

SNOBOL4
I

R. E. Griswold
J. F. Poage

I. P. Polonsky
Bell Telephone Laboratories, Incorporated

Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Copyright © Bell Telephone Laboratories, Incorporated, 1968

All rights reserved. No part of this book may be
reproduced in any form or by any means without
permission in writing from the publisher.

Current printing (last digit): 10 9 8 7 6 5 4

13-815357-4

Library of Congress Catalog Card Number: 79-77614

Printed in the United States of America

Preface

SNOBOL4 is a computer programming language containing many features not
commonly found in other programming languages. It evolved from SNOBOL [1,2,3]1,
a language for string manipulation, developed at Bell Telephone Laboratories,
Incorporated, in 1962. Extensions to SNOBOL through various versions have made
it a useful tool in such areas as compilation techniques, machine simulation,
symbolic mathematics, text preparation, natural language translation, linguis
tics, and music analysis.

The basic data element of SNOBOL4 is a string of characters, such as this
line of printing. The language has operations for joining and separating
strings, for testing their contents, and for making replacements in them. If a
string is a sentence, it can be broken into phrases or words. If it is a
formula, it can be taken apart into components and reassembled in another
format. A string can appear either as a literal or as the value of a variable.
The literal form is indicated by enclosing the string in quotation marks:

'THIS IS A STRING'

The string value may be assigned to a variable:

LINE 'THIS IS A STRING'

A common operation on a string is examination of its contents for a desired
structure of characters. This structure, known as a pattern, can be as simple
as a string or a given number of characters. A pattern also can be an extremely
complicated expression consisting, for example, of a number of alternatives
followed by another set of alternatives, all of which must begin a given number
of characters from the end of the string. The pattern, as a data type, may also
appear either in literal or variable form. The data type of a variable -
string, pattern, or any other in th~ language - depends on the last value
assigned to it. There are no type declaration statements for variables as in
other programming languages.

SNOBOL4 provides numerical capabilities with both integers and real
numbers. Because the language is essentially character oriented, the facilities
are not extensive. Since most numerical operations with strings involve
character counting, integers are much more commonly used, with conversion to and
from strings performed automatically as required.

often it is desirable to associate a group of items with one variable name
through numeric indexing. The SNOBOL4 array provides this capability with more
flexibility than most programming languages. An array is a data element
consisting of a set of pointers to other data elements, so that each array
element may be any data type, even an array. Several other system-defined data
types are also included.

Execution of SNOBOL4 programs is interpretive. Instead of compiling a
program into actual computer instructions, the compiler translates the program
into a notation the interpreter can easily execute. This makes it fairly simple
to provide capabilities such as tracing of new values for variables, an
operation that is quite difficult in noninterpretive systems. Another important
product of interpretation is flexibility. Functions can be defined and
redefined during program execution. Function calls can be made recursively with
no special program notation. The language is extendable to new data types
needed for a program through data type definition operations. Linked-list nodes
and complex numbers are possible programmer-defined data types. operations on
these new data types can be defined as functions.

INumbers in brackets refer to references listed at the end of this manual.

iii

This manual is an instructional and reference guide, and provides many
examples of usage of the language. The description of the language is complete
and does not require familiarity with earlier versions of the language. Some
familiarity with elementary concepts of programming is presumed, however.

iv

Foreword

The SNOBOL4 programming language has been developed over a period of years
and new language features have been added from time to time during the course of
this development. Consequently there are several somewhat different versions of
the language in use. The description in this manual corresponds to Version 2.0
(october 7, 1 968) .

SNOBOL4 has been implemented on several different computers, including the
IBM System/360, the UNIVAC 1108, the GE 635, the CDC 6000 series, and the RCA
spectra 70 series. Implementations for other machines are in various stages of
completion. These machines have different operating environments and character
sets. As a result, implementations of SNOBOL4 vary from machine to machine in
details of syntax, operating system interface, and so forth. This manual
corresponds to the implementation of SNOBOL4 for the IBM System/360 operating
under os. Sections of the manual containing language features particularly
dependent upon this implementation make specific reference to this dependency.

Programs contained in this manual were run on an IBM 360 Model 65.

v

Acknowledgments

The authors' most pleasant responsibility is the acknowledgement of the
assistance provided in the course of the design, implementation, and documenta
tion of the SNOBOL4 language.

The ideas of many individuals have helped shape the form of SNOBOL4.
Particularly valuable contributions have been made by Messrs. B. N. Dickman r

D. J. Farber r P. D. Jensen r M. D. McIlroy, R. F. Rosin, M. A. Seelye, and
M. D. Shapiro.

The authors have been fort~nate in having the assistance of a number of
people during various stages of the implementation of SNOBOL4. Mr. R. A. Yates
designed and implemented the storage allocation and regeneration techniques used
in SNOBOL4. Mr. Yates also contributed many useful ideas to the overall design
of the system. Messrs. B. N. Dickman and P. D. Jensen designed and implemented
the tracing facilities and provided many valuable suggestions for improving the
system. Special thanks are due Mr. L. c. Varian for his assistance in preparing
the initial implementation for the IBM System/360.

The authors would like to express their appreciation to Mrs. R. E. Griswold
who has given freely of her time to prepare much of the machine-readable
material used in the development of the SNOBOL4 langauage and its documentation.

Mr. J. F. Gimpel has made an important contribution to the documentation of
the language. The present document reflects much of his thinking on the
organization and presentation of descriptive material. Several of the programs
used in the examples are his.

Mr. M. A. Seelye provided an an unusually thorough and perceptive criticism
of a preliminary draft of this manual r enabling the authors to correct many
errors and clarify a number of obscure points.

The authors' special thanks go to Mrs. P. M. Hammer and Mr. M. D. Shapiro
for their help in preparing this manual. Their editorial competence and
unfailing good humor have made the laborious process of preparing this
manuscript a bearable, if not rewarding, experience.

vi

Contents

Chapter 1: Introduction to the SNOBOL4 Programming Language

A. Assignment Statements and Basic Data Types
1. Integers
2. Real Numbers
3. Strings

The Null String
Strings in Arithmetic Expressions
String-Valued Expressions
Input and Output of Strings

B. Pattern Matching Statements
C. Replacement Statements
D.. Patterns
E. Conditional Value Assignment
F. Flow of Control
G. Indirect Reference
H. Functions

1. Primitive Functions
2. Predicates
3. Defined Functions

I. Keywords
J. Arrays
K. Programmer-Defined Data Types
L. Program Example

A.. Introduction
B. Alternation and Concatenation
C. Scanning
D. Modes of Scanning

1. Unanchored Mode
2. Anchored Mode

E. Value Assignment through Pattern Matching
1. Conditional Value Assignment
2. Immediate Value Assignment
3. Special Considerations

Precedence
Association with the Variable OUTPUT

Chapter 2:

Value Assignment in Replacement Statements
Association of Several Variables with One Pattern

F. The Null String in Pattern Matching
G. LEN
H~ SPAN and BREAK
I. ANY and NOTANY
J. TAB, RTAB, and REM
K. POS and RPOS
L. FAIL.

1
2
3
4
4
4
5
6
6
8
9

10
11
12
13
13
15
16
19
20
20
21

Pattern Matching

22
23
25
28
28
29
30
30
31
32
32
32
33
33
33
34
35
37
40
42
46

vii

M. FENCE 47
N. ABORT 47
o. Patterns with Implicit Alternatives 48

1. ARB 48
2. BAL 50
3. ARBNO 52
4. SUCCEED 54

P. Cursor position 56
Q. Unevaluated Expressions 57
R. Quickscan Mode 63
S. Fullscan Mode 71

Chapter 3: Predicates and Primitive Functions

A. Introduction 75
B. Numerical Predicates 76

1. LT, LE, EQ, NE, GE, and GT 76
2. INTEGER 77

C. Object Comparison Predicates 77
1. IDENT and DIFFER 78
2. LGT 79

D. Additional Primitive Functions 80
1. SIZE 80
2. REPLACE 80
3. TRIM 81
4. DATE and TIME 81
5. EVAL 81

E. Negation (-,) and Interrogation (?) 82

Chapter 4: Programmer-Defined Functions

A. Introduction
B. The Primitive Function DEFINE
C. Procedures for Programmer-Defined Functions
D. Execution of Programmer-Defined Functions

Example Union, Intersection, and Negation

83
83
84
86
87
89
91
92
96
98

Example Pseudo-Random Number Generator
E. Recursive Functions

Example Decimal to Binary Conversion
Example Polish to Infix Translation
Example Infix to Polish Translation
Example Tower of Hanoi

F. OPSYN
G. APPLY

Chapter 5:

A. Arrays
1. Array References

Example Bubble Sort
2. Primitive Functions for Use with Arrays

viii

102
105
107

Arrays, Data Types, and Keywords

108
110
111
113·

COPY
PROTOTYPE
ITEM

B. Names
1. passing Names
2. The Unary Name Operator
3. Returning a variable

C. Gotos, Labels, and Code
1. Creation and Execution of Code

D. Programmer-Defined Data Types
Example Text Processing

"8,. Summary of Data Types
1. DATATYPE
2. Data Type Conversion
3. COpy

F. Keywords
Protected Keywords

1. Varying Protected Keywords
2. Constant Protected Keywords

Unprotected Keywords
1. Switches
2. Parameters

A. The Components of a Statement
B. Statement Evaluation

Integers and Strings
Real Numbers
operators

Unary Operators
Binary Operators

Variables and Values

A. Standard Trace Procedures
1. Value Tracing
2. Function Tracing
3. Label Tracing
4. Keyword Tracing
5. Discontinuation of Tracing

B. Programmer-Defined Trace Functions

Chapter 6:

113
114
114
115
116
117
118
119
119
122
123
126
126
127
128
128
129
129
129
130
130
130

Details of Evaluation

Chapter 7:

132
132
134
136
137
137
139
141

Tracing

1. Invoking Programmer-Defined Trace Procedures

143
143
147
151
152
153
153
154
154 2. Tools for Writing Programmer-Defined Trace Procedures

Chapter 8:

A. Printed Output
B. Punched output
C. Input

Input and Output

156
157
157

ix

D. The I/O System 158
E. output Associations 159
F. Input Associations 161
G. Other I/O Functions 161

1 • DETACH 161
2. ENDFILE 162
3. REWIND 162
4. BACKSPACE 162

Chapter 9: Structure of a SNOBOL4 Run

A. Compilation
1. Source Program Input
2. Source Listing
3. Errors Detected during Compilation

B. Execution
c. Termination

1. Normal Termination
2. Error Termination
3. Intervention Termination
4. Catastrophic Termination

A. Efficiency and Good Programming Practices
1. Efficiency in Pattern Matching
2. Structuring Data

B. Storage Management
1. Forcing Storage Regeneration
2. Clearing Variable Values

Appendix A.
1 •
2.
3.

Appendix B.
1 •
2.
3.

Syntax of SNOBOL4
Syntax of SNOBOL4 Statements
Syntax of SNOBOL4 Programs
Syntax of SNOBOL4 prototypes

Error Messages
Compilation Error Messages
Error Termination Messages
Print Request Messages

Examples
Syntax Recognizer for SNOBOL4
Topological Sort

Chapter 10:

Appendix C.
1 •
2.
3.
4.
5.
6.

ICEBOL - A Compressor of SNOBOL4 Programs
Factorial Table Generator
Bridge Dealing Program
A P I APT A Christrnastime Algorithm

x

163
163
163
164
164
165
165
169
171
172

Programming Details

173
173
177
178
178
178

Appendices

181
182
183
184
185
185
186
189
190
190
193
197
203
206
213

Chapter 1. Introduction to the SNOBOL4 Programming Language

This chapter is an introductory overview of the SNOBOL4 programming
language. It describes the format of statements, some of the operations, and
some of the types of data handled by the language. Later chapters describe in
more detail much of the material in this introductory chapter.

A SNOBOL4 program consists of a sequence of statements.
basic types of statements:

There are four

1) the assignment statement,
2) the pattern matching statement,
3) the replacement statement, and
4) the end statement.

The end statement terminates the program.

The simplest type of statement is the assignment statement. It has the
form

The assignment statement may be
Y~!:i~!21g have the given Y~l~~."

v 5

said to have the following meaning: "Let
For example, let V have the value 5, or

The value may be given by an expression, consisting, for example, of arithmetic
operations as in the statement

w 14 + (16 - 10)

which assigns the value 20 to the variable W. Blanks are requ~red around
arithmetic operat()rs such as + and - The value need-not be an integer, whlch
tsflls-tone typ-e of data handled by SNOBOL4. For example, the value may be a
string of characters, indicated by enclosing quotes. An example is the
assignment statement

v 'DOG'

1

which assigns the string DOG to the variable V. Various types of data and
operations that may be performed on them are described later.

Typically a variable is a name such as V, X, or ANS. Variables appearing
explicitly in a program must begin with a letter which may be followed by any
number of letters, digits, periods, and underscores.

The value of a variable may be used in an assignment statement. Thus

RESULT ANS.1

assigns to the variable RESULT the value of ANS.1 •
guish literal strings from variables.)

(Quotation marks distin-

Blanks are required to separate the parts of a statement. In an assignment
statement, the equal sign must be separated from the variable on the left and
the value on the right by at least one blank.

A-J?_t_g:t~r:tl~J].t ____ xvJ::li_c::h is 19.!lg~;1;" tha..ngne_lineg.9D.pe continued onto successive
lines by sta.r-t:iI1g the CQIJtinua..tion lines with a p~riod or plus sign. -. An--example
is

N (3 + M) (2 + SUM) -
(F - 2)

When continuing a statement over a line boundary, the statement may be broken
wherever a blank is required.

Several statements may be
indicate the ends of statements.

X 2 ; y 3; z

placed on one line by using semicolons which
An example is

10

A line beginning with an asterisk is treated as a comment and does not
affect the operation of the program.

The arithmetic operations of addition, subtraction, multiplication, divi
sion, and exponentiation of integers may be used in expressions. The statements

N
P

5; M
N * M /

4
(N - 1)

assign the value 5 to P. While blanks are required between the binary operators
and their operands, unary operators such as the minus sign must be adjacent to
their operands. An example is the statement

Q2 = -P / -N

2

which assigns the value 1 to Q2 .

Arithmetic~x:pressions can be arbitrarily cQrnplex. When evaluating arith
metici-expi~~sions, the natural order of operator pr~cedence applies. The unary
operations are performed first, then exponentiation (**) , then multiplication,
followed by division, and finally additio~ and su~traction. All operations
associate to the left except exponentiation. Hence,

x 2 ** 3 ** 2

is equivalent to

x = 2 ** (3 ** 2)

Parentheses may be used to emphasize or alter the order of evaluation of an
expression.

In the above examples all the operands are integers and the results are
integers. The quotient of two integers is also an integer. The remainder is
discarded. Thus

Q1
Q2

5/2
5 / -2

give Q1 and Q2 the values 2 and -2, respectively.

MOD N - (N / M) * M

Similarly,

gives MOD the value N modulo M if Nand M are positive integers.

Arithmetic expressions involving real operands are also permitted in
assignment statements. The statements

PI
CIRCUM

3.14159
2. * PI * 5.

assign real values to PI and CIRCUM.

There are several limitations on real arithmetic in SNOBOL4. ~?SP~~~_~.!-ia-
tion involving reals is undefined and causes execution of the program to
E-efffiinate with an error message. Operations involving mixed types of numbers
2rre-ofiot permitted, and also cause execution of the program to terminate.

3

Expressions involving operands that are character strings are also per
mitted in assignment statements. For example, the assignment statement

SCREAM = 'HELP'

assigns the string HELP as the value of SCR~AM.

The string is specified by enclosing it within a pair of quotation marks.
Any character may appear in a string. A pair of double quotation marks can be
used instead of single quotation marks. This permits the use of quotation marks
within a string as in the statements

PLEA
QUOTE =
APOSTROPHE

'HE SHOUTED, . " ,
= " , "

"HELP.'"

The null string, which is a string of length zero, is frequently used in
SNOBOL4. with a few exceptions, explained later, all variables have the null
string as their initial value. A variable can also be assigned the null string
by a statement like

NULL = , ,

or, more briefly,

NULL

The variable NULL is used in many examples that follow to represent the null
string.

The null string is different from the following strings" each of which has
length one:

, 0 f

" "

Numeral strings can be used in arithmetic expressions with integers. For
example, as a result of the statements

z = "10"

4

x 5 * -z + '10'

X has the value
preceding sign.
expressions:

-40. Numeral strings
Thus, the following

'3.257'
'1,253,465'
, .364 E-03'

contain
strings

only digits and perhaps a
cannot be used in arithmetic

They cause execution of the program to terminate with the comment "ILLEGAL DATA
TYPE."

~,~rings cannot be used in expressions involving real numbers.

The null string is equivalent to the integer zero in arithmetic
expressions.

concatenation is the basic operation for combining two strings to form a
third. The following statements ·illustrate the format of an expression
involving concatenation.

TYPE
OBJECT

'SEMI'
TYPE 'GROUP'

The resulting value of OBJECT is the stri'ng SEMIGROUP. Notice there is nQ
explicit operator for concatenation. Concatenation is indicated by specifying
two string-valued operands separated by at least one blank.

FIRST
SECOND
TWO. SEASONS

are equivalent to

'WINTER'
'SPRING'

FIRST ' , SECOND

TWO. SEASONS 'WINTER,SPRING'

Strings can also be conca tena ted wi t'h integers as in

ROW 'K'
NO. == 2~
SEAT = ROW NO.

which gives SEAT the value K22 .

:Crt an expression inY9):ying concatenation and integer arithmetic, concatenc;l
tion ha s tlie"--rowe's~t:--i?re-cedenc'e ;'Thus·

5

1
/

SEAT ROW NO. + 4 / 2

is equivalent to

SEAT ROW (NO. + (4/2))

or

SEAT 'K24'

Three variables provide means for reading and writing data. The variables
OUTPUT and PUNCH are for e;-~Dj:.j . .It9,_,,<:_~? p~,~.!;,!D.9. Whenever ei ther'of'"'the'iri "Is
ci.sslgne'd"·"'a'¥·st:'ring'·'or integer value, a copy-oT the value is put out.

OUTPUT 'THE RESULTS ARE:'

assigns THE RESULTS ARE: to OUTPUT and also prints it.

PUNCH :;:: OUTPUT

causes the same line to be punched on a card. The statements

OUTPUT
PUNCH

cause a blank line to be printed and a blank card to be punched.

J:h~ __ y~a.riable INPq,1: ... t§""l!~ed fo.r.r~ag~ng~:n stJ;in.Sl~,.., Each time the value of
INPUT is r'e'quTred-"Ii1 a statement, another card is read in and the SO-character
string on it is assigned as the value of INPUT. Thus

PUNCH INPUT

punches a copy of the input card.

The, operation of examining substrings for the occurrence of specified
substrings (i. e. pattern matching) is fundamental to the SNOBOL4 language.
Pattern matching can be specified in two types of statements:

1) the pattern matching statment, and
2) the replacementst-atement.

6

The pattern matching statement has the form

~)1§:, _!_~'? JJe) .. ds. ~r,e .$~pa:r:ated. }:)yqt"J~.q.$,.t. Q:P~>P1.a,p.~. The subject specifies
a string that is to be examined, and the pattern can be thought of as specifying
a set of strings. The statement causes the subject string to be scanned from
the left for the occurrence of a string specified by the pattern.

If

TRADE 'PROGRAMMER'

the statement

TRADE 'GRAM'

examines the value of TRADE for an occurrence of GRAM. If

PART 'GRAM'

then an eq~ivalent statement is

TRADE PART

The following example illustrates a pattern matching statement in which the
pattern is a string-valued expression.

'K'
20

ROW
NO.
'K24' ROW NO. + 4

The subject is a literal and the value of the expression is the string K24 .

Notice that there
subject and the pattern.

is no explicit pattern matching operator between the \
The two fields are separated by blanks. ___ j/

If it is necessary to have concatenation in the subject, t~~KJ2;(,~,§~~.,i...on

Il!ust be_~,,~pclQ$g~ wi t.h:Ln. p.c:tI~n:t::t'l,e~~st:o, .. a.YQ~S! .. <:i.IE~~.9~i ty. An example is

TENS 2
UNITS 5
(TENS UNITS) 30

On the other hand, a pattern formed by concatenation does not need
parentheses. The following statements are equivalent:

7

TENS UNITS 30

TENS (UNITS 30)

A replacement statement has the form

where the fields are separated by at least one blank. If the pattern mat~hing

operation succeeds, t~e subject, ,s,tx,ing is modified by replacing the"matc"~ed
substring ,e,Z,the obj~ct. For example, if
~' "

WORD 'GIRD'

then the replacement statement

WORD 'I' 'au'

causes the subject string GIRD to be scanned
since the pattern matches, I is replaced by
the string GOURD. If the statement is

WORD 'AB' 'au'

for the string I and then,
au. Hence WORD has as value

the value of WORD does not change because the pattern fails to match.

Another example of the use of replacement statements is given in the
following sequence of statements

'AC4DAHKDKS'
4
, D'

HAND
RANK
SUIT
HAND RANK SUIT 'AS'

which replaces the substring 4D with the string AS.

A matched substring is deleted from the subject string if the object in the
replacement statement is the null string. Thus

HAND RANK SUIT

deletes 4D from HAND leaving it with the string ACAHKDKS as value.

8

The patterns in the preceding examples specify single strings.
possible to specify more complex patterns. There are two operations
for constructing such patterns:

1) alternation, and
2) concatenation.

Alternation is indicated by an expression of the form

P1 I p2

It is also
available

where the two patterns p1 and P2 are separated from the I by blanks. The
value of the expression is a pattern structure that m~tches any string specified
by either P1 or P2. For example, the statement

KEYWORD 'COMPUTER' 'PROGRAM'

assigns to KEYWORD a pattern structure that matches either of these two strings.

Subsequently, KEYWORD may be used wherever patterns are permitted. For
example,

KEYWORD KEYWORD I 'ALGORITHM'

gives KEYWORD a new pattern value equivalent to the value assigned by executing
the statement

KEYWORD 'COMPUTER' 'PROGRAM' 'ALGORITHM'

Similarly,

TEXT KEYWORD

~xamines the value of TEXT from the left and deletes the first occurrence of one
of the alternative strings. If

TEXT 'PROGRAMMING ALGORITHMS FOR COMPUTERS'
I

the result of the replacement statement is as if the following statement were
executed:

TEXT 'MING ALGORITHMS FOR COMPUTERS'

Concatenation of two patterns, P1 and P2, is specified in the same way as
the concatenation of two strings:

9

P1 P2

That is, the two patterns are separated by blanks. The value of the expression
is a pattern that matches a string consisting of two substrings, the first
matched by P1, the second matched by P2. For example, if

BASE 'BINARY' I 'DECIMAL' 'HEX'
SCALE = 'FIXED' I 'FLOAT'
ATTRIBUTE SCALE BASE

and

DCL 'AREAFIXEDDECIMAL'

then the pattern match succeeds in the statement

DCL ATTRIBUTE

Concatenation has higher precedence than alternation. Thus

ATTRIBUTE 'FIXED' I 'FLOAT' 'DECIMAL'

matches FIXED or FLOATDECIMAL. The order of evaluation may be altered by
using parentheses.

ATTRIBUTE (' FIXED' 'FLOAT') 'DECIMAL'

matches either FIXEDDECIMAL or FLOATDECIMAL.

It is possible to associate a variable with a component of a pattern such
that if the pattern matches, the variable is assigned the substring matched by
the component. The operator .' is the conditional value-assignment operator
and it is used in an expression of the form

where the operator is separated from its operands by blanks. For example

BASE = (, HEX' I ' DEC') • B 1

assigns to BASE a pattern that matches either HEX or DEC. If BASE is used
successfully in a pattern match, the value of B1 is set to the substring matched
by BAS E.,;;';.,::",

':~\:~:,;<:.?~~

10

The operator has the highest precedence of all the operators and
associates to the left. Thus

A.OR.B = A B OUTPUT

is equivalent to

A.OR.B = A (B • OUTPUT)

which assigns to A.OR.B a pattern that matches the value of A or B.
matches, the substring matched is printed.

If B

There is also an operator $ for immediate value assignment which assigns
value to a variable if the associated component of the pattern matches
regardless of whether the entire pattern matches. Immediate value assignment is
discussed in more detail later.

A SNOBOL4 program is a sequence of statements terminated by an end
statement. Statements are executed sequentially unless otherwise specified in
the program. 1~Q~12 and gQiQ§ are provided to control the flow of the program.

A statement may begin with a label, permitting transfer to the statement.
For example, the assignment statement

START TEXT = INPUT

has the label START. A label consists of a letter or a digit followed by any
number of other characters up to a blank. Blanks separate the label from the
subject. ~~ .wi~h .. nol~J:?~J",."nl~~t_.ltE;,g.i.n. .. .m.tb-"",~t.. .. ,.~l~as~ .. Elank. The end
statement is distingu'lsllea"'15y the labeT END, indicating-=t11e end of tne program.

Transfer to a labelled statement is specified in the goto field which may
appear at the end of a statement and is separated from the rest of the statement
by a colon. Two types of transfers can be specified in the goto field:
conditional and unconditional.

A conditional transfer consists of a label enclosed within 2,arentheses and
precEfded=~n1',:"qii-~:~E"~,"c;-~·'·-'-fr'-·~corre·s-po'nding' 'to ':failure or 's'ucce's's 'go'to. '"An--excfmple
is the statement . v, ..

TEXT = INPUT : F (DONE)

This statement causes a record to be read in and assigned as the valu~ of
TEXT. If, however, there is no data in the input file, i.e. an end of file is
encountered, no new value is assigned to TEXT. Then, because of the failure to
read, transfer is made to the statement labelled DONE.

A use of the success goto is illustrated in the following program which
punches a copy of the input file.

11

LOOP
END

PUNCH INPUT : S (LOOP)

The first statement is repeatedly executed until the end of file is encountered
and then the program flows into the end statement which causes the program to
terminate.

The success or failure of a pattern match can also be used to control the
flow of a program by conditional gotos. For examnle

COLOR
BRIGHT TEXT
BLAND

'RED'
COLOR

'GREEN' I 'BLUE'
:S(BRIGHT)F(BLAND)

All occurrences of the strings RED, GREEN, and BLUE are deleted from
the value of TEXT before the pattern fails to match. Control then passes to the
statement labelled BLAND. Both success and failure gotos can be specified in
one goto field, and may appear in either order.

For an example of an unconditional transfer, consider the following program
that punches and lists a deck of cards.

LOOP

END

PUNCH
OUTPUT

INPUT
PUNCH

: F (END)
: (LOOP)

The goto fie~d in the second statement specifies an unconditional transfer.

Indirect referencing is indicated by the unary operator $. For example,
if

MONTH 'APRIL'

then $MONTH is equivalent to APRIL. That is, the statement

$MONTH 'CRUEL'

is equivalent to

APRIL 'CRUEL'

The indirect reference operator can also be applied to a parenthesized
expression as in the statements

12

WORD "RUN"
$ (WORD ':') $ (WORD ':') + 1

which increment the value of RUN:

In general, the unary operator $ generates a variable that is the value
of its operand. The expression

$ ("A" I "B")

causes the program to terminate with the message "ILLEGAL DATA TYPE" because the
value of the operand of $ is a pattern, not a string. Indirect reference in a
goto is demonstrated by ./\.., ,

C'", f"',,,\ 'r' '"
//'" .~?-",\ (,-

($ (" PHASE"\'j~))
..... -•... -~--~- -."!-.-

N N + 1

If, for example, the assignment statement sets N equal to 5, then the transfer
is to the statement labelled PHASE5.

Many SNOBOL4 procedures are invoked by functions built into the system,
called primitive functions. Operations that occur frequently are implemented as
primitive' fun~tions for efficiency. Other primitive functions are used to
invoke more complex operations that are fundamental to the language, affect
parameters and tables internal to the system, and perform operations that could
not be programmed in source language by other means. In addition, fa.cili ties
are available for a programmer to define his own source-language functions.

Consider the function _~J:.,Z.E.., which has a single string argument apd returl1s
a_;>.,, __ ,Y.901ue an integer which is the length (number of characters) of the string.
The st9-tements

APE =
OUTPUT

'SIMIAN'
8,IZE (APE)

print the number 6.

Arguments to all functions are passed by value, and an arbitrarily complex
expression may be used in the argument. Thus the statements

N 100
OUTPUT = SIZE('PART' N + 4)

print the number 7, because the value of the argument is the string PART104.

The argument of SIZE is supposed to be a string. Therefore, a call of the
form

13

SIZE ("APE" I "MONKEY")

causes the pragram to. terminate with the diagnastic message "ILLEGAL DATA TYPE,"
because the value af the argument is a pattern.

l'H,il'L is anathe:r;:,,J1JJ1c.tiQJ1 :t:tJ.c:t t pert?:r::rn§"an .. ()peratian . freq\l~l:ltJ:y :r:-equi+~il.
TRIM (string) returns as value a string which is equiilta' fhe argument with
trailing blanks remaved. It i~ aften us~d in a statement af the farm

READ TEXT TRIM (I NPUT) : F (END)

which assigns as value to. TEXT the string an the next input card, trimmed af
trailing blanks. Natice that the use af the variable INPUT in the argument
causes a card to. be read.

REPLACE is a functian called with three string-valued argumen~~.

REPLACE{TEXT,CH1,CH2)

return~ as value a si:.ripgwhich:is equal to. TEXT, wj;.:th, __ "",gg9.,h" ... 9.ss:grrence af a
ChqX:9'¢'t~:r, .. 9:ppE??-r,~I1:g, ~~,CHJ:t:"~pJ~g,~q:.by the correspandiI1gchFP;9.cte,:t:"·~jl"·"C'Ir2":~"""'Fo'r
example, the statements .

STATEMENT
OUTPUT

print the line

'A{I,J) A{I,J) + 3 '
REPLACE (STATEMENT, 1 () 1 , 1 <> 1)

A<I,J> A<I,J> + 3

If the last twa arguments af the functian call do. nat have the same length,
the functian fails. Functian failure, like input failure, can be used in a
canditianal transfer.

Anather example af the use af REPLACE is the fallawing pragram that
praduces a simple cryptagraphic encading af an input deck.

LOOP
END

INALPH
OUTALPH
PUNCH =

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
'KLMNOPQRSTUVWXYZABCDEFGHIJ'

REPLACE (INPUT,INALPH,OUTALPH) : S (LOOP)

The iteratian is terminated by input failure.

There are also. several functians that return patterns as their values. LEN
is such a functian. LEN{integer}.returns a pattern thCi"t,mat~l1e§Cinxs"triI19of

length specified ·by·-the"·Tnt:e'ger~"'·"""",·""-,.·,,,""r""~'M","-..... 'n""·~',,'"'''' "",,"r""~'~"'''''' ' ... ",", , --',., """m •. ,>,,

The fallawing example punches the value af STR centered an a card.

14

BLANKS
BLANKS
PUNCH

LEN«80 - SIZE(STR» / 2) • PAD
PAD STR

If the size of STR is greater than 80, the argument of LEN is negative,
causing error termination with the message "NEGATIVE NUMBER IN ILLEGAL CONTEXT."

A predicate is a function or operation that returns the null string as
value if a given condition is satisfied. Otherwise it fails.

LE is an example of a predicate used for comparing integers.

LE(N1,N2)

returns the null string as value if N1 is an integer less than or equal to N2.
Thus

PUNCH LE (SIZE (TEXT) ,80) TEXT

punches the string TEXT if its length is not greater than 80. The null
value of the predicate does not affect the string that is punched.
predicate fails, no assi~nment is made to PUNCH, and no card is punched.

string
If the

The success or failure of a predicate can be used with a conditional gato
to control the flow of a program. For example,

N 0; SUM
ADD N LT(N,50) N +

SUM SUM + N
DONE OUTPUT SUM

o
: F (DONE)
: (ADD)

sums the first 50 integers. Iteration continues as long as N is less than 50.
When the predicate fails, the conditional transfer to DONE is performed and the
string 1275 is printed.

There are several predicates for comparing strings. For example,

DIFFER (ST1, ST2)
\"' ... ,,<"'gO', "'''', ~"" ,.".",~, (.' '" '- ,. ~ ., ••. ' ..' "

r.,§,t\lt:n,§~,.,,>,th.g,,_, __ P:,\l:_+,,+.",",,,?!:r.~.r:<;L as value if the values of two argumepi:;.§, are not
identical. Thus
~-.... ~~,,.,..

OUTPUT DIFFER (FIRST,SECOND) FIRST SECOND

concatenates the values of FIRST and SECOND if they are not the same, and then
prints them.

FQr all functions,
Thus c_, __ .".-".----,·'"'

an omitted argument is assumed to be the null ~tring.
~_ I-"f~~ ,.,<, .,·,..,w_,~",,,, "..,,,,',- - .," .•.. , .~_ .. "' .•.• '''.>.,;.'''.,~,''<.',i'1:~'-t-.

15

\-,

1

PUNCH DIFFER (TEXT) TEXT

punches the value of TEXT if it is not the null string.

LGT is a predicate that lexically compares two strings.

LGT (ST1, ST2)

succeeds if ST1 follows (is lexically greater than) ST2 in alphabetical order.
The statements

SKIP
JUMP

OUTPUT
OUTPUT
OUTPUT
OUTPUT

LGT(TEXT1,TEXT2) TEXT2
TEXT1
TEXT2
TEXT1

: S (SKIP)

: (JUMP)

print the values of TEXT1 and TEXT2 in alphabetical order.

The SNOBOL4 language provides the programmer with the capability to define
functions in the source language. This feature facilitates the organization of
a program and may improve its efficiency.

A programmer may define a function by executing the primitive function
DEFINE to specify the function name, formal arguments, local variables, and the
entry point of the function. The entry point is the label of the first of a set
of SNOBOL4 statements constituting the procedure for the function.

The first argument of DEFINE is a prototype describing the form of the
function call. The second argument is the entry point. For example, execution
of the statement

DEFINE ('DELETE (STRING, CHAR) ','D1')

defines a function DELETE having two formal arguments, STRING and CHAR, and
entry point D1. The statements

D1 STRING CHAR
DELETE

: S (Dl)
STRING : (RETURN)

form a procedure that deletes all occurrences of CHAR from the value of STRING.
The statement assigning the resulting value to the variable DELETE illustrates
the SNOBOL4 convention for returning a function value: The function name may be
used as a variable in the function procedure. Its value on return from the
procedure is the value of the function call. Return f:r.=-OIT1c3. P:r:-0c~<iure is
aC?c:>IT\plished by transfer to the system label RETURN .----"---'--.... -.. - "_d ____ '. ,-,,~. ~--

If the second argument is omitted from the call of DEFINE, the entry point
to the procedure is taken to be the same as the function name. For example

16

DEFINE ('DELETE (STRING, CHAR) ')

could have the procedure

: S (DELETE) DELETE STRING CHAR
DELETE STRING : (RETURN)

A call of the function is illustrated in the following statements

MAGIC 'ABRACADABRA'
OUTPUT DELETE (MAGIC , 'A')

which print BRCDBR.

Arguments are passed by value and may be arbitrarily complex expressions.
Thus the statement

TEXT DELETE (TRIM(INPUT) " ')

deletes all blanks from the input string.

FUnctions can also fail under specified conditions. As an example,
consider the following version of DELETE, which fails if STRING does not contain
an occurrence of CHAR.

DELETE STRING
D2 STRING

DELETE

CHAR
CHAR

STRING

: F (FRETURN)
: S (D2)

: (RETURN)

The transfer to the system label FRETURN indicates failure of the function call.
Consequently,

PUNCH DELETE (TRIM (INPUT) ,'*')

punches a card only if the input string contains an *.

Arguments to a function and the value returned can be any type of data
object. Consider, for example, the function MAXNO where MAXNO(P,N) returns a
pattern that matches up to N adjacent strings matched by the pattern P. That
is, if

PAT MAXNO (' A' I 'B' I 'C' ,2)

then in the statement

'EBCDIC' PAT 'D'

17

the pattern match succeeds with PAT matching the string BC.

MAXNO has the defining statement

DEFINE {'MAXNO (P,N) '}

and the procedure

GT{N,O) N - 1 :F{RETURN} MAXNO N
MAXNO NULL I P MAXNO : (MAXNO)

consider the function REVERSE that reverses a string. It has the defining
statement

DEFINE{'REVERSE{STRING) ','R1')

and the procedure

R1
R2

ONECH
STRING
REVERSE

LEN (1) . CH
ONECH

CH REVERSE
:F{RETURN)
: (R2)

There are two variables, ONECH and CH, used in the function definition in
addition to the function name and formal argument. It is prudent to protect
these variables so their use outside the function is not affected when the
function is called. This is accomplished by declaring them to be local
variables in the defining statement:

DEFINE{'REVERSE(STRING)ONECH,CH','R1')

When the function is called, the current
formal arguments, and the function name are
entered. These, values are restored upon
permits the programmer considerable freedom in
a function can be recursive, i.e. include a
Consider the binomial coe7IT"cient c (n,m) which

c (n, 0)
c{n,m)

1
= n*c{n-1,m-1)/m for m > 0

values of the local variables, the
saved before the procedure is
return from the procedure. This
defining functions. For example,
call of the function itself.

can be defined by equations

Computational efficiency can be improv~d by employing the relation

c (n, m) = c (n,n-m)

for m > n/2.

The corresponding programmer-defined function consists of the defining statement

18

DEF INE ('CJNL.M) ')

and the procedure

C M
C
C =

LT(N - M,M) N
EQ (M, 0) 1
N * C(N - 1,M

M
: S (RETURN)

1) / M : (RETURN)

COMB is an example of another recursively defined function. COMB (STR,N)
lists all combinations of N characters from the string STR. The defining
statement and procedure are

and
,,/"

L:~'r OUTPUT EQ (N, 0) HEAD
C2 STR LE (N, SIZE (STRf)--' LEN (1)

COMB (STR,N - 1,HEAD CH)

Then

prints

ABC
ABD
ACD
BCD

COMB ('ABCD' ,3)

: S (RETURN)
CH :F(RETURN)

: (C2)

Notice that COMB is defined with three formal arguments but only two values
are supplied in the initial call. The missing value is taken to be nUll.

Several parameters and switches internal to the SNOBOL4 system can be
accessed by means of keywords. Keywords are specified by prefixing an ampersand
to certain identifiers. For example, if the value of the keyword &DUMP is a
nonzero integer when a program terminates, a dump of natural variables is
printed. Thus the execution of the statement

&DUMP 1

indicates that a dump is to be produced. Other keywords are described elsewhere
in this manual.

19

Arrays of variables can be created by using the primitive function ARRAY.
The arguments of ARRAY describe the number of dimensions, the bounds of each
dimension, and the initial value of each variable/in the array. Thus

v ARRAY(10,1.0)

N ARRAY (' 3,5')

creates a 2-dimensional array of variables

N<1,1> N<1,2> N<1,3> N<1,4> N<1,5>

N<2,1>

N<3,1> N<3,5>

The omission of the second argument causes each of the
null string as initial value. The arguments in
expressions. Thus

A ARRAY(TRIM(INPUT))

variables to have the
the call of ARRAY can be

creates an array with dimensionality that is data dependent. An array
reference, A<I>, that is outside the bounds of the array causes failure that can
be used to control program flow. The statements

MORE

GO

I
ST
ST<I>
I

1
ARRAY(TRIM(INPUT))

INPUT
I + 1

: F (GO)
: (MORE)

generate an array, ST, and assign values to each of the variables. When all the
variables in the array are assigned values, or an end of file is encountered,
the transfer to GO is executed.

Integers, reals, strings, patterns, and arrays are types of data objects
that are built into the SNOBOL4 language. Facilities are provided in the
language to permit a programmer to define additional data types. This
facilitates representation of structural relationships inherent in data.

20

For example, a simple linear linked list is made up of nodes, each
containing a value field and a link field.

r---~----' r-----T----' r-----y----,
Ivaluellinkl----->Ivaluellinkl----->Ivaluellink l
'---__ --L-___ J L- I J L ___ ---L-__ J

The primitive function DATA can be used to define the data type NODE and
the two field functions, VALUE and LINK.

DATA ('NODE (VALUE, LINK) ')

The staterri'ent

P NODE('S',)

creates a node with value field S and the null string in the link field. The
value of P is a data object with two fields that can be referenced by means of
the function calls VALUE(P) and LINK(P). The insertion of a node with value T
at the head of the list is accomplished by the statement

P NODE (, T' , P)

The following statement deletes a node from the head of the list

PLINK (P)

This is an example of a complete SNOBOL4 program illustrating the use of
comment lines, continuation lines, and the end statement. The program reads in
data cards that follow the end statement.

**
* EXAMPLE OF A FUNCTION THAT PRINTS ALL
* PERMUTATIONS OF SIZE N FROM A GIVEN STRING.
**
*

*

PERM
PERMA

END
ABCD
3

&DUMP = 1
DEFINE('PERM(STRING,N,HEAD)CH,USED')

STRING TRIM (INPUT)
N TRIM (INPUT)
PERM (STRING, N)
OUTPUT EQ(N,O) HEAD
STRING LEN(1) CH =
USED

PERM(STRING USED,N - 1,HEAD CH)

:F(ERROR)
: F (ERROR)
: (END)
: S (RETURN)
: F (RETURN)

USED CH : (PERMA)

21

Chapter 2. Pattern Matching

Strings of characters can be synthesized from smaller strings by concatena
tion. The converse of synthesis, decomposition of strings into sybstrings, is
performed using pattern matching. Fundamentally, pattern matching is the
process of examining a subject string for a substring which is one of a set
specified by a pattern. The substring and parts thereof, formed by pattern
matching, may be assigned as the values of variables, thereby naming pieces of
the decomposition.

There are two types of statements in which pattern matching can occur: the
pattern matching statement and the replacement statement. These statements have
the respective forms

I2~11§.fn
I2~iig.f!!

The pattern and object are expressions, as illustrated by

LAB1 TEXT A B : S (LAB2) F (LAB3)

LAB4 STR C D = X '3' : S (LABS) F (LAB6)

Before matching actually occurs, the expression in the pattern field is
evaluated. Its value may be a string, or it can be a pattern structure which
may be thought of as a set of strings. The string or pattern structure is used
to drive a pattern matching procedure (the scanner) which performs the actual
matching. Should any string specified by the pattern field appear as a
substring of the subject, pattern matching succeeds.

Two distinct tasks are performed as parts of pattern matching:

1) evaluation of expressions in the pattern field, and

2) scanning of the subject string for a substring under contrbl of the
pattern structure.

The primary purpose of this chapter is to consider in detail those SNOBOL4
language features that programmers may use to write expressiohs that, when
evaluated, yield pattern structures. These features include the pattern
building operations of concatenation and alternation, primitive pattern struc
tures built into the system, primitive functions whose values are pattern
structures, value assignment operations, and the unary operator * that
produces an unevaluated expression. Pattern structures representing sets of
fixed strings such as those built by

22

BASE
SCALE
ATTRIBUTE

'BINARY' I 'DECIMAL'
'FIXED' I 'FLOAT'

SCALE ·BASE

'HEX'

are basic to pattern matching. Additional language features provide natural
ways to talk about more complicated sets of strings, such as:

All string_~:;L . .o£'--·1.eng·t,h .. 5.
-t-rl-r--cliaracters up to the first comma.
The longest string of blanks.
Any number of repetitions of a string.
Any string balanced with respect to parentheses.
Any string at all.

For many users of SNOBOL4, a knowledge of how patterns are actually matched
is of little importance. The success or failure of matching is all that
matters. However, by understanding the scanning procedure, a programmer can
write more efficient patterns and make use of features such as immediate value
assignment and unevaluated expressions that can actually change a pattern during
matching. Thus, the secondary purpose of this chapter is to indicate how the
scanner works.

A brief introduction to the pattern building operations of alternation and
concatenation appears in Chapter 1. There, alternation and concatenation are
used to build pattern structures which match sets of strings.

