. If it is a 
formula, it can be taken apart into components and reassembled in another 
format. A string can appear either as a literal or as the value of a variable. 
The literal form is indicated by enclosing the string in quotation marks: 

'THIS IS A STRING' 

The string value may be assigned to a variable: 

LINE 'THIS IS A STRING' 

A common operation on a string is examination of its contents for a desired 
structure of characters. This structure, known as a pattern, can be as simple 
as a string or a given number of characters. A pattern also can be an extremely 
complicated expression consisting, for example, of a number of alternatives 
followed by another set of alternatives, all of which must begin a given number 
of characters from the end of the string. The pattern, as a data type, may also 
appear either in literal or variable form. The data type of a variable -
string, pattern, or any other in th~ language - depends on the last value 
assigned to it. There are no type declaration statements for variables as in 
other programming languages. 

SNOBOL4 provides numerical capabilities with both integers and real 
numbers. Because the language is essentially character oriented, the facilities 
are not extensive. Since most numerical operations with strings involve 
character counting, integers are much more commonly used, with conversion to and 
from strings performed automatically as required. 

often it is desirable to associate a group of items with one variable name 
through numeric indexing. The SNOBOL4 array provides this capability with more 
flexibility than most programming languages. An array is a data element 
consisting of a set of pointers to other data elements, so that each array 
element may be any data type, even an array. Several other system-defined data 
types are also included. 

Execution of SNOBOL4 programs is interpretive. Instead of compiling a 
program into actual computer instructions, the compiler translates the program 
into a notation the interpreter can easily execute. This makes it fairly simple 
to provide capabilities such as tracing of new values for variables, an 
operation that is quite difficult in noninterpretive systems. Another important 
product of interpretation is flexibility. Functions can be defined and 
redefined during program execution. Function calls can be made recursively with 
no special program notation. The language is extendable to new data types 
needed for a program through data type definition operations. Linked-list nodes 
and complex numbers are possible programmer-defined data types. operations on 
these new data types can be defined as functions. 

INumbers in brackets refer to references listed at the end of this manual. 
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This manual is an instructional and reference guide, and provides many 
examples of usage of the language. The description of the language is complete 
and does not require familiarity with earlier versions of the language. Some 
familiarity with elementary concepts of programming is presumed, however. 
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Foreword 

The SNOBOL4 programming language has been developed over a period of years 
and new language features have been added from time to time during the course of 
this development. Consequently there are several somewhat different versions of 
the language in use. The description in this manual corresponds to Version 2.0 
(october 7, 1 968) . 

SNOBOL4 has been implemented on several different computers, including the 
IBM System/360, the UNIVAC 1108, the GE 635, the CDC 6000 series, and the RCA 
spectra 70 series. Implementations for other machines are in various stages of 
completion. These machines have different operating environments and character 
sets. As a result, implementations of SNOBOL4 vary from machine to machine in 
details of syntax, operating system interface, and so forth. This manual 
corresponds to the implementation of SNOBOL4 for the IBM System/360 operating 
under os. Sections of the manual containing language features particularly 
dependent upon this implementation make specific reference to this dependency. 

Programs contained in this manual were run on an IBM 360 Model 65. 
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Chapter 1. Introduction to the SNOBOL4 Programming Language 

This chapter is an introductory overview of the SNOBOL4 programming 
language. It describes the format of statements, some of the operations, and 
some of the types of data handled by the language. Later chapters describe in 
more detail much of the material in this introductory chapter. 

A SNOBOL4 program consists of a sequence of statements. 
basic types of statements: 

There are four 

1) the assignment statement, 
2) the pattern matching statement, 
3) the replacement statement, and 
4) the end statement. 

The end statement terminates the program. 

The simplest type of statement is the assignment statement. It has the 
form 

The assignment statement may be 
Y~!:i~!21g have the given Y~l~~." 

v 5 

said to have the following meaning: "Let 
For example, let V have the value 5, or 

The value may be given by an expression, consisting, for example, of arithmetic 
operations as in the statement 

w 14 + (16 - 10) 

which assigns the value 20 to the variable W. Blanks are requ~red around 
arithmetic operat()rs such as + and - The value need-not be an integer, whlch 
tsflls-tone typ-e of data handled by SNOBOL4. For example, the value may be a 
string of characters, indicated by enclosing quotes. An example is the 
assignment statement 

v 'DOG' 
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which assigns the string DOG to the variable V. Various types of data and 
operations that may be performed on them are described later. 

Typically a variable is a name such as V, X, or ANS. Variables appearing 
explicitly in a program must begin with a letter which may be followed by any 
number of letters, digits, periods, and underscores. 

The value of a variable may be used in an assignment statement. Thus 

RESULT ANS.1 

assigns to the variable RESULT the value of ANS.1 • 
guish literal strings from variables.) 

(Quotation marks distin-

Blanks are required to separate the parts of a statement. In an assignment 
statement, the equal sign must be separated from the variable on the left and 
the value on the right by at least one blank. 

A-J?_t_g:t~r:tl~J].t ____ xvJ::li_c::h is 19.!lg~;1;" tha..ngne_lineg.9D.pe continued onto successive 
lines by sta.r-t:iI1g the CQIJtinua..tion lines with a p~riod or plus sign. -. An--example 
is 

N (3 + M) (2 + SUM) -
(F - 2) 

When continuing a statement over a line boundary, the statement may be broken 
wherever a blank is required. 

Several statements may be 
indicate the ends of statements. 

X 2 ; y 3; z 

placed on one line by using semicolons which 
An example is 

10 

A line beginning with an asterisk is treated as a comment and does not 
affect the operation of the program. 

The arithmetic operations of addition, subtraction, multiplication, divi
sion, and exponentiation of integers may be used in expressions. The statements 

N 
P 

5; M 
N * M / 

4 
(N - 1) 

assign the value 5 to P. While blanks are required between the binary operators 
and their operands, unary operators such as the minus sign must be adjacent to 
their operands. An example is the statement 

Q2 = -P / -N 
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which assigns the value 1 to Q2 . 

Arithmetic~x:pressions can be arbitrarily cQrnplex. When evaluating arith
metici-expi~~sions, the natural order of operator pr~cedence applies. The unary 
operations are performed first, then exponentiation (**) , then multiplication, 
followed by division, and finally additio~ and su~traction. All operations 
associate to the left except exponentiation. Hence, 

x 2 ** 3 ** 2 

is equivalent to 

x = 2 ** (3 ** 2) 

Parentheses may be used to emphasize or alter the order of evaluation of an 
expression. 

In the above examples all the operands are integers and the results are 
integers. The quotient of two integers is also an integer. The remainder is 
discarded. Thus 

Q1 
Q2 

5/2 
5 / -2 

give Q1 and Q2 the values 2 and -2, respectively. 

MOD N - (N / M) * M 

Similarly, 

gives MOD the value N modulo M if Nand M are positive integers. 

Arithmetic expressions involving real operands are also permitted in 
assignment statements. The statements 

PI 
CIRCUM 

3.14159 
2. * PI * 5. 

assign real values to PI and CIRCUM. 

There are several limitations on real arithmetic in SNOBOL4. ~?SP~~~_~.!-ia-
tion involving reals is undefined and causes execution of the program to 
E-efffiinate with an error message. Operations involving mixed types of numbers 
2rre-ofiot permitted, and also cause execution of the program to terminate. 
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Expressions involving operands that are character strings are also per
mitted in assignment statements. For example, the assignment statement 

SCREAM = 'HELP' 

assigns the string HELP as the value of SCR~AM. 

The string is specified by enclosing it within a pair of quotation marks. 
Any character may appear in a string. A pair of double quotation marks can be 
used instead of single quotation marks. This permits the use of quotation marks 
within a string as in the statements 

PLEA 
QUOTE = 
APOSTROPHE 

'HE SHOUTED, . " , 
= " , " 

"HELP.'" 

The null string, which is a string of length zero, is frequently used in 
SNOBOL4. with a few exceptions, explained later, all variables have the null 
string as their initial value. A variable can also be assigned the null string 
by a statement like 

NULL = , , 

or, more briefly, 

NULL 

The variable NULL is used in many examples that follow to represent the null 
string. 

The null string is different from the following strings" each of which has 
length one: 

, 0 f 

" " 

Numeral strings can be used in arithmetic expressions with integers. For 
example, as a result of the statements 

z = "10" 
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x 5 * -z + '10' 

X has the value 
preceding sign. 
expressions: 

-40. Numeral strings 
Thus, the following 

'3.257' 
'1,253,465' 
, .364 E-03' 

contain 
strings 

only digits and perhaps a 
cannot be used in arithmetic 

They cause execution of the program to terminate with the comment "ILLEGAL DATA 
TYPE." 

~,~rings cannot be used in expressions involving real numbers. 

The null string is equivalent to the integer zero in arithmetic 
expressions. 

concatenation is the basic operation for combining two strings to form a 
third. The following statements ·illustrate the format of an expression 
involving concatenation. 

TYPE 
OBJECT 

'SEMI' 
TYPE 'GROUP' 

The resulting value of OBJECT is the stri'ng SEMIGROUP. Notice there is nQ 
explicit operator for concatenation. Concatenation is indicated by specifying 
two string-valued operands separated by at least one blank. 

FIRST 
SECOND 
TWO. SEASONS 

are equivalent to 

'WINTER' 
'SPRING' 

FIRST ' , SECOND 

TWO. SEASONS 'WINTER,SPRING' 

Strings can also be conca tena ted wi t'h integers as in 

ROW 'K' 
NO. == 2~ 
SEAT = ROW NO. 

which gives SEAT the value K22 . 

:Crt an expression inY9):ying concatenation and integer arithmetic, concatenc;l
tion ha s tlie"--rowe's~t:--i?re-cedenc'e ;'Thus· 

5 
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SEAT ROW NO. + 4 / 2 

is equivalent to 

SEAT ROW (NO. + (4/2)) 

or 

SEAT 'K24' 

Three variables provide means for reading and writing data. The variables 
OUTPUT and PUNCH are for e;-~Dj:.j . .It9,_,,<:_~? p~,~.!;,!D.9. Whenever ei ther'of'"'the'iri "Is 
ci.sslgne'd"·"'a'¥·st:'ring'·'or integer value, a copy-oT the value is put out. 

OUTPUT 'THE RESULTS ARE:' 

assigns THE RESULTS ARE: to OUTPUT and also prints it. 

PUNCH :;:: OUTPUT 

causes the same line to be punched on a card. The statements 

OUTPUT 
PUNCH 

cause a blank line to be printed and a blank card to be punched. 

J:h~ __ y~a.riable INPq,1: ... t§""l!~ed fo.r.r~ag~ng~:n stJ;in.Sl~,.., Each time the value of 
INPUT is r'e'quTred-"Ii1 a statement, another card is read in and the SO-character 
string on it is assigned as the value of INPUT. Thus 

PUNCH INPUT 

punches a copy of the input card. 

The, operation of examining substrings for the occurrence of specified 
substrings (i. e. pattern matching) is fundamental to the SNOBOL4 language. 
Pattern matching can be specified in two types of statements: 

1) the pattern matching statment, and 
2) the replacementst-atement. 
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The pattern matching statement has the form 

~)1§:, _!_~'? JJe) .. ds. ~r,e .$~pa:r:ated. }:)yqt"J~.q.$,.t. Q:P~>P1.a,p.~. The subject specifies 
a string that is to be examined, and the pattern can be thought of as specifying 
a set of strings. The statement causes the subject string to be scanned from 
the left for the occurrence of a string specified by the pattern. 

If 

TRADE 'PROGRAMMER' 

the statement 

TRADE 'GRAM' 

examines the value of TRADE for an occurrence of GRAM. If 

PART 'GRAM' 

then an eq~ivalent statement is 

TRADE PART 

The following example illustrates a pattern matching statement in which the 
pattern is a string-valued expression. 

'K' 
20 

ROW 
NO. 
'K24' ROW NO. + 4 

The subject is a literal and the value of the expression is the string K24 . 

Notice that there 
subject and the pattern. 

is no explicit pattern matching operator between the \ 
The two fields are separated by blanks. ___ j/ 

If it is necessary to have concatenation in the subject, t~~KJ2;(,~,§~~.,i...on 

Il!ust be_~,,~pclQ$g~ wi t.h:Ln. p.c:tI~n:t::t'l,e~~st:o, .. a.YQ~S! .. <:i.IE~~.9~i ty. An example is 

TENS 2 
UNITS 5 
(TENS UNITS) 30 

On the other hand, a pattern formed by concatenation does not need 
parentheses. The following statements are equivalent: 
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TENS UNITS 30 

TENS (UNITS 30) 

A replacement statement has the form 

where the fields are separated by at least one blank. If the pattern mat~hing 

operation succeeds, t~e subject, ,s,tx,ing is modified by replacing the"matc"~ed 
substring ,e,Z,the obj~ct. For example, if 
~' " 

WORD 'GIRD' 

then the replacement statement 

WORD 'I' 'au' 

causes the subject string GIRD to be scanned 
since the pattern matches, I is replaced by 
the string GOURD. If the statement is 

WORD 'AB' 'au' 

for the string I and then, 
au. Hence WORD has as value 

the value of WORD does not change because the pattern fails to match. 

Another example of the use of replacement statements is given in the 
following sequence of statements 

'AC4DAHKDKS' 
4 
, D' 

HAND 
RANK 
SUIT 
HAND RANK SUIT 'AS' 

which replaces the substring 4D with the string AS. 

A matched substring is deleted from the subject string if the object in the 
replacement statement is the null string. Thus 

HAND RANK SUIT 

deletes 4D from HAND leaving it with the string ACAHKDKS as value. 
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The patterns in the preceding examples specify single strings. 
possible to specify more complex patterns. There are two operations 
for constructing such patterns: 

1) alternation, and 
2) concatenation. 

Alternation is indicated by an expression of the form 

P1 I p2 

It is also 
available 

where the two patterns p1 and P2 are separated from the I by blanks. The 
value of the expression is a pattern structure that m~tches any string specified 
by either P1 or P2. For example, the statement 

KEYWORD 'COMPUTER' 'PROGRAM' 

assigns to KEYWORD a pattern structure that matches either of these two strings. 

Subsequently, KEYWORD may be used wherever patterns are permitted. For 
example, 

KEYWORD KEYWORD I 'ALGORITHM' 

gives KEYWORD a new pattern value equivalent to the value assigned by executing 
the statement 

KEYWORD 'COMPUTER' 'PROGRAM' 'ALGORITHM' 

Similarly, 

TEXT KEYWORD 

~xamines the value of TEXT from the left and deletes the first occurrence of one 
of the alternative strings. If 

TEXT 'PROGRAMMING ALGORITHMS FOR COMPUTERS' 
I 

the result of the replacement statement is as if the following statement were 
executed: 

TEXT 'MING ALGORITHMS FOR COMPUTERS' 

Concatenation of two patterns, P1 and P2, is specified in the same way as 
the concatenation of two strings: 
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P1 P2 

That is, the two patterns are separated by blanks. The value of the expression 
is a pattern that matches a string consisting of two substrings, the first 
matched by P1, the second matched by P2. For example, if 

BASE 'BINARY' I 'DECIMAL' 'HEX' 
SCALE = 'FIXED' I 'FLOAT' 
ATTRIBUTE SCALE BASE 

and 

DCL 'AREAFIXEDDECIMAL' 

then the pattern match succeeds in the statement 

DCL ATTRIBUTE 

Concatenation has higher precedence than alternation. Thus 

ATTRIBUTE 'FIXED' I 'FLOAT' 'DECIMAL' 

matches FIXED or FLOATDECIMAL. The order of evaluation may be altered by 
using parentheses. 

ATTRIBUTE (' FIXED' 'FLOAT') 'DECIMAL' 

matches either FIXEDDECIMAL or FLOATDECIMAL. 

It is possible to associate a variable with a component of a pattern such 
that if the pattern matches, the variable is assigned the substring matched by 
the component. The operator .' is the conditional value-assignment operator 
and it is used in an expression of the form 

where the operator is separated from its operands by blanks. For example 

BASE = ( , HEX' I ' DEC') • B 1 

assigns to BASE a pattern that matches either HEX or DEC. If BASE is used 
successfully in a pattern match, the value of B1 is set to the substring matched 
by BAS E.,;;';.,::", 

':~\:~:,;<:.?~~ 

10 



The operator has the highest precedence of all the operators and 
associates to the left. Thus 

A.OR.B = A B OUTPUT 

is equivalent to 

A.OR.B = A (B • OUTPUT) 

which assigns to A.OR.B a pattern that matches the value of A or B. 
matches, the substring matched is printed. 

If B 

There is also an operator $ for immediate value assignment which assigns 
value to a variable if the associated component of the pattern matches 
regardless of whether the entire pattern matches. Immediate value assignment is 
discussed in more detail later. 

A SNOBOL4 program is a sequence of statements terminated by an end 
statement. Statements are executed sequentially unless otherwise specified in 
the program. 1~Q~12 and gQiQ§ are provided to control the flow of the program. 

A statement may begin with a label, permitting transfer to the statement. 
For example, the assignment statement 

START TEXT = INPUT 

has the label START. A label consists of a letter or a digit followed by any 
number of other characters up to a blank. Blanks separate the label from the 
subject. ~~ .wi~h .. nol~J:?~J",."nl~~t_.ltE;,g.i.n. .. .m.tb-"",~t.. .. ,.~l~as~ .. Elank. The end 
statement is distingu'lsllea"'15y the labeT END, indicating-=t11e end of tne program. 

Transfer to a labelled statement is specified in the goto field which may 
appear at the end of a statement and is separated from the rest of the statement 
by a colon. Two types of transfers can be specified in the goto field: 
conditional and unconditional. 

A conditional transfer consists of a label enclosed within 2,arentheses and 
precEfded=~n1',:"qii-~:~E"~,"c;-~·'·-'-fr'-·~corre·s-po'nding' 'to ':failure or 's'ucce's's 'go'to. '"An--excfmple 
is the statement . v, .. 

TEXT = INPUT : F (DONE) 

This statement causes a record to be read in and assigned as the valu~ of 
TEXT. If, however, there is no data in the input file, i.e. an end of file is 
encountered, no new value is assigned to TEXT. Then, because of the failure to 
read, transfer is made to the statement labelled DONE. 

A use of the success goto is illustrated in the following program which 
punches a copy of the input file. 
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LOOP 
END 

PUNCH INPUT : S (LOOP) 

The first statement is repeatedly executed until the end of file is encountered 
and then the program flows into the end statement which causes the program to 
terminate. 

The success or failure of a pattern match can also be used to control the 
flow of a program by conditional gotos. For examnle 

COLOR 
BRIGHT TEXT 
BLAND 

'RED' 
COLOR 

'GREEN' I 'BLUE' 
:S(BRIGHT)F(BLAND) 

All occurrences of the strings RED, GREEN, and BLUE are deleted from 
the value of TEXT before the pattern fails to match. Control then passes to the 
statement labelled BLAND. Both success and failure gotos can be specified in 
one goto field, and may appear in either order. 

For an example of an unconditional transfer, consider the following program 
that punches and lists a deck of cards. 

LOOP 

END 

PUNCH 
OUTPUT 

INPUT 
PUNCH 

: F (END) 
: (LOOP) 

The goto fie~d in the second statement specifies an unconditional transfer. 

Indirect referencing is indicated by the unary operator $. For example, 
if 

MONTH 'APRIL' 

then $MONTH is equivalent to APRIL. That is, the statement 

$MONTH 'CRUEL' 

is equivalent to 

APRIL 'CRUEL' 

The indirect reference operator can also be applied to a parenthesized 
expression as in the statements 
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WORD "RUN" 
$ (WORD ':') $ (WORD ':') + 1 

which increment the value of RUN: 

In general, the unary operator $ generates a variable that is the value 
of its operand. The expression 

$ ("A" I "B") 

causes the program to terminate with the message "ILLEGAL DATA TYPE" because the 
value of the operand of $ is a pattern, not a string. Indirect reference in a 
goto is demonstrated by ./\.., , 

C'", f"',,,\ 'r' '" 
//'" .~?-",\ (,-

($ (" PHASE"\'j~) ) 
..... -•... -~--~- -."!-.-

N N + 1 

If, for example, the assignment statement sets N equal to 5, then the transfer 
is to the statement labelled PHASE5. 

Many SNOBOL4 procedures are invoked by functions built into the system, 
called primitive functions. Operations that occur frequently are implemented as 
primitive' fun~tions for efficiency. Other primitive functions are used to 
invoke more complex operations that are fundamental to the language, affect 
parameters and tables internal to the system, and perform operations that could 
not be programmed in source language by other means. In addition, fa.cili ties 
are available for a programmer to define his own source-language functions. 

Consider the function _~J:.,Z.E.., which has a single string argument apd returl1s 
a_;>.,, __ ,Y.901ue an integer which is the length (number of characters) of the string. 
The st9-tements 

APE = 
OUTPUT 

'SIMIAN' 
8,IZE (APE) 

print the number 6. 

Arguments to all functions are passed by value, and an arbitrarily complex 
expression may be used in the argument. Thus the statements 

N 100 
OUTPUT = SIZE('PART' N + 4) 

print the number 7, because the value of the argument is the string PART104. 

The argument of SIZE is supposed to be a string. Therefore, a call of the 
form 
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SIZE ("APE" I "MONKEY") 

causes the pragram to. terminate with the diagnastic message "ILLEGAL DATA TYPE," 
because the value af the argument is a pattern. 

l'H,il'L is anathe:r;:,,J1JJ1c.tiQJ1 :t:tJ.c:t t pert?:r::rn§"an .. ()peratian . freq\l~l:ltJ:y :r:-equi+~il. 
TRIM (string) returns as value a string which is equiilta' fhe argument with 
trailing blanks remaved. It i~ aften us~d in a statement af the farm 

READ TEXT TRIM (I NPUT) : F (END) 

which assigns as value to. TEXT the string an the next input card, trimmed af 
trailing blanks. Natice that the use af the variable INPUT in the argument 
causes a card to. be read. 

REPLACE is a functian called with three string-valued argumen~~. 

REPLACE{TEXT,CH1,CH2) 

return~ as value a si:.ripgwhich:is equal to. TEXT, wj;.:th, __ "",gg9.,h" ... 9.ss:grrence af a 
ChqX:9'¢'t~:r, .. 9:ppE??-r,~I1:g, ~~,CHJ:t:"~pJ~g,~q:.by the correspandiI1gchFP;9.cte,:t:"·~jl"·"C'Ir2":~"""'Fo'r 
example, the statements . 

STATEMENT 
OUTPUT 

print the line 

'A{I,J) A{I,J) + 3 ' 
REPLACE (STATEMENT, 1 () 1 , 1 <> 1 ) 

A<I,J> A<I,J> + 3 

If the last twa arguments af the functian call do. nat have the same length, 
the functian fails. Functian failure, like input failure, can be used in a 
canditianal transfer. 

Anather example af the use af REPLACE is the fallawing pragram that 
praduces a simple cryptagraphic encading af an input deck. 

LOOP 
END 

INALPH 
OUTALPH 
PUNCH = 

'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
'KLMNOPQRSTUVWXYZABCDEFGHIJ' 

REPLACE (INPUT,INALPH,OUTALPH) : S (LOOP) 

The iteratian is terminated by input failure. 

There are also. several functians that return patterns as their values. LEN 
is such a functian. LEN{integer}.returns a pattern thCi"t,mat~l1e§Cinxs"triI19of 

length specified ·by·-the"·Tnt:e'ger~"'·"""",·""-,.·,,,""r""~'M","-..... 'n""·~',,'"'''' "",,"r""~'~"'''''' ' ... ",", , --',., """m •. ,>,, 

The fallawing example punches the value af STR centered an a card. 
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BLANKS 
BLANKS 
PUNCH 

LEN«80 - SIZE(STR» / 2) • PAD 
PAD STR 

If the size of STR is greater than 80, the argument of LEN is negative, 
causing error termination with the message "NEGATIVE NUMBER IN ILLEGAL CONTEXT." 

A predicate is a function or operation that returns the null string as 
value if a given condition is satisfied. Otherwise it fails. 

LE is an example of a predicate used for comparing integers. 

LE(N1,N2) 

returns the null string as value if N1 is an integer less than or equal to N2. 
Thus 

PUNCH LE (SIZE (TEXT) ,80) TEXT 

punches the string TEXT if its length is not greater than 80. The null 
value of the predicate does not affect the string that is punched. 
predicate fails, no assi~nment is made to PUNCH, and no card is punched. 

string 
If the 

The success or failure of a predicate can be used with a conditional gato 
to control the flow of a program. For example, 

N 0; SUM 
ADD N LT(N,50) N + 

SUM SUM + N 
DONE OUTPUT SUM 

o 
: F (DONE) 
: (ADD) 

sums the first 50 integers. Iteration continues as long as N is less than 50. 
When the predicate fails, the conditional transfer to DONE is performed and the 
string 1275 is printed. 

There are several predicates for comparing strings. For example, 

DIFFER (ST1, ST2) 
\"' ... ,,<"'gO', "'''', ...... ~"" .... ,.".",~, (.' '" '- ,. ~ ., ••. ' ..' " 

r.,§,t\lt:n,§~,.,,>,th.g,,_, __ P:,\l:_+,,+.",",,,?!:r.~.r:<;L as value if the values of two argumepi:;.§, are not 
identical. Thus 
~-.... ~~,,.,.. 

OUTPUT DIFFER (FIRST,SECOND) FIRST SECOND 

concatenates the values of FIRST and SECOND if they are not the same, and then 
prints them. 

FQr all functions, 
Thus c_, __ .".-".----,·'"' 

an omitted argument is assumed to be the null ~tring. 
~_ I-"f~~ ,.,<, .,·,..,w_,~",,,, "..,,,,',- - .," .•.. , .~_ .. "' .•.• '''.>.,;.'''.,~,''<.',i'1:~'-t-. 
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PUNCH DIFFER (TEXT) TEXT 

punches the value of TEXT if it is not the null string. 

LGT is a predicate that lexically compares two strings. 

LGT (ST1, ST2) 

succeeds if ST1 follows (is lexically greater than) ST2 in alphabetical order. 
The statements 

SKIP 
JUMP 

OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 

LGT(TEXT1,TEXT2) TEXT2 
TEXT1 
TEXT2 
TEXT1 

: S (SKIP) 

: (JUMP) 

print the values of TEXT1 and TEXT2 in alphabetical order. 

The SNOBOL4 language provides the programmer with the capability to define 
functions in the source language. This feature facilitates the organization of 
a program and may improve its efficiency. 

A programmer may define a function by executing the primitive function 
DEFINE to specify the function name, formal arguments, local variables, and the 
entry point of the function. The entry point is the label of the first of a set 
of SNOBOL4 statements constituting the procedure for the function. 

The first argument of DEFINE is a prototype describing the form of the 
function call. The second argument is the entry point. For example, execution 
of the statement 

DEFINE ('DELETE (STRING, CHAR) ','D1') 

defines a function DELETE having two formal arguments, STRING and CHAR, and 
entry point D1. The statements 

D1 STRING CHAR 
DELETE 

: S (Dl) 
STRING : (RETURN) 

form a procedure that deletes all occurrences of CHAR from the value of STRING. 
The statement assigning the resulting value to the variable DELETE illustrates 
the SNOBOL4 convention for returning a function value: The function name may be 
used as a variable in the function procedure. Its value on return from the 
procedure is the value of the function call. Return f:r.=-OIT1c3. P:r:-0c~<iure is 
aC?c:>IT\plished by transfer to the system label RETURN .----"---'--.... -.. - "_d ____ '. ,-,,~. ~--

If the second argument is omitted from the call of DEFINE, the entry point 
to the procedure is taken to be the same as the function name. For example 
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DEFINE ('DELETE (STRING, CHAR) ') 

could have the procedure 

: S (DELETE) DELETE STRING CHAR 
DELETE STRING : (RETURN) 

A call of the function is illustrated in the following statements 

MAGIC 'ABRACADABRA' 
OUTPUT DELETE (MAGIC , 'A') 

which print BRCDBR. 

Arguments are passed by value and may be arbitrarily complex expressions. 
Thus the statement 

TEXT DELETE (TRIM(INPUT) " ') 

deletes all blanks from the input string. 

FUnctions can also fail under specified conditions. As an example, 
consider the following version of DELETE, which fails if STRING does not contain 
an occurrence of CHAR. 

DELETE STRING 
D2 STRING 

DELETE 

CHAR 
CHAR 

STRING 

: F (FRETURN) 
: S (D2) 

: (RETURN) 

The transfer to the system label FRETURN indicates failure of the function call. 
Consequently, 

PUNCH DELETE (TRIM (INPUT) ,'*') 

punches a card only if the input string contains an *. 

Arguments to a function and the value returned can be any type of data 
object. Consider, for example, the function MAXNO where MAXNO(P,N) returns a 
pattern that matches up to N adjacent strings matched by the pattern P. That 
is, if 

PAT MAXNO (' A' I 'B' I 'C' ,2) 

then in the statement 

'EBCDIC' PAT 'D' 
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the pattern match succeeds with PAT matching the string BC. 

MAXNO has the defining statement 

DEFINE {'MAXNO (P,N) '} 

and the procedure 

GT{N,O) N - 1 :F{RETURN} MAXNO N 
MAXNO NULL I P MAXNO : (MAXNO) 

consider the function REVERSE that reverses a string. It has the defining 
statement 

DEFINE{'REVERSE{STRING) ','R1') 

and the procedure 

R1 
R2 

ONECH 
STRING 
REVERSE 

LEN (1) . CH 
ONECH 

CH REVERSE 
:F{RETURN) 
: (R2) 

There are two variables, ONECH and CH, used in the function definition in 
addition to the function name and formal argument. It is prudent to protect 
these variables so their use outside the function is not affected when the 
function is called. This is accomplished by declaring them to be local 
variables in the defining statement: 

DEFINE{'REVERSE(STRING)ONECH,CH','R1') 

When the function is called, the current 
formal arguments, and the function name are 
entered. These, values are restored upon 
permits the programmer considerable freedom in 
a function can be recursive, i.e. include a 
Consider the binomial coe7IT"cient c (n,m) which 

c (n, 0) 
c{n,m) 

1 
= n*c{n-1,m-1)/m for m > 0 

values of the local variables, the 
saved before the procedure is 
return from the procedure. This 
defining functions. For example, 
call of the function itself. 

can be defined by equations 

Computational efficiency can be improv~d by employing the relation 

c (n, m) = c (n,n-m) 

for m > n/2. 

The corresponding programmer-defined function consists of the defining statement 
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DEF INE ( 'CJNL.M) ') 

and the procedure 

C M 
C 
C = 

LT(N - M,M) N 
EQ (M, 0) 1 
N * C(N - 1,M 

M 
: S (RETURN) 

1) / M : (RETURN) 

COMB is an example of another recursively defined function. COMB (STR,N) 
lists all combinations of N characters from the string STR. The defining 
statement and procedure are 

and 
,,/" 

L:~'r OUTPUT EQ (N, 0) HEAD 
C2 STR LE (N, SIZE (STRf)--' LEN (1) 

COMB (STR,N - 1,HEAD CH) 

Then 

prints 

ABC 
ABD 
ACD 
BCD 

COMB ( 'ABCD' ,3) 

: S (RETURN) 
CH :F(RETURN) 

: (C2) 

Notice that COMB is defined with three formal arguments but only two values 
are supplied in the initial call. The missing value is taken to be nUll. 

Several parameters and switches internal to the SNOBOL4 system can be 
accessed by means of keywords. Keywords are specified by prefixing an ampersand 
to certain identifiers. For example, if the value of the keyword &DUMP is a 
nonzero integer when a program terminates, a dump of natural variables is 
printed. Thus the execution of the statement 

&DUMP 1 

indicates that a dump is to be produced. Other keywords are described elsewhere 
in this manual. 
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Arrays of variables can be created by using the primitive function ARRAY. 
The arguments of ARRAY describe the number of dimensions, the bounds of each 
dimension, and the initial value of each variable/in the array. Thus 

v ARRAY(10,1.0) 

N ARRAY (' 3,5' ) 

creates a 2-dimensional array of variables 

N<1,1> N<1,2> N<1,3> N<1,4> N<1,5> 

N<2,1> 

N<3,1> N<3,5> 

The omission of the second argument causes each of the 
null string as initial value. The arguments in 
expressions. Thus 

A ARRAY(TRIM(INPUT)) 

variables to have the 
the call of ARRAY can be 

creates an array with dimensionality that is data dependent. An array 
reference, A<I>, that is outside the bounds of the array causes failure that can 
be used to control program flow. The statements 

MORE 

GO 

I 
ST 
ST<I> 
I 

1 
ARRAY(TRIM(INPUT)) 

INPUT 
I + 1 

: F (GO) 
: (MORE) 

generate an array, ST, and assign values to each of the variables. When all the 
variables in the array are assigned values, or an end of file is encountered, 
the transfer to GO is executed. 

Integers, reals, strings, patterns, and arrays are types of data objects 
that are built into the SNOBOL4 language. Facilities are provided in the 
language to permit a programmer to define additional data types. This 
facilitates representation of structural relationships inherent in data. 
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For example, a simple linear linked list is made up of nodes, each 
containing a value field and a link field. 

r---~----' r-----T----' r-----y----, 
Ivaluellinkl----->Ivaluellinkl----->Ivaluellink l 
'---__ --L-___ J L- I J L ___ ---L-__ J 

The primitive function DATA can be used to define the data type NODE and 
the two field functions, VALUE and LINK. 

DATA ( 'NODE (VALUE, LINK) ') 

The staterri'ent 

P NODE('S',) 

creates a node with value field S and the null string in the link field. The 
value of P is a data object with two fields that can be referenced by means of 
the function calls VALUE(P) and LINK(P). The insertion of a node with value T 
at the head of the list is accomplished by the statement 

P NODE ( , T' , P) 

The following statement deletes a node from the head of the list 

PLINK (P) 

This is an example of a complete SNOBOL4 program illustrating the use of 
comment lines, continuation lines, and the end statement. The program reads in 
data cards that follow the end statement. 

************************************************************************ 
* EXAMPLE OF A FUNCTION THAT PRINTS ALL 
* PERMUTATIONS OF SIZE N FROM A GIVEN STRING. 
************************************************************************ 
* 

* 

PERM 
PERMA 

END 
ABCD 
3 

&DUMP = 1 
DEFINE('PERM(STRING,N,HEAD)CH,USED') 

STRING TRIM (INPUT) 
N TRIM (INPUT) 
PERM (STRING, N) 
OUTPUT EQ(N,O) HEAD 
STRING LEN(1) CH = 
USED 

PERM(STRING USED,N - 1,HEAD CH) 

:F(ERROR) 
: F (ERROR) 
: (END) 
: S (RETURN) 
: F (RETURN) 

USED CH : (PERMA) 
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Chapter 2. Pattern Matching 

Strings of characters can be synthesized from smaller strings by concatena
tion. The converse of synthesis, decomposition of strings into sybstrings, is 
performed using pattern matching. Fundamentally, pattern matching is the 
process of examining a subject string for a substring which is one of a set 
specified by a pattern. The substring and parts thereof, formed by pattern 
matching, may be assigned as the values of variables, thereby naming pieces of 
the decomposition. 

There are two types of statements in which pattern matching can occur: the 
pattern matching statement and the replacement statement. These statements have 
the respective forms 

I2~11§.fn 
I2~iig.f!! 

The pattern and object are expressions, as illustrated by 

LAB1 TEXT A B : S (LAB2) F (LAB3) 

LAB4 STR C D = X '3' : S (LABS) F (LAB6) 

Before matching actually occurs, the expression in the pattern field is 
evaluated. Its value may be a string, or it can be a pattern structure which 
may be thought of as a set of strings. The string or pattern structure is used 
to drive a pattern matching procedure (the scanner) which performs the actual 
matching. Should any string specified by the pattern field appear as a 
substring of the subject, pattern matching succeeds. 

Two distinct tasks are performed as parts of pattern matching: 

1) evaluation of expressions in the pattern field, and 

2) scanning of the subject string for a substring under contrbl of the 
pattern structure. 

The primary purpose of this chapter is to consider in detail those SNOBOL4 
language features that programmers may use to write expressiohs that, when 
evaluated, yield pattern structures. These features include the pattern 
building operations of concatenation and alternation, primitive pattern struc
tures built into the system, primitive functions whose values are pattern 
structures, value assignment operations, and the unary operator * that 
produces an unevaluated expression. Pattern structures representing sets of 
fixed strings such as those built by 
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BASE 
SCALE 
ATTRIBUTE 

'BINARY' I 'DECIMAL' 
'FIXED' I 'FLOAT' 

SCALE ·BASE 

'HEX' 

are basic to pattern matching. Additional language features provide natural 
ways to talk about more complicated sets of strings, such as: 

All string_~:;L . .o£'--·1.eng·t,h .. 5. 
-t-rl-r--cliaracters up to the first comma. 
The longest string of blanks. 
Any number of repetitions of a string. 
Any string balanced with respect to parentheses. 
Any string at all. 

For many users of SNOBOL4, a knowledge of how patterns are actually matched 
is of little importance. The success or failure of matching is all that 
matters. However, by understanding the scanning procedure, a programmer can 
write more efficient patterns and make use of features such as immediate value 
assignment and unevaluated expressions that can actually change a pattern during 
matching. Thus, the secondary purpose of this chapter is to indicate how the 
scanner works. 

A brief introduction to the pattern building operations of alternation and 
concatenation appears in Chapter 1. There, alternation and concatenation are 
used to build pattern structures which match sets of strings. 

Alternation, indicated by the binary operator I 
structure from its two arguments. If P1 and P2 
structures, the statement 

P3 P1 P2 

, builds a single pattern 
are strings or pattern 

builds a new structure and assigns it as the value of P3. P3 matches any string 
matched by P1 or P2. 

No explicit operator is used to indicate concatenation. Concatenation is 
implied when two elements of a~ expression are separated by one or more blanks. 
If P4 and P5 are strings, the statement 

P6 P4 P5 

assigns to P6 a string which is the value of P4 followed by the value of P5. If 
either P4 or P5 is a pattern structure, the statement above builds a pattern 
structure and assigns it as the value of P6. P6 matches any string which may be 
formed from a string matched by P4 followed by a string matched by P5. 

Alternation and concatenation can be used to build pattern structures which 
match large numbers of strings. For instance, the following statements build a 
pattern structure PAT. 
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P 'BE' I 'BEA' 'BEAR' 
Q 'RO' I 'ROO' 'ROOS' 
R 'DS' I 'D' 
S 'TS' I 'T' 
PAT P R Q S 

Concatenation has higher precedence than alternation, so the structure for PAT 
is built as if 

PAT = (P R) (Q S) 

had been written. PAT matches any of the twelve strings: 

BEDS 
BED 
BEADS 
BEAD 
BEARDS 
BEARD 

ROTS 
ROT 
ROOTS 
ROOT 
ROOSTS 
ROOST 

Execution of pattern matching or replacement statements involves evaluation 
of the pattern field (which may build a pattern structure) and the actual 
scanning of the subject string. Building pattern structures is a complicated 
process frequently requiring more time than the scanning itself. If a pattern 
matching or replacement statement appears in a program loop, the pattern field 
is evaluated for each iteration of the loop. If evaluation causes a pattern 
structure to be built, time and storage are often consumed needlessly. For 
example, the following program examines each card of an input deck for 
P IS TRUE or P IS FALSE , printing those cards in which either appears. 

LOOP 

END 

CARD = TRIM (INPUT) 
CARD 'P IS' ('TRUE' 
OUTPUT CARD 

'FALSE') 
: F (END) 
: F (LOOP) 
: (LOOP) 

A pattern structure for 'P IS ' ('TRUE' 1 'FALSE') is built for each iteration 
of the loop. A more efficient program is the following which builds the pattern 
structure in an assignment statement outside of the loop. 

LOOP 

END 
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OUTPUT = CARD 

'FALSE' ) 
: F (END) 
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Matching a pattern structure against a subject string is done by a 
procedure called the §£~nn~£. The pattern structure behaves like a program that 
indicates to the scanner how to examine the subject string. 

At any 
information: 

instant during scanning, the scanner needs two pieces of 

1} where in the subject string it should be looking, and 
2} what component of the pattern structure it should match. 

The scanner has a pointer called the cursor which is positioned to the left of 
the character that the scanner must match. A second pointer called the needle 
points at the component of the pattern structure. 

Consider the following example, in which the string of characters READS is 
matched against a pattern structure which is the value of BR. 

BR ('B' 
'READS' BR 

'R' ) (' E' • EA') (' D' 'DS' ) 

For illustrative purposes, it is convenient to think of components of a pattern 
structure as a set of beads which the scanner is trying to thread using the 
needle. A bead diagram representing BR is shown below. 

NEEDLE 1 

~ 

In bead diagrams, left to right order of concatenation is preserved. Alterna
tion is represented top to bottom in the vertical direction. The needle points 
at the bead which the scanner is currently trying to match. If a bead matches, 
the needle passes through and moves upward as far as it can go without crossing 
a horizontal line. If a bead does not match, the needle moves down to an 
alternate bead provided one exists. Downward movement may not cross a 
horizontal line. If no alternate exists, the needle is pulled back through the 
last successfully matched bead and an alternative is sought there. 

The following chart illustrates the steps in matching READS against BR. 
The arrow pointing at READS represents the cursor while the arrow pointing at 
the beads represents the needle. Failure in the fifth step causes the needle to 
be pulled back. The cursor is moved back at the same time. 
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REA D S 

t 

Bead diagrams graphically 
programmer has over the scanner. 

BR (' B' 'R' ) (' E' 

illustrate one important control which 
In a pattern-valued expression such as 

'EA' ) (' D' f DS') 

the 

alternatives are matched by the scanner in left to right order (top to bottom in 
the bead chart). Thus, the scanner attempts to match 'B' before 'R', 'E' before 
'EA', and 'D' before 'DS'. By positioning alternatives correctly a programmer 
can control the order in which the scanner looks at them. 

The bead diagram for the pattern structure PAT developed in the previous 
section follows. 

8 

A successful match in the statement 

'ROOSTS' PAT 

requires eleven steps. 
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Two keywords, &ANCHOR and &FULLSC.AN, give the programmer additional control 
over the scanner. The scanner operates in an unanchored or anchored mode, 
depending on the value of &ANCHOR. When unanchored, a pattern can match 
anywhere in the subject string. When anchored, a pattern can match only 
beginning at the first character. 

For efficiency, tests are made during scanning which prevent the scanner 
from looking at alternatives which cannot possibly succeed. &FULLSCAN can be 
used to turn these tests off, leading to complete but possibly inefficient 
pattern matching. Discussion of &FULLSCAN is deferred until the end of this 
chapter, since it is useful only with more sophisticated patterns. 

The keyword &ANCHOR initially has the value zero, signifying the unanchored 
mode of scanning. The scanner may look anywhere in the subject string for an 
appropriate substring. consider the following example. 

'A BIG BOY' 'BIG' 

Pattern matching succeeds. 
diagram. 

A BIG BOY 

t 

A BIG BOY 

t 

A BIG BOY 

t 
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The steps involved are shown below using a bead 



A BIG BOY 

t 

A BIG BOY 

t ~LITTLEJ 

----Is ~ 
A BIG BOY 

t ~ LITTLE] 

The cursor is initially at the left of the subject string. When all possible 
alternatives fail, the cursor is moved one character to the right. All possible 
alternatives are tried with the cursor beginning in the new position. Again, 
all alternatives fail. The cursor is moved again and this time the first 
al terna ti ve succeeds-. 

In the unanchored mode, the origin of pattern matching is moved by changing 
the initial position of the cursor. ~hus, the scanner matches, if possible, a 
substring anywhere in the subject string. If more than one valid substring 
exists, the scanner finds the leftmost one. 

Frequently it is necessary to know if a pattern matches with its origin at 
the first character of the subject string. As an example, suppose a program is 
desired which reads any other SNOBOL4 program and prints only those lines that 
are not comments (i.e. do not have * in column 1). ~t first glance, the 
following statements might seem to suffice. 

BEGIN LINE INPUT 
LINE '*' 
OUTPUT LINE 

END 

: F (END) 
: S (BEGIN) 
: (BEGIN) 

Unfortunately, the program does not work because a card with * appearing 
anywhere at all in it is rejected. 

If &ANCHOR has a nonzero value obtained by executing an assignment 
statement such as 

~ANCHOR_-.::......J 
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The anchored mode of scanning is generally more efficient than the 
unanch0red mode, since the scanner examines fewer possibilities. Anchored 
scanning should be used where possible. It is, of course, perm;i,_§.§.iJ;?.l~,.".,,,,,"tQ.,,.,...,.,~ch 

mode s & .. ~,~..01l9._ .. _~~qlltj-~Q~P-~"Q,t"''''@.'.wEI(2g;.E,~m,.-"t?~"",,~l,E!Jl?,l,Y.,wjS;;,.ll,aoo<in.~."t..b..e...~~ 

Pattern matching may be viewed ap a means of decomposing a string into 
substrings. To be useful; a substring found by the scanner often must be 
assigned as the value of a variable. Consider the pattern BR used in an earlier 
section. 

BR (-' B' 'R' ) (' E' , EA' ). ( 'D} I ' ps ' ) 

Used in a pattern matching statement such as 

STR BR : S (L 1 ) F (L2) 

where the subject string may be anythiQg, success of matching indicates only 
that one of the valid strings appears somewhere in STR. It does not indicate 
which string matches or how it matches. On failure, no indication is given of 
how nearly successful the scanner was. There are two ways of assigning a 
substring found by the scanner to a variable: conditional value assignment and 
immediate value assignment. 

-The })iYlClry<?peJ;a.:t:Q.:(". is used to indicate conditional value assignment. 
The expres'$JOn'" .."." ..... "............." 