Alternation, indicated by the binary operator I
structure from its two arguments. If P1 and P2
structures, the statement

P3 P1 P2

, builds a single pattern
are strings or pattern

builds a new structure and assigns it as the value of P3. P3 matches any string
matched by P1 or P2.

No explicit operator is used to indicate concatenation. Concatenation is
implied when two elements of a~ expression are separated by one or more blanks.
If P4 and P5 are strings, the statement

P6 P4 P5

assigns to P6 a string which is the value of P4 followed by the value of P5. If
either P4 or P5 is a pattern structure, the statement above builds a pattern
structure and assigns it as the value of P6. P6 matches any string which may be
formed from a string matched by P4 followed by a string matched by P5.

Alternation and concatenation can be used to build pattern structures which
match large numbers of strings. For instance, the following statements build a
pattern structure PAT.

23

P 'BE' I 'BEA' 'BEAR'
Q 'RO' I 'ROO' 'ROOS'
R 'DS' I 'D'
S 'TS' I 'T'
PAT P R Q S

Concatenation has higher precedence than alternation, so the structure for PAT
is built as if

PAT = (P R) (Q S)

had been written. PAT matches any of the twelve strings:

BEDS
BED
BEADS
BEAD
BEARDS
BEARD

ROTS
ROT
ROOTS
ROOT
ROOSTS
ROOST

Execution of pattern matching or replacement statements involves evaluation
of the pattern field (which may build a pattern structure) and the actual
scanning of the subject string. Building pattern structures is a complicated
process frequently requiring more time than the scanning itself. If a pattern
matching or replacement statement appears in a program loop, the pattern field
is evaluated for each iteration of the loop. If evaluation causes a pattern
structure to be built, time and storage are often consumed needlessly. For
example, the following program examines each card of an input deck for
P IS TRUE or P IS FALSE , printing those cards in which either appears.

LOOP

END

CARD = TRIM (INPUT)
CARD 'P IS' ('TRUE'
OUTPUT CARD

'FALSE')
: F (END)
: F (LOOP)
: (LOOP)

A pattern structure for 'P IS ' ('TRUE' 1 'FALSE') is built for each iteration
of the loop. A more efficient program is the following which builds the pattern
structure in an assignment statement outside of the loop.

LOOP

END

24

TORF 'P IS' ('TRUE'
CARD = TRIM (INPUT)
CARD TORF
OUTPUT = CARD

'FALSE')
: F (END)
: F (LOOP)
: (LOOP)

Matching a pattern structure against a subject string is done by a
procedure called the §£~nn~£. The pattern structure behaves like a program that
indicates to the scanner how to examine the subject string.

At any
information:

instant during scanning, the scanner needs two pieces of

1} where in the subject string it should be looking, and
2} what component of the pattern structure it should match.

The scanner has a pointer called the cursor which is positioned to the left of
the character that the scanner must match. A second pointer called the needle
points at the component of the pattern structure.

Consider the following example, in which the string of characters READS is
matched against a pattern structure which is the value of BR.

BR ('B'
'READS' BR

'R') (' E' • EA') (' D' 'DS')

For illustrative purposes, it is convenient to think of components of a pattern
structure as a set of beads which the scanner is trying to thread using the
needle. A bead diagram representing BR is shown below.

NEEDLE 1

~

In bead diagrams, left to right order of concatenation is preserved. Alterna
tion is represented top to bottom in the vertical direction. The needle points
at the bead which the scanner is currently trying to match. If a bead matches,
the needle passes through and moves upward as far as it can go without crossing
a horizontal line. If a bead does not match, the needle moves down to an
alternate bead provided one exists. Downward movement may not cross a
horizontal line. If no alternate exists, the needle is pulled back through the
last successfully matched bead and an alternative is sought there.

The following chart illustrates the steps in matching READS against BR.
The arrow pointing at READS represents the cursor while the arrow pointing at
the beads represents the needle. Failure in the fifth step causes the needle to
be pulled back. The cursor is moved back at the same time.

25

REA D S

t

REA D S

t

REA D S

t

REA D S

t

REA D S

t

REA D S

t

REA D S

t

26

REA D S

t

Bead diagrams graphically
programmer has over the scanner.

BR (' B' 'R') (' E'

illustrate one important control which
In a pattern-valued expression such as

'EA') (' D' f DS')

the

alternatives are matched by the scanner in left to right order (top to bottom in
the bead chart). Thus, the scanner attempts to match 'B' before 'R', 'E' before
'EA', and 'D' before 'DS'. By positioning alternatives correctly a programmer
can control the order in which the scanner looks at them.

The bead diagram for the pattern structure PAT developed in the previous
section follows.

8

A successful match in the statement

'ROOSTS' PAT

requires eleven steps.

27

Two keywords, &ANCHOR and &FULLSC.AN, give the programmer additional control
over the scanner. The scanner operates in an unanchored or anchored mode,
depending on the value of &ANCHOR. When unanchored, a pattern can match
anywhere in the subject string. When anchored, a pattern can match only
beginning at the first character.

For efficiency, tests are made during scanning which prevent the scanner
from looking at alternatives which cannot possibly succeed. &FULLSCAN can be
used to turn these tests off, leading to complete but possibly inefficient
pattern matching. Discussion of &FULLSCAN is deferred until the end of this
chapter, since it is useful only with more sophisticated patterns.

The keyword &ANCHOR initially has the value zero, signifying the unanchored
mode of scanning. The scanner may look anywhere in the subject string for an
appropriate substring. consider the following example.

'A BIG BOY' 'BIG'

Pattern matching succeeds.
diagram.

A BIG BOY

t

A BIG BOY

t

A BIG BOY

t

28

'LITTLE'

The steps involved are shown below using a bead

A BIG BOY

t

A BIG BOY

t ~LITTLEJ

----Is ~
A BIG BOY

t ~ LITTLE]

The cursor is initially at the left of the subject string. When all possible
alternatives fail, the cursor is moved one character to the right. All possible
alternatives are tried with the cursor beginning in the new position. Again,
all alternatives fail. The cursor is moved again and this time the first
al terna ti ve succeeds-.

In the unanchored mode, the origin of pattern matching is moved by changing
the initial position of the cursor. ~hus, the scanner matches, if possible, a
substring anywhere in the subject string. If more than one valid substring
exists, the scanner finds the leftmost one.

Frequently it is necessary to know if a pattern matches with its origin at
the first character of the subject string. As an example, suppose a program is
desired which reads any other SNOBOL4 program and prints only those lines that
are not comments (i.e. do not have * in column 1). ~t first glance, the
following statements might seem to suffice.

BEGIN LINE INPUT
LINE '*'
OUTPUT LINE

END

: F (END)
: S (BEGIN)
: (BEGIN)

Unfortunately, the program does not work because a card with * appearing
anywhere at all in it is rejected.

If &ANCHOR has a nonzero value obtained by executing an assignment
statement such as

~ANCHOR_-.::......J

29

t he _K~!:!..~~.LL","~J!1~"tfJl.""".!.§.""_,~.n9J1QJ:::§}i,,,~~i,, th e .1.§J~:L~ .. Q,£, .. "";th,e"'w-~~E!_~.iEi~~9.,:".,,,.,,,.~2gJ!.?:r:"i~ is
~glLi"g,:l.~£LJd,Y.",.ll-21.."J:n,Q.:¥.in.,g,,",.·t.l:;l,e,.,,.inLti,Q,~w pas i t ~Q£.....:t.he ell t: SO r w he.ll.-.all.. a It ern ai..iie·s
,in __ ~!!~ __ ,,_2~.t,:t~f.n,,~,§,!E~,:t.1J,r,,§~-.tc;til. Th ~.§...,!~_tJ)s;._s..,ca.un er, when aEl£hQ£"~.g."" .. ,.Q,,n,L¥._ma.t>ch.e s
! , ... ,.9: ga.1n§"!:,,,,,,,,!~"~.,,,\.,,t,i~w§\t,",.wGba;r;:.ae,t:e':r:,,,,.@,~m.",I::I'J:~NE •

The anchored mode of scanning is generally more efficient than the
unanch0red mode, since the scanner examines fewer possibilities. Anchored
scanning should be used where possible. It is, of course, perm;i,_§.§.iJ;?.l~,.".,,,,,"tQ.,,.,...,.,~ch

mode s & .. ~,~..01l9._ .. _~~qlltj-~Q~P-~"Q,t"''''@.'.wEI(2g;.E,~m,.-"t?~"",,~l,E!Jl?,l,Y.,wjS;;,.ll,aoo<in.~."t..b..e...~~

Pattern matching may be viewed ap a means of decomposing a string into
substrings. To be useful; a substring found by the scanner often must be
assigned as the value of a variable. Consider the pattern BR used in an earlier
section.

BR (-' B' 'R') (' E' , EA'). ('D} I ' ps ')

Used in a pattern matching statement such as

STR BR : S (L 1) F (L2)

where the subject string may be anythiQg, success of matching indicates only
that one of the valid strings appears somewhere in STR. It does not indicate
which string matches or how it matches. On failure, no indication is given of
how nearly successful the scanner was. There are two ways of assigning a
substring found by the scanner to a variable: conditional value assignment and
immediate value assignment.

-The })iYlClry<?peJ;a.:t:Q.:(". is used to indicate conditional value assignment.
The expres'$JOn'" .."." "............."

P V

associates a variable V with a pattern P so that upon successful completion of
pattern matching, the substring matched by P is assigned as the value of the
variable V. Thus, by associating several variables with portions of a pattern,
it is possible to asceJ::'tain what the overall pattern matches, and also which
components of the pattern are used in the match. For example, rewriting BR as

BR ((' B' 'R') (' E' 'EA') ('D' 'DS')) .' BRVAL

associates the variable BRVAL with the entir'e pattern. On successful completion
of matching, the entire substring matched is assigned as value of BRVAL.
Rewriting still further, variables can be associated with pieces of the pattern.

30

BR (('B '
(' D'

'R')
'DS')

. FIRST
. THIRD)

(' E' I 'EA')
• BRVAL

. SECOND

A successful match causes the entire substring to be assigned as the value of
BRVAL. B or R becomes the value of FIRST, E or EA becomes the value of SECOND,
and D or DS becomes the value of THIRD. Failure to match leaves the values of
all variables unchanged.

The binary operator $ signift~~ immediate
expr ess"i"6'Yl" .. , , J"

value The

P $ V

associates a variable V with a pattern P so that whenever P matches a substring,
the substring immediately becomes the new value of V. It is possible, by
using $, to associate variables with parts of a large pattern, to see how far
scanning progressed in the event of failure. Value assignment is done for those
parts of the pattern which match even though the overall match fails. Suppose
BR is rewritten using $ instead of where shown.

BR
+

(('B'
(' D'

'R') $ FIRST
'DS') $ THIRD)

('E' I 'EA') $ SECOND
• BRVAL

In the following statement, pattern matching fails.

'BEATS' BR : S (L 1) F (L2)

However, since immediate assignment is performed whenever th€ associated part of
the pattern matches, the following assignments are made.

FIRST
SECOND
SECOND

1 B'

'E'
'EA'

Values of THIRD and BRVAL are unchanged. If conditional assignment is used,
values of all four variables are unchanged. In the following example, the
pattern matches.

'BREADS' BR

1..
l

Values assigned both during and after scanning are:

: S (L 1) F (L2)

31

FIRST 'B'
FIRST 'R'
SECOND ' E'
SECOND 'EA'
THIRD 'D'
BRVAL 'READ'

The outcome is the same as if conditional value assignment had been used.
Immediate value assignment is less efficient in this case because two redundant
assignments are made. As a general rule, conditional value assignment should be
used whenever possible. Immediate value assignment should be used only in those
cases where intermediate results are important.

Examples using both immediate and conditional value assignment appear
throughout the remainder of this manual.

The operators
associate to the left.

and $ have the highest precedence of all operators and
Thus, in the statement

BR
+

((' B'
(' D'

'R') $ FIRST
, DS ') $ THIRD)

(' E' 1 'EA')
• BRVAL

$ SECOND

the outer parentheses are required to associate BRVAL with the entire pattern,
while additional parentheses are not required to associate FIRST, SECOND, and
THIRD.

Since OUTPUT is a variable, it may be associated with any portion of a
pattern. A successful match involving the pattern

('BED'l 'BUG' 1 'BOMB') OUTPUT

causes the successful alternative to be printed. Using $ to associate OUTPUT
with several parts of a pattern achieves the effect of tracing the progress of
the scanner. By constructing BR as

BR
+

('B ' I 'R ') $ OUTPUT (, E' ~. 'EA') $ OUTPUT
(' D' 1 'DS') $ OUTPUT

the output resulting from execution of the statement

'READS' BR : S (L 1) F (L2)

is

32

R
E
EA
D

Value assignment is a necessity in some kinds of replacement statements.
In the following replacement statement E or EA is replaced with I only if the
overall pattern BR matches. In effect, the replacement statement changes BED
and BEAD into BID, BEDS and BEADS into BIDS, etc., if these strings appear in
STR.

BR
STR

= (' B'
BR

I 'R')
FIRST

. FIRST (' E'
'I' LAST

'EA') (' D' I 'DS') • LAST

The replacement statement works properly because conditional assignment is done
after pattern matching, but before the object expression is evaluated.

Earlier examples illustrated how variable association may _ be nested. An
example is

PAT (P1 . V1 P2. V2) • V3

It is also possible to associate more than one variable with a single pattern
structure. The statement

PAT P1 $ V1 . V2

builds a pattern structure where variables V1 and V2 are both associated with
the pattern P1, V1 as immediate assignment and V2 as conditional assignment.
Changing the order of association to

PAT P1. V2 $ V1

has no effect on the value assignment. If PAT is involved in a successful
pattern match, V1 and V2 are assigned the same value. If'the pattern match
fails, the value of V1 might be changed but the value of V2 is not.

The null string is a string of zeTa length. Attempts by the scanner to
match the null string always succeed. The variable NULL has the null string as
its initial value and, by convention, is used as the null pattern which matches
a string of zero length. Pattern matching in the statement

33

STR NULL :S(ON}F(ERROR}

always succeeds even if STR itself has the null string as value.

The variable NULL is frequently used in more complex patterns. For
example, a pattern which matches the eight strings

C
D
AC
AD

can be written as

BC
BD
ABC
ABD

(NULL I ' A ') (NULL I 'B') (, C ' I'D')

Matching a pattern of the form

NULL $ X $ Y PAT

sets the values of X and Y to the null string before matching of PAT
begins.

A number of patterns described in this chapter match the null string.
Where bead diagram representations of the patterns are given, NuiL is used to
indicate the null string.

LEN (integer) is a primitive function whose value is a
that matches any string of the specified length. The argument
nonnegative integer value when pattern matching is performed.
example, pattern matching succeeds only if the sUbject STR ha~
an open parenthesis separated from a closed parenthesis
characters.

pattern structure
of LEN must have
In the following

in it somewhere
by exactly five

S TR '(, LEN (5) , } , : S (L 1) F (L2)

LEN can be used to break out fixed-length fields from strings.
following example dates from data cards such as

1290 SEP. 27 CHINA, CHIHLI
1293 MAY 20 JAPAN, KAMARKURA
1531 JAN. 26 PORTUGAL, LISBON

are reformatted as

34

100,000
30,000
30,000

In the

SEP. 27, 1290
MAY 20, 1293
JAN. 26, 1 5 3 1

&ANCHOR
DATE

LOOP CARD

CHINA, CHIHLI
JAPAN, KAMARKURA
PORTUGAL, LISBON

= 1
LEN (4) YR , ,
INPUT

LEN (4)

100,000
30,000
30,000

. MO ,

CARD DATE MO , , DAY YR
OUTPUT CARD

NOGOOD OUTPUT CARD IMPROPERLY FORMATTED.
END

, LEN (2) . DAY
: F (END)
: F (NOGOOD)
: (LOOP) ,

LEN is used to match the various pieces of the data assigning the strings
found to the variables YR, MO, and DAY. YR, MO, and DAY are assigned values
after pattern matching but before the entire substring matched by DATE is
replaced. Only the date portion of CARD is reformatted.

SPAN and BREAK are primitive functions whose values are pattern structures
that match runs of characters. Patterns described by

a run of blanks,
a string of digits, and
a word (run of alphabetic characters)

can be formed using SPAN as
\
" ,

SPAN (' ')
SPAN('0123456789'}
SPAN('ABCDEFGHIJKLMNOPQRSTUVWXYZ'}

Patterns described by
r-

everything up to the next
everything up to the next
everything up to the next

can be formed using BREAK as

BREAK (' ')
pREAK (, , . ; : ! ? ')
BREAK('+-0123456789')

blank,
punctuation
number,

mark, and

Arguments of BREAK and SPAN must be nonnull strings when pattern matching is
performed.

The pattern structure for SPAN matches the longest string beginning at the
cursor which consists solely of characters which appear in the argument. SPAN
may be thought of as streaming from the cursor until a character not included in
the argument is found. §~~~_~g§i_m~i£h_~i_lg~§i_Qng_£h~£~£ig£L

35

BREAK generates a pattern structure that matches the longest string
beginning at the cursor which does not contain a character of the argument.
Thus, regarding its argument as a list of "break" characters, BREAK streams from
the cursor up to but not including the first break character. ~E~~~_m~21_finQ_~
Q~~~t_£h~~~£1~~~ If the cursor is positioned immediately to the left of a break
character, BREAK matches the null string. BREAK fails if no break character is
found.

A bead diagram for the statement

• IT RUNS.' BREAK (. .) SPAN (. .) BREAK (I . I) I ••

illustrates how the cursor is moved by SPAN and BREAK.

IT RUNS. ~REAK(I IV ~PAN (I IV ~REAK (I. IV
t

o
IT RUNS. ~REAK(I I D----GPAN (I IV ~REAK (I. I}

t
o

IT RUNS. ~REAK(I ID------(SPAN (I I~REAK(I. 'V
t

o
IT RUNS. --~REAK (I I D------(SPAN (I I~REAK(I.IV

t
1-----;0;0-0

IT RUNS. ~REAK(I I~PAN(I I~REAK('. IV

t
The next program illustrates the use 6f both BREAK and SPAN. It compresses

tabulated data, leaving fields separated by single colons rather than an
arbitrary number of blanks. For example, if the input is

ACTINIUM
ALUMINUM
AMERICIUM
ANTIMONY

the output is

AC
AL
AM
SB

89
13
95
51

227*
26.9'815

243*
121.75

1899
1825
1944
1450

ACTINIUM:AC:89:227*:1899:DEBIERNE
ALUMINUM:AL:13:26.9815:1825:0ERSTED
AMERICIUM:AM:95:243*:1944:SEABORG
ANTIMONY:SB:51:121.75:1450:VALENTINE

36

DEBIERNE
OERSTED
SEABORG
VALENTINE

LOOP
!NLOOP

END

=
BREAK (' ')

TRIM (INPUT)

&ANCHOR
FIELD
CARD
CARD
PUNCH

FIELD CHARS
CARD

CHARS

, : '
SPAN (' ')

: F (END)
: S (INLOOP)
: (LOOP)

Each input card is repeatedly examined for a run of blanks, and the blanks
are replaced by a colon. When blanks no longer exist the compression is
complete and a new card is punched.

Some care must be exercised in using BREAK, since it does not match the
break character which stops the streaming. Suppose a ?rogram is wanted which
restores, to some degree, the compressed data generated above. Each field of
the compressed data can be broken out using a statement such as

CARD BREAK(':') • FLD ':'

Since BREAK(': ') does not "consume" the colon, the literal is included to remove
the break character.

SPAN never matches a string shorter than the maximum spap. For example,

'9824761.' SPAN('0123456789') '6'

cannot succeed since SPAN always matches up to the decimal point.

In the event that components of the pattern beyond BREAK fail, BREAK does
not skip over the break character and continue streaming. In the anchored mode
the following statement never succeeds.

, 1 23 , 4,27 , 642 . 00 ' BREAK (, . , ') LEN (1) '0 '

BREAK('.,') matches 123 and that is all.

and , are primitive functions whose values are
pattern structures that rna c characters. ANY matches any character
appearing in its argument. NOTANY matches any character n2i appearing in its
argument. Thus, the pattern structure for ANY('AEIOU') matches any vowel. The
pattern for NOTANY('AEIOU') matches any character that is D2i a vowel.
Arguments of ANY and NOTANY must be nonnull strings when pattern matching is
performed.

ANY and NOTANY are fast ways of looking for one of a set of single
characters. For example,

ANY (, A EI OU ')

37

is preferable to

'A' I 'E' 1 'I' I '0' I 'U'

The call

NOTANY('STRUCTURE')

is valid even though the characters T and U appear twice.

Two examples utilizing ANY and NOTANY follow. The first counts the number
of occurrences of vowels and consonants in an input deck of English text. The
second counts and publishes the number of times individual letters appear in
input text. In both cases, nonalphabetic characters are ignored.

INPUT

LOOP

PUB

END

&ANCHOR 0
VOWEL 'AEIOU'
CONS 'BCDFGHJKLMNPQRSTVWXYZ'
CHAR = ANY (VOWEL) • V NULL. C I

OUTPUT
TEXT
TEXT
VCOUNT
CCOUNT
OUTPUT
OUTPUT
OUTPUT

ANY (CONS) • C NULL. V I
LEN(1) NULL. V . C

= TRIM (INPUT)
TEXT OUTPUT

CHAR =
VCOUNT + SIZE(V)
CCOUNT + SIZE(C)

'VOWELS OCCUR VCOUNT
'CONSONANTS OCCUR CCOUNT

: F (LOOP)
: (INPUT)
: F (PUB)

: (LOOP)

TIMES. '
TIMES. '

The pattern CHAR matches one character. If that character is a vowel, it
is assigned as the value of V, and the value of C becomes the null string. If
CHAR matches a consonant, it becomes the value of C, and V becomes nUll. If the
character is nonalphqbetic, both C and V become null.

Inside the main loop, characters are removed from TEXT one at a time by
CHAR. The two statements incrementing VCOUNT and CCOUNT are executed for every
character. Because the conditional value assignment sets the values of V and C
appropriately, only VCOUNT or CCOUNT or possibly neither is actually incremented
by one.

Output from a typi~al run is:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR PARTY.

38

VOWELS OCCUR 32 TIMES.
CONSONANTS OCCUR 54 TIMES.

The program to count occurrences of individual letters is

INPUT

LOOP

PUB
PUBL

END

&ANCHOR 1
ALPH = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
LETTER = LEN(1) • LET
CHAR = NOTANY(ALPH) . SW LETTER NULL.
OUTPUT = TRIM (INPUT)
TEXT TEXT OUTPUT
TEXT CHAR
$LET = IDENT(SW) $LET + 1
OUTPUT
ALPH LETTER
OUTPUT = LET APPEARS

$LET TIMES. '

SW
: F (LOOP)
: (INPUT)
: F (PUB)
: (LOOP)

: F (END)

: (PUBL)

The pattern CHAR matches exactly one character. If
nonalphabetic, the character becomes the value of SW.
alphabetic, it becomes the value of LET and SW becomes null.

the character is
If the character is

In the main loop, characters are removed from TEXT one at a time by CHAR
and the values of SW and LET are assigned. The ~ount for each character is kept
in a variable having the name of the letter. (That is, the variable A contains
the count for A.) The statement

$LET IDENT(SW) $LET + 1

increments the count for the character found provided the value of SW is null,
which is true only for the alphabetic characters.

Output from a typical run is:

39

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF ~HEIR PARTY.

A APPEARS 4 TIMES.
B APPEARS 1 TIMES.
C APPEARS 2 TIMES.
D APPEARS 3 TIMES.
E APPEARS 9 TIMES.
F APPEARS 3 TIMES.
G APPEARS 2 TIMES.
H APPEARS 5 TIMES.
I APPEARS 5 TIMES.
J APPEARS 1 TIMES.
K APPEARS 1 TIMES.
L APPEARS 3 TIMES.
M APPEARS 4 TIMES.
N APPEARS 3 TIMES.
0 APPEARS 12 TIMES.
P APPEARS 2 TIMES.
Q APPEARS 1 TIMES.
R APPEARS 5 TIMES.
S APPEARS 2 TIMES.
T APPEARS 9 TIMES.
U APPEARS 2 TIMES.
V APPEARS 1 TIMES.
W APPEARS 2 TIMES.
X APPEARS 1 TIMES.
Y APPEARS 2 TIMES.
Z APPEARS 1 TIMES.

~~:~~~~~~:.:::~Ii~eger) ~",~"~E.§.,,.,_~l?ri_~.Y!L.~unctions whose valu~s are
pattern structures match al~crracterstrom the c sltlon
to a specific point in the subject string. TAB(N) matches up through the Nth
character of the subject string. RTAB(N) matches up to but not including the
Nth character from the right end of the subject string. Stated another way,
TAB(N) insures that N characters are matched by positioning the cursor to the
right of the Nth character. RTAB(N) insures that all but N characters are
matched by positioning the cursor to the left of the Nth character from the end.
For example, in the statement

'SNOBOL4' LEN(2) TAB(6)

the pattern matches the substring SNOBOL with TAB(6) matching OBOL. In a
similar statement,

'SNOBOL4' LEN(2) RTAB(1)

the substring SNOBOL is once again matched with RTAB(1) matching OBOL.

RTAB(O) is particularly useful for matching everything to the end of the
subject string. For convenience, the variable REM has as its initial value the
pattern structure for RTAB(O). Thus, the pattern

40

LAST8 RTAB(8) REM. L8

matches the entire subject and assigns the last eight characters as the value of
L8.

TAB and RTAB require integer arquments when pattern matching is performed.
If the argument of TAB or RTAB is negative, error termination occurs. An
argument that would require moving the cursor left causes failure. The
statement

STR LEN (5) TAB(4)

fails because the cursor cannot be moved back by TAB(4).

TAB and RTAB are particularly valuable in breaking fields out of structured
data. The following data is part of the 1964 list of congressmen from New
Jersey.

Column 4 Column
~

1 WILLIAM T. CAHILL
2 THOMAS C. MCGRATH,
3 J~~ES J. HOWARD

14 DOMINICK V. DANIELS
15 EDWARD J. PATTEN

JR.

30
~
REP
DEM
DEM

DEM
DEM

Column 36
~
COLLINGSWOOD
MARGATE CITY
WALL

JERSEY CITY
PERTH AMBOY

Suppose a new deck of cards is desired, listing only the names left justified at
column 1, and the post office address right justified at column 44. The
following program reads the cards, breaks out the NA~E and PO fields, formats
and punches a new deck.

LOOP

END

&ANCHOR =
BLANKS
NAMEANDPO TAB(3) TAB(29). NAME TAB (35) REM. PO
CARD TRIM (INPUT) :F(END)
CARD NAMEANDPO :F(ERROR)
NAME TRIM (NAME)
BLANKS LEN(44 - (SIZE (NAME) + SIZE(PO))) . PAD :F(ERROR)
OUTPUT = NAME PAD PO
PUNCH = OUTPUT : (LOOP)

Fields are broken out of the input cards using the pattern NAMEANDPO. The
NAME field has trailing blanks which are trimmed before the output line is
formatted. The post office address is obtained using REM and does not have
trailing blanks since the input card was initially trimmed. LEN is used to
determine the number of padding blanks required between NAME and PO to properly
format the output. Output from the program is

41

WILLIAM T. CAHILL
THOMAS C. MCGRATH, JR.
JAMES J. HOWARD

DOMINICK V. DANIELS
EDWARD J. PATTEN

COLLINGSWOOD
MARGATE CITY

WALL

JERSEY CITY
PERTH AMBOY

A bead diagram illustrating the match of NAMEANDPO and the first data card
is shown below.

1
+

t

4 30 36
+ + t

1 WILLIAM T. CAHIlL REP COLLINGSWOOD

;r 6AB (3) ~AB (29) . NAM~ 0AB (35U 0EM . p0

WILLIAM T. CAHILL REP COLLINGSWOOD

t
----~~AB(29) • NAM~ ~AB (35)

1 WILLIAM T. CAHILL REP COLLINGSWOOD

~

1 WILLIAM T. CAHILL REP COLLINGSWOOD

f
-~8--0AB (29) . NAM~AB (35D--0EM • p0

1 WILLIAM T. CAHILL
1

REP COLLINGSWOOD

~
--8--0AB (29) • NAM~AB (35])---0EM • P~

POS(integer) and RPOS(integer) are primitive functions whose values are
patt~ructur~nese pattern structures match the null string if the
cursor is at a point in the subject string specified by the integer argument.
POSeN) succeeds, matching the null str~ng, only if the cursor is positioned at

42

the right of the Nth character. RPOS(N) succeeds, matching the null string,
only if the curspr is positioned to the left of the Nth character from the end
of the subject string. POS and RPOS never cause the cursor to be moved; they
test its position. For example, in the statements

&ANCHOR
STR SPAN(' ') POS(7)

pattern matching succeeds only if the first seven characters are blanks and the
eighth is not a blank. In the following example,

&ANCHOR
STR SPAN(' ') RPOS(7)

pattern matching succeeds only if the seventh character from the end of STR is
nonblank and everything preceeding it is blank.

POS(O) is a pattern that succeeds only if the cursor is at the left of the
subject string. RPOS(O) succeeds only if the cursor is at the right of the
subject string. POS(O) and RPOS(O) can serve as left and right anchors for any
pattern P, as in

ENTIRE POS (0) P RPOS (0)

In the statement

STR ENTIRE

pattern matching succeeds only if P can match all of STR. If at the time ENTIRE
is built, P has the value

'CAR' 'CART' 'CARTE'

Matching in the statement

'CARTE' ENTIRE

is illustrated by the bead diagram:

CAR T E

t
---~-8

43

CAR T E

t

CAR T E

t

CAR T E

t

CAR T E

t

CAR T E

t

CAR T E

44

t

---{~os (0 V~-----la~8

(CARTY

(CARTE~

---i8}-------(8J----~;;.-l0pOS (0 V

~CART)

(CARTE)

~POS (0)

(CARTE)

---18

CAR T E

t

Arguments for POS and RPOS
pattern matching is performed.
termination.

must have nonnegative integer values when
Negative or noninteger arguments cause error

The following program uses POS, RPOS, SPAN, and BREAK to list cards which
do not conform to a specific format. Cards, when properly punched, have three
fields left justified at columns 1, 10 and 20. A field consists of a run of
nonblank characters followed by a run of blanks. Cards not conforming are
printed by the program.

OUTPUT 'CARDS
FIELD BREAK('
FIELDS POS (0)

LOOP CARD INPUT
CARD FIELDS
OUTPUT CARD

END

WITH IMPROPER FORMAT ARE:'
') SPAN (' ')
FIELD POS(9) FIELD POS(19) FIELD RPOS(O)

: F (END)
: S (LOOP)
: (LOOP)

A pattern FIELD is defined as a run of zero or more nonblank characters
followed by a run of blanks. FIELDS is defined using FIELD three times with POS
and RPOS, which check that the fields matched are positioned properly. If the
following data are provided as input

EXPR

EXRTN3
EXRTN1
EXRTN2

PROC
SAVLNK
RCALL XPTR,EXPRS

BRANCH EXRTN1
BRANCH EXRTN2

RSTURN 3
RSTURN 1
RSTURN 2

the output is

CARDS WITH IMPROPER FORMAT ARE:
SAVLNK

BRANCH EXRTNl
BRANCH EXRTN2

EXRTN2 RSTURN 2

45

L. f~11

FAIL is a variable whose initial value is a pattern structure that always
fails. FAIL does not terminate pattern matching, but causes the scanner tb seek
alternatives.

consider the following statements.

&ANCHOR 0
'MISSISSIPPI' (' IS' I 'SI' I 'IP' I 'PI') $ OUTPUT FAIL

Normally, the pattern would match the first IS, print it, and terminate
successfully. However, FAIL causes the scanner to back up after printing the
IS to look for another alternative. SI is found and printed, and again FAIL
causes the scanner to back up. Thus, FAIL causes the scanner to find and print
all six substrings of MISSISSIPPI that the pattern

('IS' I 'SI' I 'IP' I 'PI')

matches before terminating in failure.

In general, the behavior of the scanner during any pattern match may be
observed using a statement of the form

STR PAT $ OUTPUT FAIL

FAIL is generally used when a programmer wishes to force the scanner to try
a number of alternatives even though some may succeed. In the following example
words or phrases are read from cards. Cards are printed if they

1) begin with the chqracters SIDE,
2) contain either a hyphen or a blank, and
3) have length iess than or equal to eleven.

For example, SIDE DISH and SIDE-KICK are acceptable while SIDEBOARD and
SIDE-WHEELER are not.

&ANCHOR
OUTPUT 'ACCEPTABLE WORDS ARE:'
PAT == NULL $ P1 $ P2 $ P3

('SIDE' $ P1 I BREAK ('- ,) $ P2 LEN (12) $ P3)
FAIL

LOOP CARD TRIM (INPUT) : F (END)
CARD PAT
DIFFER (P 1) DIFFER (P2) IDENT (P3) : F (LOOP)
OUTPUT CARD : (LOOP)

END

PAT is a complicated pattern that, because FAIL forces the scanner to back
up, checks all three conditions. The initial portion of PAT,

NULL $ P1 $ P2 $ P3

46

matches the null string, thereby immediately assigning the null value to
variables P1, P2, and P3. If SIDE matches, P1 gets a nonnull value. If
BREAK(I- ') also matches, P2 also gets a nonnull value. Finally, if LEN(12)
fails, as it should, P3 keeps its null value. The values of P1, P2, and P3 are
checked in the statement following pattern matching.

The variable FENCE has a pattern structure as its initial value. FENCE
matches the null string when first encountered by the scanner moving left to
right through a pattern. If a subsequent failure causes the scanner to back up
to FENCE seeking an alternative, the pattern match is terminated. Considering
FENCE as a bead, the needle passes freely from left to right. Attempting to
pull the needle back through FENCE causes failure of pattern matching.

Consider the following statements:

&ANCHOR
'BERATES' (' BE' 'GE' 'FRE') (' TS' 'T')

BE matches, and both TS and T fail~ At this point the scanner backs up and
tries GE and FRE, both of which fail. Looking at the pattern, it is obvious
that GE and FRE should not be tried because the first two characters are known
to be BE.

Inserting FENCE between the groups of alternatives eliminates the problem.

'BERATES' (' BE' 'GE' 'FRE') FENCE ('TS' 'T')

Now, if BE matches, FENCE keeps the scanner from needl~ssly backing up to look
at GE and FRE.

FENCE can be used to temporarily anchor the scanner in a program
otherwise operates in the unanchored mode. Inserting FENCE before PAT
statement

STR (FENCE PAT)

which
in the

causes pattern matching to fail if PAT does not match beginning with the first
character of STR.

N. ~~QB1

ABORT is a variabl~ whose initial value is a oattern structure that causes
immediate termination of the entire pattern match. No alternatives are tried,
and the statement fails.

ABORT is useful in constructing conditional pattern matching statements.
For instance, in processing SNOBOL4 source decks as data, the following pattern
ignores comment cards, but matches all others against the pattern CARD.

47

CARD FORM '*' ABORT CARD

Similarly, the pattern

SHORTPAT LEN (12) ABORT PAT

succeeds only if the subject string is less than 12 characters long.

In general, a pattern described by a statement of the form, "has
characteristics of P but not Q," can be imolemented by

PNOTQ = Q ABORT P

When failure to match a pattern component starts the scanner pulling the
needle back, the scanner seeks alternatives to components that matched. So far,
the only way described for creating alternatives uses the binary operator 1.
Components, if "backed into," either terminate the pattern match (FENCE), pass
the needle to an alternative (as indicated by I), or, if no alternative
exists,pass the needle still farther back to seek alternatives. Four primitive
pattern structures, ARB, BAL, ARBNO(P), and SUCCEED behave differently. These
patterns have implicit alternatives. Rather than pass the needle back or to an
alternative, they attempt to find another suitable substring. Only when all
implicit alternatives fail is the needle passed to an explicit alternative or
passed back.

ARB is a variable whose initial value is a pattern structure that matches
zero or more characters. When first encountered by the scanner moving from left
to rignt, ARB matches the null string. When 'backed into' on subsequent
occasions, ARB increases the size of the substring it matches by one. ARB fails
only when it can no longer increase the length of the substring it matches.

ARB is used in the construction of patterns typified by the statement, "any
string containing both CAT and DOG.1t Nothing is said about the order in which
they appear or their separation. A suitable pattern is

CATANDDOG 'CAT' ARB 'DOG'

Matching CATANDDOG against the strings

CATALOG FOR SEADOGS
DOGS HATE POLECATS
CATDOG

ARB matches the substrings

48

'DOG' ARB 'CAT'

ALOG FOR SEA
S HATE POLE

and the null string, respectively.

ARB, although natural, cannot be used with impunity. For example, it
shou:Q not be used as the first component of a pattern unless associated with a
variable for value assignment. The statement

STR ARB PAT

should be replaced by

STR PAT

which, when executed in the unanchored mode, behaves in exactly the same way,
but is much faster.

ARB should not be used to break fields out of a string if they are
separated by known delimiters. For example, the statement

STR BREAK(',') • FIELD , , ,

is much faster than the statement

STR ARB. FIELD

although they accomplish the same thing.

The following bead diagram gives a representation of ARB. It can be seen

49

from the diagram that

1) the null string is matched on the first attempt,
2) subsequent attempts increase the substring matched by one character, and
3) failure occurs when the size of the substring cannot be increased.

The initial value of the variable BAL is a pattern structure which matches
any nonnull string of characters balanced with respect to parentheses. BAL
matches

x
XYZ
(A+B)

A (B*C) (E/F) G+H

BAL does not match

) A+B (
((A + B)

A bead diagram for BAL resembles the one for ARB except that the null
string is not acceptable.

50

GBAL is a routine that

1) fails if no characters remain in the subject string,

2) fails if the first character examined is

3) matches any character except

4) matches all characters from
and

or (,

up to and including the balancing

5) fails if a balancing does not occur.

In the statement

'A (B*C) (E/F) , BAL RPOS (0)

GBAL is called three times. First it matches the A but RPOS(O) fails. Next,
GBAL extends the string matched by BAL to include (B*C), but again RPOS(O)
fails. Finally GBAL matches (E/F) , which brings the total string matched by
BAL to A (B*C) (E/F)

Insight into the behavior of BAL can be gained from use of ALLBAL:

ALLBAL BAL $ OUTPUT FAIL

When used in the unanchored mode, a statement such as

, ((A+ (B*C)) +D)' ALLBAL

prints out every balanced expression. The output for this case is

51

((A+ (B*C» +D)
(A+ (B*C))
(A+ (B*C)) +
(A+ (B*C)) +D

A
A+
A+ (B*C)
+
+ (B*C)
(B*C)

B
B*
B*C

*
*C
C
+
+D
D

BAL facilitates the manipulation of algebraic and functional expressions.
Programs using BAL to translate algebraic expressions from Polish to infix
notation, and vice versa, appear in Chapter 4.

ARBNO is a mnemonic for "arbitrary number of." ARBNO(pattern) is a
primitive function whose value is a pattern structure that matches zero or more
consecutive occurrences of strings matched by its argument. When encountered by
the scanner in the forward direction, ARBNO(pattern) matches the null string.
When 'backed into,' it tries to increase the length of the substring matched by
its argument. In the statements

&ANCHOR 1
SUBSTR ARBNO(LEN(3}) RPOS(O)

the pattern match succeeds only if the size of SUBSTR is zero or a multiple of
three.

ARBNO(P) may be thought of as the infinite pattern

NULL P (NULL P (NULL P (NULL P (••••••))»

A bead diagram is perhaps more illuminating.

52

END

o GUL0
o 0UL0

o 0UL0

In the following example the argument of ARBNO has several alternatives.

&ANCHOR
P '1234'
ARBNOTEST
'123412341'

1
I '123'

ARB NO (P)
ARBNOTEST

1
$

• 234'
OUTPUT

I '341 '
RPOS (0)

'412 '

The following bead diagram for ARBNOTEST illustrates how alternatives are
handled. The output from the program above is a blank line (resulting from the
null string), and then

1234
12341234
1234123
123
123412
123412341

53

&ULL)

8 GULL)

8 0UL0
0 @ ~23V

8 8 @
--

8 8 0

BREAK and SPAN can frequently be used in place of ARBNO. For example,

ARBNO (••)

can usually be replaced by

SPAN (. .)

or, if necessary,

NULL SPAN (. .)

ARBNO is relatively slow and should be avoided if some other pattern will
suffice.

The variable SUCCEED has a pattern structure as its initial value. SUCCEED
matches the null string when first encountered by the scanner moving left to
right through a pattern. If a subsequent failure causes the scanner to back up
to SUCCEED seeking an alternative, SUCCEED again matches the null string. Thus,
SUCCEED always matches the null string, both in the forward direction and when
alternatives are sought. SUCCEED has a bead representation where all implicit
alternatives are the null string.

54

8
8
8
0UL0

since the number of implied alternatives is infinite, the scanner can never back
through SUCCEED.

Practical uses
programmer can use
terminate:

for SUCCEED seem
SUCCEED and FAIL

limited. However, the light-hearted
to produce pattern matches that never

SAWTOOTH = SUCCEED (LEN(1) ARB) $ OUTPUT FAIL

Since FAIL repeatedly causes the scanner to back up and retry ARB, LEN(1) ARB
matches first one character, then two, and so on up to the length of the subject
string. Each substring matched by LEN(1) ARB is printed. Eventually ARB cannot
match a longer string and fails, causing the scanner to back into SUCCEED.
SUCCEED matches the null string and the entire process repeats itself.

If the pattern SAWTOOTH is used in the statement

'XXXXXX' SAWTOOTH

pattern matching does not terminate, and the following output is produced.

55

x
xx
xxx
xxxx
xxxxx
xxxxxx
x
xx
xxx
xxxx
xxxxx
xxxxxx
x
xx

SAWTOOTH can never terminate successfully because of the FAIL, and can never
terminate in failure because of the SUCCEED.

The unary operator w is called the cursor position operator. Its operand
is a variable. The value of wX is a pattern structure that matches the null
string and assigns the current cursor position as an integer value of the
variable X. Assignment of the cursor postion to the operand of the w
operator takes place as immediate value assignment. Value is assigned when the
cursor position operator is encountered during pattern matching, not following
successful completion.

Execution of the following statements assign the integer value 5
variable HEAD.

&ANCHOR 0
'TEST AT OPERATOR' wHEAD 'AT'

to the

Pattern matching finally succeeds when the cursor is initially positioned to the
left of the AT. The cursor position at this point is 5, the value assigned to
HEAD.

Locating the rightmost instance of a pattern in a string is relatively easy
utilizing the cursor position operator. The following statements can be used to
locate and remove the rightmost blank in a string of characters.

&ANCHOR 0
STR
STR

wRTPOS FAIL
TAB(RTPOS - 1) . HEAD HEAD

Since the unanchored mode is used, the first pattern matching statement assigns
a cursor position to RTPOS for each blank in STR. Although failing
ultimately, the final value of RTPOS is the cursor position to the right of
the last blank. The replacement statement uses TAB(RTPOS - 1) to locate and
remove the rightmost blank.

56

The unary operator * postpones the evaluation of its operand. If E is an
expression, then *E is an unevaluated expression. The unevaluated expression is
evaluated when

1) the scanner encounters *E as part of a pattern structure, or
2) *E is used as the argument of the primitive function EVAL.

In this chapter, unevaluated expressions, often simply called expressions, are
considered only in the context of pattern matching. A detailed discussion of
EVAL appears in Chapter 4.

If an unevaluated expression appears as part of a pattern, the expression
is evaluated when encountered during pattern matching. If evaluation of the
expression is successful, the value becomes part of the pattern structure and
pattern matching continues. If evaluation of the expression fails, the scanner
backs up seeking alternatives. Failure during evaluation of an expression does
not cause termination of pattern matching.

A typical use for unevaluated expressions is motivated by the following
example. A deck of data cards indexed in the first three columns with numbers
from 1 to 999 is to be checked for the proper sequence.

LOOP

OK
NOGOOD
END

&ANCHOR 1
N 1
BLANKS
CARD INPUT
CARD (BLANKS N) . SW NULL . SW
N DIFFER (SW) N + 1
EQ(SIZE(N) + SIZE (BLANKS) ,3)
BLANKS ' ,
OUTPUT 'DECK IS WELL ORDERED.'
OUTPUT 'CARD CARD IS OUT OF ORDER.'

: F (OK)
: F (NOGOOD)

: S (LOOP)
: (LOOP)

(END)
: (END)

Typical data are the following cards listing the best selling nonfiction books
for 1965.

Column 1

• 1. MARKINGS, DAG HAMMARSKJOLD
2. THE ITALIANS, LUIGI BARZINI
3. SIXPENCE IN HER SHOE,

PHYLLIS MCGINLEY
4. REMINISCENCES, DOUGLAS MACARTHUR

10. JOURNAL OF A SOUL, POPE JOHN XXIII
11. THE OXFORD HISTORY OF THE AMERICAN

PEOPLE, SAMUEL ELIOT MORISON
12. THE WORDS, JEAN-PAUL SARTRE

57

The main loop is executed once for each card. Matching for sequence numbers or
leading blanks is done using the pattern

(BLANKS N) • SW NULL . SW

The value of N is the number sought.
blanks such that SIZE (BLANKS N)
successful match, is nonnull if the
three blanks are found instead.
incremented for the next iteration.
changes from 9 to 10, a blank is
SIZE (BLANKS N) equal to 3.

BLANKS
is 3.

sequence
SW is

When the
removed

has a value of zero, one or two
SW is a variable which, following a
number is found, and is null if

used to determine if N should be
SIZE(N) changes, as it does when N

from BLANKS in order to keep

The important point to observe in the example is the changing of the
pattern. During execution, the value of N changes frequently and the value of
BLANKS changes occasionally. As written, the pattern is evaluated for every
iteration, and a new pattern structure is built.

N and BLANKS are the only portions of the pattern which change. Suppose a
new pattern utilizing unevaluated expressions is s~ecified outside of the loop.

SEQNO = (*BLANKS *N) • SW NULL . SW

The pattern matching statement inside the loop becomes

CARD SEQNO : F (NOGOOD)

The expressions *BLANKS and *N are not evaluated when the pattern is built.
They remain unevaluated until SEQNO is used in a pattern matching statement.

During pattern matching the values of BLANKS and N are found and inserted
into the already existing pattern structure. Thus, the pattern structure is
built once, and only the continually changing values of BLANKS and N are updated
on every iteration.

The following example incorporates the modifications using unevaluated
expressions.

&ANCHOR = 1
N ::: 1
BLANKS :::

SEQNO :: (*BLANKS *N) . SW NULL . SW
LOOP CARD ::: INPUT : F (OK)

CARD SEQNO : F (NOGOOD)
N DIFFER (SW) N + 1
EQ (SIZE (N) + SIZE (BLANKS) ,3) : S (LOOP)
BLANKS , , = (LOOP)

OK OUTPUT = -DECK IS WELL ORDERED.' (END)
NOGOOD OUTPUT :: 'CARD CARD IS OUT OF ORDER.' (END)
END

Unevaluated expressions are valid arguments for primitive pattern-valued
functions. The pattern structure for the function is built, but the argument
remains unevaluated until pattern matching is performed. The following example
uses an unevaluated expression as the argument of LEN, and thereby avoids the

58

repeated formation of a pattern structure. The program takes input cards with
left-adjusted data of length less than 40 characters, and produces output cards
with the data right adjusted at column 40. For example, the cards

AKRON BEACON JOURNAL
ATLANTA CONSTITUTION
ATLANTA JOURNAL
BALTIMORE NEWS AMERICAN

become

BLANKS

AKRON BEACON JOURNAL
ATLANTA CONSTITUTION

ATLANTA JOURNAL
BALTIMORE NEWS AMERICAN

PADPAT LEN(*(40 - SIZE(CARD))) . PAD
LOOP CARD TRIM (INPUT)

GT (SIZE (CARD) ,40)
BLANKS PADPAT
PUNCH PAD CARD

PRINT OUTPUT CARD
END

: F (END)
: S (PRINT)
: F (ERROR)
: (LOOP)
: (LOOP)

PAD PAT is constructed once and only once. The argument of LEN is evaluated for
each iteration of the loop.

In pattern matching, unevaluated expressions can be used in a variety of
ways, as illustrated by the following examples.

PAIR is a pattern that matches any two consecutive identical characters.
PAIR uses LEN(1) to match any character, and immediate value assignment to
assign the character as value of X. The expression *x that follows must match
the same character as LEN(1).

PAIR (LEN (1) $ X *X) . OUTPUT
'COOK' PAIR
'COMMON' PAIR
'AARON' PAIR
'CHICKADEE' PAIR

END

Output from the program is:

00
MM
AA
EE

59

Given any subject string STR and any pattern P, BIGP finds the longest
substring of STR that P matches.

BIGP (*P $ TRY *GT (SIZE (TRY) ,SIZE(BIG))) $ BIG FAIL

BIGP uses two variables, BIG and TRY. During pattern matching, the value
of BIG is the largest substring found. Before pattern matching, BIG must be
initialized to the null string. TRY is assigned every substring that the
pattern P matches. If TRY is longer than BIG, the value of BIG is updated.

BIGP utilizes unevaluated expressions in two ways. *p allows BIGP to be
constructed without specifying the value of P. The value of P is determined
during pattern matching. The predicate *GT(SIZE(TRY) ,SIZE(BIG)) is evaluated
during pattern matching whenever *p matches a substring. It compares the size
of TRY with the size of BIG. If the new substring is shorter, the predicate
fails. Failure of a predicate or function during pattern matching causes the
scanner to back up seeking alternatives. If the new substring is longer, the
predicate succeeds, returning the null string as value. This null string is
immediately matched. The variable BIG is then assigned the new substring as
value. FAIL causes the scanner to back up and look for another substring
matched by P.

END

The following is a test program for BIGP.

BIGP
STR

P
BIG

(*P $ TRY *GT(SIZE(TRY) ,SIZE(BIG))) $ BIG FAIL
'ON JANUARY 1, 1965, THE UNITED STATES MERCHANT'
'FLEET HAD 2529 VESSELS TOTALLING'
'29,632,000 DEADWEIGHT J6NS.'

SPAN('0123456789,') //
/,/"

STR BIGP
OUTPUT 'LARGEST NUMBER IS BIG
P SPA.N ('ABCDEFGHIJKLMNOPQRSTUVWXYZ ')
BIG
STR BIGP
OUTPUT 'LARGEST WORD IS BIG

The output is

LARGEST NUMBER IS 29,632,000
LARGEST WORD IS DEADWEIGHT

Recursive definitions of patterns are possible using unevaluated expres
sions. The pattern structure for

P P 'Z' 'Y'

is constructed using the previous value of P. If P was null, the new value of P
matches the strings Y and Z.

60

If the value of P is left unevaluated as in

P *p 'Z' 'Y'

the value of P at pattern matching time (which is *P, 'Z' I 'Y') replaces *P,
giving rise to a recursive definition. The pattern P matches either Y or
anything matched by P followed by Z. Therefore, since P matches Y, it also
matches YZ. Since P matches YZ, it also matches YZZ, etc. Thus, P matches
strings of the form

Y
YZ
YZZ
YZZZ

A test program for the recursive definition of P follows.

P *p 'Z' I 'Y'
PO P OUTPUT
'Y' PO
'YZZZ' PO
'XYZ' PO
'YZZX' PO
'AYZZZZB' PO

END

Output from the program is

Y
YZZZ
YZ
YZZ
YZZZZ

Recursive definitions can be quite complicated, as in the following example
which recognizes a simple class of arithmetic expressions.

61

LOOP

&ANCHOR
VARIABLE
ADDOP
MULO;P
FACTOR
TERM
EXP

1
ANY ('XYZ')

ANY (' +-')
ANY (' */')

VARIABLE I '(' *EXP
FACTOR I *TERM MULOP

ADDOP TERM I TERM I
TRIM (INPUT)

') ,
FACTOR

*EXP ADDOP
STRING
STRING
OUTPUT

EXP RPOS(O)
STRING
STRING

IS AN EXPRESSION.'
NOGOOD OUTPUT
END

Output for typical data is

X+Y*(Z+X) IS AN EXPRESSION.
X+Y+Z IS AN EXPRESSION.
XY IS NOT AN EXPRESSION.

IS NOT AN EXPRESSION.'

TERM
: F (END)
: F (NOGOOD)

(LOOP)
: (LOOP)

A call to a programmer-defined function is an expression and can appear in
a pattern as an unevaluated expression. Evaluation of the function takes place
during pattern matching. Failure of the function call causes the scanner to
back up seeking alternatives. On success, the value of the function call is
treated as a pattern, and matching continues. There are no special restrictions
on the procedure called by the function, so pattern matching may be used within
the called procedure.

The following program uses one statement to match a number of different
patterns against a single subject string. The patterns are read from input
cards one at a time.

*
NEWPAT

NEW END
*
BUMP
*

END

DEFINE('NEWPAT() ')
DEFINE (, BUMP () ')

OUTPUT TRIM (INPUT)
NEWPAT ARB OUTPUT
NEWPAT ABORT

X X + 1

TEST STR
STR SUCCEED
OUTPUT

'ABCDACDBADBCDB'
*NEWPAT() *BUMPO FAIL

: (TEST)

: F (NEWEND)
: (RETURN)
: (RETURN)

: (RETURN)

OUTPUT X OF THE PATTERNS ABOVE MATCHED , STR

Two functions, NEWPAT and BUMP are defined. NEWPAT reads a pattern from
the input, prints it, and returns the pattern preceded by ARB as the value of
the function. If no patterns are left on the input, the pattern ABORT is
returned as value of NEWPAT. The function BUMP increases the value of the
variable X by one each time it is called.

In the test pattern, the functions NEWPAT and BUMP appear as unevaluated
expressions bounded by SUCCEED and FAIL. Each time NEWPATO is evaluated during

62,

pattern matching, a new pattern structure is returned as value. Since the first
element of the pattern structure is ARB, the entire string STR is examined for
the input pattern. If the pattern structure for NEWPAT() fails, the scanner
backs up to SUCCEED and restarts causing NEWPATO to be re-evaluated, reading in
a new pattern. If matching succeeds, BUMPO is evaluated causing X to be
incremented. FAIL then causes the scanner to back up to SUCCEED continuing the
process. Pattern matching terminates when input is exhausted and the value of
NEWPAT{) is the pattern structure for ABORT.

output from the program consists of the patterns read from the input
followed by a summary line printing the number of patterns matched successfully.

ABCD
ABDC
ACBD
ACDB
ADBC
ADCB
BACD
BADC
BCAD
BCDA
BDAC
BDCA
CABD
CADB
CBAD
CBDA
CDAB
CDBA
DABC
DACB
DBAC
DBCA
DCAB
DCBA

5 OF THE PATTERNS ABOVE MATCHED ABCDACDBADBCDB

The keyword &FULLSCAN initially has a zero value, signifying the normal or
g~i~~~~~~ mode of pattern matching. In the quickscan mode, the scanner uses a
number of heuristics to avoid looking at alternatives which cannot possibly lead
to a successful match. Hence, the scanner operates on the assumption that the
programmer is not interested in how matching is done, but only in the outcome.
Typically, patterns concerned with how matching is done employ immediate value
assignment and/or unevaluated expressions. Patterns which do not use these
features can and should be used in the quickscan mode. Patterns using immediate
value assignment and unevaluated expressions may produce unexpected results in
the quickscan mode. This section describes the heuristics used by the scanner
to speed up pattern matching. It points out where unexpected results may arise
and what can be done about them.

This chapter so far has been concerned with the basic components of
patterns. No consideration has been given to the context in which a component
occurs. The basic notion of the quickscan mode is quite simple: Before a
component or bead is matched, its context is examined to see if matching should
be attempted, terminated, or an alternative sought. The easiest question to

63

answer is whether the number of characters remaining in the subject string is
sufficient to successfully complete a match. Consider the following example.

BD ('BE' 'B') ('AR' 'A') (' DS' 'D')
'BEAD' BD

Three of the possible strings matched by BD are too long: BEARDS, BEARD, and
BARDS. The scanner should avoid them if possible. In the bead diagram which
follows, a number is associated with each bead. The number represents the
minimum number of characters necessary to match that bead and anything that
follows. If the number is greater than the number of characters remaining in
the subject string, the scanner does not attempt to match the bead against the
subject string.

B E A D

t
----8 4

(~J
3 8 2

3 2

B E A D

t
8 3 S 2

3 2 1

B E A D

t
8 3 8 2

3
1---

2
--;;0.-18

1

B E A D

t
(~)

3 S 2

3
J---2--~1

The components AR in step 2 and DS in step 3 are not tried. AR cannot
match, since two characters remain in the subject string and at least three are
necessary. Similarly, DS is not tried because one character remains and at
least two were required.

In the unanchored quickscan mode, the scanner does n2£ move the initial
position of the cursor if insufficient characters remain in the subject string.
consider the following example.

64

&ANCHOR 0
'BATS' BD

Matching fails with the cursor initially positioned to the left of the subject
string. It is then moved to the left of the A. Since three characters remain
in the subject string, only B is tried. Failing to match B, the scanner
recognizes that further repositioning of the cursor is useless.

BAT S

t
8 2

3 2 1

BAT S

t
8 4

(3
3 8 2

3 2 1

BAT S

t
3 8 2

2 1

B A T S 8 (~~ 8
t

4 3 2

0 3
~8

2 0 1

BAT S

t
(3

4 2

2 1

65

B A 'I S 8 @ 8
t

4 3 2

0 3 €V 2
~0

1

BAT S

t
8 4 o 3 o 2

3 2 1

In the quickscan mode, the scanner distinguishes between two kinds of
failure: 1) failure to match, as when X is compared to T; and 2) failure
because too few characters remain in the subject string. In the latter case,
the scanner does not allow ARB to match a longer substring, nor does it move the
initial position of the cursor in unanchored mode. Consider the following
pattern matching statement executed in the unanchored mode:

'CAT' ARB 'X'

Clearly the match cannot succeed. When the scanner reaches the state shown in
the diagram below, ARB can no longer extend the substring it matches. ARB
indicates failure because of too few characters. The scanner does not
reposition the cursor, and matching fails.

CAT

t
1

1

A similar situation arises in the anchored mode for such patterns as

'CAT' ARB ARB 'X'

66

The first ARB matches the null string. The second ARB matches the null string,
C , and CA before it fails for lack of room. The scanner, therefore, does not
seek an implicit alternative for the first ARB, and terminates pattern matching
in failure.

In the quickscan'mode, the scanner recognizes a special case for ARBNO.
When backed into, ARBNO(P) tries to extend the substring matched by finding
another instance of P. If P is null or has null alternatives, behavior like
SUCCEED may result. The scanner tries to prevent this. When backed into,
ARBNO(P) examines the substring matched by the last instance of P. If this
substring is null, ARBNO does not try to extend the substring matched by finding
an additional instance of P, but backs up to the last instance of P and seeks an
alternative to the null string.

For example, in the quickscan mode, ARBNO(NULL) looks like NULL I NULL
The first NULL appears because NULL is always attempted independently of the
argument to ARBNO. The second NULL comes from the argument.

Behavior of ARBNO(NULL
the following statement.

'X') can be deduced from the output generated by

,*XXX'

The output is

*
* *x
*x
*xx
*xx
*xxx
*xxx

('*' ARBNO(NULL I 'X')) $ OUTPUT FAIL

Left recursion in a pattern structure, as illustrated by

p *p 'Z' 'Y'

could be a problem because it might put the scanner in a loop, resulting in
error termination. In the quickscan mode, recursive loops are broken whenever
possible. Most looping problems are avoided by a look-ahead feature that
compares the number of characters remaining with the number of characters
required together with the assumption that any unevaluated expression matches at
least one character.

As an example, consider the following statement:

'YZZ' P

It is convenient to think that whenever the bead for *p is encountered, it
expands into a bead diagram for the current definition of P. The process is
illustrated by the following diagram.

67

Y Z 'l --e 0
t

2 1

.8
1

Y Z Z --e 6) 0
t

3 2 1

8 2

8

Y Z z

t
8 4

6)
3

6)
2 o 1

-0 3

Y Z z 8 6) 6)
t

4 3 2 1

'Y'
3

6)
2

6)
1

68

Y Z Z 0 0
t

4 3

'Y'
3

8 2

8 1

The final state is

Y Z z

I o 4 o 3

----~'Y'~----------~

3

When the minimum number of characters required by *p reaches 4, the recursive
loop is broken and the alternative Y is tried, leading to a successful match.

The assumption that *p matches at least one character does not affect the
outcome of the previous example. Had zero characters been assumed, one more
iteration of the loop would have been required, and the final diagram would have
been as follows.

69

Y Z Z 8 0 0
t 4 4 3

6)
4

'Y'
3

6)
2

6)

However, the one-character assumption keeps the following equivalent statements
from terminating in error.

p = *p *Q 'Y'
Q = 'Z'

If both *p and *Q can match the null string, the bead diagram grows until error
termination results. With the one-character assumption, the two equivalent
examples above behave similarly.

There are a number of pathological patterns which cause error termination.
The following are typical.

p = *p
P = NULL *p

Even the one-character assumption cannot interrupt the recursive loop, because
as the bead diagrams grow, the minimum number of characters on the *p bead does
not change.

Assuming a one-character minimum for unevaluated expressions can lead to
difficulties:

PAT = *w *x *Y *Z

The shortest string PAT matches is of length four. The following match,
straightforward as it seems, fails.

w = 'C'
X = fA'
Y 'T'
Z =
'CAT' PAT

70

As seen in the next section, the match succeeds if the fullscan mode is used.

Patterns such as BIGP, described in the section on unevaluated expressions,
can produce unexpected results in the quickscan mode.

BIGP = (*p $ TRY *GT(SIZE(TRY) ,SIZE(BIG))) $ BIG FAIL

The expression *GT(SIZE(TRY) ,SIZE(BIG)) is assumed to require one character
when, in fact, it matches the null string. Therefore, the quickscan mode
prevents *p from matching any substring which includes the last character of the
subject string. Hence, in the statements

P = SPAN('0123456789,')
'1234.56 789,312' BIGP

the final value of BIG is 1234 rather than the expected 789,312. Again, as
seen in the next section, the fullscan mode prevents such difficulties.

In summary, the following heuristics are used in the quickscan mode to
improve the efficiency of pattern matching:

1) continual comparison of the number of characters remaining in the
subject string against the number of characters required,

2) repositioning of the cursor in the unanchored mode only if sufficient
characters remain,

3) refusal to extend the substring matched by ARB or to reposition the
cursor if failure is caused by too few characters,

4) refusal to extend substring matched by ARBNO(P) if the last match of P
was the null string, and

5) assumption that unevaluated expressions must match at least one
character.

The fullscan mode of pattern matching is entered by assigning a nonzero
value to the keyword &FULLSCAN. In the fullscan mode, all heuristics to improve
pattern matching efficiency are turned off. Each component of a pattern is
matched independently of its context. Furthermore, when unanchored, the initial
position of the cursor is moved through the entire subject string.

The following example, which prints all possible nonnull substrings of a
subject, suggests applications of the fullscah mode.

&ANCHOR 0
&FULLSCAN 1
'12345' (LEN(1) ARB) $ OUTPUT FAIL

END

Output from the program is:

71

1
12
123
1234
12345
2
23
23-4
2345
3
34
345
4
45
5

If &FULLSCAN had been zero, the initial position of the cursor would not have
been moved, and only the first five lines would have been printed.

A more useful example, which can only be done in the fullscan mode, is baCk
referencing. This pattern succeeds only if a subject string has two identical
nonoverlapping substrings of length 3:

BACKR LEN(3) $ X ARB *X

The statement

'ABCDEFGBCDA' BACKR

succeeds and X has the value BCD. The statement above does not work in the
quicksca~ mode. When LEN(3) matches ABC, ARB eventually matches DEFGBCD and
then fails because X is assumed to match one character. The condition is
recognized in the quickscan mode, preventing the initial position of the cursor
from being moved. Hence, matching fails without BCD ever being matched by
LEN(3).

In the fullscan mode, the tests of ARBNO for null arguments are turned off.
ARBNO(NULL) and ARBNO(NULL I '4') behave like SUCCEED, except that they
eventually cause error termination. The statement

,*XXX' (' *' ARBNO (NULL 'X')) $ OUTPUT FAIL

generates output lines consisting of a single * until error termination.

Recursive patterns such as

P *p 'Z' 'Y'

do not work because the recursive loop is not broken. Execution of a statement
with such a pattern results in error termination.

Patterns such as

72

PAT *W *X *y *z

work for subject strings having fewer than four characters because the
one-character assumption no longer holds.

The next two examples compare the results of programs run in quickscan and
fullscan modes.

This program prints combinations of characters taken three at a time from a
subject string.

F
END

DEFINE('F{X,Y,Z) ')
COMB3 LEN(1) $ A

*F(A,B,C)
'123456' COMB3
OUTPUT X Y Z

Output from Quickscan

123
124
125

ARB
FAIL

LEN (1) $ B ARB LEN (1) $ C

(END)
(RETURN)

Output from Fullscan

123
124
125
126
134
135
136
145
146
156
234
235
236
245
246
256
345
346
356
456

This program generates wallpaper. Using SUCCEED and
pattern, endless output occurs in the quickscan mode.
output is truncated by error termination.

FAIL to bracket a
In the fullscan mode,

END

PONG SUCCEED
$ OUTPUT

(L EN (1)
FAIL

PING 'XXXXXXXXXX'
PING PONG

ARBNO (L EN (1) NULL))

73

74

Output from Quickscan

x
xx
xxx
xxx X
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
xxx xxx xx
XXXXXXX
XXXXXX
XXXXX
xxxx
xxx
xx
X
X
xx
xxx
XXXX
XXXXX
xxx xxx
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX

output from Fullscan

X
xx
xxx
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
xxxxxxxxxx
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

Chapter 3. Predicates and Primitive Functions

A function is an operation upon a number of arguments. The value of a
function is computed by a procedure. Primitive functions are implemented by
procedures built into the SNOBOL4 system. Procedures for programmer-defined
functions are included in the source program.

Syntactically, a function call is recognized as an identifier used for a
function name, followed by a list of arguments separated by commas and enclosed
in parentheses. An example is

IDENT (A, , TREE')

An argument of a function call may be any expression. Execution of a function
call causes the expressions for the arguments to be evaluated and the values
passed to the procedure. Thus, the procedure gets only the values of the
arguments and not the expressions. CDnsider the following statements:

A 'APPLE'
B 'SEED'
APPLE 'FRUIT'
SEED = 'TREE'
APPLESEED 'FRUITTREE'
IDENT($A $B,$(A B))

FRUITTREE is the value of each argument to IDENT. The two strings FRUITTREE are
all that the procedure for IDENT knows of its arguments.

A variable such as C is an expression, albeit a degenerate one. Thus, if

C 'CLAW'
D 'TIGER'

the call

IDENT (C, D)

passes the strings CLAW and TIGER (not C and D) as arguments to the procedure
for IDENT Furthermore, since the procedure for IDENT knows nothing about C
and D, it cannot possibly change their values.

75

Any omitted argument is assigned the null string as value. Thus, IDENT(E)
compares the value of E and the null string. Too many arguments in the call of
a primitive function cause error termination.

A function call is an expression and has a value. The value of a function
call may be of any data type. A programmer must always be aware that a function
call has a value, even if it is the null string. otherwise, as later examples
illustrate, unexpected results may arise.

A function call may succee9 or fail, depending upon the outcome of the
associated procedure. If the procedure for a function is successful, the value
computed by the procedure becomes the value of the function call. If the
procedure fails, the function call fails.

This chapter, although entitled "Predicates and Primitive Functions,"
describes only those primitive functions that logically cannot be described
elsewhere. Those dealing with pattern matching, input/output, arrays, and
programmer-defined data types are described in appropriate chapters. Functions
and page references are included in the index.

Several primitive functions are concerned with testing relations between
arguments. These functions, which succeed or fail depending on whether the
relation is true or false, are called predicates. If a predicate is successful,
the value of the call is the null stiing.

A predicate test, such as
relation to Y. The arguments to
numeral strings. Thus, if

X 17
Y '3'

GE (X, Y) ,
numerical

succeeds if X stands in the given
predicates must be integers or

then GE(X,Y) succeeds and LT(X,Y) fails. If an argument is omitted, it is
assigned the null string, which is treated as zero. If M is 2, then EQ(M)
fails, but EQ(M - 2) succeeds returning the null string.

Numerical predicates frequently are used for loop control. For example, if
N has as value the number of times a loop has been executed and M is the limit
on N, the following statement checks N against M, and increments N if N is less
than M.

N LT (N, M) N+ 1 : S (LOOP) F (OUT)

Evaluation of the object expression takes place before assignment is made.
Thus, the evaluation of LT(N,M) takes place before N is incremented. If LT(N,M)
succeeds, the value is the null string. concatenation of the null string with
N + 1 does not affect N + 1, so N is properly incremented. Furthermore, since
the statement succeeds, control passes to LOOP.

If LT(N,M) fails, N is not incremented and control passes to the statement
labelled OUT.

76

Placement of predicates in a statement is important. Consider the
following statement, which looks as if it might be suitable for loop control.

N LT(N,M) N + 1 :S(LOOP)F(OUT)

The statement does nQ~ properly increment N. If N is 2 and M is 4, the value of
N after execution of the statement is 32. The predicate LT(N,M), situated where
it is, is treated as a pattern. Since LT(N,M) is null, the pattern matches the
null string. The null string matched in the value of N is replaced by N + 1,
leading to the unexpected result 32.

It is frequently desirable to test whether the value of a variable is an
integer. The predicate test INTEGER(X) succeeds if the value of X is an integer
or numeral string, and fails otherwise. Thus,

INTEGER (X)

succeeds for

X 3
X '3'

but fails for

X 'INT'
X '3.0'

INTEGER is typically used to check data corning from the input stream. The
following statements reject cards which do not contain a single numeral string
left justified on the card.

LOOP CARD TRIM (INPUT)
INTEGER (CARD)

:F(END)
:S(PROCESS)F(REJECT)

Since the null string is equivalent to the integer 0, a blank card passes the
integer test.

There are several types of data predefined in the SNOBOL4 language.
Programmer-defined data types can be added, as described in Chapter 5. Some
data values, such as numbers, can be represented in different ways as different
types of data. SNOBOL4 includes predicates to test whether two objects are
identical or different.

77

IDENT and DIFFER are functions of two arguments which may be of any data
type. For the function call IDENT(X,Y) to succeed or for DIFFER(X,Y) to
fail, the values of the arguments, X and Y, must be truly identical. The value
of a function argument is a pointer to a data object or, in the case of integers
and real numbers, the value is the data object itself.

Each distinct string of characters appears in storage once and only once.
Execution of

X 'BCD'
Y 'B' 'CD'

results in X and Y having the same value. The string BCD appears once, and both
X and Y point to it. IDENT(X,Y) therefore succeeds.

Pattern structures behave differently. Execution of the statements

x
Y

A
A

B
B

constructs two equivalent but physically distinct pattern structures. Thus, X
and Y have different values, since they point to different copies of the pattern
structure A lB. IDENT(X,Y) therefore fails.

However, if

X = A B
Y X
IDENT(X,Y)

then IDENT(X,Y) succeeds since X and Y point to the same data object.

Integers and real numbers are data objects rather than pointers to data.
Execution of

X 3
Y 2 + 1

assigns 3 to both X and Y. comparison of X and Y by IDENT(X,Y) succeeds because
the data objects are identical. Similarly, if

X 3.0
Y = 3.0

then IDENT(X,Y) succeeds.

IDENT and DIFFER must be used with care when their arguments have different
data types. If

78

X 3
Y '3'

EQ(X,Y) succeeds as illustrated earlier. IDENT(X,Y) fails because the value of
X is the ini~g~£ 3, but the value of Y is the ~i£ing 3.

Similarly, for

X 3.0
Y 3

IDENT(X;Y) fails because the values are not identical.

2. 1~T

Lexical ordering can be tested using the predicate LGT(X,Y). Both
arguments to LGT(X,Y) must be strings or integers. LGT(X,Y) succeeds, returning
the null string, if the value of X is lexically greater than Y. Stated another
way, LGT(X,Y) succeeds if X follows Y alphabetically. The order of the
characters is implementation dependent. For example, on the IBM System/360 the
EBCDIC encoding is used with the blank preceding letters and letters preceding
digits. The value of &ALPHABET is a string of all characters in lexical order.

Consider, as an example, the problem of alphabetizing the characters in a
string. That is, the string LABORATORIES is to be transformed into the string
AABEILOORRST. The following program performs the conversion.

&FULLSCAN
&ANCHOR 1
FLIP (*HEAD ARB) . HEAD

LEN (1) $ Y *LGT (X, Y)
STR 'LABORATORIES'
OUTPUT

LOOP STR FLIP
OUTPUT

END

output is:

LABORATORIES
AABEILOORRST

STR
HEAD Y FILLER

STR

LEN (1) $ X ARB. FILLER

X : S (LOOP)

FLIP matches the ordered portion of the string followed by two out-of-order
characters with an arbitrary number of intervening characters.

(*HEAD ARB) . HEAD

matches the ordered portion of the string.

LEN(1) $ X ARB. FILLER LEN(1) $ Y

79

matches any two characters. The unevaluated expression then tests if the two
characters are out of order. If they are, the pattern match succeeds and a
replacement is done to reverse them. If the two characters are in order,
LGT(X,Y) fails, causing the scanner to back up and seek another pair of
characters. By repeatedly executing the statement labelled LOOP, all unordered
pairs of characters are interchanged. Pattern matching fails when the string is
completely ordered.

SIZE expects a string or an integer as an argument. The value of SI~E is
an integer which is the number of characters in the argument. Thus, the value
of SIZE('SIZE') is 4, and the value of SIZE(16384) is 5.

One-for-one character replacement in a string may be accomplished using the
function REPLACE. The value of REPLACE(X,Y,Z) is the string resulting from
replacement in X of each character appearing in Y by the corresponding character
in Z. As a result of executing the following statements,

BINARY
ONESCOMP

'111001'
REPLACE(BINARY,'01','10')

ONESCOMP has the value 000110 , obtained from BINARY by replacing all zeroes
with ones, and ones with zeroes.

REPLACE normally succeeds, but it fails if

1) the second and third arguments have different length, or
2) the second or third argument is null.

Multiple occurrences of characters in the third argument are valid. Thus,

R EPLAC E (S, , . , ; : ? ! ' , , ,)

replaces all punctuation marks with blanks.

In the case of the multiple occurrence
argument, the rightmost correspondence holds.
statement

TEXT REPLACE('FEET','EE','AO')

the variable TEXT has value FOOT .

of a character in the second
Thus, following execution of the

A particularly striking example of REPLACE is the following program that
converts a deck of cards prepared on an 026 keypunch (BCD) to a deck using 029
keypunch code (EBCDIC).

80

LOOP
END

PUNCH REPLACE (INPUT, II #(i)%<&" , "=, () + ") : S (LOOP)

TRIM is a primitive function whose argument must be a string or an integer.
The value of TRIM is a string which is the argument value with all trailing
blanks removed. Thus, the statements

TEXT 'A PRIMITIVE FUNCTION
SHORTT EXT TRIM (TEXT)

gives SHORTTEXT the value
changed.

A PRIMITIVE FUNCTION. The value of TEXT is not

TRIM is frequently used with INPUT as its argument. Standard input reads
80 characters so TRIM (INPUT) provides a convenient way of shortening an input
string.

DATE and TIME are primitive functions requiring no arguments. The value of
DATE() is an 8 character string of the form month/day/year. For August 6, 1968,
the value of DATE(} is 08/06/68 .

The value of TIME() is an integer which is the elapsed time in milliseconds
from the beginning of program execution. Compilation time is not included. On
IBM 360 equipment the standard interval clock is updated only sixty times a
second, so timing is approximate at best.

EVAL is a primitive function whose argument must be an unevaluated
expression or a string. If the argument is an unevaluated expression, the
expression is evaluated to obtain the value of EVAL. If the argument is a
string, the value of EVAL is the value of the expression represented by the
string.

In the example which follows, the value of
of U is an unevaluated expression. Both
integer 15.

s is a string, and
output statements

the value
print the

S 'X + SIZE (X) * 10'
U *(X + SIZE(X) * 10)
X 5
OUTPUT
OUTPUT

EVAL (S)
EVAL (U)

Any string or unevaluated expression
expression in SNOBOL4 may be evaluated
argument of EVAL causes failure of EVAL.
statements

which is a syntactically correct
by EVAL. A syntactic error in the

Thus, evaluation of E in the

81

E • 5+ 6'
SUM EVAL (E)

fails since blanks are required around the +.

Two predicates, specified by the unary operators and
success or failure resulting from evaluation of expressions.
operator fails if its operand succeeds, and succeeds if its
A null string is returned as value on success. The interrogation
is the converse of '. It succeeds, returning the null value
succeeds, and fails if its operand fails.

? , test the
The negation

operand fails.
operator ?

if its operand

Negation may be used to complement a predicate. For example, the following
program reads an input deck and ~rints those cards that contain integers.

LOOP

END

CARD
OUTPUT

TRIM (INPUT)
INTEGER (CARD) CARD

: F (END)
: (LOOP)

Suppose the converse program, one which prints all cards that are not
integers, is desired. No predicate is available which succeeds when its
argument is not an integer. However, the negation operator together with the
predicate INTEGER suffices. Thus, the following program lists all noninteger
cards.

LOOP

END

CARD
OUTPUT

TRIM (INPUT)
,INTEGER (CARD) CARD

: F (END)
: (LOOP)

Complicated Boolean functions on the states of variables can be
using predicates and negation. For example, suppose the integer N
incremented provided at least one of the variables X, Y, or Z is
following statement tests the variables and, if the condition is
increments N.

N , (DIFFER (X) DIFFER (Y) DIFFER(Z)) N + 1

constructed
is to be
null. The
satisfied,

If X, Y, and Z are nonnull, the expression succeeds but the negation operation
fails, and N is not incremented. If any variable is null, the corresponding
DIFFER fails, causing the expression to fail. Negation succeeds and N is
incremented.

Interrogation is used primarily to convert a function that returns a
nonnull value into a predicate that succeeds or fails, but returns a null value.
Thus, in the following statement, N is incremented if F(X) succeeds, but the
value of F(X) is not concatenated with N + 1.

N ?F (X) N + 1 : S (ON) F (OUT)

82

Chapter 4. Proirammer-Defined Functions

A programmer may define his own functions to perform specific operations.
A program with programmer-defined functions must include:

1) a call to the primitive function DEFINE for each programmer-defined
function, and

2) a procedure, written in SNOBOL4, for each function.

Procedures are written using formal arguments, and must adhere to special
conventions for returning. Execution of the primitive function DEFINE communi
cates to the SNOBOL4 system:

1) the name of the function,
2) a list of formal arguments used in the programmer-defined procedure,
3) a list of variables local to the programmer-defined procedure, and
4) the entry pOint of the procedure.

DEFINE is a primitive function of two arguments that returns a null string.
The first argument is a prototype for the call of the function being defined,
together with a list of local variables used by the function. The second
argument is a label specifiying the entry point to the programmer-defined
function. For example, execution of

DEFINE('F(X,Y)L1,L2','FENTRY')

defines a function F with two formal arguments, X and Y. Two local variables L1
and L2 are used in the procedure whose entry point is the statement labelled
FENTRY. Notice that there is no comma separating the prototype for the call
from the list of local variables. Expressions may be used as arguments for
DEFINE, provided their values are strings having the form shown above.

Often local variables are not needed, so it is permissible to omit the list
of local variables. An example is

DEFINE (, G (Z) , , ' GENT')

It is also permissible to omit the second argument, in which case the entry
label is assumed to be the same as the function name. Thus,

83

DEFINE('COUNT(N) ')

defines the function COUNT with entry label COUNT.
without any formal arguments. For example,

Functions can be defined

DEFINE ('MARK () ')

defines the fUnction MARK with no formal arguments.
syntactically incorrect, such as those in

DEFINE('F')

and

DEFINE (' F ("A") ')

cause error termination.

Prototypes which are

A statement containing the DEFINE function for a particular function must
be executed before a call to that function is made. Thus, execution of the
statements

x F(FIRST,SECOND)
DEFINE ('F (X, Y) ') I

results in error termination, since the function F is undefined at the time it
is called.

A procedure for a programmer-defined function is a set of SNOBOL4
statements. The label, provided explicitly or implicitly in the arguments of
the associated DEFINE function, specifies the statement to which control is
passed when a call is made to the function. Thus, during execution of the
statement labelled ZSET in the example below, the call to UNION causes control
to be passed to UN. Execution of ZSET is temporarily suspended while the value
of UNION is being computed. Once the value of UNION has been computed, control
returns to ZSET where computation is resumed using the value returned~

84

ZSET

UN
ULOOP

DEFINE('UNION(X,Y)CH','UN')

Z SET1 UNION (SET2,SET3)

UNION X
Y LEN(1) CH =
UNION BREAK (CH)
UNION UNION CH

SET4

:F(RETURN)
: S (ULOOP)
: (ULOOP)

The defining statement must be executed before the call is made. The
procedure is called and should not be flowed into. The procedure may be
transferred around or placed out of the way of program flow.

The statements constituting the procedure are written using the formal
arguments whose values are supplied by arguments of a call.

Local variables should be declared when variables used in a procedure have
values which should not be altered by a function call. In the definition of
UNION, the value of the variable CH changes continually during evaluation of the
function. The value of CH may be altered as a result of the call unless CH is
declared as a local variable. Upon entry to a procedure, all local variables
are given null string values. All statement labels, including labels in
procedures, are global. Transfer can be made from a statement in one procedure
to a statement in another.

The name of a function may be used as a variable in the procedure. The
value of the function call is the value of the function name when execution of
the procedure is complete. Thus, in the example above, the value of the call
UNION (SET2,SET3) is the value of the variable UNION when the statement ULOOP
fails, causing return to ZSET.

Return of control from a procedure to the calling statement is accomplished
by transfer to one of the three system labels: RETURN, FRETURN, or NRETURN.

Transfer to RETURN indicates that the function call is successful. The
value of the function call is set tD the value of the function name. Execution
continues in the calling statement using the returned value.

Transfer to FRETURN indicates failure of the function call.

An example using both RETURN and FRETURN is the function PAL, which checks
its argument to see if it is a palindromic string. PAL compares the argument
string and its reverse. If they are identical, P~L transfers to RETURN,
indicating success. Otherwise PAL transfers to FRETURN, indicating failure.
Since the variable PAL is not used in the procedure, the value of PAL (PHRASE) is
the null string on a successful return.

85

TEST

PAL
PALL

PTEST

END

DEFINE('PAL(STR)CH,S1,S2')

PHRASE TRIM (INPUT)
PAL (PHRASE)

S1 STR
S 1 LEN (1) . CH
S2 CH 82
IDENT (STR, S2)

: F (END)
:S(GOOD)F(NOGOOD)

: F (PTEST)
: (PALL)
:S(RETURN)F(FRETURN)

By transferring to the label NRETURN, a programmer-defined function may
return a computed name rather than a value. A call to a function that returns a
computed name may be used as the subject of an assignment statement. For
example,

F (X, Y) X Y

is a valid statement provided the function F returns by name using NRETURN. A
further description of names is included in Chapter 5.

When a call to a programmer-defined function is made, the arguments of the
call are evaluated first. Before execution of the procedure begins, the values
of the following variables are saved on an internal stack in the order:

1) the name of the function,
2) all formal arguments, and
3) all local variables.

New values are then assigned to these variables as follows:

1) the name of the function is assigned the null string,
2) the formal arguments are assigned their values, and
3) all local variables are assigned the null string.

Consider the function UNION specified in the defining statement

DEFINE('UNION(X,Y)CH','UN')

and called by UNION (SET2,SET3) . Values of the variables UNION, X, Y, and CH at
the time of a call are saved. New values for these variables are assigned as if
the following statements had been executed.

86

UNION
X SET2
Y SET3
CH

Then control passes to the statement labeled UN.

When return from a procedure is made using RETURN,

1) the value of the function call is set to the value of the function name,
and

2) the values of all variables saved at the time of the call are restored
in reverse order.

When return is made using FRETURN,

1) the values of all variables saved at the time of the call are restored,
in reverse order, and

2) the call fails.

When return is made using NRETURN,

1) the function call becomes a variable whose name is taken from the value
of the function name, and

2) the values of all variables saved at the time of the call are restored,
in reverse order.

A programmer-defined function may be called with more or fewer arguments
than specified in the corresponding defining statement. If too few arguments
are specified, the trailing omitted arguments are assigned null strings. If too
many arguments are specified, the extra arguments are evaluated, but their
values are ignored.

This example includes three functions that perform the union, intersection,
and negation of sets of characters, and a short test program. Notice that the
procedures follow the defining statements in the listing. However, by transfer
ring around the procedures, the defining statements are executed one after
another. The test program then makes calls to the procedures.

87

START
UNION

* UN
ULOOP

*
* INTER

* IN

*
* NEG
*
NG
NLOOP

*
* PATDEF

>:<

* TEST

DEFINE('UNION(X,Y)CH','UN')

UNION X
Y CHAR
UNION CHTEST
UNION UNION CH

DEFINE('INTER{X,Y)CH','IN')

X CHAR
Y CHTEST
INTER INTER CH

DEFINE('NEG(X)CH,HEAD', 'NG')

NEG UNIVERSE
X CHAR =
NEG CHLOC = HEAD

CHAR
CHTEST
CHLOC

LEN (1) . CH
BREAK. (*CH)

BREAK (*CH) • HEAD LEN(1)

= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

: (INTER)

: F (RETURN)
: S (ULOOP)
: (ULOOP)

: (NEG)

:F(RETURN)
: F (IN)
: (IN)

: (PATDEF)

:F(RETURN)
: (NLOOP)

UNIVERSE
VOWELS
OUTPUT
CONS =
OUTPUT
WORD
OUTPUT

UNION ('A' ,UNION ('E' , UNION (, I' ,UNION ('0' , 'U'))))

OUTPUT

END

'VOWELS VOWELS
NEG (VOWELS)

= 'CONS CONS
'C01'v1PILER'

= 'VOWELS IN ' WORD' ARE: '"
INTER (WORD,VOWELS) '''I
'CONSONANTS IN ' WORD' ARE: '"
INTER (WORD, CONS) , " ,

Output from the program is:

VOWELS AEIOU
CONS = BCDFGHJKLMNPQRSTVWXYZ
VOWELS IN "COMPILER" ARE: "OlE"
CONSONANTS IN "COMPILER" ARE: "CMPLR"

88

A simple pseudo-random number generator, based on the power residue method
of generation [4], is shown below.

DEFINE ('RANDOM(N) ','RAN') : (RANET\l'D)
RAN RAN.VAR RAN.VAR * 1061 + 3251

RAN. VAR RTAB (5)
RANDOM (RAN.VAR * N) I 100000 : (RETURN)

RANEND

RANDOM(N) returns a value uniformly distributed over the integers 0,1, •.• ,N-1 •
The variable RAN.VAR is not local. On successive calls to RANDOM, the value Qf
RAN.VAR cycles through all nonnegative integers less than 100,000. Thus, the
initial value of RAN.VAR determines the output sequence from RANDOM.

When the random number generator is used in statistical experiments, such
as games of chance, the player should have the opportunity to select the initial
value of RAN.VAR. In some cases, the selection process should be unstable. It
should be very difficult for a player to consistently initialize the random
number generator w~th the same value.