P V 

associates a variable V with a pattern P so that upon successful completion of 
pattern matching, the substring matched by P is assigned as the value of the 
variable V. Thus, by associating several variables with portions of a pattern, 
it is possible to asceJ::'tain what the overall pattern matches, and also which 
components of the pattern are used in the match. For example, rewriting BR as 

BR ( (' B' 'R') (' E' 'EA') ('D' 'DS') ) .' BRVAL 

associates the variable BRVAL with the entir'e pattern. On successful completion 
of matching, the entire substring matched is assigned as value of BRVAL. 
Rewriting still further, variables can be associated with pieces of the pattern. 
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BR ( ( 'B ' 
(' D' 

'R' ) 
'DS' ) 

. FIRST 
. THIRD) 

(' E' I 'EA') 
• BRVAL 

. SECOND 

A successful match causes the entire substring to be assigned as the value of 
BRVAL. B or R becomes the value of FIRST, E or EA becomes the value of SECOND, 
and D or DS becomes the value of THIRD. Failure to match leaves the values of 
all variables unchanged. 

The binary operator $ signift~~ immediate 
expr ess"i"6'Yl" .. , , .... J" 

value The 

P $ V 

associates a variable V with a pattern P so that whenever P matches a substring, 
the substring immediately becomes the new value of V. It is possible, by 
using $, to associate variables with parts of a large pattern, to see how far 
scanning progressed in the event of failure. Value assignment is done for those 
parts of the pattern which match even though the overall match fails. Suppose 
BR is rewritten using $ instead of where shown. 

BR 
+ 

( ( 'B' 
(' D' 

'R') $ FIRST 
'DS') $ THIRD) 

( 'E' I 'EA') $ SECOND 
• BRVAL 

In the following statement, pattern matching fails. 

'BEATS' BR : S (L 1 ) F (L2) 

However, since immediate assignment is performed whenever th€ associated part of 
the pattern matches, the following assignments are made. 

FIRST 
SECOND 
SECOND 

1 B' 

'E' 
'EA' 

Values of THIRD and BRVAL are unchanged. If conditional assignment is used, 
values of all four variables are unchanged. In the following example, the 
pattern matches. 

'BREADS' BR 

1.. 
l 

Values assigned both during and after scanning are: 

: S (L 1 ) F (L2) 
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FIRST 'B' 
FIRST 'R' 
SECOND ' E' 
SECOND 'EA' 
THIRD 'D' 
BRVAL 'READ' 

The outcome is the same as if conditional value assignment had been used. 
Immediate value assignment is less efficient in this case because two redundant 
assignments are made. As a general rule, conditional value assignment should be 
used whenever possible. Immediate value assignment should be used only in those 
cases where intermediate results are important. 

Examples using both immediate and conditional value assignment appear 
throughout the remainder of this manual. 

The operators 
associate to the left. 

and $ have the highest precedence of all operators and 
Thus, in the statement 

BR 
+ 

( (' B' 
(' D' 

'R') $ FIRST 
, DS ') $ THIRD) 

(' E' 1 'EA') 
• BRVAL 

$ SECOND 

the outer parentheses are required to associate BRVAL with the entire pattern, 
while additional parentheses are not required to associate FIRST, SECOND, and 
THIRD. 

Since OUTPUT is a variable, it may be associated with any portion of a 
pattern. A successful match involving the pattern 

('BED'l 'BUG' 1 'BOMB') OUTPUT 

causes the successful alternative to be printed. Using $ to associate OUTPUT 
with several parts of a pattern achieves the effect of tracing the progress of 
the scanner. By constructing BR as 

BR 
+ 

( 'B ' I 'R ') $ OUTPUT ( , E' ~. 'EA') $ OUTPUT 
(' D' 1 'DS') $ OUTPUT 

the output resulting from execution of the statement 

'READS' BR : S (L 1) F (L2) 

is 
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R 
E 
EA 
D 

Value assignment is a necessity in some kinds of replacement statements. 
In the following replacement statement E or EA is replaced with I only if the 
overall pattern BR matches. In effect, the replacement statement changes BED 
and BEAD into BID, BEDS and BEADS into BIDS, etc., if these strings appear in 
STR. 

BR 
STR 

= (' B' 
BR 

I 'R') 
FIRST 

. FIRST (' E' 
'I' LAST 

'EA' ) (' D' I 'DS') • LAST 

The replacement statement works properly because conditional assignment is done 
after pattern matching, but before the object expression is evaluated. 

Earlier examples illustrated how variable association may _ be nested. An 
example is 

PAT (P1 . V1 P2. V2) • V3 

It is also possible to associate more than one variable with a single pattern 
structure. The statement 

PAT P1 $ V1 . V2 

builds a pattern structure where variables V1 and V2 are both associated with 
the pattern P1, V1 as immediate assignment and V2 as conditional assignment. 
Changing the order of association to 

PAT P1. V2 $ V1 

has no effect on the value assignment. If PAT is involved in a successful 
pattern match, V1 and V2 are assigned the same value. If'the pattern match 
fails, the value of V1 might be changed but the value of V2 is not. 

The null string is a string of zeTa length. Attempts by the scanner to 
match the null string always succeed. The variable NULL has the null string as 
its initial value and, by convention, is used as the null pattern which matches 
a string of zero length. Pattern matching in the statement 
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STR NULL :S(ON}F(ERROR} 

always succeeds even if STR itself has the null string as value. 

The variable NULL is frequently used in more complex patterns. For 
example, a pattern which matches the eight strings 

C 
D 
AC 
AD 

can be written as 

BC 
BD 
ABC 
ABD 

(NULL I ' A ' ) (NULL I 'B' ) ( , C ' I'D' ) 

Matching a pattern of the form 

NULL $ X $ Y PAT 

sets the values of X and Y to the null string before matching of PAT 
begins. 

A number of patterns described in this chapter match the null string. 
Where bead diagram representations of the patterns are given, NuiL is used to 
indicate the null string. 

LEN (integer) is a primitive function whose value is a 
that matches any string of the specified length. The argument 
nonnegative integer value when pattern matching is performed. 
example, pattern matching succeeds only if the sUbject STR ha~ 
an open parenthesis separated from a closed parenthesis 
characters. 

pattern structure 
of LEN must have 
In the following 

in it somewhere 
by exactly five 

S TR '( , LEN (5 ) , } , : S (L 1) F (L2) 

LEN can be used to break out fixed-length fields from strings. 
following example dates from data cards such as 

1290 SEP. 27 CHINA, CHIHLI 
1293 MAY 20 JAPAN, KAMARKURA 
1531 JAN. 26 PORTUGAL, LISBON 

are reformatted as 
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SEP. 27, 1290 
MAY 20, 1293 
JAN. 26, 1 5 3 1 

&ANCHOR 
DATE 

LOOP CARD 

CHINA, CHIHLI 
JAPAN, KAMARKURA 
PORTUGAL, LISBON 

= 1 
LEN (4) YR , , 
INPUT 

LEN (4) 

100,000 
30,000 
30,000 

. MO , 

CARD DATE MO , , DAY YR 
OUTPUT CARD 

NOGOOD OUTPUT CARD IMPROPERLY FORMATTED. 
END 

, LEN (2) . DAY 
: F (END) 
: F (NOGOOD) 
: (LOOP) , 

LEN is used to match the various pieces of the data assigning the strings 
found to the variables YR, MO, and DAY. YR, MO, and DAY are assigned values 
after pattern matching but before the entire substring matched by DATE is 
replaced. Only the date portion of CARD is reformatted. 

SPAN and BREAK are primitive functions whose values are pattern structures 
that match runs of characters. Patterns described by 

a run of blanks, 
a string of digits, and 
a word (run of alphabetic characters) 

can be formed using SPAN as 
\ 
" , 

SPAN (' ') 
SPAN('0123456789'} 
SPAN('ABCDEFGHIJKLMNOPQRSTUVWXYZ'} 

Patterns described by 
r-

everything up to the next 
everything up to the next 
everything up to the next 

can be formed using BREAK as 

BREAK (' ') 
pREAK ( , , . ; : ! ? ' ) 
BREAK('+-0123456789') 

blank, 
punctuation 
number, 

mark, and 

Arguments of BREAK and SPAN must be nonnull strings when pattern matching is 
performed. 

The pattern structure for SPAN matches the longest string beginning at the 
cursor which consists solely of characters which appear in the argument. SPAN 
may be thought of as streaming from the cursor until a character not included in 
the argument is found. §~~~_~g§i_m~i£h_~i_lg~§i_Qng_£h~£~£ig£L 
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BREAK generates a pattern structure that matches the longest string 
beginning at the cursor which does not contain a character of the argument. 
Thus, regarding its argument as a list of "break" characters, BREAK streams from 
the cursor up to but not including the first break character. ~E~~~_m~21_finQ_~ 
Q~~~t_£h~~~£1~~~ If the cursor is positioned immediately to the left of a break 
character, BREAK matches the null string. BREAK fails if no break character is 
found. 

A bead diagram for the statement 

• IT RUNS.' BREAK (. .) SPAN (. .) BREAK (I . I) I •• 

illustrates how the cursor is moved by SPAN and BREAK. 

IT RUNS. ~REAK(I IV ~PAN (I IV ~REAK (I. IV 
t 

o 
IT RUNS. ~REAK(I I D----GPAN ( I IV ~REAK (I. I} 

t 
o 

IT RUNS. ~REAK(I ID------(SPAN (I I~REAK(I. 'V 
t 

o 
IT RUNS. --~REAK (I I D------(SPAN ( I I~REAK(I.IV 

t 
1-----;0;0-0 

IT RUNS. ~REAK(I I~PAN(I I~REAK('. IV 

t 
The next program illustrates the use 6f both BREAK and SPAN. It compresses 

tabulated data, leaving fields separated by single colons rather than an 
arbitrary number of blanks. For example, if the input is 

ACTINIUM 
ALUMINUM 
AMERICIUM 
ANTIMONY 

the output is 

AC 
AL 
AM 
SB 

89 
13 
95 
51 

227* 
26.9'815 

243* 
121.75 

1899 
1825 
1944 
1450 

ACTINIUM:AC:89:227*:1899:DEBIERNE 
ALUMINUM:AL:13:26.9815:1825:0ERSTED 
AMERICIUM:AM:95:243*:1944:SEABORG 
ANTIMONY:SB:51:121.75:1450:VALENTINE 
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LOOP 
!NLOOP 

END 

= 
BREAK (' ') 

TRIM (INPUT) 

&ANCHOR 
FIELD 
CARD 
CARD 
PUNCH 

FIELD CHARS 
CARD 

CHARS 

, : ' 
SPAN (' ') 

: F (END) 
: S (INLOOP) 
: (LOOP) 

Each input card is repeatedly examined for a run of blanks, and the blanks 
are replaced by a colon. When blanks no longer exist the compression is 
complete and a new card is punched. 

Some care must be exercised in using BREAK, since it does not match the 
break character which stops the streaming. Suppose a ?rogram is wanted which 
restores, to some degree, the compressed data generated above. Each field of 
the compressed data can be broken out using a statement such as 

CARD BREAK(':') • FLD ':' 

Since BREAK(': ') does not "consume" the colon, the literal is included to remove 
the break character. 

SPAN never matches a string shorter than the maximum spap. For example, 

'9824761.' SPAN('0123456789') '6' 

cannot succeed since SPAN always matches up to the decimal point. 

In the event that components of the pattern beyond BREAK fail, BREAK does 
not skip over the break character and continue streaming. In the anchored mode 
the following statement never succeeds. 

, 1 23 , 4,27 , 642 . 00 ' BREAK ( , . , ' ) LEN (1) '0 ' 

BREAK('.,') matches 123 and that is all. 

and , are primitive functions whose values are 
pattern structures that rna c characters. ANY matches any character 
appearing in its argument. NOTANY matches any character n2i appearing in its 
argument. Thus, the pattern structure for ANY('AEIOU') matches any vowel. The 
pattern for NOTANY('AEIOU') matches any character that is D2i a vowel. 
Arguments of ANY and NOTANY must be nonnull strings when pattern matching is 
performed. 

ANY and NOTANY are fast ways of looking for one of a set of single 
characters. For example, 

ANY ( , A EI OU ' ) 
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is preferable to 

'A' I 'E' 1 'I' I '0' I 'U' 

The call 

NOTANY('STRUCTURE') 

is valid even though the characters T and U appear twice. 

Two examples utilizing ANY and NOTANY follow. The first counts the number 
of occurrences of vowels and consonants in an input deck of English text. The 
second counts and publishes the number of times individual letters appear in 
input text. In both cases, nonalphabetic characters are ignored. 

INPUT 

LOOP 

PUB 

END 

&ANCHOR 0 
VOWEL 'AEIOU' 
CONS 'BCDFGHJKLMNPQRSTVWXYZ' 
CHAR = ANY (VOWEL) • V NULL. C I 

OUTPUT 
TEXT 
TEXT 
VCOUNT 
CCOUNT 
OUTPUT 
OUTPUT 
OUTPUT 

ANY (CONS) • C NULL. V I 
LEN(1) NULL. V . C 

= TRIM (INPUT) 
TEXT OUTPUT 

CHAR = 
VCOUNT + SIZE(V) 
CCOUNT + SIZE(C) 

'VOWELS OCCUR VCOUNT 
'CONSONANTS OCCUR CCOUNT 

: F (LOOP) 
: (INPUT) 
: F (PUB) 

: (LOOP) 

TIMES. ' 
TIMES. ' 

The pattern CHAR matches one character. If that character is a vowel, it 
is assigned as the value of V, and the value of C becomes the null string. If 
CHAR matches a consonant, it becomes the value of C, and V becomes nUll. If the 
character is nonalphqbetic, both C and V become null. 

Inside the main loop, characters are removed from TEXT one at a time by 
CHAR. The two statements incrementing VCOUNT and CCOUNT are executed for every 
character. Because the conditional value assignment sets the values of V and C 
appropriately, only VCOUNT or CCOUNT or possibly neither is actually incremented 
by one. 

Output from a typi~al run is: 

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG. 
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR PARTY. 
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VOWELS OCCUR 32 TIMES. 
CONSONANTS OCCUR 54 TIMES. 

The program to count occurrences of individual letters is 



INPUT 

LOOP 

PUB 
PUBL 

END 

&ANCHOR 1 
ALPH = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
LETTER = LEN(1) • LET 
CHAR = NOTANY(ALPH) . SW LETTER NULL. 
OUTPUT = TRIM (INPUT) 
TEXT TEXT OUTPUT 
TEXT CHAR 
$LET = IDENT(SW) $LET + 1 
OUTPUT 
ALPH LETTER 
OUTPUT = LET APPEARS 

$LET TIMES. ' 

SW 
: F (LOOP) 
: (INPUT) 
: F (PUB) 
: (LOOP) 

: F (END) 

: (PUBL) 

The pattern CHAR matches exactly one character. If 
nonalphabetic, the character becomes the value of SW. 
alphabetic, it becomes the value of LET and SW becomes null. 

the character is 
If the character is 

In the main loop, characters are removed from TEXT one at a time by CHAR 
and the values of SW and LET are assigned. The ~ount for each character is kept 
in a variable having the name of the letter. (That is, the variable A contains 
the count for A.) The statement 

$LET IDENT(SW) $LET + 1 

increments the count for the character found provided the value of SW is null, 
which is true only for the alphabetic characters. 

Output from a typical run is: 
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THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG. 
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF ~HEIR PARTY. 

A APPEARS 4 TIMES. 
B APPEARS 1 TIMES. 
C APPEARS 2 TIMES. 
D APPEARS 3 TIMES. 
E APPEARS 9 TIMES. 
F APPEARS 3 TIMES. 
G APPEARS 2 TIMES. 
H APPEARS 5 TIMES. 
I APPEARS 5 TIMES. 
J APPEARS 1 TIMES. 
K APPEARS 1 TIMES. 
L APPEARS 3 TIMES. 
M APPEARS 4 TIMES. 
N APPEARS 3 TIMES. 
0 APPEARS 12 TIMES. 
P APPEARS 2 TIMES. 
Q APPEARS 1 TIMES. 
R APPEARS 5 TIMES. 
S APPEARS 2 TIMES. 
T APPEARS 9 TIMES. 
U APPEARS 2 TIMES. 
V APPEARS 1 TIMES. 
W APPEARS 2 TIMES. 
X APPEARS 1 TIMES. 
Y APPEARS 2 TIMES. 
Z APPEARS 1 TIMES. 

~~:~~~~~~:.:::~Ii~eger) ~",~"~E.§.,,.,_~l?ri_~.Y!L.~unctions whose valu~s are 
pattern structures match al~crracterstrom the c sltlon 
to a specific point in the subject string. TAB(N) matches up through the Nth 
character of the subject string. RTAB(N) matches up to but not including the 
Nth character from the right end of the subject string. Stated another way, 
TAB(N) insures that N characters are matched by positioning the cursor to the 
right of the Nth character. RTAB(N) insures that all but N characters are 
matched by positioning the cursor to the left of the Nth character from the end. 
For example, in the statement 

'SNOBOL4' LEN(2) TAB(6) 

the pattern matches the substring SNOBOL with TAB(6) matching OBOL. In a 
similar statement, 

'SNOBOL4' LEN(2) RTAB(1) 

the substring SNOBOL is once again matched with RTAB(1) matching OBOL. 

RTAB(O) is particularly useful for matching everything to the end of the 
subject string. For convenience, the variable REM has as its initial value the 
pattern structure for RTAB(O). Thus, the pattern 
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LAST8 RTAB(8) REM. L8 

matches the entire subject and assigns the last eight characters as the value of 
L8. 

TAB and RTAB require integer arquments when pattern matching is performed. 
If the argument of TAB or RTAB is negative, error termination occurs. An 
argument that would require moving the cursor left causes failure. The 
statement 

STR LEN (5) TAB(4) 

fails because the cursor cannot be moved back by TAB(4). 

TAB and RTAB are particularly valuable in breaking fields out of structured 
data. The following data is part of the 1964 list of congressmen from New 
Jersey. 

Column 4 Column 
~ 

1 WILLIAM T. CAHILL 
2 THOMAS C. MCGRATH, 
3 J~~ES J. HOWARD 

14 DOMINICK V. DANIELS 
15 EDWARD J. PATTEN 

JR. 

30 
~ 
REP 
DEM 
DEM 

DEM 
DEM 

Column 36 
~ 
COLLINGSWOOD 
MARGATE CITY 
WALL 

JERSEY CITY 
PERTH AMBOY 

Suppose a new deck of cards is desired, listing only the names left justified at 
column 1, and the post office address right justified at column 44. The 
following program reads the cards, breaks out the NA~E and PO fields, formats 
and punches a new deck. 

LOOP 

END 

&ANCHOR = 
BLANKS 
NAMEANDPO TAB(3) TAB(29). NAME TAB (35) REM. PO 
CARD TRIM (INPUT) :F(END) 
CARD NAMEANDPO :F(ERROR) 
NAME TRIM (NAME) 
BLANKS LEN(44 - (SIZE (NAME) + SIZE(PO))) . PAD :F(ERROR) 
OUTPUT = NAME PAD PO 
PUNCH = OUTPUT : (LOOP) 

Fields are broken out of the input cards using the pattern NAMEANDPO. The 
NAME field has trailing blanks which are trimmed before the output line is 
formatted. The post office address is obtained using REM and does not have 
trailing blanks since the input card was initially trimmed. LEN is used to 
determine the number of padding blanks required between NAME and PO to properly 
format the output. Output from the program is 
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WILLIAM T. CAHILL 
THOMAS C. MCGRATH, JR. 
JAMES J. HOWARD 

DOMINICK V. DANIELS 
EDWARD J. PATTEN 

COLLINGSWOOD 
MARGATE CITY 

WALL 

JERSEY CITY 
PERTH AMBOY 

A bead diagram illustrating the match of NAMEANDPO and the first data card 
is shown below. 

1 
+ 

t 

4 30 36 
+ + t 

1 WILLIAM T. CAHIlL REP COLLINGSWOOD 

;r 6AB (3) ~AB (29) . NAM~ 0AB (35U 0EM . p0 

WILLIAM T. CAHILL REP COLLINGSWOOD 

t 
----~~AB(29) • NAM~ ~AB (35) 

1 WILLIAM T. CAHILL REP COLLINGSWOOD 

~ 

1 WILLIAM T. CAHILL REP COLLINGSWOOD 

f 
-~8--0AB (29) . NAM~AB (35D--0EM • p0 

1 WILLIAM T. CAHILL 
1 

REP COLLINGSWOOD 

~ 
--8--0AB (29) • NAM~AB (35])---0EM • P~ 

POS(integer) and RPOS(integer) are primitive functions whose values are 
patt~ructur~nese pattern structures match the null string if the 
cursor is at a point in the subject string specified by the integer argument. 
POSeN) succeeds, matching the null str~ng, only if the cursor is positioned at 
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the right of the Nth character. RPOS(N) succeeds, matching the null string, 
only if the curspr is positioned to the left of the Nth character from the end 
of the subject string. POS and RPOS never cause the cursor to be moved; they 
test its position. For example, in the statements 

&ANCHOR 
STR SPAN(' ') POS(7) 

pattern matching succeeds only if the first seven characters are blanks and the 
eighth is not a blank. In the following example, 

&ANCHOR 
STR SPAN(' ') RPOS(7) 

pattern matching succeeds only if the seventh character from the end of STR is 
nonblank and everything preceeding it is blank. 

POS(O) is a pattern that succeeds only if the cursor is at the left of the 
subject string. RPOS(O) succeeds only if the cursor is at the right of the 
subject string. POS(O) and RPOS(O) can serve as left and right anchors for any 
pattern P, as in 

ENTIRE POS (0) P RPOS (0) 

In the statement 

STR ENTIRE 

pattern matching succeeds only if P can match all of STR. If at the time ENTIRE 
is built, P has the value 

'CAR' 'CART' 'CARTE' 

Matching in the statement 

'CARTE' ENTIRE 

is illustrated by the bead diagram: 

CAR T E 

t 
---~-8 
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CAR T E 

t 

CAR T E 

t 

CAR T E 

t 

CAR T E 

t 

CAR T E 

t 

CAR T E 

44 

t 

---{~os (0 V~-----la~8 

(CARTY 

(CARTE~ 

---i8}-------(8J----~;;.-l0pOS (0 V 

~CART) 

(CARTE) 

~POS (0) 

(CARTE) 

---18 



CAR T E 

t 

Arguments for POS and RPOS 
pattern matching is performed. 
termination. 

must have nonnegative integer values when 
Negative or noninteger arguments cause error 

The following program uses POS, RPOS, SPAN, and BREAK to list cards which 
do not conform to a specific format. Cards, when properly punched, have three 
fields left justified at columns 1, 10 and 20. A field consists of a run of 
nonblank characters followed by a run of blanks. Cards not conforming are 
printed by the program. 

OUTPUT 'CARDS 
FIELD BREAK(' 
FIELDS POS (0) 

LOOP CARD INPUT 
CARD FIELDS 
OUTPUT CARD 

END 

WITH IMPROPER FORMAT ARE:' 
') SPAN (' ') 
FIELD POS(9) FIELD POS(19) FIELD RPOS(O) 

: F (END) 
: S (LOOP) 
: (LOOP) 

A pattern FIELD is defined as a run of zero or more nonblank characters 
followed by a run of blanks. FIELDS is defined using FIELD three times with POS 
and RPOS, which check that the fields matched are positioned properly. If the 
following data are provided as input 

EXPR 

EXRTN3 
EXRTN1 
EXRTN2 

PROC 
SAVLNK 
RCALL XPTR,EXPRS 

BRANCH EXRTN1 
BRANCH EXRTN2 

RSTURN 3 
RSTURN 1 
RSTURN 2 

the output is 

CARDS WITH IMPROPER FORMAT ARE: 
SAVLNK 

BRANCH EXRTNl 
BRANCH EXRTN2 

EXRTN2 RSTURN 2 
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L. f~11 

FAIL is a variable whose initial value is a pattern structure that always 
fails. FAIL does not terminate pattern matching, but causes the scanner tb seek 
alternatives. 

consider the following statements. 

&ANCHOR 0 
'MISSISSIPPI' (' IS' I 'SI' I 'IP' I 'PI') $ OUTPUT FAIL 

Normally, the pattern would match the first IS, print it, and terminate 
successfully. However, FAIL causes the scanner to back up after printing the 
IS to look for another alternative. SI is found and printed, and again FAIL 
causes the scanner to back up. Thus, FAIL causes the scanner to find and print 
all six substrings of MISSISSIPPI that the pattern 

('IS' I 'SI' I 'IP' I 'PI') 

matches before terminating in failure. 

In general, the behavior of the scanner during any pattern match may be 
observed using a statement of the form 

STR PAT $ OUTPUT FAIL 

FAIL is generally used when a programmer wishes to force the scanner to try 
a number of alternatives even though some may succeed. In the following example 
words or phrases are read from cards. Cards are printed if they 

1) begin with the chqracters SIDE, 
2) contain either a hyphen or a blank, and 
3) have length iess than or equal to eleven. 

For example, SIDE DISH and SIDE-KICK are acceptable while SIDEBOARD and 
SIDE-WHEELER are not. 

&ANCHOR 
OUTPUT 'ACCEPTABLE WORDS ARE:' 
PAT == NULL $ P1 $ P2 $ P3 

('SIDE' $ P1 I BREAK ('- , ) $ P2 LEN (12) $ P3) 
FAIL 

LOOP CARD TRIM (INPUT) : F (END) 
CARD PAT 
DIFFER (P 1) DIFFER (P2) IDENT (P3) : F (LOOP) 
OUTPUT CARD : (LOOP) 

END 

PAT is a complicated pattern that, because FAIL forces the scanner to back 
up, checks all three conditions. The initial portion of PAT, 

NULL $ P1 $ P2 $ P3 
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matches the null string, thereby immediately assigning the null value to 
variables P1, P2, and P3. If SIDE matches, P1 gets a nonnull value. If 
BREAK(I- ') also matches, P2 also gets a nonnull value. Finally, if LEN(12) 
fails, as it should, P3 keeps its null value. The values of P1, P2, and P3 are 
checked in the statement following pattern matching. 

The variable FENCE has a pattern structure as its initial value. FENCE 
matches the null string when first encountered by the scanner moving left to 
right through a pattern. If a subsequent failure causes the scanner to back up 
to FENCE seeking an alternative, the pattern match is terminated. Considering 
FENCE as a bead, the needle passes freely from left to right. Attempting to 
pull the needle back through FENCE causes failure of pattern matching. 

Consider the following statements: 

&ANCHOR 
'BERATES' (' BE' 'GE' 'FRE' ) (' TS' 'T' ) 

BE matches, and both TS and T fail~ At this point the scanner backs up and 
tries GE and FRE, both of which fail. Looking at the pattern, it is obvious 
that GE and FRE should not be tried because the first two characters are known 
to be BE. 

Inserting FENCE between the groups of alternatives eliminates the problem. 

'BERATES' (' BE' 'GE' 'FRE' ) FENCE ('TS' 'T' ) 

Now, if BE matches, FENCE keeps the scanner from needl~ssly backing up to look 
at GE and FRE. 

FENCE can be used to temporarily anchor the scanner in a program 
otherwise operates in the unanchored mode. Inserting FENCE before PAT 
statement 

STR (FENCE PAT) 

which 
in the 

causes pattern matching to fail if PAT does not match beginning with the first 
character of STR. 

N. ~~QB1 

ABORT is a variabl~ whose initial value is a oattern structure that causes 
immediate termination of the entire pattern match. No alternatives are tried, 
and the statement fails. 

ABORT is useful in constructing conditional pattern matching statements. 
For instance, in processing SNOBOL4 source decks as data, the following pattern 
ignores comment cards, but matches all others against the pattern CARD. 
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CARD FORM '*' ABORT CARD 

Similarly, the pattern 

SHORTPAT LEN (12) ABORT PAT 

succeeds only if the subject string is less than 12 characters long. 

In general, a pattern described by a statement of the form, "has 
characteristics of P but not Q," can be imolemented by 

PNOTQ = Q ABORT P 

When failure to match a pattern component starts the scanner pulling the 
needle back, the scanner seeks alternatives to components that matched. So far, 
the only way described for creating alternatives uses the binary operator 1. 
Components, if "backed into," either terminate the pattern match (FENCE), pass 
the needle to an alternative (as indicated by I), or, if no alternative 
exists,pass the needle still farther back to seek alternatives. Four primitive 
pattern structures, ARB, BAL, ARBNO(P), and SUCCEED behave differently. These 
patterns have implicit alternatives. Rather than pass the needle back or to an 
alternative, they attempt to find another suitable substring. Only when all 
implicit alternatives fail is the needle passed to an explicit alternative or 
passed back. 

ARB is a variable whose initial value is a pattern structure that matches 
zero or more characters. When first encountered by the scanner moving from left 
to rignt, ARB matches the null string. When 'backed into' on subsequent 
occasions, ARB increases the size of the substring it matches by one. ARB fails 
only when it can no longer increase the length of the substring it matches. 

ARB is used in the construction of patterns typified by the statement, "any 
string containing both CAT and DOG.1t Nothing is said about the order in which 
they appear or their separation. A suitable pattern is 

CATANDDOG 'CAT' ARB 'DOG' 

Matching CATANDDOG against the strings 

CATALOG FOR SEADOGS 
DOGS HATE POLECATS 
CATDOG 

ARB matches the substrings 
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ALOG FOR SEA 
S HATE POLE 

and the null string, respectively. 

ARB, although natural, cannot be used with impunity. For example, it 
shou:Q not be used as the first component of a pattern unless associated with a 
variable for value assignment. The statement 

STR ARB PAT 

should be replaced by 

STR PAT 

which, when executed in the unanchored mode, behaves in exactly the same way, 
but is much faster. 

ARB should not be used to break fields out of a string if they are 
separated by known delimiters. For example, the statement 

STR BREAK(',') • FIELD , , , 

is much faster than the statement 

STR ARB. FIELD 

although they accomplish the same thing. 

The following bead diagram gives a representation of ARB. It can be seen 
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from the diagram that 

1) the null string is matched on the first attempt, 
2) subsequent attempts increase the substring matched by one character, and 
3) failure occurs when the size of the substring cannot be increased. 

The initial value of the variable BAL is a pattern structure which matches 
any nonnull string of characters balanced with respect to parentheses. BAL 
matches 

x 
XYZ 
(A+B) 

A (B*C) (E/F) G+H 

BAL does not match 

) A+B ( 
( (A + B) 

A bead diagram for BAL resembles the one for ARB except that the null 
string is not acceptable. 

50 



GBAL is a routine that 

1) fails if no characters remain in the subject string, 

2) fails if the first character examined is 

3) matches any character except 

4) matches all characters from 
and 

or (, 

up to and including the balancing 

5) fails if a balancing does not occur. 

In the statement 

'A (B*C) (E/F) , BAL RPOS (0) 

GBAL is called three times. First it matches the A but RPOS(O) fails. Next, 
GBAL extends the string matched by BAL to include (B*C), but again RPOS(O) 
fails. Finally GBAL matches (E/F) , which brings the total string matched by 
BAL to A (B*C) (E/F) 

Insight into the behavior of BAL can be gained from use of ALLBAL: 

ALLBAL BAL $ OUTPUT FAIL 

When used in the unanchored mode, a statement such as 

, ( (A+ (B*C) ) +D)' ALLBAL 

prints out every balanced expression. The output for this case is 
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( (A+ (B*C» +D) 
(A+ (B*C) ) 
(A+ (B*C) ) + 
(A+ (B*C) ) +D 

A 
A+ 
A+ (B*C) 
+ 
+ (B*C) 
(B*C) 

B 
B* 
B*C 

* 
*C 
C 
+ 
+D 
D 

BAL facilitates the manipulation of algebraic and functional expressions. 
Programs using BAL to translate algebraic expressions from Polish to infix 
notation, and vice versa, appear in Chapter 4. 

ARBNO is a mnemonic for "arbitrary number of." ARBNO(pattern) is a 
primitive function whose value is a pattern structure that matches zero or more 
consecutive occurrences of strings matched by its argument. When encountered by 
the scanner in the forward direction, ARBNO(pattern) matches the null string. 
When 'backed into,' it tries to increase the length of the substring matched by 
its argument. In the statements 

&ANCHOR 1 
SUBSTR ARBNO(LEN(3}) RPOS(O) 

the pattern match succeeds only if the size of SUBSTR is zero or a multiple of 
three. 

ARBNO(P) may be thought of as the infinite pattern 

NULL P (NULL P (NULL P (NULL P ( •••••• ))» 

A bead diagram is perhaps more illuminating. 
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END 

o GUL0 
o 0UL0 

o 0UL0 

In the following example the argument of ARBNO has several alternatives. 

&ANCHOR 
P '1234' 
ARBNOTEST 
'123412341' 

1 
I '123' 

ARB NO (P) 
ARBNOTEST 

1 
$ 

• 234' 
OUTPUT 

I '341 ' 
RPOS (0) 

'412 ' 

The following bead diagram for ARBNOTEST illustrates how alternatives are 
handled. The output from the program above is a blank line (resulting from the 
null string), and then 

1234 
12341234 
1234123 
123 
123412 
123412341 
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&ULL) 

8 GULL) 

8 0UL0 
0 @ ~23V 

8 8 @ 
--

8 8 0 

BREAK and SPAN can frequently be used in place of ARBNO. For example, 

ARBNO ( •• ) 

can usually be replaced by 

SPAN (. .) 

or, if necessary, 

NULL SPAN (. .) 

ARBNO is relatively slow and should be avoided if some other pattern will 
suffice. 

The variable SUCCEED has a pattern structure as its initial value. SUCCEED 
matches the null string when first encountered by the scanner moving left to 
right through a pattern. If a subsequent failure causes the scanner to back up 
to SUCCEED seeking an alternative, SUCCEED again matches the null string. Thus, 
SUCCEED always matches the null string, both in the forward direction and when 
alternatives are sought. SUCCEED has a bead representation where all implicit 
alternatives are the null string. 
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8 
8 
8 
0UL0 

since the number of implied alternatives is infinite, the scanner can never back 
through SUCCEED. 

Practical uses 
programmer can use 
terminate: 

for SUCCEED seem 
SUCCEED and FAIL 

limited. However, the light-hearted 
to produce pattern matches that never 

SAWTOOTH = SUCCEED (LEN(1) ARB) $ OUTPUT FAIL 

Since FAIL repeatedly causes the scanner to back up and retry ARB, LEN(1) ARB 
matches first one character, then two, and so on up to the length of the subject 
string. Each substring matched by LEN(1) ARB is printed. Eventually ARB cannot 
match a longer string and fails, causing the scanner to back into SUCCEED. 
SUCCEED matches the null string and the entire process repeats itself. 

If the pattern SAWTOOTH is used in the statement 

'XXXXXX' SAWTOOTH 

pattern matching does not terminate, and the following output is produced. 
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x 
xx 
xxx 
xxxx 
xxxxx 
xxxxxx 
x 
xx 
xxx 
xxxx 
xxxxx 
xxxxxx 
x 
xx 

SAWTOOTH can never terminate successfully because of the FAIL, and can never 
terminate in failure because of the SUCCEED. 

The unary operator w is called the cursor position operator. Its operand 
is a variable. The value of wX is a pattern structure that matches the null 
string and assigns the current cursor position as an integer value of the 
variable X. Assignment of the cursor postion to the operand of the w 
operator takes place as immediate value assignment. Value is assigned when the 
cursor position operator is encountered during pattern matching, not following 
successful completion. 

Execution of the following statements assign the integer value 5 
variable HEAD. 

&ANCHOR 0 
'TEST AT OPERATOR' wHEAD 'AT' 

to the 

Pattern matching finally succeeds when the cursor is initially positioned to the 
left of the AT. The cursor position at this point is 5, the value assigned to 
HEAD. 

Locating the rightmost instance of a pattern in a string is relatively easy 
utilizing the cursor position operator. The following statements can be used to 
locate and remove the rightmost blank in a string of characters. 

&ANCHOR 0 
STR 
STR 

wRTPOS FAIL 
TAB(RTPOS - 1) . HEAD HEAD 

Since the unanchored mode is used, the first pattern matching statement assigns 
a cursor position to RTPOS for each blank in STR. Although failing 
ultimately, the final value of RTPOS is the cursor position to the right of 
the last blank. The replacement statement uses TAB(RTPOS - 1) to locate and 
remove the rightmost blank. 
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The unary operator * postpones the evaluation of its operand. If E is an 
expression, then *E is an unevaluated expression. The unevaluated expression is 
evaluated when 

1) the scanner encounters *E as part of a pattern structure, or 
2) *E is used as the argument of the primitive function EVAL. 

In this chapter, unevaluated expressions, often simply called expressions, are 
considered only in the context of pattern matching. A detailed discussion of 
EVAL appears in Chapter 4. 

If an unevaluated expression appears as part of a pattern, the expression 
is evaluated when encountered during pattern matching. If evaluation of the 
expression is successful, the value becomes part of the pattern structure and 
pattern matching continues. If evaluation of the expression fails, the scanner 
backs up seeking alternatives. Failure during evaluation of an expression does 
not cause termination of pattern matching. 

A typical use for unevaluated expressions is motivated by the following 
example. A deck of data cards indexed in the first three columns with numbers 
from 1 to 999 is to be checked for the proper sequence. 

LOOP 

OK 
NOGOOD 
END 

&ANCHOR 1 
N 1 
BLANKS 
CARD INPUT 
CARD (BLANKS N) . SW NULL . SW 
N DIFFER (SW) N + 1 
EQ(SIZE(N) + SIZE (BLANKS) ,3) 
BLANKS ' , 
OUTPUT 'DECK IS WELL ORDERED.' 
OUTPUT 'CARD CARD IS OUT OF ORDER.' 

: F (OK) 
: F (NOGOOD) 

: S (LOOP) 
: (LOOP) 

(END) 
: (END) 

Typical data are the following cards listing the best selling nonfiction books 
for 1965. 

Column 1 

• 1. MARKINGS, DAG HAMMARSKJOLD 
2. THE ITALIANS, LUIGI BARZINI 
3. SIXPENCE IN HER SHOE, 

PHYLLIS MCGINLEY 
4. REMINISCENCES, DOUGLAS MACARTHUR 

10. JOURNAL OF A SOUL, POPE JOHN XXIII 
11. THE OXFORD HISTORY OF THE AMERICAN 

PEOPLE, SAMUEL ELIOT MORISON 
12. THE WORDS, JEAN-PAUL SARTRE 
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The main loop is executed once for each card. Matching for sequence numbers or 
leading blanks is done using the pattern 

(BLANKS N) • SW NULL . SW 

The value of N is the number sought. 
blanks such that SIZE (BLANKS N) 
successful match, is nonnull if the 
three blanks are found instead. 
incremented for the next iteration. 
changes from 9 to 10, a blank is 
SIZE (BLANKS N) equal to 3. 

BLANKS 
is 3. 

sequence 
SW is 

When the 
removed 

has a value of zero, one or two 
SW is a variable which, following a 
number is found, and is null if 

used to determine if N should be 
SIZE(N) changes, as it does when N 

from BLANKS in order to keep 

The important point to observe in the example is the changing of the 
pattern. During execution, the value of N changes frequently and the value of 
BLANKS changes occasionally. As written, the pattern is evaluated for every 
iteration, and a new pattern structure is built. 

N and BLANKS are the only portions of the pattern which change. Suppose a 
new pattern utilizing unevaluated expressions is s~ecified outside of the loop. 

SEQNO = (*BLANKS *N) • SW NULL . SW 

The pattern matching statement inside the loop becomes 

CARD SEQNO : F (NOGOOD) 

The expressions *BLANKS and *N are not evaluated when the pattern is built. 
They remain unevaluated until SEQNO is used in a pattern matching statement. 

During pattern matching the values of BLANKS and N are found and inserted 
into the already existing pattern structure. Thus, the pattern structure is 
built once, and only the continually changing values of BLANKS and N are updated 
on every iteration. 

The following example incorporates the modifications using unevaluated 
expressions. 

&ANCHOR = 1 
N ::: 1 
BLANKS ::: 

SEQNO :: (*BLANKS *N) . SW NULL . SW 
LOOP CARD ::: INPUT : F (OK) 

CARD SEQNO : F (NOGOOD) 
N DIFFER (SW) N + 1 
EQ (SIZE (N) + SIZE (BLANKS) ,3) : S (LOOP) 
BLANKS , , = (LOOP) 

OK OUTPUT = -DECK IS WELL ORDERED.' (END) 
NOGOOD OUTPUT :: 'CARD CARD IS OUT OF ORDER.' (END) 
END 

Unevaluated expressions are valid arguments for primitive pattern-valued 
functions. The pattern structure for the function is built, but the argument 
remains unevaluated until pattern matching is performed. The following example 
uses an unevaluated expression as the argument of LEN, and thereby avoids the 
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repeated formation of a pattern structure. The program takes input cards with 
left-adjusted data of length less than 40 characters, and produces output cards 
with the data right adjusted at column 40. For example, the cards 

AKRON BEACON JOURNAL 
ATLANTA CONSTITUTION 
ATLANTA JOURNAL 
BALTIMORE NEWS AMERICAN 

become 

BLANKS 

AKRON BEACON JOURNAL 
ATLANTA CONSTITUTION 

ATLANTA JOURNAL 
BALTIMORE NEWS AMERICAN 

PADPAT LEN(*(40 - SIZE(CARD))) . PAD 
LOOP CARD TRIM (INPUT) 

GT (SIZE (CARD) ,40) 
BLANKS PADPAT 
PUNCH PAD CARD 

PRINT OUTPUT CARD 
END 

: F (END) 
: S (PRINT) 
: F (ERROR) 
: (LOOP) 
: (LOOP) 

PAD PAT is constructed once and only once. The argument of LEN is evaluated for 
each iteration of the loop. 

In pattern matching, unevaluated expressions can be used in a variety of 
ways, as illustrated by the following examples. 

PAIR is a pattern that matches any two consecutive identical characters. 
PAIR uses LEN(1) to match any character, and immediate value assignment to 
assign the character as value of X. The expression *x that follows must match 
the same character as LEN(1). 

PAIR (LEN ( 1) $ X *X) . OUTPUT 
'COOK' PAIR 
'COMMON' PAIR 
'AARON' PAIR 
'CHICKADEE' PAIR 

END 

Output from the program is: 

00 
MM 
AA 
EE 
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Given any subject string STR and any pattern P, BIGP finds the longest 
substring of STR that P matches. 

BIGP (*P $ TRY *GT (SIZE (TRY) ,SIZE(BIG))) $ BIG FAIL 

BIGP uses two variables, BIG and TRY. During pattern matching, the value 
of BIG is the largest substring found. Before pattern matching, BIG must be 
initialized to the null string. TRY is assigned every substring that the 
pattern P matches. If TRY is longer than BIG, the value of BIG is updated. 

BIGP utilizes unevaluated expressions in two ways. *p allows BIGP to be 
constructed without specifying the value of P. The value of P is determined 
during pattern matching. The predicate *GT(SIZE(TRY) ,SIZE(BIG)) is evaluated 
during pattern matching whenever *p matches a substring. It compares the size 
of TRY with the size of BIG. If the new substring is shorter, the predicate 
fails. Failure of a predicate or function during pattern matching causes the 
scanner to back up seeking alternatives. If the new substring is longer, the 
predicate succeeds, returning the null string as value. This null string is 
immediately matched. The variable BIG is then assigned the new substring as 
value. FAIL causes the scanner to back up and look for another substring 
matched by P. 

END 

The following is a test program for BIGP. 

BIGP 
STR 

P 
BIG 

(*P $ TRY *GT(SIZE(TRY) ,SIZE(BIG))) $ BIG FAIL 
'ON JANUARY 1, 1965, THE UNITED STATES MERCHANT' 
'FLEET HAD 2529 VESSELS TOTALLING' 
'29,632,000 DEADWEIGHT J6NS.' 

SPAN('0123456789,') // 
/,/" 

STR BIGP 
OUTPUT 'LARGEST NUMBER IS BIG 
P SPA.N ( 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ' ) 
BIG 
STR BIGP 
OUTPUT 'LARGEST WORD IS BIG 

The output is 

LARGEST NUMBER IS 29,632,000 
LARGEST WORD IS DEADWEIGHT 

Recursive definitions of patterns are possible using unevaluated expres
sions. The pattern structure for 

P P 'Z' 'Y' 

is constructed using the previous value of P. If P was null, the new value of P 
matches the strings Y and Z. 
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If the value of P is left unevaluated as in 

P *p 'Z' 'Y' 

the value of P at pattern matching time (which is *P, 'Z' I 'Y') replaces *P, 
giving rise to a recursive definition. The pattern P matches either Y or 
anything matched by P followed by Z. Therefore, since P matches Y, it also 
matches YZ. Since P matches YZ, it also matches YZZ, etc. Thus, P matches 
strings of the form 

Y 
YZ 
YZZ 
YZZZ 

A test program for the recursive definition of P follows. 

P *p 'Z' I 'Y' 
PO P OUTPUT 
'Y' PO 
'YZZZ' PO 
'XYZ' PO 
'YZZX' PO 
'AYZZZZB' PO 

END 

Output from the program is 

Y 
YZZZ 
YZ 
YZZ 
YZZZZ 

Recursive definitions can be quite complicated, as in the following example 
which recognizes a simple class of arithmetic expressions. 
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LOOP 

&ANCHOR 
VARIABLE 
ADDOP 
MULO;P 
FACTOR 
TERM 
EXP 

1 
ANY ('XYZ') 

ANY (' +-') 
ANY (' */') 

VARIABLE I '(' *EXP 
FACTOR I *TERM MULOP 

ADDOP TERM I TERM I 
TRIM (INPUT) 

') , 
FACTOR 

*EXP ADDOP 
STRING 
STRING 
OUTPUT 

EXP RPOS(O) 
STRING 
STRING 

IS AN EXPRESSION.' 
NOGOOD OUTPUT 
END 

Output for typical data is 

X+Y*(Z+X) IS AN EXPRESSION. 
X+Y+Z IS AN EXPRESSION. 
XY IS NOT AN EXPRESSION. 