The following definition of RANDOM was written specifically for the IBM
System/360, and assumes that the user has access to the machine console while
the program is running. A player can initialize RAN.VAR by flipping the
Interval Timer Switch on the operator's console. TIME returns as value the
number of milliseconds elapsed since the beginning of program execution. When
the switch is on, as it normally is, the internal clock that TIME reads is
running. When the switch is turned off, the clock stops but the program
continues to run. Thus, with the switch on, successive calls of TIME return
different values. with the switch off, successive calls of TIME return the same
value.

* RAN1
TIMON

TIMOFF

* RAN2

* GAME

DEFINE (' RANDOM (N) M' , 'RAN1 ')

RAN.VAR TIME 0
M LT(M,10) M + 1
RAN.VAR GT(TIME() ,RAN.VAR) TIME 0
M 0
EQ(RAN.VAR,TIME()
RAN. VAR TIME ()
RAN.VAR RTAB(5}
OUTPUT 'INITIAL VALUE OF RAT\l'.VAR IS
OUTPUT
DEFINE ('RANDOM (N) ','RAN2')

RAN .. VAR
RAN.VAR
RANDOM

RAN.VAR * 1061 + 3251
RTAB (5)

(RAN.VAR * N) I 100000

(GAME)

: S (TIMON)
:F(TIMOFF)
: (TIMON)
:S(TIMOFF)

RAN.VAR

(RETURN)

In this example, the function RANDO~ is defined twice. The first
definition of RANDOM includes a local variable M and the entry point RAN1. The
first call to RANDOM enters the definition at RAN1. Since the switch is on, the
program enters the loop at TIMON and stays there because the predicate

89

GT(TIME() ,RAN.VAR) always succeeds. If the switch is now turned off, the
predicate fails, and. control passes to the loop at TIMOFF. with the switch off,
the predicate EQ (RAN. VAR, TIME ()) always succeeds, causing a program loop at
TIMOFF. When the switch is turned back on, RAN.VAR is truncated to 5 digits and
the initial value printed. Thus, a flip of the switch initializes RAN.VAR.

Before computing the desired random number, RANDOM is redefined with entry
point RAN2 so that subsequent calls to RANDOM do not go through the initializa
tion process. A random number is then computed and returned.

The following program and output illustrate a statistical experiment
utilizing RANDOM.

GAME

ROLL

NATURAL

MADE

CRAPS

LOSE

UWIN
ULOSE
LIMIT
PAY

END

POINT = RANDOM (6) + RANDOM (6) + 2
NE(POINT,7) NE(POINT,11)
NE(POINT,2) NE(POINT,3) NE(POINT,12)
OUTPUT 'YOUR POINT IS ' POINT
ROLL = RANDOM (6) + RANDOM (6) + 2
EQ(POINT,ROLL)
NE(ROLL,7) NE(ROLL,11)
OUTPUT ROLL

OUTPUT = POINT
, YOU WIN.'

OUTPUT ROLL
, POINT.'

OUTPUT POINT
, LOSE.'

OUTPUT ROLL

WIN = WIN +
LOSE LOSE + 1
OUTPUT LT(WIN + LOSE,100)
OUTPUT
OUTPUT 'YOU LOSE GT(LOSE,WIN)

DOLLARS. '
OUTPUT 'YOU WIN GT(WIN,LOSE)

DOLLARS. '
OUTPUT 'YOU BREAK EVEN.'

INITIAL VALUE OF RAN.VAR IS 3877

7 NATURAL, YOU WIN.

7 NATURAL, YOU WIN.

YOUR POINT IS 9
6 ROLL AGAIN.
5 ROLL AGAIN.
12 ROLL AGAIN.
2 ROLL AGAIN.
7 TOO BAD.

YOUR POINT IS 9
5 ROLL AGAIN.
7 TOO BAD.

90

: F (NATURAL)
: F (CRAPS)

: S (1\1ADE)
: F (LOSE)

ROLL AGAIN.'
: (ROLL)
NATURAL, ,
: (UWIN)

MADE YOUR'
: (UWIN)
CRAPS, YOU'
: (ULOSE)

TOO BAD.'
: (ULOSE)
: (LIMIT)
: (LIMIT)
: F (PAY) S (GAME)

LOSE - WIN
: S (END)

WIN - LOSE
: S (END)
: (END)

YOUR POINT IS

YOUR POINT IS

YOUR POINT IS

YOUR POINT IS

YOU BREAK EVEN.

6
10
8
9
8
3
6

4
4

4
7

4
8
8
5
8
9
7
7

ROLL AGAIN.
ROLL AGAIN.
ROLL AGAIN.
ROLL AGAIN.
ROLL AGAIN.
MADE YOUR POINT.

MADE YOUR POINT.

TOO BAD.

ROLL AGAIN.
ROLL AG.AIN.
ROLL AGAIN.
ROLL AGAIN.
ROLL AGAIN.
TOO BAD.
NATURAL, YOU WIN.

Many functions are conveniently defined recursively. For example, fac
torials may ce defined as

fact (0)
fact (n)

1
n*fact(n-1) for n > 0

Using Pascal's triangle, a recursive definition for the binomial coeffi
cients is easily deduced.

91

1

1 1

2 1

1 3 3

4 6 4 1

1 5 10 10 5 1

binc (n, 0) = 1
binc (n,n) = 1
binc (n, k) = binc(n-1,k-1)+binc(n-1,k) 0 < k < n

A recursive procedure has the property that the function itself is called
in the procedure. While convenient, recursive procedures may lead to computa
tional inefficiencies. Nevertheless, recursion is frequently the most natural
way of expressing a function, and may considerably simplify programming.

programmer-defined functions in SNOBOL4 may be recursive. Since values of
the function name, arguments, and local variables are all saved when a function
is called, a procedure can include recursive coding.

The next program converts decimal integers to their binary representation
by successive divisions. For example, to compute the binary representation of
57, it is repeatedly divided by 2 and the remainders are concatenated.

2 L21

2 ~

2 ~

2 L..l

211 2 L-1

2 L--.l

1 0 0 1 REMAINDERS

5 7 10 11 1 0 0 1 2

The binary representation of 57 is the binary representation of 28 (11100 2)

followed by the remainder of 57/2. A recursive definition of the process is

binary(57) = binary (28) remainder (57/2)

92

where concatenation is implied.

In SNOBOL4, the results of integer division are truncated. Thus,

57 / 2 is 28

The remainder of any integer division N / M is

N (N / M) * M

Thus, the recursive definition can be written in the more general form

binary (n) binary (n/2) n-(n/2)*2 for n > 1

with the terminal cases

binary (1) 1
binary (0) 0

A procedure for BINARY is

* BINARY

BINEND

DEFINE ('BINARY (N) ') : (BINEND)

BINARY

BINARY

GT(N,1) BINARY(N / 2) N - (N / 2) * 2
:S(RETURN}

N : (RETURN)

On entry to BINARY, the value of N is tested by the predicate GT(N,1) which
fails for the two terminal cases N = 0 and N = 1. If either of these cases is
true, the first statement fails and N is returned as the value of BINARY. If N
is greater than 1, a recursive call is made to BINARY with N / 2 as the
argument. The value of BINARY(N / 2) then has the remainder of N / 2 concate
nated with it, to get the final value of BINARY(N).

The following diagram illustrates the recursive calls made during evalua
tion of BINARY (57) . The recursion plunges six levels before reaching the
terminal case of N = 1. On returning, the value of BINARY evolves.

93

BINARY (57)

) ~
N = 57 BINARY = 111001

C BINARY(N / 2) N

) ~
N = 28 BINARY = 11100

i BINARY{N / 2) N - {N / 2} * 2

) ~
N = 14 BINARY 1 110

i BINARY{N / 2) N - {N / 2} * 2

) ~
N = 7 BINARY 111

C BINARY(N / 2) N - {N / 2} * 2

) ~
N = 3 BINARY = 11

C BINARY(N / 2} N - (N / 2) * 2

) ~
N 1 BINARY =

"- ~

It is important to notice the necessity of preserving values before a function
call and restoring them upon completion. At the first level down, BINARY (28) is
called with N having value 57. During the course of evaluating BINARY (28) , N
takes on values 28, 14, 7, 3, and 1. Following evaluation of BINARY (28) , N must

94

once again have the value 57 in order to compute the remainder of 57 / 2.

An improvement is possible in the definition of BINARY. SNOBOL4 permits
use of a function name as one of the formal arguments in a function definition.
Thus,

DEFINE ('BINARY (BINARY) ')

is a valid statement. The procedure of BINARY can be rewritten substituting
BINARY for N.

BINARY BINARY GT(BINARy,1) BINARY (BINARY / 2)
BINARY - (BINARY / 2) * 2 (RETURN)

The second statement would become

BINARY BINARY

which is redundant. For the terminal cases recognized by the failure of
GT(BINARY,1), BINARY has the proper value, 0 or 1, and an unconditional RETURN
is made.

*

* BINARY

END

o
13
57 =

472
8192

13279
99999

DEFINE ('BINARY (BINARY) ')

OUTPUT 0 BINARY (0)
OUTPUT 13 BINARY (13)
OUTPUT 57 BINARY (57)
OUTPUT 472 BINARY (472)
OUTPUT , 8192 BINARY (8192)
OUTPUT '13279 BINARY (13279)
OUTPUT '99999 BINARY (99999)

BINARY GT (BINARY, 1) BINARY (BINARY
BINARY - (BINARY / 2) * 2

o
1101
111001
111011000
10000000000000
11001111011111
11000011010011111

(END)

/ 2)
(RETURN)

95

Arithmetic expressions such as

x + Y
A I B / C

V - W - X + Y * Z

are written using an infix notation. They can also be written in Polish prefix
notation [5,6J, resembling conventional functional notation. Here the binary
operators appear to the left of their arguments. Prefix notation for the
expressions is

+ (X, Y)
/(/(A,8),C)

+ (- (- (V,W) ,X),* (Y,Z))

Conversion from Polish prefix form to infix form, and vice versa, can be
performed using recursive programmer-defined functions. The first of the two
programs to follow converts strings from Polish to infix form. The recursive
rules for specifying the function INF are:

1. If the argument to INF is a simple variable, then

INF (VAR) VAR

2. If the argument to INF is a Polish expression of the form OP(EX1,EX2),
then

INF(OP(EX1,EX2)) (INF (EX1) OP INF (EX2))

The conversion consists of finding the operator and its two arguments, which may
be expressions. The operator is inserted between its two arguments and
parentheses are placed around the resulting expression. Of course, the
arguments are still in Polish form, so each must be converted to infix by a
recursive call of INF .

The following diagram depicts the conversion of I(/(A,B) ,C) to «A/B)/C) •

96

INF('/(/(A,B) ,C) ')

/ ~
/ / (A, B) C ((A/B) /C)

, (' INF ('/ (A, B) ') '/ ' INF (' C') .) .
/ ~)\

/ A B (A/B) C C

c:. ~
~

INF (. A') '/' INF (. B')

J\ J \
A A B B
.~ ~

In the program to follow, the procedure for INF consists of one line. The
pattern INPAT is used to break a Polish expression into an operator and two
arguments.

/ (l/ A

(
A

\
(LEN (1) • OP) . ('

If INPAT matches INF, it matches the entire string, which is then rearranged
into infix notation. If INPAT fails to match, INF must be a variable and is
returned unchanged as value.

97

*
*
*
*

LOOP

*
* INF

END

&ANCHOR
INPAT

1
LEN (1) OP '(, BAL. X
RPOS(O)

DEFINE('INF(INF)X,Y,OP')

PADPAT
BLANKS
STRING
BLANKS
OUTPUT

LEN(*(40 - SIZE(STRING)))

TRIM (INPUT)
PADPAT

STRING PAD INF(STRING)

INF INPAT , (' !NF (X) OP INF (Y)

PAD

BAL • Y ') I

: F (END)

: (LOOP)

') ,
(RETURN)

output from the program follows. The Polish prefix form of the input is
shown on the left, and the infix form aopears on the right.

- (* (A, + (B, C)) , / (D, E))
- (- (- (- (- (A,B) ,C) ,D) ,E) ,* (F,G))
-(+(ALPHA,*(BETA,GAMMA)) ,/(DELTA,PI))

((A* (B+C)) - (D/E))
(((((A-B) -C) -D) -E) - (F*Gr)
«ALPHA+(BETA*GAMMA))-(DELTA/PI))

Conversion of
than the converse.

arithmetic expressions from infix to Polish form is harder
A function POL which performs the conversion is of the form:

POL (EX1 OP EX2) = OP '(' POL(EX1) , , , POL (EX2) ') ,

Ambiguities can arise when attempting to separate an unparenthesized expression
into two expressions and an operator. For example, the expression

A - B * C - D

can be separated many ways, including

A - (B * C - D)

(A - B) * (C - D)

(A - B * C) - 'D

Normal conventions for the precedence and association of operators require
that multiplication and division have precedence over addition and subtraction
and that operators associate to the left. Thus, of the three choices above, the
first is incorrect because subtraction associates to the right, the second is
incorrect because subtraction is given higher precedence than multiplication,

98

and the third is correct. The expression (A - B * C) must be parenthesized as
(A - (B * C» to conform to the conventions.

In defining the function POL, the precedence of multiplicative over
additive operators can be assured by dealing with the additive operators first.
For example:

W*X +

W * X

~(I POL (' W') I I ,

J\
W W

~

POL (' W*X+y*Z ')

/ ~
y*Z

* (W, X)

POL(IXI~
)\

X X

~

I I ,

+ (* (W, X) , * (Y , Z))

POL (' y*Z ')

) \

Left association of operators is assured by selecting the rightmost
operator in a string of operators having equal precedence. For example

POL ('A-B*C-D')

/ ~
A-B*C D - (- (A,* (B,C» ,D)

/ ~

99

~, , (' PO L (, A - B * C ') , , POL (' D') ~ ,

/ ~)\
A B*C - (A,* (B ,C)) D D

~('
~

POL (. A') , , POL ('B*C');) ,

J\ ;; ~
A A B * C * (B, C)

~c.(,
POL ('B') , , POL('C~ ,

l \ l \
B B C C

~ ~

Thus, the rules prescribing the behavior of POL are:

100

1~ Remove any enclosing parentheses from the infix string.

2. If possible, separate the argument into two expressions which are
balanced with respect to parentheses and separated by the rightmost
additive operator. The value of POL then becomes

OP • (' POL (EX1) , , , POL (EX2) ,) ,

If this is not possible, perform Step 3.

3. If possible, separate the argument into two expressions balanced with
respect to parentheses and separated by the rightmost multiplicative
operator. The value of POL then becomes

OP '(' POL (EX 1) , , , POL (EX2) ,) ,

If this is not possible, perform Step 4.

4. The infix string must be a simple variable, which becomes the value of
POL.

A complete program for infix-to-Polish conversion and test results follow.

*
*
*
*

LOOP

*
* POL

END

&ANCHOR = 1
PMPAT (ARBNO(BAL ANY('+-')) $ x FAIL 1 *DIFFER(X)

TAB(*(SIZE{X) - 1))) • X LEN(1) . OP REM. Y
MDPAT (ARBNO(BAL ANY('*/')) $ x FAIL *DIFFER(X)

TAB(*{SIZE(X) - 1))) . X LEN(1) .OP REM. Y
STRIP , (' BAL. POL ')' RPOS (0)

DEFINE('POL(~OL)X,y,OP')

LEN(*(40 - SIZE(STRING)))

TRIM (INPUT)

PADPAT
BLANKS
STRING
BLANKS
OUTPUT

PADPAT
STRING PAD POL (STRING)

POL STRIP
POL PMPAT OP , {' POL (X) , , ,

POL MDPAT OP , (' POL (X) , , ,

PAD

: F (E"ND)

: {LOOP)

: S (POL)
POL (Y) '} ,

: S (RETURN)
POLey) ') ,

: (RETURN)

((A* (B+C)) - (D/E)) - {* (A,+ (B,C)) ,/ (D,E))
A-B-C-D-E-F*G
{(ALPHA+(BETA*GAMMA))-(DELTA/PI))

- {- {- (- (- (A, B) ,C) ,D) , E) , * (F, G))
-(+(ALPHA,*(BETA,GAMMA)) ,/(DELTA,PI))

The pattern STRIP removes the outer parentheses from the infix
patterns PMPAT and MDPAT separate the infix expression into two
an operator according to the convention for left association.
identical except that PMPAT looks for addition or subtraction
for multiplication or division.

expression. The
expressions and
The patterns are

and MDPAT looks

PMPAT has three parts, corresponding to the first balanced expression, the
operator, and the second balanced expression. The pattern for the first
expression is complicated by the fact that the operator must be the rightmost in
the string of operators. Consider the pattern for the first expression:

(ARBNO(BAL ANY('+-')} $ X FAIL
TAB (* (S I Z E (X) - 1))) . X

It consists of two alternatives. The first,

ARBNO(BAL ANY('+-')) $ X FAIL

*DIFFER (X)

is used to locate the rightmost operator by matching a sequence of balanced
strings followed by additive operators. FAIL forces ARBNO to match the longest
such string and eventually causes failure of the alternative. Thus, for the
expression A-B*C-D, the last match of the first alternative is

101

D

ARBNO(~ ~NY(~+-'r) $ x FAIL

On entry to the second alternative

DIFFER(X) TAB((SIZE(X) - 1»

the value of X is checked to see if it is the null string. If so, no match is
possible. If it is not null, the first balanced expression must be all but the
last character of X. The first expression is matched by

TAB(*(SIZE(X) - 1»

The remainder of PMPAT consists of the expression

LEN(1) • OP REM. Y

LEN(1) is used to match the operator and REM matches the remainder of the string
which is the second balanced expression.

The Tower of Hanoi is a game derived from the ancient Tower of Brahma, a
ritual allegedly practiced by Brahman priests to predict the end of the world.
At the time of creation, 64 golden discs of decreasing size appeared stacked on
a diamond needle. Nearby were two other diamond needles, both empty. The
Brahman priests, created at the same time, were set to the task of moving the
discs from their original needle to a second needle using, when necessary, the
third needle as temporary storage. Before all 64 discs are moved to the second
needle and stacked in decrea.sing si ze, the end of the world will be upon us.

102

CREATION

I

INTERMEDIATE
STORAGE

END OF
THE WORLD

I
r-T~

I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \

_______________ --I---------~----------- ___________ 1_________ _ ________ l_~ _____ _
/////////////////1///////////////////// ///////////////////// //////////////////

I

Movement of the discs is governed by the rules:

1) only one disc may be moved at a time,
2) a disc may be moved from any needle to any other, and
3) at no time may a larger disc rest upon a smaller disc.

A solution to the Tower of Hanoi is a recursive function which prints out
the steps necessary to move N discs from one needle to another (where N is
hopefully a good deal smaller than 64). A program that defines the function
HANOI and tests it by moving 5 discs from needle A to needle C follows.

DEFINE ('HANOI (N,NS,ND,NI) ')

* HANOI EQ(N,O)

HANOI. END

* TEST
END

HANOI(N - 1,NS,NI,ND)
OUTPUT 'MOVE DISC 'N'
HANOI(N - 1,NI,ND,NS)

HANO I (5 , , A' , , C' , , B ')

: (HANOI. END)

: S (RETURN)

FROM 'NS' TO ' ND
: (RETURN)

103

1\10VE DISC 1 FROM A TO C
MOVE DISC 2 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 3 FROM A TO C
1\10VE DISC 1 FROM B TO A
MOVE DISC 2 FROM B TO C
MOVE DISC 1 FROM A TO C
MOVE DISC 4 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 2 FROM C TO A
MOVE DISC 1 FROM B TO A
MOVE DISC 3 FROM C TO B
MOVE DISC 1 FROM A TO C
MDVE DISC 2 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 5 FROM A TO C
MOVE DISC 1 FROM B TO A
MOVE DISC 2 FROM B TO C
MOVE DISC 1 FROM A TO C
MOVE DISC 3 FROM B TO A
MOVE DISC 1 FROM C TO B
MOVE DISC 2 FROM C TO A
MOVE DISC 1 FROM B TO A
MOVE DISC 4 FROM B TO C
MOVE DISC 1 FROM A TO C
MOVE DISC 2 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 3 FROM A TO C
MOVE DISC 1 FROM B TO A
MOVE DISC 2 FROM B TO C
MOVE DISC 1 FROM A TO C

The program logic can be seen by induction. Clearly, moving no discs
requires no steps. Moving one disc from needle A to needle C requires one step.

MOVE DISC FROM A TO C

Moving two discs from A to C requires three steps.

MOVE DISC 1 FROM A TO B
MOVE DISC 2 FROM A TO C
MOVE DISC 1 FROM B TO C

Moving three discs from A to C requires seven steps.

MOVE DISC 1 FROM A TO C
MOVE DISC 2 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 3 FROM A TO C
MOVE DISC 1 FROM B TO A
MOVE DISC 2 FROM B TO C
MOVE DISC 1 FROM A TO C

104

The general solution is:

MOVE N-1 DISCS FROM A TO B
MOVE DISC N FROM A TO C
MOVE N-1 DISCS FROM B TO C

The implementation is simple. HANOI is defined with four arguments:

1) N is the number of discs to be moved,
2) NS is the starting needle,
3) ND is the destination needle, and
4) NI is the intermediate storage needle.

On entry to HANOI, the value of N is compared with zero. If N is zero, no discs
are moved and the function returns. If N is not zero, HANOI is called
recursively to move N-1 discs from the starting needle to the intermediate
storage needle. Having done that, the command to move the Nth disc from the
starting needle to the destination needle is printed. Finally, HANOI is called
a second time to move the N-1 discs from intermediate storage to the destination
needle.

F. Q£§X~

It is sometimes convenient to provide synonyms for existing functions. The
primitive function OPSYN can be used for this purpose. The general format of
OPSYN is

OPSYN (new, old)

For example,

OPSYN (, SAME' , , IDENT ')

defines SAME to be a synonym for the function name IDENT.

A call using a synonym for a primitive function must
number of arguments. Trailing arguments may not be omitted.

SAME (X)

causes error termination.

Consider a program using the pattern BIGP of Chapter 2.

have the correct
For example,

BIGP (*P $ TRY *GT (SIZE (TRY) ,SIZE(BIG))) $ BIG FAIL

105

This program prints the values of TR.Y ,and BIG, whose sizes are compared by GT.
The printing can be done by providing a new programmer-defined function for GT.
However, since GT must still be used, it is OPSYNed to another function name,
GTHAN.

OPSYN('GTHAN','GT')
DEFINE (' GT (X, Y) ') : (TEST)

* GT OUTPUT 'TRY = , TRY ,
GTHAN (X, Y)

BIG =' BIG
:S(RETURN)F(FRETURN)

* TEST

END

BIGP = (*P $ TRY *GT (SIZE (TRY) ,SIZE(BIG))) $ BIG FAIL
STR 'IN 1964 NFL ATTENDANCE JUMPED TO 4,807,884; ,

'AN INCREASE OF 401,810.'
P = SPAN('0123456789,')
BIG
STR BIGP
P SPAN('ABCDEFGHIJKLMNOPQRSTUVWXYZ')
BIG
STR BIGP

TRY 1964, BIG =
TRY 964, BIG = 1964
TRY 64, BIG = 1964
TRY 4, BIG = 1964
TRY = 4,807,884, BIG = 1964
TRY ,807,884, BIG = 4,807,884
TRY 807,884, BIG = 4,807,884
TRY 07,884, BIG = 4,807,884
TRY 7,884, BIG = 4,807,884
TRY ,884, BIG = 4,807,884
TRY 884, BIG = 4,807,884
TRY 84, BIG = 4,807,884
TRY 4, BIG = 4,807,884
TRY 401,810, BIG = 4,807,884
TRY 01,810, BIG = 4,807,884
TRY 1,810~ BIG = 4,807,884
TRY ,810, BIG = 4,807,884
TRY = 810, BIG = 4,807,884
TRY 10, BIG = 4,807,884
TRY 0, BIG = 4,807,884
TRY IN, BIG =
TRY N, BIG = IN
TRY = NFL, BIG = IN
TRY = FL, BIG = NFL
TRY L, BIG = NFL
TRY ATTENDANCE, BIG = NFL
TRY TTENDANCE, BIG = ATTENDANCE
TRY TENDANCE, BIG = ATTENDANCE
TRY ENDANCE, BIG = ATTENDANCE
TRY NDANCE, BIG = ATTENDANCE
TRY DANCE, BIG = ATTENDANCE
TRY ANCE, BIG = ATTENDANCE
TRY NCE, BIG = ATTENDANCE
TRY CE, BIG = ATTENDANCE
TRY E, BIG = ATTENDANCE
TRY JUMPED, BIG = ATTENDANCE
TRY UMPED, BIG = ATTENDANCE
TRY MPED, BIG = ATTENDANCE
TRY = PED, BIG = ATTENDANCE

106

TRY ED, BIG = ATTENDANCE
TRY D, BIG = ATTENDANCE
TRY TO, BIG = ATTENDANCE
TRY = 0, BIG = ATTENDANCE
TRY AN, BIG = ATTENDANCE
TRY N, BIG = ATTENDANCE
TRY = INCREASE, BIG = ATTENDANCE
TRY NCREASE, BIG = ATTENDANCE
TRY CREASE, BIG = ATTENDANCE
TRY REASE, BIG == .ATTENDANCE
TRY EASE, BIG = ATTENDANCE
TRY ASE, BlG = ATTENDANCE
TRY SE, BIG = ATTENDANCE
TRY E, BIG = ATTENDANCE
TRY OF, BIG = ATTENDANCE

APPLY is a primitive function that creates and executes a function call.
APPLY(f,al, .•• ,an) calls the function f with the arguments al, ... ,an- The
value of APPLY is the value returned by the function it calls. The
function f may be a primitive function or a programmer-defined function. Like
OPSYN, a use of APPLY on a primitive function must specify the correct number of
arguments_

An important use of APPLY is to call various functions depending on the
current value of data. Execution of the statements

x 'SIZE'
Y 57
OUTPUT APPLY (X,Y)

calls SIZE(S7} and prints 2. Execution of

X 'BINARY'
Y 57
OUTPUT APPLY (X,Y)

calls BINARY (57) , defined earlier, and prints 111001 .

107

Chapter 5. Arrays, Data Types, and Keywords

An array is an indexed aggregate of variables. Arrays are created by the
execution of the primitive function ARRAY. ARRAY (p,e) returns an array whose
bounds ~nd dimensions are described by the prototype p. Every element is
initialized to the value of the expression e. For example,

VECTOR ARRAY (10)

assigns a one-dimensional array of length 10 to VECTOR. Since the second
argument is omitted, each element of the array has the null string value.
Indexing ordinarily starts at 1. Other lower bounds may be specified by using a
colon to separate the upper and lower limits.

LINE ARRA Y (, - 5 : 5 ')

creates an array with lower bound -5 and upper bound 5.

Additional dimensions in a prototype are separated by commas. Thus,

BOARD AR RAY (, 3 , 3 ' , 'X')

defines a three-by-three array with all elements having the value X.

'--T-~--'

BOARD

~.x f---+-':::=~

I I I
L __ ...1.---L---..l

There is no intrinsic limit on the size or dimensionality of an array.

~~£ning: The first argument of ARRAY is the prototype, and the second is a
value which is given to each element of the resulting array. Thus,

A ARRAY('3,3')

108

creates a two-dimensional array with each element having the null string as
value.

On the other hand,

r-- I II

A-----I I I ,
~--+--+--~
I I I I
I--+--+--~
I I I I
L--..l..- I J

A = ARRAY (3,3)

creates a one-dimensional array with each element having the value 3.

r---,
A ;.

~~ 3
1--
I I
L-_J

Each element of an array is given the §~ill~ value. Consequently, execution
of the instructions

A1
A2

ARRAY (5)
ARRAY (5,A 1)

creates only two arrays. Each element of A2 has the same array, A1, as value.

A2 A1

'------ r---,
I I
~--~
I I
~--~
I I
~--f
I I
~~-1

I I
L __ J

109

If the value of a variable is an array,
A, A1, and A2 above, an element in the array
variable. Angular brackets following the
specify the element. Array references such as
variables. For example,

VECTOR<8> EXP

as is the case with VECTOR, BOARD,
may be referenced through the
array-valued variable are used to

VECTOR<8> or BOARD<2,3>, are

assigns the value of EXP to the eighth element of VECTOR.

OUTPUT BOARD<2,3>

prints the value of the (2,3)-element of BOARD.

FIELD BR EAR (' ,) . LIN E < - 3 , 4 > ' ,

defines a pattern that breaks out a field of data and assigns it to the
(-3,4)-element of LINE.

Each element of an array may have any type of data object as value. There
is no requirement that all elements of an array have the same data type. For
example, the first element of an array may be an integer, the second a pattern,
and so forth.

If an index referring to an element of an array falls o~tside the range of
the array, the array reference fails. Thus,

OUTPUT VECTOR<12>

fails. This failure may be used to control iteration through the elements of an
array without knowing its size. A function SUM, whose value is the sum of all
the elements of an array, could have the defining statement

DEFINE('SUM(ARRAY)N')

with the procedure

SUM N
SUTI.1

N + 1
SUM + ARRAY<N> :S (SUM)F(RETURN)

The summation loop continues until N exceeds the range of ARRAY. This function
does not need to know the size of ARRAY, but only that it is a one-dimensional
array with a lower bound of one.

1 i 0

A simple application of one-dimensional arrays is illustrated in the
following example which puts strings in lexical order. A bubble sort is much
like an exchange sort. When two elements are found to be out of order, they are
switched. However, the lexically smaller item is bubbled up to its proper
place.

*
*

*
*
*

*
*
* READ

*
*
* GO

*
*
*
PRINT

*
*
* SORT

* SWITCH

* BUBBLE

* END

....

BUBBLE SORT PROGRAM

DEFINE('SORT(N) I')
DEFINE('SWITCH(I) TEMpi)
DEFINE (' BUBBLE (J) ')

GET NUMBER OF ITEMS TO BE SORTED

N
A

TRIM (INPUT)
ARRAY (N)

READ IN THE ITEMS

I
A<I>

SORT (N)

1+1
TRIM (INPUT)

SORT THE LIST

PRINT SORTED LIST

M
OUTPUT
M

1
A<M>
M + 1

FUNCTIONS

I LT(I,N
LGT(A<I>,A<I + 1 »
SWITCH (I)
BUBBLE (I)

TEMP A<I>
A<I> = A<I +
A<I + 1> TEMP

- 1) I

1>

J GT (J ,1) J - 1
LGT(A<J>,A<J + 1»
SWITCH(J)

+ 1

: F (ERROR)

: F (GO) S (READ)

: F (END)
: (PRINT)

:F(RETURN)
:F(SORT)

: (SORT)

: (RETURN)

:F(RETURN)
: F (RETURN)
: (BUBBLE)

111

For the input

15
ADDSIB
BUKINT
ADJTTL
BUCKET
ADREAL
BKSPCE
APDSP
ARRAY
BKSIZE
ALTERN
BRANCH
ADJUST
BUFFER
ADDSON
ADDLG

the output is

ADDLG
ADDSIB
ADDSON
ADJTTL
ADJUST
ADREAL
ALTERN
APDSP
ARRAY
BKSIZE
BKSPCE
BRANCH
BUCKET
BUFFER
BUKINT

One iteration of SORT is:

112

r---,
I A I
J---~

I C I
t--~
I D I
l----~

I---IFI
f----~
I B I
t--~
I E I
L----'

SWITCH BUBBLE

- r-, - r---,
I A I I A I
t-~ t--~
I C I I B I

t--~<t-~ I D I I C I
t-~ t-~
I B I I D I >< t-~ t--~
I F I , F I
t--~ t--~
I E I IE,

L_-'

INCREMENT
I

I-

r--,
I A I

t--~ I B I
t--~
I C I
t--~
I D I
t~-~

I F I
t--~
I E I
L-_J

Elements above I are properly ordered. If elements at I and I + 1 are out of
order, they are switched. The new element at I (B) is bubbled by means of
interchanges to its proper place above I. I is incremented and the process
continues.

The value of the ARRAY function is an object whose data type is ARRAY.
This value may be assigned to one or more variables.

A
B

= ARRAY (3)
A

A and B have the same array as value •

Thus,

B<2>
OUTPUT

print SIX.

A

B ---------

'SIX'
A<2>

.--,
I I
I--~
I I
1---1
I I
L-_.1

.---,
I I
I--~
I 0 I
I--~
I I
'--__ .1

SIX

The COpy function produces a copy of an array. Executing the statements

A
A<2>
B
B<2>

ARRAY (3)
'TWO'

COpy (A)
'SIX'

creates distinct arrays. Unlike the previous example, assigning a value to B<2>
does not affect the value of A<2>.

113

.---., .---,
A --- I I B ---- I I

t---~ t--~
I 0 I !I TWO I . I ill' SIX
r---i t--~
I I I I
L-__ J L-_J

COpy may be used with other types of data, as illustrated in the section on data
types.

The value of the dimension or range of an array is sometimes needed. The
primitive function PROTOTYPE is used to obtain the prototype used to define the
array. PROTOTYPE has an array-valued argument and returns the prototype string.
Thus, if

A ARRAY (f - 5: 5 f , • X')

then the value of PROTOTYPE (A) is the string -5:5.

An example utilizing PROTOTYPE is the following function named SQUARE. The
argument of SQUARE is any singly-dimensioned array. The value of SQUARE is a
two-dimensional square array whose dimensions equal that of the argument, and
whose elements are null strings.

* SQUARE
SQEND

,----,
I I
t---i
I I
r---i
I I
r--i
I I
L-__ J

DEFINE (f SQUARE (A) ')

SQUARE ARRAY (PROTOTYPE (A)

,---~-,--~--.,

I I I I I
r---+---+---+--~
I I I I I
r---+---+---+---1
I I I I I
r--+---+----+--1
I I I I I
L--...L-__ ...L-_--L-__ J

: (SQEND)

• PROTOTYPE (A)) (RETURN)

The argument of ARRAY is a string formed from two occurences of PROTOTYPE (A)
separated by a comma. Thus, the index range is the same for both dimensions of
the new array.

In order to reference an array element by means of angular brackets, the
array must be the value of a known identifier. Sometimes this is not the case.
For example,

114

$X ARRAY (10)

is an acceptable assignment statement. But $X<2> and ($X)<2> do not reference
the second element of the array. In the first expression, the unar.y $
operates on the value of X<2>; the second is syntactically erroneous.

There are two ways to refer to an element of such an array. The array can
be assigned to a known identifier:

TEMP
TEMP<2>

$X
'SIX'

Alternatively, the primitive function ITEM can be used. The value of
ITEM (a, i 1 , ••• , in) is the (i 1 ,. •• , in) - element of the array a.

ITEM ($X, 2) 'SIX'

assigns SIX to the second element of the array.

Similarly, if

A<1> ARRAY (100)

,is executed, the fiftieth item of this array may be referenced by ITEM(A<1>,50).

If an index referring to an element of an array falls outs~de the range of
the array, the call of ITEM fails.

A variable can be assigned a value during an assignment statement or by
pattern matching through use of the cursor position operator ill or the binary
value assignment operators and $ In SNOBOL4, variables fall into two
major classes, natural variables and created variables.

A natural variable is any variable whose name is a nonnull string. Thus,

A
$'AB'
$'",('

are examples of natural variables, whose names, respectively, are the strings

A
AB
, , , (

115

The variable '" (cannot appear explicitly in an assignment statement such as

",('X'

because it is syntactically incorrect. However,

$'",(' 'X'

is syntactically correct and performs the desired assignment. Every string
except the null string is the name of a natural variable. Natural variables are
available at the start of a program without any conscious act of creation on the
part of the programmer. All natural variables with the exception of ABORT, ARB,
BAL, FAIL, FENCE, REM, and SUCCEED have the null string as their initial value.

Created variables are generated during execution of a program when, for
example, an array is created. The statement

A· ARRAY (10)

creates an array of ten variables. These variableB are referred by A<1>, A<2>,
•.• , A<10>.

consider a function BUMP which increments the value of any variable by 1.
If the value of variable N is to be incremented, the call

BUMP (N)

is not suitable because the value of N, not the name N, is passed to the
procedure for BUMP. The form of the call must be

BUMP (' N')

which passes the string N to the BUMP procedure. since the string N is the
name of the variable N, indirect reference may be used to increment the value.

The defining statement and procedure for BUMP are:

DEFINE('BUMP(VAR) ')

BUMP $VAR $VAR + 1 (RETURN)

116

Suppose BUMP is to increment the value of a created variable, such as the
second element of the array A. The call

BUMP (A<2»

is not suitable, since only the value of A<2> is passed. The call

BUMP('A<2>')

is not suitable either, since the string A<2> is passed, and

$'A<2>'

is a natural variable which bears no relation to the array element. The
difficulty arises because there is no explicit name for created variables.
However, implicit names for created variables can be obtained through use of a
unary name operator.

The unary name
name of that variable.

.A<2>

operator applied to any variable returns as value the
Thus, the value of

is the name of the second array element. The call

BUMP(.A<2»

passes the name of the second array element to BUMP, so that incrementing is
done properly.

The name operator serves much the same purpose for created variables as
quotation marks do for natural variables. Furthermore, the name operator
applied to a natural variable behaves the same as quotation marks. Thus, the
value of

.LINE

is the string LINE. Both of the following pairs of statements assign the
value 2 to ~AY.

117

WORD
$WORD

WORD
$WORD

'MAY'
2

.MAY
2

If the argument of the name operator is a natural variable, the value
returned by the name operator is a string which is an explicit name. If the
argument of the name operator is a created variable, the value returned is an
implicit name. If the argument is not a variable, error termination occurs.
For example,

.SIZE(X)
• (A + B)
.+A

are erroneous because the arguments are not variables. If A and B are integers
or numeral strings,

.$(A + B)

is valid because $(A + B) is a natural variable.

When returning from a programer-defined fUnction via RETURN, the value of
the function name becomes the value of the function call. If NRETURN is used,
the value of the function name is returned as a variable, not as a value. The
function call may thus be used freely in any context that requires a variable.

Consider, for example, the function NEXT which returns the first unused
element of an array. The array is given as an argument and is assumed to have a
zeroth element which indicates the last used element.

* NEXT

* NEXT. END

DEFINE ('NEXT (A) ')

A<O>
NEXT

A<O> + 1
.A<A<O»

Thus, executing the four statements

B ARRAY('O:100')
NEXT (B) 'A'
NEXT (B) = 'THE'
'STILL' 'T' REM. NEXT (B)

(NEXT. END)

:S (NRETURN) F(FRETURN)

assigns to B<O> through B<3> values 3, A, THE, and ILL, respectively.

When NEXT returns, the value of NEXT is .B<B<O», which is the name of the
first available array element. NEXT (B) becomes the variable B<B<O».

118

Flow of control is governed by unconditional, success, and failure gotos.
In the goto field, variables indicate the next statement to which control is
passed based on the outcome of the current statement.

If a variable is used as a statement label, a label attribute pointing to
the statement is assigned to the variable. This label attribute is independent
of the value of the variable. Thus, a variable can be used in the label field
and the goto field, as well as in the subject field of a single statement. The
statement

DELAY DELAY = LT(DELAY,N) DELAY + :S(DELAY)F(ONWARD)

is acceptable and unambiguous.

If a variable has no label attribute, its use in a goto field causes error
termination with the message, "UNDEFINED OR ERRONEOUS GOTO."

It is possible, as illustrated in the next section, to change the label
attribute of a variable. In this way, a particular label variable, such as that
appearing in

: S (LOOP)

may cause transfer to one statement at the beginning of execution and an
entirely different statement later on.

In the first phase of a SNOBOL4 run (compilation), the source program is
converted into Polish-prefix object code. In the second (execution) phase this
object code is interpreted. Object code is a type of data just as are strings,
patterns, and arrays. During the execution phase, it is possible, using the
primitive function CODE (string) , to convert a string of characters into object
code. The argument to CODE is a string representing one or more SNOBOL4
statements. The value of a call to CODE is executable object code.

A string to be compiled into object code consists of SNOBOL4 statements
terminated by semicolons. For example, if the variable GET has a string value
assigned by

GET =

then

NUCODE

'LOOP

N
LINE
N =
LINE

CODE (GET)

10; , . , ,
GT(N,O)
= LINE

N 1
TRIM (INPUT)

:F(OUT) ;'
: (LOOP) ; ,

causes the statements in the value of GET to be compiled.
CODE (GET) becomes the value of NUCODE.

The value of

119

Blanks are as important in strings to be converted to code as they are in
the program itself. A statement without a label ill~§i begin with a blank.

Execution of statements in the value of NUCODE can be accomplished in two
ways:

1) transfer to a labelled statement appearing in NUCODE, and

2) execution of a direct goto which passes control to the first statement
in NUCODE, whether labelled or not.

Thus, execution of the goto

(LOOP)

causes transfer to the statement labelled LOOP inside of NUCODE, even if the
original program had a statement labelled LOOP.

A direct goto is a special construction in the goto field which permits
transfer directly to the beginning of a block of object code rather than through
a label. The direct goto uses enclosing angular brackets rather than
parentheses. The expression enclosed in the angular brackets must be code
valued. Execution of the direct go to

: <NUCODE>

causes transfer to the first statement

N = 10

Flowing off the end of a block of compiled object code results in normal
termination, just as if there were an end statement.

The following statement illustrates the use of the function CODE in the goto
itself.

: <CODE (' OUTPUT "RECOMPILED" (RESTAR T) ; ,) >

The angular brackets indicate transfer to the beginning of the newly compiled
block of CODE, which prints RECOMPILED and transfers to the statement labelled
RESTART.

The primitive function CODE fails if its argument has a syntactic error.

It is an error for the same label to appear more than once in the source
program. Statements compiled using CODE, however, may have the same labels as
statements compiled earlier. The label attribute for the corresponding variable
becomes the new statement. For example, the following program segment is used
to call a function PROCESS(N) with various values of N.

120

BEGIN
LOOP

OUT

END

N 5
N LT (N, 1 0) N + 1
PROCESS (N)

NEWLOOP 'LOOP N
CODE (NEWLOOP)

: F (OUT)
: (LOOP)

GT (N, 0) N 1: F (END) ;'
: (BEGIN)

Within the two-statement loop, PROCESS(N) is called with N having values 6, 7,
8, 9, and 10 before control passes to the statement labelled OUT. At that
point, a new block of code is compiled consisting of the statement

LOOP N GT (N, 0) N : F (END)

Following compilation, control passes to the statement labelled BEGIN. It is
intended that PROCESS(N) be called for N with values 4, 3, 2, 1, and 0, but this
is not the case. The original statement labelled LOOP is still in the program.
It is not overwritten by the compilation. The label attribute of LOOP no longer
points to it. The label attribute now points at the newly compiled statement.
The new compilation is a second program which can freely communicate with the
original. Execution of the program proceeds as if the following programs were
compiled.

BEGIN

OUT

END

LOOP
END

N

N 5
N LT (N, 10) N + : F (OUT)

: (LOOP) PROCESS (N)

NEWLOOP 'LOOP N GT (N, 0) N 1: F (END) ; ,
CODE (NEWLOOP) : (BEGIN)

GT (N, 0) N 1 : F (END)

After compilation of NEWLOOP, transfer to BEGIN causes N to be assigned the
value 5. Control flows into the statement originally labelled LOOP, which
increments N to 6. PROCESS(N) is called and, on completion, control passes to
the new statement labelled LOOP. N is decremented to 5, but PROCESS cannot be
called as intended, since the new statement does not overwrite the old, and no
way is provided for getting back to the original program.

The program segment can be rewritten to perform as intended by using
explicit gotos to control program flow rather than relying on the sequence of
statements. to control flow.

121

BEGIN
LOOP
PROC
OUT

END

N 5
N LT (N, 1 0) N + 1
PROCESS (N)

NEWLOOP 'LOOP N
CODE (NEWLOOP)

: (LOOP)
: F (OUT)
: (LOOP)

GT(N,O) N 1 :F(END) S(PROC);'
: (BEGIN)

Following compilation of NEWLOOP, execution proceeds as if the following
programs were compiled.

BEGIN

PROC
OUT

END

LOOP
END

N = 5
N LT(N,10) N + 1

: (LOOP)
: F (OUT)
: (LOOP) PROCESS (N)

NEWLOOP = 'LOOP
CODE (NEWLOOP)

N = GT(N,O) N

N GT (N, 0) N 1:F (END) S (PROC) ;'
: (BEGIN)

: F (END) S (PROC)

After assigning 5 to N, control passes from the statement labelled BEGIN to the
new statement labelled LOOP. N is properly decremented to 4 and control passes
to the statement labelled PROC which calls PROCESS. The loop continues until N
is O.

SNOBOL4 allows the programmer to define his own types of data objects. A
programmer-defined data object is an ordered set of variables called fields. A
call of DATA(p) defines a new data type described by the prototype p. The
prototype p is a string denoting the name of the data type and the fields.
For example, a complex number can be said to consist of two fields, the real and
the imaginary. The call

DATA ('COMPLEX(R,I) ')

defines a data type COMPLEX, with two fields R and I.
limit to the number of fields.

There is no intrinsic

To create an object which has the data type COMPLEX, a call of the form

COMPLEX (e 1, e2)

122

is made, where e1 and e2 are any expressions. For example, to assign the
complex number "1.5 + 2.0i" to the variable C, the statement

C COMPLEX(1.5,2.0)

is executed. Each call of the fUnction COMPLEX creates two new variables
corresponding to the real and imaginary parts. These variables may be
referenced by using the field name as a function. After executing the statement
above, the value of C is a complex number; the real part is referenced by R(C)
and the imaginary part by I(C). Thus,

A R (C)

assigns
value.

the
If

value 1 • 5 to A. Since R (C) is a variable, it may be assigned a

R(C) 3.2

is executed, the complex number "3.2+2.0i" is assigned to C.~

Operations on complex quantities can be defined using programmer-defined
functions. A function to compute the sum of two complex quantities is

SUM
SUM. END

DEFINE (' SUM (C1, C2) ')
SUM COMPLEX(R(C1) + R(C2) ,I(C1)

: (SUM. END)
+ I (C2)) : (RETURN)

If C has the value "3.2 + 2.0i", execution of the statement

C SUM(C,COMPLEX(1.0,1.0))

assigns "4.2 + 3.0i" to C.

There is no intrinsic limit to the length of a string in SNOBOL4, but there
is often a practical limit. For example, scanning a string for a pattern can be
time consuming if the string is long. However, many string applications require
reading in and retaining long passages of text. For such cases, a new data type
called TEXT can be defined.

DATA ('TEXT (LINE1N,NEXT) ')

The first field is a line of text, the seeond field indicates the line number,
and the third field points to the next line of text.

A passage of text is read as follows:

123

LOOP

DONE

124

I
HEAD TEXT (INPUT,I) : F (EMPTY)
CURRENT HEAD
I 1+1
NEXT (CURRENT) TEXT (INPUT,I) : F (DONE)

: (LOOP) CURRENT NEXT (CURRENT)

The resulting data structure has the form:

HEAD
r---------,

~ ~r--__,
LINE I line 1 I

~-----~
N I 1 I

~-----~
NEXT I I

____ J

r-------,
LINE I line 2 I

J-------~

N I 2 I
I-------~

NEXT~ _____ J

r---------,
LINE I line 3 I

J------~

N I 3 I
I------~

NEX1-----J

T
r---__,

LINE I line n I
~-----~

N I n I
I------~

NEXT I I
L ______ J

The statement

LINE (HEAD) 'EVERY' : S (YES) F (Nq)

examines the first line for the word EVERY.

The following section of program prints the lines and line numbers where
EVERY occurs.

TEST

BUMP

CURRENT = HEAD
LINE (CURRENT) 'EVERY'
OUTPUT N(CURRENT) ':'
CURRENT NEXT (CURRENT)
IDENT (CURRENT)

: F (BUMP)
LINE (CURRENT)

: F (TEST)

The same field names may exist for several data types. Thus,

DATA ('LIST (VALUE, NEXT) ')

defines a data type LIST which can coexist with the previous definition of the
data type TEXT. Although NEXT is a field name for both TEXT and LIST, NEXT (X)
is not ambiguous because the data type of the argument X indicates the usage.

VALUE is a primitive field function defined on strings and names which
refers to their value. If

RADIX 'HEX'

then

V VALUE ('RADIX')

assigns the string HEX to V. Similarly,

VALUE ('RADIX') 'DEC'

assigns the string DEC as the value of RADIX.

VALUE is supplied so that a programmer may define the field VALUE on
programmer-defined data types, and then apply VALUE to strings and names as well
as the defined types. This permits a uniform treatment of "value" without the
necessity for checking data type. If

DATA('LIST(VALUE,TEXT) ')
DATA ('NODE (FATHER,LSON,RSIB,VALUE) ')

125

are used to define the data types LIST and NODE, then VALUE can be applied to
objects with data type LIST and NODE as well as names and strings.

Data objects are classified by type. The string used to refer to a data
type within the language is called the formal identification of the data type.
The types of data are

string
integer
real number
pattern structure
array
created name
unevaluated expression
object code
programmer-defined data type

The call

DATATYPE (e)

STRING
INTEGER
REAL
PATTERN
ARRAY
NAME
EXPRESSION
CODE
data type name

returns the formal identification of the data type
expression e. For example, the value of DATATYPE('A'
PATTERN. Similarly,

return

DATATYPE (37)
DATATYPE (. ARB)
DATATYPE (. A<I»

INTEGER
STRING
NAME

respectively.

of
, B')

the
is

value of the
the string

If the argument to DATATYPE is a programmer-defined data type, the data
type name is returned. Referring to the data types defined in the previous
section, the function calls

126

return

DATATYPE(C)
DATATYPE(CURRENT)

COMPLEX
TEXT

respectively.

In some cases, it is reasonable to speak of the conversion of a data object
of one data type into a corresponding data object of some other data type. This
can be accomplished using the CONVERT function. For example, an integer can be
converted to a real number by the statement

R CONVERT (2, 'REAL')

As a result, R has the real number 2.0 as its value. To convert R to a string,
so that it may be printed, the statement

OUTPUT CONVERT(R,'STRING')

may be used.

CONVERT has the form

CONVERT (expression,datatype)

The first argument is any expression and the second is a string-valued
expression corresponding to a formal identification of a data type. CONVERT
evaluates the first argument and then, if possible, converts the result to the
data type given by the second argument. The value of CONVERT is the value of
expression converted to the new data type.

Not all conversions are possible or meaningful. The CONVERT function fails
if a specified conversion cannot be made.. The following table indicates those
conversions that are implemented. The conversion from STRING to CODE performs
the same task as the CODE function used earlier. That is,

CODE(S)

and

CONVERT(S, 'CODE')

may be used interchangeably.

127

data type
Q1_~.rill!m~n!

SIR PAN E C D
r---------------------------

STRING I X X X X X

INTEGER

REAL

PATTERN

ARRAY

NAME

EXPRESSION

CODE

Defined
Data Type

I
X X X

X X

X

X

X

x

X

X

An object of one programmer-defined data type cannot be converted to an
object of a different programmer-defined data type.

3. £QRX

COpy was described earlier in connection with arrays. The value of

COpy (A)

is a new array identical in every respect to the array which was the value of A.
The COpy function can also be used for data objects other than ARRAYS. Objects
with data type PATTERN, CODE, and all programmer-defined data types can be
copied. In all cases, the value of COpy is a new instance of the data object
which is its argument.

Certain identifiers prefixed by an ampersand (&) provide the programmer
with access to, and in some cases control of, information used internally by the
SNOBOL4 system. For example, the programmer may determine, at some point, how
many statements have been executed. The value of &STCOUNT is an integer equal
to the number of statements executed. If the statement

GT(&STCOUNT,40000) :S(CLEAN.UP)

is executed after more than 40,000 statements have been executed, a transfer to
the statement labelled CLEAN.UP is made. As another example, &STLIMIT is a
variable whose value is the number of statements which may be executed before
the SNOBOL4 system unconditionally terminates the program. The initial value of
&STLIMIT is 50000, but it can be changed during execution.

128

&STLIMIT = &STLIMIT * 2

doubles this limit.

Whereas the value of &STLIMIT can be changed, the value of &STCOUNT cannot.
Those keywords which can be modified by programmer action are called unprotected
keywords; those which cannot are called protected keywords. An attempt to set
the value of a protected keyword results in error termination.

Protected Keywords

There are two kinds of protected keywords, varying and constant. As their
names suggest, the values of varying protected keywords change automatically
during execution of a program. The constant protected keywords do not change.

a. ~E~Q1§Y~1. The value of &FNCLEVEL is the level of programmer-defined
function call.

b. ~1AST~Q. The compiler numbers each statement. These numbers are used
principally for diagnostic purposes4 The value of &LASTNO is the
number of the last statement executed.

c. ~B~~~Xf§. The value of &RTNTYPE
NRETURN, depending on the kind
programmer-defined function.

is the string RETURN, FRETURN, or
of return last made by a

d. ~§~COQNT. The value of &STCOUNT is the number of statements which have
been entered during program execution. If

N = &STCOUNT

is the first statement executed in a program, then N has the value 1.

e. &STFCOUNT. The value of &STFCOUNT is the number of statements which
have-faIled. If

f.

N &STFCOUNT

is the first statement executed, the value of N is o.

&STNO. The value of &STNO is the
statement currently being executed~

compiler-assigned number
(See &LASTNO.)

of the

a. ~~1~H~~~!. The value of &ALPHABET is a string consisting of all the
characters of the machine on which SNOBOL4 is implemented. The
characters are ordered according to their internal coding.

b. ~~E~. The value of &ARB is the primitive pattern structure which
matches any string of characters. &ARB and ARB have the same value at

129

the beginning of program execution. The value of ARB may be changed,
however, while the value of &ARB is protected.

c. ~~~QE1. &ABORT has the same value as ABORT at the beginning of program
execution. See &ARB.

d. ~~AL. As above.

e. ~EAI1· As above.

f. ~fE;~f~· As above.

g. ~EE;~· As above.

h. ~§1!CC~~Q. As above.

There are two kinds of unprotected keywords, switches and parameters. A
switch is a keyword requiring an integer value. A switch is considered Qff if
its value is 0, and is considered Qn otherwise. All switches are off at the
beginning of program execution.

130

a. ~~BE~Q. If &ABEND is on when program execution terminates, a system
core dump is provided.

b. &ANCHOR. If &ANCaOR is on, a pattern can match only an initial
substrIng. See Chapter 2.

c. &DUMP. If &DUMP is on at program termination, natural variables and
theIr values are printed.

d. ~E~E~f~. If &FTRACE is on, calls to and returns
programmer-defined functions are traced.. See Chapter 7.

from all

e. ~E1!bb§£~~. If &FULLSCAN is on, the pattern matching scanner attempts
to match a complex pattern against a string even though it can be
predetermined that the attempt will fail. See Chapter 2.

f. ~1EAC~. Tracing capabilities are available if &TRACE is on. See
Chapter 7.

a. ~~~~~~~Tli. The v~lue of &MAXLNGTH is an integer equal to the largest
string (measured in characters) which may be formed. The initial value
of &MAXLNGTH is 5000, but this value may be changed. Thus,

&MAXLNGTH = 1000

limits the maximum length of subsequent strings to 1000 characters. An
attempt to form a string longer than the limit results in error
termination of th~ program. All types of string formations are
included in this limit: concatenation, replacement, value assignment
as a tesult of pattern matching, and string input.

b. ~§T11Ml!. The value of &STLIMIT is the limit on the number of
statements that may be executed (see &STCOUNT). The initial value of
&STLIMIT is 50000. Exceeding the limit on statement execution results
in error termination.

131

Chapter 6. Details of Evaluation

There are three major types of statements: assignment, pattern matching,
and replacement. These have the forms:

~}dQj~£:t
~gQj~£:t
~}dQj~£:t

QQi~£:t gQ:tQ
12S!:t:t~r!! gQ:tQ
12~:t:t~r!! QQj~£:t

Labels and gotos are optional. The object may be explicitly omitted, in which
case the object is taken to be an expression that has the null string as value.

There are two degenerate statement forms as well:

~}dQj~£:t
g2:tQ

Labels and gotos are optional in these forms as well. Thus a blank line is an
acceptable statement.

An understanding of the sequence of evaluation requires an understanding of
the overall evaluation of a statement in terms of its major components. The
replacement statement is the most complicated and general form and is used for
illustration. All other statement forms can be considered formally as
degenerate replacement statements, and the evaluation of the degenerate forms
can be understood from the evaluation of the replacement statement by skipping
the missing components. The sequence of evaluation is:

1. The label requires no evaluation, and in fact is not part of the
statement at all. It merely serves to identify the statement.

2. The subject is evaluated first. If the evaluation of the subject
fails, the statement fails, the goto is processed, and evaluation of all other
components is skipped. If no failure goto is specified, control passes to the
next statement.

3. The pattern is evaluated next. If this evaluation fails, the statement
fails and the goto is processed as in the case of subject failure.

4. The pattern match is performed next. If the pattern match fails, the
statement fails, conditional value assignment is not performed, the replacement
is skipped, and the goto is processed. Immediate value assignment, and other
effects which occur dynamically during pattern matching, may take place before
the pattern match fails.

132

5. The object is evaluated. If this evaluation fails, the statement
fails, no replacement is performed, and the goto is processed.

6. The replacement is performed.

7. The goto is processed. Gato processing depends on the structure of the
goto and whether or not the statement failed. If the statement succeeded, only
an unconditional or success goto in the statement is evaluated. If the
statement failed, only an unconditional goto or failure goto in the statement is
evaluated. Transfer is made to the evaluated goto if there is one, or control
is passed to the next statement. If evaluation of a goto fails, error
termination results.

Any of the components of a statement may be arbitrarily complicated and may
invoke all kinds of processes. Calls to programmer-defined functions can occur,
for example, in any component of a statement (except the label), and even take
place in the middle of pattern matching as the result of the evaluation of
unevaluated expressions.

within an expression, the order of evaluation depends on the order of the
components and the operations performed on them. Evaluation of the components
of an expression is from left to right. In complicated expressions, components
are nested, and the order of evaluation may be determined by examining the fully
parenthesized form of the expression as determined from the rules of precedence
and association. Consider the expression

(K L F(A + B * C))

which has the fully parenthesized form

((K

I
L)
I

F «A + (B * C))))

1 2
\/

3

\
10

I
4

\
8
/

/9

I I
5 6
\ /

7
/

The order of evaluation of this expression is as indicated. If F is a
programmer-defined function, its evaluation involves the execution of other
statements and may in itself be very complicated.

In order to understand how failure is handled, it is important to know what
operations can fail.

1. Obtaining the value of a variable fails if the variable has an input
association and an end-of-file condition is encountered. Such failure occurs
only if the value of the variable is required, not merely because the variable
appears in a statement. Thus, neither

INPUT '0 '

nor

133

LT (N ,M) : S (INPUT)

requires the value of INPUT and hence no attempt is made to read a record.

2. Primitive predicates fail if the stated condition is not met. The
unary negation operator, for example, fails only if its operand does not fail.

3. Some primitive functions such as REPLACE fail for certain argument
values.

4. Array references fail if an index is out of bounds.

5. Pattern matching may fail for a variety of reasons.

6. Programmer-defined functions fail by transferring to FRETURN.

Failure is a condition that causes a process to terminate and return to the
process that called it, which in turn terminates and passes the failure
condition back, until eventually the statement itself fails. The exception is
the unary negation operator that converts a failure condition into successful
evaluation, and conversely.

Details of function evaluation deserve special note. All the arguments to
a programmer-defined function are evaluated before the function is called. If
too many arguments are provided to the call of a programmer-defined function,
the extra arguments are evaluated, but not passed. If the evaluation of any
argument fails, a failure condition is returned and the function is not entered.

Primitive functions are called before their arguments are evaluated, and
each function evaluates its own arguments. If the are too many arguments in the
call of a primitive function, error termination results. If too few arguments
are provided in the call of a primitive function, null strings are provided for
the omitted arguments. An exception to this rule concerns functions invoked by
APPLY or called through an OPSYNed synonym. Such calls must contain the correct
number of arguments or error termination results.

Integers can occur
operations. An integer
Some integer literals are

as literals and
literal consists

as the result of integer-valued
of an unsigned sequence of digits.

35
2760520

00006

Leading zeroes are ignored; 00006 and 6 are equivalent. A sign in front of
an integer literal is a unary operator and not part of the literal. Thus -6
is an integer-valued expression.

The maximum magnitude of integers is implementation dependent. On the IB1I1
System/360, integers can range from -2 31 to 2 31 -1,

Numeral strings are strings that represent integers.
consist of a sequence of digits and can have an initial sign.
strings and their equivalent integer values are

134

Numeral strings
Some numeral

'23'
'-7'

'+303'
'00001'

23
-7

303
1

The null string is also a numeral string and is equivalent to the integer zero.
The following strings are DQt numeral strings:

'+ ,
'++3'

'1,378'
'36-' , ,
'2. 0'

Many operations require integer-valued arguments. An integer-valued
argument can be specified by either an integer or a numeral string. Both

LEN {8}

and

LEN (' 8')

are correct. In most cases integers and numeral strings can be used
interchangeably, and the programmer need not concern himself with the
difference. In fact, numeral strings are automatically converted to equivalent
integers in contexts where integers are required.

Similarly, integers can be used in operations that require string-valued
arguments. Integers are automatically converted to numeral strings in contexts
where strings are required. In the statement

SEQNO a 1

the pattern and object are integers. The pattern is converted into the ~t~ing
a for the purpose of pattern matching and the object is converted into the
~tfiDg 1 for the purpose of replacement. An equivalent statement is

SEQNO '0' , 1 '

Conversion of integers to strings produces a nQ£m~li~gQ result with no leading
zeroes and without a leading plus for positive integers. Printing requires
strings, for example. Thus,

OUTPUT 8

and

135

OUTPUT = 00008

both print

8

but

OUTPUT '00008'

prints

00008

The effects of this conversion are most likely to be noticeable when conversion
from a numeral string to an integer is followed by conversion back to a string.

OUTPUT '-00007' + 00009

prints

2

Real numbers can occur as literals and as the result of real-valued
operations. A real number consists of an unsigned sequence of digits, followed
by a period, optionally followed by another sequence of digits. Some real
literals are

20.05
0.00001
3.

A sign
literal.

in front of a real literal is a unary operator and not part of the
Thus -3.14159 is a real-valued expression.

On the IBM System/ 360, the range of real numbers is on the order of 10- 78

to 10 75 •

Real numbers are automatically converted to strings for the purpose of
printing or punching. No other automatic conversions are made. Real numbers
cannot be concatenated. To perform mixed arithmetic on integers and real
numbers, explicit conversions must be made using the CONVERT function.

136

Unary and binary operators are functions of one and two arguments,
respectively. Operators have a special status by virtue of their syntactic
representation as distinguished symbols. The following sections discuss details
of the operators and the relation between their operands and values.

There are eleven unary operators.

operator operation
--r

+ I plus
I minus

$ I indirect reference

* I expression
I name
I negation

? I interrogation
& I keyword
ill I cursor position
I (not used)
% I (not used)
/ I (not used)

The following sections describe permissible operands for the unary
operators. Only data types indicated in these sections are permitted. Other
data types result in error termination. Abbreviations for the data types
correspond to the usage in Chapter 5. In the tables that follow, the left
column indicates the permissible operand data types and the right column
indicates the data types resulting from the operation.

Plus and minus accept the same types of operands and return the same types
of values.

r--
S I I
I I I
R I R

strings occurring as operands in these arithmetic operations must be numeral
strings.

Indirect reference requires an operand that is either a name or a string,
and returns the corresponding variable. This variable in turn may have any type
of data as value.

137

r-----------
S I (variable)
I I (variable)
N I (variable)

The expression operator may have any expression as an operand. A pointer
to this expression is returned, but the operand is not evaluated. The pointer
has data type EXPRESSION. Subsequent evaluation of the expression (during
pattern matching, e.g.) may yield a variable or a value of any data type.

The name operator must have a variable as an operand. A pointer to this
variable is returned. If the operand is a natural variable, the resulting data
type is STRING; otherwise it is NAME.

(natural variable)
(other variable)

r---
I S
I N

Negation and interrogation accept any expression as operand.
operations succeed, they return the null string as value.

If the

The keyword operator accepts as an operand only certain natural variables.
The data type of the value depends on the particular keyword. The natural
variable operand need not appear explicitly, but can be computed. Consequently,

KEYWORD 'STCOUNT'

OUTPUT &$KEYWORD

prints the number of statements executed up to the time the output statment
occurs.

The cursor position operator must have a variable as operand. A pattern
structure is returned.

138

The symbols /, #, and % are reserved for future use.
syntactically as unary operators, but have no meaning.
these operations causes error termination.

They are accepted
Execution of one of

There are twelve binary operators. Exponentiation associates to the right.
All other operations associate to the left. The operators are listed below in
order of decreasing precedence. Notice that multiplication has higher
precedence than division, contrary to common practice in other programming
langauges.

operator operation
-------------.--

$

** %

*
/

+
Q)

I immediate and conditional value assignment
I exponentiation
I (not used)
I multiplication
I division
I (not used)
I ajdition and subtraction
I (not used)
I concatenation
I alternation

The following sections describe permissible operands for the binary
operators. In the tables that follow, the left column indicates the permissible
left operand data types, the top row indicates the permissible right operand
data types, and the body of the table indicates the data types reSUlting from
the operation. Blanks in the body of the table indicate a combination of
operand data types that is not permitted.

Addition, subtraction, multiplication, and division all accept the same
types of operands and return the same types of values.

SIR
r----

S I I I
I I I I
R I R

strings occurring as operands in these arithmetic operations must be nurreral
strings.

Exponentiation is similar to the other arithmetic operations except that
real operands are not permitted.

139

S I
r-----

S I I I
I I I I

Strings must be numeral strings.

Concatenation is an operation of central importance in SNOBOL4. The
permissible data type combinations are:

S I P E
r---------

S I SSP P
I I SSP P
P , P P P P
E I P P P P

Concatenation treats the null string in a special way. If either operand is the
null string, concatenation is not performed and the other operand is returned as
value. Thus, if one operand is the null string, the other operand may have any
data type. This treatment of the null string permits full use of predicates in
expressions containing various types of data.

The permissible data type combinations for alternation are:

SIP E
r---------

S I p P P P
I I p P P P
P I P P P P
E I P P P P

Notice that the result of alternation is always a pattern. The null string has
no special status in alternation.

The value-assignment operations require a right operand that is a variable.
This variable, not its value, is used in constructing a pattern. An exception
to this requirement permits the right operand to be an unevaluated expression.
This expression is then evaluated at the time of value assignment to obtain the
variable to which assignment is made. If such an unevaluated expression does
not produce a variable at the time of value assignment, error termination
occurs. The permissible left operands are:

140

r--
SIP
I I P
PIP
E I P

The symbols %, #, and ware reserved for future use. They are accepted
syntactically as binary operators, but have no meaning. Execution of one of
these operations causes error termination.

Some expressions yield variables when evaluated. Such variables are called
generated variables, and values can be assigned to them in the same manner that
values can be assigned to variables that appear explicitly. In the statements

M 2
$ (' N' M) 'INVOICE'

the subject $('N' M) generates the variable N2 which is assigned the value
INVOICE. Array references, field functions on programmer-defined data types,
and programmer-defined functions that return by NRETURN are examples of
expressions that generate variables.

other
variables.

expressions, for example arithmetic operations, yield values but not
Thus, execution of the statement

(A + B) 2

causes error termination with the message "VARIABLE NOT GIVEN WHERE REQUIRED."

Gotos require natural variables.
generated. The indirect goto

:S($TRIM(INPUT))

is an example.

These natural variables may also be

Some expressions, such as indirect references, always yield variables.
Others, such as literals, always yield only values. Some expressions mayor may
not yield variables. For example,

F (X) 2

mayor may not be erroneous depending on the function F. To allow for such
cases, the syntax of SNOBOL4 permits any kind of expression as the subject of
assignment. statements such as

141

2 3

are syntactically acceptable even though they result in error termination if
executed.

142

Chapter 7. Tracing

Tracing facilities are provided to permit the programmer to get diagnostic
information about the execution of his program without interfering with its
logic or structure. The tracing mode is entered by turning on the keyword
&TRACE. When this mode is in effect, certain types of program actions can be
sensed, causing corresponding messages to be printed. The types of actions
sensed are:

1) change in the value of a variable,
2) call of a defined function,
3) return from a defined function,
4) transfer to a label, and
5) change in the value of certain keywords.

The TRACE function is used to make specific trace requests.

TRACE (name,type,tag)

associates the name with the type of action for tracing purposes. The tag
provides identifying information which is included in the trace printout if the
name is not a natural variable. If the name is a natural variable, the tag is
ignored. One trace association must be made for ~£h name and type desired.
Trace printout includes the statement number in which the action occurs, the
result of the action, and the time of the action in milliseconds measured from
the beginning of program execution.

If &TRACE is off, there is no tracing, even though trace requests have been
made. The value of &TRACE is decremented by one every time an action is traced,
and tracing is automatically turned off when the value of &TRACE reaches zero.
Therefore the value assigned to &TRACE may be chosen to limit the amount of
trace printout.

TRACE(name,'VALUE'#tag)

causes trace printout whenever the value of the name is ~hanged. Consider the
following program.

143

144

TRACE('I','VALUE')
TRACE('J','VALUE')
&TRACE 1000000

* LET THE FIRST DATA CARD SPECIFY THE MAXIMUM NUMBER OF
* CARDS TO BE SORTED. GENERATE AN ARRAY.

*
A ARRAY(TRIM(INPUT))

* * DEFINE THE FUNCTION INSERT.

* DEFINE ('INSERT (J)TEMP')

* * READ THE CARDS INTO THE ARRAY.

* INIT

*
*
*
* SORT

*
*

I 1+1
A<I)
OUTPUT

LET N BE THE
THEN SORT.

N I
I 1

TRIM (INPUT)
A<I>

NUMBER OF CARDS.

- 1

COMPARE TWO SUCCESSIVE CARDS.

* SORTA LGT(A<I>,~<I + 1»

*

: F (SORT)
: (INIT)

INITIALIZE THE INDEX AND

:S (SORTC)

* IF THEY ARE IN THE PROPER ORDER, INCREMENT THE INDEX
* (UNLESS SORTING IS FINISHED) AND CONTINUE.

* SORTB I LT(I,N - 1) I + 1 : S (SORTA) F (DONE)

* * OTHERWISE, INSERT THE CARD IN ITS PROPER PLACE.

* SORTC

*
INSERT (I + 1)

* PUNCH SORTED CARDS.

* DONE

PUNCH

*

I
OUTPUT
OUTPUT
PUNCH
I

1

= A<I>
OUTPUT

LT (I, N) I + 1

* FUNCTION DEFINITION
*
INSERT

END

TEMP A<J - 1>
A<J - 1> A<J)
A<J) TEMP
J GT(J,2) J - 1
LGT(A<J - 1),A<J»)

: (SORTB)

:S(PUNCH)F(END)

: F (RETURT'l)
:S(INSERT)F(RETURN)

1
2
3

4

5

6
7
8

9
10

11

12

13

14
15
16
17
18

19
20
21
22
23
24

Given the data

10
ACOMPC
ACOMP
INTRL
SPECEQ
SUM
FORMAT
STREAM
ZERBLK
SETAV
SETVA

the printed output is

STATEMENT 6: I 1, TIME 17
ACOMPC

STATEMENT 6: I 2,T'IME 17
ACOMP

STATEMENT 6: I 3,TIME = 50
INTRL

STATEMENT 6 : I 4,TIME 67
SPECEQ

STATEMENT 6: I 5,TIME 84
SUM

STATEMENT 6 : I 6,TIME 84
FORMAT

STATEMENT 6: I 7,TIME 100
STREAM

STATEMENT 6 : I 8,TIME 117
ZERBLK

STATEMENT 6: I 9,TIME 117
SETAV

STATEMENT 6: I 10,TIME 134
SETVA

STATEMENT 6: I 11,TIME 233
STATEMENT 10: I 1, TIME 233
STATEMENT 12: I 2,TIME 250
STATEMENT 12 : I = 3,TIME 250
STATEMENT 12: I 4,TIME 250
STATEMENT 12: I 5,TIME 267
STATEMENT 22: J 5,TIME 267
STATEMENT 22: J 4,TIME 283
STATEMENT 22: J 3,TIME 283
STATEMENT 12 : I 6,TIME 283
STATEMENT 22: J 6,TIME 300
STATEMENT 12 : I 7,TIME 300
STATEMENT 12: I 8,TIME 300
STATEMENT 22: J 8,TIME 317
STATEMENT 22: J = 7,TIME 317
STATEMENT 22: J 6,TIME 317
STATEMENT 22: J 5,TIME 333
STATEMENT 12 : I 9,TIME 333
STATEMENT 22: J 9,TIME 350
STATEMENT 22: J 8,TIME 350
STATEMENT 22: J 7,TIME 367
STATEMENT 22: J 6,TIME 367
STATEMENT 14: I 1, TIME 367

145

ACOMP
STATEMENT 18: I 2,TIME 533

ACOMPC
STATEMENT 18: I 3,TIME 533

FORMAT
STATEMENT 18 : I 4,TIME 550

INTRL
STATEMENT 18: I 5,TIME 550

SETAV
STATEMENT 18 : I 6,TIME 550

SETVA
STATEMENT 18: I 7,TIME 566

SPECEQ
STATEMENT 18: I 8,TIME 566

STREAM
STATEMENT 18: I 9,TIME 566

SUM
STATEMENT 18: I 10,TIME = 583

ZERBLK

If the name is not a natural variable, the tag is printed to identify the
name being traced. For example,

TRACE(.SUM<3>,'VALUE','SUM<3>')

traces the third element of the array SUM. Here the tag SUM<3> (chosen to
correspond to the created variable SUM<3» provides a string that identifies
the name of the trace request. As an example, consider the following program
which forms sums in several bins as given on data cards. The trace association
must appear after creation of the array SUM, since the name .SUM<3> does not
exist before the array is created.

146

*
*
*
* READ

&ANCHOR 1
&TRACE 1000
CARDPAT BREAK(' ') . BIN LEN(1) BREAK(' ') • NUMBER
THE FIRST CARD GIVES THE NUMBER OF BINS
SUM = ARRAY (TRIM (INPUT) ,0)
TRACE THE THIRD BIN.
TRACE(.SUM<3>,'VALUE','SUM<3>')

: F (ERR)

SUBSEQENT CARDS CONTAIN A BIN NUMBER FOLLOWED BY A BLANK AND THEN
THE NUMBER TO BE ADDED TO THE BIN.
CARD INPUT
CARD CARDPAT
SUM<BIN> = SUM<BIN> + NUMBER

: F (DISPLAY)
: F (ERR)
:S(READ)F(ERR)

* PRINT OUT THE SUMS
DISPLAY

I 1
PRINT OUTPUT 'SUM<' I ,>

I I + 1
END

, SUM<I> : F (END)
: (PRINT)

1
2
3

4

5

6
7
8

9
10
11
12
13

For the input data

10
3 25
1 27
9 -75
5 +65
3 77
7 -89
2 75
10 0
3 -756
7 499
2 76
4 23
1 456
5 87
2 33
10 23
3 0025
8 657
3 -45

the printed output is:

STATEMENT 8: SUM<3>
STATEMENT 8: SUM<3>
STATEMENT 8: SUM<3>
STATEMENT 8: SUM<3>
STATEMENT 8: SUM<3>

SUM<1> 483
SUM<2> = 184
SUM<3> -674
SUM<4> 23
SUM<5> 22
SUM<6> 0
SUM<7> 410
SUM<8> 657
SUM<9> -75
SUM<10> = 23

25,TIME = 17
102,TIME = 50
- 6 54 , TIME 1 0 0
-629,TIME 183
-674,TIME 300

There are three types of tracing for programmer-defined functions: CALL,
RETURN, and FUNCTION. CALL and RETURN cause trace printout on the call to and
return from a function. FUNCTION causes trace printout for both call and
return.

CALL tracing gives the level f£2~ which the call is made, the function
name, and the value of its arguments. RETURN tracing gives the level i2 which
the return is made. The following examples indicate the three types of tracing
applied to a program that computes the number of combinations of N things taken
M at a time.

147

READ

*
C

END

&TRACE 1000
TRACE (• C' , 'CALL')
NM BR EAK (, , ,) • N ',' BREAK (' ')
DEFINE ('C (N,M) ')
INPUT NM : F (END)

, C (, . N ',' 11.1 ')::=' C (N, M) OUTPUT

LT(N - M,M) N - M

• M

M
C
C

EQ (M, 0) 1
N * C(N - 1,M - 1) / M

: S (RETURN)
: (RETURN)

prDduces the output

STATEMENT 6 : LEVEL 0 CALL OF C('15','6'),TIME = 200
STATEMENT 9 : LEVEL 1 CALL OF C (1 4 , 5) , TIME 200
STATEMENT 9 : LEVEL 2 CALL OF C (1 3 , 4) , TIME 216
STATEMENT 9 : LEVEL 3 CALL OF C (12,3) , TIME 216
STATEMENT 9 : LEVEL 4 CALL OF C(11,2),TIME 216
STATEMENT 9 : LEVEL 5 CALL OF C (1 0 , 1) , TIME 233
STATEMENIJ:1 9 : LEVEL 6 CALL OF C(9,0) ,TIME = 233

C(15,6)=5005

with RETURN tracing, the output is

STATEMENT 8: LEVEL 6 RETURN OF C 1,TIME = 133
STATEMENT 9 : LEVEL 5 RETURN OF C 10,TIME = 150
STATEMENT 9 : LEVEL 4 RETURN OF C = 55,TIME = 216
STATEMENT 9 : LEVEL 3 RETURN OF C 220,TIME = 216
srrATEMENT 9 : LEVEL 2 RETURN OF C 715,TIME = 233
STATEMENT 9 : LEVEL 1 RETURN OF C 2002,TIME 233
STATEMENT 9 : LEVEL 0 RETURN OF C 5005,TIME = 233

C(15,6)=5005

and with FUNCTION tracing the result is

STATEMENT 6 : LEVEL 0 CALL OF C (, 15' , • 6 .) , TIME = 134
STATEMENT 9: LEVEL 1 CALL OF C (14 , 5) , TIME = 134
STATEMENT 9 : LEVEL 2 CALL OF C (1 3 , 4) , TIME 217
STATEMENT 9 : LEVEL 3 CALL OF C (1 2 , 3) ,TIME 217
STATEMENT 9 : LEVEL 4 CALL OF C (11 ,2) ,TIME 217
STATEMENT 9 : LEVEL 5 CALL OF C (10, 1) , TIME 233
STATEMENT 9 : LEVEL 6 CALL OF C (9 , 0) , TIME = 233
STATEMENT 8: LEVEL 6 RETURN OF C 1,TIME = 250
STATEMENT 9 : LEVEL 5 RETURN OF C := 10,TIME = 250
STATEMENT 9 : LEVEL 4 RETURN OF C 55,TIME = 250
STATEMENT 9 : LEVEL 3 RETURN OF C 220,TIME = 250
STATEMENT 9 : LEVEL 2 RETURN OF C 715,TIME = 267
ST,ATEMENT 9: LEVEL 1 RETURN OF C 2002,TIME 267
STATEMENT 9 : LEVEL 0 RETURN OF C 5005,TIME = 267

C(15,6)=5005

148

: (READ)

1
2
3
4
5
6

7
8
9
10

To facilitate the tracing of programmer-defined functions, the keyword
&FTRACE is provided. When &FTRACE is on, ~11 programmer-defined functions are
traced on call and return. The value of &FTRACE is decremented by one each time
a programmer-defined function is called or returns. &TRACE and &FTRACE are
independent, and both may be used at the same time. The following program
illustrates the use of &FTRACE.

&FTRACE 1000 1

* * THIS PROGRAM COMPUTES THE NUMBER OF SYMMETRIC BISECTIONS OF
* A CHECKERBOARD OF EVEN ORDER. THE PROBLEM IS DESCRIBED IN
* MARTIN GARDNER'S "MATHEMATICAL GAMES" IN SCIENTIFIC AMERICAN
* NOVEMBER, 1962.

*

* READ

*
AXIS

* RIGHT

*
UP

* LEFT

DEFINE (, AXIS (X, Y) ')
DEFINE ('RIGHT (X, Y) '}
DEFINE (' LEFT (X, Y) '}
DEFINE (' UP (X, Y) '}
DEFINE ('DOWN (X,Y) ')
DEFINE ('COUNT (X) ')

2
3
4
5
6
7

SUM
N

° 8 TRIM (INPUT) : F (END) 9
BOARD ARRAY(-N ':' N ',' -N ':' N) 10
BOARD<O,O> ':' 11
AXIS(O,O) 12
OUTPUT 'THERE ARE' SUM ' SY~~ETRIC BISECTIONS OF A ' 2 * 13
N ' BY , 2 * N ' CHECKERBOARD' : (READ) 13

X X + 1
EQ (X, N) COUNT ()
IDENT(BOARD<-X,-Y»
IDENT(BOARD<X,Y»
BOARD<X,Y> ':'
AXIS (X, Y)
UP (X, Y)
BOARD<X,Y>

X X + 1
EQ(X,N) COUNT()
IDENT(BOARD<-X,-Y»
IDENT(BOARD<X,Y»
BOARD<X,Y> ':'
RIGHT (X, Y)
UP (X, Y)
DOWN (X, Y)
BOARD<X,Y>

Y Y + 1
EQ(Y,N) COUNT()
IDENT(BOARD<-X,-Y»
IDENT(BOARD<X,Y»
BOARD<X,Y> ':'
RIGHT (X, Y)
UP(X,Y)
LEFT (X, Y)
BOARD<X,Y>

X X 1
EQ(X,-N) COUNT()
IDENT(BOARD<-X,-Y>}

: S (RETURN)
:F(FRETURN)
: F (FRETURN)

: (RETURN)

:S(RETURN)
:F(FRETURN)
: F (FRETURN)

: ~RETURN)

: S (RETURN)
: F (FRETURN)
: F (FRETURN)

: (RETURN)

: S (RETURN)
: F (FRETURN)

14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39

40
41
42

149

IDENT(BOARD<X,Y» :F (FRETURN)
BOARD<X,Y> ' : '
LEFT (X, Y)
UP (X, Y)
DOWN (X, Y)
BOARD<X,Y> : (RETURN)

* DOWN Y Y 1
EQ (Y, -N) COUNT () :S(RETURN)
IDENT(BOARD<-X,-Y» : F (FRETURN)
IDENT(BOARD<X,Y» : F (FRETURN)
BOARD<X,Y> ' : '
RIGHT (X, Y)
LEFT (X, Y)
DOWN (X, Y)
BOARD<X,Y> : (RETURN)

* COUNT SUM SUM + 1 : (RETURN)

* END

Given 2 as an input value, this program produces the following output.

STATEMENT 12: LEVEL 0 CALL OFAXIS(O,O) ,TIME = 100
STATEMENT 19: LEVEL 1 CALL OFAXIS(1,0) ,TIME = 117
STATEMENT 15: LEVEL 2 CALL OF COUNT(' ') ,TIME = 117
STATEMENT 58: LEVEL 2 RETURN OF COUNT = ",TIME = 117
STATEMENT 15: LEVEL 1 RETURN OF AXIS = ",TIME = 117
STATEMENT 20: LEVEL 1 CALL OF UP(1,0),TIME = 133
STATEMENT 36: LEVEL 2 CALL OF RIGHT(1,1) ,TIME = 133
STATEMENT 23: LEVEL 3 CALL OF COUNT(") ,TIME = 150
STATEMENT 58: LEVEL 3 RETURN OF COUNT = ",TIME = 150
STATEMENT 23: LEVEL 2 RETURN OF RIGHT = ",TI~E = 150
STATEMENT 37: LEVEL 2 CALL OF UP(1,1) ,TIME = 150
STATEMENT 32: LEVEL 3 CALL OF COUNT(") ,TIME = 166
STATEMENT 58: LEVEL 3 RETURN OF COUNT = ",TIME = 166
STATEMENT 32: LEVEL 2 RETURN OF UP = ",TIME = 166
STATEMENT 38: LEVEL 2 CALL OF LEFT(1,1) ,TIME = 183
STATEMENT 45: LEVEL 3 CALL OF LEFT(0,1) ,TIME = 183
STATEMENT 45: LEVEL 4 CALL OF LEFT(-1,1) ,TIME = 200
STATEMENT 41: LEVEL 5 CALL OF COUNT(' ') ,TIME = 200
STATEMENT 58: LEVEL 5 RETURN OF COUNT = "rTIME = 200
STATEMENT 41: LEVEL 4 RETURN OF LEFT = ",TIME = 200
STATEMENT 46: LEVEL 4 CALL OF UP(-1,1) ,TIME = 216
STATEMENT 32: LEVEL 5 CALL OF COUNT(' ') ,TIME = 216
STATEMENT 58: LEVEL 5 RETURN OF COUNT = ",TIME = 216
STATEMENT 32: LEVEL 4 RETURN OF UP = ",TIME = 233
STATEMENT 47: LEVEL 4 CALL OF DOWN(-1,1) ,TIME = 233
STATEMENT 51: LEVEL 4 FRETURN OF DOWN,TIME = 233
STATEMENT 48: LEVEL 3 RETURN OF LEFT = ",TIME = 250
STATEMENT 46: LEVEL 3 CALL OF UP(0,1) ,TIME = 250
STATEMENT 32: LEVEL 4 CALL OF COUNT(") ,TIME = 250
STATEMENT 58: LEVEL 4 RETURN OF COUNT = ",TIME = 266
STATEMENT 32: LEVEL 3 RETURN OF UP = ",TIME = 266
STATEMENT 47: LEVEL 3 CALL OF DOWN(0,1),TIME = 283
STATEMENT 51: LEVEL 3 FRETURN OF DOWN,TIME = 283
STATEMENT 48: LEVEL 2 RETURN OF LEFT = ",TIME = 283
STATEMENT 39: LEVEL 1 RETURN OF UP = ",TIME = 283
STATEMENT 21: LEVEL 0 RETURN OF AXIS = ",TIME = 300

THERE ARE 6 SYMMETRIC BISECTIONS OF A 4 BY 4 CHECKERBOARD

150

43
44
45
46
47
48

49
50
51
52
53
54
55
56
~57

58

59

TRACE (name, 'LABEL')

causes trace printout whenever transfer is made to the name. No printout occurs
if the statement labelled with the name is flowed into, or is entered as a
function entry point.

The following program, which converts numbers from hexadecimal form to
decimal form, illustrates label tracing.