IS NOT AN EXPRESSION.' 

TERM 
: F (END) 
: F (NOGOOD) 

(LOOP) 
: (LOOP) 

A call to a programmer-defined function is an expression and can appear in 
a pattern as an unevaluated expression. Evaluation of the function takes place 
during pattern matching. Failure of the function call causes the scanner to 
back up seeking alternatives. On success, the value of the function call is 
treated as a pattern, and matching continues. There are no special restrictions 
on the procedure called by the function, so pattern matching may be used within 
the called procedure. 

The following program uses one statement to match a number of different 
patterns against a single subject string. The patterns are read from input 
cards one at a time. 

* 
NEWPAT 

NEW END 
* 
BUMP 
* 

END 

DEFINE('NEWPAT() ') 
DEFINE ( , BUMP () ') 

OUTPUT TRIM (INPUT) 
NEWPAT ARB OUTPUT 
NEWPAT ABORT 

X X + 1 

TEST STR 
STR SUCCEED 
OUTPUT 

'ABCDACDBADBCDB' 
*NEWPAT() *BUMPO FAIL 

: (TEST) 

: F (NEWEND) 
: (RETURN) 
: (RETURN) 

: (RETURN) 

OUTPUT X OF THE PATTERNS ABOVE MATCHED , STR 

Two functions, NEWPAT and BUMP are defined. NEWPAT reads a pattern from 
the input, prints it, and returns the pattern preceded by ARB as the value of 
the function. If no patterns are left on the input, the pattern ABORT is 
returned as value of NEWPAT. The function BUMP increases the value of the 
variable X by one each time it is called. 

In the test pattern, the functions NEWPAT and BUMP appear as unevaluated 
expressions bounded by SUCCEED and FAIL. Each time NEWPATO is evaluated during 
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pattern matching, a new pattern structure is returned as value. Since the first 
element of the pattern structure is ARB, the entire string STR is examined for 
the input pattern. If the pattern structure for NEWPAT() fails, the scanner 
backs up to SUCCEED and restarts causing NEWPATO to be re-evaluated, reading in 
a new pattern. If matching succeeds, BUMPO is evaluated causing X to be 
incremented. FAIL then causes the scanner to back up to SUCCEED continuing the 
process. Pattern matching terminates when input is exhausted and the value of 
NEWPAT{) is the pattern structure for ABORT. 

output from the program consists of the patterns read from the input 
followed by a summary line printing the number of patterns matched successfully. 

ABCD 
ABDC 
ACBD 
ACDB 
ADBC 
ADCB 
BACD 
BADC 
BCAD 
BCDA 
BDAC 
BDCA 
CABD 
CADB 
CBAD 
CBDA 
CDAB 
CDBA 
DABC 
DACB 
DBAC 
DBCA 
DCAB 
DCBA 

5 OF THE PATTERNS ABOVE MATCHED ABCDACDBADBCDB 

The keyword &FULLSCAN initially has a zero value, signifying the normal or 
g~i~~~~~~ mode of pattern matching. In the quickscan mode, the scanner uses a 
number of heuristics to avoid looking at alternatives which cannot possibly lead 
to a successful match. Hence, the scanner operates on the assumption that the 
programmer is not interested in how matching is done, but only in the outcome. 
Typically, patterns concerned with how matching is done employ immediate value 
assignment and/or unevaluated expressions. Patterns which do not use these 
features can and should be used in the quickscan mode. Patterns using immediate 
value assignment and unevaluated expressions may produce unexpected results in 
the quickscan mode. This section describes the heuristics used by the scanner 
to speed up pattern matching. It points out where unexpected results may arise 
and what can be done about them. 

This chapter so far has been concerned with the basic components of 
patterns. No consideration has been given to the context in which a component 
occurs. The basic notion of the quickscan mode is quite simple: Before a 
component or bead is matched, its context is examined to see if matching should 
be attempted, terminated, or an alternative sought. The easiest question to 
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answer is whether the number of characters remaining in the subject string is 
sufficient to successfully complete a match. Consider the following example. 

BD ('BE' 'B' ) ('AR' 'A' ) (' DS' 'D' ) 
'BEAD' BD 

Three of the possible strings matched by BD are too long: BEARDS, BEARD, and 
BARDS. The scanner should avoid them if possible. In the bead diagram which 
follows, a number is associated with each bead. The number represents the 
minimum number of characters necessary to match that bead and anything that 
follows. If the number is greater than the number of characters remaining in 
the subject string, the scanner does not attempt to match the bead against the 
subject string. 

B E A D 

t 
----8 4 

(~J 
3 8 2 

3 2 

B E A D 

t 
8 3 S 2 

3 2 1 

B E A D 

t 
8 3 8 2 

3 
1---

2
--;;0.-18 

1 

B E A D 

t 
(~) 

3 S 2 

3 
J---2--~1 

The components AR in step 2 and DS in step 3 are not tried. AR cannot 
match, since two characters remain in the subject string and at least three are 
necessary. Similarly, DS is not tried because one character remains and at 
least two were required. 

In the unanchored quickscan mode, the scanner does n2£ move the initial 
position of the cursor if insufficient characters remain in the subject string. 
consider the following example. 
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&ANCHOR 0 
'BATS' BD 

Matching fails with the cursor initially positioned to the left of the subject 
string. It is then moved to the left of the A. Since three characters remain 
in the subject string, only B is tried. Failing to match B, the scanner 
recognizes that further repositioning of the cursor is useless. 

BAT S 

t 
8 2 

3 2 1 

BAT S 

t 
8 4 

(3 
3 8 2 

3 2 1 

BAT S 

t 
3 8 2 

2 1 

B A T S 8 (~~ 8 
t 

4 3 2 

0 3 
~8 

2 0 1 

BAT S 

t 
(3 

4 2 

2 1 
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B A 'I S 8 @ 8 
t 

4 3 2 

0 3 €V 2 
~0 

1 

BAT S 

t 
8 4 o 3 o 2 

3 2 1 

In the quickscan mode, the scanner distinguishes between two kinds of 
failure: 1) failure to match, as when X is compared to T; and 2) failure 
because too few characters remain in the subject string. In the latter case, 
the scanner does not allow ARB to match a longer substring, nor does it move the 
initial position of the cursor in unanchored mode. Consider the following 
pattern matching statement executed in the unanchored mode: 

'CAT' ARB 'X' 

Clearly the match cannot succeed. When the scanner reaches the state shown in 
the diagram below, ARB can no longer extend the substring it matches. ARB 
indicates failure because of too few characters. The scanner does not 
reposition the cursor, and matching fails. 

CAT 

t 
1 

1 

A similar situation arises in the anchored mode for such patterns as 

'CAT' ARB ARB 'X' 
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The first ARB matches the null string. The second ARB matches the null string, 
C , and CA before it fails for lack of room. The scanner, therefore, does not 
seek an implicit alternative for the first ARB, and terminates pattern matching 
in failure. 

In the quickscan'mode, the scanner recognizes a special case for ARBNO. 
When backed into, ARBNO(P) tries to extend the substring matched by finding 
another instance of P. If P is null or has null alternatives, behavior like 
SUCCEED may result. The scanner tries to prevent this. When backed into, 
ARBNO(P) examines the substring matched by the last instance of P. If this 
substring is null, ARBNO does not try to extend the substring matched by finding 
an additional instance of P, but backs up to the last instance of P and seeks an 
alternative to the null string. 

For example, in the quickscan mode, ARBNO(NULL) looks like NULL I NULL 
The first NULL appears because NULL is always attempted independently of the 
argument to ARBNO. The second NULL comes from the argument. 

Behavior of ARBNO(NULL 
the following statement. 

'X') can be deduced from the output generated by 

,*XXX' 

The output is 

* 
* *x 
*x 
*xx 
*xx 
*xxx 
*xxx 

('*' ARBNO(NULL I 'X')) $ OUTPUT FAIL 

Left recursion in a pattern structure, as illustrated by 

p *p 'Z' 'Y' 

could be a problem because it might put the scanner in a loop, resulting in 
error termination. In the quickscan mode, recursive loops are broken whenever 
possible. Most looping problems are avoided by a look-ahead feature that 
compares the number of characters remaining with the number of characters 
required together with the assumption that any unevaluated expression matches at 
least one character. 

As an example, consider the following statement: 

'YZZ' P 

It is convenient to think that whenever the bead for *p is encountered, it 
expands into a bead diagram for the current definition of P. The process is 
illustrated by the following diagram. 
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Y Z 'l --e 0 
t 

2 1 

.8 
1 

Y Z Z --e 6) 0 
t 

3 2 1 

8 2 

8 

Y Z z 

t 
8 4 

6) 
3 

6) 
2 o 1 

-0 3 

Y Z z 8 6) 6) 
t 

4 3 2 1 

'Y' 
3 

6) 
2 

6) 
1 
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Y Z Z 0 0 
t 

4 3 

'Y' 
3 

8 2 

8 1 

The final state is 

Y Z z 

I o 4 o 3 

----~'Y'~----------~ 

3 

When the minimum number of characters required by *p reaches 4, the recursive 
loop is broken and the alternative Y is tried, leading to a successful match. 

The assumption that *p matches at least one character does not affect the 
outcome of the previous example. Had zero characters been assumed, one more 
iteration of the loop would have been required, and the final diagram would have 
been as follows. 
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Y Z Z 8 0 0 
t 4 4 3 

6) 
4 

'Y' 
3 

6) 
2 

6) 

However, the one-character assumption keeps the following equivalent statements 
from terminating in error. 

p = *p *Q 'Y' 
Q = 'Z' 

If both *p and *Q can match the null string, the bead diagram grows until error 
termination results. With the one-character assumption, the two equivalent 
examples above behave similarly. 

There are a number of pathological patterns which cause error termination. 
The following are typical. 

p = *p 
P = NULL *p 

Even the one-character assumption cannot interrupt the recursive loop, because 
as the bead diagrams grow, the minimum number of characters on the *p bead does 
not change. 

Assuming a one-character minimum for unevaluated expressions can lead to 
difficulties: 

PAT = *w *x *Y *Z 

The shortest string PAT matches is of length four. The following match, 
straightforward as it seems, fails. 

w = 'C' 
X = fA' 
Y 'T' 
Z = 
'CAT' PAT 
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As seen in the next section, the match succeeds if the fullscan mode is used. 

Patterns such as BIGP, described in the section on unevaluated expressions, 
can produce unexpected results in the quickscan mode. 

BIGP = (*p $ TRY *GT(SIZE(TRY) ,SIZE(BIG))) $ BIG FAIL 

The expression *GT(SIZE(TRY) ,SIZE(BIG)) is assumed to require one character 
when, in fact, it matches the null string. Therefore, the quickscan mode 
prevents *p from matching any substring which includes the last character of the 
subject string. Hence, in the statements 

P = SPAN('0123456789,') 
'1234.56 789,312' BIGP 

the final value of BIG is 1234 rather than the expected 789,312. Again, as 
seen in the next section, the fullscan mode prevents such difficulties. 

In summary, the following heuristics are used in the quickscan mode to 
improve the efficiency of pattern matching: 

1) continual comparison of the number of characters remaining in the 
subject string against the number of characters required, 

2) repositioning of the cursor in the unanchored mode only if sufficient 
characters remain, 

3) refusal to extend the substring matched by ARB or to reposition the 
cursor if failure is caused by too few characters, 

4) refusal to extend substring matched by ARBNO(P) if the last match of P 
was the null string, and 

5) assumption that unevaluated expressions must match at least one 
character. 

The fullscan mode of pattern matching is entered by assigning a nonzero 
value to the keyword &FULLSCAN. In the fullscan mode, all heuristics to improve 
pattern matching efficiency are turned off. Each component of a pattern is 
matched independently of its context. Furthermore, when unanchored, the initial 
position of the cursor is moved through the entire subject string. 

The following example, which prints all possible nonnull substrings of a 
subject, suggests applications of the fullscah mode. 

&ANCHOR 0 
&FULLSCAN 1 
'12345' (LEN(1) ARB) $ OUTPUT FAIL 

END 

Output from the program is: 
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1 
12 
123 
1234 
12345 
2 
23 
23-4 
2345 
3 
34 
345 
4 
45 
5 

If &FULLSCAN had been zero, the initial position of the cursor would not have 
been moved, and only the first five lines would have been printed. 

A more useful example, which can only be done in the fullscan mode, is baCk 
referencing. This pattern succeeds only if a subject string has two identical 
nonoverlapping substrings of length 3: 

BACKR LEN(3) $ X ARB *X 

The statement 

'ABCDEFGBCDA' BACKR 

succeeds and X has the value BCD. The statement above does not work in the 
quicksca~ mode. When LEN(3) matches ABC, ARB eventually matches DEFGBCD and 
then fails because X is assumed to match one character. The condition is 
recognized in the quickscan mode, preventing the initial position of the cursor 
from being moved. Hence, matching fails without BCD ever being matched by 
LEN(3). 

In the fullscan mode, the tests of ARBNO for null arguments are turned off. 
ARBNO(NULL) and ARBNO(NULL I '4') behave like SUCCEED, except that they 
eventually cause error termination. The statement 

,*XXX' (' *' ARBNO (NULL 'X')) $ OUTPUT FAIL 

generates output lines consisting of a single * until error termination. 

Recursive patterns such as 

P *p 'Z' 'Y' 

do not work because the recursive loop is not broken. Execution of a statement 
with such a pattern results in error termination. 

Patterns such as 
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PAT *W *X *y *z 

work for subject strings having fewer than four characters because the 
one-character assumption no longer holds. 

The next two examples compare the results of programs run in quickscan and 
fullscan modes. 

This program prints combinations of characters taken three at a time from a 
subject string. 

F 
END 

DEFINE('F{X,Y,Z) ') 
COMB3 LEN(1) $ A 

*F(A,B,C) 
'123456' COMB3 
OUTPUT X Y Z 

Output from Quickscan 

123 
124 
125 

ARB 
FAIL 

LEN (1) $ B ARB LEN (1) $ C 

(END) 
(RETURN) 

Output from Fullscan 

123 
124 
125 
126 
134 
135 
136 
145 
146 
156 
234 
235 
236 
245 
246 
256 
345 
346 
356 
456 

This program generates wallpaper. Using SUCCEED and 
pattern, endless output occurs in the quickscan mode. 
output is truncated by error termination. 

FAIL to bracket a 
In the fullscan mode, 

END 

PONG SUCCEED 
$ OUTPUT 

(L EN (1 ) 
FAIL 

PING 'XXXXXXXXXX' 
PING PONG 

ARBNO (L EN ( 1 ) NULL) ) 
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Output from Quickscan 

x 
xx 
xxx 
xxx X 
XXXXX 
XXXXXX 
XXXXXXX 
XXXXXXXX 
XXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXX 
xxx xxx xx 
XXXXXXX 
XXXXXX 
XXXXX 
xxxx 
xxx 
xx 
X 
X 
xx 
xxx 
XXXX 
XXXXX 
xxx xxx 
XXXXXXX 
XXXXXXXX 
XXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXX 

output from Fullscan 

X 
xx 
xxx 
XXXX 
XXXXX 
XXXXXX 
XXXXXXX 
XXXXXXXX 
XXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
xxxxxxxxxx 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 



Chapter 3. Predicates and Primitive Functions 

A function is an operation upon a number of arguments. The value of a 
function is computed by a procedure. Primitive functions are implemented by 
procedures built into the SNOBOL4 system. Procedures for programmer-defined 
functions are included in the source program. 

Syntactically, a function call is recognized as an identifier used for a 
function name, followed by a list of arguments separated by commas and enclosed 
in parentheses. An example is 

IDENT (A, , TREE' ) 

An argument of a function call may be any expression. Execution of a function 
call causes the expressions for the arguments to be evaluated and the values 
passed to the procedure. Thus, the procedure gets only the values of the 
arguments and not the expressions. CDnsider the following statements: 

A 'APPLE' 
B 'SEED' 
APPLE 'FRUIT' 
SEED = 'TREE' 
APPLESEED 'FRUITTREE' 
IDENT($A $B,$(A B)) 

FRUITTREE is the value of each argument to IDENT. The two strings FRUITTREE are 
all that the procedure for IDENT knows of its arguments. 

A variable such as C is an expression, albeit a degenerate one. Thus, if 

C 'CLAW' 
D 'TIGER' 

the call 

IDENT (C, D) 

passes the strings CLAW and TIGER (not C and D) as arguments to the procedure 
for IDENT Furthermore, since the procedure for IDENT knows nothing about C 
and D, it cannot possibly change their values. 
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Any omitted argument is assigned the null string as value. Thus, IDENT(E) 
compares the value of E and the null string. Too many arguments in the call of 
a primitive function cause error termination. 

A function call is an expression and has a value. The value of a function 
call may be of any data type. A programmer must always be aware that a function 
call has a value, even if it is the null string. otherwise, as later examples 
illustrate, unexpected results may arise. 

A function call may succee9 or fail, depending upon the outcome of the 
associated procedure. If the procedure for a function is successful, the value 
computed by the procedure becomes the value of the function call. If the 
procedure fails, the function call fails. 

This chapter, although entitled "Predicates and Primitive Functions," 
describes only those primitive functions that logically cannot be described 
elsewhere. Those dealing with pattern matching, input/output, arrays, and 
programmer-defined data types are described in appropriate chapters. Functions 
and page references are included in the index. 

Several primitive functions are concerned with testing relations between 
arguments. These functions, which succeed or fail depending on whether the 
relation is true or false, are called predicates. If a predicate is successful, 
the value of the call is the null stiing. 

A predicate test, such as 
relation to Y. The arguments to 
numeral strings. Thus, if 

X 17 
Y '3' 

GE (X, Y) , 
numerical 

succeeds if X stands in the given 
predicates must be integers or 

then GE(X,Y) succeeds and LT(X,Y) fails. If an argument is omitted, it is 
assigned the null string, which is treated as zero. If M is 2, then EQ(M) 
fails, but EQ(M - 2) succeeds returning the null string. 

Numerical predicates frequently are used for loop control. For example, if 
N has as value the number of times a loop has been executed and M is the limit 
on N, the following statement checks N against M, and increments N if N is less 
than M. 

N LT (N, M) N+ 1 : S (LOOP) F (OUT) 

Evaluation of the object expression takes place before assignment is made. 
Thus, the evaluation of LT(N,M) takes place before N is incremented. If LT(N,M) 
succeeds, the value is the null string. concatenation of the null string with 
N + 1 does not affect N + 1, so N is properly incremented. Furthermore, since 
the statement succeeds, control passes to LOOP. 

If LT(N,M) fails, N is not incremented and control passes to the statement 
labelled OUT. 
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Placement of predicates in a statement is important. Consider the 
following statement, which looks as if it might be suitable for loop control. 

N LT(N,M) N + 1 :S(LOOP)F(OUT) 

The statement does nQ~ properly increment N. If N is 2 and M is 4, the value of 
N after execution of the statement is 32. The predicate LT(N,M), situated where 
it is, is treated as a pattern. Since LT(N,M) is null, the pattern matches the 
null string. The null string matched in the value of N is replaced by N + 1, 
leading to the unexpected result 32. 

It is frequently desirable to test whether the value of a variable is an 
integer. The predicate test INTEGER(X) succeeds if the value of X is an integer 
or numeral string, and fails otherwise. Thus, 

INTEGER (X) 

succeeds for 

X 3 
X '3' 

but fails for 

X 'INT' 
X '3.0' 

INTEGER is typically used to check data corning from the input stream. The 
following statements reject cards which do not contain a single numeral string 
left justified on the card. 

LOOP CARD TRIM (INPUT) 
INTEGER (CARD) 

:F(END) 
:S(PROCESS)F(REJECT) 

Since the null string is equivalent to the integer 0, a blank card passes the 
integer test. 

There are several types of data predefined in the SNOBOL4 language. 
Programmer-defined data types can be added, as described in Chapter 5. Some 
data values, such as numbers, can be represented in different ways as different 
types of data. SNOBOL4 includes predicates to test whether two objects are 
identical or different. 
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IDENT and DIFFER are functions of two arguments which may be of any data 
type. For the function call IDENT(X,Y) to succeed or for DIFFER(X,Y) to 
fail, the values of the arguments, X and Y, must be truly identical. The value 
of a function argument is a pointer to a data object or, in the case of integers 
and real numbers, the value is the data object itself. 

Each distinct string of characters appears in storage once and only once. 
Execution of 

X 'BCD' 
Y 'B' 'CD' 

results in X and Y having the same value. The string BCD appears once, and both 
X and Y point to it. IDENT(X,Y) therefore succeeds. 

Pattern structures behave differently. Execution of the statements 

x 
Y 

A 
A 

B 
B 

constructs two equivalent but physically distinct pattern structures. Thus, X 
and Y have different values, since they point to different copies of the pattern 
structure A lB. IDENT(X,Y) therefore fails. 

However, if 

X = A B 
Y X 
IDENT(X,Y) 

then IDENT(X,Y) succeeds since X and Y point to the same data object. 

Integers and real numbers are data objects rather than pointers to data. 
Execution of 

X 3 
Y 2 + 1 

assigns 3 to both X and Y. comparison of X and Y by IDENT(X,Y) succeeds because 
the data objects are identical. Similarly, if 

X 3.0 
Y = 3.0 

then IDENT(X,Y) succeeds. 

IDENT and DIFFER must be used with care when their arguments have different 
data types. If 
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X 3 
Y '3' 

EQ(X,Y) succeeds as illustrated earlier. IDENT(X,Y) fails because the value of 
X is the ini~g~£ 3, but the value of Y is the ~i£ing 3. 

Similarly, for 

X 3.0 
Y 3 

IDENT(X;Y) fails because the values are not identical. 

2. 1~T 

Lexical ordering can be tested using the predicate LGT(X,Y). Both 
arguments to LGT(X,Y) must be strings or integers. LGT(X,Y) succeeds, returning 
the null string, if the value of X is lexically greater than Y. Stated another 
way, LGT(X,Y) succeeds if X follows Y alphabetically. The order of the 
characters is implementation dependent. For example, on the IBM System/360 the 
EBCDIC encoding is used with the blank preceding letters and letters preceding 
digits. The value of &ALPHABET is a string of all characters in lexical order. 

Consider, as an example, the problem of alphabetizing the characters in a 
string. That is, the string LABORATORIES is to be transformed into the string 
AABEILOORRST. The following program performs the conversion. 

&FULLSCAN 
&ANCHOR 1 
FLIP (*HEAD ARB) . HEAD 

LEN (1) $ Y *LGT (X, Y) 
STR 'LABORATORIES' 
OUTPUT 

LOOP STR FLIP 
OUTPUT 

END 

output is: 

LABORATORIES 
AABEILOORRST 

STR 
HEAD Y FILLER 

STR 

LEN (1 ) $ X ARB. FILLER 

X : S (LOOP) 

FLIP matches the ordered portion of the string followed by two out-of-order 
characters with an arbitrary number of intervening characters. 

(*HEAD ARB) . HEAD 

matches the ordered portion of the string. 

LEN(1) $ X ARB. FILLER LEN(1) $ Y 

79 



matches any two characters. The unevaluated expression then tests if the two 
characters are out of order. If they are, the pattern match succeeds and a 
replacement is done to reverse them. If the two characters are in order, 
LGT(X,Y) fails, causing the scanner to back up and seek another pair of 
characters. By repeatedly executing the statement labelled LOOP, all unordered 
pairs of characters are interchanged. Pattern matching fails when the string is 
completely ordered. 

SIZE expects a string or an integer as an argument. The value of SI~E is 
an integer which is the number of characters in the argument. Thus, the value 
of SIZE('SIZE') is 4, and the value of SIZE(16384) is 5. 

One-for-one character replacement in a string may be accomplished using the 
function REPLACE. The value of REPLACE(X,Y,Z) is the string resulting from 
replacement in X of each character appearing in Y by the corresponding character 
in Z. As a result of executing the following statements, 

BINARY 
ONESCOMP 

'111001' 
REPLACE(BINARY,'01','10') 

ONESCOMP has the value 000110 , obtained from BINARY by replacing all zeroes 
with ones, and ones with zeroes. 

REPLACE normally succeeds, but it fails if 

1) the second and third arguments have different length, or 
2) the second or third argument is null. 

Multiple occurrences of characters in the third argument are valid. Thus, 

R EPLAC E (S, , . , ; : ? ! ' , , , ) 

replaces all punctuation marks with blanks. 

In the case of the multiple occurrence 
argument, the rightmost correspondence holds. 
statement 

TEXT REPLACE('FEET','EE','AO') 

the variable TEXT has value FOOT . 

of a character in the second 
Thus, following execution of the 

A particularly striking example of REPLACE is the following program that 
converts a deck of cards prepared on an 026 keypunch (BCD) to a deck using 029 
keypunch code (EBCDIC). 
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LOOP 
END 

PUNCH REPLACE (INPUT, II #(i)%<&" , "=, () + ") : S (LOOP) 

TRIM is a primitive function whose argument must be a string or an integer. 
The value of TRIM is a string which is the argument value with all trailing 
blanks removed. Thus, the statements 

TEXT 'A PRIMITIVE FUNCTION 
SHORTT EXT TRIM (TEXT) 

gives SHORTTEXT the value 
changed. 

A PRIMITIVE FUNCTION. The value of TEXT is not 

TRIM is frequently used with INPUT as its argument. Standard input reads 
80 characters so TRIM (INPUT) provides a convenient way of shortening an input 
string. 

DATE and TIME are primitive functions requiring no arguments. The value of 
DATE() is an 8 character string of the form month/day/year. For August 6, 1968, 
the value of DATE(} is 08/06/68 . 

The value of TIME() is an integer which is the elapsed time in milliseconds 
from the beginning of program execution. Compilation time is not included. On 
IBM 360 equipment the standard interval clock is updated only sixty times a 
second, so timing is approximate at best. 

EVAL is a primitive function whose argument must be an unevaluated 
expression or a string. If the argument is an unevaluated expression, the 
expression is evaluated to obtain the value of EVAL. If the argument is a 
string, the value of EVAL is the value of the expression represented by the 
string. 

In the example which follows, the value of 
of U is an unevaluated expression. Both 
integer 15. 

s is a string, and 
output statements 

the value 
print the 

S 'X + SIZE (X) * 10' 
U *(X + SIZE(X) * 10) 
X 5 
OUTPUT 
OUTPUT 

EVAL (S) 
EVAL (U) 

Any string or unevaluated expression 
expression in SNOBOL4 may be evaluated 
argument of EVAL causes failure of EVAL. 
statements 

which is a syntactically correct 
by EVAL. A syntactic error in the 

Thus, evaluation of E in the 
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E • 5+ 6' 
SUM EVAL (E) 

fails since blanks are required around the +. 

Two predicates, specified by the unary operators and 
success or failure resulting from evaluation of expressions. 
operator fails if its operand succeeds, and succeeds if its 
A null string is returned as value on success. The interrogation 
is the converse of '. It succeeds, returning the null value 
succeeds, and fails if its operand fails. 

? , test the 
The negation 

operand fails. 
operator ? 

if its operand 

Negation may be used to complement a predicate. For example, the following 
program reads an input deck and ~rints those cards that contain integers. 

LOOP 

END 

CARD 
OUTPUT 

TRIM (INPUT) 
INTEGER (CARD) CARD 

: F (END) 
: (LOOP) 

Suppose the converse program, one which prints all cards that are not 
integers, is desired. No predicate is available which succeeds when its 
argument is not an integer. However, the negation operator together with the 
predicate INTEGER suffices. Thus, the following program lists all noninteger 
cards. 

LOOP 

END 

CARD 
OUTPUT 

TRIM (INPUT) 
,INTEGER (CARD) CARD 

: F (END) 
: (LOOP) 

Complicated Boolean functions on the states of variables can be 
using predicates and negation. For example, suppose the integer N 
incremented provided at least one of the variables X, Y, or Z is 
following statement tests the variables and, if the condition is 
increments N. 

N , (DIFFER (X) DIFFER (Y) DIFFER(Z)) N + 1 

constructed 
is to be 
null. The 
satisfied, 

If X, Y, and Z are nonnull, the expression succeeds but the negation operation 
fails, and N is not incremented. If any variable is null, the corresponding 
DIFFER fails, causing the expression to fail. Negation succeeds and N is 
incremented. 

Interrogation is used primarily to convert a function that returns a 
nonnull value into a predicate that succeeds or fails, but returns a null value. 
Thus, in the following statement, N is incremented if F(X) succeeds, but the 
value of F(X) is not concatenated with N + 1. 

N ?F (X) N + 1 : S (ON) F (OUT) 
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Chapter 4. Proirammer-Defined Functions 

A programmer may define his own functions to perform specific operations. 
A program with programmer-defined functions must include: 

1) a call to the primitive function DEFINE for each programmer-defined 
function, and 

2) a procedure, written in SNOBOL4, for each function. 

Procedures are written using formal arguments, and must adhere to special 
conventions for returning. Execution of the primitive function DEFINE communi
cates to the SNOBOL4 system: 

1) the name of the function, 
2) a list of formal arguments used in the programmer-defined procedure, 
3) a list of variables local to the programmer-defined procedure, and 
4) the entry pOint of the procedure. 

DEFINE is a primitive function of two arguments that returns a null string. 
The first argument is a prototype for the call of the function being defined, 
together with a list of local variables used by the function. The second 
argument is a label specifiying the entry point to the programmer-defined 
function. For example, execution of 

DEFINE('F(X,Y)L1,L2','FENTRY') 

defines a function F with two formal arguments, X and Y. Two local variables L1 
and L2 are used in the procedure whose entry point is the statement labelled 
FENTRY. Notice that there is no comma separating the prototype for the call 
from the list of local variables. Expressions may be used as arguments for 
DEFINE, provided their values are strings having the form shown above. 

Often local variables are not needed, so it is permissible to omit the list 
of local variables. An example is 

DEFINE ( , G (Z) , , ' GENT' ) 

It is also permissible to omit the second argument, in which case the entry 
label is assumed to be the same as the function name. Thus, 
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DEFINE('COUNT(N) ') 

defines the function COUNT with entry label COUNT. 
without any formal arguments. For example, 

Functions can be defined 

DEFINE ( 'MARK () ') 

defines the fUnction MARK with no formal arguments. 
syntactically incorrect, such as those in 

DEFINE('F') 

and 

DEFINE (' F ("A") ') 

cause error termination. 

Prototypes which are 

A statement containing the DEFINE function for a particular function must 
be executed before a call to that function is made. Thus, execution of the 
statements 

x F(FIRST,SECOND) 
DEFINE ( 'F (X, Y) ') I 

results in error termination, since the function F is undefined at the time it 
is called. 

A procedure for a programmer-defined function is a set of SNOBOL4 
statements. The label, provided explicitly or implicitly in the arguments of 
the associated DEFINE function, specifies the statement to which control is 
passed when a call is made to the function. Thus, during execution of the 
statement labelled ZSET in the example below, the call to UNION causes control 
to be passed to UN. Execution of ZSET is temporarily suspended while the value 
of UNION is being computed. Once the value of UNION has been computed, control 
returns to ZSET where computation is resumed using the value returned~ 
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ZSET 

UN 
ULOOP 

DEFINE('UNION(X,Y)CH','UN') 

Z SET1 UNION (SET2,SET3) 

UNION X 
Y LEN(1) CH = 
UNION BREAK (CH) 
UNION UNION CH 

SET4 

:F(RETURN) 
: S (ULOOP) 
: (ULOOP) 

The defining statement must be executed before the call is made. The 
procedure is called and should not be flowed into. The procedure may be 
transferred around or placed out of the way of program flow. 

The statements constituting the procedure are written using the formal 
arguments whose values are supplied by arguments of a call. 

Local variables should be declared when variables used in a procedure have 
values which should not be altered by a function call. In the definition of 
UNION, the value of the variable CH changes continually during evaluation of the 
function. The value of CH may be altered as a result of the call unless CH is 
declared as a local variable. Upon entry to a procedure, all local variables 
are given null string values. All statement labels, including labels in 
procedures, are global. Transfer can be made from a statement in one procedure 
to a statement in another. 

The name of a function may be used as a variable in the procedure. The 
value of the function call is the value of the function name when execution of 
the procedure is complete. Thus, in the example above, the value of the call 
UNION (SET2,SET3) is the value of the variable UNION when the statement ULOOP 
fails, causing return to ZSET. 

Return of control from a procedure to the calling statement is accomplished 
by transfer to one of the three system labels: RETURN, FRETURN, or NRETURN. 

Transfer to RETURN indicates that the function call is successful. The 
value of the function call is set tD the value of the function name. Execution 
continues in the calling statement using the returned value. 

Transfer to FRETURN indicates failure of the function call. 

An example using both RETURN and FRETURN is the function PAL, which checks 
its argument to see if it is a palindromic string. PAL compares the argument 
string and its reverse. If they are identical, P~L transfers to RETURN, 
indicating success. Otherwise PAL transfers to FRETURN, indicating failure. 
Since the variable PAL is not used in the procedure, the value of PAL (PHRASE) is 
the null string on a successful return. 
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TEST 

PAL 
PALL 

PTEST 

END 

DEFINE('PAL(STR)CH,S1,S2') 

PHRASE TRIM (INPUT) 
PAL (PHRASE) 

S1 STR 
S 1 LEN ( 1 ) . CH 
S2 CH 82 
IDENT (STR, S2) 

: F (END) 
:S(GOOD)F(NOGOOD) 

: F (PTEST) 
: (PALL) 
:S(RETURN)F(FRETURN) 

By transferring to the label NRETURN, a programmer-defined function may 
return a computed name rather than a value. A call to a function that returns a 
computed name may be used as the subject of an assignment statement. For 
example, 

F (X, Y) X Y 

is a valid statement provided the function F returns by name using NRETURN. A 
further description of names is included in Chapter 5. 

When a call to a programmer-defined function is made, the arguments of the 
call are evaluated first. Before execution of the procedure begins, the values 
of the following variables are saved on an internal stack in the order: 

1) the name of the function, 
2) all formal arguments, and 
3) all local variables. 

New values are then assigned to these variables as follows: 

1) the name of the function is assigned the null string, 
2) the formal arguments are assigned their values, and 
3) all local variables are assigned the null string. 

Consider the function UNION specified in the defining statement 

DEFINE('UNION(X,Y)CH','UN') 

and called by UNION (SET2,SET3) . Values of the variables UNION, X, Y, and CH at 
the time of a call are saved. New values for these variables are assigned as if 
the following statements had been executed. 
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UNION 
X SET2 
Y SET3 
CH 

Then control passes to the statement labeled UN. 

When return from a procedure is made using RETURN, 

1) the value of the function call is set to the value of the function name, 
and 

2) the values of all variables saved at the time of the call are restored 
in reverse order. 

When return is made using FRETURN, 

1) the values of all variables saved at the time of the call are restored, 
in reverse order, and 

2) the call fails. 

When return is made using NRETURN, 

1) the function call becomes a variable whose name is taken from the value 
of the function name, and 

2) the values of all variables saved at the time of the call are restored, 
in reverse order. 

A programmer-defined function may be called with more or fewer arguments 
than specified in the corresponding defining statement. If too few arguments 
are specified, the trailing omitted arguments are assigned null strings. If too 
many arguments are specified, the extra arguments are evaluated, but their 
values are ignored. 

This example includes three functions that perform the union, intersection, 
and negation of sets of characters, and a short test program. Notice that the 
procedures follow the defining statements in the listing. However, by transfer
ring around the procedures, the defining statements are executed one after 
another. The test program then makes calls to the procedures. 
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START 
UNION 

* UN 
ULOOP 

* 
* INTER 

* IN 

* 
* NEG 
* 
NG 
NLOOP 

* 
* PATDEF 

>:< 

* TEST 

DEFINE('UNION(X,Y)CH','UN') 

UNION X 
Y CHAR 
UNION CHTEST 
UNION UNION CH 

DEFINE('INTER{X,Y)CH','IN') 

X CHAR 
Y CHTEST 
INTER INTER CH 

DEFINE('NEG(X)CH,HEAD', 'NG') 

NEG UNIVERSE 
X CHAR = 
NEG CHLOC = HEAD 

CHAR 
CHTEST 
CHLOC 

LEN (1) . CH 
BREAK. (*CH) 

BREAK (*CH) • HEAD LEN(1) 

= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

: (INTER) 

: F (RETURN) 
: S (ULOOP) 
: (ULOOP) 

: (NEG) 

:F(RETURN) 
: F (IN) 
: (IN) 

: (PATDEF) 

:F(RETURN) 
: (NLOOP) 

UNIVERSE 
VOWELS 
OUTPUT 
CONS = 
OUTPUT 
WORD 
OUTPUT 

UNION ( 'A' ,UNION ( 'E' , UNION ( , I' ,UNION ( '0' , 'U' ) ) ) ) 

OUTPUT 

END 

'VOWELS VOWELS 
NEG (VOWELS) 

= 'CONS CONS 
'C01'v1PILER' 

= 'VOWELS IN ' WORD' ARE: '" 
INTER (WORD,VOWELS) '''I 
'CONSONANTS IN ' WORD' ARE: '" 
INTER (WORD, CONS) , " , 

Output from the program is: 

VOWELS AEIOU 
CONS = BCDFGHJKLMNPQRSTVWXYZ 
VOWELS IN "COMPILER" ARE: "OlE" 
CONSONANTS IN "COMPILER" ARE: "CMPLR" 

88 



A simple pseudo-random number generator, based on the power residue method 
of generation [4], is shown below. 

DEFINE ('RANDOM(N) ','RAN') : (RANET\l'D) 
RAN RAN.VAR RAN.VAR * 1061 + 3251 

RAN. VAR RTAB (5) 
RANDOM (RAN.VAR * N) I 100000 : (RETURN) 

RANEND 

RANDOM(N) returns a value uniformly distributed over the integers 0,1, •.• ,N-1 • 
The variable RAN.VAR is not local. On successive calls to RANDOM, the value Qf 
RAN.VAR cycles through all nonnegative integers less than 100,000. Thus, the 
initial value of RAN.VAR determines the output sequence from RANDOM. 

When the random number generator is used in statistical experiments, such 
as games of chance, the player should have the opportunity to select the initial 
value of RAN.VAR. In some cases, the selection process should be unstable. It 
should be very difficult for a player to consistently initialize the random 
number generator w~th the same value. 

The following definition of RANDOM was written specifically for the IBM 
System/360, and assumes that the user has access to the machine console while 
the program is running. A player can initialize RAN.VAR by flipping the 
Interval Timer Switch on the operator's console. TIME returns as value the 
number of milliseconds elapsed since the beginning of program execution. When 
the switch is on, as it normally is, the internal clock that TIME reads is 
running. When the switch is turned off, the clock stops but the program 
continues to run. Thus, with the switch on, successive calls of TIME return 
different values. with the switch off, successive calls of TIME return the same 
value. 

* RAN1 
TIMON 

TIMOFF 

* RAN2 

* GAME 

DEFINE (' RANDOM (N) M' , 'RAN1 ') 

RAN.VAR TIME 0 
M LT(M,10) M + 1 
RAN.VAR GT(TIME() ,RAN.VAR) TIME 0 
M 0 
EQ(RAN.VAR,TIME() 
RAN. VAR TIME () 
RAN.VAR RTAB(5} 
OUTPUT 'INITIAL VALUE OF RAT\l'.VAR IS 
OUTPUT 
DEFINE ('RANDOM (N) ','RAN2') 

RAN .. VAR 
RAN.VAR 
RANDOM 

RAN.VAR * 1061 + 3251 
RTAB (5) 

(RAN.VAR * N) I 100000 

(GAME) 

: S (TIMON) 
:F(TIMOFF) 
: (TIMON) 
:S(TIMOFF) 

RAN.VAR 

(RETURN) 

In this example, the function RANDO~ is defined twice. The first 
definition of RANDOM includes a local variable M and the entry point RAN1. The 
first call to RANDOM enters the definition at RAN1. Since the switch is on, the 
program enters the loop at TIMON and stays there because the predicate 
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GT(TIME() ,RAN.VAR) always succeeds. If the switch is now turned off, the 
predicate fails, and. control passes to the loop at TIMOFF. with the switch off, 
the predicate EQ (RAN. VAR, TIME () ) always succeeds, causing a program loop at 
TIMOFF. When the switch is turned back on, RAN.VAR is truncated to 5 digits and 
the initial value printed. Thus, a flip of the switch initializes RAN.VAR. 

Before computing the desired random number, RANDOM is redefined with entry 
point RAN2 so that subsequent calls to RANDOM do not go through the initializa
tion process. A random number is then computed and returned. 

The following program and output illustrate a statistical experiment 
utilizing RANDOM. 

GAME 

ROLL 

NATURAL 

MADE 

CRAPS 

LOSE 

UWIN 
ULOSE 
LIMIT 
PAY 

END 

POINT = RANDOM (6) + RANDOM (6) + 2 
NE(POINT,7) NE(POINT,11) 
NE(POINT,2) NE(POINT,3) NE(POINT,12) 
OUTPUT 'YOUR POINT IS ' POINT 
ROLL = RANDOM (6) + RANDOM (6) + 2 
EQ(POINT,ROLL) 
NE(ROLL,7) NE(ROLL,11) 
OUTPUT ROLL 

OUTPUT = POINT 
, YOU WIN.' 

OUTPUT ROLL 
, POINT.' 

OUTPUT POINT 
, LOSE.' 

OUTPUT ROLL 

WIN = WIN + 
LOSE LOSE + 1 
OUTPUT LT(WIN + LOSE,100) 
OUTPUT 
OUTPUT 'YOU LOSE GT(LOSE,WIN) 

DOLLARS. ' 
OUTPUT 'YOU WIN GT(WIN,LOSE) 

DOLLARS. ' 
OUTPUT 'YOU BREAK EVEN.' 

INITIAL VALUE OF RAN.VAR IS 3877 

7 NATURAL, YOU WIN. 

7 NATURAL, YOU WIN. 

YOUR POINT IS 9 
6 ROLL AGAIN. 
5 ROLL AGAIN. 
12 ROLL AGAIN. 
2 ROLL AGAIN. 
7 TOO BAD. 

YOUR POINT IS 9 
5 ROLL AGAIN. 
7 TOO BAD. 
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: F (NATURAL) 
: F (CRAPS) 

: S (1\1ADE) 
: F (LOSE) 

ROLL AGAIN.' 
: (ROLL) 
NATURAL, , 
: (UWIN) 

MADE YOUR' 
: (UWIN) 
CRAPS, YOU' 
: (ULOSE) 

TOO BAD.' 
: (ULOSE) 
: (LIMIT) 
: (LIMIT) 
: F (PAY) S (GAME) 

LOSE - WIN 
: S (END) 

WIN - LOSE 
: S (END) 
: (END) 



YOUR POINT IS 

YOUR POINT IS 

YOUR POINT IS 

YOUR POINT IS 

YOU BREAK EVEN. 

6 
10 
8 
9 
8 
3 
6 

4 
4 

4 
7 

4 
8 
8 
5 
8 
9 
7 
7 

ROLL AGAIN. 
ROLL AGAIN. 
ROLL AGAIN. 
ROLL AGAIN. 
ROLL AGAIN. 
MADE YOUR POINT. 

MADE YOUR POINT. 

TOO BAD. 

ROLL AGAIN. 
ROLL AG.AIN. 
ROLL AGAIN. 
ROLL AGAIN. 
ROLL AGAIN. 
TOO BAD. 
NATURAL, YOU WIN. 

Many functions are conveniently defined recursively. For example, fac
torials may ce defined as 

fact (0) 
fact (n) 

1 
n*fact(n-1) for n > 0 

Using Pascal's triangle, a recursive definition for the binomial coeffi
cients is easily deduced. 
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1 

1 1 

2 1 

1 3 3 

4 6 4 1 

1 5 10 10 5 1 

binc (n, 0) = 1 
binc (n,n) = 1 
binc (n, k) = binc(n-1,k-1)+binc(n-1,k) 0 < k < n 

A recursive procedure has the property that the function itself is called 
in the procedure. While convenient, recursive procedures may lead to computa
tional inefficiencies. Nevertheless, recursion is frequently the most natural 
way of expressing a function, and may considerably simplify programming. 

programmer-defined functions in SNOBOL4 may be recursive. Since values of 
the function name, arguments, and local variables are all saved when a function 
is called, a procedure can include recursive coding. 

The next program converts decimal integers to their binary representation 
by successive divisions. For example, to compute the binary representation of 
57, it is repeatedly divided by 2 and the remainders are concatenated. 

2 L21 

2 ~ 

2 ~ 

2 L..l 

211 2 L-1 

2 L--.l 

1 0 0 1 REMAINDERS 

5 7 10 11 1 0 0 1 2 

The binary representation of 57 is the binary representation of 28 (11100 2 ) 

followed by the remainder of 57/2. A recursive definition of the process is 

binary(57) = binary (28) remainder (57/2) 

92 



where concatenation is implied. 

In SNOBOL4, the results of integer division are truncated. Thus, 

57 / 2 is 28 

The remainder of any integer division N / M is 

N (N / M) * M 

Thus, the recursive definition can be written in the more general form 

binary (n) binary (n/2) n-(n/2)*2 for n > 1 

with the terminal cases 

binary (1) 1 
binary (0) 0 

A procedure for BINARY is 

* BINARY 

BINEND 

DEFINE ('BINARY (N) ') : (BINEND) 

BINARY 

BINARY 

GT(N,1) BINARY(N / 2) N - (N / 2) * 2 
:S(RETURN} 

N : (RETURN) 

On entry to BINARY, the value of N is tested by the predicate GT(N,1) which 
fails for the two terminal cases N = 0 and N = 1. If either of these cases is 
true, the first statement fails and N is returned as the value of BINARY. If N 
is greater than 1, a recursive call is made to BINARY with N / 2 as the 
argument. The value of BINARY(N / 2) then has the remainder of N / 2 concate
nated with it, to get the final value of BINARY(N). 