&TRACE = 1000 1
TRACE('DEHEX1','LABEL') 2

* DEFINE ('DEHEX (STR) NO') : (DEHEX. END) 3

*
* DEHEX STR POS (0) SPAN (' 0') = 4
DEHEX1 STR LEN (1) . NO = :F (RETURN) 5

DEHEX = INTEGER (NO) 16 * DEHEX + NO : S (DEHEX1) 6
'ABCDEF' BREAK (NO) . NO : F (FRETURN) 7
DEHEX = 16 * DEHEX + 10 + SIZE (NO) : (DEHEX1) 8

DEHEX.END 9

*
* READ NUMBER = TRIM (INPUT) : F (END) 10

OUTPUT 11
= 'DEHEX (' NUMBER ') = , DEHEX (NUMBER) 11

: S (READ) 11
OUTPUT = 'UNABLE TO CONVERT , NUMBER : (READ) 12

END 13

Typical printout from this program is

STA TEMENT 6: TRANSFER TO DEHEX1,TIME = 17
STATEMENT 6: TRANSFER TO DEHEX1,TIME = 17
STATEMENT 6: TRANSFER TO DEHEX1,TIME = 34

DEHEX (1 00) = 256
STATEMENT 6: TRANSFER TO DEHEX1,TIME = 50

DEHEX (000001) = 1
STATEMENT 6: TRANSFER TO DEHEX1,TIME = 67
STATEMENT 6: TRANSFER TO DEHEX 1 , TIME = 83

DEHEX (00011) = 17
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 100

DEHEX{OOOF) = 15
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 117

DEHEX (E) = 14
STATEMENT 6 : TRANSFER TO DEHEX1,TIME = 133
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 150
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 167
STA TEMENT 8: TRANSFER TO DEHEX1,TIME = 167

UNABLE TO CONVERT 1ABCG
STATEMENT 6: TRANSFER TO DEHEX1,TIME 183
STATEMENT 8: TRANSFER TO DEHEX1,TIME 200
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 200
STATEMENT 8: TRANSFER TO DEHEX1,TIME 217

151

DEHEX (1ABC) = 6844
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 233

DEHEX (00 OE) = 14
STATEMENT 6 : TRANSFER TO DEHEX1,TIME = 250
STATEMENT 8 : TRANSFER TO DEHEX1,TIME = 266

DEHEX(001E) = 30
STATEMENT 8: TRANSFER TO DEHEX1,TIME 283
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 300

DEHEX(OOEC) = 236
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 316
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 333
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 333
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 350

DEHEX (OOOFACE) = 64206
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 450
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 466
STA TEMENT 8: TRANSFER TO DEHEX1,TIME = 466
STA T EMENT 8: TRANSFER TO DEHEX1,TIME = 483
STATEMENT 8: TRANSFER TO DEHEX1,TIME = 483

DEHEX(AAAAA) = 699050

TRACE (name, 'KEYWORD')

causes trace printout when the value of the named keyword is changed. Only
three keywords can be traced: STCOUNT, STFCOUNT, and FNCLEVEL. The following
program, which converts numbers from decimal to hexadecimal form, illustrates
keyword tracing.

*

*
* READ

*
* HEXER

HEX. END

END

&TRACE = 1000
TRACE('STFCOUNT','KEYWORD')

DEFINE('HEXER(N)Q,R')
HEGITS = '0123456789ABCDEF'

NUM = TRIM (INPUT)
OUTPUT = 'HEXER(' NUM ') = , HEXER (NUM)
OUTPUT = 'UNABLE TO CONVERT ' NUM

INTEGER (N)
Q = GT (N, 15)
R = N - Q * 16

N / 16

N = Q
HEGITS
HEXER =
HEGITS
HEXER =

LEN (R) LEN (1) • R
R HEXER
LEN (N) LEN (1) • R
R HEXER

Typical printout from this program is

STATEMENT 9 : &STFCOUNT = 1, TIME = 0
HEXER(1) = 1

STATEMENT 9: &STFCOUNT = 2,TIME = 33

152

1
2

3
4

: F (END) 5
: S (READ) 6
: (READ) 7

: F (FRETURN) 8
: F (HEX. END) 9

10
11

: F (FRETURN) 12
: (HEXER) 13
: F (FRETURN) 14
: (RETURN) 15

16

HEXER (17) = 11
STATEMENT 9: &STFCOUNT = 3,TIME = 49

HEXER (15) = F
STATEMENT 9 : &STFCOUNT = 4,TIME = 66

HEXER (14) = E
STATEMENT 9 : &STFCOUNT = 5,TIME = 99

HEXER (6844) = 1ABC
STATEMENT 8: &STFCOUNT = 6,TIME = 116
STA TEMENT 6: &STFCOUNT = 7,TIME = 116

UNABLE TO CONVERT 1239.0003
STATEMENT 9: &STFCOUNT = 8,TIME = 166

HEXER (30) = 1E
STATEMENT 9: &STFCOUNT = 9,TIME = 183

HEXER (236) = EC
STATEMENT 9: &STFCOUNT = 10,TIME = 216

HEXER (64206) = FACE
STATEMENT 9: &STFCOUNT 11,TIME 249

HEXER (699050) = AAAAA
STATEMENT 9: &STFCOUNT = 12,TIME = 266

HEXER (13) = D
STATEMENT 9 : &STFCOUNT = 13,TIME = 299

HEXER (0) = 0
STA TEMENT 9: &STFCOUNT = 14,TIME = 316

HEXER (000) = 0
STATEMENT 9: &STFCOUNT = 15,TIME = 349

HEXER (128) = 80
STATEMENT 9: &STFCOUNT = 16,TIME 366

HEXER (256) = 100
STATEMENT 9: &STFCOUNT = 17,TIME = 416

HEXER (123456789) = 75BCD15
STATEMENT 5: &STFCOUNT = 18,TIME = 648

Tracing is a global condition that depends on the value of &TRACE.
Regardless of trace requests made through the TRACE function, there is no trace
output if &TRACE is off. The value of &TRACE may be set to zero explicitly, or
may reach zero as it is decremented as the result of tracing. Individual trace
associations may be cancelled, however, by executing

STOPTR(name,type)

which cancels a single trace association for the name and type. Thus the
tracing of statement failure is stopped by executing

STOPTR('STFCOUNT',fKEYWORD')

The TRACE function has an optional fourth argument that permits
programmer to supply procedures for tracing. The form of the function is

TRACE (name,type,tag,function)

the

153

where the function is a programmer-defined function.

When the traced action occurs, the function is called with the name as its
first argument and the tag as its second argument. Thus the programmer may
define trace procedures to supplement the standard ones. The keyword &TRACE is
turned off on entry to a programmer-defined trace procedure and restored on
return. This prevents accidental tracing of a trace procedure. The programmer
may turn the &TRACE keyword on while in a trace procedure.

1. lnyoki!1g,_R!:Qg,!:~illill~!::.!2~i.!!1~g_T!:fL~e P!:oced~!:~§.

The exact time at which a programmer-defined trace procedure is called
depends on the type of trace.

VALUE: just after assignment of the new value

CALL: just after evaluation of the.argurnents, but before execution of
the first statement in the function

RETURN: just before the return is made

FUNCTION: as for CALL and RETURN

LABEL: just before transfer to the label

KEYWORD: just after the keyword is changed

Special information is
programmer-defined trace procedures.
provided expressly for this purpose.

required for
Three keywords

writing more elaborate
and three functions are

1. &STNO is a protected keyword whose value is the statement number of the
statement currently being executed.

2. &LASTNO is a protected keyword whose value is the statement number of
the last statement executed.

3. &RTNTYPE is a protected keyword whose value is the type of return
(RETURN, FRETURN, or NRETURN) made by the last defined function to return.

4. ARG(function,n) is a function whose value is the name of the nth
argument of the programmer-defined function. ARG is useful in writing
programmer-defined trace procedures that trace several functions and need to
determine the names of the formal arguments of the functions being traced.

5. LOCAL (function,n) is a function whose value is the name of the nth
local variable of the defined fUnction.

6. FIELD(data type,n) is a function whose value is the name of the nth
field of the programmer-defined data type.

The following example illustrates a programmer-defined function, VALTR,
that prints a trace output only when a traced variable is assigned a specified
value. KEY is a global variable. Trace output only occurs when a traced
variable is assigned the value of KEY. If the variable being traced is not a
string, the tag is used in the printed output. Use of this function is

154

illustrated in the following program which produces trace output when certain
variables are assigned the value 25.

The

KEY
KEY
KEY
KEY
KEY
KEY
KEY

*
*

*

POWER = ARRAY (, 25,5 ')

KEY = 25

DEFINE('VALTR(VAR,TAG)ST,TIME')
&TRACE = 1000
TRACE('I','VALUE',,'VALTR')
TRACE(.POWER<5,2>,'VALUE',' 5 ** 2','VALTR')
TRACE (.POWER<25, 1>, 'VALUE',' 25 ** 1','VALTR')

* SET UP MATRIX OF INTEGER POWERS

* J = 1
NEXTI I = 0
NEXTP I = I + 1

POWER<I,J> = I ** J
J = LT(J,5) J + 1

* VALTR ST = &LASTNO
TIME = TIME()

: S (NEXTP)
: S (NEXTI) F (END)

IDENT($VAR,KEY) :F(RETURN)
TAG = IDENT(DATATYPE(VAR),'STRING') VAR
OUTPUT = 'KEY VALUE "' KEY .11 ASSIGNED TO ' TAG

+ ' IN STATEMENT ' ST ' AT TIME ' TIME
+ : (RETURN)
END

printed output is

VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 166
VALUE "25" ASSIGNED TO 25 ** 1 IN STATEMENT 11 AT TIME 166
VALUE "25" ASSIGNED TO 5 ** 2 IN STATEMENT 11 AT TIME 199
VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 266
VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 332
VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 416
VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 499

1

2

3
4
5
6
7

8
9
10
11
12

13
14
15
16
17
17
17
18

155

Chapter 8. Input and Output

Input and output are accomplished by associating variables with data sets
(files). In the case of a variable associated in the output sense, each time
the variable is assigned a value, a copy of the value is put out onto the
assoc~ated data set. In the case of a variable associated in the input sense,
each time the value of the variable is used, a new value is read from the
associated data set and becomes the new value of the variable. Thus input and
output go on during program execution without any explicit I/O statements, as a
result of I/Q associations. Variables having standard associations are
described in the following sections.

The variable OUTPUT is associated with the standard print data set (usually
the printer). Consequently, whenever OUTPUT is assigned a value, printout is
generated. For example,

OUTPUT 'THE SELECTED VALUES ARE'

produces the output

THE SELECTED VALUES ARE

Output may also result from value assignment specified in patterns~ For
e"'xample,

PEXP = BAL. EXP1 • OUTPUT '+' BAL. EXP2 • OUTPUT

EXP PEXP

prints the two terms in EXP, and assigns their values to EXP1 and EXP24
type of output is often useful for diagnostic purposes, and does not affect
pattern matching or the assignments made to EXP1 and EXP2.

This
the

Ordinary printout is printed 131 characters per line, with as many lines as
necessary being generated. The null string is treated as a blank character and
a blank line is printed for it. Strings are usually assigned to output
variables. Integers and real numbers assigned to an output variable are
automatically converted to strings. If an array is assigned to an output
variable, the printed output is ARRAY with the prototype of the array enclosed
in parentheses. For example, the statements

156

print

MATRIX
OUTPUT

=
=

ARRAY('-2:2,-3:3')

ARRAY('-2:2,-3:3',0)
MATRIX

If the prototype is longer than twenty characters, only the string ARRAY is
printed. If an object with any other data type is assigned to an output
variable, the formal identification of its data type is printed. For example,

OUTPUT = LEN (7)

prints

PATTERN

The variable PUNCH
Consequently, whenever
For example,

is associated with the standard punch data set.
PUNCH is assigned a value, a punched card is generated.

PUNCH = °
produces a card with zero punched in column one.

All the remarks about print output apply to punch output, except that 80
characters are punched per card, with additional cards punched as necessary for
longer strings. The cards have no sequence numbering or identification unless
provided in the strings which are punched.

The variable INPUT is associated with the standard input data set.
Whenever the value of INPUT is used, a card image is read from the input stream
and becomes the new value of INPUT. For example,

OUTPUT = INPUT

reads a card image and prints it. Similarly,

TRIM (INPUT) BAL • EXP

reads a card image and matches for a balanced string. All eighty columns of the
card images are read, and the value of INPUT is an eighty character string.

157

Since each use of INPUT reads a card image, previous values of INPUT are
lost unless they are assigned to other variables.

If the end of the input data set is encountered when a value of INPUT is
requested, failure results. This failure can be used to detect the end of an
input data set. For example,

READ

OUT

1=1
DATA<I> = INPUT
I = 1+1

: F (OUT)
: (READ)

reads card images into the array DATA until the input data stream is exhausted
(or I exceeds the range of DATA). Control is then transferred to OUT.

All input/output is handled by FORTRAN IV I/O routines. That is, SNOBOL4
I/O is done by the same system that does I/O for FORTRAN IV object programs.
Consequently, the conventions and I/O concepts specified for the FORTRAN IV
language also apply to SNOBOL4. In addition, the version of the language
described here operates under OS/360. It is necessary to understand both the
fundamentals of FORTRAN IV I/O [7,8] and job control language (JCL) [9] in order
to use the I/O facilities of SNOBOL4 effectively~

In FORTRAN, data sets (files) have numbers (data set reference numbers).
These numbers are referred to in source-language programs and are associated
with specific data sets by JCL at run time. There are three standard data sets:

normal input stream (5)

normal print output (6)

normal punch output (7)

DDNAMEs in JCL are used to associate the data set reference numbers with
actual data sets. DDNAMEs for FORTRAN have the form FTxxFyyy, where xx
corresponds to the data set reference number and yyy is a file sequence number
for multifile data sets. The typical DD cards used in SNOBOL4 associate the
standard data set reference numbers 5, 6, and 7 as follows:

//FT06F001 DD SYSOUT=A
//FT07F001 DD UNIT=SYSCP
//FT05F001 DD *

This JCL, or its equivalent, is contained in the SNOBOL4 cataloged procedure,
and is supplied automatically when the cataloged procedure is used.

A wide range of devices and record structures can be specified on DD cards.
By changing the DD cards, the data streams can be assigned to different data
sets at run time. Thus,

//FT05F001 DD DSNAME=PROG1,VOLUME=SER=BTLXX1, x
// UNIT=DISK,DISP=OLD

158

specifies an input stream from a data set PROG1 on a disk file. Similarly,

//FT07F001 DD DSNAME=PUNCHER,VOLUME=SER=MYSAV1,UNIT=TAPE, C
// LABEL=(1,SL) ,DISP=(NEW,PASS), C
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

causes punched output to go onto a 9-track tape with a blocking factor of 10.

A complete discussion of DD statements is beyond the scope of this manual,
and is a very involved and difficult subject. The important fact is that JCL
permits the specification of a wide variety of devices and record structures.
This specification is made when the program is ~un and requires no alteration of
the program.

The FORTRAN I/O used in SNOBOL4 only handles sequential data sets. In
particular, it cannot handle members of partitioned data sets.

FORTRAN supports multifile data sets. The last three characters in the
DDNAME specify the file number. When FORTRAN comes to the end of a file, it
automatically opens the next file of the same data set reference number.

Thus, for example, input may come from several files:

//FT05F002 DD DSNAME=DATA2,UNIT=DISK,VOLUME=SER=BTLH04,DISP=OLD
//FT05F001 DD *

/*

With these DD cards, after the in-line data stream is exhausted, records are
read from DATA2. The failure which occurs when an end of a data set is reached
must be taken into account in programming.

The variables OUTPUT and PUNCH have predefined output associations.
Programmer-defined associations may be made using the function OUTPUT. The form
of the function is

OUTPUT (name, number, format)

OUTPUT associates the name with the data set reference number according to the
given format. The format is a string specifying a FORTRAN IV format. The
following statements correspond to the associations for the variables OUTPUT and
PUNCH:

OUTPUT (. OUTPUT' , 6, , (1 X, 131 A 1) ')
OUTPUT('PUNCH',7,' (80A1) ')

Using the OUTPUT function, any variable can be associated with any data set
reference number. For example,

159

PRFORM = , (1 X, 131 A 1) ,
TEST = ARRAY('8,8')
OUTPUT(.TEST<1,1>,6,PRFORM)
OUTPUT (. TEST< 8,8>,6, PRFORM)

associate the array elements TEST<1,1> and TEST<8,8> with the ordinary print
data set and with the standard print format. As a result, whenever either
TEST<1,1> or TEST<8,8> is assigned a value, the new value is printed.

Data set reference numbers are not restricted to 5, 6, and 7, but can range
from 1 through 99. Associations can be made with data set reference numbers
other than the standard ones. In this case, a DD statement for that number must
be provided when the program is run.

OUTPUT (' TEXT' ,7,' (80A 1) ,)

associates TEXT with the punch data set. On the other hand,

OUTPUT ('TEXT' ,20, , (80A 1) ')

and the DD statement

//FT20F001 DD DSNAME=NEWF,UNIT=TAPE,VOLUME=SER=MYSAV1,
// LABEL=(2,SL) ,DISP=(NEW,PASS) , DCB= (RECFM=FB,
// BLKSIZE=800,LRECL=80)

X
X

allow the program to put card images onto the second file of a tape. The LRECL
parameter of 80 and the format (80A1) relate the record size of the file to the
record size in the format.

Formats used in output association must specify the conversion of at least
one element by A-conversion. (Normally nA1-conversion is used.) Integers are
converted into strings and I-conversion must not be used. In addition to
A-conversion, quoted literals, X-, H-, T-, and Z-conversion may be specified
[7,8]. Carriage control must be provided for printing; otherwise the first
character of the string is consumed for this purpose. Consider

OUTPUT ('TITLE' ,6,' (1H1, 131A1/(1X, 131A1» ')

When a value is assigned to TITLE, a page is ejected and the value titles the
next page of output. The use of literals is illustrated by

OUTPUT (, SUM' , 6 ," (' SUM=', 127 A 1/ (1 X, 131 A 1)) "}

which includes identifying information with the format. Subsequently,

SUM = 300

160

causes the printout

SUM=300

The predefined associations can be changed. Thus,

OUTPUT (, OUTPUT' , 6, , (1 X, 12 OA 1) ')

shortens the line length for OUTPUT to 120 characters.

Programmer-defined input associations can be made using the function INPUT.
The form of this function is

INPUT (name,number,length)

INPUT associates the name with the data set reference number, and specifies that
the resulting string is to have the given length. (Notice in particular that no
format is specified.) INPUT has a predefined association equivalent to

INPUT('INPUT',5,80)

The specified length has some special properties. If the length is less than
the record size on the data set being read, the last part of the record is lost.
Hence,

INPUT('INPUT',5,72)

changes the association for INPUT so that only 72 columns are read. Columns 73
through 80 are lost if data set reference number 5 is associated with ordinary
card input. A length longer than the record size should not be specified.

Several other functions are provided for I/O-related operations [7,8]. All
of these functions return the null string as value.

DETACH (name) removes any input and output association which the name may have.
For example,

DETACH (, OUTPUT')

terminates normal print output.

161

ENDFILE{number) writes an end of file on (closes) the data set specified by the
number. For example,

ENDFILE (20)

closes the data set associated with data set reference number 20.

REWIND (number) repositions the data set associated with the number to the first
file. For example,

REWIND (10)

rewinds the data set associated with data set reference number 10.
Subsequently, reference to 10 refers to the beginning of the data set specified
by FT10F001 (even if 10 is a multifile data set).

BACKSPACE (number) backspaces one record on the data set associated with the
number.

162

Chapter 9. Structure of a SNOBOL4 Run

A SNOBOL4 run consists of three distinguishable parts:

1) compilation,
2) execution, and
3) termination.

During compilation, the SNOBOL4 system is initialized and the source
program is compiled into an intermediate object code in a form suitable for
interpretation during program execution. Compilation uses the same processes as
conversion of a string to object code using the CODE function. Additional
processes are involved in the rea.ding of lines to be compiled from the input
data set, printing of a source listing on an output data set, and noting errors
in the source program.

Input to the compiler comes from the standard input stream associated with
data set reference number S. The compiler begins reading program from the data
set associated with FTOSF001. Only 72 characters per line are read, so that
columns 73-80 of card-image input may be used for sequential numbering. The
compiler continues to read until it encounters the end statement. If an end of
file is encountered before the end statement is found, the compiler goes to the
next file for reference number S. The input program therefore may be in several
sections given by FTOSF001, FTOSF002, etc.

The listing of the program with sequential statement numbers goes on the
standard print output. When the end statement is encountered, the compilation
process stops. A listing of the compilation and placement of statement numbers
can be controlled by control lines. A minus sign at the beginning of a line
identifies a control line. Program listing is suppressed by the control line

-UNLIST

Program listing is restored by the control line

-LIST

163

The normal positioning of statement numbers is at the right side of the source
listing. Statement numbers optionally may be placed at the left side of the
listing. The control line

-LIST LEFT

changes statement numbering to the left. Right positioning of the statement
numbers is restored by

-LIST RIGHT

or simp~y

-LIST

Blanks may appear between the minus sign and LIST or UNLIST. One or more
blanks must appear between the LIST and the LEFT or RIGHT. Any characters other
than LEFT following blanks on the LIST control line cause the same action as
RIGHT. An erroneous control line is ignored.

Certain kinds of errors in the source program are detected during
compilation. When an error is detected in a statement, compilation of that
statement is terminated and an error message is printed below the statement,
describing the nature of the error. A list of compilation error messages is
given in Appendix B. A marker pointing to the vicinity of the error is also
printed. This marker may be somewhat before or after the error, depending on
the nature of the error. Since compilation of a statement stops when an error
is encountered, only the first error in anyone statement is detected.
Compilation continues in spite of erroneous statements. However, if more than
fifty erroneous statements are found, error termination occurs and the program
is not executed.

Execution of the compiled object code begins when compilation is complete.
Ordinarily, program execution begins with the first statement of the program.
Program execution may be started at any labelled statement by specifying that
label in the end statement. The label of the first statement to be executed is
placed in the position of the subject. For example,

END INIT

causes program execution to begin with the statement labelled INIT.

Data read from the standard input source begins with the first line after
the end statement. Data printed during execution follows the source listing.

164

Upon termination, a statistics summary is printed to provide timing
information and counts of certain program operations. If the keyword &DUMP is
on at program termination, a dump of natural variables and unprotected keywords
is also provided. Only natural variables with nonnull values are included. If
the value of a variable is not a string, the same representation of the value is
given as would be given if the value were printed as the result of an output
association.

There are four kinds of termination:

1) normal,
2) error,
3) intervention, and
4) catastrophic.

Normal termination occurs when the program transfers to END or flows into
the end statement. The number of the last statement executed and the function
level are printed. The following program illustrates the printout produced by a
program that terminates normally.

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

&DUMP = 1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

THIS PROGRAM IS THE ALGORITHM BY HAO WANG (CF. 'TOWARD
MECHANICAL MATHEMATICS', IBM JOURNAL OF RESEARCH AND
DEVELOPMENT 4(1) JAN 1960 PP.2-22.) FOR A PROOF-DECISION
PROCEDURE FOR THE PROPOSITIONAL CALCULUS. IT PRINTS OUT A
PROOF OR DISPROOF ACCORDING AS A GIVEN FORMULA IS A THEOREM
OR NOT. THE ALGORITHM USES SEQUENTS WHICH CONSIST OF TWO
LISTS OF FORMULAS SEPARATED BY AN ARROW (--*). INITIALLY, FOP
A GIVEN FORMULA F THE SEQUENT

--* F

IS FORMED. WANG HAS DEFINED RULES FOR SIMPLIFYING A FORMULA
IN A SEQUENT BY REMOVING THE MAIN CONNECTIVE AND THEN
GENERATING A NEW SEQUENT OR SEQUENTS. THERE IS A TERMINAL
TEST FOR A SEQUENT CONSISTING OF ONLY ATOMIC FORMULAS:

A SEQUENT CONSISTING OF ONLY ATOMIC FORMULAS IS V~LID IF
THE TWO LISTS OF FORMULAS HAVE A FORMULA IN COMMON.

BY REPEATED APPLICATION OF THE RULES, ONE IS LED TO A SET OF
SEQUENTS CONSISTING OF ATOMIC FORMULAS. IF EACH ONE OF THES~

SEQUENTS IS VALID THEN SO IS THE ORIGINAL FORMULA.

UNOP
BINOP
FORMULA

= 'NOT'
= 'AND' I 'IMP' I 'OR' I 'EQU'

= , , UNOP • OP '(' BAL • PHI ')'
, , BINOP . OP '(' BAL . PHI ','

I
BAL • PSI ')'

2
3
4
4

165

*
* READ

*

ATOM = (" BAL ' ,) • A

DEFINE {' WANG (ANTE, CONSEQi,'pH1:')/;;~')
"',.""./' .""j

EXP = TR 1M (I NPUT,)
OUTPUT =
OUTPUT = 'FORMULA:' EXP
OUTPUT =

WANG (; " -.! i3tp)
OUTPUT"=) 'VALID'

INVALID OUTPUT = 'NOT VALID'

* WANG

TEST

*
* ANOT

* AAND

* AOR

*
*
*
*
* AIMP

*
AEQU

* CNOT

* CAND

* COR

* CIMP

* CEQU

END

OUTPUT
ANTE
CONSEQ
ANTE
CONSEQ
ANTE
CONSEQ

= ANTE' --* , CONSEQ
FORMULA =
FORMULA =
= ANTE ' ,
= • , CONSEQ ~ •
ATOM =
A

WANG(ANTE,CONSEQ • , PHI)

WANG(ANTE • • PHI • • PSI,CONSEQ)

WANG(ANTE • • PHI,CONSEQ)
WANG(ANTE ' • PSI,CONSEQ)

WANG(ANTE ' , PSI,CONSEQ)
WANG(ANTE,CONSEQ • • PHI)

WANG(ANTE • , PHI' , PSI,CONSEQ)
WANG(ANTE,CONSEQ ' , PHI • , PSI)

WANG(ANTE ' • PHI,CONSEQ)

WANG (ANTE, CONSEQ ' • PHI)
WANG(ANTE,CONSEQ • • PSI)

WANG(ANTE,CONSEQ • • PHI' • PSI)

WANG (ANTE ' , PHI,CONSEQ • , PSI)

WANG(ANTE ' • PHI,CONSEQ ' , PSI)
WANG(ANTE • , PSI,CONSEQ • , PHI)

NO ERRORS DETECTED DURING COMPILATION

166

:F(END)

: F (INVALID)
: (READ)
: (READ)

:S($('A' OP)
:S($('C' OP)

: F (FRETURN)
:S(RETURN)F(TEST)

:S (RETURN) F (FRETURN)

:S(RETURN)F(FRETURN)

: F (FRETURN)
:S{RETURN)F(FRETURN)

:F(FRETURN)
:S(RETURN)F(FRETURN)

: F (FRETURN)
:S(RETURN)F(FRETURN)

:S(RETURN)F(FRETURN)

:F(FRETURN)
:S(RETURN)F(FRETURN)

:S (RETURN) F(FRETURN)

:S (RETURN)F (FRETURN)

: F (FRETURN)
:S(RETURN)F(FRETURN)

5

6

7
8
9
10

11
12
13

14
15
16
17
18
19
20

21

22

23
24

25
26

27
28

29

30
31

32

33

34
35
36

FORMULA: IMP(NOT(OR(P,Q» ,NOT(P»

--* IMP(NOT(OR(P,Q» ,NOT(P»
NOT (OR (P,Q» --* NOT(P)
--* NOT(P) OR(P,Q)
P --* OR (P,Q)
P --* P Q

VALID

FORMULA: NOT(IMP(NOT(OR(P,Q» ,NOT(P»)

--* NOT(IMP(NOT(OR(P,Q» ,NOT(P»)
IMP(NOT(OR(P,Q» ,NOT(P» --*
NOT(P) --*
--* P

NOT VALID

FORMULA: IMP (AND (NOT(P) ,NOT(Q» ,EQU(P,Q»

--* IMP (AND (NOT (P) , NOT (Q)) ,EQU (P, Q))
AND (NOT(P) ,NOT(Q» --* EQU(P,Q)
NOT(P) NOT(Q) --* EQU(P,Q)
NOT(Q) --* EQU(P,Q) P
--* EQU(P,Q) P Q
P --* P Q Q
Q --* P Q P

VALID

FORMULA: IMP{IMP(OR(P,Q) ,OR(P,R» ,OR(P,IMP(Q,R»)

--* IMP(IMP(OR(P,Q) ,OR(P,R» ,OR(P,IMP(Q,R»)
IMP (OR (P,Q) ,OR(P,R» --* OR(P,IMP(Q,R»
OR(P,R) --* OR(P,IMP(Q,R»
P --* OR(P,IMP(Q,R»
P --* P IMP(Q,R)
P Q --* P R
R --* OR(P,IMP(Q,R»
R --* P IMP(Q,R)
R Q --* P R
--* OR(P,IMP(Q,R» OR(P,Q)
--* OR(P,Q) P IMP(Q,R)
--* P IMP (Q,R) P Q
Q --* P P Q R

VALID

NORMAL TERMINATION AT LEVEL 0
LAST STATEMENT EXECUTED WAS 7

DUMP OF VARIABLES AT TERMINATION

NATURAL VARIABLES

A = • Q •
ABORT = PATTERN
ARB = PATTERN
ATOM = PATTERN
BAL = PATTERN
BINOP = PATTERN
EXP = 'IMP (IMP(OR(P,Q) ,OR(P,R» ,OR(P,IMP{Q,R»)'

167

FAIL = PATTERN
FENCE = PATTERN
FORMULA = PATTERN
INPUT = 'IMP (IMP (OR (P,Q) ,OR (P,R» ,OR (P, IMP (Q,R»)
OP = 'IMP'
OUTPUT = 'VALID'
REM = PATTERN
SUCCEED = PATTERN
UNOP = 'NOT'

UNPROTECTED KEYWORDS

&ABEND = 0
&ANCHOR = 0
&DUMP = 1
&FTRACE = 0
&FULLSCAN = 0
&MAXLNGTH = 5000
&STLIMIT = 50000
&TRACE = 0

SNOBOL4 STATISTICS SUMMARY-

168

1331 MS. COMPILATION TIME
550 MS. EXECUTION TIME
162 STATEMENTS EXECUTED, 34 FAILED

o ARITHMETIC OPERATIONS PERFORMED
63 PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE

3.40 MS. AVERAGE PER STATEMENT EXECUTED

Error termination occurs in case of a programming error or internal
condition sufficiently serious to prevent continued execution. The statement
number in which execution terminated and the function level are printed. An
error message is printed indicating the cause of the termination. A listing of
termination messages is given in Appendix B. Dumps and statistics are then
printed as for normal termination.

The following program, from which the input data was removed, illustrates a
typical listing resulting from error termination. Because input data is
lacking, statement 1 fails and the array A is not formed. Subsequent reference
to A as an array in statement 4 is erroneous~

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

* LET THE FIRST DATA CARD SPECIFY THE MAXIMUM NUMBER OF
* CARDS TO BE SORTED. GENERATE AN ARRAY.

* A = ARRAY(TRIM(INPUT})

* * DEFINE THE FUNCTION INSERT.

* DEFINE('INSERT(J) TEMP')

* * READ THE CARDS INTO THE ARRAY.

* INIT

*

I =
A<I>
OUTPUT

I + "1
= TRIM (INPUT)

= A<I>
: F (SORT)
: (INIT)

* LET N BE THE NUMBER OF CARDS. INITIALIZE THE INDEX AND
* THEN SORT.

* SORT N = I - 1
1=1

* * COMPARE TWO SUCCESSIVE CARDS.

* SORTA

*
LGT(A<I>,A<I + 1» : S (SORTC)

* IF THEY ARE IN THE PROPER ORDER, INCREMENT THE INDEX
* (UNLESS SORTING IS FINISHED) AND CONTINUE.

* SORTB

*
I = LT (I, N - 1) I + 1 :S(SORTA)F(DONE)

* OTHERWISE, INSERT THE CARD IN ITS PROPER PLACE.

* SORTC

*
INSERT (I + 1)

* PUNCH SORTED CARDS.

* DONE

PUNCH

I 1
OUTPUT =
OUTPUT = A<I>
PUNCH = OUTPUT
I = LT(I,N) I + 1

: (SORTB)

: S (PUNCH) F (END)

1

2

3
4
5

6
7

8

9

10

11
12
13
14
15

169

* * FUNCTION DEFINITION

* INSERT TEMP = A<J - 1>
A<J - 1> = A<J>
A<J> = TEMP
J = GT(J,2) J - 1
LGT(A<J - 1>,A<J»

END

NO ERRORS DETECTED DURING COMPILATION

ERROR TERMINATION IN STATEMENT
ERRONEOUS ARRAY REFERENCE

SNOBOL4 STATISTICS SUMMARY-

4 AT LEVEL 0

782 MS,. COMPILATION TIME
166 MS. EXECUTION TIME

: F (RETURN)
:S (INSERT)F (RETURN)

4 STATEMENTS EXECUTED, 1 FAILED

170

1 ARITHMETIC OPERATIONS PERFORMED
o PATTERN MATCHES
o REGENERATIONS OF DYNAMIC STORAGE

41.50 MS. AVERAGE PER STATEMENT

16
17
18
19
20
21

Intervention termination occurs when operator or system action terminates
the run. This may occur if the run exceeds specified limits. If the SNOBOL4
system is able to regain control after intervention, the message "CUT BY SYSTEM
IN STATEMENT n AT LEVEL m" is printed. Dumps and statistics are then printed as
for normal termination.

The following program illustrates intervention termination resulting from
failure to sense an end-of-file condition. On the IBM System/360, when the data
on FT05F001 is exhausted, statement 3 fails. A subsequent read attempt results
in an attempt to open FT05F002, the next file for data set reference number 5
(see Chapter 8). A second file is not intended or provided and the error

message (IHC219I) is printed by the FORTRAN I/O routines. Control then returns
to the SNOBOL4 system and run statistics are printed.

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INcqRPORATED

NM = BREAK (' , ,)
DEFINE('C(N,M) ')
INPUT NM

• N , , , BREAK (' ') • M

READ
OUTPUT = , C (' N ',' M ') = , C (N, M)

*
C

END

M
C =
C =

LT(N - M,M) N - M
EQ (M,O) 1
N * C(N - 1,M - 1) / M

NO ERRORS DETECTED DURING COMPILATION

C(15,6)=5005
C(17,10)=19448
C(20,2)=190
C(25,24)=25
C(25,24)=25

IHC219I

: S (RETURN)
: (RETURN)

TRACEBACK FOLLOWS- ROUTINE ISN REG. 14

IBCOM A60356BC

CUT BY SYSTEM IN STATEMENT 3 AT LEVEL 0

233 MS. COMPILATION TIME
483 MS. EXECUTION TIME

74 STATEMENTS EXECUTED, 37 FAILED
110 ARITHMETIC OPERATIONS PERFORMED

4 PATTERN MATCHES
o REGENERATIONS OF DYNAMIC STORAGE

6.53 MS. AVERAGE PER STATEMENT

: (READ)

1
2
3
4

5
6
7
8

171

On the IBM System/360, cancellation prevents the SNOBOL4 system from regaining
control. A system completion code is given but no further output is printed.
The following program illustrates such intervention termination. The program
loops, since the function DELETE is called with a null string for CHAR. The
system completion code 222 indicates cancellation which results, in this case,
from exceeding a specified time limit.

* DEFINE ('DELETE (STRING,CHAR) ')

* READ STRING = TRIM (INPUT) : F (END)
CHAR = TRIM (INPUT) : F (ERR)
OUTPUT = STRING
OUTPUT CHAR
OUTPUT = DELETE (STRING, CHAR)
OUTPUT = : (READ)

* * THIS FUNCTION DELETES OCCURRENCES OF A CHARACTER FROM A STRING

* DELETE

END

STRING
DELETE

CHAR =
= STRING

: S (DELETE)
: (RETURN)

NO ERRORS DETECTED DURING COMPILATION

THE RATIO OF ATOMIC WEIGHTS OF THE TWO COMPOUNDS SUGGESTS A RELATIONSHIP
I
THE RATO OF ATOMC WEGHTS OF THE TWO COMPOUNDS SUGGESTS A RELATONSHP

ONE OF THE MORE COMMON OCCURRENCES IN EVERYDAY COMMUNICATION IS
o
NE F THE MRE CMMN CCURRENCES IN EVERYDAY CMMUNICATIN IS

THE FIRST OF THREE TUTORIAL LECTURES ON THE PRESENT STATE OF ART

COMPLETION CODE - SYSTEM=222 USER=OOO

1

2
3
4
5
6
7

8
9
10

Catastrophic termination occurs when system or machine malfunction causes a
situation so serious that intervention termination is impossible. In the case
of a catastrophic termination, there may be no indication of the source or cause
of the termination. Print and punch output may be incomplete or lacking
al together,.

172

Chapter 10. Programming Details

The preceding sections have presented, in varying degrees of detail, the
language features of SNOBOL4. There remains a collection of odds and ends that
may be of more or less interest and utility to the programmer. This section
includes a number of such items, a potpourri whose ingredients may interest
various individuals.

When efficiency is considered, the basic criterion is the total amount of
time required to execute the program. Execution time is most affected by the
algorithm used and the structure of the program; both are beyond the scope of
discussion here. A less significant, but often more tangible, measure of
efficiency is the average amount of time required to execute program statements.
If the algorithm and program structure are fixed, two reasonable goals are:

1) reducing the number of statements which have to be executed, and
2) reducing the average execution time per statement.

These goals generally conflict. The number of executed statements may be
reduced by increasing their complexity, but the average execution time is
increased. More can be said about the techniques for improving the efficiency
of statement execution. Some considerations listed below suggest good practices
for program organization and data representation.

Comparative timing figures are given in some cases. These figures are
approximate; precise figures depend on the machine and program environment.

Many considerations involved in using patterns efficiently were discussed
earlier. A few points deserve special emphasis.

Many patterns can or should match only beginning at the first character of
the subject string. This is often true of an entire program, in which the
anchored mode can be set using &ANCHOR. While the anchored mode can be turned
on and off, it is also possible to anchor a pattern by beginning it with FENCE
or POS(O).

Q = FENCE P

173

creates a pattern Q that is an anchored version of P.

It is worth remembering that pattern matching usually takes longest when
the pattern fails to match. This is particularly true when the pattern is not
anchored. Consider the two examples

&ANCHOR = 1
'))))))))))))))))))))' BAL

and

&ANCHOR = 0
,)' BAL

The pattern match in the second example takes 9.96 times as long as in the
first.

The pattern resulting from BREAK{CS) is designed to stream quickly through
a string looking for any character in CS. ARB, on the other hand, operates
without any knowledge of what is expected to follow it. ARB first matches the
null string. Then if the component beyond it fails, ARB matches one character,
then two characters, and so on. As an example, consider the two patterns

P1
P2

=
=

BREAK(',') LEN(1)
ARB ','

In most cases, these two patterns match the same set of strings. Consider the
two cases

'ABCDEFGHIJKLMNOPQRSTUVWXYZ,' P1

and

'ABCDEFGHIJKLMNOPQRSTUVWXYZ,' P2

The pattern match in the second case takes 9.88 times as long as in the first.

ARB has many legitimate uses and is essential in many cases. BREAK
provides a more efficient way of performing commonly used matching operations.

The pattern resulting from ANY (CS) matches any character at a speed
independent of the order of the characters in CS. In an explicit alternation of

174

characters, alternatives are matched in order, and the time it takes to find a
match depends on the order of the alternatives. Consider the patterns

P1 =

and

P2 =
+

ANY ('ABCDEFGHIJKLM')

'A' I 'B' I
I 'J' I 'K'

, C'

'L'
'D' I
I'M'

'E' I 'F' I 'G'

Applied to several different characters, the statements

C P1

and

C P2

give the following results:

1 • For C = 'A' , p1 is 1.08 times as fast as

2. For C = 'G' , P1 is 2.44 times as fast as

3. For C = 'M' , P1 is 3.79 times as fast as

The formation of the pattern for alternation also
than that for ANY.

'H' I 'I'

P2.

P2.

P2.

takes more time and space

If possible, a pattern structure should be constructed once and assigned to
a variable. An expression which appears as a pattern in a statement must be
evaluated each time the statement is executed. This form of evaluation, which
constructs the pattern over and over, consumes both time and space.

If

P1 o I 1 121 3 I 4 I 5 161 7 I 8 I 9

then for the statements

N P1

and

175

N 0111213141516171819

the second statement takes 7.59 times as long as the first if N is 5. This
comparison includes the effects of the additional space consumed when the second
example is used repeatedly. Space consumed by patterns must eventually be
reclaimed by storage regeneration, which adds to the running time of the
program.

The fullscan mode, established by turning on the keyword &FULLSCAN, is
useful in some more complicated and esoteric applications. Since the fullscan
mode bypasses all heuristics, pattern matching may take much longer. Consider
the pattern

P = ARB , , ,

This pattern is usually inefficient, but serves particularly well to illustrate
the effect of heuristics. In the case of

and

&FULLSCAN = 0
'ABCDEFGHIJKLMNOPQRSTUVWXYZ' P

&FULLSCAN = 1
'ABCDEFGHIJKLMNOPQRSTUVWXYZ' P

both examples fail to match, but the second takes 13.42 times as long to do so.
This is an extreme example, and the great difference in timing is due to all the
combinations that ARB goes through. In the first case, the heuristics make the
pattern act as if it were anchored.

In general, the fullscan mode does not produce such marked effects. On the
other hand, since statements similar to the examples above are likely to occur
in the average program, it is well not to turn the fullscan mode on except for
statements in which it is required.

Immediate value assignment forms a substring and generates a variable for
every intermediate successful match for the pattern component with which it is
associated,. This is a time and space consuming process,. For example, if

176

EXP =
P1 =
P2 =

'D*A/(B*C) + (D-B)*C'
BAL $ B1 '+' BAL $ B2
BAL. B1 '+' BAL. B2

then in

EXP P1

and

EXP P2

P2 is 1.37 times faster than P1~

The most serious inefficiencies in SNOBOL4 programs are usually the result
of awkward or cumbersome representation of data. Encoding data as long strings
of symbols may be very inefficient. Furthermore, every modification of a string
by concatenation or decomposition produces a new string which consumes storage.
Matching may be quite slow. On the other hand, arrays and programmer-defined
data objects permit a considerable range of data structures, and operations on
such structures are usually relatively efficient~

Consider two representations of a list: one as an array of elements, and
the other as a string of items separated by commas. Suppose the list elements
are of the form

ACOMP
ACOMPC
ADREAL
AEQLC
AEQLIC

Then the list represented by an array has the form

LIST<1> = 'ACOMP'
LIST<2> = 'ACOMPC'
LIST<3> = 'ADREAL'
LIST<4> = 'AEQLC'
LIST<S> = 'AEQLIC'

and the list represented by a string has the form

LIST = ·ACOMP,ACOMPC,ADREAL,AEQLC,AEQLIC, ••• •

The speed of operating on the list depends, of course, on the operations to
be performed and the number of items on the list. consider the problem of
creating another list from LIST with the items in reverse order. This may be
done for the two data representations by the following program segments.

177

REV

REV

J =
I
NLIST
NLIST(J)
J =
I =

ITEMP
CLIST
NLIST
CLIST
NLIST

PROTOTYPE (LIST)
1
=

J -
I +

=
=
=

=
COpy (LIST)

LIST(I)
1
1

BREAK (' , ') • ITEM LEN (1)
LIST

ITEMP =
= ITEM ',' NLIST

: F (OUT)

: (REV)

: F (OUT)
: (REV)

For a typical list of ten items of the type shown, the reversal of the string
representation takes 2.3 times as long as for the array representation. For a
list of 100 items, the factor is 3.7.

There are pros and cons for both representations. Lists of varying or
unknown length are easier to handle as strings. Pattern matching can also be
used directly on the string representation to perform operations like finding
duplicate elements. On the other hand, access to individual items in the array
representation is much simpler. consider the problem of isolating the 73rd of
100 items in the string representation.

Dynamic storage is continually allocated during program compilation and
execution. All forms of programmer data reside in dynamic storage and compete
for available space. This includes compiled program, strings, patterns, and so
forth. Some data, depending on its use, is transient and may be discarded.
Other data is always accessible to the program and must be kept. When dynamic
storage is exhausted, storage is regenerated, collecting all needed data and
deleting all data inaccessible to the program. This process occurs
automatically, and ordinarily does not concern the programmer directly. Run
statistics indicating a large number of storage regenerations suggest potential
trouble, however. Continual reconstruction of patterns and manipulation of very
long strings are the most common causes of frequent storage regeneration.
Storage regeneration, although it may degrade execution speed, should not be a
factor in program efficiency unless it occurs frequently.

In special circumstances, a programmer may want to force storage
regeneration. This is done with the function COLLECT which forces storage
regeneration. COLLECT returns as value the amount of storage (in bytes on the
IBM System/360) remaining free after regeneration. COLLECT(N) fails if less
than N bytes remain after regeneration.

Some programs are organized to process several sections of data in order,
necessitating removal of residual data between sections. The function CLEAR
assists in this matter.

178

CLEAR 0

sets the values of all natural variables, including ARB, BAL, etc., to the null
string. CLEAR does not affect the value of keywords, I/O associations, function
definitions, the value of array elements, or the value of fields of defined data
objects. Furthermore, variables are cleared only at the level at which CLEAR is
called. This permits the values of selected variables to be saved at a lower
level and then restored. For example, the selected variables can be made formal
arguments to a function which calls CLEAR. If the values of X, Y, Z, and PAT
are to be saved, a function RESET could have the defining statement

DEFINE (. RESET (X, Y , Z, PAT) f)

with the procedure

RESET CLEARO : (RETURN)

The values of X, Y, Z, PAT, and RESET are saved when RESET is called, and
restored when it returns. All other natural variables are cleared. The values
of primitive patterns can be restored using the values of the corresponding
keywords, which are not affected by CLEAR. For example,

ARB = &ARB

restores the orignal value of ARB.

179

1. Farber, D. J., R. E. Griswold, and I. P. Polonsky. "SNOBOL, A String
Mani pu I a t ion Langua ge," Q: oU!:!E!l_Qf_ih.§_8:1:! soc i a tiQn_fQ~_£Qillm! ti ng--M~£hi!!~!:Y, Vol.
11, No. 1 (January, 1964), pp. 21-30.

2. Farber, D. J., R. E. Griswold, and I. P. Polonsky.
Language." Bel1_§Y§!:.§ill_Te£hni£g,1_Q:Q1!!:!!g,1, Vol XLV, No.
pp. 895-944.

"The SNOBOL3 Programming
6 (July-August, 1966),

3. Forte, Allen.
1967.

§~Q~Q~l __ ~~iill~~' The MIT Press, cambridge, Massachusetts,

4. Hammersley, J. M. and D. C. Handscomb. Moni~£~~lQ_M~ihQg2' Methuen & Co.
Ltd., London, 1965, pp. 27-29.

5. Lukasiewicz, Jan. ~!:i2toil~~2 __ §YllQgi2ii£ __ f!:om_.th~_§i~!!92Qi!!i_Qf_Mog~~n
[Q!:ill~l_~Qgi£, Clarendon Press, Oxford, England, 1951, p.78.

6. Burks, A. W., D. W. Warren, and J. B. Wright,. "An Analysis of a Logical
Machine Using Parenthesis-free Notation," ~~ihemati£~1_!~Ql~§_~ng_Q.th~!:_~ig2_.tQ
£om21!.t~iiQn, Vol. VIII, 1954, pp. 53-57.

7. I~M_§y§tgillL1QQ_Q2.§!:~ting_§Y§i§ill~ __ fQB!B~~_!Y_LQJ_R~Qg£~mmg£~§ __ Q1!iQ~.
C28-6639-1, International Business Machines corporation, 1968.

Form

8_ !BM_§Y2i~mL12Q_fQE1B~~_!Y_~~ngy~g~. Form C28-6515-5, International Business
Machines Corporation, 1968.

9.. !~M __ §Y§i§mL12Q __ Q2~£~iing __ §Y2i~ill_. __ Q:QQ_Con.t!:Ql_~~ng1!~g~. Form C28-6539-5,
International Business Machines Corporation, 1968.

10. I~M_§Y§i~mL1QQ __ R~LI __ Egfe£~nc~ __ ~~n1!~1. Form C28-8201-1, International
Business Machines Corporation, 1968, pp. 197-198.

180

Appendices

Appendix A.

This formal description of the syntax of SNOBOL4 is given in a syntax
notation used in many IBM manuals [10]. Rules explaining this notation follow.

1) A class of elements is denoted by a nQ~~tiQn Y~~i~Ql~, which consists of
lower ~ase letters and periods and must begin with a letter.

2) Literal characters are denoted by capital letters or special characters.
Lower case letters and syntactic symbols are underlined when they
represent literals. A lone underscore stands for itself.

3) A §Yn~~££i£ ~ni£ is defined as one of the following:

a. a notation variable,

b. literal characters, or

c. any collection of variables, literals, and syntax notation
surrounded by braces or brackets.

4) Braces {} denote a grouping.

5) Square brackets [] denote an option.
brackets may appear or be omitted.

Anything enclosed within

6) Vertical stacking of syntactic units and the vertical stroke
alternatives.

denote

7) Three dots denote optional repetition of the immediately preceding
syntactic unit one or more times.

8) Footnotes are used where restrictions apply to notation variables.

181

The following notation variables define the components of a statement,
leading to the definition of a statement itself.

digit: 0111213141516171819

letter: AIBICIDIEIFIGIH1IIJIK1LIMINIOIPIQIRISITIUIVIWIXIYIZI
~IQI£IQ,gl!lglhliljl~llIIDln'2IE,gl~I§lllg1YI~I~IYI~

alphanumeric: letterldigit

identifier: letter [alphanumericl~I_] •••

blanks: one or more blank characters

integer: digit [digit] •••

real: integer ~ [integer]

unary: +1-1*1~1&1$I?t'lml#l%

binary: blanks [[+I-I*I/I**I~I$lllml#'%] blanks]

string: zero or more EBCDIC characters

sliteral:

dliteral:

literal:

element:

operation:

'string 1 '

"string2 "

sliteralldliterallintegerlreal

[unary] .•• ~identifie. r }
literal
function. call
array. ref
(expression)

element binary {element 1 expression}

expression: [blanks] [elementloperation] [blanks]

arg.list: expression [, expression] ••.

function. call: identifier { arg.list

array.ref: identifier < arg.list >

label: {alphanumeric string3} 4

subject,.field: 11lanks element

pattern. field: blanks expression

lnot including a single quote
2not including a double quote "
3not including a blank or semicolon
4but not END

182

object. field: blanks expression

equal: blanks =

goto: {(expression) 1< expression >}

goto,. field: blanks ~ [blanks] ~goto ~
S goto [blanks] [F goto]
F goto [blanks] [S goto]

eol: end of line

eos: [blanks] {; I eol}

assign. statement: [label] subject.field equal [object.field] [goto.field] eos

match. statement: [label] subject.field pattern.field [goto.field] eos

repl.statement: [label] subject.field pattern. field equal [object.field]
[goto.field] eos

degen.statement: [label] [subject.field] [goto.field] eos

end. statement: END [blanks [labelIEND]] eos

statement: assign.statementlmatch. statementlrepl.statementl degen, • statement I
end. statement

A SNOBOL4 program consists of a sequence of statements terminating with an
end statement. Interspersed among these statements may be comment lines and
control lines.

comment. line: * string eol

control.line: - [blanks] [LIST blanks [LEFTIRIGHT]l [blanks] eol
'LUNLIST j

A statement begins immediately following the preceding statement, i,. e. at
the beginning of a line or following a semicolon. A statement may be continued
on the next line by using a continue line.

continue. line: {+I~} remainder of statement

Comment, control, and continue lines must begin at the beginning of a line.
They may TI2t start in the interior of a line following a semicolon. A statement
may be broken over a line boundary anywhere a blank is mandatory. If a
statement has the form

part1 blanks part2

it may be continued as

183

part1 [blanks] eol {+I~} [blanks] part2

where the + or. begins a new line, and takes the place of the mandatory blank.

Prototypes .for arrays, programmer-defined functions, and programmer-defined
data types are evaluated during program execution, not during compilation.
These prototypes may be given explicitly as literals or may be computed in a
variety of ways. When ARRAY, DEFINE, or DATA is executed, the corresponding
prototype is then analyzed. The syntax of these prototypes follows.

identifier. list: identifier [, identifier] •••

data. prototype: identifier (identifier. list)

function.prototype: identifier ([identifier.list]) [identifier.list]

signed. integer: [[+1-] integer]

dimension: signed.integer [~ signed.integer]

array. prototype: dimension [, dimension] •••

184

Appendix B.

1. BINARY OPERATOR MISSING OR IN ERROR

A binary operator is erroneous or a blank between expressions is missing. Some
examples are

x =
TEXT
M =

F(X)*** 2
= • (. TEXT .).

(A B) N

2. ERRONEOUS INTEGER

An integer which is too large appears in the source program.
System/360, the maximum integer is 2 31 -1.

3. ERRONEOUS LABEL

A label does not begin with a digit or letter.

4. ERRONEOUS OR MISSING BREAK CHARACTER

On the IBM

A break character appears in an erroneous context, or a nested expression is not
closed. Some examples are

X =
A<1 ,2)
F (G (X)

(A,B)
= 5

: S (L)

5. ERRONEOUS REAL NUMBER

A real number which is too large or too small appears in the source program. On
the IBM System/360, the range of real numbers is on the order of 10- 78 to 10 75 •

6. ERRONEOUS SUBJECT

An erroneous construction occurs in the subject. An example is

, = 2

7. ERROR IN GOTO

A syntactic error occurs in the goto field. Some examples are

: S (L 1) S (L2)
: S<A)
:S(L1) L2

8. ILLEGAL CHARACTER IN ELEMENT

An illegal character occurs in a element. Some examples are

185

z
X
E

=

=

A+B
3:
3.25P

9. IMPROPERLY TERMINATED STATEMENT

A statement terminates before a construction is complete. An example is

N = M +

10. PREVIOUSLY DEFINED LABEL

A label has bccurred previously in the program. The first occurrence of the
label holds, and subsequent occurrences are erroneous.

11. UNCLOSED LITERAL

The closing quote on a literal is missing. Some examples are

LETTER = 'A
TEXT = 'HE YELLED STOP"

1. ARGUMENT NOT DEFINED FUNCTION.

The function argument to ARG or LOCAL was not the name of a programmer-defined
function.

2. CALL OF UNDEFINED FUNCTION.

A call was made to a function or operation for which no definition exists.

3. ERRONEOUS ARRAY REFERENCE.

An array reference was made to an object that does not have data type ARRAY.
That is, A<I) is erroneous if the value of A is not an array.

4. ERRONEOUS END STATEMENT.

The starting label given in the end statement did not occur in the program, or
there was a syntactic error in the end statement.

5. ERRONEOUS PROTOTYPE.

A prototype in a call to ARRAY, DATA, or DEFINE had a syntax error,.

6. ERROR IN ARITHMETIC OPERATION.

Overflow or an illegal operation- (such as division by zero) occurred in an
arithmetic operation.

7. ERROR IN COMPILER.

An error occurred in the SNOBOL4 compiler. The program listing should be sent
to the authors.

186

8. ERROR IN INTERPRETER.

An error occurred in the SNOBOL4 interpreter. The program listing should be
sent to the authors.

9. ERROR IN PATTERN MATCHING .•

An error occurred in the SNOBOL4 pattern matching program. The program listing
should be sent to the authors.

10. ERROR IN STORAGE REGENERATION.

A programming error occurred in the SNOBOL4 storage regeneration program. The
program listing should be sent to the authors.

11. ERROR IN SUBROUTINE.

A programming error occurred in one of the SNOBOL4 subroutines. The program
listing should be sent to the authors.

12. EXCEEDED LIMIT ON STATEMENT EXECUTION.

Too many statements were executed. See the keyword &STLIMIT.

13. EXCESSIVE COMPILATION ERRORS.

The number of compilation errors exceeded fifty. An excessive number of
compilation errors is assumed to indicate a situation so serious that further
processing should be discontinued.

14. EXECUTION OF STATEMENT WITH COMPILATION ERROR.

The program encountered a statement that contains a compilation error.
statements may be reached either by a transfer or normal program flow.

15. FAILURE IN GOTO EVALUATION.

A function or operation called in the evaluation of a goto failed.

16. ILLEGAL DATA TYPE.

Such

The data type of an object was incorrect for the operation that was to be
performed on it. For example, this error termination results if an attempt is
made to multiply an integer by a pattern.

17. ILLEGAL TRACE TYPE.

The second argument to TRACE or STOPTR is not one of the trace types VALUE,
CALL, RETURN, FUNCTION, LABEL, or KEYWORD..

18. ILLEGAL UNIT DESIGNATION.

A negative number was given as a data set reference number in an input or output
association.

19. IMPROPER STATEMENT TERMINATION.

During conversion from STRING to CODE, the string was exhausted without proper
statement termination.

187

20. INCORRECT NUMBER OF ARGUMENTS.

A primitive function was called with too many arguments or an array reference
has been made with too many indices. This error may also occur if too few
arguments are supplied for a primitive function, but only if the primitIve
function is invoked by APPLY or through a synonym for the function.

21. INSUFFICIENT STORAGE TO CONTINUE.

Storage available to the SNOBOL4system was inadequate for program execution to
continue.

22~ NEGATIVE NUMBER IN ILLEGAL-CONTEXT.

A negative number was given as an argument to LEN, POS, INPUT, RPOS, RTAB, or
TAB.

23. NULL STRING IN ILLEGAL CONTEXT,.

The indirectness operator was applied to the null string, as

Z $ ()

24. OBJECT EXCEEDS SIZE LIMIT.

An attempt was made to form a data object which exceeds the internal limit on
the size of structures. This limit is 65535 bytes on the IBM System/360,.

25. OVERFLOW IN PATTERN MATCHING.

Internal storage used by the pattern matching program was exceeded,. This
condition is usually the result of excessive recursion in a pattern.

26. READING ERROR.

An error return occurred from an input operation.

27. RETURN FROM ZERO LEVEL.

A transfer to RETURN, FRETURN, or NRETURN occurred outside the call of a defined
function.

28. STACK OVERFLOW.

The stack used by the SNOBOL4 system was exhausted. This condition is usually
the result of excessive recursion in programmer-defined functions. Stack
overflow may also occur during storage regeneration.

29. STRING OVERFLOW.

A string exceeded the maximum length set for strings.
&MAXLNGTH.

30. TOO MANY DATA TYPES,.

See the keyword

The limit on the number of programmer-defined data types was exceeded. This
limit is 899.

188

31. UNDEFINED OR ERRONEOUS GOTO.

An attempt was made to transfer to a label which does not occur in the program,
or the result of evaluating a goto was not a natural variable.

32. UNKNOWN KEYWORD.

Reference was made to a nonexistent keyword.

33. VARIABLE NOT GIVEN WHERE REQUIRED.

An object with only a value, not a name, has occurred where a name is required.
Examples are

SIZE(A) = 3

and

: (TRIM(END))

Trace printout and the dump of natural variables following termination
require the construction of strings whose lengths depend on the values involved.
A fixed amount of space is available for such messages and in some cases this
space may not be large enough to form the required string. In these cases, the
message

PRINT REQUEST TOO LONG

is printed in lieu of the long string. Execution then continues normally. On
the IBM System/360, the space available for the formation of such strings is
about 3800 characters. There is no limit to the length of a string that can be
printed as a result of an output association, except the limit on the length of
strings.

189

Appendix C.

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

190

* * THIS PROGRAM IS A SYNTACTIC RECOGNIZER FOR SNOBOL4 STATEMENTS.

* * FIRST A SERIES OF PATTERNS IS BUILD CULMINATING IN A PATTERN
* WHICH MATCHES ONLY SYNTACTICALLY CORRECT STATEMENTS. CARD IMAGES
* ARE THEN READ IN AND PROCESSED. INCORRECT STATEMENTS ARE
* IDENTIFIED BY AN ERROR MESSAGE,.

* * THE FUNCTION OPT FORMS A PATTERN THAT MATCHES EITHER NULL OR ITS
* ARGUMENT.

* DEFINE('OPT(PATTERN) ') 1

* LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 2

* * ON THE IBM SYSTEM/360 LETTERS INCLUDE LOWER CASE AS WELL.

* DIGITS = '0123456789' 3
ALPHANUMERICS = LETTERS DIGITS 4
BLANKS = SPAN(' ') 5
INTEGER = SPAN (DIGITS) 6
REAL = SPAN (DIGITS) '.' OPT(SPAN(DIGITS» 7
IDENTIFIER = ANY (LETTERS) OPT(SPAN(ALPHANUMERICS '_. '» 8
UNARY = ANY('+-&.$*?~%#') 9
BINARY = ANY('-+.$*I/*#') 1'**' 10
BINARYOP = BLANKS OPT (BINARY BLANKS) 11
UNQALPHABET = &ALPHABET 12
UNQALPHABET "" = 13
UNQALPHABET "'" = 14
DLITERAL = , '" SPAN (UNQALPHABET '" ") ,n, 15
SLITERAL "'" SPAN(UNQALPHABET ,n,) "'" 16
LITERAL SLITERAL I DLITERAL I INTEGER I REAL 17
ELEMENT = OPT (UNARY) (IDENTIFIER I LITERAL I *FUNCTION_CALL 18

'(' *EXPRESSION I OPT (BLANKS) ')' I *ARRAY_REF) 18
OPERATION = *ELEMENT BINARYOP (*ELEMENT I *EXPRESSION) 19
EXPRESSION = OPT (BLANKS) (*ELEMENT I *OPERATION I NULL) 20

OPT (BLANKS) 20
ARG_LIST = *EXPRESSION OPT(',' *ARG_LIST) 21
FUNCTION_CALL = IDENTIFIER' (' *ARG_LIST ')' 22
ARRAY_REF = IDENTIFIER ,<, *ARG_LIST ,>, 23
LABEL = ANY (ALPHANUMERICS) (BREAK(' ;') I REM) 24
LABEL_FIELD = OPT (LABEL) 25
GOTO = '(' EXPRESSION ')' I ,<, EXPRESSION ,>, 26
GOTO_FIELD = OPT(BLANKS ':' FENCE OPT(BLANKS) (GOTO I 'S' 27

GOTO I 'F' GOTO I 'S' GOTO OPT (BLANKS) 'F' 27
GOTO I 'F' GOTO OPT (BLANKS) 'S' GOTO) 27
OPT(BLANKS» 27

RULE = OPT(BLANKS ELEMENT (BLANKS '=' OPT (BLANKS EXPRESSION 28
) I OPT(BLANKS EXPRESSION OPT (BLANKS '=' OPT(BLANKS 28
EXPRESSION»») 28

EOS = RPOS (0) I ';' 29

STATEMENT = LABEL_FIELD RULE GOTO_FIELD EOS 30

* * THE PATTERN FOR RECOGNIZING STATEMENTS IS NOW FORMED. THE
* PROGRAM TO ANALYZE INPUT CARDS FOLLOWS.

* COMMENT = ANY (, *- ,)
CONTINUE ANY('.+') • cc
INPUT('INPUT',5,72)
&ANCHOR = 1
&FULLSCAN = 1
EOF =

* * INITIALIZE PROCESS FROM FIRST CARD.

* READI

*
*
*
NEXTST

READC

ANALYZE

SKIP
*

IMAGE = TRIM (INPUT)
OUTPUT = , IMAGE

DO NOT PROCESS COMMENT OR CONTINUE CARDS.

IMAGE COMMENT
IDENT (EOF)
OUTPUT = , LINE
IMAGE = LINE
LINE = TRIM (INPUT)
LINE COMMENT
LINE CONTINUE =
OUTPUT = , CC LINE
IMAGE IMAGE LINE
IMAGE STATEMENT =
DIFFER (IMAGE)
OUTPUT = ,«< NO SYNTACTIC ERROR »>,
OUTPUT =

: F (END)

31
32
33
34
35
36

37
38

:F(READC)S(READI) 39
:F(END) 40

41
42

: F (ENDGAME)
:S (PRINT)
:F (ANALYZE)

: (READC)
:F(ERROR)
: S (ANALYZE)

: (NEXTST)

43
44
45
46
47
48
49
50
51

"* IF AN ERRONEOUS STATEMENT IS ENCOUNTERED IN A STRING OF
* STATEMENTS SEPARATED BY SEMICOLONS, SUBSEQUENT STATEMENTS ARE
* NOT PROCESSED.

* ERROR OUTPUT = ,«< SYNTACTIC ERROR »>,
* PRINT OUTPUT = , LINE
ENDGAME EOF = 1

*
* OPT OPT = NULL I PATTERN
END

NO ERRORS DETECTED DURING COMPILATION

: (SKIP)

: (READC)
: (ANALYZE)

: (RETURN)

52

53
54

55
56

191

* * A VARIETY OF CORRECT AND INCORRECT SNOBOL4 STATEMENTS FOLLOW

* -LIST
COMPUTE X = Y + 3 ** -'2'

«< NO SYNTACTIC ERROR »>

X = Y+Z
«< SYNTACTIC ERROR »>

ELEMENT<I,J>= ELEMENT<I,-J> + ELEMENT<-I,J>
«< SYNTACTIC ERROR »>

A<X,Y,Z + 1> =
«< NO SYNTACTIC ERROR »>

F(X,STRUCTURE_BUILD(TYPE,LENGTH + 1»

SETUP PAT1 = (BREAK(',:') $ FIRST I SPAN(' .') $ SECOND
• VALUE ARBNO(BAL I LEN(1» : ($SWITCH)

«< NO SYNTACTIC ERROR »>

DEFINE (' F (X, Y))
«< SYNTACTIC ERROR »>

L = LT(N,B<J> L + 1
«< SYNTACTIC ERROR »>

NEWONE_TRIAL X = ,COORD<1,K> X * X
«< NO SYNTACTIC ERROR »>

TRIM (INPUT)
«< SYNTACTIC ERROR »>

PAT1 : S (OK) : F (BAD)

x = 3.01; Y = 2.
«< NO SYNTACTIC ERROR »>

NORMAL TERMINATION AT LEVEL 0
LAST STATEMENT EXECUTED WAS 40

SNOBOL4 STATISTICS SUMMARY-

Z

1464 MS. COMPILATION TIME
2047 MS. EXECUTION TIME

= X * -Y

171 STATEMENTS EXECUTED, 32 FAILED

192

o ARITHMETIC OPERATIONS PERFORMED
39 PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE

11.97 MS. AVERAGE PER STATEMENT EXECUTED

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

* * TOPOLOGICAL SORT

* * MAPS A PARTIAL ORDERING OF OBJECTS INTO A LINEAR ORDERING

* * A (1) , ,A (2), ••• , A (N)

* * SUCH THAT IF A(S) < A(T) IN THE PARTIAL ORDERING,THEN S < T.
* (CF. D.E.KNUTH, THE ART OF COMPUTER PROGRAMMING,VOLUME 1,
* ADDISON-WESLEY,MASS.,1968, P.262)

* &DUMP = 1 1
OUTPUT (, OUT' , 6 , , (1 21 A 1) ') 2
PAIR = BREAK (, < ') • MU LEN (1) BREAK (' , ') .. NU LEN (1) 3
DATA('ITEM(COUNT,TOP)') 4
DATA ('NODE (SUC,NEXT) ') 5
DEFINE (, DECR (X) ') 6
DEFINE (, INDEX (TAU) ') 7

* * READ IN THE NUMBER OF ITEMS, N, AND GENERATE AN ARRAY OF ITEMS.
*
*
*
*

*

EACH ITEM HAS TWO FIELDS, (COUNT,TOP), WHERE
COUNT = NO. OF ELEMENTS PRECEEDING IT.
TOP = TOP OF LIST OF ITEMS SUCCEEDING IT.

N
X

= TRIM(INPUT)
= ARRAY (, 0:' N)

* INITIALIZE THE ITEMS TO (O,NULL).

* T1

*

X<I>
I

= ITEM (0,)
= 1+1

* READ IN RELATIONS.

* T1A = '1 THE RELATIONS ARE:'

: F (T1A)
: (T 1)

T2A
OUT
REL
OUTPUT
REL

= TRIM (INPUT) ',' : F (T3A)
= REL

T2 PAIR = :F(T2A)
J = INDEX (MU)
K = INDEX (NU)

* * SINCE MU < NU, INCREASE THE COUNT OF THE KTH ITEM AND ADD A
* NODE TO THE LIST OF SUCCESSORS OF THE JTH ITEM.

* T3

*

COUNT (X<K» = COUNT (X<K» + 1
TOP (X<J» = NODE(K,TOP(X<J») : (T2)

* A QUEUE IS MAINTAINED OF THOSE ITEMS WITH ZERO COUNT FIELD..
* THE LINKS FOR THE QUEUE, QLINK, ARE KEPT IN THE COUNT FIELD.
* THE VARIABLES F,R POINT TO THE FRONT AND REAR OF THE QUEUE.

* T3A

*
OPSYN('QLINK' ,'COUNT')

* INITIALIZE THE QUEUE FOR OUTPUT.

*

8

9
10

11
12

13
14
15
16
17
18

19
20

21

193

T4

T4A

*

R = 0
QLINK(X(O» 0
K = 0
K = ?X(K + 1> K + 1
QLINK(X(R» = EQ(COUNT(X(K» ,0)
R = K
F = QLINK(X(O»

: F (T4A)
K :F (T4)

: (T4)

* OUTPUT THE FRONT OF THE QUEUE.

*
T5

*

OUT
OUTPUT
N
P

= '0 THE LINEAR ORDERING IS:'
= NE(F,O) $(F ':') :F(T8)
= N - 1
= TOP (X(F»

* ERASE RELATIONS.

*
T6

*

IDENT (P)
DECR(.COUNT(X(SUC(P»»

: S (T7)
: S (T6A)

* IF COUNT IS ZERO ADD ITEM TO QUEUE.

* QLINK(X(R» = SUC(P)
R = SUC (P)

T6A P = NEXT(P) : (T6)

* * REMOVE FROM QUEUE.

*
T7

*
F = QLINK (X(F» : (T5)

* FUNCTION DEFINITIONS.

* DECR

* INDEX

* T8
END

$X
$X

= GT ($X, 1) $X - 1
= 0

: S (RETURN)
: (FRETURN)

INDEX = DIFFER ($ (TAU ': '» $(TAU ':') :S(RETURN)
TERMCT = LT(TERMCT,N) TERMCT + 1 :F(FRETURN)
INDEX = TERMCT
$(TERMCT ':') = TAU
$(TAU ':') = TERMCT : (RETURN)

OUTPUT = NE(N,O) 'THE ORDERING CONTAINS A LOOP.'

NO ERRORS DETECTED DURING COMPI,LATION

194

22
23
24
25
26
27
28

29
30
31
32

33
34

35
36
37

38

39
40

41
42
43
44
45

46
47

THE RELATIONS ARE:
LETTERS <ALPHANUM, NUMBERS <ALPHANUM,
BLANKS<OPTBLANKS,
NUMBERS<REAL,
NUMBERS<INTEGER,
LETTERS<VARIABLE,ALPHANUM<VARIABLE,
BINARY<BINARYOP,BLANKS<BINARYOP,
UNQALPHABET<DLITERAL,
UNQALPHABET<SLITERAL,
SLITERAL<LITERAL,DLITERAL<LITERAL,INTEGER<LITERAL,REAL<LITERAL,

THE LINEAR ORDERING IS:
LETTERS
NUMBERS
BLANKS
BINARY
UNQALPHABET
INTEGER
REAL
ALPHANUM
OPTBLANKS
BINARYOP
SLITERAL
DLITERAL
VARIABLE
LITERAL

NORMAL TERMINATION AT LEVEL 0
LAST STATEMENT EXECUTED WAS 46

DUMP OF VARIABLES AT TERMINATION

NATURAL VARIABLES

ABORT = PATTERN
ALPHANUM: = 2
ARB = PATTERN
BAL = PATTERN
BINARY: = 9
BINARYOP: = 10
BLANKS: = 4
DLITERAL: = 12
F = 0
FAIL = PATTERN
FENCE = PATTERN
I = 15
INPUT = 'SLITERAL<LITERAL,DLITERAL<LITERAL,INTEGER<LITERAL,REAL<LITERAL
INTEGER: = 7
J = 6
K = 14
LET'rERS: = 1
LITERAL: = 14
MU = 'REAL'
N = 0
NU = 'LITERAL'
NUMBERS: = 3
OPTBLANKS: = 5
OUT = '0 THE LINEAR ORDERING IS:'
OUTPUT = 'LITERAL'

195

PAIR = PATTERN
R = 14
REAL: = 6
REM = PATTERN
SLITERAL: == 13
SUCCEED = PATTERN
TERMCT = 14
UNQALPHABET: = 11
VARIABLE: = 8
X = ARRAY('O:14')
1: = 'LETTERS'
10: 'BINARYOP'
11: 'UNQALPHABET'
12: 'DLITERAL'
13: 'SLITERAL'
14: = 'LITERAL'
2: = 'ALPHANUM'
3: = 'NUMBERS'
4: = 'BLANKS'
5: = 'OPTBLANKS'
6: = 'REAL'
7: = 'INTEGER'
8: = 'VARIABLE'
9: = 'BINARY'

UNPROTECTED KEYWORDS

&ABEND = 0
&ANCHOR = 0
&DUMP = 1
&FTRACE = 0
&FULLSCAN
&MAXLNGTH =
&STLIMIT =
&TRACE = 0

o
5000

50000

SNOBOL4 STATISTICS SUMMARY-

196

1431 MS. COMPILATION TIME
632 MS. EXECUTION TIME
430 STATEMENTS EXECUTED, 70 FAILED

93 ARITHMETIC OPERATIONS PERFORMED
24 PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE

1.47 MS. AVERAGE PER STATEMENT EXECUTED

I CEBOL,. VER. 2 ICEB
**ICEB
* *ICEB
* *ICEB
* ICEBOL *ICEB
* *ICEB
* IS A PROGRAM TO COMPRESS SNOBOL4 SOURCE PROGRAMS. IT DOES THIS *ICEB
* BY REPLACING A SEQUENCE OF BLANKS BY A SINGLE BLANK AND IF NEC- *ICEB
* ESSARY INDICATES AN END-OF-STATEMENT WITH A SEMI-COLON. *ICEB
* A TYPICAL COMPRESSION FACTOR IS THREE TO ONE. *ICEB
* *ICEB
* USAGE *ICEB
* THE INPUT DATA TO ICEBOL CAN BE ANY SNOBOL4 PROGRAM OR SECTION OF*ICEB
* PROGRAM PRECEDED BY ZERO OR MORE CONTROL CARDS. CONTROL CARDS *ICEB
* START WITH A VERTICAL LINE IN COLUMN 1, AND MAY BE ANY OF THE *ICEB
* FOLLOWING (WHERE BLANKS ARE IRRELEVENT) *ICEB
* ,DON'T CRUNCH COMMENTS *ICEB
* ,NO COMMENTS *ICEB
* I NO LIST *ICEB
* COMMENTS ARE NORMALLY INCLUDED AS PART OF THE COMPRESSED DECK BUT*ICEB
* KEEPING WITHIN THE SPIRIT OF ICEBOL SUCCESSIVE BLANKS ARE *ICEB
* NORMALLY REPLACED BY A SINGLE BLANK AND THEREBY MULTI-LINE *ICEB
* COMMENTS CAN BE COMPRESSED. THE FIRST CONTROL CARD *ICEB
* ABOVE SUPPRESSES THE COMPRESSION OF COMMENTS,. THE SECOND CONT- *ICEB
* ROL CARD ABOVE REMOVES COMMENTS ALTOGETHER. *ICEB
* SNOBOL4 CONTROL CARDS (CARDS BEGINNING WITH A MINUS , -) NORMAL-*ICEB
* LY APPEAR BY THEMSELVES ON A SINGLE LINE. THESE WILL BE REMOVED *ICEB
* IF THE THIRD CONTROL CARD ABOVE IS INCLUDED. *ICEB
* *ICEB
* LABELING AND CARD NUMBERING *ICEB
* *ICEB
* THE FIRST FOUR CHARACTERS OF THE FIRST CARD ARE USED TO LABEL THE*ICEB
* DECK. THE DECK IS SEQUENCE NUMBERED. *ICEB
* *ICEB
*
*
*
*
*

J. F. GIMPEL
7/15/68

*ICEB
*ICEB
*ICEB
*ICEB
*ICEB

**ICEB

BLANK
BLANK. END
DUP

DUP .. END
RADJ

RADJ.END
LADJ

LADJ·. END
TOSS

&DUMP = 1
INPUT('INPUT',5,72)
DEFINE ('BLANK(N) ')
BLANK = DUP (' ',N)
DEFINE (' DUP (S, N) ')
DUP = GT(N,O) DUP S
N = N - 1
DEFINE ('RADJ(S,N) ')
(MANY.BLANKS S) RTAB(N) REM .. RADJ

MANY. BLANKS = MANY.BLANKS '
DEFINE ('LADJ (S, N) ')
(S MANY.BLANKS) TAB(N} • LADJ

MANY. BLANKS = MANY.BLANKS '
DEFINE ('TOSS (A) ')
IDENT (A)
CARD.NO = CARD.NO + 1
A = LADJ(A ,72) LABEL RADJ(CARD.NO,4)
PUNCH = A
OUTPUT =
OUTPUT = A

: (BLANK. END)
: (RETURN)
: (DUP. END)
: F (RETURN)
: (DUP)
: (RADJ. END)
: S (RETURN)
: (RADJ)
: (LADJ.END)
: S (RETURN)
: (LADJ)
: (TOSS. END)
: S (RETURN)

ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

197

TOSS. END
SPACE
SPACE. END

CAT. IN. 1

CI.7

CI.6

CI.8

CI.9

CI,. 10

OUTPUT =
DEFINE('SPACE(N) ')
N GT(N,O) • OUTPUT REM = N - 1
SPECIAL = FENCE ('*' I '-')
COMMENT = FENCE '*'
COMM,.FLAG = 'ON'
LIST. FLAG 'ON'
CRUNCH. FLAG = 'ON'
IGNORK. CARD = FAIL
INDENT = BLANK(30)
OUTPUT ('CONTROL' , 6 , '(13 2A 1) ')
CONTROL = 1
SPACE (20)
OUTPUT = INDENT INDENT 'ICEBOL2'
CONTROL = '+' INDENT INDENT ' ____ _
CONTROL = 1
DEFINE (• CAT,. IN (X)' , 'CAT. IN. l')
LABEL = ,
CAT. NEXT
CAT. NEXT
CAT. NEXT
CAT. NEXT
CAT. NEXT

= CAT. GET 0
FENCE 'I'
FENCE ' ,
LEN(4) • LABEL
"DON'T" ARBNO ('

CRUNCH. FLAG = 'OFF'

') "CRUNCH"

CAT.NEXT 'NO' ARBNO(' ') 'COMM' =
COMM.FLAG = 'OFF'
CAT.NEXT 'COMM' =
COMM.FLAG = 'ON'
CAT.NEXT 'NO' ARBNO(' ') 'LIST' =
LIST. FLAG = 'OFF'
CAT.NEXT 'CONT' =
LIST. FLAG = 'ON'

: (RETURN)
: (SPACE. END)
:S(SPACE) F(RETURN)

: (CAT. IN. END)

: F (CAT. IN. 1)
:S(CI.7)
:S(CI.1)
: (CI. 1)

ARBNO(' ') "COMM" =
:F (CI. 6)

:F(CI.8)

:F(CI.9)

:F(CI.10)

: F (CI. 11)

C I. 1 1 : (CAT. IN. 1)
CI.1 DEFINE ('CAT. IN (X)' , 'CAT. IN. 2')

IGNORE,. CARD = (IGNORE. CARD I '*') IDENT (COMM. FLAG, 'OFF')
IGNORE.CARD = (IGNORE.CARD I '-') IDENT(LIST. FLAG, 'OFF')
IGNORE.FLAG = (IGNORE.FLAG I '*' RPOS(O» IDENT{ CRUNCH.FLAG
, 'ON') IDENT(COMM.FLAG , 'ON')
IGNORE,. CARD = FENCE (RPOS (O) I IGNORE.. CARD)

CAT.IN.2 CAT.IN = CAT.NEXT
CI.3 CAT.NEXT = CAT.GETO :F{CI.2)

CAT.NEXT SPECIAL :S(CI.SPECIAL)
CAT,. IN SPECIAL : S (RETURN)
CAT.NEXT FENCE '.' = , , :F(CI.5)
CAT.IN = CAT.IN CAT.NEXT : (CI.3)

CI.5 CAT. IN ' , : S (CI. 61)
CAT.NEXT FENCE' , :F(CI.61)
CAT.IN = CAT.IN CAT.NEXT : (CI.3)

CI.61 CAT.IN I:' :S(RETURN)
CAT.NEXT FENCE' , SPAN (, '} ':' = , :'

CAT.IN = CAT.IN CAT.NEXT
CI.SPECIAL

IDENT(CRUNCH.FLAG,'OFF')
CAT,. IN COMMENT
CAT. NEXT COMMENT = , ,

CI.COMMENT
CAT.NEXT ' , SPAN(' ') = , ,
CAT.IN = CAT.IN CAT.NEXT

CI.2 DEFINE ('CAT.IN(X) , , 'CAT.IN.3')
CAT. IN.. 3
CAT. IN .. END

198

: F (RETURN)
: (CI. 3)

: S (RETURN)
: F (RETURN)
: F (RETURN)

: S (CI. COMMENT)
: (CI. 3)
: (RETURN)
: (FRETURN)

ICEB 61
ICEB 62
ICEB 63
ICEB 64
ICEB 65
ICEB 66
ICEB 67
ICEB 68
ICEB 69
ICE~ 70
ICEB 71
ICEB 72
ICEB 73
ICEB 74
ICEB 75
ICEB 76
ICEB 77
ICEB 78
ICEB 79
ICEB 80
ICEB 81
ICEB 82
ICEB 83
ICEB 84
ICEB 85
ICEB 86
ICEB 87
ICEB 88
ICEB 89
ICEB 90
ICEB 91
ICEB 92
ICEB 93
ICEB 94
ICEB 95
ICEB 96
ICEB 97
ICEB 98
ICEB 99
ICEB 100
ICEB 101
ICEB 102
ICEB 103
ICEB 104
ICEB 105
ICEB 106
ICEB 107
ICEB 108
ICEB 109
ICEB 110
ICEB 111
ICEB 112
ICEB 113
ICEB 114
ICEB 115
ICEB 116
ICEB 117
ICEB 118
ICEB 119
ICEB 120
ICEB 121
ICEB 122
ICEB 123

DEFINE ('CAT.GET (X) ')
CAT. GET INPUT LEN(72) • CAT.GET

CAT.GET.CNT = CAT.GET.CNT + 1
CAT.GET = TRIM (CAT. GET)
OUTPUT = 'INPUT CARD' RADJ(CAT.GET.CNT
CAT. GET IGNORE. CARD

CAT. GET. END
DEFINE ('SPEW (LINE) ,)

SPEW BUFF = DIFFER (BUFF, NULL) BUFF ';'
GT(SIZE(BUFF) + SIZE(LINE), 72}
BUFF = BUFF LINE
LT(SIZE(BUFF) ,70)
TOSS (BUFF)
BUFF =

SPEW. 2 NBUFF = BUFF
BUFF = LINE

SPEW,. 3 A =
BUFF CHUNK =
IDENT (A, NULL)
LE(SIZE(NBUFF) + SIZE (A) ,72)
BUFF = A BUFF
NBUFF ';' RPOS(O) =
NBUFF '; , RPOS(O) =
BUFF = , , BUFF

SPEW. 5 BUFF FENCE ARBNO(' ') ';' =
BUFF = '.' BUFF

PERIOD. OUT
BUFF FENCE' • = '.'

TOSS (NBUFF)
GT(SIZE(BUFF) ,72)
NBUFF =

SPEW. 6 NBUFF = NBUFF A
SPEW. END QT =., ..

DQ = , .. ,
SQ =

: (CAT. GET. END)
: F (FRETURN)

, 5) ': ' CAT. GET
:S(CAT.GET)F(RETURN)

: J SPEW. END)

: S (SPEW. 2)

: S (RETURN)

: (RETURN)

:S(SPEW.ERROR)
: S (SPEW. 6)

:S(PERIOD. OUT)
: F (SPEW. 5)
: (PERIOD. OUT)
: S (PERIOn. OUT)

: F (RETURN)
: (SPEW. 3)
: (SPEW. 3)

QUOTED.LITERAL = SQ BREAK(SQ) SQ I DQ BREAK (DQ) DQ
OTHER = LEN(1) BREAK(QT ' ; (),') (QUOTED.LITERAL I '(.
NULL) I RTAB (0)

SQ.O

SQ.5
SQ.4
SQ.7

SQ.8

SQ. START
SQ.1

SQ.3

CHUNK = FENCE (QUOTED.LITERAL I ANY(' (;') I OTHER) • A
PAT = ARB. B (' • I ANY (QT)) • C
NB72S.PATTERN = (TAB(60) ARB) • N ' , ARBNO(NOTANY(' ')) • B
RPOS (0)
S = CAT. IN ()
S SPECIAL
TOSS (BUFF)
BUFF =
IDENT(CRUNCH.FLAG , 'ON')
TOSS (S)
S COMMENT
GT (SIZE (S) , 72)
S LEN (72) • S REM • S S
S NB72S.PATTERN =
TOSS (N)
S = '* , B SS
S = S SS
S LEN (7 2) • N = • * ,
TOSS (N)
S (BREAK (' ;') I REM) • N =
SPAT =
IDENT (, , , C)
N = N B ' ,
S FENCE SPAN(' ') =
S BREAK(C) • D C =

: F (SQ. 99)
: F (SQ. START)

:S(SQ.4)
: (SQ. 0)
: F (SQ. 5)
: F (SQ. 5)

:F(SQ.8)

: (SQ.7)

: (SQ. 7)

: F (SQ. 2)
: F (SQ.3)

: (SQ. 1)
: F (SQ. ERR)

ICEB 124
ICEB 125
ICEB 126
ICEB 127
ICEB 128
ICEB 129
ICEB 130
ICEB 131
ICEB 132
ICEB 133
ICEB 134
ICEB 135
ICEB 136
ICEB 137
ICEB 138
ICEB 139
ICEB 140
ICEB 141
ICEB 142
ICEB 143
ICEB 144
ICEB 145
ICEB 146
ICEB 147
ICEB 148
ICEB 149
ICEB 150
ICEB 151
ICEB 152
ICEB 153
ICEB 154
ICEB 155
ICEB 156
ICEB 157
ICEB 158
ICEB 159
ICEB 160
ICEB 161
ICEB 162
ICEB 163
ICEB 164
ICEB 165
ICEB 166
ICEB 167
ICEB 168
ICEB 169
ICEB 170
ICEB 171
ICEB 172
ICEB 173
ICEB 174
ICEB 175
ICEB 176
ICEB 177
ICEB 178
ICEB 179
ICEB 180
ICEB 181
ICEB 182
ICEB 183
ICEB 184
ICEB 185
ICEB 186

199

N=NBCDC : (SQ. 1) ICEB 187
SQ.2 N = N S ICEB 188

SPEW (N) : (SQ.O) ICEB 189
SQ.99 TOSS (BUFF) ICEB 190

OUTPUT = 'END OF FILE REACHED BY ICEBOL' ICEB 191
ENDFILE (7) ICEB 192

END ICEB 193

200

The result of applying ICEBOL to itself follows.