The following diagram illustrates the recursive calls made during evalua
tion of BINARY (57) . The recursion plunges six levels before reaching the 
terminal case of N = 1. On returning, the value of BINARY evolves. 
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BINARY (57) 

) ~ 
N = 57 BINARY = 111001 

C BINARY(N / 2) N 

) ~ 
N = 28 BINARY = 11100 

i BINARY{N / 2) N - {N / 2} * 2 

) ~ 
N = 14 BINARY 1 110 

i BINARY{N / 2) N - {N / 2} * 2 

) ~ 
N = 7 BINARY 111 

C BINARY(N / 2) N - {N / 2} * 2 

) ~ 
N = 3 BINARY = 11 

C BINARY(N / 2} N - (N / 2) * 2 

) ~ 
N 1 BINARY = 

"- ~ 

It is important to notice the necessity of preserving values before a function 
call and restoring them upon completion. At the first level down, BINARY (28) is 
called with N having value 57. During the course of evaluating BINARY (28) , N 
takes on values 28, 14, 7, 3, and 1. Following evaluation of BINARY (28) , N must 
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once again have the value 57 in order to compute the remainder of 57 / 2. 

An improvement is possible in the definition of BINARY. SNOBOL4 permits 
use of a function name as one of the formal arguments in a function definition. 
Thus, 

DEFINE ('BINARY (BINARY) ') 

is a valid statement. The procedure of BINARY can be rewritten substituting 
BINARY for N. 

BINARY BINARY GT(BINARy,1) BINARY (BINARY / 2) 
BINARY - (BINARY / 2) * 2 (RETURN) 

The second statement would become 

BINARY BINARY 

which is redundant. For the terminal cases recognized by the failure of 
GT(BINARY,1), BINARY has the proper value, 0 or 1, and an unconditional RETURN 
is made. 

* 

* BINARY 

END 

o 
13 
57 = 

472 
8192 

13279 
99999 

DEFINE ('BINARY (BINARY) ') 

OUTPUT 0 BINARY (0) 
OUTPUT 13 BINARY (13) 
OUTPUT 57 BINARY (57) 
OUTPUT 472 BINARY (472) 
OUTPUT , 8192 BINARY (8192) 
OUTPUT '13279 BINARY (13279) 
OUTPUT '99999 BINARY (99999) 

BINARY GT (BINARY, 1 ) BINARY (BINARY 
BINARY - (BINARY / 2) * 2 

o 
1101 
111001 
111011000 
10000000000000 
11001111011111 
11000011010011111 

(END) 

/ 2) 
(RETURN) 

95 



Arithmetic expressions such as 

x + Y 
A I B / C 

V - W - X + Y * Z 

are written using an infix notation. They can also be written in Polish prefix 
notation [5,6J, resembling conventional functional notation. Here the binary 
operators appear to the left of their arguments. Prefix notation for the 
expressions is 

+ (X, Y) 
/(/(A,8),C) 

+ (- (- (V,W) ,X),* (Y,Z)) 

Conversion from Polish prefix form to infix form, and vice versa, can be 
performed using recursive programmer-defined functions. The first of the two 
programs to follow converts strings from Polish to infix form. The recursive 
rules for specifying the function INF are: 

1. If the argument to INF is a simple variable, then 

INF (VAR) VAR 

2. If the argument to INF is a Polish expression of the form OP(EX1,EX2), 
then 

INF(OP(EX1,EX2)) (INF (EX1) OP INF (EX2) ) 

The conversion consists of finding the operator and its two arguments, which may 
be expressions. The operator is inserted between its two arguments and 
parentheses are placed around the resulting expression. Of course, the 
arguments are still in Polish form, so each must be converted to infix by a 
recursive call of INF . 

The following diagram depicts the conversion of I(/(A,B) ,C) to «A/B)/C) • 
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INF('/(/(A,B) ,C) ') 

/ ~ 
/ / (A, B) C ( (A/B) /C) 

, (' INF ( '/ (A, B) ') '/ ' INF (' C') .) . 
/ ~ )\ 

/ A B (A/B) C C 

c:. ~ 
~ 

INF (. A') '/' INF (. B' ) 

J\ J \ 
A A B B 
.~ ~ 

In the program to follow, the procedure for INF consists of one line. The 
pattern INPAT is used to break a Polish expression into an operator and two 
arguments. 

/ ( l/ A 

( 
A 

\ 
( LEN (1) • OP) . (' 

If INPAT matches INF, it matches the entire string, which is then rearranged 
into infix notation. If INPAT fails to match, INF must be a variable and is 
returned unchanged as value. 
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* 
* 
* 
* 

LOOP 

* 
* INF 

END 

&ANCHOR 
INPAT 

1 
LEN ( 1 ) OP '( , BAL. X 
RPOS(O) 

DEFINE('INF(INF)X,Y,OP') 

PADPAT 
BLANKS 
STRING 
BLANKS 
OUTPUT 

LEN(*(40 - SIZE(STRING))) 

TRIM (INPUT) 
PADPAT 

STRING PAD INF(STRING) 

INF INPAT , (' !NF (X) OP INF (Y) 

PAD 

BAL • Y ') I 

: F (END) 

: (LOOP) 

') , 
(RETURN) 

output from the program follows. The Polish prefix form of the input is 
shown on the left, and the infix form aopears on the right. 

- (* (A, + (B, C) ) , / (D, E) ) 
- (- (- (- (- (A,B) ,C) ,D) ,E) ,* (F,G)) 
-(+(ALPHA,*(BETA,GAMMA)) ,/(DELTA,PI)) 

( (A* (B+C) ) - (D/E) ) 
( ( ( ( (A-B) -C) -D) -E) - (F*Gr) 
«ALPHA+(BETA*GAMMA))-(DELTA/PI)) 

Conversion of 
than the converse. 

arithmetic expressions from infix to Polish form is harder 
A function POL which performs the conversion is of the form: 

POL (EX1 OP EX2) = OP '(' POL(EX1) , , , POL (EX2) ') , 

Ambiguities can arise when attempting to separate an unparenthesized expression 
into two expressions and an operator. For example, the expression 

A - B * C - D 

can be separated many ways, including 

A - (B * C - D) 

(A - B) * (C - D) 

(A - B * C) - 'D 

Normal conventions for the precedence and association of operators require 
that multiplication and division have precedence over addition and subtraction 
and that operators associate to the left. Thus, of the three choices above, the 
first is incorrect because subtraction associates to the right, the second is 
incorrect because subtraction is given higher precedence than multiplication, 
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and the third is correct. The expression (A - B * C) must be parenthesized as 
(A - (B * C» to conform to the conventions. 

In defining the function POL, the precedence of multiplicative over 
additive operators can be assured by dealing with the additive operators first. 
For example: 

W*X + 

W * X 

~(I POL (' W') I I , 

J\ 
W W 

~ 

POL (' W*X+y*Z ') 

/ ~ 
y*Z 

* (W, X) 

POL(IXI~ 
)\ 

X X 

~ 

I I , 

+ (* (W, X) , * (Y , Z) ) 

POL (' y*Z ') 

) \ 

Left association of operators is assured by selecting the rightmost 
operator in a string of operators having equal precedence. For example 

POL ('A-B*C-D') 

/ ~ 
A-B*C D - (- (A,* (B,C» ,D) 

/ ~ 
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~, , (' PO L ( , A - B * C ' ) , , POL (' D') ~ , 

/ ~ )\ 
A B*C - (A,* (B ,C) ) D D 

~(' 
~ 

POL (. A') , , POL ('B*C');) , 

J\ ;; ~ 
A A B * C * (B, C) 

~c.(, 
POL ( 'B') , , POL('C~ , 

l \ l \ 
B B C C 

~ ~ 

Thus, the rules prescribing the behavior of POL are: 
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1~ Remove any enclosing parentheses from the infix string. 

2. If possible, separate the argument into two expressions which are 
balanced with respect to parentheses and separated by the rightmost 
additive operator. The value of POL then becomes 

OP • (' POL (EX1) , , , POL (EX2) , ) , 

If this is not possible, perform Step 3. 

3. If possible, separate the argument into two expressions balanced with 
respect to parentheses and separated by the rightmost multiplicative 
operator. The value of POL then becomes 

OP '(' POL (EX 1 ) , , , POL (EX2) , ) , 

If this is not possible, perform Step 4. 

4. The infix string must be a simple variable, which becomes the value of 
POL. 

A complete program for infix-to-Polish conversion and test results follow. 



* 
* 
* 
* 

LOOP 

* 
* POL 

END 

&ANCHOR = 1 
PMPAT (ARBNO(BAL ANY('+-')) $ x FAIL 1 *DIFFER(X) 

TAB(*(SIZE{X) - 1))) • X LEN(1) . OP REM. Y 
MDPAT (ARBNO(BAL ANY('*/')) $ x FAIL *DIFFER(X) 

TAB(*{SIZE(X) - 1))) . X LEN(1) .OP REM. Y 
STRIP , (' BAL. POL ')' RPOS (0) 

DEFINE('POL(~OL)X,y,OP') 

LEN(*(40 - SIZE(STRING))) 

TRIM (INPUT) 

PADPAT 
BLANKS 
STRING 
BLANKS 
OUTPUT 

PADPAT 
STRING PAD POL (STRING) 

POL STRIP 
POL PMPAT OP , {' POL (X) , , , 

POL MDPAT OP , (' POL (X) , , , 

PAD 

: F (E"ND) 

: {LOOP) 

: S (POL) 
POL (Y) '} , 

: S (RETURN) 
POLey) ') , 

: (RETURN) 

( (A* (B+C) ) - (D/E) ) - {* (A,+ (B,C)) ,/ (D,E) ) 
A-B-C-D-E-F*G 
{(ALPHA+(BETA*GAMMA))-(DELTA/PI)) 

- {- {- (- (- (A, B) ,C) ,D) , E) , * (F, G) ) 
-(+(ALPHA,*(BETA,GAMMA)) ,/(DELTA,PI)) 

The pattern STRIP removes the outer parentheses from the infix 
patterns PMPAT and MDPAT separate the infix expression into two 
an operator according to the convention for left association. 
identical except that PMPAT looks for addition or subtraction 
for multiplication or division. 

expression. The 
expressions and 
The patterns are 

and MDPAT looks 

PMPAT has three parts, corresponding to the first balanced expression, the 
operator, and the second balanced expression. The pattern for the first 
expression is complicated by the fact that the operator must be the rightmost in 
the string of operators. Consider the pattern for the first expression: 

(ARBNO(BAL ANY('+-')} $ X FAIL 
TAB (* (S I Z E (X) - 1))) . X 

It consists of two alternatives. The first, 

ARBNO(BAL ANY('+-')) $ X FAIL 

*DIFFER (X) 

is used to locate the rightmost operator by matching a sequence of balanced 
strings followed by additive operators. FAIL forces ARBNO to match the longest 
such string and eventually causes failure of the alternative. Thus, for the 
expression A-B*C-D, the last match of the first alternative is 

101 



D 

ARBNO(~ ~NY(~+-'r) $ x FAIL 

On entry to the second alternative 

*DIFFER(X) TAB(*(SIZE(X) - 1» 

the value of X is checked to see if it is the null string. If so, no match is 
possible. If it is not null, the first balanced expression must be all but the 
last character of X. The first expression is matched by 

TAB(*(SIZE(X) - 1» 

The remainder of PMPAT consists of the expression 

LEN(1) • OP REM. Y 

LEN(1) is used to match the operator and REM matches the remainder of the string 
which is the second balanced expression. 

The Tower of Hanoi is a game derived from the ancient Tower of Brahma, a 
ritual allegedly practiced by Brahman priests to predict the end of the world. 
At the time of creation, 64 golden discs of decreasing size appeared stacked on 
a diamond needle. Nearby were two other diamond needles, both empty. The 
Brahman priests, created at the same time, were set to the task of moving the 
discs from their original needle to a second needle using, when necessary, the 
third needle as temporary storage. Before all 64 discs are moved to the second 
needle and stacked in decrea.sing si ze, the end of the world will be upon us. 
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CREATION 

I 

INTERMEDIATE 
STORAGE 

END OF 
THE WORLD 

I 
r-T~ 
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I \ 
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I \ 
I \ 
I \ 
I \ 
I \ 
I \ 
I \ 
I \ 
I \ 

_______________ --I---------~----------- ___________ 1_________ _ ________ l_~ _____ _ 
/////////////////1///////////////////// ///////////////////// ////////////////// 

I 

Movement of the discs is governed by the rules: 

1) only one disc may be moved at a time, 
2) a disc may be moved from any needle to any other, and 
3) at no time may a larger disc rest upon a smaller disc. 

A solution to the Tower of Hanoi is a recursive function which prints out 
the steps necessary to move N discs from one needle to another (where N is 
hopefully a good deal smaller than 64). A program that defines the function 
HANOI and tests it by moving 5 discs from needle A to needle C follows. 

DEFINE ('HANOI (N,NS,ND,NI) ') 

* HANOI EQ(N,O) 

HANOI. END 

* TEST 
END 

HANOI(N - 1,NS,NI,ND) 
OUTPUT 'MOVE DISC 'N' 
HANOI(N - 1,NI,ND,NS) 

HANO I (5 , , A' , , C' , , B ' ) 

: (HANOI. END) 

: S (RETURN) 

FROM 'NS' TO ' ND 
: (RETURN) 

103 



1\10VE DISC 1 FROM A TO C 
MOVE DISC 2 FROM A TO B 
MOVE DISC 1 FROM C TO B 
MOVE DISC 3 FROM A TO C 
1\10VE DISC 1 FROM B TO A 
MOVE DISC 2 FROM B TO C 
MOVE DISC 1 FROM A TO C 
MOVE DISC 4 FROM A TO B 
MOVE DISC 1 FROM C TO B 
MOVE DISC 2 FROM C TO A 
MOVE DISC 1 FROM B TO A 
MOVE DISC 3 FROM C TO B 
MOVE DISC 1 FROM A TO C 
MDVE DISC 2 FROM A TO B 
MOVE DISC 1 FROM C TO B 
MOVE DISC 5 FROM A TO C 
MOVE DISC 1 FROM B TO A 
MOVE DISC 2 FROM B TO C 
MOVE DISC 1 FROM A TO C 
MOVE DISC 3 FROM B TO A 
MOVE DISC 1 FROM C TO B 
MOVE DISC 2 FROM C TO A 
MOVE DISC 1 FROM B TO A 
MOVE DISC 4 FROM B TO C 
MOVE DISC 1 FROM A TO C 
MOVE DISC 2 FROM A TO B 
MOVE DISC 1 FROM C TO B 
MOVE DISC 3 FROM A TO C 
MOVE DISC 1 FROM B TO A 
MOVE DISC 2 FROM B TO C 
MOVE DISC 1 FROM A TO C 

The program logic can be seen by induction. Clearly, moving no discs 
requires no steps. Moving one disc from needle A to needle C requires one step. 

MOVE DISC FROM A TO C 

Moving two discs from A to C requires three steps. 

MOVE DISC 1 FROM A TO B 
MOVE DISC 2 FROM A TO C 
MOVE DISC 1 FROM B TO C 

Moving three discs from A to C requires seven steps. 

MOVE DISC 1 FROM A TO C 
MOVE DISC 2 FROM A TO B 
MOVE DISC 1 FROM C TO B 
MOVE DISC 3 FROM A TO C 
MOVE DISC 1 FROM B TO A 
MOVE DISC 2 FROM B TO C 
MOVE DISC 1 FROM A TO C 
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The general solution is: 

MOVE N-1 DISCS FROM A TO B 
MOVE DISC N FROM A TO C 
MOVE N-1 DISCS FROM B TO C 

The implementation is simple. HANOI is defined with four arguments: 

1) N is the number of discs to be moved, 
2) NS is the starting needle, 
3) ND is the destination needle, and 
4) NI is the intermediate storage needle. 

On entry to HANOI, the value of N is compared with zero. If N is zero, no discs 
are moved and the function returns. If N is not zero, HANOI is called 
recursively to move N-1 discs from the starting needle to the intermediate 
storage needle. Having done that, the command to move the Nth disc from the 
starting needle to the destination needle is printed. Finally, HANOI is called 
a second time to move the N-1 discs from intermediate storage to the destination 
needle. 

F. Q£§X~ 

It is sometimes convenient to provide synonyms for existing functions. The 
primitive function OPSYN can be used for this purpose. The general format of 
OPSYN is 

OPSYN (new, old) 

For example, 

OPSYN ( , SAME' , , IDENT ' ) 

defines SAME to be a synonym for the function name IDENT. 

A call using a synonym for a primitive function must 
number of arguments. Trailing arguments may not be omitted. 

SAME (X) 

causes error termination. 

Consider a program using the pattern BIGP of Chapter 2. 

have the correct 
For example, 

BIGP (*P $ TRY *GT (SIZE (TRY) ,SIZE(BIG))) $ BIG FAIL 
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This program prints the values of TR.Y ,and BIG, whose sizes are compared by GT. 
The printing can be done by providing a new programmer-defined function for GT. 
However, since GT must still be used, it is OPSYNed to another function name, 
GTHAN. 

OPSYN('GTHAN','GT') 
DEFINE (' GT (X, Y) ') : (TEST) 

* GT OUTPUT 'TRY = , TRY , 
GTHAN (X, Y) 

BIG =' BIG 
:S(RETURN)F(FRETURN) 

* TEST 

END 

BIGP = (*P $ TRY *GT (SIZE (TRY) ,SIZE(BIG))) $ BIG FAIL 
STR 'IN 1964 NFL ATTENDANCE JUMPED TO 4,807,884; , 

'AN INCREASE OF 401,810.' 
P = SPAN('0123456789,') 
BIG 
STR BIGP 
P SPAN('ABCDEFGHIJKLMNOPQRSTUVWXYZ') 
BIG 
STR BIGP 

TRY 1964, BIG = 
TRY 964, BIG = 1964 
TRY 64, BIG = 1964 
TRY 4, BIG = 1964 
TRY = 4,807,884, BIG = 1964 
TRY ,807,884, BIG = 4,807,884 
TRY 807,884, BIG = 4,807,884 
TRY 07,884, BIG = 4,807,884 
TRY 7,884, BIG = 4,807,884 
TRY ,884, BIG = 4,807,884 
TRY 884, BIG = 4,807,884 
TRY 84, BIG = 4,807,884 
TRY 4, BIG = 4,807,884 
TRY 401,810, BIG = 4,807,884 
TRY 01,810, BIG = 4,807,884 
TRY 1,810~ BIG = 4,807,884 
TRY ,810, BIG = 4,807,884 
TRY = 810, BIG = 4,807,884 
TRY 10, BIG = 4,807,884 
TRY 0, BIG = 4,807,884 
TRY IN, BIG = 
TRY N, BIG = IN 
TRY = NFL, BIG = IN 
TRY = FL, BIG = NFL 
TRY L, BIG = NFL 
TRY ATTENDANCE, BIG = NFL 
TRY TTENDANCE, BIG = ATTENDANCE 
TRY TENDANCE, BIG = ATTENDANCE 
TRY ENDANCE, BIG = ATTENDANCE 
TRY NDANCE, BIG = ATTENDANCE 
TRY DANCE, BIG = ATTENDANCE 
TRY ANCE, BIG = ATTENDANCE 
TRY NCE, BIG = ATTENDANCE 
TRY CE, BIG = ATTENDANCE 
TRY E, BIG = ATTENDANCE 
TRY JUMPED, BIG = ATTENDANCE 
TRY UMPED, BIG = ATTENDANCE 
TRY MPED, BIG = ATTENDANCE 
TRY = PED, BIG = ATTENDANCE 
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TRY ED, BIG = ATTENDANCE 
TRY D, BIG = ATTENDANCE 
TRY TO, BIG = ATTENDANCE 
TRY = 0, BIG = ATTENDANCE 
TRY AN, BIG = ATTENDANCE 
TRY N, BIG = ATTENDANCE 
TRY = INCREASE, BIG = ATTENDANCE 
TRY NCREASE, BIG = ATTENDANCE 
TRY CREASE, BIG = ATTENDANCE 
TRY REASE, BIG == .ATTENDANCE 
TRY EASE, BIG = ATTENDANCE 
TRY ASE, BlG = ATTENDANCE 
TRY SE, BIG = ATTENDANCE 
TRY E, BIG = ATTENDANCE 
TRY OF, BIG = ATTENDANCE 

APPLY is a primitive function that creates and executes a function call. 
APPLY(f,al, .•• ,an ) calls the function f with the arguments al, ... ,an- The 
value of APPLY is the value returned by the function it calls. The 
function f may be a primitive function or a programmer-defined function. Like 
OPSYN, a use of APPLY on a primitive function must specify the correct number of 
arguments_ 

An important use of APPLY is to call various functions depending on the 
current value of data. Execution of the statements 

x 'SIZE' 
Y 57 
OUTPUT APPLY (X,Y) 

calls SIZE(S7} and prints 2. Execution of 

X 'BINARY' 
Y 57 
OUTPUT APPLY (X,Y) 

calls BINARY (57) , defined earlier, and prints 111001 . 
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Chapter 5. Arrays, Data Types, and Keywords 

An array is an indexed aggregate of variables. Arrays are created by the 
execution of the primitive function ARRAY. ARRAY (p,e) returns an array whose 
bounds ~nd dimensions are described by the prototype p. Every element is 
initialized to the value of the expression e. For example, 

VECTOR ARRAY (10) 

assigns a one-dimensional array of length 10 to VECTOR. Since the second 
argument is omitted, each element of the array has the null string value. 
Indexing ordinarily starts at 1. Other lower bounds may be specified by using a 
colon to separate the upper and lower limits. 

LINE ARRA Y ( , - 5 : 5 ' ) 

creates an array with lower bound -5 and upper bound 5. 

Additional dimensions in a prototype are separated by commas. Thus, 

BOARD AR RAY ( , 3 , 3 ' , 'X' ) 

defines a three-by-three array with all elements having the value X. 

'--T-~--' 

BOARD 

~.x f---+-':::=~ 

I I I 
L __ ...1.---L---..l 

There is no intrinsic limit on the size or dimensionality of an array. 

~~£ning: The first argument of ARRAY is the prototype, and the second is a 
value which is given to each element of the resulting array. Thus, 

A ARRAY('3,3') 
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creates a two-dimensional array with each element having the null string as 
value. 

On the other hand, 

r-- I II 

A-----I I I , 
~--+--+--~ 
I I I I 
I--+--+--~ 
I I I I 
L--..l..- I J 

A = ARRAY (3,3) 

creates a one-dimensional array with each element having the value 3. 

r---, 
A ;. 

~~ 3 
1--
I I 
L-_J 

Each element of an array is given the §~ill~ value. Consequently, execution 
of the instructions 

A1 
A2 

ARRAY (5) 
ARRAY (5,A 1 ) 

creates only two arrays. Each element of A2 has the same array, A1, as value. 

A2 A1 

'------ r---, 
I I 
~--~ 
I I 
~--~ 
I I 
~--f 
I I 
~~-1 

I I 
L __ J 
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If the value of a variable is an array, 
A, A1, and A2 above, an element in the array 
variable. Angular brackets following the 
specify the element. Array references such as 
variables. For example, 

VECTOR<8> EXP 

as is the case with VECTOR, BOARD, 
may be referenced through the 
array-valued variable are used to 

VECTOR<8> or BOARD<2,3>, are 

assigns the value of EXP to the eighth element of VECTOR. 

OUTPUT BOARD<2,3> 

prints the value of the (2,3)-element of BOARD. 

FIELD BR EAR (' , ) . LIN E < - 3 , 4 > ' , 

defines a pattern that breaks out a field of data and assigns it to the 
(-3,4)-element of LINE. 

Each element of an array may have any type of data object as value. There 
is no requirement that all elements of an array have the same data type. For 
example, the first element of an array may be an integer, the second a pattern, 
and so forth. 

If an index referring to an element of an array falls o~tside the range of 
the array, the array reference fails. Thus, 

OUTPUT VECTOR<12> 

fails. This failure may be used to control iteration through the elements of an 
array without knowing its size. A function SUM, whose value is the sum of all 
the elements of an array, could have the defining statement 

DEFINE('SUM(ARRAY)N') 

with the procedure 

SUM N 
SUTI.1 

N + 1 
SUM + ARRAY<N> :S (SUM)F(RETURN) 

The summation loop continues until N exceeds the range of ARRAY. This function 
does not need to know the size of ARRAY, but only that it is a one-dimensional 
array with a lower bound of one. 
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A simple application of one-dimensional arrays is illustrated in the 
following example which puts strings in lexical order. A bubble sort is much 
like an exchange sort. When two elements are found to be out of order, they are 
switched. However, the lexically smaller item is bubbled up to its proper 
place. 

* 
* 

* 
* 
* 

* 
* 
* READ 

* 
* 
* GO 

* 
* 
* 
PRINT 

* 
* 
* SORT 

* SWITCH 

* BUBBLE 

* END 

.... 

BUBBLE SORT PROGRAM 

DEFINE('SORT(N) I') 
DEFINE('SWITCH(I) TEMpi) 
DEFINE (' BUBBLE (J) ') 

GET NUMBER OF ITEMS TO BE SORTED 

N 
A 

TRIM (INPUT) 
ARRAY (N) 

READ IN THE ITEMS 

I 
A<I> 

SORT (N) 

1+1 
TRIM (INPUT) 

SORT THE LIST 

PRINT SORTED LIST 

M 
OUTPUT 
M 

1 
A<M> 
M + 1 

FUNCTIONS 

I LT(I,N 
LGT(A<I>,A<I + 1 » 
SWITCH (I) 
BUBBLE (I) 

TEMP A<I> 
A<I> = A<I + 
A<I + 1> TEMP 

- 1 ) I 

1> 

J GT (J ,1 ) J - 1 
LGT(A<J>,A<J + 1» 
SWITCH(J) 

+ 1 

: F (ERROR) 

: F (GO) S (READ) 

: F (END) 
: (PRINT) 

:F(RETURN) 
:F(SORT) 

: (SORT) 

: (RETURN) 

:F(RETURN) 
: F (RETURN) 
: (BUBBLE) 
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For the input 

15 
ADDSIB 
BUKINT 
ADJTTL 
BUCKET 
ADREAL 
BKSPCE 
APDSP 
ARRAY 
BKSIZE 
ALTERN 
BRANCH 
ADJUST 
BUFFER 
ADDSON 
ADDLG 

the output is 

ADDLG 
ADDSIB 
ADDSON 
ADJTTL 
ADJUST 
ADREAL 
ALTERN 
APDSP 
ARRAY 
BKSIZE 
BKSPCE 
BRANCH 
BUCKET 
BUFFER 
BUKINT 

One iteration of SORT is: 
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r---, 
I A I 
J---~ 

I C I 
t--~ 
I D I 
l----~ 

I---IFI 
f----~ 
I B I 
t--~ 
I E I 
L----' 

SWITCH BUBBLE 

- r-, - r---, 
I A I I A I 
t-~ t--~ 
I C I I B I 

t--~<t-~ I D I I C I 
t-~ t-~ 
I B I I D I >< t-~ t--~ 
I F I , F I 
t--~ t--~ 
I E I IE, 

L_-' 

INCREMENT 
I 

I-

r--, 
I A I 

t--~ I B I 
t--~ 
I C I 
t--~ 
I D I 
t~-~ 

I F I 
t--~ 
I E I 
L-_J 



Elements above I are properly ordered. If elements at I and I + 1 are out of 
order, they are switched. The new element at I (B) is bubbled by means of 
interchanges to its proper place above I. I is incremented and the process 
continues. 

The value of the ARRAY function is an object whose data type is ARRAY. 
This value may be assigned to one or more variables. 

A 
B 

= ARRAY (3) 
A 

A and B have the same array as value • 

Thus, 

B<2> 
OUTPUT 

print SIX. 

A 

B ---------

'SIX' 
A<2> 

.--, 
I I 
I--~ 
I I 
1---1 
I I 
L-_.1 

.---, 
I I 
I--~ 
I 0 I 
I--~ 
I I 
'--__ .1 

SIX 

The COpy function produces a copy of an array. Executing the statements 

A 
A<2> 
B 
B<2> 

ARRAY (3) 
'TWO' 

COpy (A) 
'SIX' 

creates distinct arrays. Unlike the previous example, assigning a value to B<2> 
does not affect the value of A<2>. 
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.---., .---, 
A --- I I B ---- I I 

t---~ t--~ 
I 0 I !I TWO I . I ill' SIX 
r---i t--~ 
I I I I 
L-__ J L-_J 

COpy may be used with other types of data, as illustrated in the section on data 
types. 

The value of the dimension or range of an array is sometimes needed. The 
primitive function PROTOTYPE is used to obtain the prototype used to define the 
array. PROTOTYPE has an array-valued argument and returns the prototype string. 
Thus, if 

A ARRAY ( f - 5: 5 f , • X' ) 

then the value of PROTOTYPE (A) is the string -5:5. 

An example utilizing PROTOTYPE is the following function named SQUARE. The 
argument of SQUARE is any singly-dimensioned array. The value of SQUARE is a 
two-dimensional square array whose dimensions equal that of the argument, and 
whose elements are null strings. 

* SQUARE 
SQEND 

,----, 
I I 
t---i 
I I 
r---i 
I I 
r--i 
I I 
L-__ J 

DEFINE (f SQUARE (A) ') 

SQUARE ARRAY (PROTOTYPE (A) 

,---~-,--~--., 

I I I I I 
r---+---+---+--~ 
I I I I I 
r---+---+---+---1 
I I I I I 
r--+---+----+--1 
I I I I I 
L--...L-__ ...L-_--L-__ J 

: (SQEND) 

• PROTOTYPE (A) ) (RETURN) 

The argument of ARRAY is a string formed from two occurences of PROTOTYPE (A) 
separated by a comma. Thus, the index range is the same for both dimensions of 
the new array. 

In order to reference an array element by means of angular brackets, the 
array must be the value of a known identifier. Sometimes this is not the case. 
For example, 
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$X ARRAY (10) 

is an acceptable assignment statement. But $X<2> and ($X)<2> do not reference 
the second element of the array. In the first expression, the unar.y $ 
operates on the value of X<2>; the second is syntactically erroneous. 

There are two ways to refer to an element of such an array. The array can 
be assigned to a known identifier: 

TEMP 
TEMP<2> 

$X 
'SIX' 

Alternatively, the primitive function ITEM can be used. The value of 
ITEM (a, i 1 , ••• , in) is the (i 1 ,. •• , in) - element of the array a. 

ITEM ($X, 2) 'SIX' 

assigns SIX to the second element of the array. 

Similarly, if 

A<1> ARRAY (100) 

,is executed, the fiftieth item of this array may be referenced by ITEM(A<1>,50). 

If an index referring to an element of an array falls outs~de the range of 
the array, the call of ITEM fails. 

A variable can be assigned a value during an assignment statement or by 
pattern matching through use of the cursor position operator ill or the binary 
value assignment operators and $ In SNOBOL4, variables fall into two 
major classes, natural variables and created variables. 

A natural variable is any variable whose name is a nonnull string. Thus, 

A 
$'AB' 
$'",(' 

are examples of natural variables, whose names, respectively, are the strings 

A 
AB 
, , , ( 
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The variable '" ( cannot appear explicitly in an assignment statement such as 

",( 'X' 

because it is syntactically incorrect. However, 

$'",(' 'X' 

is syntactically correct and performs the desired assignment. Every string 
except the null string is the name of a natural variable. Natural variables are 
available at the start of a program without any conscious act of creation on the 
part of the programmer. All natural variables with the exception of ABORT, ARB, 
BAL, FAIL, FENCE, REM, and SUCCEED have the null string as their initial value. 

Created variables are generated during execution of a program when, for 
example, an array is created. The statement 

A· ARRAY (10) 

creates an array of ten variables. These variableB are referred by A<1>, A<2>, 
•.• , A<10>. 

consider a function BUMP which increments the value of any variable by 1. 
If the value of variable N is to be incremented, the call 

BUMP (N) 

is not suitable because the value of N, not the name N, is passed to the 
procedure for BUMP. The form of the call must be 

BUMP (' N') 

which passes the string N to the BUMP procedure. since the string N is the 
name of the variable N, indirect reference may be used to increment the value. 

The defining statement and procedure for BUMP are: 

DEFINE('BUMP(VAR) ') 

BUMP $VAR $VAR + 1 (RETURN) 

116 



Suppose BUMP is to increment the value of a created variable, such as the 
second element of the array A. The call 

BUMP (A<2» 

is not suitable, since only the value of A<2> is passed. The call 

BUMP('A<2>') 

is not suitable either, since the string A<2> is passed, and 

$'A<2>' 

is a natural variable which bears no relation to the array element. The 
difficulty arises because there is no explicit name for created variables. 
However, implicit names for created variables can be obtained through use of a 
unary name operator. 

The unary name 
name of that variable. 

.A<2> 

operator applied to any variable returns as value the 
Thus, the value of 

is the name of the second array element. The call 

BUMP(.A<2» 

passes the name of the second array element to BUMP, so that incrementing is 
done properly. 

The name operator serves much the same purpose for created variables as 
quotation marks do for natural variables. Furthermore, the name operator 
applied to a natural variable behaves the same as quotation marks. Thus, the 
value of 

.LINE 

is the string LINE. Both of the following pairs of statements assign the 
value 2 to ~AY. 
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WORD 
$WORD 

WORD 
$WORD 

'MAY' 
2 

.MAY 
2 

If the argument of the name operator is a natural variable, the value 
returned by the name operator is a string which is an explicit name. If the 
argument of the name operator is a created variable, the value returned is an 
implicit name. If the argument is not a variable, error termination occurs. 
For example, 

.SIZE(X) 
• (A + B) 
.+A 

are erroneous because the arguments are not variables. If A and B are integers 
or numeral strings, 

.$(A + B) 

is valid because $(A + B) is a natural variable. 

When returning from a programer-defined fUnction via RETURN, the value of 
the function name becomes the value of the function call. If NRETURN is used, 
the value of the function name is returned as a variable, not as a value. The 
function call may thus be used freely in any context that requires a variable. 

Consider, for example, the function NEXT which returns the first unused 
element of an array. The array is given as an argument and is assumed to have a 
zeroth element which indicates the last used element. 

* NEXT 

* NEXT. END 

DEFINE ( 'NEXT (A) ') 

A<O> 
NEXT 

A<O> + 1 
.A<A<O» 

Thus, executing the four statements 

B ARRAY('O:100') 
NEXT (B) 'A' 
NEXT (B) = 'THE' 
'STILL' 'T' REM. NEXT (B) 

(NEXT. END) 

:S (NRETURN) F(FRETURN) 

assigns to B<O> through B<3> values 3, A, THE, and ILL, respectively. 

When NEXT returns, the value of NEXT is .B<B<O», which is the name of the 
first available array element. NEXT (B) becomes the variable B<B<O». 
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Flow of control is governed by unconditional, success, and failure gotos. 
In the goto field, variables indicate the next statement to which control is 
passed based on the outcome of the current statement. 

If a variable is used as a statement label, a label attribute pointing to 
the statement is assigned to the variable. This label attribute is independent 
of the value of the variable. Thus, a variable can be used in the label field 
and the goto field, as well as in the subject field of a single statement. The 
statement 

DELAY DELAY = LT(DELAY,N) DELAY + :S(DELAY)F(ONWARD) 

is acceptable and unambiguous. 

If a variable has no label attribute, its use in a goto field causes error 
termination with the message, "UNDEFINED OR ERRONEOUS GOTO." 

It is possible, as illustrated in the next section, to change the label 
attribute of a variable. In this way, a particular label variable, such as that 
appearing in 

: S (LOOP) 

may cause transfer to one statement at the beginning of execution and an 
entirely different statement later on. 

In the first phase of a SNOBOL4 run (compilation), the source program is 
converted into Polish-prefix object code. In the second (execution) phase this 
object code is interpreted. Object code is a type of data just as are strings, 
patterns, and arrays. During the execution phase, it is possible, using the 
primitive function CODE (string) , to convert a string of characters into object 
code. The argument to CODE is a string representing one or more SNOBOL4 
statements. The value of a call to CODE is executable object code. 

A string to be compiled into object code consists of SNOBOL4 statements 
terminated by semicolons. For example, if the variable GET has a string value 
assigned by 

GET = 

then 

NUCODE 

'LOOP 

N 
LINE 
N = 
LINE 

CODE (GET) 

10; , . , , 
GT(N,O) 
= LINE 

N 1 
TRIM (INPUT) 

:F(OUT) ;' 
: (LOOP) ; , 

causes the statements in the value of GET to be compiled. 
CODE (GET) becomes the value of NUCODE. 

The value of 
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Blanks are as important in strings to be converted to code as they are in 
the program itself. A statement without a label ill~§i begin with a blank. 

Execution of statements in the value of NUCODE can be accomplished in two 
ways: 

1) transfer to a labelled statement appearing in NUCODE, and 

2) execution of a direct goto which passes control to the first statement 
in NUCODE, whether labelled or not. 

Thus, execution of the goto 

(LOOP) 

causes transfer to the statement labelled LOOP inside of NUCODE, even if the 
original program had a statement labelled LOOP. 

A direct goto is a special construction in the goto field which permits 
transfer directly to the beginning of a block of object code rather than through 
a label. The direct goto uses enclosing angular brackets rather than 
parentheses. The expression enclosed in the angular brackets must be code 
valued. Execution of the direct go to 

: <NUCODE> 

causes transfer to the first statement 

N = 10 

Flowing off the end of a block of compiled object code results in normal 
termination, just as if there were an end statement. 

The following statement illustrates the use of the function CODE in the goto 
itself. 

: <CODE (' OUTPUT "RECOMPILED" (RESTAR T) ; , ) > 

The angular brackets indicate transfer to the beginning of the newly compiled 
block of CODE, which prints RECOMPILED and transfers to the statement labelled 
RESTART. 

The primitive function CODE fails if its argument has a syntactic error. 

It is an error for the same label to appear more than once in the source 
program. Statements compiled using CODE, however, may have the same labels as 
statements compiled earlier. The label attribute for the corresponding variable 
becomes the new statement. For example, the following program segment is used 
to call a function PROCESS(N) with various values of N. 
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BEGIN 
LOOP 

OUT 

END 

N 5 
N LT (N, 1 0) N + 1 
PROCESS (N) 

NEWLOOP 'LOOP N 
CODE (NEWLOOP) 

: F (OUT) 
: (LOOP) 

GT (N, 0 ) N 1: F (END) ;' 
: (BEGIN) 

Within the two-statement loop, PROCESS(N) is called with N having values 6, 7, 
8, 9, and 10 before control passes to the statement labelled OUT. At that 
point, a new block of code is compiled consisting of the statement 

LOOP N GT (N, 0) N : F (END) 

Following compilation, control passes to the statement labelled BEGIN. It is 
intended that PROCESS(N) be called for N with values 4, 3, 2, 1, and 0, but this 
is not the case. The original statement labelled LOOP is still in the program. 
It is not overwritten by the compilation. The label attribute of LOOP no longer 
points to it. The label attribute now points at the newly compiled statement. 
The new compilation is a second program which can freely communicate with the 
original. Execution of the program proceeds as if the following programs were 
compiled. 

BEGIN 

OUT 

END 

LOOP 
END 

N 

N 5 
N LT (N, 10) N + : F (OUT) 

: (LOOP) PROCESS (N) 

NEWLOOP 'LOOP N GT (N, 0) N 1: F (END) ; , 
CODE (NEWLOOP) : (BEGIN) 

GT (N, 0) N 1 : F (END) 

After compilation of NEWLOOP, transfer to BEGIN causes N to be assigned the 
value 5. Control flows into the statement originally labelled LOOP, which 
increments N to 6. PROCESS(N) is called and, on completion, control passes to 
the new statement labelled LOOP. N is decremented to 5, but PROCESS cannot be 
called as intended, since the new statement does not overwrite the old, and no 
way is provided for getting back to the original program. 

The program segment can be rewritten to perform as intended by using 
explicit gotos to control program flow rather than relying on the sequence of 
statements. to control flow. 
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BEGIN 
LOOP 
PROC 
OUT 

END 

N 5 
N LT (N, 1 0) N + 1 
PROCESS (N) 

NEWLOOP 'LOOP N 
CODE (NEWLOOP) 

: (LOOP) 
: F (OUT) 
: (LOOP) 

GT(N,O) N 1 :F(END) S(PROC);' 
: (BEGIN) 

Following compilation of NEWLOOP, execution proceeds as if the following 
programs were compiled. 

BEGIN 

PROC 
OUT 

END 

LOOP 
END 

N = 5 
N LT(N,10) N + 1 

: (LOOP) 
: F (OUT) 
: (LOOP) PROCESS (N) 

NEWLOOP = 'LOOP 
CODE (NEWLOOP) 

N = GT(N,O) N 

N GT (N, 0) N 1:F (END) S (PROC) ;' 
: (BEGIN) 

: F (END) S (PROC) 

After assigning 5 to N, control passes from the statement labelled BEGIN to the 
new statement labelled LOOP. N is properly decremented to 4 and control passes 
to the statement labelled PROC which calls PROCESS. The loop continues until N 
is O. 

SNOBOL4 allows the programmer to define his own types of data objects. A 
programmer-defined data object is an ordered set of variables called fields. A 
call of DATA(p) defines a new data type described by the prototype p. The 
prototype p is a string denoting the name of the data type and the fields. 
For example, a complex number can be said to consist of two fields, the real and 
the imaginary. The call 

DATA ('COMPLEX(R,I) ') 

defines a data type COMPLEX, with two fields R and I. 
limit to the number of fields. 

There is no intrinsic 

To create an object which has the data type COMPLEX, a call of the form 

COMPLEX (e 1, e2) 
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is made, where e1 and e2 are any expressions. For example, to assign the 
complex number "1.5 + 2.0i" to the variable C, the statement 

C COMPLEX(1.5,2.0) 

is executed. Each call of the fUnction COMPLEX creates two new variables 
corresponding to the real and imaginary parts. These variables may be 
referenced by using the field name as a function. After executing the statement 
above, the value of C is a complex number; the real part is referenced by R(C) 
and the imaginary part by I(C). Thus, 

A R (C) 

assigns 
value. 

the 
If 

value 1 • 5 to A. Since R (C) is a variable, it may be assigned a 

R(C) 3.2 

is executed, the complex number "3.2+2.0i" is assigned to C.~ 

Operations on complex quantities can be defined using programmer-defined 
functions. A function to compute the sum of two complex quantities is 

SUM 
SUM. END 

DEFINE (' SUM (C1, C2) ') 
SUM COMPLEX(R(C1) + R(C2) ,I(C1) 

: (SUM. END) 
+ I (C2) ) : (RETURN) 

If C has the value "3.2 + 2.0i", execution of the statement 

C SUM(C,COMPLEX(1.0,1.0)) 

assigns "4.2 + 3.0i" to C. 

There is no intrinsic limit to the length of a string in SNOBOL4, but there 
is often a practical limit. For example, scanning a string for a pattern can be 
time consuming if the string is long. However, many string applications require 
reading in and retaining long passages of text. For such cases, a new data type 
called TEXT can be defined. 

DATA ('TEXT (LINE1N,NEXT) ') 

The first field is a line of text, the seeond field indicates the line number, 
and the third field points to the next line of text. 

A passage of text is read as follows: 
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LOOP 

DONE 
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I 
HEAD TEXT (INPUT,I) : F (EMPTY) 
CURRENT HEAD 
I 1+1 
NEXT (CURRENT) TEXT (INPUT,I) : F (DONE) 

: (LOOP) CURRENT NEXT (CURRENT) 

The resulting data structure has the form: 

HEAD 
r---------, 

~ ~r--__, 
LINE I line 1 I 

~-----~ 
N I 1 I 

~-----~ 
NEXT I I 

____ J 

r-------, 
LINE I line 2 I 

J-------~ 

N I 2 I 
I-------~ 

NEXT~ _____ J 

r---------, 
LINE I line 3 I 

J------~ 

N I 3 I 
I------~ 

NEX1-----J 

T 
r---__, 

LINE I line n I 
~-----~ 

N I n I 
I------~ 

NEXT I I 
L ______ J 



The statement 

LINE (HEAD) 'EVERY' : S (YES) F (Nq) 

examines the first line for the word EVERY. 

The following section of program prints the lines and line numbers where 
EVERY occurs. 

TEST 

BUMP 

CURRENT = HEAD 
LINE (CURRENT) 'EVERY' 
OUTPUT N(CURRENT) ':' 
CURRENT NEXT (CURRENT) 
IDENT (CURRENT) 

: F (BUMP) 
LINE (CURRENT) 

: F (TEST) 

The same field names may exist for several data types. Thus, 

DATA ('LIST (VALUE, NEXT) ') 

defines a data type LIST which can coexist with the previous definition of the 
data type TEXT. Although NEXT is a field name for both TEXT and LIST, NEXT (X) 
is not ambiguous because the data type of the argument X indicates the usage. 

VALUE is a primitive field function defined on strings and names which 
refers to their value. If 

RADIX 'HEX' 

then 

V VALUE ( 'RADIX' ) 

assigns the string HEX to V. Similarly, 

VALUE ( 'RADIX' ) 'DEC' 

assigns the string DEC as the value of RADIX. 

VALUE is supplied so that a programmer may define the field VALUE on 
programmer-defined data types, and then apply VALUE to strings and names as well 
as the defined types. This permits a uniform treatment of "value" without the 
necessity for checking data type. If 

DATA('LIST(VALUE,TEXT) ') 
DATA ('NODE (FATHER,LSON,RSIB,VALUE) ') 
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are used to define the data types LIST and NODE, then VALUE can be applied to 
objects with data type LIST and NODE as well as names and strings. 