ICEBOL.VER.2 ICEB
**ICEB
* * * ICEBOL * * IS A PROGRAM TO COMPRESS SNOBOL4 SOURCE PROGRAMS. IT ICEB
* DOES THIS * BY REPLACING A SEQUENCE OF BLANKS BY A SINGLE BLANK AND ICEB
* IF NEC- * ESSARY INDICATES AN END-OF-STATEMENT WITH A SEMI-COLON. * A ICEB
* TYPICAL COMPRESSION FACTOR IS THREE TO ONE. * * USAGE * THE INPUT ICEB
* DATA TO ICEBOL CAN BE ANY SNOBOL4 PROGRAM OR SECTION OF* PROGRAM ICEB
* PRECEDED BY ZERO OR MORE CONTROL CARDS. CONTROL CARDS * START WITH A ICEB
* VERTICAL LINE IN COLUMN 1, AND MAY BE ANY OF THE * FOLLOWING (WHERE ICEB
* BLANKS ARE IRRELEVENT) * I DON'T CRUNCH COMMENTS * I NO 'COMMENTS * I ICEB
* NO LIST * COMMENTS ARE NORMALLY INCLUDED AS PART OF THE COMPRESSED ICEB
* DECK BUT* KEEPING WITHIN THE SPIRIT OF ICEBOL SUCCESSIVE BLANKS ARE * ICEB
* NORMALLY REPLACED BY A SINGLE BLANK AND THEREBY MULTI-LINE * COMMENTS ICEB
* CAN BE COMPRESSED. T~E FIRST CONTROL CARD * ABOVE SUPPRESSES THE ICEB
* COMPRESSION OF COMMENTS. THE SECOND CONT- * ROL CARD ABOVE REMOVES ICEB
* COMMENTS ALTOGETHER. * SNOBOL4 CONTROL CARDS (CARDS BEGINNING WITH A ICEB
* MINUS , -) NORMAL-* LY APPEAR BY THEMSELVES ON A SINGLE LINE. THESE ICEB
* WILL BE REMOVED * IF THE THIRD CONTROL CARD ABOVE IS INCLUDED. * * ICEB
* LABELING AND CARD NUMBERING * * THE FIRST FOUR CHARACTERS OF THE ICEB
* FIRST CARD ARE USED TO LABEL THE* DECK.. THE DECK IS SEQUENCE ICEB
* NUMBERED. * * * J. F. GIMPEL * 7/15/68 * * * *************************ICEB
* ** ICEB

&DUMP = 1; INPUT{'INPUT',5,72); DEFINE{ 'BLANK{N) ') : (BLANK.END) ;BLANK ICEB
.BLANK = DUP(' ',N) : (RETURN) ; BLANK. END DEFINE {'DUP (S,N) ') : (DUP.END) ICEB
DUP DUP = GT{N,O) DUP S :F(RETURN); N = N - 1 : (DUP) ;DUP.END DEFINE { ICEB
• 'RADJ(S,N) '} : (RADJ.END) ;RADJ (MANY.BLANKS S) RTAB(N) REM .. RADJ :S(ICEB
• RETURN} ; MANY.BLANKS ~ MANY.BLANKS ' , : (RADJ) ;RADJ.END DEFINE{ICEB
• 'LADJ(S,N) ') : (LADJ.END) ;LADJ (S MANY.BLANKS) TAB(N) • LADJ :S(RETURN) ICEB

MANY.BLANKS = MANY.BLANKS ' , : (LADJ) ;LADJ.END DEFINE ('TOSS (A) ') ICEB
.: (TOSS. END} ;TOSS IDENT{A) :S(RETURN); CARD.NO = CARD.NO + 1; A = LADJ(AICEB
.,72) LABEL RADJ{CARD.NO,4); PUNCH = A; OUTPUT =; OUTPUT = A; OUTPUT = ICEB
• : (RETURN) ; 'TOSS. END DEFINE (' SPACE (N) ') : (SPACE. END) ; SPACE N GT (N, 0) '. ICEB
.OUTPUT REM = N - 1 :S{SPACE) F{RETURN) ; SPACE. END SPECIAL = FENCE ('*' ICEB
'. I '-'); COMMENT = FENCE '*'; COMM. FLAG = 'ON'; LIST. FLAG = 'ON' ICEB

CRUNCH.FLAG = 'ON'; IGNORE.CARD = FAIL; INDENT = BLANK (30) ; OUTPUT (ICEB
• 'CONTROL' , 6 , '(132A1) '); CONTROL = 1; SPACE (20); OUTPUT = INDENT ICEB
.INDENT 'ICEBOL2'; CONTROL = '+' INDENT INDENT ' _______ '; CONTROL = 1 ICEB

DEFINE ('CAT. IN (X)' , 'CAT. IN. l') : (CAT. IN. END) ;CAT. IN. 1 LABEL = ICEB
'; CAT.NEXT = CAT.GET{) :F {CAT. IN. 1) ; CAT.NEXT FENCE' I' :S (CI. 7) ICEB

CAT.NEXT FENCE' , :S{CI.1); CAT.NEXT LEN(4) • LABEL: (CI.1) ;CI.7 ICEB
.CAT.NEXT "DON'T" ARBNO{' ') "CRUNCH" ARBNO{' ') "COMM" = :F(CI.6) ICEB

CRUNCH.FLAG = 'OFF';CI.6 CAT.NEXT 'NO' ARBNO(' ') 'COMM' = :F(CI.8) ICEB
COMM.FLAG = 'OFF';CI.8 CAT.NEXT 'COMM' = :F(CI.9); COMM.FLAG = 'ON' ICEB

CI.9 CAT.NEXT 'NO' ARBNO(' ') 'LIST' = :F(CI.10); LIST.FLAG = 'OFF' ICEB
CI.10 CAT,. NEXT 'CONT' = : F (CI. 11); LIST. FLAG = 'ON'; CI. 11 : (CAT. IN. 1) ICEB
CI.1 DEFINE ('CAT.IN(X) , , ICAT.IN.2 1); IGNORE.CARD = (IGNORE.CARD , '*'ICEB
.) IDENT{COMM.FLAG,'OFF'); IGNORE.CARD = (IGNORE.CARD I '_I) IDENT{ ICEB
.LIST.FLAG,'OFF'); IGNORE..FLAG = (IGNORE.FLAG , '*' RPOS{O» IDENT{ ICEB
,.CRUNCH.FLAG , 'ON') IDENT(COMM.FLAG , 'ON'); IGNORE.CARD = FENCE (RPOS(ICEB
.0) I IGNORE,. CARD) ;CAT. IN. 2 CAT. IN = CAT. NEXT;CI. 3 CAT. NEXT = CAT. GET () ICEB
.:F{CI~2); CAT.NEXT SPECIAL :S{CI.SPECIAL); CAT.IN SPECIAL :S{RETURN) ICEB

CAT. NEXT FENCE I.' = , , : F (CI. 5); CAT. IN = CAT. IN CAT. NEXT : (CI. 3) ICEB
CI.5 CAT.IN I , :S (CT. 61); CAT. NEXT FENCE' , :F (CI. 61); CAT .• IN = CAT.INICEB
.. CAT. NEXT : (CI. 3) ; CI. 61 CAT. IN ':' : S (RETURN); CAT. NEXT FENCE ' , SPAN (ICEB
.' ') ':' = , :' :F(RETURN); CAT.IN = CAT.IN CAT.NEXT : (CI.3) ;CI.SPECIALICEB
• IDENT (CRUNCH. FLAG, 'OFF') :S(RETURN); CAT.IN COMMENT :F(RETURN) ICEB

CAT.NEXT COMMENT = , , :F{RETURN) ;CI.COMMENT CAT.NEXT ' I SPAN(' ') = ICEB
.' , : S (CI. COMMENT); CAT. IN = CAT. IN CAT. NEXT : (CI. 3) ;CI. 2 DEFINE (ICEB
• 'CAT,. IN (X) , , 'CAT.IN.3') : (RETURN) ;CAT.IN.3 : (FRETURN) ;CAT.IN.END ICEB
• DEFINE ('CAT.GET{X) ') : (CAT.GET.END) ;CAT.GET INPUT LEN(72) • CAT.GET :F(ICEB

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

201

.FRETURN); CAT.GET.CNT = CAT,.GET.CNT + 1; CAT.GET = TRIM(CAT.GET) ICEB 61
OUTPUT = 'INPUT CARD' RADJ(CAT.GET.CNT , 5) ':' CAT.GET; CAT.GET ICEB 62

.IGNORE.CARD : S(CA'I.GET) F (RETURN) ;CAT.GET.END DEFINE ('SPEW(LINE) ,) : (TCEB 63
• SPEW. END) ;SPEW BUFF = DIFFER (BUFF, NULL) BUFF ';'; GT (SIZE (BUFF) + SIZE(ICEB 64
• LINE) , 72) :S(SPEW.2); BUFF = BUFF LINE; LT(SIZE(BUFF) ,70) :S(RETURN) ICEB 65

, TOSS (BUFF) ; BUFF = : (RETURN) ;SPEW.2 NBUFF = BUFF; BUFF = LINE;SPEW.3 A ICEB 66
.=; BUFF CHUNK =; IDENT(A,NULL) :S(SPEW.ERROR); LE(SIZE(NBUFF) + SIZE(AICEB 67
.) ,72) :S (SPEW. 6); BUFF = A BUFF; NBUFF ';' RPOS (0) = : S (PERIOD.OUT) ICEB 68

NBUFF '; , RPOS(O) = :F(SPEW.5); BUFF = , , BUFF: (PERIOD. OUT) ;SPEW.5 ICEB 69
.BUFF FENCE ARBNO(' ') I;' = :S(PERIOD.OUT); BUFF = '.' BUFF; BUFF FENCEICEB 70
• '. ' = '. ';PERIOD.OUT TOSS (NBUFF) ; GT (SIZE (BUFF) ,72) :F(RETURN); NBUFFICEB 71
.= : (SPEW. 3) ; SPEW. 6 NBUFF = NBUFF A : (SPEW. 3) ;SPEW.END QT = "" ""'; DQ ICEB 72
.= ''''; SQ = lIeu; QUOTED.LITERAL = SQ BREAK(SQ) SQ I DQ BREAK (DQ) DQ ICEB 73

OTHER = LEN (1) BREAK (QT ' ; () ") (QUOTED. LITERAL I '(' I NULL) I ICEB 74
.RTAB(O); CHUNK = FENCE (QUOTED.LITERAL I ANY(' (;') I OTHER) • A; PAT =ICEB 75
.ARB. B (' 'I ANY(QT» • C; NB72S.PATTERN = (TAB (60) ARB) • N " ICEB 76
.ARBNO(NOTANY(' I»~ • B RPOS(O) ;SQ.O S = CAT.INO :F(SQ.99); S SPECIAL ICEB 77
• :F(SQ. START); TOSS (BUFF) ; BUFF =; IDENT (CRUNCH. FLAG , 'ON') :S (SQ.4) ICEB 78
SQ.5 TOSS(S) : (SQ.O) ;SQ.4 S COMMENT :F(SQ.5) ;SQ.7 GT(SIZE(S) , 72) :F(ICEB 79
.SQ.5); S LEN(72) • S REM. SS; S NB72S.PATTERN = :F(SQ.8); TOSS(N); S =ICEB 80
· '* , B SS : (SQ. 7) ;SQ.8 S = S SS; S LEN(72) • N = '* '; TOSS (N) : (SQ. 7) ICEB 81
SQ. START S (BREAK (' ;') I REM) • N =; SQ. 1 SPAT = : F (SQ. 2); IDENT (' ',CICEB 82
.) :F(SQ.3); N = N B' '; S FENCE SPAN(' ') = :(SQ.1);SQ.3 S BREAK (C) .ICEB 83
.D C = :F(SQ.ERR); N = NBC DC: (SQ.1) ;SQ,.2 N = N S; SPEW(N) : (SQ.O) ICEB 84
SQ.99 TOSS (BUFF) ; OUTPUT = 'END OF FILE REACHED BY ICEBOL'; ENDFILE(7) ICEB 85
END ICEB 86

202

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

*
* *
*
*
*
*
*
*
*

THIS PROGRAM COMPUTES AND PRINTS A TABLE OF N FACTORIAL
FOR VALUES OF N FROM 1 THROUGH AN UPPER LIMIT "NX". *

*
* IT DEMONSTRATES A METHOD OF MANIPULATING NUMBERS WHICH ARE *

TOO LARGE FOR THE COMPUTER, AS STRINGS OF CHARACTERS. THE *
COMMAS IN THE PRINTED VALUES ARE OPTIONAL, ADDED FOR READING *
EASE. *

*
*
*
*
*

*

*
*
* L1
L2

L3

L4

*
*
* L5

L6

*
*
* L7

*
*
* ERR

INITIALIZATION.

NX = 45

N = 1
NSET = 1
NUM = ARRAY (1000)
NUM<1> = 1
FILL = ARRAY('0:3')
FILL<O> '000'
FILL<1> = '00'
FILL<2> = '0'

OUTPUT = •
OUTPUT =

TABLE OF FACTORIALS FOR 1 THROUGH • NX

COMPUTE THE NEXT VALUE FROM THE PREVIOUS ONE.

I = 1
NUM<I> = NUM<I> * N
I = LT (I,NSET) I + 1
I = 1
LT(NUM<I>,1000)
NUMX = NUM<I> / 1000
NUM<I + 1> = NUM<I + 1> + NUMX
NUM<I> = NUM<I> - 1000 * NUMX
I = LT(I,NSET) I + 1

FORM A STRING REPRESENTING THE FACTORIAL.

NSET = DIFFER(NUM<NSET + 1» NSET + 1
NUMBER = NUM<NSET>
I = GT(NSET,1) NSET - 1
NUMBER = NUMBER ',' FILL<SIZE(NUM<I»> NUM<I>
I = GT (I, 1) I - 1

OUTPUT A LINE OF THE TABLE.

OUTPUT N '!=' NUMBER
N = LT(N,NX) N + 1

ERROR TERMINATION.

: F (ERR)
: S (L2)

: S (L4)
:F (ERR)
: F (ERR)
: F (ERR)
: S (L3)

: F (ERR)
: F (L 7)

: S (L6)

: S (L 1) F (END)

OUTPUT = N '! CANNOT BE COMPUTED BECAUSE OF TABLE OVERFLOW.'

1

2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20

21
22
23
24
25

26
27

28

203

* END

OUTPUT = , INCREASE THE SIZE OF ARRAY "NUM".'

NO ERRORS DETECTED DURING COMPILATION

204

29

30

TABLE OF FACTORIALS FOR 1 THROUGH 45

1 ! =1
2!=2
3!=6
4!=24
5!=120
6!=720
7!=5,040
8!=40,320
9!=362,880
10!=3,628,800
11!=39,916,800
12!=479,001,600
13!=6,227,020,800
14!=87,178,291,200
15!=1,307,674,368,000
16!=20,922,789,888,000
17!=355,687,428,096,000
18!=6,402,373,705,728,000
19!=121,645,100,408,832,000
20!=2,432,902,008,176,640,000
21!=51,090,942,171,709,440,000
22!=1,124,000,727,777,607,680,000
23!=25,852,016,738,884,976,640,000
24!=620,448,401,733,239,439,360,000
25!=15,511,210,043,330,985,984,000,000
26!=403,291,461,126,605,635,584,000,000
27!=10,888,869,450,418,352,160,768,000,000
28!=304,888,344,611,713,860,501,504,000,000
29!=8,841,761,993,739,701,954,543,616,000,000
30!=265,252,859,812,191,058,636,308,480,000,000
31!=8,222,838,654,177,922,817,725,562,880,000,000
32!=263,130,836,933,693,530,167,218,012,160,000,000
33!=8,683,317,618,811,886,495,518,194,401,280,000,000
34!=295,232,799,039,604,140,847,618,609,643,520,000,000
35!=10,333,147,966,386,144,929,666,651,337,523,200,000,000
36!=311,993,326,789,901,217,467,999,448,150,835,200,000,000
37!=13,763,753,091,226,345,046,315,979,581,580,902,400,000,000
38!=523,022,617,466,601,111,760,007,224,100,074,291,200,000,000
39!=20,391,882,081,197,443,358,640,281,739,902,897,356,800,000,000
40!=815,915,283,247,897,734,345,611,269,596,115,894,272,00D,000,000
41!=33,452,526,613,163,807,108,170,062,053,440,751,665,152,000,000,000
42!=1,405,006,117,752,879,898,543,142,606,244,511,569,936,384,000,000,000
43!=60,415,263,063,373,835,637,355,132,068,513,997,507,264,512,000,000,000
44!=2,658,271,574,788,448,768,043,625,811,014,615,890,319,638,528,000,000,000
45!=119,622,220,865,480,194,561,963,161,495,657,715,064,383,733,760,000,000,000

NORMAL TERMINATION AT LEVEL 0
LAST STATEMENT EXECUTED WAS 27

SNOBOL4 STATISTICS SUMMARY-

1048 MS. COMPILATION TIME
2962 MS. EXECUTION TIME
3296 STATEMENTS EXECUTED, 437 FAILED
3376 ARITHMETIC OPERATIONS PERFORMED

o PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE

0.90 MS. AVERAGE PER STATEMENT EXECUTED

205

The following program uses arrays, programmer-defined functions, and a
variety of output formats to produces sets of bridge hands. Execution of the
statements beginning at the label NEWDEAL produces one set of hands. Cards are
dealt from the array DECK to the four arrays, NORTH, EAST, SOUTH, and WEST by
the fUnction DEAL. The hands are sorted by the function ARRANGE. The function
DISPLAY prints the hands, one set per page.

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

*
*
*
*
*

*
*

OUTPUT('TITLE' ,6,' (14H1THIS IS HAND, 110A1) ')
OUTPUT('DEALER',6,' (11H DEALER IS ,110A1) ')
OUTPUT (, SKIP' ,6, , (A 1) ')

FUNCTIONS

DEFINE ('ARRANGE () '}
DEFINE (' DEAL () ')
DEFINE ('DISPLAY 0 '}
DEFINE('LINE(STR1,COL1,STR2,COL2)BL1,BL2')
DEFINE ('RANDOM (N) ')
DEFINE('SORT(HAND}I,J'}
DEFINE('SUITL(HAND,SUIT)N') : (CONSTANT)

1
2
3

4
5
6
7
8
9
10

ARRANGE SORT (NORTH) SORT (EAST) SORT (SOUTH) SORT (WEST) : (RETURN) 11

*
* DEAL

NLOOP

*
* DISPLAY

+

+

206

DEALSEQ DEALHAND
DECK = COpy (NEWDECK)
N = 51
DEALSEQ NXTHAND
CARD = RANDOM(N + 1}
ITEM($HAND,N / 4) = DECK<CARD)
DECK<CARD) = NE(CARD,N) DECK<N)
N = GT (N, O) N - 1

TITLE = NTHDEAL
DEALER = DEALR
SKIP = ,
OUTPUT = LINE (' NORTH' ,40)
OUTPUT =
OUTPUT = LINE(SUITL(NORTH,'S') ,40)
OUTPUT = LINE(SUITL(NORTH,'H') ,40}
OUTPUT LINE(SUITL(NORTH,'D') ,40)
OUTPUT = LINE(SUITL(NORTH,'C') ,40)
SKIP = ,
OUTPUT = LINE('WEST',20,'EAST',60)
OBTPUT =
OUTPUT = LINE(SUITL(WEST,'S') ,20,

SUITL(EAST,'S') ,60)
OUTPUT = LINE(SUITL(WEST,'H') ,20,

SUITL(EAST,'H'} ,60)
OUTPUT = LINE(SUITL(WEST,'D'} ,20,

:S(NLOOP)F(RETURN}

12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
32
33
33
34

+

+

+

*
* LINE

LINE1

*
* RANDOM

*
* SORT
SORT1

SORT2

*
* SUITL
SUITL1
SUITL2
SUITL3

*
*
*
* CONSTANT
+

OUTPUT =

SKIP = ,
OUTPUT =
OUTPUT =
OUTPUT =
OUTPUT =
OUTPUT =
OUTPUT =

SUITL(EAST,'D') ,60)
LINE(SUITL(WEST,'C'),20,

SUITL(EAST,'C') ,60)

LINE (, SOUTH' ,40)

LINE(SUITL(SOUTH,'S') ,40)
LINE(SUITL(SOUTH,'H'),40)
LINE(SUITL(SOUTH,'D') ,40)
LINE{SUITL(SOUTH,'C'),40)

BL LEN (COL1 ,- 1) • BL1

: (RETURN)

BL DIFFER (STR2) LEN(COL2 - (COL1 + SIZE(STR1») • BL2
LINE = BL1 STR1 BL2 STR2 : (RETURN)

RAN.VAR
RAN.VAR
RANDOM

= RAN.VAR * 1061 + 3251
RTAB(5) =

= (RAN.VAR * N) / 100000 : (RETURN)

J =
J
I =

13
GT(J,1)
o

J -

I = LT(I,J) I +
TEMP = LT(HAND<I - 1>,HAND<I»
HAND<I - 1> = HAND<I>

: F (RETURN)

: F (SORT1)
HAND<I - 1> :F(SORT2)

HAND<I> TEMP

SUIT SUITL
N =
N =
SUITL

LT($SUIT + 13,HAND<N» N + 1
LT($SUIT,HAND<N» N + 1

= SUITL $ (HAND<N - 1> - $SUIT)

CONSTANTS

BL =

S = 39
H = 26
D = 13
C = 0
$1 = 2
$2 = 3
$3 = 4
$4 = 5
$5 = 6
$6 = 7
$7 = 8
$8 9
$9 = 10
$10 = 'J'
$11 = 'Q'
$12 = 'K'
$13 'A'
DEALSEQ = 'NORTH, EAST, SOUTH,WEST,NORTH,,
NXTHAND *HAND ',' BREAK(',') • HAND

: (SORT2)

: S (SUITL 1)
:F(RETURN)S(SUITL3)

: (SUITL2)

DEALHAND = *DEALR ',' BREAK(',') • HAND. DEALR
NORTH = ARRAY('O:12')

34
35
35
36
37
38
39
40
41
42
42

43
44
45

46
47
48

49
50
51
52
53
54
55

56
57
58
59

60
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

207

EAST = ARRAY('0:12')
SOUTH = ARRAY('O:12')
WEST = ARRAY('O:12')
NEWDECK = ARRAY (, 0 : 51 ')
RAN.VAR 157
DEALMAX = 3
NTHDEAL
DEALR = 'WEST'
N = 0

BLDDEK NEWDECK<N> = N + 1
N LT(N,51) N + 1

NEWDEAL NTHDEAL LT(NTHDEAL,DEALMAX) NTHDEAL + 1

*
*
*
END

DEAL ()

ARRANGE ()

DISPLAY ()

NO ERRORS DETECTED DURING COMPILATION

208

:S(BLDDEK}
: F (END)

: (NEWDEAL)

82
83
84
85
86
87
88
89
90
91
92
93

94

95

96
97

THIS IS HAND 1
DEALER IS NORTH

NORTH

S 84
H K752
D J3
C Q9742

WEST EAST

S AQ63
H A98
D 862
C K85

SOUTH

S KJ92
H J64
D Q105
C J63

S 1075
H Q103
D AK974
C A10

209

THIS IS HAND 2
DEALER IS EAST

210

NORTH

S K82
H 965
D J75432
C 5

WEST EAST

S J95
H K8
D AK96
C AJ84

SOUTH

S AQ643
H J1074
D Q
C K106

S 107
H AQ32
D 108
C Q9732

THIS IS HAND 3
DEALER IS SOUTH

NORTH

S KJ1093
H J872
D 4
C 965

WEST EAST

S 65
H KQ1093
D Q108
C QJ7

SOUTH

S AQ87
H A54
D K932
C A3

S 42
H 6
D AJ765
C K10842

211

NORMAL TERMINATION AT LEVEL 0
LAST STATEMENT EXECUTED WAS 93
SNOBOL4 STATISTICS SUMMARY-

212

2130 MS. COMPILATION TIME
5541 MS. EXECUTION TIME
5736 STATEMENTS EXECUTED, 686 FAILED
5678 ARITHMETIC OPERATIONS PERFORMED

378 PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE

0.97 MS. AVERAGE PER STATEMENT EXECUTED

6. A P I APT A Christmastime Algorithm

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

*
*
*
*
*
*
*
*
*

*

*
SONG

* NEXT. DAY

TWELFTH
ELEVENTH
TENTH
NINTH
EIGHTH
SEVENTH
SIXTH
FIFTH
FOURTH
THIRD
SECOND
FIRST

* CODA

*
END

WHEN THE OUTPUT ASSOCIATION FOR "SING" IS CHANGED TO
A DIGITAL-TO-ANALOG CONVERTER WITH THE PROPER MELODY
SYNTHESIZER, THIS PROGRAM SINGS THAT OLD CHRISTMASTIME
FAVORITE, "A PARTRIDGE IN A PEAR TREE."

M. D. SHAPIRO

ACAPPELLA.CHOIR = 6 OR MORE PEOPLE SINGING IN TUNE

DAYS = 'FIRST, SECOND, THIRD, FOURTH, FIFTH, SIXTH, ,
'SEVENTH,EIGHTH,NINTH,TENTH,ELEVENTH,TWELFTH,'
NEXT = BREAK(',') • WHICH LEN(1)

TRACE('SING','VALUE',,'SONG')
&TRACE = 1000

DEFINE('SONG() ') : (NEXT. DAY)
PAUSE IDENT(SING) OUTPUT('SING', ACAPPELLA.CHOIR,
" (' " P A USE "', 1 0 0 A 1) ") = , : (RE TURN)

DAYS NEXT =
SING = (TAKE A BREATH)
SING = 'ON THE' WHICH' DAY OF CHRISTMAS,'
SING = 'MY TRUE LOVE GAVE TO ME,'
SING = 'TWELVE LORDS A-.LEAPING,'
SING = 'ELEVEN LADIES DANCING,'
SING 'TEN PIPERS PIPING,'
SING = 'NINE DRUMMERS DRUMMING,'
SING = 'EIGHT MAIDS A-MILKING,'
SING = 'SEVEN SWANS A-SWIMMING,'
SING = 'SIX GEESE A-LAYING,'
SING = 'FIVE GOLD RINGS,'
SING = 'FOUR COLLY BIRDS,'
SING = 'THREE FRENCH HENS,'
SING = 'TWO TURTLEDOVES,'
SING = AND 'A PARTRIDGE IN A PEAR TREE.'
AND = IDENT(AND) 'AND'

SING = INPUT

: F (CODA)

: ($WHICH)

: (NEXT. DAY)

: S (CODA)

NO ERRORS DETECTED DURING COMPILATION

1

2
2
3

4
5

6
7
7

8
9
10
11
12
13
14
15
16
17
18
19 '
20
21
22
23
24

25

26

213

ON THE FIRST DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
A PARTRIDGE IN A PEAR TREE.

ON THE SECOND DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
TWO TUR~LEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

214

ON THE THIRD DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE,.

ON THE FOURTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE FIFTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE SIXTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE SEVENTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
SEVEN SWANS A-SWIMMING,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE EIGHTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
EIGHT MAIDS A-MILKING,
SEVEN SWANS A-SWIMMING,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE NINTH DAY OF CHRISTMAS,
MY TRUE. LOVE GAVE TO ME~

NINE DRUMMERS DRUMMING,
EIGHT MAIDS A-MILKING,
SEVEN SWANS A-SWIMMING,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE TENTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
TEN PIPERS PIPING,
NINE DRUMMERS DRUMMING,
EIGHT MAIDS A-MILKING,
SEVEN SWANS A-SWIMMING,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE ELEVENTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
ELEVEN LADIES DANCING,
TEN PIPERS PIPING,
NINE DRUMMERS DRUMMING,
EIGHT MAIDS A-MILKING,
SEVEN SWANS A-SWIMMING,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE TWELFTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
TWELVE LORDS A-LEAPING,
ELEVEN LADIES DANCING,
TEN PIPERS PIPING,
NINE DRUMMERS DRUMMING,
EIGHT MAIDS A-MILKING,
SEVEN SWANS A-SWIMMING,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

* ***

lit

215

NORMAL TERMINATION AT LEVEL 0
LAST STATEMENT EXECUTED WAS 25

SNOBOL4 STATISTICS SUMMARY-

216

732 MS. COMPILATION TIME
749 MS. EXECUTION TIME
276 STATEMENTS EXECUTED, 123 FAILED

o ARITHMETIC OPERATIONS PERFORMED
25 PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE

2.71 MS. AVERAGE PER STATEMENT EXECUTED

&ABEND 130
ABORT 47
&ABORT 129
addi t ion (+) 2, 3, 1 39
&ALPHABET 79, 129
a Iter na t ion (I) 9, 23, 1 4 0 , 1 74
&ANCHOR 28, 29, 130
anchored mode 28, 29, 47
anchored pattern matching 173
ANY 37, 174
APPLY 107, 134
ARB 4 8 , 66 , 1 7 4
&ARB 129
ARBNO 52, 67, 72, 101
ARG 134, 154
arguments (see function call)
arithmetic expressions 3, 4
arithmetic operators 1

addition (+) 2, 3, 139
division (/) 3, 139
exponentiation (**) 2, 3, 139
multiplication (*) 2, 3, 139
subtraction (-) 2, 3, 139
un a ry mi nus (-) 2, 3, 1 3 7
unary plus (+) 3, 137

ARRAY 2 0, 1 0 8 , 1 1 3 , 1 77
arrays

data type 113, 126
elements 110, 113, 114
indexing 108, 110
prototypes 108, 114
references 20, 110, 134

assignment statements 1, 22, 23, 132

BACKSPACE 162
BAL 50 , 52, 9 7, 1 0 1
&BAL 129
balanced expressions 51, 97, 101
bead diagrams 25, 27, 28, 35, 42, 49,

50, 52, 63, 64,
66, 67

beads 25
binary operators 139

addition (+) 2, 3, 139
alternation (I) 9, 23,
concatenation (blank)

conditional value

140, 174
5, 9, 23,

140

assignment (.) 10, 30, 140, 176
division (/) 3, 139
exponentiation (* *) 2, 3, 139
immediate value

as s i g nm e n t ($) 11, 3 1, 1 4 0, 1 7 6
multiplication (*) 2, 3, 139
subtraction (-) 2, 3, 139
unused 141

BREAK 3 5, 45, 54, 1 74
bubble sort 111

call tracLng 147, 154
carriage control 160
catastrophic termination 172
CLEAR 178
clearing variable values 178
CODE 119, 126, 127
COLLECT 178
comment line 2
compilation 119, 120, 163
compilation errors 164, 185
concatenation (blank) 5, 9, 23, 140
conditional value assignment (.) 10,

30, 140, 176
continuation line
control line

LIST 163
LEFT 163
RIGHT 163

UNLIST 163
conversion of data
CONVERT 127

2

types 127, 135

127
COpy 113, 128
created names 126,
created variables 20, 108, 110, 115,

116, 117, 118,
123

25, 28, 29, 35, 40, 42, 64,
66, 72

cursor

cursor position (m) 56, 138

DATA 20, 122
data objects 78, 113, 122
data set reference numbers 158, 160,

163
data sets 158
data structures 177
DATATYPE 126
data types

array 20, 113, 126, 127
code 126, 127
created name 126, 127
integer 78, 126, 127
pattern structure 126, 127
programmer-defined

data type 20, 122, 1 26, 127
real number 78, 126, 127
string 118, 126, 127
unevaluated expression 126, 127

DATE 81
DDNAMES 158
DD statements 158, 160
DEFINE 16, 83, 89
degenerate statement 132
DETACH 161
DIFFER 15, 78
direct gotos 120
discontiuation of tracing 153

217

division (/) 3, 139
dumps 19, 130, 1 '65, 169
SDUMP 19, 130, 165
dynamic storage 178

EBCDIC 79, 80
efficiency 24, 30, 54, 173
END 11, 163, 164
ENDFILE 162
end of file 11, 162, 163
end of input data set 157
end statement 1, 11, 120, 163, 164,

entry
labels 83
points 16, 83

error messages 169, 185
compilation 164, 185
termination 186

error termination 169
EQ 76
EVAL 57, 81
evaluation of expressions 22, 133
evaluation of statements 132
execution 164
exponentiation (* *) 2, 3, 139
expressions 1, 4

arithmetic 3, 4
balanced 51,97,101
evaluation of 22, 133

165

unevaluated 57, 81, 126, 127, 138

FAIL 46, 62, 1 01
SFAIL 129
failure

during input 11, 133, 157
in expression evaluation 15, 132,

133, 134
12, 25, 30,

31, 46, 47, 48,
63, 64, 66, 132

17, 134

in pattern matching

of functions 14,
FENCE 47, 173
SFENCE 129
FIELD 134, 154
field functions 20, 123
fields (see programmer-defined

data types)
files (see I/O)
flow of control 11, 119
SFNCLEVEL 129, 152
formal arguments 16, 83, 84, 86
formal identification 126
formats 160
FRETURN 17, 85, 87, 134
SFTRACE 130, 148
SFULLSCAN 28, 63, 71, 130
fullscan mode 71, 176
function calls

arguments of 13, 15, 17, 75, 94,
134

failure of 14, 17, 134
level of 147

218

preservation of values 18, 86, 87,
92, 94

) recursive 18, 91, 93, 96, 103
function definitions

DEFINE 16, 83, 89
entry points 16, 83
function names 16, 83, 85, 86
formal arguments 16, 83, 84, 86
local variables 16, 18, 83, 85, 86

functions
primitive 13, 75, 134
programmer-defined 16, 62, 75, 83,

134
function name as argument 95
function tracing 147, 148, 154
function values 16, 76, 85, 118

GE 76
generated variables 13, 141
gatos 11, 12, 132, 1 41

direct 120
evaluation of 133
failure 11, 119, 133
success 11, 119, 133
unconditional 11, 119, 133

GT 60, 76

heuristics 63, 71, 176

IDENT 78
identifiers 75
immediate value assignment ($) 11,

implicit alternatives
indirect reference ($)
infix notation 96
INPUT

function 161

31, 140, 176
48

12, 137

var i a b 1 e 6, 1 1, 1 4 , 8 1, 1 33, 1 5 6 ,
157

input association 156, 161
INTEGER 77
integers 2, 134
integer data type 2, 3, 78, 126, 127,

134
interrogation (?) 82, 138
intervention termination 171
ITEM 11 4 , 11 5
I/O

functions
BACKSPACE 162
DETACH 161
ENDFILE 162
INPUT 161
OUTPUT 159
REWIND 162

system 158
FORTRAN IV 158

job control language 158

keywords 19, 128
SABEND 130

&ABORT 129
&ALPHABET 79, 129
&ANCHOR 28, 29, 130
&ARB 129
&BAL 129
&DUMP 19, 130
&FAIL 129
&FENCE 129
&FNCLEVEL 129, 152
&FTRACE 130, 148
&FULLSCAN 28, 63, 71, 130
&LASTNO 129, 154
&MAXLNGTH 130
&REM 129
&RTNTYPE 129, 154
&STCOUNT 129, 152
&STFCOUNT 129, 152
&STLIMIT 130
&STNO 129
&SUCCEED 129
&TRACE 130, 143, 153

protected 129
constant 129
varying 129

unprotected 130
parameters 130
switches 130

keyword operator (&) 138
keyword tracing 152, 154

label 11, 22, 119, 132
attribute 119, 120
tracing 151, 154

&LASTNO 129, 154
LE 15, 76
left recursion 60, 61, 67
LEN 14, 34
LGT 16, 79
LIST 163
listing control

LIST 163
LEFT 163
RIGHT 163

UNLIST 163
literals 1, 4, 7, 134, 141
LOCAL 134, 154
local variables 16, 18, 83, 85, 86
loop control 76
LT 76

&MAXLNGTH 130
multiplication (*) 2, 3, 139

name operator (.) 117, 118, 138
names 115
natural variables 115, 116, 141
NE 76
needle 25
negation (-,) 82, 134, 138
normal termination 165
NOTANY 37
NRETURN 85, 86, 87, 118
null string 4, 5, 15, 33, 48, 52, 76,

116, 135
numeral strings 4, 134
numerical predicates

EQ 76
GE 76
GT 76
INTEGER 77
LE 15, 76
LT 76
NE 76

object 8, 22, 76, 132
object code 119
object comparison predicates

DIFFER 15, 78
IDENT 78
LGT 16, 79

object evaluation 132
omitted arguments 15, 75
OPSYN 105, 134
OUTPUT

function 159
variable 6, 32, 156

output association 156, 159

parameters 130
parentheses 3, 7, 10, 32, 50
passing names 116
patterns 6, 8, 22, 132
pattern building 22, 23, 24, 58, 132

left recursion in 60, 61, 67
pattern matching 6, 22, 25, 28, 132
pattern matching statements 1, 6, 7,

22, 132
pattern structures 9, 14, 22, 23, 24,

58, 126, 127,
175

Polish prefix notation 96
POS 42, 45
P r ec eden c e 3 , 5 , 1 0, 11, 2 4 , 3 2 , 1 3 3 ,

139
predicates (see numerical and

object comparison) 15
primitive functions 13, 75, 134

ANY (CS) 37
APPLY(F,A1, ••• ,AN) 107
ARBNO(P) 52
ARG (F, N) 154
ARRAY (P,V) 108
BACKSPACE(N) 162
BREAK (CS) 35
CLEAR () 178
CODE(S) 119
COLLECT (N) 178
CONVERT (V, DT) 127
COpy (V) 113, 128
DATA (P) 122
DATATYPE(V) 126
DATE () 81
DEFINE (P,L) 83
DETACH (V) 161
DIFFER(V1,V20) 78
ENDFILE(N) 162

219

EQ(I1,I2) 76
EVAL (E) 81
FIELD (F,N) 154
GE (I1 , I2) 76
GT (I 1 , I2) 76
IDENT (V1 , V2) 78
INPUT (V,N,L) 161
INTEGER (V) 77
ITEM(A,I1, ••• ,IN) 115
LEN(N) 34
LE (I1, I2) 76
LG T (S 1 , S 2) 79
LOCAL (F, N) 154
LT(I1,I2) 76
NE (I 1 , I 2) 76
NOTANY(CS) 37
OPSYN(F1,F2) 105
OUTPUT (V,N,F) 159
POS (N) 42
PROTOTYPE (A) 114
REPLACE(S,CS1,CS2) 80
REWIND (N) 162
RPOS(N) 42
RTAB (N) 40
SIZE (S) 80
SPAN (CS) 35
STOPTR (V, R) 153
TAB(N) 40
TIME () 81
TRACE (V,R,T,F) 143
TRIM (S) 81
VALUE (S) 125

primitive pattern structures
ABORT 47
ARB 48, 66, 174
BAL 50, 52, 9 7, 1 0 1
FA IL 46, 62, 101
FENCE 47, 173
REM 40
SUCCEED 54, 62, 72

print request messages 189
printing 6, 156
program termination
program syntax 183
programmer-defined

data types 20,122,126,127
DATA 122, 125
FIELD 154

functions 16, 62, 75, 83, 134
DEFINE 16, 83
entry label 83
FRETURN 17, 85,
formal arguments
local variables

87, 134
16, 83, 84, 86

16, 18, 83, 85,
86

name 16, 83, 85, 86
NRETURN 85, 86, 87, 118
procedure 16, 83, 84
prototype 16, 83
RETURN 16, 85, 89, 118, 147

trace procedures 153
protected keywords 129
PROTOTYPE 114

220

prototypes 16 , 83, 108,
syntax 184

PUNCH 6, 157

quicks can 63, 71
quotation marks 4, 117

random number generator
range of an array 110
reading 6

114

89

real numbers 3, 78, 126,
recursive function calls

127, 136
18, 91, 93,

96, 103
recursive loops in pattern

matching 67, 70, 72
recursive pattern definitions

redefinition of functions 89
references 180
REM 40
&REM 129
REPLACE 14, 80, 134

60, 61,
67, 72

replacement statements 1, 6, 8, 22,
33, 132

RETURN 16, 85, 87, 89, 118, 147
returning a variable 118
RETURN tracing 147, 148, 154
REWIND 162
RPOS 42, 45
RTAB 40
&RTNTYPE 129, 154

scanner 22, 25, 27, 63
scanning 23, 25
sequential data sets 159
SIZE 13, 60, 80
source program 163
SPAN 35, 45, 54
statements

assignment 1, 22, 23, 132
end 1, 11, 1 20 , 1 6 3, 1 64 , 1 65
degenerate 132
pattern matching 1, 6, 7, 22, 132
replacement 1, 6, 8, 22, 33, 132

statement continuation 2
statement evaluation 132
statement numbers

LIST LEFT 163
LIST RIGHT 163

statement separator 2, 119
statement syntax 182
&STCOUNT 129, 152
&STFCOUNT 129, 152
&STLIMIT 130
&STNO 129
STOPTR 153
storage management 178
storage regeneration

forcing 178
string 1, 4, 134
STRING data type 4, 118,
string-valued expressions
subject 7, 8, 22, 132

126, 127
5

subtraction (-) 2, 3, 139
SUCCEED 54, 62, 72
&SUCCEED 129
switches 130
syntax 181

of prototypes 184
of SNOBOL4 programs 183, 190
of statements 182

system labels
END 11, 164
FRETURN 17, 85, 87, 134
NRETURN 85, 86, 87, 118
RETURN 16, 85, 87, 89, 118, 147

TAB 40
tags 143, 146
termination 163, 165

catastrophic 172
error 169
intervention 171
normal 165
program 1

TIME 81, 89
Tower of Hanoi 102
TRACE 143, 153
& TRAC E 1 3 0 , 1 4 3 , 1 53
trace associations 143, 147
tracing

CALL 1 47, 1 5 4
FUNCTION 147, 148, 154

level 147
KEYWORD 152, 154
LABEL 151, 154
RETURN 147, 148, 154
VALUE 143, 154

TRIM 14, 81

unanchored mode
unary operators

28, 66
2, 137

cur s 0 r po sit ion (ill) 5 6 , 1 3 8
interrogation (?) 82, 138
indirect reference ($) 12,
keyword (&) 19, 128, 138
minus (-) 2,3,134,137
n am e (.) 1 1 7, 1 1 8 , 1 3 8
negation (-.) 82, 134, 138
plus (+) 3, 134, 137
unevaluated expression (*)

137

57, 81,
138

unused 139
unevaluated expressions 57, 81, 126,

127, 138
UNLIST 163
unused operators

binary 141
unary 139

VALUE 125

value assignment
by assignment statements 1, 22,

115
by cursor position operator 56,

in array initialization
through pattern matching

value tracing 143, 154

108
115

30, 31,
33, 115

variables 1, 10, 30, 31, 56, 75, 118
created 20, 108, 110, 115, 116,

generated 13, 141
initial value 4
local 16, 18, 83,
natural 115, 116,

variable association

117, 118, 123

85, 86
141
10, 11, 30, 31,

32, 33

221

PROGRAMMING IN BASIC, THE TIME-SHARING LANGUAGE
by Mario V. Farina
This book is a complete self-teaching description of the BASIC time-sharing language as it is
used on teletype machines linked to computers by telephone lines.
OUTSTANDING FEATURES: Written in easy-to-understand style with a minimum of technical
terms • "Extended" features soon to be implemented are included in the text • Material is or
ganized logically into 25 lessons • An actual program example is shown from its conception to
final results • Actual computer print-outs .are reproduced.
Published 1968 164 pages

SYSTEM SIMULATION
by Geoffrey Gordon _
This book concerns the techniques of simulation as applied to both continuous and discrete
systems, and compares those techniques with other methods of problem-solving.
OUTSTANDING FEATURES include: Programmed examples fully worked out in six different simu
lation languages • Illustrated with complete examples drawn from a variety of applications • A
detailed discrete system example: first solved by hand calculations and later by FORTRAN and
two discrete simulation languages (GPSS and SIMSCRIPT) • The technique of Industrial Dynamics
as applied to business systems • The probability and statistics theory involved in the construc
tion of models and in the analysis of simulation results· Examples of applications drawn from
a variety of fields: engineering, biology, economics, business systems, switching systems and
inventory control.
Published 1969 320 pages

PROGRAMMING LANGUAGE/ONE
by Frank Bates and Mary l. Douglas
The purpose of this book is to explain some of the techniques for using computers4 and to ex
plain the implementation of these techniques in the programming language PL/ l. Many PL/ l
programs appear in this book as examples to illustrate various points about the language and
about computing in general. All of the example programs have been tested on a computer (an
IBM System/ 360). The program listings and results, reproduced in this book are actual com
puter print-outs. The programs shown in the back of the book as solutions to the exercises have
been similarly tested.
Published T967 384 pages

Prentice-Hall, Inc., Englewood Cliffs, New Jersey

L

13-815357-4