Data objects are classified by type. The string used to refer to a data 
type within the language is called the formal identification of the data type. 
The types of data are 

string 
integer 
real number 
pattern structure 
array 
created name 
unevaluated expression 
object code 
programmer-defined data type 

The call 

DATATYPE (e) 

STRING 
INTEGER 
REAL 
PATTERN 
ARRAY 
NAME 
EXPRESSION 
CODE 
data type name 

returns the formal identification of the data type 
expression e. For example, the value of DATATYPE('A' 
PATTERN. Similarly, 

return 

DATATYPE (37) 
DATATYPE (. ARB) 
DATATYPE (. A<I» 

INTEGER 
STRING 
NAME 

respectively. 

of 
, B' ) 

the 
is 

value of the 
the string 

If the argument to DATATYPE is a programmer-defined data type, the data 
type name is returned. Referring to the data types defined in the previous 
section, the function calls 
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return 

DATATYPE(C) 
DATATYPE(CURRENT) 

COMPLEX 
TEXT 

respectively. 

In some cases, it is reasonable to speak of the conversion of a data object 
of one data type into a corresponding data object of some other data type. This 
can be accomplished using the CONVERT function. For example, an integer can be 
converted to a real number by the statement 

R CONVERT (2, 'REAL') 

As a result, R has the real number 2.0 as its value. To convert R to a string, 
so that it may be printed, the statement 

OUTPUT CONVERT(R,'STRING') 

may be used. 

CONVERT has the form 

CONVERT (expression,datatype) 

The first argument is any expression and the second is a string-valued 
expression corresponding to a formal identification of a data type. CONVERT 
evaluates the first argument and then, if possible, converts the result to the 
data type given by the second argument. The value of CONVERT is the value of 
expression converted to the new data type. 

Not all conversions are possible or meaningful. The CONVERT function fails 
if a specified conversion cannot be made.. The following table indicates those 
conversions that are implemented. The conversion from STRING to CODE performs 
the same task as the CODE function used earlier. That is, 

CODE(S) 

and 

CONVERT(S, 'CODE') 

may be used interchangeably. 
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data type 
Q1_~.rill!m~n! 

SIR PAN E C D 
r---------------------------

STRING I X X X X X 

INTEGER 

REAL 

PATTERN 

ARRAY 

NAME 

EXPRESSION 

CODE 

Defined 
Data Type 

I 
X X X 

X X 

X 

X 

X 

x 

X 

X 

An object of one programmer-defined data type cannot be converted to an 
object of a different programmer-defined data type. 

3. £QRX 

COpy was described earlier in connection with arrays. The value of 

COpy (A) 

is a new array identical in every respect to the array which was the value of A. 
The COpy function can also be used for data objects other than ARRAYS. Objects 
with data type PATTERN, CODE, and all programmer-defined data types can be 
copied. In all cases, the value of COpy is a new instance of the data object 
which is its argument. 

Certain identifiers prefixed by an ampersand (&) provide the programmer 
with access to, and in some cases control of, information used internally by the 
SNOBOL4 system. For example, the programmer may determine, at some point, how 
many statements have been executed. The value of &STCOUNT is an integer equal 
to the number of statements executed. If the statement 

GT(&STCOUNT,40000) :S(CLEAN.UP) 

is executed after more than 40,000 statements have been executed, a transfer to 
the statement labelled CLEAN.UP is made. As another example, &STLIMIT is a 
variable whose value is the number of statements which may be executed before 
the SNOBOL4 system unconditionally terminates the program. The initial value of 
&STLIMIT is 50000, but it can be changed during execution. 
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&STLIMIT = &STLIMIT * 2 

doubles this limit. 

Whereas the value of &STLIMIT can be changed, the value of &STCOUNT cannot. 
Those keywords which can be modified by programmer action are called unprotected 
keywords; those which cannot are called protected keywords. An attempt to set 
the value of a protected keyword results in error termination. 

Protected Keywords 

There are two kinds of protected keywords, varying and constant. As their 
names suggest, the values of varying protected keywords change automatically 
during execution of a program. The constant protected keywords do not change. 

a. ~E~Q1§Y~1. The value of &FNCLEVEL is the level of programmer-defined 
function call. 

b. ~1AST~Q. The compiler numbers each statement. These numbers are used 
principally for diagnostic purposes4 The value of &LASTNO is the 
number of the last statement executed. 

c. ~B~~~Xf§. The value of &RTNTYPE 
NRETURN, depending on the kind 
programmer-defined function. 

is the string RETURN, FRETURN, or 
of return last made by a 

d. ~§~COQNT. The value of &STCOUNT is the number of statements which have 
been entered during program execution. If 

N = &STCOUNT 

is the first statement executed in a program, then N has the value 1. 

e. &STFCOUNT. The value of &STFCOUNT is the number of statements which 
have-faIled. If 

f. 

N &STFCOUNT 

is the first statement executed, the value of N is o. 

&STNO. The value of &STNO is the 
statement currently being executed~ 

compiler-assigned number 
(See &LASTNO.) 

of the 

a. ~~1~H~~~!. The value of &ALPHABET is a string consisting of all the 
characters of the machine on which SNOBOL4 is implemented. The 
characters are ordered according to their internal coding. 

b. ~~E~. The value of &ARB is the primitive pattern structure which 
matches any string of characters. &ARB and ARB have the same value at 
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the beginning of program execution. The value of ARB may be changed, 
however, while the value of &ARB is protected. 

c. ~~~QE1. &ABORT has the same value as ABORT at the beginning of program 
execution. See &ARB. 

d. ~~AL. As above. 

e. ~EAI1· As above. 

f. ~fE;~f~· As above. 

g. ~EE;~· As above. 

h. ~§1!CC~~Q. As above. 

There are two kinds of unprotected keywords, switches and parameters. A 
switch is a keyword requiring an integer value. A switch is considered Qff if 
its value is 0, and is considered Qn otherwise. All switches are off at the 
beginning of program execution. 
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a. ~~BE~Q. If &ABEND is on when program execution terminates, a system 
core dump is provided. 

b. &ANCHOR. If &ANCaOR is on, a pattern can match only an initial 
substrIng. See Chapter 2. 

c. &DUMP. If &DUMP is on at program termination, natural variables and 
theIr values are printed. 

d. ~E~E~f~. If &FTRACE is on, calls to and returns 
programmer-defined functions are traced.. See Chapter 7. 

from all 

e. ~E1!bb§£~~. If &FULLSCAN is on, the pattern matching scanner attempts 
to match a complex pattern against a string even though it can be 
predetermined that the attempt will fail. See Chapter 2. 

f. ~1EAC~. Tracing capabilities are available if &TRACE is on. See 
Chapter 7. 

a. ~~~~~~~Tli. The v~lue of &MAXLNGTH is an integer equal to the largest 
string (measured in characters) which may be formed. The initial value 
of &MAXLNGTH is 5000, but this value may be changed. Thus, 

&MAXLNGTH = 1000 

limits the maximum length of subsequent strings to 1000 characters. An 
attempt to form a string longer than the limit results in error 
termination of th~ program. All types of string formations are 
included in this limit: concatenation, replacement, value assignment 
as a tesult of pattern matching, and string input. 



b. ~§T11Ml!. The value of &STLIMIT is the limit on the number of 
statements that may be executed (see &STCOUNT). The initial value of 
&STLIMIT is 50000. Exceeding the limit on statement execution results 
in error termination. 
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Chapter 6. Details of Evaluation 

There are three major types of statements: assignment, pattern matching, 
and replacement. These have the forms: 

~}dQj~£:t 
~gQj~£:t 
~}dQj~£:t 

QQi~£:t gQ:tQ 
12S!:t:t~r!! gQ:tQ 
12~:t:t~r!! QQj~£:t 

Labels and gotos are optional. The object may be explicitly omitted, in which 
case the object is taken to be an expression that has the null string as value. 

There are two degenerate statement forms as well: 

~}dQj~£:t 
g2:tQ 

Labels and gotos are optional in these forms as well. Thus a blank line is an 
acceptable statement. 

An understanding of the sequence of evaluation requires an understanding of 
the overall evaluation of a statement in terms of its major components. The 
replacement statement is the most complicated and general form and is used for 
illustration. All other statement forms can be considered formally as 
degenerate replacement statements, and the evaluation of the degenerate forms 
can be understood from the evaluation of the replacement statement by skipping 
the missing components. The sequence of evaluation is: 

1. The label requires no evaluation, and in fact is not part of the 
statement at all. It merely serves to identify the statement. 

2. The subject is evaluated first. If the evaluation of the subject 
fails, the statement fails, the goto is processed, and evaluation of all other 
components is skipped. If no failure goto is specified, control passes to the 
next statement. 

3. The pattern is evaluated next. If this evaluation fails, the statement 
fails and the goto is processed as in the case of subject failure. 

4. The pattern match is performed next. If the pattern match fails, the 
statement fails, conditional value assignment is not performed, the replacement 
is skipped, and the goto is processed. Immediate value assignment, and other 
effects which occur dynamically during pattern matching, may take place before 
the pattern match fails. 

132 



5. The object is evaluated. If this evaluation fails, the statement 
fails, no replacement is performed, and the goto is processed. 

6. The replacement is performed. 

7. The goto is processed. Gato processing depends on the structure of the 
goto and whether or not the statement failed. If the statement succeeded, only 
an unconditional or success goto in the statement is evaluated. If the 
statement failed, only an unconditional goto or failure goto in the statement is 
evaluated. Transfer is made to the evaluated goto if there is one, or control 
is passed to the next statement. If evaluation of a goto fails, error 
termination results. 

Any of the components of a statement may be arbitrarily complicated and may 
invoke all kinds of processes. Calls to programmer-defined functions can occur, 
for example, in any component of a statement (except the label), and even take 
place in the middle of pattern matching as the result of the evaluation of 
unevaluated expressions. 

within an expression, the order of evaluation depends on the order of the 
components and the operations performed on them. Evaluation of the components 
of an expression is from left to right. In complicated expressions, components 
are nested, and the order of evaluation may be determined by examining the fully 
parenthesized form of the expression as determined from the rules of precedence 
and association. Consider the expression 

(K L F(A + B * C)) 

which has the fully parenthesized form 

( (K 

I 
L) 
I 

F «A + (B * C)))) 

1 2 
\/ 

3 

\ 
10 

I 
4 

\ 
8 
/ 

/9 

I I 
5 6 
\ / 

7 
/ 

The order of evaluation of this expression is as indicated. If F is a 
programmer-defined function, its evaluation involves the execution of other 
statements and may in itself be very complicated. 

In order to understand how failure is handled, it is important to know what 
operations can fail. 

1. Obtaining the value of a variable fails if the variable has an input 
association and an end-of-file condition is encountered. Such failure occurs 
only if the value of the variable is required, not merely because the variable 
appears in a statement. Thus, neither 

INPUT '0 ' 

nor 
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LT (N ,M) : S (INPUT) 

requires the value of INPUT and hence no attempt is made to read a record. 

2. Primitive predicates fail if the stated condition is not met. The 
unary negation operator, for example, fails only if its operand does not fail. 

3. Some primitive functions such as REPLACE fail for certain argument 
values. 

4. Array references fail if an index is out of bounds. 

5. Pattern matching may fail for a variety of reasons. 

6. Programmer-defined functions fail by transferring to FRETURN. 

Failure is a condition that causes a process to terminate and return to the 
process that called it, which in turn terminates and passes the failure 
condition back, until eventually the statement itself fails. The exception is 
the unary negation operator that converts a failure condition into successful 
evaluation, and conversely. 

Details of function evaluation deserve special note. All the arguments to 
a programmer-defined function are evaluated before the function is called. If 
too many arguments are provided to the call of a programmer-defined function, 
the extra arguments are evaluated, but not passed. If the evaluation of any 
argument fails, a failure condition is returned and the function is not entered. 

Primitive functions are called before their arguments are evaluated, and 
each function evaluates its own arguments. If the are too many arguments in the 
call of a primitive function, error termination results. If too few arguments 
are provided in the call of a primitive function, null strings are provided for 
the omitted arguments. An exception to this rule concerns functions invoked by 
APPLY or called through an OPSYNed synonym. Such calls must contain the correct 
number of arguments or error termination results. 

Integers can occur 
operations. An integer 
Some integer literals are 

as literals and 
literal consists 

as the result of integer-valued 
of an unsigned sequence of digits. 

35 
2760520 

00006 

Leading zeroes are ignored; 00006 and 6 are equivalent. A sign in front of 
an integer literal is a unary operator and not part of the literal. Thus -6 
is an integer-valued expression. 

The maximum magnitude of integers is implementation dependent. On the IB1I1 
System/360, integers can range from -2 31 to 2 31 -1, 

Numeral strings are strings that represent integers. 
consist of a sequence of digits and can have an initial sign. 
strings and their equivalent integer values are 
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Numeral strings 
Some numeral 



'23' 
'-7' 

'+303' 
'00001' 

23 
-7 

303 
1 

The null string is also a numeral string and is equivalent to the integer zero. 
The following strings are DQt numeral strings: 

'+ , 
'++3' 

'1,378' 
'36-' , , 
'2. 0' 

Many operations require integer-valued arguments. An integer-valued 
argument can be specified by either an integer or a numeral string. Both 

LEN {8} 

and 

LEN (' 8') 

are correct. In most cases integers and numeral strings can be used 
interchangeably, and the programmer need not concern himself with the 
difference. In fact, numeral strings are automatically converted to equivalent 
integers in contexts where integers are required. 

Similarly, integers can be used in operations that require string-valued 
arguments. Integers are automatically converted to numeral strings in contexts 
where strings are required. In the statement 

SEQNO a 1 

the pattern and object are integers. The pattern is converted into the ~t~ing 
a for the purpose of pattern matching and the object is converted into the 
~tfiDg 1 for the purpose of replacement. An equivalent statement is 

SEQNO '0' , 1 ' 

Conversion of integers to strings produces a nQ£m~li~gQ result with no leading 
zeroes and without a leading plus for positive integers. Printing requires 
strings, for example. Thus, 

OUTPUT 8 

and 
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OUTPUT = 00008 

both print 

8 

but 

OUTPUT '00008' 

prints 

00008 

The effects of this conversion are most likely to be noticeable when conversion 
from a numeral string to an integer is followed by conversion back to a string. 

OUTPUT '-00007' + 00009 

prints 

2 

Real numbers can occur as literals and as the result of real-valued 
operations. A real number consists of an unsigned sequence of digits, followed 
by a period, optionally followed by another sequence of digits. Some real 
literals are 

20.05 
0.00001 
3. 

A sign 
literal. 

in front of a real literal is a unary operator and not part of the 
Thus -3.14159 is a real-valued expression. 

On the IBM System/ 360, the range of real numbers is on the order of 10- 78 

to 10 75 • 

Real numbers are automatically converted to strings for the purpose of 
printing or punching. No other automatic conversions are made. Real numbers 
cannot be concatenated. To perform mixed arithmetic on integers and real 
numbers, explicit conversions must be made using the CONVERT function. 
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Unary and binary operators are functions of one and two arguments, 
respectively. Operators have a special status by virtue of their syntactic 
representation as distinguished symbols. The following sections discuss details 
of the operators and the relation between their operands and values. 

There are eleven unary operators. 

operator operation 
--r 

+ I plus 
I minus 

$ I indirect reference 

* I expression 
I name 
I negation 

? I interrogation 
& I keyword 
ill I cursor position 
# I (not used) 
% I (not used) 
/ I (not used) 

The following sections describe permissible operands for the unary 
operators. Only data types indicated in these sections are permitted. Other 
data types result in error termination. Abbreviations for the data types 
correspond to the usage in Chapter 5. In the tables that follow, the left 
column indicates the permissible operand data types and the right column 
indicates the data types resulting from the operation. 

Plus and minus accept the same types of operands and return the same types 
of values. 

r--
S I I 
I I I 
R I R 

strings occurring as operands in these arithmetic operations must be numeral 
strings. 

Indirect reference requires an operand that is either a name or a string, 
and returns the corresponding variable. This variable in turn may have any type 
of data as value. 
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r-----------
S I (variable) 
I I (variable) 
N I (variable) 

The expression operator may have any expression as an operand. A pointer 
to this expression is returned, but the operand is not evaluated. The pointer 
has data type EXPRESSION. Subsequent evaluation of the expression (during 
pattern matching, e.g.) may yield a variable or a value of any data type. 

The name operator must have a variable as an operand. A pointer to this 
variable is returned. If the operand is a natural variable, the resulting data 
type is STRING; otherwise it is NAME. 

(natural variable) 
(other variable) 

r---
I S 
I N 

Negation and interrogation accept any expression as operand. 
operations succeed, they return the null string as value. 

If the 

The keyword operator accepts as an operand only certain natural variables. 
The data type of the value depends on the particular keyword. The natural 
variable operand need not appear explicitly, but can be computed. Consequently, 

KEYWORD 'STCOUNT' 

OUTPUT &$KEYWORD 

prints the number of statements executed up to the time the output statment 
occurs. 

The cursor position operator must have a variable as operand. A pattern 
structure is returned. 
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The symbols /, #, and % are reserved for future use. 
syntactically as unary operators, but have no meaning. 
these operations causes error termination. 

They are accepted 
Execution of one of 

There are twelve binary operators. Exponentiation associates to the right. 
All other operations associate to the left. The operators are listed below in 
order of decreasing precedence. Notice that multiplication has higher 
precedence than division, contrary to common practice in other programming 
langauges. 

operator operation 
-------------.--------------------------------------------

$ 

** % 

* 
/ 
# 

+ 
Q) 

I immediate and conditional value assignment 
I exponentiation 
I (not used) 
I multiplication 
I division 
I (not used) 
I ajdition and subtraction 
I (not used) 
I concatenation 
I alternation 

The following sections describe permissible operands for the binary 
operators. In the tables that follow, the left column indicates the permissible 
left operand data types, the top row indicates the permissible right operand 
data types, and the body of the table indicates the data types reSUlting from 
the operation. Blanks in the body of the table indicate a combination of 
operand data types that is not permitted. 

Addition, subtraction, multiplication, and division all accept the same 
types of operands and return the same types of values. 

SIR 
r----

S I I I 
I I I I 
R I R 

strings occurring as operands in these arithmetic operations must be nurreral 
strings. 

Exponentiation is similar to the other arithmetic operations except that 
real operands are not permitted. 
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S I 
r-----

S I I I 
I I I I 

Strings must be numeral strings. 

Concatenation is an operation of central importance in SNOBOL4. The 
permissible data type combinations are: 

S I P E 
r---------

S I SSP P 
I I SSP P 
P , P P P P 
E I P P P P 

Concatenation treats the null string in a special way. If either operand is the 
null string, concatenation is not performed and the other operand is returned as 
value. Thus, if one operand is the null string, the other operand may have any 
data type. This treatment of the null string permits full use of predicates in 
expressions containing various types of data. 

The permissible data type combinations for alternation are: 

SIP E 
r---------

S I p P P P 
I I p P P P 
P I P P P P 
E I P P P P 

Notice that the result of alternation is always a pattern. The null string has 
no special status in alternation. 

The value-assignment operations require a right operand that is a variable. 
This variable, not its value, is used in constructing a pattern. An exception 
to this requirement permits the right operand to be an unevaluated expression. 
This expression is then evaluated at the time of value assignment to obtain the 
variable to which assignment is made. If such an unevaluated expression does 
not produce a variable at the time of value assignment, error termination 
occurs. The permissible left operands are: 
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r--
SIP 
I I P 
PIP 
E I P 

The symbols %, #, and ware reserved for future use. They are accepted 
syntactically as binary operators, but have no meaning. Execution of one of 
these operations causes error termination. 

Some expressions yield variables when evaluated. Such variables are called 
generated variables, and values can be assigned to them in the same manner that 
values can be assigned to variables that appear explicitly. In the statements 

M 2 
$ (' N' M) 'INVOICE' 

the subject $('N' M) generates the variable N2 which is assigned the value 
INVOICE. Array references, field functions on programmer-defined data types, 
and programmer-defined functions that return by NRETURN are examples of 
expressions that generate variables. 

other 
variables. 

expressions, for example arithmetic operations, yield values but not 
Thus, execution of the statement 

(A + B) 2 

causes error termination with the message "VARIABLE NOT GIVEN WHERE REQUIRED." 

Gotos require natural variables. 
generated. The indirect goto 

:S($TRIM(INPUT)) 

is an example. 

These natural variables may also be 

Some expressions, such as indirect references, always yield variables. 
Others, such as literals, always yield only values. Some expressions mayor may 
not yield variables. For example, 

F (X) 2 

mayor may not be erroneous depending on the function F. To allow for such 
cases, the syntax of SNOBOL4 permits any kind of expression as the subject of 
assignment. statements such as 
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2 3 

are syntactically acceptable even though they result in error termination if 
executed. 
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Chapter 7. Tracing 

Tracing facilities are provided to permit the programmer to get diagnostic 
information about the execution of his program without interfering with its 
logic or structure. The tracing mode is entered by turning on the keyword 
&TRACE. When this mode is in effect, certain types of program actions can be 
sensed, causing corresponding messages to be printed. The types of actions 
sensed are: 

1) change in the value of a variable, 
2) call of a defined function, 
3) return from a defined function, 
4) transfer to a label, and 
5) change in the value of certain keywords. 

The TRACE function is used to make specific trace requests. 

TRACE (name,type,tag) 

associates the name with the type of action for tracing purposes. The tag 
provides identifying information which is included in the trace printout if the 
name is not a natural variable. If the name is a natural variable, the tag is 
ignored. One trace association must be made for ~£h name and type desired. 
Trace printout includes the statement number in which the action occurs, the 
result of the action, and the time of the action in milliseconds measured from 
the beginning of program execution. 

If &TRACE is off, there is no tracing, even though trace requests have been 
made. The value of &TRACE is decremented by one every time an action is traced, 
and tracing is automatically turned off when the value of &TRACE reaches zero. 
Therefore the value assigned to &TRACE may be chosen to limit the amount of 
trace printout. 

TRACE(name,'VALUE'#tag) 

causes trace printout whenever the value of the name is ~hanged. Consider the 
following program. 
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TRACE('I','VALUE') 
TRACE('J','VALUE') 
&TRACE 1000000 

* LET THE FIRST DATA CARD SPECIFY THE MAXIMUM NUMBER OF 
* CARDS TO BE SORTED. GENERATE AN ARRAY. 

* 
A ARRAY(TRIM(INPUT)) 

* * DEFINE THE FUNCTION INSERT. 

* DEFINE ('INSERT (J)TEMP') 

* * READ THE CARDS INTO THE ARRAY. 

* INIT 

* 
* 
* 
* SORT 

* 
* 

I 1+1 
A<I) 
OUTPUT 

LET N BE THE 
THEN SORT. 

N I 
I 1 

TRIM (INPUT) 
A<I> 

NUMBER OF CARDS. 

- 1 

COMPARE TWO SUCCESSIVE CARDS. 

* SORTA LGT(A<I>,~<I + 1» 

* 

: F (SORT) 
: (INIT) 

INITIALIZE THE INDEX AND 

:S (SORTC) 

* IF THEY ARE IN THE PROPER ORDER, INCREMENT THE INDEX 
* (UNLESS SORTING IS FINISHED) AND CONTINUE. 

* SORTB I LT(I,N - 1) I + 1 : S (SORTA) F (DONE) 

* * OTHERWISE, INSERT THE CARD IN ITS PROPER PLACE. 

* SORTC 

* 
INSERT (I + 1) 

* PUNCH SORTED CARDS. 

* DONE 

PUNCH 

* 

I 
OUTPUT 
OUTPUT 
PUNCH 
I 

1 

= A<I> 
OUTPUT 

LT (I, N) I + 1 

* FUNCTION DEFINITION 
* 
INSERT 

END 

TEMP A<J - 1> 
A<J - 1> A<J) 
A<J) TEMP 
J GT(J,2) J - 1 
LGT(A<J - 1),A<J») 

: (SORTB) 

:S(PUNCH)F(END) 

: F (RETURT'l) 
:S(INSERT)F(RETURN) 

1 
2 
3 

4 

5 

6 
7 
8 

9 
10 

11 

12 

13 

14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 



Given the data 

10 
ACOMPC 
ACOMP 
INTRL 
SPECEQ 
SUM 
FORMAT 
STREAM 
ZERBLK 
SETAV 
SETVA 

the printed output is 

STATEMENT 6: I 1, TIME 17 
ACOMPC 

STATEMENT 6: I 2,T'IME 17 
ACOMP 

STATEMENT 6: I 3,TIME = 50 
INTRL 

STATEMENT 6 : I 4,TIME 67 
SPECEQ 

STATEMENT 6: I 5,TIME 84 
SUM 

STATEMENT 6 : I 6,TIME 84 
FORMAT 

STATEMENT 6: I 7,TIME 100 
STREAM 

STATEMENT 6 : I 8,TIME 117 
ZERBLK 

STATEMENT 6: I 9,TIME 117 
SETAV 

STATEMENT 6: I 10,TIME 134 
SETVA 

STATEMENT 6: I 11,TIME 233 
STATEMENT 10: I 1, TIME 233 
STATEMENT 12: I 2,TIME 250 
STATEMENT 12 : I = 3,TIME 250 
STATEMENT 12: I 4,TIME 250 
STATEMENT 12: I 5,TIME 267 
STATEMENT 22: J 5,TIME 267 
STATEMENT 22: J 4,TIME 283 
STATEMENT 22: J 3,TIME 283 
STATEMENT 12 : I 6,TIME 283 
STATEMENT 22: J 6,TIME 300 
STATEMENT 12 : I 7,TIME 300 
STATEMENT 12: I 8,TIME 300 
STATEMENT 22: J 8,TIME 317 
STATEMENT 22: J = 7,TIME 317 
STATEMENT 22: J 6,TIME 317 
STATEMENT 22: J 5,TIME 333 
STATEMENT 12 : I 9,TIME 333 
STATEMENT 22: J 9,TIME 350 
STATEMENT 22: J 8,TIME 350 
STATEMENT 22: J 7,TIME 367 
STATEMENT 22: J 6,TIME 367 
STATEMENT 14: I 1, TIME 367 
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ACOMP 
STATEMENT 18: I 2,TIME 533 

ACOMPC 
STATEMENT 18: I 3,TIME 533 

FORMAT 
STATEMENT 18 : I 4,TIME 550 

INTRL 
STATEMENT 18: I 5,TIME 550 

SETAV 
STATEMENT 18 : I 6,TIME 550 

SETVA 
STATEMENT 18: I 7,TIME 566 

SPECEQ 
STATEMENT 18: I 8,TIME 566 

STREAM 
STATEMENT 18: I 9,TIME 566 

SUM 
STATEMENT 18: I 10,TIME = 583 

ZERBLK 

If the name is not a natural variable, the tag is printed to identify the 
name being traced. For example, 

TRACE(.SUM<3>,'VALUE','SUM<3>') 

traces the third element of the array SUM. Here the tag SUM<3> (chosen to 
correspond to the created variable SUM<3» provides a string that identifies 
the name of the trace request. As an example, consider the following program 
which forms sums in several bins as given on data cards. The trace association 
must appear after creation of the array SUM, since the name .SUM<3> does not 
exist before the array is created. 
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* 
* 
* 
* READ 

&ANCHOR 1 
&TRACE 1000 
CARDPAT BREAK(' ') . BIN LEN(1) BREAK(' ') • NUMBER 
THE FIRST CARD GIVES THE NUMBER OF BINS 
SUM = ARRAY (TRIM (INPUT) ,0) 
TRACE THE THIRD BIN. 
TRACE(.SUM<3>,'VALUE','SUM<3>') 

: F (ERR) 

SUBSEQENT CARDS CONTAIN A BIN NUMBER FOLLOWED BY A BLANK AND THEN 
THE NUMBER TO BE ADDED TO THE BIN. 
CARD INPUT 
CARD CARDPAT 
SUM<BIN> = SUM<BIN> + NUMBER 

: F (DISPLAY) 
: F (ERR) 
:S(READ)F(ERR) 

* PRINT OUT THE SUMS 
DISPLAY 

I 1 
PRINT OUTPUT 'SUM<' I ,> 

I I + 1 
END 

, SUM<I> : F (END) 
: (PRINT) 

1 
2 
3 

4 

5 

6 
7 
8 

9 
10 
11 
12 
13 



For the input data 

10 
3 25 
1 27 
9 -75 
5 +65 
3 77 
7 -89 
2 75 
10 0 
3 -756 
7 499 
2 76 
4 23 
1 456 
5 87 
2 33 
10 23 
3 0025 
8 657 
3 -45 

the printed output is: 

STATEMENT 8: SUM<3> 
STATEMENT 8: SUM<3> 
STATEMENT 8: SUM<3> 
STATEMENT 8: SUM<3> 
STATEMENT 8: SUM<3> 

SUM<1> 483 
SUM<2> = 184 
SUM<3> -674 
SUM<4> 23 
SUM<5> 22 
SUM<6> 0 
SUM<7> 410 
SUM<8> 657 
SUM<9> -75 
SUM<10> = 23 

25,TIME = 17 
102,TIME = 50 
- 6 54 , TIME 1 0 0 
-629,TIME 183 
-674,TIME 300 

There are three types of tracing for programmer-defined functions: CALL, 
RETURN, and FUNCTION. CALL and RETURN cause trace printout on the call to and 
return from a function. FUNCTION causes trace printout for both call and 
return. 

CALL tracing gives the level f£2~ which the call is made, the function 
name, and the value of its arguments. RETURN tracing gives the level i2 which 
the return is made. The following examples indicate the three types of tracing 
applied to a program that computes the number of combinations of N things taken 
M at a time. 
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READ 

* 
C 

END 

&TRACE 1000 
TRACE ( • C' , 'CALL' ) 
NM BR EAK ( , , , ) • N ',' BREAK (' ') 
DEFINE ('C (N,M) ') 
INPUT NM : F (END) 

, C ( , . N ',' 11.1 ')::=' C (N, M) OUTPUT 

LT(N - M,M) N - M 

• M 

M 
C 
C 

EQ (M, 0) 1 
N * C(N - 1,M - 1) / M 

: S (RETURN) 
: (RETURN) 

prDduces the output 

STATEMENT 6 : LEVEL 0 CALL OF C('15','6'),TIME = 200 
STATEMENT 9 : LEVEL 1 CALL OF C ( 1 4 , 5) , TIME 200 
STATEMENT 9 : LEVEL 2 CALL OF C (1 3 , 4) , TIME 216 
STATEMENT 9 : LEVEL 3 CALL OF C (12,3) , TIME 216 
STATEMENT 9 : LEVEL 4 CALL OF C(11,2),TIME 216 
STATEMENT 9 : LEVEL 5 CALL OF C ( 1 0 , 1) , TIME 233 
STATEMENIJ:1 9 : LEVEL 6 CALL OF C(9,0) ,TIME = 233 

C(15,6)=5005 

with RETURN tracing, the output is 

STATEMENT 8: LEVEL 6 RETURN OF C 1,TIME = 133 
STATEMENT 9 : LEVEL 5 RETURN OF C 10,TIME = 150 
STATEMENT 9 : LEVEL 4 RETURN OF C = 55,TIME = 216 
STATEMENT 9 : LEVEL 3 RETURN OF C 220,TIME = 216 
srrATEMENT 9 : LEVEL 2 RETURN OF C 715,TIME = 233 
STATEMENT 9 : LEVEL 1 RETURN OF C 2002,TIME 233 
STATEMENT 9 : LEVEL 0 RETURN OF C 5005,TIME = 233 

C(15,6)=5005 

and with FUNCTION tracing the result is 

STATEMENT 6 : LEVEL 0 CALL OF C ( , 15' , • 6 .) , TIME = 134 
STATEMENT 9: LEVEL 1 CALL OF C ( 14 , 5) , TIME = 134 
STATEMENT 9 : LEVEL 2 CALL OF C (1 3 , 4) , TIME 217 
STATEMENT 9 : LEVEL 3 CALL OF C ( 1 2 , 3) ,TIME 217 
STATEMENT 9 : LEVEL 4 CALL OF C (11 ,2) ,TIME 217 
STATEMENT 9 : LEVEL 5 CALL OF C (10, 1) , TIME 233 
STATEMENT 9 : LEVEL 6 CALL OF C (9 , 0) , TIME = 233 
STATEMENT 8: LEVEL 6 RETURN OF C 1,TIME = 250 
STATEMENT 9 : LEVEL 5 RETURN OF C := 10,TIME = 250 
STATEMENT 9 : LEVEL 4 RETURN OF C 55,TIME = 250 
STATEMENT 9 : LEVEL 3 RETURN OF C 220,TIME = 250 
STATEMENT 9 : LEVEL 2 RETURN OF C 715,TIME = 267 
ST,ATEMENT 9: LEVEL 1 RETURN OF C 2002,TIME 267 
STATEMENT 9 : LEVEL 0 RETURN OF C 5005,TIME = 267 

C(15,6)=5005 

148 

: (READ) 

1 
2 
3 
4 
5 
6 

7 
8 
9 
10 



To facilitate the tracing of programmer-defined functions, the keyword 
&FTRACE is provided. When &FTRACE is on, ~11 programmer-defined functions are 
traced on call and return. The value of &FTRACE is decremented by one each time 
a programmer-defined function is called or returns. &TRACE and &FTRACE are 
independent, and both may be used at the same time. The following program 
illustrates the use of &FTRACE. 

&FTRACE 1000 1 

* * THIS PROGRAM COMPUTES THE NUMBER OF SYMMETRIC BISECTIONS OF 
* A CHECKERBOARD OF EVEN ORDER. THE PROBLEM IS DESCRIBED IN 
* MARTIN GARDNER'S "MATHEMATICAL GAMES" IN SCIENTIFIC AMERICAN 
* NOVEMBER, 1962. 

* 

* READ 

* 
AXIS 

* RIGHT 

* 
UP 

* LEFT 

DEFINE ( , AXIS (X, Y) ') 
DEFINE ( 'RIGHT (X, Y) '} 
DEFINE (' LEFT (X, Y) '} 
DEFINE (' UP (X, Y) '} 
DEFINE ('DOWN (X,Y) ') 
DEFINE ('COUNT (X) ') 

2 
3 
4 
5 
6 
7 

SUM 
N 

° 8 TRIM (INPUT) : F (END) 9 
BOARD ARRAY(-N ':' N ',' -N ':' N) 10 
BOARD<O,O> ':' 11 
AXIS(O,O) 12 
OUTPUT 'THERE ARE' SUM ' SY~~ETRIC BISECTIONS OF A ' 2 * 13 
N ' BY , 2 * N ' CHECKERBOARD' : (READ) 13 

X X + 1 
EQ (X, N) COUNT () 
IDENT(BOARD<-X,-Y» 
IDENT(BOARD<X,Y» 
BOARD<X,Y> ':' 
AXIS (X, Y) 
UP (X, Y) 
BOARD<X,Y> 

X X + 1 
EQ(X,N) COUNT() 
IDENT( BOARD<-X,-Y» 
IDENT(BOARD<X,Y» 
BOARD<X,Y> ':' 
RIGHT (X, Y) 
UP (X, Y) 
DOWN (X, Y) 
BOARD<X,Y> 

Y Y + 1 
EQ(Y,N) COUNT() 
IDENT(BOARD<-X,-Y» 
IDENT(BOARD<X,Y» 
BOARD<X,Y> ':' 
RIGHT (X, Y) 
UP(X,Y) 
LEFT (X, Y) 
BOARD<X,Y> 

X X 1 
EQ(X,-N) COUNT() 
IDENT(BOARD<-X,-Y>} 

: S (RETURN) 
:F(FRETURN) 
: F (FRETURN) 

: (RETURN) 

:S(RETURN) 
:F(FRETURN) 
: F (FRETURN) 

: ~RETURN) 

: S (RETURN) 
: F (FRETURN) 
: F (FRETURN) 

: (RETURN) 

: S (RETURN) 
: F (FRETURN) 

14 
15 
16 
17 
18 
19 
20 
21 

22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 

40 
41 
42 
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IDENT(BOARD<X,Y» :F (FRETURN) 
BOARD<X,Y> ' : ' 
LEFT (X, Y) 
UP (X, Y) 
DOWN (X, Y) 
BOARD<X,Y> : (RETURN) 

* DOWN Y Y 1 
EQ (Y, -N) COUNT () :S(RETURN) 
IDENT(BOARD<-X,-Y» : F (FRETURN) 
IDENT(BOARD<X,Y» : F (FRETURN) 
BOARD<X,Y> ' : ' 
RIGHT (X, Y) 
LEFT (X, Y) 
DOWN (X, Y) 
BOARD<X,Y> : (RETURN) 

* COUNT SUM SUM + 1 : (RETURN) 

* END 

Given 2 as an input value, this program produces the following output. 

STATEMENT 12: LEVEL 0 CALL OFAXIS(O,O) ,TIME = 100 
STATEMENT 19: LEVEL 1 CALL OFAXIS(1,0) ,TIME = 117 
STATEMENT 15: LEVEL 2 CALL OF COUNT(' ') ,TIME = 117 
STATEMENT 58: LEVEL 2 RETURN OF COUNT = ",TIME = 117 
STATEMENT 15: LEVEL 1 RETURN OF AXIS = ",TIME = 117 
STATEMENT 20: LEVEL 1 CALL OF UP(1,0),TIME = 133 
STATEMENT 36: LEVEL 2 CALL OF RIGHT(1,1) ,TIME = 133 
STATEMENT 23: LEVEL 3 CALL OF COUNT(") ,TIME = 150 
STATEMENT 58: LEVEL 3 RETURN OF COUNT = ",TIME = 150 
STATEMENT 23: LEVEL 2 RETURN OF RIGHT = ",TI~E = 150 
STATEMENT 37: LEVEL 2 CALL OF UP(1,1) ,TIME = 150 
STATEMENT 32: LEVEL 3 CALL OF COUNT(") ,TIME = 166 
STATEMENT 58: LEVEL 3 RETURN OF COUNT = ",TIME = 166 
STATEMENT 32: LEVEL 2 RETURN OF UP = ",TIME = 166 
STATEMENT 38: LEVEL 2 CALL OF LEFT(1,1) ,TIME = 183 
STATEMENT 45: LEVEL 3 CALL OF LEFT(0,1) ,TIME = 183 
STATEMENT 45: LEVEL 4 CALL OF LEFT(-1,1) ,TIME = 200 
STATEMENT 41: LEVEL 5 CALL OF COUNT(' ') ,TIME = 200 
STATEMENT 58: LEVEL 5 RETURN OF COUNT = "rTIME = 200 
STATEMENT 41: LEVEL 4 RETURN OF LEFT = ",TIME = 200 
STATEMENT 46: LEVEL 4 CALL OF UP(-1,1) ,TIME = 216 
STATEMENT 32: LEVEL 5 CALL OF COUNT(' ') ,TIME = 216 
STATEMENT 58: LEVEL 5 RETURN OF COUNT = ",TIME = 216 
STATEMENT 32: LEVEL 4 RETURN OF UP = ",TIME = 233 
STATEMENT 47: LEVEL 4 CALL OF DOWN(-1,1) ,TIME = 233 
STATEMENT 51: LEVEL 4 FRETURN OF DOWN,TIME = 233 
STATEMENT 48: LEVEL 3 RETURN OF LEFT = ",TIME = 250 
STATEMENT 46: LEVEL 3 CALL OF UP(0,1) ,TIME = 250 
STATEMENT 32: LEVEL 4 CALL OF COUNT(") ,TIME = 250 
STATEMENT 58: LEVEL 4 RETURN OF COUNT = ",TIME = 266 
STATEMENT 32: LEVEL 3 RETURN OF UP = ",TIME = 266 
STATEMENT 47: LEVEL 3 CALL OF DOWN(0,1),TIME = 283 
STATEMENT 51: LEVEL 3 FRETURN OF DOWN,TIME = 283 
STATEMENT 48: LEVEL 2 RETURN OF LEFT = ",TIME = 283 
STATEMENT 39: LEVEL 1 RETURN OF UP = ",TIME = 283 
STATEMENT 21: LEVEL 0 RETURN OF AXIS = ",TIME = 300 

THERE ARE 6 SYMMETRIC BISECTIONS OF A 4 BY 4 CHECKERBOARD 

150 

43 
44 
45 
46 
47 
48 

49 
50 
51 
52 
53 
54 
55 
56 
~57 

58 

59 



TRACE (name, 'LABEL') 

causes trace printout whenever transfer is made to the name. No printout occurs 
if the statement labelled with the name is flowed into, or is entered as a 
function entry point. 

The following program, which converts numbers from hexadecimal form to 
decimal form, illustrates label tracing. 

&TRACE = 1000 1 
TRACE('DEHEX1','LABEL') 2 

* DEFINE ('DEHEX (STR) NO') : (DEHEX. END) 3 

* 
* DEHEX STR POS (0) SPAN (' 0') = 4 
DEHEX1 STR LEN (1) . NO = :F (RETURN) 5 

DEHEX = INTEGER (NO) 16 * DEHEX + NO : S (DEHEX1) 6 
'ABCDEF' BREAK (NO) . NO : F (FRETURN) 7 
DEHEX = 16 * DEHEX + 10 + SIZE (NO) : (DEHEX1) 8 

DEHEX.END 9 

* 
* READ NUMBER = TRIM (INPUT) : F (END) 10 

OUTPUT 11 
= 'DEHEX (' NUMBER ' ) = , DEHEX (NUMBER) 11 

: S (READ) 11 
OUTPUT = 'UNABLE TO CONVERT , NUMBER : (READ) 12 

END 13 

Typical printout from this program is 

STA TEMENT 6: TRANSFER TO DEHEX1,TIME = 17 
STATEMENT 6: TRANSFER TO DEHEX1,TIME = 17 
STATEMENT 6: TRANSFER TO DEHEX1,TIME = 34 

DEHEX (1 00) = 256 
STATEMENT 6: TRANSFER TO DEHEX1,TIME = 50 

DEHEX (000001) = 1 
STATEMENT 6: TRANSFER TO DEHEX1,TIME = 67 
STATEMENT 6: TRANSFER TO DEHEX 1 , TIME = 83 

DEHEX (00011) = 17 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 100 

DEHEX{OOOF) = 15 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 117 

DEHEX (E) = 14 
STATEMENT 6 : TRANSFER TO DEHEX1,TIME = 133 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 150 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 167 
STA TEMENT 8: TRANSFER TO DEHEX1,TIME = 167 

UNABLE TO CONVERT 1ABCG 
STATEMENT 6: TRANSFER TO DEHEX1,TIME 183 
STATEMENT 8: TRANSFER TO DEHEX1,TIME 200 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 200 
STATEMENT 8: TRANSFER TO DEHEX1,TIME 217 
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DEHEX (1ABC) = 6844 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 233 

DEHEX (00 OE) = 14 
STATEMENT 6 : TRANSFER TO DEHEX1,TIME = 250 
STATEMENT 8 : TRANSFER TO DEHEX1,TIME = 266 

DEHEX(001E) = 30 
STATEMENT 8: TRANSFER TO DEHEX1,TIME 283 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 300 

DEHEX(OOEC) = 236 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 316 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 333 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 333 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 350 

DEHEX (OOOFACE) = 64206 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 450 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 466 
STA TEMENT 8: TRANSFER TO DEHEX1,TIME = 466 
STA T EMENT 8: TRANSFER TO DEHEX1,TIME = 483 
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 483 

DEHEX(AAAAA) = 699050 

TRACE (name, 'KEYWORD') 

causes trace printout when the value of the named keyword is changed. Only 
three keywords can be traced: STCOUNT, STFCOUNT, and FNCLEVEL. The following 
program, which converts numbers from decimal to hexadecimal form, illustrates 
keyword tracing. 

* 

* 
* READ 

* 
* HEXER 

HEX. END 

END 

&TRACE = 1000 
TRACE('STFCOUNT','KEYWORD') 

DEFINE('HEXER(N)Q,R') 
HEGITS = '0123456789ABCDEF' 

NUM = TRIM (INPUT) 
OUTPUT = 'HEXER(' NUM ') = , HEXER (NUM) 
OUTPUT = 'UNABLE TO CONVERT ' NUM 

INTEGER (N) 
Q = GT (N, 15) 
R = N - Q * 16 

N / 16 

N = Q 
HEGITS 
HEXER = 
HEGITS 
HEXER = 

LEN (R) LEN (1) • R 
R HEXER 
LEN (N) LEN (1) • R 
R HEXER 

Typical printout from this program is 

STATEMENT 9 : &STFCOUNT = 1, TIME = 0 
HEXER(1) = 1 

STATEMENT 9: &STFCOUNT = 2,TIME = 33 
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1 
2 

3 
4 

: F (END) 5 
: S (READ) 6 
: (READ) 7 

: F (FRETURN) 8 
: F (HEX. END) 9 

10 
11 

: F (FRETURN) 12 
: (HEXER) 13 
: F (FRETURN) 14 
: (RETURN) 15 
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HEXER (17) = 11 
STATEMENT 9: &STFCOUNT = 3,TIME = 49 

HEXER (15) = F 
STATEMENT 9 : &STFCOUNT = 4,TIME = 66 

HEXER (14) = E 
STATEMENT 9 : &STFCOUNT = 5,TIME = 99 

HEXER (6844) = 1ABC 
STATEMENT 8: &STFCOUNT = 6,TIME = 116 
STA TEMENT 6: &STFCOUNT = 7,TIME = 116 

UNABLE TO CONVERT 1239.0003 
STATEMENT 9: &STFCOUNT = 8,TIME = 166 

HEXER (30) = 1E 
STATEMENT 9: &STFCOUNT = 9,TIME = 183 

HEXER (236) = EC 
STATEMENT 9: &STFCOUNT = 10,TIME = 216 

HEXER (64206) = FACE 
STATEMENT 9: &STFCOUNT 11,TIME 249 

HEXER (699050) = AAAAA 
STATEMENT 9: &STFCOUNT = 12,TIME = 266 

HEXER (13) = D 
STATEMENT 9 : &STFCOUNT = 13,TIME = 299 

HEXER (0) = 0 
STA TEMENT 9: &STFCOUNT = 14,TIME = 316 

HEXER (000) = 0 
STATEMENT 9: &STFCOUNT = 15,TIME = 349 

HEXER (128) = 80 
STATEMENT 9: &STFCOUNT = 16,TIME 366 

HEXER (256) = 100 
STATEMENT 9: &STFCOUNT = 17,TIME = 416 

HEXER (123456789) = 75BCD15 
STATEMENT 5: &STFCOUNT = 18,TIME = 648 

Tracing is a global condition that depends on the value of &TRACE. 
Regardless of trace requests made through the TRACE function, there is no trace 
output if &TRACE is off. The value of &TRACE may be set to zero explicitly, or 
may reach zero as it is decremented as the result of tracing. Individual trace 
associations may be cancelled, however, by executing 

STOPTR(name,type) 

which cancels a single trace association for the name and type. Thus the 
tracing of statement failure is stopped by executing 

STOPTR('STFCOUNT',fKEYWORD') 

The TRACE function has an optional fourth argument that permits 
programmer to supply procedures for tracing. The form of the function is 

TRACE (name,type,tag,function) 

the 
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where the function is a programmer-defined function. 

When the traced action occurs, the function is called with the name as its 
first argument and the tag as its second argument. Thus the programmer may 
define trace procedures to supplement the standard ones. The keyword &TRACE is 
turned off on entry to a programmer-defined trace procedure and restored on 
return. This prevents accidental tracing of a trace procedure. The programmer 
may turn the &TRACE keyword on while in a trace procedure. 

1. lnyoki!1g,_R!:Qg,!:~illill~!::.!2~i.!!1~g_T!:fL~e P!:oced~!:~§. 

The exact time at which a programmer-defined trace procedure is called 
depends on the type of trace. 

VALUE: just after assignment of the new value 

CALL: just after evaluation of the.argurnents, but before execution of 
the first statement in the function 

RETURN: just before the return is made 

FUNCTION: as for CALL and RETURN 

LABEL: just before transfer to the label 

KEYWORD: just after the keyword is changed 

Special information is 
programmer-defined trace procedures. 
provided expressly for this purpose. 

required for 
Three keywords 

writing more elaborate 
and three functions are 

1. &STNO is a protected keyword whose value is the statement number of the 
statement currently being executed. 

2. &LASTNO is a protected keyword whose value is the statement number of 
the last statement executed. 

3. &RTNTYPE is a protected keyword whose value is the type of return 
(RETURN, FRETURN, or NRETURN) made by the last defined function to return. 

4. ARG(function,n) is a function whose value is the name of the nth 
argument of the programmer-defined function. ARG is useful in writing 
programmer-defined trace procedures that trace several functions and need to 
determine the names of the formal arguments of the functions being traced. 

5. LOCAL (function,n) is a function whose value is the name of the nth 
local variable of the defined fUnction. 

6. FIELD(data type,n) is a function whose value is the name of the nth 
field of the programmer-defined data type. 

The following example illustrates a programmer-defined function, VALTR, 
that prints a trace output only when a traced variable is assigned a specified 
value. KEY is a global variable. Trace output only occurs when a traced 
variable is assigned the value of KEY. If the variable being traced is not a 
string, the tag is used in the printed output. Use of this function is 
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illustrated in the following program which produces trace output when certain 
variables are assigned the value 25. 

The 

KEY 
KEY 
KEY 
KEY 
KEY 
KEY 
KEY 

* 
* 

* 

POWER = ARRAY ( , 25,5 ' ) 

KEY = 25 

DEFINE('VALTR(VAR,TAG)ST,TIME') 
&TRACE = 1000 
TRACE('I','VALUE',,'VALTR') 
TRACE(.POWER<5,2>,'VALUE',' 5 ** 2','VALTR') 
TRACE (.POWER<25, 1>, 'VALUE',' 25 ** 1','VALTR') 

* SET UP MATRIX OF INTEGER POWERS 

* J = 1 
NEXTI I = 0 
NEXTP I = I + 1 

POWER<I,J> = I ** J 
J = LT(J,5) J + 1 

* VALTR ST = &LASTNO 
TIME = TIME() 

: S (NEXTP) 
: S (NEXTI) F (END) 

IDENT($VAR,KEY) :F(RETURN) 
TAG = IDENT(DATATYPE(VAR),'STRING') VAR 
OUTPUT = 'KEY VALUE "' KEY .11 ASSIGNED TO ' TAG 

+ ' IN STATEMENT ' ST ' AT TIME ' TIME 
+ : (RETURN) 
END 

printed output is 

VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 166 
VALUE "25" ASSIGNED TO 25 ** 1 IN STATEMENT 11 AT TIME 166 
VALUE "25" ASSIGNED TO 5 ** 2 IN STATEMENT 11 AT TIME 199 
VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 266 
VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 332 
VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 416 
VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 499 

1 

2 

3 
4 
5 
6 
7 

8 
9 
10 
11 
12 

13 
14 
15 
16 
17 
17 
17 
18 
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Chapter 8. Input and Output 

Input and output are accomplished by associating variables with data sets 
(files). In the case of a variable associated in the output sense, each time 
the variable is assigned a value, a copy of the value is put out onto the 
assoc~ated data set. In the case of a variable associated in the input sense, 
each time the value of the variable is used, a new value is read from the 
associated data set and becomes the new value of the variable. Thus input and 
output go on during program execution without any explicit I/O statements, as a 
result of I/Q associations. Variables having standard associations are 
described in the following sections. 

The variable OUTPUT is associated with the standard print data set (usually 
the printer). Consequently, whenever OUTPUT is assigned a value, printout is 
generated. For example, 

OUTPUT 'THE SELECTED VALUES ARE' 

produces the output 

THE SELECTED VALUES ARE 

Output may also result from value assignment specified in patterns~ For 
e"'xample, 

PEXP = BAL. EXP1 • OUTPUT '+' BAL. EXP2 • OUTPUT 

EXP PEXP 

prints the two terms in EXP, and assigns their values to EXP1 and EXP24 
type of output is often useful for diagnostic purposes, and does not affect 
pattern matching or the assignments made to EXP1 and EXP2. 

This 
the 

Ordinary printout is printed 131 characters per line, with as many lines as 
necessary being generated. The null string is treated as a blank character and 
a blank line is printed for it. Strings are usually assigned to output 
variables. Integers and real numbers assigned to an output variable are 
automatically converted to strings. If an array is assigned to an output 
variable, the printed output is ARRAY with the prototype of the array enclosed 
in parentheses. For example, the statements 
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print 

MATRIX 
OUTPUT 

= 
= 

ARRAY('-2:2,-3:3') 

ARRAY('-2:2,-3:3',0) 
MATRIX 

If the prototype is longer than twenty characters, only the string ARRAY is 
printed. If an object with any other data type is assigned to an output 
variable, the formal identification of its data type is printed. For example, 

OUTPUT = LEN (7) 

prints 

PATTERN 

The variable PUNCH 
Consequently, whenever 
For example, 

is associated with the standard punch data set. 
PUNCH is assigned a value, a punched card is generated. 

PUNCH = ° 
produces a card with zero punched in column one. 

All the remarks about print output apply to punch output, except that 80 
characters are punched per card, with additional cards punched as necessary for 
longer strings. The cards have no sequence numbering or identification unless 
provided in the strings which are punched. 

The variable INPUT is associated with the standard input data set. 
Whenever the value of INPUT is used, a card image is read from the input stream 
and becomes the new value of INPUT. For example, 

OUTPUT = INPUT 

reads a card image and prints it. Similarly, 

TRIM (INPUT) BAL • EXP 

reads a card image and matches for a balanced string. All eighty columns of the 
card images are read, and the value of INPUT is an eighty character string. 
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Since each use of INPUT reads a card image, previous values of INPUT are 
lost unless they are assigned to other variables. 

If the end of the input data set is encountered when a value of INPUT is 
requested, failure results. This failure can be used to detect the end of an 
input data set. For example, 

READ 

OUT 

1=1 
DATA<I> = INPUT 
I = 1+1 

: F (OUT) 
: (READ) 

reads card images into the array DATA until the input data stream is exhausted 
(or I exceeds the range of DATA). Control is then transferred to OUT. 

All input/output is handled by FORTRAN IV I/O routines. That is, SNOBOL4 
I/O is done by the same system that does I/O for FORTRAN IV object programs. 
Consequently, the conventions and I/O concepts specified for the FORTRAN IV 
language also apply to SNOBOL4. In addition, the version of the language 
described here operates under OS/360. It is necessary to understand both the 
fundamentals of FORTRAN IV I/O [7,8] and job control language (JCL) [9] in order 
to use the I/O facilities of SNOBOL4 effectively~ 

In FORTRAN, data sets (files) have numbers (data set reference numbers). 
These numbers are referred to in source-language programs and are associated 
with specific data sets by JCL at run time. There are three standard data sets: 

normal input stream (5) 

normal print output (6) 

normal punch output (7) 

DDNAMEs in JCL are used to associate the data set reference numbers with 
actual data sets. DDNAMEs for FORTRAN have the form FTxxFyyy, where xx 
corresponds to the data set reference number and yyy is a file sequence number 
for multifile data sets. The typical DD cards used in SNOBOL4 associate the 
standard data set reference numbers 5, 6, and 7 as follows: 

//FT06F001 DD SYSOUT=A 
//FT07F001 DD UNIT=SYSCP 
//FT05F001 DD * 

This JCL, or its equivalent, is contained in the SNOBOL4 cataloged procedure, 
and is supplied automatically when the cataloged procedure is used. 

A wide range of devices and record structures can be specified on DD cards. 
By changing the DD cards, the data streams can be assigned to different data 
sets at run time. Thus, 

//FT05F001 DD DSNAME=PROG1,VOLUME=SER=BTLXX1, x 
// UNIT=DISK,DISP=OLD 
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specifies an input stream from a data set PROG1 on a disk file. Similarly, 

//FT07F001 DD DSNAME=PUNCHER,VOLUME=SER=MYSAV1,UNIT=TAPE, C 
// LABEL=(1,SL) ,DISP=(NEW,PASS), C 
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) 

causes punched output to go onto a 9-track tape with a blocking factor of 10. 

A complete discussion of DD statements is beyond the scope of this manual, 
and is a very involved and difficult subject. The important fact is that JCL 
permits the specification of a wide variety of devices and record structures. 
This specification is made when the program is ~un and requires no alteration of 
the program. 

The FORTRAN I/O used in SNOBOL4 only handles sequential data sets. In 
particular, it cannot handle members of partitioned data sets. 

FORTRAN supports multifile data sets. The last three characters in the 
DDNAME specify the file number. When FORTRAN comes to the end of a file, it 
automatically opens the next file of the same data set reference number. 

Thus, for example, input may come from several files: 

//FT05F002 DD DSNAME=DATA2,UNIT=DISK,VOLUME=SER=BTLH04,DISP=OLD 
//FT05F001 DD * 

/* 

With these DD cards, after the in-line data stream is exhausted, records are 
read from DATA2. The failure which occurs when an end of a data set is reached 
must be taken into account in programming. 

The variables OUTPUT and PUNCH have predefined output associations. 
Programmer-defined associations may be made using the function OUTPUT. The form 
of the function is 

OUTPUT (name, number, format) 

OUTPUT associates the name with the data set reference number according to the 
given format. The format is a string specifying a FORTRAN IV format. The 
following statements correspond to the associations for the variables OUTPUT and 
PUNCH: 

OUTPUT (. OUTPUT' , 6, , (1 X, 131 A 1) ') 
OUTPUT('PUNCH',7,' (80A1) ') 

Using the OUTPUT function, any variable can be associated with any data set 
reference number. For example, 
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PRFORM = , (1 X, 131 A 1) , 
TEST = ARRAY('8,8') 
OUTPUT(.TEST<1,1>,6,PRFORM) 
OUTPUT (. TEST< 8,8>,6, PRFORM) 

associate the array elements TEST<1,1> and TEST<8,8> with the ordinary print 
data set and with the standard print format. As a result, whenever either 
TEST<1,1> or TEST<8,8> is assigned a value, the new value is printed. 

Data set reference numbers are not restricted to 5, 6, and 7, but can range 
from 1 through 99. Associations can be made with data set reference numbers 
other than the standard ones. In this case, a DD statement for that number must 
be provided when the program is run. 

OUTPUT (' TEXT' ,7,' (80A 1) , ) 

associates TEXT with the punch data set. On the other hand, 

OUTPUT ( 'TEXT' ,20, , (80A 1) ') 

and the DD statement 

//FT20F001 DD DSNAME=NEWF,UNIT=TAPE,VOLUME=SER=MYSAV1, 
// LABEL=(2,SL) ,DISP=(NEW,PASS) , DCB= (RECFM=FB, 
// BLKSIZE=800,LRECL=80) 

X 
X 

allow the program to put card images onto the second file of a tape. The LRECL 
parameter of 80 and the format (80A1) relate the record size of the file to the 
record size in the format. 

Formats used in output association must specify the conversion of at least 
one element by A-conversion. (Normally nA1-conversion is used.) Integers are 
converted into strings and I-conversion must not be used. In addition to 
A-conversion, quoted literals, X-, H-, T-, and Z-conversion may be specified 
[7,8]. Carriage control must be provided for printing; otherwise the first 
character of the string is consumed for this purpose. Consider 

OUTPUT ('TITLE' ,6,' (1H1, 131A1/(1X, 131A1» ') 

When a value is assigned to TITLE, a page is ejected and the value titles the 
next page of output. The use of literals is illustrated by 

OUTPUT ( , SUM' , 6 ," (' SUM=', 127 A 1/ ( 1 X, 131 A 1) ) "} 

which includes identifying information with the format. Subsequently, 

SUM = 300 
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causes the printout 

SUM=300 

The predefined associations can be changed. Thus, 

OUTPUT ( , OUTPUT' , 6, , (1 X, 12 OA 1) ') 

shortens the line length for OUTPUT to 120 characters. 

Programmer-defined input associations can be made using the function INPUT. 
The form of this function is 

INPUT (name,number,length) 

INPUT associates the name with the data set reference number, and specifies that 
the resulting string is to have the given length. (Notice in particular that no 
format is specified.) INPUT has a predefined association equivalent to 

INPUT('INPUT',5,80) 

The specified length has some special properties. If the length is less than 
the record size on the data set being read, the last part of the record is lost. 
Hence, 

INPUT('INPUT',5,72) 

changes the association for INPUT so that only 72 columns are read. Columns 73 
through 80 are lost if data set reference number 5 is associated with ordinary 
card input. A length longer than the record size should not be specified. 

Several other functions are provided for I/O-related operations [7,8]. All 
of these functions return the null string as value. 

DETACH (name) removes any input and output association which the name may have. 
For example, 

DETACH ( , OUTPUT' ) 

terminates normal print output. 
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ENDFILE{number) writes an end of file on (closes) the data set specified by the 
number. For example, 

ENDFILE (20) 

closes the data set associated with data set reference number 20. 

REWIND (number) repositions the data set associated with the number to the first 
file. For example, 

REWIND (10) 

rewinds the data set associated with data set reference number 10. 
Subsequently, reference to 10 refers to the beginning of the data set specified 
by FT10F001 (even if 10 is a multifile data set). 

BACKSPACE (number) backspaces one record on the data set associated with the 
number. 
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Chapter 9. Structure of a SNOBOL4 Run 

A SNOBOL4 run consists of three distinguishable parts: 

1) compilation, 
2) execution, and 
3) termination. 

During compilation, the SNOBOL4 system is initialized and the source 
program is compiled into an intermediate object code in a form suitable for 
interpretation during program execution. Compilation uses the same processes as 
conversion of a string to object code using the CODE function. Additional 
processes are involved in the rea.ding of lines to be compiled from the input 
data set, printing of a source listing on an output data set, and noting errors 
in the source program. 

Input to the compiler comes from the standard input stream associated with 
data set reference number S. The compiler begins reading program from the data 
set associated with FTOSF001. Only 72 characters per line are read, so that 
columns 73-80 of card-image input may be used for sequential numbering. The 
compiler continues to read until it encounters the end statement. If an end of 
file is encountered before the end statement is found, the compiler goes to the 
next file for reference number S. The input program therefore may be in several 
sections given by FTOSF001, FTOSF002, etc. 

The listing of the program with sequential statement numbers goes on the 
standard print output. When the end statement is encountered, the compilation 
process stops. A listing of the compilation and placement of statement numbers 
can be controlled by control lines. A minus sign at the beginning of a line 
identifies a control line. Program listing is suppressed by the control line 

-UNLIST 

Program listing is restored by the control line 

-LIST 
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The normal positioning of statement numbers is at the right side of the source 
listing. Statement numbers optionally may be placed at the left side of the 
listing. The control line 

-LIST LEFT 

changes statement numbering to the left. Right positioning of the statement 
numbers is restored by 

-LIST RIGHT 

or simp~y 

-LIST 

Blanks may appear between the minus sign and LIST or UNLIST. One or more 
blanks must appear between the LIST and the LEFT or RIGHT. Any characters other 
than LEFT following blanks on the LIST control line cause the same action as 
RIGHT. An erroneous control line is ignored. 

Certain kinds of errors in the source program are detected during 
compilation. When an error is detected in a statement, compilation of that 
statement is terminated and an error message is printed below the statement, 
describing the nature of the error. A list of compilation error messages is 
given in Appendix B. A marker pointing to the vicinity of the error is also 
printed. This marker may be somewhat before or after the error, depending on 
the nature of the error. Since compilation of a statement stops when an error 
is encountered, only the first error in anyone statement is detected. 
Compilation continues in spite of erroneous statements. However, if more than 
fifty erroneous statements are found, error termination occurs and the program 
is not executed. 

Execution of the compiled object code begins when compilation is complete. 
Ordinarily, program execution begins with the first statement of the program. 
Program execution may be started at any labelled statement by specifying that 
label in the end statement. The label of the first statement to be executed is 
placed in the position of the subject. For example, 

END INIT 

causes program execution to begin with the statement labelled INIT. 

Data read from the standard input source begins with the first line after 
the end statement. Data printed during execution follows the source listing. 
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Upon termination, a statistics summary is printed to provide timing 
information and counts of certain program operations. If the keyword &DUMP is 
on at program termination, a dump of natural variables and unprotected keywords 
is also provided. Only natural variables with nonnull values are included. If 
the value of a variable is not a string, the same representation of the value is 
given as would be given if the value were printed as the result of an output 
association. 

There are four kinds of termination: 

1) normal, 
2) error, 
3) intervention, and 
4) catastrophic. 

Normal termination occurs when the program transfers to END or flows into 
the end statement. The number of the last statement executed and the function 
level are printed. The following program illustrates the printout produced by a 
program that terminates normally. 

SNOBOL4 (VERSION 2.0, OCT. 7, 1968) 
BELL TELEPHONE LABORATORIES, INCORPORATED 

&DUMP = 1 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

THIS PROGRAM IS THE ALGORITHM BY HAO WANG (CF. 'TOWARD 
MECHANICAL MATHEMATICS', IBM JOURNAL OF RESEARCH AND 
DEVELOPMENT 4(1) JAN 1960 PP.2-22.) FOR A PROOF-DECISION 
PROCEDURE FOR THE PROPOSITIONAL CALCULUS. IT PRINTS OUT A 
PROOF OR DISPROOF ACCORDING AS A GIVEN FORMULA IS A THEOREM 
OR NOT. THE ALGORITHM USES SEQUENTS WHICH CONSIST OF TWO 
LISTS OF FORMULAS SEPARATED BY AN ARROW (--*). INITIALLY, FOP 
A GIVEN FORMULA F THE SEQUENT 

--* F 

IS FORMED. WANG HAS DEFINED RULES FOR SIMPLIFYING A FORMULA 
IN A SEQUENT BY REMOVING THE MAIN CONNECTIVE AND THEN 
GENERATING A NEW SEQUENT OR SEQUENTS. THERE IS A TERMINAL 
TEST FOR A SEQUENT CONSISTING OF ONLY ATOMIC FORMULAS: 

A SEQUENT CONSISTING OF ONLY ATOMIC FORMULAS IS V~LID IF 
THE TWO LISTS OF FORMULAS HAVE A FORMULA IN COMMON. 

BY REPEATED APPLICATION OF THE RULES, ONE IS LED TO A SET OF 
SEQUENTS CONSISTING OF ATOMIC FORMULAS. IF EACH ONE OF THES~ 

SEQUENTS IS VALID THEN SO IS THE ORIGINAL FORMULA. 

UNOP 
BINOP 
FORMULA 

= 'NOT' 
= 'AND' I 'IMP' I 'OR' I 'EQU' 

= , , UNOP • OP '(' BAL • PHI ')' 
, , BINOP . OP '(' BAL . PHI ',' 

I 
BAL • PSI ')' 

2 
3 
4 
4 
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* 
* READ 

* 

ATOM = (" BAL ' , ) • A 

DEFINE {' WANG (ANTE, CONSEQi,'pH1:')/;;~' ) 
"',.""./' .""j 

EXP = TR 1M (I NPUT,) 
OUTPUT = 
OUTPUT = 'FORMULA:' EXP 
OUTPUT = 

WANG ( ; " -.! i3tp) 
OUTPUT"= ) 'VALID' 

INVALID OUTPUT = 'NOT VALID' 

* WANG 

TEST 

* 
* ANOT 

* AAND 

* AOR 

* 
* 
* 
* 
* AIMP 

* 
AEQU 

* CNOT 

* CAND 

* COR 

* CIMP 

* CEQU 

END 

OUTPUT 
ANTE 
CONSEQ 
ANTE 
CONSEQ 
ANTE 
CONSEQ 

= ANTE' --* , CONSEQ 
FORMULA = 
FORMULA = 
= ANTE ' , 
= • , CONSEQ ~ • 
ATOM = 
A 

WANG(ANTE,CONSEQ • , PHI) 

WANG(ANTE • • PHI • • PSI,CONSEQ) 

WANG(ANTE • • PHI,CONSEQ) 
WANG(ANTE ' • PSI,CONSEQ) 

WANG(ANTE ' , PSI,CONSEQ) 
WANG(ANTE,CONSEQ • • PHI) 

WANG(ANTE • , PHI' , PSI,CONSEQ) 
WANG(ANTE,CONSEQ ' , PHI • , PSI) 

WANG(ANTE ' • PHI,CONSEQ) 

WANG (ANTE, CONSEQ ' • PHI) 
WANG(ANTE,CONSEQ • • PSI) 

WANG(ANTE,CONSEQ • • PHI' • PSI) 

WANG (ANTE ' , PHI,CONSEQ • , PSI) 

WANG(ANTE ' • PHI,CONSEQ ' , PSI) 
WANG(ANTE • , PSI,CONSEQ • , PHI) 

NO ERRORS DETECTED DURING COMPILATION 
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:F(END) 

: F (INVALID) 
: (READ) 
: (READ) 

:S( $('A' OP) 
:S( $('C' OP) 

: F (FRETURN) 
:S(RETURN)F(TEST) 

:S (RETURN) F (FRETURN) 

:S(RETURN)F(FRETURN) 

: F (FRETURN) 
:S{RETURN)F(FRETURN) 

:F(FRETURN) 
:S(RETURN)F(FRETURN) 

: F (FRETURN) 
:S(RETURN)F(FRETURN) 

:S(RETURN)F(FRETURN) 

:F(FRETURN) 
:S(RETURN)F(FRETURN) 

:S (RETURN) F(FRETURN) 

:S (RETURN)F (FRETURN) 

: F (FRETURN) 
:S(RETURN)F(FRETURN) 

5 

6 

7 
8 
9 
10 

11 
12 
13 

14 
15 
16 
17 
18 
19 
20 

21 

22 

23 
24 

25 
26 

27 
28 

29 

30 
31 

32 

33 

34 
35 
36 



FORMULA: IMP(NOT(OR(P,Q» ,NOT(P» 

--* IMP(NOT(OR(P,Q» ,NOT(P» 
NOT (OR (P,Q» --* NOT(P) 
--* NOT(P) OR(P,Q) 
P --* OR (P,Q) 
P --* P Q 

VALID 

FORMULA: NOT(IMP(NOT(OR(P,Q» ,NOT(P») 

--* NOT(IMP(NOT(OR(P,Q» ,NOT(P») 
IMP(NOT(OR(P,Q» ,NOT(P» --* 
NOT(P) --* 
--* P 

NOT VALID 

FORMULA: IMP (AND (NOT(P) ,NOT(Q» ,EQU(P,Q» 

--* IMP (AND (NOT (P) , NOT (Q) ) ,EQU (P, Q) ) 
AND (NOT(P) ,NOT(Q» --* EQU(P,Q) 
NOT(P) NOT(Q) --* EQU(P,Q) 
NOT(Q) --* EQU(P,Q) P 
--* EQU(P,Q) P Q 
P --* P Q Q 
Q --* P Q P 

VALID 

FORMULA: IMP{IMP(OR(P,Q) ,OR(P,R» ,OR(P,IMP(Q,R») 

--* IMP(IMP(OR(P,Q) ,OR(P,R» ,OR(P,IMP(Q,R») 
IMP (OR (P,Q) ,OR(P,R» --* OR(P,IMP(Q,R» 
OR(P,R) --* OR(P,IMP(Q,R» 
P --* OR(P,IMP(Q,R» 
P --* P IMP(Q,R) 
P Q --* P R 
R --* OR(P,IMP(Q,R» 
R --* P IMP(Q,R) 
R Q --* P R 
--* OR(P,IMP(Q,R» OR(P,Q) 
--* OR(P,Q) P IMP(Q,R) 
--* P IMP (Q,R) P Q 
Q --* P P Q R 

VALID 

NORMAL TERMINATION AT LEVEL 0 
LAST STATEMENT EXECUTED WAS 7 

DUMP OF VARIABLES AT TERMINATION 

NATURAL VARIABLES 

A = • Q • 
ABORT = PATTERN 
ARB = PATTERN 
ATOM = PATTERN 
BAL = PATTERN 
BINOP = PATTERN 
EXP = 'IMP (IMP(OR(P,Q) ,OR(P,R» ,OR(P,IMP{Q,R»)' 
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FAIL = PATTERN 
FENCE = PATTERN 
FORMULA = PATTERN 
INPUT = 'IMP (IMP (OR (P,Q) ,OR (P,R» ,OR (P, IMP (Q,R» ) 
OP = 'IMP' 
OUTPUT = 'VALID' 
REM = PATTERN 
SUCCEED = PATTERN 
UNOP = 'NOT' 

UNPROTECTED KEYWORDS 

&ABEND = 0 
&ANCHOR = 0 
&DUMP = 1 
&FTRACE = 0 
&FULLSCAN = 0 
&MAXLNGTH = 5000 
&STLIMIT = 50000 
&TRACE = 0 

SNOBOL4 STATISTICS SUMMARY-
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1331 MS. COMPILATION TIME 
550 MS. EXECUTION TIME 
162 STATEMENTS EXECUTED, 34 FAILED 

o ARITHMETIC OPERATIONS PERFORMED 
63 PATTERN MATCHES PERFORMED 
o REGENERATIONS OF DYNAMIC STORAGE 

3.40 MS. AVERAGE PER STATEMENT EXECUTED 



Error termination occurs in case of a programming error or internal 
condition sufficiently serious to prevent continued execution. The statement 
number in which execution terminated and the function level are printed. An 
error message is printed indicating the cause of the termination. A listing of 
termination messages is given in Appendix B. Dumps and statistics are then 
printed as for normal termination. 

The following program, from which the input data was removed, illustrates a 
typical listing resulting from error termination. Because input data is 
lacking, statement 1 fails and the array A is not formed. Subsequent reference 
to A as an array in statement 4 is erroneous~ 

SNOBOL4 (VERSION 2.0, OCT. 7, 1968) 
BELL TELEPHONE LABORATORIES, INCORPORATED 

* LET THE FIRST DATA CARD SPECIFY THE MAXIMUM NUMBER OF 
* CARDS TO BE SORTED. GENERATE AN ARRAY. 

* A = ARRAY(TRIM(INPUT}) 

* * DEFINE THE FUNCTION INSERT. 

* DEFINE('INSERT(J) TEMP') 

* * READ THE CARDS INTO THE ARRAY. 

* INIT 

* 

I = 
A<I> 
OUTPUT 

I + "1 
= TRIM (INPUT) 

= A<I> 
: F (SORT) 
: (INIT) 

* LET N BE THE NUMBER OF CARDS. INITIALIZE THE INDEX AND 
* THEN SORT. 

* SORT N = I - 1 
1=1 

* * COMPARE TWO SUCCESSIVE CARDS. 

* SORTA 

* 
LGT(A<I>,A<I + 1» : S (SORTC) 

* IF THEY ARE IN THE PROPER ORDER, INCREMENT THE INDEX 
* (UNLESS SORTING IS FINISHED) AND CONTINUE. 

* SORTB 

* 
I = LT (I, N - 1) I + 1 :S(SORTA)F(DONE) 

* OTHERWISE, INSERT THE CARD IN ITS PROPER PLACE. 

* SORTC 

* 
INSERT (I + 1) 

* PUNCH SORTED CARDS. 

* DONE 

PUNCH 

I 1 
OUTPUT = 
OUTPUT = A<I> 
PUNCH = OUTPUT 
I = LT(I,N) I + 1 

: (SORTB) 

: S (PUNCH) F (END) 

1 

2 

3 
4 
5 

6 
7 

8 

9 

10 

11 
12 
13 
14 
15 
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* * FUNCTION DEFINITION 

* INSERT TEMP = A<J - 1> 
A<J - 1> = A<J> 
A<J> = TEMP 
J = GT(J,2) J - 1 
LGT(A<J - 1>,A<J» 

END 

NO ERRORS DETECTED DURING COMPILATION 

ERROR TERMINATION IN STATEMENT 
ERRONEOUS ARRAY REFERENCE 

SNOBOL4 STATISTICS SUMMARY-

4 AT LEVEL 0 

782 MS,. COMPILATION TIME 
166 MS. EXECUTION TIME 

: F (RETURN) 
:S (INSERT)F (RETURN) 

4 STATEMENTS EXECUTED, 1 FAILED 

170 

1 ARITHMETIC OPERATIONS PERFORMED 
o PATTERN MATCHES 
o REGENERATIONS OF DYNAMIC STORAGE 

41.50 MS. AVERAGE PER STATEMENT 

16 
17 
18 
19 
20 
21 



Intervention termination occurs when operator or system action terminates 
the run. This may occur if the run exceeds specified limits. If the SNOBOL4 
system is able to regain control after intervention, the message "CUT BY SYSTEM 
IN STATEMENT n AT LEVEL m" is printed. Dumps and statistics are then printed as 
for normal termination. 

The following program illustrates intervention termination resulting from 
failure to sense an end-of-file condition. On the IBM System/360, when the data 
on FT05F001 is exhausted, statement 3 fails. A subsequent read attempt results 
in an attempt to open FT05F002, the next file for data set reference number 5 
(see Chapter 8). A second file is not intended or provided and the error 

message (IHC219I) is printed by the FORTRAN I/O routines. Control then returns 
to the SNOBOL4 system and run statistics are printed. 

SNOBOL4 (VERSION 2.0, OCT. 7, 1968) 
BELL TELEPHONE LABORATORIES, INcqRPORATED 

NM = BREAK (' , , ) 
DEFINE('C(N,M) ') 
INPUT NM 

• N , , , BREAK (' ') • M 

READ 
OUTPUT = , C (' N ',' M ') = , C (N, M) 

* 
C 

END 

M 
C = 
C = 

LT(N - M,M) N - M 
EQ (M,O) 1 
N * C(N - 1,M - 1) / M 

NO ERRORS DETECTED DURING COMPILATION 

C(15,6)=5005 
C(17,10)=19448 
C(20,2)=190 
C(25,24)=25 
C(25,24)=25 

IHC219I 

: S (RETURN) 
: (RETURN) 

TRACEBACK FOLLOWS- ROUTINE ISN REG. 14 

IBCOM A60356BC 

CUT BY SYSTEM IN STATEMENT 3 AT LEVEL 0 

233 MS. COMPILATION TIME 
483 MS. EXECUTION TIME 

74 STATEMENTS EXECUTED, 37 FAILED 
110 ARITHMETIC OPERATIONS PERFORMED 

4 PATTERN MATCHES 
o REGENERATIONS OF DYNAMIC STORAGE 

6.53 MS. AVERAGE PER STATEMENT 

: (READ) 

1 
2 
3 
4 

5 
6 
7 
8 
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On the IBM System/360, cancellation prevents the SNOBOL4 system from regaining 
control. A system completion code is given but no further output is printed. 
The following program illustrates such intervention termination. The program 
loops, since the function DELETE is called with a null string for CHAR. The 
system completion code 222 indicates cancellation which results, in this case, 
from exceeding a specified time limit. 

* DEFINE ('DELETE (STRING,CHAR) ') 

* READ STRING = TRIM (INPUT) : F (END) 
CHAR = TRIM (INPUT) : F (ERR) 
OUTPUT = STRING 
OUTPUT CHAR 
OUTPUT = DELETE (STRING, CHAR) 
OUTPUT = : (READ) 

* * THIS FUNCTION DELETES OCCURRENCES OF A CHARACTER FROM A STRING 

* DELETE 

END 

STRING 
DELETE 

CHAR = 
= STRING 

: S (DELETE) 
: (RETURN) 

NO ERRORS DETECTED DURING COMPILATION 

THE RATIO OF ATOMIC WEIGHTS OF THE TWO COMPOUNDS SUGGESTS A RELATIONSHIP 
I 
THE RATO OF ATOMC WEGHTS OF THE TWO COMPOUNDS SUGGESTS A RELATONSHP 

ONE OF THE MORE COMMON OCCURRENCES IN EVERYDAY COMMUNICATION IS 
o 
NE F THE MRE CMMN CCURRENCES IN EVERYDAY CMMUNICATIN IS 

THE FIRST OF THREE TUTORIAL LECTURES ON THE PRESENT STATE OF ART 

COMPLETION CODE - SYSTEM=222 USER=OOO 

1 

2 
3 
4 
5 
6 
7 

8 
9 
10 

Catastrophic termination occurs when system or machine malfunction causes a 
situation so serious that intervention termination is impossible. In the case 
of a catastrophic termination, there may be no indication of the source or cause 
of the termination. Print and punch output may be incomplete or lacking 
al together,. 
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Chapter 10. Programming Details 

The preceding sections have presented, in varying degrees of detail, the 
language features of SNOBOL4. There remains a collection of odds and ends that 
may be of more or less interest and utility to the programmer. This section 
includes a number of such items, a potpourri whose ingredients may interest 
various individuals. 

When efficiency is considered, the basic criterion is the total amount of 
time required to execute the program. Execution time is most affected by the 
algorithm used and the structure of the program; both are beyond the scope of 
discussion here. A less significant, but often more tangible, measure of 
efficiency is the average amount of time required to execute program statements. 
If the algorithm and program structure are fixed, two reasonable goals are: 

1) reducing the number of statements which have to be executed, and 
2) reducing the average execution time per statement. 

These goals generally conflict. The number of executed statements may be 
reduced by increasing their complexity, but the average execution time is 
increased. More can be said about the techniques for improving the efficiency 
of statement execution. Some considerations listed below suggest good practices 
for program organization and data representation. 

Comparative timing figures are given in some cases. These figures are 
approximate; precise figures depend on the machine and program environment. 

Many considerations involved in using patterns efficiently were discussed 
earlier. A few points deserve special emphasis. 

Many patterns can or should match only beginning at the first character of 
the subject string. This is often true of an entire program, in which the 
anchored mode can be set using &ANCHOR. While the anchored mode can be turned 
on and off, it is also possible to anchor a pattern by beginning it with FENCE 
or POS(O). 

Q = FENCE P 
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creates a pattern Q that is an anchored version of P. 

It is worth remembering that pattern matching usually takes longest when 
the pattern fails to match. This is particularly true when the pattern is not 
anchored. Consider the two examples 

&ANCHOR = 1 
') ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )' BAL 

and 

&ANCHOR = 0 
, ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )' BAL 

The pattern match in the second example takes 9.96 times as long as in the 
first. 

The pattern resulting from BREAK{CS) is designed to stream quickly through 
a string looking for any character in CS. ARB, on the other hand, operates 
without any knowledge of what is expected to follow it. ARB first matches the 
null string. Then if the component beyond it fails, ARB matches one character, 
then two characters, and so on. As an example, consider the two patterns 

P1 
P2 

= 
= 

BREAK(',') LEN(1) 
ARB ',' 

In most cases, these two patterns match the same set of strings. Consider the 
two cases 

'ABCDEFGHIJKLMNOPQRSTUVWXYZ,' P1 

and 

'ABCDEFGHIJKLMNOPQRSTUVWXYZ,' P2 

The pattern match in the second case takes 9.88 times as long as in the first. 

ARB has many legitimate uses and is essential in many cases. BREAK 
provides a more efficient way of performing commonly used matching operations. 

The pattern resulting from ANY (CS) matches any character at a speed 
independent of the order of the characters in CS. In an explicit alternation of 
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characters, alternatives are matched in order, and the time it takes to find a 
match depends on the order of the alternatives. Consider the patterns 

P1 = 

and 

P2 = 
+ 

ANY ( 'ABCDEFGHIJKLM' ) 

'A' I 'B' I 
I 'J' I 'K' 

, C' 

'L' 
'D' I 
I'M' 

'E' I 'F' I 'G' 

Applied to several different characters, the statements 

C P1 

and 

C P2 

give the following results: 

1 • For C = 'A' , p1 is 1.08 times as fast as 

2. For C = 'G' , P1 is 2.44 times as fast as 

3. For C = 'M' , P1 is 3.79 times as fast as 

The formation of the pattern for alternation also 
than that for ANY. 

'H' I 'I' 

P2. 

P2. 

P2. 

takes more time and space 

If possible, a pattern structure should be constructed once and assigned to 
a variable. An expression which appears as a pattern in a statement must be 
evaluated each time the statement is executed. This form of evaluation, which 
constructs the pattern over and over, consumes both time and space. 

If 

P1 o I 1 121 3 I 4 I 5 161 7 I 8 I 9 

then for the statements 

N P1 

and 
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N 0111213141516171819 

the second statement takes 7.59 times as long as the first if N is 5. This 
comparison includes the effects of the additional space consumed when the second 
example is used repeatedly. Space consumed by patterns must eventually be 
reclaimed by storage regeneration, which adds to the running time of the 
program. 

The fullscan mode, established by turning on the keyword &FULLSCAN, is 
useful in some more complicated and esoteric applications. Since the fullscan 
mode bypasses all heuristics, pattern matching may take much longer. Consider 
the pattern 

P = ARB , , , 

This pattern is usually inefficient, but serves particularly well to illustrate 
the effect of heuristics. In the case of 

and 

&FULLSCAN = 0 
'ABCDEFGHIJKLMNOPQRSTUVWXYZ' P 

&FULLSCAN = 1 
'ABCDEFGHIJKLMNOPQRSTUVWXYZ' P 

both examples fail to match, but the second takes 13.42 times as long to do so. 
This is an extreme example, and the great difference in timing is due to all the 
combinations that ARB goes through. In the first case, the heuristics make the 
pattern act as if it were anchored. 

In general, the fullscan mode does not produce such marked effects. On the 
other hand, since statements similar to the examples above are likely to occur 
in the average program, it is well not to turn the fullscan mode on except for 
statements in which it is required. 

Immediate value assignment forms a substring and generates a variable for 
every intermediate successful match for the pattern component with which it is 
associated,. This is a time and space consuming process,. For example, if 
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EXP = 
P1 = 
P2 = 

'D*A/(B*C) + (D-B)*C' 
BAL $ B1 '+' BAL $ B2 
BAL. B1 '+' BAL. B2 



then in 

EXP P1 

and 

EXP P2 

P2 is 1.37 times faster than P1~ 

The most serious inefficiencies in SNOBOL4 programs are usually the result 
of awkward or cumbersome representation of data. Encoding data as long strings 
of symbols may be very inefficient. Furthermore, every modification of a string 
by concatenation or decomposition produces a new string which consumes storage. 
Matching may be quite slow. On the other hand, arrays and programmer-defined 
data objects permit a considerable range of data structures, and operations on 
such structures are usually relatively efficient~ 

Consider two representations of a list: one as an array of elements, and 
the other as a string of items separated by commas. Suppose the list elements 
are of the form 

ACOMP 
ACOMPC 
ADREAL 
AEQLC 
AEQLIC 

Then the list represented by an array has the form 

LIST<1> = 'ACOMP' 
LIST<2> = 'ACOMPC' 
LIST<3> = 'ADREAL' 
LIST<4> = 'AEQLC' 
LIST<S> = 'AEQLIC' 

and the list represented by a string has the form 

LIST = ·ACOMP,ACOMPC,ADREAL,AEQLC,AEQLIC, ••• • 

The speed of operating on the list depends, of course, on the operations to 
be performed and the number of items on the list. consider the problem of 
creating another list from LIST with the items in reverse order. This may be 
done for the two data representations by the following program segments. 
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REV 

REV 

J = 
I 
NLIST 
NLIST(J) 
J = 
I = 

ITEMP 
CLIST 
NLIST 
CLIST 
NLIST 

PROTOTYPE (LIST) 
1 
= 

J -
I + 

= 
= 
= 

= 
COpy (LIST) 

LIST(I) 
1 
1 

BREAK (' , ') • ITEM LEN ( 1 ) 
LIST 

ITEMP = 
= ITEM ',' NLIST 

: F (OUT) 

: (REV) 

: F (OUT) 
: (REV) 

For a typical list of ten items of the type shown, the reversal of the string 
representation takes 2.3 times as long as for the array representation. For a 
list of 100 items, the factor is 3.7. 

There are pros and cons for both representations. Lists of varying or 
unknown length are easier to handle as strings. Pattern matching can also be 
used directly on the string representation to perform operations like finding 
duplicate elements. On the other hand, access to individual items in the array 
representation is much simpler. consider the problem of isolating the 73rd of 
100 items in the string representation. 

Dynamic storage is continually allocated during program compilation and 
execution. All forms of programmer data reside in dynamic storage and compete 
for available space. This includes compiled program, strings, patterns, and so 
forth. Some data, depending on its use, is transient and may be discarded. 
Other data is always accessible to the program and must be kept. When dynamic 
storage is exhausted, storage is regenerated, collecting all needed data and 
deleting all data inaccessible to the program. This process occurs 
automatically, and ordinarily does not concern the programmer directly. Run 
statistics indicating a large number of storage regenerations suggest potential 
trouble, however. Continual reconstruction of patterns and manipulation of very 
long strings are the most common causes of frequent storage regeneration. 
Storage regeneration, although it may degrade execution speed, should not be a 
factor in program efficiency unless it occurs frequently. 

In special circumstances, a programmer may want to force storage 
regeneration. This is done with the function COLLECT which forces storage 
regeneration. COLLECT returns as value the amount of storage (in bytes on the 
IBM System/360) remaining free after regeneration. COLLECT(N) fails if less 
than N bytes remain after regeneration. 

Some programs are organized to process several sections of data in order, 
necessitating removal of residual data between sections. The function CLEAR 
assists in this matter. 
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CLEAR 0 

sets the values of all natural variables, including ARB, BAL, etc., to the null 
string. CLEAR does not affect the value of keywords, I/O associations, function 
definitions, the value of array elements, or the value of fields of defined data 
objects. Furthermore, variables are cleared only at the level at which CLEAR is 
called. This permits the values of selected variables to be saved at a lower 
level and then restored. For example, the selected variables can be made formal 
arguments to a function which calls CLEAR. If the values of X, Y, Z, and PAT 
are to be saved, a function RESET could have the defining statement 

DEFINE (. RESET (X, Y , Z, PAT) f) 

with the procedure 

RESET CLEARO : (RETURN) 

The values of X, Y, Z, PAT, and RESET are saved when RESET is called, and 
restored when it returns. All other natural variables are cleared. The values 
of primitive patterns can be restored using the values of the corresponding 
keywords, which are not affected by CLEAR. For example, 

ARB = &ARB 

restores the orignal value of ARB. 
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Appendices 

Appendix A. 

This formal description of the syntax of SNOBOL4 is given in a syntax 
notation used in many IBM manuals [10]. Rules explaining this notation follow. 

1) A class of elements is denoted by a nQ~~tiQn Y~~i~Ql~, which consists of 
lower ~ase letters and periods and must begin with a letter. 

2) Literal characters are denoted by capital letters or special characters. 
Lower case letters and syntactic symbols are underlined when they 
represent literals. A lone underscore stands for itself. 

3) A §Yn~~££i£ ~ni£ is defined as one of the following: 

a. a notation variable, 

b. literal characters, or 

c. any collection of variables, literals, and syntax notation 
surrounded by braces or brackets. 

4) Braces {} denote a grouping. 

5) Square brackets [] denote an option. 
brackets may appear or be omitted. 

Anything enclosed within 

6) Vertical stacking of syntactic units and the vertical stroke 
alternatives. 

denote 

7) Three dots denote optional repetition of the immediately preceding 
syntactic unit one or more times. 

8) Footnotes are used where restrictions apply to notation variables. 

181 



The following notation variables define the components of a statement, 
leading to the definition of a statement itself. 

digit: 0111213141516171819 

letter: AIBICIDIEIFIGIH1IIJIK1LIMINIOIPIQIRISITIUIVIWIXIYIZI 
~IQI£IQ,gl!lglhliljl~llIIDln'2IE,gl~I§lllg1YI~I~IYI~ 

alphanumeric: letterldigit 

identifier: letter [alphanumericl~I_] ••• 

blanks: one or more blank characters 

integer: digit [digit] ••• 

real: integer ~ [integer] 

unary: +1-1*1~1&1$I?t'lml#l% 

binary: blanks [[+I-I*I/I**I~I$lllml#'%] blanks] 

string: zero or more EBCDIC characters 

sliteral: 

dliteral: 

literal: 

element: 

operation: 

'string 1 ' 

"string2 " 

sliteralldliterallintegerlreal 

[unary] .•• ~identifie. r } 
literal 
function. call 
array. ref 
( expression ) 

element binary {element 1 expression} 

expression: [blanks] [elementloperation] [blanks] 

arg.list: expression [, expression] ••. 

function. call: identifier { arg.list 

array.ref: identifier < arg.list > 

label: {alphanumeric string3} 4 

subject,.field: 11lanks element 

pattern. field: blanks expression 

lnot including a single quote 
2not including a double quote " 
3not including a blank or semicolon 
4but not END 

182 



object. field: blanks expression 

equal: blanks = 

goto: {( expression) 1< expression >} 

goto,. field: blanks ~ [blanks] ~goto ~ 
S goto [blanks] [F goto] 
F goto [blanks] [S goto] 

eol: end of line 

eos: [ blanks] {; I eol} 

assign. statement: [label] subject.field equal [object.field] [goto.field] eos 

match. statement: [label] subject.field pattern.field [goto.field] eos 

repl.statement: [label] subject.field pattern. field equal [object.field] 
[goto.field] eos 

degen.statement: [label] [subject.field] [goto.field] eos 

end. statement: END [blanks [labelIEND]] eos 

statement: assign.statementlmatch. statementlrepl.statementl degen, • statement I 
end. statement 

A SNOBOL4 program consists of a sequence of statements terminating with an 
end statement. Interspersed among these statements may be comment lines and 
control lines. 

comment. line: * string eol 

control.line: - [blanks] [LIST blanks [LEFTIRIGHT]l [blanks] eol 
'LUNLIST j 

A statement begins immediately following the preceding statement, i,. e. at 
the beginning of a line or following a semicolon. A statement may be continued 
on the next line by using a continue line. 

continue. line: {+I~} remainder of statement 

Comment, control, and continue lines must begin at the beginning of a line. 
They may TI2t start in the interior of a line following a semicolon. A statement 
may be broken over a line boundary anywhere a blank is mandatory. If a 
statement has the form 

part1 blanks part2 

it may be continued as 
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part1 [blanks] eol {+I~} [blanks] part2 

where the + or. begins a new line, and takes the place of the mandatory blank. 

Prototypes .for arrays, programmer-defined functions, and programmer-defined 
data types are evaluated during program execution, not during compilation. 
These prototypes may be given explicitly as literals or may be computed in a 
variety of ways. When ARRAY, DEFINE, or DATA is executed, the corresponding 
prototype is then analyzed. The syntax of these prototypes follows. 

identifier. list: identifier [, identifier] ••• 

data. prototype: identifier ( identifier. list ) 

function.prototype: identifier ( [identifier.list] ) [identifier.list] 

signed. integer: [[+1-] integer] 

dimension: signed.integer [~ signed.integer] 

array. prototype: dimension [, dimension] ••• 
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Appendix B. 

1. BINARY OPERATOR MISSING OR IN ERROR 

A binary operator is erroneous or a blank between expressions is missing. Some 
examples are 

x = 
TEXT 
M = 

F(X)*** 2 
= • (. TEXT .). 

(A B) N 

2. ERRONEOUS INTEGER 

An integer which is too large appears in the source program. 
System/360, the maximum integer is 2 31 -1. 

3. ERRONEOUS LABEL 

A label does not begin with a digit or letter. 

4. ERRONEOUS OR MISSING BREAK CHARACTER 

On the IBM 

A break character appears in an erroneous context, or a nested expression is not 
closed. Some examples are 

X = 
A<1 ,2) 
F (G (X) 

(A,B) 
= 5 

: S (L) 

5. ERRONEOUS REAL NUMBER 

A real number which is too large or too small appears in the source program. On 
the IBM System/360, the range of real numbers is on the order of 10- 78 to 10 75 • 

6. ERRONEOUS SUBJECT 

An erroneous construction occurs in the subject. An example is 

, = 2 

7. ERROR IN GOTO 

A syntactic error occurs in the goto field. Some examples are 

: S (L 1) S (L2) 
: S<A) 
:S(L1) L2 

8. ILLEGAL CHARACTER IN ELEMENT 

An illegal character occurs in a element. Some examples are 
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z 
X 
E 

= 

= 

A+B 
3: 
3.25P 

9. IMPROPERLY TERMINATED STATEMENT 

A statement terminates before a construction is complete. An example is 

N = M + 

10. PREVIOUSLY DEFINED LABEL 

A label has bccurred previously in the program. The first occurrence of the 
label holds, and subsequent occurrences are erroneous. 

11. UNCLOSED LITERAL 

The closing quote on a literal is missing. Some examples are 

LETTER = 'A 
TEXT = 'HE YELLED STOP" 

1. ARGUMENT NOT DEFINED FUNCTION. 

The function argument to ARG or LOCAL was not the name of a programmer-defined 
function. 

2. CALL OF UNDEFINED FUNCTION. 

A call was made to a function or operation for which no definition exists. 

3. ERRONEOUS ARRAY REFERENCE. 

An array reference was made to an object that does not have data type ARRAY. 
That is, A<I) is erroneous if the value of A is not an array. 

4. ERRONEOUS END STATEMENT. 

The starting label given in the end statement did not occur in the program, or 
there was a syntactic error in the end statement. 

5. ERRONEOUS PROTOTYPE. 

A prototype in a call to ARRAY, DATA, or DEFINE had a syntax error,. 

6. ERROR IN ARITHMETIC OPERATION. 

Overflow or an illegal operation- (such as division by zero) occurred in an 
arithmetic operation. 

7. ERROR IN COMPILER. 

An error occurred in the SNOBOL4 compiler. The program listing should be sent 
to the authors. 
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8. ERROR IN INTERPRETER. 

An error occurred in the SNOBOL4 interpreter. The program listing should be 
sent to the authors. 

9. ERROR IN PATTERN MATCHING .• 

An error occurred in the SNOBOL4 pattern matching program. The program listing 
should be sent to the authors. 

10. ERROR IN STORAGE REGENERATION. 

A programming error occurred in the SNOBOL4 storage regeneration program. The 
program listing should be sent to the authors. 

11. ERROR IN SUBROUTINE. 

A programming error occurred in one of the SNOBOL4 subroutines. The program 
listing should be sent to the authors. 

12. EXCEEDED LIMIT ON STATEMENT EXECUTION. 

Too many statements were executed. See the keyword &STLIMIT. 

13. EXCESSIVE COMPILATION ERRORS. 

The number of compilation errors exceeded fifty. An excessive number of 
compilation errors is assumed to indicate a situation so serious that further 
processing should be discontinued. 

14. EXECUTION OF STATEMENT WITH COMPILATION ERROR. 

The program encountered a statement that contains a compilation error. 
statements may be reached either by a transfer or normal program flow. 

15. FAILURE IN GOTO EVALUATION. 

A function or operation called in the evaluation of a goto failed. 

16. ILLEGAL DATA TYPE. 

Such 

The data type of an object was incorrect for the operation that was to be 
performed on it. For example, this error termination results if an attempt is 
made to multiply an integer by a pattern. 

17. ILLEGAL TRACE TYPE. 

The second argument to TRACE or STOPTR is not one of the trace types VALUE, 
CALL, RETURN, FUNCTION, LABEL, or KEYWORD.. 

18. ILLEGAL UNIT DESIGNATION. 

A negative number was given as a data set reference number in an input or output 
association. 

19. IMPROPER STATEMENT TERMINATION. 

During conversion from STRING to CODE, the string was exhausted without proper 
statement termination. 
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20. INCORRECT NUMBER OF ARGUMENTS. 

A primitive function was called with too many arguments or an array reference 
has been made with too many indices. This error may also occur if too few 
arguments are supplied for a primitive function, but only if the primitIve 
function is invoked by APPLY or through a synonym for the function. 

21. INSUFFICIENT STORAGE TO CONTINUE. 

Storage available to the SNOBOL4system was inadequate for program execution to 
continue. 

22~ NEGATIVE NUMBER IN ILLEGAL-CONTEXT. 

A negative number was given as an argument to LEN, POS, INPUT, RPOS, RTAB, or 
TAB. 

23. NULL STRING IN ILLEGAL CONTEXT,. 

The indirectness operator was applied to the null string, as 

Z $ () 

24. OBJECT EXCEEDS SIZE LIMIT. 

An attempt was made to form a data object which exceeds the internal limit on 
the size of structures. This limit is 65535 bytes on the IBM System/360,. 

25. OVERFLOW IN PATTERN MATCHING. 

Internal storage used by the pattern matching program was exceeded,. This 
condition is usually the result of excessive recursion in a pattern. 

26. READING ERROR. 

An error return occurred from an input operation. 

27. RETURN FROM ZERO LEVEL. 

A transfer to RETURN, FRETURN, or NRETURN occurred outside the call of a defined 
function. 

28. STACK OVERFLOW. 

The stack used by the SNOBOL4 system was exhausted. This condition is usually 
the result of excessive recursion in programmer-defined functions. Stack 
overflow may also occur during storage regeneration. 

29. STRING OVERFLOW. 

A string exceeded the maximum length set for strings. 
&MAXLNGTH. 

30. TOO MANY DATA TYPES,. 

See the keyword 

The limit on the number of programmer-defined data types was exceeded. This 
limit is 899. 
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31. UNDEFINED OR ERRONEOUS GOTO. 

An attempt was made to transfer to a label which does not occur in the program, 
or the result of evaluating a goto was not a natural variable. 

32. UNKNOWN KEYWORD. 

Reference was made to a nonexistent keyword. 

33. VARIABLE NOT GIVEN WHERE REQUIRED. 

An object with only a value, not a name, has occurred where a name is required. 
Examples are 

SIZE(A) = 3 

and 

: (TRIM(END)) 

Trace printout and the dump of natural variables following termination 
require the construction of strings whose lengths depend on the values involved. 
A fixed amount of space is available for such messages and in some cases this 
space may not be large enough to form the required string. In these cases, the 
message 

***PRINT REQUEST TOO LONG*** 

is printed in lieu of the long string. Execution then continues normally. On 
the IBM System/360, the space available for the formation of such strings is 
about 3800 characters. There is no limit to the length of a string that can be 
printed as a result of an output association, except the limit on the length of 
strings. 
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Appendix C. 

SNOBOL4 (VERSION 2.0, OCT. 7, 1968) 
BELL TELEPHONE LABORATORIES, INCORPORATED 

190 

* * THIS PROGRAM IS A SYNTACTIC RECOGNIZER FOR SNOBOL4 STATEMENTS. 

* * FIRST A SERIES OF PATTERNS IS BUILD CULMINATING IN A PATTERN 
* WHICH MATCHES ONLY SYNTACTICALLY CORRECT STATEMENTS. CARD IMAGES 
* ARE THEN READ IN AND PROCESSED. INCORRECT STATEMENTS ARE 
* IDENTIFIED BY AN ERROR MESSAGE,. 

* * THE FUNCTION OPT FORMS A PATTERN THAT MATCHES EITHER NULL OR ITS 
* ARGUMENT. 

* DEFINE('OPT(PATTERN) ') 1 

* LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 2 

* * ON THE IBM SYSTEM/360 LETTERS INCLUDE LOWER CASE AS WELL. 

* DIGITS = '0123456789' 3 
ALPHANUMERICS = LETTERS DIGITS 4 
BLANKS = SPAN(' ') 5 
INTEGER = SPAN (DIGITS) 6 
REAL = SPAN (DIGITS) '.' OPT(SPAN(DIGITS» 7 
IDENTIFIER = ANY (LETTERS) OPT(SPAN(ALPHANUMERICS '_. '» 8 
UNARY = ANY('+-&.$*?~%#') 9 
BINARY = ANY('-+.$*I/*#') 1'**' 10 
BINARYOP = BLANKS OPT (BINARY BLANKS) 11 
UNQALPHABET = &ALPHABET 12 
UNQALPHABET "" = 13 
UNQALPHABET "'" = 14 
DLITERAL = , '" SPAN (UNQALPHABET '" ") ,n, 15 
SLITERAL "'" SPAN(UNQALPHABET ,n,) "'" 16 
LITERAL SLITERAL I DLITERAL I INTEGER I REAL 17 
ELEMENT = OPT (UNARY) (IDENTIFIER I LITERAL I *FUNCTION_CALL 18 

'(' *EXPRESSION I OPT (BLANKS) ')' I *ARRAY_REF) 18 
OPERATION = *ELEMENT BINARYOP (*ELEMENT I *EXPRESSION) 19 
EXPRESSION = OPT (BLANKS) (*ELEMENT I *OPERATION I NULL) 20 

OPT (BLANKS) 20 
ARG_LIST = *EXPRESSION OPT(',' *ARG_LIST) 21 
FUNCTION_CALL = IDENTIFIER' (' *ARG_LIST ')' 22 
ARRAY_REF = IDENTIFIER ,<, *ARG_LIST ,>, 23 
LABEL = ANY (ALPHANUMERICS) (BREAK(' ;') I REM) 24 
LABEL_FIELD = OPT (LABEL) 25 
GOTO = '(' EXPRESSION ')' I ,<, EXPRESSION ,>, 26 
GOTO_FIELD = OPT(BLANKS ':' FENCE OPT(BLANKS) (GOTO I 'S' 27 

GOTO I 'F' GOTO I 'S' GOTO OPT (BLANKS) 'F' 27 
GOTO I 'F' GOTO OPT (BLANKS) 'S' GOTO) 27 
OPT(BLANKS» 27 

RULE = OPT(BLANKS ELEMENT (BLANKS '=' OPT (BLANKS EXPRESSION 28 
) I OPT(BLANKS EXPRESSION OPT (BLANKS '=' OPT(BLANKS 28 
EXPRESSION»») 28 

EOS = RPOS (0) I ';' 29 



STATEMENT = LABEL_FIELD RULE GOTO_FIELD EOS 30 

* * THE PATTERN FOR RECOGNIZING STATEMENTS IS NOW FORMED. THE 
* PROGRAM TO ANALYZE INPUT CARDS FOLLOWS. 

* COMMENT = ANY ( , *- , ) 
CONTINUE ANY('.+') • cc 
INPUT('INPUT',5,72) 
&ANCHOR = 1 
&FULLSCAN = 1 
EOF = 

* * INITIALIZE PROCESS FROM FIRST CARD. 

* READI 

* 
* 
* 
NEXTST 

READC 

ANALYZE 

SKIP 
* 

IMAGE = TRIM (INPUT) 
OUTPUT = , IMAGE 

DO NOT PROCESS COMMENT OR CONTINUE CARDS. 

IMAGE COMMENT 
IDENT (EOF) 
OUTPUT = , LINE 
IMAGE = LINE 
LINE = TRIM (INPUT) 
LINE COMMENT 
LINE CONTINUE = 
OUTPUT = , CC LINE 
IMAGE IMAGE LINE 
IMAGE STATEMENT = 
DIFFER (IMAGE) 
OUTPUT = ,«< NO SYNTACTIC ERROR »>, 
OUTPUT = 

: F (END) 

31 
32 
33 
34 
35 
36 

37 
38 

:F(READC)S(READI) 39 
:F(END) 40 

41 
42 

: F (ENDGAME) 
:S (PRINT) 
:F (ANALYZE) 

: (READC) 
:F(ERROR) 
: S (ANALYZE) 

: (NEXTST) 

43 
44 
45 
46 
47 
48 
49 
50 
51 

"* IF AN ERRONEOUS STATEMENT IS ENCOUNTERED IN A STRING OF 
* STATEMENTS SEPARATED BY SEMICOLONS, SUBSEQUENT STATEMENTS ARE 
* NOT PROCESSED. 

* ERROR OUTPUT = ,«< SYNTACTIC ERROR »>, 
* PRINT OUTPUT = , LINE 
ENDGAME EOF = 1 

* 
* OPT OPT = NULL I PATTERN 
END 

NO ERRORS DETECTED DURING COMPILATION 

: (SKIP) 

: (READC) 
: (ANALYZE) 

: (RETURN) 

52 

53 
54 

55 
56 
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* * A VARIETY OF CORRECT AND INCORRECT SNOBOL4 STATEMENTS FOLLOW 

* -LIST 
COMPUTE X = Y + 3 ** -'2' 

«< NO SYNTACTIC ERROR »> 

X = Y+Z 
«< SYNTACTIC ERROR »> 

ELEMENT<I,J>= ELEMENT<I,-J> + ELEMENT<-I,J> 
«< SYNTACTIC ERROR »> 

A<X,Y,Z + 1> = 
«< NO SYNTACTIC ERROR »> 

F(X,STRUCTURE_BUILD(TYPE,LENGTH + 1» 

SETUP PAT1 = (BREAK(',:') $ FIRST I SPAN(' .') $ SECOND 
• VALUE ARBNO(BAL I LEN(1» : ($SWITCH) 

«< NO SYNTACTIC ERROR »> 

DEFINE (' F (X, Y) ) 
«< SYNTACTIC ERROR »> 

L = LT(N,B<J> L + 1 
«< SYNTACTIC ERROR »> 

NEWONE_TRIAL X = ,COORD<1,K> X * X 
«< NO SYNTACTIC ERROR »> 

TRIM (INPUT) 
«< SYNTACTIC ERROR »> 

PAT1 : S (OK) : F (BAD) 

x = 3.01; Y = 2. 
«< NO SYNTACTIC ERROR »> 

NORMAL TERMINATION AT LEVEL 0 
LAST STATEMENT EXECUTED WAS 40 

SNOBOL4 STATISTICS SUMMARY-

Z 

1464 MS. COMPILATION TIME 
2047 MS. EXECUTION TIME 

= X * -Y 

171 STATEMENTS EXECUTED, 32 FAILED 
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o ARITHMETIC OPERATIONS PERFORMED 
39 PATTERN MATCHES PERFORMED 
o REGENERATIONS OF DYNAMIC STORAGE 

11.97 MS. AVERAGE PER STATEMENT EXECUTED 



SNOBOL4 (VERSION 2.0, OCT. 7, 1968) 
BELL TELEPHONE LABORATORIES, INCORPORATED 

* * TOPOLOGICAL SORT 

* * MAPS A PARTIAL ORDERING OF OBJECTS INTO A LINEAR ORDERING 

* * A (1) , ,A (2), ••• , A (N) 

* * SUCH THAT IF A(S) < A(T) IN THE PARTIAL ORDERING,THEN S < T. 
* (CF. D.E.KNUTH, THE ART OF COMPUTER PROGRAMMING,VOLUME 1, 
* ADDISON-WESLEY,MASS.,1968, P.262) 

* &DUMP = 1 1 
OUTPUT ( , OUT' , 6 , , (1 21 A 1) ') 2 
PAIR = BREAK ( , < ' ) • MU LEN (1) BREAK (' , ') .. NU LEN ( 1 ) 3 
DATA('ITEM(COUNT,TOP)') 4 
DATA ('NODE (SUC,NEXT) ') 5 
DEFINE ( , DECR (X) ') 6 
DEFINE ( , INDEX (TAU) ') 7 

* * READ IN THE NUMBER OF ITEMS, N, AND GENERATE AN ARRAY OF ITEMS. 
* 
* 
* 
* 

* 

EACH ITEM HAS TWO FIELDS, (COUNT,TOP), WHERE 
COUNT = NO. OF ELEMENTS PRECEEDING IT. 
TOP = TOP OF LIST OF ITEMS SUCCEEDING IT. 

N 
X 

= TRIM(INPUT) 
= ARRAY ( , 0:' N) 

* INITIALIZE THE ITEMS TO (O,NULL). 

* T1 

* 

X<I> 
I 

= ITEM (0,) 
= 1+1 

* READ IN RELATIONS. 

* T1A = '1 THE RELATIONS ARE:' 

: F (T1A) 
: (T 1) 

T2A 
OUT 
REL 
OUTPUT 
REL 

= TRIM (INPUT) ',' : F (T3A) 
= REL 

T2 PAIR = :F(T2A) 
J = INDEX (MU) 
K = INDEX (NU) 

* * SINCE MU < NU, INCREASE THE COUNT OF THE KTH ITEM AND ADD A 
* NODE TO THE LIST OF SUCCESSORS OF THE JTH ITEM. 

* T3 

* 

COUNT (X<K» = COUNT (X<K» + 1 
TOP (X<J» = NODE(K,TOP(X<J») : (T2) 

* A QUEUE IS MAINTAINED OF THOSE ITEMS WITH ZERO COUNT FIELD.. 
* THE LINKS FOR THE QUEUE, QLINK, ARE KEPT IN THE COUNT FIELD. 
* THE VARIABLES F,R POINT TO THE FRONT AND REAR OF THE QUEUE. 

* T3A 

* 
OPSYN('QLINK' ,'COUNT') 

* INITIALIZE THE QUEUE FOR OUTPUT. 

* 

8 

9 
10 

11 
12 

13 
14 
15 
16 
17 
18 

19 
20 

21 

193 



T4 

T4A 

* 

R = 0 
QLINK(X(O» 0 
K = 0 
K = ?X(K + 1> K + 1 
QLINK(X(R» = EQ(COUNT(X(K» ,0) 
R = K 
F = QLINK(X(O» 

: F (T4A) 
K :F (T4) 

: (T4) 

* OUTPUT THE FRONT OF THE QUEUE. 

* 
T5 

* 

OUT 
OUTPUT 
N 
P 

= '0 THE LINEAR ORDERING IS:' 
= NE(F,O) $(F ':') :F(T8) 
= N - 1 
= TOP (X(F» 

* ERASE RELATIONS. 

* 
T6 

* 

IDENT (P) 
DECR(.COUNT(X(SUC(P»» 

: S (T7) 
: S (T6A) 

* IF COUNT IS ZERO ADD ITEM TO QUEUE. 

* QLINK(X(R» = SUC(P) 
R = SUC (P) 

T6A P = NEXT(P) : (T6) 

* * REMOVE FROM QUEUE. 

* 
T7 

* 
F = QLINK (X(F» : (T5) 

* FUNCTION DEFINITIONS. 

* DECR 

* INDEX 

* T8 
END 

$X 
$X 

= GT ($X, 1) $X - 1 
= 0 

: S (RETURN) 
: (FRETURN) 

INDEX = DIFFER ($ (TAU ': '» $(TAU ':') :S(RETURN) 
TERMCT = LT(TERMCT,N) TERMCT + 1 :F(FRETURN) 
INDEX = TERMCT 
$(TERMCT ':') = TAU 
$(TAU ':') = TERMCT : (RETURN) 

OUTPUT = NE(N,O) 'THE ORDERING CONTAINS A LOOP.' 

NO ERRORS DETECTED DURING COMPI,LATION 
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22 
23 
24 
25 
26 
27 
28 

29 
30 
31 
32 

33 
34 

35 
36 
37 

38 

39 
40 

41 
42 
43 
44 
45 

46 
47 



THE RELATIONS ARE: 
LETTERS <ALPHANUM, NUMBERS <ALPHANUM, 
BLANKS<OPTBLANKS, 
NUMBERS<REAL, 
NUMBERS<INTEGER, 
LETTERS<VARIABLE,ALPHANUM<VARIABLE, 
BINARY<BINARYOP,BLANKS<BINARYOP, 
UNQALPHABET<DLITERAL, 
UNQALPHABET<SLITERAL, 
SLITERAL<LITERAL,DLITERAL<LITERAL,INTEGER<LITERAL,REAL<LITERAL, 

THE LINEAR ORDERING IS: 
LETTERS 
NUMBERS 
BLANKS 
BINARY 
UNQALPHABET 
INTEGER 
REAL 
ALPHANUM 
OPTBLANKS 
BINARYOP 
SLITERAL 
DLITERAL 
VARIABLE 
LITERAL 

NORMAL TERMINATION AT LEVEL 0 
LAST STATEMENT EXECUTED WAS 46 

DUMP OF VARIABLES AT TERMINATION 

NATURAL VARIABLES 

ABORT = PATTERN 
ALPHANUM: = 2 
ARB = PATTERN 
BAL = PATTERN 
BINARY: = 9 
BINARYOP: = 10 
BLANKS: = 4 
DLITERAL: = 12 
F = 0 
FAIL = PATTERN 
FENCE = PATTERN 
I = 15 
INPUT = 'SLITERAL<LITERAL,DLITERAL<LITERAL,INTEGER<LITERAL,REAL<LITERAL 
INTEGER: = 7 
J = 6 
K = 14 
LET'rERS: = 1 
LITERAL: = 14 
MU = 'REAL' 
N = 0 
NU = 'LITERAL' 
NUMBERS: = 3 
OPTBLANKS: = 5 
OUT = '0 THE LINEAR ORDERING IS:' 
OUTPUT = 'LITERAL' 
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PAIR = PATTERN 
R = 14 
REAL: = 6 
REM = PATTERN 
SLITERAL: == 13 
SUCCEED = PATTERN 
TERMCT = 14 
UNQALPHABET: = 11 
VARIABLE: = 8 
X = ARRAY('O:14') 
1: = 'LETTERS' 
10: 'BINARYOP' 
11: 'UNQALPHABET' 
12: 'DLITERAL' 
13: 'SLITERAL' 
14: = 'LITERAL' 
2: = 'ALPHANUM' 
3: = 'NUMBERS' 
4: = 'BLANKS' 
5: = 'OPTBLANKS' 
6: = 'REAL' 
7: = 'INTEGER' 
8: = 'VARIABLE' 
9: = 'BINARY' 

UNPROTECTED KEYWORDS 

&ABEND = 0 
&ANCHOR = 0 
&DUMP = 1 
&FTRACE = 0 
&FULLSCAN 
&MAXLNGTH = 
&STLIMIT = 
&TRACE = 0 

o 
5000 

50000 

SNOBOL4 STATISTICS SUMMARY-

196 

1431 MS. COMPILATION TIME 
632 MS. EXECUTION TIME 
430 STATEMENTS EXECUTED, 70 FAILED 

93 ARITHMETIC OPERATIONS PERFORMED 
24 PATTERN MATCHES PERFORMED 
o REGENERATIONS OF DYNAMIC STORAGE 

1.47 MS. AVERAGE PER STATEMENT EXECUTED 



I CEBOL,. VER. 2 ICEB 
************************************************************************ICEB 
* *ICEB 
* *ICEB 
* ICEBOL *ICEB 
* *ICEB 
* IS A PROGRAM TO COMPRESS SNOBOL4 SOURCE PROGRAMS. IT DOES THIS *ICEB 
* BY REPLACING A SEQUENCE OF BLANKS BY A SINGLE BLANK AND IF NEC- *ICEB 
* ESSARY INDICATES AN END-OF-STATEMENT WITH A SEMI-COLON. *ICEB 
* A TYPICAL COMPRESSION FACTOR IS THREE TO ONE. *ICEB 
* *ICEB 
* USAGE *ICEB 
* THE INPUT DATA TO ICEBOL CAN BE ANY SNOBOL4 PROGRAM OR SECTION OF*ICEB 
* PROGRAM PRECEDED BY ZERO OR MORE CONTROL CARDS. CONTROL CARDS *ICEB 
* START WITH A VERTICAL LINE IN COLUMN 1, AND MAY BE ANY OF THE *ICEB 
* FOLLOWING (WHERE BLANKS ARE IRRELEVENT) *ICEB 
* ,DON'T CRUNCH COMMENTS *ICEB 
* ,NO COMMENTS *ICEB 
* I NO LIST *ICEB 
* COMMENTS ARE NORMALLY INCLUDED AS PART OF THE COMPRESSED DECK BUT*ICEB 
* KEEPING WITHIN THE SPIRIT OF ICEBOL SUCCESSIVE BLANKS ARE *ICEB 
* NORMALLY REPLACED BY A SINGLE BLANK AND THEREBY MULTI-LINE *ICEB 
* COMMENTS CAN BE COMPRESSED. THE FIRST CONTROL CARD *ICEB 
* ABOVE SUPPRESSES THE COMPRESSION OF COMMENTS,. THE SECOND CONT- *ICEB 
* ROL CARD ABOVE REMOVES COMMENTS ALTOGETHER. *ICEB 
* SNOBOL4 CONTROL CARDS (CARDS BEGINNING WITH A MINUS , -) NORMAL-*ICEB 
* LY APPEAR BY THEMSELVES ON A SINGLE LINE. THESE WILL BE REMOVED *ICEB 
* IF THE THIRD CONTROL CARD ABOVE IS INCLUDED. *ICEB 
* *ICEB 
* LABELING AND CARD NUMBERING *ICEB 
* *ICEB 
* THE FIRST FOUR CHARACTERS OF THE FIRST CARD ARE USED TO LABEL THE*ICEB 
* DECK. THE DECK IS SEQUENCE NUMBERED. *ICEB 
* *ICEB 
* 
* 
* 
* 
* 

J. F. GIMPEL 
7/15/68 

*ICEB 
*ICEB 
*ICEB 
*ICEB 
*ICEB 

************************************************************************ICEB 

BLANK 
BLANK. END 
DUP 

DUP .. END 
RADJ 

RADJ.END 
LADJ 

LADJ·. END 
TOSS 

&DUMP = 1 
INPUT('INPUT',5,72) 
DEFINE ( 'BLANK(N) ') 
BLANK = DUP (' ',N) 
DEFINE (' DUP (S, N) ') 
DUP = GT(N,O) DUP S 
N = N - 1 
DEFINE ( 'RADJ(S,N) ') 
(MANY.BLANKS S) RTAB(N) REM .. RADJ 

MANY. BLANKS = MANY.BLANKS ' 
DEFINE ( 'LADJ (S, N) ') 
(S MANY.BLANKS) TAB(N} • LADJ 

MANY. BLANKS = MANY.BLANKS ' 
DEFINE ('TOSS (A) ') 
IDENT (A) 
CARD.NO = CARD.NO + 1 
A = LADJ(A ,72) LABEL RADJ(CARD.NO,4) 
PUNCH = A 
OUTPUT = 
OUTPUT = A 

: (BLANK. END) 
: (RETURN) 
: (DUP. END) 
: F (RETURN) 
: (DUP) 
: (RADJ. END) 
: S ( RETURN) 
: (RADJ) 
: (LADJ.END) 
: S (RETURN) 
: (LADJ) 
: (TOSS. END) 
: S (RETURN) 

ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 
ICEB 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
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TOSS. END 
SPACE 
SPACE. END 

CAT. IN. 1 

CI.7 

CI.6 

CI.8 

CI.9 

CI,. 10 

OUTPUT = 
DEFINE('SPACE(N) ') 
N GT(N,O) • OUTPUT REM = N - 1 
SPECIAL = FENCE ( '*' I '-') 
COMMENT = FENCE '*' 
COMM,.FLAG = 'ON' 
LIST. FLAG 'ON' 
CRUNCH. FLAG = 'ON' 
IGNORK. CARD = FAIL 
INDENT = BLANK(30) 
OUTPUT ( 'CONTROL' , 6 , '( 13 2A 1) ') 
CONTROL = 1 
SPACE (20) 
OUTPUT = INDENT INDENT 'ICEBOL2' 
CONTROL = '+' INDENT INDENT ' ____ _ 
CONTROL = 1 
DEFINE ( • CAT,. IN (X)' , 'CAT. IN. l' ) 
LABEL = , 
CAT. NEXT 
CAT. NEXT 
CAT. NEXT 
CAT. NEXT 
CAT. NEXT 

= CAT. GET 0 
FENCE 'I' 
FENCE ' , 
LEN(4) • LABEL 
"DON'T" ARBNO (' 

CRUNCH. FLAG = 'OFF' 

') "CRUNCH" 

CAT.NEXT 'NO' ARBNO(' ') 'COMM' = 
COMM.FLAG = 'OFF' 
CAT.NEXT 'COMM' = 
COMM.FLAG = 'ON' 
CAT.NEXT 'NO' ARBNO(' ') 'LIST' = 
LIST. FLAG = 'OFF' 
CAT.NEXT 'CONT' = 
LIST. FLAG = 'ON' 

: (RETURN) 
: (SPACE. END) 
:S(SPACE) F(RETURN) 

: (CAT. IN. END) 

: F (CAT. IN. 1) 
:S(CI.7) 
:S(CI.1) 
: (CI. 1 ) 

ARBNO(' ') "COMM" = 
:F (CI. 6) 

:F(CI.8) 

:F(CI.9) 

:F(CI.10) 

: F (CI. 11) 

C I. 1 1 : (CAT. IN. 1 ) 
CI.1 DEFINE ( 'CAT. IN (X)' , 'CAT. IN. 2') 

IGNORE,. CARD = (IGNORE. CARD I '*' ) IDENT (COMM. FLAG, 'OFF' ) 
IGNORE.CARD = (IGNORE.CARD I '-') IDENT( LIST. FLAG, 'OFF') 
IGNORE.FLAG = (IGNORE.FLAG I '*' RPOS(O» IDENT{ CRUNCH.FLAG 
, 'ON') IDENT(COMM.FLAG , 'ON') 
IGNORE,. CARD = FENCE (RPOS (O) I IGNORE.. CARD) 

CAT.IN.2 CAT.IN = CAT.NEXT 
CI.3 CAT.NEXT = CAT.GETO :F{CI.2) 

CAT.NEXT SPECIAL :S(CI.SPECIAL) 
CAT,. IN SPECIAL : S (RETURN) 
CAT.NEXT FENCE '.' = , , :F(CI.5) 
CAT.IN = CAT.IN CAT.NEXT : (CI.3) 

CI.5 CAT. IN ' , : S (CI. 61) 
CAT.NEXT FENCE' , :F(CI.61) 
CAT.IN = CAT.IN CAT.NEXT : (CI.3) 

CI.61 CAT.IN I:' :S(RETURN) 
CAT.NEXT FENCE' , SPAN ( , '} ':' = , :' 

CAT.IN = CAT.IN CAT.NEXT 
CI.SPECIAL 

IDENT(CRUNCH.FLAG,'OFF') 
CAT,. IN COMMENT 
CAT. NEXT COMMENT = , , 

CI.COMMENT 
CAT.NEXT ' , SPAN(' ') = , , 
CAT.IN = CAT.IN CAT.NEXT 

CI.2 DEFINE ( 'CAT.IN(X) , , 'CAT.IN.3') 
CAT. IN.. 3 
CAT. IN .. END 

198 

: F (RETURN) 
: (CI. 3) 

: S (RETURN) 
: F (RETURN) 
: F (RETURN) 

: S (CI. COMMENT) 
: (CI. 3) 
: (RETURN) 
: (FRETURN) 

ICEB 61 
ICEB 62 
ICEB 63 
ICEB 64 
ICEB 65 
ICEB 66 
ICEB 67 
ICEB 68 
ICEB 69 
ICE~ 70 
ICEB 71 
ICEB 72 
ICEB 73 
ICEB 74 
ICEB 75 
ICEB 76 
ICEB 77 
ICEB 78 
ICEB 79 
ICEB 80 
ICEB 81 
ICEB 82 
ICEB 83 
ICEB 84 
ICEB 85 
ICEB 86 
ICEB 87 
ICEB 88 
ICEB 89 
ICEB 90 
ICEB 91 
ICEB 92 
ICEB 93 
ICEB 94 
ICEB 95 
ICEB 96 
ICEB 97 
ICEB 98 
ICEB 99 
ICEB 100 
ICEB 101 
ICEB 102 
ICEB 103 
ICEB 104 
ICEB 105 
ICEB 106 
ICEB 107 
ICEB 108 
ICEB 109 
ICEB 110 
ICEB 111 
ICEB 112 
ICEB 113 
ICEB 114 
ICEB 115 
ICEB 116 
ICEB 117 
ICEB 118 
ICEB 119 
ICEB 120 
ICEB 121 
ICEB 122 
ICEB 123 



DEFINE ('CAT.GET (X) ') 
CAT. GET INPUT LEN(72) • CAT.GET 

CAT.GET.CNT = CAT.GET.CNT + 1 
CAT.GET = TRIM (CAT. GET) 
OUTPUT = 'INPUT CARD' RADJ(CAT.GET.CNT 
CAT. GET IGNORE. CARD 

CAT. GET. END 
DEFINE ('SPEW (LINE) , ) 

SPEW BUFF = DIFFER (BUFF, NULL) BUFF ';' 
GT(SIZE(BUFF) + SIZE( LINE), 72} 
BUFF = BUFF LINE 
LT(SIZE(BUFF) ,70) 
TOSS (BUFF) 
BUFF = 

SPEW. 2 NBUFF = BUFF 
BUFF = LINE 

SPEW,. 3 A = 
BUFF CHUNK = 
IDENT (A, NULL) 
LE(SIZE( NBUFF) + SIZE (A ) ,72) 
BUFF = A BUFF 
NBUFF ';' RPOS(O) = 
NBUFF '; , RPOS(O) = 
BUFF = , , BUFF 

SPEW. 5 BUFF FENCE ARBNO(' ') ';' = 
BUFF = '.' BUFF 

PERIOD. OUT 
BUFF FENCE' • = '.' 

TOSS (NBUFF) 
GT(SIZE(BUFF) ,72) 
NBUFF = 

SPEW. 6 NBUFF = NBUFF A 
SPEW. END QT =. .... .., .. 

DQ = , .. , 
SQ = ..... 

: (CAT. GET. END) 
: F ( FRETURN) 

, 5) ': ' CAT. GET 
:S(CAT.GET)F(RETURN) 

: J SPEW. END) 

: S (SPEW. 2) 

: S ( RETURN) 

: (RETURN) 

:S(SPEW.ERROR) 
: S (SPEW. 6) 

:S( PERIOD. OUT) 
: F (SPEW. 5) 
: ( PERIOD. OUT) 
: S (PERIOn. OUT) 

: F (RETURN) 
: (SPEW. 3) 
: (SPEW. 3) 

QUOTED.LITERAL = SQ BREAK(SQ) SQ I DQ BREAK (DQ) DQ 
OTHER = LEN(1) BREAK(QT ' ; (),' ) (QUOTED.LITERAL I '(. 
NULL) I RTAB (0) 

SQ.O 

SQ.5 
SQ.4 
SQ.7 

SQ.8 

SQ. START 
SQ.1 

SQ.3 

CHUNK = FENCE (QUOTED.LITERAL I ANY(' ( ;') I OTHER) • A 
PAT = ARB. B (' • I ANY (QT)) • C 
NB72S.PATTERN = (TAB(60) ARB) • N ' , ARBNO(NOTANY(' ')) • B 
RPOS (0) 
S = CAT. IN () 
S SPECIAL 
TOSS (BUFF) 
BUFF = 
IDENT(CRUNCH.FLAG , 'ON') 
TOSS (S) 
S COMMENT 
GT (SIZE (S) , 72) 
S LEN (72) • S REM • S S 
S NB72S.PATTERN = 
TOSS (N) 
S = '* , B SS 
S = S SS 
S LEN (7 2 ) • N = • * , 
TOSS (N) 
S (BREAK (' ;') I REM) • N = 
SPAT = 
IDENT ( , , , C ) 
N = N B ' , 
S FENCE SPAN(' ') = 
S BREAK(C) • D C = 

: F (SQ. 99) 
: F (SQ. START) 

:S(SQ.4) 
: (SQ. 0) 
: F (SQ. 5) 
: F ( SQ. 5) 

:F(SQ.8) 

: (SQ.7) 

: (SQ. 7) 

: F (SQ. 2) 
: F ( SQ.3) 

: (SQ. 1 ) 
: F (SQ. ERR) 

ICEB 124 
ICEB 125 
ICEB 126 
ICEB 127 
ICEB 128 
ICEB 129 
ICEB 130 
ICEB 131 
ICEB 132 
ICEB 133 
ICEB 134 
ICEB 135 
ICEB 136 
ICEB 137 
ICEB 138 
ICEB 139 
ICEB 140 
ICEB 141 
ICEB 142 
ICEB 143 
ICEB 144 
ICEB 145 
ICEB 146 
ICEB 147 
ICEB 148 
ICEB 149 
ICEB 150 
ICEB 151 
ICEB 152 
ICEB 153 
ICEB 154 
ICEB 155 
ICEB 156 
ICEB 157 
ICEB 158 
ICEB 159 
ICEB 160 
ICEB 161 
ICEB 162 
ICEB 163 
ICEB 164 
ICEB 165 
ICEB 166 
ICEB 167 
ICEB 168 
ICEB 169 
ICEB 170 
ICEB 171 
ICEB 172 
ICEB 173 
ICEB 174 
ICEB 175 
ICEB 176 
ICEB 177 
ICEB 178 
ICEB 179 
ICEB 180 
ICEB 181 
ICEB 182 
ICEB 183 
ICEB 184 
ICEB 185 
ICEB 186 
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N=NBCDC : (SQ. 1 ) ICEB 187 
SQ.2 N = N S ICEB 188 

SPEW (N) : (SQ.O) ICEB 189 
SQ.99 TOSS (BUFF) ICEB 190 

OUTPUT = 'END OF FILE REACHED BY ICEBOL' ICEB 191 
ENDFILE (7) ICEB 192 

END ICEB 193 
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The result of applying ICEBOL to itself follows. 

ICEBOL.VER.2 ICEB 
************************************************************************ICEB 
* * * ICEBOL * * IS A PROGRAM TO COMPRESS SNOBOL4 SOURCE PROGRAMS. IT ICEB 
* DOES THIS * BY REPLACING A SEQUENCE OF BLANKS BY A SINGLE BLANK AND ICEB 
* IF NEC- * ESSARY INDICATES AN END-OF-STATEMENT WITH A SEMI-COLON. * A ICEB 
* TYPICAL COMPRESSION FACTOR IS THREE TO ONE. * * USAGE * THE INPUT ICEB 
* DATA TO ICEBOL CAN BE ANY SNOBOL4 PROGRAM OR SECTION OF* PROGRAM ICEB 
* PRECEDED BY ZERO OR MORE CONTROL CARDS. CONTROL CARDS * START WITH A ICEB 
* VERTICAL LINE IN COLUMN 1, AND MAY BE ANY OF THE * FOLLOWING (WHERE ICEB 
* BLANKS ARE IRRELEVENT) * I DON'T CRUNCH COMMENTS * I NO 'COMMENTS * I ICEB 
* NO LIST * COMMENTS ARE NORMALLY INCLUDED AS PART OF THE COMPRESSED ICEB 
* DECK BUT* KEEPING WITHIN THE SPIRIT OF ICEBOL SUCCESSIVE BLANKS ARE * ICEB 
* NORMALLY REPLACED BY A SINGLE BLANK AND THEREBY MULTI-LINE * COMMENTS ICEB 
* CAN BE COMPRESSED. T~E FIRST CONTROL CARD * ABOVE SUPPRESSES THE ICEB 
* COMPRESSION OF COMMENTS. THE SECOND CONT- * ROL CARD ABOVE REMOVES ICEB 
* COMMENTS ALTOGETHER. * SNOBOL4 CONTROL CARDS (CARDS BEGINNING WITH A ICEB 
* MINUS , -) NORMAL-* LY APPEAR BY THEMSELVES ON A SINGLE LINE. THESE ICEB 
* WILL BE REMOVED * IF THE THIRD CONTROL CARD ABOVE IS INCLUDED. * * ICEB 
* LABELING AND CARD NUMBERING * * THE FIRST FOUR CHARACTERS OF THE ICEB 
* FIRST CARD ARE USED TO LABEL THE* DECK.. THE DECK IS SEQUENCE ICEB 
* NUMBERED. * * * J. F. GIMPEL * 7/15/68 * * * *************************ICEB 
* ********************************************** ICEB 

&DUMP = 1; INPUT{'INPUT',5,72); DEFINE{ 'BLANK{N) ') : (BLANK.END) ;BLANK ICEB 
.BLANK = DUP(' ',N) : (RETURN) ; BLANK. END DEFINE {'DUP (S,N) ') : (DUP.END) ICEB 
DUP DUP = GT{N,O) DUP S :F(RETURN); N = N - 1 : (DUP) ;DUP.END DEFINE { ICEB 
• 'RADJ(S,N) '} : (RADJ.END) ;RADJ (MANY.BLANKS S) RTAB(N) REM .. RADJ :S( ICEB 
• RETURN} ; MANY.BLANKS ~ MANY.BLANKS ' , : (RADJ) ;RADJ.END DEFINE{ICEB 
• 'LADJ(S,N) ') : (LADJ.END) ;LADJ (S MANY.BLANKS) TAB(N) • LADJ :S(RETURN) ICEB 

MANY.BLANKS = MANY.BLANKS ' , : (LADJ) ;LADJ.END DEFINE ('TOSS (A) ') ICEB 
.: (TOSS. END} ;TOSS IDENT{A) :S(RETURN); CARD.NO = CARD.NO + 1; A = LADJ(AICEB 
.,72) LABEL RADJ{CARD.NO,4); PUNCH = A; OUTPUT =; OUTPUT = A; OUTPUT = ICEB 
• : (RETURN) ; 'TOSS. END DEFINE (' SPACE (N) ') : (SPACE. END) ; SPACE N GT (N, 0) '. ICEB 
.OUTPUT REM = N - 1 :S{SPACE) F{RETURN) ; SPACE. END SPECIAL = FENCE ( '*' ICEB 
'. I '-'); COMMENT = FENCE '*'; COMM. FLAG = 'ON'; LIST. FLAG = 'ON' ICEB 

CRUNCH.FLAG = 'ON'; IGNORE.CARD = FAIL; INDENT = BLANK (30) ; OUTPUT ( ICEB 
• 'CONTROL' , 6 , '(132A1) '); CONTROL = 1; SPACE (20); OUTPUT = INDENT ICEB 
.INDENT 'ICEBOL2'; CONTROL = '+' INDENT INDENT ' _______ '; CONTROL = 1 ICEB 

DEFINE ( 'CAT. IN (X)' , 'CAT. IN. l' ) : (CAT. IN. END) ;CAT. IN. 1 LABEL = ICEB 
'; CAT.NEXT = CAT.GET{) :F {CAT. IN. 1) ; CAT.NEXT FENCE' I' :S (CI. 7) ICEB 

CAT.NEXT FENCE' , :S{CI.1); CAT.NEXT LEN(4) • LABEL: (CI.1) ;CI.7 ICEB 
.CAT.NEXT "DON'T" ARBNO{' ') "CRUNCH" ARBNO{' ') "COMM" = :F(CI.6) ICEB 

CRUNCH.FLAG = 'OFF';CI.6 CAT.NEXT 'NO' ARBNO(' ') 'COMM' = :F(CI.8) ICEB 
COMM.FLAG = 'OFF';CI.8 CAT.NEXT 'COMM' = :F(CI.9); COMM.FLAG = 'ON' ICEB 

CI.9 CAT.NEXT 'NO' ARBNO(' ') 'LIST' = :F(CI.10); LIST.FLAG = 'OFF' ICEB 
CI.10 CAT,. NEXT 'CONT' = : F (CI. 11); LIST. FLAG = 'ON'; CI. 11 : (CAT. IN. 1) ICEB 
CI.1 DEFINE ( 'CAT.IN(X) , , ICAT.IN.2 1 ); IGNORE.CARD = (IGNORE.CARD , '*'ICEB 
.) IDENT{COMM.FLAG,'OFF'); IGNORE.CARD = (IGNORE.CARD I '_I) IDENT{ ICEB 
.LIST.FLAG,'OFF'); IGNORE..FLAG = (IGNORE.FLAG , '*' RPOS{O» IDENT{ ICEB 
,.CRUNCH.FLAG , 'ON') IDENT(COMM.FLAG , 'ON'); IGNORE.CARD = FENCE (RPOS(ICEB 
.0) I IGNORE,. CARD) ;CAT. IN. 2 CAT. IN = CAT. NEXT;CI. 3 CAT. NEXT = CAT. GET () ICEB 
.:F{CI~2); CAT.NEXT SPECIAL :S{CI.SPECIAL); CAT.IN SPECIAL :S{RETURN) ICEB 

CAT. NEXT FENCE I.' = , , : F (CI. 5); CAT. IN = CAT. IN CAT. NEXT : (CI. 3) ICEB 
CI.5 CAT.IN I , :S (CT. 61); CAT. NEXT FENCE' , :F (CI. 61); CAT .• IN = CAT.INICEB 
.. CAT. NEXT : (CI. 3) ; CI. 61 CAT. IN ':' : S (RETURN); CAT. NEXT FENCE ' , SPAN ( ICEB 
.' ') ':' = , :' :F(RETURN); CAT.IN = CAT.IN CAT.NEXT : (CI.3) ;CI.SPECIALICEB 
• IDENT (CRUNCH. FLAG, 'OFF') :S(RETURN); CAT.IN COMMENT :F(RETURN) ICEB 

CAT.NEXT COMMENT = , , :F{RETURN) ;CI.COMMENT CAT.NEXT ' I SPAN(' ') = ICEB 
.' , : S (CI. COMMENT); CAT. IN = CAT. IN CAT. NEXT : (CI. 3) ;CI. 2 DEFINE ( ICEB 
• 'CAT,. IN (X) , , 'CAT.IN.3') : (RETURN) ;CAT.IN.3 : (FRETURN) ;CAT.IN.END ICEB 
• DEFINE ('CAT.GET{X) ') : (CAT.GET.END) ;CAT.GET INPUT LEN(72) • CAT.GET :F(ICEB 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
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.FRETURN); CAT.GET.CNT = CAT,.GET.CNT + 1; CAT.GET = TRIM(CAT.GET) ICEB 61 
OUTPUT = 'INPUT CARD' RADJ(CAT.GET.CNT , 5) ':' CAT.GET; CAT.GET ICEB 62 

.IGNORE.CARD : S(CA'I.GET) F (RETURN) ;CAT.GET.END DEFINE ('SPEW(LINE) , ) : ( TCEB 63 
• SPEW. END) ;SPEW BUFF = DIFFER (BUFF, NULL) BUFF ';'; GT (SIZE (BUFF) + SIZE(ICEB 64 
• LINE) , 72) :S(SPEW.2); BUFF = BUFF LINE; LT(SIZE(BUFF) ,70) :S( RETURN) ICEB 65 

, TOSS (BUFF) ; BUFF = : (RETURN) ;SPEW.2 NBUFF = BUFF; BUFF = LINE;SPEW.3 A ICEB 66 
.=; BUFF CHUNK =; IDENT(A,NULL) :S(SPEW.ERROR); LE(SIZE( NBUFF) + SIZE(AICEB 67 
.) ,72) :S (SPEW. 6); BUFF = A BUFF; NBUFF ';' RPOS (0) = : S (PERIOD.OUT) ICEB 68 

NBUFF '; , RPOS(O) = :F(SPEW.5); BUFF = , , BUFF: ( PERIOD. OUT) ;SPEW.5 ICEB 69 
.BUFF FENCE ARBNO(' ') I;' = :S(PERIOD.OUT); BUFF = '.' BUFF; BUFF FENCEICEB 70 
• '. ' = '. ';PERIOD.OUT TOSS (NBUFF) ; GT (SIZE (BUFF) ,72) :F(RETURN); NBUFFICEB 71 
.= : (SPEW. 3) ; SPEW. 6 NBUFF = NBUFF A : (SPEW. 3) ;SPEW.END QT = "" ""'; DQ ICEB 72 
.= ''''; SQ = lIeu; QUOTED.LITERAL = SQ BREAK(SQ ) SQ I DQ BREAK (DQ) DQ ICEB 73 

OTHER = LEN (1) BREAK (QT ' ; () " ) (QUOTED. LITERAL I '(' I NULL) I ICEB 74 
.RTAB(O); CHUNK = FENCE (QUOTED.LITERAL I ANY(' ( ;') I OTHER) • A; PAT =ICEB 75 
.ARB. B (' 'I ANY(QT» • C; NB72S.PATTERN = (TAB (60) ARB) • N " ICEB 76 
.ARBNO(NOTANY(' I»~ • B RPOS(O) ;SQ.O S = CAT.INO :F(SQ.99); S SPECIAL ICEB 77 
• :F(SQ. START); TOSS (BUFF) ; BUFF =; IDENT (CRUNCH. FLAG , 'ON') :S (SQ.4) ICEB 78 
SQ.5 TOSS(S) : (SQ.O) ;SQ.4 S COMMENT :F(SQ.5) ;SQ.7 GT(SIZE(S) , 72) :F( ICEB 79 
.SQ.5); S LEN(72) • S REM. SS; S NB72S.PATTERN = :F(SQ.8); TOSS(N); S =ICEB 80 
· '* , B SS : (SQ. 7) ;SQ.8 S = S SS; S LEN(72) • N = '* '; TOSS (N) : (SQ. 7) ICEB 81 
SQ. START S (BREAK (' ;') I REM) • N =; SQ. 1 SPAT = : F (SQ. 2); IDENT (' ',CICEB 82 
.) :F( SQ.3); N = N B' '; S FENCE SPAN(' ') = :(SQ.1);SQ.3 S BREAK (C) .ICEB 83 
.D C = :F(SQ.ERR); N = NBC DC: (SQ.1) ;SQ,.2 N = N S; SPEW(N) : (SQ.O) ICEB 84 
SQ.99 TOSS (BUFF) ; OUTPUT = 'END OF FILE REACHED BY ICEBOL'; ENDFILE(7) ICEB 85 
END ICEB 86 
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SNOBOL4 (VERSION 2.0, OCT. 7, 1968) 
BELL TELEPHONE LABORATORIES, INCORPORATED 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * 
* 
* 
* 
* 
* 
* 
* 

THIS PROGRAM COMPUTES AND PRINTS A TABLE OF N FACTORIAL 
FOR VALUES OF N FROM 1 THROUGH AN UPPER LIMIT "NX". * 

* 
* IT DEMONSTRATES A METHOD OF MANIPULATING NUMBERS WHICH ARE * 

TOO LARGE FOR THE COMPUTER, AS STRINGS OF CHARACTERS. THE * 
COMMAS IN THE PRINTED VALUES ARE OPTIONAL, ADDED FOR READING * 
EASE. * 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* 
* 
* 
* 

* 

* 
* 
* L1 
L2 

L3 

L4 

* 
* 
* L5 

L6 

* 
* 
* L7 

* 
* 
* ERR 

INITIALIZATION. 

NX = 45 

N = 1 
NSET = 1 
NUM = ARRAY (1000) 
NUM<1> = 1 
FILL = ARRAY('0:3') 
FILL<O> '000' 
FILL<1> = '00' 
FILL<2> = '0' 

OUTPUT = • 
OUTPUT = 

TABLE OF FACTORIALS FOR 1 THROUGH • NX 

COMPUTE THE NEXT VALUE FROM THE PREVIOUS ONE. 

I = 1 
NUM<I> = NUM<I> * N 
I = LT (I,NSET) I + 1 
I = 1 
LT(NUM<I>,1000) 
NUMX = NUM<I> / 1000 
NUM<I + 1> = NUM<I + 1> + NUMX 
NUM<I> = NUM<I> - 1000 * NUMX 
I = LT(I,NSET) I + 1 

FORM A STRING REPRESENTING THE FACTORIAL. 

NSET = DIFFER(NUM<NSET + 1» NSET + 1 
NUMBER = NUM<NSET> 
I = GT(NSET,1) NSET - 1 
NUMBER = NUMBER ',' FILL<SIZE(NUM<I»> NUM<I> 
I = GT (I, 1) I - 1 

OUTPUT A LINE OF THE TABLE. 

OUTPUT N '!=' NUMBER 
N = LT(N,NX) N + 1 

ERROR TERMINATION. 

: F (ERR) 
: S (L2) 

: S (L4) 
:F (ERR) 
: F (ERR) 
: F (ERR) 
: S (L3) 

: F (ERR) 
: F (L 7) 

: S (L6) 

: S (L 1) F (END) 

OUTPUT = N '! CANNOT BE COMPUTED BECAUSE OF TABLE OVERFLOW.' 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 

28 
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* END 

OUTPUT = , INCREASE THE SIZE OF ARRAY "NUM".' 

NO ERRORS DETECTED DURING COMPILATION 
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TABLE OF FACTORIALS FOR 1 THROUGH 45 

1 ! =1 
2!=2 
3!=6 
4!=24 
5!=120 
6!=720 
7!=5,040 
8!=40,320 
9!=362,880 
10!=3,628,800 
11!=39,916,800 
12!=479,001,600 
13!=6,227,020,800 
14!=87,178,291,200 
15!=1,307,674,368,000 
16!=20,922,789,888,000 
17!=355,687,428,096,000 
18!=6,402,373,705,728,000 
19!=121,645,100,408,832,000 
20!=2,432,902,008,176,640,000 
21!=51,090,942,171,709,440,000 
22!=1,124,000,727,777,607,680,000 
23!=25,852,016,738,884,976,640,000 
24!=620,448,401,733,239,439,360,000 
25!=15,511,210,043,330,985,984,000,000 
26!=403,291,461,126,605,635,584,000,000 
27!=10,888,869,450,418,352,160,768,000,000 
28!=304,888,344,611,713,860,501,504,000,000 
29!=8,841,761,993,739,701,954,543,616,000,000 
30!=265,252,859,812,191,058,636,308,480,000,000 
31!=8,222,838,654,177,922,817,725,562,880,000,000 
32!=263,130,836,933,693,530,167,218,012,160,000,000 
33!=8,683,317,618,811,886,495,518,194,401,280,000,000 
34!=295,232,799,039,604,140,847,618,609,643,520,000,000 
35!=10,333,147,966,386,144,929,666,651,337,523,200,000,000 
36!=311,993,326,789,901,217,467,999,448,150,835,200,000,000 
37!=13,763,753,091,226,345,046,315,979,581,580,902,400,000,000 
38!=523,022,617,466,601,111,760,007,224,100,074,291,200,000,000 
39!=20,391,882,081,197,443,358,640,281,739,902,897,356,800,000,000 
40!=815,915,283,247,897,734,345,611,269,596,115,894,272,00D,000,000 
41!=33,452,526,613,163,807,108,170,062,053,440,751,665,152,000,000,000 
42!=1,405,006,117,752,879,898,543,142,606,244,511,569,936,384,000,000,000 
43!=60,415,263,063,373,835,637,355,132,068,513,997,507,264,512,000,000,000 
44!=2,658,271,574,788,448,768,043,625,811,014,615,890,319,638,528,000,000,000 
45!=119,622,220,865,480,194,561,963,161,495,657,715,064,383,733,760,000,000,000 

NORMAL TERMINATION AT LEVEL 0 
LAST STATEMENT EXECUTED WAS 27 

SNOBOL4 STATISTICS SUMMARY-

1048 MS. COMPILATION TIME 
2962 MS. EXECUTION TIME 
3296 STATEMENTS EXECUTED, 437 FAILED 
3376 ARITHMETIC OPERATIONS PERFORMED 

o PATTERN MATCHES PERFORMED 
o REGENERATIONS OF DYNAMIC STORAGE 

0.90 MS. AVERAGE PER STATEMENT EXECUTED 
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The following program uses arrays, programmer-defined functions, and a 
variety of output formats to produces sets of bridge hands. Execution of the 
statements beginning at the label NEWDEAL produces one set of hands. Cards are 
dealt from the array DECK to the four arrays, NORTH, EAST, SOUTH, and WEST by 
the fUnction DEAL. The hands are sorted by the function ARRANGE. The function 
DISPLAY prints the hands, one set per page. 

SNOBOL4 (VERSION 2.0, OCT. 7, 1968) 
BELL TELEPHONE LABORATORIES, INCORPORATED 

* 
* 
* 
* 
* 

* 
* 

OUTPUT('TITLE' ,6,' (14H1THIS IS HAND, 110A1) ') 
OUTPUT('DEALER',6,' (11H DEALER IS ,110A1) ') 
OUTPUT ( , SKIP' ,6, , (A 1) ') 

FUNCTIONS 

DEFINE ('ARRANGE () '} 
DEFINE (' DEAL () ') 
DEFINE ('DISPLAY 0 '} 
DEFINE('LINE(STR1,COL1,STR2,COL2)BL1,BL2') 
DEFINE ( 'RANDOM (N) ') 
DEFINE('SORT(HAND}I,J'} 
DEFINE('SUITL(HAND,SUIT)N') : (CONSTANT) 

1 
2 
3 

4 
5 
6 
7 
8 
9 
10 

ARRANGE SORT (NORTH) SORT (EAST) SORT (SOUTH) SORT (WEST) : (RETURN) 11 

* 
* DEAL 

NLOOP 

* 
* DISPLAY 

+ 

+ 
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DEALSEQ DEALHAND 
DECK = COpy (NEWDECK) 
N = 51 
DEALSEQ NXTHAND 
CARD = RANDOM(N + 1} 
ITEM($HAND,N / 4) = DECK<CARD) 
DECK<CARD) = NE(CARD,N) DECK<N) 
N = GT (N, O) N - 1 

TITLE = NTHDEAL 
DEALER = DEALR 
SKIP = , 
OUTPUT = LINE (' NORTH' ,40) 
OUTPUT = 
OUTPUT = LINE(SUITL(NORTH,'S') ,40) 
OUTPUT = LINE(SUITL(NORTH,'H') ,40} 
OUTPUT LINE(SUITL(NORTH,'D') ,40) 
OUTPUT = LINE(SUITL(NORTH,'C') ,40) 
SKIP = , 
OUTPUT = LINE('WEST',20,'EAST',60) 
OBTPUT = 
OUTPUT = LINE(SUITL(WEST,'S') ,20, 

SUITL(EAST,'S') ,60) 
OUTPUT = LINE(SUITL(WEST,'H') ,20, 

SUITL(EAST,'H'} ,60) 
OUTPUT = LINE(SUITL(WEST,'D'} ,20, 

:S(NLOOP)F(RETURN} 

12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
32 
33 
33 
34 



+ 

+ 

+ 

* 
* LINE 

LINE1 

* 
* RANDOM 

* 
* SORT 
SORT1 

SORT2 

* 
* SUITL 
SUITL1 
SUITL2 
SUITL3 

* 
* 
* 
* CONSTANT 
+ 

OUTPUT = 

SKIP = , 
OUTPUT = 
OUTPUT = 
OUTPUT = 
OUTPUT = 
OUTPUT = 
OUTPUT = 

SUITL(EAST,'D') ,60) 
LINE(SUITL(WEST,'C'),20, 

SUITL(EAST,'C') ,60) 

LINE ( , SOUTH' ,40) 

LINE(SUITL(SOUTH,'S') ,40) 
LINE(SUITL(SOUTH,'H'),40) 
LINE(SUITL(SOUTH,'D') ,40) 
LINE{SUITL(SOUTH,'C'),40) 

BL LEN (COL1 ,- 1) • BL1 

: (RETURN) 

BL DIFFER (STR2) LEN(COL2 - (COL1 + SIZE(STR1») • BL2 
LINE = BL1 STR1 BL2 STR2 : (RETURN) 

RAN.VAR 
RAN.VAR 
RANDOM 

= RAN.VAR * 1061 + 3251 
RTAB(5) = 

= (RAN.VAR * N) / 100000 : (RETURN) 

J = 
J 
I = 

13 
GT(J,1) 
o 

J -

I = LT(I,J) I + 
TEMP = LT(HAND<I - 1>,HAND<I» 
HAND<I - 1> = HAND<I> 

: F (RETURN) 

: F (SORT1) 
HAND<I - 1> :F(SORT2) 

HAND<I> TEMP 

SUIT SUITL 
N = 
N = 
SUITL 

LT($SUIT + 13,HAND<N» N + 1 
LT($SUIT,HAND<N» N + 1 

= SUITL $ (HAND<N - 1> - $SUIT) 

CONSTANTS 

BL = 

S = 39 
H = 26 
D = 13 
C = 0 
$1 = 2 
$2 = 3 
$3 = 4 
$4 = 5 
$5 = 6 
$6 = 7 
$7 = 8 
$8 9 
$9 = 10 
$10 = 'J' 
$11 = 'Q' 
$12 = 'K' 
$13 'A' 
DEALSEQ = 'NORTH, EAST, SOUTH,WEST,NORTH,, 
NXTHAND *HAND ',' BREAK(',') • HAND 

: (SORT2) 

: S (SUITL 1) 
:F(RETURN)S(SUITL3) 

: (SUITL2) 

DEALHAND = *DEALR ',' BREAK(',') • HAND. DEALR 
NORTH = ARRAY('O:12') 

34 
35 
35 
36 
37 
38 
39 
40 
41 
42 
42 

43 
44 
45 

46 
47 
48 

49 
50 
51 
52 
53 
54 
55 

56 
57 
58 
59 

60 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
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EAST = ARRAY('0:12') 
SOUTH = ARRAY('O:12') 
WEST = ARRAY('O:12') 
NEWDECK = ARRAY ( , 0 : 51 ' ) 
RAN.VAR 157 
DEALMAX = 3 
NTHDEAL 
DEALR = 'WEST' 
N = 0 

BLDDEK NEWDECK<N> = N + 1 
N LT(N,51) N + 1 

NEWDEAL NTHDEAL LT(NTHDEAL,DEALMAX) NTHDEAL + 1 

* 
* 
* 
END 

DEAL () 

ARRANGE () 

DISPLAY () 

NO ERRORS DETECTED DURING COMPILATION 
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:S(BLDDEK} 
: F (END) 

: (NEWDEAL) 

82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 

94 

95 

96 
97 



THIS IS HAND 1 
DEALER IS NORTH 

NORTH 

S 84 
H K752 
D J3 
C Q9742 

WEST EAST 

S AQ63 
H A98 
D 862 
C K85 

SOUTH 

S KJ92 
H J64 
D Q105 
C J63 

S 1075 
H Q103 
D AK974 
C A10 
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THIS IS HAND 2 
DEALER IS EAST 

210 

NORTH 

S K82 
H 965 
D J75432 
C 5 

WEST EAST 

S J95 
H K8 
D AK96 
C AJ84 

SOUTH 

S AQ643 
H J1074 
D Q 
C K106 

S 107 
H AQ32 
D 108 
C Q9732 



THIS IS HAND 3 
DEALER IS SOUTH 

NORTH 

S KJ1093 
H J872 
D 4 
C 965 

WEST EAST 

S 65 
H KQ1093 
D Q108 
C QJ7 

SOUTH 

S AQ87 
H A54 
D K932 
C A3 

S 42 
H 6 
D AJ765 
C K10842 
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NORMAL TERMINATION AT LEVEL 0 
LAST STATEMENT EXECUTED WAS 93 
SNOBOL4 STATISTICS SUMMARY-

212 

2130 MS. COMPILATION TIME 
5541 MS. EXECUTION TIME 
5736 STATEMENTS EXECUTED, 686 FAILED 
5678 ARITHMETIC OPERATIONS PERFORMED 

378 PATTERN MATCHES PERFORMED 
o REGENERATIONS OF DYNAMIC STORAGE 

0.97 MS. AVERAGE PER STATEMENT EXECUTED 



6. A P I APT A Christmastime Algorithm 

SNOBOL4 (VERSION 2.0, OCT. 7, 1968) 
BELL TELEPHONE LABORATORIES, INCORPORATED 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 

* 
SONG 

* NEXT. DAY 

TWELFTH 
ELEVENTH 
TENTH 
NINTH 
EIGHTH 
SEVENTH 
SIXTH 
FIFTH 
FOURTH 
THIRD 
SECOND 
FIRST 

* CODA 

* 
END 

WHEN THE OUTPUT ASSOCIATION FOR "SING" IS CHANGED TO 
A DIGITAL-TO-ANALOG CONVERTER WITH THE PROPER MELODY 
SYNTHESIZER, THIS PROGRAM SINGS THAT OLD CHRISTMASTIME 
FAVORITE, "A PARTRIDGE IN A PEAR TREE." 

M. D. SHAPIRO 

ACAPPELLA.CHOIR = 6 OR MORE PEOPLE SINGING IN TUNE 

DAYS = 'FIRST, SECOND, THIRD, FOURTH, FIFTH, SIXTH, , 
'SEVENTH,EIGHTH,NINTH,TENTH,ELEVENTH,TWELFTH,' 
NEXT = BREAK(',') • WHICH LEN(1) 

TRACE('SING','VALUE',,'SONG') 
&TRACE = 1000 

DEFINE('SONG() ') : (NEXT. DAY) 
PAUSE IDENT(SING) OUTPUT('SING', ACAPPELLA.CHOIR, 
" (' " P A USE "', 1 0 0 A 1) ") = , : (RE TURN) 

DAYS NEXT = 
SING = (TAKE A BREATH) 
SING = 'ON THE' WHICH' DAY OF CHRISTMAS,' 
SING = 'MY TRUE LOVE GAVE TO ME,' 
SING = 'TWELVE LORDS A-.LEAPING,' 
SING = 'ELEVEN LADIES DANCING,' 
SING 'TEN PIPERS PIPING,' 
SING = 'NINE DRUMMERS DRUMMING,' 
SING = 'EIGHT MAIDS A-MILKING,' 
SING = 'SEVEN SWANS A-SWIMMING,' 
SING = 'SIX GEESE A-LAYING,' 
SING = 'FIVE GOLD RINGS,' 
SING = 'FOUR COLLY BIRDS,' 
SING = 'THREE FRENCH HENS,' 
SING = 'TWO TURTLEDOVES,' 
SING = AND 'A PARTRIDGE IN A PEAR TREE.' 
AND = IDENT(AND) 'AND' 

SING = INPUT 

: F (CODA) 

: ($WHICH) 

: (NEXT. DAY) 

: S (CODA) 

NO ERRORS DETECTED DURING COMPILATION 

1 

2 
2 
3 

4 
5 

6 
7 
7 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 ' 
20 
21 
22 
23 
24 

25 

26 
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ON THE FIRST DAY OF CHRISTMAS, 
MY TRUE LOVE GAVE TO ME, 
A PARTRIDGE IN A PEAR TREE. 

ON THE SECOND DAY OF CHRISTMAS, 
MY TRUE LOVE GAVE TO ME, 
TWO TUR~LEDOVES, 
AND A PARTRIDGE IN A PEAR TREE. 
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ON THE THIRD DAY OF CHRISTMAS, 
MY TRUE LOVE GAVE TO ME, 
THREE FRENCH HENS, 
TWO TURTLEDOVES, 
AND A PARTRIDGE IN A PEAR TREE,. 

ON THE FOURTH DAY OF CHRISTMAS, 
MY TRUE LOVE GAVE TO ME, 
FOUR COLLY BIRDS, 
THREE FRENCH HENS, 
TWO TURTLEDOVES, 
AND A PARTRIDGE IN A PEAR TREE. 

ON THE FIFTH DAY OF CHRISTMAS, 
MY TRUE LOVE GAVE TO ME, 
FIVE GOLD RINGS, 
FOUR COLLY BIRDS, 
THREE FRENCH HENS, 
TWO TURTLEDOVES, 
AND A PARTRIDGE IN A PEAR TREE. 

ON THE SIXTH DAY OF CHRISTMAS, 
MY TRUE LOVE GAVE TO ME, 
SIX GEESE A-LAYING, 
FIVE GOLD RINGS, 
FOUR COLLY BIRDS, 
THREE FRENCH HENS, 
TWO TURTLEDOVES, 
AND A PARTRIDGE IN A PEAR TREE. 

ON THE SEVENTH DAY OF CHRISTMAS, 
MY TRUE LOVE GAVE TO ME, 
SEVEN SWANS A-SWIMMING, 
SIX GEESE A-LAYING, 
FIVE GOLD RINGS, 
FOUR COLLY BIRDS, 
THREE FRENCH HENS, 
TWO TURTLEDOVES, 
AND A PARTRIDGE IN A PEAR TREE. 

ON THE EIGHTH DAY OF CHRISTMAS, 
MY TRUE LOVE GAVE TO ME, 
EIGHT MAIDS A-MILKING, 
SEVEN SWANS A-SWIMMING, 
SIX GEESE A-LAYING, 
FIVE GOLD RINGS, 
FOUR COLLY BIRDS, 
THREE FRENCH HENS, 
TWO TURTLEDOVES, 
AND A PARTRIDGE IN A PEAR TREE. 

ON THE NINTH DAY OF CHRISTMAS, 
MY TRUE. LOVE GAVE TO ME~ 



NINE DRUMMERS DRUMMING, 
EIGHT MAIDS A-MILKING, 
SEVEN SWANS A-SWIMMING, 
SIX GEESE A-LAYING, 
FIVE GOLD RINGS, 
FOUR COLLY BIRDS, 
THREE FRENCH HENS, 
TWO TURTLEDOVES, 
AND A PARTRIDGE IN A PEAR TREE. 

ON THE TENTH DAY OF CHRISTMAS, 
MY TRUE LOVE GAVE TO ME, 
TEN PIPERS PIPING, 
NINE DRUMMERS DRUMMING, 
EIGHT MAIDS A-MILKING, 
SEVEN SWANS A-SWIMMING, 
SIX GEESE A-LAYING, 
FIVE GOLD RINGS, 
FOUR COLLY BIRDS, 
THREE FRENCH HENS, 
TWO TURTLEDOVES, 
AND A PARTRIDGE IN A PEAR TREE. 

ON THE ELEVENTH DAY OF CHRISTMAS, 
MY TRUE LOVE GAVE TO ME, 
ELEVEN LADIES DANCING, 
TEN PIPERS PIPING, 
NINE DRUMMERS DRUMMING, 
EIGHT MAIDS A-MILKING, 
SEVEN SWANS A-SWIMMING, 
SIX GEESE A-LAYING, 
FIVE GOLD RINGS, 
FOUR COLLY BIRDS, 
THREE FRENCH HENS, 
TWO TURTLEDOVES, 
AND A PARTRIDGE IN A PEAR TREE. 

ON THE TWELFTH DAY OF CHRISTMAS, 
MY TRUE LOVE GAVE TO ME, 
TWELVE LORDS A-LEAPING, 
ELEVEN LADIES DANCING, 
TEN PIPERS PIPING, 
NINE DRUMMERS DRUMMING, 
EIGHT MAIDS A-MILKING, 
SEVEN SWANS A-SWIMMING, 
SIX GEESE A-LAYING, 
FIVE GOLD RINGS, 
FOUR COLLY BIRDS, 
THREE FRENCH HENS, 
TWO TURTLEDOVES, 
AND A PARTRIDGE IN A PEAR TREE. 

* *** 
***** 

******* 
********* 

*********** 
lit 
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NORMAL TERMINATION AT LEVEL 0 
LAST STATEMENT EXECUTED WAS 25 

SNOBOL4 STATISTICS SUMMARY-

216 

732 MS. COMPILATION TIME 
749 MS. EXECUTION TIME 
276 STATEMENTS EXECUTED, 123 FAILED 

o ARITHMETIC OPERATIONS PERFORMED 
25 PATTERN MATCHES PERFORMED 
o REGENERATIONS OF DYNAMIC STORAGE 

2.71 MS. AVERAGE PER STATEMENT EXECUTED 



&ABEND 130 
ABORT 47 
&ABORT 129 
addi t ion (+) 2, 3, 1 39 
&ALPHABET 79, 129 
a Iter na t ion (I) 9, 23, 1 4 0 , 1 74 
&ANCHOR 28, 29, 130 
anchored mode 28, 29, 47 
anchored pattern matching 173 
ANY 37, 174 
APPLY 107, 134 
ARB 4 8 , 66 , 1 7 4 
&ARB 129 
ARBNO 52, 67, 72, 101 
ARG 134, 154 
arguments (see function call) 
arithmetic expressions 3, 4 
arithmetic operators 1 

addition (+) 2, 3, 139 
division (/) 3, 139 
exponentiation (**) 2, 3, 139 
multiplication (*) 2, 3, 139 
subtraction (-) 2, 3, 139 
un a ry mi nus ( - ) 2, 3, 1 3 7 
unary plus (+) 3, 137 

ARRAY 2 0, 1 0 8 , 1 1 3 , 1 77 
arrays 

data type 113, 126 
elements 110, 113, 114 
indexing 108, 110 
prototypes 108, 114 
references 20, 110, 134 

assignment statements 1, 22, 23, 132 

BACKSPACE 162 
BAL 50 , 52, 9 7, 1 0 1 
&BAL 129 
balanced expressions 51, 97, 101 
bead diagrams 25, 27, 28, 35, 42, 49, 

50, 52, 63, 64, 
66, 67 

beads 25 
binary operators 139 

addition (+) 2, 3, 139 
alternation (I) 9, 23, 
concatenation (blank) 

conditional value 

140, 174 
5, 9, 23, 

140 

assignment (.) 10, 30, 140, 176 
division (/) 3, 139 
exponentiation (* *) 2, 3, 139 
immediate value 

as s i g nm e n t ( $ ) 11, 3 1, 1 4 0, 1 7 6 
multiplication (*) 2, 3, 139 
subtraction (-) 2, 3, 139 
unused 141 

BREAK 3 5, 45, 54, 1 74 
bubble sort 111 

call tracLng 147, 154 
carriage control 160 
catastrophic termination 172 
CLEAR 178 
clearing variable values 178 
CODE 119, 126, 127 
COLLECT 178 
comment line 2 
compilation 119, 120, 163 
compilation errors 164, 185 
concatenation (blank) 5, 9, 23, 140 
conditional value assignment (.) 10, 

30, 140, 176 
continuation line 
control line 

LIST 163 
LEFT 163 
RIGHT 163 

UNLIST 163 
conversion of data 
CONVERT 127 

2 

types 127, 135 

127 
COpy 113, 128 
created names 126, 
created variables 20, 108, 110, 115, 

116, 117, 118, 
123 

25, 28, 29, 35, 40, 42, 64, 
66, 72 

cursor 

cursor position (m) 56, 138 

DATA 20, 122 
data objects 78, 113, 122 
data set reference numbers 158, 160, 

163 
data sets 158 
data structures 177 
DATATYPE 126 
data types 

array 20, 113, 126, 127 
code 126, 127 
created name 126, 127 
integer 78, 126, 127 
pattern structure 126, 127 
programmer-defined 

data type 20, 122, 1 26, 127 
real number 78, 126, 127 
string 118, 126, 127 
unevaluated expression 126, 127 

DATE 81 
DDNAMES 158 
DD statements 158, 160 
DEFINE 16, 83, 89 
degenerate statement 132 
DETACH 161 
DIFFER 15, 78 
direct gotos 120 
discontiuation of tracing 153 
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division (/) 3, 139 
dumps 19, 130, 1 '65, 169 
SDUMP 19, 130, 165 
dynamic storage 178 

EBCDIC 79, 80 
efficiency 24, 30, 54, 173 
END 11, 163, 164 
ENDFILE 162 
end of file 11, 162, 163 
end of input data set 157 
end statement 1, 11, 120, 163, 164, 

entry 
labels 83 
points 16, 83 

error messages 169, 185 
compilation 164, 185 
termination 186 

error termination 169 
EQ 76 
EVAL 57, 81 
evaluation of expressions 22, 133 
evaluation of statements 132 
execution 164 
exponentiation (* *) 2, 3, 139 
expressions 1, 4 

arithmetic 3, 4 
balanced 51,97,101 
evaluation of 22, 133 

165 

unevaluated 57, 81, 126, 127, 138 

FAIL 46, 62, 1 01 
SFAIL 129 
failure 

during input 11, 133, 157 
in expression evaluation 15, 132, 

133, 134 
12, 25, 30, 

31, 46, 47, 48, 
63, 64, 66, 132 

17, 134 

in pattern matching 

of functions 14, 
FENCE 47, 173 
SFENCE 129 
FIELD 134, 154 
field functions 20, 123 
fields (see programmer-defined 

data types) 
files (see I/O) 
flow of control 11, 119 
SFNCLEVEL 129, 152 
formal arguments 16, 83, 84, 86 
formal identification 126 
formats 160 
FRETURN 17, 85, 87, 134 
SFTRACE 130, 148 
SFULLSCAN 28, 63, 71, 130 
fullscan mode 71, 176 
function calls 

arguments of 13, 15, 17, 75, 94, 
134 

failure of 14, 17, 134 
level of 147 

218 

preservation of values 18, 86, 87, 
92, 94 

) recursive 18, 91, 93, 96, 103 
function definitions 

DEFINE 16, 83, 89 
entry points 16, 83 
function names 16, 83, 85, 86 
formal arguments 16, 83, 84, 86 
local variables 16, 18, 83, 85, 86 

functions 
primitive 13, 75, 134 
programmer-defined 16, 62, 75, 83, 

134 
function name as argument 95 
function tracing 147, 148, 154 
function values 16, 76, 85, 118 

GE 76 
generated variables 13, 141 
gatos 11, 12, 132, 1 41 

direct 120 
evaluation of 133 
failure 11, 119, 133 
success 11, 119, 133 
unconditional 11, 119, 133 

GT 60, 76 

heuristics 63, 71, 176 

IDENT 78 
identifiers 75 
immediate value assignment ($) 11, 

implicit alternatives 
indirect reference ($) 
infix notation 96 
INPUT 

function 161 

31, 140, 176 
48 

12, 137 

var i a b 1 e 6, 1 1, 1 4 , 8 1, 1 33, 1 5 6 , 
157 

input association 156, 161 
INTEGER 77 
integers 2, 134 
integer data type 2, 3, 78, 126, 127, 

134 
interrogation (?) 82, 138 
intervention termination 171 
ITEM 11 4 , 11 5 
I/O 

functions 
BACKSPACE 162 
DETACH 161 
ENDFILE 162 
INPUT 161 
OUTPUT 159 
REWIND 162 

system 158 
FORTRAN IV 158 

job control language 158 

keywords 19, 128 
SABEND 130 



&ABORT 129 
&ALPHABET 79, 129 
&ANCHOR 28, 29, 130 
&ARB 129 
&BAL 129 
&DUMP 19, 130 
&FAIL 129 
&FENCE 129 
&FNCLEVEL 129, 152 
&FTRACE 130, 148 
&FULLSCAN 28, 63, 71, 130 
&LASTNO 129, 154 
&MAXLNGTH 130 
&REM 129 
&RTNTYPE 129, 154 
&STCOUNT 129, 152 
&STFCOUNT 129, 152 
&STLIMIT 130 
&STNO 129 
&SUCCEED 129 
&TRACE 130, 143, 153 

protected 129 
constant 129 
varying 129 

unprotected 130 
parameters 130 
switches 130 

keyword operator (&) 138 
keyword tracing 152, 154 

label 11, 22, 119, 132 
attribute 119, 120 
tracing 151, 154 

&LASTNO 129, 154 
LE 15, 76 
left recursion 60, 61, 67 
LEN 14, 34 
LGT 16, 79 
LIST 163 
listing control 

LIST 163 
LEFT 163 
RIGHT 163 

UNLIST 163 
literals 1, 4, 7, 134, 141 
LOCAL 134, 154 
local variables 16, 18, 83, 85, 86 
loop control 76 
LT 76 

&MAXLNGTH 130 
multiplication (*) 2, 3, 139 

name operator (.) 117, 118, 138 
names 115 
natural variables 115, 116, 141 
NE 76 
needle 25 
negation (-,) 82, 134, 138 
normal termination 165 
NOTANY 37 
NRETURN 85, 86, 87, 118 
null string 4, 5, 15, 33, 48, 52, 76, 

116, 135 
numeral strings 4, 134 
numerical predicates 

EQ 76 
GE 76 
GT 76 
INTEGER 77 
LE 15, 76 
LT 76 
NE 76 

object 8, 22, 76, 132 
object code 119 
object comparison predicates 

DIFFER 15, 78 
IDENT 78 
LGT 16, 79 

object evaluation 132 
omitted arguments 15, 75 
OPSYN 105, 134 
OUTPUT 

function 159 
variable 6, 32, 156 

output association 156, 159 

parameters 130 
parentheses 3, 7, 10, 32, 50 
passing names 116 
patterns 6, 8, 22, 132 
pattern building 22, 23, 24, 58, 132 

left recursion in 60, 61, 67 
pattern matching 6, 22, 25, 28, 132 
pattern matching statements 1, 6, 7, 

22, 132 
pattern structures 9, 14, 22, 23, 24, 

58, 126, 127, 
175 

Polish prefix notation 96 
POS 42, 45 
P r ec eden c e 3 , 5 , 1 0, 11, 2 4 , 3 2 , 1 3 3 , 

139 
predicates (see numerical and 

object comparison) 15 
primitive functions 13, 75, 134 

ANY (CS) 37 
APPLY(F,A1, ••• ,AN) 107 
ARBNO(P) 52 
ARG (F, N) 154 
ARRAY (P,V) 108 
BACKSPACE(N) 162 
BREAK (CS) 35 
CLEAR () 178 
CODE(S) 119 
COLLECT (N) 178 
CONVERT (V, DT) 127 
COpy (V) 113, 128 
DATA (P) 122 
DATATYPE(V) 126 
DATE () 81 
DEFINE (P,L) 83 
DETACH (V) 161 
DIFFER(V1,V20) 78 
ENDFILE(N) 162 
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EQ(I1,I2) 76 
EVAL (E) 81 
FIELD (F,N) 154 
GE (I1 , I2) 76 
GT (I 1 , I2) 76 
IDENT (V1 , V2) 78 
INPUT (V,N,L) 161 
INTEGER (V) 77 
ITEM(A,I1, ••• ,IN) 115 
LEN(N) 34 
LE (I1, I2) 76 
LG T (S 1 , S 2 ) 79 
LOCAL (F, N) 154 
LT(I1,I2) 76 
NE (I 1 , I 2) 76 
NOTANY(CS) 37 
OPSYN(F1,F2) 105 
OUTPUT (V,N,F) 159 
POS (N) 42 
PROTOTYPE (A) 114 
REPLACE(S,CS1,CS2) 80 
REWIND (N) 162 
RPOS(N) 42 
RTAB (N) 40 
SIZE (S) 80 
SPAN (CS) 35 
STOPTR (V, R) 153 
TAB(N) 40 
TIME () 81 
TRACE (V,R,T,F) 143 
TRIM (S) 81 
VALUE (S) 125 

primitive pattern structures 
ABORT 47 
ARB 48, 66, 174 
BAL 50, 52, 9 7, 1 0 1 
FA IL 46, 62, 101 
FENCE 47, 173 
REM 40 
SUCCEED 54, 62, 72 

print request messages 189 
printing 6, 156 
program termination 
program syntax 183 
programmer-defined 

data types 20,122,126,127 
DATA 122, 125 
FIELD 154 

functions 16, 62, 75, 83, 134 
DEFINE 16, 83 
entry label 83 
FRETURN 17, 85, 
formal arguments 
local variables 

87, 134 
16, 83, 84, 86 

16, 18, 83, 85, 
86 

name 16, 83, 85, 86 
NRETURN 85, 86, 87, 118 
procedure 16, 83, 84 
prototype 16, 83 
RETURN 16, 85, 89, 118, 147 

trace procedures 153 
protected keywords 129 
PROTOTYPE 114 
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prototypes 16 , 83, 108, 
syntax 184 

PUNCH 6, 157 

quicks can 63, 71 
quotation marks 4, 117 

random number generator 
range of an array 110 
reading 6 

114 

89 

real numbers 3, 78, 126, 
recursive function calls 

127, 136 
18, 91, 93, 

96, 103 
recursive loops in pattern 

matching 67, 70, 72 
recursive pattern definitions 

redefinition of functions 89 
references 180 
REM 40 
&REM 129 
REPLACE 14, 80, 134 

60, 61, 
67, 72 

replacement statements 1, 6, 8, 22, 
33, 132 

RETURN 16, 85, 87, 89, 118, 147 
returning a variable 118 
RETURN tracing 147, 148, 154 
REWIND 162 
RPOS 42, 45 
RTAB 40 
&RTNTYPE 129, 154 

scanner 22, 25, 27, 63 
scanning 23, 25 
sequential data sets 159 
SIZE 13, 60, 80 
source program 163 
SPAN 35, 45, 54 
statements 

assignment 1, 22, 23, 132 
end 1, 11, 1 20 , 1 6 3, 1 64 , 1 65 
degenerate 132 
pattern matching 1, 6, 7, 22, 132 
replacement 1, 6, 8, 22, 33, 132 

statement continuation 2 
statement evaluation 132 
statement numbers 

LIST LEFT 163 
LIST RIGHT 163 

statement separator 2, 119 
statement syntax 182 
&STCOUNT 129, 152 
&STFCOUNT 129, 152 
&STLIMIT 130 
&STNO 129 
STOPTR 153 
storage management 178 
storage regeneration 

forcing 178 
string 1, 4, 134 
STRING data type 4, 118, 
string-valued expressions 
subject 7, 8, 22, 132 

126, 127 
5 



subtraction (-) 2, 3, 139 
SUCCEED 54, 62, 72 
&SUCCEED 129 
switches 130 
syntax 181 

of prototypes 184 
of SNOBOL4 programs 183, 190 
of statements 182 

system labels 
END 11, 164 
FRETURN 17, 85, 87, 134 
NRETURN 85, 86, 87, 118 
RETURN 16, 85, 87, 89, 118, 147 

TAB 40 
tags 143, 146 
termination 163, 165 

catastrophic 172 
error 169 
intervention 171 
normal 165 
program 1 

TIME 81, 89 
Tower of Hanoi 102 
TRACE 143, 153 
& TRAC E 1 3 0 , 1 4 3 , 1 53 
trace associations 143, 147 
tracing 

CALL 1 47, 1 5 4 
FUNCTION 147, 148, 154 

level 147 
KEYWORD 152, 154 
LABEL 151, 154 
RETURN 147, 148, 154 
VALUE 143, 154 

TRIM 14, 81 

unanchored mode 
unary operators 

28, 66 
2, 137 

cur s 0 r po sit ion ( ill ) 5 6 , 1 3 8 
interrogation (?) 82, 138 
indirect reference ($) 12, 
keyword (&) 19, 128, 138 
minus (-) 2,3,134,137 
n am e ( . ) 1 1 7, 1 1 8 , 1 3 8 
negation (-.) 82, 134, 138 
plus (+) 3, 134, 137 
unevaluated expression (*) 

137 

57, 81, 
138 

unused 139 
unevaluated expressions 57, 81, 126, 

127, 138 
UNLIST 163 
unused operators 

binary 141 
unary 139 

VALUE 125 

value assignment 
by assignment statements 1, 22, 

115 
by cursor position operator 56, 

in array initialization 
through pattern matching 

value tracing 143, 154 

108 
115 

30, 31, 
33, 115 

variables 1, 10, 30, 31, 56, 75, 118 
created 20, 108, 110, 115, 116, 

generated 13, 141 
initial value 4 
local 16, 18, 83, 
natural 115, 116, 

variable association 

117, 118, 123 

85, 86 
141 
10, 11, 30, 31, 

32, 33 
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PROGRAMMING IN BASIC, THE TIME-SHARING LANGUAGE 
by Mario V. Farina 
This book is a complete self-teaching description of the BASIC time-sharing language as it is 
used on teletype machines linked to computers by telephone lines. 
OUTSTANDING FEATURES: Written in easy-to-understand style with a minimum of technical 
terms • "Extended" features soon to be implemented are included in the text • Material is or
ganized logically into 25 lessons • An actual program example is shown from its conception to 
final results • Actual computer print-outs .are reproduced. 
Published 1968 164 pages 

SYSTEM SIMULATION 
by Geoffrey Gordon _ 
This book concerns the techniques of simulation as applied to both continuous and discrete 
systems, and compares those techniques with other methods of problem-solving. 
OUTSTANDING FEATURES include: Programmed examples fully worked out in six different simu
lation languages • Illustrated with complete examples drawn from a variety of applications • A 
detailed discrete system example: first solved by hand calculations and later by FORTRAN and 
two discrete simulation languages (GPSS and SIMSCRIPT) • The technique of Industrial Dynamics 
as applied to business systems • The probability and statistics theory involved in the construc
tion of models and in the analysis of simulation results· Examples of applications drawn from 
a variety of fields: engineering, biology, economics, business systems, switching systems and 
inventory control. 
Published 1969 320 pages 

PROGRAMMING LANGUAGE/ONE 
by Frank Bates and Mary l. Douglas 
The purpose of this book is to explain some of the techniques for using computers4 and to ex
plain the implementation of these techniques in the programming language PL/ l. Many PL/ l 
programs appear in this book as examples to illustrate various points about the language and 
about computing in general. All of the example programs have been tested on a computer (an 
IBM System/ 360). The program listings and results, reproduced in this book are actual com
puter print-outs. The programs shown in the back of the book as solutions to the exercises have 
been similarly tested. 
Published T967 384 pages 
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